cola Report for GDS3709

Date: 2019-12-25 20:55:53 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 51941    79

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:kmeans 2 1.000 0.977 0.987 **
SD:skmeans 2 1.000 0.990 0.995 **
CV:kmeans 2 1.000 0.970 0.989 **
CV:skmeans 2 1.000 0.975 0.990 **
MAD:skmeans 2 1.000 0.981 0.992 **
MAD:mclust 2 1.000 0.966 0.986 **
ATC:skmeans 6 0.995 0.956 0.971 ** 4
MAD:kmeans 2 0.973 0.957 0.980 **
SD:NMF 2 0.973 0.955 0.980 **
SD:mclust 2 0.948 0.956 0.982 *
CV:NMF 2 0.947 0.954 0.978 *
MAD:hclust 2 0.945 0.937 0.974 *
ATC:mclust 6 0.927 0.947 0.957 * 2,3,4,5
ATC:pam 6 0.908 0.822 0.921 * 2,3,5
MAD:NMF 2 0.897 0.947 0.977
CV:hclust 2 0.868 0.921 0.964
ATC:NMF 3 0.823 0.877 0.944
ATC:kmeans 4 0.810 0.920 0.933
SD:pam 3 0.738 0.806 0.907
SD:hclust 2 0.693 0.916 0.956
CV:mclust 2 0.692 0.950 0.967
CV:pam 3 0.655 0.733 0.888
MAD:pam 2 0.554 0.893 0.937
ATC:hclust 2 0.496 0.787 0.898

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.973           0.955       0.980          0.504 0.498   0.498
#> CV:NMF      2 0.947           0.954       0.978          0.503 0.498   0.498
#> MAD:NMF     2 0.897           0.947       0.977          0.503 0.498   0.498
#> ATC:NMF     2 0.706           0.857       0.940          0.502 0.494   0.494
#> SD:skmeans  2 1.000           0.990       0.995          0.506 0.494   0.494
#> CV:skmeans  2 1.000           0.975       0.990          0.506 0.494   0.494
#> MAD:skmeans 2 1.000           0.981       0.992          0.506 0.494   0.494
#> ATC:skmeans 2 0.697           0.811       0.930          0.505 0.496   0.496
#> SD:mclust   2 0.948           0.956       0.982          0.497 0.503   0.503
#> CV:mclust   2 0.692           0.950       0.967          0.494 0.503   0.503
#> MAD:mclust  2 1.000           0.966       0.986          0.498 0.503   0.503
#> ATC:mclust  2 1.000           0.999       1.000          0.500 0.500   0.500
#> SD:kmeans   2 1.000           0.977       0.987          0.505 0.494   0.494
#> CV:kmeans   2 1.000           0.970       0.989          0.506 0.494   0.494
#> MAD:kmeans  2 0.973           0.957       0.980          0.505 0.494   0.494
#> ATC:kmeans  2 0.702           0.858       0.928          0.495 0.503   0.503
#> SD:pam      2 0.645           0.885       0.940          0.448 0.553   0.553
#> CV:pam      2 0.565           0.814       0.916          0.437 0.553   0.553
#> MAD:pam     2 0.554           0.893       0.937          0.462 0.553   0.553
#> ATC:pam     2 1.000           0.971       0.989          0.495 0.503   0.503
#> SD:hclust   2 0.693           0.916       0.956          0.494 0.507   0.507
#> CV:hclust   2 0.868           0.921       0.964          0.497 0.500   0.500
#> MAD:hclust  2 0.945           0.937       0.974          0.496 0.507   0.507
#> ATC:hclust  2 0.496           0.787       0.898          0.415 0.572   0.572
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.741           0.869       0.929          0.285 0.783   0.591
#> CV:NMF      3 0.725           0.793       0.911          0.302 0.764   0.563
#> MAD:NMF     3 0.766           0.869       0.933          0.289 0.783   0.591
#> ATC:NMF     3 0.823           0.877       0.944          0.328 0.710   0.481
#> SD:skmeans  3 0.774           0.856       0.915          0.274 0.817   0.645
#> CV:skmeans  3 0.834           0.898       0.933          0.273 0.803   0.620
#> MAD:skmeans 3 0.770           0.825       0.900          0.273 0.784   0.591
#> ATC:skmeans 3 0.704           0.931       0.947          0.300 0.758   0.552
#> SD:mclust   3 0.800           0.832       0.920          0.153 0.899   0.809
#> CV:mclust   3 0.792           0.778       0.870          0.226 0.810   0.638
#> MAD:mclust  3 0.746           0.766       0.889          0.208 0.830   0.682
#> ATC:mclust  3 1.000           0.998       0.999          0.290 0.855   0.709
#> SD:kmeans   3 0.606           0.617       0.777          0.266 0.796   0.606
#> CV:kmeans   3 0.617           0.741       0.824          0.281 0.812   0.635
#> MAD:kmeans  3 0.609           0.648       0.765          0.275 0.796   0.606
#> ATC:kmeans  3 0.581           0.648       0.752          0.321 0.741   0.536
#> SD:pam      3 0.738           0.806       0.907          0.467 0.744   0.559
#> CV:pam      3 0.655           0.733       0.888          0.517 0.724   0.526
#> MAD:pam     3 0.576           0.818       0.893          0.418 0.790   0.621
#> ATC:pam     3 1.000           0.969       0.983          0.282 0.824   0.663
#> SD:hclust   3 0.638           0.609       0.807          0.250 0.834   0.679
#> CV:hclust   3 0.685           0.780       0.871          0.285 0.825   0.655
#> MAD:hclust  3 0.658           0.611       0.814          0.252 0.810   0.634
#> ATC:hclust  3 0.545           0.703       0.846          0.310 0.912   0.849
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.706           0.753       0.863         0.1067 0.859   0.628
#> CV:NMF      4 0.714           0.745       0.864         0.0920 0.835   0.574
#> MAD:NMF     4 0.721           0.775       0.877         0.1104 0.847   0.599
#> ATC:NMF     4 0.849           0.847       0.935         0.1261 0.746   0.391
#> SD:skmeans  4 0.685           0.799       0.848         0.1158 0.907   0.746
#> CV:skmeans  4 0.686           0.756       0.835         0.1100 0.918   0.771
#> MAD:skmeans 4 0.682           0.804       0.852         0.1130 0.920   0.776
#> ATC:skmeans 4 1.000           0.990       0.995         0.1325 0.848   0.597
#> SD:mclust   4 0.762           0.794       0.842         0.1839 0.849   0.671
#> CV:mclust   4 0.767           0.784       0.854         0.1159 0.876   0.684
#> MAD:mclust  4 0.807           0.833       0.889         0.1474 0.864   0.674
#> ATC:mclust  4 1.000           0.970       0.989         0.0687 0.952   0.866
#> SD:kmeans   4 0.527           0.510       0.702         0.1252 0.846   0.614
#> CV:kmeans   4 0.540           0.534       0.741         0.1233 0.908   0.745
#> MAD:kmeans  4 0.550           0.568       0.680         0.1221 0.881   0.687
#> ATC:kmeans  4 0.810           0.920       0.933         0.1338 0.825   0.555
#> SD:pam      4 0.767           0.793       0.886         0.1147 0.881   0.673
#> CV:pam      4 0.706           0.727       0.871         0.1088 0.900   0.711
#> MAD:pam     4 0.769           0.805       0.905         0.1225 0.896   0.706
#> ATC:pam     4 0.834           0.832       0.927         0.1812 0.823   0.552
#> SD:hclust   4 0.622           0.500       0.714         0.1013 0.833   0.590
#> CV:hclust   4 0.594           0.605       0.741         0.1042 0.958   0.878
#> MAD:hclust  4 0.669           0.621       0.735         0.1072 0.888   0.707
#> ATC:hclust  4 0.754           0.767       0.877         0.3039 0.787   0.582
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.693           0.658       0.811         0.0584 0.888   0.642
#> CV:NMF      5 0.693           0.682       0.830         0.0623 0.858   0.561
#> MAD:NMF     5 0.674           0.658       0.823         0.0589 0.869   0.587
#> ATC:NMF     5 0.685           0.700       0.815         0.0654 0.887   0.593
#> SD:skmeans  5 0.660           0.669       0.790         0.0894 0.913   0.701
#> CV:skmeans  5 0.665           0.521       0.777         0.0880 0.956   0.850
#> MAD:skmeans 5 0.668           0.643       0.786         0.0945 0.931   0.761
#> ATC:skmeans 5 0.890           0.921       0.935         0.0774 0.929   0.730
#> SD:mclust   5 0.517           0.628       0.722         0.1005 0.963   0.886
#> CV:mclust   5 0.631           0.609       0.784         0.1101 0.945   0.820
#> MAD:mclust  5 0.630           0.592       0.782         0.1118 0.930   0.770
#> ATC:mclust  5 1.000           0.985       0.994         0.1240 0.871   0.611
#> SD:kmeans   5 0.555           0.463       0.634         0.0770 0.856   0.567
#> CV:kmeans   5 0.569           0.518       0.692         0.0704 0.843   0.507
#> MAD:kmeans  5 0.556           0.478       0.693         0.0758 0.842   0.531
#> ATC:kmeans  5 0.827           0.693       0.803         0.0683 0.930   0.736
#> SD:pam      5 0.726           0.486       0.741         0.0510 0.895   0.637
#> CV:pam      5 0.702           0.684       0.800         0.0632 0.914   0.683
#> MAD:pam     5 0.743           0.715       0.817         0.0425 0.975   0.909
#> ATC:pam     5 0.975           0.944       0.972         0.0499 0.950   0.805
#> SD:hclust   5 0.661           0.633       0.803         0.0631 0.912   0.727
#> CV:hclust   5 0.627           0.573       0.750         0.0747 0.904   0.682
#> MAD:hclust  5 0.633           0.633       0.761         0.0717 0.883   0.671
#> ATC:hclust  5 0.835           0.747       0.852         0.0897 0.903   0.690
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.606           0.515       0.719         0.0514 0.982   0.930
#> CV:NMF      6 0.609           0.528       0.716         0.0511 0.956   0.825
#> MAD:NMF     6 0.608           0.524       0.716         0.0462 0.931   0.740
#> ATC:NMF     6 0.678           0.632       0.765         0.0373 0.941   0.720
#> SD:skmeans  6 0.665           0.523       0.687         0.0419 0.948   0.752
#> CV:skmeans  6 0.680           0.572       0.729         0.0451 0.893   0.616
#> MAD:skmeans 6 0.668           0.536       0.738         0.0403 0.949   0.781
#> ATC:skmeans 6 0.995           0.956       0.971         0.0391 0.950   0.760
#> SD:mclust   6 0.797           0.756       0.884         0.0906 0.824   0.460
#> CV:mclust   6 0.723           0.646       0.829         0.0772 0.816   0.407
#> MAD:mclust  6 0.738           0.781       0.863         0.0558 0.812   0.380
#> ATC:mclust  6 0.927           0.947       0.957         0.0553 0.938   0.736
#> SD:kmeans   6 0.612           0.560       0.694         0.0534 0.914   0.641
#> CV:kmeans   6 0.622           0.603       0.726         0.0494 0.918   0.640
#> MAD:kmeans  6 0.603           0.510       0.688         0.0536 0.916   0.646
#> ATC:kmeans  6 0.842           0.855       0.862         0.0425 0.925   0.666
#> SD:pam      6 0.757           0.779       0.882         0.0470 0.860   0.489
#> CV:pam      6 0.754           0.683       0.849         0.0373 0.954   0.788
#> MAD:pam     6 0.747           0.745       0.858         0.0474 0.928   0.723
#> ATC:pam     6 0.908           0.822       0.921         0.0427 0.904   0.606
#> SD:hclust   6 0.654           0.552       0.727         0.0893 0.886   0.604
#> CV:hclust   6 0.661           0.514       0.743         0.0582 0.883   0.547
#> MAD:hclust  6 0.664           0.572       0.695         0.0617 0.877   0.591
#> ATC:hclust  6 0.796           0.722       0.814         0.0444 0.957   0.816

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>              n gender(p) agent(p) k
#> SD:NMF      78     1.000   0.2561 2
#> CV:NMF      78     1.000   0.2561 2
#> MAD:NMF     77     1.000   0.3005 2
#> ATC:NMF     75     0.728   0.1337 2
#> SD:skmeans  79     0.739   0.4331 2
#> CV:skmeans  77     0.913   0.4221 2
#> MAD:skmeans 78     0.821   0.4968 2
#> ATC:skmeans 68     1.000   0.0536 2
#> SD:mclust   77     0.717   0.1995 2
#> CV:mclust   78     0.819   0.2536 2
#> MAD:mclust  78     0.819   0.2536 2
#> ATC:mclust  79     0.208   0.4204 2
#> SD:kmeans   79     0.739   0.4331 2
#> CV:kmeans   78     0.830   0.3644 2
#> MAD:kmeans  78     0.821   0.4968 2
#> ATC:kmeans  75     1.000   0.1248 2
#> SD:pam      77     1.000   0.4151 2
#> CV:pam      72     0.792   0.0898 2
#> MAD:pam     79     1.000   0.4254 2
#> ATC:pam     78     1.000   0.0667 2
#> SD:hclust   78     0.846   0.3593 2
#> CV:hclust   76     0.841   0.6435 2
#> MAD:hclust  77     0.767   0.4108 2
#> ATC:hclust  67     0.632   0.5423 2
test_to_known_factors(res_list, k = 3)
#>              n gender(p) agent(p) k
#> SD:NMF      78    0.4830   0.1368 3
#> CV:NMF      71    0.3209   0.0573 3
#> MAD:NMF     75    0.2977   0.3461 3
#> ATC:NMF     74    0.4184   0.7008 3
#> SD:skmeans  76    0.2908   0.2947 3
#> CV:skmeans  77    0.3344   0.2880 3
#> MAD:skmeans 74    0.3251   0.2599 3
#> ATC:skmeans 79    0.5740   0.1408 3
#> SD:mclust   76    0.4376   0.0317 3
#> CV:mclust   69    0.1391   0.1956 3
#> MAD:mclust  71    0.2565   0.4195 3
#> ATC:mclust  79    0.3314   0.0383 3
#> SD:kmeans   60    0.6418   0.0861 3
#> CV:kmeans   68    0.3431   0.3333 3
#> MAD:kmeans  63    0.5190   0.2579 3
#> ATC:kmeans  63    0.0654   0.1568 3
#> SD:pam      69    0.1755   0.3318 3
#> CV:pam      66    0.0886   0.0817 3
#> MAD:pam     75    0.1762   0.1723 3
#> ATC:pam     79    0.6226   0.0921 3
#> SD:hclust   58    0.2032   0.1244 3
#> CV:hclust   71    0.7030   0.2166 3
#> MAD:hclust  56    0.2123   0.2217 3
#> ATC:hclust  64    0.2027   0.4735 3
test_to_known_factors(res_list, k = 4)
#>              n gender(p) agent(p) k
#> SD:NMF      72    0.5649   0.2147 4
#> CV:NMF      72    0.4083   0.3062 4
#> MAD:NMF     73    0.5377   0.2503 4
#> ATC:NMF     72    0.8982   0.1976 4
#> SD:skmeans  75    0.6635   0.3287 4
#> CV:skmeans  72    0.4021   0.4961 4
#> MAD:skmeans 75    0.3697   0.4779 4
#> ATC:skmeans 79    0.0884   0.3980 4
#> SD:mclust   71    0.3130   0.0797 4
#> CV:mclust   70    0.8043   0.0414 4
#> MAD:mclust  74    0.6715   0.0749 4
#> ATC:mclust  78    0.3262   0.0794 4
#> SD:kmeans   51    0.5009   0.1722 4
#> CV:kmeans   52    0.5305   0.4298 4
#> MAD:kmeans  56    0.4118   0.2566 4
#> ATC:kmeans  79    0.0884   0.3980 4
#> SD:pam      72    0.2936   0.3520 4
#> CV:pam      67    0.1345   0.1200 4
#> MAD:pam     71    0.4652   0.0727 4
#> ATC:pam     72    0.0348   0.1149 4
#> SD:hclust   44    1.0000   0.1637 4
#> CV:hclust   58    0.6874   0.4673 4
#> MAD:hclust  52    0.7054   0.1944 4
#> ATC:hclust  67    0.2327   0.7634 4
test_to_known_factors(res_list, k = 5)
#>              n gender(p) agent(p) k
#> SD:NMF      63    0.1818   0.4504 5
#> CV:NMF      66    0.3731   0.4044 5
#> MAD:NMF     63    0.1064   0.2657 5
#> ATC:NMF     70    0.8445   0.2113 5
#> SD:skmeans  65    0.6543   0.1453 5
#> CV:skmeans  51    0.2973   0.7152 5
#> MAD:skmeans 66    0.6565   0.1016 5
#> ATC:skmeans 78    0.1621   0.4022 5
#> SD:mclust   67    0.3779   0.0772 5
#> CV:mclust   59    0.8276   0.0105 5
#> MAD:mclust  57    0.5141   0.1352 5
#> ATC:mclust  79    0.5598   0.5422 5
#> SD:kmeans   36    0.3657   0.7783 5
#> CV:kmeans   52    0.3002   0.5270 5
#> MAD:kmeans  50    0.7827   0.1082 5
#> ATC:kmeans  59    0.2578   0.2333 5
#> SD:pam      53    0.1419   0.1141 5
#> CV:pam      67    0.1471   0.2421 5
#> MAD:pam     73    0.4130   0.1500 5
#> ATC:pam     78    0.1460   0.1134 5
#> SD:hclust   58    0.5259   0.0375 5
#> CV:hclust   59    0.9293   0.0913 5
#> MAD:hclust  55    0.9723   0.1352 5
#> ATC:hclust  68    0.0742   0.8420 5
test_to_known_factors(res_list, k = 6)
#>              n gender(p) agent(p) k
#> SD:NMF      54    0.0693   0.1887 6
#> CV:NMF      56    0.1553   0.1874 6
#> MAD:NMF     57    0.0804   0.1595 6
#> ATC:NMF     62    0.7342   0.0893 6
#> SD:skmeans  51    0.5108   0.1316 6
#> CV:skmeans  48    0.2867   0.5158 6
#> MAD:skmeans 47    0.3701   0.6289 6
#> ATC:skmeans 78    0.1557   0.3109 6
#> SD:mclust   67    0.7310   0.1808 6
#> CV:mclust   67    0.5507   0.3280 6
#> MAD:mclust  77    0.2515   0.1792 6
#> ATC:mclust  79    0.5163   0.8457 6
#> SD:kmeans   57    0.6394   0.1055 6
#> CV:kmeans   64    0.6072   0.7255 6
#> MAD:kmeans  53    0.7251   0.3272 6
#> ATC:kmeans  77    0.1052   0.3813 6
#> SD:pam      72    0.1968   0.0238 6
#> CV:pam      70    0.0726   0.0242 6
#> MAD:pam     74    0.1994   0.0218 6
#> ATC:pam     71    0.2061   0.2250 6
#> SD:hclust   54    0.8867   0.0647 6
#> CV:hclust   46    0.9392   0.1416 6
#> MAD:hclust  59    0.9278   0.1153 6
#> ATC:hclust  68    0.0966   0.8806 6

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.693           0.916       0.956         0.4938 0.507   0.507
#> 3 3 0.638           0.609       0.807         0.2501 0.834   0.679
#> 4 4 0.622           0.500       0.714         0.1013 0.833   0.590
#> 5 5 0.661           0.633       0.803         0.0631 0.912   0.727
#> 6 6 0.654           0.552       0.727         0.0893 0.886   0.604

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2  0.0000      0.935 0.000 1.000
#> GSM447411     1  0.0376      0.979 0.996 0.004
#> GSM447413     2  0.0000      0.935 0.000 1.000
#> GSM447415     1  0.0000      0.981 1.000 0.000
#> GSM447416     2  0.0000      0.935 0.000 1.000
#> GSM447425     2  0.0000      0.935 0.000 1.000
#> GSM447430     2  0.0000      0.935 0.000 1.000
#> GSM447435     1  0.0376      0.979 0.996 0.004
#> GSM447440     1  0.0376      0.979 0.996 0.004
#> GSM447444     1  0.5519      0.853 0.872 0.128
#> GSM447448     1  0.4298      0.902 0.912 0.088
#> GSM447449     2  0.1414      0.930 0.020 0.980
#> GSM447450     1  0.0376      0.979 0.996 0.004
#> GSM447452     2  0.0000      0.935 0.000 1.000
#> GSM447458     2  0.3114      0.911 0.056 0.944
#> GSM447461     2  0.6712      0.822 0.176 0.824
#> GSM447464     1  0.0000      0.981 1.000 0.000
#> GSM447468     1  0.0000      0.981 1.000 0.000
#> GSM447472     1  0.0000      0.981 1.000 0.000
#> GSM447400     1  0.0000      0.981 1.000 0.000
#> GSM447402     2  0.0938      0.932 0.012 0.988
#> GSM447403     1  0.0000      0.981 1.000 0.000
#> GSM447405     2  0.9963      0.232 0.464 0.536
#> GSM447418     2  0.0000      0.935 0.000 1.000
#> GSM447422     2  0.1184      0.931 0.016 0.984
#> GSM447424     2  0.0000      0.935 0.000 1.000
#> GSM447427     2  0.0000      0.935 0.000 1.000
#> GSM447428     1  0.0000      0.981 1.000 0.000
#> GSM447429     1  0.0000      0.981 1.000 0.000
#> GSM447431     2  0.0000      0.935 0.000 1.000
#> GSM447432     2  0.1414      0.930 0.020 0.980
#> GSM447434     2  0.8443      0.682 0.272 0.728
#> GSM447442     2  0.1184      0.931 0.016 0.984
#> GSM447451     2  0.6712      0.822 0.176 0.824
#> GSM447462     1  0.0000      0.981 1.000 0.000
#> GSM447463     1  0.0000      0.981 1.000 0.000
#> GSM447467     2  0.9491      0.503 0.368 0.632
#> GSM447469     2  0.0376      0.934 0.004 0.996
#> GSM447473     1  0.0000      0.981 1.000 0.000
#> GSM447404     1  0.0000      0.981 1.000 0.000
#> GSM447406     2  0.0000      0.935 0.000 1.000
#> GSM447407     2  0.0000      0.935 0.000 1.000
#> GSM447409     1  0.0376      0.979 0.996 0.004
#> GSM447412     2  0.0000      0.935 0.000 1.000
#> GSM447426     2  0.0000      0.935 0.000 1.000
#> GSM447433     1  0.0376      0.979 0.996 0.004
#> GSM447439     2  0.0000      0.935 0.000 1.000
#> GSM447441     2  0.0000      0.935 0.000 1.000
#> GSM447443     1  0.0000      0.981 1.000 0.000
#> GSM447445     1  0.0376      0.979 0.996 0.004
#> GSM447446     1  0.4939      0.880 0.892 0.108
#> GSM447453     1  0.0000      0.981 1.000 0.000
#> GSM447455     2  0.0938      0.932 0.012 0.988
#> GSM447456     2  0.7745      0.757 0.228 0.772
#> GSM447459     2  0.0000      0.935 0.000 1.000
#> GSM447466     1  0.0000      0.981 1.000 0.000
#> GSM447470     2  0.6973      0.809 0.188 0.812
#> GSM447474     1  0.0000      0.981 1.000 0.000
#> GSM447475     2  0.6712      0.822 0.176 0.824
#> GSM447398     2  0.6531      0.828 0.168 0.832
#> GSM447399     2  0.0000      0.935 0.000 1.000
#> GSM447408     2  0.4690      0.881 0.100 0.900
#> GSM447410     2  0.4690      0.881 0.100 0.900
#> GSM447414     2  0.0000      0.935 0.000 1.000
#> GSM447417     2  0.0938      0.932 0.012 0.988
#> GSM447419     1  0.0000      0.981 1.000 0.000
#> GSM447420     1  0.0000      0.981 1.000 0.000
#> GSM447421     1  0.0000      0.981 1.000 0.000
#> GSM447423     2  0.0000      0.935 0.000 1.000
#> GSM447436     1  0.4939      0.880 0.892 0.108
#> GSM447437     1  0.0000      0.981 1.000 0.000
#> GSM447438     2  0.6973      0.806 0.188 0.812
#> GSM447447     1  0.4690      0.888 0.900 0.100
#> GSM447454     2  0.0000      0.935 0.000 1.000
#> GSM447457     2  0.0000      0.935 0.000 1.000
#> GSM447460     2  0.0938      0.932 0.012 0.988
#> GSM447465     2  0.0000      0.935 0.000 1.000
#> GSM447471     1  0.0000      0.981 1.000 0.000
#> GSM447476     2  0.4690      0.881 0.100 0.900

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.5733     0.2443 0.000 0.324 0.676
#> GSM447411     1  0.0892     0.9490 0.980 0.020 0.000
#> GSM447413     3  0.0424     0.6147 0.000 0.008 0.992
#> GSM447415     1  0.0237     0.9511 0.996 0.004 0.000
#> GSM447416     3  0.0424     0.6147 0.000 0.008 0.992
#> GSM447425     2  0.6154     0.1600 0.000 0.592 0.408
#> GSM447430     3  0.6095     0.0288 0.000 0.392 0.608
#> GSM447435     1  0.0892     0.9490 0.980 0.020 0.000
#> GSM447440     1  0.0892     0.9490 0.980 0.020 0.000
#> GSM447444     1  0.4920     0.8240 0.840 0.108 0.052
#> GSM447448     1  0.3293     0.8831 0.900 0.088 0.012
#> GSM447449     3  0.5202     0.3827 0.008 0.220 0.772
#> GSM447450     1  0.0892     0.9490 0.980 0.020 0.000
#> GSM447452     2  0.6154     0.1600 0.000 0.592 0.408
#> GSM447458     2  0.7674     0.3978 0.044 0.480 0.476
#> GSM447461     2  0.7438     0.6175 0.040 0.568 0.392
#> GSM447464     1  0.0747     0.9508 0.984 0.016 0.000
#> GSM447468     1  0.0747     0.9508 0.984 0.016 0.000
#> GSM447472     1  0.0747     0.9508 0.984 0.016 0.000
#> GSM447400     1  0.0747     0.9508 0.984 0.016 0.000
#> GSM447402     3  0.6451    -0.2869 0.004 0.436 0.560
#> GSM447403     1  0.0424     0.9502 0.992 0.008 0.000
#> GSM447405     1  0.9544    -0.1889 0.440 0.364 0.196
#> GSM447418     3  0.0424     0.6147 0.000 0.008 0.992
#> GSM447422     3  0.5012     0.4148 0.008 0.204 0.788
#> GSM447424     3  0.0424     0.6147 0.000 0.008 0.992
#> GSM447427     3  0.0424     0.6147 0.000 0.008 0.992
#> GSM447428     1  0.0892     0.9497 0.980 0.020 0.000
#> GSM447429     1  0.0592     0.9510 0.988 0.012 0.000
#> GSM447431     3  0.3038     0.5305 0.000 0.104 0.896
#> GSM447432     3  0.5247     0.3743 0.008 0.224 0.768
#> GSM447434     3  0.7465     0.1036 0.272 0.072 0.656
#> GSM447442     3  0.5012     0.4148 0.008 0.204 0.788
#> GSM447451     2  0.7438     0.6175 0.040 0.568 0.392
#> GSM447462     1  0.0747     0.9508 0.984 0.016 0.000
#> GSM447463     1  0.0747     0.9493 0.984 0.016 0.000
#> GSM447467     3  0.9984    -0.1968 0.336 0.308 0.356
#> GSM447469     3  0.6189    -0.0661 0.004 0.364 0.632
#> GSM447473     1  0.0424     0.9502 0.992 0.008 0.000
#> GSM447404     1  0.0424     0.9502 0.992 0.008 0.000
#> GSM447406     3  0.6095     0.0288 0.000 0.392 0.608
#> GSM447407     2  0.6192     0.1522 0.000 0.580 0.420
#> GSM447409     1  0.0892     0.9490 0.980 0.020 0.000
#> GSM447412     3  0.0424     0.6147 0.000 0.008 0.992
#> GSM447426     3  0.5733     0.2443 0.000 0.324 0.676
#> GSM447433     1  0.1163     0.9491 0.972 0.028 0.000
#> GSM447439     3  0.6095     0.0288 0.000 0.392 0.608
#> GSM447441     3  0.3038     0.5305 0.000 0.104 0.896
#> GSM447443     1  0.0747     0.9508 0.984 0.016 0.000
#> GSM447445     1  0.1129     0.9486 0.976 0.020 0.004
#> GSM447446     1  0.4413     0.8485 0.860 0.104 0.036
#> GSM447453     1  0.0237     0.9511 0.996 0.004 0.000
#> GSM447455     3  0.5618     0.3611 0.008 0.260 0.732
#> GSM447456     2  0.7770     0.5584 0.088 0.640 0.272
#> GSM447459     3  0.6095     0.0288 0.000 0.392 0.608
#> GSM447466     1  0.0747     0.9493 0.984 0.016 0.000
#> GSM447470     2  0.7685     0.6169 0.052 0.564 0.384
#> GSM447474     1  0.0892     0.9497 0.980 0.020 0.000
#> GSM447475     2  0.7163     0.5968 0.040 0.628 0.332
#> GSM447398     2  0.7622     0.5986 0.060 0.608 0.332
#> GSM447399     3  0.2356     0.5676 0.000 0.072 0.928
#> GSM447408     2  0.6274     0.5487 0.000 0.544 0.456
#> GSM447410     2  0.6274     0.5487 0.000 0.544 0.456
#> GSM447414     3  0.0000     0.6137 0.000 0.000 1.000
#> GSM447417     3  0.6451    -0.2869 0.004 0.436 0.560
#> GSM447419     1  0.0747     0.9508 0.984 0.016 0.000
#> GSM447420     1  0.0892     0.9497 0.980 0.020 0.000
#> GSM447421     1  0.0747     0.9508 0.984 0.016 0.000
#> GSM447423     3  0.0237     0.6138 0.000 0.004 0.996
#> GSM447436     1  0.4413     0.8485 0.860 0.104 0.036
#> GSM447437     1  0.0747     0.9493 0.984 0.016 0.000
#> GSM447438     2  0.8215     0.5730 0.080 0.540 0.380
#> GSM447447     1  0.4335     0.8545 0.864 0.100 0.036
#> GSM447454     3  0.0424     0.6128 0.000 0.008 0.992
#> GSM447457     3  0.0237     0.6138 0.000 0.004 0.996
#> GSM447460     3  0.3375     0.5409 0.008 0.100 0.892
#> GSM447465     3  0.0424     0.6147 0.000 0.008 0.992
#> GSM447471     1  0.0424     0.9502 0.992 0.008 0.000
#> GSM447476     2  0.6274     0.5487 0.000 0.544 0.456

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.0524    0.07462 0.000 0.008 0.988 0.004
#> GSM447411     1  0.2055    0.93268 0.936 0.008 0.008 0.048
#> GSM447413     3  0.7815    0.53788 0.000 0.256 0.392 0.352
#> GSM447415     1  0.0937    0.94366 0.976 0.012 0.000 0.012
#> GSM447416     3  0.7815    0.53788 0.000 0.256 0.392 0.352
#> GSM447425     3  0.5417   -0.20538 0.000 0.016 0.572 0.412
#> GSM447430     4  0.4855    0.26554 0.000 0.400 0.000 0.600
#> GSM447435     1  0.2140    0.93067 0.932 0.008 0.008 0.052
#> GSM447440     1  0.2140    0.93067 0.932 0.008 0.008 0.052
#> GSM447444     1  0.4235    0.80737 0.792 0.188 0.004 0.016
#> GSM447448     1  0.3400    0.87207 0.856 0.128 0.004 0.012
#> GSM447449     2  0.7476    0.16627 0.000 0.504 0.260 0.236
#> GSM447450     1  0.2140    0.93067 0.932 0.008 0.008 0.052
#> GSM447452     3  0.5417   -0.20538 0.000 0.016 0.572 0.412
#> GSM447458     2  0.3907    0.26044 0.008 0.808 0.004 0.180
#> GSM447461     2  0.1637    0.37832 0.000 0.940 0.060 0.000
#> GSM447464     1  0.1022    0.94403 0.968 0.032 0.000 0.000
#> GSM447468     1  0.1118    0.94350 0.964 0.036 0.000 0.000
#> GSM447472     1  0.1118    0.94350 0.964 0.036 0.000 0.000
#> GSM447400     1  0.1022    0.94403 0.968 0.032 0.000 0.000
#> GSM447402     4  0.4866    0.00855 0.000 0.404 0.000 0.596
#> GSM447403     1  0.0657    0.94193 0.984 0.000 0.004 0.012
#> GSM447405     4  0.7627   -0.03219 0.388 0.204 0.000 0.408
#> GSM447418     3  0.7815    0.53788 0.000 0.256 0.392 0.352
#> GSM447422     2  0.7557    0.13217 0.000 0.488 0.260 0.252
#> GSM447424     3  0.7815    0.53788 0.000 0.256 0.392 0.352
#> GSM447427     3  0.7815    0.53788 0.000 0.256 0.392 0.352
#> GSM447428     1  0.1211    0.94254 0.960 0.040 0.000 0.000
#> GSM447429     1  0.1004    0.94440 0.972 0.024 0.000 0.004
#> GSM447431     4  0.7880   -0.42303 0.000 0.344 0.284 0.372
#> GSM447432     2  0.7456    0.17393 0.000 0.508 0.256 0.236
#> GSM447434     3  0.8878   -0.06640 0.264 0.328 0.360 0.048
#> GSM447442     2  0.7557    0.13217 0.000 0.488 0.260 0.252
#> GSM447451     2  0.1637    0.37832 0.000 0.940 0.060 0.000
#> GSM447462     1  0.1022    0.94403 0.968 0.032 0.000 0.000
#> GSM447463     1  0.1743    0.93283 0.940 0.000 0.004 0.056
#> GSM447467     2  0.7139    0.08839 0.308 0.548 0.140 0.004
#> GSM447469     4  0.4585    0.08340 0.000 0.332 0.000 0.668
#> GSM447473     1  0.0657    0.94193 0.984 0.000 0.004 0.012
#> GSM447404     1  0.0657    0.94193 0.984 0.000 0.004 0.012
#> GSM447406     4  0.4843    0.26851 0.000 0.396 0.000 0.604
#> GSM447407     4  0.5414    0.16726 0.000 0.020 0.376 0.604
#> GSM447409     1  0.2010    0.93180 0.932 0.004 0.004 0.060
#> GSM447412     3  0.7815    0.53788 0.000 0.256 0.392 0.352
#> GSM447426     3  0.0524    0.07462 0.000 0.008 0.988 0.004
#> GSM447433     1  0.2441    0.93391 0.920 0.020 0.004 0.056
#> GSM447439     4  0.4843    0.26851 0.000 0.396 0.000 0.604
#> GSM447441     4  0.7880   -0.42303 0.000 0.344 0.284 0.372
#> GSM447443     1  0.1118    0.94350 0.964 0.036 0.000 0.000
#> GSM447445     1  0.2570    0.92724 0.916 0.028 0.004 0.052
#> GSM447446     1  0.3577    0.84276 0.832 0.156 0.000 0.012
#> GSM447453     1  0.0937    0.94445 0.976 0.012 0.000 0.012
#> GSM447455     2  0.7138    0.19336 0.000 0.552 0.180 0.268
#> GSM447456     2  0.2450    0.28062 0.016 0.912 0.000 0.072
#> GSM447459     4  0.4855    0.26554 0.000 0.400 0.000 0.600
#> GSM447466     1  0.2076    0.93060 0.932 0.004 0.008 0.056
#> GSM447470     2  0.2021    0.37409 0.012 0.932 0.056 0.000
#> GSM447474     1  0.1211    0.94254 0.960 0.040 0.000 0.000
#> GSM447475     2  0.0000    0.34583 0.000 1.000 0.000 0.000
#> GSM447398     2  0.2469    0.31117 0.000 0.892 0.000 0.108
#> GSM447399     2  0.7832   -0.32279 0.000 0.380 0.360 0.260
#> GSM447408     2  0.4898    0.12373 0.000 0.584 0.000 0.416
#> GSM447410     2  0.4898    0.12373 0.000 0.584 0.000 0.416
#> GSM447414     3  0.7847    0.52316 0.000 0.268 0.384 0.348
#> GSM447417     4  0.4866    0.00855 0.000 0.404 0.000 0.596
#> GSM447419     1  0.1118    0.94350 0.964 0.036 0.000 0.000
#> GSM447420     1  0.1211    0.94254 0.960 0.040 0.000 0.000
#> GSM447421     1  0.1022    0.94403 0.968 0.032 0.000 0.000
#> GSM447423     3  0.7847    0.52606 0.000 0.268 0.384 0.348
#> GSM447436     1  0.3577    0.84276 0.832 0.156 0.000 0.012
#> GSM447437     1  0.1743    0.93283 0.940 0.000 0.004 0.056
#> GSM447438     2  0.5925    0.08396 0.036 0.512 0.000 0.452
#> GSM447447     1  0.3450    0.84790 0.836 0.156 0.000 0.008
#> GSM447454     3  0.7860    0.51456 0.000 0.276 0.384 0.340
#> GSM447457     3  0.7847    0.52606 0.000 0.268 0.384 0.348
#> GSM447460     2  0.7872   -0.31901 0.000 0.376 0.280 0.344
#> GSM447465     3  0.7815    0.53788 0.000 0.256 0.392 0.352
#> GSM447471     1  0.0657    0.94193 0.984 0.000 0.004 0.012
#> GSM447476     2  0.4898    0.12373 0.000 0.584 0.000 0.416

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     5  0.2929     0.6140 0.000 0.000 0.180 0.000 0.820
#> GSM447411     1  0.2842     0.9029 0.888 0.012 0.000 0.044 0.056
#> GSM447413     3  0.0162     0.7681 0.000 0.000 0.996 0.004 0.000
#> GSM447415     1  0.0867     0.9205 0.976 0.008 0.000 0.008 0.008
#> GSM447416     3  0.0000     0.7689 0.000 0.000 1.000 0.000 0.000
#> GSM447425     5  0.4219     0.5531 0.000 0.000 0.000 0.416 0.584
#> GSM447430     4  0.5836     0.3412 0.000 0.316 0.004 0.576 0.104
#> GSM447435     1  0.2916     0.9007 0.884 0.012 0.000 0.048 0.056
#> GSM447440     1  0.2916     0.9007 0.884 0.012 0.000 0.048 0.056
#> GSM447444     1  0.3875     0.7871 0.792 0.180 0.008 0.012 0.008
#> GSM447448     1  0.3163     0.8471 0.852 0.124 0.004 0.012 0.008
#> GSM447449     3  0.5547     0.2759 0.008 0.404 0.536 0.052 0.000
#> GSM447450     1  0.2916     0.9007 0.884 0.012 0.000 0.048 0.056
#> GSM447452     5  0.4219     0.5531 0.000 0.000 0.000 0.416 0.584
#> GSM447458     2  0.4735     0.4386 0.016 0.752 0.176 0.052 0.004
#> GSM447461     2  0.2411     0.5823 0.008 0.884 0.108 0.000 0.000
#> GSM447464     1  0.0865     0.9193 0.972 0.024 0.000 0.004 0.000
#> GSM447468     1  0.0955     0.9188 0.968 0.028 0.000 0.004 0.000
#> GSM447472     1  0.0955     0.9188 0.968 0.028 0.000 0.004 0.000
#> GSM447400     1  0.0865     0.9193 0.972 0.024 0.000 0.004 0.000
#> GSM447402     4  0.6580    -0.1798 0.000 0.348 0.168 0.476 0.008
#> GSM447403     1  0.1717     0.9153 0.936 0.004 0.000 0.008 0.052
#> GSM447405     4  0.6585    -0.0609 0.360 0.212 0.000 0.428 0.000
#> GSM447418     3  0.0324     0.7694 0.000 0.004 0.992 0.004 0.000
#> GSM447422     3  0.5516     0.3130 0.008 0.388 0.552 0.052 0.000
#> GSM447424     3  0.0162     0.7681 0.000 0.000 0.996 0.004 0.000
#> GSM447427     3  0.0162     0.7692 0.000 0.004 0.996 0.000 0.000
#> GSM447428     1  0.1041     0.9178 0.964 0.032 0.000 0.004 0.000
#> GSM447429     1  0.0798     0.9197 0.976 0.016 0.000 0.008 0.000
#> GSM447431     3  0.3052     0.6889 0.000 0.036 0.876 0.016 0.072
#> GSM447432     3  0.5554     0.2668 0.008 0.408 0.532 0.052 0.000
#> GSM447434     3  0.6599     0.0506 0.264 0.272 0.464 0.000 0.000
#> GSM447442     3  0.5516     0.3130 0.008 0.388 0.552 0.052 0.000
#> GSM447451     2  0.2411     0.5823 0.008 0.884 0.108 0.000 0.000
#> GSM447462     1  0.0865     0.9193 0.972 0.024 0.000 0.004 0.000
#> GSM447463     1  0.2734     0.9031 0.892 0.008 0.000 0.048 0.052
#> GSM447467     2  0.6325     0.1425 0.316 0.504 0.180 0.000 0.000
#> GSM447469     4  0.6754    -0.1072 0.000 0.276 0.236 0.480 0.008
#> GSM447473     1  0.1717     0.9153 0.936 0.004 0.000 0.008 0.052
#> GSM447404     1  0.1717     0.9153 0.936 0.004 0.000 0.008 0.052
#> GSM447406     4  0.5913     0.3454 0.000 0.304 0.004 0.576 0.116
#> GSM447407     4  0.4299    -0.4962 0.000 0.000 0.004 0.608 0.388
#> GSM447409     1  0.3319     0.8948 0.864 0.020 0.000 0.064 0.052
#> GSM447412     3  0.0000     0.7689 0.000 0.000 1.000 0.000 0.000
#> GSM447426     5  0.2929     0.6140 0.000 0.000 0.180 0.000 0.820
#> GSM447433     1  0.3596     0.8978 0.852 0.036 0.000 0.060 0.052
#> GSM447439     4  0.5913     0.3454 0.000 0.304 0.004 0.576 0.116
#> GSM447441     3  0.3052     0.6889 0.000 0.036 0.876 0.016 0.072
#> GSM447443     1  0.0955     0.9188 0.968 0.028 0.000 0.004 0.000
#> GSM447445     1  0.3323     0.9002 0.868 0.040 0.000 0.048 0.044
#> GSM447446     1  0.3535     0.7968 0.808 0.164 0.000 0.028 0.000
#> GSM447453     1  0.0981     0.9206 0.972 0.012 0.000 0.008 0.008
#> GSM447455     3  0.5604     0.1650 0.008 0.460 0.480 0.052 0.000
#> GSM447456     2  0.1779     0.5123 0.008 0.940 0.008 0.040 0.004
#> GSM447459     4  0.5836     0.3412 0.000 0.316 0.004 0.576 0.104
#> GSM447466     1  0.2987     0.9003 0.880 0.012 0.000 0.052 0.056
#> GSM447470     2  0.2669     0.5804 0.020 0.876 0.104 0.000 0.000
#> GSM447474     1  0.1041     0.9178 0.964 0.032 0.000 0.004 0.000
#> GSM447475     2  0.1408     0.5700 0.008 0.948 0.044 0.000 0.000
#> GSM447398     2  0.2664     0.5518 0.000 0.892 0.064 0.040 0.004
#> GSM447399     3  0.3741     0.5500 0.000 0.264 0.732 0.004 0.000
#> GSM447408     2  0.5527     0.3513 0.000 0.540 0.072 0.388 0.000
#> GSM447410     2  0.5527     0.3513 0.000 0.540 0.072 0.388 0.000
#> GSM447414     3  0.0566     0.7702 0.000 0.012 0.984 0.004 0.000
#> GSM447417     4  0.6580    -0.1798 0.000 0.348 0.168 0.476 0.008
#> GSM447419     1  0.0955     0.9188 0.968 0.028 0.000 0.004 0.000
#> GSM447420     1  0.1041     0.9178 0.964 0.032 0.000 0.004 0.000
#> GSM447421     1  0.0865     0.9193 0.972 0.024 0.000 0.004 0.000
#> GSM447423     3  0.0510     0.7703 0.000 0.016 0.984 0.000 0.000
#> GSM447436     1  0.3535     0.7968 0.808 0.164 0.000 0.028 0.000
#> GSM447437     1  0.2734     0.9031 0.892 0.008 0.000 0.048 0.052
#> GSM447438     2  0.5850     0.2931 0.012 0.484 0.064 0.440 0.000
#> GSM447447     1  0.3449     0.8024 0.812 0.164 0.000 0.024 0.000
#> GSM447454     3  0.0703     0.7687 0.000 0.024 0.976 0.000 0.000
#> GSM447457     3  0.0510     0.7703 0.000 0.016 0.984 0.000 0.000
#> GSM447460     3  0.2621     0.7154 0.008 0.112 0.876 0.004 0.000
#> GSM447465     3  0.0162     0.7681 0.000 0.000 0.996 0.004 0.000
#> GSM447471     1  0.1717     0.9153 0.936 0.004 0.000 0.008 0.052
#> GSM447476     2  0.5527     0.3513 0.000 0.540 0.072 0.388 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     4  0.6066     0.2699 0.128 0.000 0.060 0.580 0.232 0.000
#> GSM447411     1  0.4147     0.7168 0.552 0.012 0.000 0.000 0.000 0.436
#> GSM447413     3  0.0146     0.7874 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM447415     6  0.3126     0.3709 0.248 0.000 0.000 0.000 0.000 0.752
#> GSM447416     3  0.0000     0.7880 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447425     4  0.0146     0.4862 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM447430     5  0.3596     0.9834 0.000 0.232 0.004 0.016 0.748 0.000
#> GSM447435     1  0.4161     0.7040 0.540 0.012 0.000 0.000 0.000 0.448
#> GSM447440     1  0.4161     0.7040 0.540 0.012 0.000 0.000 0.000 0.448
#> GSM447444     6  0.4425     0.5285 0.132 0.152 0.000 0.000 0.000 0.716
#> GSM447448     6  0.4972     0.4075 0.256 0.116 0.000 0.000 0.000 0.628
#> GSM447449     3  0.5114     0.1397 0.000 0.444 0.492 0.000 0.052 0.012
#> GSM447450     1  0.4161     0.7040 0.540 0.012 0.000 0.000 0.000 0.448
#> GSM447452     4  0.0146     0.4862 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM447458     2  0.4010     0.4708 0.008 0.792 0.128 0.000 0.052 0.020
#> GSM447461     2  0.2790     0.5591 0.012 0.868 0.088 0.000 0.000 0.032
#> GSM447464     6  0.1957     0.6977 0.112 0.000 0.000 0.000 0.000 0.888
#> GSM447468     6  0.0000     0.7545 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447472     6  0.0000     0.7545 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447400     6  0.1814     0.7047 0.100 0.000 0.000 0.000 0.000 0.900
#> GSM447402     4  0.7716     0.0255 0.100 0.296 0.124 0.420 0.060 0.000
#> GSM447403     1  0.3765     0.6785 0.596 0.000 0.000 0.000 0.000 0.404
#> GSM447405     1  0.7068    -0.2571 0.368 0.096 0.000 0.360 0.000 0.176
#> GSM447418     3  0.0291     0.7883 0.000 0.004 0.992 0.000 0.004 0.000
#> GSM447422     3  0.5098     0.1919 0.000 0.424 0.512 0.000 0.052 0.012
#> GSM447424     3  0.0146     0.7874 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM447427     3  0.0146     0.7882 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM447428     6  0.0291     0.7520 0.004 0.004 0.000 0.000 0.000 0.992
#> GSM447429     6  0.2597     0.6023 0.176 0.000 0.000 0.000 0.000 0.824
#> GSM447431     3  0.2398     0.7072 0.000 0.020 0.876 0.000 0.104 0.000
#> GSM447432     3  0.5116     0.1286 0.000 0.448 0.488 0.000 0.052 0.012
#> GSM447434     3  0.7001     0.0510 0.080 0.232 0.428 0.000 0.000 0.260
#> GSM447442     3  0.5098     0.1919 0.000 0.424 0.512 0.000 0.052 0.012
#> GSM447451     2  0.2790     0.5591 0.012 0.868 0.088 0.000 0.000 0.032
#> GSM447462     6  0.1814     0.7047 0.100 0.000 0.000 0.000 0.000 0.900
#> GSM447463     1  0.3727     0.7237 0.612 0.000 0.000 0.000 0.000 0.388
#> GSM447467     2  0.6280     0.2395 0.036 0.492 0.160 0.000 0.000 0.312
#> GSM447469     4  0.7944     0.0964 0.100 0.216 0.200 0.420 0.064 0.000
#> GSM447473     1  0.3765     0.6785 0.596 0.000 0.000 0.000 0.000 0.404
#> GSM447404     1  0.3727     0.6905 0.612 0.000 0.000 0.000 0.000 0.388
#> GSM447406     5  0.3488     0.9835 0.000 0.216 0.004 0.016 0.764 0.000
#> GSM447407     4  0.2902     0.3695 0.000 0.000 0.004 0.800 0.196 0.000
#> GSM447409     1  0.3741     0.6974 0.672 0.008 0.000 0.000 0.000 0.320
#> GSM447412     3  0.0146     0.7882 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM447426     4  0.6066     0.2699 0.128 0.000 0.060 0.580 0.232 0.000
#> GSM447433     1  0.4256     0.5944 0.564 0.012 0.000 0.000 0.004 0.420
#> GSM447439     5  0.3488     0.9835 0.000 0.216 0.004 0.016 0.764 0.000
#> GSM447441     3  0.2398     0.7072 0.000 0.020 0.876 0.000 0.104 0.000
#> GSM447443     6  0.0000     0.7545 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447445     1  0.4292     0.5901 0.588 0.024 0.000 0.000 0.000 0.388
#> GSM447446     6  0.4230     0.5304 0.292 0.024 0.000 0.004 0.004 0.676
#> GSM447453     6  0.3595     0.3517 0.288 0.008 0.000 0.000 0.000 0.704
#> GSM447455     2  0.5114    -0.1333 0.000 0.492 0.444 0.000 0.052 0.012
#> GSM447456     2  0.2011     0.4653 0.064 0.912 0.000 0.000 0.004 0.020
#> GSM447459     5  0.3596     0.9834 0.000 0.232 0.004 0.016 0.748 0.000
#> GSM447466     1  0.3769     0.7298 0.640 0.004 0.000 0.000 0.000 0.356
#> GSM447470     2  0.2948     0.5561 0.012 0.860 0.084 0.000 0.000 0.044
#> GSM447474     6  0.0508     0.7536 0.012 0.004 0.000 0.000 0.000 0.984
#> GSM447475     2  0.1777     0.5409 0.012 0.932 0.024 0.000 0.000 0.032
#> GSM447398     2  0.1700     0.5114 0.048 0.928 0.024 0.000 0.000 0.000
#> GSM447399     3  0.4443     0.5086 0.068 0.232 0.696 0.000 0.004 0.000
#> GSM447408     2  0.6291     0.1562 0.092 0.488 0.028 0.368 0.024 0.000
#> GSM447410     2  0.6291     0.1562 0.092 0.488 0.028 0.368 0.024 0.000
#> GSM447414     3  0.0508     0.7875 0.000 0.012 0.984 0.000 0.004 0.000
#> GSM447417     4  0.7716     0.0255 0.100 0.296 0.124 0.420 0.060 0.000
#> GSM447419     6  0.0000     0.7545 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447420     6  0.0508     0.7536 0.012 0.004 0.000 0.000 0.000 0.984
#> GSM447421     6  0.1957     0.6977 0.112 0.000 0.000 0.000 0.000 0.888
#> GSM447423     3  0.0547     0.7867 0.000 0.020 0.980 0.000 0.000 0.000
#> GSM447436     6  0.4248     0.5266 0.296 0.024 0.000 0.004 0.004 0.672
#> GSM447437     1  0.3727     0.7237 0.612 0.000 0.000 0.000 0.000 0.388
#> GSM447438     2  0.7090     0.0798 0.160 0.416 0.028 0.360 0.016 0.020
#> GSM447447     6  0.3927     0.5582 0.260 0.024 0.000 0.000 0.004 0.712
#> GSM447454     3  0.0713     0.7847 0.000 0.028 0.972 0.000 0.000 0.000
#> GSM447457     3  0.0547     0.7867 0.000 0.020 0.980 0.000 0.000 0.000
#> GSM447460     3  0.2408     0.7147 0.000 0.108 0.876 0.000 0.004 0.012
#> GSM447465     3  0.0146     0.7874 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM447471     1  0.3765     0.6785 0.596 0.000 0.000 0.000 0.000 0.404
#> GSM447476     2  0.6291     0.1562 0.092 0.488 0.028 0.368 0.024 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n gender(p) agent(p) k
#> SD:hclust 78     0.846   0.3593 2
#> SD:hclust 58     0.203   0.1244 3
#> SD:hclust 44     1.000   0.1637 4
#> SD:hclust 58     0.526   0.0375 5
#> SD:hclust 54     0.887   0.0647 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.977       0.987         0.5053 0.494   0.494
#> 3 3 0.606           0.617       0.777         0.2664 0.796   0.606
#> 4 4 0.527           0.510       0.702         0.1252 0.846   0.614
#> 5 5 0.555           0.463       0.634         0.0770 0.856   0.567
#> 6 6 0.612           0.560       0.694         0.0534 0.914   0.641

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2  0.0672      0.987 0.008 0.992
#> GSM447411     1  0.0376      0.989 0.996 0.004
#> GSM447413     2  0.0672      0.987 0.008 0.992
#> GSM447415     1  0.0000      0.988 1.000 0.000
#> GSM447416     2  0.0672      0.987 0.008 0.992
#> GSM447425     2  0.0000      0.987 0.000 1.000
#> GSM447430     2  0.0000      0.987 0.000 1.000
#> GSM447435     1  0.0376      0.989 0.996 0.004
#> GSM447440     1  0.0376      0.989 0.996 0.004
#> GSM447444     1  0.0376      0.989 0.996 0.004
#> GSM447448     1  0.0376      0.989 0.996 0.004
#> GSM447449     2  0.0376      0.987 0.004 0.996
#> GSM447450     1  0.0376      0.989 0.996 0.004
#> GSM447452     2  0.0000      0.987 0.000 1.000
#> GSM447458     2  0.0376      0.987 0.004 0.996
#> GSM447461     2  0.0376      0.987 0.004 0.996
#> GSM447464     1  0.0376      0.989 0.996 0.004
#> GSM447468     1  0.0000      0.988 1.000 0.000
#> GSM447472     1  0.0376      0.989 0.996 0.004
#> GSM447400     1  0.0000      0.988 1.000 0.000
#> GSM447402     2  0.0000      0.987 0.000 1.000
#> GSM447403     1  0.0000      0.988 1.000 0.000
#> GSM447405     1  0.0672      0.987 0.992 0.008
#> GSM447418     2  0.0672      0.987 0.008 0.992
#> GSM447422     2  0.0672      0.987 0.008 0.992
#> GSM447424     2  0.0672      0.987 0.008 0.992
#> GSM447427     2  0.0672      0.987 0.008 0.992
#> GSM447428     1  0.2948      0.942 0.948 0.052
#> GSM447429     1  0.0000      0.988 1.000 0.000
#> GSM447431     2  0.0672      0.987 0.008 0.992
#> GSM447432     2  0.0376      0.987 0.004 0.996
#> GSM447434     1  0.0000      0.988 1.000 0.000
#> GSM447442     2  0.0376      0.987 0.004 0.996
#> GSM447451     2  0.0376      0.987 0.004 0.996
#> GSM447462     1  0.0000      0.988 1.000 0.000
#> GSM447463     1  0.0376      0.989 0.996 0.004
#> GSM447467     1  0.3431      0.933 0.936 0.064
#> GSM447469     2  0.0000      0.987 0.000 1.000
#> GSM447473     1  0.0000      0.988 1.000 0.000
#> GSM447404     1  0.0000      0.988 1.000 0.000
#> GSM447406     2  0.0000      0.987 0.000 1.000
#> GSM447407     2  0.0000      0.987 0.000 1.000
#> GSM447409     1  0.0672      0.987 0.992 0.008
#> GSM447412     2  0.0672      0.987 0.008 0.992
#> GSM447426     2  0.0672      0.987 0.008 0.992
#> GSM447433     1  0.0672      0.987 0.992 0.008
#> GSM447439     2  0.0000      0.987 0.000 1.000
#> GSM447441     2  0.0376      0.987 0.004 0.996
#> GSM447443     1  0.0000      0.988 1.000 0.000
#> GSM447445     1  0.0376      0.989 0.996 0.004
#> GSM447446     1  0.0672      0.987 0.992 0.008
#> GSM447453     1  0.0376      0.989 0.996 0.004
#> GSM447455     2  0.0376      0.987 0.004 0.996
#> GSM447456     1  0.7674      0.715 0.776 0.224
#> GSM447459     2  0.0000      0.987 0.000 1.000
#> GSM447466     1  0.0376      0.989 0.996 0.004
#> GSM447470     1  0.0376      0.989 0.996 0.004
#> GSM447474     1  0.0376      0.989 0.996 0.004
#> GSM447475     2  0.6973      0.773 0.188 0.812
#> GSM447398     2  0.0376      0.987 0.004 0.996
#> GSM447399     2  0.0672      0.987 0.008 0.992
#> GSM447408     2  0.0000      0.987 0.000 1.000
#> GSM447410     2  0.0000      0.987 0.000 1.000
#> GSM447414     2  0.0672      0.987 0.008 0.992
#> GSM447417     2  0.0000      0.987 0.000 1.000
#> GSM447419     1  0.0000      0.988 1.000 0.000
#> GSM447420     1  0.0000      0.988 1.000 0.000
#> GSM447421     1  0.0000      0.988 1.000 0.000
#> GSM447423     2  0.0672      0.987 0.008 0.992
#> GSM447436     1  0.0672      0.987 0.992 0.008
#> GSM447437     1  0.0376      0.989 0.996 0.004
#> GSM447438     2  0.0000      0.987 0.000 1.000
#> GSM447447     1  0.0376      0.989 0.996 0.004
#> GSM447454     2  0.0672      0.987 0.008 0.992
#> GSM447457     2  0.0672      0.987 0.008 0.992
#> GSM447460     2  0.0376      0.987 0.004 0.996
#> GSM447465     2  0.0672      0.987 0.008 0.992
#> GSM447471     1  0.0000      0.988 1.000 0.000
#> GSM447476     2  0.6973      0.769 0.188 0.812

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.5138    0.49686 0.000 0.252 0.748
#> GSM447411     1  0.0000    0.93091 1.000 0.000 0.000
#> GSM447413     3  0.5363    0.54950 0.000 0.276 0.724
#> GSM447415     1  0.1529    0.92447 0.960 0.000 0.040
#> GSM447416     3  0.6079    0.59832 0.000 0.388 0.612
#> GSM447425     2  0.4978    0.53765 0.004 0.780 0.216
#> GSM447430     2  0.4121    0.56390 0.000 0.832 0.168
#> GSM447435     1  0.0000    0.93091 1.000 0.000 0.000
#> GSM447440     1  0.2625    0.92648 0.916 0.000 0.084
#> GSM447444     1  0.4399    0.88452 0.812 0.000 0.188
#> GSM447448     1  0.3686    0.90574 0.860 0.000 0.140
#> GSM447449     2  0.5926   -0.01135 0.000 0.644 0.356
#> GSM447450     1  0.0747    0.93220 0.984 0.000 0.016
#> GSM447452     2  0.4605    0.54137 0.000 0.796 0.204
#> GSM447458     2  0.6205    0.15904 0.008 0.656 0.336
#> GSM447461     2  0.6095    0.11559 0.000 0.608 0.392
#> GSM447464     1  0.2165    0.92934 0.936 0.000 0.064
#> GSM447468     1  0.2066    0.92293 0.940 0.000 0.060
#> GSM447472     1  0.4062    0.89785 0.836 0.000 0.164
#> GSM447400     1  0.3551    0.92156 0.868 0.000 0.132
#> GSM447402     2  0.1031    0.57274 0.000 0.976 0.024
#> GSM447403     1  0.1411    0.92535 0.964 0.000 0.036
#> GSM447405     1  0.3941    0.89657 0.844 0.000 0.156
#> GSM447418     3  0.6168    0.59647 0.000 0.412 0.588
#> GSM447422     3  0.6192    0.59328 0.000 0.420 0.580
#> GSM447424     3  0.5497    0.56708 0.000 0.292 0.708
#> GSM447427     3  0.6180    0.59560 0.000 0.416 0.584
#> GSM447428     3  0.5881    0.25794 0.256 0.016 0.728
#> GSM447429     1  0.2261    0.92713 0.932 0.000 0.068
#> GSM447431     3  0.6126    0.59928 0.000 0.400 0.600
#> GSM447432     2  0.5650    0.13244 0.000 0.688 0.312
#> GSM447434     1  0.4399    0.89259 0.812 0.000 0.188
#> GSM447442     2  0.5650    0.13244 0.000 0.688 0.312
#> GSM447451     3  0.6309   -0.02016 0.000 0.496 0.504
#> GSM447462     1  0.3816    0.91709 0.852 0.000 0.148
#> GSM447463     1  0.0237    0.93155 0.996 0.000 0.004
#> GSM447467     3  0.9575    0.12827 0.320 0.216 0.464
#> GSM447469     2  0.3482    0.57175 0.000 0.872 0.128
#> GSM447473     1  0.1411    0.92535 0.964 0.000 0.036
#> GSM447404     1  0.1411    0.92535 0.964 0.000 0.036
#> GSM447406     2  0.4121    0.56390 0.000 0.832 0.168
#> GSM447407     2  0.4346    0.55534 0.000 0.816 0.184
#> GSM447409     1  0.0237    0.93004 0.996 0.000 0.004
#> GSM447412     3  0.6154    0.59541 0.000 0.408 0.592
#> GSM447426     3  0.5138    0.49686 0.000 0.252 0.748
#> GSM447433     1  0.3482    0.90916 0.872 0.000 0.128
#> GSM447439     2  0.4002    0.56714 0.000 0.840 0.160
#> GSM447441     2  0.5905   -0.02452 0.000 0.648 0.352
#> GSM447443     1  0.2711    0.92718 0.912 0.000 0.088
#> GSM447445     1  0.0237    0.93155 0.996 0.000 0.004
#> GSM447446     1  0.3116    0.91585 0.892 0.000 0.108
#> GSM447453     1  0.0000    0.93091 1.000 0.000 0.000
#> GSM447455     2  0.5650    0.13244 0.000 0.688 0.312
#> GSM447456     2  0.9342   -0.00377 0.380 0.452 0.168
#> GSM447459     2  0.4121    0.56390 0.000 0.832 0.168
#> GSM447466     1  0.0424    0.92928 0.992 0.000 0.008
#> GSM447470     1  0.4346    0.88691 0.816 0.000 0.184
#> GSM447474     1  0.4399    0.88623 0.812 0.000 0.188
#> GSM447475     3  0.7295   -0.09873 0.028 0.484 0.488
#> GSM447398     2  0.4399    0.49133 0.000 0.812 0.188
#> GSM447399     2  0.5760    0.11829 0.000 0.672 0.328
#> GSM447408     2  0.0000    0.57306 0.000 1.000 0.000
#> GSM447410     2  0.1860    0.56501 0.000 0.948 0.052
#> GSM447414     3  0.5465    0.55937 0.000 0.288 0.712
#> GSM447417     2  0.0592    0.57465 0.000 0.988 0.012
#> GSM447419     1  0.4605    0.89492 0.796 0.000 0.204
#> GSM447420     3  0.6267   -0.31158 0.452 0.000 0.548
#> GSM447421     1  0.2625    0.92733 0.916 0.000 0.084
#> GSM447423     3  0.6168    0.58856 0.000 0.412 0.588
#> GSM447436     1  0.2165    0.92866 0.936 0.000 0.064
#> GSM447437     1  0.0000    0.93091 1.000 0.000 0.000
#> GSM447438     2  0.3686    0.51153 0.000 0.860 0.140
#> GSM447447     1  0.3686    0.90569 0.860 0.000 0.140
#> GSM447454     3  0.6204    0.57663 0.000 0.424 0.576
#> GSM447457     3  0.6180    0.57195 0.000 0.416 0.584
#> GSM447460     3  0.6308    0.06828 0.000 0.492 0.508
#> GSM447465     3  0.5497    0.56708 0.000 0.292 0.708
#> GSM447471     1  0.1411    0.92535 0.964 0.000 0.036
#> GSM447476     2  0.5947    0.42493 0.052 0.776 0.172

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     2  0.7722    0.40917 0.000 0.428 0.336 0.236
#> GSM447411     1  0.2530    0.66564 0.896 0.000 0.100 0.004
#> GSM447413     2  0.6897    0.53876 0.000 0.584 0.256 0.160
#> GSM447415     1  0.0804    0.65115 0.980 0.000 0.008 0.012
#> GSM447416     2  0.5491    0.60364 0.000 0.688 0.260 0.052
#> GSM447425     4  0.4387    0.72606 0.000 0.052 0.144 0.804
#> GSM447430     4  0.2149    0.78686 0.000 0.088 0.000 0.912
#> GSM447435     1  0.2530    0.66564 0.896 0.000 0.100 0.004
#> GSM447440     1  0.4567    0.58345 0.716 0.000 0.276 0.008
#> GSM447444     3  0.5167   -0.28306 0.488 0.000 0.508 0.004
#> GSM447448     1  0.4964    0.43190 0.616 0.000 0.380 0.004
#> GSM447449     2  0.4337    0.52763 0.000 0.808 0.052 0.140
#> GSM447450     1  0.3591    0.65920 0.824 0.000 0.168 0.008
#> GSM447452     4  0.3383    0.74166 0.000 0.052 0.076 0.872
#> GSM447458     2  0.6079    0.38934 0.004 0.692 0.120 0.184
#> GSM447461     2  0.5535    0.42928 0.000 0.720 0.088 0.192
#> GSM447464     1  0.4728    0.53681 0.752 0.000 0.216 0.032
#> GSM447468     1  0.3606    0.60143 0.840 0.000 0.140 0.020
#> GSM447472     1  0.5143    0.26324 0.540 0.000 0.456 0.004
#> GSM447400     1  0.5193    0.42942 0.656 0.000 0.324 0.020
#> GSM447402     4  0.6592    0.70824 0.000 0.260 0.128 0.612
#> GSM447403     1  0.1042    0.65370 0.972 0.000 0.008 0.020
#> GSM447405     1  0.5372    0.34640 0.544 0.000 0.444 0.012
#> GSM447418     2  0.4690    0.61470 0.000 0.724 0.260 0.016
#> GSM447422     2  0.4690    0.61470 0.000 0.724 0.260 0.016
#> GSM447424     2  0.6740    0.54921 0.000 0.600 0.256 0.144
#> GSM447427     2  0.4576    0.61468 0.000 0.728 0.260 0.012
#> GSM447428     3  0.7172    0.14720 0.132 0.304 0.556 0.008
#> GSM447429     1  0.4163    0.56618 0.792 0.000 0.188 0.020
#> GSM447431     2  0.5845    0.61114 0.000 0.672 0.252 0.076
#> GSM447432     2  0.4462    0.48983 0.000 0.792 0.044 0.164
#> GSM447434     1  0.5070    0.27426 0.580 0.000 0.416 0.004
#> GSM447442     2  0.4624    0.50321 0.000 0.784 0.052 0.164
#> GSM447451     2  0.6295    0.38527 0.000 0.656 0.212 0.132
#> GSM447462     1  0.5233    0.41675 0.648 0.000 0.332 0.020
#> GSM447463     1  0.2714    0.66553 0.884 0.000 0.112 0.004
#> GSM447467     3  0.6735    0.12894 0.060 0.444 0.484 0.012
#> GSM447469     4  0.5412    0.75155 0.000 0.168 0.096 0.736
#> GSM447473     1  0.1042    0.65370 0.972 0.000 0.008 0.020
#> GSM447404     1  0.0779    0.65149 0.980 0.000 0.004 0.016
#> GSM447406     4  0.2149    0.78686 0.000 0.088 0.000 0.912
#> GSM447407     4  0.2596    0.77429 0.000 0.068 0.024 0.908
#> GSM447409     1  0.2675    0.66481 0.892 0.000 0.100 0.008
#> GSM447412     2  0.4485    0.61371 0.000 0.740 0.248 0.012
#> GSM447426     2  0.7722    0.40917 0.000 0.428 0.336 0.236
#> GSM447433     1  0.5290    0.41424 0.584 0.000 0.404 0.012
#> GSM447439     4  0.2345    0.78870 0.000 0.100 0.000 0.900
#> GSM447441     2  0.3545    0.53197 0.000 0.828 0.008 0.164
#> GSM447443     1  0.4933    0.46272 0.688 0.000 0.296 0.016
#> GSM447445     1  0.3105    0.66572 0.856 0.000 0.140 0.004
#> GSM447446     1  0.5364    0.42868 0.592 0.000 0.392 0.016
#> GSM447453     1  0.3208    0.66038 0.848 0.000 0.148 0.004
#> GSM447455     2  0.4378    0.49679 0.000 0.796 0.040 0.164
#> GSM447456     3  0.9490    0.15220 0.124 0.260 0.384 0.232
#> GSM447459     4  0.2149    0.78686 0.000 0.088 0.000 0.912
#> GSM447466     1  0.2611    0.66860 0.896 0.000 0.096 0.008
#> GSM447470     3  0.5165   -0.28211 0.484 0.000 0.512 0.004
#> GSM447474     3  0.5396   -0.28045 0.464 0.000 0.524 0.012
#> GSM447475     2  0.7007    0.25801 0.004 0.556 0.316 0.124
#> GSM447398     2  0.6894   -0.00993 0.000 0.536 0.120 0.344
#> GSM447399     2  0.4284    0.52565 0.000 0.780 0.020 0.200
#> GSM447408     4  0.5420    0.71099 0.000 0.272 0.044 0.684
#> GSM447410     4  0.5905    0.65715 0.000 0.304 0.060 0.636
#> GSM447414     2  0.6781    0.54666 0.000 0.596 0.256 0.148
#> GSM447417     4  0.5940    0.73442 0.000 0.240 0.088 0.672
#> GSM447419     1  0.5217    0.30366 0.608 0.000 0.380 0.012
#> GSM447420     3  0.7122    0.23196 0.296 0.120 0.572 0.012
#> GSM447421     1  0.5083    0.50336 0.716 0.000 0.248 0.036
#> GSM447423     2  0.4516    0.61265 0.000 0.736 0.252 0.012
#> GSM447436     1  0.5069    0.51223 0.664 0.000 0.320 0.016
#> GSM447437     1  0.2593    0.66676 0.892 0.000 0.104 0.004
#> GSM447438     4  0.6719    0.63030 0.000 0.240 0.152 0.608
#> GSM447447     1  0.5203    0.39599 0.576 0.000 0.416 0.008
#> GSM447454     2  0.0921    0.60220 0.000 0.972 0.028 0.000
#> GSM447457     2  0.0921    0.60220 0.000 0.972 0.028 0.000
#> GSM447460     2  0.5859    0.48898 0.000 0.652 0.064 0.284
#> GSM447465     2  0.5080    0.58078 0.000 0.764 0.092 0.144
#> GSM447471     1  0.1042    0.65370 0.972 0.000 0.008 0.020
#> GSM447476     4  0.7508    0.60132 0.012 0.204 0.228 0.556

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     3  0.6014     0.5678 0.000 0.044 0.652 0.208 0.096
#> GSM447411     1  0.0865     0.4981 0.972 0.000 0.024 0.000 0.004
#> GSM447413     3  0.5670     0.7472 0.000 0.148 0.672 0.164 0.016
#> GSM447415     1  0.4661     0.3449 0.736 0.000 0.036 0.020 0.208
#> GSM447416     3  0.4430     0.7826 0.000 0.256 0.708 0.036 0.000
#> GSM447425     4  0.5258     0.6442 0.000 0.048 0.072 0.732 0.148
#> GSM447430     4  0.3321     0.7165 0.000 0.136 0.032 0.832 0.000
#> GSM447435     1  0.0865     0.4981 0.972 0.000 0.024 0.000 0.004
#> GSM447440     1  0.4523     0.3778 0.776 0.036 0.040 0.000 0.148
#> GSM447444     1  0.5816    -0.0530 0.508 0.056 0.016 0.000 0.420
#> GSM447448     1  0.5536     0.1550 0.596 0.044 0.020 0.000 0.340
#> GSM447449     2  0.2669     0.6952 0.000 0.876 0.104 0.020 0.000
#> GSM447450     1  0.2654     0.4737 0.896 0.008 0.040 0.000 0.056
#> GSM447452     4  0.4764     0.6785 0.000 0.080 0.080 0.780 0.060
#> GSM447458     2  0.3190     0.6864 0.024 0.880 0.060 0.024 0.012
#> GSM447461     2  0.2283     0.6793 0.000 0.916 0.008 0.036 0.040
#> GSM447464     1  0.5826    -0.2145 0.564 0.000 0.060 0.020 0.356
#> GSM447468     1  0.5841    -0.0855 0.524 0.000 0.048 0.024 0.404
#> GSM447472     1  0.5440    -0.2255 0.476 0.048 0.004 0.000 0.472
#> GSM447400     5  0.5685     0.4956 0.380 0.004 0.048 0.012 0.556
#> GSM447402     4  0.6819     0.5881 0.000 0.324 0.048 0.516 0.112
#> GSM447403     1  0.5057     0.3066 0.688 0.000 0.036 0.024 0.252
#> GSM447405     1  0.7920     0.1594 0.396 0.036 0.064 0.112 0.392
#> GSM447418     3  0.3741     0.7732 0.000 0.264 0.732 0.004 0.000
#> GSM447422     3  0.3752     0.7554 0.000 0.292 0.708 0.000 0.000
#> GSM447424     3  0.4959     0.7637 0.000 0.160 0.712 0.128 0.000
#> GSM447427     3  0.3636     0.7678 0.000 0.272 0.728 0.000 0.000
#> GSM447428     5  0.6728     0.0423 0.064 0.068 0.420 0.000 0.448
#> GSM447429     1  0.5266    -0.3053 0.496 0.000 0.020 0.016 0.468
#> GSM447431     3  0.5873     0.6520 0.000 0.328 0.584 0.064 0.024
#> GSM447432     2  0.2351     0.6999 0.000 0.896 0.088 0.016 0.000
#> GSM447434     5  0.5647     0.2898 0.388 0.048 0.016 0.000 0.548
#> GSM447442     2  0.2573     0.6961 0.000 0.880 0.104 0.016 0.000
#> GSM447451     2  0.2783     0.6543 0.000 0.868 0.012 0.004 0.116
#> GSM447462     5  0.5685     0.4994 0.380 0.004 0.048 0.012 0.556
#> GSM447463     1  0.1277     0.4884 0.960 0.004 0.004 0.004 0.028
#> GSM447467     2  0.5485     0.4488 0.092 0.652 0.008 0.000 0.248
#> GSM447469     4  0.6585     0.6598 0.000 0.232 0.096 0.600 0.072
#> GSM447473     1  0.5057     0.3066 0.688 0.000 0.036 0.024 0.252
#> GSM447404     1  0.4733     0.3365 0.728 0.000 0.032 0.024 0.216
#> GSM447406     4  0.3321     0.7165 0.000 0.136 0.032 0.832 0.000
#> GSM447407     4  0.3218     0.7111 0.000 0.096 0.032 0.860 0.012
#> GSM447409     1  0.2728     0.4886 0.896 0.000 0.048 0.016 0.040
#> GSM447412     3  0.4251     0.7485 0.000 0.316 0.672 0.000 0.012
#> GSM447426     3  0.6014     0.5678 0.000 0.044 0.652 0.208 0.096
#> GSM447433     1  0.7693     0.1932 0.440 0.032 0.052 0.112 0.364
#> GSM447439     4  0.3197     0.7174 0.000 0.140 0.024 0.836 0.000
#> GSM447441     2  0.4320     0.6519 0.000 0.792 0.132 0.052 0.024
#> GSM447443     5  0.5244     0.4481 0.360 0.000 0.024 0.020 0.596
#> GSM447445     1  0.1710     0.4932 0.940 0.004 0.016 0.000 0.040
#> GSM447446     1  0.7847     0.1916 0.424 0.032 0.064 0.112 0.368
#> GSM447453     1  0.3322     0.4791 0.848 0.000 0.044 0.004 0.104
#> GSM447455     2  0.2519     0.6974 0.000 0.884 0.100 0.016 0.000
#> GSM447456     2  0.7020     0.3352 0.120 0.564 0.016 0.044 0.256
#> GSM447459     4  0.3321     0.7165 0.000 0.136 0.032 0.832 0.000
#> GSM447466     1  0.1393     0.4871 0.956 0.000 0.012 0.008 0.024
#> GSM447470     1  0.5651    -0.1768 0.492 0.056 0.008 0.000 0.444
#> GSM447474     5  0.5859     0.2634 0.460 0.028 0.032 0.004 0.476
#> GSM447475     2  0.3894     0.5896 0.036 0.800 0.008 0.000 0.156
#> GSM447398     2  0.3581     0.5707 0.008 0.840 0.004 0.108 0.040
#> GSM447399     2  0.4659     0.6207 0.000 0.752 0.168 0.068 0.012
#> GSM447408     4  0.4930     0.6036 0.000 0.388 0.000 0.580 0.032
#> GSM447410     4  0.5735     0.5451 0.000 0.432 0.004 0.492 0.072
#> GSM447414     3  0.5477     0.7602 0.000 0.160 0.692 0.132 0.016
#> GSM447417     4  0.6161     0.6539 0.000 0.300 0.040 0.588 0.072
#> GSM447419     5  0.4694     0.4966 0.292 0.012 0.020 0.000 0.676
#> GSM447420     5  0.6607     0.4069 0.148 0.028 0.240 0.004 0.580
#> GSM447421     5  0.5952     0.3845 0.420 0.000 0.060 0.020 0.500
#> GSM447423     3  0.4135     0.7283 0.000 0.340 0.656 0.000 0.004
#> GSM447436     1  0.7748     0.2413 0.480 0.032 0.064 0.112 0.312
#> GSM447437     1  0.0324     0.4970 0.992 0.000 0.004 0.000 0.004
#> GSM447438     4  0.6526     0.5141 0.000 0.416 0.016 0.444 0.124
#> GSM447447     1  0.6195     0.1542 0.540 0.040 0.024 0.020 0.376
#> GSM447454     2  0.3452     0.4754 0.000 0.756 0.244 0.000 0.000
#> GSM447457     2  0.3607     0.4700 0.000 0.752 0.244 0.000 0.004
#> GSM447460     2  0.5838     0.4397 0.000 0.644 0.192 0.152 0.012
#> GSM447465     2  0.6124    -0.1733 0.000 0.460 0.412 0.128 0.000
#> GSM447471     1  0.5057     0.3066 0.688 0.000 0.036 0.024 0.252
#> GSM447476     4  0.6945     0.4985 0.000 0.324 0.024 0.472 0.180

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     3   0.522     0.6165 0.000 0.004 0.692 0.164 0.096 0.044
#> GSM447411     1   0.145     0.6485 0.948 0.000 0.012 0.000 0.024 0.016
#> GSM447413     3   0.407     0.8069 0.000 0.056 0.804 0.096 0.020 0.024
#> GSM447415     1   0.486     0.3902 0.632 0.000 0.016 0.000 0.052 0.300
#> GSM447416     3   0.296     0.8247 0.000 0.108 0.852 0.032 0.004 0.004
#> GSM447425     4   0.496     0.4728 0.000 0.004 0.028 0.568 0.380 0.020
#> GSM447430     4   0.146     0.6996 0.000 0.044 0.016 0.940 0.000 0.000
#> GSM447435     1   0.163     0.6477 0.940 0.000 0.020 0.000 0.024 0.016
#> GSM447440     1   0.424     0.5351 0.784 0.012 0.020 0.000 0.080 0.104
#> GSM447444     6   0.690     0.2082 0.364 0.052 0.004 0.000 0.204 0.376
#> GSM447448     1   0.611     0.0627 0.536 0.028 0.000 0.000 0.244 0.192
#> GSM447449     2   0.306     0.7344 0.000 0.836 0.132 0.020 0.012 0.000
#> GSM447450     1   0.346     0.5862 0.836 0.004 0.020 0.000 0.056 0.084
#> GSM447452     4   0.310     0.6383 0.000 0.004 0.028 0.852 0.100 0.016
#> GSM447458     2   0.251     0.7501 0.004 0.896 0.064 0.012 0.020 0.004
#> GSM447461     2   0.231     0.7135 0.000 0.892 0.004 0.004 0.088 0.012
#> GSM447464     6   0.526     0.3443 0.428 0.000 0.020 0.000 0.052 0.500
#> GSM447468     6   0.491     0.4370 0.280 0.000 0.016 0.004 0.052 0.648
#> GSM447472     6   0.603     0.4347 0.316 0.020 0.008 0.000 0.128 0.528
#> GSM447400     6   0.397     0.6185 0.152 0.012 0.012 0.000 0.040 0.784
#> GSM447402     4   0.663     0.4372 0.000 0.256 0.016 0.372 0.348 0.008
#> GSM447403     1   0.586     0.3525 0.548 0.000 0.012 0.008 0.132 0.300
#> GSM447405     5   0.579     0.6407 0.240 0.016 0.000 0.008 0.592 0.144
#> GSM447418     3   0.291     0.8123 0.000 0.140 0.840 0.008 0.008 0.004
#> GSM447422     3   0.345     0.7443 0.000 0.224 0.760 0.000 0.012 0.004
#> GSM447424     3   0.305     0.8148 0.000 0.072 0.848 0.076 0.000 0.004
#> GSM447427     3   0.288     0.8078 0.000 0.152 0.832 0.000 0.008 0.008
#> GSM447428     6   0.615     0.1546 0.024 0.028 0.416 0.000 0.072 0.460
#> GSM447429     6   0.424     0.4444 0.308 0.000 0.004 0.000 0.028 0.660
#> GSM447431     3   0.548     0.7409 0.000 0.160 0.696 0.048 0.056 0.040
#> GSM447432     2   0.221     0.7515 0.000 0.900 0.080 0.008 0.008 0.004
#> GSM447434     6   0.596     0.5119 0.216 0.028 0.004 0.000 0.168 0.584
#> GSM447442     2   0.284     0.7388 0.000 0.848 0.128 0.012 0.012 0.000
#> GSM447451     2   0.304     0.6897 0.000 0.832 0.008 0.000 0.140 0.020
#> GSM447462     6   0.408     0.6206 0.156 0.012 0.012 0.000 0.044 0.776
#> GSM447463     1   0.126     0.6499 0.956 0.004 0.004 0.000 0.008 0.028
#> GSM447467     2   0.414     0.6180 0.020 0.780 0.004 0.000 0.072 0.124
#> GSM447469     4   0.681     0.5815 0.000 0.156 0.112 0.524 0.204 0.004
#> GSM447473     1   0.586     0.3525 0.548 0.000 0.012 0.008 0.132 0.300
#> GSM447404     1   0.555     0.3864 0.588 0.000 0.012 0.008 0.100 0.292
#> GSM447406     4   0.175     0.6978 0.000 0.044 0.016 0.932 0.004 0.004
#> GSM447407     4   0.242     0.6826 0.000 0.024 0.016 0.900 0.056 0.004
#> GSM447409     1   0.252     0.5885 0.876 0.000 0.008 0.000 0.100 0.016
#> GSM447412     3   0.390     0.7863 0.000 0.188 0.764 0.000 0.024 0.024
#> GSM447426     3   0.522     0.6165 0.000 0.004 0.692 0.164 0.096 0.044
#> GSM447433     5   0.607     0.6393 0.296 0.012 0.004 0.012 0.544 0.132
#> GSM447439     4   0.161     0.6988 0.000 0.044 0.016 0.936 0.004 0.000
#> GSM447441     2   0.540     0.6622 0.000 0.680 0.192 0.024 0.072 0.032
#> GSM447443     6   0.391     0.6073 0.128 0.000 0.008 0.004 0.072 0.788
#> GSM447445     1   0.228     0.6223 0.904 0.004 0.004 0.000 0.052 0.036
#> GSM447446     5   0.600     0.6283 0.292 0.012 0.004 0.008 0.548 0.136
#> GSM447453     1   0.370     0.5015 0.784 0.000 0.012 0.000 0.168 0.036
#> GSM447455     2   0.262     0.7460 0.000 0.868 0.108 0.012 0.012 0.000
#> GSM447456     2   0.702     0.3232 0.120 0.532 0.004 0.024 0.228 0.092
#> GSM447459     4   0.146     0.6996 0.000 0.044 0.016 0.940 0.000 0.000
#> GSM447466     1   0.169     0.6450 0.932 0.000 0.008 0.000 0.012 0.048
#> GSM447470     6   0.632     0.3793 0.364 0.044 0.004 0.000 0.116 0.472
#> GSM447474     6   0.541     0.4998 0.308 0.028 0.004 0.000 0.064 0.596
#> GSM447475     2   0.325     0.6764 0.008 0.832 0.004 0.000 0.124 0.032
#> GSM447398     2   0.385     0.6303 0.000 0.796 0.000 0.080 0.108 0.016
#> GSM447399     2   0.571     0.5872 0.000 0.640 0.228 0.072 0.032 0.028
#> GSM447408     4   0.503     0.6088 0.000 0.264 0.000 0.628 0.104 0.004
#> GSM447410     4   0.609     0.4812 0.000 0.348 0.000 0.440 0.204 0.008
#> GSM447414     3   0.453     0.8022 0.000 0.076 0.780 0.080 0.036 0.028
#> GSM447417     4   0.617     0.6143 0.000 0.184 0.036 0.564 0.212 0.004
#> GSM447419     6   0.428     0.6123 0.116 0.004 0.012 0.000 0.104 0.764
#> GSM447420     6   0.511     0.5340 0.056 0.020 0.152 0.000 0.052 0.720
#> GSM447421     6   0.420     0.5868 0.176 0.000 0.020 0.000 0.052 0.752
#> GSM447423     3   0.357     0.7434 0.000 0.240 0.744 0.000 0.008 0.008
#> GSM447436     5   0.578     0.5649 0.348 0.016 0.004 0.008 0.540 0.084
#> GSM447437     1   0.112     0.6502 0.960 0.000 0.004 0.000 0.008 0.028
#> GSM447438     4   0.632     0.3832 0.000 0.340 0.000 0.364 0.288 0.008
#> GSM447447     1   0.655    -0.2382 0.472 0.040 0.004 0.000 0.308 0.176
#> GSM447454     2   0.285     0.7052 0.000 0.840 0.140 0.000 0.016 0.004
#> GSM447457     2   0.308     0.6995 0.000 0.828 0.144 0.000 0.020 0.008
#> GSM447460     2   0.586     0.5031 0.000 0.600 0.264 0.088 0.028 0.020
#> GSM447465     2   0.532     0.1452 0.000 0.484 0.432 0.076 0.004 0.004
#> GSM447471     1   0.586     0.3525 0.548 0.000 0.012 0.008 0.132 0.300
#> GSM447476     5   0.652    -0.4214 0.004 0.284 0.004 0.300 0.400 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n gender(p) agent(p) k
#> SD:kmeans 79     0.739   0.4331 2
#> SD:kmeans 60     0.642   0.0861 3
#> SD:kmeans 51     0.501   0.1722 4
#> SD:kmeans 36     0.366   0.7783 5
#> SD:kmeans 57     0.639   0.1055 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.990       0.995         0.5063 0.494   0.494
#> 3 3 0.774           0.856       0.915         0.2742 0.817   0.645
#> 4 4 0.685           0.799       0.848         0.1158 0.907   0.746
#> 5 5 0.660           0.669       0.790         0.0894 0.913   0.701
#> 6 6 0.665           0.523       0.687         0.0419 0.948   0.752

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2  0.0000      0.991 0.000 1.000
#> GSM447411     1  0.0000      1.000 1.000 0.000
#> GSM447413     2  0.0000      0.991 0.000 1.000
#> GSM447415     1  0.0000      1.000 1.000 0.000
#> GSM447416     2  0.0000      0.991 0.000 1.000
#> GSM447425     2  0.0000      0.991 0.000 1.000
#> GSM447430     2  0.0000      0.991 0.000 1.000
#> GSM447435     1  0.0000      1.000 1.000 0.000
#> GSM447440     1  0.0000      1.000 1.000 0.000
#> GSM447444     1  0.0000      1.000 1.000 0.000
#> GSM447448     1  0.0000      1.000 1.000 0.000
#> GSM447449     2  0.0000      0.991 0.000 1.000
#> GSM447450     1  0.0000      1.000 1.000 0.000
#> GSM447452     2  0.0000      0.991 0.000 1.000
#> GSM447458     2  0.0000      0.991 0.000 1.000
#> GSM447461     2  0.0000      0.991 0.000 1.000
#> GSM447464     1  0.0000      1.000 1.000 0.000
#> GSM447468     1  0.0000      1.000 1.000 0.000
#> GSM447472     1  0.0000      1.000 1.000 0.000
#> GSM447400     1  0.0000      1.000 1.000 0.000
#> GSM447402     2  0.0000      0.991 0.000 1.000
#> GSM447403     1  0.0000      1.000 1.000 0.000
#> GSM447405     1  0.0000      1.000 1.000 0.000
#> GSM447418     2  0.0000      0.991 0.000 1.000
#> GSM447422     2  0.0000      0.991 0.000 1.000
#> GSM447424     2  0.0000      0.991 0.000 1.000
#> GSM447427     2  0.0000      0.991 0.000 1.000
#> GSM447428     1  0.0000      1.000 1.000 0.000
#> GSM447429     1  0.0000      1.000 1.000 0.000
#> GSM447431     2  0.0000      0.991 0.000 1.000
#> GSM447432     2  0.0000      0.991 0.000 1.000
#> GSM447434     1  0.0000      1.000 1.000 0.000
#> GSM447442     2  0.0000      0.991 0.000 1.000
#> GSM447451     2  0.0000      0.991 0.000 1.000
#> GSM447462     1  0.0000      1.000 1.000 0.000
#> GSM447463     1  0.0000      1.000 1.000 0.000
#> GSM447467     1  0.0000      1.000 1.000 0.000
#> GSM447469     2  0.0000      0.991 0.000 1.000
#> GSM447473     1  0.0000      1.000 1.000 0.000
#> GSM447404     1  0.0000      1.000 1.000 0.000
#> GSM447406     2  0.0000      0.991 0.000 1.000
#> GSM447407     2  0.0000      0.991 0.000 1.000
#> GSM447409     1  0.0000      1.000 1.000 0.000
#> GSM447412     2  0.0000      0.991 0.000 1.000
#> GSM447426     2  0.0000      0.991 0.000 1.000
#> GSM447433     1  0.0000      1.000 1.000 0.000
#> GSM447439     2  0.0000      0.991 0.000 1.000
#> GSM447441     2  0.0000      0.991 0.000 1.000
#> GSM447443     1  0.0000      1.000 1.000 0.000
#> GSM447445     1  0.0000      1.000 1.000 0.000
#> GSM447446     1  0.0000      1.000 1.000 0.000
#> GSM447453     1  0.0000      1.000 1.000 0.000
#> GSM447455     2  0.0000      0.991 0.000 1.000
#> GSM447456     1  0.0376      0.996 0.996 0.004
#> GSM447459     2  0.0000      0.991 0.000 1.000
#> GSM447466     1  0.0000      1.000 1.000 0.000
#> GSM447470     1  0.0000      1.000 1.000 0.000
#> GSM447474     1  0.0000      1.000 1.000 0.000
#> GSM447475     2  0.7139      0.762 0.196 0.804
#> GSM447398     2  0.0000      0.991 0.000 1.000
#> GSM447399     2  0.0000      0.991 0.000 1.000
#> GSM447408     2  0.0000      0.991 0.000 1.000
#> GSM447410     2  0.0000      0.991 0.000 1.000
#> GSM447414     2  0.0000      0.991 0.000 1.000
#> GSM447417     2  0.0000      0.991 0.000 1.000
#> GSM447419     1  0.0000      1.000 1.000 0.000
#> GSM447420     1  0.0000      1.000 1.000 0.000
#> GSM447421     1  0.0000      1.000 1.000 0.000
#> GSM447423     2  0.0000      0.991 0.000 1.000
#> GSM447436     1  0.0000      1.000 1.000 0.000
#> GSM447437     1  0.0000      1.000 1.000 0.000
#> GSM447438     2  0.0000      0.991 0.000 1.000
#> GSM447447     1  0.0000      1.000 1.000 0.000
#> GSM447454     2  0.0000      0.991 0.000 1.000
#> GSM447457     2  0.0000      0.991 0.000 1.000
#> GSM447460     2  0.0000      0.991 0.000 1.000
#> GSM447465     2  0.0000      0.991 0.000 1.000
#> GSM447471     1  0.0000      1.000 1.000 0.000
#> GSM447476     2  0.6343      0.814 0.160 0.840

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.0000      0.841 0.000 0.000 1.000
#> GSM447411     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447413     3  0.0000      0.841 0.000 0.000 1.000
#> GSM447415     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447416     3  0.0000      0.841 0.000 0.000 1.000
#> GSM447425     2  0.4555      0.881 0.000 0.800 0.200
#> GSM447430     2  0.4555      0.881 0.000 0.800 0.200
#> GSM447435     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447440     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447444     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447448     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447449     3  0.2066      0.820 0.000 0.060 0.940
#> GSM447450     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447452     2  0.4555      0.881 0.000 0.800 0.200
#> GSM447458     3  0.5882      0.344 0.000 0.348 0.652
#> GSM447461     3  0.5591      0.727 0.000 0.304 0.696
#> GSM447464     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447468     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447472     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447400     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447402     2  0.4555      0.881 0.000 0.800 0.200
#> GSM447403     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447405     1  0.5216      0.646 0.740 0.260 0.000
#> GSM447418     3  0.0000      0.841 0.000 0.000 1.000
#> GSM447422     3  0.0000      0.841 0.000 0.000 1.000
#> GSM447424     3  0.0000      0.841 0.000 0.000 1.000
#> GSM447427     3  0.0000      0.841 0.000 0.000 1.000
#> GSM447428     3  0.5905      0.457 0.352 0.000 0.648
#> GSM447429     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447431     3  0.0592      0.841 0.000 0.012 0.988
#> GSM447432     3  0.3038      0.791 0.000 0.104 0.896
#> GSM447434     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447442     3  0.2959      0.794 0.000 0.100 0.900
#> GSM447451     3  0.5178      0.756 0.000 0.256 0.744
#> GSM447462     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447463     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447467     3  0.5956      0.534 0.324 0.004 0.672
#> GSM447469     2  0.4605      0.877 0.000 0.796 0.204
#> GSM447473     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447404     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447406     2  0.4555      0.881 0.000 0.800 0.200
#> GSM447407     2  0.4555      0.881 0.000 0.800 0.200
#> GSM447409     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447412     3  0.4235      0.778 0.000 0.176 0.824
#> GSM447426     3  0.0000      0.841 0.000 0.000 1.000
#> GSM447433     1  0.4887      0.699 0.772 0.228 0.000
#> GSM447439     2  0.4555      0.881 0.000 0.800 0.200
#> GSM447441     3  0.5138      0.759 0.000 0.252 0.748
#> GSM447443     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447445     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447446     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447453     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447455     3  0.3038      0.791 0.000 0.104 0.896
#> GSM447456     2  0.5363      0.588 0.276 0.724 0.000
#> GSM447459     2  0.4555      0.881 0.000 0.800 0.200
#> GSM447466     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447470     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447474     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447475     3  0.5529      0.734 0.000 0.296 0.704
#> GSM447398     2  0.0000      0.802 0.000 1.000 0.000
#> GSM447399     3  0.5016      0.600 0.000 0.240 0.760
#> GSM447408     2  0.0000      0.802 0.000 1.000 0.000
#> GSM447410     2  0.0000      0.802 0.000 1.000 0.000
#> GSM447414     3  0.0000      0.841 0.000 0.000 1.000
#> GSM447417     2  0.4555      0.881 0.000 0.800 0.200
#> GSM447419     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447420     1  0.5760      0.485 0.672 0.000 0.328
#> GSM447421     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447423     3  0.4555      0.763 0.000 0.200 0.800
#> GSM447436     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447437     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447438     2  0.0000      0.802 0.000 1.000 0.000
#> GSM447447     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447454     3  0.4504      0.766 0.000 0.196 0.804
#> GSM447457     3  0.4555      0.763 0.000 0.200 0.800
#> GSM447460     3  0.2066      0.820 0.000 0.060 0.940
#> GSM447465     3  0.0000      0.841 0.000 0.000 1.000
#> GSM447471     1  0.0000      0.974 1.000 0.000 0.000
#> GSM447476     2  0.0000      0.802 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.3356      0.815 0.000 0.000 0.824 0.176
#> GSM447411     1  0.0524      0.903 0.988 0.008 0.000 0.004
#> GSM447413     3  0.3123      0.823 0.000 0.000 0.844 0.156
#> GSM447415     1  0.0336      0.905 0.992 0.008 0.000 0.000
#> GSM447416     3  0.2868      0.827 0.000 0.000 0.864 0.136
#> GSM447425     4  0.0927      0.896 0.000 0.008 0.016 0.976
#> GSM447430     4  0.1406      0.897 0.000 0.024 0.016 0.960
#> GSM447435     1  0.0336      0.904 0.992 0.008 0.000 0.000
#> GSM447440     1  0.0657      0.905 0.984 0.012 0.004 0.000
#> GSM447444     1  0.2915      0.885 0.892 0.028 0.080 0.000
#> GSM447448     1  0.0992      0.901 0.976 0.012 0.008 0.004
#> GSM447449     2  0.6362      0.729 0.000 0.656 0.176 0.168
#> GSM447450     1  0.0937      0.905 0.976 0.012 0.012 0.000
#> GSM447452     4  0.0779      0.899 0.000 0.004 0.016 0.980
#> GSM447458     2  0.5998      0.748 0.000 0.684 0.116 0.200
#> GSM447461     2  0.3570      0.752 0.000 0.860 0.092 0.048
#> GSM447464     1  0.4669      0.834 0.796 0.100 0.104 0.000
#> GSM447468     1  0.3081      0.879 0.888 0.048 0.064 0.000
#> GSM447472     1  0.1488      0.904 0.956 0.012 0.032 0.000
#> GSM447400     1  0.4953      0.819 0.776 0.120 0.104 0.000
#> GSM447402     4  0.1256      0.892 0.000 0.008 0.028 0.964
#> GSM447403     1  0.0992      0.903 0.976 0.012 0.008 0.004
#> GSM447405     1  0.5214      0.433 0.624 0.004 0.008 0.364
#> GSM447418     3  0.2760      0.825 0.000 0.000 0.872 0.128
#> GSM447422     3  0.2760      0.825 0.000 0.000 0.872 0.128
#> GSM447424     3  0.2868      0.827 0.000 0.000 0.864 0.136
#> GSM447427     3  0.2704      0.825 0.000 0.000 0.876 0.124
#> GSM447428     3  0.4215      0.564 0.072 0.104 0.824 0.000
#> GSM447429     1  0.4727      0.832 0.792 0.108 0.100 0.000
#> GSM447431     3  0.4491      0.795 0.000 0.060 0.800 0.140
#> GSM447432     2  0.6204      0.749 0.000 0.672 0.164 0.164
#> GSM447434     1  0.1082      0.904 0.972 0.020 0.004 0.004
#> GSM447442     2  0.6282      0.741 0.000 0.664 0.176 0.160
#> GSM447451     2  0.3525      0.751 0.000 0.860 0.100 0.040
#> GSM447462     1  0.4953      0.819 0.776 0.120 0.104 0.000
#> GSM447463     1  0.1182      0.904 0.968 0.016 0.016 0.000
#> GSM447467     2  0.4898      0.608 0.072 0.772 0.156 0.000
#> GSM447469     4  0.2101      0.874 0.000 0.012 0.060 0.928
#> GSM447473     1  0.1124      0.903 0.972 0.012 0.012 0.004
#> GSM447404     1  0.1059      0.905 0.972 0.012 0.016 0.000
#> GSM447406     4  0.1798      0.884 0.000 0.040 0.016 0.944
#> GSM447407     4  0.0779      0.899 0.000 0.004 0.016 0.980
#> GSM447409     1  0.0524      0.903 0.988 0.004 0.000 0.008
#> GSM447412     3  0.3521      0.781 0.000 0.084 0.864 0.052
#> GSM447426     3  0.3356      0.815 0.000 0.000 0.824 0.176
#> GSM447433     1  0.4800      0.494 0.656 0.004 0.000 0.340
#> GSM447439     4  0.1406      0.897 0.000 0.024 0.016 0.960
#> GSM447441     2  0.4507      0.750 0.000 0.788 0.168 0.044
#> GSM447443     1  0.4488      0.839 0.808 0.096 0.096 0.000
#> GSM447445     1  0.0672      0.905 0.984 0.008 0.008 0.000
#> GSM447446     1  0.2597      0.857 0.904 0.004 0.008 0.084
#> GSM447453     1  0.0376      0.904 0.992 0.004 0.000 0.004
#> GSM447455     2  0.6204      0.749 0.000 0.672 0.164 0.164
#> GSM447456     2  0.5521      0.586 0.240 0.704 0.004 0.052
#> GSM447459     4  0.1406      0.897 0.000 0.024 0.016 0.960
#> GSM447466     1  0.0804      0.905 0.980 0.012 0.008 0.000
#> GSM447470     1  0.3617      0.869 0.860 0.076 0.064 0.000
#> GSM447474     1  0.5171      0.812 0.760 0.128 0.112 0.000
#> GSM447475     2  0.3056      0.746 0.004 0.892 0.072 0.032
#> GSM447398     2  0.3105      0.679 0.000 0.856 0.004 0.140
#> GSM447399     3  0.6454      0.496 0.000 0.084 0.572 0.344
#> GSM447408     4  0.3400      0.787 0.000 0.180 0.000 0.820
#> GSM447410     4  0.3688      0.769 0.000 0.208 0.000 0.792
#> GSM447414     3  0.2973      0.825 0.000 0.000 0.856 0.144
#> GSM447417     4  0.1059      0.897 0.000 0.012 0.016 0.972
#> GSM447419     1  0.5728      0.747 0.708 0.104 0.188 0.000
#> GSM447420     3  0.6265      0.346 0.220 0.124 0.656 0.000
#> GSM447421     1  0.4953      0.819 0.776 0.120 0.104 0.000
#> GSM447423     3  0.2921      0.727 0.000 0.140 0.860 0.000
#> GSM447436     1  0.2597      0.857 0.904 0.004 0.008 0.084
#> GSM447437     1  0.0336      0.904 0.992 0.008 0.000 0.000
#> GSM447438     4  0.3764      0.765 0.000 0.216 0.000 0.784
#> GSM447447     1  0.1516      0.904 0.960 0.016 0.016 0.008
#> GSM447454     3  0.4222      0.604 0.000 0.272 0.728 0.000
#> GSM447457     3  0.4356      0.570 0.000 0.292 0.708 0.000
#> GSM447460     2  0.7220      0.517 0.000 0.532 0.292 0.176
#> GSM447465     3  0.5266      0.738 0.000 0.108 0.752 0.140
#> GSM447471     1  0.0992      0.903 0.976 0.012 0.008 0.004
#> GSM447476     4  0.3569      0.769 0.000 0.196 0.000 0.804

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     3  0.2561      0.830 0.000 0.000 0.856 0.144 0.000
#> GSM447411     1  0.3586      0.669 0.736 0.000 0.000 0.000 0.264
#> GSM447413     3  0.2424      0.837 0.000 0.000 0.868 0.132 0.000
#> GSM447415     1  0.4294      0.472 0.532 0.000 0.000 0.000 0.468
#> GSM447416     3  0.1608      0.848 0.000 0.000 0.928 0.072 0.000
#> GSM447425     4  0.2780      0.847 0.112 0.008 0.004 0.872 0.004
#> GSM447430     4  0.0324      0.883 0.000 0.004 0.004 0.992 0.000
#> GSM447435     1  0.3612      0.667 0.732 0.000 0.000 0.000 0.268
#> GSM447440     1  0.3816      0.648 0.696 0.000 0.000 0.000 0.304
#> GSM447444     1  0.4715      0.523 0.672 0.020 0.012 0.000 0.296
#> GSM447448     1  0.3048      0.671 0.820 0.004 0.000 0.000 0.176
#> GSM447449     2  0.4499      0.787 0.000 0.764 0.096 0.136 0.004
#> GSM447450     1  0.3857      0.642 0.688 0.000 0.000 0.000 0.312
#> GSM447452     4  0.1093      0.882 0.020 0.004 0.004 0.968 0.004
#> GSM447458     2  0.4269      0.790 0.000 0.780 0.076 0.140 0.004
#> GSM447461     2  0.2842      0.761 0.000 0.888 0.012 0.056 0.044
#> GSM447464     5  0.3662      0.535 0.252 0.004 0.000 0.000 0.744
#> GSM447468     5  0.3949      0.204 0.332 0.000 0.000 0.000 0.668
#> GSM447472     1  0.4688      0.418 0.532 0.008 0.004 0.000 0.456
#> GSM447400     5  0.2193      0.661 0.092 0.008 0.000 0.000 0.900
#> GSM447402     4  0.3833      0.836 0.096 0.016 0.044 0.836 0.008
#> GSM447403     1  0.4367      0.494 0.580 0.004 0.000 0.000 0.416
#> GSM447405     1  0.4303      0.401 0.784 0.008 0.000 0.132 0.076
#> GSM447418     3  0.1124      0.846 0.000 0.004 0.960 0.036 0.000
#> GSM447422     3  0.1830      0.840 0.000 0.028 0.932 0.040 0.000
#> GSM447424     3  0.1544      0.850 0.000 0.000 0.932 0.068 0.000
#> GSM447427     3  0.0404      0.841 0.000 0.000 0.988 0.012 0.000
#> GSM447428     3  0.4755      0.533 0.028 0.008 0.672 0.000 0.292
#> GSM447429     5  0.2732      0.628 0.160 0.000 0.000 0.000 0.840
#> GSM447431     3  0.4112      0.795 0.000 0.048 0.800 0.136 0.016
#> GSM447432     2  0.4164      0.795 0.000 0.784 0.120 0.096 0.000
#> GSM447434     1  0.4304      0.388 0.516 0.000 0.000 0.000 0.484
#> GSM447442     2  0.4499      0.786 0.000 0.764 0.136 0.096 0.004
#> GSM447451     2  0.2654      0.767 0.000 0.900 0.016 0.040 0.044
#> GSM447462     5  0.2358      0.657 0.104 0.008 0.000 0.000 0.888
#> GSM447463     1  0.3983      0.589 0.660 0.000 0.000 0.000 0.340
#> GSM447467     2  0.4356      0.739 0.012 0.776 0.056 0.000 0.156
#> GSM447469     4  0.3418      0.842 0.056 0.004 0.084 0.852 0.004
#> GSM447473     1  0.4367      0.494 0.580 0.004 0.000 0.000 0.416
#> GSM447404     1  0.4294      0.473 0.532 0.000 0.000 0.000 0.468
#> GSM447406     4  0.0486      0.882 0.000 0.004 0.004 0.988 0.004
#> GSM447407     4  0.0994      0.883 0.016 0.004 0.004 0.972 0.004
#> GSM447409     1  0.3266      0.679 0.796 0.004 0.000 0.000 0.200
#> GSM447412     3  0.1469      0.838 0.000 0.036 0.948 0.016 0.000
#> GSM447426     3  0.2561      0.830 0.000 0.000 0.856 0.144 0.000
#> GSM447433     1  0.1914      0.549 0.932 0.004 0.000 0.032 0.032
#> GSM447439     4  0.0486      0.882 0.000 0.004 0.004 0.988 0.004
#> GSM447441     2  0.5008      0.757 0.000 0.744 0.152 0.072 0.032
#> GSM447443     5  0.3585      0.570 0.220 0.004 0.004 0.000 0.772
#> GSM447445     1  0.3561      0.656 0.740 0.000 0.000 0.000 0.260
#> GSM447446     1  0.1455      0.557 0.952 0.008 0.000 0.008 0.032
#> GSM447453     1  0.2966      0.676 0.816 0.000 0.000 0.000 0.184
#> GSM447455     2  0.4411      0.791 0.000 0.772 0.128 0.096 0.004
#> GSM447456     2  0.6519      0.500 0.264 0.588 0.000 0.076 0.072
#> GSM447459     4  0.0324      0.883 0.000 0.004 0.004 0.992 0.000
#> GSM447466     1  0.3837      0.649 0.692 0.000 0.000 0.000 0.308
#> GSM447470     5  0.4452     -0.184 0.496 0.004 0.000 0.000 0.500
#> GSM447474     5  0.3947      0.516 0.236 0.008 0.008 0.000 0.748
#> GSM447475     2  0.1699      0.773 0.004 0.944 0.008 0.008 0.036
#> GSM447398     2  0.3237      0.723 0.000 0.848 0.000 0.104 0.048
#> GSM447399     3  0.6204      0.356 0.000 0.124 0.488 0.384 0.004
#> GSM447408     4  0.2953      0.815 0.000 0.144 0.000 0.844 0.012
#> GSM447410     4  0.3985      0.766 0.000 0.196 0.004 0.772 0.028
#> GSM447414     3  0.2228      0.847 0.000 0.004 0.900 0.092 0.004
#> GSM447417     4  0.1948      0.873 0.056 0.004 0.004 0.928 0.008
#> GSM447419     5  0.5280      0.503 0.248 0.008 0.076 0.000 0.668
#> GSM447420     5  0.5438      0.273 0.056 0.008 0.340 0.000 0.596
#> GSM447421     5  0.2304      0.657 0.100 0.008 0.000 0.000 0.892
#> GSM447423     3  0.1197      0.829 0.000 0.048 0.952 0.000 0.000
#> GSM447436     1  0.2362      0.546 0.900 0.008 0.000 0.008 0.084
#> GSM447437     1  0.3612      0.668 0.732 0.000 0.000 0.000 0.268
#> GSM447438     4  0.4537      0.748 0.016 0.204 0.000 0.744 0.036
#> GSM447447     1  0.2753      0.597 0.856 0.008 0.000 0.000 0.136
#> GSM447454     3  0.3196      0.726 0.000 0.192 0.804 0.000 0.004
#> GSM447457     3  0.3838      0.593 0.000 0.280 0.716 0.000 0.004
#> GSM447460     2  0.6300      0.456 0.000 0.552 0.284 0.156 0.008
#> GSM447465     3  0.4326      0.754 0.000 0.140 0.776 0.080 0.004
#> GSM447471     1  0.4367      0.494 0.580 0.004 0.000 0.000 0.416
#> GSM447476     4  0.5498      0.749 0.096 0.200 0.000 0.684 0.020

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     3  0.2558      0.759 0.000 0.000 0.840 0.156 0.004 0.000
#> GSM447411     5  0.3966      0.588 0.444 0.000 0.000 0.000 0.552 0.004
#> GSM447413     3  0.1957      0.786 0.000 0.000 0.888 0.112 0.000 0.000
#> GSM447415     1  0.6063      0.238 0.388 0.000 0.000 0.000 0.348 0.264
#> GSM447416     3  0.1226      0.800 0.000 0.004 0.952 0.040 0.000 0.004
#> GSM447425     4  0.3452      0.727 0.256 0.004 0.000 0.736 0.004 0.000
#> GSM447430     4  0.0291      0.846 0.000 0.000 0.000 0.992 0.004 0.004
#> GSM447435     5  0.3950      0.602 0.432 0.000 0.000 0.000 0.564 0.004
#> GSM447440     5  0.4728      0.648 0.392 0.000 0.000 0.000 0.556 0.052
#> GSM447444     5  0.5236      0.242 0.372 0.004 0.000 0.000 0.536 0.088
#> GSM447448     1  0.4199     -0.325 0.568 0.000 0.000 0.000 0.416 0.016
#> GSM447449     2  0.6830      0.698 0.000 0.596 0.088 0.100 0.140 0.076
#> GSM447450     5  0.4948      0.649 0.360 0.000 0.000 0.000 0.564 0.076
#> GSM447452     4  0.1082      0.846 0.040 0.000 0.000 0.956 0.004 0.000
#> GSM447458     2  0.6583      0.706 0.000 0.620 0.084 0.096 0.132 0.068
#> GSM447461     2  0.3062      0.659 0.000 0.868 0.004 0.044 0.044 0.040
#> GSM447464     6  0.5059      0.251 0.080 0.000 0.000 0.000 0.392 0.528
#> GSM447468     6  0.6095     -0.157 0.292 0.000 0.000 0.000 0.324 0.384
#> GSM447472     5  0.6062     -0.307 0.304 0.000 0.000 0.000 0.408 0.288
#> GSM447400     6  0.3254      0.616 0.048 0.000 0.000 0.000 0.136 0.816
#> GSM447402     4  0.4446      0.745 0.208 0.008 0.028 0.728 0.028 0.000
#> GSM447403     1  0.6050      0.296 0.412 0.000 0.000 0.000 0.312 0.276
#> GSM447405     1  0.2541      0.269 0.892 0.000 0.000 0.032 0.052 0.024
#> GSM447418     3  0.1121      0.796 0.000 0.004 0.964 0.008 0.016 0.008
#> GSM447422     3  0.2292      0.777 0.000 0.008 0.908 0.008 0.048 0.028
#> GSM447424     3  0.0865      0.801 0.000 0.000 0.964 0.036 0.000 0.000
#> GSM447427     3  0.0000      0.797 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447428     3  0.5669      0.467 0.040 0.000 0.608 0.000 0.108 0.244
#> GSM447429     6  0.4887      0.519 0.156 0.000 0.000 0.000 0.184 0.660
#> GSM447431     3  0.5537      0.598 0.000 0.160 0.672 0.116 0.040 0.012
#> GSM447432     2  0.6180      0.706 0.000 0.644 0.128 0.040 0.128 0.060
#> GSM447434     1  0.6082      0.274 0.396 0.000 0.000 0.000 0.312 0.292
#> GSM447442     2  0.6729      0.696 0.000 0.596 0.132 0.056 0.144 0.072
#> GSM447451     2  0.3165      0.662 0.004 0.868 0.008 0.036 0.052 0.032
#> GSM447462     6  0.3210      0.612 0.036 0.000 0.000 0.000 0.152 0.812
#> GSM447463     5  0.5135      0.638 0.368 0.000 0.000 0.000 0.540 0.092
#> GSM447467     2  0.5554      0.680 0.004 0.604 0.012 0.000 0.244 0.136
#> GSM447469     4  0.4205      0.771 0.084 0.012 0.104 0.784 0.016 0.000
#> GSM447473     1  0.6050      0.296 0.412 0.000 0.000 0.000 0.312 0.276
#> GSM447404     1  0.6101      0.256 0.372 0.000 0.000 0.000 0.340 0.288
#> GSM447406     4  0.0291      0.846 0.000 0.000 0.000 0.992 0.004 0.004
#> GSM447407     4  0.0937      0.846 0.040 0.000 0.000 0.960 0.000 0.000
#> GSM447409     1  0.3890     -0.382 0.596 0.000 0.000 0.000 0.400 0.004
#> GSM447412     3  0.0767      0.799 0.000 0.008 0.976 0.012 0.004 0.000
#> GSM447426     3  0.2558      0.759 0.000 0.000 0.840 0.156 0.004 0.000
#> GSM447433     1  0.2019      0.199 0.900 0.000 0.000 0.012 0.088 0.000
#> GSM447439     4  0.0405      0.845 0.000 0.000 0.000 0.988 0.008 0.004
#> GSM447441     2  0.5400      0.643 0.000 0.704 0.136 0.088 0.048 0.024
#> GSM447443     6  0.5486      0.378 0.188 0.000 0.000 0.000 0.248 0.564
#> GSM447445     5  0.4726      0.616 0.424 0.000 0.000 0.000 0.528 0.048
#> GSM447446     1  0.0692      0.255 0.976 0.000 0.000 0.000 0.020 0.004
#> GSM447453     1  0.3862     -0.389 0.608 0.000 0.000 0.000 0.388 0.004
#> GSM447455     2  0.6599      0.699 0.000 0.608 0.132 0.056 0.140 0.064
#> GSM447456     2  0.7514      0.282 0.172 0.464 0.000 0.092 0.232 0.040
#> GSM447459     4  0.0291      0.846 0.000 0.000 0.000 0.992 0.004 0.004
#> GSM447466     5  0.4913      0.653 0.364 0.000 0.000 0.000 0.564 0.072
#> GSM447470     5  0.5769      0.384 0.220 0.000 0.000 0.000 0.504 0.276
#> GSM447474     6  0.4891      0.305 0.060 0.004 0.000 0.000 0.360 0.576
#> GSM447475     2  0.2533      0.689 0.000 0.884 0.000 0.004 0.056 0.056
#> GSM447398     2  0.3591      0.593 0.000 0.812 0.000 0.120 0.052 0.016
#> GSM447399     3  0.7207      0.177 0.000 0.096 0.416 0.364 0.088 0.036
#> GSM447408     4  0.2846      0.789 0.000 0.140 0.000 0.840 0.016 0.004
#> GSM447410     4  0.3902      0.728 0.000 0.212 0.000 0.748 0.028 0.012
#> GSM447414     3  0.2058      0.794 0.000 0.000 0.908 0.072 0.008 0.012
#> GSM447417     4  0.2174      0.832 0.088 0.008 0.000 0.896 0.008 0.000
#> GSM447419     6  0.6275      0.353 0.188 0.000 0.040 0.000 0.244 0.528
#> GSM447420     6  0.5235      0.344 0.020 0.000 0.276 0.000 0.084 0.620
#> GSM447421     6  0.3235      0.616 0.052 0.000 0.000 0.000 0.128 0.820
#> GSM447423     3  0.1861      0.782 0.000 0.036 0.928 0.000 0.016 0.020
#> GSM447436     1  0.0547      0.275 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM447437     5  0.4381      0.622 0.440 0.000 0.000 0.000 0.536 0.024
#> GSM447438     4  0.4982      0.685 0.036 0.228 0.000 0.684 0.044 0.008
#> GSM447447     1  0.3816     -0.057 0.728 0.000 0.000 0.000 0.240 0.032
#> GSM447454     3  0.4815      0.596 0.000 0.220 0.692 0.000 0.044 0.044
#> GSM447457     3  0.5678      0.361 0.000 0.304 0.576 0.000 0.060 0.060
#> GSM447460     2  0.7389      0.372 0.000 0.460 0.288 0.120 0.084 0.048
#> GSM447465     3  0.5084      0.639 0.000 0.160 0.720 0.056 0.028 0.036
#> GSM447471     1  0.6050      0.296 0.412 0.000 0.000 0.000 0.312 0.276
#> GSM447476     4  0.5871      0.701 0.160 0.184 0.000 0.616 0.032 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n gender(p) agent(p) k
#> SD:skmeans 79     0.739    0.433 2
#> SD:skmeans 76     0.291    0.295 3
#> SD:skmeans 75     0.664    0.329 4
#> SD:skmeans 65     0.654    0.145 5
#> SD:skmeans 51     0.511    0.132 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.645           0.885       0.940          0.448 0.553   0.553
#> 3 3 0.738           0.806       0.907          0.467 0.744   0.559
#> 4 4 0.767           0.793       0.886          0.115 0.881   0.673
#> 5 5 0.726           0.486       0.741          0.051 0.895   0.637
#> 6 6 0.757           0.779       0.882          0.047 0.860   0.489

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2  0.0000      0.921 0.000 1.000
#> GSM447411     1  0.0000      0.949 1.000 0.000
#> GSM447413     2  0.0000      0.921 0.000 1.000
#> GSM447415     1  0.0000      0.949 1.000 0.000
#> GSM447416     2  0.0000      0.921 0.000 1.000
#> GSM447425     2  0.0376      0.921 0.004 0.996
#> GSM447430     2  0.0000      0.921 0.000 1.000
#> GSM447435     1  0.0000      0.949 1.000 0.000
#> GSM447440     2  0.7883      0.777 0.236 0.764
#> GSM447444     2  0.7219      0.817 0.200 0.800
#> GSM447448     2  0.7299      0.813 0.204 0.796
#> GSM447449     2  0.0000      0.921 0.000 1.000
#> GSM447450     1  0.0000      0.949 1.000 0.000
#> GSM447452     2  0.0000      0.921 0.000 1.000
#> GSM447458     2  0.0376      0.921 0.004 0.996
#> GSM447461     2  0.0672      0.919 0.008 0.992
#> GSM447464     1  0.0000      0.949 1.000 0.000
#> GSM447468     1  0.0000      0.949 1.000 0.000
#> GSM447472     1  0.1843      0.929 0.972 0.028
#> GSM447400     1  0.0000      0.949 1.000 0.000
#> GSM447402     2  0.0000      0.921 0.000 1.000
#> GSM447403     1  0.0000      0.949 1.000 0.000
#> GSM447405     2  0.7299      0.813 0.204 0.796
#> GSM447418     2  0.0000      0.921 0.000 1.000
#> GSM447422     2  0.0000      0.921 0.000 1.000
#> GSM447424     2  0.0000      0.921 0.000 1.000
#> GSM447427     2  0.0000      0.921 0.000 1.000
#> GSM447428     2  0.7139      0.819 0.196 0.804
#> GSM447429     1  0.1633      0.933 0.976 0.024
#> GSM447431     2  0.0000      0.921 0.000 1.000
#> GSM447432     2  0.0000      0.921 0.000 1.000
#> GSM447434     1  0.9608      0.293 0.616 0.384
#> GSM447442     2  0.0000      0.921 0.000 1.000
#> GSM447451     2  0.7219      0.817 0.200 0.800
#> GSM447462     2  0.7299      0.813 0.204 0.796
#> GSM447463     1  0.0000      0.949 1.000 0.000
#> GSM447467     2  0.5946      0.853 0.144 0.856
#> GSM447469     2  0.0000      0.921 0.000 1.000
#> GSM447473     1  0.0000      0.949 1.000 0.000
#> GSM447404     1  0.0000      0.949 1.000 0.000
#> GSM447406     2  0.0000      0.921 0.000 1.000
#> GSM447407     2  0.0376      0.921 0.004 0.996
#> GSM447409     1  0.0000      0.949 1.000 0.000
#> GSM447412     2  0.6148      0.848 0.152 0.848
#> GSM447426     2  0.0000      0.921 0.000 1.000
#> GSM447433     1  0.9635      0.277 0.612 0.388
#> GSM447439     2  0.0000      0.921 0.000 1.000
#> GSM447441     2  0.0000      0.921 0.000 1.000
#> GSM447443     1  0.0000      0.949 1.000 0.000
#> GSM447445     1  0.0000      0.949 1.000 0.000
#> GSM447446     1  0.0000      0.949 1.000 0.000
#> GSM447453     1  0.0000      0.949 1.000 0.000
#> GSM447455     2  0.0000      0.921 0.000 1.000
#> GSM447456     2  0.7299      0.813 0.204 0.796
#> GSM447459     2  0.0000      0.921 0.000 1.000
#> GSM447466     1  0.0000      0.949 1.000 0.000
#> GSM447470     2  0.7299      0.813 0.204 0.796
#> GSM447474     2  0.7299      0.813 0.204 0.796
#> GSM447475     2  0.7139      0.820 0.196 0.804
#> GSM447398     2  0.7139      0.820 0.196 0.804
#> GSM447399     2  0.0000      0.921 0.000 1.000
#> GSM447408     2  0.0000      0.921 0.000 1.000
#> GSM447410     2  0.1414      0.914 0.020 0.980
#> GSM447414     2  0.0000      0.921 0.000 1.000
#> GSM447417     2  0.0376      0.921 0.004 0.996
#> GSM447419     1  0.7674      0.678 0.776 0.224
#> GSM447420     2  0.7299      0.813 0.204 0.796
#> GSM447421     1  0.2043      0.927 0.968 0.032
#> GSM447423     2  0.0000      0.921 0.000 1.000
#> GSM447436     1  0.2043      0.927 0.968 0.032
#> GSM447437     1  0.0000      0.949 1.000 0.000
#> GSM447438     2  0.7219      0.817 0.200 0.800
#> GSM447447     2  0.7745      0.786 0.228 0.772
#> GSM447454     2  0.0376      0.921 0.004 0.996
#> GSM447457     2  0.0000      0.921 0.000 1.000
#> GSM447460     2  0.0000      0.921 0.000 1.000
#> GSM447465     2  0.0000      0.921 0.000 1.000
#> GSM447471     1  0.0000      0.949 1.000 0.000
#> GSM447476     2  0.7139      0.820 0.196 0.804

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.0237      0.901 0.000 0.004 0.996
#> GSM447411     1  0.0000      0.969 1.000 0.000 0.000
#> GSM447413     3  0.0424      0.903 0.000 0.008 0.992
#> GSM447415     1  0.0000      0.969 1.000 0.000 0.000
#> GSM447416     3  0.2878      0.837 0.000 0.096 0.904
#> GSM447425     2  0.6282      0.582 0.012 0.664 0.324
#> GSM447430     2  0.6140      0.459 0.000 0.596 0.404
#> GSM447435     1  0.0000      0.969 1.000 0.000 0.000
#> GSM447440     2  0.2448      0.800 0.076 0.924 0.000
#> GSM447444     2  0.0592      0.839 0.012 0.988 0.000
#> GSM447448     2  0.0592      0.839 0.012 0.988 0.000
#> GSM447449     3  0.3686      0.792 0.000 0.140 0.860
#> GSM447450     1  0.0000      0.969 1.000 0.000 0.000
#> GSM447452     3  0.0592      0.894 0.000 0.012 0.988
#> GSM447458     2  0.4915      0.734 0.012 0.804 0.184
#> GSM447461     2  0.0592      0.839 0.012 0.988 0.000
#> GSM447464     1  0.0000      0.969 1.000 0.000 0.000
#> GSM447468     1  0.0000      0.969 1.000 0.000 0.000
#> GSM447472     1  0.4796      0.719 0.780 0.220 0.000
#> GSM447400     1  0.1643      0.935 0.956 0.000 0.044
#> GSM447402     2  0.5926      0.457 0.000 0.644 0.356
#> GSM447403     1  0.0000      0.969 1.000 0.000 0.000
#> GSM447405     2  0.0592      0.839 0.012 0.988 0.000
#> GSM447418     3  0.0424      0.903 0.000 0.008 0.992
#> GSM447422     3  0.0424      0.903 0.000 0.008 0.992
#> GSM447424     3  0.0424      0.903 0.000 0.008 0.992
#> GSM447427     3  0.1529      0.886 0.000 0.040 0.960
#> GSM447428     3  0.5926      0.491 0.000 0.356 0.644
#> GSM447429     1  0.1529      0.937 0.960 0.040 0.000
#> GSM447431     2  0.2878      0.796 0.000 0.904 0.096
#> GSM447432     2  0.4750      0.704 0.000 0.784 0.216
#> GSM447434     2  0.6180      0.245 0.416 0.584 0.000
#> GSM447442     3  0.0424      0.903 0.000 0.008 0.992
#> GSM447451     2  0.0592      0.839 0.012 0.988 0.000
#> GSM447462     2  0.4702      0.700 0.212 0.788 0.000
#> GSM447463     1  0.0000      0.969 1.000 0.000 0.000
#> GSM447467     2  0.0592      0.839 0.012 0.988 0.000
#> GSM447469     3  0.1031      0.894 0.000 0.024 0.976
#> GSM447473     1  0.0000      0.969 1.000 0.000 0.000
#> GSM447404     1  0.0000      0.969 1.000 0.000 0.000
#> GSM447406     2  0.6140      0.459 0.000 0.596 0.404
#> GSM447407     2  0.6168      0.443 0.000 0.588 0.412
#> GSM447409     1  0.0000      0.969 1.000 0.000 0.000
#> GSM447412     2  0.0592      0.836 0.000 0.988 0.012
#> GSM447426     3  0.0237      0.901 0.000 0.004 0.996
#> GSM447433     2  0.6565      0.252 0.416 0.576 0.008
#> GSM447439     2  0.4654      0.711 0.000 0.792 0.208
#> GSM447441     2  0.0237      0.837 0.000 0.996 0.004
#> GSM447443     1  0.4121      0.794 0.832 0.168 0.000
#> GSM447445     1  0.0000      0.969 1.000 0.000 0.000
#> GSM447446     1  0.0000      0.969 1.000 0.000 0.000
#> GSM447453     1  0.0000      0.969 1.000 0.000 0.000
#> GSM447455     2  0.6168      0.448 0.000 0.588 0.412
#> GSM447456     2  0.0592      0.839 0.012 0.988 0.000
#> GSM447459     2  0.5926      0.533 0.000 0.644 0.356
#> GSM447466     1  0.0000      0.969 1.000 0.000 0.000
#> GSM447470     2  0.0592      0.839 0.012 0.988 0.000
#> GSM447474     2  0.0592      0.839 0.012 0.988 0.000
#> GSM447475     2  0.0592      0.839 0.012 0.988 0.000
#> GSM447398     2  0.0424      0.839 0.008 0.992 0.000
#> GSM447399     3  0.0424      0.903 0.000 0.008 0.992
#> GSM447408     2  0.0237      0.836 0.000 0.996 0.004
#> GSM447410     2  0.0237      0.836 0.000 0.996 0.004
#> GSM447414     3  0.0424      0.903 0.000 0.008 0.992
#> GSM447417     3  0.1163      0.887 0.000 0.028 0.972
#> GSM447419     3  0.8773      0.394 0.128 0.336 0.536
#> GSM447420     2  0.0592      0.839 0.012 0.988 0.000
#> GSM447421     1  0.2550      0.924 0.936 0.024 0.040
#> GSM447423     3  0.5926      0.491 0.000 0.356 0.644
#> GSM447436     1  0.2165      0.913 0.936 0.064 0.000
#> GSM447437     1  0.0000      0.969 1.000 0.000 0.000
#> GSM447438     2  0.0000      0.837 0.000 1.000 0.000
#> GSM447447     2  0.2165      0.816 0.064 0.936 0.000
#> GSM447454     2  0.1182      0.837 0.012 0.976 0.012
#> GSM447457     2  0.0592      0.836 0.000 0.988 0.012
#> GSM447460     2  0.5968      0.526 0.000 0.636 0.364
#> GSM447465     3  0.0424      0.903 0.000 0.008 0.992
#> GSM447471     1  0.0000      0.969 1.000 0.000 0.000
#> GSM447476     2  0.0237      0.836 0.000 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.1637      0.706 0.000 0.000 0.940 0.060
#> GSM447411     1  0.0188      0.952 0.996 0.000 0.000 0.004
#> GSM447413     3  0.3528      0.848 0.000 0.000 0.808 0.192
#> GSM447415     1  0.0000      0.952 1.000 0.000 0.000 0.000
#> GSM447416     3  0.3831      0.701 0.000 0.204 0.792 0.004
#> GSM447425     4  0.0188      0.797 0.000 0.000 0.004 0.996
#> GSM447430     4  0.0188      0.797 0.000 0.000 0.004 0.996
#> GSM447435     1  0.1209      0.948 0.964 0.032 0.000 0.004
#> GSM447440     2  0.1489      0.825 0.044 0.952 0.000 0.004
#> GSM447444     2  0.0188      0.855 0.000 0.996 0.000 0.004
#> GSM447448     2  0.0188      0.855 0.000 0.996 0.000 0.004
#> GSM447449     3  0.3649      0.847 0.000 0.000 0.796 0.204
#> GSM447450     1  0.1489      0.943 0.952 0.044 0.000 0.004
#> GSM447452     4  0.3688      0.696 0.000 0.000 0.208 0.792
#> GSM447458     2  0.7159      0.322 0.000 0.556 0.244 0.200
#> GSM447461     2  0.0000      0.856 0.000 1.000 0.000 0.000
#> GSM447464     1  0.1302      0.945 0.956 0.044 0.000 0.000
#> GSM447468     1  0.0188      0.952 0.996 0.000 0.000 0.004
#> GSM447472     1  0.4313      0.678 0.736 0.260 0.000 0.004
#> GSM447400     1  0.2400      0.932 0.924 0.044 0.028 0.004
#> GSM447402     4  0.2021      0.760 0.000 0.012 0.056 0.932
#> GSM447403     1  0.0000      0.952 1.000 0.000 0.000 0.000
#> GSM447405     2  0.0188      0.856 0.004 0.996 0.000 0.000
#> GSM447418     3  0.3649      0.847 0.000 0.000 0.796 0.204
#> GSM447422     3  0.3649      0.847 0.000 0.000 0.796 0.204
#> GSM447424     3  0.3486      0.848 0.000 0.000 0.812 0.188
#> GSM447427     3  0.3791      0.847 0.000 0.004 0.796 0.200
#> GSM447428     3  0.3982      0.685 0.000 0.220 0.776 0.004
#> GSM447429     1  0.1022      0.937 0.968 0.032 0.000 0.000
#> GSM447431     2  0.4468      0.638 0.000 0.752 0.016 0.232
#> GSM447432     2  0.7249      0.281 0.000 0.540 0.260 0.200
#> GSM447434     2  0.5070      0.173 0.416 0.580 0.000 0.004
#> GSM447442     3  0.3649      0.847 0.000 0.000 0.796 0.204
#> GSM447451     2  0.0000      0.856 0.000 1.000 0.000 0.000
#> GSM447462     2  0.3791      0.665 0.200 0.796 0.000 0.004
#> GSM447463     1  0.1302      0.945 0.956 0.044 0.000 0.000
#> GSM447467     2  0.0000      0.856 0.000 1.000 0.000 0.000
#> GSM447469     4  0.4220      0.467 0.000 0.004 0.248 0.748
#> GSM447473     1  0.0000      0.952 1.000 0.000 0.000 0.000
#> GSM447404     1  0.0000      0.952 1.000 0.000 0.000 0.000
#> GSM447406     4  0.0707      0.798 0.000 0.000 0.020 0.980
#> GSM447407     4  0.0707      0.798 0.000 0.000 0.020 0.980
#> GSM447409     1  0.0000      0.952 1.000 0.000 0.000 0.000
#> GSM447412     2  0.1302      0.840 0.000 0.956 0.044 0.000
#> GSM447426     3  0.0000      0.745 0.000 0.000 1.000 0.000
#> GSM447433     4  0.6850      0.387 0.108 0.376 0.000 0.516
#> GSM447439     4  0.0804      0.799 0.000 0.008 0.012 0.980
#> GSM447441     2  0.1302      0.838 0.000 0.956 0.000 0.044
#> GSM447443     1  0.3908      0.747 0.784 0.212 0.000 0.004
#> GSM447445     1  0.1302      0.945 0.956 0.044 0.000 0.000
#> GSM447446     1  0.0376      0.952 0.992 0.004 0.000 0.004
#> GSM447453     1  0.0000      0.952 1.000 0.000 0.000 0.000
#> GSM447455     2  0.6886      0.412 0.000 0.596 0.200 0.204
#> GSM447456     2  0.0000      0.856 0.000 1.000 0.000 0.000
#> GSM447459     4  0.0707      0.798 0.000 0.000 0.020 0.980
#> GSM447466     1  0.0592      0.952 0.984 0.016 0.000 0.000
#> GSM447470     2  0.0000      0.856 0.000 1.000 0.000 0.000
#> GSM447474     2  0.0000      0.856 0.000 1.000 0.000 0.000
#> GSM447475     2  0.0000      0.856 0.000 1.000 0.000 0.000
#> GSM447398     2  0.1302      0.838 0.000 0.956 0.000 0.044
#> GSM447399     3  0.3528      0.848 0.000 0.000 0.808 0.192
#> GSM447408     4  0.4382      0.622 0.000 0.296 0.000 0.704
#> GSM447410     4  0.4382      0.622 0.000 0.296 0.000 0.704
#> GSM447414     3  0.3486      0.848 0.000 0.000 0.812 0.188
#> GSM447417     4  0.0188      0.797 0.000 0.000 0.004 0.996
#> GSM447419     3  0.6848      0.399 0.100 0.348 0.548 0.004
#> GSM447420     2  0.0000      0.856 0.000 1.000 0.000 0.000
#> GSM447421     1  0.1913      0.933 0.940 0.040 0.020 0.000
#> GSM447423     3  0.3688      0.698 0.000 0.208 0.792 0.000
#> GSM447436     1  0.1302      0.927 0.956 0.044 0.000 0.000
#> GSM447437     1  0.1211      0.946 0.960 0.040 0.000 0.000
#> GSM447438     2  0.1302      0.838 0.000 0.956 0.000 0.044
#> GSM447447     2  0.1389      0.831 0.048 0.952 0.000 0.000
#> GSM447454     2  0.2111      0.828 0.000 0.932 0.044 0.024
#> GSM447457     2  0.1302      0.840 0.000 0.956 0.044 0.000
#> GSM447460     2  0.5307      0.625 0.000 0.736 0.076 0.188
#> GSM447465     3  0.3486      0.848 0.000 0.000 0.812 0.188
#> GSM447471     1  0.0000      0.952 1.000 0.000 0.000 0.000
#> GSM447476     4  0.4356      0.623 0.000 0.292 0.000 0.708

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     5  0.4201    -0.1574 0.000 0.000 0.408 0.000 0.592
#> GSM447411     1  0.4219     0.7104 0.584 0.416 0.000 0.000 0.000
#> GSM447413     3  0.0963     0.7865 0.000 0.000 0.964 0.036 0.000
#> GSM447415     1  0.4210     0.7105 0.588 0.412 0.000 0.000 0.000
#> GSM447416     3  0.1195     0.7571 0.000 0.028 0.960 0.012 0.000
#> GSM447425     4  0.4658    -0.1968 0.000 0.000 0.016 0.576 0.408
#> GSM447430     4  0.4658    -0.1968 0.000 0.000 0.016 0.576 0.408
#> GSM447435     1  0.4278     0.7041 0.548 0.452 0.000 0.000 0.000
#> GSM447440     2  0.0000     0.3310 0.000 1.000 0.000 0.000 0.000
#> GSM447444     2  0.4219     0.7919 0.000 0.584 0.000 0.416 0.000
#> GSM447448     2  0.4210     0.7899 0.000 0.588 0.000 0.412 0.000
#> GSM447449     3  0.2966     0.7689 0.000 0.000 0.816 0.184 0.000
#> GSM447450     1  0.4448     0.6894 0.516 0.480 0.000 0.004 0.000
#> GSM447452     5  0.0162     0.2942 0.000 0.000 0.000 0.004 0.996
#> GSM447458     4  0.5901    -0.0830 0.000 0.148 0.268 0.584 0.000
#> GSM447461     2  0.4227     0.7926 0.000 0.580 0.000 0.420 0.000
#> GSM447464     1  0.2773     0.7634 0.836 0.164 0.000 0.000 0.000
#> GSM447468     1  0.4367     0.7105 0.580 0.416 0.000 0.004 0.000
#> GSM447472     2  0.3857    -0.4253 0.312 0.688 0.000 0.000 0.000
#> GSM447400     1  0.1544     0.7584 0.932 0.068 0.000 0.000 0.000
#> GSM447402     4  0.4806    -0.1944 0.000 0.004 0.016 0.572 0.408
#> GSM447403     1  0.0000     0.7732 1.000 0.000 0.000 0.000 0.000
#> GSM447405     2  0.4375     0.7915 0.004 0.576 0.000 0.420 0.000
#> GSM447418     3  0.2966     0.7689 0.000 0.000 0.816 0.184 0.000
#> GSM447422     3  0.2966     0.7689 0.000 0.000 0.816 0.184 0.000
#> GSM447424     3  0.0000     0.7773 0.000 0.000 1.000 0.000 0.000
#> GSM447427     3  0.2966     0.7689 0.000 0.000 0.816 0.184 0.000
#> GSM447428     3  0.3455     0.6443 0.000 0.208 0.784 0.008 0.000
#> GSM447429     1  0.0000     0.7732 1.000 0.000 0.000 0.000 0.000
#> GSM447431     4  0.4714    -0.4164 0.000 0.324 0.032 0.644 0.000
#> GSM447432     4  0.5940    -0.0636 0.000 0.144 0.284 0.572 0.000
#> GSM447434     2  0.1809     0.2820 0.060 0.928 0.000 0.012 0.000
#> GSM447442     3  0.2966     0.7689 0.000 0.000 0.816 0.184 0.000
#> GSM447451     2  0.4227     0.7926 0.000 0.580 0.000 0.420 0.000
#> GSM447462     4  0.6500    -0.5514 0.188 0.400 0.000 0.412 0.000
#> GSM447463     1  0.4297     0.6954 0.528 0.472 0.000 0.000 0.000
#> GSM447467     2  0.4227     0.7926 0.000 0.580 0.000 0.420 0.000
#> GSM447469     5  0.6734     0.1602 0.000 0.000 0.256 0.356 0.388
#> GSM447473     1  0.0000     0.7732 1.000 0.000 0.000 0.000 0.000
#> GSM447404     1  0.0000     0.7732 1.000 0.000 0.000 0.000 0.000
#> GSM447406     5  0.6554     0.2789 0.000 0.000 0.200 0.392 0.408
#> GSM447407     5  0.6554     0.2789 0.000 0.000 0.200 0.392 0.408
#> GSM447409     1  0.0000     0.7732 1.000 0.000 0.000 0.000 0.000
#> GSM447412     2  0.5425     0.7380 0.000 0.520 0.060 0.420 0.000
#> GSM447426     5  0.4201    -0.1574 0.000 0.000 0.408 0.000 0.592
#> GSM447433     2  0.3983     0.0483 0.052 0.784 0.000 0.164 0.000
#> GSM447439     4  0.6021    -0.3186 0.000 0.000 0.116 0.476 0.408
#> GSM447441     2  0.4448     0.7401 0.000 0.516 0.004 0.480 0.000
#> GSM447443     1  0.3491     0.5917 0.768 0.228 0.000 0.004 0.000
#> GSM447445     1  0.4440     0.6955 0.528 0.468 0.000 0.004 0.000
#> GSM447446     1  0.0290     0.7729 0.992 0.008 0.000 0.000 0.000
#> GSM447453     1  0.1478     0.7749 0.936 0.064 0.000 0.000 0.000
#> GSM447455     4  0.5950    -0.1572 0.000 0.188 0.220 0.592 0.000
#> GSM447456     2  0.4227     0.7926 0.000 0.580 0.000 0.420 0.000
#> GSM447459     5  0.6554     0.2789 0.000 0.000 0.200 0.392 0.408
#> GSM447466     1  0.4256     0.7082 0.564 0.436 0.000 0.000 0.000
#> GSM447470     2  0.4219     0.7919 0.000 0.584 0.000 0.416 0.000
#> GSM447474     2  0.4227     0.7906 0.000 0.580 0.000 0.420 0.000
#> GSM447475     2  0.4227     0.7926 0.000 0.580 0.000 0.420 0.000
#> GSM447398     2  0.4302     0.7426 0.000 0.520 0.000 0.480 0.000
#> GSM447399     3  0.0609     0.7846 0.000 0.000 0.980 0.020 0.000
#> GSM447408     4  0.6518    -0.0589 0.000 0.192 0.000 0.412 0.396
#> GSM447410     4  0.6518    -0.0589 0.000 0.192 0.000 0.412 0.396
#> GSM447414     3  0.0000     0.7773 0.000 0.000 1.000 0.000 0.000
#> GSM447417     4  0.4658    -0.1968 0.000 0.000 0.016 0.576 0.408
#> GSM447419     3  0.5867     0.3543 0.096 0.352 0.548 0.004 0.000
#> GSM447420     2  0.4235     0.7918 0.000 0.576 0.000 0.424 0.000
#> GSM447421     1  0.0510     0.7724 0.984 0.016 0.000 0.000 0.000
#> GSM447423     3  0.3391     0.6579 0.000 0.188 0.800 0.012 0.000
#> GSM447436     1  0.0000     0.7732 1.000 0.000 0.000 0.000 0.000
#> GSM447437     1  0.4294     0.6977 0.532 0.468 0.000 0.000 0.000
#> GSM447438     2  0.4302     0.7426 0.000 0.520 0.000 0.480 0.000
#> GSM447447     2  0.5250     0.7493 0.048 0.536 0.000 0.416 0.000
#> GSM447454     2  0.5498     0.7115 0.000 0.496 0.064 0.440 0.000
#> GSM447457     2  0.5425     0.7380 0.000 0.520 0.060 0.420 0.000
#> GSM447460     4  0.6738    -0.4469 0.000 0.320 0.272 0.408 0.000
#> GSM447465     3  0.0000     0.7773 0.000 0.000 1.000 0.000 0.000
#> GSM447471     1  0.0000     0.7732 1.000 0.000 0.000 0.000 0.000
#> GSM447476     4  0.6518    -0.0589 0.000 0.192 0.000 0.412 0.396

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     5  0.0000     0.9888 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447411     1  0.1957     0.7865 0.888 0.000 0.000 0.000 0.000 0.112
#> GSM447413     3  0.1007     0.8145 0.000 0.000 0.956 0.044 0.000 0.000
#> GSM447415     1  0.2762     0.7800 0.804 0.000 0.000 0.000 0.000 0.196
#> GSM447416     3  0.0632     0.7954 0.000 0.024 0.976 0.000 0.000 0.000
#> GSM447425     4  0.0000     0.7808 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM447430     4  0.0000     0.7808 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM447435     1  0.2416     0.7908 0.844 0.000 0.000 0.000 0.000 0.156
#> GSM447440     1  0.1714     0.7478 0.908 0.092 0.000 0.000 0.000 0.000
#> GSM447444     2  0.1204     0.8604 0.056 0.944 0.000 0.000 0.000 0.000
#> GSM447448     2  0.2135     0.8075 0.128 0.872 0.000 0.000 0.000 0.000
#> GSM447449     3  0.2793     0.7982 0.000 0.000 0.800 0.200 0.000 0.000
#> GSM447450     1  0.0000     0.7508 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447452     5  0.0632     0.9772 0.000 0.000 0.000 0.024 0.976 0.000
#> GSM447458     2  0.5557     0.3891 0.000 0.552 0.248 0.200 0.000 0.000
#> GSM447461     2  0.0000     0.8813 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447464     6  0.2048     0.8045 0.120 0.000 0.000 0.000 0.000 0.880
#> GSM447468     1  0.0865     0.7664 0.964 0.000 0.000 0.000 0.000 0.036
#> GSM447472     1  0.2901     0.7126 0.840 0.128 0.000 0.000 0.000 0.032
#> GSM447400     6  0.1814     0.8652 0.100 0.000 0.000 0.000 0.000 0.900
#> GSM447402     4  0.0405     0.7779 0.000 0.004 0.008 0.988 0.000 0.000
#> GSM447403     6  0.0000     0.9342 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447405     2  0.0000     0.8813 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447418     3  0.2793     0.7982 0.000 0.000 0.800 0.200 0.000 0.000
#> GSM447422     3  0.2793     0.7982 0.000 0.000 0.800 0.200 0.000 0.000
#> GSM447424     3  0.0000     0.8047 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447427     3  0.2793     0.7982 0.000 0.000 0.800 0.200 0.000 0.000
#> GSM447428     3  0.3624     0.7117 0.060 0.156 0.784 0.000 0.000 0.000
#> GSM447429     6  0.0000     0.9342 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447431     2  0.2854     0.7244 0.000 0.792 0.000 0.208 0.000 0.000
#> GSM447432     2  0.5640     0.3405 0.000 0.532 0.268 0.200 0.000 0.000
#> GSM447434     1  0.3619     0.4827 0.680 0.316 0.000 0.000 0.000 0.004
#> GSM447442     3  0.2793     0.7982 0.000 0.000 0.800 0.200 0.000 0.000
#> GSM447451     2  0.0000     0.8813 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447462     2  0.3971     0.7216 0.184 0.748 0.000 0.000 0.000 0.068
#> GSM447463     1  0.2793     0.7807 0.800 0.000 0.000 0.000 0.000 0.200
#> GSM447467     2  0.0000     0.8813 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447469     4  0.3050     0.4966 0.000 0.000 0.236 0.764 0.000 0.000
#> GSM447473     6  0.0000     0.9342 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447404     6  0.0000     0.9342 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447406     4  0.2793     0.7464 0.000 0.000 0.200 0.800 0.000 0.000
#> GSM447407     4  0.2793     0.7464 0.000 0.000 0.200 0.800 0.000 0.000
#> GSM447409     6  0.0000     0.9342 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447412     2  0.0000     0.8813 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447426     5  0.0000     0.9888 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447433     1  0.1910     0.7248 0.892 0.108 0.000 0.000 0.000 0.000
#> GSM447439     4  0.1910     0.7809 0.000 0.000 0.108 0.892 0.000 0.000
#> GSM447441     2  0.0146     0.8804 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM447443     6  0.3770     0.6934 0.244 0.028 0.000 0.000 0.000 0.728
#> GSM447445     1  0.3330     0.6745 0.716 0.000 0.000 0.000 0.000 0.284
#> GSM447446     6  0.1863     0.8591 0.104 0.000 0.000 0.000 0.000 0.896
#> GSM447453     1  0.3868    -0.0154 0.508 0.000 0.000 0.000 0.000 0.492
#> GSM447455     2  0.5304     0.4867 0.000 0.600 0.200 0.200 0.000 0.000
#> GSM447456     2  0.0000     0.8813 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447459     4  0.2793     0.7464 0.000 0.000 0.200 0.800 0.000 0.000
#> GSM447466     1  0.2730     0.7818 0.808 0.000 0.000 0.000 0.000 0.192
#> GSM447470     2  0.1204     0.8670 0.056 0.944 0.000 0.000 0.000 0.000
#> GSM447474     2  0.1556     0.8522 0.080 0.920 0.000 0.000 0.000 0.000
#> GSM447475     2  0.0000     0.8813 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447398     2  0.0000     0.8813 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447399     3  0.1564     0.7975 0.040 0.000 0.936 0.024 0.000 0.000
#> GSM447408     4  0.2941     0.6914 0.000 0.220 0.000 0.780 0.000 0.000
#> GSM447410     4  0.2941     0.6914 0.000 0.220 0.000 0.780 0.000 0.000
#> GSM447414     3  0.0000     0.8047 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447417     4  0.0000     0.7808 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM447419     3  0.6385     0.4292 0.128 0.232 0.552 0.000 0.000 0.088
#> GSM447420     2  0.1501     0.8534 0.076 0.924 0.000 0.000 0.000 0.000
#> GSM447421     6  0.0260     0.9290 0.008 0.000 0.000 0.000 0.000 0.992
#> GSM447423     3  0.2793     0.7030 0.000 0.200 0.800 0.000 0.000 0.000
#> GSM447436     6  0.0000     0.9342 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447437     1  0.3023     0.7645 0.768 0.000 0.000 0.000 0.000 0.232
#> GSM447438     2  0.0000     0.8813 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447447     2  0.1682     0.8534 0.020 0.928 0.000 0.000 0.000 0.052
#> GSM447454     2  0.0632     0.8748 0.000 0.976 0.000 0.024 0.000 0.000
#> GSM447457     2  0.0000     0.8813 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447460     2  0.2941     0.7117 0.000 0.780 0.220 0.000 0.000 0.000
#> GSM447465     3  0.0000     0.8047 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447471     6  0.0000     0.9342 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447476     4  0.3133     0.6932 0.008 0.212 0.000 0.780 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n gender(p) agent(p) k
#> SD:pam 77     1.000   0.4151 2
#> SD:pam 69     0.176   0.3318 3
#> SD:pam 72     0.294   0.3520 4
#> SD:pam 53     0.142   0.1141 5
#> SD:pam 72     0.197   0.0238 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.948           0.956       0.982         0.4967 0.503   0.503
#> 3 3 0.800           0.832       0.920         0.1531 0.899   0.809
#> 4 4 0.762           0.794       0.842         0.1839 0.849   0.671
#> 5 5 0.517           0.628       0.722         0.1005 0.963   0.886
#> 6 6 0.797           0.756       0.884         0.0906 0.824   0.460

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2  0.0000      0.981 0.000 1.000
#> GSM447411     1  0.0000      0.981 1.000 0.000
#> GSM447413     2  0.0000      0.981 0.000 1.000
#> GSM447415     1  0.0000      0.981 1.000 0.000
#> GSM447416     2  0.0000      0.981 0.000 1.000
#> GSM447425     2  0.0000      0.981 0.000 1.000
#> GSM447430     2  0.0000      0.981 0.000 1.000
#> GSM447435     1  0.0000      0.981 1.000 0.000
#> GSM447440     1  0.0000      0.981 1.000 0.000
#> GSM447444     1  0.0000      0.981 1.000 0.000
#> GSM447448     1  0.0000      0.981 1.000 0.000
#> GSM447449     2  0.0000      0.981 0.000 1.000
#> GSM447450     1  0.0000      0.981 1.000 0.000
#> GSM447452     2  0.0000      0.981 0.000 1.000
#> GSM447458     2  0.0000      0.981 0.000 1.000
#> GSM447461     2  0.0000      0.981 0.000 1.000
#> GSM447464     1  0.0000      0.981 1.000 0.000
#> GSM447468     1  0.0000      0.981 1.000 0.000
#> GSM447472     1  0.0000      0.981 1.000 0.000
#> GSM447400     1  0.0000      0.981 1.000 0.000
#> GSM447402     2  0.0000      0.981 0.000 1.000
#> GSM447403     1  0.0000      0.981 1.000 0.000
#> GSM447405     1  0.7219      0.745 0.800 0.200
#> GSM447418     2  0.0000      0.981 0.000 1.000
#> GSM447422     2  0.0000      0.981 0.000 1.000
#> GSM447424     2  0.0000      0.981 0.000 1.000
#> GSM447427     2  0.0000      0.981 0.000 1.000
#> GSM447428     2  0.7219      0.746 0.200 0.800
#> GSM447429     1  0.0000      0.981 1.000 0.000
#> GSM447431     2  0.0000      0.981 0.000 1.000
#> GSM447432     2  0.0000      0.981 0.000 1.000
#> GSM447434     1  0.0000      0.981 1.000 0.000
#> GSM447442     2  0.0000      0.981 0.000 1.000
#> GSM447451     2  0.0000      0.981 0.000 1.000
#> GSM447462     1  0.1184      0.968 0.984 0.016
#> GSM447463     1  0.0000      0.981 1.000 0.000
#> GSM447467     2  0.0938      0.970 0.012 0.988
#> GSM447469     2  0.0000      0.981 0.000 1.000
#> GSM447473     1  0.0000      0.981 1.000 0.000
#> GSM447404     1  0.0000      0.981 1.000 0.000
#> GSM447406     2  0.0000      0.981 0.000 1.000
#> GSM447407     2  0.0000      0.981 0.000 1.000
#> GSM447409     1  0.0000      0.981 1.000 0.000
#> GSM447412     2  0.0000      0.981 0.000 1.000
#> GSM447426     2  0.0000      0.981 0.000 1.000
#> GSM447433     1  0.2043      0.953 0.968 0.032
#> GSM447439     2  0.0000      0.981 0.000 1.000
#> GSM447441     2  0.0000      0.981 0.000 1.000
#> GSM447443     1  0.0000      0.981 1.000 0.000
#> GSM447445     1  0.0000      0.981 1.000 0.000
#> GSM447446     1  0.0000      0.981 1.000 0.000
#> GSM447453     1  0.0000      0.981 1.000 0.000
#> GSM447455     2  0.0000      0.981 0.000 1.000
#> GSM447456     2  0.7219      0.746 0.200 0.800
#> GSM447459     2  0.0000      0.981 0.000 1.000
#> GSM447466     1  0.0000      0.981 1.000 0.000
#> GSM447470     1  0.0000      0.981 1.000 0.000
#> GSM447474     1  0.0672      0.975 0.992 0.008
#> GSM447475     2  0.0000      0.981 0.000 1.000
#> GSM447398     2  0.0000      0.981 0.000 1.000
#> GSM447399     2  0.0000      0.981 0.000 1.000
#> GSM447408     2  0.0000      0.981 0.000 1.000
#> GSM447410     2  0.0000      0.981 0.000 1.000
#> GSM447414     2  0.0000      0.981 0.000 1.000
#> GSM447417     2  0.0000      0.981 0.000 1.000
#> GSM447419     1  0.9358      0.450 0.648 0.352
#> GSM447420     2  0.9710      0.329 0.400 0.600
#> GSM447421     1  0.0000      0.981 1.000 0.000
#> GSM447423     2  0.0000      0.981 0.000 1.000
#> GSM447436     1  0.0000      0.981 1.000 0.000
#> GSM447437     1  0.0000      0.981 1.000 0.000
#> GSM447438     2  0.0000      0.981 0.000 1.000
#> GSM447447     1  0.0000      0.981 1.000 0.000
#> GSM447454     2  0.0000      0.981 0.000 1.000
#> GSM447457     2  0.0000      0.981 0.000 1.000
#> GSM447460     2  0.0000      0.981 0.000 1.000
#> GSM447465     2  0.0000      0.981 0.000 1.000
#> GSM447471     1  0.0000      0.981 1.000 0.000
#> GSM447476     2  0.0000      0.981 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.5098     0.8861 0.000 0.248 0.752
#> GSM447411     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447413     2  0.3412     0.7591 0.000 0.876 0.124
#> GSM447415     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447416     2  0.5968     0.5208 0.000 0.636 0.364
#> GSM447425     3  0.5968     0.8804 0.000 0.364 0.636
#> GSM447430     2  0.0237     0.8317 0.000 0.996 0.004
#> GSM447435     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447440     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447444     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447448     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447449     2  0.0829     0.8344 0.004 0.984 0.012
#> GSM447450     1  0.0237     0.9677 0.996 0.004 0.000
#> GSM447452     3  0.5968     0.8804 0.000 0.364 0.636
#> GSM447458     2  0.0592     0.8341 0.012 0.988 0.000
#> GSM447461     2  0.0592     0.8341 0.012 0.988 0.000
#> GSM447464     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447468     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447472     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447400     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447402     2  0.0000     0.8330 0.000 1.000 0.000
#> GSM447403     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447405     1  0.3412     0.8186 0.876 0.124 0.000
#> GSM447418     2  0.5968     0.5208 0.000 0.636 0.364
#> GSM447422     2  0.5968     0.5208 0.000 0.636 0.364
#> GSM447424     2  0.5968     0.5208 0.000 0.636 0.364
#> GSM447427     2  0.5968     0.5208 0.000 0.636 0.364
#> GSM447428     1  0.8047     0.3589 0.632 0.256 0.112
#> GSM447429     1  0.0237     0.9676 0.996 0.000 0.004
#> GSM447431     2  0.2229     0.8147 0.012 0.944 0.044
#> GSM447432     2  0.0592     0.8341 0.012 0.988 0.000
#> GSM447434     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447442     2  0.0592     0.8341 0.012 0.988 0.000
#> GSM447451     2  0.0829     0.8341 0.012 0.984 0.004
#> GSM447462     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447463     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447467     2  0.5591     0.3065 0.304 0.696 0.000
#> GSM447469     2  0.0661     0.8348 0.004 0.988 0.008
#> GSM447473     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447404     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447406     2  0.0237     0.8317 0.000 0.996 0.004
#> GSM447407     2  0.0892     0.8197 0.000 0.980 0.020
#> GSM447409     1  0.0592     0.9614 0.988 0.012 0.000
#> GSM447412     2  0.5968     0.5208 0.000 0.636 0.364
#> GSM447426     3  0.5098     0.8861 0.000 0.248 0.752
#> GSM447433     1  0.1964     0.9165 0.944 0.056 0.000
#> GSM447439     2  0.0237     0.8317 0.000 0.996 0.004
#> GSM447441     2  0.0829     0.8341 0.012 0.984 0.004
#> GSM447443     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447445     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447446     1  0.0592     0.9614 0.988 0.012 0.000
#> GSM447453     1  0.0424     0.9645 0.992 0.008 0.000
#> GSM447455     2  0.0592     0.8341 0.012 0.988 0.000
#> GSM447456     2  0.5988     0.0593 0.368 0.632 0.000
#> GSM447459     2  0.0237     0.8317 0.000 0.996 0.004
#> GSM447466     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447470     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447474     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447475     2  0.0592     0.8341 0.012 0.988 0.000
#> GSM447398     2  0.0424     0.8341 0.008 0.992 0.000
#> GSM447399     2  0.0661     0.8348 0.004 0.988 0.008
#> GSM447408     2  0.0000     0.8330 0.000 1.000 0.000
#> GSM447410     2  0.0000     0.8330 0.000 1.000 0.000
#> GSM447414     2  0.5650     0.5764 0.000 0.688 0.312
#> GSM447417     2  0.0000     0.8330 0.000 1.000 0.000
#> GSM447419     1  0.0237     0.9676 0.996 0.000 0.004
#> GSM447420     1  0.5774     0.5901 0.748 0.232 0.020
#> GSM447421     1  0.0424     0.9655 0.992 0.000 0.008
#> GSM447423     2  0.5968     0.5208 0.000 0.636 0.364
#> GSM447436     1  0.0424     0.9645 0.992 0.008 0.000
#> GSM447437     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447438     2  0.0000     0.8330 0.000 1.000 0.000
#> GSM447447     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447454     2  0.1482     0.8290 0.012 0.968 0.020
#> GSM447457     2  0.3539     0.7716 0.012 0.888 0.100
#> GSM447460     2  0.0829     0.8344 0.004 0.984 0.012
#> GSM447465     2  0.3500     0.7629 0.004 0.880 0.116
#> GSM447471     1  0.0000     0.9703 1.000 0.000 0.000
#> GSM447476     2  0.0892     0.8177 0.020 0.980 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.3870     0.3569 0.000 0.004 0.788 0.208
#> GSM447411     1  0.0469     0.9502 0.988 0.000 0.000 0.012
#> GSM447413     3  0.5948     0.7802 0.000 0.160 0.696 0.144
#> GSM447415     1  0.0469     0.9502 0.988 0.000 0.000 0.012
#> GSM447416     3  0.5759     0.8031 0.000 0.232 0.688 0.080
#> GSM447425     4  0.4535     0.4963 0.000 0.004 0.292 0.704
#> GSM447430     4  0.4621     0.7325 0.000 0.284 0.008 0.708
#> GSM447435     1  0.0592     0.9495 0.984 0.000 0.000 0.016
#> GSM447440     1  0.0336     0.9525 0.992 0.000 0.000 0.008
#> GSM447444     1  0.1022     0.9500 0.968 0.000 0.000 0.032
#> GSM447448     1  0.0469     0.9518 0.988 0.000 0.000 0.012
#> GSM447449     2  0.2760     0.7615 0.000 0.872 0.000 0.128
#> GSM447450     1  0.0188     0.9519 0.996 0.000 0.000 0.004
#> GSM447452     4  0.4632     0.4912 0.000 0.004 0.308 0.688
#> GSM447458     2  0.0336     0.8278 0.000 0.992 0.000 0.008
#> GSM447461     2  0.0000     0.8273 0.000 1.000 0.000 0.000
#> GSM447464     1  0.1474     0.9463 0.948 0.000 0.000 0.052
#> GSM447468     1  0.0707     0.9515 0.980 0.000 0.000 0.020
#> GSM447472     1  0.1716     0.9433 0.936 0.000 0.000 0.064
#> GSM447400     1  0.1867     0.9400 0.928 0.000 0.000 0.072
#> GSM447402     2  0.5000    -0.3258 0.000 0.504 0.000 0.496
#> GSM447403     1  0.0469     0.9502 0.988 0.000 0.000 0.012
#> GSM447405     1  0.0817     0.9499 0.976 0.000 0.000 0.024
#> GSM447418     3  0.5963     0.7975 0.000 0.196 0.688 0.116
#> GSM447422     3  0.5693     0.8016 0.000 0.240 0.688 0.072
#> GSM447424     3  0.5897     0.7859 0.000 0.164 0.700 0.136
#> GSM447427     3  0.5491     0.7939 0.000 0.260 0.688 0.052
#> GSM447428     1  0.6232     0.0256 0.484 0.008 0.472 0.036
#> GSM447429     1  0.1118     0.9507 0.964 0.000 0.000 0.036
#> GSM447431     2  0.3895     0.7439 0.000 0.832 0.036 0.132
#> GSM447432     2  0.0000     0.8273 0.000 1.000 0.000 0.000
#> GSM447434     1  0.1716     0.9433 0.936 0.000 0.000 0.064
#> GSM447442     2  0.1389     0.8158 0.000 0.952 0.000 0.048
#> GSM447451     2  0.0469     0.8238 0.000 0.988 0.000 0.012
#> GSM447462     1  0.1637     0.9437 0.940 0.000 0.000 0.060
#> GSM447463     1  0.1302     0.9479 0.956 0.000 0.000 0.044
#> GSM447467     2  0.5325     0.4626 0.204 0.728 0.000 0.068
#> GSM447469     2  0.3726     0.6805 0.000 0.788 0.000 0.212
#> GSM447473     1  0.0707     0.9507 0.980 0.000 0.000 0.020
#> GSM447404     1  0.0592     0.9497 0.984 0.000 0.000 0.016
#> GSM447406     4  0.3528     0.7601 0.000 0.192 0.000 0.808
#> GSM447407     4  0.3444     0.7551 0.000 0.184 0.000 0.816
#> GSM447409     1  0.0779     0.9512 0.980 0.000 0.004 0.016
#> GSM447412     3  0.5088     0.7730 0.000 0.288 0.688 0.024
#> GSM447426     3  0.3870     0.3569 0.000 0.004 0.788 0.208
#> GSM447433     1  0.0707     0.9509 0.980 0.000 0.000 0.020
#> GSM447439     4  0.4420     0.7634 0.000 0.240 0.012 0.748
#> GSM447441     2  0.1284     0.8255 0.000 0.964 0.012 0.024
#> GSM447443     1  0.1211     0.9502 0.960 0.000 0.000 0.040
#> GSM447445     1  0.0707     0.9520 0.980 0.000 0.000 0.020
#> GSM447446     1  0.0592     0.9495 0.984 0.000 0.000 0.016
#> GSM447453     1  0.0592     0.9495 0.984 0.000 0.000 0.016
#> GSM447455     2  0.0592     0.8280 0.000 0.984 0.000 0.016
#> GSM447456     2  0.5003     0.5465 0.148 0.768 0.000 0.084
#> GSM447459     4  0.4621     0.7325 0.000 0.284 0.008 0.708
#> GSM447466     1  0.1118     0.9500 0.964 0.000 0.000 0.036
#> GSM447470     1  0.1867     0.9400 0.928 0.000 0.000 0.072
#> GSM447474     1  0.1867     0.9400 0.928 0.000 0.000 0.072
#> GSM447475     2  0.0707     0.8191 0.000 0.980 0.000 0.020
#> GSM447398     2  0.0469     0.8277 0.000 0.988 0.000 0.012
#> GSM447399     2  0.2647     0.7703 0.000 0.880 0.000 0.120
#> GSM447408     2  0.4679     0.2630 0.000 0.648 0.000 0.352
#> GSM447410     2  0.0921     0.8238 0.000 0.972 0.000 0.028
#> GSM447414     3  0.5902     0.7834 0.000 0.160 0.700 0.140
#> GSM447417     4  0.4454     0.6990 0.000 0.308 0.000 0.692
#> GSM447419     1  0.1792     0.9417 0.932 0.000 0.000 0.068
#> GSM447420     1  0.5607     0.6924 0.716 0.004 0.208 0.072
#> GSM447421     1  0.1557     0.9452 0.944 0.000 0.000 0.056
#> GSM447423     3  0.4477     0.7496 0.000 0.312 0.688 0.000
#> GSM447436     1  0.0592     0.9495 0.984 0.000 0.000 0.016
#> GSM447437     1  0.1389     0.9476 0.952 0.000 0.000 0.048
#> GSM447438     2  0.0921     0.8239 0.000 0.972 0.000 0.028
#> GSM447447     1  0.1792     0.9416 0.932 0.000 0.000 0.068
#> GSM447454     2  0.0657     0.8258 0.000 0.984 0.012 0.004
#> GSM447457     2  0.1474     0.7968 0.000 0.948 0.052 0.000
#> GSM447460     2  0.3708     0.7335 0.000 0.832 0.020 0.148
#> GSM447465     3  0.6855     0.6605 0.000 0.292 0.572 0.136
#> GSM447471     1  0.0336     0.9512 0.992 0.000 0.000 0.008
#> GSM447476     2  0.3942     0.5844 0.000 0.764 0.000 0.236

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     5  0.3612      0.645 0.000 0.000 0.228 0.008 0.764
#> GSM447411     1  0.4003      0.725 0.704 0.000 0.000 0.288 0.008
#> GSM447413     3  0.0290      0.644 0.000 0.008 0.992 0.000 0.000
#> GSM447415     1  0.5850      0.657 0.476 0.000 0.000 0.428 0.096
#> GSM447416     3  0.2648      0.731 0.000 0.152 0.848 0.000 0.000
#> GSM447425     5  0.6276      0.477 0.012 0.068 0.024 0.324 0.572
#> GSM447430     4  0.6040      0.914 0.000 0.156 0.284 0.560 0.000
#> GSM447435     1  0.3766      0.725 0.728 0.004 0.000 0.268 0.000
#> GSM447440     1  0.2812      0.725 0.876 0.024 0.000 0.096 0.004
#> GSM447444     1  0.4879      0.717 0.716 0.004 0.000 0.200 0.080
#> GSM447448     1  0.3250      0.728 0.820 0.004 0.000 0.168 0.008
#> GSM447449     2  0.6261      0.456 0.156 0.488 0.356 0.000 0.000
#> GSM447450     1  0.5546      0.671 0.648 0.176 0.000 0.176 0.000
#> GSM447452     5  0.5831      0.485 0.000 0.068 0.020 0.324 0.588
#> GSM447458     2  0.3044      0.742 0.148 0.840 0.004 0.008 0.000
#> GSM447461     2  0.2732      0.739 0.160 0.840 0.000 0.000 0.000
#> GSM447464     1  0.1124      0.709 0.960 0.004 0.000 0.036 0.000
#> GSM447468     1  0.5622      0.673 0.508 0.000 0.000 0.416 0.076
#> GSM447472     1  0.1857      0.721 0.928 0.004 0.000 0.060 0.008
#> GSM447400     1  0.2911      0.627 0.852 0.008 0.000 0.004 0.136
#> GSM447402     2  0.6670     -0.429 0.012 0.500 0.060 0.384 0.044
#> GSM447403     1  0.5431      0.679 0.516 0.000 0.000 0.424 0.060
#> GSM447405     1  0.4138      0.706 0.616 0.000 0.000 0.384 0.000
#> GSM447418     3  0.1732      0.723 0.000 0.080 0.920 0.000 0.000
#> GSM447422     3  0.2813      0.726 0.000 0.168 0.832 0.000 0.000
#> GSM447424     3  0.1478      0.715 0.000 0.064 0.936 0.000 0.000
#> GSM447427     3  0.3074      0.711 0.000 0.196 0.804 0.000 0.000
#> GSM447428     3  0.8563     -0.241 0.268 0.004 0.336 0.216 0.176
#> GSM447429     1  0.7115      0.504 0.532 0.000 0.120 0.080 0.268
#> GSM447431     2  0.6692      0.372 0.160 0.468 0.360 0.008 0.004
#> GSM447432     2  0.2890      0.740 0.160 0.836 0.004 0.000 0.000
#> GSM447434     1  0.3216      0.652 0.852 0.012 0.000 0.020 0.116
#> GSM447442     2  0.3804      0.735 0.160 0.796 0.044 0.000 0.000
#> GSM447451     2  0.2773      0.739 0.164 0.836 0.000 0.000 0.000
#> GSM447462     1  0.4283      0.550 0.780 0.080 0.000 0.004 0.136
#> GSM447463     1  0.1484      0.709 0.944 0.008 0.000 0.048 0.000
#> GSM447467     2  0.4946      0.610 0.300 0.648 0.000 0.000 0.052
#> GSM447469     2  0.7960      0.334 0.120 0.400 0.340 0.136 0.004
#> GSM447473     1  0.5889      0.655 0.472 0.000 0.000 0.428 0.100
#> GSM447404     1  0.5889      0.655 0.472 0.000 0.000 0.428 0.100
#> GSM447406     4  0.6681      0.921 0.000 0.176 0.256 0.544 0.024
#> GSM447407     4  0.6846      0.882 0.000 0.196 0.220 0.548 0.036
#> GSM447409     1  0.4425      0.707 0.600 0.000 0.000 0.392 0.008
#> GSM447412     3  0.3210      0.696 0.000 0.212 0.788 0.000 0.000
#> GSM447426     5  0.3612      0.645 0.000 0.000 0.228 0.008 0.764
#> GSM447433     1  0.4963      0.701 0.608 0.040 0.000 0.352 0.000
#> GSM447439     4  0.6040      0.914 0.000 0.156 0.284 0.560 0.000
#> GSM447441     2  0.3599      0.741 0.160 0.812 0.020 0.008 0.000
#> GSM447443     1  0.5533      0.683 0.580 0.000 0.000 0.336 0.084
#> GSM447445     1  0.1908      0.723 0.908 0.000 0.000 0.092 0.000
#> GSM447446     1  0.4138      0.707 0.616 0.000 0.000 0.384 0.000
#> GSM447453     1  0.4481      0.700 0.576 0.000 0.000 0.416 0.008
#> GSM447455     2  0.3123      0.740 0.160 0.828 0.012 0.000 0.000
#> GSM447456     2  0.3863      0.514 0.200 0.772 0.000 0.028 0.000
#> GSM447459     4  0.6063      0.924 0.000 0.176 0.256 0.568 0.000
#> GSM447466     1  0.1628      0.714 0.936 0.000 0.000 0.056 0.008
#> GSM447470     1  0.3264      0.626 0.840 0.024 0.000 0.004 0.132
#> GSM447474     1  0.3340      0.625 0.840 0.032 0.000 0.004 0.124
#> GSM447475     2  0.3074      0.728 0.196 0.804 0.000 0.000 0.000
#> GSM447398     2  0.0510      0.638 0.000 0.984 0.000 0.016 0.000
#> GSM447399     2  0.5879      0.591 0.148 0.612 0.236 0.004 0.000
#> GSM447408     2  0.4572      0.216 0.000 0.684 0.036 0.280 0.000
#> GSM447410     2  0.1300      0.624 0.000 0.956 0.016 0.028 0.000
#> GSM447414     3  0.1341      0.708 0.000 0.056 0.944 0.000 0.000
#> GSM447417     4  0.6211      0.848 0.000 0.256 0.176 0.564 0.004
#> GSM447419     1  0.6994      0.518 0.552 0.000 0.120 0.076 0.252
#> GSM447420     1  0.6700      0.338 0.540 0.000 0.260 0.024 0.176
#> GSM447421     1  0.6686      0.492 0.564 0.000 0.120 0.048 0.268
#> GSM447423     3  0.4042      0.675 0.000 0.212 0.756 0.000 0.032
#> GSM447436     1  0.4150      0.709 0.612 0.000 0.000 0.388 0.000
#> GSM447437     1  0.1430      0.712 0.944 0.004 0.000 0.052 0.000
#> GSM447438     2  0.2983      0.587 0.000 0.868 0.056 0.076 0.000
#> GSM447447     1  0.0613      0.700 0.984 0.004 0.000 0.004 0.008
#> GSM447454     2  0.5162      0.662 0.160 0.692 0.148 0.000 0.000
#> GSM447457     2  0.4573      0.701 0.164 0.744 0.092 0.000 0.000
#> GSM447460     3  0.6342     -0.235 0.120 0.364 0.504 0.012 0.000
#> GSM447465     3  0.2284      0.709 0.004 0.096 0.896 0.004 0.000
#> GSM447471     1  0.4507      0.705 0.580 0.004 0.000 0.412 0.004
#> GSM447476     2  0.4805      0.474 0.120 0.764 0.016 0.096 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     5  0.0000    0.98365 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447411     1  0.3986   -0.05090 0.532 0.004 0.000 0.000 0.000 0.464
#> GSM447413     3  0.2053    0.84369 0.000 0.004 0.888 0.108 0.000 0.000
#> GSM447415     1  0.0146    0.84889 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM447416     3  0.0000    0.88668 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447425     5  0.0632    0.98341 0.000 0.000 0.000 0.024 0.976 0.000
#> GSM447430     4  0.0458    0.76519 0.000 0.000 0.016 0.984 0.000 0.000
#> GSM447435     6  0.3804    0.37525 0.424 0.000 0.000 0.000 0.000 0.576
#> GSM447440     6  0.2300    0.82866 0.144 0.000 0.000 0.000 0.000 0.856
#> GSM447444     1  0.4338    0.24921 0.560 0.004 0.000 0.016 0.000 0.420
#> GSM447448     6  0.2964    0.75977 0.204 0.000 0.000 0.004 0.000 0.792
#> GSM447449     3  0.2176    0.86023 0.000 0.024 0.896 0.080 0.000 0.000
#> GSM447450     6  0.2838    0.80390 0.188 0.000 0.000 0.004 0.000 0.808
#> GSM447452     5  0.0632    0.98341 0.000 0.000 0.000 0.024 0.976 0.000
#> GSM447458     2  0.0692    0.84261 0.000 0.976 0.020 0.004 0.000 0.000
#> GSM447461     2  0.0146    0.84200 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM447464     6  0.1327    0.87813 0.064 0.000 0.000 0.000 0.000 0.936
#> GSM447468     1  0.0146    0.84889 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM447472     6  0.2946    0.76523 0.176 0.000 0.000 0.012 0.000 0.812
#> GSM447400     6  0.0508    0.87406 0.012 0.004 0.000 0.000 0.000 0.984
#> GSM447402     4  0.3707    0.72249 0.000 0.136 0.080 0.784 0.000 0.000
#> GSM447403     1  0.0291    0.84897 0.992 0.004 0.000 0.000 0.000 0.004
#> GSM447405     1  0.1549    0.82699 0.936 0.000 0.000 0.020 0.000 0.044
#> GSM447418     3  0.0000    0.88668 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447422     3  0.0260    0.88661 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM447424     3  0.0000    0.88668 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447427     3  0.0713    0.88331 0.000 0.028 0.972 0.000 0.000 0.000
#> GSM447428     1  0.5071    0.49416 0.616 0.000 0.300 0.016 0.000 0.068
#> GSM447429     6  0.1411    0.87426 0.060 0.000 0.004 0.000 0.000 0.936
#> GSM447431     3  0.3881    0.31486 0.000 0.396 0.600 0.004 0.000 0.000
#> GSM447432     2  0.1141    0.83859 0.000 0.948 0.052 0.000 0.000 0.000
#> GSM447434     6  0.1411    0.87162 0.060 0.004 0.000 0.000 0.000 0.936
#> GSM447442     2  0.2631    0.72208 0.000 0.820 0.180 0.000 0.000 0.000
#> GSM447451     2  0.0146    0.84200 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM447462     6  0.1563    0.84684 0.012 0.056 0.000 0.000 0.000 0.932
#> GSM447463     6  0.1327    0.87813 0.064 0.000 0.000 0.000 0.000 0.936
#> GSM447467     2  0.3998   -0.00469 0.000 0.504 0.004 0.000 0.000 0.492
#> GSM447469     4  0.3629    0.60692 0.000 0.012 0.276 0.712 0.000 0.000
#> GSM447473     1  0.0146    0.84889 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM447404     1  0.0146    0.84889 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM447406     4  0.0458    0.76519 0.000 0.000 0.016 0.984 0.000 0.000
#> GSM447407     4  0.0458    0.76519 0.000 0.000 0.016 0.984 0.000 0.000
#> GSM447409     1  0.0508    0.84705 0.984 0.000 0.000 0.004 0.000 0.012
#> GSM447412     3  0.2260    0.82032 0.000 0.140 0.860 0.000 0.000 0.000
#> GSM447426     5  0.0000    0.98365 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447433     1  0.1480    0.82951 0.940 0.000 0.000 0.020 0.000 0.040
#> GSM447439     4  0.0458    0.76519 0.000 0.000 0.016 0.984 0.000 0.000
#> GSM447441     2  0.1700    0.82022 0.000 0.916 0.080 0.004 0.000 0.000
#> GSM447443     1  0.2311    0.79341 0.880 0.000 0.000 0.016 0.000 0.104
#> GSM447445     6  0.2003    0.86290 0.116 0.000 0.000 0.000 0.000 0.884
#> GSM447446     1  0.1003    0.84138 0.964 0.000 0.000 0.016 0.000 0.020
#> GSM447453     1  0.0000    0.84865 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447455     2  0.1644    0.82310 0.000 0.920 0.076 0.004 0.000 0.000
#> GSM447456     2  0.1493    0.81212 0.000 0.936 0.004 0.004 0.000 0.056
#> GSM447459     4  0.0458    0.76519 0.000 0.000 0.016 0.984 0.000 0.000
#> GSM447466     6  0.1327    0.87813 0.064 0.000 0.000 0.000 0.000 0.936
#> GSM447470     6  0.0508    0.87406 0.012 0.004 0.000 0.000 0.000 0.984
#> GSM447474     6  0.0508    0.87406 0.012 0.004 0.000 0.000 0.000 0.984
#> GSM447475     2  0.0291    0.84122 0.000 0.992 0.004 0.000 0.000 0.004
#> GSM447398     2  0.0291    0.83999 0.000 0.992 0.004 0.004 0.000 0.000
#> GSM447399     3  0.1082    0.88317 0.000 0.040 0.956 0.004 0.000 0.000
#> GSM447408     4  0.3975    0.45788 0.000 0.392 0.008 0.600 0.000 0.000
#> GSM447410     2  0.3830    0.09560 0.000 0.620 0.004 0.376 0.000 0.000
#> GSM447414     3  0.0291    0.88666 0.000 0.004 0.992 0.004 0.000 0.000
#> GSM447417     4  0.2003    0.75940 0.000 0.044 0.044 0.912 0.000 0.000
#> GSM447419     1  0.5911    0.46695 0.532 0.000 0.168 0.016 0.000 0.284
#> GSM447420     6  0.3499    0.43089 0.000 0.000 0.320 0.000 0.000 0.680
#> GSM447421     6  0.0405    0.87019 0.008 0.000 0.004 0.000 0.000 0.988
#> GSM447423     3  0.2219    0.82168 0.000 0.136 0.864 0.000 0.000 0.000
#> GSM447436     1  0.0622    0.84799 0.980 0.000 0.000 0.012 0.000 0.008
#> GSM447437     6  0.1327    0.87813 0.064 0.000 0.000 0.000 0.000 0.936
#> GSM447438     4  0.3930    0.41122 0.000 0.420 0.004 0.576 0.000 0.000
#> GSM447447     6  0.0458    0.87541 0.016 0.000 0.000 0.000 0.000 0.984
#> GSM447454     3  0.3221    0.66936 0.000 0.264 0.736 0.000 0.000 0.000
#> GSM447457     2  0.1075    0.84004 0.000 0.952 0.048 0.000 0.000 0.000
#> GSM447460     3  0.2491    0.83686 0.000 0.020 0.868 0.112 0.000 0.000
#> GSM447465     3  0.0405    0.88669 0.000 0.008 0.988 0.004 0.000 0.000
#> GSM447471     1  0.0260    0.84892 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM447476     4  0.5927    0.22125 0.000 0.396 0.004 0.420 0.000 0.180

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n gender(p) agent(p) k
#> SD:mclust 77     0.717   0.1995 2
#> SD:mclust 76     0.438   0.0317 3
#> SD:mclust 71     0.313   0.0797 4
#> SD:mclust 67     0.378   0.0772 5
#> SD:mclust 67     0.731   0.1808 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.973           0.955       0.980         0.5036 0.498   0.498
#> 3 3 0.741           0.869       0.929         0.2850 0.783   0.591
#> 4 4 0.706           0.753       0.863         0.1067 0.859   0.628
#> 5 5 0.693           0.658       0.811         0.0584 0.888   0.642
#> 6 6 0.606           0.515       0.719         0.0514 0.982   0.930

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2  0.0000      0.966 0.000 1.000
#> GSM447411     1  0.0000      0.994 1.000 0.000
#> GSM447413     2  0.0000      0.966 0.000 1.000
#> GSM447415     1  0.0000      0.994 1.000 0.000
#> GSM447416     2  0.0000      0.966 0.000 1.000
#> GSM447425     2  0.0000      0.966 0.000 1.000
#> GSM447430     2  0.0000      0.966 0.000 1.000
#> GSM447435     1  0.0000      0.994 1.000 0.000
#> GSM447440     1  0.0000      0.994 1.000 0.000
#> GSM447444     1  0.0000      0.994 1.000 0.000
#> GSM447448     1  0.0000      0.994 1.000 0.000
#> GSM447449     2  0.0000      0.966 0.000 1.000
#> GSM447450     1  0.0000      0.994 1.000 0.000
#> GSM447452     2  0.0000      0.966 0.000 1.000
#> GSM447458     2  0.0000      0.966 0.000 1.000
#> GSM447461     2  0.0000      0.966 0.000 1.000
#> GSM447464     1  0.0000      0.994 1.000 0.000
#> GSM447468     1  0.0000      0.994 1.000 0.000
#> GSM447472     1  0.0000      0.994 1.000 0.000
#> GSM447400     1  0.0000      0.994 1.000 0.000
#> GSM447402     2  0.1184      0.955 0.016 0.984
#> GSM447403     1  0.0000      0.994 1.000 0.000
#> GSM447405     1  0.0000      0.994 1.000 0.000
#> GSM447418     2  0.0000      0.966 0.000 1.000
#> GSM447422     2  0.0000      0.966 0.000 1.000
#> GSM447424     2  0.0000      0.966 0.000 1.000
#> GSM447427     2  0.0000      0.966 0.000 1.000
#> GSM447428     2  0.8081      0.691 0.248 0.752
#> GSM447429     1  0.0000      0.994 1.000 0.000
#> GSM447431     2  0.0000      0.966 0.000 1.000
#> GSM447432     2  0.0000      0.966 0.000 1.000
#> GSM447434     1  0.0000      0.994 1.000 0.000
#> GSM447442     2  0.0000      0.966 0.000 1.000
#> GSM447451     2  0.0938      0.958 0.012 0.988
#> GSM447462     1  0.0000      0.994 1.000 0.000
#> GSM447463     1  0.0000      0.994 1.000 0.000
#> GSM447467     2  0.8861      0.594 0.304 0.696
#> GSM447469     2  0.0000      0.966 0.000 1.000
#> GSM447473     1  0.0000      0.994 1.000 0.000
#> GSM447404     1  0.0000      0.994 1.000 0.000
#> GSM447406     2  0.0000      0.966 0.000 1.000
#> GSM447407     2  0.0000      0.966 0.000 1.000
#> GSM447409     1  0.0000      0.994 1.000 0.000
#> GSM447412     2  0.0000      0.966 0.000 1.000
#> GSM447426     2  0.0000      0.966 0.000 1.000
#> GSM447433     1  0.0000      0.994 1.000 0.000
#> GSM447439     2  0.0000      0.966 0.000 1.000
#> GSM447441     2  0.0000      0.966 0.000 1.000
#> GSM447443     1  0.0000      0.994 1.000 0.000
#> GSM447445     1  0.0000      0.994 1.000 0.000
#> GSM447446     1  0.0000      0.994 1.000 0.000
#> GSM447453     1  0.0000      0.994 1.000 0.000
#> GSM447455     2  0.0000      0.966 0.000 1.000
#> GSM447456     1  0.3584      0.926 0.932 0.068
#> GSM447459     2  0.0000      0.966 0.000 1.000
#> GSM447466     1  0.0000      0.994 1.000 0.000
#> GSM447470     1  0.0000      0.994 1.000 0.000
#> GSM447474     1  0.0000      0.994 1.000 0.000
#> GSM447475     2  0.7299      0.755 0.204 0.796
#> GSM447398     2  0.3584      0.910 0.068 0.932
#> GSM447399     2  0.0000      0.966 0.000 1.000
#> GSM447408     2  0.0000      0.966 0.000 1.000
#> GSM447410     2  0.0000      0.966 0.000 1.000
#> GSM447414     2  0.0000      0.966 0.000 1.000
#> GSM447417     2  0.0000      0.966 0.000 1.000
#> GSM447419     1  0.2236      0.960 0.964 0.036
#> GSM447420     2  0.9866      0.287 0.432 0.568
#> GSM447421     1  0.0000      0.994 1.000 0.000
#> GSM447423     2  0.0000      0.966 0.000 1.000
#> GSM447436     1  0.0000      0.994 1.000 0.000
#> GSM447437     1  0.0000      0.994 1.000 0.000
#> GSM447438     2  0.4815      0.875 0.104 0.896
#> GSM447447     1  0.0000      0.994 1.000 0.000
#> GSM447454     2  0.0000      0.966 0.000 1.000
#> GSM447457     2  0.0000      0.966 0.000 1.000
#> GSM447460     2  0.0000      0.966 0.000 1.000
#> GSM447465     2  0.0000      0.966 0.000 1.000
#> GSM447471     1  0.0000      0.994 1.000 0.000
#> GSM447476     1  0.4298      0.902 0.912 0.088

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.0000      0.853 0.000 0.000 1.000
#> GSM447411     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447413     3  0.0000      0.853 0.000 0.000 1.000
#> GSM447415     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447416     3  0.3619      0.824 0.000 0.136 0.864
#> GSM447425     2  0.4235      0.822 0.000 0.824 0.176
#> GSM447430     2  0.1163      0.880 0.000 0.972 0.028
#> GSM447435     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447440     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447444     1  0.0747      0.963 0.984 0.000 0.016
#> GSM447448     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447449     2  0.5058      0.772 0.000 0.756 0.244
#> GSM447450     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447452     2  0.3941      0.835 0.000 0.844 0.156
#> GSM447458     2  0.3412      0.845 0.000 0.876 0.124
#> GSM447461     2  0.0747      0.883 0.016 0.984 0.000
#> GSM447464     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447468     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447472     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447400     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447402     2  0.5731      0.803 0.088 0.804 0.108
#> GSM447403     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447405     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447418     3  0.0237      0.854 0.000 0.004 0.996
#> GSM447422     3  0.1289      0.858 0.000 0.032 0.968
#> GSM447424     3  0.1643      0.857 0.000 0.044 0.956
#> GSM447427     3  0.1163      0.858 0.000 0.028 0.972
#> GSM447428     3  0.0747      0.851 0.016 0.000 0.984
#> GSM447429     1  0.4062      0.794 0.836 0.000 0.164
#> GSM447431     3  0.4796      0.733 0.000 0.220 0.780
#> GSM447432     2  0.3816      0.832 0.000 0.852 0.148
#> GSM447434     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447442     2  0.4235      0.811 0.000 0.824 0.176
#> GSM447451     2  0.3039      0.864 0.044 0.920 0.036
#> GSM447462     1  0.0237      0.973 0.996 0.000 0.004
#> GSM447463     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447467     1  0.3528      0.871 0.892 0.016 0.092
#> GSM447469     2  0.3816      0.832 0.000 0.852 0.148
#> GSM447473     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447404     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447406     2  0.0237      0.885 0.000 0.996 0.004
#> GSM447407     2  0.1031      0.881 0.000 0.976 0.024
#> GSM447409     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447412     3  0.2711      0.850 0.000 0.088 0.912
#> GSM447426     3  0.0000      0.853 0.000 0.000 1.000
#> GSM447433     1  0.0237      0.973 0.996 0.004 0.000
#> GSM447439     2  0.0237      0.885 0.000 0.996 0.004
#> GSM447441     2  0.0892      0.880 0.000 0.980 0.020
#> GSM447443     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447445     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447446     1  0.3192      0.863 0.888 0.112 0.000
#> GSM447453     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447455     2  0.0892      0.883 0.000 0.980 0.020
#> GSM447456     2  0.5835      0.519 0.340 0.660 0.000
#> GSM447459     2  0.0592      0.884 0.000 0.988 0.012
#> GSM447466     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447470     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447474     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447475     2  0.4931      0.707 0.212 0.784 0.004
#> GSM447398     2  0.0237      0.885 0.004 0.996 0.000
#> GSM447399     2  0.1964      0.862 0.000 0.944 0.056
#> GSM447408     2  0.0000      0.885 0.000 1.000 0.000
#> GSM447410     2  0.0000      0.885 0.000 1.000 0.000
#> GSM447414     3  0.2356      0.855 0.000 0.072 0.928
#> GSM447417     2  0.0000      0.885 0.000 1.000 0.000
#> GSM447419     3  0.5216      0.641 0.260 0.000 0.740
#> GSM447420     3  0.5968      0.442 0.364 0.000 0.636
#> GSM447421     1  0.4842      0.698 0.776 0.000 0.224
#> GSM447423     3  0.2878      0.847 0.000 0.096 0.904
#> GSM447436     1  0.2356      0.908 0.928 0.072 0.000
#> GSM447437     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447438     2  0.0000      0.885 0.000 1.000 0.000
#> GSM447447     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447454     3  0.5926      0.603 0.000 0.356 0.644
#> GSM447457     3  0.5859      0.622 0.000 0.344 0.656
#> GSM447460     2  0.5254      0.539 0.000 0.736 0.264
#> GSM447465     3  0.5397      0.662 0.000 0.280 0.720
#> GSM447471     1  0.0000      0.976 1.000 0.000 0.000
#> GSM447476     2  0.3816      0.780 0.148 0.852 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.1867     0.7318 0.000 0.000 0.928 0.072
#> GSM447411     1  0.0000     0.9514 1.000 0.000 0.000 0.000
#> GSM447413     3  0.1004     0.7593 0.000 0.004 0.972 0.024
#> GSM447415     1  0.0000     0.9514 1.000 0.000 0.000 0.000
#> GSM447416     3  0.4780     0.7542 0.000 0.096 0.788 0.116
#> GSM447425     4  0.3486     0.6637 0.000 0.000 0.188 0.812
#> GSM447430     4  0.1284     0.7341 0.000 0.024 0.012 0.964
#> GSM447435     1  0.0000     0.9514 1.000 0.000 0.000 0.000
#> GSM447440     1  0.0000     0.9514 1.000 0.000 0.000 0.000
#> GSM447444     1  0.0469     0.9479 0.988 0.000 0.012 0.000
#> GSM447448     1  0.0000     0.9514 1.000 0.000 0.000 0.000
#> GSM447449     2  0.5990     0.6182 0.000 0.692 0.164 0.144
#> GSM447450     1  0.0000     0.9514 1.000 0.000 0.000 0.000
#> GSM447452     4  0.3444     0.6660 0.000 0.000 0.184 0.816
#> GSM447458     2  0.0927     0.7603 0.000 0.976 0.016 0.008
#> GSM447461     2  0.3208     0.7635 0.004 0.848 0.000 0.148
#> GSM447464     1  0.0336     0.9493 0.992 0.000 0.008 0.000
#> GSM447468     1  0.0336     0.9493 0.992 0.000 0.008 0.000
#> GSM447472     1  0.0336     0.9493 0.992 0.000 0.008 0.000
#> GSM447400     1  0.0927     0.9378 0.976 0.016 0.008 0.000
#> GSM447402     4  0.4468     0.6583 0.020 0.164 0.016 0.800
#> GSM447403     1  0.0000     0.9514 1.000 0.000 0.000 0.000
#> GSM447405     1  0.4955     0.0762 0.556 0.000 0.000 0.444
#> GSM447418     3  0.3810     0.8052 0.000 0.188 0.804 0.008
#> GSM447422     3  0.4624     0.7043 0.000 0.340 0.660 0.000
#> GSM447424     3  0.3569     0.8044 0.000 0.196 0.804 0.000
#> GSM447427     3  0.4134     0.7856 0.000 0.260 0.740 0.000
#> GSM447428     3  0.2796     0.7639 0.092 0.016 0.892 0.000
#> GSM447429     1  0.0707     0.9427 0.980 0.000 0.020 0.000
#> GSM447431     2  0.1256     0.7547 0.000 0.964 0.028 0.008
#> GSM447432     2  0.0592     0.7581 0.000 0.984 0.016 0.000
#> GSM447434     1  0.0000     0.9514 1.000 0.000 0.000 0.000
#> GSM447442     2  0.0817     0.7541 0.000 0.976 0.024 0.000
#> GSM447451     2  0.3757     0.7566 0.020 0.828 0.000 0.152
#> GSM447462     1  0.2198     0.8795 0.920 0.072 0.008 0.000
#> GSM447463     1  0.0336     0.9493 0.992 0.000 0.008 0.000
#> GSM447467     2  0.4826     0.4589 0.264 0.716 0.020 0.000
#> GSM447469     4  0.4988     0.6017 0.000 0.288 0.020 0.692
#> GSM447473     1  0.0336     0.9493 0.992 0.000 0.008 0.000
#> GSM447404     1  0.0000     0.9514 1.000 0.000 0.000 0.000
#> GSM447406     4  0.3726     0.6268 0.000 0.212 0.000 0.788
#> GSM447407     4  0.0524     0.7333 0.000 0.008 0.004 0.988
#> GSM447409     1  0.0188     0.9497 0.996 0.000 0.000 0.004
#> GSM447412     3  0.4164     0.7879 0.000 0.264 0.736 0.000
#> GSM447426     3  0.1637     0.7392 0.000 0.000 0.940 0.060
#> GSM447433     4  0.4967     0.2083 0.452 0.000 0.000 0.548
#> GSM447439     4  0.2814     0.6977 0.000 0.132 0.000 0.868
#> GSM447441     2  0.3219     0.7551 0.000 0.836 0.000 0.164
#> GSM447443     1  0.0188     0.9505 0.996 0.000 0.004 0.000
#> GSM447445     1  0.0188     0.9497 0.996 0.000 0.000 0.004
#> GSM447446     4  0.4103     0.5848 0.256 0.000 0.000 0.744
#> GSM447453     1  0.0188     0.9497 0.996 0.000 0.000 0.004
#> GSM447455     2  0.1474     0.7770 0.000 0.948 0.000 0.052
#> GSM447456     2  0.5884     0.3700 0.364 0.592 0.000 0.044
#> GSM447459     4  0.1489     0.7326 0.000 0.044 0.004 0.952
#> GSM447466     1  0.0000     0.9514 1.000 0.000 0.000 0.000
#> GSM447470     1  0.0927     0.9397 0.976 0.016 0.008 0.000
#> GSM447474     1  0.0336     0.9478 0.992 0.008 0.000 0.000
#> GSM447475     2  0.4050     0.6888 0.144 0.820 0.000 0.036
#> GSM447398     2  0.3710     0.7374 0.004 0.804 0.000 0.192
#> GSM447399     2  0.3355     0.7594 0.000 0.836 0.004 0.160
#> GSM447408     4  0.4103     0.5719 0.000 0.256 0.000 0.744
#> GSM447410     2  0.5158     0.1758 0.004 0.524 0.000 0.472
#> GSM447414     3  0.4904     0.7890 0.000 0.216 0.744 0.040
#> GSM447417     4  0.1637     0.7296 0.000 0.060 0.000 0.940
#> GSM447419     3  0.5337     0.6070 0.260 0.044 0.696 0.000
#> GSM447420     3  0.5590     0.6317 0.244 0.064 0.692 0.000
#> GSM447421     1  0.2867     0.8444 0.884 0.012 0.104 0.000
#> GSM447423     3  0.4382     0.7617 0.000 0.296 0.704 0.000
#> GSM447436     1  0.5000    -0.1126 0.504 0.000 0.000 0.496
#> GSM447437     1  0.0000     0.9514 1.000 0.000 0.000 0.000
#> GSM447438     4  0.4509     0.5109 0.004 0.288 0.000 0.708
#> GSM447447     1  0.0188     0.9497 0.996 0.000 0.000 0.004
#> GSM447454     2  0.4130     0.7664 0.000 0.828 0.064 0.108
#> GSM447457     2  0.2814     0.6439 0.000 0.868 0.132 0.000
#> GSM447460     2  0.4088     0.7085 0.000 0.764 0.004 0.232
#> GSM447465     2  0.4019     0.5542 0.000 0.792 0.196 0.012
#> GSM447471     1  0.0000     0.9514 1.000 0.000 0.000 0.000
#> GSM447476     4  0.5746     0.4797 0.348 0.040 0.000 0.612

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     3  0.2891     0.7361 0.000 0.000 0.824 0.000 0.176
#> GSM447411     1  0.0451     0.8934 0.988 0.008 0.000 0.000 0.004
#> GSM447413     3  0.3264     0.7719 0.000 0.020 0.836 0.004 0.140
#> GSM447415     1  0.0162     0.8932 0.996 0.000 0.000 0.000 0.004
#> GSM447416     3  0.2720     0.7758 0.000 0.020 0.880 0.096 0.004
#> GSM447425     5  0.1503     0.6526 0.000 0.020 0.020 0.008 0.952
#> GSM447430     4  0.4668     0.3467 0.000 0.008 0.008 0.600 0.384
#> GSM447435     1  0.0693     0.8926 0.980 0.008 0.000 0.000 0.012
#> GSM447440     1  0.1757     0.8771 0.936 0.048 0.000 0.004 0.012
#> GSM447444     1  0.5869     0.0158 0.484 0.428 0.004 0.000 0.084
#> GSM447448     1  0.1845     0.8693 0.928 0.056 0.000 0.000 0.016
#> GSM447449     2  0.4420     0.5106 0.000 0.712 0.016 0.012 0.260
#> GSM447450     1  0.0671     0.8928 0.980 0.016 0.004 0.000 0.000
#> GSM447452     5  0.2450     0.6381 0.000 0.000 0.052 0.048 0.900
#> GSM447458     2  0.3009     0.6672 0.016 0.876 0.000 0.028 0.080
#> GSM447461     4  0.4181     0.5791 0.000 0.240 0.016 0.736 0.008
#> GSM447464     1  0.1412     0.8868 0.952 0.036 0.008 0.000 0.004
#> GSM447468     1  0.0162     0.8939 0.996 0.000 0.004 0.000 0.000
#> GSM447472     1  0.2110     0.8502 0.912 0.072 0.000 0.000 0.016
#> GSM447400     1  0.1752     0.8809 0.936 0.052 0.004 0.004 0.004
#> GSM447402     5  0.4566     0.6134 0.032 0.172 0.012 0.016 0.768
#> GSM447403     1  0.0324     0.8931 0.992 0.004 0.000 0.000 0.004
#> GSM447405     1  0.5840     0.4474 0.636 0.016 0.000 0.112 0.236
#> GSM447418     2  0.4074     0.3817 0.000 0.636 0.364 0.000 0.000
#> GSM447422     2  0.2852     0.6499 0.000 0.828 0.172 0.000 0.000
#> GSM447424     3  0.1965     0.7949 0.000 0.096 0.904 0.000 0.000
#> GSM447427     3  0.2773     0.7653 0.000 0.164 0.836 0.000 0.000
#> GSM447428     3  0.2861     0.7782 0.076 0.016 0.884 0.000 0.024
#> GSM447429     1  0.0771     0.8942 0.976 0.004 0.020 0.000 0.000
#> GSM447431     4  0.4699     0.5771 0.000 0.236 0.016 0.716 0.032
#> GSM447432     2  0.3163     0.6859 0.000 0.864 0.012 0.092 0.032
#> GSM447434     1  0.0486     0.8939 0.988 0.004 0.000 0.004 0.004
#> GSM447442     2  0.2499     0.6790 0.000 0.908 0.040 0.016 0.036
#> GSM447451     4  0.4565     0.5933 0.044 0.196 0.008 0.748 0.004
#> GSM447462     1  0.3168     0.8185 0.856 0.116 0.008 0.016 0.004
#> GSM447463     1  0.1518     0.8844 0.944 0.048 0.004 0.000 0.004
#> GSM447467     2  0.1956     0.6759 0.052 0.928 0.012 0.000 0.008
#> GSM447469     2  0.6094     0.2620 0.000 0.572 0.064 0.036 0.328
#> GSM447473     1  0.0162     0.8938 0.996 0.004 0.000 0.000 0.000
#> GSM447404     1  0.0960     0.8924 0.972 0.016 0.004 0.000 0.008
#> GSM447406     4  0.2575     0.6508 0.000 0.012 0.004 0.884 0.100
#> GSM447407     5  0.3857     0.4085 0.000 0.000 0.000 0.312 0.688
#> GSM447409     1  0.0960     0.8918 0.972 0.016 0.000 0.004 0.008
#> GSM447412     3  0.3269     0.7935 0.000 0.096 0.848 0.056 0.000
#> GSM447426     3  0.2690     0.7495 0.000 0.000 0.844 0.000 0.156
#> GSM447433     1  0.5898     0.1284 0.512 0.028 0.012 0.024 0.424
#> GSM447439     4  0.3812     0.5881 0.000 0.020 0.004 0.780 0.196
#> GSM447441     4  0.3439     0.6101 0.000 0.188 0.008 0.800 0.004
#> GSM447443     1  0.1074     0.8924 0.968 0.016 0.012 0.000 0.004
#> GSM447445     1  0.1153     0.8909 0.964 0.024 0.008 0.000 0.004
#> GSM447446     5  0.4194     0.4751 0.260 0.016 0.000 0.004 0.720
#> GSM447453     1  0.1041     0.8915 0.964 0.004 0.000 0.000 0.032
#> GSM447455     2  0.2193     0.6912 0.000 0.900 0.008 0.092 0.000
#> GSM447456     4  0.5274     0.2854 0.336 0.040 0.000 0.612 0.012
#> GSM447459     4  0.3636     0.4862 0.000 0.000 0.000 0.728 0.272
#> GSM447466     1  0.0727     0.8928 0.980 0.012 0.004 0.000 0.004
#> GSM447470     1  0.3340     0.7771 0.824 0.156 0.016 0.000 0.004
#> GSM447474     1  0.2386     0.8664 0.916 0.048 0.016 0.012 0.008
#> GSM447475     2  0.5854     0.5197 0.092 0.652 0.016 0.232 0.008
#> GSM447398     4  0.3078     0.6642 0.000 0.132 0.004 0.848 0.016
#> GSM447399     4  0.4039     0.5368 0.000 0.268 0.008 0.720 0.004
#> GSM447408     4  0.2952     0.6383 0.000 0.020 0.008 0.868 0.104
#> GSM447410     4  0.1503     0.6661 0.000 0.020 0.008 0.952 0.020
#> GSM447414     3  0.4717     0.7216 0.000 0.144 0.736 0.120 0.000
#> GSM447417     5  0.6898     0.0904 0.000 0.336 0.008 0.236 0.420
#> GSM447419     3  0.5356     0.5125 0.272 0.064 0.652 0.000 0.012
#> GSM447420     3  0.4999     0.5702 0.228 0.048 0.708 0.008 0.008
#> GSM447421     1  0.3008     0.8312 0.868 0.036 0.092 0.000 0.004
#> GSM447423     3  0.2624     0.7932 0.000 0.116 0.872 0.012 0.000
#> GSM447436     1  0.4908     0.2513 0.560 0.020 0.000 0.004 0.416
#> GSM447437     1  0.0671     0.8917 0.980 0.016 0.000 0.000 0.004
#> GSM447438     4  0.2251     0.6642 0.008 0.024 0.000 0.916 0.052
#> GSM447447     2  0.6187     0.1187 0.412 0.480 0.012 0.000 0.096
#> GSM447454     2  0.6355     0.2527 0.000 0.492 0.132 0.368 0.008
#> GSM447457     2  0.4552     0.6530 0.004 0.768 0.068 0.152 0.008
#> GSM447460     2  0.4633     0.4725 0.000 0.632 0.004 0.348 0.016
#> GSM447465     2  0.4319     0.6757 0.000 0.784 0.064 0.140 0.012
#> GSM447471     1  0.0566     0.8923 0.984 0.012 0.000 0.000 0.004
#> GSM447476     4  0.7565     0.0288 0.284 0.040 0.012 0.464 0.200

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     6  0.4516    -0.1520 0.000 0.000 0.400 0.000 0.036 0.564
#> GSM447411     1  0.0632     0.7607 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM447413     3  0.4875     0.6406 0.000 0.056 0.740 0.032 0.028 0.144
#> GSM447415     1  0.0713     0.7625 0.972 0.000 0.000 0.000 0.028 0.000
#> GSM447416     3  0.3441     0.6871 0.000 0.000 0.832 0.076 0.072 0.020
#> GSM447425     6  0.3956     0.2222 0.000 0.088 0.000 0.000 0.152 0.760
#> GSM447430     4  0.4926     0.3810 0.000 0.012 0.000 0.580 0.048 0.360
#> GSM447435     1  0.1265     0.7590 0.948 0.000 0.000 0.008 0.044 0.000
#> GSM447440     1  0.3161     0.7280 0.848 0.040 0.000 0.020 0.092 0.000
#> GSM447444     1  0.5851     0.3401 0.552 0.312 0.000 0.000 0.092 0.044
#> GSM447448     1  0.2753     0.7422 0.872 0.072 0.000 0.008 0.048 0.000
#> GSM447449     2  0.3816     0.5170 0.000 0.792 0.000 0.008 0.096 0.104
#> GSM447450     1  0.2214     0.7432 0.892 0.012 0.000 0.004 0.092 0.000
#> GSM447452     6  0.1129     0.3917 0.000 0.012 0.004 0.012 0.008 0.964
#> GSM447458     2  0.2933     0.5979 0.008 0.860 0.000 0.004 0.096 0.032
#> GSM447461     4  0.6483     0.3915 0.044 0.212 0.004 0.520 0.220 0.000
#> GSM447464     1  0.3066     0.7131 0.832 0.044 0.000 0.000 0.124 0.000
#> GSM447468     1  0.1007     0.7641 0.956 0.000 0.000 0.000 0.044 0.000
#> GSM447472     1  0.3322     0.7345 0.832 0.052 0.000 0.012 0.104 0.000
#> GSM447400     1  0.4527     0.6888 0.680 0.056 0.008 0.000 0.256 0.000
#> GSM447402     5  0.6337     0.0452 0.000 0.332 0.000 0.008 0.348 0.312
#> GSM447403     1  0.2416     0.7400 0.844 0.000 0.000 0.000 0.156 0.000
#> GSM447405     1  0.6816     0.1385 0.448 0.004 0.000 0.080 0.332 0.136
#> GSM447418     2  0.4187     0.4289 0.000 0.624 0.356 0.000 0.016 0.004
#> GSM447422     2  0.3263     0.5709 0.000 0.800 0.176 0.004 0.020 0.000
#> GSM447424     3  0.0717     0.7180 0.000 0.016 0.976 0.000 0.000 0.008
#> GSM447427     3  0.1644     0.7160 0.000 0.076 0.920 0.000 0.004 0.000
#> GSM447428     3  0.3664     0.6858 0.080 0.016 0.832 0.000 0.024 0.048
#> GSM447429     1  0.3588     0.7302 0.788 0.000 0.060 0.000 0.152 0.000
#> GSM447431     4  0.4853     0.5857 0.000 0.136 0.048 0.732 0.080 0.004
#> GSM447432     2  0.4164     0.5652 0.004 0.772 0.012 0.084 0.128 0.000
#> GSM447434     1  0.3158     0.7424 0.812 0.000 0.004 0.020 0.164 0.000
#> GSM447442     2  0.1251     0.5994 0.000 0.956 0.012 0.000 0.024 0.008
#> GSM447451     4  0.4114     0.6151 0.024 0.124 0.004 0.784 0.064 0.000
#> GSM447462     1  0.5205     0.5628 0.668 0.096 0.004 0.024 0.208 0.000
#> GSM447463     1  0.3103     0.7259 0.836 0.064 0.000 0.000 0.100 0.000
#> GSM447467     2  0.2312     0.6021 0.008 0.896 0.004 0.000 0.080 0.012
#> GSM447469     2  0.5925     0.1345 0.000 0.560 0.040 0.004 0.300 0.096
#> GSM447473     1  0.2941     0.7179 0.780 0.000 0.000 0.000 0.220 0.000
#> GSM447404     1  0.2697     0.7281 0.812 0.000 0.000 0.000 0.188 0.000
#> GSM447406     4  0.1594     0.6393 0.000 0.000 0.000 0.932 0.016 0.052
#> GSM447407     6  0.3434     0.3088 0.000 0.000 0.004 0.140 0.048 0.808
#> GSM447409     1  0.2793     0.7239 0.800 0.000 0.000 0.000 0.200 0.000
#> GSM447412     3  0.2326     0.7195 0.000 0.028 0.900 0.060 0.012 0.000
#> GSM447426     3  0.4594     0.1174 0.000 0.000 0.484 0.000 0.036 0.480
#> GSM447433     1  0.6319    -0.0301 0.388 0.000 0.000 0.016 0.380 0.216
#> GSM447439     4  0.3411     0.6206 0.000 0.044 0.000 0.836 0.032 0.088
#> GSM447441     4  0.4078     0.5892 0.000 0.144 0.012 0.768 0.076 0.000
#> GSM447443     1  0.3394     0.7077 0.752 0.000 0.012 0.000 0.236 0.000
#> GSM447445     1  0.1196     0.7622 0.952 0.008 0.000 0.000 0.040 0.000
#> GSM447446     6  0.6388    -0.1962 0.296 0.012 0.000 0.000 0.312 0.380
#> GSM447453     1  0.3104     0.6840 0.800 0.000 0.000 0.000 0.016 0.184
#> GSM447455     2  0.2341     0.6088 0.000 0.904 0.008 0.056 0.024 0.008
#> GSM447456     4  0.6037     0.0645 0.420 0.032 0.000 0.436 0.112 0.000
#> GSM447459     4  0.4727     0.5168 0.000 0.000 0.004 0.692 0.132 0.172
#> GSM447466     1  0.1204     0.7584 0.944 0.000 0.000 0.000 0.056 0.000
#> GSM447470     1  0.4175     0.6459 0.740 0.156 0.000 0.000 0.104 0.000
#> GSM447474     1  0.3878     0.6356 0.736 0.032 0.004 0.000 0.228 0.000
#> GSM447475     2  0.6437     0.4259 0.084 0.568 0.012 0.100 0.236 0.000
#> GSM447398     4  0.3671     0.6248 0.024 0.068 0.000 0.816 0.092 0.000
#> GSM447399     4  0.4466     0.5628 0.000 0.088 0.044 0.760 0.108 0.000
#> GSM447408     4  0.4339     0.5043 0.000 0.008 0.004 0.700 0.252 0.036
#> GSM447410     4  0.3818     0.5352 0.000 0.004 0.004 0.720 0.260 0.012
#> GSM447414     3  0.4495     0.6423 0.000 0.064 0.744 0.156 0.036 0.000
#> GSM447417     2  0.7158    -0.0624 0.000 0.420 0.004 0.148 0.312 0.116
#> GSM447419     3  0.5991     0.3515 0.292 0.036 0.544 0.000 0.128 0.000
#> GSM447420     3  0.5697     0.4702 0.196 0.016 0.604 0.000 0.180 0.004
#> GSM447421     1  0.6073     0.4547 0.568 0.052 0.248 0.000 0.132 0.000
#> GSM447423     3  0.2752     0.7112 0.000 0.036 0.864 0.004 0.096 0.000
#> GSM447436     1  0.6575    -0.0165 0.404 0.028 0.000 0.004 0.364 0.200
#> GSM447437     1  0.1910     0.7538 0.892 0.000 0.000 0.000 0.108 0.000
#> GSM447438     4  0.3103     0.6069 0.008 0.004 0.000 0.836 0.132 0.020
#> GSM447447     2  0.6402    -0.0310 0.224 0.468 0.000 0.000 0.280 0.028
#> GSM447454     2  0.7464     0.2453 0.000 0.388 0.192 0.232 0.188 0.000
#> GSM447457     2  0.5456     0.5245 0.000 0.648 0.052 0.088 0.212 0.000
#> GSM447460     2  0.5642     0.2486 0.000 0.488 0.004 0.404 0.092 0.012
#> GSM447465     2  0.4218     0.5909 0.000 0.780 0.064 0.108 0.048 0.000
#> GSM447471     1  0.2793     0.7265 0.800 0.000 0.000 0.000 0.200 0.000
#> GSM447476     5  0.6416     0.1711 0.088 0.044 0.000 0.288 0.548 0.032

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n gender(p) agent(p) k
#> SD:NMF 78    1.0000    0.256 2
#> SD:NMF 78    0.4830    0.137 3
#> SD:NMF 72    0.5649    0.215 4
#> SD:NMF 63    0.1818    0.450 5
#> SD:NMF 54    0.0693    0.189 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.868           0.921       0.964         0.4968 0.500   0.500
#> 3 3 0.685           0.780       0.871         0.2851 0.825   0.655
#> 4 4 0.594           0.605       0.741         0.1042 0.958   0.878
#> 5 5 0.627           0.573       0.750         0.0747 0.904   0.682
#> 6 6 0.661           0.514       0.743         0.0582 0.883   0.547

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2  0.0000      0.963 0.000 1.000
#> GSM447411     1  0.0000      0.960 1.000 0.000
#> GSM447413     2  0.0000      0.963 0.000 1.000
#> GSM447415     1  0.0000      0.960 1.000 0.000
#> GSM447416     2  0.0000      0.963 0.000 1.000
#> GSM447425     2  0.0000      0.963 0.000 1.000
#> GSM447430     2  0.0000      0.963 0.000 1.000
#> GSM447435     1  0.0000      0.960 1.000 0.000
#> GSM447440     1  0.0000      0.960 1.000 0.000
#> GSM447444     1  0.9427      0.427 0.640 0.360
#> GSM447448     1  0.6148      0.806 0.848 0.152
#> GSM447449     2  0.0938      0.960 0.012 0.988
#> GSM447450     1  0.0000      0.960 1.000 0.000
#> GSM447452     2  0.0000      0.963 0.000 1.000
#> GSM447458     2  0.4161      0.910 0.084 0.916
#> GSM447461     2  0.4562      0.899 0.096 0.904
#> GSM447464     1  0.0000      0.960 1.000 0.000
#> GSM447468     1  0.0000      0.960 1.000 0.000
#> GSM447472     1  0.0000      0.960 1.000 0.000
#> GSM447400     1  0.0000      0.960 1.000 0.000
#> GSM447402     2  0.0000      0.963 0.000 1.000
#> GSM447403     1  0.0000      0.960 1.000 0.000
#> GSM447405     1  0.7950      0.680 0.760 0.240
#> GSM447418     2  0.0000      0.963 0.000 1.000
#> GSM447422     2  0.0938      0.960 0.012 0.988
#> GSM447424     2  0.0000      0.963 0.000 1.000
#> GSM447427     2  0.0000      0.963 0.000 1.000
#> GSM447428     1  0.0000      0.960 1.000 0.000
#> GSM447429     1  0.0000      0.960 1.000 0.000
#> GSM447431     2  0.0000      0.963 0.000 1.000
#> GSM447432     2  0.0938      0.960 0.012 0.988
#> GSM447434     2  0.7745      0.717 0.228 0.772
#> GSM447442     2  0.0938      0.960 0.012 0.988
#> GSM447451     2  0.5059      0.884 0.112 0.888
#> GSM447462     1  0.0000      0.960 1.000 0.000
#> GSM447463     1  0.0000      0.960 1.000 0.000
#> GSM447467     1  0.9866      0.218 0.568 0.432
#> GSM447469     2  0.0000      0.963 0.000 1.000
#> GSM447473     1  0.0000      0.960 1.000 0.000
#> GSM447404     1  0.0000      0.960 1.000 0.000
#> GSM447406     2  0.0000      0.963 0.000 1.000
#> GSM447407     2  0.0000      0.963 0.000 1.000
#> GSM447409     1  0.0000      0.960 1.000 0.000
#> GSM447412     2  0.0000      0.963 0.000 1.000
#> GSM447426     2  0.0000      0.963 0.000 1.000
#> GSM447433     1  0.1633      0.944 0.976 0.024
#> GSM447439     2  0.0000      0.963 0.000 1.000
#> GSM447441     2  0.0000      0.963 0.000 1.000
#> GSM447443     1  0.0000      0.960 1.000 0.000
#> GSM447445     1  0.0672      0.955 0.992 0.008
#> GSM447446     1  0.1633      0.944 0.976 0.024
#> GSM447453     1  0.0000      0.960 1.000 0.000
#> GSM447455     2  0.0938      0.960 0.012 0.988
#> GSM447456     2  0.6148      0.838 0.152 0.848
#> GSM447459     2  0.0000      0.963 0.000 1.000
#> GSM447466     1  0.0000      0.960 1.000 0.000
#> GSM447470     2  0.6887      0.797 0.184 0.816
#> GSM447474     1  0.0000      0.960 1.000 0.000
#> GSM447475     2  0.4562      0.899 0.096 0.904
#> GSM447398     2  0.3879      0.916 0.076 0.924
#> GSM447399     2  0.1414      0.955 0.020 0.980
#> GSM447408     2  0.0938      0.959 0.012 0.988
#> GSM447410     2  0.2043      0.948 0.032 0.968
#> GSM447414     2  0.0000      0.963 0.000 1.000
#> GSM447417     2  0.0000      0.963 0.000 1.000
#> GSM447419     1  0.0000      0.960 1.000 0.000
#> GSM447420     1  0.0000      0.960 1.000 0.000
#> GSM447421     1  0.0000      0.960 1.000 0.000
#> GSM447423     2  0.0000      0.963 0.000 1.000
#> GSM447436     1  0.1633      0.944 0.976 0.024
#> GSM447437     1  0.0000      0.960 1.000 0.000
#> GSM447438     2  0.9286      0.494 0.344 0.656
#> GSM447447     1  0.1633      0.944 0.976 0.024
#> GSM447454     2  0.0672      0.961 0.008 0.992
#> GSM447457     2  0.0000      0.963 0.000 1.000
#> GSM447460     2  0.0938      0.960 0.012 0.988
#> GSM447465     2  0.0000      0.963 0.000 1.000
#> GSM447471     1  0.0000      0.960 1.000 0.000
#> GSM447476     2  0.2043      0.948 0.032 0.968

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.0747     0.7818 0.000 0.016 0.984
#> GSM447411     1  0.0000     0.9487 1.000 0.000 0.000
#> GSM447413     3  0.2356     0.8402 0.000 0.072 0.928
#> GSM447415     1  0.0000     0.9487 1.000 0.000 0.000
#> GSM447416     3  0.2448     0.8397 0.000 0.076 0.924
#> GSM447425     2  0.5678     0.6915 0.000 0.684 0.316
#> GSM447430     2  0.4842     0.7225 0.000 0.776 0.224
#> GSM447435     1  0.0000     0.9487 1.000 0.000 0.000
#> GSM447440     1  0.0000     0.9487 1.000 0.000 0.000
#> GSM447444     1  0.6460     0.2778 0.556 0.440 0.004
#> GSM447448     1  0.5070     0.7494 0.772 0.224 0.004
#> GSM447449     3  0.6079     0.4884 0.000 0.388 0.612
#> GSM447450     1  0.0000     0.9487 1.000 0.000 0.000
#> GSM447452     2  0.5678     0.6915 0.000 0.684 0.316
#> GSM447458     2  0.4618     0.7426 0.024 0.840 0.136
#> GSM447461     2  0.1399     0.7269 0.004 0.968 0.028
#> GSM447464     1  0.1289     0.9491 0.968 0.032 0.000
#> GSM447468     1  0.1529     0.9484 0.960 0.040 0.000
#> GSM447472     1  0.1529     0.9484 0.960 0.040 0.000
#> GSM447400     1  0.1529     0.9484 0.960 0.040 0.000
#> GSM447402     2  0.4750     0.7249 0.000 0.784 0.216
#> GSM447403     1  0.0000     0.9487 1.000 0.000 0.000
#> GSM447405     1  0.5953     0.6267 0.708 0.280 0.012
#> GSM447418     3  0.2356     0.8402 0.000 0.072 0.928
#> GSM447422     3  0.6008     0.5242 0.000 0.372 0.628
#> GSM447424     3  0.2356     0.8402 0.000 0.072 0.928
#> GSM447427     3  0.2356     0.8402 0.000 0.072 0.928
#> GSM447428     1  0.1860     0.9438 0.948 0.052 0.000
#> GSM447429     1  0.1163     0.9492 0.972 0.028 0.000
#> GSM447431     3  0.2356     0.8402 0.000 0.072 0.928
#> GSM447432     3  0.6291     0.2531 0.000 0.468 0.532
#> GSM447434     2  0.9034     0.4512 0.200 0.556 0.244
#> GSM447442     3  0.6008     0.5242 0.000 0.372 0.628
#> GSM447451     2  0.2050     0.7215 0.020 0.952 0.028
#> GSM447462     1  0.1529     0.9484 0.960 0.040 0.000
#> GSM447463     1  0.0237     0.9492 0.996 0.004 0.000
#> GSM447467     2  0.6518    -0.0754 0.484 0.512 0.004
#> GSM447469     2  0.4750     0.7273 0.000 0.784 0.216
#> GSM447473     1  0.0000     0.9487 1.000 0.000 0.000
#> GSM447404     1  0.0000     0.9487 1.000 0.000 0.000
#> GSM447406     2  0.4796     0.7242 0.000 0.780 0.220
#> GSM447407     2  0.5216     0.7025 0.000 0.740 0.260
#> GSM447409     1  0.0000     0.9487 1.000 0.000 0.000
#> GSM447412     3  0.2448     0.8397 0.000 0.076 0.924
#> GSM447426     3  0.0747     0.7818 0.000 0.016 0.984
#> GSM447433     1  0.2066     0.9293 0.940 0.060 0.000
#> GSM447439     2  0.4796     0.7242 0.000 0.780 0.220
#> GSM447441     3  0.2356     0.8402 0.000 0.072 0.928
#> GSM447443     1  0.1529     0.9484 0.960 0.040 0.000
#> GSM447445     1  0.1964     0.9318 0.944 0.056 0.000
#> GSM447446     1  0.2625     0.9251 0.916 0.084 0.000
#> GSM447453     1  0.0000     0.9487 1.000 0.000 0.000
#> GSM447455     3  0.6307     0.1732 0.000 0.488 0.512
#> GSM447456     2  0.2301     0.6935 0.060 0.936 0.004
#> GSM447459     2  0.4842     0.7225 0.000 0.776 0.224
#> GSM447466     1  0.0000     0.9487 1.000 0.000 0.000
#> GSM447470     2  0.3933     0.6727 0.092 0.880 0.028
#> GSM447474     1  0.1529     0.9484 0.960 0.040 0.000
#> GSM447475     2  0.1267     0.7275 0.004 0.972 0.024
#> GSM447398     2  0.1267     0.7361 0.004 0.972 0.024
#> GSM447399     2  0.6314     0.3970 0.004 0.604 0.392
#> GSM447408     2  0.2878     0.7487 0.000 0.904 0.096
#> GSM447410     2  0.3445     0.7512 0.016 0.896 0.088
#> GSM447414     3  0.3816     0.7961 0.000 0.148 0.852
#> GSM447417     2  0.4750     0.7249 0.000 0.784 0.216
#> GSM447419     1  0.1529     0.9484 0.960 0.040 0.000
#> GSM447420     1  0.1529     0.9484 0.960 0.040 0.000
#> GSM447421     1  0.1289     0.9491 0.968 0.032 0.000
#> GSM447423     3  0.2448     0.8397 0.000 0.076 0.924
#> GSM447436     1  0.2356     0.9299 0.928 0.072 0.000
#> GSM447437     1  0.0237     0.9492 0.996 0.004 0.000
#> GSM447438     2  0.6852     0.4545 0.300 0.664 0.036
#> GSM447447     1  0.2625     0.9251 0.916 0.084 0.000
#> GSM447454     3  0.4235     0.7820 0.000 0.176 0.824
#> GSM447457     3  0.2448     0.8397 0.000 0.076 0.924
#> GSM447460     3  0.5621     0.6244 0.000 0.308 0.692
#> GSM447465     3  0.2356     0.8402 0.000 0.072 0.928
#> GSM447471     1  0.0000     0.9487 1.000 0.000 0.000
#> GSM447476     2  0.3445     0.7512 0.016 0.896 0.088

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.4040     0.6152 0.000 0.000 0.752 0.248
#> GSM447411     1  0.2412     0.8115 0.908 0.008 0.000 0.084
#> GSM447413     3  0.0188     0.8227 0.000 0.000 0.996 0.004
#> GSM447415     1  0.1042     0.8314 0.972 0.008 0.000 0.020
#> GSM447416     3  0.0376     0.8231 0.000 0.004 0.992 0.004
#> GSM447425     4  0.4720     0.4751 0.000 0.324 0.004 0.672
#> GSM447430     2  0.7558    -0.6517 0.000 0.428 0.192 0.380
#> GSM447435     1  0.3037     0.8088 0.880 0.020 0.000 0.100
#> GSM447440     1  0.3037     0.8088 0.880 0.020 0.000 0.100
#> GSM447444     1  0.6875     0.1975 0.500 0.420 0.016 0.064
#> GSM447448     1  0.5432     0.6581 0.716 0.216 0.000 0.068
#> GSM447449     3  0.5599     0.5466 0.000 0.276 0.672 0.052
#> GSM447450     1  0.3037     0.8088 0.880 0.020 0.000 0.100
#> GSM447452     4  0.4720     0.4751 0.000 0.324 0.004 0.672
#> GSM447458     2  0.5354     0.2336 0.008 0.736 0.204 0.052
#> GSM447461     2  0.2149     0.4214 0.000 0.912 0.088 0.000
#> GSM447464     1  0.4234     0.8286 0.816 0.052 0.000 0.132
#> GSM447468     1  0.4656     0.8256 0.792 0.072 0.000 0.136
#> GSM447472     1  0.4656     0.8256 0.792 0.072 0.000 0.136
#> GSM447400     1  0.4462     0.8265 0.804 0.064 0.000 0.132
#> GSM447402     4  0.7608     0.6710 0.000 0.364 0.204 0.432
#> GSM447403     1  0.2611     0.8063 0.896 0.008 0.000 0.096
#> GSM447405     1  0.7377     0.5104 0.520 0.264 0.000 0.216
#> GSM447418     3  0.0000     0.8238 0.000 0.000 1.000 0.000
#> GSM447422     3  0.5491     0.5697 0.000 0.260 0.688 0.052
#> GSM447424     3  0.0188     0.8227 0.000 0.000 0.996 0.004
#> GSM447427     3  0.0000     0.8238 0.000 0.000 1.000 0.000
#> GSM447428     1  0.4856     0.8208 0.780 0.084 0.000 0.136
#> GSM447429     1  0.4037     0.8292 0.824 0.040 0.000 0.136
#> GSM447431     3  0.0000     0.8238 0.000 0.000 1.000 0.000
#> GSM447432     3  0.5943     0.3748 0.000 0.360 0.592 0.048
#> GSM447434     2  0.7573     0.2473 0.160 0.568 0.248 0.024
#> GSM447442     3  0.5491     0.5697 0.000 0.260 0.688 0.052
#> GSM447451     2  0.3833     0.4153 0.008 0.856 0.088 0.048
#> GSM447462     1  0.4462     0.8265 0.804 0.064 0.000 0.132
#> GSM447463     1  0.1677     0.8246 0.948 0.012 0.000 0.040
#> GSM447467     2  0.6884    -0.0272 0.428 0.492 0.016 0.064
#> GSM447469     4  0.7638     0.6484 0.000 0.372 0.208 0.420
#> GSM447473     1  0.2611     0.8063 0.896 0.008 0.000 0.096
#> GSM447404     1  0.2611     0.8063 0.896 0.008 0.000 0.096
#> GSM447406     4  0.7566     0.5966 0.000 0.392 0.192 0.416
#> GSM447407     4  0.7426     0.6759 0.000 0.324 0.188 0.488
#> GSM447409     1  0.3099     0.8014 0.876 0.020 0.000 0.104
#> GSM447412     3  0.0188     0.8239 0.000 0.004 0.996 0.000
#> GSM447426     3  0.4040     0.6152 0.000 0.000 0.752 0.248
#> GSM447433     1  0.4667     0.7916 0.796 0.096 0.000 0.108
#> GSM447439     4  0.7566     0.5966 0.000 0.392 0.192 0.416
#> GSM447441     3  0.0000     0.8238 0.000 0.000 1.000 0.000
#> GSM447443     1  0.4656     0.8256 0.792 0.072 0.000 0.136
#> GSM447445     1  0.3037     0.8203 0.888 0.076 0.000 0.036
#> GSM447446     1  0.5613     0.7951 0.724 0.120 0.000 0.156
#> GSM447453     1  0.1042     0.8319 0.972 0.020 0.000 0.008
#> GSM447455     3  0.6009     0.3188 0.000 0.380 0.572 0.048
#> GSM447456     2  0.1247     0.4037 0.012 0.968 0.016 0.004
#> GSM447459     2  0.7558    -0.6517 0.000 0.428 0.192 0.380
#> GSM447466     1  0.2546     0.8078 0.900 0.008 0.000 0.092
#> GSM447470     2  0.3940     0.3995 0.052 0.864 0.040 0.044
#> GSM447474     1  0.4656     0.8256 0.792 0.072 0.000 0.136
#> GSM447475     2  0.2081     0.4207 0.000 0.916 0.084 0.000
#> GSM447398     2  0.2081     0.3963 0.000 0.916 0.084 0.000
#> GSM447399     2  0.5586     0.0669 0.000 0.528 0.452 0.020
#> GSM447408     2  0.6238    -0.2037 0.000 0.620 0.084 0.296
#> GSM447410     2  0.6194    -0.0971 0.000 0.628 0.084 0.288
#> GSM447414     3  0.1940     0.7847 0.000 0.076 0.924 0.000
#> GSM447417     4  0.7608     0.6710 0.000 0.364 0.204 0.432
#> GSM447419     1  0.4656     0.8256 0.792 0.072 0.000 0.136
#> GSM447420     1  0.4656     0.8256 0.792 0.072 0.000 0.136
#> GSM447421     1  0.4234     0.8286 0.816 0.052 0.000 0.132
#> GSM447423     3  0.0188     0.8239 0.000 0.004 0.996 0.000
#> GSM447436     1  0.5452     0.8014 0.736 0.108 0.000 0.156
#> GSM447437     1  0.1677     0.8246 0.948 0.012 0.000 0.040
#> GSM447438     2  0.8813     0.1379 0.148 0.424 0.084 0.344
#> GSM447447     1  0.5613     0.7951 0.724 0.120 0.000 0.156
#> GSM447454     3  0.2408     0.7750 0.000 0.104 0.896 0.000
#> GSM447457     3  0.0188     0.8239 0.000 0.004 0.996 0.000
#> GSM447460     3  0.4959     0.6362 0.000 0.196 0.752 0.052
#> GSM447465     3  0.0188     0.8227 0.000 0.000 0.996 0.004
#> GSM447471     1  0.2611     0.8063 0.896 0.008 0.000 0.096
#> GSM447476     2  0.6194    -0.0971 0.000 0.628 0.084 0.288

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     3  0.5708     0.4604 0.000 0.044 0.584 0.028 0.344
#> GSM447411     5  0.4278     0.8809 0.452 0.000 0.000 0.000 0.548
#> GSM447413     3  0.0162     0.8089 0.000 0.004 0.996 0.000 0.000
#> GSM447415     1  0.3636     0.1722 0.728 0.000 0.000 0.000 0.272
#> GSM447416     3  0.0290     0.8095 0.000 0.008 0.992 0.000 0.000
#> GSM447425     4  0.5404     0.6326 0.000 0.152 0.000 0.664 0.184
#> GSM447430     4  0.3751     0.6589 0.000 0.212 0.004 0.772 0.012
#> GSM447435     5  0.4242     0.9205 0.428 0.000 0.000 0.000 0.572
#> GSM447440     5  0.4242     0.9205 0.428 0.000 0.000 0.000 0.572
#> GSM447444     1  0.6517     0.1431 0.484 0.396 0.000 0.040 0.080
#> GSM447448     1  0.6538     0.1883 0.600 0.188 0.000 0.040 0.172
#> GSM447449     3  0.5441     0.5158 0.000 0.280 0.624 0.096 0.000
#> GSM447450     5  0.4242     0.9205 0.428 0.000 0.000 0.000 0.572
#> GSM447452     4  0.5404     0.6326 0.000 0.152 0.000 0.664 0.184
#> GSM447458     2  0.4845     0.4827 0.020 0.752 0.144 0.084 0.000
#> GSM447461     2  0.2208     0.5905 0.012 0.916 0.060 0.012 0.000
#> GSM447464     1  0.0703     0.7091 0.976 0.000 0.000 0.000 0.024
#> GSM447468     1  0.0000     0.7195 1.000 0.000 0.000 0.000 0.000
#> GSM447472     1  0.0000     0.7195 1.000 0.000 0.000 0.000 0.000
#> GSM447400     1  0.0404     0.7158 0.988 0.000 0.000 0.000 0.012
#> GSM447402     4  0.5263     0.5926 0.000 0.176 0.144 0.680 0.000
#> GSM447403     5  0.4192     0.9344 0.404 0.000 0.000 0.000 0.596
#> GSM447405     1  0.6099     0.3857 0.664 0.176 0.000 0.076 0.084
#> GSM447418     3  0.0000     0.8099 0.000 0.000 1.000 0.000 0.000
#> GSM447422     3  0.5331     0.5366 0.000 0.268 0.640 0.092 0.000
#> GSM447424     3  0.0162     0.8089 0.000 0.004 0.996 0.000 0.000
#> GSM447427     3  0.0000     0.8099 0.000 0.000 1.000 0.000 0.000
#> GSM447428     1  0.0404     0.7143 0.988 0.012 0.000 0.000 0.000
#> GSM447429     1  0.1341     0.6776 0.944 0.000 0.000 0.000 0.056
#> GSM447431     3  0.0000     0.8099 0.000 0.000 1.000 0.000 0.000
#> GSM447432     3  0.5682     0.3505 0.000 0.372 0.540 0.088 0.000
#> GSM447434     2  0.6966     0.3947 0.204 0.532 0.232 0.028 0.004
#> GSM447442     3  0.5331     0.5366 0.000 0.268 0.640 0.092 0.000
#> GSM447451     2  0.3135     0.5848 0.028 0.876 0.060 0.036 0.000
#> GSM447462     1  0.0404     0.7158 0.988 0.000 0.000 0.000 0.012
#> GSM447463     1  0.4294    -0.6675 0.532 0.000 0.000 0.000 0.468
#> GSM447467     2  0.6358    -0.0268 0.428 0.468 0.000 0.040 0.064
#> GSM447469     4  0.5550     0.5688 0.000 0.188 0.148 0.660 0.004
#> GSM447473     5  0.4192     0.9344 0.404 0.000 0.000 0.000 0.596
#> GSM447404     5  0.4192     0.9344 0.404 0.000 0.000 0.000 0.596
#> GSM447406     4  0.3280     0.6587 0.000 0.160 0.004 0.824 0.012
#> GSM447407     4  0.3779     0.6895 0.000 0.124 0.004 0.816 0.056
#> GSM447409     5  0.4114     0.9028 0.376 0.000 0.000 0.000 0.624
#> GSM447412     3  0.0162     0.8096 0.000 0.004 0.996 0.000 0.000
#> GSM447426     3  0.5708     0.4604 0.000 0.044 0.584 0.028 0.344
#> GSM447433     5  0.5250     0.7694 0.404 0.040 0.000 0.004 0.552
#> GSM447439     4  0.3280     0.6587 0.000 0.160 0.004 0.824 0.012
#> GSM447441     3  0.0000     0.8099 0.000 0.000 1.000 0.000 0.000
#> GSM447443     1  0.0162     0.7185 0.996 0.000 0.000 0.000 0.004
#> GSM447445     1  0.5378    -0.4732 0.548 0.060 0.000 0.000 0.392
#> GSM447446     1  0.2569     0.6632 0.896 0.032 0.000 0.004 0.068
#> GSM447453     1  0.3684     0.1593 0.720 0.000 0.000 0.000 0.280
#> GSM447455     3  0.5369     0.3525 0.000 0.388 0.552 0.060 0.000
#> GSM447456     2  0.2363     0.5621 0.052 0.912 0.000 0.024 0.012
#> GSM447459     4  0.3751     0.6589 0.000 0.212 0.004 0.772 0.012
#> GSM447466     5  0.4210     0.9330 0.412 0.000 0.000 0.000 0.588
#> GSM447470     2  0.3745     0.5621 0.096 0.840 0.024 0.036 0.004
#> GSM447474     1  0.0000     0.7195 1.000 0.000 0.000 0.000 0.000
#> GSM447475     2  0.2139     0.5902 0.012 0.920 0.056 0.012 0.000
#> GSM447398     2  0.2074     0.5718 0.000 0.920 0.044 0.036 0.000
#> GSM447399     2  0.4948     0.1118 0.000 0.536 0.436 0.028 0.000
#> GSM447408     2  0.5175     0.0175 0.000 0.548 0.044 0.408 0.000
#> GSM447410     2  0.5669     0.1532 0.000 0.576 0.044 0.356 0.024
#> GSM447414     3  0.1671     0.7781 0.000 0.076 0.924 0.000 0.000
#> GSM447417     4  0.5263     0.5926 0.000 0.176 0.144 0.680 0.000
#> GSM447419     1  0.0000     0.7195 1.000 0.000 0.000 0.000 0.000
#> GSM447420     1  0.0000     0.7195 1.000 0.000 0.000 0.000 0.000
#> GSM447421     1  0.0703     0.7091 0.976 0.000 0.000 0.000 0.024
#> GSM447423     3  0.0404     0.8077 0.000 0.012 0.988 0.000 0.000
#> GSM447436     1  0.2610     0.6660 0.892 0.028 0.000 0.004 0.076
#> GSM447437     1  0.4294    -0.6675 0.532 0.000 0.000 0.000 0.468
#> GSM447438     2  0.8030     0.1402 0.312 0.396 0.044 0.224 0.024
#> GSM447447     1  0.2569     0.6632 0.896 0.032 0.000 0.004 0.068
#> GSM447454     3  0.2179     0.7610 0.000 0.112 0.888 0.000 0.000
#> GSM447457     3  0.0404     0.8077 0.000 0.012 0.988 0.000 0.000
#> GSM447460     3  0.4272     0.6455 0.000 0.196 0.752 0.052 0.000
#> GSM447465     3  0.0162     0.8089 0.000 0.004 0.996 0.000 0.000
#> GSM447471     5  0.4192     0.9344 0.404 0.000 0.000 0.000 0.596
#> GSM447476     2  0.5669     0.1532 0.000 0.576 0.044 0.356 0.024

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     5  0.3198     0.4200 0.000 0.000 0.260 0.000 0.740 0.000
#> GSM447411     1  0.1910     0.8129 0.892 0.000 0.000 0.000 0.000 0.108
#> GSM447413     3  0.0260     0.7855 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM447415     1  0.3747     0.3896 0.604 0.000 0.000 0.000 0.000 0.396
#> GSM447416     3  0.0405     0.7865 0.000 0.004 0.988 0.000 0.008 0.000
#> GSM447425     5  0.6010     0.1384 0.000 0.360 0.000 0.240 0.400 0.000
#> GSM447430     4  0.5067     0.4381 0.000 0.436 0.000 0.488 0.076 0.000
#> GSM447435     1  0.1663     0.8217 0.912 0.000 0.000 0.000 0.000 0.088
#> GSM447440     1  0.1663     0.8217 0.912 0.000 0.000 0.000 0.000 0.088
#> GSM447444     6  0.7086     0.1857 0.108 0.136 0.000 0.296 0.008 0.452
#> GSM447448     1  0.6823     0.0529 0.392 0.044 0.000 0.184 0.008 0.372
#> GSM447449     3  0.5865     0.5312 0.000 0.156 0.584 0.236 0.012 0.012
#> GSM447450     1  0.1663     0.8217 0.912 0.000 0.000 0.000 0.000 0.088
#> GSM447452     5  0.6010     0.1384 0.000 0.360 0.000 0.240 0.400 0.000
#> GSM447458     4  0.5871    -0.3401 0.000 0.380 0.100 0.496 0.012 0.012
#> GSM447461     2  0.4866     0.3238 0.000 0.552 0.024 0.404 0.004 0.016
#> GSM447464     6  0.1714     0.7646 0.092 0.000 0.000 0.000 0.000 0.908
#> GSM447468     6  0.1204     0.7879 0.056 0.000 0.000 0.000 0.000 0.944
#> GSM447472     6  0.1141     0.7879 0.052 0.000 0.000 0.000 0.000 0.948
#> GSM447400     6  0.1501     0.7836 0.076 0.000 0.000 0.000 0.000 0.924
#> GSM447402     2  0.7210    -0.1106 0.000 0.468 0.100 0.260 0.156 0.016
#> GSM447403     1  0.0865     0.8218 0.964 0.000 0.000 0.000 0.000 0.036
#> GSM447405     6  0.6240     0.1902 0.336 0.240 0.000 0.004 0.004 0.416
#> GSM447418     3  0.0000     0.7867 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447422     3  0.5780     0.5504 0.000 0.156 0.600 0.220 0.012 0.012
#> GSM447424     3  0.0260     0.7855 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM447427     3  0.0000     0.7867 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447428     6  0.1333     0.7851 0.048 0.008 0.000 0.000 0.000 0.944
#> GSM447429     6  0.2854     0.6708 0.208 0.000 0.000 0.000 0.000 0.792
#> GSM447431     3  0.0000     0.7867 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447432     3  0.6333     0.3820 0.000 0.208 0.496 0.272 0.012 0.012
#> GSM447434     2  0.8192     0.1579 0.032 0.280 0.232 0.280 0.000 0.176
#> GSM447442     3  0.5780     0.5504 0.000 0.156 0.600 0.220 0.012 0.012
#> GSM447451     2  0.5183     0.2909 0.000 0.480 0.024 0.456 0.000 0.040
#> GSM447462     6  0.1501     0.7819 0.076 0.000 0.000 0.000 0.000 0.924
#> GSM447463     1  0.2697     0.7583 0.812 0.000 0.000 0.000 0.000 0.188
#> GSM447467     6  0.7221     0.0107 0.092 0.172 0.000 0.332 0.008 0.396
#> GSM447469     2  0.7187    -0.0869 0.000 0.476 0.108 0.256 0.144 0.016
#> GSM447473     1  0.0865     0.8218 0.964 0.000 0.000 0.000 0.000 0.036
#> GSM447404     1  0.0865     0.8218 0.964 0.000 0.000 0.000 0.000 0.036
#> GSM447406     4  0.5190     0.4183 0.000 0.376 0.000 0.528 0.096 0.000
#> GSM447407     4  0.5937    -0.1516 0.000 0.368 0.000 0.416 0.216 0.000
#> GSM447409     1  0.0260     0.8049 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM447412     3  0.0260     0.7873 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM447426     5  0.3198     0.4200 0.000 0.000 0.260 0.000 0.740 0.000
#> GSM447433     1  0.3194     0.7064 0.828 0.032 0.000 0.008 0.000 0.132
#> GSM447439     4  0.5190     0.4183 0.000 0.376 0.000 0.528 0.096 0.000
#> GSM447441     3  0.0000     0.7867 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447443     6  0.1267     0.7878 0.060 0.000 0.000 0.000 0.000 0.940
#> GSM447445     1  0.4586     0.6768 0.712 0.008 0.000 0.064 0.008 0.208
#> GSM447446     6  0.3820     0.5505 0.284 0.008 0.000 0.008 0.000 0.700
#> GSM447453     1  0.3737     0.3981 0.608 0.000 0.000 0.000 0.000 0.392
#> GSM447455     3  0.6102     0.4437 0.000 0.172 0.540 0.264 0.012 0.012
#> GSM447456     2  0.5134     0.2910 0.012 0.520 0.000 0.412 0.000 0.056
#> GSM447459     4  0.5067     0.4381 0.000 0.436 0.000 0.488 0.076 0.000
#> GSM447466     1  0.1007     0.8233 0.956 0.000 0.000 0.000 0.000 0.044
#> GSM447470     4  0.6287    -0.3887 0.016 0.400 0.024 0.460 0.004 0.096
#> GSM447474     6  0.1204     0.7876 0.056 0.000 0.000 0.000 0.000 0.944
#> GSM447475     2  0.4801     0.3242 0.000 0.552 0.020 0.408 0.004 0.016
#> GSM447398     2  0.3765     0.3176 0.000 0.596 0.000 0.404 0.000 0.000
#> GSM447399     3  0.6004     0.0171 0.000 0.284 0.436 0.280 0.000 0.000
#> GSM447408     2  0.0909     0.1693 0.000 0.968 0.000 0.012 0.020 0.000
#> GSM447410     2  0.0725     0.2136 0.012 0.976 0.000 0.000 0.000 0.012
#> GSM447414     3  0.1765     0.7671 0.000 0.024 0.924 0.052 0.000 0.000
#> GSM447417     2  0.7210    -0.1106 0.000 0.468 0.100 0.260 0.156 0.016
#> GSM447419     6  0.1141     0.7879 0.052 0.000 0.000 0.000 0.000 0.948
#> GSM447420     6  0.1204     0.7876 0.056 0.000 0.000 0.000 0.000 0.944
#> GSM447421     6  0.1714     0.7646 0.092 0.000 0.000 0.000 0.000 0.908
#> GSM447423     3  0.0458     0.7858 0.000 0.016 0.984 0.000 0.000 0.000
#> GSM447436     6  0.3791     0.5302 0.300 0.008 0.000 0.004 0.000 0.688
#> GSM447437     1  0.2697     0.7583 0.812 0.000 0.000 0.000 0.000 0.188
#> GSM447438     2  0.3988     0.1203 0.012 0.660 0.000 0.000 0.004 0.324
#> GSM447447     6  0.3820     0.5505 0.284 0.008 0.000 0.008 0.000 0.700
#> GSM447454     3  0.2451     0.7492 0.000 0.060 0.884 0.056 0.000 0.000
#> GSM447457     3  0.0458     0.7858 0.000 0.016 0.984 0.000 0.000 0.000
#> GSM447460     3  0.4386     0.6721 0.000 0.060 0.752 0.164 0.012 0.012
#> GSM447465     3  0.0260     0.7855 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM447471     1  0.0865     0.8218 0.964 0.000 0.000 0.000 0.000 0.036
#> GSM447476     2  0.0725     0.2136 0.012 0.976 0.000 0.000 0.000 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n gender(p) agent(p) k
#> CV:hclust 76     0.841   0.6435 2
#> CV:hclust 71     0.703   0.2166 3
#> CV:hclust 58     0.687   0.4673 4
#> CV:hclust 59     0.929   0.0913 5
#> CV:hclust 46     0.939   0.1416 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.970       0.989         0.5056 0.494   0.494
#> 3 3 0.617           0.741       0.824         0.2807 0.812   0.635
#> 4 4 0.540           0.534       0.741         0.1233 0.908   0.745
#> 5 5 0.569           0.518       0.692         0.0704 0.843   0.507
#> 6 6 0.622           0.603       0.726         0.0494 0.918   0.640

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2  0.0000      0.992 0.000 1.000
#> GSM447411     1  0.0000      0.984 1.000 0.000
#> GSM447413     2  0.0000      0.992 0.000 1.000
#> GSM447415     1  0.0000      0.984 1.000 0.000
#> GSM447416     2  0.0000      0.992 0.000 1.000
#> GSM447425     2  0.0000      0.992 0.000 1.000
#> GSM447430     2  0.0000      0.992 0.000 1.000
#> GSM447435     1  0.0000      0.984 1.000 0.000
#> GSM447440     1  0.0000      0.984 1.000 0.000
#> GSM447444     1  0.0000      0.984 1.000 0.000
#> GSM447448     1  0.0000      0.984 1.000 0.000
#> GSM447449     2  0.0000      0.992 0.000 1.000
#> GSM447450     1  0.0000      0.984 1.000 0.000
#> GSM447452     2  0.0000      0.992 0.000 1.000
#> GSM447458     2  0.0000      0.992 0.000 1.000
#> GSM447461     2  0.0000      0.992 0.000 1.000
#> GSM447464     1  0.0000      0.984 1.000 0.000
#> GSM447468     1  0.0000      0.984 1.000 0.000
#> GSM447472     1  0.0000      0.984 1.000 0.000
#> GSM447400     1  0.0000      0.984 1.000 0.000
#> GSM447402     2  0.0000      0.992 0.000 1.000
#> GSM447403     1  0.0000      0.984 1.000 0.000
#> GSM447405     1  0.0000      0.984 1.000 0.000
#> GSM447418     2  0.0000      0.992 0.000 1.000
#> GSM447422     2  0.0000      0.992 0.000 1.000
#> GSM447424     2  0.0000      0.992 0.000 1.000
#> GSM447427     2  0.0000      0.992 0.000 1.000
#> GSM447428     1  0.9954      0.143 0.540 0.460
#> GSM447429     1  0.0000      0.984 1.000 0.000
#> GSM447431     2  0.0000      0.992 0.000 1.000
#> GSM447432     2  0.0000      0.992 0.000 1.000
#> GSM447434     1  0.0000      0.984 1.000 0.000
#> GSM447442     2  0.0000      0.992 0.000 1.000
#> GSM447451     2  0.0376      0.988 0.004 0.996
#> GSM447462     1  0.0000      0.984 1.000 0.000
#> GSM447463     1  0.0000      0.984 1.000 0.000
#> GSM447467     1  0.5294      0.854 0.880 0.120
#> GSM447469     2  0.0000      0.992 0.000 1.000
#> GSM447473     1  0.0000      0.984 1.000 0.000
#> GSM447404     1  0.0000      0.984 1.000 0.000
#> GSM447406     2  0.0000      0.992 0.000 1.000
#> GSM447407     2  0.0000      0.992 0.000 1.000
#> GSM447409     1  0.0000      0.984 1.000 0.000
#> GSM447412     2  0.0000      0.992 0.000 1.000
#> GSM447426     2  0.0000      0.992 0.000 1.000
#> GSM447433     1  0.0000      0.984 1.000 0.000
#> GSM447439     2  0.0000      0.992 0.000 1.000
#> GSM447441     2  0.0000      0.992 0.000 1.000
#> GSM447443     1  0.0000      0.984 1.000 0.000
#> GSM447445     1  0.0000      0.984 1.000 0.000
#> GSM447446     1  0.0000      0.984 1.000 0.000
#> GSM447453     1  0.0000      0.984 1.000 0.000
#> GSM447455     2  0.0000      0.992 0.000 1.000
#> GSM447456     1  0.0000      0.984 1.000 0.000
#> GSM447459     2  0.0000      0.992 0.000 1.000
#> GSM447466     1  0.0000      0.984 1.000 0.000
#> GSM447470     1  0.0000      0.984 1.000 0.000
#> GSM447474     1  0.0000      0.984 1.000 0.000
#> GSM447475     2  0.3274      0.931 0.060 0.940
#> GSM447398     2  0.0000      0.992 0.000 1.000
#> GSM447399     2  0.0000      0.992 0.000 1.000
#> GSM447408     2  0.0000      0.992 0.000 1.000
#> GSM447410     2  0.0000      0.992 0.000 1.000
#> GSM447414     2  0.0000      0.992 0.000 1.000
#> GSM447417     2  0.0000      0.992 0.000 1.000
#> GSM447419     1  0.0000      0.984 1.000 0.000
#> GSM447420     1  0.0000      0.984 1.000 0.000
#> GSM447421     1  0.0000      0.984 1.000 0.000
#> GSM447423     2  0.0000      0.992 0.000 1.000
#> GSM447436     1  0.0000      0.984 1.000 0.000
#> GSM447437     1  0.0000      0.984 1.000 0.000
#> GSM447438     2  0.0000      0.992 0.000 1.000
#> GSM447447     1  0.0000      0.984 1.000 0.000
#> GSM447454     2  0.0000      0.992 0.000 1.000
#> GSM447457     2  0.0000      0.992 0.000 1.000
#> GSM447460     2  0.0000      0.992 0.000 1.000
#> GSM447465     2  0.0000      0.992 0.000 1.000
#> GSM447471     1  0.0000      0.984 1.000 0.000
#> GSM447476     2  0.8327      0.637 0.264 0.736

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.3038      0.718 0.000 0.104 0.896
#> GSM447411     1  0.1031      0.910 0.976 0.024 0.000
#> GSM447413     3  0.2959      0.723 0.000 0.100 0.900
#> GSM447415     1  0.1163      0.907 0.972 0.028 0.000
#> GSM447416     3  0.0892      0.759 0.000 0.020 0.980
#> GSM447425     2  0.5443      0.769 0.004 0.736 0.260
#> GSM447430     2  0.5397      0.775 0.000 0.720 0.280
#> GSM447435     1  0.1031      0.910 0.976 0.024 0.000
#> GSM447440     1  0.2066      0.913 0.940 0.060 0.000
#> GSM447444     1  0.4931      0.856 0.784 0.212 0.004
#> GSM447448     1  0.3686      0.895 0.860 0.140 0.000
#> GSM447449     3  0.1860      0.738 0.000 0.052 0.948
#> GSM447450     1  0.1411      0.912 0.964 0.036 0.000
#> GSM447452     2  0.5363      0.773 0.000 0.724 0.276
#> GSM447458     2  0.6286      0.439 0.000 0.536 0.464
#> GSM447461     3  0.6168      0.218 0.000 0.412 0.588
#> GSM447464     1  0.2066      0.908 0.940 0.060 0.000
#> GSM447468     1  0.1643      0.908 0.956 0.044 0.000
#> GSM447472     1  0.4178      0.882 0.828 0.172 0.000
#> GSM447400     1  0.3941      0.897 0.844 0.156 0.000
#> GSM447402     2  0.5706      0.739 0.000 0.680 0.320
#> GSM447403     1  0.1163      0.907 0.972 0.028 0.000
#> GSM447405     1  0.4235      0.879 0.824 0.176 0.000
#> GSM447418     3  0.0000      0.760 0.000 0.000 1.000
#> GSM447422     3  0.0000      0.760 0.000 0.000 1.000
#> GSM447424     3  0.2448      0.737 0.000 0.076 0.924
#> GSM447427     3  0.0892      0.758 0.000 0.020 0.980
#> GSM447428     3  0.7692      0.465 0.108 0.224 0.668
#> GSM447429     1  0.1753      0.908 0.952 0.048 0.000
#> GSM447431     3  0.0747      0.759 0.000 0.016 0.984
#> GSM447432     3  0.5560      0.302 0.000 0.300 0.700
#> GSM447434     1  0.4452      0.872 0.808 0.192 0.000
#> GSM447442     3  0.5529      0.256 0.000 0.296 0.704
#> GSM447451     3  0.5785      0.485 0.000 0.332 0.668
#> GSM447462     1  0.4002      0.897 0.840 0.160 0.000
#> GSM447463     1  0.1031      0.910 0.976 0.024 0.000
#> GSM447467     3  0.9787      0.118 0.328 0.248 0.424
#> GSM447469     2  0.5650      0.770 0.000 0.688 0.312
#> GSM447473     1  0.1163      0.907 0.972 0.028 0.000
#> GSM447404     1  0.1163      0.907 0.972 0.028 0.000
#> GSM447406     2  0.5397      0.775 0.000 0.720 0.280
#> GSM447407     2  0.5363      0.773 0.000 0.724 0.276
#> GSM447409     1  0.1031      0.910 0.976 0.024 0.000
#> GSM447412     3  0.1289      0.754 0.000 0.032 0.968
#> GSM447426     3  0.3038      0.718 0.000 0.104 0.896
#> GSM447433     1  0.4399      0.877 0.812 0.188 0.000
#> GSM447439     2  0.5397      0.775 0.000 0.720 0.280
#> GSM447441     3  0.1289      0.749 0.000 0.032 0.968
#> GSM447443     1  0.3551      0.902 0.868 0.132 0.000
#> GSM447445     1  0.1031      0.910 0.976 0.024 0.000
#> GSM447446     1  0.3482      0.899 0.872 0.128 0.000
#> GSM447453     1  0.0592      0.911 0.988 0.012 0.000
#> GSM447455     3  0.5529      0.256 0.000 0.296 0.704
#> GSM447456     2  0.6062      0.303 0.276 0.708 0.016
#> GSM447459     2  0.5397      0.775 0.000 0.720 0.280
#> GSM447466     1  0.1031      0.910 0.976 0.024 0.000
#> GSM447470     1  0.4978      0.856 0.780 0.216 0.004
#> GSM447474     1  0.4931      0.859 0.784 0.212 0.004
#> GSM447475     3  0.6683      0.145 0.008 0.492 0.500
#> GSM447398     2  0.4842      0.678 0.000 0.776 0.224
#> GSM447399     2  0.6309      0.501 0.000 0.500 0.500
#> GSM447408     2  0.5926      0.740 0.000 0.644 0.356
#> GSM447410     2  0.5497      0.725 0.000 0.708 0.292
#> GSM447414     3  0.2796      0.729 0.000 0.092 0.908
#> GSM447417     2  0.5882      0.759 0.000 0.652 0.348
#> GSM447419     1  0.4504      0.879 0.804 0.196 0.000
#> GSM447420     1  0.9728      0.180 0.408 0.224 0.368
#> GSM447421     1  0.2066      0.908 0.940 0.060 0.000
#> GSM447423     3  0.1529      0.751 0.000 0.040 0.960
#> GSM447436     1  0.2356      0.911 0.928 0.072 0.000
#> GSM447437     1  0.1031      0.910 0.976 0.024 0.000
#> GSM447438     2  0.4346      0.639 0.000 0.816 0.184
#> GSM447447     1  0.4291      0.878 0.820 0.180 0.000
#> GSM447454     3  0.1411      0.753 0.000 0.036 0.964
#> GSM447457     3  0.1964      0.741 0.000 0.056 0.944
#> GSM447460     3  0.3482      0.715 0.000 0.128 0.872
#> GSM447465     3  0.2537      0.736 0.000 0.080 0.920
#> GSM447471     1  0.1163      0.907 0.972 0.028 0.000
#> GSM447476     2  0.4563      0.572 0.036 0.852 0.112

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.4364     0.6315 0.000 0.056 0.808 0.136
#> GSM447411     1  0.0804     0.7139 0.980 0.012 0.000 0.008
#> GSM447413     3  0.2281     0.7010 0.000 0.000 0.904 0.096
#> GSM447415     1  0.2675     0.7074 0.892 0.100 0.000 0.008
#> GSM447416     3  0.0188     0.7431 0.000 0.000 0.996 0.004
#> GSM447425     4  0.4419     0.7622 0.000 0.104 0.084 0.812
#> GSM447430     4  0.2466     0.7858 0.000 0.004 0.096 0.900
#> GSM447435     1  0.0804     0.7139 0.980 0.012 0.000 0.008
#> GSM447440     1  0.3271     0.6863 0.856 0.132 0.000 0.012
#> GSM447444     2  0.5147    -0.1923 0.460 0.536 0.000 0.004
#> GSM447448     1  0.5110     0.4668 0.636 0.352 0.000 0.012
#> GSM447449     3  0.5052     0.6374 0.000 0.244 0.720 0.036
#> GSM447450     1  0.2179     0.7121 0.924 0.064 0.000 0.012
#> GSM447452     4  0.3117     0.7749 0.000 0.028 0.092 0.880
#> GSM447458     2  0.8749    -0.3271 0.036 0.340 0.324 0.300
#> GSM447461     3  0.7679     0.2178 0.000 0.376 0.408 0.216
#> GSM447464     1  0.4638     0.6750 0.776 0.180 0.000 0.044
#> GSM447468     1  0.4361     0.6772 0.772 0.208 0.000 0.020
#> GSM447472     1  0.5172     0.3965 0.588 0.404 0.000 0.008
#> GSM447400     1  0.5873     0.4696 0.548 0.416 0.000 0.036
#> GSM447402     4  0.6162     0.7435 0.000 0.168 0.156 0.676
#> GSM447403     1  0.2882     0.7083 0.892 0.084 0.000 0.024
#> GSM447405     1  0.5657     0.3283 0.540 0.436 0.000 0.024
#> GSM447418     3  0.0000     0.7437 0.000 0.000 1.000 0.000
#> GSM447422     3  0.0000     0.7437 0.000 0.000 1.000 0.000
#> GSM447424     3  0.1557     0.7233 0.000 0.000 0.944 0.056
#> GSM447427     3  0.0469     0.7434 0.000 0.000 0.988 0.012
#> GSM447428     3  0.6309    -0.0954 0.048 0.452 0.496 0.004
#> GSM447429     1  0.5131     0.6257 0.692 0.280 0.000 0.028
#> GSM447431     3  0.0927     0.7437 0.000 0.008 0.976 0.016
#> GSM447432     3  0.7474     0.3259 0.000 0.280 0.500 0.220
#> GSM447434     1  0.5167     0.2811 0.508 0.488 0.000 0.004
#> GSM447442     3  0.7315     0.3398 0.000 0.252 0.532 0.216
#> GSM447451     2  0.5905     0.0417 0.000 0.636 0.304 0.060
#> GSM447462     1  0.5873     0.4693 0.548 0.416 0.000 0.036
#> GSM447463     1  0.1406     0.7144 0.960 0.024 0.000 0.016
#> GSM447467     2  0.5652     0.3609 0.068 0.756 0.144 0.032
#> GSM447469     4  0.5556     0.7578 0.000 0.092 0.188 0.720
#> GSM447473     1  0.2882     0.7083 0.892 0.084 0.000 0.024
#> GSM447404     1  0.2742     0.7064 0.900 0.076 0.000 0.024
#> GSM447406     4  0.2466     0.7858 0.000 0.004 0.096 0.900
#> GSM447407     4  0.3015     0.7753 0.000 0.024 0.092 0.884
#> GSM447409     1  0.0672     0.7126 0.984 0.008 0.000 0.008
#> GSM447412     3  0.2060     0.7305 0.000 0.052 0.932 0.016
#> GSM447426     3  0.4364     0.6315 0.000 0.056 0.808 0.136
#> GSM447433     1  0.5523     0.3903 0.596 0.380 0.000 0.024
#> GSM447439     4  0.2466     0.7858 0.000 0.004 0.096 0.900
#> GSM447441     3  0.4745     0.6703 0.000 0.208 0.756 0.036
#> GSM447443     1  0.5337     0.4737 0.564 0.424 0.000 0.012
#> GSM447445     1  0.1706     0.7083 0.948 0.036 0.000 0.016
#> GSM447446     1  0.5386     0.4356 0.612 0.368 0.000 0.020
#> GSM447453     1  0.2635     0.6983 0.904 0.076 0.000 0.020
#> GSM447455     3  0.7315     0.3398 0.000 0.252 0.532 0.216
#> GSM447456     2  0.6747     0.1446 0.140 0.596 0.000 0.264
#> GSM447459     4  0.2466     0.7858 0.000 0.004 0.096 0.900
#> GSM447466     1  0.2111     0.7146 0.932 0.044 0.000 0.024
#> GSM447470     2  0.5155    -0.1967 0.468 0.528 0.000 0.004
#> GSM447474     2  0.5161    -0.2338 0.476 0.520 0.000 0.004
#> GSM447475     2  0.5963     0.1639 0.008 0.676 0.252 0.064
#> GSM447398     4  0.7090     0.4833 0.000 0.372 0.132 0.496
#> GSM447399     4  0.7677     0.1705 0.000 0.216 0.372 0.412
#> GSM447408     4  0.5226     0.7550 0.000 0.076 0.180 0.744
#> GSM447410     4  0.6065     0.7171 0.000 0.176 0.140 0.684
#> GSM447414     3  0.1716     0.7195 0.000 0.000 0.936 0.064
#> GSM447417     4  0.5672     0.7655 0.000 0.100 0.188 0.712
#> GSM447419     2  0.5399    -0.3712 0.468 0.520 0.000 0.012
#> GSM447420     2  0.7277     0.2185 0.184 0.556 0.256 0.004
#> GSM447421     1  0.5736     0.5787 0.628 0.328 0.000 0.044
#> GSM447423     3  0.1975     0.7321 0.000 0.048 0.936 0.016
#> GSM447436     1  0.5085     0.5211 0.676 0.304 0.000 0.020
#> GSM447437     1  0.1297     0.7135 0.964 0.020 0.000 0.016
#> GSM447438     4  0.6172     0.6498 0.000 0.284 0.084 0.632
#> GSM447447     1  0.5838     0.3060 0.524 0.444 0.000 0.032
#> GSM447454     3  0.4690     0.6640 0.000 0.260 0.724 0.016
#> GSM447457     3  0.4630     0.6683 0.000 0.252 0.732 0.016
#> GSM447460     3  0.5582     0.6794 0.000 0.168 0.724 0.108
#> GSM447465     3  0.4037     0.7247 0.000 0.112 0.832 0.056
#> GSM447471     1  0.2882     0.7083 0.892 0.084 0.000 0.024
#> GSM447476     4  0.6275     0.6143 0.008 0.316 0.060 0.616

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     3   0.659     0.6728 0.000 0.200 0.600 0.152 0.048
#> GSM447411     1   0.131     0.6221 0.956 0.000 0.024 0.000 0.020
#> GSM447413     3   0.582     0.8200 0.000 0.316 0.584 0.092 0.008
#> GSM447415     1   0.338     0.5874 0.840 0.000 0.056 0.000 0.104
#> GSM447416     3   0.469     0.8527 0.000 0.392 0.592 0.008 0.008
#> GSM447425     4   0.415     0.7311 0.000 0.016 0.064 0.804 0.116
#> GSM447430     4   0.149     0.7700 0.000 0.040 0.008 0.948 0.004
#> GSM447435     1   0.112     0.6219 0.964 0.000 0.020 0.000 0.016
#> GSM447440     1   0.389     0.4988 0.796 0.004 0.040 0.000 0.160
#> GSM447444     5   0.499     0.4587 0.340 0.044 0.000 0.000 0.616
#> GSM447448     1   0.527     0.0365 0.552 0.000 0.052 0.000 0.396
#> GSM447449     2   0.247     0.5444 0.000 0.896 0.072 0.032 0.000
#> GSM447450     1   0.355     0.5537 0.832 0.004 0.048 0.000 0.116
#> GSM447452     4   0.269     0.7611 0.000 0.028 0.028 0.900 0.044
#> GSM447458     2   0.415     0.6438 0.000 0.804 0.012 0.092 0.092
#> GSM447461     2   0.480     0.6321 0.000 0.772 0.040 0.084 0.104
#> GSM447464     1   0.573     0.1547 0.612 0.000 0.112 0.004 0.272
#> GSM447468     1   0.584    -0.1096 0.516 0.000 0.100 0.000 0.384
#> GSM447472     5   0.504     0.3857 0.452 0.000 0.032 0.000 0.516
#> GSM447400     5   0.570     0.4331 0.380 0.000 0.088 0.000 0.532
#> GSM447402     4   0.711     0.6668 0.000 0.200 0.096 0.564 0.140
#> GSM447403     1   0.364     0.5871 0.832 0.004 0.084 0.000 0.080
#> GSM447405     5   0.700     0.0597 0.360 0.008 0.140 0.024 0.468
#> GSM447418     3   0.490     0.8501 0.000 0.400 0.576 0.008 0.016
#> GSM447422     3   0.494     0.8383 0.000 0.420 0.556 0.008 0.016
#> GSM447424     3   0.552     0.8413 0.000 0.348 0.584 0.060 0.008
#> GSM447427     3   0.465     0.8468 0.000 0.404 0.580 0.000 0.016
#> GSM447428     5   0.650     0.1041 0.044 0.072 0.408 0.000 0.476
#> GSM447429     1   0.571     0.0353 0.544 0.000 0.092 0.000 0.364
#> GSM447431     3   0.583     0.7908 0.000 0.408 0.520 0.052 0.020
#> GSM447432     2   0.212     0.6346 0.000 0.912 0.008 0.076 0.004
#> GSM447434     5   0.552     0.4635 0.400 0.012 0.044 0.000 0.544
#> GSM447442     2   0.327     0.6103 0.000 0.848 0.056 0.096 0.000
#> GSM447451     2   0.541     0.5709 0.000 0.676 0.052 0.032 0.240
#> GSM447462     5   0.566     0.4454 0.364 0.000 0.088 0.000 0.548
#> GSM447463     1   0.143     0.6177 0.944 0.000 0.004 0.000 0.052
#> GSM447467     2   0.491     0.4117 0.016 0.572 0.008 0.000 0.404
#> GSM447469     4   0.632     0.6763 0.000 0.172 0.088 0.648 0.092
#> GSM447473     1   0.364     0.5871 0.832 0.004 0.084 0.000 0.080
#> GSM447404     1   0.340     0.5918 0.848 0.004 0.076 0.000 0.072
#> GSM447406     4   0.149     0.7700 0.000 0.040 0.008 0.948 0.004
#> GSM447407     4   0.268     0.7624 0.000 0.032 0.024 0.900 0.044
#> GSM447409     1   0.199     0.6175 0.928 0.004 0.040 0.000 0.028
#> GSM447412     3   0.470     0.8258 0.000 0.432 0.552 0.000 0.016
#> GSM447426     3   0.659     0.6728 0.000 0.200 0.600 0.152 0.048
#> GSM447433     5   0.688     0.0215 0.408 0.004 0.132 0.024 0.432
#> GSM447439     4   0.128     0.7716 0.000 0.044 0.000 0.952 0.004
#> GSM447441     2   0.304     0.4967 0.000 0.864 0.104 0.024 0.008
#> GSM447443     5   0.574     0.3756 0.404 0.000 0.088 0.000 0.508
#> GSM447445     1   0.245     0.5906 0.896 0.000 0.028 0.000 0.076
#> GSM447446     1   0.679    -0.0239 0.436 0.000 0.140 0.024 0.400
#> GSM447453     1   0.389     0.5423 0.800 0.000 0.064 0.000 0.136
#> GSM447455     2   0.285     0.6237 0.000 0.872 0.036 0.092 0.000
#> GSM447456     2   0.843     0.2499 0.076 0.372 0.048 0.144 0.360
#> GSM447459     4   0.149     0.7700 0.000 0.040 0.008 0.948 0.004
#> GSM447466     1   0.140     0.6177 0.952 0.000 0.024 0.000 0.024
#> GSM447470     5   0.464     0.5087 0.324 0.028 0.000 0.000 0.648
#> GSM447474     5   0.544     0.5262 0.320 0.016 0.048 0.000 0.616
#> GSM447475     2   0.556     0.5504 0.000 0.652 0.052 0.032 0.264
#> GSM447398     2   0.662     0.3102 0.000 0.560 0.032 0.264 0.144
#> GSM447399     2   0.588     0.4845 0.000 0.632 0.092 0.252 0.024
#> GSM447408     4   0.479     0.6924 0.000 0.212 0.032 0.728 0.028
#> GSM447410     4   0.657     0.5837 0.000 0.256 0.044 0.580 0.120
#> GSM447414     3   0.555     0.8378 0.000 0.340 0.588 0.064 0.008
#> GSM447417     4   0.580     0.7391 0.000 0.156 0.060 0.692 0.092
#> GSM447419     5   0.550     0.4771 0.340 0.000 0.080 0.000 0.580
#> GSM447420     5   0.594     0.4242 0.084 0.032 0.252 0.000 0.632
#> GSM447421     1   0.616    -0.1876 0.472 0.000 0.116 0.004 0.408
#> GSM447423     3   0.485     0.7828 0.000 0.424 0.552 0.000 0.024
#> GSM447436     1   0.665     0.1611 0.516 0.000 0.140 0.024 0.320
#> GSM447437     1   0.128     0.6175 0.952 0.000 0.004 0.000 0.044
#> GSM447438     4   0.717     0.5483 0.000 0.204 0.068 0.540 0.188
#> GSM447447     1   0.596    -0.1414 0.456 0.000 0.092 0.004 0.448
#> GSM447454     2   0.298     0.5307 0.000 0.860 0.108 0.000 0.032
#> GSM447457     2   0.285     0.5142 0.000 0.868 0.104 0.000 0.028
#> GSM447460     2   0.448     0.3658 0.000 0.764 0.144 0.088 0.004
#> GSM447465     2   0.519    -0.0981 0.000 0.660 0.272 0.060 0.008
#> GSM447471     1   0.364     0.5871 0.832 0.004 0.084 0.000 0.080
#> GSM447476     4   0.760     0.5357 0.000 0.184 0.088 0.480 0.248

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     3  0.5563      0.653 0.000 0.020 0.684 0.100 0.148 0.048
#> GSM447411     1  0.1363      0.713 0.952 0.004 0.004 0.000 0.028 0.012
#> GSM447413     3  0.2351      0.820 0.000 0.000 0.900 0.036 0.052 0.012
#> GSM447415     1  0.4253      0.655 0.752 0.016 0.004 0.000 0.052 0.176
#> GSM447416     3  0.0767      0.835 0.000 0.012 0.976 0.000 0.008 0.004
#> GSM447425     4  0.4310      0.615 0.000 0.016 0.000 0.656 0.312 0.016
#> GSM447430     4  0.0520      0.740 0.000 0.008 0.008 0.984 0.000 0.000
#> GSM447435     1  0.1553      0.713 0.944 0.008 0.004 0.000 0.032 0.012
#> GSM447440     1  0.4365      0.565 0.772 0.024 0.008 0.000 0.108 0.088
#> GSM447444     6  0.7035      0.196 0.216 0.152 0.000 0.000 0.156 0.476
#> GSM447448     1  0.6489     -0.295 0.492 0.044 0.000 0.000 0.252 0.212
#> GSM447449     2  0.4060      0.617 0.000 0.680 0.296 0.008 0.016 0.000
#> GSM447450     1  0.3964      0.608 0.800 0.016 0.008 0.000 0.096 0.080
#> GSM447452     4  0.1728      0.727 0.000 0.004 0.000 0.924 0.064 0.008
#> GSM447458     2  0.3930      0.687 0.004 0.804 0.124 0.036 0.024 0.008
#> GSM447461     2  0.3884      0.668 0.000 0.820 0.088 0.024 0.032 0.036
#> GSM447464     6  0.5120      0.402 0.408 0.008 0.004 0.000 0.052 0.528
#> GSM447468     6  0.4410      0.665 0.216 0.016 0.000 0.000 0.052 0.716
#> GSM447472     6  0.5692      0.520 0.300 0.036 0.000 0.000 0.092 0.572
#> GSM447400     6  0.3187      0.686 0.188 0.000 0.004 0.000 0.012 0.796
#> GSM447402     4  0.6823      0.533 0.000 0.264 0.020 0.404 0.296 0.016
#> GSM447403     1  0.5004      0.608 0.696 0.028 0.000 0.000 0.120 0.156
#> GSM447405     5  0.6028      0.855 0.224 0.044 0.000 0.000 0.576 0.156
#> GSM447418     3  0.0964      0.831 0.000 0.016 0.968 0.000 0.012 0.004
#> GSM447422     3  0.1801      0.812 0.000 0.056 0.924 0.000 0.016 0.004
#> GSM447424     3  0.0653      0.832 0.000 0.004 0.980 0.012 0.000 0.004
#> GSM447427     3  0.1078      0.832 0.000 0.016 0.964 0.000 0.012 0.008
#> GSM447428     6  0.5573      0.206 0.004 0.048 0.408 0.000 0.036 0.504
#> GSM447429     6  0.4466      0.471 0.352 0.004 0.000 0.000 0.032 0.612
#> GSM447431     3  0.3442      0.792 0.000 0.036 0.848 0.020 0.072 0.024
#> GSM447432     2  0.3781      0.679 0.000 0.772 0.184 0.028 0.016 0.000
#> GSM447434     6  0.5772      0.591 0.184 0.068 0.000 0.000 0.116 0.632
#> GSM447442     2  0.4290      0.643 0.000 0.696 0.260 0.028 0.016 0.000
#> GSM447451     2  0.3276      0.655 0.000 0.856 0.056 0.008 0.028 0.052
#> GSM447462     6  0.3352      0.687 0.180 0.004 0.004 0.000 0.016 0.796
#> GSM447463     1  0.0862      0.714 0.972 0.004 0.000 0.000 0.008 0.016
#> GSM447467     2  0.4029      0.575 0.012 0.772 0.016 0.000 0.028 0.172
#> GSM447469     4  0.7189      0.542 0.000 0.124 0.168 0.500 0.192 0.016
#> GSM447473     1  0.5004      0.608 0.696 0.028 0.000 0.000 0.120 0.156
#> GSM447404     1  0.4447      0.632 0.744 0.020 0.000 0.000 0.092 0.144
#> GSM447406     4  0.0976      0.734 0.000 0.008 0.008 0.968 0.016 0.000
#> GSM447407     4  0.1526      0.732 0.000 0.004 0.008 0.944 0.036 0.008
#> GSM447409     1  0.2100      0.665 0.884 0.004 0.000 0.000 0.112 0.000
#> GSM447412     3  0.3024      0.790 0.000 0.088 0.856 0.000 0.040 0.016
#> GSM447426     3  0.5563      0.653 0.000 0.020 0.684 0.100 0.148 0.048
#> GSM447433     5  0.5973      0.854 0.256 0.040 0.000 0.000 0.568 0.136
#> GSM447439     4  0.0520      0.740 0.000 0.008 0.008 0.984 0.000 0.000
#> GSM447441     2  0.5490      0.524 0.000 0.564 0.352 0.016 0.044 0.024
#> GSM447443     6  0.4081      0.679 0.172 0.016 0.000 0.000 0.052 0.760
#> GSM447445     1  0.2455      0.648 0.888 0.016 0.000 0.000 0.080 0.016
#> GSM447446     5  0.6017      0.859 0.252 0.036 0.000 0.000 0.560 0.152
#> GSM447453     1  0.5053      0.274 0.652 0.020 0.004 0.000 0.260 0.064
#> GSM447455     2  0.4150      0.659 0.000 0.720 0.236 0.028 0.016 0.000
#> GSM447456     2  0.7633      0.235 0.136 0.508 0.000 0.088 0.128 0.140
#> GSM447459     4  0.0520      0.740 0.000 0.008 0.008 0.984 0.000 0.000
#> GSM447466     1  0.1257      0.714 0.952 0.000 0.000 0.000 0.028 0.020
#> GSM447470     6  0.5877      0.495 0.216 0.092 0.000 0.000 0.080 0.612
#> GSM447474     6  0.4475      0.601 0.192 0.052 0.000 0.000 0.028 0.728
#> GSM447475     2  0.3151      0.651 0.000 0.864 0.048 0.008 0.028 0.052
#> GSM447398     2  0.5407      0.478 0.004 0.704 0.024 0.156 0.068 0.044
#> GSM447399     2  0.7129      0.483 0.000 0.452 0.312 0.144 0.064 0.028
#> GSM447408     4  0.4702      0.644 0.000 0.228 0.012 0.696 0.056 0.008
#> GSM447410     4  0.6445      0.419 0.000 0.368 0.016 0.448 0.148 0.020
#> GSM447414     3  0.2095      0.823 0.000 0.004 0.916 0.016 0.052 0.012
#> GSM447417     4  0.6112      0.660 0.000 0.160 0.036 0.604 0.184 0.016
#> GSM447419     6  0.4132      0.674 0.144 0.028 0.000 0.000 0.056 0.772
#> GSM447420     6  0.4351      0.567 0.036 0.048 0.112 0.000 0.020 0.784
#> GSM447421     6  0.4563      0.613 0.232 0.012 0.004 0.000 0.052 0.700
#> GSM447423     3  0.2734      0.736 0.000 0.148 0.840 0.000 0.004 0.008
#> GSM447436     5  0.5581      0.708 0.356 0.032 0.000 0.000 0.540 0.072
#> GSM447437     1  0.0748      0.714 0.976 0.004 0.000 0.000 0.004 0.016
#> GSM447438     4  0.6499      0.373 0.000 0.384 0.000 0.388 0.196 0.032
#> GSM447447     5  0.6773      0.719 0.316 0.056 0.000 0.000 0.424 0.204
#> GSM447454     2  0.4022      0.584 0.000 0.688 0.288 0.000 0.008 0.016
#> GSM447457     2  0.4165      0.561 0.000 0.664 0.308 0.000 0.004 0.024
#> GSM447460     2  0.5133      0.391 0.000 0.528 0.416 0.024 0.024 0.008
#> GSM447465     3  0.4034      0.192 0.000 0.336 0.648 0.012 0.000 0.004
#> GSM447471     1  0.5004      0.608 0.696 0.028 0.000 0.000 0.120 0.156
#> GSM447476     2  0.6753     -0.463 0.000 0.344 0.000 0.340 0.280 0.036

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n gender(p) agent(p) k
#> CV:kmeans 78     0.830    0.364 2
#> CV:kmeans 68     0.343    0.333 3
#> CV:kmeans 52     0.531    0.430 4
#> CV:kmeans 52     0.300    0.527 5
#> CV:kmeans 64     0.607    0.725 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.975       0.990         0.5063 0.494   0.494
#> 3 3 0.834           0.898       0.933         0.2732 0.803   0.620
#> 4 4 0.686           0.756       0.835         0.1100 0.918   0.771
#> 5 5 0.665           0.521       0.777         0.0880 0.956   0.850
#> 6 6 0.680           0.572       0.729         0.0451 0.893   0.616

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2  0.0000      1.000 0.000 1.000
#> GSM447411     1  0.0000      0.980 1.000 0.000
#> GSM447413     2  0.0000      1.000 0.000 1.000
#> GSM447415     1  0.0000      0.980 1.000 0.000
#> GSM447416     2  0.0000      1.000 0.000 1.000
#> GSM447425     2  0.0000      1.000 0.000 1.000
#> GSM447430     2  0.0000      1.000 0.000 1.000
#> GSM447435     1  0.0000      0.980 1.000 0.000
#> GSM447440     1  0.0000      0.980 1.000 0.000
#> GSM447444     1  0.0000      0.980 1.000 0.000
#> GSM447448     1  0.0000      0.980 1.000 0.000
#> GSM447449     2  0.0000      1.000 0.000 1.000
#> GSM447450     1  0.0000      0.980 1.000 0.000
#> GSM447452     2  0.0000      1.000 0.000 1.000
#> GSM447458     2  0.0000      1.000 0.000 1.000
#> GSM447461     2  0.0000      1.000 0.000 1.000
#> GSM447464     1  0.0000      0.980 1.000 0.000
#> GSM447468     1  0.0000      0.980 1.000 0.000
#> GSM447472     1  0.0000      0.980 1.000 0.000
#> GSM447400     1  0.0000      0.980 1.000 0.000
#> GSM447402     2  0.0000      1.000 0.000 1.000
#> GSM447403     1  0.0000      0.980 1.000 0.000
#> GSM447405     1  0.0000      0.980 1.000 0.000
#> GSM447418     2  0.0000      1.000 0.000 1.000
#> GSM447422     2  0.0000      1.000 0.000 1.000
#> GSM447424     2  0.0000      1.000 0.000 1.000
#> GSM447427     2  0.0000      1.000 0.000 1.000
#> GSM447428     1  0.9358      0.462 0.648 0.352
#> GSM447429     1  0.0000      0.980 1.000 0.000
#> GSM447431     2  0.0000      1.000 0.000 1.000
#> GSM447432     2  0.0000      1.000 0.000 1.000
#> GSM447434     1  0.0000      0.980 1.000 0.000
#> GSM447442     2  0.0000      1.000 0.000 1.000
#> GSM447451     2  0.0000      1.000 0.000 1.000
#> GSM447462     1  0.0000      0.980 1.000 0.000
#> GSM447463     1  0.0000      0.980 1.000 0.000
#> GSM447467     1  0.0000      0.980 1.000 0.000
#> GSM447469     2  0.0000      1.000 0.000 1.000
#> GSM447473     1  0.0000      0.980 1.000 0.000
#> GSM447404     1  0.0000      0.980 1.000 0.000
#> GSM447406     2  0.0000      1.000 0.000 1.000
#> GSM447407     2  0.0000      1.000 0.000 1.000
#> GSM447409     1  0.0000      0.980 1.000 0.000
#> GSM447412     2  0.0000      1.000 0.000 1.000
#> GSM447426     2  0.0000      1.000 0.000 1.000
#> GSM447433     1  0.0000      0.980 1.000 0.000
#> GSM447439     2  0.0000      1.000 0.000 1.000
#> GSM447441     2  0.0000      1.000 0.000 1.000
#> GSM447443     1  0.0000      0.980 1.000 0.000
#> GSM447445     1  0.0000      0.980 1.000 0.000
#> GSM447446     1  0.0000      0.980 1.000 0.000
#> GSM447453     1  0.0000      0.980 1.000 0.000
#> GSM447455     2  0.0000      1.000 0.000 1.000
#> GSM447456     1  0.0000      0.980 1.000 0.000
#> GSM447459     2  0.0000      1.000 0.000 1.000
#> GSM447466     1  0.0000      0.980 1.000 0.000
#> GSM447470     1  0.0000      0.980 1.000 0.000
#> GSM447474     1  0.0000      0.980 1.000 0.000
#> GSM447475     2  0.0938      0.988 0.012 0.988
#> GSM447398     2  0.0000      1.000 0.000 1.000
#> GSM447399     2  0.0000      1.000 0.000 1.000
#> GSM447408     2  0.0000      1.000 0.000 1.000
#> GSM447410     2  0.0000      1.000 0.000 1.000
#> GSM447414     2  0.0000      1.000 0.000 1.000
#> GSM447417     2  0.0000      1.000 0.000 1.000
#> GSM447419     1  0.0000      0.980 1.000 0.000
#> GSM447420     1  0.0000      0.980 1.000 0.000
#> GSM447421     1  0.0000      0.980 1.000 0.000
#> GSM447423     2  0.0000      1.000 0.000 1.000
#> GSM447436     1  0.0000      0.980 1.000 0.000
#> GSM447437     1  0.0000      0.980 1.000 0.000
#> GSM447438     2  0.0000      1.000 0.000 1.000
#> GSM447447     1  0.0000      0.980 1.000 0.000
#> GSM447454     2  0.0000      1.000 0.000 1.000
#> GSM447457     2  0.0000      1.000 0.000 1.000
#> GSM447460     2  0.0000      1.000 0.000 1.000
#> GSM447465     2  0.0000      1.000 0.000 1.000
#> GSM447471     1  0.0000      0.980 1.000 0.000
#> GSM447476     1  0.9754      0.318 0.592 0.408

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.0000      0.902 0.000 0.000 1.000
#> GSM447411     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447413     3  0.0000      0.902 0.000 0.000 1.000
#> GSM447415     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447416     3  0.0237      0.902 0.000 0.004 0.996
#> GSM447425     2  0.4504      0.888 0.000 0.804 0.196
#> GSM447430     2  0.4504      0.888 0.000 0.804 0.196
#> GSM447435     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447440     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447444     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447448     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447449     3  0.0237      0.901 0.000 0.004 0.996
#> GSM447450     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447452     2  0.4504      0.888 0.000 0.804 0.196
#> GSM447458     2  0.5431      0.802 0.000 0.716 0.284
#> GSM447461     3  0.4887      0.792 0.000 0.228 0.772
#> GSM447464     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447468     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447472     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447400     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447402     2  0.4452      0.887 0.000 0.808 0.192
#> GSM447403     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447405     1  0.0424      0.978 0.992 0.008 0.000
#> GSM447418     3  0.0000      0.902 0.000 0.000 1.000
#> GSM447422     3  0.0000      0.902 0.000 0.000 1.000
#> GSM447424     3  0.0000      0.902 0.000 0.000 1.000
#> GSM447427     3  0.0000      0.902 0.000 0.000 1.000
#> GSM447428     3  0.4555      0.710 0.200 0.000 0.800
#> GSM447429     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447431     3  0.0237      0.902 0.000 0.004 0.996
#> GSM447432     3  0.1411      0.879 0.000 0.036 0.964
#> GSM447434     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447442     3  0.3340      0.787 0.000 0.120 0.880
#> GSM447451     3  0.4555      0.802 0.000 0.200 0.800
#> GSM447462     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447463     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447467     3  0.5659      0.644 0.248 0.012 0.740
#> GSM447469     2  0.4555      0.885 0.000 0.800 0.200
#> GSM447473     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447404     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447406     2  0.4504      0.888 0.000 0.804 0.196
#> GSM447407     2  0.4504      0.888 0.000 0.804 0.196
#> GSM447409     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447412     3  0.2261      0.883 0.000 0.068 0.932
#> GSM447426     3  0.0000      0.902 0.000 0.000 1.000
#> GSM447433     1  0.1031      0.962 0.976 0.024 0.000
#> GSM447439     2  0.4504      0.888 0.000 0.804 0.196
#> GSM447441     3  0.3038      0.867 0.000 0.104 0.896
#> GSM447443     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447445     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447446     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447453     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447455     3  0.2878      0.819 0.000 0.096 0.904
#> GSM447456     2  0.5760      0.495 0.328 0.672 0.000
#> GSM447459     2  0.4504      0.888 0.000 0.804 0.196
#> GSM447466     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447470     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447474     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447475     3  0.4842      0.794 0.000 0.224 0.776
#> GSM447398     2  0.0000      0.812 0.000 1.000 0.000
#> GSM447399     2  0.5621      0.769 0.000 0.692 0.308
#> GSM447408     2  0.0000      0.812 0.000 1.000 0.000
#> GSM447410     2  0.0000      0.812 0.000 1.000 0.000
#> GSM447414     3  0.0000      0.902 0.000 0.000 1.000
#> GSM447417     2  0.4504      0.888 0.000 0.804 0.196
#> GSM447419     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447420     1  0.6168      0.247 0.588 0.000 0.412
#> GSM447421     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447423     3  0.3752      0.846 0.000 0.144 0.856
#> GSM447436     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447437     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447438     2  0.0000      0.812 0.000 1.000 0.000
#> GSM447447     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447454     3  0.3752      0.846 0.000 0.144 0.856
#> GSM447457     3  0.3752      0.846 0.000 0.144 0.856
#> GSM447460     3  0.0000      0.902 0.000 0.000 1.000
#> GSM447465     3  0.0000      0.902 0.000 0.000 1.000
#> GSM447471     1  0.0000      0.985 1.000 0.000 0.000
#> GSM447476     2  0.0000      0.812 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.1474     0.7742 0.000 0.000 0.948 0.052
#> GSM447411     1  0.0000     0.9157 1.000 0.000 0.000 0.000
#> GSM447413     3  0.1389     0.7775 0.000 0.000 0.952 0.048
#> GSM447415     1  0.0469     0.9162 0.988 0.012 0.000 0.000
#> GSM447416     3  0.0817     0.7862 0.000 0.000 0.976 0.024
#> GSM447425     4  0.3485     0.8458 0.000 0.028 0.116 0.856
#> GSM447430     4  0.2589     0.8551 0.000 0.000 0.116 0.884
#> GSM447435     1  0.0000     0.9157 1.000 0.000 0.000 0.000
#> GSM447440     1  0.0188     0.9162 0.996 0.004 0.000 0.000
#> GSM447444     1  0.3688     0.8411 0.792 0.208 0.000 0.000
#> GSM447448     1  0.0592     0.9138 0.984 0.016 0.000 0.000
#> GSM447449     2  0.5923     0.6276 0.000 0.580 0.376 0.044
#> GSM447450     1  0.0188     0.9162 0.996 0.004 0.000 0.000
#> GSM447452     4  0.2773     0.8544 0.000 0.004 0.116 0.880
#> GSM447458     2  0.6683     0.6487 0.000 0.620 0.204 0.176
#> GSM447461     2  0.5993     0.6763 0.000 0.692 0.160 0.148
#> GSM447464     1  0.3444     0.8572 0.816 0.184 0.000 0.000
#> GSM447468     1  0.2868     0.8802 0.864 0.136 0.000 0.000
#> GSM447472     1  0.2081     0.9016 0.916 0.084 0.000 0.000
#> GSM447400     1  0.3873     0.8294 0.772 0.228 0.000 0.000
#> GSM447402     4  0.3581     0.8445 0.000 0.032 0.116 0.852
#> GSM447403     1  0.0469     0.9162 0.988 0.012 0.000 0.000
#> GSM447405     1  0.3587     0.8279 0.856 0.040 0.000 0.104
#> GSM447418     3  0.0188     0.7870 0.000 0.004 0.996 0.000
#> GSM447422     3  0.0188     0.7870 0.000 0.004 0.996 0.000
#> GSM447424     3  0.0336     0.7875 0.000 0.000 0.992 0.008
#> GSM447427     3  0.0336     0.7862 0.000 0.008 0.992 0.000
#> GSM447428     3  0.5880     0.4594 0.088 0.232 0.680 0.000
#> GSM447429     1  0.3610     0.8476 0.800 0.200 0.000 0.000
#> GSM447431     3  0.1624     0.7743 0.000 0.020 0.952 0.028
#> GSM447432     2  0.6054     0.6677 0.000 0.592 0.352 0.056
#> GSM447434     1  0.0592     0.9160 0.984 0.016 0.000 0.000
#> GSM447442     2  0.6412     0.6818 0.000 0.592 0.320 0.088
#> GSM447451     2  0.6098     0.6590 0.000 0.676 0.200 0.124
#> GSM447462     1  0.3942     0.8236 0.764 0.236 0.000 0.000
#> GSM447463     1  0.0707     0.9152 0.980 0.020 0.000 0.000
#> GSM447467     2  0.3745     0.5403 0.060 0.852 0.088 0.000
#> GSM447469     4  0.3271     0.8433 0.000 0.012 0.132 0.856
#> GSM447473     1  0.0469     0.9162 0.988 0.012 0.000 0.000
#> GSM447404     1  0.0469     0.9162 0.988 0.012 0.000 0.000
#> GSM447406     4  0.2918     0.8518 0.000 0.008 0.116 0.876
#> GSM447407     4  0.2773     0.8544 0.000 0.004 0.116 0.880
#> GSM447409     1  0.0188     0.9159 0.996 0.004 0.000 0.000
#> GSM447412     3  0.1209     0.7698 0.000 0.004 0.964 0.032
#> GSM447426     3  0.1474     0.7742 0.000 0.000 0.948 0.052
#> GSM447433     1  0.3674     0.8145 0.848 0.036 0.000 0.116
#> GSM447439     4  0.2589     0.8551 0.000 0.000 0.116 0.884
#> GSM447441     2  0.6489     0.5806 0.000 0.548 0.372 0.080
#> GSM447443     1  0.3172     0.8694 0.840 0.160 0.000 0.000
#> GSM447445     1  0.0592     0.9143 0.984 0.016 0.000 0.000
#> GSM447446     1  0.2408     0.8802 0.920 0.036 0.000 0.044
#> GSM447453     1  0.0469     0.9138 0.988 0.012 0.000 0.000
#> GSM447455     2  0.6412     0.6794 0.000 0.592 0.320 0.088
#> GSM447456     2  0.7734     0.1796 0.284 0.444 0.000 0.272
#> GSM447459     4  0.2589     0.8551 0.000 0.000 0.116 0.884
#> GSM447466     1  0.0188     0.9162 0.996 0.004 0.000 0.000
#> GSM447470     1  0.3356     0.8643 0.824 0.176 0.000 0.000
#> GSM447474     1  0.4072     0.8087 0.748 0.252 0.000 0.000
#> GSM447475     2  0.5770     0.6741 0.000 0.712 0.148 0.140
#> GSM447398     4  0.4996    -0.0657 0.000 0.484 0.000 0.516
#> GSM447399     4  0.5903     0.4984 0.000 0.052 0.332 0.616
#> GSM447408     4  0.1389     0.7628 0.000 0.048 0.000 0.952
#> GSM447410     4  0.2281     0.7352 0.000 0.096 0.000 0.904
#> GSM447414     3  0.0921     0.7844 0.000 0.000 0.972 0.028
#> GSM447417     4  0.2918     0.8538 0.000 0.008 0.116 0.876
#> GSM447419     1  0.5727     0.7552 0.704 0.200 0.096 0.000
#> GSM447420     3  0.7434     0.2359 0.232 0.256 0.512 0.000
#> GSM447421     1  0.3873     0.8294 0.772 0.228 0.000 0.000
#> GSM447423     3  0.2342     0.7194 0.000 0.008 0.912 0.080
#> GSM447436     1  0.2500     0.8807 0.916 0.040 0.000 0.044
#> GSM447437     1  0.0469     0.9151 0.988 0.012 0.000 0.000
#> GSM447438     4  0.2281     0.7352 0.000 0.096 0.000 0.904
#> GSM447447     1  0.1302     0.9066 0.956 0.044 0.000 0.000
#> GSM447454     3  0.5226     0.5373 0.000 0.180 0.744 0.076
#> GSM447457     3  0.5593     0.4684 0.000 0.212 0.708 0.080
#> GSM447460     3  0.6080    -0.4285 0.000 0.468 0.488 0.044
#> GSM447465     3  0.3672     0.6067 0.000 0.164 0.824 0.012
#> GSM447471     1  0.0469     0.9162 0.988 0.012 0.000 0.000
#> GSM447476     4  0.2589     0.7295 0.000 0.116 0.000 0.884

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     3  0.2358    0.80373 0.000 0.000 0.888 0.104 0.008
#> GSM447411     1  0.3003    0.53997 0.812 0.000 0.000 0.000 0.188
#> GSM447413     3  0.1671    0.82525 0.000 0.000 0.924 0.076 0.000
#> GSM447415     1  0.1043    0.51601 0.960 0.000 0.000 0.000 0.040
#> GSM447416     3  0.0932    0.83951 0.000 0.004 0.972 0.020 0.004
#> GSM447425     4  0.3064    0.83438 0.000 0.000 0.036 0.856 0.108
#> GSM447430     4  0.1124    0.87001 0.000 0.004 0.036 0.960 0.000
#> GSM447435     1  0.2891    0.54103 0.824 0.000 0.000 0.000 0.176
#> GSM447440     1  0.3003    0.53703 0.812 0.000 0.000 0.000 0.188
#> GSM447444     5  0.5218   -0.35123 0.448 0.028 0.000 0.008 0.516
#> GSM447448     1  0.3999    0.43922 0.656 0.000 0.000 0.000 0.344
#> GSM447449     2  0.4938    0.69977 0.000 0.740 0.168 0.068 0.024
#> GSM447450     1  0.3074    0.53447 0.804 0.000 0.000 0.000 0.196
#> GSM447452     4  0.1568    0.87062 0.000 0.000 0.036 0.944 0.020
#> GSM447458     2  0.4689    0.70765 0.000 0.772 0.096 0.108 0.024
#> GSM447461     2  0.2067    0.68604 0.000 0.928 0.028 0.012 0.032
#> GSM447464     1  0.4238   -0.00619 0.628 0.000 0.000 0.004 0.368
#> GSM447468     1  0.2966    0.28967 0.816 0.000 0.000 0.000 0.184
#> GSM447472     1  0.2136    0.46884 0.904 0.000 0.000 0.008 0.088
#> GSM447400     1  0.4276   -0.11735 0.616 0.000 0.000 0.004 0.380
#> GSM447402     4  0.3319    0.83480 0.000 0.008 0.040 0.852 0.100
#> GSM447403     1  0.0510    0.52242 0.984 0.000 0.000 0.000 0.016
#> GSM447405     1  0.4924    0.29042 0.552 0.000 0.000 0.028 0.420
#> GSM447418     3  0.0981    0.83741 0.000 0.008 0.972 0.012 0.008
#> GSM447422     3  0.1200    0.83593 0.000 0.012 0.964 0.016 0.008
#> GSM447424     3  0.0609    0.83997 0.000 0.000 0.980 0.020 0.000
#> GSM447427     3  0.0162    0.83734 0.000 0.004 0.996 0.000 0.000
#> GSM447428     3  0.5098    0.39378 0.032 0.004 0.640 0.008 0.316
#> GSM447429     1  0.3876    0.06768 0.684 0.000 0.000 0.000 0.316
#> GSM447431     3  0.2788    0.80169 0.000 0.040 0.888 0.064 0.008
#> GSM447432     2  0.4462    0.70945 0.000 0.768 0.168 0.044 0.020
#> GSM447434     1  0.1197    0.50856 0.952 0.000 0.000 0.000 0.048
#> GSM447442     2  0.4624    0.70594 0.000 0.756 0.176 0.044 0.024
#> GSM447451     2  0.2036    0.68606 0.000 0.928 0.036 0.008 0.028
#> GSM447462     1  0.4489   -0.17473 0.572 0.000 0.000 0.008 0.420
#> GSM447463     1  0.3561    0.50800 0.740 0.000 0.000 0.000 0.260
#> GSM447467     2  0.4418    0.64751 0.020 0.760 0.016 0.008 0.196
#> GSM447469     4  0.3412    0.83031 0.000 0.008 0.096 0.848 0.048
#> GSM447473     1  0.0510    0.52242 0.984 0.000 0.000 0.000 0.016
#> GSM447404     1  0.0290    0.52305 0.992 0.000 0.000 0.000 0.008
#> GSM447406     4  0.1285    0.86943 0.000 0.004 0.036 0.956 0.004
#> GSM447407     4  0.1568    0.87062 0.000 0.000 0.036 0.944 0.020
#> GSM447409     1  0.3109    0.53887 0.800 0.000 0.000 0.000 0.200
#> GSM447412     3  0.0807    0.83628 0.000 0.012 0.976 0.012 0.000
#> GSM447426     3  0.2358    0.80373 0.000 0.000 0.888 0.104 0.008
#> GSM447433     1  0.4905    0.28663 0.500 0.000 0.000 0.024 0.476
#> GSM447439     4  0.1202    0.87018 0.000 0.004 0.032 0.960 0.004
#> GSM447441     2  0.4669    0.58504 0.000 0.692 0.272 0.024 0.012
#> GSM447443     1  0.3741    0.13401 0.732 0.000 0.000 0.004 0.264
#> GSM447445     1  0.3816    0.47261 0.696 0.000 0.000 0.000 0.304
#> GSM447446     1  0.4552    0.30316 0.524 0.000 0.000 0.008 0.468
#> GSM447453     1  0.4030    0.42715 0.648 0.000 0.000 0.000 0.352
#> GSM447455     2  0.4609    0.70367 0.000 0.756 0.172 0.056 0.016
#> GSM447456     2  0.8509   -0.01028 0.248 0.312 0.000 0.256 0.184
#> GSM447459     4  0.1124    0.87001 0.000 0.004 0.036 0.960 0.000
#> GSM447466     1  0.2732    0.54126 0.840 0.000 0.000 0.000 0.160
#> GSM447470     1  0.5049    0.22470 0.548 0.016 0.000 0.012 0.424
#> GSM447474     5  0.4902   -0.05676 0.460 0.008 0.000 0.012 0.520
#> GSM447475     2  0.0898    0.68947 0.000 0.972 0.000 0.008 0.020
#> GSM447398     2  0.4817   -0.02225 0.000 0.572 0.000 0.404 0.024
#> GSM447399     4  0.5666    0.39385 0.000 0.068 0.328 0.592 0.012
#> GSM447408     4  0.2286    0.81628 0.000 0.108 0.000 0.888 0.004
#> GSM447410     4  0.3231    0.76211 0.000 0.196 0.000 0.800 0.004
#> GSM447414     3  0.1331    0.83670 0.000 0.008 0.952 0.040 0.000
#> GSM447417     4  0.2152    0.86452 0.000 0.004 0.032 0.920 0.044
#> GSM447419     1  0.5014   -0.07550 0.628 0.000 0.032 0.008 0.332
#> GSM447420     5  0.6997    0.05680 0.172 0.008 0.388 0.012 0.420
#> GSM447421     1  0.4341   -0.15161 0.592 0.000 0.000 0.004 0.404
#> GSM447423     3  0.0880    0.82129 0.000 0.032 0.968 0.000 0.000
#> GSM447436     1  0.4425    0.31166 0.544 0.000 0.000 0.004 0.452
#> GSM447437     1  0.3534    0.50714 0.744 0.000 0.000 0.000 0.256
#> GSM447438     4  0.3530    0.75052 0.000 0.204 0.000 0.784 0.012
#> GSM447447     1  0.4403    0.34858 0.560 0.000 0.000 0.004 0.436
#> GSM447454     3  0.4178    0.51727 0.000 0.292 0.696 0.004 0.008
#> GSM447457     3  0.4390    0.14263 0.000 0.428 0.568 0.000 0.004
#> GSM447460     2  0.5668    0.39689 0.000 0.564 0.360 0.068 0.008
#> GSM447465     3  0.4794    0.42507 0.000 0.308 0.656 0.032 0.004
#> GSM447471     1  0.0510    0.52242 0.984 0.000 0.000 0.000 0.016
#> GSM447476     4  0.4747    0.73978 0.000 0.196 0.000 0.720 0.084

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     3  0.2745    0.80205 0.000 0.000 0.860 0.112 0.020 0.008
#> GSM447411     1  0.0520    0.48691 0.984 0.000 0.000 0.000 0.008 0.008
#> GSM447413     3  0.2145    0.82903 0.000 0.004 0.904 0.076 0.012 0.004
#> GSM447415     1  0.4091    0.48925 0.732 0.000 0.000 0.000 0.068 0.200
#> GSM447416     3  0.0767    0.83834 0.000 0.000 0.976 0.008 0.012 0.004
#> GSM447425     4  0.3545    0.74083 0.000 0.000 0.008 0.748 0.236 0.008
#> GSM447430     4  0.0405    0.83348 0.000 0.000 0.008 0.988 0.004 0.000
#> GSM447435     1  0.0914    0.49299 0.968 0.000 0.000 0.000 0.016 0.016
#> GSM447440     1  0.1865    0.48131 0.920 0.000 0.000 0.000 0.040 0.040
#> GSM447444     1  0.6463   -0.14776 0.508 0.056 0.000 0.000 0.268 0.168
#> GSM447448     1  0.4223    0.16996 0.704 0.000 0.000 0.000 0.236 0.060
#> GSM447449     2  0.3697    0.72307 0.000 0.812 0.104 0.068 0.012 0.004
#> GSM447450     1  0.1794    0.48668 0.924 0.000 0.000 0.000 0.040 0.036
#> GSM447452     4  0.1655    0.83195 0.000 0.000 0.008 0.932 0.052 0.008
#> GSM447458     2  0.3665    0.72133 0.000 0.820 0.068 0.092 0.012 0.008
#> GSM447461     2  0.5128    0.64152 0.000 0.696 0.020 0.020 0.188 0.076
#> GSM447464     6  0.3971    0.47792 0.448 0.000 0.000 0.000 0.004 0.548
#> GSM447468     1  0.4948    0.08824 0.564 0.000 0.000 0.000 0.076 0.360
#> GSM447472     1  0.5208    0.34991 0.608 0.000 0.000 0.000 0.156 0.236
#> GSM447400     6  0.3265    0.70233 0.248 0.000 0.000 0.000 0.004 0.748
#> GSM447402     4  0.3952    0.73709 0.000 0.024 0.004 0.740 0.224 0.008
#> GSM447403     1  0.4403    0.47536 0.708 0.000 0.000 0.000 0.096 0.196
#> GSM447405     5  0.4498    0.83193 0.428 0.000 0.000 0.004 0.544 0.024
#> GSM447418     3  0.1708    0.83460 0.000 0.040 0.932 0.024 0.004 0.000
#> GSM447422     3  0.2309    0.81439 0.000 0.084 0.888 0.028 0.000 0.000
#> GSM447424     3  0.0632    0.84025 0.000 0.000 0.976 0.024 0.000 0.000
#> GSM447427     3  0.0508    0.83685 0.000 0.012 0.984 0.000 0.004 0.000
#> GSM447428     3  0.5187    0.46469 0.016 0.004 0.608 0.000 0.064 0.308
#> GSM447429     6  0.4107    0.64438 0.280 0.000 0.000 0.000 0.036 0.684
#> GSM447431     3  0.3683    0.79005 0.000 0.020 0.836 0.064 0.048 0.032
#> GSM447432     2  0.3641    0.72229 0.000 0.812 0.120 0.052 0.004 0.012
#> GSM447434     1  0.4668    0.46617 0.680 0.000 0.000 0.000 0.116 0.204
#> GSM447442     2  0.3463    0.72132 0.000 0.816 0.120 0.056 0.000 0.008
#> GSM447451     2  0.5422    0.63988 0.000 0.668 0.040 0.012 0.204 0.076
#> GSM447462     6  0.3073    0.69859 0.204 0.000 0.000 0.000 0.008 0.788
#> GSM447463     1  0.2451    0.42433 0.884 0.000 0.000 0.000 0.060 0.056
#> GSM447467     2  0.3817    0.67615 0.000 0.796 0.012 0.000 0.088 0.104
#> GSM447469     4  0.3860    0.79117 0.000 0.040 0.036 0.812 0.104 0.008
#> GSM447473     1  0.4403    0.47536 0.708 0.000 0.000 0.000 0.096 0.196
#> GSM447404     1  0.4321    0.48187 0.712 0.000 0.000 0.000 0.084 0.204
#> GSM447406     4  0.0520    0.83286 0.000 0.000 0.008 0.984 0.008 0.000
#> GSM447407     4  0.1523    0.83231 0.000 0.000 0.008 0.940 0.044 0.008
#> GSM447409     1  0.2212    0.35934 0.880 0.000 0.000 0.000 0.112 0.008
#> GSM447412     3  0.0748    0.83936 0.000 0.000 0.976 0.004 0.016 0.004
#> GSM447426     3  0.2633    0.80269 0.000 0.000 0.864 0.112 0.020 0.004
#> GSM447433     5  0.4126    0.87283 0.480 0.000 0.000 0.004 0.512 0.004
#> GSM447439     4  0.0405    0.83348 0.000 0.000 0.008 0.988 0.004 0.000
#> GSM447441     2  0.6689    0.49518 0.000 0.500 0.312 0.024 0.112 0.052
#> GSM447443     6  0.4991    0.22452 0.456 0.000 0.000 0.000 0.068 0.476
#> GSM447445     1  0.3229    0.26841 0.816 0.000 0.000 0.000 0.140 0.044
#> GSM447446     5  0.4172    0.91162 0.460 0.000 0.000 0.000 0.528 0.012
#> GSM447453     1  0.3900   -0.08751 0.728 0.000 0.000 0.000 0.232 0.040
#> GSM447455     2  0.3718    0.71762 0.000 0.796 0.128 0.068 0.000 0.008
#> GSM447456     1  0.8598   -0.15649 0.336 0.184 0.000 0.152 0.216 0.112
#> GSM447459     4  0.0260    0.83366 0.000 0.000 0.008 0.992 0.000 0.000
#> GSM447466     1  0.1719    0.50650 0.924 0.000 0.000 0.000 0.016 0.060
#> GSM447470     1  0.5222   -0.15885 0.500 0.004 0.000 0.000 0.080 0.416
#> GSM447474     6  0.4280    0.55281 0.232 0.004 0.000 0.000 0.056 0.708
#> GSM447475     2  0.3991    0.66123 0.000 0.772 0.000 0.012 0.152 0.064
#> GSM447398     2  0.7032   -0.00789 0.000 0.364 0.000 0.348 0.212 0.076
#> GSM447399     4  0.5561    0.37635 0.000 0.064 0.292 0.604 0.020 0.020
#> GSM447408     4  0.2106    0.79927 0.000 0.064 0.000 0.904 0.032 0.000
#> GSM447410     4  0.4292    0.70568 0.000 0.136 0.000 0.752 0.100 0.012
#> GSM447414     3  0.2143    0.83232 0.000 0.016 0.916 0.048 0.012 0.008
#> GSM447417     4  0.2632    0.81900 0.000 0.024 0.008 0.884 0.076 0.008
#> GSM447419     6  0.5713    0.55730 0.284 0.000 0.016 0.000 0.140 0.560
#> GSM447420     6  0.4571    0.46386 0.028 0.004 0.212 0.000 0.040 0.716
#> GSM447421     6  0.3342    0.70579 0.228 0.000 0.000 0.000 0.012 0.760
#> GSM447423     3  0.1408    0.82226 0.000 0.020 0.944 0.000 0.036 0.000
#> GSM447436     5  0.4250    0.91097 0.456 0.000 0.000 0.000 0.528 0.016
#> GSM447437     1  0.2350    0.40699 0.888 0.000 0.000 0.000 0.076 0.036
#> GSM447438     4  0.4942    0.67166 0.000 0.144 0.000 0.700 0.132 0.024
#> GSM447447     1  0.4985   -0.65858 0.528 0.000 0.000 0.000 0.400 0.072
#> GSM447454     3  0.4325    0.63554 0.000 0.200 0.728 0.000 0.060 0.012
#> GSM447457     3  0.4720    0.44654 0.000 0.300 0.640 0.000 0.048 0.012
#> GSM447460     2  0.5624    0.39628 0.000 0.548 0.340 0.092 0.012 0.008
#> GSM447465     3  0.4268    0.58761 0.000 0.240 0.712 0.036 0.004 0.008
#> GSM447471     1  0.4403    0.47536 0.708 0.000 0.000 0.000 0.096 0.196
#> GSM447476     4  0.5007    0.68812 0.000 0.132 0.000 0.652 0.212 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n gender(p) agent(p) k
#> CV:skmeans 77     0.913    0.422 2
#> CV:skmeans 77     0.334    0.288 3
#> CV:skmeans 72     0.402    0.496 4
#> CV:skmeans 51     0.297    0.715 5
#> CV:skmeans 48     0.287    0.516 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.565           0.814       0.916         0.4373 0.553   0.553
#> 3 3 0.655           0.733       0.888         0.5173 0.724   0.526
#> 4 4 0.706           0.727       0.871         0.1088 0.900   0.711
#> 5 5 0.702           0.684       0.800         0.0632 0.914   0.683
#> 6 6 0.754           0.683       0.849         0.0373 0.954   0.788

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2  0.0000      0.902 0.000 1.000
#> GSM447411     1  0.0000      0.880 1.000 0.000
#> GSM447413     2  0.0000      0.902 0.000 1.000
#> GSM447415     1  0.0000      0.880 1.000 0.000
#> GSM447416     2  0.0000      0.902 0.000 1.000
#> GSM447425     2  0.0938      0.899 0.012 0.988
#> GSM447430     2  0.0938      0.898 0.012 0.988
#> GSM447435     1  0.0000      0.880 1.000 0.000
#> GSM447440     1  0.9922      0.121 0.552 0.448
#> GSM447444     2  0.7453      0.778 0.212 0.788
#> GSM447448     2  0.8144      0.727 0.252 0.748
#> GSM447449     2  0.0000      0.902 0.000 1.000
#> GSM447450     1  0.0000      0.880 1.000 0.000
#> GSM447452     2  0.0000      0.902 0.000 1.000
#> GSM447458     2  0.0672      0.901 0.008 0.992
#> GSM447461     2  0.0672      0.901 0.008 0.992
#> GSM447464     1  0.0000      0.880 1.000 0.000
#> GSM447468     1  0.0000      0.880 1.000 0.000
#> GSM447472     1  0.6623      0.721 0.828 0.172
#> GSM447400     1  0.0000      0.880 1.000 0.000
#> GSM447402     2  0.0000      0.902 0.000 1.000
#> GSM447403     1  0.0000      0.880 1.000 0.000
#> GSM447405     2  0.7453      0.778 0.212 0.788
#> GSM447418     2  0.0000      0.902 0.000 1.000
#> GSM447422     2  0.0000      0.902 0.000 1.000
#> GSM447424     2  0.0000      0.902 0.000 1.000
#> GSM447427     2  0.0000      0.902 0.000 1.000
#> GSM447428     2  0.7219      0.787 0.200 0.800
#> GSM447429     1  0.9522      0.360 0.628 0.372
#> GSM447431     2  0.0000      0.902 0.000 1.000
#> GSM447432     2  0.0000      0.902 0.000 1.000
#> GSM447434     1  0.9608      0.330 0.616 0.384
#> GSM447442     2  0.0376      0.901 0.004 0.996
#> GSM447451     2  0.7376      0.782 0.208 0.792
#> GSM447462     2  0.7815      0.757 0.232 0.768
#> GSM447463     1  0.0000      0.880 1.000 0.000
#> GSM447467     2  0.7299      0.785 0.204 0.796
#> GSM447469     2  0.0000      0.902 0.000 1.000
#> GSM447473     1  0.0000      0.880 1.000 0.000
#> GSM447404     1  0.0000      0.880 1.000 0.000
#> GSM447406     2  0.0000      0.902 0.000 1.000
#> GSM447407     2  0.0000      0.902 0.000 1.000
#> GSM447409     1  0.0000      0.880 1.000 0.000
#> GSM447412     2  0.6887      0.798 0.184 0.816
#> GSM447426     2  0.0000      0.902 0.000 1.000
#> GSM447433     1  0.9491      0.372 0.632 0.368
#> GSM447439     2  0.0938      0.899 0.012 0.988
#> GSM447441     2  0.0000      0.902 0.000 1.000
#> GSM447443     1  0.0000      0.880 1.000 0.000
#> GSM447445     1  0.0376      0.877 0.996 0.004
#> GSM447446     1  0.0000      0.880 1.000 0.000
#> GSM447453     1  0.0672      0.874 0.992 0.008
#> GSM447455     2  0.0000      0.902 0.000 1.000
#> GSM447456     2  0.7453      0.778 0.212 0.788
#> GSM447459     2  0.0000      0.902 0.000 1.000
#> GSM447466     1  0.0000      0.880 1.000 0.000
#> GSM447470     2  0.7453      0.778 0.212 0.788
#> GSM447474     2  0.7453      0.778 0.212 0.788
#> GSM447475     2  0.7376      0.782 0.208 0.792
#> GSM447398     2  0.7602      0.771 0.220 0.780
#> GSM447399     2  0.0672      0.899 0.008 0.992
#> GSM447408     2  0.0000      0.902 0.000 1.000
#> GSM447410     2  0.1184      0.898 0.016 0.984
#> GSM447414     2  0.0376      0.901 0.004 0.996
#> GSM447417     2  0.0000      0.902 0.000 1.000
#> GSM447419     2  0.9850      0.327 0.428 0.572
#> GSM447420     2  0.7376      0.782 0.208 0.792
#> GSM447421     1  0.9460      0.376 0.636 0.364
#> GSM447423     2  0.0000      0.902 0.000 1.000
#> GSM447436     1  0.9732      0.268 0.596 0.404
#> GSM447437     1  0.0000      0.880 1.000 0.000
#> GSM447438     2  0.7453      0.778 0.212 0.788
#> GSM447447     2  0.7453      0.778 0.212 0.788
#> GSM447454     2  0.0672      0.901 0.008 0.992
#> GSM447457     2  0.0000      0.902 0.000 1.000
#> GSM447460     2  0.0000      0.902 0.000 1.000
#> GSM447465     2  0.0000      0.902 0.000 1.000
#> GSM447471     1  0.0000      0.880 1.000 0.000
#> GSM447476     2  0.7602      0.771 0.220 0.780

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.0000     0.8680 0.000 0.000 1.000
#> GSM447411     1  0.0000     0.9161 1.000 0.000 0.000
#> GSM447413     3  0.0000     0.8680 0.000 0.000 1.000
#> GSM447415     1  0.0000     0.9161 1.000 0.000 0.000
#> GSM447416     3  0.4750     0.6819 0.000 0.216 0.784
#> GSM447425     2  0.5202     0.6557 0.008 0.772 0.220
#> GSM447430     2  0.6126     0.3425 0.000 0.600 0.400
#> GSM447435     1  0.0000     0.9161 1.000 0.000 0.000
#> GSM447440     2  0.6140     0.2729 0.404 0.596 0.000
#> GSM447444     2  0.0747     0.8223 0.016 0.984 0.000
#> GSM447448     2  0.4235     0.7184 0.176 0.824 0.000
#> GSM447449     3  0.0237     0.8679 0.000 0.004 0.996
#> GSM447450     1  0.0000     0.9161 1.000 0.000 0.000
#> GSM447452     3  0.0747     0.8628 0.000 0.016 0.984
#> GSM447458     3  0.6664     0.0573 0.008 0.464 0.528
#> GSM447461     2  0.0848     0.8225 0.008 0.984 0.008
#> GSM447464     1  0.0000     0.9161 1.000 0.000 0.000
#> GSM447468     1  0.0000     0.9161 1.000 0.000 0.000
#> GSM447472     1  0.6008     0.3833 0.628 0.372 0.000
#> GSM447400     1  0.0237     0.9131 0.996 0.004 0.000
#> GSM447402     2  0.5465     0.5553 0.000 0.712 0.288
#> GSM447403     1  0.0000     0.9161 1.000 0.000 0.000
#> GSM447405     2  0.0747     0.8223 0.016 0.984 0.000
#> GSM447418     3  0.0000     0.8680 0.000 0.000 1.000
#> GSM447422     3  0.0000     0.8680 0.000 0.000 1.000
#> GSM447424     3  0.0747     0.8651 0.000 0.016 0.984
#> GSM447427     3  0.1031     0.8627 0.000 0.024 0.976
#> GSM447428     3  0.5291     0.6235 0.000 0.268 0.732
#> GSM447429     1  0.6339     0.3596 0.632 0.360 0.008
#> GSM447431     3  0.2448     0.8322 0.000 0.076 0.924
#> GSM447432     3  0.3619     0.7896 0.000 0.136 0.864
#> GSM447434     2  0.6180     0.2224 0.416 0.584 0.000
#> GSM447442     3  0.0237     0.8679 0.000 0.004 0.996
#> GSM447451     2  0.0848     0.8225 0.008 0.984 0.008
#> GSM447462     2  0.4654     0.6830 0.208 0.792 0.000
#> GSM447463     1  0.0000     0.9161 1.000 0.000 0.000
#> GSM447467     2  0.0848     0.8225 0.008 0.984 0.008
#> GSM447469     3  0.4654     0.6849 0.000 0.208 0.792
#> GSM447473     1  0.0000     0.9161 1.000 0.000 0.000
#> GSM447404     1  0.0000     0.9161 1.000 0.000 0.000
#> GSM447406     3  0.4605     0.6960 0.000 0.204 0.796
#> GSM447407     3  0.6286     0.0632 0.000 0.464 0.536
#> GSM447409     1  0.0000     0.9161 1.000 0.000 0.000
#> GSM447412     2  0.0892     0.8190 0.000 0.980 0.020
#> GSM447426     3  0.0892     0.8636 0.000 0.020 0.980
#> GSM447433     2  0.6244     0.1652 0.440 0.560 0.000
#> GSM447439     2  0.4842     0.6489 0.000 0.776 0.224
#> GSM447441     2  0.0424     0.8206 0.000 0.992 0.008
#> GSM447443     1  0.2261     0.8561 0.932 0.068 0.000
#> GSM447445     1  0.0000     0.9161 1.000 0.000 0.000
#> GSM447446     1  0.0000     0.9161 1.000 0.000 0.000
#> GSM447453     1  0.0000     0.9161 1.000 0.000 0.000
#> GSM447455     2  0.6215     0.2945 0.000 0.572 0.428
#> GSM447456     2  0.0747     0.8223 0.016 0.984 0.000
#> GSM447459     2  0.5291     0.5964 0.000 0.732 0.268
#> GSM447466     1  0.0000     0.9161 1.000 0.000 0.000
#> GSM447470     2  0.0747     0.8223 0.016 0.984 0.000
#> GSM447474     2  0.0747     0.8223 0.016 0.984 0.000
#> GSM447475     2  0.0848     0.8225 0.008 0.984 0.008
#> GSM447398     2  0.0747     0.8223 0.016 0.984 0.000
#> GSM447399     3  0.0000     0.8680 0.000 0.000 1.000
#> GSM447408     2  0.0000     0.8205 0.000 1.000 0.000
#> GSM447410     2  0.0000     0.8205 0.000 1.000 0.000
#> GSM447414     3  0.0000     0.8680 0.000 0.000 1.000
#> GSM447417     3  0.0892     0.8635 0.000 0.020 0.980
#> GSM447419     2  0.9532    -0.0226 0.192 0.432 0.376
#> GSM447420     2  0.0848     0.8225 0.008 0.984 0.008
#> GSM447421     1  0.7831     0.4524 0.632 0.280 0.088
#> GSM447423     3  0.5291     0.6235 0.000 0.268 0.732
#> GSM447436     1  0.6140     0.2658 0.596 0.404 0.000
#> GSM447437     1  0.0000     0.9161 1.000 0.000 0.000
#> GSM447438     2  0.0000     0.8205 0.000 1.000 0.000
#> GSM447447     2  0.1860     0.8094 0.052 0.948 0.000
#> GSM447454     2  0.3826     0.7551 0.008 0.868 0.124
#> GSM447457     2  0.0747     0.8195 0.000 0.984 0.016
#> GSM447460     2  0.6062     0.4092 0.000 0.616 0.384
#> GSM447465     3  0.0000     0.8680 0.000 0.000 1.000
#> GSM447471     1  0.0000     0.9161 1.000 0.000 0.000
#> GSM447476     2  0.0237     0.8199 0.000 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.3764     0.7273 0.000 0.000 0.784 0.216
#> GSM447411     1  0.0000     0.8934 1.000 0.000 0.000 0.000
#> GSM447413     3  0.0921     0.8254 0.000 0.000 0.972 0.028
#> GSM447415     1  0.0000     0.8934 1.000 0.000 0.000 0.000
#> GSM447416     3  0.4500     0.6890 0.000 0.192 0.776 0.032
#> GSM447425     4  0.3726     0.8535 0.000 0.000 0.212 0.788
#> GSM447430     4  0.3610     0.8571 0.000 0.000 0.200 0.800
#> GSM447435     1  0.1389     0.8820 0.952 0.048 0.000 0.000
#> GSM447440     2  0.4866     0.2629 0.404 0.596 0.000 0.000
#> GSM447444     2  0.0000     0.8210 0.000 1.000 0.000 0.000
#> GSM447448     2  0.3172     0.7145 0.160 0.840 0.000 0.000
#> GSM447449     3  0.0000     0.8265 0.000 0.000 1.000 0.000
#> GSM447450     1  0.1557     0.8785 0.944 0.056 0.000 0.000
#> GSM447452     4  0.0469     0.7508 0.000 0.000 0.012 0.988
#> GSM447458     3  0.4907     0.1791 0.000 0.420 0.580 0.000
#> GSM447461     2  0.0000     0.8210 0.000 1.000 0.000 0.000
#> GSM447464     1  0.0592     0.8917 0.984 0.016 0.000 0.000
#> GSM447468     1  0.0000     0.8934 1.000 0.000 0.000 0.000
#> GSM447472     1  0.4790     0.3689 0.620 0.380 0.000 0.000
#> GSM447400     1  0.1637     0.8761 0.940 0.060 0.000 0.000
#> GSM447402     4  0.4319     0.8402 0.000 0.012 0.228 0.760
#> GSM447403     1  0.0000     0.8934 1.000 0.000 0.000 0.000
#> GSM447405     2  0.0707     0.8170 0.020 0.980 0.000 0.000
#> GSM447418     3  0.0188     0.8269 0.000 0.000 0.996 0.004
#> GSM447422     3  0.0000     0.8265 0.000 0.000 1.000 0.000
#> GSM447424     3  0.1356     0.8250 0.000 0.008 0.960 0.032
#> GSM447427     3  0.0469     0.8271 0.000 0.012 0.988 0.000
#> GSM447428     3  0.3726     0.6771 0.000 0.212 0.788 0.000
#> GSM447429     1  0.4776     0.3370 0.624 0.376 0.000 0.000
#> GSM447431     3  0.2859     0.7441 0.000 0.008 0.880 0.112
#> GSM447432     3  0.2081     0.7710 0.000 0.084 0.916 0.000
#> GSM447434     2  0.4898     0.2203 0.416 0.584 0.000 0.000
#> GSM447442     3  0.0000     0.8265 0.000 0.000 1.000 0.000
#> GSM447451     2  0.0000     0.8210 0.000 1.000 0.000 0.000
#> GSM447462     2  0.3528     0.6608 0.192 0.808 0.000 0.000
#> GSM447463     1  0.1557     0.8785 0.944 0.056 0.000 0.000
#> GSM447467     2  0.0000     0.8210 0.000 1.000 0.000 0.000
#> GSM447469     3  0.6702    -0.2821 0.000 0.088 0.476 0.436
#> GSM447473     1  0.0000     0.8934 1.000 0.000 0.000 0.000
#> GSM447404     1  0.0000     0.8934 1.000 0.000 0.000 0.000
#> GSM447406     4  0.3400     0.8570 0.000 0.000 0.180 0.820
#> GSM447407     4  0.3400     0.8570 0.000 0.000 0.180 0.820
#> GSM447409     1  0.0000     0.8934 1.000 0.000 0.000 0.000
#> GSM447412     2  0.1743     0.7955 0.000 0.940 0.056 0.004
#> GSM447426     3  0.3726     0.7293 0.000 0.000 0.788 0.212
#> GSM447433     2  0.5105     0.1756 0.432 0.564 0.000 0.004
#> GSM447439     4  0.3569     0.8579 0.000 0.000 0.196 0.804
#> GSM447441     2  0.1637     0.7939 0.000 0.940 0.000 0.060
#> GSM447443     1  0.2704     0.8152 0.876 0.124 0.000 0.000
#> GSM447445     1  0.1557     0.8785 0.944 0.056 0.000 0.000
#> GSM447446     1  0.0000     0.8934 1.000 0.000 0.000 0.000
#> GSM447453     1  0.0188     0.8934 0.996 0.004 0.000 0.000
#> GSM447455     2  0.4898     0.2747 0.000 0.584 0.416 0.000
#> GSM447456     2  0.0000     0.8210 0.000 1.000 0.000 0.000
#> GSM447459     4  0.3400     0.8570 0.000 0.000 0.180 0.820
#> GSM447466     1  0.0336     0.8929 0.992 0.008 0.000 0.000
#> GSM447470     2  0.0000     0.8210 0.000 1.000 0.000 0.000
#> GSM447474     2  0.0000     0.8210 0.000 1.000 0.000 0.000
#> GSM447475     2  0.0000     0.8210 0.000 1.000 0.000 0.000
#> GSM447398     2  0.1557     0.7948 0.000 0.944 0.000 0.056
#> GSM447399     3  0.0188     0.8272 0.000 0.000 0.996 0.004
#> GSM447408     4  0.3975     0.6933 0.000 0.240 0.000 0.760
#> GSM447410     4  0.4193     0.6591 0.000 0.268 0.000 0.732
#> GSM447414     3  0.1022     0.8242 0.000 0.000 0.968 0.032
#> GSM447417     4  0.3726     0.8535 0.000 0.000 0.212 0.788
#> GSM447419     2  0.7443    -0.0122 0.172 0.436 0.392 0.000
#> GSM447420     2  0.0000     0.8210 0.000 1.000 0.000 0.000
#> GSM447421     1  0.6362     0.4109 0.616 0.288 0.096 0.000
#> GSM447423     3  0.3726     0.6771 0.000 0.212 0.788 0.000
#> GSM447436     1  0.4888     0.2436 0.588 0.412 0.000 0.000
#> GSM447437     1  0.1118     0.8865 0.964 0.036 0.000 0.000
#> GSM447438     2  0.1557     0.7948 0.000 0.944 0.000 0.056
#> GSM447447     2  0.1118     0.8081 0.036 0.964 0.000 0.000
#> GSM447454     2  0.3355     0.7098 0.000 0.836 0.160 0.004
#> GSM447457     2  0.1557     0.7965 0.000 0.944 0.056 0.000
#> GSM447460     2  0.5364     0.4365 0.000 0.652 0.320 0.028
#> GSM447465     3  0.0707     0.8266 0.000 0.000 0.980 0.020
#> GSM447471     1  0.0000     0.8934 1.000 0.000 0.000 0.000
#> GSM447476     4  0.3975     0.6933 0.000 0.240 0.000 0.760

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     3  0.5644    0.55172 0.000 0.000 0.584 0.100 0.316
#> GSM447411     5  0.4192    0.57140 0.404 0.000 0.000 0.000 0.596
#> GSM447413     3  0.1043    0.78687 0.000 0.000 0.960 0.040 0.000
#> GSM447415     5  0.4300    0.52668 0.476 0.000 0.000 0.000 0.524
#> GSM447416     3  0.4022    0.72967 0.000 0.100 0.796 0.104 0.000
#> GSM447425     4  0.2852    0.85015 0.000 0.000 0.172 0.828 0.000
#> GSM447430     4  0.2605    0.86016 0.000 0.000 0.148 0.852 0.000
#> GSM447435     5  0.4803    0.57181 0.444 0.020 0.000 0.000 0.536
#> GSM447440     5  0.4401    0.47080 0.016 0.328 0.000 0.000 0.656
#> GSM447444     2  0.1410    0.86168 0.000 0.940 0.000 0.000 0.060
#> GSM447448     2  0.4064    0.73411 0.092 0.792 0.000 0.000 0.116
#> GSM447449     3  0.0000    0.78600 0.000 0.000 1.000 0.000 0.000
#> GSM447450     5  0.4898    0.55787 0.248 0.068 0.000 0.000 0.684
#> GSM447452     4  0.3837    0.62030 0.000 0.000 0.000 0.692 0.308
#> GSM447458     3  0.4227    0.12293 0.000 0.420 0.580 0.000 0.000
#> GSM447461     2  0.1121    0.88051 0.000 0.956 0.000 0.044 0.000
#> GSM447464     1  0.4235   -0.00952 0.656 0.008 0.000 0.000 0.336
#> GSM447468     5  0.5043    0.47273 0.356 0.044 0.000 0.000 0.600
#> GSM447472     5  0.5886    0.47655 0.176 0.224 0.000 0.000 0.600
#> GSM447400     1  0.4199    0.56842 0.772 0.068 0.000 0.000 0.160
#> GSM447402     4  0.3769    0.83858 0.000 0.032 0.180 0.788 0.000
#> GSM447403     1  0.0000    0.76233 1.000 0.000 0.000 0.000 0.000
#> GSM447405     2  0.0290    0.89162 0.008 0.992 0.000 0.000 0.000
#> GSM447418     3  0.0162    0.78620 0.000 0.000 0.996 0.004 0.000
#> GSM447422     3  0.0000    0.78600 0.000 0.000 1.000 0.000 0.000
#> GSM447424     3  0.1831    0.78093 0.000 0.004 0.920 0.076 0.000
#> GSM447427     3  0.0290    0.78741 0.000 0.008 0.992 0.000 0.000
#> GSM447428     3  0.4025    0.69113 0.000 0.132 0.792 0.000 0.076
#> GSM447429     1  0.1831    0.70738 0.920 0.076 0.000 0.000 0.004
#> GSM447431     3  0.2338    0.72709 0.000 0.004 0.884 0.112 0.000
#> GSM447432     3  0.1792    0.74669 0.000 0.084 0.916 0.000 0.000
#> GSM447434     5  0.5599    0.41774 0.092 0.328 0.000 0.000 0.580
#> GSM447442     3  0.0000    0.78600 0.000 0.000 1.000 0.000 0.000
#> GSM447451     2  0.0290    0.89215 0.000 0.992 0.000 0.008 0.000
#> GSM447462     2  0.4199    0.70242 0.068 0.772 0.000 0.000 0.160
#> GSM447463     5  0.4867    0.57768 0.432 0.024 0.000 0.000 0.544
#> GSM447467     2  0.0000    0.89277 0.000 1.000 0.000 0.000 0.000
#> GSM447469     3  0.5771   -0.21449 0.000 0.088 0.480 0.432 0.000
#> GSM447473     1  0.0000    0.76233 1.000 0.000 0.000 0.000 0.000
#> GSM447404     1  0.0000    0.76233 1.000 0.000 0.000 0.000 0.000
#> GSM447406     4  0.1792    0.85764 0.000 0.000 0.084 0.916 0.000
#> GSM447407     4  0.1792    0.85764 0.000 0.000 0.084 0.916 0.000
#> GSM447409     1  0.0000    0.76233 1.000 0.000 0.000 0.000 0.000
#> GSM447412     2  0.1704    0.86690 0.000 0.928 0.068 0.004 0.000
#> GSM447426     3  0.5644    0.55172 0.000 0.000 0.584 0.100 0.316
#> GSM447433     5  0.4404    0.49084 0.024 0.292 0.000 0.000 0.684
#> GSM447439     4  0.2561    0.86119 0.000 0.000 0.144 0.856 0.000
#> GSM447441     2  0.1608    0.86788 0.000 0.928 0.000 0.072 0.000
#> GSM447443     1  0.4666    0.52048 0.732 0.088 0.000 0.000 0.180
#> GSM447445     5  0.4890    0.56366 0.452 0.024 0.000 0.000 0.524
#> GSM447446     1  0.3112    0.66620 0.856 0.044 0.000 0.000 0.100
#> GSM447453     1  0.4616    0.37835 0.676 0.036 0.000 0.000 0.288
#> GSM447455     2  0.4359    0.35142 0.000 0.584 0.412 0.004 0.000
#> GSM447456     2  0.0000    0.89277 0.000 1.000 0.000 0.000 0.000
#> GSM447459     4  0.1792    0.85764 0.000 0.000 0.084 0.916 0.000
#> GSM447466     5  0.4552    0.54264 0.468 0.008 0.000 0.000 0.524
#> GSM447470     2  0.0000    0.89277 0.000 1.000 0.000 0.000 0.000
#> GSM447474     2  0.0000    0.89277 0.000 1.000 0.000 0.000 0.000
#> GSM447475     2  0.0000    0.89277 0.000 1.000 0.000 0.000 0.000
#> GSM447398     2  0.2304    0.86837 0.000 0.908 0.000 0.044 0.048
#> GSM447399     3  0.1704    0.76758 0.000 0.000 0.928 0.004 0.068
#> GSM447408     4  0.3177    0.75548 0.000 0.208 0.000 0.792 0.000
#> GSM447410     4  0.3395    0.72600 0.000 0.236 0.000 0.764 0.000
#> GSM447414     3  0.1671    0.78028 0.000 0.000 0.924 0.076 0.000
#> GSM447417     4  0.2732    0.85668 0.000 0.000 0.160 0.840 0.000
#> GSM447419     3  0.8383    0.00912 0.212 0.304 0.324 0.000 0.160
#> GSM447420     2  0.0000    0.89277 0.000 1.000 0.000 0.000 0.000
#> GSM447421     1  0.0963    0.74604 0.964 0.036 0.000 0.000 0.000
#> GSM447423     3  0.2732    0.71864 0.000 0.160 0.840 0.000 0.000
#> GSM447436     1  0.3508    0.45128 0.748 0.252 0.000 0.000 0.000
#> GSM447437     5  0.4735    0.55478 0.460 0.016 0.000 0.000 0.524
#> GSM447438     2  0.1544    0.86817 0.000 0.932 0.000 0.068 0.000
#> GSM447447     2  0.2171    0.84458 0.024 0.912 0.000 0.000 0.064
#> GSM447454     2  0.2983    0.83498 0.000 0.864 0.096 0.040 0.000
#> GSM447457     2  0.1544    0.86749 0.000 0.932 0.068 0.000 0.000
#> GSM447460     2  0.5051    0.55913 0.000 0.664 0.264 0.072 0.000
#> GSM447465     3  0.1478    0.78285 0.000 0.000 0.936 0.064 0.000
#> GSM447471     1  0.0000    0.76233 1.000 0.000 0.000 0.000 0.000
#> GSM447476     4  0.4064    0.76270 0.000 0.092 0.000 0.792 0.116

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4  p5    p6
#> GSM447401     5  0.0000     0.9517 0.000 0.000 0.000 0.000 1.0 0.000
#> GSM447411     1  0.2854     0.5959 0.792 0.000 0.000 0.000 0.0 0.208
#> GSM447413     3  0.2048     0.8591 0.000 0.000 0.880 0.120 0.0 0.000
#> GSM447415     1  0.3717     0.5169 0.616 0.000 0.000 0.000 0.0 0.384
#> GSM447416     3  0.0777     0.7997 0.000 0.024 0.972 0.004 0.0 0.000
#> GSM447425     4  0.0146     0.7718 0.000 0.000 0.004 0.996 0.0 0.000
#> GSM447430     4  0.0146     0.7718 0.000 0.000 0.004 0.996 0.0 0.000
#> GSM447435     1  0.3563     0.5538 0.664 0.000 0.000 0.000 0.0 0.336
#> GSM447440     1  0.1387     0.5988 0.932 0.068 0.000 0.000 0.0 0.000
#> GSM447444     2  0.2300     0.7761 0.144 0.856 0.000 0.000 0.0 0.000
#> GSM447448     2  0.3797     0.6148 0.292 0.692 0.000 0.000 0.0 0.016
#> GSM447449     3  0.2562     0.8608 0.000 0.000 0.828 0.172 0.0 0.000
#> GSM447450     1  0.0000     0.6137 1.000 0.000 0.000 0.000 0.0 0.000
#> GSM447452     5  0.1814     0.8961 0.000 0.000 0.000 0.100 0.9 0.000
#> GSM447458     2  0.5765    -0.1268 0.000 0.420 0.408 0.172 0.0 0.000
#> GSM447461     2  0.0000     0.8630 0.000 1.000 0.000 0.000 0.0 0.000
#> GSM447464     6  0.3592     0.1743 0.344 0.000 0.000 0.000 0.0 0.656
#> GSM447468     1  0.1610     0.5784 0.916 0.000 0.000 0.000 0.0 0.084
#> GSM447472     1  0.1753     0.5769 0.912 0.004 0.000 0.000 0.0 0.084
#> GSM447400     6  0.3684     0.3957 0.372 0.000 0.000 0.000 0.0 0.628
#> GSM447402     4  0.1649     0.7511 0.000 0.036 0.032 0.932 0.0 0.000
#> GSM447403     6  0.0000     0.7386 0.000 0.000 0.000 0.000 0.0 1.000
#> GSM447405     2  0.0000     0.8630 0.000 1.000 0.000 0.000 0.0 0.000
#> GSM447418     3  0.2562     0.8608 0.000 0.000 0.828 0.172 0.0 0.000
#> GSM447422     3  0.2562     0.8608 0.000 0.000 0.828 0.172 0.0 0.000
#> GSM447424     3  0.0146     0.8119 0.000 0.000 0.996 0.004 0.0 0.000
#> GSM447427     3  0.2562     0.8608 0.000 0.000 0.828 0.172 0.0 0.000
#> GSM447428     3  0.3351     0.7372 0.160 0.040 0.800 0.000 0.0 0.000
#> GSM447429     6  0.1644     0.6923 0.004 0.076 0.000 0.000 0.0 0.920
#> GSM447431     3  0.3288     0.7824 0.000 0.000 0.724 0.276 0.0 0.000
#> GSM447432     3  0.4079     0.8000 0.000 0.084 0.744 0.172 0.0 0.000
#> GSM447434     1  0.2786     0.5382 0.860 0.056 0.000 0.000 0.0 0.084
#> GSM447442     3  0.2562     0.8608 0.000 0.000 0.828 0.172 0.0 0.000
#> GSM447451     2  0.0000     0.8630 0.000 1.000 0.000 0.000 0.0 0.000
#> GSM447462     2  0.3717     0.5146 0.384 0.616 0.000 0.000 0.0 0.000
#> GSM447463     1  0.3607     0.5449 0.652 0.000 0.000 0.000 0.0 0.348
#> GSM447467     2  0.0000     0.8630 0.000 1.000 0.000 0.000 0.0 0.000
#> GSM447469     4  0.4947     0.1782 0.000 0.088 0.316 0.596 0.0 0.000
#> GSM447473     6  0.0000     0.7386 0.000 0.000 0.000 0.000 0.0 1.000
#> GSM447404     6  0.0000     0.7386 0.000 0.000 0.000 0.000 0.0 1.000
#> GSM447406     4  0.2562     0.7203 0.000 0.000 0.172 0.828 0.0 0.000
#> GSM447407     4  0.2562     0.7203 0.000 0.000 0.172 0.828 0.0 0.000
#> GSM447409     6  0.0000     0.7386 0.000 0.000 0.000 0.000 0.0 1.000
#> GSM447412     2  0.0000     0.8630 0.000 1.000 0.000 0.000 0.0 0.000
#> GSM447426     5  0.0000     0.9517 0.000 0.000 0.000 0.000 1.0 0.000
#> GSM447433     1  0.0000     0.6137 1.000 0.000 0.000 0.000 0.0 0.000
#> GSM447439     4  0.0000     0.7723 0.000 0.000 0.000 1.000 0.0 0.000
#> GSM447441     2  0.0458     0.8565 0.000 0.984 0.016 0.000 0.0 0.000
#> GSM447443     6  0.3782     0.3456 0.412 0.000 0.000 0.000 0.0 0.588
#> GSM447445     1  0.3717     0.5169 0.616 0.000 0.000 0.000 0.0 0.384
#> GSM447446     6  0.2793     0.5993 0.200 0.000 0.000 0.000 0.0 0.800
#> GSM447453     6  0.3797     0.2245 0.420 0.000 0.000 0.000 0.0 0.580
#> GSM447455     2  0.5356     0.3903 0.000 0.584 0.248 0.168 0.0 0.000
#> GSM447456     2  0.0146     0.8617 0.004 0.996 0.000 0.000 0.0 0.000
#> GSM447459     4  0.2562     0.7203 0.000 0.000 0.172 0.828 0.0 0.000
#> GSM447466     1  0.3717     0.5169 0.616 0.000 0.000 0.000 0.0 0.384
#> GSM447470     2  0.0000     0.8630 0.000 1.000 0.000 0.000 0.0 0.000
#> GSM447474     2  0.0000     0.8630 0.000 1.000 0.000 0.000 0.0 0.000
#> GSM447475     2  0.0000     0.8630 0.000 1.000 0.000 0.000 0.0 0.000
#> GSM447398     2  0.1714     0.8048 0.092 0.908 0.000 0.000 0.0 0.000
#> GSM447399     3  0.4893     0.7236 0.172 0.000 0.660 0.168 0.0 0.000
#> GSM447408     4  0.3076     0.6370 0.000 0.240 0.000 0.760 0.0 0.000
#> GSM447410     4  0.3244     0.6091 0.000 0.268 0.000 0.732 0.0 0.000
#> GSM447414     3  0.0146     0.8119 0.000 0.000 0.996 0.004 0.0 0.000
#> GSM447417     4  0.0146     0.7718 0.000 0.000 0.004 0.996 0.0 0.000
#> GSM447419     1  0.7190    -0.0411 0.384 0.116 0.324 0.000 0.0 0.176
#> GSM447420     2  0.0000     0.8630 0.000 1.000 0.000 0.000 0.0 0.000
#> GSM447421     6  0.0865     0.7242 0.000 0.036 0.000 0.000 0.0 0.964
#> GSM447423     3  0.2597     0.7402 0.000 0.176 0.824 0.000 0.0 0.000
#> GSM447436     6  0.3151     0.4932 0.000 0.252 0.000 0.000 0.0 0.748
#> GSM447437     1  0.3717     0.5169 0.616 0.000 0.000 0.000 0.0 0.384
#> GSM447438     2  0.0000     0.8630 0.000 1.000 0.000 0.000 0.0 0.000
#> GSM447447     2  0.2494     0.7825 0.120 0.864 0.000 0.000 0.0 0.016
#> GSM447454     2  0.1714     0.8054 0.000 0.908 0.000 0.092 0.0 0.000
#> GSM447457     2  0.0000     0.8630 0.000 1.000 0.000 0.000 0.0 0.000
#> GSM447460     2  0.3668     0.5792 0.000 0.668 0.328 0.004 0.0 0.000
#> GSM447465     3  0.0146     0.8119 0.000 0.000 0.996 0.004 0.0 0.000
#> GSM447471     6  0.0000     0.7386 0.000 0.000 0.000 0.000 0.0 1.000
#> GSM447476     4  0.3746     0.6325 0.192 0.048 0.000 0.760 0.0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n gender(p) agent(p) k
#> CV:pam 72    0.7925   0.0898 2
#> CV:pam 66    0.0886   0.0817 3
#> CV:pam 67    0.1345   0.1200 4
#> CV:pam 67    0.1471   0.2421 5
#> CV:pam 70    0.0726   0.0242 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.692           0.950       0.967         0.4936 0.503   0.503
#> 3 3 0.792           0.778       0.870         0.2264 0.810   0.638
#> 4 4 0.767           0.784       0.854         0.1159 0.876   0.684
#> 5 5 0.631           0.609       0.784         0.1101 0.945   0.820
#> 6 6 0.723           0.646       0.829         0.0772 0.816   0.407

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2  0.0000      0.940 0.000 1.000
#> GSM447411     1  0.0000      1.000 1.000 0.000
#> GSM447413     2  0.0000      0.940 0.000 1.000
#> GSM447415     1  0.0000      1.000 1.000 0.000
#> GSM447416     2  0.0000      0.940 0.000 1.000
#> GSM447425     2  0.0000      0.940 0.000 1.000
#> GSM447430     2  0.0000      0.940 0.000 1.000
#> GSM447435     1  0.0000      1.000 1.000 0.000
#> GSM447440     1  0.0000      1.000 1.000 0.000
#> GSM447444     1  0.0000      1.000 1.000 0.000
#> GSM447448     1  0.0000      1.000 1.000 0.000
#> GSM447449     2  0.0000      0.940 0.000 1.000
#> GSM447450     1  0.0000      1.000 1.000 0.000
#> GSM447452     2  0.0000      0.940 0.000 1.000
#> GSM447458     2  0.5178      0.906 0.116 0.884
#> GSM447461     2  0.5178      0.906 0.116 0.884
#> GSM447464     1  0.0000      1.000 1.000 0.000
#> GSM447468     1  0.0000      1.000 1.000 0.000
#> GSM447472     1  0.0000      1.000 1.000 0.000
#> GSM447400     1  0.0000      1.000 1.000 0.000
#> GSM447402     2  0.5178      0.906 0.116 0.884
#> GSM447403     1  0.0000      1.000 1.000 0.000
#> GSM447405     1  0.0000      1.000 1.000 0.000
#> GSM447418     2  0.0000      0.940 0.000 1.000
#> GSM447422     2  0.0000      0.940 0.000 1.000
#> GSM447424     2  0.0000      0.940 0.000 1.000
#> GSM447427     2  0.0000      0.940 0.000 1.000
#> GSM447428     2  0.5842      0.887 0.140 0.860
#> GSM447429     1  0.0000      1.000 1.000 0.000
#> GSM447431     2  0.0000      0.940 0.000 1.000
#> GSM447432     2  0.5178      0.906 0.116 0.884
#> GSM447434     1  0.0000      1.000 1.000 0.000
#> GSM447442     2  0.0000      0.940 0.000 1.000
#> GSM447451     2  0.5408      0.901 0.124 0.876
#> GSM447462     1  0.0000      1.000 1.000 0.000
#> GSM447463     1  0.0000      1.000 1.000 0.000
#> GSM447467     2  0.5629      0.894 0.132 0.868
#> GSM447469     2  0.0000      0.940 0.000 1.000
#> GSM447473     1  0.0000      1.000 1.000 0.000
#> GSM447404     1  0.0000      1.000 1.000 0.000
#> GSM447406     2  0.0000      0.940 0.000 1.000
#> GSM447407     2  0.0000      0.940 0.000 1.000
#> GSM447409     1  0.0000      1.000 1.000 0.000
#> GSM447412     2  0.5178      0.906 0.116 0.884
#> GSM447426     2  0.0000      0.940 0.000 1.000
#> GSM447433     1  0.0000      1.000 1.000 0.000
#> GSM447439     2  0.0000      0.940 0.000 1.000
#> GSM447441     2  0.0000      0.940 0.000 1.000
#> GSM447443     1  0.0000      1.000 1.000 0.000
#> GSM447445     1  0.0000      1.000 1.000 0.000
#> GSM447446     1  0.0000      1.000 1.000 0.000
#> GSM447453     1  0.0000      1.000 1.000 0.000
#> GSM447455     2  0.0000      0.940 0.000 1.000
#> GSM447456     2  0.7528      0.798 0.216 0.784
#> GSM447459     2  0.0000      0.940 0.000 1.000
#> GSM447466     1  0.0000      1.000 1.000 0.000
#> GSM447470     1  0.0000      1.000 1.000 0.000
#> GSM447474     1  0.0000      1.000 1.000 0.000
#> GSM447475     2  0.5408      0.901 0.124 0.876
#> GSM447398     2  0.5178      0.906 0.116 0.884
#> GSM447399     2  0.0000      0.940 0.000 1.000
#> GSM447408     2  0.0000      0.940 0.000 1.000
#> GSM447410     2  0.5294      0.904 0.120 0.880
#> GSM447414     2  0.0000      0.940 0.000 1.000
#> GSM447417     2  0.0000      0.940 0.000 1.000
#> GSM447419     1  0.0376      0.996 0.996 0.004
#> GSM447420     2  0.9775      0.425 0.412 0.588
#> GSM447421     1  0.0000      1.000 1.000 0.000
#> GSM447423     2  0.5178      0.906 0.116 0.884
#> GSM447436     1  0.0000      1.000 1.000 0.000
#> GSM447437     1  0.0000      1.000 1.000 0.000
#> GSM447438     2  0.5408      0.901 0.124 0.876
#> GSM447447     1  0.0000      1.000 1.000 0.000
#> GSM447454     2  0.5178      0.906 0.116 0.884
#> GSM447457     2  0.5178      0.906 0.116 0.884
#> GSM447460     2  0.0000      0.940 0.000 1.000
#> GSM447465     2  0.0000      0.940 0.000 1.000
#> GSM447471     1  0.0000      1.000 1.000 0.000
#> GSM447476     2  0.5519      0.898 0.128 0.872

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.6291     0.2521 0.000 0.468 0.532
#> GSM447411     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447413     3  0.0592     0.7757 0.000 0.012 0.988
#> GSM447415     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447416     3  0.0000     0.7847 0.000 0.000 1.000
#> GSM447425     2  0.0000     0.3867 0.000 1.000 0.000
#> GSM447430     2  0.6274     0.7960 0.000 0.544 0.456
#> GSM447435     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447440     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447444     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447448     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447449     3  0.0592     0.7820 0.000 0.012 0.988
#> GSM447450     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447452     2  0.0000     0.3867 0.000 1.000 0.000
#> GSM447458     3  0.6483    -0.6305 0.004 0.452 0.544
#> GSM447461     3  0.2945     0.7158 0.004 0.088 0.908
#> GSM447464     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447468     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447472     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447400     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447402     2  0.6291     0.7937 0.000 0.532 0.468
#> GSM447403     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447405     1  0.0237     0.9729 0.996 0.004 0.000
#> GSM447418     3  0.0000     0.7847 0.000 0.000 1.000
#> GSM447422     3  0.0000     0.7847 0.000 0.000 1.000
#> GSM447424     3  0.0000     0.7847 0.000 0.000 1.000
#> GSM447427     3  0.0000     0.7847 0.000 0.000 1.000
#> GSM447428     3  0.6274     0.0329 0.456 0.000 0.544
#> GSM447429     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447431     3  0.0829     0.7815 0.004 0.012 0.984
#> GSM447432     3  0.2772     0.7268 0.004 0.080 0.916
#> GSM447434     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447442     3  0.3573     0.6579 0.004 0.120 0.876
#> GSM447451     3  0.2590     0.7361 0.004 0.072 0.924
#> GSM447462     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447463     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447467     1  0.5835     0.3722 0.660 0.000 0.340
#> GSM447469     2  0.6295     0.7894 0.000 0.528 0.472
#> GSM447473     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447404     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447406     2  0.6274     0.7960 0.000 0.544 0.456
#> GSM447407     2  0.6244     0.7830 0.000 0.560 0.440
#> GSM447409     1  0.0237     0.9729 0.996 0.004 0.000
#> GSM447412     3  0.0000     0.7847 0.000 0.000 1.000
#> GSM447426     3  0.6291     0.2521 0.000 0.468 0.532
#> GSM447433     1  0.0237     0.9729 0.996 0.004 0.000
#> GSM447439     2  0.6274     0.7960 0.000 0.544 0.456
#> GSM447441     3  0.2096     0.7554 0.004 0.052 0.944
#> GSM447443     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447445     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447446     1  0.0237     0.9729 0.996 0.004 0.000
#> GSM447453     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447455     3  0.3272     0.6891 0.004 0.104 0.892
#> GSM447456     2  0.9423     0.3828 0.304 0.492 0.204
#> GSM447459     2  0.6274     0.7960 0.000 0.544 0.456
#> GSM447466     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447470     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447474     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447475     3  0.2860     0.7216 0.004 0.084 0.912
#> GSM447398     2  0.6505     0.7888 0.004 0.528 0.468
#> GSM447399     3  0.6168    -0.5070 0.000 0.412 0.588
#> GSM447408     2  0.6291     0.7937 0.000 0.532 0.468
#> GSM447410     2  0.6291     0.7937 0.000 0.532 0.468
#> GSM447414     3  0.0000     0.7847 0.000 0.000 1.000
#> GSM447417     2  0.6291     0.7937 0.000 0.532 0.468
#> GSM447419     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447420     1  0.6026     0.3981 0.624 0.000 0.376
#> GSM447421     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447423     3  0.0000     0.7847 0.000 0.000 1.000
#> GSM447436     1  0.0237     0.9729 0.996 0.004 0.000
#> GSM447437     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447438     2  0.6291     0.7937 0.000 0.532 0.468
#> GSM447447     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447454     3  0.0829     0.7814 0.004 0.012 0.984
#> GSM447457     3  0.0237     0.7831 0.004 0.000 0.996
#> GSM447460     3  0.1964     0.7531 0.000 0.056 0.944
#> GSM447465     3  0.0000     0.7847 0.000 0.000 1.000
#> GSM447471     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM447476     2  0.7922     0.7174 0.060 0.532 0.408

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.3557     0.3742 0.000 0.036 0.856 0.108
#> GSM447411     1  0.1247     0.9730 0.968 0.004 0.016 0.012
#> GSM447413     3  0.6571     0.7420 0.000 0.264 0.612 0.124
#> GSM447415     1  0.0779     0.9740 0.980 0.000 0.016 0.004
#> GSM447416     3  0.6232     0.7585 0.000 0.332 0.596 0.072
#> GSM447425     4  0.4538     0.6054 0.000 0.024 0.216 0.760
#> GSM447430     4  0.4281     0.7604 0.000 0.180 0.028 0.792
#> GSM447435     1  0.0967     0.9743 0.976 0.004 0.016 0.004
#> GSM447440     1  0.0469     0.9746 0.988 0.012 0.000 0.000
#> GSM447444     1  0.0712     0.9738 0.984 0.004 0.004 0.008
#> GSM447448     1  0.0376     0.9750 0.992 0.004 0.000 0.004
#> GSM447449     2  0.3732     0.7078 0.000 0.852 0.056 0.092
#> GSM447450     1  0.0712     0.9765 0.984 0.004 0.004 0.008
#> GSM447452     4  0.4807     0.5999 0.000 0.024 0.248 0.728
#> GSM447458     2  0.0921     0.7972 0.000 0.972 0.000 0.028
#> GSM447461     2  0.0188     0.7997 0.000 0.996 0.000 0.004
#> GSM447464     1  0.0524     0.9753 0.988 0.008 0.000 0.004
#> GSM447468     1  0.0376     0.9752 0.992 0.000 0.004 0.004
#> GSM447472     1  0.0712     0.9738 0.984 0.004 0.004 0.008
#> GSM447400     1  0.0992     0.9713 0.976 0.012 0.004 0.008
#> GSM447402     4  0.4955     0.4246 0.000 0.444 0.000 0.556
#> GSM447403     1  0.1042     0.9723 0.972 0.000 0.020 0.008
#> GSM447405     1  0.0672     0.9739 0.984 0.000 0.008 0.008
#> GSM447418     3  0.6430     0.7599 0.000 0.312 0.596 0.092
#> GSM447422     3  0.6187     0.7562 0.000 0.336 0.596 0.068
#> GSM447424     3  0.6214     0.7565 0.000 0.272 0.636 0.092
#> GSM447427     3  0.5742     0.7338 0.000 0.368 0.596 0.036
#> GSM447428     3  0.6502     0.2322 0.404 0.064 0.528 0.004
#> GSM447429     1  0.0336     0.9755 0.992 0.000 0.008 0.000
#> GSM447431     2  0.2928     0.7594 0.000 0.896 0.052 0.052
#> GSM447432     2  0.0188     0.7997 0.000 0.996 0.000 0.004
#> GSM447434     1  0.0859     0.9728 0.980 0.008 0.004 0.008
#> GSM447442     2  0.0921     0.7979 0.000 0.972 0.000 0.028
#> GSM447451     2  0.0188     0.7995 0.000 0.996 0.004 0.000
#> GSM447462     1  0.1796     0.9537 0.948 0.032 0.004 0.016
#> GSM447463     1  0.1124     0.9740 0.972 0.012 0.012 0.004
#> GSM447467     2  0.4020     0.5973 0.156 0.820 0.008 0.016
#> GSM447469     2  0.4941     0.0224 0.000 0.564 0.000 0.436
#> GSM447473     1  0.1151     0.9716 0.968 0.000 0.024 0.008
#> GSM447404     1  0.1151     0.9716 0.968 0.000 0.024 0.008
#> GSM447406     4  0.3219     0.7639 0.000 0.164 0.000 0.836
#> GSM447407     4  0.2466     0.7476 0.000 0.096 0.004 0.900
#> GSM447409     1  0.1284     0.9698 0.964 0.000 0.024 0.012
#> GSM447412     3  0.5376     0.7020 0.000 0.396 0.588 0.016
#> GSM447426     3  0.3557     0.3742 0.000 0.036 0.856 0.108
#> GSM447433     1  0.0927     0.9722 0.976 0.000 0.008 0.016
#> GSM447439     4  0.4446     0.7514 0.000 0.196 0.028 0.776
#> GSM447441     2  0.1022     0.7959 0.000 0.968 0.032 0.000
#> GSM447443     1  0.0672     0.9749 0.984 0.000 0.008 0.008
#> GSM447445     1  0.0967     0.9743 0.976 0.004 0.016 0.004
#> GSM447446     1  0.0804     0.9732 0.980 0.000 0.012 0.008
#> GSM447453     1  0.0895     0.9734 0.976 0.000 0.020 0.004
#> GSM447455     2  0.0336     0.8002 0.000 0.992 0.000 0.008
#> GSM447456     2  0.5677     0.4134 0.216 0.708 0.004 0.072
#> GSM447459     4  0.3812     0.7625 0.000 0.140 0.028 0.832
#> GSM447466     1  0.1262     0.9729 0.968 0.008 0.016 0.008
#> GSM447470     1  0.1631     0.9615 0.956 0.020 0.008 0.016
#> GSM447474     1  0.1471     0.9627 0.960 0.024 0.004 0.012
#> GSM447475     2  0.0592     0.7979 0.016 0.984 0.000 0.000
#> GSM447398     2  0.1792     0.7709 0.000 0.932 0.000 0.068
#> GSM447399     2  0.2530     0.7558 0.000 0.888 0.000 0.112
#> GSM447408     4  0.4941     0.4414 0.000 0.436 0.000 0.564
#> GSM447410     2  0.4917     0.2524 0.000 0.656 0.008 0.336
#> GSM447414     3  0.6445     0.7604 0.000 0.304 0.600 0.096
#> GSM447417     4  0.4454     0.6203 0.000 0.308 0.000 0.692
#> GSM447419     1  0.0524     0.9745 0.988 0.000 0.008 0.004
#> GSM447420     1  0.4824     0.6618 0.744 0.024 0.228 0.004
#> GSM447421     1  0.0657     0.9737 0.984 0.000 0.012 0.004
#> GSM447423     3  0.5600     0.7269 0.000 0.376 0.596 0.028
#> GSM447436     1  0.0672     0.9739 0.984 0.000 0.008 0.008
#> GSM447437     1  0.1114     0.9738 0.972 0.008 0.016 0.004
#> GSM447438     2  0.4220     0.5071 0.000 0.748 0.004 0.248
#> GSM447447     1  0.0712     0.9738 0.984 0.004 0.004 0.008
#> GSM447454     2  0.1118     0.7793 0.000 0.964 0.036 0.000
#> GSM447457     2  0.1637     0.7550 0.000 0.940 0.060 0.000
#> GSM447460     2  0.3758     0.7195 0.000 0.848 0.048 0.104
#> GSM447465     3  0.6519     0.7390 0.000 0.320 0.584 0.096
#> GSM447471     1  0.0895     0.9734 0.976 0.000 0.020 0.004
#> GSM447476     2  0.6032    -0.1100 0.028 0.536 0.008 0.428

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     3  0.6031     0.4170 0.000 0.000 0.576 0.180 0.244
#> GSM447411     1  0.0609     0.7061 0.980 0.000 0.000 0.000 0.020
#> GSM447413     3  0.2520     0.8056 0.000 0.056 0.896 0.048 0.000
#> GSM447415     1  0.2929     0.4900 0.820 0.000 0.000 0.000 0.180
#> GSM447416     3  0.2605     0.8362 0.000 0.148 0.852 0.000 0.000
#> GSM447425     4  0.3234     0.6825 0.000 0.000 0.084 0.852 0.064
#> GSM447430     4  0.3043     0.8024 0.000 0.056 0.080 0.864 0.000
#> GSM447435     1  0.0510     0.7177 0.984 0.000 0.000 0.000 0.016
#> GSM447440     1  0.1410     0.7147 0.940 0.000 0.000 0.000 0.060
#> GSM447444     1  0.3774     0.3346 0.704 0.000 0.000 0.000 0.296
#> GSM447448     1  0.1478     0.7108 0.936 0.000 0.000 0.000 0.064
#> GSM447449     2  0.4675     0.4603 0.000 0.600 0.380 0.020 0.000
#> GSM447450     1  0.1270     0.7155 0.948 0.000 0.000 0.000 0.052
#> GSM447452     4  0.3234     0.6825 0.000 0.000 0.084 0.852 0.064
#> GSM447458     2  0.2260     0.7230 0.000 0.908 0.028 0.064 0.000
#> GSM447461     2  0.0162     0.7317 0.000 0.996 0.004 0.000 0.000
#> GSM447464     1  0.2648     0.6540 0.848 0.000 0.000 0.000 0.152
#> GSM447468     1  0.0703     0.7111 0.976 0.000 0.000 0.000 0.024
#> GSM447472     1  0.2813     0.6337 0.832 0.000 0.000 0.000 0.168
#> GSM447400     1  0.4235     0.1063 0.576 0.000 0.000 0.000 0.424
#> GSM447402     4  0.5181     0.5328 0.000 0.360 0.052 0.588 0.000
#> GSM447403     1  0.2561     0.5764 0.856 0.000 0.000 0.000 0.144
#> GSM447405     1  0.1282     0.7087 0.952 0.000 0.000 0.004 0.044
#> GSM447418     3  0.2074     0.8383 0.000 0.104 0.896 0.000 0.000
#> GSM447422     3  0.2471     0.8390 0.000 0.136 0.864 0.000 0.000
#> GSM447424     3  0.2074     0.8383 0.000 0.104 0.896 0.000 0.000
#> GSM447427     3  0.2929     0.8184 0.000 0.180 0.820 0.000 0.000
#> GSM447428     5  0.7443     0.5396 0.320 0.000 0.276 0.032 0.372
#> GSM447429     5  0.4171     0.6323 0.396 0.000 0.000 0.000 0.604
#> GSM447431     2  0.4854     0.5746 0.000 0.648 0.308 0.044 0.000
#> GSM447432     2  0.1043     0.7390 0.000 0.960 0.040 0.000 0.000
#> GSM447434     1  0.4015     0.3408 0.652 0.000 0.000 0.000 0.348
#> GSM447442     2  0.1671     0.7337 0.000 0.924 0.076 0.000 0.000
#> GSM447451     2  0.2599     0.7342 0.000 0.904 0.028 0.044 0.024
#> GSM447462     1  0.4403     0.0560 0.560 0.004 0.000 0.000 0.436
#> GSM447463     1  0.2648     0.6529 0.848 0.000 0.000 0.000 0.152
#> GSM447467     2  0.5009     0.4385 0.060 0.652 0.000 0.000 0.288
#> GSM447469     4  0.6317     0.3283 0.000 0.332 0.172 0.496 0.000
#> GSM447473     1  0.3143     0.4690 0.796 0.000 0.000 0.000 0.204
#> GSM447404     1  0.3143     0.4690 0.796 0.000 0.000 0.000 0.204
#> GSM447406     4  0.3043     0.8024 0.000 0.056 0.080 0.864 0.000
#> GSM447407     4  0.2974     0.8009 0.000 0.052 0.080 0.868 0.000
#> GSM447409     1  0.0794     0.7059 0.972 0.000 0.000 0.000 0.028
#> GSM447412     3  0.3039     0.8081 0.000 0.192 0.808 0.000 0.000
#> GSM447426     3  0.6031     0.4170 0.000 0.000 0.576 0.180 0.244
#> GSM447433     1  0.1774     0.7005 0.932 0.000 0.000 0.016 0.052
#> GSM447439     4  0.3176     0.8008 0.000 0.064 0.080 0.856 0.000
#> GSM447441     2  0.4168     0.6668 0.000 0.756 0.200 0.044 0.000
#> GSM447443     1  0.3730     0.4184 0.712 0.000 0.000 0.000 0.288
#> GSM447445     1  0.2329     0.6847 0.876 0.000 0.000 0.000 0.124
#> GSM447446     1  0.0880     0.7149 0.968 0.000 0.000 0.000 0.032
#> GSM447453     1  0.0000     0.7134 1.000 0.000 0.000 0.000 0.000
#> GSM447455     2  0.1197     0.7398 0.000 0.952 0.048 0.000 0.000
#> GSM447456     2  0.5662     0.5280 0.048 0.692 0.000 0.080 0.180
#> GSM447459     4  0.3043     0.8024 0.000 0.056 0.080 0.864 0.000
#> GSM447466     1  0.2813     0.6558 0.832 0.000 0.000 0.000 0.168
#> GSM447470     1  0.4617     0.0299 0.552 0.012 0.000 0.000 0.436
#> GSM447474     1  0.4510     0.0608 0.560 0.008 0.000 0.000 0.432
#> GSM447475     2  0.2464     0.7229 0.000 0.904 0.004 0.044 0.048
#> GSM447398     2  0.1732     0.7104 0.000 0.920 0.000 0.080 0.000
#> GSM447399     2  0.3682     0.7012 0.000 0.820 0.108 0.072 0.000
#> GSM447408     4  0.4219     0.4440 0.000 0.416 0.000 0.584 0.000
#> GSM447410     2  0.4060     0.2290 0.000 0.640 0.000 0.360 0.000
#> GSM447414     3  0.2074     0.8383 0.000 0.104 0.896 0.000 0.000
#> GSM447417     4  0.4355     0.7405 0.000 0.164 0.076 0.760 0.000
#> GSM447419     5  0.4278     0.5314 0.452 0.000 0.000 0.000 0.548
#> GSM447420     5  0.7065     0.6144 0.272 0.000 0.172 0.044 0.512
#> GSM447421     5  0.4088     0.6392 0.368 0.000 0.000 0.000 0.632
#> GSM447423     3  0.3039     0.8081 0.000 0.192 0.808 0.000 0.000
#> GSM447436     1  0.0290     0.7153 0.992 0.000 0.000 0.000 0.008
#> GSM447437     1  0.2648     0.6529 0.848 0.000 0.000 0.000 0.152
#> GSM447438     2  0.4161     0.4319 0.000 0.704 0.000 0.280 0.016
#> GSM447447     1  0.3774     0.4722 0.704 0.000 0.000 0.000 0.296
#> GSM447454     2  0.3487     0.6523 0.000 0.780 0.212 0.008 0.000
#> GSM447457     2  0.3452     0.6148 0.000 0.756 0.244 0.000 0.000
#> GSM447460     2  0.5113     0.5540 0.000 0.620 0.324 0.056 0.000
#> GSM447465     3  0.2690     0.7999 0.000 0.156 0.844 0.000 0.000
#> GSM447471     1  0.0609     0.7075 0.980 0.000 0.000 0.000 0.020
#> GSM447476     2  0.5629     0.0189 0.024 0.548 0.000 0.392 0.036

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     5  0.0000     0.7873 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447411     1  0.3857    -0.3606 0.532 0.000 0.000 0.000 0.000 0.468
#> GSM447413     3  0.0363     0.8142 0.000 0.000 0.988 0.012 0.000 0.000
#> GSM447415     1  0.1204     0.8140 0.944 0.000 0.000 0.000 0.000 0.056
#> GSM447416     3  0.0260     0.8190 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM447425     5  0.3464     0.7323 0.000 0.000 0.000 0.312 0.688 0.000
#> GSM447430     4  0.0363     0.6969 0.000 0.000 0.012 0.988 0.000 0.000
#> GSM447435     6  0.3854     0.4657 0.464 0.000 0.000 0.000 0.000 0.536
#> GSM447440     6  0.4057     0.5449 0.388 0.000 0.000 0.012 0.000 0.600
#> GSM447444     6  0.3201     0.5974 0.208 0.000 0.000 0.012 0.000 0.780
#> GSM447448     6  0.4066     0.5257 0.392 0.000 0.000 0.012 0.000 0.596
#> GSM447449     3  0.2020     0.7784 0.000 0.096 0.896 0.008 0.000 0.000
#> GSM447450     6  0.4294     0.5029 0.428 0.000 0.000 0.020 0.000 0.552
#> GSM447452     5  0.3446     0.7355 0.000 0.000 0.000 0.308 0.692 0.000
#> GSM447458     2  0.1327     0.8042 0.000 0.936 0.064 0.000 0.000 0.000
#> GSM447461     2  0.0146     0.8079 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM447464     6  0.3482     0.6471 0.316 0.000 0.000 0.000 0.000 0.684
#> GSM447468     1  0.0508     0.8485 0.984 0.000 0.000 0.004 0.000 0.012
#> GSM447472     6  0.3287     0.6656 0.220 0.000 0.000 0.012 0.000 0.768
#> GSM447400     6  0.0935     0.6920 0.032 0.004 0.000 0.000 0.000 0.964
#> GSM447402     4  0.4455     0.6333 0.000 0.240 0.076 0.684 0.000 0.000
#> GSM447403     1  0.0260     0.8467 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM447405     1  0.2094     0.8173 0.900 0.000 0.000 0.020 0.000 0.080
#> GSM447418     3  0.0146     0.8157 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM447422     3  0.0260     0.8187 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM447424     3  0.0000     0.8172 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447427     3  0.0458     0.8179 0.000 0.016 0.984 0.000 0.000 0.000
#> GSM447428     3  0.5978     0.2474 0.184 0.000 0.504 0.012 0.000 0.300
#> GSM447429     6  0.3161     0.6453 0.216 0.000 0.008 0.000 0.000 0.776
#> GSM447431     3  0.3659     0.3648 0.000 0.364 0.636 0.000 0.000 0.000
#> GSM447432     2  0.1204     0.8103 0.000 0.944 0.056 0.000 0.000 0.000
#> GSM447434     6  0.1531     0.7003 0.068 0.000 0.000 0.004 0.000 0.928
#> GSM447442     2  0.2730     0.7088 0.000 0.808 0.192 0.000 0.000 0.000
#> GSM447451     2  0.0000     0.8072 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447462     6  0.0291     0.6840 0.004 0.004 0.000 0.000 0.000 0.992
#> GSM447463     6  0.3725     0.6455 0.316 0.008 0.000 0.000 0.000 0.676
#> GSM447467     6  0.3672     0.2708 0.000 0.368 0.000 0.000 0.000 0.632
#> GSM447469     4  0.3337     0.5437 0.000 0.004 0.260 0.736 0.000 0.000
#> GSM447473     1  0.0000     0.8432 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447404     1  0.0000     0.8432 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447406     4  0.0458     0.6999 0.000 0.000 0.016 0.984 0.000 0.000
#> GSM447407     4  0.0363     0.6969 0.000 0.000 0.012 0.988 0.000 0.000
#> GSM447409     1  0.1049     0.8426 0.960 0.000 0.000 0.008 0.000 0.032
#> GSM447412     3  0.2260     0.7417 0.000 0.140 0.860 0.000 0.000 0.000
#> GSM447426     5  0.0000     0.7873 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447433     1  0.2094     0.8173 0.900 0.000 0.000 0.020 0.000 0.080
#> GSM447439     4  0.0458     0.6999 0.000 0.000 0.016 0.984 0.000 0.000
#> GSM447441     2  0.3309     0.5575 0.000 0.720 0.280 0.000 0.000 0.000
#> GSM447443     1  0.3518     0.5795 0.732 0.000 0.000 0.012 0.000 0.256
#> GSM447445     6  0.3607     0.6199 0.348 0.000 0.000 0.000 0.000 0.652
#> GSM447446     1  0.1867     0.8284 0.916 0.000 0.000 0.020 0.000 0.064
#> GSM447453     1  0.0692     0.8485 0.976 0.000 0.000 0.004 0.000 0.020
#> GSM447455     2  0.1501     0.8041 0.000 0.924 0.076 0.000 0.000 0.000
#> GSM447456     2  0.2265     0.7399 0.024 0.896 0.000 0.004 0.000 0.076
#> GSM447459     4  0.0458     0.6999 0.000 0.000 0.016 0.984 0.000 0.000
#> GSM447466     6  0.3515     0.6434 0.324 0.000 0.000 0.000 0.000 0.676
#> GSM447470     6  0.0291     0.6840 0.004 0.004 0.000 0.000 0.000 0.992
#> GSM447474     6  0.0291     0.6840 0.004 0.004 0.000 0.000 0.000 0.992
#> GSM447475     2  0.0000     0.8072 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447398     2  0.0405     0.8044 0.000 0.988 0.004 0.008 0.000 0.000
#> GSM447399     3  0.5922    -0.0447 0.000 0.352 0.432 0.216 0.000 0.000
#> GSM447408     4  0.4037     0.5120 0.000 0.380 0.012 0.608 0.000 0.000
#> GSM447410     2  0.3966    -0.2523 0.000 0.552 0.004 0.444 0.000 0.000
#> GSM447414     3  0.0000     0.8172 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447417     4  0.2433     0.6972 0.000 0.072 0.044 0.884 0.000 0.000
#> GSM447419     1  0.4389     0.2335 0.536 0.000 0.008 0.012 0.000 0.444
#> GSM447420     6  0.4492     0.2542 0.036 0.004 0.340 0.000 0.000 0.620
#> GSM447421     6  0.2431     0.6650 0.132 0.000 0.008 0.000 0.000 0.860
#> GSM447423     3  0.2092     0.7542 0.000 0.124 0.876 0.000 0.000 0.000
#> GSM447436     1  0.0891     0.8477 0.968 0.000 0.000 0.008 0.000 0.024
#> GSM447437     6  0.3482     0.6471 0.316 0.000 0.000 0.000 0.000 0.684
#> GSM447438     4  0.3999     0.2968 0.000 0.496 0.004 0.500 0.000 0.000
#> GSM447447     6  0.2278     0.7046 0.128 0.004 0.000 0.000 0.000 0.868
#> GSM447454     3  0.3756     0.3648 0.000 0.400 0.600 0.000 0.000 0.000
#> GSM447457     2  0.3266     0.5674 0.000 0.728 0.272 0.000 0.000 0.000
#> GSM447460     3  0.1267     0.8019 0.000 0.060 0.940 0.000 0.000 0.000
#> GSM447465     3  0.0260     0.8180 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM447471     1  0.0777     0.8480 0.972 0.000 0.000 0.004 0.000 0.024
#> GSM447476     4  0.4899     0.3496 0.000 0.452 0.000 0.488 0.000 0.060

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n gender(p) agent(p) k
#> CV:mclust 78     0.819   0.2536 2
#> CV:mclust 69     0.139   0.1956 3
#> CV:mclust 70     0.804   0.0414 4
#> CV:mclust 59     0.828   0.0105 5
#> CV:mclust 67     0.551   0.3280 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.947           0.954       0.978         0.5032 0.498   0.498
#> 3 3 0.725           0.793       0.911         0.3017 0.764   0.563
#> 4 4 0.714           0.745       0.864         0.0920 0.835   0.574
#> 5 5 0.693           0.682       0.830         0.0623 0.858   0.561
#> 6 6 0.609           0.528       0.716         0.0511 0.956   0.825

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2  0.0000      0.962 0.000 1.000
#> GSM447411     1  0.0000      0.995 1.000 0.000
#> GSM447413     2  0.0000      0.962 0.000 1.000
#> GSM447415     1  0.0000      0.995 1.000 0.000
#> GSM447416     2  0.0000      0.962 0.000 1.000
#> GSM447425     2  0.0000      0.962 0.000 1.000
#> GSM447430     2  0.0000      0.962 0.000 1.000
#> GSM447435     1  0.0000      0.995 1.000 0.000
#> GSM447440     1  0.0000      0.995 1.000 0.000
#> GSM447444     1  0.0672      0.989 0.992 0.008
#> GSM447448     1  0.0000      0.995 1.000 0.000
#> GSM447449     2  0.0000      0.962 0.000 1.000
#> GSM447450     1  0.0000      0.995 1.000 0.000
#> GSM447452     2  0.0000      0.962 0.000 1.000
#> GSM447458     2  0.0000      0.962 0.000 1.000
#> GSM447461     2  0.0000      0.962 0.000 1.000
#> GSM447464     1  0.0000      0.995 1.000 0.000
#> GSM447468     1  0.0000      0.995 1.000 0.000
#> GSM447472     1  0.0000      0.995 1.000 0.000
#> GSM447400     1  0.0000      0.995 1.000 0.000
#> GSM447402     2  0.0376      0.959 0.004 0.996
#> GSM447403     1  0.0000      0.995 1.000 0.000
#> GSM447405     1  0.0000      0.995 1.000 0.000
#> GSM447418     2  0.0000      0.962 0.000 1.000
#> GSM447422     2  0.0000      0.962 0.000 1.000
#> GSM447424     2  0.0000      0.962 0.000 1.000
#> GSM447427     2  0.0000      0.962 0.000 1.000
#> GSM447428     2  0.7219      0.768 0.200 0.800
#> GSM447429     1  0.0000      0.995 1.000 0.000
#> GSM447431     2  0.0000      0.962 0.000 1.000
#> GSM447432     2  0.0000      0.962 0.000 1.000
#> GSM447434     1  0.0000      0.995 1.000 0.000
#> GSM447442     2  0.0000      0.962 0.000 1.000
#> GSM447451     2  0.2236      0.934 0.036 0.964
#> GSM447462     1  0.0000      0.995 1.000 0.000
#> GSM447463     1  0.0000      0.995 1.000 0.000
#> GSM447467     2  0.8813      0.613 0.300 0.700
#> GSM447469     2  0.0000      0.962 0.000 1.000
#> GSM447473     1  0.0000      0.995 1.000 0.000
#> GSM447404     1  0.0000      0.995 1.000 0.000
#> GSM447406     2  0.0000      0.962 0.000 1.000
#> GSM447407     2  0.0000      0.962 0.000 1.000
#> GSM447409     1  0.0000      0.995 1.000 0.000
#> GSM447412     2  0.0000      0.962 0.000 1.000
#> GSM447426     2  0.0000      0.962 0.000 1.000
#> GSM447433     1  0.0000      0.995 1.000 0.000
#> GSM447439     2  0.0000      0.962 0.000 1.000
#> GSM447441     2  0.0000      0.962 0.000 1.000
#> GSM447443     1  0.0000      0.995 1.000 0.000
#> GSM447445     1  0.0000      0.995 1.000 0.000
#> GSM447446     1  0.0000      0.995 1.000 0.000
#> GSM447453     1  0.0000      0.995 1.000 0.000
#> GSM447455     2  0.0000      0.962 0.000 1.000
#> GSM447456     1  0.1414      0.979 0.980 0.020
#> GSM447459     2  0.0000      0.962 0.000 1.000
#> GSM447466     1  0.0000      0.995 1.000 0.000
#> GSM447470     1  0.1843      0.972 0.972 0.028
#> GSM447474     1  0.0376      0.992 0.996 0.004
#> GSM447475     2  0.7883      0.719 0.236 0.764
#> GSM447398     2  0.7602      0.742 0.220 0.780
#> GSM447399     2  0.0000      0.962 0.000 1.000
#> GSM447408     2  0.0000      0.962 0.000 1.000
#> GSM447410     2  0.0376      0.959 0.004 0.996
#> GSM447414     2  0.0000      0.962 0.000 1.000
#> GSM447417     2  0.0000      0.962 0.000 1.000
#> GSM447419     1  0.0938      0.986 0.988 0.012
#> GSM447420     2  0.9552      0.453 0.376 0.624
#> GSM447421     1  0.0000      0.995 1.000 0.000
#> GSM447423     2  0.0000      0.962 0.000 1.000
#> GSM447436     1  0.2778      0.951 0.952 0.048
#> GSM447437     1  0.0000      0.995 1.000 0.000
#> GSM447438     2  0.6973      0.783 0.188 0.812
#> GSM447447     1  0.0000      0.995 1.000 0.000
#> GSM447454     2  0.0000      0.962 0.000 1.000
#> GSM447457     2  0.0000      0.962 0.000 1.000
#> GSM447460     2  0.0000      0.962 0.000 1.000
#> GSM447465     2  0.0000      0.962 0.000 1.000
#> GSM447471     1  0.0000      0.995 1.000 0.000
#> GSM447476     1  0.2423      0.960 0.960 0.040

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.0000    0.90356 0.000 0.000 1.000
#> GSM447411     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447413     3  0.0000    0.90356 0.000 0.000 1.000
#> GSM447415     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447416     3  0.3038    0.83647 0.000 0.104 0.896
#> GSM447425     2  0.4062    0.78959 0.000 0.836 0.164
#> GSM447430     2  0.0000    0.85627 0.000 1.000 0.000
#> GSM447435     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447440     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447444     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447448     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447449     2  0.6045    0.52418 0.000 0.620 0.380
#> GSM447450     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447452     2  0.1964    0.84302 0.000 0.944 0.056
#> GSM447458     2  0.4504    0.76513 0.000 0.804 0.196
#> GSM447461     2  0.0747    0.85220 0.016 0.984 0.000
#> GSM447464     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447468     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447472     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447400     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447402     2  0.5598    0.77982 0.052 0.800 0.148
#> GSM447403     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447405     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447418     3  0.0000    0.90356 0.000 0.000 1.000
#> GSM447422     3  0.0000    0.90356 0.000 0.000 1.000
#> GSM447424     3  0.0000    0.90356 0.000 0.000 1.000
#> GSM447427     3  0.0000    0.90356 0.000 0.000 1.000
#> GSM447428     3  0.0000    0.90356 0.000 0.000 1.000
#> GSM447429     1  0.5327    0.61207 0.728 0.000 0.272
#> GSM447431     3  0.0237    0.90294 0.000 0.004 0.996
#> GSM447432     2  0.6225    0.40064 0.000 0.568 0.432
#> GSM447434     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447442     3  0.6308   -0.25626 0.000 0.492 0.508
#> GSM447451     2  0.6380    0.72050 0.164 0.760 0.076
#> GSM447462     1  0.1860    0.87868 0.948 0.000 0.052
#> GSM447463     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447467     1  0.6154    0.32344 0.592 0.000 0.408
#> GSM447469     2  0.4605    0.76040 0.000 0.796 0.204
#> GSM447473     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447404     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447406     2  0.0000    0.85627 0.000 1.000 0.000
#> GSM447407     2  0.0000    0.85627 0.000 1.000 0.000
#> GSM447409     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447412     3  0.0424    0.90214 0.000 0.008 0.992
#> GSM447426     3  0.0000    0.90356 0.000 0.000 1.000
#> GSM447433     1  0.1411    0.89328 0.964 0.036 0.000
#> GSM447439     2  0.0000    0.85627 0.000 1.000 0.000
#> GSM447441     2  0.4452    0.72203 0.000 0.808 0.192
#> GSM447443     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447445     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447446     1  0.6280    0.11007 0.540 0.460 0.000
#> GSM447453     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447455     2  0.1289    0.85132 0.000 0.968 0.032
#> GSM447456     2  0.6180    0.27935 0.416 0.584 0.000
#> GSM447459     2  0.0000    0.85627 0.000 1.000 0.000
#> GSM447466     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447470     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447474     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447475     1  0.9088   -0.00356 0.464 0.396 0.140
#> GSM447398     2  0.0237    0.85559 0.004 0.996 0.000
#> GSM447399     2  0.3816    0.77078 0.000 0.852 0.148
#> GSM447408     2  0.0000    0.85627 0.000 1.000 0.000
#> GSM447410     2  0.0000    0.85627 0.000 1.000 0.000
#> GSM447414     3  0.0424    0.90136 0.000 0.008 0.992
#> GSM447417     2  0.0000    0.85627 0.000 1.000 0.000
#> GSM447419     3  0.5327    0.58350 0.272 0.000 0.728
#> GSM447420     3  0.4702    0.68444 0.212 0.000 0.788
#> GSM447421     1  0.6111    0.35582 0.604 0.000 0.396
#> GSM447423     3  0.0424    0.90214 0.000 0.008 0.992
#> GSM447436     1  0.5905    0.42341 0.648 0.352 0.000
#> GSM447437     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447438     2  0.0000    0.85627 0.000 1.000 0.000
#> GSM447447     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447454     3  0.4351    0.76512 0.004 0.168 0.828
#> GSM447457     3  0.2711    0.84887 0.000 0.088 0.912
#> GSM447460     2  0.4605    0.70967 0.000 0.796 0.204
#> GSM447465     3  0.0747    0.89897 0.000 0.016 0.984
#> GSM447471     1  0.0000    0.92122 1.000 0.000 0.000
#> GSM447476     2  0.4931    0.67446 0.232 0.768 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.2281     0.7048 0.000 0.000 0.904 0.096
#> GSM447411     1  0.0000     0.9650 1.000 0.000 0.000 0.000
#> GSM447413     3  0.0592     0.7419 0.000 0.000 0.984 0.016
#> GSM447415     1  0.0000     0.9650 1.000 0.000 0.000 0.000
#> GSM447416     3  0.4356     0.7116 0.000 0.048 0.804 0.148
#> GSM447425     4  0.3444     0.6474 0.000 0.000 0.184 0.816
#> GSM447430     4  0.1610     0.7031 0.000 0.016 0.032 0.952
#> GSM447435     1  0.0000     0.9650 1.000 0.000 0.000 0.000
#> GSM447440     1  0.0000     0.9650 1.000 0.000 0.000 0.000
#> GSM447444     1  0.0921     0.9447 0.972 0.028 0.000 0.000
#> GSM447448     1  0.0000     0.9650 1.000 0.000 0.000 0.000
#> GSM447449     2  0.4824     0.6637 0.000 0.780 0.076 0.144
#> GSM447450     1  0.0000     0.9650 1.000 0.000 0.000 0.000
#> GSM447452     4  0.3444     0.6474 0.000 0.000 0.184 0.816
#> GSM447458     2  0.0804     0.7556 0.000 0.980 0.008 0.012
#> GSM447461     2  0.3157     0.7436 0.004 0.852 0.000 0.144
#> GSM447464     1  0.0000     0.9650 1.000 0.000 0.000 0.000
#> GSM447468     1  0.0000     0.9650 1.000 0.000 0.000 0.000
#> GSM447472     1  0.0000     0.9650 1.000 0.000 0.000 0.000
#> GSM447400     1  0.0469     0.9575 0.988 0.012 0.000 0.000
#> GSM447402     4  0.4843     0.6543 0.072 0.108 0.016 0.804
#> GSM447403     1  0.0000     0.9650 1.000 0.000 0.000 0.000
#> GSM447405     1  0.4981    -0.0832 0.536 0.000 0.000 0.464
#> GSM447418     3  0.3764     0.7774 0.000 0.216 0.784 0.000
#> GSM447422     3  0.4888     0.5102 0.000 0.412 0.588 0.000
#> GSM447424     3  0.3444     0.7806 0.000 0.184 0.816 0.000
#> GSM447427     3  0.3801     0.7757 0.000 0.220 0.780 0.000
#> GSM447428     3  0.3521     0.7547 0.084 0.052 0.864 0.000
#> GSM447429     1  0.0817     0.9468 0.976 0.000 0.024 0.000
#> GSM447431     2  0.4406     0.3271 0.000 0.700 0.300 0.000
#> GSM447432     2  0.0779     0.7539 0.000 0.980 0.016 0.004
#> GSM447434     1  0.0000     0.9650 1.000 0.000 0.000 0.000
#> GSM447442     2  0.1452     0.7447 0.000 0.956 0.036 0.008
#> GSM447451     2  0.4231     0.7187 0.096 0.824 0.000 0.080
#> GSM447462     1  0.0817     0.9478 0.976 0.024 0.000 0.000
#> GSM447463     1  0.0469     0.9586 0.988 0.012 0.000 0.000
#> GSM447467     2  0.4059     0.5737 0.200 0.788 0.012 0.000
#> GSM447469     4  0.4098     0.5896 0.000 0.204 0.012 0.784
#> GSM447473     1  0.0000     0.9650 1.000 0.000 0.000 0.000
#> GSM447404     1  0.0000     0.9650 1.000 0.000 0.000 0.000
#> GSM447406     4  0.3801     0.6088 0.000 0.220 0.000 0.780
#> GSM447407     4  0.0188     0.7031 0.000 0.000 0.004 0.996
#> GSM447409     1  0.0000     0.9650 1.000 0.000 0.000 0.000
#> GSM447412     3  0.3764     0.7782 0.000 0.216 0.784 0.000
#> GSM447426     3  0.1792     0.7211 0.000 0.000 0.932 0.068
#> GSM447433     4  0.4996     0.1871 0.484 0.000 0.000 0.516
#> GSM447439     4  0.3172     0.6570 0.000 0.160 0.000 0.840
#> GSM447441     2  0.3172     0.7343 0.000 0.840 0.000 0.160
#> GSM447443     1  0.0000     0.9650 1.000 0.000 0.000 0.000
#> GSM447445     1  0.0188     0.9629 0.996 0.004 0.000 0.000
#> GSM447446     4  0.4040     0.5966 0.248 0.000 0.000 0.752
#> GSM447453     1  0.0000     0.9650 1.000 0.000 0.000 0.000
#> GSM447455     2  0.1211     0.7667 0.000 0.960 0.000 0.040
#> GSM447456     2  0.4925     0.2560 0.428 0.572 0.000 0.000
#> GSM447459     4  0.1022     0.7023 0.000 0.032 0.000 0.968
#> GSM447466     1  0.0000     0.9650 1.000 0.000 0.000 0.000
#> GSM447470     1  0.3266     0.7738 0.832 0.168 0.000 0.000
#> GSM447474     1  0.0469     0.9582 0.988 0.012 0.000 0.000
#> GSM447475     2  0.4123     0.6919 0.136 0.820 0.000 0.044
#> GSM447398     2  0.3444     0.7171 0.000 0.816 0.000 0.184
#> GSM447399     2  0.4040     0.6517 0.000 0.752 0.000 0.248
#> GSM447408     4  0.3873     0.6072 0.000 0.228 0.000 0.772
#> GSM447410     4  0.4356     0.5169 0.000 0.292 0.000 0.708
#> GSM447414     3  0.4661     0.7361 0.000 0.256 0.728 0.016
#> GSM447417     4  0.1792     0.6960 0.000 0.068 0.000 0.932
#> GSM447419     3  0.5085     0.4052 0.376 0.008 0.616 0.000
#> GSM447420     3  0.4158     0.6272 0.224 0.008 0.768 0.000
#> GSM447421     1  0.2081     0.8837 0.916 0.000 0.084 0.000
#> GSM447423     3  0.4103     0.7537 0.000 0.256 0.744 0.000
#> GSM447436     4  0.4981     0.2389 0.464 0.000 0.000 0.536
#> GSM447437     1  0.0000     0.9650 1.000 0.000 0.000 0.000
#> GSM447438     4  0.4134     0.5683 0.000 0.260 0.000 0.740
#> GSM447447     1  0.0921     0.9447 0.972 0.028 0.000 0.000
#> GSM447454     2  0.3687     0.7483 0.000 0.856 0.080 0.064
#> GSM447457     2  0.3266     0.6180 0.000 0.832 0.168 0.000
#> GSM447460     2  0.4188     0.6849 0.000 0.752 0.004 0.244
#> GSM447465     2  0.3853     0.6461 0.000 0.820 0.160 0.020
#> GSM447471     1  0.0000     0.9650 1.000 0.000 0.000 0.000
#> GSM447476     4  0.5398     0.3977 0.404 0.016 0.000 0.580

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     3  0.3534     0.7255 0.000 0.000 0.744 0.000 0.256
#> GSM447411     1  0.0404     0.8960 0.988 0.012 0.000 0.000 0.000
#> GSM447413     3  0.3655     0.7803 0.000 0.036 0.804 0.000 0.160
#> GSM447415     1  0.0162     0.8963 0.996 0.004 0.000 0.000 0.000
#> GSM447416     3  0.2881     0.7743 0.000 0.012 0.860 0.124 0.004
#> GSM447425     5  0.1106     0.6656 0.000 0.024 0.000 0.012 0.964
#> GSM447430     4  0.4235     0.5099 0.000 0.008 0.000 0.656 0.336
#> GSM447435     1  0.0671     0.8960 0.980 0.016 0.000 0.004 0.000
#> GSM447440     1  0.2264     0.8669 0.912 0.060 0.004 0.024 0.000
#> GSM447444     2  0.5663     0.2192 0.412 0.508 0.000 0.000 0.080
#> GSM447448     1  0.0955     0.8947 0.968 0.028 0.000 0.000 0.004
#> GSM447449     2  0.3183     0.6372 0.000 0.828 0.016 0.000 0.156
#> GSM447450     1  0.0671     0.8957 0.980 0.016 0.000 0.004 0.000
#> GSM447452     5  0.1502     0.6534 0.000 0.004 0.000 0.056 0.940
#> GSM447458     2  0.2047     0.6929 0.012 0.928 0.000 0.020 0.040
#> GSM447461     4  0.4270     0.6767 0.004 0.248 0.016 0.728 0.004
#> GSM447464     1  0.1492     0.8874 0.948 0.040 0.008 0.004 0.000
#> GSM447468     1  0.0404     0.8960 0.988 0.012 0.000 0.000 0.000
#> GSM447472     1  0.1952     0.8516 0.912 0.084 0.000 0.004 0.000
#> GSM447400     1  0.1862     0.8809 0.932 0.048 0.016 0.004 0.000
#> GSM447402     5  0.3972     0.5710 0.016 0.212 0.008 0.000 0.764
#> GSM447403     1  0.0613     0.8952 0.984 0.004 0.000 0.004 0.008
#> GSM447405     1  0.4822     0.3559 0.628 0.008 0.000 0.020 0.344
#> GSM447418     2  0.4307     0.0404 0.000 0.504 0.496 0.000 0.000
#> GSM447422     2  0.2970     0.6625 0.000 0.828 0.168 0.000 0.004
#> GSM447424     3  0.1205     0.8097 0.000 0.040 0.956 0.000 0.004
#> GSM447427     3  0.1965     0.7962 0.000 0.096 0.904 0.000 0.000
#> GSM447428     3  0.2541     0.7947 0.068 0.020 0.900 0.000 0.012
#> GSM447429     1  0.1492     0.8842 0.948 0.000 0.040 0.004 0.008
#> GSM447431     4  0.4438     0.6606 0.000 0.224 0.040 0.732 0.004
#> GSM447432     2  0.2086     0.6930 0.000 0.924 0.020 0.048 0.008
#> GSM447434     1  0.1444     0.8853 0.948 0.012 0.000 0.040 0.000
#> GSM447442     2  0.1369     0.6978 0.000 0.956 0.028 0.008 0.008
#> GSM447451     4  0.5481     0.2880 0.048 0.384 0.004 0.560 0.004
#> GSM447462     1  0.2830     0.8463 0.884 0.080 0.020 0.016 0.000
#> GSM447463     1  0.1544     0.8700 0.932 0.068 0.000 0.000 0.000
#> GSM447467     2  0.1721     0.6951 0.020 0.944 0.020 0.000 0.016
#> GSM447469     2  0.5633     0.1578 0.000 0.512 0.056 0.008 0.424
#> GSM447473     1  0.0613     0.8952 0.984 0.004 0.000 0.004 0.008
#> GSM447404     1  0.0740     0.8944 0.980 0.008 0.000 0.004 0.008
#> GSM447406     4  0.1502     0.7656 0.000 0.004 0.000 0.940 0.056
#> GSM447407     5  0.3109     0.5478 0.000 0.000 0.000 0.200 0.800
#> GSM447409     1  0.0981     0.8957 0.972 0.012 0.000 0.008 0.008
#> GSM447412     3  0.1997     0.8121 0.000 0.040 0.924 0.036 0.000
#> GSM447426     3  0.3452     0.7356 0.000 0.000 0.756 0.000 0.244
#> GSM447433     1  0.5265    -0.0992 0.496 0.028 0.004 0.004 0.468
#> GSM447439     4  0.1740     0.7625 0.000 0.012 0.000 0.932 0.056
#> GSM447441     4  0.3544     0.6649 0.000 0.200 0.008 0.788 0.004
#> GSM447443     1  0.1143     0.8954 0.968 0.012 0.008 0.004 0.008
#> GSM447445     1  0.1059     0.8962 0.968 0.020 0.004 0.000 0.008
#> GSM447446     5  0.3944     0.6032 0.212 0.020 0.000 0.004 0.764
#> GSM447453     1  0.0865     0.8948 0.972 0.004 0.000 0.000 0.024
#> GSM447455     2  0.2929     0.6668 0.000 0.840 0.008 0.152 0.000
#> GSM447456     4  0.4925     0.3216 0.324 0.044 0.000 0.632 0.000
#> GSM447459     4  0.3661     0.5717 0.000 0.000 0.000 0.724 0.276
#> GSM447466     1  0.1074     0.8949 0.968 0.016 0.012 0.004 0.000
#> GSM447470     1  0.3934     0.6470 0.748 0.236 0.012 0.004 0.000
#> GSM447474     1  0.1471     0.8893 0.952 0.024 0.020 0.004 0.000
#> GSM447475     2  0.5524     0.5769 0.096 0.696 0.020 0.184 0.004
#> GSM447398     4  0.1981     0.7668 0.016 0.064 0.000 0.920 0.000
#> GSM447399     4  0.2439     0.7496 0.000 0.120 0.000 0.876 0.004
#> GSM447408     4  0.2647     0.7554 0.000 0.024 0.008 0.892 0.076
#> GSM447410     4  0.1597     0.7705 0.000 0.024 0.008 0.948 0.020
#> GSM447414     3  0.3981     0.7567 0.000 0.060 0.800 0.136 0.004
#> GSM447417     2  0.6719     0.3506 0.000 0.476 0.008 0.208 0.308
#> GSM447419     3  0.5448     0.3674 0.340 0.076 0.584 0.000 0.000
#> GSM447420     3  0.3684     0.6761 0.172 0.024 0.800 0.004 0.000
#> GSM447421     1  0.3425     0.8022 0.840 0.044 0.112 0.004 0.000
#> GSM447423     3  0.1197     0.8116 0.000 0.048 0.952 0.000 0.000
#> GSM447436     5  0.5008     0.2073 0.428 0.024 0.000 0.004 0.544
#> GSM447437     1  0.0613     0.8952 0.984 0.004 0.000 0.004 0.008
#> GSM447438     4  0.1934     0.7691 0.000 0.020 0.008 0.932 0.040
#> GSM447447     2  0.5864     0.2570 0.364 0.548 0.004 0.004 0.080
#> GSM447454     2  0.5674     0.4839 0.004 0.624 0.092 0.276 0.004
#> GSM447457     2  0.3838     0.6834 0.000 0.804 0.148 0.044 0.004
#> GSM447460     2  0.4114     0.5732 0.000 0.712 0.000 0.272 0.016
#> GSM447465     2  0.4442     0.6787 0.000 0.784 0.084 0.116 0.016
#> GSM447471     1  0.0613     0.8952 0.984 0.004 0.000 0.004 0.008
#> GSM447476     1  0.7367     0.0673 0.500 0.040 0.008 0.236 0.216

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     6  0.3899     0.2464 0.000 0.000 0.364 0.000 0.008 0.628
#> GSM447411     1  0.0713     0.7300 0.972 0.000 0.000 0.000 0.028 0.000
#> GSM447413     3  0.5368     0.6640 0.000 0.088 0.724 0.076 0.040 0.072
#> GSM447415     1  0.0632     0.7274 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM447416     3  0.3230     0.7310 0.000 0.000 0.844 0.084 0.056 0.016
#> GSM447425     6  0.4565     0.2811 0.000 0.072 0.000 0.004 0.244 0.680
#> GSM447430     4  0.4880     0.3757 0.000 0.016 0.000 0.540 0.032 0.412
#> GSM447435     1  0.1327     0.7280 0.936 0.000 0.000 0.000 0.064 0.000
#> GSM447440     1  0.3802     0.6628 0.788 0.056 0.000 0.012 0.144 0.000
#> GSM447444     2  0.5068    -0.0311 0.456 0.484 0.000 0.000 0.048 0.012
#> GSM447448     1  0.3039     0.6901 0.848 0.088 0.000 0.000 0.060 0.004
#> GSM447449     2  0.2995     0.6208 0.000 0.860 0.008 0.008 0.092 0.032
#> GSM447450     1  0.2790     0.7002 0.840 0.020 0.000 0.000 0.140 0.000
#> GSM447452     6  0.0603     0.4837 0.000 0.004 0.000 0.000 0.016 0.980
#> GSM447458     2  0.1812     0.6370 0.000 0.912 0.000 0.000 0.080 0.008
#> GSM447461     4  0.5973     0.5088 0.020 0.204 0.000 0.568 0.204 0.004
#> GSM447464     1  0.3608     0.6545 0.788 0.064 0.000 0.000 0.148 0.000
#> GSM447468     1  0.0713     0.7304 0.972 0.000 0.000 0.000 0.028 0.000
#> GSM447472     1  0.3042     0.6926 0.836 0.032 0.000 0.004 0.128 0.000
#> GSM447400     1  0.4087     0.6637 0.744 0.064 0.000 0.004 0.188 0.000
#> GSM447402     5  0.6033    -0.1640 0.000 0.248 0.000 0.000 0.388 0.364
#> GSM447403     1  0.2416     0.6776 0.844 0.000 0.000 0.000 0.156 0.000
#> GSM447405     1  0.5842    -0.0862 0.548 0.000 0.000 0.024 0.296 0.132
#> GSM447418     2  0.4456     0.2032 0.000 0.524 0.448 0.000 0.028 0.000
#> GSM447422     2  0.3595     0.5743 0.000 0.772 0.200 0.004 0.020 0.004
#> GSM447424     3  0.1116     0.7649 0.000 0.028 0.960 0.000 0.004 0.008
#> GSM447427     3  0.1588     0.7624 0.000 0.072 0.924 0.004 0.000 0.000
#> GSM447428     3  0.3362     0.7212 0.084 0.016 0.848 0.000 0.020 0.032
#> GSM447429     1  0.3544     0.6566 0.800 0.000 0.080 0.000 0.120 0.000
#> GSM447431     4  0.4948     0.6361 0.000 0.176 0.036 0.716 0.060 0.012
#> GSM447432     2  0.3300     0.6061 0.000 0.832 0.004 0.052 0.108 0.004
#> GSM447434     1  0.3544     0.6645 0.800 0.000 0.000 0.080 0.120 0.000
#> GSM447442     2  0.0993     0.6414 0.000 0.964 0.012 0.000 0.024 0.000
#> GSM447451     4  0.5672     0.5130 0.024 0.216 0.000 0.616 0.140 0.004
#> GSM447462     1  0.4540     0.5943 0.720 0.080 0.004 0.008 0.188 0.000
#> GSM447463     1  0.2728     0.7111 0.860 0.040 0.000 0.000 0.100 0.000
#> GSM447467     2  0.1340     0.6403 0.008 0.948 0.004 0.000 0.040 0.000
#> GSM447469     2  0.5933     0.2674 0.000 0.516 0.020 0.004 0.340 0.120
#> GSM447473     1  0.2697     0.6607 0.812 0.000 0.000 0.000 0.188 0.000
#> GSM447404     1  0.2527     0.6661 0.832 0.000 0.000 0.000 0.168 0.000
#> GSM447406     4  0.1444     0.7158 0.000 0.000 0.000 0.928 0.000 0.072
#> GSM447407     6  0.1908     0.4626 0.000 0.000 0.000 0.096 0.004 0.900
#> GSM447409     1  0.2664     0.6642 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM447412     3  0.2265     0.7687 0.000 0.024 0.900 0.068 0.008 0.000
#> GSM447426     6  0.4010     0.1537 0.000 0.000 0.408 0.000 0.008 0.584
#> GSM447433     5  0.6071     0.3825 0.404 0.008 0.000 0.004 0.420 0.164
#> GSM447439     4  0.3276     0.7046 0.000 0.020 0.000 0.844 0.068 0.068
#> GSM447441     4  0.4012     0.6386 0.000 0.144 0.004 0.772 0.076 0.004
#> GSM447443     1  0.4032     0.5977 0.740 0.000 0.068 0.000 0.192 0.000
#> GSM447445     1  0.2060     0.7306 0.900 0.016 0.000 0.000 0.084 0.000
#> GSM447446     6  0.6474    -0.5196 0.296 0.016 0.000 0.000 0.328 0.360
#> GSM447453     1  0.3915     0.5180 0.736 0.008 0.000 0.000 0.028 0.228
#> GSM447455     2  0.3721     0.6310 0.000 0.816 0.024 0.104 0.052 0.004
#> GSM447456     1  0.6652    -0.0511 0.404 0.052 0.000 0.392 0.148 0.004
#> GSM447459     4  0.4616     0.5195 0.000 0.000 0.000 0.624 0.060 0.316
#> GSM447466     1  0.1866     0.7228 0.908 0.008 0.000 0.000 0.084 0.000
#> GSM447470     1  0.4900     0.5301 0.680 0.176 0.000 0.008 0.136 0.000
#> GSM447474     1  0.3960     0.6306 0.752 0.032 0.004 0.008 0.204 0.000
#> GSM447475     2  0.6705     0.3710 0.060 0.496 0.000 0.192 0.248 0.004
#> GSM447398     4  0.2939     0.7080 0.012 0.032 0.000 0.856 0.100 0.000
#> GSM447399     4  0.3720     0.6937 0.000 0.032 0.036 0.820 0.104 0.008
#> GSM447408     4  0.4139     0.6574 0.000 0.004 0.000 0.700 0.260 0.036
#> GSM447410     4  0.3738     0.6468 0.000 0.000 0.000 0.704 0.280 0.016
#> GSM447414     3  0.3798     0.7313 0.000 0.040 0.800 0.128 0.032 0.000
#> GSM447417     2  0.6722     0.3252 0.000 0.456 0.000 0.132 0.324 0.088
#> GSM447419     3  0.5962     0.2923 0.324 0.028 0.532 0.004 0.112 0.000
#> GSM447420     3  0.5006     0.5820 0.132 0.012 0.700 0.004 0.148 0.004
#> GSM447421     1  0.6111     0.3979 0.576 0.056 0.220 0.000 0.148 0.000
#> GSM447423     3  0.2076     0.7669 0.000 0.016 0.912 0.012 0.060 0.000
#> GSM447436     5  0.6265     0.4561 0.360 0.016 0.000 0.000 0.420 0.204
#> GSM447437     1  0.2092     0.6977 0.876 0.000 0.000 0.000 0.124 0.000
#> GSM447438     4  0.3616     0.6850 0.012 0.000 0.000 0.780 0.184 0.024
#> GSM447447     2  0.6029    -0.1660 0.248 0.396 0.000 0.000 0.356 0.000
#> GSM447454     2  0.7624     0.1303 0.000 0.344 0.180 0.292 0.180 0.004
#> GSM447457     2  0.5732     0.5827 0.000 0.644 0.120 0.056 0.176 0.004
#> GSM447460     2  0.5283     0.4512 0.000 0.608 0.012 0.304 0.064 0.012
#> GSM447465     2  0.4561     0.6257 0.000 0.756 0.064 0.108 0.072 0.000
#> GSM447471     1  0.2597     0.6718 0.824 0.000 0.000 0.000 0.176 0.000
#> GSM447476     5  0.6794     0.3644 0.200 0.044 0.000 0.168 0.548 0.040

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n gender(p) agent(p) k
#> CV:NMF 78     1.000   0.2561 2
#> CV:NMF 71     0.321   0.0573 3
#> CV:NMF 72     0.408   0.3062 4
#> CV:NMF 66     0.373   0.4044 5
#> CV:NMF 56     0.155   0.1874 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.945           0.937       0.974         0.4957 0.507   0.507
#> 3 3 0.658           0.611       0.814         0.2520 0.810   0.634
#> 4 4 0.669           0.621       0.735         0.1072 0.888   0.707
#> 5 5 0.633           0.633       0.761         0.0717 0.883   0.671
#> 6 6 0.664           0.572       0.695         0.0617 0.877   0.591

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2  0.0000     0.9641 0.000 1.000
#> GSM447411     1  0.0000     0.9842 1.000 0.000
#> GSM447413     2  0.0000     0.9641 0.000 1.000
#> GSM447415     1  0.0000     0.9842 1.000 0.000
#> GSM447416     2  0.0000     0.9641 0.000 1.000
#> GSM447425     2  0.0000     0.9641 0.000 1.000
#> GSM447430     2  0.0000     0.9641 0.000 1.000
#> GSM447435     1  0.0000     0.9842 1.000 0.000
#> GSM447440     1  0.0000     0.9842 1.000 0.000
#> GSM447444     1  0.7528     0.7178 0.784 0.216
#> GSM447448     1  0.4939     0.8753 0.892 0.108
#> GSM447449     2  0.0000     0.9641 0.000 1.000
#> GSM447450     1  0.0000     0.9842 1.000 0.000
#> GSM447452     2  0.0000     0.9641 0.000 1.000
#> GSM447458     2  0.0672     0.9599 0.008 0.992
#> GSM447461     2  0.1633     0.9495 0.024 0.976
#> GSM447464     1  0.0000     0.9842 1.000 0.000
#> GSM447468     1  0.0000     0.9842 1.000 0.000
#> GSM447472     1  0.0000     0.9842 1.000 0.000
#> GSM447400     1  0.0000     0.9842 1.000 0.000
#> GSM447402     2  0.0000     0.9641 0.000 1.000
#> GSM447403     1  0.0000     0.9842 1.000 0.000
#> GSM447405     2  0.9970     0.1449 0.468 0.532
#> GSM447418     2  0.0000     0.9641 0.000 1.000
#> GSM447422     2  0.0000     0.9641 0.000 1.000
#> GSM447424     2  0.0000     0.9641 0.000 1.000
#> GSM447427     2  0.0000     0.9641 0.000 1.000
#> GSM447428     1  0.0000     0.9842 1.000 0.000
#> GSM447429     1  0.0000     0.9842 1.000 0.000
#> GSM447431     2  0.0000     0.9641 0.000 1.000
#> GSM447432     2  0.0376     0.9621 0.004 0.996
#> GSM447434     2  0.7453     0.7304 0.212 0.788
#> GSM447442     2  0.0000     0.9641 0.000 1.000
#> GSM447451     2  0.1633     0.9495 0.024 0.976
#> GSM447462     1  0.0000     0.9842 1.000 0.000
#> GSM447463     1  0.0000     0.9842 1.000 0.000
#> GSM447467     2  0.9998     0.0616 0.492 0.508
#> GSM447469     2  0.0000     0.9641 0.000 1.000
#> GSM447473     1  0.0000     0.9842 1.000 0.000
#> GSM447404     1  0.0000     0.9842 1.000 0.000
#> GSM447406     2  0.0000     0.9641 0.000 1.000
#> GSM447407     2  0.0000     0.9641 0.000 1.000
#> GSM447409     1  0.0000     0.9842 1.000 0.000
#> GSM447412     2  0.0000     0.9641 0.000 1.000
#> GSM447426     2  0.0000     0.9641 0.000 1.000
#> GSM447433     1  0.0376     0.9815 0.996 0.004
#> GSM447439     2  0.0000     0.9641 0.000 1.000
#> GSM447441     2  0.0000     0.9641 0.000 1.000
#> GSM447443     1  0.0000     0.9842 1.000 0.000
#> GSM447445     1  0.0672     0.9785 0.992 0.008
#> GSM447446     1  0.2778     0.9452 0.952 0.048
#> GSM447453     1  0.0000     0.9842 1.000 0.000
#> GSM447455     2  0.0376     0.9621 0.004 0.996
#> GSM447456     2  0.3114     0.9227 0.056 0.944
#> GSM447459     2  0.0000     0.9641 0.000 1.000
#> GSM447466     1  0.0000     0.9842 1.000 0.000
#> GSM447470     2  0.3879     0.9043 0.076 0.924
#> GSM447474     1  0.0000     0.9842 1.000 0.000
#> GSM447475     2  0.1633     0.9495 0.024 0.976
#> GSM447398     2  0.0672     0.9599 0.008 0.992
#> GSM447399     2  0.0000     0.9641 0.000 1.000
#> GSM447408     2  0.0000     0.9641 0.000 1.000
#> GSM447410     2  0.0000     0.9641 0.000 1.000
#> GSM447414     2  0.0000     0.9641 0.000 1.000
#> GSM447417     2  0.0000     0.9641 0.000 1.000
#> GSM447419     1  0.0000     0.9842 1.000 0.000
#> GSM447420     1  0.0000     0.9842 1.000 0.000
#> GSM447421     1  0.0000     0.9842 1.000 0.000
#> GSM447423     2  0.0000     0.9641 0.000 1.000
#> GSM447436     1  0.2778     0.9452 0.952 0.048
#> GSM447437     1  0.0000     0.9842 1.000 0.000
#> GSM447438     2  0.5737     0.8321 0.136 0.864
#> GSM447447     1  0.2603     0.9488 0.956 0.044
#> GSM447454     2  0.0000     0.9641 0.000 1.000
#> GSM447457     2  0.0000     0.9641 0.000 1.000
#> GSM447460     2  0.0000     0.9641 0.000 1.000
#> GSM447465     2  0.0000     0.9641 0.000 1.000
#> GSM447471     1  0.0000     0.9842 1.000 0.000
#> GSM447476     2  0.2603     0.9324 0.044 0.956

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.5397      0.378 0.000 0.280 0.720
#> GSM447411     1  0.0592      0.958 0.988 0.012 0.000
#> GSM447413     3  0.0237      0.643 0.000 0.004 0.996
#> GSM447415     1  0.0424      0.959 0.992 0.008 0.000
#> GSM447416     3  0.0237      0.643 0.000 0.004 0.996
#> GSM447425     2  0.5291      0.350 0.000 0.732 0.268
#> GSM447430     2  0.6274      0.424 0.000 0.544 0.456
#> GSM447435     1  0.0237      0.960 0.996 0.004 0.000
#> GSM447440     1  0.0237      0.960 0.996 0.004 0.000
#> GSM447444     1  0.6291      0.700 0.768 0.152 0.080
#> GSM447448     1  0.3500      0.851 0.880 0.116 0.004
#> GSM447449     3  0.6274     -0.313 0.000 0.456 0.544
#> GSM447450     1  0.0237      0.960 0.996 0.004 0.000
#> GSM447452     2  0.5291      0.350 0.000 0.732 0.268
#> GSM447458     2  0.6252      0.482 0.000 0.556 0.444
#> GSM447461     2  0.5728      0.614 0.008 0.720 0.272
#> GSM447464     1  0.0592      0.960 0.988 0.012 0.000
#> GSM447468     1  0.0592      0.960 0.988 0.012 0.000
#> GSM447472     1  0.0592      0.960 0.988 0.012 0.000
#> GSM447400     1  0.0592      0.960 0.988 0.012 0.000
#> GSM447402     2  0.6309      0.416 0.000 0.504 0.496
#> GSM447403     1  0.0424      0.959 0.992 0.008 0.000
#> GSM447405     2  0.8277      0.120 0.456 0.468 0.076
#> GSM447418     3  0.0000      0.643 0.000 0.000 1.000
#> GSM447422     3  0.6244     -0.283 0.000 0.440 0.560
#> GSM447424     3  0.0000      0.643 0.000 0.000 1.000
#> GSM447427     3  0.0000      0.643 0.000 0.000 1.000
#> GSM447428     1  0.0592      0.960 0.988 0.012 0.000
#> GSM447429     1  0.0592      0.960 0.988 0.012 0.000
#> GSM447431     3  0.0747      0.635 0.000 0.016 0.984
#> GSM447432     3  0.6291     -0.342 0.000 0.468 0.532
#> GSM447434     2  0.9606      0.379 0.204 0.428 0.368
#> GSM447442     3  0.6244     -0.283 0.000 0.440 0.560
#> GSM447451     2  0.5728      0.614 0.008 0.720 0.272
#> GSM447462     1  0.0592      0.960 0.988 0.012 0.000
#> GSM447463     1  0.0592      0.958 0.988 0.012 0.000
#> GSM447467     1  0.8859     -0.113 0.480 0.400 0.120
#> GSM447469     3  0.6302     -0.425 0.000 0.480 0.520
#> GSM447473     1  0.0424      0.959 0.992 0.008 0.000
#> GSM447404     1  0.0424      0.959 0.992 0.008 0.000
#> GSM447406     2  0.6274      0.424 0.000 0.544 0.456
#> GSM447407     2  0.5529      0.363 0.000 0.704 0.296
#> GSM447409     1  0.0424      0.959 0.992 0.008 0.000
#> GSM447412     3  0.0424      0.641 0.000 0.008 0.992
#> GSM447426     3  0.5397      0.378 0.000 0.280 0.720
#> GSM447433     1  0.0592      0.960 0.988 0.012 0.000
#> GSM447439     2  0.6274      0.424 0.000 0.544 0.456
#> GSM447441     3  0.1031      0.634 0.000 0.024 0.976
#> GSM447443     1  0.0592      0.960 0.988 0.012 0.000
#> GSM447445     1  0.0747      0.957 0.984 0.016 0.000
#> GSM447446     1  0.2066      0.929 0.940 0.060 0.000
#> GSM447453     1  0.0000      0.960 1.000 0.000 0.000
#> GSM447455     3  0.6291     -0.337 0.000 0.468 0.532
#> GSM447456     2  0.6443      0.602 0.040 0.720 0.240
#> GSM447459     2  0.6274      0.424 0.000 0.544 0.456
#> GSM447466     1  0.0592      0.958 0.988 0.012 0.000
#> GSM447470     2  0.6887      0.590 0.060 0.704 0.236
#> GSM447474     1  0.0592      0.960 0.988 0.012 0.000
#> GSM447475     2  0.5728      0.614 0.008 0.720 0.272
#> GSM447398     2  0.5465      0.611 0.000 0.712 0.288
#> GSM447399     3  0.6192     -0.259 0.000 0.420 0.580
#> GSM447408     2  0.5835      0.598 0.000 0.660 0.340
#> GSM447410     2  0.5835      0.598 0.000 0.660 0.340
#> GSM447414     3  0.2066      0.591 0.000 0.060 0.940
#> GSM447417     2  0.6309      0.416 0.000 0.504 0.496
#> GSM447419     1  0.0592      0.960 0.988 0.012 0.000
#> GSM447420     1  0.0592      0.960 0.988 0.012 0.000
#> GSM447421     1  0.0592      0.960 0.988 0.012 0.000
#> GSM447423     3  0.0237      0.643 0.000 0.004 0.996
#> GSM447436     1  0.2066      0.929 0.940 0.060 0.000
#> GSM447437     1  0.0592      0.958 0.988 0.012 0.000
#> GSM447438     2  0.8492      0.518 0.132 0.592 0.276
#> GSM447447     1  0.1964      0.932 0.944 0.056 0.000
#> GSM447454     3  0.1289      0.624 0.000 0.032 0.968
#> GSM447457     3  0.0237      0.643 0.000 0.004 0.996
#> GSM447460     3  0.6062     -0.163 0.000 0.384 0.616
#> GSM447465     3  0.0000      0.643 0.000 0.000 1.000
#> GSM447471     1  0.0424      0.959 0.992 0.008 0.000
#> GSM447476     2  0.7238      0.604 0.044 0.628 0.328

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.3486    0.37099 0.000 0.188 0.812 0.000
#> GSM447411     1  0.1211    0.92558 0.960 0.040 0.000 0.000
#> GSM447413     3  0.4356    0.88044 0.000 0.000 0.708 0.292
#> GSM447415     1  0.1118    0.92600 0.964 0.036 0.000 0.000
#> GSM447416     3  0.4382    0.88146 0.000 0.000 0.704 0.296
#> GSM447425     4  0.7503    0.16475 0.000 0.212 0.300 0.488
#> GSM447430     4  0.5596    0.14958 0.000 0.332 0.036 0.632
#> GSM447435     1  0.0188    0.93092 0.996 0.004 0.000 0.000
#> GSM447440     1  0.0188    0.93092 0.996 0.004 0.000 0.000
#> GSM447444     1  0.5187    0.70157 0.768 0.124 0.004 0.104
#> GSM447448     1  0.3080    0.85391 0.880 0.096 0.000 0.024
#> GSM447449     4  0.6273    0.05944 0.000 0.248 0.108 0.644
#> GSM447450     1  0.0188    0.93092 0.996 0.004 0.000 0.000
#> GSM447452     4  0.7503    0.16475 0.000 0.212 0.300 0.488
#> GSM447458     4  0.5112   -0.34739 0.000 0.384 0.008 0.608
#> GSM447461     2  0.5539    0.91804 0.008 0.552 0.008 0.432
#> GSM447464     1  0.1557    0.93095 0.944 0.056 0.000 0.000
#> GSM447468     1  0.1474    0.93049 0.948 0.052 0.000 0.000
#> GSM447472     1  0.1474    0.93049 0.948 0.052 0.000 0.000
#> GSM447400     1  0.1557    0.93095 0.944 0.056 0.000 0.000
#> GSM447402     4  0.0779    0.27264 0.000 0.016 0.004 0.980
#> GSM447403     1  0.1389    0.92270 0.952 0.048 0.000 0.000
#> GSM447405     4  0.7605    0.00881 0.384 0.200 0.000 0.416
#> GSM447418     3  0.4356    0.88129 0.000 0.000 0.708 0.292
#> GSM447422     4  0.6469    0.09118 0.000 0.248 0.124 0.628
#> GSM447424     3  0.4356    0.88151 0.000 0.000 0.708 0.292
#> GSM447427     3  0.4382    0.88119 0.000 0.000 0.704 0.296
#> GSM447428     1  0.1474    0.93049 0.948 0.052 0.000 0.000
#> GSM447429     1  0.2011    0.92774 0.920 0.080 0.000 0.000
#> GSM447431     3  0.5062    0.86911 0.000 0.020 0.680 0.300
#> GSM447432     4  0.6383   -0.03002 0.000 0.292 0.096 0.612
#> GSM447434     4  0.9272   -0.25307 0.204 0.264 0.112 0.420
#> GSM447442     4  0.6469    0.09118 0.000 0.248 0.124 0.628
#> GSM447451     2  0.5421    0.91398 0.008 0.548 0.004 0.440
#> GSM447462     1  0.1557    0.93095 0.944 0.056 0.000 0.000
#> GSM447463     1  0.1474    0.92192 0.948 0.052 0.000 0.000
#> GSM447467     1  0.7836   -0.08434 0.480 0.316 0.012 0.192
#> GSM447469     4  0.2589    0.27202 0.000 0.044 0.044 0.912
#> GSM447473     1  0.1389    0.92270 0.952 0.048 0.000 0.000
#> GSM447404     1  0.1389    0.92270 0.952 0.048 0.000 0.000
#> GSM447406     4  0.5666    0.14042 0.000 0.348 0.036 0.616
#> GSM447407     4  0.6286    0.25147 0.000 0.200 0.140 0.660
#> GSM447409     1  0.1867    0.91697 0.928 0.072 0.000 0.000
#> GSM447412     3  0.4431    0.87980 0.000 0.000 0.696 0.304
#> GSM447426     3  0.3486    0.37099 0.000 0.188 0.812 0.000
#> GSM447433     1  0.1661    0.92372 0.944 0.052 0.000 0.004
#> GSM447439     4  0.5666    0.14042 0.000 0.348 0.036 0.616
#> GSM447441     3  0.5184    0.86266 0.000 0.024 0.672 0.304
#> GSM447443     1  0.1474    0.93049 0.948 0.052 0.000 0.000
#> GSM447445     1  0.0657    0.93033 0.984 0.012 0.000 0.004
#> GSM447446     1  0.3032    0.88791 0.868 0.124 0.000 0.008
#> GSM447453     1  0.0000    0.93110 1.000 0.000 0.000 0.000
#> GSM447455     4  0.6501   -0.04974 0.000 0.316 0.096 0.588
#> GSM447456     2  0.6086    0.87029 0.040 0.556 0.004 0.400
#> GSM447459     4  0.5596    0.14958 0.000 0.332 0.036 0.632
#> GSM447466     1  0.1118    0.92674 0.964 0.036 0.000 0.000
#> GSM447470     2  0.6423    0.83205 0.060 0.540 0.004 0.396
#> GSM447474     1  0.1474    0.93049 0.948 0.052 0.000 0.000
#> GSM447475     2  0.5539    0.91804 0.008 0.552 0.008 0.432
#> GSM447398     2  0.5137    0.86427 0.000 0.544 0.004 0.452
#> GSM447399     4  0.6630    0.04802 0.000 0.252 0.136 0.612
#> GSM447408     4  0.3764   -0.06494 0.000 0.216 0.000 0.784
#> GSM447410     4  0.3764   -0.06494 0.000 0.216 0.000 0.784
#> GSM447414     3  0.5764    0.80888 0.000 0.052 0.644 0.304
#> GSM447417     4  0.0779    0.27264 0.000 0.016 0.004 0.980
#> GSM447419     1  0.1474    0.93049 0.948 0.052 0.000 0.000
#> GSM447420     1  0.1474    0.93049 0.948 0.052 0.000 0.000
#> GSM447421     1  0.1557    0.93095 0.944 0.056 0.000 0.000
#> GSM447423     3  0.4406    0.88091 0.000 0.000 0.700 0.300
#> GSM447436     1  0.3032    0.88791 0.868 0.124 0.000 0.008
#> GSM447437     1  0.1474    0.92192 0.948 0.052 0.000 0.000
#> GSM447438     4  0.5905   -0.02940 0.060 0.304 0.000 0.636
#> GSM447447     1  0.2976    0.89053 0.872 0.120 0.000 0.008
#> GSM447454     3  0.5069    0.84414 0.000 0.016 0.664 0.320
#> GSM447457     3  0.4406    0.88091 0.000 0.000 0.700 0.300
#> GSM447460     4  0.7415    0.15967 0.000 0.216 0.272 0.512
#> GSM447465     3  0.4356    0.88151 0.000 0.000 0.708 0.292
#> GSM447471     1  0.1389    0.92270 0.952 0.048 0.000 0.000
#> GSM447476     4  0.4711   -0.05188 0.024 0.236 0.000 0.740

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     5  0.6500    1.00000 0.000 0.028 0.304 0.120 0.548
#> GSM447411     1  0.3838    0.80516 0.716 0.004 0.000 0.000 0.280
#> GSM447413     3  0.0693    0.90341 0.000 0.000 0.980 0.008 0.012
#> GSM447415     1  0.2891    0.82995 0.824 0.000 0.000 0.000 0.176
#> GSM447416     3  0.0290    0.90964 0.000 0.000 0.992 0.000 0.008
#> GSM447425     4  0.5234    0.01507 0.000 0.044 0.000 0.496 0.460
#> GSM447430     4  0.5470    0.42605 0.000 0.268 0.104 0.628 0.000
#> GSM447435     1  0.3333    0.82523 0.788 0.004 0.000 0.000 0.208
#> GSM447440     1  0.3333    0.82523 0.788 0.004 0.000 0.000 0.208
#> GSM447444     1  0.5099    0.62859 0.696 0.232 0.004 0.008 0.060
#> GSM447448     1  0.4314    0.77549 0.780 0.124 0.000 0.004 0.092
#> GSM447449     2  0.6049    0.45857 0.000 0.580 0.320 0.068 0.032
#> GSM447450     1  0.3333    0.82523 0.788 0.004 0.000 0.000 0.208
#> GSM447452     4  0.5234    0.01507 0.000 0.044 0.000 0.496 0.460
#> GSM447458     2  0.3519    0.50499 0.000 0.776 0.216 0.008 0.000
#> GSM447461     2  0.1124    0.53544 0.004 0.960 0.036 0.000 0.000
#> GSM447464     1  0.1243    0.83343 0.960 0.008 0.000 0.004 0.028
#> GSM447468     1  0.1074    0.83222 0.968 0.012 0.000 0.004 0.016
#> GSM447472     1  0.0968    0.82507 0.972 0.012 0.000 0.012 0.004
#> GSM447400     1  0.1243    0.83343 0.960 0.008 0.000 0.004 0.028
#> GSM447402     4  0.8128    0.09253 0.000 0.284 0.220 0.380 0.116
#> GSM447403     1  0.3774    0.79911 0.704 0.000 0.000 0.000 0.296
#> GSM447405     1  0.8302   -0.15644 0.372 0.220 0.000 0.256 0.152
#> GSM447418     3  0.0324    0.90775 0.000 0.000 0.992 0.004 0.004
#> GSM447422     2  0.6168    0.44086 0.000 0.556 0.340 0.072 0.032
#> GSM447424     3  0.0451    0.90754 0.000 0.000 0.988 0.004 0.008
#> GSM447427     3  0.0000    0.90935 0.000 0.000 1.000 0.000 0.000
#> GSM447428     1  0.0854    0.82618 0.976 0.012 0.000 0.008 0.004
#> GSM447429     1  0.2230    0.82932 0.884 0.000 0.000 0.000 0.116
#> GSM447431     3  0.0932    0.89575 0.000 0.004 0.972 0.020 0.004
#> GSM447432     2  0.5272    0.47728 0.000 0.624 0.312 0.060 0.004
#> GSM447434     2  0.7347    0.36911 0.180 0.580 0.152 0.056 0.032
#> GSM447442     2  0.6168    0.44086 0.000 0.556 0.340 0.072 0.032
#> GSM447451     2  0.1202    0.53553 0.004 0.960 0.032 0.004 0.000
#> GSM447462     1  0.1243    0.83343 0.960 0.008 0.000 0.004 0.028
#> GSM447463     1  0.3949    0.79721 0.696 0.004 0.000 0.000 0.300
#> GSM447467     2  0.6792    0.05120 0.412 0.468 0.016 0.044 0.060
#> GSM447469     4  0.8073    0.01399 0.000 0.308 0.260 0.340 0.092
#> GSM447473     1  0.3774    0.79911 0.704 0.000 0.000 0.000 0.296
#> GSM447404     1  0.3774    0.79911 0.704 0.000 0.000 0.000 0.296
#> GSM447406     4  0.5512    0.41973 0.000 0.276 0.104 0.620 0.000
#> GSM447407     4  0.6324    0.21168 0.000 0.016 0.104 0.492 0.388
#> GSM447409     1  0.4522    0.78337 0.660 0.000 0.000 0.024 0.316
#> GSM447412     3  0.0451    0.90840 0.000 0.008 0.988 0.000 0.004
#> GSM447426     5  0.6500    1.00000 0.000 0.028 0.304 0.120 0.548
#> GSM447433     1  0.4615    0.80775 0.736 0.020 0.000 0.032 0.212
#> GSM447439     4  0.5512    0.41973 0.000 0.276 0.104 0.620 0.000
#> GSM447441     3  0.1173    0.89236 0.000 0.012 0.964 0.020 0.004
#> GSM447443     1  0.0727    0.82949 0.980 0.012 0.000 0.004 0.004
#> GSM447445     1  0.3513    0.83229 0.800 0.020 0.000 0.000 0.180
#> GSM447446     1  0.3385    0.76666 0.864 0.056 0.000 0.044 0.036
#> GSM447453     1  0.2286    0.83857 0.888 0.004 0.000 0.000 0.108
#> GSM447455     2  0.5152    0.47154 0.000 0.632 0.312 0.052 0.004
#> GSM447456     2  0.1041    0.50584 0.032 0.964 0.000 0.004 0.000
#> GSM447459     4  0.5470    0.42605 0.000 0.268 0.104 0.628 0.000
#> GSM447466     1  0.3814    0.80694 0.720 0.004 0.000 0.000 0.276
#> GSM447470     2  0.1270    0.50103 0.052 0.948 0.000 0.000 0.000
#> GSM447474     1  0.0727    0.82949 0.980 0.012 0.000 0.004 0.004
#> GSM447475     2  0.1124    0.53544 0.004 0.960 0.036 0.000 0.000
#> GSM447398     2  0.1357    0.53494 0.000 0.948 0.048 0.004 0.000
#> GSM447399     2  0.5869    0.40107 0.000 0.564 0.356 0.052 0.028
#> GSM447408     2  0.7063    0.25550 0.000 0.536 0.084 0.272 0.108
#> GSM447410     2  0.7063    0.25550 0.000 0.536 0.084 0.272 0.108
#> GSM447414     3  0.1571    0.84473 0.000 0.060 0.936 0.004 0.000
#> GSM447417     4  0.8128    0.09253 0.000 0.284 0.220 0.380 0.116
#> GSM447419     1  0.0968    0.82507 0.972 0.012 0.000 0.012 0.004
#> GSM447420     1  0.0727    0.82949 0.980 0.012 0.000 0.004 0.004
#> GSM447421     1  0.1243    0.83343 0.960 0.008 0.000 0.004 0.028
#> GSM447423     3  0.0290    0.90826 0.000 0.008 0.992 0.000 0.000
#> GSM447436     1  0.3385    0.76666 0.864 0.056 0.000 0.044 0.036
#> GSM447437     1  0.3949    0.79721 0.696 0.004 0.000 0.000 0.300
#> GSM447438     2  0.8542    0.18525 0.076 0.452 0.076 0.256 0.140
#> GSM447447     1  0.3305    0.76974 0.868 0.056 0.000 0.044 0.032
#> GSM447454     3  0.1197    0.86899 0.000 0.048 0.952 0.000 0.000
#> GSM447457     3  0.0290    0.90826 0.000 0.008 0.992 0.000 0.000
#> GSM447460     3  0.6076   -0.00809 0.000 0.344 0.560 0.064 0.032
#> GSM447465     3  0.0451    0.90754 0.000 0.000 0.988 0.004 0.008
#> GSM447471     1  0.3774    0.79911 0.704 0.000 0.000 0.000 0.296
#> GSM447476     2  0.7507    0.24784 0.012 0.516 0.080 0.268 0.124

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     5  0.0937     0.5391 0.000 0.000 0.040 0.000 0.960 0.000
#> GSM447411     1  0.0858     0.7059 0.968 0.004 0.000 0.000 0.000 0.028
#> GSM447413     3  0.0653     0.9241 0.000 0.000 0.980 0.004 0.012 0.004
#> GSM447415     1  0.3309     0.2539 0.720 0.000 0.000 0.000 0.000 0.280
#> GSM447416     3  0.0291     0.9276 0.000 0.000 0.992 0.000 0.004 0.004
#> GSM447425     5  0.6302     0.4579 0.000 0.040 0.000 0.256 0.520 0.184
#> GSM447430     4  0.2149     0.7868 0.000 0.104 0.004 0.888 0.000 0.004
#> GSM447435     1  0.2191     0.6594 0.876 0.004 0.000 0.000 0.000 0.120
#> GSM447440     1  0.2191     0.6594 0.876 0.004 0.000 0.000 0.000 0.120
#> GSM447444     6  0.5768     0.3213 0.316 0.196 0.000 0.000 0.000 0.488
#> GSM447448     1  0.5422    -0.2924 0.448 0.116 0.000 0.000 0.000 0.436
#> GSM447449     2  0.5589     0.5706 0.000 0.620 0.240 0.028 0.004 0.108
#> GSM447450     1  0.2191     0.6594 0.876 0.004 0.000 0.000 0.000 0.120
#> GSM447452     5  0.6302     0.4579 0.000 0.040 0.000 0.256 0.520 0.184
#> GSM447458     2  0.4551     0.5739 0.000 0.748 0.136 0.044 0.000 0.072
#> GSM447461     2  0.1442     0.5377 0.000 0.944 0.004 0.040 0.000 0.012
#> GSM447464     6  0.3867     0.6950 0.488 0.000 0.000 0.000 0.000 0.512
#> GSM447468     6  0.3854     0.7210 0.464 0.000 0.000 0.000 0.000 0.536
#> GSM447472     6  0.3823     0.7280 0.436 0.000 0.000 0.000 0.000 0.564
#> GSM447400     6  0.3867     0.6950 0.488 0.000 0.000 0.000 0.000 0.512
#> GSM447402     2  0.8163     0.2869 0.000 0.296 0.136 0.248 0.040 0.280
#> GSM447403     1  0.1204     0.7103 0.944 0.000 0.000 0.000 0.000 0.056
#> GSM447405     6  0.6439    -0.1866 0.072 0.212 0.000 0.096 0.028 0.592
#> GSM447418     3  0.0260     0.9270 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM447422     2  0.5763     0.5602 0.000 0.592 0.260 0.028 0.004 0.116
#> GSM447424     3  0.0405     0.9266 0.000 0.000 0.988 0.004 0.008 0.000
#> GSM447427     3  0.0000     0.9270 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447428     6  0.3828     0.7282 0.440 0.000 0.000 0.000 0.000 0.560
#> GSM447429     1  0.3659    -0.3110 0.636 0.000 0.000 0.000 0.000 0.364
#> GSM447431     3  0.0777     0.9187 0.000 0.000 0.972 0.024 0.000 0.004
#> GSM447432     2  0.5219     0.5743 0.000 0.656 0.232 0.024 0.004 0.084
#> GSM447434     2  0.6434     0.4599 0.024 0.528 0.112 0.036 0.000 0.300
#> GSM447442     2  0.5763     0.5602 0.000 0.592 0.260 0.028 0.004 0.116
#> GSM447451     2  0.1225     0.5398 0.000 0.952 0.000 0.036 0.000 0.012
#> GSM447462     6  0.3867     0.6950 0.488 0.000 0.000 0.000 0.000 0.512
#> GSM447463     1  0.0405     0.7138 0.988 0.004 0.000 0.000 0.000 0.008
#> GSM447467     2  0.6214     0.0262 0.244 0.472 0.008 0.004 0.000 0.272
#> GSM447469     2  0.8047     0.3248 0.000 0.300 0.196 0.212 0.020 0.272
#> GSM447473     1  0.1204     0.7103 0.944 0.000 0.000 0.000 0.000 0.056
#> GSM447404     1  0.1204     0.7103 0.944 0.000 0.000 0.000 0.000 0.056
#> GSM447406     4  0.2053     0.7854 0.000 0.108 0.004 0.888 0.000 0.000
#> GSM447407     4  0.6633    -0.3889 0.000 0.040 0.004 0.444 0.328 0.184
#> GSM447409     1  0.2048     0.6625 0.880 0.000 0.000 0.000 0.000 0.120
#> GSM447412     3  0.0508     0.9257 0.000 0.012 0.984 0.000 0.000 0.004
#> GSM447426     5  0.0937     0.5391 0.000 0.000 0.040 0.000 0.960 0.000
#> GSM447433     1  0.3575     0.5050 0.708 0.008 0.000 0.000 0.000 0.284
#> GSM447439     4  0.2053     0.7854 0.000 0.108 0.004 0.888 0.000 0.000
#> GSM447441     3  0.1036     0.9172 0.000 0.008 0.964 0.024 0.000 0.004
#> GSM447443     6  0.3843     0.7285 0.452 0.000 0.000 0.000 0.000 0.548
#> GSM447445     1  0.3606     0.4910 0.728 0.016 0.000 0.000 0.000 0.256
#> GSM447446     6  0.3905     0.5426 0.316 0.016 0.000 0.000 0.000 0.668
#> GSM447453     1  0.3804    -0.2059 0.576 0.000 0.000 0.000 0.000 0.424
#> GSM447455     2  0.5097     0.5622 0.000 0.648 0.248 0.020 0.000 0.084
#> GSM447456     2  0.2070     0.5154 0.000 0.908 0.000 0.048 0.000 0.044
#> GSM447459     4  0.2149     0.7868 0.000 0.104 0.004 0.888 0.000 0.004
#> GSM447466     1  0.0858     0.7079 0.968 0.004 0.000 0.000 0.000 0.028
#> GSM447470     2  0.2380     0.5161 0.016 0.900 0.000 0.036 0.000 0.048
#> GSM447474     6  0.3843     0.7285 0.452 0.000 0.000 0.000 0.000 0.548
#> GSM447475     2  0.1442     0.5377 0.000 0.944 0.004 0.040 0.000 0.012
#> GSM447398     2  0.1152     0.5398 0.000 0.952 0.004 0.044 0.000 0.000
#> GSM447399     2  0.6060     0.5077 0.000 0.524 0.316 0.040 0.000 0.120
#> GSM447408     2  0.6039     0.4255 0.000 0.560 0.004 0.152 0.028 0.256
#> GSM447410     2  0.6039     0.4255 0.000 0.560 0.004 0.152 0.028 0.256
#> GSM447414     3  0.1411     0.8847 0.000 0.060 0.936 0.004 0.000 0.000
#> GSM447417     2  0.8163     0.2869 0.000 0.296 0.136 0.248 0.040 0.280
#> GSM447419     6  0.3823     0.7280 0.436 0.000 0.000 0.000 0.000 0.564
#> GSM447420     6  0.3843     0.7285 0.452 0.000 0.000 0.000 0.000 0.548
#> GSM447421     6  0.3867     0.6950 0.488 0.000 0.000 0.000 0.000 0.512
#> GSM447423     3  0.0790     0.9158 0.000 0.032 0.968 0.000 0.000 0.000
#> GSM447436     6  0.3905     0.5426 0.316 0.016 0.000 0.000 0.000 0.668
#> GSM447437     1  0.0405     0.7138 0.988 0.004 0.000 0.000 0.000 0.008
#> GSM447438     2  0.5996     0.3090 0.000 0.468 0.004 0.100 0.028 0.400
#> GSM447447     6  0.3905     0.5501 0.316 0.016 0.000 0.000 0.000 0.668
#> GSM447454     3  0.1501     0.8789 0.000 0.076 0.924 0.000 0.000 0.000
#> GSM447457     3  0.0790     0.9158 0.000 0.032 0.968 0.000 0.000 0.000
#> GSM447460     3  0.5156     0.0971 0.000 0.376 0.560 0.024 0.004 0.036
#> GSM447465     3  0.0405     0.9266 0.000 0.000 0.988 0.004 0.008 0.000
#> GSM447471     1  0.1204     0.7103 0.944 0.000 0.000 0.000 0.000 0.056
#> GSM447476     2  0.5896     0.4099 0.000 0.548 0.000 0.132 0.028 0.292

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n gender(p) agent(p) k
#> MAD:hclust 77     0.767    0.411 2
#> MAD:hclust 56     0.212    0.222 3
#> MAD:hclust 52     0.705    0.194 4
#> MAD:hclust 55     0.972    0.135 5
#> MAD:hclust 59     0.928    0.115 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.973           0.957       0.980         0.5046 0.494   0.494
#> 3 3 0.609           0.648       0.765         0.2753 0.796   0.606
#> 4 4 0.550           0.568       0.680         0.1221 0.881   0.687
#> 5 5 0.556           0.478       0.693         0.0758 0.842   0.531
#> 6 6 0.603           0.510       0.688         0.0536 0.916   0.646

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2  0.0672      0.981 0.008 0.992
#> GSM447411     1  0.0376      0.979 0.996 0.004
#> GSM447413     2  0.0672      0.981 0.008 0.992
#> GSM447415     1  0.0000      0.978 1.000 0.000
#> GSM447416     2  0.0672      0.981 0.008 0.992
#> GSM447425     2  0.0000      0.981 0.000 1.000
#> GSM447430     2  0.0000      0.981 0.000 1.000
#> GSM447435     1  0.0376      0.979 0.996 0.004
#> GSM447440     1  0.0376      0.979 0.996 0.004
#> GSM447444     1  0.0376      0.979 0.996 0.004
#> GSM447448     1  0.0376      0.979 0.996 0.004
#> GSM447449     2  0.0376      0.982 0.004 0.996
#> GSM447450     1  0.0376      0.979 0.996 0.004
#> GSM447452     2  0.0000      0.981 0.000 1.000
#> GSM447458     2  0.0376      0.982 0.004 0.996
#> GSM447461     2  0.0376      0.982 0.004 0.996
#> GSM447464     1  0.0376      0.979 0.996 0.004
#> GSM447468     1  0.0000      0.978 1.000 0.000
#> GSM447472     1  0.0376      0.979 0.996 0.004
#> GSM447400     1  0.0000      0.978 1.000 0.000
#> GSM447402     2  0.0000      0.981 0.000 1.000
#> GSM447403     1  0.0000      0.978 1.000 0.000
#> GSM447405     1  0.0672      0.977 0.992 0.008
#> GSM447418     2  0.0672      0.981 0.008 0.992
#> GSM447422     2  0.0672      0.981 0.008 0.992
#> GSM447424     2  0.0672      0.981 0.008 0.992
#> GSM447427     2  0.0672      0.981 0.008 0.992
#> GSM447428     1  0.7453      0.735 0.788 0.212
#> GSM447429     1  0.0000      0.978 1.000 0.000
#> GSM447431     2  0.0672      0.981 0.008 0.992
#> GSM447432     2  0.0376      0.982 0.004 0.996
#> GSM447434     1  0.0000      0.978 1.000 0.000
#> GSM447442     2  0.0376      0.982 0.004 0.996
#> GSM447451     2  0.0376      0.982 0.004 0.996
#> GSM447462     1  0.0000      0.978 1.000 0.000
#> GSM447463     1  0.0376      0.979 0.996 0.004
#> GSM447467     1  0.7528      0.734 0.784 0.216
#> GSM447469     2  0.0000      0.981 0.000 1.000
#> GSM447473     1  0.0000      0.978 1.000 0.000
#> GSM447404     1  0.0000      0.978 1.000 0.000
#> GSM447406     2  0.0000      0.981 0.000 1.000
#> GSM447407     2  0.0000      0.981 0.000 1.000
#> GSM447409     1  0.0672      0.977 0.992 0.008
#> GSM447412     2  0.0672      0.981 0.008 0.992
#> GSM447426     2  0.0672      0.981 0.008 0.992
#> GSM447433     1  0.0672      0.977 0.992 0.008
#> GSM447439     2  0.0000      0.981 0.000 1.000
#> GSM447441     2  0.0376      0.982 0.004 0.996
#> GSM447443     1  0.0000      0.978 1.000 0.000
#> GSM447445     1  0.0376      0.979 0.996 0.004
#> GSM447446     1  0.0672      0.977 0.992 0.008
#> GSM447453     1  0.0376      0.979 0.996 0.004
#> GSM447455     2  0.0376      0.982 0.004 0.996
#> GSM447456     1  0.8207      0.667 0.744 0.256
#> GSM447459     2  0.0000      0.981 0.000 1.000
#> GSM447466     1  0.0376      0.979 0.996 0.004
#> GSM447470     1  0.0376      0.979 0.996 0.004
#> GSM447474     1  0.0376      0.979 0.996 0.004
#> GSM447475     2  0.6247      0.807 0.156 0.844
#> GSM447398     2  0.0376      0.982 0.004 0.996
#> GSM447399     2  0.0376      0.980 0.004 0.996
#> GSM447408     2  0.0000      0.981 0.000 1.000
#> GSM447410     2  0.0000      0.981 0.000 1.000
#> GSM447414     2  0.0672      0.981 0.008 0.992
#> GSM447417     2  0.0000      0.981 0.000 1.000
#> GSM447419     1  0.0000      0.978 1.000 0.000
#> GSM447420     1  0.0000      0.978 1.000 0.000
#> GSM447421     1  0.0000      0.978 1.000 0.000
#> GSM447423     2  0.0672      0.981 0.008 0.992
#> GSM447436     1  0.0672      0.977 0.992 0.008
#> GSM447437     1  0.0376      0.979 0.996 0.004
#> GSM447438     2  0.0000      0.981 0.000 1.000
#> GSM447447     1  0.0376      0.979 0.996 0.004
#> GSM447454     2  0.0376      0.982 0.004 0.996
#> GSM447457     2  0.0376      0.982 0.004 0.996
#> GSM447460     2  0.0376      0.982 0.004 0.996
#> GSM447465     2  0.0376      0.982 0.004 0.996
#> GSM447471     1  0.0000      0.978 1.000 0.000
#> GSM447476     2  0.9922      0.149 0.448 0.552

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.6026     0.5588 0.000 0.376 0.624
#> GSM447411     1  0.0237     0.9383 0.996 0.000 0.004
#> GSM447413     3  0.6026     0.5870 0.000 0.376 0.624
#> GSM447415     1  0.1643     0.9333 0.956 0.000 0.044
#> GSM447416     3  0.5591     0.6172 0.000 0.304 0.696
#> GSM447425     2  0.1989     0.6080 0.004 0.948 0.048
#> GSM447430     2  0.1031     0.6247 0.000 0.976 0.024
#> GSM447435     1  0.0237     0.9383 0.996 0.000 0.004
#> GSM447440     1  0.1753     0.9383 0.952 0.000 0.048
#> GSM447444     1  0.4002     0.8958 0.840 0.000 0.160
#> GSM447448     1  0.3412     0.9112 0.876 0.000 0.124
#> GSM447449     2  0.6225     0.2220 0.000 0.568 0.432
#> GSM447450     1  0.0424     0.9390 0.992 0.000 0.008
#> GSM447452     2  0.1529     0.6118 0.000 0.960 0.040
#> GSM447458     2  0.6608     0.3408 0.008 0.560 0.432
#> GSM447461     3  0.6291    -0.2445 0.000 0.468 0.532
#> GSM447464     1  0.1529     0.9382 0.960 0.000 0.040
#> GSM447468     1  0.1860     0.9326 0.948 0.000 0.052
#> GSM447472     1  0.3686     0.9060 0.860 0.000 0.140
#> GSM447400     1  0.3038     0.9310 0.896 0.000 0.104
#> GSM447402     2  0.4121     0.6224 0.000 0.832 0.168
#> GSM447403     1  0.1411     0.9350 0.964 0.000 0.036
#> GSM447405     1  0.3983     0.9021 0.852 0.004 0.144
#> GSM447418     3  0.5327     0.6189 0.000 0.272 0.728
#> GSM447422     3  0.4887     0.6112 0.000 0.228 0.772
#> GSM447424     3  0.5968     0.5954 0.000 0.364 0.636
#> GSM447427     3  0.4887     0.6112 0.000 0.228 0.772
#> GSM447428     3  0.5461     0.3036 0.244 0.008 0.748
#> GSM447429     1  0.2356     0.9345 0.928 0.000 0.072
#> GSM447431     3  0.5431     0.6209 0.000 0.284 0.716
#> GSM447432     2  0.6252     0.2393 0.000 0.556 0.444
#> GSM447434     1  0.4178     0.9018 0.828 0.000 0.172
#> GSM447442     2  0.6244     0.2400 0.000 0.560 0.440
#> GSM447451     3  0.6168    -0.1872 0.000 0.412 0.588
#> GSM447462     1  0.3192     0.9290 0.888 0.000 0.112
#> GSM447463     1  0.0237     0.9383 0.996 0.000 0.004
#> GSM447467     3  0.9021    -0.0558 0.184 0.264 0.552
#> GSM447469     2  0.1753     0.6300 0.000 0.952 0.048
#> GSM447473     1  0.1411     0.9350 0.964 0.000 0.036
#> GSM447404     1  0.1529     0.9340 0.960 0.000 0.040
#> GSM447406     2  0.1031     0.6247 0.000 0.976 0.024
#> GSM447407     2  0.1411     0.6145 0.000 0.964 0.036
#> GSM447409     1  0.0424     0.9380 0.992 0.000 0.008
#> GSM447412     3  0.4796     0.6091 0.000 0.220 0.780
#> GSM447426     3  0.6026     0.5588 0.000 0.376 0.624
#> GSM447433     1  0.3500     0.9125 0.880 0.004 0.116
#> GSM447439     2  0.1031     0.6247 0.000 0.976 0.024
#> GSM447441     2  0.6260     0.2174 0.000 0.552 0.448
#> GSM447443     1  0.2448     0.9347 0.924 0.000 0.076
#> GSM447445     1  0.0592     0.9382 0.988 0.000 0.012
#> GSM447446     1  0.3349     0.9177 0.888 0.004 0.108
#> GSM447453     1  0.0747     0.9385 0.984 0.000 0.016
#> GSM447455     2  0.6244     0.2400 0.000 0.560 0.440
#> GSM447456     2  0.9048     0.2484 0.288 0.540 0.172
#> GSM447459     2  0.1031     0.6247 0.000 0.976 0.024
#> GSM447466     1  0.0237     0.9383 0.996 0.000 0.004
#> GSM447470     1  0.4002     0.8958 0.840 0.000 0.160
#> GSM447474     1  0.4062     0.8952 0.836 0.000 0.164
#> GSM447475     3  0.6769    -0.1911 0.016 0.392 0.592
#> GSM447398     2  0.5754     0.5578 0.004 0.700 0.296
#> GSM447399     2  0.5254     0.4603 0.000 0.736 0.264
#> GSM447408     2  0.4002     0.6220 0.000 0.840 0.160
#> GSM447410     2  0.4555     0.6138 0.000 0.800 0.200
#> GSM447414     3  0.5988     0.5929 0.000 0.368 0.632
#> GSM447417     2  0.3412     0.6334 0.000 0.876 0.124
#> GSM447419     1  0.4346     0.9017 0.816 0.000 0.184
#> GSM447420     3  0.6204    -0.1954 0.424 0.000 0.576
#> GSM447421     1  0.2356     0.9345 0.928 0.000 0.072
#> GSM447423     3  0.4796     0.6091 0.000 0.220 0.780
#> GSM447436     1  0.2200     0.9364 0.940 0.004 0.056
#> GSM447437     1  0.0237     0.9383 0.996 0.000 0.004
#> GSM447438     2  0.5397     0.5620 0.000 0.720 0.280
#> GSM447447     1  0.3482     0.9098 0.872 0.000 0.128
#> GSM447454     3  0.5397     0.5490 0.000 0.280 0.720
#> GSM447457     3  0.5363     0.5478 0.000 0.276 0.724
#> GSM447460     2  0.5760     0.1788 0.000 0.672 0.328
#> GSM447465     3  0.5968     0.5954 0.000 0.364 0.636
#> GSM447471     1  0.1411     0.9350 0.964 0.000 0.036
#> GSM447476     2  0.7451     0.4677 0.060 0.636 0.304

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.5432     0.4682 0.000 0.068 0.716 0.216
#> GSM447411     1  0.0000     0.8023 1.000 0.000 0.000 0.000
#> GSM447413     3  0.2868     0.5549 0.000 0.000 0.864 0.136
#> GSM447415     1  0.3545     0.7786 0.828 0.164 0.000 0.008
#> GSM447416     3  0.1398     0.5868 0.000 0.004 0.956 0.040
#> GSM447425     4  0.4094     0.7023 0.000 0.116 0.056 0.828
#> GSM447430     4  0.2329     0.7555 0.000 0.012 0.072 0.916
#> GSM447435     1  0.0000     0.8023 1.000 0.000 0.000 0.000
#> GSM447440     1  0.2342     0.8113 0.912 0.080 0.000 0.008
#> GSM447444     1  0.4679     0.7172 0.648 0.352 0.000 0.000
#> GSM447448     1  0.4482     0.7587 0.728 0.264 0.000 0.008
#> GSM447449     3  0.7429    -0.0518 0.000 0.308 0.496 0.196
#> GSM447450     1  0.1452     0.8097 0.956 0.036 0.000 0.008
#> GSM447452     4  0.3547     0.7105 0.000 0.072 0.064 0.864
#> GSM447458     2  0.8480     0.3413 0.028 0.404 0.324 0.244
#> GSM447461     2  0.7698     0.2696 0.000 0.420 0.356 0.224
#> GSM447464     1  0.3047     0.8135 0.872 0.116 0.000 0.012
#> GSM447468     1  0.4420     0.7750 0.748 0.240 0.000 0.012
#> GSM447472     1  0.4690     0.7754 0.712 0.276 0.000 0.012
#> GSM447400     1  0.5093     0.7675 0.640 0.348 0.000 0.012
#> GSM447402     4  0.6245     0.6207 0.000 0.164 0.168 0.668
#> GSM447403     1  0.3808     0.7794 0.812 0.176 0.000 0.012
#> GSM447405     1  0.5339     0.7083 0.624 0.356 0.000 0.020
#> GSM447418     3  0.0707     0.5873 0.000 0.000 0.980 0.020
#> GSM447422     3  0.0000     0.5834 0.000 0.000 1.000 0.000
#> GSM447424     3  0.2149     0.5757 0.000 0.000 0.912 0.088
#> GSM447427     3  0.0000     0.5834 0.000 0.000 1.000 0.000
#> GSM447428     3  0.6951     0.0377 0.132 0.324 0.544 0.000
#> GSM447429     1  0.4482     0.7778 0.728 0.264 0.000 0.008
#> GSM447431     3  0.2142     0.5853 0.000 0.016 0.928 0.056
#> GSM447432     3  0.7687    -0.2101 0.000 0.348 0.428 0.224
#> GSM447434     1  0.5236     0.7288 0.560 0.432 0.000 0.008
#> GSM447442     3  0.7530    -0.1002 0.000 0.308 0.480 0.212
#> GSM447451     2  0.7282     0.3731 0.000 0.512 0.316 0.172
#> GSM447462     1  0.5127     0.7650 0.632 0.356 0.000 0.012
#> GSM447463     1  0.1109     0.8017 0.968 0.028 0.000 0.004
#> GSM447467     2  0.7616     0.4332 0.152 0.628 0.140 0.080
#> GSM447469     4  0.5288     0.6876 0.000 0.068 0.200 0.732
#> GSM447473     1  0.3808     0.7794 0.812 0.176 0.000 0.012
#> GSM447404     1  0.3591     0.7780 0.824 0.168 0.000 0.008
#> GSM447406     4  0.2473     0.7531 0.000 0.012 0.080 0.908
#> GSM447407     4  0.2521     0.7369 0.000 0.024 0.064 0.912
#> GSM447409     1  0.1302     0.8008 0.956 0.044 0.000 0.000
#> GSM447412     3  0.1545     0.5701 0.000 0.040 0.952 0.008
#> GSM447426     3  0.5432     0.4682 0.000 0.068 0.716 0.216
#> GSM447433     1  0.4908     0.7284 0.692 0.292 0.000 0.016
#> GSM447439     4  0.2255     0.7555 0.000 0.012 0.068 0.920
#> GSM447441     3  0.7576    -0.0851 0.000 0.324 0.464 0.212
#> GSM447443     1  0.5143     0.7664 0.628 0.360 0.000 0.012
#> GSM447445     1  0.2198     0.8026 0.920 0.072 0.000 0.008
#> GSM447446     1  0.4988     0.7337 0.692 0.288 0.000 0.020
#> GSM447453     1  0.2466     0.7982 0.900 0.096 0.000 0.004
#> GSM447455     3  0.7613    -0.1653 0.000 0.340 0.448 0.212
#> GSM447456     2  0.7221     0.3511 0.180 0.564 0.004 0.252
#> GSM447459     4  0.2473     0.7531 0.000 0.012 0.080 0.908
#> GSM447466     1  0.0592     0.8013 0.984 0.016 0.000 0.000
#> GSM447470     1  0.4800     0.7260 0.656 0.340 0.000 0.004
#> GSM447474     1  0.4800     0.7267 0.656 0.340 0.000 0.004
#> GSM447475     2  0.7564     0.4792 0.032 0.592 0.196 0.180
#> GSM447398     2  0.7497     0.1780 0.000 0.424 0.180 0.396
#> GSM447399     3  0.7171     0.0775 0.000 0.136 0.464 0.400
#> GSM447408     4  0.5700     0.6218 0.000 0.120 0.164 0.716
#> GSM447410     4  0.6401     0.5312 0.000 0.172 0.176 0.652
#> GSM447414     3  0.2530     0.5666 0.000 0.000 0.888 0.112
#> GSM447417     4  0.5220     0.6834 0.000 0.092 0.156 0.752
#> GSM447419     1  0.5329     0.7386 0.568 0.420 0.000 0.012
#> GSM447420     2  0.7792    -0.2414 0.260 0.416 0.324 0.000
#> GSM447421     1  0.4844     0.7746 0.688 0.300 0.000 0.012
#> GSM447423     3  0.1824     0.5568 0.000 0.060 0.936 0.004
#> GSM447436     1  0.4576     0.7689 0.748 0.232 0.000 0.020
#> GSM447437     1  0.0817     0.8001 0.976 0.024 0.000 0.000
#> GSM447438     4  0.6542     0.4702 0.000 0.252 0.128 0.620
#> GSM447447     1  0.4584     0.7415 0.696 0.300 0.000 0.004
#> GSM447454     3  0.5793     0.1922 0.000 0.360 0.600 0.040
#> GSM447457     3  0.5762     0.2012 0.000 0.352 0.608 0.040
#> GSM447460     3  0.7547     0.2151 0.000 0.236 0.488 0.276
#> GSM447465     3  0.5681     0.4765 0.000 0.208 0.704 0.088
#> GSM447471     1  0.3808     0.7794 0.812 0.176 0.000 0.012
#> GSM447476     4  0.6607     0.3884 0.016 0.340 0.060 0.584

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     3  0.4528     0.6001 0.000 0.004 0.756 0.160 0.080
#> GSM447411     1  0.0451     0.5246 0.988 0.004 0.000 0.008 0.000
#> GSM447413     3  0.3644     0.7548 0.000 0.084 0.844 0.048 0.024
#> GSM447415     1  0.4933     0.1095 0.700 0.004 0.016 0.032 0.248
#> GSM447416     3  0.2536     0.7694 0.000 0.128 0.868 0.000 0.004
#> GSM447425     4  0.5089     0.6519 0.000 0.068 0.104 0.756 0.072
#> GSM447430     4  0.6331     0.7336 0.000 0.192 0.144 0.624 0.040
#> GSM447435     1  0.0451     0.5246 0.988 0.004 0.000 0.008 0.000
#> GSM447440     1  0.3346     0.4877 0.856 0.016 0.000 0.036 0.092
#> GSM447444     1  0.6070     0.0416 0.496 0.052 0.004 0.024 0.424
#> GSM447448     1  0.5482     0.3540 0.648 0.028 0.000 0.048 0.276
#> GSM447449     2  0.4065     0.6551 0.000 0.792 0.160 0.016 0.032
#> GSM447450     1  0.2707     0.4984 0.888 0.008 0.000 0.024 0.080
#> GSM447452     4  0.5508     0.6893 0.000 0.088 0.132 0.720 0.060
#> GSM447458     2  0.2981     0.6670 0.004 0.884 0.064 0.012 0.036
#> GSM447461     2  0.2283     0.6554 0.000 0.916 0.036 0.008 0.040
#> GSM447464     1  0.5004    -0.1159 0.648 0.004 0.008 0.028 0.312
#> GSM447468     5  0.5695     0.4821 0.468 0.004 0.016 0.036 0.476
#> GSM447472     1  0.5755    -0.1192 0.544 0.024 0.008 0.028 0.396
#> GSM447400     5  0.4948     0.6911 0.356 0.000 0.008 0.024 0.612
#> GSM447402     4  0.5792     0.5239 0.000 0.356 0.024 0.568 0.052
#> GSM447403     1  0.5510     0.1637 0.680 0.008 0.020 0.060 0.232
#> GSM447405     1  0.7422     0.2812 0.440 0.036 0.004 0.212 0.308
#> GSM447418     3  0.3336     0.7634 0.000 0.144 0.832 0.008 0.016
#> GSM447422     3  0.3660     0.7504 0.000 0.176 0.800 0.008 0.016
#> GSM447424     3  0.2136     0.7656 0.000 0.088 0.904 0.008 0.000
#> GSM447427     3  0.3443     0.7537 0.000 0.164 0.816 0.008 0.012
#> GSM447428     3  0.6793     0.0155 0.072 0.040 0.460 0.012 0.416
#> GSM447429     5  0.5096     0.5652 0.472 0.000 0.012 0.016 0.500
#> GSM447431     3  0.4832     0.6849 0.000 0.192 0.736 0.024 0.048
#> GSM447432     2  0.2900     0.6708 0.000 0.876 0.092 0.012 0.020
#> GSM447434     5  0.5674     0.5979 0.320 0.020 0.004 0.048 0.608
#> GSM447442     2  0.3812     0.6635 0.000 0.816 0.136 0.016 0.032
#> GSM447451     2  0.3047     0.6561 0.000 0.868 0.044 0.004 0.084
#> GSM447462     5  0.5056     0.6902 0.344 0.004 0.008 0.024 0.620
#> GSM447463     1  0.1483     0.5254 0.952 0.008 0.000 0.012 0.028
#> GSM447467     2  0.5262     0.5011 0.056 0.692 0.008 0.012 0.232
#> GSM447469     4  0.6630     0.6466 0.000 0.216 0.200 0.560 0.024
#> GSM447473     1  0.5510     0.1637 0.680 0.008 0.020 0.060 0.232
#> GSM447404     1  0.5331     0.1776 0.696 0.008 0.020 0.052 0.224
#> GSM447406     4  0.6398     0.7324 0.000 0.192 0.144 0.620 0.044
#> GSM447407     4  0.5283     0.7249 0.000 0.112 0.144 0.720 0.024
#> GSM447409     1  0.1903     0.5154 0.936 0.004 0.004 0.028 0.028
#> GSM447412     3  0.3696     0.7342 0.000 0.212 0.772 0.000 0.016
#> GSM447426     3  0.4528     0.6001 0.000 0.004 0.756 0.160 0.080
#> GSM447433     1  0.7082     0.3435 0.504 0.028 0.004 0.196 0.268
#> GSM447439     4  0.6323     0.7332 0.000 0.196 0.140 0.624 0.040
#> GSM447441     2  0.4255     0.6324 0.000 0.772 0.180 0.032 0.016
#> GSM447443     5  0.5155     0.6660 0.340 0.004 0.016 0.020 0.620
#> GSM447445     1  0.3344     0.5155 0.848 0.012 0.000 0.028 0.112
#> GSM447446     1  0.7096     0.3435 0.504 0.028 0.004 0.204 0.260
#> GSM447453     1  0.3850     0.5149 0.816 0.012 0.000 0.044 0.128
#> GSM447455     2  0.3675     0.6679 0.000 0.828 0.124 0.016 0.032
#> GSM447456     2  0.6379     0.3904 0.120 0.624 0.000 0.052 0.204
#> GSM447459     4  0.6331     0.7336 0.000 0.192 0.144 0.624 0.040
#> GSM447466     1  0.1143     0.5135 0.968 0.008 0.004 0.008 0.012
#> GSM447470     1  0.5758    -0.1020 0.476 0.040 0.004 0.016 0.464
#> GSM447474     5  0.5290     0.1958 0.448 0.024 0.004 0.008 0.516
#> GSM447475     2  0.3392     0.6123 0.004 0.832 0.012 0.008 0.144
#> GSM447398     2  0.2795     0.5879 0.000 0.880 0.000 0.064 0.056
#> GSM447399     2  0.7260     0.0944 0.000 0.444 0.316 0.204 0.036
#> GSM447408     4  0.5144     0.4860 0.000 0.448 0.008 0.520 0.024
#> GSM447410     2  0.5536    -0.4011 0.000 0.504 0.008 0.440 0.048
#> GSM447414     3  0.2947     0.7618 0.000 0.088 0.876 0.016 0.020
#> GSM447417     4  0.5614     0.6288 0.000 0.312 0.056 0.612 0.020
#> GSM447419     5  0.5067     0.6654 0.312 0.008 0.016 0.016 0.648
#> GSM447420     5  0.6392     0.3804 0.120 0.028 0.228 0.008 0.616
#> GSM447421     5  0.5182     0.6707 0.384 0.000 0.008 0.032 0.576
#> GSM447423     3  0.3612     0.7181 0.000 0.228 0.764 0.000 0.008
#> GSM447436     1  0.6780     0.3738 0.564 0.028 0.004 0.208 0.196
#> GSM447437     1  0.0727     0.5290 0.980 0.004 0.000 0.004 0.012
#> GSM447438     2  0.5683    -0.3839 0.000 0.500 0.004 0.428 0.068
#> GSM447447     1  0.6545     0.3529 0.560 0.036 0.004 0.096 0.304
#> GSM447454     2  0.3551     0.5505 0.000 0.772 0.220 0.000 0.008
#> GSM447457     2  0.3690     0.5514 0.000 0.764 0.224 0.000 0.012
#> GSM447460     2  0.5344     0.3426 0.000 0.580 0.372 0.032 0.016
#> GSM447465     3  0.4610     0.0800 0.000 0.432 0.556 0.012 0.000
#> GSM447471     1  0.5510     0.1637 0.680 0.008 0.020 0.060 0.232
#> GSM447476     4  0.6397     0.3513 0.008 0.368 0.008 0.508 0.108

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     3  0.5526    0.62826 0.000 0.000 0.636 0.192 0.140 0.032
#> GSM447411     1  0.0837    0.55496 0.972 0.000 0.004 0.000 0.004 0.020
#> GSM447413     3  0.4440    0.79895 0.000 0.032 0.772 0.132 0.040 0.024
#> GSM447415     1  0.5136    0.26144 0.604 0.016 0.008 0.000 0.048 0.324
#> GSM447416     3  0.3099    0.82263 0.000 0.096 0.848 0.044 0.012 0.000
#> GSM447425     4  0.4829    0.49187 0.000 0.024 0.012 0.608 0.344 0.012
#> GSM447430     4  0.1594    0.68027 0.000 0.052 0.016 0.932 0.000 0.000
#> GSM447435     1  0.0777    0.55616 0.972 0.000 0.004 0.000 0.000 0.024
#> GSM447440     1  0.3777    0.49822 0.816 0.016 0.012 0.000 0.056 0.100
#> GSM447444     1  0.7295   -0.10264 0.384 0.060 0.016 0.000 0.244 0.296
#> GSM447448     1  0.5936    0.00192 0.548 0.028 0.004 0.000 0.304 0.116
#> GSM447449     2  0.4336    0.71490 0.000 0.776 0.128 0.052 0.032 0.012
#> GSM447450     1  0.3075    0.52887 0.856 0.004 0.012 0.000 0.040 0.088
#> GSM447452     4  0.2752    0.63129 0.000 0.020 0.012 0.864 0.104 0.000
#> GSM447458     2  0.3404    0.73425 0.004 0.856 0.060 0.028 0.036 0.016
#> GSM447461     2  0.2607    0.71175 0.000 0.892 0.012 0.036 0.052 0.008
#> GSM447464     1  0.4500   -0.15762 0.492 0.000 0.012 0.000 0.012 0.484
#> GSM447468     6  0.5001    0.56186 0.228 0.016 0.008 0.000 0.072 0.676
#> GSM447472     6  0.6444    0.25447 0.336 0.024 0.008 0.000 0.172 0.460
#> GSM447400     6  0.2833    0.65745 0.148 0.000 0.012 0.000 0.004 0.836
#> GSM447402     4  0.6779    0.43136 0.000 0.212 0.028 0.408 0.340 0.012
#> GSM447403     1  0.6423    0.29336 0.540 0.024 0.032 0.000 0.128 0.276
#> GSM447405     5  0.6215    0.58895 0.260 0.028 0.004 0.020 0.576 0.112
#> GSM447418     3  0.3325    0.80955 0.000 0.084 0.848 0.036 0.024 0.008
#> GSM447422     3  0.3443    0.78820 0.000 0.128 0.824 0.016 0.024 0.008
#> GSM447424     3  0.2702    0.81315 0.000 0.036 0.868 0.092 0.000 0.004
#> GSM447427     3  0.2748    0.79728 0.000 0.120 0.856 0.000 0.016 0.008
#> GSM447428     6  0.6071    0.13371 0.008 0.028 0.420 0.000 0.096 0.448
#> GSM447429     6  0.3536    0.56372 0.252 0.004 0.000 0.000 0.008 0.736
#> GSM447431     3  0.5965    0.69829 0.000 0.152 0.652 0.112 0.060 0.024
#> GSM447432     2  0.3198    0.74093 0.000 0.852 0.092 0.020 0.028 0.008
#> GSM447434     6  0.5824    0.57909 0.132 0.024 0.012 0.000 0.220 0.612
#> GSM447442     2  0.4133    0.72401 0.000 0.792 0.120 0.040 0.036 0.012
#> GSM447451     2  0.2349    0.71318 0.000 0.892 0.008 0.000 0.080 0.020
#> GSM447462     6  0.2865    0.65762 0.140 0.000 0.012 0.000 0.008 0.840
#> GSM447463     1  0.1257    0.54312 0.952 0.000 0.000 0.000 0.020 0.028
#> GSM447467     2  0.4594    0.62807 0.024 0.752 0.008 0.000 0.108 0.108
#> GSM447469     4  0.6761    0.60625 0.000 0.124 0.100 0.568 0.184 0.024
#> GSM447473     1  0.6423    0.29336 0.540 0.024 0.032 0.000 0.128 0.276
#> GSM447404     1  0.6291    0.30906 0.560 0.024 0.032 0.000 0.116 0.268
#> GSM447406     4  0.1738    0.67909 0.000 0.052 0.016 0.928 0.004 0.000
#> GSM447407     4  0.2462    0.65562 0.000 0.032 0.012 0.892 0.064 0.000
#> GSM447409     1  0.2678    0.51496 0.860 0.004 0.000 0.000 0.116 0.020
#> GSM447412     3  0.3953    0.77295 0.000 0.188 0.764 0.004 0.028 0.016
#> GSM447426     3  0.5526    0.62826 0.000 0.000 0.636 0.192 0.140 0.032
#> GSM447433     5  0.5982    0.58220 0.324 0.012 0.012 0.020 0.556 0.076
#> GSM447439     4  0.1594    0.68027 0.000 0.052 0.016 0.932 0.000 0.000
#> GSM447441     2  0.4560    0.71254 0.000 0.748 0.152 0.048 0.048 0.004
#> GSM447443     6  0.4826    0.64830 0.112 0.016 0.016 0.000 0.124 0.732
#> GSM447445     1  0.2959    0.46560 0.852 0.000 0.008 0.000 0.104 0.036
#> GSM447446     5  0.5771    0.58622 0.320 0.016 0.000 0.020 0.564 0.080
#> GSM447453     1  0.4020    0.32506 0.744 0.000 0.008 0.000 0.204 0.044
#> GSM447455     2  0.3808    0.73361 0.000 0.812 0.116 0.028 0.032 0.012
#> GSM447456     2  0.7082    0.32894 0.128 0.544 0.012 0.036 0.220 0.060
#> GSM447459     4  0.1594    0.68027 0.000 0.052 0.016 0.932 0.000 0.000
#> GSM447466     1  0.1793    0.55293 0.928 0.004 0.000 0.000 0.036 0.032
#> GSM447470     1  0.6910   -0.13427 0.392 0.044 0.016 0.000 0.168 0.380
#> GSM447474     6  0.6205    0.32601 0.304 0.032 0.020 0.000 0.100 0.544
#> GSM447475     2  0.2697    0.70471 0.004 0.872 0.004 0.000 0.092 0.028
#> GSM447398     2  0.3829    0.61204 0.000 0.792 0.000 0.124 0.072 0.012
#> GSM447399     4  0.7335   -0.11649 0.000 0.324 0.280 0.328 0.044 0.024
#> GSM447408     4  0.5658    0.57452 0.000 0.280 0.008 0.588 0.108 0.016
#> GSM447410     4  0.6153    0.40721 0.000 0.388 0.008 0.452 0.136 0.016
#> GSM447414     3  0.4279    0.80577 0.000 0.036 0.792 0.104 0.044 0.024
#> GSM447417     4  0.6283    0.61859 0.000 0.168 0.040 0.592 0.180 0.020
#> GSM447419     6  0.4367    0.65719 0.108 0.004 0.016 0.000 0.112 0.760
#> GSM447420     6  0.5552    0.51656 0.028 0.024 0.196 0.000 0.088 0.664
#> GSM447421     6  0.2982    0.64932 0.152 0.000 0.012 0.000 0.008 0.828
#> GSM447423     3  0.3301    0.74308 0.000 0.216 0.772 0.000 0.008 0.004
#> GSM447436     5  0.5757    0.47654 0.392 0.016 0.000 0.020 0.508 0.064
#> GSM447437     1  0.0820    0.54473 0.972 0.000 0.000 0.000 0.016 0.012
#> GSM447438     4  0.6283    0.37529 0.000 0.384 0.000 0.408 0.188 0.020
#> GSM447447     1  0.6192   -0.38665 0.428 0.024 0.012 0.000 0.428 0.108
#> GSM447454     2  0.3721    0.69546 0.000 0.784 0.168 0.000 0.032 0.016
#> GSM447457     2  0.3372    0.69222 0.000 0.796 0.176 0.000 0.008 0.020
#> GSM447460     2  0.5836    0.45019 0.000 0.568 0.280 0.128 0.016 0.008
#> GSM447465     2  0.5451    0.13678 0.000 0.456 0.444 0.092 0.000 0.008
#> GSM447471     1  0.6423    0.29336 0.540 0.024 0.032 0.000 0.128 0.276
#> GSM447476     5  0.6639   -0.40323 0.000 0.276 0.004 0.332 0.368 0.020

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n gender(p) agent(p) k
#> MAD:kmeans 78     0.821    0.497 2
#> MAD:kmeans 63     0.519    0.258 3
#> MAD:kmeans 56     0.412    0.257 4
#> MAD:kmeans 50     0.783    0.108 5
#> MAD:kmeans 53     0.725    0.327 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.981       0.992         0.5065 0.494   0.494
#> 3 3 0.770           0.825       0.900         0.2726 0.784   0.591
#> 4 4 0.682           0.804       0.852         0.1130 0.920   0.776
#> 5 5 0.668           0.643       0.786         0.0945 0.931   0.761
#> 6 6 0.668           0.536       0.738         0.0403 0.949   0.781

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2  0.0000      0.997 0.000 1.000
#> GSM447411     1  0.0000      0.986 1.000 0.000
#> GSM447413     2  0.0000      0.997 0.000 1.000
#> GSM447415     1  0.0000      0.986 1.000 0.000
#> GSM447416     2  0.0000      0.997 0.000 1.000
#> GSM447425     2  0.0000      0.997 0.000 1.000
#> GSM447430     2  0.0000      0.997 0.000 1.000
#> GSM447435     1  0.0000      0.986 1.000 0.000
#> GSM447440     1  0.0000      0.986 1.000 0.000
#> GSM447444     1  0.0000      0.986 1.000 0.000
#> GSM447448     1  0.0000      0.986 1.000 0.000
#> GSM447449     2  0.0000      0.997 0.000 1.000
#> GSM447450     1  0.0000      0.986 1.000 0.000
#> GSM447452     2  0.0000      0.997 0.000 1.000
#> GSM447458     2  0.0000      0.997 0.000 1.000
#> GSM447461     2  0.0000      0.997 0.000 1.000
#> GSM447464     1  0.0000      0.986 1.000 0.000
#> GSM447468     1  0.0000      0.986 1.000 0.000
#> GSM447472     1  0.0000      0.986 1.000 0.000
#> GSM447400     1  0.0000      0.986 1.000 0.000
#> GSM447402     2  0.0000      0.997 0.000 1.000
#> GSM447403     1  0.0000      0.986 1.000 0.000
#> GSM447405     1  0.0000      0.986 1.000 0.000
#> GSM447418     2  0.0000      0.997 0.000 1.000
#> GSM447422     2  0.0000      0.997 0.000 1.000
#> GSM447424     2  0.0000      0.997 0.000 1.000
#> GSM447427     2  0.0000      0.997 0.000 1.000
#> GSM447428     1  0.5629      0.846 0.868 0.132
#> GSM447429     1  0.0000      0.986 1.000 0.000
#> GSM447431     2  0.0000      0.997 0.000 1.000
#> GSM447432     2  0.0000      0.997 0.000 1.000
#> GSM447434     1  0.0000      0.986 1.000 0.000
#> GSM447442     2  0.0000      0.997 0.000 1.000
#> GSM447451     2  0.0000      0.997 0.000 1.000
#> GSM447462     1  0.0000      0.986 1.000 0.000
#> GSM447463     1  0.0000      0.986 1.000 0.000
#> GSM447467     1  0.2423      0.949 0.960 0.040
#> GSM447469     2  0.0000      0.997 0.000 1.000
#> GSM447473     1  0.0000      0.986 1.000 0.000
#> GSM447404     1  0.0000      0.986 1.000 0.000
#> GSM447406     2  0.0000      0.997 0.000 1.000
#> GSM447407     2  0.0000      0.997 0.000 1.000
#> GSM447409     1  0.0000      0.986 1.000 0.000
#> GSM447412     2  0.0000      0.997 0.000 1.000
#> GSM447426     2  0.0000      0.997 0.000 1.000
#> GSM447433     1  0.0000      0.986 1.000 0.000
#> GSM447439     2  0.0000      0.997 0.000 1.000
#> GSM447441     2  0.0000      0.997 0.000 1.000
#> GSM447443     1  0.0000      0.986 1.000 0.000
#> GSM447445     1  0.0000      0.986 1.000 0.000
#> GSM447446     1  0.0000      0.986 1.000 0.000
#> GSM447453     1  0.0000      0.986 1.000 0.000
#> GSM447455     2  0.0000      0.997 0.000 1.000
#> GSM447456     1  0.0938      0.976 0.988 0.012
#> GSM447459     2  0.0000      0.997 0.000 1.000
#> GSM447466     1  0.0000      0.986 1.000 0.000
#> GSM447470     1  0.0000      0.986 1.000 0.000
#> GSM447474     1  0.0000      0.986 1.000 0.000
#> GSM447475     2  0.5178      0.866 0.116 0.884
#> GSM447398     2  0.0000      0.997 0.000 1.000
#> GSM447399     2  0.0000      0.997 0.000 1.000
#> GSM447408     2  0.0000      0.997 0.000 1.000
#> GSM447410     2  0.0000      0.997 0.000 1.000
#> GSM447414     2  0.0000      0.997 0.000 1.000
#> GSM447417     2  0.0000      0.997 0.000 1.000
#> GSM447419     1  0.0000      0.986 1.000 0.000
#> GSM447420     1  0.0000      0.986 1.000 0.000
#> GSM447421     1  0.0000      0.986 1.000 0.000
#> GSM447423     2  0.0000      0.997 0.000 1.000
#> GSM447436     1  0.0000      0.986 1.000 0.000
#> GSM447437     1  0.0000      0.986 1.000 0.000
#> GSM447438     2  0.0000      0.997 0.000 1.000
#> GSM447447     1  0.0000      0.986 1.000 0.000
#> GSM447454     2  0.0000      0.997 0.000 1.000
#> GSM447457     2  0.0000      0.997 0.000 1.000
#> GSM447460     2  0.0000      0.997 0.000 1.000
#> GSM447465     2  0.0000      0.997 0.000 1.000
#> GSM447471     1  0.0000      0.986 1.000 0.000
#> GSM447476     1  0.9286      0.476 0.656 0.344

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.0000      0.764 0.000 0.000 1.000
#> GSM447411     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447413     3  0.0000      0.764 0.000 0.000 1.000
#> GSM447415     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447416     3  0.0000      0.764 0.000 0.000 1.000
#> GSM447425     2  0.4605      0.865 0.000 0.796 0.204
#> GSM447430     2  0.4605      0.865 0.000 0.796 0.204
#> GSM447435     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447440     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447444     1  0.0237      0.997 0.996 0.004 0.000
#> GSM447448     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447449     3  0.4235      0.645 0.000 0.176 0.824
#> GSM447450     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447452     2  0.4605      0.865 0.000 0.796 0.204
#> GSM447458     2  0.5882      0.672 0.000 0.652 0.348
#> GSM447461     3  0.6302      0.441 0.000 0.480 0.520
#> GSM447464     1  0.0237      0.997 0.996 0.004 0.000
#> GSM447468     1  0.0237      0.997 0.996 0.004 0.000
#> GSM447472     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447400     1  0.0237      0.997 0.996 0.004 0.000
#> GSM447402     2  0.4605      0.865 0.000 0.796 0.204
#> GSM447403     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447405     1  0.0747      0.984 0.984 0.016 0.000
#> GSM447418     3  0.0000      0.764 0.000 0.000 1.000
#> GSM447422     3  0.0000      0.764 0.000 0.000 1.000
#> GSM447424     3  0.0000      0.764 0.000 0.000 1.000
#> GSM447427     3  0.0000      0.764 0.000 0.000 1.000
#> GSM447428     3  0.5754      0.512 0.296 0.004 0.700
#> GSM447429     1  0.0237      0.997 0.996 0.004 0.000
#> GSM447431     3  0.0237      0.764 0.000 0.004 0.996
#> GSM447432     3  0.5397      0.494 0.000 0.280 0.720
#> GSM447434     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447442     3  0.5327      0.507 0.000 0.272 0.728
#> GSM447451     3  0.6062      0.586 0.000 0.384 0.616
#> GSM447462     1  0.0237      0.997 0.996 0.004 0.000
#> GSM447463     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447467     3  0.7181      0.203 0.468 0.024 0.508
#> GSM447469     2  0.4654      0.861 0.000 0.792 0.208
#> GSM447473     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447404     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447406     2  0.4605      0.865 0.000 0.796 0.204
#> GSM447407     2  0.4605      0.865 0.000 0.796 0.204
#> GSM447409     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447412     3  0.3267      0.729 0.000 0.116 0.884
#> GSM447426     3  0.0000      0.764 0.000 0.000 1.000
#> GSM447433     1  0.0592      0.988 0.988 0.012 0.000
#> GSM447439     2  0.4605      0.865 0.000 0.796 0.204
#> GSM447441     3  0.5968      0.601 0.000 0.364 0.636
#> GSM447443     1  0.0237      0.997 0.996 0.004 0.000
#> GSM447445     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447446     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447453     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447455     3  0.5363      0.500 0.000 0.276 0.724
#> GSM447456     2  0.5098      0.582 0.248 0.752 0.000
#> GSM447459     2  0.4605      0.865 0.000 0.796 0.204
#> GSM447466     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447470     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447474     1  0.0237      0.997 0.996 0.004 0.000
#> GSM447475     3  0.6302      0.441 0.000 0.480 0.520
#> GSM447398     2  0.0237      0.773 0.000 0.996 0.004
#> GSM447399     2  0.6026      0.646 0.000 0.624 0.376
#> GSM447408     2  0.0424      0.774 0.000 0.992 0.008
#> GSM447410     2  0.0237      0.773 0.000 0.996 0.004
#> GSM447414     3  0.0000      0.764 0.000 0.000 1.000
#> GSM447417     2  0.4605      0.865 0.000 0.796 0.204
#> GSM447419     1  0.0237      0.997 0.996 0.004 0.000
#> GSM447420     3  0.6518      0.108 0.484 0.004 0.512
#> GSM447421     1  0.0237      0.997 0.996 0.004 0.000
#> GSM447423     3  0.4235      0.699 0.000 0.176 0.824
#> GSM447436     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447437     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447438     2  0.0237      0.773 0.000 0.996 0.004
#> GSM447447     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447454     3  0.4291      0.696 0.000 0.180 0.820
#> GSM447457     3  0.4235      0.699 0.000 0.176 0.824
#> GSM447460     3  0.4235      0.645 0.000 0.176 0.824
#> GSM447465     3  0.0000      0.764 0.000 0.000 1.000
#> GSM447471     1  0.0000      0.998 1.000 0.000 0.000
#> GSM447476     2  0.0237      0.770 0.004 0.996 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.3444      0.815 0.000 0.000 0.816 0.184
#> GSM447411     1  0.0779      0.925 0.980 0.016 0.004 0.000
#> GSM447413     3  0.3356      0.818 0.000 0.000 0.824 0.176
#> GSM447415     1  0.1004      0.924 0.972 0.024 0.004 0.000
#> GSM447416     3  0.3172      0.820 0.000 0.000 0.840 0.160
#> GSM447425     4  0.0707      0.859 0.000 0.020 0.000 0.980
#> GSM447430     4  0.1211      0.868 0.000 0.040 0.000 0.960
#> GSM447435     1  0.1059      0.926 0.972 0.016 0.012 0.000
#> GSM447440     1  0.1174      0.926 0.968 0.020 0.012 0.000
#> GSM447444     1  0.3991      0.887 0.832 0.048 0.120 0.000
#> GSM447448     1  0.1356      0.923 0.960 0.032 0.008 0.000
#> GSM447449     2  0.6449      0.730 0.000 0.640 0.140 0.220
#> GSM447450     1  0.1297      0.926 0.964 0.020 0.016 0.000
#> GSM447452     4  0.0188      0.867 0.000 0.004 0.000 0.996
#> GSM447458     2  0.5687      0.741 0.000 0.684 0.068 0.248
#> GSM447461     2  0.3144      0.745 0.000 0.884 0.072 0.044
#> GSM447464     1  0.3674      0.886 0.852 0.044 0.104 0.000
#> GSM447468     1  0.3144      0.902 0.884 0.044 0.072 0.000
#> GSM447472     1  0.1767      0.924 0.944 0.012 0.044 0.000
#> GSM447400     1  0.4144      0.876 0.828 0.068 0.104 0.000
#> GSM447402     4  0.1724      0.846 0.000 0.020 0.032 0.948
#> GSM447403     1  0.1004      0.924 0.972 0.024 0.004 0.000
#> GSM447405     1  0.4419      0.771 0.792 0.028 0.004 0.176
#> GSM447418     3  0.2814      0.815 0.000 0.000 0.868 0.132
#> GSM447422     3  0.2814      0.815 0.000 0.000 0.868 0.132
#> GSM447424     3  0.3219      0.820 0.000 0.000 0.836 0.164
#> GSM447427     3  0.2760      0.814 0.000 0.000 0.872 0.128
#> GSM447428     3  0.3266      0.617 0.084 0.040 0.876 0.000
#> GSM447429     1  0.3820      0.886 0.848 0.064 0.088 0.000
#> GSM447431     3  0.4552      0.790 0.000 0.044 0.784 0.172
#> GSM447432     2  0.6295      0.746 0.000 0.656 0.132 0.212
#> GSM447434     1  0.1209      0.924 0.964 0.032 0.004 0.000
#> GSM447442     2  0.6327      0.745 0.000 0.652 0.132 0.216
#> GSM447451     2  0.3015      0.740 0.000 0.884 0.092 0.024
#> GSM447462     1  0.4144      0.876 0.828 0.068 0.104 0.000
#> GSM447463     1  0.1820      0.923 0.944 0.036 0.020 0.000
#> GSM447467     2  0.6070      0.640 0.076 0.712 0.188 0.024
#> GSM447469     4  0.1488      0.854 0.000 0.012 0.032 0.956
#> GSM447473     1  0.1004      0.924 0.972 0.024 0.004 0.000
#> GSM447404     1  0.1004      0.924 0.972 0.024 0.004 0.000
#> GSM447406     4  0.1211      0.868 0.000 0.040 0.000 0.960
#> GSM447407     4  0.0188      0.867 0.000 0.004 0.000 0.996
#> GSM447409     1  0.0188      0.926 0.996 0.004 0.000 0.000
#> GSM447412     3  0.3787      0.808 0.000 0.036 0.840 0.124
#> GSM447426     3  0.3444      0.815 0.000 0.000 0.816 0.184
#> GSM447433     1  0.3856      0.818 0.832 0.032 0.000 0.136
#> GSM447439     4  0.1211      0.868 0.000 0.040 0.000 0.960
#> GSM447441     2  0.4015      0.745 0.000 0.832 0.116 0.052
#> GSM447443     1  0.3312      0.898 0.876 0.052 0.072 0.000
#> GSM447445     1  0.1356      0.924 0.960 0.032 0.008 0.000
#> GSM447446     1  0.2023      0.913 0.940 0.028 0.004 0.028
#> GSM447453     1  0.0921      0.924 0.972 0.028 0.000 0.000
#> GSM447455     2  0.6265      0.743 0.000 0.656 0.124 0.220
#> GSM447456     2  0.5802      0.605 0.208 0.712 0.012 0.068
#> GSM447459     4  0.1211      0.868 0.000 0.040 0.000 0.960
#> GSM447466     1  0.1297      0.926 0.964 0.020 0.016 0.000
#> GSM447470     1  0.2256      0.920 0.924 0.056 0.020 0.000
#> GSM447474     1  0.4374      0.867 0.812 0.068 0.120 0.000
#> GSM447475     2  0.1911      0.736 0.004 0.944 0.032 0.020
#> GSM447398     2  0.2921      0.670 0.000 0.860 0.000 0.140
#> GSM447399     4  0.4728      0.599 0.000 0.032 0.216 0.752
#> GSM447408     4  0.3942      0.738 0.000 0.236 0.000 0.764
#> GSM447410     4  0.4103      0.723 0.000 0.256 0.000 0.744
#> GSM447414     3  0.3266      0.819 0.000 0.000 0.832 0.168
#> GSM447417     4  0.0469      0.864 0.000 0.012 0.000 0.988
#> GSM447419     1  0.5646      0.636 0.656 0.048 0.296 0.000
#> GSM447420     3  0.5657      0.364 0.244 0.068 0.688 0.000
#> GSM447421     1  0.4144      0.876 0.828 0.068 0.104 0.000
#> GSM447423     3  0.3495      0.712 0.000 0.140 0.844 0.016
#> GSM447436     1  0.2123      0.914 0.936 0.032 0.004 0.028
#> GSM447437     1  0.0817      0.924 0.976 0.024 0.000 0.000
#> GSM447438     4  0.4072      0.723 0.000 0.252 0.000 0.748
#> GSM447447     1  0.1489      0.923 0.952 0.044 0.004 0.000
#> GSM447454     3  0.5376      0.356 0.000 0.396 0.588 0.016
#> GSM447457     3  0.5353      0.241 0.000 0.432 0.556 0.012
#> GSM447460     2  0.7416      0.500 0.000 0.516 0.244 0.240
#> GSM447465     3  0.6780      0.525 0.000 0.232 0.604 0.164
#> GSM447471     1  0.1004      0.924 0.972 0.024 0.004 0.000
#> GSM447476     4  0.4008      0.726 0.000 0.244 0.000 0.756

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     3  0.2629     0.8342 0.000 0.000 0.860 0.136 0.004
#> GSM447411     1  0.0703     0.6401 0.976 0.000 0.000 0.000 0.024
#> GSM447413     3  0.2230     0.8467 0.000 0.000 0.884 0.116 0.000
#> GSM447415     1  0.4060     0.2202 0.640 0.000 0.000 0.000 0.360
#> GSM447416     3  0.1341     0.8539 0.000 0.000 0.944 0.056 0.000
#> GSM447425     4  0.2429     0.8483 0.000 0.008 0.020 0.904 0.068
#> GSM447430     4  0.1106     0.8757 0.000 0.012 0.024 0.964 0.000
#> GSM447435     1  0.1270     0.6357 0.948 0.000 0.000 0.000 0.052
#> GSM447440     1  0.1851     0.6239 0.912 0.000 0.000 0.000 0.088
#> GSM447444     1  0.4250     0.5257 0.744 0.008 0.016 0.004 0.228
#> GSM447448     1  0.2377     0.6358 0.872 0.000 0.000 0.000 0.128
#> GSM447449     2  0.4974     0.7941 0.000 0.756 0.092 0.116 0.036
#> GSM447450     1  0.2230     0.6075 0.884 0.000 0.000 0.000 0.116
#> GSM447452     4  0.1498     0.8747 0.000 0.016 0.024 0.952 0.008
#> GSM447458     2  0.4665     0.7984 0.000 0.776 0.072 0.120 0.032
#> GSM447461     2  0.1503     0.7847 0.000 0.952 0.008 0.020 0.020
#> GSM447464     1  0.4225     0.0753 0.632 0.000 0.004 0.000 0.364
#> GSM447468     5  0.4341     0.5908 0.404 0.000 0.004 0.000 0.592
#> GSM447472     1  0.4242     0.1424 0.572 0.000 0.000 0.000 0.428
#> GSM447400     5  0.4029     0.7357 0.316 0.000 0.004 0.000 0.680
#> GSM447402     4  0.3239     0.8281 0.000 0.020 0.044 0.868 0.068
#> GSM447403     1  0.4114     0.2622 0.624 0.000 0.000 0.000 0.376
#> GSM447405     1  0.5328     0.4482 0.584 0.000 0.000 0.064 0.352
#> GSM447418     3  0.1921     0.8431 0.000 0.012 0.932 0.044 0.012
#> GSM447422     3  0.1844     0.8432 0.000 0.012 0.936 0.040 0.012
#> GSM447424     3  0.1671     0.8545 0.000 0.000 0.924 0.076 0.000
#> GSM447427     3  0.0865     0.8496 0.000 0.004 0.972 0.024 0.000
#> GSM447428     3  0.4843     0.5100 0.044 0.000 0.676 0.004 0.276
#> GSM447429     5  0.3966     0.7264 0.336 0.000 0.000 0.000 0.664
#> GSM447431     3  0.2775     0.8405 0.000 0.020 0.876 0.100 0.004
#> GSM447432     2  0.4830     0.7973 0.000 0.768 0.104 0.092 0.036
#> GSM447434     1  0.4291    -0.0874 0.536 0.000 0.000 0.000 0.464
#> GSM447442     2  0.5072     0.7881 0.000 0.748 0.120 0.096 0.036
#> GSM447451     2  0.1278     0.7866 0.000 0.960 0.004 0.016 0.020
#> GSM447462     5  0.3969     0.7225 0.304 0.000 0.004 0.000 0.692
#> GSM447463     1  0.1608     0.6189 0.928 0.000 0.000 0.000 0.072
#> GSM447467     2  0.4467     0.7527 0.020 0.768 0.032 0.004 0.176
#> GSM447469     4  0.2476     0.8570 0.000 0.020 0.064 0.904 0.012
#> GSM447473     1  0.4114     0.2622 0.624 0.000 0.000 0.000 0.376
#> GSM447404     1  0.4060     0.2615 0.640 0.000 0.000 0.000 0.360
#> GSM447406     4  0.1211     0.8761 0.000 0.016 0.024 0.960 0.000
#> GSM447407     4  0.1372     0.8745 0.000 0.016 0.024 0.956 0.004
#> GSM447409     1  0.2574     0.6345 0.876 0.000 0.000 0.012 0.112
#> GSM447412     3  0.1579     0.8471 0.000 0.024 0.944 0.032 0.000
#> GSM447426     3  0.2629     0.8342 0.000 0.000 0.860 0.136 0.004
#> GSM447433     1  0.4028     0.5727 0.768 0.000 0.000 0.040 0.192
#> GSM447439     4  0.1211     0.8761 0.000 0.016 0.024 0.960 0.000
#> GSM447441     2  0.3574     0.7878 0.000 0.840 0.108 0.032 0.020
#> GSM447443     5  0.4225     0.6951 0.364 0.000 0.004 0.000 0.632
#> GSM447445     1  0.1792     0.6340 0.916 0.000 0.000 0.000 0.084
#> GSM447446     1  0.3988     0.5687 0.732 0.000 0.000 0.016 0.252
#> GSM447453     1  0.2127     0.6311 0.892 0.000 0.000 0.000 0.108
#> GSM447455     2  0.4839     0.7843 0.000 0.760 0.108 0.108 0.024
#> GSM447456     2  0.6024     0.5378 0.256 0.628 0.000 0.048 0.068
#> GSM447459     4  0.1211     0.8761 0.000 0.016 0.024 0.960 0.000
#> GSM447466     1  0.1341     0.6327 0.944 0.000 0.000 0.000 0.056
#> GSM447470     1  0.3010     0.5120 0.824 0.000 0.000 0.004 0.172
#> GSM447474     1  0.5052    -0.1315 0.536 0.000 0.020 0.008 0.436
#> GSM447475     2  0.1405     0.7874 0.000 0.956 0.008 0.016 0.020
#> GSM447398     2  0.2260     0.7567 0.000 0.908 0.000 0.064 0.028
#> GSM447399     4  0.4586     0.4187 0.000 0.016 0.336 0.644 0.004
#> GSM447408     4  0.3419     0.7854 0.000 0.180 0.016 0.804 0.000
#> GSM447410     4  0.3815     0.7595 0.000 0.220 0.012 0.764 0.004
#> GSM447414     3  0.2068     0.8515 0.000 0.000 0.904 0.092 0.004
#> GSM447417     4  0.1716     0.8726 0.000 0.016 0.024 0.944 0.016
#> GSM447419     5  0.4572     0.6857 0.280 0.000 0.036 0.000 0.684
#> GSM447420     5  0.6116     0.1379 0.100 0.000 0.400 0.008 0.492
#> GSM447421     5  0.4009     0.7396 0.312 0.000 0.004 0.000 0.684
#> GSM447423     3  0.1628     0.8283 0.000 0.056 0.936 0.008 0.000
#> GSM447436     1  0.4329     0.5280 0.672 0.000 0.000 0.016 0.312
#> GSM447437     1  0.0290     0.6435 0.992 0.000 0.000 0.000 0.008
#> GSM447438     4  0.3750     0.7487 0.000 0.232 0.000 0.756 0.012
#> GSM447447     1  0.3053     0.6049 0.828 0.000 0.000 0.008 0.164
#> GSM447454     3  0.4318     0.5690 0.000 0.296 0.688 0.008 0.008
#> GSM447457     3  0.4777     0.2002 0.000 0.436 0.548 0.008 0.008
#> GSM447460     2  0.6125     0.5053 0.000 0.584 0.260 0.148 0.008
#> GSM447465     3  0.5282     0.6184 0.000 0.220 0.676 0.100 0.004
#> GSM447471     1  0.4114     0.2622 0.624 0.000 0.000 0.000 0.376
#> GSM447476     4  0.4264     0.7457 0.000 0.212 0.000 0.744 0.044

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     3  0.2149     0.8091 0.000 0.004 0.888 0.104 0.004 0.000
#> GSM447411     1  0.1391     0.4166 0.944 0.000 0.000 0.000 0.016 0.040
#> GSM447413     3  0.2196     0.8064 0.000 0.004 0.884 0.108 0.004 0.000
#> GSM447415     1  0.5144     0.2324 0.536 0.000 0.000 0.000 0.092 0.372
#> GSM447416     3  0.1180     0.8143 0.000 0.004 0.960 0.024 0.008 0.004
#> GSM447425     4  0.3721     0.7222 0.000 0.004 0.016 0.728 0.252 0.000
#> GSM447430     4  0.0458     0.8236 0.000 0.000 0.016 0.984 0.000 0.000
#> GSM447435     1  0.1983     0.4348 0.908 0.000 0.000 0.000 0.020 0.072
#> GSM447440     1  0.2230     0.4364 0.892 0.000 0.000 0.000 0.024 0.084
#> GSM447444     1  0.5252     0.0200 0.624 0.008 0.000 0.000 0.236 0.132
#> GSM447448     1  0.3523     0.1089 0.780 0.000 0.000 0.000 0.180 0.040
#> GSM447449     2  0.3151     0.7495 0.000 0.832 0.028 0.132 0.004 0.004
#> GSM447450     1  0.2112     0.4365 0.896 0.000 0.000 0.000 0.016 0.088
#> GSM447452     4  0.1801     0.8216 0.000 0.004 0.016 0.924 0.056 0.000
#> GSM447458     2  0.3262     0.7509 0.000 0.828 0.028 0.132 0.008 0.004
#> GSM447461     2  0.5419     0.6857 0.000 0.684 0.024 0.052 0.188 0.052
#> GSM447464     1  0.3961     0.0247 0.556 0.000 0.000 0.000 0.004 0.440
#> GSM447468     6  0.4958     0.2138 0.364 0.000 0.000 0.000 0.076 0.560
#> GSM447472     1  0.5642     0.1232 0.460 0.000 0.000 0.000 0.152 0.388
#> GSM447400     6  0.2489     0.6639 0.128 0.000 0.000 0.000 0.012 0.860
#> GSM447402     4  0.3946     0.7290 0.000 0.028 0.004 0.736 0.228 0.004
#> GSM447403     1  0.5379     0.2334 0.516 0.000 0.000 0.000 0.120 0.364
#> GSM447405     5  0.5227     0.7685 0.368 0.000 0.000 0.004 0.540 0.088
#> GSM447418     3  0.1794     0.8160 0.000 0.036 0.924 0.040 0.000 0.000
#> GSM447422     3  0.2129     0.8112 0.000 0.056 0.904 0.040 0.000 0.000
#> GSM447424     3  0.1219     0.8194 0.000 0.004 0.948 0.048 0.000 0.000
#> GSM447427     3  0.1096     0.8124 0.000 0.020 0.964 0.008 0.004 0.004
#> GSM447428     3  0.5342     0.4175 0.028 0.000 0.600 0.000 0.072 0.300
#> GSM447429     6  0.3279     0.6337 0.176 0.000 0.000 0.000 0.028 0.796
#> GSM447431     3  0.4594     0.6953 0.000 0.016 0.760 0.124 0.072 0.028
#> GSM447432     2  0.3331     0.7525 0.000 0.836 0.056 0.096 0.004 0.008
#> GSM447434     1  0.5355     0.0662 0.468 0.000 0.000 0.000 0.108 0.424
#> GSM447442     2  0.3244     0.7468 0.000 0.832 0.064 0.100 0.000 0.004
#> GSM447451     2  0.4956     0.6943 0.000 0.696 0.012 0.028 0.212 0.052
#> GSM447462     6  0.2783     0.6477 0.148 0.000 0.000 0.000 0.016 0.836
#> GSM447463     1  0.2094     0.4031 0.900 0.000 0.000 0.000 0.020 0.080
#> GSM447467     2  0.3578     0.7076 0.008 0.812 0.000 0.000 0.092 0.088
#> GSM447469     4  0.3397     0.8010 0.000 0.016 0.048 0.836 0.096 0.004
#> GSM447473     1  0.5379     0.2334 0.516 0.000 0.000 0.000 0.120 0.364
#> GSM447404     1  0.5294     0.2407 0.532 0.000 0.000 0.000 0.112 0.356
#> GSM447406     4  0.0458     0.8236 0.000 0.000 0.016 0.984 0.000 0.000
#> GSM447407     4  0.1528     0.8230 0.000 0.000 0.016 0.936 0.048 0.000
#> GSM447409     1  0.3412     0.2712 0.808 0.000 0.000 0.000 0.128 0.064
#> GSM447412     3  0.0924     0.8085 0.000 0.008 0.972 0.004 0.008 0.008
#> GSM447426     3  0.2149     0.8091 0.000 0.004 0.888 0.104 0.004 0.000
#> GSM447433     5  0.4098     0.7271 0.496 0.000 0.000 0.000 0.496 0.008
#> GSM447439     4  0.0458     0.8236 0.000 0.000 0.016 0.984 0.000 0.000
#> GSM447441     2  0.6407     0.6757 0.000 0.608 0.136 0.040 0.168 0.048
#> GSM447443     6  0.4495     0.5098 0.256 0.000 0.000 0.000 0.072 0.672
#> GSM447445     1  0.1829     0.3506 0.920 0.000 0.000 0.000 0.056 0.024
#> GSM447446     5  0.4689     0.8367 0.440 0.000 0.000 0.000 0.516 0.044
#> GSM447453     1  0.2948     0.0992 0.804 0.000 0.000 0.000 0.188 0.008
#> GSM447455     2  0.3416     0.7436 0.000 0.804 0.056 0.140 0.000 0.000
#> GSM447456     1  0.8193    -0.2717 0.328 0.292 0.000 0.108 0.208 0.064
#> GSM447459     4  0.0458     0.8236 0.000 0.000 0.016 0.984 0.000 0.000
#> GSM447466     1  0.1663     0.4405 0.912 0.000 0.000 0.000 0.000 0.088
#> GSM447470     1  0.3865     0.2866 0.752 0.000 0.000 0.000 0.056 0.192
#> GSM447474     6  0.4972     0.2263 0.392 0.000 0.000 0.000 0.072 0.536
#> GSM447475     2  0.4342     0.7174 0.000 0.760 0.028 0.008 0.160 0.044
#> GSM447398     2  0.6531     0.5231 0.004 0.536 0.008 0.176 0.236 0.040
#> GSM447399     4  0.5164     0.2597 0.000 0.036 0.352 0.580 0.028 0.004
#> GSM447408     4  0.3358     0.7503 0.000 0.120 0.024 0.832 0.016 0.008
#> GSM447410     4  0.4359     0.7134 0.000 0.132 0.024 0.768 0.068 0.008
#> GSM447414     3  0.2426     0.8070 0.000 0.012 0.884 0.092 0.012 0.000
#> GSM447417     4  0.2499     0.8097 0.000 0.016 0.004 0.880 0.096 0.004
#> GSM447419     6  0.5014     0.5554 0.148 0.000 0.024 0.000 0.136 0.692
#> GSM447420     6  0.5593     0.2539 0.044 0.000 0.300 0.000 0.072 0.584
#> GSM447421     6  0.2346     0.6640 0.124 0.000 0.000 0.000 0.008 0.868
#> GSM447423     3  0.1109     0.7994 0.000 0.012 0.964 0.004 0.016 0.004
#> GSM447436     5  0.4957     0.8400 0.412 0.000 0.000 0.000 0.520 0.068
#> GSM447437     1  0.1341     0.3950 0.948 0.000 0.000 0.000 0.024 0.028
#> GSM447438     4  0.4753     0.6840 0.000 0.132 0.008 0.724 0.124 0.012
#> GSM447447     1  0.4026    -0.4786 0.636 0.000 0.000 0.000 0.348 0.016
#> GSM447454     3  0.5120     0.4687 0.000 0.252 0.660 0.008 0.044 0.036
#> GSM447457     3  0.5144    -0.0591 0.000 0.452 0.488 0.004 0.044 0.012
#> GSM447460     2  0.5988     0.3763 0.000 0.536 0.292 0.144 0.028 0.000
#> GSM447465     3  0.4933     0.4512 0.000 0.300 0.616 0.080 0.004 0.000
#> GSM447471     1  0.5379     0.2334 0.516 0.000 0.000 0.000 0.120 0.364
#> GSM447476     4  0.5491     0.6672 0.000 0.136 0.012 0.616 0.232 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n gender(p) agent(p) k
#> MAD:skmeans 78     0.821    0.497 2
#> MAD:skmeans 74     0.325    0.260 3
#> MAD:skmeans 75     0.370    0.478 4
#> MAD:skmeans 66     0.657    0.102 5
#> MAD:skmeans 47     0.370    0.629 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.554           0.893       0.937         0.4624 0.553   0.553
#> 3 3 0.576           0.818       0.893         0.4180 0.790   0.621
#> 4 4 0.769           0.805       0.905         0.1225 0.896   0.706
#> 5 5 0.743           0.715       0.817         0.0425 0.975   0.909
#> 6 6 0.747           0.745       0.858         0.0474 0.928   0.723

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2  0.0000      0.903 0.000 1.000
#> GSM447411     1  0.0000      0.992 1.000 0.000
#> GSM447413     2  0.0000      0.903 0.000 1.000
#> GSM447415     1  0.0000      0.992 1.000 0.000
#> GSM447416     2  0.0000      0.903 0.000 1.000
#> GSM447425     2  0.5737      0.858 0.136 0.864
#> GSM447430     2  0.0000      0.903 0.000 1.000
#> GSM447435     1  0.0000      0.992 1.000 0.000
#> GSM447440     2  0.9209      0.646 0.336 0.664
#> GSM447444     2  0.7139      0.810 0.196 0.804
#> GSM447448     2  0.9209      0.646 0.336 0.664
#> GSM447449     2  0.0000      0.903 0.000 1.000
#> GSM447450     1  0.0000      0.992 1.000 0.000
#> GSM447452     2  0.0000      0.903 0.000 1.000
#> GSM447458     2  0.5737      0.858 0.136 0.864
#> GSM447461     2  0.5737      0.858 0.136 0.864
#> GSM447464     1  0.0000      0.992 1.000 0.000
#> GSM447468     1  0.0000      0.992 1.000 0.000
#> GSM447472     1  0.0000      0.992 1.000 0.000
#> GSM447400     1  0.0000      0.992 1.000 0.000
#> GSM447402     2  0.0000      0.903 0.000 1.000
#> GSM447403     1  0.0000      0.992 1.000 0.000
#> GSM447405     2  0.9209      0.646 0.336 0.664
#> GSM447418     2  0.0000      0.903 0.000 1.000
#> GSM447422     2  0.0000      0.903 0.000 1.000
#> GSM447424     2  0.0000      0.903 0.000 1.000
#> GSM447427     2  0.0000      0.903 0.000 1.000
#> GSM447428     2  0.1843      0.893 0.028 0.972
#> GSM447429     1  0.0000      0.992 1.000 0.000
#> GSM447431     2  0.0000      0.903 0.000 1.000
#> GSM447432     2  0.0000      0.903 0.000 1.000
#> GSM447434     1  0.5946      0.796 0.856 0.144
#> GSM447442     2  0.0000      0.903 0.000 1.000
#> GSM447451     2  0.5737      0.858 0.136 0.864
#> GSM447462     2  0.9209      0.646 0.336 0.664
#> GSM447463     1  0.0000      0.992 1.000 0.000
#> GSM447467     2  0.5737      0.858 0.136 0.864
#> GSM447469     2  0.0000      0.903 0.000 1.000
#> GSM447473     1  0.0000      0.992 1.000 0.000
#> GSM447404     1  0.0000      0.992 1.000 0.000
#> GSM447406     2  0.0000      0.903 0.000 1.000
#> GSM447407     2  0.0000      0.903 0.000 1.000
#> GSM447409     1  0.0000      0.992 1.000 0.000
#> GSM447412     2  0.0000      0.903 0.000 1.000
#> GSM447426     2  0.0000      0.903 0.000 1.000
#> GSM447433     1  0.0000      0.992 1.000 0.000
#> GSM447439     2  0.0376      0.902 0.004 0.996
#> GSM447441     2  0.0000      0.903 0.000 1.000
#> GSM447443     1  0.0000      0.992 1.000 0.000
#> GSM447445     1  0.0000      0.992 1.000 0.000
#> GSM447446     1  0.0000      0.992 1.000 0.000
#> GSM447453     1  0.0000      0.992 1.000 0.000
#> GSM447455     2  0.0000      0.903 0.000 1.000
#> GSM447456     2  0.9087      0.662 0.324 0.676
#> GSM447459     2  0.0000      0.903 0.000 1.000
#> GSM447466     1  0.0000      0.992 1.000 0.000
#> GSM447470     2  0.9209      0.646 0.336 0.664
#> GSM447474     2  0.9209      0.646 0.336 0.664
#> GSM447475     2  0.5737      0.858 0.136 0.864
#> GSM447398     2  0.5737      0.858 0.136 0.864
#> GSM447399     2  0.0000      0.903 0.000 1.000
#> GSM447408     2  0.0000      0.903 0.000 1.000
#> GSM447410     2  0.5737      0.858 0.136 0.864
#> GSM447414     2  0.0000      0.903 0.000 1.000
#> GSM447417     2  0.3733      0.882 0.072 0.928
#> GSM447419     1  0.1633      0.966 0.976 0.024
#> GSM447420     2  0.9209      0.646 0.336 0.664
#> GSM447421     1  0.0000      0.992 1.000 0.000
#> GSM447423     2  0.0000      0.903 0.000 1.000
#> GSM447436     1  0.0000      0.992 1.000 0.000
#> GSM447437     1  0.0000      0.992 1.000 0.000
#> GSM447438     2  0.5737      0.858 0.136 0.864
#> GSM447447     2  0.9209      0.646 0.336 0.664
#> GSM447454     2  0.5629      0.860 0.132 0.868
#> GSM447457     2  0.0000      0.903 0.000 1.000
#> GSM447460     2  0.0000      0.903 0.000 1.000
#> GSM447465     2  0.0000      0.903 0.000 1.000
#> GSM447471     1  0.0000      0.992 1.000 0.000
#> GSM447476     2  0.5737      0.858 0.136 0.864

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.0000      0.908 0.000 0.000 1.000
#> GSM447411     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447413     3  0.0000      0.908 0.000 0.000 1.000
#> GSM447415     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447416     3  0.2165      0.870 0.000 0.064 0.936
#> GSM447425     2  0.5987      0.693 0.036 0.756 0.208
#> GSM447430     2  0.5431      0.571 0.000 0.716 0.284
#> GSM447435     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447440     2  0.5785      0.645 0.332 0.668 0.000
#> GSM447444     2  0.3686      0.820 0.140 0.860 0.000
#> GSM447448     2  0.5650      0.670 0.312 0.688 0.000
#> GSM447449     3  0.3482      0.813 0.000 0.128 0.872
#> GSM447450     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447452     3  0.3686      0.827 0.000 0.140 0.860
#> GSM447458     2  0.5787      0.808 0.136 0.796 0.068
#> GSM447461     2  0.3619      0.821 0.136 0.864 0.000
#> GSM447464     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447468     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447472     1  0.1031      0.941 0.976 0.024 0.000
#> GSM447400     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447402     3  0.6260      0.385 0.000 0.448 0.552
#> GSM447403     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447405     2  0.3686      0.820 0.140 0.860 0.000
#> GSM447418     3  0.0000      0.908 0.000 0.000 1.000
#> GSM447422     3  0.0000      0.908 0.000 0.000 1.000
#> GSM447424     3  0.0000      0.908 0.000 0.000 1.000
#> GSM447427     3  0.0000      0.908 0.000 0.000 1.000
#> GSM447428     3  0.4605      0.733 0.000 0.204 0.796
#> GSM447429     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447431     2  0.4178      0.747 0.000 0.828 0.172
#> GSM447432     2  0.5621      0.623 0.000 0.692 0.308
#> GSM447434     1  0.5810      0.456 0.664 0.336 0.000
#> GSM447442     3  0.0000      0.908 0.000 0.000 1.000
#> GSM447451     2  0.3851      0.820 0.136 0.860 0.004
#> GSM447462     2  0.5835      0.633 0.340 0.660 0.000
#> GSM447463     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447467     2  0.3851      0.820 0.136 0.860 0.004
#> GSM447469     3  0.3551      0.833 0.000 0.132 0.868
#> GSM447473     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447404     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447406     2  0.5733      0.500 0.000 0.676 0.324
#> GSM447407     2  0.6126      0.316 0.000 0.600 0.400
#> GSM447409     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447412     2  0.3686      0.765 0.000 0.860 0.140
#> GSM447426     3  0.0000      0.908 0.000 0.000 1.000
#> GSM447433     1  0.3482      0.824 0.872 0.128 0.000
#> GSM447439     2  0.4555      0.678 0.000 0.800 0.200
#> GSM447441     2  0.0000      0.793 0.000 1.000 0.000
#> GSM447443     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447445     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447446     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447453     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447455     2  0.6154      0.513 0.000 0.592 0.408
#> GSM447456     2  0.3686      0.820 0.140 0.860 0.000
#> GSM447459     2  0.4605      0.673 0.000 0.796 0.204
#> GSM447466     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447470     2  0.3686      0.820 0.140 0.860 0.000
#> GSM447474     2  0.3686      0.820 0.140 0.860 0.000
#> GSM447475     2  0.3851      0.820 0.136 0.860 0.004
#> GSM447398     2  0.1411      0.806 0.036 0.964 0.000
#> GSM447399     3  0.0000      0.908 0.000 0.000 1.000
#> GSM447408     2  0.0000      0.793 0.000 1.000 0.000
#> GSM447410     2  0.0000      0.793 0.000 1.000 0.000
#> GSM447414     3  0.0000      0.908 0.000 0.000 1.000
#> GSM447417     3  0.4121      0.807 0.000 0.168 0.832
#> GSM447419     1  0.7801      0.439 0.616 0.076 0.308
#> GSM447420     2  0.3851      0.820 0.136 0.860 0.004
#> GSM447421     1  0.0237      0.959 0.996 0.000 0.004
#> GSM447423     3  0.4605      0.733 0.000 0.204 0.796
#> GSM447436     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447437     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447438     2  0.0000      0.793 0.000 1.000 0.000
#> GSM447447     2  0.4002      0.812 0.160 0.840 0.000
#> GSM447454     2  0.3965      0.820 0.132 0.860 0.008
#> GSM447457     2  0.3686      0.765 0.000 0.860 0.140
#> GSM447460     2  0.5859      0.619 0.000 0.656 0.344
#> GSM447465     3  0.0747      0.900 0.000 0.016 0.984
#> GSM447471     1  0.0000      0.963 1.000 0.000 0.000
#> GSM447476     2  0.0000      0.793 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.4804     0.5779 0.000 0.000 0.616 0.384
#> GSM447411     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447413     3  0.2814     0.8485 0.000 0.000 0.868 0.132
#> GSM447415     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447416     3  0.3803     0.8389 0.000 0.032 0.836 0.132
#> GSM447425     4  0.3219     0.7174 0.000 0.000 0.164 0.836
#> GSM447430     4  0.1557     0.7544 0.000 0.000 0.056 0.944
#> GSM447435     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447440     2  0.3528     0.7332 0.192 0.808 0.000 0.000
#> GSM447444     2  0.0000     0.9030 0.000 1.000 0.000 0.000
#> GSM447448     2  0.3311     0.7551 0.172 0.828 0.000 0.000
#> GSM447449     3  0.0188     0.8664 0.000 0.004 0.996 0.000
#> GSM447450     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447452     4  0.0000     0.7378 0.000 0.000 0.000 1.000
#> GSM447458     2  0.3569     0.7462 0.000 0.804 0.196 0.000
#> GSM447461     2  0.0000     0.9030 0.000 1.000 0.000 0.000
#> GSM447464     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447468     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447472     1  0.0817     0.9199 0.976 0.024 0.000 0.000
#> GSM447400     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447402     4  0.5268     0.4905 0.000 0.012 0.396 0.592
#> GSM447403     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447405     2  0.0000     0.9030 0.000 1.000 0.000 0.000
#> GSM447418     3  0.0000     0.8678 0.000 0.000 1.000 0.000
#> GSM447422     3  0.0000     0.8678 0.000 0.000 1.000 0.000
#> GSM447424     3  0.2814     0.8485 0.000 0.000 0.868 0.132
#> GSM447427     3  0.0000     0.8678 0.000 0.000 1.000 0.000
#> GSM447428     3  0.3610     0.7139 0.000 0.200 0.800 0.000
#> GSM447429     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447431     2  0.6439     0.5384 0.000 0.648 0.172 0.180
#> GSM447432     2  0.4431     0.6153 0.000 0.696 0.304 0.000
#> GSM447434     1  0.4605     0.4973 0.664 0.336 0.000 0.000
#> GSM447442     3  0.0000     0.8678 0.000 0.000 1.000 0.000
#> GSM447451     2  0.0000     0.9030 0.000 1.000 0.000 0.000
#> GSM447462     2  0.3649     0.7186 0.204 0.796 0.000 0.000
#> GSM447463     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447467     2  0.0000     0.9030 0.000 1.000 0.000 0.000
#> GSM447469     4  0.4999     0.3019 0.000 0.000 0.492 0.508
#> GSM447473     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447404     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447406     4  0.1118     0.7534 0.000 0.000 0.036 0.964
#> GSM447407     4  0.1118     0.7534 0.000 0.000 0.036 0.964
#> GSM447409     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447412     2  0.0000     0.9030 0.000 1.000 0.000 0.000
#> GSM447426     3  0.3569     0.8185 0.000 0.000 0.804 0.196
#> GSM447433     1  0.6953     0.2082 0.536 0.128 0.000 0.336
#> GSM447439     4  0.1389     0.7549 0.000 0.000 0.048 0.952
#> GSM447441     2  0.0000     0.9030 0.000 1.000 0.000 0.000
#> GSM447443     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447445     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447446     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447453     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447455     2  0.4193     0.6674 0.000 0.732 0.268 0.000
#> GSM447456     2  0.0000     0.9030 0.000 1.000 0.000 0.000
#> GSM447459     4  0.1118     0.7534 0.000 0.000 0.036 0.964
#> GSM447466     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447470     2  0.0000     0.9030 0.000 1.000 0.000 0.000
#> GSM447474     2  0.0000     0.9030 0.000 1.000 0.000 0.000
#> GSM447475     2  0.0000     0.9030 0.000 1.000 0.000 0.000
#> GSM447398     2  0.0000     0.9030 0.000 1.000 0.000 0.000
#> GSM447399     3  0.0000     0.8678 0.000 0.000 1.000 0.000
#> GSM447408     4  0.4916     0.4255 0.000 0.424 0.000 0.576
#> GSM447410     4  0.4916     0.4255 0.000 0.424 0.000 0.576
#> GSM447414     3  0.2814     0.8485 0.000 0.000 0.868 0.132
#> GSM447417     4  0.3266     0.7170 0.000 0.000 0.168 0.832
#> GSM447419     1  0.6537     0.0725 0.500 0.076 0.424 0.000
#> GSM447420     2  0.0000     0.9030 0.000 1.000 0.000 0.000
#> GSM447421     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447423     3  0.3266     0.7551 0.000 0.168 0.832 0.000
#> GSM447436     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447437     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447438     2  0.0000     0.9030 0.000 1.000 0.000 0.000
#> GSM447447     2  0.0707     0.8904 0.020 0.980 0.000 0.000
#> GSM447454     2  0.0000     0.9030 0.000 1.000 0.000 0.000
#> GSM447457     2  0.0000     0.9030 0.000 1.000 0.000 0.000
#> GSM447460     2  0.4491     0.7412 0.000 0.800 0.060 0.140
#> GSM447465     3  0.1520     0.8598 0.000 0.024 0.956 0.020
#> GSM447471     1  0.0000     0.9432 1.000 0.000 0.000 0.000
#> GSM447476     4  0.4916     0.4255 0.000 0.424 0.000 0.576

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     5  0.5182     0.9903 0.000 0.000 0.412 0.044 0.544
#> GSM447411     1  0.0000     0.7030 1.000 0.000 0.000 0.000 0.000
#> GSM447413     3  0.0794     0.7024 0.000 0.000 0.972 0.028 0.000
#> GSM447415     1  0.0000     0.7030 1.000 0.000 0.000 0.000 0.000
#> GSM447416     3  0.0880     0.6981 0.000 0.000 0.968 0.032 0.000
#> GSM447425     4  0.0794     0.6925 0.000 0.000 0.028 0.972 0.000
#> GSM447430     4  0.0000     0.6988 0.000 0.000 0.000 1.000 0.000
#> GSM447435     1  0.0000     0.7030 1.000 0.000 0.000 0.000 0.000
#> GSM447440     1  0.4161     0.0699 0.608 0.392 0.000 0.000 0.000
#> GSM447444     2  0.1043     0.8960 0.000 0.960 0.000 0.000 0.040
#> GSM447448     2  0.2852     0.7567 0.172 0.828 0.000 0.000 0.000
#> GSM447449     3  0.2561     0.7601 0.000 0.000 0.856 0.144 0.000
#> GSM447450     1  0.1205     0.6851 0.956 0.004 0.000 0.000 0.040
#> GSM447452     4  0.4088     0.4013 0.000 0.000 0.000 0.632 0.368
#> GSM447458     2  0.3846     0.7533 0.000 0.800 0.056 0.144 0.000
#> GSM447461     2  0.0162     0.9067 0.000 0.996 0.000 0.004 0.000
#> GSM447464     1  0.0290     0.7048 0.992 0.000 0.000 0.000 0.008
#> GSM447468     1  0.3452     0.7223 0.756 0.000 0.000 0.000 0.244
#> GSM447472     1  0.0703     0.6913 0.976 0.024 0.000 0.000 0.000
#> GSM447400     1  0.4219     0.7199 0.584 0.000 0.000 0.000 0.416
#> GSM447402     4  0.3333     0.5542 0.000 0.004 0.208 0.788 0.000
#> GSM447403     1  0.4219     0.7199 0.584 0.000 0.000 0.000 0.416
#> GSM447405     2  0.0162     0.9059 0.004 0.996 0.000 0.000 0.000
#> GSM447418     3  0.2561     0.7601 0.000 0.000 0.856 0.144 0.000
#> GSM447422     3  0.2561     0.7601 0.000 0.000 0.856 0.144 0.000
#> GSM447424     3  0.0794     0.7024 0.000 0.000 0.972 0.028 0.000
#> GSM447427     3  0.2561     0.7601 0.000 0.000 0.856 0.144 0.000
#> GSM447428     3  0.3109     0.4792 0.000 0.200 0.800 0.000 0.000
#> GSM447429     1  0.4219     0.7199 0.584 0.000 0.000 0.000 0.416
#> GSM447431     2  0.5043     0.6357 0.000 0.704 0.136 0.160 0.000
#> GSM447432     2  0.5159     0.6163 0.000 0.692 0.164 0.144 0.000
#> GSM447434     1  0.5420     0.3302 0.592 0.332 0.000 0.000 0.076
#> GSM447442     3  0.2561     0.7601 0.000 0.000 0.856 0.144 0.000
#> GSM447451     2  0.0162     0.9067 0.000 0.996 0.000 0.004 0.000
#> GSM447462     2  0.3764     0.7435 0.156 0.800 0.000 0.000 0.044
#> GSM447463     1  0.0000     0.7030 1.000 0.000 0.000 0.000 0.000
#> GSM447467     2  0.0000     0.9066 0.000 1.000 0.000 0.000 0.000
#> GSM447469     4  0.3983     0.3393 0.000 0.000 0.340 0.660 0.000
#> GSM447473     1  0.4219     0.7199 0.584 0.000 0.000 0.000 0.416
#> GSM447404     1  0.4219     0.7199 0.584 0.000 0.000 0.000 0.416
#> GSM447406     4  0.2561     0.6808 0.000 0.000 0.144 0.856 0.000
#> GSM447407     4  0.2561     0.6808 0.000 0.000 0.144 0.856 0.000
#> GSM447409     1  0.4219     0.7199 0.584 0.000 0.000 0.000 0.416
#> GSM447412     2  0.0162     0.9062 0.000 0.996 0.004 0.000 0.000
#> GSM447426     5  0.5125     0.9902 0.000 0.000 0.416 0.040 0.544
#> GSM447433     1  0.3858     0.5796 0.832 0.092 0.000 0.036 0.040
#> GSM447439     4  0.1544     0.7016 0.000 0.000 0.068 0.932 0.000
#> GSM447441     2  0.0162     0.9067 0.000 0.996 0.000 0.004 0.000
#> GSM447443     1  0.4430     0.6996 0.540 0.004 0.000 0.000 0.456
#> GSM447445     1  0.1205     0.6851 0.956 0.004 0.000 0.000 0.040
#> GSM447446     1  0.4219     0.7199 0.584 0.000 0.000 0.000 0.416
#> GSM447453     1  0.4420     0.7025 0.548 0.004 0.000 0.000 0.448
#> GSM447455     2  0.4761     0.6796 0.000 0.732 0.124 0.144 0.000
#> GSM447456     2  0.0000     0.9066 0.000 1.000 0.000 0.000 0.000
#> GSM447459     4  0.2561     0.6808 0.000 0.000 0.144 0.856 0.000
#> GSM447466     1  0.0000     0.7030 1.000 0.000 0.000 0.000 0.000
#> GSM447470     2  0.1043     0.8960 0.000 0.960 0.000 0.000 0.040
#> GSM447474     2  0.1043     0.8960 0.000 0.960 0.000 0.000 0.040
#> GSM447475     2  0.0000     0.9066 0.000 1.000 0.000 0.000 0.000
#> GSM447398     2  0.0162     0.9067 0.000 0.996 0.000 0.004 0.000
#> GSM447399     3  0.2424     0.7613 0.000 0.000 0.868 0.132 0.000
#> GSM447408     4  0.4088     0.5332 0.000 0.368 0.000 0.632 0.000
#> GSM447410     4  0.4088     0.5332 0.000 0.368 0.000 0.632 0.000
#> GSM447414     3  0.0794     0.7024 0.000 0.000 0.972 0.028 0.000
#> GSM447417     4  0.0794     0.6925 0.000 0.000 0.028 0.972 0.000
#> GSM447419     1  0.6071     0.0713 0.484 0.076 0.424 0.000 0.016
#> GSM447420     2  0.1043     0.8960 0.000 0.960 0.000 0.000 0.040
#> GSM447421     1  0.4219     0.7199 0.584 0.000 0.000 0.000 0.416
#> GSM447423     3  0.2852     0.5429 0.000 0.172 0.828 0.000 0.000
#> GSM447436     1  0.4219     0.7199 0.584 0.000 0.000 0.000 0.416
#> GSM447437     1  0.0000     0.7030 1.000 0.000 0.000 0.000 0.000
#> GSM447438     2  0.0162     0.9067 0.000 0.996 0.000 0.004 0.000
#> GSM447447     2  0.0703     0.8977 0.024 0.976 0.000 0.000 0.000
#> GSM447454     2  0.0162     0.9067 0.000 0.996 0.000 0.004 0.000
#> GSM447457     2  0.0162     0.9067 0.000 0.996 0.000 0.004 0.000
#> GSM447460     2  0.3695     0.7581 0.000 0.800 0.164 0.036 0.000
#> GSM447465     3  0.0703     0.7073 0.000 0.024 0.976 0.000 0.000
#> GSM447471     1  0.4219     0.7199 0.584 0.000 0.000 0.000 0.416
#> GSM447476     4  0.4088     0.5332 0.000 0.368 0.000 0.632 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     5  0.0000     0.9054 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447411     1  0.0713     0.8049 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM447413     3  0.2597     0.7977 0.000 0.000 0.824 0.176 0.000 0.000
#> GSM447415     1  0.0713     0.8049 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM447416     3  0.2597     0.7977 0.000 0.000 0.824 0.176 0.000 0.000
#> GSM447425     4  0.2597     0.6855 0.000 0.000 0.176 0.824 0.000 0.000
#> GSM447430     4  0.2597     0.6855 0.000 0.000 0.176 0.824 0.000 0.000
#> GSM447435     1  0.0713     0.8049 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM447440     1  0.0865     0.7948 0.964 0.036 0.000 0.000 0.000 0.000
#> GSM447444     2  0.2793     0.7930 0.000 0.800 0.000 0.000 0.000 0.200
#> GSM447448     2  0.2562     0.7483 0.172 0.828 0.000 0.000 0.000 0.000
#> GSM447449     3  0.0000     0.8133 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447450     1  0.2793     0.6467 0.800 0.000 0.000 0.000 0.000 0.200
#> GSM447452     5  0.2762     0.7858 0.000 0.000 0.000 0.196 0.804 0.000
#> GSM447458     2  0.2793     0.7609 0.000 0.800 0.200 0.000 0.000 0.000
#> GSM447461     2  0.0000     0.8780 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447464     1  0.1610     0.7415 0.916 0.000 0.000 0.000 0.000 0.084
#> GSM447468     1  0.3823    -0.1546 0.564 0.000 0.000 0.000 0.000 0.436
#> GSM447472     1  0.1890     0.7867 0.916 0.024 0.000 0.000 0.000 0.060
#> GSM447400     6  0.2996     0.8988 0.228 0.000 0.000 0.000 0.000 0.772
#> GSM447402     4  0.3769     0.5895 0.000 0.004 0.356 0.640 0.000 0.000
#> GSM447403     6  0.2793     0.9201 0.200 0.000 0.000 0.000 0.000 0.800
#> GSM447405     2  0.0000     0.8780 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447418     3  0.0000     0.8133 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447422     3  0.0000     0.8133 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447424     3  0.2597     0.7977 0.000 0.000 0.824 0.176 0.000 0.000
#> GSM447427     3  0.0000     0.8133 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447428     3  0.2902     0.6911 0.000 0.196 0.800 0.000 0.000 0.004
#> GSM447429     6  0.2793     0.9201 0.200 0.000 0.000 0.000 0.000 0.800
#> GSM447431     2  0.4321     0.6372 0.000 0.712 0.204 0.084 0.000 0.000
#> GSM447432     2  0.3446     0.6399 0.000 0.692 0.308 0.000 0.000 0.000
#> GSM447434     1  0.6129     0.0915 0.344 0.336 0.000 0.000 0.000 0.320
#> GSM447442     3  0.0000     0.8133 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447451     2  0.0000     0.8780 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447462     2  0.3500     0.7688 0.028 0.768 0.000 0.000 0.000 0.204
#> GSM447463     1  0.0000     0.8021 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447467     2  0.0000     0.8780 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447469     4  0.3866     0.3777 0.000 0.000 0.484 0.516 0.000 0.000
#> GSM447473     6  0.2793     0.9201 0.200 0.000 0.000 0.000 0.000 0.800
#> GSM447404     6  0.2793     0.9201 0.200 0.000 0.000 0.000 0.000 0.800
#> GSM447406     4  0.0000     0.6546 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM447407     4  0.0000     0.6546 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM447409     6  0.2793     0.9201 0.200 0.000 0.000 0.000 0.000 0.800
#> GSM447412     2  0.0000     0.8780 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447426     5  0.0000     0.9054 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447433     1  0.3420     0.6503 0.748 0.000 0.000 0.012 0.000 0.240
#> GSM447439     4  0.1663     0.6859 0.000 0.000 0.088 0.912 0.000 0.000
#> GSM447441     2  0.0000     0.8780 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447443     6  0.0000     0.6725 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447445     1  0.2793     0.6467 0.800 0.000 0.000 0.000 0.000 0.200
#> GSM447446     6  0.2793     0.9201 0.200 0.000 0.000 0.000 0.000 0.800
#> GSM447453     6  0.2969     0.3701 0.224 0.000 0.000 0.000 0.000 0.776
#> GSM447455     2  0.3244     0.6952 0.000 0.732 0.268 0.000 0.000 0.000
#> GSM447456     2  0.0000     0.8780 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447459     4  0.0000     0.6546 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM447466     1  0.0000     0.8021 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447470     2  0.2793     0.7930 0.000 0.800 0.000 0.000 0.000 0.200
#> GSM447474     2  0.2793     0.7930 0.000 0.800 0.000 0.000 0.000 0.200
#> GSM447475     2  0.0000     0.8780 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447398     2  0.0000     0.8780 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447399     3  0.0547     0.8157 0.000 0.000 0.980 0.020 0.000 0.000
#> GSM447408     4  0.3684     0.5215 0.000 0.372 0.000 0.628 0.000 0.000
#> GSM447410     4  0.3684     0.5215 0.000 0.372 0.000 0.628 0.000 0.000
#> GSM447414     3  0.2597     0.7977 0.000 0.000 0.824 0.176 0.000 0.000
#> GSM447417     4  0.2597     0.6855 0.000 0.000 0.176 0.824 0.000 0.000
#> GSM447419     3  0.6621    -0.0757 0.124 0.076 0.424 0.000 0.000 0.376
#> GSM447420     2  0.2793     0.7930 0.000 0.800 0.000 0.000 0.000 0.200
#> GSM447421     6  0.2996     0.8988 0.228 0.000 0.000 0.000 0.000 0.772
#> GSM447423     3  0.2597     0.7177 0.000 0.176 0.824 0.000 0.000 0.000
#> GSM447436     6  0.2793     0.9201 0.200 0.000 0.000 0.000 0.000 0.800
#> GSM447437     1  0.0713     0.8049 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM447438     2  0.0000     0.8780 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447447     2  0.0547     0.8705 0.020 0.980 0.000 0.000 0.000 0.000
#> GSM447454     2  0.0000     0.8780 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447457     2  0.0000     0.8780 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447460     2  0.3104     0.7658 0.000 0.800 0.016 0.184 0.000 0.000
#> GSM447465     3  0.3202     0.7858 0.000 0.024 0.800 0.176 0.000 0.000
#> GSM447471     6  0.2793     0.9201 0.200 0.000 0.000 0.000 0.000 0.800
#> GSM447476     4  0.3684     0.5215 0.000 0.372 0.000 0.628 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n gender(p) agent(p) k
#> MAD:pam 79     1.000   0.4254 2
#> MAD:pam 75     0.176   0.1723 3
#> MAD:pam 71     0.465   0.0727 4
#> MAD:pam 73     0.413   0.1500 5
#> MAD:pam 74     0.199   0.0218 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.966       0.986         0.4980 0.503   0.503
#> 3 3 0.746           0.766       0.889         0.2077 0.830   0.682
#> 4 4 0.807           0.833       0.889         0.1474 0.864   0.674
#> 5 5 0.630           0.592       0.782         0.1118 0.930   0.770
#> 6 6 0.738           0.781       0.863         0.0558 0.812   0.380

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2  0.0000      0.980 0.000 1.000
#> GSM447411     1  0.0000      0.991 1.000 0.000
#> GSM447413     2  0.0000      0.980 0.000 1.000
#> GSM447415     1  0.0000      0.991 1.000 0.000
#> GSM447416     2  0.0000      0.980 0.000 1.000
#> GSM447425     2  0.0000      0.980 0.000 1.000
#> GSM447430     2  0.0000      0.980 0.000 1.000
#> GSM447435     1  0.0000      0.991 1.000 0.000
#> GSM447440     1  0.0000      0.991 1.000 0.000
#> GSM447444     1  0.0000      0.991 1.000 0.000
#> GSM447448     1  0.0000      0.991 1.000 0.000
#> GSM447449     2  0.0000      0.980 0.000 1.000
#> GSM447450     1  0.0000      0.991 1.000 0.000
#> GSM447452     2  0.0000      0.980 0.000 1.000
#> GSM447458     2  0.0376      0.979 0.004 0.996
#> GSM447461     2  0.0376      0.979 0.004 0.996
#> GSM447464     1  0.0000      0.991 1.000 0.000
#> GSM447468     1  0.0000      0.991 1.000 0.000
#> GSM447472     1  0.0000      0.991 1.000 0.000
#> GSM447400     1  0.0000      0.991 1.000 0.000
#> GSM447402     2  0.0376      0.979 0.004 0.996
#> GSM447403     1  0.0000      0.991 1.000 0.000
#> GSM447405     1  0.0938      0.979 0.988 0.012
#> GSM447418     2  0.0000      0.980 0.000 1.000
#> GSM447422     2  0.0000      0.980 0.000 1.000
#> GSM447424     2  0.0000      0.980 0.000 1.000
#> GSM447427     2  0.0000      0.980 0.000 1.000
#> GSM447428     2  0.6801      0.783 0.180 0.820
#> GSM447429     1  0.0000      0.991 1.000 0.000
#> GSM447431     2  0.0000      0.980 0.000 1.000
#> GSM447432     2  0.0376      0.979 0.004 0.996
#> GSM447434     1  0.0000      0.991 1.000 0.000
#> GSM447442     2  0.0000      0.980 0.000 1.000
#> GSM447451     2  0.0376      0.979 0.004 0.996
#> GSM447462     1  0.0000      0.991 1.000 0.000
#> GSM447463     1  0.0000      0.991 1.000 0.000
#> GSM447467     2  0.0938      0.973 0.012 0.988
#> GSM447469     2  0.0000      0.980 0.000 1.000
#> GSM447473     1  0.0000      0.991 1.000 0.000
#> GSM447404     1  0.0000      0.991 1.000 0.000
#> GSM447406     2  0.0000      0.980 0.000 1.000
#> GSM447407     2  0.0000      0.980 0.000 1.000
#> GSM447409     1  0.0000      0.991 1.000 0.000
#> GSM447412     2  0.0376      0.979 0.004 0.996
#> GSM447426     2  0.0000      0.980 0.000 1.000
#> GSM447433     1  0.0000      0.991 1.000 0.000
#> GSM447439     2  0.0000      0.980 0.000 1.000
#> GSM447441     2  0.0000      0.980 0.000 1.000
#> GSM447443     1  0.0000      0.991 1.000 0.000
#> GSM447445     1  0.0000      0.991 1.000 0.000
#> GSM447446     1  0.0000      0.991 1.000 0.000
#> GSM447453     1  0.0000      0.991 1.000 0.000
#> GSM447455     2  0.0000      0.980 0.000 1.000
#> GSM447456     2  0.7219      0.755 0.200 0.800
#> GSM447459     2  0.0000      0.980 0.000 1.000
#> GSM447466     1  0.0000      0.991 1.000 0.000
#> GSM447470     1  0.0000      0.991 1.000 0.000
#> GSM447474     1  0.0000      0.991 1.000 0.000
#> GSM447475     2  0.0938      0.973 0.012 0.988
#> GSM447398     2  0.0376      0.979 0.004 0.996
#> GSM447399     2  0.0000      0.980 0.000 1.000
#> GSM447408     2  0.0000      0.980 0.000 1.000
#> GSM447410     2  0.0376      0.979 0.004 0.996
#> GSM447414     2  0.0000      0.980 0.000 1.000
#> GSM447417     2  0.0000      0.980 0.000 1.000
#> GSM447419     1  0.8443      0.610 0.728 0.272
#> GSM447420     2  0.9686      0.359 0.396 0.604
#> GSM447421     1  0.0000      0.991 1.000 0.000
#> GSM447423     2  0.0376      0.979 0.004 0.996
#> GSM447436     1  0.0000      0.991 1.000 0.000
#> GSM447437     1  0.0000      0.991 1.000 0.000
#> GSM447438     2  0.0376      0.979 0.004 0.996
#> GSM447447     1  0.0000      0.991 1.000 0.000
#> GSM447454     2  0.0376      0.979 0.004 0.996
#> GSM447457     2  0.0376      0.979 0.004 0.996
#> GSM447460     2  0.0000      0.980 0.000 1.000
#> GSM447465     2  0.0000      0.980 0.000 1.000
#> GSM447471     1  0.0000      0.991 1.000 0.000
#> GSM447476     2  0.0672      0.976 0.008 0.992

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.5465      0.591 0.000 0.288 0.712
#> GSM447411     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447413     2  0.6225     -0.555 0.000 0.568 0.432
#> GSM447415     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447416     3  0.6225      0.866 0.000 0.432 0.568
#> GSM447425     2  0.6095      0.404 0.000 0.608 0.392
#> GSM447430     2  0.3192      0.767 0.000 0.888 0.112
#> GSM447435     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447440     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447444     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447448     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447449     2  0.1129      0.768 0.004 0.976 0.020
#> GSM447450     1  0.0237      0.956 0.996 0.004 0.000
#> GSM447452     2  0.6095      0.404 0.000 0.608 0.392
#> GSM447458     2  0.1267      0.777 0.004 0.972 0.024
#> GSM447461     2  0.2096      0.762 0.004 0.944 0.052
#> GSM447464     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447468     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447472     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447400     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447402     2  0.3192      0.769 0.000 0.888 0.112
#> GSM447403     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447405     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447418     3  0.6204      0.861 0.000 0.424 0.576
#> GSM447422     3  0.6225      0.866 0.000 0.432 0.568
#> GSM447424     3  0.6252      0.838 0.000 0.444 0.556
#> GSM447427     3  0.6225      0.866 0.000 0.432 0.568
#> GSM447428     1  0.9930     -0.380 0.364 0.276 0.360
#> GSM447429     1  0.0237      0.956 0.996 0.000 0.004
#> GSM447431     2  0.1267      0.762 0.004 0.972 0.024
#> GSM447432     2  0.2096      0.762 0.004 0.944 0.052
#> GSM447434     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447442     2  0.0983      0.769 0.004 0.980 0.016
#> GSM447451     2  0.1399      0.770 0.004 0.968 0.028
#> GSM447462     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447463     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447467     1  0.6859      0.137 0.564 0.420 0.016
#> GSM447469     2  0.1129      0.768 0.004 0.976 0.020
#> GSM447473     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447404     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447406     2  0.3192      0.767 0.000 0.888 0.112
#> GSM447407     2  0.4291      0.707 0.000 0.820 0.180
#> GSM447409     1  0.0237      0.956 0.996 0.004 0.000
#> GSM447412     3  0.6215      0.862 0.000 0.428 0.572
#> GSM447426     3  0.5465      0.591 0.000 0.288 0.712
#> GSM447433     1  0.0237      0.956 0.996 0.004 0.000
#> GSM447439     2  0.3192      0.767 0.000 0.888 0.112
#> GSM447441     2  0.0829      0.768 0.004 0.984 0.012
#> GSM447443     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447445     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447446     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447453     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447455     2  0.1647      0.764 0.004 0.960 0.036
#> GSM447456     2  0.7941      0.337 0.276 0.628 0.096
#> GSM447459     2  0.3192      0.767 0.000 0.888 0.112
#> GSM447466     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447470     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447474     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447475     2  0.1399      0.770 0.004 0.968 0.028
#> GSM447398     2  0.3192      0.769 0.000 0.888 0.112
#> GSM447399     2  0.0237      0.775 0.004 0.996 0.000
#> GSM447408     2  0.2878      0.771 0.000 0.904 0.096
#> GSM447410     2  0.3192      0.769 0.000 0.888 0.112
#> GSM447414     2  0.6204     -0.549 0.000 0.576 0.424
#> GSM447417     2  0.2959      0.771 0.000 0.900 0.100
#> GSM447419     1  0.0475      0.953 0.992 0.004 0.004
#> GSM447420     1  0.6968      0.612 0.732 0.148 0.120
#> GSM447421     1  0.0237      0.956 0.996 0.000 0.004
#> GSM447423     3  0.6225      0.866 0.000 0.432 0.568
#> GSM447436     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447437     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447438     2  0.3192      0.769 0.000 0.888 0.112
#> GSM447447     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447454     2  0.1399      0.770 0.004 0.968 0.028
#> GSM447457     2  0.3573      0.634 0.004 0.876 0.120
#> GSM447460     2  0.1267      0.768 0.004 0.972 0.024
#> GSM447465     2  0.5929     -0.176 0.004 0.676 0.320
#> GSM447471     1  0.0000      0.959 1.000 0.000 0.000
#> GSM447476     2  0.4994      0.718 0.052 0.836 0.112

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.2775      0.702 0.000 0.020 0.896 0.084
#> GSM447411     1  0.1174      0.966 0.968 0.000 0.012 0.020
#> GSM447413     3  0.4758      0.812 0.000 0.064 0.780 0.156
#> GSM447415     1  0.1059      0.968 0.972 0.000 0.012 0.016
#> GSM447416     3  0.4415      0.825 0.000 0.056 0.804 0.140
#> GSM447425     4  0.4057      0.695 0.000 0.032 0.152 0.816
#> GSM447430     4  0.2345      0.823 0.000 0.100 0.000 0.900
#> GSM447435     1  0.0937      0.969 0.976 0.000 0.012 0.012
#> GSM447440     1  0.1022      0.969 0.968 0.000 0.032 0.000
#> GSM447444     1  0.0804      0.972 0.980 0.000 0.012 0.008
#> GSM447448     1  0.0524      0.972 0.988 0.000 0.004 0.008
#> GSM447449     2  0.3208      0.786 0.000 0.848 0.004 0.148
#> GSM447450     1  0.0336      0.973 0.992 0.000 0.008 0.000
#> GSM447452     4  0.4105      0.692 0.000 0.032 0.156 0.812
#> GSM447458     2  0.1576      0.829 0.000 0.948 0.004 0.048
#> GSM447461     2  0.0817      0.815 0.000 0.976 0.000 0.024
#> GSM447464     1  0.0817      0.970 0.976 0.000 0.024 0.000
#> GSM447468     1  0.0804      0.970 0.980 0.000 0.008 0.012
#> GSM447472     1  0.0921      0.969 0.972 0.000 0.028 0.000
#> GSM447400     1  0.0921      0.969 0.972 0.000 0.028 0.000
#> GSM447402     4  0.5203      0.488 0.000 0.416 0.008 0.576
#> GSM447403     1  0.1284      0.964 0.964 0.000 0.012 0.024
#> GSM447405     1  0.0672      0.972 0.984 0.000 0.008 0.008
#> GSM447418     3  0.4387      0.824 0.000 0.052 0.804 0.144
#> GSM447422     3  0.4440      0.825 0.000 0.060 0.804 0.136
#> GSM447424     3  0.4322      0.820 0.000 0.044 0.804 0.152
#> GSM447427     3  0.4547      0.816 0.000 0.092 0.804 0.104
#> GSM447428     3  0.5453      0.310 0.388 0.020 0.592 0.000
#> GSM447429     1  0.0817      0.973 0.976 0.000 0.024 0.000
#> GSM447431     2  0.6339      0.550 0.000 0.656 0.196 0.148
#> GSM447432     2  0.1824      0.827 0.000 0.936 0.004 0.060
#> GSM447434     1  0.1022      0.969 0.968 0.000 0.032 0.000
#> GSM447442     2  0.3052      0.795 0.000 0.860 0.004 0.136
#> GSM447451     2  0.0188      0.823 0.000 0.996 0.000 0.004
#> GSM447462     1  0.0921      0.969 0.972 0.000 0.028 0.000
#> GSM447463     1  0.1118      0.971 0.964 0.000 0.036 0.000
#> GSM447467     2  0.2699      0.750 0.068 0.904 0.028 0.000
#> GSM447469     2  0.4621      0.632 0.000 0.708 0.008 0.284
#> GSM447473     1  0.1284      0.964 0.964 0.000 0.012 0.024
#> GSM447404     1  0.1284      0.964 0.964 0.000 0.012 0.024
#> GSM447406     4  0.2401      0.820 0.000 0.092 0.004 0.904
#> GSM447407     4  0.2216      0.821 0.000 0.092 0.000 0.908
#> GSM447409     1  0.1174      0.966 0.968 0.000 0.012 0.020
#> GSM447412     3  0.4387      0.787 0.000 0.144 0.804 0.052
#> GSM447426     3  0.2775      0.702 0.000 0.020 0.896 0.084
#> GSM447433     1  0.0524      0.972 0.988 0.000 0.004 0.008
#> GSM447439     4  0.2281      0.822 0.000 0.096 0.000 0.904
#> GSM447441     2  0.2611      0.815 0.000 0.896 0.008 0.096
#> GSM447443     1  0.0707      0.971 0.980 0.000 0.020 0.000
#> GSM447445     1  0.0592      0.972 0.984 0.000 0.016 0.000
#> GSM447446     1  0.0524      0.972 0.988 0.000 0.004 0.008
#> GSM447453     1  0.1059      0.968 0.972 0.000 0.016 0.012
#> GSM447455     2  0.2888      0.813 0.000 0.872 0.004 0.124
#> GSM447456     2  0.3245      0.716 0.100 0.872 0.028 0.000
#> GSM447459     4  0.2345      0.823 0.000 0.100 0.000 0.900
#> GSM447466     1  0.1388      0.971 0.960 0.000 0.028 0.012
#> GSM447470     1  0.0921      0.969 0.972 0.000 0.028 0.000
#> GSM447474     1  0.1022      0.969 0.968 0.000 0.032 0.000
#> GSM447475     2  0.0188      0.823 0.000 0.996 0.000 0.004
#> GSM447398     2  0.0188      0.823 0.000 0.996 0.000 0.004
#> GSM447399     2  0.3401      0.783 0.000 0.840 0.008 0.152
#> GSM447408     4  0.5126      0.311 0.000 0.444 0.004 0.552
#> GSM447410     2  0.3764      0.594 0.000 0.784 0.000 0.216
#> GSM447414     3  0.4711      0.813 0.000 0.064 0.784 0.152
#> GSM447417     4  0.3870      0.728 0.000 0.208 0.004 0.788
#> GSM447419     1  0.0921      0.969 0.972 0.000 0.028 0.000
#> GSM447420     1  0.4797      0.633 0.720 0.020 0.260 0.000
#> GSM447421     1  0.0921      0.969 0.972 0.000 0.028 0.000
#> GSM447423     3  0.4356      0.783 0.000 0.148 0.804 0.048
#> GSM447436     1  0.0927      0.970 0.976 0.000 0.016 0.008
#> GSM447437     1  0.1118      0.971 0.964 0.000 0.036 0.000
#> GSM447438     2  0.3649      0.615 0.000 0.796 0.000 0.204
#> GSM447447     1  0.1022      0.969 0.968 0.000 0.032 0.000
#> GSM447454     2  0.0804      0.829 0.000 0.980 0.008 0.012
#> GSM447457     2  0.0657      0.827 0.000 0.984 0.012 0.004
#> GSM447460     2  0.4149      0.760 0.000 0.812 0.036 0.152
#> GSM447465     3  0.7082      0.497 0.000 0.308 0.540 0.152
#> GSM447471     1  0.0804      0.970 0.980 0.000 0.012 0.008
#> GSM447476     2  0.4401      0.470 0.004 0.724 0.000 0.272

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     3  0.2771    0.63782 0.000 0.000 0.860 0.012 0.128
#> GSM447411     1  0.2144    0.67855 0.912 0.068 0.000 0.000 0.020
#> GSM447413     3  0.3074    0.82566 0.000 0.000 0.804 0.196 0.000
#> GSM447415     1  0.3913    0.30676 0.676 0.000 0.000 0.000 0.324
#> GSM447416     3  0.3779    0.84047 0.000 0.052 0.804 0.144 0.000
#> GSM447425     4  0.4998    0.64282 0.000 0.000 0.196 0.700 0.104
#> GSM447430     4  0.0404    0.81174 0.000 0.012 0.000 0.988 0.000
#> GSM447435     1  0.1544    0.68018 0.932 0.068 0.000 0.000 0.000
#> GSM447440     1  0.4421    0.59190 0.748 0.068 0.000 0.000 0.184
#> GSM447444     1  0.5182    0.30717 0.632 0.068 0.000 0.000 0.300
#> GSM447448     1  0.3056    0.66405 0.864 0.068 0.000 0.000 0.068
#> GSM447449     2  0.3675    0.71958 0.000 0.788 0.024 0.188 0.000
#> GSM447450     1  0.2859    0.65436 0.876 0.000 0.000 0.068 0.056
#> GSM447452     4  0.4998    0.64282 0.000 0.000 0.196 0.700 0.104
#> GSM447458     2  0.1697    0.75998 0.000 0.932 0.008 0.060 0.000
#> GSM447461     2  0.0000    0.78133 0.000 1.000 0.000 0.000 0.000
#> GSM447464     1  0.4119    0.61703 0.780 0.068 0.000 0.000 0.152
#> GSM447468     1  0.3857    0.31883 0.688 0.000 0.000 0.000 0.312
#> GSM447472     1  0.4649    0.49856 0.720 0.068 0.000 0.000 0.212
#> GSM447400     5  0.5553    0.00626 0.448 0.068 0.000 0.000 0.484
#> GSM447402     4  0.4118    0.50029 0.000 0.336 0.004 0.660 0.000
#> GSM447403     1  0.3274    0.45530 0.780 0.000 0.000 0.000 0.220
#> GSM447405     1  0.1908    0.65178 0.908 0.000 0.000 0.000 0.092
#> GSM447418     3  0.3476    0.83713 0.000 0.020 0.804 0.176 0.000
#> GSM447422     3  0.3691    0.84081 0.000 0.040 0.804 0.156 0.000
#> GSM447424     3  0.3419    0.83569 0.000 0.016 0.804 0.180 0.000
#> GSM447427     3  0.3916    0.82260 0.000 0.104 0.804 0.092 0.000
#> GSM447428     5  0.6261    0.31846 0.148 0.000 0.396 0.000 0.456
#> GSM447429     5  0.4555    0.49429 0.200 0.000 0.068 0.000 0.732
#> GSM447431     2  0.6314    0.19676 0.000 0.508 0.312 0.180 0.000
#> GSM447432     2  0.1626    0.78560 0.000 0.940 0.016 0.044 0.000
#> GSM447434     1  0.5300    0.27933 0.604 0.068 0.000 0.000 0.328
#> GSM447442     2  0.3141    0.74669 0.000 0.832 0.016 0.152 0.000
#> GSM447451     2  0.0000    0.78133 0.000 1.000 0.000 0.000 0.000
#> GSM447462     5  0.5524    0.10581 0.416 0.068 0.000 0.000 0.516
#> GSM447463     1  0.3354    0.65447 0.844 0.068 0.000 0.000 0.088
#> GSM447467     2  0.2470    0.72631 0.012 0.884 0.000 0.000 0.104
#> GSM447469     2  0.4825    0.40742 0.000 0.568 0.024 0.408 0.000
#> GSM447473     1  0.3913    0.30676 0.676 0.000 0.000 0.000 0.324
#> GSM447404     1  0.3913    0.30676 0.676 0.000 0.000 0.000 0.324
#> GSM447406     4  0.0404    0.81174 0.000 0.012 0.000 0.988 0.000
#> GSM447407     4  0.0404    0.81174 0.000 0.012 0.000 0.988 0.000
#> GSM447409     1  0.1043    0.66772 0.960 0.000 0.000 0.000 0.040
#> GSM447412     3  0.3803    0.79915 0.000 0.140 0.804 0.056 0.000
#> GSM447426     3  0.2771    0.63782 0.000 0.000 0.860 0.012 0.128
#> GSM447433     1  0.1410    0.66785 0.940 0.000 0.000 0.000 0.060
#> GSM447439     4  0.0404    0.81174 0.000 0.012 0.000 0.988 0.000
#> GSM447441     2  0.2519    0.77351 0.000 0.884 0.016 0.100 0.000
#> GSM447443     5  0.4306   -0.01548 0.492 0.000 0.000 0.000 0.508
#> GSM447445     1  0.2992    0.66760 0.868 0.068 0.000 0.000 0.064
#> GSM447446     1  0.1478    0.66908 0.936 0.000 0.000 0.000 0.064
#> GSM447453     1  0.0404    0.66761 0.988 0.000 0.000 0.000 0.012
#> GSM447455     2  0.2464    0.77471 0.000 0.888 0.016 0.096 0.000
#> GSM447456     2  0.4888    0.67922 0.028 0.752 0.000 0.072 0.148
#> GSM447459     4  0.0404    0.81174 0.000 0.012 0.000 0.988 0.000
#> GSM447466     1  0.3569    0.65820 0.828 0.068 0.000 0.000 0.104
#> GSM447470     1  0.5557   -0.08760 0.468 0.068 0.000 0.000 0.464
#> GSM447474     1  0.5546    0.03124 0.496 0.068 0.000 0.000 0.436
#> GSM447475     2  0.0290    0.77983 0.000 0.992 0.000 0.000 0.008
#> GSM447398     2  0.1608    0.74247 0.000 0.928 0.000 0.072 0.000
#> GSM447399     2  0.3910    0.71241 0.000 0.772 0.032 0.196 0.000
#> GSM447408     4  0.4481    0.23194 0.000 0.416 0.008 0.576 0.000
#> GSM447410     2  0.3730    0.47667 0.000 0.712 0.000 0.288 0.000
#> GSM447414     3  0.3196    0.82861 0.000 0.004 0.804 0.192 0.000
#> GSM447417     4  0.1638    0.78149 0.000 0.064 0.004 0.932 0.000
#> GSM447419     5  0.4555    0.53464 0.200 0.000 0.068 0.000 0.732
#> GSM447420     5  0.5889    0.42279 0.116 0.000 0.340 0.000 0.544
#> GSM447421     5  0.3569    0.55421 0.104 0.000 0.068 0.000 0.828
#> GSM447423     3  0.3825    0.80190 0.000 0.136 0.804 0.060 0.000
#> GSM447436     1  0.0162    0.67301 0.996 0.000 0.000 0.000 0.004
#> GSM447437     1  0.3354    0.65447 0.844 0.068 0.000 0.000 0.088
#> GSM447438     2  0.3612    0.51375 0.000 0.732 0.000 0.268 0.000
#> GSM447447     1  0.4948    0.50040 0.676 0.068 0.000 0.000 0.256
#> GSM447454     2  0.0798    0.78646 0.000 0.976 0.016 0.008 0.000
#> GSM447457     2  0.0798    0.78625 0.000 0.976 0.016 0.008 0.000
#> GSM447460     2  0.4779    0.65916 0.000 0.716 0.084 0.200 0.000
#> GSM447465     3  0.6287    0.44702 0.000 0.296 0.520 0.184 0.000
#> GSM447471     1  0.0703    0.66213 0.976 0.000 0.000 0.000 0.024
#> GSM447476     2  0.5996    0.36706 0.132 0.612 0.000 0.244 0.012

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     5  0.0865      0.890 0.000 0.000 0.036 0.000 0.964 0.000
#> GSM447411     6  0.3857      0.529 0.468 0.000 0.000 0.000 0.000 0.532
#> GSM447413     3  0.1007      0.805 0.000 0.000 0.956 0.044 0.000 0.000
#> GSM447415     1  0.0508      0.923 0.984 0.000 0.000 0.000 0.012 0.004
#> GSM447416     3  0.0260      0.817 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM447425     5  0.2416      0.874 0.000 0.000 0.000 0.156 0.844 0.000
#> GSM447430     4  0.0363      0.740 0.000 0.000 0.012 0.988 0.000 0.000
#> GSM447435     6  0.3823      0.592 0.436 0.000 0.000 0.000 0.000 0.564
#> GSM447440     6  0.2912      0.803 0.216 0.000 0.000 0.000 0.000 0.784
#> GSM447444     6  0.3076      0.666 0.240 0.000 0.000 0.000 0.000 0.760
#> GSM447448     6  0.2631      0.784 0.180 0.000 0.000 0.000 0.000 0.820
#> GSM447449     3  0.3990      0.586 0.000 0.284 0.688 0.028 0.000 0.000
#> GSM447450     6  0.3409      0.768 0.300 0.000 0.000 0.000 0.000 0.700
#> GSM447452     5  0.2378      0.877 0.000 0.000 0.000 0.152 0.848 0.000
#> GSM447458     2  0.1075      0.906 0.000 0.952 0.048 0.000 0.000 0.000
#> GSM447461     2  0.0000      0.911 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447464     6  0.2730      0.815 0.192 0.000 0.000 0.000 0.000 0.808
#> GSM447468     1  0.0260      0.925 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM447472     6  0.3244      0.734 0.268 0.000 0.000 0.000 0.000 0.732
#> GSM447400     6  0.1838      0.808 0.068 0.000 0.000 0.000 0.016 0.916
#> GSM447402     4  0.4218      0.707 0.000 0.156 0.108 0.736 0.000 0.000
#> GSM447403     1  0.0146      0.925 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM447405     1  0.2346      0.877 0.868 0.000 0.000 0.008 0.000 0.124
#> GSM447418     3  0.0146      0.816 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM447422     3  0.0260      0.817 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM447424     3  0.0000      0.815 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447427     3  0.1806      0.798 0.000 0.088 0.908 0.004 0.000 0.000
#> GSM447428     3  0.6103     -0.059 0.404 0.000 0.432 0.000 0.024 0.140
#> GSM447429     6  0.3301      0.804 0.188 0.000 0.000 0.000 0.024 0.788
#> GSM447431     3  0.1588      0.806 0.000 0.072 0.924 0.004 0.000 0.000
#> GSM447432     2  0.1327      0.907 0.000 0.936 0.064 0.000 0.000 0.000
#> GSM447434     6  0.2631      0.798 0.180 0.000 0.000 0.000 0.000 0.820
#> GSM447442     2  0.2823      0.765 0.000 0.796 0.204 0.000 0.000 0.000
#> GSM447451     2  0.0000      0.911 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447462     6  0.0458      0.769 0.000 0.000 0.000 0.000 0.016 0.984
#> GSM447463     6  0.2912      0.806 0.216 0.000 0.000 0.000 0.000 0.784
#> GSM447467     2  0.2178      0.818 0.000 0.868 0.000 0.000 0.000 0.132
#> GSM447469     4  0.4025      0.634 0.000 0.048 0.232 0.720 0.000 0.000
#> GSM447473     1  0.0363      0.921 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM447404     1  0.0363      0.921 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM447406     4  0.0363      0.740 0.000 0.000 0.012 0.988 0.000 0.000
#> GSM447407     4  0.0405      0.738 0.000 0.000 0.008 0.988 0.004 0.000
#> GSM447409     1  0.1007      0.917 0.956 0.000 0.000 0.000 0.000 0.044
#> GSM447412     3  0.1765      0.795 0.000 0.096 0.904 0.000 0.000 0.000
#> GSM447426     5  0.0865      0.890 0.000 0.000 0.036 0.000 0.964 0.000
#> GSM447433     1  0.2302      0.880 0.872 0.000 0.000 0.008 0.000 0.120
#> GSM447439     4  0.0363      0.740 0.000 0.000 0.012 0.988 0.000 0.000
#> GSM447441     2  0.1663      0.893 0.000 0.912 0.088 0.000 0.000 0.000
#> GSM447443     1  0.2791      0.843 0.852 0.000 0.000 0.008 0.016 0.124
#> GSM447445     6  0.3266      0.788 0.272 0.000 0.000 0.000 0.000 0.728
#> GSM447446     1  0.1757      0.911 0.916 0.000 0.000 0.008 0.000 0.076
#> GSM447453     1  0.0935      0.923 0.964 0.000 0.000 0.004 0.000 0.032
#> GSM447455     2  0.1663      0.893 0.000 0.912 0.088 0.000 0.000 0.000
#> GSM447456     2  0.1972      0.866 0.024 0.916 0.000 0.004 0.000 0.056
#> GSM447459     4  0.0363      0.740 0.000 0.000 0.012 0.988 0.000 0.000
#> GSM447466     6  0.2969      0.805 0.224 0.000 0.000 0.000 0.000 0.776
#> GSM447470     6  0.0000      0.775 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447474     6  0.0000      0.775 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447475     2  0.0000      0.911 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447398     2  0.0000      0.911 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447399     3  0.4222      0.609 0.000 0.088 0.728 0.184 0.000 0.000
#> GSM447408     4  0.4037      0.597 0.000 0.380 0.012 0.608 0.000 0.000
#> GSM447410     4  0.3899      0.567 0.000 0.404 0.004 0.592 0.000 0.000
#> GSM447414     3  0.0000      0.815 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447417     4  0.1866      0.725 0.000 0.008 0.084 0.908 0.000 0.000
#> GSM447419     1  0.3062      0.812 0.816 0.000 0.000 0.000 0.024 0.160
#> GSM447420     6  0.4939      0.556 0.072 0.000 0.232 0.000 0.024 0.672
#> GSM447421     6  0.2282      0.804 0.088 0.000 0.000 0.000 0.024 0.888
#> GSM447423     3  0.2006      0.788 0.000 0.104 0.892 0.004 0.000 0.000
#> GSM447436     1  0.1196      0.923 0.952 0.000 0.000 0.008 0.000 0.040
#> GSM447437     6  0.2912      0.806 0.216 0.000 0.000 0.000 0.000 0.784
#> GSM447438     4  0.3872      0.586 0.000 0.392 0.004 0.604 0.000 0.000
#> GSM447447     6  0.0937      0.794 0.040 0.000 0.000 0.000 0.000 0.960
#> GSM447454     3  0.3851      0.280 0.000 0.460 0.540 0.000 0.000 0.000
#> GSM447457     2  0.0937      0.914 0.000 0.960 0.040 0.000 0.000 0.000
#> GSM447460     3  0.3834      0.732 0.000 0.116 0.776 0.108 0.000 0.000
#> GSM447465     3  0.1444      0.807 0.000 0.072 0.928 0.000 0.000 0.000
#> GSM447471     1  0.0713      0.923 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM447476     4  0.5172      0.603 0.000 0.284 0.000 0.592 0.000 0.124

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n gender(p) agent(p) k
#> MAD:mclust 78     0.819   0.2536 2
#> MAD:mclust 71     0.256   0.4195 3
#> MAD:mclust 74     0.672   0.0749 4
#> MAD:mclust 57     0.514   0.1352 5
#> MAD:mclust 77     0.252   0.1792 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.897           0.947       0.977         0.5032 0.498   0.498
#> 3 3 0.766           0.869       0.933         0.2893 0.783   0.591
#> 4 4 0.721           0.775       0.877         0.1104 0.847   0.599
#> 5 5 0.674           0.658       0.823         0.0589 0.869   0.587
#> 6 6 0.608           0.524       0.716         0.0462 0.931   0.740

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2   0.000      0.962 0.000 1.000
#> GSM447411     1   0.000      0.991 1.000 0.000
#> GSM447413     2   0.000      0.962 0.000 1.000
#> GSM447415     1   0.000      0.991 1.000 0.000
#> GSM447416     2   0.000      0.962 0.000 1.000
#> GSM447425     2   0.000      0.962 0.000 1.000
#> GSM447430     2   0.000      0.962 0.000 1.000
#> GSM447435     1   0.000      0.991 1.000 0.000
#> GSM447440     1   0.000      0.991 1.000 0.000
#> GSM447444     1   0.000      0.991 1.000 0.000
#> GSM447448     1   0.000      0.991 1.000 0.000
#> GSM447449     2   0.000      0.962 0.000 1.000
#> GSM447450     1   0.000      0.991 1.000 0.000
#> GSM447452     2   0.000      0.962 0.000 1.000
#> GSM447458     2   0.000      0.962 0.000 1.000
#> GSM447461     2   0.000      0.962 0.000 1.000
#> GSM447464     1   0.000      0.991 1.000 0.000
#> GSM447468     1   0.000      0.991 1.000 0.000
#> GSM447472     1   0.000      0.991 1.000 0.000
#> GSM447400     1   0.000      0.991 1.000 0.000
#> GSM447402     2   0.000      0.962 0.000 1.000
#> GSM447403     1   0.000      0.991 1.000 0.000
#> GSM447405     1   0.000      0.991 1.000 0.000
#> GSM447418     2   0.000      0.962 0.000 1.000
#> GSM447422     2   0.000      0.962 0.000 1.000
#> GSM447424     2   0.000      0.962 0.000 1.000
#> GSM447427     2   0.000      0.962 0.000 1.000
#> GSM447428     2   0.781      0.714 0.232 0.768
#> GSM447429     1   0.000      0.991 1.000 0.000
#> GSM447431     2   0.000      0.962 0.000 1.000
#> GSM447432     2   0.000      0.962 0.000 1.000
#> GSM447434     1   0.000      0.991 1.000 0.000
#> GSM447442     2   0.000      0.962 0.000 1.000
#> GSM447451     2   0.224      0.934 0.036 0.964
#> GSM447462     1   0.000      0.991 1.000 0.000
#> GSM447463     1   0.000      0.991 1.000 0.000
#> GSM447467     2   0.971      0.380 0.400 0.600
#> GSM447469     2   0.000      0.962 0.000 1.000
#> GSM447473     1   0.000      0.991 1.000 0.000
#> GSM447404     1   0.000      0.991 1.000 0.000
#> GSM447406     2   0.000      0.962 0.000 1.000
#> GSM447407     2   0.000      0.962 0.000 1.000
#> GSM447409     1   0.000      0.991 1.000 0.000
#> GSM447412     2   0.000      0.962 0.000 1.000
#> GSM447426     2   0.000      0.962 0.000 1.000
#> GSM447433     1   0.000      0.991 1.000 0.000
#> GSM447439     2   0.000      0.962 0.000 1.000
#> GSM447441     2   0.000      0.962 0.000 1.000
#> GSM447443     1   0.000      0.991 1.000 0.000
#> GSM447445     1   0.000      0.991 1.000 0.000
#> GSM447446     1   0.000      0.991 1.000 0.000
#> GSM447453     1   0.000      0.991 1.000 0.000
#> GSM447455     2   0.000      0.962 0.000 1.000
#> GSM447456     1   0.584      0.831 0.860 0.140
#> GSM447459     2   0.000      0.962 0.000 1.000
#> GSM447466     1   0.000      0.991 1.000 0.000
#> GSM447470     1   0.000      0.991 1.000 0.000
#> GSM447474     1   0.000      0.991 1.000 0.000
#> GSM447475     2   0.788      0.708 0.236 0.764
#> GSM447398     2   0.584      0.833 0.140 0.860
#> GSM447399     2   0.000      0.962 0.000 1.000
#> GSM447408     2   0.000      0.962 0.000 1.000
#> GSM447410     2   0.000      0.962 0.000 1.000
#> GSM447414     2   0.000      0.962 0.000 1.000
#> GSM447417     2   0.000      0.962 0.000 1.000
#> GSM447419     1   0.118      0.976 0.984 0.016
#> GSM447420     2   0.969      0.390 0.396 0.604
#> GSM447421     1   0.000      0.991 1.000 0.000
#> GSM447423     2   0.000      0.962 0.000 1.000
#> GSM447436     1   0.000      0.991 1.000 0.000
#> GSM447437     1   0.000      0.991 1.000 0.000
#> GSM447438     2   0.469      0.876 0.100 0.900
#> GSM447447     1   0.000      0.991 1.000 0.000
#> GSM447454     2   0.000      0.962 0.000 1.000
#> GSM447457     2   0.000      0.962 0.000 1.000
#> GSM447460     2   0.000      0.962 0.000 1.000
#> GSM447465     2   0.000      0.962 0.000 1.000
#> GSM447471     1   0.000      0.991 1.000 0.000
#> GSM447476     1   0.563      0.842 0.868 0.132

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.0000      0.857 0.000 0.000 1.000
#> GSM447411     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447413     3  0.0237      0.856 0.000 0.004 0.996
#> GSM447415     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447416     3  0.3619      0.805 0.000 0.136 0.864
#> GSM447425     2  0.4504      0.809 0.000 0.804 0.196
#> GSM447430     2  0.0237      0.904 0.000 0.996 0.004
#> GSM447435     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447440     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447444     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447448     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447449     2  0.4555      0.806 0.000 0.800 0.200
#> GSM447450     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447452     2  0.4750      0.787 0.000 0.784 0.216
#> GSM447458     2  0.3482      0.852 0.000 0.872 0.128
#> GSM447461     2  0.0000      0.905 0.000 1.000 0.000
#> GSM447464     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447468     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447472     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447400     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447402     2  0.5471      0.819 0.060 0.812 0.128
#> GSM447403     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447405     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447418     3  0.0000      0.857 0.000 0.000 1.000
#> GSM447422     3  0.0000      0.857 0.000 0.000 1.000
#> GSM447424     3  0.0000      0.857 0.000 0.000 1.000
#> GSM447427     3  0.0000      0.857 0.000 0.000 1.000
#> GSM447428     3  0.0000      0.857 0.000 0.000 1.000
#> GSM447429     1  0.5058      0.664 0.756 0.000 0.244
#> GSM447431     3  0.4121      0.766 0.000 0.168 0.832
#> GSM447432     2  0.3941      0.835 0.000 0.844 0.156
#> GSM447434     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447442     2  0.4399      0.815 0.000 0.812 0.188
#> GSM447451     2  0.1765      0.886 0.040 0.956 0.004
#> GSM447462     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447463     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447467     1  0.5505      0.779 0.816 0.088 0.096
#> GSM447469     2  0.4121      0.829 0.000 0.832 0.168
#> GSM447473     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447404     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447406     2  0.0000      0.905 0.000 1.000 0.000
#> GSM447407     2  0.0000      0.905 0.000 1.000 0.000
#> GSM447409     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447412     3  0.2165      0.846 0.000 0.064 0.936
#> GSM447426     3  0.0000      0.857 0.000 0.000 1.000
#> GSM447433     1  0.0424      0.965 0.992 0.008 0.000
#> GSM447439     2  0.0000      0.905 0.000 1.000 0.000
#> GSM447441     2  0.0000      0.905 0.000 1.000 0.000
#> GSM447443     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447445     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447446     1  0.2625      0.890 0.916 0.084 0.000
#> GSM447453     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447455     2  0.0000      0.905 0.000 1.000 0.000
#> GSM447456     2  0.5363      0.615 0.276 0.724 0.000
#> GSM447459     2  0.0000      0.905 0.000 1.000 0.000
#> GSM447466     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447470     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447474     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447475     2  0.4121      0.766 0.168 0.832 0.000
#> GSM447398     2  0.0000      0.905 0.000 1.000 0.000
#> GSM447399     2  0.0592      0.900 0.000 0.988 0.012
#> GSM447408     2  0.0000      0.905 0.000 1.000 0.000
#> GSM447410     2  0.0000      0.905 0.000 1.000 0.000
#> GSM447414     3  0.2356      0.844 0.000 0.072 0.928
#> GSM447417     2  0.0000      0.905 0.000 1.000 0.000
#> GSM447419     3  0.4399      0.724 0.188 0.000 0.812
#> GSM447420     3  0.5760      0.494 0.328 0.000 0.672
#> GSM447421     1  0.5363      0.606 0.724 0.000 0.276
#> GSM447423     3  0.2261      0.845 0.000 0.068 0.932
#> GSM447436     1  0.2165      0.911 0.936 0.064 0.000
#> GSM447437     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447438     2  0.0000      0.905 0.000 1.000 0.000
#> GSM447447     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447454     3  0.6252      0.424 0.000 0.444 0.556
#> GSM447457     3  0.6215      0.451 0.000 0.428 0.572
#> GSM447460     2  0.1529      0.884 0.000 0.960 0.040
#> GSM447465     3  0.6126      0.422 0.000 0.400 0.600
#> GSM447471     1  0.0000      0.972 1.000 0.000 0.000
#> GSM447476     2  0.3752      0.792 0.144 0.856 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.1474     0.7779 0.000 0.000 0.948 0.052
#> GSM447411     1  0.0000     0.9591 1.000 0.000 0.000 0.000
#> GSM447413     3  0.0657     0.7976 0.000 0.004 0.984 0.012
#> GSM447415     1  0.0000     0.9591 1.000 0.000 0.000 0.000
#> GSM447416     3  0.4514     0.8233 0.000 0.136 0.800 0.064
#> GSM447425     4  0.3528     0.6769 0.000 0.000 0.192 0.808
#> GSM447430     4  0.1174     0.7392 0.000 0.012 0.020 0.968
#> GSM447435     1  0.0000     0.9591 1.000 0.000 0.000 0.000
#> GSM447440     1  0.0000     0.9591 1.000 0.000 0.000 0.000
#> GSM447444     1  0.0707     0.9469 0.980 0.020 0.000 0.000
#> GSM447448     1  0.0188     0.9574 0.996 0.004 0.000 0.000
#> GSM447449     2  0.5109     0.6984 0.000 0.744 0.196 0.060
#> GSM447450     1  0.0000     0.9591 1.000 0.000 0.000 0.000
#> GSM447452     4  0.3528     0.6769 0.000 0.000 0.192 0.808
#> GSM447458     2  0.0188     0.7867 0.000 0.996 0.004 0.000
#> GSM447461     2  0.3123     0.7839 0.000 0.844 0.000 0.156
#> GSM447464     1  0.0000     0.9591 1.000 0.000 0.000 0.000
#> GSM447468     1  0.0000     0.9591 1.000 0.000 0.000 0.000
#> GSM447472     1  0.0000     0.9591 1.000 0.000 0.000 0.000
#> GSM447400     1  0.0336     0.9538 0.992 0.008 0.000 0.000
#> GSM447402     4  0.4092     0.6551 0.008 0.184 0.008 0.800
#> GSM447403     1  0.0000     0.9591 1.000 0.000 0.000 0.000
#> GSM447405     1  0.4989    -0.0791 0.528 0.000 0.000 0.472
#> GSM447418     3  0.3528     0.8359 0.000 0.192 0.808 0.000
#> GSM447422     3  0.4431     0.7534 0.000 0.304 0.696 0.000
#> GSM447424     3  0.3486     0.8354 0.000 0.188 0.812 0.000
#> GSM447427     3  0.3801     0.8260 0.000 0.220 0.780 0.000
#> GSM447428     3  0.2413     0.8083 0.064 0.020 0.916 0.000
#> GSM447429     1  0.1637     0.9088 0.940 0.000 0.060 0.000
#> GSM447431     2  0.3123     0.6306 0.000 0.844 0.156 0.000
#> GSM447432     2  0.0336     0.7849 0.000 0.992 0.008 0.000
#> GSM447434     1  0.0000     0.9591 1.000 0.000 0.000 0.000
#> GSM447442     2  0.0336     0.7849 0.000 0.992 0.008 0.000
#> GSM447451     2  0.4104     0.7713 0.028 0.808 0.000 0.164
#> GSM447462     1  0.2342     0.8728 0.912 0.080 0.008 0.000
#> GSM447463     1  0.0188     0.9574 0.996 0.004 0.000 0.000
#> GSM447467     2  0.3591     0.6300 0.168 0.824 0.008 0.000
#> GSM447469     4  0.4049     0.6438 0.000 0.212 0.008 0.780
#> GSM447473     1  0.0000     0.9591 1.000 0.000 0.000 0.000
#> GSM447404     1  0.0000     0.9591 1.000 0.000 0.000 0.000
#> GSM447406     4  0.2814     0.6898 0.000 0.132 0.000 0.868
#> GSM447407     4  0.0376     0.7390 0.000 0.004 0.004 0.992
#> GSM447409     1  0.0000     0.9591 1.000 0.000 0.000 0.000
#> GSM447412     3  0.3610     0.8334 0.000 0.200 0.800 0.000
#> GSM447426     3  0.1118     0.7867 0.000 0.000 0.964 0.036
#> GSM447433     4  0.4933     0.3207 0.432 0.000 0.000 0.568
#> GSM447439     4  0.1716     0.7290 0.000 0.064 0.000 0.936
#> GSM447441     2  0.3444     0.7688 0.000 0.816 0.000 0.184
#> GSM447443     1  0.0000     0.9591 1.000 0.000 0.000 0.000
#> GSM447445     1  0.0188     0.9574 0.996 0.004 0.000 0.000
#> GSM447446     4  0.3975     0.6232 0.240 0.000 0.000 0.760
#> GSM447453     1  0.0000     0.9591 1.000 0.000 0.000 0.000
#> GSM447455     2  0.2011     0.8014 0.000 0.920 0.000 0.080
#> GSM447456     2  0.5289     0.4420 0.344 0.636 0.000 0.020
#> GSM447459     4  0.0817     0.7383 0.000 0.024 0.000 0.976
#> GSM447466     1  0.0000     0.9591 1.000 0.000 0.000 0.000
#> GSM447470     1  0.1792     0.9025 0.932 0.068 0.000 0.000
#> GSM447474     1  0.0707     0.9472 0.980 0.020 0.000 0.000
#> GSM447475     2  0.4188     0.7103 0.148 0.812 0.000 0.040
#> GSM447398     2  0.3610     0.7590 0.000 0.800 0.000 0.200
#> GSM447399     2  0.4992     0.2481 0.000 0.524 0.000 0.476
#> GSM447408     4  0.3172     0.6664 0.000 0.160 0.000 0.840
#> GSM447410     4  0.4605     0.3325 0.000 0.336 0.000 0.664
#> GSM447414     3  0.4901     0.7887 0.000 0.112 0.780 0.108
#> GSM447417     4  0.1389     0.7349 0.000 0.048 0.000 0.952
#> GSM447419     3  0.4748     0.6186 0.268 0.016 0.716 0.000
#> GSM447420     3  0.4194     0.6731 0.228 0.008 0.764 0.000
#> GSM447421     1  0.4833     0.6348 0.740 0.032 0.228 0.000
#> GSM447423     3  0.4072     0.8058 0.000 0.252 0.748 0.000
#> GSM447436     4  0.4994     0.1762 0.480 0.000 0.000 0.520
#> GSM447437     1  0.0000     0.9591 1.000 0.000 0.000 0.000
#> GSM447438     4  0.3444     0.6379 0.000 0.184 0.000 0.816
#> GSM447447     1  0.1022     0.9373 0.968 0.032 0.000 0.000
#> GSM447454     2  0.3447     0.7956 0.000 0.852 0.020 0.128
#> GSM447457     2  0.1256     0.7787 0.000 0.964 0.028 0.008
#> GSM447460     2  0.4008     0.7198 0.000 0.756 0.000 0.244
#> GSM447465     2  0.1584     0.7763 0.000 0.952 0.036 0.012
#> GSM447471     1  0.0000     0.9591 1.000 0.000 0.000 0.000
#> GSM447476     4  0.4838     0.6138 0.252 0.024 0.000 0.724

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     3  0.2690     0.7826 0.000 0.000 0.844 0.000 0.156
#> GSM447411     1  0.0609     0.8888 0.980 0.020 0.000 0.000 0.000
#> GSM447413     3  0.2690     0.7924 0.000 0.000 0.844 0.000 0.156
#> GSM447415     1  0.0000     0.8894 1.000 0.000 0.000 0.000 0.000
#> GSM447416     3  0.3169     0.7830 0.000 0.016 0.840 0.140 0.004
#> GSM447425     5  0.1300     0.6817 0.000 0.000 0.016 0.028 0.956
#> GSM447430     4  0.4009     0.4611 0.000 0.004 0.000 0.684 0.312
#> GSM447435     1  0.0794     0.8885 0.972 0.028 0.000 0.000 0.000
#> GSM447440     1  0.2249     0.8575 0.896 0.096 0.000 0.008 0.000
#> GSM447444     2  0.5795     0.1826 0.412 0.496 0.000 0.000 0.092
#> GSM447448     1  0.2006     0.8730 0.916 0.072 0.000 0.000 0.012
#> GSM447449     2  0.4183     0.4318 0.000 0.712 0.008 0.008 0.272
#> GSM447450     1  0.1270     0.8850 0.948 0.052 0.000 0.000 0.000
#> GSM447452     5  0.2236     0.6704 0.000 0.000 0.024 0.068 0.908
#> GSM447458     2  0.1983     0.6314 0.008 0.924 0.000 0.008 0.060
#> GSM447461     4  0.4604     0.4283 0.008 0.404 0.000 0.584 0.004
#> GSM447464     1  0.2127     0.8520 0.892 0.108 0.000 0.000 0.000
#> GSM447468     1  0.0162     0.8896 0.996 0.004 0.000 0.000 0.000
#> GSM447472     1  0.1965     0.8473 0.904 0.096 0.000 0.000 0.000
#> GSM447400     1  0.1671     0.8656 0.924 0.076 0.000 0.000 0.000
#> GSM447402     5  0.4602     0.6433 0.008 0.188 0.016 0.032 0.756
#> GSM447403     1  0.0404     0.8880 0.988 0.000 0.000 0.000 0.012
#> GSM447405     1  0.5629     0.4774 0.644 0.004 0.000 0.132 0.220
#> GSM447418     2  0.4562    -0.0322 0.000 0.496 0.496 0.000 0.008
#> GSM447422     2  0.3266     0.5550 0.000 0.796 0.200 0.000 0.004
#> GSM447424     3  0.0794     0.8164 0.000 0.028 0.972 0.000 0.000
#> GSM447427     3  0.2377     0.7801 0.000 0.128 0.872 0.000 0.000
#> GSM447428     3  0.1644     0.8129 0.048 0.004 0.940 0.000 0.008
#> GSM447429     1  0.1525     0.8796 0.948 0.004 0.036 0.000 0.012
#> GSM447431     4  0.4221     0.6188 0.000 0.236 0.032 0.732 0.000
#> GSM447432     2  0.1179     0.6420 0.000 0.964 0.016 0.016 0.004
#> GSM447434     1  0.1195     0.8833 0.960 0.000 0.000 0.028 0.012
#> GSM447442     2  0.2299     0.6273 0.000 0.912 0.032 0.004 0.052
#> GSM447451     4  0.4697     0.2831 0.020 0.388 0.000 0.592 0.000
#> GSM447462     1  0.3811     0.7817 0.808 0.148 0.008 0.036 0.000
#> GSM447463     1  0.1671     0.8731 0.924 0.076 0.000 0.000 0.000
#> GSM447467     2  0.1954     0.6320 0.032 0.932 0.008 0.000 0.028
#> GSM447469     5  0.5896     0.2484 0.000 0.440 0.044 0.028 0.488
#> GSM447473     1  0.0510     0.8875 0.984 0.000 0.000 0.000 0.016
#> GSM447404     1  0.0671     0.8877 0.980 0.004 0.000 0.000 0.016
#> GSM447406     4  0.1430     0.7090 0.000 0.004 0.000 0.944 0.052
#> GSM447407     5  0.3612     0.5120 0.000 0.000 0.000 0.268 0.732
#> GSM447409     1  0.1074     0.8852 0.968 0.004 0.000 0.012 0.016
#> GSM447412     3  0.2813     0.8015 0.000 0.024 0.868 0.108 0.000
#> GSM447426     3  0.2329     0.7963 0.000 0.000 0.876 0.000 0.124
#> GSM447433     1  0.5833     0.1676 0.516 0.020 0.000 0.052 0.412
#> GSM447439     4  0.2068     0.6912 0.000 0.004 0.000 0.904 0.092
#> GSM447441     4  0.3662     0.5611 0.000 0.252 0.000 0.744 0.004
#> GSM447443     1  0.1074     0.8884 0.968 0.012 0.000 0.004 0.016
#> GSM447445     1  0.1282     0.8872 0.952 0.044 0.000 0.000 0.004
#> GSM447446     5  0.3764     0.5471 0.212 0.008 0.000 0.008 0.772
#> GSM447453     1  0.1211     0.8899 0.960 0.024 0.000 0.000 0.016
#> GSM447455     2  0.2517     0.6454 0.000 0.884 0.008 0.104 0.004
#> GSM447456     4  0.5197     0.3498 0.316 0.064 0.000 0.620 0.000
#> GSM447459     4  0.2516     0.6546 0.000 0.000 0.000 0.860 0.140
#> GSM447466     1  0.0794     0.8878 0.972 0.028 0.000 0.000 0.000
#> GSM447470     1  0.3612     0.6339 0.732 0.268 0.000 0.000 0.000
#> GSM447474     1  0.1124     0.8884 0.960 0.036 0.000 0.000 0.004
#> GSM447475     2  0.4392     0.5815 0.048 0.748 0.000 0.200 0.004
#> GSM447398     4  0.2377     0.6884 0.000 0.128 0.000 0.872 0.000
#> GSM447399     4  0.0880     0.7153 0.000 0.032 0.000 0.968 0.000
#> GSM447408     4  0.2208     0.6981 0.000 0.020 0.000 0.908 0.072
#> GSM447410     4  0.1117     0.7152 0.000 0.020 0.000 0.964 0.016
#> GSM447414     3  0.3602     0.7497 0.000 0.024 0.796 0.180 0.000
#> GSM447417     5  0.5931     0.4730 0.000 0.200 0.000 0.204 0.596
#> GSM447419     3  0.5319     0.5477 0.248 0.088 0.660 0.000 0.004
#> GSM447420     3  0.4305     0.6237 0.216 0.036 0.744 0.000 0.004
#> GSM447421     1  0.5185     0.5936 0.672 0.100 0.228 0.000 0.000
#> GSM447423     3  0.1872     0.8180 0.000 0.052 0.928 0.020 0.000
#> GSM447436     1  0.4889     0.0845 0.504 0.004 0.000 0.016 0.476
#> GSM447437     1  0.0693     0.8893 0.980 0.008 0.000 0.000 0.012
#> GSM447438     4  0.1682     0.7115 0.012 0.004 0.000 0.940 0.044
#> GSM447447     2  0.6215     0.2424 0.340 0.520 0.000 0.004 0.136
#> GSM447454     2  0.5592     0.2761 0.000 0.560 0.060 0.372 0.008
#> GSM447457     2  0.3867     0.6279 0.000 0.804 0.048 0.144 0.004
#> GSM447460     2  0.4697     0.3224 0.000 0.592 0.000 0.388 0.020
#> GSM447465     2  0.4410     0.6197 0.000 0.772 0.032 0.168 0.028
#> GSM447471     1  0.0510     0.8875 0.984 0.000 0.000 0.000 0.016
#> GSM447476     4  0.6988    -0.0655 0.292 0.012 0.000 0.436 0.260

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     3  0.3868     0.3236 0.000 0.000 0.508 0.000 0.492 0.000
#> GSM447411     1  0.0713     0.7344 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM447413     3  0.4038     0.6879 0.000 0.008 0.776 0.040 0.160 0.016
#> GSM447415     1  0.0937     0.7369 0.960 0.000 0.000 0.000 0.000 0.040
#> GSM447416     3  0.3430     0.7045 0.000 0.020 0.840 0.088 0.008 0.044
#> GSM447425     5  0.3104     0.5034 0.000 0.016 0.000 0.000 0.800 0.184
#> GSM447430     4  0.4148     0.4596 0.000 0.004 0.000 0.636 0.344 0.016
#> GSM447435     1  0.0865     0.7355 0.964 0.000 0.000 0.000 0.000 0.036
#> GSM447440     1  0.2714     0.7201 0.880 0.036 0.000 0.020 0.000 0.064
#> GSM447444     1  0.5852     0.1374 0.484 0.404 0.004 0.000 0.036 0.072
#> GSM447448     1  0.3284     0.6873 0.832 0.104 0.000 0.000 0.008 0.056
#> GSM447449     2  0.3610     0.6094 0.000 0.804 0.000 0.004 0.088 0.104
#> GSM447450     1  0.1923     0.7306 0.916 0.016 0.000 0.000 0.004 0.064
#> GSM447452     5  0.0520     0.5674 0.000 0.000 0.008 0.008 0.984 0.000
#> GSM447458     2  0.2445     0.6602 0.008 0.892 0.000 0.000 0.040 0.060
#> GSM447461     4  0.5886     0.2635 0.040 0.364 0.000 0.508 0.000 0.088
#> GSM447464     1  0.3045     0.6865 0.840 0.100 0.000 0.000 0.000 0.060
#> GSM447468     1  0.0806     0.7383 0.972 0.000 0.008 0.000 0.000 0.020
#> GSM447472     1  0.2121     0.7352 0.892 0.012 0.000 0.000 0.000 0.096
#> GSM447400     1  0.4598     0.6671 0.712 0.056 0.012 0.008 0.000 0.212
#> GSM447402     6  0.6424    -0.1669 0.000 0.236 0.004 0.012 0.360 0.388
#> GSM447403     1  0.2697     0.6785 0.812 0.000 0.000 0.000 0.000 0.188
#> GSM447405     1  0.6619    -0.0897 0.456 0.000 0.000 0.068 0.144 0.332
#> GSM447418     3  0.4293     0.1421 0.000 0.448 0.536 0.000 0.004 0.012
#> GSM447422     2  0.4034     0.4150 0.000 0.692 0.280 0.004 0.000 0.024
#> GSM447424     3  0.0972     0.7261 0.000 0.028 0.964 0.000 0.008 0.000
#> GSM447427     3  0.2212     0.7152 0.000 0.112 0.880 0.000 0.000 0.008
#> GSM447428     3  0.2595     0.7164 0.056 0.008 0.888 0.000 0.044 0.004
#> GSM447429     1  0.3616     0.6986 0.792 0.000 0.076 0.000 0.000 0.132
#> GSM447431     4  0.4443     0.6705 0.000 0.108 0.040 0.768 0.004 0.080
#> GSM447432     2  0.2499     0.6601 0.000 0.880 0.000 0.048 0.000 0.072
#> GSM447434     1  0.4702     0.5855 0.680 0.000 0.004 0.096 0.000 0.220
#> GSM447442     2  0.2195     0.6495 0.000 0.904 0.012 0.000 0.016 0.068
#> GSM447451     4  0.5431     0.3404 0.024 0.320 0.004 0.584 0.000 0.068
#> GSM447462     1  0.4859     0.6058 0.732 0.120 0.012 0.024 0.000 0.112
#> GSM447463     1  0.2857     0.7201 0.856 0.072 0.000 0.000 0.000 0.072
#> GSM447467     2  0.2504     0.6615 0.032 0.892 0.004 0.000 0.008 0.064
#> GSM447469     2  0.6434    -0.0243 0.000 0.412 0.024 0.012 0.144 0.408
#> GSM447473     1  0.3151     0.6439 0.748 0.000 0.000 0.000 0.000 0.252
#> GSM447404     1  0.2996     0.6658 0.772 0.000 0.000 0.000 0.000 0.228
#> GSM447406     4  0.1958     0.7067 0.000 0.000 0.000 0.896 0.100 0.004
#> GSM447407     5  0.2622     0.5460 0.000 0.004 0.000 0.104 0.868 0.024
#> GSM447409     1  0.3023     0.6588 0.768 0.000 0.000 0.000 0.000 0.232
#> GSM447412     3  0.1820     0.7262 0.000 0.012 0.928 0.044 0.000 0.016
#> GSM447426     3  0.3817     0.4184 0.000 0.000 0.568 0.000 0.432 0.000
#> GSM447433     6  0.6182     0.1925 0.340 0.000 0.000 0.012 0.208 0.440
#> GSM447439     4  0.2843     0.6918 0.000 0.000 0.000 0.848 0.116 0.036
#> GSM447441     4  0.4439     0.5259 0.000 0.240 0.004 0.692 0.000 0.064
#> GSM447443     1  0.3758     0.6489 0.700 0.000 0.016 0.000 0.000 0.284
#> GSM447445     1  0.2383     0.7311 0.880 0.024 0.000 0.000 0.000 0.096
#> GSM447446     5  0.6276    -0.2382 0.244 0.012 0.000 0.000 0.428 0.316
#> GSM447453     1  0.3735     0.6319 0.780 0.012 0.000 0.000 0.172 0.036
#> GSM447455     2  0.2672     0.6713 0.000 0.868 0.000 0.080 0.000 0.052
#> GSM447456     1  0.6596    -0.0403 0.424 0.076 0.000 0.380 0.000 0.120
#> GSM447459     4  0.4051     0.6487 0.000 0.004 0.000 0.756 0.164 0.076
#> GSM447466     1  0.0790     0.7347 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM447470     1  0.4618     0.5155 0.672 0.236 0.000 0.000 0.000 0.092
#> GSM447474     1  0.3023     0.7015 0.836 0.044 0.000 0.000 0.000 0.120
#> GSM447475     2  0.5949     0.5375 0.064 0.612 0.000 0.168 0.000 0.156
#> GSM447398     4  0.3070     0.6948 0.016 0.056 0.000 0.856 0.000 0.072
#> GSM447399     4  0.3152     0.6876 0.000 0.020 0.016 0.832 0.000 0.132
#> GSM447408     4  0.4408     0.6027 0.000 0.012 0.000 0.720 0.064 0.204
#> GSM447410     4  0.3562     0.6342 0.000 0.012 0.000 0.756 0.008 0.224
#> GSM447414     3  0.4834     0.6494 0.000 0.040 0.720 0.172 0.004 0.064
#> GSM447417     6  0.7531    -0.0142 0.000 0.256 0.000 0.168 0.220 0.356
#> GSM447419     3  0.5812     0.3910 0.268 0.008 0.576 0.008 0.004 0.136
#> GSM447420     3  0.5040     0.5563 0.208 0.020 0.680 0.000 0.004 0.088
#> GSM447421     1  0.6245     0.1519 0.472 0.088 0.372 0.000 0.000 0.068
#> GSM447423     3  0.2474     0.7242 0.000 0.040 0.880 0.000 0.000 0.080
#> GSM447436     6  0.6254     0.1784 0.368 0.008 0.000 0.004 0.208 0.412
#> GSM447437     1  0.2003     0.7173 0.884 0.000 0.000 0.000 0.000 0.116
#> GSM447438     4  0.3166     0.6547 0.004 0.000 0.000 0.816 0.024 0.156
#> GSM447447     2  0.6139     0.1007 0.188 0.472 0.000 0.000 0.016 0.324
#> GSM447454     2  0.7085     0.2843 0.000 0.440 0.128 0.276 0.000 0.156
#> GSM447457     2  0.5117     0.6037 0.000 0.688 0.032 0.128 0.000 0.152
#> GSM447460     2  0.5522     0.2940 0.000 0.540 0.004 0.356 0.012 0.088
#> GSM447465     2  0.4166     0.6316 0.000 0.776 0.020 0.144 0.008 0.052
#> GSM447471     1  0.3050     0.6522 0.764 0.000 0.000 0.000 0.000 0.236
#> GSM447476     6  0.6355     0.0533 0.080 0.016 0.000 0.360 0.052 0.492

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n gender(p) agent(p) k
#> MAD:NMF 77    1.0000    0.301 2
#> MAD:NMF 75    0.2977    0.346 3
#> MAD:NMF 73    0.5377    0.250 4
#> MAD:NMF 63    0.1064    0.266 5
#> MAD:NMF 57    0.0804    0.160 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.496           0.787       0.898         0.4155 0.572   0.572
#> 3 3 0.545           0.703       0.846         0.3104 0.912   0.849
#> 4 4 0.754           0.767       0.877         0.3039 0.787   0.582
#> 5 5 0.835           0.747       0.852         0.0897 0.903   0.690
#> 6 6 0.796           0.722       0.814         0.0444 0.957   0.816

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2  0.0000      0.909 0.000 1.000
#> GSM447411     1  0.7453      0.826 0.788 0.212
#> GSM447413     2  0.0000      0.909 0.000 1.000
#> GSM447415     2  0.0672      0.905 0.008 0.992
#> GSM447416     2  0.0000      0.909 0.000 1.000
#> GSM447425     2  0.2236      0.887 0.036 0.964
#> GSM447430     1  0.0000      0.803 1.000 0.000
#> GSM447435     1  0.7453      0.826 0.788 0.212
#> GSM447440     1  0.4815      0.843 0.896 0.104
#> GSM447444     2  0.0000      0.909 0.000 1.000
#> GSM447448     2  0.0000      0.909 0.000 1.000
#> GSM447449     2  0.0000      0.909 0.000 1.000
#> GSM447450     1  0.4815      0.843 0.896 0.104
#> GSM447452     2  0.9795      0.288 0.416 0.584
#> GSM447458     2  0.0376      0.907 0.004 0.996
#> GSM447461     1  0.9881      0.259 0.564 0.436
#> GSM447464     1  0.7453      0.826 0.788 0.212
#> GSM447468     1  0.7453      0.826 0.788 0.212
#> GSM447472     2  0.3274      0.865 0.060 0.940
#> GSM447400     1  0.5842      0.842 0.860 0.140
#> GSM447402     2  0.1184      0.901 0.016 0.984
#> GSM447403     1  0.7453      0.826 0.788 0.212
#> GSM447405     2  0.0000      0.909 0.000 1.000
#> GSM447418     2  0.0000      0.909 0.000 1.000
#> GSM447422     2  0.0000      0.909 0.000 1.000
#> GSM447424     2  0.0000      0.909 0.000 1.000
#> GSM447427     2  0.0000      0.909 0.000 1.000
#> GSM447428     2  0.0000      0.909 0.000 1.000
#> GSM447429     2  0.0672      0.905 0.008 0.992
#> GSM447431     1  0.0376      0.805 0.996 0.004
#> GSM447432     2  0.0376      0.907 0.004 0.996
#> GSM447434     1  0.4815      0.843 0.896 0.104
#> GSM447442     2  0.0000      0.909 0.000 1.000
#> GSM447451     2  0.0000      0.909 0.000 1.000
#> GSM447462     1  0.5842      0.842 0.860 0.140
#> GSM447463     2  0.0000      0.909 0.000 1.000
#> GSM447467     2  0.0000      0.909 0.000 1.000
#> GSM447469     2  0.1184      0.901 0.016 0.984
#> GSM447473     1  0.7528      0.822 0.784 0.216
#> GSM447404     1  0.7528      0.822 0.784 0.216
#> GSM447406     1  0.0000      0.803 1.000 0.000
#> GSM447407     2  0.2236      0.887 0.036 0.964
#> GSM447409     1  0.4815      0.843 0.896 0.104
#> GSM447412     2  0.0376      0.907 0.004 0.996
#> GSM447426     2  0.0000      0.909 0.000 1.000
#> GSM447433     2  0.2603      0.881 0.044 0.956
#> GSM447439     1  0.0000      0.803 1.000 0.000
#> GSM447441     2  0.0000      0.909 0.000 1.000
#> GSM447443     2  0.9635      0.214 0.388 0.612
#> GSM447445     2  0.0000      0.909 0.000 1.000
#> GSM447446     2  0.0000      0.909 0.000 1.000
#> GSM447453     2  0.0000      0.909 0.000 1.000
#> GSM447455     2  0.0376      0.907 0.004 0.996
#> GSM447456     2  0.9754      0.312 0.408 0.592
#> GSM447459     2  0.9795      0.288 0.416 0.584
#> GSM447466     1  0.7453      0.826 0.788 0.212
#> GSM447470     2  0.3274      0.865 0.060 0.940
#> GSM447474     2  0.4690      0.822 0.100 0.900
#> GSM447475     1  0.9993      0.137 0.516 0.484
#> GSM447398     1  0.0376      0.805 0.996 0.004
#> GSM447399     1  0.0376      0.805 0.996 0.004
#> GSM447408     2  0.9635      0.363 0.388 0.612
#> GSM447410     2  0.9754      0.313 0.408 0.592
#> GSM447414     1  0.9866      0.270 0.568 0.432
#> GSM447417     2  0.2236      0.887 0.036 0.964
#> GSM447419     2  0.9552      0.253 0.376 0.624
#> GSM447420     2  0.0000      0.909 0.000 1.000
#> GSM447421     2  0.0672      0.905 0.008 0.992
#> GSM447423     2  0.0000      0.909 0.000 1.000
#> GSM447436     2  0.0000      0.909 0.000 1.000
#> GSM447437     2  0.0000      0.909 0.000 1.000
#> GSM447438     2  0.9754      0.312 0.408 0.592
#> GSM447447     2  0.0000      0.909 0.000 1.000
#> GSM447454     2  0.0000      0.909 0.000 1.000
#> GSM447457     2  0.0000      0.909 0.000 1.000
#> GSM447460     2  0.0000      0.909 0.000 1.000
#> GSM447465     2  0.0000      0.909 0.000 1.000
#> GSM447471     1  0.7453      0.826 0.788 0.212
#> GSM447476     2  0.9754      0.313 0.408 0.592

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     2  0.4164      0.780 0.144 0.848 0.008
#> GSM447411     1  0.3879      0.861 0.848 0.000 0.152
#> GSM447413     2  0.4164      0.780 0.144 0.848 0.008
#> GSM447415     2  0.6379      0.539 0.368 0.624 0.008
#> GSM447416     2  0.4164      0.780 0.144 0.848 0.008
#> GSM447425     2  0.1411      0.815 0.000 0.964 0.036
#> GSM447430     3  0.0424      0.681 0.008 0.000 0.992
#> GSM447435     1  0.3879      0.861 0.848 0.000 0.152
#> GSM447440     1  0.5254      0.801 0.736 0.000 0.264
#> GSM447444     2  0.0000      0.832 0.000 1.000 0.000
#> GSM447448     2  0.0000      0.832 0.000 1.000 0.000
#> GSM447449     2  0.0000      0.832 0.000 1.000 0.000
#> GSM447450     1  0.5254      0.801 0.736 0.000 0.264
#> GSM447452     2  0.6180      0.258 0.000 0.584 0.416
#> GSM447458     2  0.0237      0.830 0.000 0.996 0.004
#> GSM447461     3  0.7130      0.276 0.024 0.432 0.544
#> GSM447464     1  0.3879      0.861 0.848 0.000 0.152
#> GSM447468     1  0.3816      0.859 0.852 0.000 0.148
#> GSM447472     2  0.7114      0.483 0.388 0.584 0.028
#> GSM447400     1  0.4796      0.830 0.780 0.000 0.220
#> GSM447402     2  0.0747      0.826 0.000 0.984 0.016
#> GSM447403     1  0.3879      0.861 0.848 0.000 0.152
#> GSM447405     2  0.0000      0.832 0.000 1.000 0.000
#> GSM447418     2  0.4164      0.780 0.144 0.848 0.008
#> GSM447422     2  0.4164      0.780 0.144 0.848 0.008
#> GSM447424     2  0.4164      0.780 0.144 0.848 0.008
#> GSM447427     2  0.4164      0.780 0.144 0.848 0.008
#> GSM447428     2  0.4164      0.780 0.144 0.848 0.008
#> GSM447429     2  0.6379      0.539 0.368 0.624 0.008
#> GSM447431     3  0.0592      0.680 0.012 0.000 0.988
#> GSM447432     2  0.0237      0.830 0.000 0.996 0.004
#> GSM447434     1  0.5254      0.801 0.736 0.000 0.264
#> GSM447442     2  0.0000      0.832 0.000 1.000 0.000
#> GSM447451     2  0.0000      0.832 0.000 1.000 0.000
#> GSM447462     1  0.4796      0.830 0.780 0.000 0.220
#> GSM447463     2  0.0000      0.832 0.000 1.000 0.000
#> GSM447467     2  0.0000      0.832 0.000 1.000 0.000
#> GSM447469     2  0.0747      0.826 0.000 0.984 0.016
#> GSM447473     1  0.3752      0.857 0.856 0.000 0.144
#> GSM447404     1  0.3752      0.857 0.856 0.000 0.144
#> GSM447406     3  0.0424      0.681 0.008 0.000 0.992
#> GSM447407     2  0.1411      0.815 0.000 0.964 0.036
#> GSM447409     1  0.5254      0.801 0.736 0.000 0.264
#> GSM447412     2  0.4110      0.777 0.152 0.844 0.004
#> GSM447426     2  0.4164      0.780 0.144 0.848 0.008
#> GSM447433     2  0.1643      0.811 0.000 0.956 0.044
#> GSM447439     3  0.0424      0.681 0.008 0.000 0.992
#> GSM447441     2  0.0000      0.832 0.000 1.000 0.000
#> GSM447443     1  0.5404      0.286 0.740 0.256 0.004
#> GSM447445     2  0.0000      0.832 0.000 1.000 0.000
#> GSM447446     2  0.0000      0.832 0.000 1.000 0.000
#> GSM447453     2  0.0000      0.832 0.000 1.000 0.000
#> GSM447455     2  0.0237      0.830 0.000 0.996 0.004
#> GSM447456     2  0.6154      0.277 0.000 0.592 0.408
#> GSM447459     2  0.6180      0.258 0.000 0.584 0.416
#> GSM447466     1  0.3879      0.861 0.848 0.000 0.152
#> GSM447470     2  0.7114      0.483 0.388 0.584 0.028
#> GSM447474     2  0.7903      0.445 0.356 0.576 0.068
#> GSM447475     3  0.8391      0.225 0.084 0.432 0.484
#> GSM447398     3  0.0592      0.680 0.012 0.000 0.988
#> GSM447399     3  0.0592      0.680 0.012 0.000 0.988
#> GSM447408     2  0.6079      0.312 0.000 0.612 0.388
#> GSM447410     2  0.6154      0.275 0.000 0.592 0.408
#> GSM447414     3  0.6879      0.287 0.016 0.428 0.556
#> GSM447417     2  0.1411      0.815 0.000 0.964 0.036
#> GSM447419     1  0.5497      0.223 0.708 0.292 0.000
#> GSM447420     2  0.4164      0.780 0.144 0.848 0.008
#> GSM447421     2  0.6379      0.539 0.368 0.624 0.008
#> GSM447423     2  0.4164      0.780 0.144 0.848 0.008
#> GSM447436     2  0.0000      0.832 0.000 1.000 0.000
#> GSM447437     2  0.0000      0.832 0.000 1.000 0.000
#> GSM447438     2  0.6154      0.277 0.000 0.592 0.408
#> GSM447447     2  0.0000      0.832 0.000 1.000 0.000
#> GSM447454     2  0.0000      0.832 0.000 1.000 0.000
#> GSM447457     2  0.0000      0.832 0.000 1.000 0.000
#> GSM447460     2  0.0000      0.832 0.000 1.000 0.000
#> GSM447465     2  0.0000      0.832 0.000 1.000 0.000
#> GSM447471     1  0.3816      0.859 0.852 0.000 0.148
#> GSM447476     2  0.6154      0.275 0.000 0.592 0.408

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.2281     0.8569 0.000 0.096 0.904 0.000
#> GSM447411     1  0.0592     0.8789 0.984 0.000 0.016 0.000
#> GSM447413     3  0.2281     0.8569 0.000 0.096 0.904 0.000
#> GSM447415     3  0.4059     0.7468 0.200 0.012 0.788 0.000
#> GSM447416     3  0.2281     0.8569 0.000 0.096 0.904 0.000
#> GSM447425     2  0.2329     0.8430 0.000 0.916 0.072 0.012
#> GSM447430     4  0.0000     0.8403 0.000 0.000 0.000 1.000
#> GSM447435     1  0.0592     0.8789 0.984 0.000 0.016 0.000
#> GSM447440     1  0.2530     0.8285 0.888 0.000 0.000 0.112
#> GSM447444     2  0.0188     0.8861 0.000 0.996 0.004 0.000
#> GSM447448     2  0.0188     0.8861 0.000 0.996 0.004 0.000
#> GSM447449     2  0.0188     0.8861 0.000 0.996 0.004 0.000
#> GSM447450     1  0.2530     0.8285 0.888 0.000 0.000 0.112
#> GSM447452     2  0.6708     0.3971 0.008 0.536 0.072 0.384
#> GSM447458     2  0.0000     0.8849 0.000 1.000 0.000 0.000
#> GSM447461     4  0.6365     0.2358 0.052 0.004 0.440 0.504
#> GSM447464     1  0.0592     0.8789 0.984 0.000 0.016 0.000
#> GSM447468     1  0.0188     0.8796 0.996 0.000 0.004 0.000
#> GSM447472     3  0.4319     0.7088 0.228 0.000 0.760 0.012
#> GSM447400     1  0.2053     0.8546 0.924 0.000 0.004 0.072
#> GSM447402     2  0.1716     0.8536 0.000 0.936 0.064 0.000
#> GSM447403     1  0.0592     0.8789 0.984 0.000 0.016 0.000
#> GSM447405     2  0.0336     0.8850 0.000 0.992 0.008 0.000
#> GSM447418     3  0.2281     0.8569 0.000 0.096 0.904 0.000
#> GSM447422     3  0.2281     0.8569 0.000 0.096 0.904 0.000
#> GSM447424     3  0.2281     0.8569 0.000 0.096 0.904 0.000
#> GSM447427     3  0.2281     0.8569 0.000 0.096 0.904 0.000
#> GSM447428     3  0.2281     0.8569 0.000 0.096 0.904 0.000
#> GSM447429     3  0.4059     0.7468 0.200 0.012 0.788 0.000
#> GSM447431     4  0.1174     0.8370 0.020 0.000 0.012 0.968
#> GSM447432     2  0.0000     0.8849 0.000 1.000 0.000 0.000
#> GSM447434     1  0.2530     0.8285 0.888 0.000 0.000 0.112
#> GSM447442     2  0.0188     0.8861 0.000 0.996 0.004 0.000
#> GSM447451     2  0.0188     0.8861 0.000 0.996 0.004 0.000
#> GSM447462     1  0.2053     0.8546 0.924 0.000 0.004 0.072
#> GSM447463     2  0.0188     0.8861 0.000 0.996 0.004 0.000
#> GSM447467     2  0.0188     0.8861 0.000 0.996 0.004 0.000
#> GSM447469     2  0.1716     0.8536 0.000 0.936 0.064 0.000
#> GSM447473     1  0.0336     0.8788 0.992 0.000 0.008 0.000
#> GSM447404     1  0.0336     0.8788 0.992 0.000 0.008 0.000
#> GSM447406     4  0.0000     0.8403 0.000 0.000 0.000 1.000
#> GSM447407     2  0.2329     0.8430 0.000 0.916 0.072 0.012
#> GSM447409     1  0.2530     0.8285 0.888 0.000 0.000 0.112
#> GSM447412     3  0.2546     0.8527 0.008 0.092 0.900 0.000
#> GSM447426     3  0.2281     0.8569 0.000 0.096 0.904 0.000
#> GSM447433     2  0.1796     0.8624 0.004 0.948 0.016 0.032
#> GSM447439     4  0.0000     0.8403 0.000 0.000 0.000 1.000
#> GSM447441     2  0.0188     0.8861 0.000 0.996 0.004 0.000
#> GSM447443     1  0.5060     0.2056 0.584 0.004 0.412 0.000
#> GSM447445     2  0.0188     0.8861 0.000 0.996 0.004 0.000
#> GSM447446     2  0.0188     0.8861 0.000 0.996 0.004 0.000
#> GSM447453     2  0.0188     0.8861 0.000 0.996 0.004 0.000
#> GSM447455     2  0.0000     0.8849 0.000 1.000 0.000 0.000
#> GSM447456     2  0.6687     0.4134 0.008 0.544 0.072 0.376
#> GSM447459     2  0.6708     0.3971 0.008 0.536 0.072 0.384
#> GSM447466     1  0.0592     0.8789 0.984 0.000 0.016 0.000
#> GSM447470     3  0.4319     0.7088 0.228 0.000 0.760 0.012
#> GSM447474     3  0.5025     0.6672 0.252 0.000 0.716 0.032
#> GSM447475     3  0.7010    -0.2499 0.100 0.004 0.448 0.448
#> GSM447398     4  0.0895     0.8399 0.020 0.000 0.004 0.976
#> GSM447399     4  0.0895     0.8399 0.020 0.000 0.004 0.976
#> GSM447408     2  0.6509     0.4473 0.004 0.564 0.072 0.360
#> GSM447410     2  0.6687     0.4136 0.008 0.544 0.072 0.376
#> GSM447414     4  0.5997     0.2736 0.032 0.004 0.436 0.528
#> GSM447417     2  0.2329     0.8430 0.000 0.916 0.072 0.012
#> GSM447419     1  0.5137     0.0948 0.544 0.004 0.452 0.000
#> GSM447420     3  0.2281     0.8569 0.000 0.096 0.904 0.000
#> GSM447421     3  0.4059     0.7468 0.200 0.012 0.788 0.000
#> GSM447423     3  0.2281     0.8569 0.000 0.096 0.904 0.000
#> GSM447436     2  0.0188     0.8861 0.000 0.996 0.004 0.000
#> GSM447437     2  0.0188     0.8861 0.000 0.996 0.004 0.000
#> GSM447438     2  0.6687     0.4134 0.008 0.544 0.072 0.376
#> GSM447447     2  0.0188     0.8861 0.000 0.996 0.004 0.000
#> GSM447454     2  0.0188     0.8861 0.000 0.996 0.004 0.000
#> GSM447457     2  0.0188     0.8861 0.000 0.996 0.004 0.000
#> GSM447460     2  0.0188     0.8861 0.000 0.996 0.004 0.000
#> GSM447465     2  0.0188     0.8861 0.000 0.996 0.004 0.000
#> GSM447471     1  0.0188     0.8796 0.996 0.000 0.004 0.000
#> GSM447476     2  0.6687     0.4136 0.008 0.544 0.072 0.376

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     3  0.0963     0.8089 0.000 0.036 0.964 0.000 0.000
#> GSM447411     1  0.2989     0.8343 0.880 0.000 0.036 0.016 0.068
#> GSM447413     3  0.0963     0.8089 0.000 0.036 0.964 0.000 0.000
#> GSM447415     3  0.5987     0.6015 0.116 0.004 0.624 0.012 0.244
#> GSM447416     3  0.0963     0.8089 0.000 0.036 0.964 0.000 0.000
#> GSM447425     4  0.4321     0.4006 0.000 0.396 0.000 0.600 0.004
#> GSM447430     5  0.3730     0.9364 0.000 0.000 0.000 0.288 0.712
#> GSM447435     1  0.2989     0.8343 0.880 0.000 0.036 0.016 0.068
#> GSM447440     1  0.2522     0.8125 0.880 0.000 0.000 0.012 0.108
#> GSM447444     2  0.0000     0.9330 0.000 1.000 0.000 0.000 0.000
#> GSM447448     2  0.0000     0.9330 0.000 1.000 0.000 0.000 0.000
#> GSM447449     2  0.0162     0.9317 0.000 0.996 0.004 0.000 0.000
#> GSM447450     1  0.2522     0.8125 0.880 0.000 0.000 0.012 0.108
#> GSM447452     4  0.0693     0.6849 0.000 0.012 0.000 0.980 0.008
#> GSM447458     2  0.0162     0.9319 0.000 0.996 0.000 0.004 0.000
#> GSM447461     3  0.7283    -0.0663 0.036 0.000 0.412 0.196 0.356
#> GSM447464     1  0.2989     0.8343 0.880 0.000 0.036 0.016 0.068
#> GSM447468     1  0.0451     0.8540 0.988 0.000 0.008 0.004 0.000
#> GSM447472     3  0.4877     0.6890 0.132 0.000 0.760 0.036 0.072
#> GSM447400     1  0.1697     0.8368 0.932 0.000 0.000 0.008 0.060
#> GSM447402     2  0.4299     0.2488 0.000 0.608 0.000 0.388 0.004
#> GSM447403     1  0.2445     0.8415 0.908 0.000 0.020 0.016 0.056
#> GSM447405     2  0.1608     0.8721 0.000 0.928 0.000 0.072 0.000
#> GSM447418     3  0.0963     0.8089 0.000 0.036 0.964 0.000 0.000
#> GSM447422     3  0.0963     0.8089 0.000 0.036 0.964 0.000 0.000
#> GSM447424     3  0.0963     0.8089 0.000 0.036 0.964 0.000 0.000
#> GSM447427     3  0.0963     0.8089 0.000 0.036 0.964 0.000 0.000
#> GSM447428     3  0.0963     0.8089 0.000 0.036 0.964 0.000 0.000
#> GSM447429     3  0.5987     0.6015 0.116 0.004 0.624 0.012 0.244
#> GSM447431     5  0.4470     0.9208 0.012 0.000 0.000 0.372 0.616
#> GSM447432     2  0.0162     0.9319 0.000 0.996 0.000 0.004 0.000
#> GSM447434     1  0.2416     0.8117 0.888 0.000 0.000 0.012 0.100
#> GSM447442     2  0.1124     0.9070 0.000 0.960 0.004 0.036 0.000
#> GSM447451     2  0.0000     0.9330 0.000 1.000 0.000 0.000 0.000
#> GSM447462     1  0.1697     0.8368 0.932 0.000 0.000 0.008 0.060
#> GSM447463     2  0.0000     0.9330 0.000 1.000 0.000 0.000 0.000
#> GSM447467     2  0.0000     0.9330 0.000 1.000 0.000 0.000 0.000
#> GSM447469     2  0.4299     0.2488 0.000 0.608 0.000 0.388 0.004
#> GSM447473     1  0.0451     0.8535 0.988 0.000 0.008 0.004 0.000
#> GSM447404     1  0.0451     0.8535 0.988 0.000 0.008 0.004 0.000
#> GSM447406     5  0.3730     0.9364 0.000 0.000 0.000 0.288 0.712
#> GSM447407     4  0.4321     0.4006 0.000 0.396 0.000 0.600 0.004
#> GSM447409     1  0.2522     0.8125 0.880 0.000 0.000 0.012 0.108
#> GSM447412     3  0.1168     0.8053 0.008 0.032 0.960 0.000 0.000
#> GSM447426     3  0.0963     0.8089 0.000 0.036 0.964 0.000 0.000
#> GSM447433     2  0.4138     0.2951 0.000 0.616 0.000 0.384 0.000
#> GSM447439     5  0.3730     0.9364 0.000 0.000 0.000 0.288 0.712
#> GSM447441     2  0.0162     0.9317 0.000 0.996 0.004 0.000 0.000
#> GSM447443     1  0.5785     0.1877 0.528 0.004 0.396 0.004 0.068
#> GSM447445     2  0.0000     0.9330 0.000 1.000 0.000 0.000 0.000
#> GSM447446     2  0.0000     0.9330 0.000 1.000 0.000 0.000 0.000
#> GSM447453     2  0.0000     0.9330 0.000 1.000 0.000 0.000 0.000
#> GSM447455     2  0.0162     0.9319 0.000 0.996 0.000 0.004 0.000
#> GSM447456     4  0.0898     0.6930 0.000 0.020 0.000 0.972 0.008
#> GSM447459     4  0.0693     0.6849 0.000 0.012 0.000 0.980 0.008
#> GSM447466     1  0.2989     0.8343 0.880 0.000 0.036 0.016 0.068
#> GSM447470     3  0.4877     0.6890 0.132 0.000 0.760 0.036 0.072
#> GSM447474     3  0.5448     0.6624 0.156 0.000 0.716 0.048 0.080
#> GSM447475     3  0.7832     0.0430 0.092 0.000 0.416 0.188 0.304
#> GSM447398     5  0.4430     0.9335 0.012 0.000 0.000 0.360 0.628
#> GSM447399     5  0.4430     0.9335 0.012 0.000 0.000 0.360 0.628
#> GSM447408     4  0.1041     0.6881 0.000 0.032 0.000 0.964 0.004
#> GSM447410     4  0.0671     0.6928 0.000 0.016 0.000 0.980 0.004
#> GSM447414     3  0.7169    -0.1076 0.024 0.000 0.408 0.216 0.352
#> GSM447417     4  0.4321     0.4006 0.000 0.396 0.000 0.600 0.004
#> GSM447419     1  0.5834     0.0801 0.488 0.004 0.436 0.004 0.068
#> GSM447420     3  0.0963     0.8089 0.000 0.036 0.964 0.000 0.000
#> GSM447421     3  0.5987     0.6015 0.116 0.004 0.624 0.012 0.244
#> GSM447423     3  0.0963     0.8089 0.000 0.036 0.964 0.000 0.000
#> GSM447436     2  0.0000     0.9330 0.000 1.000 0.000 0.000 0.000
#> GSM447437     2  0.0000     0.9330 0.000 1.000 0.000 0.000 0.000
#> GSM447438     4  0.0898     0.6930 0.000 0.020 0.000 0.972 0.008
#> GSM447447     2  0.0000     0.9330 0.000 1.000 0.000 0.000 0.000
#> GSM447454     2  0.1124     0.9070 0.000 0.960 0.004 0.036 0.000
#> GSM447457     2  0.0162     0.9317 0.000 0.996 0.004 0.000 0.000
#> GSM447460     2  0.0162     0.9317 0.000 0.996 0.004 0.000 0.000
#> GSM447465     2  0.0162     0.9317 0.000 0.996 0.004 0.000 0.000
#> GSM447471     1  0.0451     0.8540 0.988 0.000 0.008 0.004 0.000
#> GSM447476     4  0.0671     0.6928 0.000 0.016 0.000 0.980 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     3  0.0146     0.8266 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM447411     1  0.3133     0.8452 0.780 0.000 0.000 0.000 0.008 0.212
#> GSM447413     3  0.0146     0.8266 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM447415     6  0.1957     0.6216 0.000 0.000 0.112 0.000 0.000 0.888
#> GSM447416     3  0.0146     0.8266 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM447425     4  0.4099     0.5213 0.000 0.372 0.000 0.612 0.000 0.016
#> GSM447430     5  0.3201     0.9222 0.000 0.000 0.000 0.208 0.780 0.012
#> GSM447435     1  0.3133     0.8452 0.780 0.000 0.000 0.000 0.008 0.212
#> GSM447440     1  0.0405     0.8590 0.988 0.000 0.000 0.000 0.008 0.004
#> GSM447444     2  0.1010     0.8368 0.000 0.960 0.000 0.000 0.036 0.004
#> GSM447448     2  0.3281     0.8018 0.000 0.784 0.000 0.004 0.200 0.012
#> GSM447449     2  0.0000     0.8344 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447450     1  0.0405     0.8590 0.988 0.000 0.000 0.000 0.008 0.004
#> GSM447452     4  0.0405     0.7565 0.004 0.000 0.000 0.988 0.008 0.000
#> GSM447458     2  0.0146     0.8341 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM447461     3  0.7113     0.0116 0.016 0.000 0.408 0.144 0.356 0.076
#> GSM447464     1  0.3133     0.8452 0.780 0.000 0.000 0.000 0.008 0.212
#> GSM447468     1  0.2003     0.8910 0.884 0.000 0.000 0.000 0.000 0.116
#> GSM447472     6  0.4434     0.3694 0.012 0.000 0.460 0.004 0.004 0.520
#> GSM447400     1  0.1007     0.8799 0.956 0.000 0.000 0.000 0.000 0.044
#> GSM447402     2  0.4159     0.0768 0.000 0.588 0.000 0.396 0.000 0.016
#> GSM447403     1  0.2697     0.8608 0.812 0.000 0.000 0.000 0.000 0.188
#> GSM447405     2  0.4655     0.7547 0.000 0.708 0.000 0.072 0.200 0.020
#> GSM447418     3  0.0260     0.8256 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM447422     3  0.0146     0.8266 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM447424     3  0.0260     0.8256 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM447427     3  0.0260     0.8256 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM447428     3  0.0405     0.8231 0.000 0.008 0.988 0.000 0.000 0.004
#> GSM447429     6  0.1957     0.6216 0.000 0.000 0.112 0.000 0.000 0.888
#> GSM447431     5  0.4585     0.9121 0.004 0.000 0.004 0.272 0.668 0.052
#> GSM447432     2  0.0146     0.8341 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM447434     1  0.0000     0.8578 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447442     2  0.0935     0.8167 0.000 0.964 0.000 0.032 0.000 0.004
#> GSM447451     2  0.1010     0.8368 0.000 0.960 0.000 0.000 0.036 0.004
#> GSM447462     1  0.1007     0.8799 0.956 0.000 0.000 0.000 0.000 0.044
#> GSM447463     2  0.3281     0.8018 0.000 0.784 0.000 0.004 0.200 0.012
#> GSM447467     2  0.1010     0.8368 0.000 0.960 0.000 0.000 0.036 0.004
#> GSM447469     2  0.4159     0.0768 0.000 0.588 0.000 0.396 0.000 0.016
#> GSM447473     1  0.2135     0.8887 0.872 0.000 0.000 0.000 0.000 0.128
#> GSM447404     1  0.2135     0.8887 0.872 0.000 0.000 0.000 0.000 0.128
#> GSM447406     5  0.3201     0.9222 0.000 0.000 0.000 0.208 0.780 0.012
#> GSM447407     4  0.4099     0.5213 0.000 0.372 0.000 0.612 0.000 0.016
#> GSM447409     1  0.0405     0.8590 0.988 0.000 0.000 0.000 0.008 0.004
#> GSM447412     3  0.0260     0.8170 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM447426     3  0.0146     0.8266 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM447433     2  0.6157     0.1358 0.000 0.404 0.000 0.392 0.192 0.012
#> GSM447439     5  0.3201     0.9222 0.000 0.000 0.000 0.208 0.780 0.012
#> GSM447441     2  0.0000     0.8344 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447443     6  0.5077     0.1643 0.404 0.000 0.080 0.000 0.000 0.516
#> GSM447445     2  0.3281     0.8018 0.000 0.784 0.000 0.004 0.200 0.012
#> GSM447446     2  0.3281     0.8018 0.000 0.784 0.000 0.004 0.200 0.012
#> GSM447453     2  0.3281     0.8018 0.000 0.784 0.000 0.004 0.200 0.012
#> GSM447455     2  0.0146     0.8341 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM447456     4  0.0696     0.7609 0.004 0.004 0.000 0.980 0.008 0.004
#> GSM447459     4  0.0405     0.7565 0.004 0.000 0.000 0.988 0.008 0.000
#> GSM447466     1  0.3133     0.8452 0.780 0.000 0.000 0.000 0.008 0.212
#> GSM447470     6  0.4434     0.3694 0.012 0.000 0.460 0.004 0.004 0.520
#> GSM447474     6  0.4625     0.3795 0.024 0.000 0.424 0.004 0.004 0.544
#> GSM447475     3  0.7542     0.0770 0.024 0.000 0.408 0.140 0.304 0.124
#> GSM447398     5  0.4405     0.9191 0.004 0.000 0.004 0.272 0.680 0.040
#> GSM447399     5  0.4405     0.9191 0.004 0.000 0.004 0.272 0.680 0.040
#> GSM447408     4  0.0725     0.7547 0.000 0.012 0.000 0.976 0.000 0.012
#> GSM447410     4  0.0146     0.7600 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM447414     3  0.6948    -0.0255 0.004 0.000 0.404 0.168 0.352 0.072
#> GSM447417     4  0.4099     0.5213 0.000 0.372 0.000 0.612 0.000 0.016
#> GSM447419     6  0.5362     0.2795 0.356 0.000 0.120 0.000 0.000 0.524
#> GSM447420     3  0.0405     0.8231 0.000 0.008 0.988 0.000 0.000 0.004
#> GSM447421     6  0.1957     0.6216 0.000 0.000 0.112 0.000 0.000 0.888
#> GSM447423     3  0.0146     0.8266 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM447436     2  0.3281     0.8018 0.000 0.784 0.000 0.004 0.200 0.012
#> GSM447437     2  0.3281     0.8018 0.000 0.784 0.000 0.004 0.200 0.012
#> GSM447438     4  0.0696     0.7609 0.004 0.004 0.000 0.980 0.008 0.004
#> GSM447447     2  0.3183     0.8030 0.000 0.788 0.000 0.004 0.200 0.008
#> GSM447454     2  0.0935     0.8167 0.000 0.964 0.000 0.032 0.000 0.004
#> GSM447457     2  0.0000     0.8344 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447460     2  0.0000     0.8344 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447465     2  0.0000     0.8344 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447471     1  0.2003     0.8910 0.884 0.000 0.000 0.000 0.000 0.116
#> GSM447476     4  0.0146     0.7600 0.004 0.000 0.000 0.996 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n gender(p) agent(p) k
#> ATC:hclust 67    0.6325    0.542 2
#> ATC:hclust 64    0.2027    0.473 3
#> ATC:hclust 67    0.2327    0.763 4
#> ATC:hclust 68    0.0742    0.842 5
#> ATC:hclust 68    0.0966    0.881 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.702           0.858       0.928         0.4952 0.503   0.503
#> 3 3 0.581           0.648       0.752         0.3207 0.741   0.536
#> 4 4 0.810           0.920       0.933         0.1338 0.825   0.555
#> 5 5 0.827           0.693       0.803         0.0683 0.930   0.736
#> 6 6 0.842           0.855       0.862         0.0425 0.925   0.666

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2  0.8386      0.662 0.268 0.732
#> GSM447411     1  0.0672      0.925 0.992 0.008
#> GSM447413     2  0.8443      0.664 0.272 0.728
#> GSM447415     1  0.0672      0.925 0.992 0.008
#> GSM447416     2  0.8267      0.674 0.260 0.740
#> GSM447425     2  0.0672      0.916 0.008 0.992
#> GSM447430     1  0.4161      0.897 0.916 0.084
#> GSM447435     1  0.0672      0.925 0.992 0.008
#> GSM447440     1  0.0672      0.925 0.992 0.008
#> GSM447444     2  0.0376      0.916 0.004 0.996
#> GSM447448     2  0.0376      0.916 0.004 0.996
#> GSM447449     2  0.0000      0.917 0.000 1.000
#> GSM447450     1  0.0000      0.922 1.000 0.000
#> GSM447452     2  0.5294      0.827 0.120 0.880
#> GSM447458     2  0.0672      0.916 0.008 0.992
#> GSM447461     1  0.4161      0.897 0.916 0.084
#> GSM447464     1  0.0672      0.925 0.992 0.008
#> GSM447468     1  0.0672      0.925 0.992 0.008
#> GSM447472     1  0.0672      0.925 0.992 0.008
#> GSM447400     1  0.0672      0.925 0.992 0.008
#> GSM447402     2  0.0672      0.916 0.008 0.992
#> GSM447403     1  0.0672      0.925 0.992 0.008
#> GSM447405     2  0.0376      0.916 0.004 0.996
#> GSM447418     2  0.0376      0.916 0.004 0.996
#> GSM447422     2  0.3733      0.880 0.072 0.928
#> GSM447424     2  0.0376      0.916 0.004 0.996
#> GSM447427     2  0.4562      0.862 0.096 0.904
#> GSM447428     2  0.3274      0.888 0.060 0.940
#> GSM447429     2  0.9710      0.457 0.400 0.600
#> GSM447431     1  0.4161      0.897 0.916 0.084
#> GSM447432     2  0.0672      0.916 0.008 0.992
#> GSM447434     1  0.0000      0.922 1.000 0.000
#> GSM447442     2  0.0672      0.916 0.008 0.992
#> GSM447451     2  0.0000      0.917 0.000 1.000
#> GSM447462     1  0.0672      0.925 0.992 0.008
#> GSM447463     2  0.4161      0.863 0.084 0.916
#> GSM447467     2  0.0000      0.917 0.000 1.000
#> GSM447469     2  0.0672      0.916 0.008 0.992
#> GSM447473     1  0.0672      0.925 0.992 0.008
#> GSM447404     1  0.0672      0.925 0.992 0.008
#> GSM447406     1  0.4161      0.897 0.916 0.084
#> GSM447407     2  0.0672      0.916 0.008 0.992
#> GSM447409     1  0.0000      0.922 1.000 0.000
#> GSM447412     1  0.4298      0.898 0.912 0.088
#> GSM447426     2  0.4562      0.862 0.096 0.904
#> GSM447433     2  0.0672      0.916 0.008 0.992
#> GSM447439     1  0.4161      0.897 0.916 0.084
#> GSM447441     2  0.0672      0.916 0.008 0.992
#> GSM447443     1  0.0672      0.925 0.992 0.008
#> GSM447445     2  0.0376      0.916 0.004 0.996
#> GSM447446     2  0.0000      0.917 0.000 1.000
#> GSM447453     2  0.0376      0.916 0.004 0.996
#> GSM447455     2  0.0672      0.916 0.008 0.992
#> GSM447456     1  0.9933      0.276 0.548 0.452
#> GSM447459     1  0.7528      0.761 0.784 0.216
#> GSM447466     1  0.0672      0.925 0.992 0.008
#> GSM447470     2  0.9286      0.571 0.344 0.656
#> GSM447474     1  0.0672      0.925 0.992 0.008
#> GSM447475     1  0.4022      0.898 0.920 0.080
#> GSM447398     1  0.4161      0.897 0.916 0.084
#> GSM447399     1  0.4161      0.897 0.916 0.084
#> GSM447408     2  0.0672      0.916 0.008 0.992
#> GSM447410     2  0.7453      0.699 0.212 0.788
#> GSM447414     1  0.5408      0.861 0.876 0.124
#> GSM447417     2  0.0672      0.916 0.008 0.992
#> GSM447419     1  0.0672      0.925 0.992 0.008
#> GSM447420     2  0.6623      0.806 0.172 0.828
#> GSM447421     2  0.9661      0.475 0.392 0.608
#> GSM447423     2  0.8386      0.662 0.268 0.732
#> GSM447436     2  0.0376      0.916 0.004 0.996
#> GSM447437     2  0.4161      0.863 0.084 0.916
#> GSM447438     1  0.7056      0.792 0.808 0.192
#> GSM447447     2  0.0000      0.917 0.000 1.000
#> GSM447454     2  0.0000      0.917 0.000 1.000
#> GSM447457     2  0.0000      0.917 0.000 1.000
#> GSM447460     2  0.0672      0.916 0.008 0.992
#> GSM447465     2  0.0000      0.917 0.000 1.000
#> GSM447471     1  0.0672      0.925 0.992 0.008
#> GSM447476     1  0.9963      0.240 0.536 0.464

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.8173      0.604 0.100 0.300 0.600
#> GSM447411     1  0.0000      0.868 1.000 0.000 0.000
#> GSM447413     3  0.8408      0.564 0.100 0.344 0.556
#> GSM447415     1  0.6653      0.561 0.680 0.288 0.032
#> GSM447416     3  0.8173      0.604 0.100 0.300 0.600
#> GSM447425     2  0.6291      0.360 0.000 0.532 0.468
#> GSM447430     2  0.6267      0.428 0.452 0.548 0.000
#> GSM447435     1  0.0000      0.868 1.000 0.000 0.000
#> GSM447440     1  0.2448      0.797 0.924 0.076 0.000
#> GSM447444     3  0.1031      0.756 0.000 0.024 0.976
#> GSM447448     3  0.1031      0.756 0.000 0.024 0.976
#> GSM447449     3  0.1163      0.743 0.000 0.028 0.972
#> GSM447450     1  0.2711      0.782 0.912 0.088 0.000
#> GSM447452     2  0.5591      0.552 0.000 0.696 0.304
#> GSM447458     3  0.3686      0.661 0.000 0.140 0.860
#> GSM447461     2  0.6267      0.428 0.452 0.548 0.000
#> GSM447464     1  0.0000      0.868 1.000 0.000 0.000
#> GSM447468     1  0.0000      0.868 1.000 0.000 0.000
#> GSM447472     1  0.0000      0.868 1.000 0.000 0.000
#> GSM447400     1  0.0747      0.859 0.984 0.016 0.000
#> GSM447402     3  0.3686      0.661 0.000 0.140 0.860
#> GSM447403     1  0.0000      0.868 1.000 0.000 0.000
#> GSM447405     3  0.1031      0.756 0.000 0.024 0.976
#> GSM447418     3  0.6956      0.635 0.040 0.300 0.660
#> GSM447422     3  0.7970      0.612 0.088 0.300 0.612
#> GSM447424     3  0.6512      0.641 0.024 0.300 0.676
#> GSM447427     3  0.7970      0.612 0.088 0.300 0.612
#> GSM447428     3  0.7995      0.620 0.088 0.304 0.608
#> GSM447429     1  0.8894      0.398 0.548 0.300 0.152
#> GSM447431     2  0.6267      0.428 0.452 0.548 0.000
#> GSM447432     3  0.3686      0.661 0.000 0.140 0.860
#> GSM447434     1  0.2711      0.782 0.912 0.088 0.000
#> GSM447442     3  0.3879      0.647 0.000 0.152 0.848
#> GSM447451     3  0.0000      0.754 0.000 0.000 1.000
#> GSM447462     1  0.0747      0.859 0.984 0.016 0.000
#> GSM447463     3  0.1031      0.756 0.000 0.024 0.976
#> GSM447467     3  0.0592      0.755 0.000 0.012 0.988
#> GSM447469     3  0.3686      0.661 0.000 0.140 0.860
#> GSM447473     1  0.0000      0.868 1.000 0.000 0.000
#> GSM447404     1  0.0000      0.868 1.000 0.000 0.000
#> GSM447406     2  0.5905      0.516 0.352 0.648 0.000
#> GSM447407     2  0.6286      0.369 0.000 0.536 0.464
#> GSM447409     1  0.2711      0.782 0.912 0.088 0.000
#> GSM447412     3  0.9959      0.221 0.324 0.300 0.376
#> GSM447426     3  0.7970      0.612 0.088 0.300 0.612
#> GSM447433     2  0.6252      0.360 0.000 0.556 0.444
#> GSM447439     2  0.6267      0.428 0.452 0.548 0.000
#> GSM447441     3  0.3686      0.661 0.000 0.140 0.860
#> GSM447443     1  0.0000      0.868 1.000 0.000 0.000
#> GSM447445     3  0.1031      0.756 0.000 0.024 0.976
#> GSM447446     3  0.4002      0.665 0.000 0.160 0.840
#> GSM447453     3  0.1031      0.756 0.000 0.024 0.976
#> GSM447455     3  0.3686      0.661 0.000 0.140 0.860
#> GSM447456     2  0.6541      0.561 0.024 0.672 0.304
#> GSM447459     2  0.6322      0.563 0.276 0.700 0.024
#> GSM447466     1  0.0000      0.868 1.000 0.000 0.000
#> GSM447470     3  0.8962      0.559 0.156 0.304 0.540
#> GSM447474     1  0.0000      0.868 1.000 0.000 0.000
#> GSM447475     2  0.6299      0.379 0.476 0.524 0.000
#> GSM447398     2  0.6267      0.428 0.452 0.548 0.000
#> GSM447399     2  0.6267      0.428 0.452 0.548 0.000
#> GSM447408     2  0.6140      0.458 0.000 0.596 0.404
#> GSM447410     2  0.5760      0.540 0.000 0.672 0.328
#> GSM447414     2  0.5681      0.440 0.236 0.748 0.016
#> GSM447417     2  0.6286      0.369 0.000 0.536 0.464
#> GSM447419     1  0.5254      0.613 0.736 0.264 0.000
#> GSM447420     3  0.8325      0.606 0.108 0.304 0.588
#> GSM447421     1  0.8894      0.398 0.548 0.300 0.152
#> GSM447423     3  0.8645      0.574 0.132 0.300 0.568
#> GSM447436     3  0.1031      0.756 0.000 0.024 0.976
#> GSM447437     3  0.1031      0.756 0.000 0.024 0.976
#> GSM447438     2  0.6229      0.561 0.280 0.700 0.020
#> GSM447447     3  0.1031      0.756 0.000 0.024 0.976
#> GSM447454     3  0.0000      0.754 0.000 0.000 1.000
#> GSM447457     3  0.0000      0.754 0.000 0.000 1.000
#> GSM447460     3  0.1529      0.737 0.000 0.040 0.960
#> GSM447465     3  0.0892      0.747 0.000 0.020 0.980
#> GSM447471     1  0.0747      0.859 0.984 0.016 0.000
#> GSM447476     2  0.6541      0.561 0.024 0.672 0.304

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.1510      0.971 0.028 0.016 0.956 0.000
#> GSM447411     1  0.0779      0.964 0.980 0.000 0.016 0.004
#> GSM447413     3  0.1510      0.971 0.028 0.016 0.956 0.000
#> GSM447415     1  0.2310      0.908 0.920 0.004 0.068 0.008
#> GSM447416     3  0.1510      0.971 0.028 0.016 0.956 0.000
#> GSM447425     2  0.2882      0.857 0.000 0.892 0.024 0.084
#> GSM447430     4  0.1940      0.913 0.076 0.000 0.000 0.924
#> GSM447435     1  0.0779      0.964 0.980 0.000 0.016 0.004
#> GSM447440     1  0.1211      0.937 0.960 0.000 0.000 0.040
#> GSM447444     2  0.2773      0.908 0.004 0.880 0.116 0.000
#> GSM447448     2  0.2958      0.907 0.004 0.876 0.116 0.004
#> GSM447449     2  0.1022      0.918 0.000 0.968 0.032 0.000
#> GSM447450     1  0.1211      0.937 0.960 0.000 0.000 0.040
#> GSM447452     4  0.3325      0.865 0.000 0.112 0.024 0.864
#> GSM447458     2  0.0707      0.916 0.000 0.980 0.020 0.000
#> GSM447461     4  0.1940      0.913 0.076 0.000 0.000 0.924
#> GSM447464     1  0.0592      0.965 0.984 0.000 0.016 0.000
#> GSM447468     1  0.0592      0.965 0.984 0.000 0.016 0.000
#> GSM447472     1  0.0592      0.965 0.984 0.000 0.016 0.000
#> GSM447400     1  0.0188      0.960 0.996 0.000 0.000 0.004
#> GSM447402     2  0.0779      0.915 0.000 0.980 0.016 0.004
#> GSM447403     1  0.0779      0.964 0.980 0.000 0.016 0.004
#> GSM447405     2  0.2899      0.908 0.004 0.880 0.112 0.004
#> GSM447418     3  0.1211      0.961 0.000 0.040 0.960 0.000
#> GSM447422     3  0.1388      0.969 0.012 0.028 0.960 0.000
#> GSM447424     3  0.1474      0.949 0.000 0.052 0.948 0.000
#> GSM447427     3  0.1388      0.969 0.012 0.028 0.960 0.000
#> GSM447428     3  0.1339      0.966 0.008 0.024 0.964 0.004
#> GSM447429     3  0.2245      0.955 0.040 0.020 0.932 0.008
#> GSM447431     4  0.1940      0.913 0.076 0.000 0.000 0.924
#> GSM447432     2  0.0707      0.916 0.000 0.980 0.020 0.000
#> GSM447434     1  0.1302      0.934 0.956 0.000 0.000 0.044
#> GSM447442     2  0.2908      0.868 0.000 0.896 0.040 0.064
#> GSM447451     2  0.2831      0.906 0.004 0.876 0.120 0.000
#> GSM447462     1  0.0188      0.960 0.996 0.000 0.000 0.004
#> GSM447463     2  0.2958      0.907 0.004 0.876 0.116 0.004
#> GSM447467     2  0.2593      0.909 0.004 0.892 0.104 0.000
#> GSM447469     2  0.0707      0.916 0.000 0.980 0.020 0.000
#> GSM447473     1  0.0592      0.965 0.984 0.000 0.016 0.000
#> GSM447404     1  0.0592      0.965 0.984 0.000 0.016 0.000
#> GSM447406     4  0.0817      0.907 0.024 0.000 0.000 0.976
#> GSM447407     2  0.2882      0.857 0.000 0.892 0.024 0.084
#> GSM447409     1  0.1118      0.940 0.964 0.000 0.000 0.036
#> GSM447412     3  0.1557      0.953 0.056 0.000 0.944 0.000
#> GSM447426     3  0.1388      0.969 0.012 0.028 0.960 0.000
#> GSM447433     2  0.3077      0.866 0.004 0.892 0.036 0.068
#> GSM447439     4  0.1940      0.913 0.076 0.000 0.000 0.924
#> GSM447441     2  0.0817      0.917 0.000 0.976 0.024 0.000
#> GSM447443     1  0.0779      0.963 0.980 0.000 0.016 0.004
#> GSM447445     2  0.2958      0.907 0.004 0.876 0.116 0.004
#> GSM447446     2  0.0779      0.912 0.004 0.980 0.016 0.000
#> GSM447453     2  0.2958      0.907 0.004 0.876 0.116 0.004
#> GSM447455     2  0.0817      0.917 0.000 0.976 0.024 0.000
#> GSM447456     4  0.3266      0.867 0.000 0.108 0.024 0.868
#> GSM447459     4  0.1471      0.898 0.004 0.012 0.024 0.960
#> GSM447466     1  0.0592      0.965 0.984 0.000 0.016 0.000
#> GSM447470     3  0.2245      0.955 0.040 0.020 0.932 0.008
#> GSM447474     1  0.0592      0.965 0.984 0.000 0.016 0.000
#> GSM447475     4  0.1940      0.913 0.076 0.000 0.000 0.924
#> GSM447398     4  0.1940      0.913 0.076 0.000 0.000 0.924
#> GSM447399     4  0.1940      0.913 0.076 0.000 0.000 0.924
#> GSM447408     4  0.4464      0.767 0.000 0.208 0.024 0.768
#> GSM447410     4  0.3325      0.865 0.000 0.112 0.024 0.864
#> GSM447414     4  0.2255      0.910 0.068 0.000 0.012 0.920
#> GSM447417     2  0.2882      0.857 0.000 0.892 0.024 0.084
#> GSM447419     1  0.4483      0.601 0.712 0.000 0.284 0.004
#> GSM447420     3  0.1771      0.960 0.012 0.036 0.948 0.004
#> GSM447421     3  0.2245      0.955 0.040 0.020 0.932 0.008
#> GSM447423     3  0.1488      0.969 0.032 0.012 0.956 0.000
#> GSM447436     2  0.2958      0.907 0.004 0.876 0.116 0.004
#> GSM447437     2  0.2958      0.907 0.004 0.876 0.116 0.004
#> GSM447438     4  0.1486      0.900 0.008 0.008 0.024 0.960
#> GSM447447     2  0.2773      0.908 0.004 0.880 0.116 0.000
#> GSM447454     2  0.2647      0.906 0.000 0.880 0.120 0.000
#> GSM447457     2  0.2647      0.906 0.000 0.880 0.120 0.000
#> GSM447460     2  0.1022      0.918 0.000 0.968 0.032 0.000
#> GSM447465     2  0.1022      0.918 0.000 0.968 0.032 0.000
#> GSM447471     1  0.0188      0.960 0.996 0.000 0.000 0.004
#> GSM447476     4  0.3325      0.865 0.000 0.112 0.024 0.864

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     3  0.0671     0.9446 0.004 0.000 0.980 0.016 0.000
#> GSM447411     1  0.0609     0.9492 0.980 0.000 0.000 0.020 0.000
#> GSM447413     3  0.0671     0.9446 0.004 0.000 0.980 0.016 0.000
#> GSM447415     1  0.3525     0.8189 0.816 0.000 0.024 0.156 0.004
#> GSM447416     3  0.0451     0.9461 0.004 0.000 0.988 0.008 0.000
#> GSM447425     4  0.3779     0.4273 0.000 0.200 0.000 0.776 0.024
#> GSM447430     5  0.0955     0.8779 0.028 0.000 0.000 0.004 0.968
#> GSM447435     1  0.0609     0.9492 0.980 0.000 0.000 0.020 0.000
#> GSM447440     1  0.0613     0.9477 0.984 0.000 0.004 0.008 0.004
#> GSM447444     2  0.0162     0.6891 0.000 0.996 0.000 0.004 0.000
#> GSM447448     2  0.0000     0.6896 0.000 1.000 0.000 0.000 0.000
#> GSM447449     2  0.4251     0.5701 0.000 0.624 0.004 0.372 0.000
#> GSM447450     1  0.0613     0.9477 0.984 0.000 0.004 0.008 0.004
#> GSM447452     4  0.4306     0.0323 0.000 0.000 0.000 0.508 0.492
#> GSM447458     2  0.4430     0.4623 0.000 0.540 0.004 0.456 0.000
#> GSM447461     5  0.1547     0.8698 0.032 0.000 0.004 0.016 0.948
#> GSM447464     1  0.0609     0.9492 0.980 0.000 0.000 0.020 0.000
#> GSM447468     1  0.0290     0.9505 0.992 0.000 0.000 0.008 0.000
#> GSM447472     1  0.0771     0.9481 0.976 0.000 0.004 0.020 0.000
#> GSM447400     1  0.0566     0.9489 0.984 0.000 0.004 0.012 0.000
#> GSM447402     4  0.4451    -0.4313 0.000 0.492 0.004 0.504 0.000
#> GSM447403     1  0.0510     0.9503 0.984 0.000 0.000 0.016 0.000
#> GSM447405     2  0.0609     0.6814 0.000 0.980 0.000 0.020 0.000
#> GSM447418     3  0.0510     0.9456 0.000 0.000 0.984 0.016 0.000
#> GSM447422     3  0.0404     0.9443 0.000 0.000 0.988 0.012 0.000
#> GSM447424     3  0.0510     0.9456 0.000 0.000 0.984 0.016 0.000
#> GSM447427     3  0.0671     0.9460 0.004 0.000 0.980 0.016 0.000
#> GSM447428     3  0.2548     0.9127 0.004 0.004 0.876 0.116 0.000
#> GSM447429     3  0.3538     0.8855 0.016 0.004 0.816 0.160 0.004
#> GSM447431     5  0.0955     0.8777 0.028 0.000 0.000 0.004 0.968
#> GSM447432     2  0.4430     0.4623 0.000 0.540 0.004 0.456 0.000
#> GSM447434     1  0.3067     0.8142 0.844 0.000 0.004 0.012 0.140
#> GSM447442     4  0.4155     0.3741 0.000 0.228 0.004 0.744 0.024
#> GSM447451     2  0.3715     0.6420 0.000 0.736 0.004 0.260 0.000
#> GSM447462     1  0.0566     0.9489 0.984 0.000 0.004 0.012 0.000
#> GSM447463     2  0.0510     0.6839 0.000 0.984 0.000 0.016 0.000
#> GSM447467     2  0.3662     0.6448 0.000 0.744 0.004 0.252 0.000
#> GSM447469     4  0.4452    -0.4360 0.000 0.496 0.004 0.500 0.000
#> GSM447473     1  0.0510     0.9504 0.984 0.000 0.000 0.016 0.000
#> GSM447404     1  0.0510     0.9504 0.984 0.000 0.000 0.016 0.000
#> GSM447406     5  0.0290     0.8552 0.000 0.000 0.000 0.008 0.992
#> GSM447407     4  0.3779     0.4273 0.000 0.200 0.000 0.776 0.024
#> GSM447409     1  0.0324     0.9492 0.992 0.000 0.000 0.004 0.004
#> GSM447412     3  0.0451     0.9448 0.004 0.000 0.988 0.008 0.000
#> GSM447426     3  0.0324     0.9466 0.004 0.000 0.992 0.004 0.000
#> GSM447433     2  0.4878    -0.1151 0.000 0.536 0.000 0.440 0.024
#> GSM447439     5  0.0955     0.8779 0.028 0.000 0.000 0.004 0.968
#> GSM447441     2  0.4430     0.4623 0.000 0.540 0.004 0.456 0.000
#> GSM447443     1  0.0609     0.9503 0.980 0.000 0.000 0.020 0.000
#> GSM447445     2  0.0290     0.6887 0.000 0.992 0.000 0.008 0.000
#> GSM447446     2  0.0290     0.6887 0.000 0.992 0.000 0.008 0.000
#> GSM447453     2  0.0290     0.6887 0.000 0.992 0.000 0.008 0.000
#> GSM447455     2  0.4430     0.4623 0.000 0.540 0.004 0.456 0.000
#> GSM447456     4  0.4448     0.0651 0.000 0.004 0.000 0.516 0.480
#> GSM447459     5  0.3949     0.4227 0.000 0.000 0.000 0.332 0.668
#> GSM447466     1  0.0404     0.9506 0.988 0.000 0.000 0.012 0.000
#> GSM447470     3  0.3712     0.8796 0.020 0.004 0.804 0.168 0.004
#> GSM447474     1  0.0771     0.9481 0.976 0.000 0.004 0.020 0.000
#> GSM447475     5  0.1710     0.8642 0.040 0.000 0.004 0.016 0.940
#> GSM447398     5  0.0794     0.8779 0.028 0.000 0.000 0.000 0.972
#> GSM447399     5  0.0794     0.8779 0.028 0.000 0.000 0.000 0.972
#> GSM447408     4  0.3934     0.4431 0.000 0.016 0.000 0.740 0.244
#> GSM447410     4  0.4304     0.0556 0.000 0.000 0.000 0.516 0.484
#> GSM447414     5  0.3356     0.7595 0.024 0.000 0.120 0.012 0.844
#> GSM447417     4  0.3779     0.4273 0.000 0.200 0.000 0.776 0.024
#> GSM447419     1  0.6209     0.3913 0.560 0.000 0.268 0.168 0.004
#> GSM447420     3  0.3035     0.8994 0.004 0.004 0.844 0.144 0.004
#> GSM447421     3  0.3538     0.8855 0.016 0.004 0.816 0.160 0.004
#> GSM447423     3  0.0324     0.9466 0.004 0.000 0.992 0.004 0.000
#> GSM447436     2  0.0290     0.6887 0.000 0.992 0.000 0.008 0.000
#> GSM447437     2  0.0510     0.6839 0.000 0.984 0.000 0.016 0.000
#> GSM447438     5  0.4015     0.3864 0.000 0.000 0.000 0.348 0.652
#> GSM447447     2  0.0000     0.6896 0.000 1.000 0.000 0.000 0.000
#> GSM447454     2  0.4251     0.5701 0.000 0.624 0.004 0.372 0.000
#> GSM447457     2  0.3838     0.6328 0.000 0.716 0.004 0.280 0.000
#> GSM447460     2  0.4430     0.4623 0.000 0.540 0.004 0.456 0.000
#> GSM447465     2  0.4251     0.5701 0.000 0.624 0.004 0.372 0.000
#> GSM447471     1  0.0404     0.9500 0.988 0.000 0.000 0.012 0.000
#> GSM447476     4  0.4448     0.0651 0.000 0.004 0.000 0.516 0.480

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     3  0.1059      0.854 0.016 0.000 0.964 0.004 0.016 0.000
#> GSM447411     6  0.1003      0.916 0.028 0.000 0.000 0.004 0.004 0.964
#> GSM447413     3  0.1059      0.854 0.016 0.000 0.964 0.004 0.016 0.000
#> GSM447415     6  0.5169      0.637 0.224 0.000 0.000 0.024 0.096 0.656
#> GSM447416     3  0.0000      0.868 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447425     4  0.3136      0.754 0.004 0.228 0.000 0.768 0.000 0.000
#> GSM447430     5  0.3154      0.912 0.012 0.000 0.000 0.184 0.800 0.004
#> GSM447435     6  0.1003      0.916 0.028 0.000 0.000 0.004 0.004 0.964
#> GSM447440     6  0.1863      0.900 0.016 0.000 0.000 0.004 0.060 0.920
#> GSM447444     1  0.3464      0.992 0.688 0.312 0.000 0.000 0.000 0.000
#> GSM447448     1  0.3446      0.998 0.692 0.308 0.000 0.000 0.000 0.000
#> GSM447449     2  0.0000      0.875 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447450     6  0.1863      0.900 0.016 0.000 0.000 0.004 0.060 0.920
#> GSM447452     4  0.0790      0.831 0.000 0.032 0.000 0.968 0.000 0.000
#> GSM447458     2  0.1387      0.895 0.000 0.932 0.000 0.068 0.000 0.000
#> GSM447461     5  0.3423      0.873 0.036 0.000 0.000 0.148 0.808 0.008
#> GSM447464     6  0.1003      0.916 0.028 0.000 0.000 0.004 0.004 0.964
#> GSM447468     6  0.0520      0.915 0.008 0.000 0.000 0.000 0.008 0.984
#> GSM447472     6  0.2213      0.902 0.044 0.000 0.000 0.004 0.048 0.904
#> GSM447400     6  0.1225      0.909 0.012 0.000 0.000 0.000 0.036 0.952
#> GSM447402     2  0.1908      0.871 0.004 0.900 0.000 0.096 0.000 0.000
#> GSM447403     6  0.0935      0.915 0.032 0.000 0.000 0.004 0.000 0.964
#> GSM447405     1  0.3653      0.986 0.692 0.300 0.000 0.008 0.000 0.000
#> GSM447418     3  0.1334      0.868 0.032 0.000 0.948 0.000 0.020 0.000
#> GSM447422     3  0.0291      0.867 0.004 0.000 0.992 0.004 0.000 0.000
#> GSM447424     3  0.1334      0.868 0.032 0.000 0.948 0.000 0.020 0.000
#> GSM447427     3  0.1334      0.868 0.032 0.000 0.948 0.000 0.020 0.000
#> GSM447428     3  0.4471      0.792 0.156 0.000 0.736 0.016 0.092 0.000
#> GSM447429     3  0.5910      0.726 0.232 0.000 0.612 0.024 0.108 0.024
#> GSM447431     5  0.2838      0.912 0.000 0.000 0.000 0.188 0.808 0.004
#> GSM447432     2  0.1387      0.895 0.000 0.932 0.000 0.068 0.000 0.000
#> GSM447434     6  0.3430      0.744 0.016 0.000 0.000 0.004 0.208 0.772
#> GSM447442     2  0.3684      0.316 0.000 0.628 0.000 0.372 0.000 0.000
#> GSM447451     2  0.0865      0.840 0.036 0.964 0.000 0.000 0.000 0.000
#> GSM447462     6  0.1225      0.909 0.012 0.000 0.000 0.000 0.036 0.952
#> GSM447463     1  0.3446      0.998 0.692 0.308 0.000 0.000 0.000 0.000
#> GSM447467     2  0.0937      0.834 0.040 0.960 0.000 0.000 0.000 0.000
#> GSM447469     2  0.1765      0.872 0.000 0.904 0.000 0.096 0.000 0.000
#> GSM447473     6  0.0405      0.916 0.008 0.000 0.000 0.004 0.000 0.988
#> GSM447404     6  0.0405      0.916 0.008 0.000 0.000 0.004 0.000 0.988
#> GSM447406     5  0.3046      0.910 0.012 0.000 0.000 0.188 0.800 0.000
#> GSM447407     4  0.3136      0.754 0.004 0.228 0.000 0.768 0.000 0.000
#> GSM447409     6  0.0603      0.914 0.004 0.000 0.000 0.000 0.016 0.980
#> GSM447412     3  0.0260      0.867 0.008 0.000 0.992 0.000 0.000 0.000
#> GSM447426     3  0.0291      0.869 0.004 0.000 0.992 0.000 0.004 0.000
#> GSM447433     4  0.3543      0.709 0.200 0.032 0.000 0.768 0.000 0.000
#> GSM447439     5  0.3154      0.912 0.012 0.000 0.000 0.184 0.800 0.004
#> GSM447441     2  0.1387      0.895 0.000 0.932 0.000 0.068 0.000 0.000
#> GSM447443     6  0.0935      0.915 0.032 0.000 0.000 0.004 0.000 0.964
#> GSM447445     1  0.3446      0.998 0.692 0.308 0.000 0.000 0.000 0.000
#> GSM447446     1  0.3446      0.998 0.692 0.308 0.000 0.000 0.000 0.000
#> GSM447453     1  0.3446      0.998 0.692 0.308 0.000 0.000 0.000 0.000
#> GSM447455     2  0.1327      0.895 0.000 0.936 0.000 0.064 0.000 0.000
#> GSM447456     4  0.0935      0.833 0.004 0.032 0.000 0.964 0.000 0.000
#> GSM447459     4  0.2053      0.700 0.004 0.000 0.000 0.888 0.108 0.000
#> GSM447466     6  0.0922      0.916 0.024 0.000 0.000 0.004 0.004 0.968
#> GSM447470     3  0.6058      0.698 0.256 0.000 0.580 0.028 0.120 0.016
#> GSM447474     6  0.2213      0.902 0.044 0.000 0.000 0.004 0.048 0.904
#> GSM447475     5  0.4254      0.843 0.060 0.000 0.004 0.144 0.768 0.024
#> GSM447398     5  0.2933      0.912 0.000 0.000 0.000 0.200 0.796 0.004
#> GSM447399     5  0.2933      0.912 0.000 0.000 0.000 0.200 0.796 0.004
#> GSM447408     4  0.2520      0.815 0.004 0.152 0.000 0.844 0.000 0.000
#> GSM447410     4  0.0935      0.833 0.004 0.032 0.000 0.964 0.000 0.000
#> GSM447414     5  0.5271      0.631 0.028 0.000 0.272 0.076 0.624 0.000
#> GSM447417     4  0.3136      0.754 0.004 0.228 0.000 0.768 0.000 0.000
#> GSM447419     6  0.7618      0.275 0.236 0.000 0.168 0.028 0.128 0.440
#> GSM447420     3  0.5233      0.748 0.220 0.000 0.648 0.020 0.112 0.000
#> GSM447421     3  0.5910      0.726 0.232 0.000 0.612 0.024 0.108 0.024
#> GSM447423     3  0.0000      0.868 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447436     1  0.3446      0.998 0.692 0.308 0.000 0.000 0.000 0.000
#> GSM447437     1  0.3446      0.998 0.692 0.308 0.000 0.000 0.000 0.000
#> GSM447438     4  0.1411      0.770 0.000 0.004 0.000 0.936 0.060 0.000
#> GSM447447     1  0.3446      0.998 0.692 0.308 0.000 0.000 0.000 0.000
#> GSM447454     2  0.0146      0.874 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM447457     2  0.0790      0.844 0.032 0.968 0.000 0.000 0.000 0.000
#> GSM447460     2  0.1327      0.895 0.000 0.936 0.000 0.064 0.000 0.000
#> GSM447465     2  0.0000      0.875 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447471     6  0.0520      0.915 0.008 0.000 0.000 0.000 0.008 0.984
#> GSM447476     4  0.0935      0.833 0.004 0.032 0.000 0.964 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n gender(p) agent(p) k
#> ATC:kmeans 75    1.0000    0.125 2
#> ATC:kmeans 63    0.0654    0.157 3
#> ATC:kmeans 79    0.0884    0.398 4
#> ATC:kmeans 59    0.2578    0.233 5
#> ATC:kmeans 77    0.1052    0.381 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.697           0.811       0.930         0.5048 0.496   0.496
#> 3 3 0.704           0.931       0.947         0.3000 0.758   0.552
#> 4 4 1.000           0.990       0.995         0.1325 0.848   0.597
#> 5 5 0.890           0.921       0.935         0.0774 0.929   0.730
#> 6 6 0.995           0.956       0.971         0.0391 0.950   0.760

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 4

There is also optional best \(k\) = 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2   0.994     0.1865 0.456 0.544
#> GSM447411     1   0.000     0.9237 1.000 0.000
#> GSM447413     2   0.994     0.1865 0.456 0.544
#> GSM447415     1   0.000     0.9237 1.000 0.000
#> GSM447416     2   0.994     0.1865 0.456 0.544
#> GSM447425     2   0.000     0.9128 0.000 1.000
#> GSM447430     1   0.000     0.9237 1.000 0.000
#> GSM447435     1   0.000     0.9237 1.000 0.000
#> GSM447440     1   0.000     0.9237 1.000 0.000
#> GSM447444     2   0.000     0.9128 0.000 1.000
#> GSM447448     2   0.000     0.9128 0.000 1.000
#> GSM447449     2   0.000     0.9128 0.000 1.000
#> GSM447450     1   0.000     0.9237 1.000 0.000
#> GSM447452     2   0.966     0.2994 0.392 0.608
#> GSM447458     2   0.000     0.9128 0.000 1.000
#> GSM447461     1   0.000     0.9237 1.000 0.000
#> GSM447464     1   0.000     0.9237 1.000 0.000
#> GSM447468     1   0.000     0.9237 1.000 0.000
#> GSM447472     1   0.000     0.9237 1.000 0.000
#> GSM447400     1   0.000     0.9237 1.000 0.000
#> GSM447402     2   0.000     0.9128 0.000 1.000
#> GSM447403     1   0.000     0.9237 1.000 0.000
#> GSM447405     2   0.000     0.9128 0.000 1.000
#> GSM447418     2   0.000     0.9128 0.000 1.000
#> GSM447422     2   0.373     0.8596 0.072 0.928
#> GSM447424     2   0.000     0.9128 0.000 1.000
#> GSM447427     2   0.518     0.8189 0.116 0.884
#> GSM447428     2   0.373     0.8596 0.072 0.928
#> GSM447429     1   0.969     0.2815 0.604 0.396
#> GSM447431     1   0.000     0.9237 1.000 0.000
#> GSM447432     2   0.000     0.9128 0.000 1.000
#> GSM447434     1   0.000     0.9237 1.000 0.000
#> GSM447442     2   0.000     0.9128 0.000 1.000
#> GSM447451     2   0.000     0.9128 0.000 1.000
#> GSM447462     1   0.000     0.9237 1.000 0.000
#> GSM447463     2   0.000     0.9128 0.000 1.000
#> GSM447467     2   0.000     0.9128 0.000 1.000
#> GSM447469     2   0.000     0.9128 0.000 1.000
#> GSM447473     1   0.000     0.9237 1.000 0.000
#> GSM447404     1   0.000     0.9237 1.000 0.000
#> GSM447406     1   0.000     0.9237 1.000 0.000
#> GSM447407     2   0.000     0.9128 0.000 1.000
#> GSM447409     1   0.000     0.9237 1.000 0.000
#> GSM447412     1   0.000     0.9237 1.000 0.000
#> GSM447426     2   0.518     0.8189 0.116 0.884
#> GSM447433     2   0.000     0.9128 0.000 1.000
#> GSM447439     1   0.000     0.9237 1.000 0.000
#> GSM447441     2   0.000     0.9128 0.000 1.000
#> GSM447443     1   0.000     0.9237 1.000 0.000
#> GSM447445     2   0.000     0.9128 0.000 1.000
#> GSM447446     2   0.000     0.9128 0.000 1.000
#> GSM447453     2   0.000     0.9128 0.000 1.000
#> GSM447455     2   0.000     0.9128 0.000 1.000
#> GSM447456     1   0.994     0.1479 0.544 0.456
#> GSM447459     1   0.541     0.8027 0.876 0.124
#> GSM447466     1   0.000     0.9237 1.000 0.000
#> GSM447470     1   0.969     0.2815 0.604 0.396
#> GSM447474     1   0.000     0.9237 1.000 0.000
#> GSM447475     1   0.000     0.9237 1.000 0.000
#> GSM447398     1   0.000     0.9237 1.000 0.000
#> GSM447399     1   0.000     0.9237 1.000 0.000
#> GSM447408     2   0.000     0.9128 0.000 1.000
#> GSM447410     2   0.969     0.2888 0.396 0.604
#> GSM447414     1   0.000     0.9237 1.000 0.000
#> GSM447417     2   0.000     0.9128 0.000 1.000
#> GSM447419     1   0.000     0.9237 1.000 0.000
#> GSM447420     2   0.518     0.8189 0.116 0.884
#> GSM447421     1   0.969     0.2815 0.604 0.396
#> GSM447423     2   0.999     0.0935 0.484 0.516
#> GSM447436     2   0.000     0.9128 0.000 1.000
#> GSM447437     2   0.000     0.9128 0.000 1.000
#> GSM447438     1   0.518     0.8112 0.884 0.116
#> GSM447447     2   0.000     0.9128 0.000 1.000
#> GSM447454     2   0.000     0.9128 0.000 1.000
#> GSM447457     2   0.000     0.9128 0.000 1.000
#> GSM447460     2   0.000     0.9128 0.000 1.000
#> GSM447465     2   0.000     0.9128 0.000 1.000
#> GSM447471     1   0.000     0.9237 1.000 0.000
#> GSM447476     1   0.999     0.0572 0.516 0.484

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.2959      0.924 0.000 0.100 0.900
#> GSM447411     1  0.0237      0.957 0.996 0.000 0.004
#> GSM447413     3  0.0237      0.865 0.004 0.000 0.996
#> GSM447415     3  0.3482      0.880 0.128 0.000 0.872
#> GSM447416     3  0.3375      0.925 0.008 0.100 0.892
#> GSM447425     2  0.2959      0.913 0.000 0.900 0.100
#> GSM447430     1  0.3116      0.914 0.892 0.000 0.108
#> GSM447435     1  0.0237      0.957 0.996 0.000 0.004
#> GSM447440     1  0.0000      0.957 1.000 0.000 0.000
#> GSM447444     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447448     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447449     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447450     1  0.0000      0.957 1.000 0.000 0.000
#> GSM447452     2  0.3349      0.905 0.004 0.888 0.108
#> GSM447458     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447461     1  0.3116      0.914 0.892 0.000 0.108
#> GSM447464     1  0.0237      0.957 0.996 0.000 0.004
#> GSM447468     1  0.0237      0.957 0.996 0.000 0.004
#> GSM447472     1  0.0237      0.957 0.996 0.000 0.004
#> GSM447400     1  0.0237      0.957 0.996 0.000 0.004
#> GSM447402     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447403     1  0.0237      0.957 0.996 0.000 0.004
#> GSM447405     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447418     3  0.3192      0.922 0.000 0.112 0.888
#> GSM447422     3  0.3192      0.922 0.000 0.112 0.888
#> GSM447424     3  0.3192      0.922 0.000 0.112 0.888
#> GSM447427     3  0.3116      0.924 0.000 0.108 0.892
#> GSM447428     3  0.3116      0.924 0.000 0.108 0.892
#> GSM447429     3  0.3116      0.892 0.108 0.000 0.892
#> GSM447431     1  0.3116      0.914 0.892 0.000 0.108
#> GSM447432     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447434     1  0.0000      0.957 1.000 0.000 0.000
#> GSM447442     2  0.2959      0.913 0.000 0.900 0.100
#> GSM447451     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447462     1  0.0237      0.957 0.996 0.000 0.004
#> GSM447463     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447467     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447469     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447473     1  0.0237      0.957 0.996 0.000 0.004
#> GSM447404     1  0.0237      0.957 0.996 0.000 0.004
#> GSM447406     1  0.3116      0.914 0.892 0.000 0.108
#> GSM447407     2  0.2959      0.913 0.000 0.900 0.100
#> GSM447409     1  0.0000      0.957 1.000 0.000 0.000
#> GSM447412     3  0.3116      0.892 0.108 0.000 0.892
#> GSM447426     3  0.3116      0.924 0.000 0.108 0.892
#> GSM447433     2  0.2959      0.913 0.000 0.900 0.100
#> GSM447439     1  0.3116      0.914 0.892 0.000 0.108
#> GSM447441     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447443     1  0.0237      0.957 0.996 0.000 0.004
#> GSM447445     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447446     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447453     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447455     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447456     2  0.5117      0.852 0.060 0.832 0.108
#> GSM447459     1  0.3987      0.897 0.872 0.020 0.108
#> GSM447466     1  0.0237      0.957 0.996 0.000 0.004
#> GSM447470     3  0.3116      0.892 0.108 0.000 0.892
#> GSM447474     1  0.0237      0.957 0.996 0.000 0.004
#> GSM447475     1  0.1163      0.948 0.972 0.000 0.028
#> GSM447398     1  0.3116      0.914 0.892 0.000 0.108
#> GSM447399     1  0.3116      0.914 0.892 0.000 0.108
#> GSM447408     2  0.3116      0.908 0.000 0.892 0.108
#> GSM447410     2  0.3349      0.905 0.004 0.888 0.108
#> GSM447414     3  0.4452      0.676 0.192 0.000 0.808
#> GSM447417     2  0.2959      0.913 0.000 0.900 0.100
#> GSM447419     3  0.4399      0.825 0.188 0.000 0.812
#> GSM447420     3  0.3116      0.924 0.000 0.108 0.892
#> GSM447421     3  0.3116      0.892 0.108 0.000 0.892
#> GSM447423     3  0.3375      0.925 0.008 0.100 0.892
#> GSM447436     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447437     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447438     1  0.3116      0.914 0.892 0.000 0.108
#> GSM447447     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447454     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447457     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447460     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447465     2  0.0000      0.961 0.000 1.000 0.000
#> GSM447471     1  0.0237      0.957 0.996 0.000 0.004
#> GSM447476     2  0.3349      0.905 0.004 0.888 0.108

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM447411     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM447413     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM447415     1  0.0188      0.987 0.996 0.000 0.004 0.000
#> GSM447416     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM447425     2  0.0469      0.986 0.000 0.988 0.000 0.012
#> GSM447430     4  0.0188      0.992 0.004 0.000 0.000 0.996
#> GSM447435     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM447440     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM447444     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447448     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447449     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447450     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM447452     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> GSM447458     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447461     4  0.0188      0.992 0.004 0.000 0.000 0.996
#> GSM447464     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM447468     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM447472     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM447400     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM447402     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447403     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM447405     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447418     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM447422     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM447424     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM447427     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM447428     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM447429     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM447431     4  0.0188      0.992 0.004 0.000 0.000 0.996
#> GSM447432     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447434     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM447442     2  0.0188      0.993 0.000 0.996 0.000 0.004
#> GSM447451     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447462     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM447463     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447467     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447469     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447473     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM447404     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM447406     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> GSM447407     2  0.2469      0.881 0.000 0.892 0.000 0.108
#> GSM447409     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM447412     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM447426     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM447433     2  0.0188      0.993 0.000 0.996 0.000 0.004
#> GSM447439     4  0.0188      0.992 0.004 0.000 0.000 0.996
#> GSM447441     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447443     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM447445     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447446     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447453     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447455     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447456     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> GSM447459     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> GSM447466     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM447470     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM447474     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM447475     4  0.1637      0.937 0.060 0.000 0.000 0.940
#> GSM447398     4  0.0188      0.992 0.004 0.000 0.000 0.996
#> GSM447399     4  0.0188      0.992 0.004 0.000 0.000 0.996
#> GSM447408     4  0.0707      0.973 0.000 0.020 0.000 0.980
#> GSM447410     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> GSM447414     4  0.0188      0.992 0.004 0.000 0.000 0.996
#> GSM447417     2  0.0188      0.993 0.000 0.996 0.000 0.004
#> GSM447419     1  0.3172      0.810 0.840 0.000 0.160 0.000
#> GSM447420     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM447421     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM447423     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM447436     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447437     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447438     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> GSM447447     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447454     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447457     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447460     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447465     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> GSM447471     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM447476     4  0.0000      0.992 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000
#> GSM447411     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> GSM447413     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000
#> GSM447415     1  0.0162      0.979 0.996 0.000 0.000 0.000 0.004
#> GSM447416     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000
#> GSM447425     2  0.3366      0.755 0.000 0.784 0.000 0.004 0.212
#> GSM447430     4  0.0162      0.912 0.004 0.000 0.000 0.996 0.000
#> GSM447435     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> GSM447440     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> GSM447444     5  0.3242      0.969 0.000 0.216 0.000 0.000 0.784
#> GSM447448     5  0.3242      0.969 0.000 0.216 0.000 0.000 0.784
#> GSM447449     2  0.0162      0.886 0.000 0.996 0.000 0.000 0.004
#> GSM447450     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> GSM447452     4  0.3366      0.860 0.000 0.004 0.000 0.784 0.212
#> GSM447458     2  0.0000      0.888 0.000 1.000 0.000 0.000 0.000
#> GSM447461     4  0.0162      0.912 0.004 0.000 0.000 0.996 0.000
#> GSM447464     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> GSM447468     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> GSM447472     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> GSM447400     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> GSM447402     2  0.0404      0.884 0.000 0.988 0.000 0.000 0.012
#> GSM447403     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> GSM447405     5  0.3210      0.965 0.000 0.212 0.000 0.000 0.788
#> GSM447418     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000
#> GSM447422     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000
#> GSM447424     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000
#> GSM447427     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000
#> GSM447428     3  0.0162      0.998 0.000 0.000 0.996 0.000 0.004
#> GSM447429     3  0.0162      0.998 0.000 0.000 0.996 0.000 0.004
#> GSM447431     4  0.0162      0.912 0.004 0.000 0.000 0.996 0.000
#> GSM447432     2  0.0000      0.888 0.000 1.000 0.000 0.000 0.000
#> GSM447434     1  0.2813      0.814 0.832 0.000 0.000 0.168 0.000
#> GSM447442     2  0.3210      0.757 0.000 0.788 0.000 0.000 0.212
#> GSM447451     2  0.0290      0.884 0.000 0.992 0.000 0.000 0.008
#> GSM447462     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> GSM447463     5  0.3242      0.969 0.000 0.216 0.000 0.000 0.784
#> GSM447467     2  0.0290      0.884 0.000 0.992 0.000 0.000 0.008
#> GSM447469     2  0.0404      0.884 0.000 0.988 0.000 0.000 0.012
#> GSM447473     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> GSM447404     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> GSM447406     4  0.0000      0.910 0.000 0.000 0.000 1.000 0.000
#> GSM447407     2  0.3366      0.755 0.000 0.784 0.000 0.004 0.212
#> GSM447409     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> GSM447412     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000
#> GSM447426     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000
#> GSM447433     5  0.0451      0.695 0.000 0.008 0.000 0.004 0.988
#> GSM447439     4  0.0162      0.912 0.004 0.000 0.000 0.996 0.000
#> GSM447441     2  0.0000      0.888 0.000 1.000 0.000 0.000 0.000
#> GSM447443     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> GSM447445     5  0.3242      0.969 0.000 0.216 0.000 0.000 0.784
#> GSM447446     5  0.3242      0.969 0.000 0.216 0.000 0.000 0.784
#> GSM447453     5  0.3242      0.969 0.000 0.216 0.000 0.000 0.784
#> GSM447455     2  0.0000      0.888 0.000 1.000 0.000 0.000 0.000
#> GSM447456     4  0.3366      0.860 0.000 0.004 0.000 0.784 0.212
#> GSM447459     4  0.3143      0.865 0.000 0.000 0.000 0.796 0.204
#> GSM447466     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> GSM447470     3  0.0162      0.998 0.000 0.000 0.996 0.000 0.004
#> GSM447474     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> GSM447475     4  0.0290      0.909 0.008 0.000 0.000 0.992 0.000
#> GSM447398     4  0.0162      0.912 0.004 0.000 0.000 0.996 0.000
#> GSM447399     4  0.0162      0.912 0.004 0.000 0.000 0.996 0.000
#> GSM447408     2  0.6507      0.182 0.000 0.472 0.000 0.316 0.212
#> GSM447410     4  0.3366      0.860 0.000 0.004 0.000 0.784 0.212
#> GSM447414     4  0.0162      0.912 0.004 0.000 0.000 0.996 0.000
#> GSM447417     2  0.3366      0.755 0.000 0.784 0.000 0.004 0.212
#> GSM447419     1  0.2690      0.814 0.844 0.000 0.156 0.000 0.000
#> GSM447420     3  0.0162      0.998 0.000 0.000 0.996 0.000 0.004
#> GSM447421     3  0.0162      0.998 0.000 0.000 0.996 0.000 0.004
#> GSM447423     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000
#> GSM447436     5  0.3242      0.969 0.000 0.216 0.000 0.000 0.784
#> GSM447437     5  0.3242      0.969 0.000 0.216 0.000 0.000 0.784
#> GSM447438     4  0.3109      0.866 0.000 0.000 0.000 0.800 0.200
#> GSM447447     5  0.3242      0.969 0.000 0.216 0.000 0.000 0.784
#> GSM447454     2  0.0162      0.886 0.000 0.996 0.000 0.000 0.004
#> GSM447457     2  0.0162      0.886 0.000 0.996 0.000 0.000 0.004
#> GSM447460     2  0.0000      0.888 0.000 1.000 0.000 0.000 0.000
#> GSM447465     2  0.0162      0.886 0.000 0.996 0.000 0.000 0.004
#> GSM447471     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> GSM447476     4  0.3366      0.860 0.000 0.004 0.000 0.784 0.212

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     3  0.0000     0.9743 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447411     6  0.0000     0.9588 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447413     3  0.0000     0.9743 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447415     6  0.1838     0.8924 0.016 0.000 0.000 0.068 0.000 0.916
#> GSM447416     3  0.0000     0.9743 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447425     4  0.1387     0.9341 0.000 0.068 0.000 0.932 0.000 0.000
#> GSM447430     5  0.0000     0.9910 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447435     6  0.0000     0.9588 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447440     6  0.0000     0.9588 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447444     1  0.0632     0.9911 0.976 0.024 0.000 0.000 0.000 0.000
#> GSM447448     1  0.0458     0.9990 0.984 0.016 0.000 0.000 0.000 0.000
#> GSM447449     2  0.0146     0.9918 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM447450     6  0.0000     0.9588 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447452     4  0.1471     0.9570 0.000 0.004 0.000 0.932 0.064 0.000
#> GSM447458     2  0.0000     0.9922 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447461     5  0.0000     0.9910 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447464     6  0.0000     0.9588 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447468     6  0.0000     0.9588 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447472     6  0.0000     0.9588 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447400     6  0.0000     0.9588 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447402     2  0.1075     0.9496 0.000 0.952 0.000 0.048 0.000 0.000
#> GSM447403     6  0.0000     0.9588 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447405     1  0.0458     0.9990 0.984 0.016 0.000 0.000 0.000 0.000
#> GSM447418     3  0.0000     0.9743 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447422     3  0.0000     0.9743 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447424     3  0.0000     0.9743 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447427     3  0.0000     0.9743 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447428     3  0.1745     0.9487 0.012 0.000 0.920 0.068 0.000 0.000
#> GSM447429     3  0.1838     0.9472 0.016 0.000 0.916 0.068 0.000 0.000
#> GSM447431     5  0.0000     0.9910 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447432     2  0.0000     0.9922 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447434     6  0.3864     0.0828 0.000 0.000 0.000 0.000 0.480 0.520
#> GSM447442     2  0.0458     0.9779 0.000 0.984 0.000 0.016 0.000 0.000
#> GSM447451     2  0.0146     0.9918 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM447462     6  0.0000     0.9588 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447463     1  0.0458     0.9990 0.984 0.016 0.000 0.000 0.000 0.000
#> GSM447467     2  0.0146     0.9918 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM447469     2  0.0146     0.9893 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM447473     6  0.0000     0.9588 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447404     6  0.0000     0.9588 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447406     5  0.0000     0.9910 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447407     4  0.1387     0.9341 0.000 0.068 0.000 0.932 0.000 0.000
#> GSM447409     6  0.0000     0.9588 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447412     3  0.0000     0.9743 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447426     3  0.0000     0.9743 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447433     4  0.1471     0.9211 0.064 0.004 0.000 0.932 0.000 0.000
#> GSM447439     5  0.0000     0.9910 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447441     2  0.0000     0.9922 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447443     6  0.0000     0.9588 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447445     1  0.0458     0.9990 0.984 0.016 0.000 0.000 0.000 0.000
#> GSM447446     1  0.0458     0.9990 0.984 0.016 0.000 0.000 0.000 0.000
#> GSM447453     1  0.0458     0.9990 0.984 0.016 0.000 0.000 0.000 0.000
#> GSM447455     2  0.0000     0.9922 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447456     4  0.1471     0.9570 0.000 0.004 0.000 0.932 0.064 0.000
#> GSM447459     4  0.1610     0.9457 0.000 0.000 0.000 0.916 0.084 0.000
#> GSM447466     6  0.0000     0.9588 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447470     3  0.1838     0.9472 0.016 0.000 0.916 0.068 0.000 0.000
#> GSM447474     6  0.0000     0.9588 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447475     5  0.0000     0.9910 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447398     5  0.0000     0.9910 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447399     5  0.0000     0.9910 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447408     4  0.1649     0.9524 0.000 0.032 0.000 0.932 0.036 0.000
#> GSM447410     4  0.1471     0.9570 0.000 0.004 0.000 0.932 0.064 0.000
#> GSM447414     5  0.1267     0.9281 0.000 0.000 0.060 0.000 0.940 0.000
#> GSM447417     4  0.1387     0.9341 0.000 0.068 0.000 0.932 0.000 0.000
#> GSM447419     6  0.3798     0.7534 0.008 0.000 0.136 0.068 0.000 0.788
#> GSM447420     3  0.1838     0.9472 0.016 0.000 0.916 0.068 0.000 0.000
#> GSM447421     3  0.1838     0.9472 0.016 0.000 0.916 0.068 0.000 0.000
#> GSM447423     3  0.0000     0.9743 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447436     1  0.0458     0.9990 0.984 0.016 0.000 0.000 0.000 0.000
#> GSM447437     1  0.0458     0.9990 0.984 0.016 0.000 0.000 0.000 0.000
#> GSM447438     4  0.1814     0.9333 0.000 0.000 0.000 0.900 0.100 0.000
#> GSM447447     1  0.0458     0.9990 0.984 0.016 0.000 0.000 0.000 0.000
#> GSM447454     2  0.0146     0.9918 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM447457     2  0.0146     0.9918 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM447460     2  0.0000     0.9922 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447465     2  0.0146     0.9918 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM447471     6  0.0000     0.9588 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447476     4  0.1471     0.9570 0.000 0.004 0.000 0.932 0.064 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n gender(p) agent(p) k
#> ATC:skmeans 68    1.0000   0.0536 2
#> ATC:skmeans 79    0.5740   0.1408 3
#> ATC:skmeans 79    0.0884   0.3980 4
#> ATC:skmeans 78    0.1621   0.4022 5
#> ATC:skmeans 78    0.1557   0.3109 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.971       0.989         0.4945 0.503   0.503
#> 3 3 1.000           0.969       0.983         0.2825 0.824   0.663
#> 4 4 0.834           0.832       0.927         0.1812 0.823   0.552
#> 5 5 0.975           0.944       0.972         0.0499 0.950   0.805
#> 6 6 0.908           0.822       0.921         0.0427 0.904   0.606

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 5

There is also optional best \(k\) = 2 3 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     1  0.0000     0.9969 1.000 0.000
#> GSM447411     1  0.0000     0.9969 1.000 0.000
#> GSM447413     1  0.0000     0.9969 1.000 0.000
#> GSM447415     1  0.0000     0.9969 1.000 0.000
#> GSM447416     1  0.0000     0.9969 1.000 0.000
#> GSM447425     2  0.1184     0.9631 0.016 0.984
#> GSM447430     1  0.0000     0.9969 1.000 0.000
#> GSM447435     1  0.0000     0.9969 1.000 0.000
#> GSM447440     1  0.0000     0.9969 1.000 0.000
#> GSM447444     2  0.0000     0.9768 0.000 1.000
#> GSM447448     2  0.0000     0.9768 0.000 1.000
#> GSM447449     2  0.0000     0.9768 0.000 1.000
#> GSM447450     1  0.0000     0.9969 1.000 0.000
#> GSM447452     1  0.0000     0.9969 1.000 0.000
#> GSM447458     2  0.0000     0.9768 0.000 1.000
#> GSM447461     1  0.0000     0.9969 1.000 0.000
#> GSM447464     1  0.0000     0.9969 1.000 0.000
#> GSM447468     1  0.0000     0.9969 1.000 0.000
#> GSM447472     1  0.0000     0.9969 1.000 0.000
#> GSM447400     1  0.0000     0.9969 1.000 0.000
#> GSM447402     2  0.0000     0.9768 0.000 1.000
#> GSM447403     1  0.0000     0.9969 1.000 0.000
#> GSM447405     1  0.4939     0.8763 0.892 0.108
#> GSM447418     2  0.0000     0.9768 0.000 1.000
#> GSM447422     2  1.0000     0.0383 0.496 0.504
#> GSM447424     2  0.0000     0.9768 0.000 1.000
#> GSM447427     2  0.0000     0.9768 0.000 1.000
#> GSM447428     2  0.0000     0.9768 0.000 1.000
#> GSM447429     1  0.0000     0.9969 1.000 0.000
#> GSM447431     1  0.0000     0.9969 1.000 0.000
#> GSM447432     2  0.0000     0.9768 0.000 1.000
#> GSM447434     1  0.0000     0.9969 1.000 0.000
#> GSM447442     2  0.0000     0.9768 0.000 1.000
#> GSM447451     2  0.0000     0.9768 0.000 1.000
#> GSM447462     1  0.0000     0.9969 1.000 0.000
#> GSM447463     2  0.0000     0.9768 0.000 1.000
#> GSM447467     2  0.0000     0.9768 0.000 1.000
#> GSM447469     2  0.0000     0.9768 0.000 1.000
#> GSM447473     1  0.0000     0.9969 1.000 0.000
#> GSM447404     1  0.0000     0.9969 1.000 0.000
#> GSM447406     1  0.0000     0.9969 1.000 0.000
#> GSM447407     2  0.0000     0.9768 0.000 1.000
#> GSM447409     1  0.0000     0.9969 1.000 0.000
#> GSM447412     1  0.0000     0.9969 1.000 0.000
#> GSM447426     2  0.7883     0.6897 0.236 0.764
#> GSM447433     1  0.1633     0.9731 0.976 0.024
#> GSM447439     1  0.0000     0.9969 1.000 0.000
#> GSM447441     2  0.0000     0.9768 0.000 1.000
#> GSM447443     1  0.0000     0.9969 1.000 0.000
#> GSM447445     2  0.0000     0.9768 0.000 1.000
#> GSM447446     2  0.0000     0.9768 0.000 1.000
#> GSM447453     2  0.0000     0.9768 0.000 1.000
#> GSM447455     2  0.0000     0.9768 0.000 1.000
#> GSM447456     1  0.0000     0.9969 1.000 0.000
#> GSM447459     1  0.0000     0.9969 1.000 0.000
#> GSM447466     1  0.0000     0.9969 1.000 0.000
#> GSM447470     1  0.0000     0.9969 1.000 0.000
#> GSM447474     1  0.0000     0.9969 1.000 0.000
#> GSM447475     1  0.0000     0.9969 1.000 0.000
#> GSM447398     1  0.0000     0.9969 1.000 0.000
#> GSM447399     1  0.0000     0.9969 1.000 0.000
#> GSM447408     2  0.0938     0.9668 0.012 0.988
#> GSM447410     1  0.0000     0.9969 1.000 0.000
#> GSM447414     1  0.0000     0.9969 1.000 0.000
#> GSM447417     2  0.0000     0.9768 0.000 1.000
#> GSM447419     1  0.0000     0.9969 1.000 0.000
#> GSM447420     2  0.0000     0.9768 0.000 1.000
#> GSM447421     1  0.0000     0.9969 1.000 0.000
#> GSM447423     1  0.0000     0.9969 1.000 0.000
#> GSM447436     2  0.0000     0.9768 0.000 1.000
#> GSM447437     2  0.0000     0.9768 0.000 1.000
#> GSM447438     1  0.0000     0.9969 1.000 0.000
#> GSM447447     2  0.0000     0.9768 0.000 1.000
#> GSM447454     2  0.0000     0.9768 0.000 1.000
#> GSM447457     2  0.0000     0.9768 0.000 1.000
#> GSM447460     2  0.0000     0.9768 0.000 1.000
#> GSM447465     2  0.0000     0.9768 0.000 1.000
#> GSM447471     1  0.0000     0.9969 1.000 0.000
#> GSM447476     1  0.0000     0.9969 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     3  0.0000      0.960 0.000 0.000 1.000
#> GSM447411     1  0.0237      0.982 0.996 0.000 0.004
#> GSM447413     3  0.3941      0.834 0.156 0.000 0.844
#> GSM447415     1  0.1031      0.970 0.976 0.000 0.024
#> GSM447416     3  0.0000      0.960 0.000 0.000 1.000
#> GSM447425     2  0.0983      0.975 0.016 0.980 0.004
#> GSM447430     1  0.0000      0.982 1.000 0.000 0.000
#> GSM447435     1  0.0237      0.982 0.996 0.000 0.004
#> GSM447440     1  0.0000      0.982 1.000 0.000 0.000
#> GSM447444     2  0.1289      0.970 0.000 0.968 0.032
#> GSM447448     2  0.1411      0.966 0.000 0.964 0.036
#> GSM447449     2  0.0000      0.991 0.000 1.000 0.000
#> GSM447450     1  0.0000      0.982 1.000 0.000 0.000
#> GSM447452     1  0.2269      0.952 0.944 0.040 0.016
#> GSM447458     2  0.0000      0.991 0.000 1.000 0.000
#> GSM447461     1  0.0000      0.982 1.000 0.000 0.000
#> GSM447464     1  0.0237      0.982 0.996 0.000 0.004
#> GSM447468     1  0.0000      0.982 1.000 0.000 0.000
#> GSM447472     1  0.0237      0.982 0.996 0.000 0.004
#> GSM447400     1  0.0000      0.982 1.000 0.000 0.000
#> GSM447402     2  0.0000      0.991 0.000 1.000 0.000
#> GSM447403     1  0.0237      0.982 0.996 0.000 0.004
#> GSM447405     1  0.4033      0.842 0.856 0.136 0.008
#> GSM447418     3  0.0000      0.960 0.000 0.000 1.000
#> GSM447422     3  0.0000      0.960 0.000 0.000 1.000
#> GSM447424     3  0.0000      0.960 0.000 0.000 1.000
#> GSM447427     3  0.0000      0.960 0.000 0.000 1.000
#> GSM447428     3  0.0000      0.960 0.000 0.000 1.000
#> GSM447429     3  0.0424      0.956 0.008 0.000 0.992
#> GSM447431     1  0.0424      0.979 0.992 0.000 0.008
#> GSM447432     2  0.0000      0.991 0.000 1.000 0.000
#> GSM447434     1  0.0000      0.982 1.000 0.000 0.000
#> GSM447442     2  0.0747      0.982 0.000 0.984 0.016
#> GSM447451     2  0.0000      0.991 0.000 1.000 0.000
#> GSM447462     1  0.0000      0.982 1.000 0.000 0.000
#> GSM447463     2  0.0983      0.980 0.004 0.980 0.016
#> GSM447467     2  0.0000      0.991 0.000 1.000 0.000
#> GSM447469     2  0.0000      0.991 0.000 1.000 0.000
#> GSM447473     1  0.0000      0.982 1.000 0.000 0.000
#> GSM447404     1  0.0000      0.982 1.000 0.000 0.000
#> GSM447406     1  0.0000      0.982 1.000 0.000 0.000
#> GSM447407     2  0.0000      0.991 0.000 1.000 0.000
#> GSM447409     1  0.0000      0.982 1.000 0.000 0.000
#> GSM447412     3  0.3551      0.860 0.132 0.000 0.868
#> GSM447426     3  0.0000      0.960 0.000 0.000 1.000
#> GSM447433     1  0.2165      0.937 0.936 0.064 0.000
#> GSM447439     1  0.0000      0.982 1.000 0.000 0.000
#> GSM447441     2  0.0000      0.991 0.000 1.000 0.000
#> GSM447443     1  0.0237      0.982 0.996 0.000 0.004
#> GSM447445     2  0.0000      0.991 0.000 1.000 0.000
#> GSM447446     2  0.0000      0.991 0.000 1.000 0.000
#> GSM447453     2  0.1289      0.970 0.000 0.968 0.032
#> GSM447455     2  0.0000      0.991 0.000 1.000 0.000
#> GSM447456     1  0.1832      0.959 0.956 0.036 0.008
#> GSM447459     1  0.1950      0.956 0.952 0.040 0.008
#> GSM447466     1  0.0237      0.982 0.996 0.000 0.004
#> GSM447470     1  0.1643      0.956 0.956 0.000 0.044
#> GSM447474     1  0.0237      0.982 0.996 0.000 0.004
#> GSM447475     1  0.0237      0.982 0.996 0.000 0.004
#> GSM447398     1  0.0000      0.982 1.000 0.000 0.000
#> GSM447399     1  0.0000      0.982 1.000 0.000 0.000
#> GSM447408     2  0.0592      0.981 0.012 0.988 0.000
#> GSM447410     1  0.1950      0.956 0.952 0.040 0.008
#> GSM447414     3  0.4555      0.784 0.200 0.000 0.800
#> GSM447417     2  0.0000      0.991 0.000 1.000 0.000
#> GSM447419     1  0.0424      0.980 0.992 0.000 0.008
#> GSM447420     3  0.0000      0.960 0.000 0.000 1.000
#> GSM447421     3  0.0424      0.956 0.008 0.000 0.992
#> GSM447423     3  0.0000      0.960 0.000 0.000 1.000
#> GSM447436     2  0.0592      0.985 0.000 0.988 0.012
#> GSM447437     2  0.1525      0.967 0.004 0.964 0.032
#> GSM447438     1  0.1832      0.959 0.956 0.036 0.008
#> GSM447447     2  0.0000      0.991 0.000 1.000 0.000
#> GSM447454     2  0.0424      0.986 0.000 0.992 0.008
#> GSM447457     2  0.0000      0.991 0.000 1.000 0.000
#> GSM447460     2  0.0000      0.991 0.000 1.000 0.000
#> GSM447465     2  0.0000      0.991 0.000 1.000 0.000
#> GSM447471     1  0.0000      0.982 1.000 0.000 0.000
#> GSM447476     1  0.1950      0.956 0.952 0.040 0.008

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.0000     0.8938 0.000 0.000 1.000 0.000
#> GSM447411     1  0.0188     0.8916 0.996 0.000 0.004 0.000
#> GSM447413     3  0.0000     0.8938 0.000 0.000 1.000 0.000
#> GSM447415     1  0.0592     0.8833 0.984 0.000 0.016 0.000
#> GSM447416     3  0.0000     0.8938 0.000 0.000 1.000 0.000
#> GSM447425     4  0.2281     0.8845 0.000 0.096 0.000 0.904
#> GSM447430     4  0.2921     0.8161 0.140 0.000 0.000 0.860
#> GSM447435     1  0.0188     0.8916 0.996 0.000 0.004 0.000
#> GSM447440     1  0.0000     0.8918 1.000 0.000 0.000 0.000
#> GSM447444     2  0.0000     0.9503 0.000 1.000 0.000 0.000
#> GSM447448     2  0.0000     0.9503 0.000 1.000 0.000 0.000
#> GSM447449     2  0.0188     0.9501 0.000 0.996 0.000 0.004
#> GSM447450     1  0.1302     0.8647 0.956 0.000 0.000 0.044
#> GSM447452     4  0.0188     0.9194 0.000 0.000 0.004 0.996
#> GSM447458     2  0.0188     0.9501 0.000 0.996 0.000 0.004
#> GSM447461     1  0.7275     0.2218 0.472 0.000 0.376 0.152
#> GSM447464     1  0.0188     0.8916 0.996 0.000 0.004 0.000
#> GSM447468     1  0.0000     0.8918 1.000 0.000 0.000 0.000
#> GSM447472     1  0.0188     0.8916 0.996 0.000 0.004 0.000
#> GSM447400     1  0.0000     0.8918 1.000 0.000 0.000 0.000
#> GSM447402     2  0.0188     0.9501 0.000 0.996 0.000 0.004
#> GSM447403     1  0.0188     0.8916 0.996 0.000 0.004 0.000
#> GSM447405     2  0.2530     0.8555 0.000 0.896 0.004 0.100
#> GSM447418     3  0.0000     0.8938 0.000 0.000 1.000 0.000
#> GSM447422     3  0.0000     0.8938 0.000 0.000 1.000 0.000
#> GSM447424     3  0.0000     0.8938 0.000 0.000 1.000 0.000
#> GSM447427     3  0.0000     0.8938 0.000 0.000 1.000 0.000
#> GSM447428     3  0.0000     0.8938 0.000 0.000 1.000 0.000
#> GSM447429     3  0.4477     0.5567 0.312 0.000 0.688 0.000
#> GSM447431     1  0.7400     0.2324 0.468 0.000 0.360 0.172
#> GSM447432     2  0.0188     0.9501 0.000 0.996 0.000 0.004
#> GSM447434     1  0.2281     0.8251 0.904 0.000 0.000 0.096
#> GSM447442     2  0.5151     0.1741 0.000 0.532 0.464 0.004
#> GSM447451     2  0.0000     0.9503 0.000 1.000 0.000 0.000
#> GSM447462     1  0.0000     0.8918 1.000 0.000 0.000 0.000
#> GSM447463     2  0.1118     0.9212 0.036 0.964 0.000 0.000
#> GSM447467     2  0.0000     0.9503 0.000 1.000 0.000 0.000
#> GSM447469     2  0.0188     0.9501 0.000 0.996 0.000 0.004
#> GSM447473     1  0.0000     0.8918 1.000 0.000 0.000 0.000
#> GSM447404     1  0.0000     0.8918 1.000 0.000 0.000 0.000
#> GSM447406     4  0.0188     0.9189 0.004 0.000 0.000 0.996
#> GSM447407     4  0.2281     0.8845 0.000 0.096 0.000 0.904
#> GSM447409     1  0.0000     0.8918 1.000 0.000 0.000 0.000
#> GSM447412     3  0.0000     0.8938 0.000 0.000 1.000 0.000
#> GSM447426     3  0.0000     0.8938 0.000 0.000 1.000 0.000
#> GSM447433     4  0.2281     0.8845 0.000 0.096 0.000 0.904
#> GSM447439     4  0.2921     0.8161 0.140 0.000 0.000 0.860
#> GSM447441     2  0.0188     0.9501 0.000 0.996 0.000 0.004
#> GSM447443     1  0.0188     0.8916 0.996 0.000 0.004 0.000
#> GSM447445     2  0.0000     0.9503 0.000 1.000 0.000 0.000
#> GSM447446     2  0.0000     0.9503 0.000 1.000 0.000 0.000
#> GSM447453     2  0.0000     0.9503 0.000 1.000 0.000 0.000
#> GSM447455     2  0.0188     0.9501 0.000 0.996 0.000 0.004
#> GSM447456     4  0.0000     0.9206 0.000 0.000 0.000 1.000
#> GSM447459     4  0.0000     0.9206 0.000 0.000 0.000 1.000
#> GSM447466     1  0.0188     0.8916 0.996 0.000 0.004 0.000
#> GSM447470     3  0.7159     0.4478 0.272 0.180 0.548 0.000
#> GSM447474     1  0.0188     0.8916 0.996 0.000 0.004 0.000
#> GSM447475     1  0.7275     0.2262 0.472 0.000 0.376 0.152
#> GSM447398     4  0.3486     0.7505 0.188 0.000 0.000 0.812
#> GSM447399     1  0.4994     0.0842 0.520 0.000 0.000 0.480
#> GSM447408     4  0.1938     0.9024 0.000 0.052 0.012 0.936
#> GSM447410     4  0.0000     0.9206 0.000 0.000 0.000 1.000
#> GSM447414     3  0.0927     0.8780 0.016 0.000 0.976 0.008
#> GSM447417     4  0.2281     0.8845 0.000 0.096 0.000 0.904
#> GSM447419     3  0.4996     0.1343 0.484 0.000 0.516 0.000
#> GSM447420     3  0.0000     0.8938 0.000 0.000 1.000 0.000
#> GSM447421     3  0.4164     0.6271 0.264 0.000 0.736 0.000
#> GSM447423     3  0.0000     0.8938 0.000 0.000 1.000 0.000
#> GSM447436     2  0.0000     0.9503 0.000 1.000 0.000 0.000
#> GSM447437     2  0.4103     0.6431 0.256 0.744 0.000 0.000
#> GSM447438     4  0.0000     0.9206 0.000 0.000 0.000 1.000
#> GSM447447     2  0.0000     0.9503 0.000 1.000 0.000 0.000
#> GSM447454     2  0.3257     0.8024 0.000 0.844 0.152 0.004
#> GSM447457     2  0.0000     0.9503 0.000 1.000 0.000 0.000
#> GSM447460     2  0.0188     0.9501 0.000 0.996 0.000 0.004
#> GSM447465     2  0.0188     0.9501 0.000 0.996 0.000 0.004
#> GSM447471     1  0.0000     0.8918 1.000 0.000 0.000 0.000
#> GSM447476     4  0.0000     0.9206 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM447411     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM447413     3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM447415     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM447416     3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM447425     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM447430     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000
#> GSM447435     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM447440     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM447444     2  0.0000      0.963 0.000 1.000 0.000 0.000 0.000
#> GSM447448     2  0.0000      0.963 0.000 1.000 0.000 0.000 0.000
#> GSM447449     2  0.1043      0.961 0.000 0.960 0.000 0.040 0.000
#> GSM447450     1  0.1908      0.894 0.908 0.000 0.000 0.000 0.092
#> GSM447452     4  0.0162      0.984 0.000 0.000 0.000 0.996 0.004
#> GSM447458     2  0.1043      0.961 0.000 0.960 0.000 0.040 0.000
#> GSM447461     5  0.1195      0.933 0.012 0.000 0.028 0.000 0.960
#> GSM447464     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM447468     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM447472     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM447400     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM447402     2  0.1043      0.961 0.000 0.960 0.000 0.040 0.000
#> GSM447403     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM447405     2  0.2230      0.865 0.000 0.884 0.000 0.116 0.000
#> GSM447418     3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM447422     3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM447424     3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM447427     3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM447428     3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM447429     3  0.2852      0.757 0.172 0.000 0.828 0.000 0.000
#> GSM447431     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000
#> GSM447432     2  0.1043      0.961 0.000 0.960 0.000 0.040 0.000
#> GSM447434     5  0.2690      0.812 0.156 0.000 0.000 0.000 0.844
#> GSM447442     2  0.2588      0.912 0.000 0.892 0.060 0.048 0.000
#> GSM447451     2  0.0000      0.963 0.000 1.000 0.000 0.000 0.000
#> GSM447462     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM447463     2  0.0000      0.963 0.000 1.000 0.000 0.000 0.000
#> GSM447467     2  0.0000      0.963 0.000 1.000 0.000 0.000 0.000
#> GSM447469     2  0.1043      0.961 0.000 0.960 0.000 0.040 0.000
#> GSM447473     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM447404     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM447406     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000
#> GSM447407     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM447409     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM447412     3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM447426     3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM447433     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM447439     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000
#> GSM447441     2  0.1043      0.961 0.000 0.960 0.000 0.040 0.000
#> GSM447443     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM447445     2  0.0000      0.963 0.000 1.000 0.000 0.000 0.000
#> GSM447446     2  0.0000      0.963 0.000 1.000 0.000 0.000 0.000
#> GSM447453     2  0.0000      0.963 0.000 1.000 0.000 0.000 0.000
#> GSM447455     2  0.1043      0.961 0.000 0.960 0.000 0.040 0.000
#> GSM447456     4  0.0703      0.973 0.000 0.000 0.000 0.976 0.024
#> GSM447459     4  0.1043      0.959 0.000 0.000 0.000 0.960 0.040
#> GSM447466     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM447470     3  0.6402      0.238 0.180 0.348 0.472 0.000 0.000
#> GSM447474     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM447475     5  0.3151      0.827 0.020 0.000 0.144 0.000 0.836
#> GSM447398     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000
#> GSM447399     5  0.0000      0.951 0.000 0.000 0.000 0.000 1.000
#> GSM447408     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM447410     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM447414     3  0.0703      0.924 0.000 0.000 0.976 0.000 0.024
#> GSM447417     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM447419     3  0.1671      0.874 0.076 0.000 0.924 0.000 0.000
#> GSM447420     3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM447421     3  0.0609      0.925 0.020 0.000 0.980 0.000 0.000
#> GSM447423     3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM447436     2  0.0000      0.963 0.000 1.000 0.000 0.000 0.000
#> GSM447437     2  0.2891      0.765 0.176 0.824 0.000 0.000 0.000
#> GSM447438     4  0.1043      0.959 0.000 0.000 0.000 0.960 0.040
#> GSM447447     2  0.0000      0.963 0.000 1.000 0.000 0.000 0.000
#> GSM447454     2  0.1997      0.938 0.000 0.924 0.036 0.040 0.000
#> GSM447457     2  0.0000      0.963 0.000 1.000 0.000 0.000 0.000
#> GSM447460     2  0.1043      0.961 0.000 0.960 0.000 0.040 0.000
#> GSM447465     2  0.1043      0.961 0.000 0.960 0.000 0.040 0.000
#> GSM447471     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM447476     4  0.0510      0.979 0.000 0.000 0.000 0.984 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     3  0.0000    0.88214 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447411     6  0.2178    0.69257 0.132 0.000 0.000 0.000 0.000 0.868
#> GSM447413     3  0.1556    0.84307 0.000 0.000 0.920 0.000 0.000 0.080
#> GSM447415     6  0.0937    0.74004 0.040 0.000 0.000 0.000 0.000 0.960
#> GSM447416     3  0.0000    0.88214 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447425     4  0.0458    0.98442 0.000 0.000 0.000 0.984 0.000 0.016
#> GSM447430     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447435     6  0.0937    0.74004 0.040 0.000 0.000 0.000 0.000 0.960
#> GSM447440     6  0.3857    0.15052 0.468 0.000 0.000 0.000 0.000 0.532
#> GSM447444     2  0.0458    0.95859 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM447448     2  0.0458    0.95859 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM447449     2  0.0632    0.95917 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM447450     1  0.2783    0.73059 0.836 0.000 0.000 0.000 0.016 0.148
#> GSM447452     4  0.0000    0.99368 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM447458     2  0.0632    0.95917 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM447461     3  0.5587    0.05990 0.000 0.000 0.436 0.000 0.140 0.424
#> GSM447464     6  0.1957    0.70781 0.112 0.000 0.000 0.000 0.000 0.888
#> GSM447468     1  0.0000    0.87953 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447472     6  0.0937    0.74004 0.040 0.000 0.000 0.000 0.000 0.960
#> GSM447400     1  0.0000    0.87953 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447402     2  0.0632    0.95917 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM447403     1  0.3446    0.48372 0.692 0.000 0.000 0.000 0.000 0.308
#> GSM447405     2  0.4340    0.65705 0.000 0.720 0.000 0.104 0.000 0.176
#> GSM447418     3  0.0000    0.88214 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447422     3  0.0000    0.88214 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447424     3  0.0000    0.88214 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447427     3  0.0000    0.88214 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447428     3  0.1610    0.83009 0.000 0.000 0.916 0.000 0.000 0.084
#> GSM447429     6  0.3198    0.57121 0.000 0.000 0.260 0.000 0.000 0.740
#> GSM447431     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447432     2  0.0632    0.95917 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM447434     1  0.0937    0.84911 0.960 0.000 0.000 0.000 0.040 0.000
#> GSM447442     3  0.4343    0.30850 0.000 0.384 0.592 0.004 0.000 0.020
#> GSM447451     2  0.0000    0.96005 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447462     1  0.0000    0.87953 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447463     2  0.0632    0.95484 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM447467     2  0.0260    0.95961 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM447469     2  0.0632    0.95917 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM447473     1  0.0000    0.87953 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447404     1  0.0000    0.87953 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447406     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447407     4  0.0547    0.98145 0.000 0.000 0.000 0.980 0.000 0.020
#> GSM447409     1  0.0000    0.87953 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447412     3  0.1444    0.84862 0.000 0.000 0.928 0.000 0.000 0.072
#> GSM447426     3  0.0000    0.88214 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447433     4  0.0000    0.99368 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM447439     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447441     2  0.0632    0.95917 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM447443     1  0.0937    0.85387 0.960 0.000 0.000 0.000 0.000 0.040
#> GSM447445     2  0.0458    0.95859 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM447446     2  0.0458    0.95859 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM447453     2  0.0458    0.95859 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM447455     2  0.0632    0.95917 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM447456     4  0.0000    0.99368 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM447459     4  0.0000    0.99368 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM447466     6  0.2941    0.60628 0.220 0.000 0.000 0.000 0.000 0.780
#> GSM447470     6  0.0937    0.72855 0.000 0.000 0.040 0.000 0.000 0.960
#> GSM447474     6  0.0937    0.74004 0.040 0.000 0.000 0.000 0.000 0.960
#> GSM447475     6  0.4587    0.19995 0.000 0.000 0.356 0.000 0.048 0.596
#> GSM447398     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447399     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447408     4  0.0000    0.99368 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM447410     4  0.0000    0.99368 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM447414     3  0.1753    0.83791 0.000 0.000 0.912 0.000 0.004 0.084
#> GSM447417     4  0.0547    0.98145 0.000 0.000 0.000 0.980 0.000 0.020
#> GSM447419     1  0.6094    0.00892 0.388 0.000 0.312 0.000 0.000 0.300
#> GSM447420     3  0.1714    0.82274 0.000 0.000 0.908 0.000 0.000 0.092
#> GSM447421     6  0.3838    0.19328 0.000 0.000 0.448 0.000 0.000 0.552
#> GSM447423     3  0.0000    0.88214 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447436     2  0.0458    0.95859 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM447437     6  0.3868   -0.01081 0.000 0.496 0.000 0.000 0.000 0.504
#> GSM447438     4  0.0000    0.99368 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM447447     2  0.0458    0.95859 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM447454     2  0.3284    0.73859 0.000 0.784 0.196 0.000 0.000 0.020
#> GSM447457     2  0.0146    0.96000 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM447460     2  0.0632    0.95917 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM447465     2  0.0632    0.95917 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM447471     1  0.0000    0.87953 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447476     4  0.0000    0.99368 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n gender(p) agent(p) k
#> ATC:pam 78    1.0000   0.0667 2
#> ATC:pam 79    0.6226   0.0921 3
#> ATC:pam 72    0.0348   0.1149 4
#> ATC:pam 78    0.1460   0.1134 5
#> ATC:pam 71    0.2061   0.2250 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.999       1.000         0.5004 0.500   0.500
#> 3 3 1.000           0.998       0.999         0.2904 0.855   0.709
#> 4 4 1.000           0.970       0.989         0.0687 0.952   0.866
#> 5 5 1.000           0.985       0.994         0.1240 0.871   0.611
#> 6 6 0.927           0.947       0.957         0.0553 0.938   0.736

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5

There is also optional best \(k\) = 2 3 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     1  0.0000      0.999 1.000 0.000
#> GSM447411     1  0.0000      0.999 1.000 0.000
#> GSM447413     1  0.0000      0.999 1.000 0.000
#> GSM447415     1  0.0000      0.999 1.000 0.000
#> GSM447416     1  0.0000      0.999 1.000 0.000
#> GSM447425     2  0.0000      1.000 0.000 1.000
#> GSM447430     1  0.0000      0.999 1.000 0.000
#> GSM447435     1  0.0000      0.999 1.000 0.000
#> GSM447440     1  0.0000      0.999 1.000 0.000
#> GSM447444     2  0.0000      1.000 0.000 1.000
#> GSM447448     2  0.0000      1.000 0.000 1.000
#> GSM447449     2  0.0000      1.000 0.000 1.000
#> GSM447450     1  0.0000      0.999 1.000 0.000
#> GSM447452     2  0.0000      1.000 0.000 1.000
#> GSM447458     2  0.0000      1.000 0.000 1.000
#> GSM447461     1  0.0000      0.999 1.000 0.000
#> GSM447464     1  0.0000      0.999 1.000 0.000
#> GSM447468     1  0.0000      0.999 1.000 0.000
#> GSM447472     1  0.0000      0.999 1.000 0.000
#> GSM447400     1  0.0000      0.999 1.000 0.000
#> GSM447402     2  0.0000      1.000 0.000 1.000
#> GSM447403     1  0.0000      0.999 1.000 0.000
#> GSM447405     2  0.0000      1.000 0.000 1.000
#> GSM447418     1  0.0000      0.999 1.000 0.000
#> GSM447422     1  0.0000      0.999 1.000 0.000
#> GSM447424     1  0.0000      0.999 1.000 0.000
#> GSM447427     1  0.0000      0.999 1.000 0.000
#> GSM447428     1  0.0000      0.999 1.000 0.000
#> GSM447429     1  0.0000      0.999 1.000 0.000
#> GSM447431     1  0.0000      0.999 1.000 0.000
#> GSM447432     2  0.0000      1.000 0.000 1.000
#> GSM447434     1  0.0000      0.999 1.000 0.000
#> GSM447442     2  0.0000      1.000 0.000 1.000
#> GSM447451     2  0.0000      1.000 0.000 1.000
#> GSM447462     1  0.0000      0.999 1.000 0.000
#> GSM447463     2  0.0000      1.000 0.000 1.000
#> GSM447467     2  0.0000      1.000 0.000 1.000
#> GSM447469     2  0.0000      1.000 0.000 1.000
#> GSM447473     1  0.0000      0.999 1.000 0.000
#> GSM447404     1  0.0000      0.999 1.000 0.000
#> GSM447406     1  0.1843      0.971 0.972 0.028
#> GSM447407     2  0.0000      1.000 0.000 1.000
#> GSM447409     1  0.0000      0.999 1.000 0.000
#> GSM447412     1  0.0000      0.999 1.000 0.000
#> GSM447426     1  0.0000      0.999 1.000 0.000
#> GSM447433     2  0.0000      1.000 0.000 1.000
#> GSM447439     1  0.0000      0.999 1.000 0.000
#> GSM447441     2  0.0000      1.000 0.000 1.000
#> GSM447443     1  0.0000      0.999 1.000 0.000
#> GSM447445     2  0.0000      1.000 0.000 1.000
#> GSM447446     2  0.0000      1.000 0.000 1.000
#> GSM447453     2  0.0000      1.000 0.000 1.000
#> GSM447455     2  0.0000      1.000 0.000 1.000
#> GSM447456     2  0.0000      1.000 0.000 1.000
#> GSM447459     2  0.0000      1.000 0.000 1.000
#> GSM447466     1  0.0000      0.999 1.000 0.000
#> GSM447470     1  0.0000      0.999 1.000 0.000
#> GSM447474     1  0.0000      0.999 1.000 0.000
#> GSM447475     1  0.0000      0.999 1.000 0.000
#> GSM447398     1  0.0000      0.999 1.000 0.000
#> GSM447399     1  0.0000      0.999 1.000 0.000
#> GSM447408     2  0.0000      1.000 0.000 1.000
#> GSM447410     2  0.0000      1.000 0.000 1.000
#> GSM447414     1  0.0000      0.999 1.000 0.000
#> GSM447417     2  0.0000      1.000 0.000 1.000
#> GSM447419     1  0.0000      0.999 1.000 0.000
#> GSM447420     1  0.0000      0.999 1.000 0.000
#> GSM447421     1  0.0000      0.999 1.000 0.000
#> GSM447423     1  0.0000      0.999 1.000 0.000
#> GSM447436     2  0.0000      1.000 0.000 1.000
#> GSM447437     2  0.0000      1.000 0.000 1.000
#> GSM447438     2  0.0672      0.992 0.008 0.992
#> GSM447447     2  0.0000      1.000 0.000 1.000
#> GSM447454     2  0.0000      1.000 0.000 1.000
#> GSM447457     2  0.0000      1.000 0.000 1.000
#> GSM447460     2  0.0000      1.000 0.000 1.000
#> GSM447465     2  0.0000      1.000 0.000 1.000
#> GSM447471     1  0.0000      0.999 1.000 0.000
#> GSM447476     2  0.0000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1 p2    p3
#> GSM447401     3  0.0000      0.998 0.000  0 1.000
#> GSM447411     1  0.0000      0.998 1.000  0 0.000
#> GSM447413     3  0.0000      0.998 0.000  0 1.000
#> GSM447415     1  0.0000      0.998 1.000  0 0.000
#> GSM447416     3  0.0000      0.998 0.000  0 1.000
#> GSM447425     2  0.0000      1.000 0.000  1 0.000
#> GSM447430     1  0.0424      0.994 0.992  0 0.008
#> GSM447435     1  0.0000      0.998 1.000  0 0.000
#> GSM447440     1  0.0000      0.998 1.000  0 0.000
#> GSM447444     2  0.0000      1.000 0.000  1 0.000
#> GSM447448     2  0.0000      1.000 0.000  1 0.000
#> GSM447449     2  0.0000      1.000 0.000  1 0.000
#> GSM447450     1  0.0000      0.998 1.000  0 0.000
#> GSM447452     2  0.0000      1.000 0.000  1 0.000
#> GSM447458     2  0.0000      1.000 0.000  1 0.000
#> GSM447461     1  0.0424      0.994 0.992  0 0.008
#> GSM447464     1  0.0000      0.998 1.000  0 0.000
#> GSM447468     1  0.0000      0.998 1.000  0 0.000
#> GSM447472     1  0.0000      0.998 1.000  0 0.000
#> GSM447400     1  0.0000      0.998 1.000  0 0.000
#> GSM447402     2  0.0000      1.000 0.000  1 0.000
#> GSM447403     1  0.0000      0.998 1.000  0 0.000
#> GSM447405     2  0.0000      1.000 0.000  1 0.000
#> GSM447418     3  0.0000      0.998 0.000  0 1.000
#> GSM447422     3  0.0000      0.998 0.000  0 1.000
#> GSM447424     3  0.0000      0.998 0.000  0 1.000
#> GSM447427     3  0.0000      0.998 0.000  0 1.000
#> GSM447428     3  0.0000      0.998 0.000  0 1.000
#> GSM447429     3  0.0424      0.993 0.008  0 0.992
#> GSM447431     1  0.0424      0.994 0.992  0 0.008
#> GSM447432     2  0.0000      1.000 0.000  1 0.000
#> GSM447434     1  0.0000      0.998 1.000  0 0.000
#> GSM447442     2  0.0000      1.000 0.000  1 0.000
#> GSM447451     2  0.0000      1.000 0.000  1 0.000
#> GSM447462     1  0.0000      0.998 1.000  0 0.000
#> GSM447463     2  0.0000      1.000 0.000  1 0.000
#> GSM447467     2  0.0000      1.000 0.000  1 0.000
#> GSM447469     2  0.0000      1.000 0.000  1 0.000
#> GSM447473     1  0.0000      0.998 1.000  0 0.000
#> GSM447404     1  0.0000      0.998 1.000  0 0.000
#> GSM447406     1  0.0424      0.994 0.992  0 0.008
#> GSM447407     2  0.0000      1.000 0.000  1 0.000
#> GSM447409     1  0.0000      0.998 1.000  0 0.000
#> GSM447412     3  0.0000      0.998 0.000  0 1.000
#> GSM447426     3  0.0000      0.998 0.000  0 1.000
#> GSM447433     2  0.0000      1.000 0.000  1 0.000
#> GSM447439     1  0.0424      0.994 0.992  0 0.008
#> GSM447441     2  0.0000      1.000 0.000  1 0.000
#> GSM447443     1  0.0000      0.998 1.000  0 0.000
#> GSM447445     2  0.0000      1.000 0.000  1 0.000
#> GSM447446     2  0.0000      1.000 0.000  1 0.000
#> GSM447453     2  0.0000      1.000 0.000  1 0.000
#> GSM447455     2  0.0000      1.000 0.000  1 0.000
#> GSM447456     2  0.0000      1.000 0.000  1 0.000
#> GSM447459     2  0.0000      1.000 0.000  1 0.000
#> GSM447466     1  0.0000      0.998 1.000  0 0.000
#> GSM447470     1  0.0000      0.998 1.000  0 0.000
#> GSM447474     1  0.0000      0.998 1.000  0 0.000
#> GSM447475     1  0.0424      0.994 0.992  0 0.008
#> GSM447398     1  0.0424      0.994 0.992  0 0.008
#> GSM447399     1  0.0424      0.994 0.992  0 0.008
#> GSM447408     2  0.0000      1.000 0.000  1 0.000
#> GSM447410     2  0.0000      1.000 0.000  1 0.000
#> GSM447414     3  0.0000      0.998 0.000  0 1.000
#> GSM447417     2  0.0000      1.000 0.000  1 0.000
#> GSM447419     3  0.0424      0.993 0.008  0 0.992
#> GSM447420     3  0.0000      0.998 0.000  0 1.000
#> GSM447421     3  0.0424      0.993 0.008  0 0.992
#> GSM447423     3  0.0000      0.998 0.000  0 1.000
#> GSM447436     2  0.0000      1.000 0.000  1 0.000
#> GSM447437     2  0.0000      1.000 0.000  1 0.000
#> GSM447438     2  0.0000      1.000 0.000  1 0.000
#> GSM447447     2  0.0000      1.000 0.000  1 0.000
#> GSM447454     2  0.0000      1.000 0.000  1 0.000
#> GSM447457     2  0.0000      1.000 0.000  1 0.000
#> GSM447460     2  0.0000      1.000 0.000  1 0.000
#> GSM447465     2  0.0000      1.000 0.000  1 0.000
#> GSM447471     1  0.0000      0.998 1.000  0 0.000
#> GSM447476     2  0.0000      1.000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> GSM447411     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM447413     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> GSM447415     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM447416     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> GSM447425     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447430     4  0.0000      0.910 0.000 0.000 0.000 1.000
#> GSM447435     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM447440     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM447444     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447448     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447449     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447450     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM447452     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447458     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447461     4  0.4985      0.122 0.468 0.000 0.000 0.532
#> GSM447464     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM447468     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM447472     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM447400     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM447402     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447403     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM447405     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447418     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> GSM447422     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> GSM447424     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> GSM447427     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> GSM447428     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> GSM447429     3  0.2081      0.888 0.084 0.000 0.916 0.000
#> GSM447431     4  0.0000      0.910 0.000 0.000 0.000 1.000
#> GSM447432     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447434     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM447442     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447451     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447462     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM447463     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447467     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447469     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447473     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM447404     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM447406     4  0.0000      0.910 0.000 0.000 0.000 1.000
#> GSM447407     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447409     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM447412     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> GSM447426     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> GSM447433     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447439     4  0.0000      0.910 0.000 0.000 0.000 1.000
#> GSM447441     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447443     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM447445     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447446     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447453     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447455     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447456     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447459     2  0.0188      0.996 0.000 0.996 0.000 0.004
#> GSM447466     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM447470     1  0.0336      0.990 0.992 0.000 0.008 0.000
#> GSM447474     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM447475     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM447398     4  0.0000      0.910 0.000 0.000 0.000 1.000
#> GSM447399     4  0.0000      0.910 0.000 0.000 0.000 1.000
#> GSM447408     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447410     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447414     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> GSM447417     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447419     3  0.3123      0.805 0.156 0.000 0.844 0.000
#> GSM447420     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> GSM447421     3  0.3123      0.805 0.156 0.000 0.844 0.000
#> GSM447423     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> GSM447436     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447437     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447438     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447447     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447454     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447457     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447460     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447465     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM447471     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM447476     2  0.0000      1.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000
#> GSM447411     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447413     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000
#> GSM447415     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447416     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000
#> GSM447425     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447430     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM447435     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447440     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447444     5  0.0290      0.991 0.000 0.008 0.000 0.000 0.992
#> GSM447448     5  0.0000      0.997 0.000 0.000 0.000 0.000 1.000
#> GSM447449     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447450     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447452     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447458     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447461     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM447464     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447468     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447472     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447400     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447402     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447403     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447405     5  0.0290      0.991 0.000 0.008 0.000 0.000 0.992
#> GSM447418     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000
#> GSM447422     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000
#> GSM447424     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000
#> GSM447427     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000
#> GSM447428     3  0.0290      0.982 0.008 0.000 0.992 0.000 0.000
#> GSM447429     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447431     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM447432     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447434     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447442     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447451     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447462     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447463     5  0.0000      0.997 0.000 0.000 0.000 0.000 1.000
#> GSM447467     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447469     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447473     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447404     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447406     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM447407     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447409     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447412     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000
#> GSM447426     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000
#> GSM447433     5  0.0290      0.991 0.000 0.008 0.000 0.000 0.992
#> GSM447439     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM447441     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447443     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447445     5  0.0000      0.997 0.000 0.000 0.000 0.000 1.000
#> GSM447446     5  0.0000      0.997 0.000 0.000 0.000 0.000 1.000
#> GSM447453     5  0.0000      0.997 0.000 0.000 0.000 0.000 1.000
#> GSM447455     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447456     2  0.3932      0.510 0.000 0.672 0.000 0.000 0.328
#> GSM447459     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447466     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447470     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447474     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447475     3  0.2411      0.875 0.008 0.000 0.884 0.108 0.000
#> GSM447398     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM447399     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM447408     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447410     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447414     3  0.0290      0.984 0.000 0.000 0.992 0.008 0.000
#> GSM447417     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447419     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447420     3  0.0404      0.978 0.012 0.000 0.988 0.000 0.000
#> GSM447421     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447423     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000
#> GSM447436     5  0.0000      0.997 0.000 0.000 0.000 0.000 1.000
#> GSM447437     5  0.0000      0.997 0.000 0.000 0.000 0.000 1.000
#> GSM447438     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447447     5  0.0000      0.997 0.000 0.000 0.000 0.000 1.000
#> GSM447454     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447457     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447460     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447465     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000
#> GSM447471     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM447476     2  0.0000      0.985 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447411     6  0.0000      0.966 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447413     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447415     6  0.0000      0.966 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447416     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447425     2  0.0713      0.972 0.000 0.972 0.000 0.028 0.000 0.000
#> GSM447430     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447435     6  0.0000      0.966 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447440     6  0.0000      0.966 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447444     1  0.0865      0.935 0.964 0.036 0.000 0.000 0.000 0.000
#> GSM447448     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447449     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447450     6  0.0000      0.966 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447452     4  0.2664      0.959 0.000 0.184 0.000 0.816 0.000 0.000
#> GSM447458     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447461     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447464     6  0.0000      0.966 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447468     6  0.0000      0.966 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447472     6  0.0146      0.964 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM447400     6  0.0000      0.966 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447402     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447403     6  0.0000      0.966 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447405     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447418     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447422     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447424     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447427     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447428     3  0.0713      0.934 0.000 0.000 0.972 0.028 0.000 0.000
#> GSM447429     6  0.3104      0.824 0.000 0.000 0.016 0.184 0.000 0.800
#> GSM447431     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447432     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447434     6  0.0000      0.966 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447442     4  0.2730      0.955 0.000 0.192 0.000 0.808 0.000 0.000
#> GSM447451     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447462     6  0.0000      0.966 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447463     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447467     1  0.2969      0.651 0.776 0.224 0.000 0.000 0.000 0.000
#> GSM447469     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447473     6  0.0000      0.966 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447404     6  0.0000      0.966 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447406     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447407     2  0.0458      0.983 0.000 0.984 0.000 0.016 0.000 0.000
#> GSM447409     6  0.0000      0.966 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447412     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447426     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447433     1  0.0458      0.957 0.984 0.000 0.000 0.016 0.000 0.000
#> GSM447439     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447441     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447443     6  0.0000      0.966 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447445     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447446     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447453     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447455     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447456     4  0.3229      0.781 0.140 0.044 0.000 0.816 0.000 0.000
#> GSM447459     4  0.2912      0.957 0.000 0.172 0.000 0.816 0.012 0.000
#> GSM447466     6  0.0000      0.966 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447470     3  0.2664      0.822 0.000 0.000 0.816 0.184 0.000 0.000
#> GSM447474     6  0.2562      0.847 0.000 0.000 0.000 0.172 0.000 0.828
#> GSM447475     3  0.3804      0.517 0.000 0.000 0.656 0.000 0.336 0.008
#> GSM447398     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447399     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM447408     2  0.0458      0.983 0.000 0.984 0.000 0.016 0.000 0.000
#> GSM447410     4  0.2664      0.959 0.000 0.184 0.000 0.816 0.000 0.000
#> GSM447414     3  0.0260      0.944 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM447417     2  0.0458      0.983 0.000 0.984 0.000 0.016 0.000 0.000
#> GSM447419     6  0.2915      0.831 0.000 0.000 0.008 0.184 0.000 0.808
#> GSM447420     3  0.2664      0.822 0.000 0.000 0.816 0.184 0.000 0.000
#> GSM447421     6  0.3104      0.824 0.000 0.000 0.016 0.184 0.000 0.800
#> GSM447423     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM447436     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447437     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM447438     4  0.2912      0.957 0.000 0.172 0.000 0.816 0.012 0.000
#> GSM447447     1  0.0146      0.965 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM447454     4  0.2793      0.949 0.000 0.200 0.000 0.800 0.000 0.000
#> GSM447457     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447460     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447465     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM447471     6  0.0000      0.966 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM447476     4  0.2848      0.958 0.008 0.176 0.000 0.816 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n gender(p) agent(p) k
#> ATC:mclust 79     0.208   0.4204 2
#> ATC:mclust 79     0.331   0.0383 3
#> ATC:mclust 78     0.326   0.0794 4
#> ATC:mclust 79     0.560   0.5422 5
#> ATC:mclust 79     0.516   0.8457 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 79 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.706           0.857       0.940         0.5017 0.494   0.494
#> 3 3 0.823           0.877       0.944         0.3278 0.710   0.481
#> 4 4 0.849           0.847       0.935         0.1261 0.746   0.391
#> 5 5 0.685           0.700       0.815         0.0654 0.887   0.593
#> 6 6 0.678           0.632       0.765         0.0373 0.941   0.720

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM447401     2  0.9323     0.5113 0.348 0.652
#> GSM447411     1  0.0000     0.9520 1.000 0.000
#> GSM447413     2  0.9754     0.3701 0.408 0.592
#> GSM447415     1  0.0000     0.9520 1.000 0.000
#> GSM447416     2  0.9732     0.3800 0.404 0.596
#> GSM447425     2  0.0000     0.9126 0.000 1.000
#> GSM447430     1  0.0000     0.9520 1.000 0.000
#> GSM447435     1  0.0000     0.9520 1.000 0.000
#> GSM447440     1  0.0000     0.9520 1.000 0.000
#> GSM447444     2  0.0000     0.9126 0.000 1.000
#> GSM447448     2  0.0000     0.9126 0.000 1.000
#> GSM447449     2  0.0000     0.9126 0.000 1.000
#> GSM447450     1  0.0000     0.9520 1.000 0.000
#> GSM447452     2  0.9087     0.5583 0.324 0.676
#> GSM447458     2  0.0000     0.9126 0.000 1.000
#> GSM447461     1  0.0000     0.9520 1.000 0.000
#> GSM447464     1  0.0000     0.9520 1.000 0.000
#> GSM447468     1  0.0000     0.9520 1.000 0.000
#> GSM447472     1  0.0000     0.9520 1.000 0.000
#> GSM447400     1  0.0000     0.9520 1.000 0.000
#> GSM447402     2  0.0000     0.9126 0.000 1.000
#> GSM447403     1  0.0000     0.9520 1.000 0.000
#> GSM447405     2  0.8955     0.5742 0.312 0.688
#> GSM447418     2  0.0000     0.9126 0.000 1.000
#> GSM447422     2  0.6623     0.7739 0.172 0.828
#> GSM447424     2  0.0000     0.9126 0.000 1.000
#> GSM447427     2  0.1184     0.9031 0.016 0.984
#> GSM447428     2  0.0000     0.9126 0.000 1.000
#> GSM447429     1  0.0000     0.9520 1.000 0.000
#> GSM447431     1  0.0000     0.9520 1.000 0.000
#> GSM447432     2  0.0000     0.9126 0.000 1.000
#> GSM447434     1  0.0000     0.9520 1.000 0.000
#> GSM447442     2  0.0000     0.9126 0.000 1.000
#> GSM447451     2  0.0000     0.9126 0.000 1.000
#> GSM447462     1  0.0000     0.9520 1.000 0.000
#> GSM447463     2  0.7453     0.7186 0.212 0.788
#> GSM447467     2  0.0000     0.9126 0.000 1.000
#> GSM447469     2  0.0000     0.9126 0.000 1.000
#> GSM447473     1  0.0000     0.9520 1.000 0.000
#> GSM447404     1  0.0000     0.9520 1.000 0.000
#> GSM447406     1  0.3879     0.8792 0.924 0.076
#> GSM447407     2  0.0000     0.9126 0.000 1.000
#> GSM447409     1  0.0000     0.9520 1.000 0.000
#> GSM447412     1  0.0000     0.9520 1.000 0.000
#> GSM447426     2  0.4815     0.8390 0.104 0.896
#> GSM447433     2  0.6438     0.7811 0.164 0.836
#> GSM447439     1  0.0000     0.9520 1.000 0.000
#> GSM447441     2  0.0000     0.9126 0.000 1.000
#> GSM447443     1  0.0000     0.9520 1.000 0.000
#> GSM447445     2  0.0000     0.9126 0.000 1.000
#> GSM447446     2  0.0000     0.9126 0.000 1.000
#> GSM447453     2  0.0000     0.9126 0.000 1.000
#> GSM447455     2  0.0000     0.9126 0.000 1.000
#> GSM447456     1  0.0672     0.9453 0.992 0.008
#> GSM447459     1  0.6048     0.7942 0.852 0.148
#> GSM447466     1  0.0000     0.9520 1.000 0.000
#> GSM447470     1  0.0000     0.9520 1.000 0.000
#> GSM447474     1  0.0000     0.9520 1.000 0.000
#> GSM447475     1  0.0000     0.9520 1.000 0.000
#> GSM447398     1  0.0000     0.9520 1.000 0.000
#> GSM447399     1  0.0000     0.9520 1.000 0.000
#> GSM447408     2  0.0000     0.9126 0.000 1.000
#> GSM447410     2  0.9129     0.5568 0.328 0.672
#> GSM447414     1  0.9635     0.3035 0.612 0.388
#> GSM447417     2  0.0000     0.9126 0.000 1.000
#> GSM447419     1  0.0000     0.9520 1.000 0.000
#> GSM447420     2  0.9248     0.5338 0.340 0.660
#> GSM447421     1  0.0000     0.9520 1.000 0.000
#> GSM447423     1  0.7602     0.6825 0.780 0.220
#> GSM447436     2  0.0000     0.9126 0.000 1.000
#> GSM447437     1  0.9963     0.0701 0.536 0.464
#> GSM447438     1  0.0000     0.9520 1.000 0.000
#> GSM447447     2  0.0000     0.9126 0.000 1.000
#> GSM447454     2  0.0000     0.9126 0.000 1.000
#> GSM447457     2  0.0000     0.9126 0.000 1.000
#> GSM447460     2  0.0000     0.9126 0.000 1.000
#> GSM447465     2  0.0000     0.9126 0.000 1.000
#> GSM447471     1  0.0000     0.9520 1.000 0.000
#> GSM447476     1  0.8861     0.5226 0.696 0.304

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM447401     2  0.8801      0.462 0.152 0.564 0.284
#> GSM447411     1  0.0000      0.927 1.000 0.000 0.000
#> GSM447413     3  0.1289      0.951 0.000 0.032 0.968
#> GSM447415     1  0.0000      0.927 1.000 0.000 0.000
#> GSM447416     1  0.6140      0.263 0.596 0.404 0.000
#> GSM447425     2  0.2165      0.887 0.000 0.936 0.064
#> GSM447430     3  0.0000      0.978 0.000 0.000 1.000
#> GSM447435     1  0.0000      0.927 1.000 0.000 0.000
#> GSM447440     1  0.6274      0.177 0.544 0.000 0.456
#> GSM447444     2  0.0000      0.924 0.000 1.000 0.000
#> GSM447448     2  0.2711      0.875 0.088 0.912 0.000
#> GSM447449     2  0.0000      0.924 0.000 1.000 0.000
#> GSM447450     3  0.2165      0.919 0.064 0.000 0.936
#> GSM447452     3  0.0000      0.978 0.000 0.000 1.000
#> GSM447458     2  0.0000      0.924 0.000 1.000 0.000
#> GSM447461     3  0.0000      0.978 0.000 0.000 1.000
#> GSM447464     1  0.0000      0.927 1.000 0.000 0.000
#> GSM447468     1  0.0000      0.927 1.000 0.000 0.000
#> GSM447472     1  0.1643      0.900 0.956 0.000 0.044
#> GSM447400     1  0.2356      0.878 0.928 0.000 0.072
#> GSM447402     2  0.0000      0.924 0.000 1.000 0.000
#> GSM447403     1  0.0000      0.927 1.000 0.000 0.000
#> GSM447405     1  0.5835      0.476 0.660 0.340 0.000
#> GSM447418     2  0.4605      0.757 0.204 0.796 0.000
#> GSM447422     2  0.4605      0.757 0.204 0.796 0.000
#> GSM447424     2  0.4605      0.757 0.204 0.796 0.000
#> GSM447427     1  0.4555      0.714 0.800 0.200 0.000
#> GSM447428     1  0.0592      0.920 0.988 0.012 0.000
#> GSM447429     1  0.0000      0.927 1.000 0.000 0.000
#> GSM447431     3  0.0000      0.978 0.000 0.000 1.000
#> GSM447432     2  0.0000      0.924 0.000 1.000 0.000
#> GSM447434     3  0.0237      0.975 0.004 0.000 0.996
#> GSM447442     2  0.0237      0.922 0.000 0.996 0.004
#> GSM447451     2  0.0000      0.924 0.000 1.000 0.000
#> GSM447462     1  0.4062      0.780 0.836 0.000 0.164
#> GSM447463     1  0.3816      0.799 0.852 0.148 0.000
#> GSM447467     2  0.0000      0.924 0.000 1.000 0.000
#> GSM447469     2  0.0000      0.924 0.000 1.000 0.000
#> GSM447473     1  0.0000      0.927 1.000 0.000 0.000
#> GSM447404     1  0.0000      0.927 1.000 0.000 0.000
#> GSM447406     3  0.0000      0.978 0.000 0.000 1.000
#> GSM447407     2  0.4346      0.758 0.000 0.816 0.184
#> GSM447409     3  0.1411      0.948 0.036 0.000 0.964
#> GSM447412     1  0.0592      0.921 0.988 0.000 0.012
#> GSM447426     2  0.6111      0.383 0.396 0.604 0.000
#> GSM447433     2  0.2063      0.899 0.008 0.948 0.044
#> GSM447439     3  0.0000      0.978 0.000 0.000 1.000
#> GSM447441     2  0.0000      0.924 0.000 1.000 0.000
#> GSM447443     1  0.0000      0.927 1.000 0.000 0.000
#> GSM447445     2  0.3686      0.822 0.140 0.860 0.000
#> GSM447446     2  0.0000      0.924 0.000 1.000 0.000
#> GSM447453     2  0.2625      0.877 0.084 0.916 0.000
#> GSM447455     2  0.0000      0.924 0.000 1.000 0.000
#> GSM447456     3  0.0000      0.978 0.000 0.000 1.000
#> GSM447459     3  0.0000      0.978 0.000 0.000 1.000
#> GSM447466     1  0.0000      0.927 1.000 0.000 0.000
#> GSM447470     1  0.0000      0.927 1.000 0.000 0.000
#> GSM447474     1  0.0000      0.927 1.000 0.000 0.000
#> GSM447475     3  0.0000      0.978 0.000 0.000 1.000
#> GSM447398     3  0.0000      0.978 0.000 0.000 1.000
#> GSM447399     3  0.0000      0.978 0.000 0.000 1.000
#> GSM447408     3  0.5178      0.641 0.000 0.256 0.744
#> GSM447410     3  0.0000      0.978 0.000 0.000 1.000
#> GSM447414     3  0.0000      0.978 0.000 0.000 1.000
#> GSM447417     2  0.0237      0.922 0.000 0.996 0.004
#> GSM447419     1  0.0000      0.927 1.000 0.000 0.000
#> GSM447420     1  0.0000      0.927 1.000 0.000 0.000
#> GSM447421     1  0.0000      0.927 1.000 0.000 0.000
#> GSM447423     1  0.0000      0.927 1.000 0.000 0.000
#> GSM447436     2  0.2165      0.892 0.064 0.936 0.000
#> GSM447437     1  0.0000      0.927 1.000 0.000 0.000
#> GSM447438     3  0.0000      0.978 0.000 0.000 1.000
#> GSM447447     2  0.0000      0.924 0.000 1.000 0.000
#> GSM447454     2  0.0000      0.924 0.000 1.000 0.000
#> GSM447457     2  0.0000      0.924 0.000 1.000 0.000
#> GSM447460     2  0.0000      0.924 0.000 1.000 0.000
#> GSM447465     2  0.0000      0.924 0.000 1.000 0.000
#> GSM447471     1  0.1860      0.894 0.948 0.000 0.052
#> GSM447476     3  0.0000      0.978 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM447401     3  0.0000    0.92976 0.000 0.000 1.000 0.000
#> GSM447411     1  0.0000    0.88892 1.000 0.000 0.000 0.000
#> GSM447413     3  0.0000    0.92976 0.000 0.000 1.000 0.000
#> GSM447415     1  0.0000    0.88892 1.000 0.000 0.000 0.000
#> GSM447416     3  0.0000    0.92976 0.000 0.000 1.000 0.000
#> GSM447425     2  0.0000    0.98223 0.000 1.000 0.000 0.000
#> GSM447430     4  0.0000    0.88974 0.000 0.000 0.000 1.000
#> GSM447435     1  0.0000    0.88892 1.000 0.000 0.000 0.000
#> GSM447440     4  0.0188    0.88809 0.004 0.000 0.000 0.996
#> GSM447444     2  0.0000    0.98223 0.000 1.000 0.000 0.000
#> GSM447448     1  0.4817    0.43951 0.612 0.388 0.000 0.000
#> GSM447449     2  0.0000    0.98223 0.000 1.000 0.000 0.000
#> GSM447450     4  0.0000    0.88974 0.000 0.000 0.000 1.000
#> GSM447452     4  0.1637    0.85094 0.000 0.060 0.000 0.940
#> GSM447458     2  0.0000    0.98223 0.000 1.000 0.000 0.000
#> GSM447461     4  0.0000    0.88974 0.000 0.000 0.000 1.000
#> GSM447464     1  0.0592    0.88070 0.984 0.000 0.000 0.016
#> GSM447468     1  0.3569    0.68445 0.804 0.000 0.000 0.196
#> GSM447472     4  0.4585    0.49889 0.332 0.000 0.000 0.668
#> GSM447400     4  0.0592    0.88189 0.016 0.000 0.000 0.984
#> GSM447402     2  0.0000    0.98223 0.000 1.000 0.000 0.000
#> GSM447403     1  0.0000    0.88892 1.000 0.000 0.000 0.000
#> GSM447405     1  0.4916    0.35100 0.576 0.424 0.000 0.000
#> GSM447418     3  0.0000    0.92976 0.000 0.000 1.000 0.000
#> GSM447422     3  0.0000    0.92976 0.000 0.000 1.000 0.000
#> GSM447424     3  0.0000    0.92976 0.000 0.000 1.000 0.000
#> GSM447427     3  0.0000    0.92976 0.000 0.000 1.000 0.000
#> GSM447428     3  0.0000    0.92976 0.000 0.000 1.000 0.000
#> GSM447429     3  0.1867    0.88270 0.072 0.000 0.928 0.000
#> GSM447431     4  0.0000    0.88974 0.000 0.000 0.000 1.000
#> GSM447432     2  0.0000    0.98223 0.000 1.000 0.000 0.000
#> GSM447434     4  0.0000    0.88974 0.000 0.000 0.000 1.000
#> GSM447442     2  0.0000    0.98223 0.000 1.000 0.000 0.000
#> GSM447451     2  0.0000    0.98223 0.000 1.000 0.000 0.000
#> GSM447462     4  0.0000    0.88974 0.000 0.000 0.000 1.000
#> GSM447463     1  0.0188    0.88749 0.996 0.004 0.000 0.000
#> GSM447467     2  0.0000    0.98223 0.000 1.000 0.000 0.000
#> GSM447469     2  0.0000    0.98223 0.000 1.000 0.000 0.000
#> GSM447473     1  0.0000    0.88892 1.000 0.000 0.000 0.000
#> GSM447404     1  0.0000    0.88892 1.000 0.000 0.000 0.000
#> GSM447406     4  0.0000    0.88974 0.000 0.000 0.000 1.000
#> GSM447407     2  0.0000    0.98223 0.000 1.000 0.000 0.000
#> GSM447409     4  0.0817    0.87714 0.024 0.000 0.000 0.976
#> GSM447412     3  0.0000    0.92976 0.000 0.000 1.000 0.000
#> GSM447426     3  0.0000    0.92976 0.000 0.000 1.000 0.000
#> GSM447433     2  0.0000    0.98223 0.000 1.000 0.000 0.000
#> GSM447439     4  0.0000    0.88974 0.000 0.000 0.000 1.000
#> GSM447441     2  0.0000    0.98223 0.000 1.000 0.000 0.000
#> GSM447443     1  0.2300    0.84699 0.924 0.000 0.028 0.048
#> GSM447445     1  0.4134    0.67025 0.740 0.260 0.000 0.000
#> GSM447446     2  0.0000    0.98223 0.000 1.000 0.000 0.000
#> GSM447453     1  0.2589    0.82401 0.884 0.116 0.000 0.000
#> GSM447455     2  0.0000    0.98223 0.000 1.000 0.000 0.000
#> GSM447456     4  0.4356    0.60994 0.000 0.292 0.000 0.708
#> GSM447459     4  0.0000    0.88974 0.000 0.000 0.000 1.000
#> GSM447466     1  0.0000    0.88892 1.000 0.000 0.000 0.000
#> GSM447470     3  0.3219    0.78574 0.164 0.000 0.836 0.000
#> GSM447474     4  0.7629    0.00419 0.392 0.000 0.204 0.404
#> GSM447475     4  0.0000    0.88974 0.000 0.000 0.000 1.000
#> GSM447398     4  0.0000    0.88974 0.000 0.000 0.000 1.000
#> GSM447399     4  0.0000    0.88974 0.000 0.000 0.000 1.000
#> GSM447408     2  0.0000    0.98223 0.000 1.000 0.000 0.000
#> GSM447410     4  0.3172    0.76582 0.000 0.160 0.000 0.840
#> GSM447414     3  0.4454    0.52252 0.000 0.000 0.692 0.308
#> GSM447417     2  0.0000    0.98223 0.000 1.000 0.000 0.000
#> GSM447419     3  0.1042    0.91522 0.008 0.000 0.972 0.020
#> GSM447420     3  0.0000    0.92976 0.000 0.000 1.000 0.000
#> GSM447421     3  0.2760    0.83061 0.128 0.000 0.872 0.000
#> GSM447423     3  0.0000    0.92976 0.000 0.000 1.000 0.000
#> GSM447436     2  0.4522    0.44846 0.320 0.680 0.000 0.000
#> GSM447437     1  0.0000    0.88892 1.000 0.000 0.000 0.000
#> GSM447438     4  0.0188    0.88791 0.000 0.004 0.000 0.996
#> GSM447447     2  0.0000    0.98223 0.000 1.000 0.000 0.000
#> GSM447454     3  0.4746    0.41306 0.000 0.368 0.632 0.000
#> GSM447457     2  0.0188    0.97846 0.000 0.996 0.004 0.000
#> GSM447460     2  0.0000    0.98223 0.000 1.000 0.000 0.000
#> GSM447465     2  0.0188    0.97846 0.000 0.996 0.004 0.000
#> GSM447471     4  0.4994    0.12359 0.480 0.000 0.000 0.520
#> GSM447476     4  0.4356    0.60924 0.000 0.292 0.000 0.708

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM447401     3  0.1282    0.86758 0.000 0.004 0.952 0.000 0.044
#> GSM447411     1  0.1443    0.83484 0.948 0.004 0.000 0.044 0.004
#> GSM447413     3  0.0693    0.87751 0.000 0.012 0.980 0.000 0.008
#> GSM447415     1  0.2139    0.82718 0.916 0.000 0.032 0.000 0.052
#> GSM447416     3  0.0451    0.87681 0.000 0.008 0.988 0.000 0.004
#> GSM447425     5  0.3586    0.74497 0.000 0.264 0.000 0.000 0.736
#> GSM447430     4  0.2020    0.83292 0.000 0.000 0.000 0.900 0.100
#> GSM447435     1  0.2054    0.83020 0.916 0.004 0.000 0.072 0.008
#> GSM447440     4  0.0992    0.82677 0.008 0.000 0.000 0.968 0.024
#> GSM447444     2  0.3774    0.67903 0.032 0.808 0.008 0.000 0.152
#> GSM447448     2  0.4659   -0.02567 0.488 0.500 0.000 0.000 0.012
#> GSM447449     2  0.1544    0.72295 0.000 0.932 0.000 0.000 0.068
#> GSM447450     4  0.1012    0.82814 0.012 0.000 0.000 0.968 0.020
#> GSM447452     5  0.3675    0.52405 0.000 0.024 0.000 0.188 0.788
#> GSM447458     2  0.3661    0.45666 0.000 0.724 0.000 0.000 0.276
#> GSM447461     4  0.0955    0.82704 0.004 0.000 0.000 0.968 0.028
#> GSM447464     1  0.3280    0.74702 0.812 0.000 0.000 0.176 0.012
#> GSM447468     1  0.6404    0.24214 0.472 0.000 0.004 0.372 0.152
#> GSM447472     4  0.1942    0.81370 0.068 0.000 0.000 0.920 0.012
#> GSM447400     4  0.3343    0.79656 0.016 0.000 0.000 0.812 0.172
#> GSM447402     5  0.4192    0.61101 0.000 0.404 0.000 0.000 0.596
#> GSM447403     1  0.1544    0.82952 0.932 0.000 0.000 0.000 0.068
#> GSM447405     5  0.4599    0.64058 0.156 0.100 0.000 0.000 0.744
#> GSM447418     3  0.2930    0.81256 0.000 0.164 0.832 0.000 0.004
#> GSM447422     3  0.3461    0.75616 0.000 0.224 0.772 0.000 0.004
#> GSM447424     3  0.3196    0.79030 0.000 0.192 0.804 0.000 0.004
#> GSM447427     3  0.1168    0.87651 0.000 0.032 0.960 0.000 0.008
#> GSM447428     3  0.2074    0.85160 0.000 0.104 0.896 0.000 0.000
#> GSM447429     3  0.2344    0.84832 0.064 0.000 0.904 0.000 0.032
#> GSM447431     4  0.2127    0.83338 0.000 0.000 0.000 0.892 0.108
#> GSM447432     2  0.3074    0.62020 0.000 0.804 0.000 0.000 0.196
#> GSM447434     4  0.2230    0.82769 0.000 0.000 0.000 0.884 0.116
#> GSM447442     2  0.2438    0.69597 0.000 0.900 0.000 0.060 0.040
#> GSM447451     2  0.0404    0.72331 0.000 0.988 0.000 0.000 0.012
#> GSM447462     4  0.3309    0.81433 0.036 0.000 0.000 0.836 0.128
#> GSM447463     1  0.1331    0.81719 0.952 0.040 0.000 0.000 0.008
#> GSM447467     2  0.2116    0.72375 0.008 0.912 0.004 0.000 0.076
#> GSM447469     5  0.4171    0.62583 0.000 0.396 0.000 0.000 0.604
#> GSM447473     1  0.3780    0.80021 0.820 0.000 0.028 0.020 0.132
#> GSM447404     1  0.3344    0.81781 0.852 0.000 0.016 0.028 0.104
#> GSM447406     4  0.2605    0.80852 0.000 0.000 0.000 0.852 0.148
#> GSM447407     5  0.3707    0.73899 0.000 0.284 0.000 0.000 0.716
#> GSM447409     4  0.5934    0.64802 0.176 0.000 0.000 0.592 0.232
#> GSM447412     3  0.0324    0.87596 0.000 0.000 0.992 0.004 0.004
#> GSM447426     3  0.0404    0.87748 0.000 0.012 0.988 0.000 0.000
#> GSM447433     5  0.3663    0.74073 0.016 0.208 0.000 0.000 0.776
#> GSM447439     4  0.2020    0.83312 0.000 0.000 0.000 0.900 0.100
#> GSM447441     2  0.0880    0.72357 0.000 0.968 0.000 0.000 0.032
#> GSM447443     3  0.7514   -0.00792 0.340 0.000 0.424 0.064 0.172
#> GSM447445     1  0.4201    0.22776 0.592 0.408 0.000 0.000 0.000
#> GSM447446     5  0.4675    0.63379 0.020 0.380 0.000 0.000 0.600
#> GSM447453     1  0.3318    0.67014 0.800 0.192 0.000 0.000 0.008
#> GSM447455     2  0.3074    0.61614 0.000 0.804 0.000 0.000 0.196
#> GSM447456     4  0.5580    0.62952 0.024 0.076 0.000 0.664 0.236
#> GSM447459     4  0.4210    0.58061 0.000 0.000 0.000 0.588 0.412
#> GSM447466     1  0.2193    0.83640 0.912 0.000 0.000 0.060 0.028
#> GSM447470     2  0.8557   -0.03847 0.232 0.396 0.252 0.088 0.032
#> GSM447474     4  0.3369    0.78108 0.076 0.004 0.020 0.864 0.036
#> GSM447475     4  0.2282    0.81191 0.008 0.036 0.004 0.920 0.032
#> GSM447398     4  0.1121    0.83678 0.000 0.000 0.000 0.956 0.044
#> GSM447399     4  0.2813    0.82440 0.000 0.000 0.000 0.832 0.168
#> GSM447408     5  0.3586    0.74397 0.000 0.264 0.000 0.000 0.736
#> GSM447410     5  0.3471    0.67331 0.000 0.092 0.000 0.072 0.836
#> GSM447414     3  0.4630    0.68370 0.000 0.000 0.744 0.140 0.116
#> GSM447417     5  0.3932    0.70690 0.000 0.328 0.000 0.000 0.672
#> GSM447419     3  0.3807    0.79146 0.012 0.000 0.828 0.072 0.088
#> GSM447420     3  0.1331    0.87590 0.000 0.040 0.952 0.000 0.008
#> GSM447421     3  0.2628    0.82832 0.088 0.000 0.884 0.000 0.028
#> GSM447423     3  0.0162    0.87551 0.000 0.000 0.996 0.000 0.004
#> GSM447436     5  0.6744    0.36099 0.332 0.268 0.000 0.000 0.400
#> GSM447437     1  0.0290    0.82731 0.992 0.000 0.000 0.000 0.008
#> GSM447438     4  0.4723    0.45697 0.000 0.016 0.000 0.536 0.448
#> GSM447447     2  0.4400    0.59380 0.052 0.736 0.000 0.000 0.212
#> GSM447454     2  0.3635    0.48463 0.000 0.748 0.248 0.000 0.004
#> GSM447457     2  0.0671    0.71195 0.000 0.980 0.016 0.000 0.004
#> GSM447460     2  0.2707    0.68487 0.000 0.860 0.008 0.000 0.132
#> GSM447465     2  0.1168    0.72057 0.000 0.960 0.008 0.000 0.032
#> GSM447471     4  0.5547    0.55295 0.208 0.000 0.000 0.644 0.148
#> GSM447476     5  0.3416    0.66165 0.000 0.072 0.000 0.088 0.840

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM447401     3  0.2741    0.82874 0.000 0.032 0.868 0.008 0.000 0.092
#> GSM447411     1  0.0951    0.65534 0.968 0.004 0.000 0.000 0.008 0.020
#> GSM447413     3  0.1528    0.85114 0.000 0.048 0.936 0.000 0.000 0.016
#> GSM447415     1  0.2350    0.62771 0.888 0.000 0.076 0.000 0.000 0.036
#> GSM447416     3  0.1003    0.84774 0.000 0.016 0.964 0.000 0.000 0.020
#> GSM447425     4  0.2052    0.78848 0.000 0.056 0.000 0.912 0.004 0.028
#> GSM447430     5  0.2128    0.72793 0.000 0.004 0.000 0.032 0.908 0.056
#> GSM447435     1  0.1890    0.64511 0.924 0.008 0.000 0.000 0.044 0.024
#> GSM447440     5  0.1546    0.72838 0.028 0.004 0.000 0.004 0.944 0.020
#> GSM447444     2  0.3322    0.80467 0.032 0.856 0.012 0.056 0.000 0.044
#> GSM447448     2  0.4209    0.33419 0.384 0.596 0.000 0.000 0.000 0.020
#> GSM447449     2  0.3752    0.79674 0.000 0.772 0.000 0.164 0.000 0.064
#> GSM447450     5  0.1312    0.73767 0.020 0.008 0.000 0.004 0.956 0.012
#> GSM447452     4  0.4141    0.67310 0.000 0.012 0.000 0.764 0.084 0.140
#> GSM447458     2  0.4570    0.65583 0.000 0.644 0.000 0.292 0.000 0.064
#> GSM447461     5  0.1340    0.73313 0.000 0.008 0.000 0.004 0.948 0.040
#> GSM447464     1  0.3654    0.54332 0.792 0.004 0.000 0.000 0.144 0.060
#> GSM447468     6  0.6128    0.45202 0.284 0.000 0.020 0.000 0.192 0.504
#> GSM447472     5  0.3717    0.56470 0.160 0.000 0.000 0.000 0.776 0.064
#> GSM447400     6  0.4955    0.47147 0.060 0.000 0.004 0.000 0.388 0.548
#> GSM447402     4  0.2730    0.71579 0.000 0.152 0.000 0.836 0.000 0.012
#> GSM447403     1  0.2823    0.59045 0.796 0.000 0.000 0.000 0.000 0.204
#> GSM447405     4  0.3007    0.77323 0.064 0.012 0.004 0.864 0.000 0.056
#> GSM447418     3  0.3789    0.78381 0.000 0.196 0.760 0.004 0.000 0.040
#> GSM447422     3  0.3900    0.75087 0.000 0.232 0.728 0.000 0.000 0.040
#> GSM447424     3  0.3753    0.76306 0.000 0.220 0.748 0.004 0.000 0.028
#> GSM447427     3  0.1498    0.85326 0.000 0.032 0.940 0.000 0.000 0.028
#> GSM447428     3  0.3455    0.81862 0.004 0.128 0.816 0.004 0.000 0.048
#> GSM447429     3  0.3435    0.76435 0.136 0.000 0.804 0.000 0.000 0.060
#> GSM447431     5  0.4524    0.61683 0.000 0.028 0.004 0.048 0.732 0.188
#> GSM447432     2  0.4414    0.75788 0.000 0.712 0.000 0.180 0.000 0.108
#> GSM447434     5  0.4041   -0.02172 0.000 0.004 0.000 0.004 0.584 0.408
#> GSM447442     2  0.4248    0.79181 0.000 0.780 0.000 0.080 0.048 0.092
#> GSM447451     2  0.1769    0.82320 0.004 0.924 0.000 0.060 0.000 0.012
#> GSM447462     6  0.5615    0.47843 0.072 0.004 0.024 0.000 0.372 0.528
#> GSM447463     1  0.2595    0.64387 0.872 0.084 0.000 0.000 0.000 0.044
#> GSM447467     2  0.2206    0.82246 0.008 0.904 0.000 0.064 0.000 0.024
#> GSM447469     4  0.2473    0.73158 0.000 0.136 0.000 0.856 0.000 0.008
#> GSM447473     1  0.5033    0.10457 0.480 0.000 0.052 0.000 0.008 0.460
#> GSM447404     1  0.4861    0.23344 0.552 0.000 0.044 0.000 0.008 0.396
#> GSM447406     5  0.2263    0.72640 0.000 0.004 0.000 0.060 0.900 0.036
#> GSM447407     4  0.1480    0.79070 0.000 0.040 0.000 0.940 0.000 0.020
#> GSM447409     6  0.7200    0.32756 0.252 0.004 0.000 0.072 0.312 0.360
#> GSM447412     3  0.1082    0.84260 0.000 0.000 0.956 0.000 0.004 0.040
#> GSM447426     3  0.1863    0.85268 0.000 0.036 0.920 0.000 0.000 0.044
#> GSM447433     4  0.1995    0.79218 0.000 0.036 0.000 0.912 0.000 0.052
#> GSM447439     5  0.2249    0.72395 0.000 0.004 0.000 0.032 0.900 0.064
#> GSM447441     2  0.3514    0.80807 0.000 0.804 0.000 0.088 0.000 0.108
#> GSM447443     6  0.5905    0.15239 0.112 0.000 0.404 0.000 0.024 0.460
#> GSM447445     1  0.4580    0.03022 0.528 0.440 0.000 0.004 0.000 0.028
#> GSM447446     4  0.3797    0.74231 0.072 0.080 0.000 0.812 0.000 0.036
#> GSM447453     1  0.4732    0.53522 0.704 0.200 0.000 0.024 0.000 0.072
#> GSM447455     2  0.4494    0.74132 0.000 0.692 0.000 0.216 0.000 0.092
#> GSM447456     5  0.7083    0.32336 0.024 0.100 0.000 0.164 0.524 0.188
#> GSM447459     4  0.6173    0.00211 0.000 0.004 0.000 0.412 0.300 0.284
#> GSM447466     1  0.3084    0.61258 0.832 0.004 0.000 0.000 0.032 0.132
#> GSM447470     1  0.8568    0.12221 0.328 0.200 0.232 0.000 0.124 0.116
#> GSM447474     5  0.4181    0.60736 0.104 0.012 0.028 0.000 0.792 0.064
#> GSM447475     5  0.1780    0.73426 0.004 0.024 0.000 0.004 0.932 0.036
#> GSM447398     5  0.2036    0.73270 0.000 0.016 0.000 0.008 0.912 0.064
#> GSM447399     5  0.4562    0.09564 0.000 0.004 0.000 0.032 0.576 0.388
#> GSM447408     4  0.2475    0.78185 0.000 0.036 0.000 0.892 0.012 0.060
#> GSM447410     4  0.3414    0.76251 0.000 0.028 0.000 0.828 0.032 0.112
#> GSM447414     3  0.5812    0.27791 0.000 0.000 0.544 0.032 0.104 0.320
#> GSM447417     4  0.1501    0.77703 0.000 0.076 0.000 0.924 0.000 0.000
#> GSM447419     3  0.3086    0.78038 0.020 0.000 0.856 0.000 0.048 0.076
#> GSM447420     3  0.2188    0.84944 0.020 0.036 0.912 0.000 0.000 0.032
#> GSM447421     3  0.3202    0.74988 0.144 0.000 0.816 0.000 0.000 0.040
#> GSM447423     3  0.0547    0.84445 0.000 0.000 0.980 0.000 0.000 0.020
#> GSM447436     4  0.5629    0.37863 0.348 0.052 0.004 0.552 0.000 0.044
#> GSM447437     1  0.1719    0.65522 0.924 0.016 0.000 0.000 0.000 0.060
#> GSM447438     4  0.4836    0.25133 0.000 0.004 0.000 0.564 0.380 0.052
#> GSM447447     2  0.4819    0.75059 0.104 0.704 0.000 0.172 0.000 0.020
#> GSM447454     2  0.2826    0.73578 0.000 0.856 0.092 0.000 0.000 0.052
#> GSM447457     2  0.1605    0.79480 0.000 0.940 0.032 0.012 0.000 0.016
#> GSM447460     2  0.3160    0.80636 0.000 0.840 0.008 0.104 0.000 0.048
#> GSM447465     2  0.2978    0.81283 0.000 0.856 0.008 0.084 0.000 0.052
#> GSM447471     6  0.6108    0.55695 0.196 0.000 0.012 0.000 0.328 0.464
#> GSM447476     4  0.2240    0.78001 0.000 0.008 0.000 0.904 0.032 0.056

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n gender(p) agent(p) k
#> ATC:NMF 75     0.728   0.1337 2
#> ATC:NMF 74     0.418   0.7008 3
#> ATC:NMF 72     0.898   0.1976 4
#> ATC:NMF 70     0.845   0.2113 5
#> ATC:NMF 62     0.734   0.0893 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0