cola Report for GDS3715

Date: 2019-12-25 20:56:12 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 11994   110

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:kmeans 2 1.000 0.997 0.999 **
SD:pam 3 1.000 0.942 0.980 ** 2
CV:kmeans 2 1.000 0.989 0.995 **
CV:pam 3 1.000 0.966 0.986 ** 2
MAD:kmeans 2 1.000 0.998 0.999 **
ATC:kmeans 2 1.000 0.988 0.996 **
ATC:NMF 2 1.000 0.977 0.990 **
SD:NMF 3 1.000 0.942 0.980 ** 2
ATC:mclust 3 0.998 0.950 0.979 ** 2
ATC:pam 5 0.987 0.952 0.980 ** 2,3,4
CV:NMF 3 0.985 0.946 0.981 ** 2
MAD:NMF 3 0.985 0.944 0.978 **
MAD:mclust 2 0.984 0.971 0.980 **
MAD:pam 3 0.971 0.946 0.969 ** 2
ATC:hclust 5 0.931 0.949 0.976 * 3
SD:skmeans 3 0.928 0.955 0.969 * 2
CV:mclust 2 0.925 0.921 0.967 *
CV:hclust 5 0.924 0.911 0.961 *
CV:skmeans 3 0.922 0.950 0.962 * 2
MAD:skmeans 3 0.916 0.931 0.946 * 2
ATC:skmeans 4 0.913 0.940 0.952 * 2,3
MAD:hclust 2 0.906 0.896 0.958 *
SD:mclust 3 0.871 0.923 0.962
SD:hclust 5 0.861 0.878 0.950

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.925           0.935       0.975          0.459 0.538   0.538
#> CV:NMF      2 0.944           0.939       0.976          0.460 0.533   0.533
#> MAD:NMF     2 0.840           0.933       0.968          0.448 0.538   0.538
#> ATC:NMF     2 1.000           0.977       0.990          0.476 0.519   0.519
#> SD:skmeans  2 1.000           0.995       0.998          0.482 0.519   0.519
#> CV:skmeans  2 1.000           0.987       0.995          0.483 0.519   0.519
#> MAD:skmeans 2 1.000           0.996       0.998          0.486 0.516   0.516
#> ATC:skmeans 2 1.000           1.000       1.000          0.481 0.519   0.519
#> SD:mclust   2 0.841           0.887       0.959          0.471 0.538   0.538
#> CV:mclust   2 0.925           0.921       0.967          0.479 0.512   0.512
#> MAD:mclust  2 0.984           0.971       0.980          0.449 0.544   0.544
#> ATC:mclust  2 0.943           0.916       0.966          0.483 0.506   0.506
#> SD:kmeans   2 1.000           0.997       0.999          0.467 0.533   0.533
#> CV:kmeans   2 1.000           0.989       0.995          0.468 0.533   0.533
#> MAD:kmeans  2 1.000           0.998       0.999          0.463 0.538   0.538
#> ATC:kmeans  2 1.000           0.988       0.996          0.465 0.533   0.533
#> SD:pam      2 1.000           0.945       0.979          0.459 0.533   0.533
#> CV:pam      2 1.000           0.984       0.993          0.458 0.544   0.544
#> MAD:pam     2 1.000           0.973       0.990          0.462 0.538   0.538
#> ATC:pam     2 1.000           0.995       0.998          0.468 0.533   0.533
#> SD:hclust   2 0.591           0.843       0.917          0.416 0.544   0.544
#> CV:hclust   2 0.594           0.865       0.937          0.442 0.544   0.544
#> MAD:hclust  2 0.906           0.896       0.958          0.469 0.544   0.544
#> ATC:hclust  2 0.825           0.938       0.966          0.465 0.516   0.516
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 1.000           0.942       0.980          0.135 0.938   0.884
#> CV:NMF      3 0.985           0.946       0.981          0.133 0.919   0.852
#> MAD:NMF     3 0.985           0.944       0.978          0.175 0.937   0.883
#> ATC:NMF     3 0.886           0.924       0.950          0.173 0.894   0.799
#> SD:skmeans  3 0.928           0.955       0.969          0.179 0.894   0.799
#> CV:skmeans  3 0.922           0.950       0.962          0.180 0.894   0.799
#> MAD:skmeans 3 0.916           0.931       0.946          0.182 0.905   0.817
#> ATC:skmeans 3 0.906           0.956       0.939          0.153 0.923   0.852
#> SD:mclust   3 0.871           0.923       0.962          0.226 0.815   0.674
#> CV:mclust   3 0.899           0.952       0.977          0.226 0.859   0.734
#> MAD:mclust  3 0.881           0.833       0.934          0.190 0.896   0.818
#> ATC:mclust  3 0.998           0.950       0.979          0.238 0.853   0.719
#> SD:kmeans   3 0.840           0.778       0.827          0.193 0.918   0.848
#> CV:kmeans   3 0.838           0.798       0.880          0.202 0.896   0.807
#> MAD:kmeans  3 0.671           0.787       0.878          0.261 0.871   0.764
#> ATC:kmeans  3 0.891           0.750       0.822          0.205 0.914   0.840
#> SD:pam      3 1.000           0.942       0.980          0.141 0.937   0.883
#> CV:pam      3 1.000           0.966       0.986          0.134 0.942   0.894
#> MAD:pam     3 0.971           0.946       0.969          0.154 0.939   0.886
#> ATC:pam     3 1.000           0.991       0.997          0.134 0.939   0.886
#> SD:hclust   3 0.819           0.867       0.913          0.304 0.855   0.744
#> CV:hclust   3 0.839           0.734       0.883          0.197 0.901   0.829
#> MAD:hclust  3 0.794           0.855       0.893          0.193 0.900   0.817
#> ATC:hclust  3 0.911           0.934       0.938          0.176 0.930   0.864
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.796           0.828       0.916         0.1461 0.970   0.936
#> CV:NMF      4 0.756           0.847       0.918         0.1601 0.958   0.913
#> MAD:NMF     4 0.741           0.839       0.911         0.1531 0.948   0.890
#> ATC:NMF     4 0.898           0.904       0.948         0.0855 0.964   0.915
#> SD:skmeans  4 0.775           0.883       0.915         0.1274 0.949   0.881
#> CV:skmeans  4 0.754           0.874       0.899         0.1420 0.949   0.881
#> MAD:skmeans 4 0.752           0.855       0.892         0.1385 0.949   0.882
#> ATC:skmeans 4 0.913           0.940       0.952         0.1251 0.944   0.874
#> SD:mclust   4 0.662           0.784       0.861         0.0891 0.919   0.814
#> CV:mclust   4 0.736           0.831       0.897         0.1002 0.940   0.857
#> MAD:mclust  4 0.737           0.815       0.902         0.1946 0.892   0.784
#> ATC:mclust  4 0.851           0.922       0.944         0.0504 0.942   0.854
#> SD:kmeans   4 0.728           0.866       0.849         0.1787 0.914   0.814
#> CV:kmeans   4 0.682           0.848       0.845         0.1716 0.929   0.840
#> MAD:kmeans  4 0.631           0.460       0.715         0.1665 0.873   0.712
#> ATC:kmeans  4 0.741           0.795       0.874         0.2002 0.801   0.582
#> SD:pam      4 0.823           0.778       0.889         0.3030 0.746   0.495
#> CV:pam      4 0.822           0.860       0.927         0.3399 0.760   0.525
#> MAD:pam     4 0.781           0.870       0.925         0.3232 0.778   0.544
#> ATC:pam     4 1.000           0.965       0.985         0.3723 0.776   0.538
#> SD:hclust   4 0.835           0.862       0.917         0.0329 0.995   0.989
#> CV:hclust   4 0.838           0.793       0.817         0.0728 0.913   0.830
#> MAD:hclust  4 0.795           0.858       0.910         0.0203 0.982   0.960
#> ATC:hclust  4 0.847           0.917       0.942         0.0412 0.995   0.989
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.716           0.840       0.882         0.1323 0.893   0.765
#> CV:NMF      5 0.686           0.827       0.882         0.1189 0.884   0.744
#> MAD:NMF     5 0.666           0.805       0.861         0.1311 0.897   0.767
#> ATC:NMF     5 0.798           0.865       0.918         0.0980 0.915   0.793
#> SD:skmeans  5 0.706           0.697       0.852         0.1878 0.825   0.554
#> CV:skmeans  5 0.735           0.747       0.868         0.1646 0.835   0.577
#> MAD:skmeans 5 0.701           0.712       0.851         0.1624 0.828   0.562
#> ATC:skmeans 5 0.796           0.783       0.883         0.1418 0.882   0.697
#> SD:mclust   5 0.695           0.812       0.849         0.0799 0.949   0.873
#> CV:mclust   5 0.769           0.832       0.894         0.0325 0.969   0.919
#> MAD:mclust  5 0.729           0.811       0.885         0.0293 0.915   0.799
#> ATC:mclust  5 0.770           0.830       0.890         0.0759 0.959   0.890
#> SD:kmeans   5 0.671           0.795       0.786         0.1479 0.844   0.595
#> CV:kmeans   5 0.656           0.765       0.785         0.1347 0.833   0.564
#> MAD:kmeans  5 0.671           0.801       0.795         0.0974 0.826   0.526
#> ATC:kmeans  5 0.799           0.921       0.918         0.1261 0.846   0.547
#> SD:pam      5 0.792           0.872       0.914         0.1326 0.925   0.744
#> CV:pam      5 0.761           0.821       0.898         0.1097 0.910   0.703
#> MAD:pam     5 0.821           0.859       0.904         0.1046 0.913   0.703
#> ATC:pam     5 0.987           0.952       0.980         0.0548 0.953   0.828
#> SD:hclust   5 0.861           0.878       0.950         0.0685 0.932   0.849
#> CV:hclust   5 0.924           0.911       0.961         0.0739 0.944   0.872
#> MAD:hclust  5 0.855           0.875       0.929         0.0950 0.943   0.871
#> ATC:hclust  5 0.931           0.949       0.976         0.0512 0.970   0.932
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.672           0.668       0.780         0.1031 0.857   0.608
#> CV:NMF      6 0.661           0.638       0.809         0.0924 0.888   0.693
#> MAD:NMF     6 0.658           0.656       0.790         0.1012 0.865   0.622
#> ATC:NMF     6 0.736           0.768       0.877         0.0537 0.976   0.933
#> SD:skmeans  6 0.696           0.636       0.765         0.0452 0.946   0.783
#> CV:skmeans  6 0.723           0.661       0.809         0.0449 0.989   0.952
#> MAD:skmeans 6 0.705           0.564       0.741         0.0511 0.918   0.661
#> ATC:skmeans 6 0.737           0.720       0.859         0.0464 0.956   0.845
#> SD:mclust   6 0.644           0.696       0.787         0.0736 0.998   0.994
#> CV:mclust   6 0.738           0.752       0.859         0.0310 0.977   0.938
#> MAD:mclust  6 0.715           0.728       0.835         0.0727 0.976   0.936
#> ATC:mclust  6 0.736           0.732       0.783         0.1157 0.840   0.550
#> SD:kmeans   6 0.687           0.745       0.782         0.0565 0.963   0.852
#> CV:kmeans   6 0.700           0.641       0.750         0.0679 0.940   0.742
#> MAD:kmeans  6 0.699           0.562       0.778         0.0697 0.955   0.817
#> ATC:kmeans  6 0.805           0.814       0.859         0.0527 1.000   1.000
#> SD:pam      6 0.777           0.793       0.842         0.0559 0.911   0.634
#> CV:pam      6 0.772           0.669       0.817         0.0606 0.903   0.614
#> MAD:pam     6 0.842           0.794       0.879         0.0631 0.904   0.608
#> ATC:pam     6 0.950           0.918       0.946         0.0101 0.992   0.968
#> SD:hclust   6 0.836           0.863       0.923         0.0785 0.993   0.982
#> CV:hclust   6 0.834           0.850       0.921         0.0621 1.000   1.000
#> MAD:hclust  6 0.820           0.818       0.911         0.0509 0.988   0.969
#> ATC:hclust  6 0.727           0.689       0.875         0.1457 0.940   0.854

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>               n disease.state(p) agent(p) k
#> SD:NMF      106         8.03e-07    0.887 2
#> CV:NMF      106         8.03e-07    0.887 2
#> MAD:NMF     108         4.08e-07    1.000 2
#> ATC:NMF     110         9.03e-08    0.434 2
#> SD:skmeans  110         9.03e-08    0.434 2
#> CV:skmeans  109         4.59e-08    0.480 2
#> MAD:skmeans 110         2.74e-08    0.559 2
#> ATC:skmeans 110         9.03e-08    0.434 2
#> SD:mclust   102         3.34e-08    0.920 2
#> CV:mclust   102         2.20e-08    0.952 2
#> MAD:mclust  110         1.29e-06    1.000 2
#> ATC:mclust  102         5.49e-09    1.000 2
#> SD:kmeans   110         6.23e-07    0.843 2
#> CV:kmeans   110         6.23e-07    0.843 2
#> MAD:kmeans  110         4.33e-07    1.000 2
#> ATC:kmeans  109         4.96e-07    0.943 2
#> SD:pam      105         1.39e-06    0.995 2
#> CV:pam      110         1.29e-06    1.000 2
#> MAD:pam     108         4.08e-07    1.000 2
#> ATC:pam     110         6.23e-07    0.843 2
#> SD:hclust   104         1.46e-07    0.808 2
#> CV:hclust   104         2.24e-07    0.771 2
#> MAD:hclust  101         2.27e-08    0.940 2
#> ATC:hclust  109         2.18e-08    0.389 2
test_to_known_factors(res_list, k = 3)
#>               n disease.state(p) agent(p) k
#> SD:NMF      106         1.68e-11    0.990 3
#> CV:NMF      106         1.68e-11    0.990 3
#> MAD:NMF     107         1.55e-11    0.998 3
#> ATC:NMF     107         7.77e-12    0.285 3
#> SD:skmeans  109         2.28e-12    0.279 3
#> CV:skmeans  109         7.46e-13    0.334 3
#> MAD:skmeans 106         3.81e-12    0.397 3
#> ATC:skmeans 109         4.28e-12    0.449 3
#> SD:mclust   106         1.78e-12    0.465 3
#> CV:mclust   110         8.81e-13    0.288 3
#> MAD:mclust   97         4.89e-14    0.891 3
#> ATC:mclust  108         3.89e-13    0.526 3
#> SD:kmeans    95         8.86e-14    0.757 3
#> CV:kmeans   102         3.44e-07    0.363 3
#> MAD:kmeans  105         6.84e-08    0.556 3
#> ATC:kmeans   98         1.14e-05    0.194 3
#> SD:pam      106         7.06e-13    0.843 3
#> CV:pam      109         5.95e-13    0.944 3
#> MAD:pam     108         1.79e-12    0.990 3
#> ATC:pam     109         2.31e-13    0.600 3
#> SD:hclust   101         7.28e-17    0.575 3
#> CV:hclust    99         4.83e-08    0.985 3
#> MAD:hclust  105         5.02e-09    0.883 3
#> ATC:hclust  110         1.46e-14    0.227 3
test_to_known_factors(res_list, k = 4)
#>               n disease.state(p) agent(p) k
#> SD:NMF      101         2.72e-11  0.91829 4
#> CV:NMF      103         9.69e-11  0.95938 4
#> MAD:NMF     103         1.04e-10  0.94072 4
#> ATC:NMF     108         2.34e-10  0.57842 4
#> SD:skmeans  106         1.48e-15  0.97286 4
#> CV:skmeans  108         5.13e-14  0.67509 4
#> MAD:skmeans 106         4.07e-14  0.43840 4
#> ATC:skmeans 109         1.74e-13  0.66627 4
#> SD:mclust   102         1.03e-14  0.08872 4
#> CV:mclust   106         4.03e-14  0.21420 4
#> MAD:mclust  104         5.76e-14  0.02108 4
#> ATC:mclust  106         1.42e-13  0.39313 4
#> SD:kmeans   107         7.80e-15  0.49116 4
#> CV:kmeans   108         3.95e-15  0.51450 4
#> MAD:kmeans   60         3.31e-11  0.51694 4
#> ATC:kmeans  105         2.59e-16  0.17413 4
#> SD:pam      101         3.49e-14  0.00079 4
#> CV:pam      106         3.39e-15  0.00174 4
#> MAD:pam     107         1.27e-14  0.00734 4
#> ATC:pam     110         1.54e-17  0.26061 4
#> SD:hclust   101         7.28e-17  0.57492 4
#> CV:hclust   103         1.18e-07  0.23250 4
#> MAD:hclust  105         5.02e-09  0.88281 4
#> ATC:hclust  109         3.43e-15  0.28481 4
test_to_known_factors(res_list, k = 5)
#>               n disease.state(p) agent(p) k
#> SD:NMF      105         1.71e-14 7.74e-01 5
#> CV:NMF      104         3.24e-14 9.31e-01 5
#> MAD:NMF     104         8.41e-14 7.49e-01 5
#> ATC:NMF     105         4.51e-14 6.27e-01 5
#> SD:skmeans   86         2.61e-12 2.97e-06 5
#> CV:skmeans   95         5.61e-12 1.74e-04 5
#> MAD:skmeans  91         1.31e-13 3.98e-04 5
#> ATC:skmeans  97         8.99e-12 7.08e-01 5
#> SD:mclust   106         7.74e-14 6.34e-02 5
#> CV:mclust   103         2.72e-13 9.03e-02 5
#> MAD:mclust  103         1.55e-13 2.61e-02 5
#> ATC:mclust  104         3.06e-14 4.53e-02 5
#> SD:kmeans   102         7.30e-19 9.78e-02 5
#> CV:kmeans   104         1.83e-17 6.53e-02 5
#> MAD:kmeans  105         3.42e-19 1.56e-01 5
#> ATC:kmeans  110         1.22e-16 1.08e-01 5
#> SD:pam      108         3.64e-16 5.44e-03 5
#> CV:pam      102         3.76e-17 1.44e-02 5
#> MAD:pam     109         1.21e-15 3.71e-03 5
#> ATC:pam     110         9.47e-17 7.20e-02 5
#> SD:hclust   100         3.08e-15 1.87e-01 5
#> CV:hclust   105         7.25e-16 2.74e-01 5
#> MAD:hclust  104         3.14e-16 8.69e-01 5
#> ATC:hclust  109         5.32e-14 9.93e-02 5
test_to_known_factors(res_list, k = 6)
#>               n disease.state(p) agent(p) k
#> SD:NMF       91         1.01e-15 9.43e-04 6
#> CV:NMF       87         6.25e-15 7.48e-03 6
#> MAD:NMF      90         2.58e-14 1.29e-03 6
#> ATC:NMF     103         3.41e-14 8.40e-01 6
#> SD:skmeans   83         2.54e-13 8.86e-07 6
#> CV:skmeans   84         2.74e-11 1.18e-05 6
#> MAD:skmeans  63         6.32e-13 6.32e-03 6
#> ATC:skmeans  90         4.60e-12 7.61e-01 6
#> SD:mclust    96         7.24e-13 7.29e-02 6
#> CV:mclust    99         1.47e-14 5.62e-02 6
#> MAD:mclust  100         5.58e-14 4.60e-02 6
#> ATC:mclust   99         1.96e-12 1.36e-02 6
#> SD:kmeans   100         4.00e-18 8.99e-02 6
#> CV:kmeans    76         6.58e-12 1.19e-02 6
#> MAD:kmeans   68         1.52e-07 3.17e-01 6
#> ATC:kmeans  109         2.33e-16 4.92e-02 6
#> SD:pam      104         2.17e-18 8.91e-05 6
#> CV:pam       88         7.60e-17 4.49e-04 6
#> MAD:pam     102         1.35e-19 1.12e-04 6
#> ATC:pam     109         2.09e-15 1.09e-01 6
#> SD:hclust    99         1.57e-14 3.02e-01 6
#> CV:hclust   102         6.40e-16 6.14e-01 6
#> MAD:hclust  101         1.21e-15 7.50e-01 6
#> ATC:hclust   92         1.12e-14 1.39e-01 6

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.591           0.843       0.917         0.4155 0.544   0.544
#> 3 3 0.819           0.867       0.913         0.3039 0.855   0.744
#> 4 4 0.835           0.862       0.917         0.0329 0.995   0.989
#> 5 5 0.861           0.878       0.950         0.0685 0.932   0.849
#> 6 6 0.836           0.863       0.923         0.0785 0.993   0.982

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1   0.802    0.84268 0.756 0.244
#> GSM555239     1   0.760    0.86428 0.780 0.220
#> GSM555241     1   0.760    0.86428 0.780 0.220
#> GSM555243     1   0.760    0.86428 0.780 0.220
#> GSM555245     1   0.760    0.86428 0.780 0.220
#> GSM555247     1   0.760    0.86428 0.780 0.220
#> GSM555249     1   0.760    0.86428 0.780 0.220
#> GSM555251     1   0.760    0.86428 0.780 0.220
#> GSM555253     1   0.760    0.86428 0.780 0.220
#> GSM555255     1   0.760    0.86428 0.780 0.220
#> GSM555257     1   0.932    0.68141 0.652 0.348
#> GSM555259     1   0.866    0.78514 0.712 0.288
#> GSM555261     2   0.988   -0.03143 0.436 0.564
#> GSM555263     2   0.987   -0.01324 0.432 0.568
#> GSM555265     2   0.988   -0.03143 0.436 0.564
#> GSM555267     2   0.987   -0.01324 0.432 0.568
#> GSM555269     1   0.866    0.78514 0.712 0.288
#> GSM555271     1   0.430    0.83559 0.912 0.088
#> GSM555273     2   0.000    0.94386 0.000 1.000
#> GSM555275     2   0.000    0.94386 0.000 1.000
#> GSM555238     1   0.760    0.86428 0.780 0.220
#> GSM555240     1   0.802    0.84268 0.756 0.244
#> GSM555242     1   0.802    0.84268 0.756 0.244
#> GSM555244     1   0.760    0.86428 0.780 0.220
#> GSM555246     1   0.760    0.86428 0.780 0.220
#> GSM555248     1   0.760    0.86428 0.780 0.220
#> GSM555250     1   0.760    0.86428 0.780 0.220
#> GSM555252     1   0.802    0.84268 0.756 0.244
#> GSM555254     1   0.760    0.86428 0.780 0.220
#> GSM555256     1   0.760    0.86428 0.780 0.220
#> GSM555258     2   0.671    0.71246 0.176 0.824
#> GSM555260     2   0.662    0.71912 0.172 0.828
#> GSM555262     2   0.000    0.94386 0.000 1.000
#> GSM555264     1   0.978    0.53698 0.588 0.412
#> GSM555266     2   0.000    0.94386 0.000 1.000
#> GSM555268     2   0.000    0.94386 0.000 1.000
#> GSM555270     2   0.000    0.94386 0.000 1.000
#> GSM555272     2   0.671    0.71246 0.176 0.824
#> GSM555274     2   0.000    0.94386 0.000 1.000
#> GSM555276     2   0.000    0.94386 0.000 1.000
#> GSM555277     2   0.000    0.94386 0.000 1.000
#> GSM555279     2   0.000    0.94386 0.000 1.000
#> GSM555281     2   0.000    0.94386 0.000 1.000
#> GSM555283     2   0.000    0.94386 0.000 1.000
#> GSM555285     2   0.000    0.94386 0.000 1.000
#> GSM555287     2   0.997   -0.19155 0.468 0.532
#> GSM555289     2   0.000    0.94386 0.000 1.000
#> GSM555291     2   0.000    0.94386 0.000 1.000
#> GSM555293     2   0.000    0.94386 0.000 1.000
#> GSM555295     2   0.000    0.94386 0.000 1.000
#> GSM555297     2   0.985    0.00467 0.428 0.572
#> GSM555299     1   0.000    0.81449 1.000 0.000
#> GSM555301     1   0.000    0.81449 1.000 0.000
#> GSM555303     1   0.000    0.81449 1.000 0.000
#> GSM555305     1   0.000    0.81449 1.000 0.000
#> GSM555307     2   0.000    0.94386 0.000 1.000
#> GSM555309     1   0.000    0.81449 1.000 0.000
#> GSM555311     2   0.000    0.94386 0.000 1.000
#> GSM555313     2   0.000    0.94386 0.000 1.000
#> GSM555315     2   0.000    0.94386 0.000 1.000
#> GSM555278     2   0.000    0.94386 0.000 1.000
#> GSM555280     2   0.000    0.94386 0.000 1.000
#> GSM555282     2   0.000    0.94386 0.000 1.000
#> GSM555284     2   0.000    0.94386 0.000 1.000
#> GSM555286     2   0.000    0.94386 0.000 1.000
#> GSM555288     2   0.000    0.94386 0.000 1.000
#> GSM555290     2   0.000    0.94386 0.000 1.000
#> GSM555292     2   0.000    0.94386 0.000 1.000
#> GSM555294     2   0.000    0.94386 0.000 1.000
#> GSM555296     2   0.000    0.94386 0.000 1.000
#> GSM555298     1   0.000    0.81449 1.000 0.000
#> GSM555300     1   0.000    0.81449 1.000 0.000
#> GSM555302     1   0.000    0.81449 1.000 0.000
#> GSM555304     1   0.000    0.81449 1.000 0.000
#> GSM555306     1   0.000    0.81449 1.000 0.000
#> GSM555308     1   0.000    0.81449 1.000 0.000
#> GSM555310     1   0.000    0.81449 1.000 0.000
#> GSM555312     2   0.000    0.94386 0.000 1.000
#> GSM555314     2   0.000    0.94386 0.000 1.000
#> GSM555316     2   0.000    0.94386 0.000 1.000
#> GSM555317     2   0.000    0.94386 0.000 1.000
#> GSM555319     2   0.000    0.94386 0.000 1.000
#> GSM555321     2   0.000    0.94386 0.000 1.000
#> GSM555323     2   0.000    0.94386 0.000 1.000
#> GSM555325     2   0.000    0.94386 0.000 1.000
#> GSM555327     2   0.000    0.94386 0.000 1.000
#> GSM555329     2   0.000    0.94386 0.000 1.000
#> GSM555331     2   0.000    0.94386 0.000 1.000
#> GSM555333     2   0.000    0.94386 0.000 1.000
#> GSM555335     2   0.000    0.94386 0.000 1.000
#> GSM555337     2   0.000    0.94386 0.000 1.000
#> GSM555339     2   0.000    0.94386 0.000 1.000
#> GSM555341     2   0.000    0.94386 0.000 1.000
#> GSM555343     2   0.000    0.94386 0.000 1.000
#> GSM555345     2   0.000    0.94386 0.000 1.000
#> GSM555318     2   0.000    0.94386 0.000 1.000
#> GSM555320     2   0.000    0.94386 0.000 1.000
#> GSM555322     2   0.000    0.94386 0.000 1.000
#> GSM555324     1   0.000    0.81449 1.000 0.000
#> GSM555326     2   0.000    0.94386 0.000 1.000
#> GSM555328     2   0.000    0.94386 0.000 1.000
#> GSM555330     2   0.000    0.94386 0.000 1.000
#> GSM555332     2   0.000    0.94386 0.000 1.000
#> GSM555334     2   0.000    0.94386 0.000 1.000
#> GSM555336     2   0.000    0.94386 0.000 1.000
#> GSM555338     2   0.000    0.94386 0.000 1.000
#> GSM555340     2   0.000    0.94386 0.000 1.000
#> GSM555342     2   0.000    0.94386 0.000 1.000
#> GSM555344     2   0.000    0.94386 0.000 1.000
#> GSM555346     2   0.000    0.94386 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.5431      0.761 0.716 0.000 0.284
#> GSM555239     1  0.5621      0.766 0.692 0.000 0.308
#> GSM555241     1  0.5621      0.766 0.692 0.000 0.308
#> GSM555243     1  0.5621      0.766 0.692 0.000 0.308
#> GSM555245     1  0.5621      0.766 0.692 0.000 0.308
#> GSM555247     1  0.5621      0.766 0.692 0.000 0.308
#> GSM555249     1  0.5621      0.766 0.692 0.000 0.308
#> GSM555251     1  0.5621      0.766 0.692 0.000 0.308
#> GSM555253     1  0.5621      0.766 0.692 0.000 0.308
#> GSM555255     1  0.5621      0.766 0.692 0.000 0.308
#> GSM555257     1  0.3998      0.629 0.884 0.060 0.056
#> GSM555259     1  0.3425      0.658 0.884 0.004 0.112
#> GSM555261     1  0.5363      0.463 0.724 0.276 0.000
#> GSM555263     1  0.5397      0.461 0.720 0.280 0.000
#> GSM555265     1  0.5363      0.463 0.724 0.276 0.000
#> GSM555267     1  0.5397      0.461 0.720 0.280 0.000
#> GSM555269     1  0.3425      0.658 0.884 0.004 0.112
#> GSM555271     1  0.6215      0.543 0.572 0.000 0.428
#> GSM555273     2  0.3619      0.818 0.136 0.864 0.000
#> GSM555275     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555238     1  0.5621      0.766 0.692 0.000 0.308
#> GSM555240     1  0.5431      0.761 0.716 0.000 0.284
#> GSM555242     1  0.5431      0.761 0.716 0.000 0.284
#> GSM555244     1  0.5621      0.766 0.692 0.000 0.308
#> GSM555246     1  0.5621      0.766 0.692 0.000 0.308
#> GSM555248     1  0.5621      0.766 0.692 0.000 0.308
#> GSM555250     1  0.5621      0.766 0.692 0.000 0.308
#> GSM555252     1  0.5431      0.761 0.716 0.000 0.284
#> GSM555254     1  0.5621      0.766 0.692 0.000 0.308
#> GSM555256     1  0.5621      0.766 0.692 0.000 0.308
#> GSM555258     2  0.6154      0.292 0.408 0.592 0.000
#> GSM555260     2  0.6140      0.302 0.404 0.596 0.000
#> GSM555262     2  0.0592      0.965 0.012 0.988 0.000
#> GSM555264     1  0.3412      0.581 0.876 0.124 0.000
#> GSM555266     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555268     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555270     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555272     2  0.6154      0.292 0.408 0.592 0.000
#> GSM555274     2  0.0424      0.966 0.008 0.992 0.000
#> GSM555276     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555277     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555279     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555281     2  0.0237      0.970 0.004 0.996 0.000
#> GSM555283     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555285     2  0.3752      0.807 0.144 0.856 0.000
#> GSM555287     1  0.6026      0.212 0.624 0.376 0.000
#> GSM555289     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555291     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555293     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555295     2  0.0592      0.965 0.012 0.988 0.000
#> GSM555297     1  0.6180      0.239 0.584 0.416 0.000
#> GSM555299     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555301     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555303     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555305     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555307     2  0.0747      0.962 0.016 0.984 0.000
#> GSM555309     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555311     2  0.0747      0.962 0.016 0.984 0.000
#> GSM555313     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555315     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555278     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555280     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555282     2  0.0747      0.962 0.016 0.984 0.000
#> GSM555284     2  0.0592      0.965 0.012 0.988 0.000
#> GSM555286     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555288     2  0.0747      0.962 0.016 0.984 0.000
#> GSM555290     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555292     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555294     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555296     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555298     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555300     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555302     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555304     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555306     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555308     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555310     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555312     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555314     2  0.0747      0.962 0.016 0.984 0.000
#> GSM555316     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555317     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555319     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555321     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555323     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555325     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555327     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555329     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555331     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555333     2  0.0747      0.962 0.016 0.984 0.000
#> GSM555335     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555337     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555339     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555341     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555343     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555345     2  0.1289      0.949 0.032 0.968 0.000
#> GSM555318     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555320     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555322     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555324     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555326     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555328     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555330     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555332     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555334     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555336     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555338     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555340     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555342     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555344     2  0.0000      0.972 0.000 1.000 0.000
#> GSM555346     2  0.0424      0.966 0.008 0.992 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.4072      0.813 0.748 0.000 0.252 0.000
#> GSM555239     1  0.4250      0.819 0.724 0.000 0.276 0.000
#> GSM555241     1  0.4250      0.819 0.724 0.000 0.276 0.000
#> GSM555243     1  0.4250      0.819 0.724 0.000 0.276 0.000
#> GSM555245     1  0.4250      0.819 0.724 0.000 0.276 0.000
#> GSM555247     1  0.4250      0.819 0.724 0.000 0.276 0.000
#> GSM555249     1  0.4250      0.819 0.724 0.000 0.276 0.000
#> GSM555251     1  0.4250      0.819 0.724 0.000 0.276 0.000
#> GSM555253     1  0.4250      0.819 0.724 0.000 0.276 0.000
#> GSM555255     1  0.4250      0.819 0.724 0.000 0.276 0.000
#> GSM555257     1  0.1339      0.634 0.964 0.004 0.024 0.008
#> GSM555259     1  0.2011      0.691 0.920 0.000 0.080 0.000
#> GSM555261     1  0.3978      0.408 0.796 0.192 0.000 0.012
#> GSM555263     1  0.4019      0.406 0.792 0.196 0.000 0.012
#> GSM555265     1  0.3978      0.408 0.796 0.192 0.000 0.012
#> GSM555267     1  0.4019      0.406 0.792 0.196 0.000 0.012
#> GSM555269     1  0.2011      0.691 0.920 0.000 0.080 0.000
#> GSM555271     1  0.4843      0.612 0.604 0.000 0.396 0.000
#> GSM555273     2  0.3808      0.752 0.176 0.812 0.000 0.012
#> GSM555275     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555238     1  0.4250      0.819 0.724 0.000 0.276 0.000
#> GSM555240     1  0.4072      0.813 0.748 0.000 0.252 0.000
#> GSM555242     1  0.4072      0.813 0.748 0.000 0.252 0.000
#> GSM555244     1  0.4250      0.819 0.724 0.000 0.276 0.000
#> GSM555246     1  0.4250      0.819 0.724 0.000 0.276 0.000
#> GSM555248     1  0.4250      0.819 0.724 0.000 0.276 0.000
#> GSM555250     1  0.4250      0.819 0.724 0.000 0.276 0.000
#> GSM555252     1  0.4072      0.813 0.748 0.000 0.252 0.000
#> GSM555254     1  0.4250      0.819 0.724 0.000 0.276 0.000
#> GSM555256     1  0.4250      0.819 0.724 0.000 0.276 0.000
#> GSM555258     2  0.5406      0.124 0.480 0.508 0.000 0.012
#> GSM555260     2  0.5404      0.135 0.476 0.512 0.000 0.012
#> GSM555262     2  0.0657      0.955 0.012 0.984 0.000 0.004
#> GSM555264     1  0.1677      0.574 0.948 0.040 0.000 0.012
#> GSM555266     2  0.0188      0.961 0.000 0.996 0.000 0.004
#> GSM555268     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555270     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555272     2  0.5406      0.124 0.480 0.508 0.000 0.012
#> GSM555274     2  0.1545      0.925 0.040 0.952 0.000 0.008
#> GSM555276     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555277     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555279     2  0.0188      0.961 0.000 0.996 0.000 0.004
#> GSM555281     2  0.0188      0.961 0.004 0.996 0.000 0.000
#> GSM555283     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555285     2  0.3808      0.750 0.176 0.812 0.000 0.012
#> GSM555287     4  0.0469      0.000 0.012 0.000 0.000 0.988
#> GSM555289     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555291     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555293     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555295     2  0.0469      0.956 0.012 0.988 0.000 0.000
#> GSM555297     1  0.5038      0.177 0.652 0.336 0.000 0.012
#> GSM555299     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555301     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555303     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555305     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555307     2  0.0592      0.954 0.016 0.984 0.000 0.000
#> GSM555309     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555311     2  0.0592      0.954 0.016 0.984 0.000 0.000
#> GSM555313     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555315     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555278     2  0.0188      0.961 0.000 0.996 0.000 0.004
#> GSM555280     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555282     2  0.0592      0.954 0.016 0.984 0.000 0.000
#> GSM555284     2  0.0657      0.955 0.012 0.984 0.000 0.004
#> GSM555286     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555288     2  0.0592      0.954 0.016 0.984 0.000 0.000
#> GSM555290     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555292     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555294     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555296     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555298     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555300     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555302     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555304     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555306     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555308     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555310     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555312     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555314     2  0.0592      0.954 0.016 0.984 0.000 0.000
#> GSM555316     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555317     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555319     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555321     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555323     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555325     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555327     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555329     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555331     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555333     2  0.0592      0.954 0.016 0.984 0.000 0.000
#> GSM555335     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555337     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555339     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555341     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555343     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555345     2  0.1022      0.941 0.032 0.968 0.000 0.000
#> GSM555318     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555320     2  0.0804      0.950 0.012 0.980 0.000 0.008
#> GSM555322     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555324     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555326     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555328     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555330     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555332     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555334     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555336     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555338     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555340     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555342     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555344     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> GSM555346     2  0.1677      0.921 0.040 0.948 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4 p5
#> GSM555237     1  0.0703     0.9450 0.976 0.000 0.000 0.024  0
#> GSM555239     1  0.0000     0.9631 1.000 0.000 0.000 0.000  0
#> GSM555241     1  0.0000     0.9631 1.000 0.000 0.000 0.000  0
#> GSM555243     1  0.0000     0.9631 1.000 0.000 0.000 0.000  0
#> GSM555245     1  0.0000     0.9631 1.000 0.000 0.000 0.000  0
#> GSM555247     1  0.0000     0.9631 1.000 0.000 0.000 0.000  0
#> GSM555249     1  0.0000     0.9631 1.000 0.000 0.000 0.000  0
#> GSM555251     1  0.0000     0.9631 1.000 0.000 0.000 0.000  0
#> GSM555253     1  0.0000     0.9631 1.000 0.000 0.000 0.000  0
#> GSM555255     1  0.0000     0.9631 1.000 0.000 0.000 0.000  0
#> GSM555257     4  0.2966     0.1860 0.184 0.000 0.000 0.816  0
#> GSM555259     4  0.4902    -0.1232 0.468 0.000 0.024 0.508  0
#> GSM555261     4  0.4569     0.5005 0.104 0.148 0.000 0.748  0
#> GSM555263     4  0.4609     0.5033 0.104 0.152 0.000 0.744  0
#> GSM555265     4  0.4569     0.5005 0.104 0.148 0.000 0.748  0
#> GSM555267     4  0.4609     0.5033 0.104 0.152 0.000 0.744  0
#> GSM555269     4  0.4902    -0.1232 0.468 0.000 0.024 0.508  0
#> GSM555271     1  0.6593     0.0302 0.440 0.000 0.340 0.220  0
#> GSM555273     2  0.3366     0.6320 0.000 0.768 0.000 0.232  0
#> GSM555275     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555238     1  0.0000     0.9631 1.000 0.000 0.000 0.000  0
#> GSM555240     1  0.0703     0.9450 0.976 0.000 0.000 0.024  0
#> GSM555242     1  0.0703     0.9450 0.976 0.000 0.000 0.024  0
#> GSM555244     1  0.0000     0.9631 1.000 0.000 0.000 0.000  0
#> GSM555246     1  0.0000     0.9631 1.000 0.000 0.000 0.000  0
#> GSM555248     1  0.0000     0.9631 1.000 0.000 0.000 0.000  0
#> GSM555250     1  0.0000     0.9631 1.000 0.000 0.000 0.000  0
#> GSM555252     1  0.0703     0.9450 0.976 0.000 0.000 0.024  0
#> GSM555254     1  0.0000     0.9631 1.000 0.000 0.000 0.000  0
#> GSM555256     1  0.0000     0.9631 1.000 0.000 0.000 0.000  0
#> GSM555258     4  0.4291     0.3619 0.000 0.464 0.000 0.536  0
#> GSM555260     4  0.4294     0.3504 0.000 0.468 0.000 0.532  0
#> GSM555262     2  0.0609     0.9684 0.000 0.980 0.000 0.020  0
#> GSM555264     4  0.0162     0.1076 0.004 0.000 0.000 0.996  0
#> GSM555266     2  0.0290     0.9765 0.000 0.992 0.000 0.008  0
#> GSM555268     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555270     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555272     4  0.4291     0.3619 0.000 0.464 0.000 0.536  0
#> GSM555274     2  0.1851     0.8820 0.000 0.912 0.000 0.088  0
#> GSM555276     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555277     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555279     2  0.0290     0.9765 0.000 0.992 0.000 0.008  0
#> GSM555281     2  0.0162     0.9795 0.000 0.996 0.000 0.004  0
#> GSM555283     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555285     2  0.3336     0.6399 0.000 0.772 0.000 0.228  0
#> GSM555287     5  0.0000     0.0000 0.000 0.000 0.000 0.000  1
#> GSM555289     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555291     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555293     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555295     2  0.0404     0.9734 0.000 0.988 0.000 0.012  0
#> GSM555297     4  0.5252     0.4578 0.076 0.292 0.000 0.632  0
#> GSM555299     3  0.0000     1.0000 0.000 0.000 1.000 0.000  0
#> GSM555301     3  0.0000     1.0000 0.000 0.000 1.000 0.000  0
#> GSM555303     3  0.0000     1.0000 0.000 0.000 1.000 0.000  0
#> GSM555305     3  0.0000     1.0000 0.000 0.000 1.000 0.000  0
#> GSM555307     2  0.0510     0.9703 0.000 0.984 0.000 0.016  0
#> GSM555309     3  0.0000     1.0000 0.000 0.000 1.000 0.000  0
#> GSM555311     2  0.0510     0.9703 0.000 0.984 0.000 0.016  0
#> GSM555313     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555315     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555278     2  0.0290     0.9765 0.000 0.992 0.000 0.008  0
#> GSM555280     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555282     2  0.0510     0.9706 0.000 0.984 0.000 0.016  0
#> GSM555284     2  0.0609     0.9684 0.000 0.980 0.000 0.020  0
#> GSM555286     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555288     2  0.0510     0.9706 0.000 0.984 0.000 0.016  0
#> GSM555290     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555292     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555294     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555296     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555298     3  0.0000     1.0000 0.000 0.000 1.000 0.000  0
#> GSM555300     3  0.0000     1.0000 0.000 0.000 1.000 0.000  0
#> GSM555302     3  0.0000     1.0000 0.000 0.000 1.000 0.000  0
#> GSM555304     3  0.0000     1.0000 0.000 0.000 1.000 0.000  0
#> GSM555306     3  0.0000     1.0000 0.000 0.000 1.000 0.000  0
#> GSM555308     3  0.0000     1.0000 0.000 0.000 1.000 0.000  0
#> GSM555310     3  0.0000     1.0000 0.000 0.000 1.000 0.000  0
#> GSM555312     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555314     2  0.0510     0.9703 0.000 0.984 0.000 0.016  0
#> GSM555316     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555317     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555319     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555321     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555323     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555325     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555327     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555329     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555331     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555333     2  0.0510     0.9703 0.000 0.984 0.000 0.016  0
#> GSM555335     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555337     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555339     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555341     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555343     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555345     2  0.0963     0.9493 0.000 0.964 0.000 0.036  0
#> GSM555318     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555320     2  0.1121     0.9390 0.000 0.956 0.000 0.044  0
#> GSM555322     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555324     3  0.0000     1.0000 0.000 0.000 1.000 0.000  0
#> GSM555326     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555328     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555330     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555332     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555334     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555336     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555338     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555340     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555342     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555344     2  0.0000     0.9821 0.000 1.000 0.000 0.000  0
#> GSM555346     2  0.1908     0.8759 0.000 0.908 0.000 0.092  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4 p5    p6
#> GSM555237     1  0.1075     0.9599 0.952 0.000 0.000 0.000  0 0.048
#> GSM555239     1  0.0000     0.9887 1.000 0.000 0.000 0.000  0 0.000
#> GSM555241     1  0.0000     0.9887 1.000 0.000 0.000 0.000  0 0.000
#> GSM555243     1  0.0000     0.9887 1.000 0.000 0.000 0.000  0 0.000
#> GSM555245     1  0.0000     0.9887 1.000 0.000 0.000 0.000  0 0.000
#> GSM555247     1  0.0000     0.9887 1.000 0.000 0.000 0.000  0 0.000
#> GSM555249     1  0.0000     0.9887 1.000 0.000 0.000 0.000  0 0.000
#> GSM555251     1  0.0000     0.9887 1.000 0.000 0.000 0.000  0 0.000
#> GSM555253     1  0.0000     0.9887 1.000 0.000 0.000 0.000  0 0.000
#> GSM555255     1  0.0260     0.9857 0.992 0.000 0.000 0.000  0 0.008
#> GSM555257     4  0.3629    -0.0277 0.016 0.000 0.000 0.724  0 0.260
#> GSM555259     6  0.5189     0.6502 0.088 0.000 0.000 0.444  0 0.468
#> GSM555261     4  0.0692     0.4985 0.004 0.000 0.000 0.976  0 0.020
#> GSM555263     4  0.0146     0.5108 0.004 0.000 0.000 0.996  0 0.000
#> GSM555265     4  0.0692     0.4985 0.004 0.000 0.000 0.976  0 0.020
#> GSM555267     4  0.0146     0.5108 0.004 0.000 0.000 0.996  0 0.000
#> GSM555269     6  0.5189     0.6502 0.088 0.000 0.000 0.444  0 0.468
#> GSM555271     6  0.6811     0.3180 0.088 0.000 0.316 0.148  0 0.448
#> GSM555273     2  0.5570     0.3010 0.000 0.552 0.000 0.216  0 0.232
#> GSM555275     2  0.1434     0.9241 0.000 0.940 0.000 0.012  0 0.048
#> GSM555238     1  0.0260     0.9857 0.992 0.000 0.000 0.000  0 0.008
#> GSM555240     1  0.1075     0.9599 0.952 0.000 0.000 0.000  0 0.048
#> GSM555242     1  0.1075     0.9599 0.952 0.000 0.000 0.000  0 0.048
#> GSM555244     1  0.0000     0.9887 1.000 0.000 0.000 0.000  0 0.000
#> GSM555246     1  0.0000     0.9887 1.000 0.000 0.000 0.000  0 0.000
#> GSM555248     1  0.0000     0.9887 1.000 0.000 0.000 0.000  0 0.000
#> GSM555250     1  0.0000     0.9887 1.000 0.000 0.000 0.000  0 0.000
#> GSM555252     1  0.1075     0.9599 0.952 0.000 0.000 0.000  0 0.048
#> GSM555254     1  0.0000     0.9887 1.000 0.000 0.000 0.000  0 0.000
#> GSM555256     1  0.0260     0.9857 0.992 0.000 0.000 0.000  0 0.008
#> GSM555258     4  0.4573     0.4875 0.000 0.208 0.000 0.688  0 0.104
#> GSM555260     4  0.4599     0.4821 0.000 0.212 0.000 0.684  0 0.104
#> GSM555262     2  0.2433     0.8882 0.000 0.884 0.000 0.044  0 0.072
#> GSM555264     4  0.3862     0.0355 0.000 0.000 0.000 0.524  0 0.476
#> GSM555266     2  0.1616     0.9311 0.000 0.932 0.000 0.020  0 0.048
#> GSM555268     2  0.0713     0.9338 0.000 0.972 0.000 0.000  0 0.028
#> GSM555270     2  0.0865     0.9322 0.000 0.964 0.000 0.000  0 0.036
#> GSM555272     4  0.4573     0.4875 0.000 0.208 0.000 0.688  0 0.104
#> GSM555274     2  0.3364     0.7397 0.000 0.780 0.000 0.196  0 0.024
#> GSM555276     2  0.0632     0.9356 0.000 0.976 0.000 0.000  0 0.024
#> GSM555277     2  0.0547     0.9334 0.000 0.980 0.000 0.000  0 0.020
#> GSM555279     2  0.1334     0.9279 0.000 0.948 0.000 0.020  0 0.032
#> GSM555281     2  0.1564     0.9240 0.000 0.936 0.000 0.024  0 0.040
#> GSM555283     2  0.0858     0.9319 0.000 0.968 0.000 0.004  0 0.028
#> GSM555285     2  0.4843     0.5365 0.000 0.652 0.000 0.116  0 0.232
#> GSM555287     5  0.0000     0.0000 0.000 0.000 0.000 0.000  1 0.000
#> GSM555289     2  0.0865     0.9322 0.000 0.964 0.000 0.000  0 0.036
#> GSM555291     2  0.0858     0.9319 0.000 0.968 0.000 0.004  0 0.028
#> GSM555293     2  0.0790     0.9365 0.000 0.968 0.000 0.000  0 0.032
#> GSM555295     2  0.1829     0.9160 0.000 0.920 0.000 0.024  0 0.056
#> GSM555297     4  0.2822     0.4971 0.004 0.108 0.000 0.856  0 0.032
#> GSM555299     3  0.0260     0.9946 0.000 0.000 0.992 0.000  0 0.008
#> GSM555301     3  0.0000     0.9966 0.000 0.000 1.000 0.000  0 0.000
#> GSM555303     3  0.0000     0.9966 0.000 0.000 1.000 0.000  0 0.000
#> GSM555305     3  0.0000     0.9966 0.000 0.000 1.000 0.000  0 0.000
#> GSM555307     2  0.1984     0.9120 0.000 0.912 0.000 0.032  0 0.056
#> GSM555309     3  0.0260     0.9946 0.000 0.000 0.992 0.000  0 0.008
#> GSM555311     2  0.1984     0.9120 0.000 0.912 0.000 0.032  0 0.056
#> GSM555313     2  0.1807     0.9257 0.000 0.920 0.000 0.020  0 0.060
#> GSM555315     2  0.1563     0.9210 0.000 0.932 0.000 0.012  0 0.056
#> GSM555278     2  0.1151     0.9353 0.000 0.956 0.000 0.012  0 0.032
#> GSM555280     2  0.0713     0.9338 0.000 0.972 0.000 0.000  0 0.028
#> GSM555282     2  0.2608     0.8756 0.000 0.872 0.000 0.048  0 0.080
#> GSM555284     2  0.2433     0.8882 0.000 0.884 0.000 0.044  0 0.072
#> GSM555286     2  0.0790     0.9331 0.000 0.968 0.000 0.000  0 0.032
#> GSM555288     2  0.2618     0.8766 0.000 0.872 0.000 0.052  0 0.076
#> GSM555290     2  0.0865     0.9322 0.000 0.964 0.000 0.000  0 0.036
#> GSM555292     2  0.0790     0.9356 0.000 0.968 0.000 0.000  0 0.032
#> GSM555294     2  0.0790     0.9365 0.000 0.968 0.000 0.000  0 0.032
#> GSM555296     2  0.1563     0.9210 0.000 0.932 0.000 0.012  0 0.056
#> GSM555298     3  0.0000     0.9966 0.000 0.000 1.000 0.000  0 0.000
#> GSM555300     3  0.0260     0.9946 0.000 0.000 0.992 0.000  0 0.008
#> GSM555302     3  0.0000     0.9966 0.000 0.000 1.000 0.000  0 0.000
#> GSM555304     3  0.0000     0.9966 0.000 0.000 1.000 0.000  0 0.000
#> GSM555306     3  0.0000     0.9966 0.000 0.000 1.000 0.000  0 0.000
#> GSM555308     3  0.0260     0.9946 0.000 0.000 0.992 0.000  0 0.008
#> GSM555310     3  0.0000     0.9966 0.000 0.000 1.000 0.000  0 0.000
#> GSM555312     2  0.1807     0.9257 0.000 0.920 0.000 0.020  0 0.060
#> GSM555314     2  0.1984     0.9120 0.000 0.912 0.000 0.032  0 0.056
#> GSM555316     2  0.0865     0.9322 0.000 0.964 0.000 0.000  0 0.036
#> GSM555317     2  0.0363     0.9360 0.000 0.988 0.000 0.000  0 0.012
#> GSM555319     2  0.0865     0.9322 0.000 0.964 0.000 0.000  0 0.036
#> GSM555321     2  0.0865     0.9322 0.000 0.964 0.000 0.000  0 0.036
#> GSM555323     2  0.1219     0.9303 0.000 0.948 0.000 0.004  0 0.048
#> GSM555325     2  0.1075     0.9315 0.000 0.952 0.000 0.000  0 0.048
#> GSM555327     2  0.0363     0.9360 0.000 0.988 0.000 0.000  0 0.012
#> GSM555329     2  0.0865     0.9322 0.000 0.964 0.000 0.000  0 0.036
#> GSM555331     2  0.0713     0.9338 0.000 0.972 0.000 0.000  0 0.028
#> GSM555333     2  0.1984     0.9120 0.000 0.912 0.000 0.032  0 0.056
#> GSM555335     2  0.0713     0.9323 0.000 0.972 0.000 0.000  0 0.028
#> GSM555337     2  0.0865     0.9322 0.000 0.964 0.000 0.000  0 0.036
#> GSM555339     2  0.1563     0.9210 0.000 0.932 0.000 0.012  0 0.056
#> GSM555341     2  0.0790     0.9314 0.000 0.968 0.000 0.000  0 0.032
#> GSM555343     2  0.0632     0.9367 0.000 0.976 0.000 0.000  0 0.024
#> GSM555345     2  0.3566     0.7563 0.000 0.788 0.000 0.156  0 0.056
#> GSM555318     2  0.0363     0.9360 0.000 0.988 0.000 0.000  0 0.012
#> GSM555320     2  0.3107     0.8459 0.000 0.832 0.000 0.052  0 0.116
#> GSM555322     2  0.0865     0.9322 0.000 0.964 0.000 0.000  0 0.036
#> GSM555324     3  0.0260     0.9946 0.000 0.000 0.992 0.000  0 0.008
#> GSM555326     2  0.0865     0.9322 0.000 0.964 0.000 0.000  0 0.036
#> GSM555328     2  0.0363     0.9360 0.000 0.988 0.000 0.000  0 0.012
#> GSM555330     2  0.0713     0.9338 0.000 0.972 0.000 0.000  0 0.028
#> GSM555332     2  0.0713     0.9338 0.000 0.972 0.000 0.000  0 0.028
#> GSM555334     2  0.0713     0.9338 0.000 0.972 0.000 0.000  0 0.028
#> GSM555336     2  0.0865     0.9322 0.000 0.964 0.000 0.000  0 0.036
#> GSM555338     2  0.0865     0.9322 0.000 0.964 0.000 0.000  0 0.036
#> GSM555340     2  0.0865     0.9322 0.000 0.964 0.000 0.000  0 0.036
#> GSM555342     2  0.0790     0.9314 0.000 0.968 0.000 0.000  0 0.032
#> GSM555344     2  0.0363     0.9362 0.000 0.988 0.000 0.000  0 0.012
#> GSM555346     2  0.3650     0.7773 0.000 0.792 0.000 0.092  0 0.116

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) agent(p) k
#> SD:hclust 104         1.46e-07    0.808 2
#> SD:hclust 101         7.28e-17    0.575 3
#> SD:hclust 101         7.28e-17    0.575 4
#> SD:hclust 100         3.08e-15    0.187 5
#> SD:hclust  99         1.57e-14    0.302 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.997       0.999         0.4668 0.533   0.533
#> 3 3 0.840           0.778       0.827         0.1931 0.918   0.848
#> 4 4 0.728           0.866       0.849         0.1787 0.914   0.814
#> 5 5 0.671           0.795       0.786         0.1479 0.844   0.595
#> 6 6 0.687           0.745       0.782         0.0565 0.963   0.852

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1  0.0000      0.996 1.000 0.000
#> GSM555239     1  0.0000      0.996 1.000 0.000
#> GSM555241     1  0.0000      0.996 1.000 0.000
#> GSM555243     1  0.0000      0.996 1.000 0.000
#> GSM555245     1  0.0000      0.996 1.000 0.000
#> GSM555247     1  0.0000      0.996 1.000 0.000
#> GSM555249     1  0.0000      0.996 1.000 0.000
#> GSM555251     1  0.0000      0.996 1.000 0.000
#> GSM555253     1  0.0000      0.996 1.000 0.000
#> GSM555255     1  0.0000      0.996 1.000 0.000
#> GSM555257     1  0.0000      0.996 1.000 0.000
#> GSM555259     1  0.0000      0.996 1.000 0.000
#> GSM555261     2  0.0000      1.000 0.000 1.000
#> GSM555263     2  0.0000      1.000 0.000 1.000
#> GSM555265     1  0.5946      0.832 0.856 0.144
#> GSM555267     2  0.0000      1.000 0.000 1.000
#> GSM555269     1  0.0000      0.996 1.000 0.000
#> GSM555271     1  0.0000      0.996 1.000 0.000
#> GSM555273     2  0.0000      1.000 0.000 1.000
#> GSM555275     2  0.0000      1.000 0.000 1.000
#> GSM555238     1  0.0000      0.996 1.000 0.000
#> GSM555240     1  0.0000      0.996 1.000 0.000
#> GSM555242     1  0.0000      0.996 1.000 0.000
#> GSM555244     1  0.0000      0.996 1.000 0.000
#> GSM555246     1  0.0000      0.996 1.000 0.000
#> GSM555248     1  0.0000      0.996 1.000 0.000
#> GSM555250     1  0.0000      0.996 1.000 0.000
#> GSM555252     1  0.0000      0.996 1.000 0.000
#> GSM555254     1  0.0000      0.996 1.000 0.000
#> GSM555256     1  0.0000      0.996 1.000 0.000
#> GSM555258     2  0.0000      1.000 0.000 1.000
#> GSM555260     2  0.0000      1.000 0.000 1.000
#> GSM555262     2  0.0000      1.000 0.000 1.000
#> GSM555264     1  0.0000      0.996 1.000 0.000
#> GSM555266     2  0.0000      1.000 0.000 1.000
#> GSM555268     2  0.0000      1.000 0.000 1.000
#> GSM555270     2  0.0000      1.000 0.000 1.000
#> GSM555272     2  0.0000      1.000 0.000 1.000
#> GSM555274     2  0.0000      1.000 0.000 1.000
#> GSM555276     2  0.0000      1.000 0.000 1.000
#> GSM555277     2  0.0000      1.000 0.000 1.000
#> GSM555279     2  0.0000      1.000 0.000 1.000
#> GSM555281     2  0.0000      1.000 0.000 1.000
#> GSM555283     2  0.0000      1.000 0.000 1.000
#> GSM555285     2  0.0000      1.000 0.000 1.000
#> GSM555287     1  0.0938      0.985 0.988 0.012
#> GSM555289     2  0.0000      1.000 0.000 1.000
#> GSM555291     2  0.0000      1.000 0.000 1.000
#> GSM555293     2  0.0000      1.000 0.000 1.000
#> GSM555295     2  0.0000      1.000 0.000 1.000
#> GSM555297     2  0.0000      1.000 0.000 1.000
#> GSM555299     1  0.0000      0.996 1.000 0.000
#> GSM555301     1  0.0000      0.996 1.000 0.000
#> GSM555303     1  0.0000      0.996 1.000 0.000
#> GSM555305     1  0.0000      0.996 1.000 0.000
#> GSM555307     2  0.0000      1.000 0.000 1.000
#> GSM555309     1  0.0000      0.996 1.000 0.000
#> GSM555311     2  0.0000      1.000 0.000 1.000
#> GSM555313     2  0.0000      1.000 0.000 1.000
#> GSM555315     2  0.0000      1.000 0.000 1.000
#> GSM555278     2  0.0000      1.000 0.000 1.000
#> GSM555280     2  0.0000      1.000 0.000 1.000
#> GSM555282     2  0.0000      1.000 0.000 1.000
#> GSM555284     2  0.0000      1.000 0.000 1.000
#> GSM555286     2  0.0000      1.000 0.000 1.000
#> GSM555288     2  0.0000      1.000 0.000 1.000
#> GSM555290     2  0.0000      1.000 0.000 1.000
#> GSM555292     2  0.0000      1.000 0.000 1.000
#> GSM555294     2  0.0000      1.000 0.000 1.000
#> GSM555296     2  0.0000      1.000 0.000 1.000
#> GSM555298     1  0.0000      0.996 1.000 0.000
#> GSM555300     1  0.0000      0.996 1.000 0.000
#> GSM555302     1  0.0000      0.996 1.000 0.000
#> GSM555304     1  0.0000      0.996 1.000 0.000
#> GSM555306     1  0.0000      0.996 1.000 0.000
#> GSM555308     1  0.0000      0.996 1.000 0.000
#> GSM555310     1  0.0000      0.996 1.000 0.000
#> GSM555312     2  0.0000      1.000 0.000 1.000
#> GSM555314     2  0.0000      1.000 0.000 1.000
#> GSM555316     2  0.0000      1.000 0.000 1.000
#> GSM555317     2  0.0000      1.000 0.000 1.000
#> GSM555319     2  0.0000      1.000 0.000 1.000
#> GSM555321     2  0.0000      1.000 0.000 1.000
#> GSM555323     2  0.0000      1.000 0.000 1.000
#> GSM555325     2  0.0000      1.000 0.000 1.000
#> GSM555327     2  0.0000      1.000 0.000 1.000
#> GSM555329     2  0.0000      1.000 0.000 1.000
#> GSM555331     2  0.0000      1.000 0.000 1.000
#> GSM555333     2  0.0000      1.000 0.000 1.000
#> GSM555335     2  0.0000      1.000 0.000 1.000
#> GSM555337     2  0.0000      1.000 0.000 1.000
#> GSM555339     2  0.0000      1.000 0.000 1.000
#> GSM555341     2  0.0000      1.000 0.000 1.000
#> GSM555343     2  0.0000      1.000 0.000 1.000
#> GSM555345     2  0.0000      1.000 0.000 1.000
#> GSM555318     2  0.0000      1.000 0.000 1.000
#> GSM555320     2  0.0000      1.000 0.000 1.000
#> GSM555322     2  0.0000      1.000 0.000 1.000
#> GSM555324     1  0.0000      0.996 1.000 0.000
#> GSM555326     2  0.0000      1.000 0.000 1.000
#> GSM555328     2  0.0000      1.000 0.000 1.000
#> GSM555330     2  0.0000      1.000 0.000 1.000
#> GSM555332     2  0.0000      1.000 0.000 1.000
#> GSM555334     2  0.0000      1.000 0.000 1.000
#> GSM555336     2  0.0000      1.000 0.000 1.000
#> GSM555338     2  0.0000      1.000 0.000 1.000
#> GSM555340     2  0.0000      1.000 0.000 1.000
#> GSM555342     2  0.0000      1.000 0.000 1.000
#> GSM555344     2  0.0000      1.000 0.000 1.000
#> GSM555346     2  0.0000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.0747     0.8942 0.984 0.000 0.016
#> GSM555239     1  0.0000     0.9154 1.000 0.000 0.000
#> GSM555241     1  0.0000     0.9154 1.000 0.000 0.000
#> GSM555243     1  0.0000     0.9154 1.000 0.000 0.000
#> GSM555245     1  0.0000     0.9154 1.000 0.000 0.000
#> GSM555247     1  0.0000     0.9154 1.000 0.000 0.000
#> GSM555249     1  0.0000     0.9154 1.000 0.000 0.000
#> GSM555251     1  0.0000     0.9154 1.000 0.000 0.000
#> GSM555253     1  0.0000     0.9154 1.000 0.000 0.000
#> GSM555255     1  0.0000     0.9154 1.000 0.000 0.000
#> GSM555257     3  0.6168     0.0170 0.412 0.000 0.588
#> GSM555259     3  0.5905     0.1169 0.352 0.000 0.648
#> GSM555261     3  0.6683    -0.3735 0.008 0.492 0.500
#> GSM555263     2  0.6291     0.4212 0.000 0.532 0.468
#> GSM555265     3  0.7844     0.1697 0.220 0.120 0.660
#> GSM555267     2  0.6291     0.4212 0.000 0.532 0.468
#> GSM555269     3  0.5529     0.1872 0.296 0.000 0.704
#> GSM555271     3  0.6299     0.5380 0.476 0.000 0.524
#> GSM555273     2  0.2356     0.9140 0.000 0.928 0.072
#> GSM555275     2  0.2356     0.9140 0.000 0.928 0.072
#> GSM555238     1  0.0000     0.9154 1.000 0.000 0.000
#> GSM555240     1  0.6079     0.2640 0.612 0.000 0.388
#> GSM555242     1  0.0747     0.8942 0.984 0.000 0.016
#> GSM555244     1  0.0000     0.9154 1.000 0.000 0.000
#> GSM555246     1  0.0000     0.9154 1.000 0.000 0.000
#> GSM555248     1  0.0000     0.9154 1.000 0.000 0.000
#> GSM555250     1  0.0000     0.9154 1.000 0.000 0.000
#> GSM555252     1  0.6045     0.2754 0.620 0.000 0.380
#> GSM555254     1  0.0000     0.9154 1.000 0.000 0.000
#> GSM555256     1  0.0000     0.9154 1.000 0.000 0.000
#> GSM555258     2  0.6291     0.4212 0.000 0.532 0.468
#> GSM555260     2  0.6267     0.4494 0.000 0.548 0.452
#> GSM555262     2  0.2356     0.9140 0.000 0.928 0.072
#> GSM555264     3  0.5835     0.0751 0.340 0.000 0.660
#> GSM555266     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555268     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555270     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555272     2  0.6291     0.4212 0.000 0.532 0.468
#> GSM555274     2  0.2261     0.9155 0.000 0.932 0.068
#> GSM555276     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555277     2  0.0592     0.9312 0.000 0.988 0.012
#> GSM555279     2  0.2356     0.9140 0.000 0.928 0.072
#> GSM555281     2  0.2356     0.9140 0.000 0.928 0.072
#> GSM555283     2  0.2356     0.9140 0.000 0.928 0.072
#> GSM555285     2  0.2356     0.9140 0.000 0.928 0.072
#> GSM555287     3  0.7712     0.1889 0.128 0.196 0.676
#> GSM555289     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555291     2  0.2356     0.9140 0.000 0.928 0.072
#> GSM555293     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555295     2  0.2356     0.9140 0.000 0.928 0.072
#> GSM555297     2  0.6291     0.4212 0.000 0.532 0.468
#> GSM555299     3  0.6305     0.5396 0.484 0.000 0.516
#> GSM555301     3  0.6299     0.5380 0.476 0.000 0.524
#> GSM555303     3  0.6305     0.5396 0.484 0.000 0.516
#> GSM555305     3  0.6305     0.5396 0.484 0.000 0.516
#> GSM555307     2  0.2356     0.9140 0.000 0.928 0.072
#> GSM555309     3  0.6305     0.5396 0.484 0.000 0.516
#> GSM555311     2  0.2356     0.9140 0.000 0.928 0.072
#> GSM555313     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555315     2  0.2356     0.9140 0.000 0.928 0.072
#> GSM555278     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555280     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555282     2  0.2261     0.9156 0.000 0.932 0.068
#> GSM555284     2  0.2356     0.9140 0.000 0.928 0.072
#> GSM555286     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555288     2  0.5760     0.6415 0.000 0.672 0.328
#> GSM555290     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555292     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555294     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555296     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555298     3  0.6299     0.5380 0.476 0.000 0.524
#> GSM555300     3  0.6305     0.5396 0.484 0.000 0.516
#> GSM555302     3  0.6305     0.5396 0.484 0.000 0.516
#> GSM555304     3  0.6305     0.5396 0.484 0.000 0.516
#> GSM555306     3  0.6305     0.5396 0.484 0.000 0.516
#> GSM555308     3  0.6305     0.5396 0.484 0.000 0.516
#> GSM555310     3  0.6305     0.5396 0.484 0.000 0.516
#> GSM555312     2  0.2356     0.9140 0.000 0.928 0.072
#> GSM555314     2  0.2356     0.9140 0.000 0.928 0.072
#> GSM555316     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555317     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555319     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555321     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555323     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555325     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555327     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555329     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555331     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555333     2  0.2356     0.9140 0.000 0.928 0.072
#> GSM555335     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555337     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555339     2  0.2066     0.9181 0.000 0.940 0.060
#> GSM555341     2  0.2066     0.9181 0.000 0.940 0.060
#> GSM555343     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555345     2  0.2066     0.9181 0.000 0.940 0.060
#> GSM555318     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555320     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555322     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555324     3  0.6305     0.5396 0.484 0.000 0.516
#> GSM555326     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555328     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555330     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555332     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555334     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555336     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555338     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555340     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555342     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555344     2  0.0000     0.9341 0.000 1.000 0.000
#> GSM555346     2  0.0000     0.9341 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.6113      0.831 0.636 0.000 0.284 0.080
#> GSM555239     1  0.4713      0.921 0.640 0.000 0.360 0.000
#> GSM555241     1  0.4713      0.921 0.640 0.000 0.360 0.000
#> GSM555243     1  0.4713      0.921 0.640 0.000 0.360 0.000
#> GSM555245     1  0.4713      0.921 0.640 0.000 0.360 0.000
#> GSM555247     1  0.4713      0.921 0.640 0.000 0.360 0.000
#> GSM555249     1  0.4713      0.921 0.640 0.000 0.360 0.000
#> GSM555251     1  0.4713      0.921 0.640 0.000 0.360 0.000
#> GSM555253     1  0.4713      0.921 0.640 0.000 0.360 0.000
#> GSM555255     1  0.4713      0.921 0.640 0.000 0.360 0.000
#> GSM555257     4  0.2300      0.898 0.028 0.000 0.048 0.924
#> GSM555259     4  0.2256      0.899 0.020 0.000 0.056 0.924
#> GSM555261     4  0.1118      0.938 0.000 0.036 0.000 0.964
#> GSM555263     4  0.1118      0.938 0.000 0.036 0.000 0.964
#> GSM555265     4  0.1377      0.936 0.008 0.020 0.008 0.964
#> GSM555267     4  0.1118      0.938 0.000 0.036 0.000 0.964
#> GSM555269     4  0.2124      0.896 0.008 0.000 0.068 0.924
#> GSM555271     3  0.0188      0.994 0.000 0.000 0.996 0.004
#> GSM555273     2  0.5830      0.788 0.332 0.620 0.000 0.048
#> GSM555275     2  0.5339      0.803 0.272 0.688 0.000 0.040
#> GSM555238     1  0.4713      0.921 0.640 0.000 0.360 0.000
#> GSM555240     1  0.5289      0.421 0.636 0.000 0.020 0.344
#> GSM555242     1  0.6052      0.835 0.640 0.000 0.284 0.076
#> GSM555244     1  0.4713      0.921 0.640 0.000 0.360 0.000
#> GSM555246     1  0.4713      0.921 0.640 0.000 0.360 0.000
#> GSM555248     1  0.4713      0.921 0.640 0.000 0.360 0.000
#> GSM555250     1  0.4713      0.921 0.640 0.000 0.360 0.000
#> GSM555252     1  0.5349      0.438 0.640 0.000 0.024 0.336
#> GSM555254     1  0.4713      0.921 0.640 0.000 0.360 0.000
#> GSM555256     1  0.4713      0.921 0.640 0.000 0.360 0.000
#> GSM555258     4  0.1022      0.939 0.000 0.032 0.000 0.968
#> GSM555260     4  0.5507      0.684 0.156 0.112 0.000 0.732
#> GSM555262     2  0.4904      0.806 0.216 0.744 0.000 0.040
#> GSM555264     4  0.1151      0.924 0.024 0.000 0.008 0.968
#> GSM555266     2  0.4535      0.821 0.292 0.704 0.000 0.004
#> GSM555268     2  0.1474      0.849 0.052 0.948 0.000 0.000
#> GSM555270     2  0.1474      0.849 0.052 0.948 0.000 0.000
#> GSM555272     4  0.1022      0.939 0.000 0.032 0.000 0.968
#> GSM555274     2  0.4728      0.810 0.216 0.752 0.000 0.032
#> GSM555276     2  0.0000      0.859 0.000 1.000 0.000 0.000
#> GSM555277     2  0.3982      0.827 0.220 0.776 0.000 0.004
#> GSM555279     2  0.5472      0.800 0.280 0.676 0.000 0.044
#> GSM555281     2  0.5393      0.802 0.268 0.688 0.000 0.044
#> GSM555283     2  0.4194      0.823 0.228 0.764 0.000 0.008
#> GSM555285     2  0.5830      0.788 0.332 0.620 0.000 0.048
#> GSM555287     4  0.2107      0.925 0.024 0.020 0.016 0.940
#> GSM555289     2  0.0188      0.858 0.004 0.996 0.000 0.000
#> GSM555291     2  0.5008      0.806 0.228 0.732 0.000 0.040
#> GSM555293     2  0.2773      0.845 0.116 0.880 0.000 0.004
#> GSM555295     2  0.5420      0.801 0.272 0.684 0.000 0.044
#> GSM555297     4  0.1022      0.939 0.000 0.032 0.000 0.968
#> GSM555299     3  0.0469      0.993 0.000 0.000 0.988 0.012
#> GSM555301     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> GSM555303     3  0.0469      0.993 0.000 0.000 0.988 0.012
#> GSM555305     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> GSM555307     2  0.5106      0.805 0.240 0.720 0.000 0.040
#> GSM555309     3  0.0469      0.993 0.000 0.000 0.988 0.012
#> GSM555311     2  0.5472      0.800 0.280 0.676 0.000 0.044
#> GSM555313     2  0.3837      0.825 0.224 0.776 0.000 0.000
#> GSM555315     2  0.5472      0.800 0.280 0.676 0.000 0.044
#> GSM555278     2  0.4509      0.825 0.288 0.708 0.000 0.004
#> GSM555280     2  0.0000      0.859 0.000 1.000 0.000 0.000
#> GSM555282     2  0.4635      0.813 0.216 0.756 0.000 0.028
#> GSM555284     2  0.5090      0.805 0.228 0.728 0.000 0.044
#> GSM555286     2  0.1474      0.849 0.052 0.948 0.000 0.000
#> GSM555288     2  0.7483      0.454 0.216 0.496 0.000 0.288
#> GSM555290     2  0.0336      0.858 0.008 0.992 0.000 0.000
#> GSM555292     2  0.2973      0.844 0.144 0.856 0.000 0.000
#> GSM555294     2  0.2831      0.846 0.120 0.876 0.000 0.004
#> GSM555296     2  0.2149      0.861 0.088 0.912 0.000 0.000
#> GSM555298     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> GSM555300     3  0.0469      0.993 0.000 0.000 0.988 0.012
#> GSM555302     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> GSM555304     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> GSM555306     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> GSM555308     3  0.0469      0.993 0.000 0.000 0.988 0.012
#> GSM555310     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> GSM555312     2  0.4888      0.808 0.224 0.740 0.000 0.036
#> GSM555314     2  0.5420      0.801 0.272 0.684 0.000 0.044
#> GSM555316     2  0.0188      0.858 0.004 0.996 0.000 0.000
#> GSM555317     2  0.0592      0.860 0.016 0.984 0.000 0.000
#> GSM555319     2  0.2408      0.846 0.104 0.896 0.000 0.000
#> GSM555321     2  0.2714      0.845 0.112 0.884 0.000 0.004
#> GSM555323     2  0.1557      0.861 0.056 0.944 0.000 0.000
#> GSM555325     2  0.3032      0.845 0.124 0.868 0.000 0.008
#> GSM555327     2  0.0469      0.860 0.012 0.988 0.000 0.000
#> GSM555329     2  0.2408      0.846 0.104 0.896 0.000 0.000
#> GSM555331     2  0.1637      0.862 0.060 0.940 0.000 0.000
#> GSM555333     2  0.5420      0.801 0.272 0.684 0.000 0.044
#> GSM555335     2  0.3390      0.858 0.132 0.852 0.000 0.016
#> GSM555337     2  0.2593      0.845 0.104 0.892 0.000 0.004
#> GSM555339     2  0.5137      0.805 0.244 0.716 0.000 0.040
#> GSM555341     2  0.3399      0.852 0.092 0.868 0.000 0.040
#> GSM555343     2  0.2773      0.845 0.116 0.880 0.000 0.004
#> GSM555345     2  0.3399      0.852 0.092 0.868 0.000 0.040
#> GSM555318     2  0.0188      0.859 0.004 0.996 0.000 0.000
#> GSM555320     2  0.2714      0.847 0.112 0.884 0.000 0.004
#> GSM555322     2  0.1474      0.849 0.052 0.948 0.000 0.000
#> GSM555324     3  0.0469      0.993 0.000 0.000 0.988 0.012
#> GSM555326     2  0.1474      0.849 0.052 0.948 0.000 0.000
#> GSM555328     2  0.0188      0.859 0.004 0.996 0.000 0.000
#> GSM555330     2  0.0000      0.859 0.000 1.000 0.000 0.000
#> GSM555332     2  0.0188      0.859 0.004 0.996 0.000 0.000
#> GSM555334     2  0.0188      0.859 0.004 0.996 0.000 0.000
#> GSM555336     2  0.2593      0.845 0.104 0.892 0.000 0.004
#> GSM555338     2  0.0592      0.860 0.016 0.984 0.000 0.000
#> GSM555340     2  0.2773      0.845 0.116 0.880 0.000 0.004
#> GSM555342     2  0.2888      0.849 0.124 0.872 0.000 0.004
#> GSM555344     2  0.0188      0.859 0.004 0.996 0.000 0.000
#> GSM555346     2  0.3545      0.848 0.164 0.828 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM555237     1  0.2959     0.8318 0.864 0.000 0.000 0.100 0.036
#> GSM555239     1  0.0290     0.9311 0.992 0.000 0.000 0.000 0.008
#> GSM555241     1  0.0162     0.9323 0.996 0.000 0.000 0.000 0.004
#> GSM555243     1  0.0162     0.9323 0.996 0.000 0.000 0.000 0.004
#> GSM555245     1  0.0162     0.9323 0.996 0.000 0.000 0.000 0.004
#> GSM555247     1  0.0162     0.9323 0.996 0.000 0.000 0.000 0.004
#> GSM555249     1  0.0000     0.9327 1.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000     0.9327 1.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0290     0.9311 0.992 0.000 0.000 0.000 0.008
#> GSM555255     1  0.1043     0.9175 0.960 0.000 0.000 0.000 0.040
#> GSM555257     4  0.0162     0.9416 0.000 0.000 0.000 0.996 0.004
#> GSM555259     4  0.0000     0.9424 0.000 0.000 0.000 1.000 0.000
#> GSM555261     4  0.0000     0.9424 0.000 0.000 0.000 1.000 0.000
#> GSM555263     4  0.0290     0.9391 0.000 0.000 0.000 0.992 0.008
#> GSM555265     4  0.0000     0.9424 0.000 0.000 0.000 1.000 0.000
#> GSM555267     4  0.0000     0.9424 0.000 0.000 0.000 1.000 0.000
#> GSM555269     4  0.0000     0.9424 0.000 0.000 0.000 1.000 0.000
#> GSM555271     3  0.4244     0.9813 0.268 0.000 0.712 0.004 0.016
#> GSM555273     5  0.4303     0.7719 0.000 0.192 0.056 0.000 0.752
#> GSM555275     5  0.2852     0.8781 0.000 0.172 0.000 0.000 0.828
#> GSM555238     1  0.0963     0.9180 0.964 0.000 0.000 0.000 0.036
#> GSM555240     1  0.4455     0.6161 0.704 0.000 0.000 0.260 0.036
#> GSM555242     1  0.2616     0.8522 0.888 0.000 0.000 0.076 0.036
#> GSM555244     1  0.0000     0.9327 1.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000     0.9327 1.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000     0.9327 1.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0290     0.9307 0.992 0.000 0.000 0.000 0.008
#> GSM555252     1  0.4269     0.6570 0.732 0.000 0.000 0.232 0.036
#> GSM555254     1  0.0162     0.9321 0.996 0.000 0.000 0.000 0.004
#> GSM555256     1  0.0963     0.9180 0.964 0.000 0.000 0.000 0.036
#> GSM555258     4  0.0290     0.9408 0.000 0.000 0.000 0.992 0.008
#> GSM555260     4  0.5708     0.0208 0.000 0.060 0.008 0.480 0.452
#> GSM555262     5  0.4090     0.8440 0.000 0.268 0.016 0.000 0.716
#> GSM555264     4  0.0807     0.9335 0.000 0.000 0.012 0.976 0.012
#> GSM555266     5  0.4014     0.8109 0.000 0.256 0.016 0.000 0.728
#> GSM555268     2  0.0703     0.7599 0.000 0.976 0.024 0.000 0.000
#> GSM555270     2  0.0609     0.7604 0.000 0.980 0.020 0.000 0.000
#> GSM555272     4  0.0404     0.9387 0.000 0.000 0.000 0.988 0.012
#> GSM555274     5  0.4090     0.8440 0.000 0.268 0.016 0.000 0.716
#> GSM555276     2  0.1914     0.7525 0.000 0.924 0.016 0.000 0.060
#> GSM555277     5  0.4087     0.8625 0.000 0.208 0.036 0.000 0.756
#> GSM555279     5  0.2648     0.8708 0.000 0.152 0.000 0.000 0.848
#> GSM555281     5  0.3123     0.8792 0.000 0.184 0.004 0.000 0.812
#> GSM555283     5  0.3596     0.8736 0.000 0.200 0.016 0.000 0.784
#> GSM555285     5  0.5567     0.6256 0.000 0.196 0.160 0.000 0.644
#> GSM555287     4  0.2153     0.8971 0.000 0.000 0.040 0.916 0.044
#> GSM555289     2  0.3389     0.7474 0.000 0.836 0.048 0.000 0.116
#> GSM555291     5  0.3596     0.8736 0.000 0.200 0.016 0.000 0.784
#> GSM555293     2  0.4926     0.7046 0.000 0.712 0.176 0.000 0.112
#> GSM555295     5  0.3488     0.8722 0.000 0.168 0.024 0.000 0.808
#> GSM555297     4  0.0000     0.9424 0.000 0.000 0.000 1.000 0.000
#> GSM555299     3  0.4576     0.9764 0.268 0.000 0.692 0.000 0.040
#> GSM555301     3  0.3766     0.9825 0.268 0.000 0.728 0.004 0.000
#> GSM555303     3  0.3992     0.9832 0.268 0.000 0.720 0.000 0.012
#> GSM555305     3  0.3612     0.9839 0.268 0.000 0.732 0.000 0.000
#> GSM555307     5  0.3745     0.8689 0.000 0.196 0.024 0.000 0.780
#> GSM555309     3  0.4712     0.9734 0.268 0.000 0.684 0.000 0.048
#> GSM555311     5  0.2997     0.8662 0.000 0.148 0.012 0.000 0.840
#> GSM555313     5  0.3885     0.8485 0.000 0.268 0.008 0.000 0.724
#> GSM555315     5  0.3452     0.8581 0.000 0.148 0.032 0.000 0.820
#> GSM555278     5  0.4826     0.3955 0.000 0.472 0.020 0.000 0.508
#> GSM555280     2  0.1914     0.7496 0.000 0.924 0.016 0.000 0.060
#> GSM555282     5  0.4161     0.8339 0.000 0.280 0.016 0.000 0.704
#> GSM555284     5  0.3783     0.8532 0.000 0.252 0.008 0.000 0.740
#> GSM555286     2  0.0609     0.7604 0.000 0.980 0.020 0.000 0.000
#> GSM555288     5  0.4899     0.7748 0.000 0.164 0.008 0.096 0.732
#> GSM555290     2  0.1774     0.7549 0.000 0.932 0.016 0.000 0.052
#> GSM555292     2  0.4702    -0.1668 0.000 0.552 0.016 0.000 0.432
#> GSM555294     2  0.3995     0.7145 0.000 0.788 0.152 0.000 0.060
#> GSM555296     2  0.4800     0.1285 0.000 0.604 0.028 0.000 0.368
#> GSM555298     3  0.3766     0.9825 0.268 0.000 0.728 0.004 0.000
#> GSM555300     3  0.4576     0.9764 0.268 0.000 0.692 0.000 0.040
#> GSM555302     3  0.3612     0.9839 0.268 0.000 0.732 0.000 0.000
#> GSM555304     3  0.3612     0.9839 0.268 0.000 0.732 0.000 0.000
#> GSM555306     3  0.3612     0.9839 0.268 0.000 0.732 0.000 0.000
#> GSM555308     3  0.4576     0.9764 0.268 0.000 0.692 0.000 0.040
#> GSM555310     3  0.3612     0.9839 0.268 0.000 0.732 0.000 0.000
#> GSM555312     5  0.3835     0.8533 0.000 0.260 0.008 0.000 0.732
#> GSM555314     5  0.2970     0.8768 0.000 0.168 0.004 0.000 0.828
#> GSM555316     2  0.1628     0.7572 0.000 0.936 0.008 0.000 0.056
#> GSM555317     2  0.3575     0.7415 0.000 0.824 0.056 0.000 0.120
#> GSM555319     2  0.4454     0.7268 0.000 0.760 0.128 0.000 0.112
#> GSM555321     2  0.4498     0.7265 0.000 0.756 0.132 0.000 0.112
#> GSM555323     2  0.5532     0.5673 0.000 0.616 0.104 0.000 0.280
#> GSM555325     2  0.4926     0.7046 0.000 0.712 0.176 0.000 0.112
#> GSM555327     2  0.3365     0.7451 0.000 0.836 0.044 0.000 0.120
#> GSM555329     2  0.4454     0.7268 0.000 0.760 0.128 0.000 0.112
#> GSM555331     2  0.4294     0.7406 0.000 0.768 0.080 0.000 0.152
#> GSM555333     5  0.3488     0.8722 0.000 0.168 0.024 0.000 0.808
#> GSM555335     2  0.5534     0.1803 0.000 0.508 0.068 0.000 0.424
#> GSM555337     2  0.4454     0.7268 0.000 0.760 0.128 0.000 0.112
#> GSM555339     5  0.4134     0.8599 0.000 0.196 0.044 0.000 0.760
#> GSM555341     2  0.5483     0.0971 0.000 0.512 0.064 0.000 0.424
#> GSM555343     2  0.4926     0.7046 0.000 0.712 0.176 0.000 0.112
#> GSM555345     2  0.5435     0.0928 0.000 0.512 0.060 0.000 0.428
#> GSM555318     2  0.3657     0.7400 0.000 0.820 0.064 0.000 0.116
#> GSM555320     2  0.3409     0.7252 0.000 0.836 0.112 0.000 0.052
#> GSM555322     2  0.0794     0.7619 0.000 0.972 0.028 0.000 0.000
#> GSM555324     3  0.4712     0.9734 0.268 0.000 0.684 0.000 0.048
#> GSM555326     2  0.0609     0.7604 0.000 0.980 0.020 0.000 0.000
#> GSM555328     2  0.2193     0.7456 0.000 0.912 0.028 0.000 0.060
#> GSM555330     2  0.1809     0.7522 0.000 0.928 0.012 0.000 0.060
#> GSM555332     2  0.2193     0.7483 0.000 0.912 0.028 0.000 0.060
#> GSM555334     2  0.2193     0.7456 0.000 0.912 0.028 0.000 0.060
#> GSM555336     2  0.3601     0.7213 0.000 0.820 0.128 0.000 0.052
#> GSM555338     2  0.3669     0.7483 0.000 0.816 0.056 0.000 0.128
#> GSM555340     2  0.4498     0.7265 0.000 0.756 0.132 0.000 0.112
#> GSM555342     2  0.4751     0.6765 0.000 0.732 0.152 0.000 0.116
#> GSM555344     2  0.3958     0.6118 0.000 0.780 0.044 0.000 0.176
#> GSM555346     2  0.5854     0.4785 0.000 0.600 0.160 0.000 0.240

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM555237     1  0.3377     0.8619 0.808 0.000 0.000 0.056 0.000 0.136
#> GSM555239     1  0.0622     0.9354 0.980 0.000 0.000 0.000 0.008 0.012
#> GSM555241     1  0.0405     0.9358 0.988 0.000 0.000 0.000 0.008 0.004
#> GSM555243     1  0.0405     0.9358 0.988 0.000 0.000 0.000 0.008 0.004
#> GSM555245     1  0.0405     0.9358 0.988 0.000 0.000 0.000 0.008 0.004
#> GSM555247     1  0.0405     0.9358 0.988 0.000 0.000 0.000 0.008 0.004
#> GSM555249     1  0.0000     0.9370 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000     0.9370 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0520     0.9348 0.984 0.000 0.000 0.000 0.008 0.008
#> GSM555255     1  0.2219     0.8933 0.864 0.000 0.000 0.000 0.000 0.136
#> GSM555257     4  0.1367     0.9503 0.000 0.000 0.000 0.944 0.012 0.044
#> GSM555259     4  0.0146     0.9596 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM555261     4  0.0000     0.9596 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555263     4  0.0458     0.9574 0.000 0.000 0.000 0.984 0.016 0.000
#> GSM555265     4  0.0146     0.9596 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM555267     4  0.0146     0.9596 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM555269     4  0.0146     0.9596 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM555271     3  0.3000     0.9684 0.124 0.000 0.840 0.004 0.000 0.032
#> GSM555273     5  0.4203     0.7113 0.000 0.116 0.024 0.000 0.772 0.088
#> GSM555275     5  0.1867     0.7632 0.000 0.064 0.000 0.000 0.916 0.020
#> GSM555238     1  0.2178     0.8937 0.868 0.000 0.000 0.000 0.000 0.132
#> GSM555240     1  0.3992     0.8126 0.760 0.000 0.000 0.104 0.000 0.136
#> GSM555242     1  0.3213     0.8689 0.820 0.000 0.000 0.048 0.000 0.132
#> GSM555244     1  0.0000     0.9370 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000     0.9370 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000     0.9370 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0363     0.9356 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM555252     1  0.3862     0.8236 0.772 0.000 0.000 0.096 0.000 0.132
#> GSM555254     1  0.0260     0.9367 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM555256     1  0.2178     0.8937 0.868 0.000 0.000 0.000 0.000 0.132
#> GSM555258     4  0.1908     0.9427 0.000 0.000 0.000 0.916 0.028 0.056
#> GSM555260     5  0.5939    -0.0305 0.000 0.004 0.028 0.420 0.456 0.092
#> GSM555262     5  0.4837     0.6980 0.000 0.184 0.028 0.000 0.704 0.084
#> GSM555264     4  0.2063     0.9424 0.000 0.000 0.008 0.912 0.020 0.060
#> GSM555266     5  0.5105     0.6508 0.000 0.240 0.016 0.000 0.648 0.096
#> GSM555268     2  0.2249     0.6851 0.000 0.900 0.004 0.000 0.032 0.064
#> GSM555270     2  0.0363     0.7075 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM555272     4  0.2197     0.9342 0.000 0.000 0.000 0.900 0.044 0.056
#> GSM555274     5  0.4832     0.6961 0.000 0.200 0.024 0.000 0.696 0.080
#> GSM555276     2  0.3513     0.6718 0.000 0.796 0.000 0.000 0.060 0.144
#> GSM555277     5  0.4610     0.7198 0.000 0.100 0.020 0.000 0.728 0.152
#> GSM555279     5  0.2422     0.7607 0.000 0.072 0.012 0.000 0.892 0.024
#> GSM555281     5  0.1787     0.7639 0.000 0.068 0.008 0.000 0.920 0.004
#> GSM555283     5  0.3517     0.7546 0.000 0.104 0.024 0.000 0.824 0.048
#> GSM555285     5  0.6304     0.4579 0.000 0.180 0.048 0.000 0.536 0.236
#> GSM555287     4  0.4032     0.8272 0.000 0.000 0.036 0.776 0.036 0.152
#> GSM555289     2  0.4281     0.6856 0.000 0.708 0.000 0.000 0.072 0.220
#> GSM555291     5  0.3161     0.7577 0.000 0.092 0.020 0.000 0.848 0.040
#> GSM555293     2  0.4987     0.6214 0.000 0.596 0.024 0.000 0.040 0.340
#> GSM555295     5  0.2765     0.7592 0.000 0.064 0.016 0.000 0.876 0.044
#> GSM555297     4  0.1078     0.9506 0.000 0.000 0.008 0.964 0.012 0.016
#> GSM555299     3  0.3836     0.9577 0.124 0.000 0.788 0.000 0.008 0.080
#> GSM555301     3  0.2234     0.9696 0.124 0.000 0.872 0.004 0.000 0.000
#> GSM555303     3  0.2930     0.9684 0.124 0.000 0.840 0.000 0.000 0.036
#> GSM555305     3  0.2092     0.9708 0.124 0.000 0.876 0.000 0.000 0.000
#> GSM555307     5  0.3840     0.7278 0.000 0.076 0.012 0.000 0.792 0.120
#> GSM555309     3  0.3886     0.9565 0.124 0.000 0.784 0.000 0.008 0.084
#> GSM555311     5  0.2687     0.7586 0.000 0.072 0.008 0.000 0.876 0.044
#> GSM555313     5  0.4712     0.6781 0.000 0.212 0.008 0.000 0.688 0.092
#> GSM555315     5  0.3655     0.7387 0.000 0.072 0.016 0.000 0.812 0.100
#> GSM555278     5  0.5809     0.4363 0.000 0.376 0.036 0.000 0.504 0.084
#> GSM555280     2  0.3622     0.6571 0.000 0.800 0.004 0.000 0.072 0.124
#> GSM555282     5  0.5201     0.6501 0.000 0.232 0.028 0.000 0.652 0.088
#> GSM555284     5  0.4848     0.6865 0.000 0.192 0.028 0.000 0.700 0.080
#> GSM555286     2  0.0725     0.7057 0.000 0.976 0.000 0.000 0.012 0.012
#> GSM555288     5  0.4219     0.7310 0.000 0.064 0.024 0.056 0.804 0.052
#> GSM555290     2  0.3030     0.6967 0.000 0.848 0.004 0.000 0.056 0.092
#> GSM555292     2  0.5779    -0.2534 0.000 0.452 0.028 0.000 0.432 0.088
#> GSM555294     2  0.4382     0.6355 0.000 0.728 0.036 0.000 0.032 0.204
#> GSM555296     2  0.5785     0.1706 0.000 0.500 0.004 0.000 0.324 0.172
#> GSM555298     3  0.2234     0.9696 0.124 0.000 0.872 0.004 0.000 0.000
#> GSM555300     3  0.3836     0.9577 0.124 0.000 0.788 0.000 0.008 0.080
#> GSM555302     3  0.2092     0.9708 0.124 0.000 0.876 0.000 0.000 0.000
#> GSM555304     3  0.2092     0.9708 0.124 0.000 0.876 0.000 0.000 0.000
#> GSM555306     3  0.2092     0.9708 0.124 0.000 0.876 0.000 0.000 0.000
#> GSM555308     3  0.3836     0.9577 0.124 0.000 0.788 0.000 0.008 0.080
#> GSM555310     3  0.2092     0.9708 0.124 0.000 0.876 0.000 0.000 0.000
#> GSM555312     5  0.3875     0.7425 0.000 0.124 0.004 0.000 0.780 0.092
#> GSM555314     5  0.2393     0.7608 0.000 0.064 0.004 0.000 0.892 0.040
#> GSM555316     2  0.2875     0.6957 0.000 0.852 0.000 0.000 0.052 0.096
#> GSM555317     2  0.5102     0.6553 0.000 0.616 0.008 0.000 0.092 0.284
#> GSM555319     2  0.4420     0.6672 0.000 0.692 0.020 0.000 0.032 0.256
#> GSM555321     2  0.4656     0.6573 0.000 0.664 0.020 0.000 0.040 0.276
#> GSM555323     2  0.6370     0.4502 0.000 0.412 0.016 0.000 0.244 0.328
#> GSM555325     2  0.5170     0.6174 0.000 0.588 0.032 0.000 0.044 0.336
#> GSM555327     2  0.4632     0.6726 0.000 0.668 0.004 0.000 0.072 0.256
#> GSM555329     2  0.4420     0.6672 0.000 0.692 0.020 0.000 0.032 0.256
#> GSM555331     2  0.5750     0.6259 0.000 0.512 0.008 0.000 0.148 0.332
#> GSM555333     5  0.2765     0.7592 0.000 0.064 0.016 0.000 0.876 0.044
#> GSM555335     5  0.6351     0.0285 0.000 0.332 0.020 0.000 0.432 0.216
#> GSM555337     2  0.4442     0.6665 0.000 0.688 0.020 0.000 0.032 0.260
#> GSM555339     5  0.4355     0.6988 0.000 0.076 0.012 0.000 0.736 0.176
#> GSM555341     5  0.6406     0.0549 0.000 0.348 0.024 0.000 0.420 0.208
#> GSM555343     2  0.5182     0.6156 0.000 0.584 0.032 0.000 0.044 0.340
#> GSM555345     5  0.6366     0.0452 0.000 0.344 0.020 0.000 0.420 0.216
#> GSM555318     2  0.5125     0.6483 0.000 0.604 0.008 0.000 0.088 0.300
#> GSM555320     2  0.4060     0.6575 0.000 0.760 0.032 0.000 0.028 0.180
#> GSM555322     2  0.1866     0.7140 0.000 0.908 0.000 0.000 0.008 0.084
#> GSM555324     3  0.3886     0.9565 0.124 0.000 0.784 0.000 0.008 0.084
#> GSM555326     2  0.0520     0.7068 0.000 0.984 0.000 0.000 0.008 0.008
#> GSM555328     2  0.3655     0.6524 0.000 0.788 0.000 0.000 0.076 0.136
#> GSM555330     2  0.3728     0.6640 0.000 0.784 0.004 0.000 0.060 0.152
#> GSM555332     2  0.3925     0.6562 0.000 0.764 0.004 0.000 0.064 0.168
#> GSM555334     2  0.3626     0.6533 0.000 0.788 0.000 0.000 0.068 0.144
#> GSM555336     2  0.3513     0.6708 0.000 0.804 0.020 0.000 0.024 0.152
#> GSM555338     2  0.4722     0.6758 0.000 0.656 0.004 0.000 0.076 0.264
#> GSM555340     2  0.4616     0.6601 0.000 0.672 0.020 0.000 0.040 0.268
#> GSM555342     2  0.5071     0.6045 0.000 0.660 0.040 0.000 0.056 0.244
#> GSM555344     2  0.4803     0.5840 0.000 0.672 0.004 0.000 0.108 0.216
#> GSM555346     2  0.6060     0.4548 0.000 0.564 0.040 0.000 0.160 0.236

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) agent(p) k
#> SD:kmeans 110         6.23e-07   0.8429 2
#> SD:kmeans  95         8.86e-14   0.7571 3
#> SD:kmeans 107         7.80e-15   0.4912 4
#> SD:kmeans 102         7.30e-19   0.0978 5
#> SD:kmeans 100         4.00e-18   0.0899 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.995       0.998         0.4820 0.519   0.519
#> 3 3 0.928           0.955       0.969         0.1792 0.894   0.799
#> 4 4 0.775           0.883       0.915         0.1274 0.949   0.881
#> 5 5 0.706           0.697       0.852         0.1878 0.825   0.554
#> 6 6 0.696           0.636       0.765         0.0452 0.946   0.783

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1   0.000      1.000 1.000 0.000
#> GSM555239     1   0.000      1.000 1.000 0.000
#> GSM555241     1   0.000      1.000 1.000 0.000
#> GSM555243     1   0.000      1.000 1.000 0.000
#> GSM555245     1   0.000      1.000 1.000 0.000
#> GSM555247     1   0.000      1.000 1.000 0.000
#> GSM555249     1   0.000      1.000 1.000 0.000
#> GSM555251     1   0.000      1.000 1.000 0.000
#> GSM555253     1   0.000      1.000 1.000 0.000
#> GSM555255     1   0.000      1.000 1.000 0.000
#> GSM555257     1   0.000      1.000 1.000 0.000
#> GSM555259     1   0.000      1.000 1.000 0.000
#> GSM555261     1   0.000      1.000 1.000 0.000
#> GSM555263     2   0.000      0.996 0.000 1.000
#> GSM555265     1   0.000      1.000 1.000 0.000
#> GSM555267     1   0.000      1.000 1.000 0.000
#> GSM555269     1   0.000      1.000 1.000 0.000
#> GSM555271     1   0.000      1.000 1.000 0.000
#> GSM555273     2   0.000      0.996 0.000 1.000
#> GSM555275     2   0.000      0.996 0.000 1.000
#> GSM555238     1   0.000      1.000 1.000 0.000
#> GSM555240     1   0.000      1.000 1.000 0.000
#> GSM555242     1   0.000      1.000 1.000 0.000
#> GSM555244     1   0.000      1.000 1.000 0.000
#> GSM555246     1   0.000      1.000 1.000 0.000
#> GSM555248     1   0.000      1.000 1.000 0.000
#> GSM555250     1   0.000      1.000 1.000 0.000
#> GSM555252     1   0.000      1.000 1.000 0.000
#> GSM555254     1   0.000      1.000 1.000 0.000
#> GSM555256     1   0.000      1.000 1.000 0.000
#> GSM555258     2   0.788      0.691 0.236 0.764
#> GSM555260     2   0.000      0.996 0.000 1.000
#> GSM555262     2   0.000      0.996 0.000 1.000
#> GSM555264     1   0.000      1.000 1.000 0.000
#> GSM555266     2   0.000      0.996 0.000 1.000
#> GSM555268     2   0.000      0.996 0.000 1.000
#> GSM555270     2   0.000      0.996 0.000 1.000
#> GSM555272     2   0.000      0.996 0.000 1.000
#> GSM555274     2   0.000      0.996 0.000 1.000
#> GSM555276     2   0.000      0.996 0.000 1.000
#> GSM555277     2   0.000      0.996 0.000 1.000
#> GSM555279     2   0.000      0.996 0.000 1.000
#> GSM555281     2   0.000      0.996 0.000 1.000
#> GSM555283     2   0.000      0.996 0.000 1.000
#> GSM555285     2   0.000      0.996 0.000 1.000
#> GSM555287     1   0.000      1.000 1.000 0.000
#> GSM555289     2   0.000      0.996 0.000 1.000
#> GSM555291     2   0.000      0.996 0.000 1.000
#> GSM555293     2   0.000      0.996 0.000 1.000
#> GSM555295     2   0.000      0.996 0.000 1.000
#> GSM555297     1   0.000      1.000 1.000 0.000
#> GSM555299     1   0.000      1.000 1.000 0.000
#> GSM555301     1   0.000      1.000 1.000 0.000
#> GSM555303     1   0.000      1.000 1.000 0.000
#> GSM555305     1   0.000      1.000 1.000 0.000
#> GSM555307     2   0.000      0.996 0.000 1.000
#> GSM555309     1   0.000      1.000 1.000 0.000
#> GSM555311     2   0.000      0.996 0.000 1.000
#> GSM555313     2   0.000      0.996 0.000 1.000
#> GSM555315     2   0.000      0.996 0.000 1.000
#> GSM555278     2   0.000      0.996 0.000 1.000
#> GSM555280     2   0.000      0.996 0.000 1.000
#> GSM555282     2   0.000      0.996 0.000 1.000
#> GSM555284     2   0.000      0.996 0.000 1.000
#> GSM555286     2   0.000      0.996 0.000 1.000
#> GSM555288     2   0.000      0.996 0.000 1.000
#> GSM555290     2   0.000      0.996 0.000 1.000
#> GSM555292     2   0.000      0.996 0.000 1.000
#> GSM555294     2   0.000      0.996 0.000 1.000
#> GSM555296     2   0.000      0.996 0.000 1.000
#> GSM555298     1   0.000      1.000 1.000 0.000
#> GSM555300     1   0.000      1.000 1.000 0.000
#> GSM555302     1   0.000      1.000 1.000 0.000
#> GSM555304     1   0.000      1.000 1.000 0.000
#> GSM555306     1   0.000      1.000 1.000 0.000
#> GSM555308     1   0.000      1.000 1.000 0.000
#> GSM555310     1   0.000      1.000 1.000 0.000
#> GSM555312     2   0.000      0.996 0.000 1.000
#> GSM555314     2   0.000      0.996 0.000 1.000
#> GSM555316     2   0.000      0.996 0.000 1.000
#> GSM555317     2   0.000      0.996 0.000 1.000
#> GSM555319     2   0.000      0.996 0.000 1.000
#> GSM555321     2   0.000      0.996 0.000 1.000
#> GSM555323     2   0.000      0.996 0.000 1.000
#> GSM555325     2   0.000      0.996 0.000 1.000
#> GSM555327     2   0.000      0.996 0.000 1.000
#> GSM555329     2   0.000      0.996 0.000 1.000
#> GSM555331     2   0.000      0.996 0.000 1.000
#> GSM555333     2   0.000      0.996 0.000 1.000
#> GSM555335     2   0.000      0.996 0.000 1.000
#> GSM555337     2   0.000      0.996 0.000 1.000
#> GSM555339     2   0.000      0.996 0.000 1.000
#> GSM555341     2   0.000      0.996 0.000 1.000
#> GSM555343     2   0.000      0.996 0.000 1.000
#> GSM555345     2   0.000      0.996 0.000 1.000
#> GSM555318     2   0.000      0.996 0.000 1.000
#> GSM555320     2   0.000      0.996 0.000 1.000
#> GSM555322     2   0.000      0.996 0.000 1.000
#> GSM555324     1   0.000      1.000 1.000 0.000
#> GSM555326     2   0.000      0.996 0.000 1.000
#> GSM555328     2   0.000      0.996 0.000 1.000
#> GSM555330     2   0.000      0.996 0.000 1.000
#> GSM555332     2   0.000      0.996 0.000 1.000
#> GSM555334     2   0.000      0.996 0.000 1.000
#> GSM555336     2   0.000      0.996 0.000 1.000
#> GSM555338     2   0.000      0.996 0.000 1.000
#> GSM555340     2   0.000      0.996 0.000 1.000
#> GSM555342     2   0.000      0.996 0.000 1.000
#> GSM555344     2   0.000      0.996 0.000 1.000
#> GSM555346     2   0.000      0.996 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1   0.000      0.962 1.000 0.000 0.000
#> GSM555239     1   0.000      0.962 1.000 0.000 0.000
#> GSM555241     1   0.000      0.962 1.000 0.000 0.000
#> GSM555243     1   0.000      0.962 1.000 0.000 0.000
#> GSM555245     1   0.000      0.962 1.000 0.000 0.000
#> GSM555247     1   0.000      0.962 1.000 0.000 0.000
#> GSM555249     1   0.000      0.962 1.000 0.000 0.000
#> GSM555251     1   0.000      0.962 1.000 0.000 0.000
#> GSM555253     1   0.000      0.962 1.000 0.000 0.000
#> GSM555255     1   0.000      0.962 1.000 0.000 0.000
#> GSM555257     3   0.450      0.705 0.196 0.000 0.804
#> GSM555259     3   0.000      0.876 0.000 0.000 1.000
#> GSM555261     3   0.000      0.876 0.000 0.000 1.000
#> GSM555263     3   0.445      0.643 0.000 0.192 0.808
#> GSM555265     3   0.000      0.876 0.000 0.000 1.000
#> GSM555267     3   0.000      0.876 0.000 0.000 1.000
#> GSM555269     3   0.000      0.876 0.000 0.000 1.000
#> GSM555271     3   0.254      0.915 0.080 0.000 0.920
#> GSM555273     2   0.000      0.997 0.000 1.000 0.000
#> GSM555275     2   0.000      0.997 0.000 1.000 0.000
#> GSM555238     1   0.000      0.962 1.000 0.000 0.000
#> GSM555240     1   0.000      0.962 1.000 0.000 0.000
#> GSM555242     1   0.000      0.962 1.000 0.000 0.000
#> GSM555244     1   0.000      0.962 1.000 0.000 0.000
#> GSM555246     1   0.000      0.962 1.000 0.000 0.000
#> GSM555248     1   0.000      0.962 1.000 0.000 0.000
#> GSM555250     1   0.000      0.962 1.000 0.000 0.000
#> GSM555252     1   0.000      0.962 1.000 0.000 0.000
#> GSM555254     1   0.000      0.962 1.000 0.000 0.000
#> GSM555256     1   0.000      0.962 1.000 0.000 0.000
#> GSM555258     1   0.945      0.321 0.500 0.232 0.268
#> GSM555260     2   0.254      0.921 0.000 0.920 0.080
#> GSM555262     2   0.000      0.997 0.000 1.000 0.000
#> GSM555264     1   0.533      0.670 0.728 0.000 0.272
#> GSM555266     2   0.000      0.997 0.000 1.000 0.000
#> GSM555268     2   0.000      0.997 0.000 1.000 0.000
#> GSM555270     2   0.000      0.997 0.000 1.000 0.000
#> GSM555272     2   0.327      0.882 0.000 0.884 0.116
#> GSM555274     2   0.000      0.997 0.000 1.000 0.000
#> GSM555276     2   0.000      0.997 0.000 1.000 0.000
#> GSM555277     2   0.000      0.997 0.000 1.000 0.000
#> GSM555279     2   0.000      0.997 0.000 1.000 0.000
#> GSM555281     2   0.000      0.997 0.000 1.000 0.000
#> GSM555283     2   0.000      0.997 0.000 1.000 0.000
#> GSM555285     2   0.000      0.997 0.000 1.000 0.000
#> GSM555287     3   0.565      0.686 0.312 0.000 0.688
#> GSM555289     2   0.000      0.997 0.000 1.000 0.000
#> GSM555291     2   0.000      0.997 0.000 1.000 0.000
#> GSM555293     2   0.000      0.997 0.000 1.000 0.000
#> GSM555295     2   0.000      0.997 0.000 1.000 0.000
#> GSM555297     3   0.254      0.915 0.080 0.000 0.920
#> GSM555299     3   0.327      0.927 0.116 0.000 0.884
#> GSM555301     3   0.327      0.927 0.116 0.000 0.884
#> GSM555303     3   0.327      0.927 0.116 0.000 0.884
#> GSM555305     3   0.327      0.927 0.116 0.000 0.884
#> GSM555307     2   0.000      0.997 0.000 1.000 0.000
#> GSM555309     3   0.327      0.927 0.116 0.000 0.884
#> GSM555311     2   0.000      0.997 0.000 1.000 0.000
#> GSM555313     2   0.000      0.997 0.000 1.000 0.000
#> GSM555315     2   0.000      0.997 0.000 1.000 0.000
#> GSM555278     2   0.000      0.997 0.000 1.000 0.000
#> GSM555280     2   0.000      0.997 0.000 1.000 0.000
#> GSM555282     2   0.000      0.997 0.000 1.000 0.000
#> GSM555284     2   0.000      0.997 0.000 1.000 0.000
#> GSM555286     2   0.000      0.997 0.000 1.000 0.000
#> GSM555288     2   0.116      0.972 0.000 0.972 0.028
#> GSM555290     2   0.000      0.997 0.000 1.000 0.000
#> GSM555292     2   0.000      0.997 0.000 1.000 0.000
#> GSM555294     2   0.000      0.997 0.000 1.000 0.000
#> GSM555296     2   0.000      0.997 0.000 1.000 0.000
#> GSM555298     3   0.327      0.927 0.116 0.000 0.884
#> GSM555300     3   0.327      0.927 0.116 0.000 0.884
#> GSM555302     3   0.327      0.927 0.116 0.000 0.884
#> GSM555304     3   0.327      0.927 0.116 0.000 0.884
#> GSM555306     3   0.327      0.927 0.116 0.000 0.884
#> GSM555308     3   0.327      0.927 0.116 0.000 0.884
#> GSM555310     3   0.327      0.927 0.116 0.000 0.884
#> GSM555312     2   0.000      0.997 0.000 1.000 0.000
#> GSM555314     2   0.000      0.997 0.000 1.000 0.000
#> GSM555316     2   0.000      0.997 0.000 1.000 0.000
#> GSM555317     2   0.000      0.997 0.000 1.000 0.000
#> GSM555319     2   0.000      0.997 0.000 1.000 0.000
#> GSM555321     2   0.000      0.997 0.000 1.000 0.000
#> GSM555323     2   0.000      0.997 0.000 1.000 0.000
#> GSM555325     2   0.000      0.997 0.000 1.000 0.000
#> GSM555327     2   0.000      0.997 0.000 1.000 0.000
#> GSM555329     2   0.000      0.997 0.000 1.000 0.000
#> GSM555331     2   0.000      0.997 0.000 1.000 0.000
#> GSM555333     2   0.000      0.997 0.000 1.000 0.000
#> GSM555335     2   0.000      0.997 0.000 1.000 0.000
#> GSM555337     2   0.000      0.997 0.000 1.000 0.000
#> GSM555339     2   0.000      0.997 0.000 1.000 0.000
#> GSM555341     2   0.000      0.997 0.000 1.000 0.000
#> GSM555343     2   0.000      0.997 0.000 1.000 0.000
#> GSM555345     2   0.000      0.997 0.000 1.000 0.000
#> GSM555318     2   0.000      0.997 0.000 1.000 0.000
#> GSM555320     2   0.000      0.997 0.000 1.000 0.000
#> GSM555322     2   0.000      0.997 0.000 1.000 0.000
#> GSM555324     3   0.327      0.927 0.116 0.000 0.884
#> GSM555326     2   0.000      0.997 0.000 1.000 0.000
#> GSM555328     2   0.000      0.997 0.000 1.000 0.000
#> GSM555330     2   0.000      0.997 0.000 1.000 0.000
#> GSM555332     2   0.000      0.997 0.000 1.000 0.000
#> GSM555334     2   0.000      0.997 0.000 1.000 0.000
#> GSM555336     2   0.000      0.997 0.000 1.000 0.000
#> GSM555338     2   0.000      0.997 0.000 1.000 0.000
#> GSM555340     2   0.000      0.997 0.000 1.000 0.000
#> GSM555342     2   0.000      0.997 0.000 1.000 0.000
#> GSM555344     2   0.000      0.997 0.000 1.000 0.000
#> GSM555346     2   0.000      0.997 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555239     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555241     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555243     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555245     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555247     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555249     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555251     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555253     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555255     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555257     4  0.4284      0.619 0.012 0.000 0.224 0.764
#> GSM555259     3  0.4790      0.370 0.000 0.000 0.620 0.380
#> GSM555261     4  0.4072      0.585 0.000 0.000 0.252 0.748
#> GSM555263     4  0.2611      0.684 0.000 0.008 0.096 0.896
#> GSM555265     3  0.4817      0.352 0.000 0.000 0.612 0.388
#> GSM555267     3  0.4713      0.419 0.000 0.000 0.640 0.360
#> GSM555269     3  0.1824      0.850 0.004 0.000 0.936 0.060
#> GSM555271     3  0.0592      0.903 0.016 0.000 0.984 0.000
#> GSM555273     2  0.4088      0.861 0.000 0.764 0.004 0.232
#> GSM555275     2  0.2704      0.911 0.000 0.876 0.000 0.124
#> GSM555238     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555240     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555242     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555244     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555246     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555248     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555250     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555252     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555254     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555256     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555258     4  0.4166      0.736 0.008 0.104 0.052 0.836
#> GSM555260     4  0.4248      0.686 0.000 0.220 0.012 0.768
#> GSM555262     2  0.1557      0.872 0.000 0.944 0.000 0.056
#> GSM555264     4  0.4940      0.656 0.128 0.000 0.096 0.776
#> GSM555266     2  0.1576      0.900 0.000 0.948 0.004 0.048
#> GSM555268     2  0.0592      0.896 0.000 0.984 0.000 0.016
#> GSM555270     2  0.0188      0.901 0.000 0.996 0.000 0.004
#> GSM555272     4  0.3658      0.728 0.000 0.144 0.020 0.836
#> GSM555274     2  0.1211      0.883 0.000 0.960 0.000 0.040
#> GSM555276     2  0.0336      0.901 0.000 0.992 0.000 0.008
#> GSM555277     2  0.2704      0.911 0.000 0.876 0.000 0.124
#> GSM555279     2  0.3402      0.904 0.000 0.832 0.004 0.164
#> GSM555281     2  0.2973      0.913 0.000 0.856 0.000 0.144
#> GSM555283     2  0.3074      0.900 0.000 0.848 0.000 0.152
#> GSM555285     2  0.3908      0.874 0.000 0.784 0.004 0.212
#> GSM555287     3  0.3649      0.687 0.204 0.000 0.796 0.000
#> GSM555289     2  0.2647      0.912 0.000 0.880 0.000 0.120
#> GSM555291     2  0.3123      0.902 0.000 0.844 0.000 0.156
#> GSM555293     2  0.3355      0.905 0.000 0.836 0.004 0.160
#> GSM555295     2  0.3402      0.905 0.000 0.832 0.004 0.164
#> GSM555297     3  0.1297      0.892 0.016 0.000 0.964 0.020
#> GSM555299     3  0.0817      0.909 0.024 0.000 0.976 0.000
#> GSM555301     3  0.0817      0.909 0.024 0.000 0.976 0.000
#> GSM555303     3  0.0817      0.909 0.024 0.000 0.976 0.000
#> GSM555305     3  0.0817      0.909 0.024 0.000 0.976 0.000
#> GSM555307     2  0.2704      0.911 0.000 0.876 0.000 0.124
#> GSM555309     3  0.0817      0.909 0.024 0.000 0.976 0.000
#> GSM555311     2  0.3355      0.905 0.000 0.836 0.004 0.160
#> GSM555313     2  0.0469      0.900 0.000 0.988 0.000 0.012
#> GSM555315     2  0.3355      0.905 0.000 0.836 0.004 0.160
#> GSM555278     2  0.1576      0.899 0.000 0.948 0.004 0.048
#> GSM555280     2  0.0469      0.898 0.000 0.988 0.000 0.012
#> GSM555282     2  0.1637      0.869 0.000 0.940 0.000 0.060
#> GSM555284     2  0.1867      0.858 0.000 0.928 0.000 0.072
#> GSM555286     2  0.0336      0.900 0.000 0.992 0.000 0.008
#> GSM555288     4  0.4967      0.351 0.000 0.452 0.000 0.548
#> GSM555290     2  0.0469      0.898 0.000 0.988 0.000 0.012
#> GSM555292     2  0.1302      0.881 0.000 0.956 0.000 0.044
#> GSM555294     2  0.1576      0.904 0.000 0.948 0.004 0.048
#> GSM555296     2  0.0336      0.901 0.000 0.992 0.000 0.008
#> GSM555298     3  0.0817      0.909 0.024 0.000 0.976 0.000
#> GSM555300     3  0.0817      0.909 0.024 0.000 0.976 0.000
#> GSM555302     3  0.0817      0.909 0.024 0.000 0.976 0.000
#> GSM555304     3  0.0817      0.909 0.024 0.000 0.976 0.000
#> GSM555306     3  0.0817      0.909 0.024 0.000 0.976 0.000
#> GSM555308     3  0.0817      0.909 0.024 0.000 0.976 0.000
#> GSM555310     3  0.0817      0.909 0.024 0.000 0.976 0.000
#> GSM555312     2  0.0592      0.898 0.000 0.984 0.000 0.016
#> GSM555314     2  0.3219      0.906 0.000 0.836 0.000 0.164
#> GSM555316     2  0.0336      0.901 0.000 0.992 0.000 0.008
#> GSM555317     2  0.2704      0.911 0.000 0.876 0.000 0.124
#> GSM555319     2  0.3355      0.905 0.000 0.836 0.004 0.160
#> GSM555321     2  0.3402      0.905 0.000 0.832 0.004 0.164
#> GSM555323     2  0.3402      0.905 0.000 0.832 0.004 0.164
#> GSM555325     2  0.3355      0.905 0.000 0.836 0.004 0.160
#> GSM555327     2  0.2760      0.911 0.000 0.872 0.000 0.128
#> GSM555329     2  0.3355      0.905 0.000 0.836 0.004 0.160
#> GSM555331     2  0.3402      0.905 0.000 0.832 0.004 0.164
#> GSM555333     2  0.3402      0.905 0.000 0.832 0.004 0.164
#> GSM555335     2  0.3402      0.905 0.000 0.832 0.004 0.164
#> GSM555337     2  0.3355      0.905 0.000 0.836 0.004 0.160
#> GSM555339     2  0.2868      0.910 0.000 0.864 0.000 0.136
#> GSM555341     2  0.2760      0.911 0.000 0.872 0.000 0.128
#> GSM555343     2  0.3355      0.905 0.000 0.836 0.004 0.160
#> GSM555345     2  0.2760      0.911 0.000 0.872 0.000 0.128
#> GSM555318     2  0.2589      0.912 0.000 0.884 0.000 0.116
#> GSM555320     2  0.1489      0.901 0.000 0.952 0.004 0.044
#> GSM555322     2  0.0336      0.901 0.000 0.992 0.000 0.008
#> GSM555324     3  0.0817      0.909 0.024 0.000 0.976 0.000
#> GSM555326     2  0.0188      0.901 0.000 0.996 0.000 0.004
#> GSM555328     2  0.0469      0.900 0.000 0.988 0.000 0.012
#> GSM555330     2  0.0336      0.901 0.000 0.992 0.000 0.008
#> GSM555332     2  0.0336      0.901 0.000 0.992 0.000 0.008
#> GSM555334     2  0.0592      0.898 0.000 0.984 0.000 0.016
#> GSM555336     2  0.1576      0.902 0.000 0.948 0.004 0.048
#> GSM555338     2  0.2760      0.911 0.000 0.872 0.000 0.128
#> GSM555340     2  0.3402      0.905 0.000 0.832 0.004 0.164
#> GSM555342     2  0.1576      0.902 0.000 0.948 0.004 0.048
#> GSM555344     2  0.0469      0.900 0.000 0.988 0.000 0.012
#> GSM555346     2  0.1661      0.904 0.000 0.944 0.004 0.052

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM555237     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555239     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555257     4  0.1041     0.8205 0.004 0.000 0.032 0.964 0.000
#> GSM555259     4  0.5065     0.2896 0.000 0.000 0.420 0.544 0.036
#> GSM555261     4  0.2554     0.7969 0.000 0.000 0.072 0.892 0.036
#> GSM555263     4  0.2124     0.7961 0.000 0.000 0.004 0.900 0.096
#> GSM555265     4  0.5059     0.2983 0.000 0.000 0.416 0.548 0.036
#> GSM555267     3  0.5111    -0.1396 0.000 0.000 0.500 0.464 0.036
#> GSM555269     3  0.3115     0.7927 0.000 0.000 0.852 0.112 0.036
#> GSM555271     3  0.0000     0.9370 0.000 0.000 1.000 0.000 0.000
#> GSM555273     5  0.2439     0.6832 0.000 0.120 0.000 0.004 0.876
#> GSM555275     5  0.4045     0.5061 0.000 0.356 0.000 0.000 0.644
#> GSM555238     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555240     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555242     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555244     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555254     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555258     4  0.0566     0.8210 0.000 0.004 0.000 0.984 0.012
#> GSM555260     4  0.2953     0.7145 0.000 0.144 0.000 0.844 0.012
#> GSM555262     2  0.1800     0.7060 0.000 0.932 0.000 0.020 0.048
#> GSM555264     4  0.1195     0.8153 0.028 0.000 0.000 0.960 0.012
#> GSM555266     2  0.4273     0.0195 0.000 0.552 0.000 0.000 0.448
#> GSM555268     2  0.1908     0.7295 0.000 0.908 0.000 0.000 0.092
#> GSM555270     2  0.2329     0.7290 0.000 0.876 0.000 0.000 0.124
#> GSM555272     4  0.0566     0.8210 0.000 0.004 0.000 0.984 0.012
#> GSM555274     2  0.1484     0.7158 0.000 0.944 0.000 0.008 0.048
#> GSM555276     2  0.2471     0.7083 0.000 0.864 0.000 0.000 0.136
#> GSM555277     2  0.3508     0.4624 0.000 0.748 0.000 0.000 0.252
#> GSM555279     5  0.2773     0.6858 0.000 0.164 0.000 0.000 0.836
#> GSM555281     5  0.4262     0.3158 0.000 0.440 0.000 0.000 0.560
#> GSM555283     2  0.4323     0.3551 0.000 0.656 0.000 0.012 0.332
#> GSM555285     5  0.1792     0.7086 0.000 0.084 0.000 0.000 0.916
#> GSM555287     3  0.2929     0.7035 0.180 0.000 0.820 0.000 0.000
#> GSM555289     2  0.3684     0.4829 0.000 0.720 0.000 0.000 0.280
#> GSM555291     2  0.4574     0.1216 0.000 0.576 0.000 0.012 0.412
#> GSM555293     5  0.2127     0.7318 0.000 0.108 0.000 0.000 0.892
#> GSM555295     5  0.2074     0.7135 0.000 0.104 0.000 0.000 0.896
#> GSM555297     3  0.1818     0.8816 0.000 0.000 0.932 0.044 0.024
#> GSM555299     3  0.0000     0.9370 0.000 0.000 1.000 0.000 0.000
#> GSM555301     3  0.0000     0.9370 0.000 0.000 1.000 0.000 0.000
#> GSM555303     3  0.0000     0.9370 0.000 0.000 1.000 0.000 0.000
#> GSM555305     3  0.0000     0.9370 0.000 0.000 1.000 0.000 0.000
#> GSM555307     5  0.4300     0.1779 0.000 0.476 0.000 0.000 0.524
#> GSM555309     3  0.0000     0.9370 0.000 0.000 1.000 0.000 0.000
#> GSM555311     5  0.2020     0.7022 0.000 0.100 0.000 0.000 0.900
#> GSM555313     2  0.1732     0.7243 0.000 0.920 0.000 0.000 0.080
#> GSM555315     5  0.1341     0.7251 0.000 0.056 0.000 0.000 0.944
#> GSM555278     2  0.3966     0.2898 0.000 0.664 0.000 0.000 0.336
#> GSM555280     2  0.1544     0.7278 0.000 0.932 0.000 0.000 0.068
#> GSM555282     2  0.1485     0.7103 0.000 0.948 0.000 0.020 0.032
#> GSM555284     2  0.2773     0.6578 0.000 0.868 0.000 0.020 0.112
#> GSM555286     2  0.2074     0.7308 0.000 0.896 0.000 0.000 0.104
#> GSM555288     2  0.5030     0.2438 0.000 0.604 0.000 0.352 0.044
#> GSM555290     2  0.1908     0.7337 0.000 0.908 0.000 0.000 0.092
#> GSM555292     2  0.1740     0.7092 0.000 0.932 0.000 0.012 0.056
#> GSM555294     5  0.3895     0.4731 0.000 0.320 0.000 0.000 0.680
#> GSM555296     2  0.2377     0.7156 0.000 0.872 0.000 0.000 0.128
#> GSM555298     3  0.0000     0.9370 0.000 0.000 1.000 0.000 0.000
#> GSM555300     3  0.0000     0.9370 0.000 0.000 1.000 0.000 0.000
#> GSM555302     3  0.0000     0.9370 0.000 0.000 1.000 0.000 0.000
#> GSM555304     3  0.0000     0.9370 0.000 0.000 1.000 0.000 0.000
#> GSM555306     3  0.0000     0.9370 0.000 0.000 1.000 0.000 0.000
#> GSM555308     3  0.0000     0.9370 0.000 0.000 1.000 0.000 0.000
#> GSM555310     3  0.0000     0.9370 0.000 0.000 1.000 0.000 0.000
#> GSM555312     2  0.1270     0.7166 0.000 0.948 0.000 0.000 0.052
#> GSM555314     5  0.2424     0.6972 0.000 0.132 0.000 0.000 0.868
#> GSM555316     2  0.2516     0.7051 0.000 0.860 0.000 0.000 0.140
#> GSM555317     2  0.4242     0.1441 0.000 0.572 0.000 0.000 0.428
#> GSM555319     5  0.3109     0.7184 0.000 0.200 0.000 0.000 0.800
#> GSM555321     5  0.2813     0.7316 0.000 0.168 0.000 0.000 0.832
#> GSM555323     5  0.3210     0.7035 0.000 0.212 0.000 0.000 0.788
#> GSM555325     5  0.1965     0.7293 0.000 0.096 0.000 0.000 0.904
#> GSM555327     2  0.4182     0.2144 0.000 0.600 0.000 0.000 0.400
#> GSM555329     5  0.3039     0.7224 0.000 0.192 0.000 0.000 0.808
#> GSM555331     5  0.3480     0.6810 0.000 0.248 0.000 0.000 0.752
#> GSM555333     5  0.3109     0.6979 0.000 0.200 0.000 0.000 0.800
#> GSM555335     5  0.3395     0.6885 0.000 0.236 0.000 0.000 0.764
#> GSM555337     5  0.3039     0.7234 0.000 0.192 0.000 0.000 0.808
#> GSM555339     5  0.4192     0.3580 0.000 0.404 0.000 0.000 0.596
#> GSM555341     2  0.4273    -0.0131 0.000 0.552 0.000 0.000 0.448
#> GSM555343     5  0.2179     0.7335 0.000 0.112 0.000 0.000 0.888
#> GSM555345     5  0.4304     0.1577 0.000 0.484 0.000 0.000 0.516
#> GSM555318     2  0.3796     0.4721 0.000 0.700 0.000 0.000 0.300
#> GSM555320     2  0.4307    -0.0604 0.000 0.500 0.000 0.000 0.500
#> GSM555322     2  0.2280     0.7297 0.000 0.880 0.000 0.000 0.120
#> GSM555324     3  0.0000     0.9370 0.000 0.000 1.000 0.000 0.000
#> GSM555326     2  0.2377     0.7275 0.000 0.872 0.000 0.000 0.128
#> GSM555328     2  0.1608     0.7328 0.000 0.928 0.000 0.000 0.072
#> GSM555330     2  0.2230     0.7200 0.000 0.884 0.000 0.000 0.116
#> GSM555332     2  0.2230     0.7200 0.000 0.884 0.000 0.000 0.116
#> GSM555334     2  0.1851     0.7258 0.000 0.912 0.000 0.000 0.088
#> GSM555336     5  0.4249     0.2471 0.000 0.432 0.000 0.000 0.568
#> GSM555338     5  0.4302     0.1791 0.000 0.480 0.000 0.000 0.520
#> GSM555340     5  0.2966     0.7318 0.000 0.184 0.000 0.000 0.816
#> GSM555342     5  0.4273     0.2242 0.000 0.448 0.000 0.000 0.552
#> GSM555344     2  0.2074     0.7238 0.000 0.896 0.000 0.000 0.104
#> GSM555346     5  0.3932     0.4632 0.000 0.328 0.000 0.000 0.672

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM555237     1  0.0000    0.99828 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555239     1  0.0146    0.99789 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0146    0.99789 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0146    0.99789 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0146    0.99789 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0146    0.99789 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0146    0.99789 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0146    0.99789 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0146    0.99789 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0146    0.99789 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM555257     4  0.0777    0.74087 0.000 0.000 0.004 0.972 0.000 0.024
#> GSM555259     6  0.5963    0.93848 0.000 0.000 0.240 0.320 0.000 0.440
#> GSM555261     4  0.4449   -0.10799 0.000 0.000 0.028 0.532 0.000 0.440
#> GSM555263     4  0.3986   -0.00145 0.000 0.000 0.000 0.532 0.004 0.464
#> GSM555265     6  0.5969    0.94377 0.000 0.000 0.244 0.316 0.000 0.440
#> GSM555267     6  0.5984    0.89986 0.000 0.000 0.280 0.276 0.000 0.444
#> GSM555269     3  0.4326   -0.14773 0.000 0.000 0.572 0.024 0.000 0.404
#> GSM555271     3  0.0000    0.93000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555273     5  0.5642    0.51511 0.000 0.072 0.000 0.032 0.508 0.388
#> GSM555275     5  0.5854    0.38158 0.000 0.320 0.000 0.000 0.468 0.212
#> GSM555238     1  0.0000    0.99828 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555240     1  0.0000    0.99828 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555242     1  0.0000    0.99828 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555244     1  0.0000    0.99828 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000    0.99828 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000    0.99828 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000    0.99828 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.0000    0.99828 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555254     1  0.0000    0.99828 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0000    0.99828 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555258     4  0.0146    0.75070 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM555260     4  0.1528    0.69203 0.000 0.048 0.000 0.936 0.000 0.016
#> GSM555262     2  0.1082    0.60580 0.000 0.956 0.000 0.000 0.004 0.040
#> GSM555264     4  0.0603    0.74530 0.000 0.000 0.004 0.980 0.000 0.016
#> GSM555266     2  0.5597    0.23949 0.000 0.544 0.000 0.000 0.252 0.204
#> GSM555268     2  0.2667    0.64686 0.000 0.852 0.000 0.000 0.128 0.020
#> GSM555270     2  0.3543    0.62613 0.000 0.768 0.000 0.000 0.200 0.032
#> GSM555272     4  0.0146    0.75070 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM555274     2  0.1926    0.63986 0.000 0.912 0.000 0.000 0.068 0.020
#> GSM555276     2  0.4184    0.52163 0.000 0.576 0.000 0.000 0.408 0.016
#> GSM555277     2  0.4516    0.19336 0.000 0.564 0.000 0.000 0.400 0.036
#> GSM555279     5  0.5751    0.47417 0.000 0.180 0.000 0.000 0.472 0.348
#> GSM555281     2  0.5545   -0.10617 0.000 0.468 0.000 0.000 0.396 0.136
#> GSM555283     2  0.4704    0.25503 0.000 0.664 0.000 0.000 0.236 0.100
#> GSM555285     5  0.5305    0.54732 0.000 0.052 0.000 0.032 0.572 0.344
#> GSM555287     3  0.3309    0.65529 0.148 0.004 0.816 0.004 0.000 0.028
#> GSM555289     2  0.4372    0.21194 0.000 0.544 0.000 0.000 0.432 0.024
#> GSM555291     2  0.5120    0.11407 0.000 0.600 0.000 0.000 0.280 0.120
#> GSM555293     5  0.4147    0.61288 0.000 0.060 0.000 0.000 0.716 0.224
#> GSM555295     5  0.3349    0.55104 0.000 0.008 0.000 0.000 0.748 0.244
#> GSM555297     3  0.2882    0.66407 0.000 0.000 0.812 0.008 0.000 0.180
#> GSM555299     3  0.0000    0.93000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555301     3  0.0000    0.93000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555303     3  0.0000    0.93000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555305     3  0.0000    0.93000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555307     5  0.4671    0.39154 0.000 0.156 0.000 0.000 0.688 0.156
#> GSM555309     3  0.0000    0.93000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555311     5  0.5151    0.51067 0.000 0.084 0.000 0.000 0.472 0.444
#> GSM555313     2  0.4191    0.58367 0.000 0.732 0.000 0.000 0.180 0.088
#> GSM555315     5  0.3952    0.59160 0.000 0.020 0.000 0.000 0.672 0.308
#> GSM555278     2  0.3901    0.49812 0.000 0.768 0.000 0.000 0.096 0.136
#> GSM555280     2  0.2135    0.65065 0.000 0.872 0.000 0.000 0.128 0.000
#> GSM555282     2  0.1367    0.60606 0.000 0.944 0.000 0.000 0.012 0.044
#> GSM555284     2  0.1867    0.58864 0.000 0.916 0.000 0.000 0.020 0.064
#> GSM555286     2  0.2783    0.64496 0.000 0.836 0.000 0.000 0.148 0.016
#> GSM555288     2  0.4131    0.45226 0.000 0.756 0.000 0.168 0.012 0.064
#> GSM555290     2  0.2442    0.64892 0.000 0.852 0.000 0.000 0.144 0.004
#> GSM555292     2  0.1333    0.60380 0.000 0.944 0.000 0.000 0.008 0.048
#> GSM555294     5  0.5873    0.33681 0.000 0.272 0.000 0.000 0.480 0.248
#> GSM555296     2  0.4334    0.51938 0.000 0.568 0.000 0.000 0.408 0.024
#> GSM555298     3  0.0000    0.93000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555300     3  0.0000    0.93000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555302     3  0.0000    0.93000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555304     3  0.0000    0.93000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555306     3  0.0000    0.93000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555308     3  0.0000    0.93000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555310     3  0.0000    0.93000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555312     2  0.4195    0.57966 0.000 0.724 0.000 0.000 0.200 0.076
#> GSM555314     5  0.5279    0.42625 0.000 0.120 0.000 0.000 0.556 0.324
#> GSM555316     2  0.4224    0.48687 0.000 0.552 0.000 0.000 0.432 0.016
#> GSM555317     5  0.3934    0.27345 0.000 0.260 0.000 0.000 0.708 0.032
#> GSM555319     5  0.4526    0.60037 0.000 0.116 0.000 0.000 0.700 0.184
#> GSM555321     5  0.3860    0.61555 0.000 0.072 0.000 0.000 0.764 0.164
#> GSM555323     5  0.2563    0.60002 0.000 0.052 0.000 0.000 0.876 0.072
#> GSM555325     5  0.4234    0.59618 0.000 0.044 0.000 0.000 0.676 0.280
#> GSM555327     5  0.4098    0.21338 0.000 0.292 0.000 0.000 0.676 0.032
#> GSM555329     5  0.4496    0.60164 0.000 0.116 0.000 0.000 0.704 0.180
#> GSM555331     5  0.2309    0.55154 0.000 0.084 0.000 0.000 0.888 0.028
#> GSM555333     5  0.2218    0.56043 0.000 0.012 0.000 0.000 0.884 0.104
#> GSM555335     5  0.2058    0.57385 0.000 0.056 0.000 0.000 0.908 0.036
#> GSM555337     5  0.4232    0.60524 0.000 0.100 0.000 0.000 0.732 0.168
#> GSM555339     5  0.3295    0.50559 0.000 0.128 0.000 0.000 0.816 0.056
#> GSM555341     5  0.4064    0.27397 0.000 0.336 0.000 0.000 0.644 0.020
#> GSM555343     5  0.4091    0.61252 0.000 0.056 0.000 0.000 0.720 0.224
#> GSM555345     5  0.3422    0.42468 0.000 0.176 0.000 0.000 0.788 0.036
#> GSM555318     5  0.4389   -0.03333 0.000 0.372 0.000 0.000 0.596 0.032
#> GSM555320     2  0.5912    0.05327 0.000 0.440 0.000 0.000 0.344 0.216
#> GSM555322     2  0.3863    0.60540 0.000 0.712 0.000 0.000 0.260 0.028
#> GSM555324     3  0.0000    0.93000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555326     2  0.3699    0.61874 0.000 0.752 0.000 0.000 0.212 0.036
#> GSM555328     2  0.3217    0.63692 0.000 0.768 0.000 0.000 0.224 0.008
#> GSM555330     2  0.4168    0.53028 0.000 0.584 0.000 0.000 0.400 0.016
#> GSM555332     2  0.4168    0.52849 0.000 0.584 0.000 0.000 0.400 0.016
#> GSM555334     2  0.3784    0.59571 0.000 0.680 0.000 0.000 0.308 0.012
#> GSM555336     5  0.5799    0.12336 0.000 0.368 0.000 0.000 0.448 0.184
#> GSM555338     5  0.3377    0.40712 0.000 0.188 0.000 0.000 0.784 0.028
#> GSM555340     5  0.3806    0.61686 0.000 0.068 0.000 0.000 0.768 0.164
#> GSM555342     5  0.5873    0.13133 0.000 0.368 0.000 0.000 0.432 0.200
#> GSM555344     2  0.4066    0.53307 0.000 0.596 0.000 0.000 0.392 0.012
#> GSM555346     5  0.5913    0.34533 0.000 0.256 0.000 0.000 0.468 0.276

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) agent(p) k
#> SD:skmeans 110         9.03e-08 4.34e-01 2
#> SD:skmeans 109         2.28e-12 2.79e-01 3
#> SD:skmeans 106         1.48e-15 9.73e-01 4
#> SD:skmeans  86         2.61e-12 2.97e-06 5
#> SD:skmeans  83         2.54e-13 8.86e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.945       0.979         0.4594 0.533   0.533
#> 3 3 1.000           0.942       0.980         0.1413 0.937   0.883
#> 4 4 0.823           0.778       0.889         0.3030 0.746   0.495
#> 5 5 0.792           0.872       0.914         0.1326 0.925   0.744
#> 6 6 0.777           0.793       0.842         0.0559 0.911   0.634

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1   0.000      0.952 1.000 0.000
#> GSM555239     1   0.000      0.952 1.000 0.000
#> GSM555241     1   0.000      0.952 1.000 0.000
#> GSM555243     1   0.000      0.952 1.000 0.000
#> GSM555245     1   0.000      0.952 1.000 0.000
#> GSM555247     1   0.000      0.952 1.000 0.000
#> GSM555249     1   0.000      0.952 1.000 0.000
#> GSM555251     1   0.000      0.952 1.000 0.000
#> GSM555253     1   0.000      0.952 1.000 0.000
#> GSM555255     1   0.000      0.952 1.000 0.000
#> GSM555257     1   0.000      0.952 1.000 0.000
#> GSM555259     1   0.278      0.913 0.952 0.048
#> GSM555261     2   0.987      0.160 0.432 0.568
#> GSM555263     2   0.000      0.993 0.000 1.000
#> GSM555265     1   0.999      0.124 0.516 0.484
#> GSM555267     2   0.000      0.993 0.000 1.000
#> GSM555269     1   0.963      0.402 0.612 0.388
#> GSM555271     1   0.000      0.952 1.000 0.000
#> GSM555273     2   0.000      0.993 0.000 1.000
#> GSM555275     2   0.000      0.993 0.000 1.000
#> GSM555238     1   0.000      0.952 1.000 0.000
#> GSM555240     1   0.000      0.952 1.000 0.000
#> GSM555242     1   0.000      0.952 1.000 0.000
#> GSM555244     1   0.000      0.952 1.000 0.000
#> GSM555246     1   0.000      0.952 1.000 0.000
#> GSM555248     1   0.000      0.952 1.000 0.000
#> GSM555250     1   0.000      0.952 1.000 0.000
#> GSM555252     1   0.000      0.952 1.000 0.000
#> GSM555254     1   0.000      0.952 1.000 0.000
#> GSM555256     1   0.000      0.952 1.000 0.000
#> GSM555258     2   0.000      0.993 0.000 1.000
#> GSM555260     2   0.000      0.993 0.000 1.000
#> GSM555262     2   0.000      0.993 0.000 1.000
#> GSM555264     1   0.990      0.266 0.560 0.440
#> GSM555266     2   0.000      0.993 0.000 1.000
#> GSM555268     2   0.000      0.993 0.000 1.000
#> GSM555270     2   0.000      0.993 0.000 1.000
#> GSM555272     2   0.000      0.993 0.000 1.000
#> GSM555274     2   0.000      0.993 0.000 1.000
#> GSM555276     2   0.000      0.993 0.000 1.000
#> GSM555277     2   0.000      0.993 0.000 1.000
#> GSM555279     2   0.000      0.993 0.000 1.000
#> GSM555281     2   0.000      0.993 0.000 1.000
#> GSM555283     2   0.000      0.993 0.000 1.000
#> GSM555285     2   0.000      0.993 0.000 1.000
#> GSM555287     1   0.983      0.307 0.576 0.424
#> GSM555289     2   0.000      0.993 0.000 1.000
#> GSM555291     2   0.000      0.993 0.000 1.000
#> GSM555293     2   0.000      0.993 0.000 1.000
#> GSM555295     2   0.000      0.993 0.000 1.000
#> GSM555297     2   0.000      0.993 0.000 1.000
#> GSM555299     1   0.000      0.952 1.000 0.000
#> GSM555301     1   0.163      0.934 0.976 0.024
#> GSM555303     1   0.000      0.952 1.000 0.000
#> GSM555305     1   0.000      0.952 1.000 0.000
#> GSM555307     2   0.000      0.993 0.000 1.000
#> GSM555309     1   0.000      0.952 1.000 0.000
#> GSM555311     2   0.000      0.993 0.000 1.000
#> GSM555313     2   0.000      0.993 0.000 1.000
#> GSM555315     2   0.000      0.993 0.000 1.000
#> GSM555278     2   0.000      0.993 0.000 1.000
#> GSM555280     2   0.000      0.993 0.000 1.000
#> GSM555282     2   0.000      0.993 0.000 1.000
#> GSM555284     2   0.000      0.993 0.000 1.000
#> GSM555286     2   0.000      0.993 0.000 1.000
#> GSM555288     2   0.000      0.993 0.000 1.000
#> GSM555290     2   0.000      0.993 0.000 1.000
#> GSM555292     2   0.000      0.993 0.000 1.000
#> GSM555294     2   0.000      0.993 0.000 1.000
#> GSM555296     2   0.000      0.993 0.000 1.000
#> GSM555298     1   0.224      0.924 0.964 0.036
#> GSM555300     1   0.000      0.952 1.000 0.000
#> GSM555302     1   0.000      0.952 1.000 0.000
#> GSM555304     1   0.000      0.952 1.000 0.000
#> GSM555306     1   0.000      0.952 1.000 0.000
#> GSM555308     1   0.000      0.952 1.000 0.000
#> GSM555310     1   0.000      0.952 1.000 0.000
#> GSM555312     2   0.000      0.993 0.000 1.000
#> GSM555314     2   0.000      0.993 0.000 1.000
#> GSM555316     2   0.000      0.993 0.000 1.000
#> GSM555317     2   0.000      0.993 0.000 1.000
#> GSM555319     2   0.000      0.993 0.000 1.000
#> GSM555321     2   0.000      0.993 0.000 1.000
#> GSM555323     2   0.000      0.993 0.000 1.000
#> GSM555325     2   0.000      0.993 0.000 1.000
#> GSM555327     2   0.000      0.993 0.000 1.000
#> GSM555329     2   0.000      0.993 0.000 1.000
#> GSM555331     2   0.000      0.993 0.000 1.000
#> GSM555333     2   0.000      0.993 0.000 1.000
#> GSM555335     2   0.000      0.993 0.000 1.000
#> GSM555337     2   0.000      0.993 0.000 1.000
#> GSM555339     2   0.000      0.993 0.000 1.000
#> GSM555341     2   0.000      0.993 0.000 1.000
#> GSM555343     2   0.000      0.993 0.000 1.000
#> GSM555345     2   0.000      0.993 0.000 1.000
#> GSM555318     2   0.000      0.993 0.000 1.000
#> GSM555320     2   0.000      0.993 0.000 1.000
#> GSM555322     2   0.000      0.993 0.000 1.000
#> GSM555324     1   0.000      0.952 1.000 0.000
#> GSM555326     2   0.000      0.993 0.000 1.000
#> GSM555328     2   0.000      0.993 0.000 1.000
#> GSM555330     2   0.000      0.993 0.000 1.000
#> GSM555332     2   0.000      0.993 0.000 1.000
#> GSM555334     2   0.000      0.993 0.000 1.000
#> GSM555336     2   0.000      0.993 0.000 1.000
#> GSM555338     2   0.000      0.993 0.000 1.000
#> GSM555340     2   0.000      0.993 0.000 1.000
#> GSM555342     2   0.000      0.993 0.000 1.000
#> GSM555344     2   0.000      0.993 0.000 1.000
#> GSM555346     2   0.000      0.993 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.0000      0.898 1.000 0.000 0.000
#> GSM555239     1  0.0000      0.898 1.000 0.000 0.000
#> GSM555241     1  0.0000      0.898 1.000 0.000 0.000
#> GSM555243     1  0.0000      0.898 1.000 0.000 0.000
#> GSM555245     1  0.0000      0.898 1.000 0.000 0.000
#> GSM555247     1  0.0000      0.898 1.000 0.000 0.000
#> GSM555249     1  0.0000      0.898 1.000 0.000 0.000
#> GSM555251     1  0.0000      0.898 1.000 0.000 0.000
#> GSM555253     1  0.0000      0.898 1.000 0.000 0.000
#> GSM555255     1  0.0000      0.898 1.000 0.000 0.000
#> GSM555257     1  0.4555      0.695 0.800 0.000 0.200
#> GSM555259     1  0.5291      0.597 0.732 0.000 0.268
#> GSM555261     2  0.6302     -0.040 0.480 0.520 0.000
#> GSM555263     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555265     1  0.6299      0.154 0.524 0.476 0.000
#> GSM555267     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555269     3  0.0747      0.983 0.016 0.000 0.984
#> GSM555271     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555273     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555275     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555238     1  0.0000      0.898 1.000 0.000 0.000
#> GSM555240     1  0.0000      0.898 1.000 0.000 0.000
#> GSM555242     1  0.0000      0.898 1.000 0.000 0.000
#> GSM555244     1  0.0000      0.898 1.000 0.000 0.000
#> GSM555246     1  0.0000      0.898 1.000 0.000 0.000
#> GSM555248     1  0.0000      0.898 1.000 0.000 0.000
#> GSM555250     1  0.0000      0.898 1.000 0.000 0.000
#> GSM555252     1  0.0000      0.898 1.000 0.000 0.000
#> GSM555254     1  0.0000      0.898 1.000 0.000 0.000
#> GSM555256     1  0.0000      0.898 1.000 0.000 0.000
#> GSM555258     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555260     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555262     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555264     1  0.6410      0.322 0.576 0.420 0.004
#> GSM555266     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555268     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555270     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555272     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555274     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555276     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555277     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555279     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555281     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555283     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555285     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555287     1  0.6773      0.456 0.636 0.340 0.024
#> GSM555289     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555291     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555293     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555295     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555297     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555299     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555301     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555303     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555305     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555307     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555309     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555311     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555313     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555315     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555278     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555280     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555282     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555284     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555286     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555288     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555290     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555292     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555294     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555296     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555298     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555300     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555302     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555304     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555306     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555308     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555310     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555312     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555314     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555316     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555317     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555319     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555321     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555323     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555325     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555327     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555329     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555331     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555333     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555335     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555337     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555339     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555341     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555343     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555345     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555318     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555320     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555322     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555324     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555326     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555328     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555330     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555332     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555334     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555336     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555338     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555340     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555342     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555344     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555346     2  0.0000      0.992 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555239     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555241     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555243     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555245     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555247     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555249     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555251     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555253     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555255     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555257     2  0.8004    -0.5683 0.020 0.416 0.168 0.396
#> GSM555259     4  0.6094     0.5155 0.000 0.416 0.048 0.536
#> GSM555261     4  0.4898     0.5608 0.000 0.416 0.000 0.584
#> GSM555263     4  0.4898     0.5608 0.000 0.416 0.000 0.584
#> GSM555265     4  0.4898     0.5608 0.000 0.416 0.000 0.584
#> GSM555267     4  0.4898     0.5608 0.000 0.416 0.000 0.584
#> GSM555269     4  0.6024     0.5196 0.000 0.416 0.044 0.540
#> GSM555271     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555273     4  0.0000     0.5716 0.000 0.000 0.000 1.000
#> GSM555275     4  0.0000     0.5716 0.000 0.000 0.000 1.000
#> GSM555238     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555240     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555242     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555244     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555246     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555248     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555250     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555252     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555254     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555256     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555258     4  0.4898     0.5608 0.000 0.416 0.000 0.584
#> GSM555260     4  0.3801     0.0305 0.000 0.220 0.000 0.780
#> GSM555262     4  0.3569     0.1343 0.000 0.196 0.000 0.804
#> GSM555264     4  0.4898     0.5608 0.000 0.416 0.000 0.584
#> GSM555266     2  0.4916     0.9511 0.000 0.576 0.000 0.424
#> GSM555268     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555270     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555272     4  0.4898     0.5608 0.000 0.416 0.000 0.584
#> GSM555274     2  0.4948     0.9356 0.000 0.560 0.000 0.440
#> GSM555276     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555277     4  0.0469     0.5594 0.000 0.012 0.000 0.988
#> GSM555279     4  0.0000     0.5716 0.000 0.000 0.000 1.000
#> GSM555281     4  0.0000     0.5716 0.000 0.000 0.000 1.000
#> GSM555283     4  0.3569     0.1229 0.000 0.196 0.000 0.804
#> GSM555285     4  0.0469     0.5565 0.000 0.012 0.000 0.988
#> GSM555287     4  0.5203     0.5552 0.008 0.416 0.000 0.576
#> GSM555289     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555291     4  0.0000     0.5716 0.000 0.000 0.000 1.000
#> GSM555293     2  0.4948     0.9355 0.000 0.560 0.000 0.440
#> GSM555295     4  0.4898     0.5608 0.000 0.416 0.000 0.584
#> GSM555297     4  0.4898     0.5608 0.000 0.416 0.000 0.584
#> GSM555299     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555301     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555303     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555305     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555307     4  0.0000     0.5716 0.000 0.000 0.000 1.000
#> GSM555309     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555311     4  0.0000     0.5716 0.000 0.000 0.000 1.000
#> GSM555313     4  0.2216     0.4339 0.000 0.092 0.000 0.908
#> GSM555315     4  0.0000     0.5716 0.000 0.000 0.000 1.000
#> GSM555278     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555280     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555282     2  0.4907     0.9536 0.000 0.580 0.000 0.420
#> GSM555284     4  0.4522    -0.3663 0.000 0.320 0.000 0.680
#> GSM555286     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555288     4  0.1118     0.5845 0.000 0.036 0.000 0.964
#> GSM555290     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555292     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555294     2  0.4925     0.9485 0.000 0.572 0.000 0.428
#> GSM555296     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555298     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555300     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555302     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555304     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555306     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555308     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555310     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555312     4  0.0336     0.5639 0.000 0.008 0.000 0.992
#> GSM555314     4  0.4898     0.5608 0.000 0.416 0.000 0.584
#> GSM555316     2  0.4907     0.9544 0.000 0.580 0.000 0.420
#> GSM555317     2  0.4925     0.9476 0.000 0.572 0.000 0.428
#> GSM555319     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555321     2  0.4916     0.9518 0.000 0.576 0.000 0.424
#> GSM555323     4  0.5000    -0.8364 0.000 0.496 0.000 0.504
#> GSM555325     2  0.4925     0.9485 0.000 0.572 0.000 0.428
#> GSM555327     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555329     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555331     4  0.4040    -0.0913 0.000 0.248 0.000 0.752
#> GSM555333     4  0.4406     0.6010 0.000 0.300 0.000 0.700
#> GSM555335     2  0.4994     0.8725 0.000 0.520 0.000 0.480
#> GSM555337     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555339     4  0.0188     0.5674 0.000 0.004 0.000 0.996
#> GSM555341     4  0.4134    -0.1552 0.000 0.260 0.000 0.740
#> GSM555343     2  0.4941     0.9403 0.000 0.564 0.000 0.436
#> GSM555345     4  0.4955     0.5591 0.000 0.444 0.000 0.556
#> GSM555318     2  0.4907     0.9542 0.000 0.580 0.000 0.420
#> GSM555320     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555322     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555324     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555326     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555328     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555330     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555332     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555334     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555336     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555338     2  0.4898     0.9565 0.000 0.584 0.000 0.416
#> GSM555340     2  0.4925     0.9483 0.000 0.572 0.000 0.428
#> GSM555342     2  0.4907     0.9544 0.000 0.580 0.000 0.420
#> GSM555344     2  0.4916     0.9520 0.000 0.576 0.000 0.424
#> GSM555346     2  0.4948     0.9355 0.000 0.560 0.000 0.440

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM555237     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555239     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555257     4  0.0865      0.901 0.004 0.000 0.024 0.972 0.000
#> GSM555259     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000
#> GSM555261     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000
#> GSM555263     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000
#> GSM555265     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000
#> GSM555267     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000
#> GSM555269     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000
#> GSM555271     3  0.0963      0.969 0.000 0.000 0.964 0.036 0.000
#> GSM555273     5  0.1732      0.869 0.000 0.000 0.000 0.080 0.920
#> GSM555275     5  0.1892      0.869 0.000 0.004 0.000 0.080 0.916
#> GSM555238     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555240     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555242     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555244     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555254     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555258     4  0.2891      0.740 0.000 0.000 0.000 0.824 0.176
#> GSM555260     5  0.4072      0.821 0.000 0.108 0.000 0.100 0.792
#> GSM555262     5  0.3427      0.830 0.000 0.108 0.000 0.056 0.836
#> GSM555264     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000
#> GSM555266     2  0.2773      0.831 0.000 0.836 0.000 0.000 0.164
#> GSM555268     2  0.0000      0.861 0.000 1.000 0.000 0.000 0.000
#> GSM555270     2  0.0000      0.861 0.000 1.000 0.000 0.000 0.000
#> GSM555272     5  0.3966      0.553 0.000 0.000 0.000 0.336 0.664
#> GSM555274     5  0.4088      0.565 0.000 0.368 0.000 0.000 0.632
#> GSM555276     5  0.4242      0.384 0.000 0.428 0.000 0.000 0.572
#> GSM555277     5  0.1331      0.836 0.000 0.040 0.000 0.008 0.952
#> GSM555279     5  0.1732      0.869 0.000 0.000 0.000 0.080 0.920
#> GSM555281     5  0.1732      0.869 0.000 0.000 0.000 0.080 0.920
#> GSM555283     5  0.1845      0.835 0.000 0.056 0.000 0.016 0.928
#> GSM555285     5  0.2511      0.864 0.000 0.028 0.000 0.080 0.892
#> GSM555287     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000
#> GSM555289     2  0.3242      0.823 0.000 0.784 0.000 0.000 0.216
#> GSM555291     5  0.2331      0.866 0.000 0.020 0.000 0.080 0.900
#> GSM555293     2  0.4161      0.628 0.000 0.608 0.000 0.000 0.392
#> GSM555295     5  0.1732      0.869 0.000 0.000 0.000 0.080 0.920
#> GSM555297     4  0.1478      0.881 0.000 0.000 0.000 0.936 0.064
#> GSM555299     3  0.0000      0.992 0.000 0.000 1.000 0.000 0.000
#> GSM555301     3  0.0963      0.969 0.000 0.000 0.964 0.036 0.000
#> GSM555303     3  0.0000      0.992 0.000 0.000 1.000 0.000 0.000
#> GSM555305     3  0.0000      0.992 0.000 0.000 1.000 0.000 0.000
#> GSM555307     5  0.2130      0.869 0.000 0.012 0.000 0.080 0.908
#> GSM555309     3  0.0000      0.992 0.000 0.000 1.000 0.000 0.000
#> GSM555311     5  0.1892      0.869 0.000 0.004 0.000 0.080 0.916
#> GSM555313     5  0.5104      0.630 0.000 0.308 0.000 0.060 0.632
#> GSM555315     5  0.2017      0.869 0.000 0.008 0.000 0.080 0.912
#> GSM555278     2  0.2773      0.765 0.000 0.836 0.000 0.000 0.164
#> GSM555280     2  0.0000      0.861 0.000 1.000 0.000 0.000 0.000
#> GSM555282     2  0.0963      0.848 0.000 0.964 0.000 0.000 0.036
#> GSM555284     5  0.4325      0.713 0.000 0.240 0.000 0.036 0.724
#> GSM555286     2  0.0000      0.861 0.000 1.000 0.000 0.000 0.000
#> GSM555288     5  0.3800      0.805 0.000 0.108 0.000 0.080 0.812
#> GSM555290     2  0.0162      0.861 0.000 0.996 0.000 0.000 0.004
#> GSM555292     2  0.0290      0.858 0.000 0.992 0.000 0.000 0.008
#> GSM555294     2  0.2424      0.835 0.000 0.868 0.000 0.000 0.132
#> GSM555296     2  0.1478      0.861 0.000 0.936 0.000 0.000 0.064
#> GSM555298     3  0.0880      0.972 0.000 0.000 0.968 0.032 0.000
#> GSM555300     3  0.0000      0.992 0.000 0.000 1.000 0.000 0.000
#> GSM555302     3  0.0000      0.992 0.000 0.000 1.000 0.000 0.000
#> GSM555304     3  0.0000      0.992 0.000 0.000 1.000 0.000 0.000
#> GSM555306     3  0.0000      0.992 0.000 0.000 1.000 0.000 0.000
#> GSM555308     3  0.0000      0.992 0.000 0.000 1.000 0.000 0.000
#> GSM555310     3  0.0000      0.992 0.000 0.000 1.000 0.000 0.000
#> GSM555312     5  0.2423      0.865 0.000 0.024 0.000 0.080 0.896
#> GSM555314     5  0.1892      0.869 0.000 0.004 0.000 0.080 0.916
#> GSM555316     2  0.0703      0.857 0.000 0.976 0.000 0.000 0.024
#> GSM555317     2  0.3949      0.716 0.000 0.668 0.000 0.000 0.332
#> GSM555319     2  0.3242      0.823 0.000 0.784 0.000 0.000 0.216
#> GSM555321     2  0.3039      0.836 0.000 0.808 0.000 0.000 0.192
#> GSM555323     5  0.0963      0.825 0.000 0.036 0.000 0.000 0.964
#> GSM555325     2  0.1908      0.857 0.000 0.908 0.000 0.000 0.092
#> GSM555327     2  0.3242      0.823 0.000 0.784 0.000 0.000 0.216
#> GSM555329     2  0.3242      0.823 0.000 0.784 0.000 0.000 0.216
#> GSM555331     5  0.2020      0.766 0.000 0.100 0.000 0.000 0.900
#> GSM555333     5  0.1732      0.869 0.000 0.000 0.000 0.080 0.920
#> GSM555335     2  0.4201      0.599 0.000 0.592 0.000 0.000 0.408
#> GSM555337     2  0.3039      0.833 0.000 0.808 0.000 0.000 0.192
#> GSM555339     5  0.1211      0.840 0.000 0.024 0.000 0.016 0.960
#> GSM555341     5  0.0794      0.830 0.000 0.028 0.000 0.000 0.972
#> GSM555343     2  0.4114      0.654 0.000 0.624 0.000 0.000 0.376
#> GSM555345     4  0.4481      0.376 0.000 0.008 0.000 0.576 0.416
#> GSM555318     2  0.3395      0.815 0.000 0.764 0.000 0.000 0.236
#> GSM555320     2  0.0000      0.861 0.000 1.000 0.000 0.000 0.000
#> GSM555322     2  0.0162      0.861 0.000 0.996 0.000 0.000 0.004
#> GSM555324     3  0.0000      0.992 0.000 0.000 1.000 0.000 0.000
#> GSM555326     2  0.0000      0.861 0.000 1.000 0.000 0.000 0.000
#> GSM555328     2  0.0162      0.862 0.000 0.996 0.000 0.000 0.004
#> GSM555330     2  0.0000      0.861 0.000 1.000 0.000 0.000 0.000
#> GSM555332     2  0.3039      0.834 0.000 0.808 0.000 0.000 0.192
#> GSM555334     2  0.0000      0.861 0.000 1.000 0.000 0.000 0.000
#> GSM555336     2  0.0162      0.861 0.000 0.996 0.000 0.000 0.004
#> GSM555338     2  0.3242      0.823 0.000 0.784 0.000 0.000 0.216
#> GSM555340     2  0.3274      0.821 0.000 0.780 0.000 0.000 0.220
#> GSM555342     2  0.3424      0.796 0.000 0.760 0.000 0.000 0.240
#> GSM555344     2  0.0703      0.857 0.000 0.976 0.000 0.000 0.024
#> GSM555346     2  0.3661      0.654 0.000 0.724 0.000 0.000 0.276

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM555237     1  0.0790      0.984 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM555239     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0790      0.984 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM555257     4  0.2416      0.853 0.000 0.000 0.000 0.844 0.000 0.156
#> GSM555259     4  0.0000      0.918 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555261     4  0.0000      0.918 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555263     4  0.0000      0.918 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555265     4  0.0000      0.918 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555267     4  0.0000      0.918 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555269     4  0.0000      0.918 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555271     3  0.1765      0.906 0.000 0.000 0.904 0.096 0.000 0.000
#> GSM555273     5  0.3786      0.764 0.000 0.064 0.000 0.000 0.768 0.168
#> GSM555275     5  0.2631      0.779 0.000 0.000 0.000 0.000 0.820 0.180
#> GSM555238     1  0.0790      0.984 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM555240     1  0.0790      0.984 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM555242     1  0.0790      0.984 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM555244     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0260      0.988 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM555248     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.0790      0.984 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM555254     1  0.0790      0.984 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM555256     1  0.0790      0.984 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM555258     4  0.5701      0.504 0.000 0.008 0.000 0.540 0.296 0.156
#> GSM555260     5  0.3792      0.638 0.000 0.048 0.000 0.012 0.784 0.156
#> GSM555262     5  0.1501      0.733 0.000 0.076 0.000 0.000 0.924 0.000
#> GSM555264     4  0.3681      0.822 0.000 0.064 0.000 0.780 0.000 0.156
#> GSM555266     2  0.3774      0.476 0.000 0.592 0.000 0.000 0.408 0.000
#> GSM555268     2  0.1765      0.774 0.000 0.904 0.000 0.000 0.096 0.000
#> GSM555270     2  0.1663      0.794 0.000 0.912 0.000 0.000 0.000 0.088
#> GSM555272     5  0.3821      0.599 0.000 0.004 0.000 0.064 0.776 0.156
#> GSM555274     5  0.2941      0.622 0.000 0.220 0.000 0.000 0.780 0.000
#> GSM555276     6  0.5665      0.533 0.000 0.328 0.000 0.000 0.172 0.500
#> GSM555277     5  0.4456      0.170 0.000 0.028 0.000 0.000 0.524 0.448
#> GSM555279     5  0.2730      0.776 0.000 0.000 0.000 0.000 0.808 0.192
#> GSM555281     5  0.2631      0.779 0.000 0.000 0.000 0.000 0.820 0.180
#> GSM555283     5  0.4570      0.610 0.000 0.092 0.000 0.000 0.680 0.228
#> GSM555285     5  0.4964      0.665 0.000 0.152 0.000 0.000 0.648 0.200
#> GSM555287     4  0.0146      0.917 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM555289     6  0.3390      0.761 0.000 0.296 0.000 0.000 0.000 0.704
#> GSM555291     5  0.3534      0.737 0.000 0.076 0.000 0.000 0.800 0.124
#> GSM555293     6  0.4084      0.580 0.000 0.400 0.000 0.000 0.012 0.588
#> GSM555295     5  0.3885      0.759 0.000 0.064 0.000 0.000 0.756 0.180
#> GSM555297     4  0.2433      0.833 0.000 0.000 0.000 0.884 0.072 0.044
#> GSM555299     3  0.0632      0.970 0.000 0.000 0.976 0.000 0.000 0.024
#> GSM555301     3  0.1765      0.906 0.000 0.000 0.904 0.096 0.000 0.000
#> GSM555303     3  0.0632      0.970 0.000 0.000 0.976 0.000 0.000 0.024
#> GSM555305     3  0.0000      0.970 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555307     5  0.4469      0.243 0.000 0.028 0.000 0.000 0.504 0.468
#> GSM555309     3  0.0632      0.970 0.000 0.000 0.976 0.000 0.000 0.024
#> GSM555311     5  0.3852      0.761 0.000 0.064 0.000 0.000 0.760 0.176
#> GSM555313     5  0.2048      0.708 0.000 0.120 0.000 0.000 0.880 0.000
#> GSM555315     5  0.3916      0.757 0.000 0.064 0.000 0.000 0.752 0.184
#> GSM555278     2  0.3774      0.457 0.000 0.592 0.000 0.000 0.408 0.000
#> GSM555280     2  0.1921      0.797 0.000 0.916 0.000 0.000 0.052 0.032
#> GSM555282     2  0.3620      0.556 0.000 0.648 0.000 0.000 0.352 0.000
#> GSM555284     5  0.1714      0.725 0.000 0.092 0.000 0.000 0.908 0.000
#> GSM555286     2  0.1610      0.796 0.000 0.916 0.000 0.000 0.000 0.084
#> GSM555288     5  0.0972      0.744 0.000 0.028 0.000 0.000 0.964 0.008
#> GSM555290     2  0.1663      0.794 0.000 0.912 0.000 0.000 0.000 0.088
#> GSM555292     2  0.2048      0.761 0.000 0.880 0.000 0.000 0.120 0.000
#> GSM555294     2  0.2136      0.751 0.000 0.904 0.000 0.000 0.048 0.048
#> GSM555296     2  0.3655      0.712 0.000 0.792 0.000 0.000 0.112 0.096
#> GSM555298     3  0.1501      0.923 0.000 0.000 0.924 0.076 0.000 0.000
#> GSM555300     3  0.0632      0.970 0.000 0.000 0.976 0.000 0.000 0.024
#> GSM555302     3  0.0000      0.970 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555304     3  0.0000      0.970 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555306     3  0.0000      0.970 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555308     3  0.0632      0.970 0.000 0.000 0.976 0.000 0.000 0.024
#> GSM555310     3  0.0000      0.970 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555312     5  0.1408      0.761 0.000 0.020 0.000 0.000 0.944 0.036
#> GSM555314     5  0.3122      0.780 0.000 0.020 0.000 0.000 0.804 0.176
#> GSM555316     2  0.1753      0.795 0.000 0.912 0.000 0.000 0.004 0.084
#> GSM555317     6  0.4012      0.749 0.000 0.176 0.000 0.000 0.076 0.748
#> GSM555319     6  0.3547      0.737 0.000 0.332 0.000 0.000 0.000 0.668
#> GSM555321     6  0.3578      0.717 0.000 0.340 0.000 0.000 0.000 0.660
#> GSM555323     6  0.4074      0.673 0.000 0.108 0.000 0.000 0.140 0.752
#> GSM555325     2  0.1970      0.764 0.000 0.912 0.000 0.000 0.028 0.060
#> GSM555327     6  0.3390      0.761 0.000 0.296 0.000 0.000 0.000 0.704
#> GSM555329     6  0.3833      0.553 0.000 0.444 0.000 0.000 0.000 0.556
#> GSM555331     6  0.3776      0.601 0.000 0.048 0.000 0.000 0.196 0.756
#> GSM555333     5  0.2823      0.770 0.000 0.000 0.000 0.000 0.796 0.204
#> GSM555335     6  0.4545      0.733 0.000 0.224 0.000 0.000 0.092 0.684
#> GSM555337     6  0.3756      0.649 0.000 0.400 0.000 0.000 0.000 0.600
#> GSM555339     6  0.4210      0.287 0.000 0.028 0.000 0.000 0.336 0.636
#> GSM555341     6  0.4666      0.643 0.000 0.108 0.000 0.000 0.216 0.676
#> GSM555343     6  0.3240      0.767 0.000 0.244 0.000 0.000 0.004 0.752
#> GSM555345     6  0.4757      0.572 0.000 0.028 0.000 0.208 0.064 0.700
#> GSM555318     6  0.4455      0.748 0.000 0.232 0.000 0.000 0.080 0.688
#> GSM555320     2  0.0891      0.785 0.000 0.968 0.000 0.000 0.008 0.024
#> GSM555322     2  0.1714      0.792 0.000 0.908 0.000 0.000 0.000 0.092
#> GSM555324     3  0.0632      0.970 0.000 0.000 0.976 0.000 0.000 0.024
#> GSM555326     2  0.1327      0.802 0.000 0.936 0.000 0.000 0.000 0.064
#> GSM555328     2  0.1501      0.798 0.000 0.924 0.000 0.000 0.000 0.076
#> GSM555330     2  0.2562      0.676 0.000 0.828 0.000 0.000 0.000 0.172
#> GSM555332     6  0.4696      0.682 0.000 0.356 0.000 0.000 0.056 0.588
#> GSM555334     2  0.2048      0.763 0.000 0.880 0.000 0.000 0.000 0.120
#> GSM555336     2  0.0632      0.792 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM555338     6  0.3390      0.761 0.000 0.296 0.000 0.000 0.000 0.704
#> GSM555340     6  0.3390      0.761 0.000 0.296 0.000 0.000 0.000 0.704
#> GSM555342     2  0.3668      0.478 0.000 0.744 0.000 0.000 0.028 0.228
#> GSM555344     2  0.2404      0.796 0.000 0.884 0.000 0.000 0.036 0.080
#> GSM555346     2  0.4154      0.566 0.000 0.744 0.000 0.000 0.144 0.112

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) agent(p) k
#> SD:pam 105         1.39e-06 9.95e-01 2
#> SD:pam 106         7.06e-13 8.43e-01 3
#> SD:pam 101         3.49e-14 7.90e-04 4
#> SD:pam 108         3.64e-16 5.44e-03 5
#> SD:pam 104         2.17e-18 8.91e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.841           0.887       0.959         0.4707 0.538   0.538
#> 3 3 0.871           0.923       0.962         0.2260 0.815   0.674
#> 4 4 0.662           0.784       0.861         0.0891 0.919   0.814
#> 5 5 0.695           0.812       0.849         0.0799 0.949   0.873
#> 6 6 0.644           0.696       0.787         0.0736 0.998   0.994

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1  0.0000     0.9697 1.000 0.000
#> GSM555239     1  0.0000     0.9697 1.000 0.000
#> GSM555241     1  0.0000     0.9697 1.000 0.000
#> GSM555243     1  0.0000     0.9697 1.000 0.000
#> GSM555245     1  0.0000     0.9697 1.000 0.000
#> GSM555247     1  0.0000     0.9697 1.000 0.000
#> GSM555249     1  0.0000     0.9697 1.000 0.000
#> GSM555251     1  0.0000     0.9697 1.000 0.000
#> GSM555253     1  0.0000     0.9697 1.000 0.000
#> GSM555255     1  0.0000     0.9697 1.000 0.000
#> GSM555257     1  0.4022     0.8884 0.920 0.080
#> GSM555259     1  0.8909     0.5250 0.692 0.308
#> GSM555261     2  0.9993     0.0960 0.484 0.516
#> GSM555263     2  0.9993     0.0960 0.484 0.516
#> GSM555265     2  0.9996     0.0813 0.488 0.512
#> GSM555267     2  0.9993     0.0960 0.484 0.516
#> GSM555269     1  0.7219     0.7274 0.800 0.200
#> GSM555271     1  0.0000     0.9697 1.000 0.000
#> GSM555273     2  0.1184     0.9335 0.016 0.984
#> GSM555275     2  0.0000     0.9466 0.000 1.000
#> GSM555238     1  0.0000     0.9697 1.000 0.000
#> GSM555240     1  0.0000     0.9697 1.000 0.000
#> GSM555242     1  0.0000     0.9697 1.000 0.000
#> GSM555244     1  0.0000     0.9697 1.000 0.000
#> GSM555246     1  0.0000     0.9697 1.000 0.000
#> GSM555248     1  0.0000     0.9697 1.000 0.000
#> GSM555250     1  0.0000     0.9697 1.000 0.000
#> GSM555252     1  0.0000     0.9697 1.000 0.000
#> GSM555254     1  0.0000     0.9697 1.000 0.000
#> GSM555256     1  0.0000     0.9697 1.000 0.000
#> GSM555258     2  0.9993     0.0960 0.484 0.516
#> GSM555260     2  0.0938     0.9370 0.012 0.988
#> GSM555262     2  0.0000     0.9466 0.000 1.000
#> GSM555264     1  0.0000     0.9697 1.000 0.000
#> GSM555266     2  0.0000     0.9466 0.000 1.000
#> GSM555268     2  0.0000     0.9466 0.000 1.000
#> GSM555270     2  0.0000     0.9466 0.000 1.000
#> GSM555272     2  0.9427     0.4369 0.360 0.640
#> GSM555274     2  0.0000     0.9466 0.000 1.000
#> GSM555276     2  0.0000     0.9466 0.000 1.000
#> GSM555277     2  0.0000     0.9466 0.000 1.000
#> GSM555279     2  0.5059     0.8378 0.112 0.888
#> GSM555281     2  0.0000     0.9466 0.000 1.000
#> GSM555283     2  0.0000     0.9466 0.000 1.000
#> GSM555285     2  0.4022     0.8724 0.080 0.920
#> GSM555287     1  0.9963     0.0700 0.536 0.464
#> GSM555289     2  0.0000     0.9466 0.000 1.000
#> GSM555291     2  0.0000     0.9466 0.000 1.000
#> GSM555293     2  0.0000     0.9466 0.000 1.000
#> GSM555295     2  0.0000     0.9466 0.000 1.000
#> GSM555297     2  0.9993     0.0960 0.484 0.516
#> GSM555299     1  0.0000     0.9697 1.000 0.000
#> GSM555301     1  0.0000     0.9697 1.000 0.000
#> GSM555303     1  0.0000     0.9697 1.000 0.000
#> GSM555305     1  0.0000     0.9697 1.000 0.000
#> GSM555307     2  0.0000     0.9466 0.000 1.000
#> GSM555309     1  0.0000     0.9697 1.000 0.000
#> GSM555311     2  0.0000     0.9466 0.000 1.000
#> GSM555313     2  0.0000     0.9466 0.000 1.000
#> GSM555315     2  0.0000     0.9466 0.000 1.000
#> GSM555278     2  0.0000     0.9466 0.000 1.000
#> GSM555280     2  0.0000     0.9466 0.000 1.000
#> GSM555282     2  0.0000     0.9466 0.000 1.000
#> GSM555284     2  0.0000     0.9466 0.000 1.000
#> GSM555286     2  0.0000     0.9466 0.000 1.000
#> GSM555288     2  0.0000     0.9466 0.000 1.000
#> GSM555290     2  0.0000     0.9466 0.000 1.000
#> GSM555292     2  0.0000     0.9466 0.000 1.000
#> GSM555294     2  0.0000     0.9466 0.000 1.000
#> GSM555296     2  0.0000     0.9466 0.000 1.000
#> GSM555298     1  0.0000     0.9697 1.000 0.000
#> GSM555300     1  0.0000     0.9697 1.000 0.000
#> GSM555302     1  0.0000     0.9697 1.000 0.000
#> GSM555304     1  0.0000     0.9697 1.000 0.000
#> GSM555306     1  0.0000     0.9697 1.000 0.000
#> GSM555308     1  0.0000     0.9697 1.000 0.000
#> GSM555310     1  0.0000     0.9697 1.000 0.000
#> GSM555312     2  0.0000     0.9466 0.000 1.000
#> GSM555314     2  0.0000     0.9466 0.000 1.000
#> GSM555316     2  0.0000     0.9466 0.000 1.000
#> GSM555317     2  0.0000     0.9466 0.000 1.000
#> GSM555319     2  0.0000     0.9466 0.000 1.000
#> GSM555321     2  0.0000     0.9466 0.000 1.000
#> GSM555323     2  0.0000     0.9466 0.000 1.000
#> GSM555325     2  0.0000     0.9466 0.000 1.000
#> GSM555327     2  0.0000     0.9466 0.000 1.000
#> GSM555329     2  0.0000     0.9466 0.000 1.000
#> GSM555331     2  0.0000     0.9466 0.000 1.000
#> GSM555333     2  0.0000     0.9466 0.000 1.000
#> GSM555335     2  0.0000     0.9466 0.000 1.000
#> GSM555337     2  0.0000     0.9466 0.000 1.000
#> GSM555339     2  0.0000     0.9466 0.000 1.000
#> GSM555341     2  0.0000     0.9466 0.000 1.000
#> GSM555343     2  0.0000     0.9466 0.000 1.000
#> GSM555345     2  0.0672     0.9403 0.008 0.992
#> GSM555318     2  0.0000     0.9466 0.000 1.000
#> GSM555320     2  0.0000     0.9466 0.000 1.000
#> GSM555322     2  0.0000     0.9466 0.000 1.000
#> GSM555324     1  0.0000     0.9697 1.000 0.000
#> GSM555326     2  0.0000     0.9466 0.000 1.000
#> GSM555328     2  0.0000     0.9466 0.000 1.000
#> GSM555330     2  0.0000     0.9466 0.000 1.000
#> GSM555332     2  0.0000     0.9466 0.000 1.000
#> GSM555334     2  0.0000     0.9466 0.000 1.000
#> GSM555336     2  0.0000     0.9466 0.000 1.000
#> GSM555338     2  0.0000     0.9466 0.000 1.000
#> GSM555340     2  0.0000     0.9466 0.000 1.000
#> GSM555342     2  0.0000     0.9466 0.000 1.000
#> GSM555344     2  0.0000     0.9466 0.000 1.000
#> GSM555346     2  0.0000     0.9466 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555239     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555241     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555243     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555245     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555247     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555249     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555251     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555253     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555255     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555257     3  0.5378      0.751 0.008 0.236 0.756
#> GSM555259     3  0.1860      0.854 0.000 0.052 0.948
#> GSM555261     3  0.3340      0.834 0.000 0.120 0.880
#> GSM555263     3  0.6215      0.352 0.000 0.428 0.572
#> GSM555265     3  0.3192      0.838 0.000 0.112 0.888
#> GSM555267     3  0.3192      0.838 0.000 0.112 0.888
#> GSM555269     3  0.1989      0.854 0.004 0.048 0.948
#> GSM555271     3  0.0424      0.857 0.008 0.000 0.992
#> GSM555273     3  0.6267      0.345 0.000 0.452 0.548
#> GSM555275     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555238     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555240     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555242     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555244     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555246     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555248     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555250     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555252     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555254     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555256     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555258     3  0.5058      0.744 0.000 0.244 0.756
#> GSM555260     2  0.5098      0.621 0.000 0.752 0.248
#> GSM555262     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555264     3  0.6158      0.762 0.052 0.188 0.760
#> GSM555266     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555268     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555270     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555272     3  0.5363      0.710 0.000 0.276 0.724
#> GSM555274     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555276     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555277     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555279     2  0.5650      0.492 0.000 0.688 0.312
#> GSM555281     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555283     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555285     3  0.5058      0.744 0.000 0.244 0.756
#> GSM555287     3  0.4982      0.809 0.036 0.136 0.828
#> GSM555289     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555291     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555293     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555295     2  0.1031      0.960 0.000 0.976 0.024
#> GSM555297     3  0.3192      0.838 0.000 0.112 0.888
#> GSM555299     3  0.0424      0.857 0.008 0.000 0.992
#> GSM555301     3  0.0424      0.857 0.008 0.000 0.992
#> GSM555303     3  0.0424      0.857 0.008 0.000 0.992
#> GSM555305     3  0.0424      0.857 0.008 0.000 0.992
#> GSM555307     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555309     3  0.0424      0.857 0.008 0.000 0.992
#> GSM555311     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555313     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555315     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555278     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555280     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555282     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555284     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555286     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555288     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555290     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555292     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555294     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555296     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555298     3  0.0424      0.857 0.008 0.000 0.992
#> GSM555300     3  0.0424      0.857 0.008 0.000 0.992
#> GSM555302     3  0.0424      0.857 0.008 0.000 0.992
#> GSM555304     3  0.0424      0.857 0.008 0.000 0.992
#> GSM555306     3  0.0424      0.857 0.008 0.000 0.992
#> GSM555308     3  0.0424      0.857 0.008 0.000 0.992
#> GSM555310     3  0.0424      0.857 0.008 0.000 0.992
#> GSM555312     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555314     2  0.1643      0.938 0.000 0.956 0.044
#> GSM555316     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555317     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555319     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555321     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555323     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555325     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555327     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555329     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555331     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555333     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555335     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555337     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555339     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555341     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555343     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555345     2  0.5733      0.443 0.000 0.676 0.324
#> GSM555318     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555320     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555322     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555324     3  0.0424      0.857 0.008 0.000 0.992
#> GSM555326     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555328     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555330     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555332     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555334     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555336     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555338     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555340     2  0.0237      0.979 0.000 0.996 0.004
#> GSM555342     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555344     2  0.0000      0.978 0.000 1.000 0.000
#> GSM555346     2  0.0237      0.978 0.000 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.3074      0.823 0.848 0.000 0.000 0.152
#> GSM555239     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> GSM555241     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> GSM555243     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> GSM555245     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> GSM555247     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> GSM555249     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> GSM555251     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> GSM555253     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> GSM555255     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> GSM555257     4  0.8510      0.590 0.064 0.208 0.220 0.508
#> GSM555259     4  0.7736      0.726 0.012 0.244 0.224 0.520
#> GSM555261     4  0.7736      0.726 0.012 0.244 0.224 0.520
#> GSM555263     4  0.7798      0.725 0.012 0.256 0.224 0.508
#> GSM555265     4  0.7736      0.726 0.012 0.244 0.224 0.520
#> GSM555267     4  0.7711      0.726 0.012 0.244 0.220 0.524
#> GSM555269     4  0.7496      0.509 0.012 0.144 0.328 0.516
#> GSM555271     3  0.0188      0.996 0.000 0.000 0.996 0.004
#> GSM555273     4  0.6334      0.113 0.000 0.456 0.060 0.484
#> GSM555275     2  0.3907      0.762 0.000 0.768 0.000 0.232
#> GSM555238     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> GSM555240     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> GSM555242     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> GSM555244     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> GSM555246     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> GSM555248     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> GSM555250     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> GSM555252     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> GSM555254     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> GSM555256     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> GSM555258     2  0.6699     -0.301 0.008 0.556 0.076 0.360
#> GSM555260     2  0.3970      0.618 0.000 0.840 0.076 0.084
#> GSM555262     2  0.0592      0.798 0.000 0.984 0.000 0.016
#> GSM555264     4  0.6966      0.569 0.012 0.400 0.080 0.508
#> GSM555266     2  0.1389      0.775 0.000 0.952 0.000 0.048
#> GSM555268     2  0.0188      0.801 0.000 0.996 0.000 0.004
#> GSM555270     2  0.0336      0.803 0.000 0.992 0.000 0.008
#> GSM555272     2  0.6567     -0.293 0.004 0.560 0.076 0.360
#> GSM555274     2  0.1389      0.775 0.000 0.952 0.000 0.048
#> GSM555276     2  0.0336      0.803 0.000 0.992 0.000 0.008
#> GSM555277     2  0.3726      0.780 0.000 0.788 0.000 0.212
#> GSM555279     4  0.7252      0.475 0.000 0.420 0.144 0.436
#> GSM555281     2  0.4807      0.713 0.000 0.728 0.024 0.248
#> GSM555283     2  0.3610      0.783 0.000 0.800 0.000 0.200
#> GSM555285     4  0.6451      0.157 0.000 0.456 0.068 0.476
#> GSM555287     4  0.6335      0.329 0.032 0.060 0.228 0.680
#> GSM555289     2  0.3726      0.784 0.000 0.788 0.000 0.212
#> GSM555291     2  0.3569      0.784 0.000 0.804 0.000 0.196
#> GSM555293     2  0.3649      0.783 0.000 0.796 0.000 0.204
#> GSM555295     2  0.4999      0.595 0.000 0.660 0.012 0.328
#> GSM555297     4  0.7711      0.726 0.012 0.244 0.220 0.524
#> GSM555299     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM555301     3  0.0188      0.996 0.000 0.000 0.996 0.004
#> GSM555303     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM555305     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM555307     2  0.3649      0.781 0.000 0.796 0.000 0.204
#> GSM555309     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM555311     2  0.3764      0.774 0.000 0.784 0.000 0.216
#> GSM555313     2  0.0336      0.801 0.000 0.992 0.000 0.008
#> GSM555315     2  0.4040      0.748 0.000 0.752 0.000 0.248
#> GSM555278     2  0.0188      0.801 0.000 0.996 0.000 0.004
#> GSM555280     2  0.0336      0.803 0.000 0.992 0.000 0.008
#> GSM555282     2  0.0336      0.801 0.000 0.992 0.000 0.008
#> GSM555284     2  0.1792      0.762 0.000 0.932 0.000 0.068
#> GSM555286     2  0.0336      0.803 0.000 0.992 0.000 0.008
#> GSM555288     2  0.0336      0.801 0.000 0.992 0.000 0.008
#> GSM555290     2  0.0336      0.803 0.000 0.992 0.000 0.008
#> GSM555292     2  0.0000      0.802 0.000 1.000 0.000 0.000
#> GSM555294     2  0.1118      0.790 0.000 0.964 0.000 0.036
#> GSM555296     2  0.3547      0.768 0.000 0.864 0.064 0.072
#> GSM555298     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM555300     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM555302     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM555304     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM555306     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM555308     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM555310     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM555312     2  0.0336      0.801 0.000 0.992 0.000 0.008
#> GSM555314     4  0.5472      0.206 0.000 0.440 0.016 0.544
#> GSM555316     2  0.0336      0.803 0.000 0.992 0.000 0.008
#> GSM555317     2  0.3726      0.780 0.000 0.788 0.000 0.212
#> GSM555319     2  0.3649      0.784 0.000 0.796 0.000 0.204
#> GSM555321     2  0.3649      0.784 0.000 0.796 0.000 0.204
#> GSM555323     2  0.3528      0.785 0.000 0.808 0.000 0.192
#> GSM555325     2  0.3975      0.764 0.000 0.760 0.000 0.240
#> GSM555327     2  0.3649      0.784 0.000 0.796 0.000 0.204
#> GSM555329     2  0.3688      0.783 0.000 0.792 0.000 0.208
#> GSM555331     2  0.3610      0.785 0.000 0.800 0.000 0.200
#> GSM555333     2  0.3907      0.763 0.000 0.768 0.000 0.232
#> GSM555335     2  0.3569      0.784 0.000 0.804 0.000 0.196
#> GSM555337     2  0.3610      0.785 0.000 0.800 0.000 0.200
#> GSM555339     2  0.3610      0.783 0.000 0.800 0.000 0.200
#> GSM555341     2  0.4238      0.780 0.000 0.796 0.028 0.176
#> GSM555343     2  0.3528      0.785 0.000 0.808 0.000 0.192
#> GSM555345     2  0.7166      0.116 0.000 0.544 0.176 0.280
#> GSM555318     2  0.3837      0.773 0.000 0.776 0.000 0.224
#> GSM555320     2  0.0707      0.792 0.000 0.980 0.000 0.020
#> GSM555322     2  0.0336      0.803 0.000 0.992 0.000 0.008
#> GSM555324     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM555326     2  0.0336      0.803 0.000 0.992 0.000 0.008
#> GSM555328     2  0.0336      0.803 0.000 0.992 0.000 0.008
#> GSM555330     2  0.0336      0.803 0.000 0.992 0.000 0.008
#> GSM555332     2  0.0469      0.802 0.000 0.988 0.000 0.012
#> GSM555334     2  0.0817      0.795 0.000 0.976 0.000 0.024
#> GSM555336     2  0.0469      0.804 0.000 0.988 0.000 0.012
#> GSM555338     2  0.3649      0.784 0.000 0.796 0.000 0.204
#> GSM555340     2  0.3610      0.785 0.000 0.800 0.000 0.200
#> GSM555342     2  0.1022      0.783 0.000 0.968 0.000 0.032
#> GSM555344     2  0.1022      0.807 0.000 0.968 0.000 0.032
#> GSM555346     2  0.3649      0.533 0.000 0.796 0.000 0.204

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM555237     1  0.5853     0.6251 0.704 0.004 0.076 0.088 0.128
#> GSM555239     1  0.1851     0.9438 0.912 0.000 0.000 0.088 0.000
#> GSM555241     1  0.1851     0.9438 0.912 0.000 0.000 0.088 0.000
#> GSM555243     1  0.1851     0.9438 0.912 0.000 0.000 0.088 0.000
#> GSM555245     1  0.1851     0.9438 0.912 0.000 0.000 0.088 0.000
#> GSM555247     1  0.1851     0.9438 0.912 0.000 0.000 0.088 0.000
#> GSM555249     1  0.1851     0.9438 0.912 0.000 0.000 0.088 0.000
#> GSM555251     1  0.1851     0.9438 0.912 0.000 0.000 0.088 0.000
#> GSM555253     1  0.1851     0.9438 0.912 0.000 0.000 0.088 0.000
#> GSM555255     1  0.1851     0.9438 0.912 0.000 0.000 0.088 0.000
#> GSM555257     5  0.6613     0.0988 0.008 0.012 0.136 0.316 0.528
#> GSM555259     4  0.2891     0.8084 0.000 0.000 0.176 0.824 0.000
#> GSM555261     4  0.3689     0.8912 0.000 0.076 0.092 0.828 0.004
#> GSM555263     4  0.3702     0.8831 0.000 0.084 0.096 0.820 0.000
#> GSM555265     4  0.3689     0.8912 0.000 0.076 0.092 0.828 0.004
#> GSM555267     4  0.3748     0.8871 0.000 0.080 0.092 0.824 0.004
#> GSM555269     4  0.2966     0.8028 0.000 0.000 0.184 0.816 0.000
#> GSM555271     3  0.0880     0.9347 0.000 0.000 0.968 0.032 0.000
#> GSM555273     5  0.4761     0.5378 0.000 0.144 0.000 0.124 0.732
#> GSM555275     2  0.3796     0.7965 0.000 0.700 0.000 0.000 0.300
#> GSM555238     1  0.0000     0.9478 1.000 0.000 0.000 0.000 0.000
#> GSM555240     1  0.0162     0.9462 0.996 0.000 0.000 0.000 0.004
#> GSM555242     1  0.0000     0.9478 1.000 0.000 0.000 0.000 0.000
#> GSM555244     1  0.0000     0.9478 1.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000     0.9478 1.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000     0.9478 1.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000     0.9478 1.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.0000     0.9478 1.000 0.000 0.000 0.000 0.000
#> GSM555254     1  0.0000     0.9478 1.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0000     0.9478 1.000 0.000 0.000 0.000 0.000
#> GSM555258     5  0.5948     0.6167 0.000 0.264 0.000 0.156 0.580
#> GSM555260     2  0.5093     0.4396 0.000 0.696 0.000 0.124 0.180
#> GSM555262     2  0.2230     0.7961 0.000 0.884 0.000 0.000 0.116
#> GSM555264     5  0.5602     0.5277 0.004 0.132 0.000 0.216 0.648
#> GSM555266     2  0.2773     0.7629 0.000 0.836 0.000 0.000 0.164
#> GSM555268     2  0.2020     0.7952 0.000 0.900 0.000 0.000 0.100
#> GSM555270     2  0.0000     0.8011 0.000 1.000 0.000 0.000 0.000
#> GSM555272     5  0.5961     0.6199 0.000 0.260 0.000 0.160 0.580
#> GSM555274     2  0.2561     0.7799 0.000 0.856 0.000 0.000 0.144
#> GSM555276     2  0.0404     0.7970 0.000 0.988 0.000 0.000 0.012
#> GSM555277     2  0.4058     0.7933 0.000 0.740 0.000 0.024 0.236
#> GSM555279     2  0.6209     0.3117 0.000 0.548 0.096 0.336 0.020
#> GSM555281     2  0.5324     0.7757 0.000 0.684 0.016 0.076 0.224
#> GSM555283     2  0.3876     0.7904 0.000 0.684 0.000 0.000 0.316
#> GSM555285     5  0.4879     0.5567 0.000 0.156 0.000 0.124 0.720
#> GSM555287     4  0.4821     0.7243 0.000 0.028 0.096 0.764 0.112
#> GSM555289     2  0.3177     0.7923 0.000 0.792 0.000 0.000 0.208
#> GSM555291     2  0.3774     0.7963 0.000 0.704 0.000 0.000 0.296
#> GSM555293     2  0.3796     0.7960 0.000 0.700 0.000 0.000 0.300
#> GSM555295     2  0.5464     0.7493 0.000 0.664 0.004 0.124 0.208
#> GSM555297     4  0.3644     0.8897 0.000 0.080 0.096 0.824 0.000
#> GSM555299     3  0.2069     0.9396 0.000 0.000 0.912 0.076 0.012
#> GSM555301     3  0.0794     0.9376 0.000 0.000 0.972 0.028 0.000
#> GSM555303     3  0.1942     0.9415 0.000 0.000 0.920 0.068 0.012
#> GSM555305     3  0.0000     0.9506 0.000 0.000 1.000 0.000 0.000
#> GSM555307     2  0.3707     0.7998 0.000 0.716 0.000 0.000 0.284
#> GSM555309     3  0.2069     0.9396 0.000 0.000 0.912 0.076 0.012
#> GSM555311     2  0.3796     0.7952 0.000 0.700 0.000 0.000 0.300
#> GSM555313     2  0.1965     0.8010 0.000 0.904 0.000 0.000 0.096
#> GSM555315     2  0.3816     0.7941 0.000 0.696 0.000 0.000 0.304
#> GSM555278     2  0.2074     0.7992 0.000 0.896 0.000 0.000 0.104
#> GSM555280     2  0.0162     0.8002 0.000 0.996 0.000 0.000 0.004
#> GSM555282     2  0.2074     0.8003 0.000 0.896 0.000 0.000 0.104
#> GSM555284     2  0.2852     0.7568 0.000 0.828 0.000 0.000 0.172
#> GSM555286     2  0.0000     0.8011 0.000 1.000 0.000 0.000 0.000
#> GSM555288     2  0.2331     0.8009 0.000 0.900 0.000 0.020 0.080
#> GSM555290     2  0.0162     0.8002 0.000 0.996 0.000 0.000 0.004
#> GSM555292     2  0.0880     0.8051 0.000 0.968 0.000 0.000 0.032
#> GSM555294     2  0.2732     0.7714 0.000 0.840 0.000 0.000 0.160
#> GSM555296     2  0.3497     0.8020 0.000 0.852 0.024 0.040 0.084
#> GSM555298     3  0.0290     0.9491 0.000 0.000 0.992 0.008 0.000
#> GSM555300     3  0.2069     0.9396 0.000 0.000 0.912 0.076 0.012
#> GSM555302     3  0.0290     0.9491 0.000 0.000 0.992 0.008 0.000
#> GSM555304     3  0.0000     0.9506 0.000 0.000 1.000 0.000 0.000
#> GSM555306     3  0.0000     0.9506 0.000 0.000 1.000 0.000 0.000
#> GSM555308     3  0.2069     0.9396 0.000 0.000 0.912 0.076 0.012
#> GSM555310     3  0.0404     0.9474 0.000 0.000 0.988 0.012 0.000
#> GSM555312     2  0.2020     0.8013 0.000 0.900 0.000 0.000 0.100
#> GSM555314     2  0.5791     0.6724 0.000 0.616 0.000 0.196 0.188
#> GSM555316     2  0.0162     0.8002 0.000 0.996 0.000 0.000 0.004
#> GSM555317     2  0.3642     0.7984 0.000 0.760 0.000 0.008 0.232
#> GSM555319     2  0.3177     0.7953 0.000 0.792 0.000 0.000 0.208
#> GSM555321     2  0.3210     0.7946 0.000 0.788 0.000 0.000 0.212
#> GSM555323     2  0.3774     0.7963 0.000 0.704 0.000 0.000 0.296
#> GSM555325     2  0.3949     0.7816 0.000 0.668 0.000 0.000 0.332
#> GSM555327     2  0.3109     0.7947 0.000 0.800 0.000 0.000 0.200
#> GSM555329     2  0.3177     0.7953 0.000 0.792 0.000 0.000 0.208
#> GSM555331     2  0.3210     0.7988 0.000 0.788 0.000 0.000 0.212
#> GSM555333     2  0.3816     0.7941 0.000 0.696 0.000 0.000 0.304
#> GSM555335     2  0.3774     0.7963 0.000 0.704 0.000 0.000 0.296
#> GSM555337     2  0.3074     0.7955 0.000 0.804 0.000 0.000 0.196
#> GSM555339     2  0.3774     0.7963 0.000 0.704 0.000 0.000 0.296
#> GSM555341     2  0.4311     0.8023 0.000 0.712 0.020 0.004 0.264
#> GSM555343     2  0.3109     0.7959 0.000 0.800 0.000 0.000 0.200
#> GSM555345     2  0.5919     0.6829 0.000 0.692 0.084 0.104 0.120
#> GSM555318     2  0.4224     0.7879 0.000 0.744 0.000 0.040 0.216
#> GSM555320     2  0.1544     0.8043 0.000 0.932 0.000 0.000 0.068
#> GSM555322     2  0.0566     0.7954 0.000 0.984 0.000 0.004 0.012
#> GSM555324     3  0.2069     0.9396 0.000 0.000 0.912 0.076 0.012
#> GSM555326     2  0.0000     0.8011 0.000 1.000 0.000 0.000 0.000
#> GSM555328     2  0.0162     0.8002 0.000 0.996 0.000 0.000 0.004
#> GSM555330     2  0.0162     0.8002 0.000 0.996 0.000 0.000 0.004
#> GSM555332     2  0.0162     0.8002 0.000 0.996 0.000 0.000 0.004
#> GSM555334     2  0.0404     0.7970 0.000 0.988 0.000 0.000 0.012
#> GSM555336     2  0.0000     0.8011 0.000 1.000 0.000 0.000 0.000
#> GSM555338     2  0.3109     0.7947 0.000 0.800 0.000 0.000 0.200
#> GSM555340     2  0.3074     0.7955 0.000 0.804 0.000 0.000 0.196
#> GSM555342     2  0.2690     0.7690 0.000 0.844 0.000 0.000 0.156
#> GSM555344     2  0.1043     0.8063 0.000 0.960 0.000 0.000 0.040
#> GSM555346     2  0.4166     0.4345 0.000 0.648 0.000 0.004 0.348

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM555237     1  0.4859    0.61928 0.676 0.000 0.004 0.180 0.140 0.000
#> GSM555239     1  0.2664    0.89430 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM555241     1  0.2664    0.89430 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM555243     1  0.2664    0.89430 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM555245     1  0.2664    0.89430 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM555247     1  0.2664    0.89430 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM555249     1  0.2664    0.89430 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM555251     1  0.2664    0.89430 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM555253     1  0.2664    0.89430 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM555255     1  0.2664    0.89430 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM555257     4  0.4746    0.21942 0.004 0.000 0.004 0.544 0.416 0.032
#> GSM555259     4  0.1511    0.79179 0.000 0.000 0.012 0.944 0.032 0.012
#> GSM555261     4  0.2076    0.83196 0.000 0.060 0.012 0.912 0.000 0.016
#> GSM555263     4  0.2136    0.82559 0.000 0.064 0.012 0.908 0.000 0.016
#> GSM555265     4  0.2015    0.83301 0.000 0.056 0.012 0.916 0.000 0.016
#> GSM555267     4  0.1983    0.83164 0.000 0.060 0.012 0.916 0.000 0.012
#> GSM555269     4  0.1871    0.78613 0.000 0.000 0.016 0.928 0.032 0.024
#> GSM555271     3  0.2458    0.91674 0.000 0.000 0.892 0.068 0.016 0.024
#> GSM555273     5  0.6719    0.52989 0.000 0.156 0.000 0.068 0.424 0.352
#> GSM555275     2  0.3217    0.67722 0.000 0.768 0.000 0.000 0.008 0.224
#> GSM555238     1  0.0000    0.90328 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555240     1  0.0363    0.89727 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM555242     1  0.0000    0.90328 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555244     1  0.0000    0.90328 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000    0.90328 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000    0.90328 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000    0.90328 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.0000    0.90328 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555254     1  0.0000    0.90328 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0000    0.90328 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555258     5  0.7342    0.56347 0.000 0.288 0.000 0.160 0.388 0.164
#> GSM555260     2  0.6358   -0.08564 0.000 0.568 0.000 0.088 0.188 0.156
#> GSM555262     2  0.0777    0.68332 0.000 0.972 0.000 0.000 0.004 0.024
#> GSM555264     5  0.4060    0.08883 0.000 0.032 0.000 0.284 0.684 0.000
#> GSM555266     2  0.3646    0.44485 0.000 0.700 0.000 0.004 0.004 0.292
#> GSM555268     2  0.3189    0.53406 0.000 0.760 0.000 0.004 0.000 0.236
#> GSM555270     2  0.2261    0.68756 0.000 0.884 0.000 0.004 0.008 0.104
#> GSM555272     5  0.7342    0.56447 0.000 0.288 0.000 0.164 0.388 0.160
#> GSM555274     2  0.1411    0.67304 0.000 0.936 0.000 0.000 0.004 0.060
#> GSM555276     2  0.2848    0.67174 0.000 0.828 0.000 0.004 0.008 0.160
#> GSM555277     2  0.4358    0.65068 0.000 0.624 0.000 0.016 0.012 0.348
#> GSM555279     2  0.5457   -0.00614 0.000 0.480 0.012 0.444 0.016 0.048
#> GSM555281     2  0.4350    0.63673 0.000 0.760 0.004 0.128 0.016 0.092
#> GSM555283     2  0.3607    0.67209 0.000 0.652 0.000 0.000 0.000 0.348
#> GSM555285     5  0.6051    0.50561 0.000 0.088 0.000 0.068 0.552 0.292
#> GSM555287     4  0.5538    0.58141 0.000 0.012 0.012 0.628 0.124 0.224
#> GSM555289     2  0.3672    0.66258 0.000 0.632 0.000 0.000 0.000 0.368
#> GSM555291     2  0.3266    0.68386 0.000 0.728 0.000 0.000 0.000 0.272
#> GSM555293     2  0.3843    0.49422 0.000 0.548 0.000 0.000 0.000 0.452
#> GSM555295     2  0.4809    0.47426 0.000 0.664 0.000 0.252 0.012 0.072
#> GSM555297     4  0.2475    0.82436 0.000 0.060 0.012 0.892 0.000 0.036
#> GSM555299     3  0.0865    0.95688 0.000 0.000 0.964 0.000 0.000 0.036
#> GSM555301     3  0.1944    0.93902 0.000 0.000 0.924 0.036 0.016 0.024
#> GSM555303     3  0.0713    0.95781 0.000 0.000 0.972 0.000 0.000 0.028
#> GSM555305     3  0.0000    0.95814 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555307     2  0.3938    0.66550 0.000 0.672 0.000 0.012 0.004 0.312
#> GSM555309     3  0.0865    0.95688 0.000 0.000 0.964 0.000 0.000 0.036
#> GSM555311     2  0.3476    0.66445 0.000 0.732 0.000 0.004 0.004 0.260
#> GSM555313     2  0.1285    0.69355 0.000 0.944 0.000 0.004 0.000 0.052
#> GSM555315     2  0.3724    0.65781 0.000 0.716 0.000 0.004 0.012 0.268
#> GSM555278     2  0.3050    0.53649 0.000 0.764 0.000 0.000 0.000 0.236
#> GSM555280     2  0.2442    0.68364 0.000 0.852 0.000 0.000 0.004 0.144
#> GSM555282     2  0.1866    0.69074 0.000 0.908 0.000 0.008 0.000 0.084
#> GSM555284     2  0.2810    0.60773 0.000 0.832 0.000 0.008 0.004 0.156
#> GSM555286     2  0.1753    0.69298 0.000 0.912 0.000 0.000 0.004 0.084
#> GSM555288     2  0.1857    0.67379 0.000 0.924 0.000 0.028 0.004 0.044
#> GSM555290     2  0.2558    0.68216 0.000 0.840 0.000 0.004 0.000 0.156
#> GSM555292     2  0.2595    0.67975 0.000 0.836 0.000 0.000 0.004 0.160
#> GSM555294     2  0.3703    0.44510 0.000 0.688 0.000 0.004 0.004 0.304
#> GSM555296     2  0.3758    0.66934 0.000 0.808 0.008 0.044 0.016 0.124
#> GSM555298     3  0.2020    0.93729 0.000 0.000 0.920 0.040 0.020 0.020
#> GSM555300     3  0.0865    0.95688 0.000 0.000 0.964 0.000 0.000 0.036
#> GSM555302     3  0.1871    0.94102 0.000 0.000 0.928 0.032 0.016 0.024
#> GSM555304     3  0.0000    0.95814 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555306     3  0.0508    0.95643 0.000 0.000 0.984 0.004 0.012 0.000
#> GSM555308     3  0.0865    0.95688 0.000 0.000 0.964 0.000 0.000 0.036
#> GSM555310     3  0.1871    0.94102 0.000 0.000 0.928 0.032 0.016 0.024
#> GSM555312     2  0.2225    0.68771 0.000 0.892 0.000 0.008 0.008 0.092
#> GSM555314     2  0.5472    0.28265 0.000 0.552 0.000 0.340 0.016 0.092
#> GSM555316     2  0.2703    0.67188 0.000 0.824 0.000 0.004 0.000 0.172
#> GSM555317     2  0.4180    0.65467 0.000 0.632 0.000 0.008 0.012 0.348
#> GSM555319     2  0.3807    0.64623 0.000 0.628 0.000 0.000 0.004 0.368
#> GSM555321     2  0.3807    0.63681 0.000 0.628 0.000 0.000 0.004 0.368
#> GSM555323     2  0.2793    0.68359 0.000 0.800 0.000 0.000 0.000 0.200
#> GSM555325     2  0.3868    0.43142 0.000 0.508 0.000 0.000 0.000 0.492
#> GSM555327     2  0.3955    0.66089 0.000 0.648 0.000 0.004 0.008 0.340
#> GSM555329     2  0.3852    0.63834 0.000 0.612 0.000 0.000 0.004 0.384
#> GSM555331     2  0.3050    0.68534 0.000 0.764 0.000 0.000 0.000 0.236
#> GSM555333     2  0.3189    0.67518 0.000 0.760 0.000 0.004 0.000 0.236
#> GSM555335     2  0.2793    0.68359 0.000 0.800 0.000 0.000 0.000 0.200
#> GSM555337     2  0.4103    0.53247 0.000 0.544 0.000 0.004 0.004 0.448
#> GSM555339     2  0.3337    0.68225 0.000 0.736 0.000 0.004 0.000 0.260
#> GSM555341     2  0.3081    0.68890 0.000 0.776 0.004 0.000 0.000 0.220
#> GSM555343     2  0.3986    0.52322 0.000 0.532 0.000 0.000 0.004 0.464
#> GSM555345     2  0.6822    0.34717 0.000 0.428 0.012 0.084 0.100 0.376
#> GSM555318     2  0.5095    0.62288 0.000 0.576 0.000 0.056 0.016 0.352
#> GSM555320     2  0.3101    0.52229 0.000 0.756 0.000 0.000 0.000 0.244
#> GSM555322     2  0.2673    0.68617 0.000 0.852 0.000 0.004 0.012 0.132
#> GSM555324     3  0.1010    0.95556 0.000 0.000 0.960 0.000 0.004 0.036
#> GSM555326     2  0.2118    0.68546 0.000 0.888 0.000 0.000 0.008 0.104
#> GSM555328     2  0.2595    0.67649 0.000 0.836 0.000 0.004 0.000 0.160
#> GSM555330     2  0.2378    0.68006 0.000 0.848 0.000 0.000 0.000 0.152
#> GSM555332     2  0.2669    0.67210 0.000 0.836 0.000 0.000 0.008 0.156
#> GSM555334     2  0.2595    0.67588 0.000 0.836 0.000 0.004 0.000 0.160
#> GSM555336     2  0.3684    0.49734 0.000 0.692 0.000 0.004 0.004 0.300
#> GSM555338     2  0.3647    0.66063 0.000 0.640 0.000 0.000 0.000 0.360
#> GSM555340     2  0.3950    0.55573 0.000 0.564 0.000 0.000 0.004 0.432
#> GSM555342     2  0.3586    0.46497 0.000 0.712 0.000 0.004 0.004 0.280
#> GSM555344     2  0.3121    0.68556 0.000 0.796 0.000 0.004 0.008 0.192
#> GSM555346     2  0.5147    0.30776 0.000 0.644 0.000 0.008 0.136 0.212

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) agent(p) k
#> SD:mclust 102         3.34e-08   0.9200 2
#> SD:mclust 106         1.78e-12   0.4646 3
#> SD:mclust 102         1.03e-14   0.0887 4
#> SD:mclust 106         7.74e-14   0.0634 5
#> SD:mclust  96         7.24e-13   0.0729 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.925           0.935       0.975          0.459 0.538   0.538
#> 3 3 1.000           0.942       0.980          0.135 0.938   0.884
#> 4 4 0.796           0.828       0.916          0.146 0.970   0.936
#> 5 5 0.716           0.840       0.882          0.132 0.893   0.765
#> 6 6 0.672           0.668       0.780          0.103 0.857   0.608

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1  0.0000    0.95838 1.000 0.000
#> GSM555239     1  0.0000    0.95838 1.000 0.000
#> GSM555241     1  0.0000    0.95838 1.000 0.000
#> GSM555243     1  0.0000    0.95838 1.000 0.000
#> GSM555245     1  0.0000    0.95838 1.000 0.000
#> GSM555247     1  0.0000    0.95838 1.000 0.000
#> GSM555249     1  0.0000    0.95838 1.000 0.000
#> GSM555251     1  0.0000    0.95838 1.000 0.000
#> GSM555253     1  0.0000    0.95838 1.000 0.000
#> GSM555255     1  0.0000    0.95838 1.000 0.000
#> GSM555257     1  0.7602    0.72351 0.780 0.220
#> GSM555259     1  0.7219    0.75233 0.800 0.200
#> GSM555261     2  0.9732    0.28198 0.404 0.596
#> GSM555263     2  0.0000    0.98116 0.000 1.000
#> GSM555265     1  0.9710    0.35888 0.600 0.400
#> GSM555267     2  0.6801    0.76333 0.180 0.820
#> GSM555269     1  0.7219    0.75233 0.800 0.200
#> GSM555271     1  0.0000    0.95838 1.000 0.000
#> GSM555273     2  0.0000    0.98116 0.000 1.000
#> GSM555275     2  0.0000    0.98116 0.000 1.000
#> GSM555238     1  0.0000    0.95838 1.000 0.000
#> GSM555240     1  0.0672    0.95285 0.992 0.008
#> GSM555242     1  0.0000    0.95838 1.000 0.000
#> GSM555244     1  0.0000    0.95838 1.000 0.000
#> GSM555246     1  0.0000    0.95838 1.000 0.000
#> GSM555248     1  0.0000    0.95838 1.000 0.000
#> GSM555250     1  0.0000    0.95838 1.000 0.000
#> GSM555252     1  0.0000    0.95838 1.000 0.000
#> GSM555254     1  0.0000    0.95838 1.000 0.000
#> GSM555256     1  0.0000    0.95838 1.000 0.000
#> GSM555258     2  0.0000    0.98116 0.000 1.000
#> GSM555260     2  0.0000    0.98116 0.000 1.000
#> GSM555262     2  0.0000    0.98116 0.000 1.000
#> GSM555264     1  0.9933    0.20386 0.548 0.452
#> GSM555266     2  0.0000    0.98116 0.000 1.000
#> GSM555268     2  0.0000    0.98116 0.000 1.000
#> GSM555270     2  0.0000    0.98116 0.000 1.000
#> GSM555272     2  0.0000    0.98116 0.000 1.000
#> GSM555274     2  0.0000    0.98116 0.000 1.000
#> GSM555276     2  0.0000    0.98116 0.000 1.000
#> GSM555277     2  0.0000    0.98116 0.000 1.000
#> GSM555279     2  0.0000    0.98116 0.000 1.000
#> GSM555281     2  0.0000    0.98116 0.000 1.000
#> GSM555283     2  0.0000    0.98116 0.000 1.000
#> GSM555285     2  0.0000    0.98116 0.000 1.000
#> GSM555287     2  0.9993   -0.00062 0.484 0.516
#> GSM555289     2  0.0000    0.98116 0.000 1.000
#> GSM555291     2  0.0000    0.98116 0.000 1.000
#> GSM555293     2  0.0000    0.98116 0.000 1.000
#> GSM555295     2  0.0000    0.98116 0.000 1.000
#> GSM555297     2  0.6531    0.78105 0.168 0.832
#> GSM555299     1  0.0000    0.95838 1.000 0.000
#> GSM555301     1  0.1414    0.94377 0.980 0.020
#> GSM555303     1  0.0000    0.95838 1.000 0.000
#> GSM555305     1  0.0000    0.95838 1.000 0.000
#> GSM555307     2  0.0000    0.98116 0.000 1.000
#> GSM555309     1  0.0000    0.95838 1.000 0.000
#> GSM555311     2  0.0000    0.98116 0.000 1.000
#> GSM555313     2  0.0000    0.98116 0.000 1.000
#> GSM555315     2  0.0000    0.98116 0.000 1.000
#> GSM555278     2  0.0000    0.98116 0.000 1.000
#> GSM555280     2  0.0000    0.98116 0.000 1.000
#> GSM555282     2  0.0000    0.98116 0.000 1.000
#> GSM555284     2  0.0000    0.98116 0.000 1.000
#> GSM555286     2  0.0000    0.98116 0.000 1.000
#> GSM555288     2  0.0000    0.98116 0.000 1.000
#> GSM555290     2  0.0000    0.98116 0.000 1.000
#> GSM555292     2  0.0000    0.98116 0.000 1.000
#> GSM555294     2  0.0000    0.98116 0.000 1.000
#> GSM555296     2  0.0000    0.98116 0.000 1.000
#> GSM555298     1  0.1414    0.94377 0.980 0.020
#> GSM555300     1  0.0000    0.95838 1.000 0.000
#> GSM555302     1  0.0000    0.95838 1.000 0.000
#> GSM555304     1  0.0000    0.95838 1.000 0.000
#> GSM555306     1  0.0000    0.95838 1.000 0.000
#> GSM555308     1  0.0000    0.95838 1.000 0.000
#> GSM555310     1  0.0000    0.95838 1.000 0.000
#> GSM555312     2  0.0000    0.98116 0.000 1.000
#> GSM555314     2  0.0000    0.98116 0.000 1.000
#> GSM555316     2  0.0000    0.98116 0.000 1.000
#> GSM555317     2  0.0000    0.98116 0.000 1.000
#> GSM555319     2  0.0000    0.98116 0.000 1.000
#> GSM555321     2  0.0000    0.98116 0.000 1.000
#> GSM555323     2  0.0000    0.98116 0.000 1.000
#> GSM555325     2  0.0000    0.98116 0.000 1.000
#> GSM555327     2  0.0000    0.98116 0.000 1.000
#> GSM555329     2  0.0000    0.98116 0.000 1.000
#> GSM555331     2  0.0000    0.98116 0.000 1.000
#> GSM555333     2  0.0000    0.98116 0.000 1.000
#> GSM555335     2  0.0000    0.98116 0.000 1.000
#> GSM555337     2  0.0000    0.98116 0.000 1.000
#> GSM555339     2  0.0000    0.98116 0.000 1.000
#> GSM555341     2  0.0000    0.98116 0.000 1.000
#> GSM555343     2  0.0000    0.98116 0.000 1.000
#> GSM555345     2  0.0000    0.98116 0.000 1.000
#> GSM555318     2  0.0000    0.98116 0.000 1.000
#> GSM555320     2  0.0000    0.98116 0.000 1.000
#> GSM555322     2  0.0000    0.98116 0.000 1.000
#> GSM555324     1  0.0000    0.95838 1.000 0.000
#> GSM555326     2  0.0000    0.98116 0.000 1.000
#> GSM555328     2  0.0000    0.98116 0.000 1.000
#> GSM555330     2  0.0000    0.98116 0.000 1.000
#> GSM555332     2  0.0000    0.98116 0.000 1.000
#> GSM555334     2  0.0000    0.98116 0.000 1.000
#> GSM555336     2  0.0000    0.98116 0.000 1.000
#> GSM555338     2  0.0000    0.98116 0.000 1.000
#> GSM555340     2  0.0000    0.98116 0.000 1.000
#> GSM555342     2  0.0000    0.98116 0.000 1.000
#> GSM555344     2  0.0000    0.98116 0.000 1.000
#> GSM555346     2  0.0000    0.98116 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.0000      0.939 1.000 0.000 0.000
#> GSM555239     1  0.0237      0.936 0.996 0.000 0.004
#> GSM555241     1  0.0237      0.936 0.996 0.000 0.004
#> GSM555243     1  0.0000      0.939 1.000 0.000 0.000
#> GSM555245     1  0.0000      0.939 1.000 0.000 0.000
#> GSM555247     1  0.0237      0.936 0.996 0.000 0.004
#> GSM555249     1  0.0000      0.939 1.000 0.000 0.000
#> GSM555251     1  0.0000      0.939 1.000 0.000 0.000
#> GSM555253     1  0.0424      0.933 0.992 0.000 0.008
#> GSM555255     1  0.0000      0.939 1.000 0.000 0.000
#> GSM555257     1  0.7129      0.348 0.580 0.392 0.028
#> GSM555259     3  0.0000      0.956 0.000 0.000 1.000
#> GSM555261     2  0.1031      0.964 0.000 0.976 0.024
#> GSM555263     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555265     3  0.6267      0.137 0.000 0.452 0.548
#> GSM555267     2  0.4002      0.805 0.000 0.840 0.160
#> GSM555269     3  0.0237      0.950 0.000 0.004 0.996
#> GSM555271     3  0.0000      0.956 0.000 0.000 1.000
#> GSM555273     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555275     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555238     1  0.0000      0.939 1.000 0.000 0.000
#> GSM555240     1  0.0000      0.939 1.000 0.000 0.000
#> GSM555242     1  0.0000      0.939 1.000 0.000 0.000
#> GSM555244     1  0.0000      0.939 1.000 0.000 0.000
#> GSM555246     1  0.0000      0.939 1.000 0.000 0.000
#> GSM555248     1  0.0000      0.939 1.000 0.000 0.000
#> GSM555250     1  0.0000      0.939 1.000 0.000 0.000
#> GSM555252     1  0.0000      0.939 1.000 0.000 0.000
#> GSM555254     1  0.0000      0.939 1.000 0.000 0.000
#> GSM555256     1  0.0000      0.939 1.000 0.000 0.000
#> GSM555258     2  0.2878      0.886 0.096 0.904 0.000
#> GSM555260     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555262     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555264     1  0.6140      0.333 0.596 0.404 0.000
#> GSM555266     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555268     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555270     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555272     2  0.0592      0.976 0.012 0.988 0.000
#> GSM555274     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555276     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555277     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555279     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555281     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555283     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555285     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555287     2  0.6225      0.225 0.000 0.568 0.432
#> GSM555289     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555291     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555293     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555295     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555297     2  0.4121      0.794 0.000 0.832 0.168
#> GSM555299     3  0.0000      0.956 0.000 0.000 1.000
#> GSM555301     3  0.0000      0.956 0.000 0.000 1.000
#> GSM555303     3  0.0000      0.956 0.000 0.000 1.000
#> GSM555305     3  0.0000      0.956 0.000 0.000 1.000
#> GSM555307     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555309     3  0.0000      0.956 0.000 0.000 1.000
#> GSM555311     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555313     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555315     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555278     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555280     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555282     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555284     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555286     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555288     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555290     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555292     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555294     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555296     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555298     3  0.0000      0.956 0.000 0.000 1.000
#> GSM555300     3  0.0000      0.956 0.000 0.000 1.000
#> GSM555302     3  0.0000      0.956 0.000 0.000 1.000
#> GSM555304     3  0.0000      0.956 0.000 0.000 1.000
#> GSM555306     3  0.0000      0.956 0.000 0.000 1.000
#> GSM555308     3  0.0000      0.956 0.000 0.000 1.000
#> GSM555310     3  0.0000      0.956 0.000 0.000 1.000
#> GSM555312     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555314     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555316     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555317     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555319     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555321     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555323     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555325     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555327     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555329     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555331     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555333     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555335     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555337     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555339     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555341     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555343     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555345     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555318     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555320     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555322     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555324     3  0.0000      0.956 0.000 0.000 1.000
#> GSM555326     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555328     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555330     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555332     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555334     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555336     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555338     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555340     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555342     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555344     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555346     2  0.0000      0.987 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.0188     0.9905 0.996 0.000 0.000 0.004
#> GSM555239     1  0.0469     0.9861 0.988 0.000 0.000 0.012
#> GSM555241     1  0.0188     0.9905 0.996 0.000 0.000 0.004
#> GSM555243     1  0.0000     0.9911 1.000 0.000 0.000 0.000
#> GSM555245     1  0.0188     0.9900 0.996 0.000 0.000 0.004
#> GSM555247     1  0.0817     0.9779 0.976 0.000 0.000 0.024
#> GSM555249     1  0.0188     0.9900 0.996 0.000 0.000 0.004
#> GSM555251     1  0.0000     0.9911 1.000 0.000 0.000 0.000
#> GSM555253     1  0.0000     0.9911 1.000 0.000 0.000 0.000
#> GSM555255     1  0.1022     0.9715 0.968 0.000 0.000 0.032
#> GSM555257     4  0.7403     0.3788 0.348 0.128 0.012 0.512
#> GSM555259     3  0.2868     0.8468 0.000 0.000 0.864 0.136
#> GSM555261     2  0.5393     0.4835 0.000 0.688 0.044 0.268
#> GSM555263     2  0.3688     0.6978 0.000 0.792 0.000 0.208
#> GSM555265     3  0.7091     0.1612 0.000 0.248 0.564 0.188
#> GSM555267     2  0.5434     0.5850 0.000 0.740 0.128 0.132
#> GSM555269     3  0.0592     0.9452 0.000 0.000 0.984 0.016
#> GSM555271     3  0.0000     0.9577 0.000 0.000 1.000 0.000
#> GSM555273     4  0.4991     0.5777 0.004 0.388 0.000 0.608
#> GSM555275     2  0.1118     0.8741 0.000 0.964 0.000 0.036
#> GSM555238     1  0.0000     0.9911 1.000 0.000 0.000 0.000
#> GSM555240     1  0.1474     0.9467 0.948 0.000 0.000 0.052
#> GSM555242     1  0.0188     0.9905 0.996 0.000 0.000 0.004
#> GSM555244     1  0.0188     0.9905 0.996 0.000 0.000 0.004
#> GSM555246     1  0.0188     0.9900 0.996 0.000 0.000 0.004
#> GSM555248     1  0.0000     0.9911 1.000 0.000 0.000 0.000
#> GSM555250     1  0.0188     0.9905 0.996 0.000 0.000 0.004
#> GSM555252     1  0.0592     0.9836 0.984 0.000 0.000 0.016
#> GSM555254     1  0.0000     0.9911 1.000 0.000 0.000 0.000
#> GSM555256     1  0.0188     0.9905 0.996 0.000 0.000 0.004
#> GSM555258     2  0.6876    -0.1528 0.116 0.532 0.000 0.352
#> GSM555260     2  0.3444     0.7489 0.000 0.816 0.000 0.184
#> GSM555262     2  0.1118     0.8784 0.000 0.964 0.000 0.036
#> GSM555264     4  0.6123     0.5919 0.192 0.132 0.000 0.676
#> GSM555266     2  0.2281     0.8472 0.000 0.904 0.000 0.096
#> GSM555268     2  0.1637     0.8684 0.000 0.940 0.000 0.060
#> GSM555270     2  0.0592     0.8795 0.000 0.984 0.000 0.016
#> GSM555272     2  0.5882     0.1777 0.048 0.608 0.000 0.344
#> GSM555274     2  0.0921     0.8796 0.000 0.972 0.000 0.028
#> GSM555276     2  0.1474     0.8674 0.000 0.948 0.000 0.052
#> GSM555277     2  0.2469     0.8248 0.000 0.892 0.000 0.108
#> GSM555279     2  0.1867     0.8587 0.000 0.928 0.000 0.072
#> GSM555281     2  0.1211     0.8726 0.000 0.960 0.000 0.040
#> GSM555283     2  0.1637     0.8736 0.000 0.940 0.000 0.060
#> GSM555285     4  0.5666     0.6539 0.036 0.348 0.000 0.616
#> GSM555287     2  0.7803    -0.2840 0.000 0.404 0.340 0.256
#> GSM555289     2  0.2281     0.8369 0.000 0.904 0.000 0.096
#> GSM555291     2  0.1118     0.8817 0.000 0.964 0.000 0.036
#> GSM555293     2  0.1637     0.8718 0.000 0.940 0.000 0.060
#> GSM555295     2  0.1211     0.8737 0.000 0.960 0.000 0.040
#> GSM555297     2  0.6280     0.2225 0.000 0.612 0.304 0.084
#> GSM555299     3  0.0000     0.9577 0.000 0.000 1.000 0.000
#> GSM555301     3  0.0000     0.9577 0.000 0.000 1.000 0.000
#> GSM555303     3  0.0000     0.9577 0.000 0.000 1.000 0.000
#> GSM555305     3  0.0000     0.9577 0.000 0.000 1.000 0.000
#> GSM555307     2  0.1211     0.8774 0.000 0.960 0.000 0.040
#> GSM555309     3  0.0000     0.9577 0.000 0.000 1.000 0.000
#> GSM555311     2  0.1940     0.8554 0.000 0.924 0.000 0.076
#> GSM555313     2  0.0592     0.8806 0.000 0.984 0.000 0.016
#> GSM555315     2  0.1940     0.8559 0.000 0.924 0.000 0.076
#> GSM555278     2  0.1557     0.8676 0.000 0.944 0.000 0.056
#> GSM555280     2  0.0921     0.8803 0.000 0.972 0.000 0.028
#> GSM555282     2  0.1940     0.8562 0.000 0.924 0.000 0.076
#> GSM555284     2  0.2216     0.8467 0.000 0.908 0.000 0.092
#> GSM555286     2  0.0469     0.8798 0.000 0.988 0.000 0.012
#> GSM555288     2  0.2281     0.8470 0.000 0.904 0.000 0.096
#> GSM555290     2  0.1302     0.8709 0.000 0.956 0.000 0.044
#> GSM555292     2  0.0817     0.8796 0.000 0.976 0.000 0.024
#> GSM555294     2  0.2530     0.8271 0.000 0.888 0.000 0.112
#> GSM555296     2  0.0336     0.8802 0.000 0.992 0.000 0.008
#> GSM555298     3  0.0000     0.9577 0.000 0.000 1.000 0.000
#> GSM555300     3  0.0000     0.9577 0.000 0.000 1.000 0.000
#> GSM555302     3  0.0000     0.9577 0.000 0.000 1.000 0.000
#> GSM555304     3  0.0000     0.9577 0.000 0.000 1.000 0.000
#> GSM555306     3  0.0000     0.9577 0.000 0.000 1.000 0.000
#> GSM555308     3  0.0000     0.9577 0.000 0.000 1.000 0.000
#> GSM555310     3  0.0000     0.9577 0.000 0.000 1.000 0.000
#> GSM555312     2  0.0921     0.8772 0.000 0.972 0.000 0.028
#> GSM555314     2  0.1118     0.8747 0.000 0.964 0.000 0.036
#> GSM555316     2  0.0707     0.8784 0.000 0.980 0.000 0.020
#> GSM555317     2  0.2011     0.8484 0.000 0.920 0.000 0.080
#> GSM555319     2  0.1389     0.8754 0.000 0.952 0.000 0.048
#> GSM555321     2  0.1118     0.8802 0.000 0.964 0.000 0.036
#> GSM555323     2  0.0817     0.8801 0.000 0.976 0.000 0.024
#> GSM555325     2  0.4624     0.3521 0.000 0.660 0.000 0.340
#> GSM555327     2  0.2216     0.8380 0.000 0.908 0.000 0.092
#> GSM555329     2  0.1302     0.8766 0.000 0.956 0.000 0.044
#> GSM555331     2  0.0817     0.8798 0.000 0.976 0.000 0.024
#> GSM555333     2  0.0592     0.8794 0.000 0.984 0.000 0.016
#> GSM555335     2  0.0707     0.8786 0.000 0.980 0.000 0.020
#> GSM555337     2  0.0921     0.8798 0.000 0.972 0.000 0.028
#> GSM555339     2  0.0817     0.8798 0.000 0.976 0.000 0.024
#> GSM555341     2  0.1022     0.8776 0.000 0.968 0.000 0.032
#> GSM555343     2  0.1389     0.8762 0.000 0.952 0.000 0.048
#> GSM555345     2  0.2868     0.8002 0.000 0.864 0.000 0.136
#> GSM555318     2  0.2647     0.8133 0.000 0.880 0.000 0.120
#> GSM555320     2  0.3444     0.7269 0.000 0.816 0.000 0.184
#> GSM555322     2  0.1716     0.8591 0.000 0.936 0.000 0.064
#> GSM555324     3  0.0000     0.9577 0.000 0.000 1.000 0.000
#> GSM555326     2  0.0592     0.8795 0.000 0.984 0.000 0.016
#> GSM555328     2  0.1118     0.8738 0.000 0.964 0.000 0.036
#> GSM555330     2  0.0707     0.8809 0.000 0.980 0.000 0.020
#> GSM555332     2  0.1118     0.8738 0.000 0.964 0.000 0.036
#> GSM555334     2  0.2081     0.8518 0.000 0.916 0.000 0.084
#> GSM555336     2  0.2011     0.8555 0.000 0.920 0.000 0.080
#> GSM555338     2  0.1637     0.8624 0.000 0.940 0.000 0.060
#> GSM555340     2  0.1022     0.8801 0.000 0.968 0.000 0.032
#> GSM555342     2  0.1557     0.8669 0.000 0.944 0.000 0.056
#> GSM555344     2  0.1302     0.8728 0.000 0.956 0.000 0.044
#> GSM555346     2  0.4925    -0.0101 0.000 0.572 0.000 0.428

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM555237     1  0.0290      0.988 0.992 0.000 0.000 0.000 0.008
#> GSM555239     1  0.0000      0.992 1.000 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0000      0.992 1.000 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000      0.992 1.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000      0.992 1.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000      0.992 1.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000      0.992 1.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000      0.992 1.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000      0.992 1.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0000      0.992 1.000 0.000 0.000 0.000 0.000
#> GSM555257     4  0.3577      0.649 0.004 0.084 0.000 0.836 0.076
#> GSM555259     4  0.3650      0.583 0.000 0.028 0.148 0.816 0.008
#> GSM555261     4  0.2574      0.686 0.000 0.112 0.000 0.876 0.012
#> GSM555263     4  0.3035      0.679 0.000 0.112 0.000 0.856 0.032
#> GSM555265     4  0.4022      0.677 0.000 0.128 0.016 0.808 0.048
#> GSM555267     4  0.4549      0.603 0.000 0.188 0.016 0.752 0.044
#> GSM555269     4  0.4372      0.538 0.000 0.040 0.200 0.752 0.008
#> GSM555271     3  0.0703      0.925 0.000 0.000 0.976 0.024 0.000
#> GSM555273     5  0.4994      0.923 0.000 0.112 0.000 0.184 0.704
#> GSM555275     2  0.1943      0.867 0.000 0.924 0.000 0.056 0.020
#> GSM555238     1  0.0000      0.992 1.000 0.000 0.000 0.000 0.000
#> GSM555240     1  0.1560      0.949 0.948 0.004 0.000 0.028 0.020
#> GSM555242     1  0.0000      0.992 1.000 0.000 0.000 0.000 0.000
#> GSM555244     1  0.0290      0.988 0.992 0.000 0.000 0.000 0.008
#> GSM555246     1  0.0000      0.992 1.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000      0.992 1.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0290      0.988 0.992 0.000 0.000 0.000 0.008
#> GSM555252     1  0.2067      0.923 0.924 0.004 0.000 0.044 0.028
#> GSM555254     1  0.0000      0.992 1.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0000      0.992 1.000 0.000 0.000 0.000 0.000
#> GSM555258     4  0.3918      0.587 0.000 0.096 0.000 0.804 0.100
#> GSM555260     4  0.3569      0.606 0.000 0.104 0.000 0.828 0.068
#> GSM555262     2  0.3437      0.828 0.000 0.832 0.000 0.120 0.048
#> GSM555264     5  0.4820      0.888 0.000 0.068 0.000 0.236 0.696
#> GSM555266     2  0.3281      0.847 0.000 0.848 0.000 0.092 0.060
#> GSM555268     2  0.3146      0.847 0.000 0.856 0.000 0.092 0.052
#> GSM555270     2  0.2278      0.869 0.000 0.908 0.000 0.060 0.032
#> GSM555272     4  0.3649      0.649 0.000 0.088 0.000 0.824 0.088
#> GSM555274     2  0.2293      0.865 0.000 0.900 0.000 0.084 0.016
#> GSM555276     2  0.2592      0.863 0.000 0.892 0.000 0.052 0.056
#> GSM555277     2  0.2798      0.849 0.000 0.852 0.000 0.008 0.140
#> GSM555279     2  0.2616      0.856 0.000 0.888 0.000 0.076 0.036
#> GSM555281     2  0.1965      0.868 0.000 0.924 0.000 0.052 0.024
#> GSM555283     4  0.4874      0.361 0.000 0.328 0.000 0.632 0.040
#> GSM555285     5  0.4901      0.933 0.000 0.104 0.000 0.184 0.712
#> GSM555287     3  0.6275      0.123 0.000 0.300 0.520 0.000 0.180
#> GSM555289     2  0.2488      0.857 0.000 0.872 0.000 0.004 0.124
#> GSM555291     2  0.3098      0.810 0.000 0.836 0.000 0.148 0.016
#> GSM555293     2  0.2172      0.862 0.000 0.908 0.000 0.076 0.016
#> GSM555295     2  0.2293      0.858 0.000 0.900 0.000 0.084 0.016
#> GSM555297     2  0.7035     -0.113 0.000 0.440 0.396 0.104 0.060
#> GSM555299     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000
#> GSM555301     3  0.0290      0.942 0.000 0.000 0.992 0.008 0.000
#> GSM555303     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000
#> GSM555305     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000
#> GSM555307     2  0.1943      0.869 0.000 0.924 0.000 0.056 0.020
#> GSM555309     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000
#> GSM555311     2  0.2351      0.857 0.000 0.896 0.000 0.088 0.016
#> GSM555313     2  0.2905      0.845 0.000 0.868 0.000 0.096 0.036
#> GSM555315     2  0.2482      0.856 0.000 0.892 0.000 0.084 0.024
#> GSM555278     2  0.2983      0.855 0.000 0.868 0.000 0.076 0.056
#> GSM555280     2  0.2735      0.851 0.000 0.880 0.000 0.084 0.036
#> GSM555282     2  0.4025      0.796 0.000 0.792 0.000 0.132 0.076
#> GSM555284     2  0.4155      0.783 0.000 0.780 0.000 0.144 0.076
#> GSM555286     2  0.2504      0.860 0.000 0.896 0.000 0.064 0.040
#> GSM555288     4  0.3649      0.567 0.000 0.152 0.000 0.808 0.040
#> GSM555290     2  0.2597      0.866 0.000 0.884 0.000 0.024 0.092
#> GSM555292     2  0.3165      0.837 0.000 0.848 0.000 0.116 0.036
#> GSM555294     2  0.2974      0.849 0.000 0.868 0.000 0.080 0.052
#> GSM555296     2  0.1907      0.875 0.000 0.928 0.000 0.044 0.028
#> GSM555298     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000
#> GSM555300     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000
#> GSM555302     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000
#> GSM555304     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000
#> GSM555306     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000
#> GSM555308     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000
#> GSM555310     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000
#> GSM555312     2  0.2438      0.866 0.000 0.900 0.000 0.040 0.060
#> GSM555314     2  0.2130      0.863 0.000 0.908 0.000 0.080 0.012
#> GSM555316     2  0.2270      0.876 0.000 0.904 0.000 0.020 0.076
#> GSM555317     2  0.2338      0.861 0.000 0.884 0.000 0.004 0.112
#> GSM555319     2  0.2325      0.871 0.000 0.904 0.000 0.028 0.068
#> GSM555321     2  0.2236      0.866 0.000 0.908 0.000 0.068 0.024
#> GSM555323     2  0.1914      0.867 0.000 0.924 0.000 0.060 0.016
#> GSM555325     2  0.5282      0.497 0.000 0.644 0.000 0.088 0.268
#> GSM555327     2  0.2389      0.860 0.000 0.880 0.000 0.004 0.116
#> GSM555329     2  0.2036      0.872 0.000 0.920 0.000 0.024 0.056
#> GSM555331     2  0.1997      0.872 0.000 0.924 0.000 0.036 0.040
#> GSM555333     2  0.1942      0.866 0.000 0.920 0.000 0.068 0.012
#> GSM555335     2  0.2006      0.866 0.000 0.916 0.000 0.072 0.012
#> GSM555337     2  0.2036      0.873 0.000 0.920 0.000 0.024 0.056
#> GSM555339     2  0.2017      0.864 0.000 0.912 0.000 0.080 0.008
#> GSM555341     2  0.1845      0.870 0.000 0.928 0.000 0.056 0.016
#> GSM555343     2  0.2144      0.865 0.000 0.912 0.000 0.068 0.020
#> GSM555345     2  0.2561      0.864 0.000 0.884 0.000 0.020 0.096
#> GSM555318     2  0.2648      0.845 0.000 0.848 0.000 0.000 0.152
#> GSM555320     2  0.3702      0.833 0.000 0.820 0.000 0.084 0.096
#> GSM555322     2  0.2793      0.860 0.000 0.876 0.000 0.036 0.088
#> GSM555324     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000
#> GSM555326     2  0.2260      0.866 0.000 0.908 0.000 0.064 0.028
#> GSM555328     2  0.2304      0.866 0.000 0.908 0.000 0.048 0.044
#> GSM555330     2  0.2793      0.850 0.000 0.876 0.000 0.088 0.036
#> GSM555332     2  0.2770      0.856 0.000 0.880 0.000 0.076 0.044
#> GSM555334     2  0.2863      0.859 0.000 0.876 0.000 0.064 0.060
#> GSM555336     2  0.2520      0.872 0.000 0.896 0.000 0.056 0.048
#> GSM555338     2  0.2362      0.868 0.000 0.900 0.000 0.024 0.076
#> GSM555340     2  0.2144      0.865 0.000 0.912 0.000 0.068 0.020
#> GSM555342     2  0.2376      0.878 0.000 0.904 0.000 0.044 0.052
#> GSM555344     2  0.2074      0.868 0.000 0.896 0.000 0.000 0.104
#> GSM555346     2  0.5828      0.130 0.000 0.520 0.000 0.100 0.380

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM555237     1  0.0363     0.9844 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM555239     1  0.0260     0.9872 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM555241     1  0.0146     0.9889 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM555243     1  0.0000     0.9896 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000     0.9896 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0146     0.9889 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM555249     1  0.0000     0.9896 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000     0.9896 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0146     0.9889 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM555255     1  0.0146     0.9889 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM555257     4  0.3101     0.7950 0.000 0.024 0.000 0.852 0.092 0.032
#> GSM555259     4  0.1788     0.8209 0.000 0.040 0.004 0.928 0.000 0.028
#> GSM555261     4  0.2519     0.8276 0.000 0.044 0.000 0.892 0.016 0.048
#> GSM555263     4  0.2867     0.7982 0.000 0.040 0.000 0.872 0.064 0.024
#> GSM555265     4  0.2492     0.8216 0.000 0.048 0.000 0.892 0.012 0.048
#> GSM555267     4  0.4748     0.6715 0.000 0.152 0.012 0.740 0.036 0.060
#> GSM555269     4  0.3434     0.7014 0.000 0.008 0.112 0.832 0.028 0.020
#> GSM555271     3  0.2300     0.8268 0.000 0.000 0.856 0.144 0.000 0.000
#> GSM555273     5  0.3688     0.7611 0.000 0.196 0.000 0.028 0.768 0.008
#> GSM555275     2  0.3836     0.4924 0.000 0.724 0.000 0.012 0.012 0.252
#> GSM555238     1  0.0146     0.9888 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM555240     1  0.1657     0.9430 0.936 0.000 0.000 0.012 0.012 0.040
#> GSM555242     1  0.0146     0.9887 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM555244     1  0.0000     0.9896 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0146     0.9888 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM555248     1  0.0000     0.9896 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0146     0.9887 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM555252     1  0.2318     0.9130 0.904 0.000 0.000 0.020 0.028 0.048
#> GSM555254     1  0.0000     0.9896 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0260     0.9867 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM555258     4  0.3291     0.8210 0.000 0.036 0.000 0.848 0.056 0.060
#> GSM555260     4  0.3798     0.7701 0.000 0.040 0.000 0.800 0.032 0.128
#> GSM555262     6  0.3963     0.6773 0.000 0.208 0.000 0.028 0.016 0.748
#> GSM555264     5  0.3923     0.5385 0.004 0.032 0.000 0.148 0.788 0.028
#> GSM555266     6  0.4167     0.7056 0.000 0.368 0.000 0.000 0.020 0.612
#> GSM555268     6  0.3861     0.7388 0.000 0.316 0.000 0.004 0.008 0.672
#> GSM555270     2  0.4492    -0.4329 0.000 0.496 0.000 0.008 0.016 0.480
#> GSM555272     4  0.3407     0.8193 0.000 0.040 0.000 0.840 0.072 0.048
#> GSM555274     6  0.4984     0.6548 0.000 0.392 0.000 0.036 0.020 0.552
#> GSM555276     2  0.4157     0.4204 0.000 0.688 0.000 0.004 0.032 0.276
#> GSM555277     2  0.5241     0.0383 0.000 0.552 0.000 0.024 0.052 0.372
#> GSM555279     2  0.4764     0.3672 0.000 0.628 0.000 0.000 0.080 0.292
#> GSM555281     2  0.4238    -0.0284 0.000 0.580 0.000 0.008 0.008 0.404
#> GSM555283     4  0.6399    -0.0202 0.000 0.220 0.000 0.444 0.024 0.312
#> GSM555285     5  0.3386     0.7610 0.000 0.176 0.000 0.016 0.796 0.012
#> GSM555287     2  0.6993     0.0922 0.004 0.560 0.076 0.040 0.132 0.188
#> GSM555289     2  0.4701     0.0132 0.000 0.560 0.000 0.004 0.040 0.396
#> GSM555291     2  0.5748     0.0595 0.000 0.532 0.000 0.116 0.020 0.332
#> GSM555293     2  0.1934     0.6640 0.000 0.916 0.000 0.000 0.040 0.044
#> GSM555295     2  0.1787     0.6411 0.000 0.920 0.000 0.008 0.068 0.004
#> GSM555297     2  0.4497     0.4016 0.000 0.752 0.072 0.012 0.148 0.016
#> GSM555299     3  0.0000     0.9854 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555301     3  0.0551     0.9745 0.000 0.000 0.984 0.004 0.008 0.004
#> GSM555303     3  0.0000     0.9854 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555305     3  0.0000     0.9854 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555307     2  0.2627     0.6435 0.000 0.884 0.000 0.036 0.016 0.064
#> GSM555309     3  0.0146     0.9836 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM555311     2  0.3424     0.6340 0.000 0.816 0.000 0.008 0.128 0.048
#> GSM555313     6  0.3927     0.7370 0.000 0.344 0.000 0.012 0.000 0.644
#> GSM555315     2  0.2100     0.6264 0.000 0.884 0.000 0.000 0.112 0.004
#> GSM555278     6  0.4106     0.7388 0.000 0.312 0.000 0.004 0.020 0.664
#> GSM555280     6  0.3499     0.7427 0.000 0.320 0.000 0.000 0.000 0.680
#> GSM555282     6  0.3433     0.5883 0.000 0.132 0.000 0.012 0.040 0.816
#> GSM555284     6  0.3652     0.5645 0.000 0.120 0.000 0.016 0.056 0.808
#> GSM555286     6  0.4109     0.6996 0.000 0.392 0.000 0.004 0.008 0.596
#> GSM555288     6  0.5162     0.1839 0.000 0.064 0.000 0.340 0.016 0.580
#> GSM555290     6  0.4595     0.7184 0.000 0.352 0.000 0.012 0.028 0.608
#> GSM555292     6  0.3979     0.7101 0.000 0.244 0.000 0.032 0.004 0.720
#> GSM555294     2  0.4455     0.5329 0.000 0.684 0.000 0.000 0.240 0.076
#> GSM555296     2  0.3874     0.4153 0.000 0.704 0.000 0.008 0.012 0.276
#> GSM555298     3  0.0000     0.9854 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555300     3  0.0000     0.9854 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555302     3  0.0146     0.9838 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM555304     3  0.0000     0.9854 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555306     3  0.0000     0.9854 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555308     3  0.0000     0.9854 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555310     3  0.0146     0.9838 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM555312     6  0.4921     0.6670 0.000 0.388 0.000 0.024 0.028 0.560
#> GSM555314     2  0.3449     0.5756 0.000 0.780 0.000 0.016 0.008 0.196
#> GSM555316     2  0.2776     0.6481 0.000 0.860 0.000 0.004 0.032 0.104
#> GSM555317     2  0.3364     0.5819 0.000 0.780 0.000 0.000 0.024 0.196
#> GSM555319     2  0.3104     0.5632 0.000 0.788 0.000 0.004 0.004 0.204
#> GSM555321     2  0.1313     0.6591 0.000 0.952 0.000 0.004 0.016 0.028
#> GSM555323     2  0.0520     0.6569 0.000 0.984 0.000 0.000 0.008 0.008
#> GSM555325     2  0.3804     0.3377 0.000 0.656 0.000 0.000 0.336 0.008
#> GSM555327     2  0.2971     0.6291 0.000 0.832 0.000 0.004 0.020 0.144
#> GSM555329     2  0.2994     0.5606 0.000 0.788 0.000 0.000 0.004 0.208
#> GSM555331     2  0.2196     0.6508 0.000 0.884 0.000 0.004 0.004 0.108
#> GSM555333     2  0.1434     0.6603 0.000 0.948 0.000 0.012 0.012 0.028
#> GSM555335     2  0.1672     0.6473 0.000 0.932 0.000 0.004 0.048 0.016
#> GSM555337     2  0.2149     0.6542 0.000 0.888 0.000 0.004 0.004 0.104
#> GSM555339     2  0.1503     0.6581 0.000 0.944 0.000 0.008 0.032 0.016
#> GSM555341     2  0.1889     0.6558 0.000 0.920 0.000 0.004 0.020 0.056
#> GSM555343     2  0.1624     0.6575 0.000 0.936 0.000 0.004 0.040 0.020
#> GSM555345     2  0.3169     0.5832 0.000 0.848 0.000 0.016 0.052 0.084
#> GSM555318     2  0.3758     0.5788 0.000 0.772 0.000 0.004 0.048 0.176
#> GSM555320     2  0.5426    -0.4640 0.000 0.456 0.000 0.012 0.080 0.452
#> GSM555322     2  0.4523    -0.3181 0.000 0.516 0.000 0.000 0.032 0.452
#> GSM555324     3  0.0146     0.9836 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM555326     6  0.4322     0.5261 0.000 0.472 0.000 0.008 0.008 0.512
#> GSM555328     6  0.4412     0.6577 0.000 0.404 0.000 0.008 0.016 0.572
#> GSM555330     6  0.3833     0.5611 0.000 0.444 0.000 0.000 0.000 0.556
#> GSM555332     2  0.4564    -0.3655 0.000 0.500 0.000 0.008 0.020 0.472
#> GSM555334     6  0.5300     0.6726 0.000 0.360 0.000 0.036 0.044 0.560
#> GSM555336     2  0.4573     0.4995 0.000 0.676 0.000 0.000 0.088 0.236
#> GSM555338     2  0.1049     0.6596 0.000 0.960 0.000 0.000 0.008 0.032
#> GSM555340     2  0.1485     0.6619 0.000 0.944 0.000 0.004 0.024 0.028
#> GSM555342     2  0.4047     0.3831 0.000 0.676 0.000 0.000 0.028 0.296
#> GSM555344     2  0.3139     0.6298 0.000 0.836 0.000 0.008 0.036 0.120
#> GSM555346     5  0.4253     0.5388 0.000 0.372 0.000 0.008 0.608 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) agent(p) k
#> SD:NMF 106         8.03e-07 0.886862 2
#> SD:NMF 106         1.68e-11 0.990340 3
#> SD:NMF 101         2.72e-11 0.918291 4
#> SD:NMF 105         1.71e-14 0.774024 5
#> SD:NMF  91         1.01e-15 0.000943 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.594           0.865       0.937         0.4421 0.544   0.544
#> 3 3 0.839           0.734       0.883         0.1972 0.901   0.829
#> 4 4 0.838           0.793       0.817         0.0728 0.913   0.830
#> 5 5 0.924           0.911       0.961         0.0739 0.944   0.872
#> 6 6 0.834           0.850       0.921         0.0621 1.000   1.000

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1  0.5059     0.9290 0.888 0.112
#> GSM555239     1  0.5059     0.9290 0.888 0.112
#> GSM555241     1  0.5059     0.9290 0.888 0.112
#> GSM555243     1  0.5059     0.9290 0.888 0.112
#> GSM555245     1  0.5059     0.9290 0.888 0.112
#> GSM555247     1  0.5059     0.9290 0.888 0.112
#> GSM555249     1  0.5059     0.9290 0.888 0.112
#> GSM555251     1  0.5059     0.9290 0.888 0.112
#> GSM555253     1  0.5059     0.9290 0.888 0.112
#> GSM555255     1  0.5059     0.9290 0.888 0.112
#> GSM555257     1  0.9087     0.6084 0.676 0.324
#> GSM555259     1  0.5842     0.9015 0.860 0.140
#> GSM555261     2  0.9998    -0.0895 0.492 0.508
#> GSM555263     2  0.9998    -0.0895 0.492 0.508
#> GSM555265     2  0.9998    -0.0895 0.492 0.508
#> GSM555267     2  0.9998    -0.0895 0.492 0.508
#> GSM555269     1  0.5842     0.9015 0.860 0.140
#> GSM555271     1  0.3733     0.9189 0.928 0.072
#> GSM555273     2  0.0376     0.9399 0.004 0.996
#> GSM555275     2  0.0376     0.9399 0.004 0.996
#> GSM555238     1  0.5059     0.9290 0.888 0.112
#> GSM555240     1  0.5059     0.9290 0.888 0.112
#> GSM555242     1  0.5059     0.9290 0.888 0.112
#> GSM555244     1  0.5059     0.9290 0.888 0.112
#> GSM555246     1  0.5059     0.9290 0.888 0.112
#> GSM555248     1  0.5059     0.9290 0.888 0.112
#> GSM555250     1  0.5059     0.9290 0.888 0.112
#> GSM555252     1  0.5059     0.9290 0.888 0.112
#> GSM555254     1  0.5059     0.9290 0.888 0.112
#> GSM555256     1  0.5059     0.9290 0.888 0.112
#> GSM555258     2  0.8081     0.6206 0.248 0.752
#> GSM555260     2  0.8081     0.6206 0.248 0.752
#> GSM555262     2  0.0000     0.9426 0.000 1.000
#> GSM555264     1  0.9954     0.2368 0.540 0.460
#> GSM555266     2  0.0000     0.9426 0.000 1.000
#> GSM555268     2  0.0000     0.9426 0.000 1.000
#> GSM555270     2  0.0000     0.9426 0.000 1.000
#> GSM555272     2  0.8081     0.6206 0.248 0.752
#> GSM555274     2  0.0000     0.9426 0.000 1.000
#> GSM555276     2  0.0000     0.9426 0.000 1.000
#> GSM555277     2  0.0000     0.9426 0.000 1.000
#> GSM555279     2  0.0000     0.9426 0.000 1.000
#> GSM555281     2  0.0000     0.9426 0.000 1.000
#> GSM555283     2  0.0000     0.9426 0.000 1.000
#> GSM555285     2  0.0000     0.9426 0.000 1.000
#> GSM555287     2  0.8763     0.5241 0.296 0.704
#> GSM555289     2  0.0000     0.9426 0.000 1.000
#> GSM555291     2  0.0000     0.9426 0.000 1.000
#> GSM555293     2  0.0000     0.9426 0.000 1.000
#> GSM555295     2  0.0000     0.9426 0.000 1.000
#> GSM555297     2  0.9998    -0.0895 0.492 0.508
#> GSM555299     1  0.0000     0.8975 1.000 0.000
#> GSM555301     1  0.0000     0.8975 1.000 0.000
#> GSM555303     1  0.0000     0.8975 1.000 0.000
#> GSM555305     1  0.0000     0.8975 1.000 0.000
#> GSM555307     2  0.0376     0.9399 0.004 0.996
#> GSM555309     1  0.0000     0.8975 1.000 0.000
#> GSM555311     2  0.0376     0.9399 0.004 0.996
#> GSM555313     2  0.0000     0.9426 0.000 1.000
#> GSM555315     2  0.0376     0.9399 0.004 0.996
#> GSM555278     2  0.0000     0.9426 0.000 1.000
#> GSM555280     2  0.0000     0.9426 0.000 1.000
#> GSM555282     2  0.0000     0.9426 0.000 1.000
#> GSM555284     2  0.0000     0.9426 0.000 1.000
#> GSM555286     2  0.0000     0.9426 0.000 1.000
#> GSM555288     2  0.0000     0.9426 0.000 1.000
#> GSM555290     2  0.0000     0.9426 0.000 1.000
#> GSM555292     2  0.0000     0.9426 0.000 1.000
#> GSM555294     2  0.0000     0.9426 0.000 1.000
#> GSM555296     2  0.0000     0.9426 0.000 1.000
#> GSM555298     1  0.0000     0.8975 1.000 0.000
#> GSM555300     1  0.0000     0.8975 1.000 0.000
#> GSM555302     1  0.0000     0.8975 1.000 0.000
#> GSM555304     1  0.0000     0.8975 1.000 0.000
#> GSM555306     1  0.0000     0.8975 1.000 0.000
#> GSM555308     1  0.0000     0.8975 1.000 0.000
#> GSM555310     1  0.0000     0.8975 1.000 0.000
#> GSM555312     2  0.0000     0.9426 0.000 1.000
#> GSM555314     2  0.0376     0.9399 0.004 0.996
#> GSM555316     2  0.0000     0.9426 0.000 1.000
#> GSM555317     2  0.0000     0.9426 0.000 1.000
#> GSM555319     2  0.0000     0.9426 0.000 1.000
#> GSM555321     2  0.0000     0.9426 0.000 1.000
#> GSM555323     2  0.0000     0.9426 0.000 1.000
#> GSM555325     2  0.0000     0.9426 0.000 1.000
#> GSM555327     2  0.0000     0.9426 0.000 1.000
#> GSM555329     2  0.0000     0.9426 0.000 1.000
#> GSM555331     2  0.0000     0.9426 0.000 1.000
#> GSM555333     2  0.0376     0.9399 0.004 0.996
#> GSM555335     2  0.0000     0.9426 0.000 1.000
#> GSM555337     2  0.0000     0.9426 0.000 1.000
#> GSM555339     2  0.0376     0.9399 0.004 0.996
#> GSM555341     2  0.0000     0.9426 0.000 1.000
#> GSM555343     2  0.0000     0.9426 0.000 1.000
#> GSM555345     2  0.0376     0.9396 0.004 0.996
#> GSM555318     2  0.0000     0.9426 0.000 1.000
#> GSM555320     2  0.0000     0.9426 0.000 1.000
#> GSM555322     2  0.0000     0.9426 0.000 1.000
#> GSM555324     1  0.0000     0.8975 1.000 0.000
#> GSM555326     2  0.0000     0.9426 0.000 1.000
#> GSM555328     2  0.0000     0.9426 0.000 1.000
#> GSM555330     2  0.0000     0.9426 0.000 1.000
#> GSM555332     2  0.0000     0.9426 0.000 1.000
#> GSM555334     2  0.0000     0.9426 0.000 1.000
#> GSM555336     2  0.0000     0.9426 0.000 1.000
#> GSM555338     2  0.0000     0.9426 0.000 1.000
#> GSM555340     2  0.0000     0.9426 0.000 1.000
#> GSM555342     2  0.0000     0.9426 0.000 1.000
#> GSM555344     2  0.0000     0.9426 0.000 1.000
#> GSM555346     2  0.0000     0.9426 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.0892      0.711 0.980 0.000 0.020
#> GSM555239     1  0.0000      0.718 1.000 0.000 0.000
#> GSM555241     1  0.0000      0.718 1.000 0.000 0.000
#> GSM555243     1  0.0000      0.718 1.000 0.000 0.000
#> GSM555245     1  0.0000      0.718 1.000 0.000 0.000
#> GSM555247     1  0.0000      0.718 1.000 0.000 0.000
#> GSM555249     1  0.0000      0.718 1.000 0.000 0.000
#> GSM555251     1  0.0000      0.718 1.000 0.000 0.000
#> GSM555253     1  0.0000      0.718 1.000 0.000 0.000
#> GSM555255     1  0.0000      0.718 1.000 0.000 0.000
#> GSM555257     1  0.8536      0.266 0.596 0.144 0.260
#> GSM555259     1  0.5109      0.575 0.780 0.008 0.212
#> GSM555261     1  0.9767     -0.236 0.428 0.328 0.244
#> GSM555263     1  0.9767     -0.236 0.428 0.328 0.244
#> GSM555265     1  0.9767     -0.236 0.428 0.328 0.244
#> GSM555267     1  0.9756     -0.243 0.428 0.332 0.240
#> GSM555269     1  0.5109      0.575 0.780 0.008 0.212
#> GSM555271     1  0.3116      0.686 0.892 0.000 0.108
#> GSM555273     2  0.2902      0.803 0.016 0.920 0.064
#> GSM555275     2  0.0237      0.944 0.000 0.996 0.004
#> GSM555238     1  0.0000      0.718 1.000 0.000 0.000
#> GSM555240     1  0.0892      0.711 0.980 0.000 0.020
#> GSM555242     1  0.0892      0.711 0.980 0.000 0.020
#> GSM555244     1  0.0000      0.718 1.000 0.000 0.000
#> GSM555246     1  0.0000      0.718 1.000 0.000 0.000
#> GSM555248     1  0.0000      0.718 1.000 0.000 0.000
#> GSM555250     1  0.0000      0.718 1.000 0.000 0.000
#> GSM555252     1  0.0892      0.711 0.980 0.000 0.020
#> GSM555254     1  0.0000      0.718 1.000 0.000 0.000
#> GSM555256     1  0.0000      0.718 1.000 0.000 0.000
#> GSM555258     2  0.8332     -0.285 0.316 0.580 0.104
#> GSM555260     2  0.8332     -0.285 0.316 0.580 0.104
#> GSM555262     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555264     1  0.9684     -0.145 0.460 0.280 0.260
#> GSM555266     2  0.0592      0.932 0.000 0.988 0.012
#> GSM555268     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555270     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555272     2  0.8332     -0.285 0.316 0.580 0.104
#> GSM555274     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555276     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555277     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555279     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555281     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555283     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555285     2  0.2804      0.810 0.016 0.924 0.060
#> GSM555287     3  0.7841      0.000 0.052 0.468 0.480
#> GSM555289     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555291     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555293     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555295     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555297     1  0.9773     -0.264 0.420 0.340 0.240
#> GSM555299     1  0.6280      0.557 0.540 0.000 0.460
#> GSM555301     1  0.6280      0.557 0.540 0.000 0.460
#> GSM555303     1  0.6280      0.557 0.540 0.000 0.460
#> GSM555305     1  0.6280      0.557 0.540 0.000 0.460
#> GSM555307     2  0.0237      0.944 0.000 0.996 0.004
#> GSM555309     1  0.6280      0.557 0.540 0.000 0.460
#> GSM555311     2  0.0237      0.944 0.000 0.996 0.004
#> GSM555313     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555315     2  0.0237      0.944 0.000 0.996 0.004
#> GSM555278     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555280     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555282     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555284     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555286     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555288     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555290     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555292     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555294     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555296     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555298     1  0.6280      0.557 0.540 0.000 0.460
#> GSM555300     1  0.6280      0.557 0.540 0.000 0.460
#> GSM555302     1  0.6280      0.557 0.540 0.000 0.460
#> GSM555304     1  0.6280      0.557 0.540 0.000 0.460
#> GSM555306     1  0.6280      0.557 0.540 0.000 0.460
#> GSM555308     1  0.6280      0.557 0.540 0.000 0.460
#> GSM555310     1  0.6280      0.557 0.540 0.000 0.460
#> GSM555312     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555314     2  0.0237      0.944 0.000 0.996 0.004
#> GSM555316     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555317     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555319     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555321     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555323     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555325     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555327     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555329     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555331     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555333     2  0.0237      0.944 0.000 0.996 0.004
#> GSM555335     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555337     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555339     2  0.0237      0.944 0.000 0.996 0.004
#> GSM555341     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555343     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555345     2  0.0237      0.944 0.000 0.996 0.004
#> GSM555318     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555320     2  0.1529      0.883 0.000 0.960 0.040
#> GSM555322     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555324     1  0.6280      0.557 0.540 0.000 0.460
#> GSM555326     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555328     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555330     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555332     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555334     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555336     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555338     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555340     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555342     2  0.0592      0.932 0.000 0.988 0.012
#> GSM555344     2  0.0000      0.949 0.000 1.000 0.000
#> GSM555346     2  0.2804      0.810 0.016 0.924 0.060

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2 p3    p4
#> GSM555237     1  0.4994      0.616 0.520 0.000  0 0.480
#> GSM555239     1  0.4977      0.643 0.540 0.000  0 0.460
#> GSM555241     1  0.4977      0.643 0.540 0.000  0 0.460
#> GSM555243     1  0.4977      0.643 0.540 0.000  0 0.460
#> GSM555245     1  0.4977      0.643 0.540 0.000  0 0.460
#> GSM555247     1  0.4977      0.643 0.540 0.000  0 0.460
#> GSM555249     1  0.4977      0.643 0.540 0.000  0 0.460
#> GSM555251     1  0.4977      0.643 0.540 0.000  0 0.460
#> GSM555253     1  0.4977      0.643 0.540 0.000  0 0.460
#> GSM555255     1  0.4977      0.643 0.540 0.000  0 0.460
#> GSM555257     4  0.2868      0.453 0.136 0.000  0 0.864
#> GSM555259     4  0.4522     -0.122 0.320 0.000  0 0.680
#> GSM555261     4  0.1474      0.680 0.000 0.052  0 0.948
#> GSM555263     4  0.1474      0.680 0.000 0.052  0 0.948
#> GSM555265     4  0.1474      0.680 0.000 0.052  0 0.948
#> GSM555267     4  0.1557      0.679 0.000 0.056  0 0.944
#> GSM555269     4  0.4522     -0.122 0.320 0.000  0 0.680
#> GSM555271     1  0.4998      0.539 0.512 0.000  0 0.488
#> GSM555273     2  0.3837      0.715 0.000 0.776  0 0.224
#> GSM555275     2  0.0188      0.981 0.000 0.996  0 0.004
#> GSM555238     1  0.4977      0.643 0.540 0.000  0 0.460
#> GSM555240     1  0.4994      0.616 0.520 0.000  0 0.480
#> GSM555242     1  0.4994      0.616 0.520 0.000  0 0.480
#> GSM555244     1  0.4977      0.643 0.540 0.000  0 0.460
#> GSM555246     1  0.4977      0.643 0.540 0.000  0 0.460
#> GSM555248     1  0.4977      0.643 0.540 0.000  0 0.460
#> GSM555250     1  0.4977      0.643 0.540 0.000  0 0.460
#> GSM555252     1  0.4994      0.616 0.520 0.000  0 0.480
#> GSM555254     1  0.4977      0.643 0.540 0.000  0 0.460
#> GSM555256     1  0.4977      0.643 0.540 0.000  0 0.460
#> GSM555258     4  0.4431      0.454 0.000 0.304  0 0.696
#> GSM555260     4  0.4431      0.454 0.000 0.304  0 0.696
#> GSM555262     2  0.0592      0.972 0.000 0.984  0 0.016
#> GSM555264     4  0.0000      0.621 0.000 0.000  0 1.000
#> GSM555266     2  0.1118      0.954 0.000 0.964  0 0.036
#> GSM555268     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555270     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555272     4  0.4431      0.454 0.000 0.304  0 0.696
#> GSM555274     2  0.2081      0.904 0.000 0.916  0 0.084
#> GSM555276     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555277     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555279     2  0.0188      0.981 0.000 0.996  0 0.004
#> GSM555281     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555283     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555285     2  0.3801      0.721 0.000 0.780  0 0.220
#> GSM555287     3  0.0000      0.000 0.000 0.000  1 0.000
#> GSM555289     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555291     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555293     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555295     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555297     4  0.1716      0.673 0.000 0.064  0 0.936
#> GSM555299     1  0.0000      0.572 1.000 0.000  0 0.000
#> GSM555301     1  0.0000      0.572 1.000 0.000  0 0.000
#> GSM555303     1  0.0000      0.572 1.000 0.000  0 0.000
#> GSM555305     1  0.0000      0.572 1.000 0.000  0 0.000
#> GSM555307     2  0.0188      0.981 0.000 0.996  0 0.004
#> GSM555309     1  0.0000      0.572 1.000 0.000  0 0.000
#> GSM555311     2  0.0188      0.981 0.000 0.996  0 0.004
#> GSM555313     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555315     2  0.0188      0.981 0.000 0.996  0 0.004
#> GSM555278     2  0.0592      0.972 0.000 0.984  0 0.016
#> GSM555280     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555282     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555284     2  0.0592      0.972 0.000 0.984  0 0.016
#> GSM555286     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555288     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555290     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555292     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555294     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555296     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555298     1  0.0000      0.572 1.000 0.000  0 0.000
#> GSM555300     1  0.0000      0.572 1.000 0.000  0 0.000
#> GSM555302     1  0.0000      0.572 1.000 0.000  0 0.000
#> GSM555304     1  0.0000      0.572 1.000 0.000  0 0.000
#> GSM555306     1  0.0000      0.572 1.000 0.000  0 0.000
#> GSM555308     1  0.0000      0.572 1.000 0.000  0 0.000
#> GSM555310     1  0.0000      0.572 1.000 0.000  0 0.000
#> GSM555312     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555314     2  0.0336      0.979 0.000 0.992  0 0.008
#> GSM555316     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555317     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555319     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555321     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555323     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555325     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555327     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555329     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555331     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555333     2  0.0188      0.981 0.000 0.996  0 0.004
#> GSM555335     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555337     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555339     2  0.0188      0.981 0.000 0.996  0 0.004
#> GSM555341     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555343     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555345     2  0.0188      0.981 0.000 0.996  0 0.004
#> GSM555318     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555320     2  0.2149      0.899 0.000 0.912  0 0.088
#> GSM555322     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555324     1  0.0000      0.572 1.000 0.000  0 0.000
#> GSM555326     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555328     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555330     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555332     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555334     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555336     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555338     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555340     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555342     2  0.0707      0.968 0.000 0.980  0 0.020
#> GSM555344     2  0.0000      0.983 0.000 1.000  0 0.000
#> GSM555346     2  0.3726      0.734 0.000 0.788  0 0.212

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4 p5
#> GSM555237     1  0.0609      0.941 0.980 0.000 0.000 0.020  0
#> GSM555239     1  0.0000      0.952 1.000 0.000 0.000 0.000  0
#> GSM555241     1  0.0000      0.952 1.000 0.000 0.000 0.000  0
#> GSM555243     1  0.0000      0.952 1.000 0.000 0.000 0.000  0
#> GSM555245     1  0.0000      0.952 1.000 0.000 0.000 0.000  0
#> GSM555247     1  0.0000      0.952 1.000 0.000 0.000 0.000  0
#> GSM555249     1  0.0000      0.952 1.000 0.000 0.000 0.000  0
#> GSM555251     1  0.0000      0.952 1.000 0.000 0.000 0.000  0
#> GSM555253     1  0.0000      0.952 1.000 0.000 0.000 0.000  0
#> GSM555255     1  0.0000      0.952 1.000 0.000 0.000 0.000  0
#> GSM555257     4  0.3934      0.448 0.244 0.000 0.016 0.740  0
#> GSM555259     1  0.4138      0.616 0.708 0.000 0.016 0.276  0
#> GSM555261     4  0.3085      0.691 0.116 0.032 0.000 0.852  0
#> GSM555263     4  0.3085      0.691 0.116 0.032 0.000 0.852  0
#> GSM555265     4  0.3085      0.691 0.116 0.032 0.000 0.852  0
#> GSM555267     4  0.3165      0.691 0.116 0.036 0.000 0.848  0
#> GSM555269     1  0.4138      0.616 0.708 0.000 0.016 0.276  0
#> GSM555271     1  0.4893      0.614 0.704 0.000 0.208 0.088  0
#> GSM555273     2  0.3305      0.691 0.000 0.776 0.000 0.224  0
#> GSM555275     2  0.0290      0.977 0.000 0.992 0.000 0.008  0
#> GSM555238     1  0.0000      0.952 1.000 0.000 0.000 0.000  0
#> GSM555240     1  0.0609      0.941 0.980 0.000 0.000 0.020  0
#> GSM555242     1  0.0609      0.941 0.980 0.000 0.000 0.020  0
#> GSM555244     1  0.0000      0.952 1.000 0.000 0.000 0.000  0
#> GSM555246     1  0.0000      0.952 1.000 0.000 0.000 0.000  0
#> GSM555248     1  0.0000      0.952 1.000 0.000 0.000 0.000  0
#> GSM555250     1  0.0000      0.952 1.000 0.000 0.000 0.000  0
#> GSM555252     1  0.0609      0.941 0.980 0.000 0.000 0.020  0
#> GSM555254     1  0.0000      0.952 1.000 0.000 0.000 0.000  0
#> GSM555256     1  0.0000      0.952 1.000 0.000 0.000 0.000  0
#> GSM555258     4  0.3707      0.495 0.000 0.284 0.000 0.716  0
#> GSM555260     4  0.3707      0.495 0.000 0.284 0.000 0.716  0
#> GSM555262     2  0.0880      0.961 0.000 0.968 0.000 0.032  0
#> GSM555264     4  0.0671      0.519 0.004 0.000 0.016 0.980  0
#> GSM555266     2  0.1270      0.942 0.000 0.948 0.000 0.052  0
#> GSM555268     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555270     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555272     4  0.3707      0.495 0.000 0.284 0.000 0.716  0
#> GSM555274     2  0.1965      0.891 0.000 0.904 0.000 0.096  0
#> GSM555276     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555277     2  0.0290      0.976 0.000 0.992 0.000 0.008  0
#> GSM555279     2  0.0404      0.975 0.000 0.988 0.000 0.012  0
#> GSM555281     2  0.0404      0.975 0.000 0.988 0.000 0.012  0
#> GSM555283     2  0.0290      0.976 0.000 0.992 0.000 0.008  0
#> GSM555285     2  0.3274      0.698 0.000 0.780 0.000 0.220  0
#> GSM555287     5  0.0000      0.000 0.000 0.000 0.000 0.000  1
#> GSM555289     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555291     2  0.0290      0.976 0.000 0.992 0.000 0.008  0
#> GSM555293     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555295     2  0.0290      0.976 0.000 0.992 0.000 0.008  0
#> GSM555297     4  0.3267      0.689 0.112 0.044 0.000 0.844  0
#> GSM555299     3  0.0510      1.000 0.016 0.000 0.984 0.000  0
#> GSM555301     3  0.0510      1.000 0.016 0.000 0.984 0.000  0
#> GSM555303     3  0.0510      1.000 0.016 0.000 0.984 0.000  0
#> GSM555305     3  0.0510      1.000 0.016 0.000 0.984 0.000  0
#> GSM555307     2  0.0404      0.975 0.000 0.988 0.000 0.012  0
#> GSM555309     3  0.0510      1.000 0.016 0.000 0.984 0.000  0
#> GSM555311     2  0.0404      0.975 0.000 0.988 0.000 0.012  0
#> GSM555313     2  0.0404      0.974 0.000 0.988 0.000 0.012  0
#> GSM555315     2  0.0404      0.975 0.000 0.988 0.000 0.012  0
#> GSM555278     2  0.0510      0.970 0.000 0.984 0.000 0.016  0
#> GSM555280     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555282     2  0.0510      0.972 0.000 0.984 0.000 0.016  0
#> GSM555284     2  0.0880      0.961 0.000 0.968 0.000 0.032  0
#> GSM555286     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555288     2  0.0510      0.972 0.000 0.984 0.000 0.016  0
#> GSM555290     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555292     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555294     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555296     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555298     3  0.0510      1.000 0.016 0.000 0.984 0.000  0
#> GSM555300     3  0.0510      1.000 0.016 0.000 0.984 0.000  0
#> GSM555302     3  0.0510      1.000 0.016 0.000 0.984 0.000  0
#> GSM555304     3  0.0510      1.000 0.016 0.000 0.984 0.000  0
#> GSM555306     3  0.0510      1.000 0.016 0.000 0.984 0.000  0
#> GSM555308     3  0.0510      1.000 0.016 0.000 0.984 0.000  0
#> GSM555310     3  0.0510      1.000 0.016 0.000 0.984 0.000  0
#> GSM555312     2  0.0404      0.974 0.000 0.988 0.000 0.012  0
#> GSM555314     2  0.0510      0.973 0.000 0.984 0.000 0.016  0
#> GSM555316     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555317     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555319     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555321     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555323     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555325     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555327     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555329     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555331     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555333     2  0.0404      0.975 0.000 0.988 0.000 0.012  0
#> GSM555335     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555337     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555339     2  0.0404      0.975 0.000 0.988 0.000 0.012  0
#> GSM555341     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555343     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555345     2  0.0404      0.974 0.000 0.988 0.000 0.012  0
#> GSM555318     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555320     2  0.1851      0.894 0.000 0.912 0.000 0.088  0
#> GSM555322     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555324     3  0.0510      1.000 0.016 0.000 0.984 0.000  0
#> GSM555326     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555328     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555330     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555332     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555334     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555336     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555338     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555340     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555342     2  0.0609      0.965 0.000 0.980 0.000 0.020  0
#> GSM555344     2  0.0000      0.979 0.000 1.000 0.000 0.000  0
#> GSM555346     2  0.3210      0.712 0.000 0.788 0.000 0.212  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4 p5 p6
#> GSM555237     1  0.0547    0.89607 0.980 0.000 0.000 0.020  0 NA
#> GSM555239     1  0.0000    0.90783 1.000 0.000 0.000 0.000  0 NA
#> GSM555241     1  0.0000    0.90783 1.000 0.000 0.000 0.000  0 NA
#> GSM555243     1  0.0000    0.90783 1.000 0.000 0.000 0.000  0 NA
#> GSM555245     1  0.0000    0.90783 1.000 0.000 0.000 0.000  0 NA
#> GSM555247     1  0.0000    0.90783 1.000 0.000 0.000 0.000  0 NA
#> GSM555249     1  0.0000    0.90783 1.000 0.000 0.000 0.000  0 NA
#> GSM555251     1  0.0000    0.90783 1.000 0.000 0.000 0.000  0 NA
#> GSM555253     1  0.0000    0.90783 1.000 0.000 0.000 0.000  0 NA
#> GSM555255     1  0.0000    0.90783 1.000 0.000 0.000 0.000  0 NA
#> GSM555257     4  0.3908    0.52032 0.132 0.000 0.000 0.768  0 NA
#> GSM555259     1  0.6095    0.00424 0.388 0.000 0.000 0.304  0 NA
#> GSM555261     4  0.1141    0.73595 0.052 0.000 0.000 0.948  0 NA
#> GSM555263     4  0.1141    0.73595 0.052 0.000 0.000 0.948  0 NA
#> GSM555265     4  0.1141    0.73595 0.052 0.000 0.000 0.948  0 NA
#> GSM555267     4  0.1285    0.73659 0.052 0.004 0.000 0.944  0 NA
#> GSM555269     1  0.6095    0.00424 0.388 0.000 0.000 0.304  0 NA
#> GSM555271     1  0.7239   -0.04611 0.384 0.000 0.192 0.116  0 NA
#> GSM555273     2  0.5240    0.37007 0.000 0.544 0.000 0.108  0 NA
#> GSM555275     2  0.1500    0.92391 0.000 0.936 0.000 0.012  0 NA
#> GSM555238     1  0.0000    0.90783 1.000 0.000 0.000 0.000  0 NA
#> GSM555240     1  0.0547    0.89607 0.980 0.000 0.000 0.020  0 NA
#> GSM555242     1  0.0547    0.89607 0.980 0.000 0.000 0.020  0 NA
#> GSM555244     1  0.0000    0.90783 1.000 0.000 0.000 0.000  0 NA
#> GSM555246     1  0.0000    0.90783 1.000 0.000 0.000 0.000  0 NA
#> GSM555248     1  0.0000    0.90783 1.000 0.000 0.000 0.000  0 NA
#> GSM555250     1  0.0000    0.90783 1.000 0.000 0.000 0.000  0 NA
#> GSM555252     1  0.0547    0.89607 0.980 0.000 0.000 0.020  0 NA
#> GSM555254     1  0.0000    0.90783 1.000 0.000 0.000 0.000  0 NA
#> GSM555256     1  0.0000    0.90783 1.000 0.000 0.000 0.000  0 NA
#> GSM555258     4  0.3992    0.56865 0.000 0.136 0.000 0.760  0 NA
#> GSM555260     4  0.3992    0.56865 0.000 0.136 0.000 0.760  0 NA
#> GSM555262     2  0.2499    0.89184 0.000 0.880 0.000 0.048  0 NA
#> GSM555264     4  0.3756    0.35484 0.000 0.000 0.000 0.600  0 NA
#> GSM555266     2  0.2433    0.89435 0.000 0.884 0.000 0.044  0 NA
#> GSM555268     2  0.0458    0.93196 0.000 0.984 0.000 0.000  0 NA
#> GSM555270     2  0.0865    0.92761 0.000 0.964 0.000 0.000  0 NA
#> GSM555272     4  0.3992    0.56865 0.000 0.136 0.000 0.760  0 NA
#> GSM555274     2  0.3062    0.84179 0.000 0.836 0.000 0.112  0 NA
#> GSM555276     2  0.0458    0.93287 0.000 0.984 0.000 0.000  0 NA
#> GSM555277     2  0.1196    0.92655 0.000 0.952 0.000 0.008  0 NA
#> GSM555279     2  0.1657    0.92071 0.000 0.928 0.000 0.016  0 NA
#> GSM555281     2  0.1594    0.92152 0.000 0.932 0.000 0.016  0 NA
#> GSM555283     2  0.1265    0.92585 0.000 0.948 0.000 0.008  0 NA
#> GSM555285     2  0.5095    0.37128 0.000 0.544 0.000 0.088  0 NA
#> GSM555287     5  0.0000    0.00000 0.000 0.000 0.000 0.000  1 NA
#> GSM555289     2  0.0713    0.92974 0.000 0.972 0.000 0.000  0 NA
#> GSM555291     2  0.1265    0.92585 0.000 0.948 0.000 0.008  0 NA
#> GSM555293     2  0.0865    0.93112 0.000 0.964 0.000 0.000  0 NA
#> GSM555295     2  0.1686    0.91853 0.000 0.924 0.000 0.012  0 NA
#> GSM555297     4  0.1333    0.73495 0.048 0.008 0.000 0.944  0 NA
#> GSM555299     3  0.0260    0.99465 0.000 0.000 0.992 0.000  0 NA
#> GSM555301     3  0.0000    0.99666 0.000 0.000 1.000 0.000  0 NA
#> GSM555303     3  0.0000    0.99666 0.000 0.000 1.000 0.000  0 NA
#> GSM555305     3  0.0000    0.99666 0.000 0.000 1.000 0.000  0 NA
#> GSM555307     2  0.1779    0.91686 0.000 0.920 0.000 0.016  0 NA
#> GSM555309     3  0.0260    0.99465 0.000 0.000 0.992 0.000  0 NA
#> GSM555311     2  0.1779    0.91686 0.000 0.920 0.000 0.016  0 NA
#> GSM555313     2  0.1320    0.92726 0.000 0.948 0.000 0.016  0 NA
#> GSM555315     2  0.1657    0.92054 0.000 0.928 0.000 0.016  0 NA
#> GSM555278     2  0.1176    0.92727 0.000 0.956 0.000 0.024  0 NA
#> GSM555280     2  0.0458    0.93196 0.000 0.984 0.000 0.000  0 NA
#> GSM555282     2  0.1926    0.91224 0.000 0.912 0.000 0.020  0 NA
#> GSM555284     2  0.2499    0.89184 0.000 0.880 0.000 0.048  0 NA
#> GSM555286     2  0.0632    0.93057 0.000 0.976 0.000 0.000  0 NA
#> GSM555288     2  0.1926    0.91224 0.000 0.912 0.000 0.020  0 NA
#> GSM555290     2  0.0713    0.92974 0.000 0.972 0.000 0.000  0 NA
#> GSM555292     2  0.0458    0.93196 0.000 0.984 0.000 0.000  0 NA
#> GSM555294     2  0.0865    0.93112 0.000 0.964 0.000 0.000  0 NA
#> GSM555296     2  0.1010    0.93088 0.000 0.960 0.000 0.004  0 NA
#> GSM555298     3  0.0000    0.99666 0.000 0.000 1.000 0.000  0 NA
#> GSM555300     3  0.0260    0.99465 0.000 0.000 0.992 0.000  0 NA
#> GSM555302     3  0.0000    0.99666 0.000 0.000 1.000 0.000  0 NA
#> GSM555304     3  0.0000    0.99666 0.000 0.000 1.000 0.000  0 NA
#> GSM555306     3  0.0000    0.99666 0.000 0.000 1.000 0.000  0 NA
#> GSM555308     3  0.0260    0.99465 0.000 0.000 0.992 0.000  0 NA
#> GSM555310     3  0.0000    0.99666 0.000 0.000 1.000 0.000  0 NA
#> GSM555312     2  0.1320    0.92726 0.000 0.948 0.000 0.016  0 NA
#> GSM555314     2  0.1950    0.91341 0.000 0.912 0.000 0.024  0 NA
#> GSM555316     2  0.0865    0.92761 0.000 0.964 0.000 0.000  0 NA
#> GSM555317     2  0.0547    0.93311 0.000 0.980 0.000 0.000  0 NA
#> GSM555319     2  0.0937    0.92664 0.000 0.960 0.000 0.000  0 NA
#> GSM555321     2  0.1007    0.92559 0.000 0.956 0.000 0.000  0 NA
#> GSM555323     2  0.1010    0.93143 0.000 0.960 0.000 0.004  0 NA
#> GSM555325     2  0.1007    0.92869 0.000 0.956 0.000 0.000  0 NA
#> GSM555327     2  0.0547    0.93224 0.000 0.980 0.000 0.000  0 NA
#> GSM555329     2  0.0937    0.92664 0.000 0.960 0.000 0.000  0 NA
#> GSM555331     2  0.0458    0.93244 0.000 0.984 0.000 0.000  0 NA
#> GSM555333     2  0.1779    0.91686 0.000 0.920 0.000 0.016  0 NA
#> GSM555335     2  0.1007    0.93145 0.000 0.956 0.000 0.000  0 NA
#> GSM555337     2  0.1007    0.92559 0.000 0.956 0.000 0.000  0 NA
#> GSM555339     2  0.1657    0.92054 0.000 0.928 0.000 0.016  0 NA
#> GSM555341     2  0.1007    0.92809 0.000 0.956 0.000 0.000  0 NA
#> GSM555343     2  0.0790    0.93375 0.000 0.968 0.000 0.000  0 NA
#> GSM555345     2  0.2560    0.88072 0.000 0.872 0.000 0.036  0 NA
#> GSM555318     2  0.0547    0.93311 0.000 0.980 0.000 0.000  0 NA
#> GSM555320     2  0.3956    0.65727 0.000 0.712 0.000 0.036  0 NA
#> GSM555322     2  0.0937    0.92664 0.000 0.960 0.000 0.000  0 NA
#> GSM555324     3  0.0260    0.99465 0.000 0.000 0.992 0.000  0 NA
#> GSM555326     2  0.0865    0.92761 0.000 0.964 0.000 0.000  0 NA
#> GSM555328     2  0.0458    0.93231 0.000 0.984 0.000 0.000  0 NA
#> GSM555330     2  0.0547    0.93208 0.000 0.980 0.000 0.000  0 NA
#> GSM555332     2  0.0363    0.93252 0.000 0.988 0.000 0.000  0 NA
#> GSM555334     2  0.0363    0.93252 0.000 0.988 0.000 0.000  0 NA
#> GSM555336     2  0.1075    0.92506 0.000 0.952 0.000 0.000  0 NA
#> GSM555338     2  0.0937    0.92755 0.000 0.960 0.000 0.000  0 NA
#> GSM555340     2  0.0937    0.92755 0.000 0.960 0.000 0.000  0 NA
#> GSM555342     2  0.1444    0.92319 0.000 0.928 0.000 0.000  0 NA
#> GSM555344     2  0.0632    0.93268 0.000 0.976 0.000 0.000  0 NA
#> GSM555346     2  0.5067    0.39406 0.000 0.556 0.000 0.088  0 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) agent(p) k
#> CV:hclust 104         2.24e-07    0.771 2
#> CV:hclust  99         4.83e-08    0.985 3
#> CV:hclust 103         1.18e-07    0.232 4
#> CV:hclust 105         7.25e-16    0.274 5
#> CV:hclust 102         6.40e-16    0.614 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.989       0.995         0.4675 0.533   0.533
#> 3 3 0.838           0.798       0.880         0.2024 0.896   0.807
#> 4 4 0.682           0.848       0.845         0.1716 0.929   0.840
#> 5 5 0.656           0.765       0.785         0.1347 0.833   0.564
#> 6 6 0.700           0.641       0.750         0.0679 0.940   0.742

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1   0.000      0.993 1.000 0.000
#> GSM555239     1   0.000      0.993 1.000 0.000
#> GSM555241     1   0.000      0.993 1.000 0.000
#> GSM555243     1   0.000      0.993 1.000 0.000
#> GSM555245     1   0.000      0.993 1.000 0.000
#> GSM555247     1   0.000      0.993 1.000 0.000
#> GSM555249     1   0.000      0.993 1.000 0.000
#> GSM555251     1   0.000      0.993 1.000 0.000
#> GSM555253     1   0.000      0.993 1.000 0.000
#> GSM555255     1   0.000      0.993 1.000 0.000
#> GSM555257     1   0.000      0.993 1.000 0.000
#> GSM555259     1   0.000      0.993 1.000 0.000
#> GSM555261     2   0.821      0.652 0.256 0.744
#> GSM555263     2   0.000      0.996 0.000 1.000
#> GSM555265     1   0.000      0.993 1.000 0.000
#> GSM555267     2   0.000      0.996 0.000 1.000
#> GSM555269     1   0.000      0.993 1.000 0.000
#> GSM555271     1   0.000      0.993 1.000 0.000
#> GSM555273     2   0.000      0.996 0.000 1.000
#> GSM555275     2   0.000      0.996 0.000 1.000
#> GSM555238     1   0.000      0.993 1.000 0.000
#> GSM555240     1   0.000      0.993 1.000 0.000
#> GSM555242     1   0.000      0.993 1.000 0.000
#> GSM555244     1   0.000      0.993 1.000 0.000
#> GSM555246     1   0.000      0.993 1.000 0.000
#> GSM555248     1   0.000      0.993 1.000 0.000
#> GSM555250     1   0.000      0.993 1.000 0.000
#> GSM555252     1   0.000      0.993 1.000 0.000
#> GSM555254     1   0.000      0.993 1.000 0.000
#> GSM555256     1   0.000      0.993 1.000 0.000
#> GSM555258     2   0.000      0.996 0.000 1.000
#> GSM555260     2   0.000      0.996 0.000 1.000
#> GSM555262     2   0.000      0.996 0.000 1.000
#> GSM555264     1   0.000      0.993 1.000 0.000
#> GSM555266     2   0.000      0.996 0.000 1.000
#> GSM555268     2   0.000      0.996 0.000 1.000
#> GSM555270     2   0.000      0.996 0.000 1.000
#> GSM555272     2   0.000      0.996 0.000 1.000
#> GSM555274     2   0.000      0.996 0.000 1.000
#> GSM555276     2   0.000      0.996 0.000 1.000
#> GSM555277     2   0.000      0.996 0.000 1.000
#> GSM555279     2   0.000      0.996 0.000 1.000
#> GSM555281     2   0.000      0.996 0.000 1.000
#> GSM555283     2   0.000      0.996 0.000 1.000
#> GSM555285     2   0.000      0.996 0.000 1.000
#> GSM555287     1   0.814      0.660 0.748 0.252
#> GSM555289     2   0.000      0.996 0.000 1.000
#> GSM555291     2   0.000      0.996 0.000 1.000
#> GSM555293     2   0.000      0.996 0.000 1.000
#> GSM555295     2   0.000      0.996 0.000 1.000
#> GSM555297     2   0.000      0.996 0.000 1.000
#> GSM555299     1   0.000      0.993 1.000 0.000
#> GSM555301     1   0.000      0.993 1.000 0.000
#> GSM555303     1   0.000      0.993 1.000 0.000
#> GSM555305     1   0.000      0.993 1.000 0.000
#> GSM555307     2   0.000      0.996 0.000 1.000
#> GSM555309     1   0.000      0.993 1.000 0.000
#> GSM555311     2   0.000      0.996 0.000 1.000
#> GSM555313     2   0.000      0.996 0.000 1.000
#> GSM555315     2   0.000      0.996 0.000 1.000
#> GSM555278     2   0.000      0.996 0.000 1.000
#> GSM555280     2   0.000      0.996 0.000 1.000
#> GSM555282     2   0.000      0.996 0.000 1.000
#> GSM555284     2   0.000      0.996 0.000 1.000
#> GSM555286     2   0.000      0.996 0.000 1.000
#> GSM555288     2   0.000      0.996 0.000 1.000
#> GSM555290     2   0.000      0.996 0.000 1.000
#> GSM555292     2   0.000      0.996 0.000 1.000
#> GSM555294     2   0.000      0.996 0.000 1.000
#> GSM555296     2   0.000      0.996 0.000 1.000
#> GSM555298     1   0.000      0.993 1.000 0.000
#> GSM555300     1   0.000      0.993 1.000 0.000
#> GSM555302     1   0.000      0.993 1.000 0.000
#> GSM555304     1   0.000      0.993 1.000 0.000
#> GSM555306     1   0.000      0.993 1.000 0.000
#> GSM555308     1   0.000      0.993 1.000 0.000
#> GSM555310     1   0.000      0.993 1.000 0.000
#> GSM555312     2   0.000      0.996 0.000 1.000
#> GSM555314     2   0.000      0.996 0.000 1.000
#> GSM555316     2   0.000      0.996 0.000 1.000
#> GSM555317     2   0.000      0.996 0.000 1.000
#> GSM555319     2   0.000      0.996 0.000 1.000
#> GSM555321     2   0.000      0.996 0.000 1.000
#> GSM555323     2   0.000      0.996 0.000 1.000
#> GSM555325     2   0.000      0.996 0.000 1.000
#> GSM555327     2   0.000      0.996 0.000 1.000
#> GSM555329     2   0.000      0.996 0.000 1.000
#> GSM555331     2   0.000      0.996 0.000 1.000
#> GSM555333     2   0.000      0.996 0.000 1.000
#> GSM555335     2   0.000      0.996 0.000 1.000
#> GSM555337     2   0.000      0.996 0.000 1.000
#> GSM555339     2   0.000      0.996 0.000 1.000
#> GSM555341     2   0.000      0.996 0.000 1.000
#> GSM555343     2   0.000      0.996 0.000 1.000
#> GSM555345     2   0.000      0.996 0.000 1.000
#> GSM555318     2   0.000      0.996 0.000 1.000
#> GSM555320     2   0.000      0.996 0.000 1.000
#> GSM555322     2   0.000      0.996 0.000 1.000
#> GSM555324     1   0.000      0.993 1.000 0.000
#> GSM555326     2   0.000      0.996 0.000 1.000
#> GSM555328     2   0.000      0.996 0.000 1.000
#> GSM555330     2   0.000      0.996 0.000 1.000
#> GSM555332     2   0.000      0.996 0.000 1.000
#> GSM555334     2   0.000      0.996 0.000 1.000
#> GSM555336     2   0.000      0.996 0.000 1.000
#> GSM555338     2   0.000      0.996 0.000 1.000
#> GSM555340     2   0.000      0.996 0.000 1.000
#> GSM555342     2   0.000      0.996 0.000 1.000
#> GSM555344     2   0.000      0.996 0.000 1.000
#> GSM555346     2   0.000      0.996 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.1411     0.7359 0.964 0.000 0.036
#> GSM555239     1  0.0000     0.7643 1.000 0.000 0.000
#> GSM555241     1  0.0000     0.7643 1.000 0.000 0.000
#> GSM555243     1  0.0000     0.7643 1.000 0.000 0.000
#> GSM555245     1  0.0000     0.7643 1.000 0.000 0.000
#> GSM555247     1  0.0000     0.7643 1.000 0.000 0.000
#> GSM555249     1  0.0000     0.7643 1.000 0.000 0.000
#> GSM555251     1  0.0000     0.7643 1.000 0.000 0.000
#> GSM555253     1  0.0000     0.7643 1.000 0.000 0.000
#> GSM555255     1  0.0000     0.7643 1.000 0.000 0.000
#> GSM555257     3  0.5882     0.3172 0.348 0.000 0.652
#> GSM555259     3  0.5706     0.3293 0.320 0.000 0.680
#> GSM555261     3  0.6668     0.6557 0.040 0.264 0.696
#> GSM555263     3  0.6204     0.5222 0.000 0.424 0.576
#> GSM555265     3  0.6847     0.5060 0.232 0.060 0.708
#> GSM555267     3  0.5810     0.6305 0.000 0.336 0.664
#> GSM555269     3  0.5497     0.3303 0.292 0.000 0.708
#> GSM555271     1  0.6299     0.6327 0.524 0.000 0.476
#> GSM555273     2  0.1964     0.9344 0.000 0.944 0.056
#> GSM555275     2  0.1964     0.9344 0.000 0.944 0.056
#> GSM555238     1  0.0000     0.7643 1.000 0.000 0.000
#> GSM555240     1  0.6307    -0.1873 0.512 0.000 0.488
#> GSM555242     1  0.1411     0.7359 0.964 0.000 0.036
#> GSM555244     1  0.0000     0.7643 1.000 0.000 0.000
#> GSM555246     1  0.0000     0.7643 1.000 0.000 0.000
#> GSM555248     1  0.0000     0.7643 1.000 0.000 0.000
#> GSM555250     1  0.0000     0.7643 1.000 0.000 0.000
#> GSM555252     1  0.6192    -0.0179 0.580 0.000 0.420
#> GSM555254     1  0.0000     0.7643 1.000 0.000 0.000
#> GSM555256     1  0.0000     0.7643 1.000 0.000 0.000
#> GSM555258     3  0.6204     0.5222 0.000 0.424 0.576
#> GSM555260     2  0.6307    -0.3049 0.000 0.512 0.488
#> GSM555262     2  0.1964     0.9344 0.000 0.944 0.056
#> GSM555264     3  0.5497     0.4147 0.292 0.000 0.708
#> GSM555266     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555268     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555270     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555272     3  0.6204     0.5222 0.000 0.424 0.576
#> GSM555274     2  0.1860     0.9369 0.000 0.948 0.052
#> GSM555276     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555277     2  0.0892     0.9512 0.000 0.980 0.020
#> GSM555279     2  0.1964     0.9344 0.000 0.944 0.056
#> GSM555281     2  0.1964     0.9344 0.000 0.944 0.056
#> GSM555283     2  0.1860     0.9369 0.000 0.948 0.052
#> GSM555285     2  0.1964     0.9344 0.000 0.944 0.056
#> GSM555287     3  0.6875     0.6296 0.080 0.196 0.724
#> GSM555289     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555291     2  0.1860     0.9369 0.000 0.948 0.052
#> GSM555293     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555295     2  0.1964     0.9344 0.000 0.944 0.056
#> GSM555297     3  0.6204     0.5222 0.000 0.424 0.576
#> GSM555299     1  0.6154     0.6899 0.592 0.000 0.408
#> GSM555301     1  0.6299     0.6327 0.524 0.000 0.476
#> GSM555303     1  0.6154     0.6899 0.592 0.000 0.408
#> GSM555305     1  0.6154     0.6899 0.592 0.000 0.408
#> GSM555307     2  0.1964     0.9344 0.000 0.944 0.056
#> GSM555309     1  0.6154     0.6899 0.592 0.000 0.408
#> GSM555311     2  0.1964     0.9344 0.000 0.944 0.056
#> GSM555313     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555315     2  0.1964     0.9344 0.000 0.944 0.056
#> GSM555278     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555280     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555282     2  0.1529     0.9426 0.000 0.960 0.040
#> GSM555284     2  0.1964     0.9344 0.000 0.944 0.056
#> GSM555286     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555288     2  0.6008     0.1998 0.000 0.628 0.372
#> GSM555290     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555292     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555294     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555296     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555298     1  0.6299     0.6327 0.524 0.000 0.476
#> GSM555300     1  0.6154     0.6899 0.592 0.000 0.408
#> GSM555302     1  0.6154     0.6899 0.592 0.000 0.408
#> GSM555304     1  0.6154     0.6899 0.592 0.000 0.408
#> GSM555306     1  0.6154     0.6899 0.592 0.000 0.408
#> GSM555308     1  0.6154     0.6899 0.592 0.000 0.408
#> GSM555310     1  0.6154     0.6899 0.592 0.000 0.408
#> GSM555312     2  0.1860     0.9369 0.000 0.948 0.052
#> GSM555314     2  0.1964     0.9344 0.000 0.944 0.056
#> GSM555316     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555317     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555319     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555321     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555323     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555325     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555327     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555329     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555331     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555333     2  0.1964     0.9344 0.000 0.944 0.056
#> GSM555335     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555337     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555339     2  0.1860     0.9369 0.000 0.948 0.052
#> GSM555341     2  0.1860     0.9369 0.000 0.948 0.052
#> GSM555343     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555345     2  0.1860     0.9369 0.000 0.948 0.052
#> GSM555318     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555320     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555322     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555324     1  0.6154     0.6899 0.592 0.000 0.408
#> GSM555326     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555328     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555330     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555332     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555334     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555336     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555338     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555340     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555342     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555344     2  0.0000     0.9590 0.000 1.000 0.000
#> GSM555346     2  0.0000     0.9590 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.6400      0.790 0.632 0.000 0.252 0.116
#> GSM555239     1  0.4746      0.919 0.632 0.000 0.368 0.000
#> GSM555241     1  0.4746      0.919 0.632 0.000 0.368 0.000
#> GSM555243     1  0.4746      0.919 0.632 0.000 0.368 0.000
#> GSM555245     1  0.4746      0.919 0.632 0.000 0.368 0.000
#> GSM555247     1  0.4746      0.919 0.632 0.000 0.368 0.000
#> GSM555249     1  0.4746      0.919 0.632 0.000 0.368 0.000
#> GSM555251     1  0.4746      0.919 0.632 0.000 0.368 0.000
#> GSM555253     1  0.4746      0.919 0.632 0.000 0.368 0.000
#> GSM555255     1  0.4746      0.919 0.632 0.000 0.368 0.000
#> GSM555257     4  0.3051      0.801 0.028 0.000 0.088 0.884
#> GSM555259     4  0.2973      0.800 0.020 0.000 0.096 0.884
#> GSM555261     4  0.1042      0.877 0.008 0.020 0.000 0.972
#> GSM555263     4  0.0921      0.879 0.000 0.028 0.000 0.972
#> GSM555265     4  0.1042      0.871 0.020 0.008 0.000 0.972
#> GSM555267     4  0.0921      0.879 0.000 0.028 0.000 0.972
#> GSM555269     4  0.2973      0.800 0.020 0.000 0.096 0.884
#> GSM555271     3  0.1022      0.952 0.000 0.000 0.968 0.032
#> GSM555273     2  0.6182      0.771 0.276 0.636 0.000 0.088
#> GSM555275     2  0.5535      0.787 0.192 0.720 0.000 0.088
#> GSM555238     1  0.4746      0.919 0.632 0.000 0.368 0.000
#> GSM555240     1  0.5658      0.483 0.632 0.000 0.040 0.328
#> GSM555242     1  0.6422      0.786 0.632 0.000 0.248 0.120
#> GSM555244     1  0.4746      0.919 0.632 0.000 0.368 0.000
#> GSM555246     1  0.4746      0.919 0.632 0.000 0.368 0.000
#> GSM555248     1  0.4746      0.919 0.632 0.000 0.368 0.000
#> GSM555250     1  0.4746      0.919 0.632 0.000 0.368 0.000
#> GSM555252     1  0.6136      0.566 0.632 0.000 0.080 0.288
#> GSM555254     1  0.4746      0.919 0.632 0.000 0.368 0.000
#> GSM555256     1  0.4746      0.919 0.632 0.000 0.368 0.000
#> GSM555258     4  0.0921      0.879 0.000 0.028 0.000 0.972
#> GSM555260     4  0.4507      0.724 0.168 0.044 0.000 0.788
#> GSM555262     2  0.5535      0.791 0.192 0.720 0.000 0.088
#> GSM555264     4  0.1118      0.864 0.036 0.000 0.000 0.964
#> GSM555266     2  0.4406      0.829 0.300 0.700 0.000 0.000
#> GSM555268     2  0.2469      0.838 0.108 0.892 0.000 0.000
#> GSM555270     2  0.2469      0.838 0.108 0.892 0.000 0.000
#> GSM555272     4  0.1256      0.875 0.008 0.028 0.000 0.964
#> GSM555274     2  0.5410      0.797 0.192 0.728 0.000 0.080
#> GSM555276     2  0.1022      0.855 0.032 0.968 0.000 0.000
#> GSM555277     2  0.3498      0.834 0.160 0.832 0.000 0.008
#> GSM555279     2  0.5535      0.787 0.192 0.720 0.000 0.088
#> GSM555281     2  0.5535      0.787 0.192 0.720 0.000 0.088
#> GSM555283     2  0.3900      0.829 0.164 0.816 0.000 0.020
#> GSM555285     2  0.6206      0.772 0.280 0.632 0.000 0.088
#> GSM555287     4  0.1557      0.850 0.056 0.000 0.000 0.944
#> GSM555289     2  0.0469      0.857 0.012 0.988 0.000 0.000
#> GSM555291     2  0.5248      0.790 0.164 0.748 0.000 0.088
#> GSM555293     2  0.2530      0.838 0.112 0.888 0.000 0.000
#> GSM555295     2  0.5535      0.787 0.192 0.720 0.000 0.088
#> GSM555297     4  0.0921      0.879 0.000 0.028 0.000 0.972
#> GSM555299     3  0.0000      0.987 0.000 0.000 1.000 0.000
#> GSM555301     3  0.1022      0.952 0.000 0.000 0.968 0.032
#> GSM555303     3  0.0000      0.987 0.000 0.000 1.000 0.000
#> GSM555305     3  0.0000      0.987 0.000 0.000 1.000 0.000
#> GSM555307     2  0.5248      0.790 0.164 0.748 0.000 0.088
#> GSM555309     3  0.0000      0.987 0.000 0.000 1.000 0.000
#> GSM555311     2  0.5572      0.787 0.196 0.716 0.000 0.088
#> GSM555313     2  0.3528      0.835 0.192 0.808 0.000 0.000
#> GSM555315     2  0.5609      0.787 0.200 0.712 0.000 0.088
#> GSM555278     2  0.4304      0.832 0.284 0.716 0.000 0.000
#> GSM555280     2  0.1118      0.854 0.036 0.964 0.000 0.000
#> GSM555282     2  0.4204      0.829 0.192 0.788 0.000 0.020
#> GSM555284     2  0.5716      0.790 0.212 0.700 0.000 0.088
#> GSM555286     2  0.2469      0.838 0.108 0.892 0.000 0.000
#> GSM555288     4  0.7558     -0.103 0.192 0.380 0.000 0.428
#> GSM555290     2  0.1118      0.854 0.036 0.964 0.000 0.000
#> GSM555292     2  0.1940      0.858 0.076 0.924 0.000 0.000
#> GSM555294     2  0.2921      0.837 0.140 0.860 0.000 0.000
#> GSM555296     2  0.2973      0.848 0.144 0.856 0.000 0.000
#> GSM555298     3  0.1022      0.952 0.000 0.000 0.968 0.032
#> GSM555300     3  0.0000      0.987 0.000 0.000 1.000 0.000
#> GSM555302     3  0.0000      0.987 0.000 0.000 1.000 0.000
#> GSM555304     3  0.0000      0.987 0.000 0.000 1.000 0.000
#> GSM555306     3  0.0000      0.987 0.000 0.000 1.000 0.000
#> GSM555308     3  0.0000      0.987 0.000 0.000 1.000 0.000
#> GSM555310     3  0.0000      0.987 0.000 0.000 1.000 0.000
#> GSM555312     2  0.5410      0.797 0.192 0.728 0.000 0.080
#> GSM555314     2  0.5535      0.787 0.192 0.720 0.000 0.088
#> GSM555316     2  0.1389      0.854 0.048 0.952 0.000 0.000
#> GSM555317     2  0.0188      0.857 0.004 0.996 0.000 0.000
#> GSM555319     2  0.2408      0.839 0.104 0.896 0.000 0.000
#> GSM555321     2  0.2408      0.839 0.104 0.896 0.000 0.000
#> GSM555323     2  0.1474      0.861 0.052 0.948 0.000 0.000
#> GSM555325     2  0.2647      0.837 0.120 0.880 0.000 0.000
#> GSM555327     2  0.0000      0.857 0.000 1.000 0.000 0.000
#> GSM555329     2  0.2408      0.839 0.104 0.896 0.000 0.000
#> GSM555331     2  0.0817      0.858 0.024 0.976 0.000 0.000
#> GSM555333     2  0.5535      0.787 0.192 0.720 0.000 0.088
#> GSM555335     2  0.3598      0.846 0.124 0.848 0.000 0.028
#> GSM555337     2  0.2408      0.839 0.104 0.896 0.000 0.000
#> GSM555339     2  0.5334      0.790 0.172 0.740 0.000 0.088
#> GSM555341     2  0.4817      0.811 0.128 0.784 0.000 0.088
#> GSM555343     2  0.2530      0.838 0.112 0.888 0.000 0.000
#> GSM555345     2  0.4710      0.815 0.120 0.792 0.000 0.088
#> GSM555318     2  0.0336      0.857 0.008 0.992 0.000 0.000
#> GSM555320     2  0.2973      0.836 0.144 0.856 0.000 0.000
#> GSM555322     2  0.2469      0.838 0.108 0.892 0.000 0.000
#> GSM555324     3  0.0000      0.987 0.000 0.000 1.000 0.000
#> GSM555326     2  0.2469      0.838 0.108 0.892 0.000 0.000
#> GSM555328     2  0.0921      0.855 0.028 0.972 0.000 0.000
#> GSM555330     2  0.1022      0.855 0.032 0.968 0.000 0.000
#> GSM555332     2  0.1022      0.856 0.032 0.968 0.000 0.000
#> GSM555334     2  0.0921      0.855 0.028 0.972 0.000 0.000
#> GSM555336     2  0.2921      0.835 0.140 0.860 0.000 0.000
#> GSM555338     2  0.0469      0.857 0.012 0.988 0.000 0.000
#> GSM555340     2  0.2408      0.839 0.104 0.896 0.000 0.000
#> GSM555342     2  0.3074      0.839 0.152 0.848 0.000 0.000
#> GSM555344     2  0.1211      0.857 0.040 0.960 0.000 0.000
#> GSM555346     2  0.3837      0.842 0.224 0.776 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM555237     1  0.6211     0.7669 0.656 0.060 0.144 0.140 0.000
#> GSM555239     1  0.3707     0.9166 0.716 0.000 0.284 0.000 0.000
#> GSM555241     1  0.3707     0.9166 0.716 0.000 0.284 0.000 0.000
#> GSM555243     1  0.3707     0.9166 0.716 0.000 0.284 0.000 0.000
#> GSM555245     1  0.3707     0.9166 0.716 0.000 0.284 0.000 0.000
#> GSM555247     1  0.3707     0.9166 0.716 0.000 0.284 0.000 0.000
#> GSM555249     1  0.3707     0.9166 0.716 0.000 0.284 0.000 0.000
#> GSM555251     1  0.3707     0.9166 0.716 0.000 0.284 0.000 0.000
#> GSM555253     1  0.3707     0.9166 0.716 0.000 0.284 0.000 0.000
#> GSM555255     1  0.4988     0.8873 0.656 0.060 0.284 0.000 0.000
#> GSM555257     4  0.1095     0.9276 0.008 0.012 0.012 0.968 0.000
#> GSM555259     4  0.0404     0.9290 0.000 0.000 0.012 0.988 0.000
#> GSM555261     4  0.0404     0.9346 0.000 0.000 0.000 0.988 0.012
#> GSM555263     4  0.0404     0.9346 0.000 0.000 0.000 0.988 0.012
#> GSM555265     4  0.0404     0.9346 0.000 0.000 0.000 0.988 0.012
#> GSM555267     4  0.0404     0.9346 0.000 0.000 0.000 0.988 0.012
#> GSM555269     4  0.0404     0.9290 0.000 0.000 0.012 0.988 0.000
#> GSM555271     3  0.0798     0.9738 0.000 0.016 0.976 0.008 0.000
#> GSM555273     5  0.4351     0.5878 0.100 0.132 0.000 0.000 0.768
#> GSM555275     5  0.0324     0.7838 0.004 0.004 0.000 0.000 0.992
#> GSM555238     1  0.4988     0.8873 0.656 0.060 0.284 0.000 0.000
#> GSM555240     1  0.5659     0.6235 0.656 0.060 0.036 0.248 0.000
#> GSM555242     1  0.6211     0.7669 0.656 0.060 0.144 0.140 0.000
#> GSM555244     1  0.3707     0.9166 0.716 0.000 0.284 0.000 0.000
#> GSM555246     1  0.3707     0.9166 0.716 0.000 0.284 0.000 0.000
#> GSM555248     1  0.3707     0.9166 0.716 0.000 0.284 0.000 0.000
#> GSM555250     1  0.3707     0.9166 0.716 0.000 0.284 0.000 0.000
#> GSM555252     1  0.5829     0.6532 0.656 0.060 0.052 0.232 0.000
#> GSM555254     1  0.3707     0.9166 0.716 0.000 0.284 0.000 0.000
#> GSM555256     1  0.4988     0.8873 0.656 0.060 0.284 0.000 0.000
#> GSM555258     4  0.1314     0.9290 0.012 0.016 0.000 0.960 0.012
#> GSM555260     4  0.6210     0.1506 0.044 0.048 0.000 0.472 0.436
#> GSM555262     5  0.3192     0.7389 0.040 0.112 0.000 0.000 0.848
#> GSM555264     4  0.2217     0.9141 0.044 0.024 0.000 0.920 0.012
#> GSM555266     5  0.4461     0.6090 0.052 0.220 0.000 0.000 0.728
#> GSM555268     2  0.3863     0.7372 0.028 0.772 0.000 0.000 0.200
#> GSM555270     2  0.3109     0.7437 0.000 0.800 0.000 0.000 0.200
#> GSM555272     4  0.1787     0.9186 0.012 0.016 0.000 0.940 0.032
#> GSM555274     5  0.3192     0.7409 0.040 0.112 0.000 0.000 0.848
#> GSM555276     2  0.5063     0.7084 0.056 0.632 0.000 0.000 0.312
#> GSM555277     5  0.2370     0.7665 0.056 0.040 0.000 0.000 0.904
#> GSM555279     5  0.0324     0.7838 0.004 0.004 0.000 0.000 0.992
#> GSM555281     5  0.0451     0.7837 0.008 0.004 0.000 0.000 0.988
#> GSM555283     5  0.1741     0.7805 0.024 0.040 0.000 0.000 0.936
#> GSM555285     5  0.5263     0.4651 0.144 0.176 0.000 0.000 0.680
#> GSM555287     4  0.2149     0.8902 0.036 0.048 0.000 0.916 0.000
#> GSM555289     2  0.5418     0.6970 0.068 0.568 0.000 0.000 0.364
#> GSM555291     5  0.1485     0.7807 0.020 0.032 0.000 0.000 0.948
#> GSM555293     2  0.5810     0.6710 0.124 0.580 0.000 0.000 0.296
#> GSM555295     5  0.0290     0.7823 0.008 0.000 0.000 0.000 0.992
#> GSM555297     4  0.0404     0.9346 0.000 0.000 0.000 0.988 0.012
#> GSM555299     3  0.1270     0.9705 0.000 0.052 0.948 0.000 0.000
#> GSM555301     3  0.0290     0.9724 0.000 0.000 0.992 0.008 0.000
#> GSM555303     3  0.0963     0.9740 0.000 0.036 0.964 0.000 0.000
#> GSM555305     3  0.0000     0.9765 0.000 0.000 1.000 0.000 0.000
#> GSM555307     5  0.1753     0.7697 0.032 0.032 0.000 0.000 0.936
#> GSM555309     3  0.1341     0.9691 0.000 0.056 0.944 0.000 0.000
#> GSM555311     5  0.0807     0.7767 0.012 0.012 0.000 0.000 0.976
#> GSM555313     5  0.3146     0.7301 0.028 0.128 0.000 0.000 0.844
#> GSM555315     5  0.1117     0.7726 0.020 0.016 0.000 0.000 0.964
#> GSM555278     5  0.5396     0.3189 0.072 0.340 0.000 0.000 0.588
#> GSM555280     2  0.5237     0.7040 0.072 0.628 0.000 0.000 0.300
#> GSM555282     5  0.3521     0.7211 0.040 0.140 0.000 0.000 0.820
#> GSM555284     5  0.2905     0.7454 0.036 0.096 0.000 0.000 0.868
#> GSM555286     2  0.3266     0.7429 0.004 0.796 0.000 0.000 0.200
#> GSM555288     5  0.4796     0.6619 0.032 0.088 0.000 0.112 0.768
#> GSM555290     2  0.4946     0.7151 0.052 0.648 0.000 0.000 0.300
#> GSM555292     2  0.5175     0.4020 0.040 0.496 0.000 0.000 0.464
#> GSM555294     2  0.5348     0.6882 0.112 0.656 0.000 0.000 0.232
#> GSM555296     5  0.4674     0.5569 0.060 0.232 0.000 0.000 0.708
#> GSM555298     3  0.0290     0.9724 0.000 0.000 0.992 0.008 0.000
#> GSM555300     3  0.1270     0.9705 0.000 0.052 0.948 0.000 0.000
#> GSM555302     3  0.0000     0.9765 0.000 0.000 1.000 0.000 0.000
#> GSM555304     3  0.0000     0.9765 0.000 0.000 1.000 0.000 0.000
#> GSM555306     3  0.0000     0.9765 0.000 0.000 1.000 0.000 0.000
#> GSM555308     3  0.1270     0.9705 0.000 0.052 0.948 0.000 0.000
#> GSM555310     3  0.0000     0.9765 0.000 0.000 1.000 0.000 0.000
#> GSM555312     5  0.2848     0.7455 0.028 0.104 0.000 0.000 0.868
#> GSM555314     5  0.0000     0.7834 0.000 0.000 0.000 0.000 1.000
#> GSM555316     2  0.4836     0.7226 0.044 0.652 0.000 0.000 0.304
#> GSM555317     2  0.5401     0.6680 0.060 0.536 0.000 0.000 0.404
#> GSM555319     2  0.5506     0.6975 0.100 0.616 0.000 0.000 0.284
#> GSM555321     2  0.5570     0.6926 0.104 0.608 0.000 0.000 0.288
#> GSM555323     5  0.5772    -0.3143 0.108 0.328 0.000 0.000 0.564
#> GSM555325     2  0.5843     0.6642 0.124 0.572 0.000 0.000 0.304
#> GSM555327     2  0.5322     0.6829 0.056 0.552 0.000 0.000 0.392
#> GSM555329     2  0.5506     0.6975 0.100 0.616 0.000 0.000 0.284
#> GSM555331     2  0.5604     0.6228 0.072 0.472 0.000 0.000 0.456
#> GSM555333     5  0.0290     0.7823 0.008 0.000 0.000 0.000 0.992
#> GSM555335     5  0.3994     0.5724 0.068 0.140 0.000 0.000 0.792
#> GSM555337     2  0.5551     0.6954 0.104 0.612 0.000 0.000 0.284
#> GSM555339     5  0.1907     0.7681 0.044 0.028 0.000 0.000 0.928
#> GSM555341     5  0.3719     0.6574 0.068 0.116 0.000 0.000 0.816
#> GSM555343     2  0.5810     0.6710 0.124 0.580 0.000 0.000 0.296
#> GSM555345     5  0.3734     0.6391 0.060 0.128 0.000 0.000 0.812
#> GSM555318     2  0.5542     0.6674 0.072 0.532 0.000 0.000 0.396
#> GSM555320     2  0.5177     0.6966 0.104 0.676 0.000 0.000 0.220
#> GSM555322     2  0.3266     0.7443 0.004 0.796 0.000 0.000 0.200
#> GSM555324     3  0.1341     0.9691 0.000 0.056 0.944 0.000 0.000
#> GSM555326     2  0.3109     0.7437 0.000 0.800 0.000 0.000 0.200
#> GSM555328     2  0.5200     0.7046 0.068 0.628 0.000 0.000 0.304
#> GSM555330     2  0.5122     0.7056 0.060 0.628 0.000 0.000 0.312
#> GSM555332     2  0.5172     0.6933 0.060 0.616 0.000 0.000 0.324
#> GSM555334     2  0.5218     0.7045 0.068 0.624 0.000 0.000 0.308
#> GSM555336     2  0.5024     0.7033 0.096 0.692 0.000 0.000 0.212
#> GSM555338     2  0.5432     0.6822 0.064 0.544 0.000 0.000 0.392
#> GSM555340     2  0.5525     0.6950 0.100 0.612 0.000 0.000 0.288
#> GSM555342     2  0.5572     0.6641 0.124 0.628 0.000 0.000 0.248
#> GSM555344     2  0.5309     0.6333 0.060 0.576 0.000 0.000 0.364
#> GSM555346     5  0.6210    -0.0973 0.140 0.404 0.000 0.000 0.456

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM555237     1  0.3396    0.85000 0.812 0.000 0.000 0.072 0.000 0.116
#> GSM555239     1  0.0692    0.93270 0.976 0.004 0.000 0.000 0.000 0.020
#> GSM555241     1  0.0692    0.93270 0.976 0.004 0.000 0.000 0.000 0.020
#> GSM555243     1  0.0692    0.93270 0.976 0.004 0.000 0.000 0.000 0.020
#> GSM555245     1  0.0692    0.93270 0.976 0.004 0.000 0.000 0.000 0.020
#> GSM555247     1  0.0692    0.93270 0.976 0.004 0.000 0.000 0.000 0.020
#> GSM555249     1  0.0000    0.93603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000    0.93603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0692    0.93270 0.976 0.004 0.000 0.000 0.000 0.020
#> GSM555255     1  0.1765    0.90406 0.904 0.000 0.000 0.000 0.000 0.096
#> GSM555257     4  0.1340    0.94970 0.000 0.004 0.008 0.948 0.000 0.040
#> GSM555259     4  0.0146    0.96067 0.000 0.000 0.004 0.996 0.000 0.000
#> GSM555261     4  0.0146    0.96067 0.000 0.000 0.004 0.996 0.000 0.000
#> GSM555263     4  0.0260    0.95794 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM555265     4  0.0146    0.96067 0.000 0.000 0.004 0.996 0.000 0.000
#> GSM555267     4  0.0000    0.96055 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555269     4  0.0146    0.96067 0.000 0.000 0.004 0.996 0.000 0.000
#> GSM555271     3  0.3318    0.96433 0.132 0.008 0.828 0.016 0.000 0.016
#> GSM555273     5  0.4432    0.65117 0.000 0.120 0.024 0.004 0.760 0.092
#> GSM555275     5  0.0260    0.76681 0.000 0.000 0.008 0.000 0.992 0.000
#> GSM555238     1  0.1814    0.90231 0.900 0.000 0.000 0.000 0.000 0.100
#> GSM555240     1  0.3962    0.79766 0.764 0.000 0.000 0.120 0.000 0.116
#> GSM555242     1  0.3396    0.85000 0.812 0.000 0.000 0.072 0.000 0.116
#> GSM555244     1  0.0000    0.93603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000    0.93603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000    0.93603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000    0.93603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.3834    0.81332 0.776 0.000 0.000 0.108 0.000 0.116
#> GSM555254     1  0.0000    0.93603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.1814    0.90231 0.900 0.000 0.000 0.000 0.000 0.100
#> GSM555258     4  0.2030    0.93917 0.000 0.004 0.012 0.920 0.016 0.048
#> GSM555260     5  0.6163    0.13115 0.000 0.004 0.036 0.380 0.472 0.108
#> GSM555262     5  0.4017    0.68118 0.000 0.024 0.032 0.000 0.760 0.184
#> GSM555264     4  0.2998    0.90783 0.000 0.008 0.020 0.852 0.008 0.112
#> GSM555266     5  0.5323    0.56415 0.000 0.124 0.024 0.000 0.648 0.204
#> GSM555268     2  0.5441   -0.23852 0.000 0.488 0.020 0.000 0.068 0.424
#> GSM555270     2  0.4818   -0.00419 0.000 0.572 0.000 0.000 0.064 0.364
#> GSM555272     4  0.2501    0.92254 0.000 0.004 0.012 0.896 0.040 0.048
#> GSM555274     5  0.3771    0.69427 0.000 0.024 0.024 0.000 0.780 0.172
#> GSM555276     6  0.5713    0.75221 0.000 0.356 0.012 0.000 0.124 0.508
#> GSM555277     5  0.3051    0.72504 0.000 0.008 0.036 0.000 0.844 0.112
#> GSM555279     5  0.0146    0.76695 0.000 0.000 0.004 0.000 0.996 0.000
#> GSM555281     5  0.0508    0.76680 0.000 0.000 0.012 0.000 0.984 0.004
#> GSM555283     5  0.1857    0.76235 0.000 0.004 0.028 0.000 0.924 0.044
#> GSM555285     5  0.5688    0.31027 0.000 0.352 0.024 0.000 0.528 0.096
#> GSM555287     4  0.3891    0.84343 0.000 0.016 0.064 0.788 0.000 0.132
#> GSM555289     2  0.5721   -0.27006 0.000 0.480 0.004 0.000 0.148 0.368
#> GSM555291     5  0.1478    0.76456 0.000 0.004 0.020 0.000 0.944 0.032
#> GSM555293     2  0.2373    0.47793 0.000 0.888 0.004 0.000 0.084 0.024
#> GSM555295     5  0.0665    0.76591 0.000 0.000 0.008 0.004 0.980 0.008
#> GSM555297     4  0.0000    0.96055 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555299     3  0.3881    0.96626 0.152 0.024 0.784 0.000 0.000 0.040
#> GSM555301     3  0.2623    0.96323 0.132 0.000 0.852 0.016 0.000 0.000
#> GSM555303     3  0.3338    0.97127 0.152 0.012 0.812 0.000 0.000 0.024
#> GSM555305     3  0.2378    0.97251 0.152 0.000 0.848 0.000 0.000 0.000
#> GSM555307     5  0.2858    0.72348 0.000 0.012 0.028 0.004 0.868 0.088
#> GSM555309     3  0.4030    0.96397 0.152 0.032 0.776 0.000 0.000 0.040
#> GSM555311     5  0.1007    0.76448 0.000 0.004 0.008 0.004 0.968 0.016
#> GSM555313     5  0.3913    0.65958 0.000 0.024 0.020 0.000 0.756 0.200
#> GSM555315     5  0.2145    0.74940 0.000 0.040 0.012 0.004 0.916 0.028
#> GSM555278     5  0.6160    0.32632 0.000 0.228 0.024 0.000 0.520 0.228
#> GSM555280     6  0.5367    0.75389 0.000 0.344 0.000 0.000 0.124 0.532
#> GSM555282     5  0.4356    0.62714 0.000 0.024 0.032 0.000 0.712 0.232
#> GSM555284     5  0.3873    0.68250 0.000 0.020 0.032 0.000 0.772 0.176
#> GSM555286     2  0.4838   -0.02928 0.000 0.564 0.000 0.000 0.064 0.372
#> GSM555288     5  0.3520    0.73629 0.000 0.020 0.028 0.036 0.844 0.072
#> GSM555290     6  0.5486    0.53157 0.000 0.428 0.004 0.000 0.108 0.460
#> GSM555292     6  0.6347    0.28494 0.000 0.204 0.020 0.000 0.384 0.392
#> GSM555294     2  0.3994    0.40954 0.000 0.772 0.008 0.000 0.080 0.140
#> GSM555296     5  0.5963    0.09264 0.000 0.108 0.032 0.000 0.488 0.372
#> GSM555298     3  0.2623    0.96323 0.132 0.000 0.852 0.016 0.000 0.000
#> GSM555300     3  0.3881    0.96626 0.152 0.024 0.784 0.000 0.000 0.040
#> GSM555302     3  0.2378    0.97251 0.152 0.000 0.848 0.000 0.000 0.000
#> GSM555304     3  0.2378    0.97251 0.152 0.000 0.848 0.000 0.000 0.000
#> GSM555306     3  0.2378    0.97251 0.152 0.000 0.848 0.000 0.000 0.000
#> GSM555308     3  0.3881    0.96626 0.152 0.024 0.784 0.000 0.000 0.040
#> GSM555310     3  0.2378    0.97251 0.152 0.000 0.848 0.000 0.000 0.000
#> GSM555312     5  0.2880    0.73701 0.000 0.024 0.012 0.000 0.856 0.108
#> GSM555314     5  0.0551    0.76628 0.000 0.000 0.008 0.004 0.984 0.004
#> GSM555316     2  0.5262   -0.50254 0.000 0.456 0.000 0.000 0.096 0.448
#> GSM555317     2  0.6280   -0.27847 0.000 0.456 0.028 0.000 0.168 0.348
#> GSM555319     2  0.2733    0.48157 0.000 0.864 0.000 0.000 0.080 0.056
#> GSM555321     2  0.1812    0.48563 0.000 0.912 0.000 0.000 0.080 0.008
#> GSM555323     2  0.6278   -0.03751 0.000 0.404 0.024 0.000 0.400 0.172
#> GSM555325     2  0.2728    0.46729 0.000 0.864 0.004 0.000 0.100 0.032
#> GSM555327     2  0.6154   -0.22955 0.000 0.488 0.028 0.000 0.152 0.332
#> GSM555329     2  0.2733    0.48157 0.000 0.864 0.000 0.000 0.080 0.056
#> GSM555331     2  0.6354   -0.14386 0.000 0.472 0.024 0.000 0.248 0.256
#> GSM555333     5  0.0665    0.76591 0.000 0.000 0.008 0.004 0.980 0.008
#> GSM555335     5  0.5469    0.41919 0.000 0.132 0.028 0.004 0.652 0.184
#> GSM555337     2  0.2672    0.48296 0.000 0.868 0.000 0.000 0.080 0.052
#> GSM555339     5  0.3217    0.71533 0.000 0.024 0.028 0.004 0.848 0.096
#> GSM555341     5  0.5404    0.47590 0.000 0.108 0.036 0.004 0.664 0.188
#> GSM555343     2  0.2373    0.47793 0.000 0.888 0.004 0.000 0.084 0.024
#> GSM555345     5  0.5336    0.44865 0.000 0.112 0.028 0.004 0.664 0.192
#> GSM555318     2  0.6358   -0.41197 0.000 0.400 0.028 0.000 0.176 0.396
#> GSM555320     2  0.4523    0.32946 0.000 0.704 0.008 0.000 0.076 0.212
#> GSM555322     2  0.4621    0.13605 0.000 0.632 0.000 0.000 0.064 0.304
#> GSM555324     3  0.4030    0.96397 0.152 0.032 0.776 0.000 0.000 0.040
#> GSM555326     2  0.4818   -0.00419 0.000 0.572 0.000 0.000 0.064 0.364
#> GSM555328     6  0.5642    0.77376 0.000 0.324 0.008 0.000 0.136 0.532
#> GSM555330     6  0.5785    0.75740 0.000 0.352 0.016 0.000 0.124 0.508
#> GSM555332     6  0.6061    0.74307 0.000 0.316 0.028 0.000 0.144 0.512
#> GSM555334     6  0.5541    0.77331 0.000 0.324 0.004 0.000 0.136 0.536
#> GSM555336     2  0.3695    0.38907 0.000 0.776 0.000 0.000 0.060 0.164
#> GSM555338     2  0.5920   -0.12576 0.000 0.540 0.024 0.000 0.144 0.292
#> GSM555340     2  0.2474    0.48456 0.000 0.880 0.000 0.000 0.080 0.040
#> GSM555342     2  0.4566    0.34213 0.000 0.704 0.008 0.000 0.084 0.204
#> GSM555344     6  0.6175    0.68311 0.000 0.292 0.028 0.000 0.172 0.508
#> GSM555346     2  0.5710    0.22107 0.000 0.572 0.012 0.000 0.232 0.184

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) agent(p) k
#> CV:kmeans 110         6.23e-07   0.8429 2
#> CV:kmeans 102         3.44e-07   0.3631 3
#> CV:kmeans 108         3.95e-15   0.5145 4
#> CV:kmeans 104         1.83e-17   0.0653 5
#> CV:kmeans  76         6.58e-12   0.0119 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.987       0.995         0.4833 0.519   0.519
#> 3 3 0.922           0.950       0.962         0.1804 0.894   0.799
#> 4 4 0.754           0.874       0.899         0.1420 0.949   0.881
#> 5 5 0.735           0.747       0.868         0.1646 0.835   0.577
#> 6 6 0.723           0.661       0.809         0.0449 0.989   0.952

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1   0.000      1.000 1.000 0.000
#> GSM555239     1   0.000      1.000 1.000 0.000
#> GSM555241     1   0.000      1.000 1.000 0.000
#> GSM555243     1   0.000      1.000 1.000 0.000
#> GSM555245     1   0.000      1.000 1.000 0.000
#> GSM555247     1   0.000      1.000 1.000 0.000
#> GSM555249     1   0.000      1.000 1.000 0.000
#> GSM555251     1   0.000      1.000 1.000 0.000
#> GSM555253     1   0.000      1.000 1.000 0.000
#> GSM555255     1   0.000      1.000 1.000 0.000
#> GSM555257     1   0.000      1.000 1.000 0.000
#> GSM555259     1   0.000      1.000 1.000 0.000
#> GSM555261     1   0.000      1.000 1.000 0.000
#> GSM555263     2   0.634      0.807 0.160 0.840
#> GSM555265     1   0.000      1.000 1.000 0.000
#> GSM555267     1   0.000      1.000 1.000 0.000
#> GSM555269     1   0.000      1.000 1.000 0.000
#> GSM555271     1   0.000      1.000 1.000 0.000
#> GSM555273     2   0.000      0.991 0.000 1.000
#> GSM555275     2   0.000      0.991 0.000 1.000
#> GSM555238     1   0.000      1.000 1.000 0.000
#> GSM555240     1   0.000      1.000 1.000 0.000
#> GSM555242     1   0.000      1.000 1.000 0.000
#> GSM555244     1   0.000      1.000 1.000 0.000
#> GSM555246     1   0.000      1.000 1.000 0.000
#> GSM555248     1   0.000      1.000 1.000 0.000
#> GSM555250     1   0.000      1.000 1.000 0.000
#> GSM555252     1   0.000      1.000 1.000 0.000
#> GSM555254     1   0.000      1.000 1.000 0.000
#> GSM555256     1   0.000      1.000 1.000 0.000
#> GSM555258     2   0.975      0.313 0.408 0.592
#> GSM555260     2   0.000      0.991 0.000 1.000
#> GSM555262     2   0.000      0.991 0.000 1.000
#> GSM555264     1   0.000      1.000 1.000 0.000
#> GSM555266     2   0.000      0.991 0.000 1.000
#> GSM555268     2   0.000      0.991 0.000 1.000
#> GSM555270     2   0.000      0.991 0.000 1.000
#> GSM555272     2   0.000      0.991 0.000 1.000
#> GSM555274     2   0.000      0.991 0.000 1.000
#> GSM555276     2   0.000      0.991 0.000 1.000
#> GSM555277     2   0.000      0.991 0.000 1.000
#> GSM555279     2   0.000      0.991 0.000 1.000
#> GSM555281     2   0.000      0.991 0.000 1.000
#> GSM555283     2   0.000      0.991 0.000 1.000
#> GSM555285     2   0.000      0.991 0.000 1.000
#> GSM555287     1   0.000      1.000 1.000 0.000
#> GSM555289     2   0.000      0.991 0.000 1.000
#> GSM555291     2   0.000      0.991 0.000 1.000
#> GSM555293     2   0.000      0.991 0.000 1.000
#> GSM555295     2   0.000      0.991 0.000 1.000
#> GSM555297     1   0.000      1.000 1.000 0.000
#> GSM555299     1   0.000      1.000 1.000 0.000
#> GSM555301     1   0.000      1.000 1.000 0.000
#> GSM555303     1   0.000      1.000 1.000 0.000
#> GSM555305     1   0.000      1.000 1.000 0.000
#> GSM555307     2   0.000      0.991 0.000 1.000
#> GSM555309     1   0.000      1.000 1.000 0.000
#> GSM555311     2   0.000      0.991 0.000 1.000
#> GSM555313     2   0.000      0.991 0.000 1.000
#> GSM555315     2   0.000      0.991 0.000 1.000
#> GSM555278     2   0.000      0.991 0.000 1.000
#> GSM555280     2   0.000      0.991 0.000 1.000
#> GSM555282     2   0.000      0.991 0.000 1.000
#> GSM555284     2   0.000      0.991 0.000 1.000
#> GSM555286     2   0.000      0.991 0.000 1.000
#> GSM555288     2   0.000      0.991 0.000 1.000
#> GSM555290     2   0.000      0.991 0.000 1.000
#> GSM555292     2   0.000      0.991 0.000 1.000
#> GSM555294     2   0.000      0.991 0.000 1.000
#> GSM555296     2   0.000      0.991 0.000 1.000
#> GSM555298     1   0.000      1.000 1.000 0.000
#> GSM555300     1   0.000      1.000 1.000 0.000
#> GSM555302     1   0.000      1.000 1.000 0.000
#> GSM555304     1   0.000      1.000 1.000 0.000
#> GSM555306     1   0.000      1.000 1.000 0.000
#> GSM555308     1   0.000      1.000 1.000 0.000
#> GSM555310     1   0.000      1.000 1.000 0.000
#> GSM555312     2   0.000      0.991 0.000 1.000
#> GSM555314     2   0.000      0.991 0.000 1.000
#> GSM555316     2   0.000      0.991 0.000 1.000
#> GSM555317     2   0.000      0.991 0.000 1.000
#> GSM555319     2   0.000      0.991 0.000 1.000
#> GSM555321     2   0.000      0.991 0.000 1.000
#> GSM555323     2   0.000      0.991 0.000 1.000
#> GSM555325     2   0.000      0.991 0.000 1.000
#> GSM555327     2   0.000      0.991 0.000 1.000
#> GSM555329     2   0.000      0.991 0.000 1.000
#> GSM555331     2   0.000      0.991 0.000 1.000
#> GSM555333     2   0.000      0.991 0.000 1.000
#> GSM555335     2   0.000      0.991 0.000 1.000
#> GSM555337     2   0.000      0.991 0.000 1.000
#> GSM555339     2   0.000      0.991 0.000 1.000
#> GSM555341     2   0.000      0.991 0.000 1.000
#> GSM555343     2   0.000      0.991 0.000 1.000
#> GSM555345     2   0.000      0.991 0.000 1.000
#> GSM555318     2   0.000      0.991 0.000 1.000
#> GSM555320     2   0.000      0.991 0.000 1.000
#> GSM555322     2   0.000      0.991 0.000 1.000
#> GSM555324     1   0.000      1.000 1.000 0.000
#> GSM555326     2   0.000      0.991 0.000 1.000
#> GSM555328     2   0.000      0.991 0.000 1.000
#> GSM555330     2   0.000      0.991 0.000 1.000
#> GSM555332     2   0.000      0.991 0.000 1.000
#> GSM555334     2   0.000      0.991 0.000 1.000
#> GSM555336     2   0.000      0.991 0.000 1.000
#> GSM555338     2   0.000      0.991 0.000 1.000
#> GSM555340     2   0.000      0.991 0.000 1.000
#> GSM555342     2   0.000      0.991 0.000 1.000
#> GSM555344     2   0.000      0.991 0.000 1.000
#> GSM555346     2   0.000      0.991 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.0000      0.971 1.000 0.000 0.000
#> GSM555239     1  0.0000      0.971 1.000 0.000 0.000
#> GSM555241     1  0.0000      0.971 1.000 0.000 0.000
#> GSM555243     1  0.0000      0.971 1.000 0.000 0.000
#> GSM555245     1  0.0000      0.971 1.000 0.000 0.000
#> GSM555247     1  0.0000      0.971 1.000 0.000 0.000
#> GSM555249     1  0.0000      0.971 1.000 0.000 0.000
#> GSM555251     1  0.0000      0.971 1.000 0.000 0.000
#> GSM555253     1  0.0000      0.971 1.000 0.000 0.000
#> GSM555255     1  0.0000      0.971 1.000 0.000 0.000
#> GSM555257     3  0.5859      0.363 0.344 0.000 0.656
#> GSM555259     3  0.0237      0.834 0.004 0.000 0.996
#> GSM555261     3  0.0000      0.832 0.000 0.000 1.000
#> GSM555263     3  0.0892      0.820 0.000 0.020 0.980
#> GSM555265     3  0.0000      0.832 0.000 0.000 1.000
#> GSM555267     3  0.0000      0.832 0.000 0.000 1.000
#> GSM555269     3  0.0237      0.834 0.004 0.000 0.996
#> GSM555271     3  0.3412      0.887 0.124 0.000 0.876
#> GSM555273     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555275     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555238     1  0.0000      0.971 1.000 0.000 0.000
#> GSM555240     1  0.0000      0.971 1.000 0.000 0.000
#> GSM555242     1  0.0000      0.971 1.000 0.000 0.000
#> GSM555244     1  0.0000      0.971 1.000 0.000 0.000
#> GSM555246     1  0.0000      0.971 1.000 0.000 0.000
#> GSM555248     1  0.0000      0.971 1.000 0.000 0.000
#> GSM555250     1  0.0000      0.971 1.000 0.000 0.000
#> GSM555252     1  0.0000      0.971 1.000 0.000 0.000
#> GSM555254     1  0.0000      0.971 1.000 0.000 0.000
#> GSM555256     1  0.0000      0.971 1.000 0.000 0.000
#> GSM555258     1  0.7091      0.615 0.676 0.056 0.268
#> GSM555260     2  0.3267      0.881 0.000 0.884 0.116
#> GSM555262     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555264     1  0.5254      0.687 0.736 0.000 0.264
#> GSM555266     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555268     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555270     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555272     2  0.4399      0.795 0.000 0.812 0.188
#> GSM555274     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555276     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555277     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555279     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555281     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555283     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555285     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555287     3  0.5882      0.673 0.348 0.000 0.652
#> GSM555289     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555291     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555293     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555295     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555297     3  0.2711      0.874 0.088 0.000 0.912
#> GSM555299     3  0.4235      0.902 0.176 0.000 0.824
#> GSM555301     3  0.4235      0.902 0.176 0.000 0.824
#> GSM555303     3  0.4235      0.902 0.176 0.000 0.824
#> GSM555305     3  0.4235      0.902 0.176 0.000 0.824
#> GSM555307     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555309     3  0.4235      0.902 0.176 0.000 0.824
#> GSM555311     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555313     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555315     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555278     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555280     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555282     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555284     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555286     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555288     2  0.1643      0.955 0.000 0.956 0.044
#> GSM555290     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555292     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555294     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555296     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555298     3  0.4235      0.902 0.176 0.000 0.824
#> GSM555300     3  0.4235      0.902 0.176 0.000 0.824
#> GSM555302     3  0.4235      0.902 0.176 0.000 0.824
#> GSM555304     3  0.4235      0.902 0.176 0.000 0.824
#> GSM555306     3  0.4235      0.902 0.176 0.000 0.824
#> GSM555308     3  0.4235      0.902 0.176 0.000 0.824
#> GSM555310     3  0.4235      0.902 0.176 0.000 0.824
#> GSM555312     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555314     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555316     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555317     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555319     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555321     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555323     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555325     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555327     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555329     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555331     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555333     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555335     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555337     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555339     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555341     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555343     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555345     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555318     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555320     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555322     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555324     3  0.4235      0.902 0.176 0.000 0.824
#> GSM555326     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555328     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555330     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555332     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555334     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555336     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555338     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555340     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555342     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555344     2  0.0000      0.995 0.000 1.000 0.000
#> GSM555346     2  0.0000      0.995 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555239     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555241     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555243     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555245     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555247     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555249     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555251     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555253     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555255     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555257     4  0.5944      0.608 0.104 0.000 0.212 0.684
#> GSM555259     3  0.2704      0.844 0.000 0.000 0.876 0.124
#> GSM555261     4  0.4643      0.440 0.000 0.000 0.344 0.656
#> GSM555263     4  0.5772      0.609 0.000 0.116 0.176 0.708
#> GSM555265     3  0.2760      0.839 0.000 0.000 0.872 0.128
#> GSM555267     3  0.2647      0.848 0.000 0.000 0.880 0.120
#> GSM555269     3  0.1474      0.910 0.000 0.000 0.948 0.052
#> GSM555271     3  0.0469      0.949 0.012 0.000 0.988 0.000
#> GSM555273     2  0.3311      0.713 0.000 0.828 0.000 0.172
#> GSM555275     2  0.1211      0.862 0.000 0.960 0.000 0.040
#> GSM555238     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555240     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555242     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555244     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555246     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555248     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555250     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555252     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555254     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555256     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555258     4  0.4297      0.695 0.096 0.000 0.084 0.820
#> GSM555260     4  0.2125      0.646 0.000 0.076 0.004 0.920
#> GSM555262     2  0.4222      0.830 0.000 0.728 0.000 0.272
#> GSM555264     4  0.5696      0.579 0.232 0.000 0.076 0.692
#> GSM555266     2  0.3486      0.857 0.000 0.812 0.000 0.188
#> GSM555268     2  0.3873      0.858 0.000 0.772 0.000 0.228
#> GSM555270     2  0.3837      0.858 0.000 0.776 0.000 0.224
#> GSM555272     4  0.0707      0.685 0.000 0.000 0.020 0.980
#> GSM555274     2  0.3975      0.851 0.000 0.760 0.000 0.240
#> GSM555276     2  0.3801      0.859 0.000 0.780 0.000 0.220
#> GSM555277     2  0.2149      0.872 0.000 0.912 0.000 0.088
#> GSM555279     2  0.1211      0.853 0.000 0.960 0.000 0.040
#> GSM555281     2  0.1716      0.873 0.000 0.936 0.000 0.064
#> GSM555283     2  0.2868      0.861 0.000 0.864 0.000 0.136
#> GSM555285     2  0.3172      0.729 0.000 0.840 0.000 0.160
#> GSM555287     3  0.3311      0.755 0.172 0.000 0.828 0.000
#> GSM555289     2  0.2345      0.873 0.000 0.900 0.000 0.100
#> GSM555291     2  0.2589      0.861 0.000 0.884 0.000 0.116
#> GSM555293     2  0.1022      0.856 0.000 0.968 0.000 0.032
#> GSM555295     2  0.0817      0.856 0.000 0.976 0.000 0.024
#> GSM555297     3  0.1398      0.921 0.004 0.000 0.956 0.040
#> GSM555299     3  0.0707      0.955 0.020 0.000 0.980 0.000
#> GSM555301     3  0.0707      0.955 0.020 0.000 0.980 0.000
#> GSM555303     3  0.0707      0.955 0.020 0.000 0.980 0.000
#> GSM555305     3  0.0707      0.955 0.020 0.000 0.980 0.000
#> GSM555307     2  0.2081      0.869 0.000 0.916 0.000 0.084
#> GSM555309     3  0.0707      0.955 0.020 0.000 0.980 0.000
#> GSM555311     2  0.1118      0.854 0.000 0.964 0.000 0.036
#> GSM555313     2  0.3837      0.857 0.000 0.776 0.000 0.224
#> GSM555315     2  0.1118      0.854 0.000 0.964 0.000 0.036
#> GSM555278     2  0.3649      0.857 0.000 0.796 0.000 0.204
#> GSM555280     2  0.3873      0.857 0.000 0.772 0.000 0.228
#> GSM555282     2  0.4250      0.827 0.000 0.724 0.000 0.276
#> GSM555284     2  0.4304      0.827 0.000 0.716 0.000 0.284
#> GSM555286     2  0.3873      0.857 0.000 0.772 0.000 0.228
#> GSM555288     4  0.3975      0.380 0.000 0.240 0.000 0.760
#> GSM555290     2  0.3907      0.856 0.000 0.768 0.000 0.232
#> GSM555292     2  0.4134      0.839 0.000 0.740 0.000 0.260
#> GSM555294     2  0.2973      0.863 0.000 0.856 0.000 0.144
#> GSM555296     2  0.3801      0.859 0.000 0.780 0.000 0.220
#> GSM555298     3  0.0707      0.955 0.020 0.000 0.980 0.000
#> GSM555300     3  0.0707      0.955 0.020 0.000 0.980 0.000
#> GSM555302     3  0.0707      0.955 0.020 0.000 0.980 0.000
#> GSM555304     3  0.0707      0.955 0.020 0.000 0.980 0.000
#> GSM555306     3  0.0707      0.955 0.020 0.000 0.980 0.000
#> GSM555308     3  0.0707      0.955 0.020 0.000 0.980 0.000
#> GSM555310     3  0.0707      0.955 0.020 0.000 0.980 0.000
#> GSM555312     2  0.3837      0.857 0.000 0.776 0.000 0.224
#> GSM555314     2  0.0921      0.858 0.000 0.972 0.000 0.028
#> GSM555316     2  0.3801      0.859 0.000 0.780 0.000 0.220
#> GSM555317     2  0.1637      0.873 0.000 0.940 0.000 0.060
#> GSM555319     2  0.0592      0.862 0.000 0.984 0.000 0.016
#> GSM555321     2  0.0592      0.861 0.000 0.984 0.000 0.016
#> GSM555323     2  0.0817      0.857 0.000 0.976 0.000 0.024
#> GSM555325     2  0.1022      0.856 0.000 0.968 0.000 0.032
#> GSM555327     2  0.1792      0.872 0.000 0.932 0.000 0.068
#> GSM555329     2  0.0592      0.862 0.000 0.984 0.000 0.016
#> GSM555331     2  0.0000      0.865 0.000 1.000 0.000 0.000
#> GSM555333     2  0.0469      0.861 0.000 0.988 0.000 0.012
#> GSM555335     2  0.0469      0.861 0.000 0.988 0.000 0.012
#> GSM555337     2  0.0592      0.862 0.000 0.984 0.000 0.016
#> GSM555339     2  0.1389      0.868 0.000 0.952 0.000 0.048
#> GSM555341     2  0.1716      0.872 0.000 0.936 0.000 0.064
#> GSM555343     2  0.0921      0.857 0.000 0.972 0.000 0.028
#> GSM555345     2  0.1637      0.872 0.000 0.940 0.000 0.060
#> GSM555318     2  0.2345      0.874 0.000 0.900 0.000 0.100
#> GSM555320     2  0.3356      0.858 0.000 0.824 0.000 0.176
#> GSM555322     2  0.3801      0.859 0.000 0.780 0.000 0.220
#> GSM555324     3  0.0707      0.955 0.020 0.000 0.980 0.000
#> GSM555326     2  0.3837      0.858 0.000 0.776 0.000 0.224
#> GSM555328     2  0.3837      0.857 0.000 0.776 0.000 0.224
#> GSM555330     2  0.3801      0.859 0.000 0.780 0.000 0.220
#> GSM555332     2  0.3801      0.859 0.000 0.780 0.000 0.220
#> GSM555334     2  0.3873      0.856 0.000 0.772 0.000 0.228
#> GSM555336     2  0.3266      0.860 0.000 0.832 0.000 0.168
#> GSM555338     2  0.1302      0.872 0.000 0.956 0.000 0.044
#> GSM555340     2  0.0592      0.861 0.000 0.984 0.000 0.016
#> GSM555342     2  0.3266      0.860 0.000 0.832 0.000 0.168
#> GSM555344     2  0.3837      0.857 0.000 0.776 0.000 0.224
#> GSM555346     2  0.2973      0.863 0.000 0.856 0.000 0.144

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM555237     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555239     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555257     4  0.1549     0.8906 0.016 0.000 0.040 0.944 0.000
#> GSM555259     3  0.4615     0.6620 0.000 0.000 0.700 0.252 0.048
#> GSM555261     4  0.3578     0.7784 0.000 0.000 0.132 0.820 0.048
#> GSM555263     4  0.2358     0.8545 0.000 0.000 0.008 0.888 0.104
#> GSM555265     3  0.4689     0.6436 0.000 0.000 0.688 0.264 0.048
#> GSM555267     3  0.4589     0.6686 0.000 0.000 0.704 0.248 0.048
#> GSM555269     3  0.3485     0.8105 0.000 0.000 0.828 0.124 0.048
#> GSM555271     3  0.0000     0.9247 0.000 0.000 1.000 0.000 0.000
#> GSM555273     5  0.2012     0.7592 0.000 0.060 0.000 0.020 0.920
#> GSM555275     5  0.3838     0.6631 0.000 0.280 0.000 0.004 0.716
#> GSM555238     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555240     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555242     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555244     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555254     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM555258     4  0.0955     0.8973 0.004 0.000 0.000 0.968 0.028
#> GSM555260     4  0.3412     0.7700 0.000 0.152 0.000 0.820 0.028
#> GSM555262     2  0.1872     0.7334 0.000 0.928 0.000 0.020 0.052
#> GSM555264     4  0.2302     0.8849 0.048 0.000 0.016 0.916 0.020
#> GSM555266     2  0.4297    -0.1730 0.000 0.528 0.000 0.000 0.472
#> GSM555268     2  0.2074     0.7159 0.000 0.896 0.000 0.000 0.104
#> GSM555270     2  0.1544     0.7510 0.000 0.932 0.000 0.000 0.068
#> GSM555272     4  0.0955     0.8968 0.000 0.004 0.000 0.968 0.028
#> GSM555274     2  0.1282     0.7580 0.000 0.952 0.000 0.004 0.044
#> GSM555276     2  0.0703     0.7634 0.000 0.976 0.000 0.000 0.024
#> GSM555277     2  0.3635     0.5506 0.000 0.748 0.000 0.004 0.248
#> GSM555279     5  0.2439     0.7726 0.000 0.120 0.000 0.004 0.876
#> GSM555281     5  0.4448     0.1394 0.000 0.480 0.000 0.004 0.516
#> GSM555283     2  0.4400     0.5070 0.000 0.672 0.000 0.020 0.308
#> GSM555285     5  0.1914     0.7607 0.000 0.060 0.000 0.016 0.924
#> GSM555287     3  0.3086     0.7216 0.180 0.000 0.816 0.000 0.004
#> GSM555289     2  0.3550     0.5664 0.000 0.760 0.000 0.004 0.236
#> GSM555291     2  0.4313     0.4241 0.000 0.636 0.000 0.008 0.356
#> GSM555293     5  0.2127     0.7909 0.000 0.108 0.000 0.000 0.892
#> GSM555295     5  0.3013     0.7767 0.000 0.160 0.000 0.008 0.832
#> GSM555297     3  0.2236     0.8707 0.000 0.000 0.908 0.068 0.024
#> GSM555299     3  0.0000     0.9247 0.000 0.000 1.000 0.000 0.000
#> GSM555301     3  0.0000     0.9247 0.000 0.000 1.000 0.000 0.000
#> GSM555303     3  0.0000     0.9247 0.000 0.000 1.000 0.000 0.000
#> GSM555305     3  0.0000     0.9247 0.000 0.000 1.000 0.000 0.000
#> GSM555307     2  0.4101     0.4346 0.000 0.664 0.000 0.004 0.332
#> GSM555309     3  0.0000     0.9247 0.000 0.000 1.000 0.000 0.000
#> GSM555311     5  0.2179     0.7891 0.000 0.100 0.000 0.004 0.896
#> GSM555313     2  0.0404     0.7630 0.000 0.988 0.000 0.000 0.012
#> GSM555315     5  0.2020     0.7889 0.000 0.100 0.000 0.000 0.900
#> GSM555278     2  0.4227     0.0551 0.000 0.580 0.000 0.000 0.420
#> GSM555280     2  0.0794     0.7595 0.000 0.972 0.000 0.000 0.028
#> GSM555282     2  0.1485     0.7339 0.000 0.948 0.000 0.020 0.032
#> GSM555284     2  0.3760     0.6059 0.000 0.784 0.000 0.028 0.188
#> GSM555286     2  0.1478     0.7503 0.000 0.936 0.000 0.000 0.064
#> GSM555288     2  0.5272     0.0741 0.000 0.552 0.000 0.396 0.052
#> GSM555290     2  0.0794     0.7594 0.000 0.972 0.000 0.000 0.028
#> GSM555292     2  0.1282     0.7490 0.000 0.952 0.000 0.004 0.044
#> GSM555294     5  0.3895     0.5773 0.000 0.320 0.000 0.000 0.680
#> GSM555296     2  0.0703     0.7634 0.000 0.976 0.000 0.000 0.024
#> GSM555298     3  0.0000     0.9247 0.000 0.000 1.000 0.000 0.000
#> GSM555300     3  0.0000     0.9247 0.000 0.000 1.000 0.000 0.000
#> GSM555302     3  0.0000     0.9247 0.000 0.000 1.000 0.000 0.000
#> GSM555304     3  0.0000     0.9247 0.000 0.000 1.000 0.000 0.000
#> GSM555306     3  0.0000     0.9247 0.000 0.000 1.000 0.000 0.000
#> GSM555308     3  0.0000     0.9247 0.000 0.000 1.000 0.000 0.000
#> GSM555310     3  0.0000     0.9247 0.000 0.000 1.000 0.000 0.000
#> GSM555312     2  0.0510     0.7636 0.000 0.984 0.000 0.000 0.016
#> GSM555314     5  0.3491     0.7315 0.000 0.228 0.000 0.004 0.768
#> GSM555316     2  0.0880     0.7628 0.000 0.968 0.000 0.000 0.032
#> GSM555317     2  0.4009     0.4604 0.000 0.684 0.000 0.004 0.312
#> GSM555319     5  0.2719     0.7911 0.000 0.144 0.000 0.004 0.852
#> GSM555321     5  0.2329     0.7933 0.000 0.124 0.000 0.000 0.876
#> GSM555323     5  0.3424     0.7329 0.000 0.240 0.000 0.000 0.760
#> GSM555325     5  0.2074     0.7899 0.000 0.104 0.000 0.000 0.896
#> GSM555327     2  0.3906     0.4931 0.000 0.704 0.000 0.004 0.292
#> GSM555329     5  0.2719     0.7911 0.000 0.144 0.000 0.004 0.852
#> GSM555331     5  0.4118     0.6060 0.000 0.336 0.000 0.004 0.660
#> GSM555333     5  0.3790     0.6900 0.000 0.272 0.000 0.004 0.724
#> GSM555335     5  0.3895     0.6334 0.000 0.320 0.000 0.000 0.680
#> GSM555337     5  0.2471     0.7927 0.000 0.136 0.000 0.000 0.864
#> GSM555339     5  0.4307     0.1243 0.000 0.496 0.000 0.000 0.504
#> GSM555341     2  0.4150     0.3059 0.000 0.612 0.000 0.000 0.388
#> GSM555343     5  0.2179     0.7920 0.000 0.112 0.000 0.000 0.888
#> GSM555345     2  0.4150     0.2840 0.000 0.612 0.000 0.000 0.388
#> GSM555318     2  0.3366     0.6031 0.000 0.784 0.000 0.004 0.212
#> GSM555320     5  0.4302     0.2573 0.000 0.480 0.000 0.000 0.520
#> GSM555322     2  0.1341     0.7571 0.000 0.944 0.000 0.000 0.056
#> GSM555324     3  0.0000     0.9247 0.000 0.000 1.000 0.000 0.000
#> GSM555326     2  0.1608     0.7484 0.000 0.928 0.000 0.000 0.072
#> GSM555328     2  0.0290     0.7629 0.000 0.992 0.000 0.000 0.008
#> GSM555330     2  0.0703     0.7634 0.000 0.976 0.000 0.000 0.024
#> GSM555332     2  0.0703     0.7634 0.000 0.976 0.000 0.000 0.024
#> GSM555334     2  0.0404     0.7635 0.000 0.988 0.000 0.000 0.012
#> GSM555336     5  0.4227     0.4188 0.000 0.420 0.000 0.000 0.580
#> GSM555338     2  0.4341     0.2167 0.000 0.592 0.000 0.004 0.404
#> GSM555340     5  0.2583     0.7933 0.000 0.132 0.000 0.004 0.864
#> GSM555342     5  0.4192     0.4519 0.000 0.404 0.000 0.000 0.596
#> GSM555344     2  0.0794     0.7630 0.000 0.972 0.000 0.000 0.028
#> GSM555346     5  0.3913     0.5710 0.000 0.324 0.000 0.000 0.676

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM555237     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555239     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555257     4  0.1138     0.9175 0.004 0.000 0.012 0.960 0.000 0.024
#> GSM555259     6  0.5537     0.7141 0.000 0.000 0.328 0.152 0.000 0.520
#> GSM555261     6  0.4681     0.3889 0.000 0.000 0.044 0.432 0.000 0.524
#> GSM555263     6  0.3838     0.2815 0.000 0.000 0.000 0.448 0.000 0.552
#> GSM555265     6  0.5558     0.7219 0.000 0.000 0.316 0.160 0.000 0.524
#> GSM555267     6  0.5491     0.7044 0.000 0.000 0.332 0.144 0.000 0.524
#> GSM555269     3  0.4473    -0.3811 0.000 0.000 0.492 0.028 0.000 0.480
#> GSM555271     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555273     5  0.2623     0.6484 0.000 0.016 0.000 0.000 0.852 0.132
#> GSM555275     5  0.5041     0.5115 0.000 0.248 0.000 0.000 0.624 0.128
#> GSM555238     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555240     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555242     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555244     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555254     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555258     4  0.0000     0.9315 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555260     4  0.1657     0.8456 0.000 0.056 0.000 0.928 0.000 0.016
#> GSM555262     2  0.3268     0.6124 0.000 0.808 0.000 0.008 0.020 0.164
#> GSM555264     4  0.1806     0.9019 0.020 0.000 0.008 0.928 0.000 0.044
#> GSM555266     2  0.4185    -0.1165 0.000 0.496 0.000 0.000 0.492 0.012
#> GSM555268     2  0.3315     0.6290 0.000 0.820 0.000 0.000 0.104 0.076
#> GSM555270     2  0.2679     0.6533 0.000 0.864 0.000 0.000 0.096 0.040
#> GSM555272     4  0.0000     0.9315 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555274     2  0.2384     0.6527 0.000 0.884 0.000 0.000 0.032 0.084
#> GSM555276     2  0.2568     0.6476 0.000 0.876 0.000 0.000 0.056 0.068
#> GSM555277     2  0.5130     0.3885 0.000 0.612 0.000 0.000 0.252 0.136
#> GSM555279     5  0.3771     0.6225 0.000 0.056 0.000 0.000 0.764 0.180
#> GSM555281     5  0.5903    -0.0358 0.000 0.396 0.000 0.000 0.400 0.204
#> GSM555283     2  0.6055     0.3405 0.000 0.504 0.000 0.012 0.236 0.248
#> GSM555285     5  0.1958     0.6679 0.000 0.004 0.000 0.000 0.896 0.100
#> GSM555287     3  0.3270     0.6816 0.120 0.000 0.820 0.000 0.000 0.060
#> GSM555289     2  0.4592     0.4381 0.000 0.664 0.000 0.000 0.256 0.080
#> GSM555291     2  0.6097     0.2774 0.000 0.472 0.000 0.008 0.276 0.244
#> GSM555293     5  0.1196     0.6880 0.000 0.040 0.000 0.000 0.952 0.008
#> GSM555295     5  0.4328     0.6100 0.000 0.080 0.000 0.000 0.708 0.212
#> GSM555297     3  0.3168     0.6524 0.000 0.000 0.804 0.024 0.000 0.172
#> GSM555299     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555301     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555303     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555305     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555307     2  0.5786     0.1700 0.000 0.492 0.000 0.000 0.300 0.208
#> GSM555309     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555311     5  0.2664     0.6565 0.000 0.016 0.000 0.000 0.848 0.136
#> GSM555313     2  0.2624     0.6552 0.000 0.856 0.000 0.000 0.020 0.124
#> GSM555315     5  0.1444     0.6742 0.000 0.000 0.000 0.000 0.928 0.072
#> GSM555278     2  0.5170     0.2457 0.000 0.576 0.000 0.000 0.312 0.112
#> GSM555280     2  0.2436     0.6562 0.000 0.880 0.000 0.000 0.032 0.088
#> GSM555282     2  0.3191     0.6143 0.000 0.812 0.000 0.012 0.012 0.164
#> GSM555284     2  0.4621     0.5389 0.000 0.716 0.000 0.016 0.088 0.180
#> GSM555286     2  0.2442     0.6558 0.000 0.884 0.000 0.000 0.068 0.048
#> GSM555288     2  0.5458     0.3540 0.000 0.588 0.000 0.236 0.004 0.172
#> GSM555290     2  0.2433     0.6600 0.000 0.884 0.000 0.000 0.044 0.072
#> GSM555292     2  0.3268     0.6124 0.000 0.808 0.000 0.008 0.020 0.164
#> GSM555294     5  0.3745     0.5180 0.000 0.240 0.000 0.000 0.732 0.028
#> GSM555296     2  0.2846     0.6453 0.000 0.856 0.000 0.000 0.060 0.084
#> GSM555298     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555300     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555302     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555304     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555306     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555308     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555310     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555312     2  0.2623     0.6498 0.000 0.852 0.000 0.000 0.016 0.132
#> GSM555314     5  0.5428     0.4903 0.000 0.168 0.000 0.000 0.568 0.264
#> GSM555316     2  0.2629     0.6465 0.000 0.872 0.000 0.000 0.060 0.068
#> GSM555317     2  0.5244     0.2822 0.000 0.552 0.000 0.000 0.336 0.112
#> GSM555319     5  0.2740     0.6731 0.000 0.120 0.000 0.000 0.852 0.028
#> GSM555321     5  0.2214     0.6832 0.000 0.096 0.000 0.000 0.888 0.016
#> GSM555323     5  0.4085     0.5823 0.000 0.192 0.000 0.000 0.736 0.072
#> GSM555325     5  0.1245     0.6813 0.000 0.016 0.000 0.000 0.952 0.032
#> GSM555327     2  0.5209     0.2975 0.000 0.564 0.000 0.000 0.324 0.112
#> GSM555329     5  0.2536     0.6768 0.000 0.116 0.000 0.000 0.864 0.020
#> GSM555331     5  0.5223     0.2819 0.000 0.356 0.000 0.000 0.540 0.104
#> GSM555333     5  0.5269     0.4195 0.000 0.248 0.000 0.000 0.596 0.156
#> GSM555335     5  0.5016     0.3837 0.000 0.312 0.000 0.000 0.592 0.096
#> GSM555337     5  0.2312     0.6775 0.000 0.112 0.000 0.000 0.876 0.012
#> GSM555339     5  0.5411     0.0700 0.000 0.412 0.000 0.000 0.472 0.116
#> GSM555341     2  0.5191     0.1571 0.000 0.508 0.000 0.000 0.400 0.092
#> GSM555343     5  0.1219     0.6887 0.000 0.048 0.000 0.000 0.948 0.004
#> GSM555345     2  0.5521     0.0834 0.000 0.468 0.000 0.000 0.400 0.132
#> GSM555318     2  0.4953     0.4024 0.000 0.624 0.000 0.000 0.268 0.108
#> GSM555320     5  0.3828     0.1968 0.000 0.440 0.000 0.000 0.560 0.000
#> GSM555322     2  0.2020     0.6575 0.000 0.896 0.000 0.000 0.096 0.008
#> GSM555324     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555326     2  0.2651     0.6479 0.000 0.860 0.000 0.000 0.112 0.028
#> GSM555328     2  0.0777     0.6704 0.000 0.972 0.000 0.000 0.024 0.004
#> GSM555330     2  0.2442     0.6499 0.000 0.884 0.000 0.000 0.048 0.068
#> GSM555332     2  0.2625     0.6465 0.000 0.872 0.000 0.000 0.056 0.072
#> GSM555334     2  0.1745     0.6652 0.000 0.924 0.000 0.000 0.020 0.056
#> GSM555336     5  0.3765     0.2927 0.000 0.404 0.000 0.000 0.596 0.000
#> GSM555338     2  0.5339     0.1126 0.000 0.488 0.000 0.000 0.404 0.108
#> GSM555340     5  0.2558     0.6790 0.000 0.104 0.000 0.000 0.868 0.028
#> GSM555342     5  0.3923     0.3510 0.000 0.372 0.000 0.000 0.620 0.008
#> GSM555344     2  0.2852     0.6415 0.000 0.856 0.000 0.000 0.064 0.080
#> GSM555346     5  0.4050     0.5159 0.000 0.236 0.000 0.000 0.716 0.048

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) agent(p) k
#> CV:skmeans 109         4.59e-08 4.80e-01 2
#> CV:skmeans 109         7.46e-13 3.34e-01 3
#> CV:skmeans 108         5.13e-14 6.75e-01 4
#> CV:skmeans  95         5.61e-12 1.74e-04 5
#> CV:skmeans  84         2.74e-11 1.18e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.984       0.993         0.4579 0.544   0.544
#> 3 3 1.000           0.966       0.986         0.1337 0.942   0.894
#> 4 4 0.822           0.860       0.927         0.3399 0.760   0.525
#> 5 5 0.761           0.821       0.898         0.1097 0.910   0.703
#> 6 6 0.772           0.669       0.817         0.0606 0.903   0.614

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1  0.0000      0.992 1.000 0.000
#> GSM555239     1  0.0000      0.992 1.000 0.000
#> GSM555241     1  0.0000      0.992 1.000 0.000
#> GSM555243     1  0.0000      0.992 1.000 0.000
#> GSM555245     1  0.0000      0.992 1.000 0.000
#> GSM555247     1  0.0000      0.992 1.000 0.000
#> GSM555249     1  0.0000      0.992 1.000 0.000
#> GSM555251     1  0.0000      0.992 1.000 0.000
#> GSM555253     1  0.0000      0.992 1.000 0.000
#> GSM555255     1  0.0000      0.992 1.000 0.000
#> GSM555257     1  0.0000      0.992 1.000 0.000
#> GSM555259     1  0.0672      0.985 0.992 0.008
#> GSM555261     2  0.4939      0.878 0.108 0.892
#> GSM555263     2  0.0000      0.993 0.000 1.000
#> GSM555265     2  0.8555      0.612 0.280 0.720
#> GSM555267     2  0.0000      0.993 0.000 1.000
#> GSM555269     1  0.2603      0.950 0.956 0.044
#> GSM555271     1  0.0000      0.992 1.000 0.000
#> GSM555273     2  0.0000      0.993 0.000 1.000
#> GSM555275     2  0.0000      0.993 0.000 1.000
#> GSM555238     1  0.0000      0.992 1.000 0.000
#> GSM555240     1  0.0000      0.992 1.000 0.000
#> GSM555242     1  0.0000      0.992 1.000 0.000
#> GSM555244     1  0.0000      0.992 1.000 0.000
#> GSM555246     1  0.0000      0.992 1.000 0.000
#> GSM555248     1  0.0000      0.992 1.000 0.000
#> GSM555250     1  0.0000      0.992 1.000 0.000
#> GSM555252     1  0.0000      0.992 1.000 0.000
#> GSM555254     1  0.0000      0.992 1.000 0.000
#> GSM555256     1  0.0000      0.992 1.000 0.000
#> GSM555258     2  0.0000      0.993 0.000 1.000
#> GSM555260     2  0.0000      0.993 0.000 1.000
#> GSM555262     2  0.0000      0.993 0.000 1.000
#> GSM555264     1  0.7815      0.696 0.768 0.232
#> GSM555266     2  0.0000      0.993 0.000 1.000
#> GSM555268     2  0.0000      0.993 0.000 1.000
#> GSM555270     2  0.0000      0.993 0.000 1.000
#> GSM555272     2  0.0000      0.993 0.000 1.000
#> GSM555274     2  0.0000      0.993 0.000 1.000
#> GSM555276     2  0.0000      0.993 0.000 1.000
#> GSM555277     2  0.0000      0.993 0.000 1.000
#> GSM555279     2  0.0000      0.993 0.000 1.000
#> GSM555281     2  0.0000      0.993 0.000 1.000
#> GSM555283     2  0.0000      0.993 0.000 1.000
#> GSM555285     2  0.0000      0.993 0.000 1.000
#> GSM555287     2  0.5059      0.873 0.112 0.888
#> GSM555289     2  0.0000      0.993 0.000 1.000
#> GSM555291     2  0.0000      0.993 0.000 1.000
#> GSM555293     2  0.0000      0.993 0.000 1.000
#> GSM555295     2  0.0000      0.993 0.000 1.000
#> GSM555297     2  0.0000      0.993 0.000 1.000
#> GSM555299     1  0.0000      0.992 1.000 0.000
#> GSM555301     1  0.0000      0.992 1.000 0.000
#> GSM555303     1  0.0000      0.992 1.000 0.000
#> GSM555305     1  0.0000      0.992 1.000 0.000
#> GSM555307     2  0.0000      0.993 0.000 1.000
#> GSM555309     1  0.0000      0.992 1.000 0.000
#> GSM555311     2  0.0000      0.993 0.000 1.000
#> GSM555313     2  0.0000      0.993 0.000 1.000
#> GSM555315     2  0.0000      0.993 0.000 1.000
#> GSM555278     2  0.0000      0.993 0.000 1.000
#> GSM555280     2  0.0000      0.993 0.000 1.000
#> GSM555282     2  0.0000      0.993 0.000 1.000
#> GSM555284     2  0.0000      0.993 0.000 1.000
#> GSM555286     2  0.0000      0.993 0.000 1.000
#> GSM555288     2  0.0000      0.993 0.000 1.000
#> GSM555290     2  0.0000      0.993 0.000 1.000
#> GSM555292     2  0.0000      0.993 0.000 1.000
#> GSM555294     2  0.0000      0.993 0.000 1.000
#> GSM555296     2  0.0000      0.993 0.000 1.000
#> GSM555298     1  0.0672      0.985 0.992 0.008
#> GSM555300     1  0.0000      0.992 1.000 0.000
#> GSM555302     1  0.0000      0.992 1.000 0.000
#> GSM555304     1  0.0000      0.992 1.000 0.000
#> GSM555306     1  0.0000      0.992 1.000 0.000
#> GSM555308     1  0.0000      0.992 1.000 0.000
#> GSM555310     1  0.0000      0.992 1.000 0.000
#> GSM555312     2  0.0000      0.993 0.000 1.000
#> GSM555314     2  0.0000      0.993 0.000 1.000
#> GSM555316     2  0.0000      0.993 0.000 1.000
#> GSM555317     2  0.0000      0.993 0.000 1.000
#> GSM555319     2  0.0000      0.993 0.000 1.000
#> GSM555321     2  0.0000      0.993 0.000 1.000
#> GSM555323     2  0.0000      0.993 0.000 1.000
#> GSM555325     2  0.0000      0.993 0.000 1.000
#> GSM555327     2  0.0000      0.993 0.000 1.000
#> GSM555329     2  0.0000      0.993 0.000 1.000
#> GSM555331     2  0.0000      0.993 0.000 1.000
#> GSM555333     2  0.0000      0.993 0.000 1.000
#> GSM555335     2  0.0000      0.993 0.000 1.000
#> GSM555337     2  0.0000      0.993 0.000 1.000
#> GSM555339     2  0.0000      0.993 0.000 1.000
#> GSM555341     2  0.0000      0.993 0.000 1.000
#> GSM555343     2  0.0000      0.993 0.000 1.000
#> GSM555345     2  0.0000      0.993 0.000 1.000
#> GSM555318     2  0.0000      0.993 0.000 1.000
#> GSM555320     2  0.0000      0.993 0.000 1.000
#> GSM555322     2  0.0000      0.993 0.000 1.000
#> GSM555324     1  0.0000      0.992 1.000 0.000
#> GSM555326     2  0.0000      0.993 0.000 1.000
#> GSM555328     2  0.0000      0.993 0.000 1.000
#> GSM555330     2  0.0000      0.993 0.000 1.000
#> GSM555332     2  0.0000      0.993 0.000 1.000
#> GSM555334     2  0.0000      0.993 0.000 1.000
#> GSM555336     2  0.0000      0.993 0.000 1.000
#> GSM555338     2  0.0000      0.993 0.000 1.000
#> GSM555340     2  0.0000      0.993 0.000 1.000
#> GSM555342     2  0.0000      0.993 0.000 1.000
#> GSM555344     2  0.0000      0.993 0.000 1.000
#> GSM555346     2  0.0000      0.993 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.0000      0.963 1.000 0.000 0.000
#> GSM555239     1  0.0000      0.963 1.000 0.000 0.000
#> GSM555241     1  0.0000      0.963 1.000 0.000 0.000
#> GSM555243     1  0.0000      0.963 1.000 0.000 0.000
#> GSM555245     1  0.0000      0.963 1.000 0.000 0.000
#> GSM555247     1  0.0000      0.963 1.000 0.000 0.000
#> GSM555249     1  0.0000      0.963 1.000 0.000 0.000
#> GSM555251     1  0.0000      0.963 1.000 0.000 0.000
#> GSM555253     1  0.0000      0.963 1.000 0.000 0.000
#> GSM555255     1  0.0000      0.963 1.000 0.000 0.000
#> GSM555257     1  0.4682      0.762 0.804 0.004 0.192
#> GSM555259     1  0.4931      0.735 0.784 0.004 0.212
#> GSM555261     2  0.5098      0.666 0.248 0.752 0.000
#> GSM555263     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555265     2  0.6330      0.329 0.396 0.600 0.004
#> GSM555267     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555269     3  0.0424      0.991 0.008 0.000 0.992
#> GSM555271     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555273     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555275     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555238     1  0.0000      0.963 1.000 0.000 0.000
#> GSM555240     1  0.0000      0.963 1.000 0.000 0.000
#> GSM555242     1  0.0000      0.963 1.000 0.000 0.000
#> GSM555244     1  0.0000      0.963 1.000 0.000 0.000
#> GSM555246     1  0.0000      0.963 1.000 0.000 0.000
#> GSM555248     1  0.0000      0.963 1.000 0.000 0.000
#> GSM555250     1  0.0000      0.963 1.000 0.000 0.000
#> GSM555252     1  0.0000      0.963 1.000 0.000 0.000
#> GSM555254     1  0.0000      0.963 1.000 0.000 0.000
#> GSM555256     1  0.0000      0.963 1.000 0.000 0.000
#> GSM555258     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555260     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555262     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555264     1  0.7065      0.555 0.700 0.228 0.072
#> GSM555266     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555268     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555270     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555272     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555274     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555276     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555277     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555279     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555281     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555283     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555285     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555287     2  0.3816      0.821 0.148 0.852 0.000
#> GSM555289     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555291     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555293     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555295     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555297     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555299     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555301     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555303     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555305     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555307     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555309     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555311     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555313     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555315     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555278     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555280     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555282     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555284     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555286     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555288     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555290     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555292     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555294     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555296     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555298     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555300     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555302     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555304     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555306     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555308     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555310     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555312     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555314     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555316     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555317     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555319     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555321     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555323     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555325     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555327     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555329     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555331     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555333     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555335     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555337     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555339     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555341     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555343     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555345     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555318     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555320     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555322     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555324     3  0.0000      0.999 0.000 0.000 1.000
#> GSM555326     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555328     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555330     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555332     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555334     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555336     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555338     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555340     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555342     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555344     2  0.0000      0.988 0.000 1.000 0.000
#> GSM555346     2  0.0000      0.988 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555239     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555241     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555243     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555245     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555247     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555249     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555251     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555253     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555255     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555257     4  0.6850     0.2518 0.212 0.000 0.188 0.600
#> GSM555259     4  0.3160     0.6341 0.020 0.000 0.108 0.872
#> GSM555261     4  0.0000     0.7362 0.000 0.000 0.000 1.000
#> GSM555263     4  0.0000     0.7362 0.000 0.000 0.000 1.000
#> GSM555265     4  0.0000     0.7362 0.000 0.000 0.000 1.000
#> GSM555267     4  0.0000     0.7362 0.000 0.000 0.000 1.000
#> GSM555269     4  0.3074     0.5979 0.000 0.000 0.152 0.848
#> GSM555271     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555273     4  0.4382     0.7127 0.000 0.296 0.000 0.704
#> GSM555275     4  0.4382     0.7127 0.000 0.296 0.000 0.704
#> GSM555238     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555240     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555242     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555244     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555246     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555248     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555250     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555252     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555254     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555256     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM555258     4  0.0000     0.7362 0.000 0.000 0.000 1.000
#> GSM555260     4  0.4916     0.5098 0.000 0.424 0.000 0.576
#> GSM555262     4  0.4961     0.4685 0.000 0.448 0.000 0.552
#> GSM555264     4  0.0921     0.7198 0.028 0.000 0.000 0.972
#> GSM555266     2  0.1118     0.9289 0.000 0.964 0.000 0.036
#> GSM555268     2  0.0707     0.9393 0.000 0.980 0.000 0.020
#> GSM555270     2  0.0000     0.9478 0.000 1.000 0.000 0.000
#> GSM555272     4  0.0000     0.7362 0.000 0.000 0.000 1.000
#> GSM555274     2  0.1557     0.9175 0.000 0.944 0.000 0.056
#> GSM555276     2  0.0336     0.9462 0.000 0.992 0.000 0.008
#> GSM555277     4  0.4564     0.6884 0.000 0.328 0.000 0.672
#> GSM555279     4  0.4382     0.7127 0.000 0.296 0.000 0.704
#> GSM555281     4  0.4454     0.7048 0.000 0.308 0.000 0.692
#> GSM555283     4  0.4916     0.5050 0.000 0.424 0.000 0.576
#> GSM555285     4  0.4543     0.6902 0.000 0.324 0.000 0.676
#> GSM555287     4  0.0000     0.7362 0.000 0.000 0.000 1.000
#> GSM555289     2  0.0000     0.9478 0.000 1.000 0.000 0.000
#> GSM555291     4  0.4382     0.7127 0.000 0.296 0.000 0.704
#> GSM555293     2  0.0707     0.9405 0.000 0.980 0.000 0.020
#> GSM555295     4  0.0336     0.7398 0.000 0.008 0.000 0.992
#> GSM555297     4  0.0000     0.7362 0.000 0.000 0.000 1.000
#> GSM555299     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555301     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555303     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555305     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555307     4  0.4500     0.7013 0.000 0.316 0.000 0.684
#> GSM555309     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555311     4  0.4382     0.7127 0.000 0.296 0.000 0.704
#> GSM555313     4  0.4843     0.5882 0.000 0.396 0.000 0.604
#> GSM555315     4  0.4454     0.7058 0.000 0.308 0.000 0.692
#> GSM555278     2  0.1118     0.9289 0.000 0.964 0.000 0.036
#> GSM555280     2  0.0469     0.9437 0.000 0.988 0.000 0.012
#> GSM555282     2  0.1302     0.9222 0.000 0.956 0.000 0.044
#> GSM555284     2  0.4776     0.1631 0.000 0.624 0.000 0.376
#> GSM555286     2  0.0000     0.9478 0.000 1.000 0.000 0.000
#> GSM555288     4  0.1557     0.7514 0.000 0.056 0.000 0.944
#> GSM555290     2  0.0000     0.9478 0.000 1.000 0.000 0.000
#> GSM555292     2  0.1118     0.9289 0.000 0.964 0.000 0.036
#> GSM555294     2  0.0707     0.9405 0.000 0.980 0.000 0.020
#> GSM555296     2  0.0707     0.9379 0.000 0.980 0.000 0.020
#> GSM555298     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555300     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555302     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555304     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555306     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555308     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555310     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555312     4  0.4624     0.6721 0.000 0.340 0.000 0.660
#> GSM555314     4  0.0336     0.7398 0.000 0.008 0.000 0.992
#> GSM555316     2  0.0469     0.9443 0.000 0.988 0.000 0.012
#> GSM555317     2  0.0000     0.9478 0.000 1.000 0.000 0.000
#> GSM555319     2  0.0000     0.9478 0.000 1.000 0.000 0.000
#> GSM555321     2  0.0000     0.9478 0.000 1.000 0.000 0.000
#> GSM555323     2  0.3486     0.7162 0.000 0.812 0.000 0.188
#> GSM555325     2  0.0469     0.9443 0.000 0.988 0.000 0.012
#> GSM555327     2  0.0000     0.9478 0.000 1.000 0.000 0.000
#> GSM555329     2  0.0000     0.9478 0.000 1.000 0.000 0.000
#> GSM555331     2  0.3764     0.6520 0.000 0.784 0.000 0.216
#> GSM555333     4  0.2281     0.7561 0.000 0.096 0.000 0.904
#> GSM555335     2  0.2281     0.8603 0.000 0.904 0.000 0.096
#> GSM555337     2  0.0000     0.9478 0.000 1.000 0.000 0.000
#> GSM555339     4  0.4605     0.6790 0.000 0.336 0.000 0.664
#> GSM555341     2  0.4888     0.0688 0.000 0.588 0.000 0.412
#> GSM555343     2  0.0707     0.9405 0.000 0.980 0.000 0.020
#> GSM555345     4  0.1118     0.7361 0.000 0.036 0.000 0.964
#> GSM555318     2  0.0188     0.9470 0.000 0.996 0.000 0.004
#> GSM555320     2  0.0707     0.9393 0.000 0.980 0.000 0.020
#> GSM555322     2  0.0000     0.9478 0.000 1.000 0.000 0.000
#> GSM555324     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555326     2  0.0000     0.9478 0.000 1.000 0.000 0.000
#> GSM555328     2  0.0000     0.9478 0.000 1.000 0.000 0.000
#> GSM555330     2  0.0000     0.9478 0.000 1.000 0.000 0.000
#> GSM555332     2  0.0000     0.9478 0.000 1.000 0.000 0.000
#> GSM555334     2  0.0000     0.9478 0.000 1.000 0.000 0.000
#> GSM555336     2  0.0000     0.9478 0.000 1.000 0.000 0.000
#> GSM555338     2  0.0000     0.9478 0.000 1.000 0.000 0.000
#> GSM555340     2  0.0000     0.9478 0.000 1.000 0.000 0.000
#> GSM555342     2  0.0336     0.9459 0.000 0.992 0.000 0.008
#> GSM555344     2  0.0707     0.9405 0.000 0.980 0.000 0.020
#> GSM555346     2  0.1211     0.9308 0.000 0.960 0.000 0.040

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3    p4    p5
#> GSM555237     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM555239     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM555257     4  0.0794      0.938  0 0.000 0.028 0.972 0.000
#> GSM555259     4  0.0912      0.956  0 0.000 0.012 0.972 0.016
#> GSM555261     4  0.0794      0.965  0 0.000 0.000 0.972 0.028
#> GSM555263     4  0.0794      0.965  0 0.000 0.000 0.972 0.028
#> GSM555265     4  0.0794      0.965  0 0.000 0.000 0.972 0.028
#> GSM555267     4  0.0794      0.965  0 0.000 0.000 0.972 0.028
#> GSM555269     4  0.0865      0.962  0 0.000 0.004 0.972 0.024
#> GSM555271     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> GSM555273     5  0.0000      0.822  0 0.000 0.000 0.000 1.000
#> GSM555275     5  0.0510      0.823  0 0.016 0.000 0.000 0.984
#> GSM555238     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM555240     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM555242     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM555244     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM555252     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM555254     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM555258     4  0.3452      0.686  0 0.000 0.000 0.756 0.244
#> GSM555260     5  0.3563      0.730  0 0.208 0.000 0.012 0.780
#> GSM555262     5  0.3274      0.716  0 0.220 0.000 0.000 0.780
#> GSM555264     4  0.0794      0.965  0 0.000 0.000 0.972 0.028
#> GSM555266     2  0.4192      0.296  0 0.596 0.000 0.000 0.404
#> GSM555268     2  0.1478      0.766  0 0.936 0.000 0.000 0.064
#> GSM555270     2  0.0000      0.788  0 1.000 0.000 0.000 0.000
#> GSM555272     5  0.4074      0.366  0 0.000 0.000 0.364 0.636
#> GSM555274     5  0.4030      0.569  0 0.352 0.000 0.000 0.648
#> GSM555276     2  0.3932      0.347  0 0.672 0.000 0.000 0.328
#> GSM555277     5  0.1670      0.809  0 0.052 0.000 0.012 0.936
#> GSM555279     5  0.0000      0.822  0 0.000 0.000 0.000 1.000
#> GSM555281     5  0.0404      0.824  0 0.012 0.000 0.000 0.988
#> GSM555283     5  0.2732      0.759  0 0.160 0.000 0.000 0.840
#> GSM555285     5  0.3480      0.561  0 0.248 0.000 0.000 0.752
#> GSM555287     4  0.0794      0.965  0 0.000 0.000 0.972 0.028
#> GSM555289     2  0.3412      0.782  0 0.820 0.000 0.028 0.152
#> GSM555291     5  0.0609      0.819  0 0.020 0.000 0.000 0.980
#> GSM555293     2  0.4397      0.679  0 0.696 0.000 0.028 0.276
#> GSM555295     5  0.0609      0.820  0 0.000 0.000 0.020 0.980
#> GSM555297     4  0.1341      0.942  0 0.000 0.000 0.944 0.056
#> GSM555299     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> GSM555301     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> GSM555303     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> GSM555305     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> GSM555307     5  0.0963      0.822  0 0.036 0.000 0.000 0.964
#> GSM555309     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> GSM555311     5  0.0510      0.823  0 0.016 0.000 0.000 0.984
#> GSM555313     5  0.3857      0.605  0 0.312 0.000 0.000 0.688
#> GSM555315     5  0.2424      0.723  0 0.132 0.000 0.000 0.868
#> GSM555278     2  0.4138      0.287  0 0.616 0.000 0.000 0.384
#> GSM555280     2  0.1270      0.772  0 0.948 0.000 0.000 0.052
#> GSM555282     2  0.3876      0.449  0 0.684 0.000 0.000 0.316
#> GSM555284     5  0.3424      0.698  0 0.240 0.000 0.000 0.760
#> GSM555286     2  0.0162      0.788  0 0.996 0.000 0.000 0.004
#> GSM555288     5  0.2852      0.745  0 0.172 0.000 0.000 0.828
#> GSM555290     2  0.0510      0.792  0 0.984 0.000 0.000 0.016
#> GSM555292     2  0.3366      0.572  0 0.768 0.000 0.000 0.232
#> GSM555294     2  0.3452      0.753  0 0.756 0.000 0.000 0.244
#> GSM555296     2  0.3109      0.747  0 0.800 0.000 0.000 0.200
#> GSM555298     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> GSM555300     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> GSM555302     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> GSM555304     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> GSM555306     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> GSM555308     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> GSM555310     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> GSM555312     5  0.2074      0.794  0 0.104 0.000 0.000 0.896
#> GSM555314     5  0.0510      0.823  0 0.016 0.000 0.000 0.984
#> GSM555316     2  0.1270      0.785  0 0.948 0.000 0.000 0.052
#> GSM555317     2  0.4169      0.736  0 0.732 0.000 0.028 0.240
#> GSM555319     2  0.3412      0.782  0 0.820 0.000 0.028 0.152
#> GSM555321     2  0.3370      0.783  0 0.824 0.000 0.028 0.148
#> GSM555323     5  0.4584      0.419  0 0.312 0.000 0.028 0.660
#> GSM555325     2  0.3779      0.758  0 0.776 0.000 0.024 0.200
#> GSM555327     2  0.3370      0.783  0 0.824 0.000 0.028 0.148
#> GSM555329     2  0.3412      0.782  0 0.820 0.000 0.028 0.152
#> GSM555331     5  0.4442      0.475  0 0.284 0.000 0.028 0.688
#> GSM555333     5  0.0000      0.822  0 0.000 0.000 0.000 1.000
#> GSM555335     2  0.4787      0.534  0 0.608 0.000 0.028 0.364
#> GSM555337     2  0.3370      0.783  0 0.824 0.000 0.028 0.148
#> GSM555339     5  0.1544      0.797  0 0.068 0.000 0.000 0.932
#> GSM555341     5  0.3146      0.742  0 0.128 0.000 0.028 0.844
#> GSM555343     2  0.4397      0.679  0 0.696 0.000 0.028 0.276
#> GSM555345     5  0.4325      0.690  0 0.064 0.000 0.180 0.756
#> GSM555318     2  0.3970      0.746  0 0.744 0.000 0.020 0.236
#> GSM555320     2  0.1478      0.766  0 0.936 0.000 0.000 0.064
#> GSM555322     2  0.0510      0.792  0 0.984 0.000 0.000 0.016
#> GSM555324     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> GSM555326     2  0.0290      0.788  0 0.992 0.000 0.000 0.008
#> GSM555328     2  0.1043      0.778  0 0.960 0.000 0.000 0.040
#> GSM555330     2  0.0290      0.788  0 0.992 0.000 0.000 0.008
#> GSM555332     2  0.3491      0.762  0 0.768 0.000 0.004 0.228
#> GSM555334     2  0.0290      0.788  0 0.992 0.000 0.000 0.008
#> GSM555336     2  0.0290      0.791  0 0.992 0.000 0.000 0.008
#> GSM555338     2  0.3412      0.782  0 0.820 0.000 0.028 0.152
#> GSM555340     2  0.3412      0.782  0 0.820 0.000 0.028 0.152
#> GSM555342     2  0.3487      0.757  0 0.780 0.000 0.008 0.212
#> GSM555344     2  0.1121      0.793  0 0.956 0.000 0.000 0.044
#> GSM555346     2  0.4268      0.266  0 0.556 0.000 0.000 0.444

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM555237     1  0.0405     0.9940 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM555239     1  0.0000     0.9957 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0000     0.9957 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000     0.9957 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000     0.9957 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000     0.9957 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000     0.9957 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000     0.9957 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000     0.9957 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0405     0.9940 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM555257     4  0.0458     0.9154 0.000 0.000 0.000 0.984 0.000 0.016
#> GSM555259     4  0.0000     0.9205 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555261     4  0.0000     0.9205 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555263     4  0.0000     0.9205 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555265     4  0.0000     0.9205 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555267     4  0.0000     0.9205 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555269     4  0.0000     0.9205 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555271     3  0.0146     0.9959 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM555273     5  0.3838     0.5649 0.000 0.000 0.000 0.000 0.552 0.448
#> GSM555275     5  0.2793     0.6949 0.000 0.000 0.000 0.000 0.800 0.200
#> GSM555238     1  0.0405     0.9940 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM555240     1  0.0405     0.9940 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM555242     1  0.0405     0.9940 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM555244     1  0.0000     0.9957 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000     0.9957 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000     0.9957 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0146     0.9953 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM555252     1  0.0405     0.9940 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM555254     1  0.0405     0.9940 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM555256     1  0.0405     0.9940 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM555258     4  0.4131     0.3749 0.000 0.000 0.000 0.600 0.384 0.016
#> GSM555260     5  0.2103     0.6767 0.000 0.040 0.000 0.020 0.916 0.024
#> GSM555262     5  0.1610     0.6683 0.000 0.084 0.000 0.000 0.916 0.000
#> GSM555264     4  0.2823     0.7691 0.000 0.000 0.000 0.796 0.000 0.204
#> GSM555266     5  0.3937     0.1049 0.000 0.424 0.000 0.000 0.572 0.004
#> GSM555268     2  0.3499     0.3875 0.000 0.680 0.000 0.000 0.320 0.000
#> GSM555270     2  0.0260     0.5636 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM555272     5  0.2750     0.6083 0.000 0.000 0.000 0.136 0.844 0.020
#> GSM555274     5  0.2146     0.6456 0.000 0.116 0.000 0.000 0.880 0.004
#> GSM555276     2  0.4967    -0.0148 0.000 0.640 0.000 0.000 0.132 0.228
#> GSM555277     5  0.3934     0.3537 0.000 0.008 0.000 0.000 0.616 0.376
#> GSM555279     5  0.2996     0.6836 0.000 0.000 0.000 0.000 0.772 0.228
#> GSM555281     5  0.2994     0.6929 0.000 0.004 0.000 0.000 0.788 0.208
#> GSM555283     5  0.3416     0.6572 0.000 0.056 0.000 0.000 0.804 0.140
#> GSM555285     5  0.4535     0.5093 0.000 0.032 0.000 0.000 0.488 0.480
#> GSM555287     4  0.2122     0.8815 0.000 0.000 0.000 0.900 0.024 0.076
#> GSM555289     6  0.3864     0.7322 0.000 0.480 0.000 0.000 0.000 0.520
#> GSM555291     5  0.2340     0.6976 0.000 0.000 0.000 0.000 0.852 0.148
#> GSM555293     6  0.3468     0.1475 0.000 0.284 0.000 0.000 0.004 0.712
#> GSM555295     5  0.3838     0.5656 0.000 0.000 0.000 0.000 0.552 0.448
#> GSM555297     4  0.1701     0.8688 0.000 0.000 0.000 0.920 0.072 0.008
#> GSM555299     3  0.0146     0.9975 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM555301     3  0.0146     0.9959 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM555303     3  0.0146     0.9975 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM555305     3  0.0000     0.9976 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555307     5  0.5882    -0.0517 0.000 0.244 0.000 0.000 0.476 0.280
#> GSM555309     3  0.0146     0.9975 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM555311     5  0.3828     0.5706 0.000 0.000 0.000 0.000 0.560 0.440
#> GSM555313     5  0.1910     0.6519 0.000 0.108 0.000 0.000 0.892 0.000
#> GSM555315     5  0.4181     0.5311 0.000 0.012 0.000 0.000 0.512 0.476
#> GSM555278     5  0.5224    -0.0587 0.000 0.440 0.000 0.000 0.468 0.092
#> GSM555280     2  0.3050     0.5186 0.000 0.764 0.000 0.000 0.236 0.000
#> GSM555282     5  0.3867    -0.0737 0.000 0.488 0.000 0.000 0.512 0.000
#> GSM555284     5  0.1663     0.6657 0.000 0.088 0.000 0.000 0.912 0.000
#> GSM555286     2  0.1267     0.5782 0.000 0.940 0.000 0.000 0.000 0.060
#> GSM555288     5  0.0363     0.6871 0.000 0.012 0.000 0.000 0.988 0.000
#> GSM555290     2  0.0146     0.5635 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM555292     2  0.3706     0.2722 0.000 0.620 0.000 0.000 0.380 0.000
#> GSM555294     2  0.4124     0.4832 0.000 0.644 0.000 0.000 0.024 0.332
#> GSM555296     2  0.3295     0.5116 0.000 0.816 0.000 0.000 0.128 0.056
#> GSM555298     3  0.0146     0.9959 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM555300     3  0.0146     0.9975 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM555302     3  0.0000     0.9976 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555304     3  0.0000     0.9976 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555306     3  0.0000     0.9976 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555308     3  0.0146     0.9975 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM555310     3  0.0000     0.9976 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555312     5  0.0820     0.6919 0.000 0.012 0.000 0.000 0.972 0.016
#> GSM555314     5  0.2454     0.7006 0.000 0.000 0.000 0.000 0.840 0.160
#> GSM555316     2  0.0405     0.5624 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM555317     6  0.4256     0.7351 0.000 0.464 0.000 0.000 0.016 0.520
#> GSM555319     6  0.3867     0.7236 0.000 0.488 0.000 0.000 0.000 0.512
#> GSM555321     2  0.3866    -0.6842 0.000 0.516 0.000 0.000 0.000 0.484
#> GSM555323     6  0.4961     0.7085 0.000 0.348 0.000 0.000 0.080 0.572
#> GSM555325     2  0.3975     0.4612 0.000 0.600 0.000 0.000 0.008 0.392
#> GSM555327     6  0.3864     0.7322 0.000 0.480 0.000 0.000 0.000 0.520
#> GSM555329     2  0.3765    -0.5140 0.000 0.596 0.000 0.000 0.000 0.404
#> GSM555331     6  0.5036     0.7070 0.000 0.344 0.000 0.000 0.088 0.568
#> GSM555333     5  0.2996     0.6836 0.000 0.000 0.000 0.000 0.772 0.228
#> GSM555335     6  0.4516     0.7140 0.000 0.400 0.000 0.000 0.036 0.564
#> GSM555337     2  0.3706    -0.1799 0.000 0.620 0.000 0.000 0.000 0.380
#> GSM555339     6  0.5718     0.4866 0.000 0.252 0.000 0.000 0.228 0.520
#> GSM555341     6  0.5556     0.3635 0.000 0.148 0.000 0.000 0.348 0.504
#> GSM555343     6  0.3828     0.7389 0.000 0.440 0.000 0.000 0.000 0.560
#> GSM555345     6  0.5644     0.6817 0.000 0.320 0.000 0.020 0.108 0.552
#> GSM555318     6  0.4594     0.6767 0.000 0.480 0.000 0.000 0.036 0.484
#> GSM555320     2  0.4435     0.5150 0.000 0.672 0.000 0.000 0.064 0.264
#> GSM555322     2  0.0260     0.5636 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM555324     3  0.0146     0.9975 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM555326     2  0.1245     0.5816 0.000 0.952 0.000 0.000 0.032 0.016
#> GSM555328     2  0.1267     0.5775 0.000 0.940 0.000 0.000 0.060 0.000
#> GSM555330     2  0.2889     0.4612 0.000 0.848 0.000 0.000 0.044 0.108
#> GSM555332     2  0.4893    -0.4800 0.000 0.536 0.000 0.000 0.064 0.400
#> GSM555334     2  0.2680     0.4534 0.000 0.860 0.000 0.000 0.032 0.108
#> GSM555336     2  0.3175     0.5215 0.000 0.744 0.000 0.000 0.000 0.256
#> GSM555338     6  0.3864     0.7322 0.000 0.480 0.000 0.000 0.000 0.520
#> GSM555340     6  0.3864     0.7322 0.000 0.480 0.000 0.000 0.000 0.520
#> GSM555342     2  0.3860     0.3154 0.000 0.528 0.000 0.000 0.000 0.472
#> GSM555344     2  0.1807     0.5764 0.000 0.920 0.000 0.000 0.060 0.020
#> GSM555346     2  0.5855     0.0964 0.000 0.412 0.000 0.000 0.192 0.396

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) agent(p) k
#> CV:pam 110         1.29e-06 1.000000 2
#> CV:pam 109         5.95e-13 0.944091 3
#> CV:pam 106         3.39e-15 0.001736 4
#> CV:pam 102         3.76e-17 0.014388 5
#> CV:pam  88         7.60e-17 0.000449 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.925           0.921       0.967         0.4790 0.512   0.512
#> 3 3 0.899           0.952       0.977         0.2263 0.859   0.734
#> 4 4 0.736           0.831       0.897         0.1002 0.940   0.857
#> 5 5 0.769           0.832       0.894         0.0325 0.969   0.919
#> 6 6 0.738           0.752       0.859         0.0310 0.977   0.938

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1  0.0000      0.935 1.000 0.000
#> GSM555239     1  0.0000      0.935 1.000 0.000
#> GSM555241     1  0.0000      0.935 1.000 0.000
#> GSM555243     1  0.0000      0.935 1.000 0.000
#> GSM555245     1  0.0000      0.935 1.000 0.000
#> GSM555247     1  0.0000      0.935 1.000 0.000
#> GSM555249     1  0.0000      0.935 1.000 0.000
#> GSM555251     1  0.0000      0.935 1.000 0.000
#> GSM555253     1  0.0000      0.935 1.000 0.000
#> GSM555255     1  0.0000      0.935 1.000 0.000
#> GSM555257     1  0.0938      0.927 0.988 0.012
#> GSM555259     1  0.2423      0.906 0.960 0.040
#> GSM555261     1  0.9580      0.457 0.620 0.380
#> GSM555263     1  0.9580      0.457 0.620 0.380
#> GSM555265     1  0.9552      0.466 0.624 0.376
#> GSM555267     1  0.9580      0.457 0.620 0.380
#> GSM555269     1  0.1843      0.915 0.972 0.028
#> GSM555271     1  0.0000      0.935 1.000 0.000
#> GSM555273     2  0.0938      0.973 0.012 0.988
#> GSM555275     2  0.0000      0.984 0.000 1.000
#> GSM555238     1  0.0000      0.935 1.000 0.000
#> GSM555240     1  0.0000      0.935 1.000 0.000
#> GSM555242     1  0.0000      0.935 1.000 0.000
#> GSM555244     1  0.0000      0.935 1.000 0.000
#> GSM555246     1  0.0000      0.935 1.000 0.000
#> GSM555248     1  0.0000      0.935 1.000 0.000
#> GSM555250     1  0.0000      0.935 1.000 0.000
#> GSM555252     1  0.0000      0.935 1.000 0.000
#> GSM555254     1  0.0000      0.935 1.000 0.000
#> GSM555256     1  0.0000      0.935 1.000 0.000
#> GSM555258     1  0.9358      0.512 0.648 0.352
#> GSM555260     2  0.1843      0.957 0.028 0.972
#> GSM555262     2  0.0000      0.984 0.000 1.000
#> GSM555264     1  0.0000      0.935 1.000 0.000
#> GSM555266     2  0.0000      0.984 0.000 1.000
#> GSM555268     2  0.0000      0.984 0.000 1.000
#> GSM555270     2  0.0000      0.984 0.000 1.000
#> GSM555272     2  0.9608      0.314 0.384 0.616
#> GSM555274     2  0.0000      0.984 0.000 1.000
#> GSM555276     2  0.0000      0.984 0.000 1.000
#> GSM555277     2  0.0000      0.984 0.000 1.000
#> GSM555279     2  0.9393      0.388 0.356 0.644
#> GSM555281     2  0.0000      0.984 0.000 1.000
#> GSM555283     2  0.0000      0.984 0.000 1.000
#> GSM555285     2  0.5519      0.838 0.128 0.872
#> GSM555287     1  0.9552      0.466 0.624 0.376
#> GSM555289     2  0.0000      0.984 0.000 1.000
#> GSM555291     2  0.0000      0.984 0.000 1.000
#> GSM555293     2  0.0000      0.984 0.000 1.000
#> GSM555295     2  0.0000      0.984 0.000 1.000
#> GSM555297     1  0.9580      0.457 0.620 0.380
#> GSM555299     1  0.0000      0.935 1.000 0.000
#> GSM555301     1  0.0000      0.935 1.000 0.000
#> GSM555303     1  0.0000      0.935 1.000 0.000
#> GSM555305     1  0.0000      0.935 1.000 0.000
#> GSM555307     2  0.0000      0.984 0.000 1.000
#> GSM555309     1  0.0000      0.935 1.000 0.000
#> GSM555311     2  0.0000      0.984 0.000 1.000
#> GSM555313     2  0.0000      0.984 0.000 1.000
#> GSM555315     2  0.0000      0.984 0.000 1.000
#> GSM555278     2  0.0000      0.984 0.000 1.000
#> GSM555280     2  0.0000      0.984 0.000 1.000
#> GSM555282     2  0.0000      0.984 0.000 1.000
#> GSM555284     2  0.0000      0.984 0.000 1.000
#> GSM555286     2  0.0000      0.984 0.000 1.000
#> GSM555288     2  0.0000      0.984 0.000 1.000
#> GSM555290     2  0.0000      0.984 0.000 1.000
#> GSM555292     2  0.0000      0.984 0.000 1.000
#> GSM555294     2  0.0000      0.984 0.000 1.000
#> GSM555296     2  0.0000      0.984 0.000 1.000
#> GSM555298     1  0.0000      0.935 1.000 0.000
#> GSM555300     1  0.0000      0.935 1.000 0.000
#> GSM555302     1  0.0000      0.935 1.000 0.000
#> GSM555304     1  0.0000      0.935 1.000 0.000
#> GSM555306     1  0.0000      0.935 1.000 0.000
#> GSM555308     1  0.0000      0.935 1.000 0.000
#> GSM555310     1  0.0000      0.935 1.000 0.000
#> GSM555312     2  0.0000      0.984 0.000 1.000
#> GSM555314     2  0.0000      0.984 0.000 1.000
#> GSM555316     2  0.0000      0.984 0.000 1.000
#> GSM555317     2  0.0000      0.984 0.000 1.000
#> GSM555319     2  0.0000      0.984 0.000 1.000
#> GSM555321     2  0.0000      0.984 0.000 1.000
#> GSM555323     2  0.0000      0.984 0.000 1.000
#> GSM555325     2  0.0000      0.984 0.000 1.000
#> GSM555327     2  0.0000      0.984 0.000 1.000
#> GSM555329     2  0.0000      0.984 0.000 1.000
#> GSM555331     2  0.0000      0.984 0.000 1.000
#> GSM555333     2  0.0000      0.984 0.000 1.000
#> GSM555335     2  0.0000      0.984 0.000 1.000
#> GSM555337     2  0.0000      0.984 0.000 1.000
#> GSM555339     2  0.0000      0.984 0.000 1.000
#> GSM555341     2  0.0000      0.984 0.000 1.000
#> GSM555343     2  0.0000      0.984 0.000 1.000
#> GSM555345     2  0.0376      0.981 0.004 0.996
#> GSM555318     2  0.0000      0.984 0.000 1.000
#> GSM555320     2  0.0000      0.984 0.000 1.000
#> GSM555322     2  0.0000      0.984 0.000 1.000
#> GSM555324     1  0.0000      0.935 1.000 0.000
#> GSM555326     2  0.0000      0.984 0.000 1.000
#> GSM555328     2  0.0000      0.984 0.000 1.000
#> GSM555330     2  0.0000      0.984 0.000 1.000
#> GSM555332     2  0.0000      0.984 0.000 1.000
#> GSM555334     2  0.0000      0.984 0.000 1.000
#> GSM555336     2  0.0000      0.984 0.000 1.000
#> GSM555338     2  0.0000      0.984 0.000 1.000
#> GSM555340     2  0.0000      0.984 0.000 1.000
#> GSM555342     2  0.0000      0.984 0.000 1.000
#> GSM555344     2  0.0000      0.984 0.000 1.000
#> GSM555346     2  0.1184      0.969 0.016 0.984

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555239     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555241     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555243     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555245     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555247     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555249     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555251     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555253     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555255     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555257     3  0.7085      0.721 0.096 0.188 0.716
#> GSM555259     3  0.0237      0.911 0.000 0.004 0.996
#> GSM555261     3  0.1163      0.904 0.000 0.028 0.972
#> GSM555263     3  0.1031      0.906 0.000 0.024 0.976
#> GSM555265     3  0.0892      0.908 0.000 0.020 0.980
#> GSM555267     3  0.0892      0.908 0.000 0.020 0.980
#> GSM555269     3  0.0000      0.912 0.000 0.000 1.000
#> GSM555271     3  0.0000      0.912 0.000 0.000 1.000
#> GSM555273     3  0.4842      0.752 0.000 0.224 0.776
#> GSM555275     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555238     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555240     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555242     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555244     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555246     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555248     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555250     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555252     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555254     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555256     1  0.0000      1.000 1.000 0.000 0.000
#> GSM555258     3  0.4504      0.784 0.000 0.196 0.804
#> GSM555260     2  0.4399      0.752 0.000 0.812 0.188
#> GSM555262     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555264     3  0.4452      0.787 0.000 0.192 0.808
#> GSM555266     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555268     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555270     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555272     3  0.4504      0.784 0.000 0.196 0.804
#> GSM555274     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555276     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555277     2  0.0747      0.974 0.000 0.984 0.016
#> GSM555279     3  0.5859      0.539 0.000 0.344 0.656
#> GSM555281     2  0.0237      0.986 0.000 0.996 0.004
#> GSM555283     2  0.0237      0.986 0.000 0.996 0.004
#> GSM555285     3  0.4504      0.784 0.000 0.196 0.804
#> GSM555287     3  0.4418      0.825 0.020 0.132 0.848
#> GSM555289     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555291     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555293     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555295     2  0.1643      0.946 0.000 0.956 0.044
#> GSM555297     3  0.1163      0.904 0.000 0.028 0.972
#> GSM555299     3  0.0000      0.912 0.000 0.000 1.000
#> GSM555301     3  0.0000      0.912 0.000 0.000 1.000
#> GSM555303     3  0.0000      0.912 0.000 0.000 1.000
#> GSM555305     3  0.0000      0.912 0.000 0.000 1.000
#> GSM555307     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555309     3  0.0000      0.912 0.000 0.000 1.000
#> GSM555311     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555313     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555315     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555278     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555280     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555282     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555284     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555286     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555288     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555290     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555292     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555294     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555296     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555298     3  0.0000      0.912 0.000 0.000 1.000
#> GSM555300     3  0.0000      0.912 0.000 0.000 1.000
#> GSM555302     3  0.0000      0.912 0.000 0.000 1.000
#> GSM555304     3  0.0000      0.912 0.000 0.000 1.000
#> GSM555306     3  0.0000      0.912 0.000 0.000 1.000
#> GSM555308     3  0.0000      0.912 0.000 0.000 1.000
#> GSM555310     3  0.0000      0.912 0.000 0.000 1.000
#> GSM555312     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555314     2  0.1529      0.951 0.000 0.960 0.040
#> GSM555316     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555317     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555319     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555321     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555323     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555325     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555327     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555329     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555331     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555333     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555335     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555337     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555339     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555341     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555343     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555345     2  0.3752      0.821 0.000 0.856 0.144
#> GSM555318     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555320     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555322     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555324     3  0.0000      0.912 0.000 0.000 1.000
#> GSM555326     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555328     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555330     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555332     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555334     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555336     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555338     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555340     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555342     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555344     2  0.0000      0.989 0.000 1.000 0.000
#> GSM555346     2  0.3941      0.803 0.000 0.844 0.156

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.4103     0.6473 0.744 0.000 0.000 0.256
#> GSM555239     1  0.0000     0.9855 1.000 0.000 0.000 0.000
#> GSM555241     1  0.0000     0.9855 1.000 0.000 0.000 0.000
#> GSM555243     1  0.0000     0.9855 1.000 0.000 0.000 0.000
#> GSM555245     1  0.0000     0.9855 1.000 0.000 0.000 0.000
#> GSM555247     1  0.0000     0.9855 1.000 0.000 0.000 0.000
#> GSM555249     1  0.0000     0.9855 1.000 0.000 0.000 0.000
#> GSM555251     1  0.0000     0.9855 1.000 0.000 0.000 0.000
#> GSM555253     1  0.0000     0.9855 1.000 0.000 0.000 0.000
#> GSM555255     1  0.0000     0.9855 1.000 0.000 0.000 0.000
#> GSM555257     4  0.7357     0.6141 0.096 0.228 0.056 0.620
#> GSM555259     4  0.3312     0.7588 0.000 0.052 0.072 0.876
#> GSM555261     4  0.3312     0.7588 0.000 0.052 0.072 0.876
#> GSM555263     4  0.3312     0.7588 0.000 0.052 0.072 0.876
#> GSM555265     4  0.3312     0.7588 0.000 0.052 0.072 0.876
#> GSM555267     4  0.3312     0.7588 0.000 0.052 0.072 0.876
#> GSM555269     4  0.3312     0.7588 0.000 0.052 0.072 0.876
#> GSM555271     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555273     4  0.5372     0.0210 0.000 0.444 0.012 0.544
#> GSM555275     2  0.3356     0.8331 0.000 0.824 0.000 0.176
#> GSM555238     1  0.0000     0.9855 1.000 0.000 0.000 0.000
#> GSM555240     1  0.0188     0.9818 0.996 0.000 0.000 0.004
#> GSM555242     1  0.0000     0.9855 1.000 0.000 0.000 0.000
#> GSM555244     1  0.0000     0.9855 1.000 0.000 0.000 0.000
#> GSM555246     1  0.0000     0.9855 1.000 0.000 0.000 0.000
#> GSM555248     1  0.0000     0.9855 1.000 0.000 0.000 0.000
#> GSM555250     1  0.0000     0.9855 1.000 0.000 0.000 0.000
#> GSM555252     1  0.0000     0.9855 1.000 0.000 0.000 0.000
#> GSM555254     1  0.0000     0.9855 1.000 0.000 0.000 0.000
#> GSM555256     1  0.0000     0.9855 1.000 0.000 0.000 0.000
#> GSM555258     4  0.5143     0.6013 0.000 0.360 0.012 0.628
#> GSM555260     2  0.4284     0.5505 0.000 0.764 0.012 0.224
#> GSM555262     2  0.0921     0.8340 0.000 0.972 0.000 0.028
#> GSM555264     2  0.5691    -0.1223 0.000 0.564 0.028 0.408
#> GSM555266     2  0.1118     0.8292 0.000 0.964 0.000 0.036
#> GSM555268     2  0.1118     0.8302 0.000 0.964 0.000 0.036
#> GSM555270     2  0.0707     0.8439 0.000 0.980 0.000 0.020
#> GSM555272     4  0.5217     0.5739 0.000 0.380 0.012 0.608
#> GSM555274     2  0.1211     0.8281 0.000 0.960 0.000 0.040
#> GSM555276     2  0.0336     0.8440 0.000 0.992 0.000 0.008
#> GSM555277     2  0.4011     0.8134 0.000 0.784 0.008 0.208
#> GSM555279     4  0.3071     0.7560 0.000 0.068 0.044 0.888
#> GSM555281     2  0.3649     0.8199 0.000 0.796 0.000 0.204
#> GSM555283     2  0.3486     0.8269 0.000 0.812 0.000 0.188
#> GSM555285     4  0.5392     0.0154 0.000 0.460 0.012 0.528
#> GSM555287     4  0.6071     0.6820 0.008 0.268 0.064 0.660
#> GSM555289     2  0.3764     0.8222 0.000 0.784 0.000 0.216
#> GSM555291     2  0.3400     0.8290 0.000 0.820 0.000 0.180
#> GSM555293     2  0.3764     0.8212 0.000 0.784 0.000 0.216
#> GSM555295     2  0.5055     0.5456 0.000 0.624 0.008 0.368
#> GSM555297     4  0.3312     0.7588 0.000 0.052 0.072 0.876
#> GSM555299     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555301     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555303     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555305     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555307     2  0.3610     0.8261 0.000 0.800 0.000 0.200
#> GSM555309     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555311     2  0.3486     0.8266 0.000 0.812 0.000 0.188
#> GSM555313     2  0.0817     0.8424 0.000 0.976 0.000 0.024
#> GSM555315     2  0.3486     0.8273 0.000 0.812 0.000 0.188
#> GSM555278     2  0.1211     0.8307 0.000 0.960 0.000 0.040
#> GSM555280     2  0.0921     0.8422 0.000 0.972 0.000 0.028
#> GSM555282     2  0.0707     0.8433 0.000 0.980 0.000 0.020
#> GSM555284     2  0.1118     0.8292 0.000 0.964 0.000 0.036
#> GSM555286     2  0.1022     0.8423 0.000 0.968 0.000 0.032
#> GSM555288     2  0.0817     0.8424 0.000 0.976 0.000 0.024
#> GSM555290     2  0.0336     0.8440 0.000 0.992 0.000 0.008
#> GSM555292     2  0.0469     0.8441 0.000 0.988 0.000 0.012
#> GSM555294     2  0.1302     0.8303 0.000 0.956 0.000 0.044
#> GSM555296     2  0.1635     0.8458 0.000 0.948 0.008 0.044
#> GSM555298     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555300     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555302     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555304     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555306     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555308     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555310     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555312     2  0.0921     0.8437 0.000 0.972 0.000 0.028
#> GSM555314     4  0.2859     0.7372 0.000 0.112 0.008 0.880
#> GSM555316     2  0.0469     0.8438 0.000 0.988 0.000 0.012
#> GSM555317     2  0.3649     0.8220 0.000 0.796 0.000 0.204
#> GSM555319     2  0.3688     0.8260 0.000 0.792 0.000 0.208
#> GSM555321     2  0.3610     0.8288 0.000 0.800 0.000 0.200
#> GSM555323     2  0.3444     0.8281 0.000 0.816 0.000 0.184
#> GSM555325     2  0.3764     0.8212 0.000 0.784 0.000 0.216
#> GSM555327     2  0.3569     0.8279 0.000 0.804 0.000 0.196
#> GSM555329     2  0.3688     0.8260 0.000 0.792 0.000 0.208
#> GSM555331     2  0.3528     0.8254 0.000 0.808 0.000 0.192
#> GSM555333     2  0.3486     0.8286 0.000 0.812 0.000 0.188
#> GSM555335     2  0.3528     0.8254 0.000 0.808 0.000 0.192
#> GSM555337     2  0.3569     0.8270 0.000 0.804 0.000 0.196
#> GSM555339     2  0.3569     0.8239 0.000 0.804 0.000 0.196
#> GSM555341     2  0.3528     0.8319 0.000 0.808 0.000 0.192
#> GSM555343     2  0.3486     0.8293 0.000 0.812 0.000 0.188
#> GSM555345     2  0.4335     0.8091 0.000 0.796 0.036 0.168
#> GSM555318     2  0.2760     0.8411 0.000 0.872 0.000 0.128
#> GSM555320     2  0.1211     0.8279 0.000 0.960 0.000 0.040
#> GSM555322     2  0.0817     0.8439 0.000 0.976 0.000 0.024
#> GSM555324     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555326     2  0.0336     0.8439 0.000 0.992 0.000 0.008
#> GSM555328     2  0.0921     0.8422 0.000 0.972 0.000 0.028
#> GSM555330     2  0.0707     0.8437 0.000 0.980 0.000 0.020
#> GSM555332     2  0.0707     0.8437 0.000 0.980 0.000 0.020
#> GSM555334     2  0.1211     0.8353 0.000 0.960 0.000 0.040
#> GSM555336     2  0.0707     0.8385 0.000 0.980 0.000 0.020
#> GSM555338     2  0.3486     0.8283 0.000 0.812 0.000 0.188
#> GSM555340     2  0.3486     0.8285 0.000 0.812 0.000 0.188
#> GSM555342     2  0.1211     0.8279 0.000 0.960 0.000 0.040
#> GSM555344     2  0.0707     0.8456 0.000 0.980 0.000 0.020
#> GSM555346     2  0.4697     0.3517 0.000 0.696 0.008 0.296

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM555237     1  0.2379      0.901 0.912 0.000 0.028 0.048 0.012
#> GSM555239     1  0.0000      0.970 1.000 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0000      0.970 1.000 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000      0.970 1.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000      0.970 1.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000      0.970 1.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000      0.970 1.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000      0.970 1.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000      0.970 1.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0000      0.970 1.000 0.000 0.000 0.000 0.000
#> GSM555257     5  0.4397      0.268 0.000 0.000 0.028 0.276 0.696
#> GSM555259     4  0.1668      0.818 0.000 0.032 0.028 0.940 0.000
#> GSM555261     4  0.1750      0.822 0.000 0.036 0.028 0.936 0.000
#> GSM555263     4  0.1750      0.822 0.000 0.036 0.028 0.936 0.000
#> GSM555265     4  0.1750      0.822 0.000 0.036 0.028 0.936 0.000
#> GSM555267     4  0.1750      0.822 0.000 0.036 0.028 0.936 0.000
#> GSM555269     4  0.1668      0.818 0.000 0.032 0.028 0.940 0.000
#> GSM555271     3  0.0510      0.987 0.000 0.000 0.984 0.016 0.000
#> GSM555273     5  0.5337      0.483 0.000 0.440 0.000 0.052 0.508
#> GSM555275     2  0.0000      0.832 0.000 1.000 0.000 0.000 0.000
#> GSM555238     1  0.1341      0.972 0.944 0.000 0.000 0.056 0.000
#> GSM555240     1  0.1628      0.968 0.936 0.000 0.000 0.056 0.008
#> GSM555242     1  0.1341      0.972 0.944 0.000 0.000 0.056 0.000
#> GSM555244     1  0.1341      0.972 0.944 0.000 0.000 0.056 0.000
#> GSM555246     1  0.1341      0.972 0.944 0.000 0.000 0.056 0.000
#> GSM555248     1  0.1341      0.972 0.944 0.000 0.000 0.056 0.000
#> GSM555250     1  0.1341      0.972 0.944 0.000 0.000 0.056 0.000
#> GSM555252     1  0.1341      0.972 0.944 0.000 0.000 0.056 0.000
#> GSM555254     1  0.1341      0.972 0.944 0.000 0.000 0.056 0.000
#> GSM555256     1  0.1341      0.972 0.944 0.000 0.000 0.056 0.000
#> GSM555258     5  0.4376      0.589 0.000 0.144 0.000 0.092 0.764
#> GSM555260     2  0.4736      0.504 0.000 0.576 0.000 0.020 0.404
#> GSM555262     2  0.3074      0.840 0.000 0.804 0.000 0.000 0.196
#> GSM555264     5  0.3160      0.403 0.000 0.004 0.000 0.188 0.808
#> GSM555266     2  0.3074      0.840 0.000 0.804 0.000 0.000 0.196
#> GSM555268     2  0.3074      0.840 0.000 0.804 0.000 0.000 0.196
#> GSM555270     2  0.3210      0.839 0.000 0.788 0.000 0.000 0.212
#> GSM555272     5  0.4796      0.599 0.000 0.152 0.000 0.120 0.728
#> GSM555274     2  0.3074      0.840 0.000 0.804 0.000 0.000 0.196
#> GSM555276     2  0.3395      0.833 0.000 0.764 0.000 0.000 0.236
#> GSM555277     2  0.1444      0.825 0.000 0.948 0.000 0.012 0.040
#> GSM555279     4  0.5050     -0.124 0.000 0.476 0.024 0.496 0.004
#> GSM555281     2  0.1792      0.811 0.000 0.916 0.000 0.084 0.000
#> GSM555283     2  0.0290      0.832 0.000 0.992 0.000 0.000 0.008
#> GSM555285     5  0.5142      0.539 0.000 0.348 0.000 0.052 0.600
#> GSM555287     4  0.5809      0.476 0.000 0.092 0.032 0.660 0.216
#> GSM555289     2  0.1197      0.821 0.000 0.952 0.000 0.000 0.048
#> GSM555291     2  0.0000      0.832 0.000 1.000 0.000 0.000 0.000
#> GSM555293     2  0.0000      0.832 0.000 1.000 0.000 0.000 0.000
#> GSM555295     2  0.2930      0.721 0.000 0.832 0.004 0.164 0.000
#> GSM555297     4  0.1750      0.822 0.000 0.036 0.028 0.936 0.000
#> GSM555299     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000
#> GSM555301     3  0.0290      0.994 0.000 0.000 0.992 0.008 0.000
#> GSM555303     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000
#> GSM555305     3  0.0162      0.997 0.000 0.000 0.996 0.004 0.000
#> GSM555307     2  0.0609      0.829 0.000 0.980 0.000 0.000 0.020
#> GSM555309     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000
#> GSM555311     2  0.0000      0.832 0.000 1.000 0.000 0.000 0.000
#> GSM555313     2  0.3074      0.840 0.000 0.804 0.000 0.000 0.196
#> GSM555315     2  0.0000      0.832 0.000 1.000 0.000 0.000 0.000
#> GSM555278     2  0.3074      0.840 0.000 0.804 0.000 0.000 0.196
#> GSM555280     2  0.3366      0.834 0.000 0.768 0.000 0.000 0.232
#> GSM555282     2  0.3074      0.840 0.000 0.804 0.000 0.000 0.196
#> GSM555284     2  0.3074      0.840 0.000 0.804 0.000 0.000 0.196
#> GSM555286     2  0.3366      0.834 0.000 0.768 0.000 0.000 0.232
#> GSM555288     2  0.3196      0.840 0.000 0.804 0.000 0.004 0.192
#> GSM555290     2  0.3424      0.830 0.000 0.760 0.000 0.000 0.240
#> GSM555292     2  0.3395      0.832 0.000 0.764 0.000 0.000 0.236
#> GSM555294     2  0.3039      0.841 0.000 0.808 0.000 0.000 0.192
#> GSM555296     2  0.3006      0.846 0.000 0.836 0.004 0.004 0.156
#> GSM555298     3  0.0162      0.997 0.000 0.000 0.996 0.004 0.000
#> GSM555300     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000
#> GSM555302     3  0.0162      0.997 0.000 0.000 0.996 0.004 0.000
#> GSM555304     3  0.0162      0.997 0.000 0.000 0.996 0.004 0.000
#> GSM555306     3  0.0162      0.997 0.000 0.000 0.996 0.004 0.000
#> GSM555308     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000
#> GSM555310     3  0.0162      0.997 0.000 0.000 0.996 0.004 0.000
#> GSM555312     2  0.3039      0.841 0.000 0.808 0.000 0.000 0.192
#> GSM555314     2  0.4264      0.250 0.000 0.620 0.004 0.376 0.000
#> GSM555316     2  0.3424      0.830 0.000 0.760 0.000 0.000 0.240
#> GSM555317     2  0.0609      0.831 0.000 0.980 0.000 0.000 0.020
#> GSM555319     2  0.0510      0.832 0.000 0.984 0.000 0.000 0.016
#> GSM555321     2  0.0510      0.832 0.000 0.984 0.000 0.000 0.016
#> GSM555323     2  0.0000      0.832 0.000 1.000 0.000 0.000 0.000
#> GSM555325     2  0.0000      0.832 0.000 1.000 0.000 0.000 0.000
#> GSM555327     2  0.1197      0.821 0.000 0.952 0.000 0.000 0.048
#> GSM555329     2  0.0510      0.832 0.000 0.984 0.000 0.000 0.016
#> GSM555331     2  0.0000      0.832 0.000 1.000 0.000 0.000 0.000
#> GSM555333     2  0.0000      0.832 0.000 1.000 0.000 0.000 0.000
#> GSM555335     2  0.0000      0.832 0.000 1.000 0.000 0.000 0.000
#> GSM555337     2  0.0771      0.834 0.000 0.976 0.004 0.000 0.020
#> GSM555339     2  0.0000      0.832 0.000 1.000 0.000 0.000 0.000
#> GSM555341     2  0.0162      0.834 0.000 0.996 0.000 0.000 0.004
#> GSM555343     2  0.0510      0.832 0.000 0.984 0.000 0.000 0.016
#> GSM555345     2  0.3077      0.779 0.000 0.872 0.024 0.020 0.084
#> GSM555318     2  0.1851      0.839 0.000 0.912 0.000 0.000 0.088
#> GSM555320     2  0.3074      0.840 0.000 0.804 0.000 0.000 0.196
#> GSM555322     2  0.3366      0.834 0.000 0.768 0.000 0.000 0.232
#> GSM555324     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000
#> GSM555326     2  0.3210      0.839 0.000 0.788 0.000 0.000 0.212
#> GSM555328     2  0.3305      0.837 0.000 0.776 0.000 0.000 0.224
#> GSM555330     2  0.3305      0.837 0.000 0.776 0.000 0.000 0.224
#> GSM555332     2  0.3366      0.834 0.000 0.768 0.000 0.000 0.232
#> GSM555334     2  0.3424      0.831 0.000 0.760 0.000 0.000 0.240
#> GSM555336     2  0.3210      0.839 0.000 0.788 0.000 0.000 0.212
#> GSM555338     2  0.1121      0.823 0.000 0.956 0.000 0.000 0.044
#> GSM555340     2  0.0510      0.832 0.000 0.984 0.000 0.000 0.016
#> GSM555342     2  0.3074      0.840 0.000 0.804 0.000 0.000 0.196
#> GSM555344     2  0.3274      0.837 0.000 0.780 0.000 0.000 0.220
#> GSM555346     2  0.5341      0.272 0.000 0.504 0.000 0.052 0.444

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM555237     1  0.3005   7.95e-01 0.856 0.000 0.000 0.036 0.016 0.092
#> GSM555239     1  0.0000   9.01e-01 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0000   9.01e-01 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000   9.01e-01 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000   9.01e-01 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000   9.01e-01 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000   9.01e-01 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000   9.01e-01 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000   9.01e-01 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0000   9.01e-01 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555257     6  0.3656   7.65e-03 0.000 0.004 0.000 0.256 0.012 0.728
#> GSM555259     4  0.0000   9.21e-01 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555261     4  0.0405   9.25e-01 0.000 0.008 0.000 0.988 0.000 0.004
#> GSM555263     4  0.0260   9.26e-01 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM555265     4  0.0520   9.24e-01 0.000 0.008 0.000 0.984 0.008 0.000
#> GSM555267     4  0.0405   9.25e-01 0.000 0.008 0.000 0.988 0.004 0.000
#> GSM555269     4  0.0146   9.20e-01 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM555271     3  0.1003   9.60e-01 0.000 0.000 0.964 0.028 0.004 0.004
#> GSM555273     6  0.5724  -6.55e-01 0.000 0.368 0.000 0.020 0.104 0.508
#> GSM555275     2  0.0820   7.84e-01 0.000 0.972 0.000 0.000 0.012 0.016
#> GSM555238     1  0.2664   9.05e-01 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM555240     1  0.3198   8.95e-01 0.796 0.000 0.000 0.008 0.188 0.008
#> GSM555242     1  0.2664   9.05e-01 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM555244     1  0.2664   9.05e-01 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM555246     1  0.2664   9.05e-01 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM555248     1  0.2664   9.05e-01 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM555250     1  0.2664   9.05e-01 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM555252     1  0.2664   9.05e-01 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM555254     1  0.2664   9.05e-01 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM555256     1  0.2664   9.05e-01 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM555258     6  0.2221   1.57e-01 0.000 0.072 0.000 0.032 0.000 0.896
#> GSM555260     2  0.4937   2.11e-01 0.000 0.492 0.000 0.020 0.028 0.460
#> GSM555262     2  0.2980   7.93e-01 0.000 0.800 0.000 0.000 0.008 0.192
#> GSM555264     6  0.4957  -2.95e-05 0.000 0.008 0.000 0.076 0.292 0.624
#> GSM555266     2  0.3630   7.73e-01 0.000 0.756 0.000 0.000 0.032 0.212
#> GSM555268     2  0.3333   7.84e-01 0.000 0.784 0.000 0.000 0.024 0.192
#> GSM555270     2  0.3168   7.92e-01 0.000 0.792 0.000 0.000 0.016 0.192
#> GSM555272     6  0.2633   1.07e-01 0.000 0.104 0.000 0.032 0.000 0.864
#> GSM555274     2  0.3409   7.88e-01 0.000 0.780 0.000 0.000 0.028 0.192
#> GSM555276     2  0.3954   7.77e-01 0.000 0.740 0.000 0.000 0.056 0.204
#> GSM555277     2  0.2639   7.42e-01 0.000 0.876 0.000 0.008 0.084 0.032
#> GSM555279     2  0.4561  -2.28e-01 0.000 0.544 0.000 0.424 0.004 0.028
#> GSM555281     2  0.0881   7.85e-01 0.000 0.972 0.000 0.008 0.008 0.012
#> GSM555283     2  0.1605   7.78e-01 0.000 0.936 0.000 0.004 0.044 0.016
#> GSM555285     5  0.6516   0.00e+00 0.000 0.316 0.000 0.020 0.380 0.284
#> GSM555287     4  0.6585   2.52e-01 0.004 0.144 0.000 0.504 0.284 0.064
#> GSM555289     2  0.1765   7.71e-01 0.000 0.924 0.000 0.000 0.052 0.024
#> GSM555291     2  0.0717   7.87e-01 0.000 0.976 0.000 0.000 0.016 0.008
#> GSM555293     2  0.1003   7.80e-01 0.000 0.964 0.000 0.000 0.020 0.016
#> GSM555295     2  0.1755   7.66e-01 0.000 0.932 0.000 0.028 0.008 0.032
#> GSM555297     4  0.0260   9.26e-01 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM555299     3  0.1007   9.73e-01 0.000 0.000 0.956 0.000 0.044 0.000
#> GSM555301     3  0.0405   9.75e-01 0.000 0.000 0.988 0.008 0.004 0.000
#> GSM555303     3  0.0790   9.75e-01 0.000 0.000 0.968 0.000 0.032 0.000
#> GSM555305     3  0.0000   9.78e-01 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555307     2  0.1930   7.71e-01 0.000 0.916 0.000 0.000 0.048 0.036
#> GSM555309     3  0.1204   9.68e-01 0.000 0.000 0.944 0.000 0.056 0.000
#> GSM555311     2  0.1492   7.70e-01 0.000 0.940 0.000 0.000 0.024 0.036
#> GSM555313     2  0.3012   7.94e-01 0.000 0.796 0.000 0.000 0.008 0.196
#> GSM555315     2  0.1391   7.72e-01 0.000 0.944 0.000 0.000 0.016 0.040
#> GSM555278     2  0.3558   7.75e-01 0.000 0.760 0.000 0.000 0.028 0.212
#> GSM555280     2  0.3954   7.77e-01 0.000 0.740 0.000 0.000 0.056 0.204
#> GSM555282     2  0.3954   7.81e-01 0.000 0.740 0.000 0.000 0.056 0.204
#> GSM555284     2  0.3614   7.72e-01 0.000 0.752 0.000 0.000 0.028 0.220
#> GSM555286     2  0.3837   7.85e-01 0.000 0.752 0.000 0.000 0.052 0.196
#> GSM555288     2  0.3133   7.86e-01 0.000 0.780 0.000 0.000 0.008 0.212
#> GSM555290     2  0.3835   7.80e-01 0.000 0.748 0.000 0.000 0.048 0.204
#> GSM555292     2  0.3776   7.84e-01 0.000 0.756 0.000 0.000 0.048 0.196
#> GSM555294     2  0.3333   7.85e-01 0.000 0.784 0.000 0.000 0.024 0.192
#> GSM555296     2  0.3750   7.91e-01 0.000 0.764 0.000 0.016 0.020 0.200
#> GSM555298     3  0.0291   9.77e-01 0.000 0.000 0.992 0.004 0.004 0.000
#> GSM555300     3  0.1007   9.73e-01 0.000 0.000 0.956 0.000 0.044 0.000
#> GSM555302     3  0.0146   9.78e-01 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM555304     3  0.0000   9.78e-01 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555306     3  0.0000   9.78e-01 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555308     3  0.1007   9.73e-01 0.000 0.000 0.956 0.000 0.044 0.000
#> GSM555310     3  0.0146   9.78e-01 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM555312     2  0.3110   7.93e-01 0.000 0.792 0.000 0.000 0.012 0.196
#> GSM555314     2  0.4662  -9.81e-03 0.000 0.604 0.000 0.352 0.012 0.032
#> GSM555316     2  0.3954   7.77e-01 0.000 0.740 0.000 0.000 0.056 0.204
#> GSM555317     2  0.2177   7.67e-01 0.000 0.908 0.000 0.008 0.052 0.032
#> GSM555319     2  0.0547   7.88e-01 0.000 0.980 0.000 0.000 0.000 0.020
#> GSM555321     2  0.0363   7.87e-01 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM555323     2  0.0291   7.87e-01 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM555325     2  0.1642   7.67e-01 0.000 0.936 0.000 0.004 0.028 0.032
#> GSM555327     2  0.1908   7.67e-01 0.000 0.916 0.000 0.000 0.056 0.028
#> GSM555329     2  0.0909   7.88e-01 0.000 0.968 0.000 0.000 0.012 0.020
#> GSM555331     2  0.0291   7.88e-01 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM555333     2  0.1049   7.78e-01 0.000 0.960 0.000 0.000 0.008 0.032
#> GSM555335     2  0.0405   7.86e-01 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM555337     2  0.1003   7.80e-01 0.000 0.964 0.000 0.000 0.020 0.016
#> GSM555339     2  0.0508   7.86e-01 0.000 0.984 0.000 0.000 0.012 0.004
#> GSM555341     2  0.0909   7.87e-01 0.000 0.968 0.000 0.000 0.012 0.020
#> GSM555343     2  0.0993   7.80e-01 0.000 0.964 0.000 0.000 0.024 0.012
#> GSM555345     2  0.2579   7.57e-01 0.000 0.884 0.000 0.008 0.060 0.048
#> GSM555318     2  0.3350   6.89e-01 0.000 0.824 0.000 0.012 0.124 0.040
#> GSM555320     2  0.3483   7.75e-01 0.000 0.764 0.000 0.000 0.024 0.212
#> GSM555322     2  0.3954   7.77e-01 0.000 0.740 0.000 0.000 0.056 0.204
#> GSM555324     3  0.1411   9.64e-01 0.000 0.000 0.936 0.004 0.060 0.000
#> GSM555326     2  0.3168   7.92e-01 0.000 0.792 0.000 0.000 0.016 0.192
#> GSM555328     2  0.3835   7.80e-01 0.000 0.748 0.000 0.000 0.048 0.204
#> GSM555330     2  0.3954   7.77e-01 0.000 0.740 0.000 0.000 0.056 0.204
#> GSM555332     2  0.3954   7.77e-01 0.000 0.740 0.000 0.000 0.056 0.204
#> GSM555334     2  0.3896   7.79e-01 0.000 0.744 0.000 0.000 0.052 0.204
#> GSM555336     2  0.3333   7.84e-01 0.000 0.784 0.000 0.000 0.024 0.192
#> GSM555338     2  0.1845   7.71e-01 0.000 0.920 0.000 0.000 0.052 0.028
#> GSM555340     2  0.0891   7.82e-01 0.000 0.968 0.000 0.000 0.024 0.008
#> GSM555342     2  0.3364   7.85e-01 0.000 0.780 0.000 0.000 0.024 0.196
#> GSM555344     2  0.3588   7.92e-01 0.000 0.776 0.000 0.000 0.044 0.180
#> GSM555346     6  0.4805  -2.69e-01 0.000 0.472 0.000 0.020 0.020 0.488

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) agent(p) k
#> CV:mclust 102         2.20e-08   0.9521 2
#> CV:mclust 110         8.81e-13   0.2875 3
#> CV:mclust 106         4.03e-14   0.2142 4
#> CV:mclust 103         2.72e-13   0.0903 5
#> CV:mclust  99         1.47e-14   0.0562 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.944           0.939       0.976         0.4603 0.533   0.533
#> 3 3 0.985           0.946       0.981         0.1333 0.919   0.852
#> 4 4 0.756           0.847       0.918         0.1601 0.958   0.913
#> 5 5 0.686           0.827       0.882         0.1189 0.884   0.744
#> 6 6 0.661           0.638       0.809         0.0924 0.888   0.693

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1  0.0000     0.9506 1.000 0.000
#> GSM555239     1  0.0000     0.9506 1.000 0.000
#> GSM555241     1  0.0000     0.9506 1.000 0.000
#> GSM555243     1  0.0000     0.9506 1.000 0.000
#> GSM555245     1  0.0000     0.9506 1.000 0.000
#> GSM555247     1  0.0000     0.9506 1.000 0.000
#> GSM555249     1  0.0000     0.9506 1.000 0.000
#> GSM555251     1  0.0000     0.9506 1.000 0.000
#> GSM555253     1  0.0000     0.9506 1.000 0.000
#> GSM555255     1  0.0000     0.9506 1.000 0.000
#> GSM555257     1  0.7219     0.7517 0.800 0.200
#> GSM555259     1  0.6531     0.7912 0.832 0.168
#> GSM555261     1  1.0000     0.0606 0.500 0.500
#> GSM555263     2  0.0000     0.9884 0.000 1.000
#> GSM555265     1  0.9661     0.3982 0.608 0.392
#> GSM555267     2  0.7056     0.7420 0.192 0.808
#> GSM555269     1  0.7219     0.7517 0.800 0.200
#> GSM555271     1  0.0000     0.9506 1.000 0.000
#> GSM555273     2  0.0000     0.9884 0.000 1.000
#> GSM555275     2  0.0000     0.9884 0.000 1.000
#> GSM555238     1  0.0000     0.9506 1.000 0.000
#> GSM555240     1  0.0376     0.9480 0.996 0.004
#> GSM555242     1  0.0000     0.9506 1.000 0.000
#> GSM555244     1  0.0000     0.9506 1.000 0.000
#> GSM555246     1  0.0000     0.9506 1.000 0.000
#> GSM555248     1  0.0000     0.9506 1.000 0.000
#> GSM555250     1  0.0000     0.9506 1.000 0.000
#> GSM555252     1  0.0000     0.9506 1.000 0.000
#> GSM555254     1  0.0000     0.9506 1.000 0.000
#> GSM555256     1  0.0000     0.9506 1.000 0.000
#> GSM555258     2  0.0000     0.9884 0.000 1.000
#> GSM555260     2  0.0000     0.9884 0.000 1.000
#> GSM555262     2  0.0000     0.9884 0.000 1.000
#> GSM555264     1  0.9710     0.3780 0.600 0.400
#> GSM555266     2  0.0000     0.9884 0.000 1.000
#> GSM555268     2  0.0000     0.9884 0.000 1.000
#> GSM555270     2  0.0000     0.9884 0.000 1.000
#> GSM555272     2  0.0000     0.9884 0.000 1.000
#> GSM555274     2  0.0000     0.9884 0.000 1.000
#> GSM555276     2  0.0000     0.9884 0.000 1.000
#> GSM555277     2  0.0000     0.9884 0.000 1.000
#> GSM555279     2  0.0000     0.9884 0.000 1.000
#> GSM555281     2  0.0000     0.9884 0.000 1.000
#> GSM555283     2  0.0000     0.9884 0.000 1.000
#> GSM555285     2  0.0000     0.9884 0.000 1.000
#> GSM555287     2  0.9977     0.0146 0.472 0.528
#> GSM555289     2  0.0000     0.9884 0.000 1.000
#> GSM555291     2  0.0000     0.9884 0.000 1.000
#> GSM555293     2  0.0000     0.9884 0.000 1.000
#> GSM555295     2  0.0000     0.9884 0.000 1.000
#> GSM555297     2  0.4161     0.8950 0.084 0.916
#> GSM555299     1  0.0000     0.9506 1.000 0.000
#> GSM555301     1  0.0376     0.9480 0.996 0.004
#> GSM555303     1  0.0000     0.9506 1.000 0.000
#> GSM555305     1  0.0000     0.9506 1.000 0.000
#> GSM555307     2  0.0000     0.9884 0.000 1.000
#> GSM555309     1  0.0000     0.9506 1.000 0.000
#> GSM555311     2  0.0000     0.9884 0.000 1.000
#> GSM555313     2  0.0000     0.9884 0.000 1.000
#> GSM555315     2  0.0000     0.9884 0.000 1.000
#> GSM555278     2  0.0000     0.9884 0.000 1.000
#> GSM555280     2  0.0000     0.9884 0.000 1.000
#> GSM555282     2  0.0000     0.9884 0.000 1.000
#> GSM555284     2  0.0000     0.9884 0.000 1.000
#> GSM555286     2  0.0000     0.9884 0.000 1.000
#> GSM555288     2  0.0000     0.9884 0.000 1.000
#> GSM555290     2  0.0000     0.9884 0.000 1.000
#> GSM555292     2  0.0000     0.9884 0.000 1.000
#> GSM555294     2  0.0000     0.9884 0.000 1.000
#> GSM555296     2  0.0000     0.9884 0.000 1.000
#> GSM555298     1  0.0376     0.9480 0.996 0.004
#> GSM555300     1  0.0000     0.9506 1.000 0.000
#> GSM555302     1  0.0000     0.9506 1.000 0.000
#> GSM555304     1  0.0000     0.9506 1.000 0.000
#> GSM555306     1  0.0000     0.9506 1.000 0.000
#> GSM555308     1  0.0000     0.9506 1.000 0.000
#> GSM555310     1  0.0000     0.9506 1.000 0.000
#> GSM555312     2  0.0000     0.9884 0.000 1.000
#> GSM555314     2  0.0000     0.9884 0.000 1.000
#> GSM555316     2  0.0000     0.9884 0.000 1.000
#> GSM555317     2  0.0000     0.9884 0.000 1.000
#> GSM555319     2  0.0000     0.9884 0.000 1.000
#> GSM555321     2  0.0000     0.9884 0.000 1.000
#> GSM555323     2  0.0000     0.9884 0.000 1.000
#> GSM555325     2  0.0000     0.9884 0.000 1.000
#> GSM555327     2  0.0000     0.9884 0.000 1.000
#> GSM555329     2  0.0000     0.9884 0.000 1.000
#> GSM555331     2  0.0000     0.9884 0.000 1.000
#> GSM555333     2  0.0000     0.9884 0.000 1.000
#> GSM555335     2  0.0000     0.9884 0.000 1.000
#> GSM555337     2  0.0000     0.9884 0.000 1.000
#> GSM555339     2  0.0000     0.9884 0.000 1.000
#> GSM555341     2  0.0000     0.9884 0.000 1.000
#> GSM555343     2  0.0000     0.9884 0.000 1.000
#> GSM555345     2  0.0000     0.9884 0.000 1.000
#> GSM555318     2  0.0000     0.9884 0.000 1.000
#> GSM555320     2  0.0000     0.9884 0.000 1.000
#> GSM555322     2  0.0000     0.9884 0.000 1.000
#> GSM555324     1  0.0000     0.9506 1.000 0.000
#> GSM555326     2  0.0000     0.9884 0.000 1.000
#> GSM555328     2  0.0000     0.9884 0.000 1.000
#> GSM555330     2  0.0000     0.9884 0.000 1.000
#> GSM555332     2  0.0000     0.9884 0.000 1.000
#> GSM555334     2  0.0000     0.9884 0.000 1.000
#> GSM555336     2  0.0000     0.9884 0.000 1.000
#> GSM555338     2  0.0000     0.9884 0.000 1.000
#> GSM555340     2  0.0000     0.9884 0.000 1.000
#> GSM555342     2  0.0000     0.9884 0.000 1.000
#> GSM555344     2  0.0000     0.9884 0.000 1.000
#> GSM555346     2  0.0000     0.9884 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.0000      0.940 1.000 0.000 0.000
#> GSM555239     1  0.0424      0.935 0.992 0.000 0.008
#> GSM555241     1  0.0237      0.937 0.996 0.000 0.004
#> GSM555243     1  0.0000      0.940 1.000 0.000 0.000
#> GSM555245     1  0.0000      0.940 1.000 0.000 0.000
#> GSM555247     1  0.0424      0.935 0.992 0.000 0.008
#> GSM555249     1  0.0000      0.940 1.000 0.000 0.000
#> GSM555251     1  0.0000      0.940 1.000 0.000 0.000
#> GSM555253     1  0.0892      0.925 0.980 0.000 0.020
#> GSM555255     1  0.0000      0.940 1.000 0.000 0.000
#> GSM555257     1  0.7353      0.332 0.568 0.396 0.036
#> GSM555259     3  0.0000      0.960 0.000 0.000 1.000
#> GSM555261     2  0.3267      0.866 0.000 0.884 0.116
#> GSM555263     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555265     3  0.6140      0.291 0.000 0.404 0.596
#> GSM555267     2  0.4062      0.802 0.000 0.836 0.164
#> GSM555269     3  0.0424      0.949 0.000 0.008 0.992
#> GSM555271     3  0.0000      0.960 0.000 0.000 1.000
#> GSM555273     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555275     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555238     1  0.0000      0.940 1.000 0.000 0.000
#> GSM555240     1  0.0000      0.940 1.000 0.000 0.000
#> GSM555242     1  0.0000      0.940 1.000 0.000 0.000
#> GSM555244     1  0.0000      0.940 1.000 0.000 0.000
#> GSM555246     1  0.0000      0.940 1.000 0.000 0.000
#> GSM555248     1  0.0000      0.940 1.000 0.000 0.000
#> GSM555250     1  0.0000      0.940 1.000 0.000 0.000
#> GSM555252     1  0.0000      0.940 1.000 0.000 0.000
#> GSM555254     1  0.0000      0.940 1.000 0.000 0.000
#> GSM555256     1  0.0000      0.940 1.000 0.000 0.000
#> GSM555258     2  0.2066      0.928 0.060 0.940 0.000
#> GSM555260     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555262     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555264     1  0.5988      0.412 0.632 0.368 0.000
#> GSM555266     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555268     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555270     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555272     2  0.0424      0.980 0.008 0.992 0.000
#> GSM555274     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555276     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555277     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555279     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555281     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555283     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555285     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555287     2  0.6140      0.315 0.000 0.596 0.404
#> GSM555289     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555291     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555293     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555295     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555297     2  0.3116      0.875 0.000 0.892 0.108
#> GSM555299     3  0.0000      0.960 0.000 0.000 1.000
#> GSM555301     3  0.0000      0.960 0.000 0.000 1.000
#> GSM555303     3  0.0000      0.960 0.000 0.000 1.000
#> GSM555305     3  0.0000      0.960 0.000 0.000 1.000
#> GSM555307     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555309     3  0.0000      0.960 0.000 0.000 1.000
#> GSM555311     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555313     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555315     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555278     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555280     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555282     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555284     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555286     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555288     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555290     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555292     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555294     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555296     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555298     3  0.0000      0.960 0.000 0.000 1.000
#> GSM555300     3  0.0000      0.960 0.000 0.000 1.000
#> GSM555302     3  0.0000      0.960 0.000 0.000 1.000
#> GSM555304     3  0.0000      0.960 0.000 0.000 1.000
#> GSM555306     3  0.0000      0.960 0.000 0.000 1.000
#> GSM555308     3  0.0000      0.960 0.000 0.000 1.000
#> GSM555310     3  0.0000      0.960 0.000 0.000 1.000
#> GSM555312     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555314     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555316     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555317     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555319     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555321     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555323     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555325     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555327     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555329     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555331     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555333     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555335     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555337     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555339     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555341     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555343     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555345     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555318     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555320     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555322     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555324     3  0.0000      0.960 0.000 0.000 1.000
#> GSM555326     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555328     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555330     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555332     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555334     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555336     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555338     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555340     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555342     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555344     2  0.0000      0.987 0.000 1.000 0.000
#> GSM555346     2  0.0000      0.987 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.0188     0.9907 0.996 0.000 0.000 0.004
#> GSM555239     1  0.0336     0.9885 0.992 0.000 0.000 0.008
#> GSM555241     1  0.0000     0.9926 1.000 0.000 0.000 0.000
#> GSM555243     1  0.0000     0.9926 1.000 0.000 0.000 0.000
#> GSM555245     1  0.0000     0.9926 1.000 0.000 0.000 0.000
#> GSM555247     1  0.0469     0.9859 0.988 0.000 0.000 0.012
#> GSM555249     1  0.0000     0.9926 1.000 0.000 0.000 0.000
#> GSM555251     1  0.0000     0.9926 1.000 0.000 0.000 0.000
#> GSM555253     1  0.0000     0.9926 1.000 0.000 0.000 0.000
#> GSM555255     1  0.0592     0.9829 0.984 0.000 0.000 0.016
#> GSM555257     4  0.7549     0.3726 0.356 0.112 0.024 0.508
#> GSM555259     3  0.0188     0.9728 0.000 0.000 0.996 0.004
#> GSM555261     2  0.6524     0.2971 0.000 0.616 0.264 0.120
#> GSM555263     2  0.2973     0.8091 0.000 0.856 0.000 0.144
#> GSM555265     3  0.5180     0.4916 0.000 0.196 0.740 0.064
#> GSM555267     2  0.5393     0.4571 0.000 0.688 0.268 0.044
#> GSM555269     3  0.0336     0.9692 0.000 0.000 0.992 0.008
#> GSM555271     3  0.0000     0.9753 0.000 0.000 1.000 0.000
#> GSM555273     4  0.4456     0.7717 0.004 0.280 0.000 0.716
#> GSM555275     2  0.1022     0.8731 0.000 0.968 0.000 0.032
#> GSM555238     1  0.0000     0.9926 1.000 0.000 0.000 0.000
#> GSM555240     1  0.1867     0.9223 0.928 0.000 0.000 0.072
#> GSM555242     1  0.0000     0.9926 1.000 0.000 0.000 0.000
#> GSM555244     1  0.0000     0.9926 1.000 0.000 0.000 0.000
#> GSM555246     1  0.0000     0.9926 1.000 0.000 0.000 0.000
#> GSM555248     1  0.0000     0.9926 1.000 0.000 0.000 0.000
#> GSM555250     1  0.0188     0.9910 0.996 0.000 0.000 0.004
#> GSM555252     1  0.0707     0.9793 0.980 0.000 0.000 0.020
#> GSM555254     1  0.0000     0.9926 1.000 0.000 0.000 0.000
#> GSM555256     1  0.0188     0.9910 0.996 0.000 0.000 0.004
#> GSM555258     2  0.6013     0.5162 0.120 0.684 0.000 0.196
#> GSM555260     2  0.3266     0.7966 0.000 0.832 0.000 0.168
#> GSM555262     2  0.1940     0.8685 0.000 0.924 0.000 0.076
#> GSM555264     4  0.4784     0.6791 0.100 0.112 0.000 0.788
#> GSM555266     2  0.2647     0.8340 0.000 0.880 0.000 0.120
#> GSM555268     2  0.1940     0.8612 0.000 0.924 0.000 0.076
#> GSM555270     2  0.0336     0.8794 0.000 0.992 0.000 0.008
#> GSM555272     2  0.5062     0.6679 0.064 0.752 0.000 0.184
#> GSM555274     2  0.0921     0.8789 0.000 0.972 0.000 0.028
#> GSM555276     2  0.1867     0.8595 0.000 0.928 0.000 0.072
#> GSM555277     2  0.2469     0.8356 0.000 0.892 0.000 0.108
#> GSM555279     2  0.2530     0.8276 0.000 0.888 0.000 0.112
#> GSM555281     2  0.0921     0.8740 0.000 0.972 0.000 0.028
#> GSM555283     2  0.0707     0.8800 0.000 0.980 0.000 0.020
#> GSM555285     4  0.4868     0.7772 0.024 0.256 0.000 0.720
#> GSM555287     2  0.7495    -0.1384 0.000 0.448 0.368 0.184
#> GSM555289     2  0.2469     0.8356 0.000 0.892 0.000 0.108
#> GSM555291     2  0.0707     0.8800 0.000 0.980 0.000 0.020
#> GSM555293     2  0.2149     0.8464 0.000 0.912 0.000 0.088
#> GSM555295     2  0.1867     0.8559 0.000 0.928 0.000 0.072
#> GSM555297     2  0.6685     0.1479 0.000 0.568 0.324 0.108
#> GSM555299     3  0.0000     0.9753 0.000 0.000 1.000 0.000
#> GSM555301     3  0.0188     0.9728 0.000 0.000 0.996 0.004
#> GSM555303     3  0.0000     0.9753 0.000 0.000 1.000 0.000
#> GSM555305     3  0.0000     0.9753 0.000 0.000 1.000 0.000
#> GSM555307     2  0.0707     0.8802 0.000 0.980 0.000 0.020
#> GSM555309     3  0.0000     0.9753 0.000 0.000 1.000 0.000
#> GSM555311     2  0.2530     0.8276 0.000 0.888 0.000 0.112
#> GSM555313     2  0.1389     0.8779 0.000 0.952 0.000 0.048
#> GSM555315     2  0.2589     0.8240 0.000 0.884 0.000 0.116
#> GSM555278     2  0.2408     0.8436 0.000 0.896 0.000 0.104
#> GSM555280     2  0.1474     0.8771 0.000 0.948 0.000 0.052
#> GSM555282     2  0.2281     0.8578 0.000 0.904 0.000 0.096
#> GSM555284     2  0.2589     0.8381 0.000 0.884 0.000 0.116
#> GSM555286     2  0.1389     0.8772 0.000 0.952 0.000 0.048
#> GSM555288     2  0.2081     0.8625 0.000 0.916 0.000 0.084
#> GSM555290     2  0.1716     0.8647 0.000 0.936 0.000 0.064
#> GSM555292     2  0.1557     0.8760 0.000 0.944 0.000 0.056
#> GSM555294     2  0.3074     0.7881 0.000 0.848 0.000 0.152
#> GSM555296     2  0.0336     0.8794 0.000 0.992 0.000 0.008
#> GSM555298     3  0.0000     0.9753 0.000 0.000 1.000 0.000
#> GSM555300     3  0.0000     0.9753 0.000 0.000 1.000 0.000
#> GSM555302     3  0.0000     0.9753 0.000 0.000 1.000 0.000
#> GSM555304     3  0.0000     0.9753 0.000 0.000 1.000 0.000
#> GSM555306     3  0.0000     0.9753 0.000 0.000 1.000 0.000
#> GSM555308     3  0.0000     0.9753 0.000 0.000 1.000 0.000
#> GSM555310     3  0.0000     0.9753 0.000 0.000 1.000 0.000
#> GSM555312     2  0.0469     0.8790 0.000 0.988 0.000 0.012
#> GSM555314     2  0.1211     0.8713 0.000 0.960 0.000 0.040
#> GSM555316     2  0.0707     0.8783 0.000 0.980 0.000 0.020
#> GSM555317     2  0.2011     0.8544 0.000 0.920 0.000 0.080
#> GSM555319     2  0.1716     0.8680 0.000 0.936 0.000 0.064
#> GSM555321     2  0.1118     0.8794 0.000 0.964 0.000 0.036
#> GSM555323     2  0.0188     0.8787 0.000 0.996 0.000 0.004
#> GSM555325     2  0.4967    -0.0997 0.000 0.548 0.000 0.452
#> GSM555327     2  0.2469     0.8360 0.000 0.892 0.000 0.108
#> GSM555329     2  0.1389     0.8766 0.000 0.952 0.000 0.048
#> GSM555331     2  0.0921     0.8789 0.000 0.972 0.000 0.028
#> GSM555333     2  0.0817     0.8748 0.000 0.976 0.000 0.024
#> GSM555335     2  0.0336     0.8784 0.000 0.992 0.000 0.008
#> GSM555337     2  0.1474     0.8769 0.000 0.948 0.000 0.052
#> GSM555339     2  0.0707     0.8789 0.000 0.980 0.000 0.020
#> GSM555341     2  0.1302     0.8745 0.000 0.956 0.000 0.044
#> GSM555343     2  0.0921     0.8762 0.000 0.972 0.000 0.028
#> GSM555345     2  0.3074     0.7937 0.000 0.848 0.000 0.152
#> GSM555318     2  0.2704     0.8218 0.000 0.876 0.000 0.124
#> GSM555320     2  0.3837     0.7024 0.000 0.776 0.000 0.224
#> GSM555322     2  0.2216     0.8443 0.000 0.908 0.000 0.092
#> GSM555324     3  0.0000     0.9753 0.000 0.000 1.000 0.000
#> GSM555326     2  0.0921     0.8816 0.000 0.972 0.000 0.028
#> GSM555328     2  0.1118     0.8775 0.000 0.964 0.000 0.036
#> GSM555330     2  0.1716     0.8746 0.000 0.936 0.000 0.064
#> GSM555332     2  0.1557     0.8711 0.000 0.944 0.000 0.056
#> GSM555334     2  0.2469     0.8375 0.000 0.892 0.000 0.108
#> GSM555336     2  0.2408     0.8388 0.000 0.896 0.000 0.104
#> GSM555338     2  0.2011     0.8544 0.000 0.920 0.000 0.080
#> GSM555340     2  0.0921     0.8803 0.000 0.972 0.000 0.028
#> GSM555342     2  0.1716     0.8606 0.000 0.936 0.000 0.064
#> GSM555344     2  0.1940     0.8609 0.000 0.924 0.000 0.076
#> GSM555346     4  0.4713     0.6305 0.000 0.360 0.000 0.640

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM555237     1  0.0162     0.9920 0.996 0.000 0.000 0.000 0.004
#> GSM555239     1  0.0000     0.9932 1.000 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0162     0.9920 0.996 0.000 0.000 0.000 0.004
#> GSM555243     1  0.0162     0.9920 0.996 0.000 0.000 0.000 0.004
#> GSM555245     1  0.0000     0.9932 1.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000     0.9932 1.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000     0.9932 1.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0162     0.9920 0.996 0.000 0.000 0.000 0.004
#> GSM555253     1  0.0000     0.9932 1.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0000     0.9932 1.000 0.000 0.000 0.000 0.000
#> GSM555257     4  0.4730     0.6143 0.008 0.128 0.000 0.752 0.112
#> GSM555259     4  0.4273     0.4848 0.000 0.020 0.240 0.732 0.008
#> GSM555261     4  0.3988     0.6641 0.000 0.192 0.008 0.776 0.024
#> GSM555263     4  0.4676     0.6382 0.000 0.208 0.000 0.720 0.072
#> GSM555265     4  0.4713     0.6632 0.000 0.184 0.032 0.748 0.036
#> GSM555267     4  0.5158     0.6176 0.000 0.232 0.040 0.696 0.032
#> GSM555269     4  0.4895     0.4198 0.000 0.024 0.316 0.648 0.012
#> GSM555271     3  0.0290     0.9417 0.000 0.000 0.992 0.008 0.000
#> GSM555273     5  0.4453     0.8778 0.004 0.184 0.000 0.060 0.752
#> GSM555275     2  0.1281     0.8559 0.000 0.956 0.000 0.032 0.012
#> GSM555238     1  0.0000     0.9932 1.000 0.000 0.000 0.000 0.000
#> GSM555240     1  0.1041     0.9598 0.964 0.000 0.000 0.032 0.004
#> GSM555242     1  0.0000     0.9932 1.000 0.000 0.000 0.000 0.000
#> GSM555244     1  0.0162     0.9920 0.996 0.000 0.000 0.000 0.004
#> GSM555246     1  0.0000     0.9932 1.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000     0.9932 1.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0162     0.9920 0.996 0.000 0.000 0.000 0.004
#> GSM555252     1  0.1571     0.9310 0.936 0.000 0.000 0.060 0.004
#> GSM555254     1  0.0000     0.9932 1.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0000     0.9932 1.000 0.000 0.000 0.000 0.000
#> GSM555258     4  0.2992     0.5955 0.000 0.068 0.000 0.868 0.064
#> GSM555260     4  0.2359     0.5872 0.000 0.060 0.000 0.904 0.036
#> GSM555262     2  0.3970     0.7860 0.000 0.752 0.000 0.224 0.024
#> GSM555264     5  0.4638     0.8521 0.008 0.108 0.000 0.124 0.760
#> GSM555266     2  0.3513     0.8325 0.000 0.800 0.000 0.180 0.020
#> GSM555268     2  0.3455     0.8220 0.000 0.784 0.000 0.208 0.008
#> GSM555270     2  0.2707     0.8595 0.000 0.876 0.000 0.100 0.024
#> GSM555272     4  0.4493     0.6322 0.000 0.136 0.000 0.756 0.108
#> GSM555274     2  0.2563     0.8583 0.000 0.872 0.000 0.120 0.008
#> GSM555276     2  0.3184     0.8519 0.000 0.852 0.000 0.100 0.048
#> GSM555277     2  0.2573     0.8494 0.000 0.880 0.000 0.016 0.104
#> GSM555279     2  0.1907     0.8431 0.000 0.928 0.000 0.028 0.044
#> GSM555281     2  0.1251     0.8603 0.000 0.956 0.000 0.036 0.008
#> GSM555283     4  0.4497     0.4352 0.000 0.352 0.000 0.632 0.016
#> GSM555285     5  0.4554     0.9032 0.008 0.156 0.000 0.076 0.760
#> GSM555287     3  0.6630     0.0594 0.000 0.300 0.496 0.008 0.196
#> GSM555289     2  0.2773     0.8493 0.000 0.868 0.000 0.020 0.112
#> GSM555291     2  0.3163     0.7367 0.000 0.824 0.000 0.164 0.012
#> GSM555293     2  0.1386     0.8525 0.000 0.952 0.000 0.032 0.016
#> GSM555295     2  0.1386     0.8525 0.000 0.952 0.000 0.032 0.016
#> GSM555297     2  0.6621    -0.1691 0.000 0.476 0.396 0.044 0.084
#> GSM555299     3  0.0000     0.9497 0.000 0.000 1.000 0.000 0.000
#> GSM555301     3  0.0000     0.9497 0.000 0.000 1.000 0.000 0.000
#> GSM555303     3  0.0000     0.9497 0.000 0.000 1.000 0.000 0.000
#> GSM555305     3  0.0000     0.9497 0.000 0.000 1.000 0.000 0.000
#> GSM555307     2  0.1018     0.8620 0.000 0.968 0.000 0.016 0.016
#> GSM555309     3  0.0000     0.9497 0.000 0.000 1.000 0.000 0.000
#> GSM555311     2  0.1907     0.8431 0.000 0.928 0.000 0.028 0.044
#> GSM555313     2  0.3343     0.8297 0.000 0.812 0.000 0.172 0.016
#> GSM555315     2  0.1830     0.8439 0.000 0.932 0.000 0.028 0.040
#> GSM555278     2  0.3602     0.8322 0.000 0.796 0.000 0.180 0.024
#> GSM555280     2  0.3419     0.8270 0.000 0.804 0.000 0.180 0.016
#> GSM555282     2  0.4302     0.7548 0.000 0.720 0.000 0.248 0.032
#> GSM555284     2  0.4430     0.7572 0.000 0.708 0.000 0.256 0.036
#> GSM555286     2  0.3283     0.8419 0.000 0.832 0.000 0.140 0.028
#> GSM555288     4  0.3039     0.5685 0.000 0.152 0.000 0.836 0.012
#> GSM555290     2  0.3323     0.8521 0.000 0.844 0.000 0.100 0.056
#> GSM555292     2  0.3910     0.8040 0.000 0.772 0.000 0.196 0.032
#> GSM555294     2  0.2450     0.8475 0.000 0.900 0.000 0.052 0.048
#> GSM555296     2  0.2482     0.8642 0.000 0.892 0.000 0.084 0.024
#> GSM555298     3  0.0000     0.9497 0.000 0.000 1.000 0.000 0.000
#> GSM555300     3  0.0000     0.9497 0.000 0.000 1.000 0.000 0.000
#> GSM555302     3  0.0000     0.9497 0.000 0.000 1.000 0.000 0.000
#> GSM555304     3  0.0000     0.9497 0.000 0.000 1.000 0.000 0.000
#> GSM555306     3  0.0000     0.9497 0.000 0.000 1.000 0.000 0.000
#> GSM555308     3  0.0000     0.9497 0.000 0.000 1.000 0.000 0.000
#> GSM555310     3  0.0000     0.9497 0.000 0.000 1.000 0.000 0.000
#> GSM555312     2  0.3002     0.8548 0.000 0.856 0.000 0.116 0.028
#> GSM555314     2  0.1469     0.8519 0.000 0.948 0.000 0.036 0.016
#> GSM555316     2  0.2193     0.8675 0.000 0.912 0.000 0.028 0.060
#> GSM555317     2  0.1908     0.8558 0.000 0.908 0.000 0.000 0.092
#> GSM555319     2  0.1557     0.8623 0.000 0.940 0.000 0.008 0.052
#> GSM555321     2  0.1216     0.8594 0.000 0.960 0.000 0.020 0.020
#> GSM555323     2  0.0898     0.8578 0.000 0.972 0.000 0.020 0.008
#> GSM555325     2  0.4250     0.5606 0.000 0.720 0.000 0.028 0.252
#> GSM555327     2  0.2179     0.8509 0.000 0.896 0.000 0.004 0.100
#> GSM555329     2  0.1331     0.8610 0.000 0.952 0.000 0.008 0.040
#> GSM555331     2  0.1041     0.8636 0.000 0.964 0.000 0.004 0.032
#> GSM555333     2  0.1300     0.8539 0.000 0.956 0.000 0.028 0.016
#> GSM555335     2  0.1195     0.8553 0.000 0.960 0.000 0.028 0.012
#> GSM555337     2  0.1597     0.8660 0.000 0.940 0.000 0.012 0.048
#> GSM555339     2  0.0992     0.8577 0.000 0.968 0.000 0.024 0.008
#> GSM555341     2  0.0992     0.8610 0.000 0.968 0.000 0.008 0.024
#> GSM555343     2  0.1310     0.8566 0.000 0.956 0.000 0.024 0.020
#> GSM555345     2  0.2124     0.8515 0.000 0.900 0.000 0.004 0.096
#> GSM555318     2  0.2798     0.8413 0.000 0.852 0.000 0.008 0.140
#> GSM555320     2  0.3922     0.8214 0.000 0.780 0.000 0.180 0.040
#> GSM555322     2  0.3420     0.8475 0.000 0.840 0.000 0.084 0.076
#> GSM555324     3  0.0000     0.9497 0.000 0.000 1.000 0.000 0.000
#> GSM555326     2  0.2966     0.8518 0.000 0.848 0.000 0.136 0.016
#> GSM555328     2  0.3016     0.8490 0.000 0.848 0.000 0.132 0.020
#> GSM555330     2  0.3399     0.8306 0.000 0.812 0.000 0.168 0.020
#> GSM555332     2  0.3454     0.8356 0.000 0.816 0.000 0.156 0.028
#> GSM555334     2  0.3695     0.8303 0.000 0.800 0.000 0.164 0.036
#> GSM555336     2  0.2561     0.8604 0.000 0.884 0.000 0.096 0.020
#> GSM555338     2  0.1571     0.8595 0.000 0.936 0.000 0.004 0.060
#> GSM555340     2  0.1399     0.8607 0.000 0.952 0.000 0.020 0.028
#> GSM555342     2  0.2616     0.8657 0.000 0.888 0.000 0.076 0.036
#> GSM555344     2  0.2416     0.8602 0.000 0.888 0.000 0.012 0.100
#> GSM555346     2  0.5646    -0.1573 0.000 0.480 0.000 0.076 0.444

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM555237     1  0.0291   0.987572 0.992 0.000 0.000 0.000 0.004 0.004
#> GSM555239     1  0.0146   0.988388 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM555241     1  0.0291   0.987572 0.992 0.000 0.000 0.000 0.004 0.004
#> GSM555243     1  0.0146   0.988606 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM555245     1  0.0146   0.988388 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM555247     1  0.0146   0.988606 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM555249     1  0.0146   0.988606 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM555251     1  0.0146   0.988606 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM555253     1  0.0146   0.988388 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM555255     1  0.0146   0.988388 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM555257     4  0.3622   0.700355 0.000 0.024 0.000 0.792 0.164 0.020
#> GSM555259     4  0.2544   0.775775 0.004 0.060 0.044 0.888 0.000 0.004
#> GSM555261     4  0.2555   0.791930 0.000 0.096 0.000 0.876 0.020 0.008
#> GSM555263     4  0.3503   0.761462 0.000 0.068 0.000 0.816 0.108 0.008
#> GSM555265     4  0.3508   0.778577 0.000 0.100 0.004 0.828 0.052 0.016
#> GSM555267     4  0.4770   0.666153 0.000 0.196 0.024 0.720 0.036 0.024
#> GSM555269     4  0.4044   0.558942 0.000 0.004 0.212 0.740 0.040 0.004
#> GSM555271     3  0.0937   0.954079 0.000 0.000 0.960 0.040 0.000 0.000
#> GSM555273     5  0.3426   0.747736 0.000 0.124 0.000 0.068 0.808 0.000
#> GSM555275     2  0.3025   0.610593 0.000 0.844 0.000 0.020 0.016 0.120
#> GSM555238     1  0.0146   0.988388 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM555240     1  0.1340   0.955143 0.948 0.000 0.000 0.004 0.008 0.040
#> GSM555242     1  0.0291   0.987325 0.992 0.000 0.000 0.004 0.004 0.000
#> GSM555244     1  0.0405   0.987006 0.988 0.000 0.000 0.000 0.008 0.004
#> GSM555246     1  0.0291   0.987772 0.992 0.000 0.000 0.000 0.004 0.004
#> GSM555248     1  0.0291   0.987772 0.992 0.000 0.000 0.000 0.004 0.004
#> GSM555250     1  0.0405   0.987006 0.988 0.000 0.000 0.000 0.008 0.004
#> GSM555252     1  0.2013   0.915202 0.908 0.000 0.000 0.008 0.008 0.076
#> GSM555254     1  0.0146   0.988388 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM555256     1  0.0291   0.987325 0.992 0.000 0.000 0.004 0.004 0.000
#> GSM555258     4  0.4167   0.778264 0.000 0.072 0.000 0.788 0.084 0.056
#> GSM555260     4  0.4055   0.743133 0.000 0.064 0.000 0.780 0.024 0.132
#> GSM555262     6  0.4751   0.688165 0.000 0.280 0.000 0.072 0.004 0.644
#> GSM555264     5  0.3435   0.666111 0.000 0.028 0.000 0.128 0.820 0.024
#> GSM555266     6  0.4546   0.616363 0.000 0.432 0.000 0.012 0.016 0.540
#> GSM555268     6  0.3967   0.686072 0.000 0.356 0.000 0.000 0.012 0.632
#> GSM555270     2  0.4264   0.000364 0.000 0.604 0.000 0.012 0.008 0.376
#> GSM555272     4  0.4294   0.771590 0.000 0.080 0.000 0.768 0.120 0.032
#> GSM555274     2  0.5384  -0.310513 0.000 0.512 0.000 0.080 0.012 0.396
#> GSM555276     2  0.3294   0.553507 0.000 0.812 0.000 0.020 0.012 0.156
#> GSM555277     2  0.4732   0.427716 0.000 0.704 0.000 0.072 0.024 0.200
#> GSM555279     2  0.4483   0.511732 0.000 0.720 0.000 0.008 0.092 0.180
#> GSM555281     2  0.4656   0.305150 0.000 0.668 0.000 0.064 0.008 0.260
#> GSM555283     4  0.5945   0.372580 0.000 0.232 0.000 0.572 0.032 0.164
#> GSM555285     5  0.3123   0.745481 0.000 0.076 0.000 0.088 0.836 0.000
#> GSM555287     2  0.7751  -0.027424 0.004 0.484 0.088 0.108 0.100 0.216
#> GSM555289     2  0.5017   0.328075 0.000 0.660 0.000 0.060 0.032 0.248
#> GSM555291     2  0.5711   0.188593 0.000 0.584 0.000 0.212 0.016 0.188
#> GSM555293     2  0.2265   0.654053 0.000 0.904 0.000 0.012 0.056 0.028
#> GSM555295     2  0.2164   0.647100 0.000 0.908 0.000 0.012 0.060 0.020
#> GSM555297     2  0.4756   0.460244 0.000 0.720 0.084 0.008 0.172 0.016
#> GSM555299     3  0.0000   0.995180 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555301     3  0.0520   0.980846 0.000 0.000 0.984 0.008 0.008 0.000
#> GSM555303     3  0.0000   0.995180 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555305     3  0.0000   0.995180 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555307     2  0.2669   0.636360 0.000 0.880 0.000 0.072 0.016 0.032
#> GSM555309     3  0.0000   0.995180 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555311     2  0.2373   0.633114 0.000 0.880 0.000 0.008 0.104 0.008
#> GSM555313     6  0.4763   0.588736 0.000 0.440 0.000 0.040 0.004 0.516
#> GSM555315     2  0.2531   0.611001 0.000 0.860 0.000 0.004 0.128 0.008
#> GSM555278     6  0.4795   0.664701 0.000 0.400 0.000 0.028 0.016 0.556
#> GSM555280     6  0.4191   0.684169 0.000 0.388 0.000 0.012 0.004 0.596
#> GSM555282     6  0.4207   0.635632 0.000 0.208 0.000 0.048 0.012 0.732
#> GSM555284     6  0.3509   0.587182 0.000 0.180 0.000 0.016 0.016 0.788
#> GSM555286     6  0.4222   0.512514 0.000 0.472 0.000 0.008 0.004 0.516
#> GSM555288     6  0.5788  -0.036201 0.000 0.124 0.000 0.432 0.012 0.432
#> GSM555290     2  0.5518  -0.441403 0.000 0.476 0.000 0.052 0.036 0.436
#> GSM555292     6  0.4700   0.685877 0.000 0.288 0.000 0.076 0.000 0.636
#> GSM555294     2  0.4214   0.460884 0.000 0.680 0.000 0.000 0.276 0.044
#> GSM555296     2  0.3791   0.487850 0.000 0.760 0.000 0.032 0.008 0.200
#> GSM555298     3  0.0000   0.995180 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555300     3  0.0000   0.995180 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555302     3  0.0000   0.995180 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555304     3  0.0000   0.995180 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555306     3  0.0000   0.995180 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555308     3  0.0000   0.995180 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555310     3  0.0000   0.995180 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555312     2  0.5080  -0.190715 0.000 0.552 0.000 0.056 0.012 0.380
#> GSM555314     2  0.2003   0.650325 0.000 0.912 0.000 0.044 0.000 0.044
#> GSM555316     2  0.1769   0.653204 0.000 0.924 0.000 0.004 0.012 0.060
#> GSM555317     2  0.1976   0.652054 0.000 0.916 0.000 0.008 0.016 0.060
#> GSM555319     2  0.2376   0.637137 0.000 0.884 0.000 0.008 0.012 0.096
#> GSM555321     2  0.1966   0.643932 0.000 0.924 0.000 0.028 0.024 0.024
#> GSM555323     2  0.1787   0.649701 0.000 0.932 0.000 0.016 0.020 0.032
#> GSM555325     2  0.3996   0.335643 0.000 0.636 0.000 0.008 0.352 0.004
#> GSM555327     2  0.2133   0.651367 0.000 0.912 0.000 0.016 0.020 0.052
#> GSM555329     2  0.2163   0.635519 0.000 0.892 0.000 0.008 0.004 0.096
#> GSM555331     2  0.1307   0.659338 0.000 0.952 0.000 0.008 0.008 0.032
#> GSM555333     2  0.1909   0.653020 0.000 0.920 0.000 0.052 0.004 0.024
#> GSM555335     2  0.1864   0.649700 0.000 0.924 0.000 0.004 0.040 0.032
#> GSM555337     2  0.1655   0.656649 0.000 0.932 0.000 0.008 0.008 0.052
#> GSM555339     2  0.2188   0.651416 0.000 0.912 0.000 0.036 0.020 0.032
#> GSM555341     2  0.2002   0.652198 0.000 0.920 0.000 0.028 0.012 0.040
#> GSM555343     2  0.1959   0.643687 0.000 0.924 0.000 0.024 0.032 0.020
#> GSM555345     2  0.3161   0.587840 0.008 0.852 0.000 0.028 0.016 0.096
#> GSM555318     2  0.3394   0.610497 0.000 0.836 0.000 0.032 0.040 0.092
#> GSM555320     2  0.5300  -0.282874 0.000 0.496 0.000 0.000 0.104 0.400
#> GSM555322     2  0.4559   0.015541 0.000 0.600 0.000 0.012 0.024 0.364
#> GSM555324     3  0.0000   0.995180 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555326     2  0.4205  -0.182315 0.000 0.564 0.000 0.016 0.000 0.420
#> GSM555328     2  0.4987  -0.309109 0.000 0.524 0.000 0.044 0.012 0.420
#> GSM555330     6  0.3991   0.510071 0.000 0.472 0.000 0.000 0.004 0.524
#> GSM555332     2  0.4696  -0.098992 0.000 0.592 0.000 0.032 0.012 0.364
#> GSM555334     2  0.6056  -0.457876 0.000 0.452 0.000 0.108 0.036 0.404
#> GSM555336     2  0.4440   0.498061 0.000 0.716 0.000 0.008 0.076 0.200
#> GSM555338     2  0.1078   0.657595 0.000 0.964 0.000 0.008 0.016 0.012
#> GSM555340     2  0.1458   0.654176 0.000 0.948 0.000 0.016 0.020 0.016
#> GSM555342     2  0.3755   0.484719 0.000 0.744 0.000 0.000 0.036 0.220
#> GSM555344     2  0.2383   0.649503 0.000 0.900 0.000 0.020 0.028 0.052
#> GSM555346     5  0.3910   0.515570 0.000 0.328 0.000 0.004 0.660 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) agent(p) k
#> CV:NMF 106         8.03e-07  0.88686 2
#> CV:NMF 106         1.68e-11  0.99034 3
#> CV:NMF 103         9.69e-11  0.95938 4
#> CV:NMF 104         3.24e-14  0.93114 5
#> CV:NMF  87         6.25e-15  0.00748 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.906           0.896       0.958         0.4695 0.544   0.544
#> 3 3 0.794           0.855       0.893         0.1926 0.900   0.817
#> 4 4 0.795           0.858       0.910         0.0203 0.982   0.960
#> 5 5 0.855           0.875       0.929         0.0950 0.943   0.871
#> 6 6 0.820           0.818       0.911         0.0509 0.988   0.969

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1   0.000      0.981 1.000 0.000
#> GSM555239     1   0.000      0.981 1.000 0.000
#> GSM555241     1   0.000      0.981 1.000 0.000
#> GSM555243     1   0.000      0.981 1.000 0.000
#> GSM555245     1   0.000      0.981 1.000 0.000
#> GSM555247     1   0.000      0.981 1.000 0.000
#> GSM555249     1   0.000      0.981 1.000 0.000
#> GSM555251     1   0.000      0.981 1.000 0.000
#> GSM555253     1   0.000      0.981 1.000 0.000
#> GSM555255     1   0.000      0.981 1.000 0.000
#> GSM555257     1   0.506      0.854 0.888 0.112
#> GSM555259     1   0.224      0.947 0.964 0.036
#> GSM555261     2   0.997      0.203 0.468 0.532
#> GSM555263     2   0.980      0.350 0.416 0.584
#> GSM555265     2   0.997      0.203 0.468 0.532
#> GSM555267     2   0.992      0.264 0.448 0.552
#> GSM555269     1   0.224      0.947 0.964 0.036
#> GSM555271     1   0.000      0.981 1.000 0.000
#> GSM555273     2   0.443      0.866 0.092 0.908
#> GSM555275     2   0.118      0.932 0.016 0.984
#> GSM555238     1   0.000      0.981 1.000 0.000
#> GSM555240     1   0.000      0.981 1.000 0.000
#> GSM555242     1   0.000      0.981 1.000 0.000
#> GSM555244     1   0.000      0.981 1.000 0.000
#> GSM555246     1   0.000      0.981 1.000 0.000
#> GSM555248     1   0.000      0.981 1.000 0.000
#> GSM555250     1   0.000      0.981 1.000 0.000
#> GSM555252     1   0.000      0.981 1.000 0.000
#> GSM555254     1   0.000      0.981 1.000 0.000
#> GSM555256     1   0.000      0.981 1.000 0.000
#> GSM555258     2   0.955      0.445 0.376 0.624
#> GSM555260     2   0.955      0.445 0.376 0.624
#> GSM555262     2   0.000      0.942 0.000 1.000
#> GSM555264     1   0.988      0.123 0.564 0.436
#> GSM555266     2   0.000      0.942 0.000 1.000
#> GSM555268     2   0.000      0.942 0.000 1.000
#> GSM555270     2   0.000      0.942 0.000 1.000
#> GSM555272     2   0.955      0.445 0.376 0.624
#> GSM555274     2   0.443      0.866 0.092 0.908
#> GSM555276     2   0.000      0.942 0.000 1.000
#> GSM555277     2   0.000      0.942 0.000 1.000
#> GSM555279     2   0.000      0.942 0.000 1.000
#> GSM555281     2   0.000      0.942 0.000 1.000
#> GSM555283     2   0.000      0.942 0.000 1.000
#> GSM555285     2   0.000      0.942 0.000 1.000
#> GSM555287     2   0.833      0.654 0.264 0.736
#> GSM555289     2   0.000      0.942 0.000 1.000
#> GSM555291     2   0.000      0.942 0.000 1.000
#> GSM555293     2   0.000      0.942 0.000 1.000
#> GSM555295     2   0.000      0.942 0.000 1.000
#> GSM555297     2   0.991      0.275 0.444 0.556
#> GSM555299     1   0.000      0.981 1.000 0.000
#> GSM555301     1   0.000      0.981 1.000 0.000
#> GSM555303     1   0.000      0.981 1.000 0.000
#> GSM555305     1   0.000      0.981 1.000 0.000
#> GSM555307     2   0.118      0.932 0.016 0.984
#> GSM555309     1   0.000      0.981 1.000 0.000
#> GSM555311     2   0.118      0.932 0.016 0.984
#> GSM555313     2   0.118      0.932 0.016 0.984
#> GSM555315     2   0.118      0.932 0.016 0.984
#> GSM555278     2   0.000      0.942 0.000 1.000
#> GSM555280     2   0.000      0.942 0.000 1.000
#> GSM555282     2   0.000      0.942 0.000 1.000
#> GSM555284     2   0.000      0.942 0.000 1.000
#> GSM555286     2   0.000      0.942 0.000 1.000
#> GSM555288     2   0.000      0.942 0.000 1.000
#> GSM555290     2   0.000      0.942 0.000 1.000
#> GSM555292     2   0.000      0.942 0.000 1.000
#> GSM555294     2   0.000      0.942 0.000 1.000
#> GSM555296     2   0.000      0.942 0.000 1.000
#> GSM555298     1   0.000      0.981 1.000 0.000
#> GSM555300     1   0.000      0.981 1.000 0.000
#> GSM555302     1   0.000      0.981 1.000 0.000
#> GSM555304     1   0.000      0.981 1.000 0.000
#> GSM555306     1   0.000      0.981 1.000 0.000
#> GSM555308     1   0.000      0.981 1.000 0.000
#> GSM555310     1   0.000      0.981 1.000 0.000
#> GSM555312     2   0.118      0.932 0.016 0.984
#> GSM555314     2   0.118      0.932 0.016 0.984
#> GSM555316     2   0.000      0.942 0.000 1.000
#> GSM555317     2   0.000      0.942 0.000 1.000
#> GSM555319     2   0.000      0.942 0.000 1.000
#> GSM555321     2   0.000      0.942 0.000 1.000
#> GSM555323     2   0.000      0.942 0.000 1.000
#> GSM555325     2   0.000      0.942 0.000 1.000
#> GSM555327     2   0.000      0.942 0.000 1.000
#> GSM555329     2   0.000      0.942 0.000 1.000
#> GSM555331     2   0.000      0.942 0.000 1.000
#> GSM555333     2   0.118      0.932 0.016 0.984
#> GSM555335     2   0.000      0.942 0.000 1.000
#> GSM555337     2   0.000      0.942 0.000 1.000
#> GSM555339     2   0.118      0.932 0.016 0.984
#> GSM555341     2   0.000      0.942 0.000 1.000
#> GSM555343     2   0.000      0.942 0.000 1.000
#> GSM555345     2   0.000      0.942 0.000 1.000
#> GSM555318     2   0.000      0.942 0.000 1.000
#> GSM555320     2   0.000      0.942 0.000 1.000
#> GSM555322     2   0.000      0.942 0.000 1.000
#> GSM555324     1   0.000      0.981 1.000 0.000
#> GSM555326     2   0.000      0.942 0.000 1.000
#> GSM555328     2   0.000      0.942 0.000 1.000
#> GSM555330     2   0.000      0.942 0.000 1.000
#> GSM555332     2   0.000      0.942 0.000 1.000
#> GSM555334     2   0.000      0.942 0.000 1.000
#> GSM555336     2   0.000      0.942 0.000 1.000
#> GSM555338     2   0.000      0.942 0.000 1.000
#> GSM555340     2   0.000      0.942 0.000 1.000
#> GSM555342     2   0.000      0.942 0.000 1.000
#> GSM555344     2   0.000      0.942 0.000 1.000
#> GSM555346     2   0.000      0.942 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.5327      0.839 0.728 0.000 0.272
#> GSM555239     1  0.5291      0.840 0.732 0.000 0.268
#> GSM555241     1  0.5291      0.840 0.732 0.000 0.268
#> GSM555243     1  0.5291      0.840 0.732 0.000 0.268
#> GSM555245     1  0.5291      0.840 0.732 0.000 0.268
#> GSM555247     1  0.5291      0.840 0.732 0.000 0.268
#> GSM555249     1  0.5291      0.840 0.732 0.000 0.268
#> GSM555251     1  0.5291      0.840 0.732 0.000 0.268
#> GSM555253     1  0.5291      0.840 0.732 0.000 0.268
#> GSM555255     1  0.5291      0.840 0.732 0.000 0.268
#> GSM555257     3  0.6520     -0.521 0.488 0.004 0.508
#> GSM555259     1  0.6308      0.432 0.508 0.000 0.492
#> GSM555261     3  0.4786      0.816 0.044 0.112 0.844
#> GSM555263     3  0.4062      0.828 0.000 0.164 0.836
#> GSM555265     3  0.4786      0.816 0.044 0.112 0.844
#> GSM555267     3  0.4551      0.832 0.024 0.132 0.844
#> GSM555269     1  0.6308      0.432 0.508 0.000 0.492
#> GSM555271     1  0.5905      0.705 0.648 0.000 0.352
#> GSM555273     2  0.6192      0.212 0.000 0.580 0.420
#> GSM555275     2  0.1529      0.937 0.000 0.960 0.040
#> GSM555238     1  0.5291      0.840 0.732 0.000 0.268
#> GSM555240     1  0.5327      0.839 0.728 0.000 0.272
#> GSM555242     1  0.5327      0.839 0.728 0.000 0.272
#> GSM555244     1  0.5291      0.840 0.732 0.000 0.268
#> GSM555246     1  0.5291      0.840 0.732 0.000 0.268
#> GSM555248     1  0.5291      0.840 0.732 0.000 0.268
#> GSM555250     1  0.5291      0.840 0.732 0.000 0.268
#> GSM555252     1  0.5327      0.839 0.728 0.000 0.272
#> GSM555254     1  0.5291      0.840 0.732 0.000 0.268
#> GSM555256     1  0.5291      0.840 0.732 0.000 0.268
#> GSM555258     3  0.4605      0.808 0.000 0.204 0.796
#> GSM555260     3  0.4605      0.808 0.000 0.204 0.796
#> GSM555262     2  0.1031      0.950 0.000 0.976 0.024
#> GSM555264     3  0.2301      0.636 0.060 0.004 0.936
#> GSM555266     2  0.0747      0.955 0.000 0.984 0.016
#> GSM555268     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555270     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555272     3  0.4605      0.808 0.000 0.204 0.796
#> GSM555274     2  0.4702      0.713 0.000 0.788 0.212
#> GSM555276     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555277     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555279     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555281     2  0.0237      0.962 0.000 0.996 0.004
#> GSM555283     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555285     2  0.5497      0.545 0.000 0.708 0.292
#> GSM555287     2  0.6045      0.365 0.000 0.620 0.380
#> GSM555289     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555291     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555293     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555295     2  0.0424      0.960 0.000 0.992 0.008
#> GSM555297     3  0.4618      0.832 0.024 0.136 0.840
#> GSM555299     1  0.0000      0.762 1.000 0.000 0.000
#> GSM555301     1  0.1753      0.774 0.952 0.000 0.048
#> GSM555303     1  0.0592      0.758 0.988 0.000 0.012
#> GSM555305     1  0.0592      0.758 0.988 0.000 0.012
#> GSM555307     2  0.1529      0.937 0.000 0.960 0.040
#> GSM555309     1  0.0000      0.762 1.000 0.000 0.000
#> GSM555311     2  0.1529      0.937 0.000 0.960 0.040
#> GSM555313     2  0.1031      0.950 0.000 0.976 0.024
#> GSM555315     2  0.1529      0.937 0.000 0.960 0.040
#> GSM555278     2  0.0592      0.957 0.000 0.988 0.012
#> GSM555280     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555282     2  0.0747      0.955 0.000 0.984 0.016
#> GSM555284     2  0.1031      0.950 0.000 0.976 0.024
#> GSM555286     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555288     2  0.0892      0.953 0.000 0.980 0.020
#> GSM555290     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555292     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555294     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555296     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555298     1  0.1753      0.774 0.952 0.000 0.048
#> GSM555300     1  0.0000      0.762 1.000 0.000 0.000
#> GSM555302     1  0.0592      0.758 0.988 0.000 0.012
#> GSM555304     1  0.0592      0.758 0.988 0.000 0.012
#> GSM555306     1  0.0592      0.758 0.988 0.000 0.012
#> GSM555308     1  0.0000      0.762 1.000 0.000 0.000
#> GSM555310     1  0.0592      0.758 0.988 0.000 0.012
#> GSM555312     2  0.1031      0.950 0.000 0.976 0.024
#> GSM555314     2  0.1529      0.937 0.000 0.960 0.040
#> GSM555316     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555317     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555319     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555321     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555323     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555325     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555327     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555329     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555331     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555333     2  0.1529      0.937 0.000 0.960 0.040
#> GSM555335     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555337     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555339     2  0.1529      0.937 0.000 0.960 0.040
#> GSM555341     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555343     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555345     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555318     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555320     2  0.1411      0.938 0.000 0.964 0.036
#> GSM555322     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555324     1  0.0000      0.762 1.000 0.000 0.000
#> GSM555326     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555328     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555330     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555332     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555334     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555336     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555338     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555340     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555342     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555344     2  0.0000      0.964 0.000 1.000 0.000
#> GSM555346     2  0.4842      0.679 0.000 0.776 0.224

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.0336      0.829 0.992 0.000 0.000 0.008
#> GSM555239     1  0.0000      0.831 1.000 0.000 0.000 0.000
#> GSM555241     1  0.0000      0.831 1.000 0.000 0.000 0.000
#> GSM555243     1  0.0000      0.831 1.000 0.000 0.000 0.000
#> GSM555245     1  0.0000      0.831 1.000 0.000 0.000 0.000
#> GSM555247     1  0.0000      0.831 1.000 0.000 0.000 0.000
#> GSM555249     1  0.0000      0.831 1.000 0.000 0.000 0.000
#> GSM555251     1  0.0000      0.831 1.000 0.000 0.000 0.000
#> GSM555253     1  0.0000      0.831 1.000 0.000 0.000 0.000
#> GSM555255     1  0.0000      0.831 1.000 0.000 0.000 0.000
#> GSM555257     1  0.4356      0.468 0.708 0.000 0.000 0.292
#> GSM555259     1  0.5678      0.433 0.640 0.000 0.044 0.316
#> GSM555261     4  0.5964      0.847 0.208 0.108 0.000 0.684
#> GSM555263     4  0.6563      0.863 0.208 0.160 0.000 0.632
#> GSM555265     4  0.5964      0.847 0.208 0.108 0.000 0.684
#> GSM555267     4  0.6215      0.868 0.208 0.128 0.000 0.664
#> GSM555269     1  0.5678      0.433 0.640 0.000 0.044 0.316
#> GSM555271     1  0.4719      0.686 0.772 0.000 0.048 0.180
#> GSM555273     2  0.4916      0.142 0.000 0.576 0.000 0.424
#> GSM555275     2  0.1211      0.941 0.000 0.960 0.000 0.040
#> GSM555238     1  0.0000      0.831 1.000 0.000 0.000 0.000
#> GSM555240     1  0.0336      0.829 0.992 0.000 0.000 0.008
#> GSM555242     1  0.0336      0.829 0.992 0.000 0.000 0.008
#> GSM555244     1  0.0000      0.831 1.000 0.000 0.000 0.000
#> GSM555246     1  0.0000      0.831 1.000 0.000 0.000 0.000
#> GSM555248     1  0.0000      0.831 1.000 0.000 0.000 0.000
#> GSM555250     1  0.0000      0.831 1.000 0.000 0.000 0.000
#> GSM555252     1  0.0336      0.829 0.992 0.000 0.000 0.008
#> GSM555254     1  0.0000      0.831 1.000 0.000 0.000 0.000
#> GSM555256     1  0.0000      0.831 1.000 0.000 0.000 0.000
#> GSM555258     4  0.6756      0.832 0.188 0.200 0.000 0.612
#> GSM555260     4  0.6756      0.832 0.188 0.200 0.000 0.612
#> GSM555262     2  0.0817      0.955 0.000 0.976 0.000 0.024
#> GSM555264     4  0.4277      0.586 0.280 0.000 0.000 0.720
#> GSM555266     2  0.0592      0.960 0.000 0.984 0.000 0.016
#> GSM555268     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555270     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555272     4  0.6756      0.832 0.188 0.200 0.000 0.612
#> GSM555274     2  0.3726      0.702 0.000 0.788 0.000 0.212
#> GSM555276     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555277     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555279     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555281     2  0.0188      0.967 0.000 0.996 0.000 0.004
#> GSM555283     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555285     2  0.4382      0.516 0.000 0.704 0.000 0.296
#> GSM555287     3  0.4277      0.000 0.000 0.000 0.720 0.280
#> GSM555289     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555291     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555293     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555295     2  0.0336      0.965 0.000 0.992 0.000 0.008
#> GSM555297     4  0.6229      0.869 0.204 0.132 0.000 0.664
#> GSM555299     1  0.4277      0.736 0.720 0.000 0.280 0.000
#> GSM555301     1  0.5448      0.742 0.700 0.000 0.244 0.056
#> GSM555303     1  0.5697      0.717 0.664 0.000 0.280 0.056
#> GSM555305     1  0.5697      0.717 0.664 0.000 0.280 0.056
#> GSM555307     2  0.1211      0.941 0.000 0.960 0.000 0.040
#> GSM555309     1  0.4277      0.736 0.720 0.000 0.280 0.000
#> GSM555311     2  0.1211      0.941 0.000 0.960 0.000 0.040
#> GSM555313     2  0.0817      0.955 0.000 0.976 0.000 0.024
#> GSM555315     2  0.1211      0.941 0.000 0.960 0.000 0.040
#> GSM555278     2  0.0469      0.962 0.000 0.988 0.000 0.012
#> GSM555280     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555282     2  0.0592      0.960 0.000 0.984 0.000 0.016
#> GSM555284     2  0.0817      0.955 0.000 0.976 0.000 0.024
#> GSM555286     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555288     2  0.0707      0.957 0.000 0.980 0.000 0.020
#> GSM555290     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555292     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555294     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555296     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555298     1  0.5448      0.742 0.700 0.000 0.244 0.056
#> GSM555300     1  0.4277      0.736 0.720 0.000 0.280 0.000
#> GSM555302     1  0.5697      0.717 0.664 0.000 0.280 0.056
#> GSM555304     1  0.5697      0.717 0.664 0.000 0.280 0.056
#> GSM555306     1  0.5697      0.717 0.664 0.000 0.280 0.056
#> GSM555308     1  0.4277      0.736 0.720 0.000 0.280 0.000
#> GSM555310     1  0.5697      0.717 0.664 0.000 0.280 0.056
#> GSM555312     2  0.0817      0.955 0.000 0.976 0.000 0.024
#> GSM555314     2  0.1211      0.941 0.000 0.960 0.000 0.040
#> GSM555316     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555317     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555319     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555321     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555323     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555325     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555327     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555329     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555331     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555333     2  0.1211      0.941 0.000 0.960 0.000 0.040
#> GSM555335     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555337     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555339     2  0.1211      0.941 0.000 0.960 0.000 0.040
#> GSM555341     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555343     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555345     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555318     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555320     2  0.1118      0.942 0.000 0.964 0.000 0.036
#> GSM555322     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555324     1  0.4277      0.736 0.720 0.000 0.280 0.000
#> GSM555326     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555328     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555330     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555332     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555334     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555336     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555338     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555340     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555342     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555344     2  0.0000      0.969 0.000 1.000 0.000 0.000
#> GSM555346     2  0.3873      0.661 0.000 0.772 0.000 0.228

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4 p5
#> GSM555237     1  0.0609     0.9220 0.980 0.000 0.020 0.000  0
#> GSM555239     1  0.0000     0.9347 1.000 0.000 0.000 0.000  0
#> GSM555241     1  0.0000     0.9347 1.000 0.000 0.000 0.000  0
#> GSM555243     1  0.0000     0.9347 1.000 0.000 0.000 0.000  0
#> GSM555245     1  0.0000     0.9347 1.000 0.000 0.000 0.000  0
#> GSM555247     1  0.0000     0.9347 1.000 0.000 0.000 0.000  0
#> GSM555249     1  0.0000     0.9347 1.000 0.000 0.000 0.000  0
#> GSM555251     1  0.0000     0.9347 1.000 0.000 0.000 0.000  0
#> GSM555253     1  0.0000     0.9347 1.000 0.000 0.000 0.000  0
#> GSM555255     1  0.0000     0.9347 1.000 0.000 0.000 0.000  0
#> GSM555257     4  0.6618     0.0446 0.388 0.000 0.216 0.396  0
#> GSM555259     1  0.6044     0.4212 0.576 0.000 0.188 0.236  0
#> GSM555261     4  0.2954     0.7937 0.004 0.064 0.056 0.876  0
#> GSM555263     4  0.2228     0.7980 0.004 0.076 0.012 0.908  0
#> GSM555265     4  0.2954     0.7937 0.004 0.064 0.056 0.876  0
#> GSM555267     4  0.2650     0.8018 0.004 0.068 0.036 0.892  0
#> GSM555269     1  0.6044     0.4212 0.576 0.000 0.188 0.236  0
#> GSM555271     1  0.5534     0.4729 0.604 0.000 0.300 0.096  0
#> GSM555273     2  0.4747     0.0813 0.000 0.500 0.016 0.484  0
#> GSM555275     2  0.2408     0.9057 0.000 0.892 0.016 0.092  0
#> GSM555238     1  0.0000     0.9347 1.000 0.000 0.000 0.000  0
#> GSM555240     1  0.0609     0.9220 0.980 0.000 0.020 0.000  0
#> GSM555242     1  0.0609     0.9220 0.980 0.000 0.020 0.000  0
#> GSM555244     1  0.0000     0.9347 1.000 0.000 0.000 0.000  0
#> GSM555246     1  0.0000     0.9347 1.000 0.000 0.000 0.000  0
#> GSM555248     1  0.0000     0.9347 1.000 0.000 0.000 0.000  0
#> GSM555250     1  0.0000     0.9347 1.000 0.000 0.000 0.000  0
#> GSM555252     1  0.0609     0.9220 0.980 0.000 0.020 0.000  0
#> GSM555254     1  0.0000     0.9347 1.000 0.000 0.000 0.000  0
#> GSM555256     1  0.0000     0.9347 1.000 0.000 0.000 0.000  0
#> GSM555258     4  0.2740     0.7695 0.000 0.096 0.028 0.876  0
#> GSM555260     4  0.2740     0.7695 0.000 0.096 0.028 0.876  0
#> GSM555262     2  0.2046     0.9256 0.000 0.916 0.016 0.068  0
#> GSM555264     4  0.2573     0.6137 0.016 0.000 0.104 0.880  0
#> GSM555266     2  0.1638     0.9335 0.000 0.932 0.004 0.064  0
#> GSM555268     2  0.0000     0.9470 0.000 1.000 0.000 0.000  0
#> GSM555270     2  0.0162     0.9463 0.000 0.996 0.000 0.004  0
#> GSM555272     4  0.2740     0.7695 0.000 0.096 0.028 0.876  0
#> GSM555274     2  0.4114     0.6622 0.000 0.712 0.016 0.272  0
#> GSM555276     2  0.0000     0.9470 0.000 1.000 0.000 0.000  0
#> GSM555277     2  0.1205     0.9406 0.000 0.956 0.004 0.040  0
#> GSM555279     2  0.1357     0.9390 0.000 0.948 0.004 0.048  0
#> GSM555281     2  0.1670     0.9355 0.000 0.936 0.012 0.052  0
#> GSM555283     2  0.1205     0.9406 0.000 0.956 0.004 0.040  0
#> GSM555285     2  0.4151     0.5019 0.000 0.652 0.004 0.344  0
#> GSM555287     5  0.0000     0.0000 0.000 0.000 0.000 0.000  1
#> GSM555289     2  0.0162     0.9463 0.000 0.996 0.000 0.004  0
#> GSM555291     2  0.1205     0.9406 0.000 0.956 0.004 0.040  0
#> GSM555293     2  0.0510     0.9467 0.000 0.984 0.000 0.016  0
#> GSM555295     2  0.1557     0.9368 0.000 0.940 0.008 0.052  0
#> GSM555297     4  0.3569     0.7870 0.040 0.072 0.036 0.852  0
#> GSM555299     3  0.2561     0.9268 0.144 0.000 0.856 0.000  0
#> GSM555301     3  0.2179     0.9256 0.112 0.000 0.888 0.000  0
#> GSM555303     3  0.1671     0.9440 0.076 0.000 0.924 0.000  0
#> GSM555305     3  0.1671     0.9440 0.076 0.000 0.924 0.000  0
#> GSM555307     2  0.2351     0.9085 0.000 0.896 0.016 0.088  0
#> GSM555309     3  0.2561     0.9268 0.144 0.000 0.856 0.000  0
#> GSM555311     2  0.2408     0.9057 0.000 0.892 0.016 0.092  0
#> GSM555313     2  0.1831     0.9246 0.000 0.920 0.004 0.076  0
#> GSM555315     2  0.2351     0.9085 0.000 0.896 0.016 0.088  0
#> GSM555278     2  0.0404     0.9448 0.000 0.988 0.000 0.012  0
#> GSM555280     2  0.0000     0.9470 0.000 1.000 0.000 0.000  0
#> GSM555282     2  0.1845     0.9318 0.000 0.928 0.016 0.056  0
#> GSM555284     2  0.2046     0.9256 0.000 0.916 0.016 0.068  0
#> GSM555286     2  0.0162     0.9463 0.000 0.996 0.000 0.004  0
#> GSM555288     2  0.2172     0.9206 0.000 0.908 0.016 0.076  0
#> GSM555290     2  0.0162     0.9463 0.000 0.996 0.000 0.004  0
#> GSM555292     2  0.0000     0.9470 0.000 1.000 0.000 0.000  0
#> GSM555294     2  0.0510     0.9467 0.000 0.984 0.000 0.016  0
#> GSM555296     2  0.1282     0.9400 0.000 0.952 0.004 0.044  0
#> GSM555298     3  0.2179     0.9256 0.112 0.000 0.888 0.000  0
#> GSM555300     3  0.2561     0.9268 0.144 0.000 0.856 0.000  0
#> GSM555302     3  0.1671     0.9440 0.076 0.000 0.924 0.000  0
#> GSM555304     3  0.1671     0.9440 0.076 0.000 0.924 0.000  0
#> GSM555306     3  0.1671     0.9440 0.076 0.000 0.924 0.000  0
#> GSM555308     3  0.2561     0.9268 0.144 0.000 0.856 0.000  0
#> GSM555310     3  0.1671     0.9440 0.076 0.000 0.924 0.000  0
#> GSM555312     2  0.1831     0.9246 0.000 0.920 0.004 0.076  0
#> GSM555314     2  0.2408     0.9057 0.000 0.892 0.016 0.092  0
#> GSM555316     2  0.0000     0.9470 0.000 1.000 0.000 0.000  0
#> GSM555317     2  0.0162     0.9474 0.000 0.996 0.000 0.004  0
#> GSM555319     2  0.0162     0.9463 0.000 0.996 0.000 0.004  0
#> GSM555321     2  0.0162     0.9463 0.000 0.996 0.000 0.004  0
#> GSM555323     2  0.0609     0.9471 0.000 0.980 0.000 0.020  0
#> GSM555325     2  0.0162     0.9463 0.000 0.996 0.000 0.004  0
#> GSM555327     2  0.0162     0.9474 0.000 0.996 0.000 0.004  0
#> GSM555329     2  0.0162     0.9463 0.000 0.996 0.000 0.004  0
#> GSM555331     2  0.0000     0.9470 0.000 1.000 0.000 0.000  0
#> GSM555333     2  0.2351     0.9085 0.000 0.896 0.016 0.088  0
#> GSM555335     2  0.0703     0.9455 0.000 0.976 0.000 0.024  0
#> GSM555337     2  0.0162     0.9463 0.000 0.996 0.000 0.004  0
#> GSM555339     2  0.2351     0.9085 0.000 0.896 0.016 0.088  0
#> GSM555341     2  0.0955     0.9440 0.000 0.968 0.004 0.028  0
#> GSM555343     2  0.0609     0.9460 0.000 0.980 0.000 0.020  0
#> GSM555345     2  0.1408     0.9400 0.000 0.948 0.008 0.044  0
#> GSM555318     2  0.0162     0.9474 0.000 0.996 0.000 0.004  0
#> GSM555320     2  0.0963     0.9311 0.000 0.964 0.000 0.036  0
#> GSM555322     2  0.0162     0.9463 0.000 0.996 0.000 0.004  0
#> GSM555324     3  0.2561     0.9268 0.144 0.000 0.856 0.000  0
#> GSM555326     2  0.0162     0.9463 0.000 0.996 0.000 0.004  0
#> GSM555328     2  0.0162     0.9474 0.000 0.996 0.000 0.004  0
#> GSM555330     2  0.0000     0.9470 0.000 1.000 0.000 0.000  0
#> GSM555332     2  0.0000     0.9470 0.000 1.000 0.000 0.000  0
#> GSM555334     2  0.0000     0.9470 0.000 1.000 0.000 0.000  0
#> GSM555336     2  0.0162     0.9463 0.000 0.996 0.000 0.004  0
#> GSM555338     2  0.0000     0.9470 0.000 1.000 0.000 0.000  0
#> GSM555340     2  0.0000     0.9470 0.000 1.000 0.000 0.000  0
#> GSM555342     2  0.0955     0.9440 0.000 0.968 0.004 0.028  0
#> GSM555344     2  0.0703     0.9455 0.000 0.976 0.000 0.024  0
#> GSM555346     2  0.3814     0.6451 0.000 0.720 0.004 0.276  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4 p5 p6
#> GSM555237     1  0.0547     0.8996 0.980 0.000 0.020 0.000  0 NA
#> GSM555239     1  0.0000     0.9119 1.000 0.000 0.000 0.000  0 NA
#> GSM555241     1  0.0000     0.9119 1.000 0.000 0.000 0.000  0 NA
#> GSM555243     1  0.0000     0.9119 1.000 0.000 0.000 0.000  0 NA
#> GSM555245     1  0.0000     0.9119 1.000 0.000 0.000 0.000  0 NA
#> GSM555247     1  0.0000     0.9119 1.000 0.000 0.000 0.000  0 NA
#> GSM555249     1  0.0000     0.9119 1.000 0.000 0.000 0.000  0 NA
#> GSM555251     1  0.0000     0.9119 1.000 0.000 0.000 0.000  0 NA
#> GSM555253     1  0.0000     0.9119 1.000 0.000 0.000 0.000  0 NA
#> GSM555255     1  0.0000     0.9119 1.000 0.000 0.000 0.000  0 NA
#> GSM555257     4  0.7631    -0.0399 0.208 0.000 0.200 0.320  0 NA
#> GSM555259     1  0.7174     0.0958 0.424 0.000 0.140 0.156  0 NA
#> GSM555261     4  0.1594     0.6965 0.000 0.000 0.052 0.932  0 NA
#> GSM555263     4  0.1036     0.7088 0.000 0.004 0.008 0.964  0 NA
#> GSM555265     4  0.1594     0.6965 0.000 0.000 0.052 0.932  0 NA
#> GSM555267     4  0.1390     0.7075 0.000 0.004 0.032 0.948  0 NA
#> GSM555269     1  0.7174     0.0958 0.424 0.000 0.140 0.156  0 NA
#> GSM555271     1  0.6439     0.0902 0.424 0.000 0.284 0.020  0 NA
#> GSM555273     4  0.5956     0.1430 0.000 0.224 0.000 0.420  0 NA
#> GSM555275     2  0.3102     0.8384 0.000 0.816 0.000 0.156  0 NA
#> GSM555238     1  0.0000     0.9119 1.000 0.000 0.000 0.000  0 NA
#> GSM555240     1  0.0547     0.8996 0.980 0.000 0.020 0.000  0 NA
#> GSM555242     1  0.0547     0.8996 0.980 0.000 0.020 0.000  0 NA
#> GSM555244     1  0.0000     0.9119 1.000 0.000 0.000 0.000  0 NA
#> GSM555246     1  0.0000     0.9119 1.000 0.000 0.000 0.000  0 NA
#> GSM555248     1  0.0000     0.9119 1.000 0.000 0.000 0.000  0 NA
#> GSM555250     1  0.0000     0.9119 1.000 0.000 0.000 0.000  0 NA
#> GSM555252     1  0.0547     0.8996 0.980 0.000 0.020 0.000  0 NA
#> GSM555254     1  0.0000     0.9119 1.000 0.000 0.000 0.000  0 NA
#> GSM555256     1  0.0000     0.9119 1.000 0.000 0.000 0.000  0 NA
#> GSM555258     4  0.1564     0.6917 0.000 0.024 0.000 0.936  0 NA
#> GSM555260     4  0.1564     0.6917 0.000 0.024 0.000 0.936  0 NA
#> GSM555262     2  0.2094     0.9027 0.000 0.900 0.000 0.080  0 NA
#> GSM555264     4  0.4757     0.2103 0.000 0.000 0.048 0.480  0 NA
#> GSM555266     2  0.1802     0.9102 0.000 0.916 0.000 0.072  0 NA
#> GSM555268     2  0.0000     0.9256 0.000 1.000 0.000 0.000  0 NA
#> GSM555270     2  0.0146     0.9250 0.000 0.996 0.000 0.004  0 NA
#> GSM555272     4  0.1564     0.6917 0.000 0.024 0.000 0.936  0 NA
#> GSM555274     2  0.3990     0.6456 0.000 0.688 0.000 0.284  0 NA
#> GSM555276     2  0.0000     0.9256 0.000 1.000 0.000 0.000  0 NA
#> GSM555277     2  0.1265     0.9185 0.000 0.948 0.000 0.044  0 NA
#> GSM555279     2  0.1584     0.9132 0.000 0.928 0.000 0.064  0 NA
#> GSM555281     2  0.1838     0.9099 0.000 0.916 0.000 0.068  0 NA
#> GSM555283     2  0.1333     0.9179 0.000 0.944 0.000 0.048  0 NA
#> GSM555285     2  0.6081    -0.1736 0.000 0.384 0.000 0.276  0 NA
#> GSM555287     5  0.0000     0.0000 0.000 0.000 0.000 0.000  1 NA
#> GSM555289     2  0.0146     0.9250 0.000 0.996 0.000 0.004  0 NA
#> GSM555291     2  0.1333     0.9179 0.000 0.944 0.000 0.048  0 NA
#> GSM555293     2  0.0806     0.9253 0.000 0.972 0.000 0.020  0 NA
#> GSM555295     2  0.2450     0.8804 0.000 0.868 0.000 0.116  0 NA
#> GSM555297     4  0.2357     0.6933 0.036 0.008 0.032 0.908  0 NA
#> GSM555299     3  0.2513     0.8821 0.008 0.000 0.852 0.000  0 NA
#> GSM555301     3  0.0865     0.8907 0.036 0.000 0.964 0.000  0 NA
#> GSM555303     3  0.0000     0.9206 0.000 0.000 1.000 0.000  0 NA
#> GSM555305     3  0.0000     0.9206 0.000 0.000 1.000 0.000  0 NA
#> GSM555307     2  0.3027     0.8442 0.000 0.824 0.000 0.148  0 NA
#> GSM555309     3  0.2513     0.8821 0.008 0.000 0.852 0.000  0 NA
#> GSM555311     2  0.3102     0.8384 0.000 0.816 0.000 0.156  0 NA
#> GSM555313     2  0.2653     0.8602 0.000 0.844 0.000 0.144  0 NA
#> GSM555315     2  0.3027     0.8442 0.000 0.824 0.000 0.148  0 NA
#> GSM555278     2  0.0692     0.9245 0.000 0.976 0.000 0.020  0 NA
#> GSM555280     2  0.0000     0.9256 0.000 1.000 0.000 0.000  0 NA
#> GSM555282     2  0.1950     0.9083 0.000 0.912 0.000 0.064  0 NA
#> GSM555284     2  0.2094     0.9027 0.000 0.900 0.000 0.080  0 NA
#> GSM555286     2  0.0146     0.9250 0.000 0.996 0.000 0.004  0 NA
#> GSM555288     2  0.2309     0.8969 0.000 0.888 0.000 0.084  0 NA
#> GSM555290     2  0.0146     0.9250 0.000 0.996 0.000 0.004  0 NA
#> GSM555292     2  0.0291     0.9262 0.000 0.992 0.000 0.004  0 NA
#> GSM555294     2  0.0806     0.9253 0.000 0.972 0.000 0.020  0 NA
#> GSM555296     2  0.2212     0.8872 0.000 0.880 0.000 0.112  0 NA
#> GSM555298     3  0.0865     0.8907 0.036 0.000 0.964 0.000  0 NA
#> GSM555300     3  0.2513     0.8821 0.008 0.000 0.852 0.000  0 NA
#> GSM555302     3  0.0000     0.9206 0.000 0.000 1.000 0.000  0 NA
#> GSM555304     3  0.0000     0.9206 0.000 0.000 1.000 0.000  0 NA
#> GSM555306     3  0.0000     0.9206 0.000 0.000 1.000 0.000  0 NA
#> GSM555308     3  0.2513     0.8821 0.008 0.000 0.852 0.000  0 NA
#> GSM555310     3  0.0000     0.9206 0.000 0.000 1.000 0.000  0 NA
#> GSM555312     2  0.2653     0.8602 0.000 0.844 0.000 0.144  0 NA
#> GSM555314     2  0.3102     0.8384 0.000 0.816 0.000 0.156  0 NA
#> GSM555316     2  0.0000     0.9256 0.000 1.000 0.000 0.000  0 NA
#> GSM555317     2  0.0146     0.9260 0.000 0.996 0.000 0.004  0 NA
#> GSM555319     2  0.0146     0.9250 0.000 0.996 0.000 0.004  0 NA
#> GSM555321     2  0.0146     0.9250 0.000 0.996 0.000 0.004  0 NA
#> GSM555323     2  0.0993     0.9252 0.000 0.964 0.000 0.024  0 NA
#> GSM555325     2  0.0520     0.9223 0.000 0.984 0.000 0.008  0 NA
#> GSM555327     2  0.0146     0.9260 0.000 0.996 0.000 0.004  0 NA
#> GSM555329     2  0.0146     0.9250 0.000 0.996 0.000 0.004  0 NA
#> GSM555331     2  0.0000     0.9256 0.000 1.000 0.000 0.000  0 NA
#> GSM555333     2  0.3027     0.8442 0.000 0.824 0.000 0.148  0 NA
#> GSM555335     2  0.0993     0.9250 0.000 0.964 0.000 0.024  0 NA
#> GSM555337     2  0.0146     0.9250 0.000 0.996 0.000 0.004  0 NA
#> GSM555339     2  0.3027     0.8442 0.000 0.824 0.000 0.148  0 NA
#> GSM555341     2  0.1049     0.9218 0.000 0.960 0.000 0.032  0 NA
#> GSM555343     2  0.1088     0.9242 0.000 0.960 0.000 0.024  0 NA
#> GSM555345     2  0.1434     0.9192 0.000 0.940 0.000 0.048  0 NA
#> GSM555318     2  0.0146     0.9260 0.000 0.996 0.000 0.004  0 NA
#> GSM555320     2  0.4223     0.6443 0.000 0.720 0.000 0.076  0 NA
#> GSM555322     2  0.0146     0.9250 0.000 0.996 0.000 0.004  0 NA
#> GSM555324     3  0.2513     0.8821 0.008 0.000 0.852 0.000  0 NA
#> GSM555326     2  0.0146     0.9250 0.000 0.996 0.000 0.004  0 NA
#> GSM555328     2  0.0146     0.9260 0.000 0.996 0.000 0.004  0 NA
#> GSM555330     2  0.0000     0.9256 0.000 1.000 0.000 0.000  0 NA
#> GSM555332     2  0.0000     0.9256 0.000 1.000 0.000 0.000  0 NA
#> GSM555334     2  0.0000     0.9256 0.000 1.000 0.000 0.000  0 NA
#> GSM555336     2  0.0508     0.9222 0.000 0.984 0.000 0.004  0 NA
#> GSM555338     2  0.0146     0.9254 0.000 0.996 0.000 0.000  0 NA
#> GSM555340     2  0.0146     0.9254 0.000 0.996 0.000 0.000  0 NA
#> GSM555342     2  0.1049     0.9218 0.000 0.960 0.000 0.032  0 NA
#> GSM555344     2  0.0891     0.9232 0.000 0.968 0.000 0.024  0 NA
#> GSM555346     2  0.5963     0.0532 0.000 0.452 0.000 0.272  0 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) agent(p) k
#> MAD:hclust 101         2.27e-08    0.940 2
#> MAD:hclust 105         5.02e-09    0.883 3
#> MAD:hclust 105         5.02e-09    0.883 4
#> MAD:hclust 104         3.14e-16    0.869 5
#> MAD:hclust 101         1.21e-15    0.750 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.998       0.999         0.4629 0.538   0.538
#> 3 3 0.671           0.787       0.878         0.2607 0.871   0.764
#> 4 4 0.631           0.460       0.715         0.1665 0.873   0.712
#> 5 5 0.671           0.801       0.795         0.0974 0.826   0.526
#> 6 6 0.699           0.562       0.778         0.0697 0.955   0.817

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1   0.000      1.000 1.000 0.000
#> GSM555239     1   0.000      1.000 1.000 0.000
#> GSM555241     1   0.000      1.000 1.000 0.000
#> GSM555243     1   0.000      1.000 1.000 0.000
#> GSM555245     1   0.000      1.000 1.000 0.000
#> GSM555247     1   0.000      1.000 1.000 0.000
#> GSM555249     1   0.000      1.000 1.000 0.000
#> GSM555251     1   0.000      1.000 1.000 0.000
#> GSM555253     1   0.000      1.000 1.000 0.000
#> GSM555255     1   0.000      1.000 1.000 0.000
#> GSM555257     1   0.000      1.000 1.000 0.000
#> GSM555259     1   0.000      1.000 1.000 0.000
#> GSM555261     2   0.000      0.999 0.000 1.000
#> GSM555263     2   0.000      0.999 0.000 1.000
#> GSM555265     1   0.000      1.000 1.000 0.000
#> GSM555267     2   0.000      0.999 0.000 1.000
#> GSM555269     1   0.000      1.000 1.000 0.000
#> GSM555271     1   0.000      1.000 1.000 0.000
#> GSM555273     2   0.000      0.999 0.000 1.000
#> GSM555275     2   0.000      0.999 0.000 1.000
#> GSM555238     1   0.000      1.000 1.000 0.000
#> GSM555240     1   0.000      1.000 1.000 0.000
#> GSM555242     1   0.000      1.000 1.000 0.000
#> GSM555244     1   0.000      1.000 1.000 0.000
#> GSM555246     1   0.000      1.000 1.000 0.000
#> GSM555248     1   0.000      1.000 1.000 0.000
#> GSM555250     1   0.000      1.000 1.000 0.000
#> GSM555252     1   0.000      1.000 1.000 0.000
#> GSM555254     1   0.000      1.000 1.000 0.000
#> GSM555256     1   0.000      1.000 1.000 0.000
#> GSM555258     2   0.000      0.999 0.000 1.000
#> GSM555260     2   0.000      0.999 0.000 1.000
#> GSM555262     2   0.000      0.999 0.000 1.000
#> GSM555264     1   0.000      1.000 1.000 0.000
#> GSM555266     2   0.000      0.999 0.000 1.000
#> GSM555268     2   0.000      0.999 0.000 1.000
#> GSM555270     2   0.000      0.999 0.000 1.000
#> GSM555272     2   0.000      0.999 0.000 1.000
#> GSM555274     2   0.000      0.999 0.000 1.000
#> GSM555276     2   0.000      0.999 0.000 1.000
#> GSM555277     2   0.000      0.999 0.000 1.000
#> GSM555279     2   0.000      0.999 0.000 1.000
#> GSM555281     2   0.000      0.999 0.000 1.000
#> GSM555283     2   0.000      0.999 0.000 1.000
#> GSM555285     2   0.000      0.999 0.000 1.000
#> GSM555287     2   0.456      0.894 0.096 0.904
#> GSM555289     2   0.000      0.999 0.000 1.000
#> GSM555291     2   0.000      0.999 0.000 1.000
#> GSM555293     2   0.000      0.999 0.000 1.000
#> GSM555295     2   0.000      0.999 0.000 1.000
#> GSM555297     2   0.000      0.999 0.000 1.000
#> GSM555299     1   0.000      1.000 1.000 0.000
#> GSM555301     1   0.000      1.000 1.000 0.000
#> GSM555303     1   0.000      1.000 1.000 0.000
#> GSM555305     1   0.000      1.000 1.000 0.000
#> GSM555307     2   0.000      0.999 0.000 1.000
#> GSM555309     1   0.000      1.000 1.000 0.000
#> GSM555311     2   0.000      0.999 0.000 1.000
#> GSM555313     2   0.000      0.999 0.000 1.000
#> GSM555315     2   0.000      0.999 0.000 1.000
#> GSM555278     2   0.000      0.999 0.000 1.000
#> GSM555280     2   0.000      0.999 0.000 1.000
#> GSM555282     2   0.000      0.999 0.000 1.000
#> GSM555284     2   0.000      0.999 0.000 1.000
#> GSM555286     2   0.000      0.999 0.000 1.000
#> GSM555288     2   0.000      0.999 0.000 1.000
#> GSM555290     2   0.000      0.999 0.000 1.000
#> GSM555292     2   0.000      0.999 0.000 1.000
#> GSM555294     2   0.000      0.999 0.000 1.000
#> GSM555296     2   0.000      0.999 0.000 1.000
#> GSM555298     1   0.000      1.000 1.000 0.000
#> GSM555300     1   0.000      1.000 1.000 0.000
#> GSM555302     1   0.000      1.000 1.000 0.000
#> GSM555304     1   0.000      1.000 1.000 0.000
#> GSM555306     1   0.000      1.000 1.000 0.000
#> GSM555308     1   0.000      1.000 1.000 0.000
#> GSM555310     1   0.000      1.000 1.000 0.000
#> GSM555312     2   0.000      0.999 0.000 1.000
#> GSM555314     2   0.000      0.999 0.000 1.000
#> GSM555316     2   0.000      0.999 0.000 1.000
#> GSM555317     2   0.000      0.999 0.000 1.000
#> GSM555319     2   0.000      0.999 0.000 1.000
#> GSM555321     2   0.000      0.999 0.000 1.000
#> GSM555323     2   0.000      0.999 0.000 1.000
#> GSM555325     2   0.000      0.999 0.000 1.000
#> GSM555327     2   0.000      0.999 0.000 1.000
#> GSM555329     2   0.000      0.999 0.000 1.000
#> GSM555331     2   0.000      0.999 0.000 1.000
#> GSM555333     2   0.000      0.999 0.000 1.000
#> GSM555335     2   0.000      0.999 0.000 1.000
#> GSM555337     2   0.000      0.999 0.000 1.000
#> GSM555339     2   0.000      0.999 0.000 1.000
#> GSM555341     2   0.000      0.999 0.000 1.000
#> GSM555343     2   0.000      0.999 0.000 1.000
#> GSM555345     2   0.000      0.999 0.000 1.000
#> GSM555318     2   0.000      0.999 0.000 1.000
#> GSM555320     2   0.000      0.999 0.000 1.000
#> GSM555322     2   0.000      0.999 0.000 1.000
#> GSM555324     1   0.000      1.000 1.000 0.000
#> GSM555326     2   0.000      0.999 0.000 1.000
#> GSM555328     2   0.000      0.999 0.000 1.000
#> GSM555330     2   0.000      0.999 0.000 1.000
#> GSM555332     2   0.000      0.999 0.000 1.000
#> GSM555334     2   0.000      0.999 0.000 1.000
#> GSM555336     2   0.000      0.999 0.000 1.000
#> GSM555338     2   0.000      0.999 0.000 1.000
#> GSM555340     2   0.000      0.999 0.000 1.000
#> GSM555342     2   0.000      0.999 0.000 1.000
#> GSM555344     2   0.000      0.999 0.000 1.000
#> GSM555346     2   0.000      0.999 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.0747     0.8757 0.984 0.000 0.016
#> GSM555239     1  0.0000     0.8815 1.000 0.000 0.000
#> GSM555241     1  0.0000     0.8815 1.000 0.000 0.000
#> GSM555243     1  0.0000     0.8815 1.000 0.000 0.000
#> GSM555245     1  0.0000     0.8815 1.000 0.000 0.000
#> GSM555247     1  0.0000     0.8815 1.000 0.000 0.000
#> GSM555249     1  0.0000     0.8815 1.000 0.000 0.000
#> GSM555251     1  0.0000     0.8815 1.000 0.000 0.000
#> GSM555253     1  0.0000     0.8815 1.000 0.000 0.000
#> GSM555255     1  0.0000     0.8815 1.000 0.000 0.000
#> GSM555257     3  0.6299    -0.1260 0.476 0.000 0.524
#> GSM555259     3  0.5529    -0.0238 0.296 0.000 0.704
#> GSM555261     3  0.5138     0.7099 0.000 0.252 0.748
#> GSM555263     3  0.5497     0.6689 0.000 0.292 0.708
#> GSM555265     3  0.5521     0.7015 0.032 0.180 0.788
#> GSM555267     3  0.5138     0.7099 0.000 0.252 0.748
#> GSM555269     3  0.5529    -0.0238 0.296 0.000 0.704
#> GSM555271     1  0.5327     0.8125 0.728 0.000 0.272
#> GSM555273     2  0.5327     0.6857 0.000 0.728 0.272
#> GSM555275     2  0.5291     0.6917 0.000 0.732 0.268
#> GSM555238     1  0.0000     0.8815 1.000 0.000 0.000
#> GSM555240     1  0.0892     0.8740 0.980 0.000 0.020
#> GSM555242     1  0.0000     0.8815 1.000 0.000 0.000
#> GSM555244     1  0.0000     0.8815 1.000 0.000 0.000
#> GSM555246     1  0.0000     0.8815 1.000 0.000 0.000
#> GSM555248     1  0.0000     0.8815 1.000 0.000 0.000
#> GSM555250     1  0.0000     0.8815 1.000 0.000 0.000
#> GSM555252     1  0.0000     0.8815 1.000 0.000 0.000
#> GSM555254     1  0.0000     0.8815 1.000 0.000 0.000
#> GSM555256     1  0.0000     0.8815 1.000 0.000 0.000
#> GSM555258     3  0.5254     0.7006 0.000 0.264 0.736
#> GSM555260     3  0.5591     0.6471 0.000 0.304 0.696
#> GSM555262     2  0.5254     0.6916 0.000 0.736 0.264
#> GSM555264     3  0.5810     0.3108 0.336 0.000 0.664
#> GSM555266     2  0.0592     0.8784 0.000 0.988 0.012
#> GSM555268     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555270     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555272     3  0.5397     0.6812 0.000 0.280 0.720
#> GSM555274     2  0.5138     0.7057 0.000 0.748 0.252
#> GSM555276     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555277     2  0.3267     0.8182 0.000 0.884 0.116
#> GSM555279     2  0.5291     0.6917 0.000 0.732 0.268
#> GSM555281     2  0.5291     0.6917 0.000 0.732 0.268
#> GSM555283     2  0.5138     0.7057 0.000 0.748 0.252
#> GSM555285     2  0.5291     0.6917 0.000 0.732 0.268
#> GSM555287     3  0.4842     0.7100 0.000 0.224 0.776
#> GSM555289     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555291     2  0.5178     0.7013 0.000 0.744 0.256
#> GSM555293     2  0.0237     0.8805 0.000 0.996 0.004
#> GSM555295     2  0.5327     0.6857 0.000 0.728 0.272
#> GSM555297     3  0.5254     0.7006 0.000 0.264 0.736
#> GSM555299     1  0.5138     0.8213 0.748 0.000 0.252
#> GSM555301     1  0.5905     0.7342 0.648 0.000 0.352
#> GSM555303     1  0.5291     0.8152 0.732 0.000 0.268
#> GSM555305     1  0.5291     0.8152 0.732 0.000 0.268
#> GSM555307     2  0.5254     0.6916 0.000 0.736 0.264
#> GSM555309     1  0.5138     0.8213 0.748 0.000 0.252
#> GSM555311     2  0.5291     0.6917 0.000 0.732 0.268
#> GSM555313     2  0.0424     0.8786 0.000 0.992 0.008
#> GSM555315     2  0.5291     0.6917 0.000 0.732 0.268
#> GSM555278     2  0.0237     0.8805 0.000 0.996 0.004
#> GSM555280     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555282     2  0.4654     0.7465 0.000 0.792 0.208
#> GSM555284     2  0.5291     0.6917 0.000 0.732 0.268
#> GSM555286     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555288     3  0.6180     0.3546 0.000 0.416 0.584
#> GSM555290     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555292     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555294     2  0.0237     0.8805 0.000 0.996 0.004
#> GSM555296     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555298     1  0.5905     0.7342 0.648 0.000 0.352
#> GSM555300     1  0.5138     0.8213 0.748 0.000 0.252
#> GSM555302     1  0.5291     0.8152 0.732 0.000 0.268
#> GSM555304     1  0.5291     0.8152 0.732 0.000 0.268
#> GSM555306     1  0.5291     0.8152 0.732 0.000 0.268
#> GSM555308     1  0.5138     0.8213 0.748 0.000 0.252
#> GSM555310     1  0.5291     0.8152 0.732 0.000 0.268
#> GSM555312     2  0.5138     0.7057 0.000 0.748 0.252
#> GSM555314     2  0.5327     0.6857 0.000 0.728 0.272
#> GSM555316     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555317     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555319     2  0.0237     0.8805 0.000 0.996 0.004
#> GSM555321     2  0.0237     0.8805 0.000 0.996 0.004
#> GSM555323     2  0.0237     0.8805 0.000 0.996 0.004
#> GSM555325     2  0.0237     0.8805 0.000 0.996 0.004
#> GSM555327     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555329     2  0.0237     0.8805 0.000 0.996 0.004
#> GSM555331     2  0.0237     0.8805 0.000 0.996 0.004
#> GSM555333     2  0.5291     0.6917 0.000 0.732 0.268
#> GSM555335     2  0.1031     0.8729 0.000 0.976 0.024
#> GSM555337     2  0.0237     0.8805 0.000 0.996 0.004
#> GSM555339     2  0.3941     0.7906 0.000 0.844 0.156
#> GSM555341     2  0.3816     0.7962 0.000 0.852 0.148
#> GSM555343     2  0.0237     0.8805 0.000 0.996 0.004
#> GSM555345     2  0.3816     0.7962 0.000 0.852 0.148
#> GSM555318     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555320     2  0.0237     0.8805 0.000 0.996 0.004
#> GSM555322     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555324     1  0.5138     0.8213 0.748 0.000 0.252
#> GSM555326     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555328     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555330     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555332     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555334     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555336     2  0.0237     0.8805 0.000 0.996 0.004
#> GSM555338     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555340     2  0.0237     0.8805 0.000 0.996 0.004
#> GSM555342     2  0.0237     0.8805 0.000 0.996 0.004
#> GSM555344     2  0.0000     0.8809 0.000 1.000 0.000
#> GSM555346     2  0.0237     0.8805 0.000 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.0188      0.779 0.996 0.000 0.004 0.000
#> GSM555239     1  0.0000      0.782 1.000 0.000 0.000 0.000
#> GSM555241     1  0.0000      0.782 1.000 0.000 0.000 0.000
#> GSM555243     1  0.0000      0.782 1.000 0.000 0.000 0.000
#> GSM555245     1  0.0000      0.782 1.000 0.000 0.000 0.000
#> GSM555247     1  0.0000      0.782 1.000 0.000 0.000 0.000
#> GSM555249     1  0.0000      0.782 1.000 0.000 0.000 0.000
#> GSM555251     1  0.0000      0.782 1.000 0.000 0.000 0.000
#> GSM555253     1  0.0000      0.782 1.000 0.000 0.000 0.000
#> GSM555255     1  0.0000      0.782 1.000 0.000 0.000 0.000
#> GSM555257     3  0.5508      0.438 0.020 0.000 0.572 0.408
#> GSM555259     3  0.5398      0.442 0.016 0.000 0.580 0.404
#> GSM555261     4  0.5168     -0.391 0.000 0.004 0.496 0.500
#> GSM555263     4  0.5407     -0.369 0.000 0.012 0.484 0.504
#> GSM555265     4  0.5168     -0.391 0.000 0.004 0.496 0.500
#> GSM555267     4  0.5168     -0.391 0.000 0.004 0.496 0.500
#> GSM555269     3  0.5398      0.442 0.016 0.000 0.580 0.404
#> GSM555271     3  0.4992     -0.456 0.476 0.000 0.524 0.000
#> GSM555273     4  0.5039     -0.122 0.000 0.404 0.004 0.592
#> GSM555275     4  0.4981     -0.158 0.000 0.464 0.000 0.536
#> GSM555238     1  0.0000      0.782 1.000 0.000 0.000 0.000
#> GSM555240     1  0.0707      0.765 0.980 0.000 0.020 0.000
#> GSM555242     1  0.0000      0.782 1.000 0.000 0.000 0.000
#> GSM555244     1  0.0000      0.782 1.000 0.000 0.000 0.000
#> GSM555246     1  0.0000      0.782 1.000 0.000 0.000 0.000
#> GSM555248     1  0.0000      0.782 1.000 0.000 0.000 0.000
#> GSM555250     1  0.0000      0.782 1.000 0.000 0.000 0.000
#> GSM555252     1  0.0469      0.771 0.988 0.000 0.012 0.000
#> GSM555254     1  0.0000      0.782 1.000 0.000 0.000 0.000
#> GSM555256     1  0.0000      0.782 1.000 0.000 0.000 0.000
#> GSM555258     4  0.5408     -0.374 0.000 0.012 0.488 0.500
#> GSM555260     4  0.5343     -0.190 0.000 0.028 0.316 0.656
#> GSM555262     2  0.4866      0.286 0.000 0.596 0.000 0.404
#> GSM555264     3  0.5288      0.352 0.008 0.000 0.520 0.472
#> GSM555266     2  0.5080      0.413 0.000 0.576 0.004 0.420
#> GSM555268     2  0.1211      0.756 0.000 0.960 0.000 0.040
#> GSM555270     2  0.1022      0.755 0.000 0.968 0.000 0.032
#> GSM555272     4  0.5406     -0.366 0.000 0.012 0.480 0.508
#> GSM555274     2  0.4776      0.350 0.000 0.624 0.000 0.376
#> GSM555276     2  0.0000      0.760 0.000 1.000 0.000 0.000
#> GSM555277     2  0.4790      0.409 0.000 0.620 0.000 0.380
#> GSM555279     4  0.4981     -0.165 0.000 0.464 0.000 0.536
#> GSM555281     4  0.4981     -0.158 0.000 0.464 0.000 0.536
#> GSM555283     2  0.4925      0.318 0.000 0.572 0.000 0.428
#> GSM555285     4  0.5097     -0.170 0.000 0.428 0.004 0.568
#> GSM555287     3  0.4998      0.298 0.000 0.000 0.512 0.488
#> GSM555289     2  0.1302      0.762 0.000 0.956 0.000 0.044
#> GSM555291     2  0.4977      0.235 0.000 0.540 0.000 0.460
#> GSM555293     2  0.3448      0.734 0.000 0.828 0.004 0.168
#> GSM555295     4  0.4948     -0.110 0.000 0.440 0.000 0.560
#> GSM555297     4  0.5408     -0.374 0.000 0.012 0.488 0.500
#> GSM555299     1  0.4992      0.462 0.524 0.000 0.476 0.000
#> GSM555301     3  0.4888     -0.321 0.412 0.000 0.588 0.000
#> GSM555303     1  0.4994      0.458 0.520 0.000 0.480 0.000
#> GSM555305     1  0.4994      0.458 0.520 0.000 0.480 0.000
#> GSM555307     2  0.4967      0.252 0.000 0.548 0.000 0.452
#> GSM555309     1  0.4992      0.462 0.524 0.000 0.476 0.000
#> GSM555311     4  0.4977     -0.153 0.000 0.460 0.000 0.540
#> GSM555313     2  0.4522      0.471 0.000 0.680 0.000 0.320
#> GSM555315     4  0.5147     -0.157 0.000 0.460 0.004 0.536
#> GSM555278     2  0.4889      0.511 0.000 0.636 0.004 0.360
#> GSM555280     2  0.0188      0.760 0.000 0.996 0.000 0.004
#> GSM555282     2  0.4624      0.427 0.000 0.660 0.000 0.340
#> GSM555284     2  0.4967      0.227 0.000 0.548 0.000 0.452
#> GSM555286     2  0.1022      0.755 0.000 0.968 0.000 0.032
#> GSM555288     4  0.5457      0.214 0.000 0.184 0.088 0.728
#> GSM555290     2  0.0188      0.760 0.000 0.996 0.000 0.004
#> GSM555292     2  0.3726      0.605 0.000 0.788 0.000 0.212
#> GSM555294     2  0.3105      0.737 0.000 0.856 0.004 0.140
#> GSM555296     2  0.1557      0.752 0.000 0.944 0.000 0.056
#> GSM555298     3  0.4888     -0.321 0.412 0.000 0.588 0.000
#> GSM555300     1  0.4992      0.462 0.524 0.000 0.476 0.000
#> GSM555302     1  0.4994      0.458 0.520 0.000 0.480 0.000
#> GSM555304     1  0.4994      0.458 0.520 0.000 0.480 0.000
#> GSM555306     1  0.4994      0.458 0.520 0.000 0.480 0.000
#> GSM555308     1  0.4992      0.462 0.524 0.000 0.476 0.000
#> GSM555310     1  0.4994      0.458 0.520 0.000 0.480 0.000
#> GSM555312     2  0.4790      0.348 0.000 0.620 0.000 0.380
#> GSM555314     4  0.4948     -0.110 0.000 0.440 0.000 0.560
#> GSM555316     2  0.0000      0.760 0.000 1.000 0.000 0.000
#> GSM555317     2  0.1474      0.760 0.000 0.948 0.000 0.052
#> GSM555319     2  0.3074      0.742 0.000 0.848 0.000 0.152
#> GSM555321     2  0.3172      0.738 0.000 0.840 0.000 0.160
#> GSM555323     2  0.3311      0.734 0.000 0.828 0.000 0.172
#> GSM555325     2  0.3626      0.730 0.000 0.812 0.004 0.184
#> GSM555327     2  0.1474      0.760 0.000 0.948 0.000 0.052
#> GSM555329     2  0.3074      0.742 0.000 0.848 0.000 0.152
#> GSM555331     2  0.2760      0.746 0.000 0.872 0.000 0.128
#> GSM555333     4  0.4977     -0.148 0.000 0.460 0.000 0.540
#> GSM555335     2  0.3610      0.716 0.000 0.800 0.000 0.200
#> GSM555337     2  0.3123      0.740 0.000 0.844 0.000 0.156
#> GSM555339     2  0.4981      0.241 0.000 0.536 0.000 0.464
#> GSM555341     2  0.4304      0.568 0.000 0.716 0.000 0.284
#> GSM555343     2  0.3448      0.734 0.000 0.828 0.004 0.168
#> GSM555345     2  0.4134      0.598 0.000 0.740 0.000 0.260
#> GSM555318     2  0.1302      0.762 0.000 0.956 0.000 0.044
#> GSM555320     2  0.2888      0.739 0.000 0.872 0.004 0.124
#> GSM555322     2  0.1022      0.755 0.000 0.968 0.000 0.032
#> GSM555324     1  0.4992      0.462 0.524 0.000 0.476 0.000
#> GSM555326     2  0.1022      0.755 0.000 0.968 0.000 0.032
#> GSM555328     2  0.0188      0.760 0.000 0.996 0.000 0.004
#> GSM555330     2  0.0000      0.760 0.000 1.000 0.000 0.000
#> GSM555332     2  0.0188      0.760 0.000 0.996 0.000 0.004
#> GSM555334     2  0.0188      0.760 0.000 0.996 0.000 0.004
#> GSM555336     2  0.2530      0.741 0.000 0.888 0.000 0.112
#> GSM555338     2  0.1557      0.759 0.000 0.944 0.000 0.056
#> GSM555340     2  0.3219      0.737 0.000 0.836 0.000 0.164
#> GSM555342     2  0.3539      0.730 0.000 0.820 0.004 0.176
#> GSM555344     2  0.0921      0.759 0.000 0.972 0.000 0.028
#> GSM555346     2  0.4088      0.702 0.000 0.764 0.004 0.232

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM555237     1  0.1197      0.963 0.952 0.000 0.000 0.000 0.048
#> GSM555239     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> GSM555241     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> GSM555243     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> GSM555245     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> GSM555247     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> GSM555249     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> GSM555255     1  0.1197      0.963 0.952 0.000 0.000 0.000 0.048
#> GSM555257     4  0.1082      0.945 0.000 0.000 0.028 0.964 0.008
#> GSM555259     4  0.0404      0.953 0.000 0.000 0.012 0.988 0.000
#> GSM555261     4  0.0290      0.958 0.000 0.000 0.000 0.992 0.008
#> GSM555263     4  0.0290      0.958 0.000 0.000 0.000 0.992 0.008
#> GSM555265     4  0.0290      0.958 0.000 0.000 0.000 0.992 0.008
#> GSM555267     4  0.0290      0.958 0.000 0.000 0.000 0.992 0.008
#> GSM555269     4  0.0404      0.953 0.000 0.000 0.012 0.988 0.000
#> GSM555271     3  0.4915      0.963 0.268 0.000 0.684 0.020 0.028
#> GSM555273     5  0.5229      0.723 0.000 0.192 0.080 0.020 0.708
#> GSM555275     5  0.3300      0.822 0.000 0.204 0.000 0.004 0.792
#> GSM555238     1  0.1197      0.963 0.952 0.000 0.000 0.000 0.048
#> GSM555240     1  0.1357      0.960 0.948 0.000 0.000 0.004 0.048
#> GSM555242     1  0.1197      0.963 0.952 0.000 0.000 0.000 0.048
#> GSM555244     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.1357      0.960 0.948 0.000 0.000 0.004 0.048
#> GSM555254     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> GSM555256     1  0.1197      0.963 0.952 0.000 0.000 0.000 0.048
#> GSM555258     4  0.0898      0.955 0.000 0.000 0.008 0.972 0.020
#> GSM555260     4  0.4276      0.643 0.000 0.000 0.028 0.716 0.256
#> GSM555262     5  0.4794      0.768 0.000 0.344 0.032 0.000 0.624
#> GSM555264     4  0.1493      0.946 0.000 0.000 0.024 0.948 0.028
#> GSM555266     5  0.4956      0.756 0.000 0.316 0.048 0.000 0.636
#> GSM555268     2  0.1701      0.736 0.000 0.936 0.048 0.000 0.016
#> GSM555270     2  0.0955      0.744 0.000 0.968 0.028 0.000 0.004
#> GSM555272     4  0.0992      0.953 0.000 0.000 0.008 0.968 0.024
#> GSM555274     5  0.4849      0.758 0.000 0.360 0.032 0.000 0.608
#> GSM555276     2  0.2153      0.734 0.000 0.916 0.040 0.000 0.044
#> GSM555277     5  0.4941      0.743 0.000 0.328 0.044 0.000 0.628
#> GSM555279     5  0.3039      0.817 0.000 0.192 0.000 0.000 0.808
#> GSM555281     5  0.3489      0.823 0.000 0.208 0.004 0.004 0.784
#> GSM555283     5  0.4268      0.808 0.000 0.268 0.024 0.000 0.708
#> GSM555285     5  0.5870      0.611 0.000 0.208 0.168 0.004 0.620
#> GSM555287     4  0.2645      0.897 0.000 0.000 0.044 0.888 0.068
#> GSM555289     2  0.3085      0.735 0.000 0.852 0.032 0.000 0.116
#> GSM555291     5  0.4039      0.812 0.000 0.268 0.008 0.004 0.720
#> GSM555293     2  0.5155      0.673 0.000 0.692 0.168 0.000 0.140
#> GSM555295     5  0.4107      0.817 0.000 0.192 0.016 0.020 0.772
#> GSM555297     4  0.0510      0.956 0.000 0.000 0.000 0.984 0.016
#> GSM555299     3  0.4822      0.970 0.288 0.000 0.664 0.000 0.048
#> GSM555301     3  0.4243      0.956 0.264 0.000 0.712 0.024 0.000
#> GSM555303     3  0.4464      0.973 0.288 0.000 0.684 0.000 0.028
#> GSM555305     3  0.3730      0.973 0.288 0.000 0.712 0.000 0.000
#> GSM555307     5  0.4692      0.778 0.000 0.276 0.024 0.012 0.688
#> GSM555309     3  0.4822      0.970 0.288 0.000 0.664 0.000 0.048
#> GSM555311     5  0.3900      0.810 0.000 0.180 0.020 0.012 0.788
#> GSM555313     5  0.4794      0.772 0.000 0.344 0.032 0.000 0.624
#> GSM555315     5  0.4426      0.789 0.000 0.196 0.052 0.004 0.748
#> GSM555278     5  0.5216      0.569 0.000 0.436 0.044 0.000 0.520
#> GSM555280     2  0.1818      0.732 0.000 0.932 0.024 0.000 0.044
#> GSM555282     5  0.4886      0.745 0.000 0.372 0.032 0.000 0.596
#> GSM555284     5  0.4716      0.785 0.000 0.308 0.036 0.000 0.656
#> GSM555286     2  0.0955      0.744 0.000 0.968 0.028 0.000 0.004
#> GSM555288     5  0.6190      0.588 0.000 0.140 0.028 0.208 0.624
#> GSM555290     2  0.1282      0.744 0.000 0.952 0.004 0.000 0.044
#> GSM555292     2  0.4974     -0.314 0.000 0.560 0.032 0.000 0.408
#> GSM555294     2  0.4734      0.654 0.000 0.732 0.160 0.000 0.108
#> GSM555296     2  0.4136      0.547 0.000 0.764 0.048 0.000 0.188
#> GSM555298     3  0.4243      0.956 0.264 0.000 0.712 0.024 0.000
#> GSM555300     3  0.4822      0.970 0.288 0.000 0.664 0.000 0.048
#> GSM555302     3  0.3730      0.973 0.288 0.000 0.712 0.000 0.000
#> GSM555304     3  0.3730      0.973 0.288 0.000 0.712 0.000 0.000
#> GSM555306     3  0.3730      0.973 0.288 0.000 0.712 0.000 0.000
#> GSM555308     3  0.4822      0.970 0.288 0.000 0.664 0.000 0.048
#> GSM555310     3  0.3730      0.973 0.288 0.000 0.712 0.000 0.000
#> GSM555312     5  0.4779      0.775 0.000 0.340 0.032 0.000 0.628
#> GSM555314     5  0.3777      0.819 0.000 0.192 0.004 0.020 0.784
#> GSM555316     2  0.1364      0.747 0.000 0.952 0.012 0.000 0.036
#> GSM555317     2  0.3291      0.729 0.000 0.840 0.040 0.000 0.120
#> GSM555319     2  0.4591      0.705 0.000 0.748 0.120 0.000 0.132
#> GSM555321     2  0.4720      0.699 0.000 0.736 0.124 0.000 0.140
#> GSM555323     2  0.5385      0.551 0.000 0.624 0.088 0.000 0.288
#> GSM555325     2  0.5478      0.635 0.000 0.656 0.164 0.000 0.180
#> GSM555327     2  0.3002      0.733 0.000 0.856 0.028 0.000 0.116
#> GSM555329     2  0.4591      0.705 0.000 0.748 0.120 0.000 0.132
#> GSM555331     2  0.4455      0.707 0.000 0.744 0.068 0.000 0.188
#> GSM555333     5  0.4048      0.818 0.000 0.196 0.016 0.016 0.772
#> GSM555335     2  0.5559      0.413 0.000 0.572 0.084 0.000 0.344
#> GSM555337     2  0.4679      0.702 0.000 0.740 0.124 0.000 0.136
#> GSM555339     5  0.4910      0.766 0.000 0.276 0.048 0.004 0.672
#> GSM555341     2  0.5165      0.217 0.000 0.576 0.048 0.000 0.376
#> GSM555343     2  0.5195      0.670 0.000 0.688 0.168 0.000 0.144
#> GSM555345     2  0.5329      0.301 0.000 0.584 0.052 0.004 0.360
#> GSM555318     2  0.3389      0.726 0.000 0.836 0.048 0.000 0.116
#> GSM555320     2  0.4158      0.677 0.000 0.784 0.124 0.000 0.092
#> GSM555322     2  0.1251      0.746 0.000 0.956 0.036 0.000 0.008
#> GSM555324     3  0.4822      0.970 0.288 0.000 0.664 0.000 0.048
#> GSM555326     2  0.0955      0.744 0.000 0.968 0.028 0.000 0.004
#> GSM555328     2  0.2153      0.727 0.000 0.916 0.040 0.000 0.044
#> GSM555330     2  0.2230      0.729 0.000 0.912 0.044 0.000 0.044
#> GSM555332     2  0.2304      0.727 0.000 0.908 0.048 0.000 0.044
#> GSM555334     2  0.2077      0.728 0.000 0.920 0.040 0.000 0.040
#> GSM555336     2  0.3759      0.704 0.000 0.808 0.136 0.000 0.056
#> GSM555338     2  0.3386      0.731 0.000 0.832 0.040 0.000 0.128
#> GSM555340     2  0.4764      0.698 0.000 0.732 0.128 0.000 0.140
#> GSM555342     2  0.5233      0.602 0.000 0.684 0.168 0.000 0.148
#> GSM555344     2  0.3201      0.685 0.000 0.852 0.052 0.000 0.096
#> GSM555346     2  0.6040      0.357 0.000 0.560 0.156 0.000 0.284

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM555237     1  0.2118     0.9223 0.888 0.000 0.000 0.008 0.000 0.104
#> GSM555239     1  0.0405     0.9561 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM555241     1  0.0146     0.9587 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM555243     1  0.0000     0.9593 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000     0.9593 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000     0.9593 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000     0.9593 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000     0.9593 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0405     0.9561 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM555255     1  0.2006     0.9266 0.892 0.000 0.000 0.000 0.004 0.104
#> GSM555257     4  0.1088     0.9235 0.000 0.000 0.016 0.960 0.000 0.024
#> GSM555259     4  0.0458     0.9242 0.000 0.000 0.016 0.984 0.000 0.000
#> GSM555261     4  0.0363     0.9301 0.000 0.000 0.000 0.988 0.012 0.000
#> GSM555263     4  0.0713     0.9272 0.000 0.000 0.000 0.972 0.028 0.000
#> GSM555265     4  0.0260     0.9299 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM555267     4  0.0363     0.9301 0.000 0.000 0.000 0.988 0.012 0.000
#> GSM555269     4  0.0458     0.9242 0.000 0.000 0.016 0.984 0.000 0.000
#> GSM555271     3  0.3560     0.9571 0.176 0.000 0.788 0.020 0.000 0.016
#> GSM555273     5  0.5490     0.5729 0.000 0.084 0.048 0.008 0.664 0.196
#> GSM555275     5  0.2095     0.7138 0.000 0.040 0.012 0.008 0.920 0.020
#> GSM555238     1  0.2006     0.9246 0.892 0.000 0.000 0.004 0.000 0.104
#> GSM555240     1  0.2118     0.9223 0.888 0.000 0.000 0.008 0.000 0.104
#> GSM555242     1  0.2006     0.9246 0.892 0.000 0.000 0.004 0.000 0.104
#> GSM555244     1  0.0000     0.9593 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000     0.9593 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000     0.9593 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000     0.9593 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.2006     0.9246 0.892 0.000 0.000 0.004 0.000 0.104
#> GSM555254     1  0.0405     0.9561 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM555256     1  0.2006     0.9246 0.892 0.000 0.000 0.004 0.000 0.104
#> GSM555258     4  0.1390     0.9264 0.000 0.000 0.004 0.948 0.016 0.032
#> GSM555260     4  0.5504     0.3947 0.000 0.000 0.044 0.568 0.332 0.056
#> GSM555262     5  0.4386     0.6714 0.000 0.080 0.048 0.000 0.768 0.104
#> GSM555264     4  0.2766     0.8873 0.000 0.000 0.028 0.868 0.012 0.092
#> GSM555266     5  0.4737     0.6228 0.000 0.120 0.016 0.000 0.712 0.152
#> GSM555268     2  0.4971     0.1090 0.000 0.640 0.044 0.000 0.032 0.284
#> GSM555270     2  0.3716     0.2801 0.000 0.732 0.008 0.000 0.012 0.248
#> GSM555272     4  0.1478     0.9258 0.000 0.000 0.004 0.944 0.020 0.032
#> GSM555274     5  0.4391     0.6731 0.000 0.084 0.048 0.000 0.768 0.100
#> GSM555276     2  0.4879    -0.2129 0.000 0.544 0.000 0.000 0.064 0.392
#> GSM555277     5  0.4074     0.6611 0.000 0.060 0.028 0.000 0.780 0.132
#> GSM555279     5  0.1963     0.7161 0.000 0.044 0.012 0.004 0.924 0.016
#> GSM555281     5  0.1750     0.7173 0.000 0.040 0.012 0.000 0.932 0.016
#> GSM555283     5  0.3306     0.7043 0.000 0.056 0.052 0.000 0.848 0.044
#> GSM555285     5  0.6852     0.3506 0.000 0.240 0.060 0.008 0.484 0.208
#> GSM555287     4  0.3752     0.8327 0.000 0.000 0.060 0.800 0.016 0.124
#> GSM555289     2  0.5051     0.0667 0.000 0.652 0.020 0.000 0.080 0.248
#> GSM555291     5  0.3423     0.7069 0.000 0.056 0.052 0.008 0.848 0.036
#> GSM555293     2  0.3694     0.3585 0.000 0.808 0.024 0.000 0.048 0.120
#> GSM555295     5  0.2919     0.7042 0.000 0.040 0.020 0.008 0.876 0.056
#> GSM555297     4  0.1296     0.9200 0.000 0.000 0.004 0.952 0.032 0.012
#> GSM555299     3  0.3755     0.9567 0.192 0.000 0.768 0.000 0.012 0.028
#> GSM555301     3  0.4031     0.9498 0.168 0.000 0.768 0.028 0.000 0.036
#> GSM555303     3  0.2871     0.9626 0.192 0.000 0.804 0.000 0.004 0.000
#> GSM555305     3  0.3691     0.9632 0.192 0.000 0.768 0.004 0.000 0.036
#> GSM555307     5  0.4082     0.6452 0.000 0.052 0.016 0.008 0.780 0.144
#> GSM555309     3  0.3931     0.9527 0.192 0.000 0.756 0.000 0.008 0.044
#> GSM555311     5  0.2840     0.7063 0.000 0.048 0.016 0.008 0.880 0.048
#> GSM555313     5  0.4059     0.6398 0.000 0.088 0.004 0.000 0.760 0.148
#> GSM555315     5  0.4063     0.6665 0.000 0.048 0.028 0.008 0.792 0.124
#> GSM555278     5  0.5906     0.4870 0.000 0.184 0.044 0.000 0.600 0.172
#> GSM555280     2  0.5436    -0.1198 0.000 0.572 0.036 0.000 0.060 0.332
#> GSM555282     5  0.4995     0.6091 0.000 0.088 0.044 0.000 0.704 0.164
#> GSM555284     5  0.4145     0.6721 0.000 0.068 0.040 0.000 0.784 0.108
#> GSM555286     2  0.3788     0.2795 0.000 0.732 0.012 0.000 0.012 0.244
#> GSM555288     5  0.4386     0.6805 0.000 0.040 0.048 0.064 0.796 0.052
#> GSM555290     2  0.5065     0.0550 0.000 0.628 0.032 0.000 0.048 0.292
#> GSM555292     5  0.6444     0.2549 0.000 0.224 0.056 0.000 0.524 0.196
#> GSM555294     2  0.4438     0.3225 0.000 0.720 0.032 0.000 0.036 0.212
#> GSM555296     6  0.6042     0.0000 0.000 0.392 0.004 0.000 0.208 0.396
#> GSM555298     3  0.4172     0.9456 0.168 0.000 0.760 0.036 0.000 0.036
#> GSM555300     3  0.3755     0.9567 0.192 0.000 0.768 0.000 0.012 0.028
#> GSM555302     3  0.3691     0.9632 0.192 0.000 0.768 0.004 0.000 0.036
#> GSM555304     3  0.3691     0.9632 0.192 0.000 0.768 0.004 0.000 0.036
#> GSM555306     3  0.3691     0.9632 0.192 0.000 0.768 0.004 0.000 0.036
#> GSM555308     3  0.3755     0.9567 0.192 0.000 0.768 0.000 0.012 0.028
#> GSM555310     3  0.3691     0.9632 0.192 0.000 0.768 0.004 0.000 0.036
#> GSM555312     5  0.3618     0.6865 0.000 0.080 0.008 0.000 0.808 0.104
#> GSM555314     5  0.2334     0.7115 0.000 0.040 0.012 0.008 0.908 0.032
#> GSM555316     2  0.4496     0.0836 0.000 0.644 0.004 0.000 0.044 0.308
#> GSM555317     2  0.5177    -0.1035 0.000 0.604 0.008 0.000 0.096 0.292
#> GSM555319     2  0.1155     0.4122 0.000 0.956 0.004 0.000 0.036 0.004
#> GSM555321     2  0.2172     0.4061 0.000 0.912 0.020 0.000 0.044 0.024
#> GSM555323     2  0.6207    -0.2554 0.000 0.480 0.016 0.000 0.236 0.268
#> GSM555325     2  0.4050     0.3414 0.000 0.784 0.028 0.000 0.064 0.124
#> GSM555327     2  0.4790     0.0421 0.000 0.648 0.004 0.000 0.080 0.268
#> GSM555329     2  0.1155     0.4122 0.000 0.956 0.004 0.000 0.036 0.004
#> GSM555331     2  0.5298    -0.0392 0.000 0.620 0.008 0.000 0.140 0.232
#> GSM555333     5  0.2919     0.7042 0.000 0.040 0.020 0.008 0.876 0.056
#> GSM555335     5  0.6520    -0.4652 0.000 0.340 0.020 0.000 0.364 0.276
#> GSM555337     2  0.1806     0.4102 0.000 0.928 0.020 0.000 0.044 0.008
#> GSM555339     5  0.4598     0.6078 0.000 0.052 0.020 0.008 0.724 0.196
#> GSM555341     5  0.6685    -0.4147 0.000 0.252 0.036 0.000 0.396 0.316
#> GSM555343     2  0.3854     0.3519 0.000 0.796 0.028 0.000 0.048 0.128
#> GSM555345     5  0.6736    -0.4753 0.000 0.292 0.020 0.008 0.372 0.308
#> GSM555318     2  0.5331    -0.1737 0.000 0.576 0.008 0.000 0.104 0.312
#> GSM555320     2  0.4308     0.3216 0.000 0.736 0.024 0.000 0.044 0.196
#> GSM555322     2  0.3420     0.3198 0.000 0.776 0.008 0.000 0.012 0.204
#> GSM555324     3  0.3931     0.9527 0.192 0.000 0.756 0.000 0.008 0.044
#> GSM555326     2  0.3692     0.2841 0.000 0.736 0.008 0.000 0.012 0.244
#> GSM555328     2  0.5186    -0.2184 0.000 0.540 0.012 0.000 0.064 0.384
#> GSM555330     2  0.4933    -0.2524 0.000 0.536 0.000 0.000 0.068 0.396
#> GSM555332     2  0.5050    -0.3627 0.000 0.508 0.000 0.000 0.076 0.416
#> GSM555334     2  0.4970    -0.2271 0.000 0.540 0.004 0.000 0.060 0.396
#> GSM555336     2  0.3110     0.3762 0.000 0.836 0.020 0.000 0.016 0.128
#> GSM555338     2  0.4592     0.0882 0.000 0.664 0.000 0.000 0.080 0.256
#> GSM555340     2  0.2001     0.4084 0.000 0.920 0.020 0.000 0.044 0.016
#> GSM555342     2  0.5356     0.2254 0.000 0.636 0.036 0.000 0.084 0.244
#> GSM555344     2  0.5495    -0.5045 0.000 0.472 0.012 0.000 0.088 0.428
#> GSM555346     2  0.6240     0.1036 0.000 0.532 0.044 0.000 0.160 0.264

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) agent(p) k
#> MAD:kmeans 110         4.33e-07    1.000 2
#> MAD:kmeans 105         6.84e-08    0.556 3
#> MAD:kmeans  60         3.31e-11    0.517 4
#> MAD:kmeans 105         3.42e-19    0.156 5
#> MAD:kmeans  68         1.52e-07    0.317 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.996       0.998         0.4856 0.516   0.516
#> 3 3 0.916           0.931       0.946         0.1817 0.905   0.817
#> 4 4 0.752           0.855       0.892         0.1385 0.949   0.882
#> 5 5 0.701           0.712       0.851         0.1624 0.828   0.562
#> 6 6 0.705           0.564       0.741         0.0511 0.918   0.661

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette  p1  p2
#> GSM555237     1   0.000      1.000 1.0 0.0
#> GSM555239     1   0.000      1.000 1.0 0.0
#> GSM555241     1   0.000      1.000 1.0 0.0
#> GSM555243     1   0.000      1.000 1.0 0.0
#> GSM555245     1   0.000      1.000 1.0 0.0
#> GSM555247     1   0.000      1.000 1.0 0.0
#> GSM555249     1   0.000      1.000 1.0 0.0
#> GSM555251     1   0.000      1.000 1.0 0.0
#> GSM555253     1   0.000      1.000 1.0 0.0
#> GSM555255     1   0.000      1.000 1.0 0.0
#> GSM555257     1   0.000      1.000 1.0 0.0
#> GSM555259     1   0.000      1.000 1.0 0.0
#> GSM555261     1   0.000      1.000 1.0 0.0
#> GSM555263     2   0.000      0.997 0.0 1.0
#> GSM555265     1   0.000      1.000 1.0 0.0
#> GSM555267     1   0.000      1.000 1.0 0.0
#> GSM555269     1   0.000      1.000 1.0 0.0
#> GSM555271     1   0.000      1.000 1.0 0.0
#> GSM555273     2   0.000      0.997 0.0 1.0
#> GSM555275     2   0.000      0.997 0.0 1.0
#> GSM555238     1   0.000      1.000 1.0 0.0
#> GSM555240     1   0.000      1.000 1.0 0.0
#> GSM555242     1   0.000      1.000 1.0 0.0
#> GSM555244     1   0.000      1.000 1.0 0.0
#> GSM555246     1   0.000      1.000 1.0 0.0
#> GSM555248     1   0.000      1.000 1.0 0.0
#> GSM555250     1   0.000      1.000 1.0 0.0
#> GSM555252     1   0.000      1.000 1.0 0.0
#> GSM555254     1   0.000      1.000 1.0 0.0
#> GSM555256     1   0.000      1.000 1.0 0.0
#> GSM555258     1   0.000      1.000 1.0 0.0
#> GSM555260     2   0.000      0.997 0.0 1.0
#> GSM555262     2   0.000      0.997 0.0 1.0
#> GSM555264     1   0.000      1.000 1.0 0.0
#> GSM555266     2   0.000      0.997 0.0 1.0
#> GSM555268     2   0.000      0.997 0.0 1.0
#> GSM555270     2   0.000      0.997 0.0 1.0
#> GSM555272     2   0.722      0.750 0.2 0.8
#> GSM555274     2   0.000      0.997 0.0 1.0
#> GSM555276     2   0.000      0.997 0.0 1.0
#> GSM555277     2   0.000      0.997 0.0 1.0
#> GSM555279     2   0.000      0.997 0.0 1.0
#> GSM555281     2   0.000      0.997 0.0 1.0
#> GSM555283     2   0.000      0.997 0.0 1.0
#> GSM555285     2   0.000      0.997 0.0 1.0
#> GSM555287     1   0.000      1.000 1.0 0.0
#> GSM555289     2   0.000      0.997 0.0 1.0
#> GSM555291     2   0.000      0.997 0.0 1.0
#> GSM555293     2   0.000      0.997 0.0 1.0
#> GSM555295     2   0.000      0.997 0.0 1.0
#> GSM555297     1   0.000      1.000 1.0 0.0
#> GSM555299     1   0.000      1.000 1.0 0.0
#> GSM555301     1   0.000      1.000 1.0 0.0
#> GSM555303     1   0.000      1.000 1.0 0.0
#> GSM555305     1   0.000      1.000 1.0 0.0
#> GSM555307     2   0.000      0.997 0.0 1.0
#> GSM555309     1   0.000      1.000 1.0 0.0
#> GSM555311     2   0.000      0.997 0.0 1.0
#> GSM555313     2   0.000      0.997 0.0 1.0
#> GSM555315     2   0.000      0.997 0.0 1.0
#> GSM555278     2   0.000      0.997 0.0 1.0
#> GSM555280     2   0.000      0.997 0.0 1.0
#> GSM555282     2   0.000      0.997 0.0 1.0
#> GSM555284     2   0.000      0.997 0.0 1.0
#> GSM555286     2   0.000      0.997 0.0 1.0
#> GSM555288     2   0.000      0.997 0.0 1.0
#> GSM555290     2   0.000      0.997 0.0 1.0
#> GSM555292     2   0.000      0.997 0.0 1.0
#> GSM555294     2   0.000      0.997 0.0 1.0
#> GSM555296     2   0.000      0.997 0.0 1.0
#> GSM555298     1   0.000      1.000 1.0 0.0
#> GSM555300     1   0.000      1.000 1.0 0.0
#> GSM555302     1   0.000      1.000 1.0 0.0
#> GSM555304     1   0.000      1.000 1.0 0.0
#> GSM555306     1   0.000      1.000 1.0 0.0
#> GSM555308     1   0.000      1.000 1.0 0.0
#> GSM555310     1   0.000      1.000 1.0 0.0
#> GSM555312     2   0.000      0.997 0.0 1.0
#> GSM555314     2   0.000      0.997 0.0 1.0
#> GSM555316     2   0.000      0.997 0.0 1.0
#> GSM555317     2   0.000      0.997 0.0 1.0
#> GSM555319     2   0.000      0.997 0.0 1.0
#> GSM555321     2   0.000      0.997 0.0 1.0
#> GSM555323     2   0.000      0.997 0.0 1.0
#> GSM555325     2   0.000      0.997 0.0 1.0
#> GSM555327     2   0.000      0.997 0.0 1.0
#> GSM555329     2   0.000      0.997 0.0 1.0
#> GSM555331     2   0.000      0.997 0.0 1.0
#> GSM555333     2   0.000      0.997 0.0 1.0
#> GSM555335     2   0.000      0.997 0.0 1.0
#> GSM555337     2   0.000      0.997 0.0 1.0
#> GSM555339     2   0.000      0.997 0.0 1.0
#> GSM555341     2   0.000      0.997 0.0 1.0
#> GSM555343     2   0.000      0.997 0.0 1.0
#> GSM555345     2   0.000      0.997 0.0 1.0
#> GSM555318     2   0.000      0.997 0.0 1.0
#> GSM555320     2   0.000      0.997 0.0 1.0
#> GSM555322     2   0.000      0.997 0.0 1.0
#> GSM555324     1   0.000      1.000 1.0 0.0
#> GSM555326     2   0.000      0.997 0.0 1.0
#> GSM555328     2   0.000      0.997 0.0 1.0
#> GSM555330     2   0.000      0.997 0.0 1.0
#> GSM555332     2   0.000      0.997 0.0 1.0
#> GSM555334     2   0.000      0.997 0.0 1.0
#> GSM555336     2   0.000      0.997 0.0 1.0
#> GSM555338     2   0.000      0.997 0.0 1.0
#> GSM555340     2   0.000      0.997 0.0 1.0
#> GSM555342     2   0.000      0.997 0.0 1.0
#> GSM555344     2   0.000      0.997 0.0 1.0
#> GSM555346     2   0.000      0.997 0.0 1.0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.0000      0.979 1.000 0.000 0.000
#> GSM555239     1  0.0000      0.979 1.000 0.000 0.000
#> GSM555241     1  0.0000      0.979 1.000 0.000 0.000
#> GSM555243     1  0.0000      0.979 1.000 0.000 0.000
#> GSM555245     1  0.0000      0.979 1.000 0.000 0.000
#> GSM555247     1  0.0000      0.979 1.000 0.000 0.000
#> GSM555249     1  0.0000      0.979 1.000 0.000 0.000
#> GSM555251     1  0.0000      0.979 1.000 0.000 0.000
#> GSM555253     1  0.0000      0.979 1.000 0.000 0.000
#> GSM555255     1  0.0000      0.979 1.000 0.000 0.000
#> GSM555257     3  0.3752      0.808 0.144 0.000 0.856
#> GSM555259     3  0.1289      0.823 0.032 0.000 0.968
#> GSM555261     3  0.1031      0.817 0.024 0.000 0.976
#> GSM555263     3  0.3412      0.699 0.000 0.124 0.876
#> GSM555265     3  0.1163      0.820 0.028 0.000 0.972
#> GSM555267     3  0.1163      0.820 0.028 0.000 0.972
#> GSM555269     3  0.1411      0.825 0.036 0.000 0.964
#> GSM555271     3  0.4178      0.879 0.172 0.000 0.828
#> GSM555273     2  0.0237      0.978 0.000 0.996 0.004
#> GSM555275     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555238     1  0.0000      0.979 1.000 0.000 0.000
#> GSM555240     1  0.0000      0.979 1.000 0.000 0.000
#> GSM555242     1  0.0000      0.979 1.000 0.000 0.000
#> GSM555244     1  0.0000      0.979 1.000 0.000 0.000
#> GSM555246     1  0.0000      0.979 1.000 0.000 0.000
#> GSM555248     1  0.0000      0.979 1.000 0.000 0.000
#> GSM555250     1  0.0000      0.979 1.000 0.000 0.000
#> GSM555252     1  0.0000      0.979 1.000 0.000 0.000
#> GSM555254     1  0.0000      0.979 1.000 0.000 0.000
#> GSM555256     1  0.0000      0.979 1.000 0.000 0.000
#> GSM555258     3  0.5785      0.436 0.332 0.000 0.668
#> GSM555260     2  0.3482      0.887 0.000 0.872 0.128
#> GSM555262     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555264     1  0.6062      0.363 0.616 0.000 0.384
#> GSM555266     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555268     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555270     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555272     2  0.8671      0.136 0.104 0.480 0.416
#> GSM555274     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555276     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555277     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555279     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555281     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555283     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555285     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555287     3  0.6274      0.462 0.456 0.000 0.544
#> GSM555289     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555291     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555293     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555295     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555297     3  0.2959      0.855 0.100 0.000 0.900
#> GSM555299     3  0.4605      0.887 0.204 0.000 0.796
#> GSM555301     3  0.4605      0.887 0.204 0.000 0.796
#> GSM555303     3  0.4605      0.887 0.204 0.000 0.796
#> GSM555305     3  0.4605      0.887 0.204 0.000 0.796
#> GSM555307     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555309     3  0.4605      0.887 0.204 0.000 0.796
#> GSM555311     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555313     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555315     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555278     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555280     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555282     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555284     2  0.1163      0.977 0.000 0.972 0.028
#> GSM555286     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555288     2  0.2625      0.932 0.000 0.916 0.084
#> GSM555290     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555292     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555294     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555296     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555298     3  0.4605      0.887 0.204 0.000 0.796
#> GSM555300     3  0.4605      0.887 0.204 0.000 0.796
#> GSM555302     3  0.4605      0.887 0.204 0.000 0.796
#> GSM555304     3  0.4605      0.887 0.204 0.000 0.796
#> GSM555306     3  0.4605      0.887 0.204 0.000 0.796
#> GSM555308     3  0.4605      0.887 0.204 0.000 0.796
#> GSM555310     3  0.4605      0.887 0.204 0.000 0.796
#> GSM555312     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555314     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555316     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555317     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555319     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555321     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555323     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555325     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555327     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555329     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555331     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555333     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555335     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555337     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555339     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555341     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555343     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555345     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555318     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555320     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555322     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555324     3  0.4605      0.887 0.204 0.000 0.796
#> GSM555326     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555328     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555330     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555332     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555334     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555336     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555338     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555340     2  0.0000      0.980 0.000 1.000 0.000
#> GSM555342     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555344     2  0.1031      0.979 0.000 0.976 0.024
#> GSM555346     2  0.1031      0.979 0.000 0.976 0.024

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555239     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555241     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555243     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555245     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555247     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555249     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555251     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555253     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555255     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555257     4  0.5728      0.467 0.036 0.000 0.364 0.600
#> GSM555259     3  0.3942      0.576 0.000 0.000 0.764 0.236
#> GSM555261     4  0.4948      0.368 0.000 0.000 0.440 0.560
#> GSM555263     4  0.5416      0.643 0.000 0.112 0.148 0.740
#> GSM555265     3  0.4040      0.553 0.000 0.000 0.752 0.248
#> GSM555267     3  0.3942      0.578 0.000 0.000 0.764 0.236
#> GSM555269     3  0.0000      0.880 0.000 0.000 1.000 0.000
#> GSM555271     3  0.1118      0.918 0.036 0.000 0.964 0.000
#> GSM555273     2  0.4776      0.437 0.000 0.624 0.000 0.376
#> GSM555275     2  0.1792      0.867 0.000 0.932 0.000 0.068
#> GSM555238     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555240     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555242     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555244     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555246     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555248     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555250     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555252     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555254     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555256     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM555258     4  0.4761      0.669 0.044 0.000 0.192 0.764
#> GSM555260     4  0.2522      0.616 0.000 0.076 0.016 0.908
#> GSM555262     2  0.3610      0.843 0.000 0.800 0.000 0.200
#> GSM555264     4  0.6163      0.608 0.164 0.000 0.160 0.676
#> GSM555266     2  0.3726      0.867 0.000 0.788 0.000 0.212
#> GSM555268     2  0.3172      0.863 0.000 0.840 0.000 0.160
#> GSM555270     2  0.3074      0.866 0.000 0.848 0.000 0.152
#> GSM555272     4  0.4370      0.684 0.000 0.044 0.156 0.800
#> GSM555274     2  0.3486      0.850 0.000 0.812 0.000 0.188
#> GSM555276     2  0.3074      0.867 0.000 0.848 0.000 0.152
#> GSM555277     2  0.1389      0.875 0.000 0.952 0.000 0.048
#> GSM555279     2  0.2408      0.853 0.000 0.896 0.000 0.104
#> GSM555281     2  0.1474      0.879 0.000 0.948 0.000 0.052
#> GSM555283     2  0.2281      0.854 0.000 0.904 0.000 0.096
#> GSM555285     2  0.4605      0.513 0.000 0.664 0.000 0.336
#> GSM555287     3  0.4040      0.603 0.248 0.000 0.752 0.000
#> GSM555289     2  0.1118      0.877 0.000 0.964 0.000 0.036
#> GSM555291     2  0.2011      0.857 0.000 0.920 0.000 0.080
#> GSM555293     2  0.2081      0.858 0.000 0.916 0.000 0.084
#> GSM555295     2  0.2149      0.857 0.000 0.912 0.000 0.088
#> GSM555297     3  0.0592      0.898 0.016 0.000 0.984 0.000
#> GSM555299     3  0.1211      0.921 0.040 0.000 0.960 0.000
#> GSM555301     3  0.1211      0.921 0.040 0.000 0.960 0.000
#> GSM555303     3  0.1211      0.921 0.040 0.000 0.960 0.000
#> GSM555305     3  0.1211      0.921 0.040 0.000 0.960 0.000
#> GSM555307     2  0.0921      0.872 0.000 0.972 0.000 0.028
#> GSM555309     3  0.1211      0.921 0.040 0.000 0.960 0.000
#> GSM555311     2  0.2408      0.852 0.000 0.896 0.000 0.104
#> GSM555313     2  0.3219      0.865 0.000 0.836 0.000 0.164
#> GSM555315     2  0.2149      0.857 0.000 0.912 0.000 0.088
#> GSM555278     2  0.3837      0.865 0.000 0.776 0.000 0.224
#> GSM555280     2  0.3172      0.863 0.000 0.840 0.000 0.160
#> GSM555282     2  0.3649      0.840 0.000 0.796 0.000 0.204
#> GSM555284     2  0.3764      0.836 0.000 0.784 0.000 0.216
#> GSM555286     2  0.3172      0.863 0.000 0.840 0.000 0.160
#> GSM555288     4  0.4500      0.282 0.000 0.316 0.000 0.684
#> GSM555290     2  0.3172      0.863 0.000 0.840 0.000 0.160
#> GSM555292     2  0.3569      0.846 0.000 0.804 0.000 0.196
#> GSM555294     2  0.3569      0.868 0.000 0.804 0.000 0.196
#> GSM555296     2  0.3074      0.867 0.000 0.848 0.000 0.152
#> GSM555298     3  0.1211      0.921 0.040 0.000 0.960 0.000
#> GSM555300     3  0.1211      0.921 0.040 0.000 0.960 0.000
#> GSM555302     3  0.1211      0.921 0.040 0.000 0.960 0.000
#> GSM555304     3  0.1211      0.921 0.040 0.000 0.960 0.000
#> GSM555306     3  0.1211      0.921 0.040 0.000 0.960 0.000
#> GSM555308     3  0.1211      0.921 0.040 0.000 0.960 0.000
#> GSM555310     3  0.1211      0.921 0.040 0.000 0.960 0.000
#> GSM555312     2  0.3219      0.865 0.000 0.836 0.000 0.164
#> GSM555314     2  0.2469      0.851 0.000 0.892 0.000 0.108
#> GSM555316     2  0.3074      0.867 0.000 0.848 0.000 0.152
#> GSM555317     2  0.0469      0.877 0.000 0.988 0.000 0.012
#> GSM555319     2  0.1867      0.863 0.000 0.928 0.000 0.072
#> GSM555321     2  0.2011      0.861 0.000 0.920 0.000 0.080
#> GSM555323     2  0.2011      0.861 0.000 0.920 0.000 0.080
#> GSM555325     2  0.2081      0.858 0.000 0.916 0.000 0.084
#> GSM555327     2  0.0707      0.876 0.000 0.980 0.000 0.020
#> GSM555329     2  0.1940      0.862 0.000 0.924 0.000 0.076
#> GSM555331     2  0.1940      0.863 0.000 0.924 0.000 0.076
#> GSM555333     2  0.2081      0.859 0.000 0.916 0.000 0.084
#> GSM555335     2  0.1940      0.863 0.000 0.924 0.000 0.076
#> GSM555337     2  0.1792      0.865 0.000 0.932 0.000 0.068
#> GSM555339     2  0.1118      0.870 0.000 0.964 0.000 0.036
#> GSM555341     2  0.0336      0.877 0.000 0.992 0.000 0.008
#> GSM555343     2  0.2011      0.860 0.000 0.920 0.000 0.080
#> GSM555345     2  0.0469      0.875 0.000 0.988 0.000 0.012
#> GSM555318     2  0.1557      0.879 0.000 0.944 0.000 0.056
#> GSM555320     2  0.3688      0.867 0.000 0.792 0.000 0.208
#> GSM555322     2  0.3024      0.867 0.000 0.852 0.000 0.148
#> GSM555324     3  0.1211      0.921 0.040 0.000 0.960 0.000
#> GSM555326     2  0.3024      0.867 0.000 0.852 0.000 0.148
#> GSM555328     2  0.3172      0.863 0.000 0.840 0.000 0.160
#> GSM555330     2  0.3074      0.867 0.000 0.848 0.000 0.152
#> GSM555332     2  0.3074      0.867 0.000 0.848 0.000 0.152
#> GSM555334     2  0.3219      0.863 0.000 0.836 0.000 0.164
#> GSM555336     2  0.3610      0.868 0.000 0.800 0.000 0.200
#> GSM555338     2  0.0592      0.874 0.000 0.984 0.000 0.016
#> GSM555340     2  0.2011      0.861 0.000 0.920 0.000 0.080
#> GSM555342     2  0.3569      0.868 0.000 0.804 0.000 0.196
#> GSM555344     2  0.3123      0.866 0.000 0.844 0.000 0.156
#> GSM555346     2  0.3610      0.867 0.000 0.800 0.000 0.200

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM555237     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555239     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555257     4  0.3643      0.721 0.008 0.000 0.212 0.776 0.004
#> GSM555259     3  0.4731     -0.220 0.000 0.000 0.528 0.456 0.016
#> GSM555261     4  0.3061      0.765 0.000 0.000 0.136 0.844 0.020
#> GSM555263     4  0.1894      0.772 0.000 0.000 0.008 0.920 0.072
#> GSM555265     4  0.4752      0.395 0.000 0.000 0.412 0.568 0.020
#> GSM555267     4  0.4821      0.251 0.000 0.000 0.464 0.516 0.020
#> GSM555269     3  0.0912      0.909 0.000 0.000 0.972 0.012 0.016
#> GSM555271     3  0.0290      0.939 0.008 0.000 0.992 0.000 0.000
#> GSM555273     5  0.1893      0.681 0.000 0.048 0.000 0.024 0.928
#> GSM555275     5  0.4165      0.454 0.000 0.320 0.000 0.008 0.672
#> GSM555238     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555240     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555242     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555244     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555254     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555258     4  0.0912      0.786 0.000 0.000 0.016 0.972 0.012
#> GSM555260     4  0.3039      0.694 0.000 0.152 0.000 0.836 0.012
#> GSM555262     2  0.2574      0.694 0.000 0.876 0.000 0.012 0.112
#> GSM555264     4  0.3383      0.766 0.060 0.000 0.072 0.856 0.012
#> GSM555266     2  0.4451     -0.115 0.000 0.504 0.000 0.004 0.492
#> GSM555268     2  0.1952      0.717 0.000 0.912 0.000 0.004 0.084
#> GSM555270     2  0.2074      0.722 0.000 0.896 0.000 0.000 0.104
#> GSM555272     4  0.0566      0.783 0.000 0.000 0.004 0.984 0.012
#> GSM555274     2  0.2179      0.710 0.000 0.896 0.000 0.004 0.100
#> GSM555276     2  0.1544      0.718 0.000 0.932 0.000 0.000 0.068
#> GSM555277     2  0.3395      0.572 0.000 0.764 0.000 0.000 0.236
#> GSM555279     5  0.2074      0.680 0.000 0.104 0.000 0.000 0.896
#> GSM555281     2  0.4227      0.332 0.000 0.580 0.000 0.000 0.420
#> GSM555283     2  0.4201      0.534 0.000 0.664 0.000 0.008 0.328
#> GSM555285     5  0.1670      0.700 0.000 0.052 0.000 0.012 0.936
#> GSM555287     3  0.3777      0.649 0.192 0.000 0.784 0.020 0.004
#> GSM555289     2  0.3305      0.578 0.000 0.776 0.000 0.000 0.224
#> GSM555291     2  0.4582      0.354 0.000 0.572 0.000 0.012 0.416
#> GSM555293     5  0.2648      0.743 0.000 0.152 0.000 0.000 0.848
#> GSM555295     5  0.3123      0.721 0.000 0.160 0.000 0.012 0.828
#> GSM555297     3  0.1981      0.854 0.000 0.000 0.920 0.064 0.016
#> GSM555299     3  0.0290      0.939 0.008 0.000 0.992 0.000 0.000
#> GSM555301     3  0.0290      0.939 0.008 0.000 0.992 0.000 0.000
#> GSM555303     3  0.0290      0.939 0.008 0.000 0.992 0.000 0.000
#> GSM555305     3  0.0290      0.939 0.008 0.000 0.992 0.000 0.000
#> GSM555307     2  0.4557      0.188 0.000 0.584 0.000 0.012 0.404
#> GSM555309     3  0.0290      0.939 0.008 0.000 0.992 0.000 0.000
#> GSM555311     5  0.1877      0.701 0.000 0.064 0.000 0.012 0.924
#> GSM555313     2  0.2068      0.715 0.000 0.904 0.000 0.004 0.092
#> GSM555315     5  0.1965      0.731 0.000 0.096 0.000 0.000 0.904
#> GSM555278     2  0.4276      0.286 0.000 0.616 0.000 0.004 0.380
#> GSM555280     2  0.1704      0.720 0.000 0.928 0.000 0.004 0.068
#> GSM555282     2  0.2361      0.702 0.000 0.892 0.000 0.012 0.096
#> GSM555284     2  0.3727      0.594 0.000 0.768 0.000 0.016 0.216
#> GSM555286     2  0.1671      0.725 0.000 0.924 0.000 0.000 0.076
#> GSM555288     2  0.5715      0.270 0.000 0.564 0.000 0.336 0.100
#> GSM555290     2  0.1410      0.724 0.000 0.940 0.000 0.000 0.060
#> GSM555292     2  0.2462      0.696 0.000 0.880 0.000 0.008 0.112
#> GSM555294     5  0.3913      0.551 0.000 0.324 0.000 0.000 0.676
#> GSM555296     2  0.1608      0.716 0.000 0.928 0.000 0.000 0.072
#> GSM555298     3  0.0290      0.939 0.008 0.000 0.992 0.000 0.000
#> GSM555300     3  0.0290      0.939 0.008 0.000 0.992 0.000 0.000
#> GSM555302     3  0.0290      0.939 0.008 0.000 0.992 0.000 0.000
#> GSM555304     3  0.0290      0.939 0.008 0.000 0.992 0.000 0.000
#> GSM555306     3  0.0290      0.939 0.008 0.000 0.992 0.000 0.000
#> GSM555308     3  0.0290      0.939 0.008 0.000 0.992 0.000 0.000
#> GSM555310     3  0.0290      0.939 0.008 0.000 0.992 0.000 0.000
#> GSM555312     2  0.2011      0.716 0.000 0.908 0.000 0.004 0.088
#> GSM555314     5  0.2864      0.696 0.000 0.136 0.000 0.012 0.852
#> GSM555316     2  0.1544      0.718 0.000 0.932 0.000 0.000 0.068
#> GSM555317     2  0.3816      0.444 0.000 0.696 0.000 0.000 0.304
#> GSM555319     5  0.3730      0.674 0.000 0.288 0.000 0.000 0.712
#> GSM555321     5  0.3366      0.728 0.000 0.232 0.000 0.000 0.768
#> GSM555323     5  0.3895      0.667 0.000 0.320 0.000 0.000 0.680
#> GSM555325     5  0.2074      0.736 0.000 0.104 0.000 0.000 0.896
#> GSM555327     2  0.3661      0.493 0.000 0.724 0.000 0.000 0.276
#> GSM555329     5  0.3661      0.687 0.000 0.276 0.000 0.000 0.724
#> GSM555331     5  0.3983      0.650 0.000 0.340 0.000 0.000 0.660
#> GSM555333     5  0.3480      0.716 0.000 0.248 0.000 0.000 0.752
#> GSM555335     5  0.3949      0.656 0.000 0.332 0.000 0.000 0.668
#> GSM555337     5  0.3534      0.714 0.000 0.256 0.000 0.000 0.744
#> GSM555339     5  0.4297      0.257 0.000 0.472 0.000 0.000 0.528
#> GSM555341     2  0.3895      0.433 0.000 0.680 0.000 0.000 0.320
#> GSM555343     5  0.2561      0.743 0.000 0.144 0.000 0.000 0.856
#> GSM555345     2  0.4171      0.191 0.000 0.604 0.000 0.000 0.396
#> GSM555318     2  0.2929      0.630 0.000 0.820 0.000 0.000 0.180
#> GSM555320     5  0.4306      0.196 0.000 0.492 0.000 0.000 0.508
#> GSM555322     2  0.1965      0.724 0.000 0.904 0.000 0.000 0.096
#> GSM555324     3  0.0290      0.939 0.008 0.000 0.992 0.000 0.000
#> GSM555326     2  0.2127      0.722 0.000 0.892 0.000 0.000 0.108
#> GSM555328     2  0.1270      0.730 0.000 0.948 0.000 0.000 0.052
#> GSM555330     2  0.1544      0.718 0.000 0.932 0.000 0.000 0.068
#> GSM555332     2  0.1544      0.718 0.000 0.932 0.000 0.000 0.068
#> GSM555334     2  0.0963      0.726 0.000 0.964 0.000 0.000 0.036
#> GSM555336     5  0.4182      0.471 0.000 0.400 0.000 0.000 0.600
#> GSM555338     2  0.4201      0.140 0.000 0.592 0.000 0.000 0.408
#> GSM555340     5  0.3534      0.718 0.000 0.256 0.000 0.000 0.744
#> GSM555342     5  0.4304      0.262 0.000 0.484 0.000 0.000 0.516
#> GSM555344     2  0.1270      0.723 0.000 0.948 0.000 0.000 0.052
#> GSM555346     5  0.3913      0.547 0.000 0.324 0.000 0.000 0.676

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM555237     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555239     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555257     4  0.3219     0.6869 0.004 0.000 0.192 0.792 0.000 0.012
#> GSM555259     3  0.6762    -0.3236 0.000 0.000 0.372 0.332 0.040 0.256
#> GSM555261     4  0.6170     0.6244 0.000 0.000 0.136 0.528 0.044 0.292
#> GSM555263     4  0.5438     0.6815 0.000 0.000 0.000 0.548 0.148 0.304
#> GSM555265     4  0.6842     0.3377 0.000 0.000 0.300 0.364 0.044 0.292
#> GSM555267     3  0.6859    -0.3663 0.000 0.000 0.336 0.328 0.044 0.292
#> GSM555269     3  0.3834     0.6610 0.000 0.000 0.768 0.012 0.036 0.184
#> GSM555271     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555273     5  0.1478     0.5277 0.000 0.032 0.000 0.020 0.944 0.004
#> GSM555275     5  0.5353     0.2378 0.000 0.352 0.000 0.000 0.528 0.120
#> GSM555238     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555240     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555242     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555244     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555254     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555258     4  0.0260     0.7757 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM555260     4  0.1956     0.7431 0.000 0.080 0.000 0.908 0.004 0.008
#> GSM555262     2  0.0260     0.5807 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM555264     4  0.2207     0.7634 0.028 0.000 0.032 0.916 0.016 0.008
#> GSM555266     2  0.5223    -0.1377 0.000 0.472 0.000 0.000 0.436 0.092
#> GSM555268     2  0.2704     0.5619 0.000 0.844 0.000 0.000 0.016 0.140
#> GSM555270     2  0.3758     0.3391 0.000 0.668 0.000 0.000 0.008 0.324
#> GSM555272     4  0.0260     0.7757 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM555274     2  0.1387     0.5832 0.000 0.932 0.000 0.000 0.000 0.068
#> GSM555276     6  0.4184     0.1576 0.000 0.484 0.000 0.000 0.012 0.504
#> GSM555277     2  0.5255     0.1486 0.000 0.588 0.000 0.000 0.140 0.272
#> GSM555279     5  0.4328     0.4665 0.000 0.212 0.000 0.000 0.708 0.080
#> GSM555281     2  0.5156     0.2237 0.000 0.616 0.000 0.000 0.232 0.152
#> GSM555283     2  0.4238     0.3296 0.000 0.728 0.000 0.000 0.180 0.092
#> GSM555285     5  0.2687     0.5540 0.000 0.012 0.000 0.024 0.872 0.092
#> GSM555287     3  0.4193     0.5863 0.192 0.000 0.744 0.004 0.008 0.052
#> GSM555289     2  0.5462    -0.1532 0.000 0.476 0.000 0.000 0.124 0.400
#> GSM555291     2  0.4522     0.2662 0.000 0.672 0.000 0.000 0.252 0.076
#> GSM555293     5  0.4047     0.5318 0.000 0.028 0.000 0.000 0.676 0.296
#> GSM555295     5  0.3714     0.3274 0.000 0.004 0.000 0.000 0.656 0.340
#> GSM555297     3  0.2834     0.7599 0.000 0.000 0.852 0.020 0.008 0.120
#> GSM555299     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555301     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555303     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555305     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555307     6  0.5588     0.4118 0.000 0.172 0.000 0.000 0.300 0.528
#> GSM555309     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555311     5  0.2389     0.5215 0.000 0.060 0.000 0.000 0.888 0.052
#> GSM555313     2  0.3261     0.4879 0.000 0.780 0.000 0.000 0.016 0.204
#> GSM555315     5  0.2668     0.5654 0.000 0.004 0.000 0.000 0.828 0.168
#> GSM555278     2  0.2946     0.4802 0.000 0.812 0.000 0.000 0.176 0.012
#> GSM555280     2  0.2320     0.5667 0.000 0.864 0.000 0.000 0.004 0.132
#> GSM555282     2  0.0260     0.5799 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM555284     2  0.1644     0.5592 0.000 0.932 0.000 0.004 0.052 0.012
#> GSM555286     2  0.3298     0.4825 0.000 0.756 0.000 0.000 0.008 0.236
#> GSM555288     2  0.2784     0.5049 0.000 0.848 0.000 0.132 0.012 0.008
#> GSM555290     2  0.3109     0.4973 0.000 0.772 0.000 0.000 0.004 0.224
#> GSM555292     2  0.0146     0.5796 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM555294     5  0.5421     0.4387 0.000 0.212 0.000 0.000 0.580 0.208
#> GSM555296     6  0.4091     0.1682 0.000 0.472 0.000 0.000 0.008 0.520
#> GSM555298     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555300     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555302     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555304     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555306     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555308     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555310     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555312     2  0.3245     0.4637 0.000 0.764 0.000 0.000 0.008 0.228
#> GSM555314     5  0.5047     0.3371 0.000 0.136 0.000 0.000 0.628 0.236
#> GSM555316     6  0.4184     0.1576 0.000 0.484 0.000 0.000 0.012 0.504
#> GSM555317     6  0.5219     0.5533 0.000 0.244 0.000 0.000 0.152 0.604
#> GSM555319     5  0.5271     0.3446 0.000 0.104 0.000 0.000 0.516 0.380
#> GSM555321     5  0.4573     0.4234 0.000 0.044 0.000 0.000 0.584 0.372
#> GSM555323     6  0.4878     0.0188 0.000 0.060 0.000 0.000 0.424 0.516
#> GSM555325     5  0.3217     0.5672 0.000 0.008 0.000 0.000 0.768 0.224
#> GSM555327     6  0.5287     0.5237 0.000 0.272 0.000 0.000 0.144 0.584
#> GSM555329     5  0.5285     0.3547 0.000 0.108 0.000 0.000 0.524 0.368
#> GSM555331     6  0.4812     0.2485 0.000 0.068 0.000 0.000 0.344 0.588
#> GSM555333     6  0.4666     0.0426 0.000 0.044 0.000 0.000 0.420 0.536
#> GSM555335     6  0.4856     0.2312 0.000 0.068 0.000 0.000 0.360 0.572
#> GSM555337     5  0.4627     0.4028 0.000 0.044 0.000 0.000 0.560 0.396
#> GSM555339     6  0.5164     0.4181 0.000 0.116 0.000 0.000 0.300 0.584
#> GSM555341     6  0.5573     0.4675 0.000 0.312 0.000 0.000 0.164 0.524
#> GSM555343     5  0.3970     0.5424 0.000 0.028 0.000 0.000 0.692 0.280
#> GSM555345     6  0.5088     0.5384 0.000 0.168 0.000 0.000 0.200 0.632
#> GSM555318     6  0.4982     0.4286 0.000 0.340 0.000 0.000 0.084 0.576
#> GSM555320     5  0.5873     0.2419 0.000 0.340 0.000 0.000 0.452 0.208
#> GSM555322     2  0.3847     0.2802 0.000 0.644 0.000 0.000 0.008 0.348
#> GSM555324     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555326     2  0.3758     0.3416 0.000 0.668 0.000 0.000 0.008 0.324
#> GSM555328     2  0.3330     0.4217 0.000 0.716 0.000 0.000 0.000 0.284
#> GSM555330     6  0.4097     0.1461 0.000 0.488 0.000 0.000 0.008 0.504
#> GSM555332     6  0.4097     0.1461 0.000 0.488 0.000 0.000 0.008 0.504
#> GSM555334     2  0.3717     0.2044 0.000 0.616 0.000 0.000 0.000 0.384
#> GSM555336     5  0.5962     0.2698 0.000 0.280 0.000 0.000 0.452 0.268
#> GSM555338     6  0.5142     0.5135 0.000 0.156 0.000 0.000 0.224 0.620
#> GSM555340     5  0.4627     0.3845 0.000 0.044 0.000 0.000 0.560 0.396
#> GSM555342     5  0.5878     0.2945 0.000 0.308 0.000 0.000 0.468 0.224
#> GSM555344     2  0.3867    -0.1355 0.000 0.512 0.000 0.000 0.000 0.488
#> GSM555346     5  0.5253     0.4632 0.000 0.192 0.000 0.000 0.608 0.200

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>               n disease.state(p) agent(p) k
#> MAD:skmeans 110         2.74e-08 0.559305 2
#> MAD:skmeans 106         3.81e-12 0.396673 3
#> MAD:skmeans 106         4.07e-14 0.438400 4
#> MAD:skmeans  91         1.31e-13 0.000398 5
#> MAD:skmeans  63         6.32e-13 0.006322 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.973       0.990         0.4615 0.538   0.538
#> 3 3 0.971           0.946       0.969         0.1540 0.939   0.886
#> 4 4 0.781           0.870       0.925         0.3232 0.778   0.544
#> 5 5 0.821           0.859       0.904         0.1046 0.913   0.703
#> 6 6 0.842           0.794       0.879         0.0631 0.904   0.608

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1  0.0000      0.984 1.000 0.000
#> GSM555239     1  0.0000      0.984 1.000 0.000
#> GSM555241     1  0.0000      0.984 1.000 0.000
#> GSM555243     1  0.0000      0.984 1.000 0.000
#> GSM555245     1  0.0000      0.984 1.000 0.000
#> GSM555247     1  0.0000      0.984 1.000 0.000
#> GSM555249     1  0.0000      0.984 1.000 0.000
#> GSM555251     1  0.0000      0.984 1.000 0.000
#> GSM555253     1  0.0000      0.984 1.000 0.000
#> GSM555255     1  0.0000      0.984 1.000 0.000
#> GSM555257     1  0.0000      0.984 1.000 0.000
#> GSM555259     1  0.0000      0.984 1.000 0.000
#> GSM555261     2  0.9954      0.119 0.460 0.540
#> GSM555263     2  0.0000      0.993 0.000 1.000
#> GSM555265     1  0.9977      0.102 0.528 0.472
#> GSM555267     2  0.0000      0.993 0.000 1.000
#> GSM555269     1  0.0376      0.981 0.996 0.004
#> GSM555271     1  0.0000      0.984 1.000 0.000
#> GSM555273     2  0.0000      0.993 0.000 1.000
#> GSM555275     2  0.0000      0.993 0.000 1.000
#> GSM555238     1  0.0000      0.984 1.000 0.000
#> GSM555240     1  0.0000      0.984 1.000 0.000
#> GSM555242     1  0.0000      0.984 1.000 0.000
#> GSM555244     1  0.0000      0.984 1.000 0.000
#> GSM555246     1  0.0000      0.984 1.000 0.000
#> GSM555248     1  0.0000      0.984 1.000 0.000
#> GSM555250     1  0.0000      0.984 1.000 0.000
#> GSM555252     1  0.0000      0.984 1.000 0.000
#> GSM555254     1  0.0000      0.984 1.000 0.000
#> GSM555256     1  0.0000      0.984 1.000 0.000
#> GSM555258     2  0.0000      0.993 0.000 1.000
#> GSM555260     2  0.0000      0.993 0.000 1.000
#> GSM555262     2  0.0000      0.993 0.000 1.000
#> GSM555264     1  0.5178      0.860 0.884 0.116
#> GSM555266     2  0.0000      0.993 0.000 1.000
#> GSM555268     2  0.0000      0.993 0.000 1.000
#> GSM555270     2  0.0000      0.993 0.000 1.000
#> GSM555272     2  0.0000      0.993 0.000 1.000
#> GSM555274     2  0.0000      0.993 0.000 1.000
#> GSM555276     2  0.0000      0.993 0.000 1.000
#> GSM555277     2  0.0000      0.993 0.000 1.000
#> GSM555279     2  0.0000      0.993 0.000 1.000
#> GSM555281     2  0.0000      0.993 0.000 1.000
#> GSM555283     2  0.0000      0.993 0.000 1.000
#> GSM555285     2  0.0000      0.993 0.000 1.000
#> GSM555287     2  0.0000      0.993 0.000 1.000
#> GSM555289     2  0.0000      0.993 0.000 1.000
#> GSM555291     2  0.0000      0.993 0.000 1.000
#> GSM555293     2  0.0000      0.993 0.000 1.000
#> GSM555295     2  0.0000      0.993 0.000 1.000
#> GSM555297     2  0.0000      0.993 0.000 1.000
#> GSM555299     1  0.0000      0.984 1.000 0.000
#> GSM555301     1  0.0000      0.984 1.000 0.000
#> GSM555303     1  0.0000      0.984 1.000 0.000
#> GSM555305     1  0.0000      0.984 1.000 0.000
#> GSM555307     2  0.0000      0.993 0.000 1.000
#> GSM555309     1  0.0000      0.984 1.000 0.000
#> GSM555311     2  0.0000      0.993 0.000 1.000
#> GSM555313     2  0.0000      0.993 0.000 1.000
#> GSM555315     2  0.0000      0.993 0.000 1.000
#> GSM555278     2  0.0000      0.993 0.000 1.000
#> GSM555280     2  0.0000      0.993 0.000 1.000
#> GSM555282     2  0.0000      0.993 0.000 1.000
#> GSM555284     2  0.0000      0.993 0.000 1.000
#> GSM555286     2  0.0000      0.993 0.000 1.000
#> GSM555288     2  0.0000      0.993 0.000 1.000
#> GSM555290     2  0.0000      0.993 0.000 1.000
#> GSM555292     2  0.0000      0.993 0.000 1.000
#> GSM555294     2  0.0000      0.993 0.000 1.000
#> GSM555296     2  0.0000      0.993 0.000 1.000
#> GSM555298     1  0.0000      0.984 1.000 0.000
#> GSM555300     1  0.0000      0.984 1.000 0.000
#> GSM555302     1  0.0000      0.984 1.000 0.000
#> GSM555304     1  0.0000      0.984 1.000 0.000
#> GSM555306     1  0.0000      0.984 1.000 0.000
#> GSM555308     1  0.0000      0.984 1.000 0.000
#> GSM555310     1  0.0000      0.984 1.000 0.000
#> GSM555312     2  0.0000      0.993 0.000 1.000
#> GSM555314     2  0.0000      0.993 0.000 1.000
#> GSM555316     2  0.0000      0.993 0.000 1.000
#> GSM555317     2  0.0000      0.993 0.000 1.000
#> GSM555319     2  0.0000      0.993 0.000 1.000
#> GSM555321     2  0.0000      0.993 0.000 1.000
#> GSM555323     2  0.0000      0.993 0.000 1.000
#> GSM555325     2  0.0000      0.993 0.000 1.000
#> GSM555327     2  0.0000      0.993 0.000 1.000
#> GSM555329     2  0.0000      0.993 0.000 1.000
#> GSM555331     2  0.0000      0.993 0.000 1.000
#> GSM555333     2  0.0000      0.993 0.000 1.000
#> GSM555335     2  0.0000      0.993 0.000 1.000
#> GSM555337     2  0.0000      0.993 0.000 1.000
#> GSM555339     2  0.0000      0.993 0.000 1.000
#> GSM555341     2  0.0000      0.993 0.000 1.000
#> GSM555343     2  0.0000      0.993 0.000 1.000
#> GSM555345     2  0.0000      0.993 0.000 1.000
#> GSM555318     2  0.0000      0.993 0.000 1.000
#> GSM555320     2  0.0000      0.993 0.000 1.000
#> GSM555322     2  0.0000      0.993 0.000 1.000
#> GSM555324     1  0.0000      0.984 1.000 0.000
#> GSM555326     2  0.0000      0.993 0.000 1.000
#> GSM555328     2  0.0000      0.993 0.000 1.000
#> GSM555330     2  0.0000      0.993 0.000 1.000
#> GSM555332     2  0.0000      0.993 0.000 1.000
#> GSM555334     2  0.0000      0.993 0.000 1.000
#> GSM555336     2  0.0000      0.993 0.000 1.000
#> GSM555338     2  0.0000      0.993 0.000 1.000
#> GSM555340     2  0.0000      0.993 0.000 1.000
#> GSM555342     2  0.0000      0.993 0.000 1.000
#> GSM555344     2  0.0000      0.993 0.000 1.000
#> GSM555346     2  0.0000      0.993 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.0000      0.948 1.000 0.000 0.000
#> GSM555239     1  0.0000      0.948 1.000 0.000 0.000
#> GSM555241     1  0.0000      0.948 1.000 0.000 0.000
#> GSM555243     1  0.0000      0.948 1.000 0.000 0.000
#> GSM555245     1  0.0000      0.948 1.000 0.000 0.000
#> GSM555247     1  0.0000      0.948 1.000 0.000 0.000
#> GSM555249     1  0.0000      0.948 1.000 0.000 0.000
#> GSM555251     1  0.0000      0.948 1.000 0.000 0.000
#> GSM555253     1  0.0000      0.948 1.000 0.000 0.000
#> GSM555255     1  0.0000      0.948 1.000 0.000 0.000
#> GSM555257     1  0.5244      0.657 0.756 0.004 0.240
#> GSM555259     3  0.3619      0.824 0.136 0.000 0.864
#> GSM555261     2  0.8702      0.364 0.292 0.568 0.140
#> GSM555263     2  0.1529      0.967 0.000 0.960 0.040
#> GSM555265     1  0.8950      0.370 0.556 0.172 0.272
#> GSM555267     2  0.3686      0.868 0.000 0.860 0.140
#> GSM555269     3  0.0000      0.949 0.000 0.000 1.000
#> GSM555271     3  0.1289      0.980 0.032 0.000 0.968
#> GSM555273     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555275     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555238     1  0.0000      0.948 1.000 0.000 0.000
#> GSM555240     1  0.0000      0.948 1.000 0.000 0.000
#> GSM555242     1  0.0000      0.948 1.000 0.000 0.000
#> GSM555244     1  0.0000      0.948 1.000 0.000 0.000
#> GSM555246     1  0.0000      0.948 1.000 0.000 0.000
#> GSM555248     1  0.0000      0.948 1.000 0.000 0.000
#> GSM555250     1  0.0000      0.948 1.000 0.000 0.000
#> GSM555252     1  0.0000      0.948 1.000 0.000 0.000
#> GSM555254     1  0.0000      0.948 1.000 0.000 0.000
#> GSM555256     1  0.0000      0.948 1.000 0.000 0.000
#> GSM555258     2  0.2356      0.941 0.000 0.928 0.072
#> GSM555260     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555262     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555264     1  0.7979      0.500 0.628 0.100 0.272
#> GSM555266     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555268     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555270     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555272     2  0.1753      0.961 0.000 0.952 0.048
#> GSM555274     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555276     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555277     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555279     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555281     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555283     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555285     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555287     2  0.3752      0.864 0.000 0.856 0.144
#> GSM555289     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555291     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555293     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555295     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555297     2  0.3686      0.868 0.000 0.860 0.140
#> GSM555299     3  0.1289      0.980 0.032 0.000 0.968
#> GSM555301     3  0.0892      0.970 0.020 0.000 0.980
#> GSM555303     3  0.1289      0.980 0.032 0.000 0.968
#> GSM555305     3  0.1289      0.980 0.032 0.000 0.968
#> GSM555307     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555309     3  0.1289      0.980 0.032 0.000 0.968
#> GSM555311     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555313     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555315     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555278     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555280     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555282     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555284     2  0.0747      0.974 0.000 0.984 0.016
#> GSM555286     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555288     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555290     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555292     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555294     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555296     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555298     3  0.0000      0.949 0.000 0.000 1.000
#> GSM555300     3  0.1289      0.980 0.032 0.000 0.968
#> GSM555302     3  0.1289      0.980 0.032 0.000 0.968
#> GSM555304     3  0.1289      0.980 0.032 0.000 0.968
#> GSM555306     3  0.1289      0.980 0.032 0.000 0.968
#> GSM555308     3  0.1289      0.980 0.032 0.000 0.968
#> GSM555310     3  0.1289      0.980 0.032 0.000 0.968
#> GSM555312     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555314     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555316     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555317     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555319     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555321     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555323     2  0.1163      0.972 0.000 0.972 0.028
#> GSM555325     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555327     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555329     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555331     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555333     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555335     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555337     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555339     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555341     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555343     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555345     2  0.1289      0.971 0.000 0.968 0.032
#> GSM555318     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555320     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555322     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555324     3  0.2165      0.949 0.064 0.000 0.936
#> GSM555326     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555328     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555330     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555332     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555334     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555336     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555338     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555340     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555342     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555344     2  0.0000      0.976 0.000 1.000 0.000
#> GSM555346     2  0.0000      0.976 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.0000      0.974 1.000 0.000 0.000 0.000
#> GSM555239     1  0.0000      0.974 1.000 0.000 0.000 0.000
#> GSM555241     1  0.0000      0.974 1.000 0.000 0.000 0.000
#> GSM555243     1  0.0000      0.974 1.000 0.000 0.000 0.000
#> GSM555245     1  0.0000      0.974 1.000 0.000 0.000 0.000
#> GSM555247     1  0.0000      0.974 1.000 0.000 0.000 0.000
#> GSM555249     1  0.0000      0.974 1.000 0.000 0.000 0.000
#> GSM555251     1  0.0000      0.974 1.000 0.000 0.000 0.000
#> GSM555253     1  0.0000      0.974 1.000 0.000 0.000 0.000
#> GSM555255     1  0.0000      0.974 1.000 0.000 0.000 0.000
#> GSM555257     1  0.7568      0.202 0.448 0.000 0.200 0.352
#> GSM555259     3  0.5587      0.546 0.028 0.000 0.600 0.372
#> GSM555261     4  0.0000      0.750 0.000 0.000 0.000 1.000
#> GSM555263     4  0.0000      0.750 0.000 0.000 0.000 1.000
#> GSM555265     4  0.0000      0.750 0.000 0.000 0.000 1.000
#> GSM555267     4  0.0000      0.750 0.000 0.000 0.000 1.000
#> GSM555269     3  0.3942      0.765 0.000 0.000 0.764 0.236
#> GSM555271     3  0.0000      0.961 0.000 0.000 1.000 0.000
#> GSM555273     4  0.3726      0.811 0.000 0.212 0.000 0.788
#> GSM555275     4  0.3764      0.810 0.000 0.216 0.000 0.784
#> GSM555238     1  0.0000      0.974 1.000 0.000 0.000 0.000
#> GSM555240     1  0.0000      0.974 1.000 0.000 0.000 0.000
#> GSM555242     1  0.0000      0.974 1.000 0.000 0.000 0.000
#> GSM555244     1  0.0000      0.974 1.000 0.000 0.000 0.000
#> GSM555246     1  0.0000      0.974 1.000 0.000 0.000 0.000
#> GSM555248     1  0.0000      0.974 1.000 0.000 0.000 0.000
#> GSM555250     1  0.0000      0.974 1.000 0.000 0.000 0.000
#> GSM555252     1  0.0000      0.974 1.000 0.000 0.000 0.000
#> GSM555254     1  0.0000      0.974 1.000 0.000 0.000 0.000
#> GSM555256     1  0.0000      0.974 1.000 0.000 0.000 0.000
#> GSM555258     4  0.0000      0.750 0.000 0.000 0.000 1.000
#> GSM555260     4  0.4989      0.377 0.000 0.472 0.000 0.528
#> GSM555262     4  0.4761      0.625 0.000 0.372 0.000 0.628
#> GSM555264     4  0.1940      0.691 0.076 0.000 0.000 0.924
#> GSM555266     2  0.2281      0.882 0.000 0.904 0.000 0.096
#> GSM555268     2  0.1940      0.900 0.000 0.924 0.000 0.076
#> GSM555270     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555272     4  0.0000      0.750 0.000 0.000 0.000 1.000
#> GSM555274     2  0.2814      0.838 0.000 0.868 0.000 0.132
#> GSM555276     2  0.1022      0.935 0.000 0.968 0.000 0.032
#> GSM555277     4  0.4040      0.792 0.000 0.248 0.000 0.752
#> GSM555279     4  0.3764      0.810 0.000 0.216 0.000 0.784
#> GSM555281     4  0.3764      0.810 0.000 0.216 0.000 0.784
#> GSM555283     4  0.4877      0.550 0.000 0.408 0.000 0.592
#> GSM555285     4  0.3801      0.808 0.000 0.220 0.000 0.780
#> GSM555287     4  0.0000      0.750 0.000 0.000 0.000 1.000
#> GSM555289     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555291     4  0.3764      0.810 0.000 0.216 0.000 0.784
#> GSM555293     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM555295     4  0.0000      0.750 0.000 0.000 0.000 1.000
#> GSM555297     4  0.0000      0.750 0.000 0.000 0.000 1.000
#> GSM555299     3  0.0000      0.961 0.000 0.000 1.000 0.000
#> GSM555301     3  0.0000      0.961 0.000 0.000 1.000 0.000
#> GSM555303     3  0.0000      0.961 0.000 0.000 1.000 0.000
#> GSM555305     3  0.0000      0.961 0.000 0.000 1.000 0.000
#> GSM555307     4  0.4382      0.754 0.000 0.296 0.000 0.704
#> GSM555309     3  0.0000      0.961 0.000 0.000 1.000 0.000
#> GSM555311     4  0.3764      0.810 0.000 0.216 0.000 0.784
#> GSM555313     4  0.4103      0.784 0.000 0.256 0.000 0.744
#> GSM555315     4  0.3801      0.808 0.000 0.220 0.000 0.780
#> GSM555278     2  0.2281      0.882 0.000 0.904 0.000 0.096
#> GSM555280     2  0.0707      0.946 0.000 0.980 0.000 0.020
#> GSM555282     2  0.2408      0.871 0.000 0.896 0.000 0.104
#> GSM555284     4  0.4624      0.680 0.000 0.340 0.000 0.660
#> GSM555286     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555288     4  0.2469      0.798 0.000 0.108 0.000 0.892
#> GSM555290     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555292     2  0.2011      0.896 0.000 0.920 0.000 0.080
#> GSM555294     2  0.0592      0.950 0.000 0.984 0.000 0.016
#> GSM555296     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555298     3  0.0000      0.961 0.000 0.000 1.000 0.000
#> GSM555300     3  0.0000      0.961 0.000 0.000 1.000 0.000
#> GSM555302     3  0.0000      0.961 0.000 0.000 1.000 0.000
#> GSM555304     3  0.0000      0.961 0.000 0.000 1.000 0.000
#> GSM555306     3  0.0000      0.961 0.000 0.000 1.000 0.000
#> GSM555308     3  0.0000      0.961 0.000 0.000 1.000 0.000
#> GSM555310     3  0.0000      0.961 0.000 0.000 1.000 0.000
#> GSM555312     4  0.3907      0.801 0.000 0.232 0.000 0.768
#> GSM555314     4  0.0000      0.750 0.000 0.000 0.000 1.000
#> GSM555316     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555317     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555319     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555321     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555323     2  0.3528      0.694 0.000 0.808 0.000 0.192
#> GSM555325     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555327     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555329     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555331     4  0.4998      0.406 0.000 0.488 0.000 0.512
#> GSM555333     4  0.2704      0.803 0.000 0.124 0.000 0.876
#> GSM555335     2  0.0592      0.948 0.000 0.984 0.000 0.016
#> GSM555337     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555339     4  0.4746      0.664 0.000 0.368 0.000 0.632
#> GSM555341     2  0.4164      0.544 0.000 0.736 0.000 0.264
#> GSM555343     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM555345     4  0.4103      0.650 0.000 0.256 0.000 0.744
#> GSM555318     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555320     2  0.1940      0.900 0.000 0.924 0.000 0.076
#> GSM555322     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555324     3  0.0000      0.961 0.000 0.000 1.000 0.000
#> GSM555326     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555328     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555330     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555332     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555334     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555336     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555338     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555340     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555342     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555344     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM555346     2  0.2081      0.894 0.000 0.916 0.000 0.084

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM555237     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555239     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555257     4  0.3863      0.693 0.028 0.000 0.200 0.772 0.000
#> GSM555259     4  0.3305      0.683 0.000 0.000 0.224 0.776 0.000
#> GSM555261     4  0.3305      0.874 0.000 0.000 0.000 0.776 0.224
#> GSM555263     4  0.3305      0.874 0.000 0.000 0.000 0.776 0.224
#> GSM555265     4  0.3305      0.874 0.000 0.000 0.000 0.776 0.224
#> GSM555267     4  0.3305      0.874 0.000 0.000 0.000 0.776 0.224
#> GSM555269     4  0.3305      0.683 0.000 0.000 0.224 0.776 0.000
#> GSM555271     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM555273     5  0.0000      0.814 0.000 0.000 0.000 0.000 1.000
#> GSM555275     5  0.0000      0.814 0.000 0.000 0.000 0.000 1.000
#> GSM555238     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555240     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555242     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555244     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555254     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM555258     4  0.3336      0.871 0.000 0.000 0.000 0.772 0.228
#> GSM555260     5  0.1671      0.802 0.000 0.076 0.000 0.000 0.924
#> GSM555262     5  0.2966      0.742 0.000 0.184 0.000 0.000 0.816
#> GSM555264     4  0.3366      0.868 0.000 0.000 0.000 0.768 0.232
#> GSM555266     2  0.3177      0.702 0.000 0.792 0.000 0.000 0.208
#> GSM555268     2  0.1121      0.856 0.000 0.956 0.000 0.000 0.044
#> GSM555270     2  0.0000      0.877 0.000 1.000 0.000 0.000 0.000
#> GSM555272     5  0.3336      0.530 0.000 0.000 0.000 0.228 0.772
#> GSM555274     5  0.3857      0.647 0.000 0.312 0.000 0.000 0.688
#> GSM555276     5  0.4937      0.409 0.000 0.428 0.000 0.028 0.544
#> GSM555277     5  0.4054      0.688 0.000 0.028 0.000 0.224 0.748
#> GSM555279     5  0.0000      0.814 0.000 0.000 0.000 0.000 1.000
#> GSM555281     5  0.0000      0.814 0.000 0.000 0.000 0.000 1.000
#> GSM555283     5  0.2580      0.794 0.000 0.064 0.000 0.044 0.892
#> GSM555285     5  0.1341      0.802 0.000 0.056 0.000 0.000 0.944
#> GSM555287     4  0.3305      0.874 0.000 0.000 0.000 0.776 0.224
#> GSM555289     2  0.3461      0.822 0.000 0.772 0.000 0.224 0.004
#> GSM555291     5  0.1478      0.802 0.000 0.064 0.000 0.000 0.936
#> GSM555293     2  0.3970      0.810 0.000 0.752 0.000 0.224 0.024
#> GSM555295     5  0.0703      0.800 0.000 0.000 0.000 0.024 0.976
#> GSM555297     4  0.3305      0.874 0.000 0.000 0.000 0.776 0.224
#> GSM555299     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM555301     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM555303     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM555305     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM555307     5  0.1121      0.803 0.000 0.044 0.000 0.000 0.956
#> GSM555309     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM555311     5  0.0000      0.814 0.000 0.000 0.000 0.000 1.000
#> GSM555313     5  0.3109      0.729 0.000 0.200 0.000 0.000 0.800
#> GSM555315     5  0.0000      0.814 0.000 0.000 0.000 0.000 1.000
#> GSM555278     2  0.3480      0.621 0.000 0.752 0.000 0.000 0.248
#> GSM555280     2  0.0162      0.876 0.000 0.996 0.000 0.000 0.004
#> GSM555282     2  0.2074      0.818 0.000 0.896 0.000 0.000 0.104
#> GSM555284     5  0.3109      0.726 0.000 0.200 0.000 0.000 0.800
#> GSM555286     2  0.0000      0.877 0.000 1.000 0.000 0.000 0.000
#> GSM555288     5  0.0404      0.815 0.000 0.012 0.000 0.000 0.988
#> GSM555290     2  0.0000      0.877 0.000 1.000 0.000 0.000 0.000
#> GSM555292     2  0.1197      0.853 0.000 0.952 0.000 0.000 0.048
#> GSM555294     2  0.0880      0.867 0.000 0.968 0.000 0.000 0.032
#> GSM555296     2  0.1341      0.850 0.000 0.944 0.000 0.000 0.056
#> GSM555298     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM555300     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM555302     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM555304     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM555306     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM555308     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM555310     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM555312     5  0.2074      0.788 0.000 0.104 0.000 0.000 0.896
#> GSM555314     5  0.0000      0.814 0.000 0.000 0.000 0.000 1.000
#> GSM555316     2  0.0000      0.877 0.000 1.000 0.000 0.000 0.000
#> GSM555317     2  0.4617      0.794 0.000 0.716 0.000 0.224 0.060
#> GSM555319     2  0.3461      0.822 0.000 0.772 0.000 0.224 0.004
#> GSM555321     2  0.3461      0.822 0.000 0.772 0.000 0.224 0.004
#> GSM555323     5  0.5339      0.634 0.000 0.116 0.000 0.224 0.660
#> GSM555325     2  0.2970      0.840 0.000 0.828 0.000 0.168 0.004
#> GSM555327     2  0.3461      0.822 0.000 0.772 0.000 0.224 0.004
#> GSM555329     2  0.3461      0.822 0.000 0.772 0.000 0.224 0.004
#> GSM555331     5  0.5581      0.586 0.000 0.140 0.000 0.224 0.636
#> GSM555333     5  0.0000      0.814 0.000 0.000 0.000 0.000 1.000
#> GSM555335     2  0.4134      0.804 0.000 0.744 0.000 0.224 0.032
#> GSM555337     2  0.3461      0.822 0.000 0.772 0.000 0.224 0.004
#> GSM555339     5  0.4083      0.710 0.000 0.132 0.000 0.080 0.788
#> GSM555341     5  0.5158      0.649 0.000 0.100 0.000 0.224 0.676
#> GSM555343     2  0.3970      0.810 0.000 0.752 0.000 0.224 0.024
#> GSM555345     4  0.3736      0.507 0.000 0.052 0.000 0.808 0.140
#> GSM555318     2  0.4367      0.813 0.000 0.748 0.000 0.192 0.060
#> GSM555320     2  0.0963      0.861 0.000 0.964 0.000 0.000 0.036
#> GSM555322     2  0.0000      0.877 0.000 1.000 0.000 0.000 0.000
#> GSM555324     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM555326     2  0.0000      0.877 0.000 1.000 0.000 0.000 0.000
#> GSM555328     2  0.0000      0.877 0.000 1.000 0.000 0.000 0.000
#> GSM555330     2  0.0290      0.877 0.000 0.992 0.000 0.008 0.000
#> GSM555332     2  0.1753      0.869 0.000 0.936 0.000 0.032 0.032
#> GSM555334     2  0.0000      0.877 0.000 1.000 0.000 0.000 0.000
#> GSM555336     2  0.0000      0.877 0.000 1.000 0.000 0.000 0.000
#> GSM555338     2  0.3461      0.822 0.000 0.772 0.000 0.224 0.004
#> GSM555340     2  0.3461      0.822 0.000 0.772 0.000 0.224 0.004
#> GSM555342     2  0.0324      0.878 0.000 0.992 0.000 0.004 0.004
#> GSM555344     2  0.0162      0.876 0.000 0.996 0.000 0.000 0.004
#> GSM555346     2  0.1908      0.832 0.000 0.908 0.000 0.000 0.092

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1    p2    p3    p4    p5    p6
#> GSM555237     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM555239     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM555257     4  0.2300      0.817  0 0.000 0.144 0.856 0.000 0.000
#> GSM555259     4  0.1556      0.874  0 0.000 0.080 0.920 0.000 0.000
#> GSM555261     4  0.0000      0.910  0 0.000 0.000 1.000 0.000 0.000
#> GSM555263     4  0.0146      0.910  0 0.000 0.000 0.996 0.004 0.000
#> GSM555265     4  0.0000      0.910  0 0.000 0.000 1.000 0.000 0.000
#> GSM555267     4  0.0000      0.910  0 0.000 0.000 1.000 0.000 0.000
#> GSM555269     4  0.1556      0.874  0 0.000 0.080 0.920 0.000 0.000
#> GSM555271     3  0.0146      0.997  0 0.000 0.996 0.004 0.000 0.000
#> GSM555273     5  0.5370      0.634  0 0.284 0.000 0.080 0.608 0.028
#> GSM555275     5  0.2872      0.777  0 0.024 0.000 0.080 0.868 0.028
#> GSM555238     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM555240     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM555242     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM555244     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM555254     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM555258     4  0.3266      0.633  0 0.000 0.000 0.728 0.272 0.000
#> GSM555260     5  0.2163      0.727  0 0.016 0.000 0.092 0.892 0.000
#> GSM555262     5  0.1765      0.731  0 0.096 0.000 0.000 0.904 0.000
#> GSM555264     4  0.2877      0.766  0 0.168 0.000 0.820 0.012 0.000
#> GSM555266     2  0.3866      0.305  0 0.516 0.000 0.000 0.484 0.000
#> GSM555268     2  0.3468      0.596  0 0.712 0.000 0.000 0.284 0.004
#> GSM555270     2  0.3330      0.685  0 0.716 0.000 0.000 0.000 0.284
#> GSM555272     5  0.3659      0.484  0 0.000 0.000 0.364 0.636 0.000
#> GSM555274     5  0.1663      0.737  0 0.088 0.000 0.000 0.912 0.000
#> GSM555276     6  0.2969      0.646  0 0.224 0.000 0.000 0.000 0.776
#> GSM555277     5  0.3989      0.141  0 0.004 0.000 0.000 0.528 0.468
#> GSM555279     5  0.2950      0.778  0 0.028 0.000 0.080 0.864 0.028
#> GSM555281     5  0.2872      0.777  0 0.024 0.000 0.080 0.868 0.028
#> GSM555283     5  0.3533      0.748  0 0.016 0.000 0.060 0.820 0.104
#> GSM555285     5  0.5370      0.634  0 0.284 0.000 0.080 0.608 0.028
#> GSM555287     4  0.0260      0.908  0 0.000 0.000 0.992 0.008 0.000
#> GSM555289     6  0.0632      0.846  0 0.024 0.000 0.000 0.000 0.976
#> GSM555291     5  0.2149      0.777  0 0.016 0.000 0.080 0.900 0.004
#> GSM555293     6  0.3810      0.344  0 0.428 0.000 0.000 0.000 0.572
#> GSM555295     5  0.5344      0.632  0 0.284 0.000 0.084 0.608 0.024
#> GSM555297     4  0.0260      0.908  0 0.000 0.000 0.992 0.008 0.000
#> GSM555299     3  0.0000      0.999  0 0.000 1.000 0.000 0.000 0.000
#> GSM555301     3  0.0146      0.997  0 0.000 0.996 0.004 0.000 0.000
#> GSM555303     3  0.0000      0.999  0 0.000 1.000 0.000 0.000 0.000
#> GSM555305     3  0.0000      0.999  0 0.000 1.000 0.000 0.000 0.000
#> GSM555307     6  0.5007      0.456  0 0.012 0.000 0.080 0.272 0.636
#> GSM555309     3  0.0000      0.999  0 0.000 1.000 0.000 0.000 0.000
#> GSM555311     5  0.5370      0.634  0 0.284 0.000 0.080 0.608 0.028
#> GSM555313     5  0.1863      0.721  0 0.104 0.000 0.000 0.896 0.000
#> GSM555315     5  0.5370      0.634  0 0.284 0.000 0.080 0.608 0.028
#> GSM555278     2  0.3823      0.408  0 0.564 0.000 0.000 0.436 0.000
#> GSM555280     2  0.4075      0.702  0 0.712 0.000 0.000 0.048 0.240
#> GSM555282     2  0.3737      0.486  0 0.608 0.000 0.000 0.392 0.000
#> GSM555284     5  0.1765      0.728  0 0.096 0.000 0.000 0.904 0.000
#> GSM555286     2  0.2793      0.712  0 0.800 0.000 0.000 0.000 0.200
#> GSM555288     5  0.0790      0.766  0 0.032 0.000 0.000 0.968 0.000
#> GSM555290     2  0.3482      0.651  0 0.684 0.000 0.000 0.000 0.316
#> GSM555292     2  0.3795      0.524  0 0.632 0.000 0.000 0.364 0.004
#> GSM555294     2  0.1265      0.650  0 0.948 0.000 0.000 0.044 0.008
#> GSM555296     2  0.3076      0.707  0 0.760 0.000 0.000 0.000 0.240
#> GSM555298     3  0.0146      0.997  0 0.000 0.996 0.004 0.000 0.000
#> GSM555300     3  0.0000      0.999  0 0.000 1.000 0.000 0.000 0.000
#> GSM555302     3  0.0000      0.999  0 0.000 1.000 0.000 0.000 0.000
#> GSM555304     3  0.0000      0.999  0 0.000 1.000 0.000 0.000 0.000
#> GSM555306     3  0.0000      0.999  0 0.000 1.000 0.000 0.000 0.000
#> GSM555308     3  0.0000      0.999  0 0.000 1.000 0.000 0.000 0.000
#> GSM555310     3  0.0000      0.999  0 0.000 1.000 0.000 0.000 0.000
#> GSM555312     5  0.0632      0.767  0 0.024 0.000 0.000 0.976 0.000
#> GSM555314     5  0.2872      0.777  0 0.024 0.000 0.080 0.868 0.028
#> GSM555316     2  0.3351      0.682  0 0.712 0.000 0.000 0.000 0.288
#> GSM555317     6  0.0632      0.846  0 0.024 0.000 0.000 0.000 0.976
#> GSM555319     6  0.1387      0.826  0 0.068 0.000 0.000 0.000 0.932
#> GSM555321     6  0.0713      0.844  0 0.028 0.000 0.000 0.000 0.972
#> GSM555323     6  0.0000      0.842  0 0.000 0.000 0.000 0.000 1.000
#> GSM555325     2  0.1700      0.638  0 0.916 0.000 0.000 0.004 0.080
#> GSM555327     6  0.0632      0.846  0 0.024 0.000 0.000 0.000 0.976
#> GSM555329     6  0.2416      0.733  0 0.156 0.000 0.000 0.000 0.844
#> GSM555331     6  0.0000      0.842  0 0.000 0.000 0.000 0.000 1.000
#> GSM555333     5  0.3284      0.770  0 0.024 0.000 0.080 0.844 0.052
#> GSM555335     6  0.1563      0.815  0 0.012 0.000 0.000 0.056 0.932
#> GSM555337     6  0.1957      0.807  0 0.112 0.000 0.000 0.000 0.888
#> GSM555339     6  0.3651      0.717  0 0.024 0.000 0.048 0.116 0.812
#> GSM555341     6  0.2703      0.717  0 0.004 0.000 0.000 0.172 0.824
#> GSM555343     6  0.0146      0.843  0 0.004 0.000 0.000 0.000 0.996
#> GSM555345     6  0.1219      0.824  0 0.000 0.000 0.004 0.048 0.948
#> GSM555318     6  0.0865      0.843  0 0.036 0.000 0.000 0.000 0.964
#> GSM555320     2  0.0508      0.683  0 0.984 0.000 0.000 0.012 0.004
#> GSM555322     2  0.3351      0.682  0 0.712 0.000 0.000 0.000 0.288
#> GSM555324     3  0.0000      0.999  0 0.000 1.000 0.000 0.000 0.000
#> GSM555326     2  0.3151      0.703  0 0.748 0.000 0.000 0.000 0.252
#> GSM555328     2  0.3468      0.685  0 0.712 0.000 0.000 0.004 0.284
#> GSM555330     6  0.3860     -0.145  0 0.472 0.000 0.000 0.000 0.528
#> GSM555332     6  0.3608      0.695  0 0.148 0.000 0.000 0.064 0.788
#> GSM555334     2  0.3592      0.608  0 0.656 0.000 0.000 0.000 0.344
#> GSM555336     2  0.0713      0.688  0 0.972 0.000 0.000 0.000 0.028
#> GSM555338     6  0.0632      0.846  0 0.024 0.000 0.000 0.000 0.976
#> GSM555340     6  0.0632      0.846  0 0.024 0.000 0.000 0.000 0.976
#> GSM555342     2  0.1411      0.682  0 0.936 0.000 0.000 0.004 0.060
#> GSM555344     2  0.3690      0.659  0 0.684 0.000 0.000 0.008 0.308
#> GSM555346     2  0.2633      0.586  0 0.864 0.000 0.000 0.104 0.032

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n disease.state(p) agent(p) k
#> MAD:pam 108         4.08e-07 1.000000 2
#> MAD:pam 108         1.79e-12 0.989994 3
#> MAD:pam 107         1.27e-14 0.007339 4
#> MAD:pam 109         1.21e-15 0.003705 5
#> MAD:pam 102         1.35e-19 0.000112 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.984           0.971       0.980         0.4488 0.544   0.544
#> 3 3 0.881           0.833       0.934         0.1896 0.896   0.818
#> 4 4 0.737           0.815       0.902         0.1946 0.892   0.784
#> 5 5 0.729           0.811       0.885         0.0293 0.915   0.799
#> 6 6 0.715           0.728       0.835         0.0727 0.976   0.936

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1   0.000      0.959 1.000 0.000
#> GSM555239     1   0.000      0.959 1.000 0.000
#> GSM555241     1   0.000      0.959 1.000 0.000
#> GSM555243     1   0.000      0.959 1.000 0.000
#> GSM555245     1   0.000      0.959 1.000 0.000
#> GSM555247     1   0.000      0.959 1.000 0.000
#> GSM555249     1   0.000      0.959 1.000 0.000
#> GSM555251     1   0.000      0.959 1.000 0.000
#> GSM555253     1   0.000      0.959 1.000 0.000
#> GSM555255     1   0.000      0.959 1.000 0.000
#> GSM555257     1   0.373      0.952 0.928 0.072
#> GSM555259     1   0.456      0.936 0.904 0.096
#> GSM555261     2   0.327      0.935 0.060 0.940
#> GSM555263     2   0.327      0.935 0.060 0.940
#> GSM555265     2   0.388      0.918 0.076 0.924
#> GSM555267     2   0.327      0.935 0.060 0.940
#> GSM555269     1   0.456      0.936 0.904 0.096
#> GSM555271     1   0.402      0.951 0.920 0.080
#> GSM555273     2   0.000      0.989 0.000 1.000
#> GSM555275     2   0.000      0.989 0.000 1.000
#> GSM555238     1   0.000      0.959 1.000 0.000
#> GSM555240     1   0.000      0.959 1.000 0.000
#> GSM555242     1   0.000      0.959 1.000 0.000
#> GSM555244     1   0.000      0.959 1.000 0.000
#> GSM555246     1   0.000      0.959 1.000 0.000
#> GSM555248     1   0.000      0.959 1.000 0.000
#> GSM555250     1   0.000      0.959 1.000 0.000
#> GSM555252     1   0.000      0.959 1.000 0.000
#> GSM555254     1   0.000      0.959 1.000 0.000
#> GSM555256     1   0.000      0.959 1.000 0.000
#> GSM555258     2   0.343      0.931 0.064 0.936
#> GSM555260     2   0.000      0.989 0.000 1.000
#> GSM555262     2   0.000      0.989 0.000 1.000
#> GSM555264     1   0.388      0.952 0.924 0.076
#> GSM555266     2   0.000      0.989 0.000 1.000
#> GSM555268     2   0.000      0.989 0.000 1.000
#> GSM555270     2   0.000      0.989 0.000 1.000
#> GSM555272     2   0.184      0.965 0.028 0.972
#> GSM555274     2   0.000      0.989 0.000 1.000
#> GSM555276     2   0.000      0.989 0.000 1.000
#> GSM555277     2   0.000      0.989 0.000 1.000
#> GSM555279     2   0.000      0.989 0.000 1.000
#> GSM555281     2   0.000      0.989 0.000 1.000
#> GSM555283     2   0.000      0.989 0.000 1.000
#> GSM555285     2   0.000      0.989 0.000 1.000
#> GSM555287     2   0.833      0.672 0.264 0.736
#> GSM555289     2   0.000      0.989 0.000 1.000
#> GSM555291     2   0.000      0.989 0.000 1.000
#> GSM555293     2   0.000      0.989 0.000 1.000
#> GSM555295     2   0.000      0.989 0.000 1.000
#> GSM555297     2   0.327      0.935 0.060 0.940
#> GSM555299     1   0.402      0.951 0.920 0.080
#> GSM555301     1   0.402      0.951 0.920 0.080
#> GSM555303     1   0.402      0.951 0.920 0.080
#> GSM555305     1   0.402      0.951 0.920 0.080
#> GSM555307     2   0.000      0.989 0.000 1.000
#> GSM555309     1   0.402      0.951 0.920 0.080
#> GSM555311     2   0.000      0.989 0.000 1.000
#> GSM555313     2   0.000      0.989 0.000 1.000
#> GSM555315     2   0.000      0.989 0.000 1.000
#> GSM555278     2   0.000      0.989 0.000 1.000
#> GSM555280     2   0.000      0.989 0.000 1.000
#> GSM555282     2   0.000      0.989 0.000 1.000
#> GSM555284     2   0.000      0.989 0.000 1.000
#> GSM555286     2   0.000      0.989 0.000 1.000
#> GSM555288     2   0.000      0.989 0.000 1.000
#> GSM555290     2   0.000      0.989 0.000 1.000
#> GSM555292     2   0.000      0.989 0.000 1.000
#> GSM555294     2   0.000      0.989 0.000 1.000
#> GSM555296     2   0.000      0.989 0.000 1.000
#> GSM555298     1   0.402      0.951 0.920 0.080
#> GSM555300     1   0.402      0.951 0.920 0.080
#> GSM555302     1   0.402      0.951 0.920 0.080
#> GSM555304     1   0.402      0.951 0.920 0.080
#> GSM555306     1   0.402      0.951 0.920 0.080
#> GSM555308     1   0.402      0.951 0.920 0.080
#> GSM555310     1   0.402      0.951 0.920 0.080
#> GSM555312     2   0.000      0.989 0.000 1.000
#> GSM555314     2   0.000      0.989 0.000 1.000
#> GSM555316     2   0.000      0.989 0.000 1.000
#> GSM555317     2   0.000      0.989 0.000 1.000
#> GSM555319     2   0.000      0.989 0.000 1.000
#> GSM555321     2   0.000      0.989 0.000 1.000
#> GSM555323     2   0.000      0.989 0.000 1.000
#> GSM555325     2   0.000      0.989 0.000 1.000
#> GSM555327     2   0.000      0.989 0.000 1.000
#> GSM555329     2   0.000      0.989 0.000 1.000
#> GSM555331     2   0.000      0.989 0.000 1.000
#> GSM555333     2   0.000      0.989 0.000 1.000
#> GSM555335     2   0.000      0.989 0.000 1.000
#> GSM555337     2   0.000      0.989 0.000 1.000
#> GSM555339     2   0.000      0.989 0.000 1.000
#> GSM555341     2   0.000      0.989 0.000 1.000
#> GSM555343     2   0.000      0.989 0.000 1.000
#> GSM555345     2   0.327      0.931 0.060 0.940
#> GSM555318     2   0.000      0.989 0.000 1.000
#> GSM555320     2   0.000      0.989 0.000 1.000
#> GSM555322     2   0.000      0.989 0.000 1.000
#> GSM555324     1   0.402      0.951 0.920 0.080
#> GSM555326     2   0.000      0.989 0.000 1.000
#> GSM555328     2   0.000      0.989 0.000 1.000
#> GSM555330     2   0.000      0.989 0.000 1.000
#> GSM555332     2   0.000      0.989 0.000 1.000
#> GSM555334     2   0.000      0.989 0.000 1.000
#> GSM555336     2   0.000      0.989 0.000 1.000
#> GSM555338     2   0.000      0.989 0.000 1.000
#> GSM555340     2   0.000      0.989 0.000 1.000
#> GSM555342     2   0.000      0.989 0.000 1.000
#> GSM555344     2   0.000      0.989 0.000 1.000
#> GSM555346     2   0.000      0.989 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.0000   1.000000 1.000 0.000 0.000
#> GSM555239     1  0.0000   1.000000 1.000 0.000 0.000
#> GSM555241     1  0.0000   1.000000 1.000 0.000 0.000
#> GSM555243     1  0.0000   1.000000 1.000 0.000 0.000
#> GSM555245     1  0.0000   1.000000 1.000 0.000 0.000
#> GSM555247     1  0.0000   1.000000 1.000 0.000 0.000
#> GSM555249     1  0.0000   1.000000 1.000 0.000 0.000
#> GSM555251     1  0.0000   1.000000 1.000 0.000 0.000
#> GSM555253     1  0.0000   1.000000 1.000 0.000 0.000
#> GSM555255     1  0.0000   1.000000 1.000 0.000 0.000
#> GSM555257     2  0.6140   0.282310 0.000 0.596 0.404
#> GSM555259     3  0.6291   0.000336 0.000 0.468 0.532
#> GSM555261     2  0.6280   0.209068 0.000 0.540 0.460
#> GSM555263     2  0.6111   0.392375 0.000 0.604 0.396
#> GSM555265     3  0.6308  -0.094602 0.000 0.492 0.508
#> GSM555267     2  0.6280   0.209068 0.000 0.540 0.460
#> GSM555269     3  0.6192   0.171881 0.000 0.420 0.580
#> GSM555271     3  0.0000   0.865336 0.000 0.000 1.000
#> GSM555273     2  0.5948   0.469974 0.000 0.640 0.360
#> GSM555275     2  0.1031   0.904832 0.000 0.976 0.024
#> GSM555238     1  0.0000   1.000000 1.000 0.000 0.000
#> GSM555240     1  0.0000   1.000000 1.000 0.000 0.000
#> GSM555242     1  0.0000   1.000000 1.000 0.000 0.000
#> GSM555244     1  0.0000   1.000000 1.000 0.000 0.000
#> GSM555246     1  0.0000   1.000000 1.000 0.000 0.000
#> GSM555248     1  0.0000   1.000000 1.000 0.000 0.000
#> GSM555250     1  0.0000   1.000000 1.000 0.000 0.000
#> GSM555252     1  0.0000   1.000000 1.000 0.000 0.000
#> GSM555254     1  0.0000   1.000000 1.000 0.000 0.000
#> GSM555256     1  0.0000   1.000000 1.000 0.000 0.000
#> GSM555258     2  0.5926   0.407500 0.000 0.644 0.356
#> GSM555260     2  0.0237   0.906076 0.000 0.996 0.004
#> GSM555262     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555264     2  0.6608   0.377161 0.016 0.628 0.356
#> GSM555266     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555268     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555270     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555272     2  0.5591   0.521463 0.000 0.696 0.304
#> GSM555274     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555276     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555277     2  0.2448   0.880262 0.000 0.924 0.076
#> GSM555279     2  0.2448   0.880262 0.000 0.924 0.076
#> GSM555281     2  0.2356   0.883180 0.000 0.928 0.072
#> GSM555283     2  0.2261   0.885837 0.000 0.932 0.068
#> GSM555285     2  0.6045   0.388987 0.000 0.620 0.380
#> GSM555287     2  0.6799   0.072239 0.012 0.532 0.456
#> GSM555289     2  0.1163   0.904143 0.000 0.972 0.028
#> GSM555291     2  0.2448   0.880262 0.000 0.924 0.076
#> GSM555293     2  0.1964   0.893044 0.000 0.944 0.056
#> GSM555295     2  0.2448   0.880262 0.000 0.924 0.076
#> GSM555297     2  0.6274   0.221952 0.000 0.544 0.456
#> GSM555299     3  0.0000   0.865336 0.000 0.000 1.000
#> GSM555301     3  0.0000   0.865336 0.000 0.000 1.000
#> GSM555303     3  0.0000   0.865336 0.000 0.000 1.000
#> GSM555305     3  0.0000   0.865336 0.000 0.000 1.000
#> GSM555307     2  0.2066   0.890955 0.000 0.940 0.060
#> GSM555309     3  0.0000   0.865336 0.000 0.000 1.000
#> GSM555311     2  0.2448   0.880262 0.000 0.924 0.076
#> GSM555313     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555315     2  0.1529   0.901265 0.000 0.960 0.040
#> GSM555278     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555280     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555282     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555284     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555286     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555288     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555290     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555292     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555294     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555296     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555298     3  0.0000   0.865336 0.000 0.000 1.000
#> GSM555300     3  0.0000   0.865336 0.000 0.000 1.000
#> GSM555302     3  0.0000   0.865336 0.000 0.000 1.000
#> GSM555304     3  0.0000   0.865336 0.000 0.000 1.000
#> GSM555306     3  0.0000   0.865336 0.000 0.000 1.000
#> GSM555308     3  0.0000   0.865336 0.000 0.000 1.000
#> GSM555310     3  0.0000   0.865336 0.000 0.000 1.000
#> GSM555312     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555314     2  0.2448   0.880262 0.000 0.924 0.076
#> GSM555316     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555317     2  0.1289   0.903224 0.000 0.968 0.032
#> GSM555319     2  0.1411   0.902061 0.000 0.964 0.036
#> GSM555321     2  0.1860   0.895271 0.000 0.948 0.052
#> GSM555323     2  0.1411   0.902061 0.000 0.964 0.036
#> GSM555325     2  0.1753   0.897318 0.000 0.952 0.048
#> GSM555327     2  0.1529   0.900788 0.000 0.960 0.040
#> GSM555329     2  0.1643   0.899176 0.000 0.956 0.044
#> GSM555331     2  0.1163   0.904143 0.000 0.972 0.028
#> GSM555333     2  0.1163   0.904143 0.000 0.972 0.028
#> GSM555335     2  0.1031   0.904832 0.000 0.976 0.024
#> GSM555337     2  0.1163   0.904143 0.000 0.972 0.028
#> GSM555339     2  0.2261   0.885692 0.000 0.932 0.068
#> GSM555341     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555343     2  0.1411   0.902061 0.000 0.964 0.036
#> GSM555345     2  0.1964   0.875271 0.000 0.944 0.056
#> GSM555318     2  0.0237   0.906969 0.000 0.996 0.004
#> GSM555320     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555322     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555324     3  0.0000   0.865336 0.000 0.000 1.000
#> GSM555326     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555328     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555330     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555332     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555334     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555336     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555338     2  0.1411   0.902061 0.000 0.964 0.036
#> GSM555340     2  0.1411   0.902061 0.000 0.964 0.036
#> GSM555342     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555344     2  0.0000   0.907191 0.000 1.000 0.000
#> GSM555346     2  0.0000   0.907191 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.1792     0.9241 0.932 0.000 0.000 0.068
#> GSM555239     1  0.0000     0.9962 1.000 0.000 0.000 0.000
#> GSM555241     1  0.0000     0.9962 1.000 0.000 0.000 0.000
#> GSM555243     1  0.0000     0.9962 1.000 0.000 0.000 0.000
#> GSM555245     1  0.0000     0.9962 1.000 0.000 0.000 0.000
#> GSM555247     1  0.0000     0.9962 1.000 0.000 0.000 0.000
#> GSM555249     1  0.0000     0.9962 1.000 0.000 0.000 0.000
#> GSM555251     1  0.0000     0.9962 1.000 0.000 0.000 0.000
#> GSM555253     1  0.0000     0.9962 1.000 0.000 0.000 0.000
#> GSM555255     1  0.0000     0.9962 1.000 0.000 0.000 0.000
#> GSM555257     4  0.5116     0.5606 0.028 0.196 0.020 0.756
#> GSM555259     4  0.2706     0.8435 0.000 0.080 0.020 0.900
#> GSM555261     4  0.2706     0.8435 0.000 0.080 0.020 0.900
#> GSM555263     4  0.2706     0.8435 0.000 0.080 0.020 0.900
#> GSM555265     4  0.2706     0.8435 0.000 0.080 0.020 0.900
#> GSM555267     4  0.2706     0.8435 0.000 0.080 0.020 0.900
#> GSM555269     4  0.2797     0.8259 0.000 0.068 0.032 0.900
#> GSM555271     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> GSM555273     2  0.4999     0.2543 0.000 0.508 0.000 0.492
#> GSM555275     2  0.3311     0.7948 0.000 0.828 0.000 0.172
#> GSM555238     1  0.0000     0.9962 1.000 0.000 0.000 0.000
#> GSM555240     1  0.0000     0.9962 1.000 0.000 0.000 0.000
#> GSM555242     1  0.0000     0.9962 1.000 0.000 0.000 0.000
#> GSM555244     1  0.0000     0.9962 1.000 0.000 0.000 0.000
#> GSM555246     1  0.0000     0.9962 1.000 0.000 0.000 0.000
#> GSM555248     1  0.0000     0.9962 1.000 0.000 0.000 0.000
#> GSM555250     1  0.0000     0.9962 1.000 0.000 0.000 0.000
#> GSM555252     1  0.0000     0.9962 1.000 0.000 0.000 0.000
#> GSM555254     1  0.0000     0.9962 1.000 0.000 0.000 0.000
#> GSM555256     1  0.0000     0.9962 1.000 0.000 0.000 0.000
#> GSM555258     2  0.5080     0.0156 0.000 0.576 0.004 0.420
#> GSM555260     2  0.1302     0.7908 0.000 0.956 0.000 0.044
#> GSM555262     2  0.0469     0.8125 0.000 0.988 0.000 0.012
#> GSM555264     2  0.5137    -0.0891 0.000 0.544 0.004 0.452
#> GSM555266     2  0.0707     0.8079 0.000 0.980 0.000 0.020
#> GSM555268     2  0.0336     0.8142 0.000 0.992 0.000 0.008
#> GSM555270     2  0.0000     0.8173 0.000 1.000 0.000 0.000
#> GSM555272     2  0.4920     0.1925 0.000 0.628 0.004 0.368
#> GSM555274     2  0.0921     0.8029 0.000 0.972 0.000 0.028
#> GSM555276     2  0.0000     0.8173 0.000 1.000 0.000 0.000
#> GSM555277     2  0.3610     0.7842 0.000 0.800 0.000 0.200
#> GSM555279     4  0.3837     0.7302 0.000 0.224 0.000 0.776
#> GSM555281     2  0.4981     0.2209 0.000 0.536 0.000 0.464
#> GSM555283     2  0.3610     0.7842 0.000 0.800 0.000 0.200
#> GSM555285     2  0.4925     0.3263 0.000 0.572 0.000 0.428
#> GSM555287     4  0.4988     0.5494 0.000 0.288 0.020 0.692
#> GSM555289     2  0.3610     0.7867 0.000 0.800 0.000 0.200
#> GSM555291     2  0.3610     0.7842 0.000 0.800 0.000 0.200
#> GSM555293     2  0.3649     0.7852 0.000 0.796 0.000 0.204
#> GSM555295     4  0.4500     0.5507 0.000 0.316 0.000 0.684
#> GSM555297     4  0.2706     0.8435 0.000 0.080 0.020 0.900
#> GSM555299     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> GSM555301     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> GSM555303     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> GSM555305     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> GSM555307     2  0.3649     0.7808 0.000 0.796 0.000 0.204
#> GSM555309     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> GSM555311     2  0.3610     0.7842 0.000 0.800 0.000 0.200
#> GSM555313     2  0.0000     0.8173 0.000 1.000 0.000 0.000
#> GSM555315     2  0.3569     0.7870 0.000 0.804 0.000 0.196
#> GSM555278     2  0.0188     0.8158 0.000 0.996 0.000 0.004
#> GSM555280     2  0.0000     0.8173 0.000 1.000 0.000 0.000
#> GSM555282     2  0.0000     0.8173 0.000 1.000 0.000 0.000
#> GSM555284     2  0.0707     0.8079 0.000 0.980 0.000 0.020
#> GSM555286     2  0.0000     0.8173 0.000 1.000 0.000 0.000
#> GSM555288     2  0.0188     0.8159 0.000 0.996 0.000 0.004
#> GSM555290     2  0.0000     0.8173 0.000 1.000 0.000 0.000
#> GSM555292     2  0.0000     0.8173 0.000 1.000 0.000 0.000
#> GSM555294     2  0.1022     0.8003 0.000 0.968 0.000 0.032
#> GSM555296     2  0.3528     0.5823 0.000 0.808 0.000 0.192
#> GSM555298     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> GSM555300     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> GSM555302     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> GSM555304     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> GSM555306     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> GSM555308     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> GSM555310     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> GSM555312     2  0.0000     0.8173 0.000 1.000 0.000 0.000
#> GSM555314     4  0.3975     0.7077 0.000 0.240 0.000 0.760
#> GSM555316     2  0.0000     0.8173 0.000 1.000 0.000 0.000
#> GSM555317     2  0.3569     0.7870 0.000 0.804 0.000 0.196
#> GSM555319     2  0.3569     0.7870 0.000 0.804 0.000 0.196
#> GSM555321     2  0.3569     0.7870 0.000 0.804 0.000 0.196
#> GSM555323     2  0.3569     0.7870 0.000 0.804 0.000 0.196
#> GSM555325     2  0.3837     0.7779 0.000 0.776 0.000 0.224
#> GSM555327     2  0.3569     0.7870 0.000 0.804 0.000 0.196
#> GSM555329     2  0.3569     0.7870 0.000 0.804 0.000 0.196
#> GSM555331     2  0.3569     0.7870 0.000 0.804 0.000 0.196
#> GSM555333     2  0.3610     0.7842 0.000 0.800 0.000 0.200
#> GSM555335     2  0.3569     0.7870 0.000 0.804 0.000 0.196
#> GSM555337     2  0.3569     0.7870 0.000 0.804 0.000 0.196
#> GSM555339     2  0.3610     0.7842 0.000 0.800 0.000 0.200
#> GSM555341     2  0.3831     0.7856 0.000 0.792 0.004 0.204
#> GSM555343     2  0.3569     0.7870 0.000 0.804 0.000 0.196
#> GSM555345     2  0.4610     0.7374 0.000 0.744 0.020 0.236
#> GSM555318     2  0.2704     0.8045 0.000 0.876 0.000 0.124
#> GSM555320     2  0.0469     0.8125 0.000 0.988 0.000 0.012
#> GSM555322     2  0.0000     0.8173 0.000 1.000 0.000 0.000
#> GSM555324     3  0.0188     0.9970 0.000 0.000 0.996 0.004
#> GSM555326     2  0.0000     0.8173 0.000 1.000 0.000 0.000
#> GSM555328     2  0.0000     0.8173 0.000 1.000 0.000 0.000
#> GSM555330     2  0.0000     0.8173 0.000 1.000 0.000 0.000
#> GSM555332     2  0.0000     0.8173 0.000 1.000 0.000 0.000
#> GSM555334     2  0.0592     0.8106 0.000 0.984 0.000 0.016
#> GSM555336     2  0.0188     0.8160 0.000 0.996 0.000 0.004
#> GSM555338     2  0.3569     0.7870 0.000 0.804 0.000 0.196
#> GSM555340     2  0.3569     0.7870 0.000 0.804 0.000 0.196
#> GSM555342     2  0.0592     0.8103 0.000 0.984 0.000 0.016
#> GSM555344     2  0.0000     0.8173 0.000 1.000 0.000 0.000
#> GSM555346     2  0.4088     0.5305 0.000 0.764 0.004 0.232

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM555237     1  0.1623     0.9066 0.948 0.000 0.016 0.016 0.020
#> GSM555239     1  0.0000     0.9180 1.000 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0000     0.9180 1.000 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000     0.9180 1.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000     0.9180 1.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000     0.9180 1.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000     0.9180 1.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000     0.9180 1.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000     0.9180 1.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0000     0.9180 1.000 0.000 0.000 0.000 0.000
#> GSM555257     5  0.4774     0.0823 0.000 0.004 0.040 0.276 0.680
#> GSM555259     4  0.3432     0.9370 0.000 0.132 0.040 0.828 0.000
#> GSM555261     4  0.3477     0.9366 0.000 0.136 0.040 0.824 0.000
#> GSM555263     4  0.3409     0.9257 0.000 0.144 0.032 0.824 0.000
#> GSM555265     4  0.3432     0.9370 0.000 0.132 0.040 0.828 0.000
#> GSM555267     4  0.3400     0.9366 0.000 0.136 0.036 0.828 0.000
#> GSM555269     4  0.3460     0.9319 0.000 0.128 0.044 0.828 0.000
#> GSM555271     3  0.0324     0.9956 0.000 0.000 0.992 0.004 0.004
#> GSM555273     5  0.4403     0.4399 0.000 0.436 0.000 0.004 0.560
#> GSM555275     2  0.0000     0.8047 0.000 1.000 0.000 0.000 0.000
#> GSM555238     1  0.2852     0.9209 0.828 0.000 0.000 0.172 0.000
#> GSM555240     1  0.2852     0.9209 0.828 0.000 0.000 0.172 0.000
#> GSM555242     1  0.2852     0.9209 0.828 0.000 0.000 0.172 0.000
#> GSM555244     1  0.2852     0.9209 0.828 0.000 0.000 0.172 0.000
#> GSM555246     1  0.2852     0.9209 0.828 0.000 0.000 0.172 0.000
#> GSM555248     1  0.2852     0.9209 0.828 0.000 0.000 0.172 0.000
#> GSM555250     1  0.2852     0.9209 0.828 0.000 0.000 0.172 0.000
#> GSM555252     1  0.2852     0.9209 0.828 0.000 0.000 0.172 0.000
#> GSM555254     1  0.2852     0.9209 0.828 0.000 0.000 0.172 0.000
#> GSM555256     1  0.2852     0.9209 0.828 0.000 0.000 0.172 0.000
#> GSM555258     5  0.4844     0.5583 0.000 0.256 0.008 0.044 0.692
#> GSM555260     2  0.3966     0.6215 0.000 0.664 0.000 0.000 0.336
#> GSM555262     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555264     5  0.1310     0.3381 0.000 0.000 0.024 0.020 0.956
#> GSM555266     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555268     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555270     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555272     5  0.4573     0.5531 0.000 0.280 0.004 0.028 0.688
#> GSM555274     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555276     2  0.3109     0.8109 0.000 0.800 0.000 0.000 0.200
#> GSM555277     2  0.0000     0.8047 0.000 1.000 0.000 0.000 0.000
#> GSM555279     2  0.4045     0.0836 0.000 0.644 0.000 0.356 0.000
#> GSM555281     2  0.2561     0.6080 0.000 0.856 0.000 0.144 0.000
#> GSM555283     2  0.0000     0.8047 0.000 1.000 0.000 0.000 0.000
#> GSM555285     5  0.4359     0.4732 0.000 0.412 0.000 0.004 0.584
#> GSM555287     4  0.7231     0.5003 0.008 0.140 0.040 0.472 0.340
#> GSM555289     2  0.0162     0.8027 0.000 0.996 0.000 0.000 0.004
#> GSM555291     2  0.0000     0.8047 0.000 1.000 0.000 0.000 0.000
#> GSM555293     2  0.0000     0.8047 0.000 1.000 0.000 0.000 0.000
#> GSM555295     2  0.4015     0.1088 0.000 0.652 0.000 0.348 0.000
#> GSM555297     4  0.3400     0.9366 0.000 0.136 0.036 0.828 0.000
#> GSM555299     3  0.0000     0.9966 0.000 0.000 1.000 0.000 0.000
#> GSM555301     3  0.0162     0.9967 0.000 0.000 0.996 0.004 0.000
#> GSM555303     3  0.0000     0.9966 0.000 0.000 1.000 0.000 0.000
#> GSM555305     3  0.0000     0.9966 0.000 0.000 1.000 0.000 0.000
#> GSM555307     2  0.0000     0.8047 0.000 1.000 0.000 0.000 0.000
#> GSM555309     3  0.0162     0.9953 0.000 0.000 0.996 0.000 0.004
#> GSM555311     2  0.0000     0.8047 0.000 1.000 0.000 0.000 0.000
#> GSM555313     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555315     2  0.0000     0.8047 0.000 1.000 0.000 0.000 0.000
#> GSM555278     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555280     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555282     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555284     2  0.3109     0.8103 0.000 0.800 0.000 0.000 0.200
#> GSM555286     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555288     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555290     2  0.3109     0.8109 0.000 0.800 0.000 0.000 0.200
#> GSM555292     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555294     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555296     2  0.3621     0.8008 0.000 0.788 0.000 0.020 0.192
#> GSM555298     3  0.0290     0.9941 0.000 0.000 0.992 0.008 0.000
#> GSM555300     3  0.0000     0.9966 0.000 0.000 1.000 0.000 0.000
#> GSM555302     3  0.0162     0.9967 0.000 0.000 0.996 0.004 0.000
#> GSM555304     3  0.0162     0.9967 0.000 0.000 0.996 0.004 0.000
#> GSM555306     3  0.0162     0.9967 0.000 0.000 0.996 0.004 0.000
#> GSM555308     3  0.0000     0.9966 0.000 0.000 1.000 0.000 0.000
#> GSM555310     3  0.0162     0.9967 0.000 0.000 0.996 0.004 0.000
#> GSM555312     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555314     2  0.4015     0.1091 0.000 0.652 0.000 0.348 0.000
#> GSM555316     2  0.3109     0.8109 0.000 0.800 0.000 0.000 0.200
#> GSM555317     2  0.0000     0.8047 0.000 1.000 0.000 0.000 0.000
#> GSM555319     2  0.0000     0.8047 0.000 1.000 0.000 0.000 0.000
#> GSM555321     2  0.0162     0.8017 0.000 0.996 0.000 0.004 0.000
#> GSM555323     2  0.0000     0.8047 0.000 1.000 0.000 0.000 0.000
#> GSM555325     2  0.0000     0.8047 0.000 1.000 0.000 0.000 0.000
#> GSM555327     2  0.0162     0.8027 0.000 0.996 0.000 0.000 0.004
#> GSM555329     2  0.0162     0.8017 0.000 0.996 0.000 0.004 0.000
#> GSM555331     2  0.0000     0.8047 0.000 1.000 0.000 0.000 0.000
#> GSM555333     2  0.0000     0.8047 0.000 1.000 0.000 0.000 0.000
#> GSM555335     2  0.0000     0.8047 0.000 1.000 0.000 0.000 0.000
#> GSM555337     2  0.0000     0.8047 0.000 1.000 0.000 0.000 0.000
#> GSM555339     2  0.0000     0.8047 0.000 1.000 0.000 0.000 0.000
#> GSM555341     2  0.0000     0.8047 0.000 1.000 0.000 0.000 0.000
#> GSM555343     2  0.0000     0.8047 0.000 1.000 0.000 0.000 0.000
#> GSM555345     2  0.2313     0.7533 0.000 0.916 0.040 0.012 0.032
#> GSM555318     2  0.0880     0.8080 0.000 0.968 0.000 0.000 0.032
#> GSM555320     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555322     2  0.3231     0.8107 0.000 0.800 0.000 0.004 0.196
#> GSM555324     3  0.0324     0.9931 0.000 0.000 0.992 0.004 0.004
#> GSM555326     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555328     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555330     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555332     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555334     2  0.3109     0.8109 0.000 0.800 0.000 0.000 0.200
#> GSM555336     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555338     2  0.0162     0.8027 0.000 0.996 0.000 0.000 0.004
#> GSM555340     2  0.0000     0.8047 0.000 1.000 0.000 0.000 0.000
#> GSM555342     2  0.3074     0.8130 0.000 0.804 0.000 0.000 0.196
#> GSM555344     2  0.3109     0.8109 0.000 0.800 0.000 0.000 0.200
#> GSM555346     2  0.3752     0.6962 0.000 0.708 0.000 0.000 0.292

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM555237     1  0.4074      0.868 0.760 0.000 0.000 0.020 0.044 NA
#> GSM555239     1  0.2762      0.901 0.804 0.000 0.000 0.000 0.000 NA
#> GSM555241     1  0.2762      0.901 0.804 0.000 0.000 0.000 0.000 NA
#> GSM555243     1  0.2762      0.901 0.804 0.000 0.000 0.000 0.000 NA
#> GSM555245     1  0.2762      0.901 0.804 0.000 0.000 0.000 0.000 NA
#> GSM555247     1  0.2762      0.901 0.804 0.000 0.000 0.000 0.000 NA
#> GSM555249     1  0.2762      0.901 0.804 0.000 0.000 0.000 0.000 NA
#> GSM555251     1  0.2762      0.901 0.804 0.000 0.000 0.000 0.000 NA
#> GSM555253     1  0.2762      0.901 0.804 0.000 0.000 0.000 0.000 NA
#> GSM555255     1  0.2762      0.901 0.804 0.000 0.000 0.000 0.000 NA
#> GSM555257     4  0.4937      0.377 0.000 0.004 0.000 0.476 0.468 NA
#> GSM555259     4  0.0458      0.858 0.000 0.000 0.016 0.984 0.000 NA
#> GSM555261     4  0.1003      0.864 0.000 0.020 0.016 0.964 0.000 NA
#> GSM555263     4  0.1787      0.855 0.000 0.020 0.016 0.932 0.032 NA
#> GSM555265     4  0.0914      0.864 0.000 0.016 0.016 0.968 0.000 NA
#> GSM555267     4  0.1003      0.864 0.000 0.020 0.016 0.964 0.000 NA
#> GSM555269     4  0.0547      0.857 0.000 0.000 0.020 0.980 0.000 NA
#> GSM555271     3  0.2134      0.915 0.000 0.000 0.904 0.052 0.000 NA
#> GSM555273     5  0.5553      0.338 0.000 0.256 0.000 0.004 0.568 NA
#> GSM555275     2  0.1578      0.720 0.000 0.936 0.000 0.004 0.048 NA
#> GSM555238     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000 NA
#> GSM555240     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000 NA
#> GSM555242     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000 NA
#> GSM555244     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000 NA
#> GSM555246     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000 NA
#> GSM555248     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000 NA
#> GSM555250     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000 NA
#> GSM555252     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000 NA
#> GSM555254     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000 NA
#> GSM555256     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000 NA
#> GSM555258     5  0.3056      0.557 0.000 0.140 0.000 0.012 0.832 NA
#> GSM555260     5  0.4101      0.117 0.000 0.408 0.000 0.000 0.580 NA
#> GSM555262     2  0.3287      0.729 0.000 0.768 0.000 0.000 0.220 NA
#> GSM555264     5  0.4317      0.251 0.000 0.004 0.000 0.028 0.640 NA
#> GSM555266     2  0.3927      0.574 0.000 0.644 0.000 0.000 0.344 NA
#> GSM555268     2  0.3073      0.732 0.000 0.788 0.000 0.000 0.204 NA
#> GSM555270     2  0.3315      0.737 0.000 0.780 0.000 0.000 0.200 NA
#> GSM555272     5  0.3056      0.557 0.000 0.140 0.000 0.012 0.832 NA
#> GSM555274     2  0.3394      0.720 0.000 0.752 0.000 0.000 0.236 NA
#> GSM555276     2  0.3794      0.730 0.000 0.744 0.000 0.000 0.216 NA
#> GSM555277     2  0.2039      0.723 0.000 0.908 0.000 0.004 0.016 NA
#> GSM555279     2  0.5741     -0.269 0.000 0.464 0.000 0.384 0.148 NA
#> GSM555281     2  0.3794      0.545 0.000 0.796 0.000 0.128 0.060 NA
#> GSM555283     2  0.1364      0.739 0.000 0.944 0.000 0.004 0.004 NA
#> GSM555285     5  0.5885      0.238 0.000 0.208 0.000 0.000 0.444 NA
#> GSM555287     4  0.6795      0.416 0.000 0.140 0.000 0.508 0.128 NA
#> GSM555289     2  0.1564      0.735 0.000 0.936 0.000 0.000 0.024 NA
#> GSM555291     2  0.1219      0.740 0.000 0.948 0.000 0.004 0.000 NA
#> GSM555293     2  0.0665      0.740 0.000 0.980 0.000 0.004 0.008 NA
#> GSM555295     2  0.5961     -0.328 0.000 0.420 0.000 0.388 0.188 NA
#> GSM555297     4  0.2133      0.846 0.000 0.020 0.016 0.912 0.052 NA
#> GSM555299     3  0.1556      0.948 0.000 0.000 0.920 0.000 0.000 NA
#> GSM555301     3  0.0260      0.958 0.000 0.000 0.992 0.008 0.000 NA
#> GSM555303     3  0.1075      0.955 0.000 0.000 0.952 0.000 0.000 NA
#> GSM555305     3  0.0000      0.959 0.000 0.000 1.000 0.000 0.000 NA
#> GSM555307     2  0.1219      0.740 0.000 0.948 0.000 0.004 0.000 NA
#> GSM555309     3  0.2048      0.933 0.000 0.000 0.880 0.000 0.000 NA
#> GSM555311     2  0.2794      0.611 0.000 0.840 0.000 0.004 0.144 NA
#> GSM555313     2  0.3141      0.735 0.000 0.788 0.000 0.000 0.200 NA
#> GSM555315     2  0.2500      0.648 0.000 0.868 0.000 0.004 0.116 NA
#> GSM555278     2  0.3586      0.687 0.000 0.720 0.000 0.000 0.268 NA
#> GSM555280     2  0.3671      0.734 0.000 0.756 0.000 0.000 0.208 NA
#> GSM555282     2  0.3776      0.737 0.000 0.756 0.000 0.000 0.196 NA
#> GSM555284     2  0.4099      0.532 0.000 0.612 0.000 0.000 0.372 NA
#> GSM555286     2  0.3766      0.732 0.000 0.748 0.000 0.000 0.212 NA
#> GSM555288     2  0.3938      0.634 0.000 0.672 0.000 0.004 0.312 NA
#> GSM555290     2  0.3727      0.732 0.000 0.748 0.000 0.000 0.216 NA
#> GSM555292     2  0.3699      0.733 0.000 0.752 0.000 0.000 0.212 NA
#> GSM555294     2  0.3650      0.672 0.000 0.708 0.000 0.000 0.280 NA
#> GSM555296     2  0.4017      0.722 0.000 0.748 0.000 0.028 0.204 NA
#> GSM555298     3  0.0260      0.958 0.000 0.000 0.992 0.008 0.000 NA
#> GSM555300     3  0.1556      0.948 0.000 0.000 0.920 0.000 0.000 NA
#> GSM555302     3  0.0547      0.954 0.000 0.000 0.980 0.020 0.000 NA
#> GSM555304     3  0.0146      0.959 0.000 0.000 0.996 0.004 0.000 NA
#> GSM555306     3  0.0146      0.959 0.000 0.000 0.996 0.004 0.000 NA
#> GSM555308     3  0.1556      0.948 0.000 0.000 0.920 0.000 0.000 NA
#> GSM555310     3  0.0146      0.959 0.000 0.000 0.996 0.004 0.000 NA
#> GSM555312     2  0.3141      0.735 0.000 0.788 0.000 0.000 0.200 NA
#> GSM555314     2  0.5964     -0.341 0.000 0.404 0.000 0.404 0.188 NA
#> GSM555316     2  0.3738      0.733 0.000 0.752 0.000 0.000 0.208 NA
#> GSM555317     2  0.1757      0.735 0.000 0.928 0.000 0.008 0.012 NA
#> GSM555319     2  0.0820      0.743 0.000 0.972 0.000 0.000 0.012 NA
#> GSM555321     2  0.0260      0.743 0.000 0.992 0.000 0.000 0.008 NA
#> GSM555323     2  0.0508      0.739 0.000 0.984 0.000 0.004 0.000 NA
#> GSM555325     2  0.2531      0.635 0.000 0.860 0.000 0.004 0.128 NA
#> GSM555327     2  0.1616      0.733 0.000 0.932 0.000 0.000 0.020 NA
#> GSM555329     2  0.1176      0.741 0.000 0.956 0.000 0.000 0.020 NA
#> GSM555331     2  0.0291      0.741 0.000 0.992 0.000 0.004 0.000 NA
#> GSM555333     2  0.2794      0.613 0.000 0.840 0.000 0.004 0.144 NA
#> GSM555335     2  0.0653      0.738 0.000 0.980 0.000 0.004 0.004 NA
#> GSM555337     2  0.0748      0.739 0.000 0.976 0.000 0.004 0.004 NA
#> GSM555339     2  0.1364      0.741 0.000 0.944 0.000 0.004 0.004 NA
#> GSM555341     2  0.0653      0.738 0.000 0.980 0.000 0.004 0.004 NA
#> GSM555343     2  0.0767      0.739 0.000 0.976 0.000 0.004 0.008 NA
#> GSM555345     2  0.3301      0.681 0.000 0.844 0.000 0.024 0.064 NA
#> GSM555318     2  0.3475      0.643 0.000 0.812 0.000 0.020 0.028 NA
#> GSM555320     2  0.3690      0.662 0.000 0.700 0.000 0.000 0.288 NA
#> GSM555322     2  0.3727      0.732 0.000 0.748 0.000 0.000 0.216 NA
#> GSM555324     3  0.2191      0.931 0.000 0.000 0.876 0.004 0.000 NA
#> GSM555326     2  0.3642      0.735 0.000 0.760 0.000 0.000 0.204 NA
#> GSM555328     2  0.3802      0.735 0.000 0.748 0.000 0.000 0.208 NA
#> GSM555330     2  0.3679      0.735 0.000 0.760 0.000 0.000 0.200 NA
#> GSM555332     2  0.3671      0.734 0.000 0.756 0.000 0.000 0.208 NA
#> GSM555334     2  0.3858      0.729 0.000 0.740 0.000 0.000 0.216 NA
#> GSM555336     2  0.3171      0.730 0.000 0.784 0.000 0.000 0.204 NA
#> GSM555338     2  0.1480      0.736 0.000 0.940 0.000 0.000 0.020 NA
#> GSM555340     2  0.0717      0.740 0.000 0.976 0.000 0.000 0.008 NA
#> GSM555342     2  0.3320      0.726 0.000 0.772 0.000 0.000 0.212 NA
#> GSM555344     2  0.3802      0.736 0.000 0.748 0.000 0.000 0.208 NA
#> GSM555346     5  0.4687      0.362 0.000 0.336 0.000 0.000 0.604 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) agent(p) k
#> MAD:mclust 110         1.29e-06   1.0000 2
#> MAD:mclust  97         4.89e-14   0.8912 3
#> MAD:mclust 104         5.76e-14   0.0211 4
#> MAD:mclust 103         1.55e-13   0.0261 5
#> MAD:mclust 100         5.58e-14   0.0460 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.840           0.933       0.968          0.448 0.538   0.538
#> 3 3 0.985           0.944       0.978          0.175 0.937   0.883
#> 4 4 0.741           0.839       0.911          0.153 0.948   0.890
#> 5 5 0.666           0.805       0.861          0.131 0.897   0.767
#> 6 6 0.658           0.656       0.790          0.101 0.865   0.622

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1   0.000      0.927 1.000 0.000
#> GSM555239     1   0.000      0.927 1.000 0.000
#> GSM555241     1   0.000      0.927 1.000 0.000
#> GSM555243     1   0.000      0.927 1.000 0.000
#> GSM555245     1   0.000      0.927 1.000 0.000
#> GSM555247     1   0.000      0.927 1.000 0.000
#> GSM555249     1   0.000      0.927 1.000 0.000
#> GSM555251     1   0.000      0.927 1.000 0.000
#> GSM555253     1   0.000      0.927 1.000 0.000
#> GSM555255     1   0.000      0.927 1.000 0.000
#> GSM555257     1   0.722      0.799 0.800 0.200
#> GSM555259     1   0.722      0.799 0.800 0.200
#> GSM555261     2   0.952      0.330 0.372 0.628
#> GSM555263     2   0.000      0.986 0.000 1.000
#> GSM555265     1   0.999      0.190 0.520 0.480
#> GSM555267     2   0.634      0.788 0.160 0.840
#> GSM555269     1   0.730      0.794 0.796 0.204
#> GSM555271     1   0.714      0.803 0.804 0.196
#> GSM555273     2   0.000      0.986 0.000 1.000
#> GSM555275     2   0.000      0.986 0.000 1.000
#> GSM555238     1   0.000      0.927 1.000 0.000
#> GSM555240     1   0.000      0.927 1.000 0.000
#> GSM555242     1   0.000      0.927 1.000 0.000
#> GSM555244     1   0.000      0.927 1.000 0.000
#> GSM555246     1   0.000      0.927 1.000 0.000
#> GSM555248     1   0.000      0.927 1.000 0.000
#> GSM555250     1   0.000      0.927 1.000 0.000
#> GSM555252     1   0.000      0.927 1.000 0.000
#> GSM555254     1   0.000      0.927 1.000 0.000
#> GSM555256     1   0.000      0.927 1.000 0.000
#> GSM555258     2   0.000      0.986 0.000 1.000
#> GSM555260     2   0.000      0.986 0.000 1.000
#> GSM555262     2   0.000      0.986 0.000 1.000
#> GSM555264     1   0.932      0.552 0.652 0.348
#> GSM555266     2   0.000      0.986 0.000 1.000
#> GSM555268     2   0.000      0.986 0.000 1.000
#> GSM555270     2   0.000      0.986 0.000 1.000
#> GSM555272     2   0.000      0.986 0.000 1.000
#> GSM555274     2   0.000      0.986 0.000 1.000
#> GSM555276     2   0.000      0.986 0.000 1.000
#> GSM555277     2   0.000      0.986 0.000 1.000
#> GSM555279     2   0.000      0.986 0.000 1.000
#> GSM555281     2   0.000      0.986 0.000 1.000
#> GSM555283     2   0.000      0.986 0.000 1.000
#> GSM555285     2   0.000      0.986 0.000 1.000
#> GSM555287     2   0.808      0.634 0.248 0.752
#> GSM555289     2   0.000      0.986 0.000 1.000
#> GSM555291     2   0.000      0.986 0.000 1.000
#> GSM555293     2   0.000      0.986 0.000 1.000
#> GSM555295     2   0.000      0.986 0.000 1.000
#> GSM555297     2   0.482      0.866 0.104 0.896
#> GSM555299     1   0.000      0.927 1.000 0.000
#> GSM555301     1   0.722      0.799 0.800 0.200
#> GSM555303     1   0.430      0.887 0.912 0.088
#> GSM555305     1   0.706      0.807 0.808 0.192
#> GSM555307     2   0.000      0.986 0.000 1.000
#> GSM555309     1   0.184      0.916 0.972 0.028
#> GSM555311     2   0.000      0.986 0.000 1.000
#> GSM555313     2   0.000      0.986 0.000 1.000
#> GSM555315     2   0.000      0.986 0.000 1.000
#> GSM555278     2   0.000      0.986 0.000 1.000
#> GSM555280     2   0.000      0.986 0.000 1.000
#> GSM555282     2   0.000      0.986 0.000 1.000
#> GSM555284     2   0.000      0.986 0.000 1.000
#> GSM555286     2   0.000      0.986 0.000 1.000
#> GSM555288     2   0.000      0.986 0.000 1.000
#> GSM555290     2   0.000      0.986 0.000 1.000
#> GSM555292     2   0.000      0.986 0.000 1.000
#> GSM555294     2   0.000      0.986 0.000 1.000
#> GSM555296     2   0.000      0.986 0.000 1.000
#> GSM555298     1   0.722      0.799 0.800 0.200
#> GSM555300     1   0.000      0.927 1.000 0.000
#> GSM555302     1   0.529      0.867 0.880 0.120
#> GSM555304     1   0.402      0.891 0.920 0.080
#> GSM555306     1   0.552      0.861 0.872 0.128
#> GSM555308     1   0.000      0.927 1.000 0.000
#> GSM555310     1   0.000      0.927 1.000 0.000
#> GSM555312     2   0.000      0.986 0.000 1.000
#> GSM555314     2   0.000      0.986 0.000 1.000
#> GSM555316     2   0.000      0.986 0.000 1.000
#> GSM555317     2   0.000      0.986 0.000 1.000
#> GSM555319     2   0.000      0.986 0.000 1.000
#> GSM555321     2   0.000      0.986 0.000 1.000
#> GSM555323     2   0.000      0.986 0.000 1.000
#> GSM555325     2   0.000      0.986 0.000 1.000
#> GSM555327     2   0.000      0.986 0.000 1.000
#> GSM555329     2   0.000      0.986 0.000 1.000
#> GSM555331     2   0.000      0.986 0.000 1.000
#> GSM555333     2   0.000      0.986 0.000 1.000
#> GSM555335     2   0.000      0.986 0.000 1.000
#> GSM555337     2   0.000      0.986 0.000 1.000
#> GSM555339     2   0.000      0.986 0.000 1.000
#> GSM555341     2   0.000      0.986 0.000 1.000
#> GSM555343     2   0.000      0.986 0.000 1.000
#> GSM555345     2   0.000      0.986 0.000 1.000
#> GSM555318     2   0.000      0.986 0.000 1.000
#> GSM555320     2   0.000      0.986 0.000 1.000
#> GSM555322     2   0.000      0.986 0.000 1.000
#> GSM555324     1   0.000      0.927 1.000 0.000
#> GSM555326     2   0.000      0.986 0.000 1.000
#> GSM555328     2   0.000      0.986 0.000 1.000
#> GSM555330     2   0.000      0.986 0.000 1.000
#> GSM555332     2   0.000      0.986 0.000 1.000
#> GSM555334     2   0.000      0.986 0.000 1.000
#> GSM555336     2   0.000      0.986 0.000 1.000
#> GSM555338     2   0.000      0.986 0.000 1.000
#> GSM555340     2   0.000      0.986 0.000 1.000
#> GSM555342     2   0.000      0.986 0.000 1.000
#> GSM555344     2   0.000      0.986 0.000 1.000
#> GSM555346     2   0.000      0.986 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.0747      0.961 0.984 0.000 0.016
#> GSM555239     1  0.0592      0.963 0.988 0.000 0.012
#> GSM555241     1  0.0747      0.961 0.984 0.000 0.016
#> GSM555243     1  0.0592      0.963 0.988 0.000 0.012
#> GSM555245     1  0.0592      0.963 0.988 0.000 0.012
#> GSM555247     1  0.0892      0.958 0.980 0.000 0.020
#> GSM555249     1  0.0424      0.963 0.992 0.000 0.008
#> GSM555251     1  0.0592      0.963 0.988 0.000 0.012
#> GSM555253     1  0.0892      0.958 0.980 0.000 0.020
#> GSM555255     1  0.0000      0.964 1.000 0.000 0.000
#> GSM555257     3  0.8059      0.059 0.444 0.064 0.492
#> GSM555259     3  0.0000      0.937 0.000 0.000 1.000
#> GSM555261     2  0.5058      0.684 0.000 0.756 0.244
#> GSM555263     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555265     3  0.5835      0.458 0.000 0.340 0.660
#> GSM555267     2  0.5327      0.634 0.000 0.728 0.272
#> GSM555269     3  0.0237      0.933 0.000 0.004 0.996
#> GSM555271     3  0.0000      0.937 0.000 0.000 1.000
#> GSM555273     2  0.0983      0.969 0.016 0.980 0.004
#> GSM555275     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555238     1  0.0000      0.964 1.000 0.000 0.000
#> GSM555240     1  0.0000      0.964 1.000 0.000 0.000
#> GSM555242     1  0.0000      0.964 1.000 0.000 0.000
#> GSM555244     1  0.0592      0.963 0.988 0.000 0.012
#> GSM555246     1  0.0000      0.964 1.000 0.000 0.000
#> GSM555248     1  0.0000      0.964 1.000 0.000 0.000
#> GSM555250     1  0.0000      0.964 1.000 0.000 0.000
#> GSM555252     1  0.0000      0.964 1.000 0.000 0.000
#> GSM555254     1  0.0000      0.964 1.000 0.000 0.000
#> GSM555256     1  0.0000      0.964 1.000 0.000 0.000
#> GSM555258     2  0.2860      0.899 0.084 0.912 0.004
#> GSM555260     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555262     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555264     1  0.6608      0.375 0.628 0.356 0.016
#> GSM555266     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555268     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555270     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555272     2  0.0829      0.972 0.012 0.984 0.004
#> GSM555274     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555276     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555277     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555279     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555281     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555283     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555285     2  0.0592      0.975 0.012 0.988 0.000
#> GSM555287     2  0.5098      0.676 0.000 0.752 0.248
#> GSM555289     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555291     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555293     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555295     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555297     2  0.3192      0.870 0.000 0.888 0.112
#> GSM555299     3  0.0237      0.936 0.004 0.000 0.996
#> GSM555301     3  0.0000      0.937 0.000 0.000 1.000
#> GSM555303     3  0.0000      0.937 0.000 0.000 1.000
#> GSM555305     3  0.0000      0.937 0.000 0.000 1.000
#> GSM555307     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555309     3  0.0000      0.937 0.000 0.000 1.000
#> GSM555311     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555313     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555315     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555278     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555280     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555282     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555284     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555286     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555288     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555290     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555292     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555294     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555296     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555298     3  0.0000      0.937 0.000 0.000 1.000
#> GSM555300     3  0.0237      0.936 0.004 0.000 0.996
#> GSM555302     3  0.0000      0.937 0.000 0.000 1.000
#> GSM555304     3  0.0000      0.937 0.000 0.000 1.000
#> GSM555306     3  0.0000      0.937 0.000 0.000 1.000
#> GSM555308     3  0.0237      0.936 0.004 0.000 0.996
#> GSM555310     3  0.0237      0.936 0.004 0.000 0.996
#> GSM555312     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555314     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555316     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555317     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555319     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555321     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555323     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555325     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555327     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555329     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555331     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555333     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555335     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555337     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555339     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555341     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555343     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555345     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555318     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555320     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555322     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555324     3  0.0237      0.936 0.004 0.000 0.996
#> GSM555326     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555328     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555330     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555332     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555334     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555336     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555338     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555340     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555342     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555344     2  0.0000      0.985 0.000 1.000 0.000
#> GSM555346     2  0.0000      0.985 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.0188    0.99110 0.996 0.000 0.000 0.004
#> GSM555239     1  0.0469    0.98651 0.988 0.000 0.000 0.012
#> GSM555241     1  0.0188    0.99110 0.996 0.000 0.000 0.004
#> GSM555243     1  0.0000    0.99197 1.000 0.000 0.000 0.000
#> GSM555245     1  0.0000    0.99197 1.000 0.000 0.000 0.000
#> GSM555247     1  0.0469    0.98651 0.988 0.000 0.000 0.012
#> GSM555249     1  0.0000    0.99197 1.000 0.000 0.000 0.000
#> GSM555251     1  0.0000    0.99197 1.000 0.000 0.000 0.000
#> GSM555253     1  0.0000    0.99197 1.000 0.000 0.000 0.000
#> GSM555255     1  0.0817    0.97776 0.976 0.000 0.000 0.024
#> GSM555257     4  0.8520    0.01064 0.392 0.060 0.144 0.404
#> GSM555259     3  0.0336    0.97065 0.000 0.000 0.992 0.008
#> GSM555261     2  0.6566    0.22723 0.000 0.600 0.288 0.112
#> GSM555263     2  0.3306    0.78729 0.000 0.840 0.004 0.156
#> GSM555265     3  0.5624    0.52413 0.000 0.172 0.720 0.108
#> GSM555267     2  0.6100    0.34640 0.000 0.644 0.272 0.084
#> GSM555269     3  0.0188    0.97227 0.000 0.000 0.996 0.004
#> GSM555271     3  0.0000    0.97454 0.000 0.000 1.000 0.000
#> GSM555273     4  0.4795    0.70284 0.012 0.292 0.000 0.696
#> GSM555275     2  0.1637    0.85975 0.000 0.940 0.000 0.060
#> GSM555238     1  0.0000    0.99197 1.000 0.000 0.000 0.000
#> GSM555240     1  0.1716    0.94076 0.936 0.000 0.000 0.064
#> GSM555242     1  0.0188    0.99132 0.996 0.000 0.000 0.004
#> GSM555244     1  0.0336    0.99032 0.992 0.000 0.000 0.008
#> GSM555246     1  0.0188    0.99132 0.996 0.000 0.000 0.004
#> GSM555248     1  0.0000    0.99197 1.000 0.000 0.000 0.000
#> GSM555250     1  0.0336    0.99032 0.992 0.000 0.000 0.008
#> GSM555252     1  0.0707    0.98373 0.980 0.000 0.000 0.020
#> GSM555254     1  0.0000    0.99197 1.000 0.000 0.000 0.000
#> GSM555256     1  0.0336    0.98997 0.992 0.000 0.000 0.008
#> GSM555258     2  0.6084    0.47717 0.120 0.676 0.000 0.204
#> GSM555260     2  0.3266    0.79047 0.000 0.832 0.000 0.168
#> GSM555262     2  0.2011    0.86693 0.000 0.920 0.000 0.080
#> GSM555264     4  0.5232    0.53776 0.132 0.100 0.004 0.764
#> GSM555266     2  0.2868    0.81621 0.000 0.864 0.000 0.136
#> GSM555268     2  0.2469    0.84018 0.000 0.892 0.000 0.108
#> GSM555270     2  0.1022    0.87332 0.000 0.968 0.000 0.032
#> GSM555272     2  0.4986    0.61788 0.044 0.740 0.000 0.216
#> GSM555274     2  0.1637    0.87254 0.000 0.940 0.000 0.060
#> GSM555276     2  0.2011    0.84815 0.000 0.920 0.000 0.080
#> GSM555277     2  0.2469    0.82865 0.000 0.892 0.000 0.108
#> GSM555279     2  0.2589    0.82667 0.000 0.884 0.000 0.116
#> GSM555281     2  0.1716    0.85790 0.000 0.936 0.000 0.064
#> GSM555283     2  0.0921    0.87341 0.000 0.972 0.000 0.028
#> GSM555285     4  0.5200    0.70597 0.036 0.264 0.000 0.700
#> GSM555287     2  0.6260    0.44523 0.000 0.664 0.144 0.192
#> GSM555289     2  0.2408    0.83149 0.000 0.896 0.000 0.104
#> GSM555291     2  0.0707    0.87360 0.000 0.980 0.000 0.020
#> GSM555293     2  0.2149    0.84736 0.000 0.912 0.000 0.088
#> GSM555295     2  0.2081    0.84882 0.000 0.916 0.000 0.084
#> GSM555297     2  0.7113    0.00679 0.000 0.552 0.276 0.172
#> GSM555299     3  0.0000    0.97454 0.000 0.000 1.000 0.000
#> GSM555301     3  0.0707    0.96246 0.000 0.000 0.980 0.020
#> GSM555303     3  0.0000    0.97454 0.000 0.000 1.000 0.000
#> GSM555305     3  0.0000    0.97454 0.000 0.000 1.000 0.000
#> GSM555307     2  0.2011    0.85004 0.000 0.920 0.000 0.080
#> GSM555309     3  0.0188    0.97310 0.000 0.000 0.996 0.004
#> GSM555311     2  0.2530    0.83038 0.000 0.888 0.000 0.112
#> GSM555313     2  0.1211    0.87406 0.000 0.960 0.000 0.040
#> GSM555315     2  0.2647    0.82306 0.000 0.880 0.000 0.120
#> GSM555278     2  0.2408    0.84068 0.000 0.896 0.000 0.104
#> GSM555280     2  0.1557    0.87313 0.000 0.944 0.000 0.056
#> GSM555282     2  0.2704    0.83370 0.000 0.876 0.000 0.124
#> GSM555284     2  0.2814    0.82573 0.000 0.868 0.000 0.132
#> GSM555286     2  0.1118    0.87286 0.000 0.964 0.000 0.036
#> GSM555288     2  0.2530    0.84396 0.000 0.888 0.000 0.112
#> GSM555290     2  0.2149    0.84341 0.000 0.912 0.000 0.088
#> GSM555292     2  0.1557    0.86120 0.000 0.944 0.000 0.056
#> GSM555294     2  0.3266    0.77058 0.000 0.832 0.000 0.168
#> GSM555296     2  0.0921    0.87227 0.000 0.972 0.000 0.028
#> GSM555298     3  0.0188    0.97227 0.000 0.000 0.996 0.004
#> GSM555300     3  0.0188    0.97310 0.000 0.000 0.996 0.004
#> GSM555302     3  0.0188    0.97319 0.000 0.000 0.996 0.004
#> GSM555304     3  0.0000    0.97454 0.000 0.000 1.000 0.000
#> GSM555306     3  0.0000    0.97454 0.000 0.000 1.000 0.000
#> GSM555308     3  0.0000    0.97454 0.000 0.000 1.000 0.000
#> GSM555310     3  0.0000    0.97454 0.000 0.000 1.000 0.000
#> GSM555312     2  0.1389    0.86352 0.000 0.952 0.000 0.048
#> GSM555314     2  0.1716    0.85790 0.000 0.936 0.000 0.064
#> GSM555316     2  0.1302    0.86398 0.000 0.956 0.000 0.044
#> GSM555317     2  0.1867    0.85225 0.000 0.928 0.000 0.072
#> GSM555319     2  0.1022    0.87238 0.000 0.968 0.000 0.032
#> GSM555321     2  0.1302    0.87098 0.000 0.956 0.000 0.044
#> GSM555323     2  0.1389    0.86459 0.000 0.952 0.000 0.048
#> GSM555325     4  0.4998    0.31913 0.000 0.488 0.000 0.512
#> GSM555327     2  0.2281    0.83764 0.000 0.904 0.000 0.096
#> GSM555329     2  0.1022    0.87238 0.000 0.968 0.000 0.032
#> GSM555331     2  0.0817    0.87223 0.000 0.976 0.000 0.024
#> GSM555333     2  0.1302    0.86693 0.000 0.956 0.000 0.044
#> GSM555335     2  0.1557    0.86112 0.000 0.944 0.000 0.056
#> GSM555337     2  0.0707    0.87222 0.000 0.980 0.000 0.020
#> GSM555339     2  0.1211    0.86679 0.000 0.960 0.000 0.040
#> GSM555341     2  0.1792    0.85627 0.000 0.932 0.000 0.068
#> GSM555343     2  0.1637    0.86053 0.000 0.940 0.000 0.060
#> GSM555345     2  0.2647    0.81929 0.000 0.880 0.000 0.120
#> GSM555318     2  0.2589    0.82298 0.000 0.884 0.000 0.116
#> GSM555320     2  0.4382    0.53658 0.000 0.704 0.000 0.296
#> GSM555322     2  0.1716    0.85715 0.000 0.936 0.000 0.064
#> GSM555324     3  0.0188    0.97310 0.000 0.000 0.996 0.004
#> GSM555326     2  0.1557    0.87032 0.000 0.944 0.000 0.056
#> GSM555328     2  0.1474    0.86197 0.000 0.948 0.000 0.052
#> GSM555330     2  0.1118    0.87030 0.000 0.964 0.000 0.036
#> GSM555332     2  0.1792    0.85483 0.000 0.932 0.000 0.068
#> GSM555334     2  0.2589    0.82298 0.000 0.884 0.000 0.116
#> GSM555336     2  0.2408    0.83617 0.000 0.896 0.000 0.104
#> GSM555338     2  0.1867    0.85245 0.000 0.928 0.000 0.072
#> GSM555340     2  0.1118    0.87243 0.000 0.964 0.000 0.036
#> GSM555342     2  0.2011    0.85127 0.000 0.920 0.000 0.080
#> GSM555344     2  0.2281    0.83998 0.000 0.904 0.000 0.096
#> GSM555346     4  0.4830    0.56928 0.000 0.392 0.000 0.608

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM555237     1  0.0162     0.9894 0.996 0.000 0.000 0.000 0.004
#> GSM555239     1  0.0290     0.9887 0.992 0.000 0.000 0.000 0.008
#> GSM555241     1  0.0000     0.9909 1.000 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000     0.9909 1.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0162     0.9901 0.996 0.000 0.000 0.000 0.004
#> GSM555247     1  0.0290     0.9887 0.992 0.000 0.000 0.000 0.008
#> GSM555249     1  0.0162     0.9901 0.996 0.000 0.000 0.000 0.004
#> GSM555251     1  0.0000     0.9909 1.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000     0.9909 1.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0290     0.9887 0.992 0.000 0.000 0.000 0.008
#> GSM555257     4  0.5054     0.6418 0.004 0.044 0.044 0.744 0.164
#> GSM555259     4  0.4610     0.5040 0.000 0.020 0.296 0.676 0.008
#> GSM555261     4  0.4374     0.6709 0.000 0.144 0.008 0.776 0.072
#> GSM555263     4  0.5268     0.6062 0.000 0.172 0.000 0.680 0.148
#> GSM555265     4  0.5063     0.6859 0.000 0.128 0.056 0.752 0.064
#> GSM555267     4  0.5797     0.5624 0.000 0.228 0.048 0.660 0.064
#> GSM555269     4  0.5253     0.3945 0.000 0.036 0.384 0.572 0.008
#> GSM555271     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000
#> GSM555273     5  0.3906     0.6387 0.000 0.132 0.000 0.068 0.800
#> GSM555275     2  0.2859     0.8067 0.000 0.876 0.000 0.056 0.068
#> GSM555238     1  0.0000     0.9909 1.000 0.000 0.000 0.000 0.000
#> GSM555240     1  0.1310     0.9574 0.956 0.000 0.000 0.024 0.020
#> GSM555242     1  0.0000     0.9909 1.000 0.000 0.000 0.000 0.000
#> GSM555244     1  0.0000     0.9909 1.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0162     0.9901 0.996 0.000 0.000 0.000 0.004
#> GSM555248     1  0.0000     0.9909 1.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0162     0.9894 0.996 0.000 0.000 0.000 0.004
#> GSM555252     1  0.2438     0.9057 0.900 0.000 0.000 0.060 0.040
#> GSM555254     1  0.0000     0.9909 1.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0162     0.9895 0.996 0.000 0.000 0.000 0.004
#> GSM555258     4  0.2193     0.6342 0.000 0.028 0.000 0.912 0.060
#> GSM555260     4  0.1701     0.6466 0.000 0.048 0.000 0.936 0.016
#> GSM555262     2  0.4546     0.6580 0.000 0.668 0.000 0.304 0.028
#> GSM555264     5  0.3478     0.5726 0.004 0.032 0.000 0.136 0.828
#> GSM555266     2  0.3882     0.7809 0.000 0.756 0.000 0.224 0.020
#> GSM555268     2  0.3741     0.7522 0.000 0.732 0.000 0.264 0.004
#> GSM555270     2  0.2331     0.8278 0.000 0.900 0.000 0.080 0.020
#> GSM555272     4  0.3844     0.6494 0.000 0.044 0.000 0.792 0.164
#> GSM555274     2  0.3656     0.8031 0.000 0.800 0.000 0.168 0.032
#> GSM555276     2  0.2795     0.8148 0.000 0.880 0.000 0.056 0.064
#> GSM555277     2  0.2514     0.8195 0.000 0.896 0.000 0.044 0.060
#> GSM555279     2  0.3164     0.7908 0.000 0.852 0.000 0.044 0.104
#> GSM555281     2  0.2927     0.8159 0.000 0.872 0.000 0.060 0.068
#> GSM555283     4  0.4730     0.5586 0.000 0.260 0.000 0.688 0.052
#> GSM555285     5  0.3612     0.6394 0.004 0.100 0.000 0.064 0.832
#> GSM555287     2  0.5926     0.3269 0.000 0.608 0.268 0.012 0.112
#> GSM555289     2  0.2504     0.8189 0.000 0.896 0.000 0.040 0.064
#> GSM555291     2  0.4817     0.4259 0.000 0.656 0.000 0.300 0.044
#> GSM555293     2  0.2830     0.8005 0.000 0.876 0.000 0.044 0.080
#> GSM555295     2  0.2770     0.8020 0.000 0.880 0.000 0.044 0.076
#> GSM555297     2  0.7077    -0.0401 0.000 0.492 0.308 0.044 0.156
#> GSM555299     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000
#> GSM555301     3  0.0451     0.9863 0.000 0.004 0.988 0.000 0.008
#> GSM555303     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000
#> GSM555305     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000
#> GSM555307     2  0.1211     0.8254 0.000 0.960 0.000 0.016 0.024
#> GSM555309     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000
#> GSM555311     2  0.3216     0.7843 0.000 0.848 0.000 0.044 0.108
#> GSM555313     2  0.3562     0.7782 0.000 0.788 0.000 0.196 0.016
#> GSM555315     2  0.3090     0.7885 0.000 0.856 0.000 0.040 0.104
#> GSM555278     2  0.3906     0.7645 0.000 0.744 0.000 0.240 0.016
#> GSM555280     2  0.3659     0.7712 0.000 0.768 0.000 0.220 0.012
#> GSM555282     2  0.5129     0.5996 0.000 0.616 0.000 0.328 0.056
#> GSM555284     2  0.5053     0.6097 0.000 0.624 0.000 0.324 0.052
#> GSM555286     2  0.2825     0.8147 0.000 0.860 0.000 0.124 0.016
#> GSM555288     4  0.2172     0.6433 0.000 0.076 0.000 0.908 0.016
#> GSM555290     2  0.3535     0.8003 0.000 0.832 0.000 0.088 0.080
#> GSM555292     2  0.4276     0.6976 0.000 0.716 0.000 0.256 0.028
#> GSM555294     2  0.3868     0.7668 0.000 0.800 0.000 0.060 0.140
#> GSM555296     2  0.2390     0.8261 0.000 0.896 0.000 0.084 0.020
#> GSM555298     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000
#> GSM555300     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000
#> GSM555302     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000
#> GSM555304     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000
#> GSM555306     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000
#> GSM555308     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000
#> GSM555310     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000
#> GSM555312     2  0.3130     0.8102 0.000 0.856 0.000 0.096 0.048
#> GSM555314     2  0.2853     0.8031 0.000 0.876 0.000 0.052 0.072
#> GSM555316     2  0.1965     0.8265 0.000 0.924 0.000 0.024 0.052
#> GSM555317     2  0.1282     0.8227 0.000 0.952 0.000 0.004 0.044
#> GSM555319     2  0.1106     0.8263 0.000 0.964 0.000 0.012 0.024
#> GSM555321     2  0.2359     0.8128 0.000 0.904 0.000 0.036 0.060
#> GSM555323     2  0.2446     0.8108 0.000 0.900 0.000 0.044 0.056
#> GSM555325     2  0.4958     0.2435 0.000 0.592 0.000 0.036 0.372
#> GSM555327     2  0.1331     0.8230 0.000 0.952 0.000 0.008 0.040
#> GSM555329     2  0.1281     0.8255 0.000 0.956 0.000 0.012 0.032
#> GSM555331     2  0.1251     0.8279 0.000 0.956 0.000 0.008 0.036
#> GSM555333     2  0.2446     0.8108 0.000 0.900 0.000 0.044 0.056
#> GSM555335     2  0.2569     0.8075 0.000 0.892 0.000 0.040 0.068
#> GSM555337     2  0.0992     0.8293 0.000 0.968 0.000 0.008 0.024
#> GSM555339     2  0.2645     0.8057 0.000 0.888 0.000 0.044 0.068
#> GSM555341     2  0.1469     0.8247 0.000 0.948 0.000 0.016 0.036
#> GSM555343     2  0.2694     0.8041 0.000 0.884 0.000 0.040 0.076
#> GSM555345     2  0.1408     0.8223 0.000 0.948 0.000 0.008 0.044
#> GSM555318     2  0.1952     0.8148 0.000 0.912 0.000 0.004 0.084
#> GSM555320     2  0.4431     0.7540 0.000 0.732 0.000 0.216 0.052
#> GSM555322     2  0.2782     0.8144 0.000 0.880 0.000 0.048 0.072
#> GSM555324     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000
#> GSM555326     2  0.2358     0.8245 0.000 0.888 0.000 0.104 0.008
#> GSM555328     2  0.3159     0.8107 0.000 0.856 0.000 0.088 0.056
#> GSM555330     2  0.3242     0.7963 0.000 0.816 0.000 0.172 0.012
#> GSM555332     2  0.3409     0.8043 0.000 0.836 0.000 0.112 0.052
#> GSM555334     2  0.3912     0.7818 0.000 0.804 0.000 0.108 0.088
#> GSM555336     2  0.3586     0.8183 0.000 0.828 0.000 0.096 0.076
#> GSM555338     2  0.1082     0.8253 0.000 0.964 0.000 0.008 0.028
#> GSM555340     2  0.1800     0.8204 0.000 0.932 0.000 0.020 0.048
#> GSM555342     2  0.3323     0.8250 0.000 0.844 0.000 0.100 0.056
#> GSM555344     2  0.2189     0.8176 0.000 0.904 0.000 0.012 0.084
#> GSM555346     5  0.5741     0.3322 0.000 0.360 0.000 0.096 0.544

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM555237     1  0.0291     0.9846 0.992 0.004 0.000 0.000 0.004 0.000
#> GSM555239     1  0.0717     0.9794 0.976 0.000 0.000 0.000 0.016 0.008
#> GSM555241     1  0.0405     0.9849 0.988 0.000 0.000 0.000 0.008 0.004
#> GSM555243     1  0.0000     0.9882 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0146     0.9876 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM555247     1  0.0458     0.9836 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM555249     1  0.0146     0.9876 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM555251     1  0.0000     0.9882 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0291     0.9863 0.992 0.000 0.000 0.000 0.004 0.004
#> GSM555255     1  0.0622     0.9813 0.980 0.000 0.000 0.000 0.012 0.008
#> GSM555257     4  0.4585     0.7196 0.004 0.032 0.012 0.752 0.160 0.040
#> GSM555259     4  0.3486     0.7766 0.000 0.080 0.044 0.840 0.008 0.028
#> GSM555261     4  0.3259     0.7805 0.000 0.100 0.004 0.844 0.020 0.032
#> GSM555263     4  0.3992     0.7437 0.000 0.120 0.000 0.780 0.088 0.012
#> GSM555265     4  0.3492     0.7793 0.000 0.096 0.012 0.836 0.020 0.036
#> GSM555267     4  0.4902     0.6579 0.000 0.204 0.012 0.704 0.028 0.052
#> GSM555269     4  0.4845     0.5784 0.000 0.048 0.192 0.716 0.028 0.016
#> GSM555271     3  0.0458     0.9796 0.000 0.000 0.984 0.016 0.000 0.000
#> GSM555273     5  0.3047     0.7849 0.004 0.084 0.000 0.064 0.848 0.000
#> GSM555275     2  0.4643     0.2808 0.000 0.648 0.000 0.028 0.024 0.300
#> GSM555238     1  0.0000     0.9882 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555240     1  0.1036     0.9645 0.964 0.000 0.000 0.004 0.008 0.024
#> GSM555242     1  0.0000     0.9882 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555244     1  0.0000     0.9882 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0146     0.9876 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM555248     1  0.0000     0.9882 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000     0.9882 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.2199     0.8926 0.892 0.000 0.000 0.000 0.020 0.088
#> GSM555254     1  0.0000     0.9882 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0146     0.9872 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM555258     4  0.4385     0.7330 0.000 0.032 0.000 0.760 0.084 0.124
#> GSM555260     4  0.4416     0.7166 0.000 0.032 0.000 0.744 0.056 0.168
#> GSM555262     6  0.4054     0.6715 0.000 0.188 0.000 0.072 0.000 0.740
#> GSM555264     5  0.3114     0.7308 0.004 0.024 0.000 0.108 0.848 0.016
#> GSM555266     6  0.4605     0.6688 0.000 0.296 0.000 0.036 0.016 0.652
#> GSM555268     6  0.3624     0.6893 0.000 0.220 0.000 0.016 0.008 0.756
#> GSM555270     6  0.5019     0.4288 0.000 0.468 0.000 0.044 0.012 0.476
#> GSM555272     4  0.4625     0.7457 0.000 0.072 0.000 0.740 0.144 0.044
#> GSM555274     6  0.5517     0.5783 0.000 0.368 0.000 0.120 0.004 0.508
#> GSM555276     2  0.3791     0.5379 0.000 0.760 0.000 0.032 0.008 0.200
#> GSM555277     2  0.5142    -0.2287 0.000 0.516 0.000 0.064 0.008 0.412
#> GSM555279     2  0.5564     0.0344 0.000 0.552 0.000 0.028 0.080 0.340
#> GSM555281     2  0.4964    -0.3948 0.000 0.484 0.000 0.040 0.012 0.464
#> GSM555283     4  0.5900     0.2873 0.000 0.184 0.000 0.528 0.012 0.276
#> GSM555285     5  0.3136     0.7874 0.008 0.068 0.000 0.060 0.856 0.008
#> GSM555287     2  0.6104     0.3809 0.000 0.636 0.028 0.124 0.052 0.160
#> GSM555289     2  0.4832    -0.3515 0.000 0.492 0.000 0.044 0.004 0.460
#> GSM555291     2  0.6378    -0.3070 0.000 0.380 0.000 0.280 0.012 0.328
#> GSM555293     2  0.2639     0.6546 0.000 0.880 0.000 0.008 0.064 0.048
#> GSM555295     2  0.1957     0.6470 0.000 0.912 0.000 0.008 0.072 0.008
#> GSM555297     2  0.3984     0.5223 0.000 0.772 0.036 0.012 0.172 0.008
#> GSM555299     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555301     3  0.1434     0.9414 0.000 0.012 0.948 0.012 0.028 0.000
#> GSM555303     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555305     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555307     2  0.2784     0.6421 0.000 0.876 0.000 0.040 0.020 0.064
#> GSM555309     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555311     2  0.3593     0.6298 0.000 0.808 0.000 0.028 0.136 0.028
#> GSM555313     6  0.3595     0.7005 0.000 0.288 0.000 0.008 0.000 0.704
#> GSM555315     2  0.3081     0.6040 0.000 0.824 0.000 0.012 0.152 0.012
#> GSM555278     6  0.4037     0.7014 0.000 0.232 0.000 0.028 0.012 0.728
#> GSM555280     6  0.3420     0.7043 0.000 0.240 0.000 0.012 0.000 0.748
#> GSM555282     6  0.2587     0.5992 0.000 0.108 0.000 0.004 0.020 0.868
#> GSM555284     6  0.3026     0.5747 0.000 0.092 0.000 0.028 0.024 0.856
#> GSM555286     6  0.4088     0.6545 0.000 0.368 0.000 0.016 0.000 0.616
#> GSM555288     6  0.5118     0.0449 0.000 0.084 0.000 0.404 0.000 0.512
#> GSM555290     6  0.4835     0.6468 0.000 0.348 0.000 0.044 0.012 0.596
#> GSM555292     6  0.4354     0.6843 0.000 0.216 0.000 0.080 0.000 0.704
#> GSM555294     2  0.5355     0.3609 0.000 0.556 0.000 0.024 0.356 0.064
#> GSM555296     2  0.3555     0.4068 0.000 0.712 0.000 0.000 0.008 0.280
#> GSM555298     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555300     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555302     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555304     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555306     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555308     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555310     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555312     6  0.4682     0.5454 0.000 0.420 0.000 0.036 0.004 0.540
#> GSM555314     2  0.3825     0.5657 0.000 0.776 0.000 0.036 0.016 0.172
#> GSM555316     2  0.3059     0.6335 0.000 0.860 0.000 0.040 0.028 0.072
#> GSM555317     2  0.3594     0.5397 0.000 0.768 0.000 0.020 0.008 0.204
#> GSM555319     2  0.3852     0.4149 0.000 0.720 0.000 0.008 0.016 0.256
#> GSM555321     2  0.1675     0.6572 0.000 0.936 0.000 0.008 0.032 0.024
#> GSM555323     2  0.1218     0.6547 0.000 0.956 0.000 0.004 0.028 0.012
#> GSM555325     2  0.4412     0.1972 0.000 0.572 0.000 0.008 0.404 0.016
#> GSM555327     2  0.3164     0.6033 0.000 0.824 0.000 0.032 0.004 0.140
#> GSM555329     2  0.3721     0.4288 0.000 0.728 0.000 0.004 0.016 0.252
#> GSM555331     2  0.1949     0.6446 0.000 0.904 0.000 0.004 0.004 0.088
#> GSM555333     2  0.1777     0.6547 0.000 0.932 0.000 0.024 0.012 0.032
#> GSM555335     2  0.2563     0.6364 0.000 0.892 0.000 0.036 0.044 0.028
#> GSM555337     2  0.2306     0.6407 0.000 0.888 0.000 0.016 0.004 0.092
#> GSM555339     2  0.2100     0.6560 0.000 0.916 0.000 0.032 0.036 0.016
#> GSM555341     2  0.2213     0.6467 0.000 0.904 0.000 0.048 0.004 0.044
#> GSM555343     2  0.2419     0.6514 0.000 0.896 0.000 0.016 0.060 0.028
#> GSM555345     2  0.2669     0.6061 0.000 0.880 0.000 0.032 0.016 0.072
#> GSM555318     2  0.3758     0.5393 0.000 0.764 0.000 0.040 0.004 0.192
#> GSM555320     6  0.5842     0.5149 0.000 0.328 0.000 0.024 0.120 0.528
#> GSM555322     2  0.4999    -0.4109 0.000 0.488 0.000 0.032 0.020 0.460
#> GSM555324     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555326     6  0.4767     0.4771 0.000 0.444 0.000 0.040 0.004 0.512
#> GSM555328     6  0.4423     0.5555 0.000 0.420 0.000 0.028 0.000 0.552
#> GSM555330     6  0.4224     0.5092 0.000 0.432 0.000 0.016 0.000 0.552
#> GSM555332     2  0.3965     0.0786 0.000 0.604 0.000 0.008 0.000 0.388
#> GSM555334     6  0.5000     0.5443 0.000 0.416 0.000 0.060 0.004 0.520
#> GSM555336     2  0.5498     0.4133 0.000 0.632 0.000 0.036 0.108 0.224
#> GSM555338     2  0.1149     0.6558 0.000 0.960 0.000 0.008 0.008 0.024
#> GSM555340     2  0.1448     0.6581 0.000 0.948 0.000 0.012 0.024 0.016
#> GSM555342     2  0.5004     0.0573 0.000 0.572 0.000 0.036 0.024 0.368
#> GSM555344     2  0.2655     0.6387 0.000 0.884 0.000 0.036 0.020 0.060
#> GSM555346     5  0.4433     0.5369 0.000 0.304 0.000 0.024 0.656 0.016

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n disease.state(p) agent(p) k
#> MAD:NMF 108         4.08e-07  1.00000 2
#> MAD:NMF 107         1.55e-11  0.99763 3
#> MAD:NMF 103         1.04e-10  0.94072 4
#> MAD:NMF 104         8.41e-14  0.74880 5
#> MAD:NMF  90         2.58e-14  0.00129 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.825           0.938       0.966         0.4652 0.516   0.516
#> 3 3 0.911           0.934       0.938         0.1758 0.930   0.864
#> 4 4 0.847           0.917       0.942         0.0412 0.995   0.989
#> 5 5 0.931           0.949       0.976         0.0512 0.970   0.932
#> 6 6 0.727           0.689       0.875         0.1457 0.940   0.854

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 3

There is also optional best \(k\) = 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1   0.506      0.864 0.888 0.112
#> GSM555239     1   0.000      0.915 1.000 0.000
#> GSM555241     1   0.000      0.915 1.000 0.000
#> GSM555243     1   0.000      0.915 1.000 0.000
#> GSM555245     1   0.000      0.915 1.000 0.000
#> GSM555247     1   0.000      0.915 1.000 0.000
#> GSM555249     1   0.000      0.915 1.000 0.000
#> GSM555251     1   0.000      0.915 1.000 0.000
#> GSM555253     1   0.000      0.915 1.000 0.000
#> GSM555255     1   0.260      0.899 0.956 0.044
#> GSM555257     1   0.781      0.760 0.768 0.232
#> GSM555259     1   0.795      0.751 0.760 0.240
#> GSM555261     1   0.891      0.663 0.692 0.308
#> GSM555263     1   0.913      0.629 0.672 0.328
#> GSM555265     1   0.881      0.675 0.700 0.300
#> GSM555267     1   0.881      0.675 0.700 0.300
#> GSM555269     1   0.795      0.751 0.760 0.240
#> GSM555271     1   0.000      0.915 1.000 0.000
#> GSM555273     2   0.000      0.998 0.000 1.000
#> GSM555275     2   0.000      0.998 0.000 1.000
#> GSM555238     1   0.278      0.898 0.952 0.048
#> GSM555240     1   0.506      0.864 0.888 0.112
#> GSM555242     1   0.506      0.864 0.888 0.112
#> GSM555244     1   0.000      0.915 1.000 0.000
#> GSM555246     1   0.000      0.915 1.000 0.000
#> GSM555248     1   0.000      0.915 1.000 0.000
#> GSM555250     1   0.000      0.915 1.000 0.000
#> GSM555252     1   0.506      0.864 0.888 0.112
#> GSM555254     1   0.000      0.915 1.000 0.000
#> GSM555256     1   0.278      0.898 0.952 0.048
#> GSM555258     2   0.204      0.964 0.032 0.968
#> GSM555260     2   0.204      0.964 0.032 0.968
#> GSM555262     2   0.000      0.998 0.000 1.000
#> GSM555264     1   0.909      0.636 0.676 0.324
#> GSM555266     2   0.000      0.998 0.000 1.000
#> GSM555268     2   0.000      0.998 0.000 1.000
#> GSM555270     2   0.000      0.998 0.000 1.000
#> GSM555272     2   0.204      0.964 0.032 0.968
#> GSM555274     2   0.000      0.998 0.000 1.000
#> GSM555276     2   0.000      0.998 0.000 1.000
#> GSM555277     2   0.000      0.998 0.000 1.000
#> GSM555279     2   0.000      0.998 0.000 1.000
#> GSM555281     2   0.000      0.998 0.000 1.000
#> GSM555283     2   0.000      0.998 0.000 1.000
#> GSM555285     2   0.000      0.998 0.000 1.000
#> GSM555287     1   0.987      0.402 0.568 0.432
#> GSM555289     2   0.000      0.998 0.000 1.000
#> GSM555291     2   0.000      0.998 0.000 1.000
#> GSM555293     2   0.000      0.998 0.000 1.000
#> GSM555295     2   0.000      0.998 0.000 1.000
#> GSM555297     1   0.881      0.675 0.700 0.300
#> GSM555299     1   0.000      0.915 1.000 0.000
#> GSM555301     1   0.000      0.915 1.000 0.000
#> GSM555303     1   0.000      0.915 1.000 0.000
#> GSM555305     1   0.000      0.915 1.000 0.000
#> GSM555307     2   0.000      0.998 0.000 1.000
#> GSM555309     1   0.000      0.915 1.000 0.000
#> GSM555311     2   0.000      0.998 0.000 1.000
#> GSM555313     2   0.000      0.998 0.000 1.000
#> GSM555315     2   0.000      0.998 0.000 1.000
#> GSM555278     2   0.000      0.998 0.000 1.000
#> GSM555280     2   0.000      0.998 0.000 1.000
#> GSM555282     2   0.000      0.998 0.000 1.000
#> GSM555284     2   0.000      0.998 0.000 1.000
#> GSM555286     2   0.000      0.998 0.000 1.000
#> GSM555288     2   0.163      0.973 0.024 0.976
#> GSM555290     2   0.000      0.998 0.000 1.000
#> GSM555292     2   0.000      0.998 0.000 1.000
#> GSM555294     2   0.000      0.998 0.000 1.000
#> GSM555296     2   0.000      0.998 0.000 1.000
#> GSM555298     1   0.000      0.915 1.000 0.000
#> GSM555300     1   0.000      0.915 1.000 0.000
#> GSM555302     1   0.000      0.915 1.000 0.000
#> GSM555304     1   0.000      0.915 1.000 0.000
#> GSM555306     1   0.000      0.915 1.000 0.000
#> GSM555308     1   0.000      0.915 1.000 0.000
#> GSM555310     1   0.000      0.915 1.000 0.000
#> GSM555312     2   0.000      0.998 0.000 1.000
#> GSM555314     2   0.000      0.998 0.000 1.000
#> GSM555316     2   0.000      0.998 0.000 1.000
#> GSM555317     2   0.000      0.998 0.000 1.000
#> GSM555319     2   0.000      0.998 0.000 1.000
#> GSM555321     2   0.000      0.998 0.000 1.000
#> GSM555323     2   0.000      0.998 0.000 1.000
#> GSM555325     2   0.000      0.998 0.000 1.000
#> GSM555327     2   0.000      0.998 0.000 1.000
#> GSM555329     2   0.000      0.998 0.000 1.000
#> GSM555331     2   0.000      0.998 0.000 1.000
#> GSM555333     2   0.000      0.998 0.000 1.000
#> GSM555335     2   0.000      0.998 0.000 1.000
#> GSM555337     2   0.000      0.998 0.000 1.000
#> GSM555339     2   0.000      0.998 0.000 1.000
#> GSM555341     2   0.000      0.998 0.000 1.000
#> GSM555343     2   0.000      0.998 0.000 1.000
#> GSM555345     2   0.000      0.998 0.000 1.000
#> GSM555318     2   0.000      0.998 0.000 1.000
#> GSM555320     2   0.000      0.998 0.000 1.000
#> GSM555322     2   0.000      0.998 0.000 1.000
#> GSM555324     1   0.000      0.915 1.000 0.000
#> GSM555326     2   0.000      0.998 0.000 1.000
#> GSM555328     2   0.000      0.998 0.000 1.000
#> GSM555330     2   0.000      0.998 0.000 1.000
#> GSM555332     2   0.000      0.998 0.000 1.000
#> GSM555334     2   0.000      0.998 0.000 1.000
#> GSM555336     2   0.000      0.998 0.000 1.000
#> GSM555338     2   0.000      0.998 0.000 1.000
#> GSM555340     2   0.000      0.998 0.000 1.000
#> GSM555342     2   0.000      0.998 0.000 1.000
#> GSM555344     2   0.000      0.998 0.000 1.000
#> GSM555346     2   0.000      0.998 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.4399      0.821 0.812 0.000 0.188
#> GSM555239     1  0.5621      0.820 0.692 0.000 0.308
#> GSM555241     1  0.5621      0.820 0.692 0.000 0.308
#> GSM555243     1  0.5621      0.820 0.692 0.000 0.308
#> GSM555245     1  0.5621      0.820 0.692 0.000 0.308
#> GSM555247     1  0.5621      0.820 0.692 0.000 0.308
#> GSM555249     1  0.5621      0.820 0.692 0.000 0.308
#> GSM555251     1  0.5621      0.820 0.692 0.000 0.308
#> GSM555253     1  0.5621      0.820 0.692 0.000 0.308
#> GSM555255     1  0.5178      0.827 0.744 0.000 0.256
#> GSM555257     1  0.4745      0.773 0.852 0.080 0.068
#> GSM555259     1  0.4556      0.771 0.860 0.080 0.060
#> GSM555261     1  0.2796      0.731 0.908 0.092 0.000
#> GSM555263     1  0.3551      0.694 0.868 0.132 0.000
#> GSM555265     1  0.2537      0.740 0.920 0.080 0.000
#> GSM555267     1  0.2537      0.740 0.920 0.080 0.000
#> GSM555269     1  0.4556      0.771 0.860 0.080 0.060
#> GSM555271     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555273     2  0.1860      0.956 0.052 0.948 0.000
#> GSM555275     2  0.0237      0.990 0.004 0.996 0.000
#> GSM555238     1  0.5138      0.828 0.748 0.000 0.252
#> GSM555240     1  0.4399      0.821 0.812 0.000 0.188
#> GSM555242     1  0.4399      0.821 0.812 0.000 0.188
#> GSM555244     1  0.5621      0.820 0.692 0.000 0.308
#> GSM555246     1  0.5621      0.820 0.692 0.000 0.308
#> GSM555248     1  0.5621      0.820 0.692 0.000 0.308
#> GSM555250     1  0.5621      0.820 0.692 0.000 0.308
#> GSM555252     1  0.4399      0.821 0.812 0.000 0.188
#> GSM555254     1  0.5621      0.820 0.692 0.000 0.308
#> GSM555256     1  0.5138      0.828 0.748 0.000 0.252
#> GSM555258     2  0.2711      0.920 0.088 0.912 0.000
#> GSM555260     2  0.2711      0.920 0.088 0.912 0.000
#> GSM555262     2  0.0424      0.988 0.008 0.992 0.000
#> GSM555264     1  0.3038      0.717 0.896 0.104 0.000
#> GSM555266     2  0.0592      0.986 0.012 0.988 0.000
#> GSM555268     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555270     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555272     2  0.2711      0.920 0.088 0.912 0.000
#> GSM555274     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555276     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555277     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555279     2  0.0592      0.986 0.012 0.988 0.000
#> GSM555281     2  0.0592      0.986 0.012 0.988 0.000
#> GSM555283     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555285     2  0.1860      0.956 0.052 0.948 0.000
#> GSM555287     1  0.3879      0.594 0.848 0.152 0.000
#> GSM555289     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555291     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555293     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555295     2  0.0592      0.986 0.012 0.988 0.000
#> GSM555297     1  0.2537      0.740 0.920 0.080 0.000
#> GSM555299     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555301     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555303     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555305     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555307     2  0.0237      0.990 0.004 0.996 0.000
#> GSM555309     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555311     2  0.0592      0.986 0.012 0.988 0.000
#> GSM555313     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555315     2  0.0237      0.990 0.004 0.996 0.000
#> GSM555278     2  0.0592      0.986 0.012 0.988 0.000
#> GSM555280     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555282     2  0.0592      0.986 0.012 0.988 0.000
#> GSM555284     2  0.0747      0.984 0.016 0.984 0.000
#> GSM555286     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555288     2  0.1860      0.954 0.052 0.948 0.000
#> GSM555290     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555292     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555294     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555296     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555298     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555300     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555302     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555304     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555306     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555308     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555310     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555312     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555314     2  0.0592      0.986 0.012 0.988 0.000
#> GSM555316     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555317     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555319     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555321     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555323     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555325     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555327     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555329     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555331     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555333     2  0.0592      0.986 0.012 0.988 0.000
#> GSM555335     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555337     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555339     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555341     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555343     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555345     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555318     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555320     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555322     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555324     3  0.0000      1.000 0.000 0.000 1.000
#> GSM555326     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555328     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555330     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555332     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555334     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555336     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555338     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555340     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555342     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555344     2  0.0000      0.992 0.000 1.000 0.000
#> GSM555346     2  0.1643      0.963 0.044 0.956 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.2589      0.828 0.884 0.000 0.116 0.000
#> GSM555239     1  0.3942      0.847 0.764 0.000 0.236 0.000
#> GSM555241     1  0.3942      0.847 0.764 0.000 0.236 0.000
#> GSM555243     1  0.3942      0.847 0.764 0.000 0.236 0.000
#> GSM555245     1  0.3942      0.847 0.764 0.000 0.236 0.000
#> GSM555247     1  0.3942      0.847 0.764 0.000 0.236 0.000
#> GSM555249     1  0.3942      0.847 0.764 0.000 0.236 0.000
#> GSM555251     1  0.3942      0.847 0.764 0.000 0.236 0.000
#> GSM555253     1  0.3942      0.847 0.764 0.000 0.236 0.000
#> GSM555255     1  0.3444      0.846 0.816 0.000 0.184 0.000
#> GSM555257     1  0.0188      0.749 0.996 0.000 0.000 0.004
#> GSM555259     1  0.1302      0.728 0.956 0.000 0.000 0.044
#> GSM555261     1  0.3105      0.656 0.868 0.012 0.000 0.120
#> GSM555263     1  0.4072      0.609 0.828 0.052 0.000 0.120
#> GSM555265     1  0.2647      0.668 0.880 0.000 0.000 0.120
#> GSM555267     1  0.2647      0.668 0.880 0.000 0.000 0.120
#> GSM555269     1  0.1302      0.728 0.956 0.000 0.000 0.044
#> GSM555271     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555273     2  0.3731      0.837 0.120 0.844 0.000 0.036
#> GSM555275     2  0.0376      0.979 0.004 0.992 0.000 0.004
#> GSM555238     1  0.3400      0.845 0.820 0.000 0.180 0.000
#> GSM555240     1  0.2589      0.828 0.884 0.000 0.116 0.000
#> GSM555242     1  0.2589      0.828 0.884 0.000 0.116 0.000
#> GSM555244     1  0.3942      0.847 0.764 0.000 0.236 0.000
#> GSM555246     1  0.3942      0.847 0.764 0.000 0.236 0.000
#> GSM555248     1  0.3942      0.847 0.764 0.000 0.236 0.000
#> GSM555250     1  0.3942      0.847 0.764 0.000 0.236 0.000
#> GSM555252     1  0.2589      0.828 0.884 0.000 0.116 0.000
#> GSM555254     1  0.3942      0.847 0.764 0.000 0.236 0.000
#> GSM555256     1  0.3400      0.845 0.820 0.000 0.180 0.000
#> GSM555258     2  0.3404      0.858 0.104 0.864 0.000 0.032
#> GSM555260     2  0.3404      0.858 0.104 0.864 0.000 0.032
#> GSM555262     2  0.0336      0.978 0.000 0.992 0.000 0.008
#> GSM555264     1  0.2973      0.642 0.856 0.000 0.000 0.144
#> GSM555266     2  0.1297      0.959 0.016 0.964 0.000 0.020
#> GSM555268     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555270     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555272     2  0.3404      0.858 0.104 0.864 0.000 0.032
#> GSM555274     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555276     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555277     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555279     2  0.0469      0.976 0.000 0.988 0.000 0.012
#> GSM555281     2  0.0469      0.976 0.000 0.988 0.000 0.012
#> GSM555283     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555285     2  0.3731      0.837 0.120 0.844 0.000 0.036
#> GSM555287     4  0.0817      0.000 0.024 0.000 0.000 0.976
#> GSM555289     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555291     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555293     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555295     2  0.0469      0.976 0.000 0.988 0.000 0.012
#> GSM555297     1  0.2647      0.668 0.880 0.000 0.000 0.120
#> GSM555299     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555301     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555303     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555305     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555307     2  0.0188      0.980 0.000 0.996 0.000 0.004
#> GSM555309     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555311     2  0.0657      0.974 0.004 0.984 0.000 0.012
#> GSM555313     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555315     2  0.0376      0.979 0.004 0.992 0.000 0.004
#> GSM555278     2  0.1297      0.959 0.016 0.964 0.000 0.020
#> GSM555280     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555282     2  0.0469      0.976 0.000 0.988 0.000 0.012
#> GSM555284     2  0.1406      0.956 0.016 0.960 0.000 0.024
#> GSM555286     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555288     2  0.2300      0.917 0.064 0.920 0.000 0.016
#> GSM555290     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555292     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555294     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555296     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555298     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555300     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555302     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555304     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555306     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555308     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555310     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555312     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555314     2  0.0469      0.976 0.000 0.988 0.000 0.012
#> GSM555316     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555317     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555319     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555321     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555323     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555325     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555327     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555329     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555331     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555333     2  0.0469      0.976 0.000 0.988 0.000 0.012
#> GSM555335     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555337     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555339     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555341     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555343     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555345     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555318     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555320     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555322     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555324     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM555326     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555328     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555330     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555332     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555334     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555336     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555338     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555340     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555342     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555344     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM555346     2  0.3372      0.866 0.096 0.868 0.000 0.036

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4 p5
#> GSM555237     1  0.2329      0.878 0.876 0.000 0.000 0.124  0
#> GSM555239     1  0.0290      0.957 0.992 0.000 0.008 0.000  0
#> GSM555241     1  0.0290      0.957 0.992 0.000 0.008 0.000  0
#> GSM555243     1  0.0290      0.957 0.992 0.000 0.008 0.000  0
#> GSM555245     1  0.0290      0.957 0.992 0.000 0.008 0.000  0
#> GSM555247     1  0.0290      0.957 0.992 0.000 0.008 0.000  0
#> GSM555249     1  0.0290      0.957 0.992 0.000 0.008 0.000  0
#> GSM555251     1  0.0290      0.957 0.992 0.000 0.008 0.000  0
#> GSM555253     1  0.0290      0.957 0.992 0.000 0.008 0.000  0
#> GSM555255     1  0.1270      0.931 0.948 0.000 0.000 0.052  0
#> GSM555257     4  0.2690      0.815 0.156 0.000 0.000 0.844  0
#> GSM555259     4  0.2230      0.871 0.116 0.000 0.000 0.884  0
#> GSM555261     4  0.1082      0.903 0.028 0.008 0.000 0.964  0
#> GSM555263     4  0.1981      0.822 0.028 0.048 0.000 0.924  0
#> GSM555265     4  0.1043      0.912 0.040 0.000 0.000 0.960  0
#> GSM555267     4  0.1043      0.912 0.040 0.000 0.000 0.960  0
#> GSM555269     4  0.2230      0.871 0.116 0.000 0.000 0.884  0
#> GSM555271     3  0.0000      1.000 0.000 0.000 1.000 0.000  0
#> GSM555273     2  0.2732      0.837 0.000 0.840 0.000 0.160  0
#> GSM555275     2  0.0404      0.977 0.000 0.988 0.000 0.012  0
#> GSM555238     1  0.1341      0.929 0.944 0.000 0.000 0.056  0
#> GSM555240     1  0.2329      0.878 0.876 0.000 0.000 0.124  0
#> GSM555242     1  0.2329      0.878 0.876 0.000 0.000 0.124  0
#> GSM555244     1  0.0290      0.957 0.992 0.000 0.008 0.000  0
#> GSM555246     1  0.0290      0.957 0.992 0.000 0.008 0.000  0
#> GSM555248     1  0.0290      0.957 0.992 0.000 0.008 0.000  0
#> GSM555250     1  0.0290      0.957 0.992 0.000 0.008 0.000  0
#> GSM555252     1  0.2329      0.878 0.876 0.000 0.000 0.124  0
#> GSM555254     1  0.0290      0.957 0.992 0.000 0.008 0.000  0
#> GSM555256     1  0.1341      0.929 0.944 0.000 0.000 0.056  0
#> GSM555258     2  0.2516      0.860 0.000 0.860 0.000 0.140  0
#> GSM555260     2  0.2516      0.860 0.000 0.860 0.000 0.140  0
#> GSM555262     2  0.0404      0.976 0.000 0.988 0.000 0.012  0
#> GSM555264     4  0.0162      0.876 0.004 0.000 0.000 0.996  0
#> GSM555266     2  0.1043      0.957 0.000 0.960 0.000 0.040  0
#> GSM555268     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555270     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555272     2  0.2516      0.860 0.000 0.860 0.000 0.140  0
#> GSM555274     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555276     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555277     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555279     2  0.0510      0.974 0.000 0.984 0.000 0.016  0
#> GSM555281     2  0.0510      0.974 0.000 0.984 0.000 0.016  0
#> GSM555283     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555285     2  0.2732      0.837 0.000 0.840 0.000 0.160  0
#> GSM555287     5  0.0000      0.000 0.000 0.000 0.000 0.000  1
#> GSM555289     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555291     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555293     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555295     2  0.0510      0.974 0.000 0.984 0.000 0.016  0
#> GSM555297     4  0.1043      0.912 0.040 0.000 0.000 0.960  0
#> GSM555299     3  0.0000      1.000 0.000 0.000 1.000 0.000  0
#> GSM555301     3  0.0000      1.000 0.000 0.000 1.000 0.000  0
#> GSM555303     3  0.0000      1.000 0.000 0.000 1.000 0.000  0
#> GSM555305     3  0.0000      1.000 0.000 0.000 1.000 0.000  0
#> GSM555307     2  0.0290      0.978 0.000 0.992 0.000 0.008  0
#> GSM555309     3  0.0000      1.000 0.000 0.000 1.000 0.000  0
#> GSM555311     2  0.0609      0.972 0.000 0.980 0.000 0.020  0
#> GSM555313     2  0.0162      0.980 0.000 0.996 0.000 0.004  0
#> GSM555315     2  0.0404      0.977 0.000 0.988 0.000 0.012  0
#> GSM555278     2  0.1043      0.957 0.000 0.960 0.000 0.040  0
#> GSM555280     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555282     2  0.0510      0.974 0.000 0.984 0.000 0.016  0
#> GSM555284     2  0.1121      0.955 0.000 0.956 0.000 0.044  0
#> GSM555286     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555288     2  0.1792      0.917 0.000 0.916 0.000 0.084  0
#> GSM555290     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555292     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555294     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555296     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555298     3  0.0000      1.000 0.000 0.000 1.000 0.000  0
#> GSM555300     3  0.0000      1.000 0.000 0.000 1.000 0.000  0
#> GSM555302     3  0.0000      1.000 0.000 0.000 1.000 0.000  0
#> GSM555304     3  0.0000      1.000 0.000 0.000 1.000 0.000  0
#> GSM555306     3  0.0000      1.000 0.000 0.000 1.000 0.000  0
#> GSM555308     3  0.0000      1.000 0.000 0.000 1.000 0.000  0
#> GSM555310     3  0.0000      1.000 0.000 0.000 1.000 0.000  0
#> GSM555312     2  0.0162      0.980 0.000 0.996 0.000 0.004  0
#> GSM555314     2  0.0510      0.974 0.000 0.984 0.000 0.016  0
#> GSM555316     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555317     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555319     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555321     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555323     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555325     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555327     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555329     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555331     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555333     2  0.0510      0.974 0.000 0.984 0.000 0.016  0
#> GSM555335     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555337     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555339     2  0.0162      0.980 0.000 0.996 0.000 0.004  0
#> GSM555341     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555343     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555345     2  0.0162      0.980 0.000 0.996 0.000 0.004  0
#> GSM555318     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555320     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555322     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555324     3  0.0000      1.000 0.000 0.000 1.000 0.000  0
#> GSM555326     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555328     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555330     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555332     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555334     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555336     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555338     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555340     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555342     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555344     2  0.0000      0.981 0.000 1.000 0.000 0.000  0
#> GSM555346     2  0.2471      0.865 0.000 0.864 0.000 0.136  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM555237     1  0.2178     0.8796 0.868 0.000 0.000 0.132 0.000  0
#> GSM555239     1  0.0000     0.9574 1.000 0.000 0.000 0.000 0.000  0
#> GSM555241     1  0.0000     0.9574 1.000 0.000 0.000 0.000 0.000  0
#> GSM555243     1  0.0000     0.9574 1.000 0.000 0.000 0.000 0.000  0
#> GSM555245     1  0.0000     0.9574 1.000 0.000 0.000 0.000 0.000  0
#> GSM555247     1  0.0000     0.9574 1.000 0.000 0.000 0.000 0.000  0
#> GSM555249     1  0.0000     0.9574 1.000 0.000 0.000 0.000 0.000  0
#> GSM555251     1  0.0000     0.9574 1.000 0.000 0.000 0.000 0.000  0
#> GSM555253     1  0.0000     0.9574 1.000 0.000 0.000 0.000 0.000  0
#> GSM555255     1  0.1267     0.9324 0.940 0.000 0.000 0.060 0.000  0
#> GSM555257     4  0.2092     0.7882 0.124 0.000 0.000 0.876 0.000  0
#> GSM555259     4  0.1610     0.8412 0.084 0.000 0.000 0.916 0.000  0
#> GSM555261     4  0.0790     0.8649 0.000 0.000 0.000 0.968 0.032  0
#> GSM555263     4  0.1444     0.8170 0.000 0.000 0.000 0.928 0.072  0
#> GSM555265     4  0.0717     0.8754 0.008 0.000 0.000 0.976 0.016  0
#> GSM555267     4  0.0717     0.8754 0.008 0.000 0.000 0.976 0.016  0
#> GSM555269     4  0.1610     0.8412 0.084 0.000 0.000 0.916 0.000  0
#> GSM555271     3  0.0000     0.9951 0.000 0.000 1.000 0.000 0.000  0
#> GSM555273     5  0.3727     0.6527 0.000 0.388 0.000 0.000 0.612  0
#> GSM555275     2  0.3499     0.4124 0.000 0.680 0.000 0.000 0.320  0
#> GSM555238     1  0.1327     0.9303 0.936 0.000 0.000 0.064 0.000  0
#> GSM555240     1  0.2178     0.8796 0.868 0.000 0.000 0.132 0.000  0
#> GSM555242     1  0.2178     0.8796 0.868 0.000 0.000 0.132 0.000  0
#> GSM555244     1  0.0000     0.9574 1.000 0.000 0.000 0.000 0.000  0
#> GSM555246     1  0.0000     0.9574 1.000 0.000 0.000 0.000 0.000  0
#> GSM555248     1  0.0000     0.9574 1.000 0.000 0.000 0.000 0.000  0
#> GSM555250     1  0.0000     0.9574 1.000 0.000 0.000 0.000 0.000  0
#> GSM555252     1  0.2178     0.8796 0.868 0.000 0.000 0.132 0.000  0
#> GSM555254     1  0.0000     0.9574 1.000 0.000 0.000 0.000 0.000  0
#> GSM555256     1  0.1327     0.9303 0.936 0.000 0.000 0.064 0.000  0
#> GSM555258     5  0.5036     0.6655 0.000 0.344 0.000 0.088 0.568  0
#> GSM555260     5  0.5036     0.6655 0.000 0.344 0.000 0.088 0.568  0
#> GSM555262     2  0.3659     0.2921 0.000 0.636 0.000 0.000 0.364  0
#> GSM555264     4  0.3499     0.5424 0.000 0.000 0.000 0.680 0.320  0
#> GSM555266     2  0.3756     0.1792 0.000 0.600 0.000 0.000 0.400  0
#> GSM555268     2  0.0547     0.7197 0.000 0.980 0.000 0.000 0.020  0
#> GSM555270     2  0.0547     0.7177 0.000 0.980 0.000 0.000 0.020  0
#> GSM555272     5  0.5036     0.6655 0.000 0.344 0.000 0.088 0.568  0
#> GSM555274     2  0.2340     0.6715 0.000 0.852 0.000 0.000 0.148  0
#> GSM555276     2  0.0146     0.7140 0.000 0.996 0.000 0.000 0.004  0
#> GSM555277     2  0.1663     0.7117 0.000 0.912 0.000 0.000 0.088  0
#> GSM555279     2  0.3833     0.0200 0.000 0.556 0.000 0.000 0.444  0
#> GSM555281     2  0.3828     0.0382 0.000 0.560 0.000 0.000 0.440  0
#> GSM555283     2  0.2003     0.6964 0.000 0.884 0.000 0.000 0.116  0
#> GSM555285     5  0.3737     0.6491 0.000 0.392 0.000 0.000 0.608  0
#> GSM555287     6  0.0000     0.0000 0.000 0.000 0.000 0.000 0.000  1
#> GSM555289     2  0.0146     0.7140 0.000 0.996 0.000 0.000 0.004  0
#> GSM555291     2  0.2416     0.6647 0.000 0.844 0.000 0.000 0.156  0
#> GSM555293     2  0.1501     0.6343 0.000 0.924 0.000 0.000 0.076  0
#> GSM555295     2  0.3828     0.0392 0.000 0.560 0.000 0.000 0.440  0
#> GSM555297     4  0.0717     0.8754 0.008 0.000 0.000 0.976 0.016  0
#> GSM555299     3  0.0363     0.9928 0.000 0.000 0.988 0.000 0.012  0
#> GSM555301     3  0.0000     0.9951 0.000 0.000 1.000 0.000 0.000  0
#> GSM555303     3  0.0260     0.9937 0.000 0.000 0.992 0.000 0.008  0
#> GSM555305     3  0.0000     0.9951 0.000 0.000 1.000 0.000 0.000  0
#> GSM555307     2  0.3620     0.3235 0.000 0.648 0.000 0.000 0.352  0
#> GSM555309     3  0.0363     0.9928 0.000 0.000 0.988 0.000 0.012  0
#> GSM555311     2  0.3828     0.0398 0.000 0.560 0.000 0.000 0.440  0
#> GSM555313     2  0.3221     0.5214 0.000 0.736 0.000 0.000 0.264  0
#> GSM555315     2  0.3647     0.3140 0.000 0.640 0.000 0.000 0.360  0
#> GSM555278     2  0.3547     0.3489 0.000 0.668 0.000 0.000 0.332  0
#> GSM555280     2  0.0547     0.7197 0.000 0.980 0.000 0.000 0.020  0
#> GSM555282     2  0.3823     0.0519 0.000 0.564 0.000 0.000 0.436  0
#> GSM555284     2  0.3857    -0.0911 0.000 0.532 0.000 0.000 0.468  0
#> GSM555286     2  0.0146     0.7140 0.000 0.996 0.000 0.000 0.004  0
#> GSM555288     2  0.4947    -0.3302 0.000 0.480 0.000 0.064 0.456  0
#> GSM555290     2  0.0146     0.7140 0.000 0.996 0.000 0.000 0.004  0
#> GSM555292     2  0.0547     0.7197 0.000 0.980 0.000 0.000 0.020  0
#> GSM555294     2  0.2219     0.6144 0.000 0.864 0.000 0.000 0.136  0
#> GSM555296     2  0.2491     0.6585 0.000 0.836 0.000 0.000 0.164  0
#> GSM555298     3  0.0000     0.9951 0.000 0.000 1.000 0.000 0.000  0
#> GSM555300     3  0.0363     0.9928 0.000 0.000 0.988 0.000 0.012  0
#> GSM555302     3  0.0000     0.9951 0.000 0.000 1.000 0.000 0.000  0
#> GSM555304     3  0.0000     0.9951 0.000 0.000 1.000 0.000 0.000  0
#> GSM555306     3  0.0000     0.9951 0.000 0.000 1.000 0.000 0.000  0
#> GSM555308     3  0.0363     0.9928 0.000 0.000 0.988 0.000 0.012  0
#> GSM555310     3  0.0000     0.9951 0.000 0.000 1.000 0.000 0.000  0
#> GSM555312     2  0.3221     0.5214 0.000 0.736 0.000 0.000 0.264  0
#> GSM555314     2  0.3828     0.0392 0.000 0.560 0.000 0.000 0.440  0
#> GSM555316     2  0.0146     0.7140 0.000 0.996 0.000 0.000 0.004  0
#> GSM555317     2  0.1444     0.7159 0.000 0.928 0.000 0.000 0.072  0
#> GSM555319     2  0.0146     0.7140 0.000 0.996 0.000 0.000 0.004  0
#> GSM555321     2  0.0146     0.7140 0.000 0.996 0.000 0.000 0.004  0
#> GSM555323     2  0.1501     0.7166 0.000 0.924 0.000 0.000 0.076  0
#> GSM555325     2  0.3101     0.3952 0.000 0.756 0.000 0.000 0.244  0
#> GSM555327     2  0.0260     0.7157 0.000 0.992 0.000 0.000 0.008  0
#> GSM555329     2  0.0146     0.7140 0.000 0.996 0.000 0.000 0.004  0
#> GSM555331     2  0.1714     0.7098 0.000 0.908 0.000 0.000 0.092  0
#> GSM555333     2  0.3804     0.1032 0.000 0.576 0.000 0.000 0.424  0
#> GSM555335     2  0.2048     0.6948 0.000 0.880 0.000 0.000 0.120  0
#> GSM555337     2  0.0146     0.7140 0.000 0.996 0.000 0.000 0.004  0
#> GSM555339     2  0.2883     0.5981 0.000 0.788 0.000 0.000 0.212  0
#> GSM555341     2  0.1863     0.7028 0.000 0.896 0.000 0.000 0.104  0
#> GSM555343     2  0.1444     0.6542 0.000 0.928 0.000 0.000 0.072  0
#> GSM555345     2  0.3175     0.5277 0.000 0.744 0.000 0.000 0.256  0
#> GSM555318     2  0.1444     0.7159 0.000 0.928 0.000 0.000 0.072  0
#> GSM555320     2  0.3101     0.3952 0.000 0.756 0.000 0.000 0.244  0
#> GSM555322     2  0.0146     0.7140 0.000 0.996 0.000 0.000 0.004  0
#> GSM555324     3  0.0363     0.9928 0.000 0.000 0.988 0.000 0.012  0
#> GSM555326     2  0.0260     0.7155 0.000 0.992 0.000 0.000 0.008  0
#> GSM555328     2  0.0260     0.7157 0.000 0.992 0.000 0.000 0.008  0
#> GSM555330     2  0.1387     0.7167 0.000 0.932 0.000 0.000 0.068  0
#> GSM555332     2  0.1444     0.7154 0.000 0.928 0.000 0.000 0.072  0
#> GSM555334     2  0.0260     0.7157 0.000 0.992 0.000 0.000 0.008  0
#> GSM555336     2  0.1444     0.6405 0.000 0.928 0.000 0.000 0.072  0
#> GSM555338     2  0.0146     0.7140 0.000 0.996 0.000 0.000 0.004  0
#> GSM555340     2  0.1075     0.6719 0.000 0.952 0.000 0.000 0.048  0
#> GSM555342     2  0.2597     0.5652 0.000 0.824 0.000 0.000 0.176  0
#> GSM555344     2  0.1267     0.7176 0.000 0.940 0.000 0.000 0.060  0
#> GSM555346     5  0.3838     0.5748 0.000 0.448 0.000 0.000 0.552  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) agent(p) k
#> ATC:hclust 109         2.18e-08   0.3891 2
#> ATC:hclust 110         1.46e-14   0.2271 3
#> ATC:hclust 109         3.43e-15   0.2848 4
#> ATC:hclust 109         5.32e-14   0.0993 5
#> ATC:hclust  92         1.12e-14   0.1392 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.988       0.996         0.4652 0.533   0.533
#> 3 3 0.891           0.750       0.822         0.2050 0.914   0.840
#> 4 4 0.741           0.795       0.874         0.2002 0.801   0.582
#> 5 5 0.799           0.921       0.918         0.1261 0.846   0.547
#> 6 6 0.805           0.814       0.859         0.0527 1.000   1.000

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette   p1   p2
#> GSM555237     1   0.000      0.988 1.00 0.00
#> GSM555239     1   0.000      0.988 1.00 0.00
#> GSM555241     1   0.000      0.988 1.00 0.00
#> GSM555243     1   0.000      0.988 1.00 0.00
#> GSM555245     1   0.000      0.988 1.00 0.00
#> GSM555247     1   0.000      0.988 1.00 0.00
#> GSM555249     1   0.000      0.988 1.00 0.00
#> GSM555251     1   0.000      0.988 1.00 0.00
#> GSM555253     1   0.000      0.988 1.00 0.00
#> GSM555255     1   0.000      0.988 1.00 0.00
#> GSM555257     1   0.000      0.988 1.00 0.00
#> GSM555259     1   0.000      0.988 1.00 0.00
#> GSM555261     2   0.000      1.000 0.00 1.00
#> GSM555263     2   0.000      1.000 0.00 1.00
#> GSM555265     1   0.000      0.988 1.00 0.00
#> GSM555267     2   0.000      1.000 0.00 1.00
#> GSM555269     1   0.000      0.988 1.00 0.00
#> GSM555271     1   0.000      0.988 1.00 0.00
#> GSM555273     2   0.000      1.000 0.00 1.00
#> GSM555275     2   0.000      1.000 0.00 1.00
#> GSM555238     1   0.000      0.988 1.00 0.00
#> GSM555240     1   0.000      0.988 1.00 0.00
#> GSM555242     1   0.000      0.988 1.00 0.00
#> GSM555244     1   0.000      0.988 1.00 0.00
#> GSM555246     1   0.000      0.988 1.00 0.00
#> GSM555248     1   0.000      0.988 1.00 0.00
#> GSM555250     1   0.000      0.988 1.00 0.00
#> GSM555252     1   0.000      0.988 1.00 0.00
#> GSM555254     1   0.000      0.988 1.00 0.00
#> GSM555256     1   0.000      0.988 1.00 0.00
#> GSM555258     2   0.000      1.000 0.00 1.00
#> GSM555260     2   0.000      1.000 0.00 1.00
#> GSM555262     2   0.000      1.000 0.00 1.00
#> GSM555264     1   0.000      0.988 1.00 0.00
#> GSM555266     2   0.000      1.000 0.00 1.00
#> GSM555268     2   0.000      1.000 0.00 1.00
#> GSM555270     2   0.000      1.000 0.00 1.00
#> GSM555272     2   0.000      1.000 0.00 1.00
#> GSM555274     2   0.000      1.000 0.00 1.00
#> GSM555276     2   0.000      1.000 0.00 1.00
#> GSM555277     2   0.000      1.000 0.00 1.00
#> GSM555279     2   0.000      1.000 0.00 1.00
#> GSM555281     2   0.000      1.000 0.00 1.00
#> GSM555283     2   0.000      1.000 0.00 1.00
#> GSM555285     2   0.000      1.000 0.00 1.00
#> GSM555287     1   0.995      0.148 0.54 0.46
#> GSM555289     2   0.000      1.000 0.00 1.00
#> GSM555291     2   0.000      1.000 0.00 1.00
#> GSM555293     2   0.000      1.000 0.00 1.00
#> GSM555295     2   0.000      1.000 0.00 1.00
#> GSM555297     2   0.000      1.000 0.00 1.00
#> GSM555299     1   0.000      0.988 1.00 0.00
#> GSM555301     1   0.000      0.988 1.00 0.00
#> GSM555303     1   0.000      0.988 1.00 0.00
#> GSM555305     1   0.000      0.988 1.00 0.00
#> GSM555307     2   0.000      1.000 0.00 1.00
#> GSM555309     1   0.000      0.988 1.00 0.00
#> GSM555311     2   0.000      1.000 0.00 1.00
#> GSM555313     2   0.000      1.000 0.00 1.00
#> GSM555315     2   0.000      1.000 0.00 1.00
#> GSM555278     2   0.000      1.000 0.00 1.00
#> GSM555280     2   0.000      1.000 0.00 1.00
#> GSM555282     2   0.000      1.000 0.00 1.00
#> GSM555284     2   0.000      1.000 0.00 1.00
#> GSM555286     2   0.000      1.000 0.00 1.00
#> GSM555288     2   0.000      1.000 0.00 1.00
#> GSM555290     2   0.000      1.000 0.00 1.00
#> GSM555292     2   0.000      1.000 0.00 1.00
#> GSM555294     2   0.000      1.000 0.00 1.00
#> GSM555296     2   0.000      1.000 0.00 1.00
#> GSM555298     1   0.000      0.988 1.00 0.00
#> GSM555300     1   0.000      0.988 1.00 0.00
#> GSM555302     1   0.000      0.988 1.00 0.00
#> GSM555304     1   0.000      0.988 1.00 0.00
#> GSM555306     1   0.000      0.988 1.00 0.00
#> GSM555308     1   0.000      0.988 1.00 0.00
#> GSM555310     1   0.000      0.988 1.00 0.00
#> GSM555312     2   0.000      1.000 0.00 1.00
#> GSM555314     2   0.000      1.000 0.00 1.00
#> GSM555316     2   0.000      1.000 0.00 1.00
#> GSM555317     2   0.000      1.000 0.00 1.00
#> GSM555319     2   0.000      1.000 0.00 1.00
#> GSM555321     2   0.000      1.000 0.00 1.00
#> GSM555323     2   0.000      1.000 0.00 1.00
#> GSM555325     2   0.000      1.000 0.00 1.00
#> GSM555327     2   0.000      1.000 0.00 1.00
#> GSM555329     2   0.000      1.000 0.00 1.00
#> GSM555331     2   0.000      1.000 0.00 1.00
#> GSM555333     2   0.000      1.000 0.00 1.00
#> GSM555335     2   0.000      1.000 0.00 1.00
#> GSM555337     2   0.000      1.000 0.00 1.00
#> GSM555339     2   0.000      1.000 0.00 1.00
#> GSM555341     2   0.000      1.000 0.00 1.00
#> GSM555343     2   0.000      1.000 0.00 1.00
#> GSM555345     2   0.000      1.000 0.00 1.00
#> GSM555318     2   0.000      1.000 0.00 1.00
#> GSM555320     2   0.000      1.000 0.00 1.00
#> GSM555322     2   0.000      1.000 0.00 1.00
#> GSM555324     1   0.000      0.988 1.00 0.00
#> GSM555326     2   0.000      1.000 0.00 1.00
#> GSM555328     2   0.000      1.000 0.00 1.00
#> GSM555330     2   0.000      1.000 0.00 1.00
#> GSM555332     2   0.000      1.000 0.00 1.00
#> GSM555334     2   0.000      1.000 0.00 1.00
#> GSM555336     2   0.000      1.000 0.00 1.00
#> GSM555338     2   0.000      1.000 0.00 1.00
#> GSM555340     2   0.000      1.000 0.00 1.00
#> GSM555342     2   0.000      1.000 0.00 1.00
#> GSM555344     2   0.000      1.000 0.00 1.00
#> GSM555346     2   0.000      1.000 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.2448      0.529 0.924 0.000 0.076
#> GSM555239     1  0.0000      0.606 1.000 0.000 0.000
#> GSM555241     1  0.0000      0.606 1.000 0.000 0.000
#> GSM555243     1  0.0000      0.606 1.000 0.000 0.000
#> GSM555245     1  0.0000      0.606 1.000 0.000 0.000
#> GSM555247     1  0.0000      0.606 1.000 0.000 0.000
#> GSM555249     1  0.0000      0.606 1.000 0.000 0.000
#> GSM555251     1  0.0000      0.606 1.000 0.000 0.000
#> GSM555253     1  0.0000      0.606 1.000 0.000 0.000
#> GSM555255     1  0.1411      0.575 0.964 0.000 0.036
#> GSM555257     1  0.6309     -0.431 0.504 0.000 0.496
#> GSM555259     1  0.6309     -0.431 0.504 0.000 0.496
#> GSM555261     3  0.8000      0.521 0.408 0.064 0.528
#> GSM555263     3  0.6305      0.256 0.000 0.484 0.516
#> GSM555265     3  0.6295      0.429 0.472 0.000 0.528
#> GSM555267     3  0.8250      0.530 0.392 0.080 0.528
#> GSM555269     1  0.6309     -0.431 0.504 0.000 0.496
#> GSM555271     1  0.6286      0.587 0.536 0.000 0.464
#> GSM555273     2  0.1289      0.970 0.000 0.968 0.032
#> GSM555275     2  0.1289      0.970 0.000 0.968 0.032
#> GSM555238     1  0.1411      0.575 0.964 0.000 0.036
#> GSM555240     1  0.6309     -0.431 0.504 0.000 0.496
#> GSM555242     1  0.6309     -0.431 0.504 0.000 0.496
#> GSM555244     1  0.0000      0.606 1.000 0.000 0.000
#> GSM555246     1  0.0000      0.606 1.000 0.000 0.000
#> GSM555248     1  0.0000      0.606 1.000 0.000 0.000
#> GSM555250     1  0.0000      0.606 1.000 0.000 0.000
#> GSM555252     1  0.6309     -0.431 0.504 0.000 0.496
#> GSM555254     1  0.0000      0.606 1.000 0.000 0.000
#> GSM555256     1  0.1643      0.567 0.956 0.000 0.044
#> GSM555258     3  0.6295      0.292 0.000 0.472 0.528
#> GSM555260     2  0.1289      0.970 0.000 0.968 0.032
#> GSM555262     2  0.1289      0.970 0.000 0.968 0.032
#> GSM555264     3  0.6295      0.429 0.472 0.000 0.528
#> GSM555266     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555268     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555270     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555272     3  0.6295      0.292 0.000 0.472 0.528
#> GSM555274     2  0.0237      0.988 0.000 0.996 0.004
#> GSM555276     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555277     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555279     2  0.1289      0.970 0.000 0.968 0.032
#> GSM555281     2  0.1289      0.970 0.000 0.968 0.032
#> GSM555283     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555285     2  0.1289      0.970 0.000 0.968 0.032
#> GSM555287     3  0.6286      0.435 0.464 0.000 0.536
#> GSM555289     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555291     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555293     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555295     2  0.1289      0.970 0.000 0.968 0.032
#> GSM555297     3  0.8191      0.530 0.396 0.076 0.528
#> GSM555299     1  0.6286      0.587 0.536 0.000 0.464
#> GSM555301     1  0.6286      0.587 0.536 0.000 0.464
#> GSM555303     1  0.6286      0.587 0.536 0.000 0.464
#> GSM555305     1  0.6286      0.587 0.536 0.000 0.464
#> GSM555307     2  0.1289      0.970 0.000 0.968 0.032
#> GSM555309     1  0.6286      0.587 0.536 0.000 0.464
#> GSM555311     2  0.1289      0.970 0.000 0.968 0.032
#> GSM555313     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555315     2  0.1031      0.976 0.000 0.976 0.024
#> GSM555278     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555280     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555282     2  0.1031      0.976 0.000 0.976 0.024
#> GSM555284     2  0.1289      0.970 0.000 0.968 0.032
#> GSM555286     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555288     2  0.1643      0.959 0.000 0.956 0.044
#> GSM555290     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555292     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555294     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555296     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555298     1  0.6286      0.587 0.536 0.000 0.464
#> GSM555300     1  0.6286      0.587 0.536 0.000 0.464
#> GSM555302     1  0.6286      0.587 0.536 0.000 0.464
#> GSM555304     1  0.6286      0.587 0.536 0.000 0.464
#> GSM555306     1  0.6286      0.587 0.536 0.000 0.464
#> GSM555308     1  0.6286      0.587 0.536 0.000 0.464
#> GSM555310     1  0.6286      0.587 0.536 0.000 0.464
#> GSM555312     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555314     2  0.1643      0.959 0.000 0.956 0.044
#> GSM555316     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555317     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555319     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555321     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555323     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555325     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555327     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555329     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555331     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555333     2  0.1289      0.970 0.000 0.968 0.032
#> GSM555335     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555337     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555339     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555341     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555343     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555345     2  0.0592      0.983 0.000 0.988 0.012
#> GSM555318     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555320     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555322     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555324     1  0.6286      0.587 0.536 0.000 0.464
#> GSM555326     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555328     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555330     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555332     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555334     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555336     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555338     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555340     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555342     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555344     2  0.0000      0.990 0.000 1.000 0.000
#> GSM555346     2  0.0000      0.990 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.0336     0.9195 0.992 0.000 0.000 0.008
#> GSM555239     1  0.0000     0.9234 1.000 0.000 0.000 0.000
#> GSM555241     1  0.0000     0.9234 1.000 0.000 0.000 0.000
#> GSM555243     1  0.0000     0.9234 1.000 0.000 0.000 0.000
#> GSM555245     1  0.0000     0.9234 1.000 0.000 0.000 0.000
#> GSM555247     1  0.0000     0.9234 1.000 0.000 0.000 0.000
#> GSM555249     1  0.0000     0.9234 1.000 0.000 0.000 0.000
#> GSM555251     1  0.0000     0.9234 1.000 0.000 0.000 0.000
#> GSM555253     1  0.0000     0.9234 1.000 0.000 0.000 0.000
#> GSM555255     1  0.0000     0.9234 1.000 0.000 0.000 0.000
#> GSM555257     1  0.5897     0.5949 0.588 0.000 0.044 0.368
#> GSM555259     1  0.5884     0.5993 0.592 0.000 0.044 0.364
#> GSM555261     4  0.2644     0.5473 0.032 0.008 0.044 0.916
#> GSM555263     4  0.2500     0.5805 0.000 0.040 0.044 0.916
#> GSM555265     4  0.2500     0.5328 0.040 0.000 0.044 0.916
#> GSM555267     4  0.2676     0.5532 0.028 0.012 0.044 0.916
#> GSM555269     1  0.5884     0.5993 0.592 0.000 0.044 0.364
#> GSM555271     3  0.2408     0.9941 0.104 0.000 0.896 0.000
#> GSM555273     4  0.5793     0.6246 0.000 0.360 0.040 0.600
#> GSM555275     4  0.4941     0.5608 0.000 0.436 0.000 0.564
#> GSM555238     1  0.0000     0.9234 1.000 0.000 0.000 0.000
#> GSM555240     1  0.3216     0.8479 0.880 0.000 0.044 0.076
#> GSM555242     1  0.2840     0.8596 0.900 0.000 0.044 0.056
#> GSM555244     1  0.0000     0.9234 1.000 0.000 0.000 0.000
#> GSM555246     1  0.0000     0.9234 1.000 0.000 0.000 0.000
#> GSM555248     1  0.0000     0.9234 1.000 0.000 0.000 0.000
#> GSM555250     1  0.0000     0.9234 1.000 0.000 0.000 0.000
#> GSM555252     1  0.2840     0.8596 0.900 0.000 0.044 0.056
#> GSM555254     1  0.0000     0.9234 1.000 0.000 0.000 0.000
#> GSM555256     1  0.0188     0.9216 0.996 0.000 0.000 0.004
#> GSM555258     4  0.2500     0.5805 0.000 0.040 0.044 0.916
#> GSM555260     4  0.4790     0.6367 0.000 0.380 0.000 0.620
#> GSM555262     4  0.4925     0.5772 0.000 0.428 0.000 0.572
#> GSM555264     4  0.6179    -0.2740 0.392 0.000 0.056 0.552
#> GSM555266     2  0.2174     0.8817 0.000 0.928 0.020 0.052
#> GSM555268     2  0.0921     0.9051 0.000 0.972 0.028 0.000
#> GSM555270     2  0.0817     0.9058 0.000 0.976 0.024 0.000
#> GSM555272     4  0.2124     0.5861 0.000 0.040 0.028 0.932
#> GSM555274     2  0.3764     0.6163 0.000 0.784 0.000 0.216
#> GSM555276     2  0.0000     0.9099 0.000 1.000 0.000 0.000
#> GSM555277     2  0.3219     0.7169 0.000 0.836 0.000 0.164
#> GSM555279     4  0.5028     0.6197 0.000 0.400 0.004 0.596
#> GSM555281     4  0.5050     0.6078 0.000 0.408 0.004 0.588
#> GSM555283     2  0.0000     0.9099 0.000 1.000 0.000 0.000
#> GSM555285     4  0.5821     0.6173 0.000 0.368 0.040 0.592
#> GSM555287     4  0.2413     0.5382 0.020 0.000 0.064 0.916
#> GSM555289     2  0.0000     0.9099 0.000 1.000 0.000 0.000
#> GSM555291     2  0.4040     0.5577 0.000 0.752 0.000 0.248
#> GSM555293     2  0.0921     0.9051 0.000 0.972 0.028 0.000
#> GSM555295     4  0.5004     0.6278 0.000 0.392 0.004 0.604
#> GSM555297     4  0.2644     0.5473 0.032 0.008 0.044 0.916
#> GSM555299     3  0.3099     0.9911 0.104 0.000 0.876 0.020
#> GSM555301     3  0.2408     0.9941 0.104 0.000 0.896 0.000
#> GSM555303     3  0.2867     0.9926 0.104 0.000 0.884 0.012
#> GSM555305     3  0.2408     0.9941 0.104 0.000 0.896 0.000
#> GSM555307     4  0.4941     0.5608 0.000 0.436 0.000 0.564
#> GSM555309     3  0.3099     0.9911 0.104 0.000 0.876 0.020
#> GSM555311     4  0.5028     0.6197 0.000 0.400 0.004 0.596
#> GSM555313     2  0.4040     0.5577 0.000 0.752 0.000 0.248
#> GSM555315     2  0.5097    -0.1367 0.000 0.568 0.004 0.428
#> GSM555278     2  0.2313     0.8874 0.000 0.924 0.032 0.044
#> GSM555280     2  0.0000     0.9099 0.000 1.000 0.000 0.000
#> GSM555282     4  0.5000     0.3780 0.000 0.500 0.000 0.500
#> GSM555284     4  0.5028     0.6197 0.000 0.400 0.004 0.596
#> GSM555286     2  0.0817     0.9058 0.000 0.976 0.024 0.000
#> GSM555288     4  0.4072     0.6670 0.000 0.252 0.000 0.748
#> GSM555290     2  0.0188     0.9100 0.000 0.996 0.004 0.000
#> GSM555292     2  0.0000     0.9099 0.000 1.000 0.000 0.000
#> GSM555294     2  0.1936     0.8970 0.000 0.940 0.032 0.028
#> GSM555296     2  0.1302     0.8873 0.000 0.956 0.000 0.044
#> GSM555298     3  0.2408     0.9941 0.104 0.000 0.896 0.000
#> GSM555300     3  0.3099     0.9911 0.104 0.000 0.876 0.020
#> GSM555302     3  0.2408     0.9941 0.104 0.000 0.896 0.000
#> GSM555304     3  0.2408     0.9941 0.104 0.000 0.896 0.000
#> GSM555306     3  0.2408     0.9941 0.104 0.000 0.896 0.000
#> GSM555308     3  0.3099     0.9911 0.104 0.000 0.876 0.020
#> GSM555310     3  0.2408     0.9941 0.104 0.000 0.896 0.000
#> GSM555312     2  0.4624     0.2716 0.000 0.660 0.000 0.340
#> GSM555314     4  0.4372     0.6656 0.000 0.268 0.004 0.728
#> GSM555316     2  0.0188     0.9100 0.000 0.996 0.004 0.000
#> GSM555317     2  0.0000     0.9099 0.000 1.000 0.000 0.000
#> GSM555319     2  0.0921     0.9051 0.000 0.972 0.028 0.000
#> GSM555321     2  0.0921     0.9051 0.000 0.972 0.028 0.000
#> GSM555323     2  0.0188     0.9100 0.000 0.996 0.004 0.000
#> GSM555325     2  0.1936     0.8970 0.000 0.940 0.032 0.028
#> GSM555327     2  0.0000     0.9099 0.000 1.000 0.000 0.000
#> GSM555329     2  0.0921     0.9051 0.000 0.972 0.028 0.000
#> GSM555331     2  0.0921     0.8985 0.000 0.972 0.000 0.028
#> GSM555333     4  0.5004     0.6278 0.000 0.392 0.004 0.604
#> GSM555335     2  0.1302     0.8873 0.000 0.956 0.000 0.044
#> GSM555337     2  0.0921     0.9051 0.000 0.972 0.028 0.000
#> GSM555339     2  0.3764     0.6301 0.000 0.784 0.000 0.216
#> GSM555341     2  0.0592     0.9045 0.000 0.984 0.000 0.016
#> GSM555343     2  0.0921     0.9051 0.000 0.972 0.028 0.000
#> GSM555345     2  0.4843    -0.0145 0.000 0.604 0.000 0.396
#> GSM555318     2  0.0000     0.9099 0.000 1.000 0.000 0.000
#> GSM555320     2  0.1936     0.8970 0.000 0.940 0.032 0.028
#> GSM555322     2  0.0817     0.9058 0.000 0.976 0.024 0.000
#> GSM555324     3  0.3099     0.9911 0.104 0.000 0.876 0.020
#> GSM555326     2  0.0817     0.9058 0.000 0.976 0.024 0.000
#> GSM555328     2  0.0000     0.9099 0.000 1.000 0.000 0.000
#> GSM555330     2  0.0000     0.9099 0.000 1.000 0.000 0.000
#> GSM555332     2  0.0000     0.9099 0.000 1.000 0.000 0.000
#> GSM555334     2  0.0000     0.9099 0.000 1.000 0.000 0.000
#> GSM555336     2  0.0921     0.9051 0.000 0.972 0.028 0.000
#> GSM555338     2  0.0188     0.9100 0.000 0.996 0.004 0.000
#> GSM555340     2  0.0921     0.9051 0.000 0.972 0.028 0.000
#> GSM555342     2  0.1837     0.8989 0.000 0.944 0.028 0.028
#> GSM555344     2  0.0000     0.9099 0.000 1.000 0.000 0.000
#> GSM555346     2  0.2586     0.8800 0.000 0.912 0.040 0.048

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM555237     1  0.0807      0.954 0.976 0.000 0.000 0.012 0.012
#> GSM555239     1  0.0404      0.967 0.988 0.000 0.000 0.000 0.012
#> GSM555241     1  0.0404      0.967 0.988 0.000 0.000 0.000 0.012
#> GSM555243     1  0.0404      0.967 0.988 0.000 0.000 0.000 0.012
#> GSM555245     1  0.0404      0.967 0.988 0.000 0.000 0.000 0.012
#> GSM555247     1  0.0404      0.967 0.988 0.000 0.000 0.000 0.012
#> GSM555249     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0404      0.967 0.988 0.000 0.000 0.000 0.012
#> GSM555255     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000
#> GSM555257     4  0.2124      0.876 0.096 0.000 0.000 0.900 0.004
#> GSM555259     4  0.1965      0.877 0.096 0.000 0.000 0.904 0.000
#> GSM555261     4  0.1965      0.909 0.000 0.000 0.000 0.904 0.096
#> GSM555263     4  0.3210      0.807 0.000 0.000 0.000 0.788 0.212
#> GSM555265     4  0.1965      0.909 0.000 0.000 0.000 0.904 0.096
#> GSM555267     4  0.1965      0.909 0.000 0.000 0.000 0.904 0.096
#> GSM555269     4  0.1965      0.877 0.096 0.000 0.000 0.904 0.000
#> GSM555271     3  0.1121      0.983 0.044 0.000 0.956 0.000 0.000
#> GSM555273     5  0.3913      0.866 0.000 0.108 0.032 0.036 0.824
#> GSM555275     5  0.1965      0.913 0.000 0.096 0.000 0.000 0.904
#> GSM555238     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000
#> GSM555240     1  0.3835      0.668 0.744 0.000 0.000 0.244 0.012
#> GSM555242     1  0.1942      0.900 0.920 0.000 0.000 0.068 0.012
#> GSM555244     1  0.0404      0.967 0.988 0.000 0.000 0.000 0.012
#> GSM555246     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0404      0.967 0.988 0.000 0.000 0.000 0.012
#> GSM555250     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.2997      0.815 0.840 0.000 0.000 0.148 0.012
#> GSM555254     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000
#> GSM555258     4  0.3274      0.805 0.000 0.000 0.000 0.780 0.220
#> GSM555260     5  0.2069      0.906 0.000 0.076 0.000 0.012 0.912
#> GSM555262     5  0.2249      0.912 0.000 0.096 0.008 0.000 0.896
#> GSM555264     4  0.3096      0.880 0.084 0.000 0.008 0.868 0.040
#> GSM555266     5  0.4197      0.876 0.000 0.156 0.020 0.036 0.788
#> GSM555268     2  0.0579      0.949 0.000 0.984 0.008 0.000 0.008
#> GSM555270     2  0.0290      0.954 0.000 0.992 0.000 0.000 0.008
#> GSM555272     5  0.3636      0.544 0.000 0.000 0.000 0.272 0.728
#> GSM555274     5  0.3132      0.886 0.000 0.172 0.008 0.000 0.820
#> GSM555276     2  0.0963      0.957 0.000 0.964 0.000 0.000 0.036
#> GSM555277     5  0.3132      0.886 0.000 0.172 0.008 0.000 0.820
#> GSM555279     5  0.2351      0.905 0.000 0.088 0.016 0.000 0.896
#> GSM555281     5  0.2011      0.910 0.000 0.088 0.004 0.000 0.908
#> GSM555283     2  0.1270      0.951 0.000 0.948 0.000 0.000 0.052
#> GSM555285     5  0.3992      0.864 0.000 0.108 0.036 0.036 0.820
#> GSM555287     4  0.1410      0.896 0.000 0.000 0.000 0.940 0.060
#> GSM555289     2  0.0963      0.957 0.000 0.964 0.000 0.000 0.036
#> GSM555291     5  0.2753      0.906 0.000 0.136 0.008 0.000 0.856
#> GSM555293     2  0.0867      0.945 0.000 0.976 0.008 0.008 0.008
#> GSM555295     5  0.2228      0.905 0.000 0.076 0.004 0.012 0.908
#> GSM555297     4  0.1965      0.909 0.000 0.000 0.000 0.904 0.096
#> GSM555299     3  0.2654      0.971 0.044 0.000 0.900 0.016 0.040
#> GSM555301     3  0.1121      0.983 0.044 0.000 0.956 0.000 0.000
#> GSM555303     3  0.1626      0.980 0.044 0.000 0.940 0.000 0.016
#> GSM555305     3  0.1121      0.983 0.044 0.000 0.956 0.000 0.000
#> GSM555307     5  0.2304      0.912 0.000 0.100 0.008 0.000 0.892
#> GSM555309     3  0.2654      0.971 0.044 0.000 0.900 0.016 0.040
#> GSM555311     5  0.2351      0.905 0.000 0.088 0.016 0.000 0.896
#> GSM555313     5  0.2942      0.908 0.000 0.128 0.008 0.008 0.856
#> GSM555315     5  0.3454      0.901 0.000 0.100 0.016 0.036 0.848
#> GSM555278     5  0.4767      0.833 0.000 0.200 0.028 0.036 0.736
#> GSM555280     2  0.0963      0.957 0.000 0.964 0.000 0.000 0.036
#> GSM555282     5  0.2304      0.912 0.000 0.100 0.008 0.000 0.892
#> GSM555284     5  0.2351      0.905 0.000 0.088 0.016 0.000 0.896
#> GSM555286     2  0.0290      0.954 0.000 0.992 0.000 0.000 0.008
#> GSM555288     5  0.2193      0.854 0.000 0.028 0.000 0.060 0.912
#> GSM555290     2  0.0963      0.957 0.000 0.964 0.000 0.000 0.036
#> GSM555292     2  0.0963      0.957 0.000 0.964 0.000 0.000 0.036
#> GSM555294     2  0.3135      0.881 0.000 0.876 0.028 0.036 0.060
#> GSM555296     5  0.3318      0.866 0.000 0.192 0.008 0.000 0.800
#> GSM555298     3  0.1121      0.983 0.044 0.000 0.956 0.000 0.000
#> GSM555300     3  0.2654      0.971 0.044 0.000 0.900 0.016 0.040
#> GSM555302     3  0.1121      0.983 0.044 0.000 0.956 0.000 0.000
#> GSM555304     3  0.1121      0.983 0.044 0.000 0.956 0.000 0.000
#> GSM555306     3  0.1121      0.983 0.044 0.000 0.956 0.000 0.000
#> GSM555308     3  0.2654      0.971 0.044 0.000 0.900 0.016 0.040
#> GSM555310     3  0.1121      0.983 0.044 0.000 0.956 0.000 0.000
#> GSM555312     5  0.2462      0.912 0.000 0.112 0.008 0.000 0.880
#> GSM555314     5  0.2304      0.842 0.000 0.020 0.004 0.068 0.908
#> GSM555316     2  0.0963      0.957 0.000 0.964 0.000 0.000 0.036
#> GSM555317     2  0.1557      0.948 0.000 0.940 0.008 0.000 0.052
#> GSM555319     2  0.0579      0.949 0.000 0.984 0.008 0.000 0.008
#> GSM555321     2  0.0579      0.949 0.000 0.984 0.008 0.000 0.008
#> GSM555323     2  0.1331      0.953 0.000 0.952 0.008 0.000 0.040
#> GSM555325     2  0.3135      0.881 0.000 0.876 0.028 0.036 0.060
#> GSM555327     2  0.0963      0.957 0.000 0.964 0.000 0.000 0.036
#> GSM555329     2  0.0579      0.949 0.000 0.984 0.008 0.000 0.008
#> GSM555331     2  0.2462      0.899 0.000 0.880 0.008 0.000 0.112
#> GSM555333     5  0.2011      0.910 0.000 0.088 0.004 0.000 0.908
#> GSM555335     5  0.3318      0.866 0.000 0.192 0.008 0.000 0.800
#> GSM555337     2  0.0579      0.949 0.000 0.984 0.008 0.000 0.008
#> GSM555339     5  0.2843      0.902 0.000 0.144 0.008 0.000 0.848
#> GSM555341     5  0.4025      0.746 0.000 0.292 0.008 0.000 0.700
#> GSM555343     2  0.0867      0.945 0.000 0.976 0.008 0.008 0.008
#> GSM555345     5  0.2753      0.905 0.000 0.136 0.008 0.000 0.856
#> GSM555318     2  0.1764      0.939 0.000 0.928 0.008 0.000 0.064
#> GSM555320     2  0.3135      0.881 0.000 0.876 0.028 0.036 0.060
#> GSM555322     2  0.0290      0.954 0.000 0.992 0.000 0.000 0.008
#> GSM555324     3  0.2654      0.971 0.044 0.000 0.900 0.016 0.040
#> GSM555326     2  0.0290      0.954 0.000 0.992 0.000 0.000 0.008
#> GSM555328     2  0.1043      0.956 0.000 0.960 0.000 0.000 0.040
#> GSM555330     2  0.1557      0.948 0.000 0.940 0.008 0.000 0.052
#> GSM555332     2  0.1764      0.939 0.000 0.928 0.008 0.000 0.064
#> GSM555334     2  0.0963      0.957 0.000 0.964 0.000 0.000 0.036
#> GSM555336     2  0.0981      0.943 0.000 0.972 0.008 0.012 0.008
#> GSM555338     2  0.0963      0.957 0.000 0.964 0.000 0.000 0.036
#> GSM555340     2  0.0579      0.949 0.000 0.984 0.008 0.000 0.008
#> GSM555342     2  0.3135      0.881 0.000 0.876 0.028 0.036 0.060
#> GSM555344     2  0.1557      0.948 0.000 0.940 0.008 0.000 0.052
#> GSM555346     5  0.4645      0.847 0.000 0.168 0.036 0.036 0.760

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM555237     1  0.3466      0.827 0.816 0.000 0.000 0.084 0.004 NA
#> GSM555239     1  0.0547      0.944 0.980 0.000 0.000 0.000 0.000 NA
#> GSM555241     1  0.0547      0.944 0.980 0.000 0.000 0.000 0.000 NA
#> GSM555243     1  0.0547      0.944 0.980 0.000 0.000 0.000 0.000 NA
#> GSM555245     1  0.0547      0.944 0.980 0.000 0.000 0.000 0.000 NA
#> GSM555247     1  0.0547      0.944 0.980 0.000 0.000 0.000 0.000 NA
#> GSM555249     1  0.0000      0.945 1.000 0.000 0.000 0.000 0.000 NA
#> GSM555251     1  0.0000      0.945 1.000 0.000 0.000 0.000 0.000 NA
#> GSM555253     1  0.0547      0.944 0.980 0.000 0.000 0.000 0.000 NA
#> GSM555255     1  0.0692      0.939 0.976 0.000 0.000 0.000 0.004 NA
#> GSM555257     4  0.2221      0.865 0.032 0.000 0.000 0.896 0.000 NA
#> GSM555259     4  0.1984      0.869 0.032 0.000 0.000 0.912 0.000 NA
#> GSM555261     4  0.0790      0.883 0.000 0.000 0.000 0.968 0.032 NA
#> GSM555263     4  0.3103      0.753 0.000 0.000 0.000 0.784 0.208 NA
#> GSM555265     4  0.0790      0.883 0.000 0.000 0.000 0.968 0.032 NA
#> GSM555267     4  0.0790      0.883 0.000 0.000 0.000 0.968 0.032 NA
#> GSM555269     4  0.1984      0.869 0.032 0.000 0.000 0.912 0.000 NA
#> GSM555271     3  0.0405      0.954 0.008 0.000 0.988 0.000 0.000 NA
#> GSM555273     5  0.3500      0.648 0.000 0.028 0.000 0.000 0.768 NA
#> GSM555275     5  0.1644      0.796 0.000 0.040 0.000 0.000 0.932 NA
#> GSM555238     1  0.0692      0.939 0.976 0.000 0.000 0.000 0.004 NA
#> GSM555240     1  0.4541      0.682 0.704 0.000 0.000 0.196 0.004 NA
#> GSM555242     1  0.3517      0.822 0.812 0.000 0.000 0.092 0.004 NA
#> GSM555244     1  0.0547      0.944 0.980 0.000 0.000 0.000 0.000 NA
#> GSM555246     1  0.0146      0.944 0.996 0.000 0.000 0.000 0.004 NA
#> GSM555248     1  0.0547      0.944 0.980 0.000 0.000 0.000 0.000 NA
#> GSM555250     1  0.0146      0.944 0.996 0.000 0.000 0.000 0.004 NA
#> GSM555252     1  0.3922      0.783 0.776 0.000 0.000 0.124 0.004 NA
#> GSM555254     1  0.0291      0.945 0.992 0.000 0.000 0.000 0.004 NA
#> GSM555256     1  0.0858      0.935 0.968 0.000 0.000 0.000 0.004 NA
#> GSM555258     4  0.4410      0.409 0.000 0.000 0.000 0.560 0.412 NA
#> GSM555260     5  0.1458      0.771 0.000 0.016 0.000 0.020 0.948 NA
#> GSM555262     5  0.2629      0.796 0.000 0.040 0.000 0.000 0.868 NA
#> GSM555264     4  0.3912      0.822 0.024 0.000 0.000 0.768 0.028 NA
#> GSM555266     5  0.4272      0.721 0.000 0.044 0.000 0.000 0.668 NA
#> GSM555268     2  0.2340      0.815 0.000 0.852 0.000 0.000 0.000 NA
#> GSM555270     2  0.0363      0.837 0.000 0.988 0.000 0.000 0.000 NA
#> GSM555272     5  0.3641      0.518 0.000 0.000 0.000 0.224 0.748 NA
#> GSM555274     5  0.4657      0.754 0.000 0.100 0.000 0.000 0.672 NA
#> GSM555276     2  0.1858      0.823 0.000 0.912 0.000 0.000 0.012 NA
#> GSM555277     5  0.4866      0.737 0.000 0.116 0.000 0.000 0.648 NA
#> GSM555279     5  0.1257      0.782 0.000 0.028 0.000 0.000 0.952 NA
#> GSM555281     5  0.0858      0.788 0.000 0.028 0.000 0.000 0.968 NA
#> GSM555283     2  0.3500      0.744 0.000 0.768 0.000 0.000 0.028 NA
#> GSM555285     5  0.4181      0.520 0.000 0.028 0.000 0.000 0.644 NA
#> GSM555287     4  0.2825      0.818 0.000 0.000 0.008 0.844 0.012 NA
#> GSM555289     2  0.0820      0.838 0.000 0.972 0.000 0.000 0.012 NA
#> GSM555291     5  0.3715      0.789 0.000 0.048 0.000 0.000 0.764 NA
#> GSM555293     2  0.2092      0.820 0.000 0.876 0.000 0.000 0.000 NA
#> GSM555295     5  0.0777      0.785 0.000 0.024 0.000 0.004 0.972 NA
#> GSM555297     4  0.0790      0.883 0.000 0.000 0.000 0.968 0.032 NA
#> GSM555299     3  0.2389      0.933 0.008 0.000 0.864 0.000 0.000 NA
#> GSM555301     3  0.0622      0.950 0.008 0.000 0.980 0.000 0.000 NA
#> GSM555303     3  0.1757      0.944 0.008 0.000 0.916 0.000 0.000 NA
#> GSM555305     3  0.0260      0.955 0.008 0.000 0.992 0.000 0.000 NA
#> GSM555307     5  0.4117      0.773 0.000 0.056 0.000 0.000 0.716 NA
#> GSM555309     3  0.2389      0.933 0.008 0.000 0.864 0.000 0.000 NA
#> GSM555311     5  0.1257      0.782 0.000 0.028 0.000 0.000 0.952 NA
#> GSM555313     5  0.3714      0.789 0.000 0.044 0.000 0.000 0.760 NA
#> GSM555315     5  0.2558      0.796 0.000 0.028 0.000 0.000 0.868 NA
#> GSM555278     5  0.5203      0.599 0.000 0.104 0.000 0.000 0.548 NA
#> GSM555280     2  0.0909      0.838 0.000 0.968 0.000 0.000 0.012 NA
#> GSM555282     5  0.3490      0.791 0.000 0.040 0.000 0.000 0.784 NA
#> GSM555284     5  0.1257      0.782 0.000 0.028 0.000 0.000 0.952 NA
#> GSM555286     2  0.1141      0.833 0.000 0.948 0.000 0.000 0.000 NA
#> GSM555288     5  0.1124      0.758 0.000 0.000 0.000 0.036 0.956 NA
#> GSM555290     2  0.0622      0.838 0.000 0.980 0.000 0.000 0.012 NA
#> GSM555292     2  0.0909      0.838 0.000 0.968 0.000 0.000 0.012 NA
#> GSM555294     2  0.4210      0.694 0.000 0.672 0.000 0.000 0.040 NA
#> GSM555296     5  0.4832      0.742 0.000 0.108 0.000 0.000 0.648 NA
#> GSM555298     3  0.0405      0.954 0.008 0.000 0.988 0.000 0.000 NA
#> GSM555300     3  0.2389      0.933 0.008 0.000 0.864 0.000 0.000 NA
#> GSM555302     3  0.0260      0.955 0.008 0.000 0.992 0.000 0.000 NA
#> GSM555304     3  0.0260      0.955 0.008 0.000 0.992 0.000 0.000 NA
#> GSM555306     3  0.0260      0.955 0.008 0.000 0.992 0.000 0.000 NA
#> GSM555308     3  0.2389      0.933 0.008 0.000 0.864 0.000 0.000 NA
#> GSM555310     3  0.0260      0.955 0.008 0.000 0.992 0.000 0.000 NA
#> GSM555312     5  0.4142      0.771 0.000 0.056 0.000 0.000 0.712 NA
#> GSM555314     5  0.0806      0.774 0.000 0.008 0.000 0.020 0.972 NA
#> GSM555316     2  0.0725      0.838 0.000 0.976 0.000 0.000 0.012 NA
#> GSM555317     2  0.3989      0.693 0.000 0.720 0.000 0.000 0.044 NA
#> GSM555319     2  0.2003      0.823 0.000 0.884 0.000 0.000 0.000 NA
#> GSM555321     2  0.2003      0.823 0.000 0.884 0.000 0.000 0.000 NA
#> GSM555323     2  0.3342      0.737 0.000 0.760 0.000 0.000 0.012 NA
#> GSM555325     2  0.4172      0.695 0.000 0.680 0.000 0.000 0.040 NA
#> GSM555327     2  0.1802      0.824 0.000 0.916 0.000 0.000 0.012 NA
#> GSM555329     2  0.2003      0.823 0.000 0.884 0.000 0.000 0.000 NA
#> GSM555331     2  0.5277      0.524 0.000 0.592 0.000 0.000 0.152 NA
#> GSM555333     5  0.0713      0.786 0.000 0.028 0.000 0.000 0.972 NA
#> GSM555335     5  0.4832      0.742 0.000 0.108 0.000 0.000 0.648 NA
#> GSM555337     2  0.2003      0.823 0.000 0.884 0.000 0.000 0.000 NA
#> GSM555339     5  0.4527      0.756 0.000 0.084 0.000 0.000 0.680 NA
#> GSM555341     5  0.5601      0.630 0.000 0.208 0.000 0.000 0.544 NA
#> GSM555343     2  0.2260      0.816 0.000 0.860 0.000 0.000 0.000 NA
#> GSM555345     5  0.4746      0.745 0.000 0.104 0.000 0.000 0.660 NA
#> GSM555318     2  0.4704      0.614 0.000 0.664 0.000 0.000 0.100 NA
#> GSM555320     2  0.4191      0.695 0.000 0.676 0.000 0.000 0.040 NA
#> GSM555322     2  0.1141      0.833 0.000 0.948 0.000 0.000 0.000 NA
#> GSM555324     3  0.2389      0.933 0.008 0.000 0.864 0.000 0.000 NA
#> GSM555326     2  0.1141      0.833 0.000 0.948 0.000 0.000 0.000 NA
#> GSM555328     2  0.2312      0.808 0.000 0.876 0.000 0.000 0.012 NA
#> GSM555330     2  0.3989      0.693 0.000 0.720 0.000 0.000 0.044 NA
#> GSM555332     2  0.4167      0.678 0.000 0.708 0.000 0.000 0.056 NA
#> GSM555334     2  0.1913      0.822 0.000 0.908 0.000 0.000 0.012 NA
#> GSM555336     2  0.2219      0.816 0.000 0.864 0.000 0.000 0.000 NA
#> GSM555338     2  0.0993      0.837 0.000 0.964 0.000 0.000 0.012 NA
#> GSM555340     2  0.2178      0.818 0.000 0.868 0.000 0.000 0.000 NA
#> GSM555342     2  0.4282      0.688 0.000 0.656 0.000 0.000 0.040 NA
#> GSM555344     2  0.3989      0.693 0.000 0.720 0.000 0.000 0.044 NA
#> GSM555346     5  0.4658      0.584 0.000 0.048 0.000 0.000 0.568 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) agent(p) k
#> ATC:kmeans 109         4.96e-07   0.9430 2
#> ATC:kmeans  98         1.14e-05   0.1938 3
#> ATC:kmeans 105         2.59e-16   0.1741 4
#> ATC:kmeans 110         1.22e-16   0.1079 5
#> ATC:kmeans 109         2.33e-16   0.0492 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4811 0.519   0.519
#> 3 3 0.906           0.956       0.939         0.1534 0.923   0.852
#> 4 4 0.913           0.940       0.952         0.1251 0.944   0.874
#> 5 5 0.796           0.783       0.883         0.1418 0.882   0.697
#> 6 6 0.737           0.720       0.859         0.0464 0.956   0.845

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM555237     1       0          1  1  0
#> GSM555239     1       0          1  1  0
#> GSM555241     1       0          1  1  0
#> GSM555243     1       0          1  1  0
#> GSM555245     1       0          1  1  0
#> GSM555247     1       0          1  1  0
#> GSM555249     1       0          1  1  0
#> GSM555251     1       0          1  1  0
#> GSM555253     1       0          1  1  0
#> GSM555255     1       0          1  1  0
#> GSM555257     1       0          1  1  0
#> GSM555259     1       0          1  1  0
#> GSM555261     1       0          1  1  0
#> GSM555263     2       0          1  0  1
#> GSM555265     1       0          1  1  0
#> GSM555267     1       0          1  1  0
#> GSM555269     1       0          1  1  0
#> GSM555271     1       0          1  1  0
#> GSM555273     2       0          1  0  1
#> GSM555275     2       0          1  0  1
#> GSM555238     1       0          1  1  0
#> GSM555240     1       0          1  1  0
#> GSM555242     1       0          1  1  0
#> GSM555244     1       0          1  1  0
#> GSM555246     1       0          1  1  0
#> GSM555248     1       0          1  1  0
#> GSM555250     1       0          1  1  0
#> GSM555252     1       0          1  1  0
#> GSM555254     1       0          1  1  0
#> GSM555256     1       0          1  1  0
#> GSM555258     2       0          1  0  1
#> GSM555260     2       0          1  0  1
#> GSM555262     2       0          1  0  1
#> GSM555264     1       0          1  1  0
#> GSM555266     2       0          1  0  1
#> GSM555268     2       0          1  0  1
#> GSM555270     2       0          1  0  1
#> GSM555272     2       0          1  0  1
#> GSM555274     2       0          1  0  1
#> GSM555276     2       0          1  0  1
#> GSM555277     2       0          1  0  1
#> GSM555279     2       0          1  0  1
#> GSM555281     2       0          1  0  1
#> GSM555283     2       0          1  0  1
#> GSM555285     2       0          1  0  1
#> GSM555287     1       0          1  1  0
#> GSM555289     2       0          1  0  1
#> GSM555291     2       0          1  0  1
#> GSM555293     2       0          1  0  1
#> GSM555295     2       0          1  0  1
#> GSM555297     1       0          1  1  0
#> GSM555299     1       0          1  1  0
#> GSM555301     1       0          1  1  0
#> GSM555303     1       0          1  1  0
#> GSM555305     1       0          1  1  0
#> GSM555307     2       0          1  0  1
#> GSM555309     1       0          1  1  0
#> GSM555311     2       0          1  0  1
#> GSM555313     2       0          1  0  1
#> GSM555315     2       0          1  0  1
#> GSM555278     2       0          1  0  1
#> GSM555280     2       0          1  0  1
#> GSM555282     2       0          1  0  1
#> GSM555284     2       0          1  0  1
#> GSM555286     2       0          1  0  1
#> GSM555288     2       0          1  0  1
#> GSM555290     2       0          1  0  1
#> GSM555292     2       0          1  0  1
#> GSM555294     2       0          1  0  1
#> GSM555296     2       0          1  0  1
#> GSM555298     1       0          1  1  0
#> GSM555300     1       0          1  1  0
#> GSM555302     1       0          1  1  0
#> GSM555304     1       0          1  1  0
#> GSM555306     1       0          1  1  0
#> GSM555308     1       0          1  1  0
#> GSM555310     1       0          1  1  0
#> GSM555312     2       0          1  0  1
#> GSM555314     2       0          1  0  1
#> GSM555316     2       0          1  0  1
#> GSM555317     2       0          1  0  1
#> GSM555319     2       0          1  0  1
#> GSM555321     2       0          1  0  1
#> GSM555323     2       0          1  0  1
#> GSM555325     2       0          1  0  1
#> GSM555327     2       0          1  0  1
#> GSM555329     2       0          1  0  1
#> GSM555331     2       0          1  0  1
#> GSM555333     2       0          1  0  1
#> GSM555335     2       0          1  0  1
#> GSM555337     2       0          1  0  1
#> GSM555339     2       0          1  0  1
#> GSM555341     2       0          1  0  1
#> GSM555343     2       0          1  0  1
#> GSM555345     2       0          1  0  1
#> GSM555318     2       0          1  0  1
#> GSM555320     2       0          1  0  1
#> GSM555322     2       0          1  0  1
#> GSM555324     1       0          1  1  0
#> GSM555326     2       0          1  0  1
#> GSM555328     2       0          1  0  1
#> GSM555330     2       0          1  0  1
#> GSM555332     2       0          1  0  1
#> GSM555334     2       0          1  0  1
#> GSM555336     2       0          1  0  1
#> GSM555338     2       0          1  0  1
#> GSM555340     2       0          1  0  1
#> GSM555342     2       0          1  0  1
#> GSM555344     2       0          1  0  1
#> GSM555346     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.0000      0.978 1.000 0.000 0.000
#> GSM555239     1  0.0000      0.978 1.000 0.000 0.000
#> GSM555241     1  0.0000      0.978 1.000 0.000 0.000
#> GSM555243     1  0.0000      0.978 1.000 0.000 0.000
#> GSM555245     1  0.0000      0.978 1.000 0.000 0.000
#> GSM555247     1  0.0000      0.978 1.000 0.000 0.000
#> GSM555249     1  0.0000      0.978 1.000 0.000 0.000
#> GSM555251     1  0.0000      0.978 1.000 0.000 0.000
#> GSM555253     1  0.0000      0.978 1.000 0.000 0.000
#> GSM555255     1  0.0000      0.978 1.000 0.000 0.000
#> GSM555257     1  0.5810      0.386 0.664 0.000 0.336
#> GSM555259     3  0.4504      0.908 0.196 0.000 0.804
#> GSM555261     3  0.0237      0.690 0.004 0.000 0.996
#> GSM555263     2  0.5178      0.741 0.000 0.744 0.256
#> GSM555265     3  0.4504      0.908 0.196 0.000 0.804
#> GSM555267     3  0.3619      0.844 0.136 0.000 0.864
#> GSM555269     3  0.5178      0.961 0.256 0.000 0.744
#> GSM555271     3  0.5178      0.961 0.256 0.000 0.744
#> GSM555273     2  0.1163      0.965 0.000 0.972 0.028
#> GSM555275     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555238     1  0.0000      0.978 1.000 0.000 0.000
#> GSM555240     1  0.0000      0.978 1.000 0.000 0.000
#> GSM555242     1  0.0000      0.978 1.000 0.000 0.000
#> GSM555244     1  0.0000      0.978 1.000 0.000 0.000
#> GSM555246     1  0.0000      0.978 1.000 0.000 0.000
#> GSM555248     1  0.0000      0.978 1.000 0.000 0.000
#> GSM555250     1  0.0000      0.978 1.000 0.000 0.000
#> GSM555252     1  0.0000      0.978 1.000 0.000 0.000
#> GSM555254     1  0.0000      0.978 1.000 0.000 0.000
#> GSM555256     1  0.0000      0.978 1.000 0.000 0.000
#> GSM555258     2  0.6559      0.696 0.040 0.708 0.252
#> GSM555260     2  0.4750      0.788 0.000 0.784 0.216
#> GSM555262     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555264     1  0.1643      0.924 0.956 0.000 0.044
#> GSM555266     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555268     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555270     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555272     2  0.5138      0.746 0.000 0.748 0.252
#> GSM555274     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555276     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555277     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555279     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555281     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555283     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555285     2  0.1163      0.965 0.000 0.972 0.028
#> GSM555287     3  0.5733      0.870 0.324 0.000 0.676
#> GSM555289     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555291     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555293     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555295     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555297     3  0.5178      0.961 0.256 0.000 0.744
#> GSM555299     3  0.5178      0.961 0.256 0.000 0.744
#> GSM555301     3  0.5178      0.961 0.256 0.000 0.744
#> GSM555303     3  0.5178      0.961 0.256 0.000 0.744
#> GSM555305     3  0.5178      0.961 0.256 0.000 0.744
#> GSM555307     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555309     3  0.5178      0.961 0.256 0.000 0.744
#> GSM555311     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555313     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555315     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555278     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555280     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555282     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555284     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555286     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555288     2  0.3879      0.854 0.000 0.848 0.152
#> GSM555290     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555292     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555294     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555296     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555298     3  0.5178      0.961 0.256 0.000 0.744
#> GSM555300     3  0.5178      0.961 0.256 0.000 0.744
#> GSM555302     3  0.5178      0.961 0.256 0.000 0.744
#> GSM555304     3  0.5178      0.961 0.256 0.000 0.744
#> GSM555306     3  0.5178      0.961 0.256 0.000 0.744
#> GSM555308     3  0.5178      0.961 0.256 0.000 0.744
#> GSM555310     3  0.5178      0.961 0.256 0.000 0.744
#> GSM555312     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555314     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555316     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555317     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555319     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555321     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555323     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555325     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555327     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555329     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555331     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555333     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555335     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555337     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555339     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555341     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555343     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555345     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555318     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555320     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555322     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555324     3  0.5178      0.961 0.256 0.000 0.744
#> GSM555326     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555328     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555330     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555332     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555334     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555336     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555338     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555340     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555342     2  0.0237      0.982 0.000 0.996 0.004
#> GSM555344     2  0.0000      0.982 0.000 1.000 0.000
#> GSM555346     2  0.0237      0.982 0.000 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM555239     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM555241     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM555243     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM555245     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM555247     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM555249     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM555251     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM555253     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM555255     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM555257     1  0.6473      0.434 0.612 0.000 0.108 0.280
#> GSM555259     3  0.1211      0.965 0.040 0.000 0.960 0.000
#> GSM555261     4  0.3172      0.765 0.000 0.000 0.160 0.840
#> GSM555263     4  0.2797      0.872 0.000 0.068 0.032 0.900
#> GSM555265     3  0.1022      0.956 0.032 0.000 0.968 0.000
#> GSM555267     3  0.1256      0.949 0.028 0.000 0.964 0.008
#> GSM555269     3  0.1716      0.988 0.064 0.000 0.936 0.000
#> GSM555271     3  0.1716      0.988 0.064 0.000 0.936 0.000
#> GSM555273     2  0.4655      0.774 0.000 0.760 0.032 0.208
#> GSM555275     2  0.0376      0.955 0.000 0.992 0.004 0.004
#> GSM555238     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM555240     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM555242     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM555244     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM555246     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM555248     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM555250     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM555252     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM555254     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM555256     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM555258     4  0.1510      0.877 0.000 0.028 0.016 0.956
#> GSM555260     4  0.1716      0.877 0.000 0.064 0.000 0.936
#> GSM555262     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM555264     1  0.3768      0.761 0.808 0.000 0.008 0.184
#> GSM555266     2  0.3013      0.918 0.000 0.888 0.032 0.080
#> GSM555268     2  0.1706      0.946 0.000 0.948 0.016 0.036
#> GSM555270     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> GSM555272     4  0.1510      0.877 0.000 0.028 0.016 0.956
#> GSM555274     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM555276     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM555277     2  0.0336      0.955 0.000 0.992 0.000 0.008
#> GSM555279     2  0.3082      0.915 0.000 0.884 0.032 0.084
#> GSM555281     2  0.1798      0.946 0.000 0.944 0.016 0.040
#> GSM555283     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM555285     2  0.4655      0.774 0.000 0.760 0.032 0.208
#> GSM555287     3  0.2921      0.888 0.140 0.000 0.860 0.000
#> GSM555289     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM555291     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM555293     2  0.1975      0.942 0.000 0.936 0.016 0.048
#> GSM555295     2  0.2596      0.931 0.000 0.908 0.024 0.068
#> GSM555297     3  0.1716      0.988 0.064 0.000 0.936 0.000
#> GSM555299     3  0.1716      0.988 0.064 0.000 0.936 0.000
#> GSM555301     3  0.1716      0.988 0.064 0.000 0.936 0.000
#> GSM555303     3  0.1716      0.988 0.064 0.000 0.936 0.000
#> GSM555305     3  0.1716      0.988 0.064 0.000 0.936 0.000
#> GSM555307     2  0.0336      0.955 0.000 0.992 0.000 0.008
#> GSM555309     3  0.1716      0.988 0.064 0.000 0.936 0.000
#> GSM555311     2  0.3013      0.918 0.000 0.888 0.032 0.080
#> GSM555313     2  0.1151      0.952 0.000 0.968 0.008 0.024
#> GSM555315     2  0.2915      0.920 0.000 0.892 0.028 0.080
#> GSM555278     2  0.3013      0.918 0.000 0.888 0.032 0.080
#> GSM555280     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM555282     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM555284     2  0.2984      0.918 0.000 0.888 0.028 0.084
#> GSM555286     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> GSM555288     4  0.4343      0.659 0.000 0.264 0.004 0.732
#> GSM555290     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM555292     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM555294     2  0.3013      0.918 0.000 0.888 0.032 0.080
#> GSM555296     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM555298     3  0.1716      0.988 0.064 0.000 0.936 0.000
#> GSM555300     3  0.1716      0.988 0.064 0.000 0.936 0.000
#> GSM555302     3  0.1716      0.988 0.064 0.000 0.936 0.000
#> GSM555304     3  0.1716      0.988 0.064 0.000 0.936 0.000
#> GSM555306     3  0.1716      0.988 0.064 0.000 0.936 0.000
#> GSM555308     3  0.1716      0.988 0.064 0.000 0.936 0.000
#> GSM555310     3  0.1716      0.988 0.064 0.000 0.936 0.000
#> GSM555312     2  0.0336      0.955 0.000 0.992 0.000 0.008
#> GSM555314     2  0.2915      0.922 0.000 0.892 0.028 0.080
#> GSM555316     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM555317     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM555319     2  0.1706      0.946 0.000 0.948 0.016 0.036
#> GSM555321     2  0.1510      0.948 0.000 0.956 0.016 0.028
#> GSM555323     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> GSM555325     2  0.3013      0.918 0.000 0.888 0.032 0.080
#> GSM555327     2  0.0336      0.955 0.000 0.992 0.000 0.008
#> GSM555329     2  0.1488      0.948 0.000 0.956 0.012 0.032
#> GSM555331     2  0.1042      0.953 0.000 0.972 0.008 0.020
#> GSM555333     2  0.2413      0.935 0.000 0.916 0.020 0.064
#> GSM555335     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM555337     2  0.1706      0.946 0.000 0.948 0.016 0.036
#> GSM555339     2  0.0336      0.955 0.000 0.992 0.000 0.008
#> GSM555341     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM555343     2  0.2060      0.940 0.000 0.932 0.016 0.052
#> GSM555345     2  0.0336      0.955 0.000 0.992 0.000 0.008
#> GSM555318     2  0.0336      0.955 0.000 0.992 0.000 0.008
#> GSM555320     2  0.3013      0.918 0.000 0.888 0.032 0.080
#> GSM555322     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> GSM555324     3  0.1716      0.988 0.064 0.000 0.936 0.000
#> GSM555326     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> GSM555328     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM555330     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM555332     2  0.0336      0.955 0.000 0.992 0.000 0.008
#> GSM555334     2  0.0336      0.955 0.000 0.992 0.000 0.008
#> GSM555336     2  0.2813      0.923 0.000 0.896 0.024 0.080
#> GSM555338     2  0.0188      0.956 0.000 0.996 0.000 0.004
#> GSM555340     2  0.1798      0.945 0.000 0.944 0.016 0.040
#> GSM555342     2  0.3013      0.918 0.000 0.888 0.032 0.080
#> GSM555344     2  0.0336      0.955 0.000 0.992 0.000 0.008
#> GSM555346     2  0.3013      0.918 0.000 0.888 0.032 0.080

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM555237     1  0.0000     0.9697 1.000 0.000 0.000 0.000 0.000
#> GSM555239     1  0.0000     0.9697 1.000 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0000     0.9697 1.000 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000     0.9697 1.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000     0.9697 1.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000     0.9697 1.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000     0.9697 1.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000     0.9697 1.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000     0.9697 1.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0000     0.9697 1.000 0.000 0.000 0.000 0.000
#> GSM555257     1  0.5047     0.3558 0.588 0.000 0.032 0.376 0.004
#> GSM555259     3  0.1914     0.9200 0.008 0.000 0.928 0.056 0.008
#> GSM555261     4  0.2677     0.8334 0.000 0.000 0.016 0.872 0.112
#> GSM555263     4  0.2011     0.8451 0.000 0.000 0.004 0.908 0.088
#> GSM555265     3  0.3532     0.8255 0.000 0.000 0.832 0.092 0.076
#> GSM555267     3  0.4216     0.7691 0.000 0.000 0.780 0.100 0.120
#> GSM555269     3  0.0404     0.9644 0.012 0.000 0.988 0.000 0.000
#> GSM555271     3  0.0510     0.9675 0.016 0.000 0.984 0.000 0.000
#> GSM555273     5  0.2605     0.6909 0.000 0.148 0.000 0.000 0.852
#> GSM555275     2  0.2124     0.7845 0.000 0.900 0.004 0.000 0.096
#> GSM555238     1  0.0000     0.9697 1.000 0.000 0.000 0.000 0.000
#> GSM555240     1  0.0000     0.9697 1.000 0.000 0.000 0.000 0.000
#> GSM555242     1  0.0000     0.9697 1.000 0.000 0.000 0.000 0.000
#> GSM555244     1  0.0000     0.9697 1.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000     0.9697 1.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000     0.9697 1.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000     0.9697 1.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.0000     0.9697 1.000 0.000 0.000 0.000 0.000
#> GSM555254     1  0.0000     0.9697 1.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0000     0.9697 1.000 0.000 0.000 0.000 0.000
#> GSM555258     4  0.1965     0.8679 0.000 0.000 0.000 0.904 0.096
#> GSM555260     4  0.2568     0.8653 0.000 0.016 0.004 0.888 0.092
#> GSM555262     2  0.1478     0.8078 0.000 0.936 0.000 0.000 0.064
#> GSM555264     1  0.4365     0.7183 0.768 0.000 0.000 0.116 0.116
#> GSM555266     5  0.3966     0.8847 0.000 0.336 0.000 0.000 0.664
#> GSM555268     2  0.4211     0.2141 0.000 0.636 0.004 0.000 0.360
#> GSM555270     2  0.1704     0.8052 0.000 0.928 0.004 0.000 0.068
#> GSM555272     4  0.1965     0.8679 0.000 0.000 0.000 0.904 0.096
#> GSM555274     2  0.1704     0.8052 0.000 0.928 0.004 0.000 0.068
#> GSM555276     2  0.0000     0.8096 0.000 1.000 0.000 0.000 0.000
#> GSM555277     2  0.0000     0.8096 0.000 1.000 0.000 0.000 0.000
#> GSM555279     5  0.3684     0.8737 0.000 0.280 0.000 0.000 0.720
#> GSM555281     2  0.4166     0.2545 0.000 0.648 0.004 0.000 0.348
#> GSM555283     2  0.1768     0.8032 0.000 0.924 0.004 0.000 0.072
#> GSM555285     5  0.2605     0.6909 0.000 0.148 0.000 0.000 0.852
#> GSM555287     3  0.3625     0.8405 0.096 0.000 0.840 0.016 0.048
#> GSM555289     2  0.0880     0.8119 0.000 0.968 0.000 0.000 0.032
#> GSM555291     2  0.1704     0.8052 0.000 0.928 0.004 0.000 0.068
#> GSM555293     2  0.4383    -0.1115 0.000 0.572 0.004 0.000 0.424
#> GSM555295     2  0.4294    -0.5143 0.000 0.532 0.000 0.000 0.468
#> GSM555297     3  0.0798     0.9545 0.008 0.000 0.976 0.000 0.016
#> GSM555299     3  0.0510     0.9675 0.016 0.000 0.984 0.000 0.000
#> GSM555301     3  0.0510     0.9675 0.016 0.000 0.984 0.000 0.000
#> GSM555303     3  0.0510     0.9675 0.016 0.000 0.984 0.000 0.000
#> GSM555305     3  0.0510     0.9675 0.016 0.000 0.984 0.000 0.000
#> GSM555307     2  0.0162     0.8069 0.000 0.996 0.000 0.000 0.004
#> GSM555309     3  0.0510     0.9675 0.016 0.000 0.984 0.000 0.000
#> GSM555311     5  0.3949     0.8882 0.000 0.332 0.000 0.000 0.668
#> GSM555313     2  0.2127     0.7348 0.000 0.892 0.000 0.000 0.108
#> GSM555315     5  0.4015     0.8764 0.000 0.348 0.000 0.000 0.652
#> GSM555278     5  0.4047     0.8934 0.000 0.320 0.004 0.000 0.676
#> GSM555280     2  0.1768     0.8032 0.000 0.924 0.004 0.000 0.072
#> GSM555282     2  0.0609     0.8119 0.000 0.980 0.000 0.000 0.020
#> GSM555284     5  0.4196     0.8586 0.000 0.356 0.004 0.000 0.640
#> GSM555286     2  0.1768     0.8032 0.000 0.924 0.004 0.000 0.072
#> GSM555288     4  0.5698     0.4778 0.000 0.208 0.004 0.640 0.148
#> GSM555290     2  0.1704     0.8052 0.000 0.928 0.004 0.000 0.068
#> GSM555292     2  0.1768     0.8032 0.000 0.924 0.004 0.000 0.072
#> GSM555294     5  0.3895     0.8945 0.000 0.320 0.000 0.000 0.680
#> GSM555296     2  0.0000     0.8096 0.000 1.000 0.000 0.000 0.000
#> GSM555298     3  0.0510     0.9675 0.016 0.000 0.984 0.000 0.000
#> GSM555300     3  0.0510     0.9675 0.016 0.000 0.984 0.000 0.000
#> GSM555302     3  0.0510     0.9675 0.016 0.000 0.984 0.000 0.000
#> GSM555304     3  0.0510     0.9675 0.016 0.000 0.984 0.000 0.000
#> GSM555306     3  0.0510     0.9675 0.016 0.000 0.984 0.000 0.000
#> GSM555308     3  0.0510     0.9675 0.016 0.000 0.984 0.000 0.000
#> GSM555310     3  0.0510     0.9675 0.016 0.000 0.984 0.000 0.000
#> GSM555312     2  0.0162     0.8069 0.000 0.996 0.000 0.000 0.004
#> GSM555314     5  0.4114     0.7959 0.000 0.376 0.000 0.000 0.624
#> GSM555316     2  0.0000     0.8096 0.000 1.000 0.000 0.000 0.000
#> GSM555317     2  0.0000     0.8096 0.000 1.000 0.000 0.000 0.000
#> GSM555319     2  0.4276     0.1273 0.000 0.616 0.004 0.000 0.380
#> GSM555321     2  0.4225     0.1972 0.000 0.632 0.004 0.000 0.364
#> GSM555323     2  0.1197     0.8113 0.000 0.952 0.000 0.000 0.048
#> GSM555325     5  0.3857     0.8947 0.000 0.312 0.000 0.000 0.688
#> GSM555327     2  0.0000     0.8096 0.000 1.000 0.000 0.000 0.000
#> GSM555329     2  0.4196     0.2284 0.000 0.640 0.004 0.000 0.356
#> GSM555331     2  0.1908     0.7521 0.000 0.908 0.000 0.000 0.092
#> GSM555333     2  0.3913     0.1593 0.000 0.676 0.000 0.000 0.324
#> GSM555335     2  0.0703     0.8027 0.000 0.976 0.000 0.000 0.024
#> GSM555337     2  0.4288     0.1087 0.000 0.612 0.004 0.000 0.384
#> GSM555339     2  0.0162     0.8069 0.000 0.996 0.000 0.000 0.004
#> GSM555341     2  0.1638     0.8066 0.000 0.932 0.004 0.000 0.064
#> GSM555343     2  0.4415    -0.2157 0.000 0.552 0.004 0.000 0.444
#> GSM555345     2  0.0162     0.8069 0.000 0.996 0.000 0.000 0.004
#> GSM555318     2  0.0000     0.8096 0.000 1.000 0.000 0.000 0.000
#> GSM555320     5  0.3857     0.8947 0.000 0.312 0.000 0.000 0.688
#> GSM555322     2  0.1704     0.8052 0.000 0.928 0.004 0.000 0.068
#> GSM555324     3  0.0510     0.9675 0.016 0.000 0.984 0.000 0.000
#> GSM555326     2  0.1768     0.8032 0.000 0.924 0.004 0.000 0.072
#> GSM555328     2  0.1410     0.8086 0.000 0.940 0.000 0.000 0.060
#> GSM555330     2  0.0000     0.8096 0.000 1.000 0.000 0.000 0.000
#> GSM555332     2  0.0000     0.8096 0.000 1.000 0.000 0.000 0.000
#> GSM555334     2  0.0000     0.8096 0.000 1.000 0.000 0.000 0.000
#> GSM555336     5  0.4288     0.7988 0.000 0.384 0.004 0.000 0.612
#> GSM555338     2  0.0000     0.8096 0.000 1.000 0.000 0.000 0.000
#> GSM555340     2  0.4321     0.0478 0.000 0.600 0.004 0.000 0.396
#> GSM555342     5  0.4211     0.8487 0.000 0.360 0.004 0.000 0.636
#> GSM555344     2  0.0000     0.8096 0.000 1.000 0.000 0.000 0.000
#> GSM555346     5  0.3707     0.8772 0.000 0.284 0.000 0.000 0.716

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM555237     1  0.0000     0.9609 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555239     1  0.0000     0.9609 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0000     0.9609 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000     0.9609 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000     0.9609 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000     0.9609 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000     0.9609 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000     0.9609 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000     0.9609 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0000     0.9609 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555257     1  0.5811     0.2462 0.520 0.000 0.036 0.356 0.000 0.088
#> GSM555259     3  0.2793     0.6967 0.000 0.000 0.800 0.000 0.000 0.200
#> GSM555261     6  0.3742     0.4710 0.000 0.000 0.004 0.348 0.000 0.648
#> GSM555263     6  0.3810     0.4024 0.000 0.000 0.000 0.428 0.000 0.572
#> GSM555265     3  0.3862    -0.0681 0.000 0.000 0.524 0.000 0.000 0.476
#> GSM555267     6  0.3942     0.2678 0.000 0.000 0.368 0.004 0.004 0.624
#> GSM555269     3  0.0260     0.9298 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM555271     3  0.0000     0.9358 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555273     5  0.3133     0.5689 0.000 0.040 0.000 0.032 0.856 0.072
#> GSM555275     2  0.2968     0.7378 0.000 0.816 0.000 0.000 0.168 0.016
#> GSM555238     1  0.0000     0.9609 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555240     1  0.0000     0.9609 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555242     1  0.0000     0.9609 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555244     1  0.0000     0.9609 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000     0.9609 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000     0.9609 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000     0.9609 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.0000     0.9609 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555254     1  0.0000     0.9609 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0000     0.9609 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555258     4  0.0260     0.4850 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM555260     4  0.1390     0.4824 0.000 0.032 0.000 0.948 0.016 0.004
#> GSM555262     2  0.2112     0.7957 0.000 0.896 0.000 0.000 0.088 0.016
#> GSM555264     1  0.5240     0.5225 0.640 0.000 0.000 0.244 0.024 0.092
#> GSM555266     5  0.2882     0.7986 0.000 0.180 0.000 0.000 0.812 0.008
#> GSM555268     2  0.4253    -0.0105 0.000 0.524 0.000 0.000 0.460 0.016
#> GSM555270     2  0.2263     0.7924 0.000 0.884 0.000 0.000 0.100 0.016
#> GSM555272     4  0.0146     0.4856 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM555274     2  0.2214     0.7923 0.000 0.888 0.000 0.000 0.096 0.016
#> GSM555276     2  0.1124     0.7944 0.000 0.956 0.000 0.000 0.008 0.036
#> GSM555277     2  0.0820     0.7968 0.000 0.972 0.000 0.000 0.012 0.016
#> GSM555279     5  0.2309     0.7131 0.000 0.084 0.000 0.000 0.888 0.028
#> GSM555281     2  0.4403     0.1937 0.000 0.564 0.000 0.000 0.408 0.028
#> GSM555283     2  0.2263     0.7910 0.000 0.884 0.000 0.000 0.100 0.016
#> GSM555285     5  0.3133     0.5689 0.000 0.040 0.000 0.032 0.856 0.072
#> GSM555287     3  0.4319     0.6294 0.028 0.000 0.736 0.000 0.040 0.196
#> GSM555289     2  0.1838     0.8004 0.000 0.916 0.000 0.000 0.068 0.016
#> GSM555291     2  0.2263     0.7910 0.000 0.884 0.000 0.000 0.100 0.016
#> GSM555293     5  0.3955     0.3523 0.000 0.436 0.000 0.000 0.560 0.004
#> GSM555295     5  0.5534     0.3624 0.000 0.424 0.000 0.000 0.444 0.132
#> GSM555297     3  0.1367     0.8910 0.000 0.000 0.944 0.000 0.012 0.044
#> GSM555299     3  0.0000     0.9358 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555301     3  0.0000     0.9358 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555303     3  0.0000     0.9358 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555305     3  0.0000     0.9358 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555307     2  0.1745     0.7699 0.000 0.920 0.000 0.000 0.012 0.068
#> GSM555309     3  0.0000     0.9358 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555311     5  0.3715     0.7825 0.000 0.188 0.000 0.000 0.764 0.048
#> GSM555313     2  0.3896     0.5826 0.000 0.744 0.000 0.000 0.204 0.052
#> GSM555315     5  0.3440     0.7950 0.000 0.196 0.000 0.000 0.776 0.028
#> GSM555278     5  0.2527     0.7965 0.000 0.168 0.000 0.000 0.832 0.000
#> GSM555280     2  0.2358     0.7893 0.000 0.876 0.000 0.000 0.108 0.016
#> GSM555282     2  0.1779     0.8011 0.000 0.920 0.000 0.000 0.064 0.016
#> GSM555284     5  0.3287     0.7684 0.000 0.220 0.000 0.000 0.768 0.012
#> GSM555286     2  0.2494     0.7819 0.000 0.864 0.000 0.000 0.120 0.016
#> GSM555288     4  0.6609     0.1446 0.000 0.328 0.000 0.440 0.184 0.048
#> GSM555290     2  0.2163     0.7934 0.000 0.892 0.000 0.000 0.092 0.016
#> GSM555292     2  0.2263     0.7910 0.000 0.884 0.000 0.000 0.100 0.016
#> GSM555294     5  0.2632     0.7959 0.000 0.164 0.000 0.000 0.832 0.004
#> GSM555296     2  0.1649     0.7907 0.000 0.932 0.000 0.000 0.036 0.032
#> GSM555298     3  0.0000     0.9358 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555300     3  0.0000     0.9358 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555302     3  0.0000     0.9358 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555304     3  0.0000     0.9358 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555306     3  0.0000     0.9358 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555308     3  0.0000     0.9358 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555310     3  0.0000     0.9358 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555312     2  0.1657     0.7822 0.000 0.928 0.000 0.000 0.016 0.056
#> GSM555314     5  0.4979     0.6142 0.000 0.224 0.000 0.000 0.640 0.136
#> GSM555316     2  0.0806     0.7997 0.000 0.972 0.000 0.000 0.008 0.020
#> GSM555317     2  0.0891     0.7988 0.000 0.968 0.000 0.000 0.008 0.024
#> GSM555319     2  0.4095    -0.1028 0.000 0.512 0.000 0.000 0.480 0.008
#> GSM555321     2  0.3993    -0.0715 0.000 0.520 0.000 0.000 0.476 0.004
#> GSM555323     2  0.2009     0.8019 0.000 0.908 0.000 0.000 0.068 0.024
#> GSM555325     5  0.2669     0.7908 0.000 0.156 0.000 0.000 0.836 0.008
#> GSM555327     2  0.0000     0.8007 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555329     2  0.4083    -0.0102 0.000 0.532 0.000 0.000 0.460 0.008
#> GSM555331     2  0.3440     0.6236 0.000 0.776 0.000 0.000 0.196 0.028
#> GSM555333     2  0.5147     0.1121 0.000 0.576 0.000 0.000 0.316 0.108
#> GSM555335     2  0.2658     0.7400 0.000 0.864 0.000 0.000 0.100 0.036
#> GSM555337     2  0.3999    -0.1617 0.000 0.500 0.000 0.000 0.496 0.004
#> GSM555339     2  0.1320     0.7906 0.000 0.948 0.000 0.000 0.016 0.036
#> GSM555341     2  0.1858     0.7999 0.000 0.912 0.000 0.000 0.076 0.012
#> GSM555343     5  0.3966     0.3261 0.000 0.444 0.000 0.000 0.552 0.004
#> GSM555345     2  0.1196     0.7875 0.000 0.952 0.000 0.000 0.008 0.040
#> GSM555318     2  0.1124     0.7889 0.000 0.956 0.000 0.000 0.008 0.036
#> GSM555320     5  0.2706     0.7932 0.000 0.160 0.000 0.000 0.832 0.008
#> GSM555322     2  0.2263     0.7924 0.000 0.884 0.000 0.000 0.100 0.016
#> GSM555324     3  0.0000     0.9358 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555326     2  0.2783     0.7606 0.000 0.836 0.000 0.000 0.148 0.016
#> GSM555328     2  0.2006     0.7981 0.000 0.904 0.000 0.000 0.080 0.016
#> GSM555330     2  0.1245     0.7959 0.000 0.952 0.000 0.000 0.016 0.032
#> GSM555332     2  0.1320     0.7906 0.000 0.948 0.000 0.000 0.016 0.036
#> GSM555334     2  0.0146     0.8000 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM555336     5  0.3175     0.7404 0.000 0.256 0.000 0.000 0.744 0.000
#> GSM555338     2  0.0891     0.7988 0.000 0.968 0.000 0.000 0.008 0.024
#> GSM555340     5  0.3868     0.1432 0.000 0.492 0.000 0.000 0.508 0.000
#> GSM555342     5  0.3052     0.7802 0.000 0.216 0.000 0.000 0.780 0.004
#> GSM555344     2  0.0972     0.7917 0.000 0.964 0.000 0.000 0.008 0.028
#> GSM555346     5  0.2489     0.7678 0.000 0.128 0.000 0.000 0.860 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>               n disease.state(p) agent(p) k
#> ATC:skmeans 110         9.03e-08    0.434 2
#> ATC:skmeans 109         4.28e-12    0.449 3
#> ATC:skmeans 109         1.74e-13    0.666 4
#> ATC:skmeans  97         8.99e-12    0.708 5
#> ATC:skmeans  90         4.60e-12    0.761 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.995       0.998         0.4680 0.533   0.533
#> 3 3 1.000           0.991       0.997         0.1343 0.939   0.886
#> 4 4 1.000           0.965       0.985         0.3723 0.776   0.538
#> 5 5 0.987           0.952       0.980         0.0548 0.953   0.828
#> 6 6 0.950           0.918       0.946         0.0101 0.992   0.968

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3 4

There is also optional best \(k\) = 2 3 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1   0.000      0.998 1.000 0.000
#> GSM555239     1   0.000      0.998 1.000 0.000
#> GSM555241     1   0.000      0.998 1.000 0.000
#> GSM555243     1   0.000      0.998 1.000 0.000
#> GSM555245     1   0.000      0.998 1.000 0.000
#> GSM555247     1   0.000      0.998 1.000 0.000
#> GSM555249     1   0.000      0.998 1.000 0.000
#> GSM555251     1   0.000      0.998 1.000 0.000
#> GSM555253     1   0.000      0.998 1.000 0.000
#> GSM555255     1   0.000      0.998 1.000 0.000
#> GSM555257     1   0.000      0.998 1.000 0.000
#> GSM555259     1   0.000      0.998 1.000 0.000
#> GSM555261     2   0.000      0.998 0.000 1.000
#> GSM555263     2   0.000      0.998 0.000 1.000
#> GSM555265     1   0.224      0.963 0.964 0.036
#> GSM555267     2   0.000      0.998 0.000 1.000
#> GSM555269     1   0.000      0.998 1.000 0.000
#> GSM555271     1   0.000      0.998 1.000 0.000
#> GSM555273     2   0.000      0.998 0.000 1.000
#> GSM555275     2   0.000      0.998 0.000 1.000
#> GSM555238     1   0.000      0.998 1.000 0.000
#> GSM555240     1   0.000      0.998 1.000 0.000
#> GSM555242     1   0.000      0.998 1.000 0.000
#> GSM555244     1   0.000      0.998 1.000 0.000
#> GSM555246     1   0.000      0.998 1.000 0.000
#> GSM555248     1   0.000      0.998 1.000 0.000
#> GSM555250     1   0.000      0.998 1.000 0.000
#> GSM555252     1   0.000      0.998 1.000 0.000
#> GSM555254     1   0.000      0.998 1.000 0.000
#> GSM555256     1   0.000      0.998 1.000 0.000
#> GSM555258     2   0.000      0.998 0.000 1.000
#> GSM555260     2   0.000      0.998 0.000 1.000
#> GSM555262     2   0.000      0.998 0.000 1.000
#> GSM555264     1   0.000      0.998 1.000 0.000
#> GSM555266     2   0.000      0.998 0.000 1.000
#> GSM555268     2   0.000      0.998 0.000 1.000
#> GSM555270     2   0.000      0.998 0.000 1.000
#> GSM555272     2   0.000      0.998 0.000 1.000
#> GSM555274     2   0.000      0.998 0.000 1.000
#> GSM555276     2   0.000      0.998 0.000 1.000
#> GSM555277     2   0.000      0.998 0.000 1.000
#> GSM555279     2   0.000      0.998 0.000 1.000
#> GSM555281     2   0.000      0.998 0.000 1.000
#> GSM555283     2   0.000      0.998 0.000 1.000
#> GSM555285     2   0.000      0.998 0.000 1.000
#> GSM555287     1   0.224      0.963 0.964 0.036
#> GSM555289     2   0.000      0.998 0.000 1.000
#> GSM555291     2   0.000      0.998 0.000 1.000
#> GSM555293     2   0.000      0.998 0.000 1.000
#> GSM555295     2   0.000      0.998 0.000 1.000
#> GSM555297     2   0.634      0.809 0.160 0.840
#> GSM555299     1   0.000      0.998 1.000 0.000
#> GSM555301     1   0.000      0.998 1.000 0.000
#> GSM555303     1   0.000      0.998 1.000 0.000
#> GSM555305     1   0.000      0.998 1.000 0.000
#> GSM555307     2   0.000      0.998 0.000 1.000
#> GSM555309     1   0.000      0.998 1.000 0.000
#> GSM555311     2   0.000      0.998 0.000 1.000
#> GSM555313     2   0.000      0.998 0.000 1.000
#> GSM555315     2   0.000      0.998 0.000 1.000
#> GSM555278     2   0.000      0.998 0.000 1.000
#> GSM555280     2   0.000      0.998 0.000 1.000
#> GSM555282     2   0.000      0.998 0.000 1.000
#> GSM555284     2   0.000      0.998 0.000 1.000
#> GSM555286     2   0.000      0.998 0.000 1.000
#> GSM555288     2   0.000      0.998 0.000 1.000
#> GSM555290     2   0.000      0.998 0.000 1.000
#> GSM555292     2   0.000      0.998 0.000 1.000
#> GSM555294     2   0.000      0.998 0.000 1.000
#> GSM555296     2   0.000      0.998 0.000 1.000
#> GSM555298     1   0.000      0.998 1.000 0.000
#> GSM555300     1   0.000      0.998 1.000 0.000
#> GSM555302     1   0.000      0.998 1.000 0.000
#> GSM555304     1   0.000      0.998 1.000 0.000
#> GSM555306     1   0.000      0.998 1.000 0.000
#> GSM555308     1   0.000      0.998 1.000 0.000
#> GSM555310     1   0.000      0.998 1.000 0.000
#> GSM555312     2   0.000      0.998 0.000 1.000
#> GSM555314     2   0.000      0.998 0.000 1.000
#> GSM555316     2   0.000      0.998 0.000 1.000
#> GSM555317     2   0.000      0.998 0.000 1.000
#> GSM555319     2   0.000      0.998 0.000 1.000
#> GSM555321     2   0.000      0.998 0.000 1.000
#> GSM555323     2   0.000      0.998 0.000 1.000
#> GSM555325     2   0.000      0.998 0.000 1.000
#> GSM555327     2   0.000      0.998 0.000 1.000
#> GSM555329     2   0.000      0.998 0.000 1.000
#> GSM555331     2   0.000      0.998 0.000 1.000
#> GSM555333     2   0.000      0.998 0.000 1.000
#> GSM555335     2   0.000      0.998 0.000 1.000
#> GSM555337     2   0.000      0.998 0.000 1.000
#> GSM555339     2   0.000      0.998 0.000 1.000
#> GSM555341     2   0.000      0.998 0.000 1.000
#> GSM555343     2   0.000      0.998 0.000 1.000
#> GSM555345     2   0.000      0.998 0.000 1.000
#> GSM555318     2   0.000      0.998 0.000 1.000
#> GSM555320     2   0.000      0.998 0.000 1.000
#> GSM555322     2   0.000      0.998 0.000 1.000
#> GSM555324     1   0.000      0.998 1.000 0.000
#> GSM555326     2   0.000      0.998 0.000 1.000
#> GSM555328     2   0.000      0.998 0.000 1.000
#> GSM555330     2   0.000      0.998 0.000 1.000
#> GSM555332     2   0.000      0.998 0.000 1.000
#> GSM555334     2   0.000      0.998 0.000 1.000
#> GSM555336     2   0.000      0.998 0.000 1.000
#> GSM555338     2   0.000      0.998 0.000 1.000
#> GSM555340     2   0.000      0.998 0.000 1.000
#> GSM555342     2   0.000      0.998 0.000 1.000
#> GSM555344     2   0.000      0.998 0.000 1.000
#> GSM555346     2   0.000      0.998 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2 p3
#> GSM555237     1   0.000      1.000 1.000 0.000  0
#> GSM555239     1   0.000      1.000 1.000 0.000  0
#> GSM555241     1   0.000      1.000 1.000 0.000  0
#> GSM555243     1   0.000      1.000 1.000 0.000  0
#> GSM555245     1   0.000      1.000 1.000 0.000  0
#> GSM555247     1   0.000      1.000 1.000 0.000  0
#> GSM555249     1   0.000      1.000 1.000 0.000  0
#> GSM555251     1   0.000      1.000 1.000 0.000  0
#> GSM555253     1   0.000      1.000 1.000 0.000  0
#> GSM555255     1   0.000      1.000 1.000 0.000  0
#> GSM555257     1   0.000      1.000 1.000 0.000  0
#> GSM555259     1   0.000      1.000 1.000 0.000  0
#> GSM555261     2   0.000      0.994 0.000 1.000  0
#> GSM555263     2   0.000      0.994 0.000 1.000  0
#> GSM555265     1   0.000      1.000 1.000 0.000  0
#> GSM555267     2   0.000      0.994 0.000 1.000  0
#> GSM555269     1   0.000      1.000 1.000 0.000  0
#> GSM555271     3   0.000      1.000 0.000 0.000  1
#> GSM555273     2   0.000      0.994 0.000 1.000  0
#> GSM555275     2   0.000      0.994 0.000 1.000  0
#> GSM555238     1   0.000      1.000 1.000 0.000  0
#> GSM555240     1   0.000      1.000 1.000 0.000  0
#> GSM555242     1   0.000      1.000 1.000 0.000  0
#> GSM555244     1   0.000      1.000 1.000 0.000  0
#> GSM555246     1   0.000      1.000 1.000 0.000  0
#> GSM555248     1   0.000      1.000 1.000 0.000  0
#> GSM555250     1   0.000      1.000 1.000 0.000  0
#> GSM555252     1   0.000      1.000 1.000 0.000  0
#> GSM555254     1   0.000      1.000 1.000 0.000  0
#> GSM555256     1   0.000      1.000 1.000 0.000  0
#> GSM555258     2   0.000      0.994 0.000 1.000  0
#> GSM555260     2   0.000      0.994 0.000 1.000  0
#> GSM555262     2   0.000      0.994 0.000 1.000  0
#> GSM555264     1   0.000      1.000 1.000 0.000  0
#> GSM555266     2   0.000      0.994 0.000 1.000  0
#> GSM555268     2   0.000      0.994 0.000 1.000  0
#> GSM555270     2   0.000      0.994 0.000 1.000  0
#> GSM555272     2   0.000      0.994 0.000 1.000  0
#> GSM555274     2   0.000      0.994 0.000 1.000  0
#> GSM555276     2   0.000      0.994 0.000 1.000  0
#> GSM555277     2   0.000      0.994 0.000 1.000  0
#> GSM555279     2   0.000      0.994 0.000 1.000  0
#> GSM555281     2   0.000      0.994 0.000 1.000  0
#> GSM555283     2   0.000      0.994 0.000 1.000  0
#> GSM555285     2   0.000      0.994 0.000 1.000  0
#> GSM555287     1   0.000      1.000 1.000 0.000  0
#> GSM555289     2   0.000      0.994 0.000 1.000  0
#> GSM555291     2   0.000      0.994 0.000 1.000  0
#> GSM555293     2   0.000      0.994 0.000 1.000  0
#> GSM555295     2   0.000      0.994 0.000 1.000  0
#> GSM555297     2   0.597      0.428 0.364 0.636  0
#> GSM555299     3   0.000      1.000 0.000 0.000  1
#> GSM555301     3   0.000      1.000 0.000 0.000  1
#> GSM555303     3   0.000      1.000 0.000 0.000  1
#> GSM555305     3   0.000      1.000 0.000 0.000  1
#> GSM555307     2   0.000      0.994 0.000 1.000  0
#> GSM555309     3   0.000      1.000 0.000 0.000  1
#> GSM555311     2   0.000      0.994 0.000 1.000  0
#> GSM555313     2   0.000      0.994 0.000 1.000  0
#> GSM555315     2   0.000      0.994 0.000 1.000  0
#> GSM555278     2   0.000      0.994 0.000 1.000  0
#> GSM555280     2   0.000      0.994 0.000 1.000  0
#> GSM555282     2   0.000      0.994 0.000 1.000  0
#> GSM555284     2   0.000      0.994 0.000 1.000  0
#> GSM555286     2   0.000      0.994 0.000 1.000  0
#> GSM555288     2   0.000      0.994 0.000 1.000  0
#> GSM555290     2   0.000      0.994 0.000 1.000  0
#> GSM555292     2   0.000      0.994 0.000 1.000  0
#> GSM555294     2   0.000      0.994 0.000 1.000  0
#> GSM555296     2   0.000      0.994 0.000 1.000  0
#> GSM555298     3   0.000      1.000 0.000 0.000  1
#> GSM555300     3   0.000      1.000 0.000 0.000  1
#> GSM555302     3   0.000      1.000 0.000 0.000  1
#> GSM555304     3   0.000      1.000 0.000 0.000  1
#> GSM555306     3   0.000      1.000 0.000 0.000  1
#> GSM555308     3   0.000      1.000 0.000 0.000  1
#> GSM555310     3   0.000      1.000 0.000 0.000  1
#> GSM555312     2   0.000      0.994 0.000 1.000  0
#> GSM555314     2   0.000      0.994 0.000 1.000  0
#> GSM555316     2   0.000      0.994 0.000 1.000  0
#> GSM555317     2   0.000      0.994 0.000 1.000  0
#> GSM555319     2   0.000      0.994 0.000 1.000  0
#> GSM555321     2   0.000      0.994 0.000 1.000  0
#> GSM555323     2   0.000      0.994 0.000 1.000  0
#> GSM555325     2   0.000      0.994 0.000 1.000  0
#> GSM555327     2   0.000      0.994 0.000 1.000  0
#> GSM555329     2   0.000      0.994 0.000 1.000  0
#> GSM555331     2   0.000      0.994 0.000 1.000  0
#> GSM555333     2   0.000      0.994 0.000 1.000  0
#> GSM555335     2   0.000      0.994 0.000 1.000  0
#> GSM555337     2   0.000      0.994 0.000 1.000  0
#> GSM555339     2   0.000      0.994 0.000 1.000  0
#> GSM555341     2   0.000      0.994 0.000 1.000  0
#> GSM555343     2   0.000      0.994 0.000 1.000  0
#> GSM555345     2   0.000      0.994 0.000 1.000  0
#> GSM555318     2   0.000      0.994 0.000 1.000  0
#> GSM555320     2   0.000      0.994 0.000 1.000  0
#> GSM555322     2   0.000      0.994 0.000 1.000  0
#> GSM555324     3   0.000      1.000 0.000 0.000  1
#> GSM555326     2   0.000      0.994 0.000 1.000  0
#> GSM555328     2   0.000      0.994 0.000 1.000  0
#> GSM555330     2   0.000      0.994 0.000 1.000  0
#> GSM555332     2   0.000      0.994 0.000 1.000  0
#> GSM555334     2   0.000      0.994 0.000 1.000  0
#> GSM555336     2   0.000      0.994 0.000 1.000  0
#> GSM555338     2   0.000      0.994 0.000 1.000  0
#> GSM555340     2   0.000      0.994 0.000 1.000  0
#> GSM555342     2   0.000      0.994 0.000 1.000  0
#> GSM555344     2   0.000      0.994 0.000 1.000  0
#> GSM555346     2   0.000      0.994 0.000 1.000  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2 p3    p4
#> GSM555237     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555239     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555241     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555243     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555245     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555247     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555249     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555251     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555253     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555255     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555257     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555259     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555261     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555263     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555265     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555267     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555269     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555271     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM555273     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555275     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555238     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555240     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555242     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555244     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555246     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555248     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555250     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555252     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555254     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555256     1  0.0000      0.998 1.000 0.000  0 0.000
#> GSM555258     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555260     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555262     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555264     1  0.1302      0.946 0.956 0.000  0 0.044
#> GSM555266     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555268     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555270     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555272     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555274     4  0.0336      0.962 0.000 0.008  0 0.992
#> GSM555276     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555277     4  0.1211      0.936 0.000 0.040  0 0.960
#> GSM555279     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555281     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555283     2  0.3074      0.810 0.000 0.848  0 0.152
#> GSM555285     4  0.4564      0.509 0.000 0.328  0 0.672
#> GSM555287     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555289     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555291     4  0.0921      0.946 0.000 0.028  0 0.972
#> GSM555293     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555295     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555297     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555299     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM555301     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM555303     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM555305     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM555307     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555309     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM555311     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555313     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555315     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555278     4  0.2760      0.841 0.000 0.128  0 0.872
#> GSM555280     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555282     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555284     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555286     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555288     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555290     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555292     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555294     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555296     4  0.1792      0.907 0.000 0.068  0 0.932
#> GSM555298     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM555300     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM555302     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM555304     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM555306     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM555308     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM555310     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM555312     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555314     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555316     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555317     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555319     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555321     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555323     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555325     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555327     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555329     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555331     2  0.0469      0.968 0.000 0.988  0 0.012
#> GSM555333     4  0.0000      0.967 0.000 0.000  0 1.000
#> GSM555335     2  0.3873      0.711 0.000 0.772  0 0.228
#> GSM555337     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555339     4  0.0592      0.956 0.000 0.016  0 0.984
#> GSM555341     4  0.1211      0.936 0.000 0.040  0 0.960
#> GSM555343     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555345     4  0.0188      0.964 0.000 0.004  0 0.996
#> GSM555318     4  0.4477      0.565 0.000 0.312  0 0.688
#> GSM555320     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555322     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555324     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM555326     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555328     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555330     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555332     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555334     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555336     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555338     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555340     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555342     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555344     2  0.0000      0.980 0.000 1.000  0 0.000
#> GSM555346     2  0.3688      0.739 0.000 0.792  0 0.208

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> GSM555237     1  0.0609      0.985 0.980 0.000  0 0.020 0.000
#> GSM555239     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> GSM555241     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> GSM555243     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> GSM555245     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> GSM555247     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> GSM555249     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> GSM555251     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> GSM555253     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> GSM555255     1  0.0162      0.993 0.996 0.000  0 0.004 0.000
#> GSM555257     4  0.0000      0.965 0.000 0.000  0 1.000 0.000
#> GSM555259     4  0.0000      0.965 0.000 0.000  0 1.000 0.000
#> GSM555261     4  0.0404      0.962 0.000 0.000  0 0.988 0.012
#> GSM555263     4  0.0609      0.956 0.000 0.000  0 0.980 0.020
#> GSM555265     4  0.0000      0.965 0.000 0.000  0 1.000 0.000
#> GSM555267     4  0.0609      0.956 0.000 0.000  0 0.980 0.020
#> GSM555269     4  0.0000      0.965 0.000 0.000  0 1.000 0.000
#> GSM555271     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM555273     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555275     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555238     1  0.0290      0.991 0.992 0.000  0 0.008 0.000
#> GSM555240     1  0.0609      0.985 0.980 0.000  0 0.020 0.000
#> GSM555242     1  0.0609      0.985 0.980 0.000  0 0.020 0.000
#> GSM555244     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> GSM555246     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> GSM555248     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> GSM555250     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> GSM555252     1  0.0609      0.985 0.980 0.000  0 0.020 0.000
#> GSM555254     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> GSM555256     1  0.0609      0.985 0.980 0.000  0 0.020 0.000
#> GSM555258     5  0.3274      0.707 0.000 0.000  0 0.220 0.780
#> GSM555260     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555262     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555264     4  0.3143      0.738 0.204 0.000  0 0.796 0.000
#> GSM555266     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555268     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555270     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555272     5  0.1792      0.879 0.000 0.000  0 0.084 0.916
#> GSM555274     5  0.0290      0.946 0.000 0.008  0 0.000 0.992
#> GSM555276     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555277     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555279     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555281     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555283     2  0.3003      0.760 0.000 0.812  0 0.000 0.188
#> GSM555285     5  0.3857      0.536 0.000 0.312  0 0.000 0.688
#> GSM555287     4  0.0162      0.966 0.000 0.000  0 0.996 0.004
#> GSM555289     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555291     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555293     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555295     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555297     4  0.0162      0.965 0.000 0.000  0 0.996 0.004
#> GSM555299     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM555301     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM555303     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM555305     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM555307     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555309     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM555311     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555313     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555315     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555278     5  0.1965      0.857 0.000 0.096  0 0.000 0.904
#> GSM555280     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555282     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555284     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555286     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555288     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555290     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555292     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555294     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555296     5  0.1608      0.885 0.000 0.072  0 0.000 0.928
#> GSM555298     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM555300     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM555302     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM555304     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM555306     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM555308     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM555310     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM555312     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555314     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555316     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555317     2  0.0510      0.961 0.000 0.984  0 0.000 0.016
#> GSM555319     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555321     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555323     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555325     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555327     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555329     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555331     2  0.0963      0.942 0.000 0.964  0 0.000 0.036
#> GSM555333     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555335     2  0.3612      0.643 0.000 0.732  0 0.000 0.268
#> GSM555337     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555339     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555341     5  0.0609      0.936 0.000 0.020  0 0.000 0.980
#> GSM555343     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555345     5  0.0000      0.952 0.000 0.000  0 0.000 1.000
#> GSM555318     5  0.3857      0.547 0.000 0.312  0 0.000 0.688
#> GSM555320     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555322     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555324     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM555326     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555328     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555330     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555332     2  0.0162      0.972 0.000 0.996  0 0.000 0.004
#> GSM555334     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555336     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555338     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555340     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555342     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555344     2  0.0000      0.975 0.000 1.000  0 0.000 0.000
#> GSM555346     2  0.3305      0.712 0.000 0.776  0 0.000 0.224

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM555237     1  0.2706      0.892 0.832 0.000 0.000 0.008 0.000 0.160
#> GSM555239     1  0.0000      0.944 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0000      0.944 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000      0.944 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000      0.944 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000      0.944 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0260      0.944 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM555251     1  0.0000      0.944 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000      0.944 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.2416      0.898 0.844 0.000 0.000 0.000 0.000 0.156
#> GSM555257     4  0.0547      0.918 0.000 0.000 0.000 0.980 0.000 0.020
#> GSM555259     4  0.0000      0.929 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555261     4  0.0146      0.928 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM555263     4  0.0260      0.925 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM555265     4  0.0000      0.929 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555267     4  0.0260      0.925 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM555269     4  0.0000      0.929 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555271     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555273     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555275     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555238     1  0.2416      0.898 0.844 0.000 0.000 0.000 0.000 0.156
#> GSM555240     1  0.2706      0.892 0.832 0.000 0.000 0.008 0.000 0.160
#> GSM555242     1  0.2706      0.892 0.832 0.000 0.000 0.008 0.000 0.160
#> GSM555244     1  0.0000      0.944 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0260      0.944 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM555248     1  0.0000      0.944 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0260      0.944 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM555252     1  0.2706      0.892 0.832 0.000 0.000 0.008 0.000 0.160
#> GSM555254     1  0.0260      0.944 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM555256     1  0.2706      0.892 0.832 0.000 0.000 0.008 0.000 0.160
#> GSM555258     5  0.2996      0.694 0.000 0.000 0.000 0.228 0.772 0.000
#> GSM555260     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555262     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555264     4  0.5027      0.547 0.200 0.000 0.000 0.640 0.000 0.160
#> GSM555266     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555268     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555270     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555272     5  0.1663      0.874 0.000 0.000 0.000 0.088 0.912 0.000
#> GSM555274     5  0.0260      0.944 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM555276     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555277     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555279     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555281     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555283     2  0.2697      0.751 0.000 0.812 0.000 0.000 0.188 0.000
#> GSM555285     5  0.3464      0.517 0.000 0.312 0.000 0.000 0.688 0.000
#> GSM555287     4  0.3081      0.784 0.000 0.000 0.000 0.776 0.004 0.220
#> GSM555289     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555291     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555293     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555295     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555297     4  0.0000      0.929 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM555299     6  0.3706      1.000 0.000 0.000 0.380 0.000 0.000 0.620
#> GSM555301     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555303     3  0.3531     -0.110 0.000 0.000 0.672 0.000 0.000 0.328
#> GSM555305     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555307     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555309     6  0.3706      1.000 0.000 0.000 0.380 0.000 0.000 0.620
#> GSM555311     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555313     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555315     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555278     5  0.1765      0.852 0.000 0.096 0.000 0.000 0.904 0.000
#> GSM555280     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555282     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555284     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555286     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555288     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555290     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555292     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555294     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555296     5  0.1444      0.882 0.000 0.072 0.000 0.000 0.928 0.000
#> GSM555298     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555300     6  0.3706      1.000 0.000 0.000 0.380 0.000 0.000 0.620
#> GSM555302     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555304     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555306     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555308     6  0.3706      1.000 0.000 0.000 0.380 0.000 0.000 0.620
#> GSM555310     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555312     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555314     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555316     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555317     2  0.0458      0.960 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM555319     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555321     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555323     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555325     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555327     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555329     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555331     2  0.0865      0.940 0.000 0.964 0.000 0.000 0.036 0.000
#> GSM555333     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555335     2  0.3244      0.631 0.000 0.732 0.000 0.000 0.268 0.000
#> GSM555337     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555339     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555341     5  0.0547      0.934 0.000 0.020 0.000 0.000 0.980 0.000
#> GSM555343     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555345     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM555318     5  0.3464      0.529 0.000 0.312 0.000 0.000 0.688 0.000
#> GSM555320     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555322     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555324     6  0.3706      1.000 0.000 0.000 0.380 0.000 0.000 0.620
#> GSM555326     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555328     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555330     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555332     2  0.0146      0.971 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM555334     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555336     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555338     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555340     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555342     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555344     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555346     2  0.2969      0.701 0.000 0.776 0.000 0.000 0.224 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n disease.state(p) agent(p) k
#> ATC:pam 110         6.23e-07    0.843 2
#> ATC:pam 109         2.31e-13    0.600 3
#> ATC:pam 110         1.54e-17    0.261 4
#> ATC:pam 110         9.47e-17    0.072 5
#> ATC:pam 109         2.09e-15    0.109 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.943           0.916       0.966         0.4835 0.506   0.506
#> 3 3 0.998           0.950       0.979         0.2383 0.853   0.719
#> 4 4 0.851           0.922       0.944         0.0504 0.942   0.854
#> 5 5 0.770           0.830       0.890         0.0759 0.959   0.890
#> 6 6 0.736           0.732       0.783         0.1157 0.840   0.550

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1  0.0000      0.928 1.000 0.000
#> GSM555239     1  0.0000      0.928 1.000 0.000
#> GSM555241     1  0.0000      0.928 1.000 0.000
#> GSM555243     1  0.0000      0.928 1.000 0.000
#> GSM555245     1  0.0000      0.928 1.000 0.000
#> GSM555247     1  0.0000      0.928 1.000 0.000
#> GSM555249     1  0.0000      0.928 1.000 0.000
#> GSM555251     1  0.0000      0.928 1.000 0.000
#> GSM555253     1  0.0000      0.928 1.000 0.000
#> GSM555255     1  0.0000      0.928 1.000 0.000
#> GSM555257     1  0.0000      0.928 1.000 0.000
#> GSM555259     1  0.2778      0.893 0.952 0.048
#> GSM555261     1  0.9933      0.278 0.548 0.452
#> GSM555263     2  0.9323      0.388 0.348 0.652
#> GSM555265     1  0.9933      0.278 0.548 0.452
#> GSM555267     1  0.9944      0.266 0.544 0.456
#> GSM555269     1  0.0672      0.922 0.992 0.008
#> GSM555271     1  0.0000      0.928 1.000 0.000
#> GSM555273     2  0.0376      0.987 0.004 0.996
#> GSM555275     2  0.0000      0.991 0.000 1.000
#> GSM555238     1  0.0000      0.928 1.000 0.000
#> GSM555240     1  0.0000      0.928 1.000 0.000
#> GSM555242     1  0.0000      0.928 1.000 0.000
#> GSM555244     1  0.0000      0.928 1.000 0.000
#> GSM555246     1  0.0000      0.928 1.000 0.000
#> GSM555248     1  0.0000      0.928 1.000 0.000
#> GSM555250     1  0.0000      0.928 1.000 0.000
#> GSM555252     1  0.0000      0.928 1.000 0.000
#> GSM555254     1  0.0000      0.928 1.000 0.000
#> GSM555256     1  0.0000      0.928 1.000 0.000
#> GSM555258     1  0.3431      0.880 0.936 0.064
#> GSM555260     1  0.9833      0.350 0.576 0.424
#> GSM555262     2  0.0000      0.991 0.000 1.000
#> GSM555264     1  0.0000      0.928 1.000 0.000
#> GSM555266     2  0.0000      0.991 0.000 1.000
#> GSM555268     2  0.0000      0.991 0.000 1.000
#> GSM555270     2  0.0000      0.991 0.000 1.000
#> GSM555272     1  0.3431      0.880 0.936 0.064
#> GSM555274     2  0.0000      0.991 0.000 1.000
#> GSM555276     2  0.0000      0.991 0.000 1.000
#> GSM555277     2  0.0000      0.991 0.000 1.000
#> GSM555279     1  0.9491      0.472 0.632 0.368
#> GSM555281     2  0.0000      0.991 0.000 1.000
#> GSM555283     2  0.0000      0.991 0.000 1.000
#> GSM555285     2  0.6531      0.778 0.168 0.832
#> GSM555287     1  0.9933      0.278 0.548 0.452
#> GSM555289     2  0.0000      0.991 0.000 1.000
#> GSM555291     2  0.0000      0.991 0.000 1.000
#> GSM555293     2  0.0000      0.991 0.000 1.000
#> GSM555295     2  0.0000      0.991 0.000 1.000
#> GSM555297     1  0.9833      0.350 0.576 0.424
#> GSM555299     1  0.0000      0.928 1.000 0.000
#> GSM555301     1  0.0000      0.928 1.000 0.000
#> GSM555303     1  0.0000      0.928 1.000 0.000
#> GSM555305     1  0.0000      0.928 1.000 0.000
#> GSM555307     2  0.0000      0.991 0.000 1.000
#> GSM555309     1  0.0000      0.928 1.000 0.000
#> GSM555311     2  0.0000      0.991 0.000 1.000
#> GSM555313     2  0.0000      0.991 0.000 1.000
#> GSM555315     2  0.0000      0.991 0.000 1.000
#> GSM555278     2  0.0000      0.991 0.000 1.000
#> GSM555280     2  0.0000      0.991 0.000 1.000
#> GSM555282     2  0.0000      0.991 0.000 1.000
#> GSM555284     2  0.0000      0.991 0.000 1.000
#> GSM555286     2  0.0000      0.991 0.000 1.000
#> GSM555288     2  0.0000      0.991 0.000 1.000
#> GSM555290     2  0.0000      0.991 0.000 1.000
#> GSM555292     2  0.0000      0.991 0.000 1.000
#> GSM555294     2  0.0000      0.991 0.000 1.000
#> GSM555296     2  0.0000      0.991 0.000 1.000
#> GSM555298     1  0.0000      0.928 1.000 0.000
#> GSM555300     1  0.0000      0.928 1.000 0.000
#> GSM555302     1  0.0000      0.928 1.000 0.000
#> GSM555304     1  0.0000      0.928 1.000 0.000
#> GSM555306     1  0.0000      0.928 1.000 0.000
#> GSM555308     1  0.0000      0.928 1.000 0.000
#> GSM555310     1  0.0000      0.928 1.000 0.000
#> GSM555312     2  0.0000      0.991 0.000 1.000
#> GSM555314     2  0.0376      0.987 0.004 0.996
#> GSM555316     2  0.0000      0.991 0.000 1.000
#> GSM555317     2  0.0000      0.991 0.000 1.000
#> GSM555319     2  0.0000      0.991 0.000 1.000
#> GSM555321     2  0.0000      0.991 0.000 1.000
#> GSM555323     2  0.0000      0.991 0.000 1.000
#> GSM555325     2  0.0000      0.991 0.000 1.000
#> GSM555327     2  0.0000      0.991 0.000 1.000
#> GSM555329     2  0.0000      0.991 0.000 1.000
#> GSM555331     2  0.0000      0.991 0.000 1.000
#> GSM555333     2  0.0000      0.991 0.000 1.000
#> GSM555335     2  0.0000      0.991 0.000 1.000
#> GSM555337     2  0.0000      0.991 0.000 1.000
#> GSM555339     2  0.0000      0.991 0.000 1.000
#> GSM555341     2  0.0000      0.991 0.000 1.000
#> GSM555343     2  0.0000      0.991 0.000 1.000
#> GSM555345     2  0.0376      0.987 0.004 0.996
#> GSM555318     2  0.0000      0.991 0.000 1.000
#> GSM555320     2  0.0000      0.991 0.000 1.000
#> GSM555322     2  0.0000      0.991 0.000 1.000
#> GSM555324     1  0.0000      0.928 1.000 0.000
#> GSM555326     2  0.0000      0.991 0.000 1.000
#> GSM555328     2  0.0000      0.991 0.000 1.000
#> GSM555330     2  0.0000      0.991 0.000 1.000
#> GSM555332     2  0.0000      0.991 0.000 1.000
#> GSM555334     2  0.0000      0.991 0.000 1.000
#> GSM555336     2  0.0000      0.991 0.000 1.000
#> GSM555338     2  0.0000      0.991 0.000 1.000
#> GSM555340     2  0.0000      0.991 0.000 1.000
#> GSM555342     2  0.0000      0.991 0.000 1.000
#> GSM555344     2  0.0000      0.991 0.000 1.000
#> GSM555346     2  0.0376      0.987 0.004 0.996

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1   0.435      0.764 0.816 0.000 0.184
#> GSM555239     1   0.000      0.990 1.000 0.000 0.000
#> GSM555241     1   0.000      0.990 1.000 0.000 0.000
#> GSM555243     1   0.000      0.990 1.000 0.000 0.000
#> GSM555245     1   0.000      0.990 1.000 0.000 0.000
#> GSM555247     1   0.000      0.990 1.000 0.000 0.000
#> GSM555249     1   0.000      0.990 1.000 0.000 0.000
#> GSM555251     1   0.000      0.990 1.000 0.000 0.000
#> GSM555253     1   0.000      0.990 1.000 0.000 0.000
#> GSM555255     1   0.000      0.990 1.000 0.000 0.000
#> GSM555257     3   0.614      0.317 0.404 0.000 0.596
#> GSM555259     3   0.103      0.912 0.000 0.024 0.976
#> GSM555261     3   0.116      0.910 0.000 0.028 0.972
#> GSM555263     3   0.489      0.693 0.000 0.228 0.772
#> GSM555265     3   0.103      0.912 0.000 0.024 0.976
#> GSM555267     3   0.186      0.891 0.000 0.052 0.948
#> GSM555269     3   0.103      0.912 0.000 0.024 0.976
#> GSM555271     3   0.000      0.917 0.000 0.000 1.000
#> GSM555273     3   0.475      0.707 0.000 0.216 0.784
#> GSM555275     2   0.000      0.997 0.000 1.000 0.000
#> GSM555238     1   0.000      0.990 1.000 0.000 0.000
#> GSM555240     1   0.000      0.990 1.000 0.000 0.000
#> GSM555242     1   0.000      0.990 1.000 0.000 0.000
#> GSM555244     1   0.000      0.990 1.000 0.000 0.000
#> GSM555246     1   0.000      0.990 1.000 0.000 0.000
#> GSM555248     1   0.000      0.990 1.000 0.000 0.000
#> GSM555250     1   0.000      0.990 1.000 0.000 0.000
#> GSM555252     1   0.000      0.990 1.000 0.000 0.000
#> GSM555254     1   0.000      0.990 1.000 0.000 0.000
#> GSM555256     1   0.000      0.990 1.000 0.000 0.000
#> GSM555258     3   0.103      0.908 0.024 0.000 0.976
#> GSM555260     3   0.654      0.557 0.024 0.304 0.672
#> GSM555262     2   0.000      0.997 0.000 1.000 0.000
#> GSM555264     3   0.103      0.908 0.024 0.000 0.976
#> GSM555266     2   0.000      0.997 0.000 1.000 0.000
#> GSM555268     2   0.000      0.997 0.000 1.000 0.000
#> GSM555270     2   0.000      0.997 0.000 1.000 0.000
#> GSM555272     3   0.103      0.908 0.024 0.000 0.976
#> GSM555274     2   0.116      0.968 0.000 0.972 0.028
#> GSM555276     2   0.000      0.997 0.000 1.000 0.000
#> GSM555277     2   0.000      0.997 0.000 1.000 0.000
#> GSM555279     3   0.226      0.876 0.000 0.068 0.932
#> GSM555281     2   0.000      0.997 0.000 1.000 0.000
#> GSM555283     2   0.000      0.997 0.000 1.000 0.000
#> GSM555285     3   0.113      0.913 0.004 0.020 0.976
#> GSM555287     3   0.103      0.912 0.000 0.024 0.976
#> GSM555289     2   0.000      0.997 0.000 1.000 0.000
#> GSM555291     2   0.000      0.997 0.000 1.000 0.000
#> GSM555293     2   0.000      0.997 0.000 1.000 0.000
#> GSM555295     2   0.000      0.997 0.000 1.000 0.000
#> GSM555297     3   0.116      0.910 0.000 0.028 0.972
#> GSM555299     3   0.000      0.917 0.000 0.000 1.000
#> GSM555301     3   0.000      0.917 0.000 0.000 1.000
#> GSM555303     3   0.000      0.917 0.000 0.000 1.000
#> GSM555305     3   0.000      0.917 0.000 0.000 1.000
#> GSM555307     2   0.000      0.997 0.000 1.000 0.000
#> GSM555309     3   0.000      0.917 0.000 0.000 1.000
#> GSM555311     2   0.000      0.997 0.000 1.000 0.000
#> GSM555313     2   0.000      0.997 0.000 1.000 0.000
#> GSM555315     2   0.000      0.997 0.000 1.000 0.000
#> GSM555278     2   0.000      0.997 0.000 1.000 0.000
#> GSM555280     2   0.000      0.997 0.000 1.000 0.000
#> GSM555282     2   0.000      0.997 0.000 1.000 0.000
#> GSM555284     2   0.000      0.997 0.000 1.000 0.000
#> GSM555286     2   0.000      0.997 0.000 1.000 0.000
#> GSM555288     2   0.000      0.997 0.000 1.000 0.000
#> GSM555290     2   0.000      0.997 0.000 1.000 0.000
#> GSM555292     2   0.000      0.997 0.000 1.000 0.000
#> GSM555294     2   0.000      0.997 0.000 1.000 0.000
#> GSM555296     2   0.000      0.997 0.000 1.000 0.000
#> GSM555298     3   0.000      0.917 0.000 0.000 1.000
#> GSM555300     3   0.000      0.917 0.000 0.000 1.000
#> GSM555302     3   0.000      0.917 0.000 0.000 1.000
#> GSM555304     3   0.000      0.917 0.000 0.000 1.000
#> GSM555306     3   0.000      0.917 0.000 0.000 1.000
#> GSM555308     3   0.000      0.917 0.000 0.000 1.000
#> GSM555310     3   0.000      0.917 0.000 0.000 1.000
#> GSM555312     2   0.000      0.997 0.000 1.000 0.000
#> GSM555314     3   0.627      0.251 0.000 0.452 0.548
#> GSM555316     2   0.000      0.997 0.000 1.000 0.000
#> GSM555317     2   0.000      0.997 0.000 1.000 0.000
#> GSM555319     2   0.000      0.997 0.000 1.000 0.000
#> GSM555321     2   0.000      0.997 0.000 1.000 0.000
#> GSM555323     2   0.000      0.997 0.000 1.000 0.000
#> GSM555325     2   0.000      0.997 0.000 1.000 0.000
#> GSM555327     2   0.000      0.997 0.000 1.000 0.000
#> GSM555329     2   0.000      0.997 0.000 1.000 0.000
#> GSM555331     2   0.000      0.997 0.000 1.000 0.000
#> GSM555333     2   0.000      0.997 0.000 1.000 0.000
#> GSM555335     2   0.000      0.997 0.000 1.000 0.000
#> GSM555337     2   0.000      0.997 0.000 1.000 0.000
#> GSM555339     2   0.000      0.997 0.000 1.000 0.000
#> GSM555341     2   0.000      0.997 0.000 1.000 0.000
#> GSM555343     2   0.000      0.997 0.000 1.000 0.000
#> GSM555345     2   0.245      0.914 0.000 0.924 0.076
#> GSM555318     2   0.000      0.997 0.000 1.000 0.000
#> GSM555320     2   0.000      0.997 0.000 1.000 0.000
#> GSM555322     2   0.000      0.997 0.000 1.000 0.000
#> GSM555324     3   0.000      0.917 0.000 0.000 1.000
#> GSM555326     2   0.000      0.997 0.000 1.000 0.000
#> GSM555328     2   0.000      0.997 0.000 1.000 0.000
#> GSM555330     2   0.000      0.997 0.000 1.000 0.000
#> GSM555332     2   0.000      0.997 0.000 1.000 0.000
#> GSM555334     2   0.000      0.997 0.000 1.000 0.000
#> GSM555336     2   0.000      0.997 0.000 1.000 0.000
#> GSM555338     2   0.000      0.997 0.000 1.000 0.000
#> GSM555340     2   0.000      0.997 0.000 1.000 0.000
#> GSM555342     2   0.000      0.997 0.000 1.000 0.000
#> GSM555344     2   0.000      0.997 0.000 1.000 0.000
#> GSM555346     2   0.207      0.933 0.000 0.940 0.060

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     4  0.5143     0.0843 0.456 0.000 0.004 0.540
#> GSM555239     1  0.0000     0.9913 1.000 0.000 0.000 0.000
#> GSM555241     1  0.0000     0.9913 1.000 0.000 0.000 0.000
#> GSM555243     1  0.0000     0.9913 1.000 0.000 0.000 0.000
#> GSM555245     1  0.0000     0.9913 1.000 0.000 0.000 0.000
#> GSM555247     1  0.0000     0.9913 1.000 0.000 0.000 0.000
#> GSM555249     1  0.0000     0.9913 1.000 0.000 0.000 0.000
#> GSM555251     1  0.0000     0.9913 1.000 0.000 0.000 0.000
#> GSM555253     1  0.0000     0.9913 1.000 0.000 0.000 0.000
#> GSM555255     1  0.0000     0.9913 1.000 0.000 0.000 0.000
#> GSM555257     4  0.4222     0.4644 0.272 0.000 0.000 0.728
#> GSM555259     4  0.4508     0.8011 0.000 0.184 0.036 0.780
#> GSM555261     4  0.4508     0.8011 0.000 0.184 0.036 0.780
#> GSM555263     4  0.4313     0.7716 0.000 0.260 0.004 0.736
#> GSM555265     4  0.4508     0.8011 0.000 0.184 0.036 0.780
#> GSM555267     4  0.4508     0.8011 0.000 0.184 0.036 0.780
#> GSM555269     4  0.4466     0.7993 0.000 0.180 0.036 0.784
#> GSM555271     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555273     4  0.5359     0.7268 0.000 0.288 0.036 0.676
#> GSM555275     2  0.0188     0.9781 0.000 0.996 0.000 0.004
#> GSM555238     1  0.0000     0.9913 1.000 0.000 0.000 0.000
#> GSM555240     1  0.2081     0.9122 0.916 0.000 0.000 0.084
#> GSM555242     1  0.1716     0.9318 0.936 0.000 0.000 0.064
#> GSM555244     1  0.0000     0.9913 1.000 0.000 0.000 0.000
#> GSM555246     1  0.0000     0.9913 1.000 0.000 0.000 0.000
#> GSM555248     1  0.0000     0.9913 1.000 0.000 0.000 0.000
#> GSM555250     1  0.0000     0.9913 1.000 0.000 0.000 0.000
#> GSM555252     1  0.0000     0.9913 1.000 0.000 0.000 0.000
#> GSM555254     1  0.0000     0.9913 1.000 0.000 0.000 0.000
#> GSM555256     1  0.0188     0.9886 0.996 0.000 0.000 0.004
#> GSM555258     4  0.1488     0.6176 0.012 0.000 0.032 0.956
#> GSM555260     4  0.6133     0.4813 0.012 0.384 0.032 0.572
#> GSM555262     2  0.0188     0.9784 0.000 0.996 0.000 0.004
#> GSM555264     4  0.4590     0.7053 0.000 0.192 0.036 0.772
#> GSM555266     2  0.0336     0.9780 0.000 0.992 0.000 0.008
#> GSM555268     2  0.0188     0.9775 0.000 0.996 0.000 0.004
#> GSM555270     2  0.0188     0.9782 0.000 0.996 0.000 0.004
#> GSM555272     4  0.1488     0.6176 0.012 0.000 0.032 0.956
#> GSM555274     2  0.0469     0.9744 0.000 0.988 0.000 0.012
#> GSM555276     2  0.0921     0.9663 0.000 0.972 0.000 0.028
#> GSM555277     2  0.1022     0.9661 0.000 0.968 0.000 0.032
#> GSM555279     4  0.4466     0.7993 0.000 0.180 0.036 0.784
#> GSM555281     2  0.0592     0.9721 0.000 0.984 0.000 0.016
#> GSM555283     2  0.0188     0.9784 0.000 0.996 0.000 0.004
#> GSM555285     4  0.5334     0.7280 0.000 0.284 0.036 0.680
#> GSM555287     4  0.5025     0.7776 0.000 0.252 0.032 0.716
#> GSM555289     2  0.1022     0.9636 0.000 0.968 0.000 0.032
#> GSM555291     2  0.0188     0.9784 0.000 0.996 0.000 0.004
#> GSM555293     2  0.0188     0.9784 0.000 0.996 0.000 0.004
#> GSM555295     2  0.1211     0.9470 0.000 0.960 0.000 0.040
#> GSM555297     4  0.4508     0.8011 0.000 0.184 0.036 0.780
#> GSM555299     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555301     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555303     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555305     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555307     2  0.1022     0.9669 0.000 0.968 0.000 0.032
#> GSM555309     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555311     2  0.0000     0.9784 0.000 1.000 0.000 0.000
#> GSM555313     2  0.0188     0.9784 0.000 0.996 0.000 0.004
#> GSM555315     2  0.0000     0.9784 0.000 1.000 0.000 0.000
#> GSM555278     2  0.0188     0.9784 0.000 0.996 0.000 0.004
#> GSM555280     2  0.0188     0.9784 0.000 0.996 0.000 0.004
#> GSM555282     2  0.0188     0.9784 0.000 0.996 0.000 0.004
#> GSM555284     2  0.0188     0.9775 0.000 0.996 0.000 0.004
#> GSM555286     2  0.0188     0.9784 0.000 0.996 0.000 0.004
#> GSM555288     2  0.1474     0.9328 0.000 0.948 0.000 0.052
#> GSM555290     2  0.0592     0.9735 0.000 0.984 0.000 0.016
#> GSM555292     2  0.0000     0.9784 0.000 1.000 0.000 0.000
#> GSM555294     2  0.0592     0.9701 0.000 0.984 0.000 0.016
#> GSM555296     2  0.0469     0.9757 0.000 0.988 0.000 0.012
#> GSM555298     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555300     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555302     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555304     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555306     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555308     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555310     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555312     2  0.0336     0.9781 0.000 0.992 0.000 0.008
#> GSM555314     4  0.4535     0.7473 0.000 0.292 0.004 0.704
#> GSM555316     2  0.1022     0.9661 0.000 0.968 0.000 0.032
#> GSM555317     2  0.0921     0.9687 0.000 0.972 0.000 0.028
#> GSM555319     2  0.0188     0.9775 0.000 0.996 0.000 0.004
#> GSM555321     2  0.0188     0.9775 0.000 0.996 0.000 0.004
#> GSM555323     2  0.0000     0.9784 0.000 1.000 0.000 0.000
#> GSM555325     2  0.0592     0.9701 0.000 0.984 0.000 0.016
#> GSM555327     2  0.1022     0.9636 0.000 0.968 0.000 0.032
#> GSM555329     2  0.0188     0.9775 0.000 0.996 0.000 0.004
#> GSM555331     2  0.0188     0.9784 0.000 0.996 0.000 0.004
#> GSM555333     2  0.0188     0.9781 0.000 0.996 0.000 0.004
#> GSM555335     2  0.0000     0.9784 0.000 1.000 0.000 0.000
#> GSM555337     2  0.0188     0.9784 0.000 0.996 0.000 0.004
#> GSM555339     2  0.0188     0.9784 0.000 0.996 0.000 0.004
#> GSM555341     2  0.0000     0.9784 0.000 1.000 0.000 0.000
#> GSM555343     2  0.0000     0.9784 0.000 1.000 0.000 0.000
#> GSM555345     2  0.4543     0.3565 0.000 0.676 0.000 0.324
#> GSM555318     2  0.1022     0.9636 0.000 0.968 0.000 0.032
#> GSM555320     2  0.0336     0.9757 0.000 0.992 0.000 0.008
#> GSM555322     2  0.1211     0.9616 0.000 0.960 0.000 0.040
#> GSM555324     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM555326     2  0.0000     0.9784 0.000 1.000 0.000 0.000
#> GSM555328     2  0.0188     0.9784 0.000 0.996 0.000 0.004
#> GSM555330     2  0.0188     0.9784 0.000 0.996 0.000 0.004
#> GSM555332     2  0.0921     0.9663 0.000 0.972 0.000 0.028
#> GSM555334     2  0.1211     0.9607 0.000 0.960 0.000 0.040
#> GSM555336     2  0.0469     0.9731 0.000 0.988 0.000 0.012
#> GSM555338     2  0.0921     0.9663 0.000 0.972 0.000 0.028
#> GSM555340     2  0.0000     0.9784 0.000 1.000 0.000 0.000
#> GSM555342     2  0.0592     0.9701 0.000 0.984 0.000 0.016
#> GSM555344     2  0.1022     0.9636 0.000 0.968 0.000 0.032
#> GSM555346     4  0.5203     0.5476 0.000 0.416 0.008 0.576

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM555237     1  0.6809    -0.3391 0.364 0.000 0.000 0.332 0.304
#> GSM555239     1  0.0000     0.9422 1.000 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0000     0.9422 1.000 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000     0.9422 1.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000     0.9422 1.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000     0.9422 1.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000     0.9422 1.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000     0.9422 1.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000     0.9422 1.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0000     0.9422 1.000 0.000 0.000 0.000 0.000
#> GSM555257     5  0.4608     0.6543 0.012 0.008 0.000 0.336 0.644
#> GSM555259     4  0.0162     0.7180 0.000 0.000 0.000 0.996 0.004
#> GSM555261     4  0.0579     0.7154 0.000 0.008 0.000 0.984 0.008
#> GSM555263     4  0.2886     0.5026 0.000 0.148 0.000 0.844 0.008
#> GSM555265     4  0.0000     0.7188 0.000 0.000 0.000 1.000 0.000
#> GSM555267     4  0.0000     0.7188 0.000 0.000 0.000 1.000 0.000
#> GSM555269     4  0.0000     0.7188 0.000 0.000 0.000 1.000 0.000
#> GSM555271     3  0.0324     0.9931 0.000 0.000 0.992 0.004 0.004
#> GSM555273     5  0.6749     0.3725 0.000 0.268 0.000 0.336 0.396
#> GSM555275     2  0.0510     0.8972 0.000 0.984 0.000 0.000 0.016
#> GSM555238     1  0.0000     0.9422 1.000 0.000 0.000 0.000 0.000
#> GSM555240     1  0.4262     0.7109 0.776 0.000 0.000 0.124 0.100
#> GSM555242     1  0.3791     0.7543 0.812 0.000 0.000 0.112 0.076
#> GSM555244     1  0.0000     0.9422 1.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000     0.9422 1.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000     0.9422 1.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000     0.9422 1.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.0000     0.9422 1.000 0.000 0.000 0.000 0.000
#> GSM555254     1  0.0000     0.9422 1.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.0451     0.9336 0.988 0.000 0.000 0.004 0.008
#> GSM555258     5  0.4196     0.6489 0.000 0.004 0.000 0.356 0.640
#> GSM555260     2  0.6574    -0.1329 0.000 0.468 0.000 0.288 0.244
#> GSM555262     2  0.0510     0.8972 0.000 0.984 0.000 0.000 0.016
#> GSM555264     5  0.5160     0.6558 0.000 0.056 0.000 0.336 0.608
#> GSM555266     2  0.1851     0.8775 0.000 0.912 0.000 0.000 0.088
#> GSM555268     2  0.1908     0.8736 0.000 0.908 0.000 0.000 0.092
#> GSM555270     2  0.1197     0.8946 0.000 0.952 0.000 0.000 0.048
#> GSM555272     5  0.4196     0.6489 0.000 0.004 0.000 0.356 0.640
#> GSM555274     2  0.1608     0.8938 0.000 0.928 0.000 0.000 0.072
#> GSM555276     2  0.3305     0.7922 0.000 0.776 0.000 0.000 0.224
#> GSM555277     2  0.2852     0.8367 0.000 0.828 0.000 0.000 0.172
#> GSM555279     4  0.3326     0.4256 0.000 0.152 0.000 0.824 0.024
#> GSM555281     2  0.0794     0.8958 0.000 0.972 0.000 0.000 0.028
#> GSM555283     2  0.1197     0.8946 0.000 0.952 0.000 0.000 0.048
#> GSM555285     5  0.6550     0.4742 0.000 0.212 0.000 0.336 0.452
#> GSM555287     4  0.0963     0.6786 0.000 0.036 0.000 0.964 0.000
#> GSM555289     2  0.2813     0.8392 0.000 0.832 0.000 0.000 0.168
#> GSM555291     2  0.0963     0.8982 0.000 0.964 0.000 0.000 0.036
#> GSM555293     2  0.1851     0.8753 0.000 0.912 0.000 0.000 0.088
#> GSM555295     2  0.1041     0.8937 0.000 0.964 0.000 0.004 0.032
#> GSM555297     4  0.0290     0.7166 0.000 0.000 0.000 0.992 0.008
#> GSM555299     3  0.0000     0.9986 0.000 0.000 1.000 0.000 0.000
#> GSM555301     3  0.0324     0.9936 0.000 0.000 0.992 0.004 0.004
#> GSM555303     3  0.0000     0.9986 0.000 0.000 1.000 0.000 0.000
#> GSM555305     3  0.0000     0.9986 0.000 0.000 1.000 0.000 0.000
#> GSM555307     2  0.2561     0.8547 0.000 0.856 0.000 0.000 0.144
#> GSM555309     3  0.0000     0.9986 0.000 0.000 1.000 0.000 0.000
#> GSM555311     2  0.0510     0.8972 0.000 0.984 0.000 0.000 0.016
#> GSM555313     2  0.0510     0.8972 0.000 0.984 0.000 0.000 0.016
#> GSM555315     2  0.0510     0.8972 0.000 0.984 0.000 0.000 0.016
#> GSM555278     2  0.1908     0.8736 0.000 0.908 0.000 0.000 0.092
#> GSM555280     2  0.1197     0.8946 0.000 0.952 0.000 0.000 0.048
#> GSM555282     2  0.1410     0.8942 0.000 0.940 0.000 0.000 0.060
#> GSM555284     2  0.0510     0.8972 0.000 0.984 0.000 0.000 0.016
#> GSM555286     2  0.2424     0.8849 0.000 0.868 0.000 0.000 0.132
#> GSM555288     2  0.0609     0.8971 0.000 0.980 0.000 0.000 0.020
#> GSM555290     2  0.2516     0.8599 0.000 0.860 0.000 0.000 0.140
#> GSM555292     2  0.1851     0.8838 0.000 0.912 0.000 0.000 0.088
#> GSM555294     2  0.1908     0.8736 0.000 0.908 0.000 0.000 0.092
#> GSM555296     2  0.0609     0.8983 0.000 0.980 0.000 0.000 0.020
#> GSM555298     3  0.0000     0.9986 0.000 0.000 1.000 0.000 0.000
#> GSM555300     3  0.0000     0.9986 0.000 0.000 1.000 0.000 0.000
#> GSM555302     3  0.0000     0.9986 0.000 0.000 1.000 0.000 0.000
#> GSM555304     3  0.0000     0.9986 0.000 0.000 1.000 0.000 0.000
#> GSM555306     3  0.0000     0.9986 0.000 0.000 1.000 0.000 0.000
#> GSM555308     3  0.0000     0.9986 0.000 0.000 1.000 0.000 0.000
#> GSM555310     3  0.0162     0.9960 0.000 0.000 0.996 0.004 0.000
#> GSM555312     2  0.2179     0.8745 0.000 0.888 0.000 0.000 0.112
#> GSM555314     4  0.5220    -0.0199 0.000 0.440 0.000 0.516 0.044
#> GSM555316     2  0.2690     0.8473 0.000 0.844 0.000 0.000 0.156
#> GSM555317     2  0.1197     0.8946 0.000 0.952 0.000 0.000 0.048
#> GSM555319     2  0.1851     0.8753 0.000 0.912 0.000 0.000 0.088
#> GSM555321     2  0.1792     0.8765 0.000 0.916 0.000 0.000 0.084
#> GSM555323     2  0.0703     0.8980 0.000 0.976 0.000 0.000 0.024
#> GSM555325     2  0.1908     0.8736 0.000 0.908 0.000 0.000 0.092
#> GSM555327     2  0.3336     0.7882 0.000 0.772 0.000 0.000 0.228
#> GSM555329     2  0.1792     0.8765 0.000 0.916 0.000 0.000 0.084
#> GSM555331     2  0.0162     0.8974 0.000 0.996 0.000 0.000 0.004
#> GSM555333     2  0.0510     0.8972 0.000 0.984 0.000 0.000 0.016
#> GSM555335     2  0.0510     0.8980 0.000 0.984 0.000 0.000 0.016
#> GSM555337     2  0.1851     0.8756 0.000 0.912 0.000 0.000 0.088
#> GSM555339     2  0.1270     0.8943 0.000 0.948 0.000 0.000 0.052
#> GSM555341     2  0.1270     0.8943 0.000 0.948 0.000 0.000 0.052
#> GSM555343     2  0.1851     0.8753 0.000 0.912 0.000 0.000 0.088
#> GSM555345     2  0.5375     0.6497 0.000 0.668 0.000 0.176 0.156
#> GSM555318     2  0.3336     0.7914 0.000 0.772 0.000 0.000 0.228
#> GSM555320     2  0.1908     0.8736 0.000 0.908 0.000 0.000 0.092
#> GSM555322     2  0.2773     0.8626 0.000 0.836 0.000 0.000 0.164
#> GSM555324     3  0.0000     0.9986 0.000 0.000 1.000 0.000 0.000
#> GSM555326     2  0.1478     0.8988 0.000 0.936 0.000 0.000 0.064
#> GSM555328     2  0.1197     0.8946 0.000 0.952 0.000 0.000 0.048
#> GSM555330     2  0.1197     0.8946 0.000 0.952 0.000 0.000 0.048
#> GSM555332     2  0.3336     0.7913 0.000 0.772 0.000 0.000 0.228
#> GSM555334     2  0.3491     0.7851 0.000 0.768 0.000 0.004 0.228
#> GSM555336     2  0.1851     0.8753 0.000 0.912 0.000 0.000 0.088
#> GSM555338     2  0.2471     0.8592 0.000 0.864 0.000 0.000 0.136
#> GSM555340     2  0.1851     0.8753 0.000 0.912 0.000 0.000 0.088
#> GSM555342     2  0.1908     0.8736 0.000 0.908 0.000 0.000 0.092
#> GSM555344     2  0.3395     0.7833 0.000 0.764 0.000 0.000 0.236
#> GSM555346     2  0.4479     0.5860 0.000 0.700 0.000 0.264 0.036

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM555237     5  0.3679      0.504 0.200 0.000 0.000 0.000 0.760 0.040
#> GSM555239     1  0.0000      0.972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555241     1  0.0000      0.972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555243     1  0.0000      0.972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555245     1  0.0000      0.972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.0000      0.972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555249     1  0.0000      0.972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555251     1  0.0000      0.972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555253     1  0.0000      0.972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555255     1  0.0000      0.972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555257     5  0.1442      0.668 0.012 0.000 0.000 0.004 0.944 0.040
#> GSM555259     4  0.3081      0.875 0.000 0.000 0.000 0.776 0.220 0.004
#> GSM555261     4  0.3245      0.870 0.000 0.000 0.000 0.764 0.228 0.008
#> GSM555263     4  0.3643      0.846 0.000 0.024 0.000 0.768 0.200 0.008
#> GSM555265     4  0.2941      0.876 0.000 0.000 0.000 0.780 0.220 0.000
#> GSM555267     4  0.2941      0.876 0.000 0.000 0.000 0.780 0.220 0.000
#> GSM555269     4  0.2941      0.876 0.000 0.000 0.000 0.780 0.220 0.000
#> GSM555271     3  0.0725      0.980 0.000 0.000 0.976 0.012 0.000 0.012
#> GSM555273     5  0.2009      0.636 0.000 0.084 0.000 0.004 0.904 0.008
#> GSM555275     6  0.5629      0.751 0.000 0.404 0.000 0.148 0.000 0.448
#> GSM555238     1  0.0146      0.969 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM555240     1  0.3243      0.718 0.780 0.000 0.000 0.004 0.208 0.008
#> GSM555242     1  0.2805      0.761 0.812 0.000 0.000 0.004 0.184 0.000
#> GSM555244     1  0.0000      0.972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555246     1  0.0000      0.972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555248     1  0.0000      0.972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555250     1  0.0000      0.972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555252     1  0.0146      0.969 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM555254     1  0.0000      0.972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555256     1  0.1152      0.935 0.952 0.000 0.000 0.004 0.044 0.000
#> GSM555258     5  0.0603      0.677 0.000 0.004 0.000 0.000 0.980 0.016
#> GSM555260     5  0.5628      0.158 0.000 0.220 0.000 0.000 0.540 0.240
#> GSM555262     2  0.5617     -0.671 0.000 0.464 0.000 0.148 0.000 0.388
#> GSM555264     5  0.2300      0.655 0.000 0.000 0.000 0.000 0.856 0.144
#> GSM555266     6  0.3634      0.829 0.000 0.356 0.000 0.000 0.000 0.644
#> GSM555268     6  0.3592      0.836 0.000 0.344 0.000 0.000 0.000 0.656
#> GSM555270     2  0.2340      0.674 0.000 0.852 0.000 0.000 0.000 0.148
#> GSM555272     5  0.0603      0.677 0.000 0.004 0.000 0.000 0.980 0.016
#> GSM555274     2  0.5592     -0.631 0.000 0.484 0.000 0.148 0.000 0.368
#> GSM555276     2  0.1285      0.731 0.000 0.944 0.000 0.052 0.000 0.004
#> GSM555277     2  0.1049      0.732 0.000 0.960 0.000 0.032 0.000 0.008
#> GSM555279     4  0.4620      0.760 0.000 0.072 0.000 0.696 0.220 0.012
#> GSM555281     6  0.5627      0.756 0.000 0.400 0.000 0.148 0.000 0.452
#> GSM555283     2  0.2260      0.683 0.000 0.860 0.000 0.000 0.000 0.140
#> GSM555285     5  0.2540      0.665 0.000 0.020 0.000 0.004 0.872 0.104
#> GSM555287     4  0.3801      0.853 0.000 0.016 0.000 0.740 0.232 0.012
#> GSM555289     2  0.1471      0.727 0.000 0.932 0.000 0.064 0.000 0.004
#> GSM555291     2  0.5544     -0.599 0.000 0.500 0.000 0.144 0.000 0.356
#> GSM555293     6  0.3592      0.836 0.000 0.344 0.000 0.000 0.000 0.656
#> GSM555295     6  0.5627      0.743 0.000 0.400 0.000 0.148 0.000 0.452
#> GSM555297     4  0.3081      0.875 0.000 0.000 0.000 0.776 0.220 0.004
#> GSM555299     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555301     3  0.0405      0.990 0.000 0.000 0.988 0.004 0.000 0.008
#> GSM555303     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555305     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555307     2  0.0520      0.731 0.000 0.984 0.000 0.008 0.000 0.008
#> GSM555309     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555311     6  0.5603      0.771 0.000 0.376 0.000 0.148 0.000 0.476
#> GSM555313     6  0.5631      0.746 0.000 0.408 0.000 0.148 0.000 0.444
#> GSM555315     6  0.5597      0.771 0.000 0.372 0.000 0.148 0.000 0.480
#> GSM555278     6  0.3607      0.834 0.000 0.348 0.000 0.000 0.000 0.652
#> GSM555280     2  0.2300      0.680 0.000 0.856 0.000 0.000 0.000 0.144
#> GSM555282     2  0.2446      0.649 0.000 0.864 0.000 0.124 0.000 0.012
#> GSM555284     6  0.5603      0.771 0.000 0.376 0.000 0.148 0.000 0.476
#> GSM555286     2  0.2416      0.670 0.000 0.844 0.000 0.000 0.000 0.156
#> GSM555288     6  0.5624      0.755 0.000 0.396 0.000 0.148 0.000 0.456
#> GSM555290     2  0.2983      0.690 0.000 0.832 0.000 0.032 0.000 0.136
#> GSM555292     2  0.2219      0.686 0.000 0.864 0.000 0.000 0.000 0.136
#> GSM555294     6  0.3592      0.836 0.000 0.344 0.000 0.000 0.000 0.656
#> GSM555296     2  0.1219      0.727 0.000 0.948 0.000 0.000 0.004 0.048
#> GSM555298     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555300     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555302     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555304     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555306     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555308     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555310     3  0.0146      0.995 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM555312     2  0.0603      0.731 0.000 0.980 0.000 0.016 0.000 0.004
#> GSM555314     4  0.4736      0.262 0.000 0.228 0.000 0.688 0.064 0.020
#> GSM555316     2  0.1327      0.729 0.000 0.936 0.000 0.064 0.000 0.000
#> GSM555317     2  0.0000      0.733 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM555319     6  0.3828      0.699 0.000 0.440 0.000 0.000 0.000 0.560
#> GSM555321     2  0.3309      0.465 0.000 0.720 0.000 0.000 0.000 0.280
#> GSM555323     2  0.4047     -0.186 0.000 0.604 0.000 0.012 0.000 0.384
#> GSM555325     6  0.3578      0.833 0.000 0.340 0.000 0.000 0.000 0.660
#> GSM555327     2  0.1643      0.722 0.000 0.924 0.000 0.068 0.000 0.008
#> GSM555329     2  0.3482      0.349 0.000 0.684 0.000 0.000 0.000 0.316
#> GSM555331     6  0.4093      0.681 0.000 0.476 0.000 0.008 0.000 0.516
#> GSM555333     6  0.5631      0.746 0.000 0.408 0.000 0.148 0.000 0.444
#> GSM555335     2  0.5334     -0.609 0.000 0.512 0.000 0.112 0.000 0.376
#> GSM555337     6  0.3592      0.836 0.000 0.344 0.000 0.000 0.000 0.656
#> GSM555339     2  0.0363      0.733 0.000 0.988 0.000 0.012 0.000 0.000
#> GSM555341     2  0.4235      0.257 0.000 0.724 0.000 0.084 0.000 0.192
#> GSM555343     6  0.3592      0.836 0.000 0.344 0.000 0.000 0.000 0.656
#> GSM555345     2  0.2715      0.689 0.000 0.872 0.000 0.088 0.028 0.012
#> GSM555318     2  0.1866      0.713 0.000 0.908 0.000 0.084 0.000 0.008
#> GSM555320     6  0.3578      0.833 0.000 0.340 0.000 0.000 0.000 0.660
#> GSM555322     2  0.3551      0.673 0.000 0.792 0.000 0.060 0.000 0.148
#> GSM555324     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM555326     2  0.2527      0.653 0.000 0.832 0.000 0.000 0.000 0.168
#> GSM555328     2  0.1814      0.709 0.000 0.900 0.000 0.000 0.000 0.100
#> GSM555330     2  0.1141      0.729 0.000 0.948 0.000 0.000 0.000 0.052
#> GSM555332     2  0.1333      0.730 0.000 0.944 0.000 0.048 0.000 0.008
#> GSM555334     2  0.1701      0.720 0.000 0.920 0.000 0.072 0.000 0.008
#> GSM555336     6  0.3592      0.836 0.000 0.344 0.000 0.000 0.000 0.656
#> GSM555338     2  0.0865      0.733 0.000 0.964 0.000 0.000 0.000 0.036
#> GSM555340     6  0.3592      0.836 0.000 0.344 0.000 0.000 0.000 0.656
#> GSM555342     6  0.3592      0.836 0.000 0.344 0.000 0.000 0.000 0.656
#> GSM555344     2  0.1643      0.722 0.000 0.924 0.000 0.068 0.000 0.008
#> GSM555346     5  0.4253      0.368 0.000 0.284 0.000 0.000 0.672 0.044

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) agent(p) k
#> ATC:mclust 102         5.49e-09   1.0000 2
#> ATC:mclust 108         3.89e-13   0.5258 3
#> ATC:mclust 106         1.42e-13   0.3931 4
#> ATC:mclust 104         3.06e-14   0.0453 5
#> ATC:mclust  99         1.96e-12   0.0136 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 11994 rows and 110 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.977       0.990         0.4759 0.519   0.519
#> 3 3 0.886           0.924       0.950         0.1730 0.894   0.799
#> 4 4 0.898           0.904       0.948         0.0855 0.964   0.915
#> 5 5 0.798           0.865       0.918         0.0980 0.915   0.793
#> 6 6 0.736           0.768       0.877         0.0537 0.976   0.933

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM555237     1  0.0000      0.973 1.000 0.000
#> GSM555239     1  0.0000      0.973 1.000 0.000
#> GSM555241     1  0.0000      0.973 1.000 0.000
#> GSM555243     1  0.0000      0.973 1.000 0.000
#> GSM555245     1  0.0000      0.973 1.000 0.000
#> GSM555247     1  0.0000      0.973 1.000 0.000
#> GSM555249     1  0.0000      0.973 1.000 0.000
#> GSM555251     1  0.0000      0.973 1.000 0.000
#> GSM555253     1  0.0000      0.973 1.000 0.000
#> GSM555255     1  0.0000      0.973 1.000 0.000
#> GSM555257     1  0.0000      0.973 1.000 0.000
#> GSM555259     1  0.0000      0.973 1.000 0.000
#> GSM555261     1  0.8861      0.593 0.696 0.304
#> GSM555263     2  0.0000      1.000 0.000 1.000
#> GSM555265     1  0.2603      0.936 0.956 0.044
#> GSM555267     1  0.9129      0.545 0.672 0.328
#> GSM555269     1  0.0000      0.973 1.000 0.000
#> GSM555271     1  0.0000      0.973 1.000 0.000
#> GSM555273     2  0.0000      1.000 0.000 1.000
#> GSM555275     2  0.0000      1.000 0.000 1.000
#> GSM555238     1  0.0000      0.973 1.000 0.000
#> GSM555240     1  0.0000      0.973 1.000 0.000
#> GSM555242     1  0.0000      0.973 1.000 0.000
#> GSM555244     1  0.0000      0.973 1.000 0.000
#> GSM555246     1  0.0000      0.973 1.000 0.000
#> GSM555248     1  0.0000      0.973 1.000 0.000
#> GSM555250     1  0.0000      0.973 1.000 0.000
#> GSM555252     1  0.0000      0.973 1.000 0.000
#> GSM555254     1  0.0000      0.973 1.000 0.000
#> GSM555256     1  0.0000      0.973 1.000 0.000
#> GSM555258     2  0.0000      1.000 0.000 1.000
#> GSM555260     2  0.0000      1.000 0.000 1.000
#> GSM555262     2  0.0000      1.000 0.000 1.000
#> GSM555264     1  0.0938      0.963 0.988 0.012
#> GSM555266     2  0.0000      1.000 0.000 1.000
#> GSM555268     2  0.0000      1.000 0.000 1.000
#> GSM555270     2  0.0000      1.000 0.000 1.000
#> GSM555272     2  0.0000      1.000 0.000 1.000
#> GSM555274     2  0.0000      1.000 0.000 1.000
#> GSM555276     2  0.0000      1.000 0.000 1.000
#> GSM555277     2  0.0000      1.000 0.000 1.000
#> GSM555279     2  0.0000      1.000 0.000 1.000
#> GSM555281     2  0.0000      1.000 0.000 1.000
#> GSM555283     2  0.0000      1.000 0.000 1.000
#> GSM555285     2  0.0000      1.000 0.000 1.000
#> GSM555287     1  0.6712      0.792 0.824 0.176
#> GSM555289     2  0.0000      1.000 0.000 1.000
#> GSM555291     2  0.0000      1.000 0.000 1.000
#> GSM555293     2  0.0000      1.000 0.000 1.000
#> GSM555295     2  0.0000      1.000 0.000 1.000
#> GSM555297     1  0.8386      0.657 0.732 0.268
#> GSM555299     1  0.0000      0.973 1.000 0.000
#> GSM555301     1  0.0000      0.973 1.000 0.000
#> GSM555303     1  0.0000      0.973 1.000 0.000
#> GSM555305     1  0.0000      0.973 1.000 0.000
#> GSM555307     2  0.0000      1.000 0.000 1.000
#> GSM555309     1  0.0000      0.973 1.000 0.000
#> GSM555311     2  0.0000      1.000 0.000 1.000
#> GSM555313     2  0.0000      1.000 0.000 1.000
#> GSM555315     2  0.0000      1.000 0.000 1.000
#> GSM555278     2  0.0000      1.000 0.000 1.000
#> GSM555280     2  0.0000      1.000 0.000 1.000
#> GSM555282     2  0.0000      1.000 0.000 1.000
#> GSM555284     2  0.0000      1.000 0.000 1.000
#> GSM555286     2  0.0000      1.000 0.000 1.000
#> GSM555288     2  0.0000      1.000 0.000 1.000
#> GSM555290     2  0.0000      1.000 0.000 1.000
#> GSM555292     2  0.0000      1.000 0.000 1.000
#> GSM555294     2  0.0000      1.000 0.000 1.000
#> GSM555296     2  0.0000      1.000 0.000 1.000
#> GSM555298     1  0.0000      0.973 1.000 0.000
#> GSM555300     1  0.0000      0.973 1.000 0.000
#> GSM555302     1  0.0000      0.973 1.000 0.000
#> GSM555304     1  0.0000      0.973 1.000 0.000
#> GSM555306     1  0.0000      0.973 1.000 0.000
#> GSM555308     1  0.0000      0.973 1.000 0.000
#> GSM555310     1  0.0000      0.973 1.000 0.000
#> GSM555312     2  0.0000      1.000 0.000 1.000
#> GSM555314     2  0.0000      1.000 0.000 1.000
#> GSM555316     2  0.0000      1.000 0.000 1.000
#> GSM555317     2  0.0000      1.000 0.000 1.000
#> GSM555319     2  0.0000      1.000 0.000 1.000
#> GSM555321     2  0.0000      1.000 0.000 1.000
#> GSM555323     2  0.0000      1.000 0.000 1.000
#> GSM555325     2  0.0000      1.000 0.000 1.000
#> GSM555327     2  0.0000      1.000 0.000 1.000
#> GSM555329     2  0.0000      1.000 0.000 1.000
#> GSM555331     2  0.0000      1.000 0.000 1.000
#> GSM555333     2  0.0000      1.000 0.000 1.000
#> GSM555335     2  0.0000      1.000 0.000 1.000
#> GSM555337     2  0.0000      1.000 0.000 1.000
#> GSM555339     2  0.0000      1.000 0.000 1.000
#> GSM555341     2  0.0000      1.000 0.000 1.000
#> GSM555343     2  0.0000      1.000 0.000 1.000
#> GSM555345     2  0.0000      1.000 0.000 1.000
#> GSM555318     2  0.0000      1.000 0.000 1.000
#> GSM555320     2  0.0000      1.000 0.000 1.000
#> GSM555322     2  0.0000      1.000 0.000 1.000
#> GSM555324     1  0.0000      0.973 1.000 0.000
#> GSM555326     2  0.0000      1.000 0.000 1.000
#> GSM555328     2  0.0000      1.000 0.000 1.000
#> GSM555330     2  0.0000      1.000 0.000 1.000
#> GSM555332     2  0.0000      1.000 0.000 1.000
#> GSM555334     2  0.0000      1.000 0.000 1.000
#> GSM555336     2  0.0000      1.000 0.000 1.000
#> GSM555338     2  0.0000      1.000 0.000 1.000
#> GSM555340     2  0.0000      1.000 0.000 1.000
#> GSM555342     2  0.0000      1.000 0.000 1.000
#> GSM555344     2  0.0000      1.000 0.000 1.000
#> GSM555346     2  0.0000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM555237     1  0.1643      0.892 0.956 0.000 0.044
#> GSM555239     1  0.2066      0.879 0.940 0.000 0.060
#> GSM555241     1  0.1529      0.894 0.960 0.000 0.040
#> GSM555243     1  0.1289      0.898 0.968 0.000 0.032
#> GSM555245     1  0.0892      0.902 0.980 0.000 0.020
#> GSM555247     1  0.5760      0.467 0.672 0.000 0.328
#> GSM555249     1  0.0747      0.903 0.984 0.000 0.016
#> GSM555251     1  0.0424      0.903 0.992 0.000 0.008
#> GSM555253     1  0.4931      0.666 0.768 0.000 0.232
#> GSM555255     1  0.2959      0.842 0.900 0.000 0.100
#> GSM555257     3  0.5138      0.727 0.252 0.000 0.748
#> GSM555259     3  0.3116      0.910 0.108 0.000 0.892
#> GSM555261     3  0.6105      0.605 0.024 0.252 0.724
#> GSM555263     2  0.3879      0.814 0.000 0.848 0.152
#> GSM555265     3  0.3454      0.906 0.104 0.008 0.888
#> GSM555267     3  0.5939      0.643 0.028 0.224 0.748
#> GSM555269     3  0.3116      0.910 0.108 0.000 0.892
#> GSM555271     3  0.3116      0.910 0.108 0.000 0.892
#> GSM555273     1  0.7353      0.453 0.632 0.316 0.052
#> GSM555275     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555238     1  0.1163      0.900 0.972 0.000 0.028
#> GSM555240     1  0.0237      0.902 0.996 0.000 0.004
#> GSM555242     1  0.0424      0.903 0.992 0.000 0.008
#> GSM555244     1  0.0592      0.904 0.988 0.000 0.012
#> GSM555246     1  0.0237      0.902 0.996 0.000 0.004
#> GSM555248     1  0.0424      0.903 0.992 0.000 0.008
#> GSM555250     1  0.0424      0.903 0.992 0.000 0.008
#> GSM555252     1  0.0237      0.897 0.996 0.000 0.004
#> GSM555254     1  0.0424      0.903 0.992 0.000 0.008
#> GSM555256     1  0.0592      0.904 0.988 0.000 0.012
#> GSM555258     2  0.3941      0.811 0.156 0.844 0.000
#> GSM555260     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555262     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555264     1  0.2200      0.865 0.940 0.004 0.056
#> GSM555266     2  0.0237      0.990 0.000 0.996 0.004
#> GSM555268     2  0.0237      0.990 0.000 0.996 0.004
#> GSM555270     2  0.0237      0.990 0.000 0.996 0.004
#> GSM555272     2  0.1643      0.950 0.044 0.956 0.000
#> GSM555274     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555276     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555277     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555279     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555281     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555283     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555285     1  0.7353      0.449 0.632 0.316 0.052
#> GSM555287     3  0.5505      0.817 0.096 0.088 0.816
#> GSM555289     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555291     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555293     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555295     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555297     3  0.6762      0.551 0.036 0.288 0.676
#> GSM555299     3  0.3267      0.908 0.116 0.000 0.884
#> GSM555301     3  0.2448      0.888 0.076 0.000 0.924
#> GSM555303     3  0.3116      0.910 0.108 0.000 0.892
#> GSM555305     3  0.2959      0.908 0.100 0.000 0.900
#> GSM555307     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555309     3  0.3116      0.910 0.108 0.000 0.892
#> GSM555311     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555313     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555315     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555278     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555280     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555282     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555284     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555286     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555288     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555290     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555292     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555294     2  0.0237      0.990 0.000 0.996 0.004
#> GSM555296     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555298     3  0.3116      0.910 0.108 0.000 0.892
#> GSM555300     3  0.3267      0.908 0.116 0.000 0.884
#> GSM555302     3  0.2537      0.894 0.080 0.000 0.920
#> GSM555304     3  0.3038      0.909 0.104 0.000 0.896
#> GSM555306     3  0.3116      0.909 0.108 0.000 0.892
#> GSM555308     3  0.3267      0.908 0.116 0.000 0.884
#> GSM555310     3  0.2959      0.903 0.100 0.000 0.900
#> GSM555312     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555314     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555316     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555317     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555319     2  0.0237      0.990 0.000 0.996 0.004
#> GSM555321     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555323     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555325     2  0.0424      0.987 0.000 0.992 0.008
#> GSM555327     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555329     2  0.0237      0.990 0.000 0.996 0.004
#> GSM555331     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555333     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555335     2  0.0237      0.990 0.000 0.996 0.004
#> GSM555337     2  0.0237      0.990 0.000 0.996 0.004
#> GSM555339     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555341     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555343     2  0.0237      0.990 0.000 0.996 0.004
#> GSM555345     2  0.0475      0.986 0.004 0.992 0.004
#> GSM555318     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555320     2  0.0237      0.990 0.000 0.996 0.004
#> GSM555322     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555324     3  0.3267      0.908 0.116 0.000 0.884
#> GSM555326     2  0.0237      0.990 0.000 0.996 0.004
#> GSM555328     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555330     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555332     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555334     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555336     2  0.0237      0.990 0.000 0.996 0.004
#> GSM555338     2  0.0237      0.990 0.000 0.996 0.004
#> GSM555340     2  0.0237      0.990 0.000 0.996 0.004
#> GSM555342     2  0.0237      0.990 0.000 0.996 0.004
#> GSM555344     2  0.0000      0.991 0.000 1.000 0.000
#> GSM555346     2  0.3765      0.880 0.084 0.888 0.028

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM555237     1  0.1833      0.953 0.944 0.000 0.032 0.024
#> GSM555239     1  0.2500      0.938 0.916 0.000 0.044 0.040
#> GSM555241     1  0.1902      0.943 0.932 0.000 0.064 0.004
#> GSM555243     1  0.1576      0.953 0.948 0.000 0.048 0.004
#> GSM555245     1  0.1118      0.958 0.964 0.000 0.036 0.000
#> GSM555247     1  0.4595      0.777 0.776 0.000 0.184 0.040
#> GSM555249     1  0.1488      0.957 0.956 0.000 0.032 0.012
#> GSM555251     1  0.1256      0.958 0.964 0.000 0.028 0.008
#> GSM555253     1  0.3355      0.835 0.836 0.000 0.160 0.004
#> GSM555255     1  0.3828      0.884 0.848 0.000 0.084 0.068
#> GSM555257     4  0.6924      0.242 0.124 0.000 0.340 0.536
#> GSM555259     3  0.0336      0.934 0.000 0.000 0.992 0.008
#> GSM555261     3  0.4417      0.648 0.000 0.160 0.796 0.044
#> GSM555263     2  0.4761      0.665 0.000 0.768 0.184 0.048
#> GSM555265     3  0.0376      0.932 0.000 0.004 0.992 0.004
#> GSM555267     3  0.3494      0.666 0.000 0.172 0.824 0.004
#> GSM555269     3  0.0188      0.934 0.000 0.000 0.996 0.004
#> GSM555271     3  0.0000      0.935 0.000 0.000 1.000 0.000
#> GSM555273     4  0.3970      0.688 0.076 0.084 0.000 0.840
#> GSM555275     2  0.0469      0.962 0.000 0.988 0.000 0.012
#> GSM555238     1  0.1305      0.958 0.960 0.000 0.036 0.004
#> GSM555240     1  0.1624      0.947 0.952 0.000 0.020 0.028
#> GSM555242     1  0.1284      0.956 0.964 0.000 0.024 0.012
#> GSM555244     1  0.1610      0.956 0.952 0.000 0.032 0.016
#> GSM555246     1  0.1151      0.956 0.968 0.000 0.024 0.008
#> GSM555248     1  0.1356      0.958 0.960 0.000 0.032 0.008
#> GSM555250     1  0.1520      0.953 0.956 0.000 0.024 0.020
#> GSM555252     1  0.1151      0.956 0.968 0.000 0.024 0.008
#> GSM555254     1  0.1151      0.956 0.968 0.000 0.024 0.008
#> GSM555256     1  0.1488      0.957 0.956 0.000 0.032 0.012
#> GSM555258     2  0.5159      0.663 0.156 0.756 0.000 0.088
#> GSM555260     2  0.1474      0.940 0.000 0.948 0.000 0.052
#> GSM555262     2  0.0188      0.965 0.000 0.996 0.000 0.004
#> GSM555264     4  0.3545      0.577 0.164 0.000 0.008 0.828
#> GSM555266     2  0.1118      0.949 0.000 0.964 0.000 0.036
#> GSM555268     2  0.0592      0.960 0.000 0.984 0.000 0.016
#> GSM555270     2  0.0188      0.965 0.000 0.996 0.000 0.004
#> GSM555272     2  0.4951      0.623 0.212 0.744 0.000 0.044
#> GSM555274     2  0.0188      0.965 0.000 0.996 0.000 0.004
#> GSM555276     2  0.0188      0.965 0.000 0.996 0.000 0.004
#> GSM555277     2  0.0469      0.961 0.000 0.988 0.000 0.012
#> GSM555279     2  0.2011      0.910 0.000 0.920 0.000 0.080
#> GSM555281     2  0.0592      0.960 0.000 0.984 0.000 0.016
#> GSM555283     2  0.0592      0.963 0.000 0.984 0.000 0.016
#> GSM555285     4  0.3612      0.667 0.100 0.044 0.000 0.856
#> GSM555287     3  0.3884      0.786 0.016 0.092 0.856 0.036
#> GSM555289     2  0.0188      0.965 0.000 0.996 0.000 0.004
#> GSM555291     2  0.0188      0.965 0.000 0.996 0.000 0.004
#> GSM555293     2  0.0817      0.957 0.000 0.976 0.000 0.024
#> GSM555295     2  0.0188      0.964 0.000 0.996 0.000 0.004
#> GSM555297     3  0.3377      0.717 0.000 0.140 0.848 0.012
#> GSM555299     3  0.0000      0.935 0.000 0.000 1.000 0.000
#> GSM555301     3  0.1398      0.917 0.004 0.000 0.956 0.040
#> GSM555303     3  0.0000      0.935 0.000 0.000 1.000 0.000
#> GSM555305     3  0.0592      0.932 0.000 0.000 0.984 0.016
#> GSM555307     2  0.0469      0.961 0.000 0.988 0.000 0.012
#> GSM555309     3  0.0000      0.935 0.000 0.000 1.000 0.000
#> GSM555311     2  0.1022      0.952 0.000 0.968 0.000 0.032
#> GSM555313     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM555315     2  0.1118      0.949 0.000 0.964 0.000 0.036
#> GSM555278     2  0.1474      0.936 0.000 0.948 0.000 0.052
#> GSM555280     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM555282     2  0.0188      0.965 0.000 0.996 0.000 0.004
#> GSM555284     2  0.0817      0.957 0.000 0.976 0.000 0.024
#> GSM555286     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM555288     2  0.1302      0.947 0.000 0.956 0.000 0.044
#> GSM555290     2  0.0188      0.965 0.000 0.996 0.000 0.004
#> GSM555292     2  0.0188      0.965 0.000 0.996 0.000 0.004
#> GSM555294     2  0.2011      0.910 0.000 0.920 0.000 0.080
#> GSM555296     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM555298     3  0.0188      0.934 0.000 0.000 0.996 0.004
#> GSM555300     3  0.0000      0.935 0.000 0.000 1.000 0.000
#> GSM555302     3  0.1004      0.926 0.004 0.000 0.972 0.024
#> GSM555304     3  0.0592      0.932 0.000 0.000 0.984 0.016
#> GSM555306     3  0.0592      0.932 0.000 0.000 0.984 0.016
#> GSM555308     3  0.0000      0.935 0.000 0.000 1.000 0.000
#> GSM555310     3  0.0895      0.928 0.004 0.000 0.976 0.020
#> GSM555312     2  0.0188      0.965 0.000 0.996 0.000 0.004
#> GSM555314     2  0.0592      0.960 0.000 0.984 0.000 0.016
#> GSM555316     2  0.0188      0.965 0.000 0.996 0.000 0.004
#> GSM555317     2  0.0188      0.965 0.000 0.996 0.000 0.004
#> GSM555319     2  0.0469      0.962 0.000 0.988 0.000 0.012
#> GSM555321     2  0.0336      0.964 0.000 0.992 0.000 0.008
#> GSM555323     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM555325     4  0.4679      0.506 0.000 0.352 0.000 0.648
#> GSM555327     2  0.0336      0.963 0.000 0.992 0.000 0.008
#> GSM555329     2  0.0336      0.963 0.000 0.992 0.000 0.008
#> GSM555331     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM555333     2  0.0188      0.964 0.000 0.996 0.000 0.004
#> GSM555335     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM555337     2  0.0336      0.964 0.000 0.992 0.000 0.008
#> GSM555339     2  0.0188      0.965 0.000 0.996 0.000 0.004
#> GSM555341     2  0.0188      0.965 0.000 0.996 0.000 0.004
#> GSM555343     2  0.0469      0.962 0.000 0.988 0.000 0.012
#> GSM555345     2  0.1902      0.911 0.004 0.932 0.000 0.064
#> GSM555318     2  0.0707      0.956 0.000 0.980 0.000 0.020
#> GSM555320     2  0.4804      0.308 0.000 0.616 0.000 0.384
#> GSM555322     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM555324     3  0.0000      0.935 0.000 0.000 1.000 0.000
#> GSM555326     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM555328     2  0.0188      0.965 0.000 0.996 0.000 0.004
#> GSM555330     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM555332     2  0.0336      0.963 0.000 0.992 0.000 0.008
#> GSM555334     2  0.0336      0.963 0.000 0.992 0.000 0.008
#> GSM555336     2  0.1118      0.949 0.000 0.964 0.000 0.036
#> GSM555338     2  0.0188      0.965 0.000 0.996 0.000 0.004
#> GSM555340     2  0.0336      0.964 0.000 0.992 0.000 0.008
#> GSM555342     2  0.0921      0.954 0.000 0.972 0.000 0.028
#> GSM555344     2  0.0707      0.956 0.000 0.980 0.000 0.020
#> GSM555346     4  0.4072      0.637 0.000 0.252 0.000 0.748

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM555237     1  0.1469     0.9642 0.948 0.000 0.016 0.000 0.036
#> GSM555239     1  0.1934     0.9473 0.928 0.000 0.016 0.004 0.052
#> GSM555241     1  0.0898     0.9685 0.972 0.000 0.020 0.000 0.008
#> GSM555243     1  0.0671     0.9677 0.980 0.000 0.016 0.004 0.000
#> GSM555245     1  0.0671     0.9674 0.980 0.000 0.016 0.000 0.004
#> GSM555247     1  0.3465     0.8616 0.840 0.000 0.104 0.004 0.052
#> GSM555249     1  0.1278     0.9640 0.960 0.000 0.016 0.004 0.020
#> GSM555251     1  0.0854     0.9678 0.976 0.000 0.012 0.004 0.008
#> GSM555253     1  0.1952     0.9156 0.912 0.000 0.084 0.000 0.004
#> GSM555255     1  0.2079     0.9400 0.916 0.000 0.020 0.000 0.064
#> GSM555257     4  0.4805     0.5032 0.072 0.000 0.028 0.760 0.140
#> GSM555259     4  0.3455     0.5480 0.000 0.000 0.208 0.784 0.008
#> GSM555261     4  0.2736     0.7075 0.000 0.068 0.024 0.892 0.016
#> GSM555263     4  0.2612     0.7227 0.000 0.124 0.008 0.868 0.000
#> GSM555265     4  0.5355     0.5797 0.000 0.024 0.204 0.696 0.076
#> GSM555267     4  0.6328     0.4932 0.000 0.120 0.324 0.540 0.016
#> GSM555269     3  0.3491     0.6796 0.000 0.000 0.768 0.228 0.004
#> GSM555271     3  0.1124     0.9267 0.004 0.000 0.960 0.036 0.000
#> GSM555273     5  0.4012     0.5453 0.032 0.036 0.000 0.116 0.816
#> GSM555275     2  0.1892     0.9188 0.000 0.916 0.000 0.080 0.004
#> GSM555238     1  0.1106     0.9680 0.964 0.000 0.012 0.000 0.024
#> GSM555240     1  0.0880     0.9580 0.968 0.000 0.000 0.000 0.032
#> GSM555242     1  0.0865     0.9631 0.972 0.000 0.004 0.000 0.024
#> GSM555244     1  0.1547     0.9652 0.948 0.000 0.016 0.004 0.032
#> GSM555246     1  0.0798     0.9668 0.976 0.000 0.016 0.000 0.008
#> GSM555248     1  0.1278     0.9674 0.960 0.000 0.016 0.004 0.020
#> GSM555250     1  0.1267     0.9662 0.960 0.000 0.012 0.004 0.024
#> GSM555252     1  0.0898     0.9572 0.972 0.000 0.000 0.008 0.020
#> GSM555254     1  0.0912     0.9683 0.972 0.000 0.016 0.000 0.012
#> GSM555256     1  0.1195     0.9659 0.960 0.000 0.012 0.000 0.028
#> GSM555258     4  0.3653     0.7002 0.016 0.088 0.000 0.840 0.056
#> GSM555260     4  0.2953     0.7036 0.000 0.144 0.000 0.844 0.012
#> GSM555262     2  0.2338     0.8969 0.000 0.884 0.000 0.112 0.004
#> GSM555264     5  0.3714     0.4922 0.056 0.000 0.000 0.132 0.812
#> GSM555266     2  0.1522     0.9232 0.000 0.944 0.000 0.012 0.044
#> GSM555268     2  0.1768     0.9209 0.000 0.924 0.000 0.072 0.004
#> GSM555270     2  0.0510     0.9351 0.000 0.984 0.000 0.016 0.000
#> GSM555272     4  0.3653     0.7139 0.012 0.124 0.000 0.828 0.036
#> GSM555274     2  0.2536     0.8825 0.000 0.868 0.000 0.128 0.004
#> GSM555276     2  0.0162     0.9332 0.000 0.996 0.000 0.004 0.000
#> GSM555277     2  0.1544     0.9144 0.000 0.932 0.000 0.068 0.000
#> GSM555279     2  0.2520     0.9108 0.000 0.896 0.000 0.048 0.056
#> GSM555281     2  0.1444     0.9326 0.000 0.948 0.000 0.040 0.012
#> GSM555283     4  0.4211     0.3419 0.000 0.360 0.000 0.636 0.004
#> GSM555285     5  0.3563     0.5412 0.028 0.008 0.000 0.140 0.824
#> GSM555287     3  0.4761     0.7409 0.004 0.068 0.776 0.120 0.032
#> GSM555289     2  0.1792     0.9080 0.000 0.916 0.000 0.084 0.000
#> GSM555291     2  0.3579     0.7361 0.000 0.756 0.000 0.240 0.004
#> GSM555293     2  0.2012     0.9232 0.000 0.920 0.000 0.060 0.020
#> GSM555295     2  0.1310     0.9313 0.000 0.956 0.000 0.024 0.020
#> GSM555297     3  0.2894     0.7354 0.000 0.124 0.860 0.008 0.008
#> GSM555299     3  0.0162     0.9475 0.004 0.000 0.996 0.000 0.000
#> GSM555301     3  0.0771     0.9432 0.004 0.000 0.976 0.000 0.020
#> GSM555303     3  0.0162     0.9475 0.004 0.000 0.996 0.000 0.000
#> GSM555305     3  0.0566     0.9469 0.004 0.000 0.984 0.000 0.012
#> GSM555307     2  0.0404     0.9333 0.000 0.988 0.000 0.012 0.000
#> GSM555309     3  0.0451     0.9449 0.004 0.000 0.988 0.008 0.000
#> GSM555311     2  0.1364     0.9264 0.000 0.952 0.000 0.012 0.036
#> GSM555313     2  0.0566     0.9315 0.000 0.984 0.000 0.004 0.012
#> GSM555315     2  0.1549     0.9243 0.000 0.944 0.000 0.016 0.040
#> GSM555278     2  0.2359     0.9167 0.000 0.904 0.000 0.060 0.036
#> GSM555280     2  0.1502     0.9279 0.000 0.940 0.000 0.056 0.004
#> GSM555282     2  0.2732     0.8494 0.000 0.840 0.000 0.160 0.000
#> GSM555284     2  0.2249     0.9079 0.000 0.896 0.000 0.096 0.008
#> GSM555286     2  0.1043     0.9326 0.000 0.960 0.000 0.040 0.000
#> GSM555288     4  0.2843     0.7088 0.000 0.144 0.000 0.848 0.008
#> GSM555290     2  0.1965     0.9062 0.000 0.904 0.000 0.096 0.000
#> GSM555292     2  0.2930     0.8437 0.000 0.832 0.000 0.164 0.004
#> GSM555294     2  0.2616     0.8982 0.000 0.888 0.000 0.036 0.076
#> GSM555296     2  0.0290     0.9329 0.000 0.992 0.000 0.000 0.008
#> GSM555298     3  0.0324     0.9475 0.004 0.000 0.992 0.000 0.004
#> GSM555300     3  0.0162     0.9475 0.004 0.000 0.996 0.000 0.000
#> GSM555302     3  0.0566     0.9469 0.004 0.000 0.984 0.000 0.012
#> GSM555304     3  0.0451     0.9472 0.004 0.000 0.988 0.000 0.008
#> GSM555306     3  0.0566     0.9469 0.004 0.000 0.984 0.000 0.012
#> GSM555308     3  0.0162     0.9475 0.004 0.000 0.996 0.000 0.000
#> GSM555310     3  0.0566     0.9469 0.004 0.000 0.984 0.000 0.012
#> GSM555312     2  0.0000     0.9335 0.000 1.000 0.000 0.000 0.000
#> GSM555314     2  0.1310     0.9335 0.000 0.956 0.000 0.020 0.024
#> GSM555316     2  0.0000     0.9335 0.000 1.000 0.000 0.000 0.000
#> GSM555317     2  0.0000     0.9335 0.000 1.000 0.000 0.000 0.000
#> GSM555319     2  0.1300     0.9339 0.000 0.956 0.000 0.028 0.016
#> GSM555321     2  0.0566     0.9315 0.000 0.984 0.000 0.004 0.012
#> GSM555323     2  0.0162     0.9334 0.000 0.996 0.000 0.000 0.004
#> GSM555325     2  0.5014     0.2768 0.000 0.592 0.000 0.040 0.368
#> GSM555327     2  0.1197     0.9234 0.000 0.952 0.000 0.048 0.000
#> GSM555329     2  0.1195     0.9342 0.000 0.960 0.000 0.028 0.012
#> GSM555331     2  0.0693     0.9310 0.000 0.980 0.000 0.008 0.012
#> GSM555333     2  0.1012     0.9357 0.000 0.968 0.000 0.020 0.012
#> GSM555335     2  0.0579     0.9320 0.000 0.984 0.000 0.008 0.008
#> GSM555337     2  0.0912     0.9331 0.000 0.972 0.000 0.012 0.016
#> GSM555339     2  0.0510     0.9351 0.000 0.984 0.000 0.016 0.000
#> GSM555341     2  0.2629     0.8737 0.000 0.860 0.000 0.136 0.004
#> GSM555343     2  0.1211     0.9272 0.000 0.960 0.000 0.016 0.024
#> GSM555345     2  0.2208     0.9032 0.012 0.916 0.000 0.060 0.012
#> GSM555318     2  0.1197     0.9232 0.000 0.952 0.000 0.048 0.000
#> GSM555320     2  0.3326     0.8055 0.000 0.824 0.000 0.024 0.152
#> GSM555322     2  0.0404     0.9351 0.000 0.988 0.000 0.012 0.000
#> GSM555324     3  0.0451     0.9449 0.004 0.000 0.988 0.008 0.000
#> GSM555326     2  0.0671     0.9356 0.000 0.980 0.000 0.016 0.004
#> GSM555328     2  0.2068     0.9087 0.000 0.904 0.000 0.092 0.004
#> GSM555330     2  0.0579     0.9320 0.000 0.984 0.000 0.008 0.008
#> GSM555332     2  0.0290     0.9333 0.000 0.992 0.000 0.008 0.000
#> GSM555334     2  0.2127     0.8855 0.000 0.892 0.000 0.108 0.000
#> GSM555336     2  0.1750     0.9261 0.000 0.936 0.000 0.036 0.028
#> GSM555338     2  0.0000     0.9335 0.000 1.000 0.000 0.000 0.000
#> GSM555340     2  0.0992     0.9274 0.000 0.968 0.000 0.008 0.024
#> GSM555342     2  0.1830     0.9256 0.000 0.932 0.000 0.040 0.028
#> GSM555344     2  0.1121     0.9242 0.000 0.956 0.000 0.044 0.000
#> GSM555346     5  0.5238    -0.0419 0.000 0.472 0.000 0.044 0.484

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM555237     1  0.1261     0.9569 0.952 0.000 0.000 0.000 0.024 0.024
#> GSM555239     1  0.1749     0.9501 0.936 0.000 0.016 0.004 0.032 0.012
#> GSM555241     1  0.1036     0.9574 0.964 0.000 0.024 0.008 0.000 0.004
#> GSM555243     1  0.0665     0.9666 0.980 0.000 0.008 0.004 0.000 0.008
#> GSM555245     1  0.0000     0.9658 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM555247     1  0.3746     0.8313 0.816 0.000 0.112 0.012 0.040 0.020
#> GSM555249     1  0.0551     0.9658 0.984 0.000 0.000 0.004 0.008 0.004
#> GSM555251     1  0.0964     0.9651 0.968 0.000 0.000 0.004 0.012 0.016
#> GSM555253     1  0.2274     0.8933 0.892 0.000 0.088 0.008 0.000 0.012
#> GSM555255     1  0.1457     0.9562 0.948 0.000 0.004 0.004 0.028 0.016
#> GSM555257     4  0.4123     0.6994 0.036 0.004 0.008 0.780 0.152 0.020
#> GSM555259     4  0.2663     0.7467 0.004 0.000 0.068 0.884 0.012 0.032
#> GSM555261     4  0.1844     0.7912 0.004 0.024 0.012 0.932 0.028 0.000
#> GSM555263     4  0.2379     0.7852 0.000 0.064 0.008 0.900 0.008 0.020
#> GSM555265     4  0.4068     0.7332 0.008 0.008 0.088 0.808 0.024 0.064
#> GSM555267     4  0.5841     0.5118 0.000 0.048 0.240 0.596 0.000 0.116
#> GSM555269     3  0.4699     0.2693 0.000 0.000 0.580 0.376 0.008 0.036
#> GSM555271     3  0.1225     0.8837 0.000 0.000 0.952 0.036 0.000 0.012
#> GSM555273     5  0.3805     0.6091 0.016 0.088 0.000 0.068 0.816 0.012
#> GSM555275     2  0.1176     0.8384 0.000 0.956 0.000 0.024 0.000 0.020
#> GSM555238     1  0.0862     0.9643 0.972 0.000 0.004 0.000 0.008 0.016
#> GSM555240     1  0.1176     0.9589 0.956 0.000 0.000 0.000 0.020 0.024
#> GSM555242     1  0.0405     0.9660 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM555244     1  0.0622     0.9651 0.980 0.000 0.000 0.000 0.012 0.008
#> GSM555246     1  0.0291     0.9664 0.992 0.000 0.000 0.000 0.004 0.004
#> GSM555248     1  0.0520     0.9656 0.984 0.000 0.000 0.000 0.008 0.008
#> GSM555250     1  0.0935     0.9632 0.964 0.000 0.000 0.000 0.004 0.032
#> GSM555252     1  0.1321     0.9614 0.952 0.000 0.000 0.004 0.020 0.024
#> GSM555254     1  0.0260     0.9666 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM555256     1  0.0547     0.9645 0.980 0.000 0.000 0.000 0.020 0.000
#> GSM555258     4  0.3608     0.7433 0.016 0.028 0.000 0.804 0.148 0.004
#> GSM555260     4  0.2697     0.7605 0.000 0.092 0.000 0.864 0.044 0.000
#> GSM555262     2  0.2145     0.8072 0.000 0.900 0.000 0.072 0.000 0.028
#> GSM555264     5  0.2786     0.5733 0.024 0.000 0.000 0.100 0.864 0.012
#> GSM555266     2  0.3123     0.8024 0.000 0.832 0.000 0.000 0.056 0.112
#> GSM555268     2  0.1148     0.8329 0.000 0.960 0.000 0.020 0.004 0.016
#> GSM555270     2  0.0622     0.8351 0.000 0.980 0.000 0.008 0.000 0.012
#> GSM555272     4  0.3314     0.7823 0.012 0.048 0.000 0.848 0.080 0.012
#> GSM555274     2  0.2163     0.7934 0.000 0.892 0.000 0.092 0.000 0.016
#> GSM555276     2  0.2597     0.7799 0.000 0.824 0.000 0.000 0.000 0.176
#> GSM555277     2  0.2905     0.8126 0.000 0.852 0.000 0.064 0.000 0.084
#> GSM555279     2  0.1738     0.8189 0.000 0.928 0.000 0.004 0.052 0.016
#> GSM555281     2  0.1080     0.8409 0.000 0.960 0.000 0.004 0.004 0.032
#> GSM555283     2  0.4097    -0.0236 0.000 0.500 0.000 0.492 0.000 0.008
#> GSM555285     5  0.2203     0.6084 0.004 0.016 0.000 0.084 0.896 0.000
#> GSM555287     6  0.5456    -0.4252 0.000 0.044 0.436 0.024 0.008 0.488
#> GSM555289     2  0.1807     0.8153 0.000 0.920 0.000 0.060 0.000 0.020
#> GSM555291     2  0.2491     0.7760 0.000 0.868 0.000 0.112 0.000 0.020
#> GSM555293     2  0.0665     0.8366 0.000 0.980 0.000 0.004 0.008 0.008
#> GSM555295     2  0.4601     0.5388 0.000 0.640 0.000 0.008 0.044 0.308
#> GSM555297     3  0.7024    -0.1494 0.000 0.104 0.432 0.012 0.108 0.344
#> GSM555299     3  0.0146     0.9020 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM555301     3  0.0858     0.8959 0.000 0.000 0.968 0.000 0.028 0.004
#> GSM555303     3  0.0405     0.9021 0.000 0.000 0.988 0.008 0.000 0.004
#> GSM555305     3  0.0520     0.9025 0.000 0.000 0.984 0.008 0.000 0.008
#> GSM555307     2  0.4356     0.4415 0.000 0.608 0.000 0.032 0.000 0.360
#> GSM555309     3  0.0820     0.8975 0.000 0.000 0.972 0.016 0.000 0.012
#> GSM555311     2  0.4721     0.6247 0.000 0.672 0.000 0.000 0.116 0.212
#> GSM555313     2  0.2772     0.7775 0.000 0.816 0.000 0.004 0.000 0.180
#> GSM555315     2  0.4709     0.6292 0.000 0.680 0.000 0.000 0.132 0.188
#> GSM555278     2  0.1232     0.8321 0.000 0.956 0.000 0.004 0.024 0.016
#> GSM555280     2  0.1176     0.8299 0.000 0.956 0.000 0.024 0.000 0.020
#> GSM555282     2  0.2312     0.7857 0.000 0.876 0.000 0.112 0.000 0.012
#> GSM555284     2  0.1307     0.8302 0.000 0.952 0.000 0.032 0.008 0.008
#> GSM555286     2  0.1003     0.8315 0.000 0.964 0.000 0.020 0.000 0.016
#> GSM555288     4  0.3636     0.5706 0.000 0.208 0.000 0.764 0.016 0.012
#> GSM555290     2  0.1549     0.8201 0.000 0.936 0.000 0.044 0.000 0.020
#> GSM555292     2  0.2006     0.8014 0.000 0.904 0.000 0.080 0.000 0.016
#> GSM555294     2  0.2527     0.8079 0.000 0.880 0.000 0.004 0.084 0.032
#> GSM555296     2  0.2902     0.7564 0.000 0.800 0.000 0.004 0.000 0.196
#> GSM555298     3  0.0405     0.9028 0.000 0.000 0.988 0.004 0.000 0.008
#> GSM555300     3  0.0405     0.9007 0.000 0.000 0.988 0.004 0.000 0.008
#> GSM555302     3  0.0717     0.8995 0.000 0.000 0.976 0.000 0.016 0.008
#> GSM555304     3  0.0653     0.9018 0.000 0.000 0.980 0.004 0.004 0.012
#> GSM555306     3  0.0508     0.9013 0.000 0.000 0.984 0.000 0.004 0.012
#> GSM555308     3  0.0146     0.9027 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM555310     3  0.0725     0.8997 0.000 0.000 0.976 0.000 0.012 0.012
#> GSM555312     2  0.2964     0.7530 0.000 0.792 0.000 0.004 0.000 0.204
#> GSM555314     2  0.3219     0.7681 0.000 0.792 0.000 0.004 0.012 0.192
#> GSM555316     2  0.1714     0.8260 0.000 0.908 0.000 0.000 0.000 0.092
#> GSM555317     2  0.2219     0.8032 0.000 0.864 0.000 0.000 0.000 0.136
#> GSM555319     2  0.0603     0.8364 0.000 0.980 0.000 0.004 0.000 0.016
#> GSM555321     2  0.1082     0.8370 0.000 0.956 0.000 0.000 0.004 0.040
#> GSM555323     2  0.2340     0.8002 0.000 0.852 0.000 0.000 0.000 0.148
#> GSM555325     2  0.4001     0.5290 0.000 0.708 0.000 0.004 0.260 0.028
#> GSM555327     2  0.1434     0.8381 0.000 0.940 0.000 0.012 0.000 0.048
#> GSM555329     2  0.0717     0.8361 0.000 0.976 0.000 0.008 0.000 0.016
#> GSM555331     2  0.2562     0.7802 0.000 0.828 0.000 0.000 0.000 0.172
#> GSM555333     2  0.3695     0.6842 0.000 0.732 0.000 0.024 0.000 0.244
#> GSM555335     2  0.2933     0.7495 0.000 0.796 0.000 0.004 0.000 0.200
#> GSM555337     2  0.0713     0.8369 0.000 0.972 0.000 0.000 0.000 0.028
#> GSM555339     2  0.3817     0.6724 0.000 0.720 0.000 0.028 0.000 0.252
#> GSM555341     2  0.1745     0.8122 0.000 0.920 0.000 0.068 0.000 0.012
#> GSM555343     2  0.1116     0.8357 0.000 0.960 0.000 0.004 0.008 0.028
#> GSM555345     6  0.5598    -0.1870 0.008 0.396 0.004 0.084 0.004 0.504
#> GSM555318     2  0.4089     0.6642 0.000 0.696 0.000 0.040 0.000 0.264
#> GSM555320     2  0.3141     0.7648 0.000 0.832 0.000 0.004 0.124 0.040
#> GSM555322     2  0.0603     0.8351 0.000 0.980 0.000 0.004 0.000 0.016
#> GSM555324     3  0.0692     0.8992 0.000 0.000 0.976 0.004 0.000 0.020
#> GSM555326     2  0.0508     0.8359 0.000 0.984 0.000 0.004 0.000 0.012
#> GSM555328     2  0.1434     0.8212 0.000 0.940 0.000 0.048 0.000 0.012
#> GSM555330     2  0.2527     0.7857 0.000 0.832 0.000 0.000 0.000 0.168
#> GSM555332     2  0.3163     0.7241 0.000 0.764 0.000 0.004 0.000 0.232
#> GSM555334     2  0.2237     0.8198 0.000 0.896 0.000 0.068 0.000 0.036
#> GSM555336     2  0.1599     0.8313 0.000 0.940 0.000 0.008 0.024 0.028
#> GSM555338     2  0.1501     0.8311 0.000 0.924 0.000 0.000 0.000 0.076
#> GSM555340     2  0.1462     0.8339 0.000 0.936 0.000 0.000 0.008 0.056
#> GSM555342     2  0.1426     0.8339 0.000 0.948 0.000 0.008 0.016 0.028
#> GSM555344     2  0.3364     0.7587 0.000 0.780 0.000 0.024 0.000 0.196
#> GSM555346     5  0.4696     0.0505 0.000 0.352 0.000 0.008 0.600 0.040

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n disease.state(p) agent(p) k
#> ATC:NMF 110         9.03e-08    0.434 2
#> ATC:NMF 107         7.77e-12    0.285 3
#> ATC:NMF 108         2.34e-10    0.578 4
#> ATC:NMF 105         4.51e-14    0.627 5
#> ATC:NMF 103         3.41e-14    0.840 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0