cola Report for GDS4102

Date: 2019-12-25 21:09:50 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 51882    52

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:hclust 2 1.000 0.964 0.984 **
SD:kmeans 3 1.000 0.995 0.995 ** 2
SD:skmeans 3 1.000 0.978 0.990 ** 2
CV:hclust 2 1.000 0.964 0.985 **
CV:kmeans 3 1.000 0.985 0.990 ** 2
MAD:hclust 2 1.000 0.965 0.984 **
MAD:kmeans 3 1.000 0.977 0.988 **
MAD:skmeans 3 1.000 0.963 0.987 ** 2
ATC:kmeans 3 1.000 0.964 0.988 ** 2
ATC:skmeans 2 1.000 0.991 0.996 **
ATC:NMF 2 1.000 0.967 0.987 **
CV:skmeans 3 0.969 0.957 0.982 ** 2
MAD:NMF 3 0.969 0.937 0.974 **
ATC:pam 4 0.966 0.926 0.963 ** 2,3
SD:NMF 2 0.959 0.938 0.975 **
SD:mclust 3 0.958 0.915 0.953 **
CV:NMF 3 0.950 0.919 0.969 * 2
ATC:mclust 2 0.919 0.945 0.977 *
MAD:pam 2 0.919 0.927 0.970 *
ATC:hclust 5 0.910 0.907 0.967 * 3
MAD:mclust 3 0.832 0.943 0.969
SD:pam 3 0.659 0.816 0.912
CV:pam 3 0.646 0.796 0.911
CV:mclust 3 0.596 0.747 0.875

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.959           0.938       0.975          0.364 0.660   0.660
#> CV:NMF      2 0.959           0.955       0.981          0.384 0.618   0.618
#> MAD:NMF     2 0.845           0.895       0.959          0.401 0.618   0.618
#> ATC:NMF     2 1.000           0.967       0.987          0.429 0.581   0.581
#> SD:skmeans  2 1.000           0.980       0.991          0.491 0.509   0.509
#> CV:skmeans  2 1.000           0.975       0.989          0.487 0.517   0.517
#> MAD:skmeans 2 1.000           0.946       0.979          0.500 0.497   0.497
#> ATC:skmeans 2 1.000           0.991       0.996          0.416 0.581   0.581
#> SD:mclust   2 0.597           0.887       0.946          0.384 0.638   0.638
#> CV:mclust   2 0.881           0.893       0.958          0.355 0.638   0.638
#> MAD:mclust  2 0.880           0.890       0.955          0.367 0.660   0.660
#> ATC:mclust  2 0.919           0.945       0.977          0.470 0.527   0.527
#> SD:kmeans   2 1.000           0.999       1.000          0.318 0.683   0.683
#> CV:kmeans   2 0.960           0.977       0.988          0.329 0.683   0.683
#> MAD:kmeans  2 0.726           0.859       0.870          0.376 0.683   0.683
#> ATC:kmeans  2 1.000           1.000       1.000          0.317 0.683   0.683
#> SD:pam      2 0.885           0.945       0.976          0.344 0.683   0.683
#> CV:pam      2 0.885           0.953       0.978          0.341 0.683   0.683
#> MAD:pam     2 0.919           0.927       0.970          0.365 0.660   0.660
#> ATC:pam     2 1.000           0.999       1.000          0.267 0.735   0.735
#> SD:hclust   2 1.000           0.964       0.984          0.329 0.683   0.683
#> CV:hclust   2 1.000           0.964       0.985          0.330 0.683   0.683
#> MAD:hclust  2 1.000           0.965       0.984          0.333 0.683   0.683
#> ATC:hclust  2 0.823           0.895       0.959          0.265 0.792   0.792
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.894           0.922       0.966          0.741 0.697   0.546
#> CV:NMF      3 0.950           0.919       0.969          0.660 0.726   0.564
#> MAD:NMF     3 0.969           0.937       0.974          0.585 0.716   0.549
#> ATC:NMF     3 0.572           0.609       0.771          0.322 0.833   0.723
#> SD:skmeans  3 1.000           0.978       0.990          0.300 0.793   0.617
#> CV:skmeans  3 0.969           0.957       0.982          0.296 0.796   0.627
#> MAD:skmeans 3 1.000           0.963       0.987          0.282 0.796   0.614
#> ATC:skmeans 3 0.675           0.696       0.869          0.272 0.973   0.953
#> SD:mclust   3 0.958           0.915       0.953          0.632 0.701   0.545
#> CV:mclust   3 0.596           0.747       0.875          0.787 0.707   0.548
#> MAD:mclust  3 0.832           0.943       0.969          0.707 0.697   0.548
#> ATC:mclust  3 0.514           0.622       0.794          0.258 0.974   0.951
#> SD:kmeans   3 1.000           0.995       0.995          0.956 0.695   0.553
#> CV:kmeans   3 1.000           0.985       0.990          0.880 0.695   0.553
#> MAD:kmeans  3 1.000           0.977       0.988          0.655 0.695   0.553
#> ATC:kmeans  3 1.000           0.964       0.988          0.407 0.827   0.753
#> SD:pam      3 0.659           0.816       0.912          0.738 0.716   0.584
#> CV:pam      3 0.646           0.796       0.911          0.791 0.686   0.541
#> MAD:pam     3 0.622           0.764       0.881          0.699 0.667   0.508
#> ATC:pam     3 1.000           0.958       0.983          0.448 0.894   0.856
#> SD:hclust   3 0.596           0.652       0.800          0.757 0.837   0.762
#> CV:hclust   3 0.548           0.670       0.851          0.840 0.674   0.523
#> MAD:hclust  3 0.589           0.722       0.869          0.845 0.649   0.492
#> ATC:hclust  3 0.965           0.977       0.989          0.423 0.845   0.805
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.774           0.736       0.872         0.0954 0.946   0.855
#> CV:NMF      4 0.745           0.737       0.880         0.0985 0.900   0.744
#> MAD:NMF     4 0.637           0.788       0.839         0.1090 0.971   0.921
#> ATC:NMF     4 0.462           0.475       0.683         0.1437 0.825   0.651
#> SD:skmeans  4 0.798           0.836       0.897         0.1860 0.855   0.613
#> CV:skmeans  4 0.798           0.869       0.911         0.1962 0.864   0.636
#> MAD:skmeans 4 0.871           0.927       0.939         0.1840 0.846   0.587
#> ATC:skmeans 4 0.613           0.737       0.846         0.0979 0.936   0.885
#> SD:mclust   4 0.520           0.546       0.771         0.0857 0.854   0.677
#> CV:mclust   4 0.568           0.552       0.771         0.1179 0.821   0.573
#> MAD:mclust  4 0.823           0.833       0.867         0.0674 1.000   1.000
#> ATC:mclust  4 0.440           0.544       0.756         0.1877 0.738   0.493
#> SD:kmeans   4 0.650           0.565       0.816         0.1481 0.946   0.856
#> CV:kmeans   4 0.678           0.547       0.813         0.1518 0.946   0.856
#> MAD:kmeans  4 0.687           0.744       0.806         0.1661 0.872   0.661
#> ATC:kmeans  4 0.872           0.738       0.890         0.1553 0.973   0.950
#> SD:pam      4 0.498           0.634       0.772         0.1739 0.817   0.575
#> CV:pam      4 0.586           0.471       0.746         0.1629 0.820   0.564
#> MAD:pam     4 0.730           0.792       0.846         0.1957 0.772   0.457
#> ATC:pam     4 0.966           0.926       0.963         0.2693 0.872   0.801
#> SD:hclust   4 0.514           0.613       0.735         0.1379 0.793   0.605
#> CV:hclust   4 0.553           0.524       0.757         0.1027 0.987   0.964
#> MAD:hclust  4 0.632           0.795       0.860         0.1390 0.828   0.571
#> ATC:hclust  4 0.933           0.946       0.968         0.0693 0.995   0.993
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.744           0.753       0.867         0.0783 0.903   0.717
#> CV:NMF      5 0.731           0.722       0.861         0.0780 0.928   0.778
#> MAD:NMF     5 0.611           0.519       0.727         0.0781 0.866   0.639
#> ATC:NMF     5 0.459           0.429       0.719         0.0866 0.819   0.584
#> SD:skmeans  5 0.775           0.756       0.827         0.0573 0.952   0.803
#> CV:skmeans  5 0.773           0.637       0.814         0.0534 0.946   0.783
#> MAD:skmeans 5 0.802           0.779       0.814         0.0542 0.980   0.921
#> ATC:skmeans 5 0.535           0.669       0.804         0.0801 0.956   0.910
#> SD:mclust   5 0.561           0.510       0.717         0.0990 0.778   0.471
#> CV:mclust   5 0.566           0.442       0.719         0.0765 0.807   0.470
#> MAD:mclust  5 0.685           0.813       0.855         0.0588 0.950   0.868
#> ATC:mclust  5 0.537           0.420       0.705         0.0882 0.837   0.489
#> SD:kmeans   5 0.629           0.563       0.743         0.0809 0.848   0.563
#> CV:kmeans   5 0.635           0.494       0.731         0.0811 0.860   0.587
#> MAD:kmeans  5 0.662           0.657       0.793         0.0766 0.958   0.836
#> ATC:kmeans  5 0.653           0.800       0.880         0.3169 0.751   0.524
#> SD:pam      5 0.689           0.726       0.843         0.0951 0.884   0.625
#> CV:pam      5 0.639           0.534       0.758         0.0931 0.843   0.521
#> MAD:pam     5 0.686           0.755       0.855         0.0534 0.957   0.833
#> ATC:pam     5 0.822           0.914       0.947         0.0556 0.994   0.989
#> SD:hclust   5 0.534           0.665       0.779         0.0574 0.864   0.626
#> CV:hclust   5 0.551           0.456       0.723         0.0507 0.951   0.859
#> MAD:hclust  5 0.707           0.788       0.881         0.0458 0.963   0.873
#> ATC:hclust  5 0.910           0.907       0.967         0.2889 0.842   0.750
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.710           0.734       0.857         0.0512 0.949   0.815
#> CV:NMF      6 0.719           0.690       0.854         0.0583 0.905   0.659
#> MAD:NMF     6 0.647           0.627       0.800         0.0467 0.947   0.794
#> ATC:NMF     6 0.498           0.499       0.711         0.0665 0.890   0.681
#> SD:skmeans  6 0.776           0.649       0.780         0.0277 0.940   0.715
#> CV:skmeans  6 0.784           0.716       0.803         0.0315 0.928   0.671
#> MAD:skmeans 6 0.811           0.735       0.816         0.0298 0.952   0.803
#> ATC:skmeans 6 0.583           0.321       0.730         0.0584 0.913   0.806
#> SD:mclust   6 0.580           0.411       0.619         0.0630 0.910   0.649
#> CV:mclust   6 0.622           0.536       0.724         0.0617 0.829   0.415
#> MAD:mclust  6 0.636           0.604       0.708         0.0951 0.875   0.630
#> ATC:mclust  6 0.626           0.623       0.763         0.0456 0.860   0.461
#> SD:kmeans   6 0.658           0.488       0.717         0.0477 0.939   0.744
#> CV:kmeans   6 0.648           0.472       0.701         0.0417 0.944   0.758
#> MAD:kmeans  6 0.701           0.557       0.755         0.0426 0.977   0.900
#> ATC:kmeans  6 0.764           0.788       0.875         0.0725 0.981   0.934
#> SD:pam      6 0.674           0.618       0.800         0.0452 0.925   0.686
#> CV:pam      6 0.675           0.411       0.703         0.0391 0.873   0.513
#> MAD:pam     6 0.755           0.662       0.826         0.0579 0.901   0.597
#> ATC:pam     6 0.750           0.900       0.929         0.0252 0.998   0.996
#> SD:hclust   6 0.601           0.668       0.776         0.0892 0.916   0.715
#> CV:hclust   6 0.552           0.589       0.708         0.0730 0.772   0.416
#> MAD:hclust  6 0.721           0.747       0.883         0.0501 0.980   0.925
#> ATC:hclust  6 0.832           0.839       0.938         0.0321 0.996   0.992

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>              n tissue(p) k
#> SD:NMF      50  1.75e-03 2
#> CV:NMF      52  1.79e-03 2
#> MAD:NMF     49  1.92e-04 2
#> ATC:NMF     51  1.50e-03 2
#> SD:skmeans  52  3.12e-08 2
#> CV:skmeans  51  3.69e-07 2
#> MAD:skmeans 50  2.94e-07 2
#> ATC:skmeans 52  1.20e-03 2
#> SD:mclust   52  6.62e-03 2
#> CV:mclust   47  5.19e-04 2
#> MAD:mclust  49  2.14e-03 2
#> ATC:mclust  50  8.39e-03 2
#> SD:kmeans   52  7.46e-04 2
#> CV:kmeans   52  7.46e-04 2
#> MAD:kmeans  52  7.46e-04 2
#> ATC:kmeans  52  7.46e-04 2
#> SD:pam      51  9.13e-04 2
#> CV:pam      51  9.13e-04 2
#> MAD:pam     50  7.77e-04 2
#> ATC:pam     52  7.71e-04 2
#> SD:hclust   52  7.46e-04 2
#> CV:hclust   52  7.46e-04 2
#> MAD:hclust  51  9.13e-04 2
#> ATC:hclust  47  3.87e-04 2
test_to_known_factors(res_list, k = 3)
#>              n tissue(p) k
#> SD:NMF      51  6.97e-05 3
#> CV:NMF      49  1.35e-04 3
#> MAD:NMF     50  9.68e-05 3
#> ATC:NMF     38  5.98e-01 3
#> SD:skmeans  52  6.68e-06 3
#> CV:skmeans  51  1.24e-05 3
#> MAD:skmeans 51  9.48e-06 3
#> ATC:skmeans 46  4.68e-03 3
#> SD:mclust   50  4.54e-06 3
#> CV:mclust   46  2.98e-06 3
#> MAD:mclust  52  1.34e-05 3
#> ATC:mclust  43  3.15e-03 3
#> SD:kmeans   52  1.34e-05 3
#> CV:kmeans   52  1.34e-05 3
#> MAD:kmeans  51  1.10e-05 3
#> ATC:kmeans  51  1.03e-04 3
#> SD:pam      49  2.54e-06 3
#> CV:pam      47  5.41e-06 3
#> MAD:pam     47  1.84e-04 3
#> ATC:pam     50  4.85e-04 3
#> SD:hclust   44  1.11e-08 3
#> CV:hclust   43  1.58e-06 3
#> MAD:hclust  44  1.96e-04 3
#> ATC:hclust  52  3.13e-04 3
test_to_known_factors(res_list, k = 4)
#>              n tissue(p) k
#> SD:NMF      46  2.51e-04 4
#> CV:NMF      46  2.51e-04 4
#> MAD:NMF     51  1.30e-04 4
#> ATC:NMF     30  1.03e-02 4
#> SD:skmeans  51  2.40e-04 4
#> CV:skmeans  52  1.75e-04 4
#> MAD:skmeans 52  1.75e-04 4
#> ATC:skmeans 47  4.57e-03 4
#> SD:mclust   39  2.62e-06 4
#> CV:mclust   37  2.61e-05 4
#> MAD:mclust  50  8.40e-06 4
#> ATC:mclust  39  1.08e-04 4
#> SD:kmeans   33  3.20e-03 4
#> CV:kmeans   31  8.05e-03 4
#> MAD:kmeans  48  1.12e-04 4
#> ATC:kmeans  42  2.20e-04 4
#> SD:pam      42  2.57e-05 4
#> CV:pam      25  6.07e-04 4
#> MAD:pam     45  5.46e-06 4
#> ATC:pam     51  6.57e-04 4
#> SD:hclust   38  8.01e-07 4
#> CV:hclust   29  1.51e-05 4
#> MAD:hclust  50  1.61e-07 4
#> ATC:hclust  52  3.24e-04 4
test_to_known_factors(res_list, k = 5)
#>              n tissue(p) k
#> SD:NMF      48  6.59e-05 5
#> CV:NMF      45  1.43e-05 5
#> MAD:NMF     31  6.10e-05 5
#> ATC:NMF     27  7.50e-05 5
#> SD:skmeans  48  3.89e-04 5
#> CV:skmeans  40  1.96e-03 5
#> MAD:skmeans 47  1.82e-04 5
#> ATC:skmeans 45  8.55e-04 5
#> SD:mclust   27  1.42e-04 5
#> CV:mclust   20  1.41e-02 5
#> MAD:mclust  51  6.66e-08 5
#> ATC:mclust  27  2.74e-03 5
#> SD:kmeans   37  2.25e-05 5
#> CV:kmeans   28  1.10e-04 5
#> MAD:kmeans  44  5.13e-05 5
#> ATC:kmeans  46  1.13e-03 5
#> SD:pam      46  1.06e-05 5
#> CV:pam      31  7.09e-05 5
#> MAD:pam     48  5.97e-05 5
#> ATC:pam     51  8.77e-04 5
#> SD:hclust   42  8.79e-07 5
#> CV:hclust   24  1.44e-04 5
#> MAD:hclust  49  4.55e-08 5
#> ATC:hclust  50  6.28e-04 5
test_to_known_factors(res_list, k = 6)
#>              n tissue(p) k
#> SD:NMF      45  4.90e-04 6
#> CV:NMF      41  7.12e-05 6
#> MAD:NMF     42  5.57e-04 6
#> ATC:NMF     30  4.82e-05 6
#> SD:skmeans  36  2.60e-04 6
#> CV:skmeans  42  6.90e-05 6
#> MAD:skmeans 48  3.89e-04 6
#> ATC:skmeans 18  2.73e-02 6
#> SD:mclust   21  6.34e-04 6
#> CV:mclust   34  4.38e-06 6
#> MAD:mclust  34  4.54e-05 6
#> ATC:mclust  38  1.43e-03 6
#> SD:kmeans   29  6.73e-05 6
#> CV:kmeans   30  1.30e-04 6
#> MAD:kmeans  36  9.68e-05 6
#> ATC:kmeans  48  4.60e-04 6
#> SD:pam      36  7.58e-05 6
#> CV:pam      23  7.90e-04 6
#> MAD:pam     40  2.45e-04 6
#> ATC:pam     51  8.77e-04 6
#> SD:hclust   47  3.99e-07 6
#> CV:hclust   35  1.42e-05 6
#> MAD:hclust  47  1.06e-07 6
#> ATC:hclust  46  2.29e-04 6

Results for each method


SD:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.964       0.984         0.3292 0.683   0.683
#> 3 3 0.596           0.652       0.800         0.7570 0.837   0.762
#> 4 4 0.514           0.613       0.735         0.1379 0.793   0.605
#> 5 5 0.534           0.665       0.779         0.0574 0.864   0.626
#> 6 6 0.601           0.668       0.776         0.0892 0.916   0.715

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1   0.000      0.983 1.000 0.000
#> GSM414925     1   0.000      0.983 1.000 0.000
#> GSM414926     1   0.000      0.983 1.000 0.000
#> GSM414927     2   0.278      0.959 0.048 0.952
#> GSM414929     1   0.000      0.983 1.000 0.000
#> GSM414931     1   0.000      0.983 1.000 0.000
#> GSM414933     1   0.000      0.983 1.000 0.000
#> GSM414935     1   0.000      0.983 1.000 0.000
#> GSM414936     1   0.000      0.983 1.000 0.000
#> GSM414937     1   0.000      0.983 1.000 0.000
#> GSM414939     1   0.000      0.983 1.000 0.000
#> GSM414941     1   0.000      0.983 1.000 0.000
#> GSM414943     1   0.000      0.983 1.000 0.000
#> GSM414944     1   0.000      0.983 1.000 0.000
#> GSM414945     2   0.000      0.984 0.000 1.000
#> GSM414946     1   0.000      0.983 1.000 0.000
#> GSM414948     1   0.000      0.983 1.000 0.000
#> GSM414949     1   0.416      0.898 0.916 0.084
#> GSM414950     1   0.000      0.983 1.000 0.000
#> GSM414951     1   0.000      0.983 1.000 0.000
#> GSM414952     1   0.000      0.983 1.000 0.000
#> GSM414954     1   0.000      0.983 1.000 0.000
#> GSM414956     1   0.000      0.983 1.000 0.000
#> GSM414958     1   0.000      0.983 1.000 0.000
#> GSM414959     1   0.000      0.983 1.000 0.000
#> GSM414960     1   0.000      0.983 1.000 0.000
#> GSM414961     1   0.000      0.983 1.000 0.000
#> GSM414962     1   0.886      0.570 0.696 0.304
#> GSM414964     1   0.000      0.983 1.000 0.000
#> GSM414965     1   0.000      0.983 1.000 0.000
#> GSM414967     1   0.000      0.983 1.000 0.000
#> GSM414968     1   0.000      0.983 1.000 0.000
#> GSM414969     1   0.000      0.983 1.000 0.000
#> GSM414971     1   0.000      0.983 1.000 0.000
#> GSM414973     1   0.000      0.983 1.000 0.000
#> GSM414974     1   0.881      0.577 0.700 0.300
#> GSM414928     2   0.278      0.959 0.048 0.952
#> GSM414930     2   0.000      0.984 0.000 1.000
#> GSM414932     1   0.000      0.983 1.000 0.000
#> GSM414934     1   0.000      0.983 1.000 0.000
#> GSM414938     1   0.000      0.983 1.000 0.000
#> GSM414940     1   0.000      0.983 1.000 0.000
#> GSM414942     2   0.000      0.984 0.000 1.000
#> GSM414947     2   0.000      0.984 0.000 1.000
#> GSM414953     1   0.000      0.983 1.000 0.000
#> GSM414955     1   0.000      0.983 1.000 0.000
#> GSM414957     2   0.242      0.964 0.040 0.960
#> GSM414963     1   0.000      0.983 1.000 0.000
#> GSM414966     2   0.000      0.984 0.000 1.000
#> GSM414970     1   0.000      0.983 1.000 0.000
#> GSM414972     2   0.000      0.984 0.000 1.000
#> GSM414975     2   0.000      0.984 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM414924     1  0.5948     0.6585 0.640 0.000 0.360
#> GSM414925     1  0.5948     0.6585 0.640 0.000 0.360
#> GSM414926     1  0.5948     0.6585 0.640 0.000 0.360
#> GSM414927     2  0.1878     0.9592 0.004 0.952 0.044
#> GSM414929     1  0.5968     0.6575 0.636 0.000 0.364
#> GSM414931     1  0.5988     0.6560 0.632 0.000 0.368
#> GSM414933     1  0.5988     0.6560 0.632 0.000 0.368
#> GSM414935     1  0.2878     0.5086 0.904 0.000 0.096
#> GSM414936     1  0.0237     0.6010 0.996 0.000 0.004
#> GSM414937     1  0.0424     0.5986 0.992 0.000 0.008
#> GSM414939     1  0.0424     0.5986 0.992 0.000 0.008
#> GSM414941     1  0.2959     0.6124 0.900 0.000 0.100
#> GSM414943     1  0.0237     0.6010 0.996 0.000 0.004
#> GSM414944     1  0.5988     0.6560 0.632 0.000 0.368
#> GSM414945     2  0.0000     0.9842 0.000 1.000 0.000
#> GSM414946     1  0.5948     0.6585 0.640 0.000 0.360
#> GSM414948     1  0.5988     0.6560 0.632 0.000 0.368
#> GSM414949     1  0.8085    -0.0999 0.584 0.084 0.332
#> GSM414950     1  0.4654     0.2828 0.792 0.000 0.208
#> GSM414951     1  0.2537     0.5271 0.920 0.000 0.080
#> GSM414952     1  0.5327     0.0762 0.728 0.000 0.272
#> GSM414954     1  0.1964     0.5573 0.944 0.000 0.056
#> GSM414956     1  0.0237     0.6010 0.996 0.000 0.004
#> GSM414958     1  0.5968     0.6575 0.636 0.000 0.364
#> GSM414959     1  0.1411     0.6165 0.964 0.000 0.036
#> GSM414960     1  0.5988     0.6560 0.632 0.000 0.368
#> GSM414961     1  0.2878     0.5086 0.904 0.000 0.096
#> GSM414962     1  0.9717     0.0331 0.448 0.304 0.248
#> GSM414964     1  0.2066     0.5693 0.940 0.000 0.060
#> GSM414965     1  0.0237     0.6010 0.996 0.000 0.004
#> GSM414967     1  0.5988     0.6560 0.632 0.000 0.368
#> GSM414968     1  0.3752     0.4296 0.856 0.000 0.144
#> GSM414969     1  0.5650     0.6586 0.688 0.000 0.312
#> GSM414971     1  0.5988     0.6560 0.632 0.000 0.368
#> GSM414973     1  0.5621     0.6590 0.692 0.000 0.308
#> GSM414974     1  0.9702     0.0347 0.452 0.300 0.248
#> GSM414928     2  0.1878     0.9592 0.004 0.952 0.044
#> GSM414930     2  0.0000     0.9842 0.000 1.000 0.000
#> GSM414932     3  0.6008     1.0000 0.372 0.000 0.628
#> GSM414934     3  0.6008     1.0000 0.372 0.000 0.628
#> GSM414938     1  0.5465    -0.0545 0.712 0.000 0.288
#> GSM414940     3  0.6008     1.0000 0.372 0.000 0.628
#> GSM414942     2  0.0000     0.9842 0.000 1.000 0.000
#> GSM414947     2  0.0000     0.9842 0.000 1.000 0.000
#> GSM414953     3  0.6008     1.0000 0.372 0.000 0.628
#> GSM414955     1  0.5327     0.0762 0.728 0.000 0.272
#> GSM414957     2  0.1529     0.9637 0.000 0.960 0.040
#> GSM414963     3  0.6008     1.0000 0.372 0.000 0.628
#> GSM414966     2  0.0000     0.9842 0.000 1.000 0.000
#> GSM414970     3  0.6008     1.0000 0.372 0.000 0.628
#> GSM414972     2  0.0000     0.9842 0.000 1.000 0.000
#> GSM414975     2  0.0000     0.9842 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     1  0.4948    -0.1590 0.560 0.000 0.000 0.440
#> GSM414925     1  0.4916    -0.1193 0.576 0.000 0.000 0.424
#> GSM414926     1  0.4961    -0.1799 0.552 0.000 0.000 0.448
#> GSM414927     2  0.3399     0.9088 0.000 0.868 0.092 0.040
#> GSM414929     4  0.4454     0.8790 0.308 0.000 0.000 0.692
#> GSM414931     4  0.3942     0.9674 0.236 0.000 0.000 0.764
#> GSM414933     4  0.3975     0.9636 0.240 0.000 0.000 0.760
#> GSM414935     1  0.1302     0.5659 0.956 0.000 0.044 0.000
#> GSM414936     1  0.2345     0.6369 0.900 0.000 0.000 0.100
#> GSM414937     1  0.1867     0.6381 0.928 0.000 0.000 0.072
#> GSM414939     1  0.1867     0.6381 0.928 0.000 0.000 0.072
#> GSM414941     1  0.2149     0.6299 0.912 0.000 0.000 0.088
#> GSM414943     1  0.2345     0.6369 0.900 0.000 0.000 0.100
#> GSM414944     4  0.3942     0.9674 0.236 0.000 0.000 0.764
#> GSM414945     2  0.0188     0.9635 0.000 0.996 0.004 0.000
#> GSM414946     1  0.4933    -0.1379 0.568 0.000 0.000 0.432
#> GSM414948     4  0.3942     0.9674 0.236 0.000 0.000 0.764
#> GSM414949     1  0.6171    -0.0680 0.588 0.000 0.348 0.064
#> GSM414950     1  0.3486     0.3251 0.812 0.000 0.188 0.000
#> GSM414951     1  0.3245     0.5842 0.880 0.000 0.064 0.056
#> GSM414952     1  0.3907     0.1675 0.768 0.000 0.232 0.000
#> GSM414954     1  0.0000     0.6080 1.000 0.000 0.000 0.000
#> GSM414956     1  0.2345     0.6369 0.900 0.000 0.000 0.100
#> GSM414958     4  0.4454     0.8790 0.308 0.000 0.000 0.692
#> GSM414959     1  0.2868     0.6246 0.864 0.000 0.000 0.136
#> GSM414960     4  0.3942     0.9674 0.236 0.000 0.000 0.764
#> GSM414961     1  0.1302     0.5659 0.956 0.000 0.044 0.000
#> GSM414962     1  0.8705     0.0385 0.492 0.220 0.212 0.076
#> GSM414964     1  0.0469     0.6155 0.988 0.000 0.000 0.012
#> GSM414965     1  0.2345     0.6369 0.900 0.000 0.000 0.100
#> GSM414967     4  0.3942     0.9674 0.236 0.000 0.000 0.764
#> GSM414968     1  0.2149     0.4971 0.912 0.000 0.088 0.000
#> GSM414969     1  0.4746     0.0665 0.632 0.000 0.000 0.368
#> GSM414971     4  0.3942     0.9674 0.236 0.000 0.000 0.764
#> GSM414973     1  0.4855    -0.0124 0.600 0.000 0.000 0.400
#> GSM414974     1  0.8706     0.0367 0.492 0.216 0.216 0.076
#> GSM414928     2  0.3399     0.9088 0.000 0.868 0.092 0.040
#> GSM414930     2  0.0000     0.9646 0.000 1.000 0.000 0.000
#> GSM414932     3  0.4790     0.8579 0.380 0.000 0.620 0.000
#> GSM414934     3  0.6055     0.8444 0.372 0.000 0.576 0.052
#> GSM414938     3  0.7589     0.1050 0.396 0.000 0.408 0.196
#> GSM414940     3  0.4761     0.8563 0.372 0.000 0.628 0.000
#> GSM414942     2  0.0000     0.9646 0.000 1.000 0.000 0.000
#> GSM414947     2  0.0000     0.9646 0.000 1.000 0.000 0.000
#> GSM414953     3  0.6055     0.8444 0.372 0.000 0.576 0.052
#> GSM414955     1  0.3907     0.1675 0.768 0.000 0.232 0.000
#> GSM414957     2  0.2983     0.9211 0.000 0.892 0.068 0.040
#> GSM414963     3  0.4790     0.8579 0.380 0.000 0.620 0.000
#> GSM414966     2  0.0000     0.9646 0.000 1.000 0.000 0.000
#> GSM414970     3  0.4790     0.8579 0.380 0.000 0.620 0.000
#> GSM414972     2  0.0000     0.9646 0.000 1.000 0.000 0.000
#> GSM414975     2  0.0000     0.9646 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     1  0.4856      0.405 0.584 0.000 0.028 0.000 0.388
#> GSM414925     1  0.4893      0.380 0.568 0.000 0.028 0.000 0.404
#> GSM414926     1  0.4835      0.413 0.592 0.000 0.028 0.000 0.380
#> GSM414927     2  0.4755      0.736 0.000 0.696 0.244 0.060 0.000
#> GSM414929     1  0.1671      0.708 0.924 0.000 0.000 0.000 0.076
#> GSM414931     1  0.0000      0.702 1.000 0.000 0.000 0.000 0.000
#> GSM414933     1  0.0290      0.703 0.992 0.000 0.000 0.000 0.008
#> GSM414935     5  0.2674      0.745 0.140 0.000 0.004 0.000 0.856
#> GSM414936     5  0.3707      0.701 0.284 0.000 0.000 0.000 0.716
#> GSM414937     5  0.3635      0.722 0.248 0.000 0.004 0.000 0.748
#> GSM414939     5  0.3635      0.722 0.248 0.000 0.004 0.000 0.748
#> GSM414941     5  0.3783      0.673 0.252 0.000 0.008 0.000 0.740
#> GSM414943     5  0.3707      0.701 0.284 0.000 0.000 0.000 0.716
#> GSM414944     1  0.0000      0.702 1.000 0.000 0.000 0.000 0.000
#> GSM414945     2  0.3214      0.825 0.000 0.844 0.120 0.036 0.000
#> GSM414946     1  0.4876      0.394 0.576 0.000 0.028 0.000 0.396
#> GSM414948     1  0.0000      0.702 1.000 0.000 0.000 0.000 0.000
#> GSM414949     5  0.4229      0.284 0.000 0.000 0.276 0.020 0.704
#> GSM414950     5  0.4425      0.602 0.108 0.000 0.116 0.004 0.772
#> GSM414951     5  0.3132      0.740 0.172 0.000 0.008 0.000 0.820
#> GSM414952     5  0.1478      0.521 0.000 0.000 0.064 0.000 0.936
#> GSM414954     5  0.2929      0.744 0.180 0.000 0.000 0.000 0.820
#> GSM414956     5  0.3707      0.701 0.284 0.000 0.000 0.000 0.716
#> GSM414958     1  0.1671      0.708 0.924 0.000 0.000 0.000 0.076
#> GSM414959     5  0.4213      0.651 0.308 0.000 0.012 0.000 0.680
#> GSM414960     1  0.0162      0.703 0.996 0.000 0.000 0.000 0.004
#> GSM414961     5  0.2674      0.745 0.140 0.000 0.004 0.000 0.856
#> GSM414962     5  0.6470      0.152 0.000 0.048 0.296 0.088 0.568
#> GSM414964     5  0.3160      0.741 0.188 0.000 0.004 0.000 0.808
#> GSM414965     5  0.3707      0.701 0.284 0.000 0.000 0.000 0.716
#> GSM414967     1  0.0000      0.702 1.000 0.000 0.000 0.000 0.000
#> GSM414968     5  0.2193      0.719 0.092 0.000 0.008 0.000 0.900
#> GSM414969     1  0.4971      0.229 0.512 0.000 0.028 0.000 0.460
#> GSM414971     1  0.0000      0.702 1.000 0.000 0.000 0.000 0.000
#> GSM414973     1  0.4937      0.294 0.544 0.000 0.028 0.000 0.428
#> GSM414974     5  0.6423      0.154 0.000 0.044 0.300 0.088 0.568
#> GSM414928     2  0.4755      0.736 0.000 0.696 0.244 0.060 0.000
#> GSM414930     2  0.0000      0.876 0.000 1.000 0.000 0.000 0.000
#> GSM414932     3  0.4321      0.949 0.000 0.000 0.600 0.004 0.396
#> GSM414934     3  0.3774      0.899 0.000 0.000 0.704 0.000 0.296
#> GSM414938     4  0.1410      0.000 0.000 0.000 0.000 0.940 0.060
#> GSM414940     3  0.4161      0.947 0.000 0.000 0.608 0.000 0.392
#> GSM414942     2  0.0000      0.876 0.000 1.000 0.000 0.000 0.000
#> GSM414947     2  0.0000      0.876 0.000 1.000 0.000 0.000 0.000
#> GSM414953     3  0.3774      0.899 0.000 0.000 0.704 0.000 0.296
#> GSM414955     5  0.1478      0.521 0.000 0.000 0.064 0.000 0.936
#> GSM414957     2  0.4400      0.766 0.000 0.736 0.212 0.052 0.000
#> GSM414963     3  0.4321      0.949 0.000 0.000 0.600 0.004 0.396
#> GSM414966     2  0.0000      0.876 0.000 1.000 0.000 0.000 0.000
#> GSM414970     3  0.4321      0.949 0.000 0.000 0.600 0.004 0.396
#> GSM414972     2  0.0000      0.876 0.000 1.000 0.000 0.000 0.000
#> GSM414975     2  0.0000      0.876 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5   p6
#> GSM414924     1  0.6070      0.514 0.404 0.000 0.000 0.292 0.304 0.00
#> GSM414925     1  0.6075      0.496 0.396 0.000 0.000 0.280 0.324 0.00
#> GSM414926     1  0.6063      0.520 0.408 0.000 0.000 0.292 0.300 0.00
#> GSM414927     2  0.3620      0.677 0.000 0.648 0.000 0.352 0.000 0.00
#> GSM414929     1  0.3652      0.732 0.720 0.000 0.000 0.016 0.264 0.00
#> GSM414931     1  0.2527      0.747 0.832 0.000 0.000 0.000 0.168 0.00
#> GSM414933     1  0.3122      0.752 0.804 0.000 0.000 0.020 0.176 0.00
#> GSM414935     5  0.1572      0.740 0.000 0.000 0.028 0.036 0.936 0.00
#> GSM414936     5  0.1910      0.748 0.108 0.000 0.000 0.000 0.892 0.00
#> GSM414937     5  0.1285      0.760 0.052 0.000 0.000 0.004 0.944 0.00
#> GSM414939     5  0.1285      0.760 0.052 0.000 0.000 0.004 0.944 0.00
#> GSM414941     5  0.3372      0.626 0.084 0.000 0.000 0.100 0.816 0.00
#> GSM414943     5  0.1910      0.748 0.108 0.000 0.000 0.000 0.892 0.00
#> GSM414944     1  0.2912      0.595 0.852 0.000 0.000 0.072 0.076 0.00
#> GSM414945     2  0.5584      0.675 0.068 0.664 0.048 0.200 0.000 0.02
#> GSM414946     1  0.6067      0.507 0.404 0.000 0.000 0.284 0.312 0.00
#> GSM414948     1  0.2562      0.749 0.828 0.000 0.000 0.000 0.172 0.00
#> GSM414949     4  0.5102      0.581 0.000 0.000 0.228 0.624 0.148 0.00
#> GSM414950     5  0.4590      0.408 0.000 0.000 0.224 0.096 0.680 0.00
#> GSM414951     5  0.2250      0.748 0.040 0.000 0.064 0.000 0.896 0.00
#> GSM414952     5  0.4121      0.533 0.000 0.000 0.116 0.136 0.748 0.00
#> GSM414954     5  0.0458      0.757 0.000 0.000 0.000 0.016 0.984 0.00
#> GSM414956     5  0.1910      0.748 0.108 0.000 0.000 0.000 0.892 0.00
#> GSM414958     1  0.3652      0.732 0.720 0.000 0.000 0.016 0.264 0.00
#> GSM414959     5  0.2784      0.718 0.124 0.000 0.000 0.028 0.848 0.00
#> GSM414960     1  0.3168      0.753 0.792 0.000 0.000 0.016 0.192 0.00
#> GSM414961     5  0.1492      0.741 0.000 0.000 0.024 0.036 0.940 0.00
#> GSM414962     4  0.2092      0.792 0.000 0.000 0.000 0.876 0.124 0.00
#> GSM414964     5  0.0806      0.757 0.008 0.000 0.000 0.020 0.972 0.00
#> GSM414965     5  0.1910      0.748 0.108 0.000 0.000 0.000 0.892 0.00
#> GSM414967     1  0.2912      0.595 0.852 0.000 0.000 0.072 0.076 0.00
#> GSM414968     5  0.2250      0.706 0.000 0.000 0.064 0.040 0.896 0.00
#> GSM414969     5  0.6088     -0.471 0.340 0.000 0.000 0.280 0.380 0.00
#> GSM414971     1  0.2527      0.747 0.832 0.000 0.000 0.000 0.168 0.00
#> GSM414973     5  0.6100     -0.504 0.356 0.000 0.000 0.284 0.360 0.00
#> GSM414974     4  0.2234      0.794 0.000 0.000 0.004 0.872 0.124 0.00
#> GSM414928     2  0.3620      0.677 0.000 0.648 0.000 0.352 0.000 0.00
#> GSM414930     2  0.0000      0.840 0.000 1.000 0.000 0.000 0.000 0.00
#> GSM414932     3  0.2971      0.942 0.000 0.000 0.844 0.104 0.052 0.00
#> GSM414934     3  0.1075      0.890 0.000 0.000 0.952 0.000 0.048 0.00
#> GSM414938     6  0.0547      0.000 0.000 0.000 0.000 0.020 0.000 0.98
#> GSM414940     3  0.2860      0.940 0.000 0.000 0.852 0.100 0.048 0.00
#> GSM414942     2  0.0000      0.840 0.000 1.000 0.000 0.000 0.000 0.00
#> GSM414947     2  0.0000      0.840 0.000 1.000 0.000 0.000 0.000 0.00
#> GSM414953     3  0.1075      0.890 0.000 0.000 0.952 0.000 0.048 0.00
#> GSM414955     5  0.4121      0.533 0.000 0.000 0.116 0.136 0.748 0.00
#> GSM414957     2  0.3446      0.713 0.000 0.692 0.000 0.308 0.000 0.00
#> GSM414963     3  0.2971      0.942 0.000 0.000 0.844 0.104 0.052 0.00
#> GSM414966     2  0.0000      0.840 0.000 1.000 0.000 0.000 0.000 0.00
#> GSM414970     3  0.2971      0.942 0.000 0.000 0.844 0.104 0.052 0.00
#> GSM414972     2  0.0000      0.840 0.000 1.000 0.000 0.000 0.000 0.00
#> GSM414975     2  0.0000      0.840 0.000 1.000 0.000 0.000 0.000 0.00

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n tissue(p) k
#> SD:hclust 52  7.46e-04 2
#> SD:hclust 44  1.11e-08 3
#> SD:hclust 38  8.01e-07 4
#> SD:hclust 42  8.79e-07 5
#> SD:hclust 47  3.99e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.999       1.000         0.3177 0.683   0.683
#> 3 3 1.000           0.995       0.995         0.9563 0.695   0.553
#> 4 4 0.650           0.565       0.816         0.1481 0.946   0.856
#> 5 5 0.629           0.563       0.743         0.0809 0.848   0.563
#> 6 6 0.658           0.488       0.717         0.0477 0.939   0.744

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1  0.0000      1.000 1.000 0.000
#> GSM414925     1  0.0000      1.000 1.000 0.000
#> GSM414926     1  0.0000      1.000 1.000 0.000
#> GSM414927     2  0.0000      1.000 0.000 1.000
#> GSM414929     1  0.0000      1.000 1.000 0.000
#> GSM414931     1  0.0000      1.000 1.000 0.000
#> GSM414933     1  0.0000      1.000 1.000 0.000
#> GSM414935     1  0.0000      1.000 1.000 0.000
#> GSM414936     1  0.0000      1.000 1.000 0.000
#> GSM414937     1  0.0000      1.000 1.000 0.000
#> GSM414939     1  0.0000      1.000 1.000 0.000
#> GSM414941     1  0.0000      1.000 1.000 0.000
#> GSM414943     1  0.0000      1.000 1.000 0.000
#> GSM414944     1  0.0000      1.000 1.000 0.000
#> GSM414945     2  0.0000      1.000 0.000 1.000
#> GSM414946     1  0.0000      1.000 1.000 0.000
#> GSM414948     1  0.0000      1.000 1.000 0.000
#> GSM414949     1  0.0376      0.996 0.996 0.004
#> GSM414950     1  0.0000      1.000 1.000 0.000
#> GSM414951     1  0.0000      1.000 1.000 0.000
#> GSM414952     1  0.0000      1.000 1.000 0.000
#> GSM414954     1  0.0000      1.000 1.000 0.000
#> GSM414956     1  0.0000      1.000 1.000 0.000
#> GSM414958     1  0.0000      1.000 1.000 0.000
#> GSM414959     1  0.0000      1.000 1.000 0.000
#> GSM414960     1  0.0000      1.000 1.000 0.000
#> GSM414961     1  0.0000      1.000 1.000 0.000
#> GSM414962     1  0.0376      0.996 0.996 0.004
#> GSM414964     1  0.0000      1.000 1.000 0.000
#> GSM414965     1  0.0000      1.000 1.000 0.000
#> GSM414967     1  0.0000      1.000 1.000 0.000
#> GSM414968     1  0.0000      1.000 1.000 0.000
#> GSM414969     1  0.0000      1.000 1.000 0.000
#> GSM414971     1  0.0000      1.000 1.000 0.000
#> GSM414973     1  0.0000      1.000 1.000 0.000
#> GSM414974     1  0.0376      0.996 0.996 0.004
#> GSM414928     2  0.0000      1.000 0.000 1.000
#> GSM414930     2  0.0000      1.000 0.000 1.000
#> GSM414932     1  0.0000      1.000 1.000 0.000
#> GSM414934     1  0.0000      1.000 1.000 0.000
#> GSM414938     1  0.0000      1.000 1.000 0.000
#> GSM414940     1  0.0000      1.000 1.000 0.000
#> GSM414942     2  0.0000      1.000 0.000 1.000
#> GSM414947     2  0.0000      1.000 0.000 1.000
#> GSM414953     1  0.0000      1.000 1.000 0.000
#> GSM414955     1  0.0000      1.000 1.000 0.000
#> GSM414957     2  0.0000      1.000 0.000 1.000
#> GSM414963     1  0.0376      0.996 0.996 0.004
#> GSM414966     2  0.0000      1.000 0.000 1.000
#> GSM414970     1  0.0376      0.996 0.996 0.004
#> GSM414972     2  0.0000      1.000 0.000 1.000
#> GSM414975     2  0.0000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM414924     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414925     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414926     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414927     2  0.0424      0.997 0.000 0.992 0.008
#> GSM414929     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414931     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414933     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414935     3  0.0424      0.999 0.008 0.000 0.992
#> GSM414936     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414937     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414939     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414941     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414943     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414944     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414945     2  0.0424      0.997 0.000 0.992 0.008
#> GSM414946     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414948     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414949     3  0.0424      0.999 0.008 0.000 0.992
#> GSM414950     3  0.0424      0.999 0.008 0.000 0.992
#> GSM414951     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414952     3  0.0424      0.999 0.008 0.000 0.992
#> GSM414954     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414956     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414958     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414959     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414960     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414961     3  0.0424      0.999 0.008 0.000 0.992
#> GSM414962     3  0.0000      0.989 0.000 0.000 1.000
#> GSM414964     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414965     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414967     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414968     3  0.0424      0.999 0.008 0.000 0.992
#> GSM414969     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414971     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414973     1  0.0000      0.996 1.000 0.000 0.000
#> GSM414974     3  0.0424      0.999 0.008 0.000 0.992
#> GSM414928     2  0.0424      0.997 0.000 0.992 0.008
#> GSM414930     2  0.0000      0.998 0.000 1.000 0.000
#> GSM414932     3  0.0424      0.999 0.008 0.000 0.992
#> GSM414934     3  0.0424      0.999 0.008 0.000 0.992
#> GSM414938     1  0.3038      0.881 0.896 0.000 0.104
#> GSM414940     3  0.0424      0.999 0.008 0.000 0.992
#> GSM414942     2  0.0000      0.998 0.000 1.000 0.000
#> GSM414947     2  0.0237      0.998 0.000 0.996 0.004
#> GSM414953     3  0.0424      0.999 0.008 0.000 0.992
#> GSM414955     3  0.0424      0.999 0.008 0.000 0.992
#> GSM414957     2  0.0237      0.998 0.000 0.996 0.004
#> GSM414963     3  0.0424      0.999 0.008 0.000 0.992
#> GSM414966     2  0.0000      0.998 0.000 1.000 0.000
#> GSM414970     3  0.0424      0.999 0.008 0.000 0.992
#> GSM414972     2  0.0000      0.998 0.000 1.000 0.000
#> GSM414975     2  0.0000      0.998 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     1  0.4985   -0.15861 0.532 0.000 0.000 0.468
#> GSM414925     1  0.4454    0.36637 0.692 0.000 0.000 0.308
#> GSM414926     1  0.4916   -0.13536 0.576 0.000 0.000 0.424
#> GSM414927     2  0.2281    0.93909 0.000 0.904 0.000 0.096
#> GSM414929     4  0.4985    0.30602 0.468 0.000 0.000 0.532
#> GSM414931     1  0.4564    0.17394 0.672 0.000 0.000 0.328
#> GSM414933     1  0.4933   -0.23701 0.568 0.000 0.000 0.432
#> GSM414935     3  0.5396    0.79544 0.156 0.000 0.740 0.104
#> GSM414936     1  0.0592    0.55099 0.984 0.000 0.000 0.016
#> GSM414937     1  0.1211    0.54859 0.960 0.000 0.000 0.040
#> GSM414939     1  0.1118    0.54876 0.964 0.000 0.000 0.036
#> GSM414941     1  0.3764    0.46751 0.784 0.000 0.000 0.216
#> GSM414943     1  0.0469    0.55142 0.988 0.000 0.000 0.012
#> GSM414944     1  0.4961   -0.35900 0.552 0.000 0.000 0.448
#> GSM414945     2  0.4040    0.84029 0.000 0.752 0.000 0.248
#> GSM414946     1  0.4382    0.38609 0.704 0.000 0.000 0.296
#> GSM414948     1  0.4500    0.18665 0.684 0.000 0.000 0.316
#> GSM414949     3  0.2988    0.85916 0.012 0.000 0.876 0.112
#> GSM414950     3  0.5507    0.79468 0.156 0.000 0.732 0.112
#> GSM414951     1  0.2048    0.53712 0.928 0.000 0.008 0.064
#> GSM414952     3  0.0000    0.87782 0.000 0.000 1.000 0.000
#> GSM414954     1  0.3390    0.48104 0.852 0.000 0.016 0.132
#> GSM414956     1  0.1743    0.53881 0.940 0.000 0.004 0.056
#> GSM414958     1  0.4761   -0.00149 0.628 0.000 0.000 0.372
#> GSM414959     1  0.1940    0.54714 0.924 0.000 0.000 0.076
#> GSM414960     1  0.4972   -0.35467 0.544 0.000 0.000 0.456
#> GSM414961     3  0.5396    0.79544 0.156 0.000 0.740 0.104
#> GSM414962     3  0.6166    0.62764 0.024 0.020 0.572 0.384
#> GSM414964     1  0.3300    0.48368 0.848 0.000 0.008 0.144
#> GSM414965     1  0.0921    0.54837 0.972 0.000 0.000 0.028
#> GSM414967     4  0.4989    0.34097 0.472 0.000 0.000 0.528
#> GSM414968     3  0.5277    0.80503 0.132 0.000 0.752 0.116
#> GSM414969     1  0.5165   -0.03653 0.512 0.000 0.004 0.484
#> GSM414971     1  0.3528    0.40776 0.808 0.000 0.000 0.192
#> GSM414973     1  0.3764    0.43966 0.784 0.000 0.000 0.216
#> GSM414974     3  0.4839    0.81982 0.052 0.000 0.764 0.184
#> GSM414928     2  0.2281    0.93909 0.000 0.904 0.000 0.096
#> GSM414930     2  0.0000    0.94356 0.000 1.000 0.000 0.000
#> GSM414932     3  0.0188    0.87738 0.000 0.000 0.996 0.004
#> GSM414934     3  0.1118    0.86810 0.000 0.000 0.964 0.036
#> GSM414938     4  0.4669    0.42327 0.200 0.000 0.036 0.764
#> GSM414940     3  0.0469    0.87646 0.000 0.000 0.988 0.012
#> GSM414942     2  0.0707    0.94207 0.000 0.980 0.000 0.020
#> GSM414947     2  0.2216    0.94005 0.000 0.908 0.000 0.092
#> GSM414953     3  0.1118    0.86810 0.000 0.000 0.964 0.036
#> GSM414955     3  0.0000    0.87782 0.000 0.000 1.000 0.000
#> GSM414957     2  0.2216    0.94005 0.000 0.908 0.000 0.092
#> GSM414963     3  0.0469    0.87675 0.000 0.000 0.988 0.012
#> GSM414966     2  0.0707    0.94207 0.000 0.980 0.000 0.020
#> GSM414970     3  0.0469    0.87675 0.000 0.000 0.988 0.012
#> GSM414972     2  0.0707    0.94207 0.000 0.980 0.000 0.020
#> GSM414975     2  0.0707    0.94207 0.000 0.980 0.000 0.020

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     1  0.5928     0.5643 0.596 0.000 0.000 0.192 0.212
#> GSM414925     1  0.6582     0.3594 0.416 0.000 0.000 0.208 0.376
#> GSM414926     1  0.5739     0.5873 0.596 0.000 0.000 0.124 0.280
#> GSM414927     2  0.3419     0.8613 0.016 0.804 0.000 0.180 0.000
#> GSM414929     1  0.5191     0.5524 0.684 0.000 0.000 0.192 0.124
#> GSM414931     1  0.4390     0.4641 0.568 0.000 0.000 0.004 0.428
#> GSM414933     1  0.3861     0.6042 0.728 0.000 0.000 0.008 0.264
#> GSM414935     3  0.6586     0.0549 0.016 0.000 0.548 0.216 0.220
#> GSM414936     5  0.0794     0.7570 0.028 0.000 0.000 0.000 0.972
#> GSM414937     5  0.0671     0.7596 0.016 0.000 0.000 0.004 0.980
#> GSM414939     5  0.0510     0.7599 0.016 0.000 0.000 0.000 0.984
#> GSM414941     5  0.6106     0.2061 0.204 0.000 0.000 0.228 0.568
#> GSM414943     5  0.0794     0.7570 0.028 0.000 0.000 0.000 0.972
#> GSM414944     1  0.5773     0.3353 0.512 0.000 0.000 0.092 0.396
#> GSM414945     2  0.5338     0.6105 0.056 0.544 0.000 0.400 0.000
#> GSM414946     1  0.6582     0.3594 0.416 0.000 0.000 0.208 0.376
#> GSM414948     1  0.4403     0.4472 0.560 0.000 0.000 0.004 0.436
#> GSM414949     3  0.3835     0.2769 0.000 0.000 0.744 0.244 0.012
#> GSM414950     3  0.6366     0.0521 0.012 0.000 0.572 0.224 0.192
#> GSM414951     5  0.1653     0.7448 0.024 0.000 0.004 0.028 0.944
#> GSM414952     3  0.0880     0.6185 0.000 0.000 0.968 0.032 0.000
#> GSM414954     5  0.3708     0.6258 0.044 0.000 0.004 0.136 0.816
#> GSM414956     5  0.1116     0.7569 0.028 0.000 0.004 0.004 0.964
#> GSM414958     1  0.4584     0.5852 0.660 0.000 0.000 0.028 0.312
#> GSM414959     5  0.1357     0.7537 0.048 0.000 0.000 0.004 0.948
#> GSM414960     1  0.3783     0.5997 0.740 0.000 0.000 0.008 0.252
#> GSM414961     3  0.6586     0.0549 0.016 0.000 0.548 0.216 0.220
#> GSM414962     4  0.5226     0.6904 0.044 0.000 0.308 0.636 0.012
#> GSM414964     5  0.4220     0.5747 0.048 0.000 0.004 0.180 0.768
#> GSM414965     5  0.0963     0.7521 0.036 0.000 0.000 0.000 0.964
#> GSM414967     1  0.5379     0.5130 0.636 0.000 0.000 0.096 0.268
#> GSM414968     3  0.6438     0.0886 0.016 0.000 0.572 0.216 0.196
#> GSM414969     1  0.6526     0.4387 0.464 0.000 0.000 0.324 0.212
#> GSM414971     5  0.3876     0.1887 0.316 0.000 0.000 0.000 0.684
#> GSM414973     5  0.5353    -0.1143 0.328 0.000 0.000 0.072 0.600
#> GSM414974     4  0.6138     0.6180 0.036 0.000 0.428 0.484 0.052
#> GSM414928     2  0.3419     0.8613 0.016 0.804 0.000 0.180 0.000
#> GSM414930     2  0.0794     0.8838 0.000 0.972 0.000 0.028 0.000
#> GSM414932     3  0.0162     0.6295 0.000 0.000 0.996 0.004 0.000
#> GSM414934     3  0.2488     0.5583 0.004 0.000 0.872 0.124 0.000
#> GSM414938     1  0.5192     0.1550 0.488 0.000 0.004 0.476 0.032
#> GSM414940     3  0.1341     0.6077 0.000 0.000 0.944 0.056 0.000
#> GSM414942     2  0.0510     0.8805 0.016 0.984 0.000 0.000 0.000
#> GSM414947     2  0.3055     0.8744 0.016 0.840 0.000 0.144 0.000
#> GSM414953     3  0.2488     0.5583 0.004 0.000 0.872 0.124 0.000
#> GSM414955     3  0.0290     0.6298 0.000 0.000 0.992 0.008 0.000
#> GSM414957     2  0.3055     0.8744 0.016 0.840 0.000 0.144 0.000
#> GSM414963     3  0.0162     0.6295 0.000 0.000 0.996 0.004 0.000
#> GSM414966     2  0.0510     0.8805 0.016 0.984 0.000 0.000 0.000
#> GSM414970     3  0.0162     0.6295 0.000 0.000 0.996 0.004 0.000
#> GSM414972     2  0.0510     0.8805 0.016 0.984 0.000 0.000 0.000
#> GSM414975     2  0.0510     0.8805 0.016 0.984 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     1  0.1668     0.3800 0.928 0.000 0.000 0.008 0.060 0.004
#> GSM414925     1  0.3520     0.4197 0.776 0.000 0.000 0.036 0.188 0.000
#> GSM414926     1  0.2600     0.3694 0.860 0.000 0.000 0.008 0.124 0.008
#> GSM414927     2  0.0937     0.7553 0.000 0.960 0.000 0.040 0.000 0.000
#> GSM414929     1  0.6378    -0.0322 0.488 0.000 0.000 0.264 0.032 0.216
#> GSM414931     1  0.5751    -0.2003 0.512 0.000 0.000 0.000 0.232 0.256
#> GSM414933     1  0.5252    -0.1133 0.592 0.000 0.000 0.000 0.144 0.264
#> GSM414935     3  0.7227     0.1795 0.108 0.000 0.404 0.240 0.248 0.000
#> GSM414936     5  0.0547     0.8321 0.020 0.000 0.000 0.000 0.980 0.000
#> GSM414937     5  0.1168     0.8316 0.028 0.000 0.000 0.016 0.956 0.000
#> GSM414939     5  0.0713     0.8387 0.028 0.000 0.000 0.000 0.972 0.000
#> GSM414941     1  0.5308     0.1980 0.544 0.000 0.000 0.100 0.352 0.004
#> GSM414943     5  0.0547     0.8321 0.020 0.000 0.000 0.000 0.980 0.000
#> GSM414944     6  0.6744     0.8448 0.296 0.000 0.000 0.060 0.196 0.448
#> GSM414945     2  0.4992     0.3781 0.000 0.624 0.000 0.260 0.000 0.116
#> GSM414946     1  0.3551     0.4189 0.772 0.000 0.000 0.036 0.192 0.000
#> GSM414948     1  0.5738    -0.1368 0.516 0.000 0.000 0.000 0.244 0.240
#> GSM414949     3  0.4943     0.3347 0.060 0.000 0.644 0.276 0.020 0.000
#> GSM414950     3  0.7144     0.1843 0.104 0.000 0.424 0.248 0.224 0.000
#> GSM414951     5  0.1679     0.8225 0.028 0.000 0.008 0.028 0.936 0.000
#> GSM414952     3  0.1082     0.6324 0.000 0.000 0.956 0.040 0.004 0.000
#> GSM414954     5  0.3318     0.7273 0.100 0.000 0.008 0.052 0.836 0.004
#> GSM414956     5  0.0405     0.8353 0.000 0.000 0.000 0.008 0.988 0.004
#> GSM414958     1  0.5335     0.1309 0.640 0.000 0.000 0.016 0.188 0.156
#> GSM414959     5  0.1829     0.8084 0.064 0.000 0.000 0.004 0.920 0.012
#> GSM414960     1  0.5859    -0.1468 0.536 0.000 0.000 0.016 0.156 0.292
#> GSM414961     3  0.7227     0.1795 0.108 0.000 0.404 0.240 0.248 0.000
#> GSM414962     4  0.7639     0.4461 0.208 0.172 0.188 0.420 0.008 0.004
#> GSM414964     5  0.4847     0.5597 0.140 0.000 0.008 0.148 0.700 0.004
#> GSM414965     5  0.0547     0.8321 0.020 0.000 0.000 0.000 0.980 0.000
#> GSM414967     6  0.6494     0.8388 0.360 0.000 0.000 0.060 0.132 0.448
#> GSM414968     3  0.7048     0.2224 0.108 0.000 0.452 0.244 0.196 0.000
#> GSM414969     1  0.4526     0.2728 0.708 0.000 0.000 0.188 0.100 0.004
#> GSM414971     5  0.5630    -0.2797 0.228 0.000 0.000 0.000 0.540 0.232
#> GSM414973     1  0.4041     0.3061 0.584 0.000 0.000 0.004 0.408 0.004
#> GSM414974     4  0.7449     0.3039 0.216 0.060 0.288 0.404 0.032 0.000
#> GSM414928     2  0.0937     0.7553 0.000 0.960 0.000 0.040 0.000 0.000
#> GSM414930     2  0.3641     0.7945 0.000 0.748 0.000 0.028 0.000 0.224
#> GSM414932     3  0.0260     0.6376 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM414934     3  0.3032     0.5720 0.000 0.000 0.840 0.104 0.000 0.056
#> GSM414938     4  0.5757    -0.0116 0.276 0.000 0.004 0.528 0.000 0.192
#> GSM414940     3  0.1845     0.6137 0.000 0.000 0.920 0.052 0.000 0.028
#> GSM414942     2  0.4020     0.7911 0.000 0.692 0.000 0.032 0.000 0.276
#> GSM414947     2  0.0000     0.7732 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414953     3  0.3032     0.5720 0.000 0.000 0.840 0.104 0.000 0.056
#> GSM414955     3  0.0363     0.6391 0.000 0.000 0.988 0.012 0.000 0.000
#> GSM414957     2  0.0000     0.7732 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414963     3  0.0260     0.6376 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM414966     2  0.4020     0.7911 0.000 0.692 0.000 0.032 0.000 0.276
#> GSM414970     3  0.0260     0.6376 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM414972     2  0.4020     0.7911 0.000 0.692 0.000 0.032 0.000 0.276
#> GSM414975     2  0.4020     0.7911 0.000 0.692 0.000 0.032 0.000 0.276

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n tissue(p) k
#> SD:kmeans 52  7.46e-04 2
#> SD:kmeans 52  1.34e-05 3
#> SD:kmeans 33  3.20e-03 4
#> SD:kmeans 37  2.25e-05 5
#> SD:kmeans 29  6.73e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.980       0.991         0.4907 0.509   0.509
#> 3 3 1.000           0.978       0.990         0.2996 0.793   0.617
#> 4 4 0.798           0.836       0.897         0.1860 0.855   0.613
#> 5 5 0.775           0.756       0.827         0.0573 0.952   0.803
#> 6 6 0.776           0.649       0.780         0.0277 0.940   0.715

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1   0.000      0.994 1.000 0.000
#> GSM414925     1   0.000      0.994 1.000 0.000
#> GSM414926     1   0.000      0.994 1.000 0.000
#> GSM414927     2   0.000      0.987 0.000 1.000
#> GSM414929     1   0.000      0.994 1.000 0.000
#> GSM414931     1   0.000      0.994 1.000 0.000
#> GSM414933     1   0.000      0.994 1.000 0.000
#> GSM414935     1   0.000      0.994 1.000 0.000
#> GSM414936     1   0.000      0.994 1.000 0.000
#> GSM414937     1   0.000      0.994 1.000 0.000
#> GSM414939     1   0.000      0.994 1.000 0.000
#> GSM414941     1   0.000      0.994 1.000 0.000
#> GSM414943     1   0.000      0.994 1.000 0.000
#> GSM414944     1   0.000      0.994 1.000 0.000
#> GSM414945     2   0.000      0.987 0.000 1.000
#> GSM414946     1   0.000      0.994 1.000 0.000
#> GSM414948     1   0.000      0.994 1.000 0.000
#> GSM414949     2   0.000      0.987 0.000 1.000
#> GSM414950     1   0.000      0.994 1.000 0.000
#> GSM414951     1   0.000      0.994 1.000 0.000
#> GSM414952     1   0.689      0.772 0.816 0.184
#> GSM414954     1   0.000      0.994 1.000 0.000
#> GSM414956     1   0.000      0.994 1.000 0.000
#> GSM414958     1   0.000      0.994 1.000 0.000
#> GSM414959     1   0.000      0.994 1.000 0.000
#> GSM414960     1   0.000      0.994 1.000 0.000
#> GSM414961     1   0.000      0.994 1.000 0.000
#> GSM414962     2   0.000      0.987 0.000 1.000
#> GSM414964     1   0.000      0.994 1.000 0.000
#> GSM414965     1   0.000      0.994 1.000 0.000
#> GSM414967     1   0.000      0.994 1.000 0.000
#> GSM414968     1   0.000      0.994 1.000 0.000
#> GSM414969     1   0.000      0.994 1.000 0.000
#> GSM414971     1   0.000      0.994 1.000 0.000
#> GSM414973     1   0.000      0.994 1.000 0.000
#> GSM414974     2   0.000      0.987 0.000 1.000
#> GSM414928     2   0.000      0.987 0.000 1.000
#> GSM414930     2   0.000      0.987 0.000 1.000
#> GSM414932     2   0.000      0.987 0.000 1.000
#> GSM414934     2   0.000      0.987 0.000 1.000
#> GSM414938     2   0.827      0.648 0.260 0.740
#> GSM414940     2   0.000      0.987 0.000 1.000
#> GSM414942     2   0.000      0.987 0.000 1.000
#> GSM414947     2   0.000      0.987 0.000 1.000
#> GSM414953     2   0.000      0.987 0.000 1.000
#> GSM414955     2   0.000      0.987 0.000 1.000
#> GSM414957     2   0.000      0.987 0.000 1.000
#> GSM414963     2   0.000      0.987 0.000 1.000
#> GSM414966     2   0.000      0.987 0.000 1.000
#> GSM414970     2   0.000      0.987 0.000 1.000
#> GSM414972     2   0.000      0.987 0.000 1.000
#> GSM414975     2   0.000      0.987 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM414924     1   0.000      0.993 1.000 0.000 0.000
#> GSM414925     1   0.000      0.993 1.000 0.000 0.000
#> GSM414926     1   0.000      0.993 1.000 0.000 0.000
#> GSM414927     2   0.000      0.986 0.000 1.000 0.000
#> GSM414929     1   0.000      0.993 1.000 0.000 0.000
#> GSM414931     1   0.000      0.993 1.000 0.000 0.000
#> GSM414933     1   0.000      0.993 1.000 0.000 0.000
#> GSM414935     3   0.000      0.984 0.000 0.000 1.000
#> GSM414936     1   0.000      0.993 1.000 0.000 0.000
#> GSM414937     1   0.000      0.993 1.000 0.000 0.000
#> GSM414939     1   0.000      0.993 1.000 0.000 0.000
#> GSM414941     1   0.000      0.993 1.000 0.000 0.000
#> GSM414943     1   0.000      0.993 1.000 0.000 0.000
#> GSM414944     1   0.000      0.993 1.000 0.000 0.000
#> GSM414945     2   0.000      0.986 0.000 1.000 0.000
#> GSM414946     1   0.000      0.993 1.000 0.000 0.000
#> GSM414948     1   0.000      0.993 1.000 0.000 0.000
#> GSM414949     3   0.450      0.760 0.000 0.196 0.804
#> GSM414950     3   0.000      0.984 0.000 0.000 1.000
#> GSM414951     1   0.406      0.802 0.836 0.000 0.164
#> GSM414952     3   0.000      0.984 0.000 0.000 1.000
#> GSM414954     1   0.000      0.993 1.000 0.000 0.000
#> GSM414956     1   0.000      0.993 1.000 0.000 0.000
#> GSM414958     1   0.000      0.993 1.000 0.000 0.000
#> GSM414959     1   0.000      0.993 1.000 0.000 0.000
#> GSM414960     1   0.000      0.993 1.000 0.000 0.000
#> GSM414961     3   0.000      0.984 0.000 0.000 1.000
#> GSM414962     2   0.000      0.986 0.000 1.000 0.000
#> GSM414964     1   0.000      0.993 1.000 0.000 0.000
#> GSM414965     1   0.000      0.993 1.000 0.000 0.000
#> GSM414967     1   0.000      0.993 1.000 0.000 0.000
#> GSM414968     3   0.000      0.984 0.000 0.000 1.000
#> GSM414969     1   0.000      0.993 1.000 0.000 0.000
#> GSM414971     1   0.000      0.993 1.000 0.000 0.000
#> GSM414973     1   0.000      0.993 1.000 0.000 0.000
#> GSM414974     2   0.000      0.986 0.000 1.000 0.000
#> GSM414928     2   0.000      0.986 0.000 1.000 0.000
#> GSM414930     2   0.000      0.986 0.000 1.000 0.000
#> GSM414932     3   0.000      0.984 0.000 0.000 1.000
#> GSM414934     3   0.000      0.984 0.000 0.000 1.000
#> GSM414938     2   0.390      0.824 0.128 0.864 0.008
#> GSM414940     3   0.000      0.984 0.000 0.000 1.000
#> GSM414942     2   0.000      0.986 0.000 1.000 0.000
#> GSM414947     2   0.000      0.986 0.000 1.000 0.000
#> GSM414953     3   0.000      0.984 0.000 0.000 1.000
#> GSM414955     3   0.000      0.984 0.000 0.000 1.000
#> GSM414957     2   0.000      0.986 0.000 1.000 0.000
#> GSM414963     3   0.000      0.984 0.000 0.000 1.000
#> GSM414966     2   0.000      0.986 0.000 1.000 0.000
#> GSM414970     3   0.000      0.984 0.000 0.000 1.000
#> GSM414972     2   0.000      0.986 0.000 1.000 0.000
#> GSM414975     2   0.000      0.986 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     1  0.3444      0.746 0.816 0.000 0.000 0.184
#> GSM414925     1  0.3837      0.734 0.776 0.000 0.000 0.224
#> GSM414926     1  0.0188      0.816 0.996 0.000 0.000 0.004
#> GSM414927     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414929     1  0.0000      0.815 1.000 0.000 0.000 0.000
#> GSM414931     1  0.1302      0.802 0.956 0.000 0.000 0.044
#> GSM414933     1  0.0000      0.815 1.000 0.000 0.000 0.000
#> GSM414935     3  0.4356      0.773 0.000 0.000 0.708 0.292
#> GSM414936     4  0.3649      0.907 0.204 0.000 0.000 0.796
#> GSM414937     4  0.3610      0.909 0.200 0.000 0.000 0.800
#> GSM414939     4  0.3610      0.909 0.200 0.000 0.000 0.800
#> GSM414941     1  0.4907      0.548 0.580 0.000 0.000 0.420
#> GSM414943     4  0.3610      0.909 0.200 0.000 0.000 0.800
#> GSM414944     1  0.4989     -0.342 0.528 0.000 0.000 0.472
#> GSM414945     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414946     1  0.3873      0.737 0.772 0.000 0.000 0.228
#> GSM414948     1  0.1389      0.800 0.952 0.000 0.000 0.048
#> GSM414949     3  0.3610      0.745 0.000 0.200 0.800 0.000
#> GSM414950     3  0.4331      0.776 0.000 0.000 0.712 0.288
#> GSM414951     4  0.3610      0.909 0.200 0.000 0.000 0.800
#> GSM414952     3  0.0000      0.895 0.000 0.000 1.000 0.000
#> GSM414954     4  0.0000      0.713 0.000 0.000 0.000 1.000
#> GSM414956     4  0.3610      0.909 0.200 0.000 0.000 0.800
#> GSM414958     1  0.0000      0.815 1.000 0.000 0.000 0.000
#> GSM414959     4  0.4356      0.816 0.292 0.000 0.000 0.708
#> GSM414960     1  0.0469      0.813 0.988 0.000 0.000 0.012
#> GSM414961     3  0.4356      0.773 0.000 0.000 0.708 0.292
#> GSM414962     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414964     4  0.0000      0.713 0.000 0.000 0.000 1.000
#> GSM414965     4  0.3726      0.902 0.212 0.000 0.000 0.788
#> GSM414967     1  0.1302      0.796 0.956 0.000 0.000 0.044
#> GSM414968     3  0.4304      0.778 0.000 0.000 0.716 0.284
#> GSM414969     1  0.3649      0.732 0.796 0.000 0.000 0.204
#> GSM414971     4  0.4382      0.809 0.296 0.000 0.000 0.704
#> GSM414973     1  0.2704      0.728 0.876 0.000 0.000 0.124
#> GSM414974     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414928     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414930     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414932     3  0.0000      0.895 0.000 0.000 1.000 0.000
#> GSM414934     3  0.0000      0.895 0.000 0.000 1.000 0.000
#> GSM414938     1  0.4307      0.691 0.808 0.144 0.048 0.000
#> GSM414940     3  0.0000      0.895 0.000 0.000 1.000 0.000
#> GSM414942     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414947     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414953     3  0.0000      0.895 0.000 0.000 1.000 0.000
#> GSM414955     3  0.0000      0.895 0.000 0.000 1.000 0.000
#> GSM414957     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414963     3  0.0000      0.895 0.000 0.000 1.000 0.000
#> GSM414966     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414970     3  0.0000      0.895 0.000 0.000 1.000 0.000
#> GSM414972     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414975     2  0.0000      1.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     4  0.4540      0.577 0.340 0.000 0.000 0.640 0.020
#> GSM414925     4  0.3741      0.690 0.264 0.000 0.000 0.732 0.004
#> GSM414926     4  0.4890      0.557 0.332 0.000 0.000 0.628 0.040
#> GSM414927     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM414929     1  0.4354      0.488 0.712 0.000 0.000 0.256 0.032
#> GSM414931     1  0.4926      0.626 0.716 0.000 0.000 0.152 0.132
#> GSM414933     1  0.4100      0.600 0.764 0.000 0.000 0.192 0.044
#> GSM414935     3  0.6171      0.638 0.004 0.000 0.572 0.248 0.176
#> GSM414936     5  0.1908      0.833 0.092 0.000 0.000 0.000 0.908
#> GSM414937     5  0.1725      0.828 0.044 0.000 0.000 0.020 0.936
#> GSM414939     5  0.1671      0.838 0.076 0.000 0.000 0.000 0.924
#> GSM414941     4  0.4796      0.586 0.120 0.000 0.000 0.728 0.152
#> GSM414943     5  0.1792      0.835 0.084 0.000 0.000 0.000 0.916
#> GSM414944     1  0.3612      0.539 0.764 0.000 0.000 0.008 0.228
#> GSM414945     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM414946     4  0.4430      0.695 0.256 0.000 0.000 0.708 0.036
#> GSM414948     1  0.5150      0.586 0.692 0.000 0.000 0.172 0.136
#> GSM414949     3  0.4226      0.699 0.012 0.188 0.768 0.032 0.000
#> GSM414950     3  0.6224      0.662 0.016 0.000 0.596 0.236 0.152
#> GSM414951     5  0.2067      0.820 0.048 0.000 0.000 0.032 0.920
#> GSM414952     3  0.0451      0.843 0.000 0.000 0.988 0.008 0.004
#> GSM414954     5  0.2561      0.707 0.000 0.000 0.000 0.144 0.856
#> GSM414956     5  0.1608      0.837 0.072 0.000 0.000 0.000 0.928
#> GSM414958     1  0.4400      0.580 0.736 0.000 0.000 0.212 0.052
#> GSM414959     5  0.4930      0.643 0.220 0.000 0.000 0.084 0.696
#> GSM414960     1  0.3437      0.662 0.832 0.000 0.000 0.120 0.048
#> GSM414961     3  0.6111      0.645 0.004 0.000 0.580 0.248 0.168
#> GSM414962     2  0.0162      0.996 0.004 0.996 0.000 0.000 0.000
#> GSM414964     5  0.3550      0.601 0.004 0.000 0.000 0.236 0.760
#> GSM414965     5  0.2074      0.823 0.104 0.000 0.000 0.000 0.896
#> GSM414967     1  0.3459      0.636 0.832 0.000 0.000 0.052 0.116
#> GSM414968     3  0.6344      0.655 0.020 0.000 0.588 0.236 0.156
#> GSM414969     4  0.2329      0.650 0.124 0.000 0.000 0.876 0.000
#> GSM414971     5  0.4574      0.250 0.412 0.000 0.000 0.012 0.576
#> GSM414973     4  0.6406      0.421 0.248 0.000 0.000 0.512 0.240
#> GSM414974     2  0.0566      0.986 0.012 0.984 0.000 0.004 0.000
#> GSM414928     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM414930     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM414932     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000
#> GSM414934     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000
#> GSM414938     1  0.5972      0.359 0.644 0.072 0.024 0.248 0.012
#> GSM414940     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000
#> GSM414942     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM414947     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM414953     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000
#> GSM414955     3  0.0162      0.845 0.000 0.000 0.996 0.004 0.000
#> GSM414957     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM414963     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000
#> GSM414966     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM414970     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000
#> GSM414972     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM414975     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     1  0.2034      0.509 0.912 0.000 0.024 0.000 0.004 0.060
#> GSM414925     1  0.2638      0.533 0.888 0.000 0.012 0.068 0.020 0.012
#> GSM414926     1  0.2365      0.499 0.896 0.000 0.012 0.000 0.024 0.068
#> GSM414927     2  0.0000      0.984 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414929     6  0.3343      0.355 0.176 0.000 0.004 0.000 0.024 0.796
#> GSM414931     1  0.7589     -0.406 0.336 0.000 0.184 0.000 0.212 0.268
#> GSM414933     1  0.6955     -0.309 0.444 0.000 0.180 0.000 0.092 0.284
#> GSM414935     4  0.2146      0.737 0.044 0.000 0.004 0.908 0.044 0.000
#> GSM414936     5  0.0582      0.783 0.004 0.000 0.004 0.004 0.984 0.004
#> GSM414937     5  0.1970      0.773 0.008 0.000 0.000 0.092 0.900 0.000
#> GSM414939     5  0.0914      0.787 0.016 0.000 0.000 0.016 0.968 0.000
#> GSM414941     1  0.5645      0.452 0.684 0.000 0.064 0.132 0.100 0.020
#> GSM414943     5  0.0260      0.786 0.000 0.000 0.000 0.008 0.992 0.000
#> GSM414944     6  0.7617      0.401 0.132 0.000 0.288 0.004 0.284 0.292
#> GSM414945     2  0.0260      0.979 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM414946     1  0.2172      0.534 0.912 0.000 0.020 0.044 0.024 0.000
#> GSM414948     1  0.7491     -0.343 0.372 0.000 0.164 0.000 0.228 0.236
#> GSM414949     4  0.5952     -0.144 0.000 0.120 0.244 0.584 0.000 0.052
#> GSM414950     4  0.1623      0.719 0.004 0.000 0.004 0.940 0.032 0.020
#> GSM414951     5  0.3331      0.744 0.008 0.000 0.008 0.128 0.828 0.028
#> GSM414952     3  0.3857      0.891 0.000 0.000 0.532 0.468 0.000 0.000
#> GSM414954     5  0.5026      0.562 0.048 0.000 0.024 0.284 0.640 0.004
#> GSM414956     5  0.0790      0.788 0.000 0.000 0.000 0.032 0.968 0.000
#> GSM414958     6  0.6812      0.351 0.316 0.000 0.100 0.000 0.132 0.452
#> GSM414959     5  0.4467      0.607 0.088 0.000 0.076 0.004 0.772 0.060
#> GSM414960     6  0.7314      0.370 0.288 0.000 0.176 0.000 0.144 0.392
#> GSM414961     4  0.2078      0.737 0.040 0.000 0.004 0.912 0.044 0.000
#> GSM414962     2  0.1518      0.946 0.000 0.944 0.008 0.024 0.000 0.024
#> GSM414964     5  0.5501      0.408 0.056 0.000 0.028 0.376 0.536 0.004
#> GSM414965     5  0.0767      0.775 0.008 0.000 0.012 0.000 0.976 0.004
#> GSM414967     6  0.7707      0.422 0.184 0.000 0.288 0.004 0.204 0.320
#> GSM414968     4  0.4331      0.646 0.020 0.000 0.064 0.776 0.016 0.124
#> GSM414969     1  0.5056      0.454 0.716 0.000 0.080 0.092 0.000 0.112
#> GSM414971     5  0.5958      0.104 0.072 0.000 0.156 0.000 0.616 0.156
#> GSM414973     1  0.5527      0.364 0.644 0.000 0.096 0.008 0.220 0.032
#> GSM414974     2  0.3023      0.877 0.000 0.864 0.028 0.056 0.000 0.052
#> GSM414928     2  0.0000      0.984 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414930     2  0.0000      0.984 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414932     3  0.3797      0.979 0.000 0.000 0.580 0.420 0.000 0.000
#> GSM414934     3  0.3789      0.984 0.000 0.000 0.584 0.416 0.000 0.000
#> GSM414938     6  0.3748      0.303 0.060 0.020 0.048 0.016 0.016 0.840
#> GSM414940     3  0.3789      0.984 0.000 0.000 0.584 0.416 0.000 0.000
#> GSM414942     2  0.0000      0.984 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414947     2  0.0000      0.984 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414953     3  0.3789      0.984 0.000 0.000 0.584 0.416 0.000 0.000
#> GSM414955     3  0.3789      0.984 0.000 0.000 0.584 0.416 0.000 0.000
#> GSM414957     2  0.0000      0.984 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414963     3  0.3789      0.984 0.000 0.000 0.584 0.416 0.000 0.000
#> GSM414966     2  0.0000      0.984 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414970     3  0.3789      0.984 0.000 0.000 0.584 0.416 0.000 0.000
#> GSM414972     2  0.0000      0.984 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414975     2  0.0000      0.984 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n tissue(p) k
#> SD:skmeans 52  3.12e-08 2
#> SD:skmeans 52  6.68e-06 3
#> SD:skmeans 51  2.40e-04 4
#> SD:skmeans 48  3.89e-04 5
#> SD:skmeans 36  2.60e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.885           0.945       0.976         0.3437 0.683   0.683
#> 3 3 0.659           0.816       0.912         0.7376 0.716   0.584
#> 4 4 0.498           0.634       0.772         0.1739 0.817   0.575
#> 5 5 0.689           0.726       0.843         0.0951 0.884   0.625
#> 6 6 0.674           0.618       0.800         0.0452 0.925   0.686

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1   0.000      0.969 1.000 0.000
#> GSM414925     1   0.000      0.969 1.000 0.000
#> GSM414926     1   0.000      0.969 1.000 0.000
#> GSM414927     2   0.000      1.000 0.000 1.000
#> GSM414929     1   0.000      0.969 1.000 0.000
#> GSM414931     1   0.000      0.969 1.000 0.000
#> GSM414933     1   0.000      0.969 1.000 0.000
#> GSM414935     1   0.000      0.969 1.000 0.000
#> GSM414936     1   0.000      0.969 1.000 0.000
#> GSM414937     1   0.000      0.969 1.000 0.000
#> GSM414939     1   0.000      0.969 1.000 0.000
#> GSM414941     1   0.000      0.969 1.000 0.000
#> GSM414943     1   0.000      0.969 1.000 0.000
#> GSM414944     1   0.000      0.969 1.000 0.000
#> GSM414945     2   0.000      1.000 0.000 1.000
#> GSM414946     1   0.000      0.969 1.000 0.000
#> GSM414948     1   0.000      0.969 1.000 0.000
#> GSM414949     1   0.518      0.861 0.884 0.116
#> GSM414950     1   0.000      0.969 1.000 0.000
#> GSM414951     1   0.000      0.969 1.000 0.000
#> GSM414952     1   0.000      0.969 1.000 0.000
#> GSM414954     1   0.000      0.969 1.000 0.000
#> GSM414956     1   0.000      0.969 1.000 0.000
#> GSM414958     1   0.000      0.969 1.000 0.000
#> GSM414959     1   0.000      0.969 1.000 0.000
#> GSM414960     1   0.000      0.969 1.000 0.000
#> GSM414961     1   0.000      0.969 1.000 0.000
#> GSM414962     1   0.993      0.237 0.548 0.452
#> GSM414964     1   0.000      0.969 1.000 0.000
#> GSM414965     1   0.000      0.969 1.000 0.000
#> GSM414967     1   0.000      0.969 1.000 0.000
#> GSM414968     1   0.000      0.969 1.000 0.000
#> GSM414969     1   0.000      0.969 1.000 0.000
#> GSM414971     1   0.000      0.969 1.000 0.000
#> GSM414973     1   0.000      0.969 1.000 0.000
#> GSM414974     1   0.689      0.782 0.816 0.184
#> GSM414928     2   0.000      1.000 0.000 1.000
#> GSM414930     2   0.000      1.000 0.000 1.000
#> GSM414932     1   0.000      0.969 1.000 0.000
#> GSM414934     1   0.000      0.969 1.000 0.000
#> GSM414938     1   0.000      0.969 1.000 0.000
#> GSM414940     1   0.000      0.969 1.000 0.000
#> GSM414942     2   0.000      1.000 0.000 1.000
#> GSM414947     2   0.000      1.000 0.000 1.000
#> GSM414953     1   0.000      0.969 1.000 0.000
#> GSM414955     1   0.000      0.969 1.000 0.000
#> GSM414957     2   0.000      1.000 0.000 1.000
#> GSM414963     1   0.881      0.602 0.700 0.300
#> GSM414966     2   0.000      1.000 0.000 1.000
#> GSM414970     1   0.689      0.782 0.816 0.184
#> GSM414972     2   0.000      1.000 0.000 1.000
#> GSM414975     2   0.000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM414924     1   0.000      0.864 1.000 0.000 0.000
#> GSM414925     1   0.000      0.864 1.000 0.000 0.000
#> GSM414926     1   0.000      0.864 1.000 0.000 0.000
#> GSM414927     2   0.000      0.978 0.000 1.000 0.000
#> GSM414929     1   0.000      0.864 1.000 0.000 0.000
#> GSM414931     1   0.000      0.864 1.000 0.000 0.000
#> GSM414933     1   0.000      0.864 1.000 0.000 0.000
#> GSM414935     1   0.590      0.609 0.648 0.000 0.352
#> GSM414936     1   0.355      0.857 0.868 0.000 0.132
#> GSM414937     1   0.406      0.849 0.836 0.000 0.164
#> GSM414939     1   0.406      0.849 0.836 0.000 0.164
#> GSM414941     1   0.382      0.854 0.852 0.000 0.148
#> GSM414943     1   0.406      0.849 0.836 0.000 0.164
#> GSM414944     1   0.000      0.864 1.000 0.000 0.000
#> GSM414945     2   0.455      0.761 0.000 0.800 0.200
#> GSM414946     1   0.406      0.849 0.836 0.000 0.164
#> GSM414948     1   0.000      0.864 1.000 0.000 0.000
#> GSM414949     3   0.000      0.868 0.000 0.000 1.000
#> GSM414950     1   0.489      0.804 0.772 0.000 0.228
#> GSM414951     1   0.475      0.816 0.784 0.000 0.216
#> GSM414952     3   0.000      0.868 0.000 0.000 1.000
#> GSM414954     3   0.630     -0.213 0.484 0.000 0.516
#> GSM414956     1   0.475      0.816 0.784 0.000 0.216
#> GSM414958     1   0.000      0.864 1.000 0.000 0.000
#> GSM414959     1   0.475      0.816 0.784 0.000 0.216
#> GSM414960     1   0.000      0.864 1.000 0.000 0.000
#> GSM414961     3   0.630     -0.213 0.484 0.000 0.516
#> GSM414962     3   0.424      0.659 0.000 0.176 0.824
#> GSM414964     1   0.475      0.816 0.784 0.000 0.216
#> GSM414965     1   0.141      0.864 0.964 0.000 0.036
#> GSM414967     1   0.000      0.864 1.000 0.000 0.000
#> GSM414968     1   0.620      0.437 0.576 0.000 0.424
#> GSM414969     1   0.418      0.846 0.828 0.000 0.172
#> GSM414971     1   0.000      0.864 1.000 0.000 0.000
#> GSM414973     1   0.000      0.864 1.000 0.000 0.000
#> GSM414974     3   0.000      0.868 0.000 0.000 1.000
#> GSM414928     2   0.000      0.978 0.000 1.000 0.000
#> GSM414930     2   0.000      0.978 0.000 1.000 0.000
#> GSM414932     3   0.000      0.868 0.000 0.000 1.000
#> GSM414934     3   0.000      0.868 0.000 0.000 1.000
#> GSM414938     1   0.489      0.806 0.772 0.000 0.228
#> GSM414940     3   0.000      0.868 0.000 0.000 1.000
#> GSM414942     2   0.000      0.978 0.000 1.000 0.000
#> GSM414947     2   0.000      0.978 0.000 1.000 0.000
#> GSM414953     3   0.000      0.868 0.000 0.000 1.000
#> GSM414955     3   0.000      0.868 0.000 0.000 1.000
#> GSM414957     2   0.000      0.978 0.000 1.000 0.000
#> GSM414963     3   0.000      0.868 0.000 0.000 1.000
#> GSM414966     2   0.000      0.978 0.000 1.000 0.000
#> GSM414970     3   0.000      0.868 0.000 0.000 1.000
#> GSM414972     2   0.000      0.978 0.000 1.000 0.000
#> GSM414975     2   0.000      0.978 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     4  0.4406      0.746 0.300 0.000 0.000 0.700
#> GSM414925     4  0.4985      0.351 0.468 0.000 0.000 0.532
#> GSM414926     4  0.4585      0.725 0.332 0.000 0.000 0.668
#> GSM414927     2  0.0000      0.885 0.000 1.000 0.000 0.000
#> GSM414929     4  0.3123      0.674 0.156 0.000 0.000 0.844
#> GSM414931     4  0.4961      0.570 0.448 0.000 0.000 0.552
#> GSM414933     4  0.4431      0.746 0.304 0.000 0.000 0.696
#> GSM414935     1  0.3088      0.632 0.888 0.000 0.060 0.052
#> GSM414936     1  0.0707      0.641 0.980 0.000 0.000 0.020
#> GSM414937     1  0.0000      0.657 1.000 0.000 0.000 0.000
#> GSM414939     1  0.0000      0.657 1.000 0.000 0.000 0.000
#> GSM414941     1  0.3123      0.568 0.844 0.000 0.000 0.156
#> GSM414943     1  0.0000      0.657 1.000 0.000 0.000 0.000
#> GSM414944     1  0.4040      0.191 0.752 0.000 0.000 0.248
#> GSM414945     2  0.3610      0.686 0.000 0.800 0.200 0.000
#> GSM414946     1  0.4331      0.398 0.712 0.000 0.000 0.288
#> GSM414948     1  0.4916     -0.377 0.576 0.000 0.000 0.424
#> GSM414949     3  0.3447      0.928 0.128 0.000 0.852 0.020
#> GSM414950     1  0.1520      0.652 0.956 0.000 0.020 0.024
#> GSM414951     1  0.0336      0.658 0.992 0.000 0.008 0.000
#> GSM414952     3  0.3088      0.935 0.128 0.000 0.864 0.008
#> GSM414954     1  0.5268      0.214 0.592 0.000 0.396 0.012
#> GSM414956     1  0.0336      0.658 0.992 0.000 0.008 0.000
#> GSM414958     4  0.4830      0.502 0.392 0.000 0.000 0.608
#> GSM414959     1  0.3249      0.584 0.852 0.000 0.008 0.140
#> GSM414960     4  0.3123      0.674 0.156 0.000 0.000 0.844
#> GSM414961     1  0.5571      0.194 0.580 0.000 0.396 0.024
#> GSM414962     3  0.8687      0.522 0.096 0.156 0.504 0.244
#> GSM414964     1  0.3545      0.582 0.828 0.000 0.008 0.164
#> GSM414965     1  0.2281      0.535 0.904 0.000 0.000 0.096
#> GSM414967     4  0.4830      0.687 0.392 0.000 0.000 0.608
#> GSM414968     1  0.2741      0.603 0.892 0.000 0.096 0.012
#> GSM414969     1  0.4406      0.393 0.700 0.000 0.000 0.300
#> GSM414971     1  0.4916     -0.377 0.576 0.000 0.000 0.424
#> GSM414973     1  0.4564      0.131 0.672 0.000 0.000 0.328
#> GSM414974     3  0.5800      0.781 0.128 0.000 0.708 0.164
#> GSM414928     2  0.0000      0.885 0.000 1.000 0.000 0.000
#> GSM414930     2  0.0000      0.885 0.000 1.000 0.000 0.000
#> GSM414932     3  0.2760      0.939 0.128 0.000 0.872 0.000
#> GSM414934     3  0.2760      0.939 0.128 0.000 0.872 0.000
#> GSM414938     1  0.5203      0.192 0.576 0.000 0.008 0.416
#> GSM414940     3  0.2760      0.939 0.128 0.000 0.872 0.000
#> GSM414942     2  0.5483      0.851 0.000 0.736 0.128 0.136
#> GSM414947     2  0.0000      0.885 0.000 1.000 0.000 0.000
#> GSM414953     3  0.2760      0.939 0.128 0.000 0.872 0.000
#> GSM414955     3  0.2760      0.939 0.128 0.000 0.872 0.000
#> GSM414957     2  0.0000      0.885 0.000 1.000 0.000 0.000
#> GSM414963     3  0.2760      0.939 0.128 0.000 0.872 0.000
#> GSM414966     2  0.5483      0.851 0.000 0.736 0.128 0.136
#> GSM414970     3  0.2760      0.939 0.128 0.000 0.872 0.000
#> GSM414972     2  0.5483      0.851 0.000 0.736 0.128 0.136
#> GSM414975     2  0.5483      0.851 0.000 0.736 0.128 0.136

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     1  0.2848      0.747 0.840 0.000 0.000 0.004 0.156
#> GSM414925     1  0.5702      0.415 0.628 0.000 0.000 0.180 0.192
#> GSM414926     1  0.3231      0.734 0.800 0.000 0.000 0.004 0.196
#> GSM414927     2  0.0000      0.845 0.000 1.000 0.000 0.000 0.000
#> GSM414929     1  0.0000      0.660 1.000 0.000 0.000 0.000 0.000
#> GSM414931     1  0.4060      0.641 0.640 0.000 0.000 0.000 0.360
#> GSM414933     1  0.2732      0.747 0.840 0.000 0.000 0.000 0.160
#> GSM414935     5  0.3513      0.716 0.020 0.000 0.000 0.180 0.800
#> GSM414936     5  0.0000      0.793 0.000 0.000 0.000 0.000 1.000
#> GSM414937     5  0.0000      0.793 0.000 0.000 0.000 0.000 1.000
#> GSM414939     5  0.0000      0.793 0.000 0.000 0.000 0.000 1.000
#> GSM414941     5  0.1952      0.757 0.084 0.000 0.000 0.004 0.912
#> GSM414943     5  0.0000      0.793 0.000 0.000 0.000 0.000 1.000
#> GSM414944     5  0.2424      0.656 0.132 0.000 0.000 0.000 0.868
#> GSM414945     2  0.3074      0.690 0.000 0.804 0.196 0.000 0.000
#> GSM414946     5  0.5421      0.510 0.276 0.000 0.000 0.096 0.628
#> GSM414948     1  0.4256      0.573 0.564 0.000 0.000 0.000 0.436
#> GSM414949     3  0.2891      0.774 0.000 0.000 0.824 0.176 0.000
#> GSM414950     5  0.2929      0.717 0.000 0.000 0.000 0.180 0.820
#> GSM414951     5  0.0000      0.793 0.000 0.000 0.000 0.000 1.000
#> GSM414952     3  0.1608      0.830 0.000 0.000 0.928 0.072 0.000
#> GSM414954     3  0.5519      0.441 0.000 0.000 0.584 0.084 0.332
#> GSM414956     5  0.0000      0.793 0.000 0.000 0.000 0.000 1.000
#> GSM414958     1  0.3424      0.645 0.760 0.000 0.000 0.000 0.240
#> GSM414959     5  0.1792      0.757 0.084 0.000 0.000 0.000 0.916
#> GSM414960     1  0.0000      0.660 1.000 0.000 0.000 0.000 0.000
#> GSM414961     3  0.5980      0.515 0.000 0.000 0.584 0.176 0.240
#> GSM414962     2  0.6455      0.422 0.036 0.548 0.320 0.096 0.000
#> GSM414964     5  0.4612      0.688 0.084 0.000 0.000 0.180 0.736
#> GSM414965     5  0.0000      0.793 0.000 0.000 0.000 0.000 1.000
#> GSM414967     1  0.3707      0.711 0.716 0.000 0.000 0.000 0.284
#> GSM414968     5  0.2068      0.762 0.000 0.000 0.004 0.092 0.904
#> GSM414969     5  0.6200      0.457 0.280 0.000 0.000 0.180 0.540
#> GSM414971     1  0.4256      0.573 0.564 0.000 0.000 0.000 0.436
#> GSM414973     5  0.4074      0.107 0.364 0.000 0.000 0.000 0.636
#> GSM414974     3  0.4612      0.708 0.084 0.000 0.736 0.180 0.000
#> GSM414928     2  0.0000      0.845 0.000 1.000 0.000 0.000 0.000
#> GSM414930     2  0.0162      0.842 0.000 0.996 0.000 0.004 0.000
#> GSM414932     3  0.0000      0.852 0.000 0.000 1.000 0.000 0.000
#> GSM414934     3  0.0510      0.849 0.000 0.000 0.984 0.016 0.000
#> GSM414938     5  0.4256      0.402 0.436 0.000 0.000 0.000 0.564
#> GSM414940     3  0.0000      0.852 0.000 0.000 1.000 0.000 0.000
#> GSM414942     4  0.3074      1.000 0.000 0.196 0.000 0.804 0.000
#> GSM414947     2  0.0000      0.845 0.000 1.000 0.000 0.000 0.000
#> GSM414953     3  0.0510      0.849 0.000 0.000 0.984 0.016 0.000
#> GSM414955     3  0.0162      0.853 0.000 0.000 0.996 0.004 0.000
#> GSM414957     2  0.0000      0.845 0.000 1.000 0.000 0.000 0.000
#> GSM414963     3  0.0000      0.852 0.000 0.000 1.000 0.000 0.000
#> GSM414966     4  0.3074      1.000 0.000 0.196 0.000 0.804 0.000
#> GSM414970     3  0.0000      0.852 0.000 0.000 1.000 0.000 0.000
#> GSM414972     4  0.3074      1.000 0.000 0.196 0.000 0.804 0.000
#> GSM414975     4  0.3074      1.000 0.000 0.196 0.000 0.804 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     6   0.375    0.74714 0.072 0.000 0.000 0.000 0.152 0.776
#> GSM414925     1   0.551    0.41941 0.556 0.000 0.000 0.000 0.184 0.260
#> GSM414926     6   0.587    0.08551 0.384 0.000 0.000 0.000 0.196 0.420
#> GSM414927     2   0.000    0.83459 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414929     1   0.399    0.00321 0.528 0.000 0.000 0.004 0.000 0.468
#> GSM414931     6   0.364    0.75859 0.028 0.000 0.000 0.000 0.224 0.748
#> GSM414933     6   0.344    0.75517 0.048 0.000 0.000 0.000 0.156 0.796
#> GSM414935     5   0.344    0.48933 0.260 0.000 0.000 0.000 0.732 0.008
#> GSM414936     5   0.000    0.75830 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414937     5   0.000    0.75830 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414939     5   0.000    0.75830 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414941     5   0.424    0.08249 0.368 0.000 0.000 0.000 0.608 0.024
#> GSM414943     5   0.000    0.75830 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414944     5   0.226    0.61637 0.000 0.000 0.000 0.000 0.860 0.140
#> GSM414945     2   0.273    0.68587 0.000 0.808 0.192 0.000 0.000 0.000
#> GSM414946     1   0.507    0.19781 0.476 0.000 0.000 0.000 0.448 0.076
#> GSM414948     6   0.329    0.73953 0.000 0.000 0.000 0.000 0.276 0.724
#> GSM414949     3   0.276    0.74557 0.196 0.000 0.804 0.000 0.000 0.000
#> GSM414950     5   0.285    0.54790 0.208 0.000 0.000 0.000 0.792 0.000
#> GSM414951     5   0.000    0.75830 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414952     3   0.161    0.81872 0.084 0.000 0.916 0.000 0.000 0.000
#> GSM414954     3   0.503    0.40490 0.100 0.000 0.596 0.000 0.304 0.000
#> GSM414956     5   0.000    0.75830 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414958     6   0.322    0.47882 0.192 0.000 0.000 0.004 0.012 0.792
#> GSM414959     5   0.417    0.14395 0.344 0.000 0.000 0.000 0.632 0.024
#> GSM414960     6   0.026    0.61536 0.008 0.000 0.000 0.000 0.000 0.992
#> GSM414961     3   0.540    0.43175 0.204 0.000 0.584 0.000 0.212 0.000
#> GSM414962     2   0.604    0.30291 0.232 0.456 0.308 0.000 0.000 0.004
#> GSM414964     1   0.438    0.17184 0.540 0.000 0.000 0.000 0.436 0.024
#> GSM414965     5   0.000    0.75830 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414967     6   0.374    0.75139 0.032 0.000 0.000 0.000 0.228 0.740
#> GSM414968     5   0.205    0.65764 0.120 0.000 0.000 0.000 0.880 0.000
#> GSM414969     1   0.492    0.33620 0.576 0.000 0.000 0.000 0.348 0.076
#> GSM414971     6   0.329    0.73953 0.000 0.000 0.000 0.000 0.276 0.724
#> GSM414973     5   0.573   -0.16619 0.360 0.000 0.000 0.000 0.468 0.172
#> GSM414974     1   0.433    0.03123 0.572 0.000 0.404 0.000 0.000 0.024
#> GSM414928     2   0.000    0.83459 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414930     2   0.026    0.82841 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM414932     3   0.000    0.84107 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM414934     3   0.270    0.79510 0.004 0.000 0.824 0.172 0.000 0.000
#> GSM414938     1   0.400    0.25954 0.744 0.000 0.000 0.020 0.024 0.212
#> GSM414940     3   0.000    0.84107 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM414942     4   0.273    1.00000 0.000 0.192 0.000 0.808 0.000 0.000
#> GSM414947     2   0.000    0.83459 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414953     3   0.270    0.79510 0.004 0.000 0.824 0.172 0.000 0.000
#> GSM414955     3   0.026    0.84094 0.008 0.000 0.992 0.000 0.000 0.000
#> GSM414957     2   0.000    0.83459 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414963     3   0.000    0.84107 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM414966     4   0.273    1.00000 0.000 0.192 0.000 0.808 0.000 0.000
#> GSM414970     3   0.000    0.84107 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM414972     4   0.273    1.00000 0.000 0.192 0.000 0.808 0.000 0.000
#> GSM414975     4   0.273    1.00000 0.000 0.192 0.000 0.808 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n tissue(p) k
#> SD:pam 51  9.13e-04 2
#> SD:pam 49  2.54e-06 3
#> SD:pam 42  2.57e-05 4
#> SD:pam 46  1.06e-05 5
#> SD:pam 36  7.58e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.597           0.887       0.946         0.3842 0.638   0.638
#> 3 3 0.958           0.915       0.953         0.6323 0.701   0.545
#> 4 4 0.520           0.546       0.771         0.0857 0.854   0.677
#> 5 5 0.561           0.510       0.717         0.0990 0.778   0.471
#> 6 6 0.580           0.411       0.619         0.0630 0.910   0.649

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1   0.000      0.937 1.000 0.000
#> GSM414925     1   0.000      0.937 1.000 0.000
#> GSM414926     1   0.000      0.937 1.000 0.000
#> GSM414927     2   0.000      0.936 0.000 1.000
#> GSM414929     1   0.000      0.937 1.000 0.000
#> GSM414931     1   0.000      0.937 1.000 0.000
#> GSM414933     1   0.000      0.937 1.000 0.000
#> GSM414935     1   0.000      0.937 1.000 0.000
#> GSM414936     1   0.000      0.937 1.000 0.000
#> GSM414937     1   0.000      0.937 1.000 0.000
#> GSM414939     1   0.000      0.937 1.000 0.000
#> GSM414941     1   0.000      0.937 1.000 0.000
#> GSM414943     1   0.000      0.937 1.000 0.000
#> GSM414944     1   0.855      0.591 0.720 0.280
#> GSM414945     2   0.644      0.798 0.164 0.836
#> GSM414946     1   0.000      0.937 1.000 0.000
#> GSM414948     1   0.000      0.937 1.000 0.000
#> GSM414949     1   0.730      0.768 0.796 0.204
#> GSM414950     1   0.000      0.937 1.000 0.000
#> GSM414951     1   0.000      0.937 1.000 0.000
#> GSM414952     1   0.482      0.870 0.896 0.104
#> GSM414954     1   0.000      0.937 1.000 0.000
#> GSM414956     1   0.000      0.937 1.000 0.000
#> GSM414958     1   0.000      0.937 1.000 0.000
#> GSM414959     1   0.000      0.937 1.000 0.000
#> GSM414960     1   0.000      0.937 1.000 0.000
#> GSM414961     1   0.000      0.937 1.000 0.000
#> GSM414962     2   0.644      0.798 0.164 0.836
#> GSM414964     1   0.000      0.937 1.000 0.000
#> GSM414965     1   0.000      0.937 1.000 0.000
#> GSM414967     1   0.855      0.591 0.720 0.280
#> GSM414968     1   0.000      0.937 1.000 0.000
#> GSM414969     1   0.000      0.937 1.000 0.000
#> GSM414971     1   0.000      0.937 1.000 0.000
#> GSM414973     1   0.000      0.937 1.000 0.000
#> GSM414974     2   0.876      0.578 0.296 0.704
#> GSM414928     2   0.000      0.936 0.000 1.000
#> GSM414930     2   0.000      0.936 0.000 1.000
#> GSM414932     1   0.605      0.836 0.852 0.148
#> GSM414934     1   0.605      0.836 0.852 0.148
#> GSM414938     1   0.839      0.616 0.732 0.268
#> GSM414940     1   0.605      0.836 0.852 0.148
#> GSM414942     2   0.000      0.936 0.000 1.000
#> GSM414947     2   0.000      0.936 0.000 1.000
#> GSM414953     1   0.605      0.836 0.852 0.148
#> GSM414955     1   0.605      0.836 0.852 0.148
#> GSM414957     2   0.000      0.936 0.000 1.000
#> GSM414963     1   0.605      0.836 0.852 0.148
#> GSM414966     2   0.000      0.936 0.000 1.000
#> GSM414970     1   0.605      0.836 0.852 0.148
#> GSM414972     2   0.000      0.936 0.000 1.000
#> GSM414975     2   0.000      0.936 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM414924     1  0.2165      0.926 0.936 0.000 0.064
#> GSM414925     1  0.1964      0.930 0.944 0.000 0.056
#> GSM414926     1  0.2165      0.926 0.936 0.000 0.064
#> GSM414927     2  0.0000      0.983 0.000 1.000 0.000
#> GSM414929     1  0.0592      0.939 0.988 0.000 0.012
#> GSM414931     1  0.0592      0.933 0.988 0.000 0.012
#> GSM414933     1  0.0592      0.933 0.988 0.000 0.012
#> GSM414935     3  0.1163      0.954 0.028 0.000 0.972
#> GSM414936     1  0.0747      0.944 0.984 0.000 0.016
#> GSM414937     1  0.0892      0.944 0.980 0.000 0.020
#> GSM414939     1  0.0892      0.944 0.980 0.000 0.020
#> GSM414941     1  0.2261      0.924 0.932 0.000 0.068
#> GSM414943     1  0.0747      0.944 0.984 0.000 0.016
#> GSM414944     1  0.1267      0.926 0.972 0.004 0.024
#> GSM414945     2  0.4349      0.842 0.020 0.852 0.128
#> GSM414946     1  0.2066      0.929 0.940 0.000 0.060
#> GSM414948     1  0.0747      0.944 0.984 0.000 0.016
#> GSM414949     3  0.0592      0.961 0.012 0.000 0.988
#> GSM414950     3  0.1163      0.954 0.028 0.000 0.972
#> GSM414951     1  0.1411      0.940 0.964 0.000 0.036
#> GSM414952     3  0.0892      0.959 0.020 0.000 0.980
#> GSM414954     1  0.1529      0.939 0.960 0.000 0.040
#> GSM414956     1  0.0747      0.944 0.984 0.000 0.016
#> GSM414958     1  0.0424      0.942 0.992 0.000 0.008
#> GSM414959     1  0.0592      0.943 0.988 0.000 0.012
#> GSM414960     1  0.0592      0.933 0.988 0.000 0.012
#> GSM414961     3  0.1529      0.945 0.040 0.000 0.960
#> GSM414962     3  0.6521      0.596 0.040 0.248 0.712
#> GSM414964     1  0.2261      0.924 0.932 0.000 0.068
#> GSM414965     1  0.0747      0.944 0.984 0.000 0.016
#> GSM414967     1  0.1267      0.926 0.972 0.004 0.024
#> GSM414968     3  0.3038      0.871 0.104 0.000 0.896
#> GSM414969     1  0.6126      0.379 0.600 0.000 0.400
#> GSM414971     1  0.0424      0.942 0.992 0.000 0.008
#> GSM414973     1  0.0892      0.944 0.980 0.000 0.020
#> GSM414974     3  0.0592      0.942 0.000 0.012 0.988
#> GSM414928     2  0.0592      0.976 0.000 0.988 0.012
#> GSM414930     2  0.0000      0.983 0.000 1.000 0.000
#> GSM414932     3  0.0592      0.961 0.012 0.000 0.988
#> GSM414934     3  0.0747      0.959 0.016 0.000 0.984
#> GSM414938     1  0.9569      0.224 0.480 0.240 0.280
#> GSM414940     3  0.0592      0.961 0.012 0.000 0.988
#> GSM414942     2  0.0000      0.983 0.000 1.000 0.000
#> GSM414947     2  0.0000      0.983 0.000 1.000 0.000
#> GSM414953     3  0.0747      0.959 0.016 0.000 0.984
#> GSM414955     3  0.0592      0.961 0.012 0.000 0.988
#> GSM414957     2  0.0000      0.983 0.000 1.000 0.000
#> GSM414963     3  0.0592      0.961 0.012 0.000 0.988
#> GSM414966     2  0.0000      0.983 0.000 1.000 0.000
#> GSM414970     3  0.0592      0.961 0.012 0.000 0.988
#> GSM414972     2  0.0000      0.983 0.000 1.000 0.000
#> GSM414975     2  0.0000      0.983 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     1  0.2973     0.5546 0.884 0.000 0.096 0.020
#> GSM414925     1  0.2473     0.6244 0.908 0.000 0.012 0.080
#> GSM414926     1  0.2973     0.5546 0.884 0.000 0.096 0.020
#> GSM414927     2  0.0188     0.9325 0.000 0.996 0.004 0.000
#> GSM414929     1  0.6668    -0.5085 0.528 0.000 0.092 0.380
#> GSM414931     1  0.5694     0.2971 0.696 0.000 0.080 0.224
#> GSM414933     1  0.4830    -0.1958 0.608 0.000 0.000 0.392
#> GSM414935     1  0.7463    -0.0553 0.456 0.000 0.364 0.180
#> GSM414936     1  0.1576     0.6205 0.948 0.000 0.004 0.048
#> GSM414937     1  0.1545     0.6364 0.952 0.000 0.040 0.008
#> GSM414939     1  0.0672     0.6352 0.984 0.000 0.008 0.008
#> GSM414941     1  0.2892     0.6267 0.896 0.000 0.036 0.068
#> GSM414943     1  0.2048     0.6137 0.928 0.000 0.008 0.064
#> GSM414944     4  0.4605     1.0000 0.336 0.000 0.000 0.664
#> GSM414945     2  0.6491     0.3785 0.000 0.528 0.076 0.396
#> GSM414946     1  0.2271     0.6295 0.916 0.000 0.008 0.076
#> GSM414948     1  0.2530     0.5862 0.888 0.000 0.000 0.112
#> GSM414949     3  0.6139     0.7183 0.120 0.008 0.696 0.176
#> GSM414950     1  0.7495    -0.1455 0.428 0.000 0.392 0.180
#> GSM414951     1  0.1211     0.6371 0.960 0.000 0.040 0.000
#> GSM414952     3  0.6285     0.6815 0.168 0.000 0.664 0.168
#> GSM414954     1  0.2500     0.6321 0.916 0.000 0.040 0.044
#> GSM414956     1  0.2799     0.5792 0.884 0.000 0.008 0.108
#> GSM414958     1  0.3447     0.5536 0.852 0.000 0.020 0.128
#> GSM414959     1  0.2345     0.5769 0.900 0.000 0.000 0.100
#> GSM414960     1  0.4916    -0.2877 0.576 0.000 0.000 0.424
#> GSM414961     1  0.7441    -0.0178 0.468 0.000 0.352 0.180
#> GSM414962     3  0.9336     0.1438 0.088 0.284 0.352 0.276
#> GSM414964     1  0.3128     0.6179 0.884 0.000 0.040 0.076
#> GSM414965     1  0.1978     0.6116 0.928 0.000 0.004 0.068
#> GSM414967     4  0.4605     1.0000 0.336 0.000 0.000 0.664
#> GSM414968     1  0.7500    -0.1753 0.416 0.000 0.404 0.180
#> GSM414969     1  0.3796     0.6053 0.848 0.000 0.056 0.096
#> GSM414971     1  0.4581     0.4795 0.800 0.000 0.080 0.120
#> GSM414973     1  0.1022     0.6389 0.968 0.000 0.032 0.000
#> GSM414974     3  0.9407     0.2233 0.108 0.236 0.380 0.276
#> GSM414928     2  0.0188     0.9325 0.000 0.996 0.004 0.000
#> GSM414930     2  0.0000     0.9331 0.000 1.000 0.000 0.000
#> GSM414932     3  0.2345     0.8029 0.100 0.000 0.900 0.000
#> GSM414934     3  0.4731     0.7592 0.100 0.004 0.800 0.096
#> GSM414938     1  0.9278    -0.5771 0.372 0.104 0.192 0.332
#> GSM414940     3  0.2345     0.8029 0.100 0.000 0.900 0.000
#> GSM414942     2  0.1302     0.9293 0.000 0.956 0.000 0.044
#> GSM414947     2  0.0000     0.9331 0.000 1.000 0.000 0.000
#> GSM414953     3  0.4731     0.7592 0.100 0.004 0.800 0.096
#> GSM414955     3  0.2469     0.8009 0.108 0.000 0.892 0.000
#> GSM414957     2  0.0469     0.9283 0.000 0.988 0.012 0.000
#> GSM414963     3  0.2281     0.8025 0.096 0.000 0.904 0.000
#> GSM414966     2  0.1389     0.9286 0.000 0.952 0.000 0.048
#> GSM414970     3  0.2281     0.8025 0.096 0.000 0.904 0.000
#> GSM414972     2  0.1389     0.9286 0.000 0.952 0.000 0.048
#> GSM414975     2  0.1302     0.9293 0.000 0.956 0.000 0.044

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     4  0.4227     0.3017 0.420 0.000 0.000 0.580 0.000
#> GSM414925     4  0.4287     0.2195 0.460 0.000 0.000 0.540 0.000
#> GSM414926     4  0.4306     0.0742 0.492 0.000 0.000 0.508 0.000
#> GSM414927     2  0.0000     0.9746 0.000 1.000 0.000 0.000 0.000
#> GSM414929     1  0.5558     0.3137 0.620 0.000 0.000 0.268 0.112
#> GSM414931     1  0.3389     0.5626 0.836 0.000 0.000 0.116 0.048
#> GSM414933     1  0.4930     0.4071 0.684 0.000 0.000 0.244 0.072
#> GSM414935     3  0.7316     0.3785 0.296 0.000 0.412 0.264 0.028
#> GSM414936     1  0.2037     0.6302 0.920 0.000 0.064 0.012 0.004
#> GSM414937     1  0.3593     0.5908 0.824 0.000 0.116 0.060 0.000
#> GSM414939     1  0.3584     0.5912 0.832 0.000 0.108 0.056 0.004
#> GSM414941     1  0.4610     0.0488 0.596 0.000 0.016 0.388 0.000
#> GSM414943     1  0.2938     0.6285 0.880 0.000 0.064 0.048 0.008
#> GSM414944     5  0.6615     0.2232 0.376 0.000 0.000 0.216 0.408
#> GSM414945     5  0.5409     0.1359 0.004 0.332 0.000 0.064 0.600
#> GSM414946     1  0.4273    -0.1192 0.552 0.000 0.000 0.448 0.000
#> GSM414948     1  0.3796     0.4100 0.700 0.000 0.000 0.300 0.000
#> GSM414949     3  0.4820     0.5551 0.012 0.016 0.708 0.248 0.016
#> GSM414950     3  0.7186     0.4563 0.244 0.000 0.456 0.272 0.028
#> GSM414951     1  0.3242     0.5974 0.844 0.000 0.116 0.040 0.000
#> GSM414952     3  0.3838     0.6384 0.108 0.000 0.820 0.064 0.008
#> GSM414954     1  0.4827     0.4768 0.724 0.000 0.160 0.116 0.000
#> GSM414956     1  0.3736     0.5971 0.836 0.000 0.020 0.052 0.092
#> GSM414958     1  0.3563     0.5036 0.780 0.000 0.000 0.208 0.012
#> GSM414959     1  0.3042     0.6349 0.880 0.000 0.044 0.056 0.020
#> GSM414960     1  0.5027     0.4206 0.700 0.000 0.000 0.188 0.112
#> GSM414961     3  0.7244     0.4265 0.268 0.000 0.440 0.264 0.028
#> GSM414962     4  0.7130     0.2487 0.044 0.204 0.156 0.576 0.020
#> GSM414964     1  0.5072     0.3889 0.696 0.000 0.116 0.188 0.000
#> GSM414965     1  0.2284     0.6367 0.912 0.000 0.056 0.028 0.004
#> GSM414967     5  0.6682     0.2214 0.368 0.000 0.000 0.236 0.396
#> GSM414968     3  0.7165     0.4782 0.236 0.000 0.476 0.256 0.032
#> GSM414969     4  0.5268     0.4006 0.320 0.000 0.068 0.612 0.000
#> GSM414971     1  0.2069     0.6026 0.912 0.000 0.000 0.076 0.012
#> GSM414973     1  0.4060     0.2547 0.640 0.000 0.000 0.360 0.000
#> GSM414974     4  0.7315     0.2872 0.072 0.176 0.164 0.572 0.016
#> GSM414928     2  0.0290     0.9708 0.000 0.992 0.000 0.008 0.000
#> GSM414930     2  0.0000     0.9746 0.000 1.000 0.000 0.000 0.000
#> GSM414932     3  0.0162     0.6476 0.000 0.000 0.996 0.004 0.000
#> GSM414934     5  0.4219     0.0790 0.000 0.000 0.416 0.000 0.584
#> GSM414938     5  0.7042     0.1453 0.232 0.004 0.008 0.352 0.404
#> GSM414940     3  0.0000     0.6470 0.000 0.000 1.000 0.000 0.000
#> GSM414942     2  0.1282     0.9697 0.000 0.952 0.000 0.004 0.044
#> GSM414947     2  0.0000     0.9746 0.000 1.000 0.000 0.000 0.000
#> GSM414953     5  0.4219     0.0790 0.000 0.000 0.416 0.000 0.584
#> GSM414955     3  0.0404     0.6487 0.012 0.000 0.988 0.000 0.000
#> GSM414957     2  0.0162     0.9732 0.000 0.996 0.000 0.000 0.004
#> GSM414963     3  0.0162     0.6465 0.000 0.000 0.996 0.000 0.004
#> GSM414966     2  0.1282     0.9697 0.000 0.952 0.000 0.004 0.044
#> GSM414970     3  0.0000     0.6470 0.000 0.000 1.000 0.000 0.000
#> GSM414972     2  0.1282     0.9697 0.000 0.952 0.000 0.004 0.044
#> GSM414975     2  0.1282     0.9697 0.000 0.952 0.000 0.004 0.044

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     1  0.5504     0.5611 0.604 0.000 0.000 0.136 0.244 0.016
#> GSM414925     1  0.6210     0.4905 0.452 0.000 0.000 0.164 0.360 0.024
#> GSM414926     1  0.5582     0.5198 0.588 0.000 0.000 0.100 0.284 0.028
#> GSM414927     2  0.0865     0.9333 0.036 0.964 0.000 0.000 0.000 0.000
#> GSM414929     5  0.5475    -0.0878 0.064 0.000 0.008 0.012 0.488 0.428
#> GSM414931     5  0.3879     0.3130 0.020 0.000 0.000 0.000 0.688 0.292
#> GSM414933     5  0.5482     0.0850 0.064 0.000 0.004 0.020 0.524 0.388
#> GSM414935     4  0.2778     0.5833 0.008 0.000 0.000 0.824 0.168 0.000
#> GSM414936     5  0.2092     0.4973 0.000 0.000 0.000 0.124 0.876 0.000
#> GSM414937     5  0.5551     0.0905 0.096 0.000 0.004 0.336 0.552 0.012
#> GSM414939     5  0.4801     0.2270 0.060 0.000 0.004 0.272 0.656 0.008
#> GSM414941     5  0.5956    -0.4511 0.380 0.000 0.000 0.188 0.428 0.004
#> GSM414943     5  0.2263     0.4924 0.000 0.000 0.000 0.100 0.884 0.016
#> GSM414944     6  0.4433     0.3573 0.000 0.000 0.040 0.000 0.344 0.616
#> GSM414945     6  0.7324     0.1404 0.048 0.292 0.308 0.000 0.020 0.332
#> GSM414946     1  0.5907     0.4350 0.424 0.000 0.000 0.176 0.396 0.004
#> GSM414948     5  0.5689     0.2717 0.200 0.000 0.000 0.004 0.548 0.248
#> GSM414949     4  0.5767    -0.3102 0.256 0.004 0.208 0.532 0.000 0.000
#> GSM414950     4  0.2834     0.5608 0.016 0.000 0.008 0.848 0.128 0.000
#> GSM414951     5  0.5027     0.0346 0.040 0.000 0.004 0.360 0.580 0.016
#> GSM414952     4  0.5176    -0.3566 0.004 0.000 0.384 0.532 0.080 0.000
#> GSM414954     4  0.5473     0.0959 0.072 0.000 0.004 0.464 0.448 0.012
#> GSM414956     5  0.3862     0.4580 0.000 0.000 0.088 0.100 0.796 0.016
#> GSM414958     5  0.4929     0.3034 0.100 0.000 0.000 0.000 0.620 0.280
#> GSM414959     5  0.3256     0.4899 0.012 0.000 0.008 0.112 0.840 0.028
#> GSM414960     5  0.4332     0.0792 0.016 0.000 0.004 0.000 0.564 0.416
#> GSM414961     4  0.3849     0.5809 0.032 0.000 0.008 0.752 0.208 0.000
#> GSM414962     1  0.6481     0.1545 0.584 0.076 0.088 0.228 0.020 0.004
#> GSM414964     4  0.5345     0.1453 0.068 0.000 0.004 0.472 0.448 0.008
#> GSM414965     5  0.1958     0.4965 0.000 0.000 0.000 0.100 0.896 0.004
#> GSM414967     6  0.4606     0.3159 0.000 0.000 0.052 0.000 0.344 0.604
#> GSM414968     4  0.3317     0.5530 0.004 0.000 0.032 0.808 0.156 0.000
#> GSM414969     1  0.5647     0.5526 0.552 0.000 0.000 0.184 0.260 0.004
#> GSM414971     5  0.3811     0.3688 0.016 0.000 0.004 0.004 0.732 0.244
#> GSM414973     5  0.4870     0.1242 0.320 0.000 0.000 0.008 0.612 0.060
#> GSM414974     1  0.6460     0.1571 0.588 0.076 0.088 0.224 0.020 0.004
#> GSM414928     2  0.1829     0.9095 0.056 0.920 0.000 0.024 0.000 0.000
#> GSM414930     2  0.0363     0.9398 0.012 0.988 0.000 0.000 0.000 0.000
#> GSM414932     3  0.3868     0.6240 0.000 0.000 0.508 0.492 0.000 0.000
#> GSM414934     3  0.4576     0.1255 0.072 0.000 0.692 0.008 0.000 0.228
#> GSM414938     6  0.7932     0.2638 0.276 0.024 0.136 0.000 0.232 0.332
#> GSM414940     3  0.3866     0.6293 0.000 0.000 0.516 0.484 0.000 0.000
#> GSM414942     2  0.1501     0.9374 0.000 0.924 0.000 0.000 0.000 0.076
#> GSM414947     2  0.0363     0.9398 0.012 0.988 0.000 0.000 0.000 0.000
#> GSM414953     3  0.4541     0.1479 0.072 0.000 0.708 0.012 0.000 0.208
#> GSM414955     3  0.3997     0.6232 0.000 0.000 0.508 0.488 0.004 0.000
#> GSM414957     2  0.2077     0.9146 0.020 0.924 0.012 0.024 0.000 0.020
#> GSM414963     3  0.4211     0.6227 0.004 0.000 0.532 0.456 0.000 0.008
#> GSM414966     2  0.1501     0.9374 0.000 0.924 0.000 0.000 0.000 0.076
#> GSM414970     3  0.3993     0.6301 0.004 0.000 0.520 0.476 0.000 0.000
#> GSM414972     2  0.1501     0.9374 0.000 0.924 0.000 0.000 0.000 0.076
#> GSM414975     2  0.1501     0.9374 0.000 0.924 0.000 0.000 0.000 0.076

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n tissue(p) k
#> SD:mclust 52  6.62e-03 2
#> SD:mclust 50  4.54e-06 3
#> SD:mclust 39  2.62e-06 4
#> SD:mclust 27  1.42e-04 5
#> SD:mclust 21  6.34e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.959           0.938       0.975         0.3643 0.660   0.660
#> 3 3 0.894           0.922       0.966         0.7409 0.697   0.546
#> 4 4 0.774           0.736       0.872         0.0954 0.946   0.855
#> 5 5 0.744           0.753       0.867         0.0783 0.903   0.717
#> 6 6 0.710           0.734       0.857         0.0512 0.949   0.815

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1   0.000      0.969 1.000 0.000
#> GSM414925     1   0.000      0.969 1.000 0.000
#> GSM414926     1   0.000      0.969 1.000 0.000
#> GSM414927     2   0.000      0.993 0.000 1.000
#> GSM414929     1   0.000      0.969 1.000 0.000
#> GSM414931     1   0.000      0.969 1.000 0.000
#> GSM414933     1   0.000      0.969 1.000 0.000
#> GSM414935     1   0.000      0.969 1.000 0.000
#> GSM414936     1   0.000      0.969 1.000 0.000
#> GSM414937     1   0.000      0.969 1.000 0.000
#> GSM414939     1   0.000      0.969 1.000 0.000
#> GSM414941     1   0.000      0.969 1.000 0.000
#> GSM414943     1   0.000      0.969 1.000 0.000
#> GSM414944     1   0.000      0.969 1.000 0.000
#> GSM414945     2   0.000      0.993 0.000 1.000
#> GSM414946     1   0.000      0.969 1.000 0.000
#> GSM414948     1   0.000      0.969 1.000 0.000
#> GSM414949     1   0.714      0.753 0.804 0.196
#> GSM414950     1   0.000      0.969 1.000 0.000
#> GSM414951     1   0.000      0.969 1.000 0.000
#> GSM414952     1   0.000      0.969 1.000 0.000
#> GSM414954     1   0.000      0.969 1.000 0.000
#> GSM414956     1   0.000      0.969 1.000 0.000
#> GSM414958     1   0.000      0.969 1.000 0.000
#> GSM414959     1   0.000      0.969 1.000 0.000
#> GSM414960     1   0.000      0.969 1.000 0.000
#> GSM414961     1   0.000      0.969 1.000 0.000
#> GSM414962     2   0.343      0.928 0.064 0.936
#> GSM414964     1   0.000      0.969 1.000 0.000
#> GSM414965     1   0.000      0.969 1.000 0.000
#> GSM414967     1   0.000      0.969 1.000 0.000
#> GSM414968     1   0.000      0.969 1.000 0.000
#> GSM414969     1   0.000      0.969 1.000 0.000
#> GSM414971     1   0.000      0.969 1.000 0.000
#> GSM414973     1   0.000      0.969 1.000 0.000
#> GSM414974     1   0.992      0.227 0.552 0.448
#> GSM414928     2   0.000      0.993 0.000 1.000
#> GSM414930     2   0.000      0.993 0.000 1.000
#> GSM414932     1   0.000      0.969 1.000 0.000
#> GSM414934     1   0.000      0.969 1.000 0.000
#> GSM414938     1   0.000      0.969 1.000 0.000
#> GSM414940     1   0.000      0.969 1.000 0.000
#> GSM414942     2   0.000      0.993 0.000 1.000
#> GSM414947     2   0.000      0.993 0.000 1.000
#> GSM414953     1   0.000      0.969 1.000 0.000
#> GSM414955     1   0.000      0.969 1.000 0.000
#> GSM414957     2   0.000      0.993 0.000 1.000
#> GSM414963     1   0.990      0.251 0.560 0.440
#> GSM414966     2   0.000      0.993 0.000 1.000
#> GSM414970     1   0.584      0.825 0.860 0.140
#> GSM414972     2   0.000      0.993 0.000 1.000
#> GSM414975     2   0.000      0.993 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1  p2    p3
#> GSM414924     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414925     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414926     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414927     2  0.0000      1.000 0.000 1.0 0.000
#> GSM414929     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414931     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414933     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414935     3  0.0000      0.952 0.000 0.0 1.000
#> GSM414936     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414937     1  0.0237      0.947 0.996 0.0 0.004
#> GSM414939     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414941     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414943     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414944     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414945     2  0.0000      1.000 0.000 1.0 0.000
#> GSM414946     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414948     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414949     3  0.4555      0.756 0.000 0.2 0.800
#> GSM414950     3  0.3340      0.856 0.120 0.0 0.880
#> GSM414951     1  0.5706      0.546 0.680 0.0 0.320
#> GSM414952     3  0.0000      0.952 0.000 0.0 1.000
#> GSM414954     1  0.6267      0.232 0.548 0.0 0.452
#> GSM414956     1  0.5216      0.655 0.740 0.0 0.260
#> GSM414958     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414959     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414960     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414961     3  0.1411      0.929 0.036 0.0 0.964
#> GSM414962     2  0.0000      1.000 0.000 1.0 0.000
#> GSM414964     1  0.4605      0.738 0.796 0.0 0.204
#> GSM414965     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414967     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414968     3  0.3816      0.823 0.148 0.0 0.852
#> GSM414969     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414971     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414973     1  0.0000      0.950 1.000 0.0 0.000
#> GSM414974     2  0.0000      1.000 0.000 1.0 0.000
#> GSM414928     2  0.0000      1.000 0.000 1.0 0.000
#> GSM414930     2  0.0000      1.000 0.000 1.0 0.000
#> GSM414932     3  0.0000      0.952 0.000 0.0 1.000
#> GSM414934     3  0.0000      0.952 0.000 0.0 1.000
#> GSM414938     1  0.0237      0.947 0.996 0.0 0.004
#> GSM414940     3  0.0000      0.952 0.000 0.0 1.000
#> GSM414942     2  0.0000      1.000 0.000 1.0 0.000
#> GSM414947     2  0.0000      1.000 0.000 1.0 0.000
#> GSM414953     3  0.0000      0.952 0.000 0.0 1.000
#> GSM414955     3  0.0000      0.952 0.000 0.0 1.000
#> GSM414957     2  0.0000      1.000 0.000 1.0 0.000
#> GSM414963     3  0.0000      0.952 0.000 0.0 1.000
#> GSM414966     2  0.0000      1.000 0.000 1.0 0.000
#> GSM414970     3  0.0000      0.952 0.000 0.0 1.000
#> GSM414972     2  0.0000      1.000 0.000 1.0 0.000
#> GSM414975     2  0.0000      1.000 0.000 1.0 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     1  0.3074      0.685 0.848 0.000 0.000 0.152
#> GSM414925     1  0.1637      0.802 0.940 0.000 0.000 0.060
#> GSM414926     1  0.2814      0.720 0.868 0.000 0.000 0.132
#> GSM414927     2  0.0707      0.919 0.000 0.980 0.000 0.020
#> GSM414929     4  0.4855      0.661 0.400 0.000 0.000 0.600
#> GSM414931     1  0.0336      0.820 0.992 0.000 0.000 0.008
#> GSM414933     1  0.1211      0.812 0.960 0.000 0.000 0.040
#> GSM414935     3  0.2868      0.809 0.000 0.000 0.864 0.136
#> GSM414936     1  0.0336      0.820 0.992 0.000 0.000 0.008
#> GSM414937     1  0.0336      0.820 0.992 0.000 0.008 0.000
#> GSM414939     1  0.0188      0.821 0.996 0.000 0.000 0.004
#> GSM414941     1  0.2081      0.784 0.916 0.000 0.000 0.084
#> GSM414943     1  0.1151      0.804 0.968 0.000 0.024 0.008
#> GSM414944     1  0.0336      0.820 0.992 0.000 0.000 0.008
#> GSM414945     2  0.2654      0.847 0.004 0.888 0.000 0.108
#> GSM414946     1  0.3308      0.733 0.872 0.000 0.036 0.092
#> GSM414948     1  0.0188      0.821 0.996 0.000 0.000 0.004
#> GSM414949     3  0.6603      0.614 0.000 0.100 0.572 0.328
#> GSM414950     3  0.6240      0.633 0.076 0.000 0.604 0.320
#> GSM414951     1  0.5000     -0.174 0.504 0.000 0.496 0.000
#> GSM414952     3  0.0469      0.819 0.000 0.000 0.988 0.012
#> GSM414954     1  0.5047      0.211 0.668 0.000 0.316 0.016
#> GSM414956     1  0.4722      0.218 0.692 0.000 0.300 0.008
#> GSM414958     1  0.1716      0.801 0.936 0.000 0.000 0.064
#> GSM414959     1  0.1022      0.815 0.968 0.000 0.000 0.032
#> GSM414960     1  0.2011      0.780 0.920 0.000 0.000 0.080
#> GSM414961     3  0.3447      0.803 0.020 0.000 0.852 0.128
#> GSM414962     2  0.5990      0.564 0.000 0.608 0.056 0.336
#> GSM414964     1  0.4741      0.407 0.744 0.000 0.228 0.028
#> GSM414965     1  0.0376      0.820 0.992 0.000 0.004 0.004
#> GSM414967     1  0.0336      0.820 0.992 0.000 0.000 0.008
#> GSM414968     3  0.6633      0.225 0.084 0.000 0.500 0.416
#> GSM414969     4  0.6130      0.383 0.400 0.000 0.052 0.548
#> GSM414971     1  0.0336      0.820 0.992 0.000 0.000 0.008
#> GSM414973     1  0.1637      0.802 0.940 0.000 0.000 0.060
#> GSM414974     2  0.0000      0.929 0.000 1.000 0.000 0.000
#> GSM414928     2  0.4401      0.707 0.000 0.724 0.004 0.272
#> GSM414930     2  0.0000      0.929 0.000 1.000 0.000 0.000
#> GSM414932     3  0.3688      0.784 0.000 0.000 0.792 0.208
#> GSM414934     3  0.1557      0.802 0.000 0.000 0.944 0.056
#> GSM414938     4  0.5253      0.678 0.360 0.000 0.016 0.624
#> GSM414940     3  0.0592      0.819 0.000 0.000 0.984 0.016
#> GSM414942     2  0.0000      0.929 0.000 1.000 0.000 0.000
#> GSM414947     2  0.0000      0.929 0.000 1.000 0.000 0.000
#> GSM414953     3  0.1557      0.802 0.000 0.000 0.944 0.056
#> GSM414955     3  0.0592      0.815 0.000 0.000 0.984 0.016
#> GSM414957     2  0.0000      0.929 0.000 1.000 0.000 0.000
#> GSM414963     3  0.1389      0.808 0.000 0.000 0.952 0.048
#> GSM414966     2  0.0000      0.929 0.000 1.000 0.000 0.000
#> GSM414970     3  0.4250      0.744 0.000 0.000 0.724 0.276
#> GSM414972     2  0.0000      0.929 0.000 1.000 0.000 0.000
#> GSM414975     2  0.0000      0.929 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     1  0.3669     0.8253 0.816 0.000 0.000 0.128 0.056
#> GSM414925     1  0.3061     0.8374 0.844 0.000 0.000 0.136 0.020
#> GSM414926     1  0.3389     0.8348 0.836 0.000 0.000 0.116 0.048
#> GSM414927     2  0.1121     0.9332 0.000 0.956 0.000 0.044 0.000
#> GSM414929     5  0.0963     0.9141 0.036 0.000 0.000 0.000 0.964
#> GSM414931     1  0.1310     0.8607 0.956 0.000 0.000 0.020 0.024
#> GSM414933     1  0.2006     0.8607 0.916 0.000 0.000 0.072 0.012
#> GSM414935     3  0.3884     0.5435 0.000 0.000 0.708 0.288 0.004
#> GSM414936     1  0.1661     0.8565 0.940 0.000 0.000 0.036 0.024
#> GSM414937     1  0.1591     0.8571 0.940 0.000 0.052 0.004 0.004
#> GSM414939     1  0.1074     0.8665 0.968 0.000 0.004 0.012 0.016
#> GSM414941     1  0.3622     0.8260 0.816 0.000 0.000 0.136 0.048
#> GSM414943     1  0.2459     0.8457 0.904 0.000 0.052 0.040 0.004
#> GSM414944     1  0.2426     0.8414 0.900 0.000 0.000 0.064 0.036
#> GSM414945     2  0.4216     0.7758 0.020 0.804 0.000 0.104 0.072
#> GSM414946     1  0.3141     0.8339 0.832 0.000 0.000 0.152 0.016
#> GSM414948     1  0.1106     0.8663 0.964 0.000 0.000 0.024 0.012
#> GSM414949     4  0.3511     0.6426 0.000 0.012 0.184 0.800 0.004
#> GSM414950     4  0.3395     0.5670 0.000 0.000 0.236 0.764 0.000
#> GSM414951     3  0.4567     0.1402 0.448 0.000 0.544 0.004 0.004
#> GSM414952     3  0.1197     0.7048 0.000 0.000 0.952 0.048 0.000
#> GSM414954     1  0.5158     0.5585 0.640 0.000 0.308 0.040 0.012
#> GSM414956     3  0.6057     0.2830 0.388 0.000 0.524 0.060 0.028
#> GSM414958     1  0.3430     0.7624 0.776 0.000 0.000 0.004 0.220
#> GSM414959     1  0.1106     0.8679 0.964 0.000 0.000 0.012 0.024
#> GSM414960     1  0.4666     0.6538 0.704 0.000 0.000 0.056 0.240
#> GSM414961     3  0.4302     0.4533 0.004 0.000 0.648 0.344 0.004
#> GSM414962     4  0.2439     0.6879 0.000 0.120 0.004 0.876 0.000
#> GSM414964     1  0.5957     0.5331 0.604 0.000 0.160 0.232 0.004
#> GSM414965     1  0.0451     0.8663 0.988 0.000 0.004 0.008 0.000
#> GSM414967     1  0.2491     0.8397 0.896 0.000 0.000 0.068 0.036
#> GSM414968     5  0.2672     0.8194 0.004 0.000 0.116 0.008 0.872
#> GSM414969     4  0.2959     0.5768 0.100 0.000 0.000 0.864 0.036
#> GSM414971     1  0.1741     0.8552 0.936 0.000 0.000 0.040 0.024
#> GSM414973     1  0.2707     0.8490 0.876 0.000 0.000 0.100 0.024
#> GSM414974     2  0.0671     0.9543 0.000 0.980 0.000 0.016 0.004
#> GSM414928     4  0.3913     0.5001 0.000 0.324 0.000 0.676 0.000
#> GSM414930     2  0.0000     0.9695 0.000 1.000 0.000 0.000 0.000
#> GSM414932     3  0.3612     0.5601 0.000 0.000 0.732 0.268 0.000
#> GSM414934     3  0.0000     0.7057 0.000 0.000 1.000 0.000 0.000
#> GSM414938     5  0.0963     0.9141 0.036 0.000 0.000 0.000 0.964
#> GSM414940     3  0.1121     0.7064 0.000 0.000 0.956 0.044 0.000
#> GSM414942     2  0.0000     0.9695 0.000 1.000 0.000 0.000 0.000
#> GSM414947     2  0.0000     0.9695 0.000 1.000 0.000 0.000 0.000
#> GSM414953     3  0.0000     0.7057 0.000 0.000 1.000 0.000 0.000
#> GSM414955     3  0.0404     0.7081 0.000 0.000 0.988 0.012 0.000
#> GSM414957     2  0.0000     0.9695 0.000 1.000 0.000 0.000 0.000
#> GSM414963     3  0.0290     0.7067 0.000 0.000 0.992 0.008 0.000
#> GSM414966     2  0.0000     0.9695 0.000 1.000 0.000 0.000 0.000
#> GSM414970     3  0.4306     0.0878 0.000 0.000 0.508 0.492 0.000
#> GSM414972     2  0.0000     0.9695 0.000 1.000 0.000 0.000 0.000
#> GSM414975     2  0.0000     0.9695 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     5  0.2638      0.804 0.032 0.000 0.000 0.036 0.888 0.044
#> GSM414925     5  0.1334      0.814 0.000 0.000 0.000 0.032 0.948 0.020
#> GSM414926     5  0.2613      0.804 0.032 0.000 0.000 0.016 0.884 0.068
#> GSM414927     2  0.1444      0.913 0.000 0.928 0.000 0.072 0.000 0.000
#> GSM414929     1  0.0806      0.949 0.972 0.000 0.000 0.000 0.008 0.020
#> GSM414931     5  0.3337      0.661 0.000 0.000 0.000 0.004 0.736 0.260
#> GSM414933     5  0.2821      0.768 0.000 0.000 0.000 0.016 0.832 0.152
#> GSM414935     3  0.4569      0.679 0.000 0.000 0.748 0.136 0.056 0.060
#> GSM414936     5  0.1152      0.809 0.004 0.000 0.000 0.000 0.952 0.044
#> GSM414937     5  0.2752      0.764 0.004 0.000 0.096 0.000 0.864 0.036
#> GSM414939     5  0.1674      0.812 0.004 0.000 0.004 0.000 0.924 0.068
#> GSM414941     5  0.1675      0.813 0.008 0.000 0.000 0.032 0.936 0.024
#> GSM414943     5  0.3456      0.702 0.004 0.000 0.156 0.000 0.800 0.040
#> GSM414944     6  0.2730      0.708 0.000 0.000 0.000 0.000 0.192 0.808
#> GSM414945     6  0.4524      0.485 0.020 0.204 0.000 0.060 0.000 0.716
#> GSM414946     5  0.1498      0.813 0.000 0.000 0.000 0.028 0.940 0.032
#> GSM414948     5  0.1524      0.810 0.000 0.000 0.000 0.008 0.932 0.060
#> GSM414949     4  0.1588      0.732 0.000 0.000 0.072 0.924 0.004 0.000
#> GSM414950     4  0.2402      0.696 0.000 0.000 0.140 0.856 0.000 0.004
#> GSM414951     3  0.4476      0.455 0.000 0.000 0.640 0.000 0.308 0.052
#> GSM414952     3  0.1265      0.770 0.000 0.000 0.948 0.044 0.000 0.008
#> GSM414954     5  0.4280      0.610 0.004 0.000 0.232 0.000 0.708 0.056
#> GSM414956     3  0.5603      0.269 0.004 0.000 0.520 0.000 0.140 0.336
#> GSM414958     5  0.3810      0.693 0.208 0.000 0.000 0.004 0.752 0.036
#> GSM414959     5  0.3490      0.628 0.008 0.000 0.000 0.000 0.724 0.268
#> GSM414960     5  0.5861      0.180 0.308 0.000 0.000 0.000 0.472 0.220
#> GSM414961     3  0.5396      0.543 0.004 0.000 0.636 0.240 0.096 0.024
#> GSM414962     4  0.0405      0.706 0.000 0.008 0.004 0.988 0.000 0.000
#> GSM414964     5  0.6721      0.353 0.004 0.000 0.148 0.244 0.516 0.088
#> GSM414965     5  0.1003      0.812 0.004 0.000 0.004 0.000 0.964 0.028
#> GSM414967     6  0.2300      0.728 0.000 0.000 0.000 0.000 0.144 0.856
#> GSM414968     1  0.0865      0.936 0.964 0.000 0.036 0.000 0.000 0.000
#> GSM414969     4  0.3424      0.516 0.000 0.000 0.000 0.772 0.204 0.024
#> GSM414971     5  0.1908      0.804 0.004 0.000 0.000 0.000 0.900 0.096
#> GSM414973     5  0.1138      0.814 0.004 0.000 0.000 0.012 0.960 0.024
#> GSM414974     2  0.0767      0.963 0.000 0.976 0.000 0.004 0.012 0.008
#> GSM414928     4  0.2527      0.591 0.000 0.168 0.000 0.832 0.000 0.000
#> GSM414930     2  0.0000      0.986 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414932     3  0.3714      0.425 0.000 0.000 0.656 0.340 0.000 0.004
#> GSM414934     3  0.0405      0.768 0.004 0.000 0.988 0.000 0.000 0.008
#> GSM414938     1  0.0291      0.957 0.992 0.000 0.000 0.000 0.004 0.004
#> GSM414940     3  0.1777      0.759 0.004 0.000 0.928 0.024 0.000 0.044
#> GSM414942     2  0.0000      0.986 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414947     2  0.0000      0.986 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414953     3  0.0000      0.769 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM414955     3  0.1225      0.772 0.000 0.000 0.952 0.036 0.000 0.012
#> GSM414957     2  0.0000      0.986 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414963     3  0.1124      0.772 0.000 0.000 0.956 0.036 0.000 0.008
#> GSM414966     2  0.0000      0.986 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414970     4  0.3810      0.123 0.000 0.000 0.428 0.572 0.000 0.000
#> GSM414972     2  0.0000      0.986 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414975     2  0.0000      0.986 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n tissue(p) k
#> SD:NMF 50  1.75e-03 2
#> SD:NMF 51  6.97e-05 3
#> SD:NMF 46  2.51e-04 4
#> SD:NMF 48  6.59e-05 5
#> SD:NMF 45  4.90e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.964       0.985         0.3303 0.683   0.683
#> 3 3 0.548           0.670       0.851         0.8403 0.674   0.523
#> 4 4 0.553           0.524       0.757         0.1027 0.987   0.964
#> 5 5 0.551           0.456       0.723         0.0507 0.951   0.859
#> 6 6 0.552           0.589       0.708         0.0730 0.772   0.416

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1  0.0000      0.983 1.000 0.000
#> GSM414925     1  0.0000      0.983 1.000 0.000
#> GSM414926     1  0.0000      0.983 1.000 0.000
#> GSM414927     2  0.0000      0.988 0.000 1.000
#> GSM414929     1  0.0000      0.983 1.000 0.000
#> GSM414931     1  0.0000      0.983 1.000 0.000
#> GSM414933     1  0.0000      0.983 1.000 0.000
#> GSM414935     1  0.0000      0.983 1.000 0.000
#> GSM414936     1  0.0000      0.983 1.000 0.000
#> GSM414937     1  0.0000      0.983 1.000 0.000
#> GSM414939     1  0.0000      0.983 1.000 0.000
#> GSM414941     1  0.0000      0.983 1.000 0.000
#> GSM414943     1  0.0000      0.983 1.000 0.000
#> GSM414944     1  0.0000      0.983 1.000 0.000
#> GSM414945     2  0.4690      0.885 0.100 0.900
#> GSM414946     1  0.0000      0.983 1.000 0.000
#> GSM414948     1  0.0000      0.983 1.000 0.000
#> GSM414949     1  0.4022      0.903 0.920 0.080
#> GSM414950     1  0.0376      0.979 0.996 0.004
#> GSM414951     1  0.0000      0.983 1.000 0.000
#> GSM414952     1  0.0000      0.983 1.000 0.000
#> GSM414954     1  0.0000      0.983 1.000 0.000
#> GSM414956     1  0.0000      0.983 1.000 0.000
#> GSM414958     1  0.0000      0.983 1.000 0.000
#> GSM414959     1  0.0000      0.983 1.000 0.000
#> GSM414960     1  0.0000      0.983 1.000 0.000
#> GSM414961     1  0.0000      0.983 1.000 0.000
#> GSM414962     1  0.8861      0.572 0.696 0.304
#> GSM414964     1  0.0000      0.983 1.000 0.000
#> GSM414965     1  0.0000      0.983 1.000 0.000
#> GSM414967     1  0.0000      0.983 1.000 0.000
#> GSM414968     1  0.0000      0.983 1.000 0.000
#> GSM414969     1  0.0000      0.983 1.000 0.000
#> GSM414971     1  0.0000      0.983 1.000 0.000
#> GSM414973     1  0.0000      0.983 1.000 0.000
#> GSM414974     1  0.8861      0.572 0.696 0.304
#> GSM414928     2  0.0000      0.988 0.000 1.000
#> GSM414930     2  0.0000      0.988 0.000 1.000
#> GSM414932     1  0.0000      0.983 1.000 0.000
#> GSM414934     1  0.0000      0.983 1.000 0.000
#> GSM414938     1  0.0000      0.983 1.000 0.000
#> GSM414940     1  0.0000      0.983 1.000 0.000
#> GSM414942     2  0.0000      0.988 0.000 1.000
#> GSM414947     2  0.0000      0.988 0.000 1.000
#> GSM414953     1  0.0000      0.983 1.000 0.000
#> GSM414955     1  0.0000      0.983 1.000 0.000
#> GSM414957     2  0.0000      0.988 0.000 1.000
#> GSM414963     1  0.0000      0.983 1.000 0.000
#> GSM414966     2  0.0000      0.988 0.000 1.000
#> GSM414970     1  0.0000      0.983 1.000 0.000
#> GSM414972     2  0.0000      0.988 0.000 1.000
#> GSM414975     2  0.0000      0.988 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM414924     1  0.1289      0.800 0.968 0.000 0.032
#> GSM414925     1  0.1753      0.795 0.952 0.000 0.048
#> GSM414926     1  0.1289      0.800 0.968 0.000 0.032
#> GSM414927     2  0.0000      0.989 0.000 1.000 0.000
#> GSM414929     1  0.0000      0.797 1.000 0.000 0.000
#> GSM414931     1  0.0000      0.797 1.000 0.000 0.000
#> GSM414933     1  0.0000      0.797 1.000 0.000 0.000
#> GSM414935     3  0.6267      0.207 0.452 0.000 0.548
#> GSM414936     1  0.5785      0.519 0.668 0.000 0.332
#> GSM414937     1  0.5785      0.519 0.668 0.000 0.332
#> GSM414939     1  0.5785      0.519 0.668 0.000 0.332
#> GSM414941     1  0.3038      0.769 0.896 0.000 0.104
#> GSM414943     1  0.5785      0.519 0.668 0.000 0.332
#> GSM414944     1  0.0237      0.795 0.996 0.000 0.004
#> GSM414945     2  0.3112      0.892 0.004 0.900 0.096
#> GSM414946     1  0.1411      0.799 0.964 0.000 0.036
#> GSM414948     1  0.0000      0.797 1.000 0.000 0.000
#> GSM414949     3  0.5981      0.618 0.132 0.080 0.788
#> GSM414950     3  0.3573      0.651 0.120 0.004 0.876
#> GSM414951     3  0.6308      0.052 0.492 0.000 0.508
#> GSM414952     3  0.4702      0.603 0.212 0.000 0.788
#> GSM414954     3  0.6302      0.101 0.480 0.000 0.520
#> GSM414956     1  0.5785      0.519 0.668 0.000 0.332
#> GSM414958     1  0.0000      0.797 1.000 0.000 0.000
#> GSM414959     1  0.5760      0.524 0.672 0.000 0.328
#> GSM414960     1  0.0000      0.797 1.000 0.000 0.000
#> GSM414961     3  0.6126      0.343 0.400 0.000 0.600
#> GSM414962     3  0.9813      0.217 0.268 0.304 0.428
#> GSM414964     1  0.6111      0.281 0.604 0.000 0.396
#> GSM414965     1  0.5785      0.519 0.668 0.000 0.332
#> GSM414967     1  0.0237      0.795 0.996 0.000 0.004
#> GSM414968     3  0.6062      0.376 0.384 0.000 0.616
#> GSM414969     1  0.2711      0.778 0.912 0.000 0.088
#> GSM414971     1  0.0000      0.797 1.000 0.000 0.000
#> GSM414973     1  0.2165      0.790 0.936 0.000 0.064
#> GSM414974     3  0.9813      0.217 0.268 0.304 0.428
#> GSM414928     2  0.0000      0.989 0.000 1.000 0.000
#> GSM414930     2  0.0000      0.989 0.000 1.000 0.000
#> GSM414932     3  0.0000      0.676 0.000 0.000 1.000
#> GSM414934     3  0.0000      0.676 0.000 0.000 1.000
#> GSM414938     3  0.6045      0.397 0.380 0.000 0.620
#> GSM414940     3  0.0000      0.676 0.000 0.000 1.000
#> GSM414942     2  0.0000      0.989 0.000 1.000 0.000
#> GSM414947     2  0.0000      0.989 0.000 1.000 0.000
#> GSM414953     3  0.0000      0.676 0.000 0.000 1.000
#> GSM414955     3  0.4702      0.603 0.212 0.000 0.788
#> GSM414957     2  0.0000      0.989 0.000 1.000 0.000
#> GSM414963     3  0.0000      0.676 0.000 0.000 1.000
#> GSM414966     2  0.0000      0.989 0.000 1.000 0.000
#> GSM414970     3  0.0000      0.676 0.000 0.000 1.000
#> GSM414972     2  0.0000      0.989 0.000 1.000 0.000
#> GSM414975     2  0.0000      0.989 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     1  0.5055     0.5916 0.712 0.000 0.032 0.256
#> GSM414925     1  0.5646     0.5621 0.656 0.000 0.048 0.296
#> GSM414926     1  0.5085     0.5909 0.708 0.000 0.032 0.260
#> GSM414927     2  0.1118     0.9531 0.000 0.964 0.000 0.036
#> GSM414929     1  0.1867     0.5077 0.928 0.000 0.000 0.072
#> GSM414931     1  0.0000     0.5691 1.000 0.000 0.000 0.000
#> GSM414933     1  0.0000     0.5691 1.000 0.000 0.000 0.000
#> GSM414935     3  0.7372     0.2502 0.240 0.000 0.524 0.236
#> GSM414936     1  0.7517     0.4298 0.484 0.000 0.304 0.212
#> GSM414937     1  0.7517     0.4298 0.484 0.000 0.304 0.212
#> GSM414939     1  0.7517     0.4298 0.484 0.000 0.304 0.212
#> GSM414941     1  0.6319     0.5401 0.604 0.000 0.084 0.312
#> GSM414943     1  0.7517     0.4298 0.484 0.000 0.304 0.212
#> GSM414944     1  0.0188     0.5663 0.996 0.000 0.000 0.004
#> GSM414945     2  0.4362     0.7963 0.000 0.816 0.088 0.096
#> GSM414946     1  0.5282     0.5842 0.688 0.000 0.036 0.276
#> GSM414948     1  0.0000     0.5691 1.000 0.000 0.000 0.000
#> GSM414949     3  0.5172     0.3982 0.076 0.012 0.776 0.136
#> GSM414950     3  0.3542     0.4867 0.060 0.000 0.864 0.076
#> GSM414951     3  0.7572     0.1147 0.288 0.000 0.480 0.232
#> GSM414952     3  0.4655     0.4092 0.032 0.000 0.760 0.208
#> GSM414954     3  0.7525     0.1556 0.276 0.000 0.492 0.232
#> GSM414956     1  0.7517     0.4298 0.484 0.000 0.304 0.212
#> GSM414958     1  0.1867     0.5077 0.928 0.000 0.000 0.072
#> GSM414959     1  0.7527     0.4311 0.484 0.000 0.300 0.216
#> GSM414960     1  0.0921     0.5422 0.972 0.000 0.000 0.028
#> GSM414961     3  0.7005     0.3156 0.172 0.000 0.572 0.256
#> GSM414962     3  0.9452    -0.0982 0.148 0.236 0.416 0.200
#> GSM414964     1  0.7772     0.1657 0.392 0.000 0.368 0.240
#> GSM414965     1  0.7517     0.4298 0.484 0.000 0.304 0.212
#> GSM414967     1  0.0188     0.5663 0.996 0.000 0.000 0.004
#> GSM414968     3  0.6773     0.3162 0.132 0.000 0.584 0.284
#> GSM414969     1  0.6078     0.5484 0.620 0.000 0.068 0.312
#> GSM414971     1  0.0000     0.5691 1.000 0.000 0.000 0.000
#> GSM414973     1  0.5472     0.5830 0.676 0.000 0.044 0.280
#> GSM414974     3  0.9452    -0.0982 0.148 0.236 0.416 0.200
#> GSM414928     2  0.1118     0.9531 0.000 0.964 0.000 0.036
#> GSM414930     2  0.0000     0.9711 0.000 1.000 0.000 0.000
#> GSM414932     3  0.0188     0.5014 0.000 0.000 0.996 0.004
#> GSM414934     3  0.1302     0.4759 0.000 0.000 0.956 0.044
#> GSM414938     4  0.3528     0.0000 0.000 0.000 0.192 0.808
#> GSM414940     3  0.0817     0.4842 0.000 0.000 0.976 0.024
#> GSM414942     2  0.0000     0.9711 0.000 1.000 0.000 0.000
#> GSM414947     2  0.0000     0.9711 0.000 1.000 0.000 0.000
#> GSM414953     3  0.1302     0.4759 0.000 0.000 0.956 0.044
#> GSM414955     3  0.4655     0.4092 0.032 0.000 0.760 0.208
#> GSM414957     2  0.0000     0.9711 0.000 1.000 0.000 0.000
#> GSM414963     3  0.0188     0.5014 0.000 0.000 0.996 0.004
#> GSM414966     2  0.0000     0.9711 0.000 1.000 0.000 0.000
#> GSM414970     3  0.0188     0.5014 0.000 0.000 0.996 0.004
#> GSM414972     2  0.0000     0.9711 0.000 1.000 0.000 0.000
#> GSM414975     2  0.0000     0.9711 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     1  0.4288     0.4853 0.612 0.000 0.004 0.000 0.384
#> GSM414925     1  0.4522     0.4408 0.552 0.000 0.008 0.000 0.440
#> GSM414926     1  0.4299     0.4835 0.608 0.000 0.004 0.000 0.388
#> GSM414927     2  0.3177     0.7291 0.000 0.792 0.000 0.208 0.000
#> GSM414929     1  0.1981     0.4820 0.924 0.000 0.000 0.028 0.048
#> GSM414931     1  0.0000     0.5258 1.000 0.000 0.000 0.000 0.000
#> GSM414933     1  0.0000     0.5258 1.000 0.000 0.000 0.000 0.000
#> GSM414935     3  0.6465     0.1827 0.184 0.000 0.440 0.000 0.376
#> GSM414936     1  0.6622     0.2598 0.456 0.000 0.260 0.000 0.284
#> GSM414937     1  0.6634     0.2550 0.452 0.000 0.260 0.000 0.288
#> GSM414939     1  0.6634     0.2550 0.452 0.000 0.260 0.000 0.288
#> GSM414941     1  0.4905     0.4006 0.500 0.000 0.024 0.000 0.476
#> GSM414943     1  0.6622     0.2598 0.456 0.000 0.260 0.000 0.284
#> GSM414944     1  0.0324     0.5226 0.992 0.000 0.000 0.004 0.004
#> GSM414945     4  0.4192    -0.1600 0.000 0.404 0.000 0.596 0.000
#> GSM414946     1  0.4350     0.4720 0.588 0.000 0.004 0.000 0.408
#> GSM414948     1  0.0000     0.5258 1.000 0.000 0.000 0.000 0.000
#> GSM414949     3  0.5821     0.1978 0.000 0.004 0.628 0.176 0.192
#> GSM414950     3  0.5139     0.4281 0.008 0.000 0.708 0.104 0.180
#> GSM414951     3  0.6687     0.0589 0.252 0.000 0.424 0.000 0.324
#> GSM414952     3  0.3884     0.4973 0.004 0.000 0.708 0.000 0.288
#> GSM414954     3  0.6636     0.0931 0.232 0.000 0.432 0.000 0.336
#> GSM414956     1  0.6622     0.2598 0.456 0.000 0.260 0.000 0.284
#> GSM414958     1  0.1981     0.4820 0.924 0.000 0.000 0.028 0.048
#> GSM414959     1  0.6631     0.2546 0.452 0.000 0.256 0.000 0.292
#> GSM414960     1  0.0912     0.5091 0.972 0.000 0.000 0.016 0.012
#> GSM414961     3  0.6012     0.3007 0.116 0.000 0.484 0.000 0.400
#> GSM414962     4  0.8556     0.6013 0.064 0.040 0.264 0.364 0.268
#> GSM414964     5  0.6811    -0.4146 0.328 0.000 0.308 0.000 0.364
#> GSM414965     1  0.6622     0.2598 0.456 0.000 0.260 0.000 0.284
#> GSM414967     1  0.0324     0.5226 0.992 0.000 0.000 0.004 0.004
#> GSM414968     3  0.5853     0.3452 0.084 0.000 0.500 0.004 0.412
#> GSM414969     1  0.4559     0.4124 0.512 0.000 0.008 0.000 0.480
#> GSM414971     1  0.0000     0.5258 1.000 0.000 0.000 0.000 0.000
#> GSM414973     1  0.4473     0.4676 0.580 0.000 0.008 0.000 0.412
#> GSM414974     4  0.8556     0.6013 0.064 0.040 0.264 0.364 0.268
#> GSM414928     2  0.3177     0.7291 0.000 0.792 0.000 0.208 0.000
#> GSM414930     2  0.0000     0.9355 0.000 1.000 0.000 0.000 0.000
#> GSM414932     3  0.0794     0.5635 0.000 0.000 0.972 0.000 0.028
#> GSM414934     3  0.1579     0.5329 0.000 0.000 0.944 0.032 0.024
#> GSM414938     5  0.4734    -0.3967 0.000 0.000 0.024 0.372 0.604
#> GSM414940     3  0.0162     0.5408 0.000 0.000 0.996 0.000 0.004
#> GSM414942     2  0.0000     0.9355 0.000 1.000 0.000 0.000 0.000
#> GSM414947     2  0.0000     0.9355 0.000 1.000 0.000 0.000 0.000
#> GSM414953     3  0.1579     0.5329 0.000 0.000 0.944 0.032 0.024
#> GSM414955     3  0.3884     0.4973 0.004 0.000 0.708 0.000 0.288
#> GSM414957     2  0.0000     0.9355 0.000 1.000 0.000 0.000 0.000
#> GSM414963     3  0.0794     0.5635 0.000 0.000 0.972 0.000 0.028
#> GSM414966     2  0.0000     0.9355 0.000 1.000 0.000 0.000 0.000
#> GSM414970     3  0.0794     0.5635 0.000 0.000 0.972 0.000 0.028
#> GSM414972     2  0.0000     0.9355 0.000 1.000 0.000 0.000 0.000
#> GSM414975     2  0.0000     0.9355 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     5   0.602     0.2859 0.000 0.000 0.168 0.016 0.496 0.320
#> GSM414925     5   0.645     0.3316 0.000 0.000 0.172 0.052 0.504 0.272
#> GSM414926     5   0.591     0.3069 0.000 0.000 0.168 0.012 0.512 0.308
#> GSM414927     2   0.308     0.7129 0.000 0.760 0.000 0.240 0.000 0.000
#> GSM414929     6   0.400     0.8217 0.048 0.000 0.000 0.012 0.180 0.760
#> GSM414931     6   0.191     0.8524 0.000 0.000 0.000 0.000 0.108 0.892
#> GSM414933     6   0.240     0.8575 0.000 0.000 0.000 0.004 0.140 0.856
#> GSM414935     5   0.388     0.2908 0.000 0.000 0.180 0.064 0.756 0.000
#> GSM414936     5   0.353     0.5446 0.000 0.000 0.000 0.004 0.700 0.296
#> GSM414937     5   0.337     0.5500 0.000 0.000 0.000 0.000 0.708 0.292
#> GSM414939     5   0.335     0.5503 0.000 0.000 0.000 0.000 0.712 0.288
#> GSM414941     5   0.617     0.4115 0.000 0.000 0.164 0.052 0.564 0.220
#> GSM414943     5   0.355     0.5388 0.000 0.000 0.000 0.004 0.696 0.300
#> GSM414944     6   0.328     0.6868 0.000 0.000 0.068 0.020 0.068 0.844
#> GSM414945     4   0.257     0.0389 0.012 0.136 0.000 0.852 0.000 0.000
#> GSM414946     5   0.604     0.3171 0.000 0.000 0.168 0.020 0.512 0.300
#> GSM414948     6   0.223     0.8589 0.000 0.000 0.000 0.004 0.124 0.872
#> GSM414949     3   0.584     0.3814 0.000 0.000 0.488 0.244 0.268 0.000
#> GSM414950     3   0.572     0.5102 0.000 0.000 0.460 0.168 0.372 0.000
#> GSM414951     5   0.238     0.4965 0.000 0.000 0.068 0.000 0.888 0.044
#> GSM414952     5   0.359    -0.0881 0.000 0.000 0.344 0.000 0.656 0.000
#> GSM414954     5   0.240     0.4786 0.000 0.000 0.080 0.000 0.884 0.036
#> GSM414956     5   0.363     0.5399 0.000 0.000 0.000 0.008 0.696 0.296
#> GSM414958     6   0.400     0.8217 0.048 0.000 0.000 0.012 0.180 0.760
#> GSM414959     5   0.373     0.5545 0.000 0.000 0.004 0.008 0.700 0.288
#> GSM414960     6   0.323     0.8442 0.012 0.000 0.000 0.012 0.168 0.808
#> GSM414961     5   0.333     0.3347 0.000 0.000 0.120 0.064 0.816 0.000
#> GSM414962     4   0.503     0.6243 0.000 0.000 0.444 0.484 0.072 0.000
#> GSM414964     5   0.263     0.5525 0.000 0.000 0.068 0.000 0.872 0.060
#> GSM414965     5   0.355     0.5388 0.000 0.000 0.000 0.004 0.696 0.300
#> GSM414967     6   0.328     0.6868 0.000 0.000 0.068 0.020 0.068 0.844
#> GSM414968     5   0.416     0.2764 0.036 0.000 0.132 0.056 0.776 0.000
#> GSM414969     5   0.631     0.3900 0.000 0.000 0.168 0.056 0.544 0.232
#> GSM414971     6   0.191     0.8524 0.000 0.000 0.000 0.000 0.108 0.892
#> GSM414973     5   0.572     0.3445 0.000 0.000 0.168 0.004 0.520 0.308
#> GSM414974     4   0.503     0.6243 0.000 0.000 0.444 0.484 0.072 0.000
#> GSM414928     2   0.308     0.7129 0.000 0.760 0.000 0.240 0.000 0.000
#> GSM414930     2   0.000     0.9314 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414932     3   0.315     0.8159 0.000 0.000 0.748 0.000 0.252 0.000
#> GSM414934     3   0.497     0.7591 0.036 0.000 0.632 0.036 0.296 0.000
#> GSM414938     1   0.123     0.0000 0.952 0.000 0.036 0.000 0.012 0.000
#> GSM414940     3   0.384     0.8106 0.028 0.000 0.716 0.000 0.256 0.000
#> GSM414942     2   0.000     0.9314 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414947     2   0.000     0.9314 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414953     3   0.497     0.7591 0.036 0.000 0.632 0.036 0.296 0.000
#> GSM414955     5   0.359    -0.0881 0.000 0.000 0.344 0.000 0.656 0.000
#> GSM414957     2   0.000     0.9314 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414963     3   0.315     0.8159 0.000 0.000 0.748 0.000 0.252 0.000
#> GSM414966     2   0.000     0.9314 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414970     3   0.315     0.8159 0.000 0.000 0.748 0.000 0.252 0.000
#> GSM414972     2   0.000     0.9314 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414975     2   0.000     0.9314 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n tissue(p) k
#> CV:hclust 52  7.46e-04 2
#> CV:hclust 43  1.58e-06 3
#> CV:hclust 29  1.51e-05 4
#> CV:hclust 24  1.44e-04 5
#> CV:hclust 35  1.42e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.960           0.977       0.988         0.3294 0.683   0.683
#> 3 3 1.000           0.985       0.990         0.8797 0.695   0.553
#> 4 4 0.678           0.547       0.813         0.1518 0.946   0.856
#> 5 5 0.635           0.494       0.731         0.0811 0.860   0.587
#> 6 6 0.648           0.472       0.701         0.0417 0.944   0.758

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1  0.0000      0.985 1.000 0.000
#> GSM414925     1  0.0000      0.985 1.000 0.000
#> GSM414926     1  0.0000      0.985 1.000 0.000
#> GSM414927     2  0.0376      1.000 0.004 0.996
#> GSM414929     1  0.0000      0.985 1.000 0.000
#> GSM414931     1  0.0000      0.985 1.000 0.000
#> GSM414933     1  0.0000      0.985 1.000 0.000
#> GSM414935     1  0.0000      0.985 1.000 0.000
#> GSM414936     1  0.0000      0.985 1.000 0.000
#> GSM414937     1  0.0000      0.985 1.000 0.000
#> GSM414939     1  0.0000      0.985 1.000 0.000
#> GSM414941     1  0.0000      0.985 1.000 0.000
#> GSM414943     1  0.0000      0.985 1.000 0.000
#> GSM414944     1  0.0000      0.985 1.000 0.000
#> GSM414945     2  0.0376      1.000 0.004 0.996
#> GSM414946     1  0.0000      0.985 1.000 0.000
#> GSM414948     1  0.0000      0.985 1.000 0.000
#> GSM414949     1  0.5519      0.863 0.872 0.128
#> GSM414950     1  0.0000      0.985 1.000 0.000
#> GSM414951     1  0.0000      0.985 1.000 0.000
#> GSM414952     1  0.0376      0.983 0.996 0.004
#> GSM414954     1  0.0000      0.985 1.000 0.000
#> GSM414956     1  0.0000      0.985 1.000 0.000
#> GSM414958     1  0.0000      0.985 1.000 0.000
#> GSM414959     1  0.0000      0.985 1.000 0.000
#> GSM414960     1  0.0000      0.985 1.000 0.000
#> GSM414961     1  0.0000      0.985 1.000 0.000
#> GSM414962     1  0.5059      0.881 0.888 0.112
#> GSM414964     1  0.0000      0.985 1.000 0.000
#> GSM414965     1  0.0000      0.985 1.000 0.000
#> GSM414967     1  0.0000      0.985 1.000 0.000
#> GSM414968     1  0.0000      0.985 1.000 0.000
#> GSM414969     1  0.0000      0.985 1.000 0.000
#> GSM414971     1  0.0000      0.985 1.000 0.000
#> GSM414973     1  0.0000      0.985 1.000 0.000
#> GSM414974     1  0.5519      0.863 0.872 0.128
#> GSM414928     2  0.0376      1.000 0.004 0.996
#> GSM414930     2  0.0376      1.000 0.004 0.996
#> GSM414932     1  0.0376      0.983 0.996 0.004
#> GSM414934     1  0.0376      0.983 0.996 0.004
#> GSM414938     1  0.0000      0.985 1.000 0.000
#> GSM414940     1  0.0376      0.983 0.996 0.004
#> GSM414942     2  0.0376      1.000 0.004 0.996
#> GSM414947     2  0.0376      1.000 0.004 0.996
#> GSM414953     1  0.0376      0.983 0.996 0.004
#> GSM414955     1  0.0376      0.983 0.996 0.004
#> GSM414957     2  0.0376      1.000 0.004 0.996
#> GSM414963     1  0.6887      0.796 0.816 0.184
#> GSM414966     2  0.0376      1.000 0.004 0.996
#> GSM414970     1  0.1843      0.965 0.972 0.028
#> GSM414972     2  0.0376      1.000 0.004 0.996
#> GSM414975     2  0.0376      1.000 0.004 0.996

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM414924     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414925     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414926     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414927     2  0.0000      0.983 0.000 1.000 0.000
#> GSM414929     1  0.0424      0.991 0.992 0.000 0.008
#> GSM414931     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414933     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414935     3  0.0592      0.988 0.012 0.000 0.988
#> GSM414936     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414937     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414939     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414941     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414943     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414944     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414945     2  0.3686      0.839 0.000 0.860 0.140
#> GSM414946     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414948     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414949     3  0.0661      0.985 0.008 0.004 0.988
#> GSM414950     3  0.0592      0.988 0.012 0.000 0.988
#> GSM414951     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414952     3  0.0592      0.988 0.012 0.000 0.988
#> GSM414954     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414956     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414958     1  0.0424      0.991 0.992 0.000 0.008
#> GSM414959     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414960     1  0.0424      0.991 0.992 0.000 0.008
#> GSM414961     3  0.0747      0.984 0.016 0.000 0.984
#> GSM414962     3  0.0661      0.981 0.004 0.008 0.988
#> GSM414964     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414965     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414967     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414968     3  0.3192      0.859 0.112 0.000 0.888
#> GSM414969     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414971     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414973     1  0.0000      0.998 1.000 0.000 0.000
#> GSM414974     3  0.0661      0.985 0.008 0.004 0.988
#> GSM414928     2  0.0000      0.983 0.000 1.000 0.000
#> GSM414930     2  0.0000      0.983 0.000 1.000 0.000
#> GSM414932     3  0.0592      0.988 0.012 0.000 0.988
#> GSM414934     3  0.0592      0.988 0.012 0.000 0.988
#> GSM414938     1  0.1529      0.962 0.960 0.000 0.040
#> GSM414940     3  0.0592      0.988 0.012 0.000 0.988
#> GSM414942     2  0.0237      0.983 0.000 0.996 0.004
#> GSM414947     2  0.0000      0.983 0.000 1.000 0.000
#> GSM414953     3  0.0592      0.988 0.012 0.000 0.988
#> GSM414955     3  0.0592      0.988 0.012 0.000 0.988
#> GSM414957     2  0.0000      0.983 0.000 1.000 0.000
#> GSM414963     3  0.0661      0.985 0.008 0.004 0.988
#> GSM414966     2  0.0237      0.983 0.000 0.996 0.004
#> GSM414970     3  0.0592      0.988 0.012 0.000 0.988
#> GSM414972     2  0.0237      0.983 0.000 0.996 0.004
#> GSM414975     2  0.0237      0.983 0.000 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     4  0.5000     0.3522 0.500 0.000 0.000 0.500
#> GSM414925     1  0.4830    -0.2474 0.608 0.000 0.000 0.392
#> GSM414926     1  0.4898    -0.2739 0.584 0.000 0.000 0.416
#> GSM414927     2  0.1867     0.9370 0.000 0.928 0.000 0.072
#> GSM414929     1  0.4961    -0.2445 0.552 0.000 0.000 0.448
#> GSM414931     1  0.4222     0.3066 0.728 0.000 0.000 0.272
#> GSM414933     1  0.4713     0.1013 0.640 0.000 0.000 0.360
#> GSM414935     3  0.4919     0.8085 0.048 0.000 0.752 0.200
#> GSM414936     1  0.0000     0.5237 1.000 0.000 0.000 0.000
#> GSM414937     1  0.2011     0.4722 0.920 0.000 0.000 0.080
#> GSM414939     1  0.0817     0.5162 0.976 0.000 0.000 0.024
#> GSM414941     1  0.4790    -0.1708 0.620 0.000 0.000 0.380
#> GSM414943     1  0.0188     0.5231 0.996 0.000 0.000 0.004
#> GSM414944     1  0.3801     0.3767 0.780 0.000 0.000 0.220
#> GSM414945     2  0.6111     0.7073 0.000 0.652 0.092 0.256
#> GSM414946     1  0.4713    -0.1387 0.640 0.000 0.000 0.360
#> GSM414948     1  0.4222     0.3074 0.728 0.000 0.000 0.272
#> GSM414949     3  0.2868     0.8530 0.000 0.000 0.864 0.136
#> GSM414950     3  0.4755     0.8141 0.040 0.000 0.760 0.200
#> GSM414951     1  0.2799     0.4347 0.884 0.000 0.008 0.108
#> GSM414952     3  0.0469     0.8721 0.000 0.000 0.988 0.012
#> GSM414954     1  0.3688     0.2780 0.792 0.000 0.000 0.208
#> GSM414956     1  0.0707     0.5176 0.980 0.000 0.000 0.020
#> GSM414958     1  0.4761    -0.0264 0.628 0.000 0.000 0.372
#> GSM414959     1  0.1474     0.5089 0.948 0.000 0.000 0.052
#> GSM414960     1  0.4697     0.1222 0.644 0.000 0.000 0.356
#> GSM414961     3  0.5035     0.8026 0.052 0.000 0.744 0.204
#> GSM414962     3  0.5057     0.7378 0.000 0.012 0.648 0.340
#> GSM414964     1  0.3837     0.2445 0.776 0.000 0.000 0.224
#> GSM414965     1  0.0000     0.5237 1.000 0.000 0.000 0.000
#> GSM414967     1  0.4624     0.2324 0.660 0.000 0.000 0.340
#> GSM414968     3  0.5619     0.7623 0.064 0.000 0.688 0.248
#> GSM414969     4  0.4996     0.3917 0.484 0.000 0.000 0.516
#> GSM414971     1  0.2530     0.4757 0.888 0.000 0.000 0.112
#> GSM414973     1  0.3907     0.3078 0.768 0.000 0.000 0.232
#> GSM414974     3  0.5099     0.7149 0.008 0.000 0.612 0.380
#> GSM414928     2  0.1867     0.9370 0.000 0.928 0.000 0.072
#> GSM414930     2  0.0000     0.9565 0.000 1.000 0.000 0.000
#> GSM414932     3  0.0188     0.8715 0.000 0.000 0.996 0.004
#> GSM414934     3  0.1302     0.8646 0.000 0.000 0.956 0.044
#> GSM414938     4  0.4741     0.2968 0.328 0.000 0.004 0.668
#> GSM414940     3  0.0707     0.8680 0.000 0.000 0.980 0.020
#> GSM414942     2  0.0188     0.9565 0.000 0.996 0.000 0.004
#> GSM414947     2  0.0707     0.9546 0.000 0.980 0.000 0.020
#> GSM414953     3  0.1302     0.8646 0.000 0.000 0.956 0.044
#> GSM414955     3  0.0469     0.8721 0.000 0.000 0.988 0.012
#> GSM414957     2  0.0707     0.9546 0.000 0.980 0.000 0.020
#> GSM414963     3  0.0188     0.8715 0.000 0.000 0.996 0.004
#> GSM414966     2  0.0188     0.9565 0.000 0.996 0.000 0.004
#> GSM414970     3  0.0188     0.8715 0.000 0.000 0.996 0.004
#> GSM414972     2  0.0188     0.9565 0.000 0.996 0.000 0.004
#> GSM414975     2  0.0188     0.9565 0.000 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     1  0.3863     0.5601 0.772 0.000 0.000 0.028 0.200
#> GSM414925     1  0.4166     0.4920 0.648 0.000 0.000 0.004 0.348
#> GSM414926     1  0.4602     0.5192 0.656 0.000 0.000 0.028 0.316
#> GSM414927     2  0.2286     0.9042 0.004 0.888 0.000 0.108 0.000
#> GSM414929     1  0.6203     0.4096 0.544 0.000 0.000 0.268 0.188
#> GSM414931     5  0.5562    -0.0720 0.408 0.000 0.000 0.072 0.520
#> GSM414933     1  0.5765     0.1785 0.488 0.000 0.000 0.088 0.424
#> GSM414935     3  0.6684     0.4122 0.256 0.000 0.576 0.060 0.108
#> GSM414936     5  0.0162     0.6101 0.004 0.000 0.000 0.000 0.996
#> GSM414937     5  0.1270     0.5930 0.052 0.000 0.000 0.000 0.948
#> GSM414939     5  0.0703     0.6068 0.024 0.000 0.000 0.000 0.976
#> GSM414941     1  0.4675     0.3820 0.600 0.000 0.000 0.020 0.380
#> GSM414943     5  0.0000     0.6094 0.000 0.000 0.000 0.000 1.000
#> GSM414944     5  0.6131     0.2301 0.228 0.000 0.000 0.208 0.564
#> GSM414945     4  0.4974    -0.2462 0.000 0.408 0.032 0.560 0.000
#> GSM414946     1  0.4367     0.4586 0.620 0.000 0.000 0.008 0.372
#> GSM414948     5  0.5454    -0.0493 0.404 0.000 0.000 0.064 0.532
#> GSM414949     3  0.5334     0.4961 0.180 0.000 0.672 0.148 0.000
#> GSM414950     3  0.7021     0.4154 0.208 0.000 0.572 0.124 0.096
#> GSM414951     5  0.2880     0.5286 0.108 0.000 0.020 0.004 0.868
#> GSM414952     3  0.0162     0.7310 0.004 0.000 0.996 0.000 0.000
#> GSM414954     5  0.4421     0.2915 0.268 0.000 0.024 0.004 0.704
#> GSM414956     5  0.0566     0.6081 0.012 0.000 0.004 0.000 0.984
#> GSM414958     1  0.5989     0.3977 0.536 0.000 0.000 0.128 0.336
#> GSM414959     5  0.1571     0.5852 0.060 0.000 0.000 0.004 0.936
#> GSM414960     1  0.6352     0.2215 0.456 0.000 0.000 0.164 0.380
#> GSM414961     3  0.6684     0.4122 0.256 0.000 0.576 0.060 0.108
#> GSM414962     4  0.6899     0.0670 0.228 0.008 0.368 0.396 0.000
#> GSM414964     5  0.5276     0.1638 0.324 0.000 0.024 0.028 0.624
#> GSM414965     5  0.0000     0.6094 0.000 0.000 0.000 0.000 1.000
#> GSM414967     5  0.6572    -0.0616 0.364 0.000 0.000 0.208 0.428
#> GSM414968     3  0.6265     0.4274 0.292 0.000 0.588 0.052 0.068
#> GSM414969     1  0.4528     0.5053 0.728 0.000 0.000 0.060 0.212
#> GSM414971     5  0.4462     0.3900 0.196 0.000 0.000 0.064 0.740
#> GSM414973     5  0.4182    -0.0944 0.400 0.000 0.000 0.000 0.600
#> GSM414974     4  0.6876     0.0307 0.256 0.000 0.368 0.372 0.004
#> GSM414928     2  0.2286     0.9042 0.004 0.888 0.000 0.108 0.000
#> GSM414930     2  0.0609     0.9557 0.000 0.980 0.000 0.020 0.000
#> GSM414932     3  0.0510     0.7290 0.000 0.000 0.984 0.016 0.000
#> GSM414934     3  0.1845     0.7021 0.016 0.000 0.928 0.056 0.000
#> GSM414938     4  0.5895    -0.2386 0.436 0.000 0.008 0.480 0.076
#> GSM414940     3  0.1557     0.7124 0.008 0.000 0.940 0.052 0.000
#> GSM414942     2  0.0566     0.9553 0.012 0.984 0.000 0.004 0.000
#> GSM414947     2  0.0955     0.9535 0.004 0.968 0.000 0.028 0.000
#> GSM414953     3  0.1845     0.7021 0.016 0.000 0.928 0.056 0.000
#> GSM414955     3  0.0162     0.7310 0.004 0.000 0.996 0.000 0.000
#> GSM414957     2  0.0794     0.9545 0.000 0.972 0.000 0.028 0.000
#> GSM414963     3  0.0609     0.7279 0.000 0.000 0.980 0.020 0.000
#> GSM414966     2  0.0566     0.9553 0.012 0.984 0.000 0.004 0.000
#> GSM414970     3  0.0609     0.7279 0.000 0.000 0.980 0.020 0.000
#> GSM414972     2  0.0566     0.9553 0.012 0.984 0.000 0.004 0.000
#> GSM414975     2  0.0566     0.9553 0.012 0.984 0.000 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     1  0.3213     0.4778 0.820 0.000 0.000 0.000 0.132 0.048
#> GSM414925     1  0.3514     0.5305 0.752 0.000 0.000 0.020 0.228 0.000
#> GSM414926     1  0.3290     0.4957 0.776 0.000 0.000 0.000 0.208 0.016
#> GSM414927     2  0.2633     0.8497 0.004 0.864 0.000 0.112 0.000 0.020
#> GSM414929     1  0.6420     0.0368 0.452 0.000 0.000 0.152 0.044 0.352
#> GSM414931     5  0.6118    -0.6354 0.304 0.000 0.000 0.000 0.360 0.336
#> GSM414933     1  0.6047    -0.5260 0.400 0.000 0.000 0.000 0.260 0.340
#> GSM414935     3  0.6653     0.3012 0.200 0.000 0.536 0.176 0.084 0.004
#> GSM414936     5  0.0260     0.6520 0.008 0.000 0.000 0.000 0.992 0.000
#> GSM414937     5  0.1674     0.6485 0.068 0.000 0.000 0.004 0.924 0.004
#> GSM414939     5  0.0937     0.6557 0.040 0.000 0.000 0.000 0.960 0.000
#> GSM414941     1  0.4352     0.4857 0.668 0.000 0.000 0.052 0.280 0.000
#> GSM414943     5  0.0000     0.6475 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414944     6  0.5977     0.5895 0.088 0.000 0.000 0.044 0.388 0.480
#> GSM414945     4  0.6502     0.2046 0.000 0.216 0.064 0.524 0.000 0.196
#> GSM414946     1  0.3509     0.5269 0.744 0.000 0.000 0.016 0.240 0.000
#> GSM414948     5  0.6106    -0.6000 0.324 0.000 0.000 0.000 0.376 0.300
#> GSM414949     3  0.4760     0.2423 0.068 0.000 0.604 0.328 0.000 0.000
#> GSM414950     3  0.6432     0.2705 0.120 0.000 0.544 0.256 0.076 0.004
#> GSM414951     5  0.2698     0.6139 0.120 0.000 0.008 0.008 0.860 0.004
#> GSM414952     3  0.0000     0.6622 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM414954     5  0.3676     0.5362 0.184 0.000 0.020 0.012 0.780 0.004
#> GSM414956     5  0.0790     0.6384 0.000 0.000 0.000 0.000 0.968 0.032
#> GSM414958     1  0.6349    -0.1953 0.472 0.000 0.000 0.028 0.200 0.300
#> GSM414959     5  0.1642     0.6438 0.028 0.000 0.000 0.004 0.936 0.032
#> GSM414960     6  0.6217     0.3479 0.344 0.000 0.000 0.008 0.240 0.408
#> GSM414961     3  0.6694     0.2968 0.200 0.000 0.532 0.176 0.088 0.004
#> GSM414962     4  0.5657     0.4896 0.136 0.012 0.300 0.552 0.000 0.000
#> GSM414964     5  0.5165     0.3591 0.244 0.000 0.020 0.080 0.652 0.004
#> GSM414965     5  0.0000     0.6475 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414967     6  0.6367     0.6738 0.156 0.000 0.000 0.044 0.312 0.488
#> GSM414968     3  0.6636     0.2977 0.208 0.000 0.532 0.180 0.076 0.004
#> GSM414969     1  0.4393     0.4780 0.720 0.000 0.000 0.140 0.140 0.000
#> GSM414971     5  0.5003    -0.2991 0.104 0.000 0.000 0.000 0.608 0.288
#> GSM414973     1  0.3841     0.3993 0.616 0.000 0.000 0.000 0.380 0.004
#> GSM414974     4  0.5641     0.4617 0.164 0.000 0.292 0.540 0.004 0.000
#> GSM414928     2  0.2633     0.8497 0.004 0.864 0.000 0.112 0.000 0.020
#> GSM414930     2  0.0000     0.9156 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414932     3  0.0632     0.6585 0.000 0.000 0.976 0.024 0.000 0.000
#> GSM414934     3  0.3096     0.5863 0.004 0.000 0.840 0.108 0.000 0.048
#> GSM414938     1  0.6455    -0.0172 0.352 0.000 0.008 0.308 0.004 0.328
#> GSM414940     3  0.2231     0.6239 0.004 0.000 0.900 0.068 0.000 0.028
#> GSM414942     2  0.1812     0.9136 0.008 0.912 0.000 0.000 0.000 0.080
#> GSM414947     2  0.0891     0.9105 0.000 0.968 0.000 0.024 0.000 0.008
#> GSM414953     3  0.3096     0.5863 0.004 0.000 0.840 0.108 0.000 0.048
#> GSM414955     3  0.0000     0.6622 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM414957     2  0.0777     0.9116 0.000 0.972 0.000 0.024 0.000 0.004
#> GSM414963     3  0.0713     0.6569 0.000 0.000 0.972 0.028 0.000 0.000
#> GSM414966     2  0.1812     0.9136 0.008 0.912 0.000 0.000 0.000 0.080
#> GSM414970     3  0.0713     0.6569 0.000 0.000 0.972 0.028 0.000 0.000
#> GSM414972     2  0.1812     0.9136 0.008 0.912 0.000 0.000 0.000 0.080
#> GSM414975     2  0.1812     0.9136 0.008 0.912 0.000 0.000 0.000 0.080

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n tissue(p) k
#> CV:kmeans 52  7.46e-04 2
#> CV:kmeans 52  1.34e-05 3
#> CV:kmeans 31  8.05e-03 4
#> CV:kmeans 28  1.10e-04 5
#> CV:kmeans 30  1.30e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.975       0.989         0.4874 0.517   0.517
#> 3 3 0.969           0.957       0.982         0.2961 0.796   0.627
#> 4 4 0.798           0.869       0.911         0.1962 0.864   0.636
#> 5 5 0.773           0.637       0.814         0.0534 0.946   0.783
#> 6 6 0.784           0.716       0.803         0.0315 0.928   0.671

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1   0.000      0.982 1.000 0.000
#> GSM414925     1   0.000      0.982 1.000 0.000
#> GSM414926     1   0.000      0.982 1.000 0.000
#> GSM414927     2   0.000      1.000 0.000 1.000
#> GSM414929     1   0.000      0.982 1.000 0.000
#> GSM414931     1   0.000      0.982 1.000 0.000
#> GSM414933     1   0.000      0.982 1.000 0.000
#> GSM414935     1   0.000      0.982 1.000 0.000
#> GSM414936     1   0.000      0.982 1.000 0.000
#> GSM414937     1   0.000      0.982 1.000 0.000
#> GSM414939     1   0.000      0.982 1.000 0.000
#> GSM414941     1   0.000      0.982 1.000 0.000
#> GSM414943     1   0.000      0.982 1.000 0.000
#> GSM414944     1   0.000      0.982 1.000 0.000
#> GSM414945     2   0.000      1.000 0.000 1.000
#> GSM414946     1   0.000      0.982 1.000 0.000
#> GSM414948     1   0.000      0.982 1.000 0.000
#> GSM414949     2   0.000      1.000 0.000 1.000
#> GSM414950     1   0.689      0.773 0.816 0.184
#> GSM414951     1   0.000      0.982 1.000 0.000
#> GSM414952     1   0.946      0.442 0.636 0.364
#> GSM414954     1   0.000      0.982 1.000 0.000
#> GSM414956     1   0.000      0.982 1.000 0.000
#> GSM414958     1   0.000      0.982 1.000 0.000
#> GSM414959     1   0.000      0.982 1.000 0.000
#> GSM414960     1   0.000      0.982 1.000 0.000
#> GSM414961     1   0.000      0.982 1.000 0.000
#> GSM414962     2   0.000      1.000 0.000 1.000
#> GSM414964     1   0.000      0.982 1.000 0.000
#> GSM414965     1   0.000      0.982 1.000 0.000
#> GSM414967     1   0.000      0.982 1.000 0.000
#> GSM414968     1   0.000      0.982 1.000 0.000
#> GSM414969     1   0.000      0.982 1.000 0.000
#> GSM414971     1   0.000      0.982 1.000 0.000
#> GSM414973     1   0.000      0.982 1.000 0.000
#> GSM414974     2   0.000      1.000 0.000 1.000
#> GSM414928     2   0.000      1.000 0.000 1.000
#> GSM414930     2   0.000      1.000 0.000 1.000
#> GSM414932     2   0.000      1.000 0.000 1.000
#> GSM414934     2   0.000      1.000 0.000 1.000
#> GSM414938     1   0.000      0.982 1.000 0.000
#> GSM414940     2   0.000      1.000 0.000 1.000
#> GSM414942     2   0.000      1.000 0.000 1.000
#> GSM414947     2   0.000      1.000 0.000 1.000
#> GSM414953     2   0.000      1.000 0.000 1.000
#> GSM414955     2   0.000      1.000 0.000 1.000
#> GSM414957     2   0.000      1.000 0.000 1.000
#> GSM414963     2   0.000      1.000 0.000 1.000
#> GSM414966     2   0.000      1.000 0.000 1.000
#> GSM414970     2   0.000      1.000 0.000 1.000
#> GSM414972     2   0.000      1.000 0.000 1.000
#> GSM414975     2   0.000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1  p2    p3
#> GSM414924     1   0.000      0.977 1.000 0.0 0.000
#> GSM414925     1   0.000      0.977 1.000 0.0 0.000
#> GSM414926     1   0.000      0.977 1.000 0.0 0.000
#> GSM414927     2   0.000      1.000 0.000 1.0 0.000
#> GSM414929     1   0.000      0.977 1.000 0.0 0.000
#> GSM414931     1   0.000      0.977 1.000 0.0 0.000
#> GSM414933     1   0.000      0.977 1.000 0.0 0.000
#> GSM414935     3   0.000      0.971 0.000 0.0 1.000
#> GSM414936     1   0.000      0.977 1.000 0.0 0.000
#> GSM414937     1   0.000      0.977 1.000 0.0 0.000
#> GSM414939     1   0.000      0.977 1.000 0.0 0.000
#> GSM414941     1   0.000      0.977 1.000 0.0 0.000
#> GSM414943     1   0.000      0.977 1.000 0.0 0.000
#> GSM414944     1   0.000      0.977 1.000 0.0 0.000
#> GSM414945     2   0.000      1.000 0.000 1.0 0.000
#> GSM414946     1   0.000      0.977 1.000 0.0 0.000
#> GSM414948     1   0.000      0.977 1.000 0.0 0.000
#> GSM414949     3   0.455      0.755 0.000 0.2 0.800
#> GSM414950     3   0.000      0.971 0.000 0.0 1.000
#> GSM414951     1   0.418      0.781 0.828 0.0 0.172
#> GSM414952     3   0.000      0.971 0.000 0.0 1.000
#> GSM414954     1   0.000      0.977 1.000 0.0 0.000
#> GSM414956     1   0.000      0.977 1.000 0.0 0.000
#> GSM414958     1   0.000      0.977 1.000 0.0 0.000
#> GSM414959     1   0.000      0.977 1.000 0.0 0.000
#> GSM414960     1   0.000      0.977 1.000 0.0 0.000
#> GSM414961     3   0.000      0.971 0.000 0.0 1.000
#> GSM414962     2   0.000      1.000 0.000 1.0 0.000
#> GSM414964     1   0.000      0.977 1.000 0.0 0.000
#> GSM414965     1   0.000      0.977 1.000 0.0 0.000
#> GSM414967     1   0.000      0.977 1.000 0.0 0.000
#> GSM414968     3   0.327      0.842 0.116 0.0 0.884
#> GSM414969     1   0.000      0.977 1.000 0.0 0.000
#> GSM414971     1   0.000      0.977 1.000 0.0 0.000
#> GSM414973     1   0.000      0.977 1.000 0.0 0.000
#> GSM414974     2   0.000      1.000 0.000 1.0 0.000
#> GSM414928     2   0.000      1.000 0.000 1.0 0.000
#> GSM414930     2   0.000      1.000 0.000 1.0 0.000
#> GSM414932     3   0.000      0.971 0.000 0.0 1.000
#> GSM414934     3   0.000      0.971 0.000 0.0 1.000
#> GSM414938     1   0.716      0.292 0.572 0.4 0.028
#> GSM414940     3   0.000      0.971 0.000 0.0 1.000
#> GSM414942     2   0.000      1.000 0.000 1.0 0.000
#> GSM414947     2   0.000      1.000 0.000 1.0 0.000
#> GSM414953     3   0.000      0.971 0.000 0.0 1.000
#> GSM414955     3   0.000      0.971 0.000 0.0 1.000
#> GSM414957     2   0.000      1.000 0.000 1.0 0.000
#> GSM414963     3   0.000      0.971 0.000 0.0 1.000
#> GSM414966     2   0.000      1.000 0.000 1.0 0.000
#> GSM414970     3   0.000      0.971 0.000 0.0 1.000
#> GSM414972     2   0.000      1.000 0.000 1.0 0.000
#> GSM414975     2   0.000      1.000 0.000 1.0 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     1  0.0000      0.754 1.000 0.000 0.000 0.000
#> GSM414925     1  0.0592      0.756 0.984 0.000 0.000 0.016
#> GSM414926     1  0.3528      0.826 0.808 0.000 0.000 0.192
#> GSM414927     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414929     1  0.3726      0.826 0.788 0.000 0.000 0.212
#> GSM414931     1  0.4564      0.754 0.672 0.000 0.000 0.328
#> GSM414933     1  0.3801      0.825 0.780 0.000 0.000 0.220
#> GSM414935     3  0.4245      0.837 0.196 0.000 0.784 0.020
#> GSM414936     4  0.0336      0.913 0.008 0.000 0.000 0.992
#> GSM414937     4  0.0000      0.909 0.000 0.000 0.000 1.000
#> GSM414939     4  0.0336      0.913 0.008 0.000 0.000 0.992
#> GSM414941     1  0.1867      0.733 0.928 0.000 0.000 0.072
#> GSM414943     4  0.0336      0.913 0.008 0.000 0.000 0.992
#> GSM414944     4  0.3356      0.694 0.176 0.000 0.000 0.824
#> GSM414945     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414946     1  0.1389      0.752 0.952 0.000 0.000 0.048
#> GSM414948     1  0.4477      0.773 0.688 0.000 0.000 0.312
#> GSM414949     3  0.3726      0.747 0.000 0.212 0.788 0.000
#> GSM414950     3  0.4019      0.839 0.196 0.000 0.792 0.012
#> GSM414951     4  0.0000      0.909 0.000 0.000 0.000 1.000
#> GSM414952     3  0.0000      0.917 0.000 0.000 1.000 0.000
#> GSM414954     4  0.3444      0.722 0.184 0.000 0.000 0.816
#> GSM414956     4  0.0336      0.913 0.008 0.000 0.000 0.992
#> GSM414958     1  0.3764      0.825 0.784 0.000 0.000 0.216
#> GSM414959     4  0.0817      0.903 0.024 0.000 0.000 0.976
#> GSM414960     1  0.4164      0.805 0.736 0.000 0.000 0.264
#> GSM414961     3  0.4284      0.834 0.200 0.000 0.780 0.020
#> GSM414962     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414964     4  0.3873      0.679 0.228 0.000 0.000 0.772
#> GSM414965     4  0.0336      0.913 0.008 0.000 0.000 0.992
#> GSM414967     1  0.4933      0.554 0.568 0.000 0.000 0.432
#> GSM414968     3  0.4426      0.829 0.204 0.000 0.772 0.024
#> GSM414969     1  0.0336      0.749 0.992 0.000 0.000 0.008
#> GSM414971     4  0.1716      0.863 0.064 0.000 0.000 0.936
#> GSM414973     1  0.4454      0.774 0.692 0.000 0.000 0.308
#> GSM414974     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414928     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414930     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414932     3  0.0000      0.917 0.000 0.000 1.000 0.000
#> GSM414934     3  0.0000      0.917 0.000 0.000 1.000 0.000
#> GSM414938     1  0.4465      0.822 0.776 0.004 0.020 0.200
#> GSM414940     3  0.0000      0.917 0.000 0.000 1.000 0.000
#> GSM414942     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414947     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414953     3  0.0000      0.917 0.000 0.000 1.000 0.000
#> GSM414955     3  0.0000      0.917 0.000 0.000 1.000 0.000
#> GSM414957     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414963     3  0.0000      0.917 0.000 0.000 1.000 0.000
#> GSM414966     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414970     3  0.0000      0.917 0.000 0.000 1.000 0.000
#> GSM414972     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414975     2  0.0000      1.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     1  0.1628      0.559 0.936 0.000 0.000 0.056 0.008
#> GSM414925     1  0.1918      0.586 0.928 0.000 0.000 0.036 0.036
#> GSM414926     1  0.3234      0.501 0.852 0.000 0.000 0.084 0.064
#> GSM414927     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM414929     4  0.5511      0.488 0.344 0.000 0.000 0.576 0.080
#> GSM414931     5  0.6820     -0.574 0.332 0.000 0.000 0.316 0.352
#> GSM414933     1  0.6538     -0.458 0.444 0.000 0.000 0.352 0.204
#> GSM414935     3  0.6249      0.648 0.144 0.000 0.572 0.272 0.012
#> GSM414936     5  0.0000      0.724 0.000 0.000 0.000 0.000 1.000
#> GSM414937     5  0.1670      0.710 0.012 0.000 0.000 0.052 0.936
#> GSM414939     5  0.0290      0.724 0.000 0.000 0.000 0.008 0.992
#> GSM414941     1  0.3090      0.542 0.856 0.000 0.000 0.104 0.040
#> GSM414943     5  0.0000      0.724 0.000 0.000 0.000 0.000 1.000
#> GSM414944     5  0.6240     -0.259 0.152 0.000 0.000 0.360 0.488
#> GSM414945     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM414946     1  0.2012      0.587 0.920 0.000 0.000 0.020 0.060
#> GSM414948     1  0.6734     -0.413 0.404 0.000 0.000 0.264 0.332
#> GSM414949     3  0.4898      0.638 0.000 0.248 0.684 0.068 0.000
#> GSM414950     3  0.5907      0.667 0.132 0.000 0.596 0.268 0.004
#> GSM414951     5  0.2533      0.689 0.008 0.000 0.008 0.096 0.888
#> GSM414952     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000
#> GSM414954     5  0.4818      0.552 0.100 0.000 0.000 0.180 0.720
#> GSM414956     5  0.0510      0.723 0.000 0.000 0.000 0.016 0.984
#> GSM414958     4  0.6294      0.497 0.404 0.000 0.000 0.444 0.152
#> GSM414959     5  0.2790      0.663 0.052 0.000 0.000 0.068 0.880
#> GSM414960     4  0.6691      0.439 0.360 0.000 0.000 0.400 0.240
#> GSM414961     3  0.6216      0.649 0.136 0.000 0.572 0.280 0.012
#> GSM414962     2  0.0162      0.996 0.000 0.996 0.000 0.004 0.000
#> GSM414964     5  0.6026      0.406 0.192 0.000 0.000 0.228 0.580
#> GSM414965     5  0.0162      0.723 0.000 0.000 0.000 0.004 0.996
#> GSM414967     4  0.6694      0.387 0.244 0.000 0.000 0.408 0.348
#> GSM414968     3  0.5810      0.619 0.076 0.000 0.540 0.376 0.008
#> GSM414969     1  0.2377      0.532 0.872 0.000 0.000 0.128 0.000
#> GSM414971     5  0.4898      0.287 0.068 0.000 0.000 0.248 0.684
#> GSM414973     1  0.4840      0.354 0.688 0.000 0.000 0.064 0.248
#> GSM414974     2  0.0290      0.993 0.000 0.992 0.000 0.008 0.000
#> GSM414928     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM414930     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM414932     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000
#> GSM414934     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000
#> GSM414938     4  0.5621      0.459 0.320 0.004 0.004 0.600 0.072
#> GSM414940     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000
#> GSM414942     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM414947     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM414953     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000
#> GSM414955     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000
#> GSM414957     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM414963     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000
#> GSM414966     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM414970     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000
#> GSM414972     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM414975     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     1  0.2230     0.7909 0.892 0.000 0.000 0.024 0.000 0.084
#> GSM414925     1  0.2401     0.7983 0.892 0.000 0.000 0.028 0.008 0.072
#> GSM414926     1  0.3164     0.7632 0.844 0.000 0.000 0.032 0.020 0.104
#> GSM414927     2  0.0000     0.9902 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414929     6  0.5780     0.2570 0.160 0.000 0.000 0.264 0.016 0.560
#> GSM414931     6  0.5501     0.5588 0.144 0.000 0.000 0.000 0.336 0.520
#> GSM414933     6  0.5943     0.4895 0.296 0.000 0.000 0.012 0.180 0.512
#> GSM414935     4  0.5571     0.7474 0.080 0.000 0.432 0.468 0.020 0.000
#> GSM414936     5  0.0146     0.7711 0.004 0.000 0.000 0.000 0.996 0.000
#> GSM414937     5  0.1332     0.7658 0.012 0.000 0.000 0.028 0.952 0.008
#> GSM414939     5  0.0551     0.7706 0.004 0.000 0.000 0.004 0.984 0.008
#> GSM414941     1  0.2947     0.7719 0.864 0.000 0.000 0.080 0.032 0.024
#> GSM414943     5  0.0146     0.7724 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM414944     6  0.5791     0.4356 0.052 0.000 0.000 0.064 0.364 0.520
#> GSM414945     2  0.0363     0.9831 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM414946     1  0.2147     0.8054 0.912 0.000 0.000 0.012 0.032 0.044
#> GSM414948     6  0.5912     0.5463 0.224 0.000 0.000 0.000 0.324 0.452
#> GSM414949     3  0.5434    -0.0711 0.000 0.160 0.616 0.212 0.000 0.012
#> GSM414950     4  0.5297     0.7056 0.048 0.000 0.464 0.468 0.012 0.008
#> GSM414951     5  0.3299     0.7053 0.008 0.000 0.004 0.084 0.840 0.064
#> GSM414952     3  0.1152     0.8386 0.000 0.000 0.952 0.044 0.000 0.004
#> GSM414954     5  0.4970     0.5499 0.060 0.000 0.000 0.252 0.660 0.028
#> GSM414956     5  0.0405     0.7713 0.000 0.000 0.000 0.008 0.988 0.004
#> GSM414958     6  0.6559     0.4541 0.196 0.000 0.000 0.128 0.128 0.548
#> GSM414959     5  0.4533     0.5810 0.072 0.000 0.000 0.056 0.756 0.116
#> GSM414960     6  0.5318     0.6017 0.148 0.000 0.000 0.008 0.224 0.620
#> GSM414961     4  0.5561     0.7482 0.068 0.000 0.408 0.496 0.028 0.000
#> GSM414962     2  0.1010     0.9643 0.000 0.960 0.000 0.036 0.000 0.004
#> GSM414964     5  0.6093     0.3808 0.124 0.000 0.000 0.316 0.520 0.040
#> GSM414965     5  0.0291     0.7703 0.000 0.000 0.000 0.004 0.992 0.004
#> GSM414967     6  0.5599     0.5382 0.056 0.000 0.000 0.064 0.284 0.596
#> GSM414968     4  0.6548     0.4933 0.016 0.000 0.380 0.396 0.012 0.196
#> GSM414969     1  0.2301     0.7751 0.884 0.000 0.000 0.096 0.000 0.020
#> GSM414971     5  0.4663    -0.2299 0.036 0.000 0.000 0.004 0.552 0.408
#> GSM414973     1  0.5466     0.3874 0.628 0.000 0.000 0.036 0.240 0.096
#> GSM414974     2  0.1668     0.9387 0.004 0.928 0.000 0.060 0.000 0.008
#> GSM414928     2  0.0000     0.9902 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414930     2  0.0000     0.9902 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414932     3  0.0146     0.8892 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM414934     3  0.0260     0.8883 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM414938     6  0.5810     0.1882 0.144 0.000 0.000 0.332 0.012 0.512
#> GSM414940     3  0.0146     0.8900 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM414942     2  0.0000     0.9902 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414947     2  0.0000     0.9902 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414953     3  0.0260     0.8883 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM414955     3  0.0632     0.8716 0.000 0.000 0.976 0.024 0.000 0.000
#> GSM414957     2  0.0000     0.9902 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414963     3  0.0000     0.8900 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM414966     2  0.0000     0.9902 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414970     3  0.0146     0.8892 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM414972     2  0.0000     0.9902 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414975     2  0.0000     0.9902 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n tissue(p) k
#> CV:skmeans 51  3.69e-07 2
#> CV:skmeans 51  1.24e-05 3
#> CV:skmeans 52  1.75e-04 4
#> CV:skmeans 40  1.96e-03 5
#> CV:skmeans 42  6.90e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.885           0.953       0.978         0.3410 0.683   0.683
#> 3 3 0.646           0.796       0.911         0.7913 0.686   0.541
#> 4 4 0.586           0.471       0.746         0.1629 0.820   0.564
#> 5 5 0.639           0.534       0.758         0.0931 0.843   0.521
#> 6 6 0.675           0.411       0.703         0.0391 0.873   0.513

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1   0.000      0.972 1.000 0.000
#> GSM414925     1   0.000      0.972 1.000 0.000
#> GSM414926     1   0.000      0.972 1.000 0.000
#> GSM414927     2   0.000      1.000 0.000 1.000
#> GSM414929     1   0.000      0.972 1.000 0.000
#> GSM414931     1   0.000      0.972 1.000 0.000
#> GSM414933     1   0.000      0.972 1.000 0.000
#> GSM414935     1   0.000      0.972 1.000 0.000
#> GSM414936     1   0.000      0.972 1.000 0.000
#> GSM414937     1   0.000      0.972 1.000 0.000
#> GSM414939     1   0.000      0.972 1.000 0.000
#> GSM414941     1   0.000      0.972 1.000 0.000
#> GSM414943     1   0.000      0.972 1.000 0.000
#> GSM414944     1   0.000      0.972 1.000 0.000
#> GSM414945     2   0.000      1.000 0.000 1.000
#> GSM414946     1   0.000      0.972 1.000 0.000
#> GSM414948     1   0.000      0.972 1.000 0.000
#> GSM414949     1   0.697      0.784 0.812 0.188
#> GSM414950     1   0.000      0.972 1.000 0.000
#> GSM414951     1   0.000      0.972 1.000 0.000
#> GSM414952     1   0.000      0.972 1.000 0.000
#> GSM414954     1   0.000      0.972 1.000 0.000
#> GSM414956     1   0.000      0.972 1.000 0.000
#> GSM414958     1   0.000      0.972 1.000 0.000
#> GSM414959     1   0.000      0.972 1.000 0.000
#> GSM414960     1   0.000      0.972 1.000 0.000
#> GSM414961     1   0.000      0.972 1.000 0.000
#> GSM414962     1   0.955      0.448 0.624 0.376
#> GSM414964     1   0.000      0.972 1.000 0.000
#> GSM414965     1   0.000      0.972 1.000 0.000
#> GSM414967     1   0.000      0.972 1.000 0.000
#> GSM414968     1   0.000      0.972 1.000 0.000
#> GSM414969     1   0.000      0.972 1.000 0.000
#> GSM414971     1   0.000      0.972 1.000 0.000
#> GSM414973     1   0.000      0.972 1.000 0.000
#> GSM414974     1   0.697      0.784 0.812 0.188
#> GSM414928     2   0.000      1.000 0.000 1.000
#> GSM414930     2   0.000      1.000 0.000 1.000
#> GSM414932     1   0.000      0.972 1.000 0.000
#> GSM414934     1   0.000      0.972 1.000 0.000
#> GSM414938     1   0.000      0.972 1.000 0.000
#> GSM414940     1   0.000      0.972 1.000 0.000
#> GSM414942     2   0.000      1.000 0.000 1.000
#> GSM414947     2   0.000      1.000 0.000 1.000
#> GSM414953     1   0.000      0.972 1.000 0.000
#> GSM414955     1   0.000      0.972 1.000 0.000
#> GSM414957     2   0.000      1.000 0.000 1.000
#> GSM414963     1   0.706      0.779 0.808 0.192
#> GSM414966     2   0.000      1.000 0.000 1.000
#> GSM414970     1   0.697      0.784 0.812 0.188
#> GSM414972     2   0.000      1.000 0.000 1.000
#> GSM414975     2   0.000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1   p2    p3
#> GSM414924     1  0.0000    0.89419 1.000 0.00 0.000
#> GSM414925     1  0.0000    0.89419 1.000 0.00 0.000
#> GSM414926     1  0.0000    0.89419 1.000 0.00 0.000
#> GSM414927     2  0.0000    0.96233 0.000 1.00 0.000
#> GSM414929     1  0.0000    0.89419 1.000 0.00 0.000
#> GSM414931     1  0.0000    0.89419 1.000 0.00 0.000
#> GSM414933     1  0.0000    0.89419 1.000 0.00 0.000
#> GSM414935     3  0.6309   -0.00988 0.496 0.00 0.504
#> GSM414936     1  0.0747    0.89060 0.984 0.00 0.016
#> GSM414937     1  0.3941    0.83983 0.844 0.00 0.156
#> GSM414939     1  0.3941    0.83983 0.844 0.00 0.156
#> GSM414941     1  0.3879    0.84235 0.848 0.00 0.152
#> GSM414943     1  0.3879    0.84235 0.848 0.00 0.152
#> GSM414944     1  0.0000    0.89419 1.000 0.00 0.000
#> GSM414945     2  0.5835    0.54019 0.000 0.66 0.340
#> GSM414946     1  0.3941    0.83983 0.844 0.00 0.156
#> GSM414948     1  0.0000    0.89419 1.000 0.00 0.000
#> GSM414949     3  0.0000    0.79671 0.000 0.00 1.000
#> GSM414950     3  0.6225    0.19338 0.432 0.00 0.568
#> GSM414951     1  0.4399    0.80866 0.812 0.00 0.188
#> GSM414952     3  0.0000    0.79671 0.000 0.00 1.000
#> GSM414954     3  0.5882    0.45401 0.348 0.00 0.652
#> GSM414956     1  0.4178    0.82653 0.828 0.00 0.172
#> GSM414958     1  0.0000    0.89419 1.000 0.00 0.000
#> GSM414959     1  0.4178    0.82653 0.828 0.00 0.172
#> GSM414960     1  0.0000    0.89419 1.000 0.00 0.000
#> GSM414961     3  0.5882    0.45401 0.348 0.00 0.652
#> GSM414962     3  0.5016    0.51537 0.000 0.24 0.760
#> GSM414964     1  0.5397    0.66398 0.720 0.00 0.280
#> GSM414965     1  0.0000    0.89419 1.000 0.00 0.000
#> GSM414967     1  0.0000    0.89419 1.000 0.00 0.000
#> GSM414968     3  0.5988    0.41066 0.368 0.00 0.632
#> GSM414969     1  0.4235    0.82292 0.824 0.00 0.176
#> GSM414971     1  0.0000    0.89419 1.000 0.00 0.000
#> GSM414973     1  0.0000    0.89419 1.000 0.00 0.000
#> GSM414974     3  0.0000    0.79671 0.000 0.00 1.000
#> GSM414928     2  0.0000    0.96233 0.000 1.00 0.000
#> GSM414930     2  0.0000    0.96233 0.000 1.00 0.000
#> GSM414932     3  0.0000    0.79671 0.000 0.00 1.000
#> GSM414934     3  0.0000    0.79671 0.000 0.00 1.000
#> GSM414938     1  0.5529    0.63673 0.704 0.00 0.296
#> GSM414940     3  0.0000    0.79671 0.000 0.00 1.000
#> GSM414942     2  0.0000    0.96233 0.000 1.00 0.000
#> GSM414947     2  0.0000    0.96233 0.000 1.00 0.000
#> GSM414953     3  0.0000    0.79671 0.000 0.00 1.000
#> GSM414955     3  0.0000    0.79671 0.000 0.00 1.000
#> GSM414957     2  0.0000    0.96233 0.000 1.00 0.000
#> GSM414963     3  0.0000    0.79671 0.000 0.00 1.000
#> GSM414966     2  0.0000    0.96233 0.000 1.00 0.000
#> GSM414970     3  0.0000    0.79671 0.000 0.00 1.000
#> GSM414972     2  0.0000    0.96233 0.000 1.00 0.000
#> GSM414975     2  0.0000    0.96233 0.000 1.00 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     1  0.4916    0.04370 0.576 0.000 0.000 0.424
#> GSM414925     1  0.4916   -0.05999 0.576 0.000 0.000 0.424
#> GSM414926     1  0.4697    0.07680 0.644 0.000 0.000 0.356
#> GSM414927     2  0.3444    0.89108 0.000 0.816 0.000 0.184
#> GSM414929     4  0.4761    0.12175 0.372 0.000 0.000 0.628
#> GSM414931     1  0.2814    0.50555 0.868 0.000 0.000 0.132
#> GSM414933     1  0.4877    0.07815 0.592 0.000 0.000 0.408
#> GSM414935     4  0.7145    0.27406 0.348 0.000 0.144 0.508
#> GSM414936     1  0.0707    0.54254 0.980 0.000 0.000 0.020
#> GSM414937     1  0.3377    0.49477 0.848 0.000 0.012 0.140
#> GSM414939     1  0.3377    0.49477 0.848 0.000 0.012 0.140
#> GSM414941     1  0.5404   -0.22330 0.512 0.000 0.012 0.476
#> GSM414943     1  0.3377    0.49477 0.848 0.000 0.012 0.140
#> GSM414944     1  0.1118    0.53931 0.964 0.000 0.000 0.036
#> GSM414945     2  0.7520    0.40233 0.000 0.456 0.352 0.192
#> GSM414946     4  0.5388    0.23891 0.456 0.000 0.012 0.532
#> GSM414948     1  0.2149    0.52013 0.912 0.000 0.000 0.088
#> GSM414949     3  0.3486    0.68402 0.000 0.000 0.812 0.188
#> GSM414950     1  0.7336    0.03972 0.520 0.000 0.284 0.196
#> GSM414951     1  0.3606    0.48824 0.840 0.000 0.020 0.140
#> GSM414952     3  0.0188    0.86379 0.000 0.000 0.996 0.004
#> GSM414954     3  0.5253    0.30426 0.360 0.000 0.624 0.016
#> GSM414956     1  0.3495    0.49141 0.844 0.000 0.016 0.140
#> GSM414958     1  0.4356    0.30025 0.708 0.000 0.000 0.292
#> GSM414959     1  0.4599    0.38428 0.736 0.000 0.016 0.248
#> GSM414960     4  0.4996   -0.00637 0.484 0.000 0.000 0.516
#> GSM414961     3  0.6677    0.22199 0.348 0.000 0.552 0.100
#> GSM414962     4  0.5476   -0.09774 0.000 0.020 0.396 0.584
#> GSM414964     4  0.5604    0.19482 0.476 0.000 0.020 0.504
#> GSM414965     1  0.0336    0.54330 0.992 0.000 0.000 0.008
#> GSM414967     1  0.2814    0.51368 0.868 0.000 0.000 0.132
#> GSM414968     1  0.7510   -0.06188 0.436 0.000 0.380 0.184
#> GSM414969     4  0.5388    0.23891 0.456 0.000 0.012 0.532
#> GSM414971     1  0.2149    0.52013 0.912 0.000 0.000 0.088
#> GSM414973     1  0.4585    0.09164 0.668 0.000 0.000 0.332
#> GSM414974     4  0.4985   -0.02921 0.000 0.000 0.468 0.532
#> GSM414928     2  0.3444    0.89108 0.000 0.816 0.000 0.184
#> GSM414930     2  0.3400    0.89203 0.000 0.820 0.000 0.180
#> GSM414932     3  0.0336    0.86168 0.000 0.000 0.992 0.008
#> GSM414934     3  0.0000    0.86446 0.000 0.000 1.000 0.000
#> GSM414938     4  0.5453    0.29283 0.304 0.000 0.036 0.660
#> GSM414940     3  0.0000    0.86446 0.000 0.000 1.000 0.000
#> GSM414942     2  0.0000    0.87147 0.000 1.000 0.000 0.000
#> GSM414947     2  0.3400    0.89203 0.000 0.820 0.000 0.180
#> GSM414953     3  0.0000    0.86446 0.000 0.000 1.000 0.000
#> GSM414955     3  0.0000    0.86446 0.000 0.000 1.000 0.000
#> GSM414957     2  0.3400    0.89203 0.000 0.820 0.000 0.180
#> GSM414963     3  0.0000    0.86446 0.000 0.000 1.000 0.000
#> GSM414966     2  0.0000    0.87147 0.000 1.000 0.000 0.000
#> GSM414970     3  0.0188    0.86379 0.000 0.000 0.996 0.004
#> GSM414972     2  0.0000    0.87147 0.000 1.000 0.000 0.000
#> GSM414975     2  0.0000    0.87147 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     1  0.5757     0.3820 0.496 0.000 0.000 0.088 0.416
#> GSM414925     1  0.3003     0.5668 0.812 0.000 0.000 0.000 0.188
#> GSM414926     1  0.4448     0.3437 0.516 0.000 0.000 0.004 0.480
#> GSM414927     4  0.4262     0.1098 0.000 0.440 0.000 0.560 0.000
#> GSM414929     1  0.6190     0.4366 0.444 0.000 0.000 0.420 0.136
#> GSM414931     5  0.3912     0.5751 0.108 0.000 0.000 0.088 0.804
#> GSM414933     1  0.5773     0.3556 0.476 0.000 0.000 0.088 0.436
#> GSM414935     1  0.1484     0.5495 0.944 0.000 0.008 0.000 0.048
#> GSM414936     5  0.2074     0.7540 0.104 0.000 0.000 0.000 0.896
#> GSM414937     5  0.2732     0.7451 0.160 0.000 0.000 0.000 0.840
#> GSM414939     5  0.2732     0.7451 0.160 0.000 0.000 0.000 0.840
#> GSM414941     1  0.4074     0.3279 0.636 0.000 0.000 0.000 0.364
#> GSM414943     5  0.2732     0.7451 0.160 0.000 0.000 0.000 0.840
#> GSM414944     5  0.2325     0.7432 0.068 0.000 0.000 0.028 0.904
#> GSM414945     4  0.6302     0.3618 0.012 0.144 0.284 0.560 0.000
#> GSM414946     1  0.1121     0.5713 0.956 0.000 0.000 0.000 0.044
#> GSM414948     5  0.2248     0.6687 0.012 0.000 0.000 0.088 0.900
#> GSM414949     3  0.4101     0.5020 0.372 0.000 0.628 0.000 0.000
#> GSM414950     1  0.6012    -0.0649 0.504 0.000 0.120 0.000 0.376
#> GSM414951     5  0.2732     0.7451 0.160 0.000 0.000 0.000 0.840
#> GSM414952     3  0.0162     0.8559 0.004 0.000 0.996 0.000 0.000
#> GSM414954     3  0.4934     0.5594 0.104 0.000 0.708 0.000 0.188
#> GSM414956     5  0.2732     0.7451 0.160 0.000 0.000 0.000 0.840
#> GSM414958     5  0.4878     0.2652 0.024 0.000 0.000 0.440 0.536
#> GSM414959     5  0.4256     0.2065 0.436 0.000 0.000 0.000 0.564
#> GSM414960     1  0.6557     0.4367 0.472 0.000 0.000 0.240 0.288
#> GSM414961     3  0.5314     0.4040 0.420 0.000 0.528 0.000 0.052
#> GSM414962     4  0.6056     0.3206 0.324 0.000 0.140 0.536 0.000
#> GSM414964     1  0.2127     0.5436 0.892 0.000 0.000 0.000 0.108
#> GSM414965     5  0.1908     0.7524 0.092 0.000 0.000 0.000 0.908
#> GSM414967     5  0.3704     0.5981 0.092 0.000 0.000 0.088 0.820
#> GSM414968     1  0.6812    -0.0257 0.364 0.000 0.312 0.000 0.324
#> GSM414969     1  0.0404     0.5622 0.988 0.000 0.000 0.000 0.012
#> GSM414971     5  0.2248     0.6687 0.012 0.000 0.000 0.088 0.900
#> GSM414973     1  0.4974     0.3327 0.508 0.000 0.000 0.028 0.464
#> GSM414974     1  0.2179     0.4991 0.888 0.000 0.112 0.000 0.000
#> GSM414928     4  0.4262     0.1098 0.000 0.440 0.000 0.560 0.000
#> GSM414930     2  0.4210     0.2123 0.000 0.588 0.000 0.412 0.000
#> GSM414932     3  0.0290     0.8537 0.008 0.000 0.992 0.000 0.000
#> GSM414934     3  0.0000     0.8564 0.000 0.000 1.000 0.000 0.000
#> GSM414938     1  0.5719     0.4658 0.552 0.000 0.000 0.352 0.096
#> GSM414940     3  0.0000     0.8564 0.000 0.000 1.000 0.000 0.000
#> GSM414942     2  0.0000     0.6637 0.000 1.000 0.000 0.000 0.000
#> GSM414947     2  0.4210     0.2123 0.000 0.588 0.000 0.412 0.000
#> GSM414953     3  0.0000     0.8564 0.000 0.000 1.000 0.000 0.000
#> GSM414955     3  0.0000     0.8564 0.000 0.000 1.000 0.000 0.000
#> GSM414957     2  0.4210     0.2123 0.000 0.588 0.000 0.412 0.000
#> GSM414963     3  0.0000     0.8564 0.000 0.000 1.000 0.000 0.000
#> GSM414966     2  0.0000     0.6637 0.000 1.000 0.000 0.000 0.000
#> GSM414970     3  0.0162     0.8559 0.004 0.000 0.996 0.000 0.000
#> GSM414972     2  0.0000     0.6637 0.000 1.000 0.000 0.000 0.000
#> GSM414975     2  0.0000     0.6637 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     6  0.2562     0.5787 0.000 0.000 0.000 0.000 0.172 0.828
#> GSM414925     6  0.5254    -0.2248 0.392 0.000 0.000 0.000 0.100 0.508
#> GSM414926     6  0.4889     0.3220 0.060 0.000 0.000 0.000 0.436 0.504
#> GSM414927     4  0.3672     0.2378 0.000 0.368 0.000 0.632 0.000 0.000
#> GSM414929     1  0.6149     0.1926 0.576 0.000 0.000 0.176 0.056 0.192
#> GSM414931     6  0.3833     0.2217 0.000 0.000 0.000 0.000 0.444 0.556
#> GSM414933     6  0.2730     0.5762 0.000 0.000 0.000 0.000 0.192 0.808
#> GSM414935     1  0.6030     0.3653 0.464 0.000 0.008 0.000 0.196 0.332
#> GSM414936     5  0.1501     0.5635 0.000 0.000 0.000 0.000 0.924 0.076
#> GSM414937     5  0.0000     0.6119 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414939     5  0.0000     0.6119 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414941     5  0.4779    -0.1752 0.060 0.000 0.000 0.000 0.572 0.368
#> GSM414943     5  0.0000     0.6119 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414944     5  0.2697     0.4571 0.000 0.000 0.000 0.000 0.812 0.188
#> GSM414945     4  0.5165     0.3732 0.012 0.108 0.244 0.636 0.000 0.000
#> GSM414946     1  0.5813     0.3170 0.432 0.000 0.000 0.000 0.184 0.384
#> GSM414948     5  0.3843    -0.0458 0.000 0.000 0.000 0.000 0.548 0.452
#> GSM414949     3  0.5243     0.3186 0.376 0.000 0.532 0.004 0.088 0.000
#> GSM414950     5  0.5047     0.0457 0.416 0.000 0.064 0.004 0.516 0.000
#> GSM414951     5  0.0260     0.6085 0.008 0.000 0.000 0.000 0.992 0.000
#> GSM414952     3  0.0146     0.8125 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM414954     3  0.4278     0.5976 0.040 0.000 0.720 0.000 0.224 0.016
#> GSM414956     5  0.0000     0.6119 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414958     1  0.5612     0.1393 0.524 0.000 0.000 0.176 0.000 0.300
#> GSM414959     5  0.4011     0.1839 0.056 0.000 0.000 0.000 0.732 0.212
#> GSM414960     6  0.2908     0.5104 0.048 0.000 0.000 0.000 0.104 0.848
#> GSM414961     3  0.5171     0.3155 0.416 0.000 0.496 0.000 0.088 0.000
#> GSM414962     4  0.5894     0.2310 0.372 0.000 0.100 0.496 0.032 0.000
#> GSM414964     1  0.5912     0.3420 0.440 0.000 0.000 0.000 0.216 0.344
#> GSM414965     5  0.1663     0.5508 0.000 0.000 0.000 0.000 0.912 0.088
#> GSM414967     6  0.3854     0.1872 0.000 0.000 0.000 0.000 0.464 0.536
#> GSM414968     5  0.5676     0.1644 0.272 0.000 0.204 0.000 0.524 0.000
#> GSM414969     1  0.5603     0.3751 0.476 0.000 0.000 0.000 0.148 0.376
#> GSM414971     5  0.3843    -0.0458 0.000 0.000 0.000 0.000 0.548 0.452
#> GSM414973     6  0.4747     0.4275 0.056 0.000 0.000 0.000 0.376 0.568
#> GSM414974     1  0.6324     0.3610 0.476 0.000 0.064 0.004 0.088 0.368
#> GSM414928     4  0.3672     0.2378 0.000 0.368 0.000 0.632 0.000 0.000
#> GSM414930     2  0.3847     0.1550 0.000 0.544 0.000 0.456 0.000 0.000
#> GSM414932     3  0.0291     0.8112 0.004 0.000 0.992 0.000 0.004 0.000
#> GSM414934     3  0.2697     0.7471 0.000 0.000 0.812 0.188 0.000 0.000
#> GSM414938     1  0.6019     0.1956 0.596 0.000 0.000 0.176 0.056 0.172
#> GSM414940     3  0.0000     0.8123 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM414942     2  0.0000     0.6494 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414947     2  0.3847     0.1550 0.000 0.544 0.000 0.456 0.000 0.000
#> GSM414953     3  0.2697     0.7471 0.000 0.000 0.812 0.188 0.000 0.000
#> GSM414955     3  0.0000     0.8123 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM414957     2  0.3847     0.1550 0.000 0.544 0.000 0.456 0.000 0.000
#> GSM414963     3  0.0000     0.8123 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM414966     2  0.0000     0.6494 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414970     3  0.0146     0.8125 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM414972     2  0.0000     0.6494 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414975     2  0.0000     0.6494 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n tissue(p) k
#> CV:pam 51  9.13e-04 2
#> CV:pam 47  5.41e-06 3
#> CV:pam 25  6.07e-04 4
#> CV:pam 31  7.09e-05 5
#> CV:pam 23  7.90e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.881           0.893       0.958         0.3548 0.638   0.638
#> 3 3 0.596           0.747       0.875         0.7872 0.707   0.548
#> 4 4 0.568           0.552       0.771         0.1179 0.821   0.573
#> 5 5 0.566           0.442       0.719         0.0765 0.807   0.470
#> 6 6 0.622           0.536       0.724         0.0617 0.829   0.415

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1  0.0000      0.969 1.000 0.000
#> GSM414925     1  0.0000      0.969 1.000 0.000
#> GSM414926     1  0.0000      0.969 1.000 0.000
#> GSM414927     2  0.0000      0.884 0.000 1.000
#> GSM414929     1  0.0000      0.969 1.000 0.000
#> GSM414931     1  0.0000      0.969 1.000 0.000
#> GSM414933     1  0.0000      0.969 1.000 0.000
#> GSM414935     1  0.0000      0.969 1.000 0.000
#> GSM414936     1  0.0000      0.969 1.000 0.000
#> GSM414937     1  0.0000      0.969 1.000 0.000
#> GSM414939     1  0.0000      0.969 1.000 0.000
#> GSM414941     1  0.0000      0.969 1.000 0.000
#> GSM414943     1  0.0000      0.969 1.000 0.000
#> GSM414944     1  0.9460      0.330 0.636 0.364
#> GSM414945     2  0.9608      0.445 0.384 0.616
#> GSM414946     1  0.0000      0.969 1.000 0.000
#> GSM414948     1  0.0000      0.969 1.000 0.000
#> GSM414949     1  0.4298      0.881 0.912 0.088
#> GSM414950     1  0.0000      0.969 1.000 0.000
#> GSM414951     1  0.0000      0.969 1.000 0.000
#> GSM414952     1  0.0672      0.965 0.992 0.008
#> GSM414954     1  0.0000      0.969 1.000 0.000
#> GSM414956     1  0.0000      0.969 1.000 0.000
#> GSM414958     1  0.0000      0.969 1.000 0.000
#> GSM414959     1  0.0000      0.969 1.000 0.000
#> GSM414960     1  0.0000      0.969 1.000 0.000
#> GSM414961     1  0.0000      0.969 1.000 0.000
#> GSM414962     2  0.9661      0.428 0.392 0.608
#> GSM414964     1  0.0000      0.969 1.000 0.000
#> GSM414965     1  0.0000      0.969 1.000 0.000
#> GSM414967     1  0.9460      0.330 0.636 0.364
#> GSM414968     1  0.0000      0.969 1.000 0.000
#> GSM414969     1  0.0000      0.969 1.000 0.000
#> GSM414971     1  0.0000      0.969 1.000 0.000
#> GSM414973     1  0.0000      0.969 1.000 0.000
#> GSM414974     2  0.9686      0.418 0.396 0.604
#> GSM414928     2  0.0000      0.884 0.000 1.000
#> GSM414930     2  0.0000      0.884 0.000 1.000
#> GSM414932     1  0.0938      0.962 0.988 0.012
#> GSM414934     1  0.0938      0.962 0.988 0.012
#> GSM414938     1  0.5519      0.826 0.872 0.128
#> GSM414940     1  0.0938      0.962 0.988 0.012
#> GSM414942     2  0.0000      0.884 0.000 1.000
#> GSM414947     2  0.0000      0.884 0.000 1.000
#> GSM414953     1  0.0938      0.962 0.988 0.012
#> GSM414955     1  0.0938      0.962 0.988 0.012
#> GSM414957     2  0.0000      0.884 0.000 1.000
#> GSM414963     1  0.0938      0.962 0.988 0.012
#> GSM414966     2  0.0000      0.884 0.000 1.000
#> GSM414970     1  0.0938      0.962 0.988 0.012
#> GSM414972     2  0.0000      0.884 0.000 1.000
#> GSM414975     2  0.0000      0.884 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM414924     1  0.6180    0.46136 0.584 0.000 0.416
#> GSM414925     1  0.5560    0.69214 0.700 0.000 0.300
#> GSM414926     1  0.5968    0.57175 0.636 0.000 0.364
#> GSM414927     2  0.0000    0.93086 0.000 1.000 0.000
#> GSM414929     1  0.2066    0.82734 0.940 0.000 0.060
#> GSM414931     1  0.0237    0.82466 0.996 0.000 0.004
#> GSM414933     1  0.0237    0.82383 0.996 0.000 0.004
#> GSM414935     3  0.1643    0.84112 0.044 0.000 0.956
#> GSM414936     1  0.0892    0.82837 0.980 0.000 0.020
#> GSM414937     1  0.4178    0.79884 0.828 0.000 0.172
#> GSM414939     1  0.3752    0.81022 0.856 0.000 0.144
#> GSM414941     1  0.5810    0.64237 0.664 0.000 0.336
#> GSM414943     1  0.1031    0.82812 0.976 0.000 0.024
#> GSM414944     1  0.3148    0.78944 0.916 0.036 0.048
#> GSM414945     2  0.3851    0.79844 0.004 0.860 0.136
#> GSM414946     1  0.5560    0.69297 0.700 0.000 0.300
#> GSM414948     1  0.2356    0.82726 0.928 0.000 0.072
#> GSM414949     3  0.1411    0.82667 0.000 0.036 0.964
#> GSM414950     3  0.1529    0.84357 0.040 0.000 0.960
#> GSM414951     1  0.4504    0.78480 0.804 0.000 0.196
#> GSM414952     3  0.0747    0.85167 0.016 0.000 0.984
#> GSM414954     1  0.5327    0.72417 0.728 0.000 0.272
#> GSM414956     1  0.1163    0.82624 0.972 0.000 0.028
#> GSM414958     1  0.1753    0.83104 0.952 0.000 0.048
#> GSM414959     1  0.1860    0.83032 0.948 0.000 0.052
#> GSM414960     1  0.0000    0.82387 1.000 0.000 0.000
#> GSM414961     3  0.1643    0.84127 0.044 0.000 0.956
#> GSM414962     2  0.6521   -0.00906 0.004 0.504 0.492
#> GSM414964     1  0.5650    0.68265 0.688 0.000 0.312
#> GSM414965     1  0.0892    0.82837 0.980 0.000 0.020
#> GSM414967     1  0.3148    0.78944 0.916 0.036 0.048
#> GSM414968     3  0.6357    0.44756 0.296 0.020 0.684
#> GSM414969     3  0.6280   -0.13024 0.460 0.000 0.540
#> GSM414971     1  0.0747    0.82791 0.984 0.000 0.016
#> GSM414973     1  0.4002    0.80286 0.840 0.000 0.160
#> GSM414974     3  0.6460    0.09611 0.004 0.440 0.556
#> GSM414928     2  0.0000    0.93086 0.000 1.000 0.000
#> GSM414930     2  0.0000    0.93086 0.000 1.000 0.000
#> GSM414932     3  0.0000    0.85092 0.000 0.000 1.000
#> GSM414934     3  0.3686    0.75150 0.140 0.000 0.860
#> GSM414938     1  0.7681    0.12198 0.540 0.048 0.412
#> GSM414940     3  0.0000    0.85092 0.000 0.000 1.000
#> GSM414942     2  0.0000    0.93086 0.000 1.000 0.000
#> GSM414947     2  0.0000    0.93086 0.000 1.000 0.000
#> GSM414953     3  0.3686    0.75150 0.140 0.000 0.860
#> GSM414955     3  0.0424    0.85186 0.008 0.000 0.992
#> GSM414957     2  0.0000    0.93086 0.000 1.000 0.000
#> GSM414963     3  0.0000    0.85092 0.000 0.000 1.000
#> GSM414966     2  0.0000    0.93086 0.000 1.000 0.000
#> GSM414970     3  0.0000    0.85092 0.000 0.000 1.000
#> GSM414972     2  0.0000    0.93086 0.000 1.000 0.000
#> GSM414975     2  0.0000    0.93086 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     1  0.2002     0.5726 0.936 0.000 0.044 0.020
#> GSM414925     1  0.1824     0.5793 0.936 0.000 0.060 0.004
#> GSM414926     1  0.2142     0.5667 0.928 0.000 0.016 0.056
#> GSM414927     2  0.0188     0.9582 0.000 0.996 0.000 0.004
#> GSM414929     1  0.4720     0.1848 0.672 0.000 0.004 0.324
#> GSM414931     4  0.4996     0.5958 0.484 0.000 0.000 0.516
#> GSM414933     4  0.4855     0.6653 0.400 0.000 0.000 0.600
#> GSM414935     3  0.6672     0.2439 0.408 0.000 0.504 0.088
#> GSM414936     1  0.4252     0.3563 0.744 0.000 0.004 0.252
#> GSM414937     1  0.4010     0.5496 0.836 0.000 0.064 0.100
#> GSM414939     1  0.4070     0.5262 0.824 0.000 0.044 0.132
#> GSM414941     1  0.1743     0.5788 0.940 0.000 0.056 0.004
#> GSM414943     1  0.4699     0.1849 0.676 0.000 0.004 0.320
#> GSM414944     4  0.3972     0.5975 0.204 0.000 0.008 0.788
#> GSM414945     2  0.6323     0.5962 0.000 0.640 0.112 0.248
#> GSM414946     1  0.2197     0.5808 0.916 0.000 0.080 0.004
#> GSM414948     1  0.4981    -0.5371 0.536 0.000 0.000 0.464
#> GSM414949     3  0.4036     0.7574 0.076 0.000 0.836 0.088
#> GSM414950     3  0.6412     0.4681 0.320 0.000 0.592 0.088
#> GSM414951     1  0.4163     0.5543 0.828 0.000 0.096 0.076
#> GSM414952     3  0.2443     0.7925 0.060 0.000 0.916 0.024
#> GSM414954     1  0.3638     0.5711 0.848 0.000 0.120 0.032
#> GSM414956     1  0.5150    -0.0156 0.596 0.000 0.008 0.396
#> GSM414958     1  0.5256    -0.3011 0.596 0.000 0.012 0.392
#> GSM414959     1  0.5471     0.3279 0.684 0.000 0.048 0.268
#> GSM414960     4  0.5155     0.6283 0.468 0.000 0.004 0.528
#> GSM414961     1  0.6707    -0.1463 0.468 0.000 0.444 0.088
#> GSM414962     3  0.9104     0.2680 0.116 0.320 0.416 0.148
#> GSM414964     1  0.3547     0.5572 0.840 0.000 0.144 0.016
#> GSM414965     1  0.4632     0.2153 0.688 0.000 0.004 0.308
#> GSM414967     4  0.3972     0.5972 0.204 0.000 0.008 0.788
#> GSM414968     1  0.6650     0.3756 0.676 0.032 0.192 0.100
#> GSM414969     1  0.3873     0.5099 0.844 0.000 0.060 0.096
#> GSM414971     4  0.4998     0.5721 0.488 0.000 0.000 0.512
#> GSM414973     1  0.2928     0.5223 0.880 0.000 0.012 0.108
#> GSM414974     3  0.8881     0.4179 0.116 0.252 0.484 0.148
#> GSM414928     2  0.0188     0.9582 0.000 0.996 0.000 0.004
#> GSM414930     2  0.0000     0.9589 0.000 1.000 0.000 0.000
#> GSM414932     3  0.0779     0.8070 0.004 0.000 0.980 0.016
#> GSM414934     3  0.2466     0.7881 0.028 0.000 0.916 0.056
#> GSM414938     1  0.8164    -0.0507 0.484 0.028 0.200 0.288
#> GSM414940     3  0.0592     0.8058 0.000 0.000 0.984 0.016
#> GSM414942     2  0.0469     0.9584 0.000 0.988 0.000 0.012
#> GSM414947     2  0.0000     0.9589 0.000 1.000 0.000 0.000
#> GSM414953     3  0.2466     0.7881 0.028 0.000 0.916 0.056
#> GSM414955     3  0.1610     0.8064 0.032 0.000 0.952 0.016
#> GSM414957     2  0.0188     0.9580 0.000 0.996 0.000 0.004
#> GSM414963     3  0.0000     0.8071 0.000 0.000 1.000 0.000
#> GSM414966     2  0.0469     0.9584 0.000 0.988 0.000 0.012
#> GSM414970     3  0.0336     0.8071 0.000 0.000 0.992 0.008
#> GSM414972     2  0.0469     0.9584 0.000 0.988 0.000 0.012
#> GSM414975     2  0.0469     0.9584 0.000 0.988 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     1  0.3751     0.3930 0.772 0.000 0.004 0.012 0.212
#> GSM414925     1  0.4088     0.3735 0.712 0.000 0.004 0.008 0.276
#> GSM414926     1  0.4789     0.0448 0.608 0.000 0.004 0.020 0.368
#> GSM414927     2  0.0162     0.9502 0.004 0.996 0.000 0.000 0.000
#> GSM414929     5  0.5626     0.0574 0.420 0.000 0.000 0.076 0.504
#> GSM414931     5  0.5813    -0.2724 0.112 0.000 0.000 0.328 0.560
#> GSM414933     5  0.6248    -0.4929 0.148 0.000 0.000 0.384 0.468
#> GSM414935     1  0.6480     0.2216 0.416 0.000 0.184 0.000 0.400
#> GSM414936     5  0.0807     0.4866 0.012 0.000 0.000 0.012 0.976
#> GSM414937     5  0.2570     0.4874 0.084 0.000 0.028 0.000 0.888
#> GSM414939     5  0.2116     0.5020 0.076 0.000 0.008 0.004 0.912
#> GSM414941     1  0.4449     0.3200 0.636 0.000 0.004 0.008 0.352
#> GSM414943     5  0.0771     0.4767 0.004 0.000 0.000 0.020 0.976
#> GSM414944     4  0.4734     0.9802 0.024 0.000 0.000 0.604 0.372
#> GSM414945     2  0.6198     0.4066 0.056 0.528 0.020 0.384 0.012
#> GSM414946     1  0.4759     0.2921 0.600 0.000 0.012 0.008 0.380
#> GSM414948     5  0.6068     0.0890 0.328 0.000 0.000 0.140 0.532
#> GSM414949     3  0.5555     0.3465 0.380 0.000 0.556 0.056 0.008
#> GSM414950     1  0.6573     0.2151 0.456 0.000 0.224 0.000 0.320
#> GSM414951     5  0.3321     0.4697 0.136 0.000 0.032 0.000 0.832
#> GSM414952     3  0.5418     0.5050 0.092 0.000 0.684 0.016 0.208
#> GSM414954     5  0.4686     0.3314 0.160 0.000 0.104 0.000 0.736
#> GSM414956     5  0.2497     0.3867 0.004 0.000 0.004 0.112 0.880
#> GSM414958     5  0.5717     0.1238 0.368 0.000 0.000 0.092 0.540
#> GSM414959     5  0.2295     0.4688 0.088 0.000 0.004 0.008 0.900
#> GSM414960     5  0.6330    -0.4423 0.164 0.000 0.000 0.364 0.472
#> GSM414961     1  0.6161     0.1984 0.444 0.000 0.132 0.000 0.424
#> GSM414962     1  0.8020     0.0414 0.464 0.240 0.208 0.064 0.024
#> GSM414964     5  0.4823     0.2146 0.228 0.000 0.072 0.000 0.700
#> GSM414965     5  0.0609     0.4790 0.000 0.000 0.000 0.020 0.980
#> GSM414967     4  0.4824     0.9801 0.020 0.000 0.004 0.596 0.380
#> GSM414968     5  0.6496    -0.1421 0.408 0.020 0.096 0.004 0.472
#> GSM414969     1  0.3562     0.4191 0.788 0.000 0.016 0.000 0.196
#> GSM414971     5  0.5018    -0.0122 0.068 0.000 0.000 0.268 0.664
#> GSM414973     5  0.4613     0.2498 0.408 0.000 0.004 0.008 0.580
#> GSM414974     1  0.8000     0.0113 0.468 0.204 0.240 0.064 0.024
#> GSM414928     2  0.0510     0.9434 0.016 0.984 0.000 0.000 0.000
#> GSM414930     2  0.0162     0.9502 0.004 0.996 0.000 0.000 0.000
#> GSM414932     3  0.0912     0.7833 0.012 0.000 0.972 0.000 0.016
#> GSM414934     3  0.4759     0.6186 0.016 0.000 0.592 0.388 0.004
#> GSM414938     1  0.7215     0.0688 0.504 0.004 0.036 0.232 0.224
#> GSM414940     3  0.1560     0.7796 0.028 0.000 0.948 0.004 0.020
#> GSM414942     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> GSM414947     2  0.0162     0.9502 0.004 0.996 0.000 0.000 0.000
#> GSM414953     3  0.4759     0.6186 0.016 0.000 0.592 0.388 0.004
#> GSM414955     3  0.1579     0.7754 0.024 0.000 0.944 0.000 0.032
#> GSM414957     2  0.0162     0.9491 0.000 0.996 0.000 0.004 0.000
#> GSM414963     3  0.1116     0.7797 0.004 0.000 0.964 0.028 0.004
#> GSM414966     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> GSM414970     3  0.0324     0.7819 0.004 0.000 0.992 0.000 0.004
#> GSM414972     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> GSM414975     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     1  0.0914     0.6991 0.968 0.000 0.000 0.016 0.000 0.016
#> GSM414925     1  0.1147     0.7031 0.960 0.000 0.004 0.004 0.028 0.004
#> GSM414926     1  0.1794     0.7055 0.932 0.000 0.000 0.016 0.028 0.024
#> GSM414927     2  0.0713     0.9663 0.000 0.972 0.000 0.028 0.000 0.000
#> GSM414929     1  0.5580    -0.1479 0.488 0.000 0.004 0.032 0.052 0.424
#> GSM414931     6  0.3927     0.5957 0.072 0.000 0.000 0.000 0.172 0.756
#> GSM414933     6  0.3252     0.6227 0.124 0.000 0.004 0.008 0.032 0.832
#> GSM414935     5  0.6589     0.3306 0.184 0.000 0.196 0.088 0.532 0.000
#> GSM414936     5  0.5035     0.5425 0.168 0.000 0.000 0.000 0.640 0.192
#> GSM414937     5  0.4260     0.6180 0.248 0.000 0.000 0.004 0.700 0.048
#> GSM414939     5  0.4468     0.5777 0.316 0.000 0.000 0.004 0.640 0.040
#> GSM414941     1  0.2163     0.6663 0.892 0.000 0.000 0.004 0.096 0.008
#> GSM414943     5  0.5199     0.5207 0.152 0.000 0.004 0.000 0.628 0.216
#> GSM414944     6  0.2969     0.6030 0.008 0.000 0.012 0.088 0.028 0.864
#> GSM414945     6  0.8621     0.0208 0.008 0.116 0.128 0.276 0.136 0.336
#> GSM414946     1  0.3679     0.4492 0.764 0.000 0.004 0.016 0.208 0.008
#> GSM414948     6  0.5152     0.1316 0.432 0.000 0.000 0.004 0.072 0.492
#> GSM414949     3  0.7556    -0.1157 0.220 0.000 0.392 0.172 0.212 0.004
#> GSM414950     5  0.6720     0.2760 0.212 0.000 0.200 0.084 0.504 0.000
#> GSM414951     5  0.4539     0.6174 0.264 0.000 0.008 0.012 0.684 0.032
#> GSM414952     4  0.5951    -0.6379 0.004 0.000 0.356 0.448 0.192 0.000
#> GSM414954     5  0.4037     0.6187 0.232 0.000 0.000 0.028 0.728 0.012
#> GSM414956     5  0.6110     0.4477 0.128 0.000 0.016 0.024 0.564 0.268
#> GSM414958     6  0.5606     0.1240 0.424 0.000 0.000 0.020 0.084 0.472
#> GSM414959     5  0.6046     0.4564 0.176 0.000 0.012 0.016 0.568 0.228
#> GSM414960     6  0.3543     0.6224 0.120 0.000 0.004 0.008 0.052 0.816
#> GSM414961     5  0.5785     0.4672 0.188 0.000 0.152 0.044 0.616 0.000
#> GSM414962     4  0.8177     0.4175 0.268 0.064 0.064 0.380 0.208 0.016
#> GSM414964     5  0.4152     0.6005 0.268 0.000 0.004 0.012 0.700 0.016
#> GSM414965     5  0.5151     0.5281 0.152 0.000 0.004 0.000 0.636 0.208
#> GSM414967     6  0.3100     0.6058 0.008 0.000 0.024 0.084 0.024 0.860
#> GSM414968     5  0.6511     0.4586 0.228 0.000 0.096 0.120 0.552 0.004
#> GSM414969     1  0.0622     0.6969 0.980 0.000 0.000 0.012 0.008 0.000
#> GSM414971     6  0.3858     0.5481 0.044 0.000 0.000 0.000 0.216 0.740
#> GSM414973     1  0.4483     0.5337 0.728 0.000 0.000 0.008 0.120 0.144
#> GSM414974     4  0.8096     0.4217 0.268 0.048 0.072 0.384 0.212 0.016
#> GSM414928     2  0.2482     0.8570 0.004 0.848 0.000 0.148 0.000 0.000
#> GSM414930     2  0.0458     0.9700 0.000 0.984 0.000 0.016 0.000 0.000
#> GSM414932     3  0.4389     0.6419 0.004 0.000 0.512 0.468 0.016 0.000
#> GSM414934     3  0.0146     0.4156 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM414938     1  0.8176    -0.0588 0.372 0.000 0.080 0.136 0.132 0.280
#> GSM414940     3  0.4902     0.6312 0.000 0.000 0.480 0.460 0.060 0.000
#> GSM414942     2  0.0000     0.9699 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414947     2  0.0458     0.9700 0.000 0.984 0.000 0.016 0.000 0.000
#> GSM414953     3  0.0291     0.4121 0.000 0.000 0.992 0.000 0.004 0.004
#> GSM414955     3  0.5319     0.5967 0.004 0.000 0.456 0.452 0.088 0.000
#> GSM414957     2  0.1219     0.9535 0.000 0.948 0.004 0.048 0.000 0.000
#> GSM414963     3  0.4715     0.6390 0.000 0.000 0.536 0.416 0.048 0.000
#> GSM414966     2  0.0146     0.9706 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM414970     3  0.4399     0.6461 0.000 0.000 0.516 0.460 0.024 0.000
#> GSM414972     2  0.0146     0.9706 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM414975     2  0.0146     0.9706 0.000 0.996 0.000 0.004 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n tissue(p) k
#> CV:mclust 47  5.19e-04 2
#> CV:mclust 46  2.98e-06 3
#> CV:mclust 37  2.61e-05 4
#> CV:mclust 20  1.41e-02 5
#> CV:mclust 34  4.38e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.959           0.955       0.981         0.3840 0.618   0.618
#> 3 3 0.950           0.919       0.969         0.6599 0.726   0.564
#> 4 4 0.745           0.737       0.880         0.0985 0.900   0.744
#> 5 5 0.731           0.722       0.861         0.0780 0.928   0.778
#> 6 6 0.719           0.690       0.854         0.0583 0.905   0.659

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1  0.0000      0.984 1.000 0.000
#> GSM414925     1  0.0000      0.984 1.000 0.000
#> GSM414926     1  0.0000      0.984 1.000 0.000
#> GSM414927     2  0.0000      0.962 0.000 1.000
#> GSM414929     1  0.0000      0.984 1.000 0.000
#> GSM414931     1  0.0000      0.984 1.000 0.000
#> GSM414933     1  0.0000      0.984 1.000 0.000
#> GSM414935     1  0.0000      0.984 1.000 0.000
#> GSM414936     1  0.0000      0.984 1.000 0.000
#> GSM414937     1  0.0000      0.984 1.000 0.000
#> GSM414939     1  0.0000      0.984 1.000 0.000
#> GSM414941     1  0.0000      0.984 1.000 0.000
#> GSM414943     1  0.0000      0.984 1.000 0.000
#> GSM414944     1  0.0000      0.984 1.000 0.000
#> GSM414945     2  0.0000      0.962 0.000 1.000
#> GSM414946     1  0.0000      0.984 1.000 0.000
#> GSM414948     1  0.0000      0.984 1.000 0.000
#> GSM414949     1  0.8813      0.560 0.700 0.300
#> GSM414950     1  0.0000      0.984 1.000 0.000
#> GSM414951     1  0.0000      0.984 1.000 0.000
#> GSM414952     1  0.0000      0.984 1.000 0.000
#> GSM414954     1  0.0000      0.984 1.000 0.000
#> GSM414956     1  0.0000      0.984 1.000 0.000
#> GSM414958     1  0.0000      0.984 1.000 0.000
#> GSM414959     1  0.0000      0.984 1.000 0.000
#> GSM414960     1  0.0000      0.984 1.000 0.000
#> GSM414961     1  0.0000      0.984 1.000 0.000
#> GSM414962     2  0.0000      0.962 0.000 1.000
#> GSM414964     1  0.0000      0.984 1.000 0.000
#> GSM414965     1  0.0000      0.984 1.000 0.000
#> GSM414967     1  0.0000      0.984 1.000 0.000
#> GSM414968     1  0.0000      0.984 1.000 0.000
#> GSM414969     1  0.0000      0.984 1.000 0.000
#> GSM414971     1  0.0000      0.984 1.000 0.000
#> GSM414973     1  0.0000      0.984 1.000 0.000
#> GSM414974     2  0.6148      0.816 0.152 0.848
#> GSM414928     2  0.0000      0.962 0.000 1.000
#> GSM414930     2  0.0000      0.962 0.000 1.000
#> GSM414932     1  0.0376      0.981 0.996 0.004
#> GSM414934     1  0.0000      0.984 1.000 0.000
#> GSM414938     1  0.0000      0.984 1.000 0.000
#> GSM414940     1  0.2778      0.937 0.952 0.048
#> GSM414942     2  0.0000      0.962 0.000 1.000
#> GSM414947     2  0.0000      0.962 0.000 1.000
#> GSM414953     1  0.0000      0.984 1.000 0.000
#> GSM414955     1  0.0000      0.984 1.000 0.000
#> GSM414957     2  0.0000      0.962 0.000 1.000
#> GSM414963     2  0.8608      0.609 0.284 0.716
#> GSM414966     2  0.0000      0.962 0.000 1.000
#> GSM414970     1  0.7453      0.722 0.788 0.212
#> GSM414972     2  0.0000      0.962 0.000 1.000
#> GSM414975     2  0.0000      0.962 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM414924     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414925     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414926     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414927     2  0.0000      0.999 0.000 1.000 0.000
#> GSM414929     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414931     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414933     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414935     3  0.0000      0.924 0.000 0.000 1.000
#> GSM414936     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414937     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414939     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414941     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414943     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414944     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414945     2  0.0000      0.999 0.000 1.000 0.000
#> GSM414946     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414948     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414949     3  0.4605      0.711 0.000 0.204 0.796
#> GSM414950     3  0.0237      0.922 0.004 0.000 0.996
#> GSM414951     1  0.6062      0.338 0.616 0.000 0.384
#> GSM414952     3  0.0000      0.924 0.000 0.000 1.000
#> GSM414954     3  0.6180      0.257 0.416 0.000 0.584
#> GSM414956     1  0.0892      0.949 0.980 0.000 0.020
#> GSM414958     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414959     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414960     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414961     3  0.0237      0.922 0.004 0.000 0.996
#> GSM414962     2  0.0424      0.992 0.000 0.992 0.008
#> GSM414964     1  0.5926      0.429 0.644 0.000 0.356
#> GSM414965     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414967     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414968     3  0.4555      0.730 0.200 0.000 0.800
#> GSM414969     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414971     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414973     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414974     2  0.0000      0.999 0.000 1.000 0.000
#> GSM414928     2  0.0000      0.999 0.000 1.000 0.000
#> GSM414930     2  0.0000      0.999 0.000 1.000 0.000
#> GSM414932     3  0.0000      0.924 0.000 0.000 1.000
#> GSM414934     3  0.0000      0.924 0.000 0.000 1.000
#> GSM414938     1  0.0000      0.967 1.000 0.000 0.000
#> GSM414940     3  0.0000      0.924 0.000 0.000 1.000
#> GSM414942     2  0.0000      0.999 0.000 1.000 0.000
#> GSM414947     2  0.0000      0.999 0.000 1.000 0.000
#> GSM414953     3  0.0000      0.924 0.000 0.000 1.000
#> GSM414955     3  0.0000      0.924 0.000 0.000 1.000
#> GSM414957     2  0.0000      0.999 0.000 1.000 0.000
#> GSM414963     3  0.0000      0.924 0.000 0.000 1.000
#> GSM414966     2  0.0000      0.999 0.000 1.000 0.000
#> GSM414970     3  0.0000      0.924 0.000 0.000 1.000
#> GSM414972     2  0.0000      0.999 0.000 1.000 0.000
#> GSM414975     2  0.0000      0.999 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     1  0.2868     0.7471 0.864 0.000 0.000 0.136
#> GSM414925     1  0.1398     0.8280 0.956 0.000 0.004 0.040
#> GSM414926     1  0.3219     0.7096 0.836 0.000 0.000 0.164
#> GSM414927     2  0.0188     0.9406 0.000 0.996 0.000 0.004
#> GSM414929     4  0.4605     0.6952 0.336 0.000 0.000 0.664
#> GSM414931     1  0.0000     0.8413 1.000 0.000 0.000 0.000
#> GSM414933     1  0.0592     0.8385 0.984 0.000 0.000 0.016
#> GSM414935     3  0.3801     0.7714 0.000 0.000 0.780 0.220
#> GSM414936     1  0.0000     0.8413 1.000 0.000 0.000 0.000
#> GSM414937     1  0.0000     0.8413 1.000 0.000 0.000 0.000
#> GSM414939     1  0.0000     0.8413 1.000 0.000 0.000 0.000
#> GSM414941     1  0.1389     0.8249 0.952 0.000 0.000 0.048
#> GSM414943     1  0.0188     0.8395 0.996 0.000 0.004 0.000
#> GSM414944     1  0.0000     0.8413 1.000 0.000 0.000 0.000
#> GSM414945     2  0.2999     0.8283 0.004 0.864 0.000 0.132
#> GSM414946     1  0.2973     0.7703 0.884 0.000 0.020 0.096
#> GSM414948     1  0.0188     0.8406 0.996 0.000 0.000 0.004
#> GSM414949     3  0.6770     0.5931 0.000 0.140 0.592 0.268
#> GSM414950     3  0.4482     0.7375 0.008 0.000 0.728 0.264
#> GSM414951     3  0.4996    -0.1092 0.484 0.000 0.516 0.000
#> GSM414952     3  0.0592     0.7956 0.000 0.000 0.984 0.016
#> GSM414954     1  0.5212     0.1100 0.572 0.000 0.420 0.008
#> GSM414956     1  0.3893     0.5819 0.796 0.000 0.196 0.008
#> GSM414958     1  0.4761     0.1324 0.628 0.000 0.000 0.372
#> GSM414959     1  0.0592     0.8378 0.984 0.000 0.000 0.016
#> GSM414960     1  0.2760     0.7321 0.872 0.000 0.000 0.128
#> GSM414961     3  0.3074     0.7976 0.000 0.000 0.848 0.152
#> GSM414962     2  0.6133     0.5768 0.000 0.644 0.088 0.268
#> GSM414964     1  0.5400     0.2132 0.608 0.000 0.372 0.020
#> GSM414965     1  0.0000     0.8413 1.000 0.000 0.000 0.000
#> GSM414967     1  0.0000     0.8413 1.000 0.000 0.000 0.000
#> GSM414968     4  0.6411     0.4132 0.092 0.000 0.308 0.600
#> GSM414969     1  0.6285     0.0774 0.528 0.000 0.060 0.412
#> GSM414971     1  0.0000     0.8413 1.000 0.000 0.000 0.000
#> GSM414973     1  0.1022     0.8318 0.968 0.000 0.000 0.032
#> GSM414974     2  0.0469     0.9362 0.000 0.988 0.000 0.012
#> GSM414928     2  0.2647     0.8569 0.000 0.880 0.000 0.120
#> GSM414930     2  0.0000     0.9420 0.000 1.000 0.000 0.000
#> GSM414932     3  0.3172     0.7960 0.000 0.000 0.840 0.160
#> GSM414934     3  0.1716     0.7708 0.000 0.000 0.936 0.064
#> GSM414938     4  0.4655     0.7185 0.312 0.000 0.004 0.684
#> GSM414940     3  0.0707     0.8024 0.000 0.000 0.980 0.020
#> GSM414942     2  0.0000     0.9420 0.000 1.000 0.000 0.000
#> GSM414947     2  0.0000     0.9420 0.000 1.000 0.000 0.000
#> GSM414953     3  0.1716     0.7708 0.000 0.000 0.936 0.064
#> GSM414955     3  0.0000     0.8000 0.000 0.000 1.000 0.000
#> GSM414957     2  0.0000     0.9420 0.000 1.000 0.000 0.000
#> GSM414963     3  0.0592     0.7985 0.000 0.000 0.984 0.016
#> GSM414966     2  0.0000     0.9420 0.000 1.000 0.000 0.000
#> GSM414970     3  0.3486     0.7873 0.000 0.000 0.812 0.188
#> GSM414972     2  0.0000     0.9420 0.000 1.000 0.000 0.000
#> GSM414975     2  0.0000     0.9420 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     1  0.3779     0.8042 0.776 0.000 0.000 0.200 0.024
#> GSM414925     1  0.3300     0.8095 0.792 0.000 0.000 0.204 0.004
#> GSM414926     1  0.3656     0.8077 0.784 0.000 0.000 0.196 0.020
#> GSM414927     2  0.0000     0.9298 0.000 1.000 0.000 0.000 0.000
#> GSM414929     5  0.0290     0.8690 0.008 0.000 0.000 0.000 0.992
#> GSM414931     1  0.0671     0.8384 0.980 0.000 0.000 0.016 0.004
#> GSM414933     1  0.2909     0.8315 0.848 0.000 0.000 0.140 0.012
#> GSM414935     4  0.4359     0.3262 0.004 0.000 0.412 0.584 0.000
#> GSM414936     1  0.0510     0.8386 0.984 0.000 0.000 0.016 0.000
#> GSM414937     1  0.0609     0.8440 0.980 0.000 0.000 0.020 0.000
#> GSM414939     1  0.1043     0.8446 0.960 0.000 0.000 0.040 0.000
#> GSM414941     1  0.3563     0.8038 0.780 0.000 0.000 0.208 0.012
#> GSM414943     1  0.0771     0.8365 0.976 0.000 0.004 0.020 0.000
#> GSM414944     1  0.0865     0.8353 0.972 0.000 0.000 0.024 0.004
#> GSM414945     2  0.4028     0.7747 0.044 0.824 0.000 0.044 0.088
#> GSM414946     1  0.3861     0.7677 0.728 0.000 0.000 0.264 0.008
#> GSM414948     1  0.2629     0.8325 0.860 0.000 0.000 0.136 0.004
#> GSM414949     4  0.4066     0.6869 0.000 0.044 0.188 0.768 0.000
#> GSM414950     4  0.3534     0.6468 0.000 0.000 0.256 0.744 0.000
#> GSM414951     3  0.4585     0.2542 0.396 0.000 0.592 0.008 0.004
#> GSM414952     3  0.0510     0.7492 0.000 0.000 0.984 0.016 0.000
#> GSM414954     1  0.4613     0.4947 0.620 0.000 0.360 0.020 0.000
#> GSM414956     1  0.4801     0.2697 0.604 0.000 0.372 0.020 0.004
#> GSM414958     5  0.3551     0.6323 0.220 0.000 0.000 0.008 0.772
#> GSM414959     1  0.1082     0.8446 0.964 0.000 0.000 0.028 0.008
#> GSM414960     1  0.3596     0.6804 0.776 0.000 0.000 0.012 0.212
#> GSM414961     3  0.4397     0.0392 0.004 0.000 0.564 0.432 0.000
#> GSM414962     4  0.3835     0.6322 0.000 0.156 0.048 0.796 0.000
#> GSM414964     1  0.5702     0.5302 0.628 0.000 0.180 0.192 0.000
#> GSM414965     1  0.0324     0.8408 0.992 0.000 0.004 0.004 0.000
#> GSM414967     1  0.0992     0.8350 0.968 0.000 0.000 0.024 0.008
#> GSM414968     5  0.0833     0.8592 0.004 0.000 0.016 0.004 0.976
#> GSM414969     4  0.1809     0.5590 0.060 0.000 0.000 0.928 0.012
#> GSM414971     1  0.0771     0.8371 0.976 0.000 0.000 0.020 0.004
#> GSM414973     1  0.3246     0.8156 0.808 0.000 0.000 0.184 0.008
#> GSM414974     2  0.0609     0.9157 0.000 0.980 0.000 0.020 0.000
#> GSM414928     2  0.4302     0.0976 0.000 0.520 0.000 0.480 0.000
#> GSM414930     2  0.0000     0.9298 0.000 1.000 0.000 0.000 0.000
#> GSM414932     3  0.3003     0.6107 0.000 0.000 0.812 0.188 0.000
#> GSM414934     3  0.0000     0.7447 0.000 0.000 1.000 0.000 0.000
#> GSM414938     5  0.0324     0.8678 0.004 0.000 0.004 0.000 0.992
#> GSM414940     3  0.1410     0.7322 0.000 0.000 0.940 0.060 0.000
#> GSM414942     2  0.0000     0.9298 0.000 1.000 0.000 0.000 0.000
#> GSM414947     2  0.0000     0.9298 0.000 1.000 0.000 0.000 0.000
#> GSM414953     3  0.0000     0.7447 0.000 0.000 1.000 0.000 0.000
#> GSM414955     3  0.0404     0.7488 0.000 0.000 0.988 0.012 0.000
#> GSM414957     2  0.0000     0.9298 0.000 1.000 0.000 0.000 0.000
#> GSM414963     3  0.0609     0.7483 0.000 0.000 0.980 0.020 0.000
#> GSM414966     2  0.0000     0.9298 0.000 1.000 0.000 0.000 0.000
#> GSM414970     3  0.4249     0.0403 0.000 0.000 0.568 0.432 0.000
#> GSM414972     2  0.0000     0.9298 0.000 1.000 0.000 0.000 0.000
#> GSM414975     2  0.0000     0.9298 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     5  0.2866     0.8104 0.012 0.000 0.000 0.060 0.868 0.060
#> GSM414925     5  0.2468     0.8144 0.004 0.000 0.000 0.060 0.888 0.048
#> GSM414926     5  0.3209     0.8005 0.008 0.000 0.000 0.064 0.840 0.088
#> GSM414927     2  0.0547     0.9739 0.000 0.980 0.000 0.020 0.000 0.000
#> GSM414929     1  0.0000     0.9281 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM414931     5  0.3898     0.4596 0.000 0.000 0.000 0.012 0.652 0.336
#> GSM414933     6  0.4157     0.0780 0.000 0.000 0.000 0.012 0.444 0.544
#> GSM414935     3  0.5516     0.1835 0.000 0.000 0.488 0.424 0.040 0.048
#> GSM414936     5  0.0937     0.8219 0.000 0.000 0.000 0.000 0.960 0.040
#> GSM414937     5  0.1341     0.8170 0.000 0.000 0.028 0.000 0.948 0.024
#> GSM414939     5  0.1152     0.8219 0.000 0.000 0.004 0.000 0.952 0.044
#> GSM414941     5  0.2573     0.8130 0.008 0.000 0.000 0.064 0.884 0.044
#> GSM414943     5  0.2119     0.7946 0.000 0.000 0.060 0.000 0.904 0.036
#> GSM414944     6  0.2378     0.6274 0.000 0.000 0.000 0.000 0.152 0.848
#> GSM414945     6  0.3025     0.4514 0.000 0.156 0.000 0.024 0.000 0.820
#> GSM414946     5  0.3277     0.7851 0.000 0.000 0.000 0.084 0.824 0.092
#> GSM414948     5  0.1367     0.8230 0.000 0.000 0.000 0.012 0.944 0.044
#> GSM414949     4  0.1285     0.6252 0.000 0.000 0.052 0.944 0.000 0.004
#> GSM414950     4  0.1863     0.5961 0.000 0.000 0.104 0.896 0.000 0.000
#> GSM414951     3  0.4130     0.4741 0.000 0.000 0.696 0.000 0.260 0.044
#> GSM414952     3  0.0520     0.7759 0.000 0.000 0.984 0.008 0.000 0.008
#> GSM414954     5  0.4150     0.6044 0.000 0.000 0.228 0.012 0.724 0.036
#> GSM414956     6  0.5799     0.1097 0.000 0.000 0.392 0.000 0.180 0.428
#> GSM414958     1  0.2346     0.7706 0.868 0.000 0.000 0.000 0.124 0.008
#> GSM414959     5  0.3011     0.7009 0.004 0.000 0.004 0.000 0.800 0.192
#> GSM414960     5  0.5025     0.5036 0.276 0.000 0.000 0.012 0.632 0.080
#> GSM414961     3  0.5949     0.3658 0.000 0.000 0.532 0.308 0.132 0.028
#> GSM414962     4  0.0935     0.6290 0.000 0.032 0.004 0.964 0.000 0.000
#> GSM414964     5  0.5302     0.5785 0.000 0.000 0.064 0.216 0.660 0.060
#> GSM414965     5  0.1124     0.8253 0.000 0.000 0.008 0.000 0.956 0.036
#> GSM414967     6  0.2178     0.6271 0.000 0.000 0.000 0.000 0.132 0.868
#> GSM414968     1  0.0146     0.9253 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM414969     4  0.4201     0.3737 0.012 0.000 0.000 0.716 0.236 0.036
#> GSM414971     5  0.1444     0.8155 0.000 0.000 0.000 0.000 0.928 0.072
#> GSM414973     5  0.1700     0.8231 0.000 0.000 0.000 0.048 0.928 0.024
#> GSM414974     2  0.1364     0.9428 0.000 0.952 0.000 0.016 0.020 0.012
#> GSM414928     4  0.3867    -0.0696 0.000 0.488 0.000 0.512 0.000 0.000
#> GSM414930     2  0.0000     0.9903 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414932     3  0.3578     0.4679 0.000 0.000 0.660 0.340 0.000 0.000
#> GSM414934     3  0.0000     0.7748 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM414938     1  0.0000     0.9281 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM414940     3  0.1176     0.7672 0.000 0.000 0.956 0.024 0.000 0.020
#> GSM414942     2  0.0000     0.9903 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414947     2  0.0000     0.9903 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414953     3  0.0000     0.7748 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM414955     3  0.0806     0.7741 0.000 0.000 0.972 0.020 0.000 0.008
#> GSM414957     2  0.0000     0.9903 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414963     3  0.0865     0.7717 0.000 0.000 0.964 0.036 0.000 0.000
#> GSM414966     2  0.0000     0.9903 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414970     4  0.3828    -0.0970 0.000 0.000 0.440 0.560 0.000 0.000
#> GSM414972     2  0.0000     0.9903 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414975     2  0.0000     0.9903 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n tissue(p) k
#> CV:NMF 52  1.79e-03 2
#> CV:NMF 49  1.35e-04 3
#> CV:NMF 46  2.51e-04 4
#> CV:NMF 45  1.43e-05 5
#> CV:NMF 41  7.12e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.965       0.984         0.3327 0.683   0.683
#> 3 3 0.589           0.722       0.869         0.8451 0.649   0.492
#> 4 4 0.632           0.795       0.860         0.1390 0.828   0.571
#> 5 5 0.707           0.788       0.881         0.0458 0.963   0.873
#> 6 6 0.721           0.747       0.883         0.0501 0.980   0.925

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1  0.0000      0.981 1.000 0.000
#> GSM414925     1  0.0000      0.981 1.000 0.000
#> GSM414926     1  0.0000      0.981 1.000 0.000
#> GSM414927     2  0.0000      1.000 0.000 1.000
#> GSM414929     1  0.0000      0.981 1.000 0.000
#> GSM414931     1  0.0000      0.981 1.000 0.000
#> GSM414933     1  0.0000      0.981 1.000 0.000
#> GSM414935     1  0.1184      0.976 0.984 0.016
#> GSM414936     1  0.0000      0.981 1.000 0.000
#> GSM414937     1  0.0000      0.981 1.000 0.000
#> GSM414939     1  0.0000      0.981 1.000 0.000
#> GSM414941     1  0.0000      0.981 1.000 0.000
#> GSM414943     1  0.0000      0.981 1.000 0.000
#> GSM414944     1  0.0000      0.981 1.000 0.000
#> GSM414945     2  0.0000      1.000 0.000 1.000
#> GSM414946     1  0.0000      0.981 1.000 0.000
#> GSM414948     1  0.0000      0.981 1.000 0.000
#> GSM414949     1  0.1414      0.974 0.980 0.020
#> GSM414950     1  0.1414      0.974 0.980 0.020
#> GSM414951     1  0.0000      0.981 1.000 0.000
#> GSM414952     1  0.1414      0.974 0.980 0.020
#> GSM414954     1  0.0376      0.980 0.996 0.004
#> GSM414956     1  0.0000      0.981 1.000 0.000
#> GSM414958     1  0.0000      0.981 1.000 0.000
#> GSM414959     1  0.0000      0.981 1.000 0.000
#> GSM414960     1  0.0000      0.981 1.000 0.000
#> GSM414961     1  0.1184      0.976 0.984 0.016
#> GSM414962     1  0.9996      0.074 0.512 0.488
#> GSM414964     1  0.0000      0.981 1.000 0.000
#> GSM414965     1  0.0000      0.981 1.000 0.000
#> GSM414967     1  0.0000      0.981 1.000 0.000
#> GSM414968     1  0.0376      0.980 0.996 0.004
#> GSM414969     1  0.0000      0.981 1.000 0.000
#> GSM414971     1  0.0000      0.981 1.000 0.000
#> GSM414973     1  0.0000      0.981 1.000 0.000
#> GSM414974     1  0.2043      0.966 0.968 0.032
#> GSM414928     2  0.0000      1.000 0.000 1.000
#> GSM414930     2  0.0000      1.000 0.000 1.000
#> GSM414932     1  0.1633      0.972 0.976 0.024
#> GSM414934     1  0.1633      0.972 0.976 0.024
#> GSM414938     1  0.1633      0.972 0.976 0.024
#> GSM414940     1  0.1633      0.972 0.976 0.024
#> GSM414942     2  0.0000      1.000 0.000 1.000
#> GSM414947     2  0.0000      1.000 0.000 1.000
#> GSM414953     1  0.1633      0.972 0.976 0.024
#> GSM414955     1  0.1414      0.974 0.980 0.020
#> GSM414957     2  0.0000      1.000 0.000 1.000
#> GSM414963     1  0.1633      0.972 0.976 0.024
#> GSM414966     2  0.0000      1.000 0.000 1.000
#> GSM414970     1  0.1633      0.972 0.976 0.024
#> GSM414972     2  0.0000      1.000 0.000 1.000
#> GSM414975     2  0.0000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM414924     1  0.0000    0.87663 1.000 0.000 0.000
#> GSM414925     1  0.0000    0.87663 1.000 0.000 0.000
#> GSM414926     1  0.0000    0.87663 1.000 0.000 0.000
#> GSM414927     2  0.0000    0.94604 0.000 1.000 0.000
#> GSM414929     1  0.0424    0.87076 0.992 0.000 0.008
#> GSM414931     1  0.0000    0.87663 1.000 0.000 0.000
#> GSM414933     1  0.0000    0.87663 1.000 0.000 0.000
#> GSM414935     3  0.4346    0.80690 0.184 0.000 0.816
#> GSM414936     3  0.6309    0.32019 0.500 0.000 0.500
#> GSM414937     3  0.5948    0.63391 0.360 0.000 0.640
#> GSM414939     3  0.5948    0.63391 0.360 0.000 0.640
#> GSM414941     1  0.6244   -0.13307 0.560 0.000 0.440
#> GSM414943     3  0.6309    0.32019 0.500 0.000 0.500
#> GSM414944     1  0.0000    0.87663 1.000 0.000 0.000
#> GSM414945     2  0.0000    0.94604 0.000 1.000 0.000
#> GSM414946     1  0.0000    0.87663 1.000 0.000 0.000
#> GSM414948     1  0.0000    0.87663 1.000 0.000 0.000
#> GSM414949     3  0.4002    0.80634 0.160 0.000 0.840
#> GSM414950     3  0.4002    0.80634 0.160 0.000 0.840
#> GSM414951     3  0.5138    0.76113 0.252 0.000 0.748
#> GSM414952     3  0.4235    0.80768 0.176 0.000 0.824
#> GSM414954     3  0.4452    0.80435 0.192 0.000 0.808
#> GSM414956     1  0.6309   -0.38587 0.500 0.000 0.500
#> GSM414958     1  0.0000    0.87663 1.000 0.000 0.000
#> GSM414959     3  0.6309    0.32019 0.500 0.000 0.500
#> GSM414960     1  0.0000    0.87663 1.000 0.000 0.000
#> GSM414961     3  0.4346    0.80690 0.184 0.000 0.816
#> GSM414962     2  0.9497   -0.00678 0.200 0.468 0.332
#> GSM414964     3  0.6244    0.45557 0.440 0.000 0.560
#> GSM414965     1  0.6309   -0.38587 0.500 0.000 0.500
#> GSM414967     1  0.0000    0.87663 1.000 0.000 0.000
#> GSM414968     3  0.4654    0.79545 0.208 0.000 0.792
#> GSM414969     1  0.1289    0.84986 0.968 0.000 0.032
#> GSM414971     1  0.0000    0.87663 1.000 0.000 0.000
#> GSM414973     1  0.1163    0.85245 0.972 0.000 0.028
#> GSM414974     3  0.4861    0.80540 0.180 0.012 0.808
#> GSM414928     2  0.0000    0.94604 0.000 1.000 0.000
#> GSM414930     2  0.0000    0.94604 0.000 1.000 0.000
#> GSM414932     3  0.0000    0.73692 0.000 0.000 1.000
#> GSM414934     3  0.0000    0.73692 0.000 0.000 1.000
#> GSM414938     3  0.4605    0.79682 0.204 0.000 0.796
#> GSM414940     3  0.0000    0.73692 0.000 0.000 1.000
#> GSM414942     2  0.0000    0.94604 0.000 1.000 0.000
#> GSM414947     2  0.0000    0.94604 0.000 1.000 0.000
#> GSM414953     3  0.0000    0.73692 0.000 0.000 1.000
#> GSM414955     3  0.4235    0.80768 0.176 0.000 0.824
#> GSM414957     2  0.0000    0.94604 0.000 1.000 0.000
#> GSM414963     3  0.0000    0.73692 0.000 0.000 1.000
#> GSM414966     2  0.0000    0.94604 0.000 1.000 0.000
#> GSM414970     3  0.0000    0.73692 0.000 0.000 1.000
#> GSM414972     2  0.0000    0.94604 0.000 1.000 0.000
#> GSM414975     2  0.0000    0.94604 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     1  0.4281     0.8177 0.792 0.000 0.180 0.028
#> GSM414925     1  0.4281     0.8177 0.792 0.000 0.180 0.028
#> GSM414926     1  0.4281     0.8177 0.792 0.000 0.180 0.028
#> GSM414927     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM414929     1  0.3598     0.8423 0.848 0.000 0.124 0.028
#> GSM414931     1  0.0000     0.8579 1.000 0.000 0.000 0.000
#> GSM414933     1  0.0000     0.8579 1.000 0.000 0.000 0.000
#> GSM414935     3  0.0657     0.7215 0.004 0.000 0.984 0.012
#> GSM414936     3  0.4564     0.5690 0.328 0.000 0.672 0.000
#> GSM414937     3  0.3400     0.7165 0.180 0.000 0.820 0.000
#> GSM414939     3  0.3400     0.7165 0.180 0.000 0.820 0.000
#> GSM414941     3  0.5174     0.3407 0.368 0.000 0.620 0.012
#> GSM414943     3  0.4585     0.5673 0.332 0.000 0.668 0.000
#> GSM414944     1  0.0000     0.8579 1.000 0.000 0.000 0.000
#> GSM414945     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM414946     1  0.4281     0.8177 0.792 0.000 0.180 0.028
#> GSM414948     1  0.0000     0.8579 1.000 0.000 0.000 0.000
#> GSM414949     3  0.1867     0.6680 0.000 0.000 0.928 0.072
#> GSM414950     3  0.1867     0.6680 0.000 0.000 0.928 0.072
#> GSM414951     3  0.1867     0.7401 0.072 0.000 0.928 0.000
#> GSM414952     3  0.0188     0.7199 0.000 0.000 0.996 0.004
#> GSM414954     3  0.0779     0.7293 0.016 0.000 0.980 0.004
#> GSM414956     3  0.4585     0.5673 0.332 0.000 0.668 0.000
#> GSM414958     1  0.2813     0.8539 0.896 0.000 0.080 0.024
#> GSM414959     3  0.4585     0.5673 0.332 0.000 0.668 0.000
#> GSM414960     1  0.0000     0.8579 1.000 0.000 0.000 0.000
#> GSM414961     3  0.0524     0.7224 0.004 0.000 0.988 0.008
#> GSM414962     3  0.6214    -0.0228 0.000 0.468 0.480 0.052
#> GSM414964     3  0.4485     0.6007 0.248 0.000 0.740 0.012
#> GSM414965     3  0.4585     0.5673 0.332 0.000 0.668 0.000
#> GSM414967     1  0.0000     0.8579 1.000 0.000 0.000 0.000
#> GSM414968     3  0.0921     0.7340 0.028 0.000 0.972 0.000
#> GSM414969     1  0.4599     0.7798 0.760 0.000 0.212 0.028
#> GSM414971     1  0.0000     0.8579 1.000 0.000 0.000 0.000
#> GSM414973     1  0.4524     0.7862 0.768 0.000 0.204 0.028
#> GSM414974     3  0.1388     0.7093 0.000 0.012 0.960 0.028
#> GSM414928     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM414930     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM414932     4  0.4008     0.9891 0.000 0.000 0.244 0.756
#> GSM414934     4  0.3801     0.9783 0.000 0.000 0.220 0.780
#> GSM414938     3  0.4585     0.5784 0.000 0.000 0.668 0.332
#> GSM414940     4  0.4008     0.9891 0.000 0.000 0.244 0.756
#> GSM414942     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM414947     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM414953     4  0.3801     0.9783 0.000 0.000 0.220 0.780
#> GSM414955     3  0.0188     0.7199 0.000 0.000 0.996 0.004
#> GSM414957     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM414963     4  0.4008     0.9891 0.000 0.000 0.244 0.756
#> GSM414966     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM414970     4  0.4008     0.9891 0.000 0.000 0.244 0.756
#> GSM414972     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM414975     2  0.0000     1.0000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     1  0.2864     0.8470 0.864 0.000 0.000 0.024 0.112
#> GSM414925     1  0.2864     0.8470 0.864 0.000 0.000 0.024 0.112
#> GSM414926     1  0.2864     0.8470 0.864 0.000 0.000 0.024 0.112
#> GSM414927     2  0.0000     0.9299 0.000 1.000 0.000 0.000 0.000
#> GSM414929     1  0.2067     0.8606 0.920 0.000 0.000 0.032 0.048
#> GSM414931     1  0.1704     0.8627 0.928 0.000 0.004 0.068 0.000
#> GSM414933     1  0.1704     0.8627 0.928 0.000 0.004 0.068 0.000
#> GSM414935     5  0.0566     0.7657 0.004 0.000 0.012 0.000 0.984
#> GSM414936     5  0.4299     0.6339 0.316 0.000 0.008 0.004 0.672
#> GSM414937     5  0.2929     0.7528 0.180 0.000 0.000 0.000 0.820
#> GSM414939     5  0.2929     0.7528 0.180 0.000 0.000 0.000 0.820
#> GSM414941     5  0.4537     0.3259 0.396 0.000 0.000 0.012 0.592
#> GSM414943     5  0.4317     0.6323 0.320 0.000 0.008 0.004 0.668
#> GSM414944     1  0.2006     0.8564 0.916 0.000 0.012 0.072 0.000
#> GSM414945     2  0.0000     0.9299 0.000 1.000 0.000 0.000 0.000
#> GSM414946     1  0.2864     0.8470 0.864 0.000 0.000 0.024 0.112
#> GSM414948     1  0.1704     0.8627 0.928 0.000 0.004 0.068 0.000
#> GSM414949     5  0.1608     0.7278 0.000 0.000 0.072 0.000 0.928
#> GSM414950     5  0.1608     0.7278 0.000 0.000 0.072 0.000 0.928
#> GSM414951     5  0.1608     0.7734 0.072 0.000 0.000 0.000 0.928
#> GSM414952     5  0.0162     0.7631 0.000 0.000 0.004 0.000 0.996
#> GSM414954     5  0.0671     0.7702 0.016 0.000 0.004 0.000 0.980
#> GSM414956     5  0.4317     0.6323 0.320 0.000 0.008 0.004 0.668
#> GSM414958     1  0.0880     0.8663 0.968 0.000 0.000 0.000 0.032
#> GSM414959     5  0.4183     0.6302 0.324 0.000 0.008 0.000 0.668
#> GSM414960     1  0.1704     0.8627 0.928 0.000 0.004 0.068 0.000
#> GSM414961     5  0.0451     0.7657 0.004 0.000 0.008 0.000 0.988
#> GSM414962     2  0.6901     0.0189 0.072 0.468 0.024 0.032 0.404
#> GSM414964     5  0.4040     0.5989 0.276 0.000 0.000 0.012 0.712
#> GSM414965     5  0.4317     0.6323 0.320 0.000 0.008 0.004 0.668
#> GSM414967     1  0.2006     0.8564 0.916 0.000 0.012 0.072 0.000
#> GSM414968     5  0.0794     0.7730 0.028 0.000 0.000 0.000 0.972
#> GSM414969     1  0.3194     0.8164 0.832 0.000 0.000 0.020 0.148
#> GSM414971     1  0.1704     0.8627 0.928 0.000 0.004 0.068 0.000
#> GSM414973     1  0.3106     0.8220 0.840 0.000 0.000 0.020 0.140
#> GSM414974     5  0.2116     0.7402 0.016 0.012 0.024 0.016 0.932
#> GSM414928     2  0.0000     0.9299 0.000 1.000 0.000 0.000 0.000
#> GSM414930     2  0.0000     0.9299 0.000 1.000 0.000 0.000 0.000
#> GSM414932     3  0.1341     0.9651 0.000 0.000 0.944 0.000 0.056
#> GSM414934     3  0.1012     0.9288 0.000 0.000 0.968 0.020 0.012
#> GSM414938     4  0.2344     0.0000 0.064 0.000 0.000 0.904 0.032
#> GSM414940     3  0.1341     0.9651 0.000 0.000 0.944 0.000 0.056
#> GSM414942     2  0.0000     0.9299 0.000 1.000 0.000 0.000 0.000
#> GSM414947     2  0.0000     0.9299 0.000 1.000 0.000 0.000 0.000
#> GSM414953     3  0.1012     0.9288 0.000 0.000 0.968 0.020 0.012
#> GSM414955     5  0.0162     0.7631 0.000 0.000 0.004 0.000 0.996
#> GSM414957     2  0.0000     0.9299 0.000 1.000 0.000 0.000 0.000
#> GSM414963     3  0.1341     0.9651 0.000 0.000 0.944 0.000 0.056
#> GSM414966     2  0.0000     0.9299 0.000 1.000 0.000 0.000 0.000
#> GSM414970     3  0.1341     0.9651 0.000 0.000 0.944 0.000 0.056
#> GSM414972     2  0.0000     0.9299 0.000 1.000 0.000 0.000 0.000
#> GSM414975     2  0.0000     0.9299 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     1  0.0260     0.8243 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM414925     1  0.0260     0.8243 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM414926     1  0.0260     0.8243 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM414927     2  0.0146     0.9336 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM414929     1  0.1563     0.8239 0.932 0.000 0.000 0.012 0.000 0.056
#> GSM414931     1  0.2793     0.7667 0.800 0.000 0.000 0.000 0.000 0.200
#> GSM414933     1  0.2793     0.7667 0.800 0.000 0.000 0.000 0.000 0.200
#> GSM414935     5  0.1218     0.7674 0.028 0.000 0.012 0.000 0.956 0.004
#> GSM414936     5  0.4774     0.6813 0.192 0.000 0.000 0.000 0.672 0.136
#> GSM414937     5  0.3270     0.7648 0.120 0.000 0.000 0.000 0.820 0.060
#> GSM414939     5  0.3270     0.7648 0.120 0.000 0.000 0.000 0.820 0.060
#> GSM414941     5  0.3828     0.2857 0.440 0.000 0.000 0.000 0.560 0.000
#> GSM414943     5  0.4801     0.6796 0.196 0.000 0.000 0.000 0.668 0.136
#> GSM414944     6  0.1267     0.0923 0.060 0.000 0.000 0.000 0.000 0.940
#> GSM414945     2  0.0146     0.9330 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM414946     1  0.0260     0.8243 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM414948     1  0.2793     0.7667 0.800 0.000 0.000 0.000 0.000 0.200
#> GSM414949     5  0.3273     0.6972 0.036 0.000 0.072 0.000 0.848 0.044
#> GSM414950     5  0.3205     0.7005 0.036 0.000 0.072 0.000 0.852 0.040
#> GSM414951     5  0.1444     0.7804 0.072 0.000 0.000 0.000 0.928 0.000
#> GSM414952     5  0.0146     0.7703 0.000 0.000 0.004 0.000 0.996 0.000
#> GSM414954     5  0.0603     0.7769 0.016 0.000 0.004 0.000 0.980 0.000
#> GSM414956     5  0.4801     0.6796 0.196 0.000 0.000 0.000 0.668 0.136
#> GSM414958     1  0.1765     0.8184 0.904 0.000 0.000 0.000 0.000 0.096
#> GSM414959     5  0.4783     0.6775 0.204 0.000 0.000 0.000 0.668 0.128
#> GSM414960     1  0.2793     0.7667 0.800 0.000 0.000 0.000 0.000 0.200
#> GSM414961     5  0.0551     0.7717 0.004 0.000 0.008 0.000 0.984 0.004
#> GSM414962     2  0.7255     0.0897 0.196 0.464 0.024 0.008 0.260 0.048
#> GSM414964     5  0.3464     0.5462 0.312 0.000 0.000 0.000 0.688 0.000
#> GSM414965     5  0.4801     0.6796 0.196 0.000 0.000 0.000 0.668 0.136
#> GSM414967     6  0.3843     0.0127 0.452 0.000 0.000 0.000 0.000 0.548
#> GSM414968     5  0.0713     0.7796 0.028 0.000 0.000 0.000 0.972 0.000
#> GSM414969     1  0.1007     0.7913 0.956 0.000 0.000 0.000 0.044 0.000
#> GSM414971     1  0.2793     0.7667 0.800 0.000 0.000 0.000 0.000 0.200
#> GSM414973     1  0.0937     0.7961 0.960 0.000 0.000 0.000 0.040 0.000
#> GSM414974     5  0.3828     0.6820 0.088 0.008 0.024 0.008 0.824 0.048
#> GSM414928     2  0.0146     0.9336 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM414930     2  0.0000     0.9357 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414932     3  0.1007     0.9630 0.000 0.000 0.956 0.000 0.044 0.000
#> GSM414934     3  0.0717     0.9243 0.000 0.000 0.976 0.016 0.000 0.008
#> GSM414938     4  0.0458     0.0000 0.000 0.000 0.000 0.984 0.016 0.000
#> GSM414940     3  0.1007     0.9630 0.000 0.000 0.956 0.000 0.044 0.000
#> GSM414942     2  0.0000     0.9357 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414947     2  0.0000     0.9357 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414953     3  0.0717     0.9243 0.000 0.000 0.976 0.016 0.000 0.008
#> GSM414955     5  0.0146     0.7703 0.000 0.000 0.004 0.000 0.996 0.000
#> GSM414957     2  0.0000     0.9357 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414963     3  0.1007     0.9630 0.000 0.000 0.956 0.000 0.044 0.000
#> GSM414966     2  0.0000     0.9357 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414970     3  0.1007     0.9630 0.000 0.000 0.956 0.000 0.044 0.000
#> GSM414972     2  0.0000     0.9357 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414975     2  0.0000     0.9357 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n tissue(p) k
#> MAD:hclust 51  9.13e-04 2
#> MAD:hclust 44  1.96e-04 3
#> MAD:hclust 50  1.61e-07 4
#> MAD:hclust 49  4.55e-08 5
#> MAD:hclust 47  1.06e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.726           0.859       0.870         0.3762 0.683   0.683
#> 3 3 1.000           0.977       0.988         0.6547 0.695   0.553
#> 4 4 0.687           0.744       0.806         0.1661 0.872   0.661
#> 5 5 0.662           0.657       0.793         0.0766 0.958   0.836
#> 6 6 0.701           0.557       0.755         0.0426 0.977   0.900

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1   0.000      0.905 1.000 0.000
#> GSM414925     1   0.000      0.905 1.000 0.000
#> GSM414926     1   0.000      0.905 1.000 0.000
#> GSM414927     2   0.000      1.000 0.000 1.000
#> GSM414929     1   0.000      0.905 1.000 0.000
#> GSM414931     1   0.000      0.905 1.000 0.000
#> GSM414933     1   0.000      0.905 1.000 0.000
#> GSM414935     1   0.000      0.905 1.000 0.000
#> GSM414936     1   0.000      0.905 1.000 0.000
#> GSM414937     1   0.000      0.905 1.000 0.000
#> GSM414939     1   0.000      0.905 1.000 0.000
#> GSM414941     1   0.000      0.905 1.000 0.000
#> GSM414943     1   0.000      0.905 1.000 0.000
#> GSM414944     1   0.000      0.905 1.000 0.000
#> GSM414945     2   0.000      1.000 0.000 1.000
#> GSM414946     1   0.000      0.905 1.000 0.000
#> GSM414948     1   0.000      0.905 1.000 0.000
#> GSM414949     1   0.936      0.575 0.648 0.352
#> GSM414950     1   0.000      0.905 1.000 0.000
#> GSM414951     1   0.000      0.905 1.000 0.000
#> GSM414952     1   0.000      0.905 1.000 0.000
#> GSM414954     1   0.000      0.905 1.000 0.000
#> GSM414956     1   0.000      0.905 1.000 0.000
#> GSM414958     1   0.000      0.905 1.000 0.000
#> GSM414959     1   0.000      0.905 1.000 0.000
#> GSM414960     1   0.000      0.905 1.000 0.000
#> GSM414961     1   0.000      0.905 1.000 0.000
#> GSM414962     1   0.936      0.575 0.648 0.352
#> GSM414964     1   0.000      0.905 1.000 0.000
#> GSM414965     1   0.000      0.905 1.000 0.000
#> GSM414967     1   0.000      0.905 1.000 0.000
#> GSM414968     1   0.000      0.905 1.000 0.000
#> GSM414969     1   0.000      0.905 1.000 0.000
#> GSM414971     1   0.000      0.905 1.000 0.000
#> GSM414973     1   0.000      0.905 1.000 0.000
#> GSM414974     1   0.936      0.575 0.648 0.352
#> GSM414928     2   0.000      1.000 0.000 1.000
#> GSM414930     2   0.000      1.000 0.000 1.000
#> GSM414932     1   0.936      0.575 0.648 0.352
#> GSM414934     1   0.936      0.575 0.648 0.352
#> GSM414938     1   0.000      0.905 1.000 0.000
#> GSM414940     1   0.936      0.575 0.648 0.352
#> GSM414942     2   0.000      1.000 0.000 1.000
#> GSM414947     2   0.000      1.000 0.000 1.000
#> GSM414953     1   0.936      0.575 0.648 0.352
#> GSM414955     1   0.936      0.575 0.648 0.352
#> GSM414957     2   0.000      1.000 0.000 1.000
#> GSM414963     1   0.949      0.547 0.632 0.368
#> GSM414966     2   0.000      1.000 0.000 1.000
#> GSM414970     1   0.939      0.568 0.644 0.356
#> GSM414972     2   0.000      1.000 0.000 1.000
#> GSM414975     2   0.000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM414924     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414925     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414926     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414927     2  0.0424      0.998 0.000 0.992 0.008
#> GSM414929     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414931     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414933     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414935     3  0.0592      0.964 0.012 0.000 0.988
#> GSM414936     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414937     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414939     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414941     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414943     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414944     1  0.0424      0.993 0.992 0.008 0.000
#> GSM414945     2  0.0000      0.992 0.000 1.000 0.000
#> GSM414946     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414948     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414949     3  0.0237      0.967 0.004 0.000 0.996
#> GSM414950     3  0.0592      0.964 0.012 0.000 0.988
#> GSM414951     1  0.0237      0.995 0.996 0.000 0.004
#> GSM414952     3  0.0592      0.964 0.012 0.000 0.988
#> GSM414954     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414956     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414958     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414959     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414960     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414961     3  0.0592      0.964 0.012 0.000 0.988
#> GSM414962     3  0.6095      0.346 0.000 0.392 0.608
#> GSM414964     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414965     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414967     1  0.0424      0.993 0.992 0.008 0.000
#> GSM414968     3  0.0592      0.964 0.012 0.000 0.988
#> GSM414969     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414971     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414973     1  0.0000      0.999 1.000 0.000 0.000
#> GSM414974     3  0.0237      0.967 0.004 0.000 0.996
#> GSM414928     2  0.0424      0.998 0.000 0.992 0.008
#> GSM414930     2  0.0424      0.998 0.000 0.992 0.008
#> GSM414932     3  0.0237      0.967 0.004 0.000 0.996
#> GSM414934     3  0.0237      0.967 0.004 0.000 0.996
#> GSM414938     1  0.0424      0.993 0.992 0.008 0.000
#> GSM414940     3  0.0237      0.967 0.004 0.000 0.996
#> GSM414942     2  0.0592      0.998 0.000 0.988 0.012
#> GSM414947     2  0.0424      0.998 0.000 0.992 0.008
#> GSM414953     3  0.0237      0.967 0.004 0.000 0.996
#> GSM414955     3  0.0237      0.967 0.004 0.000 0.996
#> GSM414957     2  0.0424      0.998 0.000 0.992 0.008
#> GSM414963     3  0.0237      0.967 0.004 0.000 0.996
#> GSM414966     2  0.0592      0.998 0.000 0.988 0.012
#> GSM414970     3  0.0237      0.967 0.004 0.000 0.996
#> GSM414972     2  0.0592      0.998 0.000 0.988 0.012
#> GSM414975     2  0.0592      0.998 0.000 0.988 0.012

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     1  0.1302     0.7188 0.956 0.000 0.000 0.044
#> GSM414925     1  0.2216     0.7013 0.908 0.000 0.000 0.092
#> GSM414926     1  0.1118     0.7223 0.964 0.000 0.000 0.036
#> GSM414927     2  0.1389     0.9656 0.000 0.952 0.000 0.048
#> GSM414929     1  0.1211     0.7214 0.960 0.000 0.000 0.040
#> GSM414931     1  0.2760     0.6923 0.872 0.000 0.000 0.128
#> GSM414933     1  0.1389     0.7236 0.952 0.000 0.000 0.048
#> GSM414935     3  0.4304     0.7668 0.000 0.000 0.716 0.284
#> GSM414936     4  0.4916     0.8644 0.424 0.000 0.000 0.576
#> GSM414937     4  0.4843     0.8771 0.396 0.000 0.000 0.604
#> GSM414939     4  0.4866     0.8788 0.404 0.000 0.000 0.596
#> GSM414941     1  0.4972    -0.3037 0.544 0.000 0.000 0.456
#> GSM414943     4  0.4916     0.8644 0.424 0.000 0.000 0.576
#> GSM414944     1  0.4985     0.0426 0.532 0.000 0.000 0.468
#> GSM414945     2  0.2704     0.9247 0.000 0.876 0.000 0.124
#> GSM414946     1  0.2469     0.6896 0.892 0.000 0.000 0.108
#> GSM414948     1  0.2469     0.7050 0.892 0.000 0.000 0.108
#> GSM414949     3  0.2216     0.8497 0.000 0.000 0.908 0.092
#> GSM414950     3  0.4304     0.7668 0.000 0.000 0.716 0.284
#> GSM414951     4  0.5039     0.8644 0.404 0.000 0.004 0.592
#> GSM414952     3  0.1792     0.8537 0.000 0.000 0.932 0.068
#> GSM414954     4  0.4624     0.7582 0.340 0.000 0.000 0.660
#> GSM414956     4  0.4843     0.8730 0.396 0.000 0.000 0.604
#> GSM414958     1  0.2149     0.7099 0.912 0.000 0.000 0.088
#> GSM414959     4  0.4981     0.8249 0.464 0.000 0.000 0.536
#> GSM414960     1  0.2281     0.7149 0.904 0.000 0.000 0.096
#> GSM414961     3  0.4331     0.7632 0.000 0.000 0.712 0.288
#> GSM414962     3  0.9177     0.1944 0.076 0.308 0.368 0.248
#> GSM414964     4  0.4697     0.7438 0.356 0.000 0.000 0.644
#> GSM414965     4  0.4977     0.8010 0.460 0.000 0.000 0.540
#> GSM414967     1  0.3873     0.6124 0.772 0.000 0.000 0.228
#> GSM414968     3  0.3569     0.8197 0.000 0.000 0.804 0.196
#> GSM414969     1  0.3266     0.6006 0.832 0.000 0.000 0.168
#> GSM414971     1  0.4888    -0.2265 0.588 0.000 0.000 0.412
#> GSM414973     1  0.3569     0.5352 0.804 0.000 0.000 0.196
#> GSM414974     3  0.5839     0.7160 0.060 0.000 0.648 0.292
#> GSM414928     2  0.1389     0.9656 0.000 0.952 0.000 0.048
#> GSM414930     2  0.0000     0.9667 0.000 1.000 0.000 0.000
#> GSM414932     3  0.0000     0.8575 0.000 0.000 1.000 0.000
#> GSM414934     3  0.0592     0.8537 0.000 0.000 0.984 0.016
#> GSM414938     1  0.3486     0.6233 0.812 0.000 0.000 0.188
#> GSM414940     3  0.0336     0.8559 0.000 0.000 0.992 0.008
#> GSM414942     2  0.0817     0.9642 0.000 0.976 0.000 0.024
#> GSM414947     2  0.1389     0.9656 0.000 0.952 0.000 0.048
#> GSM414953     3  0.0592     0.8537 0.000 0.000 0.984 0.016
#> GSM414955     3  0.0000     0.8575 0.000 0.000 1.000 0.000
#> GSM414957     2  0.1389     0.9656 0.000 0.952 0.000 0.048
#> GSM414963     3  0.0000     0.8575 0.000 0.000 1.000 0.000
#> GSM414966     2  0.0921     0.9640 0.000 0.972 0.000 0.028
#> GSM414970     3  0.0000     0.8575 0.000 0.000 1.000 0.000
#> GSM414972     2  0.0921     0.9640 0.000 0.972 0.000 0.028
#> GSM414975     2  0.0921     0.9640 0.000 0.972 0.000 0.028

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     1  0.1121     0.6599 0.956 0.000 0.000 0.000 0.044
#> GSM414925     1  0.2464     0.6594 0.888 0.000 0.000 0.016 0.096
#> GSM414926     1  0.1121     0.6599 0.956 0.000 0.000 0.000 0.044
#> GSM414927     2  0.2966     0.8808 0.000 0.816 0.000 0.184 0.000
#> GSM414929     1  0.3825     0.6448 0.804 0.000 0.000 0.136 0.060
#> GSM414931     1  0.5608     0.6236 0.640 0.000 0.000 0.172 0.188
#> GSM414933     1  0.4844     0.6538 0.720 0.000 0.000 0.172 0.108
#> GSM414935     3  0.6366     0.5732 0.016 0.000 0.576 0.164 0.244
#> GSM414936     5  0.1831     0.8368 0.076 0.000 0.000 0.004 0.920
#> GSM414937     5  0.1952     0.8364 0.084 0.000 0.000 0.004 0.912
#> GSM414939     5  0.1792     0.8403 0.084 0.000 0.000 0.000 0.916
#> GSM414941     1  0.5689     0.0724 0.480 0.000 0.000 0.080 0.440
#> GSM414943     5  0.1831     0.8368 0.076 0.000 0.000 0.004 0.920
#> GSM414944     4  0.6588    -0.2506 0.208 0.000 0.000 0.400 0.392
#> GSM414945     2  0.4367     0.7026 0.008 0.620 0.000 0.372 0.000
#> GSM414946     1  0.2813     0.6501 0.868 0.000 0.000 0.024 0.108
#> GSM414948     1  0.5478     0.6362 0.656 0.000 0.000 0.164 0.180
#> GSM414949     3  0.4147     0.7071 0.004 0.000 0.776 0.172 0.048
#> GSM414950     3  0.6150     0.5810 0.008 0.000 0.588 0.164 0.240
#> GSM414951     5  0.2653     0.8141 0.096 0.000 0.000 0.024 0.880
#> GSM414952     3  0.2853     0.7472 0.000 0.000 0.876 0.072 0.052
#> GSM414954     5  0.3102     0.7302 0.084 0.000 0.000 0.056 0.860
#> GSM414956     5  0.1341     0.8387 0.056 0.000 0.000 0.000 0.944
#> GSM414958     1  0.5237     0.6501 0.684 0.000 0.000 0.160 0.156
#> GSM414959     5  0.2719     0.7903 0.144 0.000 0.000 0.004 0.852
#> GSM414960     1  0.5233     0.6373 0.680 0.000 0.000 0.192 0.128
#> GSM414961     3  0.6366     0.5732 0.016 0.000 0.576 0.164 0.244
#> GSM414962     4  0.7826    -0.1583 0.192 0.052 0.208 0.512 0.036
#> GSM414964     5  0.4121     0.6473 0.112 0.000 0.000 0.100 0.788
#> GSM414965     5  0.2233     0.8144 0.104 0.000 0.000 0.004 0.892
#> GSM414967     1  0.6392     0.2624 0.432 0.000 0.000 0.400 0.168
#> GSM414968     3  0.5760     0.6552 0.020 0.000 0.668 0.164 0.148
#> GSM414969     1  0.4617     0.4507 0.744 0.000 0.000 0.148 0.108
#> GSM414971     5  0.5844     0.2874 0.244 0.000 0.000 0.156 0.600
#> GSM414973     1  0.3715     0.5580 0.736 0.000 0.000 0.004 0.260
#> GSM414974     3  0.8056     0.2839 0.180 0.000 0.432 0.240 0.148
#> GSM414928     2  0.2966     0.8808 0.000 0.816 0.000 0.184 0.000
#> GSM414930     2  0.1197     0.8927 0.000 0.952 0.000 0.048 0.000
#> GSM414932     3  0.0000     0.7670 0.000 0.000 1.000 0.000 0.000
#> GSM414934     3  0.1041     0.7553 0.000 0.000 0.964 0.032 0.004
#> GSM414938     1  0.5164     0.3257 0.660 0.000 0.000 0.256 0.084
#> GSM414940     3  0.0404     0.7629 0.000 0.000 0.988 0.012 0.000
#> GSM414942     2  0.0000     0.8877 0.000 1.000 0.000 0.000 0.000
#> GSM414947     2  0.2773     0.8865 0.000 0.836 0.000 0.164 0.000
#> GSM414953     3  0.1041     0.7553 0.000 0.000 0.964 0.032 0.004
#> GSM414955     3  0.0162     0.7668 0.000 0.000 0.996 0.004 0.000
#> GSM414957     2  0.2852     0.8847 0.000 0.828 0.000 0.172 0.000
#> GSM414963     3  0.0000     0.7670 0.000 0.000 1.000 0.000 0.000
#> GSM414966     2  0.0000     0.8877 0.000 1.000 0.000 0.000 0.000
#> GSM414970     3  0.0000     0.7670 0.000 0.000 1.000 0.000 0.000
#> GSM414972     2  0.0000     0.8877 0.000 1.000 0.000 0.000 0.000
#> GSM414975     2  0.0000     0.8877 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     1  0.1268     0.5551 0.952 0.000 0.000 0.008 0.036 0.004
#> GSM414925     1  0.2622     0.5519 0.868 0.000 0.000 0.024 0.104 0.004
#> GSM414926     1  0.1268     0.5551 0.952 0.000 0.000 0.008 0.036 0.004
#> GSM414927     2  0.3782     0.8389 0.008 0.788 0.000 0.140 0.000 0.064
#> GSM414929     1  0.5158     0.4290 0.676 0.000 0.000 0.072 0.048 0.204
#> GSM414931     1  0.5643     0.2175 0.476 0.000 0.000 0.000 0.156 0.368
#> GSM414933     1  0.4808     0.3226 0.576 0.000 0.000 0.000 0.064 0.360
#> GSM414935     3  0.6103     0.0941 0.016 0.000 0.420 0.400 0.164 0.000
#> GSM414936     5  0.0891     0.7912 0.024 0.000 0.000 0.000 0.968 0.008
#> GSM414937     5  0.1984     0.7891 0.032 0.000 0.000 0.056 0.912 0.000
#> GSM414939     5  0.1320     0.8002 0.036 0.000 0.000 0.016 0.948 0.000
#> GSM414941     1  0.5610     0.1301 0.516 0.000 0.000 0.168 0.316 0.000
#> GSM414943     5  0.0891     0.7912 0.024 0.000 0.000 0.000 0.968 0.008
#> GSM414944     6  0.5220     0.7320 0.052 0.000 0.000 0.048 0.260 0.640
#> GSM414945     2  0.6161     0.5282 0.016 0.480 0.000 0.300 0.000 0.204
#> GSM414946     1  0.3096     0.5410 0.840 0.000 0.000 0.048 0.108 0.004
#> GSM414948     1  0.5457     0.2921 0.512 0.000 0.000 0.000 0.132 0.356
#> GSM414949     3  0.4371     0.2923 0.000 0.000 0.580 0.396 0.020 0.004
#> GSM414950     3  0.6133     0.0947 0.012 0.000 0.420 0.404 0.160 0.004
#> GSM414951     5  0.2537     0.7694 0.032 0.000 0.000 0.096 0.872 0.000
#> GSM414952     3  0.3122     0.5475 0.000 0.000 0.804 0.176 0.020 0.000
#> GSM414954     5  0.3313     0.7207 0.036 0.000 0.004 0.148 0.812 0.000
#> GSM414956     5  0.0551     0.7963 0.004 0.000 0.000 0.008 0.984 0.004
#> GSM414958     1  0.5011     0.4168 0.620 0.000 0.000 0.000 0.116 0.264
#> GSM414959     5  0.2252     0.7513 0.072 0.000 0.000 0.012 0.900 0.016
#> GSM414960     1  0.5134     0.2634 0.524 0.000 0.000 0.000 0.088 0.388
#> GSM414961     3  0.6103     0.0941 0.016 0.000 0.420 0.400 0.164 0.000
#> GSM414962     4  0.5929     0.6581 0.196 0.004 0.112 0.628 0.004 0.056
#> GSM414964     5  0.4294     0.5572 0.060 0.000 0.000 0.248 0.692 0.000
#> GSM414965     5  0.1245     0.7781 0.032 0.000 0.000 0.000 0.952 0.016
#> GSM414967     6  0.5578     0.6887 0.184 0.000 0.000 0.048 0.124 0.644
#> GSM414968     3  0.5470     0.2183 0.016 0.000 0.504 0.400 0.080 0.000
#> GSM414969     1  0.4561     0.2386 0.692 0.000 0.000 0.240 0.052 0.016
#> GSM414971     5  0.5478    -0.3231 0.136 0.000 0.000 0.000 0.512 0.352
#> GSM414973     1  0.3852     0.4797 0.732 0.000 0.000 0.016 0.240 0.012
#> GSM414974     4  0.6641     0.5993 0.204 0.000 0.196 0.536 0.048 0.016
#> GSM414928     2  0.3782     0.8389 0.008 0.788 0.000 0.140 0.000 0.064
#> GSM414930     2  0.0713     0.8561 0.000 0.972 0.000 0.028 0.000 0.000
#> GSM414932     3  0.0260     0.6514 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM414934     3  0.1950     0.6182 0.000 0.000 0.912 0.024 0.000 0.064
#> GSM414938     1  0.6604     0.0948 0.432 0.000 0.000 0.348 0.052 0.168
#> GSM414940     3  0.0717     0.6449 0.000 0.000 0.976 0.016 0.000 0.008
#> GSM414942     2  0.0632     0.8521 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM414947     2  0.3587     0.8442 0.008 0.804 0.000 0.132 0.000 0.056
#> GSM414953     3  0.1950     0.6182 0.000 0.000 0.912 0.024 0.000 0.064
#> GSM414955     3  0.0146     0.6518 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM414957     2  0.3627     0.8431 0.008 0.800 0.000 0.136 0.000 0.056
#> GSM414963     3  0.0146     0.6513 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM414966     2  0.0632     0.8521 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM414970     3  0.0146     0.6513 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM414972     2  0.0632     0.8521 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM414975     2  0.0632     0.8521 0.000 0.976 0.000 0.000 0.000 0.024

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n tissue(p) k
#> MAD:kmeans 52  7.46e-04 2
#> MAD:kmeans 51  1.10e-05 3
#> MAD:kmeans 48  1.12e-04 4
#> MAD:kmeans 44  5.13e-05 5
#> MAD:kmeans 36  9.68e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.946       0.979         0.4997 0.497   0.497
#> 3 3 1.000           0.963       0.987         0.2818 0.796   0.614
#> 4 4 0.871           0.927       0.939         0.1840 0.846   0.587
#> 5 5 0.802           0.779       0.814         0.0542 0.980   0.921
#> 6 6 0.811           0.735       0.816         0.0298 0.952   0.803

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1   0.000      0.993 1.000 0.000
#> GSM414925     1   0.000      0.993 1.000 0.000
#> GSM414926     1   0.000      0.993 1.000 0.000
#> GSM414927     2   0.000      0.960 0.000 1.000
#> GSM414929     1   0.000      0.993 1.000 0.000
#> GSM414931     1   0.000      0.993 1.000 0.000
#> GSM414933     1   0.000      0.993 1.000 0.000
#> GSM414935     1   0.000      0.993 1.000 0.000
#> GSM414936     1   0.000      0.993 1.000 0.000
#> GSM414937     1   0.000      0.993 1.000 0.000
#> GSM414939     1   0.000      0.993 1.000 0.000
#> GSM414941     1   0.000      0.993 1.000 0.000
#> GSM414943     1   0.000      0.993 1.000 0.000
#> GSM414944     1   0.000      0.993 1.000 0.000
#> GSM414945     2   0.000      0.960 0.000 1.000
#> GSM414946     1   0.000      0.993 1.000 0.000
#> GSM414948     1   0.000      0.993 1.000 0.000
#> GSM414949     2   0.000      0.960 0.000 1.000
#> GSM414950     1   0.714      0.741 0.804 0.196
#> GSM414951     1   0.000      0.993 1.000 0.000
#> GSM414952     2   0.163      0.939 0.024 0.976
#> GSM414954     1   0.000      0.993 1.000 0.000
#> GSM414956     1   0.000      0.993 1.000 0.000
#> GSM414958     1   0.000      0.993 1.000 0.000
#> GSM414959     1   0.000      0.993 1.000 0.000
#> GSM414960     1   0.000      0.993 1.000 0.000
#> GSM414961     1   0.000      0.993 1.000 0.000
#> GSM414962     2   0.000      0.960 0.000 1.000
#> GSM414964     1   0.000      0.993 1.000 0.000
#> GSM414965     1   0.000      0.993 1.000 0.000
#> GSM414967     1   0.000      0.993 1.000 0.000
#> GSM414968     2   0.999      0.102 0.484 0.516
#> GSM414969     1   0.000      0.993 1.000 0.000
#> GSM414971     1   0.000      0.993 1.000 0.000
#> GSM414973     1   0.000      0.993 1.000 0.000
#> GSM414974     2   0.000      0.960 0.000 1.000
#> GSM414928     2   0.000      0.960 0.000 1.000
#> GSM414930     2   0.000      0.960 0.000 1.000
#> GSM414932     2   0.000      0.960 0.000 1.000
#> GSM414934     2   0.000      0.960 0.000 1.000
#> GSM414938     2   0.946      0.444 0.364 0.636
#> GSM414940     2   0.000      0.960 0.000 1.000
#> GSM414942     2   0.000      0.960 0.000 1.000
#> GSM414947     2   0.000      0.960 0.000 1.000
#> GSM414953     2   0.000      0.960 0.000 1.000
#> GSM414955     2   0.000      0.960 0.000 1.000
#> GSM414957     2   0.000      0.960 0.000 1.000
#> GSM414963     2   0.000      0.960 0.000 1.000
#> GSM414966     2   0.000      0.960 0.000 1.000
#> GSM414970     2   0.000      0.960 0.000 1.000
#> GSM414972     2   0.000      0.960 0.000 1.000
#> GSM414975     2   0.000      0.960 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM414924     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414925     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414926     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414927     2  0.0000      0.980 0.000 1.000 0.000
#> GSM414929     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414931     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414933     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414935     3  0.0000      0.956 0.000 0.000 1.000
#> GSM414936     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414937     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414939     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414941     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414943     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414944     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414945     2  0.0000      0.980 0.000 1.000 0.000
#> GSM414946     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414948     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414949     3  0.0592      0.945 0.000 0.012 0.988
#> GSM414950     3  0.0000      0.956 0.000 0.000 1.000
#> GSM414951     3  0.6274      0.161 0.456 0.000 0.544
#> GSM414952     3  0.0000      0.956 0.000 0.000 1.000
#> GSM414954     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414956     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414958     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414959     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414960     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414961     3  0.0000      0.956 0.000 0.000 1.000
#> GSM414962     2  0.0000      0.980 0.000 1.000 0.000
#> GSM414964     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414965     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414967     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414968     3  0.0000      0.956 0.000 0.000 1.000
#> GSM414969     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414971     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414973     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414974     2  0.0000      0.980 0.000 1.000 0.000
#> GSM414928     2  0.0000      0.980 0.000 1.000 0.000
#> GSM414930     2  0.0000      0.980 0.000 1.000 0.000
#> GSM414932     3  0.0000      0.956 0.000 0.000 1.000
#> GSM414934     3  0.0000      0.956 0.000 0.000 1.000
#> GSM414938     2  0.4452      0.745 0.192 0.808 0.000
#> GSM414940     3  0.0000      0.956 0.000 0.000 1.000
#> GSM414942     2  0.0000      0.980 0.000 1.000 0.000
#> GSM414947     2  0.0000      0.980 0.000 1.000 0.000
#> GSM414953     3  0.0000      0.956 0.000 0.000 1.000
#> GSM414955     3  0.0000      0.956 0.000 0.000 1.000
#> GSM414957     2  0.0000      0.980 0.000 1.000 0.000
#> GSM414963     3  0.0000      0.956 0.000 0.000 1.000
#> GSM414966     2  0.0000      0.980 0.000 1.000 0.000
#> GSM414970     3  0.0000      0.956 0.000 0.000 1.000
#> GSM414972     2  0.0000      0.980 0.000 1.000 0.000
#> GSM414975     2  0.0000      0.980 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     1  0.0000      0.899 1.000 0.000 0.000 0.000
#> GSM414925     1  0.0336      0.900 0.992 0.000 0.000 0.008
#> GSM414926     1  0.0000      0.899 1.000 0.000 0.000 0.000
#> GSM414927     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414929     1  0.2011      0.898 0.920 0.000 0.000 0.080
#> GSM414931     1  0.2345      0.890 0.900 0.000 0.000 0.100
#> GSM414933     1  0.1389      0.903 0.952 0.000 0.000 0.048
#> GSM414935     3  0.2011      0.945 0.000 0.000 0.920 0.080
#> GSM414936     4  0.2011      0.943 0.080 0.000 0.000 0.920
#> GSM414937     4  0.1211      0.925 0.040 0.000 0.000 0.960
#> GSM414939     4  0.2011      0.943 0.080 0.000 0.000 0.920
#> GSM414941     1  0.3311      0.786 0.828 0.000 0.000 0.172
#> GSM414943     4  0.2011      0.943 0.080 0.000 0.000 0.920
#> GSM414944     4  0.3569      0.827 0.196 0.000 0.000 0.804
#> GSM414945     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414946     1  0.0469      0.900 0.988 0.000 0.000 0.012
#> GSM414948     1  0.2345      0.892 0.900 0.000 0.000 0.100
#> GSM414949     3  0.2408      0.894 0.000 0.104 0.896 0.000
#> GSM414950     3  0.2011      0.945 0.000 0.000 0.920 0.080
#> GSM414951     4  0.1211      0.925 0.040 0.000 0.000 0.960
#> GSM414952     3  0.0000      0.969 0.000 0.000 1.000 0.000
#> GSM414954     4  0.1637      0.856 0.060 0.000 0.000 0.940
#> GSM414956     4  0.2011      0.943 0.080 0.000 0.000 0.920
#> GSM414958     1  0.2011      0.898 0.920 0.000 0.000 0.080
#> GSM414959     4  0.2530      0.922 0.112 0.000 0.000 0.888
#> GSM414960     1  0.2081      0.897 0.916 0.000 0.000 0.084
#> GSM414961     3  0.2011      0.945 0.000 0.000 0.920 0.080
#> GSM414962     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414964     4  0.2589      0.815 0.116 0.000 0.000 0.884
#> GSM414965     4  0.2011      0.943 0.080 0.000 0.000 0.920
#> GSM414967     1  0.2704      0.867 0.876 0.000 0.000 0.124
#> GSM414968     3  0.2011      0.945 0.000 0.000 0.920 0.080
#> GSM414969     1  0.2011      0.840 0.920 0.000 0.000 0.080
#> GSM414971     4  0.2081      0.941 0.084 0.000 0.000 0.916
#> GSM414973     1  0.0707      0.898 0.980 0.000 0.000 0.020
#> GSM414974     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414928     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414930     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414932     3  0.0000      0.969 0.000 0.000 1.000 0.000
#> GSM414934     3  0.0000      0.969 0.000 0.000 1.000 0.000
#> GSM414938     1  0.6621      0.500 0.588 0.316 0.004 0.092
#> GSM414940     3  0.0000      0.969 0.000 0.000 1.000 0.000
#> GSM414942     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414947     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414953     3  0.0000      0.969 0.000 0.000 1.000 0.000
#> GSM414955     3  0.0000      0.969 0.000 0.000 1.000 0.000
#> GSM414957     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414963     3  0.0000      0.969 0.000 0.000 1.000 0.000
#> GSM414966     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414970     3  0.0000      0.969 0.000 0.000 1.000 0.000
#> GSM414972     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414975     2  0.0000      1.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3 p4    p5
#> GSM414924     1  0.3966      0.656 0.664 0.000 0.000 NA 0.000
#> GSM414925     1  0.4270      0.656 0.668 0.000 0.000 NA 0.012
#> GSM414926     1  0.3999      0.654 0.656 0.000 0.000 NA 0.000
#> GSM414927     2  0.0000      0.995 0.000 1.000 0.000 NA 0.000
#> GSM414929     1  0.5191      0.601 0.660 0.000 0.000 NA 0.088
#> GSM414931     1  0.3203      0.622 0.820 0.000 0.000 NA 0.168
#> GSM414933     1  0.1579      0.673 0.944 0.000 0.000 NA 0.032
#> GSM414935     3  0.4088      0.780 0.000 0.000 0.688 NA 0.008
#> GSM414936     5  0.0000      0.843 0.000 0.000 0.000 NA 1.000
#> GSM414937     5  0.2280      0.814 0.000 0.000 0.000 NA 0.880
#> GSM414939     5  0.0162      0.843 0.000 0.000 0.000 NA 0.996
#> GSM414941     1  0.6133      0.453 0.436 0.000 0.000 NA 0.128
#> GSM414943     5  0.0000      0.843 0.000 0.000 0.000 NA 1.000
#> GSM414944     1  0.6434      0.111 0.432 0.000 0.000 NA 0.392
#> GSM414945     2  0.0290      0.990 0.000 0.992 0.000 NA 0.000
#> GSM414946     1  0.4356      0.652 0.648 0.000 0.000 NA 0.012
#> GSM414948     1  0.3194      0.641 0.832 0.000 0.000 NA 0.148
#> GSM414949     3  0.3719      0.809 0.000 0.116 0.816 NA 0.000
#> GSM414950     3  0.4088      0.780 0.000 0.000 0.688 NA 0.008
#> GSM414951     5  0.2719      0.805 0.000 0.000 0.004 NA 0.852
#> GSM414952     3  0.0290      0.892 0.000 0.000 0.992 NA 0.000
#> GSM414954     5  0.4026      0.726 0.020 0.000 0.000 NA 0.736
#> GSM414956     5  0.0000      0.843 0.000 0.000 0.000 NA 1.000
#> GSM414958     1  0.3365      0.654 0.836 0.000 0.000 NA 0.120
#> GSM414959     5  0.4194      0.679 0.088 0.000 0.000 NA 0.780
#> GSM414960     1  0.3828      0.629 0.808 0.000 0.000 NA 0.120
#> GSM414961     3  0.4213      0.775 0.000 0.000 0.680 NA 0.012
#> GSM414962     2  0.0162      0.992 0.000 0.996 0.000 NA 0.000
#> GSM414964     5  0.4527      0.691 0.036 0.000 0.000 NA 0.692
#> GSM414965     5  0.0510      0.835 0.016 0.000 0.000 NA 0.984
#> GSM414967     1  0.5714      0.488 0.624 0.000 0.000 NA 0.212
#> GSM414968     3  0.3969      0.783 0.000 0.000 0.692 NA 0.004
#> GSM414969     1  0.4300      0.593 0.524 0.000 0.000 NA 0.000
#> GSM414971     5  0.4232      0.430 0.312 0.000 0.000 NA 0.676
#> GSM414973     1  0.5329      0.627 0.596 0.000 0.000 NA 0.068
#> GSM414974     2  0.1341      0.952 0.000 0.944 0.000 NA 0.000
#> GSM414928     2  0.0000      0.995 0.000 1.000 0.000 NA 0.000
#> GSM414930     2  0.0000      0.995 0.000 1.000 0.000 NA 0.000
#> GSM414932     3  0.0000      0.893 0.000 0.000 1.000 NA 0.000
#> GSM414934     3  0.0000      0.893 0.000 0.000 1.000 NA 0.000
#> GSM414938     1  0.7458      0.473 0.464 0.084 0.008 NA 0.100
#> GSM414940     3  0.0000      0.893 0.000 0.000 1.000 NA 0.000
#> GSM414942     2  0.0000      0.995 0.000 1.000 0.000 NA 0.000
#> GSM414947     2  0.0000      0.995 0.000 1.000 0.000 NA 0.000
#> GSM414953     3  0.0000      0.893 0.000 0.000 1.000 NA 0.000
#> GSM414955     3  0.0162      0.892 0.000 0.000 0.996 NA 0.000
#> GSM414957     2  0.0000      0.995 0.000 1.000 0.000 NA 0.000
#> GSM414963     3  0.0000      0.893 0.000 0.000 1.000 NA 0.000
#> GSM414966     2  0.0000      0.995 0.000 1.000 0.000 NA 0.000
#> GSM414970     3  0.0000      0.893 0.000 0.000 1.000 NA 0.000
#> GSM414972     2  0.0000      0.995 0.000 1.000 0.000 NA 0.000
#> GSM414975     2  0.0000      0.995 0.000 1.000 0.000 NA 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3 p4    p5    p6
#> GSM414924     1  0.1225     0.7396 0.952 0.000 0.000 NA 0.000 0.036
#> GSM414925     1  0.1398     0.7404 0.940 0.000 0.000 NA 0.000 0.052
#> GSM414926     1  0.1168     0.7436 0.956 0.000 0.000 NA 0.000 0.028
#> GSM414927     2  0.0000     0.9756 0.000 1.000 0.000 NA 0.000 0.000
#> GSM414929     6  0.6166     0.4884 0.264 0.000 0.000 NA 0.032 0.528
#> GSM414931     6  0.5467     0.6357 0.332 0.000 0.000 NA 0.112 0.548
#> GSM414933     6  0.4627     0.5147 0.456 0.000 0.000 NA 0.024 0.512
#> GSM414935     3  0.4446     0.6482 0.004 0.000 0.520 NA 0.008 0.008
#> GSM414936     5  0.0777     0.7833 0.000 0.000 0.000 NA 0.972 0.024
#> GSM414937     5  0.1387     0.7753 0.000 0.000 0.000 NA 0.932 0.000
#> GSM414939     5  0.0146     0.7877 0.000 0.000 0.000 NA 0.996 0.004
#> GSM414941     1  0.5732     0.5677 0.620 0.000 0.000 NA 0.136 0.044
#> GSM414943     5  0.0363     0.7866 0.000 0.000 0.000 NA 0.988 0.012
#> GSM414944     6  0.5270     0.4653 0.060 0.000 0.000 NA 0.260 0.636
#> GSM414945     2  0.0935     0.9523 0.000 0.964 0.000 NA 0.000 0.032
#> GSM414946     1  0.1297     0.7507 0.948 0.000 0.000 NA 0.000 0.040
#> GSM414948     6  0.5491     0.5974 0.372 0.000 0.000 NA 0.116 0.508
#> GSM414949     3  0.4781     0.7406 0.000 0.064 0.724 NA 0.000 0.052
#> GSM414950     3  0.4916     0.6727 0.000 0.000 0.548 NA 0.008 0.048
#> GSM414951     5  0.3534     0.7057 0.000 0.000 0.004 NA 0.772 0.024
#> GSM414952     3  0.1556     0.8182 0.000 0.000 0.920 NA 0.000 0.000
#> GSM414954     5  0.4352     0.6243 0.020 0.000 0.000 NA 0.644 0.012
#> GSM414956     5  0.0508     0.7879 0.000 0.000 0.000 NA 0.984 0.012
#> GSM414958     6  0.5442     0.6155 0.364 0.000 0.000 NA 0.064 0.544
#> GSM414959     5  0.5701     0.5257 0.068 0.000 0.000 NA 0.644 0.164
#> GSM414960     6  0.4787     0.6501 0.312 0.000 0.000 NA 0.064 0.620
#> GSM414961     3  0.4263     0.6355 0.000 0.000 0.504 NA 0.016 0.000
#> GSM414962     2  0.1391     0.9414 0.000 0.944 0.000 NA 0.000 0.040
#> GSM414964     5  0.4869     0.5664 0.044 0.000 0.000 NA 0.584 0.012
#> GSM414965     5  0.1225     0.7759 0.000 0.000 0.000 NA 0.952 0.036
#> GSM414967     6  0.5337     0.5898 0.148 0.000 0.000 NA 0.128 0.676
#> GSM414968     3  0.4452     0.6639 0.000 0.000 0.548 NA 0.008 0.016
#> GSM414969     1  0.4198     0.6412 0.708 0.000 0.000 NA 0.000 0.060
#> GSM414971     5  0.4756    -0.0569 0.052 0.000 0.000 NA 0.540 0.408
#> GSM414973     1  0.5689     0.5837 0.652 0.000 0.000 NA 0.080 0.128
#> GSM414974     2  0.3782     0.7944 0.000 0.780 0.000 NA 0.000 0.096
#> GSM414928     2  0.0000     0.9756 0.000 1.000 0.000 NA 0.000 0.000
#> GSM414930     2  0.0000     0.9756 0.000 1.000 0.000 NA 0.000 0.000
#> GSM414932     3  0.0000     0.8373 0.000 0.000 1.000 NA 0.000 0.000
#> GSM414934     3  0.0000     0.8373 0.000 0.000 1.000 NA 0.000 0.000
#> GSM414938     6  0.6624     0.3103 0.084 0.048 0.004 NA 0.036 0.540
#> GSM414940     3  0.0000     0.8373 0.000 0.000 1.000 NA 0.000 0.000
#> GSM414942     2  0.0000     0.9756 0.000 1.000 0.000 NA 0.000 0.000
#> GSM414947     2  0.0000     0.9756 0.000 1.000 0.000 NA 0.000 0.000
#> GSM414953     3  0.0000     0.8373 0.000 0.000 1.000 NA 0.000 0.000
#> GSM414955     3  0.0260     0.8355 0.000 0.000 0.992 NA 0.000 0.000
#> GSM414957     2  0.0000     0.9756 0.000 1.000 0.000 NA 0.000 0.000
#> GSM414963     3  0.0000     0.8373 0.000 0.000 1.000 NA 0.000 0.000
#> GSM414966     2  0.0000     0.9756 0.000 1.000 0.000 NA 0.000 0.000
#> GSM414970     3  0.0000     0.8373 0.000 0.000 1.000 NA 0.000 0.000
#> GSM414972     2  0.0000     0.9756 0.000 1.000 0.000 NA 0.000 0.000
#> GSM414975     2  0.0000     0.9756 0.000 1.000 0.000 NA 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n tissue(p) k
#> MAD:skmeans 50  2.94e-07 2
#> MAD:skmeans 51  9.48e-06 3
#> MAD:skmeans 52  1.75e-04 4
#> MAD:skmeans 47  1.82e-04 5
#> MAD:skmeans 48  3.89e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.919           0.927       0.970         0.3650 0.660   0.660
#> 3 3 0.622           0.764       0.881         0.6993 0.667   0.508
#> 4 4 0.730           0.792       0.846         0.1957 0.772   0.457
#> 5 5 0.686           0.755       0.855         0.0534 0.957   0.833
#> 6 6 0.755           0.662       0.826         0.0579 0.901   0.597

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1   0.000      0.964 1.000 0.000
#> GSM414925     1   0.000      0.964 1.000 0.000
#> GSM414926     1   0.000      0.964 1.000 0.000
#> GSM414927     2   0.000      0.984 0.000 1.000
#> GSM414929     1   0.000      0.964 1.000 0.000
#> GSM414931     1   0.000      0.964 1.000 0.000
#> GSM414933     1   0.000      0.964 1.000 0.000
#> GSM414935     1   0.000      0.964 1.000 0.000
#> GSM414936     1   0.000      0.964 1.000 0.000
#> GSM414937     1   0.000      0.964 1.000 0.000
#> GSM414939     1   0.000      0.964 1.000 0.000
#> GSM414941     1   0.000      0.964 1.000 0.000
#> GSM414943     1   0.000      0.964 1.000 0.000
#> GSM414944     1   0.000      0.964 1.000 0.000
#> GSM414945     2   0.000      0.984 0.000 1.000
#> GSM414946     1   0.000      0.964 1.000 0.000
#> GSM414948     1   0.000      0.964 1.000 0.000
#> GSM414949     1   0.722      0.752 0.800 0.200
#> GSM414950     1   0.000      0.964 1.000 0.000
#> GSM414951     1   0.000      0.964 1.000 0.000
#> GSM414952     1   0.000      0.964 1.000 0.000
#> GSM414954     1   0.000      0.964 1.000 0.000
#> GSM414956     1   0.000      0.964 1.000 0.000
#> GSM414958     1   0.000      0.964 1.000 0.000
#> GSM414959     1   0.000      0.964 1.000 0.000
#> GSM414960     1   0.000      0.964 1.000 0.000
#> GSM414961     1   0.000      0.964 1.000 0.000
#> GSM414962     2   0.605      0.812 0.148 0.852
#> GSM414964     1   0.000      0.964 1.000 0.000
#> GSM414965     1   0.000      0.964 1.000 0.000
#> GSM414967     1   0.000      0.964 1.000 0.000
#> GSM414968     1   0.000      0.964 1.000 0.000
#> GSM414969     1   0.000      0.964 1.000 0.000
#> GSM414971     1   0.000      0.964 1.000 0.000
#> GSM414973     1   0.000      0.964 1.000 0.000
#> GSM414974     1   0.373      0.901 0.928 0.072
#> GSM414928     2   0.000      0.984 0.000 1.000
#> GSM414930     2   0.000      0.984 0.000 1.000
#> GSM414932     1   0.311      0.916 0.944 0.056
#> GSM414934     1   0.000      0.964 1.000 0.000
#> GSM414938     1   0.000      0.964 1.000 0.000
#> GSM414940     1   0.697      0.768 0.812 0.188
#> GSM414942     2   0.000      0.984 0.000 1.000
#> GSM414947     2   0.000      0.984 0.000 1.000
#> GSM414953     1   0.000      0.964 1.000 0.000
#> GSM414955     1   0.000      0.964 1.000 0.000
#> GSM414957     2   0.000      0.984 0.000 1.000
#> GSM414963     1   0.991      0.242 0.556 0.444
#> GSM414966     2   0.000      0.984 0.000 1.000
#> GSM414970     1   0.991      0.242 0.556 0.444
#> GSM414972     2   0.000      0.984 0.000 1.000
#> GSM414975     2   0.000      0.984 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM414924     1  0.0000     0.9168 1.000 0.000 0.000
#> GSM414925     1  0.0000     0.9168 1.000 0.000 0.000
#> GSM414926     1  0.0000     0.9168 1.000 0.000 0.000
#> GSM414927     2  0.0000     0.9988 0.000 1.000 0.000
#> GSM414929     1  0.0000     0.9168 1.000 0.000 0.000
#> GSM414931     1  0.0000     0.9168 1.000 0.000 0.000
#> GSM414933     1  0.0000     0.9168 1.000 0.000 0.000
#> GSM414935     3  0.5397     0.7144 0.280 0.000 0.720
#> GSM414936     1  0.3619     0.7388 0.864 0.000 0.136
#> GSM414937     3  0.6126     0.5841 0.400 0.000 0.600
#> GSM414939     3  0.6126     0.5841 0.400 0.000 0.600
#> GSM414941     1  0.5948     0.1450 0.640 0.000 0.360
#> GSM414943     3  0.6291     0.4436 0.468 0.000 0.532
#> GSM414944     1  0.0000     0.9168 1.000 0.000 0.000
#> GSM414945     2  0.0592     0.9893 0.000 0.988 0.012
#> GSM414946     3  0.6308     0.3774 0.492 0.000 0.508
#> GSM414948     1  0.0000     0.9168 1.000 0.000 0.000
#> GSM414949     3  0.0000     0.7364 0.000 0.000 1.000
#> GSM414950     3  0.5254     0.7203 0.264 0.000 0.736
#> GSM414951     3  0.5760     0.6813 0.328 0.000 0.672
#> GSM414952     3  0.0000     0.7364 0.000 0.000 1.000
#> GSM414954     3  0.4702     0.7410 0.212 0.000 0.788
#> GSM414956     3  0.5733     0.6847 0.324 0.000 0.676
#> GSM414958     1  0.0000     0.9168 1.000 0.000 0.000
#> GSM414959     3  0.6079     0.6070 0.388 0.000 0.612
#> GSM414960     1  0.0000     0.9168 1.000 0.000 0.000
#> GSM414961     3  0.4654     0.7417 0.208 0.000 0.792
#> GSM414962     3  0.6460    -0.0567 0.004 0.440 0.556
#> GSM414964     3  0.5760     0.6813 0.328 0.000 0.672
#> GSM414965     1  0.0000     0.9168 1.000 0.000 0.000
#> GSM414967     1  0.0000     0.9168 1.000 0.000 0.000
#> GSM414968     3  0.4702     0.7410 0.212 0.000 0.788
#> GSM414969     1  0.6280    -0.2741 0.540 0.000 0.460
#> GSM414971     1  0.0000     0.9168 1.000 0.000 0.000
#> GSM414973     1  0.0000     0.9168 1.000 0.000 0.000
#> GSM414974     3  0.3752     0.7413 0.144 0.000 0.856
#> GSM414928     2  0.0000     0.9988 0.000 1.000 0.000
#> GSM414930     2  0.0000     0.9988 0.000 1.000 0.000
#> GSM414932     3  0.0000     0.7364 0.000 0.000 1.000
#> GSM414934     3  0.0000     0.7364 0.000 0.000 1.000
#> GSM414938     3  0.5760     0.6813 0.328 0.000 0.672
#> GSM414940     3  0.0000     0.7364 0.000 0.000 1.000
#> GSM414942     2  0.0000     0.9988 0.000 1.000 0.000
#> GSM414947     2  0.0000     0.9988 0.000 1.000 0.000
#> GSM414953     3  0.0000     0.7364 0.000 0.000 1.000
#> GSM414955     3  0.0000     0.7364 0.000 0.000 1.000
#> GSM414957     2  0.0000     0.9988 0.000 1.000 0.000
#> GSM414963     3  0.0000     0.7364 0.000 0.000 1.000
#> GSM414966     2  0.0000     0.9988 0.000 1.000 0.000
#> GSM414970     3  0.0000     0.7364 0.000 0.000 1.000
#> GSM414972     2  0.0000     0.9988 0.000 1.000 0.000
#> GSM414975     2  0.0000     0.9988 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     4  0.0592      0.844 0.016 0.000 0.000 0.984
#> GSM414925     4  0.2760      0.779 0.128 0.000 0.000 0.872
#> GSM414926     4  0.1637      0.835 0.060 0.000 0.000 0.940
#> GSM414927     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> GSM414929     4  0.0469      0.845 0.012 0.000 0.000 0.988
#> GSM414931     4  0.3123      0.811 0.156 0.000 0.000 0.844
#> GSM414933     4  0.0336      0.844 0.008 0.000 0.000 0.992
#> GSM414935     1  0.2773      0.831 0.900 0.000 0.028 0.072
#> GSM414936     1  0.0707      0.841 0.980 0.000 0.000 0.020
#> GSM414937     1  0.0000      0.848 1.000 0.000 0.000 0.000
#> GSM414939     1  0.0000      0.848 1.000 0.000 0.000 0.000
#> GSM414941     1  0.2760      0.809 0.872 0.000 0.000 0.128
#> GSM414943     1  0.0336      0.846 0.992 0.000 0.000 0.008
#> GSM414944     1  0.4331      0.459 0.712 0.000 0.000 0.288
#> GSM414945     2  0.0469      0.934 0.000 0.988 0.012 0.000
#> GSM414946     1  0.4972      0.289 0.544 0.000 0.000 0.456
#> GSM414948     4  0.4072      0.739 0.252 0.000 0.000 0.748
#> GSM414949     3  0.1389      0.909 0.048 0.000 0.952 0.000
#> GSM414950     1  0.0524      0.845 0.988 0.000 0.008 0.004
#> GSM414951     1  0.0000      0.848 1.000 0.000 0.000 0.000
#> GSM414952     3  0.1389      0.909 0.048 0.000 0.952 0.000
#> GSM414954     1  0.4857      0.446 0.668 0.000 0.324 0.008
#> GSM414956     1  0.0336      0.846 0.992 0.000 0.000 0.008
#> GSM414958     4  0.3024      0.822 0.148 0.000 0.000 0.852
#> GSM414959     1  0.2281      0.823 0.904 0.000 0.000 0.096
#> GSM414960     4  0.0469      0.845 0.012 0.000 0.000 0.988
#> GSM414961     3  0.4961      0.218 0.448 0.000 0.552 0.000
#> GSM414962     2  0.4877      0.345 0.000 0.592 0.408 0.000
#> GSM414964     1  0.2408      0.821 0.896 0.000 0.000 0.104
#> GSM414965     1  0.1557      0.816 0.944 0.000 0.000 0.056
#> GSM414967     4  0.2281      0.844 0.096 0.000 0.000 0.904
#> GSM414968     1  0.1824      0.821 0.936 0.000 0.060 0.004
#> GSM414969     1  0.4250      0.678 0.724 0.000 0.000 0.276
#> GSM414971     4  0.4072      0.739 0.252 0.000 0.000 0.748
#> GSM414973     4  0.4955      0.285 0.444 0.000 0.000 0.556
#> GSM414974     3  0.6567      0.426 0.308 0.000 0.588 0.104
#> GSM414928     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> GSM414930     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> GSM414932     3  0.1389      0.909 0.048 0.000 0.952 0.000
#> GSM414934     3  0.1389      0.909 0.048 0.000 0.952 0.000
#> GSM414938     1  0.4008      0.706 0.756 0.000 0.000 0.244
#> GSM414940     3  0.1389      0.909 0.048 0.000 0.952 0.000
#> GSM414942     2  0.1722      0.932 0.000 0.944 0.048 0.008
#> GSM414947     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> GSM414953     3  0.1389      0.909 0.048 0.000 0.952 0.000
#> GSM414955     3  0.1389      0.909 0.048 0.000 0.952 0.000
#> GSM414957     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> GSM414963     3  0.1389      0.909 0.048 0.000 0.952 0.000
#> GSM414966     2  0.1722      0.932 0.000 0.944 0.048 0.008
#> GSM414970     3  0.1389      0.909 0.048 0.000 0.952 0.000
#> GSM414972     2  0.1722      0.932 0.000 0.944 0.048 0.008
#> GSM414975     2  0.1722      0.932 0.000 0.944 0.048 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     1  0.0000      0.782 1.000 0.000 0.000 0.000 0.000
#> GSM414925     1  0.3282      0.664 0.804 0.000 0.000 0.188 0.008
#> GSM414926     1  0.1270      0.777 0.948 0.000 0.000 0.000 0.052
#> GSM414927     2  0.0000      0.925 0.000 1.000 0.000 0.000 0.000
#> GSM414929     1  0.0000      0.782 1.000 0.000 0.000 0.000 0.000
#> GSM414931     1  0.2813      0.747 0.832 0.000 0.000 0.000 0.168
#> GSM414933     1  0.0000      0.782 1.000 0.000 0.000 0.000 0.000
#> GSM414935     5  0.5751      0.657 0.068 0.000 0.036 0.244 0.652
#> GSM414936     5  0.0000      0.792 0.000 0.000 0.000 0.000 1.000
#> GSM414937     5  0.0000      0.792 0.000 0.000 0.000 0.000 1.000
#> GSM414939     5  0.0000      0.792 0.000 0.000 0.000 0.000 1.000
#> GSM414941     5  0.2127      0.745 0.108 0.000 0.000 0.000 0.892
#> GSM414943     5  0.0000      0.792 0.000 0.000 0.000 0.000 1.000
#> GSM414944     5  0.3508      0.548 0.252 0.000 0.000 0.000 0.748
#> GSM414945     2  0.0404      0.914 0.000 0.988 0.012 0.000 0.000
#> GSM414946     1  0.6339      0.115 0.508 0.000 0.000 0.188 0.304
#> GSM414948     1  0.3636      0.666 0.728 0.000 0.000 0.000 0.272
#> GSM414949     3  0.3395      0.766 0.000 0.000 0.764 0.236 0.000
#> GSM414950     5  0.3452      0.698 0.000 0.000 0.000 0.244 0.756
#> GSM414951     5  0.0000      0.792 0.000 0.000 0.000 0.000 1.000
#> GSM414952     3  0.3003      0.798 0.000 0.000 0.812 0.188 0.000
#> GSM414954     5  0.5113      0.270 0.000 0.000 0.380 0.044 0.576
#> GSM414956     5  0.0000      0.792 0.000 0.000 0.000 0.000 1.000
#> GSM414958     1  0.2732      0.759 0.840 0.000 0.000 0.000 0.160
#> GSM414959     5  0.2127      0.745 0.108 0.000 0.000 0.000 0.892
#> GSM414960     1  0.0000      0.782 1.000 0.000 0.000 0.000 0.000
#> GSM414961     3  0.5334      0.669 0.000 0.000 0.652 0.244 0.104
#> GSM414962     2  0.4042      0.608 0.000 0.756 0.032 0.212 0.000
#> GSM414964     5  0.5195      0.666 0.108 0.000 0.000 0.216 0.676
#> GSM414965     5  0.0000      0.792 0.000 0.000 0.000 0.000 1.000
#> GSM414967     1  0.2127      0.785 0.892 0.000 0.000 0.000 0.108
#> GSM414968     5  0.4793      0.677 0.000 0.000 0.076 0.216 0.708
#> GSM414969     5  0.6532      0.439 0.280 0.000 0.000 0.240 0.480
#> GSM414971     1  0.3661      0.662 0.724 0.000 0.000 0.000 0.276
#> GSM414973     1  0.4268      0.363 0.556 0.000 0.000 0.000 0.444
#> GSM414974     3  0.6884      0.573 0.108 0.000 0.568 0.244 0.080
#> GSM414928     2  0.0000      0.925 0.000 1.000 0.000 0.000 0.000
#> GSM414930     2  0.0404      0.914 0.000 0.988 0.000 0.012 0.000
#> GSM414932     3  0.0000      0.868 0.000 0.000 1.000 0.000 0.000
#> GSM414934     3  0.0000      0.868 0.000 0.000 1.000 0.000 0.000
#> GSM414938     5  0.3957      0.588 0.280 0.000 0.000 0.008 0.712
#> GSM414940     3  0.0000      0.868 0.000 0.000 1.000 0.000 0.000
#> GSM414942     4  0.3452      1.000 0.000 0.244 0.000 0.756 0.000
#> GSM414947     2  0.0000      0.925 0.000 1.000 0.000 0.000 0.000
#> GSM414953     3  0.0000      0.868 0.000 0.000 1.000 0.000 0.000
#> GSM414955     3  0.0880      0.860 0.000 0.000 0.968 0.032 0.000
#> GSM414957     2  0.0000      0.925 0.000 1.000 0.000 0.000 0.000
#> GSM414963     3  0.0000      0.868 0.000 0.000 1.000 0.000 0.000
#> GSM414966     4  0.3452      1.000 0.000 0.244 0.000 0.756 0.000
#> GSM414970     3  0.0000      0.868 0.000 0.000 1.000 0.000 0.000
#> GSM414972     4  0.3452      1.000 0.000 0.244 0.000 0.756 0.000
#> GSM414975     4  0.3452      1.000 0.000 0.244 0.000 0.756 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     6  0.1714     0.8463 0.092 0.000 0.000 0.000 0.000 0.908
#> GSM414925     1  0.3323     0.5747 0.752 0.000 0.000 0.000 0.008 0.240
#> GSM414926     1  0.4712     0.4031 0.564 0.000 0.000 0.000 0.052 0.384
#> GSM414927     2  0.2793     0.9345 0.000 0.800 0.000 0.200 0.000 0.000
#> GSM414929     1  0.3833     0.3143 0.556 0.000 0.000 0.000 0.000 0.444
#> GSM414931     6  0.1411     0.9244 0.004 0.000 0.000 0.000 0.060 0.936
#> GSM414933     6  0.1663     0.8471 0.088 0.000 0.000 0.000 0.000 0.912
#> GSM414935     1  0.3881    -0.0763 0.600 0.000 0.004 0.000 0.396 0.000
#> GSM414936     5  0.0000     0.6930 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414937     5  0.0000     0.6930 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414939     5  0.0000     0.6930 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414941     5  0.3862    -0.2057 0.476 0.000 0.000 0.000 0.524 0.000
#> GSM414943     5  0.0000     0.6930 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414944     5  0.3151     0.4560 0.000 0.000 0.000 0.000 0.748 0.252
#> GSM414945     2  0.3046     0.9256 0.000 0.800 0.012 0.188 0.000 0.000
#> GSM414946     1  0.3835     0.5598 0.756 0.000 0.000 0.000 0.188 0.056
#> GSM414948     6  0.1267     0.9256 0.000 0.000 0.000 0.000 0.060 0.940
#> GSM414949     3  0.3782     0.6187 0.412 0.000 0.588 0.000 0.000 0.000
#> GSM414950     5  0.3797     0.3118 0.420 0.000 0.000 0.000 0.580 0.000
#> GSM414951     5  0.0790     0.6756 0.032 0.000 0.000 0.000 0.968 0.000
#> GSM414952     3  0.3515     0.6903 0.324 0.000 0.676 0.000 0.000 0.000
#> GSM414954     5  0.5783    -0.0664 0.180 0.000 0.372 0.000 0.448 0.000
#> GSM414956     5  0.0000     0.6930 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414958     6  0.1141     0.9252 0.000 0.000 0.000 0.000 0.052 0.948
#> GSM414959     5  0.3862    -0.2057 0.476 0.000 0.000 0.000 0.524 0.000
#> GSM414960     6  0.0146     0.8997 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM414961     3  0.4116     0.6016 0.416 0.000 0.572 0.000 0.012 0.000
#> GSM414962     2  0.2854     0.6587 0.208 0.792 0.000 0.000 0.000 0.000
#> GSM414964     1  0.2597     0.5033 0.824 0.000 0.000 0.000 0.176 0.000
#> GSM414965     5  0.0000     0.6930 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414967     6  0.1714     0.8947 0.000 0.000 0.000 0.000 0.092 0.908
#> GSM414968     5  0.3872     0.3464 0.392 0.000 0.004 0.000 0.604 0.000
#> GSM414969     1  0.1657     0.5825 0.928 0.000 0.000 0.000 0.016 0.056
#> GSM414971     6  0.1327     0.9235 0.000 0.000 0.000 0.000 0.064 0.936
#> GSM414973     1  0.5817     0.3876 0.476 0.000 0.000 0.000 0.320 0.204
#> GSM414974     1  0.2020     0.4943 0.896 0.000 0.096 0.000 0.008 0.000
#> GSM414928     2  0.2793     0.9345 0.000 0.800 0.000 0.200 0.000 0.000
#> GSM414930     2  0.2912     0.9211 0.000 0.784 0.000 0.216 0.000 0.000
#> GSM414932     3  0.0146     0.8038 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM414934     3  0.2933     0.7556 0.004 0.200 0.796 0.000 0.000 0.000
#> GSM414938     1  0.4856     0.3701 0.572 0.000 0.000 0.000 0.360 0.068
#> GSM414940     3  0.0000     0.8029 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM414942     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM414947     2  0.2793     0.9345 0.000 0.800 0.000 0.200 0.000 0.000
#> GSM414953     3  0.2933     0.7556 0.004 0.200 0.796 0.000 0.000 0.000
#> GSM414955     3  0.2527     0.7672 0.168 0.000 0.832 0.000 0.000 0.000
#> GSM414957     2  0.2793     0.9345 0.000 0.800 0.000 0.200 0.000 0.000
#> GSM414963     3  0.0000     0.8029 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM414966     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM414970     3  0.0146     0.8038 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM414972     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM414975     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n tissue(p) k
#> MAD:pam 50  7.77e-04 2
#> MAD:pam 47  1.84e-04 3
#> MAD:pam 45  5.46e-06 4
#> MAD:pam 48  5.97e-05 5
#> MAD:pam 40  2.45e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.880           0.890       0.955         0.3666 0.660   0.660
#> 3 3 0.832           0.943       0.969         0.7074 0.697   0.548
#> 4 4 0.823           0.833       0.867         0.0674 1.000   1.000
#> 5 5 0.685           0.813       0.855         0.0588 0.950   0.868
#> 6 6 0.636           0.604       0.708         0.0951 0.875   0.630

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1   0.000      0.949 1.000 0.000
#> GSM414925     1   0.000      0.949 1.000 0.000
#> GSM414926     1   0.000      0.949 1.000 0.000
#> GSM414927     2   0.000      0.951 0.000 1.000
#> GSM414929     1   0.000      0.949 1.000 0.000
#> GSM414931     1   0.000      0.949 1.000 0.000
#> GSM414933     1   0.000      0.949 1.000 0.000
#> GSM414935     1   0.000      0.949 1.000 0.000
#> GSM414936     1   0.000      0.949 1.000 0.000
#> GSM414937     1   0.000      0.949 1.000 0.000
#> GSM414939     1   0.000      0.949 1.000 0.000
#> GSM414941     1   0.000      0.949 1.000 0.000
#> GSM414943     1   0.000      0.949 1.000 0.000
#> GSM414944     1   0.985      0.212 0.572 0.428
#> GSM414945     2   0.891      0.535 0.308 0.692
#> GSM414946     1   0.000      0.949 1.000 0.000
#> GSM414948     1   0.000      0.949 1.000 0.000
#> GSM414949     1   0.260      0.926 0.956 0.044
#> GSM414950     1   0.000      0.949 1.000 0.000
#> GSM414951     1   0.000      0.949 1.000 0.000
#> GSM414952     1   0.224      0.929 0.964 0.036
#> GSM414954     1   0.000      0.949 1.000 0.000
#> GSM414956     1   0.000      0.949 1.000 0.000
#> GSM414958     1   0.000      0.949 1.000 0.000
#> GSM414959     1   0.000      0.949 1.000 0.000
#> GSM414960     1   0.000      0.949 1.000 0.000
#> GSM414961     1   0.000      0.949 1.000 0.000
#> GSM414962     2   0.615      0.811 0.152 0.848
#> GSM414964     1   0.000      0.949 1.000 0.000
#> GSM414965     1   0.000      0.949 1.000 0.000
#> GSM414967     1   0.966      0.318 0.608 0.392
#> GSM414968     1   0.000      0.949 1.000 0.000
#> GSM414969     1   0.000      0.949 1.000 0.000
#> GSM414971     1   0.000      0.949 1.000 0.000
#> GSM414973     1   0.000      0.949 1.000 0.000
#> GSM414974     1   0.574      0.831 0.864 0.136
#> GSM414928     2   0.000      0.951 0.000 1.000
#> GSM414930     2   0.000      0.951 0.000 1.000
#> GSM414932     1   0.327      0.916 0.940 0.060
#> GSM414934     1   0.327      0.916 0.940 0.060
#> GSM414938     1   0.985      0.212 0.572 0.428
#> GSM414940     1   0.327      0.916 0.940 0.060
#> GSM414942     2   0.000      0.951 0.000 1.000
#> GSM414947     2   0.000      0.951 0.000 1.000
#> GSM414953     1   0.327      0.916 0.940 0.060
#> GSM414955     1   0.327      0.916 0.940 0.060
#> GSM414957     2   0.000      0.951 0.000 1.000
#> GSM414963     1   0.327      0.916 0.940 0.060
#> GSM414966     2   0.000      0.951 0.000 1.000
#> GSM414970     1   0.327      0.916 0.940 0.060
#> GSM414972     2   0.000      0.951 0.000 1.000
#> GSM414975     2   0.000      0.951 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM414924     1  0.3340      0.890 0.880 0.000 0.120
#> GSM414925     1  0.3340      0.890 0.880 0.000 0.120
#> GSM414926     1  0.3340      0.890 0.880 0.000 0.120
#> GSM414927     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414929     1  0.0000      0.956 1.000 0.000 0.000
#> GSM414931     1  0.0000      0.956 1.000 0.000 0.000
#> GSM414933     1  0.0000      0.956 1.000 0.000 0.000
#> GSM414935     3  0.0000      0.965 0.000 0.000 1.000
#> GSM414936     1  0.0000      0.956 1.000 0.000 0.000
#> GSM414937     1  0.0237      0.955 0.996 0.000 0.004
#> GSM414939     1  0.0237      0.955 0.996 0.000 0.004
#> GSM414941     1  0.3340      0.890 0.880 0.000 0.120
#> GSM414943     1  0.0000      0.956 1.000 0.000 0.000
#> GSM414944     1  0.0000      0.956 1.000 0.000 0.000
#> GSM414945     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414946     1  0.3340      0.890 0.880 0.000 0.120
#> GSM414948     1  0.0000      0.956 1.000 0.000 0.000
#> GSM414949     3  0.0000      0.965 0.000 0.000 1.000
#> GSM414950     3  0.0000      0.965 0.000 0.000 1.000
#> GSM414951     1  0.0237      0.955 0.996 0.000 0.004
#> GSM414952     3  0.0000      0.965 0.000 0.000 1.000
#> GSM414954     1  0.0237      0.955 0.996 0.000 0.004
#> GSM414956     1  0.0000      0.956 1.000 0.000 0.000
#> GSM414958     1  0.0000      0.956 1.000 0.000 0.000
#> GSM414959     1  0.0237      0.955 0.996 0.000 0.004
#> GSM414960     1  0.0000      0.956 1.000 0.000 0.000
#> GSM414961     3  0.0000      0.965 0.000 0.000 1.000
#> GSM414962     3  0.8423      0.505 0.156 0.228 0.616
#> GSM414964     1  0.3340      0.890 0.880 0.000 0.120
#> GSM414965     1  0.0000      0.956 1.000 0.000 0.000
#> GSM414967     1  0.0000      0.956 1.000 0.000 0.000
#> GSM414968     3  0.0000      0.965 0.000 0.000 1.000
#> GSM414969     1  0.4346      0.820 0.816 0.000 0.184
#> GSM414971     1  0.0000      0.956 1.000 0.000 0.000
#> GSM414973     1  0.0237      0.955 0.996 0.000 0.004
#> GSM414974     3  0.3030      0.862 0.092 0.004 0.904
#> GSM414928     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414930     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414932     3  0.0000      0.965 0.000 0.000 1.000
#> GSM414934     3  0.0000      0.965 0.000 0.000 1.000
#> GSM414938     1  0.4346      0.799 0.816 0.184 0.000
#> GSM414940     3  0.0000      0.965 0.000 0.000 1.000
#> GSM414942     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414947     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414953     3  0.0000      0.965 0.000 0.000 1.000
#> GSM414955     3  0.0000      0.965 0.000 0.000 1.000
#> GSM414957     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414963     3  0.0000      0.965 0.000 0.000 1.000
#> GSM414966     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414970     3  0.0000      0.965 0.000 0.000 1.000
#> GSM414972     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414975     2  0.0000      1.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3 p4
#> GSM414924     1  0.2882      0.893 0.892 0.000 0.024 NA
#> GSM414925     1  0.0188      0.938 0.996 0.000 0.000 NA
#> GSM414926     1  0.2882      0.893 0.892 0.000 0.024 NA
#> GSM414927     2  0.0707      0.934 0.000 0.980 0.000 NA
#> GSM414929     1  0.0921      0.933 0.972 0.000 0.000 NA
#> GSM414931     1  0.1867      0.920 0.928 0.000 0.000 NA
#> GSM414933     1  0.2149      0.912 0.912 0.000 0.000 NA
#> GSM414935     3  0.1118      0.718 0.036 0.000 0.964 NA
#> GSM414936     1  0.0336      0.938 0.992 0.000 0.000 NA
#> GSM414937     1  0.1004      0.929 0.972 0.000 0.024 NA
#> GSM414939     1  0.0188      0.938 0.996 0.000 0.004 NA
#> GSM414941     1  0.0895      0.934 0.976 0.000 0.020 NA
#> GSM414943     1  0.0336      0.938 0.992 0.000 0.000 NA
#> GSM414944     1  0.2345      0.904 0.900 0.000 0.000 NA
#> GSM414945     2  0.2563      0.891 0.020 0.908 0.000 NA
#> GSM414946     1  0.0000      0.938 1.000 0.000 0.000 NA
#> GSM414948     1  0.0469      0.938 0.988 0.000 0.000 NA
#> GSM414949     3  0.1118      0.709 0.000 0.000 0.964 NA
#> GSM414950     3  0.1118      0.718 0.036 0.000 0.964 NA
#> GSM414951     1  0.1970      0.907 0.932 0.000 0.060 NA
#> GSM414952     3  0.0817      0.719 0.024 0.000 0.976 NA
#> GSM414954     1  0.1211      0.922 0.960 0.000 0.040 NA
#> GSM414956     1  0.0188      0.938 0.996 0.000 0.000 NA
#> GSM414958     1  0.0188      0.938 0.996 0.000 0.000 NA
#> GSM414959     1  0.0000      0.938 1.000 0.000 0.000 NA
#> GSM414960     1  0.2149      0.912 0.912 0.000 0.000 NA
#> GSM414961     3  0.1118      0.718 0.036 0.000 0.964 NA
#> GSM414962     3  0.8879      0.195 0.072 0.192 0.432 NA
#> GSM414964     1  0.4500      0.581 0.684 0.000 0.316 NA
#> GSM414965     1  0.0000      0.938 1.000 0.000 0.000 NA
#> GSM414967     1  0.2408      0.903 0.896 0.000 0.000 NA
#> GSM414968     3  0.1209      0.718 0.032 0.000 0.964 NA
#> GSM414969     1  0.5742      0.599 0.664 0.000 0.276 NA
#> GSM414971     1  0.0336      0.938 0.992 0.000 0.000 NA
#> GSM414973     1  0.0188      0.938 0.996 0.000 0.000 NA
#> GSM414974     3  0.8570      0.264 0.188 0.052 0.456 NA
#> GSM414928     2  0.0707      0.934 0.000 0.980 0.000 NA
#> GSM414930     2  0.0000      0.939 0.000 1.000 0.000 NA
#> GSM414932     3  0.5592      0.720 0.024 0.000 0.572 NA
#> GSM414934     3  0.5657      0.713 0.024 0.000 0.540 NA
#> GSM414938     1  0.4121      0.862 0.848 0.064 0.016 NA
#> GSM414940     3  0.4866      0.717 0.000 0.000 0.596 NA
#> GSM414942     2  0.2814      0.922 0.000 0.868 0.000 NA
#> GSM414947     2  0.0000      0.939 0.000 1.000 0.000 NA
#> GSM414953     3  0.5657      0.713 0.024 0.000 0.540 NA
#> GSM414955     3  0.5602      0.720 0.024 0.000 0.568 NA
#> GSM414957     2  0.0000      0.939 0.000 1.000 0.000 NA
#> GSM414963     3  0.4916      0.712 0.000 0.000 0.576 NA
#> GSM414966     2  0.2814      0.922 0.000 0.868 0.000 NA
#> GSM414970     3  0.4866      0.717 0.000 0.000 0.596 NA
#> GSM414972     2  0.2814      0.922 0.000 0.868 0.000 NA
#> GSM414975     2  0.2814      0.922 0.000 0.868 0.000 NA

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     1  0.4923      0.620 0.680 0.000 0.000 0.252 0.068
#> GSM414925     1  0.3966      0.750 0.796 0.000 0.000 0.132 0.072
#> GSM414926     1  0.4329      0.673 0.716 0.000 0.000 0.252 0.032
#> GSM414927     2  0.0963      0.915 0.000 0.964 0.000 0.036 0.000
#> GSM414929     1  0.1211      0.845 0.960 0.000 0.000 0.024 0.016
#> GSM414931     1  0.0510      0.846 0.984 0.000 0.000 0.000 0.016
#> GSM414933     1  0.1117      0.844 0.964 0.000 0.000 0.020 0.016
#> GSM414935     5  0.1965      0.873 0.000 0.000 0.096 0.000 0.904
#> GSM414936     1  0.2522      0.837 0.880 0.000 0.000 0.012 0.108
#> GSM414937     1  0.3146      0.825 0.844 0.000 0.000 0.028 0.128
#> GSM414939     1  0.2969      0.827 0.852 0.000 0.000 0.020 0.128
#> GSM414941     1  0.5006      0.730 0.704 0.000 0.000 0.116 0.180
#> GSM414943     1  0.2411      0.837 0.884 0.000 0.000 0.008 0.108
#> GSM414944     1  0.3362      0.811 0.864 0.000 0.064 0.040 0.032
#> GSM414945     2  0.4202      0.762 0.004 0.804 0.124 0.016 0.052
#> GSM414946     1  0.3400      0.787 0.828 0.000 0.000 0.136 0.036
#> GSM414948     1  0.0579      0.848 0.984 0.000 0.000 0.008 0.008
#> GSM414949     3  0.6040      0.396 0.000 0.000 0.556 0.152 0.292
#> GSM414950     5  0.1792      0.855 0.000 0.000 0.084 0.000 0.916
#> GSM414951     1  0.2966      0.824 0.848 0.000 0.000 0.016 0.136
#> GSM414952     5  0.3707      0.691 0.000 0.000 0.284 0.000 0.716
#> GSM414954     1  0.3193      0.824 0.840 0.000 0.000 0.028 0.132
#> GSM414956     1  0.3201      0.828 0.844 0.000 0.016 0.008 0.132
#> GSM414958     1  0.0404      0.847 0.988 0.000 0.000 0.000 0.012
#> GSM414959     1  0.1942      0.848 0.920 0.000 0.000 0.012 0.068
#> GSM414960     1  0.1117      0.844 0.964 0.000 0.000 0.020 0.016
#> GSM414961     5  0.2329      0.885 0.000 0.000 0.124 0.000 0.876
#> GSM414962     4  0.6825      0.758 0.084 0.136 0.004 0.612 0.164
#> GSM414964     1  0.4086      0.735 0.736 0.000 0.000 0.024 0.240
#> GSM414965     1  0.2470      0.838 0.884 0.000 0.000 0.012 0.104
#> GSM414967     1  0.2747      0.810 0.884 0.000 0.088 0.012 0.016
#> GSM414968     5  0.2732      0.860 0.000 0.000 0.160 0.000 0.840
#> GSM414969     1  0.5216      0.625 0.660 0.000 0.000 0.248 0.092
#> GSM414971     1  0.0510      0.846 0.984 0.000 0.000 0.000 0.016
#> GSM414973     1  0.1965      0.826 0.904 0.000 0.000 0.096 0.000
#> GSM414974     4  0.6684      0.768 0.172 0.036 0.012 0.612 0.168
#> GSM414928     2  0.0880      0.915 0.000 0.968 0.000 0.032 0.000
#> GSM414930     2  0.0000      0.927 0.000 1.000 0.000 0.000 0.000
#> GSM414932     3  0.2516      0.838 0.000 0.000 0.860 0.000 0.140
#> GSM414934     3  0.2424      0.691 0.000 0.000 0.868 0.132 0.000
#> GSM414938     1  0.4176      0.791 0.820 0.004 0.088 0.052 0.036
#> GSM414940     3  0.2516      0.838 0.000 0.000 0.860 0.000 0.140
#> GSM414942     2  0.2011      0.917 0.000 0.908 0.000 0.088 0.004
#> GSM414947     2  0.0000      0.927 0.000 1.000 0.000 0.000 0.000
#> GSM414953     3  0.2424      0.691 0.000 0.000 0.868 0.132 0.000
#> GSM414955     3  0.2629      0.839 0.000 0.000 0.860 0.004 0.136
#> GSM414957     2  0.0000      0.927 0.000 1.000 0.000 0.000 0.000
#> GSM414963     3  0.2629      0.839 0.000 0.000 0.860 0.004 0.136
#> GSM414966     2  0.2011      0.917 0.000 0.908 0.000 0.088 0.004
#> GSM414970     3  0.2471      0.839 0.000 0.000 0.864 0.000 0.136
#> GSM414972     2  0.2068      0.916 0.000 0.904 0.000 0.092 0.004
#> GSM414975     2  0.2011      0.917 0.000 0.908 0.000 0.088 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     1  0.3023     0.5691 0.784 0.000 0.000 0.000 0.212 0.004
#> GSM414925     1  0.3725     0.5275 0.676 0.000 0.000 0.000 0.316 0.008
#> GSM414926     1  0.3023     0.5691 0.784 0.000 0.000 0.000 0.212 0.004
#> GSM414927     2  0.0000     0.9284 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414929     5  0.6334     0.3384 0.244 0.000 0.000 0.020 0.460 0.276
#> GSM414931     5  0.6334     0.3940 0.224 0.000 0.000 0.040 0.520 0.216
#> GSM414933     5  0.6369     0.3275 0.248 0.000 0.000 0.020 0.448 0.284
#> GSM414935     6  0.5571     0.8409 0.004 0.000 0.324 0.000 0.140 0.532
#> GSM414936     5  0.0000     0.5780 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414937     5  0.1715     0.5669 0.008 0.000 0.020 0.016 0.940 0.016
#> GSM414939     5  0.1140     0.5689 0.008 0.000 0.008 0.008 0.964 0.012
#> GSM414941     1  0.3797     0.4325 0.580 0.000 0.000 0.000 0.420 0.000
#> GSM414943     5  0.0146     0.5778 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM414944     5  0.6195     0.3417 0.044 0.000 0.000 0.184 0.552 0.220
#> GSM414945     2  0.5227     0.5633 0.004 0.652 0.008 0.188 0.000 0.148
#> GSM414946     1  0.4144     0.4128 0.580 0.000 0.000 0.008 0.408 0.004
#> GSM414948     5  0.6473     0.3769 0.224 0.000 0.000 0.040 0.488 0.248
#> GSM414949     3  0.5423     0.0739 0.172 0.000 0.620 0.012 0.000 0.196
#> GSM414950     6  0.5743     0.8223 0.004 0.000 0.308 0.004 0.152 0.532
#> GSM414951     5  0.2657     0.5392 0.008 0.000 0.084 0.008 0.880 0.020
#> GSM414952     6  0.5029     0.7381 0.004 0.000 0.452 0.000 0.060 0.484
#> GSM414954     5  0.3423     0.4922 0.008 0.000 0.152 0.012 0.812 0.016
#> GSM414956     5  0.0790     0.5761 0.000 0.000 0.000 0.032 0.968 0.000
#> GSM414958     5  0.6458     0.3809 0.224 0.000 0.000 0.040 0.492 0.244
#> GSM414959     5  0.2796     0.5584 0.048 0.000 0.000 0.012 0.872 0.068
#> GSM414960     5  0.6592     0.3456 0.228 0.000 0.000 0.040 0.452 0.280
#> GSM414961     6  0.5781     0.8082 0.004 0.000 0.316 0.008 0.140 0.532
#> GSM414962     1  0.6850     0.0222 0.532 0.084 0.016 0.216 0.000 0.152
#> GSM414964     5  0.5052     0.3540 0.040 0.000 0.144 0.008 0.716 0.092
#> GSM414965     5  0.0000     0.5780 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414967     5  0.6875     0.3148 0.112 0.000 0.000 0.132 0.456 0.300
#> GSM414968     6  0.4983     0.8003 0.004 0.000 0.404 0.000 0.060 0.532
#> GSM414969     1  0.5392     0.5468 0.612 0.000 0.000 0.072 0.280 0.036
#> GSM414971     5  0.5172     0.4788 0.172 0.000 0.000 0.040 0.684 0.104
#> GSM414973     1  0.4328     0.1794 0.520 0.000 0.000 0.000 0.460 0.020
#> GSM414974     1  0.7107     0.1451 0.532 0.020 0.016 0.216 0.064 0.152
#> GSM414928     2  0.0260     0.9258 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM414930     2  0.0000     0.9284 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414932     3  0.0458     0.8220 0.000 0.000 0.984 0.000 0.000 0.016
#> GSM414934     4  0.3804     1.0000 0.000 0.000 0.424 0.576 0.000 0.000
#> GSM414938     5  0.6850     0.2866 0.080 0.000 0.004 0.176 0.488 0.252
#> GSM414940     3  0.0000     0.8278 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM414942     2  0.1501     0.9209 0.000 0.924 0.000 0.076 0.000 0.000
#> GSM414947     2  0.0000     0.9284 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414953     4  0.3804     1.0000 0.000 0.000 0.424 0.576 0.000 0.000
#> GSM414955     3  0.1265     0.7668 0.000 0.000 0.948 0.000 0.044 0.008
#> GSM414957     2  0.0405     0.9247 0.000 0.988 0.004 0.008 0.000 0.000
#> GSM414963     3  0.0000     0.8278 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM414966     2  0.1501     0.9209 0.000 0.924 0.000 0.076 0.000 0.000
#> GSM414970     3  0.0000     0.8278 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM414972     2  0.1501     0.9209 0.000 0.924 0.000 0.076 0.000 0.000
#> GSM414975     2  0.1501     0.9209 0.000 0.924 0.000 0.076 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n tissue(p) k
#> MAD:mclust 49  2.14e-03 2
#> MAD:mclust 52  1.34e-05 3
#> MAD:mclust 50  8.40e-06 4
#> MAD:mclust 51  6.66e-08 5
#> MAD:mclust 34  4.54e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.845           0.895       0.959         0.4010 0.618   0.618
#> 3 3 0.969           0.937       0.974         0.5851 0.716   0.549
#> 4 4 0.637           0.788       0.839         0.1090 0.971   0.921
#> 5 5 0.611           0.519       0.727         0.0781 0.866   0.639
#> 6 6 0.647           0.627       0.800         0.0467 0.947   0.794

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1   0.000      0.953 1.000 0.000
#> GSM414925     1   0.000      0.953 1.000 0.000
#> GSM414926     1   0.000      0.953 1.000 0.000
#> GSM414927     2   0.000      0.959 0.000 1.000
#> GSM414929     1   0.000      0.953 1.000 0.000
#> GSM414931     1   0.000      0.953 1.000 0.000
#> GSM414933     1   0.000      0.953 1.000 0.000
#> GSM414935     1   0.000      0.953 1.000 0.000
#> GSM414936     1   0.000      0.953 1.000 0.000
#> GSM414937     1   0.000      0.953 1.000 0.000
#> GSM414939     1   0.000      0.953 1.000 0.000
#> GSM414941     1   0.000      0.953 1.000 0.000
#> GSM414943     1   0.000      0.953 1.000 0.000
#> GSM414944     1   0.000      0.953 1.000 0.000
#> GSM414945     2   0.000      0.959 0.000 1.000
#> GSM414946     1   0.000      0.953 1.000 0.000
#> GSM414948     1   0.000      0.953 1.000 0.000
#> GSM414949     1   0.904      0.549 0.680 0.320
#> GSM414950     1   0.000      0.953 1.000 0.000
#> GSM414951     1   0.000      0.953 1.000 0.000
#> GSM414952     1   0.000      0.953 1.000 0.000
#> GSM414954     1   0.000      0.953 1.000 0.000
#> GSM414956     1   0.000      0.953 1.000 0.000
#> GSM414958     1   0.000      0.953 1.000 0.000
#> GSM414959     1   0.000      0.953 1.000 0.000
#> GSM414960     1   0.000      0.953 1.000 0.000
#> GSM414961     1   0.000      0.953 1.000 0.000
#> GSM414962     2   0.000      0.959 0.000 1.000
#> GSM414964     1   0.000      0.953 1.000 0.000
#> GSM414965     1   0.000      0.953 1.000 0.000
#> GSM414967     1   0.000      0.953 1.000 0.000
#> GSM414968     1   0.000      0.953 1.000 0.000
#> GSM414969     1   0.000      0.953 1.000 0.000
#> GSM414971     1   0.000      0.953 1.000 0.000
#> GSM414973     1   0.000      0.953 1.000 0.000
#> GSM414974     2   0.988      0.133 0.436 0.564
#> GSM414928     2   0.000      0.959 0.000 1.000
#> GSM414930     2   0.000      0.959 0.000 1.000
#> GSM414932     1   0.730      0.742 0.796 0.204
#> GSM414934     1   0.634      0.799 0.840 0.160
#> GSM414938     1   0.000      0.953 1.000 0.000
#> GSM414940     1   0.946      0.456 0.636 0.364
#> GSM414942     2   0.000      0.959 0.000 1.000
#> GSM414947     2   0.000      0.959 0.000 1.000
#> GSM414953     1   0.204      0.927 0.968 0.032
#> GSM414955     1   0.552      0.836 0.872 0.128
#> GSM414957     2   0.000      0.959 0.000 1.000
#> GSM414963     2   0.141      0.941 0.020 0.980
#> GSM414966     2   0.000      0.959 0.000 1.000
#> GSM414970     1   0.999      0.114 0.520 0.480
#> GSM414972     2   0.000      0.959 0.000 1.000
#> GSM414975     2   0.000      0.959 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM414924     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414925     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414926     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414927     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414929     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414931     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414933     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414935     3  0.0000      0.893 0.000 0.000 1.000
#> GSM414936     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414937     1  0.0424      0.988 0.992 0.000 0.008
#> GSM414939     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414941     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414943     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414944     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414945     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414946     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414948     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414949     3  0.4555      0.709 0.000 0.200 0.800
#> GSM414950     3  0.4465      0.760 0.176 0.004 0.820
#> GSM414951     3  0.5948      0.494 0.360 0.000 0.640
#> GSM414952     3  0.0000      0.893 0.000 0.000 1.000
#> GSM414954     1  0.1529      0.955 0.960 0.000 0.040
#> GSM414956     3  0.6299      0.187 0.476 0.000 0.524
#> GSM414958     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414959     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414960     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414961     3  0.1289      0.877 0.032 0.000 0.968
#> GSM414962     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414964     1  0.2066      0.932 0.940 0.000 0.060
#> GSM414965     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414967     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414968     3  0.0592      0.888 0.012 0.000 0.988
#> GSM414969     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414971     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414973     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414974     2  0.0237      0.996 0.000 0.996 0.004
#> GSM414928     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414930     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414932     3  0.0000      0.893 0.000 0.000 1.000
#> GSM414934     3  0.0000      0.893 0.000 0.000 1.000
#> GSM414938     1  0.0000      0.995 1.000 0.000 0.000
#> GSM414940     3  0.0000      0.893 0.000 0.000 1.000
#> GSM414942     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414947     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414953     3  0.0000      0.893 0.000 0.000 1.000
#> GSM414955     3  0.0000      0.893 0.000 0.000 1.000
#> GSM414957     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414963     3  0.0000      0.893 0.000 0.000 1.000
#> GSM414966     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414970     3  0.0000      0.893 0.000 0.000 1.000
#> GSM414972     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414975     2  0.0000      1.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3 p4
#> GSM414924     1  0.2647      0.797 0.880 0.000 0.000 NA
#> GSM414925     1  0.0921      0.826 0.972 0.000 0.000 NA
#> GSM414926     1  0.2973      0.784 0.856 0.000 0.000 NA
#> GSM414927     2  0.3626      0.808 0.000 0.812 0.004 NA
#> GSM414929     1  0.4790      0.573 0.620 0.000 0.000 NA
#> GSM414931     1  0.3311      0.820 0.828 0.000 0.000 NA
#> GSM414933     1  0.0469      0.829 0.988 0.000 0.000 NA
#> GSM414935     3  0.3837      0.840 0.000 0.000 0.776 NA
#> GSM414936     1  0.4018      0.807 0.772 0.000 0.004 NA
#> GSM414937     1  0.5277      0.777 0.752 0.000 0.116 NA
#> GSM414939     1  0.4004      0.818 0.812 0.000 0.024 NA
#> GSM414941     1  0.0921      0.826 0.972 0.000 0.000 NA
#> GSM414943     1  0.5681      0.763 0.704 0.000 0.088 NA
#> GSM414944     1  0.3873      0.804 0.772 0.000 0.000 NA
#> GSM414945     2  0.4643      0.646 0.000 0.656 0.000 NA
#> GSM414946     1  0.1792      0.821 0.932 0.000 0.000 NA
#> GSM414948     1  0.1474      0.833 0.948 0.000 0.000 NA
#> GSM414949     3  0.6831      0.639 0.000 0.112 0.536 NA
#> GSM414950     3  0.6466      0.740 0.104 0.000 0.608 NA
#> GSM414951     3  0.4635      0.568 0.268 0.000 0.720 NA
#> GSM414952     3  0.0336      0.847 0.000 0.000 0.992 NA
#> GSM414954     1  0.4284      0.732 0.780 0.000 0.200 NA
#> GSM414956     1  0.7756      0.295 0.412 0.000 0.348 NA
#> GSM414958     1  0.1474      0.823 0.948 0.000 0.000 NA
#> GSM414959     1  0.1211      0.833 0.960 0.000 0.000 NA
#> GSM414960     1  0.3266      0.809 0.832 0.000 0.000 NA
#> GSM414961     3  0.3708      0.847 0.020 0.000 0.832 NA
#> GSM414962     2  0.5110      0.682 0.000 0.656 0.016 NA
#> GSM414964     1  0.4567      0.681 0.740 0.000 0.244 NA
#> GSM414965     1  0.3647      0.823 0.832 0.000 0.016 NA
#> GSM414967     1  0.3837      0.806 0.776 0.000 0.000 NA
#> GSM414968     3  0.3726      0.845 0.000 0.000 0.788 NA
#> GSM414969     1  0.4158      0.704 0.768 0.000 0.008 NA
#> GSM414971     1  0.3764      0.809 0.784 0.000 0.000 NA
#> GSM414973     1  0.0707      0.827 0.980 0.000 0.000 NA
#> GSM414974     2  0.1543      0.884 0.004 0.956 0.008 NA
#> GSM414928     2  0.5090      0.688 0.000 0.660 0.016 NA
#> GSM414930     2  0.0000      0.900 0.000 1.000 0.000 NA
#> GSM414932     3  0.3649      0.840 0.000 0.000 0.796 NA
#> GSM414934     3  0.0707      0.843 0.000 0.000 0.980 NA
#> GSM414938     1  0.5150      0.546 0.596 0.000 0.008 NA
#> GSM414940     3  0.2408      0.847 0.000 0.000 0.896 NA
#> GSM414942     2  0.0000      0.900 0.000 1.000 0.000 NA
#> GSM414947     2  0.0000      0.900 0.000 1.000 0.000 NA
#> GSM414953     3  0.0707      0.843 0.000 0.000 0.980 NA
#> GSM414955     3  0.0592      0.849 0.000 0.000 0.984 NA
#> GSM414957     2  0.0000      0.900 0.000 1.000 0.000 NA
#> GSM414963     3  0.0921      0.849 0.000 0.000 0.972 NA
#> GSM414966     2  0.0000      0.900 0.000 1.000 0.000 NA
#> GSM414970     3  0.4134      0.819 0.000 0.000 0.740 NA
#> GSM414972     2  0.0000      0.900 0.000 1.000 0.000 NA
#> GSM414975     2  0.0000      0.900 0.000 1.000 0.000 NA

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     1  0.3090     0.5627 0.856 0.000 0.000 0.040 0.104
#> GSM414925     1  0.0992     0.6498 0.968 0.000 0.000 0.024 0.008
#> GSM414926     1  0.3359     0.5416 0.840 0.000 0.000 0.052 0.108
#> GSM414927     2  0.3857     0.4615 0.000 0.688 0.000 0.312 0.000
#> GSM414929     5  0.6515     0.2174 0.328 0.000 0.000 0.208 0.464
#> GSM414931     1  0.3913     0.5377 0.676 0.000 0.000 0.000 0.324
#> GSM414933     1  0.1942     0.6410 0.920 0.000 0.000 0.012 0.068
#> GSM414935     3  0.4242     0.2242 0.000 0.000 0.572 0.428 0.000
#> GSM414936     1  0.4380     0.4509 0.616 0.000 0.008 0.000 0.376
#> GSM414937     1  0.5678     0.4538 0.612 0.000 0.128 0.000 0.260
#> GSM414939     1  0.4130     0.5543 0.696 0.000 0.012 0.000 0.292
#> GSM414941     1  0.1485     0.6336 0.948 0.000 0.000 0.020 0.032
#> GSM414943     1  0.5825     0.3831 0.564 0.000 0.116 0.000 0.320
#> GSM414944     5  0.4886    -0.2112 0.448 0.000 0.000 0.024 0.528
#> GSM414945     5  0.5867    -0.1521 0.004 0.352 0.000 0.096 0.548
#> GSM414946     1  0.2408     0.6257 0.892 0.000 0.000 0.092 0.016
#> GSM414948     1  0.2648     0.6385 0.848 0.000 0.000 0.000 0.152
#> GSM414949     4  0.4750     0.4910 0.004 0.044 0.260 0.692 0.000
#> GSM414950     4  0.4875     0.3734 0.008 0.008 0.336 0.636 0.012
#> GSM414951     3  0.3203     0.5657 0.168 0.000 0.820 0.000 0.012
#> GSM414952     3  0.0992     0.7388 0.000 0.000 0.968 0.024 0.008
#> GSM414954     1  0.4775     0.6015 0.768 0.000 0.100 0.028 0.104
#> GSM414956     5  0.6647     0.0816 0.232 0.000 0.344 0.000 0.424
#> GSM414958     1  0.2770     0.6087 0.880 0.000 0.000 0.044 0.076
#> GSM414959     1  0.3844     0.6140 0.804 0.000 0.000 0.064 0.132
#> GSM414960     1  0.4891     0.3608 0.640 0.000 0.000 0.044 0.316
#> GSM414961     3  0.4852     0.4075 0.016 0.000 0.644 0.324 0.016
#> GSM414962     4  0.3884     0.4744 0.004 0.288 0.000 0.708 0.000
#> GSM414964     1  0.6119     0.4801 0.672 0.000 0.140 0.108 0.080
#> GSM414965     1  0.3582     0.6088 0.768 0.000 0.008 0.000 0.224
#> GSM414967     5  0.4882    -0.2032 0.444 0.000 0.000 0.024 0.532
#> GSM414968     3  0.4229     0.5569 0.000 0.000 0.704 0.276 0.020
#> GSM414969     1  0.4557     0.1305 0.584 0.000 0.000 0.404 0.012
#> GSM414971     1  0.3999     0.5125 0.656 0.000 0.000 0.000 0.344
#> GSM414973     1  0.1012     0.6509 0.968 0.000 0.000 0.012 0.020
#> GSM414974     2  0.2103     0.8706 0.020 0.920 0.000 0.056 0.004
#> GSM414928     4  0.3999     0.3751 0.000 0.344 0.000 0.656 0.000
#> GSM414930     2  0.0000     0.9414 0.000 1.000 0.000 0.000 0.000
#> GSM414932     3  0.4302    -0.0558 0.000 0.000 0.520 0.480 0.000
#> GSM414934     3  0.0000     0.7345 0.000 0.000 1.000 0.000 0.000
#> GSM414938     5  0.6852     0.2384 0.300 0.000 0.012 0.220 0.468
#> GSM414940     3  0.2127     0.7041 0.000 0.000 0.892 0.108 0.000
#> GSM414942     2  0.0000     0.9414 0.000 1.000 0.000 0.000 0.000
#> GSM414947     2  0.0000     0.9414 0.000 1.000 0.000 0.000 0.000
#> GSM414953     3  0.0000     0.7345 0.000 0.000 1.000 0.000 0.000
#> GSM414955     3  0.1168     0.7388 0.000 0.000 0.960 0.032 0.008
#> GSM414957     2  0.0000     0.9414 0.000 1.000 0.000 0.000 0.000
#> GSM414963     3  0.0880     0.7359 0.000 0.000 0.968 0.032 0.000
#> GSM414966     2  0.0000     0.9414 0.000 1.000 0.000 0.000 0.000
#> GSM414970     4  0.4283     0.0401 0.000 0.000 0.456 0.544 0.000
#> GSM414972     2  0.0000     0.9414 0.000 1.000 0.000 0.000 0.000
#> GSM414975     2  0.0000     0.9414 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     5  0.4053    0.57803 0.204 0.000 0.000 0.040 0.744 0.012
#> GSM414925     5  0.2959    0.67731 0.104 0.000 0.000 0.036 0.852 0.008
#> GSM414926     5  0.4074    0.57651 0.212 0.000 0.000 0.028 0.740 0.020
#> GSM414927     2  0.3515    0.49812 0.000 0.676 0.000 0.324 0.000 0.000
#> GSM414929     1  0.1866    0.58894 0.908 0.000 0.000 0.000 0.084 0.008
#> GSM414931     5  0.2955    0.67291 0.004 0.000 0.000 0.008 0.816 0.172
#> GSM414933     5  0.4124    0.65509 0.128 0.000 0.000 0.024 0.776 0.072
#> GSM414935     3  0.5370    0.36156 0.004 0.000 0.560 0.360 0.044 0.032
#> GSM414936     5  0.3402    0.65169 0.008 0.000 0.004 0.008 0.784 0.196
#> GSM414937     5  0.4722    0.56690 0.012 0.000 0.136 0.004 0.720 0.128
#> GSM414939     5  0.2742    0.69327 0.008 0.000 0.004 0.008 0.856 0.124
#> GSM414941     5  0.3306    0.65260 0.136 0.000 0.000 0.036 0.820 0.008
#> GSM414943     5  0.5214    0.48356 0.012 0.000 0.188 0.008 0.668 0.124
#> GSM414944     6  0.2738    0.55889 0.004 0.000 0.000 0.000 0.176 0.820
#> GSM414945     6  0.5902    0.27533 0.168 0.104 0.000 0.100 0.000 0.628
#> GSM414946     5  0.3387    0.67406 0.088 0.000 0.000 0.052 0.836 0.024
#> GSM414948     5  0.1820    0.71090 0.016 0.000 0.000 0.012 0.928 0.044
#> GSM414949     4  0.2266    0.69674 0.000 0.012 0.108 0.880 0.000 0.000
#> GSM414950     4  0.2958    0.68100 0.000 0.000 0.160 0.824 0.008 0.008
#> GSM414951     3  0.3627    0.64815 0.016 0.000 0.808 0.016 0.144 0.016
#> GSM414952     3  0.2112    0.77049 0.020 0.000 0.916 0.036 0.000 0.028
#> GSM414954     5  0.4730    0.61235 0.020 0.000 0.096 0.024 0.752 0.108
#> GSM414956     6  0.6633    0.25765 0.016 0.000 0.316 0.012 0.236 0.420
#> GSM414958     5  0.3711    0.58254 0.260 0.000 0.000 0.000 0.720 0.020
#> GSM414959     5  0.5934    0.27455 0.240 0.000 0.000 0.008 0.516 0.236
#> GSM414960     1  0.5712   -0.00732 0.440 0.000 0.000 0.004 0.416 0.140
#> GSM414961     3  0.6474    0.22887 0.016 0.000 0.480 0.352 0.112 0.040
#> GSM414962     4  0.2170    0.66877 0.000 0.100 0.000 0.888 0.012 0.000
#> GSM414964     5  0.6120    0.46282 0.020 0.000 0.096 0.148 0.640 0.096
#> GSM414965     5  0.2425    0.70107 0.008 0.000 0.000 0.012 0.880 0.100
#> GSM414967     6  0.2631    0.55852 0.012 0.000 0.000 0.004 0.128 0.856
#> GSM414968     3  0.5316    0.61101 0.144 0.000 0.656 0.180 0.016 0.004
#> GSM414969     4  0.5560    0.08099 0.100 0.000 0.000 0.540 0.344 0.016
#> GSM414971     5  0.3166    0.66676 0.008 0.000 0.000 0.008 0.800 0.184
#> GSM414973     5  0.2666    0.69420 0.092 0.000 0.000 0.008 0.872 0.028
#> GSM414974     2  0.2656    0.82275 0.008 0.884 0.000 0.028 0.072 0.008
#> GSM414928     4  0.2955    0.60850 0.004 0.172 0.000 0.816 0.000 0.008
#> GSM414930     2  0.0146    0.93275 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM414932     4  0.3555    0.56146 0.000 0.000 0.280 0.712 0.000 0.008
#> GSM414934     3  0.0951    0.77357 0.020 0.000 0.968 0.008 0.000 0.004
#> GSM414938     1  0.1534    0.54590 0.944 0.000 0.016 0.004 0.032 0.004
#> GSM414940     3  0.3164    0.74037 0.020 0.000 0.844 0.104 0.000 0.032
#> GSM414942     2  0.0000    0.93504 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414947     2  0.0000    0.93504 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414953     3  0.0146    0.77438 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM414955     3  0.2039    0.77223 0.012 0.000 0.916 0.052 0.000 0.020
#> GSM414957     2  0.0000    0.93504 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414963     3  0.1531    0.77456 0.000 0.000 0.928 0.068 0.000 0.004
#> GSM414966     2  0.0000    0.93504 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414970     4  0.3175    0.60611 0.000 0.000 0.256 0.744 0.000 0.000
#> GSM414972     2  0.0000    0.93504 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414975     2  0.0000    0.93504 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n tissue(p) k
#> MAD:NMF 49  1.92e-04 2
#> MAD:NMF 50  9.68e-05 3
#> MAD:NMF 51  1.30e-04 4
#> MAD:NMF 31  6.10e-05 5
#> MAD:NMF 42  5.57e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.823           0.895       0.959         0.2653 0.792   0.792
#> 3 3 0.965           0.977       0.989         0.4227 0.845   0.805
#> 4 4 0.933           0.946       0.968         0.0693 0.995   0.993
#> 5 5 0.910           0.907       0.967         0.2889 0.842   0.750
#> 6 6 0.832           0.839       0.938         0.0321 0.996   0.992

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 3

There is also optional best \(k\) = 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1   0.000      0.950 1.000 0.000
#> GSM414925     1   0.000      0.950 1.000 0.000
#> GSM414926     1   0.000      0.950 1.000 0.000
#> GSM414927     1   0.985      0.318 0.572 0.428
#> GSM414929     1   0.000      0.950 1.000 0.000
#> GSM414931     1   0.000      0.950 1.000 0.000
#> GSM414933     1   0.000      0.950 1.000 0.000
#> GSM414935     1   0.000      0.950 1.000 0.000
#> GSM414936     1   0.000      0.950 1.000 0.000
#> GSM414937     1   0.000      0.950 1.000 0.000
#> GSM414939     1   0.000      0.950 1.000 0.000
#> GSM414941     1   0.000      0.950 1.000 0.000
#> GSM414943     1   0.000      0.950 1.000 0.000
#> GSM414944     1   0.000      0.950 1.000 0.000
#> GSM414945     1   0.000      0.950 1.000 0.000
#> GSM414946     1   0.000      0.950 1.000 0.000
#> GSM414948     1   0.000      0.950 1.000 0.000
#> GSM414949     1   0.000      0.950 1.000 0.000
#> GSM414950     1   0.000      0.950 1.000 0.000
#> GSM414951     1   0.000      0.950 1.000 0.000
#> GSM414952     1   0.000      0.950 1.000 0.000
#> GSM414954     1   0.000      0.950 1.000 0.000
#> GSM414956     1   0.000      0.950 1.000 0.000
#> GSM414958     1   0.000      0.950 1.000 0.000
#> GSM414959     1   0.000      0.950 1.000 0.000
#> GSM414960     1   0.985      0.318 0.572 0.428
#> GSM414961     1   0.000      0.950 1.000 0.000
#> GSM414962     1   0.985      0.318 0.572 0.428
#> GSM414964     1   0.000      0.950 1.000 0.000
#> GSM414965     1   0.000      0.950 1.000 0.000
#> GSM414967     1   0.000      0.950 1.000 0.000
#> GSM414968     1   0.000      0.950 1.000 0.000
#> GSM414969     1   0.000      0.950 1.000 0.000
#> GSM414971     1   0.000      0.950 1.000 0.000
#> GSM414973     1   0.000      0.950 1.000 0.000
#> GSM414974     1   0.000      0.950 1.000 0.000
#> GSM414928     1   0.985      0.318 0.572 0.428
#> GSM414930     1   0.985      0.318 0.572 0.428
#> GSM414932     1   0.000      0.950 1.000 0.000
#> GSM414934     1   0.000      0.950 1.000 0.000
#> GSM414938     1   0.000      0.950 1.000 0.000
#> GSM414940     1   0.000      0.950 1.000 0.000
#> GSM414942     2   0.000      1.000 0.000 1.000
#> GSM414947     2   0.000      1.000 0.000 1.000
#> GSM414953     1   0.000      0.950 1.000 0.000
#> GSM414955     1   0.000      0.950 1.000 0.000
#> GSM414957     2   0.000      1.000 0.000 1.000
#> GSM414963     1   0.000      0.950 1.000 0.000
#> GSM414966     2   0.000      1.000 0.000 1.000
#> GSM414970     1   0.000      0.950 1.000 0.000
#> GSM414972     2   0.000      1.000 0.000 1.000
#> GSM414975     2   0.000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1 p2    p3
#> GSM414924     1  0.0000      0.985 1.000  0 0.000
#> GSM414925     1  0.0000      0.985 1.000  0 0.000
#> GSM414926     1  0.0000      0.985 1.000  0 0.000
#> GSM414927     3  0.0000      1.000 0.000  0 1.000
#> GSM414929     1  0.0000      0.985 1.000  0 0.000
#> GSM414931     1  0.0000      0.985 1.000  0 0.000
#> GSM414933     1  0.0000      0.985 1.000  0 0.000
#> GSM414935     1  0.0000      0.985 1.000  0 0.000
#> GSM414936     1  0.0000      0.985 1.000  0 0.000
#> GSM414937     1  0.0000      0.985 1.000  0 0.000
#> GSM414939     1  0.0000      0.985 1.000  0 0.000
#> GSM414941     1  0.0000      0.985 1.000  0 0.000
#> GSM414943     1  0.0000      0.985 1.000  0 0.000
#> GSM414944     1  0.0000      0.985 1.000  0 0.000
#> GSM414945     1  0.3038      0.889 0.896  0 0.104
#> GSM414946     1  0.0000      0.985 1.000  0 0.000
#> GSM414948     1  0.0000      0.985 1.000  0 0.000
#> GSM414949     1  0.0000      0.985 1.000  0 0.000
#> GSM414950     1  0.0000      0.985 1.000  0 0.000
#> GSM414951     1  0.0000      0.985 1.000  0 0.000
#> GSM414952     1  0.0000      0.985 1.000  0 0.000
#> GSM414954     1  0.0000      0.985 1.000  0 0.000
#> GSM414956     1  0.0000      0.985 1.000  0 0.000
#> GSM414958     1  0.0000      0.985 1.000  0 0.000
#> GSM414959     1  0.0000      0.985 1.000  0 0.000
#> GSM414960     3  0.0000      1.000 0.000  0 1.000
#> GSM414961     1  0.0000      0.985 1.000  0 0.000
#> GSM414962     3  0.0000      1.000 0.000  0 1.000
#> GSM414964     1  0.0000      0.985 1.000  0 0.000
#> GSM414965     1  0.0000      0.985 1.000  0 0.000
#> GSM414967     1  0.0892      0.969 0.980  0 0.020
#> GSM414968     1  0.0000      0.985 1.000  0 0.000
#> GSM414969     1  0.0000      0.985 1.000  0 0.000
#> GSM414971     1  0.0237      0.982 0.996  0 0.004
#> GSM414973     1  0.0000      0.985 1.000  0 0.000
#> GSM414974     1  0.4291      0.799 0.820  0 0.180
#> GSM414928     3  0.0000      1.000 0.000  0 1.000
#> GSM414930     3  0.0000      1.000 0.000  0 1.000
#> GSM414932     1  0.0000      0.985 1.000  0 0.000
#> GSM414934     1  0.0000      0.985 1.000  0 0.000
#> GSM414938     1  0.0000      0.985 1.000  0 0.000
#> GSM414940     1  0.0000      0.985 1.000  0 0.000
#> GSM414942     2  0.0000      1.000 0.000  1 0.000
#> GSM414947     2  0.0000      1.000 0.000  1 0.000
#> GSM414953     1  0.0000      0.985 1.000  0 0.000
#> GSM414955     1  0.0000      0.985 1.000  0 0.000
#> GSM414957     2  0.0000      1.000 0.000  1 0.000
#> GSM414963     1  0.3686      0.850 0.860  0 0.140
#> GSM414966     2  0.0000      1.000 0.000  1 0.000
#> GSM414970     1  0.3686      0.850 0.860  0 0.140
#> GSM414972     2  0.0000      1.000 0.000  1 0.000
#> GSM414975     2  0.0000      1.000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1 p2    p3    p4
#> GSM414924     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414925     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414926     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414927     4  0.0000      0.982 0.000  0 0.000 1.000
#> GSM414929     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414931     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414933     1  0.1389      0.932 0.952  0 0.048 0.000
#> GSM414935     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414936     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414937     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414939     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414941     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414943     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414944     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414945     1  0.3975      0.735 0.760  0 0.240 0.000
#> GSM414946     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414948     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414949     1  0.1022      0.945 0.968  0 0.032 0.000
#> GSM414950     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414951     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414952     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414954     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414956     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414958     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414959     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414960     3  0.2868      1.000 0.000  0 0.864 0.136
#> GSM414961     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414962     3  0.2868      1.000 0.000  0 0.864 0.136
#> GSM414964     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414965     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414967     1  0.2530      0.878 0.888  0 0.112 0.000
#> GSM414968     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414969     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414971     1  0.2149      0.899 0.912  0 0.088 0.000
#> GSM414973     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414974     1  0.4500      0.620 0.684  0 0.316 0.000
#> GSM414928     4  0.0921      0.964 0.000  0 0.028 0.972
#> GSM414930     4  0.0000      0.982 0.000  0 0.000 1.000
#> GSM414932     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414934     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414938     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414940     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414942     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM414947     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM414953     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414955     1  0.0000      0.966 1.000  0 0.000 0.000
#> GSM414957     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM414963     1  0.4250      0.684 0.724  0 0.276 0.000
#> GSM414966     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM414970     1  0.4250      0.684 0.724  0 0.276 0.000
#> GSM414972     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM414975     2  0.0000      1.000 0.000  1 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1 p2    p3    p4    p5
#> GSM414924     1  0.0162      0.974 0.996  0 0.004 0.000 0.000
#> GSM414925     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414926     1  0.0510      0.964 0.984  0 0.016 0.000 0.000
#> GSM414927     5  0.0000      0.984 0.000  0 0.000 0.000 1.000
#> GSM414929     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414931     1  0.0162      0.974 0.996  0 0.004 0.000 0.000
#> GSM414933     1  0.1544      0.910 0.932  0 0.068 0.000 0.000
#> GSM414935     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414936     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414937     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414939     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414941     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414943     1  0.0162      0.974 0.996  0 0.004 0.000 0.000
#> GSM414944     1  0.0162      0.974 0.996  0 0.004 0.000 0.000
#> GSM414945     3  0.0609      0.575 0.020  0 0.980 0.000 0.000
#> GSM414946     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414948     1  0.0162      0.974 0.996  0 0.004 0.000 0.000
#> GSM414949     3  0.4171      0.367 0.396  0 0.604 0.000 0.000
#> GSM414950     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414951     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414952     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414954     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414956     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414958     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414959     1  0.0162      0.974 0.996  0 0.004 0.000 0.000
#> GSM414960     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> GSM414961     1  0.3274      0.674 0.780  0 0.220 0.000 0.000
#> GSM414962     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> GSM414964     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414965     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414967     3  0.4256      0.322 0.436  0 0.564 0.000 0.000
#> GSM414968     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414969     1  0.0162      0.974 0.996  0 0.004 0.000 0.000
#> GSM414971     1  0.2471      0.820 0.864  0 0.136 0.000 0.000
#> GSM414973     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414974     3  0.1341      0.536 0.000  0 0.944 0.056 0.000
#> GSM414928     5  0.0794      0.968 0.000  0 0.000 0.028 0.972
#> GSM414930     5  0.0000      0.984 0.000  0 0.000 0.000 1.000
#> GSM414932     1  0.3274      0.674 0.780  0 0.220 0.000 0.000
#> GSM414934     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414938     1  0.0510      0.964 0.984  0 0.016 0.000 0.000
#> GSM414940     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414942     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM414947     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM414953     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414955     1  0.0000      0.976 1.000  0 0.000 0.000 0.000
#> GSM414957     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM414963     3  0.0912      0.579 0.012  0 0.972 0.016 0.000
#> GSM414966     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM414970     3  0.0912      0.579 0.012  0 0.972 0.016 0.000
#> GSM414972     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM414975     2  0.0000      1.000 0.000  1 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     5  0.0937      0.941 0.040 0.000 0.000 0.000 0.960 0.000
#> GSM414925     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414926     5  0.1267      0.929 0.060 0.000 0.000 0.000 0.940 0.000
#> GSM414927     4  0.0000      0.987 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM414929     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414931     5  0.1075      0.937 0.048 0.000 0.000 0.000 0.952 0.000
#> GSM414933     5  0.2214      0.880 0.096 0.000 0.016 0.000 0.888 0.000
#> GSM414935     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414936     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414937     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414939     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414941     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414943     5  0.1007      0.939 0.044 0.000 0.000 0.000 0.956 0.000
#> GSM414944     5  0.1075      0.937 0.048 0.000 0.000 0.000 0.952 0.000
#> GSM414945     1  0.3499      0.000 0.680 0.000 0.320 0.000 0.000 0.000
#> GSM414946     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414948     5  0.1007      0.939 0.044 0.000 0.000 0.000 0.956 0.000
#> GSM414949     3  0.4871      0.269 0.072 0.000 0.580 0.000 0.348 0.000
#> GSM414950     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414951     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414952     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414954     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414956     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414958     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414959     5  0.1075      0.937 0.048 0.000 0.000 0.000 0.952 0.000
#> GSM414960     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM414961     5  0.4067      0.617 0.060 0.000 0.212 0.000 0.728 0.000
#> GSM414962     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM414964     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414965     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414967     3  0.5205      0.224 0.096 0.000 0.520 0.000 0.384 0.000
#> GSM414968     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414969     5  0.1075      0.937 0.048 0.000 0.000 0.000 0.952 0.000
#> GSM414971     5  0.3325      0.789 0.096 0.000 0.084 0.000 0.820 0.000
#> GSM414973     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414974     3  0.1074      0.151 0.028 0.000 0.960 0.000 0.000 0.012
#> GSM414928     4  0.0713      0.973 0.028 0.000 0.000 0.972 0.000 0.000
#> GSM414930     4  0.0000      0.987 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM414932     5  0.4067      0.617 0.060 0.000 0.212 0.000 0.728 0.000
#> GSM414934     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414938     5  0.1528      0.927 0.048 0.000 0.016 0.000 0.936 0.000
#> GSM414940     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414942     2  0.0000      0.917 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414947     2  0.3244      0.773 0.268 0.732 0.000 0.000 0.000 0.000
#> GSM414953     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414955     5  0.0000      0.958 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM414957     2  0.2697      0.832 0.188 0.812 0.000 0.000 0.000 0.000
#> GSM414963     3  0.0146      0.188 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM414966     2  0.0000      0.917 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414970     3  0.0146      0.188 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM414972     2  0.0000      0.917 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414975     2  0.0000      0.917 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n tissue(p) k
#> ATC:hclust 47  0.000387 2
#> ATC:hclust 52  0.000313 3
#> ATC:hclust 52  0.000324 4
#> ATC:hclust 50  0.000628 5
#> ATC:hclust 46  0.000229 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.3174 0.683   0.683
#> 3 3 1.000           0.964       0.988         0.4067 0.827   0.753
#> 4 4 0.872           0.738       0.890         0.1553 0.973   0.950
#> 5 5 0.653           0.800       0.880         0.3169 0.751   0.524
#> 6 6 0.764           0.788       0.875         0.0725 0.981   0.934

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM414924     1       0          1  1  0
#> GSM414925     1       0          1  1  0
#> GSM414926     1       0          1  1  0
#> GSM414927     2       0          1  0  1
#> GSM414929     1       0          1  1  0
#> GSM414931     1       0          1  1  0
#> GSM414933     1       0          1  1  0
#> GSM414935     1       0          1  1  0
#> GSM414936     1       0          1  1  0
#> GSM414937     1       0          1  1  0
#> GSM414939     1       0          1  1  0
#> GSM414941     1       0          1  1  0
#> GSM414943     1       0          1  1  0
#> GSM414944     1       0          1  1  0
#> GSM414945     1       0          1  1  0
#> GSM414946     1       0          1  1  0
#> GSM414948     1       0          1  1  0
#> GSM414949     1       0          1  1  0
#> GSM414950     1       0          1  1  0
#> GSM414951     1       0          1  1  0
#> GSM414952     1       0          1  1  0
#> GSM414954     1       0          1  1  0
#> GSM414956     1       0          1  1  0
#> GSM414958     1       0          1  1  0
#> GSM414959     1       0          1  1  0
#> GSM414960     1       0          1  1  0
#> GSM414961     1       0          1  1  0
#> GSM414962     2       0          1  0  1
#> GSM414964     1       0          1  1  0
#> GSM414965     1       0          1  1  0
#> GSM414967     1       0          1  1  0
#> GSM414968     1       0          1  1  0
#> GSM414969     1       0          1  1  0
#> GSM414971     1       0          1  1  0
#> GSM414973     1       0          1  1  0
#> GSM414974     1       0          1  1  0
#> GSM414928     2       0          1  0  1
#> GSM414930     2       0          1  0  1
#> GSM414932     1       0          1  1  0
#> GSM414934     1       0          1  1  0
#> GSM414938     1       0          1  1  0
#> GSM414940     1       0          1  1  0
#> GSM414942     2       0          1  0  1
#> GSM414947     2       0          1  0  1
#> GSM414953     1       0          1  1  0
#> GSM414955     1       0          1  1  0
#> GSM414957     2       0          1  0  1
#> GSM414963     1       0          1  1  0
#> GSM414966     2       0          1  0  1
#> GSM414970     1       0          1  1  0
#> GSM414972     2       0          1  0  1
#> GSM414975     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM414924     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414925     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414926     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414927     3  0.0000      0.864 0.000 0.000 1.000
#> GSM414929     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414931     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414933     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414935     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414936     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414937     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414939     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414941     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414943     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414944     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414945     3  0.6026      0.391 0.376 0.000 0.624
#> GSM414946     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414948     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414949     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414950     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414951     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414952     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414954     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414956     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414958     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414959     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414960     3  0.0000      0.864 0.000 0.000 1.000
#> GSM414961     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414962     3  0.0000      0.864 0.000 0.000 1.000
#> GSM414964     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414965     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414967     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414968     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414969     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414971     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414973     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414974     3  0.0000      0.864 0.000 0.000 1.000
#> GSM414928     3  0.0000      0.864 0.000 0.000 1.000
#> GSM414930     3  0.0424      0.859 0.000 0.008 0.992
#> GSM414932     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414934     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414938     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414940     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414942     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414947     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414953     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414955     1  0.0000      1.000 1.000 0.000 0.000
#> GSM414957     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414963     3  0.3192      0.782 0.112 0.000 0.888
#> GSM414966     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414970     3  0.3192      0.782 0.112 0.000 0.888
#> GSM414972     2  0.0000      1.000 0.000 1.000 0.000
#> GSM414975     2  0.0000      1.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     1  0.0817      0.962 0.976 0.000 0.000 0.024
#> GSM414925     1  0.0000      0.965 1.000 0.000 0.000 0.000
#> GSM414926     1  0.0921      0.961 0.972 0.000 0.000 0.028
#> GSM414927     3  0.4992      0.337 0.000 0.000 0.524 0.476
#> GSM414929     1  0.0817      0.962 0.976 0.000 0.000 0.024
#> GSM414931     1  0.0921      0.961 0.972 0.000 0.000 0.028
#> GSM414933     1  0.1557      0.943 0.944 0.000 0.000 0.056
#> GSM414935     1  0.0000      0.965 1.000 0.000 0.000 0.000
#> GSM414936     1  0.0000      0.965 1.000 0.000 0.000 0.000
#> GSM414937     1  0.0000      0.965 1.000 0.000 0.000 0.000
#> GSM414939     1  0.0000      0.965 1.000 0.000 0.000 0.000
#> GSM414941     1  0.0000      0.965 1.000 0.000 0.000 0.000
#> GSM414943     1  0.0707      0.963 0.980 0.000 0.000 0.020
#> GSM414944     1  0.0817      0.962 0.976 0.000 0.000 0.024
#> GSM414945     3  0.5862     -0.628 0.032 0.000 0.484 0.484
#> GSM414946     1  0.0000      0.965 1.000 0.000 0.000 0.000
#> GSM414948     1  0.0707      0.963 0.980 0.000 0.000 0.020
#> GSM414949     1  0.3649      0.742 0.796 0.000 0.000 0.204
#> GSM414950     1  0.0000      0.965 1.000 0.000 0.000 0.000
#> GSM414951     1  0.0000      0.965 1.000 0.000 0.000 0.000
#> GSM414952     1  0.0469      0.962 0.988 0.000 0.000 0.012
#> GSM414954     1  0.0707      0.963 0.980 0.000 0.000 0.020
#> GSM414956     1  0.0000      0.965 1.000 0.000 0.000 0.000
#> GSM414958     1  0.0817      0.962 0.976 0.000 0.000 0.024
#> GSM414959     1  0.0817      0.962 0.976 0.000 0.000 0.024
#> GSM414960     3  0.4406     -0.196 0.000 0.000 0.700 0.300
#> GSM414961     1  0.3837      0.738 0.776 0.000 0.000 0.224
#> GSM414962     3  0.0000      0.153 0.000 0.000 1.000 0.000
#> GSM414964     1  0.0000      0.965 1.000 0.000 0.000 0.000
#> GSM414965     1  0.0707      0.963 0.980 0.000 0.000 0.020
#> GSM414967     4  0.6791      0.000 0.100 0.000 0.392 0.508
#> GSM414968     1  0.0469      0.962 0.988 0.000 0.000 0.012
#> GSM414969     1  0.1474      0.951 0.948 0.000 0.000 0.052
#> GSM414971     1  0.3975      0.704 0.760 0.000 0.000 0.240
#> GSM414973     1  0.0707      0.963 0.980 0.000 0.000 0.020
#> GSM414974     3  0.4967     -0.423 0.000 0.000 0.548 0.452
#> GSM414928     3  0.4992      0.337 0.000 0.000 0.524 0.476
#> GSM414930     3  0.5161      0.336 0.000 0.004 0.520 0.476
#> GSM414932     1  0.0592      0.961 0.984 0.000 0.000 0.016
#> GSM414934     1  0.0469      0.962 0.988 0.000 0.000 0.012
#> GSM414938     1  0.1792      0.938 0.932 0.000 0.000 0.068
#> GSM414940     1  0.0469      0.962 0.988 0.000 0.000 0.012
#> GSM414942     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM414947     2  0.3801      0.768 0.000 0.780 0.000 0.220
#> GSM414953     1  0.0469      0.962 0.988 0.000 0.000 0.012
#> GSM414955     1  0.0469      0.962 0.988 0.000 0.000 0.012
#> GSM414957     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM414963     3  0.5168     -0.507 0.004 0.000 0.500 0.496
#> GSM414966     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM414970     3  0.5168     -0.507 0.004 0.000 0.500 0.496
#> GSM414972     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM414975     2  0.0000      0.958 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     1  0.3707      0.761 0.716 0.000 0.000 0.000 0.284
#> GSM414925     5  0.0162      0.911 0.004 0.000 0.000 0.000 0.996
#> GSM414926     1  0.3039      0.836 0.808 0.000 0.000 0.000 0.192
#> GSM414927     4  0.0000      0.998 0.000 0.000 0.000 1.000 0.000
#> GSM414929     1  0.4287      0.422 0.540 0.000 0.000 0.000 0.460
#> GSM414931     1  0.3074      0.835 0.804 0.000 0.000 0.000 0.196
#> GSM414933     1  0.2891      0.830 0.824 0.000 0.000 0.000 0.176
#> GSM414935     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000
#> GSM414936     5  0.0162      0.911 0.004 0.000 0.000 0.000 0.996
#> GSM414937     5  0.0162      0.911 0.004 0.000 0.000 0.000 0.996
#> GSM414939     5  0.0162      0.911 0.004 0.000 0.000 0.000 0.996
#> GSM414941     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000
#> GSM414943     5  0.3039      0.694 0.192 0.000 0.000 0.000 0.808
#> GSM414944     1  0.3039      0.836 0.808 0.000 0.000 0.000 0.192
#> GSM414945     3  0.3814      0.627 0.276 0.000 0.720 0.000 0.004
#> GSM414946     5  0.0162      0.911 0.004 0.000 0.000 0.000 0.996
#> GSM414948     5  0.4074      0.268 0.364 0.000 0.000 0.000 0.636
#> GSM414949     1  0.5798      0.509 0.604 0.000 0.148 0.000 0.248
#> GSM414950     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000
#> GSM414951     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000
#> GSM414952     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000
#> GSM414954     5  0.2230      0.803 0.116 0.000 0.000 0.000 0.884
#> GSM414956     5  0.0162      0.911 0.004 0.000 0.000 0.000 0.996
#> GSM414958     5  0.3774      0.474 0.296 0.000 0.000 0.000 0.704
#> GSM414959     1  0.3983      0.681 0.660 0.000 0.000 0.000 0.340
#> GSM414960     3  0.3359      0.746 0.072 0.000 0.844 0.084 0.000
#> GSM414961     1  0.3123      0.832 0.812 0.000 0.004 0.000 0.184
#> GSM414962     3  0.4424      0.603 0.048 0.000 0.728 0.224 0.000
#> GSM414964     5  0.2230      0.803 0.116 0.000 0.000 0.000 0.884
#> GSM414965     5  0.0609      0.899 0.020 0.000 0.000 0.000 0.980
#> GSM414967     1  0.3656      0.442 0.784 0.000 0.196 0.000 0.020
#> GSM414968     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000
#> GSM414969     1  0.3003      0.835 0.812 0.000 0.000 0.000 0.188
#> GSM414971     1  0.2848      0.814 0.840 0.000 0.004 0.000 0.156
#> GSM414973     5  0.3730      0.493 0.288 0.000 0.000 0.000 0.712
#> GSM414974     3  0.1430      0.830 0.052 0.000 0.944 0.004 0.000
#> GSM414928     4  0.0162      0.996 0.000 0.000 0.004 0.996 0.000
#> GSM414930     4  0.0000      0.998 0.000 0.000 0.000 1.000 0.000
#> GSM414932     1  0.4307      0.320 0.500 0.000 0.000 0.000 0.500
#> GSM414934     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000
#> GSM414938     1  0.2719      0.793 0.852 0.000 0.004 0.000 0.144
#> GSM414940     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000
#> GSM414942     2  0.0000      0.942 0.000 1.000 0.000 0.000 0.000
#> GSM414947     2  0.4221      0.672 0.032 0.732 0.000 0.236 0.000
#> GSM414953     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000
#> GSM414955     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000
#> GSM414957     2  0.0880      0.928 0.032 0.968 0.000 0.000 0.000
#> GSM414963     3  0.1410      0.831 0.060 0.000 0.940 0.000 0.000
#> GSM414966     2  0.0000      0.942 0.000 1.000 0.000 0.000 0.000
#> GSM414970     3  0.1478      0.831 0.064 0.000 0.936 0.000 0.000
#> GSM414972     2  0.0000      0.942 0.000 1.000 0.000 0.000 0.000
#> GSM414975     2  0.0000      0.942 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     1  0.1610      0.857 0.916 0.000 0.000 0.000 0.084 0.000
#> GSM414925     5  0.0622      0.868 0.008 0.000 0.000 0.012 0.980 0.000
#> GSM414926     1  0.1267      0.863 0.940 0.000 0.000 0.000 0.060 0.000
#> GSM414927     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM414929     1  0.3515      0.521 0.676 0.000 0.000 0.000 0.324 0.000
#> GSM414931     1  0.2609      0.841 0.868 0.000 0.000 0.036 0.096 0.000
#> GSM414933     1  0.1151      0.850 0.956 0.000 0.000 0.012 0.032 0.000
#> GSM414935     5  0.0146      0.867 0.004 0.000 0.000 0.000 0.996 0.000
#> GSM414936     5  0.0972      0.866 0.008 0.000 0.000 0.028 0.964 0.000
#> GSM414937     5  0.0972      0.862 0.008 0.000 0.000 0.028 0.964 0.000
#> GSM414939     5  0.1074      0.861 0.012 0.000 0.000 0.028 0.960 0.000
#> GSM414941     5  0.0622      0.868 0.008 0.000 0.000 0.012 0.980 0.000
#> GSM414943     5  0.3970      0.573 0.280 0.000 0.000 0.028 0.692 0.000
#> GSM414944     1  0.1524      0.864 0.932 0.000 0.000 0.008 0.060 0.000
#> GSM414945     3  0.3566      0.498 0.024 0.000 0.752 0.224 0.000 0.000
#> GSM414946     5  0.0622      0.868 0.008 0.000 0.000 0.012 0.980 0.000
#> GSM414948     5  0.4417      0.231 0.416 0.000 0.000 0.028 0.556 0.000
#> GSM414949     3  0.6422      0.248 0.336 0.000 0.484 0.084 0.096 0.000
#> GSM414950     5  0.1610      0.851 0.000 0.000 0.000 0.084 0.916 0.000
#> GSM414951     5  0.0713      0.865 0.000 0.000 0.000 0.028 0.972 0.000
#> GSM414952     5  0.1663      0.850 0.000 0.000 0.000 0.088 0.912 0.000
#> GSM414954     5  0.2988      0.769 0.144 0.000 0.000 0.028 0.828 0.000
#> GSM414956     5  0.1074      0.861 0.012 0.000 0.000 0.028 0.960 0.000
#> GSM414958     5  0.3990      0.569 0.284 0.000 0.000 0.028 0.688 0.000
#> GSM414959     1  0.2618      0.831 0.860 0.000 0.000 0.024 0.116 0.000
#> GSM414960     4  0.4507      0.973 0.012 0.000 0.372 0.596 0.000 0.020
#> GSM414961     1  0.2138      0.853 0.908 0.000 0.004 0.036 0.052 0.000
#> GSM414962     4  0.4432      0.973 0.000 0.000 0.364 0.600 0.000 0.036
#> GSM414964     5  0.2909      0.777 0.136 0.000 0.000 0.028 0.836 0.000
#> GSM414965     5  0.1970      0.838 0.060 0.000 0.000 0.028 0.912 0.000
#> GSM414967     1  0.1434      0.788 0.940 0.000 0.048 0.012 0.000 0.000
#> GSM414968     5  0.1918      0.846 0.008 0.000 0.000 0.088 0.904 0.000
#> GSM414969     1  0.1007      0.860 0.956 0.000 0.000 0.000 0.044 0.000
#> GSM414971     1  0.1793      0.849 0.928 0.000 0.004 0.032 0.036 0.000
#> GSM414973     5  0.3950      0.584 0.276 0.000 0.000 0.028 0.696 0.000
#> GSM414974     3  0.0547      0.637 0.020 0.000 0.980 0.000 0.000 0.000
#> GSM414928     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM414930     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM414932     1  0.5123      0.155 0.508 0.000 0.000 0.084 0.408 0.000
#> GSM414934     5  0.2070      0.842 0.008 0.000 0.000 0.100 0.892 0.000
#> GSM414938     1  0.1523      0.852 0.940 0.000 0.008 0.008 0.044 0.000
#> GSM414940     5  0.2070      0.842 0.008 0.000 0.000 0.100 0.892 0.000
#> GSM414942     2  0.0000      0.934 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414947     2  0.4346      0.658 0.020 0.712 0.000 0.036 0.000 0.232
#> GSM414953     5  0.1663      0.850 0.000 0.000 0.000 0.088 0.912 0.000
#> GSM414955     5  0.1663      0.850 0.000 0.000 0.000 0.088 0.912 0.000
#> GSM414957     2  0.1408      0.909 0.020 0.944 0.000 0.036 0.000 0.000
#> GSM414963     3  0.0547      0.637 0.020 0.000 0.980 0.000 0.000 0.000
#> GSM414966     2  0.0000      0.934 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414970     3  0.0547      0.637 0.020 0.000 0.980 0.000 0.000 0.000
#> GSM414972     2  0.0000      0.934 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414975     2  0.0000      0.934 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n tissue(p) k
#> ATC:kmeans 52  0.000746 2
#> ATC:kmeans 51  0.000103 3
#> ATC:kmeans 42  0.000220 4
#> ATC:kmeans 46  0.001128 5
#> ATC:kmeans 48  0.000460 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.991       0.996         0.4157 0.581   0.581
#> 3 3 0.675           0.696       0.869         0.2719 0.973   0.953
#> 4 4 0.613           0.737       0.846         0.0979 0.936   0.885
#> 5 5 0.535           0.669       0.804         0.0801 0.956   0.910
#> 6 6 0.583           0.321       0.730         0.0584 0.913   0.806

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette  p1  p2
#> GSM414924     1   0.000      1.000 1.0 0.0
#> GSM414925     1   0.000      1.000 1.0 0.0
#> GSM414926     1   0.000      1.000 1.0 0.0
#> GSM414927     2   0.000      0.986 0.0 1.0
#> GSM414929     1   0.000      1.000 1.0 0.0
#> GSM414931     1   0.000      1.000 1.0 0.0
#> GSM414933     1   0.000      1.000 1.0 0.0
#> GSM414935     1   0.000      1.000 1.0 0.0
#> GSM414936     1   0.000      1.000 1.0 0.0
#> GSM414937     1   0.000      1.000 1.0 0.0
#> GSM414939     1   0.000      1.000 1.0 0.0
#> GSM414941     1   0.000      1.000 1.0 0.0
#> GSM414943     1   0.000      1.000 1.0 0.0
#> GSM414944     1   0.000      1.000 1.0 0.0
#> GSM414945     2   0.722      0.750 0.2 0.8
#> GSM414946     1   0.000      1.000 1.0 0.0
#> GSM414948     1   0.000      1.000 1.0 0.0
#> GSM414949     1   0.000      1.000 1.0 0.0
#> GSM414950     1   0.000      1.000 1.0 0.0
#> GSM414951     1   0.000      1.000 1.0 0.0
#> GSM414952     1   0.000      1.000 1.0 0.0
#> GSM414954     1   0.000      1.000 1.0 0.0
#> GSM414956     1   0.000      1.000 1.0 0.0
#> GSM414958     1   0.000      1.000 1.0 0.0
#> GSM414959     1   0.000      1.000 1.0 0.0
#> GSM414960     2   0.000      0.986 0.0 1.0
#> GSM414961     1   0.000      1.000 1.0 0.0
#> GSM414962     2   0.000      0.986 0.0 1.0
#> GSM414964     1   0.000      1.000 1.0 0.0
#> GSM414965     1   0.000      1.000 1.0 0.0
#> GSM414967     1   0.000      1.000 1.0 0.0
#> GSM414968     1   0.000      1.000 1.0 0.0
#> GSM414969     1   0.000      1.000 1.0 0.0
#> GSM414971     1   0.000      1.000 1.0 0.0
#> GSM414973     1   0.000      1.000 1.0 0.0
#> GSM414974     2   0.000      0.986 0.0 1.0
#> GSM414928     2   0.000      0.986 0.0 1.0
#> GSM414930     2   0.000      0.986 0.0 1.0
#> GSM414932     1   0.000      1.000 1.0 0.0
#> GSM414934     1   0.000      1.000 1.0 0.0
#> GSM414938     1   0.000      1.000 1.0 0.0
#> GSM414940     1   0.000      1.000 1.0 0.0
#> GSM414942     2   0.000      0.986 0.0 1.0
#> GSM414947     2   0.000      0.986 0.0 1.0
#> GSM414953     1   0.000      1.000 1.0 0.0
#> GSM414955     1   0.000      1.000 1.0 0.0
#> GSM414957     2   0.000      0.986 0.0 1.0
#> GSM414963     2   0.000      0.986 0.0 1.0
#> GSM414966     2   0.000      0.986 0.0 1.0
#> GSM414970     2   0.000      0.986 0.0 1.0
#> GSM414972     2   0.000      0.986 0.0 1.0
#> GSM414975     2   0.000      0.986 0.0 1.0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM414924     1  0.3267      0.697 0.884 0.000 0.116
#> GSM414925     1  0.2448      0.741 0.924 0.000 0.076
#> GSM414926     1  0.3482      0.654 0.872 0.000 0.128
#> GSM414927     2  0.0000      0.971 0.000 1.000 0.000
#> GSM414929     1  0.2796      0.696 0.908 0.000 0.092
#> GSM414931     1  0.4750      0.450 0.784 0.000 0.216
#> GSM414933     1  0.6026     -0.370 0.624 0.000 0.376
#> GSM414935     1  0.3619      0.720 0.864 0.000 0.136
#> GSM414936     1  0.1860      0.744 0.948 0.000 0.052
#> GSM414937     1  0.0892      0.736 0.980 0.000 0.020
#> GSM414939     1  0.1163      0.733 0.972 0.000 0.028
#> GSM414941     1  0.2711      0.737 0.912 0.000 0.088
#> GSM414943     1  0.1643      0.724 0.956 0.000 0.044
#> GSM414944     1  0.4702      0.468 0.788 0.000 0.212
#> GSM414945     2  0.6489      0.507 0.004 0.540 0.456
#> GSM414946     1  0.2356      0.741 0.928 0.000 0.072
#> GSM414948     1  0.3267      0.669 0.884 0.000 0.116
#> GSM414949     1  0.6225      0.105 0.568 0.000 0.432
#> GSM414950     1  0.3816      0.713 0.852 0.000 0.148
#> GSM414951     1  0.3816      0.713 0.852 0.000 0.148
#> GSM414952     1  0.3816      0.713 0.852 0.000 0.148
#> GSM414954     1  0.1411      0.729 0.964 0.000 0.036
#> GSM414956     1  0.1163      0.733 0.972 0.000 0.028
#> GSM414958     1  0.3412      0.659 0.876 0.000 0.124
#> GSM414959     1  0.3412      0.659 0.876 0.000 0.124
#> GSM414960     2  0.0424      0.967 0.000 0.992 0.008
#> GSM414961     1  0.2261      0.738 0.932 0.000 0.068
#> GSM414962     2  0.0000      0.971 0.000 1.000 0.000
#> GSM414964     1  0.0592      0.742 0.988 0.000 0.012
#> GSM414965     1  0.3192      0.673 0.888 0.000 0.112
#> GSM414967     3  0.6244      0.000 0.440 0.000 0.560
#> GSM414968     1  0.3816      0.713 0.852 0.000 0.148
#> GSM414969     1  0.3686      0.656 0.860 0.000 0.140
#> GSM414971     1  0.6026     -0.380 0.624 0.000 0.376
#> GSM414973     1  0.3412      0.659 0.876 0.000 0.124
#> GSM414974     2  0.0000      0.971 0.000 1.000 0.000
#> GSM414928     2  0.0000      0.971 0.000 1.000 0.000
#> GSM414930     2  0.0000      0.971 0.000 1.000 0.000
#> GSM414932     1  0.3816      0.713 0.852 0.000 0.148
#> GSM414934     1  0.3816      0.713 0.852 0.000 0.148
#> GSM414938     1  0.5529      0.572 0.704 0.000 0.296
#> GSM414940     1  0.3816      0.713 0.852 0.000 0.148
#> GSM414942     2  0.0000      0.971 0.000 1.000 0.000
#> GSM414947     2  0.0000      0.971 0.000 1.000 0.000
#> GSM414953     1  0.3816      0.713 0.852 0.000 0.148
#> GSM414955     1  0.3816      0.713 0.852 0.000 0.148
#> GSM414957     2  0.0000      0.971 0.000 1.000 0.000
#> GSM414963     2  0.0747      0.963 0.000 0.984 0.016
#> GSM414966     2  0.0000      0.971 0.000 1.000 0.000
#> GSM414970     2  0.0892      0.961 0.000 0.980 0.020
#> GSM414972     2  0.0000      0.971 0.000 1.000 0.000
#> GSM414975     2  0.0000      0.971 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     1  0.3697    0.79149 0.852 0.000 0.048 0.100
#> GSM414925     1  0.2469    0.80314 0.892 0.000 0.108 0.000
#> GSM414926     1  0.3249    0.74691 0.852 0.000 0.008 0.140
#> GSM414927     2  0.0000    0.93014 0.000 1.000 0.000 0.000
#> GSM414929     1  0.3051    0.79748 0.884 0.000 0.028 0.088
#> GSM414931     1  0.3311    0.69774 0.828 0.000 0.000 0.172
#> GSM414933     1  0.4992   -0.20094 0.524 0.000 0.000 0.476
#> GSM414935     1  0.3528    0.77029 0.808 0.000 0.192 0.000
#> GSM414936     1  0.1824    0.81144 0.936 0.000 0.060 0.004
#> GSM414937     1  0.0657    0.80797 0.984 0.000 0.004 0.012
#> GSM414939     1  0.1118    0.80129 0.964 0.000 0.000 0.036
#> GSM414941     1  0.2868    0.79558 0.864 0.000 0.136 0.000
#> GSM414943     1  0.1637    0.79249 0.940 0.000 0.000 0.060
#> GSM414944     1  0.3448    0.71275 0.828 0.000 0.004 0.168
#> GSM414945     3  0.6603    0.00510 0.000 0.328 0.572 0.100
#> GSM414946     1  0.2530    0.80555 0.896 0.000 0.100 0.004
#> GSM414948     1  0.2081    0.78116 0.916 0.000 0.000 0.084
#> GSM414949     3  0.4250   -0.00485 0.276 0.000 0.724 0.000
#> GSM414950     1  0.3873    0.74938 0.772 0.000 0.228 0.000
#> GSM414951     1  0.3764    0.75711 0.784 0.000 0.216 0.000
#> GSM414952     1  0.3907    0.74687 0.768 0.000 0.232 0.000
#> GSM414954     1  0.1389    0.79701 0.952 0.000 0.000 0.048
#> GSM414956     1  0.0707    0.80508 0.980 0.000 0.000 0.020
#> GSM414958     1  0.2408    0.76732 0.896 0.000 0.000 0.104
#> GSM414959     1  0.2593    0.76518 0.892 0.000 0.004 0.104
#> GSM414960     2  0.1211    0.89777 0.000 0.960 0.000 0.040
#> GSM414961     1  0.3239    0.79776 0.880 0.000 0.068 0.052
#> GSM414962     2  0.0000    0.93014 0.000 1.000 0.000 0.000
#> GSM414964     1  0.1209    0.81266 0.964 0.000 0.032 0.004
#> GSM414965     1  0.2081    0.78118 0.916 0.000 0.000 0.084
#> GSM414967     4  0.2928    0.57056 0.108 0.000 0.012 0.880
#> GSM414968     1  0.3907    0.74687 0.768 0.000 0.232 0.000
#> GSM414969     1  0.3734    0.78237 0.848 0.000 0.044 0.108
#> GSM414971     4  0.4477    0.60189 0.312 0.000 0.000 0.688
#> GSM414973     1  0.2149    0.77916 0.912 0.000 0.000 0.088
#> GSM414974     2  0.0000    0.93014 0.000 1.000 0.000 0.000
#> GSM414928     2  0.0000    0.93014 0.000 1.000 0.000 0.000
#> GSM414930     2  0.0000    0.93014 0.000 1.000 0.000 0.000
#> GSM414932     1  0.3907    0.74687 0.768 0.000 0.232 0.000
#> GSM414934     1  0.3907    0.74687 0.768 0.000 0.232 0.000
#> GSM414938     1  0.6916    0.54483 0.588 0.000 0.236 0.176
#> GSM414940     1  0.3907    0.74687 0.768 0.000 0.232 0.000
#> GSM414942     2  0.0000    0.93014 0.000 1.000 0.000 0.000
#> GSM414947     2  0.0000    0.93014 0.000 1.000 0.000 0.000
#> GSM414953     1  0.3907    0.74687 0.768 0.000 0.232 0.000
#> GSM414955     1  0.3907    0.74687 0.768 0.000 0.232 0.000
#> GSM414957     2  0.0000    0.93014 0.000 1.000 0.000 0.000
#> GSM414963     2  0.6617    0.45523 0.000 0.600 0.280 0.120
#> GSM414966     2  0.0000    0.93014 0.000 1.000 0.000 0.000
#> GSM414970     2  0.6753    0.47974 0.000 0.608 0.228 0.164
#> GSM414972     2  0.0000    0.93014 0.000 1.000 0.000 0.000
#> GSM414975     2  0.0000    0.93014 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     1  0.4244     0.6953 0.804 0.000 0.024 0.104 0.068
#> GSM414925     1  0.3132     0.7250 0.820 0.000 0.000 0.172 0.008
#> GSM414926     1  0.4209     0.6127 0.804 0.000 0.032 0.044 0.120
#> GSM414927     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000
#> GSM414929     1  0.3410     0.7148 0.856 0.000 0.016 0.076 0.052
#> GSM414931     1  0.3851     0.4308 0.768 0.000 0.016 0.004 0.212
#> GSM414933     5  0.5010     0.2120 0.484 0.000 0.012 0.012 0.492
#> GSM414935     1  0.3586     0.6999 0.736 0.000 0.000 0.264 0.000
#> GSM414936     1  0.2233     0.7353 0.892 0.000 0.000 0.104 0.004
#> GSM414937     1  0.0880     0.7251 0.968 0.000 0.000 0.032 0.000
#> GSM414939     1  0.0671     0.7192 0.980 0.000 0.000 0.016 0.004
#> GSM414941     1  0.3461     0.7125 0.772 0.000 0.000 0.224 0.004
#> GSM414943     1  0.2026     0.6846 0.924 0.000 0.012 0.008 0.056
#> GSM414944     1  0.4000     0.5440 0.784 0.000 0.016 0.020 0.180
#> GSM414945     4  0.7160    -0.3501 0.000 0.216 0.176 0.540 0.068
#> GSM414946     1  0.3039     0.7288 0.836 0.000 0.000 0.152 0.012
#> GSM414948     1  0.2228     0.6612 0.908 0.000 0.012 0.004 0.076
#> GSM414949     4  0.3760     0.0913 0.188 0.000 0.028 0.784 0.000
#> GSM414950     1  0.4088     0.6371 0.632 0.000 0.000 0.368 0.000
#> GSM414951     1  0.3661     0.6958 0.724 0.000 0.000 0.276 0.000
#> GSM414952     1  0.4114     0.6310 0.624 0.000 0.000 0.376 0.000
#> GSM414954     1  0.1195     0.7074 0.960 0.000 0.000 0.012 0.028
#> GSM414956     1  0.0898     0.7190 0.972 0.000 0.000 0.020 0.008
#> GSM414958     1  0.2352     0.6535 0.896 0.000 0.004 0.008 0.092
#> GSM414959     1  0.2588     0.6461 0.884 0.000 0.008 0.008 0.100
#> GSM414960     2  0.4185     0.6422 0.000 0.796 0.112 0.008 0.084
#> GSM414961     1  0.4141     0.6377 0.800 0.000 0.008 0.088 0.104
#> GSM414962     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000
#> GSM414964     1  0.1792     0.7341 0.916 0.000 0.000 0.084 0.000
#> GSM414965     1  0.1571     0.6835 0.936 0.000 0.000 0.004 0.060
#> GSM414967     5  0.3175     0.0767 0.040 0.000 0.044 0.040 0.876
#> GSM414968     1  0.4114     0.6354 0.624 0.000 0.000 0.376 0.000
#> GSM414969     1  0.4249     0.6780 0.792 0.000 0.008 0.100 0.100
#> GSM414971     5  0.4269     0.4652 0.300 0.000 0.016 0.000 0.684
#> GSM414973     1  0.2037     0.6746 0.920 0.000 0.004 0.012 0.064
#> GSM414974     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000
#> GSM414928     2  0.0162     0.9696 0.000 0.996 0.000 0.004 0.000
#> GSM414930     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000
#> GSM414932     1  0.4114     0.6310 0.624 0.000 0.000 0.376 0.000
#> GSM414934     1  0.4138     0.6241 0.616 0.000 0.000 0.384 0.000
#> GSM414938     1  0.7387     0.2519 0.464 0.000 0.064 0.312 0.160
#> GSM414940     1  0.4126     0.6282 0.620 0.000 0.000 0.380 0.000
#> GSM414942     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000
#> GSM414947     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000
#> GSM414953     1  0.4114     0.6310 0.624 0.000 0.000 0.376 0.000
#> GSM414955     1  0.4114     0.6310 0.624 0.000 0.000 0.376 0.000
#> GSM414957     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000
#> GSM414963     3  0.4805     0.7116 0.000 0.312 0.648 0.040 0.000
#> GSM414966     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000
#> GSM414970     3  0.4192     0.7108 0.000 0.232 0.736 0.000 0.032
#> GSM414972     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000
#> GSM414975     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     5  0.5268    -0.0915 0.312 0.000 0.004 0.052 0.604 0.028
#> GSM414925     5  0.3030     0.3550 0.168 0.000 0.000 0.008 0.816 0.008
#> GSM414926     1  0.5301     0.5726 0.476 0.000 0.000 0.044 0.452 0.028
#> GSM414927     2  0.0000     0.9719 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414929     5  0.4490    -0.1686 0.348 0.000 0.000 0.028 0.616 0.008
#> GSM414931     1  0.5258     0.5591 0.540 0.000 0.000 0.004 0.364 0.092
#> GSM414933     6  0.6111     0.2884 0.312 0.000 0.000 0.016 0.188 0.484
#> GSM414935     5  0.2346     0.3961 0.124 0.000 0.000 0.008 0.868 0.000
#> GSM414936     5  0.3290     0.2119 0.252 0.000 0.000 0.000 0.744 0.004
#> GSM414937     5  0.3578    -0.1042 0.340 0.000 0.000 0.000 0.660 0.000
#> GSM414939     5  0.3747    -0.3004 0.396 0.000 0.000 0.000 0.604 0.000
#> GSM414941     5  0.2482     0.3770 0.148 0.000 0.000 0.000 0.848 0.004
#> GSM414943     5  0.3982    -0.5659 0.460 0.000 0.000 0.000 0.536 0.004
#> GSM414944     5  0.5604    -0.5783 0.436 0.000 0.000 0.012 0.452 0.100
#> GSM414945     4  0.3653    -0.1939 0.000 0.132 0.048 0.804 0.000 0.016
#> GSM414946     5  0.3262     0.3222 0.196 0.000 0.000 0.008 0.788 0.008
#> GSM414948     1  0.3998     0.5985 0.504 0.000 0.000 0.000 0.492 0.004
#> GSM414949     4  0.5975     0.1630 0.072 0.000 0.044 0.460 0.420 0.004
#> GSM414950     5  0.0363     0.4392 0.000 0.000 0.000 0.012 0.988 0.000
#> GSM414951     5  0.2313     0.4138 0.100 0.000 0.000 0.012 0.884 0.004
#> GSM414952     5  0.1320     0.4348 0.016 0.000 0.000 0.036 0.948 0.000
#> GSM414954     5  0.3833    -0.4796 0.444 0.000 0.000 0.000 0.556 0.000
#> GSM414956     5  0.3747    -0.3046 0.396 0.000 0.000 0.000 0.604 0.000
#> GSM414958     5  0.4264    -0.6632 0.488 0.000 0.000 0.000 0.496 0.016
#> GSM414959     1  0.4709     0.6330 0.488 0.000 0.004 0.012 0.480 0.016
#> GSM414960     2  0.5025     0.6360 0.088 0.736 0.096 0.012 0.000 0.068
#> GSM414961     5  0.4776    -0.2636 0.412 0.000 0.004 0.008 0.548 0.028
#> GSM414962     2  0.0603     0.9560 0.016 0.980 0.000 0.004 0.000 0.000
#> GSM414964     5  0.3266     0.1526 0.272 0.000 0.000 0.000 0.728 0.000
#> GSM414965     5  0.3986    -0.5660 0.464 0.000 0.000 0.004 0.532 0.000
#> GSM414967     6  0.1257     0.0876 0.020 0.000 0.000 0.028 0.000 0.952
#> GSM414968     5  0.1492     0.4351 0.036 0.000 0.000 0.024 0.940 0.000
#> GSM414969     5  0.5418    -0.1752 0.348 0.000 0.004 0.060 0.564 0.024
#> GSM414971     6  0.4809     0.4328 0.412 0.000 0.008 0.008 0.024 0.548
#> GSM414973     5  0.3995    -0.5957 0.480 0.000 0.000 0.004 0.516 0.000
#> GSM414974     2  0.0146     0.9690 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM414928     2  0.0000     0.9719 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414930     2  0.0000     0.9719 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414932     5  0.2389     0.4184 0.060 0.000 0.000 0.052 0.888 0.000
#> GSM414934     5  0.2134     0.4132 0.044 0.000 0.000 0.052 0.904 0.000
#> GSM414938     5  0.6525     0.0772 0.144 0.000 0.004 0.280 0.512 0.060
#> GSM414940     5  0.2066     0.4179 0.040 0.000 0.000 0.052 0.908 0.000
#> GSM414942     2  0.0000     0.9719 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414947     2  0.0000     0.9719 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414953     5  0.1564     0.4300 0.024 0.000 0.000 0.040 0.936 0.000
#> GSM414955     5  0.1391     0.4350 0.016 0.000 0.000 0.040 0.944 0.000
#> GSM414957     2  0.0000     0.9719 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414963     3  0.2937     0.6841 0.000 0.096 0.848 0.056 0.000 0.000
#> GSM414966     2  0.0000     0.9719 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414970     3  0.4749     0.6929 0.144 0.076 0.740 0.012 0.000 0.028
#> GSM414972     2  0.0000     0.9719 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM414975     2  0.0000     0.9719 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n tissue(p) k
#> ATC:skmeans 52  0.001197 2
#> ATC:skmeans 46  0.004682 3
#> ATC:skmeans 47  0.004568 4
#> ATC:skmeans 45  0.000855 5
#> ATC:skmeans 18  0.027324 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.999       1.000         0.2668 0.735   0.735
#> 3 3 1.000           0.958       0.983         0.4477 0.894   0.856
#> 4 4 0.966           0.926       0.963         0.2693 0.872   0.801
#> 5 5 0.822           0.914       0.947         0.0556 0.994   0.989
#> 6 6 0.750           0.900       0.929         0.0252 0.998   0.996

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1  0.0000      0.999 1.000 0.000
#> GSM414925     1  0.0000      0.999 1.000 0.000
#> GSM414926     1  0.0000      0.999 1.000 0.000
#> GSM414927     2  0.0000      1.000 0.000 1.000
#> GSM414929     1  0.0000      0.999 1.000 0.000
#> GSM414931     1  0.0000      0.999 1.000 0.000
#> GSM414933     1  0.0000      0.999 1.000 0.000
#> GSM414935     1  0.0000      0.999 1.000 0.000
#> GSM414936     1  0.0000      0.999 1.000 0.000
#> GSM414937     1  0.0000      0.999 1.000 0.000
#> GSM414939     1  0.0000      0.999 1.000 0.000
#> GSM414941     1  0.0000      0.999 1.000 0.000
#> GSM414943     1  0.0000      0.999 1.000 0.000
#> GSM414944     1  0.0000      0.999 1.000 0.000
#> GSM414945     1  0.0000      0.999 1.000 0.000
#> GSM414946     1  0.0000      0.999 1.000 0.000
#> GSM414948     1  0.0000      0.999 1.000 0.000
#> GSM414949     1  0.0000      0.999 1.000 0.000
#> GSM414950     1  0.0000      0.999 1.000 0.000
#> GSM414951     1  0.0000      0.999 1.000 0.000
#> GSM414952     1  0.0000      0.999 1.000 0.000
#> GSM414954     1  0.0000      0.999 1.000 0.000
#> GSM414956     1  0.0000      0.999 1.000 0.000
#> GSM414958     1  0.0000      0.999 1.000 0.000
#> GSM414959     1  0.0000      0.999 1.000 0.000
#> GSM414960     1  0.0000      0.999 1.000 0.000
#> GSM414961     1  0.0000      0.999 1.000 0.000
#> GSM414962     1  0.0938      0.988 0.988 0.012
#> GSM414964     1  0.0000      0.999 1.000 0.000
#> GSM414965     1  0.0000      0.999 1.000 0.000
#> GSM414967     1  0.0000      0.999 1.000 0.000
#> GSM414968     1  0.0000      0.999 1.000 0.000
#> GSM414969     1  0.0000      0.999 1.000 0.000
#> GSM414971     1  0.0000      0.999 1.000 0.000
#> GSM414973     1  0.0000      0.999 1.000 0.000
#> GSM414974     1  0.0000      0.999 1.000 0.000
#> GSM414928     1  0.0938      0.988 0.988 0.012
#> GSM414930     2  0.0000      1.000 0.000 1.000
#> GSM414932     1  0.0000      0.999 1.000 0.000
#> GSM414934     1  0.0000      0.999 1.000 0.000
#> GSM414938     1  0.0000      0.999 1.000 0.000
#> GSM414940     1  0.0000      0.999 1.000 0.000
#> GSM414942     2  0.0000      1.000 0.000 1.000
#> GSM414947     2  0.0000      1.000 0.000 1.000
#> GSM414953     1  0.0000      0.999 1.000 0.000
#> GSM414955     1  0.0000      0.999 1.000 0.000
#> GSM414957     2  0.0000      1.000 0.000 1.000
#> GSM414963     1  0.0000      0.999 1.000 0.000
#> GSM414966     2  0.0000      1.000 0.000 1.000
#> GSM414970     1  0.0000      0.999 1.000 0.000
#> GSM414972     2  0.0000      1.000 0.000 1.000
#> GSM414975     2  0.0000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1 p2    p3
#> GSM414924     1   0.000      0.978 1.000  0 0.000
#> GSM414925     1   0.000      0.978 1.000  0 0.000
#> GSM414926     1   0.000      0.978 1.000  0 0.000
#> GSM414927     3   0.000      1.000 0.000  0 1.000
#> GSM414929     1   0.000      0.978 1.000  0 0.000
#> GSM414931     1   0.000      0.978 1.000  0 0.000
#> GSM414933     1   0.000      0.978 1.000  0 0.000
#> GSM414935     1   0.000      0.978 1.000  0 0.000
#> GSM414936     1   0.000      0.978 1.000  0 0.000
#> GSM414937     1   0.000      0.978 1.000  0 0.000
#> GSM414939     1   0.000      0.978 1.000  0 0.000
#> GSM414941     1   0.000      0.978 1.000  0 0.000
#> GSM414943     1   0.000      0.978 1.000  0 0.000
#> GSM414944     1   0.000      0.978 1.000  0 0.000
#> GSM414945     1   0.581      0.497 0.664  0 0.336
#> GSM414946     1   0.000      0.978 1.000  0 0.000
#> GSM414948     1   0.000      0.978 1.000  0 0.000
#> GSM414949     1   0.000      0.978 1.000  0 0.000
#> GSM414950     1   0.000      0.978 1.000  0 0.000
#> GSM414951     1   0.000      0.978 1.000  0 0.000
#> GSM414952     1   0.000      0.978 1.000  0 0.000
#> GSM414954     1   0.000      0.978 1.000  0 0.000
#> GSM414956     1   0.000      0.978 1.000  0 0.000
#> GSM414958     1   0.000      0.978 1.000  0 0.000
#> GSM414959     1   0.000      0.978 1.000  0 0.000
#> GSM414960     1   0.615      0.328 0.592  0 0.408
#> GSM414961     1   0.000      0.978 1.000  0 0.000
#> GSM414962     3   0.000      1.000 0.000  0 1.000
#> GSM414964     1   0.000      0.978 1.000  0 0.000
#> GSM414965     1   0.000      0.978 1.000  0 0.000
#> GSM414967     1   0.000      0.978 1.000  0 0.000
#> GSM414968     1   0.000      0.978 1.000  0 0.000
#> GSM414969     1   0.000      0.978 1.000  0 0.000
#> GSM414971     1   0.000      0.978 1.000  0 0.000
#> GSM414973     1   0.000      0.978 1.000  0 0.000
#> GSM414974     3   0.000      1.000 0.000  0 1.000
#> GSM414928     3   0.000      1.000 0.000  0 1.000
#> GSM414930     3   0.000      1.000 0.000  0 1.000
#> GSM414932     1   0.000      0.978 1.000  0 0.000
#> GSM414934     1   0.000      0.978 1.000  0 0.000
#> GSM414938     1   0.000      0.978 1.000  0 0.000
#> GSM414940     1   0.000      0.978 1.000  0 0.000
#> GSM414942     2   0.000      1.000 0.000  1 0.000
#> GSM414947     2   0.000      1.000 0.000  1 0.000
#> GSM414953     1   0.000      0.978 1.000  0 0.000
#> GSM414955     1   0.000      0.978 1.000  0 0.000
#> GSM414957     2   0.000      1.000 0.000  1 0.000
#> GSM414963     1   0.226      0.914 0.932  0 0.068
#> GSM414966     2   0.000      1.000 0.000  1 0.000
#> GSM414970     1   0.226      0.914 0.932  0 0.068
#> GSM414972     2   0.000      1.000 0.000  1 0.000
#> GSM414975     2   0.000      1.000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     1  0.0707      0.966 0.980 0.000 0.020 0.000
#> GSM414925     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> GSM414926     1  0.2081      0.936 0.916 0.000 0.084 0.000
#> GSM414927     4  0.0000      0.853 0.000 0.000 0.000 1.000
#> GSM414929     1  0.0707      0.966 0.980 0.000 0.020 0.000
#> GSM414931     1  0.2011      0.938 0.920 0.000 0.080 0.000
#> GSM414933     1  0.2011      0.938 0.920 0.000 0.080 0.000
#> GSM414935     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> GSM414936     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> GSM414937     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> GSM414939     1  0.0188      0.969 0.996 0.000 0.004 0.000
#> GSM414941     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> GSM414943     1  0.0707      0.966 0.980 0.000 0.020 0.000
#> GSM414944     1  0.0707      0.966 0.980 0.000 0.020 0.000
#> GSM414945     3  0.2704      0.694 0.124 0.000 0.876 0.000
#> GSM414946     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> GSM414948     1  0.0707      0.966 0.980 0.000 0.020 0.000
#> GSM414949     1  0.2216      0.930 0.908 0.000 0.092 0.000
#> GSM414950     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> GSM414951     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> GSM414952     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> GSM414954     1  0.0707      0.966 0.980 0.000 0.020 0.000
#> GSM414956     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> GSM414958     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> GSM414959     1  0.1637      0.949 0.940 0.000 0.060 0.000
#> GSM414960     3  0.0817      0.881 0.000 0.000 0.976 0.024
#> GSM414961     1  0.2081      0.936 0.916 0.000 0.084 0.000
#> GSM414962     3  0.3356      0.764 0.000 0.000 0.824 0.176
#> GSM414964     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> GSM414965     1  0.0188      0.969 0.996 0.000 0.004 0.000
#> GSM414967     1  0.3873      0.770 0.772 0.000 0.228 0.000
#> GSM414968     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> GSM414969     1  0.2011      0.938 0.920 0.000 0.080 0.000
#> GSM414971     1  0.2081      0.936 0.916 0.000 0.084 0.000
#> GSM414973     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> GSM414974     3  0.1474      0.866 0.000 0.000 0.948 0.052
#> GSM414928     4  0.0000      0.853 0.000 0.000 0.000 1.000
#> GSM414930     4  0.0000      0.853 0.000 0.000 0.000 1.000
#> GSM414932     1  0.2081      0.936 0.916 0.000 0.084 0.000
#> GSM414934     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> GSM414938     1  0.2011      0.938 0.920 0.000 0.080 0.000
#> GSM414940     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> GSM414942     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414947     4  0.4877      0.304 0.000 0.408 0.000 0.592
#> GSM414953     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> GSM414955     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> GSM414957     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414963     3  0.0000      0.882 0.000 0.000 1.000 0.000
#> GSM414966     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414970     3  0.0000      0.882 0.000 0.000 1.000 0.000
#> GSM414972     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM414975     2  0.0000      1.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     1  0.1082      0.938 0.964 0.000 0.028 0.008 0.000
#> GSM414925     1  0.0510      0.942 0.984 0.000 0.000 0.016 0.000
#> GSM414926     1  0.3421      0.815 0.788 0.000 0.204 0.008 0.000
#> GSM414927     5  0.0000      0.821 0.000 0.000 0.000 0.000 1.000
#> GSM414929     1  0.0771      0.941 0.976 0.000 0.020 0.004 0.000
#> GSM414931     1  0.2304      0.906 0.892 0.000 0.100 0.008 0.000
#> GSM414933     1  0.2249      0.908 0.896 0.000 0.096 0.008 0.000
#> GSM414935     1  0.0404      0.943 0.988 0.000 0.000 0.012 0.000
#> GSM414936     1  0.0510      0.942 0.984 0.000 0.000 0.016 0.000
#> GSM414937     1  0.0290      0.943 0.992 0.000 0.000 0.008 0.000
#> GSM414939     1  0.0162      0.943 0.996 0.000 0.004 0.000 0.000
#> GSM414941     1  0.0510      0.942 0.984 0.000 0.000 0.016 0.000
#> GSM414943     1  0.1168      0.937 0.960 0.000 0.032 0.008 0.000
#> GSM414944     1  0.1251      0.936 0.956 0.000 0.036 0.008 0.000
#> GSM414945     3  0.0000      0.930 0.000 0.000 1.000 0.000 0.000
#> GSM414946     1  0.0510      0.942 0.984 0.000 0.000 0.016 0.000
#> GSM414948     1  0.1168      0.937 0.960 0.000 0.032 0.008 0.000
#> GSM414949     1  0.3487      0.807 0.780 0.000 0.212 0.008 0.000
#> GSM414950     1  0.0510      0.942 0.984 0.000 0.000 0.016 0.000
#> GSM414951     1  0.0404      0.943 0.988 0.000 0.000 0.012 0.000
#> GSM414952     1  0.0510      0.942 0.984 0.000 0.000 0.016 0.000
#> GSM414954     1  0.1168      0.937 0.960 0.000 0.032 0.008 0.000
#> GSM414956     1  0.0000      0.943 1.000 0.000 0.000 0.000 0.000
#> GSM414958     1  0.0000      0.943 1.000 0.000 0.000 0.000 0.000
#> GSM414959     1  0.1894      0.921 0.920 0.000 0.072 0.008 0.000
#> GSM414960     4  0.0703      0.970 0.000 0.000 0.024 0.976 0.000
#> GSM414961     1  0.3421      0.815 0.788 0.000 0.204 0.008 0.000
#> GSM414962     4  0.1310      0.970 0.000 0.000 0.020 0.956 0.024
#> GSM414964     1  0.0000      0.943 1.000 0.000 0.000 0.000 0.000
#> GSM414965     1  0.0162      0.943 0.996 0.000 0.000 0.004 0.000
#> GSM414967     1  0.3642      0.787 0.760 0.000 0.232 0.008 0.000
#> GSM414968     1  0.0404      0.943 0.988 0.000 0.000 0.012 0.000
#> GSM414969     1  0.2249      0.908 0.896 0.000 0.096 0.008 0.000
#> GSM414971     1  0.3421      0.815 0.788 0.000 0.204 0.008 0.000
#> GSM414973     1  0.0000      0.943 1.000 0.000 0.000 0.000 0.000
#> GSM414974     3  0.1251      0.967 0.000 0.000 0.956 0.036 0.008
#> GSM414928     5  0.0000      0.821 0.000 0.000 0.000 0.000 1.000
#> GSM414930     5  0.0000      0.821 0.000 0.000 0.000 0.000 1.000
#> GSM414932     1  0.2462      0.898 0.880 0.000 0.112 0.008 0.000
#> GSM414934     1  0.0671      0.942 0.980 0.000 0.004 0.016 0.000
#> GSM414938     1  0.2249      0.908 0.896 0.000 0.096 0.008 0.000
#> GSM414940     1  0.0671      0.942 0.980 0.000 0.004 0.016 0.000
#> GSM414942     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM414947     5  0.4201      0.311 0.000 0.408 0.000 0.000 0.592
#> GSM414953     1  0.0510      0.942 0.984 0.000 0.000 0.016 0.000
#> GSM414955     1  0.0510      0.942 0.984 0.000 0.000 0.016 0.000
#> GSM414957     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM414963     3  0.0963      0.973 0.000 0.000 0.964 0.036 0.000
#> GSM414966     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM414970     3  0.0963      0.973 0.000 0.000 0.964 0.036 0.000
#> GSM414972     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM414975     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3 p4    p5    p6
#> GSM414924     5  0.0865      0.925 0.036 0.000 0.000  0 0.964 0.000
#> GSM414925     5  0.1327      0.918 0.064 0.000 0.000  0 0.936 0.000
#> GSM414926     5  0.3408      0.831 0.048 0.000 0.152  0 0.800 0.000
#> GSM414927     6  0.3446      1.000 0.308 0.000 0.000  0 0.000 0.692
#> GSM414929     5  0.0713      0.926 0.028 0.000 0.000  0 0.972 0.000
#> GSM414931     5  0.2384      0.895 0.048 0.000 0.064  0 0.888 0.000
#> GSM414933     5  0.2325      0.897 0.048 0.000 0.060  0 0.892 0.000
#> GSM414935     5  0.1141      0.922 0.052 0.000 0.000  0 0.948 0.000
#> GSM414936     5  0.1327      0.918 0.064 0.000 0.000  0 0.936 0.000
#> GSM414937     5  0.0363      0.928 0.012 0.000 0.000  0 0.988 0.000
#> GSM414939     5  0.0146      0.928 0.004 0.000 0.000  0 0.996 0.000
#> GSM414941     5  0.1327      0.918 0.064 0.000 0.000  0 0.936 0.000
#> GSM414943     5  0.1007      0.923 0.044 0.000 0.000  0 0.956 0.000
#> GSM414944     5  0.1075      0.922 0.048 0.000 0.000  0 0.952 0.000
#> GSM414945     3  0.3584      0.685 0.004 0.000 0.688  0 0.000 0.308
#> GSM414946     5  0.1267      0.920 0.060 0.000 0.000  0 0.940 0.000
#> GSM414948     5  0.1007      0.923 0.044 0.000 0.000  0 0.956 0.000
#> GSM414949     5  0.3585      0.816 0.048 0.000 0.172  0 0.780 0.000
#> GSM414950     5  0.1327      0.918 0.064 0.000 0.000  0 0.936 0.000
#> GSM414951     5  0.1075      0.923 0.048 0.000 0.000  0 0.952 0.000
#> GSM414952     5  0.1327      0.918 0.064 0.000 0.000  0 0.936 0.000
#> GSM414954     5  0.1007      0.923 0.044 0.000 0.000  0 0.956 0.000
#> GSM414956     5  0.0000      0.928 0.000 0.000 0.000  0 1.000 0.000
#> GSM414958     5  0.0000      0.928 0.000 0.000 0.000  0 1.000 0.000
#> GSM414959     5  0.1934      0.909 0.044 0.000 0.040  0 0.916 0.000
#> GSM414960     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> GSM414961     5  0.3516      0.824 0.048 0.000 0.164  0 0.788 0.000
#> GSM414962     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> GSM414964     5  0.0000      0.928 0.000 0.000 0.000  0 1.000 0.000
#> GSM414965     5  0.0146      0.928 0.004 0.000 0.000  0 0.996 0.000
#> GSM414967     5  0.3715      0.799 0.048 0.000 0.188  0 0.764 0.000
#> GSM414968     5  0.1007      0.924 0.044 0.000 0.000  0 0.956 0.000
#> GSM414969     5  0.2325      0.897 0.048 0.000 0.060  0 0.892 0.000
#> GSM414971     5  0.3516      0.824 0.048 0.000 0.164  0 0.788 0.000
#> GSM414973     5  0.0000      0.928 0.000 0.000 0.000  0 1.000 0.000
#> GSM414974     3  0.0260      0.898 0.000 0.000 0.992  0 0.000 0.008
#> GSM414928     6  0.3446      1.000 0.308 0.000 0.000  0 0.000 0.692
#> GSM414930     6  0.3446      1.000 0.308 0.000 0.000  0 0.000 0.692
#> GSM414932     5  0.2660      0.885 0.048 0.000 0.084  0 0.868 0.000
#> GSM414934     5  0.1327      0.921 0.064 0.000 0.000  0 0.936 0.000
#> GSM414938     5  0.2325      0.897 0.048 0.000 0.060  0 0.892 0.000
#> GSM414940     5  0.1267      0.922 0.060 0.000 0.000  0 0.940 0.000
#> GSM414942     2  0.0000      0.993 0.000 1.000 0.000  0 0.000 0.000
#> GSM414947     1  0.1957      0.000 0.888 0.112 0.000  0 0.000 0.000
#> GSM414953     5  0.1327      0.918 0.064 0.000 0.000  0 0.936 0.000
#> GSM414955     5  0.1327      0.918 0.064 0.000 0.000  0 0.936 0.000
#> GSM414957     2  0.0632      0.973 0.024 0.976 0.000  0 0.000 0.000
#> GSM414963     3  0.0000      0.903 0.000 0.000 1.000  0 0.000 0.000
#> GSM414966     2  0.0000      0.993 0.000 1.000 0.000  0 0.000 0.000
#> GSM414970     3  0.0000      0.903 0.000 0.000 1.000  0 0.000 0.000
#> GSM414972     2  0.0000      0.993 0.000 1.000 0.000  0 0.000 0.000
#> GSM414975     2  0.0000      0.993 0.000 1.000 0.000  0 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n tissue(p) k
#> ATC:pam 52  0.000771 2
#> ATC:pam 50  0.000485 3
#> ATC:pam 51  0.000657 4
#> ATC:pam 51  0.000877 5
#> ATC:pam 51  0.000877 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.919           0.945       0.977         0.4697 0.527   0.527
#> 3 3 0.514           0.622       0.794         0.2577 0.974   0.951
#> 4 4 0.440           0.544       0.756         0.1877 0.738   0.493
#> 5 5 0.537           0.420       0.705         0.0882 0.837   0.489
#> 6 6 0.626           0.623       0.763         0.0456 0.860   0.461

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1  0.0000      0.984 1.000 0.000
#> GSM414925     1  0.0000      0.984 1.000 0.000
#> GSM414926     1  0.0000      0.984 1.000 0.000
#> GSM414927     2  0.0000      0.959 0.000 1.000
#> GSM414929     1  0.0000      0.984 1.000 0.000
#> GSM414931     1  0.0000      0.984 1.000 0.000
#> GSM414933     1  0.9323      0.426 0.652 0.348
#> GSM414935     1  0.0000      0.984 1.000 0.000
#> GSM414936     1  0.0000      0.984 1.000 0.000
#> GSM414937     1  0.0000      0.984 1.000 0.000
#> GSM414939     1  0.0000      0.984 1.000 0.000
#> GSM414941     1  0.0000      0.984 1.000 0.000
#> GSM414943     1  0.0000      0.984 1.000 0.000
#> GSM414944     1  0.0000      0.984 1.000 0.000
#> GSM414945     2  0.0000      0.959 0.000 1.000
#> GSM414946     1  0.0000      0.984 1.000 0.000
#> GSM414948     1  0.0000      0.984 1.000 0.000
#> GSM414949     2  0.0000      0.959 0.000 1.000
#> GSM414950     1  0.0000      0.984 1.000 0.000
#> GSM414951     1  0.0000      0.984 1.000 0.000
#> GSM414952     1  0.0000      0.984 1.000 0.000
#> GSM414954     1  0.0000      0.984 1.000 0.000
#> GSM414956     1  0.0000      0.984 1.000 0.000
#> GSM414958     1  0.0000      0.984 1.000 0.000
#> GSM414959     1  0.0000      0.984 1.000 0.000
#> GSM414960     2  0.0000      0.959 0.000 1.000
#> GSM414961     1  0.0938      0.973 0.988 0.012
#> GSM414962     2  0.0000      0.959 0.000 1.000
#> GSM414964     1  0.0000      0.984 1.000 0.000
#> GSM414965     1  0.0000      0.984 1.000 0.000
#> GSM414967     2  0.6801      0.786 0.180 0.820
#> GSM414968     1  0.0000      0.984 1.000 0.000
#> GSM414969     1  0.0000      0.984 1.000 0.000
#> GSM414971     2  0.6247      0.814 0.156 0.844
#> GSM414973     1  0.0000      0.984 1.000 0.000
#> GSM414974     2  0.0000      0.959 0.000 1.000
#> GSM414928     2  0.0000      0.959 0.000 1.000
#> GSM414930     2  0.0000      0.959 0.000 1.000
#> GSM414932     1  0.0938      0.973 0.988 0.012
#> GSM414934     1  0.5059      0.864 0.888 0.112
#> GSM414938     2  0.9608      0.403 0.384 0.616
#> GSM414940     1  0.0000      0.984 1.000 0.000
#> GSM414942     2  0.0000      0.959 0.000 1.000
#> GSM414947     2  0.0000      0.959 0.000 1.000
#> GSM414953     1  0.0000      0.984 1.000 0.000
#> GSM414955     1  0.0000      0.984 1.000 0.000
#> GSM414957     2  0.0000      0.959 0.000 1.000
#> GSM414963     2  0.0000      0.959 0.000 1.000
#> GSM414966     2  0.0000      0.959 0.000 1.000
#> GSM414970     2  0.0000      0.959 0.000 1.000
#> GSM414972     2  0.0000      0.959 0.000 1.000
#> GSM414975     2  0.0000      0.959 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM414924     1  0.1411      0.810 0.964 0.000 0.036
#> GSM414925     1  0.5621      0.746 0.692 0.000 0.308
#> GSM414926     1  0.0892      0.808 0.980 0.000 0.020
#> GSM414927     2  0.5560      0.544 0.000 0.700 0.300
#> GSM414929     1  0.0237      0.812 0.996 0.000 0.004
#> GSM414931     1  0.1289      0.804 0.968 0.000 0.032
#> GSM414933     1  0.6662      0.598 0.736 0.072 0.192
#> GSM414935     1  0.4002      0.806 0.840 0.000 0.160
#> GSM414936     1  0.5363      0.760 0.724 0.000 0.276
#> GSM414937     1  0.3619      0.811 0.864 0.000 0.136
#> GSM414939     1  0.3619      0.811 0.864 0.000 0.136
#> GSM414941     1  0.5621      0.746 0.692 0.000 0.308
#> GSM414943     1  0.0424      0.812 0.992 0.000 0.008
#> GSM414944     1  0.4172      0.725 0.840 0.004 0.156
#> GSM414945     2  0.6126      0.508 0.004 0.644 0.352
#> GSM414946     1  0.5591      0.747 0.696 0.000 0.304
#> GSM414948     1  0.0424      0.812 0.992 0.000 0.008
#> GSM414949     3  0.7729     -0.228 0.048 0.436 0.516
#> GSM414950     1  0.6168      0.681 0.588 0.000 0.412
#> GSM414951     1  0.3686      0.809 0.860 0.000 0.140
#> GSM414952     1  0.6168      0.681 0.588 0.000 0.412
#> GSM414954     1  0.0424      0.812 0.992 0.000 0.008
#> GSM414956     1  0.3619      0.811 0.864 0.000 0.136
#> GSM414958     1  0.1031      0.814 0.976 0.000 0.024
#> GSM414959     1  0.0747      0.810 0.984 0.000 0.016
#> GSM414960     2  0.5882      0.523 0.000 0.652 0.348
#> GSM414961     1  0.6990      0.531 0.728 0.108 0.164
#> GSM414962     2  0.5835      0.529 0.000 0.660 0.340
#> GSM414964     1  0.1289      0.817 0.968 0.000 0.032
#> GSM414965     1  0.1411      0.816 0.964 0.000 0.036
#> GSM414967     2  0.7736      0.269 0.052 0.548 0.400
#> GSM414968     1  0.4842      0.790 0.776 0.000 0.224
#> GSM414969     1  0.4235      0.709 0.824 0.000 0.176
#> GSM414971     2  0.7551      0.270 0.048 0.580 0.372
#> GSM414973     1  0.1031      0.814 0.976 0.000 0.024
#> GSM414974     2  0.6215      0.400 0.000 0.572 0.428
#> GSM414928     2  0.5785      0.533 0.000 0.668 0.332
#> GSM414930     2  0.5560      0.544 0.000 0.700 0.300
#> GSM414932     1  0.3551      0.787 0.868 0.000 0.132
#> GSM414934     1  0.9112      0.388 0.524 0.168 0.308
#> GSM414938     3  0.9665      0.270 0.260 0.276 0.464
#> GSM414940     1  0.6168      0.681 0.588 0.000 0.412
#> GSM414942     2  0.0000      0.501 0.000 1.000 0.000
#> GSM414947     2  0.0000      0.501 0.000 1.000 0.000
#> GSM414953     1  0.6126      0.689 0.600 0.000 0.400
#> GSM414955     1  0.6140      0.686 0.596 0.000 0.404
#> GSM414957     2  0.0237      0.499 0.000 0.996 0.004
#> GSM414963     2  0.6309      0.212 0.000 0.504 0.496
#> GSM414966     2  0.0000      0.501 0.000 1.000 0.000
#> GSM414970     2  0.6309      0.212 0.000 0.504 0.496
#> GSM414972     2  0.0000      0.501 0.000 1.000 0.000
#> GSM414975     2  0.0000      0.501 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     1  0.4139      0.601 0.816 0.000 0.144 0.040
#> GSM414925     3  0.4250      0.648 0.276 0.000 0.724 0.000
#> GSM414926     1  0.3796      0.630 0.852 0.044 0.100 0.004
#> GSM414927     2  0.4898      0.242 0.000 0.584 0.000 0.416
#> GSM414929     1  0.3182      0.635 0.876 0.000 0.096 0.028
#> GSM414931     1  0.0336      0.644 0.992 0.000 0.008 0.000
#> GSM414933     1  0.7578      0.429 0.620 0.200 0.100 0.080
#> GSM414935     3  0.5487      0.574 0.328 0.024 0.644 0.004
#> GSM414936     3  0.5427      0.577 0.336 0.004 0.640 0.020
#> GSM414937     1  0.5165     -0.304 0.512 0.000 0.484 0.004
#> GSM414939     1  0.5158     -0.270 0.524 0.000 0.472 0.004
#> GSM414941     3  0.4304      0.644 0.284 0.000 0.716 0.000
#> GSM414943     1  0.3447      0.620 0.852 0.000 0.128 0.020
#> GSM414944     1  0.5551      0.580 0.772 0.040 0.112 0.076
#> GSM414945     2  0.4296      0.650 0.004 0.824 0.060 0.112
#> GSM414946     3  0.4941      0.445 0.436 0.000 0.564 0.000
#> GSM414948     1  0.3099      0.631 0.876 0.000 0.104 0.020
#> GSM414949     2  0.3181      0.629 0.044 0.888 0.064 0.004
#> GSM414950     3  0.2401      0.712 0.092 0.004 0.904 0.000
#> GSM414951     3  0.5088      0.429 0.424 0.000 0.572 0.004
#> GSM414952     3  0.2125      0.704 0.076 0.004 0.920 0.000
#> GSM414954     1  0.3501      0.616 0.848 0.000 0.132 0.020
#> GSM414956     1  0.5161     -0.288 0.520 0.000 0.476 0.004
#> GSM414958     1  0.3841      0.638 0.832 0.004 0.144 0.020
#> GSM414959     1  0.0469      0.646 0.988 0.000 0.012 0.000
#> GSM414960     2  0.4882      0.622 0.004 0.776 0.056 0.164
#> GSM414961     1  0.6568      0.387 0.572 0.332 0.096 0.000
#> GSM414962     2  0.3356      0.620 0.000 0.824 0.000 0.176
#> GSM414964     1  0.4647      0.515 0.704 0.008 0.288 0.000
#> GSM414965     1  0.3501      0.616 0.848 0.000 0.132 0.020
#> GSM414967     2  0.6372      0.540 0.172 0.704 0.088 0.036
#> GSM414968     3  0.4088      0.673 0.232 0.004 0.764 0.000
#> GSM414969     1  0.6535      0.537 0.716 0.092 0.112 0.080
#> GSM414971     2  0.7141      0.514 0.216 0.640 0.092 0.052
#> GSM414973     1  0.3878      0.627 0.824 0.004 0.156 0.016
#> GSM414974     2  0.2385      0.661 0.000 0.920 0.028 0.052
#> GSM414928     2  0.4543      0.455 0.000 0.676 0.000 0.324
#> GSM414930     2  0.4907      0.237 0.000 0.580 0.000 0.420
#> GSM414932     1  0.6409      0.289 0.560 0.076 0.364 0.000
#> GSM414934     3  0.8370      0.202 0.252 0.172 0.516 0.060
#> GSM414938     2  0.9161      0.341 0.296 0.428 0.144 0.132
#> GSM414940     3  0.2915      0.694 0.080 0.028 0.892 0.000
#> GSM414942     4  0.2408      0.887 0.000 0.104 0.000 0.896
#> GSM414947     4  0.4277      0.723 0.000 0.280 0.000 0.720
#> GSM414953     3  0.2675      0.713 0.100 0.008 0.892 0.000
#> GSM414955     3  0.2266      0.709 0.084 0.004 0.912 0.000
#> GSM414957     4  0.4277      0.723 0.000 0.280 0.000 0.720
#> GSM414963     2  0.1732      0.651 0.004 0.948 0.040 0.008
#> GSM414966     4  0.2408      0.887 0.000 0.104 0.000 0.896
#> GSM414970     2  0.1489      0.650 0.004 0.952 0.044 0.000
#> GSM414972     4  0.2408      0.887 0.000 0.104 0.000 0.896
#> GSM414975     4  0.2408      0.887 0.000 0.104 0.000 0.896

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     1  0.6194    0.27816 0.472 0.000 0.140 0.000 0.388
#> GSM414925     3  0.4161    0.28204 0.000 0.000 0.608 0.000 0.392
#> GSM414926     1  0.6197    0.28790 0.480 0.004 0.092 0.008 0.416
#> GSM414927     4  0.6235    0.13692 0.156 0.296 0.004 0.544 0.000
#> GSM414929     5  0.5948   -0.23512 0.408 0.000 0.108 0.000 0.484
#> GSM414931     5  0.4066    0.22230 0.324 0.004 0.000 0.000 0.672
#> GSM414933     1  0.4966    0.53499 0.756 0.000 0.040 0.076 0.128
#> GSM414935     3  0.4292    0.51902 0.024 0.000 0.704 0.000 0.272
#> GSM414936     3  0.6028   -0.02986 0.116 0.000 0.468 0.000 0.416
#> GSM414937     5  0.4551    0.23112 0.016 0.000 0.368 0.000 0.616
#> GSM414939     5  0.3427    0.52769 0.012 0.000 0.192 0.000 0.796
#> GSM414941     3  0.4192    0.25815 0.000 0.000 0.596 0.000 0.404
#> GSM414943     5  0.1012    0.62307 0.020 0.000 0.012 0.000 0.968
#> GSM414944     1  0.5274    0.41633 0.612 0.000 0.040 0.012 0.336
#> GSM414945     4  0.1885    0.62170 0.032 0.020 0.012 0.936 0.000
#> GSM414946     5  0.4390    0.12156 0.004 0.000 0.428 0.000 0.568
#> GSM414948     5  0.0771    0.61468 0.020 0.004 0.000 0.000 0.976
#> GSM414949     4  0.5410    0.31285 0.332 0.000 0.056 0.604 0.008
#> GSM414950     3  0.1571    0.67779 0.000 0.000 0.936 0.004 0.060
#> GSM414951     5  0.4637    0.04817 0.012 0.000 0.452 0.000 0.536
#> GSM414952     3  0.1502    0.68000 0.000 0.000 0.940 0.004 0.056
#> GSM414954     5  0.0404    0.62473 0.000 0.000 0.012 0.000 0.988
#> GSM414956     5  0.4016    0.41686 0.012 0.000 0.272 0.000 0.716
#> GSM414958     5  0.2984    0.56401 0.124 0.004 0.016 0.000 0.856
#> GSM414959     5  0.3906    0.34743 0.292 0.004 0.000 0.000 0.704
#> GSM414960     4  0.3265    0.61556 0.088 0.040 0.012 0.860 0.000
#> GSM414961     4  0.6813    0.00293 0.420 0.000 0.080 0.440 0.060
#> GSM414962     4  0.3003    0.58362 0.064 0.040 0.016 0.880 0.000
#> GSM414964     5  0.3812    0.53845 0.024 0.000 0.204 0.000 0.772
#> GSM414965     5  0.1638    0.60890 0.064 0.004 0.000 0.000 0.932
#> GSM414967     1  0.5482    0.10273 0.572 0.000 0.016 0.372 0.040
#> GSM414968     3  0.3242    0.60341 0.000 0.000 0.784 0.000 0.216
#> GSM414969     1  0.5310    0.20406 0.508 0.000 0.040 0.004 0.448
#> GSM414971     1  0.5683    0.09693 0.560 0.004 0.008 0.372 0.056
#> GSM414973     5  0.2886    0.57012 0.116 0.004 0.016 0.000 0.864
#> GSM414974     4  0.2214    0.61651 0.028 0.000 0.052 0.916 0.004
#> GSM414928     4  0.6015    0.25417 0.156 0.248 0.004 0.592 0.000
#> GSM414930     4  0.6235    0.15858 0.144 0.292 0.008 0.556 0.000
#> GSM414932     3  0.7268    0.01158 0.268 0.000 0.492 0.052 0.188
#> GSM414934     3  0.6772    0.22950 0.300 0.000 0.544 0.072 0.084
#> GSM414938     1  0.7583    0.27188 0.444 0.000 0.104 0.328 0.124
#> GSM414940     3  0.1518    0.67793 0.004 0.000 0.944 0.004 0.048
#> GSM414942     2  0.0162    0.81732 0.000 0.996 0.000 0.004 0.000
#> GSM414947     2  0.5351    0.50141 0.068 0.624 0.004 0.304 0.000
#> GSM414953     3  0.1831    0.67664 0.000 0.000 0.920 0.004 0.076
#> GSM414955     3  0.1041    0.67252 0.000 0.000 0.964 0.004 0.032
#> GSM414957     2  0.5368    0.50353 0.068 0.620 0.004 0.308 0.000
#> GSM414963     4  0.4764    0.50822 0.224 0.000 0.052 0.716 0.008
#> GSM414966     2  0.0162    0.81732 0.000 0.996 0.000 0.004 0.000
#> GSM414970     4  0.5403    0.46991 0.280 0.000 0.052 0.648 0.020
#> GSM414972     2  0.0404    0.81657 0.000 0.988 0.000 0.012 0.000
#> GSM414975     2  0.0290    0.81668 0.000 0.992 0.000 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     1  0.3948     0.7622 0.748 0.000 0.064 0.000 0.188 0.000
#> GSM414925     3  0.3628     0.6020 0.008 0.000 0.720 0.004 0.268 0.000
#> GSM414926     1  0.4309     0.7644 0.760 0.000 0.060 0.008 0.156 0.016
#> GSM414927     4  0.1074     0.8370 0.000 0.028 0.000 0.960 0.000 0.012
#> GSM414929     1  0.4091     0.7481 0.720 0.000 0.056 0.000 0.224 0.000
#> GSM414931     1  0.4763     0.6346 0.620 0.000 0.052 0.008 0.320 0.000
#> GSM414933     1  0.2335     0.6447 0.904 0.000 0.024 0.000 0.028 0.044
#> GSM414935     3  0.3426     0.6234 0.004 0.000 0.764 0.000 0.220 0.012
#> GSM414936     3  0.4529     0.5843 0.064 0.000 0.676 0.004 0.256 0.000
#> GSM414937     3  0.3995     0.2833 0.004 0.000 0.516 0.000 0.480 0.000
#> GSM414939     5  0.1958     0.8625 0.004 0.000 0.100 0.000 0.896 0.000
#> GSM414941     3  0.3744     0.6043 0.008 0.000 0.720 0.004 0.264 0.004
#> GSM414943     5  0.2164     0.8843 0.028 0.000 0.056 0.008 0.908 0.000
#> GSM414944     1  0.2968     0.7533 0.840 0.000 0.028 0.000 0.128 0.004
#> GSM414945     6  0.4453     0.3260 0.020 0.000 0.000 0.328 0.016 0.636
#> GSM414946     3  0.4418     0.4529 0.016 0.000 0.584 0.004 0.392 0.004
#> GSM414948     5  0.2240     0.8812 0.032 0.000 0.056 0.008 0.904 0.000
#> GSM414949     6  0.3032     0.6172 0.096 0.000 0.040 0.012 0.000 0.852
#> GSM414950     3  0.1167     0.7022 0.000 0.000 0.960 0.008 0.020 0.012
#> GSM414951     3  0.4135     0.4408 0.008 0.000 0.584 0.004 0.404 0.000
#> GSM414952     3  0.0976     0.6997 0.000 0.000 0.968 0.008 0.008 0.016
#> GSM414954     5  0.1769     0.8908 0.012 0.000 0.060 0.004 0.924 0.000
#> GSM414956     5  0.3383     0.5760 0.004 0.000 0.268 0.000 0.728 0.000
#> GSM414958     5  0.2263     0.8854 0.048 0.000 0.056 0.000 0.896 0.000
#> GSM414959     1  0.4880     0.5351 0.564 0.000 0.056 0.004 0.376 0.000
#> GSM414960     6  0.6392     0.2877 0.092 0.028 0.004 0.284 0.036 0.556
#> GSM414961     6  0.5650     0.1011 0.404 0.000 0.068 0.008 0.020 0.500
#> GSM414962     6  0.6536    -0.0402 0.072 0.044 0.004 0.380 0.028 0.472
#> GSM414964     5  0.3921     0.6926 0.036 0.000 0.224 0.000 0.736 0.004
#> GSM414965     5  0.1820     0.8858 0.012 0.000 0.056 0.008 0.924 0.000
#> GSM414967     6  0.4782     0.5333 0.332 0.000 0.024 0.008 0.016 0.620
#> GSM414968     3  0.3219     0.6341 0.012 0.000 0.792 0.000 0.192 0.004
#> GSM414969     1  0.3676     0.7277 0.808 0.000 0.052 0.000 0.120 0.020
#> GSM414971     6  0.5087     0.4959 0.316 0.000 0.028 0.008 0.032 0.616
#> GSM414973     5  0.2263     0.8854 0.048 0.000 0.056 0.000 0.896 0.000
#> GSM414974     6  0.3806     0.4923 0.012 0.000 0.032 0.172 0.004 0.780
#> GSM414928     4  0.3201     0.7764 0.008 0.028 0.000 0.824 0.000 0.140
#> GSM414930     4  0.3238     0.8301 0.024 0.056 0.000 0.848 0.000 0.072
#> GSM414932     1  0.7244     0.4976 0.428 0.000 0.244 0.000 0.144 0.184
#> GSM414934     3  0.5642     0.1831 0.316 0.000 0.568 0.012 0.012 0.092
#> GSM414938     1  0.6235     0.4501 0.540 0.000 0.052 0.000 0.144 0.264
#> GSM414940     3  0.1346     0.7007 0.000 0.000 0.952 0.008 0.024 0.016
#> GSM414942     2  0.0363     0.8037 0.000 0.988 0.000 0.012 0.000 0.000
#> GSM414947     2  0.4701     0.3724 0.000 0.556 0.004 0.408 0.008 0.024
#> GSM414953     3  0.1078     0.6991 0.000 0.000 0.964 0.008 0.012 0.016
#> GSM414955     3  0.0767     0.6974 0.000 0.000 0.976 0.008 0.004 0.012
#> GSM414957     2  0.4989     0.4632 0.004 0.604 0.004 0.340 0.020 0.028
#> GSM414963     6  0.2444     0.6116 0.068 0.000 0.028 0.012 0.000 0.892
#> GSM414966     2  0.0146     0.8044 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM414970     6  0.2675     0.6116 0.080 0.000 0.024 0.012 0.004 0.880
#> GSM414972     2  0.0653     0.7996 0.004 0.980 0.000 0.004 0.000 0.012
#> GSM414975     2  0.0146     0.8044 0.004 0.996 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n tissue(p) k
#> ATC:mclust 50  0.008389 2
#> ATC:mclust 43  0.003150 3
#> ATC:mclust 39  0.000108 4
#> ATC:mclust 27  0.002740 5
#> ATC:mclust 38  0.001431 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.967       0.987         0.4286 0.581   0.581
#> 3 3 0.572           0.609       0.771         0.3224 0.833   0.723
#> 4 4 0.462           0.475       0.683         0.1437 0.825   0.651
#> 5 5 0.459           0.429       0.719         0.0866 0.819   0.584
#> 6 6 0.498           0.499       0.711         0.0665 0.890   0.681

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM414924     1  0.0000      0.982 1.000 0.000
#> GSM414925     1  0.0000      0.982 1.000 0.000
#> GSM414926     1  0.0000      0.982 1.000 0.000
#> GSM414927     2  0.0000      0.999 0.000 1.000
#> GSM414929     1  0.0000      0.982 1.000 0.000
#> GSM414931     1  0.0000      0.982 1.000 0.000
#> GSM414933     1  0.0000      0.982 1.000 0.000
#> GSM414935     1  0.0000      0.982 1.000 0.000
#> GSM414936     1  0.0000      0.982 1.000 0.000
#> GSM414937     1  0.0000      0.982 1.000 0.000
#> GSM414939     1  0.0000      0.982 1.000 0.000
#> GSM414941     1  0.0000      0.982 1.000 0.000
#> GSM414943     1  0.0000      0.982 1.000 0.000
#> GSM414944     1  0.0000      0.982 1.000 0.000
#> GSM414945     2  0.0000      0.999 0.000 1.000
#> GSM414946     1  0.0000      0.982 1.000 0.000
#> GSM414948     1  0.0000      0.982 1.000 0.000
#> GSM414949     1  0.5519      0.847 0.872 0.128
#> GSM414950     1  0.0000      0.982 1.000 0.000
#> GSM414951     1  0.0000      0.982 1.000 0.000
#> GSM414952     1  0.0000      0.982 1.000 0.000
#> GSM414954     1  0.0000      0.982 1.000 0.000
#> GSM414956     1  0.0000      0.982 1.000 0.000
#> GSM414958     1  0.0000      0.982 1.000 0.000
#> GSM414959     1  0.0000      0.982 1.000 0.000
#> GSM414960     2  0.0000      0.999 0.000 1.000
#> GSM414961     1  0.0938      0.972 0.988 0.012
#> GSM414962     2  0.0000      0.999 0.000 1.000
#> GSM414964     1  0.0000      0.982 1.000 0.000
#> GSM414965     1  0.0000      0.982 1.000 0.000
#> GSM414967     1  0.9977      0.121 0.528 0.472
#> GSM414968     1  0.0000      0.982 1.000 0.000
#> GSM414969     1  0.0000      0.982 1.000 0.000
#> GSM414971     1  0.1633      0.961 0.976 0.024
#> GSM414973     1  0.0000      0.982 1.000 0.000
#> GSM414974     2  0.0000      0.999 0.000 1.000
#> GSM414928     2  0.0000      0.999 0.000 1.000
#> GSM414930     2  0.0000      0.999 0.000 1.000
#> GSM414932     1  0.0000      0.982 1.000 0.000
#> GSM414934     1  0.0000      0.982 1.000 0.000
#> GSM414938     1  0.0000      0.982 1.000 0.000
#> GSM414940     1  0.0000      0.982 1.000 0.000
#> GSM414942     2  0.0000      0.999 0.000 1.000
#> GSM414947     2  0.0000      0.999 0.000 1.000
#> GSM414953     1  0.0000      0.982 1.000 0.000
#> GSM414955     1  0.0000      0.982 1.000 0.000
#> GSM414957     2  0.0000      0.999 0.000 1.000
#> GSM414963     2  0.0672      0.992 0.008 0.992
#> GSM414966     2  0.0000      0.999 0.000 1.000
#> GSM414970     2  0.0672      0.992 0.008 0.992
#> GSM414972     2  0.0000      0.999 0.000 1.000
#> GSM414975     2  0.0000      0.999 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM414924     1  0.2066    0.84104 0.940 0.060 0.000
#> GSM414925     1  0.0000    0.84361 1.000 0.000 0.000
#> GSM414926     2  0.6280   -0.42445 0.460 0.540 0.000
#> GSM414927     3  0.1031    0.68126 0.000 0.024 0.976
#> GSM414929     1  0.5058    0.77318 0.756 0.244 0.000
#> GSM414931     1  0.6111    0.64205 0.604 0.396 0.000
#> GSM414933     1  0.6126    0.63600 0.600 0.400 0.000
#> GSM414935     1  0.0000    0.84361 1.000 0.000 0.000
#> GSM414936     1  0.0424    0.84491 0.992 0.008 0.000
#> GSM414937     1  0.0892    0.84546 0.980 0.020 0.000
#> GSM414939     1  0.2878    0.83389 0.904 0.096 0.000
#> GSM414941     1  0.0000    0.84361 1.000 0.000 0.000
#> GSM414943     1  0.5968    0.68079 0.636 0.364 0.000
#> GSM414944     1  0.5968    0.68079 0.636 0.364 0.000
#> GSM414945     3  0.1163    0.65564 0.000 0.028 0.972
#> GSM414946     1  0.0000    0.84361 1.000 0.000 0.000
#> GSM414948     1  0.5968    0.68079 0.636 0.364 0.000
#> GSM414949     3  0.7156    0.22327 0.400 0.028 0.572
#> GSM414950     1  0.1620    0.82662 0.964 0.024 0.012
#> GSM414951     1  0.0237    0.84453 0.996 0.004 0.000
#> GSM414952     1  0.1751    0.82398 0.960 0.028 0.012
#> GSM414954     1  0.5216    0.76337 0.740 0.260 0.000
#> GSM414956     1  0.2711    0.83581 0.912 0.088 0.000
#> GSM414958     1  0.5706    0.72010 0.680 0.320 0.000
#> GSM414959     1  0.5968    0.68079 0.636 0.364 0.000
#> GSM414960     2  0.1163    0.35946 0.000 0.972 0.028
#> GSM414961     1  0.6235    0.52473 0.564 0.436 0.000
#> GSM414962     2  0.5529    0.33932 0.000 0.704 0.296
#> GSM414964     1  0.1031    0.84523 0.976 0.024 0.000
#> GSM414965     1  0.5098    0.77089 0.752 0.248 0.000
#> GSM414967     2  0.1643    0.35129 0.044 0.956 0.000
#> GSM414968     1  0.0237    0.84241 0.996 0.004 0.000
#> GSM414969     1  0.3482    0.82397 0.872 0.128 0.000
#> GSM414971     2  0.5327    0.13683 0.272 0.728 0.000
#> GSM414973     1  0.5397    0.75027 0.720 0.280 0.000
#> GSM414974     3  0.1031    0.68126 0.000 0.024 0.976
#> GSM414928     3  0.0592    0.67910 0.000 0.012 0.988
#> GSM414930     3  0.1163    0.67894 0.000 0.028 0.972
#> GSM414932     1  0.0237    0.84453 0.996 0.004 0.000
#> GSM414934     1  0.0237    0.84241 0.996 0.004 0.000
#> GSM414938     1  0.2301    0.82836 0.936 0.060 0.004
#> GSM414940     1  0.1267    0.83128 0.972 0.024 0.004
#> GSM414942     2  0.6291    0.24242 0.000 0.532 0.468
#> GSM414947     3  0.6026    0.00808 0.000 0.376 0.624
#> GSM414953     1  0.0892    0.83546 0.980 0.020 0.000
#> GSM414955     1  0.1031    0.83354 0.976 0.024 0.000
#> GSM414957     2  0.6280    0.24859 0.000 0.540 0.460
#> GSM414963     3  0.8688   -0.10702 0.112 0.372 0.516
#> GSM414966     2  0.6295    0.23705 0.000 0.528 0.472
#> GSM414970     2  0.6714    0.33910 0.032 0.672 0.296
#> GSM414972     2  0.6309    0.18369 0.000 0.504 0.496
#> GSM414975     2  0.6299    0.23049 0.000 0.524 0.476

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM414924     1  0.4776     0.2548 0.624 0.000 0.000 0.376
#> GSM414925     1  0.2281     0.6711 0.904 0.000 0.000 0.096
#> GSM414926     1  0.7535    -0.2180 0.468 0.148 0.008 0.376
#> GSM414927     3  0.4817     0.5741 0.000 0.388 0.612 0.000
#> GSM414929     1  0.4866     0.1795 0.596 0.000 0.000 0.404
#> GSM414931     4  0.5292     0.1355 0.480 0.008 0.000 0.512
#> GSM414933     4  0.3216     0.6044 0.124 0.004 0.008 0.864
#> GSM414935     1  0.1356     0.6702 0.960 0.000 0.032 0.008
#> GSM414936     1  0.4699     0.4232 0.676 0.000 0.004 0.320
#> GSM414937     1  0.2011     0.6773 0.920 0.000 0.000 0.080
#> GSM414939     1  0.2921     0.6411 0.860 0.000 0.000 0.140
#> GSM414941     1  0.0592     0.6815 0.984 0.000 0.000 0.016
#> GSM414943     1  0.4222     0.5032 0.728 0.000 0.000 0.272
#> GSM414944     4  0.4643     0.5025 0.344 0.000 0.000 0.656
#> GSM414945     3  0.6457     0.3081 0.000 0.100 0.604 0.296
#> GSM414946     1  0.2469     0.6647 0.892 0.000 0.000 0.108
#> GSM414948     1  0.4857     0.3902 0.668 0.008 0.000 0.324
#> GSM414949     3  0.5583     0.1951 0.320 0.008 0.648 0.024
#> GSM414950     1  0.1807     0.6582 0.940 0.000 0.052 0.008
#> GSM414951     1  0.1302     0.6835 0.956 0.000 0.000 0.044
#> GSM414952     1  0.2142     0.6574 0.928 0.000 0.056 0.016
#> GSM414954     1  0.2197     0.6806 0.916 0.000 0.004 0.080
#> GSM414956     1  0.2281     0.6722 0.904 0.000 0.000 0.096
#> GSM414958     1  0.4790     0.2814 0.620 0.000 0.000 0.380
#> GSM414959     1  0.5119     0.0338 0.556 0.000 0.004 0.440
#> GSM414960     2  0.5807     0.4452 0.000 0.596 0.040 0.364
#> GSM414961     1  0.6018     0.4069 0.740 0.128 0.040 0.092
#> GSM414962     2  0.5830     0.4784 0.000 0.620 0.048 0.332
#> GSM414964     1  0.1305     0.6809 0.960 0.000 0.004 0.036
#> GSM414965     1  0.4164     0.5128 0.736 0.000 0.000 0.264
#> GSM414967     4  0.4996     0.4238 0.056 0.192 0.000 0.752
#> GSM414968     1  0.1890     0.6569 0.936 0.000 0.056 0.008
#> GSM414969     4  0.5688     0.3000 0.464 0.000 0.024 0.512
#> GSM414971     4  0.6581     0.5799 0.200 0.128 0.012 0.660
#> GSM414973     1  0.4643     0.3783 0.656 0.000 0.000 0.344
#> GSM414974     3  0.4624     0.5997 0.000 0.340 0.660 0.000
#> GSM414928     3  0.4661     0.6027 0.000 0.348 0.652 0.000
#> GSM414930     3  0.4817     0.5790 0.000 0.388 0.612 0.000
#> GSM414932     1  0.2466     0.6514 0.916 0.000 0.056 0.028
#> GSM414934     1  0.7488    -0.2107 0.436 0.000 0.180 0.384
#> GSM414938     4  0.8180     0.4587 0.308 0.028 0.192 0.472
#> GSM414940     1  0.3377     0.5702 0.848 0.000 0.140 0.012
#> GSM414942     2  0.0336     0.6121 0.000 0.992 0.008 0.000
#> GSM414947     2  0.4277     0.2582 0.000 0.720 0.280 0.000
#> GSM414953     1  0.2142     0.6574 0.928 0.000 0.056 0.016
#> GSM414955     1  0.2222     0.6553 0.924 0.000 0.060 0.016
#> GSM414957     2  0.1677     0.6111 0.000 0.948 0.012 0.040
#> GSM414963     2  0.7683     0.2508 0.256 0.568 0.140 0.036
#> GSM414966     2  0.1557     0.5959 0.000 0.944 0.056 0.000
#> GSM414970     2  0.7477     0.4617 0.148 0.624 0.052 0.176
#> GSM414972     2  0.4049     0.3870 0.000 0.780 0.212 0.008
#> GSM414975     2  0.1637     0.5940 0.000 0.940 0.060 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM414924     1  0.5490    0.45184 0.708 0.000 0.116 0.032 0.144
#> GSM414925     1  0.2462    0.64171 0.880 0.000 0.112 0.000 0.008
#> GSM414926     1  0.6596   -0.03774 0.488 0.000 0.068 0.388 0.056
#> GSM414927     2  0.0162    0.79223 0.000 0.996 0.004 0.000 0.000
#> GSM414929     1  0.4796    0.53604 0.772 0.000 0.044 0.072 0.112
#> GSM414931     1  0.4686    0.50306 0.756 0.000 0.008 0.124 0.112
#> GSM414933     5  0.4181    0.38495 0.244 0.000 0.004 0.020 0.732
#> GSM414935     1  0.3949    0.41396 0.696 0.000 0.300 0.000 0.004
#> GSM414936     1  0.2661    0.65766 0.888 0.000 0.056 0.000 0.056
#> GSM414937     1  0.1830    0.65083 0.924 0.000 0.068 0.000 0.008
#> GSM414939     1  0.0566    0.65993 0.984 0.000 0.012 0.000 0.004
#> GSM414941     1  0.2891    0.57769 0.824 0.000 0.176 0.000 0.000
#> GSM414943     1  0.2633    0.64063 0.896 0.000 0.024 0.068 0.012
#> GSM414944     1  0.5452   -0.12100 0.536 0.000 0.020 0.028 0.416
#> GSM414945     5  0.6036    0.19701 0.000 0.116 0.340 0.004 0.540
#> GSM414946     1  0.2653    0.63689 0.880 0.000 0.096 0.000 0.024
#> GSM414948     1  0.3100    0.62186 0.868 0.000 0.020 0.092 0.020
#> GSM414949     3  0.3802    0.24734 0.036 0.120 0.824 0.000 0.020
#> GSM414950     1  0.4101    0.15118 0.628 0.000 0.372 0.000 0.000
#> GSM414951     1  0.3304    0.60897 0.816 0.000 0.168 0.000 0.016
#> GSM414952     1  0.4430   -0.10422 0.540 0.000 0.456 0.000 0.004
#> GSM414954     1  0.3308    0.59688 0.832 0.000 0.144 0.004 0.020
#> GSM414956     1  0.1740    0.65294 0.932 0.000 0.056 0.000 0.012
#> GSM414958     1  0.2629    0.63760 0.880 0.000 0.012 0.004 0.104
#> GSM414959     1  0.4059    0.57902 0.808 0.000 0.012 0.112 0.068
#> GSM414960     4  0.0865    0.49319 0.004 0.000 0.000 0.972 0.024
#> GSM414961     1  0.6952   -0.29849 0.356 0.000 0.324 0.316 0.004
#> GSM414962     4  0.3079    0.46787 0.004 0.004 0.004 0.840 0.148
#> GSM414964     1  0.3628    0.49847 0.772 0.000 0.216 0.000 0.012
#> GSM414965     1  0.0992    0.65974 0.968 0.000 0.008 0.000 0.024
#> GSM414967     5  0.7155    0.11142 0.240 0.004 0.016 0.296 0.444
#> GSM414968     3  0.4659    0.05761 0.488 0.000 0.500 0.000 0.012
#> GSM414969     5  0.7928   -0.12716 0.284 0.004 0.236 0.072 0.404
#> GSM414971     4  0.6535   -0.13122 0.392 0.000 0.008 0.448 0.152
#> GSM414973     1  0.2012    0.65504 0.920 0.000 0.020 0.000 0.060
#> GSM414974     2  0.2102    0.76742 0.000 0.916 0.068 0.004 0.012
#> GSM414928     2  0.1809    0.77133 0.000 0.928 0.060 0.000 0.012
#> GSM414930     2  0.0486    0.79309 0.000 0.988 0.004 0.004 0.004
#> GSM414932     3  0.5877    0.19819 0.416 0.000 0.500 0.076 0.008
#> GSM414934     3  0.6581    0.19290 0.180 0.000 0.444 0.004 0.372
#> GSM414938     5  0.6432    0.36168 0.272 0.004 0.176 0.004 0.544
#> GSM414940     3  0.4065    0.44642 0.264 0.000 0.720 0.000 0.016
#> GSM414942     2  0.4151    0.74518 0.000 0.652 0.000 0.344 0.004
#> GSM414947     2  0.3039    0.82095 0.000 0.808 0.000 0.192 0.000
#> GSM414953     1  0.4350    0.04759 0.588 0.000 0.408 0.000 0.004
#> GSM414955     1  0.4440   -0.15103 0.528 0.000 0.468 0.000 0.004
#> GSM414957     2  0.4434    0.61661 0.000 0.536 0.000 0.460 0.004
#> GSM414963     3  0.5943    0.00493 0.028 0.040 0.568 0.356 0.008
#> GSM414966     2  0.3508    0.80802 0.000 0.748 0.000 0.252 0.000
#> GSM414970     4  0.4762    0.27713 0.004 0.020 0.296 0.672 0.008
#> GSM414972     2  0.3391    0.82054 0.000 0.800 0.000 0.188 0.012
#> GSM414975     2  0.3561    0.80500 0.000 0.740 0.000 0.260 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM414924     5  0.5732     0.2507 0.136 0.000 0.012 0.004 0.564 0.284
#> GSM414925     5  0.4239     0.6295 0.008 0.000 0.088 0.000 0.748 0.156
#> GSM414926     5  0.7151    -0.0885 0.080 0.008 0.012 0.340 0.436 0.124
#> GSM414927     2  0.1053     0.8276 0.004 0.964 0.012 0.000 0.000 0.020
#> GSM414929     5  0.5108     0.5319 0.112 0.000 0.020 0.056 0.732 0.080
#> GSM414931     5  0.3197     0.6301 0.072 0.000 0.004 0.068 0.848 0.008
#> GSM414933     1  0.5569     0.2676 0.580 0.000 0.004 0.020 0.304 0.092
#> GSM414935     5  0.5379    -0.0206 0.016 0.000 0.352 0.000 0.552 0.080
#> GSM414936     5  0.3203     0.6764 0.080 0.000 0.052 0.000 0.848 0.020
#> GSM414937     5  0.2408     0.6580 0.012 0.000 0.108 0.000 0.876 0.004
#> GSM414939     5  0.1605     0.6935 0.016 0.000 0.044 0.004 0.936 0.000
#> GSM414941     5  0.3317     0.6205 0.004 0.000 0.156 0.000 0.808 0.032
#> GSM414943     5  0.2357     0.6869 0.004 0.000 0.032 0.048 0.904 0.012
#> GSM414944     5  0.6324     0.0663 0.204 0.000 0.008 0.032 0.544 0.212
#> GSM414945     6  0.4357     0.3755 0.132 0.036 0.060 0.004 0.000 0.768
#> GSM414946     5  0.4434     0.5978 0.028 0.000 0.060 0.000 0.740 0.172
#> GSM414948     5  0.2594     0.6634 0.020 0.000 0.008 0.072 0.888 0.012
#> GSM414949     3  0.3665     0.2723 0.000 0.032 0.784 0.000 0.012 0.172
#> GSM414950     3  0.3982     0.4090 0.000 0.000 0.536 0.000 0.460 0.004
#> GSM414951     5  0.5163     0.5284 0.044 0.000 0.180 0.004 0.692 0.080
#> GSM414952     3  0.3578     0.6074 0.000 0.000 0.660 0.000 0.340 0.000
#> GSM414954     5  0.3966     0.4937 0.028 0.000 0.236 0.008 0.728 0.000
#> GSM414956     5  0.2400     0.6533 0.008 0.000 0.116 0.004 0.872 0.000
#> GSM414958     5  0.2445     0.6491 0.120 0.000 0.008 0.000 0.868 0.004
#> GSM414959     5  0.4407     0.5521 0.160 0.000 0.012 0.064 0.752 0.012
#> GSM414960     4  0.0870     0.4511 0.012 0.000 0.012 0.972 0.000 0.004
#> GSM414961     3  0.6038     0.3353 0.004 0.000 0.428 0.356 0.212 0.000
#> GSM414962     4  0.4232     0.3963 0.200 0.012 0.012 0.744 0.000 0.032
#> GSM414964     5  0.4054     0.3712 0.024 0.000 0.284 0.004 0.688 0.000
#> GSM414965     5  0.2585     0.6766 0.068 0.000 0.048 0.004 0.880 0.000
#> GSM414967     1  0.6511     0.3251 0.532 0.016 0.008 0.212 0.216 0.016
#> GSM414968     3  0.5965     0.4918 0.040 0.000 0.508 0.008 0.372 0.072
#> GSM414969     1  0.6269     0.1286 0.548 0.000 0.248 0.060 0.144 0.000
#> GSM414971     4  0.5787    -0.1556 0.128 0.000 0.004 0.504 0.356 0.008
#> GSM414973     5  0.3567     0.6368 0.124 0.000 0.068 0.004 0.804 0.000
#> GSM414974     2  0.5052     0.6717 0.060 0.716 0.156 0.008 0.000 0.060
#> GSM414928     2  0.3765     0.7327 0.016 0.804 0.084 0.000 0.000 0.096
#> GSM414930     2  0.0767     0.8312 0.012 0.976 0.004 0.000 0.000 0.008
#> GSM414932     3  0.4255     0.6300 0.004 0.000 0.700 0.036 0.256 0.004
#> GSM414934     3  0.6497     0.4061 0.160 0.000 0.588 0.012 0.100 0.140
#> GSM414938     6  0.7304     0.1133 0.280 0.008 0.068 0.016 0.176 0.452
#> GSM414940     3  0.6045     0.3124 0.040 0.000 0.536 0.000 0.124 0.300
#> GSM414942     2  0.3816     0.7845 0.028 0.760 0.000 0.200 0.000 0.012
#> GSM414947     2  0.1913     0.8484 0.012 0.908 0.000 0.080 0.000 0.000
#> GSM414953     3  0.3899     0.5291 0.004 0.000 0.592 0.000 0.404 0.000
#> GSM414955     3  0.3446     0.6277 0.000 0.000 0.692 0.000 0.308 0.000
#> GSM414957     2  0.4058     0.6114 0.004 0.616 0.000 0.372 0.000 0.008
#> GSM414963     3  0.4663     0.1673 0.008 0.016 0.664 0.288 0.004 0.020
#> GSM414966     2  0.2526     0.8460 0.024 0.876 0.000 0.096 0.000 0.004
#> GSM414970     4  0.5186     0.2402 0.052 0.016 0.356 0.572 0.000 0.004
#> GSM414972     2  0.2507     0.8465 0.040 0.884 0.000 0.072 0.000 0.004
#> GSM414975     2  0.2622     0.8447 0.024 0.868 0.000 0.104 0.000 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n tissue(p) k
#> ATC:NMF 51  1.50e-03 2
#> ATC:NMF 38  5.98e-01 3
#> ATC:NMF 30  1.03e-02 4
#> ATC:NMF 27  7.50e-05 5
#> ATC:NMF 30  4.82e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0