Date: 2019-12-25 21:04:25 CET, cola version: 1.3.2
Document is loading...
All available functions which can be applied to this res_list
object:
res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#> Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#> Number of partitions are tried for k = 2, 3, 4, 5, 6.
#> Performed in total 30000 partitions by row resampling.
#>
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#> [1] "cola_report" "collect_classes" "collect_plots" "collect_stats"
#> [5] "colnames" "functional_enrichment" "get_anno_col" "get_anno"
#> [9] "get_classes" "get_matrix" "get_membership" "get_stats"
#> [13] "is_best_k" "is_stable_k" "ncol" "nrow"
#> [17] "rownames" "show" "suggest_best_k" "test_to_known_factors"
#> [21] "top_rows_heatmap" "top_rows_overlap"
#>
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]
The call of run_all_consensus_partition_methods()
was:
#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)
Dimension of the input matrix:
mat = get_matrix(res_list)
dim(mat)
#> [1] 21074 139
The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.
library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list),
col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
mc.cores = 4)
Folowing table shows the best k
(number of partitions) for each combination
of top-value methods and partition methods. Clicking on the method name in
the table goes to the section for a single combination of methods.
The cola vignette explains the definition of the metrics used for determining the best number of partitions.
suggest_best_k(res_list)
The best k | 1-PAC | Mean silhouette | Concordance | Optional k | ||
---|---|---|---|---|---|---|
SD:kmeans | 2 | 1.000 | 0.973 | 0.979 | ** | |
CV:kmeans | 2 | 1.000 | 0.973 | 0.985 | ** | |
CV:mclust | 3 | 1.000 | 0.994 | 0.997 | ** | |
MAD:kmeans | 2 | 1.000 | 0.983 | 0.992 | ** | |
ATC:hclust | 2 | 1.000 | 0.989 | 0.995 | ** | |
ATC:kmeans | 2 | 1.000 | 0.992 | 0.997 | ** | |
ATC:skmeans | 3 | 1.000 | 0.948 | 0.973 | ** | 2 |
ATC:pam | 2 | 1.000 | 0.978 | 0.991 | ** | |
ATC:mclust | 2 | 1.000 | 1.000 | 1.000 | ** | |
MAD:pam | 6 | 1.000 | 0.953 | 0.982 | ** | 2,3,4,5 |
SD:pam | 6 | 0.991 | 0.953 | 0.981 | ** | 2,3,4,5 |
SD:NMF | 2 | 0.970 | 0.966 | 0.985 | ** | |
CV:NMF | 2 | 0.970 | 0.962 | 0.984 | ** | |
MAD:mclust | 4 | 0.969 | 0.961 | 0.959 | ** | 3 |
CV:pam | 6 | 0.960 | 0.939 | 0.941 | ** | 2,3,5 |
MAD:skmeans | 6 | 0.940 | 0.931 | 0.918 | * | 2,3,4,5 |
SD:skmeans | 6 | 0.935 | 0.925 | 0.915 | * | 2,3,4,5 |
CV:skmeans | 6 | 0.926 | 0.880 | 0.899 | * | 2,3,4,5 |
SD:mclust | 6 | 0.921 | 0.889 | 0.949 | * | 3 |
MAD:NMF | 4 | 0.914 | 0.885 | 0.951 | * | 2 |
ATC:NMF | 5 | 0.908 | 0.873 | 0.926 | * | 2 |
CV:hclust | 3 | 0.669 | 0.726 | 0.883 | ||
SD:hclust | 3 | 0.629 | 0.728 | 0.866 | ||
MAD:hclust | 3 | 0.607 | 0.756 | 0.864 |
**: 1-PAC > 0.95, *: 1-PAC > 0.9
Cumulative distribution function curves of consensus matrix for all methods.
collect_plots(res_list, fun = plot_ecdf)
Consensus heatmaps for all methods. (What is a consensus heatmap?)
collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)
Membership heatmaps for all methods. (What is a membership heatmap?)
collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)
Signature heatmaps for all methods. (What is a signature heatmap?)
Note in following heatmaps, rows are scaled.
collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)
The statistics used for measuring the stability of consensus partitioning. (How are they defined?)
get_stats(res_list, k = 2)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 2 0.970 0.966 0.985 0.493 0.508 0.508
#> CV:NMF 2 0.970 0.962 0.984 0.495 0.508 0.508
#> MAD:NMF 2 0.985 0.959 0.983 0.495 0.508 0.508
#> ATC:NMF 2 1.000 0.964 0.985 0.495 0.504 0.504
#> SD:skmeans 2 1.000 0.988 0.995 0.491 0.510 0.510
#> CV:skmeans 2 1.000 0.982 0.993 0.490 0.510 0.510
#> MAD:skmeans 2 1.000 0.988 0.995 0.491 0.510 0.510
#> ATC:skmeans 2 1.000 0.978 0.992 0.491 0.510 0.510
#> SD:mclust 2 0.353 0.870 0.856 0.444 0.518 0.518
#> CV:mclust 2 0.348 0.832 0.825 0.428 0.518 0.518
#> MAD:mclust 2 0.752 0.931 0.932 0.475 0.518 0.518
#> ATC:mclust 2 1.000 1.000 1.000 0.482 0.518 0.518
#> SD:kmeans 2 1.000 0.973 0.979 0.482 0.513 0.513
#> CV:kmeans 2 1.000 0.973 0.985 0.483 0.513 0.513
#> MAD:kmeans 2 1.000 0.983 0.992 0.486 0.513 0.513
#> ATC:kmeans 2 1.000 0.992 0.997 0.484 0.515 0.515
#> SD:pam 2 1.000 0.988 0.995 0.490 0.513 0.513
#> CV:pam 2 1.000 0.987 0.994 0.489 0.513 0.513
#> MAD:pam 2 1.000 0.995 0.997 0.489 0.513 0.513
#> ATC:pam 2 1.000 0.978 0.991 0.486 0.515 0.515
#> SD:hclust 2 0.299 0.606 0.779 0.397 0.496 0.496
#> CV:hclust 2 0.328 0.756 0.773 0.381 0.508 0.508
#> MAD:hclust 2 0.370 0.795 0.840 0.427 0.515 0.515
#> ATC:hclust 2 1.000 0.989 0.995 0.485 0.515 0.515
get_stats(res_list, k = 3)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 3 0.615 0.562 0.749 0.336 0.769 0.571
#> CV:NMF 3 0.626 0.598 0.808 0.332 0.806 0.628
#> MAD:NMF 3 0.694 0.714 0.841 0.334 0.774 0.577
#> ATC:NMF 3 0.773 0.843 0.921 0.321 0.754 0.546
#> SD:skmeans 3 1.000 0.986 0.993 0.315 0.834 0.678
#> CV:skmeans 3 1.000 0.982 0.993 0.316 0.822 0.659
#> MAD:skmeans 3 1.000 0.982 0.991 0.314 0.834 0.678
#> ATC:skmeans 3 1.000 0.948 0.973 0.268 0.869 0.742
#> SD:mclust 3 1.000 0.991 0.996 0.452 0.837 0.685
#> CV:mclust 3 1.000 0.994 0.997 0.507 0.837 0.685
#> MAD:mclust 3 1.000 0.996 0.998 0.358 0.837 0.685
#> ATC:mclust 3 0.771 0.837 0.903 0.230 0.930 0.864
#> SD:kmeans 3 0.623 0.705 0.777 0.317 0.788 0.601
#> CV:kmeans 3 0.640 0.670 0.568 0.312 0.860 0.745
#> MAD:kmeans 3 0.649 0.544 0.722 0.302 0.938 0.885
#> ATC:kmeans 3 0.659 0.793 0.807 0.303 0.800 0.629
#> SD:pam 3 1.000 0.989 0.995 0.323 0.828 0.668
#> CV:pam 3 1.000 0.983 0.994 0.322 0.831 0.674
#> MAD:pam 3 1.000 0.991 0.996 0.327 0.828 0.668
#> ATC:pam 3 0.718 0.812 0.897 0.351 0.789 0.602
#> SD:hclust 3 0.629 0.728 0.866 0.517 0.789 0.623
#> CV:hclust 3 0.669 0.726 0.883 0.546 0.795 0.640
#> MAD:hclust 3 0.607 0.756 0.864 0.449 0.831 0.675
#> ATC:hclust 3 0.755 0.809 0.902 0.228 0.931 0.865
get_stats(res_list, k = 4)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 4 0.880 0.895 0.950 0.1133 0.859 0.619
#> CV:NMF 4 0.891 0.891 0.945 0.1140 0.879 0.666
#> MAD:NMF 4 0.914 0.885 0.951 0.1097 0.852 0.604
#> ATC:NMF 4 0.823 0.841 0.911 0.1156 0.876 0.658
#> SD:skmeans 4 1.000 0.980 0.983 0.1326 0.905 0.737
#> CV:skmeans 4 1.000 0.976 0.982 0.1327 0.910 0.749
#> MAD:skmeans 4 1.000 0.988 0.981 0.1304 0.905 0.737
#> ATC:skmeans 4 0.780 0.864 0.885 0.1047 0.907 0.758
#> SD:mclust 4 0.876 0.940 0.939 0.0897 0.948 0.855
#> CV:mclust 4 0.837 0.913 0.913 0.0939 0.948 0.855
#> MAD:mclust 4 0.969 0.961 0.959 0.0810 0.948 0.855
#> ATC:mclust 4 0.640 0.660 0.801 0.1474 0.876 0.745
#> SD:kmeans 4 0.704 0.876 0.749 0.1411 0.904 0.729
#> CV:kmeans 4 0.630 0.868 0.744 0.1352 0.674 0.374
#> MAD:kmeans 4 0.611 0.445 0.608 0.1328 0.687 0.408
#> ATC:kmeans 4 0.611 0.411 0.684 0.1255 0.808 0.546
#> SD:pam 4 1.000 0.963 0.958 0.1268 0.907 0.741
#> CV:pam 4 0.840 0.901 0.882 0.1261 0.910 0.748
#> MAD:pam 4 1.000 0.963 0.962 0.1250 0.907 0.741
#> ATC:pam 4 0.652 0.726 0.810 0.1169 0.892 0.695
#> SD:hclust 4 0.678 0.700 0.838 0.1591 0.880 0.715
#> CV:hclust 4 0.667 0.680 0.843 0.1835 0.839 0.637
#> MAD:hclust 4 0.698 0.597 0.794 0.1365 0.962 0.895
#> ATC:hclust 4 0.711 0.839 0.895 0.1371 0.895 0.764
get_stats(res_list, k = 5)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 5 0.881 0.850 0.919 0.0442 0.977 0.914
#> CV:NMF 5 0.887 0.868 0.930 0.0436 0.966 0.874
#> MAD:NMF 5 0.871 0.849 0.919 0.0483 0.957 0.845
#> ATC:NMF 5 0.908 0.873 0.926 0.0475 0.932 0.761
#> SD:skmeans 5 0.932 0.955 0.966 0.1007 0.918 0.701
#> CV:skmeans 5 0.977 0.971 0.977 0.1001 0.924 0.719
#> MAD:skmeans 5 0.923 0.957 0.962 0.1015 0.918 0.701
#> ATC:skmeans 5 0.775 0.825 0.895 0.0762 0.959 0.865
#> SD:mclust 5 0.842 0.786 0.906 0.1094 0.929 0.765
#> CV:mclust 5 0.817 0.771 0.900 0.1091 0.901 0.682
#> MAD:mclust 5 0.820 0.805 0.903 0.1208 0.931 0.771
#> ATC:mclust 5 0.636 0.638 0.752 0.0777 0.825 0.580
#> SD:kmeans 5 0.704 0.851 0.799 0.0695 0.918 0.701
#> CV:kmeans 5 0.706 0.847 0.801 0.0794 0.924 0.719
#> MAD:kmeans 5 0.690 0.860 0.804 0.0791 0.865 0.532
#> ATC:kmeans 5 0.625 0.553 0.731 0.0696 0.926 0.760
#> SD:pam 5 1.000 0.975 0.991 0.1043 0.924 0.719
#> CV:pam 5 1.000 0.977 0.990 0.1057 0.913 0.683
#> MAD:pam 5 1.000 0.975 0.991 0.1042 0.918 0.701
#> ATC:pam 5 0.750 0.753 0.879 0.0716 0.866 0.568
#> SD:hclust 5 0.685 0.570 0.776 0.0836 0.920 0.752
#> CV:hclust 5 0.707 0.677 0.812 0.0618 0.957 0.857
#> MAD:hclust 5 0.781 0.648 0.817 0.0454 0.932 0.801
#> ATC:hclust 5 0.793 0.758 0.857 0.0601 0.966 0.901
get_stats(res_list, k = 6)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 6 0.889 0.908 0.923 0.0517 0.915 0.674
#> CV:NMF 6 0.891 0.912 0.931 0.0528 0.915 0.672
#> MAD:NMF 6 0.878 0.862 0.891 0.0478 0.912 0.659
#> ATC:NMF 6 0.815 0.710 0.852 0.0371 0.985 0.939
#> SD:skmeans 6 0.935 0.925 0.915 0.0277 0.981 0.900
#> CV:skmeans 6 0.926 0.880 0.899 0.0281 0.977 0.881
#> MAD:skmeans 6 0.940 0.931 0.918 0.0289 0.981 0.900
#> ATC:skmeans 6 0.876 0.761 0.844 0.0541 0.932 0.754
#> SD:mclust 6 0.921 0.889 0.949 0.0242 0.924 0.701
#> CV:mclust 6 0.898 0.863 0.943 0.0176 0.886 0.571
#> MAD:mclust 6 0.898 0.856 0.926 0.0221 0.915 0.673
#> ATC:mclust 6 0.706 0.696 0.820 0.0436 0.960 0.849
#> SD:kmeans 6 0.810 0.754 0.775 0.0452 0.994 0.970
#> CV:kmeans 6 0.754 0.826 0.794 0.0415 0.989 0.943
#> MAD:kmeans 6 0.816 0.820 0.796 0.0457 0.994 0.970
#> ATC:kmeans 6 0.707 0.665 0.754 0.0501 0.940 0.774
#> SD:pam 6 0.991 0.953 0.981 0.0285 0.970 0.848
#> CV:pam 6 0.960 0.939 0.941 0.0277 0.970 0.849
#> MAD:pam 6 1.000 0.953 0.982 0.0290 0.970 0.847
#> ATC:pam 6 0.771 0.685 0.830 0.0404 0.964 0.838
#> SD:hclust 6 0.731 0.611 0.754 0.0403 0.935 0.756
#> CV:hclust 6 0.760 0.731 0.813 0.0536 0.945 0.788
#> MAD:hclust 6 0.825 0.776 0.846 0.0355 0.937 0.784
#> ATC:hclust 6 0.843 0.832 0.891 0.0443 0.923 0.753
Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.
collect_stats(res_list, k = 2)
collect_stats(res_list, k = 3)
collect_stats(res_list, k = 4)
collect_stats(res_list, k = 5)
collect_stats(res_list, k = 6)
Collect partitions from all methods:
collect_classes(res_list, k = 2)
collect_classes(res_list, k = 3)
collect_classes(res_list, k = 4)
collect_classes(res_list, k = 5)
collect_classes(res_list, k = 6)
Overlap of top rows from different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "euler")
top_rows_overlap(res_list, top_n = 2000, method = "euler")
top_rows_overlap(res_list, top_n = 3000, method = "euler")
top_rows_overlap(res_list, top_n = 4000, method = "euler")
top_rows_overlap(res_list, top_n = 5000, method = "euler")
Also visualize the correspondance of rankings between different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "correspondance")
top_rows_overlap(res_list, top_n = 2000, method = "correspondance")
top_rows_overlap(res_list, top_n = 3000, method = "correspondance")
top_rows_overlap(res_list, top_n = 4000, method = "correspondance")
top_rows_overlap(res_list, top_n = 5000, method = "correspondance")
Heatmaps of the top rows:
top_rows_heatmap(res_list, top_n = 1000)
top_rows_heatmap(res_list, top_n = 2000)
top_rows_heatmap(res_list, top_n = 3000)
top_rows_heatmap(res_list, top_n = 4000)
top_rows_heatmap(res_list, top_n = 5000)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res_list, k = 2)
#> n individual(p) time(p) agent(p) k
#> SD:NMF 139 8.18e-23 1 0.856 2
#> CV:NMF 138 1.25e-22 1 0.820 2
#> MAD:NMF 137 7.88e-24 1 0.869 2
#> ATC:NMF 137 5.19e-23 1 0.783 2
#> SD:skmeans 138 9.55e-25 1 0.733 2
#> CV:skmeans 138 9.55e-25 1 0.733 2
#> MAD:skmeans 139 6.01e-25 1 0.651 2
#> ATC:skmeans 137 1.60e-24 1 0.780 2
#> SD:mclust 139 4.62e-29 1 1.000 2
#> CV:mclust 138 7.56e-29 1 1.000 2
#> MAD:mclust 139 4.62e-29 1 1.000 2
#> ATC:mclust 139 4.62e-29 1 1.000 2
#> SD:kmeans 138 1.06e-24 1 0.780 2
#> CV:kmeans 137 2.50e-25 1 0.831 2
#> MAD:kmeans 138 1.06e-24 1 0.780 2
#> ATC:kmeans 138 3.69e-23 1 0.865 2
#> SD:pam 139 2.03e-27 1 1.000 2
#> CV:pam 139 2.03e-27 1 1.000 2
#> MAD:pam 139 2.03e-27 1 1.000 2
#> ATC:pam 138 1.06e-24 1 0.780 2
#> SD:hclust 124 3.50e-21 1 1.000 2
#> CV:hclust 135 2.42e-23 1 1.000 2
#> MAD:hclust 137 1.39e-21 1 1.000 2
#> ATC:hclust 139 5.46e-22 1 1.000 2
test_to_known_factors(res_list, k = 3)
#> n individual(p) time(p) agent(p) k
#> SD:NMF 81 6.10e-31 0.996 0.66598 3
#> CV:NMF 98 8.68e-37 1.000 0.29271 3
#> MAD:NMF 115 2.97e-36 0.994 0.00537 3
#> ATC:NMF 129 2.11e-27 0.951 0.00148 3
#> SD:skmeans 138 5.92e-53 1.000 0.91412 3
#> CV:skmeans 137 1.49e-53 1.000 0.93431 3
#> MAD:skmeans 139 1.97e-52 1.000 0.89096 3
#> ATC:skmeans 136 1.10e-21 0.928 0.02739 3
#> SD:mclust 139 1.97e-55 1.000 0.99781 3
#> CV:mclust 139 1.97e-55 1.000 0.99781 3
#> MAD:mclust 139 1.97e-55 1.000 0.99781 3
#> ATC:mclust 132 7.80e-32 1.000 0.16333 3
#> SD:kmeans 111 1.97e-42 1.000 0.95096 3
#> CV:kmeans 131 1.21e-50 1.000 0.73157 3
#> MAD:kmeans 54 NA NA NA 3
#> ATC:kmeans 128 3.37e-26 0.946 0.01899 3
#> SD:pam 138 5.23e-55 1.000 0.97701 3
#> CV:pam 138 5.23e-55 1.000 0.97701 3
#> MAD:pam 139 6.21e-54 1.000 0.93451 3
#> ATC:pam 130 8.26e-34 0.996 0.24308 3
#> SD:hclust 120 3.71e-32 0.995 0.02443 3
#> CV:hclust 119 8.31e-29 0.991 0.04383 3
#> MAD:hclust 124 9.03e-45 1.000 0.80138 3
#> ATC:hclust 125 1.76e-22 0.967 0.16814 3
test_to_known_factors(res_list, k = 4)
#> n individual(p) time(p) agent(p) k
#> SD:NMF 134 4.75e-68 1.000 0.5995 4
#> CV:NMF 132 1.98e-68 1.000 0.7255 4
#> MAD:NMF 131 2.80e-69 1.000 0.8735 4
#> ATC:NMF 132 1.26e-32 0.964 0.0175 4
#> SD:skmeans 139 2.80e-78 1.000 0.9963 4
#> CV:skmeans 137 5.48e-79 1.000 0.9946 4
#> MAD:skmeans 139 2.80e-78 1.000 0.9963 4
#> ATC:skmeans 134 2.07e-37 0.999 0.1175 4
#> SD:mclust 139 1.43e-59 1.000 0.0417 4
#> CV:mclust 138 1.57e-59 1.000 0.0465 4
#> MAD:mclust 139 1.43e-59 1.000 0.0417 4
#> ATC:mclust 103 6.10e-23 1.000 0.7818 4
#> SD:kmeans 138 4.25e-79 1.000 0.9980 4
#> CV:kmeans 139 2.80e-78 1.000 0.9963 4
#> MAD:kmeans 88 6.42e-34 1.000 0.5269 4
#> ATC:kmeans 64 4.18e-13 0.828 0.9845 4
#> SD:pam 137 6.35e-79 1.000 0.9625 4
#> CV:pam 136 7.65e-80 1.000 0.9944 4
#> MAD:pam 137 6.35e-79 1.000 0.9625 4
#> ATC:pam 128 4.83e-41 0.998 0.0614 4
#> SD:hclust 120 2.08e-37 0.984 0.0148 4
#> CV:hclust 114 2.60e-36 0.992 0.0209 4
#> MAD:hclust 101 8.61e-37 1.000 0.5080 4
#> ATC:hclust 127 4.72e-21 0.816 0.0380 4
test_to_known_factors(res_list, k = 5)
#> n individual(p) time(p) agent(p) k
#> SD:NMF 132 2.50e-70 1.000 0.710557 5
#> CV:NMF 133 1.90e-72 1.000 0.738132 5
#> MAD:NMF 130 4.77e-70 1.000 0.548019 5
#> ATC:NMF 132 4.94e-47 0.999 0.095814 5
#> SD:skmeans 139 5.15e-106 1.000 0.999799 5
#> CV:skmeans 138 3.50e-105 1.000 0.995538 5
#> MAD:skmeans 139 5.15e-106 1.000 0.999799 5
#> ATC:skmeans 129 1.14e-39 0.997 0.075269 5
#> SD:mclust 122 8.38e-56 1.000 0.000035 5
#> CV:mclust 123 7.01e-67 1.000 0.002072 5
#> MAD:mclust 134 4.72e-66 1.000 0.001281 5
#> ATC:mclust 114 7.16e-34 0.958 0.357714 5
#> SD:kmeans 138 3.50e-105 1.000 0.997966 5
#> CV:kmeans 138 3.11e-103 1.000 0.996718 5
#> MAD:kmeans 138 3.50e-105 1.000 0.997966 5
#> ATC:kmeans 108 2.25e-27 0.909 0.091123 5
#> SD:pam 136 1.89e-103 1.000 0.984952 5
#> CV:pam 138 2.69e-101 1.000 0.977276 5
#> MAD:pam 137 3.01e-102 1.000 0.984374 5
#> ATC:pam 124 5.19e-54 1.000 0.041818 5
#> SD:hclust 104 2.54e-51 0.999 0.057551 5
#> CV:hclust 120 7.66e-43 0.999 0.021386 5
#> MAD:hclust 109 1.15e-45 1.000 0.520019 5
#> ATC:hclust 128 2.69e-23 0.908 0.075905 5
test_to_known_factors(res_list, k = 6)
#> n individual(p) time(p) agent(p) k
#> SD:NMF 135 1.25e-99 1.000 9.09e-01 6
#> CV:NMF 135 1.25e-99 1.000 9.09e-01 6
#> MAD:NMF 130 1.88e-97 1.000 9.48e-01 6
#> ATC:NMF 119 3.25e-44 0.993 6.20e-02 6
#> SD:skmeans 139 5.38e-103 1.000 7.67e-01 6
#> CV:skmeans 135 1.08e-99 1.000 2.77e-01 6
#> MAD:skmeans 139 5.38e-103 1.000 7.67e-01 6
#> ATC:skmeans 123 9.70e-54 1.000 8.13e-02 6
#> SD:mclust 133 1.32e-52 0.978 5.60e-10 6
#> CV:mclust 129 9.13e-51 0.965 1.89e-09 6
#> MAD:mclust 131 1.87e-52 0.987 3.41e-10 6
#> ATC:mclust 119 1.88e-36 0.975 3.79e-02 6
#> SD:kmeans 126 4.76e-97 1.000 3.95e-01 6
#> CV:kmeans 138 3.50e-105 1.000 9.98e-01 6
#> MAD:kmeans 138 3.50e-105 1.000 9.98e-01 6
#> ATC:kmeans 119 1.52e-25 0.869 3.00e-02 6
#> SD:pam 136 6.27e-99 1.000 2.61e-02 6
#> CV:pam 138 1.07e-96 1.000 2.41e-02 6
#> MAD:pam 135 5.15e-96 1.000 4.98e-02 6
#> ATC:pam 115 1.29e-59 1.000 1.46e-01 6
#> SD:hclust 104 6.25e-74 1.000 8.93e-02 6
#> CV:hclust 120 6.96e-69 1.000 3.57e-02 6
#> MAD:hclust 121 7.52e-66 1.000 5.96e-01 6
#> ATC:hclust 123 4.30e-24 0.772 5.73e-02 6
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.299 0.606 0.779 0.3967 0.496 0.496
#> 3 3 0.629 0.728 0.866 0.5168 0.789 0.623
#> 4 4 0.678 0.700 0.838 0.1591 0.880 0.715
#> 5 5 0.685 0.570 0.776 0.0836 0.920 0.752
#> 6 6 0.731 0.611 0.754 0.0403 0.935 0.756
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.0000 0.8232 0.000 1.000
#> GSM379833 2 0.0000 0.8232 0.000 1.000
#> GSM379834 2 0.0000 0.8232 0.000 1.000
#> GSM379827 2 0.4562 0.7422 0.096 0.904
#> GSM379828 2 0.4562 0.7422 0.096 0.904
#> GSM379829 1 0.7056 0.6680 0.808 0.192
#> GSM379830 2 0.4690 0.7366 0.100 0.900
#> GSM379831 2 0.4431 0.7463 0.092 0.908
#> GSM379840 2 0.8861 0.4789 0.304 0.696
#> GSM379841 2 0.0000 0.8232 0.000 1.000
#> GSM379842 2 0.0000 0.8232 0.000 1.000
#> GSM379835 2 0.4562 0.7422 0.096 0.904
#> GSM379836 2 0.4562 0.7422 0.096 0.904
#> GSM379837 2 0.8861 0.4789 0.304 0.696
#> GSM379838 2 0.0000 0.8232 0.000 1.000
#> GSM379839 2 0.8861 0.4789 0.304 0.696
#> GSM379848 2 0.0000 0.8232 0.000 1.000
#> GSM379849 2 0.0000 0.8232 0.000 1.000
#> GSM379850 2 0.0000 0.8232 0.000 1.000
#> GSM379843 2 0.0000 0.8232 0.000 1.000
#> GSM379844 2 0.0000 0.8232 0.000 1.000
#> GSM379845 2 0.8861 0.4789 0.304 0.696
#> GSM379846 2 0.0000 0.8232 0.000 1.000
#> GSM379847 2 0.0000 0.8232 0.000 1.000
#> GSM379853 2 0.0000 0.8232 0.000 1.000
#> GSM379854 2 0.0000 0.8232 0.000 1.000
#> GSM379851 2 0.0000 0.8232 0.000 1.000
#> GSM379852 2 0.0000 0.8232 0.000 1.000
#> GSM379804 1 0.2423 0.6017 0.960 0.040
#> GSM379805 1 0.2423 0.6017 0.960 0.040
#> GSM379806 1 0.2423 0.6017 0.960 0.040
#> GSM379799 1 0.0000 0.5743 1.000 0.000
#> GSM379800 1 0.0000 0.5743 1.000 0.000
#> GSM379801 1 0.0000 0.5743 1.000 0.000
#> GSM379802 1 0.0000 0.5743 1.000 0.000
#> GSM379803 1 0.0672 0.5802 0.992 0.008
#> GSM379812 1 0.8207 0.7122 0.744 0.256
#> GSM379813 1 0.8144 0.7115 0.748 0.252
#> GSM379814 1 0.7745 0.7051 0.772 0.228
#> GSM379807 1 0.7745 0.7051 0.772 0.228
#> GSM379808 1 0.2423 0.6017 0.960 0.040
#> GSM379809 1 0.7219 0.6916 0.800 0.200
#> GSM379810 1 0.7219 0.6916 0.800 0.200
#> GSM379811 1 0.0672 0.5802 0.992 0.008
#> GSM379820 1 0.7745 0.7051 0.772 0.228
#> GSM379821 1 0.8555 0.7148 0.720 0.280
#> GSM379822 1 0.8555 0.7148 0.720 0.280
#> GSM379815 1 0.7745 0.7051 0.772 0.228
#> GSM379816 1 0.8608 0.7148 0.716 0.284
#> GSM379817 1 0.8144 0.7115 0.748 0.252
#> GSM379818 1 0.0000 0.5743 1.000 0.000
#> GSM379819 1 0.6712 0.6820 0.824 0.176
#> GSM379825 1 0.0000 0.5743 1.000 0.000
#> GSM379826 1 0.7745 0.7051 0.772 0.228
#> GSM379823 1 0.8555 0.7148 0.720 0.280
#> GSM379824 1 0.8555 0.7148 0.720 0.280
#> GSM379749 2 0.0000 0.8232 0.000 1.000
#> GSM379750 2 0.0000 0.8232 0.000 1.000
#> GSM379751 2 0.0938 0.8154 0.012 0.988
#> GSM379744 2 0.0000 0.8232 0.000 1.000
#> GSM379745 2 0.0000 0.8232 0.000 1.000
#> GSM379746 2 0.0000 0.8232 0.000 1.000
#> GSM379747 2 0.0672 0.8182 0.008 0.992
#> GSM379748 2 0.0672 0.8182 0.008 0.992
#> GSM379757 2 0.0000 0.8232 0.000 1.000
#> GSM379758 2 0.0000 0.8232 0.000 1.000
#> GSM379752 2 0.0000 0.8232 0.000 1.000
#> GSM379753 2 0.0938 0.8154 0.012 0.988
#> GSM379754 2 0.0000 0.8232 0.000 1.000
#> GSM379755 2 0.0000 0.8232 0.000 1.000
#> GSM379756 2 0.0000 0.8232 0.000 1.000
#> GSM379764 2 0.0000 0.8232 0.000 1.000
#> GSM379765 2 0.0000 0.8232 0.000 1.000
#> GSM379766 2 0.0000 0.8232 0.000 1.000
#> GSM379759 2 0.0000 0.8232 0.000 1.000
#> GSM379760 2 0.0000 0.8232 0.000 1.000
#> GSM379761 2 0.0000 0.8232 0.000 1.000
#> GSM379762 2 0.0000 0.8232 0.000 1.000
#> GSM379763 2 0.0000 0.8232 0.000 1.000
#> GSM379769 2 0.0000 0.8232 0.000 1.000
#> GSM379770 2 0.0000 0.8232 0.000 1.000
#> GSM379767 2 0.0000 0.8232 0.000 1.000
#> GSM379768 2 0.0000 0.8232 0.000 1.000
#> GSM379776 1 0.9970 0.6114 0.532 0.468
#> GSM379777 1 0.9129 0.7057 0.672 0.328
#> GSM379778 2 0.4690 0.7322 0.100 0.900
#> GSM379771 1 0.9970 0.6114 0.532 0.468
#> GSM379772 1 0.9970 0.6114 0.532 0.468
#> GSM379773 2 0.9427 -0.0554 0.360 0.640
#> GSM379774 1 0.9970 0.6114 0.532 0.468
#> GSM379775 1 0.9970 0.6114 0.532 0.468
#> GSM379784 1 0.9129 0.7057 0.672 0.328
#> GSM379785 1 0.9754 0.6678 0.592 0.408
#> GSM379786 1 0.9129 0.7057 0.672 0.328
#> GSM379779 1 0.9970 0.6114 0.532 0.468
#> GSM379780 1 0.9970 0.6114 0.532 0.468
#> GSM379781 1 0.9815 0.6592 0.580 0.420
#> GSM379782 2 0.4690 0.7322 0.100 0.900
#> GSM379783 1 0.9129 0.7057 0.672 0.328
#> GSM379792 1 0.8144 0.6744 0.748 0.252
#> GSM379793 1 0.9661 0.6669 0.608 0.392
#> GSM379794 1 0.9661 0.6669 0.608 0.392
#> GSM379787 2 0.4690 0.7322 0.100 0.900
#> GSM379788 1 0.9129 0.7057 0.672 0.328
#> GSM379789 1 0.9754 0.6596 0.592 0.408
#> GSM379790 1 0.9754 0.6596 0.592 0.408
#> GSM379791 1 0.9661 0.6669 0.608 0.392
#> GSM379797 1 0.0000 0.5743 1.000 0.000
#> GSM379798 1 0.9661 0.6669 0.608 0.392
#> GSM379795 1 0.9661 0.6669 0.608 0.392
#> GSM379796 1 0.8144 0.6744 0.748 0.252
#> GSM379721 1 1.0000 0.5599 0.500 0.500
#> GSM379722 2 1.0000 -0.5725 0.500 0.500
#> GSM379723 1 1.0000 0.5599 0.500 0.500
#> GSM379716 2 1.0000 -0.5725 0.500 0.500
#> GSM379717 1 1.0000 0.5599 0.500 0.500
#> GSM379718 2 1.0000 -0.5725 0.500 0.500
#> GSM379719 2 1.0000 -0.5725 0.500 0.500
#> GSM379720 1 1.0000 0.5599 0.500 0.500
#> GSM379729 1 0.9996 0.5828 0.512 0.488
#> GSM379730 1 0.9996 0.5828 0.512 0.488
#> GSM379731 1 0.9996 0.5828 0.512 0.488
#> GSM379724 2 1.0000 -0.5725 0.500 0.500
#> GSM379725 1 0.9998 0.5753 0.508 0.492
#> GSM379726 1 1.0000 0.5599 0.500 0.500
#> GSM379727 2 1.0000 -0.5725 0.500 0.500
#> GSM379728 1 1.0000 0.5599 0.500 0.500
#> GSM379737 2 1.0000 -0.5725 0.500 0.500
#> GSM379738 2 1.0000 -0.5725 0.500 0.500
#> GSM379739 1 1.0000 0.5599 0.500 0.500
#> GSM379732 1 0.9996 0.5828 0.512 0.488
#> GSM379733 1 1.0000 0.5599 0.500 0.500
#> GSM379734 2 1.0000 -0.5725 0.500 0.500
#> GSM379735 1 0.9996 0.5828 0.512 0.488
#> GSM379736 2 1.0000 -0.5725 0.500 0.500
#> GSM379742 2 0.3733 0.7581 0.072 0.928
#> GSM379743 1 0.9996 0.5828 0.512 0.488
#> GSM379740 1 1.0000 0.5599 0.500 0.500
#> GSM379741 2 0.3733 0.7581 0.072 0.928
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.0892 0.867 0.000 0.980 0.020
#> GSM379833 2 0.0892 0.867 0.000 0.980 0.020
#> GSM379834 2 0.0892 0.867 0.000 0.980 0.020
#> GSM379827 2 0.5803 0.691 0.028 0.760 0.212
#> GSM379828 2 0.5803 0.691 0.028 0.760 0.212
#> GSM379829 1 0.4974 0.645 0.764 0.000 0.236
#> GSM379830 2 0.5756 0.695 0.028 0.764 0.208
#> GSM379831 2 0.5111 0.735 0.024 0.808 0.168
#> GSM379840 2 0.9666 0.195 0.228 0.448 0.324
#> GSM379841 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379842 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379835 2 0.5849 0.686 0.028 0.756 0.216
#> GSM379836 2 0.5849 0.686 0.028 0.756 0.216
#> GSM379837 2 0.9678 0.189 0.228 0.444 0.328
#> GSM379838 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379839 2 0.9678 0.189 0.228 0.444 0.328
#> GSM379848 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379849 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379850 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379843 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379844 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379845 2 0.9678 0.189 0.228 0.444 0.328
#> GSM379846 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379847 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379853 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379854 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379851 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379852 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379804 1 0.5650 0.627 0.688 0.000 0.312
#> GSM379805 1 0.5650 0.627 0.688 0.000 0.312
#> GSM379806 1 0.5650 0.627 0.688 0.000 0.312
#> GSM379799 1 0.1163 0.785 0.972 0.000 0.028
#> GSM379800 1 0.1163 0.785 0.972 0.000 0.028
#> GSM379801 1 0.1163 0.785 0.972 0.000 0.028
#> GSM379802 1 0.1031 0.793 0.976 0.000 0.024
#> GSM379803 1 0.4974 0.720 0.764 0.000 0.236
#> GSM379812 3 0.5650 0.573 0.312 0.000 0.688
#> GSM379813 3 0.5810 0.529 0.336 0.000 0.664
#> GSM379814 3 0.6026 0.440 0.376 0.000 0.624
#> GSM379807 3 0.6026 0.440 0.376 0.000 0.624
#> GSM379808 1 0.5650 0.627 0.688 0.000 0.312
#> GSM379809 3 0.6302 0.101 0.480 0.000 0.520
#> GSM379810 3 0.6302 0.101 0.480 0.000 0.520
#> GSM379811 1 0.4974 0.720 0.764 0.000 0.236
#> GSM379820 3 0.6026 0.444 0.376 0.000 0.624
#> GSM379821 3 0.4887 0.696 0.228 0.000 0.772
#> GSM379822 3 0.4887 0.696 0.228 0.000 0.772
#> GSM379815 3 0.6026 0.440 0.376 0.000 0.624
#> GSM379816 3 0.4842 0.699 0.224 0.000 0.776
#> GSM379817 3 0.5810 0.531 0.336 0.000 0.664
#> GSM379818 1 0.1031 0.793 0.976 0.000 0.024
#> GSM379819 3 0.6302 0.120 0.480 0.000 0.520
#> GSM379825 1 0.1031 0.793 0.976 0.000 0.024
#> GSM379826 3 0.6026 0.444 0.376 0.000 0.624
#> GSM379823 3 0.4887 0.696 0.228 0.000 0.772
#> GSM379824 3 0.4887 0.696 0.228 0.000 0.772
#> GSM379749 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379750 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379751 2 0.1643 0.849 0.000 0.956 0.044
#> GSM379744 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379745 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379746 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379747 2 0.1289 0.858 0.000 0.968 0.032
#> GSM379748 2 0.1289 0.858 0.000 0.968 0.032
#> GSM379757 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379758 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379752 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379753 2 0.1643 0.849 0.000 0.956 0.044
#> GSM379754 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379755 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379756 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379764 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379765 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379766 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379759 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379760 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379761 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379762 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379763 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379769 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379770 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379767 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379768 2 0.0000 0.877 0.000 1.000 0.000
#> GSM379776 3 0.2636 0.819 0.048 0.020 0.932
#> GSM379777 3 0.4399 0.736 0.188 0.000 0.812
#> GSM379778 2 0.7278 0.209 0.028 0.516 0.456
#> GSM379771 3 0.2636 0.819 0.048 0.020 0.932
#> GSM379772 3 0.2636 0.819 0.048 0.020 0.932
#> GSM379773 3 0.6423 0.532 0.044 0.228 0.728
#> GSM379774 3 0.2636 0.819 0.048 0.020 0.932
#> GSM379775 3 0.2636 0.819 0.048 0.020 0.932
#> GSM379784 3 0.4235 0.742 0.176 0.000 0.824
#> GSM379785 3 0.3769 0.801 0.104 0.016 0.880
#> GSM379786 3 0.4235 0.742 0.176 0.000 0.824
#> GSM379779 3 0.2636 0.819 0.048 0.020 0.932
#> GSM379780 3 0.2636 0.819 0.048 0.020 0.932
#> GSM379781 3 0.3528 0.806 0.092 0.016 0.892
#> GSM379782 2 0.7278 0.209 0.028 0.516 0.456
#> GSM379783 3 0.4235 0.742 0.176 0.000 0.824
#> GSM379792 3 0.6848 0.309 0.416 0.016 0.568
#> GSM379793 3 0.4349 0.787 0.128 0.020 0.852
#> GSM379794 3 0.4349 0.787 0.128 0.020 0.852
#> GSM379787 2 0.7278 0.209 0.028 0.516 0.456
#> GSM379788 3 0.4235 0.742 0.176 0.000 0.824
#> GSM379789 3 0.4063 0.797 0.112 0.020 0.868
#> GSM379790 3 0.4063 0.797 0.112 0.020 0.868
#> GSM379791 3 0.4349 0.787 0.128 0.020 0.852
#> GSM379797 1 0.2356 0.786 0.928 0.000 0.072
#> GSM379798 3 0.4349 0.787 0.128 0.020 0.852
#> GSM379795 3 0.4349 0.787 0.128 0.020 0.852
#> GSM379796 3 0.6848 0.309 0.416 0.016 0.568
#> GSM379721 3 0.1129 0.819 0.004 0.020 0.976
#> GSM379722 3 0.1129 0.819 0.004 0.020 0.976
#> GSM379723 3 0.1129 0.819 0.004 0.020 0.976
#> GSM379716 3 0.1129 0.819 0.004 0.020 0.976
#> GSM379717 3 0.1129 0.819 0.004 0.020 0.976
#> GSM379718 3 0.1129 0.819 0.004 0.020 0.976
#> GSM379719 3 0.1129 0.819 0.004 0.020 0.976
#> GSM379720 3 0.1129 0.819 0.004 0.020 0.976
#> GSM379729 3 0.1636 0.822 0.016 0.020 0.964
#> GSM379730 3 0.1636 0.822 0.016 0.020 0.964
#> GSM379731 3 0.1636 0.822 0.016 0.020 0.964
#> GSM379724 3 0.1129 0.819 0.004 0.020 0.976
#> GSM379725 3 0.1482 0.821 0.012 0.020 0.968
#> GSM379726 3 0.1129 0.819 0.004 0.020 0.976
#> GSM379727 3 0.1129 0.819 0.004 0.020 0.976
#> GSM379728 3 0.1129 0.819 0.004 0.020 0.976
#> GSM379737 3 0.1129 0.819 0.004 0.020 0.976
#> GSM379738 3 0.1129 0.819 0.004 0.020 0.976
#> GSM379739 3 0.1129 0.819 0.004 0.020 0.976
#> GSM379732 3 0.1636 0.822 0.016 0.020 0.964
#> GSM379733 3 0.1129 0.819 0.004 0.020 0.976
#> GSM379734 3 0.1129 0.819 0.004 0.020 0.976
#> GSM379735 3 0.1636 0.822 0.016 0.020 0.964
#> GSM379736 3 0.1129 0.819 0.004 0.020 0.976
#> GSM379742 2 0.6305 0.213 0.000 0.516 0.484
#> GSM379743 3 0.1636 0.822 0.016 0.020 0.964
#> GSM379740 3 0.1129 0.819 0.004 0.020 0.976
#> GSM379741 2 0.6305 0.213 0.000 0.516 0.484
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.0707 0.8919 0.000 0.980 0.020 0.000
#> GSM379833 2 0.0707 0.8919 0.000 0.980 0.020 0.000
#> GSM379834 2 0.0707 0.8919 0.000 0.980 0.020 0.000
#> GSM379827 2 0.5744 0.7280 0.076 0.760 0.120 0.044
#> GSM379828 2 0.5744 0.7280 0.076 0.760 0.120 0.044
#> GSM379829 4 0.4595 0.5411 0.184 0.000 0.040 0.776
#> GSM379830 2 0.5661 0.7316 0.068 0.764 0.124 0.044
#> GSM379831 2 0.4866 0.7689 0.036 0.808 0.112 0.044
#> GSM379840 2 0.9229 0.2433 0.196 0.448 0.128 0.228
#> GSM379841 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379842 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379835 2 0.5810 0.7247 0.080 0.756 0.120 0.044
#> GSM379836 2 0.5810 0.7247 0.080 0.756 0.120 0.044
#> GSM379837 2 0.9264 0.2385 0.196 0.444 0.132 0.228
#> GSM379838 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379839 2 0.9264 0.2385 0.196 0.444 0.132 0.228
#> GSM379848 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379849 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379850 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379843 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379844 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379845 2 0.9264 0.2385 0.196 0.444 0.132 0.228
#> GSM379846 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379847 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379853 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379854 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379851 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379852 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379804 4 0.5969 0.3569 0.392 0.000 0.044 0.564
#> GSM379805 4 0.5969 0.3569 0.392 0.000 0.044 0.564
#> GSM379806 4 0.5969 0.3569 0.392 0.000 0.044 0.564
#> GSM379799 4 0.1059 0.6970 0.012 0.000 0.016 0.972
#> GSM379800 4 0.1059 0.6970 0.012 0.000 0.016 0.972
#> GSM379801 4 0.1059 0.6970 0.012 0.000 0.016 0.972
#> GSM379802 4 0.1389 0.7117 0.048 0.000 0.000 0.952
#> GSM379803 4 0.4957 0.5342 0.320 0.000 0.012 0.668
#> GSM379812 1 0.5018 0.7725 0.768 0.000 0.088 0.144
#> GSM379813 1 0.5512 0.7612 0.728 0.000 0.100 0.172
#> GSM379814 1 0.5867 0.7337 0.688 0.000 0.096 0.216
#> GSM379807 1 0.5867 0.7337 0.688 0.000 0.096 0.216
#> GSM379808 4 0.5969 0.3569 0.392 0.000 0.044 0.564
#> GSM379809 1 0.6215 0.5523 0.600 0.000 0.072 0.328
#> GSM379810 1 0.6215 0.5523 0.600 0.000 0.072 0.328
#> GSM379811 4 0.4957 0.5342 0.320 0.000 0.012 0.668
#> GSM379820 1 0.5867 0.7351 0.688 0.000 0.096 0.216
#> GSM379821 1 0.2494 0.7619 0.916 0.000 0.036 0.048
#> GSM379822 1 0.2494 0.7619 0.916 0.000 0.036 0.048
#> GSM379815 1 0.5867 0.7337 0.688 0.000 0.096 0.216
#> GSM379816 1 0.4094 0.7496 0.828 0.000 0.116 0.056
#> GSM379817 1 0.5512 0.7616 0.728 0.000 0.100 0.172
#> GSM379818 4 0.1389 0.7117 0.048 0.000 0.000 0.952
#> GSM379819 1 0.6575 0.4579 0.560 0.000 0.092 0.348
#> GSM379825 4 0.1389 0.7117 0.048 0.000 0.000 0.952
#> GSM379826 1 0.5867 0.7351 0.688 0.000 0.096 0.216
#> GSM379823 1 0.3004 0.7699 0.892 0.000 0.060 0.048
#> GSM379824 1 0.2494 0.7619 0.916 0.000 0.036 0.048
#> GSM379749 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379750 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379751 2 0.1302 0.8748 0.000 0.956 0.044 0.000
#> GSM379744 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379745 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379746 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379747 2 0.1022 0.8836 0.000 0.968 0.032 0.000
#> GSM379748 2 0.1022 0.8836 0.000 0.968 0.032 0.000
#> GSM379757 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379758 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379752 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379753 2 0.1302 0.8748 0.000 0.956 0.044 0.000
#> GSM379754 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379755 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379756 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379764 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379765 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379766 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379759 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379760 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379761 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379762 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379763 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379769 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379770 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379767 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379768 2 0.0000 0.9021 0.000 1.000 0.000 0.000
#> GSM379776 3 0.4655 0.6210 0.312 0.000 0.684 0.004
#> GSM379777 1 0.1854 0.7436 0.940 0.000 0.048 0.012
#> GSM379778 2 0.7635 0.1651 0.216 0.496 0.284 0.004
#> GSM379771 3 0.4655 0.6210 0.312 0.000 0.684 0.004
#> GSM379772 3 0.4655 0.6210 0.312 0.000 0.684 0.004
#> GSM379773 3 0.7673 0.3552 0.308 0.208 0.480 0.004
#> GSM379774 3 0.4655 0.6210 0.312 0.000 0.684 0.004
#> GSM379775 3 0.4655 0.6210 0.312 0.000 0.684 0.004
#> GSM379784 1 0.1557 0.7489 0.944 0.000 0.056 0.000
#> GSM379785 3 0.5137 0.3576 0.452 0.000 0.544 0.004
#> GSM379786 1 0.1557 0.7489 0.944 0.000 0.056 0.000
#> GSM379779 3 0.4655 0.6210 0.312 0.000 0.684 0.004
#> GSM379780 3 0.4655 0.6210 0.312 0.000 0.684 0.004
#> GSM379781 3 0.5097 0.4200 0.428 0.000 0.568 0.004
#> GSM379782 2 0.7635 0.1651 0.216 0.496 0.284 0.004
#> GSM379783 1 0.1557 0.7489 0.944 0.000 0.056 0.000
#> GSM379792 3 0.7677 0.1768 0.216 0.000 0.412 0.372
#> GSM379793 3 0.5880 0.6248 0.232 0.000 0.680 0.088
#> GSM379794 3 0.5880 0.6248 0.232 0.000 0.680 0.088
#> GSM379787 2 0.7635 0.1651 0.216 0.496 0.284 0.004
#> GSM379788 1 0.1557 0.7489 0.944 0.000 0.056 0.000
#> GSM379789 3 0.5723 0.6258 0.244 0.000 0.684 0.072
#> GSM379790 3 0.5723 0.6258 0.244 0.000 0.684 0.072
#> GSM379791 3 0.5880 0.6248 0.232 0.000 0.680 0.088
#> GSM379797 4 0.2773 0.6651 0.116 0.000 0.004 0.880
#> GSM379798 3 0.5880 0.6248 0.232 0.000 0.680 0.088
#> GSM379795 3 0.5880 0.6248 0.232 0.000 0.680 0.088
#> GSM379796 3 0.7677 0.1768 0.216 0.000 0.412 0.372
#> GSM379721 3 0.0000 0.7570 0.000 0.000 1.000 0.000
#> GSM379722 3 0.0000 0.7570 0.000 0.000 1.000 0.000
#> GSM379723 3 0.0000 0.7570 0.000 0.000 1.000 0.000
#> GSM379716 3 0.0000 0.7570 0.000 0.000 1.000 0.000
#> GSM379717 3 0.0000 0.7570 0.000 0.000 1.000 0.000
#> GSM379718 3 0.0000 0.7570 0.000 0.000 1.000 0.000
#> GSM379719 3 0.0000 0.7570 0.000 0.000 1.000 0.000
#> GSM379720 3 0.0000 0.7570 0.000 0.000 1.000 0.000
#> GSM379729 3 0.3688 0.6328 0.208 0.000 0.792 0.000
#> GSM379730 3 0.3688 0.6328 0.208 0.000 0.792 0.000
#> GSM379731 3 0.3688 0.6328 0.208 0.000 0.792 0.000
#> GSM379724 3 0.0000 0.7570 0.000 0.000 1.000 0.000
#> GSM379725 3 0.2408 0.7147 0.104 0.000 0.896 0.000
#> GSM379726 3 0.0000 0.7570 0.000 0.000 1.000 0.000
#> GSM379727 3 0.0000 0.7570 0.000 0.000 1.000 0.000
#> GSM379728 3 0.0000 0.7570 0.000 0.000 1.000 0.000
#> GSM379737 3 0.0000 0.7570 0.000 0.000 1.000 0.000
#> GSM379738 3 0.0000 0.7570 0.000 0.000 1.000 0.000
#> GSM379739 3 0.0000 0.7570 0.000 0.000 1.000 0.000
#> GSM379732 3 0.3688 0.6328 0.208 0.000 0.792 0.000
#> GSM379733 3 0.0000 0.7570 0.000 0.000 1.000 0.000
#> GSM379734 3 0.0000 0.7570 0.000 0.000 1.000 0.000
#> GSM379735 3 0.3688 0.6328 0.208 0.000 0.792 0.000
#> GSM379736 3 0.0000 0.7570 0.000 0.000 1.000 0.000
#> GSM379742 3 0.5000 -0.0862 0.000 0.496 0.504 0.000
#> GSM379743 3 0.3688 0.6328 0.208 0.000 0.792 0.000
#> GSM379740 3 0.0000 0.7570 0.000 0.000 1.000 0.000
#> GSM379741 3 0.5000 -0.0862 0.000 0.496 0.504 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 2 0.4182 0.1681 0.000 0.600 0.000 0.000 0.400
#> GSM379833 2 0.4182 0.1681 0.000 0.600 0.000 0.000 0.400
#> GSM379834 2 0.4182 0.1681 0.000 0.600 0.000 0.000 0.400
#> GSM379827 5 0.4958 0.6479 0.000 0.372 0.036 0.000 0.592
#> GSM379828 5 0.4958 0.6479 0.000 0.372 0.036 0.000 0.592
#> GSM379829 4 0.4161 0.4245 0.000 0.000 0.000 0.608 0.392
#> GSM379830 5 0.5037 0.6390 0.000 0.376 0.040 0.000 0.584
#> GSM379831 5 0.5131 0.5183 0.000 0.420 0.040 0.000 0.540
#> GSM379840 5 0.4263 0.6075 0.012 0.060 0.040 0.064 0.824
#> GSM379841 2 0.3837 0.4402 0.000 0.692 0.000 0.000 0.308
#> GSM379842 2 0.3837 0.4402 0.000 0.692 0.000 0.000 0.308
#> GSM379835 5 0.4946 0.6520 0.000 0.368 0.036 0.000 0.596
#> GSM379836 5 0.4946 0.6520 0.000 0.368 0.036 0.000 0.596
#> GSM379837 5 0.4197 0.6072 0.012 0.056 0.040 0.064 0.828
#> GSM379838 2 0.3837 0.4402 0.000 0.692 0.000 0.000 0.308
#> GSM379839 5 0.4197 0.6072 0.012 0.056 0.040 0.064 0.828
#> GSM379848 2 0.3837 0.4402 0.000 0.692 0.000 0.000 0.308
#> GSM379849 2 0.3837 0.4402 0.000 0.692 0.000 0.000 0.308
#> GSM379850 2 0.3837 0.4402 0.000 0.692 0.000 0.000 0.308
#> GSM379843 2 0.3837 0.4402 0.000 0.692 0.000 0.000 0.308
#> GSM379844 2 0.3837 0.4402 0.000 0.692 0.000 0.000 0.308
#> GSM379845 5 0.4197 0.6072 0.012 0.056 0.040 0.064 0.828
#> GSM379846 2 0.3837 0.4402 0.000 0.692 0.000 0.000 0.308
#> GSM379847 2 0.3837 0.4402 0.000 0.692 0.000 0.000 0.308
#> GSM379853 2 0.3837 0.4402 0.000 0.692 0.000 0.000 0.308
#> GSM379854 2 0.3837 0.4402 0.000 0.692 0.000 0.000 0.308
#> GSM379851 2 0.3837 0.4402 0.000 0.692 0.000 0.000 0.308
#> GSM379852 2 0.3837 0.4402 0.000 0.692 0.000 0.000 0.308
#> GSM379804 4 0.5633 0.2258 0.372 0.000 0.044 0.564 0.020
#> GSM379805 4 0.5633 0.2258 0.372 0.000 0.044 0.564 0.020
#> GSM379806 4 0.5633 0.2258 0.372 0.000 0.044 0.564 0.020
#> GSM379799 4 0.1341 0.6213 0.000 0.000 0.000 0.944 0.056
#> GSM379800 4 0.1341 0.6213 0.000 0.000 0.000 0.944 0.056
#> GSM379801 4 0.1341 0.6213 0.000 0.000 0.000 0.944 0.056
#> GSM379802 4 0.0000 0.6244 0.000 0.000 0.000 1.000 0.000
#> GSM379803 4 0.4213 0.4107 0.308 0.000 0.012 0.680 0.000
#> GSM379812 1 0.3748 0.7531 0.836 0.000 0.056 0.088 0.020
#> GSM379813 1 0.4303 0.7456 0.796 0.000 0.068 0.116 0.020
#> GSM379814 1 0.4814 0.7217 0.748 0.000 0.068 0.164 0.020
#> GSM379807 1 0.4814 0.7217 0.748 0.000 0.068 0.164 0.020
#> GSM379808 4 0.5633 0.2258 0.372 0.000 0.044 0.564 0.020
#> GSM379809 1 0.5252 0.5712 0.660 0.000 0.044 0.276 0.020
#> GSM379810 1 0.5252 0.5712 0.660 0.000 0.044 0.276 0.020
#> GSM379811 4 0.4213 0.4107 0.308 0.000 0.012 0.680 0.000
#> GSM379820 1 0.4583 0.7218 0.760 0.000 0.068 0.160 0.012
#> GSM379821 1 0.0404 0.7263 0.988 0.000 0.000 0.000 0.012
#> GSM379822 1 0.0404 0.7263 0.988 0.000 0.000 0.000 0.012
#> GSM379815 1 0.4814 0.7217 0.748 0.000 0.068 0.164 0.020
#> GSM379816 1 0.2894 0.7218 0.876 0.000 0.084 0.004 0.036
#> GSM379817 1 0.4059 0.7449 0.808 0.000 0.068 0.112 0.012
#> GSM379818 4 0.0000 0.6244 0.000 0.000 0.000 1.000 0.000
#> GSM379819 1 0.5666 0.4975 0.592 0.000 0.068 0.328 0.012
#> GSM379825 4 0.0000 0.6244 0.000 0.000 0.000 1.000 0.000
#> GSM379826 1 0.4583 0.7218 0.760 0.000 0.068 0.160 0.012
#> GSM379823 1 0.1106 0.7344 0.964 0.000 0.024 0.000 0.012
#> GSM379824 1 0.0404 0.7263 0.988 0.000 0.000 0.000 0.012
#> GSM379749 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379750 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379751 2 0.3690 0.5065 0.000 0.764 0.012 0.000 0.224
#> GSM379744 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379745 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379746 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379747 2 0.3519 0.5232 0.000 0.776 0.008 0.000 0.216
#> GSM379748 2 0.3519 0.5232 0.000 0.776 0.008 0.000 0.216
#> GSM379757 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379758 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379752 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379753 2 0.3690 0.5065 0.000 0.764 0.012 0.000 0.224
#> GSM379754 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379755 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379756 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379764 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379765 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379766 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379759 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379760 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379761 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379762 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379763 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379769 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379770 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379767 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379768 2 0.0000 0.6775 0.000 1.000 0.000 0.000 0.000
#> GSM379776 3 0.5952 0.5854 0.136 0.000 0.560 0.000 0.304
#> GSM379777 1 0.3475 0.6605 0.804 0.000 0.004 0.012 0.180
#> GSM379778 2 0.7047 0.0255 0.040 0.496 0.164 0.000 0.300
#> GSM379771 3 0.5952 0.5854 0.136 0.000 0.560 0.000 0.304
#> GSM379772 3 0.5952 0.5854 0.136 0.000 0.560 0.000 0.304
#> GSM379773 3 0.8224 0.3284 0.132 0.208 0.356 0.000 0.304
#> GSM379774 3 0.5952 0.5854 0.136 0.000 0.560 0.000 0.304
#> GSM379775 3 0.5952 0.5854 0.136 0.000 0.560 0.000 0.304
#> GSM379784 1 0.3318 0.6668 0.808 0.000 0.012 0.000 0.180
#> GSM379785 3 0.6608 0.3602 0.300 0.000 0.456 0.000 0.244
#> GSM379786 1 0.3318 0.6668 0.808 0.000 0.012 0.000 0.180
#> GSM379779 3 0.5952 0.5854 0.136 0.000 0.560 0.000 0.304
#> GSM379780 3 0.5952 0.5854 0.136 0.000 0.560 0.000 0.304
#> GSM379781 3 0.6552 0.4138 0.276 0.000 0.476 0.000 0.248
#> GSM379782 2 0.7047 0.0255 0.040 0.496 0.164 0.000 0.300
#> GSM379783 1 0.3318 0.6668 0.808 0.000 0.012 0.000 0.180
#> GSM379792 4 0.8080 -0.0560 0.132 0.000 0.328 0.372 0.168
#> GSM379793 3 0.7038 0.5736 0.144 0.000 0.560 0.076 0.220
#> GSM379794 3 0.7038 0.5736 0.144 0.000 0.560 0.076 0.220
#> GSM379787 2 0.7047 0.0255 0.040 0.496 0.164 0.000 0.300
#> GSM379788 1 0.3318 0.6668 0.808 0.000 0.012 0.000 0.180
#> GSM379789 3 0.6891 0.5790 0.136 0.000 0.560 0.060 0.244
#> GSM379790 3 0.6891 0.5790 0.136 0.000 0.560 0.060 0.244
#> GSM379791 3 0.7038 0.5736 0.144 0.000 0.560 0.076 0.220
#> GSM379797 4 0.2036 0.5933 0.024 0.000 0.000 0.920 0.056
#> GSM379798 3 0.7038 0.5736 0.144 0.000 0.560 0.076 0.220
#> GSM379795 3 0.7038 0.5736 0.144 0.000 0.560 0.076 0.220
#> GSM379796 4 0.8080 -0.0560 0.132 0.000 0.328 0.372 0.168
#> GSM379721 3 0.0000 0.7482 0.000 0.000 1.000 0.000 0.000
#> GSM379722 3 0.0000 0.7482 0.000 0.000 1.000 0.000 0.000
#> GSM379723 3 0.0000 0.7482 0.000 0.000 1.000 0.000 0.000
#> GSM379716 3 0.0000 0.7482 0.000 0.000 1.000 0.000 0.000
#> GSM379717 3 0.0000 0.7482 0.000 0.000 1.000 0.000 0.000
#> GSM379718 3 0.0000 0.7482 0.000 0.000 1.000 0.000 0.000
#> GSM379719 3 0.0000 0.7482 0.000 0.000 1.000 0.000 0.000
#> GSM379720 3 0.0000 0.7482 0.000 0.000 1.000 0.000 0.000
#> GSM379729 3 0.3562 0.6299 0.196 0.000 0.788 0.000 0.016
#> GSM379730 3 0.3562 0.6299 0.196 0.000 0.788 0.000 0.016
#> GSM379731 3 0.3562 0.6299 0.196 0.000 0.788 0.000 0.016
#> GSM379724 3 0.0000 0.7482 0.000 0.000 1.000 0.000 0.000
#> GSM379725 3 0.2233 0.7068 0.104 0.000 0.892 0.000 0.004
#> GSM379726 3 0.0000 0.7482 0.000 0.000 1.000 0.000 0.000
#> GSM379727 3 0.0000 0.7482 0.000 0.000 1.000 0.000 0.000
#> GSM379728 3 0.0000 0.7482 0.000 0.000 1.000 0.000 0.000
#> GSM379737 3 0.0000 0.7482 0.000 0.000 1.000 0.000 0.000
#> GSM379738 3 0.0000 0.7482 0.000 0.000 1.000 0.000 0.000
#> GSM379739 3 0.0000 0.7482 0.000 0.000 1.000 0.000 0.000
#> GSM379732 3 0.3562 0.6299 0.196 0.000 0.788 0.000 0.016
#> GSM379733 3 0.0000 0.7482 0.000 0.000 1.000 0.000 0.000
#> GSM379734 3 0.0000 0.7482 0.000 0.000 1.000 0.000 0.000
#> GSM379735 3 0.3462 0.6297 0.196 0.000 0.792 0.000 0.012
#> GSM379736 3 0.0000 0.7482 0.000 0.000 1.000 0.000 0.000
#> GSM379742 2 0.4747 -0.0726 0.000 0.496 0.488 0.000 0.016
#> GSM379743 3 0.3462 0.6297 0.196 0.000 0.792 0.000 0.012
#> GSM379740 3 0.0000 0.7482 0.000 0.000 1.000 0.000 0.000
#> GSM379741 2 0.4747 -0.0726 0.000 0.496 0.488 0.000 0.016
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 2 0.3847 0.0746 0.000 0.544 0.000 0.000 0.456 0.000
#> GSM379833 2 0.3847 0.0746 0.000 0.544 0.000 0.000 0.456 0.000
#> GSM379834 2 0.3847 0.0746 0.000 0.544 0.000 0.000 0.456 0.000
#> GSM379827 5 0.3482 0.6777 0.000 0.316 0.000 0.000 0.684 0.000
#> GSM379828 5 0.3482 0.6777 0.000 0.316 0.000 0.000 0.684 0.000
#> GSM379829 6 0.6312 0.4580 0.008 0.000 0.112 0.036 0.404 0.440
#> GSM379830 5 0.3636 0.6694 0.004 0.320 0.000 0.000 0.676 0.000
#> GSM379831 5 0.3795 0.5597 0.004 0.364 0.000 0.000 0.632 0.000
#> GSM379840 5 0.1844 0.5755 0.012 0.004 0.000 0.024 0.932 0.028
#> GSM379841 2 0.3578 0.4293 0.000 0.660 0.000 0.000 0.340 0.000
#> GSM379842 2 0.3578 0.4293 0.000 0.660 0.000 0.000 0.340 0.000
#> GSM379835 5 0.3464 0.6814 0.000 0.312 0.000 0.000 0.688 0.000
#> GSM379836 5 0.3464 0.6814 0.000 0.312 0.000 0.000 0.688 0.000
#> GSM379837 5 0.1700 0.5753 0.012 0.000 0.000 0.024 0.936 0.028
#> GSM379838 2 0.3578 0.4293 0.000 0.660 0.000 0.000 0.340 0.000
#> GSM379839 5 0.1700 0.5753 0.012 0.000 0.000 0.024 0.936 0.028
#> GSM379848 2 0.3578 0.4293 0.000 0.660 0.000 0.000 0.340 0.000
#> GSM379849 2 0.3578 0.4293 0.000 0.660 0.000 0.000 0.340 0.000
#> GSM379850 2 0.3578 0.4293 0.000 0.660 0.000 0.000 0.340 0.000
#> GSM379843 2 0.3578 0.4293 0.000 0.660 0.000 0.000 0.340 0.000
#> GSM379844 2 0.3578 0.4293 0.000 0.660 0.000 0.000 0.340 0.000
#> GSM379845 5 0.1700 0.5753 0.012 0.000 0.000 0.024 0.936 0.028
#> GSM379846 2 0.3578 0.4293 0.000 0.660 0.000 0.000 0.340 0.000
#> GSM379847 2 0.3578 0.4293 0.000 0.660 0.000 0.000 0.340 0.000
#> GSM379853 2 0.3563 0.4336 0.000 0.664 0.000 0.000 0.336 0.000
#> GSM379854 2 0.3578 0.4293 0.000 0.660 0.000 0.000 0.340 0.000
#> GSM379851 2 0.3578 0.4293 0.000 0.660 0.000 0.000 0.340 0.000
#> GSM379852 2 0.3578 0.4293 0.000 0.660 0.000 0.000 0.340 0.000
#> GSM379804 4 0.4847 0.0175 0.032 0.000 0.000 0.492 0.012 0.464
#> GSM379805 4 0.4847 0.0175 0.032 0.000 0.000 0.492 0.012 0.464
#> GSM379806 4 0.4847 0.0175 0.032 0.000 0.000 0.492 0.012 0.464
#> GSM379799 6 0.3670 0.7185 0.000 0.000 0.112 0.024 0.052 0.812
#> GSM379800 6 0.3670 0.7185 0.000 0.000 0.112 0.024 0.052 0.812
#> GSM379801 6 0.3670 0.7185 0.000 0.000 0.112 0.024 0.052 0.812
#> GSM379802 6 0.2201 0.7188 0.000 0.000 0.076 0.028 0.000 0.896
#> GSM379803 6 0.3789 0.2371 0.000 0.000 0.000 0.416 0.000 0.584
#> GSM379812 4 0.3437 0.6290 0.056 0.000 0.056 0.848 0.012 0.028
#> GSM379813 4 0.2909 0.6297 0.064 0.000 0.016 0.876 0.012 0.032
#> GSM379814 4 0.2984 0.6192 0.064 0.000 0.000 0.860 0.012 0.064
#> GSM379807 4 0.2984 0.6192 0.064 0.000 0.000 0.860 0.012 0.064
#> GSM379808 4 0.4847 0.0175 0.032 0.000 0.000 0.492 0.012 0.464
#> GSM379809 4 0.3836 0.5370 0.040 0.000 0.000 0.772 0.012 0.176
#> GSM379810 4 0.3836 0.5370 0.040 0.000 0.000 0.772 0.012 0.176
#> GSM379811 6 0.3789 0.2371 0.000 0.000 0.000 0.416 0.000 0.584
#> GSM379820 4 0.2630 0.6199 0.064 0.000 0.000 0.872 0.000 0.064
#> GSM379821 4 0.3581 0.5714 0.004 0.000 0.188 0.780 0.024 0.004
#> GSM379822 4 0.3581 0.5714 0.004 0.000 0.188 0.780 0.024 0.004
#> GSM379815 4 0.2984 0.6192 0.064 0.000 0.000 0.860 0.012 0.064
#> GSM379816 4 0.4744 0.5762 0.064 0.000 0.208 0.704 0.020 0.004
#> GSM379817 4 0.2555 0.6296 0.064 0.000 0.016 0.888 0.000 0.032
#> GSM379818 6 0.2201 0.7188 0.000 0.000 0.076 0.028 0.000 0.896
#> GSM379819 4 0.4253 0.4895 0.064 0.000 0.000 0.704 0.000 0.232
#> GSM379825 6 0.2488 0.7149 0.000 0.000 0.076 0.044 0.000 0.880
#> GSM379826 4 0.2630 0.6199 0.064 0.000 0.000 0.872 0.000 0.064
#> GSM379823 4 0.4115 0.5792 0.028 0.000 0.188 0.756 0.024 0.004
#> GSM379824 4 0.3581 0.5714 0.004 0.000 0.188 0.780 0.024 0.004
#> GSM379749 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379750 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379751 2 0.3076 0.5264 0.000 0.760 0.000 0.000 0.240 0.000
#> GSM379744 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379745 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379746 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379747 2 0.2996 0.5406 0.000 0.772 0.000 0.000 0.228 0.000
#> GSM379748 2 0.2996 0.5406 0.000 0.772 0.000 0.000 0.228 0.000
#> GSM379757 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379758 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379752 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379753 2 0.3076 0.5264 0.000 0.760 0.000 0.000 0.240 0.000
#> GSM379754 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379755 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379756 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379764 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379765 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379766 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379759 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379760 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379761 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379762 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379763 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379769 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379770 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379767 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379768 2 0.0000 0.6851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379776 1 0.1387 0.8493 0.932 0.000 0.000 0.000 0.068 0.000
#> GSM379777 4 0.7149 0.4333 0.240 0.000 0.184 0.472 0.092 0.012
#> GSM379778 2 0.5108 -0.0648 0.432 0.496 0.000 0.004 0.068 0.000
#> GSM379771 1 0.1387 0.8493 0.932 0.000 0.000 0.000 0.068 0.000
#> GSM379772 1 0.1387 0.8493 0.932 0.000 0.000 0.000 0.068 0.000
#> GSM379773 1 0.4148 0.6028 0.724 0.208 0.000 0.000 0.068 0.000
#> GSM379774 1 0.1387 0.8493 0.932 0.000 0.000 0.000 0.068 0.000
#> GSM379775 1 0.1387 0.8493 0.932 0.000 0.000 0.000 0.068 0.000
#> GSM379784 4 0.6866 0.4404 0.248 0.000 0.184 0.476 0.092 0.000
#> GSM379785 1 0.3985 0.7138 0.768 0.000 0.008 0.156 0.068 0.000
#> GSM379786 4 0.6866 0.4404 0.248 0.000 0.184 0.476 0.092 0.000
#> GSM379779 1 0.1387 0.8493 0.932 0.000 0.000 0.000 0.068 0.000
#> GSM379780 1 0.1387 0.8493 0.932 0.000 0.000 0.000 0.068 0.000
#> GSM379781 1 0.3758 0.7417 0.792 0.000 0.008 0.132 0.068 0.000
#> GSM379782 2 0.5108 -0.0648 0.432 0.496 0.000 0.004 0.068 0.000
#> GSM379783 4 0.6866 0.4404 0.248 0.000 0.184 0.476 0.092 0.000
#> GSM379792 1 0.5095 0.5082 0.656 0.000 0.004 0.048 0.036 0.256
#> GSM379793 1 0.1225 0.8319 0.952 0.000 0.000 0.012 0.036 0.000
#> GSM379794 1 0.1225 0.8319 0.952 0.000 0.000 0.012 0.036 0.000
#> GSM379787 2 0.5108 -0.0648 0.432 0.496 0.000 0.004 0.068 0.000
#> GSM379788 4 0.6866 0.4404 0.248 0.000 0.184 0.476 0.092 0.000
#> GSM379789 1 0.0603 0.8453 0.980 0.000 0.000 0.004 0.016 0.000
#> GSM379790 1 0.0603 0.8453 0.980 0.000 0.000 0.004 0.016 0.000
#> GSM379791 1 0.1225 0.8319 0.952 0.000 0.000 0.012 0.036 0.000
#> GSM379797 6 0.5308 0.6166 0.108 0.000 0.076 0.056 0.036 0.724
#> GSM379798 1 0.1225 0.8319 0.952 0.000 0.000 0.012 0.036 0.000
#> GSM379795 1 0.1225 0.8319 0.952 0.000 0.000 0.012 0.036 0.000
#> GSM379796 1 0.5095 0.5082 0.656 0.000 0.004 0.048 0.036 0.256
#> GSM379721 3 0.3695 0.9106 0.376 0.000 0.624 0.000 0.000 0.000
#> GSM379722 3 0.3695 0.9106 0.376 0.000 0.624 0.000 0.000 0.000
#> GSM379723 3 0.3695 0.9106 0.376 0.000 0.624 0.000 0.000 0.000
#> GSM379716 3 0.3695 0.9106 0.376 0.000 0.624 0.000 0.000 0.000
#> GSM379717 3 0.3695 0.9106 0.376 0.000 0.624 0.000 0.000 0.000
#> GSM379718 3 0.3695 0.9106 0.376 0.000 0.624 0.000 0.000 0.000
#> GSM379719 3 0.3695 0.9106 0.376 0.000 0.624 0.000 0.000 0.000
#> GSM379720 3 0.3695 0.9106 0.376 0.000 0.624 0.000 0.000 0.000
#> GSM379729 3 0.3945 0.7318 0.212 0.000 0.748 0.028 0.008 0.004
#> GSM379730 3 0.3945 0.7318 0.212 0.000 0.748 0.028 0.008 0.004
#> GSM379731 3 0.3945 0.7318 0.212 0.000 0.748 0.028 0.008 0.004
#> GSM379724 3 0.3695 0.9106 0.376 0.000 0.624 0.000 0.000 0.000
#> GSM379725 3 0.4423 0.8224 0.312 0.000 0.652 0.024 0.008 0.004
#> GSM379726 3 0.3695 0.9106 0.376 0.000 0.624 0.000 0.000 0.000
#> GSM379727 3 0.3695 0.9106 0.376 0.000 0.624 0.000 0.000 0.000
#> GSM379728 3 0.3695 0.9106 0.376 0.000 0.624 0.000 0.000 0.000
#> GSM379737 3 0.3695 0.9106 0.376 0.000 0.624 0.000 0.000 0.000
#> GSM379738 3 0.3695 0.9106 0.376 0.000 0.624 0.000 0.000 0.000
#> GSM379739 3 0.3695 0.9106 0.376 0.000 0.624 0.000 0.000 0.000
#> GSM379732 3 0.3945 0.7318 0.212 0.000 0.748 0.028 0.008 0.004
#> GSM379733 3 0.3695 0.9106 0.376 0.000 0.624 0.000 0.000 0.000
#> GSM379734 3 0.3695 0.9106 0.376 0.000 0.624 0.000 0.000 0.000
#> GSM379735 3 0.3888 0.7362 0.204 0.000 0.756 0.028 0.008 0.004
#> GSM379736 3 0.3695 0.9106 0.376 0.000 0.624 0.000 0.000 0.000
#> GSM379742 2 0.4394 -0.1042 0.016 0.496 0.484 0.004 0.000 0.000
#> GSM379743 3 0.3888 0.7362 0.204 0.000 0.756 0.028 0.008 0.004
#> GSM379740 3 0.3695 0.9106 0.376 0.000 0.624 0.000 0.000 0.000
#> GSM379741 2 0.4394 -0.1042 0.016 0.496 0.484 0.004 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> SD:hclust 124 3.50e-21 1.000 1.0000 2
#> SD:hclust 120 3.71e-32 0.995 0.0244 3
#> SD:hclust 120 2.08e-37 0.984 0.0148 4
#> SD:hclust 104 2.54e-51 0.999 0.0576 5
#> SD:hclust 104 6.25e-74 1.000 0.0893 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.973 0.979 0.4822 0.513 0.513
#> 3 3 0.623 0.705 0.777 0.3174 0.788 0.601
#> 4 4 0.704 0.876 0.749 0.1411 0.904 0.729
#> 5 5 0.704 0.851 0.799 0.0695 0.918 0.701
#> 6 6 0.810 0.754 0.775 0.0452 0.994 0.970
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.0000 0.982 0.000 1.000
#> GSM379833 2 0.0000 0.982 0.000 1.000
#> GSM379834 2 0.0000 0.982 0.000 1.000
#> GSM379827 2 0.0000 0.982 0.000 1.000
#> GSM379828 2 0.0000 0.982 0.000 1.000
#> GSM379829 1 0.1843 0.987 0.972 0.028
#> GSM379830 2 0.0000 0.982 0.000 1.000
#> GSM379831 2 0.0000 0.982 0.000 1.000
#> GSM379840 2 0.0000 0.982 0.000 1.000
#> GSM379841 2 0.0000 0.982 0.000 1.000
#> GSM379842 2 0.0000 0.982 0.000 1.000
#> GSM379835 2 0.0000 0.982 0.000 1.000
#> GSM379836 2 0.0000 0.982 0.000 1.000
#> GSM379837 1 0.7376 0.772 0.792 0.208
#> GSM379838 2 0.0000 0.982 0.000 1.000
#> GSM379839 2 0.0000 0.982 0.000 1.000
#> GSM379848 2 0.0376 0.982 0.004 0.996
#> GSM379849 2 0.0376 0.982 0.004 0.996
#> GSM379850 2 0.0376 0.982 0.004 0.996
#> GSM379843 2 0.0000 0.982 0.000 1.000
#> GSM379844 2 0.0000 0.982 0.000 1.000
#> GSM379845 2 0.0000 0.982 0.000 1.000
#> GSM379846 2 0.0376 0.982 0.004 0.996
#> GSM379847 2 0.0376 0.982 0.004 0.996
#> GSM379853 2 0.0376 0.982 0.004 0.996
#> GSM379854 2 0.0376 0.982 0.004 0.996
#> GSM379851 2 0.0376 0.982 0.004 0.996
#> GSM379852 2 0.0376 0.982 0.004 0.996
#> GSM379804 1 0.1843 0.987 0.972 0.028
#> GSM379805 1 0.1843 0.987 0.972 0.028
#> GSM379806 1 0.1843 0.987 0.972 0.028
#> GSM379799 1 0.1843 0.987 0.972 0.028
#> GSM379800 1 0.1843 0.987 0.972 0.028
#> GSM379801 1 0.1843 0.987 0.972 0.028
#> GSM379802 1 0.1843 0.987 0.972 0.028
#> GSM379803 1 0.1843 0.987 0.972 0.028
#> GSM379812 1 0.1843 0.987 0.972 0.028
#> GSM379813 1 0.1633 0.987 0.976 0.024
#> GSM379814 1 0.1633 0.987 0.976 0.024
#> GSM379807 1 0.1633 0.987 0.976 0.024
#> GSM379808 1 0.1843 0.987 0.972 0.028
#> GSM379809 1 0.1843 0.987 0.972 0.028
#> GSM379810 1 0.1843 0.987 0.972 0.028
#> GSM379811 1 0.1843 0.987 0.972 0.028
#> GSM379820 1 0.1633 0.987 0.976 0.024
#> GSM379821 1 0.1633 0.987 0.976 0.024
#> GSM379822 1 0.1633 0.987 0.976 0.024
#> GSM379815 1 0.1843 0.987 0.972 0.028
#> GSM379816 1 0.1843 0.987 0.972 0.028
#> GSM379817 1 0.1633 0.987 0.976 0.024
#> GSM379818 1 0.1843 0.987 0.972 0.028
#> GSM379819 1 0.1633 0.987 0.976 0.024
#> GSM379825 1 0.1633 0.987 0.976 0.024
#> GSM379826 1 0.1633 0.987 0.976 0.024
#> GSM379823 1 0.1633 0.987 0.976 0.024
#> GSM379824 1 0.1633 0.987 0.976 0.024
#> GSM379749 2 0.0000 0.982 0.000 1.000
#> GSM379750 2 0.0000 0.982 0.000 1.000
#> GSM379751 2 0.0000 0.982 0.000 1.000
#> GSM379744 2 0.0000 0.982 0.000 1.000
#> GSM379745 2 0.0000 0.982 0.000 1.000
#> GSM379746 2 0.0000 0.982 0.000 1.000
#> GSM379747 2 0.0000 0.982 0.000 1.000
#> GSM379748 2 0.0000 0.982 0.000 1.000
#> GSM379757 2 0.0000 0.982 0.000 1.000
#> GSM379758 2 0.0376 0.982 0.004 0.996
#> GSM379752 2 0.0000 0.982 0.000 1.000
#> GSM379753 2 0.0000 0.982 0.000 1.000
#> GSM379754 2 0.0000 0.982 0.000 1.000
#> GSM379755 2 0.0000 0.982 0.000 1.000
#> GSM379756 2 0.0000 0.982 0.000 1.000
#> GSM379764 2 0.0376 0.982 0.004 0.996
#> GSM379765 2 0.0376 0.982 0.004 0.996
#> GSM379766 2 0.0376 0.982 0.004 0.996
#> GSM379759 2 0.0376 0.982 0.004 0.996
#> GSM379760 2 0.0376 0.982 0.004 0.996
#> GSM379761 2 0.0376 0.982 0.004 0.996
#> GSM379762 2 0.0376 0.982 0.004 0.996
#> GSM379763 2 0.0376 0.982 0.004 0.996
#> GSM379769 2 0.0376 0.982 0.004 0.996
#> GSM379770 2 0.0376 0.982 0.004 0.996
#> GSM379767 2 0.0376 0.982 0.004 0.996
#> GSM379768 2 0.0376 0.982 0.004 0.996
#> GSM379776 1 0.1843 0.987 0.972 0.028
#> GSM379777 1 0.1633 0.987 0.976 0.024
#> GSM379778 1 0.1633 0.987 0.976 0.024
#> GSM379771 1 0.1843 0.987 0.972 0.028
#> GSM379772 1 0.1843 0.987 0.972 0.028
#> GSM379773 1 0.1843 0.987 0.972 0.028
#> GSM379774 1 0.1843 0.987 0.972 0.028
#> GSM379775 1 0.1843 0.987 0.972 0.028
#> GSM379784 1 0.1633 0.987 0.976 0.024
#> GSM379785 1 0.1633 0.987 0.976 0.024
#> GSM379786 1 0.1633 0.987 0.976 0.024
#> GSM379779 1 0.1633 0.987 0.976 0.024
#> GSM379780 1 0.1633 0.987 0.976 0.024
#> GSM379781 1 0.1633 0.987 0.976 0.024
#> GSM379782 2 0.6887 0.779 0.184 0.816
#> GSM379783 1 0.1633 0.987 0.976 0.024
#> GSM379792 1 0.1633 0.987 0.976 0.024
#> GSM379793 1 0.1633 0.987 0.976 0.024
#> GSM379794 1 0.1633 0.987 0.976 0.024
#> GSM379787 2 0.9580 0.394 0.380 0.620
#> GSM379788 1 0.1633 0.987 0.976 0.024
#> GSM379789 1 0.1633 0.987 0.976 0.024
#> GSM379790 1 0.1633 0.987 0.976 0.024
#> GSM379791 1 0.1633 0.987 0.976 0.024
#> GSM379797 1 0.1633 0.987 0.976 0.024
#> GSM379798 1 0.1633 0.987 0.976 0.024
#> GSM379795 1 0.1633 0.987 0.976 0.024
#> GSM379796 1 0.1633 0.987 0.976 0.024
#> GSM379721 1 0.0938 0.977 0.988 0.012
#> GSM379722 1 0.0938 0.977 0.988 0.012
#> GSM379723 1 0.0938 0.977 0.988 0.012
#> GSM379716 1 0.0938 0.977 0.988 0.012
#> GSM379717 1 0.0938 0.977 0.988 0.012
#> GSM379718 1 0.0938 0.977 0.988 0.012
#> GSM379719 1 0.0938 0.977 0.988 0.012
#> GSM379720 1 0.0938 0.977 0.988 0.012
#> GSM379729 1 0.0672 0.978 0.992 0.008
#> GSM379730 1 0.0672 0.978 0.992 0.008
#> GSM379731 1 0.0672 0.978 0.992 0.008
#> GSM379724 1 0.0938 0.977 0.988 0.012
#> GSM379725 1 0.0938 0.977 0.988 0.012
#> GSM379726 1 0.0938 0.977 0.988 0.012
#> GSM379727 1 0.0938 0.977 0.988 0.012
#> GSM379728 1 0.0938 0.977 0.988 0.012
#> GSM379737 1 0.0672 0.978 0.992 0.008
#> GSM379738 1 0.0672 0.978 0.992 0.008
#> GSM379739 1 0.0672 0.978 0.992 0.008
#> GSM379732 1 0.0672 0.978 0.992 0.008
#> GSM379733 1 0.0672 0.978 0.992 0.008
#> GSM379734 1 0.0672 0.978 0.992 0.008
#> GSM379735 1 0.0672 0.978 0.992 0.008
#> GSM379736 1 0.0000 0.977 1.000 0.000
#> GSM379742 2 0.6801 0.809 0.180 0.820
#> GSM379743 1 0.0672 0.978 0.992 0.008
#> GSM379740 1 0.0672 0.978 0.992 0.008
#> GSM379741 2 0.6801 0.809 0.180 0.820
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.4346 0.917 0.184 0.816 0.000
#> GSM379833 2 0.4346 0.917 0.184 0.816 0.000
#> GSM379834 2 0.4346 0.917 0.184 0.816 0.000
#> GSM379827 2 0.4346 0.917 0.184 0.816 0.000
#> GSM379828 2 0.4346 0.917 0.184 0.816 0.000
#> GSM379829 1 0.3695 0.607 0.880 0.012 0.108
#> GSM379830 2 0.4346 0.917 0.184 0.816 0.000
#> GSM379831 2 0.4346 0.917 0.184 0.816 0.000
#> GSM379840 2 0.4346 0.917 0.184 0.816 0.000
#> GSM379841 2 0.3686 0.924 0.140 0.860 0.000
#> GSM379842 2 0.3686 0.924 0.140 0.860 0.000
#> GSM379835 2 0.4346 0.917 0.184 0.816 0.000
#> GSM379836 2 0.4346 0.917 0.184 0.816 0.000
#> GSM379837 1 0.7809 -0.156 0.568 0.372 0.060
#> GSM379838 2 0.3686 0.924 0.140 0.860 0.000
#> GSM379839 2 0.6295 0.543 0.472 0.528 0.000
#> GSM379848 2 0.3686 0.924 0.140 0.860 0.000
#> GSM379849 2 0.3686 0.924 0.140 0.860 0.000
#> GSM379850 2 0.3686 0.924 0.140 0.860 0.000
#> GSM379843 2 0.3686 0.924 0.140 0.860 0.000
#> GSM379844 2 0.3686 0.924 0.140 0.860 0.000
#> GSM379845 2 0.4346 0.917 0.184 0.816 0.000
#> GSM379846 2 0.3686 0.924 0.140 0.860 0.000
#> GSM379847 2 0.3686 0.924 0.140 0.860 0.000
#> GSM379853 2 0.3816 0.924 0.148 0.852 0.000
#> GSM379854 2 0.3686 0.924 0.140 0.860 0.000
#> GSM379851 2 0.3686 0.924 0.140 0.860 0.000
#> GSM379852 2 0.3686 0.924 0.140 0.860 0.000
#> GSM379804 1 0.5397 0.890 0.720 0.000 0.280
#> GSM379805 1 0.5397 0.890 0.720 0.000 0.280
#> GSM379806 1 0.5397 0.890 0.720 0.000 0.280
#> GSM379799 1 0.5397 0.890 0.720 0.000 0.280
#> GSM379800 1 0.5397 0.890 0.720 0.000 0.280
#> GSM379801 1 0.5397 0.890 0.720 0.000 0.280
#> GSM379802 1 0.5397 0.890 0.720 0.000 0.280
#> GSM379803 1 0.5397 0.890 0.720 0.000 0.280
#> GSM379812 1 0.5291 0.891 0.732 0.000 0.268
#> GSM379813 1 0.5291 0.891 0.732 0.000 0.268
#> GSM379814 1 0.5291 0.891 0.732 0.000 0.268
#> GSM379807 1 0.5291 0.891 0.732 0.000 0.268
#> GSM379808 1 0.5397 0.890 0.720 0.000 0.280
#> GSM379809 1 0.5397 0.890 0.720 0.000 0.280
#> GSM379810 1 0.5397 0.890 0.720 0.000 0.280
#> GSM379811 1 0.5397 0.890 0.720 0.000 0.280
#> GSM379820 1 0.5291 0.891 0.732 0.000 0.268
#> GSM379821 1 0.5291 0.891 0.732 0.000 0.268
#> GSM379822 1 0.5291 0.891 0.732 0.000 0.268
#> GSM379815 1 0.5216 0.890 0.740 0.000 0.260
#> GSM379816 1 0.6252 0.455 0.556 0.000 0.444
#> GSM379817 1 0.5291 0.891 0.732 0.000 0.268
#> GSM379818 1 0.5397 0.890 0.720 0.000 0.280
#> GSM379819 1 0.5291 0.891 0.732 0.000 0.268
#> GSM379825 1 0.5397 0.890 0.720 0.000 0.280
#> GSM379826 1 0.5291 0.891 0.732 0.000 0.268
#> GSM379823 1 0.5291 0.891 0.732 0.000 0.268
#> GSM379824 1 0.5291 0.891 0.732 0.000 0.268
#> GSM379749 2 0.1860 0.924 0.052 0.948 0.000
#> GSM379750 2 0.1860 0.924 0.052 0.948 0.000
#> GSM379751 2 0.1964 0.924 0.056 0.944 0.000
#> GSM379744 2 0.1964 0.924 0.056 0.944 0.000
#> GSM379745 2 0.1964 0.924 0.056 0.944 0.000
#> GSM379746 2 0.1860 0.924 0.052 0.948 0.000
#> GSM379747 2 0.1964 0.924 0.056 0.944 0.000
#> GSM379748 2 0.1964 0.924 0.056 0.944 0.000
#> GSM379757 2 0.0424 0.925 0.008 0.992 0.000
#> GSM379758 2 0.0592 0.924 0.012 0.988 0.000
#> GSM379752 2 0.1860 0.924 0.052 0.948 0.000
#> GSM379753 2 0.1964 0.924 0.056 0.944 0.000
#> GSM379754 2 0.0000 0.926 0.000 1.000 0.000
#> GSM379755 2 0.0000 0.926 0.000 1.000 0.000
#> GSM379756 2 0.0000 0.926 0.000 1.000 0.000
#> GSM379764 2 0.0592 0.924 0.012 0.988 0.000
#> GSM379765 2 0.0592 0.924 0.012 0.988 0.000
#> GSM379766 2 0.0592 0.924 0.012 0.988 0.000
#> GSM379759 2 0.0592 0.924 0.012 0.988 0.000
#> GSM379760 2 0.0592 0.924 0.012 0.988 0.000
#> GSM379761 2 0.0592 0.924 0.012 0.988 0.000
#> GSM379762 2 0.0592 0.924 0.012 0.988 0.000
#> GSM379763 2 0.0592 0.924 0.012 0.988 0.000
#> GSM379769 2 0.0592 0.924 0.012 0.988 0.000
#> GSM379770 2 0.0592 0.924 0.012 0.988 0.000
#> GSM379767 2 0.0592 0.924 0.012 0.988 0.000
#> GSM379768 2 0.0592 0.924 0.012 0.988 0.000
#> GSM379776 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379777 1 0.5178 0.734 0.744 0.000 0.256
#> GSM379778 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379771 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379772 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379773 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379774 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379775 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379784 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379785 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379786 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379779 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379780 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379781 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379782 3 0.9464 0.207 0.180 0.404 0.416
#> GSM379783 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379792 1 0.5706 0.591 0.680 0.000 0.320
#> GSM379793 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379794 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379787 3 0.9777 0.213 0.248 0.324 0.428
#> GSM379788 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379789 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379790 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379791 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379797 1 0.4555 0.811 0.800 0.000 0.200
#> GSM379798 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379795 3 0.6308 0.186 0.492 0.000 0.508
#> GSM379796 1 0.5706 0.591 0.680 0.000 0.320
#> GSM379721 3 0.0424 0.633 0.008 0.000 0.992
#> GSM379722 3 0.0424 0.633 0.008 0.000 0.992
#> GSM379723 3 0.0424 0.633 0.008 0.000 0.992
#> GSM379716 3 0.0424 0.633 0.008 0.000 0.992
#> GSM379717 3 0.0424 0.633 0.008 0.000 0.992
#> GSM379718 3 0.0424 0.633 0.008 0.000 0.992
#> GSM379719 3 0.0424 0.633 0.008 0.000 0.992
#> GSM379720 3 0.0424 0.633 0.008 0.000 0.992
#> GSM379729 3 0.0000 0.634 0.000 0.000 1.000
#> GSM379730 3 0.0000 0.634 0.000 0.000 1.000
#> GSM379731 3 0.0000 0.634 0.000 0.000 1.000
#> GSM379724 3 0.0424 0.633 0.008 0.000 0.992
#> GSM379725 3 0.0000 0.634 0.000 0.000 1.000
#> GSM379726 3 0.0424 0.633 0.008 0.000 0.992
#> GSM379727 3 0.0424 0.633 0.008 0.000 0.992
#> GSM379728 3 0.0424 0.633 0.008 0.000 0.992
#> GSM379737 3 0.0000 0.634 0.000 0.000 1.000
#> GSM379738 3 0.0000 0.634 0.000 0.000 1.000
#> GSM379739 3 0.0000 0.634 0.000 0.000 1.000
#> GSM379732 3 0.0000 0.634 0.000 0.000 1.000
#> GSM379733 3 0.0000 0.634 0.000 0.000 1.000
#> GSM379734 3 0.0000 0.634 0.000 0.000 1.000
#> GSM379735 3 0.0000 0.634 0.000 0.000 1.000
#> GSM379736 3 0.0424 0.633 0.008 0.000 0.992
#> GSM379742 3 0.5315 0.442 0.012 0.216 0.772
#> GSM379743 3 0.0000 0.634 0.000 0.000 1.000
#> GSM379740 3 0.0000 0.634 0.000 0.000 1.000
#> GSM379741 3 0.5315 0.442 0.012 0.216 0.772
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.3734 0.772 0.044 0.848 0.000 0.108
#> GSM379833 2 0.3734 0.772 0.044 0.848 0.000 0.108
#> GSM379834 2 0.3734 0.772 0.044 0.848 0.000 0.108
#> GSM379827 2 0.4090 0.769 0.044 0.832 0.004 0.120
#> GSM379828 2 0.4090 0.769 0.044 0.832 0.004 0.120
#> GSM379829 4 0.6428 0.473 0.068 0.212 0.036 0.684
#> GSM379830 2 0.4090 0.769 0.044 0.832 0.004 0.120
#> GSM379831 2 0.4090 0.769 0.044 0.832 0.004 0.120
#> GSM379840 2 0.4033 0.769 0.044 0.836 0.004 0.116
#> GSM379841 2 0.0000 0.798 0.000 1.000 0.000 0.000
#> GSM379842 2 0.0672 0.796 0.008 0.984 0.000 0.008
#> GSM379835 2 0.4090 0.769 0.044 0.832 0.004 0.120
#> GSM379836 2 0.4090 0.769 0.044 0.832 0.004 0.120
#> GSM379837 2 0.6160 0.514 0.060 0.616 0.004 0.320
#> GSM379838 2 0.0000 0.798 0.000 1.000 0.000 0.000
#> GSM379839 2 0.6160 0.514 0.060 0.616 0.004 0.320
#> GSM379848 2 0.0779 0.797 0.004 0.980 0.000 0.016
#> GSM379849 2 0.0927 0.797 0.008 0.976 0.000 0.016
#> GSM379850 2 0.0927 0.797 0.008 0.976 0.000 0.016
#> GSM379843 2 0.0672 0.796 0.008 0.984 0.000 0.008
#> GSM379844 2 0.0000 0.798 0.000 1.000 0.000 0.000
#> GSM379845 2 0.4033 0.769 0.044 0.836 0.004 0.116
#> GSM379846 2 0.0188 0.798 0.004 0.996 0.000 0.000
#> GSM379847 2 0.0779 0.797 0.004 0.980 0.000 0.016
#> GSM379853 2 0.1510 0.795 0.016 0.956 0.000 0.028
#> GSM379854 2 0.0927 0.797 0.008 0.976 0.000 0.016
#> GSM379851 2 0.0927 0.797 0.008 0.976 0.000 0.016
#> GSM379852 2 0.0927 0.797 0.008 0.976 0.000 0.016
#> GSM379804 4 0.5631 0.951 0.224 0.000 0.076 0.700
#> GSM379805 4 0.5727 0.950 0.236 0.000 0.076 0.688
#> GSM379806 4 0.5727 0.950 0.236 0.000 0.076 0.688
#> GSM379799 4 0.5727 0.947 0.236 0.000 0.076 0.688
#> GSM379800 4 0.5727 0.947 0.236 0.000 0.076 0.688
#> GSM379801 4 0.5727 0.947 0.236 0.000 0.076 0.688
#> GSM379802 4 0.5727 0.946 0.236 0.000 0.076 0.688
#> GSM379803 4 0.5664 0.951 0.228 0.000 0.076 0.696
#> GSM379812 4 0.5619 0.943 0.248 0.000 0.064 0.688
#> GSM379813 4 0.5559 0.947 0.240 0.000 0.064 0.696
#> GSM379814 4 0.5590 0.947 0.244 0.000 0.064 0.692
#> GSM379807 4 0.5696 0.951 0.232 0.000 0.076 0.692
#> GSM379808 4 0.5727 0.947 0.236 0.000 0.076 0.688
#> GSM379809 4 0.5631 0.951 0.224 0.000 0.076 0.700
#> GSM379810 4 0.5631 0.951 0.224 0.000 0.076 0.700
#> GSM379811 4 0.5727 0.950 0.236 0.000 0.076 0.688
#> GSM379820 4 0.5590 0.947 0.244 0.000 0.064 0.692
#> GSM379821 4 0.5619 0.945 0.248 0.000 0.064 0.688
#> GSM379822 4 0.5648 0.942 0.252 0.000 0.064 0.684
#> GSM379815 4 0.5631 0.951 0.224 0.000 0.076 0.700
#> GSM379816 4 0.6810 0.791 0.248 0.000 0.156 0.596
#> GSM379817 4 0.5559 0.947 0.240 0.000 0.064 0.696
#> GSM379818 4 0.5727 0.950 0.236 0.000 0.076 0.688
#> GSM379819 4 0.5696 0.951 0.232 0.000 0.076 0.692
#> GSM379825 4 0.5727 0.950 0.236 0.000 0.076 0.688
#> GSM379826 4 0.5559 0.947 0.240 0.000 0.064 0.696
#> GSM379823 4 0.5648 0.942 0.252 0.000 0.064 0.684
#> GSM379824 4 0.5590 0.946 0.244 0.000 0.064 0.692
#> GSM379749 2 0.7105 0.792 0.196 0.564 0.000 0.240
#> GSM379750 2 0.7105 0.792 0.196 0.564 0.000 0.240
#> GSM379751 2 0.7494 0.783 0.208 0.524 0.004 0.264
#> GSM379744 2 0.7159 0.790 0.200 0.556 0.000 0.244
#> GSM379745 2 0.7159 0.790 0.200 0.556 0.000 0.244
#> GSM379746 2 0.7105 0.792 0.196 0.564 0.000 0.240
#> GSM379747 2 0.7304 0.785 0.208 0.532 0.000 0.260
#> GSM379748 2 0.7304 0.785 0.208 0.532 0.000 0.260
#> GSM379757 2 0.6363 0.799 0.172 0.656 0.000 0.172
#> GSM379758 2 0.6324 0.799 0.172 0.660 0.000 0.168
#> GSM379752 2 0.7105 0.792 0.196 0.564 0.000 0.240
#> GSM379753 2 0.7474 0.784 0.208 0.528 0.004 0.260
#> GSM379754 2 0.6324 0.800 0.172 0.660 0.000 0.168
#> GSM379755 2 0.6324 0.800 0.172 0.660 0.000 0.168
#> GSM379756 2 0.6324 0.800 0.172 0.660 0.000 0.168
#> GSM379764 2 0.6323 0.800 0.176 0.660 0.000 0.164
#> GSM379765 2 0.6323 0.800 0.176 0.660 0.000 0.164
#> GSM379766 2 0.6323 0.800 0.176 0.660 0.000 0.164
#> GSM379759 2 0.6324 0.799 0.172 0.660 0.000 0.168
#> GSM379760 2 0.6324 0.799 0.172 0.660 0.000 0.168
#> GSM379761 2 0.6324 0.799 0.172 0.660 0.000 0.168
#> GSM379762 2 0.6324 0.799 0.172 0.660 0.000 0.168
#> GSM379763 2 0.6323 0.800 0.176 0.660 0.000 0.164
#> GSM379769 2 0.6323 0.800 0.176 0.660 0.000 0.164
#> GSM379770 2 0.6323 0.800 0.176 0.660 0.000 0.164
#> GSM379767 2 0.6323 0.800 0.176 0.660 0.000 0.164
#> GSM379768 2 0.6323 0.800 0.176 0.660 0.000 0.164
#> GSM379776 1 0.4103 0.958 0.744 0.000 0.256 0.000
#> GSM379777 1 0.5208 0.642 0.748 0.000 0.080 0.172
#> GSM379778 1 0.4103 0.955 0.744 0.000 0.256 0.000
#> GSM379771 1 0.4103 0.958 0.744 0.000 0.256 0.000
#> GSM379772 1 0.4103 0.958 0.744 0.000 0.256 0.000
#> GSM379773 1 0.4134 0.955 0.740 0.000 0.260 0.000
#> GSM379774 1 0.4103 0.958 0.744 0.000 0.256 0.000
#> GSM379775 1 0.4103 0.958 0.744 0.000 0.256 0.000
#> GSM379784 1 0.4220 0.952 0.748 0.000 0.248 0.004
#> GSM379785 1 0.4040 0.954 0.752 0.000 0.248 0.000
#> GSM379786 1 0.4220 0.952 0.748 0.000 0.248 0.004
#> GSM379779 1 0.4103 0.958 0.744 0.000 0.256 0.000
#> GSM379780 1 0.4103 0.958 0.744 0.000 0.256 0.000
#> GSM379781 1 0.4103 0.958 0.744 0.000 0.256 0.000
#> GSM379782 1 0.6583 0.779 0.636 0.108 0.248 0.008
#> GSM379783 1 0.4220 0.952 0.748 0.000 0.248 0.004
#> GSM379792 1 0.5351 0.801 0.744 0.000 0.152 0.104
#> GSM379793 1 0.4103 0.958 0.744 0.000 0.256 0.000
#> GSM379794 1 0.4103 0.958 0.744 0.000 0.256 0.000
#> GSM379787 1 0.6451 0.799 0.644 0.096 0.252 0.008
#> GSM379788 1 0.4220 0.952 0.748 0.000 0.248 0.004
#> GSM379789 1 0.4103 0.958 0.744 0.000 0.256 0.000
#> GSM379790 1 0.4103 0.958 0.744 0.000 0.256 0.000
#> GSM379791 1 0.4103 0.958 0.744 0.000 0.256 0.000
#> GSM379797 4 0.5686 0.767 0.376 0.000 0.032 0.592
#> GSM379798 1 0.4103 0.958 0.744 0.000 0.256 0.000
#> GSM379795 1 0.4103 0.958 0.744 0.000 0.256 0.000
#> GSM379796 1 0.5339 0.808 0.744 0.000 0.156 0.100
#> GSM379721 3 0.0188 0.975 0.000 0.000 0.996 0.004
#> GSM379722 3 0.0188 0.975 0.000 0.000 0.996 0.004
#> GSM379723 3 0.0188 0.975 0.000 0.000 0.996 0.004
#> GSM379716 3 0.0376 0.972 0.004 0.000 0.992 0.004
#> GSM379717 3 0.0376 0.972 0.004 0.000 0.992 0.004
#> GSM379718 3 0.0376 0.972 0.004 0.000 0.992 0.004
#> GSM379719 3 0.0188 0.975 0.000 0.000 0.996 0.004
#> GSM379720 3 0.0376 0.972 0.004 0.000 0.992 0.004
#> GSM379729 3 0.0921 0.973 0.028 0.000 0.972 0.000
#> GSM379730 3 0.0921 0.973 0.028 0.000 0.972 0.000
#> GSM379731 3 0.0921 0.973 0.028 0.000 0.972 0.000
#> GSM379724 3 0.0188 0.975 0.000 0.000 0.996 0.004
#> GSM379725 3 0.0921 0.973 0.028 0.000 0.972 0.000
#> GSM379726 3 0.0376 0.975 0.004 0.000 0.992 0.004
#> GSM379727 3 0.0376 0.975 0.004 0.000 0.992 0.004
#> GSM379728 3 0.0376 0.975 0.004 0.000 0.992 0.004
#> GSM379737 3 0.0895 0.974 0.020 0.000 0.976 0.004
#> GSM379738 3 0.0895 0.974 0.020 0.000 0.976 0.004
#> GSM379739 3 0.0895 0.974 0.020 0.000 0.976 0.004
#> GSM379732 3 0.1109 0.972 0.028 0.000 0.968 0.004
#> GSM379733 3 0.0895 0.974 0.020 0.000 0.976 0.004
#> GSM379734 3 0.0895 0.974 0.020 0.000 0.976 0.004
#> GSM379735 3 0.1109 0.972 0.028 0.000 0.968 0.004
#> GSM379736 3 0.0672 0.974 0.008 0.000 0.984 0.008
#> GSM379742 3 0.2715 0.899 0.036 0.016 0.916 0.032
#> GSM379743 3 0.1209 0.971 0.032 0.000 0.964 0.004
#> GSM379740 3 0.0895 0.974 0.020 0.000 0.976 0.004
#> GSM379741 3 0.2715 0.899 0.036 0.016 0.916 0.032
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 5 0.3774 0.73472 0.000 0.296 0.000 0.000 0.704
#> GSM379833 5 0.3774 0.73472 0.000 0.296 0.000 0.000 0.704
#> GSM379834 5 0.3774 0.73472 0.000 0.296 0.000 0.000 0.704
#> GSM379827 5 0.5589 0.71308 0.080 0.296 0.008 0.000 0.616
#> GSM379828 5 0.5589 0.71308 0.080 0.296 0.008 0.000 0.616
#> GSM379829 5 0.5752 -0.00482 0.100 0.000 0.008 0.280 0.612
#> GSM379830 5 0.5589 0.71308 0.080 0.296 0.008 0.000 0.616
#> GSM379831 5 0.5589 0.71308 0.080 0.296 0.008 0.000 0.616
#> GSM379840 5 0.5430 0.71951 0.068 0.296 0.008 0.000 0.628
#> GSM379841 5 0.4783 0.72523 0.012 0.452 0.004 0.000 0.532
#> GSM379842 5 0.4752 0.73577 0.012 0.428 0.004 0.000 0.556
#> GSM379835 5 0.5589 0.71308 0.080 0.296 0.008 0.000 0.616
#> GSM379836 5 0.5589 0.71308 0.080 0.296 0.008 0.000 0.616
#> GSM379837 5 0.5335 0.54139 0.084 0.120 0.008 0.044 0.744
#> GSM379838 5 0.4783 0.72523 0.012 0.452 0.004 0.000 0.532
#> GSM379839 5 0.5335 0.54139 0.084 0.120 0.008 0.044 0.744
#> GSM379848 5 0.5051 0.69328 0.024 0.480 0.004 0.000 0.492
#> GSM379849 5 0.5051 0.69328 0.024 0.480 0.004 0.000 0.492
#> GSM379850 5 0.5051 0.69328 0.024 0.480 0.004 0.000 0.492
#> GSM379843 5 0.4752 0.73577 0.012 0.428 0.004 0.000 0.556
#> GSM379844 5 0.4783 0.72523 0.012 0.452 0.004 0.000 0.532
#> GSM379845 5 0.5430 0.71951 0.068 0.296 0.008 0.000 0.628
#> GSM379846 5 0.4783 0.72523 0.012 0.452 0.004 0.000 0.532
#> GSM379847 5 0.4798 0.70960 0.012 0.472 0.004 0.000 0.512
#> GSM379853 5 0.5008 0.72992 0.024 0.428 0.004 0.000 0.544
#> GSM379854 5 0.5051 0.69328 0.024 0.480 0.004 0.000 0.492
#> GSM379851 5 0.5049 0.70115 0.024 0.472 0.004 0.000 0.500
#> GSM379852 5 0.5051 0.69328 0.024 0.480 0.004 0.000 0.492
#> GSM379804 4 0.1430 0.90222 0.004 0.000 0.000 0.944 0.052
#> GSM379805 4 0.3550 0.87511 0.020 0.000 0.000 0.796 0.184
#> GSM379806 4 0.3550 0.87511 0.020 0.000 0.000 0.796 0.184
#> GSM379799 4 0.3550 0.87511 0.020 0.000 0.000 0.796 0.184
#> GSM379800 4 0.3550 0.87511 0.020 0.000 0.000 0.796 0.184
#> GSM379801 4 0.3550 0.87511 0.020 0.000 0.000 0.796 0.184
#> GSM379802 4 0.3745 0.87151 0.024 0.000 0.000 0.780 0.196
#> GSM379803 4 0.3562 0.87476 0.016 0.000 0.000 0.788 0.196
#> GSM379812 4 0.0404 0.90150 0.012 0.000 0.000 0.988 0.000
#> GSM379813 4 0.0404 0.90150 0.012 0.000 0.000 0.988 0.000
#> GSM379814 4 0.0404 0.90150 0.012 0.000 0.000 0.988 0.000
#> GSM379807 4 0.0162 0.90274 0.004 0.000 0.000 0.996 0.000
#> GSM379808 4 0.3550 0.87511 0.020 0.000 0.000 0.796 0.184
#> GSM379809 4 0.0794 0.90442 0.000 0.000 0.000 0.972 0.028
#> GSM379810 4 0.0609 0.90451 0.000 0.000 0.000 0.980 0.020
#> GSM379811 4 0.3745 0.87151 0.024 0.000 0.000 0.780 0.196
#> GSM379820 4 0.0290 0.90225 0.008 0.000 0.000 0.992 0.000
#> GSM379821 4 0.0912 0.89968 0.016 0.000 0.000 0.972 0.012
#> GSM379822 4 0.1117 0.89658 0.016 0.000 0.000 0.964 0.020
#> GSM379815 4 0.0609 0.90451 0.000 0.000 0.000 0.980 0.020
#> GSM379816 4 0.1808 0.85632 0.012 0.000 0.044 0.936 0.008
#> GSM379817 4 0.0404 0.90150 0.012 0.000 0.000 0.988 0.000
#> GSM379818 4 0.3745 0.87151 0.024 0.000 0.000 0.780 0.196
#> GSM379819 4 0.0162 0.90274 0.004 0.000 0.000 0.996 0.000
#> GSM379825 4 0.3675 0.87320 0.024 0.000 0.000 0.788 0.188
#> GSM379826 4 0.0404 0.90150 0.012 0.000 0.000 0.988 0.000
#> GSM379823 4 0.0912 0.89784 0.012 0.000 0.000 0.972 0.016
#> GSM379824 4 0.0912 0.89968 0.016 0.000 0.000 0.972 0.012
#> GSM379749 2 0.4425 0.76702 0.108 0.772 0.004 0.000 0.116
#> GSM379750 2 0.4425 0.76702 0.108 0.772 0.004 0.000 0.116
#> GSM379751 2 0.5351 0.66470 0.136 0.692 0.008 0.000 0.164
#> GSM379744 2 0.4517 0.75934 0.108 0.764 0.004 0.000 0.124
#> GSM379745 2 0.4517 0.75934 0.108 0.764 0.004 0.000 0.124
#> GSM379746 2 0.4425 0.76702 0.108 0.772 0.004 0.000 0.116
#> GSM379747 2 0.4926 0.70980 0.108 0.724 0.004 0.000 0.164
#> GSM379748 2 0.4926 0.70980 0.108 0.724 0.004 0.000 0.164
#> GSM379757 2 0.1892 0.82349 0.080 0.916 0.004 0.000 0.000
#> GSM379758 2 0.0000 0.82452 0.000 1.000 0.000 0.000 0.000
#> GSM379752 2 0.4425 0.76702 0.108 0.772 0.004 0.000 0.116
#> GSM379753 2 0.4888 0.71546 0.108 0.728 0.004 0.000 0.160
#> GSM379754 2 0.2352 0.81928 0.092 0.896 0.004 0.000 0.008
#> GSM379755 2 0.2352 0.81928 0.092 0.896 0.004 0.000 0.008
#> GSM379756 2 0.2228 0.81977 0.092 0.900 0.004 0.000 0.004
#> GSM379764 2 0.1026 0.81020 0.024 0.968 0.004 0.000 0.004
#> GSM379765 2 0.1026 0.81020 0.024 0.968 0.004 0.000 0.004
#> GSM379766 2 0.1026 0.81020 0.024 0.968 0.004 0.000 0.004
#> GSM379759 2 0.0404 0.82714 0.012 0.988 0.000 0.000 0.000
#> GSM379760 2 0.0404 0.82714 0.012 0.988 0.000 0.000 0.000
#> GSM379761 2 0.0162 0.82566 0.004 0.996 0.000 0.000 0.000
#> GSM379762 2 0.0000 0.82452 0.000 1.000 0.000 0.000 0.000
#> GSM379763 2 0.1026 0.81020 0.024 0.968 0.004 0.000 0.004
#> GSM379769 2 0.1026 0.81020 0.024 0.968 0.004 0.000 0.004
#> GSM379770 2 0.1026 0.81020 0.024 0.968 0.004 0.000 0.004
#> GSM379767 2 0.1026 0.81020 0.024 0.968 0.004 0.000 0.004
#> GSM379768 2 0.1026 0.81020 0.024 0.968 0.004 0.000 0.004
#> GSM379776 1 0.4905 0.97109 0.728 0.000 0.116 0.152 0.004
#> GSM379777 1 0.4494 0.85317 0.728 0.000 0.028 0.232 0.012
#> GSM379778 1 0.4833 0.95113 0.748 0.000 0.108 0.132 0.012
#> GSM379771 1 0.4905 0.97109 0.728 0.000 0.116 0.152 0.004
#> GSM379772 1 0.4905 0.97109 0.728 0.000 0.116 0.152 0.004
#> GSM379773 1 0.4732 0.96275 0.744 0.000 0.108 0.144 0.004
#> GSM379774 1 0.4751 0.97081 0.732 0.000 0.116 0.152 0.000
#> GSM379775 1 0.4905 0.97109 0.728 0.000 0.116 0.152 0.004
#> GSM379784 1 0.4859 0.96941 0.732 0.000 0.112 0.152 0.004
#> GSM379785 1 0.4704 0.97009 0.736 0.000 0.112 0.152 0.000
#> GSM379786 1 0.4859 0.96941 0.732 0.000 0.112 0.152 0.004
#> GSM379779 1 0.4751 0.97081 0.732 0.000 0.116 0.152 0.000
#> GSM379780 1 0.4751 0.97081 0.732 0.000 0.116 0.152 0.000
#> GSM379781 1 0.4751 0.97081 0.732 0.000 0.116 0.152 0.000
#> GSM379782 1 0.5266 0.88544 0.760 0.024 0.108 0.072 0.036
#> GSM379783 1 0.4859 0.96941 0.732 0.000 0.112 0.152 0.004
#> GSM379792 1 0.4913 0.90027 0.720 0.000 0.056 0.208 0.016
#> GSM379793 1 0.5229 0.96931 0.716 0.000 0.116 0.152 0.016
#> GSM379794 1 0.5229 0.96931 0.716 0.000 0.116 0.152 0.016
#> GSM379787 1 0.5266 0.88544 0.760 0.024 0.108 0.072 0.036
#> GSM379788 1 0.4704 0.97009 0.736 0.000 0.112 0.152 0.000
#> GSM379789 1 0.5229 0.96931 0.716 0.000 0.116 0.152 0.016
#> GSM379790 1 0.5229 0.96931 0.716 0.000 0.116 0.152 0.016
#> GSM379791 1 0.5229 0.96931 0.716 0.000 0.116 0.152 0.016
#> GSM379797 4 0.5610 0.66710 0.180 0.000 0.000 0.640 0.180
#> GSM379798 1 0.5229 0.96931 0.716 0.000 0.116 0.152 0.016
#> GSM379795 1 0.5229 0.96931 0.716 0.000 0.116 0.152 0.016
#> GSM379796 1 0.4913 0.90027 0.720 0.000 0.056 0.208 0.016
#> GSM379721 3 0.1836 0.96164 0.008 0.000 0.936 0.016 0.040
#> GSM379722 3 0.1836 0.96164 0.008 0.000 0.936 0.016 0.040
#> GSM379723 3 0.1673 0.96214 0.008 0.000 0.944 0.016 0.032
#> GSM379716 3 0.1673 0.96214 0.008 0.000 0.944 0.016 0.032
#> GSM379717 3 0.1673 0.96214 0.008 0.000 0.944 0.016 0.032
#> GSM379718 3 0.1836 0.96164 0.008 0.000 0.936 0.016 0.040
#> GSM379719 3 0.1836 0.96164 0.008 0.000 0.936 0.016 0.040
#> GSM379720 3 0.1836 0.96164 0.008 0.000 0.936 0.016 0.040
#> GSM379729 3 0.1596 0.95922 0.012 0.000 0.948 0.012 0.028
#> GSM379730 3 0.1596 0.95922 0.012 0.000 0.948 0.012 0.028
#> GSM379731 3 0.1483 0.95994 0.008 0.000 0.952 0.012 0.028
#> GSM379724 3 0.1673 0.96214 0.008 0.000 0.944 0.016 0.032
#> GSM379725 3 0.1921 0.96140 0.012 0.000 0.932 0.012 0.044
#> GSM379726 3 0.1673 0.96214 0.008 0.000 0.944 0.016 0.032
#> GSM379727 3 0.1673 0.96214 0.008 0.000 0.944 0.016 0.032
#> GSM379728 3 0.1673 0.96214 0.008 0.000 0.944 0.016 0.032
#> GSM379737 3 0.1617 0.95816 0.020 0.000 0.948 0.012 0.020
#> GSM379738 3 0.1617 0.95816 0.020 0.000 0.948 0.012 0.020
#> GSM379739 3 0.1799 0.95626 0.020 0.000 0.940 0.012 0.028
#> GSM379732 3 0.1764 0.95872 0.012 0.000 0.940 0.012 0.036
#> GSM379733 3 0.1314 0.96066 0.012 0.000 0.960 0.012 0.016
#> GSM379734 3 0.1314 0.96066 0.012 0.000 0.960 0.012 0.016
#> GSM379735 3 0.2217 0.95217 0.024 0.000 0.920 0.012 0.044
#> GSM379736 3 0.1673 0.96192 0.008 0.000 0.944 0.016 0.032
#> GSM379742 3 0.3248 0.90160 0.040 0.048 0.872 0.000 0.040
#> GSM379743 3 0.2217 0.95217 0.024 0.000 0.920 0.012 0.044
#> GSM379740 3 0.1413 0.96001 0.012 0.000 0.956 0.012 0.020
#> GSM379741 3 0.3248 0.90160 0.040 0.048 0.872 0.000 0.040
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 5 0.0508 0.745 0.000 0.004 0.000 0.000 0.984 0.012
#> GSM379833 5 0.0508 0.745 0.000 0.004 0.000 0.000 0.984 0.012
#> GSM379834 5 0.0508 0.745 0.000 0.004 0.000 0.000 0.984 0.012
#> GSM379827 5 0.3023 0.678 0.000 0.000 0.004 0.000 0.784 0.212
#> GSM379828 5 0.3023 0.678 0.000 0.000 0.004 0.000 0.784 0.212
#> GSM379829 6 0.5383 0.240 0.000 0.000 0.000 0.164 0.260 0.576
#> GSM379830 5 0.2933 0.688 0.000 0.000 0.004 0.000 0.796 0.200
#> GSM379831 5 0.2933 0.688 0.000 0.000 0.004 0.000 0.796 0.200
#> GSM379840 5 0.2562 0.706 0.000 0.000 0.000 0.000 0.828 0.172
#> GSM379841 5 0.2378 0.754 0.000 0.152 0.000 0.000 0.848 0.000
#> GSM379842 5 0.2260 0.758 0.000 0.140 0.000 0.000 0.860 0.000
#> GSM379835 5 0.2933 0.688 0.000 0.000 0.004 0.000 0.796 0.200
#> GSM379836 5 0.2933 0.688 0.000 0.000 0.004 0.000 0.796 0.200
#> GSM379837 5 0.3990 0.520 0.000 0.000 0.004 0.016 0.676 0.304
#> GSM379838 5 0.2378 0.754 0.000 0.152 0.000 0.000 0.848 0.000
#> GSM379839 5 0.3990 0.520 0.000 0.000 0.004 0.016 0.676 0.304
#> GSM379848 5 0.3269 0.720 0.000 0.184 0.000 0.000 0.792 0.024
#> GSM379849 5 0.3269 0.720 0.000 0.184 0.000 0.000 0.792 0.024
#> GSM379850 5 0.3269 0.720 0.000 0.184 0.000 0.000 0.792 0.024
#> GSM379843 5 0.2260 0.758 0.000 0.140 0.000 0.000 0.860 0.000
#> GSM379844 5 0.2378 0.754 0.000 0.152 0.000 0.000 0.848 0.000
#> GSM379845 5 0.2562 0.706 0.000 0.000 0.000 0.000 0.828 0.172
#> GSM379846 5 0.2378 0.754 0.000 0.152 0.000 0.000 0.848 0.000
#> GSM379847 5 0.3202 0.727 0.000 0.176 0.000 0.000 0.800 0.024
#> GSM379853 5 0.2831 0.751 0.000 0.136 0.000 0.000 0.840 0.024
#> GSM379854 5 0.3269 0.720 0.000 0.184 0.000 0.000 0.792 0.024
#> GSM379851 5 0.3134 0.733 0.000 0.168 0.000 0.000 0.808 0.024
#> GSM379852 5 0.3269 0.720 0.000 0.184 0.000 0.000 0.792 0.024
#> GSM379804 4 0.3044 0.653 0.048 0.000 0.000 0.836 0.000 0.116
#> GSM379805 4 0.4666 0.418 0.048 0.000 0.000 0.564 0.000 0.388
#> GSM379806 4 0.4682 0.411 0.048 0.000 0.000 0.556 0.000 0.396
#> GSM379799 4 0.4709 0.397 0.048 0.000 0.000 0.540 0.000 0.412
#> GSM379800 4 0.4709 0.397 0.048 0.000 0.000 0.540 0.000 0.412
#> GSM379801 4 0.4709 0.397 0.048 0.000 0.000 0.540 0.000 0.412
#> GSM379802 4 0.4870 0.365 0.048 0.004 0.000 0.512 0.000 0.436
#> GSM379803 4 0.5117 0.384 0.048 0.016 0.000 0.520 0.000 0.416
#> GSM379812 4 0.1921 0.684 0.056 0.012 0.012 0.920 0.000 0.000
#> GSM379813 4 0.1349 0.690 0.056 0.000 0.004 0.940 0.000 0.000
#> GSM379814 4 0.1349 0.690 0.056 0.000 0.004 0.940 0.000 0.000
#> GSM379807 4 0.1141 0.691 0.052 0.000 0.000 0.948 0.000 0.000
#> GSM379808 4 0.4709 0.397 0.048 0.000 0.000 0.540 0.000 0.412
#> GSM379809 4 0.2608 0.672 0.048 0.000 0.000 0.872 0.000 0.080
#> GSM379810 4 0.2066 0.687 0.052 0.000 0.000 0.908 0.000 0.040
#> GSM379811 4 0.4962 0.371 0.048 0.008 0.000 0.516 0.000 0.428
#> GSM379820 4 0.1349 0.690 0.056 0.000 0.004 0.940 0.000 0.000
#> GSM379821 4 0.2962 0.669 0.056 0.028 0.012 0.876 0.000 0.028
#> GSM379822 4 0.3418 0.649 0.056 0.036 0.016 0.852 0.000 0.040
#> GSM379815 4 0.2136 0.685 0.048 0.000 0.000 0.904 0.000 0.048
#> GSM379816 4 0.2813 0.652 0.068 0.024 0.016 0.880 0.000 0.012
#> GSM379817 4 0.1349 0.690 0.056 0.000 0.004 0.940 0.000 0.000
#> GSM379818 4 0.4966 0.366 0.048 0.008 0.000 0.512 0.000 0.432
#> GSM379819 4 0.1141 0.691 0.052 0.000 0.000 0.948 0.000 0.000
#> GSM379825 4 0.4857 0.378 0.048 0.004 0.000 0.524 0.000 0.424
#> GSM379826 4 0.1349 0.690 0.056 0.000 0.004 0.940 0.000 0.000
#> GSM379823 4 0.2955 0.659 0.056 0.036 0.016 0.876 0.000 0.016
#> GSM379824 4 0.2750 0.674 0.056 0.028 0.004 0.884 0.000 0.028
#> GSM379749 2 0.6951 0.713 0.000 0.472 0.052 0.032 0.316 0.128
#> GSM379750 2 0.6951 0.713 0.000 0.472 0.052 0.032 0.316 0.128
#> GSM379751 2 0.7285 0.604 0.000 0.376 0.052 0.032 0.364 0.176
#> GSM379744 2 0.6983 0.700 0.000 0.456 0.052 0.032 0.332 0.128
#> GSM379745 2 0.6983 0.700 0.000 0.456 0.052 0.032 0.332 0.128
#> GSM379746 2 0.6951 0.713 0.000 0.472 0.052 0.032 0.316 0.128
#> GSM379747 2 0.7021 0.671 0.000 0.428 0.052 0.032 0.360 0.128
#> GSM379748 2 0.7021 0.671 0.000 0.428 0.052 0.032 0.360 0.128
#> GSM379757 2 0.5678 0.770 0.000 0.664 0.048 0.028 0.192 0.068
#> GSM379758 2 0.2730 0.777 0.000 0.808 0.000 0.000 0.192 0.000
#> GSM379752 2 0.6951 0.713 0.000 0.472 0.052 0.032 0.316 0.128
#> GSM379753 2 0.7025 0.666 0.000 0.424 0.052 0.032 0.364 0.128
#> GSM379754 2 0.6106 0.764 0.000 0.624 0.048 0.032 0.204 0.092
#> GSM379755 2 0.6106 0.764 0.000 0.624 0.048 0.032 0.204 0.092
#> GSM379756 2 0.6080 0.764 0.000 0.628 0.048 0.032 0.200 0.092
#> GSM379764 2 0.3593 0.760 0.000 0.764 0.000 0.004 0.208 0.024
#> GSM379765 2 0.3593 0.760 0.000 0.764 0.000 0.004 0.208 0.024
#> GSM379766 2 0.3593 0.760 0.000 0.764 0.000 0.004 0.208 0.024
#> GSM379759 2 0.2730 0.777 0.000 0.808 0.000 0.000 0.192 0.000
#> GSM379760 2 0.2730 0.777 0.000 0.808 0.000 0.000 0.192 0.000
#> GSM379761 2 0.2730 0.777 0.000 0.808 0.000 0.000 0.192 0.000
#> GSM379762 2 0.2730 0.777 0.000 0.808 0.000 0.000 0.192 0.000
#> GSM379763 2 0.3454 0.760 0.000 0.768 0.000 0.000 0.208 0.024
#> GSM379769 2 0.3593 0.760 0.000 0.764 0.000 0.004 0.208 0.024
#> GSM379770 2 0.3593 0.760 0.000 0.764 0.000 0.004 0.208 0.024
#> GSM379767 2 0.3593 0.760 0.000 0.764 0.000 0.004 0.208 0.024
#> GSM379768 2 0.3593 0.760 0.000 0.764 0.000 0.004 0.208 0.024
#> GSM379776 1 0.0000 0.963 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379777 1 0.3293 0.844 0.860 0.040 0.016 0.048 0.000 0.036
#> GSM379778 1 0.2009 0.927 0.916 0.040 0.000 0.000 0.004 0.040
#> GSM379771 1 0.0146 0.963 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379772 1 0.0146 0.963 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379773 1 0.1261 0.951 0.952 0.024 0.000 0.000 0.000 0.024
#> GSM379774 1 0.0146 0.963 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379775 1 0.0146 0.963 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379784 1 0.1364 0.951 0.952 0.020 0.016 0.000 0.000 0.012
#> GSM379785 1 0.0976 0.957 0.968 0.016 0.008 0.000 0.000 0.008
#> GSM379786 1 0.1364 0.951 0.952 0.020 0.016 0.000 0.000 0.012
#> GSM379779 1 0.0146 0.963 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379780 1 0.0000 0.963 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379781 1 0.0717 0.959 0.976 0.016 0.000 0.000 0.000 0.008
#> GSM379782 1 0.2384 0.909 0.896 0.056 0.000 0.000 0.008 0.040
#> GSM379783 1 0.1364 0.951 0.952 0.020 0.016 0.000 0.000 0.012
#> GSM379792 1 0.1364 0.945 0.952 0.016 0.000 0.020 0.000 0.012
#> GSM379793 1 0.0820 0.959 0.972 0.016 0.000 0.000 0.000 0.012
#> GSM379794 1 0.0914 0.959 0.968 0.016 0.000 0.000 0.000 0.016
#> GSM379787 1 0.2384 0.909 0.896 0.056 0.000 0.000 0.008 0.040
#> GSM379788 1 0.1173 0.954 0.960 0.016 0.016 0.000 0.000 0.008
#> GSM379789 1 0.0820 0.959 0.972 0.016 0.000 0.000 0.000 0.012
#> GSM379790 1 0.0820 0.959 0.972 0.016 0.000 0.000 0.000 0.012
#> GSM379791 1 0.0820 0.959 0.972 0.016 0.000 0.000 0.000 0.012
#> GSM379797 6 0.6526 -0.172 0.244 0.024 0.000 0.360 0.000 0.372
#> GSM379798 1 0.0820 0.959 0.972 0.016 0.000 0.000 0.000 0.012
#> GSM379795 1 0.0914 0.959 0.968 0.016 0.000 0.000 0.000 0.016
#> GSM379796 1 0.1275 0.948 0.956 0.016 0.000 0.016 0.000 0.012
#> GSM379721 3 0.5294 0.875 0.060 0.052 0.708 0.016 0.004 0.160
#> GSM379722 3 0.5294 0.875 0.060 0.052 0.708 0.016 0.004 0.160
#> GSM379723 3 0.5131 0.876 0.060 0.048 0.724 0.016 0.004 0.148
#> GSM379716 3 0.5131 0.876 0.060 0.048 0.724 0.016 0.004 0.148
#> GSM379717 3 0.5131 0.876 0.060 0.048 0.724 0.016 0.004 0.148
#> GSM379718 3 0.5294 0.875 0.060 0.052 0.708 0.016 0.004 0.160
#> GSM379719 3 0.5294 0.875 0.060 0.052 0.708 0.016 0.004 0.160
#> GSM379720 3 0.5238 0.874 0.056 0.052 0.712 0.016 0.004 0.160
#> GSM379729 3 0.3114 0.868 0.052 0.040 0.860 0.000 0.000 0.048
#> GSM379730 3 0.3181 0.867 0.052 0.044 0.856 0.000 0.000 0.048
#> GSM379731 3 0.3181 0.867 0.052 0.044 0.856 0.000 0.000 0.048
#> GSM379724 3 0.5131 0.876 0.060 0.048 0.724 0.016 0.004 0.148
#> GSM379725 3 0.4515 0.874 0.056 0.052 0.760 0.004 0.000 0.128
#> GSM379726 3 0.5048 0.876 0.064 0.048 0.724 0.016 0.000 0.148
#> GSM379727 3 0.5012 0.876 0.064 0.048 0.728 0.016 0.000 0.144
#> GSM379728 3 0.5012 0.876 0.064 0.048 0.728 0.016 0.000 0.144
#> GSM379737 3 0.1900 0.876 0.068 0.008 0.916 0.000 0.000 0.008
#> GSM379738 3 0.1900 0.876 0.068 0.008 0.916 0.000 0.000 0.008
#> GSM379739 3 0.2102 0.874 0.068 0.012 0.908 0.000 0.000 0.012
#> GSM379732 3 0.2959 0.863 0.056 0.048 0.868 0.000 0.000 0.028
#> GSM379733 3 0.2562 0.880 0.068 0.008 0.888 0.004 0.000 0.032
#> GSM379734 3 0.2562 0.880 0.068 0.008 0.888 0.004 0.000 0.032
#> GSM379735 3 0.3036 0.858 0.052 0.052 0.864 0.000 0.000 0.032
#> GSM379736 3 0.3581 0.881 0.064 0.040 0.840 0.012 0.000 0.044
#> GSM379742 3 0.3407 0.810 0.016 0.108 0.832 0.004 0.000 0.040
#> GSM379743 3 0.3036 0.858 0.052 0.052 0.864 0.000 0.000 0.032
#> GSM379740 3 0.1900 0.876 0.068 0.008 0.916 0.000 0.000 0.008
#> GSM379741 3 0.3407 0.810 0.016 0.108 0.832 0.004 0.000 0.040
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 3)
get_signatures(res, k = 4)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 5)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 5, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> SD:kmeans 138 1.06e-24 1 0.780 2
#> SD:kmeans 111 1.97e-42 1 0.951 3
#> SD:kmeans 138 4.25e-79 1 0.998 4
#> SD:kmeans 138 3.50e-105 1 0.998 5
#> SD:kmeans 126 4.76e-97 1 0.395 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.988 0.995 0.4908 0.510 0.510
#> 3 3 1.000 0.986 0.993 0.3151 0.834 0.678
#> 4 4 1.000 0.980 0.983 0.1326 0.905 0.737
#> 5 5 0.932 0.955 0.966 0.1007 0.918 0.701
#> 6 6 0.935 0.925 0.915 0.0277 0.981 0.900
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5
There is also optional best \(k\) = 2 3 4 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.000 0.996 0.000 1.000
#> GSM379833 2 0.000 0.996 0.000 1.000
#> GSM379834 2 0.000 0.996 0.000 1.000
#> GSM379827 2 0.000 0.996 0.000 1.000
#> GSM379828 2 0.000 0.996 0.000 1.000
#> GSM379829 1 0.141 0.975 0.980 0.020
#> GSM379830 2 0.000 0.996 0.000 1.000
#> GSM379831 2 0.000 0.996 0.000 1.000
#> GSM379840 2 0.000 0.996 0.000 1.000
#> GSM379841 2 0.000 0.996 0.000 1.000
#> GSM379842 2 0.000 0.996 0.000 1.000
#> GSM379835 2 0.000 0.996 0.000 1.000
#> GSM379836 2 0.000 0.996 0.000 1.000
#> GSM379837 2 0.000 0.996 0.000 1.000
#> GSM379838 2 0.000 0.996 0.000 1.000
#> GSM379839 2 0.000 0.996 0.000 1.000
#> GSM379848 2 0.000 0.996 0.000 1.000
#> GSM379849 2 0.000 0.996 0.000 1.000
#> GSM379850 2 0.000 0.996 0.000 1.000
#> GSM379843 2 0.000 0.996 0.000 1.000
#> GSM379844 2 0.000 0.996 0.000 1.000
#> GSM379845 2 0.000 0.996 0.000 1.000
#> GSM379846 2 0.000 0.996 0.000 1.000
#> GSM379847 2 0.000 0.996 0.000 1.000
#> GSM379853 2 0.000 0.996 0.000 1.000
#> GSM379854 2 0.000 0.996 0.000 1.000
#> GSM379851 2 0.000 0.996 0.000 1.000
#> GSM379852 2 0.000 0.996 0.000 1.000
#> GSM379804 1 0.000 0.995 1.000 0.000
#> GSM379805 1 0.000 0.995 1.000 0.000
#> GSM379806 1 0.000 0.995 1.000 0.000
#> GSM379799 1 0.000 0.995 1.000 0.000
#> GSM379800 1 0.000 0.995 1.000 0.000
#> GSM379801 1 0.000 0.995 1.000 0.000
#> GSM379802 1 0.000 0.995 1.000 0.000
#> GSM379803 1 0.000 0.995 1.000 0.000
#> GSM379812 1 0.000 0.995 1.000 0.000
#> GSM379813 1 0.000 0.995 1.000 0.000
#> GSM379814 1 0.000 0.995 1.000 0.000
#> GSM379807 1 0.000 0.995 1.000 0.000
#> GSM379808 1 0.000 0.995 1.000 0.000
#> GSM379809 1 0.000 0.995 1.000 0.000
#> GSM379810 1 0.000 0.995 1.000 0.000
#> GSM379811 1 0.000 0.995 1.000 0.000
#> GSM379820 1 0.000 0.995 1.000 0.000
#> GSM379821 1 0.000 0.995 1.000 0.000
#> GSM379822 1 0.000 0.995 1.000 0.000
#> GSM379815 1 0.000 0.995 1.000 0.000
#> GSM379816 1 0.000 0.995 1.000 0.000
#> GSM379817 1 0.000 0.995 1.000 0.000
#> GSM379818 1 0.000 0.995 1.000 0.000
#> GSM379819 1 0.000 0.995 1.000 0.000
#> GSM379825 1 0.000 0.995 1.000 0.000
#> GSM379826 1 0.000 0.995 1.000 0.000
#> GSM379823 1 0.000 0.995 1.000 0.000
#> GSM379824 1 0.000 0.995 1.000 0.000
#> GSM379749 2 0.000 0.996 0.000 1.000
#> GSM379750 2 0.000 0.996 0.000 1.000
#> GSM379751 2 0.000 0.996 0.000 1.000
#> GSM379744 2 0.000 0.996 0.000 1.000
#> GSM379745 2 0.000 0.996 0.000 1.000
#> GSM379746 2 0.000 0.996 0.000 1.000
#> GSM379747 2 0.000 0.996 0.000 1.000
#> GSM379748 2 0.000 0.996 0.000 1.000
#> GSM379757 2 0.000 0.996 0.000 1.000
#> GSM379758 2 0.000 0.996 0.000 1.000
#> GSM379752 2 0.000 0.996 0.000 1.000
#> GSM379753 2 0.000 0.996 0.000 1.000
#> GSM379754 2 0.000 0.996 0.000 1.000
#> GSM379755 2 0.000 0.996 0.000 1.000
#> GSM379756 2 0.000 0.996 0.000 1.000
#> GSM379764 2 0.000 0.996 0.000 1.000
#> GSM379765 2 0.000 0.996 0.000 1.000
#> GSM379766 2 0.000 0.996 0.000 1.000
#> GSM379759 2 0.000 0.996 0.000 1.000
#> GSM379760 2 0.000 0.996 0.000 1.000
#> GSM379761 2 0.000 0.996 0.000 1.000
#> GSM379762 2 0.000 0.996 0.000 1.000
#> GSM379763 2 0.000 0.996 0.000 1.000
#> GSM379769 2 0.000 0.996 0.000 1.000
#> GSM379770 2 0.000 0.996 0.000 1.000
#> GSM379767 2 0.000 0.996 0.000 1.000
#> GSM379768 2 0.000 0.996 0.000 1.000
#> GSM379776 1 0.000 0.995 1.000 0.000
#> GSM379777 1 0.000 0.995 1.000 0.000
#> GSM379778 1 0.975 0.305 0.592 0.408
#> GSM379771 1 0.000 0.995 1.000 0.000
#> GSM379772 1 0.000 0.995 1.000 0.000
#> GSM379773 1 0.000 0.995 1.000 0.000
#> GSM379774 1 0.000 0.995 1.000 0.000
#> GSM379775 1 0.000 0.995 1.000 0.000
#> GSM379784 1 0.000 0.995 1.000 0.000
#> GSM379785 1 0.000 0.995 1.000 0.000
#> GSM379786 1 0.000 0.995 1.000 0.000
#> GSM379779 1 0.000 0.995 1.000 0.000
#> GSM379780 1 0.000 0.995 1.000 0.000
#> GSM379781 1 0.000 0.995 1.000 0.000
#> GSM379782 2 0.000 0.996 0.000 1.000
#> GSM379783 1 0.000 0.995 1.000 0.000
#> GSM379792 1 0.000 0.995 1.000 0.000
#> GSM379793 1 0.000 0.995 1.000 0.000
#> GSM379794 1 0.000 0.995 1.000 0.000
#> GSM379787 2 0.722 0.748 0.200 0.800
#> GSM379788 1 0.000 0.995 1.000 0.000
#> GSM379789 1 0.000 0.995 1.000 0.000
#> GSM379790 1 0.000 0.995 1.000 0.000
#> GSM379791 1 0.000 0.995 1.000 0.000
#> GSM379797 1 0.000 0.995 1.000 0.000
#> GSM379798 1 0.000 0.995 1.000 0.000
#> GSM379795 1 0.000 0.995 1.000 0.000
#> GSM379796 1 0.000 0.995 1.000 0.000
#> GSM379721 1 0.000 0.995 1.000 0.000
#> GSM379722 1 0.000 0.995 1.000 0.000
#> GSM379723 1 0.000 0.995 1.000 0.000
#> GSM379716 1 0.000 0.995 1.000 0.000
#> GSM379717 1 0.000 0.995 1.000 0.000
#> GSM379718 1 0.000 0.995 1.000 0.000
#> GSM379719 1 0.000 0.995 1.000 0.000
#> GSM379720 1 0.000 0.995 1.000 0.000
#> GSM379729 1 0.000 0.995 1.000 0.000
#> GSM379730 1 0.000 0.995 1.000 0.000
#> GSM379731 1 0.000 0.995 1.000 0.000
#> GSM379724 1 0.000 0.995 1.000 0.000
#> GSM379725 1 0.000 0.995 1.000 0.000
#> GSM379726 1 0.000 0.995 1.000 0.000
#> GSM379727 1 0.000 0.995 1.000 0.000
#> GSM379728 1 0.000 0.995 1.000 0.000
#> GSM379737 1 0.000 0.995 1.000 0.000
#> GSM379738 1 0.000 0.995 1.000 0.000
#> GSM379739 1 0.000 0.995 1.000 0.000
#> GSM379732 1 0.000 0.995 1.000 0.000
#> GSM379733 1 0.000 0.995 1.000 0.000
#> GSM379734 1 0.000 0.995 1.000 0.000
#> GSM379735 1 0.000 0.995 1.000 0.000
#> GSM379736 1 0.000 0.995 1.000 0.000
#> GSM379742 2 0.000 0.996 0.000 1.000
#> GSM379743 1 0.000 0.995 1.000 0.000
#> GSM379740 1 0.000 0.995 1.000 0.000
#> GSM379741 2 0.000 0.996 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379833 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379834 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379827 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379828 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379829 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379830 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379831 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379840 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379841 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379842 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379835 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379836 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379837 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379838 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379839 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379848 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379849 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379850 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379843 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379844 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379845 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379846 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379847 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379853 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379854 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379851 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379852 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379804 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379805 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379806 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379799 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379800 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379801 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379802 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379803 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379812 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379813 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379814 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379807 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379808 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379809 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379810 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379811 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379820 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379821 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379822 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379815 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379816 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379817 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379818 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379819 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379825 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379826 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379823 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379824 1 0.0592 0.994 0.988 0.000 0.012
#> GSM379749 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379750 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379751 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379744 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379745 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379746 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379747 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379748 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379757 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379758 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379752 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379753 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379754 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379755 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379756 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379764 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379765 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379766 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379759 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379760 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379761 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379762 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379763 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379769 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379770 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379767 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379768 2 0.0000 0.987 0.000 1.000 0.000
#> GSM379776 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379777 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379778 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379771 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379772 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379773 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379774 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379775 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379784 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379785 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379786 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379779 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379780 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379781 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379782 2 0.4702 0.728 0.212 0.788 0.000
#> GSM379783 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379792 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379793 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379794 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379787 2 0.6126 0.348 0.400 0.600 0.000
#> GSM379788 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379789 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379790 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379791 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379797 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379798 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379795 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379796 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379721 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379722 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379723 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379716 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379717 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379718 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379719 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379720 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379729 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379730 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379731 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379724 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379725 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379726 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379727 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379728 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379737 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379738 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379739 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379732 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379733 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379734 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379735 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379736 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379742 3 0.0592 0.986 0.000 0.012 0.988
#> GSM379743 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379740 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379741 3 0.0592 0.986 0.000 0.012 0.988
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379833 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379834 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379827 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379828 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379829 4 0.0921 0.959 0.000 0.028 0 0.972
#> GSM379830 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379831 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379840 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379841 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379842 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379835 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379836 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379837 2 0.4406 0.569 0.000 0.700 0 0.300
#> GSM379838 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379839 2 0.4382 0.577 0.000 0.704 0 0.296
#> GSM379848 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379849 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379850 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379843 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379844 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379845 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379846 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379847 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379853 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379854 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379851 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379852 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379804 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379805 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379806 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379799 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379800 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379801 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379802 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379803 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379812 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379813 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379814 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379807 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379808 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379809 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379810 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379811 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379820 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379821 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379822 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379815 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379816 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379817 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379818 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379819 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379825 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379826 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379823 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379824 4 0.0000 0.992 0.000 0.000 0 1.000
#> GSM379749 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379750 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379751 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379744 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379745 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379746 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379747 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379748 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379757 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379758 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379752 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379753 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379754 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379755 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379756 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379764 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379765 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379766 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379759 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379760 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379761 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379762 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379763 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379769 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379770 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379767 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379768 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379776 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379777 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379778 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379771 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379772 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379773 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379774 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379775 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379784 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379785 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379786 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379779 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379780 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379781 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379782 1 0.0188 0.971 0.996 0.000 0 0.004
#> GSM379783 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379792 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379793 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379794 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379787 1 0.0336 0.976 0.992 0.000 0 0.008
#> GSM379788 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379789 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379790 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379791 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379797 4 0.3649 0.735 0.204 0.000 0 0.796
#> GSM379798 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379795 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379796 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379721 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379722 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379723 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379716 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379717 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379718 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379719 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379720 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379729 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379730 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379731 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379724 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379725 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379726 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379727 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379728 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379737 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379738 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379739 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379732 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379733 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379734 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379735 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379736 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379742 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379743 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379740 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379741 3 0.0000 1.000 0.000 0.000 1 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 5 0.0609 0.895 0.000 0.020 0 0.000 0.980
#> GSM379833 5 0.0609 0.895 0.000 0.020 0 0.000 0.980
#> GSM379834 5 0.0609 0.895 0.000 0.020 0 0.000 0.980
#> GSM379827 5 0.0609 0.895 0.000 0.020 0 0.000 0.980
#> GSM379828 5 0.0609 0.895 0.000 0.020 0 0.000 0.980
#> GSM379829 5 0.3636 0.546 0.000 0.000 0 0.272 0.728
#> GSM379830 5 0.0609 0.895 0.000 0.020 0 0.000 0.980
#> GSM379831 5 0.0609 0.895 0.000 0.020 0 0.000 0.980
#> GSM379840 5 0.0290 0.889 0.000 0.008 0 0.000 0.992
#> GSM379841 5 0.2813 0.899 0.000 0.168 0 0.000 0.832
#> GSM379842 5 0.2813 0.899 0.000 0.168 0 0.000 0.832
#> GSM379835 5 0.0609 0.895 0.000 0.020 0 0.000 0.980
#> GSM379836 5 0.0609 0.895 0.000 0.020 0 0.000 0.980
#> GSM379837 5 0.0000 0.884 0.000 0.000 0 0.000 1.000
#> GSM379838 5 0.2813 0.899 0.000 0.168 0 0.000 0.832
#> GSM379839 5 0.0000 0.884 0.000 0.000 0 0.000 1.000
#> GSM379848 5 0.2813 0.899 0.000 0.168 0 0.000 0.832
#> GSM379849 5 0.2813 0.899 0.000 0.168 0 0.000 0.832
#> GSM379850 5 0.2813 0.899 0.000 0.168 0 0.000 0.832
#> GSM379843 5 0.2813 0.899 0.000 0.168 0 0.000 0.832
#> GSM379844 5 0.2813 0.899 0.000 0.168 0 0.000 0.832
#> GSM379845 5 0.0609 0.895 0.000 0.020 0 0.000 0.980
#> GSM379846 5 0.2813 0.899 0.000 0.168 0 0.000 0.832
#> GSM379847 5 0.2813 0.899 0.000 0.168 0 0.000 0.832
#> GSM379853 5 0.2813 0.899 0.000 0.168 0 0.000 0.832
#> GSM379854 5 0.2813 0.899 0.000 0.168 0 0.000 0.832
#> GSM379851 5 0.2813 0.899 0.000 0.168 0 0.000 0.832
#> GSM379852 5 0.2813 0.899 0.000 0.168 0 0.000 0.832
#> GSM379804 4 0.0290 0.984 0.000 0.000 0 0.992 0.008
#> GSM379805 4 0.0609 0.983 0.000 0.000 0 0.980 0.020
#> GSM379806 4 0.0609 0.983 0.000 0.000 0 0.980 0.020
#> GSM379799 4 0.0609 0.983 0.000 0.000 0 0.980 0.020
#> GSM379800 4 0.0609 0.983 0.000 0.000 0 0.980 0.020
#> GSM379801 4 0.0609 0.983 0.000 0.000 0 0.980 0.020
#> GSM379802 4 0.0609 0.983 0.000 0.000 0 0.980 0.020
#> GSM379803 4 0.0609 0.983 0.000 0.000 0 0.980 0.020
#> GSM379812 4 0.0000 0.985 0.000 0.000 0 1.000 0.000
#> GSM379813 4 0.0000 0.985 0.000 0.000 0 1.000 0.000
#> GSM379814 4 0.0000 0.985 0.000 0.000 0 1.000 0.000
#> GSM379807 4 0.0000 0.985 0.000 0.000 0 1.000 0.000
#> GSM379808 4 0.0609 0.983 0.000 0.000 0 0.980 0.020
#> GSM379809 4 0.0609 0.983 0.000 0.000 0 0.980 0.020
#> GSM379810 4 0.0000 0.985 0.000 0.000 0 1.000 0.000
#> GSM379811 4 0.0609 0.983 0.000 0.000 0 0.980 0.020
#> GSM379820 4 0.0000 0.985 0.000 0.000 0 1.000 0.000
#> GSM379821 4 0.0000 0.985 0.000 0.000 0 1.000 0.000
#> GSM379822 4 0.0000 0.985 0.000 0.000 0 1.000 0.000
#> GSM379815 4 0.0000 0.985 0.000 0.000 0 1.000 0.000
#> GSM379816 4 0.0000 0.985 0.000 0.000 0 1.000 0.000
#> GSM379817 4 0.0000 0.985 0.000 0.000 0 1.000 0.000
#> GSM379818 4 0.0609 0.983 0.000 0.000 0 0.980 0.020
#> GSM379819 4 0.0000 0.985 0.000 0.000 0 1.000 0.000
#> GSM379825 4 0.0609 0.983 0.000 0.000 0 0.980 0.020
#> GSM379826 4 0.0000 0.985 0.000 0.000 0 1.000 0.000
#> GSM379823 4 0.0000 0.985 0.000 0.000 0 1.000 0.000
#> GSM379824 4 0.0000 0.985 0.000 0.000 0 1.000 0.000
#> GSM379749 2 0.2516 0.887 0.000 0.860 0 0.000 0.140
#> GSM379750 2 0.2516 0.887 0.000 0.860 0 0.000 0.140
#> GSM379751 2 0.2605 0.882 0.000 0.852 0 0.000 0.148
#> GSM379744 2 0.2561 0.885 0.000 0.856 0 0.000 0.144
#> GSM379745 2 0.2561 0.885 0.000 0.856 0 0.000 0.144
#> GSM379746 2 0.2516 0.887 0.000 0.860 0 0.000 0.140
#> GSM379747 2 0.2605 0.882 0.000 0.852 0 0.000 0.148
#> GSM379748 2 0.2605 0.882 0.000 0.852 0 0.000 0.148
#> GSM379757 2 0.0000 0.934 0.000 1.000 0 0.000 0.000
#> GSM379758 2 0.0000 0.934 0.000 1.000 0 0.000 0.000
#> GSM379752 2 0.2516 0.887 0.000 0.860 0 0.000 0.140
#> GSM379753 2 0.2605 0.882 0.000 0.852 0 0.000 0.148
#> GSM379754 2 0.0000 0.934 0.000 1.000 0 0.000 0.000
#> GSM379755 2 0.0000 0.934 0.000 1.000 0 0.000 0.000
#> GSM379756 2 0.0000 0.934 0.000 1.000 0 0.000 0.000
#> GSM379764 2 0.0000 0.934 0.000 1.000 0 0.000 0.000
#> GSM379765 2 0.0000 0.934 0.000 1.000 0 0.000 0.000
#> GSM379766 2 0.0000 0.934 0.000 1.000 0 0.000 0.000
#> GSM379759 2 0.0000 0.934 0.000 1.000 0 0.000 0.000
#> GSM379760 2 0.0000 0.934 0.000 1.000 0 0.000 0.000
#> GSM379761 2 0.0000 0.934 0.000 1.000 0 0.000 0.000
#> GSM379762 2 0.0000 0.934 0.000 1.000 0 0.000 0.000
#> GSM379763 2 0.0000 0.934 0.000 1.000 0 0.000 0.000
#> GSM379769 2 0.0000 0.934 0.000 1.000 0 0.000 0.000
#> GSM379770 2 0.0000 0.934 0.000 1.000 0 0.000 0.000
#> GSM379767 2 0.0000 0.934 0.000 1.000 0 0.000 0.000
#> GSM379768 2 0.0000 0.934 0.000 1.000 0 0.000 0.000
#> GSM379776 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379777 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379778 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379771 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379772 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379773 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379774 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379775 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379784 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379785 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379786 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379779 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379780 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379781 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379782 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379783 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379792 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379793 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379794 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379787 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379788 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379789 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379790 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379791 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379797 4 0.3821 0.721 0.216 0.000 0 0.764 0.020
#> GSM379798 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379795 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379796 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379721 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379722 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379723 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379716 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379717 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379718 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379719 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379720 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379729 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379730 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379731 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379724 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379725 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379726 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379727 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379728 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379737 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379738 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379739 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379732 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379733 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379734 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379735 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379736 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379742 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379743 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379740 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379741 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 6 0.2805 0.653 0.000 0.004 0.000 0.000 0.184 0.812
#> GSM379833 6 0.2805 0.653 0.000 0.004 0.000 0.000 0.184 0.812
#> GSM379834 6 0.2805 0.653 0.000 0.004 0.000 0.000 0.184 0.812
#> GSM379827 5 0.3819 0.911 0.000 0.004 0.000 0.000 0.624 0.372
#> GSM379828 5 0.3819 0.911 0.000 0.004 0.000 0.000 0.624 0.372
#> GSM379829 5 0.2726 0.531 0.000 0.000 0.000 0.032 0.856 0.112
#> GSM379830 5 0.3841 0.915 0.000 0.004 0.000 0.000 0.616 0.380
#> GSM379831 5 0.3852 0.915 0.000 0.004 0.000 0.000 0.612 0.384
#> GSM379840 5 0.3872 0.906 0.000 0.004 0.000 0.000 0.604 0.392
#> GSM379841 6 0.0713 0.920 0.000 0.000 0.000 0.000 0.028 0.972
#> GSM379842 6 0.0713 0.920 0.000 0.000 0.000 0.000 0.028 0.972
#> GSM379835 5 0.3852 0.915 0.000 0.004 0.000 0.000 0.612 0.384
#> GSM379836 5 0.3852 0.915 0.000 0.004 0.000 0.000 0.612 0.384
#> GSM379837 5 0.3756 0.891 0.000 0.004 0.000 0.000 0.644 0.352
#> GSM379838 6 0.0713 0.920 0.000 0.000 0.000 0.000 0.028 0.972
#> GSM379839 5 0.3756 0.891 0.000 0.004 0.000 0.000 0.644 0.352
#> GSM379848 6 0.0000 0.921 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379849 6 0.0000 0.921 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379850 6 0.0000 0.921 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379843 6 0.0713 0.920 0.000 0.000 0.000 0.000 0.028 0.972
#> GSM379844 6 0.0713 0.920 0.000 0.000 0.000 0.000 0.028 0.972
#> GSM379845 5 0.3872 0.906 0.000 0.004 0.000 0.000 0.604 0.392
#> GSM379846 6 0.0713 0.920 0.000 0.000 0.000 0.000 0.028 0.972
#> GSM379847 6 0.0000 0.921 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379853 6 0.0146 0.921 0.000 0.000 0.000 0.000 0.004 0.996
#> GSM379854 6 0.0000 0.921 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379851 6 0.0000 0.921 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379852 6 0.0000 0.921 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379804 4 0.2996 0.887 0.000 0.000 0.000 0.772 0.228 0.000
#> GSM379805 4 0.3076 0.886 0.000 0.000 0.000 0.760 0.240 0.000
#> GSM379806 4 0.3076 0.886 0.000 0.000 0.000 0.760 0.240 0.000
#> GSM379799 4 0.3076 0.886 0.000 0.000 0.000 0.760 0.240 0.000
#> GSM379800 4 0.3076 0.886 0.000 0.000 0.000 0.760 0.240 0.000
#> GSM379801 4 0.3076 0.886 0.000 0.000 0.000 0.760 0.240 0.000
#> GSM379802 4 0.3076 0.886 0.000 0.000 0.000 0.760 0.240 0.000
#> GSM379803 4 0.3076 0.886 0.000 0.000 0.000 0.760 0.240 0.000
#> GSM379812 4 0.0000 0.873 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379813 4 0.0000 0.873 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379814 4 0.0000 0.873 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379807 4 0.0000 0.873 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379808 4 0.3076 0.886 0.000 0.000 0.000 0.760 0.240 0.000
#> GSM379809 4 0.3076 0.886 0.000 0.000 0.000 0.760 0.240 0.000
#> GSM379810 4 0.2854 0.887 0.000 0.000 0.000 0.792 0.208 0.000
#> GSM379811 4 0.3076 0.886 0.000 0.000 0.000 0.760 0.240 0.000
#> GSM379820 4 0.0000 0.873 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379821 4 0.0000 0.873 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379822 4 0.0000 0.873 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379815 4 0.2854 0.887 0.000 0.000 0.000 0.792 0.208 0.000
#> GSM379816 4 0.0000 0.873 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379817 4 0.0000 0.873 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379818 4 0.3076 0.886 0.000 0.000 0.000 0.760 0.240 0.000
#> GSM379819 4 0.0000 0.873 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379825 4 0.3076 0.886 0.000 0.000 0.000 0.760 0.240 0.000
#> GSM379826 4 0.0000 0.873 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379823 4 0.0000 0.873 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379824 4 0.0000 0.873 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379749 2 0.1814 0.919 0.000 0.900 0.000 0.000 0.100 0.000
#> GSM379750 2 0.1863 0.919 0.000 0.896 0.000 0.000 0.104 0.000
#> GSM379751 2 0.3101 0.794 0.000 0.756 0.000 0.000 0.244 0.000
#> GSM379744 2 0.1863 0.919 0.000 0.896 0.000 0.000 0.104 0.000
#> GSM379745 2 0.1863 0.919 0.000 0.896 0.000 0.000 0.104 0.000
#> GSM379746 2 0.1863 0.919 0.000 0.896 0.000 0.000 0.104 0.000
#> GSM379747 2 0.1863 0.919 0.000 0.896 0.000 0.000 0.104 0.000
#> GSM379748 2 0.1863 0.919 0.000 0.896 0.000 0.000 0.104 0.000
#> GSM379757 2 0.1753 0.921 0.000 0.912 0.000 0.000 0.084 0.004
#> GSM379758 2 0.0363 0.914 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM379752 2 0.1863 0.919 0.000 0.896 0.000 0.000 0.104 0.000
#> GSM379753 2 0.1863 0.919 0.000 0.896 0.000 0.000 0.104 0.000
#> GSM379754 2 0.1858 0.921 0.000 0.904 0.000 0.000 0.092 0.004
#> GSM379755 2 0.1858 0.921 0.000 0.904 0.000 0.000 0.092 0.004
#> GSM379756 2 0.1858 0.921 0.000 0.904 0.000 0.000 0.092 0.004
#> GSM379764 2 0.1910 0.882 0.000 0.892 0.000 0.000 0.000 0.108
#> GSM379765 2 0.1910 0.882 0.000 0.892 0.000 0.000 0.000 0.108
#> GSM379766 2 0.1910 0.882 0.000 0.892 0.000 0.000 0.000 0.108
#> GSM379759 2 0.0260 0.915 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM379760 2 0.0260 0.915 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM379761 2 0.0363 0.914 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM379762 2 0.0363 0.914 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM379763 2 0.1910 0.882 0.000 0.892 0.000 0.000 0.000 0.108
#> GSM379769 2 0.1910 0.882 0.000 0.892 0.000 0.000 0.000 0.108
#> GSM379770 2 0.1910 0.882 0.000 0.892 0.000 0.000 0.000 0.108
#> GSM379767 2 0.1910 0.882 0.000 0.892 0.000 0.000 0.000 0.108
#> GSM379768 2 0.1910 0.882 0.000 0.892 0.000 0.000 0.000 0.108
#> GSM379776 1 0.0000 0.996 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379777 1 0.0146 0.996 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM379778 1 0.0260 0.994 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM379771 1 0.0000 0.996 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379772 1 0.0000 0.996 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379773 1 0.0146 0.995 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM379774 1 0.0000 0.996 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379775 1 0.0000 0.996 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379784 1 0.0146 0.996 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM379785 1 0.0146 0.996 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM379786 1 0.0146 0.996 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM379779 1 0.0000 0.996 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379780 1 0.0000 0.996 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379781 1 0.0146 0.996 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM379782 1 0.0260 0.994 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM379783 1 0.0146 0.996 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM379792 1 0.0260 0.995 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM379793 1 0.0260 0.995 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM379794 1 0.0260 0.995 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM379787 1 0.0146 0.995 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM379788 1 0.0146 0.996 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM379789 1 0.0260 0.995 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM379790 1 0.0260 0.995 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM379791 1 0.0260 0.995 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM379797 4 0.5398 0.669 0.212 0.000 0.000 0.584 0.204 0.000
#> GSM379798 1 0.0260 0.995 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM379795 1 0.0260 0.995 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM379796 1 0.0260 0.995 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM379721 3 0.0547 0.987 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM379722 3 0.0547 0.987 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM379723 3 0.0458 0.987 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM379716 3 0.0458 0.987 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM379717 3 0.0458 0.987 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM379718 3 0.0547 0.987 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM379719 3 0.0547 0.987 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM379720 3 0.0547 0.987 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM379729 3 0.0458 0.985 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM379730 3 0.0458 0.985 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM379731 3 0.0458 0.985 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM379724 3 0.0458 0.987 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM379725 3 0.0790 0.985 0.000 0.000 0.968 0.000 0.032 0.000
#> GSM379726 3 0.0458 0.987 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM379727 3 0.0458 0.987 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM379728 3 0.0458 0.987 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM379737 3 0.0260 0.986 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM379738 3 0.0260 0.986 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM379739 3 0.0260 0.986 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM379732 3 0.0458 0.985 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM379733 3 0.0146 0.987 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM379734 3 0.0146 0.987 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM379735 3 0.0547 0.984 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM379736 3 0.0146 0.987 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM379742 3 0.1176 0.966 0.000 0.024 0.956 0.000 0.020 0.000
#> GSM379743 3 0.0547 0.984 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM379740 3 0.0260 0.986 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM379741 3 0.1176 0.966 0.000 0.024 0.956 0.000 0.020 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 3)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 3, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> SD:skmeans 138 9.55e-25 1 0.733 2
#> SD:skmeans 138 5.92e-53 1 0.914 3
#> SD:skmeans 139 2.80e-78 1 0.996 4
#> SD:skmeans 139 5.15e-106 1 1.000 5
#> SD:skmeans 139 5.38e-103 1 0.767 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.988 0.995 0.4895 0.513 0.513
#> 3 3 1.000 0.989 0.995 0.3228 0.828 0.668
#> 4 4 1.000 0.963 0.958 0.1268 0.907 0.741
#> 5 5 1.000 0.975 0.991 0.1043 0.924 0.719
#> 6 6 0.991 0.953 0.981 0.0285 0.970 0.848
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5
There is also optional best \(k\) = 2 3 4 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.000 1.000 0.000 1.000
#> GSM379833 2 0.000 1.000 0.000 1.000
#> GSM379834 2 0.000 1.000 0.000 1.000
#> GSM379827 2 0.000 1.000 0.000 1.000
#> GSM379828 2 0.000 1.000 0.000 1.000
#> GSM379829 2 0.000 1.000 0.000 1.000
#> GSM379830 2 0.000 1.000 0.000 1.000
#> GSM379831 2 0.000 1.000 0.000 1.000
#> GSM379840 2 0.000 1.000 0.000 1.000
#> GSM379841 2 0.000 1.000 0.000 1.000
#> GSM379842 2 0.000 1.000 0.000 1.000
#> GSM379835 2 0.000 1.000 0.000 1.000
#> GSM379836 2 0.000 1.000 0.000 1.000
#> GSM379837 2 0.000 1.000 0.000 1.000
#> GSM379838 2 0.000 1.000 0.000 1.000
#> GSM379839 2 0.000 1.000 0.000 1.000
#> GSM379848 2 0.000 1.000 0.000 1.000
#> GSM379849 2 0.000 1.000 0.000 1.000
#> GSM379850 2 0.000 1.000 0.000 1.000
#> GSM379843 2 0.000 1.000 0.000 1.000
#> GSM379844 2 0.000 1.000 0.000 1.000
#> GSM379845 2 0.000 1.000 0.000 1.000
#> GSM379846 2 0.000 1.000 0.000 1.000
#> GSM379847 2 0.000 1.000 0.000 1.000
#> GSM379853 2 0.000 1.000 0.000 1.000
#> GSM379854 2 0.000 1.000 0.000 1.000
#> GSM379851 2 0.000 1.000 0.000 1.000
#> GSM379852 2 0.000 1.000 0.000 1.000
#> GSM379804 1 0.000 0.991 1.000 0.000
#> GSM379805 1 0.000 0.991 1.000 0.000
#> GSM379806 1 0.000 0.991 1.000 0.000
#> GSM379799 1 0.000 0.991 1.000 0.000
#> GSM379800 1 0.000 0.991 1.000 0.000
#> GSM379801 1 0.000 0.991 1.000 0.000
#> GSM379802 1 0.000 0.991 1.000 0.000
#> GSM379803 1 0.000 0.991 1.000 0.000
#> GSM379812 1 0.118 0.976 0.984 0.016
#> GSM379813 1 0.000 0.991 1.000 0.000
#> GSM379814 1 0.000 0.991 1.000 0.000
#> GSM379807 1 0.000 0.991 1.000 0.000
#> GSM379808 1 0.000 0.991 1.000 0.000
#> GSM379809 1 0.000 0.991 1.000 0.000
#> GSM379810 1 0.000 0.991 1.000 0.000
#> GSM379811 1 0.000 0.991 1.000 0.000
#> GSM379820 1 0.000 0.991 1.000 0.000
#> GSM379821 1 0.000 0.991 1.000 0.000
#> GSM379822 1 0.000 0.991 1.000 0.000
#> GSM379815 1 0.000 0.991 1.000 0.000
#> GSM379816 1 0.706 0.771 0.808 0.192
#> GSM379817 1 0.000 0.991 1.000 0.000
#> GSM379818 1 0.000 0.991 1.000 0.000
#> GSM379819 1 0.000 0.991 1.000 0.000
#> GSM379825 1 0.000 0.991 1.000 0.000
#> GSM379826 1 0.000 0.991 1.000 0.000
#> GSM379823 1 0.000 0.991 1.000 0.000
#> GSM379824 1 0.000 0.991 1.000 0.000
#> GSM379749 2 0.000 1.000 0.000 1.000
#> GSM379750 2 0.000 1.000 0.000 1.000
#> GSM379751 2 0.000 1.000 0.000 1.000
#> GSM379744 2 0.000 1.000 0.000 1.000
#> GSM379745 2 0.000 1.000 0.000 1.000
#> GSM379746 2 0.000 1.000 0.000 1.000
#> GSM379747 2 0.000 1.000 0.000 1.000
#> GSM379748 2 0.000 1.000 0.000 1.000
#> GSM379757 2 0.000 1.000 0.000 1.000
#> GSM379758 2 0.000 1.000 0.000 1.000
#> GSM379752 2 0.000 1.000 0.000 1.000
#> GSM379753 2 0.000 1.000 0.000 1.000
#> GSM379754 2 0.000 1.000 0.000 1.000
#> GSM379755 2 0.000 1.000 0.000 1.000
#> GSM379756 2 0.000 1.000 0.000 1.000
#> GSM379764 2 0.000 1.000 0.000 1.000
#> GSM379765 2 0.000 1.000 0.000 1.000
#> GSM379766 2 0.000 1.000 0.000 1.000
#> GSM379759 2 0.000 1.000 0.000 1.000
#> GSM379760 2 0.000 1.000 0.000 1.000
#> GSM379761 2 0.000 1.000 0.000 1.000
#> GSM379762 2 0.000 1.000 0.000 1.000
#> GSM379763 2 0.000 1.000 0.000 1.000
#> GSM379769 2 0.000 1.000 0.000 1.000
#> GSM379770 2 0.000 1.000 0.000 1.000
#> GSM379767 2 0.000 1.000 0.000 1.000
#> GSM379768 2 0.000 1.000 0.000 1.000
#> GSM379776 1 0.000 0.991 1.000 0.000
#> GSM379777 1 0.000 0.991 1.000 0.000
#> GSM379778 1 0.000 0.991 1.000 0.000
#> GSM379771 1 0.000 0.991 1.000 0.000
#> GSM379772 1 0.000 0.991 1.000 0.000
#> GSM379773 1 0.000 0.991 1.000 0.000
#> GSM379774 1 0.000 0.991 1.000 0.000
#> GSM379775 1 0.000 0.991 1.000 0.000
#> GSM379784 1 0.000 0.991 1.000 0.000
#> GSM379785 1 0.000 0.991 1.000 0.000
#> GSM379786 1 0.000 0.991 1.000 0.000
#> GSM379779 1 0.000 0.991 1.000 0.000
#> GSM379780 1 0.000 0.991 1.000 0.000
#> GSM379781 1 0.000 0.991 1.000 0.000
#> GSM379782 1 0.000 0.991 1.000 0.000
#> GSM379783 1 0.000 0.991 1.000 0.000
#> GSM379792 1 0.000 0.991 1.000 0.000
#> GSM379793 1 0.000 0.991 1.000 0.000
#> GSM379794 1 0.000 0.991 1.000 0.000
#> GSM379787 1 0.000 0.991 1.000 0.000
#> GSM379788 1 0.000 0.991 1.000 0.000
#> GSM379789 1 0.000 0.991 1.000 0.000
#> GSM379790 1 0.000 0.991 1.000 0.000
#> GSM379791 1 0.000 0.991 1.000 0.000
#> GSM379797 1 0.000 0.991 1.000 0.000
#> GSM379798 1 0.000 0.991 1.000 0.000
#> GSM379795 1 0.000 0.991 1.000 0.000
#> GSM379796 1 0.000 0.991 1.000 0.000
#> GSM379721 1 0.000 0.991 1.000 0.000
#> GSM379722 1 0.000 0.991 1.000 0.000
#> GSM379723 1 0.000 0.991 1.000 0.000
#> GSM379716 1 0.000 0.991 1.000 0.000
#> GSM379717 1 0.000 0.991 1.000 0.000
#> GSM379718 1 0.000 0.991 1.000 0.000
#> GSM379719 1 0.000 0.991 1.000 0.000
#> GSM379720 1 0.000 0.991 1.000 0.000
#> GSM379729 1 0.722 0.760 0.800 0.200
#> GSM379730 1 0.722 0.760 0.800 0.200
#> GSM379731 1 0.000 0.991 1.000 0.000
#> GSM379724 1 0.000 0.991 1.000 0.000
#> GSM379725 1 0.615 0.825 0.848 0.152
#> GSM379726 1 0.000 0.991 1.000 0.000
#> GSM379727 1 0.000 0.991 1.000 0.000
#> GSM379728 1 0.000 0.991 1.000 0.000
#> GSM379737 1 0.000 0.991 1.000 0.000
#> GSM379738 1 0.000 0.991 1.000 0.000
#> GSM379739 1 0.000 0.991 1.000 0.000
#> GSM379732 1 0.000 0.991 1.000 0.000
#> GSM379733 1 0.000 0.991 1.000 0.000
#> GSM379734 1 0.000 0.991 1.000 0.000
#> GSM379735 1 0.000 0.991 1.000 0.000
#> GSM379736 1 0.000 0.991 1.000 0.000
#> GSM379742 2 0.000 1.000 0.000 1.000
#> GSM379743 1 0.000 0.991 1.000 0.000
#> GSM379740 1 0.000 0.991 1.000 0.000
#> GSM379741 2 0.000 1.000 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379833 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379834 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379827 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379828 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379829 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379830 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379831 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379840 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379841 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379842 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379835 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379836 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379837 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379838 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379839 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379848 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379849 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379850 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379843 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379844 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379845 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379846 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379847 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379853 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379854 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379851 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379852 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379804 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379805 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379806 1 0.0592 0.983 0.988 0.000 0.012
#> GSM379799 1 0.1860 0.942 0.948 0.000 0.052
#> GSM379800 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379801 3 0.5968 0.426 0.364 0.000 0.636
#> GSM379802 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379803 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379812 1 0.0747 0.977 0.984 0.016 0.000
#> GSM379813 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379814 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379807 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379808 1 0.0424 0.987 0.992 0.000 0.008
#> GSM379809 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379810 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379811 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379820 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379821 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379822 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379815 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379816 1 0.4452 0.750 0.808 0.192 0.000
#> GSM379817 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379818 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379819 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379825 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379826 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379823 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379824 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379749 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379750 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379751 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379744 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379745 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379746 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379747 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379748 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379757 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379758 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379752 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379753 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379754 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379755 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379756 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379764 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379765 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379766 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379759 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379760 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379761 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379762 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379763 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379769 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379770 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379767 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379768 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379776 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379777 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379778 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379771 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379772 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379773 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379774 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379775 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379784 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379785 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379786 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379779 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379780 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379781 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379782 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379783 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379792 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379793 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379794 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379787 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379788 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379789 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379790 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379791 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379797 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379798 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379795 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379796 1 0.0000 0.994 1.000 0.000 0.000
#> GSM379721 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379722 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379723 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379716 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379717 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379718 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379719 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379720 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379729 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379730 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379731 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379724 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379725 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379726 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379727 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379728 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379737 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379738 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379739 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379732 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379733 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379734 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379735 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379736 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379742 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379743 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379740 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379741 3 0.0000 0.987 0.000 0.000 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379833 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379834 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379827 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379828 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379829 4 0.2345 0.858 0.000 0.100 0.000 0.900
#> GSM379830 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379831 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379840 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379841 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379842 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379835 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379836 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379837 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379838 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379839 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379848 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379849 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379850 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379843 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379844 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379845 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379846 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379847 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379853 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379854 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379851 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379852 2 0.0000 0.960 0.000 1.000 0.000 0.000
#> GSM379804 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379805 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379806 4 0.0188 0.969 0.000 0.000 0.004 0.996
#> GSM379799 4 0.0469 0.961 0.000 0.000 0.012 0.988
#> GSM379800 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379801 4 0.2149 0.871 0.000 0.000 0.088 0.912
#> GSM379802 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379803 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379812 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379813 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379814 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379807 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379808 4 0.0188 0.969 0.000 0.000 0.004 0.996
#> GSM379809 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379810 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379811 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379820 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379821 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379822 4 0.4730 0.311 0.364 0.000 0.000 0.636
#> GSM379815 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379816 4 0.1302 0.928 0.044 0.000 0.000 0.956
#> GSM379817 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379818 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379819 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379825 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379826 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379823 1 0.4981 0.282 0.536 0.000 0.000 0.464
#> GSM379824 4 0.0000 0.972 0.000 0.000 0.000 1.000
#> GSM379749 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379750 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379751 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379744 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379745 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379746 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379747 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379748 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379757 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379758 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379752 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379753 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379754 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379755 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379756 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379764 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379765 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379766 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379759 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379760 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379761 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379762 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379763 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379769 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379770 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379767 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379768 2 0.2216 0.960 0.092 0.908 0.000 0.000
#> GSM379776 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379777 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379778 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379771 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379772 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379773 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379774 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379775 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379784 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379785 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379786 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379779 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379780 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379781 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379782 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379783 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379792 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379793 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379794 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379787 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379788 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379789 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379790 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379791 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379797 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379798 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379795 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379796 1 0.2216 0.985 0.908 0.000 0.000 0.092
#> GSM379721 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379722 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379723 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379716 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379717 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379718 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379719 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379720 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379729 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379730 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379731 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379724 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379725 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379726 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379727 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379728 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379737 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379738 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379739 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379732 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379733 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379734 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379735 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379736 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379742 3 0.1637 0.937 0.060 0.000 0.940 0.000
#> GSM379743 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379740 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM379741 3 0.0000 0.998 0.000 0.000 1.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379833 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379834 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379827 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379828 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379829 4 0.029 0.972 0.000 0.000 0.000 0.992 0.008
#> GSM379830 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379831 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379840 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379841 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379842 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379835 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379836 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379837 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379838 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379839 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379848 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379849 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379850 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379843 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379844 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379845 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379846 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379847 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379853 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379854 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379851 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379852 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379804 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379805 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379806 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379799 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379800 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379801 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379802 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379803 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379812 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379813 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379814 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379807 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379808 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379809 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379810 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379811 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379820 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379821 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379822 4 0.426 0.200 0.440 0.000 0.000 0.560 0.000
#> GSM379815 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379816 4 0.185 0.890 0.088 0.000 0.000 0.912 0.000
#> GSM379817 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379818 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379819 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379825 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379826 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379823 1 0.410 0.383 0.628 0.000 0.000 0.372 0.000
#> GSM379824 4 0.000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379749 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379750 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379751 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379744 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379745 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379746 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379747 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379748 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379757 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379758 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379752 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379753 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379754 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379755 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379756 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379764 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379765 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379766 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379759 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379760 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379761 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379762 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379763 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379769 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379770 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379767 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379768 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379776 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379777 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379778 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379771 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379772 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379773 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379774 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379775 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379784 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379785 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379786 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379779 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379780 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379781 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379782 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379783 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379792 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379793 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379794 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379787 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379788 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379789 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379790 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379791 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379797 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379798 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379795 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379796 1 0.000 0.986 1.000 0.000 0.000 0.000 0.000
#> GSM379721 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379722 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379723 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379716 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379717 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379718 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379719 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379720 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379729 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379730 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379731 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379724 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379725 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379726 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379727 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379728 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379737 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379738 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379739 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379732 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379733 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379734 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379735 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379736 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379742 3 0.416 0.355 0.000 0.392 0.608 0.000 0.000
#> GSM379743 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379740 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
#> GSM379741 3 0.000 0.985 0.000 0.000 1.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 5 0.026 0.965 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM379833 6 0.291 0.739 0.000 0.000 0.000 0.000 0.216 0.784
#> GSM379834 5 0.181 0.878 0.000 0.000 0.000 0.000 0.900 0.100
#> GSM379827 5 0.026 0.965 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM379828 5 0.026 0.965 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM379829 5 0.026 0.958 0.000 0.000 0.000 0.008 0.992 0.000
#> GSM379830 5 0.026 0.965 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM379831 5 0.026 0.965 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM379840 5 0.026 0.965 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM379841 6 0.000 0.978 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379842 6 0.000 0.978 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379835 5 0.026 0.965 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM379836 5 0.026 0.965 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM379837 5 0.026 0.965 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM379838 6 0.000 0.978 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379839 5 0.026 0.965 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM379848 6 0.000 0.978 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379849 6 0.000 0.978 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379850 6 0.000 0.978 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379843 6 0.000 0.978 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379844 6 0.000 0.978 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379845 6 0.196 0.874 0.000 0.000 0.000 0.000 0.112 0.888
#> GSM379846 6 0.000 0.978 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379847 6 0.000 0.978 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379853 6 0.000 0.978 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379854 6 0.000 0.978 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379851 6 0.000 0.978 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379852 6 0.000 0.978 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379804 4 0.000 0.975 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379805 4 0.000 0.975 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379806 4 0.000 0.975 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379799 4 0.000 0.975 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379800 4 0.000 0.975 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379801 4 0.000 0.975 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379802 4 0.000 0.975 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379803 4 0.026 0.971 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM379812 4 0.026 0.971 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM379813 4 0.000 0.975 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379814 4 0.000 0.975 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379807 4 0.000 0.975 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379808 4 0.000 0.975 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379809 4 0.000 0.975 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379810 4 0.000 0.975 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379811 4 0.026 0.971 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM379820 4 0.000 0.975 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379821 4 0.026 0.971 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM379822 4 0.405 0.218 0.432 0.000 0.000 0.560 0.008 0.000
#> GSM379815 4 0.000 0.975 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379816 4 0.187 0.880 0.084 0.000 0.000 0.908 0.008 0.000
#> GSM379817 4 0.000 0.975 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379818 4 0.026 0.971 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM379819 4 0.000 0.975 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379825 4 0.000 0.975 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379826 4 0.000 0.975 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379823 1 0.392 0.368 0.620 0.000 0.000 0.372 0.008 0.000
#> GSM379824 4 0.026 0.971 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM379749 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379750 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379751 5 0.256 0.794 0.000 0.172 0.000 0.000 0.828 0.000
#> GSM379744 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379745 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379746 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379747 5 0.200 0.860 0.000 0.116 0.000 0.000 0.884 0.000
#> GSM379748 2 0.322 0.640 0.000 0.736 0.000 0.000 0.264 0.000
#> GSM379757 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379758 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379752 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379753 2 0.320 0.642 0.000 0.740 0.000 0.000 0.260 0.000
#> GSM379754 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379755 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379756 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379764 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379765 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379766 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379759 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379760 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379761 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379762 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379763 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379769 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379770 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379767 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379768 2 0.000 0.977 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379776 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379777 1 0.026 0.977 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM379778 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379771 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379772 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379773 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379774 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379775 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379784 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379785 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379786 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379779 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379780 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379781 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379782 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379783 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379792 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379793 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379794 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379787 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379788 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379789 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379790 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379791 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379797 1 0.026 0.976 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM379798 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379795 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379796 1 0.000 0.984 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379721 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379722 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379723 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379716 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379717 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379718 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379719 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379720 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379729 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379730 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379731 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379724 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379725 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379726 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379727 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379728 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379737 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379738 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379739 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379732 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379733 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379734 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379735 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379736 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379742 3 0.374 0.359 0.000 0.392 0.608 0.000 0.000 0.000
#> GSM379743 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379740 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379741 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> SD:pam 139 2.03e-27 1 1.0000 2
#> SD:pam 138 5.23e-55 1 0.9770 3
#> SD:pam 137 6.35e-79 1 0.9625 4
#> SD:pam 136 1.89e-103 1 0.9850 5
#> SD:pam 136 6.27e-99 1 0.0261 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.353 0.870 0.856 0.4439 0.518 0.518
#> 3 3 1.000 0.991 0.996 0.4517 0.837 0.685
#> 4 4 0.876 0.940 0.939 0.0897 0.948 0.855
#> 5 5 0.842 0.786 0.906 0.1094 0.929 0.765
#> 6 6 0.921 0.889 0.949 0.0242 0.924 0.701
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 3
There is also optional best \(k\) = 3 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.000 1.000 0.000 1.000
#> GSM379833 2 0.000 1.000 0.000 1.000
#> GSM379834 2 0.000 1.000 0.000 1.000
#> GSM379827 2 0.000 1.000 0.000 1.000
#> GSM379828 2 0.000 1.000 0.000 1.000
#> GSM379829 2 0.000 1.000 0.000 1.000
#> GSM379830 2 0.000 1.000 0.000 1.000
#> GSM379831 2 0.000 1.000 0.000 1.000
#> GSM379840 2 0.000 1.000 0.000 1.000
#> GSM379841 2 0.000 1.000 0.000 1.000
#> GSM379842 2 0.000 1.000 0.000 1.000
#> GSM379835 2 0.000 1.000 0.000 1.000
#> GSM379836 2 0.000 1.000 0.000 1.000
#> GSM379837 2 0.000 1.000 0.000 1.000
#> GSM379838 2 0.000 1.000 0.000 1.000
#> GSM379839 2 0.000 1.000 0.000 1.000
#> GSM379848 2 0.000 1.000 0.000 1.000
#> GSM379849 2 0.000 1.000 0.000 1.000
#> GSM379850 2 0.000 1.000 0.000 1.000
#> GSM379843 2 0.000 1.000 0.000 1.000
#> GSM379844 2 0.000 1.000 0.000 1.000
#> GSM379845 2 0.000 1.000 0.000 1.000
#> GSM379846 2 0.000 1.000 0.000 1.000
#> GSM379847 2 0.000 1.000 0.000 1.000
#> GSM379853 2 0.000 1.000 0.000 1.000
#> GSM379854 2 0.000 1.000 0.000 1.000
#> GSM379851 2 0.000 1.000 0.000 1.000
#> GSM379852 2 0.000 1.000 0.000 1.000
#> GSM379804 1 0.802 0.839 0.756 0.244
#> GSM379805 1 0.802 0.839 0.756 0.244
#> GSM379806 1 0.802 0.839 0.756 0.244
#> GSM379799 1 0.802 0.839 0.756 0.244
#> GSM379800 1 0.802 0.839 0.756 0.244
#> GSM379801 1 0.802 0.839 0.756 0.244
#> GSM379802 1 0.802 0.839 0.756 0.244
#> GSM379803 1 0.808 0.840 0.752 0.248
#> GSM379812 1 0.808 0.840 0.752 0.248
#> GSM379813 1 0.808 0.840 0.752 0.248
#> GSM379814 1 0.808 0.840 0.752 0.248
#> GSM379807 1 0.808 0.840 0.752 0.248
#> GSM379808 1 0.802 0.839 0.756 0.244
#> GSM379809 1 0.802 0.839 0.756 0.244
#> GSM379810 1 0.808 0.840 0.752 0.248
#> GSM379811 1 0.802 0.839 0.756 0.244
#> GSM379820 1 0.808 0.840 0.752 0.248
#> GSM379821 1 0.808 0.840 0.752 0.248
#> GSM379822 1 0.808 0.840 0.752 0.248
#> GSM379815 1 0.808 0.840 0.752 0.248
#> GSM379816 1 0.963 0.697 0.612 0.388
#> GSM379817 1 0.808 0.840 0.752 0.248
#> GSM379818 1 0.808 0.840 0.752 0.248
#> GSM379819 1 0.808 0.840 0.752 0.248
#> GSM379825 1 0.808 0.840 0.752 0.248
#> GSM379826 1 0.808 0.840 0.752 0.248
#> GSM379823 1 0.808 0.840 0.752 0.248
#> GSM379824 1 0.808 0.840 0.752 0.248
#> GSM379749 2 0.000 1.000 0.000 1.000
#> GSM379750 2 0.000 1.000 0.000 1.000
#> GSM379751 2 0.000 1.000 0.000 1.000
#> GSM379744 2 0.000 1.000 0.000 1.000
#> GSM379745 2 0.000 1.000 0.000 1.000
#> GSM379746 2 0.000 1.000 0.000 1.000
#> GSM379747 2 0.000 1.000 0.000 1.000
#> GSM379748 2 0.000 1.000 0.000 1.000
#> GSM379757 2 0.000 1.000 0.000 1.000
#> GSM379758 2 0.000 1.000 0.000 1.000
#> GSM379752 2 0.000 1.000 0.000 1.000
#> GSM379753 2 0.000 1.000 0.000 1.000
#> GSM379754 2 0.000 1.000 0.000 1.000
#> GSM379755 2 0.000 1.000 0.000 1.000
#> GSM379756 2 0.000 1.000 0.000 1.000
#> GSM379764 2 0.000 1.000 0.000 1.000
#> GSM379765 2 0.000 1.000 0.000 1.000
#> GSM379766 2 0.000 1.000 0.000 1.000
#> GSM379759 2 0.000 1.000 0.000 1.000
#> GSM379760 2 0.000 1.000 0.000 1.000
#> GSM379761 2 0.000 1.000 0.000 1.000
#> GSM379762 2 0.000 1.000 0.000 1.000
#> GSM379763 2 0.000 1.000 0.000 1.000
#> GSM379769 2 0.000 1.000 0.000 1.000
#> GSM379770 2 0.000 1.000 0.000 1.000
#> GSM379767 2 0.000 1.000 0.000 1.000
#> GSM379768 2 0.000 1.000 0.000 1.000
#> GSM379776 1 0.808 0.840 0.752 0.248
#> GSM379777 1 0.808 0.840 0.752 0.248
#> GSM379778 1 0.871 0.804 0.708 0.292
#> GSM379771 1 0.802 0.839 0.756 0.244
#> GSM379772 1 0.802 0.839 0.756 0.244
#> GSM379773 1 0.808 0.840 0.752 0.248
#> GSM379774 1 0.808 0.840 0.752 0.248
#> GSM379775 1 0.802 0.839 0.756 0.244
#> GSM379784 1 0.808 0.840 0.752 0.248
#> GSM379785 1 0.808 0.840 0.752 0.248
#> GSM379786 1 0.808 0.840 0.752 0.248
#> GSM379779 1 0.802 0.839 0.756 0.244
#> GSM379780 1 0.808 0.840 0.752 0.248
#> GSM379781 1 0.808 0.840 0.752 0.248
#> GSM379782 1 1.000 0.523 0.504 0.496
#> GSM379783 1 0.814 0.836 0.748 0.252
#> GSM379792 1 0.808 0.840 0.752 0.248
#> GSM379793 1 0.808 0.840 0.752 0.248
#> GSM379794 1 0.808 0.840 0.752 0.248
#> GSM379787 1 0.990 0.614 0.560 0.440
#> GSM379788 1 0.808 0.840 0.752 0.248
#> GSM379789 1 0.808 0.840 0.752 0.248
#> GSM379790 1 0.808 0.840 0.752 0.248
#> GSM379791 1 0.808 0.840 0.752 0.248
#> GSM379797 1 0.808 0.840 0.752 0.248
#> GSM379798 1 0.808 0.840 0.752 0.248
#> GSM379795 1 0.808 0.840 0.752 0.248
#> GSM379796 1 0.808 0.840 0.752 0.248
#> GSM379721 1 0.605 0.702 0.852 0.148
#> GSM379722 1 0.605 0.702 0.852 0.148
#> GSM379723 1 0.605 0.702 0.852 0.148
#> GSM379716 1 0.605 0.702 0.852 0.148
#> GSM379717 1 0.605 0.702 0.852 0.148
#> GSM379718 1 0.605 0.702 0.852 0.148
#> GSM379719 1 0.605 0.702 0.852 0.148
#> GSM379720 1 0.605 0.702 0.852 0.148
#> GSM379729 1 0.605 0.702 0.852 0.148
#> GSM379730 1 0.605 0.702 0.852 0.148
#> GSM379731 1 0.605 0.702 0.852 0.148
#> GSM379724 1 0.605 0.702 0.852 0.148
#> GSM379725 1 0.605 0.702 0.852 0.148
#> GSM379726 1 0.605 0.702 0.852 0.148
#> GSM379727 1 0.605 0.702 0.852 0.148
#> GSM379728 1 0.605 0.702 0.852 0.148
#> GSM379737 1 0.605 0.702 0.852 0.148
#> GSM379738 1 0.605 0.702 0.852 0.148
#> GSM379739 1 0.605 0.702 0.852 0.148
#> GSM379732 1 0.605 0.702 0.852 0.148
#> GSM379733 1 0.605 0.702 0.852 0.148
#> GSM379734 1 0.605 0.702 0.852 0.148
#> GSM379735 1 0.605 0.702 0.852 0.148
#> GSM379736 1 0.605 0.702 0.852 0.148
#> GSM379742 1 0.605 0.702 0.852 0.148
#> GSM379743 1 0.605 0.702 0.852 0.148
#> GSM379740 1 0.605 0.702 0.852 0.148
#> GSM379741 1 0.605 0.702 0.852 0.148
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379833 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379834 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379827 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379828 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379829 2 0.4504 0.743 0.196 0.804 0.000
#> GSM379830 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379831 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379840 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379841 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379842 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379835 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379836 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379837 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379838 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379839 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379848 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379849 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379850 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379843 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379844 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379845 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379846 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379847 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379853 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379854 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379851 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379852 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379804 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379805 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379806 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379799 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379800 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379801 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379802 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379803 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379812 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379813 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379814 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379807 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379808 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379809 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379810 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379811 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379820 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379821 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379822 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379815 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379816 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379817 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379818 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379819 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379825 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379826 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379823 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379824 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379749 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379750 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379751 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379744 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379745 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379746 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379747 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379748 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379757 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379758 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379752 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379753 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379754 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379755 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379756 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379764 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379765 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379766 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379759 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379760 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379761 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379762 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379763 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379769 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379770 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379767 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379768 2 0.0000 0.996 0.000 1.000 0.000
#> GSM379776 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379777 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379778 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379771 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379772 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379773 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379774 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379775 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379784 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379785 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379786 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379779 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379780 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379781 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379782 1 0.0237 0.995 0.996 0.004 0.000
#> GSM379783 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379792 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379793 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379794 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379787 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379788 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379789 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379790 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379791 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379797 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379798 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379795 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379796 1 0.0000 1.000 1.000 0.000 0.000
#> GSM379721 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379722 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379723 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379716 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379717 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379718 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379719 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379720 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379729 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379730 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379731 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379724 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379725 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379726 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379727 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379728 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379737 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379738 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379739 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379732 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379733 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379734 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379735 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379736 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379742 3 0.4121 0.806 0.168 0.000 0.832
#> GSM379743 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379740 3 0.0000 0.987 0.000 0.000 1.000
#> GSM379741 3 0.4121 0.806 0.168 0.000 0.832
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.0921 0.952 0.000 0.972 0.000 0.028
#> GSM379833 2 0.0921 0.952 0.000 0.972 0.000 0.028
#> GSM379834 2 0.0817 0.953 0.000 0.976 0.000 0.024
#> GSM379827 2 0.1302 0.951 0.000 0.956 0.000 0.044
#> GSM379828 2 0.1211 0.951 0.000 0.960 0.000 0.040
#> GSM379829 2 0.3612 0.849 0.100 0.856 0.000 0.044
#> GSM379830 2 0.1118 0.951 0.000 0.964 0.000 0.036
#> GSM379831 2 0.1022 0.952 0.000 0.968 0.000 0.032
#> GSM379840 2 0.1305 0.952 0.004 0.960 0.000 0.036
#> GSM379841 2 0.0188 0.953 0.000 0.996 0.000 0.004
#> GSM379842 2 0.0188 0.953 0.000 0.996 0.000 0.004
#> GSM379835 2 0.1022 0.952 0.000 0.968 0.000 0.032
#> GSM379836 2 0.1716 0.950 0.000 0.936 0.000 0.064
#> GSM379837 2 0.1637 0.950 0.000 0.940 0.000 0.060
#> GSM379838 2 0.0469 0.954 0.000 0.988 0.000 0.012
#> GSM379839 2 0.1118 0.952 0.000 0.964 0.000 0.036
#> GSM379848 2 0.0188 0.953 0.000 0.996 0.000 0.004
#> GSM379849 2 0.0592 0.952 0.000 0.984 0.000 0.016
#> GSM379850 2 0.1022 0.949 0.000 0.968 0.000 0.032
#> GSM379843 2 0.0336 0.953 0.000 0.992 0.000 0.008
#> GSM379844 2 0.0188 0.953 0.000 0.996 0.000 0.004
#> GSM379845 2 0.0817 0.954 0.000 0.976 0.000 0.024
#> GSM379846 2 0.0336 0.953 0.000 0.992 0.000 0.008
#> GSM379847 2 0.0188 0.953 0.000 0.996 0.000 0.004
#> GSM379853 2 0.1022 0.949 0.000 0.968 0.000 0.032
#> GSM379854 2 0.0336 0.953 0.000 0.992 0.000 0.008
#> GSM379851 2 0.1792 0.935 0.000 0.932 0.000 0.068
#> GSM379852 2 0.2704 0.902 0.000 0.876 0.000 0.124
#> GSM379804 1 0.3024 0.821 0.852 0.000 0.000 0.148
#> GSM379805 4 0.4040 1.000 0.248 0.000 0.000 0.752
#> GSM379806 4 0.4040 1.000 0.248 0.000 0.000 0.752
#> GSM379799 4 0.4040 1.000 0.248 0.000 0.000 0.752
#> GSM379800 4 0.4040 1.000 0.248 0.000 0.000 0.752
#> GSM379801 4 0.4040 1.000 0.248 0.000 0.000 0.752
#> GSM379802 4 0.4040 1.000 0.248 0.000 0.000 0.752
#> GSM379803 4 0.4040 1.000 0.248 0.000 0.000 0.752
#> GSM379812 1 0.3400 0.773 0.820 0.000 0.000 0.180
#> GSM379813 1 0.2814 0.839 0.868 0.000 0.000 0.132
#> GSM379814 1 0.1474 0.910 0.948 0.000 0.000 0.052
#> GSM379807 1 0.1557 0.908 0.944 0.000 0.000 0.056
#> GSM379808 4 0.4040 1.000 0.248 0.000 0.000 0.752
#> GSM379809 1 0.1792 0.899 0.932 0.000 0.000 0.068
#> GSM379810 1 0.1474 0.910 0.948 0.000 0.000 0.052
#> GSM379811 4 0.4040 1.000 0.248 0.000 0.000 0.752
#> GSM379820 1 0.2814 0.839 0.868 0.000 0.000 0.132
#> GSM379821 1 0.4193 0.588 0.732 0.000 0.000 0.268
#> GSM379822 1 0.2281 0.877 0.904 0.000 0.000 0.096
#> GSM379815 1 0.3764 0.708 0.784 0.000 0.000 0.216
#> GSM379816 1 0.1389 0.912 0.952 0.000 0.000 0.048
#> GSM379817 1 0.2081 0.887 0.916 0.000 0.000 0.084
#> GSM379818 4 0.4040 1.000 0.248 0.000 0.000 0.752
#> GSM379819 1 0.3266 0.791 0.832 0.000 0.000 0.168
#> GSM379825 4 0.4040 1.000 0.248 0.000 0.000 0.752
#> GSM379826 1 0.2345 0.873 0.900 0.000 0.000 0.100
#> GSM379823 1 0.0188 0.933 0.996 0.000 0.000 0.004
#> GSM379824 1 0.3688 0.724 0.792 0.000 0.000 0.208
#> GSM379749 2 0.1118 0.953 0.000 0.964 0.000 0.036
#> GSM379750 2 0.1118 0.953 0.000 0.964 0.000 0.036
#> GSM379751 2 0.1867 0.949 0.000 0.928 0.000 0.072
#> GSM379744 2 0.1557 0.950 0.000 0.944 0.000 0.056
#> GSM379745 2 0.1474 0.951 0.000 0.948 0.000 0.052
#> GSM379746 2 0.1302 0.952 0.000 0.956 0.000 0.044
#> GSM379747 2 0.1792 0.950 0.000 0.932 0.000 0.068
#> GSM379748 2 0.1211 0.951 0.000 0.960 0.000 0.040
#> GSM379757 2 0.0469 0.954 0.000 0.988 0.000 0.012
#> GSM379758 2 0.0921 0.952 0.000 0.972 0.000 0.028
#> GSM379752 2 0.1474 0.951 0.000 0.948 0.000 0.052
#> GSM379753 2 0.2216 0.944 0.000 0.908 0.000 0.092
#> GSM379754 2 0.1118 0.953 0.000 0.964 0.000 0.036
#> GSM379755 2 0.1118 0.953 0.000 0.964 0.000 0.036
#> GSM379756 2 0.0817 0.954 0.000 0.976 0.000 0.024
#> GSM379764 2 0.3528 0.860 0.000 0.808 0.000 0.192
#> GSM379765 2 0.3400 0.866 0.000 0.820 0.000 0.180
#> GSM379766 2 0.3528 0.860 0.000 0.808 0.000 0.192
#> GSM379759 2 0.1867 0.938 0.000 0.928 0.000 0.072
#> GSM379760 2 0.1716 0.944 0.000 0.936 0.000 0.064
#> GSM379761 2 0.1792 0.942 0.000 0.932 0.000 0.068
#> GSM379762 2 0.2216 0.929 0.000 0.908 0.000 0.092
#> GSM379763 2 0.2647 0.911 0.000 0.880 0.000 0.120
#> GSM379769 2 0.3710 0.857 0.004 0.804 0.000 0.192
#> GSM379770 2 0.3444 0.863 0.000 0.816 0.000 0.184
#> GSM379767 2 0.3528 0.860 0.000 0.808 0.000 0.192
#> GSM379768 2 0.3528 0.860 0.000 0.808 0.000 0.192
#> GSM379776 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379777 1 0.3123 0.808 0.844 0.000 0.000 0.156
#> GSM379778 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379771 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379772 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379773 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379774 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379775 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379784 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379785 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379786 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379779 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379780 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379781 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379782 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379783 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379792 1 0.0188 0.933 0.996 0.000 0.000 0.004
#> GSM379793 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379794 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379787 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379788 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379789 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379790 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379791 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379797 1 0.0188 0.933 0.996 0.000 0.000 0.004
#> GSM379798 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379795 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379796 1 0.0000 0.934 1.000 0.000 0.000 0.000
#> GSM379721 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379722 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379723 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379716 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379717 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379718 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379719 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379720 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379729 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379730 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379731 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379724 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379725 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379726 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379727 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379728 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379737 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379738 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379739 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379732 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379733 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379734 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379735 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379736 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379742 3 0.0188 0.995 0.004 0.000 0.996 0.000
#> GSM379743 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379740 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM379741 3 0.0188 0.995 0.004 0.000 0.996 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 5 0.0404 0.802 0.000 0.012 0.000 0.000 0.988
#> GSM379833 5 0.0510 0.801 0.000 0.016 0.000 0.000 0.984
#> GSM379834 5 0.0880 0.795 0.000 0.032 0.000 0.000 0.968
#> GSM379827 5 0.0000 0.803 0.000 0.000 0.000 0.000 1.000
#> GSM379828 5 0.0000 0.803 0.000 0.000 0.000 0.000 1.000
#> GSM379829 5 0.3109 0.601 0.000 0.000 0.000 0.200 0.800
#> GSM379830 5 0.0000 0.803 0.000 0.000 0.000 0.000 1.000
#> GSM379831 5 0.0510 0.801 0.000 0.016 0.000 0.000 0.984
#> GSM379840 5 0.0000 0.803 0.000 0.000 0.000 0.000 1.000
#> GSM379841 5 0.4201 0.371 0.000 0.408 0.000 0.000 0.592
#> GSM379842 5 0.3966 0.489 0.000 0.336 0.000 0.000 0.664
#> GSM379835 5 0.0000 0.803 0.000 0.000 0.000 0.000 1.000
#> GSM379836 5 0.0000 0.803 0.000 0.000 0.000 0.000 1.000
#> GSM379837 5 0.0000 0.803 0.000 0.000 0.000 0.000 1.000
#> GSM379838 5 0.3857 0.523 0.000 0.312 0.000 0.000 0.688
#> GSM379839 5 0.0000 0.803 0.000 0.000 0.000 0.000 1.000
#> GSM379848 5 0.4283 0.271 0.000 0.456 0.000 0.000 0.544
#> GSM379849 2 0.4182 0.206 0.000 0.600 0.000 0.000 0.400
#> GSM379850 5 0.4300 0.216 0.000 0.476 0.000 0.000 0.524
#> GSM379843 5 0.4278 0.277 0.000 0.452 0.000 0.000 0.548
#> GSM379844 5 0.4300 0.211 0.000 0.476 0.000 0.000 0.524
#> GSM379845 5 0.0000 0.803 0.000 0.000 0.000 0.000 1.000
#> GSM379846 5 0.4278 0.281 0.000 0.452 0.000 0.000 0.548
#> GSM379847 5 0.4268 0.296 0.000 0.444 0.000 0.000 0.556
#> GSM379853 5 0.4210 0.364 0.000 0.412 0.000 0.000 0.588
#> GSM379854 5 0.4294 0.239 0.000 0.468 0.000 0.000 0.532
#> GSM379851 2 0.3999 0.370 0.000 0.656 0.000 0.000 0.344
#> GSM379852 2 0.3508 0.565 0.000 0.748 0.000 0.000 0.252
#> GSM379804 1 0.4273 0.431 0.552 0.000 0.000 0.448 0.000
#> GSM379805 4 0.0000 0.999 0.000 0.000 0.000 1.000 0.000
#> GSM379806 4 0.0000 0.999 0.000 0.000 0.000 1.000 0.000
#> GSM379799 4 0.0000 0.999 0.000 0.000 0.000 1.000 0.000
#> GSM379800 4 0.0000 0.999 0.000 0.000 0.000 1.000 0.000
#> GSM379801 4 0.0162 0.995 0.004 0.000 0.000 0.996 0.000
#> GSM379802 4 0.0000 0.999 0.000 0.000 0.000 1.000 0.000
#> GSM379803 4 0.0000 0.999 0.000 0.000 0.000 1.000 0.000
#> GSM379812 1 0.4201 0.516 0.592 0.000 0.000 0.408 0.000
#> GSM379813 1 0.4030 0.605 0.648 0.000 0.000 0.352 0.000
#> GSM379814 1 0.2929 0.792 0.820 0.000 0.000 0.180 0.000
#> GSM379807 1 0.2074 0.837 0.896 0.000 0.000 0.104 0.000
#> GSM379808 4 0.0000 0.999 0.000 0.000 0.000 1.000 0.000
#> GSM379809 1 0.3534 0.729 0.744 0.000 0.000 0.256 0.000
#> GSM379810 1 0.3274 0.760 0.780 0.000 0.000 0.220 0.000
#> GSM379811 4 0.0000 0.999 0.000 0.000 0.000 1.000 0.000
#> GSM379820 1 0.3480 0.734 0.752 0.000 0.000 0.248 0.000
#> GSM379821 1 0.4273 0.432 0.552 0.000 0.000 0.448 0.000
#> GSM379822 1 0.2471 0.821 0.864 0.000 0.000 0.136 0.000
#> GSM379815 1 0.4219 0.501 0.584 0.000 0.000 0.416 0.000
#> GSM379816 1 0.3326 0.799 0.824 0.000 0.000 0.152 0.024
#> GSM379817 1 0.2929 0.792 0.820 0.000 0.000 0.180 0.000
#> GSM379818 4 0.0000 0.999 0.000 0.000 0.000 1.000 0.000
#> GSM379819 1 0.4192 0.523 0.596 0.000 0.000 0.404 0.000
#> GSM379825 4 0.0162 0.995 0.004 0.000 0.000 0.996 0.000
#> GSM379826 1 0.2648 0.811 0.848 0.000 0.000 0.152 0.000
#> GSM379823 1 0.0162 0.881 0.996 0.000 0.000 0.004 0.000
#> GSM379824 1 0.4171 0.538 0.604 0.000 0.000 0.396 0.000
#> GSM379749 5 0.0703 0.797 0.000 0.024 0.000 0.000 0.976
#> GSM379750 5 0.0000 0.803 0.000 0.000 0.000 0.000 1.000
#> GSM379751 5 0.0703 0.796 0.000 0.024 0.000 0.000 0.976
#> GSM379744 5 0.0880 0.793 0.000 0.032 0.000 0.000 0.968
#> GSM379745 5 0.0703 0.797 0.000 0.024 0.000 0.000 0.976
#> GSM379746 5 0.0703 0.797 0.000 0.024 0.000 0.000 0.976
#> GSM379747 5 0.0794 0.795 0.000 0.028 0.000 0.000 0.972
#> GSM379748 5 0.0162 0.803 0.000 0.004 0.000 0.000 0.996
#> GSM379757 2 0.4101 0.275 0.000 0.628 0.000 0.000 0.372
#> GSM379758 2 0.0000 0.836 0.000 1.000 0.000 0.000 0.000
#> GSM379752 5 0.1478 0.767 0.000 0.064 0.000 0.000 0.936
#> GSM379753 2 0.4227 0.237 0.000 0.580 0.000 0.000 0.420
#> GSM379754 2 0.3913 0.436 0.000 0.676 0.000 0.000 0.324
#> GSM379755 5 0.0880 0.795 0.000 0.032 0.000 0.000 0.968
#> GSM379756 5 0.2127 0.754 0.000 0.108 0.000 0.000 0.892
#> GSM379764 2 0.0510 0.825 0.016 0.984 0.000 0.000 0.000
#> GSM379765 2 0.0000 0.836 0.000 1.000 0.000 0.000 0.000
#> GSM379766 2 0.0000 0.836 0.000 1.000 0.000 0.000 0.000
#> GSM379759 2 0.0000 0.836 0.000 1.000 0.000 0.000 0.000
#> GSM379760 2 0.0000 0.836 0.000 1.000 0.000 0.000 0.000
#> GSM379761 2 0.0000 0.836 0.000 1.000 0.000 0.000 0.000
#> GSM379762 2 0.0000 0.836 0.000 1.000 0.000 0.000 0.000
#> GSM379763 2 0.0000 0.836 0.000 1.000 0.000 0.000 0.000
#> GSM379769 2 0.0510 0.825 0.016 0.984 0.000 0.000 0.000
#> GSM379770 2 0.1732 0.783 0.000 0.920 0.000 0.000 0.080
#> GSM379767 2 0.0000 0.836 0.000 1.000 0.000 0.000 0.000
#> GSM379768 2 0.0000 0.836 0.000 1.000 0.000 0.000 0.000
#> GSM379776 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379777 1 0.4201 0.516 0.592 0.000 0.000 0.408 0.000
#> GSM379778 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379771 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379772 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379773 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379774 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379775 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379784 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379785 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379786 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379779 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379780 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379781 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379782 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379783 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379792 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379793 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379794 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379787 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379788 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379789 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379790 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379791 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379797 1 0.0162 0.880 0.996 0.000 0.000 0.004 0.000
#> GSM379798 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379795 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379796 1 0.0000 0.882 1.000 0.000 0.000 0.000 0.000
#> GSM379721 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379722 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379723 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379716 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379717 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379718 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379719 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379720 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379729 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379730 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379731 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379724 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379725 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379726 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379727 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379728 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379737 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379738 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379739 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379732 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379733 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379734 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379735 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379736 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379742 3 0.3730 0.558 0.288 0.000 0.712 0.000 0.000
#> GSM379743 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379740 3 0.0000 0.971 0.000 0.000 1.000 0.000 0.000
#> GSM379741 3 0.3730 0.558 0.288 0.000 0.712 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 5 0.0000 0.938 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379833 5 0.0000 0.938 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379834 5 0.0458 0.928 0.000 0.016 0.000 0.000 0.984 0.000
#> GSM379827 5 0.0000 0.938 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379828 5 0.0000 0.938 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379829 5 0.2730 0.720 0.000 0.000 0.000 0.192 0.808 0.000
#> GSM379830 5 0.0000 0.938 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379831 5 0.0000 0.938 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379840 5 0.0363 0.931 0.000 0.012 0.000 0.000 0.988 0.000
#> GSM379841 5 0.3804 0.208 0.000 0.424 0.000 0.000 0.576 0.000
#> GSM379842 5 0.3659 0.391 0.000 0.364 0.000 0.000 0.636 0.000
#> GSM379835 5 0.0000 0.938 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379836 5 0.0000 0.938 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379837 5 0.0000 0.938 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379838 5 0.2883 0.710 0.000 0.212 0.000 0.000 0.788 0.000
#> GSM379839 5 0.0000 0.938 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379848 2 0.1814 0.871 0.000 0.900 0.000 0.000 0.100 0.000
#> GSM379849 2 0.0000 0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379850 2 0.1714 0.875 0.000 0.908 0.000 0.000 0.092 0.000
#> GSM379843 2 0.3428 0.622 0.000 0.696 0.000 0.000 0.304 0.000
#> GSM379844 2 0.3244 0.681 0.000 0.732 0.000 0.000 0.268 0.000
#> GSM379845 5 0.0000 0.938 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379846 2 0.3288 0.675 0.000 0.724 0.000 0.000 0.276 0.000
#> GSM379847 2 0.2048 0.857 0.000 0.880 0.000 0.000 0.120 0.000
#> GSM379853 2 0.2416 0.824 0.000 0.844 0.000 0.000 0.156 0.000
#> GSM379854 2 0.1814 0.870 0.000 0.900 0.000 0.000 0.100 0.000
#> GSM379851 2 0.0146 0.915 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379852 2 0.0000 0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379804 4 0.4389 0.413 0.372 0.000 0.000 0.596 0.000 0.032
#> GSM379805 4 0.0000 0.863 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379806 4 0.0000 0.863 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379799 4 0.0000 0.863 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379800 4 0.0000 0.863 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379801 4 0.0000 0.863 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379802 4 0.0000 0.863 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379803 4 0.0000 0.863 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379812 1 0.0146 0.978 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379813 1 0.0146 0.978 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379814 1 0.0146 0.978 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379807 1 0.0146 0.978 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379808 4 0.0000 0.863 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379809 4 0.3602 0.635 0.208 0.000 0.000 0.760 0.000 0.032
#> GSM379810 1 0.4098 0.500 0.676 0.000 0.000 0.292 0.000 0.032
#> GSM379811 4 0.0000 0.863 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379820 1 0.0146 0.978 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379821 1 0.0146 0.978 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379822 1 0.0146 0.978 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379815 1 0.1151 0.957 0.956 0.000 0.000 0.012 0.000 0.032
#> GSM379816 1 0.2201 0.912 0.912 0.000 0.000 0.028 0.028 0.032
#> GSM379817 1 0.0146 0.978 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379818 4 0.0458 0.851 0.016 0.000 0.000 0.984 0.000 0.000
#> GSM379819 1 0.0146 0.978 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379825 4 0.3747 0.371 0.396 0.000 0.000 0.604 0.000 0.000
#> GSM379826 1 0.0146 0.978 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379823 1 0.0000 0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379824 1 0.0146 0.978 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379749 5 0.0000 0.938 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379750 5 0.0000 0.938 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379751 5 0.0000 0.938 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379744 5 0.0000 0.938 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379745 5 0.0000 0.938 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379746 5 0.0000 0.938 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379747 5 0.0363 0.930 0.000 0.012 0.000 0.000 0.988 0.000
#> GSM379748 5 0.0000 0.938 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379757 2 0.2854 0.751 0.000 0.792 0.000 0.000 0.208 0.000
#> GSM379758 2 0.0000 0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379752 5 0.0000 0.938 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379753 5 0.0363 0.930 0.000 0.012 0.000 0.000 0.988 0.000
#> GSM379754 5 0.2491 0.785 0.000 0.164 0.000 0.000 0.836 0.000
#> GSM379755 5 0.0000 0.938 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379756 5 0.2092 0.827 0.000 0.124 0.000 0.000 0.876 0.000
#> GSM379764 2 0.0000 0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379765 2 0.0000 0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379766 2 0.0000 0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379759 2 0.0000 0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379760 2 0.0000 0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379761 2 0.0000 0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379762 2 0.0000 0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379763 2 0.0000 0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379769 2 0.0000 0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379770 2 0.0000 0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379767 2 0.0000 0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379768 2 0.0000 0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379776 1 0.0363 0.977 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM379777 1 0.0146 0.978 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379778 1 0.0632 0.969 0.976 0.000 0.000 0.000 0.000 0.024
#> GSM379771 1 0.0937 0.966 0.960 0.000 0.000 0.000 0.000 0.040
#> GSM379772 1 0.0937 0.966 0.960 0.000 0.000 0.000 0.000 0.040
#> GSM379773 1 0.0713 0.966 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM379774 1 0.0713 0.966 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM379775 1 0.0937 0.966 0.960 0.000 0.000 0.000 0.000 0.040
#> GSM379784 1 0.0363 0.977 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM379785 1 0.0363 0.977 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM379786 1 0.0000 0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379779 1 0.0937 0.966 0.960 0.000 0.000 0.000 0.000 0.040
#> GSM379780 1 0.0458 0.977 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM379781 1 0.0363 0.977 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM379782 1 0.0260 0.977 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM379783 1 0.0146 0.978 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379792 1 0.0146 0.978 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379793 1 0.0260 0.978 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM379794 1 0.0260 0.978 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM379787 1 0.0713 0.966 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM379788 1 0.0363 0.977 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM379789 1 0.0363 0.977 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM379790 1 0.0363 0.977 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM379791 1 0.0363 0.977 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM379797 1 0.0363 0.977 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM379798 1 0.0363 0.977 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM379795 1 0.0363 0.977 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM379796 1 0.0363 0.977 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM379721 6 0.1007 1.000 0.000 0.000 0.044 0.000 0.000 0.956
#> GSM379722 6 0.1007 1.000 0.000 0.000 0.044 0.000 0.000 0.956
#> GSM379723 6 0.1007 1.000 0.000 0.000 0.044 0.000 0.000 0.956
#> GSM379716 6 0.1007 1.000 0.000 0.000 0.044 0.000 0.000 0.956
#> GSM379717 6 0.1007 1.000 0.000 0.000 0.044 0.000 0.000 0.956
#> GSM379718 6 0.1007 1.000 0.000 0.000 0.044 0.000 0.000 0.956
#> GSM379719 6 0.1007 1.000 0.000 0.000 0.044 0.000 0.000 0.956
#> GSM379720 6 0.1007 1.000 0.000 0.000 0.044 0.000 0.000 0.956
#> GSM379729 3 0.0000 0.900 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379730 3 0.0000 0.900 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379731 3 0.0000 0.900 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379724 6 0.1007 1.000 0.000 0.000 0.044 0.000 0.000 0.956
#> GSM379725 3 0.3126 0.670 0.000 0.000 0.752 0.000 0.000 0.248
#> GSM379726 3 0.3765 0.381 0.000 0.000 0.596 0.000 0.000 0.404
#> GSM379727 3 0.3288 0.633 0.000 0.000 0.724 0.000 0.000 0.276
#> GSM379728 3 0.3727 0.421 0.000 0.000 0.612 0.000 0.000 0.388
#> GSM379737 3 0.0000 0.900 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379738 3 0.0000 0.900 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379739 3 0.0000 0.900 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379732 3 0.0000 0.900 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379733 3 0.0000 0.900 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379734 3 0.0000 0.900 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379735 3 0.0000 0.900 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379736 3 0.0713 0.884 0.000 0.000 0.972 0.000 0.000 0.028
#> GSM379742 3 0.2277 0.793 0.076 0.000 0.892 0.000 0.000 0.032
#> GSM379743 3 0.0000 0.900 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379740 3 0.0000 0.900 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379741 3 0.2277 0.793 0.076 0.000 0.892 0.000 0.000 0.032
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> SD:mclust 139 4.62e-29 1.000 1.00e+00 2
#> SD:mclust 139 1.97e-55 1.000 9.98e-01 3
#> SD:mclust 139 1.43e-59 1.000 4.17e-02 4
#> SD:mclust 122 8.38e-56 1.000 3.50e-05 5
#> SD:mclust 133 1.32e-52 0.978 5.60e-10 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.970 0.966 0.985 0.4932 0.508 0.508
#> 3 3 0.615 0.562 0.749 0.3365 0.769 0.571
#> 4 4 0.880 0.895 0.950 0.1133 0.859 0.619
#> 5 5 0.881 0.850 0.919 0.0442 0.977 0.914
#> 6 6 0.889 0.908 0.923 0.0517 0.915 0.674
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.000 0.986 0.000 1.000
#> GSM379833 2 0.000 0.986 0.000 1.000
#> GSM379834 2 0.000 0.986 0.000 1.000
#> GSM379827 2 0.000 0.986 0.000 1.000
#> GSM379828 2 0.000 0.986 0.000 1.000
#> GSM379829 1 0.000 0.983 1.000 0.000
#> GSM379830 2 0.000 0.986 0.000 1.000
#> GSM379831 2 0.000 0.986 0.000 1.000
#> GSM379840 2 0.000 0.986 0.000 1.000
#> GSM379841 2 0.000 0.986 0.000 1.000
#> GSM379842 2 0.000 0.986 0.000 1.000
#> GSM379835 2 0.000 0.986 0.000 1.000
#> GSM379836 2 0.000 0.986 0.000 1.000
#> GSM379837 1 0.921 0.511 0.664 0.336
#> GSM379838 2 0.000 0.986 0.000 1.000
#> GSM379839 2 0.730 0.738 0.204 0.796
#> GSM379848 2 0.000 0.986 0.000 1.000
#> GSM379849 2 0.000 0.986 0.000 1.000
#> GSM379850 2 0.000 0.986 0.000 1.000
#> GSM379843 2 0.000 0.986 0.000 1.000
#> GSM379844 2 0.000 0.986 0.000 1.000
#> GSM379845 2 0.000 0.986 0.000 1.000
#> GSM379846 2 0.000 0.986 0.000 1.000
#> GSM379847 2 0.000 0.986 0.000 1.000
#> GSM379853 2 0.000 0.986 0.000 1.000
#> GSM379854 2 0.000 0.986 0.000 1.000
#> GSM379851 2 0.000 0.986 0.000 1.000
#> GSM379852 2 0.000 0.986 0.000 1.000
#> GSM379804 1 0.000 0.983 1.000 0.000
#> GSM379805 1 0.000 0.983 1.000 0.000
#> GSM379806 1 0.000 0.983 1.000 0.000
#> GSM379799 1 0.000 0.983 1.000 0.000
#> GSM379800 1 0.000 0.983 1.000 0.000
#> GSM379801 1 0.000 0.983 1.000 0.000
#> GSM379802 1 0.000 0.983 1.000 0.000
#> GSM379803 1 0.000 0.983 1.000 0.000
#> GSM379812 1 0.000 0.983 1.000 0.000
#> GSM379813 1 0.000 0.983 1.000 0.000
#> GSM379814 1 0.000 0.983 1.000 0.000
#> GSM379807 1 0.000 0.983 1.000 0.000
#> GSM379808 1 0.000 0.983 1.000 0.000
#> GSM379809 1 0.000 0.983 1.000 0.000
#> GSM379810 1 0.000 0.983 1.000 0.000
#> GSM379811 1 0.000 0.983 1.000 0.000
#> GSM379820 1 0.000 0.983 1.000 0.000
#> GSM379821 1 0.000 0.983 1.000 0.000
#> GSM379822 1 0.000 0.983 1.000 0.000
#> GSM379815 1 0.000 0.983 1.000 0.000
#> GSM379816 1 0.494 0.875 0.892 0.108
#> GSM379817 1 0.000 0.983 1.000 0.000
#> GSM379818 1 0.000 0.983 1.000 0.000
#> GSM379819 1 0.000 0.983 1.000 0.000
#> GSM379825 1 0.000 0.983 1.000 0.000
#> GSM379826 1 0.000 0.983 1.000 0.000
#> GSM379823 1 0.000 0.983 1.000 0.000
#> GSM379824 1 0.000 0.983 1.000 0.000
#> GSM379749 2 0.000 0.986 0.000 1.000
#> GSM379750 2 0.000 0.986 0.000 1.000
#> GSM379751 2 0.000 0.986 0.000 1.000
#> GSM379744 2 0.000 0.986 0.000 1.000
#> GSM379745 2 0.000 0.986 0.000 1.000
#> GSM379746 2 0.000 0.986 0.000 1.000
#> GSM379747 2 0.000 0.986 0.000 1.000
#> GSM379748 2 0.000 0.986 0.000 1.000
#> GSM379757 2 0.000 0.986 0.000 1.000
#> GSM379758 2 0.000 0.986 0.000 1.000
#> GSM379752 2 0.000 0.986 0.000 1.000
#> GSM379753 2 0.000 0.986 0.000 1.000
#> GSM379754 2 0.000 0.986 0.000 1.000
#> GSM379755 2 0.000 0.986 0.000 1.000
#> GSM379756 2 0.000 0.986 0.000 1.000
#> GSM379764 2 0.000 0.986 0.000 1.000
#> GSM379765 2 0.000 0.986 0.000 1.000
#> GSM379766 2 0.000 0.986 0.000 1.000
#> GSM379759 2 0.000 0.986 0.000 1.000
#> GSM379760 2 0.000 0.986 0.000 1.000
#> GSM379761 2 0.000 0.986 0.000 1.000
#> GSM379762 2 0.000 0.986 0.000 1.000
#> GSM379763 2 0.000 0.986 0.000 1.000
#> GSM379769 2 0.000 0.986 0.000 1.000
#> GSM379770 2 0.000 0.986 0.000 1.000
#> GSM379767 2 0.000 0.986 0.000 1.000
#> GSM379768 2 0.000 0.986 0.000 1.000
#> GSM379776 1 0.000 0.983 1.000 0.000
#> GSM379777 1 0.000 0.983 1.000 0.000
#> GSM379778 2 0.242 0.948 0.040 0.960
#> GSM379771 1 0.000 0.983 1.000 0.000
#> GSM379772 1 0.000 0.983 1.000 0.000
#> GSM379773 1 0.000 0.983 1.000 0.000
#> GSM379774 1 0.000 0.983 1.000 0.000
#> GSM379775 1 0.000 0.983 1.000 0.000
#> GSM379784 1 0.000 0.983 1.000 0.000
#> GSM379785 1 0.000 0.983 1.000 0.000
#> GSM379786 1 0.760 0.729 0.780 0.220
#> GSM379779 1 0.000 0.983 1.000 0.000
#> GSM379780 1 0.000 0.983 1.000 0.000
#> GSM379781 1 0.000 0.983 1.000 0.000
#> GSM379782 2 0.000 0.986 0.000 1.000
#> GSM379783 2 0.909 0.511 0.324 0.676
#> GSM379792 1 0.000 0.983 1.000 0.000
#> GSM379793 1 0.000 0.983 1.000 0.000
#> GSM379794 1 0.000 0.983 1.000 0.000
#> GSM379787 2 0.714 0.756 0.196 0.804
#> GSM379788 1 0.000 0.983 1.000 0.000
#> GSM379789 1 0.000 0.983 1.000 0.000
#> GSM379790 1 0.000 0.983 1.000 0.000
#> GSM379791 1 0.000 0.983 1.000 0.000
#> GSM379797 1 0.000 0.983 1.000 0.000
#> GSM379798 1 0.000 0.983 1.000 0.000
#> GSM379795 1 0.000 0.983 1.000 0.000
#> GSM379796 1 0.000 0.983 1.000 0.000
#> GSM379721 1 0.000 0.983 1.000 0.000
#> GSM379722 1 0.000 0.983 1.000 0.000
#> GSM379723 1 0.000 0.983 1.000 0.000
#> GSM379716 1 0.000 0.983 1.000 0.000
#> GSM379717 1 0.000 0.983 1.000 0.000
#> GSM379718 1 0.000 0.983 1.000 0.000
#> GSM379719 1 0.000 0.983 1.000 0.000
#> GSM379720 1 0.000 0.983 1.000 0.000
#> GSM379729 1 0.680 0.787 0.820 0.180
#> GSM379730 1 0.722 0.759 0.800 0.200
#> GSM379731 1 0.000 0.983 1.000 0.000
#> GSM379724 1 0.000 0.983 1.000 0.000
#> GSM379725 1 0.204 0.954 0.968 0.032
#> GSM379726 1 0.000 0.983 1.000 0.000
#> GSM379727 1 0.000 0.983 1.000 0.000
#> GSM379728 1 0.000 0.983 1.000 0.000
#> GSM379737 1 0.000 0.983 1.000 0.000
#> GSM379738 1 0.000 0.983 1.000 0.000
#> GSM379739 1 0.000 0.983 1.000 0.000
#> GSM379732 1 0.000 0.983 1.000 0.000
#> GSM379733 1 0.000 0.983 1.000 0.000
#> GSM379734 1 0.000 0.983 1.000 0.000
#> GSM379735 1 0.000 0.983 1.000 0.000
#> GSM379736 1 0.000 0.983 1.000 0.000
#> GSM379742 2 0.000 0.986 0.000 1.000
#> GSM379743 1 0.753 0.735 0.784 0.216
#> GSM379740 1 0.000 0.983 1.000 0.000
#> GSM379741 2 0.000 0.986 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379833 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379834 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379827 2 0.0592 0.975627 0.000 0.988 0.012
#> GSM379828 2 0.0424 0.978411 0.000 0.992 0.008
#> GSM379829 3 0.6305 0.080186 0.484 0.000 0.516
#> GSM379830 2 0.0424 0.978411 0.000 0.992 0.008
#> GSM379831 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379840 2 0.3875 0.874194 0.044 0.888 0.068
#> GSM379841 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379842 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379835 2 0.0237 0.981338 0.000 0.996 0.004
#> GSM379836 2 0.3482 0.853751 0.000 0.872 0.128
#> GSM379837 3 0.9640 0.148028 0.280 0.252 0.468
#> GSM379838 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379839 3 0.9914 0.099894 0.280 0.328 0.392
#> GSM379848 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379849 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379850 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379843 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379844 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379845 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379846 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379847 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379853 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379854 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379851 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379852 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379804 3 0.6309 0.062455 0.496 0.000 0.504
#> GSM379805 1 0.6309 -0.088345 0.504 0.000 0.496
#> GSM379806 3 0.6309 0.062507 0.496 0.000 0.504
#> GSM379799 3 0.6308 0.070938 0.492 0.000 0.508
#> GSM379800 3 0.6308 0.070938 0.492 0.000 0.508
#> GSM379801 3 0.6308 0.070938 0.492 0.000 0.508
#> GSM379802 3 0.6308 0.070938 0.492 0.000 0.508
#> GSM379803 1 0.6309 -0.088345 0.504 0.000 0.496
#> GSM379812 1 0.4002 0.445438 0.840 0.000 0.160
#> GSM379813 1 0.4002 0.445484 0.840 0.000 0.160
#> GSM379814 1 0.4002 0.447277 0.840 0.000 0.160
#> GSM379807 1 0.6095 0.091781 0.608 0.000 0.392
#> GSM379808 3 0.6308 0.070938 0.492 0.000 0.508
#> GSM379809 3 0.6308 0.070938 0.492 0.000 0.508
#> GSM379810 1 0.6309 -0.088345 0.504 0.000 0.496
#> GSM379811 1 0.6309 -0.088345 0.504 0.000 0.496
#> GSM379820 1 0.1031 0.557326 0.976 0.000 0.024
#> GSM379821 1 0.1163 0.555450 0.972 0.000 0.028
#> GSM379822 1 0.4750 0.482245 0.784 0.000 0.216
#> GSM379815 1 0.6305 -0.067660 0.516 0.000 0.484
#> GSM379816 1 0.7640 0.089438 0.592 0.056 0.352
#> GSM379817 1 0.0237 0.562330 0.996 0.000 0.004
#> GSM379818 1 0.6309 -0.088345 0.504 0.000 0.496
#> GSM379819 1 0.4887 0.367805 0.772 0.000 0.228
#> GSM379825 1 0.6308 -0.081238 0.508 0.000 0.492
#> GSM379826 1 0.2711 0.557060 0.912 0.000 0.088
#> GSM379823 1 0.5397 0.423307 0.720 0.000 0.280
#> GSM379824 1 0.2066 0.544994 0.940 0.000 0.060
#> GSM379749 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379750 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379751 2 0.1031 0.965651 0.000 0.976 0.024
#> GSM379744 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379745 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379746 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379747 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379748 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379757 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379758 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379752 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379753 2 0.0592 0.975627 0.000 0.988 0.012
#> GSM379754 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379755 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379756 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379764 2 0.1482 0.957515 0.012 0.968 0.020
#> GSM379765 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379766 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379759 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379760 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379761 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379762 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379763 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379769 2 0.8026 0.499565 0.164 0.656 0.180
#> GSM379770 2 0.2564 0.925445 0.028 0.936 0.036
#> GSM379767 2 0.1163 0.959099 0.000 0.972 0.028
#> GSM379768 2 0.0000 0.984106 0.000 1.000 0.000
#> GSM379776 1 0.2165 0.555772 0.936 0.000 0.064
#> GSM379777 1 0.1529 0.548834 0.960 0.000 0.040
#> GSM379778 1 0.8806 0.196724 0.528 0.344 0.128
#> GSM379771 1 0.3686 0.519041 0.860 0.000 0.140
#> GSM379772 1 0.4452 0.514483 0.808 0.000 0.192
#> GSM379773 1 0.2448 0.561974 0.924 0.000 0.076
#> GSM379774 1 0.1753 0.568736 0.952 0.000 0.048
#> GSM379775 1 0.1289 0.567441 0.968 0.000 0.032
#> GSM379784 1 0.4178 0.530199 0.828 0.000 0.172
#> GSM379785 1 0.3482 0.554473 0.872 0.000 0.128
#> GSM379786 1 0.7165 0.438470 0.716 0.112 0.172
#> GSM379779 1 0.3686 0.546456 0.860 0.000 0.140
#> GSM379780 1 0.3752 0.547329 0.856 0.000 0.144
#> GSM379781 1 0.3752 0.548334 0.856 0.000 0.144
#> GSM379782 1 0.8595 0.159111 0.496 0.404 0.100
#> GSM379783 1 0.8300 0.310690 0.620 0.244 0.136
#> GSM379792 1 0.0592 0.559164 0.988 0.000 0.012
#> GSM379793 1 0.5397 0.423307 0.720 0.000 0.280
#> GSM379794 1 0.5254 0.444234 0.736 0.000 0.264
#> GSM379787 1 0.9100 0.220188 0.548 0.248 0.204
#> GSM379788 1 0.5098 0.462002 0.752 0.000 0.248
#> GSM379789 1 0.4291 0.524538 0.820 0.000 0.180
#> GSM379790 1 0.2625 0.566162 0.916 0.000 0.084
#> GSM379791 1 0.5431 0.419454 0.716 0.000 0.284
#> GSM379797 1 0.5016 0.341118 0.760 0.000 0.240
#> GSM379798 1 0.5216 0.448849 0.740 0.000 0.260
#> GSM379795 1 0.5859 0.325103 0.656 0.000 0.344
#> GSM379796 1 0.2878 0.564921 0.904 0.000 0.096
#> GSM379721 3 0.3038 0.511856 0.104 0.000 0.896
#> GSM379722 3 0.3267 0.507645 0.116 0.000 0.884
#> GSM379723 3 0.1964 0.508281 0.056 0.000 0.944
#> GSM379716 3 0.0892 0.490778 0.020 0.000 0.980
#> GSM379717 3 0.0892 0.490778 0.020 0.000 0.980
#> GSM379718 3 0.1031 0.492481 0.024 0.000 0.976
#> GSM379719 3 0.2625 0.514311 0.084 0.000 0.916
#> GSM379720 3 0.1163 0.491312 0.028 0.000 0.972
#> GSM379729 3 0.7613 0.230908 0.316 0.064 0.620
#> GSM379730 3 0.8169 0.097760 0.388 0.076 0.536
#> GSM379731 3 0.3816 0.486139 0.148 0.000 0.852
#> GSM379724 3 0.2625 0.514311 0.084 0.000 0.916
#> GSM379725 3 0.3686 0.492710 0.140 0.000 0.860
#> GSM379726 3 0.3340 0.505833 0.120 0.000 0.880
#> GSM379727 3 0.3482 0.501184 0.128 0.000 0.872
#> GSM379728 3 0.3038 0.511856 0.104 0.000 0.896
#> GSM379737 3 0.6309 -0.042908 0.496 0.000 0.504
#> GSM379738 3 0.6309 -0.042908 0.496 0.000 0.504
#> GSM379739 1 0.6308 0.023908 0.508 0.000 0.492
#> GSM379732 3 0.5291 0.350916 0.268 0.000 0.732
#> GSM379733 3 0.4399 0.445411 0.188 0.000 0.812
#> GSM379734 3 0.5327 0.342159 0.272 0.000 0.728
#> GSM379735 1 0.6308 0.023908 0.508 0.000 0.492
#> GSM379736 3 0.2796 0.512676 0.092 0.000 0.908
#> GSM379742 3 0.8714 0.039143 0.408 0.108 0.484
#> GSM379743 1 0.6308 0.023908 0.508 0.000 0.492
#> GSM379740 3 0.6295 -0.000109 0.472 0.000 0.528
#> GSM379741 3 0.7990 -0.000788 0.452 0.060 0.488
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379833 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379834 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379827 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379828 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379829 4 0.0000 0.886 0.000 0.000 0.000 1.000
#> GSM379830 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379831 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379840 2 0.2469 0.878 0.000 0.892 0.000 0.108
#> GSM379841 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379842 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379835 2 0.0188 0.984 0.000 0.996 0.000 0.004
#> GSM379836 2 0.0188 0.984 0.000 0.996 0.000 0.004
#> GSM379837 4 0.4877 0.296 0.000 0.408 0.000 0.592
#> GSM379838 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379839 4 0.4661 0.448 0.000 0.348 0.000 0.652
#> GSM379848 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379849 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379850 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379843 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379844 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379845 2 0.0188 0.984 0.000 0.996 0.000 0.004
#> GSM379846 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379847 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379853 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379854 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379851 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379852 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379804 4 0.0000 0.886 0.000 0.000 0.000 1.000
#> GSM379805 4 0.0000 0.886 0.000 0.000 0.000 1.000
#> GSM379806 4 0.0000 0.886 0.000 0.000 0.000 1.000
#> GSM379799 4 0.0000 0.886 0.000 0.000 0.000 1.000
#> GSM379800 4 0.0000 0.886 0.000 0.000 0.000 1.000
#> GSM379801 4 0.0000 0.886 0.000 0.000 0.000 1.000
#> GSM379802 4 0.0000 0.886 0.000 0.000 0.000 1.000
#> GSM379803 4 0.0000 0.886 0.000 0.000 0.000 1.000
#> GSM379812 4 0.3837 0.715 0.224 0.000 0.000 0.776
#> GSM379813 4 0.3942 0.698 0.236 0.000 0.000 0.764
#> GSM379814 4 0.3219 0.787 0.164 0.000 0.000 0.836
#> GSM379807 4 0.0592 0.881 0.016 0.000 0.000 0.984
#> GSM379808 4 0.0000 0.886 0.000 0.000 0.000 1.000
#> GSM379809 4 0.0000 0.886 0.000 0.000 0.000 1.000
#> GSM379810 4 0.0000 0.886 0.000 0.000 0.000 1.000
#> GSM379811 4 0.0000 0.886 0.000 0.000 0.000 1.000
#> GSM379820 4 0.2704 0.821 0.124 0.000 0.000 0.876
#> GSM379821 4 0.3569 0.754 0.196 0.000 0.000 0.804
#> GSM379822 1 0.1474 0.869 0.948 0.000 0.000 0.052
#> GSM379815 4 0.0000 0.886 0.000 0.000 0.000 1.000
#> GSM379816 4 0.4819 0.775 0.136 0.040 0.024 0.800
#> GSM379817 4 0.4134 0.660 0.260 0.000 0.000 0.740
#> GSM379818 4 0.0000 0.886 0.000 0.000 0.000 1.000
#> GSM379819 4 0.1557 0.864 0.056 0.000 0.000 0.944
#> GSM379825 4 0.0000 0.886 0.000 0.000 0.000 1.000
#> GSM379826 4 0.3172 0.803 0.160 0.000 0.000 0.840
#> GSM379823 1 0.0188 0.886 0.996 0.000 0.000 0.004
#> GSM379824 4 0.2011 0.853 0.080 0.000 0.000 0.920
#> GSM379749 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379750 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379751 2 0.0188 0.984 0.000 0.996 0.000 0.004
#> GSM379744 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379745 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379746 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379747 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379748 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379757 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379758 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379752 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379753 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379754 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379755 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379756 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379764 2 0.3311 0.806 0.172 0.828 0.000 0.000
#> GSM379765 2 0.0336 0.981 0.008 0.992 0.000 0.000
#> GSM379766 2 0.0817 0.968 0.024 0.976 0.000 0.000
#> GSM379759 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379760 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379761 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379762 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379763 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM379769 1 0.4008 0.607 0.756 0.244 0.000 0.000
#> GSM379770 2 0.3400 0.796 0.180 0.820 0.000 0.000
#> GSM379767 2 0.2760 0.861 0.128 0.872 0.000 0.000
#> GSM379768 2 0.0592 0.975 0.016 0.984 0.000 0.000
#> GSM379776 1 0.4713 0.476 0.640 0.000 0.000 0.360
#> GSM379777 4 0.4564 0.517 0.328 0.000 0.000 0.672
#> GSM379778 1 0.0469 0.887 0.988 0.000 0.000 0.012
#> GSM379771 1 0.6894 0.389 0.536 0.000 0.120 0.344
#> GSM379772 1 0.6437 0.633 0.648 0.000 0.168 0.184
#> GSM379773 1 0.3837 0.721 0.776 0.000 0.000 0.224
#> GSM379774 1 0.3569 0.754 0.804 0.000 0.000 0.196
#> GSM379775 1 0.4103 0.676 0.744 0.000 0.000 0.256
#> GSM379784 1 0.0336 0.887 0.992 0.000 0.000 0.008
#> GSM379785 1 0.0707 0.885 0.980 0.000 0.000 0.020
#> GSM379786 1 0.0000 0.886 1.000 0.000 0.000 0.000
#> GSM379779 1 0.2928 0.836 0.880 0.000 0.012 0.108
#> GSM379780 1 0.2345 0.844 0.900 0.000 0.000 0.100
#> GSM379781 1 0.1302 0.878 0.956 0.000 0.000 0.044
#> GSM379782 1 0.0336 0.884 0.992 0.008 0.000 0.000
#> GSM379783 1 0.0524 0.887 0.988 0.004 0.000 0.008
#> GSM379792 1 0.4605 0.512 0.664 0.000 0.000 0.336
#> GSM379793 1 0.0000 0.886 1.000 0.000 0.000 0.000
#> GSM379794 1 0.0000 0.886 1.000 0.000 0.000 0.000
#> GSM379787 1 0.0188 0.887 0.996 0.000 0.000 0.004
#> GSM379788 1 0.0000 0.886 1.000 0.000 0.000 0.000
#> GSM379789 1 0.0469 0.887 0.988 0.000 0.000 0.012
#> GSM379790 1 0.1211 0.879 0.960 0.000 0.000 0.040
#> GSM379791 1 0.0000 0.886 1.000 0.000 0.000 0.000
#> GSM379797 4 0.1022 0.876 0.032 0.000 0.000 0.968
#> GSM379798 1 0.0000 0.886 1.000 0.000 0.000 0.000
#> GSM379795 1 0.0000 0.886 1.000 0.000 0.000 0.000
#> GSM379796 1 0.1389 0.876 0.952 0.000 0.000 0.048
#> GSM379721 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379722 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379723 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379716 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379717 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379718 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379719 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379720 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379729 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379730 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379731 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379724 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379725 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379726 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379727 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379728 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379737 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379738 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379739 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379732 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379733 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379734 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379735 3 0.0188 0.974 0.004 0.000 0.996 0.000
#> GSM379736 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379742 3 0.4776 0.418 0.376 0.000 0.624 0.000
#> GSM379743 3 0.1211 0.942 0.040 0.000 0.960 0.000
#> GSM379740 3 0.0000 0.977 0.000 0.000 1.000 0.000
#> GSM379741 3 0.3444 0.774 0.184 0.000 0.816 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 2 0.2798 0.89505 0.008 0.852 0.000 0.000 0.140
#> GSM379833 2 0.2798 0.89505 0.008 0.852 0.000 0.000 0.140
#> GSM379834 2 0.2798 0.89505 0.008 0.852 0.000 0.000 0.140
#> GSM379827 2 0.2798 0.89404 0.008 0.852 0.000 0.000 0.140
#> GSM379828 2 0.2843 0.89237 0.008 0.848 0.000 0.000 0.144
#> GSM379829 4 0.2270 0.79040 0.016 0.000 0.004 0.908 0.072
#> GSM379830 2 0.3001 0.89054 0.008 0.844 0.000 0.004 0.144
#> GSM379831 2 0.2956 0.89267 0.008 0.848 0.000 0.004 0.140
#> GSM379840 2 0.4436 0.82124 0.008 0.768 0.000 0.068 0.156
#> GSM379841 2 0.2798 0.89505 0.008 0.852 0.000 0.000 0.140
#> GSM379842 2 0.2798 0.89505 0.008 0.852 0.000 0.000 0.140
#> GSM379835 2 0.3362 0.87689 0.008 0.824 0.000 0.012 0.156
#> GSM379836 2 0.3768 0.86459 0.016 0.808 0.000 0.020 0.156
#> GSM379837 4 0.6209 0.22436 0.012 0.244 0.000 0.588 0.156
#> GSM379838 2 0.2798 0.89505 0.008 0.852 0.000 0.000 0.140
#> GSM379839 4 0.4554 0.56982 0.008 0.076 0.000 0.760 0.156
#> GSM379848 2 0.2798 0.89505 0.008 0.852 0.000 0.000 0.140
#> GSM379849 2 0.2843 0.89397 0.008 0.848 0.000 0.000 0.144
#> GSM379850 2 0.2798 0.89505 0.008 0.852 0.000 0.000 0.140
#> GSM379843 2 0.2798 0.89505 0.008 0.852 0.000 0.000 0.140
#> GSM379844 2 0.2798 0.89505 0.008 0.852 0.000 0.000 0.140
#> GSM379845 2 0.3252 0.88097 0.008 0.828 0.000 0.008 0.156
#> GSM379846 2 0.2798 0.89505 0.008 0.852 0.000 0.000 0.140
#> GSM379847 2 0.2798 0.89505 0.008 0.852 0.000 0.000 0.140
#> GSM379853 2 0.2798 0.89505 0.008 0.852 0.000 0.000 0.140
#> GSM379854 2 0.2798 0.89505 0.008 0.852 0.000 0.000 0.140
#> GSM379851 2 0.2798 0.89505 0.008 0.852 0.000 0.000 0.140
#> GSM379852 2 0.2798 0.89505 0.008 0.852 0.000 0.000 0.140
#> GSM379804 4 0.0290 0.85639 0.000 0.000 0.000 0.992 0.008
#> GSM379805 4 0.0290 0.85567 0.000 0.000 0.000 0.992 0.008
#> GSM379806 4 0.0290 0.85567 0.000 0.000 0.000 0.992 0.008
#> GSM379799 4 0.0609 0.85183 0.000 0.000 0.000 0.980 0.020
#> GSM379800 4 0.0609 0.85183 0.000 0.000 0.000 0.980 0.020
#> GSM379801 4 0.0771 0.84997 0.000 0.000 0.004 0.976 0.020
#> GSM379802 4 0.0404 0.85465 0.000 0.000 0.000 0.988 0.012
#> GSM379803 4 0.0510 0.85342 0.000 0.000 0.000 0.984 0.016
#> GSM379812 4 0.4734 0.47343 0.036 0.000 0.000 0.652 0.312
#> GSM379813 4 0.4352 0.59805 0.036 0.000 0.000 0.720 0.244
#> GSM379814 4 0.2676 0.79648 0.036 0.000 0.000 0.884 0.080
#> GSM379807 4 0.0671 0.85192 0.004 0.000 0.000 0.980 0.016
#> GSM379808 4 0.0609 0.85183 0.000 0.000 0.000 0.980 0.020
#> GSM379809 4 0.0290 0.85567 0.000 0.000 0.000 0.992 0.008
#> GSM379810 4 0.0162 0.85589 0.000 0.000 0.000 0.996 0.004
#> GSM379811 4 0.0290 0.85540 0.000 0.000 0.000 0.992 0.008
#> GSM379820 4 0.1992 0.82546 0.032 0.000 0.000 0.924 0.044
#> GSM379821 5 0.5092 0.00624 0.036 0.000 0.000 0.440 0.524
#> GSM379822 5 0.3593 0.66644 0.116 0.000 0.000 0.060 0.824
#> GSM379815 4 0.0000 0.85625 0.000 0.000 0.000 1.000 0.000
#> GSM379816 4 0.5547 0.43650 0.000 0.148 0.000 0.644 0.208
#> GSM379817 4 0.4657 0.50617 0.036 0.000 0.000 0.668 0.296
#> GSM379818 4 0.0162 0.85589 0.000 0.000 0.000 0.996 0.004
#> GSM379819 4 0.1211 0.84357 0.016 0.000 0.000 0.960 0.024
#> GSM379825 4 0.0000 0.85625 0.000 0.000 0.000 1.000 0.000
#> GSM379826 4 0.2848 0.79233 0.028 0.000 0.000 0.868 0.104
#> GSM379823 5 0.3283 0.66790 0.140 0.000 0.000 0.028 0.832
#> GSM379824 4 0.2260 0.81488 0.028 0.000 0.000 0.908 0.064
#> GSM379749 2 0.0000 0.88945 0.000 1.000 0.000 0.000 0.000
#> GSM379750 2 0.0000 0.88945 0.000 1.000 0.000 0.000 0.000
#> GSM379751 2 0.0404 0.88626 0.000 0.988 0.000 0.000 0.012
#> GSM379744 2 0.0162 0.88816 0.000 0.996 0.000 0.000 0.004
#> GSM379745 2 0.0162 0.88816 0.000 0.996 0.000 0.000 0.004
#> GSM379746 2 0.0000 0.88945 0.000 1.000 0.000 0.000 0.000
#> GSM379747 2 0.0162 0.88816 0.000 0.996 0.000 0.000 0.004
#> GSM379748 2 0.0162 0.88898 0.000 0.996 0.000 0.000 0.004
#> GSM379757 2 0.0000 0.88945 0.000 1.000 0.000 0.000 0.000
#> GSM379758 2 0.0000 0.88945 0.000 1.000 0.000 0.000 0.000
#> GSM379752 2 0.0162 0.88816 0.000 0.996 0.000 0.000 0.004
#> GSM379753 2 0.0162 0.88816 0.000 0.996 0.000 0.000 0.004
#> GSM379754 2 0.0000 0.88945 0.000 1.000 0.000 0.000 0.000
#> GSM379755 2 0.0000 0.88945 0.000 1.000 0.000 0.000 0.000
#> GSM379756 2 0.0000 0.88945 0.000 1.000 0.000 0.000 0.000
#> GSM379764 5 0.4045 0.52795 0.000 0.356 0.000 0.000 0.644
#> GSM379765 2 0.1608 0.84041 0.000 0.928 0.000 0.000 0.072
#> GSM379766 2 0.1410 0.85125 0.000 0.940 0.000 0.000 0.060
#> GSM379759 2 0.0162 0.88795 0.000 0.996 0.000 0.000 0.004
#> GSM379760 2 0.0000 0.88945 0.000 1.000 0.000 0.000 0.000
#> GSM379761 2 0.0000 0.88945 0.000 1.000 0.000 0.000 0.000
#> GSM379762 2 0.0000 0.88945 0.000 1.000 0.000 0.000 0.000
#> GSM379763 2 0.0000 0.88945 0.000 1.000 0.000 0.000 0.000
#> GSM379769 5 0.3421 0.66376 0.008 0.204 0.000 0.000 0.788
#> GSM379770 2 0.4294 -0.11461 0.000 0.532 0.000 0.000 0.468
#> GSM379767 2 0.2068 0.80966 0.004 0.904 0.000 0.000 0.092
#> GSM379768 2 0.1410 0.85125 0.000 0.940 0.000 0.000 0.060
#> GSM379776 1 0.1341 0.93809 0.944 0.000 0.000 0.056 0.000
#> GSM379777 1 0.3521 0.79634 0.820 0.000 0.000 0.140 0.040
#> GSM379778 1 0.0671 0.95750 0.980 0.000 0.000 0.004 0.016
#> GSM379771 1 0.2679 0.89447 0.892 0.000 0.056 0.048 0.004
#> GSM379772 1 0.2171 0.90475 0.912 0.000 0.064 0.024 0.000
#> GSM379773 1 0.0771 0.96135 0.976 0.000 0.000 0.020 0.004
#> GSM379774 1 0.0609 0.96203 0.980 0.000 0.000 0.020 0.000
#> GSM379775 1 0.1408 0.94587 0.948 0.000 0.008 0.044 0.000
#> GSM379784 1 0.1041 0.95783 0.964 0.000 0.000 0.004 0.032
#> GSM379785 1 0.0693 0.96325 0.980 0.000 0.000 0.012 0.008
#> GSM379786 1 0.1430 0.94582 0.944 0.000 0.000 0.004 0.052
#> GSM379779 1 0.0898 0.96005 0.972 0.000 0.008 0.020 0.000
#> GSM379780 1 0.0404 0.96275 0.988 0.000 0.000 0.012 0.000
#> GSM379781 1 0.0671 0.96010 0.980 0.000 0.000 0.004 0.016
#> GSM379782 1 0.0671 0.95765 0.980 0.004 0.000 0.000 0.016
#> GSM379783 1 0.1357 0.94530 0.948 0.004 0.000 0.000 0.048
#> GSM379792 1 0.1638 0.92945 0.932 0.000 0.000 0.064 0.004
#> GSM379793 1 0.0609 0.95859 0.980 0.000 0.000 0.000 0.020
#> GSM379794 1 0.0451 0.96089 0.988 0.000 0.000 0.004 0.008
#> GSM379787 1 0.0671 0.95750 0.980 0.000 0.000 0.004 0.016
#> GSM379788 1 0.0992 0.96185 0.968 0.000 0.000 0.008 0.024
#> GSM379789 1 0.0912 0.96279 0.972 0.000 0.000 0.012 0.016
#> GSM379790 1 0.0865 0.96046 0.972 0.000 0.000 0.024 0.004
#> GSM379791 1 0.0566 0.96078 0.984 0.000 0.000 0.004 0.012
#> GSM379797 4 0.4489 0.20496 0.420 0.000 0.000 0.572 0.008
#> GSM379798 1 0.0798 0.96112 0.976 0.000 0.000 0.008 0.016
#> GSM379795 1 0.0566 0.96078 0.984 0.000 0.000 0.004 0.012
#> GSM379796 1 0.1117 0.96101 0.964 0.000 0.000 0.020 0.016
#> GSM379721 3 0.0000 0.95560 0.000 0.000 1.000 0.000 0.000
#> GSM379722 3 0.0000 0.95560 0.000 0.000 1.000 0.000 0.000
#> GSM379723 3 0.0000 0.95560 0.000 0.000 1.000 0.000 0.000
#> GSM379716 3 0.0000 0.95560 0.000 0.000 1.000 0.000 0.000
#> GSM379717 3 0.0000 0.95560 0.000 0.000 1.000 0.000 0.000
#> GSM379718 3 0.0000 0.95560 0.000 0.000 1.000 0.000 0.000
#> GSM379719 3 0.0000 0.95560 0.000 0.000 1.000 0.000 0.000
#> GSM379720 3 0.0000 0.95560 0.000 0.000 1.000 0.000 0.000
#> GSM379729 3 0.0771 0.94205 0.004 0.000 0.976 0.000 0.020
#> GSM379730 3 0.1124 0.93061 0.004 0.000 0.960 0.000 0.036
#> GSM379731 3 0.0703 0.93997 0.000 0.000 0.976 0.000 0.024
#> GSM379724 3 0.0000 0.95560 0.000 0.000 1.000 0.000 0.000
#> GSM379725 3 0.0000 0.95560 0.000 0.000 1.000 0.000 0.000
#> GSM379726 3 0.0000 0.95560 0.000 0.000 1.000 0.000 0.000
#> GSM379727 3 0.0000 0.95560 0.000 0.000 1.000 0.000 0.000
#> GSM379728 3 0.0000 0.95560 0.000 0.000 1.000 0.000 0.000
#> GSM379737 3 0.0162 0.95391 0.004 0.000 0.996 0.000 0.000
#> GSM379738 3 0.0162 0.95391 0.004 0.000 0.996 0.000 0.000
#> GSM379739 3 0.0162 0.95391 0.004 0.000 0.996 0.000 0.000
#> GSM379732 3 0.0162 0.95391 0.004 0.000 0.996 0.000 0.000
#> GSM379733 3 0.0000 0.95560 0.000 0.000 1.000 0.000 0.000
#> GSM379734 3 0.0000 0.95560 0.000 0.000 1.000 0.000 0.000
#> GSM379735 3 0.1831 0.89741 0.004 0.000 0.920 0.000 0.076
#> GSM379736 3 0.0000 0.95560 0.000 0.000 1.000 0.000 0.000
#> GSM379742 3 0.6048 0.21611 0.048 0.036 0.516 0.000 0.400
#> GSM379743 3 0.3756 0.69085 0.008 0.000 0.744 0.000 0.248
#> GSM379740 3 0.0162 0.95391 0.004 0.000 0.996 0.000 0.000
#> GSM379741 3 0.4537 0.65790 0.024 0.016 0.724 0.000 0.236
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 5 0.3136 0.955 0.000 0.228 0.000 0.000 0.768 0.004
#> GSM379833 5 0.3109 0.956 0.000 0.224 0.000 0.000 0.772 0.004
#> GSM379834 5 0.2969 0.956 0.000 0.224 0.000 0.000 0.776 0.000
#> GSM379827 5 0.3052 0.949 0.000 0.216 0.000 0.000 0.780 0.004
#> GSM379828 5 0.3133 0.949 0.000 0.212 0.000 0.000 0.780 0.008
#> GSM379829 4 0.3394 0.541 0.000 0.000 0.000 0.752 0.236 0.012
#> GSM379830 5 0.3023 0.953 0.000 0.212 0.000 0.000 0.784 0.004
#> GSM379831 5 0.3023 0.953 0.000 0.212 0.000 0.000 0.784 0.004
#> GSM379840 5 0.3585 0.892 0.000 0.156 0.000 0.048 0.792 0.004
#> GSM379841 5 0.3023 0.953 0.000 0.232 0.000 0.000 0.768 0.000
#> GSM379842 5 0.2912 0.956 0.000 0.216 0.000 0.000 0.784 0.000
#> GSM379835 5 0.3073 0.947 0.000 0.204 0.000 0.000 0.788 0.008
#> GSM379836 5 0.3073 0.947 0.000 0.204 0.000 0.000 0.788 0.008
#> GSM379837 5 0.3359 0.631 0.000 0.012 0.000 0.196 0.784 0.008
#> GSM379838 5 0.3101 0.943 0.000 0.244 0.000 0.000 0.756 0.000
#> GSM379839 5 0.3329 0.594 0.000 0.004 0.000 0.220 0.768 0.008
#> GSM379848 5 0.3101 0.943 0.000 0.244 0.000 0.000 0.756 0.000
#> GSM379849 5 0.3431 0.949 0.000 0.228 0.000 0.000 0.756 0.016
#> GSM379850 5 0.3109 0.956 0.000 0.224 0.000 0.000 0.772 0.004
#> GSM379843 5 0.2969 0.956 0.000 0.224 0.000 0.000 0.776 0.000
#> GSM379844 5 0.3023 0.953 0.000 0.232 0.000 0.000 0.768 0.000
#> GSM379845 5 0.2964 0.950 0.000 0.204 0.000 0.000 0.792 0.004
#> GSM379846 5 0.2941 0.956 0.000 0.220 0.000 0.000 0.780 0.000
#> GSM379847 5 0.2996 0.955 0.000 0.228 0.000 0.000 0.772 0.000
#> GSM379853 5 0.2994 0.953 0.000 0.208 0.000 0.000 0.788 0.004
#> GSM379854 5 0.3050 0.950 0.000 0.236 0.000 0.000 0.764 0.000
#> GSM379851 5 0.2941 0.956 0.000 0.220 0.000 0.000 0.780 0.000
#> GSM379852 5 0.3190 0.956 0.000 0.220 0.000 0.000 0.772 0.008
#> GSM379804 4 0.0000 0.874 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379805 4 0.0260 0.873 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM379806 4 0.0146 0.874 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM379799 4 0.0725 0.867 0.000 0.000 0.000 0.976 0.012 0.012
#> GSM379800 4 0.0725 0.867 0.000 0.000 0.000 0.976 0.012 0.012
#> GSM379801 4 0.0725 0.867 0.000 0.000 0.000 0.976 0.012 0.012
#> GSM379802 4 0.0146 0.874 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM379803 4 0.0458 0.871 0.000 0.000 0.000 0.984 0.000 0.016
#> GSM379812 4 0.3464 0.560 0.000 0.000 0.000 0.688 0.000 0.312
#> GSM379813 4 0.2772 0.747 0.000 0.000 0.000 0.816 0.004 0.180
#> GSM379814 4 0.1498 0.854 0.000 0.000 0.000 0.940 0.032 0.028
#> GSM379807 4 0.0363 0.872 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM379808 4 0.0520 0.870 0.000 0.000 0.000 0.984 0.008 0.008
#> GSM379809 4 0.0260 0.873 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM379810 4 0.0000 0.874 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379811 4 0.0000 0.874 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379820 4 0.2858 0.790 0.000 0.000 0.000 0.844 0.124 0.032
#> GSM379821 4 0.3706 0.419 0.000 0.000 0.000 0.620 0.000 0.380
#> GSM379822 6 0.1714 0.940 0.000 0.000 0.000 0.092 0.000 0.908
#> GSM379815 4 0.0146 0.874 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM379816 4 0.5208 0.368 0.000 0.148 0.000 0.604 0.000 0.248
#> GSM379817 4 0.3227 0.779 0.000 0.000 0.000 0.828 0.088 0.084
#> GSM379818 4 0.0000 0.874 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379819 4 0.0717 0.869 0.000 0.000 0.000 0.976 0.008 0.016
#> GSM379825 4 0.0405 0.874 0.000 0.000 0.000 0.988 0.008 0.004
#> GSM379826 4 0.2728 0.805 0.000 0.000 0.000 0.860 0.100 0.040
#> GSM379823 6 0.1219 0.943 0.000 0.000 0.000 0.048 0.004 0.948
#> GSM379824 4 0.2260 0.790 0.000 0.000 0.000 0.860 0.000 0.140
#> GSM379749 2 0.0146 0.964 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379750 2 0.0146 0.964 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379751 2 0.0508 0.957 0.000 0.984 0.000 0.000 0.012 0.004
#> GSM379744 2 0.0260 0.961 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379745 2 0.0260 0.961 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379746 2 0.0146 0.964 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379747 2 0.0260 0.961 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379748 2 0.0260 0.961 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379757 2 0.0146 0.964 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379758 2 0.0146 0.964 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379752 2 0.0146 0.964 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379753 2 0.0000 0.963 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379754 2 0.0146 0.964 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379755 2 0.0146 0.964 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379756 2 0.0146 0.964 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379764 2 0.2432 0.833 0.000 0.876 0.000 0.000 0.100 0.024
#> GSM379765 2 0.0692 0.955 0.000 0.976 0.000 0.000 0.004 0.020
#> GSM379766 2 0.0603 0.957 0.000 0.980 0.000 0.000 0.004 0.016
#> GSM379759 2 0.0291 0.963 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM379760 2 0.0146 0.964 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379761 2 0.0146 0.964 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379762 2 0.0146 0.964 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379763 2 0.0260 0.962 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379769 2 0.4990 0.476 0.000 0.644 0.000 0.000 0.204 0.152
#> GSM379770 2 0.3247 0.733 0.000 0.808 0.000 0.000 0.156 0.036
#> GSM379767 2 0.0603 0.958 0.000 0.980 0.000 0.000 0.004 0.016
#> GSM379768 2 0.0458 0.959 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM379776 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379777 1 0.3284 0.711 0.784 0.000 0.000 0.020 0.000 0.196
#> GSM379778 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379771 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379772 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379773 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379774 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379775 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379784 1 0.0363 0.979 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM379785 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379786 1 0.0865 0.957 0.964 0.000 0.000 0.000 0.000 0.036
#> GSM379779 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379780 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379781 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379782 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379783 1 0.0713 0.965 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM379792 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379793 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379794 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379787 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379788 1 0.0146 0.985 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379789 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379790 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379791 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379797 4 0.3930 0.161 0.420 0.000 0.000 0.576 0.000 0.004
#> GSM379798 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379795 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379796 1 0.0000 0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379721 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379722 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379723 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379716 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379717 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379718 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379719 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379720 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379729 3 0.1204 0.927 0.000 0.000 0.944 0.000 0.000 0.056
#> GSM379730 3 0.2793 0.769 0.000 0.000 0.800 0.000 0.000 0.200
#> GSM379731 3 0.1267 0.923 0.000 0.000 0.940 0.000 0.000 0.060
#> GSM379724 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379725 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379726 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379727 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379728 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379737 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379738 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379739 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379732 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379733 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379734 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379735 3 0.2003 0.871 0.000 0.000 0.884 0.000 0.000 0.116
#> GSM379736 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379742 3 0.4032 0.727 0.000 0.004 0.764 0.000 0.092 0.140
#> GSM379743 3 0.2562 0.809 0.000 0.000 0.828 0.000 0.000 0.172
#> GSM379740 3 0.0000 0.967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379741 3 0.0993 0.943 0.000 0.000 0.964 0.000 0.012 0.024
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> SD:NMF 139 8.18e-23 1.000 0.856 2
#> SD:NMF 81 6.10e-31 0.996 0.666 3
#> SD:NMF 134 4.75e-68 1.000 0.600 4
#> SD:NMF 132 2.50e-70 1.000 0.711 5
#> SD:NMF 135 1.25e-99 1.000 0.909 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.328 0.756 0.773 0.3813 0.508 0.508
#> 3 3 0.669 0.726 0.883 0.5461 0.795 0.640
#> 4 4 0.667 0.680 0.843 0.1835 0.839 0.637
#> 5 5 0.707 0.677 0.812 0.0618 0.957 0.857
#> 6 6 0.760 0.731 0.813 0.0536 0.945 0.788
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.0000 0.9025 0.000 1.000
#> GSM379833 2 0.0000 0.9025 0.000 1.000
#> GSM379834 2 0.0000 0.9025 0.000 1.000
#> GSM379827 2 0.5294 0.7616 0.120 0.880
#> GSM379828 2 0.5294 0.7616 0.120 0.880
#> GSM379829 1 0.7602 0.7033 0.780 0.220
#> GSM379830 2 0.5408 0.7555 0.124 0.876
#> GSM379831 2 0.5737 0.7352 0.136 0.864
#> GSM379840 2 0.9881 0.0117 0.436 0.564
#> GSM379841 2 0.0000 0.9025 0.000 1.000
#> GSM379842 2 0.0000 0.9025 0.000 1.000
#> GSM379835 2 0.7219 0.6013 0.200 0.800
#> GSM379836 2 0.7219 0.6013 0.200 0.800
#> GSM379837 2 0.9881 0.0117 0.436 0.564
#> GSM379838 2 0.0000 0.9025 0.000 1.000
#> GSM379839 2 0.9881 0.0117 0.436 0.564
#> GSM379848 2 0.0000 0.9025 0.000 1.000
#> GSM379849 2 0.0000 0.9025 0.000 1.000
#> GSM379850 2 0.0000 0.9025 0.000 1.000
#> GSM379843 2 0.0000 0.9025 0.000 1.000
#> GSM379844 2 0.0000 0.9025 0.000 1.000
#> GSM379845 2 0.9881 0.0117 0.436 0.564
#> GSM379846 2 0.0000 0.9025 0.000 1.000
#> GSM379847 2 0.0000 0.9025 0.000 1.000
#> GSM379853 2 0.0000 0.9025 0.000 1.000
#> GSM379854 2 0.0000 0.9025 0.000 1.000
#> GSM379851 2 0.0000 0.9025 0.000 1.000
#> GSM379852 2 0.0000 0.9025 0.000 1.000
#> GSM379804 1 0.2778 0.5816 0.952 0.048
#> GSM379805 1 0.2778 0.5816 0.952 0.048
#> GSM379806 1 0.2778 0.5816 0.952 0.048
#> GSM379799 1 0.0000 0.5430 1.000 0.000
#> GSM379800 1 0.0000 0.5430 1.000 0.000
#> GSM379801 1 0.0000 0.5430 1.000 0.000
#> GSM379802 1 0.0000 0.5430 1.000 0.000
#> GSM379803 1 0.1633 0.5629 0.976 0.024
#> GSM379812 1 0.9286 0.7794 0.656 0.344
#> GSM379813 1 0.9129 0.7720 0.672 0.328
#> GSM379814 1 0.7745 0.7174 0.772 0.228
#> GSM379807 1 0.7674 0.7151 0.776 0.224
#> GSM379808 1 0.2778 0.5816 0.952 0.048
#> GSM379809 1 0.7745 0.7174 0.772 0.228
#> GSM379810 1 0.7745 0.7174 0.772 0.228
#> GSM379811 1 0.1414 0.5596 0.980 0.020
#> GSM379820 1 0.7745 0.7174 0.772 0.228
#> GSM379821 1 0.9286 0.7794 0.656 0.344
#> GSM379822 1 0.9286 0.7794 0.656 0.344
#> GSM379815 1 0.7674 0.7151 0.776 0.224
#> GSM379816 1 0.9286 0.7794 0.656 0.344
#> GSM379817 1 0.8813 0.7577 0.700 0.300
#> GSM379818 1 0.0000 0.5430 1.000 0.000
#> GSM379819 1 0.7299 0.7011 0.796 0.204
#> GSM379825 1 0.0000 0.5430 1.000 0.000
#> GSM379826 1 0.7745 0.7174 0.772 0.228
#> GSM379823 1 0.9286 0.7794 0.656 0.344
#> GSM379824 1 0.9286 0.7794 0.656 0.344
#> GSM379749 2 0.0000 0.9025 0.000 1.000
#> GSM379750 2 0.0000 0.9025 0.000 1.000
#> GSM379751 2 0.0376 0.8991 0.004 0.996
#> GSM379744 2 0.0000 0.9025 0.000 1.000
#> GSM379745 2 0.0000 0.9025 0.000 1.000
#> GSM379746 2 0.0000 0.9025 0.000 1.000
#> GSM379747 2 0.0376 0.8991 0.004 0.996
#> GSM379748 2 0.0376 0.8991 0.004 0.996
#> GSM379757 2 0.0000 0.9025 0.000 1.000
#> GSM379758 2 0.0000 0.9025 0.000 1.000
#> GSM379752 2 0.0000 0.9025 0.000 1.000
#> GSM379753 2 0.0376 0.8991 0.004 0.996
#> GSM379754 2 0.0000 0.9025 0.000 1.000
#> GSM379755 2 0.0000 0.9025 0.000 1.000
#> GSM379756 2 0.0000 0.9025 0.000 1.000
#> GSM379764 2 0.0000 0.9025 0.000 1.000
#> GSM379765 2 0.0000 0.9025 0.000 1.000
#> GSM379766 2 0.0000 0.9025 0.000 1.000
#> GSM379759 2 0.0000 0.9025 0.000 1.000
#> GSM379760 2 0.0000 0.9025 0.000 1.000
#> GSM379761 2 0.0000 0.9025 0.000 1.000
#> GSM379762 2 0.0000 0.9025 0.000 1.000
#> GSM379763 2 0.0000 0.9025 0.000 1.000
#> GSM379769 2 0.0000 0.9025 0.000 1.000
#> GSM379770 2 0.0000 0.9025 0.000 1.000
#> GSM379767 2 0.0000 0.9025 0.000 1.000
#> GSM379768 2 0.0000 0.9025 0.000 1.000
#> GSM379776 1 0.9795 0.7842 0.584 0.416
#> GSM379777 1 0.9522 0.7871 0.628 0.372
#> GSM379778 2 0.7453 0.5529 0.212 0.788
#> GSM379771 1 0.9795 0.7842 0.584 0.416
#> GSM379772 1 0.9795 0.7842 0.584 0.416
#> GSM379773 1 0.9970 0.7121 0.532 0.468
#> GSM379774 1 0.9795 0.7842 0.584 0.416
#> GSM379775 1 0.9795 0.7842 0.584 0.416
#> GSM379784 1 0.9580 0.7881 0.620 0.380
#> GSM379785 1 0.9775 0.7859 0.588 0.412
#> GSM379786 1 0.9580 0.7881 0.620 0.380
#> GSM379779 1 0.9795 0.7842 0.584 0.416
#> GSM379780 1 0.9775 0.7859 0.588 0.412
#> GSM379781 1 0.9754 0.7870 0.592 0.408
#> GSM379782 2 0.7453 0.5529 0.212 0.788
#> GSM379783 1 0.9580 0.7881 0.620 0.380
#> GSM379792 1 0.7883 0.7035 0.764 0.236
#> GSM379793 1 0.9710 0.7881 0.600 0.400
#> GSM379794 1 0.9710 0.7881 0.600 0.400
#> GSM379787 2 0.7453 0.5529 0.212 0.788
#> GSM379788 1 0.9580 0.7881 0.620 0.380
#> GSM379789 1 0.9686 0.7887 0.604 0.396
#> GSM379790 1 0.9710 0.7881 0.600 0.400
#> GSM379791 1 0.9710 0.7881 0.600 0.400
#> GSM379797 1 0.0000 0.5430 1.000 0.000
#> GSM379798 1 0.9710 0.7881 0.600 0.400
#> GSM379795 1 0.9710 0.7881 0.600 0.400
#> GSM379796 1 0.7883 0.7035 0.764 0.236
#> GSM379721 1 0.9922 0.7641 0.552 0.448
#> GSM379722 1 0.9922 0.7641 0.552 0.448
#> GSM379723 1 0.9922 0.7641 0.552 0.448
#> GSM379716 1 0.9922 0.7641 0.552 0.448
#> GSM379717 1 0.9922 0.7641 0.552 0.448
#> GSM379718 1 0.9922 0.7641 0.552 0.448
#> GSM379719 1 0.9922 0.7641 0.552 0.448
#> GSM379720 1 0.9922 0.7641 0.552 0.448
#> GSM379729 1 0.9922 0.7641 0.552 0.448
#> GSM379730 1 0.9922 0.7641 0.552 0.448
#> GSM379731 1 0.9922 0.7641 0.552 0.448
#> GSM379724 1 0.9922 0.7641 0.552 0.448
#> GSM379725 1 0.9922 0.7641 0.552 0.448
#> GSM379726 1 0.9922 0.7641 0.552 0.448
#> GSM379727 1 0.9922 0.7641 0.552 0.448
#> GSM379728 1 0.9922 0.7641 0.552 0.448
#> GSM379737 1 0.9922 0.7641 0.552 0.448
#> GSM379738 1 0.9922 0.7641 0.552 0.448
#> GSM379739 1 0.9922 0.7641 0.552 0.448
#> GSM379732 1 0.9922 0.7641 0.552 0.448
#> GSM379733 1 0.9922 0.7641 0.552 0.448
#> GSM379734 1 0.9922 0.7641 0.552 0.448
#> GSM379735 1 0.9922 0.7641 0.552 0.448
#> GSM379736 1 0.9922 0.7641 0.552 0.448
#> GSM379742 2 0.7453 0.5529 0.212 0.788
#> GSM379743 1 0.9922 0.7641 0.552 0.448
#> GSM379740 1 0.9922 0.7641 0.552 0.448
#> GSM379741 2 0.7453 0.5529 0.212 0.788
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.1529 0.8938 0.040 0.960 0.000
#> GSM379833 2 0.1529 0.8938 0.040 0.960 0.000
#> GSM379834 2 0.1529 0.8938 0.040 0.960 0.000
#> GSM379827 2 0.6566 0.3678 0.376 0.612 0.012
#> GSM379828 2 0.6566 0.3678 0.376 0.612 0.012
#> GSM379829 3 0.6180 0.2353 0.416 0.000 0.584
#> GSM379830 2 0.6584 0.3573 0.380 0.608 0.012
#> GSM379831 2 0.6632 0.3245 0.392 0.596 0.012
#> GSM379840 1 0.9581 0.1250 0.476 0.288 0.236
#> GSM379841 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379842 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379835 2 0.7054 0.1285 0.456 0.524 0.020
#> GSM379836 2 0.7054 0.1285 0.456 0.524 0.020
#> GSM379837 1 0.9581 0.1250 0.476 0.288 0.236
#> GSM379838 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379839 1 0.9581 0.1250 0.476 0.288 0.236
#> GSM379848 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379849 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379850 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379843 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379844 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379845 1 0.9581 0.1250 0.476 0.288 0.236
#> GSM379846 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379847 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379853 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379854 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379851 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379852 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379804 3 0.6026 0.4972 0.376 0.000 0.624
#> GSM379805 3 0.6008 0.5072 0.372 0.000 0.628
#> GSM379806 3 0.6008 0.5072 0.372 0.000 0.628
#> GSM379799 3 0.0000 0.7738 0.000 0.000 1.000
#> GSM379800 3 0.0000 0.7738 0.000 0.000 1.000
#> GSM379801 3 0.0000 0.7738 0.000 0.000 1.000
#> GSM379802 3 0.0000 0.7738 0.000 0.000 1.000
#> GSM379803 3 0.4796 0.6947 0.220 0.000 0.780
#> GSM379812 1 0.3192 0.7666 0.888 0.000 0.112
#> GSM379813 1 0.3551 0.7512 0.868 0.000 0.132
#> GSM379814 1 0.5397 0.5538 0.720 0.000 0.280
#> GSM379807 1 0.5431 0.5475 0.716 0.000 0.284
#> GSM379808 3 0.6008 0.5072 0.372 0.000 0.628
#> GSM379809 1 0.5397 0.5538 0.720 0.000 0.280
#> GSM379810 1 0.5397 0.5538 0.720 0.000 0.280
#> GSM379811 3 0.4654 0.7008 0.208 0.000 0.792
#> GSM379820 1 0.5431 0.5465 0.716 0.000 0.284
#> GSM379821 1 0.3116 0.7689 0.892 0.000 0.108
#> GSM379822 1 0.3116 0.7689 0.892 0.000 0.108
#> GSM379815 1 0.5431 0.5475 0.716 0.000 0.284
#> GSM379816 1 0.3192 0.7666 0.888 0.000 0.112
#> GSM379817 1 0.4002 0.7229 0.840 0.000 0.160
#> GSM379818 3 0.0000 0.7738 0.000 0.000 1.000
#> GSM379819 1 0.6286 0.0551 0.536 0.000 0.464
#> GSM379825 3 0.0000 0.7738 0.000 0.000 1.000
#> GSM379826 1 0.5431 0.5465 0.716 0.000 0.284
#> GSM379823 1 0.3116 0.7689 0.892 0.000 0.108
#> GSM379824 1 0.3116 0.7689 0.892 0.000 0.108
#> GSM379749 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379750 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379751 2 0.1031 0.9067 0.024 0.976 0.000
#> GSM379744 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379745 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379746 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379747 2 0.1031 0.9067 0.024 0.976 0.000
#> GSM379748 2 0.1031 0.9067 0.024 0.976 0.000
#> GSM379757 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379758 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379752 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379753 2 0.1031 0.9067 0.024 0.976 0.000
#> GSM379754 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379755 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379756 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379764 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379765 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379766 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379759 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379760 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379761 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379762 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379763 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379769 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379770 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379767 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379768 2 0.0000 0.9266 0.000 1.000 0.000
#> GSM379776 1 0.2280 0.7972 0.940 0.008 0.052
#> GSM379777 1 0.3619 0.7610 0.864 0.000 0.136
#> GSM379778 1 0.7059 0.1327 0.520 0.460 0.020
#> GSM379771 1 0.2280 0.7972 0.940 0.008 0.052
#> GSM379772 1 0.2280 0.7972 0.940 0.008 0.052
#> GSM379773 1 0.4087 0.7656 0.880 0.068 0.052
#> GSM379774 1 0.2280 0.7972 0.940 0.008 0.052
#> GSM379775 1 0.2280 0.7972 0.940 0.008 0.052
#> GSM379784 1 0.2537 0.7867 0.920 0.000 0.080
#> GSM379785 1 0.2096 0.7966 0.944 0.004 0.052
#> GSM379786 1 0.2537 0.7867 0.920 0.000 0.080
#> GSM379779 1 0.2280 0.7972 0.940 0.008 0.052
#> GSM379780 1 0.2096 0.7965 0.944 0.004 0.052
#> GSM379781 1 0.1860 0.7953 0.948 0.000 0.052
#> GSM379782 1 0.7059 0.1327 0.520 0.460 0.020
#> GSM379783 1 0.2537 0.7867 0.920 0.000 0.080
#> GSM379792 1 0.6416 0.2845 0.616 0.008 0.376
#> GSM379793 1 0.4808 0.6825 0.804 0.008 0.188
#> GSM379794 1 0.4808 0.6825 0.804 0.008 0.188
#> GSM379787 1 0.7059 0.1327 0.520 0.460 0.020
#> GSM379788 1 0.2537 0.7867 0.920 0.000 0.080
#> GSM379789 1 0.4629 0.6799 0.808 0.004 0.188
#> GSM379790 1 0.4808 0.6825 0.804 0.008 0.188
#> GSM379791 1 0.4808 0.6825 0.804 0.008 0.188
#> GSM379797 3 0.0747 0.7700 0.016 0.000 0.984
#> GSM379798 1 0.4808 0.6825 0.804 0.008 0.188
#> GSM379795 1 0.4808 0.6825 0.804 0.008 0.188
#> GSM379796 1 0.6416 0.2845 0.616 0.008 0.376
#> GSM379721 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379722 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379723 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379716 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379717 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379718 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379719 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379720 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379729 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379730 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379731 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379724 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379725 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379726 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379727 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379728 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379737 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379738 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379739 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379732 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379733 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379734 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379735 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379736 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379742 1 0.6008 0.3390 0.628 0.372 0.000
#> GSM379743 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379740 1 0.0424 0.8033 0.992 0.008 0.000
#> GSM379741 1 0.6008 0.3390 0.628 0.372 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.1211 0.8752 0.000 0.960 0.040 0.000
#> GSM379833 2 0.1211 0.8752 0.000 0.960 0.040 0.000
#> GSM379834 2 0.1211 0.8752 0.000 0.960 0.040 0.000
#> GSM379827 2 0.6116 0.4300 0.320 0.612 0.068 0.000
#> GSM379828 2 0.6116 0.4300 0.320 0.612 0.068 0.000
#> GSM379829 4 0.5602 0.1024 0.408 0.000 0.024 0.568
#> GSM379830 2 0.6179 0.4227 0.320 0.608 0.072 0.000
#> GSM379831 2 0.6232 0.3954 0.332 0.596 0.072 0.000
#> GSM379840 1 0.9128 0.2279 0.408 0.288 0.084 0.220
#> GSM379841 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379842 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379835 2 0.6708 0.2186 0.392 0.524 0.080 0.004
#> GSM379836 2 0.6708 0.2186 0.392 0.524 0.080 0.004
#> GSM379837 1 0.9128 0.2279 0.408 0.288 0.084 0.220
#> GSM379838 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379839 1 0.9128 0.2279 0.408 0.288 0.084 0.220
#> GSM379848 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379849 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379850 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379843 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379844 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379845 1 0.9128 0.2279 0.408 0.288 0.084 0.220
#> GSM379846 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379847 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379853 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379854 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379851 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379852 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379804 4 0.6882 0.4328 0.328 0.000 0.124 0.548
#> GSM379805 4 0.6852 0.4486 0.320 0.000 0.124 0.556
#> GSM379806 4 0.6867 0.4426 0.324 0.000 0.124 0.552
#> GSM379799 4 0.0469 0.7297 0.012 0.000 0.000 0.988
#> GSM379800 4 0.0469 0.7297 0.012 0.000 0.000 0.988
#> GSM379801 4 0.0469 0.7297 0.012 0.000 0.000 0.988
#> GSM379802 4 0.0469 0.7297 0.012 0.000 0.000 0.988
#> GSM379803 4 0.4606 0.6179 0.264 0.000 0.012 0.724
#> GSM379812 1 0.1833 0.6020 0.944 0.000 0.032 0.024
#> GSM379813 1 0.4356 0.6044 0.804 0.000 0.148 0.048
#> GSM379814 1 0.6330 0.5227 0.656 0.000 0.144 0.200
#> GSM379807 1 0.6364 0.5171 0.652 0.000 0.144 0.204
#> GSM379808 4 0.6867 0.4426 0.324 0.000 0.124 0.552
#> GSM379809 1 0.6330 0.5227 0.656 0.000 0.144 0.200
#> GSM379810 1 0.6330 0.5227 0.656 0.000 0.144 0.200
#> GSM379811 4 0.4422 0.6267 0.256 0.000 0.008 0.736
#> GSM379820 1 0.6440 0.5161 0.644 0.000 0.148 0.208
#> GSM379821 1 0.2131 0.6038 0.932 0.000 0.036 0.032
#> GSM379822 1 0.2131 0.6038 0.932 0.000 0.036 0.032
#> GSM379815 1 0.6364 0.5171 0.652 0.000 0.144 0.204
#> GSM379816 1 0.1833 0.6020 0.944 0.000 0.032 0.024
#> GSM379817 1 0.4985 0.5923 0.768 0.000 0.152 0.080
#> GSM379818 4 0.0188 0.7266 0.004 0.000 0.000 0.996
#> GSM379819 1 0.7093 -0.0440 0.476 0.000 0.128 0.396
#> GSM379825 4 0.0188 0.7266 0.004 0.000 0.000 0.996
#> GSM379826 1 0.6440 0.5161 0.644 0.000 0.148 0.208
#> GSM379823 1 0.2131 0.6038 0.932 0.000 0.036 0.032
#> GSM379824 1 0.2131 0.6038 0.932 0.000 0.036 0.032
#> GSM379749 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379750 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379751 2 0.0817 0.8884 0.000 0.976 0.024 0.000
#> GSM379744 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379745 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379746 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379747 2 0.0817 0.8884 0.000 0.976 0.024 0.000
#> GSM379748 2 0.0817 0.8884 0.000 0.976 0.024 0.000
#> GSM379757 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379758 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379752 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379753 2 0.0817 0.8884 0.000 0.976 0.024 0.000
#> GSM379754 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379755 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379756 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379764 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379765 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379766 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379759 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379760 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379761 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379762 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379763 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379769 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379770 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379767 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379768 2 0.0000 0.9054 0.000 1.000 0.000 0.000
#> GSM379776 3 0.4382 0.6132 0.296 0.000 0.704 0.000
#> GSM379777 1 0.4436 0.5720 0.800 0.000 0.148 0.052
#> GSM379778 2 0.7617 0.0286 0.216 0.452 0.332 0.000
#> GSM379771 3 0.4382 0.6132 0.296 0.000 0.704 0.000
#> GSM379772 3 0.4382 0.6132 0.296 0.000 0.704 0.000
#> GSM379773 3 0.5839 0.5561 0.292 0.060 0.648 0.000
#> GSM379774 3 0.4382 0.6132 0.296 0.000 0.704 0.000
#> GSM379775 3 0.4382 0.6132 0.296 0.000 0.704 0.000
#> GSM379784 1 0.3400 0.5644 0.820 0.000 0.180 0.000
#> GSM379785 3 0.4916 0.4430 0.424 0.000 0.576 0.000
#> GSM379786 1 0.3400 0.5644 0.820 0.000 0.180 0.000
#> GSM379779 3 0.4382 0.6132 0.296 0.000 0.704 0.000
#> GSM379780 3 0.4406 0.6080 0.300 0.000 0.700 0.000
#> GSM379781 3 0.4877 0.4743 0.408 0.000 0.592 0.000
#> GSM379782 2 0.7617 0.0286 0.216 0.452 0.332 0.000
#> GSM379783 1 0.3400 0.5644 0.820 0.000 0.180 0.000
#> GSM379792 3 0.7178 0.3666 0.156 0.000 0.520 0.324
#> GSM379793 3 0.5855 0.6568 0.160 0.000 0.704 0.136
#> GSM379794 3 0.5855 0.6568 0.160 0.000 0.704 0.136
#> GSM379787 2 0.7617 0.0286 0.216 0.452 0.332 0.000
#> GSM379788 1 0.3649 0.5449 0.796 0.000 0.204 0.000
#> GSM379789 3 0.5897 0.6527 0.164 0.000 0.700 0.136
#> GSM379790 3 0.5855 0.6568 0.160 0.000 0.704 0.136
#> GSM379791 3 0.5855 0.6568 0.160 0.000 0.704 0.136
#> GSM379797 4 0.1284 0.7129 0.024 0.000 0.012 0.964
#> GSM379798 3 0.5855 0.6568 0.160 0.000 0.704 0.136
#> GSM379795 3 0.5855 0.6568 0.160 0.000 0.704 0.136
#> GSM379796 3 0.7178 0.3666 0.156 0.000 0.520 0.324
#> GSM379721 3 0.0000 0.7982 0.000 0.000 1.000 0.000
#> GSM379722 3 0.0000 0.7982 0.000 0.000 1.000 0.000
#> GSM379723 3 0.0000 0.7982 0.000 0.000 1.000 0.000
#> GSM379716 3 0.0000 0.7982 0.000 0.000 1.000 0.000
#> GSM379717 3 0.0000 0.7982 0.000 0.000 1.000 0.000
#> GSM379718 3 0.0000 0.7982 0.000 0.000 1.000 0.000
#> GSM379719 3 0.0000 0.7982 0.000 0.000 1.000 0.000
#> GSM379720 3 0.0000 0.7982 0.000 0.000 1.000 0.000
#> GSM379729 3 0.1474 0.7752 0.052 0.000 0.948 0.000
#> GSM379730 3 0.1474 0.7752 0.052 0.000 0.948 0.000
#> GSM379731 3 0.1474 0.7752 0.052 0.000 0.948 0.000
#> GSM379724 3 0.0000 0.7982 0.000 0.000 1.000 0.000
#> GSM379725 3 0.1302 0.7778 0.044 0.000 0.956 0.000
#> GSM379726 3 0.0000 0.7982 0.000 0.000 1.000 0.000
#> GSM379727 3 0.0000 0.7982 0.000 0.000 1.000 0.000
#> GSM379728 3 0.0000 0.7982 0.000 0.000 1.000 0.000
#> GSM379737 3 0.0000 0.7982 0.000 0.000 1.000 0.000
#> GSM379738 3 0.0000 0.7982 0.000 0.000 1.000 0.000
#> GSM379739 3 0.0000 0.7982 0.000 0.000 1.000 0.000
#> GSM379732 3 0.1474 0.7752 0.052 0.000 0.948 0.000
#> GSM379733 3 0.0000 0.7982 0.000 0.000 1.000 0.000
#> GSM379734 3 0.0000 0.7982 0.000 0.000 1.000 0.000
#> GSM379735 3 0.1474 0.7752 0.052 0.000 0.948 0.000
#> GSM379736 3 0.0000 0.7982 0.000 0.000 1.000 0.000
#> GSM379742 3 0.4730 0.2940 0.000 0.364 0.636 0.000
#> GSM379743 3 0.1474 0.7752 0.052 0.000 0.948 0.000
#> GSM379740 3 0.0000 0.7982 0.000 0.000 1.000 0.000
#> GSM379741 3 0.4730 0.2940 0.000 0.364 0.636 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 2 0.3837 0.4952 0.000 0.692 0.000 0.000 0.308
#> GSM379833 2 0.3837 0.4952 0.000 0.692 0.000 0.000 0.308
#> GSM379834 2 0.3837 0.4952 0.000 0.692 0.000 0.000 0.308
#> GSM379827 5 0.3999 0.6431 0.000 0.344 0.000 0.000 0.656
#> GSM379828 5 0.3999 0.6431 0.000 0.344 0.000 0.000 0.656
#> GSM379829 5 0.4288 0.1294 0.004 0.000 0.000 0.384 0.612
#> GSM379830 5 0.3983 0.6497 0.000 0.340 0.000 0.000 0.660
#> GSM379831 5 0.3932 0.6647 0.000 0.328 0.000 0.000 0.672
#> GSM379840 5 0.1728 0.6492 0.004 0.020 0.000 0.036 0.940
#> GSM379841 2 0.1732 0.8496 0.000 0.920 0.000 0.000 0.080
#> GSM379842 2 0.1732 0.8496 0.000 0.920 0.000 0.000 0.080
#> GSM379835 5 0.3689 0.7252 0.004 0.256 0.000 0.000 0.740
#> GSM379836 5 0.3689 0.7252 0.004 0.256 0.000 0.000 0.740
#> GSM379837 5 0.1728 0.6492 0.004 0.020 0.000 0.036 0.940
#> GSM379838 2 0.1732 0.8496 0.000 0.920 0.000 0.000 0.080
#> GSM379839 5 0.1728 0.6492 0.004 0.020 0.000 0.036 0.940
#> GSM379848 2 0.1732 0.8496 0.000 0.920 0.000 0.000 0.080
#> GSM379849 2 0.1732 0.8496 0.000 0.920 0.000 0.000 0.080
#> GSM379850 2 0.1732 0.8496 0.000 0.920 0.000 0.000 0.080
#> GSM379843 2 0.1732 0.8496 0.000 0.920 0.000 0.000 0.080
#> GSM379844 2 0.1732 0.8496 0.000 0.920 0.000 0.000 0.080
#> GSM379845 5 0.1728 0.6492 0.004 0.020 0.000 0.036 0.940
#> GSM379846 2 0.1732 0.8496 0.000 0.920 0.000 0.000 0.080
#> GSM379847 2 0.1732 0.8496 0.000 0.920 0.000 0.000 0.080
#> GSM379853 2 0.1732 0.8496 0.000 0.920 0.000 0.000 0.080
#> GSM379854 2 0.1732 0.8496 0.000 0.920 0.000 0.000 0.080
#> GSM379851 2 0.1732 0.8496 0.000 0.920 0.000 0.000 0.080
#> GSM379852 2 0.1732 0.8496 0.000 0.920 0.000 0.000 0.080
#> GSM379804 4 0.6099 0.4009 0.336 0.000 0.124 0.536 0.004
#> GSM379805 4 0.6075 0.4202 0.328 0.000 0.124 0.544 0.004
#> GSM379806 4 0.6087 0.4128 0.332 0.000 0.124 0.540 0.004
#> GSM379799 4 0.0992 0.7425 0.024 0.000 0.000 0.968 0.008
#> GSM379800 4 0.0992 0.7425 0.024 0.000 0.000 0.968 0.008
#> GSM379801 4 0.0992 0.7425 0.024 0.000 0.000 0.968 0.008
#> GSM379802 4 0.1211 0.7382 0.024 0.000 0.000 0.960 0.016
#> GSM379803 4 0.4088 0.6135 0.276 0.000 0.008 0.712 0.004
#> GSM379812 1 0.0290 0.6868 0.992 0.000 0.000 0.000 0.008
#> GSM379813 1 0.3246 0.6985 0.848 0.000 0.120 0.024 0.008
#> GSM379814 1 0.5365 0.6270 0.688 0.000 0.124 0.180 0.008
#> GSM379807 1 0.5398 0.6218 0.684 0.000 0.124 0.184 0.008
#> GSM379808 4 0.6087 0.4128 0.332 0.000 0.124 0.540 0.004
#> GSM379809 1 0.5365 0.6270 0.688 0.000 0.124 0.180 0.008
#> GSM379810 1 0.5365 0.6270 0.688 0.000 0.124 0.180 0.008
#> GSM379811 4 0.3885 0.6236 0.268 0.000 0.008 0.724 0.000
#> GSM379820 1 0.5312 0.6232 0.684 0.000 0.124 0.188 0.004
#> GSM379821 1 0.0865 0.6858 0.972 0.000 0.000 0.024 0.004
#> GSM379822 1 0.0865 0.6858 0.972 0.000 0.000 0.024 0.004
#> GSM379815 1 0.5398 0.6218 0.684 0.000 0.124 0.184 0.008
#> GSM379816 1 0.0290 0.6868 0.992 0.000 0.000 0.000 0.008
#> GSM379817 1 0.3732 0.6925 0.820 0.000 0.120 0.056 0.004
#> GSM379818 4 0.0510 0.7277 0.000 0.000 0.000 0.984 0.016
#> GSM379819 1 0.6054 0.0917 0.496 0.000 0.124 0.380 0.000
#> GSM379825 4 0.0290 0.7344 0.000 0.000 0.000 0.992 0.008
#> GSM379826 1 0.5312 0.6232 0.684 0.000 0.124 0.188 0.004
#> GSM379823 1 0.0865 0.6858 0.972 0.000 0.000 0.024 0.004
#> GSM379824 1 0.0865 0.6858 0.972 0.000 0.000 0.024 0.004
#> GSM379749 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379750 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379751 2 0.2648 0.7592 0.000 0.848 0.000 0.000 0.152
#> GSM379744 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379745 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379746 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379747 2 0.2648 0.7592 0.000 0.848 0.000 0.000 0.152
#> GSM379748 2 0.2648 0.7592 0.000 0.848 0.000 0.000 0.152
#> GSM379757 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379758 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379752 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379753 2 0.2648 0.7592 0.000 0.848 0.000 0.000 0.152
#> GSM379754 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379755 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379756 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379764 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379765 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379766 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379759 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379760 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379761 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379762 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379763 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379769 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379770 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379767 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379768 2 0.0000 0.8690 0.000 1.000 0.000 0.000 0.000
#> GSM379776 3 0.5557 0.5455 0.260 0.000 0.624 0.000 0.116
#> GSM379777 1 0.4714 0.6371 0.776 0.000 0.120 0.052 0.052
#> GSM379778 2 0.7840 -0.0617 0.172 0.452 0.260 0.000 0.116
#> GSM379771 3 0.5557 0.5455 0.260 0.000 0.624 0.000 0.116
#> GSM379772 3 0.5557 0.5455 0.260 0.000 0.624 0.000 0.116
#> GSM379773 3 0.6765 0.4976 0.256 0.060 0.568 0.000 0.116
#> GSM379774 3 0.5557 0.5455 0.260 0.000 0.624 0.000 0.116
#> GSM379775 3 0.5557 0.5455 0.260 0.000 0.624 0.000 0.116
#> GSM379784 1 0.3888 0.6271 0.796 0.000 0.148 0.000 0.056
#> GSM379785 3 0.5934 0.3485 0.396 0.000 0.496 0.000 0.108
#> GSM379786 1 0.3888 0.6271 0.796 0.000 0.148 0.000 0.056
#> GSM379779 3 0.5557 0.5455 0.260 0.000 0.624 0.000 0.116
#> GSM379780 3 0.5537 0.5429 0.264 0.000 0.624 0.000 0.112
#> GSM379781 3 0.5908 0.3865 0.380 0.000 0.512 0.000 0.108
#> GSM379782 2 0.7840 -0.0617 0.172 0.452 0.260 0.000 0.116
#> GSM379783 1 0.3888 0.6271 0.796 0.000 0.148 0.000 0.056
#> GSM379792 3 0.7513 0.2865 0.144 0.000 0.456 0.316 0.084
#> GSM379793 3 0.6660 0.5826 0.144 0.000 0.624 0.128 0.104
#> GSM379794 3 0.6660 0.5826 0.144 0.000 0.624 0.128 0.104
#> GSM379787 2 0.7840 -0.0617 0.172 0.452 0.260 0.000 0.116
#> GSM379788 1 0.4152 0.6019 0.772 0.000 0.168 0.000 0.060
#> GSM379789 3 0.6651 0.5808 0.148 0.000 0.624 0.128 0.100
#> GSM379790 3 0.6660 0.5826 0.144 0.000 0.624 0.128 0.104
#> GSM379791 3 0.6660 0.5826 0.144 0.000 0.624 0.128 0.104
#> GSM379797 4 0.1668 0.7088 0.028 0.000 0.000 0.940 0.032
#> GSM379798 3 0.6660 0.5826 0.144 0.000 0.624 0.128 0.104
#> GSM379795 3 0.6660 0.5826 0.144 0.000 0.624 0.128 0.104
#> GSM379796 3 0.7513 0.2865 0.144 0.000 0.456 0.316 0.084
#> GSM379721 3 0.0000 0.7683 0.000 0.000 1.000 0.000 0.000
#> GSM379722 3 0.0000 0.7683 0.000 0.000 1.000 0.000 0.000
#> GSM379723 3 0.0000 0.7683 0.000 0.000 1.000 0.000 0.000
#> GSM379716 3 0.0000 0.7683 0.000 0.000 1.000 0.000 0.000
#> GSM379717 3 0.0000 0.7683 0.000 0.000 1.000 0.000 0.000
#> GSM379718 3 0.0000 0.7683 0.000 0.000 1.000 0.000 0.000
#> GSM379719 3 0.0000 0.7683 0.000 0.000 1.000 0.000 0.000
#> GSM379720 3 0.0000 0.7683 0.000 0.000 1.000 0.000 0.000
#> GSM379729 3 0.1270 0.7449 0.052 0.000 0.948 0.000 0.000
#> GSM379730 3 0.1270 0.7449 0.052 0.000 0.948 0.000 0.000
#> GSM379731 3 0.1270 0.7449 0.052 0.000 0.948 0.000 0.000
#> GSM379724 3 0.0000 0.7683 0.000 0.000 1.000 0.000 0.000
#> GSM379725 3 0.1121 0.7478 0.044 0.000 0.956 0.000 0.000
#> GSM379726 3 0.0000 0.7683 0.000 0.000 1.000 0.000 0.000
#> GSM379727 3 0.0000 0.7683 0.000 0.000 1.000 0.000 0.000
#> GSM379728 3 0.0000 0.7683 0.000 0.000 1.000 0.000 0.000
#> GSM379737 3 0.0000 0.7683 0.000 0.000 1.000 0.000 0.000
#> GSM379738 3 0.0000 0.7683 0.000 0.000 1.000 0.000 0.000
#> GSM379739 3 0.0000 0.7683 0.000 0.000 1.000 0.000 0.000
#> GSM379732 3 0.1270 0.7449 0.052 0.000 0.948 0.000 0.000
#> GSM379733 3 0.0000 0.7683 0.000 0.000 1.000 0.000 0.000
#> GSM379734 3 0.0000 0.7683 0.000 0.000 1.000 0.000 0.000
#> GSM379735 3 0.1270 0.7449 0.052 0.000 0.948 0.000 0.000
#> GSM379736 3 0.0000 0.7683 0.000 0.000 1.000 0.000 0.000
#> GSM379742 3 0.4225 0.2632 0.000 0.364 0.632 0.000 0.004
#> GSM379743 3 0.1270 0.7449 0.052 0.000 0.948 0.000 0.000
#> GSM379740 3 0.0000 0.7683 0.000 0.000 1.000 0.000 0.000
#> GSM379741 3 0.4225 0.2632 0.000 0.364 0.632 0.000 0.004
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 2 0.3699 0.4578 0.004 0.660 0.000 0.000 0.336 0.000
#> GSM379833 2 0.3699 0.4578 0.004 0.660 0.000 0.000 0.336 0.000
#> GSM379834 2 0.3699 0.4578 0.004 0.660 0.000 0.000 0.336 0.000
#> GSM379827 5 0.3601 0.6638 0.004 0.312 0.000 0.000 0.684 0.000
#> GSM379828 5 0.3601 0.6638 0.004 0.312 0.000 0.000 0.684 0.000
#> GSM379829 5 0.5046 0.2050 0.144 0.000 0.000 0.224 0.632 0.000
#> GSM379830 5 0.3584 0.6701 0.004 0.308 0.000 0.000 0.688 0.000
#> GSM379831 5 0.3766 0.6787 0.012 0.304 0.000 0.000 0.684 0.000
#> GSM379840 5 0.0622 0.6508 0.008 0.000 0.000 0.012 0.980 0.000
#> GSM379841 2 0.1858 0.8421 0.004 0.904 0.000 0.000 0.092 0.000
#> GSM379842 2 0.1858 0.8421 0.004 0.904 0.000 0.000 0.092 0.000
#> GSM379835 5 0.2996 0.7365 0.000 0.228 0.000 0.000 0.772 0.000
#> GSM379836 5 0.2996 0.7365 0.000 0.228 0.000 0.000 0.772 0.000
#> GSM379837 5 0.0622 0.6508 0.008 0.000 0.000 0.012 0.980 0.000
#> GSM379838 2 0.1858 0.8421 0.004 0.904 0.000 0.000 0.092 0.000
#> GSM379839 5 0.0622 0.6508 0.008 0.000 0.000 0.012 0.980 0.000
#> GSM379848 2 0.1858 0.8421 0.004 0.904 0.000 0.000 0.092 0.000
#> GSM379849 2 0.1858 0.8421 0.004 0.904 0.000 0.000 0.092 0.000
#> GSM379850 2 0.1858 0.8421 0.004 0.904 0.000 0.000 0.092 0.000
#> GSM379843 2 0.1858 0.8421 0.004 0.904 0.000 0.000 0.092 0.000
#> GSM379844 2 0.1858 0.8421 0.004 0.904 0.000 0.000 0.092 0.000
#> GSM379845 5 0.0622 0.6508 0.008 0.000 0.000 0.012 0.980 0.000
#> GSM379846 2 0.1858 0.8421 0.004 0.904 0.000 0.000 0.092 0.000
#> GSM379847 2 0.1858 0.8421 0.004 0.904 0.000 0.000 0.092 0.000
#> GSM379853 2 0.1858 0.8421 0.004 0.904 0.000 0.000 0.092 0.000
#> GSM379854 2 0.1858 0.8421 0.004 0.904 0.000 0.000 0.092 0.000
#> GSM379851 2 0.1858 0.8421 0.004 0.904 0.000 0.000 0.092 0.000
#> GSM379852 2 0.1858 0.8421 0.004 0.904 0.000 0.000 0.092 0.000
#> GSM379804 4 0.5887 0.4181 0.064 0.000 0.052 0.532 0.004 0.348
#> GSM379805 4 0.5867 0.4349 0.064 0.000 0.052 0.540 0.004 0.340
#> GSM379806 4 0.5877 0.4297 0.064 0.000 0.052 0.536 0.004 0.344
#> GSM379799 4 0.2911 0.6940 0.144 0.000 0.000 0.832 0.000 0.024
#> GSM379800 4 0.2911 0.6940 0.144 0.000 0.000 0.832 0.000 0.024
#> GSM379801 4 0.2911 0.6940 0.144 0.000 0.000 0.832 0.000 0.024
#> GSM379802 4 0.2058 0.6817 0.048 0.000 0.000 0.916 0.012 0.024
#> GSM379803 4 0.3371 0.5984 0.000 0.000 0.000 0.708 0.000 0.292
#> GSM379812 6 0.0777 0.6361 0.024 0.000 0.000 0.000 0.004 0.972
#> GSM379813 6 0.3065 0.6412 0.060 0.000 0.052 0.020 0.004 0.864
#> GSM379814 6 0.5049 0.5711 0.064 0.000 0.052 0.176 0.004 0.704
#> GSM379807 6 0.5079 0.5656 0.064 0.000 0.052 0.180 0.004 0.700
#> GSM379808 4 0.5877 0.4297 0.064 0.000 0.052 0.536 0.004 0.344
#> GSM379809 6 0.5049 0.5711 0.064 0.000 0.052 0.176 0.004 0.704
#> GSM379810 6 0.5049 0.5711 0.064 0.000 0.052 0.176 0.004 0.704
#> GSM379811 4 0.3309 0.6072 0.000 0.000 0.000 0.720 0.000 0.280
#> GSM379820 6 0.4972 0.5670 0.064 0.000 0.052 0.184 0.000 0.700
#> GSM379821 6 0.1261 0.6341 0.024 0.000 0.000 0.024 0.000 0.952
#> GSM379822 6 0.1261 0.6341 0.024 0.000 0.000 0.024 0.000 0.952
#> GSM379815 6 0.5079 0.5656 0.064 0.000 0.052 0.180 0.004 0.700
#> GSM379816 6 0.0777 0.6361 0.024 0.000 0.000 0.000 0.004 0.972
#> GSM379817 6 0.3494 0.6343 0.060 0.000 0.052 0.052 0.000 0.836
#> GSM379818 4 0.1434 0.6701 0.048 0.000 0.000 0.940 0.012 0.000
#> GSM379819 6 0.5813 0.0474 0.064 0.000 0.052 0.376 0.000 0.508
#> GSM379825 4 0.1007 0.6821 0.044 0.000 0.000 0.956 0.000 0.000
#> GSM379826 6 0.4972 0.5670 0.064 0.000 0.052 0.184 0.000 0.700
#> GSM379823 6 0.1261 0.6341 0.024 0.000 0.000 0.024 0.000 0.952
#> GSM379824 6 0.1261 0.6341 0.024 0.000 0.000 0.024 0.000 0.952
#> GSM379749 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379750 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379751 2 0.2491 0.7486 0.000 0.836 0.000 0.000 0.164 0.000
#> GSM379744 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379745 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379746 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379747 2 0.2491 0.7486 0.000 0.836 0.000 0.000 0.164 0.000
#> GSM379748 2 0.2491 0.7486 0.000 0.836 0.000 0.000 0.164 0.000
#> GSM379757 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379758 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379752 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379753 2 0.2491 0.7486 0.000 0.836 0.000 0.000 0.164 0.000
#> GSM379754 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379755 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379756 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379764 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379765 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379766 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379759 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379760 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379761 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379762 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379763 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379769 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379770 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379767 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379768 2 0.0000 0.8658 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379776 1 0.5394 0.8497 0.632 0.000 0.216 0.000 0.020 0.132
#> GSM379777 6 0.4941 0.4246 0.300 0.000 0.000 0.052 0.020 0.628
#> GSM379778 2 0.5979 -0.1125 0.396 0.452 0.000 0.000 0.020 0.132
#> GSM379771 1 0.5394 0.8497 0.632 0.000 0.216 0.000 0.020 0.132
#> GSM379772 1 0.5394 0.8497 0.632 0.000 0.216 0.000 0.020 0.132
#> GSM379773 1 0.6335 0.7969 0.600 0.060 0.188 0.000 0.020 0.132
#> GSM379774 1 0.5394 0.8497 0.632 0.000 0.216 0.000 0.020 0.132
#> GSM379775 1 0.5394 0.8497 0.632 0.000 0.216 0.000 0.020 0.132
#> GSM379784 6 0.4391 0.3735 0.312 0.000 0.016 0.000 0.020 0.652
#> GSM379785 1 0.5573 0.6975 0.596 0.000 0.128 0.000 0.020 0.256
#> GSM379786 6 0.4391 0.3735 0.312 0.000 0.016 0.000 0.020 0.652
#> GSM379779 1 0.5394 0.8497 0.632 0.000 0.216 0.000 0.020 0.132
#> GSM379780 1 0.5429 0.8466 0.628 0.000 0.216 0.000 0.020 0.136
#> GSM379781 1 0.5627 0.7269 0.596 0.000 0.144 0.000 0.020 0.240
#> GSM379782 2 0.5979 -0.1125 0.396 0.452 0.000 0.000 0.020 0.132
#> GSM379783 6 0.4391 0.3735 0.312 0.000 0.016 0.000 0.020 0.652
#> GSM379792 1 0.5602 0.6715 0.592 0.000 0.212 0.184 0.000 0.012
#> GSM379793 1 0.3259 0.8491 0.772 0.000 0.216 0.000 0.000 0.012
#> GSM379794 1 0.3259 0.8491 0.772 0.000 0.216 0.000 0.000 0.012
#> GSM379787 2 0.5979 -0.1125 0.396 0.452 0.000 0.000 0.020 0.132
#> GSM379788 6 0.4767 0.3068 0.316 0.000 0.036 0.000 0.020 0.628
#> GSM379789 1 0.3348 0.8483 0.768 0.000 0.216 0.000 0.000 0.016
#> GSM379790 1 0.3259 0.8491 0.772 0.000 0.216 0.000 0.000 0.012
#> GSM379791 1 0.3259 0.8491 0.772 0.000 0.216 0.000 0.000 0.012
#> GSM379797 4 0.3287 0.5602 0.220 0.000 0.000 0.768 0.012 0.000
#> GSM379798 1 0.3259 0.8491 0.772 0.000 0.216 0.000 0.000 0.012
#> GSM379795 1 0.3259 0.8491 0.772 0.000 0.216 0.000 0.000 0.012
#> GSM379796 1 0.5602 0.6715 0.592 0.000 0.212 0.184 0.000 0.012
#> GSM379721 3 0.0000 0.9381 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379722 3 0.0000 0.9381 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379723 3 0.0000 0.9381 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379716 3 0.0000 0.9381 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379717 3 0.0000 0.9381 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379718 3 0.0000 0.9381 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379719 3 0.0000 0.9381 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379720 3 0.0000 0.9381 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379729 3 0.1320 0.9062 0.016 0.000 0.948 0.000 0.000 0.036
#> GSM379730 3 0.1320 0.9062 0.016 0.000 0.948 0.000 0.000 0.036
#> GSM379731 3 0.1320 0.9062 0.016 0.000 0.948 0.000 0.000 0.036
#> GSM379724 3 0.0000 0.9381 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379725 3 0.1151 0.9105 0.012 0.000 0.956 0.000 0.000 0.032
#> GSM379726 3 0.0000 0.9381 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379727 3 0.0000 0.9381 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379728 3 0.0000 0.9381 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379737 3 0.0000 0.9381 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379738 3 0.0000 0.9381 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379739 3 0.0000 0.9381 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379732 3 0.1320 0.9062 0.016 0.000 0.948 0.000 0.000 0.036
#> GSM379733 3 0.0000 0.9381 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379734 3 0.0000 0.9381 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379735 3 0.1320 0.9062 0.016 0.000 0.948 0.000 0.000 0.036
#> GSM379736 3 0.0000 0.9381 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379742 3 0.3795 0.3735 0.004 0.364 0.632 0.000 0.000 0.000
#> GSM379743 3 0.1320 0.9062 0.016 0.000 0.948 0.000 0.000 0.036
#> GSM379740 3 0.0000 0.9381 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379741 3 0.3795 0.3735 0.004 0.364 0.632 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> CV:hclust 135 2.42e-23 1.000 1.0000 2
#> CV:hclust 119 8.31e-29 0.991 0.0438 3
#> CV:hclust 114 2.60e-36 0.992 0.0209 4
#> CV:hclust 120 7.66e-43 0.999 0.0214 5
#> CV:hclust 120 6.96e-69 1.000 0.0357 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.973 0.985 0.4832 0.513 0.513
#> 3 3 0.640 0.670 0.568 0.3116 0.860 0.745
#> 4 4 0.630 0.868 0.744 0.1352 0.674 0.374
#> 5 5 0.706 0.847 0.801 0.0794 0.924 0.719
#> 6 6 0.754 0.826 0.794 0.0415 0.989 0.943
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.0000 0.978 0.000 1.000
#> GSM379833 2 0.0000 0.978 0.000 1.000
#> GSM379834 2 0.0000 0.978 0.000 1.000
#> GSM379827 2 0.0000 0.978 0.000 1.000
#> GSM379828 2 0.0000 0.978 0.000 1.000
#> GSM379829 1 0.0938 0.993 0.988 0.012
#> GSM379830 2 0.0000 0.978 0.000 1.000
#> GSM379831 2 0.0000 0.978 0.000 1.000
#> GSM379840 2 0.0000 0.978 0.000 1.000
#> GSM379841 2 0.0000 0.978 0.000 1.000
#> GSM379842 2 0.0000 0.978 0.000 1.000
#> GSM379835 2 0.0000 0.978 0.000 1.000
#> GSM379836 2 0.0000 0.978 0.000 1.000
#> GSM379837 1 0.7376 0.744 0.792 0.208
#> GSM379838 2 0.0000 0.978 0.000 1.000
#> GSM379839 2 0.1633 0.956 0.024 0.976
#> GSM379848 2 0.0000 0.978 0.000 1.000
#> GSM379849 2 0.0000 0.978 0.000 1.000
#> GSM379850 2 0.0000 0.978 0.000 1.000
#> GSM379843 2 0.0000 0.978 0.000 1.000
#> GSM379844 2 0.0000 0.978 0.000 1.000
#> GSM379845 2 0.0000 0.978 0.000 1.000
#> GSM379846 2 0.0000 0.978 0.000 1.000
#> GSM379847 2 0.0000 0.978 0.000 1.000
#> GSM379853 2 0.0000 0.978 0.000 1.000
#> GSM379854 2 0.0000 0.978 0.000 1.000
#> GSM379851 2 0.0000 0.978 0.000 1.000
#> GSM379852 2 0.0000 0.978 0.000 1.000
#> GSM379804 1 0.0938 0.993 0.988 0.012
#> GSM379805 1 0.0938 0.993 0.988 0.012
#> GSM379806 1 0.0938 0.993 0.988 0.012
#> GSM379799 1 0.0938 0.993 0.988 0.012
#> GSM379800 1 0.0938 0.993 0.988 0.012
#> GSM379801 1 0.0938 0.993 0.988 0.012
#> GSM379802 1 0.0938 0.993 0.988 0.012
#> GSM379803 1 0.0938 0.993 0.988 0.012
#> GSM379812 1 0.0938 0.993 0.988 0.012
#> GSM379813 1 0.0938 0.993 0.988 0.012
#> GSM379814 1 0.0938 0.993 0.988 0.012
#> GSM379807 1 0.0938 0.993 0.988 0.012
#> GSM379808 1 0.0938 0.993 0.988 0.012
#> GSM379809 1 0.0938 0.993 0.988 0.012
#> GSM379810 1 0.0938 0.993 0.988 0.012
#> GSM379811 1 0.0938 0.993 0.988 0.012
#> GSM379820 1 0.0938 0.993 0.988 0.012
#> GSM379821 1 0.0938 0.993 0.988 0.012
#> GSM379822 1 0.0938 0.993 0.988 0.012
#> GSM379815 1 0.0938 0.993 0.988 0.012
#> GSM379816 1 0.0938 0.993 0.988 0.012
#> GSM379817 1 0.0938 0.993 0.988 0.012
#> GSM379818 1 0.0938 0.993 0.988 0.012
#> GSM379819 1 0.0938 0.993 0.988 0.012
#> GSM379825 1 0.0938 0.993 0.988 0.012
#> GSM379826 1 0.0938 0.993 0.988 0.012
#> GSM379823 1 0.0938 0.993 0.988 0.012
#> GSM379824 1 0.0938 0.993 0.988 0.012
#> GSM379749 2 0.0000 0.978 0.000 1.000
#> GSM379750 2 0.0000 0.978 0.000 1.000
#> GSM379751 2 0.0000 0.978 0.000 1.000
#> GSM379744 2 0.0000 0.978 0.000 1.000
#> GSM379745 2 0.0000 0.978 0.000 1.000
#> GSM379746 2 0.0000 0.978 0.000 1.000
#> GSM379747 2 0.0000 0.978 0.000 1.000
#> GSM379748 2 0.0000 0.978 0.000 1.000
#> GSM379757 2 0.0000 0.978 0.000 1.000
#> GSM379758 2 0.0000 0.978 0.000 1.000
#> GSM379752 2 0.0000 0.978 0.000 1.000
#> GSM379753 2 0.0000 0.978 0.000 1.000
#> GSM379754 2 0.0000 0.978 0.000 1.000
#> GSM379755 2 0.0000 0.978 0.000 1.000
#> GSM379756 2 0.0000 0.978 0.000 1.000
#> GSM379764 2 0.0000 0.978 0.000 1.000
#> GSM379765 2 0.0000 0.978 0.000 1.000
#> GSM379766 2 0.0000 0.978 0.000 1.000
#> GSM379759 2 0.0000 0.978 0.000 1.000
#> GSM379760 2 0.0000 0.978 0.000 1.000
#> GSM379761 2 0.0000 0.978 0.000 1.000
#> GSM379762 2 0.0000 0.978 0.000 1.000
#> GSM379763 2 0.0000 0.978 0.000 1.000
#> GSM379769 2 0.0000 0.978 0.000 1.000
#> GSM379770 2 0.0000 0.978 0.000 1.000
#> GSM379767 2 0.0000 0.978 0.000 1.000
#> GSM379768 2 0.0000 0.978 0.000 1.000
#> GSM379776 1 0.0938 0.993 0.988 0.012
#> GSM379777 1 0.0938 0.993 0.988 0.012
#> GSM379778 1 0.0938 0.993 0.988 0.012
#> GSM379771 1 0.0938 0.993 0.988 0.012
#> GSM379772 1 0.0938 0.993 0.988 0.012
#> GSM379773 1 0.0938 0.993 0.988 0.012
#> GSM379774 1 0.0938 0.993 0.988 0.012
#> GSM379775 1 0.0938 0.993 0.988 0.012
#> GSM379784 1 0.0938 0.993 0.988 0.012
#> GSM379785 1 0.0938 0.993 0.988 0.012
#> GSM379786 1 0.0938 0.993 0.988 0.012
#> GSM379779 1 0.0938 0.993 0.988 0.012
#> GSM379780 1 0.0938 0.993 0.988 0.012
#> GSM379781 1 0.0938 0.993 0.988 0.012
#> GSM379782 2 0.9323 0.479 0.348 0.652
#> GSM379783 1 0.0938 0.993 0.988 0.012
#> GSM379792 1 0.0938 0.993 0.988 0.012
#> GSM379793 1 0.0938 0.993 0.988 0.012
#> GSM379794 1 0.0938 0.993 0.988 0.012
#> GSM379787 2 0.9815 0.291 0.420 0.580
#> GSM379788 1 0.0938 0.993 0.988 0.012
#> GSM379789 1 0.0938 0.993 0.988 0.012
#> GSM379790 1 0.0938 0.993 0.988 0.012
#> GSM379791 1 0.0938 0.993 0.988 0.012
#> GSM379797 1 0.0938 0.993 0.988 0.012
#> GSM379798 1 0.0938 0.993 0.988 0.012
#> GSM379795 1 0.0938 0.993 0.988 0.012
#> GSM379796 1 0.0938 0.993 0.988 0.012
#> GSM379721 1 0.0000 0.989 1.000 0.000
#> GSM379722 1 0.0000 0.989 1.000 0.000
#> GSM379723 1 0.0000 0.989 1.000 0.000
#> GSM379716 1 0.0000 0.989 1.000 0.000
#> GSM379717 1 0.0000 0.989 1.000 0.000
#> GSM379718 1 0.0000 0.989 1.000 0.000
#> GSM379719 1 0.0000 0.989 1.000 0.000
#> GSM379720 1 0.0000 0.989 1.000 0.000
#> GSM379729 1 0.0000 0.989 1.000 0.000
#> GSM379730 1 0.0000 0.989 1.000 0.000
#> GSM379731 1 0.0000 0.989 1.000 0.000
#> GSM379724 1 0.0000 0.989 1.000 0.000
#> GSM379725 1 0.0000 0.989 1.000 0.000
#> GSM379726 1 0.0000 0.989 1.000 0.000
#> GSM379727 1 0.0000 0.989 1.000 0.000
#> GSM379728 1 0.0000 0.989 1.000 0.000
#> GSM379737 1 0.0000 0.989 1.000 0.000
#> GSM379738 1 0.0000 0.989 1.000 0.000
#> GSM379739 1 0.0000 0.989 1.000 0.000
#> GSM379732 1 0.0000 0.989 1.000 0.000
#> GSM379733 1 0.0000 0.989 1.000 0.000
#> GSM379734 1 0.0000 0.989 1.000 0.000
#> GSM379735 1 0.0000 0.989 1.000 0.000
#> GSM379736 1 0.0000 0.989 1.000 0.000
#> GSM379742 2 0.7376 0.752 0.208 0.792
#> GSM379743 1 0.0000 0.989 1.000 0.000
#> GSM379740 1 0.0000 0.989 1.000 0.000
#> GSM379741 2 0.7376 0.752 0.208 0.792
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 3 0.630 0.8191 0.000 0.484 0.516
#> GSM379833 3 0.630 0.8191 0.000 0.484 0.516
#> GSM379834 3 0.630 0.8191 0.000 0.484 0.516
#> GSM379827 3 0.630 0.8191 0.000 0.484 0.516
#> GSM379828 3 0.630 0.8191 0.000 0.484 0.516
#> GSM379829 1 0.891 0.5512 0.472 0.404 0.124
#> GSM379830 3 0.630 0.8191 0.000 0.484 0.516
#> GSM379831 3 0.630 0.8191 0.000 0.484 0.516
#> GSM379840 3 0.630 0.8191 0.000 0.484 0.516
#> GSM379841 3 0.628 0.8304 0.000 0.460 0.540
#> GSM379842 3 0.627 0.8359 0.000 0.452 0.548
#> GSM379835 3 0.630 0.8191 0.000 0.484 0.516
#> GSM379836 3 0.630 0.8191 0.000 0.484 0.516
#> GSM379837 2 0.971 -0.0295 0.224 0.420 0.356
#> GSM379838 3 0.628 0.8304 0.000 0.460 0.540
#> GSM379839 2 0.828 -0.0792 0.092 0.564 0.344
#> GSM379848 3 0.626 0.8060 0.000 0.448 0.552
#> GSM379849 3 0.626 0.8060 0.000 0.448 0.552
#> GSM379850 3 0.626 0.8060 0.000 0.448 0.552
#> GSM379843 3 0.627 0.8359 0.000 0.452 0.548
#> GSM379844 3 0.628 0.8304 0.000 0.460 0.540
#> GSM379845 3 0.630 0.8191 0.000 0.484 0.516
#> GSM379846 3 0.628 0.8304 0.000 0.460 0.540
#> GSM379847 3 0.627 0.8146 0.000 0.452 0.548
#> GSM379853 3 0.625 0.8282 0.000 0.444 0.556
#> GSM379854 3 0.626 0.8060 0.000 0.448 0.552
#> GSM379851 3 0.626 0.8060 0.000 0.448 0.552
#> GSM379852 3 0.626 0.8060 0.000 0.448 0.552
#> GSM379804 1 0.746 0.6641 0.600 0.352 0.048
#> GSM379805 1 0.746 0.6641 0.600 0.352 0.048
#> GSM379806 1 0.746 0.6641 0.600 0.352 0.048
#> GSM379799 1 0.746 0.6641 0.600 0.352 0.048
#> GSM379800 1 0.746 0.6641 0.600 0.352 0.048
#> GSM379801 1 0.746 0.6641 0.600 0.352 0.048
#> GSM379802 1 0.746 0.6641 0.600 0.352 0.048
#> GSM379803 1 0.746 0.6641 0.600 0.352 0.048
#> GSM379812 1 0.659 0.6682 0.632 0.352 0.016
#> GSM379813 1 0.659 0.6682 0.632 0.352 0.016
#> GSM379814 1 0.659 0.6682 0.632 0.352 0.016
#> GSM379807 1 0.717 0.6645 0.612 0.352 0.036
#> GSM379808 1 0.746 0.6641 0.600 0.352 0.048
#> GSM379809 1 0.746 0.6641 0.600 0.352 0.048
#> GSM379810 1 0.746 0.6641 0.600 0.352 0.048
#> GSM379811 1 0.746 0.6641 0.600 0.352 0.048
#> GSM379820 1 0.672 0.6680 0.628 0.352 0.020
#> GSM379821 1 0.672 0.6680 0.628 0.352 0.020
#> GSM379822 1 0.613 0.6692 0.644 0.352 0.004
#> GSM379815 1 0.727 0.6635 0.608 0.352 0.040
#> GSM379816 1 0.495 0.7103 0.808 0.176 0.016
#> GSM379817 1 0.672 0.6680 0.628 0.352 0.020
#> GSM379818 1 0.746 0.6641 0.600 0.352 0.048
#> GSM379819 1 0.727 0.6644 0.608 0.352 0.040
#> GSM379825 1 0.755 0.6637 0.596 0.352 0.052
#> GSM379826 1 0.672 0.6680 0.628 0.352 0.020
#> GSM379823 1 0.613 0.6692 0.644 0.352 0.004
#> GSM379824 1 0.672 0.6680 0.628 0.352 0.020
#> GSM379749 2 0.590 0.5442 0.000 0.648 0.352
#> GSM379750 2 0.590 0.5442 0.000 0.648 0.352
#> GSM379751 2 0.599 0.4798 0.000 0.632 0.368
#> GSM379744 2 0.595 0.5161 0.000 0.640 0.360
#> GSM379745 2 0.595 0.5161 0.000 0.640 0.360
#> GSM379746 2 0.590 0.5442 0.000 0.648 0.352
#> GSM379747 2 0.599 0.4798 0.000 0.632 0.368
#> GSM379748 2 0.599 0.4798 0.000 0.632 0.368
#> GSM379757 2 0.613 0.6321 0.000 0.600 0.400
#> GSM379758 2 0.614 0.6374 0.000 0.596 0.404
#> GSM379752 2 0.590 0.5442 0.000 0.648 0.352
#> GSM379753 2 0.599 0.4798 0.000 0.632 0.368
#> GSM379754 2 0.611 0.6261 0.000 0.604 0.396
#> GSM379755 2 0.611 0.6261 0.000 0.604 0.396
#> GSM379756 2 0.611 0.6261 0.000 0.604 0.396
#> GSM379764 2 0.614 0.6374 0.000 0.596 0.404
#> GSM379765 2 0.614 0.6374 0.000 0.596 0.404
#> GSM379766 2 0.614 0.6374 0.000 0.596 0.404
#> GSM379759 2 0.614 0.6374 0.000 0.596 0.404
#> GSM379760 2 0.614 0.6374 0.000 0.596 0.404
#> GSM379761 2 0.614 0.6374 0.000 0.596 0.404
#> GSM379762 2 0.614 0.6374 0.000 0.596 0.404
#> GSM379763 2 0.614 0.6374 0.000 0.596 0.404
#> GSM379769 2 0.614 0.6374 0.000 0.596 0.404
#> GSM379770 2 0.614 0.6374 0.000 0.596 0.404
#> GSM379767 2 0.614 0.6374 0.000 0.596 0.404
#> GSM379768 2 0.614 0.6374 0.000 0.596 0.404
#> GSM379776 1 0.207 0.7263 0.940 0.000 0.060
#> GSM379777 1 0.697 0.6883 0.696 0.244 0.060
#> GSM379778 1 0.207 0.7263 0.940 0.000 0.060
#> GSM379771 1 0.207 0.7263 0.940 0.000 0.060
#> GSM379772 1 0.207 0.7263 0.940 0.000 0.060
#> GSM379773 1 0.207 0.7263 0.940 0.000 0.060
#> GSM379774 1 0.207 0.7263 0.940 0.000 0.060
#> GSM379775 1 0.207 0.7263 0.940 0.000 0.060
#> GSM379784 1 0.207 0.7263 0.940 0.000 0.060
#> GSM379785 1 0.207 0.7263 0.940 0.000 0.060
#> GSM379786 1 0.207 0.7263 0.940 0.000 0.060
#> GSM379779 1 0.207 0.7263 0.940 0.000 0.060
#> GSM379780 1 0.207 0.7263 0.940 0.000 0.060
#> GSM379781 1 0.207 0.7263 0.940 0.000 0.060
#> GSM379782 1 0.733 0.5154 0.692 0.216 0.092
#> GSM379783 1 0.207 0.7263 0.940 0.000 0.060
#> GSM379792 1 0.663 0.6970 0.732 0.204 0.064
#> GSM379793 1 0.216 0.7258 0.936 0.000 0.064
#> GSM379794 1 0.216 0.7258 0.936 0.000 0.064
#> GSM379787 1 0.670 0.5835 0.744 0.164 0.092
#> GSM379788 1 0.207 0.7263 0.940 0.000 0.060
#> GSM379789 1 0.207 0.7263 0.940 0.000 0.060
#> GSM379790 1 0.207 0.7263 0.940 0.000 0.060
#> GSM379791 1 0.216 0.7258 0.936 0.000 0.064
#> GSM379797 1 0.804 0.6575 0.572 0.352 0.076
#> GSM379798 1 0.216 0.7258 0.936 0.000 0.064
#> GSM379795 1 0.216 0.7258 0.936 0.000 0.064
#> GSM379796 1 0.634 0.7018 0.756 0.180 0.064
#> GSM379721 1 0.599 0.6533 0.632 0.000 0.368
#> GSM379722 1 0.597 0.6538 0.636 0.000 0.364
#> GSM379723 1 0.599 0.6533 0.632 0.000 0.368
#> GSM379716 1 0.599 0.6533 0.632 0.000 0.368
#> GSM379717 1 0.599 0.6533 0.632 0.000 0.368
#> GSM379718 1 0.599 0.6533 0.632 0.000 0.368
#> GSM379719 1 0.599 0.6533 0.632 0.000 0.368
#> GSM379720 1 0.599 0.6533 0.632 0.000 0.368
#> GSM379729 1 0.579 0.6542 0.668 0.000 0.332
#> GSM379730 1 0.579 0.6542 0.668 0.000 0.332
#> GSM379731 1 0.579 0.6542 0.668 0.000 0.332
#> GSM379724 1 0.599 0.6533 0.632 0.000 0.368
#> GSM379725 1 0.576 0.6547 0.672 0.000 0.328
#> GSM379726 1 0.599 0.6533 0.632 0.000 0.368
#> GSM379727 1 0.597 0.6538 0.636 0.000 0.364
#> GSM379728 1 0.599 0.6533 0.632 0.000 0.368
#> GSM379737 1 0.579 0.6542 0.668 0.000 0.332
#> GSM379738 1 0.579 0.6542 0.668 0.000 0.332
#> GSM379739 1 0.579 0.6542 0.668 0.000 0.332
#> GSM379732 1 0.579 0.6542 0.668 0.000 0.332
#> GSM379733 1 0.579 0.6542 0.668 0.000 0.332
#> GSM379734 1 0.579 0.6542 0.668 0.000 0.332
#> GSM379735 1 0.579 0.6542 0.668 0.000 0.332
#> GSM379736 1 0.601 0.6524 0.628 0.000 0.372
#> GSM379742 1 0.947 0.3971 0.440 0.184 0.376
#> GSM379743 1 0.581 0.6522 0.664 0.000 0.336
#> GSM379740 1 0.579 0.6542 0.668 0.000 0.332
#> GSM379741 1 0.947 0.3971 0.440 0.184 0.376
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.3205 0.768 0.104 0.872 0.000 0.024
#> GSM379833 2 0.3205 0.768 0.104 0.872 0.000 0.024
#> GSM379834 2 0.3205 0.768 0.104 0.872 0.000 0.024
#> GSM379827 2 0.3840 0.767 0.104 0.844 0.000 0.052
#> GSM379828 2 0.3840 0.767 0.104 0.844 0.000 0.052
#> GSM379829 4 0.6481 0.596 0.112 0.136 0.044 0.708
#> GSM379830 2 0.3840 0.767 0.104 0.844 0.000 0.052
#> GSM379831 2 0.3840 0.767 0.104 0.844 0.000 0.052
#> GSM379840 2 0.3587 0.767 0.104 0.856 0.000 0.040
#> GSM379841 2 0.0188 0.789 0.004 0.996 0.000 0.000
#> GSM379842 2 0.0657 0.786 0.012 0.984 0.000 0.004
#> GSM379835 2 0.3840 0.767 0.104 0.844 0.000 0.052
#> GSM379836 2 0.3840 0.767 0.104 0.844 0.000 0.052
#> GSM379837 2 0.6577 0.507 0.112 0.624 0.004 0.260
#> GSM379838 2 0.0188 0.789 0.004 0.996 0.000 0.000
#> GSM379839 2 0.6377 0.520 0.112 0.632 0.000 0.256
#> GSM379848 2 0.1724 0.786 0.032 0.948 0.000 0.020
#> GSM379849 2 0.1833 0.785 0.032 0.944 0.000 0.024
#> GSM379850 2 0.1833 0.785 0.032 0.944 0.000 0.024
#> GSM379843 2 0.0657 0.786 0.012 0.984 0.000 0.004
#> GSM379844 2 0.0188 0.789 0.004 0.996 0.000 0.000
#> GSM379845 2 0.3587 0.767 0.104 0.856 0.000 0.040
#> GSM379846 2 0.0000 0.788 0.000 1.000 0.000 0.000
#> GSM379847 2 0.1284 0.787 0.024 0.964 0.000 0.012
#> GSM379853 2 0.1624 0.785 0.028 0.952 0.000 0.020
#> GSM379854 2 0.1833 0.785 0.032 0.944 0.000 0.024
#> GSM379851 2 0.1406 0.786 0.024 0.960 0.000 0.016
#> GSM379852 2 0.1833 0.785 0.032 0.944 0.000 0.024
#> GSM379804 4 0.2868 0.951 0.000 0.000 0.136 0.864
#> GSM379805 4 0.3196 0.951 0.008 0.000 0.136 0.856
#> GSM379806 4 0.3196 0.951 0.008 0.000 0.136 0.856
#> GSM379799 4 0.3196 0.951 0.008 0.000 0.136 0.856
#> GSM379800 4 0.3196 0.951 0.008 0.000 0.136 0.856
#> GSM379801 4 0.3196 0.951 0.008 0.000 0.136 0.856
#> GSM379802 4 0.3196 0.951 0.008 0.000 0.136 0.856
#> GSM379803 4 0.3142 0.951 0.008 0.000 0.132 0.860
#> GSM379812 4 0.3428 0.944 0.012 0.000 0.144 0.844
#> GSM379813 4 0.3300 0.946 0.008 0.000 0.144 0.848
#> GSM379814 4 0.3249 0.945 0.008 0.000 0.140 0.852
#> GSM379807 4 0.3088 0.951 0.008 0.000 0.128 0.864
#> GSM379808 4 0.3196 0.951 0.008 0.000 0.136 0.856
#> GSM379809 4 0.2868 0.951 0.000 0.000 0.136 0.864
#> GSM379810 4 0.3052 0.951 0.004 0.000 0.136 0.860
#> GSM379811 4 0.3142 0.951 0.008 0.000 0.132 0.860
#> GSM379820 4 0.3377 0.945 0.012 0.000 0.140 0.848
#> GSM379821 4 0.3495 0.943 0.016 0.000 0.140 0.844
#> GSM379822 4 0.3757 0.929 0.020 0.000 0.152 0.828
#> GSM379815 4 0.2760 0.951 0.000 0.000 0.128 0.872
#> GSM379816 4 0.4434 0.818 0.016 0.000 0.228 0.756
#> GSM379817 4 0.3377 0.945 0.012 0.000 0.140 0.848
#> GSM379818 4 0.3032 0.951 0.008 0.000 0.124 0.868
#> GSM379819 4 0.3161 0.948 0.012 0.000 0.124 0.864
#> GSM379825 4 0.3217 0.950 0.012 0.000 0.128 0.860
#> GSM379826 4 0.3377 0.945 0.012 0.000 0.140 0.848
#> GSM379823 4 0.3757 0.929 0.020 0.000 0.152 0.828
#> GSM379824 4 0.3377 0.945 0.012 0.000 0.140 0.848
#> GSM379749 2 0.5724 0.781 0.424 0.548 0.000 0.028
#> GSM379750 2 0.5724 0.781 0.424 0.548 0.000 0.028
#> GSM379751 2 0.5901 0.777 0.432 0.532 0.000 0.036
#> GSM379744 2 0.5731 0.780 0.428 0.544 0.000 0.028
#> GSM379745 2 0.5731 0.780 0.428 0.544 0.000 0.028
#> GSM379746 2 0.5724 0.781 0.424 0.548 0.000 0.028
#> GSM379747 2 0.5750 0.777 0.440 0.532 0.000 0.028
#> GSM379748 2 0.5750 0.777 0.440 0.532 0.000 0.028
#> GSM379757 2 0.4978 0.783 0.384 0.612 0.000 0.004
#> GSM379758 2 0.5742 0.779 0.368 0.596 0.000 0.036
#> GSM379752 2 0.5724 0.781 0.424 0.548 0.000 0.028
#> GSM379753 2 0.5750 0.777 0.440 0.532 0.000 0.028
#> GSM379754 2 0.4936 0.786 0.372 0.624 0.000 0.004
#> GSM379755 2 0.4936 0.786 0.372 0.624 0.000 0.004
#> GSM379756 2 0.4950 0.785 0.376 0.620 0.000 0.004
#> GSM379764 2 0.5839 0.780 0.352 0.604 0.000 0.044
#> GSM379765 2 0.5839 0.780 0.352 0.604 0.000 0.044
#> GSM379766 2 0.5839 0.780 0.352 0.604 0.000 0.044
#> GSM379759 2 0.5742 0.779 0.368 0.596 0.000 0.036
#> GSM379760 2 0.5742 0.779 0.368 0.596 0.000 0.036
#> GSM379761 2 0.5742 0.779 0.368 0.596 0.000 0.036
#> GSM379762 2 0.5807 0.779 0.364 0.596 0.000 0.040
#> GSM379763 2 0.5839 0.780 0.352 0.604 0.000 0.044
#> GSM379769 2 0.5855 0.778 0.356 0.600 0.000 0.044
#> GSM379770 2 0.5855 0.778 0.356 0.600 0.000 0.044
#> GSM379767 2 0.5839 0.780 0.352 0.604 0.000 0.044
#> GSM379768 2 0.5839 0.780 0.352 0.604 0.000 0.044
#> GSM379776 1 0.7511 0.961 0.468 0.000 0.336 0.196
#> GSM379777 1 0.7518 0.767 0.476 0.000 0.204 0.320
#> GSM379778 1 0.7511 0.961 0.468 0.000 0.336 0.196
#> GSM379771 1 0.7511 0.961 0.468 0.000 0.336 0.196
#> GSM379772 1 0.7511 0.961 0.468 0.000 0.336 0.196
#> GSM379773 1 0.7511 0.961 0.468 0.000 0.336 0.196
#> GSM379774 1 0.7511 0.961 0.468 0.000 0.336 0.196
#> GSM379775 1 0.7511 0.961 0.468 0.000 0.336 0.196
#> GSM379784 1 0.7505 0.955 0.476 0.000 0.324 0.200
#> GSM379785 1 0.7516 0.958 0.472 0.000 0.328 0.200
#> GSM379786 1 0.7505 0.955 0.476 0.000 0.324 0.200
#> GSM379779 1 0.7511 0.961 0.468 0.000 0.336 0.196
#> GSM379780 1 0.7511 0.961 0.468 0.000 0.336 0.196
#> GSM379781 1 0.7511 0.961 0.468 0.000 0.336 0.196
#> GSM379782 1 0.8391 0.825 0.496 0.056 0.284 0.164
#> GSM379783 1 0.7505 0.955 0.476 0.000 0.324 0.200
#> GSM379792 1 0.7636 0.847 0.468 0.000 0.248 0.284
#> GSM379793 1 0.7526 0.961 0.468 0.000 0.332 0.200
#> GSM379794 1 0.7526 0.961 0.468 0.000 0.332 0.200
#> GSM379787 1 0.8406 0.827 0.492 0.056 0.288 0.164
#> GSM379788 1 0.7505 0.955 0.476 0.000 0.324 0.200
#> GSM379789 1 0.7526 0.961 0.468 0.000 0.332 0.200
#> GSM379790 1 0.7526 0.961 0.468 0.000 0.332 0.200
#> GSM379791 1 0.7526 0.961 0.468 0.000 0.332 0.200
#> GSM379797 4 0.5209 0.705 0.140 0.000 0.104 0.756
#> GSM379798 1 0.7526 0.961 0.468 0.000 0.332 0.200
#> GSM379795 1 0.7526 0.961 0.468 0.000 0.332 0.200
#> GSM379796 1 0.7640 0.853 0.468 0.000 0.252 0.280
#> GSM379721 3 0.1256 0.953 0.008 0.000 0.964 0.028
#> GSM379722 3 0.1256 0.953 0.008 0.000 0.964 0.028
#> GSM379723 3 0.1109 0.953 0.004 0.000 0.968 0.028
#> GSM379716 3 0.1109 0.953 0.004 0.000 0.968 0.028
#> GSM379717 3 0.1109 0.953 0.004 0.000 0.968 0.028
#> GSM379718 3 0.1256 0.953 0.008 0.000 0.964 0.028
#> GSM379719 3 0.1256 0.953 0.008 0.000 0.964 0.028
#> GSM379720 3 0.1256 0.953 0.008 0.000 0.964 0.028
#> GSM379729 3 0.0657 0.948 0.012 0.000 0.984 0.004
#> GSM379730 3 0.0657 0.948 0.012 0.000 0.984 0.004
#> GSM379731 3 0.0657 0.948 0.012 0.000 0.984 0.004
#> GSM379724 3 0.1109 0.953 0.004 0.000 0.968 0.028
#> GSM379725 3 0.0779 0.948 0.016 0.000 0.980 0.004
#> GSM379726 3 0.1109 0.953 0.004 0.000 0.968 0.028
#> GSM379727 3 0.1109 0.953 0.004 0.000 0.968 0.028
#> GSM379728 3 0.1109 0.953 0.004 0.000 0.968 0.028
#> GSM379737 3 0.0524 0.947 0.004 0.000 0.988 0.008
#> GSM379738 3 0.0524 0.947 0.004 0.000 0.988 0.008
#> GSM379739 3 0.0524 0.947 0.004 0.000 0.988 0.008
#> GSM379732 3 0.0657 0.948 0.012 0.000 0.984 0.004
#> GSM379733 3 0.0000 0.948 0.000 0.000 1.000 0.000
#> GSM379734 3 0.0188 0.948 0.000 0.000 0.996 0.004
#> GSM379735 3 0.1059 0.943 0.016 0.000 0.972 0.012
#> GSM379736 3 0.1305 0.949 0.004 0.000 0.960 0.036
#> GSM379742 3 0.4277 0.765 0.076 0.028 0.844 0.052
#> GSM379743 3 0.1182 0.942 0.016 0.000 0.968 0.016
#> GSM379740 3 0.0524 0.947 0.004 0.000 0.988 0.008
#> GSM379741 3 0.4277 0.765 0.076 0.028 0.844 0.052
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 5 0.1211 0.765 0.024 0.000 0.000 0.016 0.960
#> GSM379833 5 0.1211 0.765 0.024 0.000 0.000 0.016 0.960
#> GSM379834 5 0.1117 0.765 0.020 0.000 0.000 0.016 0.964
#> GSM379827 5 0.2659 0.747 0.060 0.000 0.000 0.052 0.888
#> GSM379828 5 0.2659 0.747 0.060 0.000 0.000 0.052 0.888
#> GSM379829 4 0.7554 0.525 0.092 0.168 0.004 0.516 0.220
#> GSM379830 5 0.2592 0.750 0.056 0.000 0.000 0.052 0.892
#> GSM379831 5 0.2592 0.750 0.056 0.000 0.000 0.052 0.892
#> GSM379840 5 0.2520 0.752 0.056 0.000 0.000 0.048 0.896
#> GSM379841 5 0.2233 0.760 0.004 0.104 0.000 0.000 0.892
#> GSM379842 5 0.1952 0.768 0.004 0.084 0.000 0.000 0.912
#> GSM379835 5 0.2592 0.750 0.056 0.000 0.000 0.052 0.892
#> GSM379836 5 0.2592 0.750 0.056 0.000 0.000 0.052 0.892
#> GSM379837 5 0.5329 0.583 0.056 0.108 0.000 0.100 0.736
#> GSM379838 5 0.2233 0.760 0.004 0.104 0.000 0.000 0.892
#> GSM379839 5 0.5329 0.583 0.056 0.108 0.000 0.100 0.736
#> GSM379848 5 0.3128 0.711 0.004 0.168 0.000 0.004 0.824
#> GSM379849 5 0.3250 0.707 0.004 0.168 0.000 0.008 0.820
#> GSM379850 5 0.3250 0.707 0.004 0.168 0.000 0.008 0.820
#> GSM379843 5 0.1952 0.768 0.004 0.084 0.000 0.000 0.912
#> GSM379844 5 0.2233 0.760 0.004 0.104 0.000 0.000 0.892
#> GSM379845 5 0.2520 0.752 0.056 0.000 0.000 0.048 0.896
#> GSM379846 5 0.2233 0.760 0.004 0.104 0.000 0.000 0.892
#> GSM379847 5 0.2763 0.732 0.004 0.148 0.000 0.000 0.848
#> GSM379853 5 0.2722 0.749 0.004 0.120 0.000 0.008 0.868
#> GSM379854 5 0.3250 0.707 0.004 0.168 0.000 0.008 0.820
#> GSM379851 5 0.3129 0.720 0.004 0.156 0.000 0.008 0.832
#> GSM379852 5 0.3250 0.707 0.004 0.168 0.000 0.008 0.820
#> GSM379804 4 0.4134 0.892 0.108 0.048 0.032 0.812 0.000
#> GSM379805 4 0.5722 0.876 0.120 0.164 0.032 0.684 0.000
#> GSM379806 4 0.5757 0.876 0.120 0.168 0.032 0.680 0.000
#> GSM379799 4 0.5757 0.876 0.120 0.168 0.032 0.680 0.000
#> GSM379800 4 0.5757 0.876 0.120 0.168 0.032 0.680 0.000
#> GSM379801 4 0.5757 0.876 0.120 0.168 0.032 0.680 0.000
#> GSM379802 4 0.5867 0.874 0.124 0.176 0.032 0.668 0.000
#> GSM379803 4 0.5756 0.875 0.124 0.172 0.028 0.676 0.000
#> GSM379812 4 0.2777 0.882 0.120 0.000 0.016 0.864 0.000
#> GSM379813 4 0.2677 0.884 0.112 0.000 0.016 0.872 0.000
#> GSM379814 4 0.2773 0.884 0.112 0.000 0.020 0.868 0.000
#> GSM379807 4 0.2707 0.888 0.100 0.000 0.024 0.876 0.000
#> GSM379808 4 0.5757 0.876 0.120 0.168 0.032 0.680 0.000
#> GSM379809 4 0.4063 0.892 0.108 0.044 0.032 0.816 0.000
#> GSM379810 4 0.3862 0.892 0.104 0.036 0.032 0.828 0.000
#> GSM379811 4 0.5867 0.874 0.124 0.176 0.032 0.668 0.000
#> GSM379820 4 0.2616 0.885 0.100 0.000 0.020 0.880 0.000
#> GSM379821 4 0.3010 0.881 0.116 0.008 0.016 0.860 0.000
#> GSM379822 4 0.3923 0.847 0.132 0.040 0.016 0.812 0.000
#> GSM379815 4 0.3871 0.892 0.112 0.040 0.024 0.824 0.000
#> GSM379816 4 0.4590 0.823 0.124 0.032 0.064 0.780 0.000
#> GSM379817 4 0.2625 0.882 0.108 0.000 0.016 0.876 0.000
#> GSM379818 4 0.5790 0.875 0.124 0.176 0.028 0.672 0.000
#> GSM379819 4 0.2597 0.887 0.092 0.000 0.024 0.884 0.000
#> GSM379825 4 0.5659 0.875 0.112 0.176 0.028 0.684 0.000
#> GSM379826 4 0.2669 0.884 0.104 0.000 0.020 0.876 0.000
#> GSM379823 4 0.3767 0.848 0.132 0.032 0.016 0.820 0.000
#> GSM379824 4 0.2959 0.882 0.112 0.008 0.016 0.864 0.000
#> GSM379749 2 0.5901 0.780 0.036 0.508 0.004 0.028 0.424
#> GSM379750 2 0.5901 0.780 0.036 0.508 0.004 0.028 0.424
#> GSM379751 5 0.6392 -0.701 0.060 0.436 0.004 0.036 0.464
#> GSM379744 2 0.5920 0.754 0.036 0.484 0.004 0.028 0.448
#> GSM379745 2 0.5920 0.754 0.036 0.484 0.004 0.028 0.448
#> GSM379746 2 0.5901 0.780 0.036 0.508 0.004 0.028 0.424
#> GSM379747 2 0.5925 0.732 0.036 0.468 0.004 0.028 0.464
#> GSM379748 2 0.5925 0.732 0.036 0.468 0.004 0.028 0.464
#> GSM379757 2 0.5426 0.836 0.028 0.620 0.004 0.024 0.324
#> GSM379758 2 0.3774 0.843 0.000 0.704 0.000 0.000 0.296
#> GSM379752 2 0.5901 0.780 0.036 0.508 0.004 0.028 0.424
#> GSM379753 2 0.5925 0.732 0.036 0.468 0.004 0.028 0.464
#> GSM379754 2 0.5547 0.831 0.032 0.604 0.004 0.024 0.336
#> GSM379755 2 0.5547 0.831 0.032 0.604 0.004 0.024 0.336
#> GSM379756 2 0.5517 0.834 0.032 0.612 0.004 0.024 0.328
#> GSM379764 2 0.4201 0.826 0.000 0.664 0.000 0.008 0.328
#> GSM379765 2 0.4201 0.826 0.000 0.664 0.000 0.008 0.328
#> GSM379766 2 0.4201 0.826 0.000 0.664 0.000 0.008 0.328
#> GSM379759 2 0.3774 0.843 0.000 0.704 0.000 0.000 0.296
#> GSM379760 2 0.3774 0.843 0.000 0.704 0.000 0.000 0.296
#> GSM379761 2 0.3774 0.843 0.000 0.704 0.000 0.000 0.296
#> GSM379762 2 0.3774 0.843 0.000 0.704 0.000 0.000 0.296
#> GSM379763 2 0.4201 0.826 0.000 0.664 0.000 0.008 0.328
#> GSM379769 2 0.4201 0.826 0.000 0.664 0.000 0.008 0.328
#> GSM379770 2 0.4201 0.826 0.000 0.664 0.000 0.008 0.328
#> GSM379767 2 0.4201 0.826 0.000 0.664 0.000 0.008 0.328
#> GSM379768 2 0.4201 0.826 0.000 0.664 0.000 0.008 0.328
#> GSM379776 1 0.2690 0.969 0.844 0.000 0.156 0.000 0.000
#> GSM379777 1 0.3383 0.868 0.856 0.012 0.060 0.072 0.000
#> GSM379778 1 0.3396 0.956 0.832 0.028 0.136 0.000 0.004
#> GSM379771 1 0.2690 0.969 0.844 0.000 0.156 0.000 0.000
#> GSM379772 1 0.2690 0.969 0.844 0.000 0.156 0.000 0.000
#> GSM379773 1 0.3055 0.966 0.840 0.016 0.144 0.000 0.000
#> GSM379774 1 0.2690 0.969 0.844 0.000 0.156 0.000 0.000
#> GSM379775 1 0.2690 0.969 0.844 0.000 0.156 0.000 0.000
#> GSM379784 1 0.2865 0.958 0.856 0.004 0.132 0.008 0.000
#> GSM379785 1 0.2818 0.961 0.860 0.004 0.128 0.008 0.000
#> GSM379786 1 0.2865 0.958 0.856 0.004 0.132 0.008 0.000
#> GSM379779 1 0.2690 0.969 0.844 0.000 0.156 0.000 0.000
#> GSM379780 1 0.2848 0.969 0.840 0.004 0.156 0.000 0.000
#> GSM379781 1 0.3001 0.966 0.844 0.004 0.144 0.008 0.000
#> GSM379782 1 0.3708 0.942 0.816 0.044 0.136 0.000 0.004
#> GSM379783 1 0.2865 0.958 0.856 0.004 0.132 0.008 0.000
#> GSM379792 1 0.3653 0.935 0.828 0.012 0.124 0.036 0.000
#> GSM379793 1 0.3123 0.965 0.828 0.012 0.160 0.000 0.000
#> GSM379794 1 0.3123 0.965 0.828 0.012 0.160 0.000 0.000
#> GSM379787 1 0.3678 0.946 0.816 0.040 0.140 0.000 0.004
#> GSM379788 1 0.2865 0.958 0.856 0.004 0.132 0.008 0.000
#> GSM379789 1 0.3039 0.968 0.836 0.012 0.152 0.000 0.000
#> GSM379790 1 0.3039 0.968 0.836 0.012 0.152 0.000 0.000
#> GSM379791 1 0.3039 0.968 0.836 0.012 0.152 0.000 0.000
#> GSM379797 4 0.6831 0.642 0.304 0.160 0.028 0.508 0.000
#> GSM379798 1 0.3123 0.965 0.828 0.012 0.160 0.000 0.000
#> GSM379795 1 0.3123 0.965 0.828 0.012 0.160 0.000 0.000
#> GSM379796 1 0.3584 0.943 0.828 0.012 0.132 0.028 0.000
#> GSM379721 3 0.1095 0.943 0.012 0.008 0.968 0.012 0.000
#> GSM379722 3 0.1095 0.943 0.012 0.008 0.968 0.012 0.000
#> GSM379723 3 0.0807 0.943 0.012 0.000 0.976 0.012 0.000
#> GSM379716 3 0.0807 0.943 0.012 0.000 0.976 0.012 0.000
#> GSM379717 3 0.0807 0.943 0.012 0.000 0.976 0.012 0.000
#> GSM379718 3 0.1095 0.943 0.012 0.008 0.968 0.012 0.000
#> GSM379719 3 0.1095 0.943 0.012 0.008 0.968 0.012 0.000
#> GSM379720 3 0.1095 0.943 0.012 0.008 0.968 0.012 0.000
#> GSM379729 3 0.3052 0.923 0.036 0.072 0.876 0.016 0.000
#> GSM379730 3 0.3130 0.921 0.040 0.072 0.872 0.016 0.000
#> GSM379731 3 0.3130 0.921 0.040 0.072 0.872 0.016 0.000
#> GSM379724 3 0.0807 0.943 0.012 0.000 0.976 0.012 0.000
#> GSM379725 3 0.2967 0.927 0.032 0.060 0.884 0.024 0.000
#> GSM379726 3 0.0807 0.943 0.012 0.000 0.976 0.012 0.000
#> GSM379727 3 0.0807 0.943 0.012 0.000 0.976 0.012 0.000
#> GSM379728 3 0.0807 0.943 0.012 0.000 0.976 0.012 0.000
#> GSM379737 3 0.2321 0.935 0.016 0.044 0.916 0.024 0.000
#> GSM379738 3 0.2321 0.935 0.016 0.044 0.916 0.024 0.000
#> GSM379739 3 0.2321 0.935 0.016 0.044 0.916 0.024 0.000
#> GSM379732 3 0.3093 0.924 0.032 0.080 0.872 0.016 0.000
#> GSM379733 3 0.1356 0.942 0.012 0.028 0.956 0.004 0.000
#> GSM379734 3 0.1356 0.942 0.012 0.028 0.956 0.004 0.000
#> GSM379735 3 0.3589 0.910 0.036 0.084 0.848 0.032 0.000
#> GSM379736 3 0.1503 0.939 0.008 0.020 0.952 0.020 0.000
#> GSM379742 3 0.4282 0.865 0.024 0.148 0.792 0.032 0.004
#> GSM379743 3 0.3669 0.909 0.036 0.084 0.844 0.036 0.000
#> GSM379740 3 0.2228 0.936 0.016 0.044 0.920 0.020 0.000
#> GSM379741 3 0.4282 0.865 0.024 0.148 0.792 0.032 0.004
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 5 0.5253 0.769 0.016 0.168 0.000 0.000 0.652 NA
#> GSM379833 5 0.5253 0.769 0.016 0.168 0.000 0.000 0.652 NA
#> GSM379834 5 0.5283 0.770 0.016 0.168 0.000 0.000 0.648 NA
#> GSM379827 5 0.2632 0.723 0.004 0.164 0.000 0.000 0.832 NA
#> GSM379828 5 0.2632 0.723 0.004 0.164 0.000 0.000 0.832 NA
#> GSM379829 5 0.6004 -0.320 0.000 0.000 0.000 0.236 0.392 NA
#> GSM379830 5 0.2491 0.726 0.000 0.164 0.000 0.000 0.836 NA
#> GSM379831 5 0.2632 0.726 0.004 0.164 0.000 0.000 0.832 NA
#> GSM379840 5 0.2982 0.732 0.004 0.164 0.000 0.000 0.820 NA
#> GSM379841 5 0.6039 0.775 0.012 0.236 0.000 0.000 0.508 NA
#> GSM379842 5 0.5987 0.777 0.012 0.228 0.000 0.000 0.520 NA
#> GSM379835 5 0.2491 0.726 0.000 0.164 0.000 0.000 0.836 NA
#> GSM379836 5 0.2491 0.726 0.000 0.164 0.000 0.000 0.836 NA
#> GSM379837 5 0.3214 0.655 0.000 0.068 0.000 0.008 0.840 NA
#> GSM379838 5 0.6039 0.775 0.012 0.236 0.000 0.000 0.508 NA
#> GSM379839 5 0.3356 0.655 0.004 0.068 0.000 0.008 0.836 NA
#> GSM379848 5 0.6375 0.738 0.012 0.260 0.004 0.000 0.444 NA
#> GSM379849 5 0.6375 0.738 0.012 0.260 0.004 0.000 0.444 NA
#> GSM379850 5 0.6375 0.738 0.012 0.260 0.004 0.000 0.444 NA
#> GSM379843 5 0.5987 0.777 0.012 0.228 0.000 0.000 0.520 NA
#> GSM379844 5 0.6039 0.775 0.012 0.236 0.000 0.000 0.508 NA
#> GSM379845 5 0.2982 0.732 0.004 0.164 0.000 0.000 0.820 NA
#> GSM379846 5 0.6153 0.775 0.012 0.236 0.004 0.000 0.508 NA
#> GSM379847 5 0.6247 0.765 0.012 0.256 0.004 0.000 0.484 NA
#> GSM379853 5 0.6232 0.769 0.012 0.240 0.004 0.000 0.488 NA
#> GSM379854 5 0.6375 0.738 0.012 0.260 0.004 0.000 0.444 NA
#> GSM379851 5 0.6290 0.759 0.012 0.252 0.004 0.000 0.472 NA
#> GSM379852 5 0.6375 0.738 0.012 0.260 0.004 0.000 0.444 NA
#> GSM379804 4 0.2772 0.837 0.004 0.000 0.000 0.816 0.000 NA
#> GSM379805 4 0.3830 0.804 0.000 0.000 0.000 0.620 0.004 NA
#> GSM379806 4 0.3841 0.803 0.000 0.000 0.000 0.616 0.004 NA
#> GSM379799 4 0.3862 0.802 0.000 0.000 0.000 0.608 0.004 NA
#> GSM379800 4 0.3862 0.802 0.000 0.000 0.000 0.608 0.004 NA
#> GSM379801 4 0.3862 0.802 0.000 0.000 0.000 0.608 0.004 NA
#> GSM379802 4 0.3915 0.797 0.004 0.000 0.000 0.584 0.000 NA
#> GSM379803 4 0.4127 0.800 0.008 0.000 0.000 0.588 0.004 NA
#> GSM379812 4 0.0551 0.834 0.008 0.000 0.000 0.984 0.004 NA
#> GSM379813 4 0.0508 0.834 0.012 0.000 0.000 0.984 0.000 NA
#> GSM379814 4 0.0508 0.834 0.012 0.000 0.000 0.984 0.000 NA
#> GSM379807 4 0.0146 0.835 0.004 0.000 0.000 0.996 0.000 NA
#> GSM379808 4 0.3862 0.802 0.000 0.000 0.000 0.608 0.004 NA
#> GSM379809 4 0.2520 0.839 0.004 0.000 0.000 0.844 0.000 NA
#> GSM379810 4 0.2006 0.840 0.004 0.000 0.000 0.892 0.000 NA
#> GSM379811 4 0.3915 0.797 0.004 0.000 0.000 0.584 0.000 NA
#> GSM379820 4 0.0508 0.833 0.012 0.000 0.000 0.984 0.004 NA
#> GSM379821 4 0.1448 0.829 0.012 0.000 0.000 0.948 0.016 NA
#> GSM379822 4 0.1838 0.821 0.012 0.000 0.000 0.928 0.020 NA
#> GSM379815 4 0.2442 0.839 0.004 0.000 0.000 0.852 0.000 NA
#> GSM379816 4 0.1710 0.814 0.008 0.000 0.020 0.940 0.012 NA
#> GSM379817 4 0.0508 0.833 0.012 0.000 0.000 0.984 0.004 NA
#> GSM379818 4 0.3907 0.797 0.004 0.000 0.000 0.588 0.000 NA
#> GSM379819 4 0.0146 0.835 0.004 0.000 0.000 0.996 0.000 NA
#> GSM379825 4 0.3841 0.804 0.004 0.000 0.000 0.616 0.000 NA
#> GSM379826 4 0.0508 0.833 0.012 0.000 0.000 0.984 0.004 NA
#> GSM379823 4 0.1620 0.822 0.012 0.000 0.000 0.940 0.024 NA
#> GSM379824 4 0.1528 0.829 0.012 0.000 0.000 0.944 0.016 NA
#> GSM379749 2 0.1958 0.757 0.004 0.896 0.000 0.000 0.100 NA
#> GSM379750 2 0.1958 0.757 0.004 0.896 0.000 0.000 0.100 NA
#> GSM379751 2 0.2631 0.709 0.008 0.840 0.000 0.000 0.152 NA
#> GSM379744 2 0.2118 0.755 0.008 0.888 0.000 0.000 0.104 NA
#> GSM379745 2 0.2118 0.755 0.008 0.888 0.000 0.000 0.104 NA
#> GSM379746 2 0.1958 0.757 0.004 0.896 0.000 0.000 0.100 NA
#> GSM379747 2 0.2100 0.748 0.004 0.884 0.000 0.000 0.112 NA
#> GSM379748 2 0.2100 0.748 0.004 0.884 0.000 0.000 0.112 NA
#> GSM379757 2 0.0767 0.779 0.004 0.976 0.000 0.000 0.012 NA
#> GSM379758 2 0.4251 0.774 0.092 0.748 0.008 0.000 0.000 NA
#> GSM379752 2 0.2070 0.757 0.008 0.892 0.000 0.000 0.100 NA
#> GSM379753 2 0.2212 0.748 0.008 0.880 0.000 0.000 0.112 NA
#> GSM379754 2 0.0508 0.778 0.004 0.984 0.000 0.000 0.012 NA
#> GSM379755 2 0.0508 0.778 0.004 0.984 0.000 0.000 0.012 NA
#> GSM379756 2 0.0508 0.778 0.004 0.984 0.000 0.000 0.012 NA
#> GSM379764 2 0.4718 0.747 0.088 0.684 0.008 0.000 0.000 NA
#> GSM379765 2 0.4718 0.747 0.088 0.684 0.008 0.000 0.000 NA
#> GSM379766 2 0.4718 0.747 0.088 0.684 0.008 0.000 0.000 NA
#> GSM379759 2 0.4251 0.774 0.092 0.748 0.008 0.000 0.000 NA
#> GSM379760 2 0.4251 0.774 0.092 0.748 0.008 0.000 0.000 NA
#> GSM379761 2 0.4251 0.774 0.092 0.748 0.008 0.000 0.000 NA
#> GSM379762 2 0.4251 0.774 0.092 0.748 0.008 0.000 0.000 NA
#> GSM379763 2 0.4693 0.749 0.088 0.688 0.008 0.000 0.000 NA
#> GSM379769 2 0.4718 0.747 0.088 0.684 0.008 0.000 0.000 NA
#> GSM379770 2 0.4718 0.747 0.088 0.684 0.008 0.000 0.000 NA
#> GSM379767 2 0.4718 0.747 0.088 0.684 0.008 0.000 0.000 NA
#> GSM379768 2 0.4718 0.747 0.088 0.684 0.008 0.000 0.000 NA
#> GSM379776 1 0.3112 0.971 0.840 0.000 0.104 0.052 0.004 NA
#> GSM379777 1 0.4178 0.881 0.796 0.000 0.040 0.108 0.020 NA
#> GSM379778 1 0.4346 0.948 0.788 0.000 0.100 0.052 0.020 NA
#> GSM379771 1 0.2971 0.971 0.844 0.000 0.104 0.052 0.000 NA
#> GSM379772 1 0.2971 0.971 0.844 0.000 0.104 0.052 0.000 NA
#> GSM379773 1 0.3527 0.967 0.828 0.000 0.100 0.052 0.012 NA
#> GSM379774 1 0.2971 0.971 0.844 0.000 0.104 0.052 0.000 NA
#> GSM379775 1 0.2971 0.971 0.844 0.000 0.104 0.052 0.000 NA
#> GSM379784 1 0.3489 0.968 0.828 0.000 0.100 0.056 0.008 NA
#> GSM379785 1 0.3428 0.968 0.832 0.000 0.100 0.052 0.008 NA
#> GSM379786 1 0.3489 0.968 0.828 0.000 0.100 0.056 0.008 NA
#> GSM379779 1 0.2971 0.971 0.844 0.000 0.104 0.052 0.000 NA
#> GSM379780 1 0.3112 0.970 0.840 0.000 0.104 0.052 0.000 NA
#> GSM379781 1 0.3475 0.968 0.828 0.000 0.104 0.052 0.008 NA
#> GSM379782 1 0.4146 0.932 0.800 0.000 0.100 0.032 0.020 NA
#> GSM379783 1 0.3489 0.968 0.828 0.000 0.100 0.056 0.008 NA
#> GSM379792 1 0.4069 0.946 0.804 0.000 0.080 0.076 0.024 NA
#> GSM379793 1 0.4020 0.963 0.804 0.000 0.104 0.052 0.024 NA
#> GSM379794 1 0.4020 0.963 0.804 0.000 0.104 0.052 0.024 NA
#> GSM379787 1 0.4146 0.932 0.800 0.000 0.100 0.032 0.020 NA
#> GSM379788 1 0.3489 0.968 0.828 0.000 0.100 0.056 0.008 NA
#> GSM379789 1 0.3939 0.964 0.808 0.000 0.104 0.052 0.020 NA
#> GSM379790 1 0.4020 0.963 0.804 0.000 0.104 0.052 0.024 NA
#> GSM379791 1 0.3854 0.965 0.812 0.000 0.104 0.052 0.016 NA
#> GSM379797 4 0.6489 0.557 0.204 0.000 0.004 0.440 0.024 NA
#> GSM379798 1 0.4034 0.961 0.804 0.000 0.100 0.056 0.024 NA
#> GSM379795 1 0.3854 0.965 0.812 0.000 0.104 0.052 0.016 NA
#> GSM379796 1 0.4069 0.946 0.804 0.000 0.080 0.076 0.024 NA
#> GSM379721 3 0.2601 0.912 0.016 0.000 0.896 0.012 0.036 NA
#> GSM379722 3 0.2601 0.912 0.016 0.000 0.896 0.012 0.036 NA
#> GSM379723 3 0.2334 0.912 0.008 0.000 0.908 0.012 0.032 NA
#> GSM379716 3 0.2334 0.912 0.008 0.000 0.908 0.012 0.032 NA
#> GSM379717 3 0.2334 0.912 0.008 0.000 0.908 0.012 0.032 NA
#> GSM379718 3 0.2601 0.912 0.016 0.000 0.896 0.012 0.036 NA
#> GSM379719 3 0.2601 0.912 0.016 0.000 0.896 0.012 0.036 NA
#> GSM379720 3 0.2601 0.912 0.016 0.000 0.896 0.012 0.036 NA
#> GSM379729 3 0.2943 0.900 0.024 0.000 0.876 0.008 0.044 NA
#> GSM379730 3 0.2943 0.900 0.024 0.000 0.876 0.008 0.044 NA
#> GSM379731 3 0.2943 0.900 0.024 0.000 0.876 0.008 0.044 NA
#> GSM379724 3 0.2334 0.912 0.008 0.000 0.908 0.012 0.032 NA
#> GSM379725 3 0.3452 0.904 0.028 0.000 0.844 0.008 0.052 NA
#> GSM379726 3 0.2334 0.912 0.008 0.000 0.908 0.012 0.032 NA
#> GSM379727 3 0.2334 0.912 0.008 0.000 0.908 0.012 0.032 NA
#> GSM379728 3 0.2334 0.912 0.008 0.000 0.908 0.012 0.032 NA
#> GSM379737 3 0.2512 0.905 0.008 0.000 0.896 0.008 0.040 NA
#> GSM379738 3 0.2512 0.905 0.008 0.000 0.896 0.008 0.040 NA
#> GSM379739 3 0.2740 0.903 0.012 0.000 0.884 0.008 0.040 NA
#> GSM379732 3 0.2987 0.900 0.020 0.000 0.872 0.008 0.044 NA
#> GSM379733 3 0.1823 0.910 0.004 0.000 0.932 0.008 0.028 NA
#> GSM379734 3 0.1823 0.910 0.004 0.000 0.932 0.008 0.028 NA
#> GSM379735 3 0.3662 0.888 0.024 0.000 0.828 0.008 0.064 NA
#> GSM379736 3 0.2556 0.910 0.000 0.000 0.888 0.012 0.052 NA
#> GSM379742 3 0.5025 0.795 0.076 0.008 0.728 0.000 0.064 NA
#> GSM379743 3 0.3662 0.888 0.024 0.000 0.828 0.008 0.064 NA
#> GSM379740 3 0.2512 0.905 0.008 0.000 0.896 0.008 0.040 NA
#> GSM379741 3 0.5025 0.795 0.076 0.008 0.728 0.000 0.064 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 6)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 6, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> CV:kmeans 137 2.50e-25 1 0.831 2
#> CV:kmeans 131 1.21e-50 1 0.732 3
#> CV:kmeans 139 2.80e-78 1 0.996 4
#> CV:kmeans 138 3.11e-103 1 0.997 5
#> CV:kmeans 138 3.50e-105 1 0.998 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.982 0.993 0.4905 0.510 0.510
#> 3 3 1.000 0.982 0.993 0.3161 0.822 0.659
#> 4 4 1.000 0.976 0.982 0.1327 0.910 0.749
#> 5 5 0.977 0.971 0.977 0.1001 0.924 0.719
#> 6 6 0.926 0.880 0.899 0.0281 0.977 0.881
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5
There is also optional best \(k\) = 2 3 4 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.0000 0.9922 0.000 1.000
#> GSM379833 2 0.0000 0.9922 0.000 1.000
#> GSM379834 2 0.0000 0.9922 0.000 1.000
#> GSM379827 2 0.0000 0.9922 0.000 1.000
#> GSM379828 2 0.0000 0.9922 0.000 1.000
#> GSM379829 1 0.0376 0.9893 0.996 0.004
#> GSM379830 2 0.0000 0.9922 0.000 1.000
#> GSM379831 2 0.0000 0.9922 0.000 1.000
#> GSM379840 2 0.0000 0.9922 0.000 1.000
#> GSM379841 2 0.0000 0.9922 0.000 1.000
#> GSM379842 2 0.0000 0.9922 0.000 1.000
#> GSM379835 2 0.0000 0.9922 0.000 1.000
#> GSM379836 2 0.0000 0.9922 0.000 1.000
#> GSM379837 2 0.0000 0.9922 0.000 1.000
#> GSM379838 2 0.0000 0.9922 0.000 1.000
#> GSM379839 2 0.0000 0.9922 0.000 1.000
#> GSM379848 2 0.0000 0.9922 0.000 1.000
#> GSM379849 2 0.0000 0.9922 0.000 1.000
#> GSM379850 2 0.0000 0.9922 0.000 1.000
#> GSM379843 2 0.0000 0.9922 0.000 1.000
#> GSM379844 2 0.0000 0.9922 0.000 1.000
#> GSM379845 2 0.0000 0.9922 0.000 1.000
#> GSM379846 2 0.0000 0.9922 0.000 1.000
#> GSM379847 2 0.0000 0.9922 0.000 1.000
#> GSM379853 2 0.0000 0.9922 0.000 1.000
#> GSM379854 2 0.0000 0.9922 0.000 1.000
#> GSM379851 2 0.0000 0.9922 0.000 1.000
#> GSM379852 2 0.0000 0.9922 0.000 1.000
#> GSM379804 1 0.0000 0.9931 1.000 0.000
#> GSM379805 1 0.0000 0.9931 1.000 0.000
#> GSM379806 1 0.0000 0.9931 1.000 0.000
#> GSM379799 1 0.0000 0.9931 1.000 0.000
#> GSM379800 1 0.0000 0.9931 1.000 0.000
#> GSM379801 1 0.0000 0.9931 1.000 0.000
#> GSM379802 1 0.0000 0.9931 1.000 0.000
#> GSM379803 1 0.0000 0.9931 1.000 0.000
#> GSM379812 1 0.0000 0.9931 1.000 0.000
#> GSM379813 1 0.0000 0.9931 1.000 0.000
#> GSM379814 1 0.0000 0.9931 1.000 0.000
#> GSM379807 1 0.0000 0.9931 1.000 0.000
#> GSM379808 1 0.0000 0.9931 1.000 0.000
#> GSM379809 1 0.0000 0.9931 1.000 0.000
#> GSM379810 1 0.0000 0.9931 1.000 0.000
#> GSM379811 1 0.0000 0.9931 1.000 0.000
#> GSM379820 1 0.0000 0.9931 1.000 0.000
#> GSM379821 1 0.0000 0.9931 1.000 0.000
#> GSM379822 1 0.0000 0.9931 1.000 0.000
#> GSM379815 1 0.0000 0.9931 1.000 0.000
#> GSM379816 1 0.3431 0.9260 0.936 0.064
#> GSM379817 1 0.0000 0.9931 1.000 0.000
#> GSM379818 1 0.0000 0.9931 1.000 0.000
#> GSM379819 1 0.0000 0.9931 1.000 0.000
#> GSM379825 1 0.0000 0.9931 1.000 0.000
#> GSM379826 1 0.0000 0.9931 1.000 0.000
#> GSM379823 1 0.0000 0.9931 1.000 0.000
#> GSM379824 1 0.0000 0.9931 1.000 0.000
#> GSM379749 2 0.0000 0.9922 0.000 1.000
#> GSM379750 2 0.0000 0.9922 0.000 1.000
#> GSM379751 2 0.0000 0.9922 0.000 1.000
#> GSM379744 2 0.0000 0.9922 0.000 1.000
#> GSM379745 2 0.0000 0.9922 0.000 1.000
#> GSM379746 2 0.0000 0.9922 0.000 1.000
#> GSM379747 2 0.0000 0.9922 0.000 1.000
#> GSM379748 2 0.0000 0.9922 0.000 1.000
#> GSM379757 2 0.0000 0.9922 0.000 1.000
#> GSM379758 2 0.0000 0.9922 0.000 1.000
#> GSM379752 2 0.0000 0.9922 0.000 1.000
#> GSM379753 2 0.0000 0.9922 0.000 1.000
#> GSM379754 2 0.0000 0.9922 0.000 1.000
#> GSM379755 2 0.0000 0.9922 0.000 1.000
#> GSM379756 2 0.0000 0.9922 0.000 1.000
#> GSM379764 2 0.0000 0.9922 0.000 1.000
#> GSM379765 2 0.0000 0.9922 0.000 1.000
#> GSM379766 2 0.0000 0.9922 0.000 1.000
#> GSM379759 2 0.0000 0.9922 0.000 1.000
#> GSM379760 2 0.0000 0.9922 0.000 1.000
#> GSM379761 2 0.0000 0.9922 0.000 1.000
#> GSM379762 2 0.0000 0.9922 0.000 1.000
#> GSM379763 2 0.0000 0.9922 0.000 1.000
#> GSM379769 2 0.0000 0.9922 0.000 1.000
#> GSM379770 2 0.0000 0.9922 0.000 1.000
#> GSM379767 2 0.0000 0.9922 0.000 1.000
#> GSM379768 2 0.0000 0.9922 0.000 1.000
#> GSM379776 1 0.0000 0.9931 1.000 0.000
#> GSM379777 1 0.0000 0.9931 1.000 0.000
#> GSM379778 1 0.9977 0.0869 0.528 0.472
#> GSM379771 1 0.0000 0.9931 1.000 0.000
#> GSM379772 1 0.0000 0.9931 1.000 0.000
#> GSM379773 1 0.0000 0.9931 1.000 0.000
#> GSM379774 1 0.0000 0.9931 1.000 0.000
#> GSM379775 1 0.0000 0.9931 1.000 0.000
#> GSM379784 1 0.0000 0.9931 1.000 0.000
#> GSM379785 1 0.0000 0.9931 1.000 0.000
#> GSM379786 1 0.0000 0.9931 1.000 0.000
#> GSM379779 1 0.0000 0.9931 1.000 0.000
#> GSM379780 1 0.0000 0.9931 1.000 0.000
#> GSM379781 1 0.0000 0.9931 1.000 0.000
#> GSM379782 2 0.6712 0.7862 0.176 0.824
#> GSM379783 1 0.0376 0.9893 0.996 0.004
#> GSM379792 1 0.0000 0.9931 1.000 0.000
#> GSM379793 1 0.0000 0.9931 1.000 0.000
#> GSM379794 1 0.0000 0.9931 1.000 0.000
#> GSM379787 2 0.8327 0.6433 0.264 0.736
#> GSM379788 1 0.0000 0.9931 1.000 0.000
#> GSM379789 1 0.0000 0.9931 1.000 0.000
#> GSM379790 1 0.0000 0.9931 1.000 0.000
#> GSM379791 1 0.0000 0.9931 1.000 0.000
#> GSM379797 1 0.0000 0.9931 1.000 0.000
#> GSM379798 1 0.0000 0.9931 1.000 0.000
#> GSM379795 1 0.0000 0.9931 1.000 0.000
#> GSM379796 1 0.0000 0.9931 1.000 0.000
#> GSM379721 1 0.0000 0.9931 1.000 0.000
#> GSM379722 1 0.0000 0.9931 1.000 0.000
#> GSM379723 1 0.0000 0.9931 1.000 0.000
#> GSM379716 1 0.0000 0.9931 1.000 0.000
#> GSM379717 1 0.0000 0.9931 1.000 0.000
#> GSM379718 1 0.0000 0.9931 1.000 0.000
#> GSM379719 1 0.0000 0.9931 1.000 0.000
#> GSM379720 1 0.0000 0.9931 1.000 0.000
#> GSM379729 1 0.0000 0.9931 1.000 0.000
#> GSM379730 1 0.0000 0.9931 1.000 0.000
#> GSM379731 1 0.0000 0.9931 1.000 0.000
#> GSM379724 1 0.0000 0.9931 1.000 0.000
#> GSM379725 1 0.0000 0.9931 1.000 0.000
#> GSM379726 1 0.0000 0.9931 1.000 0.000
#> GSM379727 1 0.0000 0.9931 1.000 0.000
#> GSM379728 1 0.0000 0.9931 1.000 0.000
#> GSM379737 1 0.0000 0.9931 1.000 0.000
#> GSM379738 1 0.0000 0.9931 1.000 0.000
#> GSM379739 1 0.0000 0.9931 1.000 0.000
#> GSM379732 1 0.0000 0.9931 1.000 0.000
#> GSM379733 1 0.0000 0.9931 1.000 0.000
#> GSM379734 1 0.0000 0.9931 1.000 0.000
#> GSM379735 1 0.0000 0.9931 1.000 0.000
#> GSM379736 1 0.0000 0.9931 1.000 0.000
#> GSM379742 2 0.0000 0.9922 0.000 1.000
#> GSM379743 1 0.0000 0.9931 1.000 0.000
#> GSM379740 1 0.0000 0.9931 1.000 0.000
#> GSM379741 2 0.0000 0.9922 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379833 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379834 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379827 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379828 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379829 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379830 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379831 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379840 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379841 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379842 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379835 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379836 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379837 2 0.0237 0.9890 0.004 0.996 0.000
#> GSM379838 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379839 2 0.0237 0.9890 0.004 0.996 0.000
#> GSM379848 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379849 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379850 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379843 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379844 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379845 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379846 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379847 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379853 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379854 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379851 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379852 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379804 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379805 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379806 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379799 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379800 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379801 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379802 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379803 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379812 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379813 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379814 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379807 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379808 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379809 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379810 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379811 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379820 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379821 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379822 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379815 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379816 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379817 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379818 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379819 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379825 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379826 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379823 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379824 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379749 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379750 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379751 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379744 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379745 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379746 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379747 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379748 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379757 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379758 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379752 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379753 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379754 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379755 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379756 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379764 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379765 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379766 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379759 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379760 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379761 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379762 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379763 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379769 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379770 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379767 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379768 2 0.0000 0.9928 0.000 1.000 0.000
#> GSM379776 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379777 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379778 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379771 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379772 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379773 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379774 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379775 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379784 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379785 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379786 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379779 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379780 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379781 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379782 2 0.5982 0.4969 0.328 0.668 0.004
#> GSM379783 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379792 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379793 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379794 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379787 1 0.6521 0.0127 0.504 0.492 0.004
#> GSM379788 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379789 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379790 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379791 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379797 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379798 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379795 1 0.0237 0.9872 0.996 0.000 0.004
#> GSM379796 1 0.0000 0.9880 1.000 0.000 0.000
#> GSM379721 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379722 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379723 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379716 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379717 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379718 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379719 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379720 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379729 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379730 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379731 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379724 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379725 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379726 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379727 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379728 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379737 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379738 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379739 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379732 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379733 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379734 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379735 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379736 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379742 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379743 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379740 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379741 3 0.0000 1.0000 0.000 0.000 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.0188 0.976 0.004 0.996 0 0.000
#> GSM379833 2 0.0188 0.976 0.004 0.996 0 0.000
#> GSM379834 2 0.0188 0.976 0.004 0.996 0 0.000
#> GSM379827 2 0.0188 0.976 0.004 0.996 0 0.000
#> GSM379828 2 0.0188 0.976 0.004 0.996 0 0.000
#> GSM379829 4 0.1004 0.955 0.004 0.024 0 0.972
#> GSM379830 2 0.0188 0.976 0.004 0.996 0 0.000
#> GSM379831 2 0.0188 0.976 0.004 0.996 0 0.000
#> GSM379840 2 0.0188 0.976 0.004 0.996 0 0.000
#> GSM379841 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379842 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379835 2 0.0188 0.976 0.004 0.996 0 0.000
#> GSM379836 2 0.0188 0.976 0.004 0.996 0 0.000
#> GSM379837 2 0.4950 0.392 0.004 0.620 0 0.376
#> GSM379838 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379839 2 0.4343 0.634 0.004 0.732 0 0.264
#> GSM379848 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379849 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379850 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379843 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379844 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379845 2 0.0188 0.976 0.004 0.996 0 0.000
#> GSM379846 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379847 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379853 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379854 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379851 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379852 2 0.0000 0.976 0.000 1.000 0 0.000
#> GSM379804 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379805 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379806 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379799 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379800 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379801 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379802 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379803 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379812 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379813 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379814 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379807 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379808 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379809 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379810 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379811 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379820 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379821 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379822 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379815 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379816 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379817 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379818 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379819 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379825 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379826 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379823 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379824 4 0.0000 0.987 0.000 0.000 0 1.000
#> GSM379749 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379750 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379751 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379744 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379745 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379746 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379747 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379748 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379757 2 0.0817 0.977 0.024 0.976 0 0.000
#> GSM379758 2 0.0817 0.977 0.024 0.976 0 0.000
#> GSM379752 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379753 2 0.0921 0.977 0.028 0.972 0 0.000
#> GSM379754 2 0.0817 0.977 0.024 0.976 0 0.000
#> GSM379755 2 0.0817 0.977 0.024 0.976 0 0.000
#> GSM379756 2 0.0817 0.977 0.024 0.976 0 0.000
#> GSM379764 2 0.0817 0.977 0.024 0.976 0 0.000
#> GSM379765 2 0.0817 0.977 0.024 0.976 0 0.000
#> GSM379766 2 0.0817 0.977 0.024 0.976 0 0.000
#> GSM379759 2 0.0817 0.977 0.024 0.976 0 0.000
#> GSM379760 2 0.0817 0.977 0.024 0.976 0 0.000
#> GSM379761 2 0.0817 0.977 0.024 0.976 0 0.000
#> GSM379762 2 0.0817 0.977 0.024 0.976 0 0.000
#> GSM379763 2 0.0817 0.977 0.024 0.976 0 0.000
#> GSM379769 2 0.0817 0.977 0.024 0.976 0 0.000
#> GSM379770 2 0.0817 0.977 0.024 0.976 0 0.000
#> GSM379767 2 0.0817 0.977 0.024 0.976 0 0.000
#> GSM379768 2 0.0817 0.977 0.024 0.976 0 0.000
#> GSM379776 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379777 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379778 1 0.1004 0.993 0.972 0.004 0 0.024
#> GSM379771 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379772 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379773 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379774 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379775 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379784 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379785 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379786 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379779 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379780 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379781 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379782 1 0.0376 0.972 0.992 0.004 0 0.004
#> GSM379783 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379792 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379793 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379794 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379787 1 0.0524 0.976 0.988 0.004 0 0.008
#> GSM379788 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379789 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379790 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379791 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379797 4 0.4643 0.455 0.344 0.000 0 0.656
#> GSM379798 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379795 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379796 1 0.0921 0.998 0.972 0.000 0 0.028
#> GSM379721 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379722 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379723 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379716 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379717 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379718 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379719 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379720 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379729 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379730 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379731 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379724 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379725 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379726 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379727 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379728 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379737 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379738 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379739 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379732 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379733 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379734 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379735 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379736 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379742 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379743 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379740 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379741 3 0.0000 1.000 0.000 0.000 1 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 5 0.0609 0.951 0.000 0.020 0 0.000 0.980
#> GSM379833 5 0.0609 0.951 0.000 0.020 0 0.000 0.980
#> GSM379834 5 0.0609 0.951 0.000 0.020 0 0.000 0.980
#> GSM379827 5 0.0609 0.951 0.000 0.020 0 0.000 0.980
#> GSM379828 5 0.0609 0.951 0.000 0.020 0 0.000 0.980
#> GSM379829 4 0.3913 0.569 0.000 0.000 0 0.676 0.324
#> GSM379830 5 0.0609 0.951 0.000 0.020 0 0.000 0.980
#> GSM379831 5 0.0609 0.951 0.000 0.020 0 0.000 0.980
#> GSM379840 5 0.0404 0.946 0.000 0.012 0 0.000 0.988
#> GSM379841 5 0.2179 0.949 0.000 0.112 0 0.000 0.888
#> GSM379842 5 0.1908 0.952 0.000 0.092 0 0.000 0.908
#> GSM379835 5 0.0609 0.951 0.000 0.020 0 0.000 0.980
#> GSM379836 5 0.0609 0.951 0.000 0.020 0 0.000 0.980
#> GSM379837 5 0.0290 0.937 0.000 0.000 0 0.008 0.992
#> GSM379838 5 0.2179 0.949 0.000 0.112 0 0.000 0.888
#> GSM379839 5 0.0290 0.937 0.000 0.000 0 0.008 0.992
#> GSM379848 5 0.2179 0.949 0.000 0.112 0 0.000 0.888
#> GSM379849 5 0.2179 0.949 0.000 0.112 0 0.000 0.888
#> GSM379850 5 0.2179 0.949 0.000 0.112 0 0.000 0.888
#> GSM379843 5 0.1965 0.952 0.000 0.096 0 0.000 0.904
#> GSM379844 5 0.2127 0.950 0.000 0.108 0 0.000 0.892
#> GSM379845 5 0.0609 0.951 0.000 0.020 0 0.000 0.980
#> GSM379846 5 0.2127 0.950 0.000 0.108 0 0.000 0.892
#> GSM379847 5 0.2179 0.949 0.000 0.112 0 0.000 0.888
#> GSM379853 5 0.1908 0.952 0.000 0.092 0 0.000 0.908
#> GSM379854 5 0.2179 0.949 0.000 0.112 0 0.000 0.888
#> GSM379851 5 0.2127 0.950 0.000 0.108 0 0.000 0.892
#> GSM379852 5 0.2179 0.949 0.000 0.112 0 0.000 0.888
#> GSM379804 4 0.0162 0.970 0.000 0.000 0 0.996 0.004
#> GSM379805 4 0.0404 0.970 0.000 0.000 0 0.988 0.012
#> GSM379806 4 0.0404 0.970 0.000 0.000 0 0.988 0.012
#> GSM379799 4 0.0404 0.970 0.000 0.000 0 0.988 0.012
#> GSM379800 4 0.0404 0.970 0.000 0.000 0 0.988 0.012
#> GSM379801 4 0.0404 0.970 0.000 0.000 0 0.988 0.012
#> GSM379802 4 0.0404 0.970 0.000 0.000 0 0.988 0.012
#> GSM379803 4 0.0404 0.970 0.000 0.000 0 0.988 0.012
#> GSM379812 4 0.0290 0.970 0.000 0.000 0 0.992 0.008
#> GSM379813 4 0.0290 0.970 0.000 0.000 0 0.992 0.008
#> GSM379814 4 0.0290 0.970 0.000 0.000 0 0.992 0.008
#> GSM379807 4 0.0290 0.970 0.000 0.000 0 0.992 0.008
#> GSM379808 4 0.0404 0.970 0.000 0.000 0 0.988 0.012
#> GSM379809 4 0.0404 0.970 0.000 0.000 0 0.988 0.012
#> GSM379810 4 0.0000 0.970 0.000 0.000 0 1.000 0.000
#> GSM379811 4 0.0404 0.970 0.000 0.000 0 0.988 0.012
#> GSM379820 4 0.0290 0.970 0.000 0.000 0 0.992 0.008
#> GSM379821 4 0.0290 0.970 0.000 0.000 0 0.992 0.008
#> GSM379822 4 0.0290 0.970 0.000 0.000 0 0.992 0.008
#> GSM379815 4 0.0000 0.970 0.000 0.000 0 1.000 0.000
#> GSM379816 4 0.0290 0.970 0.000 0.000 0 0.992 0.008
#> GSM379817 4 0.0290 0.970 0.000 0.000 0 0.992 0.008
#> GSM379818 4 0.0404 0.970 0.000 0.000 0 0.988 0.012
#> GSM379819 4 0.0290 0.970 0.000 0.000 0 0.992 0.008
#> GSM379825 4 0.0404 0.970 0.000 0.000 0 0.988 0.012
#> GSM379826 4 0.0290 0.970 0.000 0.000 0 0.992 0.008
#> GSM379823 4 0.0290 0.970 0.000 0.000 0 0.992 0.008
#> GSM379824 4 0.0290 0.970 0.000 0.000 0 0.992 0.008
#> GSM379749 2 0.1043 0.964 0.000 0.960 0 0.000 0.040
#> GSM379750 2 0.1043 0.964 0.000 0.960 0 0.000 0.040
#> GSM379751 2 0.1908 0.923 0.000 0.908 0 0.000 0.092
#> GSM379744 2 0.1197 0.959 0.000 0.952 0 0.000 0.048
#> GSM379745 2 0.1197 0.959 0.000 0.952 0 0.000 0.048
#> GSM379746 2 0.1043 0.964 0.000 0.960 0 0.000 0.040
#> GSM379747 2 0.1608 0.941 0.000 0.928 0 0.000 0.072
#> GSM379748 2 0.1608 0.941 0.000 0.928 0 0.000 0.072
#> GSM379757 2 0.0000 0.977 0.000 1.000 0 0.000 0.000
#> GSM379758 2 0.0000 0.977 0.000 1.000 0 0.000 0.000
#> GSM379752 2 0.1043 0.964 0.000 0.960 0 0.000 0.040
#> GSM379753 2 0.1544 0.944 0.000 0.932 0 0.000 0.068
#> GSM379754 2 0.0000 0.977 0.000 1.000 0 0.000 0.000
#> GSM379755 2 0.0000 0.977 0.000 1.000 0 0.000 0.000
#> GSM379756 2 0.0000 0.977 0.000 1.000 0 0.000 0.000
#> GSM379764 2 0.0000 0.977 0.000 1.000 0 0.000 0.000
#> GSM379765 2 0.0000 0.977 0.000 1.000 0 0.000 0.000
#> GSM379766 2 0.0000 0.977 0.000 1.000 0 0.000 0.000
#> GSM379759 2 0.0000 0.977 0.000 1.000 0 0.000 0.000
#> GSM379760 2 0.0000 0.977 0.000 1.000 0 0.000 0.000
#> GSM379761 2 0.0000 0.977 0.000 1.000 0 0.000 0.000
#> GSM379762 2 0.0000 0.977 0.000 1.000 0 0.000 0.000
#> GSM379763 2 0.0000 0.977 0.000 1.000 0 0.000 0.000
#> GSM379769 2 0.0000 0.977 0.000 1.000 0 0.000 0.000
#> GSM379770 2 0.0000 0.977 0.000 1.000 0 0.000 0.000
#> GSM379767 2 0.0000 0.977 0.000 1.000 0 0.000 0.000
#> GSM379768 2 0.0000 0.977 0.000 1.000 0 0.000 0.000
#> GSM379776 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379777 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379778 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379771 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379772 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379773 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379774 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379775 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379784 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379785 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379786 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379779 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379780 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379781 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379782 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379783 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379792 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379793 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379794 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379787 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379788 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379789 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379790 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379791 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379797 4 0.4387 0.467 0.348 0.000 0 0.640 0.012
#> GSM379798 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379795 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379796 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> GSM379721 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379722 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379723 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379716 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379717 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379718 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379719 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379720 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379729 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379730 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379731 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379724 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379725 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379726 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379727 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379728 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379737 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379738 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379739 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379732 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379733 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379734 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379735 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379736 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379742 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379743 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379740 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM379741 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 5 0.3774 -0.524 0.000 0.000 0.000 0.000 0.592 0.408
#> GSM379833 5 0.3774 -0.524 0.000 0.000 0.000 0.000 0.592 0.408
#> GSM379834 5 0.3789 -0.549 0.000 0.000 0.000 0.000 0.584 0.416
#> GSM379827 5 0.0508 0.745 0.000 0.012 0.000 0.000 0.984 0.004
#> GSM379828 5 0.0405 0.750 0.000 0.008 0.000 0.000 0.988 0.004
#> GSM379829 5 0.3684 0.362 0.000 0.000 0.000 0.332 0.664 0.004
#> GSM379830 5 0.0000 0.758 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379831 5 0.0000 0.758 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379840 5 0.0000 0.758 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379841 6 0.4250 0.891 0.000 0.016 0.000 0.000 0.456 0.528
#> GSM379842 6 0.4086 0.876 0.000 0.008 0.000 0.000 0.464 0.528
#> GSM379835 5 0.0000 0.758 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379836 5 0.0000 0.758 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379837 5 0.0260 0.754 0.000 0.000 0.000 0.008 0.992 0.000
#> GSM379838 6 0.4250 0.891 0.000 0.016 0.000 0.000 0.456 0.528
#> GSM379839 5 0.0260 0.754 0.000 0.000 0.000 0.008 0.992 0.000
#> GSM379848 6 0.4131 0.918 0.000 0.016 0.000 0.000 0.384 0.600
#> GSM379849 6 0.4131 0.918 0.000 0.016 0.000 0.000 0.384 0.600
#> GSM379850 6 0.4131 0.918 0.000 0.016 0.000 0.000 0.384 0.600
#> GSM379843 6 0.4086 0.876 0.000 0.008 0.000 0.000 0.464 0.528
#> GSM379844 6 0.4250 0.891 0.000 0.016 0.000 0.000 0.456 0.528
#> GSM379845 5 0.0000 0.758 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379846 6 0.4250 0.891 0.000 0.016 0.000 0.000 0.456 0.528
#> GSM379847 6 0.4150 0.919 0.000 0.016 0.000 0.000 0.392 0.592
#> GSM379853 6 0.3993 0.915 0.000 0.008 0.000 0.000 0.400 0.592
#> GSM379854 6 0.4131 0.918 0.000 0.016 0.000 0.000 0.384 0.600
#> GSM379851 6 0.4131 0.918 0.000 0.016 0.000 0.000 0.384 0.600
#> GSM379852 6 0.4131 0.918 0.000 0.016 0.000 0.000 0.384 0.600
#> GSM379804 4 0.0000 0.897 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379805 4 0.0000 0.897 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379806 4 0.0000 0.897 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379799 4 0.0000 0.897 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379800 4 0.0000 0.897 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379801 4 0.0000 0.897 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379802 4 0.0000 0.897 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379803 4 0.0000 0.897 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379812 4 0.2941 0.880 0.000 0.000 0.000 0.780 0.000 0.220
#> GSM379813 4 0.2883 0.882 0.000 0.000 0.000 0.788 0.000 0.212
#> GSM379814 4 0.2854 0.883 0.000 0.000 0.000 0.792 0.000 0.208
#> GSM379807 4 0.2854 0.883 0.000 0.000 0.000 0.792 0.000 0.208
#> GSM379808 4 0.0000 0.897 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379809 4 0.0000 0.897 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379810 4 0.0260 0.898 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM379811 4 0.0000 0.897 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379820 4 0.2854 0.883 0.000 0.000 0.000 0.792 0.000 0.208
#> GSM379821 4 0.2941 0.880 0.000 0.000 0.000 0.780 0.000 0.220
#> GSM379822 4 0.2941 0.880 0.000 0.000 0.000 0.780 0.000 0.220
#> GSM379815 4 0.0260 0.898 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM379816 4 0.2941 0.880 0.000 0.000 0.000 0.780 0.000 0.220
#> GSM379817 4 0.2883 0.882 0.000 0.000 0.000 0.788 0.000 0.212
#> GSM379818 4 0.0000 0.897 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379819 4 0.2854 0.883 0.000 0.000 0.000 0.792 0.000 0.208
#> GSM379825 4 0.0632 0.897 0.000 0.000 0.000 0.976 0.000 0.024
#> GSM379826 4 0.2854 0.883 0.000 0.000 0.000 0.792 0.000 0.208
#> GSM379823 4 0.2941 0.880 0.000 0.000 0.000 0.780 0.000 0.220
#> GSM379824 4 0.2941 0.880 0.000 0.000 0.000 0.780 0.000 0.220
#> GSM379749 2 0.0146 0.894 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM379750 2 0.0146 0.894 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM379751 2 0.2053 0.815 0.000 0.888 0.000 0.000 0.108 0.004
#> GSM379744 2 0.0405 0.891 0.000 0.988 0.000 0.000 0.008 0.004
#> GSM379745 2 0.0405 0.891 0.000 0.988 0.000 0.000 0.008 0.004
#> GSM379746 2 0.0146 0.894 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM379747 2 0.0405 0.891 0.000 0.988 0.000 0.000 0.008 0.004
#> GSM379748 2 0.0405 0.891 0.000 0.988 0.000 0.000 0.008 0.004
#> GSM379757 2 0.0363 0.895 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM379758 2 0.2378 0.883 0.000 0.848 0.000 0.000 0.000 0.152
#> GSM379752 2 0.0146 0.894 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM379753 2 0.0405 0.891 0.000 0.988 0.000 0.000 0.008 0.004
#> GSM379754 2 0.0000 0.895 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379755 2 0.0000 0.895 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379756 2 0.0000 0.895 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379764 2 0.3309 0.835 0.000 0.720 0.000 0.000 0.000 0.280
#> GSM379765 2 0.3309 0.835 0.000 0.720 0.000 0.000 0.000 0.280
#> GSM379766 2 0.3309 0.835 0.000 0.720 0.000 0.000 0.000 0.280
#> GSM379759 2 0.2300 0.884 0.000 0.856 0.000 0.000 0.000 0.144
#> GSM379760 2 0.2300 0.884 0.000 0.856 0.000 0.000 0.000 0.144
#> GSM379761 2 0.2378 0.883 0.000 0.848 0.000 0.000 0.000 0.152
#> GSM379762 2 0.2378 0.883 0.000 0.848 0.000 0.000 0.000 0.152
#> GSM379763 2 0.3309 0.835 0.000 0.720 0.000 0.000 0.000 0.280
#> GSM379769 2 0.3309 0.835 0.000 0.720 0.000 0.000 0.000 0.280
#> GSM379770 2 0.3309 0.835 0.000 0.720 0.000 0.000 0.000 0.280
#> GSM379767 2 0.3309 0.835 0.000 0.720 0.000 0.000 0.000 0.280
#> GSM379768 2 0.3309 0.835 0.000 0.720 0.000 0.000 0.000 0.280
#> GSM379776 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379777 1 0.0363 0.991 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM379778 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379771 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379772 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379773 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379774 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379775 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379784 1 0.0260 0.993 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM379785 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379786 1 0.0363 0.991 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM379779 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379780 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379781 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379782 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379783 1 0.0363 0.991 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM379792 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379793 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379794 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379787 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379788 1 0.0260 0.993 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM379789 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379790 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379791 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379797 4 0.3464 0.530 0.312 0.000 0.000 0.688 0.000 0.000
#> GSM379798 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379795 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379796 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379721 3 0.0000 0.985 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379722 3 0.0000 0.985 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379723 3 0.0000 0.985 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379716 3 0.0000 0.985 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379717 3 0.0000 0.985 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379718 3 0.0000 0.985 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379719 3 0.0000 0.985 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379720 3 0.0000 0.985 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379729 3 0.0865 0.977 0.000 0.000 0.964 0.000 0.000 0.036
#> GSM379730 3 0.0865 0.977 0.000 0.000 0.964 0.000 0.000 0.036
#> GSM379731 3 0.0865 0.977 0.000 0.000 0.964 0.000 0.000 0.036
#> GSM379724 3 0.0000 0.985 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379725 3 0.0632 0.980 0.000 0.000 0.976 0.000 0.000 0.024
#> GSM379726 3 0.0000 0.985 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379727 3 0.0000 0.985 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379728 3 0.0000 0.985 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379737 3 0.0458 0.983 0.000 0.000 0.984 0.000 0.000 0.016
#> GSM379738 3 0.0458 0.983 0.000 0.000 0.984 0.000 0.000 0.016
#> GSM379739 3 0.0547 0.983 0.000 0.000 0.980 0.000 0.000 0.020
#> GSM379732 3 0.0865 0.977 0.000 0.000 0.964 0.000 0.000 0.036
#> GSM379733 3 0.0146 0.985 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM379734 3 0.0146 0.985 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM379735 3 0.0937 0.976 0.000 0.000 0.960 0.000 0.000 0.040
#> GSM379736 3 0.0146 0.985 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM379742 3 0.1814 0.929 0.000 0.000 0.900 0.000 0.000 0.100
#> GSM379743 3 0.0937 0.976 0.000 0.000 0.960 0.000 0.000 0.040
#> GSM379740 3 0.0458 0.983 0.000 0.000 0.984 0.000 0.000 0.016
#> GSM379741 3 0.1814 0.929 0.000 0.000 0.900 0.000 0.000 0.100
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> CV:skmeans 138 9.55e-25 1 0.733 2
#> CV:skmeans 137 1.49e-53 1 0.934 3
#> CV:skmeans 137 5.48e-79 1 0.995 4
#> CV:skmeans 138 3.50e-105 1 0.996 5
#> CV:skmeans 135 1.08e-99 1 0.277 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.00 0.987 0.994 0.4894 0.513 0.513
#> 3 3 1.00 0.983 0.994 0.3219 0.831 0.674
#> 4 4 0.84 0.901 0.882 0.1261 0.910 0.748
#> 5 5 1.00 0.977 0.990 0.1057 0.913 0.683
#> 6 6 0.96 0.939 0.941 0.0277 0.970 0.849
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 5
There is also optional best \(k\) = 2 3 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.000 0.999 0.000 1.000
#> GSM379833 2 0.000 0.999 0.000 1.000
#> GSM379834 2 0.000 0.999 0.000 1.000
#> GSM379827 2 0.000 0.999 0.000 1.000
#> GSM379828 2 0.000 0.999 0.000 1.000
#> GSM379829 2 0.327 0.935 0.060 0.940
#> GSM379830 2 0.000 0.999 0.000 1.000
#> GSM379831 2 0.000 0.999 0.000 1.000
#> GSM379840 2 0.000 0.999 0.000 1.000
#> GSM379841 2 0.000 0.999 0.000 1.000
#> GSM379842 2 0.000 0.999 0.000 1.000
#> GSM379835 2 0.000 0.999 0.000 1.000
#> GSM379836 2 0.000 0.999 0.000 1.000
#> GSM379837 2 0.000 0.999 0.000 1.000
#> GSM379838 2 0.000 0.999 0.000 1.000
#> GSM379839 2 0.000 0.999 0.000 1.000
#> GSM379848 2 0.000 0.999 0.000 1.000
#> GSM379849 2 0.000 0.999 0.000 1.000
#> GSM379850 2 0.000 0.999 0.000 1.000
#> GSM379843 2 0.000 0.999 0.000 1.000
#> GSM379844 2 0.000 0.999 0.000 1.000
#> GSM379845 2 0.000 0.999 0.000 1.000
#> GSM379846 2 0.000 0.999 0.000 1.000
#> GSM379847 2 0.000 0.999 0.000 1.000
#> GSM379853 2 0.000 0.999 0.000 1.000
#> GSM379854 2 0.000 0.999 0.000 1.000
#> GSM379851 2 0.000 0.999 0.000 1.000
#> GSM379852 2 0.000 0.999 0.000 1.000
#> GSM379804 1 0.000 0.990 1.000 0.000
#> GSM379805 1 0.000 0.990 1.000 0.000
#> GSM379806 1 0.000 0.990 1.000 0.000
#> GSM379799 1 0.000 0.990 1.000 0.000
#> GSM379800 1 0.000 0.990 1.000 0.000
#> GSM379801 1 0.000 0.990 1.000 0.000
#> GSM379802 1 0.000 0.990 1.000 0.000
#> GSM379803 1 0.000 0.990 1.000 0.000
#> GSM379812 1 0.430 0.903 0.912 0.088
#> GSM379813 1 0.000 0.990 1.000 0.000
#> GSM379814 1 0.000 0.990 1.000 0.000
#> GSM379807 1 0.000 0.990 1.000 0.000
#> GSM379808 1 0.000 0.990 1.000 0.000
#> GSM379809 1 0.000 0.990 1.000 0.000
#> GSM379810 1 0.000 0.990 1.000 0.000
#> GSM379811 1 0.000 0.990 1.000 0.000
#> GSM379820 1 0.000 0.990 1.000 0.000
#> GSM379821 1 0.000 0.990 1.000 0.000
#> GSM379822 1 0.000 0.990 1.000 0.000
#> GSM379815 1 0.000 0.990 1.000 0.000
#> GSM379816 1 0.730 0.755 0.796 0.204
#> GSM379817 1 0.000 0.990 1.000 0.000
#> GSM379818 1 0.000 0.990 1.000 0.000
#> GSM379819 1 0.000 0.990 1.000 0.000
#> GSM379825 1 0.000 0.990 1.000 0.000
#> GSM379826 1 0.000 0.990 1.000 0.000
#> GSM379823 1 0.000 0.990 1.000 0.000
#> GSM379824 1 0.000 0.990 1.000 0.000
#> GSM379749 2 0.000 0.999 0.000 1.000
#> GSM379750 2 0.000 0.999 0.000 1.000
#> GSM379751 2 0.000 0.999 0.000 1.000
#> GSM379744 2 0.000 0.999 0.000 1.000
#> GSM379745 2 0.000 0.999 0.000 1.000
#> GSM379746 2 0.000 0.999 0.000 1.000
#> GSM379747 2 0.000 0.999 0.000 1.000
#> GSM379748 2 0.000 0.999 0.000 1.000
#> GSM379757 2 0.000 0.999 0.000 1.000
#> GSM379758 2 0.000 0.999 0.000 1.000
#> GSM379752 2 0.000 0.999 0.000 1.000
#> GSM379753 2 0.000 0.999 0.000 1.000
#> GSM379754 2 0.000 0.999 0.000 1.000
#> GSM379755 2 0.000 0.999 0.000 1.000
#> GSM379756 2 0.000 0.999 0.000 1.000
#> GSM379764 2 0.000 0.999 0.000 1.000
#> GSM379765 2 0.000 0.999 0.000 1.000
#> GSM379766 2 0.000 0.999 0.000 1.000
#> GSM379759 2 0.000 0.999 0.000 1.000
#> GSM379760 2 0.000 0.999 0.000 1.000
#> GSM379761 2 0.000 0.999 0.000 1.000
#> GSM379762 2 0.000 0.999 0.000 1.000
#> GSM379763 2 0.000 0.999 0.000 1.000
#> GSM379769 2 0.000 0.999 0.000 1.000
#> GSM379770 2 0.000 0.999 0.000 1.000
#> GSM379767 2 0.000 0.999 0.000 1.000
#> GSM379768 2 0.000 0.999 0.000 1.000
#> GSM379776 1 0.000 0.990 1.000 0.000
#> GSM379777 1 0.000 0.990 1.000 0.000
#> GSM379778 1 0.000 0.990 1.000 0.000
#> GSM379771 1 0.000 0.990 1.000 0.000
#> GSM379772 1 0.000 0.990 1.000 0.000
#> GSM379773 1 0.000 0.990 1.000 0.000
#> GSM379774 1 0.000 0.990 1.000 0.000
#> GSM379775 1 0.000 0.990 1.000 0.000
#> GSM379784 1 0.000 0.990 1.000 0.000
#> GSM379785 1 0.000 0.990 1.000 0.000
#> GSM379786 1 0.000 0.990 1.000 0.000
#> GSM379779 1 0.000 0.990 1.000 0.000
#> GSM379780 1 0.000 0.990 1.000 0.000
#> GSM379781 1 0.000 0.990 1.000 0.000
#> GSM379782 1 0.000 0.990 1.000 0.000
#> GSM379783 1 0.000 0.990 1.000 0.000
#> GSM379792 1 0.000 0.990 1.000 0.000
#> GSM379793 1 0.000 0.990 1.000 0.000
#> GSM379794 1 0.000 0.990 1.000 0.000
#> GSM379787 1 0.000 0.990 1.000 0.000
#> GSM379788 1 0.000 0.990 1.000 0.000
#> GSM379789 1 0.000 0.990 1.000 0.000
#> GSM379790 1 0.000 0.990 1.000 0.000
#> GSM379791 1 0.000 0.990 1.000 0.000
#> GSM379797 1 0.000 0.990 1.000 0.000
#> GSM379798 1 0.000 0.990 1.000 0.000
#> GSM379795 1 0.000 0.990 1.000 0.000
#> GSM379796 1 0.000 0.990 1.000 0.000
#> GSM379721 1 0.000 0.990 1.000 0.000
#> GSM379722 1 0.000 0.990 1.000 0.000
#> GSM379723 1 0.000 0.990 1.000 0.000
#> GSM379716 1 0.000 0.990 1.000 0.000
#> GSM379717 1 0.000 0.990 1.000 0.000
#> GSM379718 1 0.000 0.990 1.000 0.000
#> GSM379719 1 0.000 0.990 1.000 0.000
#> GSM379720 1 0.000 0.990 1.000 0.000
#> GSM379729 1 0.722 0.760 0.800 0.200
#> GSM379730 1 0.722 0.760 0.800 0.200
#> GSM379731 1 0.000 0.990 1.000 0.000
#> GSM379724 1 0.000 0.990 1.000 0.000
#> GSM379725 1 0.541 0.861 0.876 0.124
#> GSM379726 1 0.000 0.990 1.000 0.000
#> GSM379727 1 0.000 0.990 1.000 0.000
#> GSM379728 1 0.000 0.990 1.000 0.000
#> GSM379737 1 0.000 0.990 1.000 0.000
#> GSM379738 1 0.000 0.990 1.000 0.000
#> GSM379739 1 0.000 0.990 1.000 0.000
#> GSM379732 1 0.000 0.990 1.000 0.000
#> GSM379733 1 0.000 0.990 1.000 0.000
#> GSM379734 1 0.000 0.990 1.000 0.000
#> GSM379735 1 0.000 0.990 1.000 0.000
#> GSM379736 1 0.000 0.990 1.000 0.000
#> GSM379742 2 0.000 0.999 0.000 1.000
#> GSM379743 1 0.000 0.990 1.000 0.000
#> GSM379740 1 0.000 0.990 1.000 0.000
#> GSM379741 2 0.000 0.999 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379833 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379834 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379827 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379828 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379829 2 0.2486 0.9224 0.060 0.932 0.008
#> GSM379830 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379831 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379840 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379841 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379842 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379835 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379836 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379837 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379838 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379839 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379848 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379849 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379850 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379843 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379844 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379845 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379846 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379847 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379853 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379854 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379851 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379852 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379804 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379805 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379806 1 0.0747 0.9698 0.984 0.000 0.016
#> GSM379799 1 0.0592 0.9736 0.988 0.000 0.012
#> GSM379800 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379801 1 0.6309 0.0168 0.504 0.000 0.496
#> GSM379802 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379803 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379812 1 0.2711 0.8852 0.912 0.088 0.000
#> GSM379813 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379814 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379807 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379808 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379809 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379810 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379811 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379820 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379821 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379822 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379815 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379816 1 0.4605 0.7344 0.796 0.204 0.000
#> GSM379817 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379818 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379819 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379825 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379826 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379823 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379824 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379749 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379750 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379751 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379744 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379745 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379746 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379747 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379748 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379757 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379758 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379752 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379753 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379754 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379755 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379756 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379764 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379765 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379766 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379759 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379760 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379761 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379762 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379763 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379769 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379770 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379767 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379768 2 0.0000 0.9986 0.000 1.000 0.000
#> GSM379776 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379777 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379778 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379771 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379772 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379773 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379774 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379775 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379784 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379785 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379786 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379779 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379780 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379781 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379782 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379783 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379792 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379793 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379794 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379787 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379788 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379789 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379790 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379791 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379797 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379798 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379795 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379796 1 0.0000 0.9842 1.000 0.000 0.000
#> GSM379721 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379722 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379723 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379716 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379717 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379718 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379719 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379720 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379729 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379730 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379731 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379724 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379725 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379726 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379727 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379728 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379737 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379738 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379739 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379732 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379733 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379734 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379735 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379736 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379742 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379743 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379740 3 0.0000 1.0000 0.000 0.000 1.000
#> GSM379741 3 0.0000 1.0000 0.000 0.000 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379833 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379834 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379827 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379828 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379829 4 0.5250 0.275 0.000 0.440 0.008 0.552
#> GSM379830 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379831 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379840 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379841 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379842 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379835 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379836 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379837 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379838 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379839 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379848 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379849 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379850 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379843 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379844 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379845 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379846 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379847 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379853 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379854 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379851 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379852 2 0.0000 0.873 0.000 1.000 0.000 0.000
#> GSM379804 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379805 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379806 4 0.0469 0.895 0.000 0.000 0.012 0.988
#> GSM379799 4 0.0336 0.900 0.000 0.000 0.008 0.992
#> GSM379800 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379801 4 0.4072 0.553 0.000 0.000 0.252 0.748
#> GSM379802 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379803 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379812 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379813 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379814 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379807 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379808 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379809 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379810 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379811 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379820 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379821 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379822 4 0.4999 -0.514 0.492 0.000 0.000 0.508
#> GSM379815 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379816 4 0.1637 0.832 0.060 0.000 0.000 0.940
#> GSM379817 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379818 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379819 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379825 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379826 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379823 4 0.4972 -0.400 0.456 0.000 0.000 0.544
#> GSM379824 4 0.0000 0.909 0.000 0.000 0.000 1.000
#> GSM379749 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379750 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379751 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379744 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379745 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379746 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379747 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379748 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379757 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379758 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379752 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379753 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379754 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379755 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379756 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379764 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379765 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379766 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379759 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379760 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379761 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379762 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379763 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379769 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379770 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379767 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379768 2 0.4222 0.874 0.272 0.728 0.000 0.000
#> GSM379776 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379777 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379778 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379771 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379772 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379773 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379774 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379775 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379784 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379785 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379786 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379779 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379780 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379781 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379782 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379783 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379792 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379793 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379794 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379787 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379788 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379789 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379790 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379791 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379797 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379798 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379795 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379796 1 0.4222 1.000 0.728 0.000 0.000 0.272
#> GSM379721 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379722 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379723 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379716 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379717 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379718 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379719 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379720 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379729 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379730 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379731 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379724 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379725 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379726 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379727 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379728 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379737 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379738 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379739 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379732 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379733 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379734 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379735 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379736 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379742 3 0.4008 0.726 0.244 0.000 0.756 0.000
#> GSM379743 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379740 3 0.0000 0.991 0.000 0.000 1.000 0.000
#> GSM379741 3 0.0000 0.991 0.000 0.000 1.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379833 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379834 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379827 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379828 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379829 4 0.289 0.779 0.000 0.000 0.000 0.824 0.176
#> GSM379830 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379831 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379840 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379841 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379842 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379835 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379836 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379837 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379838 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379839 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379848 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379849 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379850 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379843 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379844 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379845 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379846 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379847 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379853 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379854 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379851 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379852 5 0.000 1.000 0.000 0.000 0.000 0.000 1.000
#> GSM379804 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379805 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379806 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379799 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379800 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379801 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379802 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379803 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379812 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379813 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379814 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379807 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379808 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379809 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379810 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379811 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379820 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379821 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379822 1 0.340 0.696 0.764 0.000 0.000 0.236 0.000
#> GSM379815 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379816 4 0.334 0.692 0.228 0.000 0.000 0.772 0.000
#> GSM379817 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379818 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379819 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379825 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379826 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379823 1 0.364 0.634 0.728 0.000 0.000 0.272 0.000
#> GSM379824 4 0.000 0.984 0.000 0.000 0.000 1.000 0.000
#> GSM379749 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379750 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379751 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379744 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379745 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379746 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379747 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379748 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379757 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379758 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379752 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379753 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379754 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379755 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379756 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379764 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379765 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379766 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379759 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379760 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379761 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379762 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379763 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379769 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379770 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379767 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379768 2 0.000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM379776 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379777 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379778 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379771 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379772 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379773 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379774 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379775 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379784 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379785 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379786 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379779 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379780 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379781 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379782 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379783 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379792 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379793 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379794 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379787 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379788 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379789 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379790 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379791 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379797 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379798 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379795 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379796 1 0.000 0.982 1.000 0.000 0.000 0.000 0.000
#> GSM379721 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379722 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379723 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379716 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379717 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379718 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379719 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379720 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379729 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379730 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379731 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379724 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379725 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379726 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379727 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379728 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379737 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379738 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379739 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379732 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379733 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379734 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379735 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379736 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379742 3 0.422 0.288 0.000 0.416 0.584 0.000 0.000
#> GSM379743 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379740 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
#> GSM379741 3 0.000 0.984 0.000 0.000 1.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 5 0.0260 0.918 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM379833 6 0.3198 0.873 0.000 0.000 0.000 0.000 0.260 0.740
#> GSM379834 5 0.2340 0.734 0.000 0.000 0.000 0.000 0.852 0.148
#> GSM379827 5 0.0260 0.918 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM379828 5 0.0260 0.918 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM379829 5 0.2212 0.806 0.000 0.000 0.000 0.008 0.880 0.112
#> GSM379830 5 0.0260 0.918 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM379831 5 0.0260 0.918 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM379840 5 0.0260 0.918 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM379841 6 0.2562 0.971 0.000 0.000 0.000 0.000 0.172 0.828
#> GSM379842 6 0.2562 0.971 0.000 0.000 0.000 0.000 0.172 0.828
#> GSM379835 5 0.0260 0.918 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM379836 5 0.0260 0.918 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM379837 5 0.0260 0.918 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM379838 6 0.2562 0.971 0.000 0.000 0.000 0.000 0.172 0.828
#> GSM379839 5 0.0260 0.918 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM379848 6 0.2562 0.971 0.000 0.000 0.000 0.000 0.172 0.828
#> GSM379849 6 0.2562 0.971 0.000 0.000 0.000 0.000 0.172 0.828
#> GSM379850 6 0.2562 0.971 0.000 0.000 0.000 0.000 0.172 0.828
#> GSM379843 6 0.2562 0.971 0.000 0.000 0.000 0.000 0.172 0.828
#> GSM379844 6 0.2562 0.971 0.000 0.000 0.000 0.000 0.172 0.828
#> GSM379845 6 0.3838 0.524 0.000 0.000 0.000 0.000 0.448 0.552
#> GSM379846 6 0.2562 0.971 0.000 0.000 0.000 0.000 0.172 0.828
#> GSM379847 6 0.2562 0.971 0.000 0.000 0.000 0.000 0.172 0.828
#> GSM379853 6 0.2562 0.971 0.000 0.000 0.000 0.000 0.172 0.828
#> GSM379854 6 0.2562 0.971 0.000 0.000 0.000 0.000 0.172 0.828
#> GSM379851 6 0.2562 0.971 0.000 0.000 0.000 0.000 0.172 0.828
#> GSM379852 6 0.2562 0.971 0.000 0.000 0.000 0.000 0.172 0.828
#> GSM379804 4 0.1957 0.936 0.000 0.000 0.000 0.888 0.000 0.112
#> GSM379805 4 0.1957 0.936 0.000 0.000 0.000 0.888 0.000 0.112
#> GSM379806 4 0.1957 0.936 0.000 0.000 0.000 0.888 0.000 0.112
#> GSM379799 4 0.1957 0.936 0.000 0.000 0.000 0.888 0.000 0.112
#> GSM379800 4 0.1957 0.936 0.000 0.000 0.000 0.888 0.000 0.112
#> GSM379801 4 0.1957 0.936 0.000 0.000 0.000 0.888 0.000 0.112
#> GSM379802 4 0.1957 0.936 0.000 0.000 0.000 0.888 0.000 0.112
#> GSM379803 4 0.1957 0.936 0.000 0.000 0.000 0.888 0.000 0.112
#> GSM379812 4 0.0000 0.942 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379813 4 0.0000 0.942 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379814 4 0.0000 0.942 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379807 4 0.0000 0.942 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379808 4 0.1957 0.936 0.000 0.000 0.000 0.888 0.000 0.112
#> GSM379809 4 0.0937 0.943 0.000 0.000 0.000 0.960 0.000 0.040
#> GSM379810 4 0.0000 0.942 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379811 4 0.1957 0.936 0.000 0.000 0.000 0.888 0.000 0.112
#> GSM379820 4 0.0000 0.942 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379821 4 0.0000 0.942 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379822 1 0.3499 0.566 0.680 0.000 0.000 0.320 0.000 0.000
#> GSM379815 4 0.1075 0.942 0.000 0.000 0.000 0.952 0.000 0.048
#> GSM379816 4 0.3342 0.657 0.228 0.000 0.000 0.760 0.012 0.000
#> GSM379817 4 0.0000 0.942 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379818 4 0.1957 0.936 0.000 0.000 0.000 0.888 0.000 0.112
#> GSM379819 4 0.0000 0.942 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379825 4 0.0363 0.943 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM379826 4 0.0000 0.942 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379823 1 0.3547 0.542 0.668 0.000 0.000 0.332 0.000 0.000
#> GSM379824 4 0.0000 0.942 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379749 2 0.0260 0.963 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379750 2 0.0260 0.963 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379751 5 0.3101 0.673 0.000 0.244 0.000 0.000 0.756 0.000
#> GSM379744 2 0.0260 0.963 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379745 2 0.0260 0.963 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379746 2 0.0260 0.963 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379747 5 0.2793 0.719 0.000 0.200 0.000 0.000 0.800 0.000
#> GSM379748 2 0.0458 0.959 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM379757 2 0.0260 0.963 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379758 2 0.1267 0.968 0.000 0.940 0.000 0.000 0.000 0.060
#> GSM379752 2 0.0260 0.963 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379753 2 0.1610 0.895 0.000 0.916 0.000 0.000 0.084 0.000
#> GSM379754 2 0.0260 0.963 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379755 2 0.0260 0.963 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379756 2 0.0260 0.963 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379764 2 0.1267 0.968 0.000 0.940 0.000 0.000 0.000 0.060
#> GSM379765 2 0.1267 0.968 0.000 0.940 0.000 0.000 0.000 0.060
#> GSM379766 2 0.1267 0.968 0.000 0.940 0.000 0.000 0.000 0.060
#> GSM379759 2 0.1267 0.968 0.000 0.940 0.000 0.000 0.000 0.060
#> GSM379760 2 0.1267 0.968 0.000 0.940 0.000 0.000 0.000 0.060
#> GSM379761 2 0.1267 0.968 0.000 0.940 0.000 0.000 0.000 0.060
#> GSM379762 2 0.1267 0.968 0.000 0.940 0.000 0.000 0.000 0.060
#> GSM379763 2 0.1267 0.968 0.000 0.940 0.000 0.000 0.000 0.060
#> GSM379769 2 0.1267 0.968 0.000 0.940 0.000 0.000 0.000 0.060
#> GSM379770 2 0.1267 0.968 0.000 0.940 0.000 0.000 0.000 0.060
#> GSM379767 2 0.1267 0.968 0.000 0.940 0.000 0.000 0.000 0.060
#> GSM379768 2 0.1267 0.968 0.000 0.940 0.000 0.000 0.000 0.060
#> GSM379776 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379777 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379778 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379771 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379772 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379773 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379774 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379775 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379784 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379785 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379786 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379779 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379780 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379781 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379782 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379783 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379792 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379793 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379794 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379787 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379788 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379789 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379790 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379791 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379797 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379798 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379795 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379796 1 0.0000 0.976 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379721 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379722 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379723 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379716 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379717 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379718 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379719 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379720 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379729 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379730 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379731 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379724 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379725 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379726 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379727 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379728 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379737 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379738 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379739 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379732 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379733 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379734 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379735 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379736 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379742 3 0.3789 0.271 0.000 0.416 0.584 0.000 0.000 0.000
#> GSM379743 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379740 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379741 3 0.0000 0.982 0.000 0.000 1.000 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 4)
get_signatures(res, k = 5)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 6)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 6, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> CV:pam 139 2.03e-27 1 1.0000 2
#> CV:pam 138 5.23e-55 1 0.9770 3
#> CV:pam 136 7.65e-80 1 0.9944 4
#> CV:pam 138 2.69e-101 1 0.9773 5
#> CV:pam 138 1.07e-96 1 0.0241 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.348 0.832 0.825 0.4280 0.518 0.518
#> 3 3 1.000 0.994 0.997 0.5072 0.837 0.685
#> 4 4 0.837 0.913 0.913 0.0939 0.948 0.855
#> 5 5 0.817 0.771 0.900 0.1091 0.901 0.682
#> 6 6 0.898 0.863 0.943 0.0176 0.886 0.571
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.929 0.999 0.344 0.656
#> GSM379833 2 0.929 0.999 0.344 0.656
#> GSM379834 2 0.929 0.999 0.344 0.656
#> GSM379827 2 0.929 0.999 0.344 0.656
#> GSM379828 2 0.929 0.999 0.344 0.656
#> GSM379829 2 0.936 0.987 0.352 0.648
#> GSM379830 2 0.929 0.999 0.344 0.656
#> GSM379831 2 0.929 0.999 0.344 0.656
#> GSM379840 2 0.929 0.999 0.344 0.656
#> GSM379841 2 0.929 0.999 0.344 0.656
#> GSM379842 2 0.929 0.999 0.344 0.656
#> GSM379835 2 0.929 0.999 0.344 0.656
#> GSM379836 2 0.929 0.999 0.344 0.656
#> GSM379837 2 0.929 0.999 0.344 0.656
#> GSM379838 2 0.929 0.999 0.344 0.656
#> GSM379839 2 0.929 0.999 0.344 0.656
#> GSM379848 2 0.929 0.999 0.344 0.656
#> GSM379849 2 0.929 0.999 0.344 0.656
#> GSM379850 2 0.929 0.999 0.344 0.656
#> GSM379843 2 0.929 0.999 0.344 0.656
#> GSM379844 2 0.929 0.999 0.344 0.656
#> GSM379845 2 0.929 0.999 0.344 0.656
#> GSM379846 2 0.929 0.999 0.344 0.656
#> GSM379847 2 0.929 0.999 0.344 0.656
#> GSM379853 2 0.929 0.999 0.344 0.656
#> GSM379854 2 0.929 0.999 0.344 0.656
#> GSM379851 2 0.929 0.999 0.344 0.656
#> GSM379852 2 0.929 0.999 0.344 0.656
#> GSM379804 1 0.000 0.781 1.000 0.000
#> GSM379805 1 0.000 0.781 1.000 0.000
#> GSM379806 1 0.000 0.781 1.000 0.000
#> GSM379799 1 0.000 0.781 1.000 0.000
#> GSM379800 1 0.000 0.781 1.000 0.000
#> GSM379801 1 0.000 0.781 1.000 0.000
#> GSM379802 1 0.000 0.781 1.000 0.000
#> GSM379803 1 0.000 0.781 1.000 0.000
#> GSM379812 1 0.000 0.781 1.000 0.000
#> GSM379813 1 0.000 0.781 1.000 0.000
#> GSM379814 1 0.000 0.781 1.000 0.000
#> GSM379807 1 0.000 0.781 1.000 0.000
#> GSM379808 1 0.000 0.781 1.000 0.000
#> GSM379809 1 0.000 0.781 1.000 0.000
#> GSM379810 1 0.000 0.781 1.000 0.000
#> GSM379811 1 0.000 0.781 1.000 0.000
#> GSM379820 1 0.000 0.781 1.000 0.000
#> GSM379821 1 0.000 0.781 1.000 0.000
#> GSM379822 1 0.000 0.781 1.000 0.000
#> GSM379815 1 0.000 0.781 1.000 0.000
#> GSM379816 1 0.714 0.485 0.804 0.196
#> GSM379817 1 0.000 0.781 1.000 0.000
#> GSM379818 1 0.000 0.781 1.000 0.000
#> GSM379819 1 0.000 0.781 1.000 0.000
#> GSM379825 1 0.000 0.781 1.000 0.000
#> GSM379826 1 0.000 0.781 1.000 0.000
#> GSM379823 1 0.000 0.781 1.000 0.000
#> GSM379824 1 0.000 0.781 1.000 0.000
#> GSM379749 2 0.929 0.999 0.344 0.656
#> GSM379750 2 0.929 0.999 0.344 0.656
#> GSM379751 2 0.929 0.999 0.344 0.656
#> GSM379744 2 0.925 0.994 0.340 0.660
#> GSM379745 2 0.925 0.994 0.340 0.660
#> GSM379746 2 0.929 0.999 0.344 0.656
#> GSM379747 2 0.929 0.999 0.344 0.656
#> GSM379748 2 0.929 0.999 0.344 0.656
#> GSM379757 2 0.929 0.999 0.344 0.656
#> GSM379758 2 0.929 0.999 0.344 0.656
#> GSM379752 2 0.925 0.994 0.340 0.660
#> GSM379753 2 0.925 0.994 0.340 0.660
#> GSM379754 2 0.925 0.994 0.340 0.660
#> GSM379755 2 0.929 0.999 0.344 0.656
#> GSM379756 2 0.929 0.999 0.344 0.656
#> GSM379764 2 0.929 0.999 0.344 0.656
#> GSM379765 2 0.929 0.999 0.344 0.656
#> GSM379766 2 0.929 0.999 0.344 0.656
#> GSM379759 2 0.925 0.994 0.340 0.660
#> GSM379760 2 0.925 0.994 0.340 0.660
#> GSM379761 2 0.929 0.999 0.344 0.656
#> GSM379762 2 0.929 0.999 0.344 0.656
#> GSM379763 2 0.929 0.999 0.344 0.656
#> GSM379769 2 0.929 0.999 0.344 0.656
#> GSM379770 2 0.929 0.999 0.344 0.656
#> GSM379767 2 0.929 0.999 0.344 0.656
#> GSM379768 2 0.929 0.999 0.344 0.656
#> GSM379776 1 0.000 0.781 1.000 0.000
#> GSM379777 1 0.000 0.781 1.000 0.000
#> GSM379778 1 0.141 0.761 0.980 0.020
#> GSM379771 1 0.000 0.781 1.000 0.000
#> GSM379772 1 0.000 0.781 1.000 0.000
#> GSM379773 1 0.000 0.781 1.000 0.000
#> GSM379774 1 0.000 0.781 1.000 0.000
#> GSM379775 1 0.000 0.781 1.000 0.000
#> GSM379784 1 0.000 0.781 1.000 0.000
#> GSM379785 1 0.000 0.781 1.000 0.000
#> GSM379786 1 0.000 0.781 1.000 0.000
#> GSM379779 1 0.000 0.781 1.000 0.000
#> GSM379780 1 0.000 0.781 1.000 0.000
#> GSM379781 1 0.000 0.781 1.000 0.000
#> GSM379782 1 0.584 0.606 0.860 0.140
#> GSM379783 1 0.000 0.781 1.000 0.000
#> GSM379792 1 0.000 0.781 1.000 0.000
#> GSM379793 1 0.000 0.781 1.000 0.000
#> GSM379794 1 0.000 0.781 1.000 0.000
#> GSM379787 1 0.506 0.651 0.888 0.112
#> GSM379788 1 0.000 0.781 1.000 0.000
#> GSM379789 1 0.000 0.781 1.000 0.000
#> GSM379790 1 0.000 0.781 1.000 0.000
#> GSM379791 1 0.000 0.781 1.000 0.000
#> GSM379797 1 0.000 0.781 1.000 0.000
#> GSM379798 1 0.000 0.781 1.000 0.000
#> GSM379795 1 0.000 0.781 1.000 0.000
#> GSM379796 1 0.000 0.781 1.000 0.000
#> GSM379721 1 0.995 0.631 0.540 0.460
#> GSM379722 1 0.995 0.631 0.540 0.460
#> GSM379723 1 0.995 0.631 0.540 0.460
#> GSM379716 1 0.995 0.631 0.540 0.460
#> GSM379717 1 0.995 0.631 0.540 0.460
#> GSM379718 1 0.995 0.631 0.540 0.460
#> GSM379719 1 0.995 0.631 0.540 0.460
#> GSM379720 1 0.995 0.631 0.540 0.460
#> GSM379729 1 0.995 0.631 0.540 0.460
#> GSM379730 1 0.995 0.631 0.540 0.460
#> GSM379731 1 0.995 0.631 0.540 0.460
#> GSM379724 1 0.995 0.631 0.540 0.460
#> GSM379725 1 0.995 0.631 0.540 0.460
#> GSM379726 1 0.995 0.631 0.540 0.460
#> GSM379727 1 0.995 0.631 0.540 0.460
#> GSM379728 1 0.995 0.631 0.540 0.460
#> GSM379737 1 0.995 0.631 0.540 0.460
#> GSM379738 1 0.995 0.631 0.540 0.460
#> GSM379739 1 0.995 0.631 0.540 0.460
#> GSM379732 1 0.995 0.631 0.540 0.460
#> GSM379733 1 0.995 0.631 0.540 0.460
#> GSM379734 1 0.995 0.631 0.540 0.460
#> GSM379735 1 0.995 0.631 0.540 0.460
#> GSM379736 1 0.995 0.631 0.540 0.460
#> GSM379742 1 0.995 0.631 0.540 0.460
#> GSM379743 1 0.995 0.631 0.540 0.460
#> GSM379740 1 0.995 0.631 0.540 0.460
#> GSM379741 1 0.995 0.631 0.540 0.460
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.000 0.996 0.000 1.000 0.000
#> GSM379833 2 0.000 0.996 0.000 1.000 0.000
#> GSM379834 2 0.000 0.996 0.000 1.000 0.000
#> GSM379827 2 0.000 0.996 0.000 1.000 0.000
#> GSM379828 2 0.000 0.996 0.000 1.000 0.000
#> GSM379829 2 0.460 0.734 0.204 0.796 0.000
#> GSM379830 2 0.000 0.996 0.000 1.000 0.000
#> GSM379831 2 0.000 0.996 0.000 1.000 0.000
#> GSM379840 2 0.000 0.996 0.000 1.000 0.000
#> GSM379841 2 0.000 0.996 0.000 1.000 0.000
#> GSM379842 2 0.000 0.996 0.000 1.000 0.000
#> GSM379835 2 0.000 0.996 0.000 1.000 0.000
#> GSM379836 2 0.000 0.996 0.000 1.000 0.000
#> GSM379837 2 0.000 0.996 0.000 1.000 0.000
#> GSM379838 2 0.000 0.996 0.000 1.000 0.000
#> GSM379839 2 0.000 0.996 0.000 1.000 0.000
#> GSM379848 2 0.000 0.996 0.000 1.000 0.000
#> GSM379849 2 0.000 0.996 0.000 1.000 0.000
#> GSM379850 2 0.000 0.996 0.000 1.000 0.000
#> GSM379843 2 0.000 0.996 0.000 1.000 0.000
#> GSM379844 2 0.000 0.996 0.000 1.000 0.000
#> GSM379845 2 0.000 0.996 0.000 1.000 0.000
#> GSM379846 2 0.000 0.996 0.000 1.000 0.000
#> GSM379847 2 0.000 0.996 0.000 1.000 0.000
#> GSM379853 2 0.000 0.996 0.000 1.000 0.000
#> GSM379854 2 0.000 0.996 0.000 1.000 0.000
#> GSM379851 2 0.000 0.996 0.000 1.000 0.000
#> GSM379852 2 0.000 0.996 0.000 1.000 0.000
#> GSM379804 1 0.000 0.999 1.000 0.000 0.000
#> GSM379805 1 0.000 0.999 1.000 0.000 0.000
#> GSM379806 1 0.000 0.999 1.000 0.000 0.000
#> GSM379799 1 0.000 0.999 1.000 0.000 0.000
#> GSM379800 1 0.000 0.999 1.000 0.000 0.000
#> GSM379801 1 0.000 0.999 1.000 0.000 0.000
#> GSM379802 1 0.000 0.999 1.000 0.000 0.000
#> GSM379803 1 0.000 0.999 1.000 0.000 0.000
#> GSM379812 1 0.000 0.999 1.000 0.000 0.000
#> GSM379813 1 0.000 0.999 1.000 0.000 0.000
#> GSM379814 1 0.000 0.999 1.000 0.000 0.000
#> GSM379807 1 0.000 0.999 1.000 0.000 0.000
#> GSM379808 1 0.000 0.999 1.000 0.000 0.000
#> GSM379809 1 0.000 0.999 1.000 0.000 0.000
#> GSM379810 1 0.000 0.999 1.000 0.000 0.000
#> GSM379811 1 0.000 0.999 1.000 0.000 0.000
#> GSM379820 1 0.000 0.999 1.000 0.000 0.000
#> GSM379821 1 0.000 0.999 1.000 0.000 0.000
#> GSM379822 1 0.000 0.999 1.000 0.000 0.000
#> GSM379815 1 0.000 0.999 1.000 0.000 0.000
#> GSM379816 1 0.103 0.972 0.976 0.024 0.000
#> GSM379817 1 0.000 0.999 1.000 0.000 0.000
#> GSM379818 1 0.000 0.999 1.000 0.000 0.000
#> GSM379819 1 0.000 0.999 1.000 0.000 0.000
#> GSM379825 1 0.000 0.999 1.000 0.000 0.000
#> GSM379826 1 0.000 0.999 1.000 0.000 0.000
#> GSM379823 1 0.000 0.999 1.000 0.000 0.000
#> GSM379824 1 0.000 0.999 1.000 0.000 0.000
#> GSM379749 2 0.000 0.996 0.000 1.000 0.000
#> GSM379750 2 0.000 0.996 0.000 1.000 0.000
#> GSM379751 2 0.000 0.996 0.000 1.000 0.000
#> GSM379744 2 0.000 0.996 0.000 1.000 0.000
#> GSM379745 2 0.000 0.996 0.000 1.000 0.000
#> GSM379746 2 0.000 0.996 0.000 1.000 0.000
#> GSM379747 2 0.000 0.996 0.000 1.000 0.000
#> GSM379748 2 0.000 0.996 0.000 1.000 0.000
#> GSM379757 2 0.000 0.996 0.000 1.000 0.000
#> GSM379758 2 0.000 0.996 0.000 1.000 0.000
#> GSM379752 2 0.000 0.996 0.000 1.000 0.000
#> GSM379753 2 0.000 0.996 0.000 1.000 0.000
#> GSM379754 2 0.000 0.996 0.000 1.000 0.000
#> GSM379755 2 0.000 0.996 0.000 1.000 0.000
#> GSM379756 2 0.000 0.996 0.000 1.000 0.000
#> GSM379764 2 0.000 0.996 0.000 1.000 0.000
#> GSM379765 2 0.000 0.996 0.000 1.000 0.000
#> GSM379766 2 0.000 0.996 0.000 1.000 0.000
#> GSM379759 2 0.000 0.996 0.000 1.000 0.000
#> GSM379760 2 0.000 0.996 0.000 1.000 0.000
#> GSM379761 2 0.000 0.996 0.000 1.000 0.000
#> GSM379762 2 0.000 0.996 0.000 1.000 0.000
#> GSM379763 2 0.000 0.996 0.000 1.000 0.000
#> GSM379769 2 0.000 0.996 0.000 1.000 0.000
#> GSM379770 2 0.000 0.996 0.000 1.000 0.000
#> GSM379767 2 0.000 0.996 0.000 1.000 0.000
#> GSM379768 2 0.000 0.996 0.000 1.000 0.000
#> GSM379776 1 0.000 0.999 1.000 0.000 0.000
#> GSM379777 1 0.000 0.999 1.000 0.000 0.000
#> GSM379778 1 0.000 0.999 1.000 0.000 0.000
#> GSM379771 1 0.000 0.999 1.000 0.000 0.000
#> GSM379772 1 0.000 0.999 1.000 0.000 0.000
#> GSM379773 1 0.000 0.999 1.000 0.000 0.000
#> GSM379774 1 0.000 0.999 1.000 0.000 0.000
#> GSM379775 1 0.000 0.999 1.000 0.000 0.000
#> GSM379784 1 0.000 0.999 1.000 0.000 0.000
#> GSM379785 1 0.000 0.999 1.000 0.000 0.000
#> GSM379786 1 0.000 0.999 1.000 0.000 0.000
#> GSM379779 1 0.000 0.999 1.000 0.000 0.000
#> GSM379780 1 0.000 0.999 1.000 0.000 0.000
#> GSM379781 1 0.000 0.999 1.000 0.000 0.000
#> GSM379782 1 0.000 0.999 1.000 0.000 0.000
#> GSM379783 1 0.000 0.999 1.000 0.000 0.000
#> GSM379792 1 0.000 0.999 1.000 0.000 0.000
#> GSM379793 1 0.000 0.999 1.000 0.000 0.000
#> GSM379794 1 0.000 0.999 1.000 0.000 0.000
#> GSM379787 1 0.000 0.999 1.000 0.000 0.000
#> GSM379788 1 0.000 0.999 1.000 0.000 0.000
#> GSM379789 1 0.000 0.999 1.000 0.000 0.000
#> GSM379790 1 0.000 0.999 1.000 0.000 0.000
#> GSM379791 1 0.000 0.999 1.000 0.000 0.000
#> GSM379797 1 0.000 0.999 1.000 0.000 0.000
#> GSM379798 1 0.000 0.999 1.000 0.000 0.000
#> GSM379795 1 0.000 0.999 1.000 0.000 0.000
#> GSM379796 1 0.000 0.999 1.000 0.000 0.000
#> GSM379721 3 0.000 0.995 0.000 0.000 1.000
#> GSM379722 3 0.000 0.995 0.000 0.000 1.000
#> GSM379723 3 0.000 0.995 0.000 0.000 1.000
#> GSM379716 3 0.000 0.995 0.000 0.000 1.000
#> GSM379717 3 0.000 0.995 0.000 0.000 1.000
#> GSM379718 3 0.000 0.995 0.000 0.000 1.000
#> GSM379719 3 0.000 0.995 0.000 0.000 1.000
#> GSM379720 3 0.000 0.995 0.000 0.000 1.000
#> GSM379729 3 0.000 0.995 0.000 0.000 1.000
#> GSM379730 3 0.000 0.995 0.000 0.000 1.000
#> GSM379731 3 0.000 0.995 0.000 0.000 1.000
#> GSM379724 3 0.000 0.995 0.000 0.000 1.000
#> GSM379725 3 0.000 0.995 0.000 0.000 1.000
#> GSM379726 3 0.000 0.995 0.000 0.000 1.000
#> GSM379727 3 0.000 0.995 0.000 0.000 1.000
#> GSM379728 3 0.000 0.995 0.000 0.000 1.000
#> GSM379737 3 0.000 0.995 0.000 0.000 1.000
#> GSM379738 3 0.000 0.995 0.000 0.000 1.000
#> GSM379739 3 0.000 0.995 0.000 0.000 1.000
#> GSM379732 3 0.000 0.995 0.000 0.000 1.000
#> GSM379733 3 0.000 0.995 0.000 0.000 1.000
#> GSM379734 3 0.000 0.995 0.000 0.000 1.000
#> GSM379735 3 0.000 0.995 0.000 0.000 1.000
#> GSM379736 3 0.000 0.995 0.000 0.000 1.000
#> GSM379742 3 0.226 0.930 0.068 0.000 0.932
#> GSM379743 3 0.000 0.995 0.000 0.000 1.000
#> GSM379740 3 0.000 0.995 0.000 0.000 1.000
#> GSM379741 3 0.226 0.930 0.068 0.000 0.932
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.1940 0.932 0.000 0.924 0 0.076
#> GSM379833 2 0.1940 0.932 0.000 0.924 0 0.076
#> GSM379834 2 0.1867 0.933 0.000 0.928 0 0.072
#> GSM379827 2 0.2149 0.929 0.000 0.912 0 0.088
#> GSM379828 2 0.2216 0.928 0.000 0.908 0 0.092
#> GSM379829 2 0.5849 0.640 0.164 0.704 0 0.132
#> GSM379830 2 0.2149 0.927 0.000 0.912 0 0.088
#> GSM379831 2 0.2149 0.927 0.000 0.912 0 0.088
#> GSM379840 2 0.3367 0.904 0.028 0.864 0 0.108
#> GSM379841 2 0.0469 0.943 0.000 0.988 0 0.012
#> GSM379842 2 0.0592 0.943 0.000 0.984 0 0.016
#> GSM379835 2 0.2149 0.927 0.000 0.912 0 0.088
#> GSM379836 2 0.2760 0.914 0.000 0.872 0 0.128
#> GSM379837 2 0.2704 0.911 0.000 0.876 0 0.124
#> GSM379838 2 0.0188 0.944 0.000 0.996 0 0.004
#> GSM379839 2 0.2704 0.911 0.000 0.876 0 0.124
#> GSM379848 2 0.0469 0.942 0.000 0.988 0 0.012
#> GSM379849 2 0.0469 0.942 0.000 0.988 0 0.012
#> GSM379850 2 0.0592 0.942 0.000 0.984 0 0.016
#> GSM379843 2 0.0592 0.943 0.000 0.984 0 0.016
#> GSM379844 2 0.0188 0.943 0.000 0.996 0 0.004
#> GSM379845 2 0.1211 0.940 0.000 0.960 0 0.040
#> GSM379846 2 0.0469 0.942 0.000 0.988 0 0.012
#> GSM379847 2 0.0469 0.942 0.000 0.988 0 0.012
#> GSM379853 2 0.0817 0.942 0.000 0.976 0 0.024
#> GSM379854 2 0.0469 0.942 0.000 0.988 0 0.012
#> GSM379851 2 0.0707 0.942 0.000 0.980 0 0.020
#> GSM379852 2 0.1118 0.938 0.000 0.964 0 0.036
#> GSM379804 1 0.3801 0.714 0.780 0.000 0 0.220
#> GSM379805 4 0.3942 0.988 0.236 0.000 0 0.764
#> GSM379806 4 0.3942 0.988 0.236 0.000 0 0.764
#> GSM379799 4 0.3942 0.988 0.236 0.000 0 0.764
#> GSM379800 4 0.3942 0.988 0.236 0.000 0 0.764
#> GSM379801 4 0.3942 0.988 0.236 0.000 0 0.764
#> GSM379802 4 0.3942 0.988 0.236 0.000 0 0.764
#> GSM379803 4 0.3942 0.988 0.236 0.000 0 0.764
#> GSM379812 1 0.4134 0.636 0.740 0.000 0 0.260
#> GSM379813 1 0.3726 0.722 0.788 0.000 0 0.212
#> GSM379814 1 0.2589 0.828 0.884 0.000 0 0.116
#> GSM379807 1 0.2647 0.825 0.880 0.000 0 0.120
#> GSM379808 4 0.3942 0.988 0.236 0.000 0 0.764
#> GSM379809 1 0.2760 0.820 0.872 0.000 0 0.128
#> GSM379810 1 0.2704 0.822 0.876 0.000 0 0.124
#> GSM379811 4 0.3942 0.988 0.236 0.000 0 0.764
#> GSM379820 1 0.3528 0.751 0.808 0.000 0 0.192
#> GSM379821 1 0.4500 0.499 0.684 0.000 0 0.316
#> GSM379822 1 0.3024 0.801 0.852 0.000 0 0.148
#> GSM379815 1 0.4454 0.522 0.692 0.000 0 0.308
#> GSM379816 1 0.4071 0.762 0.832 0.064 0 0.104
#> GSM379817 1 0.3172 0.788 0.840 0.000 0 0.160
#> GSM379818 4 0.4193 0.944 0.268 0.000 0 0.732
#> GSM379819 1 0.4040 0.660 0.752 0.000 0 0.248
#> GSM379825 4 0.4222 0.939 0.272 0.000 0 0.728
#> GSM379826 1 0.3311 0.776 0.828 0.000 0 0.172
#> GSM379823 1 0.0336 0.891 0.992 0.000 0 0.008
#> GSM379824 1 0.4331 0.573 0.712 0.000 0 0.288
#> GSM379749 2 0.1716 0.941 0.000 0.936 0 0.064
#> GSM379750 2 0.1557 0.942 0.000 0.944 0 0.056
#> GSM379751 2 0.2530 0.929 0.000 0.888 0 0.112
#> GSM379744 2 0.1940 0.939 0.000 0.924 0 0.076
#> GSM379745 2 0.2149 0.937 0.000 0.912 0 0.088
#> GSM379746 2 0.2081 0.938 0.000 0.916 0 0.084
#> GSM379747 2 0.2469 0.930 0.000 0.892 0 0.108
#> GSM379748 2 0.2149 0.927 0.000 0.912 0 0.088
#> GSM379757 2 0.0817 0.942 0.000 0.976 0 0.024
#> GSM379758 2 0.1302 0.939 0.000 0.956 0 0.044
#> GSM379752 2 0.1716 0.941 0.000 0.936 0 0.064
#> GSM379753 2 0.2345 0.937 0.000 0.900 0 0.100
#> GSM379754 2 0.1022 0.943 0.000 0.968 0 0.032
#> GSM379755 2 0.1022 0.943 0.000 0.968 0 0.032
#> GSM379756 2 0.0817 0.942 0.000 0.976 0 0.024
#> GSM379764 2 0.3024 0.888 0.000 0.852 0 0.148
#> GSM379765 2 0.2973 0.890 0.000 0.856 0 0.144
#> GSM379766 2 0.2973 0.890 0.000 0.856 0 0.144
#> GSM379759 2 0.1389 0.938 0.000 0.952 0 0.048
#> GSM379760 2 0.1211 0.940 0.000 0.960 0 0.040
#> GSM379761 2 0.1211 0.940 0.000 0.960 0 0.040
#> GSM379762 2 0.1637 0.935 0.000 0.940 0 0.060
#> GSM379763 2 0.2081 0.925 0.000 0.916 0 0.084
#> GSM379769 2 0.3448 0.874 0.004 0.828 0 0.168
#> GSM379770 2 0.2647 0.895 0.000 0.880 0 0.120
#> GSM379767 2 0.2973 0.890 0.000 0.856 0 0.144
#> GSM379768 2 0.2973 0.890 0.000 0.856 0 0.144
#> GSM379776 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379777 1 0.3569 0.746 0.804 0.000 0 0.196
#> GSM379778 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379771 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379772 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379773 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379774 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379775 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379784 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379785 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379786 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379779 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379780 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379781 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379782 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379783 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379792 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379793 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379794 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379787 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379788 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379789 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379790 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379791 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379797 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379798 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379795 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379796 1 0.0000 0.895 1.000 0.000 0 0.000
#> GSM379721 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379722 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379723 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379716 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379717 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379718 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379719 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379720 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379729 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379730 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379731 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379724 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379725 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379726 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379727 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379728 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379737 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379738 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379739 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379732 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379733 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379734 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379735 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379736 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379742 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379743 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379740 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379741 3 0.0000 1.000 0.000 0.000 1 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 5 0.0703 0.8117 0.000 0.024 0.000 0.000 0.976
#> GSM379833 5 0.0703 0.8117 0.000 0.024 0.000 0.000 0.976
#> GSM379834 5 0.0703 0.8117 0.000 0.024 0.000 0.000 0.976
#> GSM379827 5 0.0290 0.8109 0.000 0.008 0.000 0.000 0.992
#> GSM379828 5 0.0290 0.8109 0.000 0.008 0.000 0.000 0.992
#> GSM379829 5 0.3527 0.6437 0.016 0.000 0.000 0.192 0.792
#> GSM379830 5 0.0000 0.8090 0.000 0.000 0.000 0.000 1.000
#> GSM379831 5 0.0510 0.8116 0.000 0.016 0.000 0.000 0.984
#> GSM379840 5 0.0000 0.8090 0.000 0.000 0.000 0.000 1.000
#> GSM379841 5 0.3636 0.6735 0.000 0.272 0.000 0.000 0.728
#> GSM379842 5 0.3039 0.7394 0.000 0.192 0.000 0.000 0.808
#> GSM379835 5 0.0290 0.8109 0.000 0.008 0.000 0.000 0.992
#> GSM379836 5 0.0000 0.8090 0.000 0.000 0.000 0.000 1.000
#> GSM379837 5 0.0000 0.8090 0.000 0.000 0.000 0.000 1.000
#> GSM379838 5 0.2966 0.7446 0.000 0.184 0.000 0.000 0.816
#> GSM379839 5 0.0000 0.8090 0.000 0.000 0.000 0.000 1.000
#> GSM379848 5 0.3774 0.6484 0.000 0.296 0.000 0.000 0.704
#> GSM379849 5 0.4242 0.3801 0.000 0.428 0.000 0.000 0.572
#> GSM379850 5 0.3796 0.6443 0.000 0.300 0.000 0.000 0.700
#> GSM379843 5 0.3774 0.6484 0.000 0.296 0.000 0.000 0.704
#> GSM379844 5 0.3837 0.6317 0.000 0.308 0.000 0.000 0.692
#> GSM379845 5 0.0162 0.8102 0.000 0.004 0.000 0.000 0.996
#> GSM379846 5 0.3774 0.6484 0.000 0.296 0.000 0.000 0.704
#> GSM379847 5 0.3774 0.6484 0.000 0.296 0.000 0.000 0.704
#> GSM379853 5 0.3508 0.6934 0.000 0.252 0.000 0.000 0.748
#> GSM379854 5 0.3796 0.6443 0.000 0.300 0.000 0.000 0.700
#> GSM379851 5 0.4305 0.2036 0.000 0.488 0.000 0.000 0.512
#> GSM379852 2 0.4171 0.2043 0.000 0.604 0.000 0.000 0.396
#> GSM379804 1 0.4307 -0.1115 0.504 0.000 0.000 0.496 0.000
#> GSM379805 4 0.0162 0.7794 0.004 0.000 0.000 0.996 0.000
#> GSM379806 4 0.0609 0.7785 0.020 0.000 0.000 0.980 0.000
#> GSM379799 4 0.0162 0.7794 0.004 0.000 0.000 0.996 0.000
#> GSM379800 4 0.0162 0.7794 0.004 0.000 0.000 0.996 0.000
#> GSM379801 4 0.1197 0.7670 0.048 0.000 0.000 0.952 0.000
#> GSM379802 4 0.0162 0.7794 0.004 0.000 0.000 0.996 0.000
#> GSM379803 4 0.0162 0.7794 0.004 0.000 0.000 0.996 0.000
#> GSM379812 4 0.4256 0.2997 0.436 0.000 0.000 0.564 0.000
#> GSM379813 1 0.4306 -0.0954 0.508 0.000 0.000 0.492 0.000
#> GSM379814 1 0.3774 0.5396 0.704 0.000 0.000 0.296 0.000
#> GSM379807 1 0.3305 0.6493 0.776 0.000 0.000 0.224 0.000
#> GSM379808 4 0.0510 0.7793 0.016 0.000 0.000 0.984 0.000
#> GSM379809 1 0.3966 0.4622 0.664 0.000 0.000 0.336 0.000
#> GSM379810 1 0.3932 0.4805 0.672 0.000 0.000 0.328 0.000
#> GSM379811 4 0.0162 0.7794 0.004 0.000 0.000 0.996 0.000
#> GSM379820 1 0.4045 0.4051 0.644 0.000 0.000 0.356 0.000
#> GSM379821 4 0.4210 0.3612 0.412 0.000 0.000 0.588 0.000
#> GSM379822 1 0.3707 0.5610 0.716 0.000 0.000 0.284 0.000
#> GSM379815 4 0.4150 0.4099 0.388 0.000 0.000 0.612 0.000
#> GSM379816 1 0.5203 0.4575 0.648 0.000 0.000 0.272 0.080
#> GSM379817 1 0.3857 0.5079 0.688 0.000 0.000 0.312 0.000
#> GSM379818 4 0.0290 0.7790 0.008 0.000 0.000 0.992 0.000
#> GSM379819 4 0.4256 0.3020 0.436 0.000 0.000 0.564 0.000
#> GSM379825 4 0.0290 0.7790 0.008 0.000 0.000 0.992 0.000
#> GSM379826 1 0.3636 0.5805 0.728 0.000 0.000 0.272 0.000
#> GSM379823 1 0.0404 0.8621 0.988 0.000 0.000 0.012 0.000
#> GSM379824 4 0.4242 0.3241 0.428 0.000 0.000 0.572 0.000
#> GSM379749 5 0.2732 0.7425 0.000 0.160 0.000 0.000 0.840
#> GSM379750 5 0.0794 0.8113 0.000 0.028 0.000 0.000 0.972
#> GSM379751 5 0.2424 0.7522 0.000 0.132 0.000 0.000 0.868
#> GSM379744 5 0.2813 0.7355 0.000 0.168 0.000 0.000 0.832
#> GSM379745 5 0.2605 0.7520 0.000 0.148 0.000 0.000 0.852
#> GSM379746 5 0.2690 0.7460 0.000 0.156 0.000 0.000 0.844
#> GSM379747 5 0.2732 0.7315 0.000 0.160 0.000 0.000 0.840
#> GSM379748 5 0.0404 0.8114 0.000 0.012 0.000 0.000 0.988
#> GSM379757 2 0.3684 0.4549 0.000 0.720 0.000 0.000 0.280
#> GSM379758 2 0.0000 0.8877 0.000 1.000 0.000 0.000 0.000
#> GSM379752 5 0.2929 0.7241 0.000 0.180 0.000 0.000 0.820
#> GSM379753 2 0.3636 0.5653 0.000 0.728 0.000 0.000 0.272
#> GSM379754 2 0.2561 0.7535 0.000 0.856 0.000 0.000 0.144
#> GSM379755 5 0.2813 0.7391 0.000 0.168 0.000 0.000 0.832
#> GSM379756 5 0.3452 0.7100 0.000 0.244 0.000 0.000 0.756
#> GSM379764 2 0.0510 0.8758 0.016 0.984 0.000 0.000 0.000
#> GSM379765 2 0.0000 0.8877 0.000 1.000 0.000 0.000 0.000
#> GSM379766 2 0.0000 0.8877 0.000 1.000 0.000 0.000 0.000
#> GSM379759 2 0.0162 0.8866 0.000 0.996 0.000 0.000 0.004
#> GSM379760 2 0.0162 0.8866 0.000 0.996 0.000 0.000 0.004
#> GSM379761 2 0.0162 0.8866 0.000 0.996 0.000 0.000 0.004
#> GSM379762 2 0.0000 0.8877 0.000 1.000 0.000 0.000 0.000
#> GSM379763 2 0.0000 0.8877 0.000 1.000 0.000 0.000 0.000
#> GSM379769 2 0.0510 0.8758 0.016 0.984 0.000 0.000 0.000
#> GSM379770 2 0.3452 0.6051 0.000 0.756 0.000 0.000 0.244
#> GSM379767 2 0.0000 0.8877 0.000 1.000 0.000 0.000 0.000
#> GSM379768 2 0.0000 0.8877 0.000 1.000 0.000 0.000 0.000
#> GSM379776 1 0.0162 0.8681 0.996 0.000 0.000 0.004 0.000
#> GSM379777 4 0.4273 0.2553 0.448 0.000 0.000 0.552 0.000
#> GSM379778 1 0.0000 0.8695 1.000 0.000 0.000 0.000 0.000
#> GSM379771 1 0.0162 0.8681 0.996 0.000 0.000 0.004 0.000
#> GSM379772 1 0.0162 0.8681 0.996 0.000 0.000 0.004 0.000
#> GSM379773 1 0.0162 0.8681 0.996 0.000 0.000 0.004 0.000
#> GSM379774 1 0.0162 0.8681 0.996 0.000 0.000 0.004 0.000
#> GSM379775 1 0.0162 0.8681 0.996 0.000 0.000 0.004 0.000
#> GSM379784 1 0.0000 0.8695 1.000 0.000 0.000 0.000 0.000
#> GSM379785 1 0.0000 0.8695 1.000 0.000 0.000 0.000 0.000
#> GSM379786 1 0.0000 0.8695 1.000 0.000 0.000 0.000 0.000
#> GSM379779 1 0.0162 0.8681 0.996 0.000 0.000 0.004 0.000
#> GSM379780 1 0.0162 0.8681 0.996 0.000 0.000 0.004 0.000
#> GSM379781 1 0.0000 0.8695 1.000 0.000 0.000 0.000 0.000
#> GSM379782 1 0.0000 0.8695 1.000 0.000 0.000 0.000 0.000
#> GSM379783 1 0.0000 0.8695 1.000 0.000 0.000 0.000 0.000
#> GSM379792 1 0.0000 0.8695 1.000 0.000 0.000 0.000 0.000
#> GSM379793 1 0.0000 0.8695 1.000 0.000 0.000 0.000 0.000
#> GSM379794 1 0.0000 0.8695 1.000 0.000 0.000 0.000 0.000
#> GSM379787 1 0.0000 0.8695 1.000 0.000 0.000 0.000 0.000
#> GSM379788 1 0.0000 0.8695 1.000 0.000 0.000 0.000 0.000
#> GSM379789 1 0.0000 0.8695 1.000 0.000 0.000 0.000 0.000
#> GSM379790 1 0.0000 0.8695 1.000 0.000 0.000 0.000 0.000
#> GSM379791 1 0.0000 0.8695 1.000 0.000 0.000 0.000 0.000
#> GSM379797 1 0.0000 0.8695 1.000 0.000 0.000 0.000 0.000
#> GSM379798 1 0.0000 0.8695 1.000 0.000 0.000 0.000 0.000
#> GSM379795 1 0.0000 0.8695 1.000 0.000 0.000 0.000 0.000
#> GSM379796 1 0.0000 0.8695 1.000 0.000 0.000 0.000 0.000
#> GSM379721 3 0.0162 0.9870 0.000 0.000 0.996 0.004 0.000
#> GSM379722 3 0.0162 0.9870 0.000 0.000 0.996 0.004 0.000
#> GSM379723 3 0.0162 0.9870 0.000 0.000 0.996 0.004 0.000
#> GSM379716 3 0.0162 0.9870 0.000 0.000 0.996 0.004 0.000
#> GSM379717 3 0.0162 0.9870 0.000 0.000 0.996 0.004 0.000
#> GSM379718 3 0.0162 0.9870 0.000 0.000 0.996 0.004 0.000
#> GSM379719 3 0.0162 0.9870 0.000 0.000 0.996 0.004 0.000
#> GSM379720 3 0.0162 0.9870 0.000 0.000 0.996 0.004 0.000
#> GSM379729 3 0.0000 0.9875 0.000 0.000 1.000 0.000 0.000
#> GSM379730 3 0.0000 0.9875 0.000 0.000 1.000 0.000 0.000
#> GSM379731 3 0.0000 0.9875 0.000 0.000 1.000 0.000 0.000
#> GSM379724 3 0.0162 0.9870 0.000 0.000 0.996 0.004 0.000
#> GSM379725 3 0.0000 0.9875 0.000 0.000 1.000 0.000 0.000
#> GSM379726 3 0.0162 0.9870 0.000 0.000 0.996 0.004 0.000
#> GSM379727 3 0.0162 0.9870 0.000 0.000 0.996 0.004 0.000
#> GSM379728 3 0.0000 0.9875 0.000 0.000 1.000 0.000 0.000
#> GSM379737 3 0.0000 0.9875 0.000 0.000 1.000 0.000 0.000
#> GSM379738 3 0.0000 0.9875 0.000 0.000 1.000 0.000 0.000
#> GSM379739 3 0.0000 0.9875 0.000 0.000 1.000 0.000 0.000
#> GSM379732 3 0.0000 0.9875 0.000 0.000 1.000 0.000 0.000
#> GSM379733 3 0.0000 0.9875 0.000 0.000 1.000 0.000 0.000
#> GSM379734 3 0.0000 0.9875 0.000 0.000 1.000 0.000 0.000
#> GSM379735 3 0.0000 0.9875 0.000 0.000 1.000 0.000 0.000
#> GSM379736 3 0.0000 0.9875 0.000 0.000 1.000 0.000 0.000
#> GSM379742 3 0.2230 0.8410 0.116 0.000 0.884 0.000 0.000
#> GSM379743 3 0.0000 0.9875 0.000 0.000 1.000 0.000 0.000
#> GSM379740 3 0.0000 0.9875 0.000 0.000 1.000 0.000 0.000
#> GSM379741 3 0.2230 0.8410 0.116 0.000 0.884 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379833 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379834 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379827 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379828 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379829 5 0.3023 0.665 0.000 0.000 0.000 0.232 0.768 0.000
#> GSM379830 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379831 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379840 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379841 5 0.3774 0.184 0.000 0.408 0.000 0.000 0.592 0.000
#> GSM379842 5 0.3620 0.370 0.000 0.352 0.000 0.000 0.648 0.000
#> GSM379835 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379836 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379837 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379838 5 0.2883 0.684 0.000 0.212 0.000 0.000 0.788 0.000
#> GSM379839 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379848 2 0.2562 0.797 0.000 0.828 0.000 0.000 0.172 0.000
#> GSM379849 2 0.0865 0.859 0.000 0.964 0.000 0.000 0.036 0.000
#> GSM379850 2 0.2260 0.817 0.000 0.860 0.000 0.000 0.140 0.000
#> GSM379843 2 0.3810 0.378 0.000 0.572 0.000 0.000 0.428 0.000
#> GSM379844 2 0.3684 0.516 0.000 0.628 0.000 0.000 0.372 0.000
#> GSM379845 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379846 2 0.3620 0.556 0.000 0.648 0.000 0.000 0.352 0.000
#> GSM379847 2 0.3390 0.650 0.000 0.704 0.000 0.000 0.296 0.000
#> GSM379853 2 0.2597 0.793 0.000 0.824 0.000 0.000 0.176 0.000
#> GSM379854 2 0.2300 0.815 0.000 0.856 0.000 0.000 0.144 0.000
#> GSM379851 2 0.1204 0.853 0.000 0.944 0.000 0.000 0.056 0.000
#> GSM379852 2 0.0458 0.863 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM379804 4 0.3756 0.482 0.352 0.000 0.000 0.644 0.000 0.004
#> GSM379805 4 0.0000 0.844 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379806 4 0.0000 0.844 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379799 4 0.0000 0.844 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379800 4 0.0000 0.844 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379801 4 0.0000 0.844 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379802 4 0.0000 0.844 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379803 4 0.0000 0.844 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379812 1 0.0603 0.973 0.980 0.000 0.000 0.016 0.000 0.004
#> GSM379813 1 0.0508 0.976 0.984 0.000 0.000 0.012 0.000 0.004
#> GSM379814 1 0.0508 0.976 0.984 0.000 0.000 0.012 0.000 0.004
#> GSM379807 1 0.0291 0.976 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM379808 4 0.0000 0.844 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379809 4 0.3290 0.620 0.252 0.000 0.000 0.744 0.000 0.004
#> GSM379810 1 0.3508 0.547 0.704 0.000 0.000 0.292 0.000 0.004
#> GSM379811 4 0.0000 0.844 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379820 1 0.0291 0.976 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM379821 1 0.0291 0.976 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM379822 1 0.0146 0.977 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379815 1 0.2320 0.838 0.864 0.000 0.000 0.132 0.000 0.004
#> GSM379816 1 0.3411 0.762 0.816 0.000 0.000 0.060 0.120 0.004
#> GSM379817 1 0.0146 0.977 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379818 4 0.1910 0.765 0.108 0.000 0.000 0.892 0.000 0.000
#> GSM379819 1 0.0291 0.976 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM379825 4 0.3857 0.202 0.468 0.000 0.000 0.532 0.000 0.000
#> GSM379826 1 0.0146 0.977 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379823 1 0.0146 0.977 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379824 1 0.0291 0.976 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM379749 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379750 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379751 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379744 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379745 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379746 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379747 5 0.0146 0.936 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM379748 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379757 2 0.3774 0.413 0.000 0.592 0.000 0.000 0.408 0.000
#> GSM379758 2 0.0260 0.864 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379752 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379753 5 0.0146 0.936 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM379754 5 0.2340 0.786 0.000 0.148 0.000 0.000 0.852 0.000
#> GSM379755 5 0.0000 0.939 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379756 5 0.2178 0.804 0.000 0.132 0.000 0.000 0.868 0.000
#> GSM379764 2 0.0000 0.862 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379765 2 0.0000 0.862 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379766 2 0.0000 0.862 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379759 2 0.0260 0.864 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379760 2 0.0547 0.861 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM379761 2 0.0260 0.864 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379762 2 0.0146 0.863 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379763 2 0.0000 0.862 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379769 2 0.0000 0.862 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379770 2 0.0000 0.862 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379767 2 0.0000 0.862 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379768 2 0.0000 0.862 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379776 1 0.0260 0.978 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM379777 1 0.0508 0.976 0.984 0.000 0.000 0.012 0.000 0.004
#> GSM379778 1 0.0260 0.978 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM379771 1 0.0260 0.978 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM379772 1 0.0405 0.977 0.988 0.000 0.004 0.008 0.000 0.000
#> GSM379773 1 0.0260 0.978 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM379774 1 0.0260 0.978 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM379775 1 0.0260 0.978 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM379784 1 0.0260 0.978 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM379785 1 0.0260 0.978 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM379786 1 0.0260 0.978 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM379779 1 0.0260 0.978 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM379780 1 0.0260 0.978 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM379781 1 0.0260 0.978 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM379782 1 0.0260 0.978 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM379783 1 0.0260 0.978 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM379792 1 0.0146 0.977 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM379793 1 0.0000 0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379794 1 0.0000 0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379787 1 0.0260 0.978 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM379788 1 0.0260 0.978 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM379789 1 0.0000 0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379790 1 0.0000 0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379791 1 0.0000 0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379797 1 0.0000 0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379798 1 0.0000 0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379795 1 0.0000 0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379796 1 0.0000 0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379721 6 0.0146 0.870 0.000 0.000 0.004 0.000 0.000 0.996
#> GSM379722 6 0.0146 0.870 0.000 0.000 0.004 0.000 0.000 0.996
#> GSM379723 6 0.0146 0.870 0.000 0.000 0.004 0.000 0.000 0.996
#> GSM379716 6 0.0146 0.870 0.000 0.000 0.004 0.000 0.000 0.996
#> GSM379717 6 0.0146 0.870 0.000 0.000 0.004 0.000 0.000 0.996
#> GSM379718 6 0.0146 0.870 0.000 0.000 0.004 0.000 0.000 0.996
#> GSM379719 6 0.0146 0.870 0.000 0.000 0.004 0.000 0.000 0.996
#> GSM379720 6 0.0146 0.870 0.000 0.000 0.004 0.000 0.000 0.996
#> GSM379729 3 0.0146 0.960 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM379730 3 0.0146 0.960 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM379731 3 0.0146 0.960 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM379724 6 0.0146 0.870 0.000 0.000 0.004 0.000 0.000 0.996
#> GSM379725 3 0.3446 0.461 0.000 0.000 0.692 0.000 0.000 0.308
#> GSM379726 6 0.3672 0.456 0.000 0.000 0.368 0.000 0.000 0.632
#> GSM379727 6 0.3843 0.264 0.000 0.000 0.452 0.000 0.000 0.548
#> GSM379728 6 0.3847 0.255 0.000 0.000 0.456 0.000 0.000 0.544
#> GSM379737 3 0.0000 0.962 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379738 3 0.0000 0.962 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379739 3 0.0000 0.962 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379732 3 0.0146 0.960 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM379733 3 0.0000 0.962 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379734 3 0.0000 0.962 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379735 3 0.0000 0.962 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379736 3 0.2178 0.808 0.000 0.000 0.868 0.000 0.000 0.132
#> GSM379742 3 0.0260 0.953 0.008 0.000 0.992 0.000 0.000 0.000
#> GSM379743 3 0.0000 0.962 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379740 3 0.0000 0.962 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379741 3 0.0260 0.953 0.008 0.000 0.992 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 3)
get_signatures(res, k = 4)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> CV:mclust 138 7.56e-29 1.000 1.00e+00 2
#> CV:mclust 139 1.97e-55 1.000 9.98e-01 3
#> CV:mclust 138 1.57e-59 1.000 4.65e-02 4
#> CV:mclust 123 7.01e-67 1.000 2.07e-03 5
#> CV:mclust 129 9.13e-51 0.965 1.89e-09 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.970 0.962 0.984 0.4946 0.508 0.508
#> 3 3 0.626 0.598 0.808 0.3324 0.806 0.628
#> 4 4 0.891 0.891 0.945 0.1140 0.879 0.666
#> 5 5 0.887 0.868 0.930 0.0436 0.966 0.874
#> 6 6 0.891 0.912 0.931 0.0528 0.915 0.672
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.0000 0.990 0.000 1.000
#> GSM379833 2 0.0000 0.990 0.000 1.000
#> GSM379834 2 0.0000 0.990 0.000 1.000
#> GSM379827 2 0.0000 0.990 0.000 1.000
#> GSM379828 2 0.0000 0.990 0.000 1.000
#> GSM379829 1 0.0000 0.978 1.000 0.000
#> GSM379830 2 0.0000 0.990 0.000 1.000
#> GSM379831 2 0.0000 0.990 0.000 1.000
#> GSM379840 2 0.0000 0.990 0.000 1.000
#> GSM379841 2 0.0000 0.990 0.000 1.000
#> GSM379842 2 0.0000 0.990 0.000 1.000
#> GSM379835 2 0.0000 0.990 0.000 1.000
#> GSM379836 2 0.0000 0.990 0.000 1.000
#> GSM379837 1 0.9129 0.533 0.672 0.328
#> GSM379838 2 0.0000 0.990 0.000 1.000
#> GSM379839 2 0.6712 0.782 0.176 0.824
#> GSM379848 2 0.0000 0.990 0.000 1.000
#> GSM379849 2 0.0000 0.990 0.000 1.000
#> GSM379850 2 0.0000 0.990 0.000 1.000
#> GSM379843 2 0.0000 0.990 0.000 1.000
#> GSM379844 2 0.0000 0.990 0.000 1.000
#> GSM379845 2 0.0000 0.990 0.000 1.000
#> GSM379846 2 0.0000 0.990 0.000 1.000
#> GSM379847 2 0.0000 0.990 0.000 1.000
#> GSM379853 2 0.0000 0.990 0.000 1.000
#> GSM379854 2 0.0000 0.990 0.000 1.000
#> GSM379851 2 0.0000 0.990 0.000 1.000
#> GSM379852 2 0.0000 0.990 0.000 1.000
#> GSM379804 1 0.0000 0.978 1.000 0.000
#> GSM379805 1 0.0000 0.978 1.000 0.000
#> GSM379806 1 0.0000 0.978 1.000 0.000
#> GSM379799 1 0.0000 0.978 1.000 0.000
#> GSM379800 1 0.0000 0.978 1.000 0.000
#> GSM379801 1 0.0000 0.978 1.000 0.000
#> GSM379802 1 0.0000 0.978 1.000 0.000
#> GSM379803 1 0.0000 0.978 1.000 0.000
#> GSM379812 1 0.0000 0.978 1.000 0.000
#> GSM379813 1 0.0000 0.978 1.000 0.000
#> GSM379814 1 0.0000 0.978 1.000 0.000
#> GSM379807 1 0.0000 0.978 1.000 0.000
#> GSM379808 1 0.0000 0.978 1.000 0.000
#> GSM379809 1 0.0000 0.978 1.000 0.000
#> GSM379810 1 0.0000 0.978 1.000 0.000
#> GSM379811 1 0.0000 0.978 1.000 0.000
#> GSM379820 1 0.0000 0.978 1.000 0.000
#> GSM379821 1 0.0000 0.978 1.000 0.000
#> GSM379822 1 0.0000 0.978 1.000 0.000
#> GSM379815 1 0.0000 0.978 1.000 0.000
#> GSM379816 1 0.8267 0.663 0.740 0.260
#> GSM379817 1 0.0000 0.978 1.000 0.000
#> GSM379818 1 0.0000 0.978 1.000 0.000
#> GSM379819 1 0.0000 0.978 1.000 0.000
#> GSM379825 1 0.0000 0.978 1.000 0.000
#> GSM379826 1 0.0000 0.978 1.000 0.000
#> GSM379823 1 0.0000 0.978 1.000 0.000
#> GSM379824 1 0.0000 0.978 1.000 0.000
#> GSM379749 2 0.0000 0.990 0.000 1.000
#> GSM379750 2 0.0000 0.990 0.000 1.000
#> GSM379751 2 0.0000 0.990 0.000 1.000
#> GSM379744 2 0.0000 0.990 0.000 1.000
#> GSM379745 2 0.0000 0.990 0.000 1.000
#> GSM379746 2 0.0000 0.990 0.000 1.000
#> GSM379747 2 0.0000 0.990 0.000 1.000
#> GSM379748 2 0.0000 0.990 0.000 1.000
#> GSM379757 2 0.0000 0.990 0.000 1.000
#> GSM379758 2 0.0000 0.990 0.000 1.000
#> GSM379752 2 0.0000 0.990 0.000 1.000
#> GSM379753 2 0.0000 0.990 0.000 1.000
#> GSM379754 2 0.0000 0.990 0.000 1.000
#> GSM379755 2 0.0000 0.990 0.000 1.000
#> GSM379756 2 0.0000 0.990 0.000 1.000
#> GSM379764 2 0.0000 0.990 0.000 1.000
#> GSM379765 2 0.0000 0.990 0.000 1.000
#> GSM379766 2 0.0000 0.990 0.000 1.000
#> GSM379759 2 0.0000 0.990 0.000 1.000
#> GSM379760 2 0.0000 0.990 0.000 1.000
#> GSM379761 2 0.0000 0.990 0.000 1.000
#> GSM379762 2 0.0000 0.990 0.000 1.000
#> GSM379763 2 0.0000 0.990 0.000 1.000
#> GSM379769 2 0.0000 0.990 0.000 1.000
#> GSM379770 2 0.0000 0.990 0.000 1.000
#> GSM379767 2 0.0000 0.990 0.000 1.000
#> GSM379768 2 0.0000 0.990 0.000 1.000
#> GSM379776 1 0.0000 0.978 1.000 0.000
#> GSM379777 1 0.0000 0.978 1.000 0.000
#> GSM379778 2 0.1633 0.968 0.024 0.976
#> GSM379771 1 0.0000 0.978 1.000 0.000
#> GSM379772 1 0.0000 0.978 1.000 0.000
#> GSM379773 1 0.0000 0.978 1.000 0.000
#> GSM379774 1 0.0000 0.978 1.000 0.000
#> GSM379775 1 0.0000 0.978 1.000 0.000
#> GSM379784 1 0.0672 0.971 0.992 0.008
#> GSM379785 1 0.0000 0.978 1.000 0.000
#> GSM379786 1 0.9909 0.232 0.556 0.444
#> GSM379779 1 0.0000 0.978 1.000 0.000
#> GSM379780 1 0.0000 0.978 1.000 0.000
#> GSM379781 1 0.0000 0.978 1.000 0.000
#> GSM379782 2 0.0000 0.990 0.000 1.000
#> GSM379783 2 0.5842 0.833 0.140 0.860
#> GSM379792 1 0.0000 0.978 1.000 0.000
#> GSM379793 1 0.0000 0.978 1.000 0.000
#> GSM379794 1 0.0000 0.978 1.000 0.000
#> GSM379787 2 0.7139 0.754 0.196 0.804
#> GSM379788 1 0.0000 0.978 1.000 0.000
#> GSM379789 1 0.0000 0.978 1.000 0.000
#> GSM379790 1 0.0000 0.978 1.000 0.000
#> GSM379791 1 0.0000 0.978 1.000 0.000
#> GSM379797 1 0.0000 0.978 1.000 0.000
#> GSM379798 1 0.0000 0.978 1.000 0.000
#> GSM379795 1 0.0000 0.978 1.000 0.000
#> GSM379796 1 0.0000 0.978 1.000 0.000
#> GSM379721 1 0.0000 0.978 1.000 0.000
#> GSM379722 1 0.0000 0.978 1.000 0.000
#> GSM379723 1 0.0000 0.978 1.000 0.000
#> GSM379716 1 0.0000 0.978 1.000 0.000
#> GSM379717 1 0.0000 0.978 1.000 0.000
#> GSM379718 1 0.0000 0.978 1.000 0.000
#> GSM379719 1 0.0000 0.978 1.000 0.000
#> GSM379720 1 0.0000 0.978 1.000 0.000
#> GSM379729 1 0.7139 0.761 0.804 0.196
#> GSM379730 1 0.7453 0.738 0.788 0.212
#> GSM379731 1 0.0000 0.978 1.000 0.000
#> GSM379724 1 0.0000 0.978 1.000 0.000
#> GSM379725 1 0.2603 0.937 0.956 0.044
#> GSM379726 1 0.0000 0.978 1.000 0.000
#> GSM379727 1 0.0000 0.978 1.000 0.000
#> GSM379728 1 0.0000 0.978 1.000 0.000
#> GSM379737 1 0.0000 0.978 1.000 0.000
#> GSM379738 1 0.0000 0.978 1.000 0.000
#> GSM379739 1 0.0000 0.978 1.000 0.000
#> GSM379732 1 0.0376 0.974 0.996 0.004
#> GSM379733 1 0.0000 0.978 1.000 0.000
#> GSM379734 1 0.0000 0.978 1.000 0.000
#> GSM379735 1 0.0000 0.978 1.000 0.000
#> GSM379736 1 0.0000 0.978 1.000 0.000
#> GSM379742 2 0.0000 0.990 0.000 1.000
#> GSM379743 1 0.8144 0.675 0.748 0.252
#> GSM379740 1 0.0000 0.978 1.000 0.000
#> GSM379741 2 0.0000 0.990 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379833 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379834 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379827 2 0.0237 0.9421 0.000 0.996 0.004
#> GSM379828 2 0.0237 0.9421 0.000 0.996 0.004
#> GSM379829 1 0.5621 0.5253 0.692 0.000 0.308
#> GSM379830 2 0.0237 0.9421 0.000 0.996 0.004
#> GSM379831 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379840 2 0.4629 0.7468 0.188 0.808 0.004
#> GSM379841 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379842 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379835 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379836 2 0.3120 0.8660 0.080 0.908 0.012
#> GSM379837 1 0.9213 0.3390 0.536 0.236 0.228
#> GSM379838 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379839 1 0.9134 0.2613 0.500 0.344 0.156
#> GSM379848 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379849 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379850 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379843 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379844 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379845 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379846 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379847 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379853 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379854 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379851 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379852 2 0.0237 0.9421 0.004 0.996 0.000
#> GSM379804 1 0.5621 0.5253 0.692 0.000 0.308
#> GSM379805 1 0.5621 0.5253 0.692 0.000 0.308
#> GSM379806 1 0.5621 0.5253 0.692 0.000 0.308
#> GSM379799 1 0.5621 0.5253 0.692 0.000 0.308
#> GSM379800 1 0.5621 0.5253 0.692 0.000 0.308
#> GSM379801 1 0.5621 0.5253 0.692 0.000 0.308
#> GSM379802 1 0.5621 0.5253 0.692 0.000 0.308
#> GSM379803 1 0.5621 0.5253 0.692 0.000 0.308
#> GSM379812 1 0.5678 0.5119 0.684 0.000 0.316
#> GSM379813 1 0.5733 0.5068 0.676 0.000 0.324
#> GSM379814 1 0.5882 0.5009 0.652 0.000 0.348
#> GSM379807 1 0.5591 0.5257 0.696 0.000 0.304
#> GSM379808 1 0.5621 0.5253 0.692 0.000 0.308
#> GSM379809 1 0.5621 0.5253 0.692 0.000 0.308
#> GSM379810 1 0.5621 0.5253 0.692 0.000 0.308
#> GSM379811 1 0.5621 0.5253 0.692 0.000 0.308
#> GSM379820 1 0.4399 0.4198 0.812 0.000 0.188
#> GSM379821 1 0.3686 0.4536 0.860 0.000 0.140
#> GSM379822 1 0.6280 -0.1799 0.540 0.000 0.460
#> GSM379815 1 0.5621 0.5253 0.692 0.000 0.308
#> GSM379816 1 0.9109 0.4168 0.488 0.148 0.364
#> GSM379817 1 0.3879 0.4487 0.848 0.000 0.152
#> GSM379818 1 0.5621 0.5253 0.692 0.000 0.308
#> GSM379819 1 0.5327 0.5275 0.728 0.000 0.272
#> GSM379825 1 0.5621 0.5253 0.692 0.000 0.308
#> GSM379826 1 0.4931 0.3638 0.768 0.000 0.232
#> GSM379823 1 0.6302 -0.2318 0.520 0.000 0.480
#> GSM379824 1 0.3551 0.4575 0.868 0.000 0.132
#> GSM379749 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379750 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379751 2 0.0475 0.9396 0.004 0.992 0.004
#> GSM379744 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379745 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379746 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379747 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379748 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379757 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379758 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379752 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379753 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379754 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379755 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379756 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379764 2 0.2056 0.9066 0.024 0.952 0.024
#> GSM379765 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379766 2 0.0237 0.9421 0.004 0.996 0.000
#> GSM379759 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379760 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379761 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379762 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379763 2 0.0000 0.9448 0.000 1.000 0.000
#> GSM379769 2 0.8026 0.4945 0.164 0.656 0.180
#> GSM379770 2 0.4179 0.8291 0.072 0.876 0.052
#> GSM379767 2 0.2269 0.8980 0.016 0.944 0.040
#> GSM379768 2 0.0475 0.9394 0.004 0.992 0.004
#> GSM379776 1 0.5560 0.4076 0.700 0.000 0.300
#> GSM379777 1 0.4178 0.4796 0.828 0.000 0.172
#> GSM379778 2 1.0000 -0.3775 0.332 0.336 0.332
#> GSM379771 1 0.5733 0.3967 0.676 0.000 0.324
#> GSM379772 1 0.6154 0.1747 0.592 0.000 0.408
#> GSM379773 1 0.5650 0.3645 0.688 0.000 0.312
#> GSM379774 1 0.5497 0.3686 0.708 0.000 0.292
#> GSM379775 1 0.5465 0.3812 0.712 0.000 0.288
#> GSM379784 1 0.6264 0.0701 0.616 0.004 0.380
#> GSM379785 1 0.5760 0.2143 0.672 0.000 0.328
#> GSM379786 1 0.9521 -0.1766 0.440 0.192 0.368
#> GSM379779 1 0.5859 0.2037 0.656 0.000 0.344
#> GSM379780 1 0.5905 0.1710 0.648 0.000 0.352
#> GSM379781 1 0.5968 0.1360 0.636 0.000 0.364
#> GSM379782 2 0.9921 -0.2529 0.308 0.396 0.296
#> GSM379783 2 0.9989 -0.3382 0.328 0.356 0.316
#> GSM379792 1 0.4178 0.4337 0.828 0.000 0.172
#> GSM379793 3 0.6309 0.2500 0.496 0.000 0.504
#> GSM379794 3 0.6309 0.2411 0.500 0.000 0.500
#> GSM379787 3 0.9616 0.2969 0.344 0.212 0.444
#> GSM379788 1 0.6307 -0.2459 0.512 0.000 0.488
#> GSM379789 1 0.6244 -0.1054 0.560 0.000 0.440
#> GSM379790 1 0.5254 0.3296 0.736 0.000 0.264
#> GSM379791 3 0.6295 0.3018 0.472 0.000 0.528
#> GSM379797 1 0.3816 0.5199 0.852 0.000 0.148
#> GSM379798 1 0.6305 -0.2406 0.516 0.000 0.484
#> GSM379795 3 0.6204 0.4005 0.424 0.000 0.576
#> GSM379796 1 0.5733 0.2194 0.676 0.000 0.324
#> GSM379721 3 0.0592 0.6462 0.012 0.000 0.988
#> GSM379722 3 0.0237 0.6511 0.004 0.000 0.996
#> GSM379723 3 0.1860 0.6063 0.052 0.000 0.948
#> GSM379716 3 0.4291 0.4209 0.180 0.000 0.820
#> GSM379717 3 0.4178 0.4356 0.172 0.000 0.828
#> GSM379718 3 0.3482 0.5087 0.128 0.000 0.872
#> GSM379719 3 0.1031 0.6380 0.024 0.000 0.976
#> GSM379720 3 0.3941 0.4688 0.156 0.000 0.844
#> GSM379729 3 0.5346 0.6176 0.088 0.088 0.824
#> GSM379730 3 0.6726 0.5799 0.132 0.120 0.748
#> GSM379731 3 0.0424 0.6521 0.008 0.000 0.992
#> GSM379724 3 0.1163 0.6333 0.028 0.000 0.972
#> GSM379725 3 0.0592 0.6544 0.012 0.000 0.988
#> GSM379726 3 0.0237 0.6511 0.004 0.000 0.996
#> GSM379727 3 0.0237 0.6511 0.004 0.000 0.996
#> GSM379728 3 0.0747 0.6436 0.016 0.000 0.984
#> GSM379737 3 0.5621 0.5700 0.308 0.000 0.692
#> GSM379738 3 0.5621 0.5700 0.308 0.000 0.692
#> GSM379739 3 0.5621 0.5700 0.308 0.000 0.692
#> GSM379732 3 0.3267 0.6478 0.116 0.000 0.884
#> GSM379733 3 0.1163 0.6557 0.028 0.000 0.972
#> GSM379734 3 0.3192 0.6486 0.112 0.000 0.888
#> GSM379735 3 0.5621 0.5700 0.308 0.000 0.692
#> GSM379736 3 0.1411 0.6252 0.036 0.000 0.964
#> GSM379742 3 0.6770 0.5748 0.264 0.044 0.692
#> GSM379743 3 0.5621 0.5700 0.308 0.000 0.692
#> GSM379740 3 0.5529 0.5775 0.296 0.000 0.704
#> GSM379741 3 0.6193 0.5740 0.292 0.016 0.692
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379833 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379834 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379827 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379828 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379829 4 0.0000 0.902 0.000 0.000 0.000 1.000
#> GSM379830 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379831 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379840 2 0.2334 0.896 0.004 0.908 0.000 0.088
#> GSM379841 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379842 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379835 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379836 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379837 4 0.4991 0.377 0.004 0.388 0.000 0.608
#> GSM379838 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379839 4 0.4872 0.455 0.004 0.356 0.000 0.640
#> GSM379848 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379849 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379850 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379843 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379844 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379845 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379846 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379847 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379853 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379854 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379851 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379852 2 0.0188 0.983 0.004 0.996 0.000 0.000
#> GSM379804 4 0.0000 0.902 0.000 0.000 0.000 1.000
#> GSM379805 4 0.0000 0.902 0.000 0.000 0.000 1.000
#> GSM379806 4 0.0000 0.902 0.000 0.000 0.000 1.000
#> GSM379799 4 0.0000 0.902 0.000 0.000 0.000 1.000
#> GSM379800 4 0.0000 0.902 0.000 0.000 0.000 1.000
#> GSM379801 4 0.0000 0.902 0.000 0.000 0.000 1.000
#> GSM379802 4 0.0000 0.902 0.000 0.000 0.000 1.000
#> GSM379803 4 0.0000 0.902 0.000 0.000 0.000 1.000
#> GSM379812 4 0.2334 0.850 0.088 0.004 0.000 0.908
#> GSM379813 4 0.1940 0.860 0.076 0.000 0.000 0.924
#> GSM379814 4 0.1792 0.865 0.068 0.000 0.000 0.932
#> GSM379807 4 0.0000 0.902 0.000 0.000 0.000 1.000
#> GSM379808 4 0.0000 0.902 0.000 0.000 0.000 1.000
#> GSM379809 4 0.0000 0.902 0.000 0.000 0.000 1.000
#> GSM379810 4 0.0000 0.902 0.000 0.000 0.000 1.000
#> GSM379811 4 0.0000 0.902 0.000 0.000 0.000 1.000
#> GSM379820 4 0.2675 0.848 0.100 0.000 0.008 0.892
#> GSM379821 4 0.3400 0.777 0.180 0.000 0.000 0.820
#> GSM379822 1 0.1284 0.863 0.964 0.000 0.024 0.012
#> GSM379815 4 0.0000 0.902 0.000 0.000 0.000 1.000
#> GSM379816 4 0.6103 0.612 0.116 0.192 0.004 0.688
#> GSM379817 4 0.3219 0.770 0.164 0.000 0.000 0.836
#> GSM379818 4 0.0000 0.902 0.000 0.000 0.000 1.000
#> GSM379819 4 0.0000 0.902 0.000 0.000 0.000 1.000
#> GSM379825 4 0.0000 0.902 0.000 0.000 0.000 1.000
#> GSM379826 4 0.4542 0.701 0.228 0.000 0.020 0.752
#> GSM379823 1 0.0817 0.862 0.976 0.000 0.024 0.000
#> GSM379824 4 0.2125 0.865 0.076 0.000 0.004 0.920
#> GSM379749 2 0.0000 0.983 0.000 1.000 0.000 0.000
#> GSM379750 2 0.0000 0.983 0.000 1.000 0.000 0.000
#> GSM379751 2 0.0000 0.983 0.000 1.000 0.000 0.000
#> GSM379744 2 0.0000 0.983 0.000 1.000 0.000 0.000
#> GSM379745 2 0.0000 0.983 0.000 1.000 0.000 0.000
#> GSM379746 2 0.0000 0.983 0.000 1.000 0.000 0.000
#> GSM379747 2 0.0000 0.983 0.000 1.000 0.000 0.000
#> GSM379748 2 0.0000 0.983 0.000 1.000 0.000 0.000
#> GSM379757 2 0.0000 0.983 0.000 1.000 0.000 0.000
#> GSM379758 2 0.0000 0.983 0.000 1.000 0.000 0.000
#> GSM379752 2 0.0000 0.983 0.000 1.000 0.000 0.000
#> GSM379753 2 0.0000 0.983 0.000 1.000 0.000 0.000
#> GSM379754 2 0.0000 0.983 0.000 1.000 0.000 0.000
#> GSM379755 2 0.0000 0.983 0.000 1.000 0.000 0.000
#> GSM379756 2 0.0000 0.983 0.000 1.000 0.000 0.000
#> GSM379764 2 0.4059 0.758 0.200 0.788 0.012 0.000
#> GSM379765 2 0.0336 0.978 0.008 0.992 0.000 0.000
#> GSM379766 2 0.1557 0.937 0.056 0.944 0.000 0.000
#> GSM379759 2 0.0000 0.983 0.000 1.000 0.000 0.000
#> GSM379760 2 0.0000 0.983 0.000 1.000 0.000 0.000
#> GSM379761 2 0.0000 0.983 0.000 1.000 0.000 0.000
#> GSM379762 2 0.0000 0.983 0.000 1.000 0.000 0.000
#> GSM379763 2 0.0000 0.983 0.000 1.000 0.000 0.000
#> GSM379769 1 0.4744 0.606 0.736 0.240 0.024 0.000
#> GSM379770 2 0.4035 0.783 0.176 0.804 0.020 0.000
#> GSM379767 2 0.3743 0.808 0.160 0.824 0.016 0.000
#> GSM379768 2 0.1022 0.958 0.032 0.968 0.000 0.000
#> GSM379776 1 0.5016 0.452 0.600 0.000 0.004 0.396
#> GSM379777 4 0.4643 0.401 0.344 0.000 0.000 0.656
#> GSM379778 1 0.2131 0.863 0.932 0.036 0.000 0.032
#> GSM379771 1 0.6554 0.357 0.520 0.000 0.080 0.400
#> GSM379772 1 0.5911 0.711 0.692 0.000 0.112 0.196
#> GSM379773 1 0.3873 0.749 0.772 0.000 0.000 0.228
#> GSM379774 1 0.3945 0.761 0.780 0.000 0.004 0.216
#> GSM379775 1 0.4422 0.711 0.736 0.000 0.008 0.256
#> GSM379784 1 0.1302 0.872 0.956 0.000 0.000 0.044
#> GSM379785 1 0.1792 0.866 0.932 0.000 0.000 0.068
#> GSM379786 1 0.0188 0.872 0.996 0.000 0.000 0.004
#> GSM379779 1 0.3249 0.827 0.852 0.000 0.008 0.140
#> GSM379780 1 0.2530 0.847 0.888 0.000 0.000 0.112
#> GSM379781 1 0.2216 0.858 0.908 0.000 0.000 0.092
#> GSM379782 1 0.1389 0.854 0.952 0.048 0.000 0.000
#> GSM379783 1 0.2124 0.842 0.924 0.068 0.000 0.008
#> GSM379792 1 0.4713 0.487 0.640 0.000 0.000 0.360
#> GSM379793 1 0.0188 0.870 0.996 0.000 0.004 0.000
#> GSM379794 1 0.0376 0.872 0.992 0.000 0.004 0.004
#> GSM379787 1 0.0469 0.873 0.988 0.000 0.000 0.012
#> GSM379788 1 0.0188 0.872 0.996 0.000 0.000 0.004
#> GSM379789 1 0.0921 0.874 0.972 0.000 0.000 0.028
#> GSM379790 1 0.2149 0.860 0.912 0.000 0.000 0.088
#> GSM379791 1 0.0376 0.872 0.992 0.000 0.004 0.004
#> GSM379797 4 0.1211 0.882 0.040 0.000 0.000 0.960
#> GSM379798 1 0.0188 0.870 0.996 0.000 0.004 0.000
#> GSM379795 1 0.0188 0.870 0.996 0.000 0.004 0.000
#> GSM379796 1 0.1305 0.869 0.960 0.000 0.004 0.036
#> GSM379721 3 0.0000 0.969 0.000 0.000 1.000 0.000
#> GSM379722 3 0.0000 0.969 0.000 0.000 1.000 0.000
#> GSM379723 3 0.0000 0.969 0.000 0.000 1.000 0.000
#> GSM379716 3 0.0188 0.967 0.000 0.000 0.996 0.004
#> GSM379717 3 0.0188 0.967 0.000 0.000 0.996 0.004
#> GSM379718 3 0.0336 0.963 0.000 0.000 0.992 0.008
#> GSM379719 3 0.0000 0.969 0.000 0.000 1.000 0.000
#> GSM379720 3 0.0336 0.963 0.000 0.000 0.992 0.008
#> GSM379729 3 0.0000 0.969 0.000 0.000 1.000 0.000
#> GSM379730 3 0.0000 0.969 0.000 0.000 1.000 0.000
#> GSM379731 3 0.0000 0.969 0.000 0.000 1.000 0.000
#> GSM379724 3 0.0000 0.969 0.000 0.000 1.000 0.000
#> GSM379725 3 0.0000 0.969 0.000 0.000 1.000 0.000
#> GSM379726 3 0.0000 0.969 0.000 0.000 1.000 0.000
#> GSM379727 3 0.0000 0.969 0.000 0.000 1.000 0.000
#> GSM379728 3 0.0000 0.969 0.000 0.000 1.000 0.000
#> GSM379737 3 0.0000 0.969 0.000 0.000 1.000 0.000
#> GSM379738 3 0.0000 0.969 0.000 0.000 1.000 0.000
#> GSM379739 3 0.0000 0.969 0.000 0.000 1.000 0.000
#> GSM379732 3 0.0000 0.969 0.000 0.000 1.000 0.000
#> GSM379733 3 0.0000 0.969 0.000 0.000 1.000 0.000
#> GSM379734 3 0.0000 0.969 0.000 0.000 1.000 0.000
#> GSM379735 3 0.0188 0.967 0.004 0.000 0.996 0.000
#> GSM379736 3 0.0000 0.969 0.000 0.000 1.000 0.000
#> GSM379742 3 0.4977 0.204 0.460 0.000 0.540 0.000
#> GSM379743 3 0.1211 0.936 0.040 0.000 0.960 0.000
#> GSM379740 3 0.0000 0.969 0.000 0.000 1.000 0.000
#> GSM379741 3 0.4331 0.614 0.288 0.000 0.712 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 2 0.0000 0.911 0.000 1.000 0.000 0.000 0.000
#> GSM379833 2 0.0000 0.911 0.000 1.000 0.000 0.000 0.000
#> GSM379834 2 0.0000 0.911 0.000 1.000 0.000 0.000 0.000
#> GSM379827 2 0.0404 0.905 0.000 0.988 0.000 0.000 0.012
#> GSM379828 2 0.0404 0.905 0.000 0.988 0.000 0.000 0.012
#> GSM379829 4 0.1469 0.859 0.000 0.036 0.000 0.948 0.016
#> GSM379830 2 0.0404 0.905 0.000 0.988 0.000 0.000 0.012
#> GSM379831 2 0.0404 0.905 0.000 0.988 0.000 0.000 0.012
#> GSM379840 2 0.1605 0.865 0.004 0.944 0.000 0.040 0.012
#> GSM379841 2 0.0000 0.911 0.000 1.000 0.000 0.000 0.000
#> GSM379842 2 0.0000 0.911 0.000 1.000 0.000 0.000 0.000
#> GSM379835 2 0.0404 0.905 0.000 0.988 0.000 0.000 0.012
#> GSM379836 2 0.0912 0.894 0.012 0.972 0.000 0.000 0.016
#> GSM379837 4 0.4482 0.272 0.000 0.376 0.000 0.612 0.012
#> GSM379838 2 0.0000 0.911 0.000 1.000 0.000 0.000 0.000
#> GSM379839 4 0.4016 0.499 0.000 0.272 0.000 0.716 0.012
#> GSM379848 2 0.0000 0.911 0.000 1.000 0.000 0.000 0.000
#> GSM379849 2 0.0000 0.911 0.000 1.000 0.000 0.000 0.000
#> GSM379850 2 0.0000 0.911 0.000 1.000 0.000 0.000 0.000
#> GSM379843 2 0.0000 0.911 0.000 1.000 0.000 0.000 0.000
#> GSM379844 2 0.0000 0.911 0.000 1.000 0.000 0.000 0.000
#> GSM379845 2 0.0404 0.905 0.000 0.988 0.000 0.000 0.012
#> GSM379846 2 0.0000 0.911 0.000 1.000 0.000 0.000 0.000
#> GSM379847 2 0.0000 0.911 0.000 1.000 0.000 0.000 0.000
#> GSM379853 2 0.0162 0.909 0.000 0.996 0.000 0.000 0.004
#> GSM379854 2 0.0000 0.911 0.000 1.000 0.000 0.000 0.000
#> GSM379851 2 0.0000 0.911 0.000 1.000 0.000 0.000 0.000
#> GSM379852 2 0.0000 0.911 0.000 1.000 0.000 0.000 0.000
#> GSM379804 4 0.0162 0.895 0.000 0.000 0.000 0.996 0.004
#> GSM379805 4 0.0162 0.895 0.000 0.000 0.000 0.996 0.004
#> GSM379806 4 0.0162 0.895 0.000 0.000 0.000 0.996 0.004
#> GSM379799 4 0.0290 0.894 0.000 0.000 0.000 0.992 0.008
#> GSM379800 4 0.0290 0.894 0.000 0.000 0.000 0.992 0.008
#> GSM379801 4 0.0290 0.894 0.000 0.000 0.000 0.992 0.008
#> GSM379802 4 0.0162 0.895 0.000 0.000 0.000 0.996 0.004
#> GSM379803 4 0.0000 0.895 0.000 0.000 0.000 1.000 0.000
#> GSM379812 4 0.4380 0.554 0.020 0.000 0.000 0.676 0.304
#> GSM379813 4 0.3359 0.757 0.020 0.000 0.000 0.816 0.164
#> GSM379814 4 0.1216 0.878 0.020 0.000 0.000 0.960 0.020
#> GSM379807 4 0.0579 0.890 0.008 0.000 0.000 0.984 0.008
#> GSM379808 4 0.0290 0.894 0.000 0.000 0.000 0.992 0.008
#> GSM379809 4 0.0162 0.895 0.000 0.000 0.000 0.996 0.004
#> GSM379810 4 0.0000 0.895 0.000 0.000 0.000 1.000 0.000
#> GSM379811 4 0.0000 0.895 0.000 0.000 0.000 1.000 0.000
#> GSM379820 4 0.1800 0.863 0.020 0.000 0.000 0.932 0.048
#> GSM379821 5 0.4697 0.143 0.020 0.000 0.000 0.388 0.592
#> GSM379822 5 0.3134 0.660 0.120 0.000 0.000 0.032 0.848
#> GSM379815 4 0.0000 0.895 0.000 0.000 0.000 1.000 0.000
#> GSM379816 4 0.4173 0.558 0.000 0.012 0.000 0.688 0.300
#> GSM379817 4 0.4297 0.583 0.020 0.000 0.000 0.692 0.288
#> GSM379818 4 0.0000 0.895 0.000 0.000 0.000 1.000 0.000
#> GSM379819 4 0.0579 0.890 0.008 0.000 0.000 0.984 0.008
#> GSM379825 4 0.0162 0.894 0.000 0.000 0.000 0.996 0.004
#> GSM379826 4 0.3810 0.739 0.036 0.000 0.000 0.788 0.176
#> GSM379823 5 0.2818 0.662 0.132 0.000 0.000 0.012 0.856
#> GSM379824 4 0.2046 0.854 0.016 0.000 0.000 0.916 0.068
#> GSM379749 2 0.2377 0.903 0.000 0.872 0.000 0.000 0.128
#> GSM379750 2 0.2377 0.903 0.000 0.872 0.000 0.000 0.128
#> GSM379751 2 0.2536 0.901 0.000 0.868 0.000 0.004 0.128
#> GSM379744 2 0.2377 0.903 0.000 0.872 0.000 0.000 0.128
#> GSM379745 2 0.2377 0.903 0.000 0.872 0.000 0.000 0.128
#> GSM379746 2 0.2377 0.903 0.000 0.872 0.000 0.000 0.128
#> GSM379747 2 0.2377 0.903 0.000 0.872 0.000 0.000 0.128
#> GSM379748 2 0.2377 0.903 0.000 0.872 0.000 0.000 0.128
#> GSM379757 2 0.2377 0.903 0.000 0.872 0.000 0.000 0.128
#> GSM379758 2 0.2377 0.903 0.000 0.872 0.000 0.000 0.128
#> GSM379752 2 0.2377 0.903 0.000 0.872 0.000 0.000 0.128
#> GSM379753 2 0.2377 0.903 0.000 0.872 0.000 0.000 0.128
#> GSM379754 2 0.2377 0.903 0.000 0.872 0.000 0.000 0.128
#> GSM379755 2 0.2377 0.903 0.000 0.872 0.000 0.000 0.128
#> GSM379756 2 0.2377 0.903 0.000 0.872 0.000 0.000 0.128
#> GSM379764 5 0.3039 0.634 0.000 0.192 0.000 0.000 0.808
#> GSM379765 2 0.3395 0.798 0.000 0.764 0.000 0.000 0.236
#> GSM379766 2 0.3305 0.813 0.000 0.776 0.000 0.000 0.224
#> GSM379759 2 0.2377 0.903 0.000 0.872 0.000 0.000 0.128
#> GSM379760 2 0.2377 0.903 0.000 0.872 0.000 0.000 0.128
#> GSM379761 2 0.2377 0.903 0.000 0.872 0.000 0.000 0.128
#> GSM379762 2 0.2377 0.903 0.000 0.872 0.000 0.000 0.128
#> GSM379763 2 0.2377 0.903 0.000 0.872 0.000 0.000 0.128
#> GSM379769 5 0.0963 0.690 0.000 0.036 0.000 0.000 0.964
#> GSM379770 5 0.3837 0.392 0.000 0.308 0.000 0.000 0.692
#> GSM379767 2 0.3857 0.678 0.000 0.688 0.000 0.000 0.312
#> GSM379768 2 0.3109 0.840 0.000 0.800 0.000 0.000 0.200
#> GSM379776 1 0.1430 0.929 0.944 0.000 0.000 0.052 0.004
#> GSM379777 1 0.2692 0.875 0.884 0.008 0.000 0.092 0.016
#> GSM379778 1 0.0880 0.943 0.968 0.032 0.000 0.000 0.000
#> GSM379771 1 0.1934 0.922 0.928 0.000 0.016 0.052 0.004
#> GSM379772 1 0.2061 0.925 0.928 0.004 0.024 0.040 0.004
#> GSM379773 1 0.1653 0.940 0.944 0.028 0.000 0.024 0.004
#> GSM379774 1 0.1525 0.940 0.948 0.012 0.000 0.036 0.004
#> GSM379775 1 0.1443 0.935 0.948 0.004 0.000 0.044 0.004
#> GSM379784 1 0.0898 0.948 0.972 0.020 0.000 0.000 0.008
#> GSM379785 1 0.0609 0.948 0.980 0.020 0.000 0.000 0.000
#> GSM379786 1 0.1106 0.946 0.964 0.024 0.000 0.000 0.012
#> GSM379779 1 0.1059 0.948 0.968 0.008 0.000 0.020 0.004
#> GSM379780 1 0.0865 0.948 0.972 0.024 0.000 0.004 0.000
#> GSM379781 1 0.0703 0.947 0.976 0.024 0.000 0.000 0.000
#> GSM379782 1 0.0955 0.945 0.968 0.028 0.000 0.000 0.004
#> GSM379783 1 0.0992 0.947 0.968 0.024 0.000 0.000 0.008
#> GSM379792 1 0.1197 0.933 0.952 0.000 0.000 0.048 0.000
#> GSM379793 1 0.0162 0.945 0.996 0.000 0.000 0.000 0.004
#> GSM379794 1 0.0000 0.946 1.000 0.000 0.000 0.000 0.000
#> GSM379787 1 0.1041 0.939 0.964 0.032 0.000 0.000 0.004
#> GSM379788 1 0.0609 0.948 0.980 0.020 0.000 0.000 0.000
#> GSM379789 1 0.0404 0.948 0.988 0.000 0.000 0.012 0.000
#> GSM379790 1 0.0609 0.947 0.980 0.000 0.000 0.020 0.000
#> GSM379791 1 0.0000 0.946 1.000 0.000 0.000 0.000 0.000
#> GSM379797 1 0.4403 0.266 0.560 0.000 0.000 0.436 0.004
#> GSM379798 1 0.0000 0.946 1.000 0.000 0.000 0.000 0.000
#> GSM379795 1 0.0000 0.946 1.000 0.000 0.000 0.000 0.000
#> GSM379796 1 0.0162 0.947 0.996 0.000 0.000 0.004 0.000
#> GSM379721 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379722 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379723 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379716 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379717 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379718 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379719 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379720 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379729 3 0.0404 0.949 0.000 0.000 0.988 0.000 0.012
#> GSM379730 3 0.0794 0.937 0.000 0.000 0.972 0.000 0.028
#> GSM379731 3 0.0162 0.954 0.000 0.000 0.996 0.000 0.004
#> GSM379724 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379725 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379726 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379727 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379728 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379737 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379738 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379739 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379732 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379733 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379734 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379735 3 0.1671 0.896 0.000 0.000 0.924 0.000 0.076
#> GSM379736 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379742 3 0.5171 0.187 0.040 0.000 0.504 0.000 0.456
#> GSM379743 3 0.3561 0.680 0.000 0.000 0.740 0.000 0.260
#> GSM379740 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000
#> GSM379741 3 0.4161 0.626 0.016 0.000 0.704 0.000 0.280
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 5 0.2793 0.9633 0.000 0.200 0.000 0.000 0.800 0.000
#> GSM379833 5 0.2793 0.9633 0.000 0.200 0.000 0.000 0.800 0.000
#> GSM379834 5 0.2793 0.9633 0.000 0.200 0.000 0.000 0.800 0.000
#> GSM379827 5 0.2854 0.9532 0.000 0.208 0.000 0.000 0.792 0.000
#> GSM379828 5 0.2854 0.9532 0.000 0.208 0.000 0.000 0.792 0.000
#> GSM379829 4 0.2632 0.6985 0.000 0.000 0.000 0.832 0.164 0.004
#> GSM379830 5 0.2730 0.9619 0.000 0.192 0.000 0.000 0.808 0.000
#> GSM379831 5 0.2697 0.9615 0.000 0.188 0.000 0.000 0.812 0.000
#> GSM379840 5 0.3175 0.9290 0.000 0.164 0.000 0.028 0.808 0.000
#> GSM379841 5 0.2823 0.9630 0.000 0.204 0.000 0.000 0.796 0.000
#> GSM379842 5 0.2762 0.9639 0.000 0.196 0.000 0.000 0.804 0.000
#> GSM379835 5 0.2730 0.9619 0.000 0.192 0.000 0.000 0.808 0.000
#> GSM379836 5 0.2730 0.9619 0.000 0.192 0.000 0.000 0.808 0.000
#> GSM379837 5 0.2902 0.6412 0.000 0.000 0.000 0.196 0.800 0.004
#> GSM379838 5 0.2823 0.9612 0.000 0.204 0.000 0.000 0.796 0.000
#> GSM379839 5 0.2854 0.6284 0.000 0.000 0.000 0.208 0.792 0.000
#> GSM379848 5 0.2994 0.9603 0.000 0.208 0.000 0.000 0.788 0.004
#> GSM379849 5 0.3110 0.9595 0.000 0.196 0.000 0.000 0.792 0.012
#> GSM379850 5 0.3043 0.9626 0.000 0.200 0.000 0.000 0.792 0.008
#> GSM379843 5 0.2902 0.9622 0.000 0.196 0.000 0.000 0.800 0.004
#> GSM379844 5 0.2933 0.9618 0.000 0.200 0.000 0.000 0.796 0.004
#> GSM379845 5 0.2697 0.9615 0.000 0.188 0.000 0.000 0.812 0.000
#> GSM379846 5 0.2762 0.9639 0.000 0.196 0.000 0.000 0.804 0.000
#> GSM379847 5 0.2933 0.9634 0.000 0.200 0.000 0.000 0.796 0.004
#> GSM379853 5 0.2697 0.9615 0.000 0.188 0.000 0.000 0.812 0.000
#> GSM379854 5 0.2964 0.9620 0.000 0.204 0.000 0.000 0.792 0.004
#> GSM379851 5 0.2902 0.9640 0.000 0.196 0.000 0.000 0.800 0.004
#> GSM379852 5 0.3012 0.9611 0.000 0.196 0.000 0.000 0.796 0.008
#> GSM379804 4 0.0000 0.9132 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379805 4 0.0000 0.9132 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379806 4 0.0146 0.9126 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM379799 4 0.0146 0.9126 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM379800 4 0.0146 0.9126 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM379801 4 0.0436 0.9090 0.000 0.004 0.000 0.988 0.004 0.004
#> GSM379802 4 0.0146 0.9126 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM379803 4 0.0260 0.9104 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM379812 4 0.3464 0.5533 0.000 0.000 0.000 0.688 0.000 0.312
#> GSM379813 4 0.1910 0.8372 0.000 0.000 0.000 0.892 0.000 0.108
#> GSM379814 4 0.0291 0.9109 0.000 0.000 0.000 0.992 0.004 0.004
#> GSM379807 4 0.0000 0.9132 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379808 4 0.0146 0.9126 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM379809 4 0.0146 0.9126 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM379810 4 0.0000 0.9132 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379811 4 0.0000 0.9132 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379820 4 0.1970 0.8525 0.000 0.000 0.000 0.900 0.092 0.008
#> GSM379821 4 0.3866 0.0853 0.000 0.000 0.000 0.516 0.000 0.484
#> GSM379822 6 0.1701 0.9445 0.000 0.000 0.000 0.072 0.008 0.920
#> GSM379815 4 0.0000 0.9132 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379816 4 0.5733 0.2095 0.000 0.208 0.000 0.540 0.004 0.248
#> GSM379817 4 0.2376 0.8484 0.000 0.000 0.000 0.888 0.044 0.068
#> GSM379818 4 0.0000 0.9132 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379819 4 0.0000 0.9132 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379825 4 0.0000 0.9132 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379826 4 0.2309 0.8452 0.000 0.000 0.000 0.888 0.084 0.028
#> GSM379823 6 0.0713 0.9470 0.000 0.000 0.000 0.028 0.000 0.972
#> GSM379824 4 0.1663 0.8550 0.000 0.000 0.000 0.912 0.000 0.088
#> GSM379749 2 0.0363 0.9630 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM379750 2 0.0458 0.9619 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM379751 2 0.0260 0.9625 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379744 2 0.0260 0.9625 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379745 2 0.0260 0.9625 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379746 2 0.0458 0.9619 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM379747 2 0.0260 0.9625 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379748 2 0.0260 0.9625 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379757 2 0.0520 0.9586 0.000 0.984 0.000 0.000 0.008 0.008
#> GSM379758 2 0.0363 0.9622 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM379752 2 0.0363 0.9625 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM379753 2 0.0260 0.9625 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379754 2 0.0363 0.9630 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM379755 2 0.0458 0.9619 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM379756 2 0.0260 0.9624 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379764 2 0.1838 0.8802 0.000 0.916 0.000 0.000 0.068 0.016
#> GSM379765 2 0.0260 0.9624 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379766 2 0.0458 0.9591 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM379759 2 0.0622 0.9555 0.000 0.980 0.000 0.000 0.008 0.012
#> GSM379760 2 0.0260 0.9624 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379761 2 0.0363 0.9622 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM379762 2 0.0363 0.9622 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM379763 2 0.0363 0.9622 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM379769 2 0.5362 0.3526 0.000 0.588 0.000 0.000 0.184 0.228
#> GSM379770 2 0.3098 0.7242 0.000 0.812 0.000 0.000 0.164 0.024
#> GSM379767 2 0.0458 0.9591 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM379768 2 0.0363 0.9598 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM379776 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379777 1 0.2482 0.7977 0.848 0.000 0.000 0.004 0.000 0.148
#> GSM379778 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379771 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379772 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379773 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379774 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379775 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379784 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379785 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379786 1 0.0632 0.9509 0.976 0.000 0.000 0.000 0.000 0.024
#> GSM379779 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379780 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379781 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379782 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379783 1 0.0260 0.9665 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM379792 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379793 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379794 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379787 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379788 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379789 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379790 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379791 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379797 1 0.3756 0.2813 0.600 0.000 0.000 0.400 0.000 0.000
#> GSM379798 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379795 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379796 1 0.0000 0.9733 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379721 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379722 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379723 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379716 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379717 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379718 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379719 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379720 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379729 3 0.1267 0.9215 0.000 0.000 0.940 0.000 0.000 0.060
#> GSM379730 3 0.2562 0.8075 0.000 0.000 0.828 0.000 0.000 0.172
#> GSM379731 3 0.1075 0.9310 0.000 0.000 0.952 0.000 0.000 0.048
#> GSM379724 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379725 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379726 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379727 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379728 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379737 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379738 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379739 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379732 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379733 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379734 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379735 3 0.1910 0.8785 0.000 0.000 0.892 0.000 0.000 0.108
#> GSM379736 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379742 3 0.4738 0.5940 0.000 0.004 0.684 0.000 0.112 0.200
#> GSM379743 3 0.2527 0.8148 0.000 0.000 0.832 0.000 0.000 0.168
#> GSM379740 3 0.0000 0.9633 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379741 3 0.2039 0.8904 0.000 0.000 0.904 0.000 0.020 0.076
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> CV:NMF 138 1.25e-22 1 0.820 2
#> CV:NMF 98 8.68e-37 1 0.293 3
#> CV:NMF 132 1.98e-68 1 0.726 4
#> CV:NMF 133 1.90e-72 1 0.738 5
#> CV:NMF 135 1.25e-99 1 0.909 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.370 0.795 0.840 0.4272 0.515 0.515
#> 3 3 0.607 0.756 0.864 0.4494 0.831 0.675
#> 4 4 0.698 0.597 0.794 0.1365 0.962 0.895
#> 5 5 0.781 0.648 0.817 0.0454 0.932 0.801
#> 6 6 0.825 0.776 0.846 0.0355 0.937 0.784
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.0000 0.9426 0.000 1.000
#> GSM379833 2 0.0000 0.9426 0.000 1.000
#> GSM379834 2 0.0000 0.9426 0.000 1.000
#> GSM379827 2 0.5737 0.7755 0.136 0.864
#> GSM379828 2 0.5737 0.7755 0.136 0.864
#> GSM379829 1 0.7219 0.7644 0.800 0.200
#> GSM379830 2 0.4431 0.8392 0.092 0.908
#> GSM379831 2 0.3431 0.8744 0.064 0.936
#> GSM379840 1 0.9909 0.4193 0.556 0.444
#> GSM379841 2 0.0000 0.9426 0.000 1.000
#> GSM379842 2 0.0000 0.9426 0.000 1.000
#> GSM379835 2 0.5946 0.7618 0.144 0.856
#> GSM379836 2 0.5946 0.7618 0.144 0.856
#> GSM379837 1 0.8661 0.7250 0.712 0.288
#> GSM379838 2 0.0000 0.9426 0.000 1.000
#> GSM379839 1 0.8661 0.7250 0.712 0.288
#> GSM379848 2 0.0000 0.9426 0.000 1.000
#> GSM379849 2 0.0000 0.9426 0.000 1.000
#> GSM379850 2 0.0000 0.9426 0.000 1.000
#> GSM379843 2 0.0000 0.9426 0.000 1.000
#> GSM379844 2 0.0000 0.9426 0.000 1.000
#> GSM379845 1 0.8661 0.7250 0.712 0.288
#> GSM379846 2 0.0000 0.9426 0.000 1.000
#> GSM379847 2 0.0000 0.9426 0.000 1.000
#> GSM379853 2 0.0000 0.9426 0.000 1.000
#> GSM379854 2 0.0000 0.9426 0.000 1.000
#> GSM379851 2 0.0000 0.9426 0.000 1.000
#> GSM379852 2 0.0000 0.9426 0.000 1.000
#> GSM379804 1 0.1184 0.7107 0.984 0.016
#> GSM379805 1 0.1184 0.7107 0.984 0.016
#> GSM379806 1 0.0672 0.7056 0.992 0.008
#> GSM379799 1 0.0000 0.6995 1.000 0.000
#> GSM379800 1 0.0000 0.6995 1.000 0.000
#> GSM379801 1 0.0000 0.6995 1.000 0.000
#> GSM379802 1 0.0000 0.6995 1.000 0.000
#> GSM379803 1 0.0672 0.7056 0.992 0.008
#> GSM379812 1 0.6887 0.7784 0.816 0.184
#> GSM379813 1 0.6438 0.7716 0.836 0.164
#> GSM379814 1 0.1843 0.7175 0.972 0.028
#> GSM379807 1 0.1843 0.7175 0.972 0.028
#> GSM379808 1 0.0672 0.7056 0.992 0.008
#> GSM379809 1 0.1184 0.7107 0.984 0.016
#> GSM379810 1 0.1184 0.7107 0.984 0.016
#> GSM379811 1 0.0672 0.7056 0.992 0.008
#> GSM379820 1 0.1843 0.7175 0.972 0.028
#> GSM379821 1 0.6801 0.7789 0.820 0.180
#> GSM379822 1 0.6887 0.7784 0.816 0.184
#> GSM379815 1 0.1843 0.7175 0.972 0.028
#> GSM379816 1 0.6973 0.7793 0.812 0.188
#> GSM379817 1 0.4022 0.7379 0.920 0.080
#> GSM379818 1 0.0000 0.6995 1.000 0.000
#> GSM379819 1 0.1843 0.7175 0.972 0.028
#> GSM379825 1 0.0000 0.6995 1.000 0.000
#> GSM379826 1 0.1843 0.7175 0.972 0.028
#> GSM379823 1 0.6887 0.7784 0.816 0.184
#> GSM379824 1 0.6801 0.7789 0.820 0.180
#> GSM379749 2 0.0000 0.9426 0.000 1.000
#> GSM379750 2 0.0000 0.9426 0.000 1.000
#> GSM379751 2 0.0000 0.9426 0.000 1.000
#> GSM379744 2 0.0000 0.9426 0.000 1.000
#> GSM379745 2 0.0000 0.9426 0.000 1.000
#> GSM379746 2 0.0000 0.9426 0.000 1.000
#> GSM379747 2 0.0000 0.9426 0.000 1.000
#> GSM379748 2 0.0000 0.9426 0.000 1.000
#> GSM379757 2 0.0000 0.9426 0.000 1.000
#> GSM379758 2 0.0000 0.9426 0.000 1.000
#> GSM379752 2 0.0000 0.9426 0.000 1.000
#> GSM379753 2 0.0000 0.9426 0.000 1.000
#> GSM379754 2 0.0000 0.9426 0.000 1.000
#> GSM379755 2 0.0000 0.9426 0.000 1.000
#> GSM379756 2 0.0000 0.9426 0.000 1.000
#> GSM379764 2 0.0000 0.9426 0.000 1.000
#> GSM379765 2 0.0000 0.9426 0.000 1.000
#> GSM379766 2 0.0000 0.9426 0.000 1.000
#> GSM379759 2 0.0000 0.9426 0.000 1.000
#> GSM379760 2 0.0000 0.9426 0.000 1.000
#> GSM379761 2 0.0000 0.9426 0.000 1.000
#> GSM379762 2 0.0000 0.9426 0.000 1.000
#> GSM379763 2 0.0000 0.9426 0.000 1.000
#> GSM379769 2 0.0000 0.9426 0.000 1.000
#> GSM379770 2 0.0000 0.9426 0.000 1.000
#> GSM379767 2 0.0000 0.9426 0.000 1.000
#> GSM379768 2 0.0000 0.9426 0.000 1.000
#> GSM379776 1 0.9000 0.7810 0.684 0.316
#> GSM379777 1 0.7602 0.7859 0.780 0.220
#> GSM379778 2 0.7219 0.6437 0.200 0.800
#> GSM379771 1 0.9000 0.7810 0.684 0.316
#> GSM379772 1 0.9000 0.7810 0.684 0.316
#> GSM379773 2 0.9754 -0.0831 0.408 0.592
#> GSM379774 1 0.9000 0.7810 0.684 0.316
#> GSM379775 1 0.9000 0.7810 0.684 0.316
#> GSM379784 1 0.7602 0.7859 0.780 0.220
#> GSM379785 1 0.8763 0.7847 0.704 0.296
#> GSM379786 1 0.7602 0.7859 0.780 0.220
#> GSM379779 1 0.9000 0.7810 0.684 0.316
#> GSM379780 1 0.9000 0.7810 0.684 0.316
#> GSM379781 1 0.8763 0.7847 0.704 0.296
#> GSM379782 2 0.7219 0.6437 0.200 0.800
#> GSM379783 1 0.7602 0.7859 0.780 0.220
#> GSM379792 1 0.8144 0.7880 0.748 0.252
#> GSM379793 1 0.9000 0.7810 0.684 0.316
#> GSM379794 1 0.9000 0.7810 0.684 0.316
#> GSM379787 2 0.7219 0.6437 0.200 0.800
#> GSM379788 1 0.7602 0.7859 0.780 0.220
#> GSM379789 1 0.9000 0.7810 0.684 0.316
#> GSM379790 1 0.9000 0.7810 0.684 0.316
#> GSM379791 1 0.9000 0.7810 0.684 0.316
#> GSM379797 1 0.0000 0.6995 1.000 0.000
#> GSM379798 1 0.9000 0.7810 0.684 0.316
#> GSM379795 1 0.9000 0.7810 0.684 0.316
#> GSM379796 1 0.8144 0.7880 0.748 0.252
#> GSM379721 1 0.9754 0.7144 0.592 0.408
#> GSM379722 1 0.9754 0.7144 0.592 0.408
#> GSM379723 1 0.9754 0.7144 0.592 0.408
#> GSM379716 1 0.9754 0.7144 0.592 0.408
#> GSM379717 1 0.9754 0.7144 0.592 0.408
#> GSM379718 1 0.9754 0.7144 0.592 0.408
#> GSM379719 1 0.9754 0.7144 0.592 0.408
#> GSM379720 1 0.9754 0.7144 0.592 0.408
#> GSM379729 1 0.9635 0.7333 0.612 0.388
#> GSM379730 1 0.9635 0.7333 0.612 0.388
#> GSM379731 1 0.9635 0.7333 0.612 0.388
#> GSM379724 1 0.9754 0.7144 0.592 0.408
#> GSM379725 1 0.9710 0.7224 0.600 0.400
#> GSM379726 1 0.9754 0.7144 0.592 0.408
#> GSM379727 1 0.9754 0.7144 0.592 0.408
#> GSM379728 1 0.9754 0.7144 0.592 0.408
#> GSM379737 1 0.9754 0.7144 0.592 0.408
#> GSM379738 1 0.9754 0.7144 0.592 0.408
#> GSM379739 1 0.9754 0.7144 0.592 0.408
#> GSM379732 1 0.9635 0.7333 0.612 0.388
#> GSM379733 1 0.9754 0.7144 0.592 0.408
#> GSM379734 1 0.9754 0.7144 0.592 0.408
#> GSM379735 1 0.9635 0.7333 0.612 0.388
#> GSM379736 1 0.9754 0.7144 0.592 0.408
#> GSM379742 2 0.7219 0.6437 0.200 0.800
#> GSM379743 1 0.9635 0.7333 0.612 0.388
#> GSM379740 1 0.9754 0.7144 0.592 0.408
#> GSM379741 2 0.7219 0.6437 0.200 0.800
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.0592 0.9091 0.000 0.988 0.012
#> GSM379833 2 0.0592 0.9091 0.000 0.988 0.012
#> GSM379834 2 0.0592 0.9091 0.000 0.988 0.012
#> GSM379827 2 0.5785 0.5669 0.000 0.668 0.332
#> GSM379828 2 0.5785 0.5669 0.000 0.668 0.332
#> GSM379829 1 0.6252 0.3373 0.556 0.000 0.444
#> GSM379830 2 0.5465 0.6292 0.000 0.712 0.288
#> GSM379831 2 0.5098 0.6789 0.000 0.752 0.248
#> GSM379840 3 0.9722 -0.0543 0.312 0.244 0.444
#> GSM379841 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379842 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379835 2 0.5835 0.5524 0.000 0.660 0.340
#> GSM379836 2 0.5835 0.5524 0.000 0.660 0.340
#> GSM379837 1 0.8277 0.2415 0.468 0.076 0.456
#> GSM379838 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379839 1 0.8277 0.2415 0.468 0.076 0.456
#> GSM379848 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379849 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379850 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379843 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379844 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379845 1 0.8277 0.2415 0.468 0.076 0.456
#> GSM379846 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379847 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379853 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379854 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379851 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379852 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379804 1 0.4002 0.7788 0.840 0.000 0.160
#> GSM379805 1 0.4002 0.7788 0.840 0.000 0.160
#> GSM379806 1 0.3686 0.7788 0.860 0.000 0.140
#> GSM379799 1 0.0424 0.7355 0.992 0.000 0.008
#> GSM379800 1 0.0424 0.7355 0.992 0.000 0.008
#> GSM379801 1 0.0424 0.7355 0.992 0.000 0.008
#> GSM379802 1 0.0000 0.7370 1.000 0.000 0.000
#> GSM379803 1 0.3941 0.7796 0.844 0.000 0.156
#> GSM379812 3 0.6148 0.4375 0.356 0.004 0.640
#> GSM379813 1 0.6518 0.1411 0.512 0.004 0.484
#> GSM379814 1 0.5216 0.7162 0.740 0.000 0.260
#> GSM379807 1 0.5216 0.7162 0.740 0.000 0.260
#> GSM379808 1 0.3686 0.7788 0.860 0.000 0.140
#> GSM379809 1 0.4002 0.7788 0.840 0.000 0.160
#> GSM379810 1 0.4002 0.7788 0.840 0.000 0.160
#> GSM379811 1 0.3816 0.7791 0.852 0.000 0.148
#> GSM379820 1 0.5397 0.6924 0.720 0.000 0.280
#> GSM379821 3 0.5882 0.4735 0.348 0.000 0.652
#> GSM379822 3 0.6081 0.4772 0.344 0.004 0.652
#> GSM379815 1 0.5216 0.7162 0.740 0.000 0.260
#> GSM379816 3 0.6057 0.4867 0.340 0.004 0.656
#> GSM379817 1 0.6228 0.5158 0.624 0.004 0.372
#> GSM379818 1 0.0000 0.7370 1.000 0.000 0.000
#> GSM379819 1 0.5397 0.6924 0.720 0.000 0.280
#> GSM379825 1 0.0000 0.7370 1.000 0.000 0.000
#> GSM379826 1 0.5397 0.6924 0.720 0.000 0.280
#> GSM379823 3 0.6081 0.4772 0.344 0.004 0.652
#> GSM379824 3 0.5882 0.4735 0.348 0.000 0.652
#> GSM379749 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379750 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379751 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379744 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379745 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379746 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379747 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379748 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379757 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379758 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379752 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379753 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379754 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379755 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379756 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379764 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379765 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379766 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379759 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379760 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379761 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379762 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379763 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379769 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379770 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379767 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379768 2 0.0000 0.9188 0.000 1.000 0.000
#> GSM379776 3 0.5060 0.7938 0.156 0.028 0.816
#> GSM379777 3 0.5244 0.6866 0.240 0.004 0.756
#> GSM379778 2 0.7097 0.5488 0.052 0.668 0.280
#> GSM379771 3 0.5060 0.7938 0.156 0.028 0.816
#> GSM379772 3 0.5060 0.7938 0.156 0.028 0.816
#> GSM379773 3 0.9086 0.2826 0.148 0.356 0.496
#> GSM379774 3 0.5060 0.7938 0.156 0.028 0.816
#> GSM379775 3 0.5060 0.7938 0.156 0.028 0.816
#> GSM379784 3 0.5244 0.6866 0.240 0.004 0.756
#> GSM379785 3 0.5574 0.7698 0.184 0.032 0.784
#> GSM379786 3 0.5244 0.6866 0.240 0.004 0.756
#> GSM379779 3 0.5060 0.7938 0.156 0.028 0.816
#> GSM379780 3 0.5060 0.7938 0.156 0.028 0.816
#> GSM379781 3 0.5574 0.7698 0.184 0.032 0.784
#> GSM379782 2 0.7097 0.5488 0.052 0.668 0.280
#> GSM379783 3 0.5244 0.6866 0.240 0.004 0.756
#> GSM379792 3 0.6264 0.7056 0.256 0.028 0.716
#> GSM379793 3 0.5060 0.7938 0.156 0.028 0.816
#> GSM379794 3 0.5060 0.7938 0.156 0.028 0.816
#> GSM379787 2 0.7097 0.5488 0.052 0.668 0.280
#> GSM379788 3 0.5244 0.6866 0.240 0.004 0.756
#> GSM379789 3 0.5060 0.7938 0.156 0.028 0.816
#> GSM379790 3 0.5060 0.7938 0.156 0.028 0.816
#> GSM379791 3 0.5060 0.7938 0.156 0.028 0.816
#> GSM379797 1 0.0000 0.7370 1.000 0.000 0.000
#> GSM379798 3 0.5060 0.7938 0.156 0.028 0.816
#> GSM379795 3 0.5060 0.7938 0.156 0.028 0.816
#> GSM379796 3 0.6264 0.7056 0.256 0.028 0.716
#> GSM379721 3 0.1399 0.8074 0.004 0.028 0.968
#> GSM379722 3 0.1399 0.8074 0.004 0.028 0.968
#> GSM379723 3 0.1399 0.8074 0.004 0.028 0.968
#> GSM379716 3 0.1399 0.8074 0.004 0.028 0.968
#> GSM379717 3 0.1399 0.8074 0.004 0.028 0.968
#> GSM379718 3 0.1399 0.8074 0.004 0.028 0.968
#> GSM379719 3 0.1399 0.8074 0.004 0.028 0.968
#> GSM379720 3 0.1399 0.8074 0.004 0.028 0.968
#> GSM379729 3 0.2318 0.8075 0.028 0.028 0.944
#> GSM379730 3 0.2318 0.8075 0.028 0.028 0.944
#> GSM379731 3 0.2318 0.8075 0.028 0.028 0.944
#> GSM379724 3 0.1399 0.8074 0.004 0.028 0.968
#> GSM379725 3 0.1751 0.8081 0.012 0.028 0.960
#> GSM379726 3 0.1399 0.8074 0.004 0.028 0.968
#> GSM379727 3 0.1399 0.8074 0.004 0.028 0.968
#> GSM379728 3 0.1399 0.8074 0.004 0.028 0.968
#> GSM379737 3 0.1399 0.8074 0.004 0.028 0.968
#> GSM379738 3 0.1399 0.8074 0.004 0.028 0.968
#> GSM379739 3 0.1399 0.8074 0.004 0.028 0.968
#> GSM379732 3 0.2318 0.8075 0.028 0.028 0.944
#> GSM379733 3 0.1399 0.8074 0.004 0.028 0.968
#> GSM379734 3 0.1399 0.8074 0.004 0.028 0.968
#> GSM379735 3 0.2318 0.8075 0.028 0.028 0.944
#> GSM379736 3 0.1399 0.8074 0.004 0.028 0.968
#> GSM379742 2 0.6244 0.3146 0.000 0.560 0.440
#> GSM379743 3 0.2318 0.8075 0.028 0.028 0.944
#> GSM379740 3 0.1399 0.8074 0.004 0.028 0.968
#> GSM379741 2 0.6244 0.3146 0.000 0.560 0.440
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.0469 0.9110 0.000 0.988 0.012 0.000
#> GSM379833 2 0.0469 0.9110 0.000 0.988 0.012 0.000
#> GSM379834 2 0.0469 0.9110 0.000 0.988 0.012 0.000
#> GSM379827 2 0.6472 0.6015 0.172 0.668 0.152 0.008
#> GSM379828 2 0.6472 0.6015 0.172 0.668 0.152 0.008
#> GSM379829 4 0.7594 0.3840 0.264 0.000 0.256 0.480
#> GSM379830 2 0.5991 0.6547 0.148 0.712 0.132 0.008
#> GSM379831 2 0.5492 0.6972 0.128 0.752 0.112 0.008
#> GSM379840 4 0.9938 0.1818 0.204 0.244 0.256 0.296
#> GSM379841 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379842 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379835 2 0.6556 0.5919 0.172 0.660 0.160 0.008
#> GSM379836 2 0.6556 0.5919 0.172 0.660 0.160 0.008
#> GSM379837 4 0.8952 0.3524 0.216 0.076 0.268 0.440
#> GSM379838 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379839 4 0.8952 0.3524 0.216 0.076 0.268 0.440
#> GSM379848 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379849 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379850 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379843 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379844 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379845 4 0.8952 0.3524 0.216 0.076 0.268 0.440
#> GSM379846 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379847 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379853 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379854 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379851 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379852 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379804 4 0.2861 0.7073 0.016 0.000 0.096 0.888
#> GSM379805 4 0.2861 0.7073 0.016 0.000 0.096 0.888
#> GSM379806 4 0.2266 0.7096 0.004 0.000 0.084 0.912
#> GSM379799 4 0.1940 0.6769 0.076 0.000 0.000 0.924
#> GSM379800 4 0.1940 0.6769 0.076 0.000 0.000 0.924
#> GSM379801 4 0.1940 0.6769 0.076 0.000 0.000 0.924
#> GSM379802 4 0.2271 0.6805 0.076 0.000 0.008 0.916
#> GSM379803 4 0.3245 0.7037 0.028 0.000 0.100 0.872
#> GSM379812 3 0.7370 -0.8993 0.412 0.000 0.428 0.160
#> GSM379813 3 0.7668 -0.6390 0.220 0.000 0.432 0.348
#> GSM379814 4 0.5839 0.5826 0.104 0.000 0.200 0.696
#> GSM379807 4 0.5839 0.5826 0.104 0.000 0.200 0.696
#> GSM379808 4 0.2266 0.7096 0.004 0.000 0.084 0.912
#> GSM379809 4 0.3080 0.7059 0.024 0.000 0.096 0.880
#> GSM379810 4 0.3080 0.7059 0.024 0.000 0.096 0.880
#> GSM379811 4 0.2610 0.7083 0.012 0.000 0.088 0.900
#> GSM379820 4 0.6127 0.5372 0.108 0.000 0.228 0.664
#> GSM379821 1 0.7076 0.9903 0.460 0.000 0.416 0.124
#> GSM379822 1 0.7037 0.9885 0.464 0.000 0.416 0.120
#> GSM379815 4 0.5839 0.5826 0.104 0.000 0.200 0.696
#> GSM379816 3 0.6705 -0.9019 0.440 0.000 0.472 0.088
#> GSM379817 4 0.7254 0.1869 0.176 0.000 0.300 0.524
#> GSM379818 4 0.2271 0.6805 0.076 0.000 0.008 0.916
#> GSM379819 4 0.6127 0.5372 0.108 0.000 0.228 0.664
#> GSM379825 4 0.2271 0.6805 0.076 0.000 0.008 0.916
#> GSM379826 4 0.6127 0.5372 0.108 0.000 0.228 0.664
#> GSM379823 1 0.7044 0.9770 0.452 0.000 0.428 0.120
#> GSM379824 1 0.7076 0.9903 0.460 0.000 0.416 0.124
#> GSM379749 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379750 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379751 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379744 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379745 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379746 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379747 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379748 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379757 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379758 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379752 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379753 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379754 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379755 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379756 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379764 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379765 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379766 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379759 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379760 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379761 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379762 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379763 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379769 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379770 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379767 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379768 2 0.0000 0.9202 0.000 1.000 0.000 0.000
#> GSM379776 3 0.0000 0.4339 0.000 0.000 1.000 0.000
#> GSM379777 3 0.6491 -0.7905 0.396 0.000 0.528 0.076
#> GSM379778 2 0.4713 0.4916 0.000 0.640 0.360 0.000
#> GSM379771 3 0.0000 0.4339 0.000 0.000 1.000 0.000
#> GSM379772 3 0.0000 0.4339 0.000 0.000 1.000 0.000
#> GSM379773 3 0.4564 -0.0531 0.000 0.328 0.672 0.000
#> GSM379774 3 0.0000 0.4339 0.000 0.000 1.000 0.000
#> GSM379775 3 0.0000 0.4339 0.000 0.000 1.000 0.000
#> GSM379784 3 0.6491 -0.7905 0.396 0.000 0.528 0.076
#> GSM379785 3 0.1867 0.3061 0.072 0.000 0.928 0.000
#> GSM379786 3 0.6491 -0.7905 0.396 0.000 0.528 0.076
#> GSM379779 3 0.0000 0.4339 0.000 0.000 1.000 0.000
#> GSM379780 3 0.0000 0.4339 0.000 0.000 1.000 0.000
#> GSM379781 3 0.1867 0.3061 0.072 0.000 0.928 0.000
#> GSM379782 2 0.4713 0.4916 0.000 0.640 0.360 0.000
#> GSM379783 3 0.6491 -0.7905 0.396 0.000 0.528 0.076
#> GSM379792 3 0.2408 0.3313 0.000 0.000 0.896 0.104
#> GSM379793 3 0.0000 0.4339 0.000 0.000 1.000 0.000
#> GSM379794 3 0.0000 0.4339 0.000 0.000 1.000 0.000
#> GSM379787 2 0.4713 0.4916 0.000 0.640 0.360 0.000
#> GSM379788 3 0.6491 -0.7905 0.396 0.000 0.528 0.076
#> GSM379789 3 0.0000 0.4339 0.000 0.000 1.000 0.000
#> GSM379790 3 0.0000 0.4339 0.000 0.000 1.000 0.000
#> GSM379791 3 0.0000 0.4339 0.000 0.000 1.000 0.000
#> GSM379797 4 0.2271 0.6805 0.076 0.000 0.008 0.916
#> GSM379798 3 0.0000 0.4339 0.000 0.000 1.000 0.000
#> GSM379795 3 0.0000 0.4339 0.000 0.000 1.000 0.000
#> GSM379796 3 0.2408 0.3313 0.000 0.000 0.896 0.104
#> GSM379721 3 0.4955 0.6339 0.444 0.000 0.556 0.000
#> GSM379722 3 0.4955 0.6339 0.444 0.000 0.556 0.000
#> GSM379723 3 0.4955 0.6339 0.444 0.000 0.556 0.000
#> GSM379716 3 0.4955 0.6339 0.444 0.000 0.556 0.000
#> GSM379717 3 0.4955 0.6339 0.444 0.000 0.556 0.000
#> GSM379718 3 0.4955 0.6339 0.444 0.000 0.556 0.000
#> GSM379719 3 0.4955 0.6339 0.444 0.000 0.556 0.000
#> GSM379720 3 0.4955 0.6339 0.444 0.000 0.556 0.000
#> GSM379729 3 0.4948 0.6159 0.440 0.000 0.560 0.000
#> GSM379730 3 0.4948 0.6159 0.440 0.000 0.560 0.000
#> GSM379731 3 0.4948 0.6159 0.440 0.000 0.560 0.000
#> GSM379724 3 0.4955 0.6339 0.444 0.000 0.556 0.000
#> GSM379725 3 0.4898 0.6286 0.416 0.000 0.584 0.000
#> GSM379726 3 0.4955 0.6339 0.444 0.000 0.556 0.000
#> GSM379727 3 0.4955 0.6339 0.444 0.000 0.556 0.000
#> GSM379728 3 0.4955 0.6339 0.444 0.000 0.556 0.000
#> GSM379737 3 0.4955 0.6339 0.444 0.000 0.556 0.000
#> GSM379738 3 0.4955 0.6339 0.444 0.000 0.556 0.000
#> GSM379739 3 0.4955 0.6339 0.444 0.000 0.556 0.000
#> GSM379732 3 0.4948 0.6159 0.440 0.000 0.560 0.000
#> GSM379733 3 0.4955 0.6339 0.444 0.000 0.556 0.000
#> GSM379734 3 0.4955 0.6339 0.444 0.000 0.556 0.000
#> GSM379735 3 0.4948 0.6159 0.440 0.000 0.560 0.000
#> GSM379736 3 0.4955 0.6339 0.444 0.000 0.556 0.000
#> GSM379742 2 0.7281 0.2719 0.272 0.532 0.196 0.000
#> GSM379743 3 0.4948 0.6159 0.440 0.000 0.560 0.000
#> GSM379740 3 0.4955 0.6339 0.444 0.000 0.556 0.000
#> GSM379741 2 0.7281 0.2719 0.272 0.532 0.196 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 2 0.1544 0.8617 0.000 0.932 0.000 0.000 0.068
#> GSM379833 2 0.1544 0.8617 0.000 0.932 0.000 0.000 0.068
#> GSM379834 2 0.1544 0.8617 0.000 0.932 0.000 0.000 0.068
#> GSM379827 2 0.4150 0.4265 0.000 0.612 0.000 0.000 0.388
#> GSM379828 2 0.4150 0.4265 0.000 0.612 0.000 0.000 0.388
#> GSM379829 5 0.4485 0.7781 0.000 0.000 0.028 0.292 0.680
#> GSM379830 2 0.3999 0.5111 0.000 0.656 0.000 0.000 0.344
#> GSM379831 2 0.3816 0.5776 0.000 0.696 0.000 0.000 0.304
#> GSM379840 5 0.5310 0.6558 0.000 0.188 0.028 0.076 0.708
#> GSM379841 2 0.0510 0.8960 0.000 0.984 0.000 0.000 0.016
#> GSM379842 2 0.1043 0.8819 0.000 0.960 0.000 0.000 0.040
#> GSM379835 2 0.4171 0.4092 0.000 0.604 0.000 0.000 0.396
#> GSM379836 2 0.4171 0.4092 0.000 0.604 0.000 0.000 0.396
#> GSM379837 5 0.4473 0.8738 0.000 0.020 0.028 0.204 0.748
#> GSM379838 2 0.0510 0.8960 0.000 0.984 0.000 0.000 0.016
#> GSM379839 5 0.4473 0.8738 0.000 0.020 0.028 0.204 0.748
#> GSM379848 2 0.0510 0.8960 0.000 0.984 0.000 0.000 0.016
#> GSM379849 2 0.0510 0.8960 0.000 0.984 0.000 0.000 0.016
#> GSM379850 2 0.0510 0.8960 0.000 0.984 0.000 0.000 0.016
#> GSM379843 2 0.0510 0.8960 0.000 0.984 0.000 0.000 0.016
#> GSM379844 2 0.0510 0.8960 0.000 0.984 0.000 0.000 0.016
#> GSM379845 5 0.4473 0.8738 0.000 0.020 0.028 0.204 0.748
#> GSM379846 2 0.0510 0.8960 0.000 0.984 0.000 0.000 0.016
#> GSM379847 2 0.0510 0.8960 0.000 0.984 0.000 0.000 0.016
#> GSM379853 2 0.1043 0.8819 0.000 0.960 0.000 0.000 0.040
#> GSM379854 2 0.0510 0.8960 0.000 0.984 0.000 0.000 0.016
#> GSM379851 2 0.0510 0.8960 0.000 0.984 0.000 0.000 0.016
#> GSM379852 2 0.0510 0.8960 0.000 0.984 0.000 0.000 0.016
#> GSM379804 4 0.3857 0.7716 0.132 0.000 0.048 0.812 0.008
#> GSM379805 4 0.3857 0.7716 0.132 0.000 0.048 0.812 0.008
#> GSM379806 4 0.3548 0.7686 0.112 0.000 0.044 0.836 0.008
#> GSM379799 4 0.0404 0.6754 0.000 0.000 0.000 0.988 0.012
#> GSM379800 4 0.0404 0.6754 0.000 0.000 0.000 0.988 0.012
#> GSM379801 4 0.0404 0.6754 0.000 0.000 0.000 0.988 0.012
#> GSM379802 4 0.2891 0.5601 0.000 0.000 0.000 0.824 0.176
#> GSM379803 4 0.3880 0.7698 0.152 0.000 0.044 0.800 0.004
#> GSM379812 1 0.2313 0.6428 0.916 0.000 0.032 0.040 0.012
#> GSM379813 1 0.4954 0.3403 0.700 0.000 0.052 0.236 0.012
#> GSM379814 4 0.5465 0.6701 0.320 0.000 0.056 0.612 0.012
#> GSM379807 4 0.5465 0.6701 0.320 0.000 0.056 0.612 0.012
#> GSM379808 4 0.3548 0.7686 0.112 0.000 0.044 0.836 0.008
#> GSM379809 4 0.3946 0.7710 0.140 0.000 0.048 0.804 0.008
#> GSM379810 4 0.3946 0.7710 0.140 0.000 0.048 0.804 0.008
#> GSM379811 4 0.3570 0.7709 0.124 0.000 0.044 0.828 0.004
#> GSM379820 4 0.5615 0.6106 0.364 0.000 0.056 0.568 0.012
#> GSM379821 1 0.0671 0.6593 0.980 0.000 0.000 0.004 0.016
#> GSM379822 1 0.0510 0.6591 0.984 0.000 0.000 0.000 0.016
#> GSM379815 4 0.5465 0.6701 0.320 0.000 0.056 0.612 0.012
#> GSM379816 1 0.1965 0.6636 0.924 0.000 0.052 0.000 0.024
#> GSM379817 1 0.5680 -0.3289 0.508 0.000 0.052 0.428 0.012
#> GSM379818 4 0.2891 0.5601 0.000 0.000 0.000 0.824 0.176
#> GSM379819 4 0.5615 0.6106 0.364 0.000 0.056 0.568 0.012
#> GSM379825 4 0.0162 0.6763 0.000 0.000 0.000 0.996 0.004
#> GSM379826 4 0.5615 0.6106 0.364 0.000 0.056 0.568 0.012
#> GSM379823 1 0.0898 0.6641 0.972 0.000 0.008 0.000 0.020
#> GSM379824 1 0.0671 0.6593 0.980 0.000 0.000 0.004 0.016
#> GSM379749 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379750 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379751 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379744 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379745 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379746 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379747 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379748 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379757 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379758 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379752 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379753 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379754 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379755 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379756 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379764 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379765 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379766 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379759 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379760 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379761 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379762 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379763 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379769 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379770 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379767 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379768 2 0.0000 0.8995 0.000 1.000 0.000 0.000 0.000
#> GSM379776 3 0.6651 0.1676 0.380 0.000 0.424 0.004 0.192
#> GSM379777 1 0.3002 0.6790 0.856 0.000 0.028 0.000 0.116
#> GSM379778 2 0.6368 0.4037 0.088 0.640 0.088 0.000 0.184
#> GSM379771 3 0.6651 0.1676 0.380 0.000 0.424 0.004 0.192
#> GSM379772 3 0.6651 0.1676 0.380 0.000 0.424 0.004 0.192
#> GSM379773 1 0.8372 0.1468 0.336 0.328 0.144 0.004 0.188
#> GSM379774 3 0.6651 0.1676 0.380 0.000 0.424 0.004 0.192
#> GSM379775 3 0.6651 0.1676 0.380 0.000 0.424 0.004 0.192
#> GSM379784 1 0.3002 0.6790 0.856 0.000 0.028 0.000 0.116
#> GSM379785 1 0.6588 -0.0151 0.452 0.000 0.360 0.004 0.184
#> GSM379786 1 0.3002 0.6790 0.856 0.000 0.028 0.000 0.116
#> GSM379779 3 0.6651 0.1676 0.380 0.000 0.424 0.004 0.192
#> GSM379780 3 0.6651 0.1676 0.380 0.000 0.424 0.004 0.192
#> GSM379781 1 0.6588 -0.0151 0.452 0.000 0.360 0.004 0.184
#> GSM379782 2 0.6368 0.4037 0.088 0.640 0.088 0.000 0.184
#> GSM379783 1 0.3002 0.6790 0.856 0.000 0.028 0.000 0.116
#> GSM379792 3 0.7905 0.0193 0.352 0.000 0.376 0.108 0.164
#> GSM379793 3 0.6651 0.1676 0.380 0.000 0.424 0.004 0.192
#> GSM379794 3 0.6651 0.1676 0.380 0.000 0.424 0.004 0.192
#> GSM379787 2 0.6368 0.4037 0.088 0.640 0.088 0.000 0.184
#> GSM379788 1 0.3002 0.6790 0.856 0.000 0.028 0.000 0.116
#> GSM379789 3 0.6651 0.1676 0.380 0.000 0.424 0.004 0.192
#> GSM379790 3 0.6651 0.1676 0.380 0.000 0.424 0.004 0.192
#> GSM379791 3 0.6651 0.1676 0.380 0.000 0.424 0.004 0.192
#> GSM379797 4 0.2891 0.5601 0.000 0.000 0.000 0.824 0.176
#> GSM379798 3 0.6651 0.1676 0.380 0.000 0.424 0.004 0.192
#> GSM379795 3 0.6651 0.1676 0.380 0.000 0.424 0.004 0.192
#> GSM379796 3 0.7905 0.0193 0.352 0.000 0.376 0.108 0.164
#> GSM379721 3 0.0000 0.6984 0.000 0.000 1.000 0.000 0.000
#> GSM379722 3 0.0000 0.6984 0.000 0.000 1.000 0.000 0.000
#> GSM379723 3 0.0000 0.6984 0.000 0.000 1.000 0.000 0.000
#> GSM379716 3 0.0000 0.6984 0.000 0.000 1.000 0.000 0.000
#> GSM379717 3 0.0000 0.6984 0.000 0.000 1.000 0.000 0.000
#> GSM379718 3 0.0000 0.6984 0.000 0.000 1.000 0.000 0.000
#> GSM379719 3 0.0000 0.6984 0.000 0.000 1.000 0.000 0.000
#> GSM379720 3 0.0000 0.6984 0.000 0.000 1.000 0.000 0.000
#> GSM379729 3 0.1914 0.6711 0.060 0.000 0.924 0.000 0.016
#> GSM379730 3 0.1914 0.6711 0.060 0.000 0.924 0.000 0.016
#> GSM379731 3 0.1914 0.6711 0.060 0.000 0.924 0.000 0.016
#> GSM379724 3 0.0000 0.6984 0.000 0.000 1.000 0.000 0.000
#> GSM379725 3 0.1117 0.6879 0.020 0.000 0.964 0.000 0.016
#> GSM379726 3 0.0000 0.6984 0.000 0.000 1.000 0.000 0.000
#> GSM379727 3 0.0000 0.6984 0.000 0.000 1.000 0.000 0.000
#> GSM379728 3 0.0000 0.6984 0.000 0.000 1.000 0.000 0.000
#> GSM379737 3 0.0000 0.6984 0.000 0.000 1.000 0.000 0.000
#> GSM379738 3 0.0000 0.6984 0.000 0.000 1.000 0.000 0.000
#> GSM379739 3 0.0000 0.6984 0.000 0.000 1.000 0.000 0.000
#> GSM379732 3 0.1914 0.6711 0.060 0.000 0.924 0.000 0.016
#> GSM379733 3 0.0000 0.6984 0.000 0.000 1.000 0.000 0.000
#> GSM379734 3 0.0000 0.6984 0.000 0.000 1.000 0.000 0.000
#> GSM379735 3 0.1914 0.6711 0.060 0.000 0.924 0.000 0.016
#> GSM379736 3 0.0000 0.6984 0.000 0.000 1.000 0.000 0.000
#> GSM379742 2 0.5143 0.2017 0.000 0.532 0.428 0.000 0.040
#> GSM379743 3 0.1914 0.6711 0.060 0.000 0.924 0.000 0.016
#> GSM379740 3 0.0000 0.6984 0.000 0.000 1.000 0.000 0.000
#> GSM379741 2 0.5143 0.2017 0.000 0.532 0.428 0.000 0.040
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 2 0.1610 0.850 0.000 0.916 0.000 0.000 0.084 0.000
#> GSM379833 2 0.1610 0.850 0.000 0.916 0.000 0.000 0.084 0.000
#> GSM379834 2 0.1610 0.850 0.000 0.916 0.000 0.000 0.084 0.000
#> GSM379827 2 0.3765 0.396 0.000 0.596 0.000 0.000 0.404 0.000
#> GSM379828 2 0.3765 0.396 0.000 0.596 0.000 0.000 0.404 0.000
#> GSM379829 5 0.2178 0.814 0.000 0.000 0.000 0.132 0.868 0.000
#> GSM379830 2 0.3647 0.485 0.000 0.640 0.000 0.000 0.360 0.000
#> GSM379831 2 0.3499 0.555 0.000 0.680 0.000 0.000 0.320 0.000
#> GSM379840 5 0.2980 0.652 0.000 0.180 0.000 0.012 0.808 0.000
#> GSM379841 2 0.0547 0.892 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM379842 2 0.1075 0.876 0.000 0.952 0.000 0.000 0.048 0.000
#> GSM379835 2 0.3782 0.378 0.000 0.588 0.000 0.000 0.412 0.000
#> GSM379836 2 0.3782 0.378 0.000 0.588 0.000 0.000 0.412 0.000
#> GSM379837 5 0.1219 0.885 0.000 0.004 0.000 0.048 0.948 0.000
#> GSM379838 2 0.0547 0.892 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM379839 5 0.1219 0.885 0.000 0.004 0.000 0.048 0.948 0.000
#> GSM379848 2 0.0547 0.892 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM379849 2 0.0547 0.892 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM379850 2 0.0547 0.892 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM379843 2 0.0547 0.892 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM379844 2 0.0547 0.892 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM379845 5 0.1219 0.885 0.000 0.004 0.000 0.048 0.948 0.000
#> GSM379846 2 0.0547 0.892 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM379847 2 0.0547 0.892 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM379853 2 0.1075 0.876 0.000 0.952 0.000 0.000 0.048 0.000
#> GSM379854 2 0.0547 0.892 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM379851 2 0.0547 0.892 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM379852 2 0.0547 0.892 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM379804 4 0.3430 0.764 0.056 0.000 0.012 0.832 0.004 0.096
#> GSM379805 4 0.3430 0.764 0.056 0.000 0.012 0.832 0.004 0.096
#> GSM379806 4 0.3103 0.765 0.048 0.000 0.012 0.856 0.004 0.080
#> GSM379799 4 0.1074 0.705 0.028 0.000 0.000 0.960 0.012 0.000
#> GSM379800 4 0.1074 0.705 0.028 0.000 0.000 0.960 0.012 0.000
#> GSM379801 4 0.1074 0.705 0.028 0.000 0.000 0.960 0.012 0.000
#> GSM379802 4 0.4168 0.531 0.256 0.000 0.000 0.696 0.048 0.000
#> GSM379803 4 0.3438 0.760 0.048 0.000 0.012 0.820 0.000 0.120
#> GSM379812 6 0.2675 0.739 0.052 0.000 0.004 0.060 0.004 0.880
#> GSM379813 6 0.4866 0.403 0.064 0.000 0.012 0.256 0.004 0.664
#> GSM379814 4 0.5053 0.610 0.068 0.000 0.012 0.632 0.004 0.284
#> GSM379807 4 0.5053 0.610 0.068 0.000 0.012 0.632 0.004 0.284
#> GSM379808 4 0.3103 0.765 0.048 0.000 0.012 0.856 0.004 0.080
#> GSM379809 4 0.3524 0.762 0.056 0.000 0.012 0.824 0.004 0.104
#> GSM379810 4 0.3524 0.762 0.056 0.000 0.012 0.824 0.004 0.104
#> GSM379811 4 0.3115 0.765 0.048 0.000 0.012 0.848 0.000 0.092
#> GSM379820 4 0.5223 0.542 0.068 0.000 0.012 0.588 0.004 0.328
#> GSM379821 6 0.0146 0.791 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM379822 6 0.0000 0.788 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM379815 4 0.5053 0.610 0.068 0.000 0.012 0.632 0.004 0.284
#> GSM379816 6 0.1636 0.757 0.024 0.000 0.036 0.000 0.004 0.936
#> GSM379817 6 0.5387 -0.260 0.064 0.000 0.012 0.448 0.004 0.472
#> GSM379818 4 0.4168 0.531 0.256 0.000 0.000 0.696 0.048 0.000
#> GSM379819 4 0.5223 0.542 0.068 0.000 0.012 0.588 0.004 0.328
#> GSM379825 4 0.1556 0.700 0.080 0.000 0.000 0.920 0.000 0.000
#> GSM379826 4 0.5223 0.542 0.068 0.000 0.012 0.588 0.004 0.328
#> GSM379823 6 0.0363 0.791 0.012 0.000 0.000 0.000 0.000 0.988
#> GSM379824 6 0.0146 0.791 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM379749 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379750 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379751 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379744 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379745 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379746 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379747 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379748 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379757 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379758 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379752 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379753 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379754 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379755 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379756 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379764 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379765 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379766 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379759 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379760 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379761 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379762 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379763 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379769 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379770 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379767 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379768 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379776 1 0.3221 0.835 0.736 0.000 0.264 0.000 0.000 0.000
#> GSM379777 1 0.3862 0.259 0.524 0.000 0.000 0.000 0.000 0.476
#> GSM379778 2 0.3672 0.432 0.368 0.632 0.000 0.000 0.000 0.000
#> GSM379771 1 0.3221 0.835 0.736 0.000 0.264 0.000 0.000 0.000
#> GSM379772 1 0.3221 0.835 0.736 0.000 0.264 0.000 0.000 0.000
#> GSM379773 1 0.4348 0.330 0.640 0.320 0.040 0.000 0.000 0.000
#> GSM379774 1 0.3221 0.835 0.736 0.000 0.264 0.000 0.000 0.000
#> GSM379775 1 0.3221 0.835 0.736 0.000 0.264 0.000 0.000 0.000
#> GSM379784 1 0.3862 0.259 0.524 0.000 0.000 0.000 0.000 0.476
#> GSM379785 1 0.4516 0.797 0.668 0.000 0.260 0.000 0.000 0.072
#> GSM379786 1 0.3862 0.259 0.524 0.000 0.000 0.000 0.000 0.476
#> GSM379779 1 0.3221 0.835 0.736 0.000 0.264 0.000 0.000 0.000
#> GSM379780 1 0.3221 0.835 0.736 0.000 0.264 0.000 0.000 0.000
#> GSM379781 1 0.4516 0.797 0.668 0.000 0.260 0.000 0.000 0.072
#> GSM379782 2 0.3672 0.432 0.368 0.632 0.000 0.000 0.000 0.000
#> GSM379783 1 0.3862 0.259 0.524 0.000 0.000 0.000 0.000 0.476
#> GSM379792 1 0.4895 0.760 0.632 0.000 0.264 0.104 0.000 0.000
#> GSM379793 1 0.3221 0.835 0.736 0.000 0.264 0.000 0.000 0.000
#> GSM379794 1 0.3221 0.835 0.736 0.000 0.264 0.000 0.000 0.000
#> GSM379787 2 0.3672 0.432 0.368 0.632 0.000 0.000 0.000 0.000
#> GSM379788 1 0.3862 0.259 0.524 0.000 0.000 0.000 0.000 0.476
#> GSM379789 1 0.3221 0.835 0.736 0.000 0.264 0.000 0.000 0.000
#> GSM379790 1 0.3221 0.835 0.736 0.000 0.264 0.000 0.000 0.000
#> GSM379791 1 0.3221 0.835 0.736 0.000 0.264 0.000 0.000 0.000
#> GSM379797 4 0.4168 0.531 0.256 0.000 0.000 0.696 0.048 0.000
#> GSM379798 1 0.3221 0.835 0.736 0.000 0.264 0.000 0.000 0.000
#> GSM379795 1 0.3221 0.835 0.736 0.000 0.264 0.000 0.000 0.000
#> GSM379796 1 0.4895 0.760 0.632 0.000 0.264 0.104 0.000 0.000
#> GSM379721 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379722 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379723 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379716 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379717 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379718 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379719 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379720 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379729 3 0.1644 0.930 0.004 0.000 0.920 0.000 0.000 0.076
#> GSM379730 3 0.1644 0.930 0.004 0.000 0.920 0.000 0.000 0.076
#> GSM379731 3 0.1644 0.930 0.004 0.000 0.920 0.000 0.000 0.076
#> GSM379724 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379725 3 0.1010 0.956 0.004 0.000 0.960 0.000 0.000 0.036
#> GSM379726 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379727 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379728 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379737 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379738 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379739 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379732 3 0.1644 0.930 0.004 0.000 0.920 0.000 0.000 0.076
#> GSM379733 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379734 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379735 3 0.1501 0.933 0.000 0.000 0.924 0.000 0.000 0.076
#> GSM379736 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379742 2 0.4731 0.197 0.048 0.524 0.428 0.000 0.000 0.000
#> GSM379743 3 0.1501 0.933 0.000 0.000 0.924 0.000 0.000 0.076
#> GSM379740 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379741 2 0.4731 0.197 0.048 0.524 0.428 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> MAD:hclust 137 1.39e-21 1 1.000 2
#> MAD:hclust 124 9.03e-45 1 0.801 3
#> MAD:hclust 101 8.61e-37 1 0.508 4
#> MAD:hclust 109 1.15e-45 1 0.520 5
#> MAD:hclust 121 7.52e-66 1 0.596 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.983 0.992 0.4863 0.513 0.513
#> 3 3 0.649 0.544 0.722 0.3017 0.938 0.885
#> 4 4 0.611 0.445 0.608 0.1328 0.687 0.408
#> 5 5 0.690 0.860 0.804 0.0791 0.865 0.532
#> 6 6 0.816 0.820 0.796 0.0457 0.994 0.970
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.0000 0.988 0.000 1.000
#> GSM379833 2 0.0000 0.988 0.000 1.000
#> GSM379834 2 0.0000 0.988 0.000 1.000
#> GSM379827 2 0.0000 0.988 0.000 1.000
#> GSM379828 2 0.0000 0.988 0.000 1.000
#> GSM379829 1 0.0376 0.995 0.996 0.004
#> GSM379830 2 0.0000 0.988 0.000 1.000
#> GSM379831 2 0.0000 0.988 0.000 1.000
#> GSM379840 2 0.0000 0.988 0.000 1.000
#> GSM379841 2 0.0000 0.988 0.000 1.000
#> GSM379842 2 0.0000 0.988 0.000 1.000
#> GSM379835 2 0.0000 0.988 0.000 1.000
#> GSM379836 2 0.0000 0.988 0.000 1.000
#> GSM379837 1 0.8608 0.605 0.716 0.284
#> GSM379838 2 0.0000 0.988 0.000 1.000
#> GSM379839 2 0.0000 0.988 0.000 1.000
#> GSM379848 2 0.0000 0.988 0.000 1.000
#> GSM379849 2 0.0000 0.988 0.000 1.000
#> GSM379850 2 0.0000 0.988 0.000 1.000
#> GSM379843 2 0.0000 0.988 0.000 1.000
#> GSM379844 2 0.0000 0.988 0.000 1.000
#> GSM379845 2 0.0000 0.988 0.000 1.000
#> GSM379846 2 0.0000 0.988 0.000 1.000
#> GSM379847 2 0.0000 0.988 0.000 1.000
#> GSM379853 2 0.0000 0.988 0.000 1.000
#> GSM379854 2 0.0000 0.988 0.000 1.000
#> GSM379851 2 0.0000 0.988 0.000 1.000
#> GSM379852 2 0.0000 0.988 0.000 1.000
#> GSM379804 1 0.0376 0.995 0.996 0.004
#> GSM379805 1 0.0376 0.995 0.996 0.004
#> GSM379806 1 0.0376 0.995 0.996 0.004
#> GSM379799 1 0.0376 0.995 0.996 0.004
#> GSM379800 1 0.0376 0.995 0.996 0.004
#> GSM379801 1 0.0376 0.995 0.996 0.004
#> GSM379802 1 0.0376 0.995 0.996 0.004
#> GSM379803 1 0.0376 0.995 0.996 0.004
#> GSM379812 1 0.0376 0.995 0.996 0.004
#> GSM379813 1 0.0376 0.995 0.996 0.004
#> GSM379814 1 0.0376 0.995 0.996 0.004
#> GSM379807 1 0.0376 0.995 0.996 0.004
#> GSM379808 1 0.0376 0.995 0.996 0.004
#> GSM379809 1 0.0376 0.995 0.996 0.004
#> GSM379810 1 0.0376 0.995 0.996 0.004
#> GSM379811 1 0.0376 0.995 0.996 0.004
#> GSM379820 1 0.0376 0.995 0.996 0.004
#> GSM379821 1 0.0376 0.995 0.996 0.004
#> GSM379822 1 0.0376 0.995 0.996 0.004
#> GSM379815 1 0.0376 0.995 0.996 0.004
#> GSM379816 1 0.0376 0.995 0.996 0.004
#> GSM379817 1 0.0376 0.995 0.996 0.004
#> GSM379818 1 0.0376 0.995 0.996 0.004
#> GSM379819 1 0.0376 0.995 0.996 0.004
#> GSM379825 1 0.0376 0.995 0.996 0.004
#> GSM379826 1 0.0376 0.995 0.996 0.004
#> GSM379823 1 0.0376 0.995 0.996 0.004
#> GSM379824 1 0.0376 0.995 0.996 0.004
#> GSM379749 2 0.0000 0.988 0.000 1.000
#> GSM379750 2 0.0000 0.988 0.000 1.000
#> GSM379751 2 0.0000 0.988 0.000 1.000
#> GSM379744 2 0.0000 0.988 0.000 1.000
#> GSM379745 2 0.0000 0.988 0.000 1.000
#> GSM379746 2 0.0000 0.988 0.000 1.000
#> GSM379747 2 0.0000 0.988 0.000 1.000
#> GSM379748 2 0.0000 0.988 0.000 1.000
#> GSM379757 2 0.0000 0.988 0.000 1.000
#> GSM379758 2 0.0000 0.988 0.000 1.000
#> GSM379752 2 0.0000 0.988 0.000 1.000
#> GSM379753 2 0.0000 0.988 0.000 1.000
#> GSM379754 2 0.0000 0.988 0.000 1.000
#> GSM379755 2 0.0000 0.988 0.000 1.000
#> GSM379756 2 0.0000 0.988 0.000 1.000
#> GSM379764 2 0.0000 0.988 0.000 1.000
#> GSM379765 2 0.0000 0.988 0.000 1.000
#> GSM379766 2 0.0000 0.988 0.000 1.000
#> GSM379759 2 0.0000 0.988 0.000 1.000
#> GSM379760 2 0.0000 0.988 0.000 1.000
#> GSM379761 2 0.0000 0.988 0.000 1.000
#> GSM379762 2 0.0000 0.988 0.000 1.000
#> GSM379763 2 0.0000 0.988 0.000 1.000
#> GSM379769 2 0.0000 0.988 0.000 1.000
#> GSM379770 2 0.0000 0.988 0.000 1.000
#> GSM379767 2 0.0000 0.988 0.000 1.000
#> GSM379768 2 0.0000 0.988 0.000 1.000
#> GSM379776 1 0.0376 0.995 0.996 0.004
#> GSM379777 1 0.0376 0.995 0.996 0.004
#> GSM379778 1 0.0376 0.995 0.996 0.004
#> GSM379771 1 0.0376 0.995 0.996 0.004
#> GSM379772 1 0.0376 0.995 0.996 0.004
#> GSM379773 1 0.0376 0.995 0.996 0.004
#> GSM379774 1 0.0376 0.995 0.996 0.004
#> GSM379775 1 0.0376 0.995 0.996 0.004
#> GSM379784 1 0.0376 0.995 0.996 0.004
#> GSM379785 1 0.0376 0.995 0.996 0.004
#> GSM379786 1 0.0376 0.995 0.996 0.004
#> GSM379779 1 0.0376 0.995 0.996 0.004
#> GSM379780 1 0.0376 0.995 0.996 0.004
#> GSM379781 1 0.0376 0.995 0.996 0.004
#> GSM379782 2 0.7056 0.763 0.192 0.808
#> GSM379783 1 0.0376 0.995 0.996 0.004
#> GSM379792 1 0.0376 0.995 0.996 0.004
#> GSM379793 1 0.0376 0.995 0.996 0.004
#> GSM379794 1 0.0376 0.995 0.996 0.004
#> GSM379787 2 0.9580 0.394 0.380 0.620
#> GSM379788 1 0.0376 0.995 0.996 0.004
#> GSM379789 1 0.0376 0.995 0.996 0.004
#> GSM379790 1 0.0376 0.995 0.996 0.004
#> GSM379791 1 0.0376 0.995 0.996 0.004
#> GSM379797 1 0.0376 0.995 0.996 0.004
#> GSM379798 1 0.0376 0.995 0.996 0.004
#> GSM379795 1 0.0376 0.995 0.996 0.004
#> GSM379796 1 0.0376 0.995 0.996 0.004
#> GSM379721 1 0.0000 0.994 1.000 0.000
#> GSM379722 1 0.0000 0.994 1.000 0.000
#> GSM379723 1 0.0000 0.994 1.000 0.000
#> GSM379716 1 0.0000 0.994 1.000 0.000
#> GSM379717 1 0.0000 0.994 1.000 0.000
#> GSM379718 1 0.0000 0.994 1.000 0.000
#> GSM379719 1 0.0000 0.994 1.000 0.000
#> GSM379720 1 0.0000 0.994 1.000 0.000
#> GSM379729 1 0.0000 0.994 1.000 0.000
#> GSM379730 1 0.0000 0.994 1.000 0.000
#> GSM379731 1 0.0000 0.994 1.000 0.000
#> GSM379724 1 0.0000 0.994 1.000 0.000
#> GSM379725 1 0.0000 0.994 1.000 0.000
#> GSM379726 1 0.0000 0.994 1.000 0.000
#> GSM379727 1 0.0000 0.994 1.000 0.000
#> GSM379728 1 0.0000 0.994 1.000 0.000
#> GSM379737 1 0.0000 0.994 1.000 0.000
#> GSM379738 1 0.0000 0.994 1.000 0.000
#> GSM379739 1 0.0000 0.994 1.000 0.000
#> GSM379732 1 0.0000 0.994 1.000 0.000
#> GSM379733 1 0.0000 0.994 1.000 0.000
#> GSM379734 1 0.0000 0.994 1.000 0.000
#> GSM379735 1 0.0000 0.994 1.000 0.000
#> GSM379736 1 0.0000 0.994 1.000 0.000
#> GSM379742 2 0.2948 0.942 0.052 0.948
#> GSM379743 1 0.0000 0.994 1.000 0.000
#> GSM379740 1 0.0000 0.994 1.000 0.000
#> GSM379741 2 0.2948 0.942 0.052 0.948
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.2448 0.889 0.000 0.924 0.076
#> GSM379833 2 0.2448 0.889 0.000 0.924 0.076
#> GSM379834 2 0.2448 0.889 0.000 0.924 0.076
#> GSM379827 2 0.2448 0.889 0.000 0.924 0.076
#> GSM379828 2 0.2448 0.889 0.000 0.924 0.076
#> GSM379829 3 0.8535 -0.357 0.404 0.096 0.500
#> GSM379830 2 0.2448 0.889 0.000 0.924 0.076
#> GSM379831 2 0.2448 0.889 0.000 0.924 0.076
#> GSM379840 2 0.2448 0.889 0.000 0.924 0.076
#> GSM379841 2 0.0000 0.902 0.000 1.000 0.000
#> GSM379842 2 0.0237 0.902 0.000 0.996 0.004
#> GSM379835 2 0.2448 0.889 0.000 0.924 0.076
#> GSM379836 2 0.2448 0.889 0.000 0.924 0.076
#> GSM379837 2 0.5435 0.728 0.024 0.784 0.192
#> GSM379838 2 0.0000 0.902 0.000 1.000 0.000
#> GSM379839 2 0.3116 0.869 0.000 0.892 0.108
#> GSM379848 2 0.0592 0.901 0.000 0.988 0.012
#> GSM379849 2 0.0592 0.901 0.000 0.988 0.012
#> GSM379850 2 0.0592 0.901 0.000 0.988 0.012
#> GSM379843 2 0.0237 0.902 0.000 0.996 0.004
#> GSM379844 2 0.0000 0.902 0.000 1.000 0.000
#> GSM379845 2 0.2448 0.889 0.000 0.924 0.076
#> GSM379846 2 0.0000 0.902 0.000 1.000 0.000
#> GSM379847 2 0.0592 0.901 0.000 0.988 0.012
#> GSM379853 2 0.0237 0.902 0.000 0.996 0.004
#> GSM379854 2 0.0592 0.901 0.000 0.988 0.012
#> GSM379851 2 0.0424 0.902 0.000 0.992 0.008
#> GSM379852 2 0.0592 0.901 0.000 0.988 0.012
#> GSM379804 1 0.6204 0.401 0.576 0.000 0.424
#> GSM379805 1 0.6204 0.401 0.576 0.000 0.424
#> GSM379806 1 0.6204 0.401 0.576 0.000 0.424
#> GSM379799 1 0.6204 0.401 0.576 0.000 0.424
#> GSM379800 1 0.6204 0.401 0.576 0.000 0.424
#> GSM379801 1 0.6204 0.401 0.576 0.000 0.424
#> GSM379802 1 0.6204 0.401 0.576 0.000 0.424
#> GSM379803 1 0.6215 0.399 0.572 0.000 0.428
#> GSM379812 1 0.6126 0.410 0.600 0.000 0.400
#> GSM379813 1 0.6126 0.410 0.600 0.000 0.400
#> GSM379814 1 0.6111 0.411 0.604 0.000 0.396
#> GSM379807 1 0.6154 0.408 0.592 0.000 0.408
#> GSM379808 1 0.6204 0.401 0.576 0.000 0.424
#> GSM379809 1 0.6204 0.401 0.576 0.000 0.424
#> GSM379810 1 0.6204 0.401 0.576 0.000 0.424
#> GSM379811 1 0.6215 0.399 0.572 0.000 0.428
#> GSM379820 1 0.6111 0.411 0.604 0.000 0.396
#> GSM379821 1 0.6126 0.410 0.600 0.000 0.400
#> GSM379822 1 0.6126 0.410 0.600 0.000 0.400
#> GSM379815 1 0.6204 0.401 0.576 0.000 0.424
#> GSM379816 1 0.4974 0.442 0.764 0.000 0.236
#> GSM379817 1 0.6126 0.410 0.600 0.000 0.400
#> GSM379818 1 0.6215 0.399 0.572 0.000 0.428
#> GSM379819 1 0.6140 0.409 0.596 0.000 0.404
#> GSM379825 1 0.6204 0.401 0.576 0.000 0.424
#> GSM379826 1 0.6126 0.410 0.600 0.000 0.400
#> GSM379823 1 0.6126 0.410 0.600 0.000 0.400
#> GSM379824 1 0.6126 0.410 0.600 0.000 0.400
#> GSM379749 2 0.4504 0.896 0.000 0.804 0.196
#> GSM379750 2 0.4504 0.896 0.000 0.804 0.196
#> GSM379751 2 0.4605 0.895 0.000 0.796 0.204
#> GSM379744 2 0.4605 0.895 0.000 0.796 0.204
#> GSM379745 2 0.4605 0.895 0.000 0.796 0.204
#> GSM379746 2 0.4504 0.896 0.000 0.804 0.196
#> GSM379747 2 0.4605 0.895 0.000 0.796 0.204
#> GSM379748 2 0.4605 0.895 0.000 0.796 0.204
#> GSM379757 2 0.3686 0.900 0.000 0.860 0.140
#> GSM379758 2 0.3686 0.900 0.000 0.860 0.140
#> GSM379752 2 0.4504 0.896 0.000 0.804 0.196
#> GSM379753 2 0.4605 0.895 0.000 0.796 0.204
#> GSM379754 2 0.3686 0.900 0.000 0.860 0.140
#> GSM379755 2 0.3686 0.900 0.000 0.860 0.140
#> GSM379756 2 0.3686 0.900 0.000 0.860 0.140
#> GSM379764 2 0.3686 0.900 0.000 0.860 0.140
#> GSM379765 2 0.3686 0.900 0.000 0.860 0.140
#> GSM379766 2 0.3686 0.900 0.000 0.860 0.140
#> GSM379759 2 0.3686 0.900 0.000 0.860 0.140
#> GSM379760 2 0.3686 0.900 0.000 0.860 0.140
#> GSM379761 2 0.3686 0.900 0.000 0.860 0.140
#> GSM379762 2 0.3686 0.900 0.000 0.860 0.140
#> GSM379763 2 0.3686 0.900 0.000 0.860 0.140
#> GSM379769 2 0.3686 0.900 0.000 0.860 0.140
#> GSM379770 2 0.3686 0.900 0.000 0.860 0.140
#> GSM379767 2 0.3686 0.900 0.000 0.860 0.140
#> GSM379768 2 0.3686 0.900 0.000 0.860 0.140
#> GSM379776 1 0.0000 0.466 1.000 0.000 0.000
#> GSM379777 1 0.4291 0.424 0.820 0.000 0.180
#> GSM379778 1 0.0000 0.466 1.000 0.000 0.000
#> GSM379771 1 0.0000 0.466 1.000 0.000 0.000
#> GSM379772 1 0.0000 0.466 1.000 0.000 0.000
#> GSM379773 1 0.0000 0.466 1.000 0.000 0.000
#> GSM379774 1 0.0000 0.466 1.000 0.000 0.000
#> GSM379775 1 0.0000 0.466 1.000 0.000 0.000
#> GSM379784 1 0.0237 0.465 0.996 0.000 0.004
#> GSM379785 1 0.0237 0.465 0.996 0.000 0.004
#> GSM379786 1 0.0237 0.465 0.996 0.000 0.004
#> GSM379779 1 0.0000 0.466 1.000 0.000 0.000
#> GSM379780 1 0.0000 0.466 1.000 0.000 0.000
#> GSM379781 1 0.0237 0.465 0.996 0.000 0.004
#> GSM379782 1 0.7406 -0.262 0.596 0.360 0.044
#> GSM379783 1 0.0237 0.465 0.996 0.000 0.004
#> GSM379792 1 0.4062 0.429 0.836 0.000 0.164
#> GSM379793 1 0.0000 0.466 1.000 0.000 0.000
#> GSM379794 1 0.0000 0.466 1.000 0.000 0.000
#> GSM379787 1 0.6956 -0.181 0.660 0.300 0.040
#> GSM379788 1 0.0237 0.465 0.996 0.000 0.004
#> GSM379789 1 0.0000 0.466 1.000 0.000 0.000
#> GSM379790 1 0.0000 0.466 1.000 0.000 0.000
#> GSM379791 1 0.0000 0.466 1.000 0.000 0.000
#> GSM379797 1 0.5760 0.369 0.672 0.000 0.328
#> GSM379798 1 0.0000 0.466 1.000 0.000 0.000
#> GSM379795 1 0.0000 0.466 1.000 0.000 0.000
#> GSM379796 1 0.4062 0.429 0.836 0.000 0.164
#> GSM379721 1 0.6299 0.152 0.524 0.000 0.476
#> GSM379722 1 0.6299 0.152 0.524 0.000 0.476
#> GSM379723 1 0.6299 0.152 0.524 0.000 0.476
#> GSM379716 1 0.6299 0.152 0.524 0.000 0.476
#> GSM379717 1 0.6299 0.152 0.524 0.000 0.476
#> GSM379718 1 0.6299 0.152 0.524 0.000 0.476
#> GSM379719 1 0.6299 0.152 0.524 0.000 0.476
#> GSM379720 1 0.6299 0.152 0.524 0.000 0.476
#> GSM379729 1 0.6267 0.161 0.548 0.000 0.452
#> GSM379730 1 0.6267 0.161 0.548 0.000 0.452
#> GSM379731 1 0.6267 0.161 0.548 0.000 0.452
#> GSM379724 1 0.6299 0.152 0.524 0.000 0.476
#> GSM379725 1 0.6267 0.161 0.548 0.000 0.452
#> GSM379726 1 0.6299 0.152 0.524 0.000 0.476
#> GSM379727 1 0.6299 0.152 0.524 0.000 0.476
#> GSM379728 1 0.6299 0.152 0.524 0.000 0.476
#> GSM379737 1 0.6260 0.163 0.552 0.000 0.448
#> GSM379738 1 0.6260 0.163 0.552 0.000 0.448
#> GSM379739 1 0.6260 0.163 0.552 0.000 0.448
#> GSM379732 1 0.6267 0.161 0.548 0.000 0.452
#> GSM379733 1 0.6260 0.163 0.552 0.000 0.448
#> GSM379734 1 0.6260 0.163 0.552 0.000 0.448
#> GSM379735 1 0.6267 0.161 0.548 0.000 0.452
#> GSM379736 1 0.6299 0.152 0.524 0.000 0.476
#> GSM379742 3 0.9217 0.401 0.344 0.164 0.492
#> GSM379743 1 0.6267 0.161 0.548 0.000 0.452
#> GSM379740 1 0.6260 0.163 0.552 0.000 0.448
#> GSM379741 3 0.9217 0.401 0.344 0.164 0.492
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.0336 0.7616 0.008 0.992 0.000 0.000
#> GSM379833 2 0.0336 0.7616 0.008 0.992 0.000 0.000
#> GSM379834 2 0.0336 0.7616 0.008 0.992 0.000 0.000
#> GSM379827 2 0.1109 0.7592 0.028 0.968 0.004 0.000
#> GSM379828 2 0.1109 0.7592 0.028 0.968 0.004 0.000
#> GSM379829 4 0.6287 0.4146 0.028 0.364 0.024 0.584
#> GSM379830 2 0.1109 0.7592 0.028 0.968 0.004 0.000
#> GSM379831 2 0.0921 0.7605 0.028 0.972 0.000 0.000
#> GSM379840 2 0.1004 0.7597 0.024 0.972 0.004 0.000
#> GSM379841 2 0.3498 0.7517 0.008 0.832 0.160 0.000
#> GSM379842 2 0.3300 0.7538 0.008 0.848 0.144 0.000
#> GSM379835 2 0.1109 0.7592 0.028 0.968 0.004 0.000
#> GSM379836 2 0.1109 0.7592 0.028 0.968 0.004 0.000
#> GSM379837 2 0.2324 0.7325 0.028 0.932 0.020 0.020
#> GSM379838 2 0.3498 0.7517 0.008 0.832 0.160 0.000
#> GSM379839 2 0.2210 0.7362 0.028 0.936 0.020 0.016
#> GSM379848 2 0.3978 0.7340 0.012 0.796 0.192 0.000
#> GSM379849 2 0.3978 0.7340 0.012 0.796 0.192 0.000
#> GSM379850 2 0.3978 0.7340 0.012 0.796 0.192 0.000
#> GSM379843 2 0.3300 0.7538 0.008 0.848 0.144 0.000
#> GSM379844 2 0.3450 0.7526 0.008 0.836 0.156 0.000
#> GSM379845 2 0.1004 0.7597 0.024 0.972 0.004 0.000
#> GSM379846 2 0.3450 0.7526 0.008 0.836 0.156 0.000
#> GSM379847 2 0.3937 0.7357 0.012 0.800 0.188 0.000
#> GSM379853 2 0.3577 0.7499 0.012 0.832 0.156 0.000
#> GSM379854 2 0.3978 0.7340 0.012 0.796 0.192 0.000
#> GSM379851 2 0.3852 0.7385 0.012 0.808 0.180 0.000
#> GSM379852 2 0.3978 0.7340 0.012 0.796 0.192 0.000
#> GSM379804 4 0.0000 0.9555 0.000 0.000 0.000 1.000
#> GSM379805 4 0.0707 0.9525 0.000 0.000 0.020 0.980
#> GSM379806 4 0.0707 0.9525 0.000 0.000 0.020 0.980
#> GSM379799 4 0.0707 0.9525 0.000 0.000 0.020 0.980
#> GSM379800 4 0.0707 0.9525 0.000 0.000 0.020 0.980
#> GSM379801 4 0.0707 0.9525 0.000 0.000 0.020 0.980
#> GSM379802 4 0.0707 0.9525 0.000 0.000 0.020 0.980
#> GSM379803 4 0.0336 0.9556 0.000 0.000 0.008 0.992
#> GSM379812 4 0.0524 0.9550 0.004 0.000 0.008 0.988
#> GSM379813 4 0.0524 0.9550 0.004 0.000 0.008 0.988
#> GSM379814 4 0.0524 0.9550 0.004 0.000 0.008 0.988
#> GSM379807 4 0.0376 0.9553 0.004 0.000 0.004 0.992
#> GSM379808 4 0.0707 0.9525 0.000 0.000 0.020 0.980
#> GSM379809 4 0.0000 0.9555 0.000 0.000 0.000 1.000
#> GSM379810 4 0.0000 0.9555 0.000 0.000 0.000 1.000
#> GSM379811 4 0.0707 0.9525 0.000 0.000 0.020 0.980
#> GSM379820 4 0.0524 0.9550 0.004 0.000 0.008 0.988
#> GSM379821 4 0.0524 0.9550 0.004 0.000 0.008 0.988
#> GSM379822 4 0.0657 0.9527 0.004 0.000 0.012 0.984
#> GSM379815 4 0.0000 0.9555 0.000 0.000 0.000 1.000
#> GSM379816 4 0.2610 0.8169 0.088 0.000 0.012 0.900
#> GSM379817 4 0.0524 0.9550 0.004 0.000 0.008 0.988
#> GSM379818 4 0.0707 0.9525 0.000 0.000 0.020 0.980
#> GSM379819 4 0.0524 0.9550 0.004 0.000 0.008 0.988
#> GSM379825 4 0.0707 0.9525 0.000 0.000 0.020 0.980
#> GSM379826 4 0.0524 0.9550 0.004 0.000 0.008 0.988
#> GSM379823 4 0.0657 0.9527 0.004 0.000 0.012 0.984
#> GSM379824 4 0.0524 0.9550 0.004 0.000 0.008 0.988
#> GSM379749 2 0.5596 0.5535 0.036 0.632 0.332 0.000
#> GSM379750 2 0.5596 0.5535 0.036 0.632 0.332 0.000
#> GSM379751 2 0.5646 0.5708 0.048 0.656 0.296 0.000
#> GSM379744 2 0.5577 0.5554 0.036 0.636 0.328 0.000
#> GSM379745 2 0.5577 0.5554 0.036 0.636 0.328 0.000
#> GSM379746 2 0.5596 0.5535 0.036 0.632 0.332 0.000
#> GSM379747 2 0.5475 0.5638 0.036 0.656 0.308 0.000
#> GSM379748 2 0.5475 0.5638 0.036 0.656 0.308 0.000
#> GSM379757 3 0.5861 -0.4040 0.032 0.476 0.492 0.000
#> GSM379758 3 0.4994 -0.3870 0.000 0.480 0.520 0.000
#> GSM379752 2 0.5596 0.5535 0.036 0.632 0.332 0.000
#> GSM379753 2 0.5496 0.5635 0.036 0.652 0.312 0.000
#> GSM379754 3 0.5861 -0.4087 0.032 0.480 0.488 0.000
#> GSM379755 3 0.5861 -0.4087 0.032 0.480 0.488 0.000
#> GSM379756 3 0.5861 -0.4087 0.032 0.480 0.488 0.000
#> GSM379764 3 0.5165 -0.3878 0.004 0.484 0.512 0.000
#> GSM379765 3 0.5165 -0.3878 0.004 0.484 0.512 0.000
#> GSM379766 3 0.5165 -0.3878 0.004 0.484 0.512 0.000
#> GSM379759 3 0.4992 -0.3878 0.000 0.476 0.524 0.000
#> GSM379760 3 0.5161 -0.3892 0.004 0.476 0.520 0.000
#> GSM379761 3 0.4994 -0.3870 0.000 0.480 0.520 0.000
#> GSM379762 3 0.4994 -0.3870 0.000 0.480 0.520 0.000
#> GSM379763 3 0.5165 -0.3878 0.004 0.484 0.512 0.000
#> GSM379769 3 0.5165 -0.3878 0.004 0.484 0.512 0.000
#> GSM379770 3 0.5165 -0.3878 0.004 0.484 0.512 0.000
#> GSM379767 3 0.5165 -0.3878 0.004 0.484 0.512 0.000
#> GSM379768 3 0.5165 -0.3878 0.004 0.484 0.512 0.000
#> GSM379776 1 0.4543 0.5987 0.676 0.000 0.000 0.324
#> GSM379777 1 0.5212 0.4081 0.572 0.000 0.008 0.420
#> GSM379778 1 0.4991 0.5912 0.672 0.004 0.008 0.316
#> GSM379771 1 0.4543 0.5987 0.676 0.000 0.000 0.324
#> GSM379772 1 0.4543 0.5987 0.676 0.000 0.000 0.324
#> GSM379773 1 0.4836 0.5941 0.672 0.000 0.008 0.320
#> GSM379774 1 0.4543 0.5987 0.676 0.000 0.000 0.324
#> GSM379775 1 0.4543 0.5987 0.676 0.000 0.000 0.324
#> GSM379784 1 0.4720 0.5971 0.672 0.000 0.004 0.324
#> GSM379785 1 0.4720 0.5971 0.672 0.000 0.004 0.324
#> GSM379786 1 0.4720 0.5971 0.672 0.000 0.004 0.324
#> GSM379779 1 0.4543 0.5987 0.676 0.000 0.000 0.324
#> GSM379780 1 0.4543 0.5987 0.676 0.000 0.000 0.324
#> GSM379781 1 0.4720 0.5971 0.672 0.000 0.004 0.324
#> GSM379782 1 0.6659 0.4839 0.676 0.024 0.144 0.156
#> GSM379783 1 0.4720 0.5971 0.672 0.000 0.004 0.324
#> GSM379792 1 0.4866 0.4511 0.596 0.000 0.000 0.404
#> GSM379793 1 0.4543 0.5987 0.676 0.000 0.000 0.324
#> GSM379794 1 0.4543 0.5987 0.676 0.000 0.000 0.324
#> GSM379787 1 0.6692 0.4926 0.672 0.024 0.136 0.168
#> GSM379788 1 0.4720 0.5971 0.672 0.000 0.004 0.324
#> GSM379789 1 0.4543 0.5987 0.676 0.000 0.000 0.324
#> GSM379790 1 0.4543 0.5987 0.676 0.000 0.000 0.324
#> GSM379791 1 0.4543 0.5987 0.676 0.000 0.000 0.324
#> GSM379797 4 0.3335 0.7866 0.120 0.000 0.020 0.860
#> GSM379798 1 0.4543 0.5987 0.676 0.000 0.000 0.324
#> GSM379795 1 0.4543 0.5987 0.676 0.000 0.000 0.324
#> GSM379796 1 0.4866 0.4511 0.596 0.000 0.000 0.404
#> GSM379721 3 0.7221 -0.1335 0.424 0.000 0.436 0.140
#> GSM379722 3 0.7221 -0.1335 0.424 0.000 0.436 0.140
#> GSM379723 3 0.7220 -0.1334 0.420 0.000 0.440 0.140
#> GSM379716 3 0.7220 -0.1334 0.420 0.000 0.440 0.140
#> GSM379717 3 0.7220 -0.1334 0.420 0.000 0.440 0.140
#> GSM379718 3 0.7221 -0.1335 0.424 0.000 0.436 0.140
#> GSM379719 3 0.7221 -0.1335 0.424 0.000 0.436 0.140
#> GSM379720 3 0.7221 -0.1335 0.424 0.000 0.436 0.140
#> GSM379729 1 0.7154 0.1031 0.436 0.000 0.432 0.132
#> GSM379730 1 0.7154 0.1031 0.436 0.000 0.432 0.132
#> GSM379731 1 0.7154 0.1031 0.436 0.000 0.432 0.132
#> GSM379724 3 0.7220 -0.1334 0.420 0.000 0.440 0.140
#> GSM379725 3 0.7154 -0.1487 0.428 0.000 0.440 0.132
#> GSM379726 3 0.7221 -0.1385 0.424 0.000 0.436 0.140
#> GSM379727 3 0.7221 -0.1385 0.424 0.000 0.436 0.140
#> GSM379728 3 0.7221 -0.1385 0.424 0.000 0.436 0.140
#> GSM379737 1 0.7154 0.1023 0.436 0.000 0.432 0.132
#> GSM379738 1 0.7154 0.1023 0.436 0.000 0.432 0.132
#> GSM379739 1 0.7154 0.1023 0.436 0.000 0.432 0.132
#> GSM379732 1 0.7154 0.1031 0.436 0.000 0.432 0.132
#> GSM379733 1 0.7154 0.1023 0.436 0.000 0.432 0.132
#> GSM379734 1 0.7154 0.1023 0.436 0.000 0.432 0.132
#> GSM379735 1 0.7154 0.1031 0.436 0.000 0.432 0.132
#> GSM379736 1 0.7221 0.0927 0.432 0.000 0.428 0.140
#> GSM379742 3 0.5643 -0.0403 0.440 0.016 0.540 0.004
#> GSM379743 1 0.7154 0.1031 0.436 0.000 0.432 0.132
#> GSM379740 1 0.7154 0.1023 0.436 0.000 0.432 0.132
#> GSM379741 3 0.5643 -0.0403 0.440 0.016 0.540 0.004
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 5 0.3876 0.772 0.000 0.316 0.000 0.000 0.684
#> GSM379833 5 0.3876 0.772 0.000 0.316 0.000 0.000 0.684
#> GSM379834 5 0.3876 0.772 0.000 0.316 0.000 0.000 0.684
#> GSM379827 5 0.5564 0.749 0.064 0.316 0.012 0.000 0.608
#> GSM379828 5 0.5564 0.749 0.064 0.316 0.012 0.000 0.608
#> GSM379829 5 0.5979 -0.218 0.068 0.000 0.016 0.428 0.488
#> GSM379830 5 0.5564 0.749 0.064 0.316 0.012 0.000 0.608
#> GSM379831 5 0.5564 0.749 0.064 0.316 0.012 0.000 0.608
#> GSM379840 5 0.5223 0.760 0.048 0.316 0.008 0.000 0.628
#> GSM379841 5 0.4945 0.774 0.020 0.440 0.004 0.000 0.536
#> GSM379842 5 0.4940 0.776 0.020 0.436 0.004 0.000 0.540
#> GSM379835 5 0.5564 0.749 0.064 0.316 0.012 0.000 0.608
#> GSM379836 5 0.5564 0.749 0.064 0.316 0.012 0.000 0.608
#> GSM379837 5 0.5599 0.655 0.064 0.220 0.016 0.016 0.684
#> GSM379838 5 0.4949 0.771 0.020 0.444 0.004 0.000 0.532
#> GSM379839 5 0.5461 0.665 0.064 0.228 0.012 0.012 0.684
#> GSM379848 5 0.5222 0.756 0.028 0.452 0.008 0.000 0.512
#> GSM379849 5 0.5292 0.752 0.032 0.452 0.008 0.000 0.508
#> GSM379850 5 0.5292 0.752 0.032 0.452 0.008 0.000 0.508
#> GSM379843 5 0.4940 0.776 0.020 0.436 0.004 0.000 0.540
#> GSM379844 5 0.4945 0.774 0.020 0.440 0.004 0.000 0.536
#> GSM379845 5 0.5223 0.760 0.048 0.316 0.008 0.000 0.628
#> GSM379846 5 0.4945 0.774 0.020 0.440 0.004 0.000 0.536
#> GSM379847 5 0.5148 0.760 0.024 0.452 0.008 0.000 0.516
#> GSM379853 5 0.5120 0.774 0.024 0.428 0.008 0.000 0.540
#> GSM379854 5 0.5292 0.752 0.032 0.452 0.008 0.000 0.508
#> GSM379851 5 0.5144 0.764 0.024 0.448 0.008 0.000 0.520
#> GSM379852 5 0.5292 0.752 0.032 0.452 0.008 0.000 0.508
#> GSM379804 4 0.0693 0.919 0.000 0.000 0.008 0.980 0.012
#> GSM379805 4 0.2352 0.905 0.004 0.000 0.008 0.896 0.092
#> GSM379806 4 0.2517 0.902 0.004 0.000 0.008 0.884 0.104
#> GSM379799 4 0.2517 0.902 0.004 0.000 0.008 0.884 0.104
#> GSM379800 4 0.2517 0.902 0.004 0.000 0.008 0.884 0.104
#> GSM379801 4 0.2517 0.902 0.004 0.000 0.008 0.884 0.104
#> GSM379802 4 0.2570 0.902 0.004 0.000 0.008 0.880 0.108
#> GSM379803 4 0.1043 0.917 0.000 0.000 0.000 0.960 0.040
#> GSM379812 4 0.1965 0.911 0.024 0.000 0.000 0.924 0.052
#> GSM379813 4 0.1872 0.914 0.020 0.000 0.000 0.928 0.052
#> GSM379814 4 0.2032 0.915 0.020 0.000 0.004 0.924 0.052
#> GSM379807 4 0.2032 0.915 0.020 0.000 0.004 0.924 0.052
#> GSM379808 4 0.2517 0.902 0.004 0.000 0.008 0.884 0.104
#> GSM379809 4 0.0693 0.919 0.000 0.000 0.008 0.980 0.012
#> GSM379810 4 0.0693 0.919 0.012 0.000 0.008 0.980 0.000
#> GSM379811 4 0.2570 0.902 0.004 0.000 0.008 0.880 0.108
#> GSM379820 4 0.2032 0.915 0.020 0.000 0.004 0.924 0.052
#> GSM379821 4 0.2036 0.911 0.024 0.000 0.000 0.920 0.056
#> GSM379822 4 0.2628 0.892 0.028 0.000 0.000 0.884 0.088
#> GSM379815 4 0.0324 0.919 0.004 0.000 0.004 0.992 0.000
#> GSM379816 4 0.4100 0.818 0.028 0.000 0.060 0.816 0.096
#> GSM379817 4 0.1872 0.914 0.020 0.000 0.000 0.928 0.052
#> GSM379818 4 0.2570 0.902 0.004 0.000 0.008 0.880 0.108
#> GSM379819 4 0.2032 0.915 0.020 0.000 0.004 0.924 0.052
#> GSM379825 4 0.2517 0.902 0.004 0.000 0.008 0.884 0.104
#> GSM379826 4 0.2032 0.915 0.020 0.000 0.004 0.924 0.052
#> GSM379823 4 0.2628 0.892 0.028 0.000 0.000 0.884 0.088
#> GSM379824 4 0.1943 0.912 0.020 0.000 0.000 0.924 0.056
#> GSM379749 2 0.2720 0.777 0.020 0.880 0.004 0.000 0.096
#> GSM379750 2 0.2720 0.777 0.020 0.880 0.004 0.000 0.096
#> GSM379751 2 0.3937 0.683 0.060 0.804 0.004 0.000 0.132
#> GSM379744 2 0.2828 0.769 0.020 0.872 0.004 0.000 0.104
#> GSM379745 2 0.2828 0.769 0.020 0.872 0.004 0.000 0.104
#> GSM379746 2 0.2720 0.777 0.020 0.880 0.004 0.000 0.096
#> GSM379747 2 0.3174 0.737 0.020 0.844 0.004 0.000 0.132
#> GSM379748 2 0.3174 0.737 0.020 0.844 0.004 0.000 0.132
#> GSM379757 2 0.0566 0.823 0.012 0.984 0.004 0.000 0.000
#> GSM379758 2 0.2464 0.829 0.096 0.888 0.016 0.000 0.000
#> GSM379752 2 0.2720 0.777 0.020 0.880 0.004 0.000 0.096
#> GSM379753 2 0.3174 0.737 0.020 0.844 0.004 0.000 0.132
#> GSM379754 2 0.0162 0.821 0.004 0.996 0.000 0.000 0.000
#> GSM379755 2 0.0162 0.821 0.004 0.996 0.000 0.000 0.000
#> GSM379756 2 0.0162 0.821 0.004 0.996 0.000 0.000 0.000
#> GSM379764 2 0.2824 0.819 0.116 0.864 0.020 0.000 0.000
#> GSM379765 2 0.2824 0.819 0.116 0.864 0.020 0.000 0.000
#> GSM379766 2 0.2824 0.819 0.116 0.864 0.020 0.000 0.000
#> GSM379759 2 0.2408 0.830 0.092 0.892 0.016 0.000 0.000
#> GSM379760 2 0.2408 0.830 0.092 0.892 0.016 0.000 0.000
#> GSM379761 2 0.2464 0.829 0.096 0.888 0.016 0.000 0.000
#> GSM379762 2 0.2464 0.829 0.096 0.888 0.016 0.000 0.000
#> GSM379763 2 0.2824 0.819 0.116 0.864 0.020 0.000 0.000
#> GSM379769 2 0.2824 0.819 0.116 0.864 0.020 0.000 0.000
#> GSM379770 2 0.2824 0.819 0.116 0.864 0.020 0.000 0.000
#> GSM379767 2 0.2824 0.819 0.116 0.864 0.020 0.000 0.000
#> GSM379768 2 0.2824 0.819 0.116 0.864 0.020 0.000 0.000
#> GSM379776 1 0.4458 0.970 0.760 0.000 0.120 0.120 0.000
#> GSM379777 1 0.4377 0.900 0.760 0.000 0.048 0.184 0.008
#> GSM379778 1 0.5079 0.942 0.748 0.000 0.104 0.112 0.036
#> GSM379771 1 0.4613 0.970 0.756 0.000 0.120 0.120 0.004
#> GSM379772 1 0.4613 0.970 0.756 0.000 0.120 0.120 0.004
#> GSM379773 1 0.4935 0.954 0.752 0.000 0.112 0.112 0.024
#> GSM379774 1 0.4613 0.970 0.756 0.000 0.120 0.120 0.004
#> GSM379775 1 0.4613 0.970 0.756 0.000 0.120 0.120 0.004
#> GSM379784 1 0.4468 0.965 0.768 0.000 0.104 0.124 0.004
#> GSM379785 1 0.4468 0.965 0.768 0.000 0.104 0.124 0.004
#> GSM379786 1 0.4513 0.963 0.764 0.000 0.104 0.128 0.004
#> GSM379779 1 0.4613 0.970 0.756 0.000 0.120 0.120 0.004
#> GSM379780 1 0.4458 0.970 0.760 0.000 0.120 0.120 0.000
#> GSM379781 1 0.4565 0.968 0.760 0.000 0.112 0.124 0.004
#> GSM379782 1 0.4749 0.871 0.792 0.016 0.100 0.048 0.044
#> GSM379783 1 0.4513 0.963 0.764 0.000 0.104 0.128 0.004
#> GSM379792 1 0.4565 0.910 0.752 0.000 0.064 0.176 0.008
#> GSM379793 1 0.4733 0.969 0.752 0.000 0.120 0.120 0.008
#> GSM379794 1 0.4733 0.969 0.752 0.000 0.120 0.120 0.008
#> GSM379787 1 0.4935 0.882 0.780 0.016 0.104 0.056 0.044
#> GSM379788 1 0.4468 0.965 0.768 0.000 0.104 0.124 0.004
#> GSM379789 1 0.4613 0.970 0.756 0.000 0.120 0.120 0.004
#> GSM379790 1 0.4733 0.969 0.752 0.000 0.120 0.120 0.008
#> GSM379791 1 0.4613 0.970 0.756 0.000 0.120 0.120 0.004
#> GSM379797 4 0.5278 0.706 0.180 0.000 0.008 0.696 0.116
#> GSM379798 1 0.4733 0.969 0.752 0.000 0.120 0.120 0.008
#> GSM379795 1 0.4613 0.970 0.756 0.000 0.120 0.120 0.004
#> GSM379796 1 0.4589 0.916 0.752 0.000 0.068 0.172 0.008
#> GSM379721 3 0.1651 0.945 0.008 0.000 0.944 0.036 0.012
#> GSM379722 3 0.1651 0.945 0.008 0.000 0.944 0.036 0.012
#> GSM379723 3 0.1124 0.945 0.004 0.000 0.960 0.036 0.000
#> GSM379716 3 0.1124 0.945 0.004 0.000 0.960 0.036 0.000
#> GSM379717 3 0.1124 0.945 0.004 0.000 0.960 0.036 0.000
#> GSM379718 3 0.1651 0.945 0.008 0.000 0.944 0.036 0.012
#> GSM379719 3 0.1651 0.945 0.008 0.000 0.944 0.036 0.012
#> GSM379720 3 0.1651 0.945 0.008 0.000 0.944 0.036 0.012
#> GSM379729 3 0.4030 0.920 0.028 0.000 0.816 0.044 0.112
#> GSM379730 3 0.4030 0.920 0.028 0.000 0.816 0.044 0.112
#> GSM379731 3 0.4030 0.920 0.028 0.000 0.816 0.044 0.112
#> GSM379724 3 0.1124 0.945 0.004 0.000 0.960 0.036 0.000
#> GSM379725 3 0.3930 0.923 0.028 0.000 0.824 0.044 0.104
#> GSM379726 3 0.1124 0.945 0.004 0.000 0.960 0.036 0.000
#> GSM379727 3 0.1124 0.945 0.004 0.000 0.960 0.036 0.000
#> GSM379728 3 0.1124 0.945 0.004 0.000 0.960 0.036 0.000
#> GSM379737 3 0.2576 0.942 0.008 0.000 0.900 0.036 0.056
#> GSM379738 3 0.2576 0.942 0.008 0.000 0.900 0.036 0.056
#> GSM379739 3 0.2576 0.942 0.008 0.000 0.900 0.036 0.056
#> GSM379732 3 0.3945 0.921 0.024 0.000 0.820 0.044 0.112
#> GSM379733 3 0.1836 0.946 0.000 0.000 0.932 0.036 0.032
#> GSM379734 3 0.1836 0.946 0.000 0.000 0.932 0.036 0.032
#> GSM379735 3 0.4030 0.920 0.028 0.000 0.816 0.044 0.112
#> GSM379736 3 0.1251 0.946 0.000 0.000 0.956 0.036 0.008
#> GSM379742 3 0.4781 0.821 0.092 0.020 0.760 0.000 0.128
#> GSM379743 3 0.4030 0.920 0.028 0.000 0.816 0.044 0.112
#> GSM379740 3 0.2434 0.943 0.008 0.000 0.908 0.036 0.048
#> GSM379741 3 0.4781 0.821 0.092 0.020 0.760 0.000 0.128
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 5 0.3364 0.768 0.000 0.196 0.000 0.000 0.780 NA
#> GSM379833 5 0.3364 0.768 0.000 0.196 0.000 0.000 0.780 NA
#> GSM379834 5 0.3364 0.768 0.000 0.196 0.000 0.000 0.780 NA
#> GSM379827 5 0.6295 0.703 0.000 0.204 0.004 0.060 0.572 NA
#> GSM379828 5 0.6295 0.703 0.000 0.204 0.004 0.060 0.572 NA
#> GSM379829 4 0.5165 0.175 0.000 0.000 0.000 0.616 0.228 NA
#> GSM379830 5 0.6158 0.720 0.000 0.196 0.004 0.060 0.592 NA
#> GSM379831 5 0.6024 0.722 0.000 0.196 0.000 0.060 0.596 NA
#> GSM379840 5 0.5928 0.729 0.000 0.196 0.000 0.060 0.608 NA
#> GSM379841 5 0.3499 0.776 0.000 0.320 0.000 0.000 0.680 NA
#> GSM379842 5 0.3409 0.781 0.000 0.300 0.000 0.000 0.700 NA
#> GSM379835 5 0.6158 0.720 0.000 0.196 0.004 0.060 0.592 NA
#> GSM379836 5 0.6158 0.720 0.000 0.196 0.004 0.060 0.592 NA
#> GSM379837 5 0.6257 0.647 0.000 0.108 0.004 0.136 0.604 NA
#> GSM379838 5 0.3499 0.776 0.000 0.320 0.000 0.000 0.680 NA
#> GSM379839 5 0.6161 0.654 0.000 0.112 0.000 0.136 0.604 NA
#> GSM379848 5 0.4441 0.738 0.000 0.344 0.004 0.000 0.620 NA
#> GSM379849 5 0.4441 0.738 0.000 0.344 0.004 0.000 0.620 NA
#> GSM379850 5 0.4441 0.738 0.000 0.344 0.004 0.000 0.620 NA
#> GSM379843 5 0.3409 0.781 0.000 0.300 0.000 0.000 0.700 NA
#> GSM379844 5 0.3482 0.777 0.000 0.316 0.000 0.000 0.684 NA
#> GSM379845 5 0.5928 0.729 0.000 0.196 0.000 0.060 0.608 NA
#> GSM379846 5 0.3619 0.778 0.000 0.316 0.004 0.000 0.680 NA
#> GSM379847 5 0.4134 0.754 0.000 0.340 0.004 0.000 0.640 NA
#> GSM379853 5 0.3938 0.775 0.000 0.312 0.004 0.000 0.672 NA
#> GSM379854 5 0.4441 0.738 0.000 0.344 0.004 0.000 0.620 NA
#> GSM379851 5 0.4019 0.764 0.000 0.332 0.004 0.000 0.652 NA
#> GSM379852 5 0.4441 0.738 0.000 0.344 0.004 0.000 0.620 NA
#> GSM379804 4 0.4603 0.829 0.060 0.000 0.008 0.672 0.000 NA
#> GSM379805 4 0.2445 0.790 0.060 0.000 0.008 0.892 0.000 NA
#> GSM379806 4 0.2138 0.782 0.060 0.000 0.008 0.912 0.008 NA
#> GSM379799 4 0.1781 0.779 0.060 0.000 0.008 0.924 0.008 NA
#> GSM379800 4 0.1781 0.779 0.060 0.000 0.008 0.924 0.008 NA
#> GSM379801 4 0.1781 0.779 0.060 0.000 0.008 0.924 0.008 NA
#> GSM379802 4 0.2119 0.777 0.060 0.000 0.008 0.912 0.004 NA
#> GSM379803 4 0.4950 0.827 0.060 0.000 0.008 0.680 0.020 NA
#> GSM379812 4 0.5649 0.820 0.076 0.000 0.012 0.512 0.012 NA
#> GSM379813 4 0.5254 0.823 0.076 0.000 0.008 0.520 0.000 NA
#> GSM379814 4 0.5254 0.823 0.076 0.000 0.008 0.520 0.000 NA
#> GSM379807 4 0.5254 0.823 0.076 0.000 0.008 0.520 0.000 NA
#> GSM379808 4 0.1781 0.779 0.060 0.000 0.008 0.924 0.008 NA
#> GSM379809 4 0.4624 0.829 0.060 0.000 0.008 0.668 0.000 NA
#> GSM379810 4 0.4940 0.829 0.076 0.000 0.008 0.628 0.000 NA
#> GSM379811 4 0.2319 0.778 0.060 0.000 0.008 0.904 0.008 NA
#> GSM379820 4 0.5254 0.823 0.076 0.000 0.008 0.520 0.000 NA
#> GSM379821 4 0.5761 0.820 0.072 0.000 0.012 0.508 0.020 NA
#> GSM379822 4 0.5793 0.809 0.072 0.000 0.012 0.480 0.020 NA
#> GSM379815 4 0.4703 0.830 0.060 0.000 0.008 0.652 0.000 NA
#> GSM379816 4 0.5956 0.798 0.080 0.000 0.020 0.464 0.016 NA
#> GSM379817 4 0.5254 0.823 0.076 0.000 0.008 0.520 0.000 NA
#> GSM379818 4 0.2319 0.778 0.060 0.000 0.008 0.904 0.008 NA
#> GSM379819 4 0.5254 0.823 0.076 0.000 0.008 0.520 0.000 NA
#> GSM379825 4 0.1668 0.780 0.060 0.000 0.008 0.928 0.000 NA
#> GSM379826 4 0.5254 0.823 0.076 0.000 0.008 0.520 0.000 NA
#> GSM379823 4 0.5688 0.809 0.076 0.000 0.012 0.476 0.012 NA
#> GSM379824 4 0.5673 0.821 0.072 0.000 0.008 0.512 0.020 NA
#> GSM379749 2 0.2804 0.716 0.000 0.852 0.004 0.000 0.120 NA
#> GSM379750 2 0.2804 0.716 0.000 0.852 0.004 0.000 0.120 NA
#> GSM379751 2 0.4010 0.614 0.000 0.764 0.004 0.000 0.148 NA
#> GSM379744 2 0.2848 0.713 0.000 0.848 0.004 0.000 0.124 NA
#> GSM379745 2 0.2848 0.713 0.000 0.848 0.004 0.000 0.124 NA
#> GSM379746 2 0.2804 0.716 0.000 0.852 0.004 0.000 0.120 NA
#> GSM379747 2 0.3129 0.686 0.000 0.820 0.004 0.000 0.152 NA
#> GSM379748 2 0.3129 0.686 0.000 0.820 0.004 0.000 0.152 NA
#> GSM379757 2 0.1007 0.766 0.000 0.956 0.000 0.000 0.000 NA
#> GSM379758 2 0.3469 0.771 0.004 0.788 0.020 0.000 0.004 NA
#> GSM379752 2 0.2804 0.716 0.000 0.852 0.004 0.000 0.120 NA
#> GSM379753 2 0.3168 0.684 0.000 0.820 0.004 0.000 0.148 NA
#> GSM379754 2 0.0458 0.756 0.000 0.984 0.000 0.000 0.016 NA
#> GSM379755 2 0.0458 0.756 0.000 0.984 0.000 0.000 0.016 NA
#> GSM379756 2 0.0146 0.758 0.000 0.996 0.000 0.000 0.004 NA
#> GSM379764 2 0.4022 0.758 0.004 0.756 0.020 0.000 0.024 NA
#> GSM379765 2 0.4022 0.758 0.004 0.756 0.020 0.000 0.024 NA
#> GSM379766 2 0.4022 0.758 0.004 0.756 0.020 0.000 0.024 NA
#> GSM379759 2 0.3329 0.772 0.004 0.792 0.020 0.000 0.000 NA
#> GSM379760 2 0.3329 0.772 0.004 0.792 0.020 0.000 0.000 NA
#> GSM379761 2 0.3469 0.771 0.004 0.788 0.020 0.000 0.004 NA
#> GSM379762 2 0.3469 0.771 0.004 0.788 0.020 0.000 0.004 NA
#> GSM379763 2 0.4022 0.758 0.004 0.756 0.020 0.000 0.024 NA
#> GSM379769 2 0.4022 0.758 0.004 0.756 0.020 0.000 0.024 NA
#> GSM379770 2 0.4022 0.758 0.004 0.756 0.020 0.000 0.024 NA
#> GSM379767 2 0.4022 0.758 0.004 0.756 0.020 0.000 0.024 NA
#> GSM379768 2 0.4022 0.758 0.004 0.756 0.020 0.000 0.024 NA
#> GSM379776 1 0.0508 0.971 0.984 0.000 0.012 0.000 0.004 NA
#> GSM379777 1 0.2596 0.918 0.892 0.000 0.004 0.016 0.044 NA
#> GSM379778 1 0.2278 0.929 0.900 0.000 0.004 0.000 0.044 NA
#> GSM379771 1 0.0508 0.971 0.984 0.000 0.012 0.000 0.000 NA
#> GSM379772 1 0.0508 0.971 0.984 0.000 0.012 0.000 0.000 NA
#> GSM379773 1 0.1636 0.952 0.936 0.000 0.004 0.000 0.036 NA
#> GSM379774 1 0.0508 0.971 0.984 0.000 0.012 0.000 0.000 NA
#> GSM379775 1 0.0508 0.971 0.984 0.000 0.012 0.000 0.000 NA
#> GSM379784 1 0.1346 0.964 0.952 0.000 0.016 0.000 0.024 NA
#> GSM379785 1 0.1148 0.967 0.960 0.000 0.016 0.000 0.020 NA
#> GSM379786 1 0.1346 0.964 0.952 0.000 0.016 0.000 0.024 NA
#> GSM379779 1 0.0363 0.970 0.988 0.000 0.012 0.000 0.000 NA
#> GSM379780 1 0.0363 0.970 0.988 0.000 0.012 0.000 0.000 NA
#> GSM379781 1 0.1053 0.967 0.964 0.000 0.012 0.000 0.020 NA
#> GSM379782 1 0.2542 0.902 0.876 0.000 0.000 0.000 0.044 NA
#> GSM379783 1 0.1346 0.964 0.952 0.000 0.016 0.000 0.024 NA
#> GSM379792 1 0.1223 0.961 0.960 0.000 0.004 0.012 0.016 NA
#> GSM379793 1 0.0984 0.968 0.968 0.000 0.012 0.000 0.012 NA
#> GSM379794 1 0.0984 0.968 0.968 0.000 0.012 0.000 0.012 NA
#> GSM379787 1 0.2542 0.902 0.876 0.000 0.000 0.000 0.044 NA
#> GSM379788 1 0.1262 0.965 0.956 0.000 0.016 0.000 0.020 NA
#> GSM379789 1 0.0870 0.969 0.972 0.000 0.012 0.000 0.012 NA
#> GSM379790 1 0.1078 0.967 0.964 0.000 0.012 0.000 0.016 NA
#> GSM379791 1 0.0870 0.969 0.972 0.000 0.012 0.000 0.012 NA
#> GSM379797 4 0.4564 0.574 0.256 0.000 0.004 0.688 0.024 NA
#> GSM379798 1 0.1078 0.967 0.964 0.000 0.012 0.000 0.016 NA
#> GSM379795 1 0.0870 0.969 0.972 0.000 0.012 0.000 0.012 NA
#> GSM379796 1 0.1223 0.961 0.960 0.000 0.004 0.012 0.016 NA
#> GSM379721 3 0.1511 0.902 0.032 0.000 0.944 0.000 0.012 NA
#> GSM379722 3 0.1511 0.902 0.032 0.000 0.944 0.000 0.012 NA
#> GSM379723 3 0.1080 0.902 0.032 0.000 0.960 0.000 0.004 NA
#> GSM379716 3 0.1080 0.902 0.032 0.000 0.960 0.000 0.004 NA
#> GSM379717 3 0.1080 0.902 0.032 0.000 0.960 0.000 0.004 NA
#> GSM379718 3 0.1511 0.902 0.032 0.000 0.944 0.000 0.012 NA
#> GSM379719 3 0.1511 0.902 0.032 0.000 0.944 0.000 0.012 NA
#> GSM379720 3 0.1511 0.902 0.032 0.000 0.944 0.000 0.012 NA
#> GSM379729 3 0.4892 0.877 0.028 0.000 0.720 0.008 0.084 NA
#> GSM379730 3 0.4892 0.877 0.028 0.000 0.720 0.008 0.084 NA
#> GSM379731 3 0.4858 0.878 0.028 0.000 0.724 0.008 0.084 NA
#> GSM379724 3 0.1080 0.902 0.032 0.000 0.960 0.000 0.004 NA
#> GSM379725 3 0.4391 0.885 0.028 0.000 0.764 0.004 0.076 NA
#> GSM379726 3 0.0790 0.903 0.032 0.000 0.968 0.000 0.000 NA
#> GSM379727 3 0.0790 0.903 0.032 0.000 0.968 0.000 0.000 NA
#> GSM379728 3 0.0790 0.903 0.032 0.000 0.968 0.000 0.000 NA
#> GSM379737 3 0.4221 0.896 0.032 0.000 0.788 0.008 0.072 NA
#> GSM379738 3 0.4221 0.896 0.032 0.000 0.788 0.008 0.072 NA
#> GSM379739 3 0.4221 0.896 0.032 0.000 0.788 0.008 0.072 NA
#> GSM379732 3 0.4858 0.878 0.028 0.000 0.724 0.008 0.084 NA
#> GSM379733 3 0.3114 0.904 0.032 0.000 0.864 0.004 0.052 NA
#> GSM379734 3 0.3114 0.904 0.032 0.000 0.864 0.004 0.052 NA
#> GSM379735 3 0.5005 0.873 0.028 0.000 0.708 0.008 0.088 NA
#> GSM379736 3 0.2345 0.904 0.032 0.000 0.908 0.004 0.028 NA
#> GSM379742 3 0.5565 0.778 0.016 0.004 0.620 0.008 0.096 NA
#> GSM379743 3 0.5005 0.873 0.028 0.000 0.708 0.008 0.088 NA
#> GSM379740 3 0.4174 0.897 0.032 0.000 0.792 0.008 0.072 NA
#> GSM379741 3 0.5565 0.778 0.016 0.004 0.620 0.008 0.096 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 6)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 6, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> MAD:kmeans 138 1.06e-24 1 0.780 2
#> MAD:kmeans 54 NA NA NA 3
#> MAD:kmeans 88 6.42e-34 1 0.527 4
#> MAD:kmeans 138 3.50e-105 1 0.998 5
#> MAD:kmeans 138 3.50e-105 1 0.998 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.988 0.995 0.4911 0.510 0.510
#> 3 3 1.000 0.982 0.991 0.3144 0.834 0.678
#> 4 4 1.000 0.988 0.981 0.1304 0.905 0.737
#> 5 5 0.923 0.957 0.962 0.1015 0.918 0.701
#> 6 6 0.940 0.931 0.918 0.0289 0.981 0.900
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5
There is also optional best \(k\) = 2 3 4 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.0000 0.996 0.000 1.000
#> GSM379833 2 0.0000 0.996 0.000 1.000
#> GSM379834 2 0.0000 0.996 0.000 1.000
#> GSM379827 2 0.0000 0.996 0.000 1.000
#> GSM379828 2 0.0000 0.996 0.000 1.000
#> GSM379829 1 0.8144 0.663 0.748 0.252
#> GSM379830 2 0.0000 0.996 0.000 1.000
#> GSM379831 2 0.0000 0.996 0.000 1.000
#> GSM379840 2 0.0000 0.996 0.000 1.000
#> GSM379841 2 0.0000 0.996 0.000 1.000
#> GSM379842 2 0.0000 0.996 0.000 1.000
#> GSM379835 2 0.0000 0.996 0.000 1.000
#> GSM379836 2 0.0000 0.996 0.000 1.000
#> GSM379837 2 0.0000 0.996 0.000 1.000
#> GSM379838 2 0.0000 0.996 0.000 1.000
#> GSM379839 2 0.0000 0.996 0.000 1.000
#> GSM379848 2 0.0000 0.996 0.000 1.000
#> GSM379849 2 0.0000 0.996 0.000 1.000
#> GSM379850 2 0.0000 0.996 0.000 1.000
#> GSM379843 2 0.0000 0.996 0.000 1.000
#> GSM379844 2 0.0000 0.996 0.000 1.000
#> GSM379845 2 0.0000 0.996 0.000 1.000
#> GSM379846 2 0.0000 0.996 0.000 1.000
#> GSM379847 2 0.0000 0.996 0.000 1.000
#> GSM379853 2 0.0000 0.996 0.000 1.000
#> GSM379854 2 0.0000 0.996 0.000 1.000
#> GSM379851 2 0.0000 0.996 0.000 1.000
#> GSM379852 2 0.0000 0.996 0.000 1.000
#> GSM379804 1 0.0000 0.993 1.000 0.000
#> GSM379805 1 0.0000 0.993 1.000 0.000
#> GSM379806 1 0.0000 0.993 1.000 0.000
#> GSM379799 1 0.0000 0.993 1.000 0.000
#> GSM379800 1 0.0000 0.993 1.000 0.000
#> GSM379801 1 0.0000 0.993 1.000 0.000
#> GSM379802 1 0.0000 0.993 1.000 0.000
#> GSM379803 1 0.0000 0.993 1.000 0.000
#> GSM379812 1 0.0000 0.993 1.000 0.000
#> GSM379813 1 0.0000 0.993 1.000 0.000
#> GSM379814 1 0.0000 0.993 1.000 0.000
#> GSM379807 1 0.0000 0.993 1.000 0.000
#> GSM379808 1 0.0000 0.993 1.000 0.000
#> GSM379809 1 0.0000 0.993 1.000 0.000
#> GSM379810 1 0.0000 0.993 1.000 0.000
#> GSM379811 1 0.0000 0.993 1.000 0.000
#> GSM379820 1 0.0000 0.993 1.000 0.000
#> GSM379821 1 0.0000 0.993 1.000 0.000
#> GSM379822 1 0.0000 0.993 1.000 0.000
#> GSM379815 1 0.0000 0.993 1.000 0.000
#> GSM379816 1 0.0938 0.982 0.988 0.012
#> GSM379817 1 0.0000 0.993 1.000 0.000
#> GSM379818 1 0.0000 0.993 1.000 0.000
#> GSM379819 1 0.0000 0.993 1.000 0.000
#> GSM379825 1 0.0000 0.993 1.000 0.000
#> GSM379826 1 0.0000 0.993 1.000 0.000
#> GSM379823 1 0.0000 0.993 1.000 0.000
#> GSM379824 1 0.0000 0.993 1.000 0.000
#> GSM379749 2 0.0000 0.996 0.000 1.000
#> GSM379750 2 0.0000 0.996 0.000 1.000
#> GSM379751 2 0.0000 0.996 0.000 1.000
#> GSM379744 2 0.0000 0.996 0.000 1.000
#> GSM379745 2 0.0000 0.996 0.000 1.000
#> GSM379746 2 0.0000 0.996 0.000 1.000
#> GSM379747 2 0.0000 0.996 0.000 1.000
#> GSM379748 2 0.0000 0.996 0.000 1.000
#> GSM379757 2 0.0000 0.996 0.000 1.000
#> GSM379758 2 0.0000 0.996 0.000 1.000
#> GSM379752 2 0.0000 0.996 0.000 1.000
#> GSM379753 2 0.0000 0.996 0.000 1.000
#> GSM379754 2 0.0000 0.996 0.000 1.000
#> GSM379755 2 0.0000 0.996 0.000 1.000
#> GSM379756 2 0.0000 0.996 0.000 1.000
#> GSM379764 2 0.0000 0.996 0.000 1.000
#> GSM379765 2 0.0000 0.996 0.000 1.000
#> GSM379766 2 0.0000 0.996 0.000 1.000
#> GSM379759 2 0.0000 0.996 0.000 1.000
#> GSM379760 2 0.0000 0.996 0.000 1.000
#> GSM379761 2 0.0000 0.996 0.000 1.000
#> GSM379762 2 0.0000 0.996 0.000 1.000
#> GSM379763 2 0.0000 0.996 0.000 1.000
#> GSM379769 2 0.0000 0.996 0.000 1.000
#> GSM379770 2 0.0000 0.996 0.000 1.000
#> GSM379767 2 0.0000 0.996 0.000 1.000
#> GSM379768 2 0.0000 0.996 0.000 1.000
#> GSM379776 1 0.0000 0.993 1.000 0.000
#> GSM379777 1 0.0000 0.993 1.000 0.000
#> GSM379778 1 0.8327 0.641 0.736 0.264
#> GSM379771 1 0.0000 0.993 1.000 0.000
#> GSM379772 1 0.0000 0.993 1.000 0.000
#> GSM379773 1 0.0000 0.993 1.000 0.000
#> GSM379774 1 0.0000 0.993 1.000 0.000
#> GSM379775 1 0.0000 0.993 1.000 0.000
#> GSM379784 1 0.0000 0.993 1.000 0.000
#> GSM379785 1 0.0000 0.993 1.000 0.000
#> GSM379786 1 0.0000 0.993 1.000 0.000
#> GSM379779 1 0.0000 0.993 1.000 0.000
#> GSM379780 1 0.0000 0.993 1.000 0.000
#> GSM379781 1 0.0000 0.993 1.000 0.000
#> GSM379782 2 0.0000 0.996 0.000 1.000
#> GSM379783 1 0.0000 0.993 1.000 0.000
#> GSM379792 1 0.0000 0.993 1.000 0.000
#> GSM379793 1 0.0000 0.993 1.000 0.000
#> GSM379794 1 0.0000 0.993 1.000 0.000
#> GSM379787 2 0.7219 0.747 0.200 0.800
#> GSM379788 1 0.0000 0.993 1.000 0.000
#> GSM379789 1 0.0000 0.993 1.000 0.000
#> GSM379790 1 0.0000 0.993 1.000 0.000
#> GSM379791 1 0.0000 0.993 1.000 0.000
#> GSM379797 1 0.0000 0.993 1.000 0.000
#> GSM379798 1 0.0000 0.993 1.000 0.000
#> GSM379795 1 0.0000 0.993 1.000 0.000
#> GSM379796 1 0.0000 0.993 1.000 0.000
#> GSM379721 1 0.0000 0.993 1.000 0.000
#> GSM379722 1 0.0000 0.993 1.000 0.000
#> GSM379723 1 0.0000 0.993 1.000 0.000
#> GSM379716 1 0.0000 0.993 1.000 0.000
#> GSM379717 1 0.0000 0.993 1.000 0.000
#> GSM379718 1 0.0000 0.993 1.000 0.000
#> GSM379719 1 0.0000 0.993 1.000 0.000
#> GSM379720 1 0.0000 0.993 1.000 0.000
#> GSM379729 1 0.0000 0.993 1.000 0.000
#> GSM379730 1 0.0000 0.993 1.000 0.000
#> GSM379731 1 0.0000 0.993 1.000 0.000
#> GSM379724 1 0.0000 0.993 1.000 0.000
#> GSM379725 1 0.0000 0.993 1.000 0.000
#> GSM379726 1 0.0000 0.993 1.000 0.000
#> GSM379727 1 0.0000 0.993 1.000 0.000
#> GSM379728 1 0.0000 0.993 1.000 0.000
#> GSM379737 1 0.0000 0.993 1.000 0.000
#> GSM379738 1 0.0000 0.993 1.000 0.000
#> GSM379739 1 0.0000 0.993 1.000 0.000
#> GSM379732 1 0.0000 0.993 1.000 0.000
#> GSM379733 1 0.0000 0.993 1.000 0.000
#> GSM379734 1 0.0000 0.993 1.000 0.000
#> GSM379735 1 0.0000 0.993 1.000 0.000
#> GSM379736 1 0.0000 0.993 1.000 0.000
#> GSM379742 2 0.0000 0.996 0.000 1.000
#> GSM379743 1 0.0000 0.993 1.000 0.000
#> GSM379740 1 0.0000 0.993 1.000 0.000
#> GSM379741 2 0.0000 0.996 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379833 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379834 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379827 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379828 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379829 1 0.5803 0.662 0.736 0.248 0.016
#> GSM379830 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379831 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379840 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379841 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379842 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379835 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379836 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379837 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379838 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379839 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379848 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379849 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379850 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379843 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379844 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379845 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379846 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379847 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379853 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379854 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379851 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379852 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379804 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379805 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379806 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379799 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379800 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379801 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379802 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379803 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379812 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379813 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379814 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379807 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379808 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379809 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379810 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379811 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379820 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379821 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379822 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379815 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379816 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379817 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379818 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379819 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379825 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379826 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379823 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379824 1 0.0747 0.987 0.984 0.000 0.016
#> GSM379749 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379750 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379751 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379744 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379745 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379746 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379747 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379748 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379757 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379758 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379752 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379753 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379754 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379755 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379756 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379764 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379765 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379766 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379759 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379760 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379761 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379762 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379763 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379769 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379770 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379767 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379768 2 0.0000 0.989 0.000 1.000 0.000
#> GSM379776 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379777 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379778 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379771 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379772 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379773 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379774 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379775 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379784 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379785 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379786 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379779 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379780 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379781 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379782 2 0.4555 0.748 0.200 0.800 0.000
#> GSM379783 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379792 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379793 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379794 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379787 2 0.5760 0.521 0.328 0.672 0.000
#> GSM379788 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379789 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379790 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379791 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379797 1 0.0237 0.986 0.996 0.000 0.004
#> GSM379798 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379795 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379796 1 0.0000 0.986 1.000 0.000 0.000
#> GSM379721 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379722 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379723 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379716 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379717 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379718 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379719 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379720 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379729 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379730 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379731 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379724 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379725 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379726 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379727 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379728 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379737 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379738 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379739 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379732 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379733 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379734 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379735 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379736 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379742 3 0.0747 0.982 0.000 0.016 0.984
#> GSM379743 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379740 3 0.0000 0.999 0.000 0.000 1.000
#> GSM379741 3 0.0747 0.982 0.000 0.016 0.984
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.1302 0.982 0.000 0.956 0 0.044
#> GSM379833 2 0.1302 0.982 0.000 0.956 0 0.044
#> GSM379834 2 0.1302 0.982 0.000 0.956 0 0.044
#> GSM379827 2 0.1302 0.982 0.000 0.956 0 0.044
#> GSM379828 2 0.1302 0.982 0.000 0.956 0 0.044
#> GSM379829 4 0.0000 0.939 0.000 0.000 0 1.000
#> GSM379830 2 0.1302 0.982 0.000 0.956 0 0.044
#> GSM379831 2 0.1302 0.982 0.000 0.956 0 0.044
#> GSM379840 2 0.1302 0.982 0.000 0.956 0 0.044
#> GSM379841 2 0.1211 0.982 0.000 0.960 0 0.040
#> GSM379842 2 0.1211 0.982 0.000 0.960 0 0.040
#> GSM379835 2 0.1302 0.982 0.000 0.956 0 0.044
#> GSM379836 2 0.1302 0.982 0.000 0.956 0 0.044
#> GSM379837 2 0.1389 0.980 0.000 0.952 0 0.048
#> GSM379838 2 0.1211 0.982 0.000 0.960 0 0.040
#> GSM379839 2 0.1302 0.982 0.000 0.956 0 0.044
#> GSM379848 2 0.1211 0.982 0.000 0.960 0 0.040
#> GSM379849 2 0.1211 0.982 0.000 0.960 0 0.040
#> GSM379850 2 0.1211 0.982 0.000 0.960 0 0.040
#> GSM379843 2 0.1211 0.982 0.000 0.960 0 0.040
#> GSM379844 2 0.1211 0.982 0.000 0.960 0 0.040
#> GSM379845 2 0.1302 0.982 0.000 0.956 0 0.044
#> GSM379846 2 0.1211 0.982 0.000 0.960 0 0.040
#> GSM379847 2 0.1211 0.982 0.000 0.960 0 0.040
#> GSM379853 2 0.1211 0.982 0.000 0.960 0 0.040
#> GSM379854 2 0.1211 0.982 0.000 0.960 0 0.040
#> GSM379851 2 0.1211 0.982 0.000 0.960 0 0.040
#> GSM379852 2 0.1211 0.982 0.000 0.960 0 0.040
#> GSM379804 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379805 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379806 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379799 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379800 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379801 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379802 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379803 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379812 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379813 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379814 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379807 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379808 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379809 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379810 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379811 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379820 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379821 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379822 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379815 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379816 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379817 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379818 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379819 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379825 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379826 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379823 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379824 4 0.1302 0.991 0.044 0.000 0 0.956
#> GSM379749 2 0.0188 0.982 0.000 0.996 0 0.004
#> GSM379750 2 0.0188 0.982 0.000 0.996 0 0.004
#> GSM379751 2 0.0188 0.982 0.000 0.996 0 0.004
#> GSM379744 2 0.0188 0.982 0.000 0.996 0 0.004
#> GSM379745 2 0.0188 0.982 0.000 0.996 0 0.004
#> GSM379746 2 0.0188 0.982 0.000 0.996 0 0.004
#> GSM379747 2 0.0188 0.982 0.000 0.996 0 0.004
#> GSM379748 2 0.0188 0.982 0.000 0.996 0 0.004
#> GSM379757 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379758 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379752 2 0.0188 0.982 0.000 0.996 0 0.004
#> GSM379753 2 0.0188 0.982 0.000 0.996 0 0.004
#> GSM379754 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379755 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379756 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379764 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379765 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379766 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379759 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379760 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379761 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379762 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379763 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379769 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379770 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379767 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379768 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379776 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379777 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379778 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379771 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379772 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379773 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379774 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379775 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379784 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379785 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379786 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379779 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379780 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379781 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379782 1 0.0921 0.966 0.972 0.028 0 0.000
#> GSM379783 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379792 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379793 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379794 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379787 1 0.0817 0.971 0.976 0.024 0 0.000
#> GSM379788 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379789 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379790 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379791 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379797 4 0.4040 0.729 0.248 0.000 0 0.752
#> GSM379798 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379795 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379796 1 0.0000 0.997 1.000 0.000 0 0.000
#> GSM379721 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379722 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379723 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379716 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379717 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379718 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379719 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379720 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379729 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379730 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379731 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379724 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379725 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379726 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379727 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379728 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379737 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379738 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379739 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379732 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379733 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379734 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379735 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379736 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379742 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379743 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379740 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379741 3 0.0000 1.000 0.000 0.000 1 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 5 0.1043 0.905 0.000 0.040 0.000 0.000 0.960
#> GSM379833 5 0.1043 0.905 0.000 0.040 0.000 0.000 0.960
#> GSM379834 5 0.1043 0.905 0.000 0.040 0.000 0.000 0.960
#> GSM379827 5 0.1043 0.905 0.000 0.040 0.000 0.000 0.960
#> GSM379828 5 0.1043 0.905 0.000 0.040 0.000 0.000 0.960
#> GSM379829 5 0.1043 0.856 0.000 0.000 0.000 0.040 0.960
#> GSM379830 5 0.1043 0.905 0.000 0.040 0.000 0.000 0.960
#> GSM379831 5 0.1043 0.905 0.000 0.040 0.000 0.000 0.960
#> GSM379840 5 0.0880 0.901 0.000 0.032 0.000 0.000 0.968
#> GSM379841 5 0.2966 0.907 0.000 0.184 0.000 0.000 0.816
#> GSM379842 5 0.2966 0.907 0.000 0.184 0.000 0.000 0.816
#> GSM379835 5 0.1043 0.905 0.000 0.040 0.000 0.000 0.960
#> GSM379836 5 0.1043 0.905 0.000 0.040 0.000 0.000 0.960
#> GSM379837 5 0.0290 0.886 0.000 0.008 0.000 0.000 0.992
#> GSM379838 5 0.2966 0.907 0.000 0.184 0.000 0.000 0.816
#> GSM379839 5 0.0510 0.891 0.000 0.016 0.000 0.000 0.984
#> GSM379848 5 0.2966 0.907 0.000 0.184 0.000 0.000 0.816
#> GSM379849 5 0.2966 0.907 0.000 0.184 0.000 0.000 0.816
#> GSM379850 5 0.2966 0.907 0.000 0.184 0.000 0.000 0.816
#> GSM379843 5 0.2966 0.907 0.000 0.184 0.000 0.000 0.816
#> GSM379844 5 0.2966 0.907 0.000 0.184 0.000 0.000 0.816
#> GSM379845 5 0.1043 0.905 0.000 0.040 0.000 0.000 0.960
#> GSM379846 5 0.2966 0.907 0.000 0.184 0.000 0.000 0.816
#> GSM379847 5 0.2966 0.907 0.000 0.184 0.000 0.000 0.816
#> GSM379853 5 0.2966 0.907 0.000 0.184 0.000 0.000 0.816
#> GSM379854 5 0.2966 0.907 0.000 0.184 0.000 0.000 0.816
#> GSM379851 5 0.2966 0.907 0.000 0.184 0.000 0.000 0.816
#> GSM379852 5 0.2966 0.907 0.000 0.184 0.000 0.000 0.816
#> GSM379804 4 0.0703 0.980 0.000 0.000 0.000 0.976 0.024
#> GSM379805 4 0.0880 0.979 0.000 0.000 0.000 0.968 0.032
#> GSM379806 4 0.0880 0.979 0.000 0.000 0.000 0.968 0.032
#> GSM379799 4 0.0880 0.979 0.000 0.000 0.000 0.968 0.032
#> GSM379800 4 0.0880 0.979 0.000 0.000 0.000 0.968 0.032
#> GSM379801 4 0.0880 0.979 0.000 0.000 0.000 0.968 0.032
#> GSM379802 4 0.0880 0.979 0.000 0.000 0.000 0.968 0.032
#> GSM379803 4 0.0880 0.979 0.000 0.000 0.000 0.968 0.032
#> GSM379812 4 0.0000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379813 4 0.0000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379814 4 0.0000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379807 4 0.0000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379808 4 0.0880 0.979 0.000 0.000 0.000 0.968 0.032
#> GSM379809 4 0.0880 0.979 0.000 0.000 0.000 0.968 0.032
#> GSM379810 4 0.0404 0.980 0.000 0.000 0.000 0.988 0.012
#> GSM379811 4 0.0880 0.979 0.000 0.000 0.000 0.968 0.032
#> GSM379820 4 0.0000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379821 4 0.0000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379822 4 0.0000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379815 4 0.0404 0.980 0.000 0.000 0.000 0.988 0.012
#> GSM379816 4 0.0000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379817 4 0.0000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379818 4 0.0880 0.979 0.000 0.000 0.000 0.968 0.032
#> GSM379819 4 0.0000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379825 4 0.0880 0.979 0.000 0.000 0.000 0.968 0.032
#> GSM379826 4 0.0000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379823 4 0.0000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379824 4 0.0000 0.980 0.000 0.000 0.000 1.000 0.000
#> GSM379749 2 0.2471 0.888 0.000 0.864 0.000 0.000 0.136
#> GSM379750 2 0.2471 0.888 0.000 0.864 0.000 0.000 0.136
#> GSM379751 2 0.2561 0.883 0.000 0.856 0.000 0.000 0.144
#> GSM379744 2 0.2561 0.883 0.000 0.856 0.000 0.000 0.144
#> GSM379745 2 0.2561 0.883 0.000 0.856 0.000 0.000 0.144
#> GSM379746 2 0.2471 0.888 0.000 0.864 0.000 0.000 0.136
#> GSM379747 2 0.2561 0.883 0.000 0.856 0.000 0.000 0.144
#> GSM379748 2 0.2561 0.883 0.000 0.856 0.000 0.000 0.144
#> GSM379757 2 0.0000 0.935 0.000 1.000 0.000 0.000 0.000
#> GSM379758 2 0.0000 0.935 0.000 1.000 0.000 0.000 0.000
#> GSM379752 2 0.2471 0.888 0.000 0.864 0.000 0.000 0.136
#> GSM379753 2 0.2561 0.883 0.000 0.856 0.000 0.000 0.144
#> GSM379754 2 0.0000 0.935 0.000 1.000 0.000 0.000 0.000
#> GSM379755 2 0.0000 0.935 0.000 1.000 0.000 0.000 0.000
#> GSM379756 2 0.0000 0.935 0.000 1.000 0.000 0.000 0.000
#> GSM379764 2 0.0000 0.935 0.000 1.000 0.000 0.000 0.000
#> GSM379765 2 0.0000 0.935 0.000 1.000 0.000 0.000 0.000
#> GSM379766 2 0.0000 0.935 0.000 1.000 0.000 0.000 0.000
#> GSM379759 2 0.0000 0.935 0.000 1.000 0.000 0.000 0.000
#> GSM379760 2 0.0000 0.935 0.000 1.000 0.000 0.000 0.000
#> GSM379761 2 0.0000 0.935 0.000 1.000 0.000 0.000 0.000
#> GSM379762 2 0.0000 0.935 0.000 1.000 0.000 0.000 0.000
#> GSM379763 2 0.0000 0.935 0.000 1.000 0.000 0.000 0.000
#> GSM379769 2 0.0000 0.935 0.000 1.000 0.000 0.000 0.000
#> GSM379770 2 0.0000 0.935 0.000 1.000 0.000 0.000 0.000
#> GSM379767 2 0.0000 0.935 0.000 1.000 0.000 0.000 0.000
#> GSM379768 2 0.0000 0.935 0.000 1.000 0.000 0.000 0.000
#> GSM379776 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379777 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379778 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379771 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379772 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379773 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379774 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379775 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379784 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379785 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379786 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379779 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379780 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379781 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379782 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379783 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379792 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379793 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379794 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379787 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379788 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379789 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379790 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379791 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379797 4 0.4058 0.690 0.236 0.000 0.000 0.740 0.024
#> GSM379798 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379795 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379796 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM379721 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM379722 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM379723 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM379716 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM379717 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM379718 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM379719 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM379720 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM379729 3 0.0290 0.996 0.000 0.000 0.992 0.000 0.008
#> GSM379730 3 0.0290 0.996 0.000 0.000 0.992 0.000 0.008
#> GSM379731 3 0.0290 0.996 0.000 0.000 0.992 0.000 0.008
#> GSM379724 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM379725 3 0.0290 0.996 0.000 0.000 0.992 0.000 0.008
#> GSM379726 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM379727 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM379728 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM379737 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM379738 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM379739 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM379732 3 0.0290 0.996 0.000 0.000 0.992 0.000 0.008
#> GSM379733 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM379734 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM379735 3 0.0290 0.996 0.000 0.000 0.992 0.000 0.008
#> GSM379736 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM379742 3 0.0290 0.996 0.000 0.000 0.992 0.000 0.008
#> GSM379743 3 0.0290 0.996 0.000 0.000 0.992 0.000 0.008
#> GSM379740 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM379741 3 0.0290 0.996 0.000 0.000 0.992 0.000 0.008
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 6 0.1700 0.846 0.000 0.004 0.000 0.000 0.080 0.916
#> GSM379833 6 0.1700 0.846 0.000 0.004 0.000 0.000 0.080 0.916
#> GSM379834 6 0.1700 0.846 0.000 0.004 0.000 0.000 0.080 0.916
#> GSM379827 5 0.3872 0.926 0.000 0.004 0.000 0.000 0.604 0.392
#> GSM379828 5 0.3872 0.926 0.000 0.004 0.000 0.000 0.604 0.392
#> GSM379829 5 0.5269 0.545 0.000 0.004 0.000 0.260 0.604 0.132
#> GSM379830 5 0.3881 0.930 0.000 0.004 0.000 0.000 0.600 0.396
#> GSM379831 5 0.3881 0.930 0.000 0.004 0.000 0.000 0.600 0.396
#> GSM379840 5 0.3944 0.883 0.000 0.004 0.000 0.000 0.568 0.428
#> GSM379841 6 0.0405 0.964 0.000 0.004 0.000 0.000 0.008 0.988
#> GSM379842 6 0.0405 0.964 0.000 0.004 0.000 0.000 0.008 0.988
#> GSM379835 5 0.3881 0.930 0.000 0.004 0.000 0.000 0.600 0.396
#> GSM379836 5 0.3881 0.930 0.000 0.004 0.000 0.000 0.600 0.396
#> GSM379837 5 0.3881 0.930 0.000 0.004 0.000 0.000 0.600 0.396
#> GSM379838 6 0.0405 0.964 0.000 0.004 0.000 0.000 0.008 0.988
#> GSM379839 5 0.3881 0.930 0.000 0.004 0.000 0.000 0.600 0.396
#> GSM379848 6 0.0146 0.965 0.000 0.004 0.000 0.000 0.000 0.996
#> GSM379849 6 0.0146 0.965 0.000 0.004 0.000 0.000 0.000 0.996
#> GSM379850 6 0.0146 0.965 0.000 0.004 0.000 0.000 0.000 0.996
#> GSM379843 6 0.0405 0.964 0.000 0.004 0.000 0.000 0.008 0.988
#> GSM379844 6 0.0405 0.964 0.000 0.004 0.000 0.000 0.008 0.988
#> GSM379845 5 0.3937 0.890 0.000 0.004 0.000 0.000 0.572 0.424
#> GSM379846 6 0.0291 0.965 0.000 0.004 0.000 0.000 0.004 0.992
#> GSM379847 6 0.0146 0.965 0.000 0.004 0.000 0.000 0.000 0.996
#> GSM379853 6 0.0146 0.965 0.000 0.004 0.000 0.000 0.000 0.996
#> GSM379854 6 0.0146 0.965 0.000 0.004 0.000 0.000 0.000 0.996
#> GSM379851 6 0.0146 0.965 0.000 0.004 0.000 0.000 0.000 0.996
#> GSM379852 6 0.0146 0.965 0.000 0.004 0.000 0.000 0.000 0.996
#> GSM379804 4 0.0000 0.878 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379805 4 0.0000 0.878 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379806 4 0.0000 0.878 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379799 4 0.0000 0.878 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379800 4 0.0000 0.878 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379801 4 0.0000 0.878 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379802 4 0.0000 0.878 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379803 4 0.0146 0.877 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM379812 4 0.3221 0.856 0.000 0.000 0.000 0.736 0.264 0.000
#> GSM379813 4 0.3198 0.857 0.000 0.000 0.000 0.740 0.260 0.000
#> GSM379814 4 0.3198 0.857 0.000 0.000 0.000 0.740 0.260 0.000
#> GSM379807 4 0.3198 0.857 0.000 0.000 0.000 0.740 0.260 0.000
#> GSM379808 4 0.0000 0.878 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379809 4 0.0000 0.878 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379810 4 0.0000 0.878 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379811 4 0.0000 0.878 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379820 4 0.3198 0.857 0.000 0.000 0.000 0.740 0.260 0.000
#> GSM379821 4 0.3221 0.856 0.000 0.000 0.000 0.736 0.264 0.000
#> GSM379822 4 0.3221 0.856 0.000 0.000 0.000 0.736 0.264 0.000
#> GSM379815 4 0.0000 0.878 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379816 4 0.3244 0.854 0.000 0.000 0.000 0.732 0.268 0.000
#> GSM379817 4 0.3198 0.857 0.000 0.000 0.000 0.740 0.260 0.000
#> GSM379818 4 0.0000 0.878 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379819 4 0.3198 0.857 0.000 0.000 0.000 0.740 0.260 0.000
#> GSM379825 4 0.0000 0.878 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379826 4 0.3198 0.857 0.000 0.000 0.000 0.740 0.260 0.000
#> GSM379823 4 0.3221 0.856 0.000 0.000 0.000 0.736 0.264 0.000
#> GSM379824 4 0.3221 0.856 0.000 0.000 0.000 0.736 0.264 0.000
#> GSM379749 2 0.0713 0.922 0.000 0.972 0.000 0.000 0.028 0.000
#> GSM379750 2 0.0713 0.922 0.000 0.972 0.000 0.000 0.028 0.000
#> GSM379751 2 0.3052 0.727 0.000 0.780 0.000 0.000 0.216 0.004
#> GSM379744 2 0.0865 0.919 0.000 0.964 0.000 0.000 0.036 0.000
#> GSM379745 2 0.0865 0.919 0.000 0.964 0.000 0.000 0.036 0.000
#> GSM379746 2 0.0713 0.922 0.000 0.972 0.000 0.000 0.028 0.000
#> GSM379747 2 0.1010 0.917 0.000 0.960 0.000 0.000 0.036 0.004
#> GSM379748 2 0.1010 0.917 0.000 0.960 0.000 0.000 0.036 0.004
#> GSM379757 2 0.0146 0.927 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM379758 2 0.1895 0.923 0.000 0.912 0.000 0.000 0.072 0.016
#> GSM379752 2 0.0713 0.922 0.000 0.972 0.000 0.000 0.028 0.000
#> GSM379753 2 0.1010 0.917 0.000 0.960 0.000 0.000 0.036 0.004
#> GSM379754 2 0.0146 0.927 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM379755 2 0.0146 0.927 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM379756 2 0.0146 0.927 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM379764 2 0.2912 0.905 0.000 0.852 0.000 0.000 0.072 0.076
#> GSM379765 2 0.2912 0.905 0.000 0.852 0.000 0.000 0.072 0.076
#> GSM379766 2 0.2912 0.905 0.000 0.852 0.000 0.000 0.072 0.076
#> GSM379759 2 0.1588 0.924 0.000 0.924 0.000 0.000 0.072 0.004
#> GSM379760 2 0.1588 0.924 0.000 0.924 0.000 0.000 0.072 0.004
#> GSM379761 2 0.1895 0.923 0.000 0.912 0.000 0.000 0.072 0.016
#> GSM379762 2 0.1895 0.923 0.000 0.912 0.000 0.000 0.072 0.016
#> GSM379763 2 0.2912 0.905 0.000 0.852 0.000 0.000 0.072 0.076
#> GSM379769 2 0.2912 0.905 0.000 0.852 0.000 0.000 0.072 0.076
#> GSM379770 2 0.2912 0.905 0.000 0.852 0.000 0.000 0.072 0.076
#> GSM379767 2 0.2912 0.905 0.000 0.852 0.000 0.000 0.072 0.076
#> GSM379768 2 0.2912 0.905 0.000 0.852 0.000 0.000 0.072 0.076
#> GSM379776 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379777 1 0.0146 0.996 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM379778 1 0.0458 0.990 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM379771 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379772 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379773 1 0.0458 0.990 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM379774 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379775 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379784 1 0.0146 0.996 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM379785 1 0.0146 0.996 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM379786 1 0.0146 0.996 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM379779 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379780 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379781 1 0.0146 0.996 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM379782 1 0.0458 0.990 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM379783 1 0.0146 0.996 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM379792 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379793 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379794 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379787 1 0.0458 0.990 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM379788 1 0.0146 0.996 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM379789 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379790 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379791 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379797 4 0.3023 0.668 0.232 0.000 0.000 0.768 0.000 0.000
#> GSM379798 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379795 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379796 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379721 3 0.0000 0.980 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379722 3 0.0000 0.980 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379723 3 0.0000 0.980 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379716 3 0.0000 0.980 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379717 3 0.0000 0.980 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379718 3 0.0000 0.980 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379719 3 0.0000 0.980 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379720 3 0.0000 0.980 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379729 3 0.1007 0.970 0.000 0.000 0.956 0.000 0.044 0.000
#> GSM379730 3 0.1007 0.970 0.000 0.000 0.956 0.000 0.044 0.000
#> GSM379731 3 0.1007 0.970 0.000 0.000 0.956 0.000 0.044 0.000
#> GSM379724 3 0.0000 0.980 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379725 3 0.0713 0.974 0.000 0.000 0.972 0.000 0.028 0.000
#> GSM379726 3 0.0000 0.980 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379727 3 0.0000 0.980 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379728 3 0.0000 0.980 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379737 3 0.0632 0.976 0.000 0.000 0.976 0.000 0.024 0.000
#> GSM379738 3 0.0632 0.976 0.000 0.000 0.976 0.000 0.024 0.000
#> GSM379739 3 0.0713 0.975 0.000 0.000 0.972 0.000 0.028 0.000
#> GSM379732 3 0.1007 0.970 0.000 0.000 0.956 0.000 0.044 0.000
#> GSM379733 3 0.0000 0.980 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379734 3 0.0000 0.980 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379735 3 0.1007 0.970 0.000 0.000 0.956 0.000 0.044 0.000
#> GSM379736 3 0.0000 0.980 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379742 3 0.2815 0.879 0.000 0.032 0.848 0.000 0.120 0.000
#> GSM379743 3 0.1007 0.970 0.000 0.000 0.956 0.000 0.044 0.000
#> GSM379740 3 0.0458 0.977 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM379741 3 0.2815 0.879 0.000 0.032 0.848 0.000 0.120 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> MAD:skmeans 139 6.01e-25 1 0.651 2
#> MAD:skmeans 139 1.97e-52 1 0.891 3
#> MAD:skmeans 139 2.80e-78 1 0.996 4
#> MAD:skmeans 139 5.15e-106 1 1.000 5
#> MAD:skmeans 139 5.38e-103 1 0.767 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1 0.995 0.997 0.489 0.513 0.513
#> 3 3 1 0.991 0.996 0.327 0.828 0.668
#> 4 4 1 0.963 0.962 0.125 0.907 0.741
#> 5 5 1 0.975 0.991 0.104 0.918 0.701
#> 6 6 1 0.953 0.982 0.029 0.970 0.847
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5
There is also optional best \(k\) = 2 3 4 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.0000 1.000 0.000 1.000
#> GSM379833 2 0.0000 1.000 0.000 1.000
#> GSM379834 2 0.0000 1.000 0.000 1.000
#> GSM379827 2 0.0000 1.000 0.000 1.000
#> GSM379828 2 0.0000 1.000 0.000 1.000
#> GSM379829 2 0.0376 0.996 0.004 0.996
#> GSM379830 2 0.0000 1.000 0.000 1.000
#> GSM379831 2 0.0000 1.000 0.000 1.000
#> GSM379840 2 0.0000 1.000 0.000 1.000
#> GSM379841 2 0.0000 1.000 0.000 1.000
#> GSM379842 2 0.0000 1.000 0.000 1.000
#> GSM379835 2 0.0000 1.000 0.000 1.000
#> GSM379836 2 0.0000 1.000 0.000 1.000
#> GSM379837 2 0.0000 1.000 0.000 1.000
#> GSM379838 2 0.0000 1.000 0.000 1.000
#> GSM379839 2 0.0000 1.000 0.000 1.000
#> GSM379848 2 0.0000 1.000 0.000 1.000
#> GSM379849 2 0.0000 1.000 0.000 1.000
#> GSM379850 2 0.0000 1.000 0.000 1.000
#> GSM379843 2 0.0000 1.000 0.000 1.000
#> GSM379844 2 0.0000 1.000 0.000 1.000
#> GSM379845 2 0.0000 1.000 0.000 1.000
#> GSM379846 2 0.0000 1.000 0.000 1.000
#> GSM379847 2 0.0000 1.000 0.000 1.000
#> GSM379853 2 0.0000 1.000 0.000 1.000
#> GSM379854 2 0.0000 1.000 0.000 1.000
#> GSM379851 2 0.0000 1.000 0.000 1.000
#> GSM379852 2 0.0000 1.000 0.000 1.000
#> GSM379804 1 0.0000 0.996 1.000 0.000
#> GSM379805 1 0.0000 0.996 1.000 0.000
#> GSM379806 1 0.0000 0.996 1.000 0.000
#> GSM379799 1 0.0000 0.996 1.000 0.000
#> GSM379800 1 0.0000 0.996 1.000 0.000
#> GSM379801 1 0.0000 0.996 1.000 0.000
#> GSM379802 1 0.0000 0.996 1.000 0.000
#> GSM379803 1 0.0000 0.996 1.000 0.000
#> GSM379812 1 0.0000 0.996 1.000 0.000
#> GSM379813 1 0.0000 0.996 1.000 0.000
#> GSM379814 1 0.0000 0.996 1.000 0.000
#> GSM379807 1 0.0000 0.996 1.000 0.000
#> GSM379808 1 0.0000 0.996 1.000 0.000
#> GSM379809 1 0.0000 0.996 1.000 0.000
#> GSM379810 1 0.0000 0.996 1.000 0.000
#> GSM379811 1 0.0000 0.996 1.000 0.000
#> GSM379820 1 0.0000 0.996 1.000 0.000
#> GSM379821 1 0.0000 0.996 1.000 0.000
#> GSM379822 1 0.0000 0.996 1.000 0.000
#> GSM379815 1 0.0000 0.996 1.000 0.000
#> GSM379816 1 0.6801 0.784 0.820 0.180
#> GSM379817 1 0.0000 0.996 1.000 0.000
#> GSM379818 1 0.0000 0.996 1.000 0.000
#> GSM379819 1 0.0000 0.996 1.000 0.000
#> GSM379825 1 0.0000 0.996 1.000 0.000
#> GSM379826 1 0.0000 0.996 1.000 0.000
#> GSM379823 1 0.0000 0.996 1.000 0.000
#> GSM379824 1 0.0000 0.996 1.000 0.000
#> GSM379749 2 0.0000 1.000 0.000 1.000
#> GSM379750 2 0.0000 1.000 0.000 1.000
#> GSM379751 2 0.0000 1.000 0.000 1.000
#> GSM379744 2 0.0000 1.000 0.000 1.000
#> GSM379745 2 0.0000 1.000 0.000 1.000
#> GSM379746 2 0.0000 1.000 0.000 1.000
#> GSM379747 2 0.0000 1.000 0.000 1.000
#> GSM379748 2 0.0000 1.000 0.000 1.000
#> GSM379757 2 0.0000 1.000 0.000 1.000
#> GSM379758 2 0.0000 1.000 0.000 1.000
#> GSM379752 2 0.0000 1.000 0.000 1.000
#> GSM379753 2 0.0000 1.000 0.000 1.000
#> GSM379754 2 0.0000 1.000 0.000 1.000
#> GSM379755 2 0.0000 1.000 0.000 1.000
#> GSM379756 2 0.0000 1.000 0.000 1.000
#> GSM379764 2 0.0000 1.000 0.000 1.000
#> GSM379765 2 0.0000 1.000 0.000 1.000
#> GSM379766 2 0.0000 1.000 0.000 1.000
#> GSM379759 2 0.0000 1.000 0.000 1.000
#> GSM379760 2 0.0000 1.000 0.000 1.000
#> GSM379761 2 0.0000 1.000 0.000 1.000
#> GSM379762 2 0.0000 1.000 0.000 1.000
#> GSM379763 2 0.0000 1.000 0.000 1.000
#> GSM379769 2 0.0000 1.000 0.000 1.000
#> GSM379770 2 0.0000 1.000 0.000 1.000
#> GSM379767 2 0.0000 1.000 0.000 1.000
#> GSM379768 2 0.0000 1.000 0.000 1.000
#> GSM379776 1 0.0000 0.996 1.000 0.000
#> GSM379777 1 0.0000 0.996 1.000 0.000
#> GSM379778 1 0.0000 0.996 1.000 0.000
#> GSM379771 1 0.0000 0.996 1.000 0.000
#> GSM379772 1 0.0000 0.996 1.000 0.000
#> GSM379773 1 0.0000 0.996 1.000 0.000
#> GSM379774 1 0.0000 0.996 1.000 0.000
#> GSM379775 1 0.0000 0.996 1.000 0.000
#> GSM379784 1 0.0000 0.996 1.000 0.000
#> GSM379785 1 0.0000 0.996 1.000 0.000
#> GSM379786 1 0.0000 0.996 1.000 0.000
#> GSM379779 1 0.0000 0.996 1.000 0.000
#> GSM379780 1 0.0000 0.996 1.000 0.000
#> GSM379781 1 0.0000 0.996 1.000 0.000
#> GSM379782 1 0.0000 0.996 1.000 0.000
#> GSM379783 1 0.0000 0.996 1.000 0.000
#> GSM379792 1 0.0000 0.996 1.000 0.000
#> GSM379793 1 0.0000 0.996 1.000 0.000
#> GSM379794 1 0.0000 0.996 1.000 0.000
#> GSM379787 1 0.0000 0.996 1.000 0.000
#> GSM379788 1 0.0000 0.996 1.000 0.000
#> GSM379789 1 0.0000 0.996 1.000 0.000
#> GSM379790 1 0.0000 0.996 1.000 0.000
#> GSM379791 1 0.0000 0.996 1.000 0.000
#> GSM379797 1 0.0000 0.996 1.000 0.000
#> GSM379798 1 0.0000 0.996 1.000 0.000
#> GSM379795 1 0.0000 0.996 1.000 0.000
#> GSM379796 1 0.0000 0.996 1.000 0.000
#> GSM379721 1 0.0000 0.996 1.000 0.000
#> GSM379722 1 0.0000 0.996 1.000 0.000
#> GSM379723 1 0.0000 0.996 1.000 0.000
#> GSM379716 1 0.0000 0.996 1.000 0.000
#> GSM379717 1 0.0000 0.996 1.000 0.000
#> GSM379718 1 0.0000 0.996 1.000 0.000
#> GSM379719 1 0.0000 0.996 1.000 0.000
#> GSM379720 1 0.0000 0.996 1.000 0.000
#> GSM379729 1 0.5842 0.839 0.860 0.140
#> GSM379730 1 0.1633 0.972 0.976 0.024
#> GSM379731 1 0.0000 0.996 1.000 0.000
#> GSM379724 1 0.0000 0.996 1.000 0.000
#> GSM379725 1 0.0000 0.996 1.000 0.000
#> GSM379726 1 0.0000 0.996 1.000 0.000
#> GSM379727 1 0.0000 0.996 1.000 0.000
#> GSM379728 1 0.0000 0.996 1.000 0.000
#> GSM379737 1 0.0000 0.996 1.000 0.000
#> GSM379738 1 0.0000 0.996 1.000 0.000
#> GSM379739 1 0.0000 0.996 1.000 0.000
#> GSM379732 1 0.0000 0.996 1.000 0.000
#> GSM379733 1 0.0000 0.996 1.000 0.000
#> GSM379734 1 0.0000 0.996 1.000 0.000
#> GSM379735 1 0.0000 0.996 1.000 0.000
#> GSM379736 1 0.0000 0.996 1.000 0.000
#> GSM379742 2 0.0000 1.000 0.000 1.000
#> GSM379743 1 0.0000 0.996 1.000 0.000
#> GSM379740 1 0.0000 0.996 1.000 0.000
#> GSM379741 2 0.0000 1.000 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379833 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379834 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379827 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379828 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379829 2 0.0475 0.992 0.004 0.992 0.004
#> GSM379830 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379831 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379840 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379841 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379842 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379835 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379836 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379837 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379838 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379839 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379848 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379849 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379850 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379843 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379844 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379845 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379846 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379847 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379853 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379854 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379851 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379852 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379804 1 0.0237 0.989 0.996 0.000 0.004
#> GSM379805 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379806 1 0.0747 0.978 0.984 0.000 0.016
#> GSM379799 1 0.4121 0.798 0.832 0.000 0.168
#> GSM379800 1 0.1529 0.954 0.960 0.000 0.040
#> GSM379801 3 0.3482 0.852 0.128 0.000 0.872
#> GSM379802 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379803 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379812 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379813 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379814 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379807 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379808 1 0.0237 0.988 0.996 0.000 0.004
#> GSM379809 1 0.0237 0.989 0.996 0.000 0.004
#> GSM379810 1 0.0237 0.989 0.996 0.000 0.004
#> GSM379811 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379820 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379821 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379822 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379815 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379816 1 0.4291 0.770 0.820 0.180 0.000
#> GSM379817 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379818 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379819 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379825 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379826 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379823 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379824 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379749 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379750 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379751 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379744 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379745 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379746 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379747 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379748 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379757 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379758 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379752 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379753 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379754 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379755 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379756 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379764 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379765 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379766 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379759 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379760 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379761 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379762 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379763 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379769 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379770 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379767 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379768 2 0.0000 1.000 0.000 1.000 0.000
#> GSM379776 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379777 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379778 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379771 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379772 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379773 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379774 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379775 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379784 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379785 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379786 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379779 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379780 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379781 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379782 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379783 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379792 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379793 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379794 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379787 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379788 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379789 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379790 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379791 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379797 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379798 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379795 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379796 1 0.0000 0.992 1.000 0.000 0.000
#> GSM379721 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379722 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379723 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379716 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379717 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379718 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379719 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379720 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379729 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379730 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379731 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379724 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379725 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379726 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379727 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379728 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379737 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379738 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379739 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379732 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379733 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379734 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379735 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379736 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379742 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379743 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379740 3 0.0000 0.995 0.000 0.000 1.000
#> GSM379741 3 0.0000 0.995 0.000 0.000 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379833 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379834 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379827 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379828 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379829 4 0.2011 0.879 0.000 0.08 0.000 0.920
#> GSM379830 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379831 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379840 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379841 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379842 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379835 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379836 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379837 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379838 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379839 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379848 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379849 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379850 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379843 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379844 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379845 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379846 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379847 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379853 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379854 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379851 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379852 2 0.0000 0.965 0.000 1.00 0.000 0.000
#> GSM379804 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379805 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379806 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379799 4 0.2363 0.945 0.056 0.00 0.024 0.920
#> GSM379800 4 0.2125 0.966 0.076 0.00 0.004 0.920
#> GSM379801 4 0.2011 0.880 0.000 0.00 0.080 0.920
#> GSM379802 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379803 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379812 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379813 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379814 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379807 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379808 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379809 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379810 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379811 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379820 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379821 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379822 4 0.4999 0.168 0.492 0.00 0.000 0.508
#> GSM379815 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379816 4 0.3219 0.880 0.164 0.00 0.000 0.836
#> GSM379817 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379818 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379819 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379825 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379826 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379823 1 0.4817 0.241 0.612 0.00 0.000 0.388
#> GSM379824 4 0.2011 0.970 0.080 0.00 0.000 0.920
#> GSM379749 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379750 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379751 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379744 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379745 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379746 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379747 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379748 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379757 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379758 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379752 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379753 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379754 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379755 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379756 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379764 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379765 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379766 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379759 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379760 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379761 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379762 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379763 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379769 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379770 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379767 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379768 2 0.2011 0.965 0.000 0.92 0.000 0.080
#> GSM379776 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379777 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379778 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379771 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379772 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379773 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379774 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379775 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379784 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379785 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379786 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379779 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379780 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379781 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379782 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379783 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379792 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379793 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379794 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379787 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379788 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379789 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379790 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379791 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379797 1 0.0336 0.976 0.992 0.00 0.000 0.008
#> GSM379798 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379795 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379796 1 0.0000 0.984 1.000 0.00 0.000 0.000
#> GSM379721 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379722 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379723 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379716 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379717 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379718 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379719 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379720 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379729 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379730 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379731 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379724 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379725 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379726 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379727 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379728 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379737 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379738 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379739 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379732 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379733 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379734 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379735 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379736 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379742 3 0.2011 0.915 0.000 0.00 0.920 0.080
#> GSM379743 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379740 3 0.0000 0.997 0.000 0.00 1.000 0.000
#> GSM379741 3 0.0000 0.997 0.000 0.00 1.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379833 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379834 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379827 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379828 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379829 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379830 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379831 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379840 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379841 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379842 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379835 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379836 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379837 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379838 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379839 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379848 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379849 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379850 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379843 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379844 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379845 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379846 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379847 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379853 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379854 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379851 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379852 5 0.000 1.0000 0.000 0.00 0.00 0.000 1
#> GSM379804 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379805 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379806 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379799 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379800 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379801 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379802 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379803 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379812 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379813 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379814 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379807 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379808 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379809 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379810 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379811 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379820 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379821 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379822 4 0.431 0.0141 0.492 0.00 0.00 0.508 0
#> GSM379815 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379816 4 0.238 0.8379 0.128 0.00 0.00 0.872 0
#> GSM379817 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379818 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379819 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379825 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379826 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379823 1 0.415 0.3357 0.612 0.00 0.00 0.388 0
#> GSM379824 4 0.000 0.9763 0.000 0.00 0.00 1.000 0
#> GSM379749 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379750 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379751 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379744 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379745 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379746 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379747 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379748 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379757 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379758 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379752 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379753 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379754 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379755 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379756 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379764 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379765 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379766 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379759 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379760 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379761 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379762 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379763 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379769 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379770 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379767 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379768 2 0.000 0.9903 0.000 1.00 0.00 0.000 0
#> GSM379776 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379777 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379778 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379771 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379772 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379773 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379774 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379775 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379784 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379785 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379786 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379779 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379780 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379781 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379782 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379783 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379792 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379793 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379794 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379787 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379788 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379789 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379790 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379791 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379797 1 0.029 0.9776 0.992 0.00 0.00 0.008 0
#> GSM379798 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379795 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379796 1 0.000 0.9852 1.000 0.00 0.00 0.000 0
#> GSM379721 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379722 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379723 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379716 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379717 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379718 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379719 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379720 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379729 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379730 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379731 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379724 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379725 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379726 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379727 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379728 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379737 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379738 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379739 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379732 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379733 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379734 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379735 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379736 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379742 2 0.356 0.6486 0.000 0.74 0.26 0.000 0
#> GSM379743 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379740 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
#> GSM379741 3 0.000 1.0000 0.000 0.00 1.00 0.000 0
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 5 0.0146 0.9650 0.000 0.000 0.00 0.000 0.996 0.004
#> GSM379833 6 0.0260 0.9845 0.000 0.000 0.00 0.000 0.008 0.992
#> GSM379834 5 0.3659 0.4435 0.000 0.000 0.00 0.000 0.636 0.364
#> GSM379827 5 0.0146 0.9650 0.000 0.000 0.00 0.000 0.996 0.004
#> GSM379828 5 0.0146 0.9650 0.000 0.000 0.00 0.000 0.996 0.004
#> GSM379829 5 0.0146 0.9615 0.000 0.000 0.00 0.004 0.996 0.000
#> GSM379830 5 0.0146 0.9650 0.000 0.000 0.00 0.000 0.996 0.004
#> GSM379831 5 0.0146 0.9650 0.000 0.000 0.00 0.000 0.996 0.004
#> GSM379840 5 0.0146 0.9650 0.000 0.000 0.00 0.000 0.996 0.004
#> GSM379841 6 0.0000 0.9914 0.000 0.000 0.00 0.000 0.000 1.000
#> GSM379842 6 0.0000 0.9914 0.000 0.000 0.00 0.000 0.000 1.000
#> GSM379835 5 0.0146 0.9650 0.000 0.000 0.00 0.000 0.996 0.004
#> GSM379836 5 0.0146 0.9650 0.000 0.000 0.00 0.000 0.996 0.004
#> GSM379837 5 0.0146 0.9650 0.000 0.000 0.00 0.000 0.996 0.004
#> GSM379838 6 0.0000 0.9914 0.000 0.000 0.00 0.000 0.000 1.000
#> GSM379839 5 0.0146 0.9650 0.000 0.000 0.00 0.000 0.996 0.004
#> GSM379848 6 0.0000 0.9914 0.000 0.000 0.00 0.000 0.000 1.000
#> GSM379849 6 0.0000 0.9914 0.000 0.000 0.00 0.000 0.000 1.000
#> GSM379850 6 0.0000 0.9914 0.000 0.000 0.00 0.000 0.000 1.000
#> GSM379843 6 0.0000 0.9914 0.000 0.000 0.00 0.000 0.000 1.000
#> GSM379844 6 0.0000 0.9914 0.000 0.000 0.00 0.000 0.000 1.000
#> GSM379845 6 0.2003 0.8646 0.000 0.000 0.00 0.000 0.116 0.884
#> GSM379846 6 0.0000 0.9914 0.000 0.000 0.00 0.000 0.000 1.000
#> GSM379847 6 0.0000 0.9914 0.000 0.000 0.00 0.000 0.000 1.000
#> GSM379853 6 0.0000 0.9914 0.000 0.000 0.00 0.000 0.000 1.000
#> GSM379854 6 0.0000 0.9914 0.000 0.000 0.00 0.000 0.000 1.000
#> GSM379851 6 0.0000 0.9914 0.000 0.000 0.00 0.000 0.000 1.000
#> GSM379852 6 0.0000 0.9914 0.000 0.000 0.00 0.000 0.000 1.000
#> GSM379804 4 0.0000 0.9669 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM379805 4 0.0000 0.9669 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM379806 4 0.0000 0.9669 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM379799 4 0.0000 0.9669 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM379800 4 0.0000 0.9669 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM379801 4 0.0000 0.9669 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM379802 4 0.0000 0.9669 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM379803 4 0.0146 0.9651 0.000 0.000 0.00 0.996 0.004 0.000
#> GSM379812 4 0.0146 0.9651 0.000 0.000 0.00 0.996 0.004 0.000
#> GSM379813 4 0.0000 0.9669 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM379814 4 0.0000 0.9669 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM379807 4 0.0000 0.9669 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM379808 4 0.0000 0.9669 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM379809 4 0.0000 0.9669 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM379810 4 0.0000 0.9669 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM379811 4 0.0146 0.9651 0.000 0.000 0.00 0.996 0.004 0.000
#> GSM379820 4 0.0000 0.9669 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM379821 4 0.0146 0.9651 0.000 0.000 0.00 0.996 0.004 0.000
#> GSM379822 4 0.3997 0.0235 0.488 0.000 0.00 0.508 0.004 0.000
#> GSM379815 4 0.0000 0.9669 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM379816 4 0.4277 0.6742 0.124 0.000 0.00 0.732 0.144 0.000
#> GSM379817 4 0.0000 0.9669 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM379818 4 0.0146 0.9651 0.000 0.000 0.00 0.996 0.004 0.000
#> GSM379819 4 0.0000 0.9669 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM379825 4 0.0000 0.9669 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM379826 4 0.0000 0.9669 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM379823 1 0.3862 0.3292 0.608 0.000 0.00 0.388 0.004 0.000
#> GSM379824 4 0.0146 0.9651 0.000 0.000 0.00 0.996 0.004 0.000
#> GSM379749 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379750 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379751 5 0.0458 0.9525 0.000 0.016 0.00 0.000 0.984 0.000
#> GSM379744 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379745 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379746 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379747 5 0.1204 0.9127 0.000 0.056 0.00 0.000 0.944 0.000
#> GSM379748 2 0.1663 0.8829 0.000 0.912 0.00 0.000 0.088 0.000
#> GSM379757 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379758 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379752 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379753 2 0.3706 0.3742 0.000 0.620 0.00 0.000 0.380 0.000
#> GSM379754 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379755 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379756 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379764 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379765 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379766 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379759 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379760 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379761 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379762 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379763 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379769 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379770 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379767 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379768 2 0.0000 0.9681 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM379776 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379777 1 0.0146 0.9801 0.996 0.000 0.00 0.000 0.004 0.000
#> GSM379778 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379771 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379772 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379773 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379774 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379775 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379784 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379785 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379786 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379779 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379780 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379781 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379782 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379783 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379792 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379793 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379794 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379787 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379788 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379789 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379790 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379791 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379797 1 0.0363 0.9715 0.988 0.000 0.00 0.012 0.000 0.000
#> GSM379798 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379795 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379796 1 0.0000 0.9833 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM379721 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379722 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379723 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379716 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379717 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379718 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379719 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379720 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379729 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379730 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379731 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379724 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379725 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379726 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379727 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379728 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379737 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379738 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379739 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379732 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379733 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379734 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379735 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379736 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379742 2 0.3198 0.6431 0.000 0.740 0.26 0.000 0.000 0.000
#> GSM379743 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379740 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM379741 3 0.0000 1.0000 0.000 0.000 1.00 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> MAD:pam 139 2.03e-27 1 1.0000 2
#> MAD:pam 139 6.21e-54 1 0.9345 3
#> MAD:pam 137 6.35e-79 1 0.9625 4
#> MAD:pam 137 3.01e-102 1 0.9844 5
#> MAD:pam 135 5.15e-96 1 0.0498 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.752 0.931 0.932 0.4750 0.518 0.518
#> 3 3 1.000 0.996 0.998 0.3580 0.837 0.685
#> 4 4 0.969 0.961 0.959 0.0810 0.948 0.855
#> 5 5 0.820 0.805 0.903 0.1208 0.931 0.771
#> 6 6 0.898 0.856 0.926 0.0221 0.915 0.673
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 3
There is also optional best \(k\) = 3 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.3584 0.976 0.068 0.932
#> GSM379833 2 0.3584 0.976 0.068 0.932
#> GSM379834 2 0.3584 0.976 0.068 0.932
#> GSM379827 2 0.3584 0.976 0.068 0.932
#> GSM379828 2 0.3584 0.976 0.068 0.932
#> GSM379829 2 0.3584 0.976 0.068 0.932
#> GSM379830 2 0.3584 0.976 0.068 0.932
#> GSM379831 2 0.3584 0.976 0.068 0.932
#> GSM379840 2 0.3584 0.976 0.068 0.932
#> GSM379841 2 0.3584 0.976 0.068 0.932
#> GSM379842 2 0.3584 0.976 0.068 0.932
#> GSM379835 2 0.3584 0.976 0.068 0.932
#> GSM379836 2 0.3584 0.976 0.068 0.932
#> GSM379837 2 0.3584 0.976 0.068 0.932
#> GSM379838 2 0.3584 0.976 0.068 0.932
#> GSM379839 2 0.3584 0.976 0.068 0.932
#> GSM379848 2 0.3584 0.976 0.068 0.932
#> GSM379849 2 0.3584 0.976 0.068 0.932
#> GSM379850 2 0.3584 0.976 0.068 0.932
#> GSM379843 2 0.3584 0.976 0.068 0.932
#> GSM379844 2 0.3584 0.976 0.068 0.932
#> GSM379845 2 0.3584 0.976 0.068 0.932
#> GSM379846 2 0.3584 0.976 0.068 0.932
#> GSM379847 2 0.3584 0.976 0.068 0.932
#> GSM379853 2 0.3584 0.976 0.068 0.932
#> GSM379854 2 0.3584 0.976 0.068 0.932
#> GSM379851 2 0.3584 0.976 0.068 0.932
#> GSM379852 2 0.3584 0.976 0.068 0.932
#> GSM379804 1 0.1843 0.933 0.972 0.028
#> GSM379805 1 0.1843 0.933 0.972 0.028
#> GSM379806 1 0.1843 0.933 0.972 0.028
#> GSM379799 1 0.1843 0.933 0.972 0.028
#> GSM379800 1 0.1843 0.933 0.972 0.028
#> GSM379801 1 0.1843 0.933 0.972 0.028
#> GSM379802 1 0.1843 0.933 0.972 0.028
#> GSM379803 1 0.1843 0.933 0.972 0.028
#> GSM379812 1 0.1843 0.933 0.972 0.028
#> GSM379813 1 0.1843 0.933 0.972 0.028
#> GSM379814 1 0.1843 0.933 0.972 0.028
#> GSM379807 1 0.1843 0.933 0.972 0.028
#> GSM379808 1 0.1843 0.933 0.972 0.028
#> GSM379809 1 0.1843 0.933 0.972 0.028
#> GSM379810 1 0.1843 0.933 0.972 0.028
#> GSM379811 1 0.1843 0.933 0.972 0.028
#> GSM379820 1 0.1843 0.933 0.972 0.028
#> GSM379821 1 0.1843 0.933 0.972 0.028
#> GSM379822 1 0.1843 0.933 0.972 0.028
#> GSM379815 1 0.1843 0.933 0.972 0.028
#> GSM379816 1 0.8443 0.695 0.728 0.272
#> GSM379817 1 0.1843 0.933 0.972 0.028
#> GSM379818 1 0.1843 0.933 0.972 0.028
#> GSM379819 1 0.1843 0.933 0.972 0.028
#> GSM379825 1 0.1843 0.933 0.972 0.028
#> GSM379826 1 0.1843 0.933 0.972 0.028
#> GSM379823 1 0.1843 0.933 0.972 0.028
#> GSM379824 1 0.1843 0.933 0.972 0.028
#> GSM379749 2 0.2603 0.968 0.044 0.956
#> GSM379750 2 0.3584 0.976 0.068 0.932
#> GSM379751 2 0.3584 0.976 0.068 0.932
#> GSM379744 2 0.0672 0.935 0.008 0.992
#> GSM379745 2 0.0000 0.941 0.000 1.000
#> GSM379746 2 0.0672 0.947 0.008 0.992
#> GSM379747 2 0.3274 0.974 0.060 0.940
#> GSM379748 2 0.3584 0.976 0.068 0.932
#> GSM379757 2 0.3114 0.973 0.056 0.944
#> GSM379758 2 0.2778 0.970 0.048 0.952
#> GSM379752 2 0.0672 0.935 0.008 0.992
#> GSM379753 2 0.0672 0.935 0.008 0.992
#> GSM379754 2 0.0672 0.935 0.008 0.992
#> GSM379755 2 0.0376 0.944 0.004 0.996
#> GSM379756 2 0.2236 0.964 0.036 0.964
#> GSM379764 2 0.3274 0.974 0.060 0.940
#> GSM379765 2 0.2948 0.972 0.052 0.948
#> GSM379766 2 0.2423 0.966 0.040 0.960
#> GSM379759 2 0.0672 0.935 0.008 0.992
#> GSM379760 2 0.0672 0.935 0.008 0.992
#> GSM379761 2 0.0000 0.941 0.000 1.000
#> GSM379762 2 0.0376 0.944 0.004 0.996
#> GSM379763 2 0.1843 0.959 0.028 0.972
#> GSM379769 2 0.3584 0.976 0.068 0.932
#> GSM379770 2 0.3584 0.976 0.068 0.932
#> GSM379767 2 0.0672 0.935 0.008 0.992
#> GSM379768 2 0.0938 0.950 0.012 0.988
#> GSM379776 1 0.1843 0.933 0.972 0.028
#> GSM379777 1 0.1843 0.933 0.972 0.028
#> GSM379778 1 0.3274 0.920 0.940 0.060
#> GSM379771 1 0.1843 0.933 0.972 0.028
#> GSM379772 1 0.1843 0.933 0.972 0.028
#> GSM379773 1 0.1843 0.933 0.972 0.028
#> GSM379774 1 0.1843 0.933 0.972 0.028
#> GSM379775 1 0.1843 0.933 0.972 0.028
#> GSM379784 1 0.1843 0.933 0.972 0.028
#> GSM379785 1 0.1843 0.933 0.972 0.028
#> GSM379786 1 0.1843 0.933 0.972 0.028
#> GSM379779 1 0.1843 0.933 0.972 0.028
#> GSM379780 1 0.1843 0.933 0.972 0.028
#> GSM379781 1 0.1843 0.933 0.972 0.028
#> GSM379782 1 0.7139 0.814 0.804 0.196
#> GSM379783 1 0.2423 0.926 0.960 0.040
#> GSM379792 1 0.1843 0.933 0.972 0.028
#> GSM379793 1 0.1843 0.933 0.972 0.028
#> GSM379794 1 0.1843 0.933 0.972 0.028
#> GSM379787 1 0.5629 0.878 0.868 0.132
#> GSM379788 1 0.1843 0.933 0.972 0.028
#> GSM379789 1 0.1843 0.933 0.972 0.028
#> GSM379790 1 0.1843 0.933 0.972 0.028
#> GSM379791 1 0.1843 0.933 0.972 0.028
#> GSM379797 1 0.1843 0.933 0.972 0.028
#> GSM379798 1 0.1843 0.933 0.972 0.028
#> GSM379795 1 0.1843 0.933 0.972 0.028
#> GSM379796 1 0.1843 0.933 0.972 0.028
#> GSM379721 1 0.6438 0.875 0.836 0.164
#> GSM379722 1 0.6438 0.875 0.836 0.164
#> GSM379723 1 0.6438 0.875 0.836 0.164
#> GSM379716 1 0.6438 0.875 0.836 0.164
#> GSM379717 1 0.6438 0.875 0.836 0.164
#> GSM379718 1 0.6438 0.875 0.836 0.164
#> GSM379719 1 0.6438 0.875 0.836 0.164
#> GSM379720 1 0.6438 0.875 0.836 0.164
#> GSM379729 1 0.6438 0.875 0.836 0.164
#> GSM379730 1 0.6438 0.875 0.836 0.164
#> GSM379731 1 0.6438 0.875 0.836 0.164
#> GSM379724 1 0.6438 0.875 0.836 0.164
#> GSM379725 1 0.6438 0.875 0.836 0.164
#> GSM379726 1 0.6438 0.875 0.836 0.164
#> GSM379727 1 0.6438 0.875 0.836 0.164
#> GSM379728 1 0.6438 0.875 0.836 0.164
#> GSM379737 1 0.6438 0.875 0.836 0.164
#> GSM379738 1 0.6438 0.875 0.836 0.164
#> GSM379739 1 0.6438 0.875 0.836 0.164
#> GSM379732 1 0.6438 0.875 0.836 0.164
#> GSM379733 1 0.6438 0.875 0.836 0.164
#> GSM379734 1 0.6438 0.875 0.836 0.164
#> GSM379735 1 0.6438 0.875 0.836 0.164
#> GSM379736 1 0.6438 0.875 0.836 0.164
#> GSM379742 1 0.6438 0.875 0.836 0.164
#> GSM379743 1 0.6438 0.875 0.836 0.164
#> GSM379740 1 0.6438 0.875 0.836 0.164
#> GSM379741 1 0.6438 0.875 0.836 0.164
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.000 0.999 0.000 1.000 0.000
#> GSM379833 2 0.000 0.999 0.000 1.000 0.000
#> GSM379834 2 0.000 0.999 0.000 1.000 0.000
#> GSM379827 2 0.000 0.999 0.000 1.000 0.000
#> GSM379828 2 0.000 0.999 0.000 1.000 0.000
#> GSM379829 2 0.129 0.962 0.032 0.968 0.000
#> GSM379830 2 0.000 0.999 0.000 1.000 0.000
#> GSM379831 2 0.000 0.999 0.000 1.000 0.000
#> GSM379840 2 0.000 0.999 0.000 1.000 0.000
#> GSM379841 2 0.000 0.999 0.000 1.000 0.000
#> GSM379842 2 0.000 0.999 0.000 1.000 0.000
#> GSM379835 2 0.000 0.999 0.000 1.000 0.000
#> GSM379836 2 0.000 0.999 0.000 1.000 0.000
#> GSM379837 2 0.000 0.999 0.000 1.000 0.000
#> GSM379838 2 0.000 0.999 0.000 1.000 0.000
#> GSM379839 2 0.000 0.999 0.000 1.000 0.000
#> GSM379848 2 0.000 0.999 0.000 1.000 0.000
#> GSM379849 2 0.000 0.999 0.000 1.000 0.000
#> GSM379850 2 0.000 0.999 0.000 1.000 0.000
#> GSM379843 2 0.000 0.999 0.000 1.000 0.000
#> GSM379844 2 0.000 0.999 0.000 1.000 0.000
#> GSM379845 2 0.000 0.999 0.000 1.000 0.000
#> GSM379846 2 0.000 0.999 0.000 1.000 0.000
#> GSM379847 2 0.000 0.999 0.000 1.000 0.000
#> GSM379853 2 0.000 0.999 0.000 1.000 0.000
#> GSM379854 2 0.000 0.999 0.000 1.000 0.000
#> GSM379851 2 0.000 0.999 0.000 1.000 0.000
#> GSM379852 2 0.000 0.999 0.000 1.000 0.000
#> GSM379804 1 0.000 0.999 1.000 0.000 0.000
#> GSM379805 1 0.000 0.999 1.000 0.000 0.000
#> GSM379806 1 0.000 0.999 1.000 0.000 0.000
#> GSM379799 1 0.000 0.999 1.000 0.000 0.000
#> GSM379800 1 0.000 0.999 1.000 0.000 0.000
#> GSM379801 1 0.000 0.999 1.000 0.000 0.000
#> GSM379802 1 0.000 0.999 1.000 0.000 0.000
#> GSM379803 1 0.000 0.999 1.000 0.000 0.000
#> GSM379812 1 0.000 0.999 1.000 0.000 0.000
#> GSM379813 1 0.000 0.999 1.000 0.000 0.000
#> GSM379814 1 0.000 0.999 1.000 0.000 0.000
#> GSM379807 1 0.000 0.999 1.000 0.000 0.000
#> GSM379808 1 0.000 0.999 1.000 0.000 0.000
#> GSM379809 1 0.000 0.999 1.000 0.000 0.000
#> GSM379810 1 0.000 0.999 1.000 0.000 0.000
#> GSM379811 1 0.000 0.999 1.000 0.000 0.000
#> GSM379820 1 0.000 0.999 1.000 0.000 0.000
#> GSM379821 1 0.000 0.999 1.000 0.000 0.000
#> GSM379822 1 0.000 0.999 1.000 0.000 0.000
#> GSM379815 1 0.000 0.999 1.000 0.000 0.000
#> GSM379816 1 0.141 0.957 0.964 0.036 0.000
#> GSM379817 1 0.000 0.999 1.000 0.000 0.000
#> GSM379818 1 0.000 0.999 1.000 0.000 0.000
#> GSM379819 1 0.000 0.999 1.000 0.000 0.000
#> GSM379825 1 0.000 0.999 1.000 0.000 0.000
#> GSM379826 1 0.000 0.999 1.000 0.000 0.000
#> GSM379823 1 0.000 0.999 1.000 0.000 0.000
#> GSM379824 1 0.000 0.999 1.000 0.000 0.000
#> GSM379749 2 0.000 0.999 0.000 1.000 0.000
#> GSM379750 2 0.000 0.999 0.000 1.000 0.000
#> GSM379751 2 0.000 0.999 0.000 1.000 0.000
#> GSM379744 2 0.000 0.999 0.000 1.000 0.000
#> GSM379745 2 0.000 0.999 0.000 1.000 0.000
#> GSM379746 2 0.000 0.999 0.000 1.000 0.000
#> GSM379747 2 0.000 0.999 0.000 1.000 0.000
#> GSM379748 2 0.000 0.999 0.000 1.000 0.000
#> GSM379757 2 0.000 0.999 0.000 1.000 0.000
#> GSM379758 2 0.000 0.999 0.000 1.000 0.000
#> GSM379752 2 0.000 0.999 0.000 1.000 0.000
#> GSM379753 2 0.000 0.999 0.000 1.000 0.000
#> GSM379754 2 0.000 0.999 0.000 1.000 0.000
#> GSM379755 2 0.000 0.999 0.000 1.000 0.000
#> GSM379756 2 0.000 0.999 0.000 1.000 0.000
#> GSM379764 2 0.000 0.999 0.000 1.000 0.000
#> GSM379765 2 0.000 0.999 0.000 1.000 0.000
#> GSM379766 2 0.000 0.999 0.000 1.000 0.000
#> GSM379759 2 0.000 0.999 0.000 1.000 0.000
#> GSM379760 2 0.000 0.999 0.000 1.000 0.000
#> GSM379761 2 0.000 0.999 0.000 1.000 0.000
#> GSM379762 2 0.000 0.999 0.000 1.000 0.000
#> GSM379763 2 0.000 0.999 0.000 1.000 0.000
#> GSM379769 2 0.000 0.999 0.000 1.000 0.000
#> GSM379770 2 0.000 0.999 0.000 1.000 0.000
#> GSM379767 2 0.000 0.999 0.000 1.000 0.000
#> GSM379768 2 0.000 0.999 0.000 1.000 0.000
#> GSM379776 1 0.000 0.999 1.000 0.000 0.000
#> GSM379777 1 0.000 0.999 1.000 0.000 0.000
#> GSM379778 1 0.000 0.999 1.000 0.000 0.000
#> GSM379771 1 0.000 0.999 1.000 0.000 0.000
#> GSM379772 1 0.000 0.999 1.000 0.000 0.000
#> GSM379773 1 0.000 0.999 1.000 0.000 0.000
#> GSM379774 1 0.000 0.999 1.000 0.000 0.000
#> GSM379775 1 0.000 0.999 1.000 0.000 0.000
#> GSM379784 1 0.000 0.999 1.000 0.000 0.000
#> GSM379785 1 0.000 0.999 1.000 0.000 0.000
#> GSM379786 1 0.000 0.999 1.000 0.000 0.000
#> GSM379779 1 0.000 0.999 1.000 0.000 0.000
#> GSM379780 1 0.000 0.999 1.000 0.000 0.000
#> GSM379781 1 0.000 0.999 1.000 0.000 0.000
#> GSM379782 1 0.000 0.999 1.000 0.000 0.000
#> GSM379783 1 0.000 0.999 1.000 0.000 0.000
#> GSM379792 1 0.000 0.999 1.000 0.000 0.000
#> GSM379793 1 0.000 0.999 1.000 0.000 0.000
#> GSM379794 1 0.000 0.999 1.000 0.000 0.000
#> GSM379787 1 0.000 0.999 1.000 0.000 0.000
#> GSM379788 1 0.000 0.999 1.000 0.000 0.000
#> GSM379789 1 0.000 0.999 1.000 0.000 0.000
#> GSM379790 1 0.000 0.999 1.000 0.000 0.000
#> GSM379791 1 0.000 0.999 1.000 0.000 0.000
#> GSM379797 1 0.000 0.999 1.000 0.000 0.000
#> GSM379798 1 0.000 0.999 1.000 0.000 0.000
#> GSM379795 1 0.000 0.999 1.000 0.000 0.000
#> GSM379796 1 0.000 0.999 1.000 0.000 0.000
#> GSM379721 3 0.000 0.993 0.000 0.000 1.000
#> GSM379722 3 0.000 0.993 0.000 0.000 1.000
#> GSM379723 3 0.000 0.993 0.000 0.000 1.000
#> GSM379716 3 0.000 0.993 0.000 0.000 1.000
#> GSM379717 3 0.000 0.993 0.000 0.000 1.000
#> GSM379718 3 0.000 0.993 0.000 0.000 1.000
#> GSM379719 3 0.000 0.993 0.000 0.000 1.000
#> GSM379720 3 0.000 0.993 0.000 0.000 1.000
#> GSM379729 3 0.000 0.993 0.000 0.000 1.000
#> GSM379730 3 0.000 0.993 0.000 0.000 1.000
#> GSM379731 3 0.000 0.993 0.000 0.000 1.000
#> GSM379724 3 0.000 0.993 0.000 0.000 1.000
#> GSM379725 3 0.000 0.993 0.000 0.000 1.000
#> GSM379726 3 0.000 0.993 0.000 0.000 1.000
#> GSM379727 3 0.000 0.993 0.000 0.000 1.000
#> GSM379728 3 0.000 0.993 0.000 0.000 1.000
#> GSM379737 3 0.000 0.993 0.000 0.000 1.000
#> GSM379738 3 0.000 0.993 0.000 0.000 1.000
#> GSM379739 3 0.000 0.993 0.000 0.000 1.000
#> GSM379732 3 0.000 0.993 0.000 0.000 1.000
#> GSM379733 3 0.000 0.993 0.000 0.000 1.000
#> GSM379734 3 0.000 0.993 0.000 0.000 1.000
#> GSM379735 3 0.000 0.993 0.000 0.000 1.000
#> GSM379736 3 0.000 0.993 0.000 0.000 1.000
#> GSM379742 3 0.280 0.902 0.092 0.000 0.908
#> GSM379743 3 0.000 0.993 0.000 0.000 1.000
#> GSM379740 3 0.000 0.993 0.000 0.000 1.000
#> GSM379741 3 0.280 0.902 0.092 0.000 0.908
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.0188 0.981 0.000 0.996 0 0.004
#> GSM379833 2 0.0188 0.981 0.000 0.996 0 0.004
#> GSM379834 2 0.0188 0.981 0.000 0.996 0 0.004
#> GSM379827 2 0.0592 0.983 0.000 0.984 0 0.016
#> GSM379828 2 0.0188 0.981 0.000 0.996 0 0.004
#> GSM379829 2 0.2345 0.898 0.000 0.900 0 0.100
#> GSM379830 2 0.0188 0.981 0.000 0.996 0 0.004
#> GSM379831 2 0.0188 0.981 0.000 0.996 0 0.004
#> GSM379840 2 0.1118 0.963 0.000 0.964 0 0.036
#> GSM379841 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379842 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379835 2 0.0188 0.981 0.000 0.996 0 0.004
#> GSM379836 2 0.0817 0.981 0.000 0.976 0 0.024
#> GSM379837 2 0.1118 0.963 0.000 0.964 0 0.036
#> GSM379838 2 0.0188 0.982 0.000 0.996 0 0.004
#> GSM379839 2 0.0921 0.968 0.000 0.972 0 0.028
#> GSM379848 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379849 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379850 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379843 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379844 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379845 2 0.0188 0.981 0.000 0.996 0 0.004
#> GSM379846 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379847 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379853 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379854 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379851 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379852 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379804 1 0.3219 0.832 0.836 0.000 0 0.164
#> GSM379805 4 0.3688 0.893 0.208 0.000 0 0.792
#> GSM379806 4 0.2149 0.922 0.088 0.000 0 0.912
#> GSM379799 4 0.2149 0.922 0.088 0.000 0 0.912
#> GSM379800 4 0.2149 0.922 0.088 0.000 0 0.912
#> GSM379801 4 0.2149 0.922 0.088 0.000 0 0.912
#> GSM379802 4 0.2149 0.922 0.088 0.000 0 0.912
#> GSM379803 4 0.3688 0.893 0.208 0.000 0 0.792
#> GSM379812 1 0.2216 0.914 0.908 0.000 0 0.092
#> GSM379813 1 0.2216 0.914 0.908 0.000 0 0.092
#> GSM379814 1 0.2011 0.921 0.920 0.000 0 0.080
#> GSM379807 1 0.1867 0.925 0.928 0.000 0 0.072
#> GSM379808 4 0.2149 0.922 0.088 0.000 0 0.912
#> GSM379809 1 0.2469 0.901 0.892 0.000 0 0.108
#> GSM379810 1 0.2281 0.912 0.904 0.000 0 0.096
#> GSM379811 4 0.3688 0.893 0.208 0.000 0 0.792
#> GSM379820 1 0.2149 0.916 0.912 0.000 0 0.088
#> GSM379821 1 0.2530 0.897 0.888 0.000 0 0.112
#> GSM379822 1 0.2081 0.919 0.916 0.000 0 0.084
#> GSM379815 1 0.2469 0.901 0.892 0.000 0 0.108
#> GSM379816 1 0.4336 0.743 0.812 0.128 0 0.060
#> GSM379817 1 0.2081 0.919 0.916 0.000 0 0.084
#> GSM379818 4 0.3726 0.889 0.212 0.000 0 0.788
#> GSM379819 1 0.2216 0.914 0.908 0.000 0 0.092
#> GSM379825 4 0.4103 0.830 0.256 0.000 0 0.744
#> GSM379826 1 0.2011 0.921 0.920 0.000 0 0.080
#> GSM379823 1 0.0921 0.942 0.972 0.000 0 0.028
#> GSM379824 1 0.2408 0.905 0.896 0.000 0 0.104
#> GSM379749 2 0.0817 0.982 0.000 0.976 0 0.024
#> GSM379750 2 0.0707 0.982 0.000 0.980 0 0.020
#> GSM379751 2 0.1022 0.981 0.000 0.968 0 0.032
#> GSM379744 2 0.1022 0.981 0.000 0.968 0 0.032
#> GSM379745 2 0.1022 0.981 0.000 0.968 0 0.032
#> GSM379746 2 0.0817 0.982 0.000 0.976 0 0.024
#> GSM379747 2 0.1022 0.981 0.000 0.968 0 0.032
#> GSM379748 2 0.0000 0.982 0.000 1.000 0 0.000
#> GSM379757 2 0.1022 0.981 0.000 0.968 0 0.032
#> GSM379758 2 0.1022 0.981 0.000 0.968 0 0.032
#> GSM379752 2 0.1022 0.981 0.000 0.968 0 0.032
#> GSM379753 2 0.1211 0.979 0.000 0.960 0 0.040
#> GSM379754 2 0.1022 0.981 0.000 0.968 0 0.032
#> GSM379755 2 0.1022 0.981 0.000 0.968 0 0.032
#> GSM379756 2 0.1022 0.981 0.000 0.968 0 0.032
#> GSM379764 2 0.1211 0.978 0.000 0.960 0 0.040
#> GSM379765 2 0.1118 0.979 0.000 0.964 0 0.036
#> GSM379766 2 0.1211 0.978 0.000 0.960 0 0.040
#> GSM379759 2 0.1211 0.978 0.000 0.960 0 0.040
#> GSM379760 2 0.1118 0.979 0.000 0.964 0 0.036
#> GSM379761 2 0.1118 0.979 0.000 0.964 0 0.036
#> GSM379762 2 0.1211 0.978 0.000 0.960 0 0.040
#> GSM379763 2 0.1211 0.978 0.000 0.960 0 0.040
#> GSM379769 2 0.1398 0.976 0.004 0.956 0 0.040
#> GSM379770 2 0.0592 0.982 0.000 0.984 0 0.016
#> GSM379767 2 0.1211 0.978 0.000 0.960 0 0.040
#> GSM379768 2 0.1211 0.978 0.000 0.960 0 0.040
#> GSM379776 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379777 1 0.2149 0.917 0.912 0.000 0 0.088
#> GSM379778 1 0.0592 0.939 0.984 0.000 0 0.016
#> GSM379771 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379772 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379773 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379774 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379775 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379784 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379785 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379786 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379779 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379780 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379781 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379782 1 0.0592 0.939 0.984 0.000 0 0.016
#> GSM379783 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379792 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379793 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379794 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379787 1 0.0592 0.939 0.984 0.000 0 0.016
#> GSM379788 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379789 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379790 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379791 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379797 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379798 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379795 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379796 1 0.0000 0.951 1.000 0.000 0 0.000
#> GSM379721 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379722 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379723 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379716 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379717 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379718 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379719 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379720 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379729 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379730 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379731 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379724 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379725 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379726 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379727 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379728 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379737 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379738 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379739 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379732 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379733 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379734 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379735 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379736 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379742 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379743 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379740 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM379741 3 0.0000 1.000 0.000 0.000 1 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 5 0.0162 0.789 0.000 0.004 0.0 0.000 0.996
#> GSM379833 5 0.0290 0.789 0.000 0.008 0.0 0.000 0.992
#> GSM379834 5 0.0404 0.788 0.000 0.012 0.0 0.000 0.988
#> GSM379827 5 0.0000 0.789 0.000 0.000 0.0 0.000 1.000
#> GSM379828 5 0.0000 0.789 0.000 0.000 0.0 0.000 1.000
#> GSM379829 5 0.2179 0.727 0.000 0.000 0.0 0.112 0.888
#> GSM379830 5 0.0000 0.789 0.000 0.000 0.0 0.000 1.000
#> GSM379831 5 0.0000 0.789 0.000 0.000 0.0 0.000 1.000
#> GSM379840 5 0.0000 0.789 0.000 0.000 0.0 0.000 1.000
#> GSM379841 5 0.3913 0.564 0.000 0.324 0.0 0.000 0.676
#> GSM379842 5 0.3109 0.694 0.000 0.200 0.0 0.000 0.800
#> GSM379835 5 0.0000 0.789 0.000 0.000 0.0 0.000 1.000
#> GSM379836 5 0.0000 0.789 0.000 0.000 0.0 0.000 1.000
#> GSM379837 5 0.0000 0.789 0.000 0.000 0.0 0.000 1.000
#> GSM379838 5 0.2690 0.728 0.000 0.156 0.0 0.000 0.844
#> GSM379839 5 0.0000 0.789 0.000 0.000 0.0 0.000 1.000
#> GSM379848 5 0.3983 0.545 0.000 0.340 0.0 0.000 0.660
#> GSM379849 2 0.4227 0.158 0.000 0.580 0.0 0.000 0.420
#> GSM379850 5 0.3966 0.552 0.000 0.336 0.0 0.000 0.664
#> GSM379843 5 0.3966 0.547 0.000 0.336 0.0 0.000 0.664
#> GSM379844 5 0.4015 0.531 0.000 0.348 0.0 0.000 0.652
#> GSM379845 5 0.0000 0.789 0.000 0.000 0.0 0.000 1.000
#> GSM379846 5 0.3966 0.552 0.000 0.336 0.0 0.000 0.664
#> GSM379847 5 0.3966 0.552 0.000 0.336 0.0 0.000 0.664
#> GSM379853 5 0.3424 0.658 0.000 0.240 0.0 0.000 0.760
#> GSM379854 5 0.3949 0.558 0.000 0.332 0.0 0.000 0.668
#> GSM379851 5 0.4273 0.285 0.000 0.448 0.0 0.000 0.552
#> GSM379852 2 0.4242 0.127 0.000 0.572 0.0 0.000 0.428
#> GSM379804 1 0.4235 0.520 0.576 0.000 0.0 0.424 0.000
#> GSM379805 4 0.0000 0.998 0.000 0.000 0.0 1.000 0.000
#> GSM379806 4 0.0000 0.998 0.000 0.000 0.0 1.000 0.000
#> GSM379799 4 0.0000 0.998 0.000 0.000 0.0 1.000 0.000
#> GSM379800 4 0.0000 0.998 0.000 0.000 0.0 1.000 0.000
#> GSM379801 4 0.0162 0.994 0.004 0.000 0.0 0.996 0.000
#> GSM379802 4 0.0000 0.998 0.000 0.000 0.0 1.000 0.000
#> GSM379803 4 0.0000 0.998 0.000 0.000 0.0 1.000 0.000
#> GSM379812 1 0.4171 0.569 0.604 0.000 0.0 0.396 0.000
#> GSM379813 1 0.4101 0.603 0.628 0.000 0.0 0.372 0.000
#> GSM379814 1 0.3636 0.713 0.728 0.000 0.0 0.272 0.000
#> GSM379807 1 0.3366 0.742 0.768 0.000 0.0 0.232 0.000
#> GSM379808 4 0.0000 0.998 0.000 0.000 0.0 1.000 0.000
#> GSM379809 1 0.3857 0.676 0.688 0.000 0.0 0.312 0.000
#> GSM379810 1 0.3661 0.711 0.724 0.000 0.0 0.276 0.000
#> GSM379811 4 0.0000 0.998 0.000 0.000 0.0 1.000 0.000
#> GSM379820 1 0.4088 0.608 0.632 0.000 0.0 0.368 0.000
#> GSM379821 1 0.4256 0.494 0.564 0.000 0.0 0.436 0.000
#> GSM379822 1 0.3774 0.691 0.704 0.000 0.0 0.296 0.000
#> GSM379815 1 0.4219 0.535 0.584 0.000 0.0 0.416 0.000
#> GSM379816 1 0.4054 0.741 0.760 0.000 0.0 0.204 0.036
#> GSM379817 1 0.3684 0.706 0.720 0.000 0.0 0.280 0.000
#> GSM379818 4 0.0000 0.998 0.000 0.000 0.0 1.000 0.000
#> GSM379819 1 0.4150 0.581 0.612 0.000 0.0 0.388 0.000
#> GSM379825 4 0.0290 0.989 0.008 0.000 0.0 0.992 0.000
#> GSM379826 1 0.3661 0.710 0.724 0.000 0.0 0.276 0.000
#> GSM379823 1 0.1197 0.837 0.952 0.000 0.0 0.048 0.000
#> GSM379824 1 0.4171 0.569 0.604 0.000 0.0 0.396 0.000
#> GSM379749 5 0.3274 0.670 0.000 0.220 0.0 0.000 0.780
#> GSM379750 5 0.0703 0.786 0.000 0.024 0.0 0.000 0.976
#> GSM379751 5 0.3143 0.674 0.000 0.204 0.0 0.000 0.796
#> GSM379744 5 0.3336 0.659 0.000 0.228 0.0 0.000 0.772
#> GSM379745 5 0.3274 0.667 0.000 0.220 0.0 0.000 0.780
#> GSM379746 5 0.3210 0.675 0.000 0.212 0.0 0.000 0.788
#> GSM379747 5 0.3424 0.640 0.000 0.240 0.0 0.000 0.760
#> GSM379748 5 0.0000 0.789 0.000 0.000 0.0 0.000 1.000
#> GSM379757 2 0.2813 0.676 0.000 0.832 0.0 0.000 0.168
#> GSM379758 2 0.0000 0.882 0.000 1.000 0.0 0.000 0.000
#> GSM379752 5 0.3336 0.659 0.000 0.228 0.0 0.000 0.772
#> GSM379753 2 0.3796 0.459 0.000 0.700 0.0 0.000 0.300
#> GSM379754 2 0.2074 0.779 0.000 0.896 0.0 0.000 0.104
#> GSM379755 5 0.3336 0.664 0.000 0.228 0.0 0.000 0.772
#> GSM379756 5 0.3857 0.605 0.000 0.312 0.0 0.000 0.688
#> GSM379764 2 0.0000 0.882 0.000 1.000 0.0 0.000 0.000
#> GSM379765 2 0.0000 0.882 0.000 1.000 0.0 0.000 0.000
#> GSM379766 2 0.0000 0.882 0.000 1.000 0.0 0.000 0.000
#> GSM379759 2 0.0000 0.882 0.000 1.000 0.0 0.000 0.000
#> GSM379760 2 0.0000 0.882 0.000 1.000 0.0 0.000 0.000
#> GSM379761 2 0.0000 0.882 0.000 1.000 0.0 0.000 0.000
#> GSM379762 2 0.0000 0.882 0.000 1.000 0.0 0.000 0.000
#> GSM379763 2 0.0000 0.882 0.000 1.000 0.0 0.000 0.000
#> GSM379769 2 0.0000 0.882 0.000 1.000 0.0 0.000 0.000
#> GSM379770 2 0.1732 0.808 0.000 0.920 0.0 0.000 0.080
#> GSM379767 2 0.0000 0.882 0.000 1.000 0.0 0.000 0.000
#> GSM379768 2 0.0000 0.882 0.000 1.000 0.0 0.000 0.000
#> GSM379776 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379777 1 0.4171 0.569 0.604 0.000 0.0 0.396 0.000
#> GSM379778 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379771 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379772 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379773 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379774 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379775 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379784 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379785 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379786 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379779 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379780 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379781 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379782 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379783 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379792 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379793 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379794 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379787 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379788 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379789 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379790 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379791 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379797 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379798 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379795 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379796 1 0.0000 0.855 1.000 0.000 0.0 0.000 0.000
#> GSM379721 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379722 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379723 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379716 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379717 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379718 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379719 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379720 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379729 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379730 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379731 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379724 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379725 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379726 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379727 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379728 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379737 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379738 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379739 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379732 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379733 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379734 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379735 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379736 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379742 3 0.2020 0.862 0.100 0.000 0.9 0.000 0.000
#> GSM379743 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379740 3 0.0000 0.990 0.000 0.000 1.0 0.000 0.000
#> GSM379741 3 0.2020 0.862 0.100 0.000 0.9 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 5 0.0363 0.9297 0.000 0.012 0.000 0.000 0.988 0.000
#> GSM379833 5 0.0000 0.9302 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379834 5 0.0146 0.9303 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM379827 5 0.0363 0.9297 0.000 0.012 0.000 0.000 0.988 0.000
#> GSM379828 5 0.0000 0.9302 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379829 5 0.1387 0.8772 0.000 0.000 0.000 0.068 0.932 0.000
#> GSM379830 5 0.0000 0.9302 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379831 5 0.0000 0.9302 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379840 5 0.2260 0.7831 0.000 0.140 0.000 0.000 0.860 0.000
#> GSM379841 2 0.3862 0.2998 0.000 0.524 0.000 0.000 0.476 0.000
#> GSM379842 5 0.3864 -0.2285 0.000 0.480 0.000 0.000 0.520 0.000
#> GSM379835 5 0.0000 0.9302 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379836 5 0.0000 0.9302 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379837 5 0.0000 0.9302 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379838 5 0.3482 0.4353 0.000 0.316 0.000 0.000 0.684 0.000
#> GSM379839 5 0.0000 0.9302 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379848 2 0.3198 0.7496 0.000 0.740 0.000 0.000 0.260 0.000
#> GSM379849 2 0.2135 0.8230 0.000 0.872 0.000 0.000 0.128 0.000
#> GSM379850 2 0.3151 0.7570 0.000 0.748 0.000 0.000 0.252 0.000
#> GSM379843 2 0.3634 0.6108 0.000 0.644 0.000 0.000 0.356 0.000
#> GSM379844 2 0.3547 0.6487 0.000 0.668 0.000 0.000 0.332 0.000
#> GSM379845 5 0.0000 0.9302 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379846 2 0.3531 0.6612 0.000 0.672 0.000 0.000 0.328 0.000
#> GSM379847 2 0.3175 0.7515 0.000 0.744 0.000 0.000 0.256 0.000
#> GSM379853 2 0.3309 0.7372 0.000 0.720 0.000 0.000 0.280 0.000
#> GSM379854 2 0.3126 0.7584 0.000 0.752 0.000 0.000 0.248 0.000
#> GSM379851 2 0.2454 0.8090 0.000 0.840 0.000 0.000 0.160 0.000
#> GSM379852 2 0.1765 0.8306 0.000 0.904 0.000 0.000 0.096 0.000
#> GSM379804 4 0.3337 0.6289 0.260 0.000 0.000 0.736 0.000 0.004
#> GSM379805 4 0.0000 0.8950 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379806 4 0.0000 0.8950 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379799 4 0.0000 0.8950 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379800 4 0.0000 0.8950 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379801 4 0.0000 0.8950 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379802 4 0.0000 0.8950 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379803 4 0.0260 0.8872 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM379812 1 0.0603 0.9433 0.980 0.000 0.000 0.004 0.000 0.016
#> GSM379813 1 0.0603 0.9433 0.980 0.000 0.000 0.004 0.000 0.016
#> GSM379814 1 0.0146 0.9459 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM379807 1 0.0603 0.9433 0.980 0.000 0.000 0.004 0.000 0.016
#> GSM379808 4 0.0000 0.8950 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379809 4 0.2968 0.7346 0.168 0.000 0.000 0.816 0.000 0.016
#> GSM379810 1 0.3867 -0.0992 0.512 0.000 0.000 0.488 0.000 0.000
#> GSM379811 4 0.0000 0.8950 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379820 1 0.0603 0.9433 0.980 0.000 0.000 0.004 0.000 0.016
#> GSM379821 1 0.0458 0.9437 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM379822 1 0.0458 0.9437 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM379815 1 0.1528 0.9106 0.936 0.000 0.000 0.048 0.000 0.016
#> GSM379816 1 0.4371 0.6095 0.732 0.004 0.000 0.116 0.148 0.000
#> GSM379817 1 0.0603 0.9433 0.980 0.000 0.000 0.004 0.000 0.016
#> GSM379818 4 0.0146 0.8925 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM379819 1 0.0458 0.9437 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM379825 4 0.3727 0.3541 0.388 0.000 0.000 0.612 0.000 0.000
#> GSM379826 1 0.0603 0.9433 0.980 0.000 0.000 0.004 0.000 0.016
#> GSM379823 1 0.0000 0.9462 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379824 1 0.0458 0.9437 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM379749 5 0.0547 0.9285 0.000 0.020 0.000 0.000 0.980 0.000
#> GSM379750 5 0.0458 0.9289 0.000 0.016 0.000 0.000 0.984 0.000
#> GSM379751 5 0.0000 0.9302 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379744 5 0.0547 0.9285 0.000 0.020 0.000 0.000 0.980 0.000
#> GSM379745 5 0.0547 0.9285 0.000 0.020 0.000 0.000 0.980 0.000
#> GSM379746 5 0.0547 0.9285 0.000 0.020 0.000 0.000 0.980 0.000
#> GSM379747 5 0.1501 0.8798 0.000 0.076 0.000 0.000 0.924 0.000
#> GSM379748 5 0.0000 0.9302 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379757 2 0.2969 0.7605 0.000 0.776 0.000 0.000 0.224 0.000
#> GSM379758 2 0.0146 0.8342 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379752 5 0.0547 0.9285 0.000 0.020 0.000 0.000 0.980 0.000
#> GSM379753 5 0.1610 0.8750 0.000 0.084 0.000 0.000 0.916 0.000
#> GSM379754 5 0.2793 0.7401 0.000 0.200 0.000 0.000 0.800 0.000
#> GSM379755 5 0.0632 0.9267 0.000 0.024 0.000 0.000 0.976 0.000
#> GSM379756 5 0.1663 0.8688 0.000 0.088 0.000 0.000 0.912 0.000
#> GSM379764 2 0.0000 0.8314 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379765 2 0.0146 0.8342 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379766 2 0.0146 0.8342 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379759 2 0.0146 0.8342 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379760 2 0.0260 0.8350 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379761 2 0.0260 0.8350 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379762 2 0.0146 0.8342 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379763 2 0.0146 0.8342 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379769 2 0.0000 0.8314 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379770 2 0.0000 0.8314 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379767 2 0.0146 0.8342 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379768 2 0.0146 0.8342 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379776 1 0.1411 0.9438 0.936 0.000 0.000 0.004 0.000 0.060
#> GSM379777 1 0.0458 0.9437 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM379778 1 0.0146 0.9462 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM379771 1 0.1411 0.9438 0.936 0.000 0.000 0.004 0.000 0.060
#> GSM379772 1 0.1411 0.9438 0.936 0.000 0.000 0.004 0.000 0.060
#> GSM379773 1 0.0146 0.9459 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM379774 1 0.0146 0.9459 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM379775 1 0.1411 0.9438 0.936 0.000 0.000 0.004 0.000 0.060
#> GSM379784 1 0.1267 0.9435 0.940 0.000 0.000 0.000 0.000 0.060
#> GSM379785 1 0.1267 0.9435 0.940 0.000 0.000 0.000 0.000 0.060
#> GSM379786 1 0.0000 0.9462 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379779 1 0.1411 0.9438 0.936 0.000 0.000 0.004 0.000 0.060
#> GSM379780 1 0.1411 0.9438 0.936 0.000 0.000 0.004 0.000 0.060
#> GSM379781 1 0.1411 0.9438 0.936 0.000 0.000 0.004 0.000 0.060
#> GSM379782 1 0.0146 0.9462 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM379783 1 0.0458 0.9474 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM379792 1 0.0458 0.9437 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM379793 1 0.1267 0.9435 0.940 0.000 0.000 0.000 0.000 0.060
#> GSM379794 1 0.1075 0.9458 0.952 0.000 0.000 0.000 0.000 0.048
#> GSM379787 1 0.0146 0.9462 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM379788 1 0.1267 0.9435 0.940 0.000 0.000 0.000 0.000 0.060
#> GSM379789 1 0.1267 0.9435 0.940 0.000 0.000 0.000 0.000 0.060
#> GSM379790 1 0.1267 0.9435 0.940 0.000 0.000 0.000 0.000 0.060
#> GSM379791 1 0.1267 0.9435 0.940 0.000 0.000 0.000 0.000 0.060
#> GSM379797 1 0.1444 0.9427 0.928 0.000 0.000 0.000 0.000 0.072
#> GSM379798 1 0.1267 0.9435 0.940 0.000 0.000 0.000 0.000 0.060
#> GSM379795 1 0.1411 0.9438 0.936 0.000 0.000 0.004 0.000 0.060
#> GSM379796 1 0.1327 0.9436 0.936 0.000 0.000 0.000 0.000 0.064
#> GSM379721 6 0.1556 0.9074 0.000 0.000 0.080 0.000 0.000 0.920
#> GSM379722 6 0.1556 0.9074 0.000 0.000 0.080 0.000 0.000 0.920
#> GSM379723 6 0.1556 0.9074 0.000 0.000 0.080 0.000 0.000 0.920
#> GSM379716 6 0.1556 0.9074 0.000 0.000 0.080 0.000 0.000 0.920
#> GSM379717 6 0.1556 0.9074 0.000 0.000 0.080 0.000 0.000 0.920
#> GSM379718 6 0.1556 0.9074 0.000 0.000 0.080 0.000 0.000 0.920
#> GSM379719 6 0.1556 0.9074 0.000 0.000 0.080 0.000 0.000 0.920
#> GSM379720 6 0.1556 0.9074 0.000 0.000 0.080 0.000 0.000 0.920
#> GSM379729 3 0.0000 0.9613 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379730 3 0.0000 0.9613 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379731 3 0.0146 0.9590 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM379724 6 0.1556 0.9074 0.000 0.000 0.080 0.000 0.000 0.920
#> GSM379725 3 0.2300 0.7866 0.000 0.000 0.856 0.000 0.000 0.144
#> GSM379726 6 0.3833 0.3429 0.000 0.000 0.444 0.000 0.000 0.556
#> GSM379727 3 0.3499 0.4108 0.000 0.000 0.680 0.000 0.000 0.320
#> GSM379728 6 0.3868 0.1937 0.000 0.000 0.492 0.000 0.000 0.508
#> GSM379737 3 0.0000 0.9613 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379738 3 0.0000 0.9613 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379739 3 0.0000 0.9613 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379732 3 0.0000 0.9613 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379733 3 0.0260 0.9562 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM379734 3 0.0000 0.9613 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379735 3 0.0000 0.9613 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379736 3 0.0547 0.9455 0.000 0.000 0.980 0.000 0.000 0.020
#> GSM379742 3 0.0146 0.9583 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM379743 3 0.0000 0.9613 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379740 3 0.0000 0.9613 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379741 3 0.0146 0.9583 0.000 0.000 0.996 0.000 0.000 0.004
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> MAD:mclust 139 4.62e-29 1.000 1.00e+00 2
#> MAD:mclust 139 1.97e-55 1.000 9.98e-01 3
#> MAD:mclust 139 1.43e-59 1.000 4.17e-02 4
#> MAD:mclust 134 4.72e-66 1.000 1.28e-03 5
#> MAD:mclust 131 1.87e-52 0.987 3.41e-10 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.985 0.959 0.983 0.4945 0.508 0.508
#> 3 3 0.694 0.714 0.841 0.3343 0.774 0.577
#> 4 4 0.914 0.885 0.951 0.1097 0.852 0.604
#> 5 5 0.871 0.849 0.919 0.0483 0.957 0.845
#> 6 6 0.878 0.862 0.891 0.0478 0.912 0.659
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.0000 0.9915 0.000 1.000
#> GSM379833 2 0.0000 0.9915 0.000 1.000
#> GSM379834 2 0.0000 0.9915 0.000 1.000
#> GSM379827 2 0.0000 0.9915 0.000 1.000
#> GSM379828 2 0.0000 0.9915 0.000 1.000
#> GSM379829 1 0.0000 0.9765 1.000 0.000
#> GSM379830 2 0.0000 0.9915 0.000 1.000
#> GSM379831 2 0.0000 0.9915 0.000 1.000
#> GSM379840 2 0.0000 0.9915 0.000 1.000
#> GSM379841 2 0.0000 0.9915 0.000 1.000
#> GSM379842 2 0.0000 0.9915 0.000 1.000
#> GSM379835 2 0.0000 0.9915 0.000 1.000
#> GSM379836 2 0.0000 0.9915 0.000 1.000
#> GSM379837 1 0.9998 0.0689 0.508 0.492
#> GSM379838 2 0.0000 0.9915 0.000 1.000
#> GSM379839 2 0.0376 0.9876 0.004 0.996
#> GSM379848 2 0.0000 0.9915 0.000 1.000
#> GSM379849 2 0.0000 0.9915 0.000 1.000
#> GSM379850 2 0.0000 0.9915 0.000 1.000
#> GSM379843 2 0.0000 0.9915 0.000 1.000
#> GSM379844 2 0.0000 0.9915 0.000 1.000
#> GSM379845 2 0.0000 0.9915 0.000 1.000
#> GSM379846 2 0.0000 0.9915 0.000 1.000
#> GSM379847 2 0.0000 0.9915 0.000 1.000
#> GSM379853 2 0.0000 0.9915 0.000 1.000
#> GSM379854 2 0.0000 0.9915 0.000 1.000
#> GSM379851 2 0.0000 0.9915 0.000 1.000
#> GSM379852 2 0.0000 0.9915 0.000 1.000
#> GSM379804 1 0.0000 0.9765 1.000 0.000
#> GSM379805 1 0.0000 0.9765 1.000 0.000
#> GSM379806 1 0.0000 0.9765 1.000 0.000
#> GSM379799 1 0.0000 0.9765 1.000 0.000
#> GSM379800 1 0.0000 0.9765 1.000 0.000
#> GSM379801 1 0.0000 0.9765 1.000 0.000
#> GSM379802 1 0.0000 0.9765 1.000 0.000
#> GSM379803 1 0.0000 0.9765 1.000 0.000
#> GSM379812 1 0.0376 0.9732 0.996 0.004
#> GSM379813 1 0.0000 0.9765 1.000 0.000
#> GSM379814 1 0.0000 0.9765 1.000 0.000
#> GSM379807 1 0.0000 0.9765 1.000 0.000
#> GSM379808 1 0.0000 0.9765 1.000 0.000
#> GSM379809 1 0.0000 0.9765 1.000 0.000
#> GSM379810 1 0.0000 0.9765 1.000 0.000
#> GSM379811 1 0.0000 0.9765 1.000 0.000
#> GSM379820 1 0.0000 0.9765 1.000 0.000
#> GSM379821 1 0.0000 0.9765 1.000 0.000
#> GSM379822 1 0.0000 0.9765 1.000 0.000
#> GSM379815 1 0.0000 0.9765 1.000 0.000
#> GSM379816 1 0.7528 0.7352 0.784 0.216
#> GSM379817 1 0.0000 0.9765 1.000 0.000
#> GSM379818 1 0.0000 0.9765 1.000 0.000
#> GSM379819 1 0.0000 0.9765 1.000 0.000
#> GSM379825 1 0.0000 0.9765 1.000 0.000
#> GSM379826 1 0.0000 0.9765 1.000 0.000
#> GSM379823 1 0.0000 0.9765 1.000 0.000
#> GSM379824 1 0.0000 0.9765 1.000 0.000
#> GSM379749 2 0.0000 0.9915 0.000 1.000
#> GSM379750 2 0.0000 0.9915 0.000 1.000
#> GSM379751 2 0.0000 0.9915 0.000 1.000
#> GSM379744 2 0.0000 0.9915 0.000 1.000
#> GSM379745 2 0.0000 0.9915 0.000 1.000
#> GSM379746 2 0.0000 0.9915 0.000 1.000
#> GSM379747 2 0.0000 0.9915 0.000 1.000
#> GSM379748 2 0.0000 0.9915 0.000 1.000
#> GSM379757 2 0.0000 0.9915 0.000 1.000
#> GSM379758 2 0.0000 0.9915 0.000 1.000
#> GSM379752 2 0.0000 0.9915 0.000 1.000
#> GSM379753 2 0.0000 0.9915 0.000 1.000
#> GSM379754 2 0.0000 0.9915 0.000 1.000
#> GSM379755 2 0.0000 0.9915 0.000 1.000
#> GSM379756 2 0.0000 0.9915 0.000 1.000
#> GSM379764 2 0.0000 0.9915 0.000 1.000
#> GSM379765 2 0.0000 0.9915 0.000 1.000
#> GSM379766 2 0.0000 0.9915 0.000 1.000
#> GSM379759 2 0.0000 0.9915 0.000 1.000
#> GSM379760 2 0.0000 0.9915 0.000 1.000
#> GSM379761 2 0.0000 0.9915 0.000 1.000
#> GSM379762 2 0.0000 0.9915 0.000 1.000
#> GSM379763 2 0.0000 0.9915 0.000 1.000
#> GSM379769 2 0.0000 0.9915 0.000 1.000
#> GSM379770 2 0.0000 0.9915 0.000 1.000
#> GSM379767 2 0.0000 0.9915 0.000 1.000
#> GSM379768 2 0.0000 0.9915 0.000 1.000
#> GSM379776 1 0.0000 0.9765 1.000 0.000
#> GSM379777 1 0.0000 0.9765 1.000 0.000
#> GSM379778 2 0.0000 0.9915 0.000 1.000
#> GSM379771 1 0.0000 0.9765 1.000 0.000
#> GSM379772 1 0.0000 0.9765 1.000 0.000
#> GSM379773 1 0.0000 0.9765 1.000 0.000
#> GSM379774 1 0.0000 0.9765 1.000 0.000
#> GSM379775 1 0.0000 0.9765 1.000 0.000
#> GSM379784 1 0.2236 0.9448 0.964 0.036
#> GSM379785 1 0.0000 0.9765 1.000 0.000
#> GSM379786 1 0.9170 0.5259 0.668 0.332
#> GSM379779 1 0.0000 0.9765 1.000 0.000
#> GSM379780 1 0.0000 0.9765 1.000 0.000
#> GSM379781 1 0.0000 0.9765 1.000 0.000
#> GSM379782 2 0.0000 0.9915 0.000 1.000
#> GSM379783 2 0.9909 0.1496 0.444 0.556
#> GSM379792 1 0.0000 0.9765 1.000 0.000
#> GSM379793 1 0.0000 0.9765 1.000 0.000
#> GSM379794 1 0.0000 0.9765 1.000 0.000
#> GSM379787 2 0.1633 0.9670 0.024 0.976
#> GSM379788 1 0.0000 0.9765 1.000 0.000
#> GSM379789 1 0.0000 0.9765 1.000 0.000
#> GSM379790 1 0.0000 0.9765 1.000 0.000
#> GSM379791 1 0.0000 0.9765 1.000 0.000
#> GSM379797 1 0.0000 0.9765 1.000 0.000
#> GSM379798 1 0.0000 0.9765 1.000 0.000
#> GSM379795 1 0.0000 0.9765 1.000 0.000
#> GSM379796 1 0.0000 0.9765 1.000 0.000
#> GSM379721 1 0.0000 0.9765 1.000 0.000
#> GSM379722 1 0.0000 0.9765 1.000 0.000
#> GSM379723 1 0.0000 0.9765 1.000 0.000
#> GSM379716 1 0.0000 0.9765 1.000 0.000
#> GSM379717 1 0.0000 0.9765 1.000 0.000
#> GSM379718 1 0.0000 0.9765 1.000 0.000
#> GSM379719 1 0.0000 0.9765 1.000 0.000
#> GSM379720 1 0.0000 0.9765 1.000 0.000
#> GSM379729 1 0.7139 0.7639 0.804 0.196
#> GSM379730 1 0.7219 0.7583 0.800 0.200
#> GSM379731 1 0.0000 0.9765 1.000 0.000
#> GSM379724 1 0.0000 0.9765 1.000 0.000
#> GSM379725 1 0.5408 0.8537 0.876 0.124
#> GSM379726 1 0.0000 0.9765 1.000 0.000
#> GSM379727 1 0.0000 0.9765 1.000 0.000
#> GSM379728 1 0.0000 0.9765 1.000 0.000
#> GSM379737 1 0.0000 0.9765 1.000 0.000
#> GSM379738 1 0.0000 0.9765 1.000 0.000
#> GSM379739 1 0.0000 0.9765 1.000 0.000
#> GSM379732 1 0.0376 0.9732 0.996 0.004
#> GSM379733 1 0.0000 0.9765 1.000 0.000
#> GSM379734 1 0.0000 0.9765 1.000 0.000
#> GSM379735 1 0.0000 0.9765 1.000 0.000
#> GSM379736 1 0.0000 0.9765 1.000 0.000
#> GSM379742 2 0.0000 0.9915 0.000 1.000
#> GSM379743 1 0.7674 0.7232 0.776 0.224
#> GSM379740 1 0.0000 0.9765 1.000 0.000
#> GSM379741 2 0.0000 0.9915 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379833 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379834 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379827 2 0.0892 0.9644 0.000 0.980 0.020
#> GSM379828 2 0.0892 0.9643 0.000 0.980 0.020
#> GSM379829 3 0.6095 0.5441 0.392 0.000 0.608
#> GSM379830 2 0.0747 0.9677 0.000 0.984 0.016
#> GSM379831 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379840 2 0.1751 0.9471 0.012 0.960 0.028
#> GSM379841 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379842 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379835 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379836 2 0.4555 0.7451 0.000 0.800 0.200
#> GSM379837 3 0.8645 0.4167 0.132 0.300 0.568
#> GSM379838 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379839 2 0.8635 0.1524 0.112 0.532 0.356
#> GSM379848 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379849 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379850 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379843 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379844 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379845 2 0.0237 0.9765 0.000 0.996 0.004
#> GSM379846 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379847 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379853 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379854 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379851 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379852 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379804 3 0.6204 0.5205 0.424 0.000 0.576
#> GSM379805 3 0.6244 0.5027 0.440 0.000 0.560
#> GSM379806 3 0.6235 0.5076 0.436 0.000 0.564
#> GSM379799 3 0.6126 0.5398 0.400 0.000 0.600
#> GSM379800 3 0.6126 0.5398 0.400 0.000 0.600
#> GSM379801 3 0.6111 0.5421 0.396 0.000 0.604
#> GSM379802 3 0.6192 0.5246 0.420 0.000 0.580
#> GSM379803 3 0.6291 0.4622 0.468 0.000 0.532
#> GSM379812 1 0.3038 0.6454 0.896 0.000 0.104
#> GSM379813 1 0.3267 0.6293 0.884 0.000 0.116
#> GSM379814 1 0.3816 0.5809 0.852 0.000 0.148
#> GSM379807 1 0.5785 0.0930 0.668 0.000 0.332
#> GSM379808 3 0.6180 0.5280 0.416 0.000 0.584
#> GSM379809 3 0.6192 0.5247 0.420 0.000 0.580
#> GSM379810 3 0.6260 0.4931 0.448 0.000 0.552
#> GSM379811 3 0.6291 0.4622 0.468 0.000 0.532
#> GSM379820 1 0.0424 0.7331 0.992 0.000 0.008
#> GSM379821 1 0.0237 0.7355 0.996 0.000 0.004
#> GSM379822 1 0.3267 0.7458 0.884 0.000 0.116
#> GSM379815 3 0.6302 0.4402 0.480 0.000 0.520
#> GSM379816 1 0.9489 -0.1968 0.456 0.192 0.352
#> GSM379817 1 0.0237 0.7355 0.996 0.000 0.004
#> GSM379818 3 0.6260 0.4924 0.448 0.000 0.552
#> GSM379819 1 0.2625 0.6738 0.916 0.000 0.084
#> GSM379825 3 0.6295 0.4551 0.472 0.000 0.528
#> GSM379826 1 0.0892 0.7368 0.980 0.000 0.020
#> GSM379823 1 0.4178 0.7172 0.828 0.000 0.172
#> GSM379824 1 0.0424 0.7331 0.992 0.000 0.008
#> GSM379749 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379750 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379751 2 0.2165 0.9218 0.000 0.936 0.064
#> GSM379744 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379745 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379746 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379747 2 0.0237 0.9764 0.000 0.996 0.004
#> GSM379748 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379757 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379758 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379752 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379753 2 0.0892 0.9644 0.000 0.980 0.020
#> GSM379754 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379755 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379756 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379764 2 0.1182 0.9604 0.012 0.976 0.012
#> GSM379765 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379766 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379759 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379760 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379761 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379762 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379763 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379769 2 0.4642 0.8251 0.084 0.856 0.060
#> GSM379770 2 0.0661 0.9702 0.008 0.988 0.004
#> GSM379767 2 0.0424 0.9733 0.000 0.992 0.008
#> GSM379768 2 0.0000 0.9789 0.000 1.000 0.000
#> GSM379776 1 0.0592 0.7410 0.988 0.000 0.012
#> GSM379777 1 0.0237 0.7355 0.996 0.000 0.004
#> GSM379778 1 0.8113 0.4319 0.596 0.312 0.092
#> GSM379771 1 0.2261 0.7048 0.932 0.000 0.068
#> GSM379772 1 0.3551 0.7200 0.868 0.000 0.132
#> GSM379773 1 0.0592 0.7429 0.988 0.000 0.012
#> GSM379774 1 0.0592 0.7410 0.988 0.000 0.012
#> GSM379775 1 0.1031 0.7369 0.976 0.000 0.024
#> GSM379784 1 0.3845 0.7434 0.872 0.012 0.116
#> GSM379785 1 0.2537 0.7525 0.920 0.000 0.080
#> GSM379786 1 0.6039 0.6769 0.788 0.108 0.104
#> GSM379779 1 0.1860 0.7527 0.948 0.000 0.052
#> GSM379780 1 0.1964 0.7528 0.944 0.000 0.056
#> GSM379781 1 0.2448 0.7528 0.924 0.000 0.076
#> GSM379782 1 0.8215 0.3534 0.540 0.380 0.080
#> GSM379783 1 0.6860 0.6046 0.732 0.176 0.092
#> GSM379792 1 0.0592 0.7402 0.988 0.000 0.012
#> GSM379793 1 0.4178 0.7172 0.828 0.000 0.172
#> GSM379794 1 0.4062 0.7226 0.836 0.000 0.164
#> GSM379787 1 0.8894 0.4018 0.548 0.300 0.152
#> GSM379788 1 0.4062 0.7226 0.836 0.000 0.164
#> GSM379789 1 0.3482 0.7409 0.872 0.000 0.128
#> GSM379790 1 0.1860 0.7523 0.948 0.000 0.052
#> GSM379791 1 0.4178 0.7172 0.828 0.000 0.172
#> GSM379797 1 0.4555 0.4730 0.800 0.000 0.200
#> GSM379798 1 0.3482 0.7414 0.872 0.000 0.128
#> GSM379795 1 0.4346 0.7076 0.816 0.000 0.184
#> GSM379796 1 0.2165 0.7541 0.936 0.000 0.064
#> GSM379721 3 0.1031 0.6477 0.024 0.000 0.976
#> GSM379722 3 0.1163 0.6463 0.028 0.000 0.972
#> GSM379723 3 0.0000 0.6492 0.000 0.000 1.000
#> GSM379716 3 0.1411 0.6501 0.036 0.000 0.964
#> GSM379717 3 0.1031 0.6515 0.024 0.000 0.976
#> GSM379718 3 0.0747 0.6516 0.016 0.000 0.984
#> GSM379719 3 0.0747 0.6486 0.016 0.000 0.984
#> GSM379720 3 0.0747 0.6516 0.016 0.000 0.984
#> GSM379729 3 0.7768 0.0107 0.344 0.064 0.592
#> GSM379730 1 0.8405 0.2690 0.460 0.084 0.456
#> GSM379731 3 0.1411 0.6426 0.036 0.000 0.964
#> GSM379724 3 0.0592 0.6492 0.012 0.000 0.988
#> GSM379725 3 0.1411 0.6426 0.036 0.000 0.964
#> GSM379726 3 0.1163 0.6463 0.028 0.000 0.972
#> GSM379727 3 0.1411 0.6426 0.036 0.000 0.964
#> GSM379728 3 0.1031 0.6477 0.024 0.000 0.976
#> GSM379737 1 0.6309 0.3028 0.504 0.000 0.496
#> GSM379738 1 0.6299 0.3374 0.524 0.000 0.476
#> GSM379739 1 0.6215 0.4085 0.572 0.000 0.428
#> GSM379732 3 0.2959 0.5853 0.100 0.000 0.900
#> GSM379733 3 0.1860 0.6310 0.052 0.000 0.948
#> GSM379734 3 0.2878 0.5898 0.096 0.000 0.904
#> GSM379735 1 0.6204 0.4144 0.576 0.000 0.424
#> GSM379736 3 0.0747 0.6498 0.016 0.000 0.984
#> GSM379742 3 0.9786 -0.0135 0.236 0.364 0.400
#> GSM379743 1 0.6192 0.4202 0.580 0.000 0.420
#> GSM379740 3 0.5926 0.0707 0.356 0.000 0.644
#> GSM379741 3 0.9888 -0.1210 0.328 0.272 0.400
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379833 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379834 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379827 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379828 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379829 4 0.0188 0.8796 0.000 0.000 0.004 0.996
#> GSM379830 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379831 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379840 2 0.2868 0.8381 0.000 0.864 0.000 0.136
#> GSM379841 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379842 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379835 2 0.0188 0.9810 0.000 0.996 0.000 0.004
#> GSM379836 2 0.0817 0.9641 0.000 0.976 0.000 0.024
#> GSM379837 4 0.5158 0.0445 0.000 0.472 0.004 0.524
#> GSM379838 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379839 2 0.5168 0.0125 0.004 0.500 0.000 0.496
#> GSM379848 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379849 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379850 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379843 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379844 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379845 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379846 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379847 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379853 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379854 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379851 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379852 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379804 4 0.0000 0.8817 0.000 0.000 0.000 1.000
#> GSM379805 4 0.0000 0.8817 0.000 0.000 0.000 1.000
#> GSM379806 4 0.0000 0.8817 0.000 0.000 0.000 1.000
#> GSM379799 4 0.0000 0.8817 0.000 0.000 0.000 1.000
#> GSM379800 4 0.0000 0.8817 0.000 0.000 0.000 1.000
#> GSM379801 4 0.0000 0.8817 0.000 0.000 0.000 1.000
#> GSM379802 4 0.0000 0.8817 0.000 0.000 0.000 1.000
#> GSM379803 4 0.0000 0.8817 0.000 0.000 0.000 1.000
#> GSM379812 4 0.4193 0.6579 0.268 0.000 0.000 0.732
#> GSM379813 4 0.3873 0.7177 0.228 0.000 0.000 0.772
#> GSM379814 4 0.3688 0.7409 0.208 0.000 0.000 0.792
#> GSM379807 4 0.0592 0.8776 0.016 0.000 0.000 0.984
#> GSM379808 4 0.0000 0.8817 0.000 0.000 0.000 1.000
#> GSM379809 4 0.0000 0.8817 0.000 0.000 0.000 1.000
#> GSM379810 4 0.0000 0.8817 0.000 0.000 0.000 1.000
#> GSM379811 4 0.0000 0.8817 0.000 0.000 0.000 1.000
#> GSM379820 4 0.2530 0.8298 0.112 0.000 0.000 0.888
#> GSM379821 4 0.3907 0.7133 0.232 0.000 0.000 0.768
#> GSM379822 1 0.1867 0.8680 0.928 0.000 0.000 0.072
#> GSM379815 4 0.0188 0.8808 0.004 0.000 0.000 0.996
#> GSM379816 4 0.7535 0.4931 0.164 0.236 0.024 0.576
#> GSM379817 4 0.3942 0.7068 0.236 0.000 0.000 0.764
#> GSM379818 4 0.0000 0.8817 0.000 0.000 0.000 1.000
#> GSM379819 4 0.2011 0.8495 0.080 0.000 0.000 0.920
#> GSM379825 4 0.0000 0.8817 0.000 0.000 0.000 1.000
#> GSM379826 4 0.2408 0.8356 0.104 0.000 0.000 0.896
#> GSM379823 1 0.0188 0.9099 0.996 0.000 0.000 0.004
#> GSM379824 4 0.2345 0.8383 0.100 0.000 0.000 0.900
#> GSM379749 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379750 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379751 2 0.0188 0.9810 0.000 0.996 0.000 0.004
#> GSM379744 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379745 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379746 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379747 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379748 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379757 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379758 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379752 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379753 2 0.0188 0.9808 0.000 0.996 0.004 0.000
#> GSM379754 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379755 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379756 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379764 2 0.1302 0.9444 0.044 0.956 0.000 0.000
#> GSM379765 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379766 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379759 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379760 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379761 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379762 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379763 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379769 1 0.4888 0.2773 0.588 0.412 0.000 0.000
#> GSM379770 2 0.1474 0.9354 0.052 0.948 0.000 0.000
#> GSM379767 2 0.0921 0.9591 0.028 0.972 0.000 0.000
#> GSM379768 2 0.0000 0.9840 0.000 1.000 0.000 0.000
#> GSM379776 1 0.4304 0.5810 0.716 0.000 0.000 0.284
#> GSM379777 4 0.4998 0.0651 0.488 0.000 0.000 0.512
#> GSM379778 1 0.0000 0.9110 1.000 0.000 0.000 0.000
#> GSM379771 1 0.5220 0.4143 0.632 0.000 0.016 0.352
#> GSM379772 1 0.3693 0.8210 0.856 0.000 0.072 0.072
#> GSM379773 1 0.1474 0.8810 0.948 0.000 0.000 0.052
#> GSM379774 1 0.2469 0.8339 0.892 0.000 0.000 0.108
#> GSM379775 1 0.3311 0.7617 0.828 0.000 0.000 0.172
#> GSM379784 1 0.0000 0.9110 1.000 0.000 0.000 0.000
#> GSM379785 1 0.0000 0.9110 1.000 0.000 0.000 0.000
#> GSM379786 1 0.0000 0.9110 1.000 0.000 0.000 0.000
#> GSM379779 1 0.0188 0.9100 0.996 0.000 0.000 0.004
#> GSM379780 1 0.0000 0.9110 1.000 0.000 0.000 0.000
#> GSM379781 1 0.0000 0.9110 1.000 0.000 0.000 0.000
#> GSM379782 1 0.0188 0.9084 0.996 0.004 0.000 0.000
#> GSM379783 1 0.0000 0.9110 1.000 0.000 0.000 0.000
#> GSM379792 1 0.4888 0.2447 0.588 0.000 0.000 0.412
#> GSM379793 1 0.0000 0.9110 1.000 0.000 0.000 0.000
#> GSM379794 1 0.0000 0.9110 1.000 0.000 0.000 0.000
#> GSM379787 1 0.0188 0.9084 0.996 0.004 0.000 0.000
#> GSM379788 1 0.0000 0.9110 1.000 0.000 0.000 0.000
#> GSM379789 1 0.0000 0.9110 1.000 0.000 0.000 0.000
#> GSM379790 1 0.0336 0.9084 0.992 0.000 0.000 0.008
#> GSM379791 1 0.0000 0.9110 1.000 0.000 0.000 0.000
#> GSM379797 4 0.1211 0.8693 0.040 0.000 0.000 0.960
#> GSM379798 1 0.0336 0.9084 0.992 0.000 0.000 0.008
#> GSM379795 1 0.0000 0.9110 1.000 0.000 0.000 0.000
#> GSM379796 1 0.1716 0.8735 0.936 0.000 0.000 0.064
#> GSM379721 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379722 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379723 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379716 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379717 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379718 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379719 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379720 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379729 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379730 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379731 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379724 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379725 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379726 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379727 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379728 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379737 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379738 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379739 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379732 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379733 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379734 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379735 3 0.0336 0.9616 0.008 0.000 0.992 0.000
#> GSM379736 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379742 3 0.5132 0.2381 0.448 0.004 0.548 0.000
#> GSM379743 3 0.1940 0.8993 0.076 0.000 0.924 0.000
#> GSM379740 3 0.0000 0.9679 0.000 0.000 1.000 0.000
#> GSM379741 3 0.4543 0.5437 0.324 0.000 0.676 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 2 0.0000 0.9026 0.000 1.000 0.000 0.000 0.000
#> GSM379833 2 0.0162 0.9024 0.000 0.996 0.000 0.000 0.004
#> GSM379834 2 0.0162 0.9024 0.000 0.996 0.000 0.000 0.004
#> GSM379827 2 0.0290 0.9006 0.000 0.992 0.000 0.000 0.008
#> GSM379828 2 0.0290 0.9006 0.000 0.992 0.000 0.000 0.008
#> GSM379829 4 0.2589 0.7657 0.012 0.092 0.000 0.888 0.008
#> GSM379830 2 0.0290 0.9006 0.000 0.992 0.000 0.000 0.008
#> GSM379831 2 0.0290 0.9006 0.000 0.992 0.000 0.000 0.008
#> GSM379840 2 0.1956 0.8328 0.000 0.916 0.000 0.076 0.008
#> GSM379841 2 0.0290 0.9021 0.000 0.992 0.000 0.000 0.008
#> GSM379842 2 0.0324 0.9015 0.004 0.992 0.000 0.000 0.004
#> GSM379835 2 0.0451 0.8986 0.000 0.988 0.000 0.004 0.008
#> GSM379836 2 0.1186 0.8834 0.008 0.964 0.000 0.020 0.008
#> GSM379837 4 0.4449 0.2720 0.004 0.388 0.000 0.604 0.004
#> GSM379838 2 0.0162 0.9024 0.000 0.996 0.000 0.000 0.004
#> GSM379839 4 0.4151 0.3651 0.000 0.344 0.000 0.652 0.004
#> GSM379848 2 0.0404 0.9018 0.000 0.988 0.000 0.000 0.012
#> GSM379849 2 0.0510 0.9006 0.000 0.984 0.000 0.000 0.016
#> GSM379850 2 0.0290 0.9021 0.000 0.992 0.000 0.000 0.008
#> GSM379843 2 0.0290 0.9021 0.000 0.992 0.000 0.000 0.008
#> GSM379844 2 0.0290 0.9021 0.000 0.992 0.000 0.000 0.008
#> GSM379845 2 0.0451 0.8998 0.000 0.988 0.000 0.004 0.008
#> GSM379846 2 0.0162 0.9024 0.000 0.996 0.000 0.000 0.004
#> GSM379847 2 0.0290 0.9021 0.000 0.992 0.000 0.000 0.008
#> GSM379853 2 0.0324 0.9015 0.004 0.992 0.000 0.000 0.004
#> GSM379854 2 0.0290 0.9021 0.000 0.992 0.000 0.000 0.008
#> GSM379851 2 0.0290 0.9021 0.000 0.992 0.000 0.000 0.008
#> GSM379852 2 0.0404 0.9018 0.000 0.988 0.000 0.000 0.012
#> GSM379804 4 0.0162 0.8749 0.000 0.000 0.000 0.996 0.004
#> GSM379805 4 0.0000 0.8746 0.000 0.000 0.000 1.000 0.000
#> GSM379806 4 0.0000 0.8746 0.000 0.000 0.000 1.000 0.000
#> GSM379799 4 0.0162 0.8740 0.000 0.000 0.000 0.996 0.004
#> GSM379800 4 0.0162 0.8740 0.000 0.000 0.000 0.996 0.004
#> GSM379801 4 0.0162 0.8740 0.000 0.000 0.000 0.996 0.004
#> GSM379802 4 0.0162 0.8740 0.000 0.000 0.000 0.996 0.004
#> GSM379803 4 0.0671 0.8725 0.004 0.000 0.000 0.980 0.016
#> GSM379812 5 0.5049 -0.0899 0.032 0.000 0.000 0.484 0.484
#> GSM379813 4 0.4428 0.5531 0.032 0.000 0.000 0.700 0.268
#> GSM379814 4 0.2654 0.8113 0.048 0.000 0.000 0.888 0.064
#> GSM379807 4 0.1018 0.8665 0.016 0.000 0.000 0.968 0.016
#> GSM379808 4 0.0162 0.8740 0.000 0.000 0.000 0.996 0.004
#> GSM379809 4 0.0162 0.8740 0.000 0.000 0.000 0.996 0.004
#> GSM379810 4 0.0451 0.8743 0.004 0.000 0.000 0.988 0.008
#> GSM379811 4 0.0566 0.8734 0.004 0.000 0.000 0.984 0.012
#> GSM379820 4 0.1800 0.8497 0.020 0.000 0.000 0.932 0.048
#> GSM379821 5 0.3961 0.5533 0.028 0.000 0.000 0.212 0.760
#> GSM379822 5 0.3861 0.6522 0.128 0.000 0.000 0.068 0.804
#> GSM379815 4 0.0324 0.8751 0.004 0.000 0.000 0.992 0.004
#> GSM379816 4 0.4597 0.2538 0.000 0.012 0.000 0.564 0.424
#> GSM379817 4 0.4642 0.4746 0.032 0.000 0.000 0.660 0.308
#> GSM379818 4 0.0290 0.8748 0.000 0.000 0.000 0.992 0.008
#> GSM379819 4 0.1211 0.8634 0.016 0.000 0.000 0.960 0.024
#> GSM379825 4 0.0324 0.8751 0.004 0.000 0.000 0.992 0.004
#> GSM379826 4 0.1981 0.8427 0.016 0.000 0.000 0.920 0.064
#> GSM379823 5 0.3326 0.6525 0.152 0.000 0.000 0.024 0.824
#> GSM379824 4 0.3011 0.7733 0.016 0.000 0.000 0.844 0.140
#> GSM379749 2 0.2561 0.8993 0.000 0.856 0.000 0.000 0.144
#> GSM379750 2 0.2561 0.8993 0.000 0.856 0.000 0.000 0.144
#> GSM379751 2 0.2843 0.8976 0.000 0.848 0.000 0.008 0.144
#> GSM379744 2 0.2561 0.8993 0.000 0.856 0.000 0.000 0.144
#> GSM379745 2 0.2561 0.8993 0.000 0.856 0.000 0.000 0.144
#> GSM379746 2 0.2561 0.8993 0.000 0.856 0.000 0.000 0.144
#> GSM379747 2 0.2561 0.8993 0.000 0.856 0.000 0.000 0.144
#> GSM379748 2 0.2605 0.8989 0.000 0.852 0.000 0.000 0.148
#> GSM379757 2 0.2648 0.8974 0.000 0.848 0.000 0.000 0.152
#> GSM379758 2 0.2605 0.8980 0.000 0.852 0.000 0.000 0.148
#> GSM379752 2 0.2561 0.8993 0.000 0.856 0.000 0.000 0.144
#> GSM379753 2 0.2605 0.8989 0.000 0.852 0.000 0.000 0.148
#> GSM379754 2 0.2561 0.8993 0.000 0.856 0.000 0.000 0.144
#> GSM379755 2 0.2561 0.8993 0.000 0.856 0.000 0.000 0.144
#> GSM379756 2 0.2561 0.8993 0.000 0.856 0.000 0.000 0.144
#> GSM379764 5 0.3196 0.5383 0.004 0.192 0.000 0.000 0.804
#> GSM379765 2 0.2929 0.8832 0.000 0.820 0.000 0.000 0.180
#> GSM379766 2 0.3086 0.8791 0.004 0.816 0.000 0.000 0.180
#> GSM379759 2 0.2648 0.8974 0.000 0.848 0.000 0.000 0.152
#> GSM379760 2 0.2605 0.8980 0.000 0.852 0.000 0.000 0.148
#> GSM379761 2 0.2605 0.8980 0.000 0.852 0.000 0.000 0.148
#> GSM379762 2 0.2605 0.8980 0.000 0.852 0.000 0.000 0.148
#> GSM379763 2 0.2605 0.8980 0.000 0.852 0.000 0.000 0.148
#> GSM379769 5 0.2124 0.6233 0.004 0.096 0.000 0.000 0.900
#> GSM379770 2 0.4450 0.3406 0.004 0.508 0.000 0.000 0.488
#> GSM379767 2 0.3231 0.8656 0.004 0.800 0.000 0.000 0.196
#> GSM379768 2 0.3048 0.8821 0.004 0.820 0.000 0.000 0.176
#> GSM379776 1 0.1410 0.9135 0.940 0.000 0.000 0.060 0.000
#> GSM379777 1 0.3800 0.7892 0.812 0.000 0.000 0.108 0.080
#> GSM379778 1 0.0865 0.9355 0.972 0.024 0.000 0.000 0.004
#> GSM379771 1 0.2067 0.9055 0.920 0.000 0.032 0.048 0.000
#> GSM379772 1 0.1877 0.8962 0.924 0.000 0.064 0.012 0.000
#> GSM379773 1 0.1408 0.9196 0.948 0.044 0.000 0.008 0.000
#> GSM379774 1 0.1124 0.9321 0.960 0.004 0.000 0.036 0.000
#> GSM379775 1 0.1197 0.9239 0.952 0.000 0.000 0.048 0.000
#> GSM379784 1 0.1410 0.9215 0.940 0.000 0.000 0.000 0.060
#> GSM379785 1 0.0609 0.9418 0.980 0.000 0.000 0.000 0.020
#> GSM379786 1 0.1792 0.9020 0.916 0.000 0.000 0.000 0.084
#> GSM379779 1 0.0566 0.9444 0.984 0.000 0.004 0.012 0.000
#> GSM379780 1 0.0324 0.9452 0.992 0.004 0.000 0.004 0.000
#> GSM379781 1 0.0162 0.9448 0.996 0.004 0.000 0.000 0.000
#> GSM379782 1 0.1310 0.9331 0.956 0.024 0.000 0.000 0.020
#> GSM379783 1 0.1892 0.9054 0.916 0.004 0.000 0.000 0.080
#> GSM379792 1 0.0880 0.9358 0.968 0.000 0.000 0.032 0.000
#> GSM379793 1 0.0290 0.9444 0.992 0.000 0.000 0.000 0.008
#> GSM379794 1 0.0000 0.9448 1.000 0.000 0.000 0.000 0.000
#> GSM379787 1 0.0771 0.9376 0.976 0.020 0.000 0.000 0.004
#> GSM379788 1 0.0609 0.9419 0.980 0.000 0.000 0.000 0.020
#> GSM379789 1 0.0000 0.9448 1.000 0.000 0.000 0.000 0.000
#> GSM379790 1 0.0000 0.9448 1.000 0.000 0.000 0.000 0.000
#> GSM379791 1 0.0162 0.9446 0.996 0.000 0.000 0.000 0.004
#> GSM379797 1 0.4251 0.5186 0.672 0.000 0.000 0.316 0.012
#> GSM379798 1 0.0000 0.9448 1.000 0.000 0.000 0.000 0.000
#> GSM379795 1 0.0162 0.9446 0.996 0.000 0.000 0.000 0.004
#> GSM379796 1 0.0290 0.9452 0.992 0.000 0.000 0.008 0.000
#> GSM379721 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379722 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379723 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379716 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379717 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379718 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379719 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379720 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379729 3 0.1270 0.9121 0.000 0.000 0.948 0.000 0.052
#> GSM379730 3 0.1671 0.8925 0.000 0.000 0.924 0.000 0.076
#> GSM379731 3 0.1270 0.9118 0.000 0.000 0.948 0.000 0.052
#> GSM379724 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379725 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379726 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379727 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379728 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379737 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379738 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379739 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379732 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379733 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379734 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379735 3 0.2377 0.8408 0.000 0.000 0.872 0.000 0.128
#> GSM379736 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379742 5 0.5434 0.3037 0.076 0.000 0.336 0.000 0.588
#> GSM379743 3 0.4767 0.2780 0.020 0.000 0.560 0.000 0.420
#> GSM379740 3 0.0000 0.9530 0.000 0.000 1.000 0.000 0.000
#> GSM379741 3 0.5155 0.3501 0.052 0.000 0.596 0.000 0.352
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 5 0.3499 0.926 0.000 0.320 0.000 0.000 0.680 0.000
#> GSM379833 5 0.3446 0.930 0.000 0.308 0.000 0.000 0.692 0.000
#> GSM379834 5 0.3482 0.929 0.000 0.316 0.000 0.000 0.684 0.000
#> GSM379827 5 0.3717 0.913 0.000 0.276 0.000 0.000 0.708 0.016
#> GSM379828 5 0.3608 0.910 0.000 0.272 0.000 0.000 0.716 0.012
#> GSM379829 4 0.4206 0.230 0.000 0.000 0.000 0.620 0.356 0.024
#> GSM379830 5 0.3650 0.918 0.000 0.280 0.000 0.000 0.708 0.012
#> GSM379831 5 0.3650 0.918 0.000 0.280 0.000 0.000 0.708 0.012
#> GSM379840 5 0.4166 0.839 0.000 0.196 0.000 0.076 0.728 0.000
#> GSM379841 5 0.3482 0.928 0.000 0.316 0.000 0.000 0.684 0.000
#> GSM379842 5 0.3409 0.929 0.000 0.300 0.000 0.000 0.700 0.000
#> GSM379835 5 0.3629 0.916 0.000 0.276 0.000 0.000 0.712 0.012
#> GSM379836 5 0.3724 0.907 0.000 0.268 0.000 0.004 0.716 0.012
#> GSM379837 5 0.4074 0.480 0.000 0.020 0.000 0.264 0.704 0.012
#> GSM379838 5 0.3531 0.920 0.000 0.328 0.000 0.000 0.672 0.000
#> GSM379839 5 0.4074 0.479 0.000 0.020 0.000 0.264 0.704 0.012
#> GSM379848 5 0.3499 0.923 0.000 0.320 0.000 0.000 0.680 0.000
#> GSM379849 5 0.3784 0.925 0.000 0.308 0.000 0.000 0.680 0.012
#> GSM379850 5 0.3619 0.928 0.000 0.316 0.000 0.000 0.680 0.004
#> GSM379843 5 0.3446 0.929 0.000 0.308 0.000 0.000 0.692 0.000
#> GSM379844 5 0.3464 0.930 0.000 0.312 0.000 0.000 0.688 0.000
#> GSM379845 5 0.3650 0.915 0.000 0.272 0.000 0.004 0.716 0.008
#> GSM379846 5 0.3482 0.929 0.000 0.316 0.000 0.000 0.684 0.000
#> GSM379847 5 0.3464 0.930 0.000 0.312 0.000 0.000 0.688 0.000
#> GSM379853 5 0.3897 0.922 0.000 0.280 0.000 0.000 0.696 0.024
#> GSM379854 5 0.3482 0.928 0.000 0.316 0.000 0.000 0.684 0.000
#> GSM379851 5 0.3464 0.930 0.000 0.312 0.000 0.000 0.688 0.000
#> GSM379852 5 0.3464 0.930 0.000 0.312 0.000 0.000 0.688 0.000
#> GSM379804 4 0.0146 0.865 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM379805 4 0.0291 0.864 0.000 0.000 0.000 0.992 0.004 0.004
#> GSM379806 4 0.0146 0.865 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM379799 4 0.1176 0.844 0.000 0.000 0.000 0.956 0.024 0.020
#> GSM379800 4 0.1176 0.844 0.000 0.000 0.000 0.956 0.024 0.020
#> GSM379801 4 0.1418 0.834 0.000 0.000 0.000 0.944 0.032 0.024
#> GSM379802 4 0.0405 0.863 0.000 0.000 0.000 0.988 0.008 0.004
#> GSM379803 4 0.0865 0.851 0.000 0.000 0.000 0.964 0.000 0.036
#> GSM379812 4 0.3647 0.217 0.000 0.000 0.000 0.640 0.000 0.360
#> GSM379813 4 0.2912 0.606 0.000 0.000 0.000 0.784 0.000 0.216
#> GSM379814 4 0.2001 0.822 0.012 0.000 0.000 0.912 0.068 0.008
#> GSM379807 4 0.0260 0.865 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM379808 4 0.0717 0.858 0.000 0.000 0.000 0.976 0.008 0.016
#> GSM379809 4 0.0520 0.862 0.000 0.000 0.000 0.984 0.008 0.008
#> GSM379810 4 0.0000 0.866 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379811 4 0.0260 0.865 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM379820 4 0.2320 0.770 0.000 0.000 0.000 0.864 0.132 0.004
#> GSM379821 6 0.3817 0.353 0.000 0.000 0.000 0.432 0.000 0.568
#> GSM379822 6 0.2402 0.774 0.000 0.000 0.000 0.140 0.004 0.856
#> GSM379815 4 0.0000 0.866 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379816 4 0.6099 -0.151 0.000 0.152 0.004 0.512 0.020 0.312
#> GSM379817 4 0.3112 0.745 0.000 0.000 0.000 0.836 0.096 0.068
#> GSM379818 4 0.0146 0.865 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM379819 4 0.0520 0.863 0.000 0.000 0.000 0.984 0.008 0.008
#> GSM379825 4 0.0000 0.866 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379826 4 0.1686 0.831 0.000 0.000 0.000 0.924 0.064 0.012
#> GSM379823 6 0.1958 0.760 0.000 0.000 0.000 0.100 0.004 0.896
#> GSM379824 4 0.2597 0.682 0.000 0.000 0.000 0.824 0.000 0.176
#> GSM379749 2 0.0363 0.943 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM379750 2 0.0458 0.942 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM379751 2 0.1257 0.921 0.000 0.952 0.000 0.000 0.020 0.028
#> GSM379744 2 0.0622 0.939 0.000 0.980 0.000 0.000 0.012 0.008
#> GSM379745 2 0.0622 0.939 0.000 0.980 0.000 0.000 0.012 0.008
#> GSM379746 2 0.0508 0.944 0.000 0.984 0.000 0.000 0.012 0.004
#> GSM379747 2 0.0622 0.939 0.000 0.980 0.000 0.000 0.012 0.008
#> GSM379748 2 0.0508 0.943 0.000 0.984 0.000 0.000 0.012 0.004
#> GSM379757 2 0.0363 0.944 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM379758 2 0.0547 0.940 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM379752 2 0.0405 0.944 0.000 0.988 0.000 0.000 0.008 0.004
#> GSM379753 2 0.0622 0.939 0.000 0.980 0.000 0.000 0.012 0.008
#> GSM379754 2 0.0363 0.944 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM379755 2 0.0458 0.942 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM379756 2 0.0458 0.942 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM379764 2 0.2889 0.809 0.000 0.848 0.000 0.000 0.108 0.044
#> GSM379765 2 0.0806 0.940 0.000 0.972 0.000 0.000 0.008 0.020
#> GSM379766 2 0.0935 0.937 0.000 0.964 0.000 0.000 0.004 0.032
#> GSM379759 2 0.0777 0.941 0.000 0.972 0.000 0.000 0.024 0.004
#> GSM379760 2 0.0458 0.942 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM379761 2 0.0458 0.942 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM379762 2 0.0260 0.944 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379763 2 0.0458 0.942 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM379769 2 0.4853 0.481 0.000 0.644 0.000 0.000 0.248 0.108
#> GSM379770 2 0.4361 0.610 0.004 0.716 0.000 0.000 0.204 0.076
#> GSM379767 2 0.1080 0.934 0.004 0.960 0.000 0.000 0.004 0.032
#> GSM379768 2 0.0790 0.936 0.000 0.968 0.000 0.000 0.000 0.032
#> GSM379776 1 0.0146 0.959 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM379777 1 0.4061 0.581 0.708 0.000 0.000 0.044 0.000 0.248
#> GSM379778 1 0.0000 0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379771 1 0.0000 0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379772 1 0.0000 0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379773 1 0.0000 0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379774 1 0.0000 0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379775 1 0.0000 0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379784 1 0.0603 0.949 0.980 0.000 0.000 0.004 0.000 0.016
#> GSM379785 1 0.0000 0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379786 1 0.1411 0.908 0.936 0.000 0.000 0.004 0.000 0.060
#> GSM379779 1 0.0000 0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379780 1 0.0000 0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379781 1 0.0000 0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379782 1 0.0146 0.960 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM379783 1 0.1082 0.928 0.956 0.000 0.000 0.004 0.000 0.040
#> GSM379792 1 0.0000 0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379793 1 0.0000 0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379794 1 0.0000 0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379787 1 0.0146 0.960 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM379788 1 0.0291 0.957 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM379789 1 0.0000 0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379790 1 0.0000 0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379791 1 0.0000 0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379797 1 0.3971 0.134 0.548 0.000 0.000 0.448 0.000 0.004
#> GSM379798 1 0.0000 0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379795 1 0.0000 0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379796 1 0.0000 0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379721 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379722 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379723 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379716 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379717 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379718 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379719 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379720 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379729 3 0.2260 0.829 0.000 0.000 0.860 0.000 0.000 0.140
#> GSM379730 3 0.3198 0.685 0.000 0.000 0.740 0.000 0.000 0.260
#> GSM379731 3 0.1556 0.882 0.000 0.000 0.920 0.000 0.000 0.080
#> GSM379724 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379725 3 0.0146 0.936 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM379726 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379727 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379728 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379737 3 0.0146 0.936 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM379738 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379739 3 0.0146 0.936 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM379732 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379733 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379734 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379735 3 0.2854 0.753 0.000 0.000 0.792 0.000 0.000 0.208
#> GSM379736 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379742 3 0.5865 0.252 0.000 0.012 0.504 0.000 0.152 0.332
#> GSM379743 3 0.3446 0.625 0.000 0.000 0.692 0.000 0.000 0.308
#> GSM379740 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379741 3 0.2664 0.817 0.000 0.000 0.848 0.000 0.016 0.136
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> MAD:NMF 137 7.88e-24 1.000 0.86881 2
#> MAD:NMF 115 2.97e-36 0.994 0.00537 3
#> MAD:NMF 131 2.80e-69 1.000 0.87355 4
#> MAD:NMF 130 4.77e-70 1.000 0.54802 5
#> MAD:NMF 130 1.88e-97 1.000 0.94808 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.989 0.995 0.4852 0.515 0.515
#> 3 3 0.755 0.809 0.902 0.2284 0.931 0.865
#> 4 4 0.711 0.839 0.895 0.1371 0.895 0.764
#> 5 5 0.793 0.758 0.857 0.0601 0.966 0.901
#> 6 6 0.843 0.832 0.891 0.0443 0.923 0.753
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.0000 0.994 0.000 1.000
#> GSM379833 2 0.0000 0.994 0.000 1.000
#> GSM379834 2 0.0000 0.994 0.000 1.000
#> GSM379827 2 0.0000 0.994 0.000 1.000
#> GSM379828 2 0.0000 0.994 0.000 1.000
#> GSM379829 1 0.0000 0.995 1.000 0.000
#> GSM379830 2 0.0376 0.991 0.004 0.996
#> GSM379831 2 0.0000 0.994 0.000 1.000
#> GSM379840 2 0.6148 0.822 0.152 0.848
#> GSM379841 2 0.0000 0.994 0.000 1.000
#> GSM379842 2 0.0000 0.994 0.000 1.000
#> GSM379835 2 0.0000 0.994 0.000 1.000
#> GSM379836 2 0.6148 0.822 0.152 0.848
#> GSM379837 1 0.2948 0.943 0.948 0.052
#> GSM379838 2 0.0000 0.994 0.000 1.000
#> GSM379839 1 0.2948 0.943 0.948 0.052
#> GSM379848 2 0.0000 0.994 0.000 1.000
#> GSM379849 2 0.0000 0.994 0.000 1.000
#> GSM379850 2 0.0000 0.994 0.000 1.000
#> GSM379843 2 0.0000 0.994 0.000 1.000
#> GSM379844 2 0.0000 0.994 0.000 1.000
#> GSM379845 1 0.8608 0.602 0.716 0.284
#> GSM379846 2 0.0000 0.994 0.000 1.000
#> GSM379847 2 0.0000 0.994 0.000 1.000
#> GSM379853 2 0.0000 0.994 0.000 1.000
#> GSM379854 2 0.0000 0.994 0.000 1.000
#> GSM379851 2 0.0000 0.994 0.000 1.000
#> GSM379852 2 0.0000 0.994 0.000 1.000
#> GSM379804 1 0.0000 0.995 1.000 0.000
#> GSM379805 1 0.0000 0.995 1.000 0.000
#> GSM379806 1 0.0000 0.995 1.000 0.000
#> GSM379799 1 0.0000 0.995 1.000 0.000
#> GSM379800 1 0.0000 0.995 1.000 0.000
#> GSM379801 1 0.0000 0.995 1.000 0.000
#> GSM379802 1 0.0000 0.995 1.000 0.000
#> GSM379803 1 0.0000 0.995 1.000 0.000
#> GSM379812 1 0.0000 0.995 1.000 0.000
#> GSM379813 1 0.0000 0.995 1.000 0.000
#> GSM379814 1 0.0000 0.995 1.000 0.000
#> GSM379807 1 0.0000 0.995 1.000 0.000
#> GSM379808 1 0.0000 0.995 1.000 0.000
#> GSM379809 1 0.0000 0.995 1.000 0.000
#> GSM379810 1 0.0000 0.995 1.000 0.000
#> GSM379811 1 0.0000 0.995 1.000 0.000
#> GSM379820 1 0.0000 0.995 1.000 0.000
#> GSM379821 1 0.0000 0.995 1.000 0.000
#> GSM379822 1 0.0000 0.995 1.000 0.000
#> GSM379815 1 0.0000 0.995 1.000 0.000
#> GSM379816 1 0.0000 0.995 1.000 0.000
#> GSM379817 1 0.0000 0.995 1.000 0.000
#> GSM379818 1 0.0000 0.995 1.000 0.000
#> GSM379819 1 0.0000 0.995 1.000 0.000
#> GSM379825 1 0.0000 0.995 1.000 0.000
#> GSM379826 1 0.0000 0.995 1.000 0.000
#> GSM379823 1 0.0000 0.995 1.000 0.000
#> GSM379824 1 0.0000 0.995 1.000 0.000
#> GSM379749 2 0.0000 0.994 0.000 1.000
#> GSM379750 2 0.0000 0.994 0.000 1.000
#> GSM379751 2 0.0000 0.994 0.000 1.000
#> GSM379744 2 0.0000 0.994 0.000 1.000
#> GSM379745 2 0.0000 0.994 0.000 1.000
#> GSM379746 2 0.0000 0.994 0.000 1.000
#> GSM379747 2 0.0000 0.994 0.000 1.000
#> GSM379748 2 0.0000 0.994 0.000 1.000
#> GSM379757 2 0.0000 0.994 0.000 1.000
#> GSM379758 2 0.0000 0.994 0.000 1.000
#> GSM379752 2 0.0000 0.994 0.000 1.000
#> GSM379753 2 0.0000 0.994 0.000 1.000
#> GSM379754 2 0.0000 0.994 0.000 1.000
#> GSM379755 2 0.0000 0.994 0.000 1.000
#> GSM379756 2 0.0000 0.994 0.000 1.000
#> GSM379764 2 0.0000 0.994 0.000 1.000
#> GSM379765 2 0.0000 0.994 0.000 1.000
#> GSM379766 2 0.0000 0.994 0.000 1.000
#> GSM379759 2 0.0000 0.994 0.000 1.000
#> GSM379760 2 0.0000 0.994 0.000 1.000
#> GSM379761 2 0.0000 0.994 0.000 1.000
#> GSM379762 2 0.0000 0.994 0.000 1.000
#> GSM379763 2 0.0000 0.994 0.000 1.000
#> GSM379769 2 0.0000 0.994 0.000 1.000
#> GSM379770 2 0.0000 0.994 0.000 1.000
#> GSM379767 2 0.0000 0.994 0.000 1.000
#> GSM379768 2 0.0000 0.994 0.000 1.000
#> GSM379776 1 0.0000 0.995 1.000 0.000
#> GSM379777 1 0.0000 0.995 1.000 0.000
#> GSM379778 2 0.0000 0.994 0.000 1.000
#> GSM379771 1 0.0000 0.995 1.000 0.000
#> GSM379772 1 0.0000 0.995 1.000 0.000
#> GSM379773 1 0.0000 0.995 1.000 0.000
#> GSM379774 1 0.0000 0.995 1.000 0.000
#> GSM379775 1 0.0000 0.995 1.000 0.000
#> GSM379784 1 0.0000 0.995 1.000 0.000
#> GSM379785 1 0.0000 0.995 1.000 0.000
#> GSM379786 1 0.0000 0.995 1.000 0.000
#> GSM379779 1 0.0000 0.995 1.000 0.000
#> GSM379780 1 0.0000 0.995 1.000 0.000
#> GSM379781 1 0.0000 0.995 1.000 0.000
#> GSM379782 2 0.0000 0.994 0.000 1.000
#> GSM379783 1 0.0000 0.995 1.000 0.000
#> GSM379792 1 0.0000 0.995 1.000 0.000
#> GSM379793 1 0.0000 0.995 1.000 0.000
#> GSM379794 1 0.0000 0.995 1.000 0.000
#> GSM379787 2 0.0000 0.994 0.000 1.000
#> GSM379788 1 0.0000 0.995 1.000 0.000
#> GSM379789 1 0.0000 0.995 1.000 0.000
#> GSM379790 1 0.0000 0.995 1.000 0.000
#> GSM379791 1 0.0000 0.995 1.000 0.000
#> GSM379797 1 0.0000 0.995 1.000 0.000
#> GSM379798 1 0.0000 0.995 1.000 0.000
#> GSM379795 1 0.0000 0.995 1.000 0.000
#> GSM379796 1 0.0000 0.995 1.000 0.000
#> GSM379721 1 0.0000 0.995 1.000 0.000
#> GSM379722 1 0.0000 0.995 1.000 0.000
#> GSM379723 1 0.0000 0.995 1.000 0.000
#> GSM379716 1 0.0000 0.995 1.000 0.000
#> GSM379717 1 0.0000 0.995 1.000 0.000
#> GSM379718 1 0.0000 0.995 1.000 0.000
#> GSM379719 1 0.0000 0.995 1.000 0.000
#> GSM379720 1 0.0000 0.995 1.000 0.000
#> GSM379729 1 0.0000 0.995 1.000 0.000
#> GSM379730 1 0.0000 0.995 1.000 0.000
#> GSM379731 1 0.0000 0.995 1.000 0.000
#> GSM379724 1 0.0000 0.995 1.000 0.000
#> GSM379725 1 0.0000 0.995 1.000 0.000
#> GSM379726 1 0.0000 0.995 1.000 0.000
#> GSM379727 1 0.0000 0.995 1.000 0.000
#> GSM379728 1 0.0000 0.995 1.000 0.000
#> GSM379737 1 0.0000 0.995 1.000 0.000
#> GSM379738 1 0.0000 0.995 1.000 0.000
#> GSM379739 1 0.0000 0.995 1.000 0.000
#> GSM379732 1 0.0000 0.995 1.000 0.000
#> GSM379733 1 0.0000 0.995 1.000 0.000
#> GSM379734 1 0.0000 0.995 1.000 0.000
#> GSM379735 1 0.0000 0.995 1.000 0.000
#> GSM379736 1 0.0000 0.995 1.000 0.000
#> GSM379742 2 0.0000 0.994 0.000 1.000
#> GSM379743 1 0.0000 0.995 1.000 0.000
#> GSM379740 1 0.0000 0.995 1.000 0.000
#> GSM379741 2 0.0000 0.994 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379833 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379834 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379827 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379828 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379829 1 0.2878 0.7705 0.904 0.000 0.096
#> GSM379830 2 0.0237 0.9889 0.004 0.996 0.000
#> GSM379831 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379840 2 0.4821 0.8139 0.064 0.848 0.088
#> GSM379841 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379842 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379835 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379836 2 0.4821 0.8139 0.064 0.848 0.088
#> GSM379837 1 0.4689 0.7373 0.852 0.052 0.096
#> GSM379838 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379839 1 0.4689 0.7373 0.852 0.052 0.096
#> GSM379848 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379849 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379850 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379843 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379844 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379845 1 0.8000 0.3834 0.620 0.284 0.096
#> GSM379846 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379847 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379853 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379854 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379851 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379852 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379804 1 0.3752 0.6694 0.856 0.000 0.144
#> GSM379805 1 0.5926 0.2069 0.644 0.000 0.356
#> GSM379806 1 0.6274 -0.2221 0.544 0.000 0.456
#> GSM379799 3 0.4974 0.9634 0.236 0.000 0.764
#> GSM379800 3 0.4974 0.9634 0.236 0.000 0.764
#> GSM379801 3 0.5291 0.9292 0.268 0.000 0.732
#> GSM379802 3 0.4974 0.9634 0.236 0.000 0.764
#> GSM379803 3 0.4887 0.7484 0.228 0.000 0.772
#> GSM379812 1 0.4974 0.6947 0.764 0.000 0.236
#> GSM379813 1 0.1031 0.8013 0.976 0.000 0.024
#> GSM379814 1 0.0000 0.8073 1.000 0.000 0.000
#> GSM379807 1 0.6180 -0.0503 0.584 0.000 0.416
#> GSM379808 1 0.6274 -0.2221 0.544 0.000 0.456
#> GSM379809 1 0.0000 0.8073 1.000 0.000 0.000
#> GSM379810 1 0.0000 0.8073 1.000 0.000 0.000
#> GSM379811 3 0.5098 0.9539 0.248 0.000 0.752
#> GSM379820 1 0.0000 0.8073 1.000 0.000 0.000
#> GSM379821 1 0.4974 0.6947 0.764 0.000 0.236
#> GSM379822 1 0.4974 0.6947 0.764 0.000 0.236
#> GSM379815 1 0.0747 0.7990 0.984 0.000 0.016
#> GSM379816 1 0.4974 0.6947 0.764 0.000 0.236
#> GSM379817 1 0.1031 0.8013 0.976 0.000 0.024
#> GSM379818 3 0.4974 0.9634 0.236 0.000 0.764
#> GSM379819 1 0.5859 0.2476 0.656 0.000 0.344
#> GSM379825 3 0.4974 0.9634 0.236 0.000 0.764
#> GSM379826 1 0.1031 0.8013 0.976 0.000 0.024
#> GSM379823 1 0.4974 0.6947 0.764 0.000 0.236
#> GSM379824 1 0.4974 0.6947 0.764 0.000 0.236
#> GSM379749 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379750 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379751 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379744 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379745 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379746 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379747 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379748 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379757 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379758 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379752 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379753 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379754 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379755 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379756 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379764 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379765 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379766 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379759 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379760 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379761 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379762 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379763 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379769 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379770 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379767 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379768 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379776 1 0.5859 0.2476 0.656 0.000 0.344
#> GSM379777 1 0.6274 0.3467 0.544 0.000 0.456
#> GSM379778 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379771 1 0.0000 0.8073 1.000 0.000 0.000
#> GSM379772 1 0.0000 0.8073 1.000 0.000 0.000
#> GSM379773 1 0.0000 0.8073 1.000 0.000 0.000
#> GSM379774 1 0.0000 0.8073 1.000 0.000 0.000
#> GSM379775 1 0.0000 0.8073 1.000 0.000 0.000
#> GSM379784 1 0.4974 0.6947 0.764 0.000 0.236
#> GSM379785 1 0.0424 0.8063 0.992 0.000 0.008
#> GSM379786 1 0.4974 0.6947 0.764 0.000 0.236
#> GSM379779 1 0.4121 0.6287 0.832 0.000 0.168
#> GSM379780 1 0.0424 0.8063 0.992 0.000 0.008
#> GSM379781 1 0.0424 0.8063 0.992 0.000 0.008
#> GSM379782 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379783 1 0.4974 0.6947 0.764 0.000 0.236
#> GSM379792 1 0.5859 0.2476 0.656 0.000 0.344
#> GSM379793 1 0.0000 0.8073 1.000 0.000 0.000
#> GSM379794 1 0.0000 0.8073 1.000 0.000 0.000
#> GSM379787 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379788 1 0.4974 0.6947 0.764 0.000 0.236
#> GSM379789 1 0.0000 0.8073 1.000 0.000 0.000
#> GSM379790 1 0.5835 0.2598 0.660 0.000 0.340
#> GSM379791 1 0.0000 0.8073 1.000 0.000 0.000
#> GSM379797 3 0.4974 0.9634 0.236 0.000 0.764
#> GSM379798 1 0.5678 0.3294 0.684 0.000 0.316
#> GSM379795 1 0.0000 0.8073 1.000 0.000 0.000
#> GSM379796 1 0.5859 0.2476 0.656 0.000 0.344
#> GSM379721 1 0.0237 0.8067 0.996 0.000 0.004
#> GSM379722 1 0.0237 0.8067 0.996 0.000 0.004
#> GSM379723 1 0.0237 0.8067 0.996 0.000 0.004
#> GSM379716 1 0.0237 0.8067 0.996 0.000 0.004
#> GSM379717 1 0.0237 0.8067 0.996 0.000 0.004
#> GSM379718 1 0.0237 0.8067 0.996 0.000 0.004
#> GSM379719 1 0.0237 0.8067 0.996 0.000 0.004
#> GSM379720 1 0.0237 0.8067 0.996 0.000 0.004
#> GSM379729 1 0.4974 0.6947 0.764 0.000 0.236
#> GSM379730 1 0.4974 0.6947 0.764 0.000 0.236
#> GSM379731 1 0.4974 0.6947 0.764 0.000 0.236
#> GSM379724 1 0.0237 0.8067 0.996 0.000 0.004
#> GSM379725 1 0.4974 0.6947 0.764 0.000 0.236
#> GSM379726 1 0.0237 0.8067 0.996 0.000 0.004
#> GSM379727 1 0.0237 0.8067 0.996 0.000 0.004
#> GSM379728 1 0.5327 0.4368 0.728 0.000 0.272
#> GSM379737 1 0.0237 0.8067 0.996 0.000 0.004
#> GSM379738 1 0.0237 0.8067 0.996 0.000 0.004
#> GSM379739 1 0.0237 0.8067 0.996 0.000 0.004
#> GSM379732 1 0.4974 0.6947 0.764 0.000 0.236
#> GSM379733 1 0.0237 0.8067 0.996 0.000 0.004
#> GSM379734 1 0.0237 0.8067 0.996 0.000 0.004
#> GSM379735 1 0.4974 0.6947 0.764 0.000 0.236
#> GSM379736 1 0.5733 0.3074 0.676 0.000 0.324
#> GSM379742 2 0.0000 0.9938 0.000 1.000 0.000
#> GSM379743 1 0.4974 0.6947 0.764 0.000 0.236
#> GSM379740 1 0.0237 0.8067 0.996 0.000 0.004
#> GSM379741 2 0.0000 0.9938 0.000 1.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379833 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379834 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379827 2 0.4224 0.8773 0.000 0.812 0.044 0.144
#> GSM379828 2 0.4224 0.8773 0.000 0.812 0.044 0.144
#> GSM379829 1 0.3208 0.7305 0.848 0.000 0.148 0.004
#> GSM379830 2 0.4307 0.8748 0.000 0.808 0.048 0.144
#> GSM379831 2 0.4224 0.8773 0.000 0.812 0.044 0.144
#> GSM379840 2 0.5262 0.8176 0.048 0.792 0.100 0.060
#> GSM379841 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379842 2 0.4224 0.8773 0.000 0.812 0.044 0.144
#> GSM379835 2 0.4224 0.8773 0.000 0.812 0.044 0.144
#> GSM379836 2 0.5262 0.8176 0.048 0.792 0.100 0.060
#> GSM379837 1 0.4514 0.6657 0.796 0.000 0.148 0.056
#> GSM379838 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379839 1 0.4514 0.6657 0.796 0.000 0.148 0.056
#> GSM379848 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379849 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379850 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379843 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379844 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379845 1 0.7979 0.2683 0.564 0.232 0.148 0.056
#> GSM379846 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379847 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379853 2 0.4224 0.8773 0.000 0.812 0.044 0.144
#> GSM379854 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379851 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379852 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379804 1 0.3257 0.7363 0.844 0.000 0.004 0.152
#> GSM379805 1 0.4761 0.3801 0.628 0.000 0.000 0.372
#> GSM379806 1 0.4992 0.0186 0.524 0.000 0.000 0.476
#> GSM379799 4 0.3024 0.9602 0.148 0.000 0.000 0.852
#> GSM379800 4 0.3024 0.9602 0.148 0.000 0.000 0.852
#> GSM379801 4 0.3400 0.9261 0.180 0.000 0.000 0.820
#> GSM379802 4 0.3024 0.9602 0.148 0.000 0.000 0.852
#> GSM379803 4 0.5820 0.6756 0.100 0.000 0.204 0.696
#> GSM379812 3 0.2760 0.9444 0.128 0.000 0.872 0.000
#> GSM379813 1 0.1302 0.8313 0.956 0.000 0.044 0.000
#> GSM379814 1 0.0188 0.8584 0.996 0.000 0.004 0.000
#> GSM379807 1 0.4941 0.1806 0.564 0.000 0.000 0.436
#> GSM379808 1 0.4992 0.0186 0.524 0.000 0.000 0.476
#> GSM379809 1 0.0188 0.8584 0.996 0.000 0.004 0.000
#> GSM379810 1 0.0188 0.8584 0.996 0.000 0.004 0.000
#> GSM379811 4 0.3172 0.9501 0.160 0.000 0.000 0.840
#> GSM379820 1 0.0188 0.8584 0.996 0.000 0.004 0.000
#> GSM379821 3 0.2345 0.9649 0.100 0.000 0.900 0.000
#> GSM379822 3 0.2345 0.9649 0.100 0.000 0.900 0.000
#> GSM379815 1 0.0779 0.8507 0.980 0.000 0.004 0.016
#> GSM379816 3 0.2345 0.9649 0.100 0.000 0.900 0.000
#> GSM379817 1 0.1302 0.8313 0.956 0.000 0.044 0.000
#> GSM379818 4 0.3024 0.9602 0.148 0.000 0.000 0.852
#> GSM379819 1 0.4713 0.4095 0.640 0.000 0.000 0.360
#> GSM379825 4 0.3024 0.9602 0.148 0.000 0.000 0.852
#> GSM379826 1 0.1302 0.8313 0.956 0.000 0.044 0.000
#> GSM379823 3 0.2345 0.9649 0.100 0.000 0.900 0.000
#> GSM379824 3 0.2345 0.9649 0.100 0.000 0.900 0.000
#> GSM379749 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379750 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379751 2 0.4224 0.8773 0.000 0.812 0.044 0.144
#> GSM379744 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379745 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379746 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379747 2 0.4224 0.8773 0.000 0.812 0.044 0.144
#> GSM379748 2 0.4224 0.8773 0.000 0.812 0.044 0.144
#> GSM379757 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379758 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379752 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379753 2 0.4224 0.8773 0.000 0.812 0.044 0.144
#> GSM379754 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379755 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379756 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379764 2 0.4224 0.8773 0.000 0.812 0.044 0.144
#> GSM379765 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379766 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379759 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379760 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379761 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379762 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379763 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379769 2 0.4224 0.8773 0.000 0.812 0.044 0.144
#> GSM379770 2 0.4224 0.8773 0.000 0.812 0.044 0.144
#> GSM379767 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379768 2 0.0000 0.9320 0.000 1.000 0.000 0.000
#> GSM379776 1 0.4713 0.4095 0.640 0.000 0.000 0.360
#> GSM379777 3 0.6370 0.5430 0.100 0.000 0.620 0.280
#> GSM379778 2 0.4224 0.8773 0.000 0.812 0.044 0.144
#> GSM379771 1 0.0188 0.8584 0.996 0.000 0.004 0.000
#> GSM379772 1 0.0188 0.8584 0.996 0.000 0.004 0.000
#> GSM379773 1 0.0188 0.8584 0.996 0.000 0.004 0.000
#> GSM379774 1 0.0188 0.8584 0.996 0.000 0.004 0.000
#> GSM379775 1 0.0188 0.8584 0.996 0.000 0.004 0.000
#> GSM379784 3 0.2345 0.9649 0.100 0.000 0.900 0.000
#> GSM379785 1 0.0469 0.8541 0.988 0.000 0.012 0.000
#> GSM379786 3 0.2345 0.9649 0.100 0.000 0.900 0.000
#> GSM379779 1 0.3583 0.7022 0.816 0.000 0.004 0.180
#> GSM379780 1 0.0469 0.8541 0.988 0.000 0.012 0.000
#> GSM379781 1 0.0469 0.8541 0.988 0.000 0.012 0.000
#> GSM379782 2 0.4224 0.8773 0.000 0.812 0.044 0.144
#> GSM379783 3 0.2345 0.9649 0.100 0.000 0.900 0.000
#> GSM379792 1 0.4713 0.4095 0.640 0.000 0.000 0.360
#> GSM379793 1 0.0188 0.8584 0.996 0.000 0.004 0.000
#> GSM379794 1 0.0188 0.8584 0.996 0.000 0.004 0.000
#> GSM379787 2 0.4224 0.8773 0.000 0.812 0.044 0.144
#> GSM379788 3 0.2345 0.9649 0.100 0.000 0.900 0.000
#> GSM379789 1 0.0188 0.8584 0.996 0.000 0.004 0.000
#> GSM379790 1 0.4697 0.4182 0.644 0.000 0.000 0.356
#> GSM379791 1 0.0188 0.8584 0.996 0.000 0.004 0.000
#> GSM379797 4 0.3024 0.9602 0.148 0.000 0.000 0.852
#> GSM379798 1 0.4543 0.4833 0.676 0.000 0.000 0.324
#> GSM379795 1 0.0188 0.8584 0.996 0.000 0.004 0.000
#> GSM379796 1 0.4713 0.4095 0.640 0.000 0.000 0.360
#> GSM379721 1 0.0188 0.8579 0.996 0.000 0.004 0.000
#> GSM379722 1 0.0188 0.8579 0.996 0.000 0.004 0.000
#> GSM379723 1 0.0000 0.8584 1.000 0.000 0.000 0.000
#> GSM379716 1 0.0000 0.8584 1.000 0.000 0.000 0.000
#> GSM379717 1 0.0000 0.8584 1.000 0.000 0.000 0.000
#> GSM379718 1 0.0000 0.8584 1.000 0.000 0.000 0.000
#> GSM379719 1 0.0188 0.8579 0.996 0.000 0.004 0.000
#> GSM379720 1 0.0188 0.8579 0.996 0.000 0.004 0.000
#> GSM379729 3 0.2647 0.9620 0.120 0.000 0.880 0.000
#> GSM379730 3 0.2647 0.9620 0.120 0.000 0.880 0.000
#> GSM379731 3 0.2647 0.9620 0.120 0.000 0.880 0.000
#> GSM379724 1 0.0000 0.8584 1.000 0.000 0.000 0.000
#> GSM379725 3 0.2647 0.9620 0.120 0.000 0.880 0.000
#> GSM379726 1 0.0000 0.8584 1.000 0.000 0.000 0.000
#> GSM379727 1 0.0000 0.8584 1.000 0.000 0.000 0.000
#> GSM379728 1 0.4331 0.5467 0.712 0.000 0.000 0.288
#> GSM379737 1 0.0000 0.8584 1.000 0.000 0.000 0.000
#> GSM379738 1 0.0000 0.8584 1.000 0.000 0.000 0.000
#> GSM379739 1 0.0000 0.8584 1.000 0.000 0.000 0.000
#> GSM379732 3 0.2647 0.9620 0.120 0.000 0.880 0.000
#> GSM379733 1 0.0000 0.8584 1.000 0.000 0.000 0.000
#> GSM379734 1 0.0000 0.8584 1.000 0.000 0.000 0.000
#> GSM379735 3 0.2647 0.9620 0.120 0.000 0.880 0.000
#> GSM379736 1 0.4624 0.4505 0.660 0.000 0.000 0.340
#> GSM379742 2 0.4224 0.8773 0.000 0.812 0.044 0.144
#> GSM379743 3 0.2647 0.9620 0.120 0.000 0.880 0.000
#> GSM379740 1 0.0000 0.8584 1.000 0.000 0.000 0.000
#> GSM379741 2 0.4224 0.8773 0.000 0.812 0.044 0.144
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379833 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379834 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379827 2 0.0000 0.6009 0.000 1.000 0.000 0.000 0.000
#> GSM379828 2 0.0000 0.6009 0.000 1.000 0.000 0.000 0.000
#> GSM379829 5 0.6731 0.7294 0.324 0.000 0.056 0.092 0.528
#> GSM379830 2 0.0162 0.5971 0.000 0.996 0.000 0.000 0.004
#> GSM379831 2 0.0000 0.6009 0.000 1.000 0.000 0.000 0.000
#> GSM379840 2 0.3483 0.5423 0.000 0.848 0.052 0.088 0.012
#> GSM379841 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379842 2 0.0880 0.6198 0.000 0.968 0.000 0.000 0.032
#> GSM379835 2 0.0000 0.6009 0.000 1.000 0.000 0.000 0.000
#> GSM379836 2 0.3483 0.5423 0.000 0.848 0.052 0.088 0.012
#> GSM379837 5 0.7618 0.8029 0.272 0.052 0.056 0.092 0.528
#> GSM379838 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379839 5 0.7618 0.8029 0.272 0.052 0.056 0.092 0.528
#> GSM379848 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379849 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379850 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379843 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379844 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379845 5 0.7546 0.5225 0.044 0.284 0.056 0.092 0.524
#> GSM379846 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379847 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379853 2 0.0000 0.6009 0.000 1.000 0.000 0.000 0.000
#> GSM379854 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379851 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379852 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379804 1 0.2890 0.7325 0.836 0.000 0.004 0.160 0.000
#> GSM379805 1 0.4161 0.2900 0.608 0.000 0.000 0.392 0.000
#> GSM379806 4 0.4300 0.1608 0.476 0.000 0.000 0.524 0.000
#> GSM379799 4 0.1908 0.8085 0.092 0.000 0.000 0.908 0.000
#> GSM379800 4 0.1908 0.8085 0.092 0.000 0.000 0.908 0.000
#> GSM379801 4 0.2377 0.7777 0.128 0.000 0.000 0.872 0.000
#> GSM379802 4 0.1908 0.8085 0.092 0.000 0.000 0.908 0.000
#> GSM379803 4 0.4645 0.5592 0.072 0.000 0.204 0.724 0.000
#> GSM379812 3 0.1851 0.9311 0.088 0.000 0.912 0.000 0.000
#> GSM379813 1 0.1121 0.8394 0.956 0.000 0.044 0.000 0.000
#> GSM379814 1 0.0162 0.8759 0.996 0.000 0.004 0.000 0.000
#> GSM379807 1 0.4283 0.0446 0.544 0.000 0.000 0.456 0.000
#> GSM379808 4 0.4300 0.1608 0.476 0.000 0.000 0.524 0.000
#> GSM379809 1 0.0162 0.8759 0.996 0.000 0.004 0.000 0.000
#> GSM379810 1 0.0162 0.8759 0.996 0.000 0.004 0.000 0.000
#> GSM379811 4 0.2074 0.8023 0.104 0.000 0.000 0.896 0.000
#> GSM379820 1 0.0162 0.8759 0.996 0.000 0.004 0.000 0.000
#> GSM379821 3 0.1341 0.9423 0.056 0.000 0.944 0.000 0.000
#> GSM379822 3 0.1341 0.9423 0.056 0.000 0.944 0.000 0.000
#> GSM379815 1 0.0865 0.8605 0.972 0.000 0.004 0.024 0.000
#> GSM379816 3 0.1410 0.9456 0.060 0.000 0.940 0.000 0.000
#> GSM379817 1 0.1121 0.8394 0.956 0.000 0.044 0.000 0.000
#> GSM379818 4 0.1908 0.8085 0.092 0.000 0.000 0.908 0.000
#> GSM379819 1 0.4126 0.3265 0.620 0.000 0.000 0.380 0.000
#> GSM379825 4 0.1908 0.8085 0.092 0.000 0.000 0.908 0.000
#> GSM379826 1 0.1121 0.8394 0.956 0.000 0.044 0.000 0.000
#> GSM379823 3 0.1410 0.9456 0.060 0.000 0.940 0.000 0.000
#> GSM379824 3 0.1341 0.9423 0.056 0.000 0.944 0.000 0.000
#> GSM379749 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379750 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379751 2 0.0000 0.6009 0.000 1.000 0.000 0.000 0.000
#> GSM379744 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379745 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379746 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379747 2 0.0000 0.6009 0.000 1.000 0.000 0.000 0.000
#> GSM379748 2 0.0000 0.6009 0.000 1.000 0.000 0.000 0.000
#> GSM379757 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379758 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379752 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379753 2 0.0000 0.6009 0.000 1.000 0.000 0.000 0.000
#> GSM379754 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379755 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379756 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379764 2 0.0794 0.6177 0.000 0.972 0.000 0.000 0.028
#> GSM379765 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379766 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379759 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379760 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379761 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379762 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379763 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379769 2 0.0794 0.6177 0.000 0.972 0.000 0.000 0.028
#> GSM379770 2 0.0794 0.6177 0.000 0.972 0.000 0.000 0.028
#> GSM379767 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379768 2 0.4291 0.8073 0.000 0.536 0.000 0.000 0.464
#> GSM379776 1 0.4126 0.3265 0.620 0.000 0.000 0.380 0.000
#> GSM379777 3 0.4949 0.5563 0.056 0.000 0.656 0.288 0.000
#> GSM379778 2 0.0290 0.5938 0.000 0.992 0.000 0.000 0.008
#> GSM379771 1 0.0162 0.8759 0.996 0.000 0.004 0.000 0.000
#> GSM379772 1 0.0162 0.8759 0.996 0.000 0.004 0.000 0.000
#> GSM379773 1 0.0162 0.8759 0.996 0.000 0.004 0.000 0.000
#> GSM379774 1 0.0162 0.8759 0.996 0.000 0.004 0.000 0.000
#> GSM379775 1 0.0162 0.8759 0.996 0.000 0.004 0.000 0.000
#> GSM379784 3 0.1410 0.9456 0.060 0.000 0.940 0.000 0.000
#> GSM379785 1 0.0404 0.8704 0.988 0.000 0.012 0.000 0.000
#> GSM379786 3 0.1410 0.9456 0.060 0.000 0.940 0.000 0.000
#> GSM379779 1 0.3086 0.7035 0.816 0.000 0.004 0.180 0.000
#> GSM379780 1 0.0404 0.8704 0.988 0.000 0.012 0.000 0.000
#> GSM379781 1 0.0404 0.8704 0.988 0.000 0.012 0.000 0.000
#> GSM379782 2 0.0290 0.5938 0.000 0.992 0.000 0.000 0.008
#> GSM379783 3 0.1410 0.9456 0.060 0.000 0.940 0.000 0.000
#> GSM379792 1 0.4126 0.3265 0.620 0.000 0.000 0.380 0.000
#> GSM379793 1 0.0162 0.8759 0.996 0.000 0.004 0.000 0.000
#> GSM379794 1 0.0162 0.8759 0.996 0.000 0.004 0.000 0.000
#> GSM379787 2 0.0290 0.5938 0.000 0.992 0.000 0.000 0.008
#> GSM379788 3 0.1410 0.9456 0.060 0.000 0.940 0.000 0.000
#> GSM379789 1 0.0162 0.8759 0.996 0.000 0.004 0.000 0.000
#> GSM379790 1 0.4114 0.3367 0.624 0.000 0.000 0.376 0.000
#> GSM379791 1 0.0162 0.8759 0.996 0.000 0.004 0.000 0.000
#> GSM379797 4 0.1908 0.8085 0.092 0.000 0.000 0.908 0.000
#> GSM379798 1 0.3983 0.4241 0.660 0.000 0.000 0.340 0.000
#> GSM379795 1 0.0162 0.8759 0.996 0.000 0.004 0.000 0.000
#> GSM379796 1 0.4126 0.3265 0.620 0.000 0.000 0.380 0.000
#> GSM379721 1 0.0162 0.8749 0.996 0.000 0.004 0.000 0.000
#> GSM379722 1 0.0162 0.8749 0.996 0.000 0.004 0.000 0.000
#> GSM379723 1 0.0000 0.8758 1.000 0.000 0.000 0.000 0.000
#> GSM379716 1 0.0000 0.8758 1.000 0.000 0.000 0.000 0.000
#> GSM379717 1 0.0000 0.8758 1.000 0.000 0.000 0.000 0.000
#> GSM379718 1 0.0000 0.8758 1.000 0.000 0.000 0.000 0.000
#> GSM379719 1 0.0162 0.8749 0.996 0.000 0.004 0.000 0.000
#> GSM379720 1 0.0162 0.8749 0.996 0.000 0.004 0.000 0.000
#> GSM379729 3 0.2074 0.9362 0.104 0.000 0.896 0.000 0.000
#> GSM379730 3 0.2074 0.9362 0.104 0.000 0.896 0.000 0.000
#> GSM379731 3 0.2074 0.9362 0.104 0.000 0.896 0.000 0.000
#> GSM379724 1 0.0000 0.8758 1.000 0.000 0.000 0.000 0.000
#> GSM379725 3 0.2074 0.9362 0.104 0.000 0.896 0.000 0.000
#> GSM379726 1 0.0000 0.8758 1.000 0.000 0.000 0.000 0.000
#> GSM379727 1 0.0000 0.8758 1.000 0.000 0.000 0.000 0.000
#> GSM379728 1 0.3730 0.5267 0.712 0.000 0.000 0.288 0.000
#> GSM379737 1 0.0000 0.8758 1.000 0.000 0.000 0.000 0.000
#> GSM379738 1 0.0000 0.8758 1.000 0.000 0.000 0.000 0.000
#> GSM379739 1 0.0000 0.8758 1.000 0.000 0.000 0.000 0.000
#> GSM379732 3 0.2074 0.9362 0.104 0.000 0.896 0.000 0.000
#> GSM379733 1 0.0000 0.8758 1.000 0.000 0.000 0.000 0.000
#> GSM379734 1 0.0000 0.8758 1.000 0.000 0.000 0.000 0.000
#> GSM379735 3 0.2074 0.9362 0.104 0.000 0.896 0.000 0.000
#> GSM379736 1 0.4060 0.3725 0.640 0.000 0.000 0.360 0.000
#> GSM379742 2 0.0290 0.5938 0.000 0.992 0.000 0.000 0.008
#> GSM379743 3 0.2074 0.9362 0.104 0.000 0.896 0.000 0.000
#> GSM379740 1 0.0000 0.8758 1.000 0.000 0.000 0.000 0.000
#> GSM379741 2 0.0290 0.5938 0.000 0.992 0.000 0.000 0.008
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379833 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379834 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379827 5 0.3810 0.819 0.000 0.428 0.000 0.000 0.572 0.000
#> GSM379828 5 0.3810 0.819 0.000 0.428 0.000 0.000 0.572 0.000
#> GSM379829 6 0.1141 0.803 0.052 0.000 0.000 0.000 0.000 0.948
#> GSM379830 5 0.3937 0.817 0.000 0.424 0.000 0.000 0.572 0.004
#> GSM379831 5 0.3810 0.819 0.000 0.428 0.000 0.000 0.572 0.000
#> GSM379840 5 0.5658 0.716 0.000 0.416 0.000 0.000 0.432 0.152
#> GSM379841 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379842 5 0.3851 0.780 0.000 0.460 0.000 0.000 0.540 0.000
#> GSM379835 5 0.3810 0.819 0.000 0.428 0.000 0.000 0.572 0.000
#> GSM379836 5 0.5658 0.716 0.000 0.416 0.000 0.000 0.432 0.152
#> GSM379837 6 0.1141 0.864 0.000 0.000 0.000 0.000 0.052 0.948
#> GSM379838 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379839 6 0.1141 0.864 0.000 0.000 0.000 0.000 0.052 0.948
#> GSM379848 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379849 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379850 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379843 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379844 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379845 6 0.3534 0.674 0.000 0.008 0.000 0.000 0.276 0.716
#> GSM379846 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379847 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379853 5 0.3810 0.819 0.000 0.428 0.000 0.000 0.572 0.000
#> GSM379854 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379851 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379852 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379804 1 0.2848 0.755 0.828 0.000 0.004 0.160 0.008 0.000
#> GSM379805 1 0.4066 0.392 0.596 0.000 0.000 0.392 0.012 0.000
#> GSM379806 4 0.4116 0.162 0.416 0.000 0.000 0.572 0.012 0.000
#> GSM379799 4 0.0000 0.741 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379800 4 0.0000 0.741 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379801 4 0.1267 0.706 0.060 0.000 0.000 0.940 0.000 0.000
#> GSM379802 4 0.1765 0.703 0.000 0.000 0.000 0.904 0.096 0.000
#> GSM379803 4 0.3775 0.526 0.012 0.000 0.228 0.744 0.016 0.000
#> GSM379812 3 0.0790 0.928 0.032 0.000 0.968 0.000 0.000 0.000
#> GSM379813 1 0.1007 0.863 0.956 0.000 0.044 0.000 0.000 0.000
#> GSM379814 1 0.0146 0.893 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379807 1 0.4169 0.201 0.532 0.000 0.000 0.456 0.012 0.000
#> GSM379808 4 0.4116 0.162 0.416 0.000 0.000 0.572 0.012 0.000
#> GSM379809 1 0.0146 0.893 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379810 1 0.0146 0.893 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379811 4 0.0820 0.742 0.012 0.000 0.000 0.972 0.016 0.000
#> GSM379820 1 0.0146 0.893 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379821 3 0.0000 0.941 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379822 3 0.0000 0.941 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379815 1 0.0777 0.880 0.972 0.000 0.004 0.024 0.000 0.000
#> GSM379816 3 0.0146 0.944 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379817 1 0.1007 0.863 0.956 0.000 0.044 0.000 0.000 0.000
#> GSM379818 4 0.1765 0.703 0.000 0.000 0.000 0.904 0.096 0.000
#> GSM379819 1 0.4037 0.420 0.608 0.000 0.000 0.380 0.012 0.000
#> GSM379825 4 0.0146 0.741 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM379826 1 0.1007 0.863 0.956 0.000 0.044 0.000 0.000 0.000
#> GSM379823 3 0.0146 0.944 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379824 3 0.0000 0.941 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379749 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379750 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379751 5 0.3810 0.819 0.000 0.428 0.000 0.000 0.572 0.000
#> GSM379744 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379745 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379746 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379747 5 0.3810 0.819 0.000 0.428 0.000 0.000 0.572 0.000
#> GSM379748 5 0.3810 0.819 0.000 0.428 0.000 0.000 0.572 0.000
#> GSM379757 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379758 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379752 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379753 5 0.3810 0.819 0.000 0.428 0.000 0.000 0.572 0.000
#> GSM379754 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379755 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379756 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379764 5 0.3851 0.782 0.000 0.460 0.000 0.000 0.540 0.000
#> GSM379765 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379766 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379759 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379760 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379761 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379762 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379763 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379769 5 0.3851 0.782 0.000 0.460 0.000 0.000 0.540 0.000
#> GSM379770 5 0.3851 0.782 0.000 0.460 0.000 0.000 0.540 0.000
#> GSM379767 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379768 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379776 1 0.4037 0.420 0.608 0.000 0.000 0.380 0.012 0.000
#> GSM379777 3 0.3528 0.545 0.000 0.000 0.700 0.296 0.004 0.000
#> GSM379778 5 0.3017 0.404 0.000 0.108 0.000 0.000 0.840 0.052
#> GSM379771 1 0.0146 0.893 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379772 1 0.0146 0.893 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379773 1 0.0146 0.893 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379774 1 0.0146 0.893 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379775 1 0.0146 0.893 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379784 3 0.0146 0.944 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379785 1 0.0363 0.889 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM379786 3 0.0146 0.944 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379779 1 0.2772 0.740 0.816 0.000 0.004 0.180 0.000 0.000
#> GSM379780 1 0.0363 0.889 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM379781 1 0.0363 0.889 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM379782 5 0.3017 0.404 0.000 0.108 0.000 0.000 0.840 0.052
#> GSM379783 3 0.0146 0.944 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379792 1 0.4037 0.420 0.608 0.000 0.000 0.380 0.012 0.000
#> GSM379793 1 0.0146 0.893 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379794 1 0.0508 0.888 0.984 0.000 0.004 0.000 0.012 0.000
#> GSM379787 5 0.3017 0.404 0.000 0.108 0.000 0.000 0.840 0.052
#> GSM379788 3 0.0146 0.944 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379789 1 0.0146 0.893 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379790 1 0.4026 0.428 0.612 0.000 0.000 0.376 0.012 0.000
#> GSM379791 1 0.0146 0.893 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379797 4 0.1765 0.703 0.000 0.000 0.000 0.904 0.096 0.000
#> GSM379798 1 0.3912 0.497 0.648 0.000 0.000 0.340 0.012 0.000
#> GSM379795 1 0.0146 0.893 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379796 1 0.4037 0.420 0.608 0.000 0.000 0.380 0.012 0.000
#> GSM379721 1 0.0146 0.892 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379722 1 0.0146 0.892 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379723 1 0.0000 0.893 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379716 1 0.0000 0.893 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379717 1 0.0000 0.893 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379718 1 0.0000 0.893 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379719 1 0.0146 0.892 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379720 1 0.0146 0.892 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379729 3 0.1075 0.935 0.048 0.000 0.952 0.000 0.000 0.000
#> GSM379730 3 0.1075 0.935 0.048 0.000 0.952 0.000 0.000 0.000
#> GSM379731 3 0.1075 0.935 0.048 0.000 0.952 0.000 0.000 0.000
#> GSM379724 1 0.0000 0.893 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379725 3 0.1075 0.935 0.048 0.000 0.952 0.000 0.000 0.000
#> GSM379726 1 0.0000 0.893 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379727 1 0.0000 0.893 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379728 1 0.3690 0.581 0.700 0.000 0.000 0.288 0.012 0.000
#> GSM379737 1 0.0000 0.893 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379738 1 0.0000 0.893 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379739 1 0.0000 0.893 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379732 3 0.1075 0.935 0.048 0.000 0.952 0.000 0.000 0.000
#> GSM379733 1 0.0000 0.893 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379734 1 0.0000 0.893 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379735 3 0.1075 0.935 0.048 0.000 0.952 0.000 0.000 0.000
#> GSM379736 1 0.3992 0.450 0.624 0.000 0.000 0.364 0.012 0.000
#> GSM379742 5 0.3017 0.404 0.000 0.108 0.000 0.000 0.840 0.052
#> GSM379743 3 0.1075 0.935 0.048 0.000 0.952 0.000 0.000 0.000
#> GSM379740 1 0.0000 0.893 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379741 5 0.3017 0.404 0.000 0.108 0.000 0.000 0.840 0.052
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> ATC:hclust 139 5.46e-22 1.000 1.0000 2
#> ATC:hclust 125 1.76e-22 0.967 0.1681 3
#> ATC:hclust 127 4.72e-21 0.816 0.0380 4
#> ATC:hclust 128 2.69e-23 0.908 0.0759 5
#> ATC:hclust 123 4.30e-24 0.772 0.0573 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.992 0.997 0.4839 0.515 0.515
#> 3 3 0.659 0.793 0.807 0.3034 0.800 0.629
#> 4 4 0.611 0.411 0.684 0.1255 0.808 0.546
#> 5 5 0.625 0.553 0.731 0.0696 0.926 0.760
#> 6 6 0.707 0.665 0.754 0.0501 0.940 0.774
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.0000 0.992 0.000 1.000
#> GSM379833 2 0.0000 0.992 0.000 1.000
#> GSM379834 2 0.0000 0.992 0.000 1.000
#> GSM379827 2 0.0000 0.992 0.000 1.000
#> GSM379828 2 0.0000 0.992 0.000 1.000
#> GSM379829 1 0.0000 1.000 1.000 0.000
#> GSM379830 2 0.0000 0.992 0.000 1.000
#> GSM379831 2 0.0000 0.992 0.000 1.000
#> GSM379840 2 0.9732 0.322 0.404 0.596
#> GSM379841 2 0.0000 0.992 0.000 1.000
#> GSM379842 2 0.0000 0.992 0.000 1.000
#> GSM379835 2 0.0000 0.992 0.000 1.000
#> GSM379836 2 0.0000 0.992 0.000 1.000
#> GSM379837 1 0.0000 1.000 1.000 0.000
#> GSM379838 2 0.0000 0.992 0.000 1.000
#> GSM379839 1 0.0000 1.000 1.000 0.000
#> GSM379848 2 0.0000 0.992 0.000 1.000
#> GSM379849 2 0.0000 0.992 0.000 1.000
#> GSM379850 2 0.0000 0.992 0.000 1.000
#> GSM379843 2 0.0000 0.992 0.000 1.000
#> GSM379844 2 0.0000 0.992 0.000 1.000
#> GSM379845 2 0.0000 0.992 0.000 1.000
#> GSM379846 2 0.0000 0.992 0.000 1.000
#> GSM379847 2 0.0000 0.992 0.000 1.000
#> GSM379853 2 0.0000 0.992 0.000 1.000
#> GSM379854 2 0.0000 0.992 0.000 1.000
#> GSM379851 2 0.0000 0.992 0.000 1.000
#> GSM379852 2 0.0000 0.992 0.000 1.000
#> GSM379804 1 0.0000 1.000 1.000 0.000
#> GSM379805 1 0.0000 1.000 1.000 0.000
#> GSM379806 1 0.0000 1.000 1.000 0.000
#> GSM379799 1 0.0000 1.000 1.000 0.000
#> GSM379800 1 0.0000 1.000 1.000 0.000
#> GSM379801 1 0.0000 1.000 1.000 0.000
#> GSM379802 1 0.0000 1.000 1.000 0.000
#> GSM379803 1 0.0000 1.000 1.000 0.000
#> GSM379812 1 0.0000 1.000 1.000 0.000
#> GSM379813 1 0.0000 1.000 1.000 0.000
#> GSM379814 1 0.0000 1.000 1.000 0.000
#> GSM379807 1 0.0000 1.000 1.000 0.000
#> GSM379808 1 0.0000 1.000 1.000 0.000
#> GSM379809 1 0.0000 1.000 1.000 0.000
#> GSM379810 1 0.0000 1.000 1.000 0.000
#> GSM379811 1 0.0000 1.000 1.000 0.000
#> GSM379820 1 0.0000 1.000 1.000 0.000
#> GSM379821 1 0.0000 1.000 1.000 0.000
#> GSM379822 1 0.0000 1.000 1.000 0.000
#> GSM379815 1 0.0000 1.000 1.000 0.000
#> GSM379816 1 0.0000 1.000 1.000 0.000
#> GSM379817 1 0.0000 1.000 1.000 0.000
#> GSM379818 1 0.0000 1.000 1.000 0.000
#> GSM379819 1 0.0000 1.000 1.000 0.000
#> GSM379825 1 0.0000 1.000 1.000 0.000
#> GSM379826 1 0.0000 1.000 1.000 0.000
#> GSM379823 1 0.0000 1.000 1.000 0.000
#> GSM379824 1 0.0000 1.000 1.000 0.000
#> GSM379749 2 0.0000 0.992 0.000 1.000
#> GSM379750 2 0.0000 0.992 0.000 1.000
#> GSM379751 2 0.0000 0.992 0.000 1.000
#> GSM379744 2 0.0000 0.992 0.000 1.000
#> GSM379745 2 0.0000 0.992 0.000 1.000
#> GSM379746 2 0.0000 0.992 0.000 1.000
#> GSM379747 2 0.0000 0.992 0.000 1.000
#> GSM379748 2 0.0000 0.992 0.000 1.000
#> GSM379757 2 0.0000 0.992 0.000 1.000
#> GSM379758 2 0.0000 0.992 0.000 1.000
#> GSM379752 2 0.0000 0.992 0.000 1.000
#> GSM379753 2 0.0000 0.992 0.000 1.000
#> GSM379754 2 0.0000 0.992 0.000 1.000
#> GSM379755 2 0.0000 0.992 0.000 1.000
#> GSM379756 2 0.0000 0.992 0.000 1.000
#> GSM379764 2 0.0000 0.992 0.000 1.000
#> GSM379765 2 0.0000 0.992 0.000 1.000
#> GSM379766 2 0.0000 0.992 0.000 1.000
#> GSM379759 2 0.0000 0.992 0.000 1.000
#> GSM379760 2 0.0000 0.992 0.000 1.000
#> GSM379761 2 0.0000 0.992 0.000 1.000
#> GSM379762 2 0.0000 0.992 0.000 1.000
#> GSM379763 2 0.0000 0.992 0.000 1.000
#> GSM379769 2 0.0000 0.992 0.000 1.000
#> GSM379770 2 0.0000 0.992 0.000 1.000
#> GSM379767 2 0.0000 0.992 0.000 1.000
#> GSM379768 2 0.0000 0.992 0.000 1.000
#> GSM379776 1 0.0000 1.000 1.000 0.000
#> GSM379777 1 0.0000 1.000 1.000 0.000
#> GSM379778 1 0.0000 1.000 1.000 0.000
#> GSM379771 1 0.0000 1.000 1.000 0.000
#> GSM379772 1 0.0000 1.000 1.000 0.000
#> GSM379773 1 0.0000 1.000 1.000 0.000
#> GSM379774 1 0.0000 1.000 1.000 0.000
#> GSM379775 1 0.0000 1.000 1.000 0.000
#> GSM379784 1 0.0000 1.000 1.000 0.000
#> GSM379785 1 0.0000 1.000 1.000 0.000
#> GSM379786 1 0.0000 1.000 1.000 0.000
#> GSM379779 1 0.0000 1.000 1.000 0.000
#> GSM379780 1 0.0000 1.000 1.000 0.000
#> GSM379781 1 0.0000 1.000 1.000 0.000
#> GSM379782 2 0.0000 0.992 0.000 1.000
#> GSM379783 1 0.0000 1.000 1.000 0.000
#> GSM379792 1 0.0000 1.000 1.000 0.000
#> GSM379793 1 0.0000 1.000 1.000 0.000
#> GSM379794 1 0.0000 1.000 1.000 0.000
#> GSM379787 2 0.0938 0.981 0.012 0.988
#> GSM379788 1 0.0000 1.000 1.000 0.000
#> GSM379789 1 0.0000 1.000 1.000 0.000
#> GSM379790 1 0.0000 1.000 1.000 0.000
#> GSM379791 1 0.0000 1.000 1.000 0.000
#> GSM379797 1 0.0000 1.000 1.000 0.000
#> GSM379798 1 0.0000 1.000 1.000 0.000
#> GSM379795 1 0.0000 1.000 1.000 0.000
#> GSM379796 1 0.0000 1.000 1.000 0.000
#> GSM379721 1 0.0000 1.000 1.000 0.000
#> GSM379722 1 0.0000 1.000 1.000 0.000
#> GSM379723 1 0.0000 1.000 1.000 0.000
#> GSM379716 1 0.0000 1.000 1.000 0.000
#> GSM379717 1 0.0000 1.000 1.000 0.000
#> GSM379718 1 0.0000 1.000 1.000 0.000
#> GSM379719 1 0.0000 1.000 1.000 0.000
#> GSM379720 1 0.0000 1.000 1.000 0.000
#> GSM379729 1 0.0000 1.000 1.000 0.000
#> GSM379730 1 0.0000 1.000 1.000 0.000
#> GSM379731 1 0.0000 1.000 1.000 0.000
#> GSM379724 1 0.0000 1.000 1.000 0.000
#> GSM379725 1 0.0000 1.000 1.000 0.000
#> GSM379726 1 0.0000 1.000 1.000 0.000
#> GSM379727 1 0.0000 1.000 1.000 0.000
#> GSM379728 1 0.0000 1.000 1.000 0.000
#> GSM379737 1 0.0000 1.000 1.000 0.000
#> GSM379738 1 0.0000 1.000 1.000 0.000
#> GSM379739 1 0.0000 1.000 1.000 0.000
#> GSM379732 1 0.0000 1.000 1.000 0.000
#> GSM379733 1 0.0000 1.000 1.000 0.000
#> GSM379734 1 0.0000 1.000 1.000 0.000
#> GSM379735 1 0.0000 1.000 1.000 0.000
#> GSM379736 1 0.0000 1.000 1.000 0.000
#> GSM379742 2 0.0000 0.992 0.000 1.000
#> GSM379743 1 0.0000 1.000 1.000 0.000
#> GSM379740 1 0.0000 1.000 1.000 0.000
#> GSM379741 2 0.0000 0.992 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379833 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379834 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379827 2 0.5327 0.8165 0.272 0.728 0.000
#> GSM379828 2 0.5327 0.8165 0.272 0.728 0.000
#> GSM379829 1 0.4178 0.8066 0.828 0.000 0.172
#> GSM379830 2 0.5397 0.8116 0.280 0.720 0.000
#> GSM379831 2 0.5327 0.8165 0.272 0.728 0.000
#> GSM379840 3 0.8958 0.3385 0.280 0.168 0.552
#> GSM379841 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379842 2 0.3686 0.8761 0.140 0.860 0.000
#> GSM379835 2 0.5327 0.8165 0.272 0.728 0.000
#> GSM379836 2 0.8727 0.6669 0.280 0.572 0.148
#> GSM379837 3 0.5397 0.5225 0.280 0.000 0.720
#> GSM379838 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379839 3 0.6260 0.3326 0.448 0.000 0.552
#> GSM379848 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379849 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379850 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379843 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379844 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379845 2 0.7277 0.7648 0.280 0.660 0.060
#> GSM379846 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379847 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379853 2 0.5397 0.8116 0.280 0.720 0.000
#> GSM379854 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379851 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379852 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379804 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379805 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379806 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379799 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379800 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379801 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379802 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379803 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379812 3 0.0000 0.7913 0.000 0.000 1.000
#> GSM379813 3 0.2066 0.7959 0.060 0.000 0.940
#> GSM379814 3 0.2066 0.7959 0.060 0.000 0.940
#> GSM379807 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379808 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379809 3 0.5988 0.1588 0.368 0.000 0.632
#> GSM379810 3 0.2796 0.7865 0.092 0.000 0.908
#> GSM379811 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379820 3 0.2796 0.7865 0.092 0.000 0.908
#> GSM379821 3 0.0000 0.7913 0.000 0.000 1.000
#> GSM379822 3 0.0000 0.7913 0.000 0.000 1.000
#> GSM379815 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379816 3 0.3619 0.6733 0.136 0.000 0.864
#> GSM379817 3 0.2066 0.7959 0.060 0.000 0.940
#> GSM379818 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379819 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379825 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379826 3 0.2165 0.7951 0.064 0.000 0.936
#> GSM379823 3 0.0424 0.7880 0.008 0.000 0.992
#> GSM379824 1 0.6111 0.7845 0.604 0.000 0.396
#> GSM379749 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379750 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379751 2 0.7188 0.7683 0.280 0.664 0.056
#> GSM379744 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379745 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379746 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379747 2 0.5397 0.8116 0.280 0.720 0.000
#> GSM379748 2 0.5291 0.8186 0.268 0.732 0.000
#> GSM379757 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379758 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379752 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379753 2 0.5397 0.8116 0.280 0.720 0.000
#> GSM379754 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379755 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379756 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379764 2 0.3619 0.8776 0.136 0.864 0.000
#> GSM379765 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379766 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379759 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379760 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379761 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379762 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379763 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379769 2 0.4121 0.8640 0.168 0.832 0.000
#> GSM379770 2 0.3879 0.8709 0.152 0.848 0.000
#> GSM379767 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379768 2 0.0000 0.9272 0.000 1.000 0.000
#> GSM379776 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379777 1 0.5859 0.8892 0.656 0.000 0.344
#> GSM379778 3 0.4555 0.6057 0.200 0.000 0.800
#> GSM379771 3 0.6168 -0.0500 0.412 0.000 0.588
#> GSM379772 3 0.2796 0.7865 0.092 0.000 0.908
#> GSM379773 3 0.0000 0.7913 0.000 0.000 1.000
#> GSM379774 3 0.2796 0.7865 0.092 0.000 0.908
#> GSM379775 3 0.5016 0.5572 0.240 0.000 0.760
#> GSM379784 3 0.0424 0.7880 0.008 0.000 0.992
#> GSM379785 3 0.0000 0.7913 0.000 0.000 1.000
#> GSM379786 3 0.2066 0.7478 0.060 0.000 0.940
#> GSM379779 3 0.2959 0.7789 0.100 0.000 0.900
#> GSM379780 3 0.2066 0.7959 0.060 0.000 0.940
#> GSM379781 3 0.0000 0.7913 0.000 0.000 1.000
#> GSM379782 3 0.7782 0.4705 0.208 0.124 0.668
#> GSM379783 3 0.2878 0.7136 0.096 0.000 0.904
#> GSM379792 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379793 3 0.2066 0.7959 0.060 0.000 0.940
#> GSM379794 3 0.2796 0.7865 0.092 0.000 0.908
#> GSM379787 3 0.6850 0.5278 0.208 0.072 0.720
#> GSM379788 3 0.0000 0.7913 0.000 0.000 1.000
#> GSM379789 3 0.2165 0.7951 0.064 0.000 0.936
#> GSM379790 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379791 3 0.2066 0.7959 0.060 0.000 0.940
#> GSM379797 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379798 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379795 3 0.2066 0.7959 0.060 0.000 0.940
#> GSM379796 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379721 3 0.2796 0.7865 0.092 0.000 0.908
#> GSM379722 3 0.2448 0.7925 0.076 0.000 0.924
#> GSM379723 3 0.6168 -0.0500 0.412 0.000 0.588
#> GSM379716 1 0.5560 0.9496 0.700 0.000 0.300
#> GSM379717 3 0.6180 -0.0703 0.416 0.000 0.584
#> GSM379718 3 0.6045 0.1000 0.380 0.000 0.620
#> GSM379719 3 0.2796 0.7865 0.092 0.000 0.908
#> GSM379720 3 0.6168 -0.0509 0.412 0.000 0.588
#> GSM379729 3 0.2066 0.7478 0.060 0.000 0.940
#> GSM379730 3 0.0424 0.7880 0.008 0.000 0.992
#> GSM379731 3 0.0000 0.7913 0.000 0.000 1.000
#> GSM379724 3 0.2796 0.7865 0.092 0.000 0.908
#> GSM379725 3 0.0424 0.7880 0.008 0.000 0.992
#> GSM379726 3 0.4796 0.5953 0.220 0.000 0.780
#> GSM379727 3 0.2796 0.7865 0.092 0.000 0.908
#> GSM379728 3 0.6180 -0.0703 0.416 0.000 0.584
#> GSM379737 3 0.2796 0.7865 0.092 0.000 0.908
#> GSM379738 3 0.2796 0.7865 0.092 0.000 0.908
#> GSM379739 3 0.2796 0.7865 0.092 0.000 0.908
#> GSM379732 3 0.0424 0.7880 0.008 0.000 0.992
#> GSM379733 3 0.2796 0.7865 0.092 0.000 0.908
#> GSM379734 3 0.2796 0.7865 0.092 0.000 0.908
#> GSM379735 3 0.0424 0.7880 0.008 0.000 0.992
#> GSM379736 1 0.5397 0.9795 0.720 0.000 0.280
#> GSM379742 2 0.8379 0.6858 0.208 0.624 0.168
#> GSM379743 3 0.0424 0.7880 0.008 0.000 0.992
#> GSM379740 3 0.2796 0.7865 0.092 0.000 0.908
#> GSM379741 3 0.9627 -0.0744 0.208 0.364 0.428
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.2011 0.91517 0.000 0.920 0.080 0.000
#> GSM379833 2 0.2011 0.91517 0.000 0.920 0.080 0.000
#> GSM379834 2 0.2011 0.91517 0.000 0.920 0.080 0.000
#> GSM379827 4 0.5151 -0.15389 0.000 0.464 0.004 0.532
#> GSM379828 4 0.5151 -0.15389 0.000 0.464 0.004 0.532
#> GSM379829 4 0.6170 0.22219 0.136 0.000 0.192 0.672
#> GSM379830 4 0.5383 -0.13173 0.000 0.452 0.012 0.536
#> GSM379831 4 0.5151 -0.15389 0.000 0.464 0.004 0.532
#> GSM379840 4 0.8226 0.04251 0.084 0.112 0.268 0.536
#> GSM379841 2 0.1716 0.91688 0.000 0.936 0.064 0.000
#> GSM379842 2 0.5559 0.64569 0.000 0.696 0.064 0.240
#> GSM379835 4 0.4981 -0.15195 0.000 0.464 0.000 0.536
#> GSM379836 4 0.6726 -0.00724 0.000 0.364 0.100 0.536
#> GSM379837 4 0.6898 -0.13001 0.116 0.000 0.360 0.524
#> GSM379838 2 0.1302 0.92079 0.000 0.956 0.044 0.000
#> GSM379839 4 0.6015 -0.01095 0.080 0.000 0.268 0.652
#> GSM379848 2 0.1474 0.91941 0.000 0.948 0.052 0.000
#> GSM379849 2 0.1716 0.91688 0.000 0.936 0.064 0.000
#> GSM379850 2 0.1716 0.91688 0.000 0.936 0.064 0.000
#> GSM379843 2 0.1716 0.91688 0.000 0.936 0.064 0.000
#> GSM379844 2 0.1716 0.91688 0.000 0.936 0.064 0.000
#> GSM379845 4 0.6688 -0.01239 0.000 0.368 0.096 0.536
#> GSM379846 2 0.1716 0.91688 0.000 0.936 0.064 0.000
#> GSM379847 2 0.1716 0.91688 0.000 0.936 0.064 0.000
#> GSM379853 4 0.5594 -0.16157 0.000 0.460 0.020 0.520
#> GSM379854 2 0.1474 0.91941 0.000 0.948 0.052 0.000
#> GSM379851 2 0.2048 0.91376 0.000 0.928 0.064 0.008
#> GSM379852 2 0.1716 0.91688 0.000 0.936 0.064 0.000
#> GSM379804 1 0.7883 -0.18407 0.364 0.000 0.352 0.284
#> GSM379805 4 0.7468 0.31313 0.184 0.000 0.352 0.464
#> GSM379806 4 0.7468 0.31313 0.184 0.000 0.352 0.464
#> GSM379799 4 0.7468 0.31313 0.184 0.000 0.352 0.464
#> GSM379800 4 0.7468 0.31313 0.184 0.000 0.352 0.464
#> GSM379801 4 0.7468 0.31313 0.184 0.000 0.352 0.464
#> GSM379802 4 0.7489 0.31074 0.184 0.000 0.364 0.452
#> GSM379803 4 0.7489 0.31074 0.184 0.000 0.364 0.452
#> GSM379812 1 0.4888 -0.10014 0.588 0.000 0.412 0.000
#> GSM379813 1 0.3569 0.38774 0.804 0.000 0.196 0.000
#> GSM379814 1 0.2281 0.50696 0.904 0.000 0.096 0.000
#> GSM379807 3 0.7919 -0.22007 0.324 0.000 0.352 0.324
#> GSM379808 4 0.7468 0.31313 0.184 0.000 0.352 0.464
#> GSM379809 1 0.3245 0.48311 0.872 0.000 0.100 0.028
#> GSM379810 1 0.0000 0.55096 1.000 0.000 0.000 0.000
#> GSM379811 4 0.7489 0.31074 0.184 0.000 0.364 0.452
#> GSM379820 1 0.1545 0.54022 0.952 0.000 0.040 0.008
#> GSM379821 1 0.4916 -0.11003 0.576 0.000 0.424 0.000
#> GSM379822 1 0.4916 -0.11003 0.576 0.000 0.424 0.000
#> GSM379815 1 0.6831 0.08273 0.536 0.000 0.352 0.112
#> GSM379816 1 0.5452 -0.15034 0.556 0.000 0.428 0.016
#> GSM379817 1 0.3569 0.38774 0.804 0.000 0.196 0.000
#> GSM379818 4 0.7489 0.31074 0.184 0.000 0.364 0.452
#> GSM379819 4 0.7827 0.21830 0.260 0.000 0.352 0.388
#> GSM379825 4 0.7468 0.31313 0.184 0.000 0.352 0.464
#> GSM379826 1 0.2973 0.46093 0.856 0.000 0.144 0.000
#> GSM379823 1 0.4907 -0.11422 0.580 0.000 0.420 0.000
#> GSM379824 3 0.6845 0.14997 0.308 0.000 0.564 0.128
#> GSM379749 2 0.0592 0.92253 0.000 0.984 0.016 0.000
#> GSM379750 2 0.0592 0.92253 0.000 0.984 0.016 0.000
#> GSM379751 4 0.6474 -0.03976 0.000 0.388 0.076 0.536
#> GSM379744 2 0.0592 0.92253 0.000 0.984 0.016 0.000
#> GSM379745 2 0.0592 0.92253 0.000 0.984 0.016 0.000
#> GSM379746 2 0.0592 0.92253 0.000 0.984 0.016 0.000
#> GSM379747 4 0.5590 -0.14649 0.000 0.456 0.020 0.524
#> GSM379748 4 0.5500 -0.16608 0.000 0.464 0.016 0.520
#> GSM379757 2 0.0336 0.92418 0.000 0.992 0.008 0.000
#> GSM379758 2 0.0000 0.92512 0.000 1.000 0.000 0.000
#> GSM379752 2 0.0592 0.92253 0.000 0.984 0.016 0.000
#> GSM379753 4 0.5388 -0.13970 0.000 0.456 0.012 0.532
#> GSM379754 2 0.0469 0.92354 0.000 0.988 0.012 0.000
#> GSM379755 2 0.0469 0.92354 0.000 0.988 0.012 0.000
#> GSM379756 2 0.0469 0.92354 0.000 0.988 0.012 0.000
#> GSM379764 2 0.4675 0.65330 0.000 0.736 0.020 0.244
#> GSM379765 2 0.0000 0.92512 0.000 1.000 0.000 0.000
#> GSM379766 2 0.0000 0.92512 0.000 1.000 0.000 0.000
#> GSM379759 2 0.0000 0.92512 0.000 1.000 0.000 0.000
#> GSM379760 2 0.0000 0.92512 0.000 1.000 0.000 0.000
#> GSM379761 2 0.0000 0.92512 0.000 1.000 0.000 0.000
#> GSM379762 2 0.0000 0.92512 0.000 1.000 0.000 0.000
#> GSM379763 2 0.0000 0.92512 0.000 1.000 0.000 0.000
#> GSM379769 2 0.4767 0.63656 0.000 0.724 0.020 0.256
#> GSM379770 2 0.4737 0.64120 0.000 0.728 0.020 0.252
#> GSM379767 2 0.0000 0.92512 0.000 1.000 0.000 0.000
#> GSM379768 2 0.0000 0.92512 0.000 1.000 0.000 0.000
#> GSM379776 3 0.7902 -0.25232 0.296 0.000 0.352 0.352
#> GSM379777 3 0.7188 0.17532 0.244 0.000 0.552 0.204
#> GSM379778 1 0.6937 -0.14285 0.508 0.000 0.376 0.116
#> GSM379771 1 0.4289 0.40155 0.796 0.000 0.172 0.032
#> GSM379772 1 0.0188 0.55061 0.996 0.000 0.004 0.000
#> GSM379773 1 0.3356 0.41425 0.824 0.000 0.176 0.000
#> GSM379774 1 0.0336 0.55001 0.992 0.000 0.008 0.000
#> GSM379775 1 0.2300 0.51947 0.920 0.000 0.064 0.016
#> GSM379784 1 0.4898 -0.09813 0.584 0.000 0.416 0.000
#> GSM379785 1 0.4277 0.21870 0.720 0.000 0.280 0.000
#> GSM379786 1 0.4916 -0.11246 0.576 0.000 0.424 0.000
#> GSM379779 1 0.0336 0.55001 0.992 0.000 0.008 0.000
#> GSM379780 1 0.2345 0.50657 0.900 0.000 0.100 0.000
#> GSM379781 1 0.3726 0.35696 0.788 0.000 0.212 0.000
#> GSM379782 3 0.9538 0.16949 0.292 0.112 0.332 0.264
#> GSM379783 1 0.5220 -0.12517 0.568 0.000 0.424 0.008
#> GSM379792 4 0.7613 0.28690 0.208 0.000 0.352 0.440
#> GSM379793 1 0.2345 0.50657 0.900 0.000 0.100 0.000
#> GSM379794 1 0.0336 0.55001 0.992 0.000 0.008 0.000
#> GSM379787 1 0.9419 -0.22502 0.324 0.096 0.316 0.264
#> GSM379788 1 0.4898 -0.09813 0.584 0.000 0.416 0.000
#> GSM379789 1 0.2345 0.50657 0.900 0.000 0.100 0.000
#> GSM379790 1 0.7674 -0.06681 0.428 0.000 0.352 0.220
#> GSM379791 1 0.2345 0.50657 0.900 0.000 0.100 0.000
#> GSM379797 4 0.7489 0.31074 0.184 0.000 0.364 0.452
#> GSM379798 1 0.7789 -0.12279 0.400 0.000 0.352 0.248
#> GSM379795 1 0.2345 0.50657 0.900 0.000 0.100 0.000
#> GSM379796 4 0.7468 0.31313 0.184 0.000 0.352 0.464
#> GSM379721 1 0.2281 0.54390 0.904 0.000 0.096 0.000
#> GSM379722 1 0.2345 0.54289 0.900 0.000 0.100 0.000
#> GSM379723 1 0.5085 0.38979 0.708 0.000 0.260 0.032
#> GSM379716 1 0.6052 0.19197 0.556 0.000 0.396 0.048
#> GSM379717 1 0.5085 0.38979 0.708 0.000 0.260 0.032
#> GSM379718 1 0.4137 0.46121 0.780 0.000 0.208 0.012
#> GSM379719 1 0.2281 0.54390 0.904 0.000 0.096 0.000
#> GSM379720 1 0.4319 0.44256 0.760 0.000 0.228 0.012
#> GSM379729 3 0.4999 0.21290 0.492 0.000 0.508 0.000
#> GSM379730 3 0.4999 0.21290 0.492 0.000 0.508 0.000
#> GSM379731 3 0.5000 0.19456 0.500 0.000 0.500 0.000
#> GSM379724 1 0.2281 0.54390 0.904 0.000 0.096 0.000
#> GSM379725 3 0.4998 0.21042 0.488 0.000 0.512 0.000
#> GSM379726 1 0.3196 0.51949 0.856 0.000 0.136 0.008
#> GSM379727 1 0.2281 0.54390 0.904 0.000 0.096 0.000
#> GSM379728 1 0.5085 0.38979 0.708 0.000 0.260 0.032
#> GSM379737 1 0.2281 0.54390 0.904 0.000 0.096 0.000
#> GSM379738 1 0.2281 0.54390 0.904 0.000 0.096 0.000
#> GSM379739 1 0.2345 0.54289 0.900 0.000 0.100 0.000
#> GSM379732 3 0.5000 0.19371 0.496 0.000 0.504 0.000
#> GSM379733 1 0.2281 0.54390 0.904 0.000 0.096 0.000
#> GSM379734 1 0.2281 0.54390 0.904 0.000 0.096 0.000
#> GSM379735 3 0.4999 0.21290 0.492 0.000 0.508 0.000
#> GSM379736 4 0.7468 0.31313 0.184 0.000 0.352 0.464
#> GSM379742 2 0.8774 0.13725 0.048 0.416 0.272 0.264
#> GSM379743 3 0.4999 0.21290 0.492 0.000 0.508 0.000
#> GSM379740 1 0.2281 0.54390 0.904 0.000 0.096 0.000
#> GSM379741 3 0.9707 0.11292 0.168 0.208 0.360 0.264
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 2 0.3818 0.8341 0.000 0.812 0.144 0.016 0.028
#> GSM379833 2 0.3775 0.8344 0.000 0.812 0.148 0.016 0.024
#> GSM379834 2 0.3775 0.8344 0.000 0.812 0.148 0.016 0.024
#> GSM379827 5 0.4880 0.6774 0.000 0.256 0.040 0.012 0.692
#> GSM379828 5 0.4880 0.6774 0.000 0.256 0.040 0.012 0.692
#> GSM379829 4 0.7515 0.1442 0.140 0.000 0.080 0.420 0.360
#> GSM379830 5 0.3395 0.7038 0.000 0.236 0.000 0.000 0.764
#> GSM379831 5 0.4394 0.6855 0.000 0.256 0.016 0.012 0.716
#> GSM379840 5 0.4538 0.6038 0.024 0.048 0.100 0.024 0.804
#> GSM379841 2 0.2625 0.8613 0.000 0.876 0.108 0.016 0.000
#> GSM379842 2 0.6249 0.2411 0.000 0.540 0.108 0.016 0.336
#> GSM379835 5 0.4190 0.6869 0.000 0.256 0.008 0.012 0.724
#> GSM379836 5 0.5213 0.7028 0.012 0.192 0.048 0.024 0.724
#> GSM379837 5 0.3631 0.5169 0.012 0.000 0.144 0.024 0.820
#> GSM379838 2 0.1544 0.8777 0.000 0.932 0.068 0.000 0.000
#> GSM379839 5 0.3907 0.5510 0.012 0.000 0.100 0.068 0.820
#> GSM379848 2 0.1671 0.8759 0.000 0.924 0.076 0.000 0.000
#> GSM379849 2 0.2068 0.8710 0.000 0.904 0.092 0.004 0.000
#> GSM379850 2 0.2233 0.8670 0.000 0.892 0.104 0.004 0.000
#> GSM379843 2 0.3122 0.8530 0.000 0.860 0.108 0.016 0.016
#> GSM379844 2 0.2573 0.8625 0.000 0.880 0.104 0.016 0.000
#> GSM379845 5 0.5091 0.7004 0.000 0.208 0.056 0.024 0.712
#> GSM379846 2 0.3019 0.8553 0.000 0.864 0.108 0.016 0.012
#> GSM379847 2 0.2233 0.8670 0.000 0.892 0.104 0.004 0.000
#> GSM379853 5 0.4506 0.6872 0.000 0.244 0.036 0.004 0.716
#> GSM379854 2 0.1732 0.8752 0.000 0.920 0.080 0.000 0.000
#> GSM379851 2 0.3709 0.8340 0.000 0.832 0.108 0.016 0.044
#> GSM379852 2 0.3019 0.8553 0.000 0.864 0.108 0.016 0.012
#> GSM379804 4 0.4909 0.3104 0.472 0.000 0.012 0.508 0.008
#> GSM379805 4 0.1924 0.8479 0.064 0.000 0.008 0.924 0.004
#> GSM379806 4 0.1638 0.8505 0.064 0.000 0.000 0.932 0.004
#> GSM379799 4 0.1764 0.8503 0.064 0.000 0.000 0.928 0.008
#> GSM379800 4 0.1764 0.8503 0.064 0.000 0.000 0.928 0.008
#> GSM379801 4 0.1764 0.8503 0.064 0.000 0.000 0.928 0.008
#> GSM379802 4 0.2141 0.8475 0.064 0.000 0.004 0.916 0.016
#> GSM379803 4 0.2275 0.8471 0.064 0.000 0.012 0.912 0.012
#> GSM379812 1 0.6161 -0.6495 0.444 0.000 0.424 0.000 0.132
#> GSM379813 1 0.3241 0.3507 0.832 0.000 0.144 0.000 0.024
#> GSM379814 1 0.1408 0.5078 0.948 0.000 0.044 0.000 0.008
#> GSM379807 4 0.4817 0.5432 0.368 0.000 0.016 0.608 0.008
#> GSM379808 4 0.1638 0.8505 0.064 0.000 0.000 0.932 0.004
#> GSM379809 1 0.2753 0.5486 0.876 0.000 0.012 0.104 0.008
#> GSM379810 1 0.1443 0.5578 0.948 0.000 0.004 0.044 0.004
#> GSM379811 4 0.2037 0.8485 0.064 0.000 0.004 0.920 0.012
#> GSM379820 1 0.2625 0.5439 0.900 0.000 0.040 0.048 0.012
#> GSM379821 1 0.6191 -0.6535 0.436 0.000 0.428 0.000 0.136
#> GSM379822 1 0.6220 -0.6600 0.432 0.000 0.428 0.000 0.140
#> GSM379815 1 0.4453 0.1805 0.660 0.000 0.008 0.324 0.008
#> GSM379816 3 0.6440 0.6696 0.412 0.000 0.412 0.000 0.176
#> GSM379817 1 0.3241 0.3507 0.832 0.000 0.144 0.000 0.024
#> GSM379818 4 0.2141 0.8475 0.064 0.000 0.004 0.916 0.016
#> GSM379819 4 0.4433 0.6741 0.280 0.000 0.016 0.696 0.008
#> GSM379825 4 0.1764 0.8503 0.064 0.000 0.000 0.928 0.008
#> GSM379826 1 0.2482 0.4534 0.892 0.000 0.084 0.000 0.024
#> GSM379823 1 0.6299 -0.6788 0.432 0.000 0.416 0.000 0.152
#> GSM379824 4 0.8292 -0.2243 0.276 0.000 0.276 0.324 0.124
#> GSM379749 2 0.1695 0.8683 0.000 0.940 0.044 0.008 0.008
#> GSM379750 2 0.1695 0.8683 0.000 0.940 0.044 0.008 0.008
#> GSM379751 5 0.3690 0.7084 0.000 0.224 0.012 0.000 0.764
#> GSM379744 2 0.1695 0.8683 0.000 0.940 0.044 0.008 0.008
#> GSM379745 2 0.1618 0.8687 0.000 0.944 0.040 0.008 0.008
#> GSM379746 2 0.1412 0.8723 0.000 0.952 0.036 0.008 0.004
#> GSM379747 5 0.4352 0.6954 0.000 0.244 0.036 0.000 0.720
#> GSM379748 5 0.5137 0.6710 0.000 0.256 0.044 0.020 0.680
#> GSM379757 2 0.0000 0.8852 0.000 1.000 0.000 0.000 0.000
#> GSM379758 2 0.0000 0.8852 0.000 1.000 0.000 0.000 0.000
#> GSM379752 2 0.1618 0.8687 0.000 0.944 0.040 0.008 0.008
#> GSM379753 5 0.4276 0.6962 0.000 0.244 0.032 0.000 0.724
#> GSM379754 2 0.0324 0.8837 0.000 0.992 0.004 0.004 0.000
#> GSM379755 2 0.0324 0.8837 0.000 0.992 0.004 0.004 0.000
#> GSM379756 2 0.0324 0.8837 0.000 0.992 0.004 0.004 0.000
#> GSM379764 2 0.4774 0.2525 0.000 0.612 0.028 0.000 0.360
#> GSM379765 2 0.0000 0.8852 0.000 1.000 0.000 0.000 0.000
#> GSM379766 2 0.0000 0.8852 0.000 1.000 0.000 0.000 0.000
#> GSM379759 2 0.0000 0.8852 0.000 1.000 0.000 0.000 0.000
#> GSM379760 2 0.0000 0.8852 0.000 1.000 0.000 0.000 0.000
#> GSM379761 2 0.0000 0.8852 0.000 1.000 0.000 0.000 0.000
#> GSM379762 2 0.0000 0.8852 0.000 1.000 0.000 0.000 0.000
#> GSM379763 2 0.0000 0.8852 0.000 1.000 0.000 0.000 0.000
#> GSM379769 2 0.4846 0.1701 0.000 0.588 0.028 0.000 0.384
#> GSM379770 2 0.5203 0.2292 0.000 0.600 0.032 0.012 0.356
#> GSM379767 2 0.0000 0.8852 0.000 1.000 0.000 0.000 0.000
#> GSM379768 2 0.0000 0.8852 0.000 1.000 0.000 0.000 0.000
#> GSM379776 4 0.4419 0.6008 0.344 0.000 0.008 0.644 0.004
#> GSM379777 3 0.8245 0.2739 0.236 0.000 0.344 0.296 0.124
#> GSM379778 5 0.7323 -0.3284 0.344 0.000 0.272 0.024 0.360
#> GSM379771 1 0.2280 0.5396 0.880 0.000 0.000 0.120 0.000
#> GSM379772 1 0.1121 0.5575 0.956 0.000 0.000 0.044 0.000
#> GSM379773 1 0.3961 0.3369 0.812 0.000 0.108 0.008 0.072
#> GSM379774 1 0.1282 0.5569 0.952 0.000 0.000 0.044 0.004
#> GSM379775 1 0.1732 0.5546 0.920 0.000 0.000 0.080 0.000
#> GSM379784 1 0.6239 -0.6558 0.452 0.000 0.404 0.000 0.144
#> GSM379785 1 0.4066 -0.1974 0.672 0.000 0.324 0.000 0.004
#> GSM379786 1 0.6394 -0.6921 0.428 0.000 0.404 0.000 0.168
#> GSM379779 1 0.1197 0.5577 0.952 0.000 0.000 0.048 0.000
#> GSM379780 1 0.1124 0.5093 0.960 0.000 0.036 0.000 0.004
#> GSM379781 1 0.3521 0.1217 0.764 0.000 0.232 0.000 0.004
#> GSM379782 5 0.7742 0.1216 0.244 0.032 0.244 0.024 0.456
#> GSM379783 1 0.6439 -0.7072 0.416 0.000 0.408 0.000 0.176
#> GSM379792 4 0.3910 0.7155 0.248 0.000 0.008 0.740 0.004
#> GSM379793 1 0.1041 0.5131 0.964 0.000 0.032 0.000 0.004
#> GSM379794 1 0.1443 0.5556 0.948 0.000 0.004 0.044 0.004
#> GSM379787 5 0.7632 0.1067 0.276 0.024 0.224 0.024 0.452
#> GSM379788 1 0.6239 -0.6558 0.452 0.000 0.404 0.000 0.144
#> GSM379789 1 0.1202 0.5137 0.960 0.000 0.032 0.004 0.004
#> GSM379790 1 0.4613 -0.0903 0.580 0.000 0.008 0.408 0.004
#> GSM379791 1 0.1041 0.5131 0.964 0.000 0.032 0.000 0.004
#> GSM379797 4 0.2037 0.8485 0.064 0.000 0.004 0.920 0.012
#> GSM379798 1 0.4680 -0.2092 0.540 0.000 0.008 0.448 0.004
#> GSM379795 1 0.1041 0.5131 0.964 0.000 0.032 0.000 0.004
#> GSM379796 4 0.1924 0.8479 0.064 0.000 0.008 0.924 0.004
#> GSM379721 1 0.4713 0.5298 0.676 0.000 0.280 0.044 0.000
#> GSM379722 1 0.4735 0.5264 0.672 0.000 0.284 0.044 0.000
#> GSM379723 1 0.5659 0.5074 0.604 0.000 0.280 0.116 0.000
#> GSM379716 1 0.6438 0.3988 0.500 0.000 0.280 0.220 0.000
#> GSM379717 1 0.5659 0.5074 0.604 0.000 0.280 0.116 0.000
#> GSM379718 1 0.5441 0.5161 0.624 0.000 0.280 0.096 0.000
#> GSM379719 1 0.4713 0.5298 0.676 0.000 0.280 0.044 0.000
#> GSM379720 1 0.5532 0.5131 0.616 0.000 0.280 0.104 0.000
#> GSM379729 3 0.6206 0.8653 0.296 0.000 0.532 0.000 0.172
#> GSM379730 3 0.6206 0.8653 0.296 0.000 0.532 0.000 0.172
#> GSM379731 3 0.6039 0.8398 0.300 0.000 0.552 0.000 0.148
#> GSM379724 1 0.4713 0.5298 0.676 0.000 0.280 0.044 0.000
#> GSM379725 3 0.6206 0.8653 0.296 0.000 0.532 0.000 0.172
#> GSM379726 1 0.4967 0.5273 0.660 0.000 0.280 0.060 0.000
#> GSM379727 1 0.4713 0.5298 0.676 0.000 0.280 0.044 0.000
#> GSM379728 1 0.5659 0.5074 0.604 0.000 0.280 0.116 0.000
#> GSM379737 1 0.4713 0.5298 0.676 0.000 0.280 0.044 0.000
#> GSM379738 1 0.4713 0.5298 0.676 0.000 0.280 0.044 0.000
#> GSM379739 1 0.4713 0.5298 0.676 0.000 0.280 0.044 0.000
#> GSM379732 3 0.6024 0.8438 0.296 0.000 0.556 0.000 0.148
#> GSM379733 1 0.4713 0.5298 0.676 0.000 0.280 0.044 0.000
#> GSM379734 1 0.4713 0.5298 0.676 0.000 0.280 0.044 0.000
#> GSM379735 3 0.6206 0.8653 0.296 0.000 0.532 0.000 0.172
#> GSM379736 4 0.1478 0.8500 0.064 0.000 0.000 0.936 0.000
#> GSM379742 5 0.7776 0.4226 0.048 0.204 0.280 0.016 0.452
#> GSM379743 3 0.6206 0.8653 0.296 0.000 0.532 0.000 0.172
#> GSM379740 1 0.4780 0.5290 0.672 0.000 0.280 0.048 0.000
#> GSM379741 5 0.7868 0.2880 0.100 0.116 0.308 0.016 0.460
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 2 0.4303 0.7617 0.020 0.672 0.000 0.000 0.016 NA
#> GSM379833 2 0.4303 0.7617 0.020 0.672 0.000 0.000 0.016 NA
#> GSM379834 2 0.4303 0.7617 0.020 0.672 0.000 0.000 0.016 NA
#> GSM379827 5 0.3087 0.7847 0.028 0.092 0.000 0.004 0.856 NA
#> GSM379828 5 0.3009 0.7858 0.024 0.092 0.000 0.004 0.860 NA
#> GSM379829 5 0.7588 0.1567 0.068 0.000 0.096 0.336 0.408 NA
#> GSM379830 5 0.1714 0.7905 0.000 0.092 0.000 0.000 0.908 NA
#> GSM379831 5 0.2487 0.7864 0.000 0.092 0.000 0.000 0.876 NA
#> GSM379840 5 0.4384 0.7441 0.108 0.036 0.004 0.020 0.788 NA
#> GSM379841 2 0.3360 0.7783 0.004 0.732 0.000 0.000 0.000 NA
#> GSM379842 2 0.6205 0.1315 0.004 0.368 0.000 0.000 0.356 NA
#> GSM379835 5 0.2163 0.7895 0.000 0.092 0.000 0.000 0.892 NA
#> GSM379836 5 0.3946 0.7785 0.056 0.088 0.000 0.004 0.808 NA
#> GSM379837 5 0.4075 0.7125 0.128 0.000 0.004 0.036 0.788 NA
#> GSM379838 2 0.2743 0.8068 0.008 0.828 0.000 0.000 0.000 NA
#> GSM379839 5 0.4146 0.7151 0.116 0.000 0.004 0.048 0.788 NA
#> GSM379848 2 0.2848 0.8044 0.008 0.816 0.000 0.000 0.000 NA
#> GSM379849 2 0.3245 0.7908 0.008 0.764 0.000 0.000 0.000 NA
#> GSM379850 2 0.3314 0.7815 0.004 0.740 0.000 0.000 0.000 NA
#> GSM379843 2 0.3543 0.7724 0.004 0.720 0.000 0.000 0.004 NA
#> GSM379844 2 0.3360 0.7783 0.004 0.732 0.000 0.000 0.000 NA
#> GSM379845 5 0.4420 0.7740 0.072 0.088 0.000 0.020 0.784 NA
#> GSM379846 2 0.3543 0.7724 0.004 0.720 0.000 0.000 0.004 NA
#> GSM379847 2 0.3360 0.7783 0.004 0.732 0.000 0.000 0.000 NA
#> GSM379853 5 0.2913 0.7838 0.012 0.092 0.000 0.000 0.860 NA
#> GSM379854 2 0.2848 0.8044 0.008 0.816 0.000 0.000 0.000 NA
#> GSM379851 2 0.4505 0.7354 0.004 0.668 0.000 0.000 0.056 NA
#> GSM379852 2 0.3543 0.7724 0.004 0.720 0.000 0.000 0.004 NA
#> GSM379804 3 0.5701 -0.0123 0.020 0.000 0.532 0.372 0.020 NA
#> GSM379805 4 0.2325 0.8710 0.000 0.000 0.048 0.900 0.008 NA
#> GSM379806 4 0.1364 0.8797 0.000 0.000 0.048 0.944 0.004 NA
#> GSM379799 4 0.1364 0.8797 0.000 0.000 0.048 0.944 0.004 NA
#> GSM379800 4 0.1364 0.8797 0.000 0.000 0.048 0.944 0.004 NA
#> GSM379801 4 0.1477 0.8794 0.000 0.000 0.048 0.940 0.004 NA
#> GSM379802 4 0.2143 0.8746 0.008 0.000 0.048 0.916 0.012 NA
#> GSM379803 4 0.2847 0.8689 0.012 0.000 0.048 0.880 0.012 NA
#> GSM379812 1 0.3905 0.8080 0.712 0.000 0.264 0.000 0.012 NA
#> GSM379813 3 0.3892 0.4015 0.208 0.000 0.752 0.000 0.020 NA
#> GSM379814 3 0.2784 0.5714 0.092 0.000 0.868 0.000 0.020 NA
#> GSM379807 4 0.5697 0.3530 0.016 0.000 0.424 0.484 0.020 NA
#> GSM379808 4 0.1364 0.8797 0.000 0.000 0.048 0.944 0.004 NA
#> GSM379809 3 0.2870 0.6202 0.024 0.000 0.884 0.044 0.020 NA
#> GSM379810 3 0.1718 0.6223 0.024 0.000 0.936 0.000 0.020 NA
#> GSM379811 4 0.2143 0.8746 0.008 0.000 0.048 0.916 0.012 NA
#> GSM379820 3 0.2725 0.5988 0.060 0.000 0.884 0.004 0.020 NA
#> GSM379821 1 0.4047 0.8121 0.720 0.000 0.244 0.000 0.016 NA
#> GSM379822 1 0.3998 0.8175 0.728 0.000 0.236 0.000 0.016 NA
#> GSM379815 3 0.4647 0.4787 0.020 0.000 0.740 0.168 0.020 NA
#> GSM379816 1 0.3394 0.8286 0.752 0.000 0.236 0.000 0.000 NA
#> GSM379817 3 0.3892 0.4015 0.208 0.000 0.752 0.000 0.020 NA
#> GSM379818 4 0.2143 0.8746 0.008 0.000 0.048 0.916 0.012 NA
#> GSM379819 4 0.5403 0.5894 0.016 0.000 0.312 0.600 0.020 NA
#> GSM379825 4 0.1075 0.8794 0.000 0.000 0.048 0.952 0.000 NA
#> GSM379826 3 0.3438 0.5107 0.144 0.000 0.812 0.000 0.020 NA
#> GSM379823 1 0.3692 0.8212 0.736 0.000 0.244 0.000 0.008 NA
#> GSM379824 1 0.6277 0.5753 0.596 0.000 0.152 0.188 0.020 NA
#> GSM379749 2 0.2034 0.8123 0.044 0.920 0.000 0.004 0.008 NA
#> GSM379750 2 0.2034 0.8123 0.044 0.920 0.000 0.004 0.008 NA
#> GSM379751 5 0.2113 0.7911 0.004 0.092 0.000 0.000 0.896 NA
#> GSM379744 2 0.2034 0.8123 0.044 0.920 0.000 0.004 0.008 NA
#> GSM379745 2 0.2034 0.8123 0.044 0.920 0.000 0.004 0.008 NA
#> GSM379746 2 0.1921 0.8138 0.044 0.924 0.000 0.004 0.004 NA
#> GSM379747 5 0.2983 0.7847 0.032 0.092 0.000 0.004 0.860 NA
#> GSM379748 5 0.3674 0.7733 0.044 0.092 0.000 0.004 0.824 NA
#> GSM379757 2 0.0405 0.8249 0.004 0.988 0.000 0.000 0.000 NA
#> GSM379758 2 0.0000 0.8264 0.000 1.000 0.000 0.000 0.000 NA
#> GSM379752 2 0.2034 0.8123 0.044 0.920 0.000 0.004 0.008 NA
#> GSM379753 5 0.2808 0.7870 0.028 0.092 0.000 0.004 0.868 NA
#> GSM379754 2 0.1003 0.8223 0.020 0.964 0.000 0.000 0.000 NA
#> GSM379755 2 0.1003 0.8223 0.020 0.964 0.000 0.000 0.000 NA
#> GSM379756 2 0.1088 0.8228 0.024 0.960 0.000 0.000 0.000 NA
#> GSM379764 2 0.4654 0.1450 0.000 0.544 0.000 0.000 0.412 NA
#> GSM379765 2 0.0146 0.8263 0.004 0.996 0.000 0.000 0.000 NA
#> GSM379766 2 0.0146 0.8263 0.004 0.996 0.000 0.000 0.000 NA
#> GSM379759 2 0.0291 0.8261 0.004 0.992 0.000 0.000 0.000 NA
#> GSM379760 2 0.0291 0.8261 0.004 0.992 0.000 0.000 0.000 NA
#> GSM379761 2 0.0291 0.8261 0.004 0.992 0.000 0.000 0.000 NA
#> GSM379762 2 0.0000 0.8264 0.000 1.000 0.000 0.000 0.000 NA
#> GSM379763 2 0.0146 0.8263 0.004 0.996 0.000 0.000 0.000 NA
#> GSM379769 2 0.4689 0.0498 0.000 0.516 0.000 0.000 0.440 NA
#> GSM379770 2 0.4833 0.0634 0.000 0.516 0.000 0.000 0.428 NA
#> GSM379767 2 0.0000 0.8264 0.000 1.000 0.000 0.000 0.000 NA
#> GSM379768 2 0.0146 0.8263 0.004 0.996 0.000 0.000 0.000 NA
#> GSM379776 4 0.4701 0.5040 0.000 0.000 0.396 0.560 0.004 NA
#> GSM379777 1 0.6109 0.6276 0.620 0.000 0.148 0.168 0.020 NA
#> GSM379778 1 0.8102 0.0142 0.280 0.000 0.252 0.020 0.236 NA
#> GSM379771 3 0.2009 0.6075 0.000 0.000 0.908 0.068 0.000 NA
#> GSM379772 3 0.0146 0.6251 0.000 0.000 0.996 0.000 0.000 NA
#> GSM379773 3 0.3376 0.4999 0.120 0.000 0.832 0.016 0.012 NA
#> GSM379774 3 0.0260 0.6213 0.008 0.000 0.992 0.000 0.000 NA
#> GSM379775 3 0.1088 0.6238 0.000 0.000 0.960 0.024 0.000 NA
#> GSM379784 1 0.3288 0.8197 0.724 0.000 0.276 0.000 0.000 NA
#> GSM379785 3 0.3482 0.0425 0.316 0.000 0.684 0.000 0.000 NA
#> GSM379786 1 0.3244 0.8226 0.732 0.000 0.268 0.000 0.000 NA
#> GSM379779 3 0.0405 0.6218 0.008 0.000 0.988 0.000 0.000 NA
#> GSM379780 3 0.1531 0.5824 0.068 0.000 0.928 0.000 0.000 NA
#> GSM379781 3 0.2969 0.3254 0.224 0.000 0.776 0.000 0.000 NA
#> GSM379782 5 0.7968 0.1788 0.240 0.000 0.168 0.020 0.336 NA
#> GSM379783 1 0.3468 0.8234 0.728 0.000 0.264 0.000 0.000 NA
#> GSM379792 4 0.4513 0.6148 0.000 0.000 0.328 0.628 0.004 NA
#> GSM379793 3 0.1531 0.5824 0.068 0.000 0.928 0.000 0.000 NA
#> GSM379794 3 0.0405 0.6212 0.008 0.000 0.988 0.000 0.000 NA
#> GSM379787 5 0.7998 0.1823 0.224 0.000 0.188 0.020 0.336 NA
#> GSM379788 1 0.3309 0.8173 0.720 0.000 0.280 0.000 0.000 NA
#> GSM379789 3 0.1387 0.5823 0.068 0.000 0.932 0.000 0.000 NA
#> GSM379790 3 0.4088 0.3382 0.000 0.000 0.716 0.240 0.004 NA
#> GSM379791 3 0.1531 0.5824 0.068 0.000 0.928 0.000 0.000 NA
#> GSM379797 4 0.2143 0.8746 0.008 0.000 0.048 0.916 0.012 NA
#> GSM379798 3 0.4268 0.2682 0.000 0.000 0.684 0.272 0.004 NA
#> GSM379795 3 0.1471 0.5856 0.064 0.000 0.932 0.000 0.000 NA
#> GSM379796 4 0.2519 0.8699 0.000 0.000 0.056 0.888 0.008 NA
#> GSM379721 3 0.4491 0.5883 0.036 0.000 0.576 0.000 0.000 NA
#> GSM379722 3 0.4491 0.5883 0.036 0.000 0.576 0.000 0.000 NA
#> GSM379723 3 0.5596 0.5702 0.028 0.000 0.500 0.072 0.000 NA
#> GSM379716 3 0.5999 0.5461 0.028 0.000 0.464 0.100 0.004 NA
#> GSM379717 3 0.5726 0.5683 0.028 0.000 0.496 0.072 0.004 NA
#> GSM379718 3 0.5497 0.5749 0.028 0.000 0.512 0.052 0.004 NA
#> GSM379719 3 0.4491 0.5883 0.036 0.000 0.576 0.000 0.000 NA
#> GSM379720 3 0.5547 0.5736 0.028 0.000 0.508 0.056 0.004 NA
#> GSM379729 1 0.4364 0.8062 0.732 0.000 0.152 0.000 0.004 NA
#> GSM379730 1 0.4322 0.8076 0.736 0.000 0.152 0.000 0.004 NA
#> GSM379731 1 0.4107 0.8058 0.756 0.000 0.148 0.000 0.004 NA
#> GSM379724 3 0.4482 0.5908 0.036 0.000 0.580 0.000 0.000 NA
#> GSM379725 1 0.4371 0.8030 0.732 0.000 0.148 0.000 0.004 NA
#> GSM379726 3 0.5141 0.5814 0.032 0.000 0.536 0.032 0.000 NA
#> GSM379727 3 0.4491 0.5883 0.036 0.000 0.576 0.000 0.000 NA
#> GSM379728 3 0.5601 0.5688 0.028 0.000 0.496 0.072 0.000 NA
#> GSM379737 3 0.4482 0.5908 0.036 0.000 0.580 0.000 0.000 NA
#> GSM379738 3 0.4482 0.5908 0.036 0.000 0.580 0.000 0.000 NA
#> GSM379739 3 0.4482 0.5908 0.036 0.000 0.580 0.000 0.000 NA
#> GSM379732 1 0.4313 0.7987 0.728 0.000 0.148 0.000 0.000 NA
#> GSM379733 3 0.4482 0.5908 0.036 0.000 0.580 0.000 0.000 NA
#> GSM379734 3 0.4482 0.5908 0.036 0.000 0.580 0.000 0.000 NA
#> GSM379735 1 0.4364 0.8062 0.732 0.000 0.152 0.000 0.004 NA
#> GSM379736 4 0.2000 0.8749 0.000 0.000 0.048 0.916 0.004 NA
#> GSM379742 5 0.8251 0.3250 0.232 0.132 0.020 0.020 0.340 NA
#> GSM379743 1 0.4364 0.8062 0.732 0.000 0.152 0.000 0.004 NA
#> GSM379740 3 0.4409 0.5932 0.032 0.000 0.588 0.000 0.000 NA
#> GSM379741 5 0.8175 0.2456 0.264 0.056 0.052 0.020 0.340 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> ATC:kmeans 138 3.69e-23 1.000 0.8655 2
#> ATC:kmeans 128 3.37e-26 0.946 0.0190 3
#> ATC:kmeans 64 4.18e-13 0.828 0.9845 4
#> ATC:kmeans 108 2.25e-27 0.909 0.0911 5
#> ATC:kmeans 119 1.52e-25 0.869 0.0300 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.978 0.992 0.4910 0.510 0.510
#> 3 3 1.000 0.948 0.973 0.2676 0.869 0.742
#> 4 4 0.780 0.864 0.885 0.1047 0.907 0.758
#> 5 5 0.775 0.825 0.895 0.0762 0.959 0.865
#> 6 6 0.876 0.761 0.844 0.0541 0.932 0.754
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.0000 0.9925 0.000 1.000
#> GSM379833 2 0.0000 0.9925 0.000 1.000
#> GSM379834 2 0.0000 0.9925 0.000 1.000
#> GSM379827 2 0.0000 0.9925 0.000 1.000
#> GSM379828 2 0.0000 0.9925 0.000 1.000
#> GSM379829 1 0.0000 0.9911 1.000 0.000
#> GSM379830 2 0.0000 0.9925 0.000 1.000
#> GSM379831 2 0.0000 0.9925 0.000 1.000
#> GSM379840 2 0.0000 0.9925 0.000 1.000
#> GSM379841 2 0.0000 0.9925 0.000 1.000
#> GSM379842 2 0.0000 0.9925 0.000 1.000
#> GSM379835 2 0.0000 0.9925 0.000 1.000
#> GSM379836 2 0.0000 0.9925 0.000 1.000
#> GSM379837 2 0.9833 0.2558 0.424 0.576
#> GSM379838 2 0.0000 0.9925 0.000 1.000
#> GSM379839 2 0.0000 0.9925 0.000 1.000
#> GSM379848 2 0.0000 0.9925 0.000 1.000
#> GSM379849 2 0.0000 0.9925 0.000 1.000
#> GSM379850 2 0.0000 0.9925 0.000 1.000
#> GSM379843 2 0.0000 0.9925 0.000 1.000
#> GSM379844 2 0.0000 0.9925 0.000 1.000
#> GSM379845 2 0.0000 0.9925 0.000 1.000
#> GSM379846 2 0.0000 0.9925 0.000 1.000
#> GSM379847 2 0.0000 0.9925 0.000 1.000
#> GSM379853 2 0.0000 0.9925 0.000 1.000
#> GSM379854 2 0.0000 0.9925 0.000 1.000
#> GSM379851 2 0.0000 0.9925 0.000 1.000
#> GSM379852 2 0.0000 0.9925 0.000 1.000
#> GSM379804 1 0.0000 0.9911 1.000 0.000
#> GSM379805 1 0.0000 0.9911 1.000 0.000
#> GSM379806 1 0.0000 0.9911 1.000 0.000
#> GSM379799 1 0.0000 0.9911 1.000 0.000
#> GSM379800 1 0.0000 0.9911 1.000 0.000
#> GSM379801 1 0.0000 0.9911 1.000 0.000
#> GSM379802 1 0.0000 0.9911 1.000 0.000
#> GSM379803 1 0.0000 0.9911 1.000 0.000
#> GSM379812 1 0.0000 0.9911 1.000 0.000
#> GSM379813 1 0.0000 0.9911 1.000 0.000
#> GSM379814 1 0.0000 0.9911 1.000 0.000
#> GSM379807 1 0.0000 0.9911 1.000 0.000
#> GSM379808 1 0.0000 0.9911 1.000 0.000
#> GSM379809 1 0.0000 0.9911 1.000 0.000
#> GSM379810 1 0.0000 0.9911 1.000 0.000
#> GSM379811 1 0.0000 0.9911 1.000 0.000
#> GSM379820 1 0.0000 0.9911 1.000 0.000
#> GSM379821 1 0.0000 0.9911 1.000 0.000
#> GSM379822 1 0.0000 0.9911 1.000 0.000
#> GSM379815 1 0.0000 0.9911 1.000 0.000
#> GSM379816 1 0.7528 0.7200 0.784 0.216
#> GSM379817 1 0.0000 0.9911 1.000 0.000
#> GSM379818 1 0.0000 0.9911 1.000 0.000
#> GSM379819 1 0.0000 0.9911 1.000 0.000
#> GSM379825 1 0.0000 0.9911 1.000 0.000
#> GSM379826 1 0.0000 0.9911 1.000 0.000
#> GSM379823 1 0.0000 0.9911 1.000 0.000
#> GSM379824 1 0.0000 0.9911 1.000 0.000
#> GSM379749 2 0.0000 0.9925 0.000 1.000
#> GSM379750 2 0.0000 0.9925 0.000 1.000
#> GSM379751 2 0.0000 0.9925 0.000 1.000
#> GSM379744 2 0.0000 0.9925 0.000 1.000
#> GSM379745 2 0.0000 0.9925 0.000 1.000
#> GSM379746 2 0.0000 0.9925 0.000 1.000
#> GSM379747 2 0.0000 0.9925 0.000 1.000
#> GSM379748 2 0.0000 0.9925 0.000 1.000
#> GSM379757 2 0.0000 0.9925 0.000 1.000
#> GSM379758 2 0.0000 0.9925 0.000 1.000
#> GSM379752 2 0.0000 0.9925 0.000 1.000
#> GSM379753 2 0.0000 0.9925 0.000 1.000
#> GSM379754 2 0.0000 0.9925 0.000 1.000
#> GSM379755 2 0.0000 0.9925 0.000 1.000
#> GSM379756 2 0.0000 0.9925 0.000 1.000
#> GSM379764 2 0.0000 0.9925 0.000 1.000
#> GSM379765 2 0.0000 0.9925 0.000 1.000
#> GSM379766 2 0.0000 0.9925 0.000 1.000
#> GSM379759 2 0.0000 0.9925 0.000 1.000
#> GSM379760 2 0.0000 0.9925 0.000 1.000
#> GSM379761 2 0.0000 0.9925 0.000 1.000
#> GSM379762 2 0.0000 0.9925 0.000 1.000
#> GSM379763 2 0.0000 0.9925 0.000 1.000
#> GSM379769 2 0.0000 0.9925 0.000 1.000
#> GSM379770 2 0.0000 0.9925 0.000 1.000
#> GSM379767 2 0.0000 0.9925 0.000 1.000
#> GSM379768 2 0.0000 0.9925 0.000 1.000
#> GSM379776 1 0.0000 0.9911 1.000 0.000
#> GSM379777 1 0.0000 0.9911 1.000 0.000
#> GSM379778 1 0.9983 0.0905 0.524 0.476
#> GSM379771 1 0.0000 0.9911 1.000 0.000
#> GSM379772 1 0.0000 0.9911 1.000 0.000
#> GSM379773 1 0.0000 0.9911 1.000 0.000
#> GSM379774 1 0.0000 0.9911 1.000 0.000
#> GSM379775 1 0.0000 0.9911 1.000 0.000
#> GSM379784 1 0.0000 0.9911 1.000 0.000
#> GSM379785 1 0.0000 0.9911 1.000 0.000
#> GSM379786 1 0.0000 0.9911 1.000 0.000
#> GSM379779 1 0.0000 0.9911 1.000 0.000
#> GSM379780 1 0.0000 0.9911 1.000 0.000
#> GSM379781 1 0.0000 0.9911 1.000 0.000
#> GSM379782 2 0.0000 0.9925 0.000 1.000
#> GSM379783 1 0.0672 0.9834 0.992 0.008
#> GSM379792 1 0.0000 0.9911 1.000 0.000
#> GSM379793 1 0.0000 0.9911 1.000 0.000
#> GSM379794 1 0.0000 0.9911 1.000 0.000
#> GSM379787 2 0.0000 0.9925 0.000 1.000
#> GSM379788 1 0.0000 0.9911 1.000 0.000
#> GSM379789 1 0.0000 0.9911 1.000 0.000
#> GSM379790 1 0.0000 0.9911 1.000 0.000
#> GSM379791 1 0.0000 0.9911 1.000 0.000
#> GSM379797 1 0.0000 0.9911 1.000 0.000
#> GSM379798 1 0.0000 0.9911 1.000 0.000
#> GSM379795 1 0.0000 0.9911 1.000 0.000
#> GSM379796 1 0.0000 0.9911 1.000 0.000
#> GSM379721 1 0.0000 0.9911 1.000 0.000
#> GSM379722 1 0.0000 0.9911 1.000 0.000
#> GSM379723 1 0.0000 0.9911 1.000 0.000
#> GSM379716 1 0.0000 0.9911 1.000 0.000
#> GSM379717 1 0.0000 0.9911 1.000 0.000
#> GSM379718 1 0.0000 0.9911 1.000 0.000
#> GSM379719 1 0.0000 0.9911 1.000 0.000
#> GSM379720 1 0.0000 0.9911 1.000 0.000
#> GSM379729 1 0.0000 0.9911 1.000 0.000
#> GSM379730 1 0.0000 0.9911 1.000 0.000
#> GSM379731 1 0.0000 0.9911 1.000 0.000
#> GSM379724 1 0.0000 0.9911 1.000 0.000
#> GSM379725 1 0.0000 0.9911 1.000 0.000
#> GSM379726 1 0.0000 0.9911 1.000 0.000
#> GSM379727 1 0.0000 0.9911 1.000 0.000
#> GSM379728 1 0.0000 0.9911 1.000 0.000
#> GSM379737 1 0.0000 0.9911 1.000 0.000
#> GSM379738 1 0.0000 0.9911 1.000 0.000
#> GSM379739 1 0.0000 0.9911 1.000 0.000
#> GSM379732 1 0.0000 0.9911 1.000 0.000
#> GSM379733 1 0.0000 0.9911 1.000 0.000
#> GSM379734 1 0.0000 0.9911 1.000 0.000
#> GSM379735 1 0.0000 0.9911 1.000 0.000
#> GSM379736 1 0.0000 0.9911 1.000 0.000
#> GSM379742 2 0.0000 0.9925 0.000 1.000
#> GSM379743 1 0.0000 0.9911 1.000 0.000
#> GSM379740 1 0.0000 0.9911 1.000 0.000
#> GSM379741 2 0.0000 0.9925 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.000 0.991 0.000 1.000 0.000
#> GSM379833 2 0.000 0.991 0.000 1.000 0.000
#> GSM379834 2 0.000 0.991 0.000 1.000 0.000
#> GSM379827 2 0.000 0.991 0.000 1.000 0.000
#> GSM379828 2 0.000 0.991 0.000 1.000 0.000
#> GSM379829 1 0.000 0.966 1.000 0.000 0.000
#> GSM379830 2 0.000 0.991 0.000 1.000 0.000
#> GSM379831 2 0.000 0.991 0.000 1.000 0.000
#> GSM379840 2 0.000 0.991 0.000 1.000 0.000
#> GSM379841 2 0.000 0.991 0.000 1.000 0.000
#> GSM379842 2 0.000 0.991 0.000 1.000 0.000
#> GSM379835 2 0.000 0.991 0.000 1.000 0.000
#> GSM379836 2 0.000 0.991 0.000 1.000 0.000
#> GSM379837 2 0.774 0.300 0.376 0.568 0.056
#> GSM379838 2 0.000 0.991 0.000 1.000 0.000
#> GSM379839 2 0.000 0.991 0.000 1.000 0.000
#> GSM379848 2 0.000 0.991 0.000 1.000 0.000
#> GSM379849 2 0.000 0.991 0.000 1.000 0.000
#> GSM379850 2 0.000 0.991 0.000 1.000 0.000
#> GSM379843 2 0.000 0.991 0.000 1.000 0.000
#> GSM379844 2 0.000 0.991 0.000 1.000 0.000
#> GSM379845 2 0.000 0.991 0.000 1.000 0.000
#> GSM379846 2 0.000 0.991 0.000 1.000 0.000
#> GSM379847 2 0.000 0.991 0.000 1.000 0.000
#> GSM379853 2 0.000 0.991 0.000 1.000 0.000
#> GSM379854 2 0.000 0.991 0.000 1.000 0.000
#> GSM379851 2 0.000 0.991 0.000 1.000 0.000
#> GSM379852 2 0.000 0.991 0.000 1.000 0.000
#> GSM379804 1 0.000 0.966 1.000 0.000 0.000
#> GSM379805 1 0.000 0.966 1.000 0.000 0.000
#> GSM379806 1 0.000 0.966 1.000 0.000 0.000
#> GSM379799 1 0.000 0.966 1.000 0.000 0.000
#> GSM379800 1 0.000 0.966 1.000 0.000 0.000
#> GSM379801 1 0.000 0.966 1.000 0.000 0.000
#> GSM379802 1 0.000 0.966 1.000 0.000 0.000
#> GSM379803 1 0.000 0.966 1.000 0.000 0.000
#> GSM379812 3 0.207 0.932 0.060 0.000 0.940
#> GSM379813 1 0.597 0.352 0.636 0.000 0.364
#> GSM379814 1 0.000 0.966 1.000 0.000 0.000
#> GSM379807 1 0.000 0.966 1.000 0.000 0.000
#> GSM379808 1 0.000 0.966 1.000 0.000 0.000
#> GSM379809 1 0.000 0.966 1.000 0.000 0.000
#> GSM379810 1 0.000 0.966 1.000 0.000 0.000
#> GSM379811 1 0.000 0.966 1.000 0.000 0.000
#> GSM379820 1 0.000 0.966 1.000 0.000 0.000
#> GSM379821 3 0.207 0.932 0.060 0.000 0.940
#> GSM379822 3 0.207 0.932 0.060 0.000 0.940
#> GSM379815 1 0.000 0.966 1.000 0.000 0.000
#> GSM379816 3 0.000 0.925 0.000 0.000 1.000
#> GSM379817 1 0.597 0.352 0.636 0.000 0.364
#> GSM379818 1 0.000 0.966 1.000 0.000 0.000
#> GSM379819 1 0.000 0.966 1.000 0.000 0.000
#> GSM379825 1 0.000 0.966 1.000 0.000 0.000
#> GSM379826 1 0.000 0.966 1.000 0.000 0.000
#> GSM379823 3 0.207 0.932 0.060 0.000 0.940
#> GSM379824 3 0.484 0.780 0.224 0.000 0.776
#> GSM379749 2 0.000 0.991 0.000 1.000 0.000
#> GSM379750 2 0.000 0.991 0.000 1.000 0.000
#> GSM379751 2 0.000 0.991 0.000 1.000 0.000
#> GSM379744 2 0.000 0.991 0.000 1.000 0.000
#> GSM379745 2 0.000 0.991 0.000 1.000 0.000
#> GSM379746 2 0.000 0.991 0.000 1.000 0.000
#> GSM379747 2 0.000 0.991 0.000 1.000 0.000
#> GSM379748 2 0.000 0.991 0.000 1.000 0.000
#> GSM379757 2 0.000 0.991 0.000 1.000 0.000
#> GSM379758 2 0.000 0.991 0.000 1.000 0.000
#> GSM379752 2 0.000 0.991 0.000 1.000 0.000
#> GSM379753 2 0.000 0.991 0.000 1.000 0.000
#> GSM379754 2 0.000 0.991 0.000 1.000 0.000
#> GSM379755 2 0.000 0.991 0.000 1.000 0.000
#> GSM379756 2 0.000 0.991 0.000 1.000 0.000
#> GSM379764 2 0.000 0.991 0.000 1.000 0.000
#> GSM379765 2 0.000 0.991 0.000 1.000 0.000
#> GSM379766 2 0.000 0.991 0.000 1.000 0.000
#> GSM379759 2 0.000 0.991 0.000 1.000 0.000
#> GSM379760 2 0.000 0.991 0.000 1.000 0.000
#> GSM379761 2 0.000 0.991 0.000 1.000 0.000
#> GSM379762 2 0.000 0.991 0.000 1.000 0.000
#> GSM379763 2 0.000 0.991 0.000 1.000 0.000
#> GSM379769 2 0.000 0.991 0.000 1.000 0.000
#> GSM379770 2 0.000 0.991 0.000 1.000 0.000
#> GSM379767 2 0.000 0.991 0.000 1.000 0.000
#> GSM379768 2 0.000 0.991 0.000 1.000 0.000
#> GSM379776 1 0.000 0.966 1.000 0.000 0.000
#> GSM379777 3 0.207 0.932 0.060 0.000 0.940
#> GSM379778 3 0.652 0.696 0.048 0.228 0.724
#> GSM379771 1 0.000 0.966 1.000 0.000 0.000
#> GSM379772 1 0.000 0.966 1.000 0.000 0.000
#> GSM379773 1 0.000 0.966 1.000 0.000 0.000
#> GSM379774 1 0.000 0.966 1.000 0.000 0.000
#> GSM379775 1 0.000 0.966 1.000 0.000 0.000
#> GSM379784 3 0.207 0.932 0.060 0.000 0.940
#> GSM379785 3 0.506 0.753 0.244 0.000 0.756
#> GSM379786 3 0.207 0.932 0.060 0.000 0.940
#> GSM379779 1 0.000 0.966 1.000 0.000 0.000
#> GSM379780 1 0.000 0.966 1.000 0.000 0.000
#> GSM379781 3 0.506 0.753 0.244 0.000 0.756
#> GSM379782 2 0.000 0.991 0.000 1.000 0.000
#> GSM379783 3 0.207 0.932 0.060 0.000 0.940
#> GSM379792 1 0.000 0.966 1.000 0.000 0.000
#> GSM379793 1 0.000 0.966 1.000 0.000 0.000
#> GSM379794 1 0.000 0.966 1.000 0.000 0.000
#> GSM379787 2 0.000 0.991 0.000 1.000 0.000
#> GSM379788 3 0.207 0.932 0.060 0.000 0.940
#> GSM379789 1 0.000 0.966 1.000 0.000 0.000
#> GSM379790 1 0.000 0.966 1.000 0.000 0.000
#> GSM379791 1 0.000 0.966 1.000 0.000 0.000
#> GSM379797 1 0.000 0.966 1.000 0.000 0.000
#> GSM379798 1 0.000 0.966 1.000 0.000 0.000
#> GSM379795 1 0.000 0.966 1.000 0.000 0.000
#> GSM379796 1 0.000 0.966 1.000 0.000 0.000
#> GSM379721 1 0.207 0.940 0.940 0.000 0.060
#> GSM379722 1 0.207 0.940 0.940 0.000 0.060
#> GSM379723 1 0.207 0.940 0.940 0.000 0.060
#> GSM379716 1 0.207 0.940 0.940 0.000 0.060
#> GSM379717 1 0.207 0.940 0.940 0.000 0.060
#> GSM379718 1 0.207 0.940 0.940 0.000 0.060
#> GSM379719 1 0.207 0.940 0.940 0.000 0.060
#> GSM379720 1 0.207 0.940 0.940 0.000 0.060
#> GSM379729 3 0.000 0.925 0.000 0.000 1.000
#> GSM379730 3 0.000 0.925 0.000 0.000 1.000
#> GSM379731 3 0.000 0.925 0.000 0.000 1.000
#> GSM379724 1 0.207 0.940 0.940 0.000 0.060
#> GSM379725 3 0.000 0.925 0.000 0.000 1.000
#> GSM379726 1 0.207 0.940 0.940 0.000 0.060
#> GSM379727 1 0.207 0.940 0.940 0.000 0.060
#> GSM379728 1 0.207 0.940 0.940 0.000 0.060
#> GSM379737 1 0.207 0.940 0.940 0.000 0.060
#> GSM379738 1 0.207 0.940 0.940 0.000 0.060
#> GSM379739 1 0.207 0.940 0.940 0.000 0.060
#> GSM379732 3 0.000 0.925 0.000 0.000 1.000
#> GSM379733 1 0.207 0.940 0.940 0.000 0.060
#> GSM379734 1 0.207 0.940 0.940 0.000 0.060
#> GSM379735 3 0.000 0.925 0.000 0.000 1.000
#> GSM379736 1 0.000 0.966 1.000 0.000 0.000
#> GSM379742 2 0.000 0.991 0.000 1.000 0.000
#> GSM379743 3 0.000 0.925 0.000 0.000 1.000
#> GSM379740 1 0.207 0.940 0.940 0.000 0.060
#> GSM379741 2 0.000 0.991 0.000 1.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379833 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379834 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379827 2 0.2124 0.9125 0.008 0.924 0.068 0.000
#> GSM379828 2 0.2737 0.8886 0.008 0.888 0.104 0.000
#> GSM379829 4 0.5099 0.3601 0.008 0.000 0.380 0.612
#> GSM379830 2 0.2859 0.8829 0.008 0.880 0.112 0.000
#> GSM379831 2 0.2859 0.8829 0.008 0.880 0.112 0.000
#> GSM379840 2 0.4769 0.6891 0.008 0.684 0.308 0.000
#> GSM379841 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379842 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379835 2 0.2859 0.8829 0.008 0.880 0.112 0.000
#> GSM379836 2 0.4769 0.6891 0.008 0.684 0.308 0.000
#> GSM379837 3 0.8383 0.0259 0.020 0.264 0.392 0.324
#> GSM379838 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379839 2 0.7623 0.3817 0.008 0.496 0.320 0.176
#> GSM379848 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379849 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379850 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379843 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379844 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379845 2 0.4769 0.6891 0.008 0.684 0.308 0.000
#> GSM379846 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379847 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379853 2 0.2859 0.8829 0.008 0.880 0.112 0.000
#> GSM379854 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379851 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379852 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379804 4 0.1302 0.8681 0.000 0.000 0.044 0.956
#> GSM379805 4 0.1302 0.8681 0.000 0.000 0.044 0.956
#> GSM379806 4 0.1302 0.8681 0.000 0.000 0.044 0.956
#> GSM379799 4 0.1302 0.8681 0.000 0.000 0.044 0.956
#> GSM379800 4 0.1302 0.8681 0.000 0.000 0.044 0.956
#> GSM379801 4 0.1302 0.8681 0.000 0.000 0.044 0.956
#> GSM379802 4 0.1302 0.8681 0.000 0.000 0.044 0.956
#> GSM379803 4 0.1302 0.8681 0.000 0.000 0.044 0.956
#> GSM379812 1 0.2081 0.8486 0.916 0.000 0.000 0.084
#> GSM379813 4 0.2345 0.8009 0.100 0.000 0.000 0.900
#> GSM379814 4 0.1635 0.8565 0.044 0.000 0.008 0.948
#> GSM379807 4 0.0336 0.8725 0.000 0.000 0.008 0.992
#> GSM379808 4 0.1302 0.8681 0.000 0.000 0.044 0.956
#> GSM379809 4 0.1302 0.8681 0.000 0.000 0.044 0.956
#> GSM379810 4 0.1302 0.8681 0.000 0.000 0.044 0.956
#> GSM379811 4 0.1302 0.8681 0.000 0.000 0.044 0.956
#> GSM379820 4 0.0336 0.8725 0.000 0.000 0.008 0.992
#> GSM379821 1 0.2081 0.8486 0.916 0.000 0.000 0.084
#> GSM379822 1 0.2081 0.8486 0.916 0.000 0.000 0.084
#> GSM379815 4 0.0336 0.8725 0.000 0.000 0.008 0.992
#> GSM379816 1 0.2197 0.8541 0.916 0.000 0.080 0.004
#> GSM379817 4 0.2345 0.8009 0.100 0.000 0.000 0.900
#> GSM379818 4 0.1302 0.8681 0.000 0.000 0.044 0.956
#> GSM379819 4 0.0336 0.8725 0.000 0.000 0.008 0.992
#> GSM379825 4 0.1302 0.8681 0.000 0.000 0.044 0.956
#> GSM379826 4 0.1635 0.8565 0.044 0.000 0.008 0.948
#> GSM379823 1 0.2081 0.8486 0.916 0.000 0.000 0.084
#> GSM379824 1 0.4222 0.6118 0.728 0.000 0.000 0.272
#> GSM379749 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379750 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379751 2 0.3933 0.8068 0.008 0.792 0.200 0.000
#> GSM379744 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379745 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379746 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379747 2 0.0336 0.9509 0.000 0.992 0.008 0.000
#> GSM379748 2 0.0336 0.9509 0.000 0.992 0.008 0.000
#> GSM379757 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379758 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379752 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379753 2 0.0921 0.9407 0.000 0.972 0.028 0.000
#> GSM379754 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379755 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379756 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379764 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379765 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379766 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379759 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379760 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379761 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379762 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379763 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379769 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379770 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379767 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379768 2 0.0000 0.9545 0.000 1.000 0.000 0.000
#> GSM379776 4 0.1940 0.8491 0.076 0.000 0.000 0.924
#> GSM379777 1 0.2216 0.8445 0.908 0.000 0.000 0.092
#> GSM379778 1 0.7077 0.5194 0.628 0.248 0.072 0.052
#> GSM379771 4 0.2635 0.8391 0.076 0.000 0.020 0.904
#> GSM379772 4 0.2635 0.8391 0.076 0.000 0.020 0.904
#> GSM379773 4 0.2742 0.8372 0.076 0.000 0.024 0.900
#> GSM379774 4 0.2635 0.8391 0.076 0.000 0.020 0.904
#> GSM379775 4 0.2635 0.8391 0.076 0.000 0.020 0.904
#> GSM379784 1 0.0336 0.8469 0.992 0.000 0.000 0.008
#> GSM379785 1 0.4933 0.1093 0.568 0.000 0.000 0.432
#> GSM379786 1 0.0336 0.8469 0.992 0.000 0.000 0.008
#> GSM379779 4 0.2635 0.8391 0.076 0.000 0.020 0.904
#> GSM379780 4 0.3335 0.8097 0.120 0.000 0.020 0.860
#> GSM379781 4 0.5564 0.2791 0.436 0.000 0.020 0.544
#> GSM379782 2 0.3849 0.8391 0.084 0.856 0.052 0.008
#> GSM379783 1 0.0336 0.8469 0.992 0.000 0.000 0.008
#> GSM379792 4 0.0000 0.8716 0.000 0.000 0.000 1.000
#> GSM379793 4 0.3335 0.8097 0.120 0.000 0.020 0.860
#> GSM379794 4 0.2635 0.8391 0.076 0.000 0.020 0.904
#> GSM379787 2 0.4139 0.8299 0.080 0.848 0.052 0.020
#> GSM379788 1 0.0336 0.8469 0.992 0.000 0.000 0.008
#> GSM379789 4 0.3335 0.8097 0.120 0.000 0.020 0.860
#> GSM379790 4 0.1940 0.8491 0.076 0.000 0.000 0.924
#> GSM379791 4 0.3335 0.8097 0.120 0.000 0.020 0.860
#> GSM379797 4 0.1302 0.8681 0.000 0.000 0.044 0.956
#> GSM379798 4 0.1940 0.8491 0.076 0.000 0.000 0.924
#> GSM379795 4 0.3335 0.8097 0.120 0.000 0.020 0.860
#> GSM379796 4 0.0000 0.8716 0.000 0.000 0.000 1.000
#> GSM379721 3 0.4713 0.9395 0.000 0.000 0.640 0.360
#> GSM379722 3 0.4713 0.9395 0.000 0.000 0.640 0.360
#> GSM379723 3 0.4713 0.9395 0.000 0.000 0.640 0.360
#> GSM379716 3 0.4713 0.9395 0.000 0.000 0.640 0.360
#> GSM379717 3 0.4713 0.9395 0.000 0.000 0.640 0.360
#> GSM379718 3 0.4713 0.9395 0.000 0.000 0.640 0.360
#> GSM379719 3 0.4713 0.9395 0.000 0.000 0.640 0.360
#> GSM379720 3 0.4776 0.9127 0.000 0.000 0.624 0.376
#> GSM379729 1 0.2760 0.8442 0.872 0.000 0.128 0.000
#> GSM379730 1 0.2760 0.8442 0.872 0.000 0.128 0.000
#> GSM379731 1 0.2760 0.8442 0.872 0.000 0.128 0.000
#> GSM379724 3 0.4713 0.9395 0.000 0.000 0.640 0.360
#> GSM379725 1 0.2868 0.8390 0.864 0.000 0.136 0.000
#> GSM379726 3 0.4713 0.9395 0.000 0.000 0.640 0.360
#> GSM379727 3 0.4713 0.9395 0.000 0.000 0.640 0.360
#> GSM379728 3 0.4713 0.9395 0.000 0.000 0.640 0.360
#> GSM379737 3 0.4713 0.9395 0.000 0.000 0.640 0.360
#> GSM379738 3 0.4713 0.9395 0.000 0.000 0.640 0.360
#> GSM379739 3 0.4713 0.9395 0.000 0.000 0.640 0.360
#> GSM379732 1 0.3726 0.7727 0.788 0.000 0.212 0.000
#> GSM379733 3 0.4713 0.9395 0.000 0.000 0.640 0.360
#> GSM379734 3 0.4713 0.9395 0.000 0.000 0.640 0.360
#> GSM379735 1 0.2760 0.8442 0.872 0.000 0.128 0.000
#> GSM379736 4 0.1940 0.8314 0.000 0.000 0.076 0.924
#> GSM379742 2 0.1661 0.9201 0.004 0.944 0.052 0.000
#> GSM379743 1 0.2760 0.8442 0.872 0.000 0.128 0.000
#> GSM379740 3 0.4713 0.9395 0.000 0.000 0.640 0.360
#> GSM379741 2 0.1807 0.9172 0.008 0.940 0.052 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379833 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379834 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379827 2 0.3876 0.38941 0.000 0.684 0.000 0.000 0.316
#> GSM379828 2 0.4126 0.18797 0.000 0.620 0.000 0.000 0.380
#> GSM379829 5 0.4138 0.55081 0.000 0.000 0.016 0.276 0.708
#> GSM379830 2 0.4235 0.01425 0.000 0.576 0.000 0.000 0.424
#> GSM379831 2 0.4219 0.05056 0.000 0.584 0.000 0.000 0.416
#> GSM379840 5 0.3730 0.72384 0.000 0.288 0.000 0.000 0.712
#> GSM379841 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379842 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379835 2 0.4227 0.03283 0.000 0.580 0.000 0.000 0.420
#> GSM379836 5 0.3730 0.72384 0.000 0.288 0.000 0.000 0.712
#> GSM379837 5 0.4848 0.62230 0.004 0.040 0.012 0.228 0.716
#> GSM379838 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379839 5 0.4867 0.68197 0.000 0.104 0.000 0.180 0.716
#> GSM379848 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379849 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379850 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379843 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379844 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379845 5 0.3730 0.72384 0.000 0.288 0.000 0.000 0.712
#> GSM379846 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379847 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379853 2 0.4219 0.04851 0.000 0.584 0.000 0.000 0.416
#> GSM379854 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379851 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379852 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379804 4 0.1041 0.87496 0.000 0.000 0.032 0.964 0.004
#> GSM379805 4 0.1041 0.87496 0.000 0.000 0.032 0.964 0.004
#> GSM379806 4 0.1041 0.87496 0.000 0.000 0.032 0.964 0.004
#> GSM379799 4 0.1041 0.87496 0.000 0.000 0.032 0.964 0.004
#> GSM379800 4 0.1041 0.87496 0.000 0.000 0.032 0.964 0.004
#> GSM379801 4 0.1041 0.87496 0.000 0.000 0.032 0.964 0.004
#> GSM379802 4 0.1041 0.87496 0.000 0.000 0.032 0.964 0.004
#> GSM379803 4 0.1041 0.87496 0.000 0.000 0.032 0.964 0.004
#> GSM379812 1 0.1043 0.89942 0.960 0.000 0.000 0.040 0.000
#> GSM379813 4 0.1365 0.86658 0.040 0.000 0.004 0.952 0.004
#> GSM379814 4 0.0854 0.87608 0.012 0.000 0.008 0.976 0.004
#> GSM379807 4 0.0290 0.87685 0.000 0.000 0.008 0.992 0.000
#> GSM379808 4 0.1041 0.87496 0.000 0.000 0.032 0.964 0.004
#> GSM379809 4 0.1041 0.87496 0.000 0.000 0.032 0.964 0.004
#> GSM379810 4 0.0880 0.87537 0.000 0.000 0.032 0.968 0.000
#> GSM379811 4 0.1041 0.87496 0.000 0.000 0.032 0.964 0.004
#> GSM379820 4 0.0290 0.87685 0.000 0.000 0.008 0.992 0.000
#> GSM379821 1 0.1043 0.89942 0.960 0.000 0.000 0.040 0.000
#> GSM379822 1 0.1043 0.89942 0.960 0.000 0.000 0.040 0.000
#> GSM379815 4 0.0290 0.87685 0.000 0.000 0.008 0.992 0.000
#> GSM379816 1 0.1106 0.90320 0.964 0.000 0.012 0.024 0.000
#> GSM379817 4 0.1365 0.86658 0.040 0.000 0.004 0.952 0.004
#> GSM379818 4 0.1041 0.87496 0.000 0.000 0.032 0.964 0.004
#> GSM379819 4 0.0451 0.87636 0.000 0.000 0.008 0.988 0.004
#> GSM379825 4 0.1041 0.87496 0.000 0.000 0.032 0.964 0.004
#> GSM379826 4 0.0693 0.87583 0.012 0.000 0.008 0.980 0.000
#> GSM379823 1 0.1043 0.89942 0.960 0.000 0.000 0.040 0.000
#> GSM379824 1 0.3689 0.60905 0.740 0.000 0.000 0.256 0.004
#> GSM379749 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379750 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379751 5 0.4249 0.43332 0.000 0.432 0.000 0.000 0.568
#> GSM379744 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379745 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379746 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379747 2 0.2377 0.75768 0.000 0.872 0.000 0.000 0.128
#> GSM379748 2 0.2230 0.77321 0.000 0.884 0.000 0.000 0.116
#> GSM379757 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379758 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379752 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379753 2 0.2690 0.71781 0.000 0.844 0.000 0.000 0.156
#> GSM379754 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379755 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379756 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379764 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379765 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379766 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379759 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379760 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379761 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379762 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379763 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379769 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379770 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379767 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379768 2 0.0000 0.89616 0.000 1.000 0.000 0.000 0.000
#> GSM379776 4 0.3883 0.83028 0.036 0.000 0.000 0.780 0.184
#> GSM379777 1 0.1205 0.89740 0.956 0.000 0.000 0.040 0.004
#> GSM379778 1 0.8611 -0.00401 0.348 0.240 0.108 0.020 0.284
#> GSM379771 4 0.3847 0.82974 0.036 0.000 0.000 0.784 0.180
#> GSM379772 4 0.3847 0.82974 0.036 0.000 0.000 0.784 0.180
#> GSM379773 4 0.4470 0.80311 0.036 0.000 0.012 0.744 0.208
#> GSM379774 4 0.3847 0.82974 0.036 0.000 0.000 0.784 0.180
#> GSM379775 4 0.3847 0.82974 0.036 0.000 0.000 0.784 0.180
#> GSM379784 1 0.0162 0.89632 0.996 0.000 0.000 0.004 0.000
#> GSM379785 4 0.5787 0.66319 0.204 0.000 0.000 0.616 0.180
#> GSM379786 1 0.0000 0.89620 1.000 0.000 0.000 0.000 0.000
#> GSM379779 4 0.3847 0.82974 0.036 0.000 0.000 0.784 0.180
#> GSM379780 4 0.4065 0.82539 0.048 0.000 0.000 0.772 0.180
#> GSM379781 4 0.4867 0.78062 0.104 0.000 0.000 0.716 0.180
#> GSM379782 2 0.6048 0.38016 0.032 0.636 0.108 0.000 0.224
#> GSM379783 1 0.0000 0.89620 1.000 0.000 0.000 0.000 0.000
#> GSM379792 4 0.0451 0.87650 0.008 0.000 0.000 0.988 0.004
#> GSM379793 4 0.4065 0.82539 0.048 0.000 0.000 0.772 0.180
#> GSM379794 4 0.3847 0.82974 0.036 0.000 0.000 0.784 0.180
#> GSM379787 2 0.6576 0.30657 0.040 0.600 0.108 0.008 0.244
#> GSM379788 1 0.0162 0.89632 0.996 0.000 0.000 0.004 0.000
#> GSM379789 4 0.4065 0.82539 0.048 0.000 0.000 0.772 0.180
#> GSM379790 4 0.3847 0.82974 0.036 0.000 0.000 0.784 0.180
#> GSM379791 4 0.4065 0.82539 0.048 0.000 0.000 0.772 0.180
#> GSM379797 4 0.1041 0.87496 0.000 0.000 0.032 0.964 0.004
#> GSM379798 4 0.3847 0.82974 0.036 0.000 0.000 0.784 0.180
#> GSM379795 4 0.4065 0.82539 0.048 0.000 0.000 0.772 0.180
#> GSM379796 4 0.0798 0.87619 0.008 0.000 0.000 0.976 0.016
#> GSM379721 3 0.2127 1.00000 0.000 0.000 0.892 0.108 0.000
#> GSM379722 3 0.2127 1.00000 0.000 0.000 0.892 0.108 0.000
#> GSM379723 3 0.2127 1.00000 0.000 0.000 0.892 0.108 0.000
#> GSM379716 3 0.2127 1.00000 0.000 0.000 0.892 0.108 0.000
#> GSM379717 3 0.2127 1.00000 0.000 0.000 0.892 0.108 0.000
#> GSM379718 3 0.2127 1.00000 0.000 0.000 0.892 0.108 0.000
#> GSM379719 3 0.2127 1.00000 0.000 0.000 0.892 0.108 0.000
#> GSM379720 3 0.2127 1.00000 0.000 0.000 0.892 0.108 0.000
#> GSM379729 1 0.1270 0.89974 0.948 0.000 0.052 0.000 0.000
#> GSM379730 1 0.1270 0.89974 0.948 0.000 0.052 0.000 0.000
#> GSM379731 1 0.1270 0.89974 0.948 0.000 0.052 0.000 0.000
#> GSM379724 3 0.2127 1.00000 0.000 0.000 0.892 0.108 0.000
#> GSM379725 1 0.1410 0.89456 0.940 0.000 0.060 0.000 0.000
#> GSM379726 3 0.2127 1.00000 0.000 0.000 0.892 0.108 0.000
#> GSM379727 3 0.2127 1.00000 0.000 0.000 0.892 0.108 0.000
#> GSM379728 3 0.2127 1.00000 0.000 0.000 0.892 0.108 0.000
#> GSM379737 3 0.2127 1.00000 0.000 0.000 0.892 0.108 0.000
#> GSM379738 3 0.2127 1.00000 0.000 0.000 0.892 0.108 0.000
#> GSM379739 3 0.2127 1.00000 0.000 0.000 0.892 0.108 0.000
#> GSM379732 1 0.2471 0.82579 0.864 0.000 0.136 0.000 0.000
#> GSM379733 3 0.2127 1.00000 0.000 0.000 0.892 0.108 0.000
#> GSM379734 3 0.2127 1.00000 0.000 0.000 0.892 0.108 0.000
#> GSM379735 1 0.1270 0.89974 0.948 0.000 0.052 0.000 0.000
#> GSM379736 4 0.2719 0.76971 0.000 0.000 0.144 0.852 0.004
#> GSM379742 2 0.4279 0.64328 0.004 0.784 0.108 0.000 0.104
#> GSM379743 1 0.1270 0.89974 0.948 0.000 0.052 0.000 0.000
#> GSM379740 3 0.2127 1.00000 0.000 0.000 0.892 0.108 0.000
#> GSM379741 2 0.4279 0.64328 0.004 0.784 0.108 0.000 0.104
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 2 0.0603 0.8843 0.000 0.980 0.000 0.004 0.016 0.000
#> GSM379833 2 0.0603 0.8843 0.000 0.980 0.000 0.004 0.016 0.000
#> GSM379834 2 0.0603 0.8843 0.000 0.980 0.000 0.004 0.016 0.000
#> GSM379827 2 0.4747 0.2361 0.000 0.584 0.000 0.060 0.356 0.000
#> GSM379828 2 0.5112 0.0455 0.000 0.516 0.000 0.084 0.400 0.000
#> GSM379829 4 0.4335 -0.5868 0.020 0.000 0.000 0.508 0.472 0.000
#> GSM379830 2 0.5449 -0.1349 0.000 0.456 0.000 0.120 0.424 0.000
#> GSM379831 2 0.5419 -0.1234 0.000 0.460 0.000 0.116 0.424 0.000
#> GSM379840 5 0.5339 0.6184 0.000 0.108 0.000 0.404 0.488 0.000
#> GSM379841 2 0.0405 0.8867 0.000 0.988 0.000 0.004 0.008 0.000
#> GSM379842 2 0.0405 0.8867 0.000 0.988 0.000 0.004 0.008 0.000
#> GSM379835 2 0.5449 -0.1349 0.000 0.456 0.000 0.120 0.424 0.000
#> GSM379836 5 0.5330 0.6177 0.000 0.108 0.000 0.396 0.496 0.000
#> GSM379837 4 0.4315 -0.6199 0.004 0.012 0.000 0.496 0.488 0.000
#> GSM379838 2 0.0405 0.8867 0.000 0.988 0.000 0.004 0.008 0.000
#> GSM379839 5 0.4664 0.5513 0.004 0.032 0.000 0.476 0.488 0.000
#> GSM379848 2 0.0405 0.8867 0.000 0.988 0.000 0.004 0.008 0.000
#> GSM379849 2 0.0405 0.8867 0.000 0.988 0.000 0.004 0.008 0.000
#> GSM379850 2 0.0405 0.8867 0.000 0.988 0.000 0.004 0.008 0.000
#> GSM379843 2 0.0405 0.8867 0.000 0.988 0.000 0.004 0.008 0.000
#> GSM379844 2 0.0405 0.8867 0.000 0.988 0.000 0.004 0.008 0.000
#> GSM379845 5 0.5339 0.6184 0.000 0.108 0.000 0.404 0.488 0.000
#> GSM379846 2 0.0405 0.8867 0.000 0.988 0.000 0.004 0.008 0.000
#> GSM379847 2 0.0405 0.8867 0.000 0.988 0.000 0.004 0.008 0.000
#> GSM379853 2 0.5411 -0.0993 0.000 0.472 0.000 0.116 0.412 0.000
#> GSM379854 2 0.0405 0.8867 0.000 0.988 0.000 0.004 0.008 0.000
#> GSM379851 2 0.0405 0.8867 0.000 0.988 0.000 0.004 0.008 0.000
#> GSM379852 2 0.0405 0.8867 0.000 0.988 0.000 0.004 0.008 0.000
#> GSM379804 4 0.4310 0.8277 0.440 0.000 0.020 0.540 0.000 0.000
#> GSM379805 4 0.4310 0.8277 0.440 0.000 0.020 0.540 0.000 0.000
#> GSM379806 4 0.4310 0.8277 0.440 0.000 0.020 0.540 0.000 0.000
#> GSM379799 4 0.4310 0.8277 0.440 0.000 0.020 0.540 0.000 0.000
#> GSM379800 4 0.4310 0.8277 0.440 0.000 0.020 0.540 0.000 0.000
#> GSM379801 4 0.4310 0.8277 0.440 0.000 0.020 0.540 0.000 0.000
#> GSM379802 4 0.4310 0.8277 0.440 0.000 0.020 0.540 0.000 0.000
#> GSM379803 4 0.4310 0.8277 0.440 0.000 0.020 0.540 0.000 0.000
#> GSM379812 6 0.0146 0.9437 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM379813 4 0.4800 0.7234 0.448 0.000 0.000 0.500 0.000 0.052
#> GSM379814 4 0.4392 0.7663 0.476 0.000 0.004 0.504 0.000 0.016
#> GSM379807 4 0.3995 0.7894 0.480 0.000 0.004 0.516 0.000 0.000
#> GSM379808 4 0.4310 0.8277 0.440 0.000 0.020 0.540 0.000 0.000
#> GSM379809 4 0.4310 0.8277 0.440 0.000 0.020 0.540 0.000 0.000
#> GSM379810 4 0.4331 0.8073 0.464 0.000 0.020 0.516 0.000 0.000
#> GSM379811 4 0.4310 0.8277 0.440 0.000 0.020 0.540 0.000 0.000
#> GSM379820 4 0.3996 0.7839 0.484 0.000 0.004 0.512 0.000 0.000
#> GSM379821 6 0.0146 0.9437 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM379822 6 0.0146 0.9437 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM379815 4 0.3991 0.7988 0.472 0.000 0.004 0.524 0.000 0.000
#> GSM379816 6 0.1082 0.9403 0.000 0.000 0.000 0.040 0.004 0.956
#> GSM379817 4 0.4800 0.7234 0.448 0.000 0.000 0.500 0.000 0.052
#> GSM379818 4 0.4310 0.8277 0.440 0.000 0.020 0.540 0.000 0.000
#> GSM379819 4 0.3982 0.8086 0.460 0.000 0.004 0.536 0.000 0.000
#> GSM379825 4 0.4310 0.8277 0.440 0.000 0.020 0.540 0.000 0.000
#> GSM379826 4 0.4533 0.7654 0.468 0.000 0.004 0.504 0.000 0.024
#> GSM379823 6 0.0146 0.9437 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM379824 6 0.4559 0.5428 0.156 0.000 0.004 0.128 0.000 0.712
#> GSM379749 2 0.0260 0.8859 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379750 2 0.0260 0.8859 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379751 5 0.5830 0.4640 0.000 0.284 0.000 0.228 0.488 0.000
#> GSM379744 2 0.0260 0.8859 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379745 2 0.0260 0.8859 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379746 2 0.0260 0.8859 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379747 2 0.1141 0.8506 0.000 0.948 0.000 0.000 0.052 0.000
#> GSM379748 2 0.1075 0.8544 0.000 0.952 0.000 0.000 0.048 0.000
#> GSM379757 2 0.0000 0.8879 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379758 2 0.0000 0.8879 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379752 2 0.0260 0.8859 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379753 2 0.1444 0.8297 0.000 0.928 0.000 0.000 0.072 0.000
#> GSM379754 2 0.0000 0.8879 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379755 2 0.0000 0.8879 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379756 2 0.0000 0.8879 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379764 2 0.0000 0.8879 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379765 2 0.0000 0.8879 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379766 2 0.0000 0.8879 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379759 2 0.0000 0.8879 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379760 2 0.0000 0.8879 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379761 2 0.0000 0.8879 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379762 2 0.0000 0.8879 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379763 2 0.0000 0.8879 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379769 2 0.0000 0.8879 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379770 2 0.0000 0.8879 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379767 2 0.0000 0.8879 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379768 2 0.0000 0.8879 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379776 1 0.0458 0.8452 0.984 0.000 0.000 0.016 0.000 0.000
#> GSM379777 6 0.0363 0.9397 0.000 0.000 0.000 0.012 0.000 0.988
#> GSM379778 5 0.5254 0.0128 0.452 0.024 0.000 0.004 0.484 0.036
#> GSM379771 1 0.0146 0.8649 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379772 1 0.0146 0.8649 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379773 1 0.2595 0.6787 0.836 0.000 0.004 0.000 0.160 0.000
#> GSM379774 1 0.0146 0.8649 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379775 1 0.0146 0.8649 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379784 6 0.0146 0.9435 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM379785 1 0.1501 0.7902 0.924 0.000 0.000 0.000 0.000 0.076
#> GSM379786 6 0.0146 0.9435 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM379779 1 0.0146 0.8649 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379780 1 0.0458 0.8598 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM379781 1 0.1327 0.8060 0.936 0.000 0.000 0.000 0.000 0.064
#> GSM379782 5 0.5694 0.2334 0.144 0.368 0.000 0.000 0.484 0.004
#> GSM379783 6 0.0146 0.9435 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM379792 1 0.3864 -0.7255 0.520 0.000 0.000 0.480 0.000 0.000
#> GSM379793 1 0.0508 0.8622 0.984 0.000 0.004 0.000 0.000 0.012
#> GSM379794 1 0.0146 0.8649 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM379787 5 0.5972 0.3141 0.272 0.240 0.000 0.000 0.484 0.004
#> GSM379788 6 0.0146 0.9435 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM379789 1 0.0363 0.8621 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM379790 1 0.0000 0.8620 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379791 1 0.0508 0.8622 0.984 0.000 0.004 0.000 0.000 0.012
#> GSM379797 4 0.4310 0.8277 0.440 0.000 0.020 0.540 0.000 0.000
#> GSM379798 1 0.0000 0.8620 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379795 1 0.0603 0.8592 0.980 0.000 0.004 0.000 0.000 0.016
#> GSM379796 1 0.3860 -0.7077 0.528 0.000 0.000 0.472 0.000 0.000
#> GSM379721 3 0.0146 0.9912 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM379722 3 0.0146 0.9912 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM379723 3 0.0146 0.9978 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379716 3 0.0146 0.9978 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379717 3 0.0146 0.9978 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379718 3 0.0146 0.9978 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379719 3 0.0146 0.9912 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM379720 3 0.0405 0.9920 0.004 0.000 0.988 0.008 0.000 0.000
#> GSM379729 6 0.1952 0.9340 0.000 0.000 0.016 0.052 0.012 0.920
#> GSM379730 6 0.1858 0.9355 0.000 0.000 0.012 0.052 0.012 0.924
#> GSM379731 6 0.1826 0.9348 0.000 0.000 0.020 0.052 0.004 0.924
#> GSM379724 3 0.0146 0.9978 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379725 6 0.1952 0.9340 0.000 0.000 0.016 0.052 0.012 0.920
#> GSM379726 3 0.0146 0.9978 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379727 3 0.0146 0.9978 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379728 3 0.0146 0.9978 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379737 3 0.0146 0.9978 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379738 3 0.0146 0.9978 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379739 3 0.0146 0.9978 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379732 6 0.2138 0.9236 0.000 0.000 0.036 0.052 0.004 0.908
#> GSM379733 3 0.0146 0.9978 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379734 3 0.0146 0.9978 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379735 6 0.1850 0.9356 0.000 0.000 0.016 0.052 0.008 0.924
#> GSM379736 4 0.5134 0.7204 0.388 0.000 0.088 0.524 0.000 0.000
#> GSM379742 2 0.3997 0.0140 0.000 0.508 0.000 0.000 0.488 0.004
#> GSM379743 6 0.1858 0.9355 0.000 0.000 0.012 0.052 0.012 0.924
#> GSM379740 3 0.0146 0.9978 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379741 2 0.3997 0.0140 0.000 0.508 0.000 0.000 0.488 0.004
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> ATC:skmeans 137 1.60e-24 1.000 0.7803 2
#> ATC:skmeans 136 1.10e-21 0.928 0.0274 3
#> ATC:skmeans 134 2.07e-37 0.999 0.1175 4
#> ATC:skmeans 129 1.14e-39 0.997 0.0753 5
#> ATC:skmeans 123 9.70e-54 1.000 0.0813 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.978 0.991 0.4856 0.515 0.515
#> 3 3 0.718 0.812 0.897 0.3511 0.789 0.602
#> 4 4 0.652 0.726 0.810 0.1169 0.892 0.695
#> 5 5 0.750 0.753 0.879 0.0716 0.866 0.568
#> 6 6 0.771 0.685 0.830 0.0404 0.964 0.838
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.0000 0.991 0.000 1.000
#> GSM379833 2 0.0000 0.991 0.000 1.000
#> GSM379834 2 0.0000 0.991 0.000 1.000
#> GSM379827 2 0.0000 0.991 0.000 1.000
#> GSM379828 2 0.0000 0.991 0.000 1.000
#> GSM379829 1 0.0000 0.991 1.000 0.000
#> GSM379830 2 0.0000 0.991 0.000 1.000
#> GSM379831 2 0.0000 0.991 0.000 1.000
#> GSM379840 2 0.3879 0.914 0.076 0.924
#> GSM379841 2 0.0000 0.991 0.000 1.000
#> GSM379842 2 0.0000 0.991 0.000 1.000
#> GSM379835 2 0.0000 0.991 0.000 1.000
#> GSM379836 2 0.0376 0.987 0.004 0.996
#> GSM379837 1 0.9087 0.515 0.676 0.324
#> GSM379838 2 0.0000 0.991 0.000 1.000
#> GSM379839 2 0.5519 0.853 0.128 0.872
#> GSM379848 2 0.0000 0.991 0.000 1.000
#> GSM379849 2 0.0000 0.991 0.000 1.000
#> GSM379850 2 0.0000 0.991 0.000 1.000
#> GSM379843 2 0.0000 0.991 0.000 1.000
#> GSM379844 2 0.0000 0.991 0.000 1.000
#> GSM379845 2 0.0000 0.991 0.000 1.000
#> GSM379846 2 0.0000 0.991 0.000 1.000
#> GSM379847 2 0.0000 0.991 0.000 1.000
#> GSM379853 2 0.0000 0.991 0.000 1.000
#> GSM379854 2 0.0000 0.991 0.000 1.000
#> GSM379851 2 0.0000 0.991 0.000 1.000
#> GSM379852 2 0.0000 0.991 0.000 1.000
#> GSM379804 1 0.0000 0.991 1.000 0.000
#> GSM379805 1 0.0000 0.991 1.000 0.000
#> GSM379806 1 0.0000 0.991 1.000 0.000
#> GSM379799 1 0.0000 0.991 1.000 0.000
#> GSM379800 1 0.0000 0.991 1.000 0.000
#> GSM379801 1 0.0000 0.991 1.000 0.000
#> GSM379802 1 0.0000 0.991 1.000 0.000
#> GSM379803 1 0.0000 0.991 1.000 0.000
#> GSM379812 1 0.0000 0.991 1.000 0.000
#> GSM379813 1 0.0000 0.991 1.000 0.000
#> GSM379814 1 0.0000 0.991 1.000 0.000
#> GSM379807 1 0.0000 0.991 1.000 0.000
#> GSM379808 1 0.0000 0.991 1.000 0.000
#> GSM379809 1 0.0000 0.991 1.000 0.000
#> GSM379810 1 0.0000 0.991 1.000 0.000
#> GSM379811 1 0.0000 0.991 1.000 0.000
#> GSM379820 1 0.0000 0.991 1.000 0.000
#> GSM379821 1 0.0000 0.991 1.000 0.000
#> GSM379822 1 0.0000 0.991 1.000 0.000
#> GSM379815 1 0.0000 0.991 1.000 0.000
#> GSM379816 1 0.0000 0.991 1.000 0.000
#> GSM379817 1 0.0000 0.991 1.000 0.000
#> GSM379818 1 0.0000 0.991 1.000 0.000
#> GSM379819 1 0.0000 0.991 1.000 0.000
#> GSM379825 1 0.0000 0.991 1.000 0.000
#> GSM379826 1 0.0000 0.991 1.000 0.000
#> GSM379823 1 0.0000 0.991 1.000 0.000
#> GSM379824 1 0.0000 0.991 1.000 0.000
#> GSM379749 2 0.0000 0.991 0.000 1.000
#> GSM379750 2 0.0000 0.991 0.000 1.000
#> GSM379751 2 0.0000 0.991 0.000 1.000
#> GSM379744 2 0.0000 0.991 0.000 1.000
#> GSM379745 2 0.0000 0.991 0.000 1.000
#> GSM379746 2 0.0000 0.991 0.000 1.000
#> GSM379747 2 0.0000 0.991 0.000 1.000
#> GSM379748 2 0.0000 0.991 0.000 1.000
#> GSM379757 2 0.0000 0.991 0.000 1.000
#> GSM379758 2 0.0000 0.991 0.000 1.000
#> GSM379752 2 0.0000 0.991 0.000 1.000
#> GSM379753 2 0.0000 0.991 0.000 1.000
#> GSM379754 2 0.0000 0.991 0.000 1.000
#> GSM379755 2 0.0000 0.991 0.000 1.000
#> GSM379756 2 0.0000 0.991 0.000 1.000
#> GSM379764 2 0.0000 0.991 0.000 1.000
#> GSM379765 2 0.0000 0.991 0.000 1.000
#> GSM379766 2 0.0000 0.991 0.000 1.000
#> GSM379759 2 0.0000 0.991 0.000 1.000
#> GSM379760 2 0.0000 0.991 0.000 1.000
#> GSM379761 2 0.0000 0.991 0.000 1.000
#> GSM379762 2 0.0000 0.991 0.000 1.000
#> GSM379763 2 0.0000 0.991 0.000 1.000
#> GSM379769 2 0.0000 0.991 0.000 1.000
#> GSM379770 2 0.0000 0.991 0.000 1.000
#> GSM379767 2 0.0000 0.991 0.000 1.000
#> GSM379768 2 0.0000 0.991 0.000 1.000
#> GSM379776 1 0.0000 0.991 1.000 0.000
#> GSM379777 1 0.0000 0.991 1.000 0.000
#> GSM379778 1 0.0000 0.991 1.000 0.000
#> GSM379771 1 0.0000 0.991 1.000 0.000
#> GSM379772 1 0.0000 0.991 1.000 0.000
#> GSM379773 1 0.0000 0.991 1.000 0.000
#> GSM379774 1 0.0000 0.991 1.000 0.000
#> GSM379775 1 0.0000 0.991 1.000 0.000
#> GSM379784 1 0.0000 0.991 1.000 0.000
#> GSM379785 1 0.0000 0.991 1.000 0.000
#> GSM379786 1 0.0000 0.991 1.000 0.000
#> GSM379779 1 0.0000 0.991 1.000 0.000
#> GSM379780 1 0.0000 0.991 1.000 0.000
#> GSM379781 1 0.0000 0.991 1.000 0.000
#> GSM379782 2 0.8813 0.572 0.300 0.700
#> GSM379783 1 0.0000 0.991 1.000 0.000
#> GSM379792 1 0.0000 0.991 1.000 0.000
#> GSM379793 1 0.0000 0.991 1.000 0.000
#> GSM379794 1 0.0000 0.991 1.000 0.000
#> GSM379787 1 0.9635 0.357 0.612 0.388
#> GSM379788 1 0.0000 0.991 1.000 0.000
#> GSM379789 1 0.0000 0.991 1.000 0.000
#> GSM379790 1 0.0000 0.991 1.000 0.000
#> GSM379791 1 0.0000 0.991 1.000 0.000
#> GSM379797 1 0.0000 0.991 1.000 0.000
#> GSM379798 1 0.0000 0.991 1.000 0.000
#> GSM379795 1 0.0000 0.991 1.000 0.000
#> GSM379796 1 0.0000 0.991 1.000 0.000
#> GSM379721 1 0.0000 0.991 1.000 0.000
#> GSM379722 1 0.0000 0.991 1.000 0.000
#> GSM379723 1 0.0000 0.991 1.000 0.000
#> GSM379716 1 0.0000 0.991 1.000 0.000
#> GSM379717 1 0.0000 0.991 1.000 0.000
#> GSM379718 1 0.0000 0.991 1.000 0.000
#> GSM379719 1 0.0000 0.991 1.000 0.000
#> GSM379720 1 0.0000 0.991 1.000 0.000
#> GSM379729 1 0.0000 0.991 1.000 0.000
#> GSM379730 1 0.0000 0.991 1.000 0.000
#> GSM379731 1 0.0000 0.991 1.000 0.000
#> GSM379724 1 0.0000 0.991 1.000 0.000
#> GSM379725 1 0.0000 0.991 1.000 0.000
#> GSM379726 1 0.0000 0.991 1.000 0.000
#> GSM379727 1 0.0000 0.991 1.000 0.000
#> GSM379728 1 0.0000 0.991 1.000 0.000
#> GSM379737 1 0.0000 0.991 1.000 0.000
#> GSM379738 1 0.0000 0.991 1.000 0.000
#> GSM379739 1 0.0000 0.991 1.000 0.000
#> GSM379732 1 0.0000 0.991 1.000 0.000
#> GSM379733 1 0.0000 0.991 1.000 0.000
#> GSM379734 1 0.0000 0.991 1.000 0.000
#> GSM379735 1 0.0000 0.991 1.000 0.000
#> GSM379736 1 0.0000 0.991 1.000 0.000
#> GSM379742 2 0.0000 0.991 0.000 1.000
#> GSM379743 1 0.0000 0.991 1.000 0.000
#> GSM379740 1 0.0000 0.991 1.000 0.000
#> GSM379741 2 0.0000 0.991 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379833 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379834 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379827 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379828 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379829 1 0.0892 0.7958 0.980 0.000 0.020
#> GSM379830 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379831 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379840 3 0.7757 0.0609 0.048 0.464 0.488
#> GSM379841 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379842 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379835 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379836 2 0.5882 0.4345 0.000 0.652 0.348
#> GSM379837 3 0.2297 0.8077 0.036 0.020 0.944
#> GSM379838 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379839 3 0.6811 0.5994 0.064 0.220 0.716
#> GSM379848 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379849 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379850 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379843 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379844 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379845 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379846 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379847 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379853 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379854 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379851 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379852 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379804 1 0.3482 0.8151 0.872 0.000 0.128
#> GSM379805 1 0.0000 0.7999 1.000 0.000 0.000
#> GSM379806 1 0.0000 0.7999 1.000 0.000 0.000
#> GSM379799 1 0.0000 0.7999 1.000 0.000 0.000
#> GSM379800 1 0.0000 0.7999 1.000 0.000 0.000
#> GSM379801 1 0.0000 0.7999 1.000 0.000 0.000
#> GSM379802 1 0.0000 0.7999 1.000 0.000 0.000
#> GSM379803 1 0.0000 0.7999 1.000 0.000 0.000
#> GSM379812 3 0.2959 0.7362 0.100 0.000 0.900
#> GSM379813 1 0.5968 0.6856 0.636 0.000 0.364
#> GSM379814 1 0.4555 0.7905 0.800 0.000 0.200
#> GSM379807 1 0.0000 0.7999 1.000 0.000 0.000
#> GSM379808 1 0.0000 0.7999 1.000 0.000 0.000
#> GSM379809 1 0.3752 0.8093 0.856 0.000 0.144
#> GSM379810 1 0.5591 0.6623 0.696 0.000 0.304
#> GSM379811 1 0.0000 0.7999 1.000 0.000 0.000
#> GSM379820 1 0.3941 0.8111 0.844 0.000 0.156
#> GSM379821 3 0.1753 0.7898 0.048 0.000 0.952
#> GSM379822 3 0.0747 0.8084 0.016 0.000 0.984
#> GSM379815 1 0.3482 0.8151 0.872 0.000 0.128
#> GSM379816 3 0.0237 0.8142 0.004 0.000 0.996
#> GSM379817 1 0.6154 0.6216 0.592 0.000 0.408
#> GSM379818 1 0.0000 0.7999 1.000 0.000 0.000
#> GSM379819 1 0.3412 0.8157 0.876 0.000 0.124
#> GSM379825 1 0.0000 0.7999 1.000 0.000 0.000
#> GSM379826 1 0.3482 0.8151 0.872 0.000 0.128
#> GSM379823 3 0.1289 0.7987 0.032 0.000 0.968
#> GSM379824 1 0.4178 0.8138 0.828 0.000 0.172
#> GSM379749 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379750 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379751 2 0.1031 0.9535 0.000 0.976 0.024
#> GSM379744 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379745 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379746 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379747 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379748 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379757 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379758 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379752 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379753 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379754 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379755 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379756 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379764 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379765 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379766 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379759 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379760 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379761 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379762 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379763 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379769 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379770 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379767 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379768 2 0.0000 0.9770 0.000 1.000 0.000
#> GSM379776 1 0.4452 0.8071 0.808 0.000 0.192
#> GSM379777 1 0.5968 0.6832 0.636 0.000 0.364
#> GSM379778 3 0.5835 0.1220 0.340 0.000 0.660
#> GSM379771 1 0.3551 0.8157 0.868 0.000 0.132
#> GSM379772 1 0.3752 0.8093 0.856 0.000 0.144
#> GSM379773 1 0.5560 0.7402 0.700 0.000 0.300
#> GSM379774 1 0.5760 0.7169 0.672 0.000 0.328
#> GSM379775 1 0.3482 0.8151 0.872 0.000 0.128
#> GSM379784 3 0.1031 0.8050 0.024 0.000 0.976
#> GSM379785 1 0.6008 0.6698 0.628 0.000 0.372
#> GSM379786 3 0.0000 0.8137 0.000 0.000 1.000
#> GSM379779 1 0.5497 0.7441 0.708 0.000 0.292
#> GSM379780 1 0.5926 0.6893 0.644 0.000 0.356
#> GSM379781 1 0.6305 0.4683 0.516 0.000 0.484
#> GSM379782 2 0.4702 0.7156 0.000 0.788 0.212
#> GSM379783 3 0.0000 0.8137 0.000 0.000 1.000
#> GSM379792 1 0.3482 0.8151 0.872 0.000 0.128
#> GSM379793 1 0.5882 0.6975 0.652 0.000 0.348
#> GSM379794 1 0.4504 0.8054 0.804 0.000 0.196
#> GSM379787 2 0.9767 -0.0630 0.320 0.432 0.248
#> GSM379788 3 0.0000 0.8137 0.000 0.000 1.000
#> GSM379789 1 0.5882 0.6975 0.652 0.000 0.348
#> GSM379790 1 0.4346 0.8096 0.816 0.000 0.184
#> GSM379791 1 0.5882 0.6975 0.652 0.000 0.348
#> GSM379797 1 0.0000 0.7999 1.000 0.000 0.000
#> GSM379798 1 0.4235 0.8114 0.824 0.000 0.176
#> GSM379795 1 0.6008 0.6772 0.628 0.000 0.372
#> GSM379796 1 0.1411 0.8085 0.964 0.000 0.036
#> GSM379721 3 0.3879 0.7777 0.152 0.000 0.848
#> GSM379722 3 0.1964 0.8081 0.056 0.000 0.944
#> GSM379723 3 0.6168 0.3423 0.412 0.000 0.588
#> GSM379716 1 0.5327 0.4358 0.728 0.000 0.272
#> GSM379717 3 0.5058 0.7010 0.244 0.000 0.756
#> GSM379718 3 0.4931 0.7143 0.232 0.000 0.768
#> GSM379719 3 0.3879 0.7777 0.152 0.000 0.848
#> GSM379720 3 0.4702 0.7345 0.212 0.000 0.788
#> GSM379729 3 0.0000 0.8137 0.000 0.000 1.000
#> GSM379730 3 0.0000 0.8137 0.000 0.000 1.000
#> GSM379731 3 0.0000 0.8137 0.000 0.000 1.000
#> GSM379724 3 0.4887 0.7183 0.228 0.000 0.772
#> GSM379725 3 0.0000 0.8137 0.000 0.000 1.000
#> GSM379726 3 0.5058 0.7010 0.244 0.000 0.756
#> GSM379727 3 0.3941 0.7755 0.156 0.000 0.844
#> GSM379728 1 0.6274 0.1435 0.544 0.000 0.456
#> GSM379737 3 0.4178 0.7655 0.172 0.000 0.828
#> GSM379738 3 0.4887 0.7183 0.228 0.000 0.772
#> GSM379739 3 0.0424 0.8136 0.008 0.000 0.992
#> GSM379732 3 0.0000 0.8137 0.000 0.000 1.000
#> GSM379733 3 0.4291 0.7600 0.180 0.000 0.820
#> GSM379734 3 0.4178 0.7655 0.172 0.000 0.828
#> GSM379735 3 0.0000 0.8137 0.000 0.000 1.000
#> GSM379736 1 0.0000 0.7999 1.000 0.000 0.000
#> GSM379742 2 0.0424 0.9693 0.000 0.992 0.008
#> GSM379743 3 0.0000 0.8137 0.000 0.000 1.000
#> GSM379740 3 0.5058 0.7010 0.244 0.000 0.756
#> GSM379741 3 0.6291 0.1280 0.000 0.468 0.532
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 1 0.4776 0.6001 0.624 0.376 0.000 0.000
#> GSM379833 1 0.4776 0.6001 0.624 0.376 0.000 0.000
#> GSM379834 1 0.4998 0.2996 0.512 0.488 0.000 0.000
#> GSM379827 1 0.3311 0.8441 0.828 0.172 0.000 0.000
#> GSM379828 1 0.3311 0.8441 0.828 0.172 0.000 0.000
#> GSM379829 1 0.5137 0.2441 0.680 0.000 0.024 0.296
#> GSM379830 1 0.3311 0.8441 0.828 0.172 0.000 0.000
#> GSM379831 1 0.3311 0.8441 0.828 0.172 0.000 0.000
#> GSM379840 1 0.4405 0.8080 0.828 0.112 0.024 0.036
#> GSM379841 2 0.2149 0.8631 0.088 0.912 0.000 0.000
#> GSM379842 2 0.4605 0.4918 0.336 0.664 0.000 0.000
#> GSM379835 1 0.3311 0.8441 0.828 0.172 0.000 0.000
#> GSM379836 1 0.4017 0.8190 0.828 0.128 0.044 0.000
#> GSM379837 1 0.4579 0.5973 0.756 0.004 0.224 0.016
#> GSM379838 2 0.1211 0.8804 0.040 0.960 0.000 0.000
#> GSM379839 1 0.5644 0.6657 0.760 0.036 0.068 0.136
#> GSM379848 2 0.1211 0.8804 0.040 0.960 0.000 0.000
#> GSM379849 2 0.2149 0.8631 0.088 0.912 0.000 0.000
#> GSM379850 2 0.2149 0.8631 0.088 0.912 0.000 0.000
#> GSM379843 1 0.4164 0.7610 0.736 0.264 0.000 0.000
#> GSM379844 2 0.2149 0.8631 0.088 0.912 0.000 0.000
#> GSM379845 1 0.3311 0.8441 0.828 0.172 0.000 0.000
#> GSM379846 2 0.2149 0.8631 0.088 0.912 0.000 0.000
#> GSM379847 2 0.2149 0.8631 0.088 0.912 0.000 0.000
#> GSM379853 1 0.3311 0.8441 0.828 0.172 0.000 0.000
#> GSM379854 2 0.1211 0.8804 0.040 0.960 0.000 0.000
#> GSM379851 2 0.4996 -0.0699 0.484 0.516 0.000 0.000
#> GSM379852 2 0.2149 0.8631 0.088 0.912 0.000 0.000
#> GSM379804 4 0.3047 0.7737 0.116 0.000 0.012 0.872
#> GSM379805 4 0.3311 0.7629 0.172 0.000 0.000 0.828
#> GSM379806 4 0.3311 0.7629 0.172 0.000 0.000 0.828
#> GSM379799 4 0.3311 0.7629 0.172 0.000 0.000 0.828
#> GSM379800 4 0.3311 0.7629 0.172 0.000 0.000 0.828
#> GSM379801 4 0.3311 0.7629 0.172 0.000 0.000 0.828
#> GSM379802 4 0.3311 0.7629 0.172 0.000 0.000 0.828
#> GSM379803 4 0.3311 0.7629 0.172 0.000 0.000 0.828
#> GSM379812 3 0.3942 0.6628 0.000 0.000 0.764 0.236
#> GSM379813 4 0.4222 0.6259 0.000 0.000 0.272 0.728
#> GSM379814 4 0.2530 0.7299 0.000 0.000 0.112 0.888
#> GSM379807 4 0.3311 0.7629 0.172 0.000 0.000 0.828
#> GSM379808 4 0.3311 0.7629 0.172 0.000 0.000 0.828
#> GSM379809 4 0.3356 0.7003 0.000 0.000 0.176 0.824
#> GSM379810 4 0.4585 0.5021 0.000 0.000 0.332 0.668
#> GSM379811 4 0.3311 0.7629 0.172 0.000 0.000 0.828
#> GSM379820 4 0.1557 0.7590 0.000 0.000 0.056 0.944
#> GSM379821 3 0.3873 0.6852 0.000 0.000 0.772 0.228
#> GSM379822 3 0.3486 0.7176 0.000 0.000 0.812 0.188
#> GSM379815 4 0.2760 0.7355 0.000 0.000 0.128 0.872
#> GSM379816 3 0.4370 0.7272 0.044 0.000 0.800 0.156
#> GSM379817 4 0.4431 0.5807 0.000 0.000 0.304 0.696
#> GSM379818 4 0.3311 0.7629 0.172 0.000 0.000 0.828
#> GSM379819 4 0.2918 0.7735 0.116 0.000 0.008 0.876
#> GSM379825 4 0.3311 0.7629 0.172 0.000 0.000 0.828
#> GSM379826 4 0.1022 0.7660 0.000 0.000 0.032 0.968
#> GSM379823 3 0.3444 0.7185 0.000 0.000 0.816 0.184
#> GSM379824 4 0.1389 0.7636 0.000 0.000 0.048 0.952
#> GSM379749 2 0.0000 0.8952 0.000 1.000 0.000 0.000
#> GSM379750 2 0.0000 0.8952 0.000 1.000 0.000 0.000
#> GSM379751 1 0.3311 0.8441 0.828 0.172 0.000 0.000
#> GSM379744 2 0.0000 0.8952 0.000 1.000 0.000 0.000
#> GSM379745 2 0.0000 0.8952 0.000 1.000 0.000 0.000
#> GSM379746 2 0.0000 0.8952 0.000 1.000 0.000 0.000
#> GSM379747 1 0.3726 0.8200 0.788 0.212 0.000 0.000
#> GSM379748 2 0.4624 0.4038 0.340 0.660 0.000 0.000
#> GSM379757 2 0.0000 0.8952 0.000 1.000 0.000 0.000
#> GSM379758 2 0.0000 0.8952 0.000 1.000 0.000 0.000
#> GSM379752 2 0.0000 0.8952 0.000 1.000 0.000 0.000
#> GSM379753 1 0.3726 0.8200 0.788 0.212 0.000 0.000
#> GSM379754 2 0.0000 0.8952 0.000 1.000 0.000 0.000
#> GSM379755 2 0.0000 0.8952 0.000 1.000 0.000 0.000
#> GSM379756 2 0.0000 0.8952 0.000 1.000 0.000 0.000
#> GSM379764 2 0.3266 0.7635 0.168 0.832 0.000 0.000
#> GSM379765 2 0.0000 0.8952 0.000 1.000 0.000 0.000
#> GSM379766 2 0.0000 0.8952 0.000 1.000 0.000 0.000
#> GSM379759 2 0.0000 0.8952 0.000 1.000 0.000 0.000
#> GSM379760 2 0.0000 0.8952 0.000 1.000 0.000 0.000
#> GSM379761 2 0.0000 0.8952 0.000 1.000 0.000 0.000
#> GSM379762 2 0.1389 0.8772 0.048 0.952 0.000 0.000
#> GSM379763 2 0.0000 0.8952 0.000 1.000 0.000 0.000
#> GSM379769 2 0.3801 0.6881 0.220 0.780 0.000 0.000
#> GSM379770 2 0.2921 0.7965 0.140 0.860 0.000 0.000
#> GSM379767 2 0.0000 0.8952 0.000 1.000 0.000 0.000
#> GSM379768 2 0.0000 0.8952 0.000 1.000 0.000 0.000
#> GSM379776 4 0.3693 0.7740 0.072 0.000 0.072 0.856
#> GSM379777 4 0.3837 0.6646 0.000 0.000 0.224 0.776
#> GSM379778 4 0.5000 0.0945 0.000 0.000 0.496 0.504
#> GSM379771 4 0.2868 0.7351 0.000 0.000 0.136 0.864
#> GSM379772 4 0.2589 0.7438 0.000 0.000 0.116 0.884
#> GSM379773 4 0.3400 0.7015 0.000 0.000 0.180 0.820
#> GSM379774 4 0.3649 0.6835 0.000 0.000 0.204 0.796
#> GSM379775 4 0.1940 0.7609 0.000 0.000 0.076 0.924
#> GSM379784 3 0.3726 0.6980 0.000 0.000 0.788 0.212
#> GSM379785 4 0.3975 0.6537 0.000 0.000 0.240 0.760
#> GSM379786 3 0.3400 0.7215 0.000 0.000 0.820 0.180
#> GSM379779 4 0.3356 0.7002 0.000 0.000 0.176 0.824
#> GSM379780 4 0.3837 0.6646 0.000 0.000 0.224 0.776
#> GSM379781 4 0.4661 0.5040 0.000 0.000 0.348 0.652
#> GSM379782 2 0.8103 0.2721 0.288 0.528 0.060 0.124
#> GSM379783 3 0.3764 0.7222 0.012 0.000 0.816 0.172
#> GSM379792 4 0.3047 0.7737 0.116 0.000 0.012 0.872
#> GSM379793 4 0.3975 0.6537 0.000 0.000 0.240 0.760
#> GSM379794 4 0.2011 0.7559 0.000 0.000 0.080 0.920
#> GSM379787 4 0.9201 0.2383 0.180 0.204 0.152 0.464
#> GSM379788 3 0.3649 0.7075 0.000 0.000 0.796 0.204
#> GSM379789 4 0.3837 0.6646 0.000 0.000 0.224 0.776
#> GSM379790 4 0.1716 0.7590 0.000 0.000 0.064 0.936
#> GSM379791 4 0.3975 0.6549 0.000 0.000 0.240 0.760
#> GSM379797 4 0.3311 0.7629 0.172 0.000 0.000 0.828
#> GSM379798 4 0.2142 0.7663 0.016 0.000 0.056 0.928
#> GSM379795 4 0.4072 0.6465 0.000 0.000 0.252 0.748
#> GSM379796 4 0.3300 0.7701 0.144 0.000 0.008 0.848
#> GSM379721 3 0.2921 0.7633 0.000 0.000 0.860 0.140
#> GSM379722 3 0.1302 0.7737 0.000 0.000 0.956 0.044
#> GSM379723 3 0.4697 0.5032 0.000 0.000 0.644 0.356
#> GSM379716 4 0.4948 0.0942 0.000 0.000 0.440 0.560
#> GSM379717 3 0.3726 0.7218 0.000 0.000 0.788 0.212
#> GSM379718 3 0.3726 0.7218 0.000 0.000 0.788 0.212
#> GSM379719 3 0.2921 0.7633 0.000 0.000 0.860 0.140
#> GSM379720 3 0.3837 0.7301 0.000 0.000 0.776 0.224
#> GSM379729 3 0.2589 0.7511 0.000 0.000 0.884 0.116
#> GSM379730 3 0.2589 0.7511 0.000 0.000 0.884 0.116
#> GSM379731 3 0.0817 0.7722 0.000 0.000 0.976 0.024
#> GSM379724 3 0.3726 0.7218 0.000 0.000 0.788 0.212
#> GSM379725 3 0.0188 0.7736 0.000 0.000 0.996 0.004
#> GSM379726 3 0.3726 0.7218 0.000 0.000 0.788 0.212
#> GSM379727 3 0.2973 0.7619 0.000 0.000 0.856 0.144
#> GSM379728 3 0.4972 0.2318 0.000 0.000 0.544 0.456
#> GSM379737 3 0.3172 0.7551 0.000 0.000 0.840 0.160
#> GSM379738 3 0.3726 0.7218 0.000 0.000 0.788 0.212
#> GSM379739 3 0.0188 0.7746 0.000 0.000 0.996 0.004
#> GSM379732 3 0.0000 0.7737 0.000 0.000 1.000 0.000
#> GSM379733 3 0.3266 0.7511 0.000 0.000 0.832 0.168
#> GSM379734 3 0.3172 0.7551 0.000 0.000 0.840 0.160
#> GSM379735 3 0.2345 0.7569 0.000 0.000 0.900 0.100
#> GSM379736 4 0.3494 0.7614 0.172 0.000 0.004 0.824
#> GSM379742 2 0.3982 0.6858 0.220 0.776 0.004 0.000
#> GSM379743 3 0.2589 0.7511 0.000 0.000 0.884 0.116
#> GSM379740 3 0.3726 0.7218 0.000 0.000 0.788 0.212
#> GSM379741 3 0.7392 0.1179 0.232 0.248 0.520 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 5 0.3452 0.6381 0.000 0.244 0.000 0.000 0.756
#> GSM379833 5 0.3452 0.6381 0.000 0.244 0.000 0.000 0.756
#> GSM379834 5 0.4060 0.3876 0.000 0.360 0.000 0.000 0.640
#> GSM379827 5 0.0000 0.8761 0.000 0.000 0.000 0.000 1.000
#> GSM379828 5 0.0000 0.8761 0.000 0.000 0.000 0.000 1.000
#> GSM379829 4 0.6512 0.1546 0.000 0.000 0.200 0.452 0.348
#> GSM379830 5 0.0000 0.8761 0.000 0.000 0.000 0.000 1.000
#> GSM379831 5 0.0000 0.8761 0.000 0.000 0.000 0.000 1.000
#> GSM379840 5 0.0000 0.8761 0.000 0.000 0.000 0.000 1.000
#> GSM379841 2 0.3177 0.7702 0.000 0.792 0.000 0.000 0.208
#> GSM379842 2 0.4291 0.3456 0.000 0.536 0.000 0.000 0.464
#> GSM379835 5 0.0000 0.8761 0.000 0.000 0.000 0.000 1.000
#> GSM379836 5 0.0000 0.8761 0.000 0.000 0.000 0.000 1.000
#> GSM379837 5 0.2929 0.6859 0.000 0.000 0.180 0.000 0.820
#> GSM379838 2 0.1270 0.8407 0.000 0.948 0.000 0.000 0.052
#> GSM379839 5 0.2179 0.7560 0.112 0.000 0.000 0.000 0.888
#> GSM379848 2 0.1270 0.8407 0.000 0.948 0.000 0.000 0.052
#> GSM379849 2 0.3177 0.7702 0.000 0.792 0.000 0.000 0.208
#> GSM379850 2 0.3177 0.7702 0.000 0.792 0.000 0.000 0.208
#> GSM379843 5 0.2020 0.8099 0.000 0.100 0.000 0.000 0.900
#> GSM379844 2 0.3177 0.7702 0.000 0.792 0.000 0.000 0.208
#> GSM379845 5 0.0000 0.8761 0.000 0.000 0.000 0.000 1.000
#> GSM379846 2 0.3177 0.7702 0.000 0.792 0.000 0.000 0.208
#> GSM379847 2 0.3177 0.7702 0.000 0.792 0.000 0.000 0.208
#> GSM379853 5 0.0000 0.8761 0.000 0.000 0.000 0.000 1.000
#> GSM379854 2 0.1270 0.8407 0.000 0.948 0.000 0.000 0.052
#> GSM379851 5 0.4126 0.2031 0.000 0.380 0.000 0.000 0.620
#> GSM379852 2 0.3177 0.7702 0.000 0.792 0.000 0.000 0.208
#> GSM379804 1 0.4555 0.3165 0.520 0.000 0.008 0.472 0.000
#> GSM379805 4 0.0290 0.9061 0.000 0.000 0.008 0.992 0.000
#> GSM379806 4 0.0000 0.9108 0.000 0.000 0.000 1.000 0.000
#> GSM379799 4 0.0000 0.9108 0.000 0.000 0.000 1.000 0.000
#> GSM379800 4 0.0000 0.9108 0.000 0.000 0.000 1.000 0.000
#> GSM379801 4 0.0000 0.9108 0.000 0.000 0.000 1.000 0.000
#> GSM379802 4 0.0000 0.9108 0.000 0.000 0.000 1.000 0.000
#> GSM379803 4 0.0290 0.9061 0.000 0.000 0.008 0.992 0.000
#> GSM379812 1 0.1908 0.7574 0.908 0.000 0.092 0.000 0.000
#> GSM379813 1 0.0000 0.8058 1.000 0.000 0.000 0.000 0.000
#> GSM379814 1 0.0290 0.8062 0.992 0.000 0.008 0.000 0.000
#> GSM379807 4 0.2660 0.7726 0.128 0.000 0.008 0.864 0.000
#> GSM379808 4 0.0000 0.9108 0.000 0.000 0.000 1.000 0.000
#> GSM379809 1 0.4030 0.4744 0.648 0.000 0.352 0.000 0.000
#> GSM379810 1 0.4030 0.4744 0.648 0.000 0.352 0.000 0.000
#> GSM379811 4 0.0000 0.9108 0.000 0.000 0.000 1.000 0.000
#> GSM379820 1 0.0290 0.8062 0.992 0.000 0.008 0.000 0.000
#> GSM379821 1 0.0000 0.8058 1.000 0.000 0.000 0.000 0.000
#> GSM379822 1 0.0510 0.8022 0.984 0.000 0.016 0.000 0.000
#> GSM379815 1 0.4166 0.4783 0.648 0.000 0.348 0.004 0.000
#> GSM379816 1 0.2359 0.7624 0.904 0.000 0.060 0.000 0.036
#> GSM379817 1 0.0000 0.8058 1.000 0.000 0.000 0.000 0.000
#> GSM379818 4 0.0000 0.9108 0.000 0.000 0.000 1.000 0.000
#> GSM379819 1 0.4533 0.3420 0.544 0.000 0.008 0.448 0.000
#> GSM379825 4 0.0000 0.9108 0.000 0.000 0.000 1.000 0.000
#> GSM379826 1 0.1671 0.7856 0.924 0.000 0.076 0.000 0.000
#> GSM379823 1 0.0000 0.8058 1.000 0.000 0.000 0.000 0.000
#> GSM379824 1 0.0290 0.8062 0.992 0.000 0.008 0.000 0.000
#> GSM379749 2 0.0000 0.8606 0.000 1.000 0.000 0.000 0.000
#> GSM379750 2 0.0000 0.8606 0.000 1.000 0.000 0.000 0.000
#> GSM379751 5 0.0000 0.8761 0.000 0.000 0.000 0.000 1.000
#> GSM379744 2 0.0000 0.8606 0.000 1.000 0.000 0.000 0.000
#> GSM379745 2 0.0000 0.8606 0.000 1.000 0.000 0.000 0.000
#> GSM379746 2 0.0000 0.8606 0.000 1.000 0.000 0.000 0.000
#> GSM379747 5 0.1270 0.8476 0.000 0.052 0.000 0.000 0.948
#> GSM379748 2 0.4305 0.1626 0.000 0.512 0.000 0.000 0.488
#> GSM379757 2 0.0000 0.8606 0.000 1.000 0.000 0.000 0.000
#> GSM379758 2 0.0000 0.8606 0.000 1.000 0.000 0.000 0.000
#> GSM379752 2 0.0000 0.8606 0.000 1.000 0.000 0.000 0.000
#> GSM379753 5 0.1270 0.8476 0.000 0.052 0.000 0.000 0.948
#> GSM379754 2 0.0000 0.8606 0.000 1.000 0.000 0.000 0.000
#> GSM379755 2 0.0000 0.8606 0.000 1.000 0.000 0.000 0.000
#> GSM379756 2 0.0000 0.8606 0.000 1.000 0.000 0.000 0.000
#> GSM379764 2 0.3730 0.6618 0.000 0.712 0.000 0.000 0.288
#> GSM379765 2 0.0000 0.8606 0.000 1.000 0.000 0.000 0.000
#> GSM379766 2 0.0000 0.8606 0.000 1.000 0.000 0.000 0.000
#> GSM379759 2 0.0000 0.8606 0.000 1.000 0.000 0.000 0.000
#> GSM379760 2 0.0000 0.8606 0.000 1.000 0.000 0.000 0.000
#> GSM379761 2 0.0000 0.8606 0.000 1.000 0.000 0.000 0.000
#> GSM379762 2 0.2690 0.7921 0.000 0.844 0.000 0.000 0.156
#> GSM379763 2 0.0000 0.8606 0.000 1.000 0.000 0.000 0.000
#> GSM379769 2 0.3999 0.5752 0.000 0.656 0.000 0.000 0.344
#> GSM379770 2 0.3561 0.6967 0.000 0.740 0.000 0.000 0.260
#> GSM379767 2 0.0162 0.8599 0.000 0.996 0.000 0.000 0.004
#> GSM379768 2 0.0000 0.8606 0.000 1.000 0.000 0.000 0.000
#> GSM379776 1 0.4392 0.5173 0.612 0.000 0.008 0.380 0.000
#> GSM379777 1 0.2377 0.7938 0.872 0.000 0.000 0.128 0.000
#> GSM379778 1 0.4096 0.7317 0.784 0.000 0.144 0.072 0.000
#> GSM379771 1 0.5977 0.5128 0.540 0.000 0.332 0.128 0.000
#> GSM379772 1 0.5848 0.5718 0.576 0.000 0.296 0.128 0.000
#> GSM379773 1 0.2536 0.7936 0.868 0.000 0.004 0.128 0.000
#> GSM379774 1 0.2536 0.7936 0.868 0.000 0.004 0.128 0.000
#> GSM379775 1 0.5678 0.6185 0.612 0.000 0.260 0.128 0.000
#> GSM379784 1 0.1341 0.8065 0.944 0.000 0.000 0.056 0.000
#> GSM379785 1 0.0162 0.8064 0.996 0.000 0.000 0.004 0.000
#> GSM379786 1 0.0510 0.8022 0.984 0.000 0.016 0.000 0.000
#> GSM379779 1 0.2377 0.7938 0.872 0.000 0.000 0.128 0.000
#> GSM379780 1 0.2377 0.7938 0.872 0.000 0.000 0.128 0.000
#> GSM379781 1 0.0000 0.8058 1.000 0.000 0.000 0.000 0.000
#> GSM379782 1 0.7631 0.0577 0.408 0.232 0.056 0.000 0.304
#> GSM379783 1 0.0000 0.8058 1.000 0.000 0.000 0.000 0.000
#> GSM379792 1 0.4555 0.3165 0.520 0.000 0.008 0.472 0.000
#> GSM379793 1 0.2230 0.7973 0.884 0.000 0.000 0.116 0.000
#> GSM379794 1 0.3532 0.7834 0.824 0.000 0.048 0.128 0.000
#> GSM379787 1 0.6645 0.6167 0.636 0.012 0.116 0.064 0.172
#> GSM379788 1 0.0000 0.8058 1.000 0.000 0.000 0.000 0.000
#> GSM379789 1 0.2377 0.7938 0.872 0.000 0.000 0.128 0.000
#> GSM379790 1 0.2660 0.7930 0.864 0.000 0.008 0.128 0.000
#> GSM379791 1 0.2377 0.7938 0.872 0.000 0.000 0.128 0.000
#> GSM379797 4 0.0000 0.9108 0.000 0.000 0.000 1.000 0.000
#> GSM379798 1 0.3783 0.6981 0.740 0.000 0.008 0.252 0.000
#> GSM379795 1 0.2377 0.7938 0.872 0.000 0.000 0.128 0.000
#> GSM379796 4 0.4291 -0.2057 0.464 0.000 0.000 0.536 0.000
#> GSM379721 3 0.0000 0.8935 0.000 0.000 1.000 0.000 0.000
#> GSM379722 3 0.0290 0.8905 0.008 0.000 0.992 0.000 0.000
#> GSM379723 3 0.0000 0.8935 0.000 0.000 1.000 0.000 0.000
#> GSM379716 3 0.0609 0.8804 0.000 0.000 0.980 0.020 0.000
#> GSM379717 3 0.0000 0.8935 0.000 0.000 1.000 0.000 0.000
#> GSM379718 3 0.0000 0.8935 0.000 0.000 1.000 0.000 0.000
#> GSM379719 3 0.0000 0.8935 0.000 0.000 1.000 0.000 0.000
#> GSM379720 3 0.3480 0.5699 0.248 0.000 0.752 0.000 0.000
#> GSM379729 3 0.4030 0.5187 0.352 0.000 0.648 0.000 0.000
#> GSM379730 3 0.4101 0.4843 0.372 0.000 0.628 0.000 0.000
#> GSM379731 3 0.3177 0.7236 0.208 0.000 0.792 0.000 0.000
#> GSM379724 3 0.0000 0.8935 0.000 0.000 1.000 0.000 0.000
#> GSM379725 3 0.1410 0.8589 0.060 0.000 0.940 0.000 0.000
#> GSM379726 3 0.0000 0.8935 0.000 0.000 1.000 0.000 0.000
#> GSM379727 3 0.0000 0.8935 0.000 0.000 1.000 0.000 0.000
#> GSM379728 3 0.0000 0.8935 0.000 0.000 1.000 0.000 0.000
#> GSM379737 3 0.0000 0.8935 0.000 0.000 1.000 0.000 0.000
#> GSM379738 3 0.0000 0.8935 0.000 0.000 1.000 0.000 0.000
#> GSM379739 3 0.0290 0.8905 0.008 0.000 0.992 0.000 0.000
#> GSM379732 3 0.0290 0.8905 0.008 0.000 0.992 0.000 0.000
#> GSM379733 3 0.1121 0.8611 0.044 0.000 0.956 0.000 0.000
#> GSM379734 3 0.0000 0.8935 0.000 0.000 1.000 0.000 0.000
#> GSM379735 3 0.3932 0.5600 0.328 0.000 0.672 0.000 0.000
#> GSM379736 4 0.0609 0.8963 0.000 0.000 0.020 0.980 0.000
#> GSM379742 2 0.3999 0.5752 0.000 0.656 0.000 0.000 0.344
#> GSM379743 3 0.4060 0.5084 0.360 0.000 0.640 0.000 0.000
#> GSM379740 3 0.0000 0.8935 0.000 0.000 1.000 0.000 0.000
#> GSM379741 2 0.6483 0.2212 0.000 0.452 0.192 0.000 0.356
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 5 0.4653 0.156 0.000 0.052 0.000 0.000 0.588 0.360
#> GSM379833 6 0.4728 0.309 0.000 0.052 0.000 0.000 0.392 0.556
#> GSM379834 6 0.5426 0.556 0.000 0.152 0.000 0.000 0.292 0.556
#> GSM379827 5 0.0000 0.921 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379828 5 0.0000 0.921 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379829 4 0.5959 0.145 0.000 0.000 0.196 0.452 0.348 0.004
#> GSM379830 5 0.0000 0.921 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379831 5 0.0000 0.921 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379840 5 0.0000 0.921 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379841 6 0.4894 0.675 0.000 0.376 0.000 0.000 0.068 0.556
#> GSM379842 6 0.5127 0.677 0.000 0.348 0.000 0.000 0.096 0.556
#> GSM379835 5 0.0000 0.921 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379836 5 0.0000 0.921 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379837 5 0.1151 0.884 0.000 0.000 0.032 0.000 0.956 0.012
#> GSM379838 2 0.3964 0.353 0.000 0.724 0.000 0.000 0.044 0.232
#> GSM379839 5 0.0458 0.908 0.000 0.000 0.000 0.000 0.984 0.016
#> GSM379848 2 0.3989 0.344 0.000 0.720 0.000 0.000 0.044 0.236
#> GSM379849 2 0.4876 -0.210 0.000 0.564 0.000 0.000 0.068 0.368
#> GSM379850 6 0.4894 0.675 0.000 0.376 0.000 0.000 0.068 0.556
#> GSM379843 6 0.4141 0.171 0.000 0.012 0.000 0.000 0.432 0.556
#> GSM379844 6 0.4894 0.675 0.000 0.376 0.000 0.000 0.068 0.556
#> GSM379845 5 0.0000 0.921 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379846 6 0.4894 0.675 0.000 0.376 0.000 0.000 0.068 0.556
#> GSM379847 6 0.4894 0.675 0.000 0.376 0.000 0.000 0.068 0.556
#> GSM379853 5 0.3499 0.460 0.000 0.000 0.000 0.000 0.680 0.320
#> GSM379854 2 0.3989 0.344 0.000 0.720 0.000 0.000 0.044 0.236
#> GSM379851 6 0.5506 0.656 0.000 0.264 0.000 0.000 0.180 0.556
#> GSM379852 6 0.4894 0.675 0.000 0.376 0.000 0.000 0.068 0.556
#> GSM379804 1 0.4503 0.350 0.560 0.000 0.008 0.412 0.000 0.020
#> GSM379805 4 0.0405 0.898 0.000 0.000 0.008 0.988 0.000 0.004
#> GSM379806 4 0.0000 0.905 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379799 4 0.0000 0.905 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379800 4 0.0000 0.905 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379801 4 0.0000 0.905 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379802 4 0.0000 0.905 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379803 4 0.0405 0.898 0.000 0.000 0.008 0.988 0.000 0.004
#> GSM379812 1 0.3998 0.720 0.712 0.000 0.040 0.000 0.000 0.248
#> GSM379813 1 0.2793 0.760 0.800 0.000 0.000 0.000 0.000 0.200
#> GSM379814 1 0.3043 0.760 0.792 0.000 0.008 0.000 0.000 0.200
#> GSM379807 4 0.3121 0.737 0.004 0.000 0.008 0.796 0.000 0.192
#> GSM379808 4 0.0000 0.905 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379809 1 0.5173 0.554 0.596 0.000 0.276 0.000 0.000 0.128
#> GSM379810 1 0.5723 0.495 0.508 0.000 0.292 0.000 0.000 0.200
#> GSM379811 4 0.0000 0.905 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379820 1 0.3043 0.760 0.792 0.000 0.008 0.000 0.000 0.200
#> GSM379821 1 0.3221 0.735 0.736 0.000 0.000 0.000 0.000 0.264
#> GSM379822 1 0.3817 0.588 0.568 0.000 0.000 0.000 0.000 0.432
#> GSM379815 1 0.5849 0.502 0.508 0.000 0.284 0.004 0.000 0.204
#> GSM379816 1 0.5238 0.500 0.492 0.000 0.016 0.000 0.056 0.436
#> GSM379817 1 0.2793 0.760 0.800 0.000 0.000 0.000 0.000 0.200
#> GSM379818 4 0.0000 0.905 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379819 1 0.5878 0.506 0.524 0.000 0.008 0.264 0.000 0.204
#> GSM379825 4 0.0000 0.905 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379826 1 0.4195 0.737 0.724 0.000 0.076 0.000 0.000 0.200
#> GSM379823 1 0.3797 0.602 0.580 0.000 0.000 0.000 0.000 0.420
#> GSM379824 1 0.3245 0.752 0.764 0.000 0.008 0.000 0.000 0.228
#> GSM379749 2 0.0000 0.796 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379750 2 0.0000 0.796 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379751 5 0.0000 0.921 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM379744 2 0.0146 0.792 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM379745 2 0.0000 0.796 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379746 2 0.0000 0.796 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379747 5 0.1007 0.879 0.000 0.044 0.000 0.000 0.956 0.000
#> GSM379748 2 0.5832 -0.193 0.000 0.428 0.000 0.000 0.384 0.188
#> GSM379757 2 0.0000 0.796 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379758 2 0.0000 0.796 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379752 2 0.0000 0.796 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379753 5 0.1007 0.879 0.000 0.044 0.000 0.000 0.956 0.000
#> GSM379754 2 0.0000 0.796 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379755 2 0.0000 0.796 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379756 2 0.0000 0.796 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379764 2 0.4219 0.111 0.000 0.648 0.000 0.000 0.032 0.320
#> GSM379765 2 0.0000 0.796 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379766 2 0.0000 0.796 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379759 2 0.0000 0.796 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379760 2 0.0000 0.796 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379761 2 0.0000 0.796 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379762 2 0.4094 0.116 0.000 0.652 0.000 0.000 0.024 0.324
#> GSM379763 2 0.0000 0.796 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379769 2 0.4332 0.104 0.000 0.644 0.000 0.000 0.040 0.316
#> GSM379770 2 0.4094 0.116 0.000 0.652 0.000 0.000 0.024 0.324
#> GSM379767 2 0.2003 0.660 0.000 0.884 0.000 0.000 0.000 0.116
#> GSM379768 2 0.0000 0.796 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379776 1 0.3463 0.617 0.748 0.000 0.008 0.240 0.000 0.004
#> GSM379777 1 0.2632 0.776 0.832 0.000 0.000 0.004 0.000 0.164
#> GSM379778 1 0.1594 0.778 0.932 0.000 0.052 0.000 0.000 0.016
#> GSM379771 1 0.3452 0.606 0.736 0.000 0.256 0.004 0.000 0.004
#> GSM379772 1 0.3215 0.630 0.756 0.000 0.240 0.004 0.000 0.000
#> GSM379773 1 0.0291 0.799 0.992 0.000 0.004 0.004 0.000 0.000
#> GSM379774 1 0.0291 0.799 0.992 0.000 0.004 0.004 0.000 0.000
#> GSM379775 1 0.3248 0.647 0.768 0.000 0.224 0.004 0.000 0.004
#> GSM379784 1 0.0000 0.799 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379785 1 0.0000 0.799 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379786 1 0.1957 0.757 0.888 0.000 0.000 0.000 0.000 0.112
#> GSM379779 1 0.0291 0.799 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM379780 1 0.0146 0.799 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM379781 1 0.0000 0.799 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379782 1 0.6386 0.301 0.480 0.020 0.004 0.000 0.248 0.248
#> GSM379783 1 0.2823 0.681 0.796 0.000 0.000 0.000 0.000 0.204
#> GSM379792 1 0.3583 0.585 0.728 0.000 0.008 0.260 0.000 0.004
#> GSM379793 1 0.0146 0.799 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM379794 1 0.1296 0.788 0.948 0.000 0.044 0.004 0.000 0.004
#> GSM379787 1 0.4307 0.675 0.760 0.004 0.016 0.000 0.144 0.076
#> GSM379788 1 0.0000 0.799 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM379789 1 0.0146 0.799 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM379790 1 0.0551 0.798 0.984 0.000 0.008 0.004 0.000 0.004
#> GSM379791 1 0.0146 0.799 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM379797 4 0.0000 0.905 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM379798 1 0.2488 0.738 0.864 0.000 0.008 0.124 0.000 0.004
#> GSM379795 1 0.0146 0.799 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM379796 4 0.3999 -0.178 0.496 0.000 0.000 0.500 0.000 0.004
#> GSM379721 3 0.1501 0.818 0.000 0.000 0.924 0.000 0.000 0.076
#> GSM379722 3 0.0891 0.834 0.008 0.000 0.968 0.000 0.000 0.024
#> GSM379723 3 0.0000 0.838 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379716 3 0.0146 0.837 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM379717 3 0.0000 0.838 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379718 3 0.0000 0.838 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379719 3 0.0547 0.836 0.000 0.000 0.980 0.000 0.000 0.020
#> GSM379720 3 0.3876 0.506 0.276 0.000 0.700 0.000 0.000 0.024
#> GSM379729 3 0.5826 0.467 0.272 0.000 0.492 0.000 0.000 0.236
#> GSM379730 3 0.5897 0.438 0.280 0.000 0.472 0.000 0.000 0.248
#> GSM379731 3 0.5501 0.572 0.200 0.000 0.564 0.000 0.000 0.236
#> GSM379724 3 0.0000 0.838 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379725 3 0.4223 0.712 0.060 0.000 0.704 0.000 0.000 0.236
#> GSM379726 3 0.0000 0.838 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379727 3 0.0000 0.838 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379728 3 0.0000 0.838 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379737 3 0.1863 0.773 0.104 0.000 0.896 0.000 0.000 0.000
#> GSM379738 3 0.0260 0.836 0.008 0.000 0.992 0.000 0.000 0.000
#> GSM379739 3 0.0260 0.837 0.008 0.000 0.992 0.000 0.000 0.000
#> GSM379732 3 0.3298 0.739 0.008 0.000 0.756 0.000 0.000 0.236
#> GSM379733 3 0.2048 0.752 0.120 0.000 0.880 0.000 0.000 0.000
#> GSM379734 3 0.0000 0.838 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM379735 3 0.5798 0.479 0.264 0.000 0.500 0.000 0.000 0.236
#> GSM379736 4 0.0547 0.890 0.000 0.000 0.020 0.980 0.000 0.000
#> GSM379742 6 0.4534 0.165 0.000 0.472 0.000 0.000 0.032 0.496
#> GSM379743 3 0.5914 0.437 0.272 0.000 0.468 0.000 0.000 0.260
#> GSM379740 3 0.0146 0.838 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM379741 6 0.5782 0.247 0.000 0.396 0.068 0.000 0.044 0.492
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> ATC:pam 138 1.06e-24 1.000 0.7797 2
#> ATC:pam 130 8.26e-34 0.996 0.2431 3
#> ATC:pam 128 4.83e-41 0.998 0.0614 4
#> ATC:pam 124 5.19e-54 1.000 0.0418 5
#> ATC:pam 115 1.29e-59 1.000 0.1464 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4822 0.518 0.518
#> 3 3 0.771 0.837 0.903 0.2295 0.930 0.864
#> 4 4 0.640 0.660 0.801 0.1474 0.876 0.745
#> 5 5 0.636 0.638 0.752 0.0777 0.825 0.580
#> 6 6 0.706 0.696 0.820 0.0436 0.960 0.849
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0 1 0 1
#> GSM379833 2 0 1 0 1
#> GSM379834 2 0 1 0 1
#> GSM379827 2 0 1 0 1
#> GSM379828 2 0 1 0 1
#> GSM379829 2 0 1 0 1
#> GSM379830 2 0 1 0 1
#> GSM379831 2 0 1 0 1
#> GSM379840 2 0 1 0 1
#> GSM379841 2 0 1 0 1
#> GSM379842 2 0 1 0 1
#> GSM379835 2 0 1 0 1
#> GSM379836 2 0 1 0 1
#> GSM379837 2 0 1 0 1
#> GSM379838 2 0 1 0 1
#> GSM379839 2 0 1 0 1
#> GSM379848 2 0 1 0 1
#> GSM379849 2 0 1 0 1
#> GSM379850 2 0 1 0 1
#> GSM379843 2 0 1 0 1
#> GSM379844 2 0 1 0 1
#> GSM379845 2 0 1 0 1
#> GSM379846 2 0 1 0 1
#> GSM379847 2 0 1 0 1
#> GSM379853 2 0 1 0 1
#> GSM379854 2 0 1 0 1
#> GSM379851 2 0 1 0 1
#> GSM379852 2 0 1 0 1
#> GSM379804 1 0 1 1 0
#> GSM379805 1 0 1 1 0
#> GSM379806 1 0 1 1 0
#> GSM379799 1 0 1 1 0
#> GSM379800 1 0 1 1 0
#> GSM379801 1 0 1 1 0
#> GSM379802 1 0 1 1 0
#> GSM379803 1 0 1 1 0
#> GSM379812 1 0 1 1 0
#> GSM379813 1 0 1 1 0
#> GSM379814 1 0 1 1 0
#> GSM379807 1 0 1 1 0
#> GSM379808 1 0 1 1 0
#> GSM379809 1 0 1 1 0
#> GSM379810 1 0 1 1 0
#> GSM379811 1 0 1 1 0
#> GSM379820 1 0 1 1 0
#> GSM379821 1 0 1 1 0
#> GSM379822 1 0 1 1 0
#> GSM379815 1 0 1 1 0
#> GSM379816 1 0 1 1 0
#> GSM379817 1 0 1 1 0
#> GSM379818 1 0 1 1 0
#> GSM379819 1 0 1 1 0
#> GSM379825 1 0 1 1 0
#> GSM379826 1 0 1 1 0
#> GSM379823 1 0 1 1 0
#> GSM379824 1 0 1 1 0
#> GSM379749 2 0 1 0 1
#> GSM379750 2 0 1 0 1
#> GSM379751 2 0 1 0 1
#> GSM379744 2 0 1 0 1
#> GSM379745 2 0 1 0 1
#> GSM379746 2 0 1 0 1
#> GSM379747 2 0 1 0 1
#> GSM379748 2 0 1 0 1
#> GSM379757 2 0 1 0 1
#> GSM379758 2 0 1 0 1
#> GSM379752 2 0 1 0 1
#> GSM379753 2 0 1 0 1
#> GSM379754 2 0 1 0 1
#> GSM379755 2 0 1 0 1
#> GSM379756 2 0 1 0 1
#> GSM379764 2 0 1 0 1
#> GSM379765 2 0 1 0 1
#> GSM379766 2 0 1 0 1
#> GSM379759 2 0 1 0 1
#> GSM379760 2 0 1 0 1
#> GSM379761 2 0 1 0 1
#> GSM379762 2 0 1 0 1
#> GSM379763 2 0 1 0 1
#> GSM379769 2 0 1 0 1
#> GSM379770 2 0 1 0 1
#> GSM379767 2 0 1 0 1
#> GSM379768 2 0 1 0 1
#> GSM379776 1 0 1 1 0
#> GSM379777 1 0 1 1 0
#> GSM379778 1 0 1 1 0
#> GSM379771 1 0 1 1 0
#> GSM379772 1 0 1 1 0
#> GSM379773 1 0 1 1 0
#> GSM379774 1 0 1 1 0
#> GSM379775 1 0 1 1 0
#> GSM379784 1 0 1 1 0
#> GSM379785 1 0 1 1 0
#> GSM379786 1 0 1 1 0
#> GSM379779 1 0 1 1 0
#> GSM379780 1 0 1 1 0
#> GSM379781 1 0 1 1 0
#> GSM379782 1 0 1 1 0
#> GSM379783 1 0 1 1 0
#> GSM379792 1 0 1 1 0
#> GSM379793 1 0 1 1 0
#> GSM379794 1 0 1 1 0
#> GSM379787 1 0 1 1 0
#> GSM379788 1 0 1 1 0
#> GSM379789 1 0 1 1 0
#> GSM379790 1 0 1 1 0
#> GSM379791 1 0 1 1 0
#> GSM379797 1 0 1 1 0
#> GSM379798 1 0 1 1 0
#> GSM379795 1 0 1 1 0
#> GSM379796 1 0 1 1 0
#> GSM379721 1 0 1 1 0
#> GSM379722 1 0 1 1 0
#> GSM379723 1 0 1 1 0
#> GSM379716 1 0 1 1 0
#> GSM379717 1 0 1 1 0
#> GSM379718 1 0 1 1 0
#> GSM379719 1 0 1 1 0
#> GSM379720 1 0 1 1 0
#> GSM379729 1 0 1 1 0
#> GSM379730 1 0 1 1 0
#> GSM379731 1 0 1 1 0
#> GSM379724 1 0 1 1 0
#> GSM379725 1 0 1 1 0
#> GSM379726 1 0 1 1 0
#> GSM379727 1 0 1 1 0
#> GSM379728 1 0 1 1 0
#> GSM379737 1 0 1 1 0
#> GSM379738 1 0 1 1 0
#> GSM379739 1 0 1 1 0
#> GSM379732 1 0 1 1 0
#> GSM379733 1 0 1 1 0
#> GSM379734 1 0 1 1 0
#> GSM379735 1 0 1 1 0
#> GSM379736 1 0 1 1 0
#> GSM379742 1 0 1 1 0
#> GSM379743 1 0 1 1 0
#> GSM379740 1 0 1 1 0
#> GSM379741 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379833 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379834 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379827 2 0.0747 0.991 0.000 0.984 0.016
#> GSM379828 2 0.0747 0.991 0.000 0.984 0.016
#> GSM379829 2 0.0747 0.991 0.000 0.984 0.016
#> GSM379830 2 0.0747 0.991 0.000 0.984 0.016
#> GSM379831 2 0.0237 0.994 0.000 0.996 0.004
#> GSM379840 2 0.0747 0.991 0.000 0.984 0.016
#> GSM379841 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379842 2 0.0237 0.994 0.000 0.996 0.004
#> GSM379835 2 0.0237 0.994 0.000 0.996 0.004
#> GSM379836 2 0.0747 0.991 0.000 0.984 0.016
#> GSM379837 2 0.0747 0.991 0.000 0.984 0.016
#> GSM379838 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379839 2 0.0747 0.991 0.000 0.984 0.016
#> GSM379848 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379849 2 0.0592 0.992 0.000 0.988 0.012
#> GSM379850 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379843 2 0.0592 0.992 0.000 0.988 0.012
#> GSM379844 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379845 2 0.0747 0.991 0.000 0.984 0.016
#> GSM379846 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379847 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379853 2 0.0747 0.991 0.000 0.984 0.016
#> GSM379854 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379851 2 0.0747 0.991 0.000 0.984 0.016
#> GSM379852 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379804 1 0.0000 0.823 1.000 0.000 0.000
#> GSM379805 1 0.6235 0.145 0.564 0.000 0.436
#> GSM379806 3 0.5497 0.878 0.292 0.000 0.708
#> GSM379799 3 0.4399 0.913 0.188 0.000 0.812
#> GSM379800 3 0.4399 0.913 0.188 0.000 0.812
#> GSM379801 3 0.4452 0.914 0.192 0.000 0.808
#> GSM379802 3 0.5178 0.917 0.256 0.000 0.744
#> GSM379803 1 0.6140 0.454 0.596 0.000 0.404
#> GSM379812 1 0.3941 0.749 0.844 0.000 0.156
#> GSM379813 1 0.2448 0.799 0.924 0.000 0.076
#> GSM379814 1 0.1411 0.816 0.964 0.000 0.036
#> GSM379807 1 0.1031 0.819 0.976 0.000 0.024
#> GSM379808 3 0.5178 0.917 0.256 0.000 0.744
#> GSM379809 1 0.4931 0.655 0.768 0.000 0.232
#> GSM379810 1 0.2537 0.801 0.920 0.000 0.080
#> GSM379811 3 0.5397 0.822 0.280 0.000 0.720
#> GSM379820 1 0.4178 0.726 0.828 0.000 0.172
#> GSM379821 1 0.5810 0.590 0.664 0.000 0.336
#> GSM379822 1 0.5810 0.590 0.664 0.000 0.336
#> GSM379815 1 0.3619 0.760 0.864 0.000 0.136
#> GSM379816 1 0.5968 0.543 0.636 0.000 0.364
#> GSM379817 1 0.3752 0.746 0.856 0.000 0.144
#> GSM379818 3 0.5216 0.914 0.260 0.000 0.740
#> GSM379819 1 0.1411 0.816 0.964 0.000 0.036
#> GSM379825 3 0.4399 0.913 0.188 0.000 0.812
#> GSM379826 1 0.4605 0.679 0.796 0.000 0.204
#> GSM379823 1 0.5810 0.590 0.664 0.000 0.336
#> GSM379824 1 0.5810 0.590 0.664 0.000 0.336
#> GSM379749 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379750 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379751 2 0.0747 0.991 0.000 0.984 0.016
#> GSM379744 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379745 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379746 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379747 2 0.0747 0.991 0.000 0.984 0.016
#> GSM379748 2 0.0237 0.994 0.000 0.996 0.004
#> GSM379757 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379758 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379752 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379753 2 0.0747 0.991 0.000 0.984 0.016
#> GSM379754 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379755 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379756 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379764 2 0.0747 0.991 0.000 0.984 0.016
#> GSM379765 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379766 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379759 2 0.0592 0.992 0.000 0.988 0.012
#> GSM379760 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379761 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379762 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379763 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379769 2 0.0747 0.991 0.000 0.984 0.016
#> GSM379770 2 0.0592 0.992 0.000 0.988 0.012
#> GSM379767 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379768 2 0.0000 0.995 0.000 1.000 0.000
#> GSM379776 1 0.0747 0.821 0.984 0.000 0.016
#> GSM379777 1 0.5810 0.590 0.664 0.000 0.336
#> GSM379778 1 0.4178 0.726 0.828 0.000 0.172
#> GSM379771 1 0.0592 0.824 0.988 0.000 0.012
#> GSM379772 1 0.1163 0.821 0.972 0.000 0.028
#> GSM379773 1 0.2878 0.786 0.904 0.000 0.096
#> GSM379774 1 0.1031 0.818 0.976 0.000 0.024
#> GSM379775 1 0.1964 0.804 0.944 0.000 0.056
#> GSM379784 1 0.3686 0.754 0.860 0.000 0.140
#> GSM379785 1 0.3551 0.757 0.868 0.000 0.132
#> GSM379786 1 0.5810 0.590 0.664 0.000 0.336
#> GSM379779 1 0.0000 0.823 1.000 0.000 0.000
#> GSM379780 1 0.0000 0.823 1.000 0.000 0.000
#> GSM379781 1 0.1964 0.808 0.944 0.000 0.056
#> GSM379782 1 0.5988 0.398 0.632 0.000 0.368
#> GSM379783 1 0.5810 0.590 0.664 0.000 0.336
#> GSM379792 1 0.5465 0.566 0.712 0.000 0.288
#> GSM379793 1 0.2878 0.792 0.904 0.000 0.096
#> GSM379794 1 0.2625 0.791 0.916 0.000 0.084
#> GSM379787 1 0.5988 0.398 0.632 0.000 0.368
#> GSM379788 1 0.5810 0.590 0.664 0.000 0.336
#> GSM379789 1 0.0000 0.823 1.000 0.000 0.000
#> GSM379790 1 0.0237 0.823 0.996 0.000 0.004
#> GSM379791 1 0.0000 0.823 1.000 0.000 0.000
#> GSM379797 1 0.6299 -0.408 0.524 0.000 0.476
#> GSM379798 1 0.0424 0.823 0.992 0.000 0.008
#> GSM379795 1 0.0000 0.823 1.000 0.000 0.000
#> GSM379796 1 0.1163 0.817 0.972 0.000 0.028
#> GSM379721 1 0.1289 0.820 0.968 0.000 0.032
#> GSM379722 1 0.1289 0.820 0.968 0.000 0.032
#> GSM379723 1 0.1289 0.820 0.968 0.000 0.032
#> GSM379716 1 0.0892 0.823 0.980 0.000 0.020
#> GSM379717 1 0.0892 0.823 0.980 0.000 0.020
#> GSM379718 1 0.1289 0.820 0.968 0.000 0.032
#> GSM379719 1 0.1289 0.820 0.968 0.000 0.032
#> GSM379720 1 0.0237 0.824 0.996 0.000 0.004
#> GSM379729 1 0.3619 0.754 0.864 0.000 0.136
#> GSM379730 1 0.3619 0.754 0.864 0.000 0.136
#> GSM379731 1 0.5733 0.606 0.676 0.000 0.324
#> GSM379724 1 0.1289 0.820 0.968 0.000 0.032
#> GSM379725 1 0.3619 0.754 0.864 0.000 0.136
#> GSM379726 1 0.1289 0.820 0.968 0.000 0.032
#> GSM379727 1 0.1289 0.820 0.968 0.000 0.032
#> GSM379728 1 0.1289 0.820 0.968 0.000 0.032
#> GSM379737 1 0.1163 0.821 0.972 0.000 0.028
#> GSM379738 1 0.1289 0.820 0.968 0.000 0.032
#> GSM379739 1 0.1289 0.820 0.968 0.000 0.032
#> GSM379732 1 0.1753 0.815 0.952 0.000 0.048
#> GSM379733 1 0.1289 0.820 0.968 0.000 0.032
#> GSM379734 1 0.1289 0.820 0.968 0.000 0.032
#> GSM379735 1 0.3619 0.754 0.864 0.000 0.136
#> GSM379736 1 0.1031 0.823 0.976 0.000 0.024
#> GSM379742 1 0.5988 0.398 0.632 0.000 0.368
#> GSM379743 1 0.3619 0.754 0.864 0.000 0.136
#> GSM379740 1 0.1289 0.820 0.968 0.000 0.032
#> GSM379741 1 0.5988 0.398 0.632 0.000 0.368
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379833 2 0.1211 0.89089 NA 0.960 0.000 0.000
#> GSM379834 2 0.0188 0.89469 NA 0.996 0.000 0.000
#> GSM379827 2 0.5172 0.80224 NA 0.704 0.000 0.036
#> GSM379828 2 0.4225 0.84316 NA 0.792 0.000 0.024
#> GSM379829 2 0.5951 0.76321 NA 0.636 0.000 0.064
#> GSM379830 2 0.5883 0.76597 NA 0.640 0.000 0.060
#> GSM379831 2 0.2149 0.88243 NA 0.912 0.000 0.000
#> GSM379840 2 0.5951 0.76321 NA 0.636 0.000 0.064
#> GSM379841 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379842 2 0.1867 0.88604 NA 0.928 0.000 0.000
#> GSM379835 2 0.2216 0.88146 NA 0.908 0.000 0.000
#> GSM379836 2 0.5951 0.76321 NA 0.636 0.000 0.064
#> GSM379837 2 0.5951 0.76321 NA 0.636 0.000 0.064
#> GSM379838 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379839 2 0.5951 0.76321 NA 0.636 0.000 0.064
#> GSM379848 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379849 2 0.3616 0.86308 NA 0.852 0.000 0.036
#> GSM379850 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379843 2 0.3674 0.86195 NA 0.848 0.000 0.036
#> GSM379844 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379845 2 0.5951 0.76321 NA 0.636 0.000 0.064
#> GSM379846 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379847 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379853 2 0.5522 0.78243 NA 0.668 0.000 0.044
#> GSM379854 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379851 2 0.4679 0.83450 NA 0.772 0.000 0.044
#> GSM379852 2 0.1302 0.89079 NA 0.956 0.000 0.000
#> GSM379804 3 0.0000 0.65287 NA 0.000 1.000 0.000
#> GSM379805 3 0.5649 0.34196 NA 0.000 0.664 0.284
#> GSM379806 3 0.5861 0.29941 NA 0.000 0.644 0.296
#> GSM379799 3 0.6942 0.19569 NA 0.000 0.584 0.240
#> GSM379800 3 0.6967 0.18666 NA 0.000 0.580 0.244
#> GSM379801 3 0.6942 0.21450 NA 0.000 0.584 0.240
#> GSM379802 4 0.6844 0.59297 NA 0.000 0.260 0.588
#> GSM379803 4 0.3105 0.78262 NA 0.000 0.120 0.868
#> GSM379812 4 0.4406 0.64827 NA 0.000 0.300 0.700
#> GSM379813 3 0.2973 0.56806 NA 0.000 0.856 0.144
#> GSM379814 3 0.1022 0.64504 NA 0.000 0.968 0.032
#> GSM379807 3 0.0921 0.64653 NA 0.000 0.972 0.028
#> GSM379808 3 0.6609 0.26255 NA 0.000 0.620 0.236
#> GSM379809 3 0.3300 0.57812 NA 0.000 0.848 0.144
#> GSM379810 3 0.1890 0.63718 NA 0.000 0.936 0.056
#> GSM379811 4 0.6788 0.59197 NA 0.000 0.264 0.592
#> GSM379820 3 0.3444 0.51607 NA 0.000 0.816 0.184
#> GSM379821 4 0.3074 0.80423 NA 0.000 0.152 0.848
#> GSM379822 4 0.3074 0.80423 NA 0.000 0.152 0.848
#> GSM379815 3 0.2999 0.58557 NA 0.000 0.864 0.132
#> GSM379816 4 0.4149 0.77583 NA 0.000 0.152 0.812
#> GSM379817 4 0.5000 0.27447 NA 0.000 0.496 0.504
#> GSM379818 4 0.6828 0.59007 NA 0.000 0.264 0.588
#> GSM379819 3 0.1211 0.64214 NA 0.000 0.960 0.040
#> GSM379825 4 0.6916 0.60334 NA 0.000 0.236 0.588
#> GSM379826 4 0.5000 0.26166 NA 0.000 0.500 0.500
#> GSM379823 4 0.3123 0.80386 NA 0.000 0.156 0.844
#> GSM379824 4 0.3074 0.80423 NA 0.000 0.152 0.848
#> GSM379749 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379750 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379751 2 0.5883 0.76597 NA 0.640 0.000 0.060
#> GSM379744 2 0.1302 0.88973 NA 0.956 0.000 0.000
#> GSM379745 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379746 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379747 2 0.5883 0.76597 NA 0.640 0.000 0.060
#> GSM379748 2 0.2011 0.88429 NA 0.920 0.000 0.000
#> GSM379757 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379758 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379752 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379753 2 0.5883 0.76597 NA 0.640 0.000 0.060
#> GSM379754 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379755 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379756 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379764 2 0.5883 0.76597 NA 0.640 0.000 0.060
#> GSM379765 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379766 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379759 2 0.3616 0.86308 NA 0.852 0.000 0.036
#> GSM379760 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379761 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379762 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379763 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379769 2 0.5883 0.76597 NA 0.640 0.000 0.060
#> GSM379770 2 0.4053 0.83404 NA 0.768 0.000 0.004
#> GSM379767 2 0.1118 0.89168 NA 0.964 0.000 0.000
#> GSM379768 2 0.0000 0.89496 NA 1.000 0.000 0.000
#> GSM379776 3 0.0000 0.65287 NA 0.000 1.000 0.000
#> GSM379777 4 0.3074 0.80423 NA 0.000 0.152 0.848
#> GSM379778 3 0.3182 0.61417 NA 0.000 0.876 0.096
#> GSM379771 3 0.3444 0.58719 NA 0.000 0.816 0.000
#> GSM379772 3 0.4585 0.50286 NA 0.000 0.668 0.000
#> GSM379773 3 0.1022 0.64774 NA 0.000 0.968 0.032
#> GSM379774 3 0.0000 0.65287 NA 0.000 1.000 0.000
#> GSM379775 3 0.0672 0.65278 NA 0.000 0.984 0.008
#> GSM379784 3 0.4585 0.24579 NA 0.000 0.668 0.332
#> GSM379785 3 0.3074 0.54889 NA 0.000 0.848 0.152
#> GSM379786 4 0.3123 0.80386 NA 0.000 0.156 0.844
#> GSM379779 3 0.0000 0.65287 NA 0.000 1.000 0.000
#> GSM379780 3 0.0188 0.65239 NA 0.000 0.996 0.004
#> GSM379781 3 0.1716 0.62664 NA 0.000 0.936 0.064
#> GSM379782 3 0.5817 0.39027 NA 0.000 0.676 0.248
#> GSM379783 4 0.3219 0.79943 NA 0.000 0.164 0.836
#> GSM379792 3 0.4610 0.44437 NA 0.000 0.744 0.236
#> GSM379793 3 0.1902 0.63293 NA 0.000 0.932 0.064
#> GSM379794 3 0.0927 0.65239 NA 0.000 0.976 0.016
#> GSM379787 3 0.5817 0.39027 NA 0.000 0.676 0.248
#> GSM379788 4 0.3123 0.80386 NA 0.000 0.156 0.844
#> GSM379789 3 0.0000 0.65287 NA 0.000 1.000 0.000
#> GSM379790 3 0.0188 0.65246 NA 0.000 0.996 0.004
#> GSM379791 3 0.0000 0.65287 NA 0.000 1.000 0.000
#> GSM379797 3 0.5855 0.40386 NA 0.000 0.692 0.208
#> GSM379798 3 0.0000 0.65287 NA 0.000 1.000 0.000
#> GSM379795 3 0.0188 0.65267 NA 0.000 0.996 0.000
#> GSM379796 3 0.0336 0.65274 NA 0.000 0.992 0.008
#> GSM379721 3 0.4977 0.42115 NA 0.000 0.540 0.000
#> GSM379722 3 0.4977 0.42115 NA 0.000 0.540 0.000
#> GSM379723 3 0.4977 0.42115 NA 0.000 0.540 0.000
#> GSM379716 3 0.4977 0.42115 NA 0.000 0.540 0.000
#> GSM379717 3 0.4972 0.42304 NA 0.000 0.544 0.000
#> GSM379718 3 0.4977 0.42115 NA 0.000 0.540 0.000
#> GSM379719 3 0.4977 0.42115 NA 0.000 0.540 0.000
#> GSM379720 3 0.0000 0.65287 NA 0.000 1.000 0.000
#> GSM379729 3 0.3266 0.50858 NA 0.000 0.832 0.168
#> GSM379730 3 0.4277 0.34731 NA 0.000 0.720 0.280
#> GSM379731 3 0.4925 0.00246 NA 0.000 0.572 0.428
#> GSM379724 3 0.4977 0.42115 NA 0.000 0.540 0.000
#> GSM379725 3 0.3356 0.49656 NA 0.000 0.824 0.176
#> GSM379726 3 0.4977 0.42115 NA 0.000 0.540 0.000
#> GSM379727 3 0.4977 0.42115 NA 0.000 0.540 0.000
#> GSM379728 3 0.4977 0.42115 NA 0.000 0.540 0.000
#> GSM379737 3 0.4008 0.55476 NA 0.000 0.756 0.000
#> GSM379738 3 0.4977 0.42115 NA 0.000 0.540 0.000
#> GSM379739 3 0.4790 0.47279 NA 0.000 0.620 0.000
#> GSM379732 3 0.1716 0.62969 NA 0.000 0.936 0.064
#> GSM379733 3 0.4454 0.51792 NA 0.000 0.692 0.000
#> GSM379734 3 0.4977 0.42115 NA 0.000 0.540 0.000
#> GSM379735 3 0.3569 0.47241 NA 0.000 0.804 0.196
#> GSM379736 3 0.4961 0.42637 NA 0.000 0.552 0.000
#> GSM379742 3 0.5845 0.38436 NA 0.000 0.672 0.252
#> GSM379743 3 0.3610 0.46836 NA 0.000 0.800 0.200
#> GSM379740 3 0.4961 0.42967 NA 0.000 0.552 0.000
#> GSM379741 3 0.5817 0.39027 NA 0.000 0.676 0.248
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 2 0.0510 0.8073 0.000 0.984 0.000 0.000 0.016
#> GSM379833 2 0.0404 0.8095 0.000 0.988 0.000 0.000 0.012
#> GSM379834 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379827 2 0.3966 -0.0683 0.000 0.664 0.000 0.000 0.336
#> GSM379828 2 0.3837 0.0982 0.000 0.692 0.000 0.000 0.308
#> GSM379829 5 0.5048 0.8946 0.000 0.380 0.040 0.000 0.580
#> GSM379830 2 0.4307 -0.7826 0.000 0.500 0.000 0.000 0.500
#> GSM379831 2 0.2189 0.7269 0.000 0.904 0.012 0.000 0.084
#> GSM379840 5 0.4798 0.9052 0.000 0.396 0.024 0.000 0.580
#> GSM379841 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379842 2 0.0794 0.7996 0.000 0.972 0.000 0.000 0.028
#> GSM379835 2 0.2069 0.7362 0.000 0.912 0.012 0.000 0.076
#> GSM379836 5 0.4731 0.8638 0.000 0.456 0.016 0.000 0.528
#> GSM379837 5 0.5048 0.8946 0.000 0.380 0.040 0.000 0.580
#> GSM379838 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379839 5 0.5125 0.8892 0.000 0.416 0.040 0.000 0.544
#> GSM379848 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379849 2 0.2690 0.5936 0.000 0.844 0.000 0.000 0.156
#> GSM379850 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379843 2 0.2732 0.5837 0.000 0.840 0.000 0.000 0.160
#> GSM379844 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379845 5 0.4403 0.8939 0.000 0.436 0.004 0.000 0.560
#> GSM379846 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379847 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379853 2 0.3837 0.0759 0.000 0.692 0.000 0.000 0.308
#> GSM379854 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379851 2 0.3480 0.3185 0.000 0.752 0.000 0.000 0.248
#> GSM379852 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379804 1 0.2891 0.7358 0.824 0.000 0.176 0.000 0.000
#> GSM379805 1 0.6376 -0.0158 0.452 0.000 0.116 0.420 0.012
#> GSM379806 4 0.5739 0.4031 0.308 0.000 0.088 0.596 0.008
#> GSM379799 4 0.5471 0.4897 0.176 0.000 0.084 0.704 0.036
#> GSM379800 4 0.5452 0.4904 0.180 0.000 0.080 0.704 0.036
#> GSM379801 4 0.5476 0.4724 0.108 0.000 0.152 0.708 0.032
#> GSM379802 4 0.4275 0.5690 0.104 0.000 0.076 0.800 0.020
#> GSM379803 4 0.6100 0.6512 0.152 0.000 0.000 0.540 0.308
#> GSM379812 4 0.7725 0.4939 0.260 0.000 0.060 0.396 0.284
#> GSM379813 1 0.4393 0.7192 0.772 0.000 0.136 0.088 0.004
#> GSM379814 1 0.3720 0.7251 0.760 0.000 0.228 0.012 0.000
#> GSM379807 1 0.3488 0.7402 0.808 0.000 0.168 0.024 0.000
#> GSM379808 4 0.5482 0.4453 0.224 0.000 0.088 0.672 0.016
#> GSM379809 1 0.4113 0.6889 0.740 0.000 0.232 0.028 0.000
#> GSM379810 1 0.3910 0.6698 0.720 0.000 0.272 0.008 0.000
#> GSM379811 4 0.5052 0.5639 0.136 0.000 0.076 0.748 0.040
#> GSM379820 1 0.3888 0.6947 0.804 0.000 0.120 0.076 0.000
#> GSM379821 4 0.6422 0.6453 0.180 0.000 0.000 0.460 0.360
#> GSM379822 4 0.6422 0.6453 0.180 0.000 0.000 0.460 0.360
#> GSM379815 1 0.4402 0.6997 0.740 0.000 0.204 0.056 0.000
#> GSM379816 4 0.7661 0.5891 0.244 0.000 0.064 0.432 0.260
#> GSM379817 1 0.7394 -0.2213 0.492 0.000 0.064 0.248 0.196
#> GSM379818 4 0.4398 0.5724 0.100 0.000 0.076 0.796 0.028
#> GSM379819 1 0.3359 0.7409 0.816 0.000 0.164 0.020 0.000
#> GSM379825 4 0.3928 0.5646 0.092 0.000 0.084 0.816 0.008
#> GSM379826 1 0.7804 -0.1117 0.464 0.000 0.108 0.224 0.204
#> GSM379823 4 0.6626 0.6331 0.224 0.000 0.000 0.424 0.352
#> GSM379824 4 0.6422 0.6453 0.180 0.000 0.000 0.460 0.360
#> GSM379749 2 0.0290 0.8114 0.000 0.992 0.000 0.000 0.008
#> GSM379750 2 0.0703 0.8015 0.000 0.976 0.000 0.000 0.024
#> GSM379751 5 0.4304 0.7980 0.000 0.484 0.000 0.000 0.516
#> GSM379744 2 0.1671 0.7543 0.000 0.924 0.000 0.000 0.076
#> GSM379745 2 0.0703 0.8015 0.000 0.976 0.000 0.000 0.024
#> GSM379746 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379747 2 0.4300 -0.7053 0.000 0.524 0.000 0.000 0.476
#> GSM379748 2 0.1410 0.7671 0.000 0.940 0.000 0.000 0.060
#> GSM379757 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379758 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379752 2 0.0609 0.8046 0.000 0.980 0.000 0.000 0.020
#> GSM379753 2 0.4300 -0.7053 0.000 0.524 0.000 0.000 0.476
#> GSM379754 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379755 2 0.0290 0.8114 0.000 0.992 0.000 0.000 0.008
#> GSM379756 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379764 2 0.4210 -0.5248 0.000 0.588 0.000 0.000 0.412
#> GSM379765 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379766 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379759 2 0.3003 0.5171 0.000 0.812 0.000 0.000 0.188
#> GSM379760 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379761 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379762 2 0.0404 0.8084 0.000 0.988 0.000 0.000 0.012
#> GSM379763 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379769 2 0.4210 -0.5248 0.000 0.588 0.000 0.000 0.412
#> GSM379770 2 0.3424 0.3929 0.000 0.760 0.000 0.000 0.240
#> GSM379767 2 0.1965 0.7134 0.000 0.904 0.000 0.000 0.096
#> GSM379768 2 0.0000 0.8144 0.000 1.000 0.000 0.000 0.000
#> GSM379776 1 0.2813 0.7352 0.832 0.000 0.168 0.000 0.000
#> GSM379777 4 0.6422 0.6453 0.180 0.000 0.000 0.460 0.360
#> GSM379778 1 0.5740 0.5847 0.580 0.000 0.308 0.112 0.000
#> GSM379771 3 0.3857 0.5970 0.312 0.000 0.688 0.000 0.000
#> GSM379772 3 0.3242 0.8085 0.216 0.000 0.784 0.000 0.000
#> GSM379773 1 0.3807 0.7124 0.748 0.000 0.240 0.012 0.000
#> GSM379774 1 0.3395 0.7169 0.764 0.000 0.236 0.000 0.000
#> GSM379775 1 0.3857 0.6421 0.688 0.000 0.312 0.000 0.000
#> GSM379784 1 0.5109 0.5912 0.720 0.000 0.060 0.192 0.028
#> GSM379785 1 0.3291 0.6885 0.848 0.000 0.064 0.088 0.000
#> GSM379786 4 0.6615 0.6349 0.220 0.000 0.000 0.424 0.356
#> GSM379779 1 0.3177 0.7276 0.792 0.000 0.208 0.000 0.000
#> GSM379780 1 0.2966 0.7364 0.816 0.000 0.184 0.000 0.000
#> GSM379781 1 0.3033 0.7179 0.864 0.000 0.084 0.052 0.000
#> GSM379782 1 0.7041 0.3022 0.464 0.000 0.268 0.248 0.020
#> GSM379783 4 0.6923 0.6217 0.220 0.000 0.012 0.436 0.332
#> GSM379792 1 0.4437 0.6463 0.760 0.000 0.100 0.140 0.000
#> GSM379793 1 0.4536 0.7130 0.712 0.000 0.240 0.048 0.000
#> GSM379794 1 0.3636 0.6864 0.728 0.000 0.272 0.000 0.000
#> GSM379787 1 0.7149 0.2377 0.424 0.000 0.308 0.248 0.020
#> GSM379788 4 0.6734 0.6191 0.264 0.000 0.000 0.404 0.332
#> GSM379789 1 0.2891 0.7361 0.824 0.000 0.176 0.000 0.000
#> GSM379790 1 0.2813 0.7352 0.832 0.000 0.168 0.000 0.000
#> GSM379791 1 0.3242 0.7292 0.784 0.000 0.216 0.000 0.000
#> GSM379797 1 0.5751 0.3413 0.540 0.000 0.096 0.364 0.000
#> GSM379798 1 0.2891 0.7358 0.824 0.000 0.176 0.000 0.000
#> GSM379795 1 0.3857 0.6440 0.688 0.000 0.312 0.000 0.000
#> GSM379796 1 0.3010 0.7359 0.824 0.000 0.172 0.004 0.000
#> GSM379721 3 0.2074 0.9463 0.104 0.000 0.896 0.000 0.000
#> GSM379722 3 0.2074 0.9463 0.104 0.000 0.896 0.000 0.000
#> GSM379723 3 0.2074 0.9463 0.104 0.000 0.896 0.000 0.000
#> GSM379716 3 0.2074 0.9463 0.104 0.000 0.896 0.000 0.000
#> GSM379717 3 0.2127 0.9412 0.108 0.000 0.892 0.000 0.000
#> GSM379718 3 0.2074 0.9463 0.104 0.000 0.896 0.000 0.000
#> GSM379719 3 0.2074 0.9463 0.104 0.000 0.896 0.000 0.000
#> GSM379720 1 0.2891 0.7325 0.824 0.000 0.176 0.000 0.000
#> GSM379729 1 0.3970 0.6768 0.812 0.000 0.076 0.104 0.008
#> GSM379730 1 0.4378 0.6443 0.792 0.000 0.064 0.120 0.024
#> GSM379731 1 0.4712 0.3148 0.684 0.000 0.000 0.268 0.048
#> GSM379724 3 0.2074 0.9463 0.104 0.000 0.896 0.000 0.000
#> GSM379725 1 0.4248 0.6839 0.792 0.000 0.096 0.104 0.008
#> GSM379726 3 0.2074 0.9463 0.104 0.000 0.896 0.000 0.000
#> GSM379727 3 0.2074 0.9463 0.104 0.000 0.896 0.000 0.000
#> GSM379728 3 0.2074 0.9463 0.104 0.000 0.896 0.000 0.000
#> GSM379737 3 0.3796 0.6347 0.300 0.000 0.700 0.000 0.000
#> GSM379738 3 0.2074 0.9463 0.104 0.000 0.896 0.000 0.000
#> GSM379739 3 0.2516 0.9140 0.140 0.000 0.860 0.000 0.000
#> GSM379732 1 0.3011 0.7462 0.844 0.000 0.140 0.016 0.000
#> GSM379733 3 0.3196 0.8455 0.192 0.000 0.804 0.004 0.000
#> GSM379734 3 0.2074 0.9463 0.104 0.000 0.896 0.000 0.000
#> GSM379735 1 0.3787 0.6739 0.824 0.000 0.064 0.104 0.008
#> GSM379736 3 0.2179 0.9408 0.100 0.000 0.896 0.004 0.000
#> GSM379742 1 0.7122 0.2598 0.436 0.000 0.296 0.248 0.020
#> GSM379743 1 0.3849 0.6743 0.820 0.000 0.068 0.104 0.008
#> GSM379740 3 0.2074 0.9463 0.104 0.000 0.896 0.000 0.000
#> GSM379741 1 0.7113 0.2667 0.440 0.000 0.292 0.248 0.020
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379833 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379834 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379827 2 0.3309 0.4689 0.000 0.720 0.000 0.000 0.280 0.000
#> GSM379828 2 0.3531 0.3279 0.000 0.672 0.000 0.000 0.328 0.000
#> GSM379829 5 0.2762 0.8193 0.000 0.196 0.000 0.000 0.804 0.000
#> GSM379830 2 0.3869 -0.4464 0.000 0.500 0.000 0.000 0.500 0.000
#> GSM379831 2 0.3607 0.2480 0.000 0.652 0.000 0.000 0.348 0.000
#> GSM379840 5 0.3101 0.8275 0.000 0.244 0.000 0.000 0.756 0.000
#> GSM379841 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379842 2 0.0260 0.8438 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379835 2 0.3547 0.3011 0.000 0.668 0.000 0.000 0.332 0.000
#> GSM379836 5 0.3782 0.6578 0.000 0.412 0.000 0.000 0.588 0.000
#> GSM379837 5 0.2762 0.8193 0.000 0.196 0.000 0.000 0.804 0.000
#> GSM379838 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379839 5 0.2941 0.8195 0.000 0.220 0.000 0.000 0.780 0.000
#> GSM379848 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379849 2 0.1141 0.8114 0.000 0.948 0.000 0.000 0.052 0.000
#> GSM379850 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379843 2 0.1387 0.7993 0.000 0.932 0.000 0.000 0.068 0.000
#> GSM379844 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379845 5 0.3592 0.7660 0.000 0.344 0.000 0.000 0.656 0.000
#> GSM379846 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379847 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379853 2 0.3607 0.2340 0.000 0.652 0.000 0.000 0.348 0.000
#> GSM379854 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379851 2 0.1863 0.7657 0.000 0.896 0.000 0.000 0.104 0.000
#> GSM379852 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379804 1 0.1444 0.7998 0.928 0.000 0.000 0.072 0.000 0.000
#> GSM379805 4 0.3309 0.6838 0.192 0.000 0.004 0.788 0.000 0.016
#> GSM379806 4 0.1391 0.9080 0.040 0.000 0.000 0.944 0.000 0.016
#> GSM379799 4 0.0603 0.9220 0.016 0.000 0.000 0.980 0.000 0.004
#> GSM379800 4 0.0603 0.9220 0.016 0.000 0.000 0.980 0.000 0.004
#> GSM379801 4 0.2872 0.8031 0.076 0.000 0.052 0.864 0.000 0.008
#> GSM379802 4 0.1088 0.9217 0.016 0.000 0.000 0.960 0.000 0.024
#> GSM379803 6 0.3428 0.4080 0.000 0.000 0.000 0.304 0.000 0.696
#> GSM379812 6 0.4089 0.7793 0.264 0.000 0.000 0.040 0.000 0.696
#> GSM379813 1 0.2795 0.7100 0.856 0.000 0.000 0.044 0.000 0.100
#> GSM379814 1 0.2195 0.7819 0.904 0.000 0.068 0.016 0.000 0.012
#> GSM379807 1 0.1910 0.7868 0.892 0.000 0.000 0.108 0.000 0.000
#> GSM379808 4 0.0713 0.9203 0.028 0.000 0.000 0.972 0.000 0.000
#> GSM379809 1 0.3407 0.6782 0.800 0.000 0.168 0.016 0.000 0.016
#> GSM379810 1 0.3782 0.5999 0.752 0.000 0.216 0.016 0.000 0.016
#> GSM379811 4 0.1320 0.9177 0.016 0.000 0.000 0.948 0.000 0.036
#> GSM379820 1 0.2575 0.7828 0.872 0.000 0.004 0.100 0.000 0.024
#> GSM379821 6 0.1007 0.7617 0.000 0.000 0.000 0.044 0.000 0.956
#> GSM379822 6 0.1007 0.7617 0.000 0.000 0.000 0.044 0.000 0.956
#> GSM379815 1 0.3039 0.7827 0.860 0.000 0.068 0.052 0.000 0.020
#> GSM379816 6 0.4671 0.7702 0.264 0.000 0.024 0.040 0.000 0.672
#> GSM379817 1 0.4700 -0.2386 0.500 0.000 0.000 0.044 0.000 0.456
#> GSM379818 4 0.1245 0.9194 0.016 0.000 0.000 0.952 0.000 0.032
#> GSM379819 1 0.1663 0.7960 0.912 0.000 0.000 0.088 0.000 0.000
#> GSM379825 4 0.0891 0.9196 0.008 0.000 0.000 0.968 0.000 0.024
#> GSM379826 1 0.5268 0.1271 0.532 0.000 0.000 0.108 0.000 0.360
#> GSM379823 6 0.3738 0.8117 0.208 0.000 0.000 0.040 0.000 0.752
#> GSM379824 6 0.1007 0.7617 0.000 0.000 0.000 0.044 0.000 0.956
#> GSM379749 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379750 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379751 5 0.3810 0.6172 0.000 0.428 0.000 0.000 0.572 0.000
#> GSM379744 2 0.2178 0.7297 0.000 0.868 0.000 0.000 0.132 0.000
#> GSM379745 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379746 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379747 2 0.3797 -0.1087 0.000 0.580 0.000 0.000 0.420 0.000
#> GSM379748 2 0.2260 0.7174 0.000 0.860 0.000 0.000 0.140 0.000
#> GSM379757 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379758 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379752 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379753 2 0.3782 -0.0700 0.000 0.588 0.000 0.000 0.412 0.000
#> GSM379754 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379755 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379756 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379764 2 0.3782 -0.0700 0.000 0.588 0.000 0.000 0.412 0.000
#> GSM379765 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379766 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379759 2 0.2597 0.6674 0.000 0.824 0.000 0.000 0.176 0.000
#> GSM379760 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379761 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379762 2 0.0260 0.8434 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379763 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379769 2 0.3782 -0.0700 0.000 0.588 0.000 0.000 0.412 0.000
#> GSM379770 2 0.2793 0.6292 0.000 0.800 0.000 0.000 0.200 0.000
#> GSM379767 2 0.1957 0.7560 0.000 0.888 0.000 0.000 0.112 0.000
#> GSM379768 2 0.0000 0.8484 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM379776 1 0.1444 0.7998 0.928 0.000 0.000 0.072 0.000 0.000
#> GSM379777 6 0.1007 0.7617 0.000 0.000 0.000 0.044 0.000 0.956
#> GSM379778 1 0.4685 0.3887 0.568 0.000 0.388 0.004 0.000 0.040
#> GSM379771 3 0.3607 0.6256 0.348 0.000 0.652 0.000 0.000 0.000
#> GSM379772 3 0.3330 0.7137 0.284 0.000 0.716 0.000 0.000 0.000
#> GSM379773 1 0.2890 0.7333 0.848 0.000 0.124 0.012 0.000 0.016
#> GSM379774 1 0.2375 0.7825 0.896 0.000 0.068 0.020 0.000 0.016
#> GSM379775 1 0.4058 0.5051 0.708 0.000 0.260 0.016 0.000 0.016
#> GSM379784 1 0.2553 0.7012 0.848 0.000 0.000 0.008 0.000 0.144
#> GSM379785 1 0.2346 0.7158 0.868 0.000 0.000 0.008 0.000 0.124
#> GSM379786 6 0.3709 0.8118 0.204 0.000 0.000 0.040 0.000 0.756
#> GSM379779 1 0.1531 0.8002 0.928 0.000 0.004 0.068 0.000 0.000
#> GSM379780 1 0.0146 0.7921 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM379781 1 0.2257 0.7203 0.876 0.000 0.000 0.008 0.000 0.116
#> GSM379782 3 0.6970 0.0639 0.328 0.000 0.408 0.004 0.196 0.064
#> GSM379783 6 0.3794 0.8093 0.216 0.000 0.000 0.040 0.000 0.744
#> GSM379792 1 0.4167 0.4498 0.612 0.000 0.000 0.368 0.000 0.020
#> GSM379793 1 0.2570 0.7796 0.884 0.000 0.076 0.016 0.000 0.024
#> GSM379794 1 0.3542 0.6545 0.784 0.000 0.184 0.016 0.000 0.016
#> GSM379787 3 0.7059 0.0611 0.324 0.000 0.408 0.008 0.196 0.064
#> GSM379788 6 0.3975 0.7899 0.244 0.000 0.000 0.040 0.000 0.716
#> GSM379789 1 0.1444 0.7998 0.928 0.000 0.000 0.072 0.000 0.000
#> GSM379790 1 0.1444 0.7998 0.928 0.000 0.000 0.072 0.000 0.000
#> GSM379791 1 0.1686 0.7806 0.924 0.000 0.064 0.012 0.000 0.000
#> GSM379797 1 0.4076 0.3041 0.540 0.000 0.000 0.452 0.000 0.008
#> GSM379798 1 0.1444 0.7998 0.928 0.000 0.000 0.072 0.000 0.000
#> GSM379795 1 0.3320 0.6000 0.772 0.000 0.212 0.016 0.000 0.000
#> GSM379796 1 0.1556 0.7994 0.920 0.000 0.000 0.080 0.000 0.000
#> GSM379721 3 0.2135 0.8269 0.128 0.000 0.872 0.000 0.000 0.000
#> GSM379722 3 0.2135 0.8269 0.128 0.000 0.872 0.000 0.000 0.000
#> GSM379723 3 0.2135 0.8269 0.128 0.000 0.872 0.000 0.000 0.000
#> GSM379716 3 0.2135 0.8269 0.128 0.000 0.872 0.000 0.000 0.000
#> GSM379717 3 0.2404 0.8138 0.112 0.000 0.872 0.000 0.000 0.016
#> GSM379718 3 0.2135 0.8269 0.128 0.000 0.872 0.000 0.000 0.000
#> GSM379719 3 0.2135 0.8269 0.128 0.000 0.872 0.000 0.000 0.000
#> GSM379720 1 0.1802 0.7979 0.916 0.000 0.000 0.072 0.000 0.012
#> GSM379729 1 0.2588 0.7142 0.860 0.000 0.004 0.012 0.000 0.124
#> GSM379730 1 0.2402 0.7074 0.856 0.000 0.000 0.004 0.000 0.140
#> GSM379731 1 0.3455 0.6408 0.784 0.000 0.000 0.036 0.000 0.180
#> GSM379724 3 0.2357 0.8175 0.116 0.000 0.872 0.000 0.000 0.012
#> GSM379725 1 0.2588 0.7142 0.860 0.000 0.004 0.012 0.000 0.124
#> GSM379726 3 0.2178 0.8239 0.132 0.000 0.868 0.000 0.000 0.000
#> GSM379727 3 0.2135 0.8269 0.128 0.000 0.872 0.000 0.000 0.000
#> GSM379728 3 0.2135 0.8269 0.128 0.000 0.872 0.000 0.000 0.000
#> GSM379737 3 0.3647 0.6043 0.360 0.000 0.640 0.000 0.000 0.000
#> GSM379738 3 0.2135 0.8269 0.128 0.000 0.872 0.000 0.000 0.000
#> GSM379739 3 0.2969 0.7743 0.224 0.000 0.776 0.000 0.000 0.000
#> GSM379732 1 0.2400 0.7279 0.872 0.000 0.004 0.008 0.000 0.116
#> GSM379733 3 0.3076 0.7615 0.240 0.000 0.760 0.000 0.000 0.000
#> GSM379734 3 0.2135 0.8269 0.128 0.000 0.872 0.000 0.000 0.000
#> GSM379735 1 0.2446 0.7139 0.864 0.000 0.000 0.012 0.000 0.124
#> GSM379736 3 0.2135 0.8269 0.128 0.000 0.872 0.000 0.000 0.000
#> GSM379742 3 0.6970 0.0639 0.328 0.000 0.408 0.004 0.196 0.064
#> GSM379743 1 0.2446 0.7139 0.864 0.000 0.000 0.012 0.000 0.124
#> GSM379740 3 0.2135 0.8269 0.128 0.000 0.872 0.000 0.000 0.000
#> GSM379741 3 0.6970 0.0639 0.328 0.000 0.408 0.004 0.196 0.064
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> ATC:mclust 139 4.62e-29 1.000 1.0000 2
#> ATC:mclust 132 7.80e-32 1.000 0.1633 3
#> ATC:mclust 103 6.10e-23 1.000 0.7818 4
#> ATC:mclust 114 7.16e-34 0.958 0.3577 5
#> ATC:mclust 119 1.88e-36 0.975 0.0379 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21074 rows and 139 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.964 0.985 0.4948 0.504 0.504
#> 3 3 0.773 0.843 0.921 0.3214 0.754 0.546
#> 4 4 0.823 0.841 0.911 0.1156 0.876 0.658
#> 5 5 0.908 0.873 0.926 0.0475 0.932 0.761
#> 6 6 0.815 0.710 0.852 0.0371 0.985 0.939
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM379832 2 0.0000 0.977 0.000 1.000
#> GSM379833 2 0.0000 0.977 0.000 1.000
#> GSM379834 2 0.0000 0.977 0.000 1.000
#> GSM379827 2 0.0000 0.977 0.000 1.000
#> GSM379828 2 0.0000 0.977 0.000 1.000
#> GSM379829 1 0.0000 0.991 1.000 0.000
#> GSM379830 2 0.0000 0.977 0.000 1.000
#> GSM379831 2 0.0000 0.977 0.000 1.000
#> GSM379840 2 0.0000 0.977 0.000 1.000
#> GSM379841 2 0.0000 0.977 0.000 1.000
#> GSM379842 2 0.0000 0.977 0.000 1.000
#> GSM379835 2 0.0000 0.977 0.000 1.000
#> GSM379836 2 0.0000 0.977 0.000 1.000
#> GSM379837 2 0.9944 0.172 0.456 0.544
#> GSM379838 2 0.0000 0.977 0.000 1.000
#> GSM379839 2 0.7950 0.684 0.240 0.760
#> GSM379848 2 0.0000 0.977 0.000 1.000
#> GSM379849 2 0.0000 0.977 0.000 1.000
#> GSM379850 2 0.0000 0.977 0.000 1.000
#> GSM379843 2 0.0000 0.977 0.000 1.000
#> GSM379844 2 0.0000 0.977 0.000 1.000
#> GSM379845 2 0.0000 0.977 0.000 1.000
#> GSM379846 2 0.0000 0.977 0.000 1.000
#> GSM379847 2 0.0000 0.977 0.000 1.000
#> GSM379853 2 0.0000 0.977 0.000 1.000
#> GSM379854 2 0.0000 0.977 0.000 1.000
#> GSM379851 2 0.0000 0.977 0.000 1.000
#> GSM379852 2 0.0000 0.977 0.000 1.000
#> GSM379804 1 0.0000 0.991 1.000 0.000
#> GSM379805 1 0.0000 0.991 1.000 0.000
#> GSM379806 1 0.0000 0.991 1.000 0.000
#> GSM379799 1 0.0000 0.991 1.000 0.000
#> GSM379800 1 0.0000 0.991 1.000 0.000
#> GSM379801 1 0.0000 0.991 1.000 0.000
#> GSM379802 1 0.0000 0.991 1.000 0.000
#> GSM379803 1 0.0000 0.991 1.000 0.000
#> GSM379812 1 0.0000 0.991 1.000 0.000
#> GSM379813 1 0.0000 0.991 1.000 0.000
#> GSM379814 1 0.0000 0.991 1.000 0.000
#> GSM379807 1 0.0000 0.991 1.000 0.000
#> GSM379808 1 0.0000 0.991 1.000 0.000
#> GSM379809 1 0.0000 0.991 1.000 0.000
#> GSM379810 1 0.0000 0.991 1.000 0.000
#> GSM379811 1 0.0000 0.991 1.000 0.000
#> GSM379820 1 0.0000 0.991 1.000 0.000
#> GSM379821 1 0.0000 0.991 1.000 0.000
#> GSM379822 1 0.0000 0.991 1.000 0.000
#> GSM379815 1 0.0000 0.991 1.000 0.000
#> GSM379816 2 0.4939 0.868 0.108 0.892
#> GSM379817 1 0.0000 0.991 1.000 0.000
#> GSM379818 1 0.0000 0.991 1.000 0.000
#> GSM379819 1 0.0000 0.991 1.000 0.000
#> GSM379825 1 0.0000 0.991 1.000 0.000
#> GSM379826 1 0.0000 0.991 1.000 0.000
#> GSM379823 1 0.0376 0.987 0.996 0.004
#> GSM379824 1 0.0000 0.991 1.000 0.000
#> GSM379749 2 0.0000 0.977 0.000 1.000
#> GSM379750 2 0.0000 0.977 0.000 1.000
#> GSM379751 2 0.0000 0.977 0.000 1.000
#> GSM379744 2 0.0000 0.977 0.000 1.000
#> GSM379745 2 0.0000 0.977 0.000 1.000
#> GSM379746 2 0.0000 0.977 0.000 1.000
#> GSM379747 2 0.0000 0.977 0.000 1.000
#> GSM379748 2 0.0000 0.977 0.000 1.000
#> GSM379757 2 0.0000 0.977 0.000 1.000
#> GSM379758 2 0.0000 0.977 0.000 1.000
#> GSM379752 2 0.0000 0.977 0.000 1.000
#> GSM379753 2 0.0000 0.977 0.000 1.000
#> GSM379754 2 0.0000 0.977 0.000 1.000
#> GSM379755 2 0.0000 0.977 0.000 1.000
#> GSM379756 2 0.0000 0.977 0.000 1.000
#> GSM379764 2 0.0000 0.977 0.000 1.000
#> GSM379765 2 0.0000 0.977 0.000 1.000
#> GSM379766 2 0.0000 0.977 0.000 1.000
#> GSM379759 2 0.0000 0.977 0.000 1.000
#> GSM379760 2 0.0000 0.977 0.000 1.000
#> GSM379761 2 0.0000 0.977 0.000 1.000
#> GSM379762 2 0.0000 0.977 0.000 1.000
#> GSM379763 2 0.0000 0.977 0.000 1.000
#> GSM379769 2 0.0000 0.977 0.000 1.000
#> GSM379770 2 0.0000 0.977 0.000 1.000
#> GSM379767 2 0.0000 0.977 0.000 1.000
#> GSM379768 2 0.0000 0.977 0.000 1.000
#> GSM379776 1 0.0000 0.991 1.000 0.000
#> GSM379777 1 0.0000 0.991 1.000 0.000
#> GSM379778 2 0.4161 0.895 0.084 0.916
#> GSM379771 1 0.0000 0.991 1.000 0.000
#> GSM379772 1 0.0000 0.991 1.000 0.000
#> GSM379773 1 0.0000 0.991 1.000 0.000
#> GSM379774 1 0.0000 0.991 1.000 0.000
#> GSM379775 1 0.0000 0.991 1.000 0.000
#> GSM379784 1 0.0000 0.991 1.000 0.000
#> GSM379785 1 0.0000 0.991 1.000 0.000
#> GSM379786 1 0.7674 0.709 0.776 0.224
#> GSM379779 1 0.0000 0.991 1.000 0.000
#> GSM379780 1 0.0000 0.991 1.000 0.000
#> GSM379781 1 0.0000 0.991 1.000 0.000
#> GSM379782 2 0.0000 0.977 0.000 1.000
#> GSM379783 2 0.9896 0.225 0.440 0.560
#> GSM379792 1 0.0000 0.991 1.000 0.000
#> GSM379793 1 0.0000 0.991 1.000 0.000
#> GSM379794 1 0.0000 0.991 1.000 0.000
#> GSM379787 2 0.0000 0.977 0.000 1.000
#> GSM379788 1 0.0000 0.991 1.000 0.000
#> GSM379789 1 0.0000 0.991 1.000 0.000
#> GSM379790 1 0.0000 0.991 1.000 0.000
#> GSM379791 1 0.0000 0.991 1.000 0.000
#> GSM379797 1 0.0000 0.991 1.000 0.000
#> GSM379798 1 0.0000 0.991 1.000 0.000
#> GSM379795 1 0.0000 0.991 1.000 0.000
#> GSM379796 1 0.0000 0.991 1.000 0.000
#> GSM379721 1 0.0000 0.991 1.000 0.000
#> GSM379722 1 0.0000 0.991 1.000 0.000
#> GSM379723 1 0.0000 0.991 1.000 0.000
#> GSM379716 1 0.0000 0.991 1.000 0.000
#> GSM379717 1 0.0000 0.991 1.000 0.000
#> GSM379718 1 0.0000 0.991 1.000 0.000
#> GSM379719 1 0.0000 0.991 1.000 0.000
#> GSM379720 1 0.0000 0.991 1.000 0.000
#> GSM379729 1 0.7950 0.681 0.760 0.240
#> GSM379730 1 0.3879 0.913 0.924 0.076
#> GSM379731 1 0.0000 0.991 1.000 0.000
#> GSM379724 1 0.0000 0.991 1.000 0.000
#> GSM379725 1 0.0376 0.987 0.996 0.004
#> GSM379726 1 0.0000 0.991 1.000 0.000
#> GSM379727 1 0.0000 0.991 1.000 0.000
#> GSM379728 1 0.0000 0.991 1.000 0.000
#> GSM379737 1 0.0000 0.991 1.000 0.000
#> GSM379738 1 0.0000 0.991 1.000 0.000
#> GSM379739 1 0.0000 0.991 1.000 0.000
#> GSM379732 1 0.0000 0.991 1.000 0.000
#> GSM379733 1 0.0000 0.991 1.000 0.000
#> GSM379734 1 0.0000 0.991 1.000 0.000
#> GSM379735 1 0.0376 0.987 0.996 0.004
#> GSM379736 1 0.0000 0.991 1.000 0.000
#> GSM379742 2 0.0000 0.977 0.000 1.000
#> GSM379743 1 0.5737 0.839 0.864 0.136
#> GSM379740 1 0.0000 0.991 1.000 0.000
#> GSM379741 2 0.0000 0.977 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM379832 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379833 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379834 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379827 2 0.0592 0.982 0.012 0.988 0.000
#> GSM379828 2 0.0892 0.977 0.020 0.980 0.000
#> GSM379829 1 0.0000 0.801 1.000 0.000 0.000
#> GSM379830 2 0.1031 0.975 0.024 0.976 0.000
#> GSM379831 2 0.1289 0.969 0.032 0.968 0.000
#> GSM379840 2 0.4002 0.847 0.160 0.840 0.000
#> GSM379841 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379842 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379835 2 0.1411 0.966 0.036 0.964 0.000
#> GSM379836 2 0.3482 0.883 0.128 0.872 0.000
#> GSM379837 1 0.5254 0.500 0.736 0.264 0.000
#> GSM379838 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379839 1 0.6168 0.117 0.588 0.412 0.000
#> GSM379848 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379849 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379850 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379843 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379844 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379845 2 0.3038 0.906 0.104 0.896 0.000
#> GSM379846 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379847 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379853 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379854 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379851 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379852 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379804 1 0.3267 0.819 0.884 0.000 0.116
#> GSM379805 1 0.1964 0.825 0.944 0.000 0.056
#> GSM379806 1 0.1753 0.823 0.952 0.000 0.048
#> GSM379799 1 0.0592 0.809 0.988 0.000 0.012
#> GSM379800 1 0.0592 0.809 0.988 0.000 0.012
#> GSM379801 1 0.0000 0.801 1.000 0.000 0.000
#> GSM379802 1 0.1031 0.815 0.976 0.000 0.024
#> GSM379803 1 0.3267 0.820 0.884 0.000 0.116
#> GSM379812 3 0.0000 0.894 0.000 0.000 1.000
#> GSM379813 3 0.0592 0.894 0.012 0.000 0.988
#> GSM379814 3 0.4452 0.735 0.192 0.000 0.808
#> GSM379807 1 0.3816 0.802 0.852 0.000 0.148
#> GSM379808 1 0.1289 0.818 0.968 0.000 0.032
#> GSM379809 1 0.2878 0.825 0.904 0.000 0.096
#> GSM379810 1 0.5835 0.592 0.660 0.000 0.340
#> GSM379811 1 0.2261 0.827 0.932 0.000 0.068
#> GSM379820 1 0.6126 0.472 0.600 0.000 0.400
#> GSM379821 3 0.0237 0.895 0.004 0.000 0.996
#> GSM379822 3 0.0000 0.894 0.000 0.000 1.000
#> GSM379815 1 0.2878 0.825 0.904 0.000 0.096
#> GSM379816 3 0.0747 0.883 0.000 0.016 0.984
#> GSM379817 3 0.2066 0.870 0.060 0.000 0.940
#> GSM379818 1 0.1411 0.820 0.964 0.000 0.036
#> GSM379819 1 0.4235 0.783 0.824 0.000 0.176
#> GSM379825 1 0.0592 0.809 0.988 0.000 0.012
#> GSM379826 1 0.5988 0.544 0.632 0.000 0.368
#> GSM379823 3 0.0000 0.894 0.000 0.000 1.000
#> GSM379824 3 0.6180 0.158 0.416 0.000 0.584
#> GSM379749 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379750 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379751 2 0.2448 0.933 0.076 0.924 0.000
#> GSM379744 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379745 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379746 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379747 2 0.0237 0.987 0.004 0.996 0.000
#> GSM379748 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379757 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379758 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379752 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379753 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379754 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379755 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379756 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379764 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379765 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379766 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379759 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379760 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379761 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379762 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379763 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379769 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379770 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379767 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379768 2 0.0000 0.990 0.000 1.000 0.000
#> GSM379776 1 0.5926 0.566 0.644 0.000 0.356
#> GSM379777 3 0.2537 0.856 0.080 0.000 0.920
#> GSM379778 3 0.0892 0.879 0.000 0.020 0.980
#> GSM379771 1 0.5835 0.592 0.660 0.000 0.340
#> GSM379772 3 0.6026 0.333 0.376 0.000 0.624
#> GSM379773 3 0.0424 0.895 0.008 0.000 0.992
#> GSM379774 3 0.6126 0.250 0.400 0.000 0.600
#> GSM379775 1 0.5733 0.616 0.676 0.000 0.324
#> GSM379784 3 0.0000 0.894 0.000 0.000 1.000
#> GSM379785 3 0.0237 0.895 0.004 0.000 0.996
#> GSM379786 3 0.0237 0.892 0.000 0.004 0.996
#> GSM379779 3 0.3619 0.807 0.136 0.000 0.864
#> GSM379780 3 0.0424 0.895 0.008 0.000 0.992
#> GSM379781 3 0.0237 0.895 0.004 0.000 0.996
#> GSM379782 3 0.2448 0.822 0.000 0.076 0.924
#> GSM379783 3 0.0237 0.892 0.000 0.004 0.996
#> GSM379792 1 0.2796 0.825 0.908 0.000 0.092
#> GSM379793 3 0.4235 0.757 0.176 0.000 0.824
#> GSM379794 3 0.6062 0.307 0.384 0.000 0.616
#> GSM379787 3 0.3116 0.792 0.000 0.108 0.892
#> GSM379788 3 0.0000 0.894 0.000 0.000 1.000
#> GSM379789 3 0.3816 0.793 0.148 0.000 0.852
#> GSM379790 1 0.6307 0.192 0.512 0.000 0.488
#> GSM379791 3 0.0424 0.895 0.008 0.000 0.992
#> GSM379797 1 0.2356 0.827 0.928 0.000 0.072
#> GSM379798 1 0.6008 0.533 0.628 0.000 0.372
#> GSM379795 3 0.0424 0.895 0.008 0.000 0.992
#> GSM379796 1 0.3879 0.800 0.848 0.000 0.152
#> GSM379721 3 0.1031 0.889 0.024 0.000 0.976
#> GSM379722 3 0.0592 0.894 0.012 0.000 0.988
#> GSM379723 1 0.1860 0.825 0.948 0.000 0.052
#> GSM379716 1 0.0747 0.811 0.984 0.000 0.016
#> GSM379717 1 0.0000 0.801 1.000 0.000 0.000
#> GSM379718 1 0.3038 0.823 0.896 0.000 0.104
#> GSM379719 3 0.3482 0.814 0.128 0.000 0.872
#> GSM379720 1 0.3267 0.819 0.884 0.000 0.116
#> GSM379729 3 0.0237 0.892 0.000 0.004 0.996
#> GSM379730 3 0.0000 0.894 0.000 0.000 1.000
#> GSM379731 3 0.0592 0.894 0.012 0.000 0.988
#> GSM379724 1 0.6168 0.445 0.588 0.000 0.412
#> GSM379725 3 0.0000 0.894 0.000 0.000 1.000
#> GSM379726 1 0.6274 0.316 0.544 0.000 0.456
#> GSM379727 3 0.5138 0.635 0.252 0.000 0.748
#> GSM379728 1 0.4178 0.786 0.828 0.000 0.172
#> GSM379737 3 0.2959 0.842 0.100 0.000 0.900
#> GSM379738 3 0.0592 0.894 0.012 0.000 0.988
#> GSM379739 3 0.0424 0.895 0.008 0.000 0.992
#> GSM379732 3 0.0237 0.895 0.004 0.000 0.996
#> GSM379733 3 0.4555 0.725 0.200 0.000 0.800
#> GSM379734 3 0.4062 0.775 0.164 0.000 0.836
#> GSM379735 3 0.0000 0.894 0.000 0.000 1.000
#> GSM379736 1 0.2261 0.827 0.932 0.000 0.068
#> GSM379742 3 0.3412 0.764 0.000 0.124 0.876
#> GSM379743 3 0.0237 0.892 0.000 0.004 0.996
#> GSM379740 3 0.2796 0.848 0.092 0.000 0.908
#> GSM379741 3 0.2796 0.804 0.000 0.092 0.908
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM379832 2 0.0336 0.9854 0.008 0.992 0.000 0.000
#> GSM379833 2 0.0336 0.9856 0.008 0.992 0.000 0.000
#> GSM379834 2 0.0469 0.9853 0.012 0.988 0.000 0.000
#> GSM379827 2 0.0657 0.9833 0.012 0.984 0.000 0.004
#> GSM379828 2 0.0657 0.9833 0.012 0.984 0.000 0.004
#> GSM379829 4 0.0188 0.8791 0.004 0.000 0.000 0.996
#> GSM379830 2 0.0657 0.9833 0.012 0.984 0.000 0.004
#> GSM379831 2 0.0657 0.9833 0.012 0.984 0.000 0.004
#> GSM379840 2 0.1452 0.9648 0.008 0.956 0.000 0.036
#> GSM379841 2 0.0469 0.9853 0.012 0.988 0.000 0.000
#> GSM379842 2 0.0469 0.9845 0.012 0.988 0.000 0.000
#> GSM379835 2 0.0657 0.9833 0.012 0.984 0.000 0.004
#> GSM379836 2 0.2222 0.9380 0.016 0.924 0.000 0.060
#> GSM379837 4 0.3539 0.6899 0.004 0.176 0.000 0.820
#> GSM379838 2 0.0707 0.9834 0.020 0.980 0.000 0.000
#> GSM379839 4 0.4018 0.6243 0.004 0.224 0.000 0.772
#> GSM379848 2 0.1022 0.9786 0.032 0.968 0.000 0.000
#> GSM379849 2 0.1211 0.9742 0.040 0.960 0.000 0.000
#> GSM379850 2 0.0592 0.9845 0.016 0.984 0.000 0.000
#> GSM379843 2 0.1022 0.9786 0.032 0.968 0.000 0.000
#> GSM379844 2 0.1022 0.9786 0.032 0.968 0.000 0.000
#> GSM379845 2 0.0895 0.9789 0.004 0.976 0.000 0.020
#> GSM379846 2 0.0188 0.9861 0.004 0.996 0.000 0.000
#> GSM379847 2 0.0817 0.9820 0.024 0.976 0.000 0.000
#> GSM379853 2 0.0469 0.9845 0.012 0.988 0.000 0.000
#> GSM379854 2 0.1022 0.9786 0.032 0.968 0.000 0.000
#> GSM379851 2 0.0592 0.9845 0.016 0.984 0.000 0.000
#> GSM379852 2 0.0817 0.9820 0.024 0.976 0.000 0.000
#> GSM379804 4 0.2021 0.8738 0.024 0.000 0.040 0.936
#> GSM379805 4 0.0469 0.8860 0.012 0.000 0.000 0.988
#> GSM379806 4 0.0592 0.8864 0.016 0.000 0.000 0.984
#> GSM379799 4 0.0188 0.8831 0.004 0.000 0.000 0.996
#> GSM379800 4 0.0188 0.8831 0.004 0.000 0.000 0.996
#> GSM379801 4 0.0524 0.8779 0.004 0.000 0.008 0.988
#> GSM379802 4 0.0469 0.8860 0.012 0.000 0.000 0.988
#> GSM379803 4 0.3907 0.7101 0.232 0.000 0.000 0.768
#> GSM379812 1 0.1807 0.8665 0.940 0.000 0.008 0.052
#> GSM379813 1 0.1938 0.8670 0.936 0.000 0.012 0.052
#> GSM379814 1 0.5035 0.7351 0.748 0.000 0.196 0.056
#> GSM379807 4 0.2593 0.8494 0.104 0.000 0.004 0.892
#> GSM379808 4 0.0469 0.8860 0.012 0.000 0.000 0.988
#> GSM379809 4 0.3636 0.7481 0.008 0.000 0.172 0.820
#> GSM379810 3 0.1151 0.8319 0.008 0.000 0.968 0.024
#> GSM379811 4 0.1557 0.8783 0.056 0.000 0.000 0.944
#> GSM379820 4 0.5220 0.2392 0.424 0.000 0.008 0.568
#> GSM379821 1 0.1978 0.8599 0.928 0.000 0.004 0.068
#> GSM379822 1 0.1743 0.8648 0.940 0.000 0.004 0.056
#> GSM379815 4 0.1284 0.8853 0.024 0.000 0.012 0.964
#> GSM379816 1 0.1042 0.8462 0.972 0.020 0.008 0.000
#> GSM379817 1 0.2480 0.8491 0.904 0.000 0.008 0.088
#> GSM379818 4 0.0707 0.8866 0.020 0.000 0.000 0.980
#> GSM379819 4 0.3105 0.8205 0.140 0.000 0.004 0.856
#> GSM379825 4 0.0336 0.8844 0.008 0.000 0.000 0.992
#> GSM379826 1 0.5250 0.2004 0.552 0.000 0.008 0.440
#> GSM379823 1 0.1247 0.8619 0.968 0.004 0.012 0.016
#> GSM379824 1 0.4331 0.5948 0.712 0.000 0.000 0.288
#> GSM379749 2 0.0188 0.9858 0.004 0.996 0.000 0.000
#> GSM379750 2 0.0336 0.9856 0.008 0.992 0.000 0.000
#> GSM379751 2 0.1284 0.9739 0.012 0.964 0.000 0.024
#> GSM379744 2 0.0469 0.9845 0.012 0.988 0.000 0.000
#> GSM379745 2 0.0469 0.9845 0.012 0.988 0.000 0.000
#> GSM379746 2 0.0188 0.9860 0.004 0.996 0.000 0.000
#> GSM379747 2 0.0657 0.9833 0.012 0.984 0.000 0.004
#> GSM379748 2 0.0469 0.9845 0.012 0.988 0.000 0.000
#> GSM379757 2 0.0469 0.9852 0.012 0.988 0.000 0.000
#> GSM379758 2 0.0921 0.9803 0.028 0.972 0.000 0.000
#> GSM379752 2 0.0336 0.9861 0.008 0.992 0.000 0.000
#> GSM379753 2 0.0469 0.9845 0.012 0.988 0.000 0.000
#> GSM379754 2 0.0188 0.9858 0.004 0.996 0.000 0.000
#> GSM379755 2 0.0188 0.9858 0.004 0.996 0.000 0.000
#> GSM379756 2 0.0188 0.9860 0.004 0.996 0.000 0.000
#> GSM379764 2 0.0336 0.9861 0.008 0.992 0.000 0.000
#> GSM379765 2 0.1118 0.9766 0.036 0.964 0.000 0.000
#> GSM379766 2 0.0817 0.9820 0.024 0.976 0.000 0.000
#> GSM379759 2 0.1211 0.9742 0.040 0.960 0.000 0.000
#> GSM379760 2 0.0707 0.9833 0.020 0.980 0.000 0.000
#> GSM379761 2 0.0336 0.9861 0.008 0.992 0.000 0.000
#> GSM379762 2 0.0188 0.9858 0.004 0.996 0.000 0.000
#> GSM379763 2 0.0469 0.9853 0.012 0.988 0.000 0.000
#> GSM379769 2 0.0336 0.9853 0.008 0.992 0.000 0.000
#> GSM379770 2 0.0469 0.9845 0.012 0.988 0.000 0.000
#> GSM379767 2 0.0336 0.9853 0.008 0.992 0.000 0.000
#> GSM379768 2 0.0817 0.9820 0.024 0.976 0.000 0.000
#> GSM379776 4 0.3182 0.8479 0.096 0.000 0.028 0.876
#> GSM379777 1 0.3569 0.7379 0.804 0.000 0.000 0.196
#> GSM379778 3 0.5000 0.0365 0.500 0.000 0.500 0.000
#> GSM379771 3 0.3390 0.7801 0.016 0.000 0.852 0.132
#> GSM379772 3 0.0469 0.8346 0.012 0.000 0.988 0.000
#> GSM379773 3 0.3837 0.6908 0.224 0.000 0.776 0.000
#> GSM379774 3 0.5448 0.6881 0.080 0.000 0.724 0.196
#> GSM379775 3 0.4576 0.6470 0.012 0.000 0.728 0.260
#> GSM379784 1 0.1584 0.8668 0.952 0.000 0.012 0.036
#> GSM379785 1 0.1722 0.8578 0.944 0.000 0.048 0.008
#> GSM379786 1 0.0859 0.8553 0.980 0.008 0.008 0.004
#> GSM379779 3 0.4039 0.7779 0.080 0.000 0.836 0.084
#> GSM379780 1 0.3333 0.8378 0.872 0.000 0.088 0.040
#> GSM379781 1 0.2111 0.8636 0.932 0.000 0.044 0.024
#> GSM379782 3 0.5263 0.2107 0.448 0.008 0.544 0.000
#> GSM379783 1 0.1059 0.8511 0.972 0.016 0.012 0.000
#> GSM379792 4 0.1305 0.8844 0.036 0.000 0.004 0.960
#> GSM379793 1 0.6138 0.6026 0.648 0.000 0.260 0.092
#> GSM379794 3 0.6921 0.5052 0.160 0.000 0.580 0.260
#> GSM379787 3 0.4591 0.7162 0.084 0.116 0.800 0.000
#> GSM379788 1 0.1722 0.8668 0.944 0.000 0.008 0.048
#> GSM379789 1 0.5751 0.7194 0.712 0.000 0.124 0.164
#> GSM379790 4 0.4868 0.7019 0.212 0.000 0.040 0.748
#> GSM379791 1 0.4814 0.5340 0.676 0.000 0.316 0.008
#> GSM379797 4 0.1022 0.8857 0.032 0.000 0.000 0.968
#> GSM379798 4 0.3818 0.8244 0.108 0.000 0.048 0.844
#> GSM379795 3 0.3975 0.6548 0.240 0.000 0.760 0.000
#> GSM379796 4 0.1970 0.8751 0.060 0.000 0.008 0.932
#> GSM379721 3 0.0188 0.8358 0.004 0.000 0.996 0.000
#> GSM379722 3 0.0188 0.8358 0.004 0.000 0.996 0.000
#> GSM379723 3 0.1256 0.8307 0.008 0.000 0.964 0.028
#> GSM379716 3 0.3852 0.7324 0.008 0.000 0.800 0.192
#> GSM379717 3 0.2831 0.7918 0.004 0.000 0.876 0.120
#> GSM379718 3 0.2125 0.8134 0.004 0.000 0.920 0.076
#> GSM379719 3 0.0188 0.8358 0.004 0.000 0.996 0.000
#> GSM379720 3 0.5268 0.1884 0.008 0.000 0.540 0.452
#> GSM379729 1 0.4564 0.4916 0.672 0.000 0.328 0.000
#> GSM379730 1 0.1940 0.8413 0.924 0.000 0.076 0.000
#> GSM379731 1 0.2174 0.8671 0.928 0.000 0.020 0.052
#> GSM379724 3 0.0188 0.8358 0.004 0.000 0.996 0.000
#> GSM379725 3 0.4804 0.4136 0.384 0.000 0.616 0.000
#> GSM379726 3 0.0188 0.8358 0.004 0.000 0.996 0.000
#> GSM379727 3 0.0188 0.8358 0.004 0.000 0.996 0.000
#> GSM379728 3 0.0779 0.8337 0.004 0.000 0.980 0.016
#> GSM379737 3 0.0188 0.8358 0.004 0.000 0.996 0.000
#> GSM379738 3 0.0188 0.8358 0.004 0.000 0.996 0.000
#> GSM379739 3 0.0336 0.8350 0.008 0.000 0.992 0.000
#> GSM379732 3 0.3726 0.6924 0.212 0.000 0.788 0.000
#> GSM379733 3 0.0188 0.8358 0.004 0.000 0.996 0.000
#> GSM379734 3 0.0000 0.8337 0.000 0.000 1.000 0.000
#> GSM379735 1 0.2530 0.8149 0.888 0.000 0.112 0.000
#> GSM379736 4 0.4283 0.6016 0.004 0.000 0.256 0.740
#> GSM379742 3 0.5558 0.6414 0.208 0.080 0.712 0.000
#> GSM379743 1 0.2281 0.8284 0.904 0.000 0.096 0.000
#> GSM379740 3 0.0188 0.8358 0.004 0.000 0.996 0.000
#> GSM379741 3 0.4284 0.6879 0.224 0.012 0.764 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM379832 2 0.0000 0.9884 0.000 1.000 0.000 0.000 0.000
#> GSM379833 2 0.0162 0.9886 0.000 0.996 0.000 0.000 0.004
#> GSM379834 2 0.0510 0.9867 0.000 0.984 0.000 0.000 0.016
#> GSM379827 2 0.0324 0.9870 0.004 0.992 0.000 0.000 0.004
#> GSM379828 2 0.0324 0.9870 0.004 0.992 0.000 0.000 0.004
#> GSM379829 4 0.1547 0.8484 0.016 0.000 0.032 0.948 0.004
#> GSM379830 2 0.0324 0.9870 0.004 0.992 0.000 0.000 0.004
#> GSM379831 2 0.0000 0.9884 0.000 1.000 0.000 0.000 0.000
#> GSM379840 2 0.0960 0.9754 0.008 0.972 0.000 0.016 0.004
#> GSM379841 2 0.0000 0.9884 0.000 1.000 0.000 0.000 0.000
#> GSM379842 2 0.0324 0.9871 0.004 0.992 0.000 0.000 0.004
#> GSM379835 2 0.0162 0.9881 0.004 0.996 0.000 0.000 0.000
#> GSM379836 2 0.1087 0.9734 0.016 0.968 0.000 0.008 0.008
#> GSM379837 4 0.3900 0.7037 0.016 0.144 0.032 0.808 0.000
#> GSM379838 2 0.0703 0.9839 0.000 0.976 0.000 0.000 0.024
#> GSM379839 4 0.3141 0.7124 0.016 0.152 0.000 0.832 0.000
#> GSM379848 2 0.0880 0.9806 0.000 0.968 0.000 0.000 0.032
#> GSM379849 2 0.1410 0.9620 0.000 0.940 0.000 0.000 0.060
#> GSM379850 2 0.0162 0.9886 0.000 0.996 0.000 0.000 0.004
#> GSM379843 2 0.0880 0.9806 0.000 0.968 0.000 0.000 0.032
#> GSM379844 2 0.0794 0.9823 0.000 0.972 0.000 0.000 0.028
#> GSM379845 2 0.0162 0.9881 0.004 0.996 0.000 0.000 0.000
#> GSM379846 2 0.0162 0.9879 0.000 0.996 0.000 0.000 0.004
#> GSM379847 2 0.0510 0.9870 0.000 0.984 0.000 0.000 0.016
#> GSM379853 2 0.0451 0.9855 0.008 0.988 0.000 0.000 0.004
#> GSM379854 2 0.0880 0.9806 0.000 0.968 0.000 0.000 0.032
#> GSM379851 2 0.0290 0.9886 0.000 0.992 0.000 0.000 0.008
#> GSM379852 2 0.0162 0.9886 0.000 0.996 0.000 0.000 0.004
#> GSM379804 4 0.0613 0.8686 0.004 0.000 0.008 0.984 0.004
#> GSM379805 4 0.0609 0.8692 0.020 0.000 0.000 0.980 0.000
#> GSM379806 4 0.0451 0.8699 0.008 0.000 0.000 0.988 0.004
#> GSM379799 4 0.0000 0.8683 0.000 0.000 0.000 1.000 0.000
#> GSM379800 4 0.0000 0.8683 0.000 0.000 0.000 1.000 0.000
#> GSM379801 4 0.0960 0.8604 0.008 0.000 0.016 0.972 0.004
#> GSM379802 4 0.0451 0.8667 0.008 0.000 0.000 0.988 0.004
#> GSM379803 4 0.3496 0.7013 0.012 0.000 0.000 0.788 0.200
#> GSM379812 5 0.2236 0.8938 0.024 0.000 0.000 0.068 0.908
#> GSM379813 5 0.4210 0.7205 0.224 0.000 0.000 0.036 0.740
#> GSM379814 1 0.1780 0.8805 0.940 0.000 0.008 0.028 0.024
#> GSM379807 4 0.2513 0.8232 0.116 0.000 0.000 0.876 0.008
#> GSM379808 4 0.0451 0.8699 0.008 0.000 0.000 0.988 0.004
#> GSM379809 4 0.1485 0.8632 0.032 0.000 0.020 0.948 0.000
#> GSM379810 3 0.3146 0.8161 0.128 0.000 0.844 0.028 0.000
#> GSM379811 4 0.0693 0.8696 0.012 0.000 0.000 0.980 0.008
#> GSM379820 4 0.4649 0.3481 0.404 0.000 0.000 0.580 0.016
#> GSM379821 5 0.2069 0.8919 0.012 0.000 0.000 0.076 0.912
#> GSM379822 5 0.1894 0.8930 0.008 0.000 0.000 0.072 0.920
#> GSM379815 4 0.2179 0.8301 0.112 0.000 0.000 0.888 0.000
#> GSM379816 5 0.0486 0.8851 0.004 0.004 0.004 0.000 0.988
#> GSM379817 5 0.3955 0.8159 0.116 0.000 0.000 0.084 0.800
#> GSM379818 4 0.0451 0.8699 0.008 0.000 0.000 0.988 0.004
#> GSM379819 4 0.2843 0.8016 0.144 0.000 0.000 0.848 0.008
#> GSM379825 4 0.0290 0.8695 0.008 0.000 0.000 0.992 0.000
#> GSM379826 4 0.5639 0.3754 0.092 0.000 0.000 0.568 0.340
#> GSM379823 5 0.1704 0.8933 0.068 0.000 0.004 0.000 0.928
#> GSM379824 5 0.2660 0.8588 0.008 0.000 0.000 0.128 0.864
#> GSM379749 2 0.0162 0.9886 0.000 0.996 0.000 0.000 0.004
#> GSM379750 2 0.0794 0.9828 0.000 0.972 0.000 0.000 0.028
#> GSM379751 2 0.0613 0.9835 0.008 0.984 0.000 0.004 0.004
#> GSM379744 2 0.0000 0.9884 0.000 1.000 0.000 0.000 0.000
#> GSM379745 2 0.0162 0.9886 0.000 0.996 0.000 0.000 0.004
#> GSM379746 2 0.0510 0.9867 0.000 0.984 0.000 0.000 0.016
#> GSM379747 2 0.0162 0.9879 0.000 0.996 0.000 0.000 0.004
#> GSM379748 2 0.0000 0.9884 0.000 1.000 0.000 0.000 0.000
#> GSM379757 2 0.0880 0.9805 0.000 0.968 0.000 0.000 0.032
#> GSM379758 2 0.0794 0.9827 0.000 0.972 0.000 0.000 0.028
#> GSM379752 2 0.0510 0.9867 0.000 0.984 0.000 0.000 0.016
#> GSM379753 2 0.0162 0.9881 0.000 0.996 0.004 0.000 0.000
#> GSM379754 2 0.0290 0.9882 0.000 0.992 0.000 0.000 0.008
#> GSM379755 2 0.0290 0.9884 0.000 0.992 0.000 0.000 0.008
#> GSM379756 2 0.0404 0.9877 0.000 0.988 0.000 0.000 0.012
#> GSM379764 2 0.0290 0.9886 0.000 0.992 0.000 0.000 0.008
#> GSM379765 2 0.1270 0.9679 0.000 0.948 0.000 0.000 0.052
#> GSM379766 2 0.0404 0.9877 0.000 0.988 0.000 0.000 0.012
#> GSM379759 2 0.1478 0.9589 0.000 0.936 0.000 0.000 0.064
#> GSM379760 2 0.1043 0.9759 0.000 0.960 0.000 0.000 0.040
#> GSM379761 2 0.0290 0.9882 0.000 0.992 0.000 0.000 0.008
#> GSM379762 2 0.0162 0.9879 0.000 0.996 0.000 0.000 0.004
#> GSM379763 2 0.0290 0.9886 0.000 0.992 0.000 0.000 0.008
#> GSM379769 2 0.0162 0.9879 0.000 0.996 0.000 0.000 0.004
#> GSM379770 2 0.0162 0.9879 0.000 0.996 0.000 0.000 0.004
#> GSM379767 2 0.0162 0.9879 0.000 0.996 0.000 0.000 0.004
#> GSM379768 2 0.0404 0.9878 0.000 0.988 0.000 0.000 0.012
#> GSM379776 4 0.4504 0.2838 0.428 0.000 0.000 0.564 0.008
#> GSM379777 5 0.2470 0.8783 0.012 0.000 0.000 0.104 0.884
#> GSM379778 1 0.1753 0.8631 0.936 0.000 0.032 0.000 0.032
#> GSM379771 1 0.1864 0.8666 0.924 0.000 0.004 0.068 0.004
#> GSM379772 1 0.1970 0.8618 0.924 0.000 0.060 0.012 0.004
#> GSM379773 1 0.1393 0.8775 0.956 0.000 0.024 0.012 0.008
#> GSM379774 1 0.1365 0.8802 0.952 0.000 0.004 0.040 0.004
#> GSM379775 1 0.1928 0.8630 0.920 0.000 0.004 0.072 0.004
#> GSM379784 5 0.2286 0.8797 0.108 0.000 0.000 0.004 0.888
#> GSM379785 1 0.2136 0.8412 0.904 0.000 0.000 0.008 0.088
#> GSM379786 5 0.1908 0.8869 0.092 0.000 0.000 0.000 0.908
#> GSM379779 1 0.1788 0.8754 0.932 0.000 0.008 0.056 0.004
#> GSM379780 1 0.2260 0.8581 0.908 0.000 0.000 0.028 0.064
#> GSM379781 1 0.4074 0.3847 0.636 0.000 0.000 0.000 0.364
#> GSM379782 1 0.2629 0.8394 0.896 0.008 0.064 0.000 0.032
#> GSM379783 5 0.1851 0.8874 0.088 0.000 0.000 0.000 0.912
#> GSM379792 4 0.2966 0.7678 0.184 0.000 0.000 0.816 0.000
#> GSM379793 1 0.0955 0.8809 0.968 0.000 0.000 0.028 0.004
#> GSM379794 1 0.0963 0.8801 0.964 0.000 0.000 0.036 0.000
#> GSM379787 1 0.1788 0.8568 0.932 0.008 0.056 0.000 0.004
#> GSM379788 5 0.2304 0.8845 0.100 0.000 0.000 0.008 0.892
#> GSM379789 1 0.1205 0.8799 0.956 0.000 0.000 0.040 0.004
#> GSM379790 1 0.3861 0.5791 0.712 0.000 0.000 0.284 0.004
#> GSM379791 1 0.1059 0.8811 0.968 0.000 0.004 0.020 0.008
#> GSM379797 4 0.0955 0.8673 0.028 0.000 0.000 0.968 0.004
#> GSM379798 1 0.3814 0.5941 0.720 0.000 0.000 0.276 0.004
#> GSM379795 1 0.1026 0.8751 0.968 0.000 0.024 0.004 0.004
#> GSM379796 4 0.3430 0.7213 0.220 0.000 0.000 0.776 0.004
#> GSM379721 3 0.0162 0.9194 0.000 0.000 0.996 0.000 0.004
#> GSM379722 3 0.0162 0.9194 0.000 0.000 0.996 0.000 0.004
#> GSM379723 3 0.0000 0.9201 0.000 0.000 1.000 0.000 0.000
#> GSM379716 3 0.1043 0.9009 0.000 0.000 0.960 0.040 0.000
#> GSM379717 3 0.0798 0.9120 0.008 0.000 0.976 0.016 0.000
#> GSM379718 3 0.0833 0.9124 0.004 0.000 0.976 0.016 0.004
#> GSM379719 3 0.0162 0.9194 0.000 0.000 0.996 0.000 0.004
#> GSM379720 3 0.3134 0.8271 0.012 0.000 0.864 0.096 0.028
#> GSM379729 5 0.2471 0.8410 0.000 0.000 0.136 0.000 0.864
#> GSM379730 5 0.1792 0.8824 0.000 0.000 0.084 0.000 0.916
#> GSM379731 5 0.2580 0.8877 0.000 0.000 0.064 0.044 0.892
#> GSM379724 3 0.0000 0.9201 0.000 0.000 1.000 0.000 0.000
#> GSM379725 5 0.3752 0.6154 0.000 0.000 0.292 0.000 0.708
#> GSM379726 3 0.0000 0.9201 0.000 0.000 1.000 0.000 0.000
#> GSM379727 3 0.0162 0.9202 0.004 0.000 0.996 0.000 0.000
#> GSM379728 3 0.0404 0.9195 0.012 0.000 0.988 0.000 0.000
#> GSM379737 3 0.0963 0.9125 0.036 0.000 0.964 0.000 0.000
#> GSM379738 3 0.1478 0.8958 0.064 0.000 0.936 0.000 0.000
#> GSM379739 3 0.1544 0.8928 0.068 0.000 0.932 0.000 0.000
#> GSM379732 3 0.4219 0.2106 0.000 0.000 0.584 0.000 0.416
#> GSM379733 3 0.0290 0.9198 0.008 0.000 0.992 0.000 0.000
#> GSM379734 3 0.0794 0.9154 0.028 0.000 0.972 0.000 0.000
#> GSM379735 5 0.1792 0.8825 0.000 0.000 0.084 0.000 0.916
#> GSM379736 4 0.2408 0.8210 0.008 0.000 0.096 0.892 0.004
#> GSM379742 1 0.7302 0.0248 0.428 0.140 0.372 0.000 0.060
#> GSM379743 5 0.1851 0.8807 0.000 0.000 0.088 0.000 0.912
#> GSM379740 3 0.1041 0.9147 0.032 0.000 0.964 0.000 0.004
#> GSM379741 3 0.6161 0.1072 0.428 0.028 0.480 0.000 0.064
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM379832 2 0.1588 0.82088 0.000 0.924 0.000 0.000 0.072 0.004
#> GSM379833 2 0.1267 0.83080 0.000 0.940 0.000 0.000 0.060 0.000
#> GSM379834 2 0.1531 0.82061 0.000 0.928 0.000 0.000 0.068 0.004
#> GSM379827 2 0.2762 0.68891 0.000 0.804 0.000 0.000 0.196 0.000
#> GSM379828 2 0.2941 0.65036 0.000 0.780 0.000 0.000 0.220 0.000
#> GSM379829 4 0.4116 0.20731 0.000 0.000 0.012 0.572 0.416 0.000
#> GSM379830 2 0.3991 -0.25684 0.000 0.524 0.004 0.000 0.472 0.000
#> GSM379831 2 0.2697 0.69247 0.000 0.812 0.000 0.000 0.188 0.000
#> GSM379840 2 0.4224 -0.30796 0.008 0.512 0.000 0.000 0.476 0.004
#> GSM379841 2 0.0935 0.84099 0.000 0.964 0.000 0.000 0.032 0.004
#> GSM379842 2 0.2632 0.73504 0.004 0.832 0.000 0.000 0.164 0.000
#> GSM379835 2 0.3578 0.34090 0.000 0.660 0.000 0.000 0.340 0.000
#> GSM379836 2 0.4128 -0.35352 0.000 0.500 0.004 0.004 0.492 0.000
#> GSM379837 5 0.6473 0.00000 0.000 0.280 0.040 0.160 0.512 0.008
#> GSM379838 2 0.0777 0.83885 0.000 0.972 0.000 0.000 0.024 0.004
#> GSM379839 4 0.5133 0.00808 0.000 0.088 0.004 0.576 0.332 0.000
#> GSM379848 2 0.0508 0.84226 0.000 0.984 0.000 0.000 0.012 0.004
#> GSM379849 2 0.1265 0.82442 0.000 0.948 0.000 0.000 0.044 0.008
#> GSM379850 2 0.1010 0.83805 0.000 0.960 0.000 0.000 0.036 0.004
#> GSM379843 2 0.2266 0.78870 0.000 0.880 0.000 0.000 0.108 0.012
#> GSM379844 2 0.1701 0.82243 0.000 0.920 0.000 0.000 0.072 0.008
#> GSM379845 2 0.3784 0.41008 0.000 0.680 0.000 0.012 0.308 0.000
#> GSM379846 2 0.1910 0.79874 0.000 0.892 0.000 0.000 0.108 0.000
#> GSM379847 2 0.1462 0.83054 0.000 0.936 0.000 0.000 0.056 0.008
#> GSM379853 2 0.4468 -0.07154 0.032 0.560 0.000 0.000 0.408 0.000
#> GSM379854 2 0.1333 0.83630 0.000 0.944 0.000 0.000 0.048 0.008
#> GSM379851 2 0.2234 0.78108 0.000 0.872 0.000 0.000 0.124 0.004
#> GSM379852 2 0.2020 0.80759 0.000 0.896 0.000 0.000 0.096 0.008
#> GSM379804 4 0.1485 0.79481 0.004 0.000 0.024 0.944 0.028 0.000
#> GSM379805 4 0.0405 0.79769 0.004 0.000 0.000 0.988 0.008 0.000
#> GSM379806 4 0.1226 0.79672 0.004 0.000 0.000 0.952 0.040 0.004
#> GSM379799 4 0.0260 0.79633 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM379800 4 0.0260 0.79633 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM379801 4 0.2527 0.73743 0.000 0.000 0.024 0.868 0.108 0.000
#> GSM379802 4 0.0363 0.79593 0.000 0.000 0.000 0.988 0.012 0.000
#> GSM379803 4 0.1615 0.77396 0.004 0.000 0.000 0.928 0.004 0.064
#> GSM379812 6 0.1151 0.79871 0.000 0.000 0.000 0.012 0.032 0.956
#> GSM379813 6 0.6797 0.46941 0.144 0.000 0.000 0.112 0.248 0.496
#> GSM379814 1 0.6657 0.50187 0.548 0.000 0.004 0.120 0.196 0.132
#> GSM379807 4 0.6899 0.38606 0.152 0.000 0.000 0.488 0.236 0.124
#> GSM379808 4 0.0508 0.79950 0.004 0.000 0.000 0.984 0.012 0.000
#> GSM379809 4 0.4118 0.72175 0.048 0.000 0.092 0.796 0.060 0.004
#> GSM379810 3 0.5162 0.68998 0.092 0.000 0.716 0.100 0.088 0.004
#> GSM379811 4 0.0405 0.79957 0.004 0.000 0.000 0.988 0.008 0.000
#> GSM379820 4 0.7204 0.04874 0.328 0.000 0.000 0.368 0.200 0.104
#> GSM379821 6 0.1982 0.80008 0.004 0.000 0.000 0.016 0.068 0.912
#> GSM379822 6 0.2312 0.79153 0.000 0.000 0.000 0.012 0.112 0.876
#> GSM379815 4 0.6509 0.27926 0.308 0.000 0.000 0.480 0.156 0.056
#> GSM379816 6 0.1858 0.77831 0.000 0.012 0.000 0.000 0.076 0.912
#> GSM379817 6 0.6499 0.52676 0.092 0.000 0.000 0.124 0.256 0.528
#> GSM379818 4 0.0603 0.79994 0.004 0.000 0.000 0.980 0.016 0.000
#> GSM379819 4 0.3794 0.73315 0.100 0.000 0.000 0.804 0.076 0.020
#> GSM379825 4 0.0405 0.79769 0.004 0.000 0.000 0.988 0.008 0.000
#> GSM379826 6 0.6806 0.46837 0.100 0.000 0.000 0.152 0.264 0.484
#> GSM379823 6 0.2841 0.77384 0.012 0.000 0.000 0.000 0.164 0.824
#> GSM379824 6 0.3803 0.75645 0.004 0.000 0.000 0.068 0.148 0.780
#> GSM379749 2 0.0458 0.84288 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM379750 2 0.0972 0.83155 0.000 0.964 0.000 0.000 0.028 0.008
#> GSM379751 2 0.3276 0.60117 0.000 0.764 0.004 0.004 0.228 0.000
#> GSM379744 2 0.0632 0.84158 0.000 0.976 0.000 0.000 0.024 0.000
#> GSM379745 2 0.0146 0.84145 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM379746 2 0.0713 0.83349 0.000 0.972 0.000 0.000 0.028 0.000
#> GSM379747 2 0.1082 0.83747 0.000 0.956 0.004 0.000 0.040 0.000
#> GSM379748 2 0.0547 0.84207 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM379757 2 0.0692 0.83603 0.000 0.976 0.000 0.000 0.020 0.004
#> GSM379758 2 0.0692 0.83603 0.000 0.976 0.000 0.000 0.020 0.004
#> GSM379752 2 0.0363 0.83977 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM379753 2 0.1003 0.84252 0.000 0.964 0.004 0.000 0.028 0.004
#> GSM379754 2 0.0260 0.84035 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379755 2 0.0363 0.83973 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM379756 2 0.0713 0.83349 0.000 0.972 0.000 0.000 0.028 0.000
#> GSM379764 2 0.0865 0.83859 0.000 0.964 0.000 0.000 0.036 0.000
#> GSM379765 2 0.0935 0.82916 0.000 0.964 0.000 0.000 0.032 0.004
#> GSM379766 2 0.0363 0.84140 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM379759 2 0.1462 0.80816 0.000 0.936 0.000 0.000 0.056 0.008
#> GSM379760 2 0.0508 0.83942 0.000 0.984 0.000 0.000 0.012 0.004
#> GSM379761 2 0.0260 0.84035 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379762 2 0.0547 0.84211 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM379763 2 0.0260 0.84197 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM379769 2 0.0937 0.83857 0.000 0.960 0.000 0.000 0.040 0.000
#> GSM379770 2 0.0790 0.83958 0.000 0.968 0.000 0.000 0.032 0.000
#> GSM379767 2 0.0547 0.84259 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM379768 2 0.0458 0.83856 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM379776 4 0.3738 0.55368 0.280 0.000 0.000 0.704 0.016 0.000
#> GSM379777 6 0.2250 0.78406 0.000 0.000 0.000 0.092 0.020 0.888
#> GSM379778 1 0.3671 0.78320 0.816 0.000 0.056 0.000 0.100 0.028
#> GSM379771 1 0.1914 0.83797 0.920 0.000 0.008 0.056 0.016 0.000
#> GSM379772 1 0.1390 0.84361 0.948 0.000 0.032 0.004 0.016 0.000
#> GSM379773 1 0.4002 0.78686 0.804 0.000 0.060 0.024 0.100 0.012
#> GSM379774 1 0.0893 0.84751 0.972 0.000 0.004 0.016 0.004 0.004
#> GSM379775 1 0.0972 0.84744 0.964 0.000 0.008 0.028 0.000 0.000
#> GSM379784 6 0.2318 0.79316 0.064 0.000 0.000 0.000 0.044 0.892
#> GSM379785 1 0.2392 0.83480 0.896 0.000 0.000 0.008 0.048 0.048
#> GSM379786 6 0.1492 0.80176 0.024 0.000 0.000 0.000 0.036 0.940
#> GSM379779 1 0.2981 0.82846 0.868 0.000 0.024 0.072 0.032 0.004
#> GSM379780 1 0.3787 0.78292 0.812 0.000 0.000 0.036 0.064 0.088
#> GSM379781 1 0.5167 0.53906 0.632 0.000 0.000 0.012 0.104 0.252
#> GSM379782 1 0.4007 0.76909 0.796 0.004 0.072 0.000 0.104 0.024
#> GSM379783 6 0.1794 0.79360 0.036 0.000 0.000 0.000 0.040 0.924
#> GSM379792 4 0.4476 0.47644 0.308 0.000 0.000 0.640 0.052 0.000
#> GSM379793 1 0.1787 0.83830 0.920 0.000 0.000 0.008 0.068 0.004
#> GSM379794 1 0.0964 0.84761 0.968 0.000 0.000 0.012 0.016 0.004
#> GSM379787 1 0.3548 0.78775 0.828 0.004 0.068 0.004 0.088 0.008
#> GSM379788 6 0.3602 0.76023 0.032 0.000 0.000 0.008 0.176 0.784
#> GSM379789 1 0.2259 0.83477 0.908 0.000 0.000 0.040 0.032 0.020
#> GSM379790 1 0.4122 0.54013 0.680 0.000 0.000 0.292 0.020 0.008
#> GSM379791 1 0.1116 0.84668 0.960 0.000 0.000 0.008 0.028 0.004
#> GSM379797 4 0.0603 0.79948 0.004 0.000 0.000 0.980 0.016 0.000
#> GSM379798 1 0.4034 0.46194 0.648 0.000 0.000 0.336 0.012 0.004
#> GSM379795 1 0.0964 0.84404 0.968 0.000 0.016 0.004 0.012 0.000
#> GSM379796 4 0.2450 0.75464 0.116 0.000 0.000 0.868 0.016 0.000
#> GSM379721 3 0.1116 0.89968 0.004 0.000 0.960 0.000 0.028 0.008
#> GSM379722 3 0.0717 0.89963 0.008 0.000 0.976 0.000 0.016 0.000
#> GSM379723 3 0.0547 0.89872 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM379716 3 0.1049 0.89343 0.000 0.000 0.960 0.008 0.032 0.000
#> GSM379717 3 0.1493 0.88267 0.004 0.000 0.936 0.004 0.056 0.000
#> GSM379718 3 0.1508 0.88605 0.004 0.000 0.940 0.004 0.048 0.004
#> GSM379719 3 0.0777 0.90040 0.004 0.000 0.972 0.000 0.024 0.000
#> GSM379720 3 0.2430 0.86460 0.004 0.000 0.900 0.012 0.048 0.036
#> GSM379729 6 0.3895 0.69758 0.008 0.000 0.172 0.000 0.052 0.768
#> GSM379730 6 0.3039 0.76890 0.004 0.000 0.088 0.000 0.060 0.848
#> GSM379731 6 0.2932 0.75276 0.004 0.000 0.140 0.000 0.020 0.836
#> GSM379724 3 0.0291 0.90147 0.004 0.000 0.992 0.000 0.004 0.000
#> GSM379725 6 0.4879 0.34635 0.008 0.000 0.356 0.000 0.052 0.584
#> GSM379726 3 0.0806 0.89905 0.008 0.000 0.972 0.000 0.020 0.000
#> GSM379727 3 0.0692 0.89982 0.004 0.000 0.976 0.000 0.020 0.000
#> GSM379728 3 0.1334 0.89327 0.020 0.000 0.948 0.000 0.032 0.000
#> GSM379737 3 0.1257 0.89694 0.028 0.000 0.952 0.000 0.020 0.000
#> GSM379738 3 0.2066 0.87580 0.052 0.000 0.908 0.000 0.040 0.000
#> GSM379739 3 0.2129 0.87267 0.056 0.000 0.904 0.000 0.040 0.000
#> GSM379732 3 0.4044 0.47589 0.008 0.000 0.668 0.000 0.012 0.312
#> GSM379733 3 0.0891 0.90043 0.008 0.000 0.968 0.000 0.024 0.000
#> GSM379734 3 0.1341 0.89381 0.024 0.000 0.948 0.000 0.028 0.000
#> GSM379735 6 0.3361 0.75110 0.000 0.000 0.108 0.000 0.076 0.816
#> GSM379736 4 0.1138 0.79358 0.004 0.000 0.024 0.960 0.012 0.000
#> GSM379742 2 0.8923 -0.40249 0.204 0.248 0.196 0.000 0.156 0.196
#> GSM379743 6 0.3128 0.76556 0.008 0.000 0.096 0.000 0.052 0.844
#> GSM379740 3 0.1881 0.89086 0.020 0.000 0.928 0.004 0.040 0.008
#> GSM379741 3 0.8678 0.02429 0.240 0.108 0.296 0.000 0.156 0.200
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n individual(p) time(p) agent(p) k
#> ATC:NMF 137 5.19e-23 1.000 0.78285 2
#> ATC:NMF 129 2.11e-27 0.951 0.00148 3
#> ATC:NMF 132 1.26e-32 0.964 0.01755 4
#> ATC:NMF 132 4.94e-47 0.999 0.09581 5
#> ATC:NMF 119 3.25e-44 0.993 0.06201 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#>
#> Matrix products: default
#> BLAS: /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#>
#> locale:
#> [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C LC_TIME=en_GB.UTF-8
#> [4] LC_COLLATE=en_GB.UTF-8 LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8
#> [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C LC_ADDRESS=C
#> [10] LC_TELEPHONE=C LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] grid stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] genefilter_1.66.0 ComplexHeatmap_2.3.1 markdown_1.1 knitr_1.26
#> [5] GetoptLong_0.1.7 cola_1.3.2
#>
#> loaded via a namespace (and not attached):
#> [1] circlize_0.4.8 shape_1.4.4 xfun_0.11 slam_0.1-46
#> [5] lattice_0.20-38 splines_3.6.0 colorspace_1.4-1 vctrs_0.2.0
#> [9] stats4_3.6.0 blob_1.2.0 XML_3.98-1.20 survival_2.44-1.1
#> [13] rlang_0.4.2 pillar_1.4.2 DBI_1.0.0 BiocGenerics_0.30.0
#> [17] bit64_0.9-7 RColorBrewer_1.1-2 matrixStats_0.55.0 stringr_1.4.0
#> [21] GlobalOptions_0.1.1 evaluate_0.14 memoise_1.1.0 Biobase_2.44.0
#> [25] IRanges_2.18.3 parallel_3.6.0 AnnotationDbi_1.46.1 highr_0.8
#> [29] Rcpp_1.0.3 xtable_1.8-4 backports_1.1.5 S4Vectors_0.22.1
#> [33] annotate_1.62.0 skmeans_0.2-11 bit_1.1-14 microbenchmark_1.4-7
#> [37] brew_1.0-6 impute_1.58.0 rjson_0.2.20 png_0.1-7
#> [41] digest_0.6.23 stringi_1.4.3 polyclip_1.10-0 clue_0.3-57
#> [45] tools_3.6.0 bitops_1.0-6 magrittr_1.5 eulerr_6.0.0
#> [49] RCurl_1.95-4.12 RSQLite_2.1.4 tibble_2.1.3 cluster_2.1.0
#> [53] crayon_1.3.4 pkgconfig_2.0.3 zeallot_0.1.0 Matrix_1.2-17
#> [57] xml2_1.2.2 httr_1.4.1 R6_2.4.1 mclust_5.4.5
#> [61] compiler_3.6.0