cola Report for GDS3640

Date: 2019-12-25 20:50:32 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 16250    98

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
CV:kmeans 2 1.000 0.989 0.996 **
MAD:hclust 2 1.000 0.992 0.997 **
MAD:kmeans 2 1.000 0.990 0.991 **
MAD:pam 3 1.000 0.973 0.990 ** 2
ATC:kmeans 2 1.000 0.976 0.989 **
SD:NMF 4 0.969 0.931 0.964 ** 3
MAD:skmeans 6 0.955 0.880 0.932 ** 2,3,4,5
MAD:NMF 3 0.947 0.948 0.977 * 2
ATC:hclust 3 0.946 0.933 0.968 * 2
CV:skmeans 4 0.946 0.962 0.978 * 2
MAD:mclust 6 0.935 0.903 0.949 * 2,3,4,5
ATC:pam 6 0.922 0.879 0.934 * 2,3,4
SD:pam 6 0.920 0.879 0.947 * 5
CV:hclust 2 0.917 0.956 0.978 *
ATC:NMF 3 0.914 0.907 0.958 * 2
SD:skmeans 6 0.910 0.837 0.906 * 2,3
CV:mclust 3 0.907 0.911 0.940 *
ATC:skmeans 6 0.906 0.910 0.922 * 2,3,4
SD:mclust 3 0.901 0.913 0.963 *
CV:NMF 4 0.837 0.876 0.938
ATC:mclust 3 0.812 0.900 0.955
CV:pam 2 0.719 0.910 0.954
SD:kmeans 3 0.672 0.868 0.894
SD:hclust 2 0.600 0.825 0.889

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.854           0.909       0.961          0.486 0.525   0.525
#> CV:NMF      2 0.607           0.883       0.937          0.478 0.520   0.520
#> MAD:NMF     2 1.000           0.976       0.990          0.504 0.497   0.497
#> ATC:NMF     2 0.979           0.964       0.984          0.504 0.497   0.497
#> SD:skmeans  2 1.000           0.964       0.970          0.505 0.495   0.495
#> CV:skmeans  2 1.000           0.974       0.989          0.495 0.505   0.505
#> MAD:skmeans 2 1.000           1.000       1.000          0.506 0.495   0.495
#> ATC:skmeans 2 1.000           0.978       0.990          0.505 0.495   0.495
#> SD:mclust   2 0.580           0.937       0.951          0.463 0.512   0.512
#> CV:mclust   2 0.408           0.853       0.900          0.461 0.495   0.495
#> MAD:mclust  2 1.000           0.998       0.997          0.504 0.495   0.495
#> ATC:mclust  2 0.667           0.900       0.943          0.430 0.597   0.597
#> SD:kmeans   2 0.406           0.413       0.788          0.498 0.502   0.502
#> CV:kmeans   2 1.000           0.989       0.996          0.487 0.512   0.512
#> MAD:kmeans  2 1.000           0.990       0.991          0.505 0.495   0.495
#> ATC:kmeans  2 1.000           0.976       0.989          0.502 0.500   0.500
#> SD:pam      2 0.547           0.886       0.930          0.502 0.497   0.497
#> CV:pam      2 0.719           0.910       0.954          0.480 0.508   0.508
#> MAD:pam     2 1.000           0.993       0.997          0.505 0.495   0.495
#> ATC:pam     2 1.000           0.967       0.987          0.502 0.500   0.500
#> SD:hclust   2 0.600           0.825       0.889          0.469 0.512   0.512
#> CV:hclust   2 0.917           0.956       0.978          0.486 0.508   0.508
#> MAD:hclust  2 1.000           0.992       0.997          0.506 0.495   0.495
#> ATC:hclust  2 1.000           0.999       1.000          0.506 0.495   0.495
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.957           0.954       0.981         0.3837 0.650   0.418
#> CV:NMF      3 0.537           0.632       0.786         0.3068 0.854   0.728
#> MAD:NMF     3 0.947           0.948       0.977         0.3269 0.778   0.579
#> ATC:NMF     3 0.914           0.907       0.958         0.3020 0.801   0.617
#> SD:skmeans  3 0.985           0.937       0.976         0.3310 0.713   0.482
#> CV:skmeans  3 0.683           0.846       0.827         0.3055 0.793   0.603
#> MAD:skmeans 3 1.000           0.953       0.981         0.3090 0.787   0.593
#> ATC:skmeans 3 1.000           0.971       0.988         0.2961 0.817   0.643
#> SD:mclust   3 0.901           0.913       0.963         0.2355 0.823   0.688
#> CV:mclust   3 0.907           0.911       0.940         0.3508 0.863   0.730
#> MAD:mclust  3 1.000           0.971       0.989         0.0503 0.559   0.374
#> ATC:mclust  3 0.812           0.900       0.955         0.4178 0.783   0.639
#> SD:kmeans   3 0.672           0.868       0.894         0.3193 0.695   0.463
#> CV:kmeans   3 0.671           0.595       0.747         0.2582 0.972   0.945
#> MAD:kmeans  3 0.692           0.704       0.860         0.2831 0.815   0.641
#> ATC:kmeans  3 0.753           0.789       0.856         0.2738 0.838   0.679
#> SD:pam      3 0.885           0.941       0.970         0.3303 0.743   0.527
#> CV:pam      3 0.823           0.783       0.907         0.3846 0.642   0.403
#> MAD:pam     3 1.000           0.973       0.990         0.2618 0.842   0.689
#> ATC:pam     3 0.921           0.915       0.964         0.2889 0.852   0.704
#> SD:hclust   3 0.514           0.743       0.840         0.3219 0.828   0.665
#> CV:hclust   3 0.747           0.818       0.852         0.1555 0.969   0.939
#> MAD:hclust  3 0.706           0.820       0.853         0.2288 0.879   0.758
#> ATC:hclust  3 0.946           0.933       0.968         0.2132 0.886   0.769
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.969           0.931       0.964         0.0951 0.900   0.711
#> CV:NMF      4 0.837           0.876       0.938         0.1957 0.791   0.521
#> MAD:NMF     4 0.797           0.831       0.867         0.0843 0.913   0.751
#> ATC:NMF     4 0.619           0.532       0.775         0.0834 0.968   0.911
#> SD:skmeans  4 0.900           0.739       0.810         0.1096 0.890   0.681
#> CV:skmeans  4 0.946           0.962       0.978         0.1598 0.901   0.710
#> MAD:skmeans 4 0.953           0.965       0.984         0.1318 0.877   0.657
#> ATC:skmeans 4 1.000           0.979       0.991         0.1386 0.870   0.645
#> SD:mclust   4 0.667           0.761       0.850         0.2141 0.887   0.745
#> CV:mclust   4 0.781           0.923       0.913         0.1870 0.854   0.620
#> MAD:mclust  4 0.901           0.929       0.965         0.3318 0.816   0.615
#> ATC:mclust  4 0.709           0.822       0.888         0.1608 0.904   0.759
#> SD:kmeans   4 0.635           0.633       0.744         0.1148 0.941   0.825
#> CV:kmeans   4 0.675           0.790       0.791         0.1542 0.742   0.481
#> MAD:kmeans  4 0.697           0.771       0.824         0.1379 0.821   0.544
#> ATC:kmeans  4 0.805           0.924       0.916         0.1438 0.865   0.636
#> SD:pam      4 0.685           0.787       0.828         0.1062 0.902   0.713
#> CV:pam      4 0.822           0.812       0.914         0.0849 0.927   0.791
#> MAD:pam     4 0.861           0.839       0.905         0.1709 0.868   0.644
#> ATC:pam     4 0.951           0.935       0.973         0.1425 0.879   0.670
#> SD:hclust   4 0.636           0.723       0.842         0.0735 0.972   0.917
#> CV:hclust   4 0.673           0.833       0.865         0.1383 0.928   0.849
#> MAD:hclust  4 0.846           0.929       0.953         0.1787 0.886   0.702
#> ATC:hclust  4 0.854           0.882       0.939         0.1914 0.875   0.671
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.799           0.809       0.882         0.0669 0.928   0.742
#> CV:NMF      5 0.734           0.735       0.855         0.0540 0.951   0.817
#> MAD:NMF     5 0.756           0.778       0.838         0.0731 0.905   0.683
#> ATC:NMF     5 0.598           0.595       0.748         0.0690 0.848   0.574
#> SD:skmeans  5 0.898           0.811       0.909         0.0671 0.882   0.592
#> CV:skmeans  5 0.897           0.847       0.916         0.0464 0.974   0.898
#> MAD:skmeans 5 0.925           0.949       0.955         0.0597 0.931   0.739
#> ATC:skmeans 5 0.930           0.804       0.909         0.0378 0.991   0.963
#> SD:mclust   5 0.820           0.865       0.916         0.1224 0.854   0.581
#> CV:mclust   5 0.782           0.868       0.863         0.0533 0.922   0.701
#> MAD:mclust  5 0.906           0.930       0.947         0.1218 0.905   0.686
#> ATC:mclust  5 0.776           0.807       0.856         0.1044 0.870   0.606
#> SD:kmeans   5 0.683           0.623       0.758         0.0688 0.855   0.548
#> CV:kmeans   5 0.655           0.812       0.803         0.0800 0.970   0.884
#> MAD:kmeans  5 0.794           0.689       0.816         0.0672 0.954   0.821
#> ATC:kmeans  5 0.857           0.852       0.875         0.0577 1.000   1.000
#> SD:pam      5 0.920           0.902       0.955         0.0872 0.922   0.701
#> CV:pam      5 0.738           0.700       0.869         0.0479 0.962   0.871
#> MAD:pam     5 0.802           0.786       0.873         0.0552 0.919   0.697
#> ATC:pam     5 0.823           0.779       0.854         0.0613 0.926   0.726
#> SD:hclust   5 0.699           0.706       0.805         0.0627 0.939   0.810
#> CV:hclust   5 0.700           0.721       0.838         0.1300 0.918   0.796
#> MAD:hclust  5 0.852           0.931       0.910         0.0624 0.939   0.778
#> ATC:hclust  5 0.857           0.840       0.920         0.0258 0.985   0.942
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.673           0.566       0.766         0.0426 0.963   0.839
#> CV:NMF      6 0.697           0.612       0.766         0.0364 0.975   0.894
#> MAD:NMF     6 0.631           0.530       0.736         0.0508 0.969   0.865
#> ATC:NMF     6 0.576           0.507       0.694         0.0455 0.930   0.723
#> SD:skmeans  6 0.910           0.837       0.906         0.0504 0.922   0.648
#> CV:skmeans  6 0.841           0.822       0.886         0.0406 0.953   0.796
#> MAD:skmeans 6 0.955           0.880       0.932         0.0522 0.932   0.686
#> ATC:skmeans 6 0.906           0.910       0.922         0.0407 0.942   0.768
#> SD:mclust   6 0.892           0.841       0.909         0.0571 0.920   0.666
#> CV:mclust   6 0.830           0.762       0.831         0.0362 0.968   0.852
#> MAD:mclust  6 0.935           0.903       0.949         0.0536 0.955   0.780
#> ATC:mclust  6 0.776           0.721       0.812         0.0468 0.935   0.719
#> SD:kmeans   6 0.805           0.683       0.799         0.0422 0.932   0.697
#> CV:kmeans   6 0.707           0.762       0.793         0.0476 0.990   0.959
#> MAD:kmeans  6 0.826           0.765       0.823         0.0391 0.909   0.614
#> ATC:kmeans  6 0.840           0.747       0.798         0.0384 1.000   1.000
#> SD:pam      6 0.920           0.879       0.947         0.0217 0.944   0.741
#> CV:pam      6 0.869           0.814       0.922         0.0384 0.918   0.705
#> MAD:pam     6 0.876           0.804       0.909         0.0480 0.965   0.834
#> ATC:pam     6 0.922           0.879       0.934         0.0482 0.924   0.671
#> SD:hclust   6 0.706           0.748       0.828         0.0772 0.908   0.680
#> CV:hclust   6 0.712           0.734       0.825         0.0213 0.972   0.915
#> MAD:hclust  6 0.862           0.899       0.908         0.0369 0.976   0.889
#> ATC:hclust  6 0.892           0.806       0.895         0.0342 0.990   0.957

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>              n  dose(p) time(p) k
#> SD:NMF      93 1.10e-10   0.826 2
#> CV:NMF      97 3.25e-15   0.254 2
#> MAD:NMF     97 6.52e-01   0.974 2
#> ATC:NMF     98 4.80e-01   0.988 2
#> SD:skmeans  98 1.00e+00   1.000 2
#> CV:skmeans  98 3.00e-16   0.464 2
#> MAD:skmeans 98 1.00e+00   1.000 2
#> ATC:skmeans 98 9.89e-01   0.989 2
#> SD:mclust   98 2.95e-15   0.303 2
#> CV:mclust   98 4.18e-21   0.990 2
#> MAD:mclust  98 1.00e+00   1.000 2
#> ATC:mclust  97 1.02e-03   0.390 2
#> SD:kmeans   51 7.00e-08   0.492 2
#> CV:kmeans   98 1.23e-15   0.167 2
#> MAD:kmeans  98 1.00e+00   1.000 2
#> ATC:kmeans  97 5.96e-01   0.899 2
#> SD:pam      95 7.61e-01   0.935 2
#> CV:pam      95 3.58e-16   0.248 2
#> MAD:pam     98 9.89e-01   0.989 2
#> ATC:pam     95 7.61e-01   0.935 2
#> SD:hclust   98 2.39e-01   0.302 2
#> CV:hclust   98 6.50e-16   0.156 2
#> MAD:hclust  98 1.00e+00   1.000 2
#> ATC:hclust  98 1.00e+00   1.000 2
test_to_known_factors(res_list, k = 3)
#>              n  dose(p)  time(p) k
#> SD:NMF      97 1.47e-11 3.18e-01 3
#> CV:NMF      89 8.74e-17 1.51e-05 3
#> MAD:NMF     96 7.14e-11 3.77e-01 3
#> ATC:NMF     94 8.47e-10 4.44e-01 3
#> SD:skmeans  93 3.00e-11 2.30e-01 3
#> CV:skmeans  96 1.11e-13 6.38e-01 3
#> MAD:skmeans 95 4.45e-09 4.81e-01 3
#> ATC:skmeans 96 2.70e-08 5.05e-01 3
#> SD:mclust   97 7.93e-12 4.87e-02 3
#> CV:mclust   95 2.54e-18 1.00e+00 3
#> MAD:mclust  98 1.95e-10 2.33e-02 3
#> ATC:mclust  97 1.28e-10 1.14e-01 3
#> SD:kmeans   96 2.11e-10 9.85e-02 3
#> CV:kmeans   73 6.01e-14 1.00e-01 3
#> MAD:kmeans  81 5.94e-08 2.80e-02 3
#> ATC:kmeans  95 1.44e-08 5.71e-01 3
#> SD:pam      98 2.49e-10 2.57e-01 3
#> CV:pam      82 6.67e-13 9.16e-01 3
#> MAD:pam     97 7.77e-07 7.73e-01 3
#> ATC:pam     95 1.66e-07 7.73e-01 3
#> SD:hclust   92 3.20e-08 6.56e-03 3
#> CV:hclust   95 8.79e-14 2.04e-03 3
#> MAD:hclust  91 1.32e-05 2.77e-01 3
#> ATC:hclust  94 4.39e-06 8.38e-01 3
test_to_known_factors(res_list, k = 4)
#>              n  dose(p)  time(p) k
#> SD:NMF      96 4.30e-15 7.01e-04 4
#> CV:NMF      95 1.31e-14 2.22e-04 4
#> MAD:NMF     94 1.30e-12 6.22e-04 4
#> ATC:NMF     58 3.19e-06 1.11e-01 4
#> SD:skmeans  83 4.27e-11 7.65e-01 4
#> CV:skmeans  98 1.71e-15 1.05e-04 4
#> MAD:skmeans 97 5.84e-12 8.53e-01 4
#> ATC:skmeans 98 2.56e-11 6.85e-01 4
#> SD:mclust   85 1.51e-12 1.27e-03 4
#> CV:mclust   97 5.56e-20 4.34e-03 4
#> MAD:mclust  98 4.66e-11 6.70e-05 4
#> ATC:mclust  94 9.40e-13 1.33e-02 4
#> SD:kmeans   76 1.59e-06 1.26e-02 4
#> CV:kmeans   89 3.37e-13 1.89e-05 4
#> MAD:kmeans  94 4.28e-11 6.68e-01 4
#> ATC:kmeans  98 7.21e-11 6.91e-01 4
#> SD:pam      98 1.01e-09 2.31e-05 4
#> CV:pam      89 1.99e-13 2.02e-04 4
#> MAD:pam     95 6.03e-08 4.44e-05 4
#> ATC:pam     95 1.70e-10 8.35e-01 4
#> SD:hclust   82 2.98e-10 1.96e-05 4
#> CV:hclust   96 7.53e-17 1.58e-06 4
#> MAD:hclust  98 8.37e-08 9.47e-02 4
#> ATC:hclust  91 3.30e-12 8.68e-01 4
test_to_known_factors(res_list, k = 5)
#>              n  dose(p)  time(p) k
#> SD:NMF      92 7.04e-16 1.61e-06 5
#> CV:NMF      88 2.84e-13 5.84e-04 5
#> MAD:NMF     88 2.00e-12 1.60e-05 5
#> ATC:NMF     72 2.29e-06 9.24e-05 5
#> SD:skmeans  83 8.01e-11 2.19e-07 5
#> CV:skmeans  94 3.12e-17 3.55e-05 5
#> MAD:skmeans 97 7.57e-11 9.09e-05 5
#> ATC:skmeans 89 5.33e-09 4.12e-01 5
#> SD:mclust   94 6.73e-12 3.99e-08 5
#> CV:mclust   94 9.28e-24 1.65e-05 5
#> MAD:mclust  98 3.52e-10 1.85e-05 5
#> ATC:mclust  95 1.32e-11 5.67e-02 5
#> SD:kmeans   60 9.57e-12 1.95e-03 5
#> CV:kmeans   96 2.48e-14 4.08e-08 5
#> MAD:kmeans  81 3.18e-11 1.52e-01 5
#> ATC:kmeans  97 1.79e-11 7.43e-01 5
#> SD:pam      95 2.34e-08 3.46e-09 5
#> CV:pam      81 1.86e-10 1.54e-07 5
#> MAD:pam     91 8.91e-06 5.35e-08 5
#> ATC:pam     89 4.85e-10 5.26e-02 5
#> SD:hclust   78 5.51e-11 4.05e-09 5
#> CV:hclust   91 4.70e-16 1.90e-06 5
#> MAD:hclust  98 3.14e-09 3.05e-05 5
#> ATC:hclust  86 1.47e-10 2.13e-01 5
test_to_known_factors(res_list, k = 6)
#>              n  dose(p)  time(p) k
#> SD:NMF      74 1.20e-15 1.90e-07 6
#> CV:NMF      78 1.46e-12 2.22e-04 6
#> MAD:NMF     64 2.43e-11 2.00e-06 6
#> ATC:NMF     62 3.10e-07 1.74e-05 6
#> SD:skmeans  94 1.02e-15 5.91e-11 6
#> CV:skmeans  95 3.71e-20 1.18e-04 6
#> MAD:skmeans 96 2.97e-10 1.38e-08 6
#> ATC:skmeans 98 3.11e-11 1.68e-03 6
#> SD:mclust   92 1.71e-13 5.56e-08 6
#> CV:mclust   88 2.09e-23 1.96e-05 6
#> MAD:mclust  95 6.18e-11 6.10e-07 6
#> ATC:mclust  87 7.28e-11 1.11e-03 6
#> SD:kmeans   73 1.15e-13 2.91e-08 6
#> CV:kmeans   96 2.48e-14 4.08e-08 6
#> MAD:kmeans  88 1.56e-11 6.03e-05 6
#> ATC:kmeans  95 1.54e-11 7.89e-01 6
#> SD:pam      95 1.62e-08 1.39e-11 6
#> CV:pam      86 4.23e-14 3.89e-09 6
#> MAD:pam     91 5.86e-11 2.93e-06 6
#> ATC:pam     93 1.39e-07 1.84e-04 6
#> SD:hclust   86 6.60e-12 3.88e-08 6
#> CV:hclust   93 1.06e-15 7.65e-10 6
#> MAD:hclust  98 5.27e-10 2.58e-06 6
#> ATC:hclust  87 8.71e-10 2.01e-01 6

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.600           0.825       0.889         0.4688 0.512   0.512
#> 3 3 0.514           0.743       0.840         0.3219 0.828   0.665
#> 4 4 0.636           0.723       0.842         0.0735 0.972   0.917
#> 5 5 0.699           0.706       0.805         0.0627 0.939   0.810
#> 6 6 0.706           0.748       0.828         0.0772 0.908   0.680

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     2  0.9866      0.549 0.432 0.568
#> GSM241452     1  0.0376      0.974 0.996 0.004
#> GSM241453     2  0.9866      0.549 0.432 0.568
#> GSM241454     1  0.0376      0.974 0.996 0.004
#> GSM241455     2  0.9866      0.549 0.432 0.568
#> GSM241456     1  0.0376      0.974 0.996 0.004
#> GSM241457     2  0.0000      0.805 0.000 1.000
#> GSM241458     1  0.0000      0.973 1.000 0.000
#> GSM241459     2  0.0000      0.805 0.000 1.000
#> GSM241460     1  0.0000      0.973 1.000 0.000
#> GSM241461     2  0.0000      0.805 0.000 1.000
#> GSM241462     1  0.0000      0.973 1.000 0.000
#> GSM241463     2  0.9866      0.549 0.432 0.568
#> GSM241464     1  0.0376      0.974 0.996 0.004
#> GSM241465     2  0.9866      0.549 0.432 0.568
#> GSM241466     1  0.0376      0.974 0.996 0.004
#> GSM241467     1  0.0376      0.974 0.996 0.004
#> GSM241468     2  0.9866      0.549 0.432 0.568
#> GSM241469     1  0.0376      0.974 0.996 0.004
#> GSM241470     2  0.9866      0.549 0.432 0.568
#> GSM241471     2  0.9866      0.549 0.432 0.568
#> GSM241472     1  0.0376      0.974 0.996 0.004
#> GSM241473     2  0.9866      0.549 0.432 0.568
#> GSM241474     1  0.0376      0.974 0.996 0.004
#> GSM241475     2  0.9866      0.549 0.432 0.568
#> GSM241476     1  0.0376      0.974 0.996 0.004
#> GSM241477     2  0.9866      0.549 0.432 0.568
#> GSM241478     2  0.9866      0.549 0.432 0.568
#> GSM241479     1  0.0376      0.974 0.996 0.004
#> GSM241480     1  0.0376      0.974 0.996 0.004
#> GSM241481     2  0.0000      0.805 0.000 1.000
#> GSM241482     1  0.0000      0.973 1.000 0.000
#> GSM241483     2  0.0000      0.805 0.000 1.000
#> GSM241484     1  0.0000      0.973 1.000 0.000
#> GSM241485     1  0.0000      0.973 1.000 0.000
#> GSM241486     2  0.0000      0.805 0.000 1.000
#> GSM241487     2  0.9866      0.549 0.432 0.568
#> GSM241488     2  0.9866      0.549 0.432 0.568
#> GSM241489     1  0.0376      0.974 0.996 0.004
#> GSM241490     1  0.0376      0.974 0.996 0.004
#> GSM241491     2  0.9866      0.549 0.432 0.568
#> GSM241492     1  0.0376      0.974 0.996 0.004
#> GSM241493     2  0.9866      0.549 0.432 0.568
#> GSM241494     1  0.0376      0.974 0.996 0.004
#> GSM241495     2  0.9866      0.549 0.432 0.568
#> GSM241496     2  0.9866      0.549 0.432 0.568
#> GSM241497     1  0.0376      0.974 0.996 0.004
#> GSM241498     1  0.0376      0.974 0.996 0.004
#> GSM241499     1  0.0000      0.973 1.000 0.000
#> GSM241500     2  0.0000      0.805 0.000 1.000
#> GSM241501     2  0.0000      0.805 0.000 1.000
#> GSM241502     2  0.0000      0.805 0.000 1.000
#> GSM241503     1  0.0000      0.973 1.000 0.000
#> GSM241504     1  0.0000      0.973 1.000 0.000
#> GSM241505     1  0.0000      0.973 1.000 0.000
#> GSM241506     2  0.0000      0.805 0.000 1.000
#> GSM241507     1  0.0000      0.973 1.000 0.000
#> GSM241508     2  0.0000      0.805 0.000 1.000
#> GSM241509     2  0.0000      0.805 0.000 1.000
#> GSM241510     2  0.0000      0.805 0.000 1.000
#> GSM241511     1  0.0000      0.973 1.000 0.000
#> GSM241512     1  0.2603      0.937 0.956 0.044
#> GSM241513     2  0.4431      0.835 0.092 0.908
#> GSM241514     1  0.6438      0.770 0.836 0.164
#> GSM241515     2  0.4431      0.835 0.092 0.908
#> GSM241516     1  0.6438      0.770 0.836 0.164
#> GSM241517     2  0.4431      0.835 0.092 0.908
#> GSM241518     2  0.4431      0.835 0.092 0.908
#> GSM241519     2  0.4431      0.835 0.092 0.908
#> GSM241520     2  0.4431      0.835 0.092 0.908
#> GSM241521     2  0.4431      0.835 0.092 0.908
#> GSM241522     1  0.6247      0.781 0.844 0.156
#> GSM241523     2  0.4431      0.835 0.092 0.908
#> GSM241524     2  0.4431      0.835 0.092 0.908
#> GSM241525     1  0.3431      0.922 0.936 0.064
#> GSM241526     2  0.4431      0.835 0.092 0.908
#> GSM241527     1  0.3431      0.922 0.936 0.064
#> GSM241528     2  0.4431      0.835 0.092 0.908
#> GSM241529     2  0.4431      0.835 0.092 0.908
#> GSM241530     1  0.3431      0.922 0.936 0.064
#> GSM241531     1  0.0000      0.973 1.000 0.000
#> GSM241532     2  0.0000      0.805 0.000 1.000
#> GSM241533     2  0.0000      0.805 0.000 1.000
#> GSM241534     2  0.0000      0.805 0.000 1.000
#> GSM241535     1  0.2603      0.937 0.956 0.044
#> GSM241536     1  0.0000      0.973 1.000 0.000
#> GSM241537     2  0.4562      0.833 0.096 0.904
#> GSM241538     2  0.4562      0.833 0.096 0.904
#> GSM241539     2  0.4562      0.833 0.096 0.904
#> GSM241540     2  0.4562      0.833 0.096 0.904
#> GSM241541     2  0.4562      0.833 0.096 0.904
#> GSM241542     2  0.4562      0.833 0.096 0.904
#> GSM241543     2  0.4431      0.835 0.092 0.908
#> GSM241544     2  0.4431      0.835 0.092 0.908
#> GSM241545     2  0.4431      0.835 0.092 0.908
#> GSM241546     2  0.4431      0.835 0.092 0.908
#> GSM241547     2  0.4431      0.835 0.092 0.908
#> GSM241548     2  0.4431      0.835 0.092 0.908

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2  0.7807     0.5735 0.432 0.516 0.052
#> GSM241452     1  0.0237     0.9380 0.996 0.004 0.000
#> GSM241453     2  0.7807     0.5735 0.432 0.516 0.052
#> GSM241454     1  0.0237     0.9380 0.996 0.004 0.000
#> GSM241455     2  0.7807     0.5735 0.432 0.516 0.052
#> GSM241456     1  0.0237     0.9380 0.996 0.004 0.000
#> GSM241457     2  0.0000     0.5236 0.000 1.000 0.000
#> GSM241458     1  0.0000     0.9374 1.000 0.000 0.000
#> GSM241459     2  0.0000     0.5236 0.000 1.000 0.000
#> GSM241460     1  0.0000     0.9374 1.000 0.000 0.000
#> GSM241461     2  0.0000     0.5236 0.000 1.000 0.000
#> GSM241462     1  0.0000     0.9374 1.000 0.000 0.000
#> GSM241463     2  0.7807     0.5735 0.432 0.516 0.052
#> GSM241464     1  0.0237     0.9380 0.996 0.004 0.000
#> GSM241465     2  0.7807     0.5735 0.432 0.516 0.052
#> GSM241466     1  0.0237     0.9380 0.996 0.004 0.000
#> GSM241467     1  0.0237     0.9380 0.996 0.004 0.000
#> GSM241468     2  0.7807     0.5735 0.432 0.516 0.052
#> GSM241469     1  0.0237     0.9380 0.996 0.004 0.000
#> GSM241470     2  0.7807     0.5735 0.432 0.516 0.052
#> GSM241471     2  0.7807     0.5735 0.432 0.516 0.052
#> GSM241472     1  0.0237     0.9380 0.996 0.004 0.000
#> GSM241473     2  0.7807     0.5735 0.432 0.516 0.052
#> GSM241474     1  0.0237     0.9380 0.996 0.004 0.000
#> GSM241475     2  0.7807     0.5735 0.432 0.516 0.052
#> GSM241476     1  0.0237     0.9380 0.996 0.004 0.000
#> GSM241477     2  0.7807     0.5735 0.432 0.516 0.052
#> GSM241478     2  0.7807     0.5735 0.432 0.516 0.052
#> GSM241479     1  0.0237     0.9380 0.996 0.004 0.000
#> GSM241480     1  0.0237     0.9380 0.996 0.004 0.000
#> GSM241481     2  0.0000     0.5236 0.000 1.000 0.000
#> GSM241482     1  0.0000     0.9374 1.000 0.000 0.000
#> GSM241483     2  0.0000     0.5236 0.000 1.000 0.000
#> GSM241484     1  0.0000     0.9374 1.000 0.000 0.000
#> GSM241485     1  0.0000     0.9374 1.000 0.000 0.000
#> GSM241486     2  0.0000     0.5236 0.000 1.000 0.000
#> GSM241487     2  0.7807     0.5735 0.432 0.516 0.052
#> GSM241488     2  0.7807     0.5735 0.432 0.516 0.052
#> GSM241489     1  0.0237     0.9380 0.996 0.004 0.000
#> GSM241490     1  0.0237     0.9380 0.996 0.004 0.000
#> GSM241491     2  0.7807     0.5735 0.432 0.516 0.052
#> GSM241492     1  0.0237     0.9380 0.996 0.004 0.000
#> GSM241493     2  0.7807     0.5735 0.432 0.516 0.052
#> GSM241494     1  0.0237     0.9380 0.996 0.004 0.000
#> GSM241495     2  0.7807     0.5735 0.432 0.516 0.052
#> GSM241496     2  0.7807     0.5735 0.432 0.516 0.052
#> GSM241497     1  0.0237     0.9380 0.996 0.004 0.000
#> GSM241498     1  0.0237     0.9380 0.996 0.004 0.000
#> GSM241499     1  0.0000     0.9374 1.000 0.000 0.000
#> GSM241500     2  0.0000     0.5236 0.000 1.000 0.000
#> GSM241501     2  0.0000     0.5236 0.000 1.000 0.000
#> GSM241502     2  0.0237     0.5204 0.000 0.996 0.004
#> GSM241503     1  0.0000     0.9374 1.000 0.000 0.000
#> GSM241504     1  0.0000     0.9374 1.000 0.000 0.000
#> GSM241505     1  0.0000     0.9374 1.000 0.000 0.000
#> GSM241506     2  0.0237     0.5204 0.000 0.996 0.004
#> GSM241507     1  0.0000     0.9374 1.000 0.000 0.000
#> GSM241508     2  0.2066     0.4791 0.000 0.940 0.060
#> GSM241509     2  0.4931     0.2863 0.000 0.768 0.232
#> GSM241510     2  0.4346     0.3620 0.000 0.816 0.184
#> GSM241511     1  0.1031     0.9214 0.976 0.000 0.024
#> GSM241512     1  0.3851     0.8282 0.860 0.004 0.136
#> GSM241513     3  0.4002     0.8973 0.000 0.160 0.840
#> GSM241514     1  0.4974     0.6777 0.764 0.000 0.236
#> GSM241515     3  0.4002     0.8973 0.000 0.160 0.840
#> GSM241516     1  0.4974     0.6777 0.764 0.000 0.236
#> GSM241517     3  0.4002     0.8973 0.000 0.160 0.840
#> GSM241518     3  0.4002     0.8973 0.000 0.160 0.840
#> GSM241519     3  0.4002     0.8973 0.000 0.160 0.840
#> GSM241520     3  0.4002     0.8973 0.000 0.160 0.840
#> GSM241521     3  0.4002     0.8973 0.000 0.160 0.840
#> GSM241522     1  0.4887     0.6888 0.772 0.000 0.228
#> GSM241523     3  0.4002     0.8973 0.000 0.160 0.840
#> GSM241524     3  0.4002     0.8973 0.000 0.160 0.840
#> GSM241525     1  0.4172     0.8061 0.840 0.004 0.156
#> GSM241526     3  0.5882     0.5368 0.000 0.348 0.652
#> GSM241527     1  0.4172     0.8061 0.840 0.004 0.156
#> GSM241528     3  0.5882     0.5368 0.000 0.348 0.652
#> GSM241529     3  0.5882     0.5368 0.000 0.348 0.652
#> GSM241530     1  0.4172     0.8061 0.840 0.004 0.156
#> GSM241531     1  0.2878     0.8587 0.904 0.000 0.096
#> GSM241532     2  0.5835     0.0536 0.000 0.660 0.340
#> GSM241533     2  0.5835     0.0536 0.000 0.660 0.340
#> GSM241534     2  0.5835     0.0536 0.000 0.660 0.340
#> GSM241535     1  0.3851     0.8282 0.860 0.004 0.136
#> GSM241536     1  0.2878     0.8587 0.904 0.000 0.096
#> GSM241537     3  0.0000     0.8273 0.000 0.000 1.000
#> GSM241538     3  0.0000     0.8273 0.000 0.000 1.000
#> GSM241539     3  0.0000     0.8273 0.000 0.000 1.000
#> GSM241540     3  0.0000     0.8273 0.000 0.000 1.000
#> GSM241541     3  0.0000     0.8273 0.000 0.000 1.000
#> GSM241542     3  0.0000     0.8273 0.000 0.000 1.000
#> GSM241543     3  0.4002     0.8973 0.000 0.160 0.840
#> GSM241544     3  0.4002     0.8973 0.000 0.160 0.840
#> GSM241545     3  0.4002     0.8973 0.000 0.160 0.840
#> GSM241546     3  0.4002     0.8973 0.000 0.160 0.840
#> GSM241547     3  0.4002     0.8973 0.000 0.160 0.840
#> GSM241548     3  0.4002     0.8973 0.000 0.160 0.840

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.6257     0.5714 0.436 0.508 0.056 0.000
#> GSM241452     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM241453     2  0.6257     0.5714 0.436 0.508 0.056 0.000
#> GSM241454     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM241455     2  0.6257     0.5714 0.436 0.508 0.056 0.000
#> GSM241456     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM241457     2  0.0000     0.4407 0.000 1.000 0.000 0.000
#> GSM241458     1  0.0336     0.9235 0.992 0.000 0.000 0.008
#> GSM241459     2  0.0000     0.4407 0.000 1.000 0.000 0.000
#> GSM241460     1  0.0336     0.9235 0.992 0.000 0.000 0.008
#> GSM241461     2  0.0000     0.4407 0.000 1.000 0.000 0.000
#> GSM241462     1  0.0336     0.9235 0.992 0.000 0.000 0.008
#> GSM241463     2  0.6257     0.5714 0.436 0.508 0.056 0.000
#> GSM241464     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM241465     2  0.6257     0.5714 0.436 0.508 0.056 0.000
#> GSM241466     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM241467     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM241468     2  0.6257     0.5714 0.436 0.508 0.056 0.000
#> GSM241469     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM241470     2  0.6257     0.5714 0.436 0.508 0.056 0.000
#> GSM241471     2  0.6257     0.5714 0.436 0.508 0.056 0.000
#> GSM241472     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM241473     2  0.6257     0.5714 0.436 0.508 0.056 0.000
#> GSM241474     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM241475     2  0.6257     0.5714 0.436 0.508 0.056 0.000
#> GSM241476     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM241477     2  0.6257     0.5714 0.436 0.508 0.056 0.000
#> GSM241478     2  0.6257     0.5714 0.436 0.508 0.056 0.000
#> GSM241479     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM241480     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM241481     2  0.0000     0.4407 0.000 1.000 0.000 0.000
#> GSM241482     1  0.0336     0.9235 0.992 0.000 0.000 0.008
#> GSM241483     2  0.0000     0.4407 0.000 1.000 0.000 0.000
#> GSM241484     1  0.0336     0.9235 0.992 0.000 0.000 0.008
#> GSM241485     1  0.0336     0.9235 0.992 0.000 0.000 0.008
#> GSM241486     2  0.0000     0.4407 0.000 1.000 0.000 0.000
#> GSM241487     2  0.6257     0.5714 0.436 0.508 0.056 0.000
#> GSM241488     2  0.6257     0.5714 0.436 0.508 0.056 0.000
#> GSM241489     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM241490     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM241491     2  0.6257     0.5714 0.436 0.508 0.056 0.000
#> GSM241492     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM241493     2  0.6257     0.5714 0.436 0.508 0.056 0.000
#> GSM241494     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM241495     2  0.6257     0.5714 0.436 0.508 0.056 0.000
#> GSM241496     2  0.6257     0.5714 0.436 0.508 0.056 0.000
#> GSM241497     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM241498     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM241499     1  0.0336     0.9235 0.992 0.000 0.000 0.008
#> GSM241500     2  0.0000     0.4407 0.000 1.000 0.000 0.000
#> GSM241501     2  0.0000     0.4407 0.000 1.000 0.000 0.000
#> GSM241502     2  0.0188     0.4372 0.000 0.996 0.000 0.004
#> GSM241503     1  0.0336     0.9235 0.992 0.000 0.000 0.008
#> GSM241504     1  0.0336     0.9235 0.992 0.000 0.000 0.008
#> GSM241505     1  0.0336     0.9235 0.992 0.000 0.000 0.008
#> GSM241506     2  0.0188     0.4372 0.000 0.996 0.000 0.004
#> GSM241507     1  0.0336     0.9235 0.992 0.000 0.000 0.008
#> GSM241508     2  0.1637     0.3723 0.000 0.940 0.000 0.060
#> GSM241509     2  0.3907     0.0764 0.000 0.768 0.000 0.232
#> GSM241510     2  0.3444     0.1755 0.000 0.816 0.000 0.184
#> GSM241511     1  0.1302     0.9013 0.956 0.000 0.000 0.044
#> GSM241512     1  0.4595     0.7646 0.776 0.000 0.040 0.184
#> GSM241513     3  0.0707     0.9745 0.000 0.000 0.980 0.020
#> GSM241514     1  0.3942     0.6822 0.764 0.000 0.236 0.000
#> GSM241515     3  0.0707     0.9745 0.000 0.000 0.980 0.020
#> GSM241516     1  0.3942     0.6822 0.764 0.000 0.236 0.000
#> GSM241517     3  0.0000     0.9962 0.000 0.000 1.000 0.000
#> GSM241518     3  0.0000     0.9962 0.000 0.000 1.000 0.000
#> GSM241519     3  0.0000     0.9962 0.000 0.000 1.000 0.000
#> GSM241520     3  0.0000     0.9962 0.000 0.000 1.000 0.000
#> GSM241521     3  0.0000     0.9962 0.000 0.000 1.000 0.000
#> GSM241522     1  0.3873     0.6934 0.772 0.000 0.228 0.000
#> GSM241523     3  0.0000     0.9962 0.000 0.000 1.000 0.000
#> GSM241524     3  0.0000     0.9962 0.000 0.000 1.000 0.000
#> GSM241525     1  0.4776     0.7634 0.776 0.000 0.060 0.164
#> GSM241526     4  0.7895     0.5000 0.004 0.316 0.248 0.432
#> GSM241527     1  0.4776     0.7634 0.776 0.000 0.060 0.164
#> GSM241528     4  0.7895     0.5000 0.004 0.316 0.248 0.432
#> GSM241529     4  0.7895     0.5000 0.004 0.316 0.248 0.432
#> GSM241530     1  0.4776     0.7634 0.776 0.000 0.060 0.164
#> GSM241531     1  0.3528     0.7831 0.808 0.000 0.000 0.192
#> GSM241532     2  0.4624    -0.1685 0.000 0.660 0.000 0.340
#> GSM241533     2  0.4624    -0.1685 0.000 0.660 0.000 0.340
#> GSM241534     2  0.4624    -0.1685 0.000 0.660 0.000 0.340
#> GSM241535     1  0.4595     0.7646 0.776 0.000 0.040 0.184
#> GSM241536     1  0.3528     0.7831 0.808 0.000 0.000 0.192
#> GSM241537     4  0.3266     0.7588 0.000 0.000 0.168 0.832
#> GSM241538     4  0.3266     0.7588 0.000 0.000 0.168 0.832
#> GSM241539     4  0.3266     0.7588 0.000 0.000 0.168 0.832
#> GSM241540     4  0.3266     0.7588 0.000 0.000 0.168 0.832
#> GSM241541     4  0.3266     0.7588 0.000 0.000 0.168 0.832
#> GSM241542     4  0.3266     0.7588 0.000 0.000 0.168 0.832
#> GSM241543     3  0.0000     0.9962 0.000 0.000 1.000 0.000
#> GSM241544     3  0.0000     0.9962 0.000 0.000 1.000 0.000
#> GSM241545     3  0.0000     0.9962 0.000 0.000 1.000 0.000
#> GSM241546     3  0.0000     0.9962 0.000 0.000 1.000 0.000
#> GSM241547     3  0.0000     0.9962 0.000 0.000 1.000 0.000
#> GSM241548     3  0.0000     0.9962 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2  0.4256      0.792 0.436 0.564 0.000 0.000 0.000
#> GSM241452     1  0.0000      0.843 1.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.4256      0.792 0.436 0.564 0.000 0.000 0.000
#> GSM241454     1  0.0000      0.843 1.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.4256      0.792 0.436 0.564 0.000 0.000 0.000
#> GSM241456     1  0.0000      0.843 1.000 0.000 0.000 0.000 0.000
#> GSM241457     2  0.4306     -0.294 0.000 0.508 0.000 0.000 0.492
#> GSM241458     1  0.0324      0.842 0.992 0.004 0.000 0.004 0.000
#> GSM241459     2  0.4306     -0.294 0.000 0.508 0.000 0.000 0.492
#> GSM241460     1  0.0324      0.842 0.992 0.004 0.000 0.004 0.000
#> GSM241461     2  0.4306     -0.294 0.000 0.508 0.000 0.000 0.492
#> GSM241462     1  0.0324      0.842 0.992 0.004 0.000 0.004 0.000
#> GSM241463     2  0.4256      0.792 0.436 0.564 0.000 0.000 0.000
#> GSM241464     1  0.0000      0.843 1.000 0.000 0.000 0.000 0.000
#> GSM241465     2  0.4256      0.792 0.436 0.564 0.000 0.000 0.000
#> GSM241466     1  0.0000      0.843 1.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.843 1.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.4256      0.792 0.436 0.564 0.000 0.000 0.000
#> GSM241469     1  0.0000      0.843 1.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.4256      0.792 0.436 0.564 0.000 0.000 0.000
#> GSM241471     2  0.4256      0.792 0.436 0.564 0.000 0.000 0.000
#> GSM241472     1  0.0000      0.843 1.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.4256      0.792 0.436 0.564 0.000 0.000 0.000
#> GSM241474     1  0.0000      0.843 1.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.4256      0.792 0.436 0.564 0.000 0.000 0.000
#> GSM241476     1  0.0000      0.843 1.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.4256      0.792 0.436 0.564 0.000 0.000 0.000
#> GSM241478     2  0.4256      0.792 0.436 0.564 0.000 0.000 0.000
#> GSM241479     1  0.0000      0.843 1.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.843 1.000 0.000 0.000 0.000 0.000
#> GSM241481     2  0.4306     -0.294 0.000 0.508 0.000 0.000 0.492
#> GSM241482     1  0.0324      0.842 0.992 0.004 0.000 0.004 0.000
#> GSM241483     2  0.4306     -0.294 0.000 0.508 0.000 0.000 0.492
#> GSM241484     1  0.0324      0.842 0.992 0.004 0.000 0.004 0.000
#> GSM241485     1  0.0324      0.842 0.992 0.004 0.000 0.004 0.000
#> GSM241486     2  0.4306     -0.294 0.000 0.508 0.000 0.000 0.492
#> GSM241487     2  0.4256      0.792 0.436 0.564 0.000 0.000 0.000
#> GSM241488     2  0.4256      0.792 0.436 0.564 0.000 0.000 0.000
#> GSM241489     1  0.0000      0.843 1.000 0.000 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.843 1.000 0.000 0.000 0.000 0.000
#> GSM241491     2  0.4256      0.792 0.436 0.564 0.000 0.000 0.000
#> GSM241492     1  0.0000      0.843 1.000 0.000 0.000 0.000 0.000
#> GSM241493     2  0.4256      0.792 0.436 0.564 0.000 0.000 0.000
#> GSM241494     1  0.0000      0.843 1.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.4256      0.792 0.436 0.564 0.000 0.000 0.000
#> GSM241496     2  0.4256      0.792 0.436 0.564 0.000 0.000 0.000
#> GSM241497     1  0.0000      0.843 1.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.843 1.000 0.000 0.000 0.000 0.000
#> GSM241499     1  0.0324      0.842 0.992 0.004 0.000 0.004 0.000
#> GSM241500     5  0.4262      0.373 0.000 0.440 0.000 0.000 0.560
#> GSM241501     5  0.4287      0.337 0.000 0.460 0.000 0.000 0.540
#> GSM241502     5  0.4283      0.346 0.000 0.456 0.000 0.000 0.544
#> GSM241503     1  0.0324      0.842 0.992 0.004 0.000 0.004 0.000
#> GSM241504     1  0.0324      0.842 0.992 0.004 0.000 0.004 0.000
#> GSM241505     1  0.0324      0.842 0.992 0.004 0.000 0.004 0.000
#> GSM241506     5  0.4283      0.346 0.000 0.456 0.000 0.000 0.544
#> GSM241507     1  0.2389      0.764 0.880 0.004 0.000 0.116 0.000
#> GSM241508     5  0.3684      0.564 0.000 0.280 0.000 0.000 0.720
#> GSM241509     5  0.2127      0.632 0.000 0.108 0.000 0.000 0.892
#> GSM241510     5  0.2690      0.639 0.000 0.156 0.000 0.000 0.844
#> GSM241511     1  0.3086      0.716 0.816 0.004 0.000 0.180 0.000
#> GSM241512     1  0.5365      0.435 0.528 0.056 0.000 0.416 0.000
#> GSM241513     3  0.1877      0.918 0.000 0.064 0.924 0.012 0.000
#> GSM241514     1  0.3395      0.635 0.764 0.000 0.236 0.000 0.000
#> GSM241515     3  0.1877      0.918 0.000 0.064 0.924 0.012 0.000
#> GSM241516     1  0.3395      0.635 0.764 0.000 0.236 0.000 0.000
#> GSM241517     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> GSM241518     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> GSM241519     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> GSM241520     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> GSM241521     3  0.0609      0.970 0.000 0.020 0.980 0.000 0.000
#> GSM241522     1  0.3336      0.644 0.772 0.000 0.228 0.000 0.000
#> GSM241523     3  0.0609      0.970 0.000 0.020 0.980 0.000 0.000
#> GSM241524     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> GSM241525     1  0.5088      0.432 0.528 0.036 0.000 0.436 0.000
#> GSM241526     5  0.6304      0.359 0.004 0.064 0.168 0.108 0.656
#> GSM241527     1  0.5088      0.432 0.528 0.036 0.000 0.436 0.000
#> GSM241528     5  0.6304      0.359 0.004 0.064 0.168 0.108 0.656
#> GSM241529     5  0.6304      0.359 0.004 0.064 0.168 0.108 0.656
#> GSM241530     1  0.5088      0.432 0.528 0.036 0.000 0.436 0.000
#> GSM241531     1  0.4841      0.460 0.560 0.024 0.000 0.416 0.000
#> GSM241532     5  0.0000      0.588 0.000 0.000 0.000 0.000 1.000
#> GSM241533     5  0.0000      0.588 0.000 0.000 0.000 0.000 1.000
#> GSM241534     5  0.0000      0.588 0.000 0.000 0.000 0.000 1.000
#> GSM241535     1  0.5365      0.435 0.528 0.056 0.000 0.416 0.000
#> GSM241536     1  0.4841      0.460 0.560 0.024 0.000 0.416 0.000
#> GSM241537     4  0.4359      1.000 0.000 0.412 0.000 0.584 0.004
#> GSM241538     4  0.4359      1.000 0.000 0.412 0.000 0.584 0.004
#> GSM241539     4  0.4359      1.000 0.000 0.412 0.000 0.584 0.004
#> GSM241540     4  0.4359      1.000 0.000 0.412 0.000 0.584 0.004
#> GSM241541     4  0.4359      1.000 0.000 0.412 0.000 0.584 0.004
#> GSM241542     4  0.4359      1.000 0.000 0.412 0.000 0.584 0.004
#> GSM241543     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> GSM241544     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> GSM241545     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> GSM241546     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> GSM241547     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> GSM241548     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM241451     2  0.3634     0.7228 0.356 0.644 0.000 0.000 0.000 0.000
#> GSM241452     1  0.0000     0.9087 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.3634     0.7228 0.356 0.644 0.000 0.000 0.000 0.000
#> GSM241454     1  0.0000     0.9087 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.3634     0.7228 0.356 0.644 0.000 0.000 0.000 0.000
#> GSM241456     1  0.0000     0.9087 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241457     2  0.2219     0.2747 0.000 0.864 0.000 0.000 0.136 0.000
#> GSM241458     1  0.2219     0.8626 0.864 0.000 0.000 0.000 0.136 0.000
#> GSM241459     2  0.2219     0.2747 0.000 0.864 0.000 0.000 0.136 0.000
#> GSM241460     1  0.2219     0.8626 0.864 0.000 0.000 0.000 0.136 0.000
#> GSM241461     2  0.2219     0.2747 0.000 0.864 0.000 0.000 0.136 0.000
#> GSM241462     1  0.2219     0.8626 0.864 0.000 0.000 0.000 0.136 0.000
#> GSM241463     2  0.3634     0.7228 0.356 0.644 0.000 0.000 0.000 0.000
#> GSM241464     1  0.0146     0.9053 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM241465     2  0.3634     0.7228 0.356 0.644 0.000 0.000 0.000 0.000
#> GSM241466     1  0.0000     0.9087 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000     0.9087 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.3634     0.7228 0.356 0.644 0.000 0.000 0.000 0.000
#> GSM241469     1  0.0000     0.9087 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.3634     0.7228 0.356 0.644 0.000 0.000 0.000 0.000
#> GSM241471     2  0.3634     0.7228 0.356 0.644 0.000 0.000 0.000 0.000
#> GSM241472     1  0.0000     0.9087 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.3634     0.7228 0.356 0.644 0.000 0.000 0.000 0.000
#> GSM241474     1  0.0000     0.9087 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.3634     0.7228 0.356 0.644 0.000 0.000 0.000 0.000
#> GSM241476     1  0.0000     0.9087 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.3634     0.7228 0.356 0.644 0.000 0.000 0.000 0.000
#> GSM241478     2  0.3634     0.7228 0.356 0.644 0.000 0.000 0.000 0.000
#> GSM241479     1  0.0000     0.9087 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000     0.9087 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241481     2  0.2219     0.2747 0.000 0.864 0.000 0.000 0.136 0.000
#> GSM241482     1  0.2219     0.8626 0.864 0.000 0.000 0.000 0.136 0.000
#> GSM241483     2  0.2219     0.2747 0.000 0.864 0.000 0.000 0.136 0.000
#> GSM241484     1  0.2219     0.8626 0.864 0.000 0.000 0.000 0.136 0.000
#> GSM241485     1  0.2219     0.8626 0.864 0.000 0.000 0.000 0.136 0.000
#> GSM241486     2  0.2219     0.2747 0.000 0.864 0.000 0.000 0.136 0.000
#> GSM241487     2  0.3634     0.7228 0.356 0.644 0.000 0.000 0.000 0.000
#> GSM241488     2  0.3634     0.7228 0.356 0.644 0.000 0.000 0.000 0.000
#> GSM241489     1  0.0000     0.9087 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241490     1  0.0000     0.9087 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241491     2  0.3634     0.7228 0.356 0.644 0.000 0.000 0.000 0.000
#> GSM241492     1  0.0146     0.9053 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM241493     2  0.3634     0.7228 0.356 0.644 0.000 0.000 0.000 0.000
#> GSM241494     1  0.0000     0.9087 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.3634     0.7228 0.356 0.644 0.000 0.000 0.000 0.000
#> GSM241496     2  0.3634     0.7228 0.356 0.644 0.000 0.000 0.000 0.000
#> GSM241497     1  0.0000     0.9087 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000     0.9087 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241499     1  0.2219     0.8626 0.864 0.000 0.000 0.000 0.136 0.000
#> GSM241500     2  0.2823     0.1280 0.000 0.796 0.000 0.000 0.204 0.000
#> GSM241501     2  0.2664     0.1810 0.000 0.816 0.000 0.000 0.184 0.000
#> GSM241502     2  0.2697     0.1720 0.000 0.812 0.000 0.000 0.188 0.000
#> GSM241503     1  0.2219     0.8626 0.864 0.000 0.000 0.000 0.136 0.000
#> GSM241504     1  0.2219     0.8626 0.864 0.000 0.000 0.000 0.136 0.000
#> GSM241505     1  0.2219     0.8626 0.864 0.000 0.000 0.000 0.136 0.000
#> GSM241506     2  0.2697     0.1720 0.000 0.812 0.000 0.000 0.188 0.000
#> GSM241507     6  0.5561     0.0811 0.428 0.000 0.000 0.000 0.136 0.436
#> GSM241508     2  0.3684    -0.3833 0.000 0.628 0.000 0.000 0.372 0.000
#> GSM241509     5  0.3843     0.6787 0.000 0.452 0.000 0.000 0.548 0.000
#> GSM241510     5  0.3869     0.6023 0.000 0.500 0.000 0.000 0.500 0.000
#> GSM241511     6  0.4934     0.5043 0.256 0.000 0.000 0.000 0.112 0.632
#> GSM241512     6  0.0260     0.7787 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM241513     3  0.1901     0.8984 0.000 0.028 0.924 0.008 0.000 0.040
#> GSM241514     1  0.3050     0.6751 0.764 0.000 0.236 0.000 0.000 0.000
#> GSM241515     3  0.1901     0.8984 0.000 0.028 0.924 0.008 0.000 0.040
#> GSM241516     1  0.3050     0.6751 0.764 0.000 0.236 0.000 0.000 0.000
#> GSM241517     3  0.0000     0.9431 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241518     3  0.1814     0.9297 0.000 0.000 0.900 0.000 0.100 0.000
#> GSM241519     3  0.0000     0.9431 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241520     3  0.1814     0.9297 0.000 0.000 0.900 0.000 0.100 0.000
#> GSM241521     3  0.0547     0.9344 0.000 0.020 0.980 0.000 0.000 0.000
#> GSM241522     1  0.2996     0.6848 0.772 0.000 0.228 0.000 0.000 0.000
#> GSM241523     3  0.0547     0.9344 0.000 0.020 0.980 0.000 0.000 0.000
#> GSM241524     3  0.1814     0.9297 0.000 0.000 0.900 0.000 0.100 0.000
#> GSM241525     6  0.1918     0.7737 0.000 0.008 0.000 0.000 0.088 0.904
#> GSM241526     5  0.5998     0.6124 0.000 0.152 0.168 0.008 0.620 0.052
#> GSM241527     6  0.1918     0.7737 0.000 0.008 0.000 0.000 0.088 0.904
#> GSM241528     5  0.5998     0.6124 0.000 0.152 0.168 0.008 0.620 0.052
#> GSM241529     5  0.5998     0.6124 0.000 0.152 0.168 0.008 0.620 0.052
#> GSM241530     6  0.1918     0.7737 0.000 0.008 0.000 0.000 0.088 0.904
#> GSM241531     6  0.1257     0.7711 0.028 0.000 0.000 0.000 0.020 0.952
#> GSM241532     5  0.3563     0.7551 0.000 0.336 0.000 0.000 0.664 0.000
#> GSM241533     5  0.3563     0.7551 0.000 0.336 0.000 0.000 0.664 0.000
#> GSM241534     5  0.3563     0.7551 0.000 0.336 0.000 0.000 0.664 0.000
#> GSM241535     6  0.0260     0.7787 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM241536     6  0.1257     0.7711 0.028 0.000 0.000 0.000 0.020 0.952
#> GSM241537     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241538     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241539     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241540     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241541     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241542     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241543     3  0.0000     0.9431 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241544     3  0.1814     0.9297 0.000 0.000 0.900 0.000 0.100 0.000
#> GSM241545     3  0.0000     0.9431 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241546     3  0.1814     0.9297 0.000 0.000 0.900 0.000 0.100 0.000
#> GSM241547     3  0.0000     0.9431 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241548     3  0.1814     0.9297 0.000 0.000 0.900 0.000 0.100 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n  dose(p)  time(p) k
#> SD:hclust 98 2.39e-01 3.02e-01 2
#> SD:hclust 92 3.20e-08 6.56e-03 3
#> SD:hclust 82 2.98e-10 1.96e-05 4
#> SD:hclust 78 5.51e-11 4.05e-09 5
#> SD:hclust 86 6.60e-12 3.88e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.406           0.413       0.788         0.4981 0.502   0.502
#> 3 3 0.672           0.868       0.894         0.3193 0.695   0.463
#> 4 4 0.635           0.633       0.744         0.1148 0.941   0.825
#> 5 5 0.683           0.623       0.758         0.0688 0.855   0.548
#> 6 6 0.805           0.683       0.799         0.0422 0.932   0.697

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     1   0.998    0.18826 0.528 0.472
#> GSM241452     1   0.000    0.66305 1.000 0.000
#> GSM241453     1   0.998    0.18826 0.528 0.472
#> GSM241454     1   0.000    0.66305 1.000 0.000
#> GSM241455     1   0.997    0.19543 0.532 0.468
#> GSM241456     1   0.000    0.66305 1.000 0.000
#> GSM241457     2   0.983    0.07657 0.424 0.576
#> GSM241458     1   0.000    0.66305 1.000 0.000
#> GSM241459     2   0.983    0.07657 0.424 0.576
#> GSM241460     1   0.000    0.66305 1.000 0.000
#> GSM241461     2   0.971    0.13310 0.400 0.600
#> GSM241462     1   0.000    0.66305 1.000 0.000
#> GSM241463     1   0.997    0.19543 0.532 0.468
#> GSM241464     1   0.000    0.66305 1.000 0.000
#> GSM241465     1   0.998    0.18826 0.528 0.472
#> GSM241466     1   0.000    0.66305 1.000 0.000
#> GSM241467     1   0.000    0.66305 1.000 0.000
#> GSM241468     1   0.997    0.19543 0.532 0.468
#> GSM241469     1   0.000    0.66305 1.000 0.000
#> GSM241470     1   0.998    0.18826 0.528 0.472
#> GSM241471     1   0.998    0.18826 0.528 0.472
#> GSM241472     1   0.000    0.66305 1.000 0.000
#> GSM241473     1   0.997    0.19543 0.532 0.468
#> GSM241474     1   0.000    0.66305 1.000 0.000
#> GSM241475     1   0.997    0.19543 0.532 0.468
#> GSM241476     1   0.000    0.66305 1.000 0.000
#> GSM241477     1   0.998    0.18826 0.528 0.472
#> GSM241478     1   0.997    0.19543 0.532 0.468
#> GSM241479     1   0.000    0.66305 1.000 0.000
#> GSM241480     1   0.000    0.66305 1.000 0.000
#> GSM241481     2   0.983    0.07657 0.424 0.576
#> GSM241482     1   0.000    0.66305 1.000 0.000
#> GSM241483     2   0.978    0.10583 0.412 0.588
#> GSM241484     1   0.000    0.66305 1.000 0.000
#> GSM241485     1   0.000    0.66305 1.000 0.000
#> GSM241486     2   0.971    0.13310 0.400 0.600
#> GSM241487     2   0.983    0.07657 0.424 0.576
#> GSM241488     1   0.997    0.19543 0.532 0.468
#> GSM241489     1   0.000    0.66305 1.000 0.000
#> GSM241490     1   0.000    0.66305 1.000 0.000
#> GSM241491     1   0.998    0.18826 0.528 0.472
#> GSM241492     1   0.000    0.66305 1.000 0.000
#> GSM241493     1   0.997    0.19543 0.532 0.468
#> GSM241494     1   0.000    0.66305 1.000 0.000
#> GSM241495     1   0.998    0.18826 0.528 0.472
#> GSM241496     1   0.997    0.19543 0.532 0.468
#> GSM241497     1   0.000    0.66305 1.000 0.000
#> GSM241498     1   0.000    0.66305 1.000 0.000
#> GSM241499     1   0.000    0.66305 1.000 0.000
#> GSM241500     2   0.895    0.28788 0.312 0.688
#> GSM241501     2   0.958    0.17328 0.380 0.620
#> GSM241502     2   0.958    0.17328 0.380 0.620
#> GSM241503     1   0.000    0.66305 1.000 0.000
#> GSM241504     1   0.000    0.66305 1.000 0.000
#> GSM241505     1   0.000    0.66305 1.000 0.000
#> GSM241506     2   0.929    0.23646 0.344 0.656
#> GSM241507     1   0.000    0.66305 1.000 0.000
#> GSM241508     2   0.163    0.62540 0.024 0.976
#> GSM241509     2   0.000    0.64263 0.000 1.000
#> GSM241510     2   0.000    0.64263 0.000 1.000
#> GSM241511     1   0.952    0.12188 0.628 0.372
#> GSM241512     1   0.978    0.04642 0.588 0.412
#> GSM241513     2   0.000    0.64263 0.000 1.000
#> GSM241514     1   0.999   -0.11579 0.516 0.484
#> GSM241515     2   0.000    0.64263 0.000 1.000
#> GSM241516     2   0.998    0.16746 0.476 0.524
#> GSM241517     2   0.000    0.64263 0.000 1.000
#> GSM241518     2   0.995    0.19786 0.460 0.540
#> GSM241519     2   0.000    0.64263 0.000 1.000
#> GSM241520     2   0.998    0.17557 0.472 0.528
#> GSM241521     2   0.000    0.64263 0.000 1.000
#> GSM241522     1   0.000    0.66305 1.000 0.000
#> GSM241523     2   0.000    0.64263 0.000 1.000
#> GSM241524     1   0.988   -0.00422 0.564 0.436
#> GSM241525     1   0.973    0.06271 0.596 0.404
#> GSM241526     2   0.000    0.64263 0.000 1.000
#> GSM241527     2   0.995    0.19786 0.460 0.540
#> GSM241528     2   0.000    0.64263 0.000 1.000
#> GSM241529     2   0.000    0.64263 0.000 1.000
#> GSM241530     1   0.994   -0.05501 0.544 0.456
#> GSM241531     1   0.978    0.04642 0.588 0.412
#> GSM241532     2   0.000    0.64263 0.000 1.000
#> GSM241533     2   0.000    0.64263 0.000 1.000
#> GSM241534     2   0.000    0.64263 0.000 1.000
#> GSM241535     2   0.995    0.19786 0.460 0.540
#> GSM241536     1   0.971    0.07046 0.600 0.400
#> GSM241537     2   0.000    0.64263 0.000 1.000
#> GSM241538     2   0.995    0.19786 0.460 0.540
#> GSM241539     2   0.000    0.64263 0.000 1.000
#> GSM241540     2   0.995    0.19786 0.460 0.540
#> GSM241541     2   0.000    0.64263 0.000 1.000
#> GSM241542     2   0.995    0.19786 0.460 0.540
#> GSM241543     2   0.000    0.64263 0.000 1.000
#> GSM241544     2   0.995    0.19786 0.460 0.540
#> GSM241545     2   0.000    0.64263 0.000 1.000
#> GSM241546     2   0.995    0.19786 0.460 0.540
#> GSM241547     2   0.000    0.64263 0.000 1.000
#> GSM241548     2   0.995    0.19786 0.460 0.540

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2  0.5635      0.887 0.180 0.784 0.036
#> GSM241452     1  0.1751      0.929 0.960 0.012 0.028
#> GSM241453     2  0.5635      0.887 0.180 0.784 0.036
#> GSM241454     1  0.1751      0.929 0.960 0.012 0.028
#> GSM241455     2  0.5635      0.887 0.180 0.784 0.036
#> GSM241456     1  0.1751      0.929 0.960 0.012 0.028
#> GSM241457     2  0.1774      0.849 0.024 0.960 0.016
#> GSM241458     1  0.0424      0.920 0.992 0.000 0.008
#> GSM241459     2  0.1774      0.849 0.024 0.960 0.016
#> GSM241460     1  0.0592      0.920 0.988 0.012 0.000
#> GSM241461     2  0.1774      0.849 0.024 0.960 0.016
#> GSM241462     1  0.0424      0.920 0.992 0.000 0.008
#> GSM241463     2  0.5635      0.887 0.180 0.784 0.036
#> GSM241464     1  0.1751      0.929 0.960 0.012 0.028
#> GSM241465     2  0.5635      0.887 0.180 0.784 0.036
#> GSM241466     1  0.1751      0.929 0.960 0.012 0.028
#> GSM241467     1  0.1751      0.929 0.960 0.012 0.028
#> GSM241468     2  0.5635      0.887 0.180 0.784 0.036
#> GSM241469     1  0.1751      0.929 0.960 0.012 0.028
#> GSM241470     2  0.5635      0.887 0.180 0.784 0.036
#> GSM241471     2  0.5635      0.887 0.180 0.784 0.036
#> GSM241472     1  0.1751      0.929 0.960 0.012 0.028
#> GSM241473     2  0.5635      0.887 0.180 0.784 0.036
#> GSM241474     1  0.1751      0.929 0.960 0.012 0.028
#> GSM241475     2  0.5635      0.887 0.180 0.784 0.036
#> GSM241476     1  0.1751      0.929 0.960 0.012 0.028
#> GSM241477     2  0.5635      0.887 0.180 0.784 0.036
#> GSM241478     2  0.5635      0.887 0.180 0.784 0.036
#> GSM241479     1  0.1751      0.929 0.960 0.012 0.028
#> GSM241480     1  0.1751      0.929 0.960 0.012 0.028
#> GSM241481     2  0.1774      0.849 0.024 0.960 0.016
#> GSM241482     1  0.0000      0.921 1.000 0.000 0.000
#> GSM241483     2  0.1774      0.849 0.024 0.960 0.016
#> GSM241484     1  0.0424      0.920 0.992 0.000 0.008
#> GSM241485     1  0.0661      0.920 0.988 0.004 0.008
#> GSM241486     2  0.1774      0.849 0.024 0.960 0.016
#> GSM241487     2  0.5413      0.884 0.164 0.800 0.036
#> GSM241488     2  0.5635      0.887 0.180 0.784 0.036
#> GSM241489     1  0.1751      0.929 0.960 0.012 0.028
#> GSM241490     1  0.1751      0.929 0.960 0.012 0.028
#> GSM241491     2  0.5635      0.887 0.180 0.784 0.036
#> GSM241492     1  0.1751      0.929 0.960 0.012 0.028
#> GSM241493     2  0.5635      0.887 0.180 0.784 0.036
#> GSM241494     1  0.1751      0.929 0.960 0.012 0.028
#> GSM241495     2  0.5635      0.887 0.180 0.784 0.036
#> GSM241496     2  0.5635      0.887 0.180 0.784 0.036
#> GSM241497     1  0.1751      0.929 0.960 0.012 0.028
#> GSM241498     1  0.1751      0.929 0.960 0.012 0.028
#> GSM241499     1  0.1163      0.915 0.972 0.000 0.028
#> GSM241500     2  0.1905      0.835 0.016 0.956 0.028
#> GSM241501     2  0.1781      0.844 0.020 0.960 0.020
#> GSM241502     2  0.1919      0.847 0.024 0.956 0.020
#> GSM241503     1  0.1163      0.915 0.972 0.000 0.028
#> GSM241504     1  0.1163      0.915 0.972 0.000 0.028
#> GSM241505     1  0.1163      0.915 0.972 0.000 0.028
#> GSM241506     2  0.1919      0.847 0.024 0.956 0.020
#> GSM241507     1  0.1163      0.915 0.972 0.000 0.028
#> GSM241508     2  0.1905      0.835 0.016 0.956 0.028
#> GSM241509     2  0.1163      0.819 0.000 0.972 0.028
#> GSM241510     2  0.1163      0.819 0.000 0.972 0.028
#> GSM241511     1  0.4411      0.800 0.844 0.016 0.140
#> GSM241512     1  0.6422      0.582 0.660 0.016 0.324
#> GSM241513     3  0.2448      0.906 0.000 0.076 0.924
#> GSM241514     3  0.2096      0.901 0.052 0.004 0.944
#> GSM241515     3  0.2448      0.906 0.000 0.076 0.924
#> GSM241516     3  0.2096      0.901 0.052 0.004 0.944
#> GSM241517     3  0.4346      0.822 0.000 0.184 0.816
#> GSM241518     3  0.1765      0.905 0.040 0.004 0.956
#> GSM241519     3  0.4346      0.822 0.000 0.184 0.816
#> GSM241520     3  0.1765      0.905 0.040 0.004 0.956
#> GSM241521     2  0.6008      0.388 0.000 0.628 0.372
#> GSM241522     1  0.2356      0.905 0.928 0.000 0.072
#> GSM241523     3  0.4291      0.826 0.000 0.180 0.820
#> GSM241524     3  0.2096      0.901 0.052 0.004 0.944
#> GSM241525     1  0.5356      0.762 0.784 0.020 0.196
#> GSM241526     3  0.2711      0.903 0.000 0.088 0.912
#> GSM241527     3  0.2527      0.899 0.044 0.020 0.936
#> GSM241528     3  0.3412      0.884 0.000 0.124 0.876
#> GSM241529     3  0.3412      0.884 0.000 0.124 0.876
#> GSM241530     1  0.7069      0.177 0.508 0.020 0.472
#> GSM241531     1  0.6161      0.617 0.708 0.020 0.272
#> GSM241532     3  0.5497      0.743 0.000 0.292 0.708
#> GSM241533     3  0.5497      0.743 0.000 0.292 0.708
#> GSM241534     3  0.5497      0.743 0.000 0.292 0.708
#> GSM241535     3  0.2527      0.899 0.044 0.020 0.936
#> GSM241536     1  0.4921      0.765 0.816 0.020 0.164
#> GSM241537     3  0.2537      0.906 0.000 0.080 0.920
#> GSM241538     3  0.1919      0.906 0.024 0.020 0.956
#> GSM241539     3  0.2537      0.906 0.000 0.080 0.920
#> GSM241540     3  0.2527      0.899 0.044 0.020 0.936
#> GSM241541     3  0.2537      0.906 0.000 0.080 0.920
#> GSM241542     3  0.1919      0.906 0.024 0.020 0.956
#> GSM241543     3  0.2448      0.906 0.000 0.076 0.924
#> GSM241544     3  0.1878      0.904 0.044 0.004 0.952
#> GSM241545     3  0.2448      0.906 0.000 0.076 0.924
#> GSM241546     3  0.2096      0.901 0.052 0.004 0.944
#> GSM241547     3  0.2448      0.906 0.000 0.076 0.924
#> GSM241548     3  0.1399      0.906 0.028 0.004 0.968

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.1474      0.814 0.052 0.948 0.000 0.000
#> GSM241452     1  0.2466      0.851 0.900 0.096 0.004 0.000
#> GSM241453     2  0.1474      0.814 0.052 0.948 0.000 0.000
#> GSM241454     1  0.2466      0.851 0.900 0.096 0.004 0.000
#> GSM241455     2  0.1557      0.813 0.056 0.944 0.000 0.000
#> GSM241456     1  0.2466      0.851 0.900 0.096 0.004 0.000
#> GSM241457     2  0.4331      0.710 0.000 0.712 0.000 0.288
#> GSM241458     1  0.3402      0.780 0.832 0.000 0.004 0.164
#> GSM241459     2  0.4331      0.710 0.000 0.712 0.000 0.288
#> GSM241460     1  0.2773      0.839 0.900 0.072 0.000 0.028
#> GSM241461     2  0.4431      0.702 0.000 0.696 0.000 0.304
#> GSM241462     1  0.3402      0.780 0.832 0.000 0.004 0.164
#> GSM241463     2  0.1557      0.813 0.056 0.944 0.000 0.000
#> GSM241464     1  0.2466      0.851 0.900 0.096 0.004 0.000
#> GSM241465     2  0.1474      0.814 0.052 0.948 0.000 0.000
#> GSM241466     1  0.2466      0.851 0.900 0.096 0.004 0.000
#> GSM241467     1  0.2466      0.851 0.900 0.096 0.004 0.000
#> GSM241468     2  0.1557      0.813 0.056 0.944 0.000 0.000
#> GSM241469     1  0.2466      0.851 0.900 0.096 0.004 0.000
#> GSM241470     2  0.1474      0.814 0.052 0.948 0.000 0.000
#> GSM241471     2  0.1474      0.814 0.052 0.948 0.000 0.000
#> GSM241472     1  0.2466      0.851 0.900 0.096 0.004 0.000
#> GSM241473     2  0.1557      0.813 0.056 0.944 0.000 0.000
#> GSM241474     1  0.2466      0.851 0.900 0.096 0.004 0.000
#> GSM241475     2  0.1557      0.813 0.056 0.944 0.000 0.000
#> GSM241476     1  0.2466      0.851 0.900 0.096 0.004 0.000
#> GSM241477     2  0.1474      0.814 0.052 0.948 0.000 0.000
#> GSM241478     2  0.1557      0.813 0.056 0.944 0.000 0.000
#> GSM241479     1  0.2466      0.851 0.900 0.096 0.004 0.000
#> GSM241480     1  0.2466      0.851 0.900 0.096 0.004 0.000
#> GSM241481     2  0.4331      0.710 0.000 0.712 0.000 0.288
#> GSM241482     1  0.2973      0.789 0.856 0.000 0.000 0.144
#> GSM241483     2  0.4331      0.710 0.000 0.712 0.000 0.288
#> GSM241484     1  0.3402      0.780 0.832 0.000 0.004 0.164
#> GSM241485     1  0.3380      0.794 0.852 0.008 0.004 0.136
#> GSM241486     2  0.4431      0.702 0.000 0.696 0.000 0.304
#> GSM241487     2  0.1474      0.814 0.052 0.948 0.000 0.000
#> GSM241488     2  0.1557      0.813 0.056 0.944 0.000 0.000
#> GSM241489     1  0.2466      0.851 0.900 0.096 0.004 0.000
#> GSM241490     1  0.2466      0.851 0.900 0.096 0.004 0.000
#> GSM241491     2  0.1474      0.814 0.052 0.948 0.000 0.000
#> GSM241492     1  0.2466      0.851 0.900 0.096 0.004 0.000
#> GSM241493     2  0.1557      0.813 0.056 0.944 0.000 0.000
#> GSM241494     1  0.2466      0.851 0.900 0.096 0.004 0.000
#> GSM241495     2  0.1474      0.814 0.052 0.948 0.000 0.000
#> GSM241496     2  0.1557      0.813 0.056 0.944 0.000 0.000
#> GSM241497     1  0.2466      0.851 0.900 0.096 0.004 0.000
#> GSM241498     1  0.2466      0.851 0.900 0.096 0.004 0.000
#> GSM241499     1  0.3831      0.759 0.792 0.000 0.004 0.204
#> GSM241500     2  0.4585      0.682 0.000 0.668 0.000 0.332
#> GSM241501     2  0.4564      0.685 0.000 0.672 0.000 0.328
#> GSM241502     2  0.4564      0.685 0.000 0.672 0.000 0.328
#> GSM241503     1  0.3831      0.759 0.792 0.000 0.004 0.204
#> GSM241504     1  0.3831      0.759 0.792 0.000 0.004 0.204
#> GSM241505     1  0.3831      0.759 0.792 0.000 0.004 0.204
#> GSM241506     2  0.4585      0.682 0.000 0.668 0.000 0.332
#> GSM241507     1  0.3831      0.759 0.792 0.000 0.004 0.204
#> GSM241508     2  0.4585      0.682 0.000 0.668 0.000 0.332
#> GSM241509     2  0.4955      0.534 0.000 0.556 0.000 0.444
#> GSM241510     2  0.4967      0.520 0.000 0.548 0.000 0.452
#> GSM241511     1  0.6474      0.575 0.624 0.000 0.120 0.256
#> GSM241512     1  0.7351      0.326 0.524 0.000 0.264 0.212
#> GSM241513     3  0.3088      0.576 0.000 0.008 0.864 0.128
#> GSM241514     3  0.1706      0.587 0.036 0.000 0.948 0.016
#> GSM241515     3  0.3088      0.576 0.000 0.008 0.864 0.128
#> GSM241516     3  0.2227      0.580 0.036 0.000 0.928 0.036
#> GSM241517     3  0.5763      0.437 0.000 0.156 0.712 0.132
#> GSM241518     3  0.0524      0.603 0.004 0.000 0.988 0.008
#> GSM241519     3  0.6478      0.350 0.000 0.236 0.632 0.132
#> GSM241520     3  0.1356      0.594 0.032 0.000 0.960 0.008
#> GSM241521     3  0.6875      0.178 0.000 0.368 0.520 0.112
#> GSM241522     1  0.2586      0.785 0.900 0.004 0.092 0.004
#> GSM241523     3  0.6478      0.350 0.000 0.236 0.632 0.132
#> GSM241524     3  0.1677      0.586 0.040 0.000 0.948 0.012
#> GSM241525     1  0.6881      0.485 0.592 0.000 0.172 0.236
#> GSM241526     4  0.5657      0.111 0.000 0.024 0.436 0.540
#> GSM241527     3  0.6155     -0.030 0.052 0.000 0.536 0.412
#> GSM241528     4  0.6953      0.231 0.000 0.128 0.336 0.536
#> GSM241529     4  0.6024      0.173 0.000 0.044 0.416 0.540
#> GSM241530     4  0.7402      0.195 0.192 0.000 0.308 0.500
#> GSM241531     4  0.7200      0.221 0.220 0.000 0.228 0.552
#> GSM241532     4  0.5352      0.478 0.000 0.092 0.168 0.740
#> GSM241533     4  0.5352      0.478 0.000 0.092 0.168 0.740
#> GSM241534     4  0.5352      0.478 0.000 0.092 0.168 0.740
#> GSM241535     3  0.6155     -0.030 0.052 0.000 0.536 0.412
#> GSM241536     1  0.6474      0.575 0.624 0.000 0.120 0.256
#> GSM241537     3  0.5277      0.073 0.000 0.008 0.532 0.460
#> GSM241538     3  0.4624      0.186 0.000 0.000 0.660 0.340
#> GSM241539     3  0.5277      0.073 0.000 0.008 0.532 0.460
#> GSM241540     3  0.4624      0.186 0.000 0.000 0.660 0.340
#> GSM241541     3  0.5277      0.073 0.000 0.008 0.532 0.460
#> GSM241542     3  0.4605      0.188 0.000 0.000 0.664 0.336
#> GSM241543     3  0.2976      0.577 0.000 0.008 0.872 0.120
#> GSM241544     3  0.0188      0.604 0.004 0.000 0.996 0.000
#> GSM241545     3  0.2976      0.577 0.000 0.008 0.872 0.120
#> GSM241546     3  0.0188      0.604 0.004 0.000 0.996 0.000
#> GSM241547     3  0.2976      0.577 0.000 0.008 0.872 0.120
#> GSM241548     3  0.0188      0.604 0.004 0.000 0.996 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2  0.0162      0.996 0.004 0.996 0.000 0.000 0.000
#> GSM241452     1  0.2280      0.791 0.880 0.120 0.000 0.000 0.000
#> GSM241453     2  0.0162      0.996 0.004 0.996 0.000 0.000 0.000
#> GSM241454     1  0.2230      0.789 0.884 0.116 0.000 0.000 0.000
#> GSM241455     2  0.0290      0.996 0.008 0.992 0.000 0.000 0.000
#> GSM241456     1  0.2280      0.791 0.880 0.120 0.000 0.000 0.000
#> GSM241457     5  0.4305      0.310 0.000 0.488 0.000 0.000 0.512
#> GSM241458     1  0.3999      0.486 0.656 0.000 0.000 0.344 0.000
#> GSM241459     5  0.4305      0.310 0.000 0.488 0.000 0.000 0.512
#> GSM241460     1  0.1043      0.744 0.960 0.040 0.000 0.000 0.000
#> GSM241461     5  0.4283      0.363 0.000 0.456 0.000 0.000 0.544
#> GSM241462     1  0.3999      0.486 0.656 0.000 0.000 0.344 0.000
#> GSM241463     2  0.0451      0.993 0.008 0.988 0.000 0.004 0.000
#> GSM241464     1  0.2439      0.788 0.876 0.120 0.000 0.004 0.000
#> GSM241465     2  0.0162      0.996 0.004 0.996 0.000 0.000 0.000
#> GSM241466     1  0.2280      0.791 0.880 0.120 0.000 0.000 0.000
#> GSM241467     1  0.2280      0.791 0.880 0.120 0.000 0.000 0.000
#> GSM241468     2  0.0290      0.996 0.008 0.992 0.000 0.000 0.000
#> GSM241469     1  0.2280      0.791 0.880 0.120 0.000 0.000 0.000
#> GSM241470     2  0.0162      0.996 0.004 0.996 0.000 0.000 0.000
#> GSM241471     2  0.0162      0.996 0.004 0.996 0.000 0.000 0.000
#> GSM241472     1  0.2280      0.791 0.880 0.120 0.000 0.000 0.000
#> GSM241473     2  0.0290      0.996 0.008 0.992 0.000 0.000 0.000
#> GSM241474     1  0.2280      0.791 0.880 0.120 0.000 0.000 0.000
#> GSM241475     2  0.0290      0.996 0.008 0.992 0.000 0.000 0.000
#> GSM241476     1  0.2280      0.791 0.880 0.120 0.000 0.000 0.000
#> GSM241477     2  0.0162      0.996 0.004 0.996 0.000 0.000 0.000
#> GSM241478     2  0.0290      0.996 0.008 0.992 0.000 0.000 0.000
#> GSM241479     1  0.2280      0.791 0.880 0.120 0.000 0.000 0.000
#> GSM241480     1  0.2230      0.789 0.884 0.116 0.000 0.000 0.000
#> GSM241481     5  0.4305      0.310 0.000 0.488 0.000 0.000 0.512
#> GSM241482     1  0.3949      0.498 0.668 0.000 0.000 0.332 0.000
#> GSM241483     5  0.4304      0.317 0.000 0.484 0.000 0.000 0.516
#> GSM241484     1  0.3999      0.486 0.656 0.000 0.000 0.344 0.000
#> GSM241485     1  0.3752      0.530 0.708 0.000 0.000 0.292 0.000
#> GSM241486     5  0.4283      0.363 0.000 0.456 0.000 0.000 0.544
#> GSM241487     2  0.0162      0.996 0.004 0.996 0.000 0.000 0.000
#> GSM241488     2  0.0290      0.996 0.008 0.992 0.000 0.000 0.000
#> GSM241489     1  0.2280      0.791 0.880 0.120 0.000 0.000 0.000
#> GSM241490     1  0.2280      0.791 0.880 0.120 0.000 0.000 0.000
#> GSM241491     2  0.0162      0.996 0.004 0.996 0.000 0.000 0.000
#> GSM241492     1  0.2439      0.788 0.876 0.120 0.000 0.004 0.000
#> GSM241493     2  0.0290      0.996 0.008 0.992 0.000 0.000 0.000
#> GSM241494     1  0.2280      0.791 0.880 0.120 0.000 0.000 0.000
#> GSM241495     2  0.0162      0.996 0.004 0.996 0.000 0.000 0.000
#> GSM241496     2  0.0290      0.996 0.008 0.992 0.000 0.000 0.000
#> GSM241497     1  0.2280      0.791 0.880 0.120 0.000 0.000 0.000
#> GSM241498     1  0.2280      0.791 0.880 0.120 0.000 0.000 0.000
#> GSM241499     1  0.4192      0.407 0.596 0.000 0.000 0.404 0.000
#> GSM241500     5  0.4249      0.390 0.000 0.432 0.000 0.000 0.568
#> GSM241501     5  0.4256      0.387 0.000 0.436 0.000 0.000 0.564
#> GSM241502     5  0.4256      0.387 0.000 0.436 0.000 0.000 0.564
#> GSM241503     1  0.4192      0.407 0.596 0.000 0.000 0.404 0.000
#> GSM241504     1  0.4192      0.407 0.596 0.000 0.000 0.404 0.000
#> GSM241505     1  0.4192      0.407 0.596 0.000 0.000 0.404 0.000
#> GSM241506     5  0.4249      0.390 0.000 0.432 0.000 0.000 0.568
#> GSM241507     1  0.4192      0.407 0.596 0.000 0.000 0.404 0.000
#> GSM241508     5  0.4249      0.390 0.000 0.432 0.000 0.000 0.568
#> GSM241509     5  0.3086      0.486 0.000 0.180 0.000 0.004 0.816
#> GSM241510     5  0.3318      0.485 0.000 0.180 0.000 0.012 0.808
#> GSM241511     4  0.4196      0.204 0.356 0.000 0.004 0.640 0.000
#> GSM241512     4  0.5382      0.481 0.260 0.000 0.100 0.640 0.000
#> GSM241513     3  0.1732      0.818 0.000 0.000 0.920 0.000 0.080
#> GSM241514     3  0.2597      0.797 0.000 0.004 0.872 0.120 0.004
#> GSM241515     3  0.1732      0.818 0.000 0.000 0.920 0.000 0.080
#> GSM241516     3  0.3817      0.619 0.000 0.004 0.740 0.252 0.004
#> GSM241517     3  0.3535      0.778 0.000 0.088 0.832 0.000 0.080
#> GSM241518     3  0.2339      0.812 0.000 0.004 0.892 0.100 0.004
#> GSM241519     3  0.3898      0.756 0.000 0.116 0.804 0.000 0.080
#> GSM241520     3  0.2339      0.812 0.000 0.004 0.892 0.100 0.004
#> GSM241521     3  0.4444      0.688 0.000 0.180 0.748 0.000 0.072
#> GSM241522     1  0.4986      0.554 0.744 0.024 0.144 0.088 0.000
#> GSM241523     3  0.3849      0.760 0.000 0.112 0.808 0.000 0.080
#> GSM241524     3  0.2445      0.808 0.000 0.004 0.884 0.108 0.004
#> GSM241525     4  0.5254      0.479 0.272 0.000 0.084 0.644 0.000
#> GSM241526     5  0.6421     -0.140 0.000 0.004 0.180 0.300 0.516
#> GSM241527     4  0.5879      0.560 0.004 0.000 0.176 0.620 0.200
#> GSM241528     5  0.6899     -0.119 0.000 0.040 0.144 0.300 0.516
#> GSM241529     5  0.6505     -0.137 0.000 0.008 0.176 0.300 0.516
#> GSM241530     4  0.5082      0.584 0.008 0.000 0.108 0.716 0.168
#> GSM241531     4  0.3935      0.559 0.140 0.000 0.016 0.808 0.036
#> GSM241532     5  0.1173      0.329 0.000 0.004 0.012 0.020 0.964
#> GSM241533     5  0.3511      0.181 0.000 0.004 0.012 0.184 0.800
#> GSM241534     5  0.2166      0.293 0.000 0.004 0.012 0.072 0.912
#> GSM241535     4  0.5880      0.553 0.000 0.000 0.172 0.600 0.228
#> GSM241536     4  0.3861      0.379 0.284 0.000 0.004 0.712 0.000
#> GSM241537     5  0.6742     -0.248 0.000 0.000 0.288 0.300 0.412
#> GSM241538     4  0.6402      0.465 0.000 0.000 0.276 0.508 0.216
#> GSM241539     5  0.6742     -0.248 0.000 0.000 0.288 0.300 0.412
#> GSM241540     4  0.6371      0.474 0.000 0.000 0.268 0.516 0.216
#> GSM241541     5  0.6742     -0.241 0.000 0.000 0.300 0.288 0.412
#> GSM241542     4  0.6445      0.448 0.000 0.000 0.288 0.496 0.216
#> GSM241543     3  0.2130      0.817 0.000 0.000 0.908 0.012 0.080
#> GSM241544     3  0.2439      0.806 0.000 0.004 0.876 0.120 0.000
#> GSM241545     3  0.2130      0.817 0.000 0.000 0.908 0.012 0.080
#> GSM241546     3  0.2439      0.806 0.000 0.004 0.876 0.120 0.000
#> GSM241547     3  0.2130      0.817 0.000 0.000 0.908 0.012 0.080
#> GSM241548     3  0.2497      0.810 0.000 0.004 0.880 0.112 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM241451     2  0.0937    0.99855 0.040 0.960 0.000 0.000 0.000 0.000
#> GSM241452     1  0.0547    0.84078 0.980 0.020 0.000 0.000 0.000 0.000
#> GSM241453     2  0.0937    0.99855 0.040 0.960 0.000 0.000 0.000 0.000
#> GSM241454     1  0.0547    0.84078 0.980 0.020 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0937    0.99855 0.040 0.960 0.000 0.000 0.000 0.000
#> GSM241456     1  0.0547    0.84078 0.980 0.020 0.000 0.000 0.000 0.000
#> GSM241457     5  0.3482    0.81840 0.000 0.316 0.000 0.000 0.684 0.000
#> GSM241458     1  0.3867    0.00319 0.512 0.000 0.000 0.000 0.000 0.488
#> GSM241459     5  0.3482    0.81840 0.000 0.316 0.000 0.000 0.684 0.000
#> GSM241460     1  0.0858    0.79336 0.968 0.000 0.000 0.004 0.000 0.028
#> GSM241461     5  0.3288    0.84691 0.000 0.276 0.000 0.000 0.724 0.000
#> GSM241462     1  0.3867    0.00319 0.512 0.000 0.000 0.000 0.000 0.488
#> GSM241463     2  0.1340    0.98641 0.040 0.948 0.000 0.004 0.008 0.000
#> GSM241464     1  0.1210    0.82961 0.960 0.020 0.000 0.008 0.008 0.004
#> GSM241465     2  0.0937    0.99855 0.040 0.960 0.000 0.000 0.000 0.000
#> GSM241466     1  0.0547    0.84078 0.980 0.020 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0692    0.83996 0.976 0.020 0.000 0.004 0.000 0.000
#> GSM241468     2  0.0937    0.99855 0.040 0.960 0.000 0.000 0.000 0.000
#> GSM241469     1  0.0547    0.84078 0.980 0.020 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0937    0.99855 0.040 0.960 0.000 0.000 0.000 0.000
#> GSM241471     2  0.0937    0.99855 0.040 0.960 0.000 0.000 0.000 0.000
#> GSM241472     1  0.0692    0.83996 0.976 0.020 0.000 0.004 0.000 0.000
#> GSM241473     2  0.0937    0.99855 0.040 0.960 0.000 0.000 0.000 0.000
#> GSM241474     1  0.0692    0.83996 0.976 0.020 0.000 0.004 0.000 0.000
#> GSM241475     2  0.0937    0.99855 0.040 0.960 0.000 0.000 0.000 0.000
#> GSM241476     1  0.0547    0.84078 0.980 0.020 0.000 0.000 0.000 0.000
#> GSM241477     2  0.0937    0.99855 0.040 0.960 0.000 0.000 0.000 0.000
#> GSM241478     2  0.0937    0.99855 0.040 0.960 0.000 0.000 0.000 0.000
#> GSM241479     1  0.0547    0.84078 0.980 0.020 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0547    0.84078 0.980 0.020 0.000 0.000 0.000 0.000
#> GSM241481     5  0.3482    0.81840 0.000 0.316 0.000 0.000 0.684 0.000
#> GSM241482     1  0.3867    0.00319 0.512 0.000 0.000 0.000 0.000 0.488
#> GSM241483     5  0.3482    0.81840 0.000 0.316 0.000 0.000 0.684 0.000
#> GSM241484     1  0.3867    0.00319 0.512 0.000 0.000 0.000 0.000 0.488
#> GSM241485     1  0.3823    0.13401 0.564 0.000 0.000 0.000 0.000 0.436
#> GSM241486     5  0.3288    0.84691 0.000 0.276 0.000 0.000 0.724 0.000
#> GSM241487     2  0.0937    0.99855 0.040 0.960 0.000 0.000 0.000 0.000
#> GSM241488     2  0.0937    0.99855 0.040 0.960 0.000 0.000 0.000 0.000
#> GSM241489     1  0.0692    0.83996 0.976 0.020 0.000 0.004 0.000 0.000
#> GSM241490     1  0.0547    0.84078 0.980 0.020 0.000 0.000 0.000 0.000
#> GSM241491     2  0.1196    0.98973 0.040 0.952 0.000 0.000 0.008 0.000
#> GSM241492     1  0.1210    0.82961 0.960 0.020 0.000 0.008 0.008 0.004
#> GSM241493     2  0.0937    0.99855 0.040 0.960 0.000 0.000 0.000 0.000
#> GSM241494     1  0.0692    0.83996 0.976 0.020 0.000 0.004 0.000 0.000
#> GSM241495     2  0.0937    0.99855 0.040 0.960 0.000 0.000 0.000 0.000
#> GSM241496     2  0.0937    0.99855 0.040 0.960 0.000 0.000 0.000 0.000
#> GSM241497     1  0.0547    0.84078 0.980 0.020 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0547    0.84078 0.980 0.020 0.000 0.000 0.000 0.000
#> GSM241499     6  0.3737    0.29879 0.392 0.000 0.000 0.000 0.000 0.608
#> GSM241500     5  0.2883    0.83496 0.000 0.212 0.000 0.000 0.788 0.000
#> GSM241501     5  0.3126    0.84880 0.000 0.248 0.000 0.000 0.752 0.000
#> GSM241502     5  0.3126    0.84880 0.000 0.248 0.000 0.000 0.752 0.000
#> GSM241503     6  0.3737    0.29879 0.392 0.000 0.000 0.000 0.000 0.608
#> GSM241504     6  0.3737    0.29879 0.392 0.000 0.000 0.000 0.000 0.608
#> GSM241505     6  0.3737    0.29879 0.392 0.000 0.000 0.000 0.000 0.608
#> GSM241506     5  0.2912    0.83728 0.000 0.216 0.000 0.000 0.784 0.000
#> GSM241507     6  0.3737    0.29879 0.392 0.000 0.000 0.000 0.000 0.608
#> GSM241508     5  0.2883    0.83496 0.000 0.212 0.000 0.000 0.788 0.000
#> GSM241509     5  0.3805    0.56529 0.000 0.040 0.000 0.136 0.796 0.028
#> GSM241510     5  0.3883    0.55703 0.000 0.040 0.000 0.144 0.788 0.028
#> GSM241511     6  0.2170    0.49796 0.100 0.000 0.000 0.000 0.012 0.888
#> GSM241512     6  0.5973    0.38254 0.056 0.024 0.088 0.052 0.080 0.700
#> GSM241513     3  0.4630    0.82702 0.000 0.012 0.752 0.124 0.088 0.024
#> GSM241514     3  0.0622    0.80906 0.000 0.000 0.980 0.008 0.000 0.012
#> GSM241515     3  0.4630    0.82702 0.000 0.012 0.752 0.124 0.088 0.024
#> GSM241516     3  0.4248    0.52725 0.000 0.000 0.752 0.020 0.060 0.168
#> GSM241517     3  0.5027    0.82185 0.000 0.032 0.732 0.124 0.088 0.024
#> GSM241518     3  0.0508    0.81423 0.000 0.000 0.984 0.004 0.000 0.012
#> GSM241519     3  0.5185    0.81799 0.000 0.044 0.724 0.120 0.088 0.024
#> GSM241520     3  0.0363    0.81278 0.000 0.000 0.988 0.000 0.000 0.012
#> GSM241521     3  0.5225    0.81473 0.000 0.052 0.724 0.112 0.088 0.024
#> GSM241522     1  0.3903    0.43987 0.680 0.004 0.304 0.000 0.000 0.012
#> GSM241523     3  0.5185    0.81799 0.000 0.044 0.724 0.120 0.088 0.024
#> GSM241524     3  0.0508    0.81104 0.000 0.000 0.984 0.004 0.000 0.012
#> GSM241525     6  0.7758    0.24300 0.160 0.024 0.072 0.112 0.104 0.528
#> GSM241526     4  0.5147    0.64794 0.000 0.024 0.040 0.708 0.176 0.052
#> GSM241527     6  0.7169   -0.18814 0.000 0.024 0.092 0.324 0.116 0.444
#> GSM241528     4  0.5147    0.64794 0.000 0.024 0.040 0.708 0.176 0.052
#> GSM241529     4  0.5147    0.64794 0.000 0.024 0.040 0.708 0.176 0.052
#> GSM241530     6  0.7014   -0.13323 0.000 0.024 0.080 0.304 0.116 0.476
#> GSM241531     6  0.3317    0.40062 0.012 0.000 0.000 0.072 0.080 0.836
#> GSM241532     5  0.4579    0.02745 0.000 0.008 0.000 0.380 0.584 0.028
#> GSM241533     4  0.4607    0.40752 0.000 0.008 0.000 0.572 0.392 0.028
#> GSM241534     4  0.4697    0.23730 0.000 0.008 0.000 0.500 0.464 0.028
#> GSM241535     6  0.6839   -0.30589 0.000 0.024 0.052 0.400 0.116 0.408
#> GSM241536     6  0.2326    0.47290 0.060 0.000 0.000 0.028 0.012 0.900
#> GSM241537     4  0.1921    0.65061 0.000 0.000 0.032 0.916 0.000 0.052
#> GSM241538     4  0.6191    0.41575 0.000 0.000 0.116 0.556 0.068 0.260
#> GSM241539     4  0.1921    0.65061 0.000 0.000 0.032 0.916 0.000 0.052
#> GSM241540     4  0.6332    0.39498 0.000 0.000 0.120 0.540 0.076 0.264
#> GSM241541     4  0.1408    0.64513 0.000 0.000 0.036 0.944 0.000 0.020
#> GSM241542     4  0.6156    0.41795 0.000 0.000 0.112 0.560 0.068 0.260
#> GSM241543     3  0.4975    0.82249 0.000 0.008 0.720 0.148 0.088 0.036
#> GSM241544     3  0.1485    0.80539 0.000 0.000 0.944 0.028 0.004 0.024
#> GSM241545     3  0.4975    0.82249 0.000 0.008 0.720 0.148 0.088 0.036
#> GSM241546     3  0.1485    0.80539 0.000 0.000 0.944 0.028 0.004 0.024
#> GSM241547     3  0.4975    0.82249 0.000 0.008 0.720 0.148 0.088 0.036
#> GSM241548     3  0.1552    0.80683 0.000 0.000 0.940 0.036 0.004 0.020

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n  dose(p)  time(p) k
#> SD:kmeans 51 7.00e-08 4.92e-01 2
#> SD:kmeans 96 2.11e-10 9.85e-02 3
#> SD:kmeans 76 1.59e-06 1.26e-02 4
#> SD:kmeans 60 9.57e-12 1.95e-03 5
#> SD:kmeans 73 1.15e-13 2.91e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.964       0.970         0.5054 0.495   0.495
#> 3 3 0.985           0.937       0.976         0.3310 0.713   0.482
#> 4 4 0.900           0.739       0.810         0.1096 0.890   0.681
#> 5 5 0.898           0.811       0.909         0.0671 0.882   0.592
#> 6 6 0.910           0.837       0.906         0.0504 0.922   0.648

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     2   0.358      0.962 0.068 0.932
#> GSM241452     1   0.000      0.970 1.000 0.000
#> GSM241453     2   0.358      0.962 0.068 0.932
#> GSM241454     1   0.000      0.970 1.000 0.000
#> GSM241455     2   0.358      0.962 0.068 0.932
#> GSM241456     1   0.000      0.970 1.000 0.000
#> GSM241457     2   0.358      0.962 0.068 0.932
#> GSM241458     1   0.000      0.970 1.000 0.000
#> GSM241459     2   0.358      0.962 0.068 0.932
#> GSM241460     1   0.000      0.970 1.000 0.000
#> GSM241461     2   0.358      0.962 0.068 0.932
#> GSM241462     1   0.000      0.970 1.000 0.000
#> GSM241463     2   0.358      0.962 0.068 0.932
#> GSM241464     1   0.000      0.970 1.000 0.000
#> GSM241465     2   0.358      0.962 0.068 0.932
#> GSM241466     1   0.000      0.970 1.000 0.000
#> GSM241467     1   0.000      0.970 1.000 0.000
#> GSM241468     2   0.358      0.962 0.068 0.932
#> GSM241469     1   0.000      0.970 1.000 0.000
#> GSM241470     2   0.358      0.962 0.068 0.932
#> GSM241471     2   0.358      0.962 0.068 0.932
#> GSM241472     1   0.000      0.970 1.000 0.000
#> GSM241473     2   0.358      0.962 0.068 0.932
#> GSM241474     1   0.000      0.970 1.000 0.000
#> GSM241475     2   0.358      0.962 0.068 0.932
#> GSM241476     1   0.000      0.970 1.000 0.000
#> GSM241477     2   0.358      0.962 0.068 0.932
#> GSM241478     2   0.358      0.962 0.068 0.932
#> GSM241479     1   0.000      0.970 1.000 0.000
#> GSM241480     1   0.000      0.970 1.000 0.000
#> GSM241481     2   0.358      0.962 0.068 0.932
#> GSM241482     1   0.000      0.970 1.000 0.000
#> GSM241483     2   0.358      0.962 0.068 0.932
#> GSM241484     1   0.000      0.970 1.000 0.000
#> GSM241485     1   0.000      0.970 1.000 0.000
#> GSM241486     2   0.358      0.962 0.068 0.932
#> GSM241487     2   0.358      0.962 0.068 0.932
#> GSM241488     2   0.358      0.962 0.068 0.932
#> GSM241489     1   0.000      0.970 1.000 0.000
#> GSM241490     1   0.000      0.970 1.000 0.000
#> GSM241491     2   0.358      0.962 0.068 0.932
#> GSM241492     1   0.000      0.970 1.000 0.000
#> GSM241493     2   0.358      0.962 0.068 0.932
#> GSM241494     1   0.000      0.970 1.000 0.000
#> GSM241495     2   0.358      0.962 0.068 0.932
#> GSM241496     2   0.358      0.962 0.068 0.932
#> GSM241497     1   0.000      0.970 1.000 0.000
#> GSM241498     1   0.000      0.970 1.000 0.000
#> GSM241499     1   0.000      0.970 1.000 0.000
#> GSM241500     2   0.000      0.964 0.000 1.000
#> GSM241501     2   0.000      0.964 0.000 1.000
#> GSM241502     2   0.000      0.964 0.000 1.000
#> GSM241503     1   0.000      0.970 1.000 0.000
#> GSM241504     1   0.000      0.970 1.000 0.000
#> GSM241505     1   0.000      0.970 1.000 0.000
#> GSM241506     2   0.000      0.964 0.000 1.000
#> GSM241507     1   0.000      0.970 1.000 0.000
#> GSM241508     2   0.000      0.964 0.000 1.000
#> GSM241509     2   0.000      0.964 0.000 1.000
#> GSM241510     2   0.000      0.964 0.000 1.000
#> GSM241511     1   0.358      0.956 0.932 0.068
#> GSM241512     1   0.358      0.956 0.932 0.068
#> GSM241513     2   0.000      0.964 0.000 1.000
#> GSM241514     1   0.358      0.956 0.932 0.068
#> GSM241515     2   0.000      0.964 0.000 1.000
#> GSM241516     1   0.358      0.956 0.932 0.068
#> GSM241517     2   0.000      0.964 0.000 1.000
#> GSM241518     1   0.358      0.956 0.932 0.068
#> GSM241519     2   0.000      0.964 0.000 1.000
#> GSM241520     1   0.358      0.956 0.932 0.068
#> GSM241521     2   0.000      0.964 0.000 1.000
#> GSM241522     1   0.327      0.958 0.940 0.060
#> GSM241523     2   0.000      0.964 0.000 1.000
#> GSM241524     1   0.358      0.956 0.932 0.068
#> GSM241525     1   0.358      0.956 0.932 0.068
#> GSM241526     2   0.000      0.964 0.000 1.000
#> GSM241527     1   0.358      0.956 0.932 0.068
#> GSM241528     2   0.000      0.964 0.000 1.000
#> GSM241529     2   0.000      0.964 0.000 1.000
#> GSM241530     1   0.358      0.956 0.932 0.068
#> GSM241531     1   0.358      0.956 0.932 0.068
#> GSM241532     2   0.000      0.964 0.000 1.000
#> GSM241533     2   0.000      0.964 0.000 1.000
#> GSM241534     2   0.000      0.964 0.000 1.000
#> GSM241535     1   0.358      0.956 0.932 0.068
#> GSM241536     1   0.358      0.956 0.932 0.068
#> GSM241537     2   0.000      0.964 0.000 1.000
#> GSM241538     1   0.358      0.956 0.932 0.068
#> GSM241539     2   0.000      0.964 0.000 1.000
#> GSM241540     1   0.358      0.956 0.932 0.068
#> GSM241541     2   0.000      0.964 0.000 1.000
#> GSM241542     1   0.358      0.956 0.932 0.068
#> GSM241543     2   0.000      0.964 0.000 1.000
#> GSM241544     1   0.358      0.956 0.932 0.068
#> GSM241545     2   0.000      0.964 0.000 1.000
#> GSM241546     1   0.358      0.956 0.932 0.068
#> GSM241547     2   0.000      0.964 0.000 1.000
#> GSM241548     1   0.358      0.956 0.932 0.068

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241452     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241453     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241454     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241455     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241456     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241457     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241458     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241459     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241460     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241461     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241462     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241463     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241464     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241465     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241466     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241467     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241468     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241469     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241470     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241471     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241472     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241473     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241474     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241475     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241476     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241477     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241478     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241479     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241480     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241481     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241482     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241483     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241484     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241485     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241486     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241487     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241488     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241489     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241490     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241491     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241492     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241493     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241494     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241495     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241496     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241497     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241498     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241499     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241500     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241501     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241502     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241503     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241504     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241505     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241506     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241507     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241508     2  0.0000     0.9874 0.000 1.000 0.000
#> GSM241509     2  0.5882     0.4432 0.000 0.652 0.348
#> GSM241510     3  0.6045     0.3727 0.000 0.380 0.620
#> GSM241511     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241512     3  0.6252     0.1910 0.444 0.000 0.556
#> GSM241513     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241514     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241515     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241516     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241517     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241518     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241519     3  0.0237     0.9465 0.000 0.004 0.996
#> GSM241520     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241521     3  0.6302     0.0854 0.000 0.480 0.520
#> GSM241522     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241523     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241524     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241525     1  0.2625     0.8978 0.916 0.000 0.084
#> GSM241526     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241527     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241528     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241529     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241530     3  0.5363     0.5993 0.276 0.000 0.724
#> GSM241531     1  0.5785     0.4856 0.668 0.000 0.332
#> GSM241532     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241533     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241534     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241535     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241536     1  0.0000     0.9868 1.000 0.000 0.000
#> GSM241537     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241538     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241539     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241540     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241541     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241542     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241543     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241544     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241545     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241546     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241547     3  0.0000     0.9499 0.000 0.000 1.000
#> GSM241548     3  0.0000     0.9499 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.0000   0.966340 0.000 1.000 0.000 0.000
#> GSM241452     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241453     2  0.0000   0.966340 0.000 1.000 0.000 0.000
#> GSM241454     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241455     2  0.0000   0.966340 0.000 1.000 0.000 0.000
#> GSM241456     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241457     2  0.1867   0.945045 0.000 0.928 0.000 0.072
#> GSM241458     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241459     2  0.1867   0.945045 0.000 0.928 0.000 0.072
#> GSM241460     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241461     2  0.1867   0.945045 0.000 0.928 0.000 0.072
#> GSM241462     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241463     2  0.0000   0.966340 0.000 1.000 0.000 0.000
#> GSM241464     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241465     2  0.0000   0.966340 0.000 1.000 0.000 0.000
#> GSM241466     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241467     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241468     2  0.0000   0.966340 0.000 1.000 0.000 0.000
#> GSM241469     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241470     2  0.0000   0.966340 0.000 1.000 0.000 0.000
#> GSM241471     2  0.0000   0.966340 0.000 1.000 0.000 0.000
#> GSM241472     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241473     2  0.0000   0.966340 0.000 1.000 0.000 0.000
#> GSM241474     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241475     2  0.0000   0.966340 0.000 1.000 0.000 0.000
#> GSM241476     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241477     2  0.0000   0.966340 0.000 1.000 0.000 0.000
#> GSM241478     2  0.0000   0.966340 0.000 1.000 0.000 0.000
#> GSM241479     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241480     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241481     2  0.1867   0.945045 0.000 0.928 0.000 0.072
#> GSM241482     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241483     2  0.1867   0.945045 0.000 0.928 0.000 0.072
#> GSM241484     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241485     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241486     2  0.1867   0.945045 0.000 0.928 0.000 0.072
#> GSM241487     2  0.0000   0.966340 0.000 1.000 0.000 0.000
#> GSM241488     2  0.0000   0.966340 0.000 1.000 0.000 0.000
#> GSM241489     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241490     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241491     2  0.0000   0.966340 0.000 1.000 0.000 0.000
#> GSM241492     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241493     2  0.0000   0.966340 0.000 1.000 0.000 0.000
#> GSM241494     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241495     2  0.0000   0.966340 0.000 1.000 0.000 0.000
#> GSM241496     2  0.0000   0.966340 0.000 1.000 0.000 0.000
#> GSM241497     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241498     1  0.0000   0.979453 1.000 0.000 0.000 0.000
#> GSM241499     1  0.0336   0.974109 0.992 0.000 0.008 0.000
#> GSM241500     2  0.2868   0.894714 0.000 0.864 0.000 0.136
#> GSM241501     2  0.2011   0.940920 0.000 0.920 0.000 0.080
#> GSM241502     2  0.2011   0.940920 0.000 0.920 0.000 0.080
#> GSM241503     1  0.0336   0.974109 0.992 0.000 0.008 0.000
#> GSM241504     1  0.0336   0.974109 0.992 0.000 0.008 0.000
#> GSM241505     1  0.0336   0.974109 0.992 0.000 0.008 0.000
#> GSM241506     2  0.2868   0.894714 0.000 0.864 0.000 0.136
#> GSM241507     1  0.0336   0.974109 0.992 0.000 0.008 0.000
#> GSM241508     2  0.2921   0.890461 0.000 0.860 0.000 0.140
#> GSM241509     4  0.6520   0.470962 0.000 0.084 0.364 0.552
#> GSM241510     4  0.4948   0.505242 0.000 0.000 0.440 0.560
#> GSM241511     3  0.4996   0.000763 0.484 0.000 0.516 0.000
#> GSM241512     3  0.0336   0.529242 0.008 0.000 0.992 0.000
#> GSM241513     4  0.2011   0.574382 0.000 0.000 0.080 0.920
#> GSM241514     3  0.4948   0.440520 0.000 0.000 0.560 0.440
#> GSM241515     4  0.2011   0.574382 0.000 0.000 0.080 0.920
#> GSM241516     3  0.4916   0.446076 0.000 0.000 0.576 0.424
#> GSM241517     4  0.2224   0.581227 0.000 0.032 0.040 0.928
#> GSM241518     3  0.4961   0.437507 0.000 0.000 0.552 0.448
#> GSM241519     4  0.2224   0.581227 0.000 0.032 0.040 0.928
#> GSM241520     3  0.4961   0.437507 0.000 0.000 0.552 0.448
#> GSM241521     4  0.2227   0.579200 0.000 0.036 0.036 0.928
#> GSM241522     1  0.5512  -0.027777 0.496 0.000 0.488 0.016
#> GSM241523     4  0.2224   0.581227 0.000 0.032 0.040 0.928
#> GSM241524     3  0.4948   0.440520 0.000 0.000 0.560 0.440
#> GSM241525     3  0.1792   0.501710 0.068 0.000 0.932 0.000
#> GSM241526     4  0.4948   0.505242 0.000 0.000 0.440 0.560
#> GSM241527     3  0.0000   0.529421 0.000 0.000 1.000 0.000
#> GSM241528     4  0.4948   0.505242 0.000 0.000 0.440 0.560
#> GSM241529     4  0.4948   0.505242 0.000 0.000 0.440 0.560
#> GSM241530     3  0.1211   0.520332 0.040 0.000 0.960 0.000
#> GSM241531     3  0.1211   0.520332 0.040 0.000 0.960 0.000
#> GSM241532     4  0.4948   0.505242 0.000 0.000 0.440 0.560
#> GSM241533     4  0.4948   0.505242 0.000 0.000 0.440 0.560
#> GSM241534     4  0.4948   0.505242 0.000 0.000 0.440 0.560
#> GSM241535     3  0.0000   0.529421 0.000 0.000 1.000 0.000
#> GSM241536     3  0.3569   0.454653 0.196 0.000 0.804 0.000
#> GSM241537     3  0.4994  -0.475691 0.000 0.000 0.520 0.480
#> GSM241538     3  0.0336   0.525198 0.000 0.000 0.992 0.008
#> GSM241539     3  0.4994  -0.475691 0.000 0.000 0.520 0.480
#> GSM241540     3  0.0000   0.529421 0.000 0.000 1.000 0.000
#> GSM241541     3  0.4994  -0.475691 0.000 0.000 0.520 0.480
#> GSM241542     3  0.0336   0.525198 0.000 0.000 0.992 0.008
#> GSM241543     4  0.2011   0.574382 0.000 0.000 0.080 0.920
#> GSM241544     3  0.4961   0.437507 0.000 0.000 0.552 0.448
#> GSM241545     4  0.2011   0.574382 0.000 0.000 0.080 0.920
#> GSM241546     3  0.4961   0.437507 0.000 0.000 0.552 0.448
#> GSM241547     4  0.2011   0.574382 0.000 0.000 0.080 0.920
#> GSM241548     3  0.4961   0.437507 0.000 0.000 0.552 0.448

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241452     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241454     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241456     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000
#> GSM241457     5  0.3109      0.796 0.000 0.200 0.000 0.000 0.800
#> GSM241458     1  0.1732      0.869 0.920 0.000 0.000 0.080 0.000
#> GSM241459     5  0.3109      0.796 0.000 0.200 0.000 0.000 0.800
#> GSM241460     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000
#> GSM241461     5  0.1908      0.871 0.000 0.092 0.000 0.000 0.908
#> GSM241462     1  0.1965      0.860 0.904 0.000 0.000 0.096 0.000
#> GSM241463     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241464     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000
#> GSM241465     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241466     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241469     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241471     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241472     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241474     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241476     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241478     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241479     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000
#> GSM241481     5  0.3109      0.796 0.000 0.200 0.000 0.000 0.800
#> GSM241482     1  0.0703      0.895 0.976 0.000 0.000 0.024 0.000
#> GSM241483     5  0.2561      0.840 0.000 0.144 0.000 0.000 0.856
#> GSM241484     1  0.1908      0.862 0.908 0.000 0.000 0.092 0.000
#> GSM241485     1  0.1908      0.862 0.908 0.000 0.000 0.092 0.000
#> GSM241486     5  0.1908      0.871 0.000 0.092 0.000 0.000 0.908
#> GSM241487     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241488     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241489     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000
#> GSM241491     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241492     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000
#> GSM241493     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241494     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241496     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241497     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000
#> GSM241499     1  0.4273      0.498 0.552 0.000 0.000 0.448 0.000
#> GSM241500     5  0.0794      0.890 0.000 0.028 0.000 0.000 0.972
#> GSM241501     5  0.0880      0.890 0.000 0.032 0.000 0.000 0.968
#> GSM241502     5  0.0880      0.890 0.000 0.032 0.000 0.000 0.968
#> GSM241503     1  0.4273      0.498 0.552 0.000 0.000 0.448 0.000
#> GSM241504     1  0.4273      0.498 0.552 0.000 0.000 0.448 0.000
#> GSM241505     1  0.4273      0.498 0.552 0.000 0.000 0.448 0.000
#> GSM241506     5  0.0794      0.890 0.000 0.028 0.000 0.000 0.972
#> GSM241507     1  0.4273      0.498 0.552 0.000 0.000 0.448 0.000
#> GSM241508     5  0.0794      0.890 0.000 0.028 0.000 0.000 0.972
#> GSM241509     5  0.0000      0.879 0.000 0.000 0.000 0.000 1.000
#> GSM241510     5  0.0000      0.879 0.000 0.000 0.000 0.000 1.000
#> GSM241511     4  0.0000      0.711 0.000 0.000 0.000 1.000 0.000
#> GSM241512     4  0.0000      0.711 0.000 0.000 0.000 1.000 0.000
#> GSM241513     3  0.0162      0.939 0.000 0.000 0.996 0.000 0.004
#> GSM241514     3  0.1341      0.902 0.000 0.000 0.944 0.056 0.000
#> GSM241515     3  0.0162      0.939 0.000 0.000 0.996 0.000 0.004
#> GSM241516     4  0.4278      0.355 0.000 0.000 0.452 0.548 0.000
#> GSM241517     3  0.0290      0.937 0.000 0.000 0.992 0.000 0.008
#> GSM241518     3  0.0609      0.936 0.000 0.000 0.980 0.020 0.000
#> GSM241519     3  0.0162      0.939 0.000 0.000 0.996 0.000 0.004
#> GSM241520     3  0.0609      0.936 0.000 0.000 0.980 0.020 0.000
#> GSM241521     3  0.1502      0.877 0.000 0.056 0.940 0.000 0.004
#> GSM241522     1  0.3355      0.768 0.804 0.000 0.012 0.184 0.000
#> GSM241523     3  0.0162      0.939 0.000 0.000 0.996 0.000 0.004
#> GSM241524     3  0.0609      0.936 0.000 0.000 0.980 0.020 0.000
#> GSM241525     4  0.0000      0.711 0.000 0.000 0.000 1.000 0.000
#> GSM241526     4  0.4829      0.142 0.000 0.000 0.020 0.496 0.484
#> GSM241527     4  0.0703      0.713 0.000 0.000 0.000 0.976 0.024
#> GSM241528     5  0.4829     -0.209 0.000 0.000 0.020 0.484 0.496
#> GSM241529     4  0.4829      0.142 0.000 0.000 0.020 0.496 0.484
#> GSM241530     4  0.0703      0.713 0.000 0.000 0.000 0.976 0.024
#> GSM241531     4  0.0000      0.711 0.000 0.000 0.000 1.000 0.000
#> GSM241532     5  0.0000      0.879 0.000 0.000 0.000 0.000 1.000
#> GSM241533     5  0.0000      0.879 0.000 0.000 0.000 0.000 1.000
#> GSM241534     5  0.0000      0.879 0.000 0.000 0.000 0.000 1.000
#> GSM241535     4  0.0703      0.713 0.000 0.000 0.000 0.976 0.024
#> GSM241536     4  0.0000      0.711 0.000 0.000 0.000 1.000 0.000
#> GSM241537     4  0.5019      0.398 0.000 0.000 0.436 0.532 0.032
#> GSM241538     4  0.4855      0.409 0.000 0.000 0.424 0.552 0.024
#> GSM241539     4  0.5019      0.398 0.000 0.000 0.436 0.532 0.032
#> GSM241540     4  0.4768      0.462 0.000 0.000 0.384 0.592 0.024
#> GSM241541     3  0.5019     -0.227 0.000 0.000 0.532 0.436 0.032
#> GSM241542     4  0.4855      0.409 0.000 0.000 0.424 0.552 0.024
#> GSM241543     3  0.0162      0.939 0.000 0.000 0.996 0.000 0.004
#> GSM241544     3  0.0609      0.936 0.000 0.000 0.980 0.020 0.000
#> GSM241545     3  0.0162      0.939 0.000 0.000 0.996 0.000 0.004
#> GSM241546     3  0.0609      0.936 0.000 0.000 0.980 0.020 0.000
#> GSM241547     3  0.0162      0.939 0.000 0.000 0.996 0.000 0.004
#> GSM241548     3  0.0609      0.936 0.000 0.000 0.980 0.020 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM241451     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241452     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241454     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241456     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241457     5  0.0632      0.949 0.000 0.024 0.000 0.000 0.976 0.000
#> GSM241458     6  0.3288      0.737 0.276 0.000 0.000 0.000 0.000 0.724
#> GSM241459     5  0.0632      0.949 0.000 0.024 0.000 0.000 0.976 0.000
#> GSM241460     1  0.2969      0.635 0.776 0.000 0.000 0.000 0.000 0.224
#> GSM241461     5  0.0458      0.954 0.000 0.016 0.000 0.000 0.984 0.000
#> GSM241462     6  0.3221      0.751 0.264 0.000 0.000 0.000 0.000 0.736
#> GSM241463     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241464     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241465     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241466     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241469     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241471     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241472     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241474     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241476     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241478     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241479     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241481     5  0.0632      0.949 0.000 0.024 0.000 0.000 0.976 0.000
#> GSM241482     6  0.3371      0.712 0.292 0.000 0.000 0.000 0.000 0.708
#> GSM241483     5  0.0458      0.954 0.000 0.016 0.000 0.000 0.984 0.000
#> GSM241484     6  0.3221      0.750 0.264 0.000 0.000 0.000 0.000 0.736
#> GSM241485     6  0.3266      0.742 0.272 0.000 0.000 0.000 0.000 0.728
#> GSM241486     5  0.0458      0.954 0.000 0.016 0.000 0.000 0.984 0.000
#> GSM241487     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241488     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241489     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241491     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241492     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241493     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241494     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241496     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241497     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241499     6  0.1007      0.847 0.044 0.000 0.000 0.000 0.000 0.956
#> GSM241500     5  0.0000      0.956 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241501     5  0.0000      0.956 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241502     5  0.0000      0.956 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241503     6  0.1007      0.847 0.044 0.000 0.000 0.000 0.000 0.956
#> GSM241504     6  0.1007      0.847 0.044 0.000 0.000 0.000 0.000 0.956
#> GSM241505     6  0.1007      0.847 0.044 0.000 0.000 0.000 0.000 0.956
#> GSM241506     5  0.0000      0.956 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241507     6  0.1007      0.847 0.044 0.000 0.000 0.000 0.000 0.956
#> GSM241508     5  0.0000      0.956 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241509     5  0.0000      0.956 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241510     5  0.0146      0.955 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM241511     6  0.0458      0.816 0.000 0.000 0.000 0.016 0.000 0.984
#> GSM241512     6  0.1714      0.749 0.000 0.000 0.000 0.092 0.000 0.908
#> GSM241513     3  0.0000      0.805 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241514     3  0.3974      0.745 0.000 0.000 0.680 0.296 0.000 0.024
#> GSM241515     3  0.1714      0.709 0.000 0.000 0.908 0.092 0.000 0.000
#> GSM241516     4  0.4602     -0.259 0.000 0.000 0.384 0.572 0.000 0.044
#> GSM241517     3  0.0458      0.791 0.000 0.000 0.984 0.016 0.000 0.000
#> GSM241518     3  0.3778      0.759 0.000 0.000 0.696 0.288 0.000 0.016
#> GSM241519     3  0.0000      0.805 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241520     3  0.3778      0.759 0.000 0.000 0.696 0.288 0.000 0.016
#> GSM241521     3  0.0000      0.805 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241522     1  0.5593      0.443 0.592 0.000 0.044 0.288 0.000 0.076
#> GSM241523     3  0.0000      0.805 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241524     3  0.3778      0.759 0.000 0.000 0.696 0.288 0.000 0.016
#> GSM241525     4  0.3684      0.516 0.000 0.000 0.000 0.628 0.000 0.372
#> GSM241526     4  0.4130      0.698 0.000 0.000 0.264 0.700 0.028 0.008
#> GSM241527     4  0.3266      0.644 0.000 0.000 0.000 0.728 0.000 0.272
#> GSM241528     4  0.4130      0.698 0.000 0.000 0.264 0.700 0.028 0.008
#> GSM241529     4  0.4130      0.698 0.000 0.000 0.264 0.700 0.028 0.008
#> GSM241530     4  0.3330      0.634 0.000 0.000 0.000 0.716 0.000 0.284
#> GSM241531     6  0.0865      0.804 0.000 0.000 0.000 0.036 0.000 0.964
#> GSM241532     5  0.1204      0.913 0.000 0.000 0.000 0.056 0.944 0.000
#> GSM241533     4  0.3864      0.040 0.000 0.000 0.000 0.520 0.480 0.000
#> GSM241534     5  0.3607      0.415 0.000 0.000 0.000 0.348 0.652 0.000
#> GSM241535     4  0.3101      0.663 0.000 0.000 0.000 0.756 0.000 0.244
#> GSM241536     6  0.0458      0.816 0.000 0.000 0.000 0.016 0.000 0.984
#> GSM241537     4  0.3351      0.689 0.000 0.000 0.288 0.712 0.000 0.000
#> GSM241538     4  0.0547      0.656 0.000 0.000 0.000 0.980 0.000 0.020
#> GSM241539     4  0.3351      0.689 0.000 0.000 0.288 0.712 0.000 0.000
#> GSM241540     4  0.0547      0.656 0.000 0.000 0.000 0.980 0.000 0.020
#> GSM241541     4  0.3446      0.673 0.000 0.000 0.308 0.692 0.000 0.000
#> GSM241542     4  0.0547      0.656 0.000 0.000 0.000 0.980 0.000 0.020
#> GSM241543     3  0.0000      0.805 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241544     3  0.3778      0.759 0.000 0.000 0.696 0.288 0.000 0.016
#> GSM241545     3  0.0000      0.805 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241546     3  0.3778      0.759 0.000 0.000 0.696 0.288 0.000 0.016
#> GSM241547     3  0.0000      0.805 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241548     3  0.3778      0.759 0.000 0.000 0.696 0.288 0.000 0.016

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n  dose(p)  time(p) k
#> SD:skmeans 98 1.00e+00 1.00e+00 2
#> SD:skmeans 93 3.00e-11 2.30e-01 3
#> SD:skmeans 83 4.27e-11 7.65e-01 4
#> SD:skmeans 83 8.01e-11 2.19e-07 5
#> SD:skmeans 94 1.02e-15 5.91e-11 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.547           0.886       0.930         0.5016 0.497   0.497
#> 3 3 0.885           0.941       0.970         0.3303 0.743   0.527
#> 4 4 0.685           0.787       0.828         0.1062 0.902   0.713
#> 5 5 0.920           0.902       0.955         0.0872 0.922   0.701
#> 6 6 0.920           0.879       0.947         0.0217 0.944   0.741

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 5

There is also optional best \(k\) = 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     2  0.6343      0.885 0.160 0.840
#> GSM241452     1  0.0000      0.937 1.000 0.000
#> GSM241453     2  0.6343      0.885 0.160 0.840
#> GSM241454     1  0.0000      0.937 1.000 0.000
#> GSM241455     2  0.6343      0.885 0.160 0.840
#> GSM241456     1  0.0000      0.937 1.000 0.000
#> GSM241457     2  0.6343      0.885 0.160 0.840
#> GSM241458     1  0.0000      0.937 1.000 0.000
#> GSM241459     2  0.6343      0.885 0.160 0.840
#> GSM241460     1  0.0000      0.937 1.000 0.000
#> GSM241461     2  0.6343      0.885 0.160 0.840
#> GSM241462     1  0.0000      0.937 1.000 0.000
#> GSM241463     2  0.6343      0.885 0.160 0.840
#> GSM241464     1  0.0000      0.937 1.000 0.000
#> GSM241465     2  0.6343      0.885 0.160 0.840
#> GSM241466     1  0.0000      0.937 1.000 0.000
#> GSM241467     1  0.0000      0.937 1.000 0.000
#> GSM241468     2  0.6343      0.885 0.160 0.840
#> GSM241469     1  0.0000      0.937 1.000 0.000
#> GSM241470     2  0.6343      0.885 0.160 0.840
#> GSM241471     2  0.6343      0.885 0.160 0.840
#> GSM241472     1  0.0000      0.937 1.000 0.000
#> GSM241473     2  0.6343      0.885 0.160 0.840
#> GSM241474     1  0.0000      0.937 1.000 0.000
#> GSM241475     2  0.6343      0.885 0.160 0.840
#> GSM241476     1  0.0000      0.937 1.000 0.000
#> GSM241477     2  0.6343      0.885 0.160 0.840
#> GSM241478     2  0.6343      0.885 0.160 0.840
#> GSM241479     1  0.0000      0.937 1.000 0.000
#> GSM241480     1  0.0000      0.937 1.000 0.000
#> GSM241481     2  0.6343      0.885 0.160 0.840
#> GSM241482     1  0.0000      0.937 1.000 0.000
#> GSM241483     2  0.6343      0.885 0.160 0.840
#> GSM241484     1  0.0000      0.937 1.000 0.000
#> GSM241485     1  0.0000      0.937 1.000 0.000
#> GSM241486     2  0.6343      0.885 0.160 0.840
#> GSM241487     2  0.0000      0.904 0.000 1.000
#> GSM241488     2  0.6343      0.885 0.160 0.840
#> GSM241489     1  0.0000      0.937 1.000 0.000
#> GSM241490     1  0.0000      0.937 1.000 0.000
#> GSM241491     2  0.6343      0.885 0.160 0.840
#> GSM241492     1  0.0000      0.937 1.000 0.000
#> GSM241493     2  0.6343      0.885 0.160 0.840
#> GSM241494     1  0.0000      0.937 1.000 0.000
#> GSM241495     2  0.6343      0.885 0.160 0.840
#> GSM241496     2  0.6343      0.885 0.160 0.840
#> GSM241497     1  0.0000      0.937 1.000 0.000
#> GSM241498     1  0.0000      0.937 1.000 0.000
#> GSM241499     1  0.0000      0.937 1.000 0.000
#> GSM241500     2  0.0000      0.904 0.000 1.000
#> GSM241501     2  0.0000      0.904 0.000 1.000
#> GSM241502     2  0.3879      0.897 0.076 0.924
#> GSM241503     1  0.0000      0.937 1.000 0.000
#> GSM241504     1  0.0000      0.937 1.000 0.000
#> GSM241505     1  0.0000      0.937 1.000 0.000
#> GSM241506     2  0.0000      0.904 0.000 1.000
#> GSM241507     1  0.0000      0.937 1.000 0.000
#> GSM241508     2  0.0000      0.904 0.000 1.000
#> GSM241509     2  0.0000      0.904 0.000 1.000
#> GSM241510     2  0.0000      0.904 0.000 1.000
#> GSM241511     1  0.5059      0.872 0.888 0.112
#> GSM241512     1  0.7219      0.809 0.800 0.200
#> GSM241513     2  0.0000      0.904 0.000 1.000
#> GSM241514     1  0.6343      0.840 0.840 0.160
#> GSM241515     2  0.0000      0.904 0.000 1.000
#> GSM241516     1  0.6343      0.840 0.840 0.160
#> GSM241517     2  0.0000      0.904 0.000 1.000
#> GSM241518     1  0.9850      0.417 0.572 0.428
#> GSM241519     2  0.0000      0.904 0.000 1.000
#> GSM241520     1  0.0672      0.934 0.992 0.008
#> GSM241521     2  0.0000      0.904 0.000 1.000
#> GSM241522     1  0.0000      0.937 1.000 0.000
#> GSM241523     2  0.0000      0.904 0.000 1.000
#> GSM241524     1  0.0672      0.934 0.992 0.008
#> GSM241525     1  0.0376      0.936 0.996 0.004
#> GSM241526     2  0.0000      0.904 0.000 1.000
#> GSM241527     1  0.6343      0.840 0.840 0.160
#> GSM241528     2  0.0000      0.904 0.000 1.000
#> GSM241529     2  0.0000      0.904 0.000 1.000
#> GSM241530     1  0.6247      0.843 0.844 0.156
#> GSM241531     1  0.6343      0.840 0.840 0.160
#> GSM241532     2  0.0000      0.904 0.000 1.000
#> GSM241533     2  0.0000      0.904 0.000 1.000
#> GSM241534     2  0.0000      0.904 0.000 1.000
#> GSM241535     2  0.2043      0.886 0.032 0.968
#> GSM241536     1  0.6247      0.843 0.844 0.156
#> GSM241537     2  0.0000      0.904 0.000 1.000
#> GSM241538     2  0.9775      0.121 0.412 0.588
#> GSM241539     2  0.0000      0.904 0.000 1.000
#> GSM241540     1  0.6343      0.840 0.840 0.160
#> GSM241541     2  0.0000      0.904 0.000 1.000
#> GSM241542     2  0.2043      0.886 0.032 0.968
#> GSM241543     2  0.0000      0.904 0.000 1.000
#> GSM241544     1  0.6343      0.840 0.840 0.160
#> GSM241545     2  0.0000      0.904 0.000 1.000
#> GSM241546     1  0.6343      0.840 0.840 0.160
#> GSM241547     2  0.0000      0.904 0.000 1.000
#> GSM241548     1  0.9710      0.487 0.600 0.400

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241452     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241453     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241454     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241455     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241456     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241457     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241458     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241459     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241460     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241461     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241462     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241463     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241464     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241465     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241466     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241467     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241468     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241469     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241470     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241471     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241472     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241473     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241474     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241475     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241476     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241477     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241478     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241479     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241480     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241481     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241482     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241483     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241484     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241485     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241486     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241487     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241488     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241489     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241490     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241491     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241492     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241493     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241494     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241495     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241496     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241497     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241498     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241499     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241500     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241501     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241502     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241503     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241504     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241505     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241506     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241507     1  0.0000      1.000 1.000 0.000 0.000
#> GSM241508     2  0.0000      0.951 0.000 1.000 0.000
#> GSM241509     2  0.1643      0.925 0.000 0.956 0.044
#> GSM241510     2  0.4842      0.769 0.000 0.776 0.224
#> GSM241511     3  0.4002      0.798 0.160 0.000 0.840
#> GSM241512     3  0.0000      0.958 0.000 0.000 1.000
#> GSM241513     3  0.0000      0.958 0.000 0.000 1.000
#> GSM241514     3  0.0000      0.958 0.000 0.000 1.000
#> GSM241515     3  0.1163      0.936 0.000 0.028 0.972
#> GSM241516     3  0.0000      0.958 0.000 0.000 1.000
#> GSM241517     2  0.4605      0.795 0.000 0.796 0.204
#> GSM241518     3  0.0000      0.958 0.000 0.000 1.000
#> GSM241519     2  0.4235      0.825 0.000 0.824 0.176
#> GSM241520     3  0.0000      0.958 0.000 0.000 1.000
#> GSM241521     2  0.4235      0.825 0.000 0.824 0.176
#> GSM241522     3  0.4974      0.696 0.236 0.000 0.764
#> GSM241523     2  0.4235      0.825 0.000 0.824 0.176
#> GSM241524     3  0.0747      0.948 0.016 0.000 0.984
#> GSM241525     3  0.4605      0.743 0.204 0.000 0.796
#> GSM241526     2  0.5016      0.745 0.000 0.760 0.240
#> GSM241527     3  0.0000      0.958 0.000 0.000 1.000
#> GSM241528     2  0.4062      0.835 0.000 0.836 0.164
#> GSM241529     2  0.4399      0.813 0.000 0.812 0.188
#> GSM241530     3  0.0592      0.951 0.012 0.000 0.988
#> GSM241531     3  0.0592      0.951 0.012 0.000 0.988
#> GSM241532     2  0.4555      0.799 0.000 0.800 0.200
#> GSM241533     3  0.4842      0.685 0.000 0.224 0.776
#> GSM241534     3  0.4796      0.692 0.000 0.220 0.780
#> GSM241535     3  0.0000      0.958 0.000 0.000 1.000
#> GSM241536     3  0.0592      0.951 0.012 0.000 0.988
#> GSM241537     3  0.0000      0.958 0.000 0.000 1.000
#> GSM241538     3  0.0000      0.958 0.000 0.000 1.000
#> GSM241539     3  0.0000      0.958 0.000 0.000 1.000
#> GSM241540     3  0.0000      0.958 0.000 0.000 1.000
#> GSM241541     3  0.0000      0.958 0.000 0.000 1.000
#> GSM241542     3  0.0000      0.958 0.000 0.000 1.000
#> GSM241543     3  0.0000      0.958 0.000 0.000 1.000
#> GSM241544     3  0.0000      0.958 0.000 0.000 1.000
#> GSM241545     3  0.0237      0.955 0.000 0.004 0.996
#> GSM241546     3  0.0000      0.958 0.000 0.000 1.000
#> GSM241547     3  0.0424      0.953 0.000 0.008 0.992
#> GSM241548     3  0.0000      0.958 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM241452     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> GSM241453     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM241454     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> GSM241455     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM241456     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> GSM241457     4  0.4898      0.780 0.000 0.416 0.000 0.584
#> GSM241458     1  0.4522      0.718 0.680 0.000 0.000 0.320
#> GSM241459     4  0.4898      0.780 0.000 0.416 0.000 0.584
#> GSM241460     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> GSM241461     4  0.4898      0.780 0.000 0.416 0.000 0.584
#> GSM241462     1  0.4040      0.760 0.752 0.000 0.000 0.248
#> GSM241463     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM241464     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> GSM241465     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM241466     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM241469     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> GSM241470     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM241471     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM241472     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> GSM241473     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM241474     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> GSM241475     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM241476     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM241478     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM241479     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> GSM241481     4  0.4916      0.770 0.000 0.424 0.000 0.576
#> GSM241482     1  0.0188      0.885 0.996 0.000 0.000 0.004
#> GSM241483     4  0.4898      0.780 0.000 0.416 0.000 0.584
#> GSM241484     1  0.4790      0.676 0.620 0.000 0.000 0.380
#> GSM241485     1  0.4040      0.760 0.752 0.000 0.000 0.248
#> GSM241486     4  0.4898      0.780 0.000 0.416 0.000 0.584
#> GSM241487     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM241488     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM241489     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> GSM241491     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM241492     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> GSM241493     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM241494     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> GSM241495     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM241496     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM241497     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> GSM241499     1  0.4790      0.676 0.620 0.000 0.000 0.380
#> GSM241500     4  0.4888      0.780 0.000 0.412 0.000 0.588
#> GSM241501     4  0.4898      0.780 0.000 0.416 0.000 0.584
#> GSM241502     4  0.4898      0.780 0.000 0.416 0.000 0.584
#> GSM241503     1  0.4790      0.676 0.620 0.000 0.000 0.380
#> GSM241504     1  0.4790      0.676 0.620 0.000 0.000 0.380
#> GSM241505     1  0.4790      0.676 0.620 0.000 0.000 0.380
#> GSM241506     4  0.4898      0.780 0.000 0.416 0.000 0.584
#> GSM241507     1  0.4790      0.676 0.620 0.000 0.000 0.380
#> GSM241508     4  0.4888      0.780 0.000 0.412 0.000 0.588
#> GSM241509     4  0.5527      0.764 0.000 0.356 0.028 0.616
#> GSM241510     4  0.6709      0.671 0.000 0.212 0.172 0.616
#> GSM241511     3  0.4804      0.692 0.000 0.000 0.616 0.384
#> GSM241512     3  0.4454      0.727 0.000 0.000 0.692 0.308
#> GSM241513     3  0.3726      0.639 0.000 0.212 0.788 0.000
#> GSM241514     3  0.3726      0.758 0.212 0.000 0.788 0.000
#> GSM241515     3  0.3726      0.639 0.000 0.212 0.788 0.000
#> GSM241516     3  0.3764      0.756 0.216 0.000 0.784 0.000
#> GSM241517     2  0.3649      0.657 0.000 0.796 0.204 0.000
#> GSM241518     3  0.3726      0.758 0.212 0.000 0.788 0.000
#> GSM241519     2  0.3311      0.703 0.000 0.828 0.172 0.000
#> GSM241520     3  0.3726      0.758 0.212 0.000 0.788 0.000
#> GSM241521     2  0.3311      0.703 0.000 0.828 0.172 0.000
#> GSM241522     3  0.4804      0.555 0.384 0.000 0.616 0.000
#> GSM241523     2  0.3400      0.693 0.000 0.820 0.180 0.000
#> GSM241524     3  0.3942      0.743 0.236 0.000 0.764 0.000
#> GSM241525     3  0.4804      0.692 0.000 0.000 0.616 0.384
#> GSM241526     4  0.5573      0.519 0.000 0.028 0.368 0.604
#> GSM241527     3  0.4804      0.692 0.000 0.000 0.616 0.384
#> GSM241528     4  0.6591      0.649 0.000 0.424 0.080 0.496
#> GSM241529     4  0.6933      0.662 0.000 0.300 0.140 0.560
#> GSM241530     3  0.4804      0.692 0.000 0.000 0.616 0.384
#> GSM241531     3  0.4804      0.692 0.000 0.000 0.616 0.384
#> GSM241532     4  0.5189      0.519 0.000 0.012 0.372 0.616
#> GSM241533     4  0.5174      0.520 0.000 0.012 0.368 0.620
#> GSM241534     4  0.4790      0.501 0.000 0.000 0.380 0.620
#> GSM241535     3  0.2647      0.753 0.000 0.000 0.880 0.120
#> GSM241536     3  0.4804      0.692 0.000 0.000 0.616 0.384
#> GSM241537     3  0.1022      0.756 0.000 0.000 0.968 0.032
#> GSM241538     3  0.0188      0.768 0.000 0.000 0.996 0.004
#> GSM241539     3  0.1022      0.756 0.000 0.000 0.968 0.032
#> GSM241540     3  0.0921      0.770 0.000 0.000 0.972 0.028
#> GSM241541     3  0.1022      0.756 0.000 0.000 0.968 0.032
#> GSM241542     3  0.0188      0.768 0.000 0.000 0.996 0.004
#> GSM241543     3  0.3726      0.639 0.000 0.212 0.788 0.000
#> GSM241544     3  0.3610      0.762 0.200 0.000 0.800 0.000
#> GSM241545     3  0.3726      0.639 0.000 0.212 0.788 0.000
#> GSM241546     3  0.3610      0.762 0.200 0.000 0.800 0.000
#> GSM241547     3  0.0469      0.766 0.000 0.012 0.988 0.000
#> GSM241548     3  0.0000      0.768 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2  0.0000      0.940 0.000 1.000 0.000 0.000 0.000
#> GSM241452     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.0000      0.940 0.000 1.000 0.000 0.000 0.000
#> GSM241454     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0000      0.940 0.000 1.000 0.000 0.000 0.000
#> GSM241456     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> GSM241457     5  0.0404      0.942 0.000 0.012 0.000 0.000 0.988
#> GSM241458     4  0.2605      0.806 0.148 0.000 0.000 0.852 0.000
#> GSM241459     5  0.0404      0.942 0.000 0.012 0.000 0.000 0.988
#> GSM241460     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> GSM241461     5  0.0290      0.944 0.000 0.008 0.000 0.000 0.992
#> GSM241462     4  0.3109      0.739 0.200 0.000 0.000 0.800 0.000
#> GSM241463     2  0.0000      0.940 0.000 1.000 0.000 0.000 0.000
#> GSM241464     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> GSM241465     2  0.0000      0.940 0.000 1.000 0.000 0.000 0.000
#> GSM241466     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      0.940 0.000 1.000 0.000 0.000 0.000
#> GSM241469     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0000      0.940 0.000 1.000 0.000 0.000 0.000
#> GSM241471     2  0.0000      0.940 0.000 1.000 0.000 0.000 0.000
#> GSM241472     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.0000      0.940 0.000 1.000 0.000 0.000 0.000
#> GSM241474     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.0000      0.940 0.000 1.000 0.000 0.000 0.000
#> GSM241476     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      0.940 0.000 1.000 0.000 0.000 0.000
#> GSM241478     2  0.0000      0.940 0.000 1.000 0.000 0.000 0.000
#> GSM241479     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> GSM241481     5  0.1732      0.889 0.000 0.080 0.000 0.000 0.920
#> GSM241482     1  0.2179      0.855 0.888 0.000 0.000 0.112 0.000
#> GSM241483     5  0.0290      0.944 0.000 0.008 0.000 0.000 0.992
#> GSM241484     4  0.0510      0.927 0.016 0.000 0.000 0.984 0.000
#> GSM241485     1  0.4161      0.296 0.608 0.000 0.000 0.392 0.000
#> GSM241486     5  0.0290      0.944 0.000 0.008 0.000 0.000 0.992
#> GSM241487     2  0.0000      0.940 0.000 1.000 0.000 0.000 0.000
#> GSM241488     2  0.0000      0.940 0.000 1.000 0.000 0.000 0.000
#> GSM241489     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> GSM241491     2  0.0000      0.940 0.000 1.000 0.000 0.000 0.000
#> GSM241492     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> GSM241493     2  0.0000      0.940 0.000 1.000 0.000 0.000 0.000
#> GSM241494     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0000      0.940 0.000 1.000 0.000 0.000 0.000
#> GSM241496     2  0.0000      0.940 0.000 1.000 0.000 0.000 0.000
#> GSM241497     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> GSM241499     4  0.0510      0.927 0.016 0.000 0.000 0.984 0.000
#> GSM241500     5  0.0290      0.944 0.000 0.008 0.000 0.000 0.992
#> GSM241501     5  0.0290      0.944 0.000 0.008 0.000 0.000 0.992
#> GSM241502     5  0.0290      0.944 0.000 0.008 0.000 0.000 0.992
#> GSM241503     4  0.0510      0.927 0.016 0.000 0.000 0.984 0.000
#> GSM241504     4  0.0510      0.927 0.016 0.000 0.000 0.984 0.000
#> GSM241505     4  0.0510      0.927 0.016 0.000 0.000 0.984 0.000
#> GSM241506     5  0.0290      0.944 0.000 0.008 0.000 0.000 0.992
#> GSM241507     4  0.0510      0.927 0.016 0.000 0.000 0.984 0.000
#> GSM241508     5  0.0290      0.944 0.000 0.008 0.000 0.000 0.992
#> GSM241509     5  0.0290      0.944 0.000 0.008 0.000 0.000 0.992
#> GSM241510     5  0.0290      0.944 0.000 0.008 0.000 0.000 0.992
#> GSM241511     4  0.0000      0.925 0.000 0.000 0.000 1.000 0.000
#> GSM241512     3  0.3336      0.672 0.000 0.000 0.772 0.228 0.000
#> GSM241513     3  0.0404      0.954 0.000 0.012 0.988 0.000 0.000
#> GSM241514     3  0.0404      0.955 0.012 0.000 0.988 0.000 0.000
#> GSM241515     3  0.0404      0.954 0.000 0.012 0.988 0.000 0.000
#> GSM241516     3  0.0510      0.953 0.016 0.000 0.984 0.000 0.000
#> GSM241517     2  0.3684      0.665 0.000 0.720 0.280 0.000 0.000
#> GSM241518     3  0.0404      0.955 0.012 0.000 0.988 0.000 0.000
#> GSM241519     2  0.3684      0.665 0.000 0.720 0.280 0.000 0.000
#> GSM241520     3  0.0290      0.957 0.008 0.000 0.992 0.000 0.000
#> GSM241521     2  0.3684      0.665 0.000 0.720 0.280 0.000 0.000
#> GSM241522     3  0.3999      0.465 0.344 0.000 0.656 0.000 0.000
#> GSM241523     2  0.3684      0.665 0.000 0.720 0.280 0.000 0.000
#> GSM241524     3  0.0290      0.957 0.008 0.000 0.992 0.000 0.000
#> GSM241525     4  0.0000      0.925 0.000 0.000 0.000 1.000 0.000
#> GSM241526     5  0.4444      0.633 0.000 0.012 0.264 0.016 0.708
#> GSM241527     4  0.2230      0.830 0.000 0.000 0.116 0.884 0.000
#> GSM241528     5  0.4901      0.727 0.000 0.184 0.068 0.016 0.732
#> GSM241529     5  0.5154      0.626 0.000 0.052 0.252 0.016 0.680
#> GSM241530     4  0.0000      0.925 0.000 0.000 0.000 1.000 0.000
#> GSM241531     4  0.0000      0.925 0.000 0.000 0.000 1.000 0.000
#> GSM241532     5  0.0000      0.939 0.000 0.000 0.000 0.000 1.000
#> GSM241533     5  0.0000      0.939 0.000 0.000 0.000 0.000 1.000
#> GSM241534     5  0.0000      0.939 0.000 0.000 0.000 0.000 1.000
#> GSM241535     4  0.4446      0.307 0.000 0.000 0.400 0.592 0.008
#> GSM241536     4  0.0000      0.925 0.000 0.000 0.000 1.000 0.000
#> GSM241537     3  0.0290      0.956 0.000 0.000 0.992 0.000 0.008
#> GSM241538     3  0.0798      0.949 0.000 0.000 0.976 0.016 0.008
#> GSM241539     3  0.0290      0.956 0.000 0.000 0.992 0.000 0.008
#> GSM241540     3  0.0798      0.949 0.000 0.000 0.976 0.016 0.008
#> GSM241541     3  0.0290      0.956 0.000 0.000 0.992 0.000 0.008
#> GSM241542     3  0.0798      0.949 0.000 0.000 0.976 0.016 0.008
#> GSM241543     3  0.0290      0.956 0.000 0.008 0.992 0.000 0.000
#> GSM241544     3  0.0000      0.957 0.000 0.000 1.000 0.000 0.000
#> GSM241545     3  0.0290      0.956 0.000 0.008 0.992 0.000 0.000
#> GSM241546     3  0.0162      0.957 0.004 0.000 0.996 0.000 0.000
#> GSM241547     3  0.0290      0.956 0.000 0.008 0.992 0.000 0.000
#> GSM241548     3  0.0000      0.957 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM241451     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241452     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241454     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241456     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241457     5  0.0146      0.931 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM241458     6  0.1714      0.857 0.092 0.000 0.000 0.000 0.000 0.908
#> GSM241459     5  0.0146      0.931 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM241460     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241461     5  0.0000      0.933 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241462     6  0.2793      0.727 0.200 0.000 0.000 0.000 0.000 0.800
#> GSM241463     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241464     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241465     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241466     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241469     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241471     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241472     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241474     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241476     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241478     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241479     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241481     5  0.1075      0.899 0.000 0.048 0.000 0.000 0.952 0.000
#> GSM241482     1  0.2048      0.833 0.880 0.000 0.000 0.000 0.000 0.120
#> GSM241483     5  0.0000      0.933 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241484     6  0.0000      0.944 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241485     1  0.3737      0.290 0.608 0.000 0.000 0.000 0.000 0.392
#> GSM241486     5  0.0000      0.933 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241487     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241488     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241489     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241491     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241492     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241493     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241494     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241496     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241497     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241499     6  0.0000      0.944 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241500     5  0.0000      0.933 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241501     5  0.0000      0.933 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241502     5  0.0000      0.933 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241503     6  0.0000      0.944 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241504     6  0.0000      0.944 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241505     6  0.0000      0.944 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241506     5  0.0000      0.933 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241507     6  0.0000      0.944 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241508     5  0.0000      0.933 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241509     5  0.0000      0.933 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241510     5  0.0000      0.933 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241511     6  0.0000      0.944 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241512     6  0.2912      0.711 0.000 0.000 0.216 0.000 0.000 0.784
#> GSM241513     2  0.3672      0.513 0.000 0.632 0.368 0.000 0.000 0.000
#> GSM241514     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241515     2  0.3672      0.513 0.000 0.632 0.368 0.000 0.000 0.000
#> GSM241516     1  0.3672      0.332 0.632 0.000 0.368 0.000 0.000 0.000
#> GSM241517     2  0.3240      0.710 0.000 0.752 0.244 0.004 0.000 0.000
#> GSM241518     3  0.3737      0.335 0.392 0.000 0.608 0.000 0.000 0.000
#> GSM241519     2  0.3101      0.713 0.000 0.756 0.244 0.000 0.000 0.000
#> GSM241520     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241521     2  0.3101      0.713 0.000 0.756 0.244 0.000 0.000 0.000
#> GSM241522     1  0.2092      0.819 0.876 0.000 0.124 0.000 0.000 0.000
#> GSM241523     2  0.3101      0.713 0.000 0.756 0.244 0.000 0.000 0.000
#> GSM241524     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241525     6  0.0000      0.944 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241526     5  0.4619      0.587 0.000 0.000 0.244 0.088 0.668 0.000
#> GSM241527     6  0.3103      0.816 0.000 0.000 0.064 0.100 0.000 0.836
#> GSM241528     5  0.4704      0.693 0.000 0.172 0.060 0.044 0.724 0.000
#> GSM241529     5  0.5268      0.559 0.000 0.068 0.240 0.044 0.648 0.000
#> GSM241530     6  0.0000      0.944 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241531     6  0.0000      0.944 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241532     5  0.0937      0.914 0.000 0.000 0.000 0.040 0.960 0.000
#> GSM241533     5  0.1141      0.908 0.000 0.000 0.000 0.052 0.948 0.000
#> GSM241534     5  0.1141      0.908 0.000 0.000 0.000 0.052 0.948 0.000
#> GSM241535     4  0.0547      0.958 0.000 0.000 0.020 0.980 0.000 0.000
#> GSM241536     6  0.0000      0.944 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241537     4  0.0000      0.961 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241538     4  0.1007      0.953 0.000 0.000 0.044 0.956 0.000 0.000
#> GSM241539     4  0.0000      0.961 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241540     4  0.1556      0.924 0.000 0.000 0.080 0.920 0.000 0.000
#> GSM241541     4  0.0000      0.961 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241542     4  0.1007      0.953 0.000 0.000 0.044 0.956 0.000 0.000
#> GSM241543     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241544     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241545     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241546     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241547     3  0.0865      0.897 0.000 0.000 0.964 0.036 0.000 0.000
#> GSM241548     3  0.0363      0.921 0.000 0.000 0.988 0.012 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n  dose(p)  time(p) k
#> SD:pam 95 7.61e-01 9.35e-01 2
#> SD:pam 98 2.49e-10 2.57e-01 3
#> SD:pam 98 1.01e-09 2.31e-05 4
#> SD:pam 95 2.34e-08 3.46e-09 5
#> SD:pam 95 1.62e-08 1.39e-11 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.580           0.937       0.951         0.4625 0.512   0.512
#> 3 3 0.901           0.913       0.963         0.2355 0.823   0.688
#> 4 4 0.667           0.761       0.850         0.2141 0.887   0.745
#> 5 5 0.820           0.865       0.916         0.1224 0.854   0.581
#> 6 6 0.892           0.841       0.909         0.0571 0.920   0.666

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     1  0.1414      0.911 0.980 0.020
#> GSM241452     1  0.5737      0.925 0.864 0.136
#> GSM241453     1  0.1414      0.911 0.980 0.020
#> GSM241454     1  0.5737      0.925 0.864 0.136
#> GSM241455     1  0.1414      0.911 0.980 0.020
#> GSM241456     1  0.5737      0.925 0.864 0.136
#> GSM241457     2  0.7602      0.694 0.220 0.780
#> GSM241458     1  0.6148      0.919 0.848 0.152
#> GSM241459     2  0.7453      0.708 0.212 0.788
#> GSM241460     1  0.5737      0.925 0.864 0.136
#> GSM241461     2  0.5519      0.837 0.128 0.872
#> GSM241462     1  0.6623      0.900 0.828 0.172
#> GSM241463     1  0.1414      0.911 0.980 0.020
#> GSM241464     1  0.6148      0.919 0.848 0.152
#> GSM241465     1  0.1414      0.911 0.980 0.020
#> GSM241466     1  0.5737      0.925 0.864 0.136
#> GSM241467     1  0.5737      0.925 0.864 0.136
#> GSM241468     1  0.1414      0.911 0.980 0.020
#> GSM241469     1  0.5737      0.925 0.864 0.136
#> GSM241470     1  0.1414      0.911 0.980 0.020
#> GSM241471     1  0.1414      0.911 0.980 0.020
#> GSM241472     1  0.5737      0.925 0.864 0.136
#> GSM241473     1  0.1414      0.911 0.980 0.020
#> GSM241474     1  0.5737      0.925 0.864 0.136
#> GSM241475     1  0.1414      0.911 0.980 0.020
#> GSM241476     1  0.5737      0.925 0.864 0.136
#> GSM241477     1  0.1414      0.911 0.980 0.020
#> GSM241478     1  0.1414      0.911 0.980 0.020
#> GSM241479     1  0.5737      0.925 0.864 0.136
#> GSM241480     1  0.5737      0.925 0.864 0.136
#> GSM241481     2  0.7674      0.687 0.224 0.776
#> GSM241482     1  0.6148      0.919 0.848 0.152
#> GSM241483     2  0.5519      0.837 0.128 0.872
#> GSM241484     1  0.6148      0.919 0.848 0.152
#> GSM241485     1  0.6148      0.919 0.848 0.152
#> GSM241486     2  0.5294      0.847 0.120 0.880
#> GSM241487     2  0.5737      0.825 0.136 0.864
#> GSM241488     1  0.1414      0.911 0.980 0.020
#> GSM241489     1  0.6148      0.919 0.848 0.152
#> GSM241490     2  0.1414      0.958 0.020 0.980
#> GSM241491     1  0.1414      0.911 0.980 0.020
#> GSM241492     1  0.6148      0.919 0.848 0.152
#> GSM241493     1  0.1414      0.911 0.980 0.020
#> GSM241494     1  0.5737      0.925 0.864 0.136
#> GSM241495     1  0.1414      0.911 0.980 0.020
#> GSM241496     1  0.1414      0.911 0.980 0.020
#> GSM241497     1  0.6148      0.919 0.848 0.152
#> GSM241498     1  0.5737      0.925 0.864 0.136
#> GSM241499     2  0.0376      0.973 0.004 0.996
#> GSM241500     2  0.0000      0.976 0.000 1.000
#> GSM241501     2  0.0000      0.976 0.000 1.000
#> GSM241502     2  0.0000      0.976 0.000 1.000
#> GSM241503     2  0.0376      0.973 0.004 0.996
#> GSM241504     2  0.0376      0.973 0.004 0.996
#> GSM241505     2  0.0376      0.973 0.004 0.996
#> GSM241506     2  0.0000      0.976 0.000 1.000
#> GSM241507     2  0.0376      0.973 0.004 0.996
#> GSM241508     2  0.0000      0.976 0.000 1.000
#> GSM241509     2  0.0000      0.976 0.000 1.000
#> GSM241510     2  0.0000      0.976 0.000 1.000
#> GSM241511     2  0.0000      0.976 0.000 1.000
#> GSM241512     2  0.0000      0.976 0.000 1.000
#> GSM241513     2  0.0000      0.976 0.000 1.000
#> GSM241514     2  0.0000      0.976 0.000 1.000
#> GSM241515     2  0.0000      0.976 0.000 1.000
#> GSM241516     2  0.0000      0.976 0.000 1.000
#> GSM241517     2  0.0000      0.976 0.000 1.000
#> GSM241518     2  0.0000      0.976 0.000 1.000
#> GSM241519     2  0.0000      0.976 0.000 1.000
#> GSM241520     2  0.0000      0.976 0.000 1.000
#> GSM241521     2  0.0000      0.976 0.000 1.000
#> GSM241522     2  0.0376      0.973 0.004 0.996
#> GSM241523     2  0.0000      0.976 0.000 1.000
#> GSM241524     2  0.0000      0.976 0.000 1.000
#> GSM241525     2  0.0000      0.976 0.000 1.000
#> GSM241526     2  0.0000      0.976 0.000 1.000
#> GSM241527     2  0.0000      0.976 0.000 1.000
#> GSM241528     2  0.0000      0.976 0.000 1.000
#> GSM241529     2  0.0000      0.976 0.000 1.000
#> GSM241530     2  0.0000      0.976 0.000 1.000
#> GSM241531     2  0.0000      0.976 0.000 1.000
#> GSM241532     2  0.0000      0.976 0.000 1.000
#> GSM241533     2  0.0000      0.976 0.000 1.000
#> GSM241534     2  0.0000      0.976 0.000 1.000
#> GSM241535     2  0.0000      0.976 0.000 1.000
#> GSM241536     2  0.0000      0.976 0.000 1.000
#> GSM241537     2  0.0000      0.976 0.000 1.000
#> GSM241538     2  0.0000      0.976 0.000 1.000
#> GSM241539     2  0.0000      0.976 0.000 1.000
#> GSM241540     2  0.0000      0.976 0.000 1.000
#> GSM241541     2  0.0000      0.976 0.000 1.000
#> GSM241542     2  0.0000      0.976 0.000 1.000
#> GSM241543     2  0.0000      0.976 0.000 1.000
#> GSM241544     2  0.0000      0.976 0.000 1.000
#> GSM241545     2  0.0000      0.976 0.000 1.000
#> GSM241546     2  0.0000      0.976 0.000 1.000
#> GSM241547     2  0.0000      0.976 0.000 1.000
#> GSM241548     2  0.0000      0.976 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2  0.0000      0.969 0.000 1.000 0.000
#> GSM241452     1  0.0000      0.987 1.000 0.000 0.000
#> GSM241453     2  0.0000      0.969 0.000 1.000 0.000
#> GSM241454     1  0.0000      0.987 1.000 0.000 0.000
#> GSM241455     2  0.0000      0.969 0.000 1.000 0.000
#> GSM241456     1  0.0000      0.987 1.000 0.000 0.000
#> GSM241457     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241458     3  0.5948      0.503 0.360 0.000 0.640
#> GSM241459     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241460     1  0.0000      0.987 1.000 0.000 0.000
#> GSM241461     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241462     3  0.5948      0.503 0.360 0.000 0.640
#> GSM241463     2  0.0000      0.969 0.000 1.000 0.000
#> GSM241464     1  0.0000      0.987 1.000 0.000 0.000
#> GSM241465     2  0.0000      0.969 0.000 1.000 0.000
#> GSM241466     1  0.0000      0.987 1.000 0.000 0.000
#> GSM241467     1  0.0000      0.987 1.000 0.000 0.000
#> GSM241468     2  0.0000      0.969 0.000 1.000 0.000
#> GSM241469     1  0.0000      0.987 1.000 0.000 0.000
#> GSM241470     2  0.0000      0.969 0.000 1.000 0.000
#> GSM241471     2  0.0000      0.969 0.000 1.000 0.000
#> GSM241472     1  0.0000      0.987 1.000 0.000 0.000
#> GSM241473     2  0.0000      0.969 0.000 1.000 0.000
#> GSM241474     1  0.0000      0.987 1.000 0.000 0.000
#> GSM241475     2  0.0000      0.969 0.000 1.000 0.000
#> GSM241476     1  0.0000      0.987 1.000 0.000 0.000
#> GSM241477     2  0.0000      0.969 0.000 1.000 0.000
#> GSM241478     2  0.0000      0.969 0.000 1.000 0.000
#> GSM241479     1  0.0000      0.987 1.000 0.000 0.000
#> GSM241480     1  0.0000      0.987 1.000 0.000 0.000
#> GSM241481     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241482     3  0.5948      0.503 0.360 0.000 0.640
#> GSM241483     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241484     3  0.5948      0.503 0.360 0.000 0.640
#> GSM241485     1  0.4002      0.758 0.840 0.000 0.160
#> GSM241486     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241487     2  0.6062      0.398 0.000 0.616 0.384
#> GSM241488     2  0.0000      0.969 0.000 1.000 0.000
#> GSM241489     1  0.0000      0.987 1.000 0.000 0.000
#> GSM241490     1  0.0000      0.987 1.000 0.000 0.000
#> GSM241491     2  0.0424      0.960 0.000 0.992 0.008
#> GSM241492     1  0.0424      0.977 0.992 0.000 0.008
#> GSM241493     2  0.0000      0.969 0.000 1.000 0.000
#> GSM241494     1  0.0000      0.987 1.000 0.000 0.000
#> GSM241495     2  0.0000      0.969 0.000 1.000 0.000
#> GSM241496     2  0.0000      0.969 0.000 1.000 0.000
#> GSM241497     1  0.0000      0.987 1.000 0.000 0.000
#> GSM241498     1  0.0000      0.987 1.000 0.000 0.000
#> GSM241499     3  0.5882      0.527 0.348 0.000 0.652
#> GSM241500     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241501     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241502     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241503     3  0.5882      0.527 0.348 0.000 0.652
#> GSM241504     3  0.5497      0.622 0.292 0.000 0.708
#> GSM241505     3  0.5497      0.622 0.292 0.000 0.708
#> GSM241506     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241507     3  0.5497      0.622 0.292 0.000 0.708
#> GSM241508     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241509     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241510     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241511     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241512     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241513     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241514     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241515     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241516     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241517     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241518     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241519     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241520     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241521     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241522     3  0.0592      0.936 0.012 0.000 0.988
#> GSM241523     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241524     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241525     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241526     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241527     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241528     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241529     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241530     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241531     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241532     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241533     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241534     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241535     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241536     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241537     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241538     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241539     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241540     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241541     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241542     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241543     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241544     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241545     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241546     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241547     3  0.0000      0.945 0.000 0.000 1.000
#> GSM241548     3  0.0000      0.945 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2   0.000     0.9718 0.000 1.000 0.000 0.000
#> GSM241452     1   0.000     0.9487 1.000 0.000 0.000 0.000
#> GSM241453     2   0.000     0.9718 0.000 1.000 0.000 0.000
#> GSM241454     1   0.000     0.9487 1.000 0.000 0.000 0.000
#> GSM241455     2   0.000     0.9718 0.000 1.000 0.000 0.000
#> GSM241456     1   0.000     0.9487 1.000 0.000 0.000 0.000
#> GSM241457     4   0.000     0.9249 0.000 0.000 0.000 1.000
#> GSM241458     3   0.728     0.5283 0.236 0.000 0.540 0.224
#> GSM241459     4   0.000     0.9249 0.000 0.000 0.000 1.000
#> GSM241460     1   0.000     0.9487 1.000 0.000 0.000 0.000
#> GSM241461     4   0.000     0.9249 0.000 0.000 0.000 1.000
#> GSM241462     3   0.671     0.4721 0.360 0.000 0.540 0.100
#> GSM241463     2   0.000     0.9718 0.000 1.000 0.000 0.000
#> GSM241464     1   0.000     0.9487 1.000 0.000 0.000 0.000
#> GSM241465     2   0.000     0.9718 0.000 1.000 0.000 0.000
#> GSM241466     1   0.000     0.9487 1.000 0.000 0.000 0.000
#> GSM241467     1   0.000     0.9487 1.000 0.000 0.000 0.000
#> GSM241468     2   0.000     0.9718 0.000 1.000 0.000 0.000
#> GSM241469     1   0.000     0.9487 1.000 0.000 0.000 0.000
#> GSM241470     2   0.000     0.9718 0.000 1.000 0.000 0.000
#> GSM241471     2   0.000     0.9718 0.000 1.000 0.000 0.000
#> GSM241472     1   0.000     0.9487 1.000 0.000 0.000 0.000
#> GSM241473     2   0.000     0.9718 0.000 1.000 0.000 0.000
#> GSM241474     1   0.000     0.9487 1.000 0.000 0.000 0.000
#> GSM241475     2   0.000     0.9718 0.000 1.000 0.000 0.000
#> GSM241476     1   0.000     0.9487 1.000 0.000 0.000 0.000
#> GSM241477     2   0.000     0.9718 0.000 1.000 0.000 0.000
#> GSM241478     2   0.000     0.9718 0.000 1.000 0.000 0.000
#> GSM241479     1   0.000     0.9487 1.000 0.000 0.000 0.000
#> GSM241480     1   0.000     0.9487 1.000 0.000 0.000 0.000
#> GSM241481     4   0.000     0.9249 0.000 0.000 0.000 1.000
#> GSM241482     3   0.671     0.4721 0.360 0.000 0.540 0.100
#> GSM241483     4   0.000     0.9249 0.000 0.000 0.000 1.000
#> GSM241484     3   0.679     0.4765 0.352 0.000 0.540 0.108
#> GSM241485     1   0.591     0.4733 0.680 0.000 0.228 0.092
#> GSM241486     4   0.000     0.9249 0.000 0.000 0.000 1.000
#> GSM241487     2   0.733     0.2842 0.000 0.532 0.236 0.232
#> GSM241488     2   0.000     0.9718 0.000 1.000 0.000 0.000
#> GSM241489     1   0.000     0.9487 1.000 0.000 0.000 0.000
#> GSM241490     1   0.692     0.0767 0.528 0.000 0.120 0.352
#> GSM241491     2   0.000     0.9718 0.000 1.000 0.000 0.000
#> GSM241492     1   0.000     0.9487 1.000 0.000 0.000 0.000
#> GSM241493     2   0.000     0.9718 0.000 1.000 0.000 0.000
#> GSM241494     1   0.000     0.9487 1.000 0.000 0.000 0.000
#> GSM241495     2   0.000     0.9718 0.000 1.000 0.000 0.000
#> GSM241496     2   0.000     0.9718 0.000 1.000 0.000 0.000
#> GSM241497     1   0.000     0.9487 1.000 0.000 0.000 0.000
#> GSM241498     1   0.000     0.9487 1.000 0.000 0.000 0.000
#> GSM241499     3   0.674     0.5679 0.104 0.000 0.544 0.352
#> GSM241500     4   0.000     0.9249 0.000 0.000 0.000 1.000
#> GSM241501     4   0.000     0.9249 0.000 0.000 0.000 1.000
#> GSM241502     4   0.000     0.9249 0.000 0.000 0.000 1.000
#> GSM241503     3   0.674     0.5679 0.104 0.000 0.544 0.352
#> GSM241504     3   0.674     0.5679 0.104 0.000 0.544 0.352
#> GSM241505     3   0.674     0.5679 0.104 0.000 0.544 0.352
#> GSM241506     3   0.499     0.4748 0.000 0.000 0.524 0.476
#> GSM241507     3   0.674     0.5679 0.104 0.000 0.544 0.352
#> GSM241508     4   0.000     0.9249 0.000 0.000 0.000 1.000
#> GSM241509     4   0.500    -0.4729 0.000 0.000 0.496 0.504
#> GSM241510     3   0.499     0.4748 0.000 0.000 0.524 0.476
#> GSM241511     3   0.470     0.6401 0.000 0.000 0.644 0.356
#> GSM241512     3   0.470     0.6401 0.000 0.000 0.644 0.356
#> GSM241513     3   0.000     0.7165 0.000 0.000 1.000 0.000
#> GSM241514     3   0.000     0.7165 0.000 0.000 1.000 0.000
#> GSM241515     3   0.265     0.7342 0.000 0.000 0.880 0.120
#> GSM241516     3   0.265     0.7342 0.000 0.000 0.880 0.120
#> GSM241517     3   0.000     0.7165 0.000 0.000 1.000 0.000
#> GSM241518     3   0.000     0.7165 0.000 0.000 1.000 0.000
#> GSM241519     3   0.000     0.7165 0.000 0.000 1.000 0.000
#> GSM241520     3   0.000     0.7165 0.000 0.000 1.000 0.000
#> GSM241521     3   0.000     0.7165 0.000 0.000 1.000 0.000
#> GSM241522     3   0.467     0.6893 0.104 0.000 0.796 0.100
#> GSM241523     3   0.000     0.7165 0.000 0.000 1.000 0.000
#> GSM241524     3   0.000     0.7165 0.000 0.000 1.000 0.000
#> GSM241525     3   0.470     0.6401 0.000 0.000 0.644 0.356
#> GSM241526     3   0.410     0.6507 0.000 0.000 0.744 0.256
#> GSM241527     3   0.470     0.6401 0.000 0.000 0.644 0.356
#> GSM241528     3   0.445     0.6307 0.000 0.000 0.692 0.308
#> GSM241529     3   0.499     0.4748 0.000 0.000 0.524 0.476
#> GSM241530     3   0.470     0.6401 0.000 0.000 0.644 0.356
#> GSM241531     3   0.470     0.6401 0.000 0.000 0.644 0.356
#> GSM241532     3   0.499     0.4748 0.000 0.000 0.524 0.476
#> GSM241533     3   0.499     0.4748 0.000 0.000 0.524 0.476
#> GSM241534     3   0.499     0.4748 0.000 0.000 0.524 0.476
#> GSM241535     3   0.470     0.6401 0.000 0.000 0.644 0.356
#> GSM241536     3   0.470     0.6401 0.000 0.000 0.644 0.356
#> GSM241537     3   0.265     0.7342 0.000 0.000 0.880 0.120
#> GSM241538     3   0.265     0.7342 0.000 0.000 0.880 0.120
#> GSM241539     3   0.265     0.7342 0.000 0.000 0.880 0.120
#> GSM241540     3   0.312     0.7297 0.000 0.000 0.844 0.156
#> GSM241541     3   0.265     0.7342 0.000 0.000 0.880 0.120
#> GSM241542     3   0.265     0.7342 0.000 0.000 0.880 0.120
#> GSM241543     3   0.000     0.7165 0.000 0.000 1.000 0.000
#> GSM241544     3   0.000     0.7165 0.000 0.000 1.000 0.000
#> GSM241545     3   0.000     0.7165 0.000 0.000 1.000 0.000
#> GSM241546     3   0.000     0.7165 0.000 0.000 1.000 0.000
#> GSM241547     3   0.000     0.7165 0.000 0.000 1.000 0.000
#> GSM241548     3   0.000     0.7165 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2  0.0963     0.9650 0.036 0.964 0.000 0.000 0.000
#> GSM241452     1  0.0000     0.9995 1.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.0963     0.9650 0.036 0.964 0.000 0.000 0.000
#> GSM241454     1  0.0000     0.9995 1.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0963     0.9650 0.036 0.964 0.000 0.000 0.000
#> GSM241456     1  0.0000     0.9995 1.000 0.000 0.000 0.000 0.000
#> GSM241457     5  0.0963     0.9032 0.036 0.000 0.000 0.000 0.964
#> GSM241458     4  0.3274     0.7556 0.220 0.000 0.000 0.780 0.000
#> GSM241459     5  0.0963     0.9032 0.036 0.000 0.000 0.000 0.964
#> GSM241460     1  0.0000     0.9995 1.000 0.000 0.000 0.000 0.000
#> GSM241461     5  0.0963     0.9032 0.036 0.000 0.000 0.000 0.964
#> GSM241462     4  0.3305     0.7521 0.224 0.000 0.000 0.776 0.000
#> GSM241463     2  0.0963     0.9650 0.036 0.964 0.000 0.000 0.000
#> GSM241464     1  0.0000     0.9995 1.000 0.000 0.000 0.000 0.000
#> GSM241465     2  0.0963     0.9650 0.036 0.964 0.000 0.000 0.000
#> GSM241466     1  0.0000     0.9995 1.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000     0.9995 1.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.0963     0.9650 0.036 0.964 0.000 0.000 0.000
#> GSM241469     1  0.0000     0.9995 1.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0963     0.9650 0.036 0.964 0.000 0.000 0.000
#> GSM241471     2  0.0963     0.9650 0.036 0.964 0.000 0.000 0.000
#> GSM241472     1  0.0000     0.9995 1.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.0963     0.9650 0.036 0.964 0.000 0.000 0.000
#> GSM241474     1  0.0000     0.9995 1.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.0963     0.9650 0.036 0.964 0.000 0.000 0.000
#> GSM241476     1  0.0324     0.9914 0.992 0.000 0.004 0.004 0.000
#> GSM241477     2  0.0963     0.9650 0.036 0.964 0.000 0.000 0.000
#> GSM241478     2  0.0963     0.9650 0.036 0.964 0.000 0.000 0.000
#> GSM241479     1  0.0000     0.9995 1.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000     0.9995 1.000 0.000 0.000 0.000 0.000
#> GSM241481     5  0.0963     0.9032 0.036 0.000 0.000 0.000 0.964
#> GSM241482     4  0.3305     0.7521 0.224 0.000 0.000 0.776 0.000
#> GSM241483     5  0.0963     0.9032 0.036 0.000 0.000 0.000 0.964
#> GSM241484     4  0.3519     0.7567 0.216 0.008 0.000 0.776 0.000
#> GSM241485     4  0.4294     0.3155 0.468 0.000 0.000 0.532 0.000
#> GSM241486     5  0.0963     0.9032 0.036 0.000 0.000 0.000 0.964
#> GSM241487     2  0.7652     0.0723 0.036 0.464 0.060 0.348 0.092
#> GSM241488     2  0.0963     0.9650 0.036 0.964 0.000 0.000 0.000
#> GSM241489     1  0.0000     0.9995 1.000 0.000 0.000 0.000 0.000
#> GSM241490     4  0.5230     0.2950 0.452 0.000 0.044 0.504 0.000
#> GSM241491     2  0.0963     0.9650 0.036 0.964 0.000 0.000 0.000
#> GSM241492     1  0.0000     0.9995 1.000 0.000 0.000 0.000 0.000
#> GSM241493     2  0.0963     0.9650 0.036 0.964 0.000 0.000 0.000
#> GSM241494     1  0.0000     0.9995 1.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0963     0.9650 0.036 0.964 0.000 0.000 0.000
#> GSM241496     2  0.0963     0.9650 0.036 0.964 0.000 0.000 0.000
#> GSM241497     1  0.0000     0.9995 1.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000     0.9995 1.000 0.000 0.000 0.000 0.000
#> GSM241499     4  0.3920     0.7845 0.148 0.012 0.036 0.804 0.000
#> GSM241500     5  0.0000     0.8976 0.000 0.000 0.000 0.000 1.000
#> GSM241501     5  0.0000     0.8976 0.000 0.000 0.000 0.000 1.000
#> GSM241502     5  0.0000     0.8976 0.000 0.000 0.000 0.000 1.000
#> GSM241503     4  0.3920     0.7845 0.148 0.012 0.036 0.804 0.000
#> GSM241504     4  0.3920     0.7845 0.148 0.012 0.036 0.804 0.000
#> GSM241505     4  0.3920     0.7845 0.148 0.012 0.036 0.804 0.000
#> GSM241506     5  0.3551     0.7034 0.000 0.000 0.008 0.220 0.772
#> GSM241507     4  0.3920     0.7845 0.148 0.012 0.036 0.804 0.000
#> GSM241508     5  0.0000     0.8976 0.000 0.000 0.000 0.000 1.000
#> GSM241509     5  0.3388     0.7534 0.000 0.000 0.008 0.200 0.792
#> GSM241510     5  0.4183     0.5505 0.000 0.000 0.008 0.324 0.668
#> GSM241511     4  0.1522     0.8252 0.000 0.012 0.044 0.944 0.000
#> GSM241512     4  0.1410     0.8256 0.000 0.000 0.060 0.940 0.000
#> GSM241513     3  0.0510     0.9433 0.000 0.000 0.984 0.016 0.000
#> GSM241514     3  0.4242     0.1943 0.000 0.000 0.572 0.428 0.000
#> GSM241515     4  0.3550     0.7219 0.000 0.000 0.236 0.760 0.004
#> GSM241516     4  0.2561     0.7981 0.000 0.000 0.144 0.856 0.000
#> GSM241517     3  0.0000     0.9553 0.000 0.000 1.000 0.000 0.000
#> GSM241518     3  0.0404     0.9545 0.000 0.000 0.988 0.012 0.000
#> GSM241519     3  0.0000     0.9553 0.000 0.000 1.000 0.000 0.000
#> GSM241520     3  0.0404     0.9545 0.000 0.000 0.988 0.012 0.000
#> GSM241521     3  0.0000     0.9553 0.000 0.000 1.000 0.000 0.000
#> GSM241522     4  0.5460     0.7046 0.148 0.000 0.196 0.656 0.000
#> GSM241523     3  0.0000     0.9553 0.000 0.000 1.000 0.000 0.000
#> GSM241524     3  0.0404     0.9545 0.000 0.000 0.988 0.012 0.000
#> GSM241525     4  0.0404     0.8251 0.000 0.000 0.012 0.988 0.000
#> GSM241526     4  0.3359     0.7547 0.000 0.000 0.020 0.816 0.164
#> GSM241527     4  0.0609     0.8255 0.000 0.000 0.020 0.980 0.000
#> GSM241528     4  0.3476     0.7435 0.000 0.000 0.020 0.804 0.176
#> GSM241529     4  0.3242     0.7486 0.000 0.000 0.012 0.816 0.172
#> GSM241530     4  0.0404     0.8251 0.000 0.000 0.012 0.988 0.000
#> GSM241531     4  0.0693     0.8237 0.000 0.012 0.008 0.980 0.000
#> GSM241532     4  0.2798     0.7664 0.000 0.000 0.008 0.852 0.140
#> GSM241533     4  0.2798     0.7664 0.000 0.000 0.008 0.852 0.140
#> GSM241534     4  0.2798     0.7664 0.000 0.000 0.008 0.852 0.140
#> GSM241535     4  0.0703     0.8254 0.000 0.000 0.024 0.976 0.000
#> GSM241536     4  0.0693     0.8237 0.000 0.012 0.008 0.980 0.000
#> GSM241537     4  0.2812     0.8112 0.000 0.024 0.096 0.876 0.004
#> GSM241538     4  0.2642     0.8114 0.000 0.024 0.084 0.888 0.004
#> GSM241539     4  0.2812     0.8112 0.000 0.024 0.096 0.876 0.004
#> GSM241540     4  0.2482     0.8124 0.000 0.024 0.084 0.892 0.000
#> GSM241541     4  0.3606     0.7631 0.000 0.024 0.164 0.808 0.004
#> GSM241542     4  0.2812     0.8068 0.000 0.024 0.096 0.876 0.004
#> GSM241543     3  0.0000     0.9553 0.000 0.000 1.000 0.000 0.000
#> GSM241544     3  0.0404     0.9545 0.000 0.000 0.988 0.012 0.000
#> GSM241545     3  0.0000     0.9553 0.000 0.000 1.000 0.000 0.000
#> GSM241546     3  0.0404     0.9545 0.000 0.000 0.988 0.012 0.000
#> GSM241547     3  0.0000     0.9553 0.000 0.000 1.000 0.000 0.000
#> GSM241548     3  0.0404     0.9545 0.000 0.000 0.988 0.012 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM241451     2  0.0000     0.9755 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241452     1  0.0000     0.9791 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.0000     0.9755 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241454     1  0.0000     0.9791 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0000     0.9755 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241456     1  0.0000     0.9791 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241457     5  0.3351     1.0000 0.000 0.000 0.000 0.288 0.712 0.000
#> GSM241458     6  0.0000     0.9537 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241459     5  0.3351     1.0000 0.000 0.000 0.000 0.288 0.712 0.000
#> GSM241460     1  0.0000     0.9791 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241461     5  0.3351     1.0000 0.000 0.000 0.000 0.288 0.712 0.000
#> GSM241462     6  0.0000     0.9537 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241463     2  0.0000     0.9755 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241464     1  0.0000     0.9791 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241465     2  0.0603     0.9564 0.000 0.980 0.000 0.004 0.016 0.000
#> GSM241466     1  0.0000     0.9791 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000     0.9791 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.0000     0.9755 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241469     1  0.0000     0.9791 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0000     0.9755 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241471     2  0.0000     0.9755 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241472     1  0.0000     0.9791 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.0000     0.9755 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241474     1  0.0000     0.9791 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.0000     0.9755 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241476     1  0.0000     0.9791 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.0000     0.9755 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241478     2  0.0000     0.9755 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241479     1  0.0000     0.9791 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000     0.9791 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241481     5  0.3351     1.0000 0.000 0.000 0.000 0.288 0.712 0.000
#> GSM241482     6  0.0000     0.9537 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241483     5  0.3351     1.0000 0.000 0.000 0.000 0.288 0.712 0.000
#> GSM241484     6  0.0000     0.9537 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241485     6  0.3563     0.4867 0.336 0.000 0.000 0.000 0.000 0.664
#> GSM241486     5  0.3351     1.0000 0.000 0.000 0.000 0.288 0.712 0.000
#> GSM241487     2  0.4445     0.4076 0.000 0.656 0.000 0.288 0.056 0.000
#> GSM241488     2  0.0000     0.9755 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241489     1  0.0000     0.9791 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241490     1  0.3844     0.4367 0.676 0.000 0.008 0.004 0.000 0.312
#> GSM241491     2  0.0000     0.9755 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241492     1  0.0000     0.9791 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241493     2  0.0000     0.9755 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241494     1  0.0000     0.9791 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0000     0.9755 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241496     2  0.0000     0.9755 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241497     1  0.0000     0.9791 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000     0.9791 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241499     6  0.0000     0.9537 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241500     5  0.3351     1.0000 0.000 0.000 0.000 0.288 0.712 0.000
#> GSM241501     5  0.3351     1.0000 0.000 0.000 0.000 0.288 0.712 0.000
#> GSM241502     5  0.3351     1.0000 0.000 0.000 0.000 0.288 0.712 0.000
#> GSM241503     6  0.0000     0.9537 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241504     6  0.0146     0.9521 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM241505     6  0.0146     0.9521 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM241506     4  0.2003     0.5531 0.000 0.000 0.000 0.884 0.116 0.000
#> GSM241507     6  0.0146     0.9521 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM241508     5  0.3351     1.0000 0.000 0.000 0.000 0.288 0.712 0.000
#> GSM241509     4  0.3175     0.2391 0.000 0.000 0.000 0.744 0.256 0.000
#> GSM241510     4  0.1204     0.6314 0.000 0.000 0.000 0.944 0.056 0.000
#> GSM241511     4  0.3578     0.6107 0.000 0.000 0.000 0.660 0.000 0.340
#> GSM241512     4  0.4265     0.5743 0.000 0.000 0.300 0.660 0.000 0.040
#> GSM241513     3  0.0000     0.9341 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241514     3  0.3847    -0.0724 0.000 0.000 0.544 0.456 0.000 0.000
#> GSM241515     4  0.3634     0.5040 0.000 0.000 0.356 0.644 0.000 0.000
#> GSM241516     4  0.3578     0.5298 0.000 0.000 0.340 0.660 0.000 0.000
#> GSM241517     3  0.0000     0.9341 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241518     3  0.0000     0.9341 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241519     3  0.0000     0.9341 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241520     3  0.0000     0.9341 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241521     3  0.0000     0.9341 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241522     4  0.5324     0.2574 0.000 0.000 0.428 0.468 0.000 0.104
#> GSM241523     3  0.0000     0.9341 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241524     3  0.0547     0.9165 0.000 0.000 0.980 0.020 0.000 0.000
#> GSM241525     4  0.4118     0.6301 0.000 0.000 0.028 0.660 0.000 0.312
#> GSM241526     4  0.1204     0.6314 0.000 0.000 0.000 0.944 0.056 0.000
#> GSM241527     4  0.4118     0.6301 0.000 0.000 0.028 0.660 0.000 0.312
#> GSM241528     4  0.1204     0.6314 0.000 0.000 0.000 0.944 0.056 0.000
#> GSM241529     4  0.1204     0.6314 0.000 0.000 0.000 0.944 0.056 0.000
#> GSM241530     4  0.4118     0.6301 0.000 0.000 0.028 0.660 0.000 0.312
#> GSM241531     4  0.3578     0.6107 0.000 0.000 0.000 0.660 0.000 0.340
#> GSM241532     4  0.0790     0.6454 0.000 0.000 0.000 0.968 0.032 0.000
#> GSM241533     4  0.0146     0.6594 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM241534     4  0.0146     0.6594 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM241535     4  0.4118     0.6301 0.000 0.000 0.028 0.660 0.000 0.312
#> GSM241536     4  0.3578     0.6107 0.000 0.000 0.000 0.660 0.000 0.340
#> GSM241537     4  0.3351     0.7027 0.000 0.000 0.000 0.712 0.288 0.000
#> GSM241538     4  0.3351     0.7027 0.000 0.000 0.000 0.712 0.288 0.000
#> GSM241539     4  0.3351     0.7027 0.000 0.000 0.000 0.712 0.288 0.000
#> GSM241540     4  0.3936     0.7021 0.000 0.000 0.000 0.688 0.288 0.024
#> GSM241541     4  0.3351     0.7027 0.000 0.000 0.000 0.712 0.288 0.000
#> GSM241542     4  0.3351     0.7027 0.000 0.000 0.000 0.712 0.288 0.000
#> GSM241543     3  0.0000     0.9341 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241544     3  0.0000     0.9341 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241545     3  0.0000     0.9341 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241546     3  0.3076     0.5894 0.000 0.000 0.760 0.240 0.000 0.000
#> GSM241547     3  0.0000     0.9341 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241548     3  0.0000     0.9341 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n  dose(p)  time(p) k
#> SD:mclust 98 2.95e-15 3.03e-01 2
#> SD:mclust 97 7.93e-12 4.87e-02 3
#> SD:mclust 85 1.51e-12 1.27e-03 4
#> SD:mclust 94 6.73e-12 3.99e-08 5
#> SD:mclust 92 1.71e-13 5.56e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.854           0.909       0.961         0.4860 0.525   0.525
#> 3 3 0.957           0.954       0.981         0.3837 0.650   0.418
#> 4 4 0.969           0.931       0.964         0.0951 0.900   0.711
#> 5 5 0.799           0.809       0.882         0.0669 0.928   0.742
#> 6 6 0.673           0.566       0.766         0.0426 0.963   0.839

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 3

There is also optional best \(k\) = 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     1  0.0938      0.937 0.988 0.012
#> GSM241452     1  0.0000      0.944 1.000 0.000
#> GSM241453     1  0.0938      0.937 0.988 0.012
#> GSM241454     1  0.0000      0.944 1.000 0.000
#> GSM241455     1  0.0000      0.944 1.000 0.000
#> GSM241456     1  0.0000      0.944 1.000 0.000
#> GSM241457     1  0.8955      0.574 0.688 0.312
#> GSM241458     1  0.0000      0.944 1.000 0.000
#> GSM241459     1  0.6623      0.790 0.828 0.172
#> GSM241460     1  0.0000      0.944 1.000 0.000
#> GSM241461     2  0.4939      0.868 0.108 0.892
#> GSM241462     1  0.0000      0.944 1.000 0.000
#> GSM241463     1  0.0000      0.944 1.000 0.000
#> GSM241464     1  0.0000      0.944 1.000 0.000
#> GSM241465     1  0.3431      0.899 0.936 0.064
#> GSM241466     1  0.0000      0.944 1.000 0.000
#> GSM241467     1  0.0000      0.944 1.000 0.000
#> GSM241468     1  0.0000      0.944 1.000 0.000
#> GSM241469     1  0.0000      0.944 1.000 0.000
#> GSM241470     1  0.0376      0.941 0.996 0.004
#> GSM241471     1  0.0000      0.944 1.000 0.000
#> GSM241472     1  0.0000      0.944 1.000 0.000
#> GSM241473     1  0.0000      0.944 1.000 0.000
#> GSM241474     1  0.0000      0.944 1.000 0.000
#> GSM241475     1  0.0000      0.944 1.000 0.000
#> GSM241476     1  0.0000      0.944 1.000 0.000
#> GSM241477     1  0.0938      0.937 0.988 0.012
#> GSM241478     1  0.0000      0.944 1.000 0.000
#> GSM241479     1  0.0000      0.944 1.000 0.000
#> GSM241480     1  0.0000      0.944 1.000 0.000
#> GSM241481     1  0.6712      0.785 0.824 0.176
#> GSM241482     1  0.0000      0.944 1.000 0.000
#> GSM241483     2  0.9393      0.407 0.356 0.644
#> GSM241484     1  0.0000      0.944 1.000 0.000
#> GSM241485     1  0.0000      0.944 1.000 0.000
#> GSM241486     2  0.3114      0.929 0.056 0.944
#> GSM241487     1  0.9552      0.437 0.624 0.376
#> GSM241488     1  0.0000      0.944 1.000 0.000
#> GSM241489     1  0.0000      0.944 1.000 0.000
#> GSM241490     1  0.0000      0.944 1.000 0.000
#> GSM241491     1  0.3431      0.899 0.936 0.064
#> GSM241492     1  0.0000      0.944 1.000 0.000
#> GSM241493     1  0.0000      0.944 1.000 0.000
#> GSM241494     1  0.0000      0.944 1.000 0.000
#> GSM241495     1  0.3114      0.906 0.944 0.056
#> GSM241496     1  0.0000      0.944 1.000 0.000
#> GSM241497     1  0.0000      0.944 1.000 0.000
#> GSM241498     1  0.0000      0.944 1.000 0.000
#> GSM241499     1  0.0000      0.944 1.000 0.000
#> GSM241500     2  0.0000      0.983 0.000 1.000
#> GSM241501     2  0.0000      0.983 0.000 1.000
#> GSM241502     2  0.0000      0.983 0.000 1.000
#> GSM241503     1  0.0000      0.944 1.000 0.000
#> GSM241504     1  0.0000      0.944 1.000 0.000
#> GSM241505     1  0.0000      0.944 1.000 0.000
#> GSM241506     2  0.0000      0.983 0.000 1.000
#> GSM241507     1  0.0000      0.944 1.000 0.000
#> GSM241508     2  0.0000      0.983 0.000 1.000
#> GSM241509     2  0.0000      0.983 0.000 1.000
#> GSM241510     2  0.0000      0.983 0.000 1.000
#> GSM241511     1  0.0000      0.944 1.000 0.000
#> GSM241512     1  0.4690      0.865 0.900 0.100
#> GSM241513     2  0.0000      0.983 0.000 1.000
#> GSM241514     1  0.7950      0.695 0.760 0.240
#> GSM241515     2  0.0000      0.983 0.000 1.000
#> GSM241516     1  0.9850      0.313 0.572 0.428
#> GSM241517     2  0.0000      0.983 0.000 1.000
#> GSM241518     2  0.0376      0.980 0.004 0.996
#> GSM241519     2  0.0000      0.983 0.000 1.000
#> GSM241520     1  0.9427      0.486 0.640 0.360
#> GSM241521     2  0.0000      0.983 0.000 1.000
#> GSM241522     1  0.0000      0.944 1.000 0.000
#> GSM241523     2  0.0000      0.983 0.000 1.000
#> GSM241524     1  0.0000      0.944 1.000 0.000
#> GSM241525     1  0.3114      0.904 0.944 0.056
#> GSM241526     2  0.0000      0.983 0.000 1.000
#> GSM241527     2  0.0376      0.980 0.004 0.996
#> GSM241528     2  0.0000      0.983 0.000 1.000
#> GSM241529     2  0.0000      0.983 0.000 1.000
#> GSM241530     1  0.9988      0.144 0.520 0.480
#> GSM241531     1  0.9129      0.545 0.672 0.328
#> GSM241532     2  0.0000      0.983 0.000 1.000
#> GSM241533     2  0.0000      0.983 0.000 1.000
#> GSM241534     2  0.0000      0.983 0.000 1.000
#> GSM241535     2  0.0000      0.983 0.000 1.000
#> GSM241536     1  0.1414      0.931 0.980 0.020
#> GSM241537     2  0.0000      0.983 0.000 1.000
#> GSM241538     2  0.0000      0.983 0.000 1.000
#> GSM241539     2  0.0000      0.983 0.000 1.000
#> GSM241540     2  0.0000      0.983 0.000 1.000
#> GSM241541     2  0.0000      0.983 0.000 1.000
#> GSM241542     2  0.0000      0.983 0.000 1.000
#> GSM241543     2  0.0000      0.983 0.000 1.000
#> GSM241544     2  0.0000      0.983 0.000 1.000
#> GSM241545     2  0.0000      0.983 0.000 1.000
#> GSM241546     2  0.2603      0.941 0.044 0.956
#> GSM241547     2  0.0000      0.983 0.000 1.000
#> GSM241548     2  0.0000      0.983 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241452     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241453     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241454     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241455     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241456     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241457     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241458     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241459     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241460     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241461     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241462     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241463     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241464     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241465     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241466     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241467     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241468     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241469     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241470     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241471     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241472     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241473     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241474     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241475     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241476     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241477     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241478     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241479     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241480     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241481     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241482     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241483     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241484     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241485     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241486     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241487     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241488     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241489     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241490     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241491     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241492     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241493     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241494     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241495     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241496     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241497     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241498     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241499     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241500     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241501     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241502     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241503     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241504     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241505     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241506     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241507     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241508     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241509     2  0.0000      0.986 0.000 1.000 0.000
#> GSM241510     2  0.4291      0.773 0.000 0.820 0.180
#> GSM241511     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241512     1  0.6204      0.271 0.576 0.000 0.424
#> GSM241513     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241514     3  0.0424      0.968 0.008 0.000 0.992
#> GSM241515     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241516     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241517     3  0.0424      0.968 0.000 0.008 0.992
#> GSM241518     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241519     3  0.5497      0.590 0.000 0.292 0.708
#> GSM241520     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241521     2  0.4974      0.684 0.000 0.764 0.236
#> GSM241522     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241523     3  0.5621      0.558 0.000 0.308 0.692
#> GSM241524     1  0.4002      0.805 0.840 0.000 0.160
#> GSM241525     1  0.3816      0.820 0.852 0.000 0.148
#> GSM241526     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241527     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241528     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241529     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241530     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241531     3  0.3192      0.856 0.112 0.000 0.888
#> GSM241532     3  0.0237      0.972 0.000 0.004 0.996
#> GSM241533     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241534     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241535     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241536     1  0.0000      0.978 1.000 0.000 0.000
#> GSM241537     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241538     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241539     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241540     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241541     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241542     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241543     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241544     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241545     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241546     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241547     3  0.0000      0.975 0.000 0.000 1.000
#> GSM241548     3  0.0000      0.975 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.0469      0.975 0.000 0.988 0.012 0.000
#> GSM241452     1  0.0188      0.960 0.996 0.000 0.004 0.000
#> GSM241453     2  0.0000      0.975 0.000 1.000 0.000 0.000
#> GSM241454     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> GSM241455     2  0.0921      0.971 0.000 0.972 0.028 0.000
#> GSM241456     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> GSM241457     2  0.0524      0.974 0.000 0.988 0.004 0.008
#> GSM241458     1  0.0188      0.959 0.996 0.000 0.004 0.000
#> GSM241459     2  0.0524      0.974 0.000 0.988 0.004 0.008
#> GSM241460     1  0.0188      0.959 0.996 0.000 0.004 0.000
#> GSM241461     2  0.0524      0.974 0.000 0.988 0.004 0.008
#> GSM241462     1  0.0657      0.950 0.984 0.004 0.012 0.000
#> GSM241463     2  0.1474      0.960 0.000 0.948 0.052 0.000
#> GSM241464     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> GSM241465     2  0.0469      0.975 0.000 0.988 0.012 0.000
#> GSM241466     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      0.975 0.000 1.000 0.000 0.000
#> GSM241469     1  0.0188      0.960 0.996 0.000 0.004 0.000
#> GSM241470     2  0.1211      0.966 0.000 0.960 0.040 0.000
#> GSM241471     2  0.0000      0.975 0.000 1.000 0.000 0.000
#> GSM241472     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> GSM241473     2  0.0469      0.975 0.000 0.988 0.012 0.000
#> GSM241474     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> GSM241475     2  0.0469      0.975 0.000 0.988 0.012 0.000
#> GSM241476     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      0.975 0.000 1.000 0.000 0.000
#> GSM241478     2  0.1557      0.957 0.000 0.944 0.056 0.000
#> GSM241479     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> GSM241481     2  0.0524      0.974 0.000 0.988 0.004 0.008
#> GSM241482     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> GSM241483     2  0.0524      0.974 0.000 0.988 0.004 0.008
#> GSM241484     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> GSM241485     1  0.0469      0.953 0.988 0.000 0.012 0.000
#> GSM241486     2  0.0524      0.974 0.000 0.988 0.004 0.008
#> GSM241487     2  0.0921      0.971 0.000 0.972 0.028 0.000
#> GSM241488     2  0.1474      0.960 0.000 0.948 0.052 0.000
#> GSM241489     1  0.0188      0.960 0.996 0.000 0.004 0.000
#> GSM241490     1  0.0188      0.960 0.996 0.000 0.004 0.000
#> GSM241491     2  0.1474      0.960 0.000 0.948 0.052 0.000
#> GSM241492     1  0.0188      0.959 0.996 0.000 0.004 0.000
#> GSM241493     2  0.0817      0.972 0.000 0.976 0.024 0.000
#> GSM241494     1  0.0188      0.960 0.996 0.000 0.004 0.000
#> GSM241495     2  0.1302      0.964 0.000 0.956 0.044 0.000
#> GSM241496     2  0.2149      0.930 0.000 0.912 0.088 0.000
#> GSM241497     1  0.0188      0.960 0.996 0.000 0.004 0.000
#> GSM241498     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> GSM241499     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> GSM241500     2  0.0779      0.971 0.000 0.980 0.004 0.016
#> GSM241501     2  0.0524      0.974 0.000 0.988 0.004 0.008
#> GSM241502     2  0.0524      0.974 0.000 0.988 0.004 0.008
#> GSM241503     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> GSM241504     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> GSM241505     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> GSM241506     2  0.1398      0.956 0.000 0.956 0.004 0.040
#> GSM241507     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> GSM241508     2  0.0779      0.971 0.000 0.980 0.004 0.016
#> GSM241509     2  0.2831      0.871 0.000 0.876 0.004 0.120
#> GSM241510     4  0.2216      0.866 0.000 0.092 0.000 0.908
#> GSM241511     1  0.0188      0.959 0.996 0.000 0.000 0.004
#> GSM241512     1  0.4998      0.037 0.512 0.000 0.000 0.488
#> GSM241513     3  0.0817      0.963 0.000 0.000 0.976 0.024
#> GSM241514     3  0.2943      0.887 0.076 0.000 0.892 0.032
#> GSM241515     3  0.3649      0.773 0.000 0.000 0.796 0.204
#> GSM241516     1  0.7253      0.250 0.520 0.000 0.172 0.308
#> GSM241517     3  0.1042      0.961 0.000 0.008 0.972 0.020
#> GSM241518     3  0.0707      0.964 0.000 0.000 0.980 0.020
#> GSM241519     3  0.1059      0.957 0.000 0.016 0.972 0.012
#> GSM241520     3  0.0592      0.963 0.000 0.000 0.984 0.016
#> GSM241521     3  0.0895      0.948 0.000 0.020 0.976 0.004
#> GSM241522     1  0.3873      0.693 0.772 0.000 0.228 0.000
#> GSM241523     3  0.0657      0.953 0.000 0.012 0.984 0.004
#> GSM241524     3  0.0895      0.951 0.020 0.000 0.976 0.004
#> GSM241525     4  0.4193      0.625 0.268 0.000 0.000 0.732
#> GSM241526     4  0.0336      0.952 0.000 0.000 0.008 0.992
#> GSM241527     4  0.0336      0.952 0.000 0.000 0.008 0.992
#> GSM241528     4  0.0336      0.952 0.000 0.000 0.008 0.992
#> GSM241529     4  0.0336      0.952 0.000 0.000 0.008 0.992
#> GSM241530     4  0.0804      0.946 0.012 0.000 0.008 0.980
#> GSM241531     4  0.1452      0.926 0.036 0.000 0.008 0.956
#> GSM241532     4  0.0188      0.948 0.000 0.004 0.000 0.996
#> GSM241533     4  0.0000      0.950 0.000 0.000 0.000 1.000
#> GSM241534     4  0.0000      0.950 0.000 0.000 0.000 1.000
#> GSM241535     4  0.0336      0.952 0.000 0.000 0.008 0.992
#> GSM241536     1  0.0336      0.956 0.992 0.000 0.000 0.008
#> GSM241537     4  0.0592      0.950 0.000 0.000 0.016 0.984
#> GSM241538     4  0.0592      0.950 0.000 0.000 0.016 0.984
#> GSM241539     4  0.0469      0.952 0.000 0.000 0.012 0.988
#> GSM241540     4  0.0592      0.950 0.000 0.000 0.016 0.984
#> GSM241541     4  0.2760      0.843 0.000 0.000 0.128 0.872
#> GSM241542     4  0.2149      0.889 0.000 0.000 0.088 0.912
#> GSM241543     3  0.0707      0.964 0.000 0.000 0.980 0.020
#> GSM241544     3  0.1211      0.956 0.000 0.000 0.960 0.040
#> GSM241545     3  0.0707      0.964 0.000 0.000 0.980 0.020
#> GSM241546     3  0.1637      0.942 0.000 0.000 0.940 0.060
#> GSM241547     3  0.0921      0.962 0.000 0.000 0.972 0.028
#> GSM241548     3  0.1389      0.951 0.000 0.000 0.952 0.048

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2  0.4060     0.6391 0.000 0.640 0.000 0.000 0.360
#> GSM241452     1  0.0960     0.8514 0.972 0.004 0.008 0.000 0.016
#> GSM241453     2  0.4074     0.6329 0.000 0.636 0.000 0.000 0.364
#> GSM241454     1  0.0162     0.8554 0.996 0.004 0.000 0.000 0.000
#> GSM241455     2  0.0963     0.7997 0.000 0.964 0.000 0.000 0.036
#> GSM241456     1  0.0693     0.8553 0.980 0.008 0.000 0.000 0.012
#> GSM241457     5  0.1965     0.9330 0.000 0.096 0.000 0.000 0.904
#> GSM241458     1  0.3857     0.7032 0.688 0.312 0.000 0.000 0.000
#> GSM241459     5  0.1851     0.9341 0.000 0.088 0.000 0.000 0.912
#> GSM241460     1  0.3983     0.6747 0.660 0.340 0.000 0.000 0.000
#> GSM241461     5  0.1608     0.9254 0.000 0.072 0.000 0.000 0.928
#> GSM241462     1  0.4150     0.6093 0.612 0.388 0.000 0.000 0.000
#> GSM241463     2  0.0566     0.7586 0.012 0.984 0.000 0.000 0.004
#> GSM241464     1  0.3561     0.7397 0.740 0.260 0.000 0.000 0.000
#> GSM241465     2  0.3039     0.8055 0.000 0.808 0.000 0.000 0.192
#> GSM241466     1  0.0671     0.8532 0.980 0.004 0.000 0.000 0.016
#> GSM241467     1  0.0324     0.8555 0.992 0.004 0.000 0.000 0.004
#> GSM241468     2  0.3949     0.6868 0.000 0.668 0.000 0.000 0.332
#> GSM241469     1  0.1569     0.8445 0.944 0.004 0.008 0.000 0.044
#> GSM241470     2  0.3039     0.8062 0.000 0.808 0.000 0.000 0.192
#> GSM241471     2  0.4015     0.6604 0.000 0.652 0.000 0.000 0.348
#> GSM241472     1  0.0290     0.8558 0.992 0.008 0.000 0.000 0.000
#> GSM241473     2  0.2230     0.8176 0.000 0.884 0.000 0.000 0.116
#> GSM241474     1  0.3861     0.7237 0.712 0.284 0.000 0.000 0.004
#> GSM241475     2  0.2280     0.8190 0.000 0.880 0.000 0.000 0.120
#> GSM241476     1  0.0771     0.8528 0.976 0.004 0.000 0.000 0.020
#> GSM241477     2  0.3895     0.6967 0.000 0.680 0.000 0.000 0.320
#> GSM241478     2  0.0613     0.7796 0.004 0.984 0.004 0.000 0.008
#> GSM241479     1  0.1116     0.8497 0.964 0.004 0.004 0.000 0.028
#> GSM241480     1  0.0566     0.8551 0.984 0.004 0.000 0.000 0.012
#> GSM241481     5  0.1908     0.9348 0.000 0.092 0.000 0.000 0.908
#> GSM241482     1  0.3774     0.7174 0.704 0.296 0.000 0.000 0.000
#> GSM241483     5  0.1908     0.9348 0.000 0.092 0.000 0.000 0.908
#> GSM241484     1  0.2648     0.8113 0.848 0.152 0.000 0.000 0.000
#> GSM241485     1  0.4126     0.6217 0.620 0.380 0.000 0.000 0.000
#> GSM241486     5  0.1270     0.9090 0.000 0.052 0.000 0.000 0.948
#> GSM241487     2  0.3480     0.7706 0.000 0.752 0.000 0.000 0.248
#> GSM241488     2  0.1282     0.8018 0.004 0.952 0.000 0.000 0.044
#> GSM241489     1  0.0932     0.8565 0.972 0.020 0.004 0.000 0.004
#> GSM241490     1  0.1243     0.8481 0.960 0.004 0.008 0.000 0.028
#> GSM241491     2  0.1043     0.8028 0.000 0.960 0.000 0.000 0.040
#> GSM241492     1  0.3913     0.6909 0.676 0.324 0.000 0.000 0.000
#> GSM241493     2  0.1671     0.8141 0.000 0.924 0.000 0.000 0.076
#> GSM241494     1  0.0960     0.8514 0.972 0.004 0.008 0.000 0.016
#> GSM241495     2  0.3305     0.7888 0.000 0.776 0.000 0.000 0.224
#> GSM241496     2  0.1281     0.7962 0.000 0.956 0.012 0.000 0.032
#> GSM241497     1  0.1087     0.8525 0.968 0.008 0.008 0.000 0.016
#> GSM241498     1  0.0693     0.8548 0.980 0.008 0.000 0.000 0.012
#> GSM241499     1  0.1965     0.8357 0.904 0.096 0.000 0.000 0.000
#> GSM241500     5  0.1792     0.9329 0.000 0.084 0.000 0.000 0.916
#> GSM241501     5  0.2020     0.9299 0.000 0.100 0.000 0.000 0.900
#> GSM241502     5  0.1908     0.9348 0.000 0.092 0.000 0.000 0.908
#> GSM241503     1  0.0609     0.8547 0.980 0.020 0.000 0.000 0.000
#> GSM241504     1  0.0703     0.8546 0.976 0.024 0.000 0.000 0.000
#> GSM241505     1  0.0609     0.8547 0.980 0.020 0.000 0.000 0.000
#> GSM241506     5  0.2124     0.9312 0.000 0.096 0.000 0.004 0.900
#> GSM241507     1  0.0703     0.8543 0.976 0.024 0.000 0.000 0.000
#> GSM241508     5  0.2020     0.9299 0.000 0.100 0.000 0.000 0.900
#> GSM241509     5  0.1012     0.8675 0.000 0.012 0.000 0.020 0.968
#> GSM241510     5  0.4182     0.4523 0.000 0.004 0.000 0.352 0.644
#> GSM241511     1  0.2921     0.7907 0.856 0.020 0.000 0.124 0.000
#> GSM241512     4  0.4300    -0.0695 0.476 0.000 0.000 0.524 0.000
#> GSM241513     3  0.1012     0.9128 0.000 0.020 0.968 0.012 0.000
#> GSM241514     3  0.2670     0.8399 0.088 0.004 0.888 0.004 0.016
#> GSM241515     3  0.3579     0.8326 0.000 0.072 0.828 0.100 0.000
#> GSM241516     1  0.4854     0.4262 0.636 0.004 0.336 0.008 0.016
#> GSM241517     3  0.4547     0.3767 0.000 0.400 0.588 0.012 0.000
#> GSM241518     3  0.0566     0.9132 0.000 0.004 0.984 0.012 0.000
#> GSM241519     3  0.3336     0.7190 0.000 0.228 0.772 0.000 0.000
#> GSM241520     3  0.0324     0.9130 0.004 0.004 0.992 0.000 0.000
#> GSM241521     3  0.2852     0.7921 0.000 0.172 0.828 0.000 0.000
#> GSM241522     1  0.5271     0.2854 0.568 0.004 0.384 0.000 0.044
#> GSM241523     3  0.0794     0.9094 0.000 0.028 0.972 0.000 0.000
#> GSM241524     3  0.0771     0.9068 0.020 0.000 0.976 0.000 0.004
#> GSM241525     1  0.4587     0.3688 0.604 0.004 0.004 0.384 0.004
#> GSM241526     4  0.0000     0.9422 0.000 0.000 0.000 1.000 0.000
#> GSM241527     4  0.0000     0.9422 0.000 0.000 0.000 1.000 0.000
#> GSM241528     4  0.0609     0.9298 0.000 0.020 0.000 0.980 0.000
#> GSM241529     4  0.0000     0.9422 0.000 0.000 0.000 1.000 0.000
#> GSM241530     4  0.0671     0.9318 0.016 0.000 0.000 0.980 0.004
#> GSM241531     4  0.0290     0.9382 0.008 0.000 0.000 0.992 0.000
#> GSM241532     4  0.0510     0.9354 0.000 0.000 0.000 0.984 0.016
#> GSM241533     4  0.0290     0.9398 0.000 0.000 0.000 0.992 0.008
#> GSM241534     4  0.0609     0.9341 0.000 0.000 0.000 0.980 0.020
#> GSM241535     4  0.0000     0.9422 0.000 0.000 0.000 1.000 0.000
#> GSM241536     1  0.4555     0.5051 0.636 0.020 0.000 0.344 0.000
#> GSM241537     4  0.0000     0.9422 0.000 0.000 0.000 1.000 0.000
#> GSM241538     4  0.0000     0.9422 0.000 0.000 0.000 1.000 0.000
#> GSM241539     4  0.0000     0.9422 0.000 0.000 0.000 1.000 0.000
#> GSM241540     4  0.0000     0.9422 0.000 0.000 0.000 1.000 0.000
#> GSM241541     4  0.2179     0.8361 0.000 0.000 0.112 0.888 0.000
#> GSM241542     4  0.1732     0.8765 0.000 0.000 0.080 0.920 0.000
#> GSM241543     3  0.0451     0.9140 0.000 0.008 0.988 0.004 0.000
#> GSM241544     3  0.0510     0.9099 0.016 0.000 0.984 0.000 0.000
#> GSM241545     3  0.0451     0.9140 0.000 0.008 0.988 0.004 0.000
#> GSM241546     3  0.1173     0.9011 0.020 0.004 0.964 0.000 0.012
#> GSM241547     3  0.0807     0.9137 0.000 0.012 0.976 0.012 0.000
#> GSM241548     3  0.0404     0.9129 0.000 0.000 0.988 0.012 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM241451     2  0.4288    0.63872 0.000 0.716 0.004 0.000 0.216 0.064
#> GSM241452     1  0.3103    0.50421 0.836 0.008 0.004 0.000 0.020 0.132
#> GSM241453     2  0.4085    0.62705 0.000 0.704 0.000 0.000 0.252 0.044
#> GSM241454     1  0.1814    0.46671 0.900 0.000 0.000 0.000 0.000 0.100
#> GSM241455     2  0.1124    0.78920 0.000 0.956 0.000 0.000 0.008 0.036
#> GSM241456     1  0.3626    0.50457 0.812 0.012 0.000 0.000 0.092 0.084
#> GSM241457     5  0.3959    0.85340 0.040 0.112 0.000 0.000 0.796 0.052
#> GSM241458     1  0.5983    0.00697 0.432 0.324 0.000 0.000 0.000 0.244
#> GSM241459     5  0.2169    0.90172 0.008 0.080 0.000 0.000 0.900 0.012
#> GSM241460     1  0.5917    0.00383 0.404 0.388 0.000 0.000 0.000 0.208
#> GSM241461     5  0.3231    0.88081 0.052 0.076 0.000 0.000 0.848 0.024
#> GSM241462     2  0.5883   -0.17659 0.360 0.436 0.000 0.000 0.000 0.204
#> GSM241463     2  0.1802    0.78437 0.000 0.916 0.000 0.000 0.012 0.072
#> GSM241464     1  0.6331    0.30429 0.544 0.180 0.000 0.000 0.056 0.220
#> GSM241465     2  0.2983    0.76781 0.000 0.832 0.000 0.000 0.136 0.032
#> GSM241466     1  0.1926    0.51239 0.912 0.000 0.000 0.000 0.020 0.068
#> GSM241467     1  0.2282    0.52230 0.888 0.000 0.000 0.000 0.024 0.088
#> GSM241468     2  0.5649    0.65043 0.036 0.620 0.000 0.000 0.212 0.132
#> GSM241469     1  0.4298    0.45526 0.740 0.000 0.004 0.000 0.116 0.140
#> GSM241470     2  0.1888    0.78662 0.000 0.916 0.004 0.000 0.068 0.012
#> GSM241471     2  0.3950    0.67064 0.000 0.720 0.000 0.000 0.240 0.040
#> GSM241472     1  0.3381    0.51136 0.828 0.024 0.000 0.000 0.032 0.116
#> GSM241473     2  0.3752    0.76187 0.008 0.796 0.000 0.000 0.080 0.116
#> GSM241474     1  0.6289    0.28532 0.572 0.176 0.000 0.000 0.076 0.176
#> GSM241475     2  0.3022    0.78516 0.016 0.864 0.004 0.000 0.044 0.072
#> GSM241476     1  0.3250    0.51643 0.840 0.004 0.004 0.000 0.076 0.076
#> GSM241477     2  0.3014    0.72436 0.000 0.804 0.000 0.000 0.184 0.012
#> GSM241478     2  0.1555    0.78384 0.012 0.940 0.008 0.000 0.000 0.040
#> GSM241479     1  0.2968    0.51040 0.852 0.000 0.004 0.000 0.052 0.092
#> GSM241480     1  0.1501    0.48238 0.924 0.000 0.000 0.000 0.000 0.076
#> GSM241481     5  0.3469    0.87801 0.032 0.104 0.000 0.000 0.828 0.036
#> GSM241482     1  0.5987    0.01109 0.436 0.312 0.000 0.000 0.000 0.252
#> GSM241483     5  0.1908    0.89823 0.000 0.096 0.000 0.000 0.900 0.004
#> GSM241484     1  0.5691    0.05900 0.520 0.204 0.000 0.000 0.000 0.276
#> GSM241485     2  0.5878   -0.16565 0.356 0.440 0.000 0.000 0.000 0.204
#> GSM241486     5  0.2475    0.89239 0.036 0.060 0.000 0.000 0.892 0.012
#> GSM241487     2  0.2826    0.77260 0.000 0.856 0.008 0.000 0.112 0.024
#> GSM241488     2  0.2957    0.75839 0.028 0.868 0.008 0.000 0.016 0.080
#> GSM241489     1  0.4656    0.48408 0.740 0.048 0.004 0.000 0.052 0.156
#> GSM241490     1  0.2747    0.51002 0.860 0.000 0.004 0.000 0.028 0.108
#> GSM241491     2  0.3023    0.76109 0.000 0.836 0.000 0.000 0.044 0.120
#> GSM241492     1  0.6625    0.20270 0.468 0.256 0.000 0.000 0.048 0.228
#> GSM241493     2  0.1829    0.79275 0.008 0.928 0.000 0.000 0.028 0.036
#> GSM241494     1  0.1788    0.51666 0.916 0.000 0.004 0.000 0.004 0.076
#> GSM241495     2  0.3497    0.76121 0.000 0.832 0.036 0.000 0.084 0.048
#> GSM241496     2  0.2586    0.78244 0.016 0.892 0.016 0.000 0.012 0.064
#> GSM241497     1  0.2940    0.51236 0.856 0.012 0.004 0.000 0.020 0.108
#> GSM241498     1  0.2620    0.51813 0.884 0.012 0.004 0.000 0.024 0.076
#> GSM241499     1  0.5366    0.08897 0.568 0.148 0.000 0.000 0.000 0.284
#> GSM241500     5  0.2314    0.90187 0.008 0.072 0.000 0.012 0.900 0.008
#> GSM241501     5  0.2275    0.89960 0.008 0.096 0.000 0.000 0.888 0.008
#> GSM241502     5  0.3192    0.89052 0.000 0.088 0.000 0.024 0.848 0.040
#> GSM241503     1  0.3936    0.21643 0.688 0.024 0.000 0.000 0.000 0.288
#> GSM241504     1  0.4883   -0.06211 0.588 0.016 0.000 0.040 0.000 0.356
#> GSM241505     1  0.4291    0.03541 0.620 0.008 0.000 0.016 0.000 0.356
#> GSM241506     5  0.4580    0.82683 0.004 0.080 0.000 0.068 0.764 0.084
#> GSM241507     1  0.4186    0.19020 0.656 0.032 0.000 0.000 0.000 0.312
#> GSM241508     5  0.2361    0.89543 0.000 0.088 0.000 0.000 0.884 0.028
#> GSM241509     5  0.2294    0.81076 0.000 0.000 0.000 0.072 0.892 0.036
#> GSM241510     5  0.3947    0.64450 0.000 0.004 0.000 0.228 0.732 0.036
#> GSM241511     1  0.6251   -0.31649 0.532 0.052 0.000 0.140 0.000 0.276
#> GSM241512     4  0.6783   -0.67804 0.268 0.044 0.000 0.400 0.000 0.288
#> GSM241513     3  0.1268    0.83950 0.000 0.008 0.952 0.004 0.000 0.036
#> GSM241514     3  0.3416    0.74766 0.140 0.000 0.804 0.000 0.000 0.056
#> GSM241515     3  0.5628    0.68857 0.000 0.116 0.672 0.092 0.004 0.116
#> GSM241516     3  0.7101    0.00394 0.328 0.000 0.368 0.064 0.004 0.236
#> GSM241517     3  0.3522    0.76023 0.000 0.172 0.784 0.000 0.000 0.044
#> GSM241518     3  0.2956    0.81039 0.052 0.004 0.860 0.000 0.004 0.080
#> GSM241519     3  0.3686    0.71084 0.000 0.220 0.748 0.000 0.000 0.032
#> GSM241520     3  0.0972    0.84367 0.008 0.000 0.964 0.000 0.000 0.028
#> GSM241521     3  0.3892    0.71058 0.000 0.212 0.740 0.000 0.000 0.048
#> GSM241522     1  0.5841    0.11945 0.532 0.000 0.200 0.000 0.008 0.260
#> GSM241523     3  0.3481    0.76594 0.000 0.160 0.792 0.000 0.000 0.048
#> GSM241524     3  0.2563    0.81838 0.052 0.000 0.876 0.000 0.000 0.072
#> GSM241525     1  0.5898   -0.37876 0.416 0.000 0.000 0.380 0.000 0.204
#> GSM241526     4  0.1700    0.73045 0.000 0.004 0.000 0.916 0.000 0.080
#> GSM241527     4  0.1910    0.72325 0.000 0.000 0.000 0.892 0.000 0.108
#> GSM241528     4  0.3649    0.66020 0.000 0.112 0.000 0.800 0.004 0.084
#> GSM241529     4  0.2485    0.72361 0.000 0.024 0.000 0.884 0.008 0.084
#> GSM241530     4  0.3235    0.67187 0.052 0.000 0.000 0.820 0.000 0.128
#> GSM241531     4  0.3042    0.67328 0.032 0.000 0.000 0.836 0.004 0.128
#> GSM241532     4  0.3602    0.64717 0.000 0.000 0.000 0.784 0.160 0.056
#> GSM241533     4  0.1863    0.73520 0.000 0.000 0.000 0.920 0.044 0.036
#> GSM241534     4  0.3864    0.60624 0.000 0.000 0.000 0.744 0.208 0.048
#> GSM241535     4  0.1075    0.73719 0.000 0.000 0.000 0.952 0.000 0.048
#> GSM241536     6  0.6606    0.00000 0.328 0.024 0.000 0.300 0.000 0.348
#> GSM241537     4  0.2196    0.72965 0.000 0.000 0.004 0.884 0.004 0.108
#> GSM241538     4  0.3065    0.71301 0.000 0.000 0.052 0.844 0.004 0.100
#> GSM241539     4  0.2053    0.73030 0.000 0.000 0.000 0.888 0.004 0.108
#> GSM241540     4  0.4010    0.69170 0.016 0.000 0.052 0.780 0.004 0.148
#> GSM241541     4  0.4770    0.55509 0.000 0.000 0.224 0.672 0.004 0.100
#> GSM241542     4  0.4844    0.56756 0.000 0.000 0.204 0.672 0.004 0.120
#> GSM241543     3  0.1003    0.84264 0.000 0.016 0.964 0.000 0.000 0.020
#> GSM241544     3  0.0972    0.84332 0.008 0.000 0.964 0.000 0.000 0.028
#> GSM241545     3  0.1003    0.84264 0.000 0.016 0.964 0.000 0.000 0.020
#> GSM241546     3  0.1713    0.83744 0.028 0.000 0.928 0.000 0.000 0.044
#> GSM241547     3  0.1116    0.84239 0.000 0.008 0.960 0.004 0.000 0.028
#> GSM241548     3  0.1010    0.83984 0.004 0.000 0.960 0.000 0.000 0.036

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n  dose(p)  time(p) k
#> SD:NMF 93 1.10e-10 8.26e-01 2
#> SD:NMF 97 1.47e-11 3.18e-01 3
#> SD:NMF 96 4.30e-15 7.01e-04 4
#> SD:NMF 92 7.04e-16 1.61e-06 5
#> SD:NMF 74 1.20e-15 1.90e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.917           0.956       0.978         0.4863 0.508   0.508
#> 3 3 0.747           0.818       0.852         0.1555 0.969   0.939
#> 4 4 0.673           0.833       0.865         0.1383 0.928   0.849
#> 5 5 0.700           0.721       0.838         0.1300 0.918   0.796
#> 6 6 0.712           0.734       0.825         0.0213 0.972   0.915

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     1  0.0000      0.990 1.000 0.000
#> GSM241452     1  0.0000      0.990 1.000 0.000
#> GSM241453     1  0.0000      0.990 1.000 0.000
#> GSM241454     1  0.0000      0.990 1.000 0.000
#> GSM241455     1  0.0000      0.990 1.000 0.000
#> GSM241456     1  0.0000      0.990 1.000 0.000
#> GSM241457     1  0.0000      0.990 1.000 0.000
#> GSM241458     1  0.0000      0.990 1.000 0.000
#> GSM241459     1  0.0000      0.990 1.000 0.000
#> GSM241460     1  0.0000      0.990 1.000 0.000
#> GSM241461     1  0.0000      0.990 1.000 0.000
#> GSM241462     1  0.0000      0.990 1.000 0.000
#> GSM241463     1  0.0000      0.990 1.000 0.000
#> GSM241464     1  0.0000      0.990 1.000 0.000
#> GSM241465     1  0.0000      0.990 1.000 0.000
#> GSM241466     1  0.0000      0.990 1.000 0.000
#> GSM241467     1  0.0000      0.990 1.000 0.000
#> GSM241468     1  0.0000      0.990 1.000 0.000
#> GSM241469     1  0.0000      0.990 1.000 0.000
#> GSM241470     1  0.0000      0.990 1.000 0.000
#> GSM241471     1  0.0000      0.990 1.000 0.000
#> GSM241472     1  0.0000      0.990 1.000 0.000
#> GSM241473     1  0.0000      0.990 1.000 0.000
#> GSM241474     1  0.0000      0.990 1.000 0.000
#> GSM241475     1  0.0000      0.990 1.000 0.000
#> GSM241476     1  0.0000      0.990 1.000 0.000
#> GSM241477     1  0.0000      0.990 1.000 0.000
#> GSM241478     1  0.0000      0.990 1.000 0.000
#> GSM241479     1  0.0000      0.990 1.000 0.000
#> GSM241480     1  0.0000      0.990 1.000 0.000
#> GSM241481     1  0.0000      0.990 1.000 0.000
#> GSM241482     1  0.0000      0.990 1.000 0.000
#> GSM241483     1  0.0376      0.987 0.996 0.004
#> GSM241484     1  0.0000      0.990 1.000 0.000
#> GSM241485     1  0.0000      0.990 1.000 0.000
#> GSM241486     1  0.0000      0.990 1.000 0.000
#> GSM241487     1  0.0000      0.990 1.000 0.000
#> GSM241488     1  0.0938      0.982 0.988 0.012
#> GSM241489     1  0.0000      0.990 1.000 0.000
#> GSM241490     1  0.0000      0.990 1.000 0.000
#> GSM241491     1  0.0000      0.990 1.000 0.000
#> GSM241492     1  0.0000      0.990 1.000 0.000
#> GSM241493     1  0.0000      0.990 1.000 0.000
#> GSM241494     1  0.0000      0.990 1.000 0.000
#> GSM241495     1  0.0000      0.990 1.000 0.000
#> GSM241496     1  0.0938      0.982 0.988 0.012
#> GSM241497     1  0.0938      0.982 0.988 0.012
#> GSM241498     1  0.0000      0.990 1.000 0.000
#> GSM241499     1  0.2778      0.949 0.952 0.048
#> GSM241500     1  0.0938      0.982 0.988 0.012
#> GSM241501     1  0.0938      0.982 0.988 0.012
#> GSM241502     1  0.0938      0.982 0.988 0.012
#> GSM241503     1  0.2778      0.949 0.952 0.048
#> GSM241504     1  0.2778      0.949 0.952 0.048
#> GSM241505     1  0.2778      0.949 0.952 0.048
#> GSM241506     1  0.0938      0.982 0.988 0.012
#> GSM241507     2  0.7883      0.726 0.236 0.764
#> GSM241508     1  0.8207      0.635 0.744 0.256
#> GSM241509     2  0.0376      0.957 0.004 0.996
#> GSM241510     2  0.9000      0.573 0.316 0.684
#> GSM241511     2  0.7883      0.726 0.236 0.764
#> GSM241512     2  0.0376      0.957 0.004 0.996
#> GSM241513     2  0.2948      0.934 0.052 0.948
#> GSM241514     2  0.2948      0.934 0.052 0.948
#> GSM241515     2  0.2948      0.934 0.052 0.948
#> GSM241516     2  0.2948      0.934 0.052 0.948
#> GSM241517     2  0.0672      0.956 0.008 0.992
#> GSM241518     2  0.0672      0.956 0.008 0.992
#> GSM241519     2  0.0000      0.958 0.000 1.000
#> GSM241520     2  0.0000      0.958 0.000 1.000
#> GSM241521     2  0.4815      0.893 0.104 0.896
#> GSM241522     2  0.4815      0.893 0.104 0.896
#> GSM241523     2  0.2423      0.941 0.040 0.960
#> GSM241524     2  0.2423      0.941 0.040 0.960
#> GSM241525     2  0.0000      0.958 0.000 1.000
#> GSM241526     2  0.0000      0.958 0.000 1.000
#> GSM241527     2  0.0000      0.958 0.000 1.000
#> GSM241528     2  0.0000      0.958 0.000 1.000
#> GSM241529     2  0.0000      0.958 0.000 1.000
#> GSM241530     2  0.0000      0.958 0.000 1.000
#> GSM241531     2  0.6438      0.822 0.164 0.836
#> GSM241532     2  0.0938      0.954 0.012 0.988
#> GSM241533     2  0.0000      0.958 0.000 1.000
#> GSM241534     2  0.0000      0.958 0.000 1.000
#> GSM241535     2  0.0000      0.958 0.000 1.000
#> GSM241536     2  0.6438      0.822 0.164 0.836
#> GSM241537     2  0.0000      0.958 0.000 1.000
#> GSM241538     2  0.0000      0.958 0.000 1.000
#> GSM241539     2  0.0000      0.958 0.000 1.000
#> GSM241540     2  0.0000      0.958 0.000 1.000
#> GSM241541     2  0.0000      0.958 0.000 1.000
#> GSM241542     2  0.0000      0.958 0.000 1.000
#> GSM241543     2  0.0000      0.958 0.000 1.000
#> GSM241544     2  0.0000      0.958 0.000 1.000
#> GSM241545     2  0.0000      0.958 0.000 1.000
#> GSM241546     2  0.0000      0.958 0.000 1.000
#> GSM241547     2  0.0000      0.958 0.000 1.000
#> GSM241548     2  0.0000      0.958 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2  0.1411      0.928 0.036 0.964 0.000
#> GSM241452     2  0.1860      0.932 0.052 0.948 0.000
#> GSM241453     2  0.1411      0.928 0.036 0.964 0.000
#> GSM241454     2  0.1860      0.932 0.052 0.948 0.000
#> GSM241455     2  0.1411      0.928 0.036 0.964 0.000
#> GSM241456     2  0.1860      0.932 0.052 0.948 0.000
#> GSM241457     2  0.2448      0.904 0.076 0.924 0.000
#> GSM241458     2  0.1964      0.932 0.056 0.944 0.000
#> GSM241459     2  0.2448      0.904 0.076 0.924 0.000
#> GSM241460     2  0.1964      0.932 0.056 0.944 0.000
#> GSM241461     2  0.3267      0.875 0.116 0.884 0.000
#> GSM241462     2  0.1964      0.932 0.056 0.944 0.000
#> GSM241463     2  0.0237      0.933 0.004 0.996 0.000
#> GSM241464     2  0.0237      0.933 0.004 0.996 0.000
#> GSM241465     2  0.2165      0.911 0.064 0.936 0.000
#> GSM241466     2  0.1860      0.932 0.052 0.948 0.000
#> GSM241467     2  0.1860      0.932 0.052 0.948 0.000
#> GSM241468     2  0.2711      0.898 0.088 0.912 0.000
#> GSM241469     2  0.1860      0.932 0.052 0.948 0.000
#> GSM241470     2  0.1411      0.928 0.036 0.964 0.000
#> GSM241471     2  0.2448      0.904 0.076 0.924 0.000
#> GSM241472     2  0.1964      0.932 0.056 0.944 0.000
#> GSM241473     2  0.2448      0.904 0.076 0.924 0.000
#> GSM241474     2  0.1964      0.932 0.056 0.944 0.000
#> GSM241475     2  0.1411      0.928 0.036 0.964 0.000
#> GSM241476     2  0.1860      0.932 0.052 0.948 0.000
#> GSM241477     2  0.1411      0.928 0.036 0.964 0.000
#> GSM241478     2  0.1411      0.928 0.036 0.964 0.000
#> GSM241479     2  0.1860      0.932 0.052 0.948 0.000
#> GSM241480     2  0.1860      0.932 0.052 0.948 0.000
#> GSM241481     2  0.2448      0.904 0.076 0.924 0.000
#> GSM241482     2  0.1964      0.932 0.056 0.944 0.000
#> GSM241483     2  0.1289      0.930 0.032 0.968 0.000
#> GSM241484     2  0.1964      0.932 0.056 0.944 0.000
#> GSM241485     2  0.1964      0.932 0.056 0.944 0.000
#> GSM241486     2  0.3267      0.875 0.116 0.884 0.000
#> GSM241487     2  0.2165      0.911 0.064 0.936 0.000
#> GSM241488     2  0.1031      0.931 0.024 0.976 0.000
#> GSM241489     2  0.1860      0.932 0.052 0.948 0.000
#> GSM241490     2  0.1860      0.932 0.052 0.948 0.000
#> GSM241491     2  0.0237      0.933 0.004 0.996 0.000
#> GSM241492     2  0.0237      0.933 0.004 0.996 0.000
#> GSM241493     2  0.1411      0.928 0.036 0.964 0.000
#> GSM241494     2  0.1964      0.932 0.056 0.944 0.000
#> GSM241495     2  0.1411      0.928 0.036 0.964 0.000
#> GSM241496     2  0.1031      0.931 0.024 0.976 0.000
#> GSM241497     2  0.2165      0.927 0.064 0.936 0.000
#> GSM241498     2  0.1860      0.932 0.052 0.948 0.000
#> GSM241499     2  0.2959      0.903 0.100 0.900 0.000
#> GSM241500     2  0.2537      0.907 0.080 0.920 0.000
#> GSM241501     2  0.2537      0.907 0.080 0.920 0.000
#> GSM241502     2  0.2165      0.914 0.064 0.936 0.000
#> GSM241503     2  0.2959      0.903 0.100 0.900 0.000
#> GSM241504     2  0.2959      0.903 0.100 0.900 0.000
#> GSM241505     2  0.2959      0.903 0.100 0.900 0.000
#> GSM241506     2  0.2537      0.907 0.080 0.920 0.000
#> GSM241507     1  0.9042      0.907 0.544 0.176 0.280
#> GSM241508     2  0.8265      0.422 0.180 0.636 0.184
#> GSM241509     3  0.1289      0.710 0.032 0.000 0.968
#> GSM241510     3  0.9187     -0.423 0.196 0.272 0.532
#> GSM241511     1  0.9042      0.907 0.544 0.176 0.280
#> GSM241512     3  0.1289      0.710 0.032 0.000 0.968
#> GSM241513     3  0.7442      0.691 0.348 0.048 0.604
#> GSM241514     3  0.7442      0.691 0.348 0.048 0.604
#> GSM241515     3  0.7442      0.691 0.348 0.048 0.604
#> GSM241516     3  0.7442      0.691 0.348 0.048 0.604
#> GSM241517     3  0.6033      0.726 0.336 0.004 0.660
#> GSM241518     3  0.6033      0.726 0.336 0.004 0.660
#> GSM241519     3  0.5760      0.730 0.328 0.000 0.672
#> GSM241520     3  0.5760      0.730 0.328 0.000 0.672
#> GSM241521     3  0.8408      0.618 0.344 0.100 0.556
#> GSM241522     3  0.8408      0.618 0.344 0.100 0.556
#> GSM241523     3  0.7128      0.703 0.344 0.036 0.620
#> GSM241524     3  0.7128      0.703 0.344 0.036 0.620
#> GSM241525     3  0.0000      0.705 0.000 0.000 1.000
#> GSM241526     3  0.0000      0.705 0.000 0.000 1.000
#> GSM241527     3  0.0000      0.705 0.000 0.000 1.000
#> GSM241528     3  0.0000      0.705 0.000 0.000 1.000
#> GSM241529     3  0.0000      0.705 0.000 0.000 1.000
#> GSM241530     3  0.0000      0.705 0.000 0.000 1.000
#> GSM241531     1  0.8470      0.902 0.552 0.104 0.344
#> GSM241532     3  0.4784      0.380 0.200 0.004 0.796
#> GSM241533     3  0.3482      0.540 0.128 0.000 0.872
#> GSM241534     3  0.0000      0.705 0.000 0.000 1.000
#> GSM241535     3  0.0000      0.705 0.000 0.000 1.000
#> GSM241536     1  0.8470      0.902 0.552 0.104 0.344
#> GSM241537     3  0.0000      0.705 0.000 0.000 1.000
#> GSM241538     3  0.0000      0.705 0.000 0.000 1.000
#> GSM241539     3  0.0000      0.705 0.000 0.000 1.000
#> GSM241540     3  0.0000      0.705 0.000 0.000 1.000
#> GSM241541     3  0.0000      0.705 0.000 0.000 1.000
#> GSM241542     3  0.0000      0.705 0.000 0.000 1.000
#> GSM241543     3  0.5760      0.730 0.328 0.000 0.672
#> GSM241544     3  0.5760      0.730 0.328 0.000 0.672
#> GSM241545     3  0.5760      0.730 0.328 0.000 0.672
#> GSM241546     3  0.5760      0.730 0.328 0.000 0.672
#> GSM241547     3  0.5760      0.730 0.328 0.000 0.672
#> GSM241548     3  0.5760      0.730 0.328 0.000 0.672

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.2814      0.808 0.132 0.868 0.000 0.000
#> GSM241452     2  0.2704      0.839 0.124 0.876 0.000 0.000
#> GSM241453     2  0.2814      0.808 0.132 0.868 0.000 0.000
#> GSM241454     2  0.2704      0.839 0.124 0.876 0.000 0.000
#> GSM241455     2  0.2814      0.808 0.132 0.868 0.000 0.000
#> GSM241456     2  0.2704      0.839 0.124 0.876 0.000 0.000
#> GSM241457     2  0.2281      0.816 0.096 0.904 0.000 0.000
#> GSM241458     2  0.2281      0.839 0.096 0.904 0.000 0.000
#> GSM241459     2  0.2281      0.816 0.096 0.904 0.000 0.000
#> GSM241460     2  0.2281      0.839 0.096 0.904 0.000 0.000
#> GSM241461     2  0.5252      0.634 0.336 0.644 0.020 0.000
#> GSM241462     2  0.2281      0.839 0.096 0.904 0.000 0.000
#> GSM241463     2  0.0188      0.843 0.004 0.996 0.000 0.000
#> GSM241464     2  0.0188      0.843 0.004 0.996 0.000 0.000
#> GSM241465     2  0.1940      0.824 0.076 0.924 0.000 0.000
#> GSM241466     2  0.2704      0.839 0.124 0.876 0.000 0.000
#> GSM241467     2  0.2704      0.839 0.124 0.876 0.000 0.000
#> GSM241468     2  0.3688      0.768 0.208 0.792 0.000 0.000
#> GSM241469     2  0.2704      0.839 0.124 0.876 0.000 0.000
#> GSM241470     2  0.2814      0.808 0.132 0.868 0.000 0.000
#> GSM241471     2  0.2345      0.815 0.100 0.900 0.000 0.000
#> GSM241472     2  0.2281      0.839 0.096 0.904 0.000 0.000
#> GSM241473     2  0.2345      0.815 0.100 0.900 0.000 0.000
#> GSM241474     2  0.2281      0.839 0.096 0.904 0.000 0.000
#> GSM241475     2  0.2814      0.808 0.132 0.868 0.000 0.000
#> GSM241476     2  0.2704      0.839 0.124 0.876 0.000 0.000
#> GSM241477     2  0.2814      0.808 0.132 0.868 0.000 0.000
#> GSM241478     2  0.2814      0.808 0.132 0.868 0.000 0.000
#> GSM241479     2  0.2704      0.839 0.124 0.876 0.000 0.000
#> GSM241480     2  0.2704      0.839 0.124 0.876 0.000 0.000
#> GSM241481     2  0.2281      0.816 0.096 0.904 0.000 0.000
#> GSM241482     2  0.2281      0.839 0.096 0.904 0.000 0.000
#> GSM241483     2  0.4095      0.781 0.192 0.792 0.016 0.000
#> GSM241484     2  0.2408      0.840 0.104 0.896 0.000 0.000
#> GSM241485     2  0.2281      0.839 0.096 0.904 0.000 0.000
#> GSM241486     2  0.5252      0.634 0.336 0.644 0.020 0.000
#> GSM241487     2  0.1940      0.824 0.076 0.924 0.000 0.000
#> GSM241488     2  0.3763      0.802 0.144 0.832 0.024 0.000
#> GSM241489     2  0.2704      0.839 0.124 0.876 0.000 0.000
#> GSM241490     2  0.2704      0.839 0.124 0.876 0.000 0.000
#> GSM241491     2  0.0188      0.843 0.004 0.996 0.000 0.000
#> GSM241492     2  0.0188      0.843 0.004 0.996 0.000 0.000
#> GSM241493     2  0.2814      0.808 0.132 0.868 0.000 0.000
#> GSM241494     2  0.2408      0.840 0.104 0.896 0.000 0.000
#> GSM241495     2  0.2814      0.808 0.132 0.868 0.000 0.000
#> GSM241496     2  0.3763      0.802 0.144 0.832 0.024 0.000
#> GSM241497     2  0.3552      0.829 0.128 0.848 0.024 0.000
#> GSM241498     2  0.2704      0.839 0.124 0.876 0.000 0.000
#> GSM241499     2  0.4004      0.806 0.164 0.812 0.024 0.000
#> GSM241500     2  0.4993      0.706 0.260 0.712 0.028 0.000
#> GSM241501     2  0.4993      0.706 0.260 0.712 0.028 0.000
#> GSM241502     2  0.4775      0.729 0.232 0.740 0.028 0.000
#> GSM241503     2  0.4004      0.806 0.164 0.812 0.024 0.000
#> GSM241504     2  0.4004      0.806 0.164 0.812 0.024 0.000
#> GSM241505     2  0.4004      0.806 0.164 0.812 0.024 0.000
#> GSM241506     2  0.4993      0.706 0.260 0.712 0.028 0.000
#> GSM241507     1  0.7097      0.902 0.596 0.168 0.008 0.228
#> GSM241508     2  0.7705      0.323 0.248 0.536 0.016 0.200
#> GSM241509     4  0.3024      0.841 0.000 0.000 0.148 0.852
#> GSM241510     4  0.7154     -0.188 0.160 0.248 0.008 0.584
#> GSM241511     1  0.7097      0.902 0.596 0.168 0.008 0.228
#> GSM241512     4  0.3024      0.841 0.000 0.000 0.148 0.852
#> GSM241513     3  0.1843      0.932 0.016 0.028 0.948 0.008
#> GSM241514     3  0.1843      0.932 0.016 0.028 0.948 0.008
#> GSM241515     3  0.1843      0.932 0.016 0.028 0.948 0.008
#> GSM241516     3  0.1843      0.932 0.016 0.028 0.948 0.008
#> GSM241517     3  0.1488      0.943 0.012 0.000 0.956 0.032
#> GSM241518     3  0.1488      0.943 0.012 0.000 0.956 0.032
#> GSM241519     3  0.0921      0.946 0.000 0.000 0.972 0.028
#> GSM241520     3  0.0921      0.946 0.000 0.000 0.972 0.028
#> GSM241521     3  0.2706      0.858 0.020 0.080 0.900 0.000
#> GSM241522     3  0.2706      0.858 0.020 0.080 0.900 0.000
#> GSM241523     3  0.1191      0.938 0.004 0.024 0.968 0.004
#> GSM241524     3  0.1191      0.938 0.004 0.024 0.968 0.004
#> GSM241525     4  0.1867      0.911 0.000 0.000 0.072 0.928
#> GSM241526     4  0.1867      0.911 0.000 0.000 0.072 0.928
#> GSM241527     4  0.1867      0.911 0.000 0.000 0.072 0.928
#> GSM241528     4  0.1867      0.911 0.000 0.000 0.072 0.928
#> GSM241529     4  0.1867      0.911 0.000 0.000 0.072 0.928
#> GSM241530     4  0.1867      0.911 0.000 0.000 0.072 0.928
#> GSM241531     1  0.6764      0.893 0.596 0.100 0.008 0.296
#> GSM241532     4  0.3142      0.649 0.132 0.000 0.008 0.860
#> GSM241533     4  0.2773      0.762 0.072 0.000 0.028 0.900
#> GSM241534     4  0.1867      0.911 0.000 0.000 0.072 0.928
#> GSM241535     4  0.1867      0.911 0.000 0.000 0.072 0.928
#> GSM241536     1  0.6764      0.893 0.596 0.100 0.008 0.296
#> GSM241537     4  0.2596      0.907 0.024 0.000 0.068 0.908
#> GSM241538     4  0.2596      0.907 0.024 0.000 0.068 0.908
#> GSM241539     4  0.2596      0.907 0.024 0.000 0.068 0.908
#> GSM241540     4  0.2596      0.907 0.024 0.000 0.068 0.908
#> GSM241541     4  0.2596      0.907 0.024 0.000 0.068 0.908
#> GSM241542     4  0.2596      0.907 0.024 0.000 0.068 0.908
#> GSM241543     3  0.1022      0.946 0.000 0.000 0.968 0.032
#> GSM241544     3  0.1022      0.946 0.000 0.000 0.968 0.032
#> GSM241545     3  0.1022      0.946 0.000 0.000 0.968 0.032
#> GSM241546     3  0.1022      0.946 0.000 0.000 0.968 0.032
#> GSM241547     3  0.1022      0.946 0.000 0.000 0.968 0.032
#> GSM241548     3  0.1022      0.946 0.000 0.000 0.968 0.032

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     1  0.4227      0.586 0.580 0.000 0.000 0.000 0.420
#> GSM241452     1  0.0609      0.637 0.980 0.000 0.000 0.000 0.020
#> GSM241453     1  0.4227      0.586 0.580 0.000 0.000 0.000 0.420
#> GSM241454     1  0.0000      0.643 1.000 0.000 0.000 0.000 0.000
#> GSM241455     1  0.4227      0.588 0.580 0.000 0.000 0.000 0.420
#> GSM241456     1  0.0609      0.637 0.980 0.000 0.000 0.000 0.020
#> GSM241457     1  0.4297      0.574 0.528 0.000 0.000 0.000 0.472
#> GSM241458     1  0.3480      0.684 0.752 0.000 0.000 0.000 0.248
#> GSM241459     1  0.4297      0.574 0.528 0.000 0.000 0.000 0.472
#> GSM241460     1  0.3480      0.684 0.752 0.000 0.000 0.000 0.248
#> GSM241461     5  0.3480      0.777 0.248 0.000 0.000 0.000 0.752
#> GSM241462     1  0.3480      0.684 0.752 0.000 0.000 0.000 0.248
#> GSM241463     1  0.3983      0.674 0.660 0.000 0.000 0.000 0.340
#> GSM241464     1  0.3983      0.674 0.660 0.000 0.000 0.000 0.340
#> GSM241465     1  0.4242      0.628 0.572 0.000 0.000 0.000 0.428
#> GSM241466     1  0.0000      0.643 1.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0162      0.644 0.996 0.000 0.000 0.000 0.004
#> GSM241468     1  0.4210      0.407 0.588 0.000 0.000 0.000 0.412
#> GSM241469     1  0.0609      0.637 0.980 0.000 0.000 0.000 0.020
#> GSM241470     1  0.4227      0.586 0.580 0.000 0.000 0.000 0.420
#> GSM241471     1  0.4300      0.570 0.524 0.000 0.000 0.000 0.476
#> GSM241472     1  0.3336      0.690 0.772 0.000 0.000 0.000 0.228
#> GSM241473     1  0.4300      0.570 0.524 0.000 0.000 0.000 0.476
#> GSM241474     1  0.3336      0.690 0.772 0.000 0.000 0.000 0.228
#> GSM241475     1  0.4227      0.586 0.580 0.000 0.000 0.000 0.420
#> GSM241476     1  0.0609      0.637 0.980 0.000 0.000 0.000 0.020
#> GSM241477     1  0.4227      0.586 0.580 0.000 0.000 0.000 0.420
#> GSM241478     1  0.4227      0.588 0.580 0.000 0.000 0.000 0.420
#> GSM241479     1  0.0609      0.637 0.980 0.000 0.000 0.000 0.020
#> GSM241480     1  0.0000      0.643 1.000 0.000 0.000 0.000 0.000
#> GSM241481     1  0.4297      0.574 0.528 0.000 0.000 0.000 0.472
#> GSM241482     1  0.3480      0.684 0.752 0.000 0.000 0.000 0.248
#> GSM241483     5  0.4449      0.390 0.484 0.004 0.000 0.000 0.512
#> GSM241484     1  0.2280      0.678 0.880 0.000 0.000 0.000 0.120
#> GSM241485     1  0.3480      0.684 0.752 0.000 0.000 0.000 0.248
#> GSM241486     5  0.3480      0.777 0.248 0.000 0.000 0.000 0.752
#> GSM241487     1  0.4242      0.628 0.572 0.000 0.000 0.000 0.428
#> GSM241488     1  0.4016      0.327 0.716 0.012 0.000 0.000 0.272
#> GSM241489     1  0.0609      0.641 0.980 0.000 0.000 0.000 0.020
#> GSM241490     1  0.0404      0.641 0.988 0.000 0.000 0.000 0.012
#> GSM241491     1  0.3983      0.674 0.660 0.000 0.000 0.000 0.340
#> GSM241492     1  0.3983      0.674 0.660 0.000 0.000 0.000 0.340
#> GSM241493     1  0.4227      0.586 0.580 0.000 0.000 0.000 0.420
#> GSM241494     1  0.2377      0.682 0.872 0.000 0.000 0.000 0.128
#> GSM241495     1  0.4227      0.586 0.580 0.000 0.000 0.000 0.420
#> GSM241496     1  0.4016      0.327 0.716 0.012 0.000 0.000 0.272
#> GSM241497     1  0.2006      0.557 0.916 0.012 0.000 0.000 0.072
#> GSM241498     1  0.0609      0.637 0.980 0.000 0.000 0.000 0.020
#> GSM241499     1  0.2654      0.521 0.888 0.048 0.000 0.000 0.064
#> GSM241500     5  0.4288      0.836 0.324 0.012 0.000 0.000 0.664
#> GSM241501     5  0.4288      0.836 0.324 0.012 0.000 0.000 0.664
#> GSM241502     5  0.4444      0.807 0.364 0.012 0.000 0.000 0.624
#> GSM241503     1  0.2654      0.521 0.888 0.048 0.000 0.000 0.064
#> GSM241504     1  0.2654      0.521 0.888 0.048 0.000 0.000 0.064
#> GSM241505     1  0.2654      0.521 0.888 0.048 0.000 0.000 0.064
#> GSM241506     5  0.4288      0.836 0.324 0.012 0.000 0.000 0.664
#> GSM241507     2  0.2249      0.911 0.096 0.896 0.000 0.000 0.008
#> GSM241508     5  0.7234      0.454 0.276 0.236 0.000 0.032 0.456
#> GSM241509     4  0.3073      0.832 0.000 0.052 0.076 0.868 0.004
#> GSM241510     4  0.8043     -0.139 0.196 0.344 0.000 0.352 0.108
#> GSM241511     2  0.2249      0.911 0.096 0.896 0.000 0.000 0.008
#> GSM241512     4  0.3073      0.832 0.000 0.052 0.076 0.868 0.004
#> GSM241513     3  0.2374      0.934 0.000 0.020 0.912 0.016 0.052
#> GSM241514     3  0.2374      0.934 0.000 0.020 0.912 0.016 0.052
#> GSM241515     3  0.2374      0.934 0.000 0.020 0.912 0.016 0.052
#> GSM241516     3  0.2374      0.934 0.000 0.020 0.912 0.016 0.052
#> GSM241517     3  0.1087      0.945 0.000 0.008 0.968 0.016 0.008
#> GSM241518     3  0.1087      0.945 0.000 0.008 0.968 0.016 0.008
#> GSM241519     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000
#> GSM241520     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000
#> GSM241521     3  0.3209      0.879 0.052 0.024 0.872 0.000 0.052
#> GSM241522     3  0.3209      0.879 0.052 0.024 0.872 0.000 0.052
#> GSM241523     3  0.1444      0.943 0.000 0.012 0.948 0.000 0.040
#> GSM241524     3  0.1444      0.943 0.000 0.012 0.948 0.000 0.040
#> GSM241525     4  0.2011      0.874 0.000 0.088 0.004 0.908 0.000
#> GSM241526     4  0.2011      0.874 0.000 0.088 0.004 0.908 0.000
#> GSM241527     4  0.2011      0.874 0.000 0.088 0.004 0.908 0.000
#> GSM241528     4  0.2011      0.874 0.000 0.088 0.004 0.908 0.000
#> GSM241529     4  0.2011      0.874 0.000 0.088 0.004 0.908 0.000
#> GSM241530     4  0.2011      0.874 0.000 0.088 0.004 0.908 0.000
#> GSM241531     2  0.0880      0.916 0.032 0.968 0.000 0.000 0.000
#> GSM241532     4  0.4235      0.446 0.000 0.424 0.000 0.576 0.000
#> GSM241533     4  0.3741      0.717 0.000 0.264 0.004 0.732 0.000
#> GSM241534     4  0.1892      0.874 0.000 0.080 0.004 0.916 0.000
#> GSM241535     4  0.1892      0.874 0.000 0.080 0.004 0.916 0.000
#> GSM241536     2  0.0880      0.916 0.032 0.968 0.000 0.000 0.000
#> GSM241537     4  0.0880      0.851 0.000 0.032 0.000 0.968 0.000
#> GSM241538     4  0.0880      0.851 0.000 0.032 0.000 0.968 0.000
#> GSM241539     4  0.0880      0.851 0.000 0.032 0.000 0.968 0.000
#> GSM241540     4  0.0880      0.851 0.000 0.032 0.000 0.968 0.000
#> GSM241541     4  0.0880      0.851 0.000 0.032 0.000 0.968 0.000
#> GSM241542     4  0.0880      0.851 0.000 0.032 0.000 0.968 0.000
#> GSM241543     3  0.0162      0.949 0.000 0.000 0.996 0.004 0.000
#> GSM241544     3  0.0162      0.949 0.000 0.000 0.996 0.004 0.000
#> GSM241545     3  0.0162      0.949 0.000 0.000 0.996 0.004 0.000
#> GSM241546     3  0.0162      0.949 0.000 0.000 0.996 0.004 0.000
#> GSM241547     3  0.0162      0.949 0.000 0.000 0.996 0.004 0.000
#> GSM241548     3  0.0162      0.949 0.000 0.000 0.996 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM241451     1  0.3797     0.6015 0.580 0.000 0.000 0.000 0.420 0.000
#> GSM241452     1  0.0547     0.6477 0.980 0.000 0.000 0.000 0.020 0.000
#> GSM241453     1  0.3797     0.6015 0.580 0.000 0.000 0.000 0.420 0.000
#> GSM241454     1  0.0000     0.6532 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241455     1  0.3797     0.6030 0.580 0.000 0.000 0.000 0.420 0.000
#> GSM241456     1  0.0547     0.6477 0.980 0.000 0.000 0.000 0.020 0.000
#> GSM241457     1  0.3860     0.5846 0.528 0.000 0.000 0.000 0.472 0.000
#> GSM241458     1  0.3126     0.6891 0.752 0.000 0.000 0.000 0.248 0.000
#> GSM241459     1  0.3860     0.5846 0.528 0.000 0.000 0.000 0.472 0.000
#> GSM241460     1  0.3126     0.6891 0.752 0.000 0.000 0.000 0.248 0.000
#> GSM241461     5  0.3126     0.8231 0.248 0.000 0.000 0.000 0.752 0.000
#> GSM241462     1  0.3126     0.6891 0.752 0.000 0.000 0.000 0.248 0.000
#> GSM241463     1  0.3578     0.6802 0.660 0.000 0.000 0.000 0.340 0.000
#> GSM241464     1  0.3578     0.6802 0.660 0.000 0.000 0.000 0.340 0.000
#> GSM241465     1  0.3810     0.6366 0.572 0.000 0.000 0.000 0.428 0.000
#> GSM241466     1  0.0000     0.6532 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0146     0.6541 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM241468     1  0.3782     0.4435 0.588 0.000 0.000 0.000 0.412 0.000
#> GSM241469     1  0.0547     0.6477 0.980 0.000 0.000 0.000 0.020 0.000
#> GSM241470     1  0.3797     0.6015 0.580 0.000 0.000 0.000 0.420 0.000
#> GSM241471     1  0.3862     0.5817 0.524 0.000 0.000 0.000 0.476 0.000
#> GSM241472     1  0.2996     0.6949 0.772 0.000 0.000 0.000 0.228 0.000
#> GSM241473     1  0.3862     0.5817 0.524 0.000 0.000 0.000 0.476 0.000
#> GSM241474     1  0.2996     0.6949 0.772 0.000 0.000 0.000 0.228 0.000
#> GSM241475     1  0.3797     0.6015 0.580 0.000 0.000 0.000 0.420 0.000
#> GSM241476     1  0.0547     0.6477 0.980 0.000 0.000 0.000 0.020 0.000
#> GSM241477     1  0.3797     0.6015 0.580 0.000 0.000 0.000 0.420 0.000
#> GSM241478     1  0.3797     0.6030 0.580 0.000 0.000 0.000 0.420 0.000
#> GSM241479     1  0.0547     0.6477 0.980 0.000 0.000 0.000 0.020 0.000
#> GSM241480     1  0.0000     0.6532 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241481     1  0.3860     0.5846 0.528 0.000 0.000 0.000 0.472 0.000
#> GSM241482     1  0.3126     0.6891 0.752 0.000 0.000 0.000 0.248 0.000
#> GSM241483     1  0.4757    -0.3561 0.484 0.048 0.000 0.000 0.468 0.000
#> GSM241484     1  0.2048     0.6856 0.880 0.000 0.000 0.000 0.120 0.000
#> GSM241485     1  0.3126     0.6891 0.752 0.000 0.000 0.000 0.248 0.000
#> GSM241486     5  0.3126     0.8231 0.248 0.000 0.000 0.000 0.752 0.000
#> GSM241487     1  0.3810     0.6366 0.572 0.000 0.000 0.000 0.428 0.000
#> GSM241488     1  0.4117     0.3970 0.716 0.056 0.000 0.000 0.228 0.000
#> GSM241489     1  0.0547     0.6513 0.980 0.000 0.000 0.000 0.020 0.000
#> GSM241490     1  0.0363     0.6513 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM241491     1  0.3578     0.6802 0.660 0.000 0.000 0.000 0.340 0.000
#> GSM241492     1  0.3578     0.6802 0.660 0.000 0.000 0.000 0.340 0.000
#> GSM241493     1  0.3797     0.6015 0.580 0.000 0.000 0.000 0.420 0.000
#> GSM241494     1  0.2135     0.6888 0.872 0.000 0.000 0.000 0.128 0.000
#> GSM241495     1  0.3797     0.6015 0.580 0.000 0.000 0.000 0.420 0.000
#> GSM241496     1  0.4117     0.3970 0.716 0.056 0.000 0.000 0.228 0.000
#> GSM241497     1  0.1908     0.5840 0.916 0.056 0.000 0.000 0.028 0.000
#> GSM241498     1  0.0547     0.6477 0.980 0.000 0.000 0.000 0.020 0.000
#> GSM241499     1  0.2594     0.5507 0.888 0.056 0.000 0.000 0.020 0.036
#> GSM241500     5  0.3852     0.8701 0.324 0.012 0.000 0.000 0.664 0.000
#> GSM241501     5  0.3852     0.8701 0.324 0.012 0.000 0.000 0.664 0.000
#> GSM241502     5  0.4717     0.7956 0.364 0.056 0.000 0.000 0.580 0.000
#> GSM241503     1  0.2594     0.5507 0.888 0.056 0.000 0.000 0.020 0.036
#> GSM241504     1  0.2594     0.5507 0.888 0.056 0.000 0.000 0.020 0.036
#> GSM241505     1  0.2594     0.5507 0.888 0.056 0.000 0.000 0.020 0.036
#> GSM241506     5  0.3852     0.8701 0.324 0.012 0.000 0.000 0.664 0.000
#> GSM241507     6  0.1584     0.9038 0.064 0.000 0.000 0.000 0.008 0.928
#> GSM241508     5  0.6950     0.5268 0.276 0.000 0.000 0.104 0.456 0.164
#> GSM241509     4  0.2044     0.8233 0.000 0.004 0.076 0.908 0.004 0.008
#> GSM241510     4  0.7131     0.0495 0.196 0.000 0.000 0.424 0.108 0.272
#> GSM241511     6  0.1584     0.9038 0.064 0.000 0.000 0.000 0.008 0.928
#> GSM241512     4  0.2044     0.8233 0.000 0.004 0.076 0.908 0.004 0.008
#> GSM241513     3  0.2170     0.9281 0.000 0.056 0.912 0.016 0.008 0.008
#> GSM241514     3  0.2170     0.9281 0.000 0.056 0.912 0.016 0.008 0.008
#> GSM241515     3  0.2170     0.9281 0.000 0.056 0.912 0.016 0.008 0.008
#> GSM241516     3  0.2170     0.9281 0.000 0.056 0.912 0.016 0.008 0.008
#> GSM241517     3  0.0976     0.9381 0.000 0.000 0.968 0.016 0.008 0.008
#> GSM241518     3  0.0976     0.9381 0.000 0.000 0.968 0.016 0.008 0.008
#> GSM241519     3  0.0632     0.9416 0.000 0.000 0.976 0.000 0.000 0.024
#> GSM241520     3  0.0632     0.9416 0.000 0.000 0.976 0.000 0.000 0.024
#> GSM241521     3  0.2937     0.8759 0.052 0.056 0.872 0.000 0.008 0.012
#> GSM241522     3  0.2937     0.8759 0.052 0.056 0.872 0.000 0.008 0.012
#> GSM241523     3  0.1219     0.9370 0.000 0.048 0.948 0.000 0.004 0.000
#> GSM241524     3  0.1219     0.9370 0.000 0.048 0.948 0.000 0.004 0.000
#> GSM241525     4  0.0000     0.8806 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241526     4  0.0000     0.8806 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241527     4  0.0000     0.8806 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241528     4  0.0000     0.8806 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241529     4  0.0000     0.8806 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241530     4  0.0000     0.8806 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241531     6  0.0790     0.9030 0.000 0.000 0.000 0.032 0.000 0.968
#> GSM241532     4  0.3578     0.5135 0.000 0.000 0.000 0.660 0.000 0.340
#> GSM241533     4  0.2597     0.7412 0.000 0.000 0.000 0.824 0.000 0.176
#> GSM241534     4  0.0405     0.8773 0.000 0.004 0.000 0.988 0.000 0.008
#> GSM241535     4  0.0405     0.8773 0.000 0.004 0.000 0.988 0.000 0.008
#> GSM241536     6  0.0790     0.9030 0.000 0.000 0.000 0.032 0.000 0.968
#> GSM241537     2  0.1204     1.0000 0.000 0.944 0.000 0.056 0.000 0.000
#> GSM241538     2  0.1204     1.0000 0.000 0.944 0.000 0.056 0.000 0.000
#> GSM241539     2  0.1204     1.0000 0.000 0.944 0.000 0.056 0.000 0.000
#> GSM241540     2  0.1204     1.0000 0.000 0.944 0.000 0.056 0.000 0.000
#> GSM241541     2  0.1204     1.0000 0.000 0.944 0.000 0.056 0.000 0.000
#> GSM241542     2  0.1204     1.0000 0.000 0.944 0.000 0.056 0.000 0.000
#> GSM241543     3  0.0777     0.9412 0.000 0.004 0.972 0.000 0.000 0.024
#> GSM241544     3  0.0777     0.9412 0.000 0.004 0.972 0.000 0.000 0.024
#> GSM241545     3  0.0777     0.9412 0.000 0.004 0.972 0.000 0.000 0.024
#> GSM241546     3  0.0777     0.9412 0.000 0.004 0.972 0.000 0.000 0.024
#> GSM241547     3  0.0777     0.9412 0.000 0.004 0.972 0.000 0.000 0.024
#> GSM241548     3  0.0777     0.9412 0.000 0.004 0.972 0.000 0.000 0.024

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n  dose(p)  time(p) k
#> CV:hclust 98 6.50e-16 1.56e-01 2
#> CV:hclust 95 8.79e-14 2.04e-03 3
#> CV:hclust 96 7.53e-17 1.58e-06 4
#> CV:hclust 91 4.70e-16 1.90e-06 5
#> CV:hclust 93 1.06e-15 7.65e-10 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.989       0.996         0.4868 0.512   0.512
#> 3 3 0.671           0.595       0.747         0.2582 0.972   0.945
#> 4 4 0.675           0.790       0.791         0.1542 0.742   0.481
#> 5 5 0.655           0.812       0.803         0.0800 0.970   0.884
#> 6 6 0.707           0.762       0.793         0.0476 0.990   0.959

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette   p1   p2
#> GSM241451     1   0.000      1.000 1.00 0.00
#> GSM241452     1   0.000      1.000 1.00 0.00
#> GSM241453     1   0.000      1.000 1.00 0.00
#> GSM241454     1   0.000      1.000 1.00 0.00
#> GSM241455     1   0.000      1.000 1.00 0.00
#> GSM241456     1   0.000      1.000 1.00 0.00
#> GSM241457     1   0.000      1.000 1.00 0.00
#> GSM241458     1   0.000      1.000 1.00 0.00
#> GSM241459     1   0.000      1.000 1.00 0.00
#> GSM241460     1   0.000      1.000 1.00 0.00
#> GSM241461     1   0.000      1.000 1.00 0.00
#> GSM241462     1   0.000      1.000 1.00 0.00
#> GSM241463     1   0.000      1.000 1.00 0.00
#> GSM241464     1   0.000      1.000 1.00 0.00
#> GSM241465     1   0.000      1.000 1.00 0.00
#> GSM241466     1   0.000      1.000 1.00 0.00
#> GSM241467     1   0.000      1.000 1.00 0.00
#> GSM241468     1   0.000      1.000 1.00 0.00
#> GSM241469     1   0.000      1.000 1.00 0.00
#> GSM241470     1   0.000      1.000 1.00 0.00
#> GSM241471     1   0.000      1.000 1.00 0.00
#> GSM241472     1   0.000      1.000 1.00 0.00
#> GSM241473     1   0.000      1.000 1.00 0.00
#> GSM241474     1   0.000      1.000 1.00 0.00
#> GSM241475     1   0.000      1.000 1.00 0.00
#> GSM241476     1   0.000      1.000 1.00 0.00
#> GSM241477     1   0.000      1.000 1.00 0.00
#> GSM241478     1   0.000      1.000 1.00 0.00
#> GSM241479     1   0.000      1.000 1.00 0.00
#> GSM241480     1   0.000      1.000 1.00 0.00
#> GSM241481     1   0.000      1.000 1.00 0.00
#> GSM241482     1   0.000      1.000 1.00 0.00
#> GSM241483     1   0.000      1.000 1.00 0.00
#> GSM241484     1   0.000      1.000 1.00 0.00
#> GSM241485     1   0.000      1.000 1.00 0.00
#> GSM241486     1   0.000      1.000 1.00 0.00
#> GSM241487     1   0.000      1.000 1.00 0.00
#> GSM241488     1   0.000      1.000 1.00 0.00
#> GSM241489     1   0.000      1.000 1.00 0.00
#> GSM241490     1   0.000      1.000 1.00 0.00
#> GSM241491     1   0.000      1.000 1.00 0.00
#> GSM241492     1   0.000      1.000 1.00 0.00
#> GSM241493     1   0.000      1.000 1.00 0.00
#> GSM241494     1   0.000      1.000 1.00 0.00
#> GSM241495     1   0.000      1.000 1.00 0.00
#> GSM241496     1   0.000      1.000 1.00 0.00
#> GSM241497     1   0.000      1.000 1.00 0.00
#> GSM241498     1   0.000      1.000 1.00 0.00
#> GSM241499     1   0.000      1.000 1.00 0.00
#> GSM241500     1   0.000      1.000 1.00 0.00
#> GSM241501     1   0.000      1.000 1.00 0.00
#> GSM241502     1   0.000      1.000 1.00 0.00
#> GSM241503     1   0.000      1.000 1.00 0.00
#> GSM241504     1   0.000      1.000 1.00 0.00
#> GSM241505     1   0.000      1.000 1.00 0.00
#> GSM241506     1   0.000      1.000 1.00 0.00
#> GSM241507     1   0.000      1.000 1.00 0.00
#> GSM241508     1   0.000      1.000 1.00 0.00
#> GSM241509     2   0.000      0.989 0.00 1.00
#> GSM241510     2   0.000      0.989 0.00 1.00
#> GSM241511     2   0.000      0.989 0.00 1.00
#> GSM241512     2   0.000      0.989 0.00 1.00
#> GSM241513     2   0.000      0.989 0.00 1.00
#> GSM241514     2   0.000      0.989 0.00 1.00
#> GSM241515     2   0.000      0.989 0.00 1.00
#> GSM241516     2   0.000      0.989 0.00 1.00
#> GSM241517     2   0.000      0.989 0.00 1.00
#> GSM241518     2   0.000      0.989 0.00 1.00
#> GSM241519     2   0.000      0.989 0.00 1.00
#> GSM241520     2   0.000      0.989 0.00 1.00
#> GSM241521     2   0.529      0.861 0.12 0.88
#> GSM241522     2   0.904      0.536 0.32 0.68
#> GSM241523     2   0.000      0.989 0.00 1.00
#> GSM241524     2   0.000      0.989 0.00 1.00
#> GSM241525     2   0.000      0.989 0.00 1.00
#> GSM241526     2   0.000      0.989 0.00 1.00
#> GSM241527     2   0.000      0.989 0.00 1.00
#> GSM241528     2   0.000      0.989 0.00 1.00
#> GSM241529     2   0.000      0.989 0.00 1.00
#> GSM241530     2   0.000      0.989 0.00 1.00
#> GSM241531     2   0.000      0.989 0.00 1.00
#> GSM241532     2   0.000      0.989 0.00 1.00
#> GSM241533     2   0.000      0.989 0.00 1.00
#> GSM241534     2   0.000      0.989 0.00 1.00
#> GSM241535     2   0.000      0.989 0.00 1.00
#> GSM241536     2   0.000      0.989 0.00 1.00
#> GSM241537     2   0.000      0.989 0.00 1.00
#> GSM241538     2   0.000      0.989 0.00 1.00
#> GSM241539     2   0.000      0.989 0.00 1.00
#> GSM241540     2   0.000      0.989 0.00 1.00
#> GSM241541     2   0.000      0.989 0.00 1.00
#> GSM241542     2   0.000      0.989 0.00 1.00
#> GSM241543     2   0.000      0.989 0.00 1.00
#> GSM241544     2   0.000      0.989 0.00 1.00
#> GSM241545     2   0.000      0.989 0.00 1.00
#> GSM241546     2   0.000      0.989 0.00 1.00
#> GSM241547     2   0.000      0.989 0.00 1.00
#> GSM241548     2   0.000      0.989 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2  0.1529      0.705 0.040 0.960 0.000
#> GSM241452     2  0.5650      0.694 0.312 0.688 0.000
#> GSM241453     2  0.1411      0.705 0.036 0.964 0.000
#> GSM241454     2  0.5560      0.696 0.300 0.700 0.000
#> GSM241455     2  0.1031      0.710 0.024 0.976 0.000
#> GSM241456     2  0.5497      0.698 0.292 0.708 0.000
#> GSM241457     2  0.0000      0.714 0.000 1.000 0.000
#> GSM241458     2  0.5465      0.699 0.288 0.712 0.000
#> GSM241459     2  0.0000      0.714 0.000 1.000 0.000
#> GSM241460     2  0.5465      0.699 0.288 0.712 0.000
#> GSM241461     2  0.1411      0.705 0.036 0.964 0.000
#> GSM241462     2  0.5497      0.698 0.292 0.708 0.000
#> GSM241463     2  0.0000      0.714 0.000 1.000 0.000
#> GSM241464     2  0.5465      0.699 0.288 0.712 0.000
#> GSM241465     2  0.1411      0.705 0.036 0.964 0.000
#> GSM241466     2  0.5465      0.699 0.288 0.712 0.000
#> GSM241467     2  0.5465      0.699 0.288 0.712 0.000
#> GSM241468     2  0.0000      0.714 0.000 1.000 0.000
#> GSM241469     2  0.5560      0.696 0.300 0.700 0.000
#> GSM241470     2  0.1411      0.705 0.036 0.964 0.000
#> GSM241471     2  0.0000      0.714 0.000 1.000 0.000
#> GSM241472     2  0.5465      0.699 0.288 0.712 0.000
#> GSM241473     2  0.0000      0.714 0.000 1.000 0.000
#> GSM241474     2  0.5465      0.699 0.288 0.712 0.000
#> GSM241475     2  0.1529      0.705 0.040 0.960 0.000
#> GSM241476     2  0.5560      0.696 0.300 0.700 0.000
#> GSM241477     2  0.1411      0.705 0.036 0.964 0.000
#> GSM241478     2  0.1529      0.705 0.040 0.960 0.000
#> GSM241479     2  0.5560      0.696 0.300 0.700 0.000
#> GSM241480     2  0.5560      0.696 0.300 0.700 0.000
#> GSM241481     2  0.0000      0.714 0.000 1.000 0.000
#> GSM241482     2  0.5465      0.699 0.288 0.712 0.000
#> GSM241483     2  0.1163      0.708 0.028 0.972 0.000
#> GSM241484     2  0.5560      0.696 0.300 0.700 0.000
#> GSM241485     2  0.5560      0.696 0.300 0.700 0.000
#> GSM241486     2  0.1411      0.705 0.036 0.964 0.000
#> GSM241487     2  0.1411      0.705 0.036 0.964 0.000
#> GSM241488     2  0.0892      0.712 0.020 0.980 0.000
#> GSM241489     2  0.5560      0.696 0.300 0.700 0.000
#> GSM241490     2  0.5560      0.696 0.300 0.700 0.000
#> GSM241491     2  0.0000      0.714 0.000 1.000 0.000
#> GSM241492     2  0.5465      0.699 0.288 0.712 0.000
#> GSM241493     2  0.1411      0.705 0.036 0.964 0.000
#> GSM241494     2  0.5560      0.696 0.300 0.700 0.000
#> GSM241495     2  0.1411      0.705 0.036 0.964 0.000
#> GSM241496     2  0.1753      0.704 0.048 0.952 0.000
#> GSM241497     2  0.5678      0.692 0.316 0.684 0.000
#> GSM241498     2  0.5560      0.696 0.300 0.700 0.000
#> GSM241499     2  0.5560      0.696 0.300 0.700 0.000
#> GSM241500     2  0.5810      0.232 0.336 0.664 0.000
#> GSM241501     2  0.2959      0.648 0.100 0.900 0.000
#> GSM241502     2  0.5178      0.392 0.256 0.744 0.000
#> GSM241503     2  0.6307      0.416 0.488 0.512 0.000
#> GSM241504     2  0.6308      0.405 0.492 0.508 0.000
#> GSM241505     1  0.6280     -0.515 0.540 0.460 0.000
#> GSM241506     2  0.5810      0.232 0.336 0.664 0.000
#> GSM241507     2  0.5650      0.684 0.312 0.688 0.000
#> GSM241508     2  0.4002      0.547 0.160 0.840 0.000
#> GSM241509     3  0.5465      0.612 0.288 0.000 0.712
#> GSM241510     3  0.7842      0.498 0.328 0.072 0.600
#> GSM241511     3  0.7107      0.530 0.340 0.036 0.624
#> GSM241512     3  0.5650      0.611 0.312 0.000 0.688
#> GSM241513     3  0.6140      0.485 0.404 0.000 0.596
#> GSM241514     3  0.6140      0.485 0.404 0.000 0.596
#> GSM241515     3  0.6168      0.487 0.412 0.000 0.588
#> GSM241516     3  0.6180      0.485 0.416 0.000 0.584
#> GSM241517     3  0.7487      0.418 0.408 0.040 0.552
#> GSM241518     3  0.6140      0.485 0.404 0.000 0.596
#> GSM241519     3  0.6140      0.485 0.404 0.000 0.596
#> GSM241520     3  0.6140      0.485 0.404 0.000 0.596
#> GSM241521     1  0.9615     -0.172 0.456 0.220 0.324
#> GSM241522     1  0.7391      0.185 0.696 0.108 0.196
#> GSM241523     3  0.6140      0.485 0.404 0.000 0.596
#> GSM241524     3  0.6140      0.485 0.404 0.000 0.596
#> GSM241525     3  0.5529      0.609 0.296 0.000 0.704
#> GSM241526     3  0.5431      0.611 0.284 0.000 0.716
#> GSM241527     3  0.5431      0.611 0.284 0.000 0.716
#> GSM241528     3  0.5529      0.609 0.296 0.000 0.704
#> GSM241529     3  0.5529      0.609 0.296 0.000 0.704
#> GSM241530     3  0.5529      0.609 0.296 0.000 0.704
#> GSM241531     3  0.5529      0.609 0.296 0.000 0.704
#> GSM241532     3  0.5529      0.609 0.296 0.000 0.704
#> GSM241533     3  0.5497      0.609 0.292 0.000 0.708
#> GSM241534     3  0.5431      0.611 0.284 0.000 0.716
#> GSM241535     3  0.5431      0.611 0.284 0.000 0.716
#> GSM241536     3  0.5529      0.609 0.296 0.000 0.704
#> GSM241537     3  0.0000      0.604 0.000 0.000 1.000
#> GSM241538     3  0.0000      0.604 0.000 0.000 1.000
#> GSM241539     3  0.0000      0.604 0.000 0.000 1.000
#> GSM241540     3  0.0000      0.604 0.000 0.000 1.000
#> GSM241541     3  0.0000      0.604 0.000 0.000 1.000
#> GSM241542     3  0.0000      0.604 0.000 0.000 1.000
#> GSM241543     3  0.5988      0.473 0.368 0.000 0.632
#> GSM241544     3  0.5988      0.473 0.368 0.000 0.632
#> GSM241545     3  0.5988      0.473 0.368 0.000 0.632
#> GSM241546     3  0.5988      0.473 0.368 0.000 0.632
#> GSM241547     3  0.5988      0.473 0.368 0.000 0.632
#> GSM241548     3  0.5988      0.473 0.368 0.000 0.632

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.5178      0.862 0.392 0.600 0.004 0.004
#> GSM241452     1  0.1545      0.874 0.952 0.040 0.000 0.008
#> GSM241453     2  0.4991      0.864 0.388 0.608 0.004 0.000
#> GSM241454     1  0.0524      0.891 0.988 0.008 0.000 0.004
#> GSM241455     2  0.5183      0.858 0.408 0.584 0.000 0.008
#> GSM241456     1  0.0188      0.891 0.996 0.004 0.000 0.000
#> GSM241457     2  0.5964      0.832 0.424 0.536 0.000 0.040
#> GSM241458     1  0.1388      0.879 0.960 0.012 0.000 0.028
#> GSM241459     2  0.5888      0.835 0.424 0.540 0.000 0.036
#> GSM241460     1  0.1510      0.876 0.956 0.016 0.000 0.028
#> GSM241461     2  0.5400      0.858 0.372 0.608 0.000 0.020
#> GSM241462     1  0.0672      0.889 0.984 0.008 0.000 0.008
#> GSM241463     2  0.5901      0.828 0.432 0.532 0.000 0.036
#> GSM241464     1  0.1610      0.869 0.952 0.016 0.000 0.032
#> GSM241465     2  0.5161      0.859 0.400 0.592 0.000 0.008
#> GSM241466     1  0.0188      0.890 0.996 0.004 0.000 0.000
#> GSM241467     1  0.0657      0.886 0.984 0.004 0.000 0.012
#> GSM241468     2  0.5750      0.827 0.440 0.532 0.000 0.028
#> GSM241469     1  0.1356      0.880 0.960 0.032 0.000 0.008
#> GSM241470     2  0.5165      0.863 0.388 0.604 0.004 0.004
#> GSM241471     2  0.5833      0.824 0.440 0.528 0.000 0.032
#> GSM241472     1  0.1109      0.878 0.968 0.004 0.000 0.028
#> GSM241473     2  0.5833      0.824 0.440 0.528 0.000 0.032
#> GSM241474     1  0.1256      0.875 0.964 0.008 0.000 0.028
#> GSM241475     2  0.5178      0.862 0.392 0.600 0.004 0.004
#> GSM241476     1  0.1151      0.885 0.968 0.024 0.000 0.008
#> GSM241477     2  0.4817      0.864 0.388 0.612 0.000 0.000
#> GSM241478     2  0.5311      0.861 0.392 0.596 0.004 0.008
#> GSM241479     1  0.1151      0.885 0.968 0.024 0.000 0.008
#> GSM241480     1  0.0524      0.891 0.988 0.008 0.000 0.004
#> GSM241481     2  0.5888      0.835 0.424 0.540 0.000 0.036
#> GSM241482     1  0.1388      0.879 0.960 0.012 0.000 0.028
#> GSM241483     2  0.5391      0.862 0.380 0.604 0.004 0.012
#> GSM241484     1  0.0336      0.890 0.992 0.008 0.000 0.000
#> GSM241485     1  0.0336      0.890 0.992 0.008 0.000 0.000
#> GSM241486     2  0.5400      0.858 0.372 0.608 0.000 0.020
#> GSM241487     2  0.4950      0.862 0.376 0.620 0.004 0.000
#> GSM241488     2  0.5212      0.858 0.404 0.588 0.004 0.004
#> GSM241489     1  0.1356      0.880 0.960 0.032 0.000 0.008
#> GSM241490     1  0.1356      0.880 0.960 0.032 0.000 0.008
#> GSM241491     2  0.5901      0.828 0.432 0.532 0.000 0.036
#> GSM241492     1  0.1356      0.873 0.960 0.008 0.000 0.032
#> GSM241493     2  0.5165      0.863 0.388 0.604 0.004 0.004
#> GSM241494     1  0.0188      0.891 0.996 0.000 0.000 0.004
#> GSM241495     2  0.5165      0.863 0.388 0.604 0.004 0.004
#> GSM241496     2  0.5178      0.862 0.392 0.600 0.004 0.004
#> GSM241497     1  0.1545      0.874 0.952 0.040 0.000 0.008
#> GSM241498     1  0.1356      0.880 0.960 0.032 0.000 0.008
#> GSM241499     1  0.3852      0.724 0.808 0.180 0.000 0.012
#> GSM241500     2  0.4239      0.424 0.028 0.808 0.004 0.160
#> GSM241501     2  0.4718      0.694 0.216 0.756 0.004 0.024
#> GSM241502     2  0.4965      0.558 0.100 0.784 0.004 0.112
#> GSM241503     1  0.5496      0.613 0.704 0.232 0.000 0.064
#> GSM241504     1  0.5753      0.579 0.680 0.248 0.000 0.072
#> GSM241505     1  0.6164      0.546 0.656 0.240 0.000 0.104
#> GSM241506     2  0.4886      0.301 0.028 0.744 0.004 0.224
#> GSM241507     1  0.3668      0.698 0.808 0.188 0.000 0.004
#> GSM241508     2  0.4864      0.655 0.172 0.768 0.000 0.060
#> GSM241509     4  0.2635      0.780 0.000 0.020 0.076 0.904
#> GSM241510     4  0.5393      0.702 0.000 0.268 0.044 0.688
#> GSM241511     4  0.6936      0.680 0.076 0.220 0.052 0.652
#> GSM241512     4  0.5293      0.757 0.000 0.152 0.100 0.748
#> GSM241513     3  0.2546      0.892 0.000 0.060 0.912 0.028
#> GSM241514     3  0.2197      0.897 0.000 0.048 0.928 0.024
#> GSM241515     3  0.2546      0.892 0.000 0.060 0.912 0.028
#> GSM241516     3  0.2984      0.875 0.000 0.084 0.888 0.028
#> GSM241517     3  0.2742      0.888 0.000 0.076 0.900 0.024
#> GSM241518     3  0.2546      0.895 0.000 0.060 0.912 0.028
#> GSM241519     3  0.1833      0.900 0.000 0.032 0.944 0.024
#> GSM241520     3  0.1520      0.900 0.000 0.020 0.956 0.024
#> GSM241521     3  0.5215      0.585 0.004 0.296 0.680 0.020
#> GSM241522     3  0.7926      0.296 0.348 0.144 0.480 0.028
#> GSM241523     3  0.1520      0.900 0.000 0.020 0.956 0.024
#> GSM241524     3  0.1406      0.900 0.000 0.016 0.960 0.024
#> GSM241525     4  0.4731      0.766 0.000 0.160 0.060 0.780
#> GSM241526     4  0.2996      0.785 0.000 0.044 0.064 0.892
#> GSM241527     4  0.3164      0.785 0.000 0.052 0.064 0.884
#> GSM241528     4  0.4614      0.774 0.000 0.144 0.064 0.792
#> GSM241529     4  0.3885      0.783 0.000 0.092 0.064 0.844
#> GSM241530     4  0.4440      0.775 0.000 0.136 0.060 0.804
#> GSM241531     4  0.4820      0.765 0.000 0.168 0.060 0.772
#> GSM241532     4  0.2413      0.782 0.000 0.020 0.064 0.916
#> GSM241533     4  0.2179      0.781 0.000 0.012 0.064 0.924
#> GSM241534     4  0.2124      0.774 0.000 0.008 0.068 0.924
#> GSM241535     4  0.2124      0.774 0.000 0.008 0.068 0.924
#> GSM241536     4  0.4907      0.764 0.000 0.176 0.060 0.764
#> GSM241537     4  0.7148      0.437 0.000 0.140 0.364 0.496
#> GSM241538     4  0.7148      0.437 0.000 0.140 0.364 0.496
#> GSM241539     4  0.7148      0.437 0.000 0.140 0.364 0.496
#> GSM241540     4  0.7148      0.437 0.000 0.140 0.364 0.496
#> GSM241541     4  0.7210      0.433 0.000 0.148 0.360 0.492
#> GSM241542     4  0.7210      0.433 0.000 0.148 0.360 0.492
#> GSM241543     3  0.0657      0.892 0.000 0.012 0.984 0.004
#> GSM241544     3  0.0657      0.892 0.000 0.012 0.984 0.004
#> GSM241545     3  0.0657      0.892 0.000 0.012 0.984 0.004
#> GSM241546     3  0.0657      0.892 0.000 0.012 0.984 0.004
#> GSM241547     3  0.0895      0.890 0.000 0.020 0.976 0.004
#> GSM241548     3  0.0779      0.891 0.000 0.016 0.980 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2  0.0609      0.877 0.020 0.980 0.000 0.000 0.000
#> GSM241452     1  0.3123      0.862 0.812 0.184 0.000 0.004 0.000
#> GSM241453     2  0.0510      0.877 0.016 0.984 0.000 0.000 0.000
#> GSM241454     1  0.3013      0.867 0.832 0.160 0.000 0.000 0.008
#> GSM241455     2  0.2067      0.869 0.032 0.920 0.000 0.000 0.048
#> GSM241456     1  0.3163      0.867 0.824 0.164 0.000 0.000 0.012
#> GSM241457     2  0.3551      0.828 0.044 0.820 0.000 0.000 0.136
#> GSM241458     1  0.5480      0.807 0.656 0.168 0.000 0.000 0.176
#> GSM241459     2  0.3460      0.833 0.044 0.828 0.000 0.000 0.128
#> GSM241460     1  0.5513      0.804 0.652 0.168 0.000 0.000 0.180
#> GSM241461     2  0.2770      0.837 0.008 0.864 0.004 0.000 0.124
#> GSM241462     1  0.4444      0.857 0.756 0.156 0.000 0.000 0.088
#> GSM241463     2  0.4065      0.786 0.048 0.772 0.000 0.000 0.180
#> GSM241464     1  0.5805      0.759 0.612 0.172 0.000 0.000 0.216
#> GSM241465     2  0.1915      0.868 0.032 0.928 0.000 0.000 0.040
#> GSM241466     1  0.3804      0.862 0.796 0.160 0.000 0.000 0.044
#> GSM241467     1  0.4258      0.854 0.768 0.160 0.000 0.000 0.072
#> GSM241468     2  0.2830      0.848 0.044 0.876 0.000 0.000 0.080
#> GSM241469     1  0.3123      0.862 0.812 0.184 0.000 0.004 0.000
#> GSM241470     2  0.0609      0.877 0.020 0.980 0.000 0.000 0.000
#> GSM241471     2  0.3365      0.829 0.044 0.836 0.000 0.000 0.120
#> GSM241472     1  0.5271      0.809 0.680 0.168 0.000 0.000 0.152
#> GSM241473     2  0.3365      0.829 0.044 0.836 0.000 0.000 0.120
#> GSM241474     1  0.5307      0.806 0.676 0.168 0.000 0.000 0.156
#> GSM241475     2  0.0609      0.877 0.020 0.980 0.000 0.000 0.000
#> GSM241476     1  0.2929      0.864 0.820 0.180 0.000 0.000 0.000
#> GSM241477     2  0.0510      0.877 0.016 0.984 0.000 0.000 0.000
#> GSM241478     2  0.0992      0.875 0.024 0.968 0.000 0.000 0.008
#> GSM241479     1  0.3123      0.862 0.812 0.184 0.000 0.004 0.000
#> GSM241480     1  0.3013      0.867 0.832 0.160 0.000 0.000 0.008
#> GSM241481     2  0.3460      0.833 0.044 0.828 0.000 0.000 0.128
#> GSM241482     1  0.5480      0.807 0.656 0.168 0.000 0.000 0.176
#> GSM241483     2  0.1310      0.875 0.020 0.956 0.000 0.000 0.024
#> GSM241484     1  0.3944      0.865 0.788 0.160 0.000 0.000 0.052
#> GSM241485     1  0.4199      0.864 0.772 0.160 0.000 0.000 0.068
#> GSM241486     2  0.2770      0.837 0.008 0.864 0.004 0.000 0.124
#> GSM241487     2  0.0510      0.877 0.016 0.984 0.000 0.000 0.000
#> GSM241488     2  0.0703      0.875 0.024 0.976 0.000 0.000 0.000
#> GSM241489     1  0.2966      0.862 0.816 0.184 0.000 0.000 0.000
#> GSM241490     1  0.3123      0.862 0.812 0.184 0.000 0.004 0.000
#> GSM241491     2  0.3953      0.797 0.048 0.784 0.000 0.000 0.168
#> GSM241492     1  0.5747      0.768 0.620 0.168 0.000 0.000 0.212
#> GSM241493     2  0.0609      0.877 0.020 0.980 0.000 0.000 0.000
#> GSM241494     1  0.3359      0.867 0.816 0.164 0.000 0.000 0.020
#> GSM241495     2  0.0609      0.877 0.020 0.980 0.000 0.000 0.000
#> GSM241496     2  0.0794      0.874 0.028 0.972 0.000 0.000 0.000
#> GSM241497     1  0.3123      0.862 0.812 0.184 0.000 0.004 0.000
#> GSM241498     1  0.3123      0.862 0.812 0.184 0.000 0.004 0.000
#> GSM241499     1  0.3423      0.818 0.844 0.108 0.000 0.008 0.040
#> GSM241500     2  0.5895      0.647 0.104 0.692 0.004 0.052 0.148
#> GSM241501     2  0.4349      0.747 0.088 0.788 0.000 0.012 0.112
#> GSM241502     2  0.5692      0.661 0.108 0.704 0.000 0.056 0.132
#> GSM241503     1  0.4469      0.718 0.796 0.072 0.000 0.040 0.092
#> GSM241504     1  0.4729      0.649 0.780 0.048 0.000 0.080 0.092
#> GSM241505     1  0.4622      0.641 0.784 0.036 0.000 0.088 0.092
#> GSM241506     2  0.7544      0.372 0.112 0.532 0.004 0.184 0.168
#> GSM241507     1  0.4031      0.743 0.796 0.048 0.000 0.008 0.148
#> GSM241508     2  0.5401      0.699 0.100 0.708 0.008 0.012 0.172
#> GSM241509     4  0.2955      0.749 0.004 0.008 0.008 0.864 0.116
#> GSM241510     4  0.5657      0.645 0.084 0.028 0.008 0.696 0.184
#> GSM241511     4  0.6144      0.523 0.200 0.008 0.004 0.612 0.176
#> GSM241512     4  0.3564      0.786 0.040 0.004 0.020 0.852 0.084
#> GSM241513     3  0.4353      0.845 0.052 0.008 0.812 0.036 0.092
#> GSM241514     3  0.3978      0.856 0.044 0.004 0.832 0.036 0.084
#> GSM241515     3  0.4353      0.845 0.052 0.008 0.812 0.036 0.092
#> GSM241516     3  0.4818      0.821 0.056 0.008 0.776 0.036 0.124
#> GSM241517     3  0.4802      0.836 0.056 0.012 0.780 0.032 0.120
#> GSM241518     3  0.4370      0.850 0.048 0.004 0.804 0.036 0.108
#> GSM241519     3  0.2344      0.874 0.020 0.004 0.920 0.028 0.028
#> GSM241520     3  0.1329      0.874 0.008 0.000 0.956 0.032 0.004
#> GSM241521     3  0.6177      0.706 0.052 0.104 0.700 0.032 0.112
#> GSM241522     1  0.6959     -0.208 0.452 0.016 0.396 0.020 0.116
#> GSM241523     3  0.1966      0.875 0.016 0.004 0.936 0.028 0.016
#> GSM241524     3  0.1202      0.874 0.004 0.000 0.960 0.032 0.004
#> GSM241525     4  0.3090      0.794 0.052 0.000 0.000 0.860 0.088
#> GSM241526     4  0.1329      0.793 0.008 0.000 0.004 0.956 0.032
#> GSM241527     4  0.1442      0.794 0.012 0.000 0.004 0.952 0.032
#> GSM241528     4  0.2369      0.808 0.032 0.000 0.004 0.908 0.056
#> GSM241529     4  0.1739      0.803 0.024 0.000 0.004 0.940 0.032
#> GSM241530     4  0.2713      0.804 0.036 0.000 0.004 0.888 0.072
#> GSM241531     4  0.3849      0.772 0.068 0.000 0.008 0.820 0.104
#> GSM241532     4  0.3294      0.756 0.024 0.000 0.008 0.844 0.124
#> GSM241533     4  0.2295      0.753 0.004 0.000 0.008 0.900 0.088
#> GSM241534     4  0.1952      0.737 0.000 0.000 0.004 0.912 0.084
#> GSM241535     4  0.1768      0.748 0.000 0.000 0.004 0.924 0.072
#> GSM241536     4  0.3888      0.770 0.064 0.000 0.008 0.816 0.112
#> GSM241537     5  0.6461      0.989 0.000 0.000 0.184 0.372 0.444
#> GSM241538     5  0.6461      0.989 0.000 0.000 0.184 0.372 0.444
#> GSM241539     5  0.6461      0.989 0.000 0.000 0.184 0.372 0.444
#> GSM241540     5  0.6461      0.989 0.000 0.000 0.184 0.372 0.444
#> GSM241541     5  0.6439      0.979 0.000 0.000 0.184 0.356 0.460
#> GSM241542     5  0.6439      0.979 0.000 0.000 0.184 0.356 0.460
#> GSM241543     3  0.1569      0.857 0.008 0.000 0.944 0.004 0.044
#> GSM241544     3  0.1644      0.856 0.008 0.000 0.940 0.004 0.048
#> GSM241545     3  0.1569      0.857 0.008 0.000 0.944 0.004 0.044
#> GSM241546     3  0.1644      0.856 0.008 0.000 0.940 0.004 0.048
#> GSM241547     3  0.1901      0.852 0.012 0.000 0.928 0.004 0.056
#> GSM241548     3  0.1830      0.854 0.012 0.000 0.932 0.004 0.052

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4 p5    p6
#> GSM241451     2  0.1610      0.831 0.084 0.916 0.000 0.000 NA 0.000
#> GSM241452     1  0.1349      0.821 0.940 0.056 0.000 0.000 NA 0.000
#> GSM241453     2  0.1610      0.831 0.084 0.916 0.000 0.000 NA 0.000
#> GSM241454     1  0.0622      0.829 0.980 0.012 0.000 0.000 NA 0.000
#> GSM241455     2  0.3047      0.826 0.080 0.852 0.000 0.000 NA 0.008
#> GSM241456     1  0.1151      0.829 0.956 0.032 0.000 0.000 NA 0.000
#> GSM241457     2  0.5683      0.740 0.116 0.604 0.000 0.000 NA 0.036
#> GSM241458     1  0.3852      0.727 0.664 0.012 0.000 0.000 NA 0.000
#> GSM241459     2  0.5703      0.741 0.116 0.600 0.000 0.000 NA 0.036
#> GSM241460     1  0.3883      0.721 0.656 0.012 0.000 0.000 NA 0.000
#> GSM241461     2  0.4670      0.754 0.036 0.728 0.000 0.000 NA 0.072
#> GSM241462     1  0.3133      0.792 0.780 0.000 0.000 0.000 NA 0.008
#> GSM241463     2  0.6038      0.677 0.120 0.556 0.000 0.000 NA 0.048
#> GSM241464     1  0.5183      0.608 0.540 0.028 0.000 0.000 NA 0.040
#> GSM241465     2  0.3214      0.824 0.084 0.840 0.000 0.000 NA 0.008
#> GSM241466     1  0.2234      0.812 0.872 0.004 0.000 0.000 NA 0.000
#> GSM241467     1  0.2772      0.796 0.816 0.004 0.000 0.000 NA 0.000
#> GSM241468     2  0.4450      0.785 0.128 0.732 0.000 0.000 NA 0.008
#> GSM241469     1  0.1075      0.824 0.952 0.048 0.000 0.000 NA 0.000
#> GSM241470     2  0.1610      0.831 0.084 0.916 0.000 0.000 NA 0.000
#> GSM241471     2  0.5172      0.742 0.128 0.636 0.000 0.000 NA 0.008
#> GSM241472     1  0.3766      0.730 0.684 0.012 0.000 0.000 NA 0.000
#> GSM241473     2  0.5172      0.742 0.128 0.636 0.000 0.000 NA 0.008
#> GSM241474     1  0.3802      0.725 0.676 0.012 0.000 0.000 NA 0.000
#> GSM241475     2  0.1610      0.831 0.084 0.916 0.000 0.000 NA 0.000
#> GSM241476     1  0.0937      0.826 0.960 0.040 0.000 0.000 NA 0.000
#> GSM241477     2  0.1753      0.831 0.084 0.912 0.000 0.000 NA 0.000
#> GSM241478     2  0.2009      0.829 0.084 0.904 0.000 0.000 NA 0.004
#> GSM241479     1  0.0937      0.826 0.960 0.040 0.000 0.000 NA 0.000
#> GSM241480     1  0.0622      0.829 0.980 0.012 0.000 0.000 NA 0.000
#> GSM241481     2  0.5663      0.743 0.116 0.608 0.000 0.000 NA 0.036
#> GSM241482     1  0.3852      0.727 0.664 0.012 0.000 0.000 NA 0.000
#> GSM241483     2  0.3882      0.810 0.084 0.800 0.000 0.000 NA 0.024
#> GSM241484     1  0.1444      0.827 0.928 0.000 0.000 0.000 NA 0.000
#> GSM241485     1  0.3147      0.811 0.816 0.016 0.000 0.000 NA 0.008
#> GSM241486     2  0.4601      0.750 0.032 0.732 0.000 0.000 NA 0.072
#> GSM241487     2  0.1753      0.831 0.084 0.912 0.000 0.000 NA 0.000
#> GSM241488     2  0.2121      0.828 0.096 0.892 0.000 0.000 NA 0.000
#> GSM241489     1  0.1152      0.824 0.952 0.044 0.000 0.000 NA 0.000
#> GSM241490     1  0.1007      0.825 0.956 0.044 0.000 0.000 NA 0.000
#> GSM241491     2  0.5838      0.702 0.120 0.584 0.000 0.000 NA 0.040
#> GSM241492     1  0.4727      0.644 0.580 0.012 0.000 0.000 NA 0.032
#> GSM241493     2  0.1610      0.831 0.084 0.916 0.000 0.000 NA 0.000
#> GSM241494     1  0.1564      0.830 0.936 0.024 0.000 0.000 NA 0.000
#> GSM241495     2  0.1610      0.831 0.084 0.916 0.000 0.000 NA 0.000
#> GSM241496     2  0.1858      0.828 0.092 0.904 0.000 0.000 NA 0.000
#> GSM241497     1  0.1349      0.821 0.940 0.056 0.000 0.000 NA 0.000
#> GSM241498     1  0.1075      0.824 0.952 0.048 0.000 0.000 NA 0.000
#> GSM241499     1  0.3503      0.751 0.820 0.032 0.000 0.012 NA 0.008
#> GSM241500     2  0.4702      0.647 0.000 0.724 0.008 0.032 NA 0.048
#> GSM241501     2  0.3548      0.721 0.008 0.816 0.004 0.004 NA 0.036
#> GSM241502     2  0.4796      0.652 0.016 0.728 0.008 0.024 NA 0.036
#> GSM241503     1  0.5113      0.662 0.708 0.052 0.000 0.068 NA 0.008
#> GSM241504     1  0.5668      0.608 0.664 0.044 0.000 0.108 NA 0.016
#> GSM241505     1  0.5668      0.606 0.664 0.044 0.000 0.108 NA 0.016
#> GSM241506     2  0.6350      0.375 0.000 0.548 0.008 0.152 NA 0.044
#> GSM241507     1  0.5466      0.667 0.612 0.016 0.000 0.064 NA 0.020
#> GSM241508     2  0.5968      0.599 0.012 0.592 0.012 0.024 NA 0.084
#> GSM241509     4  0.4470      0.717 0.000 0.020 0.016 0.760 NA 0.144
#> GSM241510     4  0.5931      0.582 0.000 0.072 0.012 0.616 NA 0.068
#> GSM241511     4  0.6069      0.545 0.040 0.020 0.016 0.608 NA 0.056
#> GSM241512     4  0.2993      0.753 0.000 0.012 0.032 0.876 NA 0.036
#> GSM241513     3  0.3856      0.778 0.000 0.012 0.808 0.020 NA 0.044
#> GSM241514     3  0.3446      0.788 0.000 0.004 0.832 0.020 NA 0.040
#> GSM241515     3  0.3936      0.776 0.000 0.012 0.804 0.024 NA 0.044
#> GSM241516     3  0.4330      0.762 0.000 0.012 0.780 0.040 NA 0.048
#> GSM241517     3  0.4415      0.769 0.000 0.012 0.764 0.020 NA 0.068
#> GSM241518     3  0.4224      0.775 0.000 0.008 0.776 0.020 NA 0.064
#> GSM241519     3  0.1989      0.804 0.000 0.004 0.916 0.000 NA 0.028
#> GSM241520     3  0.1536      0.802 0.000 0.004 0.940 0.000 NA 0.040
#> GSM241521     3  0.4657      0.730 0.000 0.076 0.756 0.012 NA 0.036
#> GSM241522     3  0.7433      0.150 0.372 0.028 0.404 0.040 NA 0.032
#> GSM241523     3  0.1268      0.806 0.000 0.004 0.952 0.000 NA 0.008
#> GSM241524     3  0.0858      0.803 0.000 0.004 0.968 0.000 NA 0.028
#> GSM241525     4  0.3660      0.737 0.016 0.008 0.020 0.832 NA 0.024
#> GSM241526     4  0.3841      0.752 0.000 0.008 0.020 0.812 NA 0.092
#> GSM241527     4  0.3668      0.752 0.000 0.008 0.020 0.824 NA 0.092
#> GSM241528     4  0.3523      0.761 0.000 0.008 0.020 0.836 NA 0.060
#> GSM241529     4  0.3847      0.753 0.000 0.008 0.020 0.812 NA 0.088
#> GSM241530     4  0.2954      0.755 0.000 0.008 0.020 0.872 NA 0.032
#> GSM241531     4  0.4241      0.676 0.004 0.004 0.008 0.748 NA 0.048
#> GSM241532     4  0.4523      0.711 0.000 0.000 0.008 0.724 NA 0.144
#> GSM241533     4  0.3732      0.728 0.000 0.000 0.000 0.780 NA 0.144
#> GSM241534     4  0.3459      0.717 0.000 0.000 0.004 0.792 NA 0.172
#> GSM241535     4  0.2773      0.735 0.000 0.000 0.004 0.836 NA 0.152
#> GSM241536     4  0.4281      0.667 0.000 0.004 0.008 0.732 NA 0.052
#> GSM241537     6  0.3767      0.990 0.000 0.000 0.088 0.132 NA 0.780
#> GSM241538     6  0.3767      0.990 0.000 0.000 0.088 0.132 NA 0.780
#> GSM241539     6  0.4047      0.989 0.000 0.004 0.088 0.132 NA 0.772
#> GSM241540     6  0.4047      0.989 0.000 0.004 0.088 0.132 NA 0.772
#> GSM241541     6  0.3595      0.983 0.000 0.000 0.084 0.120 NA 0.796
#> GSM241542     6  0.3595      0.983 0.000 0.000 0.084 0.120 NA 0.796
#> GSM241543     3  0.2538      0.767 0.000 0.000 0.860 0.000 NA 0.124
#> GSM241544     3  0.2538      0.767 0.000 0.000 0.860 0.000 NA 0.124
#> GSM241545     3  0.2538      0.767 0.000 0.000 0.860 0.000 NA 0.124
#> GSM241546     3  0.2538      0.767 0.000 0.000 0.860 0.000 NA 0.124
#> GSM241547     3  0.3062      0.758 0.000 0.000 0.824 0.000 NA 0.144
#> GSM241548     3  0.3023      0.760 0.000 0.000 0.828 0.000 NA 0.140

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n  dose(p)  time(p) k
#> CV:kmeans 98 1.23e-15 1.67e-01 2
#> CV:kmeans 73 6.01e-14 1.00e-01 3
#> CV:kmeans 89 3.37e-13 1.89e-05 4
#> CV:kmeans 96 2.48e-14 4.08e-08 5
#> CV:kmeans 96 2.48e-14 4.08e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.974       0.989         0.4952 0.505   0.505
#> 3 3 0.683           0.846       0.827         0.3055 0.793   0.603
#> 4 4 0.946           0.962       0.978         0.1598 0.901   0.710
#> 5 5 0.897           0.847       0.916         0.0464 0.974   0.898
#> 6 6 0.841           0.822       0.886         0.0406 0.953   0.796

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     1  0.0000      0.989 1.000 0.000
#> GSM241452     1  0.0000      0.989 1.000 0.000
#> GSM241453     1  0.0000      0.989 1.000 0.000
#> GSM241454     1  0.0000      0.989 1.000 0.000
#> GSM241455     1  0.0000      0.989 1.000 0.000
#> GSM241456     1  0.0000      0.989 1.000 0.000
#> GSM241457     1  0.0000      0.989 1.000 0.000
#> GSM241458     1  0.0000      0.989 1.000 0.000
#> GSM241459     1  0.0000      0.989 1.000 0.000
#> GSM241460     1  0.0000      0.989 1.000 0.000
#> GSM241461     1  0.0000      0.989 1.000 0.000
#> GSM241462     1  0.0000      0.989 1.000 0.000
#> GSM241463     1  0.0000      0.989 1.000 0.000
#> GSM241464     1  0.0000      0.989 1.000 0.000
#> GSM241465     1  0.0000      0.989 1.000 0.000
#> GSM241466     1  0.0000      0.989 1.000 0.000
#> GSM241467     1  0.0000      0.989 1.000 0.000
#> GSM241468     1  0.0000      0.989 1.000 0.000
#> GSM241469     1  0.0000      0.989 1.000 0.000
#> GSM241470     1  0.0000      0.989 1.000 0.000
#> GSM241471     1  0.0000      0.989 1.000 0.000
#> GSM241472     1  0.0000      0.989 1.000 0.000
#> GSM241473     1  0.0000      0.989 1.000 0.000
#> GSM241474     1  0.0000      0.989 1.000 0.000
#> GSM241475     1  0.0000      0.989 1.000 0.000
#> GSM241476     1  0.0000      0.989 1.000 0.000
#> GSM241477     1  0.0000      0.989 1.000 0.000
#> GSM241478     1  0.0000      0.989 1.000 0.000
#> GSM241479     1  0.0000      0.989 1.000 0.000
#> GSM241480     1  0.0000      0.989 1.000 0.000
#> GSM241481     1  0.0000      0.989 1.000 0.000
#> GSM241482     1  0.0000      0.989 1.000 0.000
#> GSM241483     1  0.0000      0.989 1.000 0.000
#> GSM241484     1  0.0000      0.989 1.000 0.000
#> GSM241485     1  0.0000      0.989 1.000 0.000
#> GSM241486     1  0.0000      0.989 1.000 0.000
#> GSM241487     1  0.0000      0.989 1.000 0.000
#> GSM241488     1  0.0000      0.989 1.000 0.000
#> GSM241489     1  0.0000      0.989 1.000 0.000
#> GSM241490     1  0.0000      0.989 1.000 0.000
#> GSM241491     1  0.0000      0.989 1.000 0.000
#> GSM241492     1  0.0000      0.989 1.000 0.000
#> GSM241493     1  0.0000      0.989 1.000 0.000
#> GSM241494     1  0.0000      0.989 1.000 0.000
#> GSM241495     1  0.0000      0.989 1.000 0.000
#> GSM241496     1  0.0000      0.989 1.000 0.000
#> GSM241497     1  0.0000      0.989 1.000 0.000
#> GSM241498     1  0.0000      0.989 1.000 0.000
#> GSM241499     1  0.0000      0.989 1.000 0.000
#> GSM241500     2  0.8207      0.656 0.256 0.744
#> GSM241501     1  0.0000      0.989 1.000 0.000
#> GSM241502     1  0.7883      0.690 0.764 0.236
#> GSM241503     1  0.0938      0.979 0.988 0.012
#> GSM241504     1  0.1184      0.975 0.984 0.016
#> GSM241505     1  0.1843      0.963 0.972 0.028
#> GSM241506     2  0.8016      0.677 0.244 0.756
#> GSM241507     1  0.0000      0.989 1.000 0.000
#> GSM241508     1  0.8713      0.584 0.708 0.292
#> GSM241509     2  0.0000      0.987 0.000 1.000
#> GSM241510     2  0.0000      0.987 0.000 1.000
#> GSM241511     2  0.0000      0.987 0.000 1.000
#> GSM241512     2  0.0000      0.987 0.000 1.000
#> GSM241513     2  0.0000      0.987 0.000 1.000
#> GSM241514     2  0.0000      0.987 0.000 1.000
#> GSM241515     2  0.0000      0.987 0.000 1.000
#> GSM241516     2  0.0000      0.987 0.000 1.000
#> GSM241517     2  0.0000      0.987 0.000 1.000
#> GSM241518     2  0.0000      0.987 0.000 1.000
#> GSM241519     2  0.0000      0.987 0.000 1.000
#> GSM241520     2  0.0000      0.987 0.000 1.000
#> GSM241521     2  0.0000      0.987 0.000 1.000
#> GSM241522     2  0.0000      0.987 0.000 1.000
#> GSM241523     2  0.0000      0.987 0.000 1.000
#> GSM241524     2  0.0000      0.987 0.000 1.000
#> GSM241525     2  0.0000      0.987 0.000 1.000
#> GSM241526     2  0.0000      0.987 0.000 1.000
#> GSM241527     2  0.0000      0.987 0.000 1.000
#> GSM241528     2  0.0000      0.987 0.000 1.000
#> GSM241529     2  0.0000      0.987 0.000 1.000
#> GSM241530     2  0.0000      0.987 0.000 1.000
#> GSM241531     2  0.0000      0.987 0.000 1.000
#> GSM241532     2  0.0000      0.987 0.000 1.000
#> GSM241533     2  0.0000      0.987 0.000 1.000
#> GSM241534     2  0.0000      0.987 0.000 1.000
#> GSM241535     2  0.0000      0.987 0.000 1.000
#> GSM241536     2  0.0000      0.987 0.000 1.000
#> GSM241537     2  0.0000      0.987 0.000 1.000
#> GSM241538     2  0.0000      0.987 0.000 1.000
#> GSM241539     2  0.0000      0.987 0.000 1.000
#> GSM241540     2  0.0000      0.987 0.000 1.000
#> GSM241541     2  0.0000      0.987 0.000 1.000
#> GSM241542     2  0.0000      0.987 0.000 1.000
#> GSM241543     2  0.0000      0.987 0.000 1.000
#> GSM241544     2  0.0000      0.987 0.000 1.000
#> GSM241545     2  0.0000      0.987 0.000 1.000
#> GSM241546     2  0.0000      0.987 0.000 1.000
#> GSM241547     2  0.0000      0.987 0.000 1.000
#> GSM241548     2  0.0000      0.987 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2   0.000      0.909 0.000 1.000 0.000
#> GSM241452     1   0.601      0.921 0.628 0.372 0.000
#> GSM241453     2   0.000      0.909 0.000 1.000 0.000
#> GSM241454     1   0.601      0.921 0.628 0.372 0.000
#> GSM241455     2   0.000      0.909 0.000 1.000 0.000
#> GSM241456     1   0.601      0.921 0.628 0.372 0.000
#> GSM241457     2   0.000      0.909 0.000 1.000 0.000
#> GSM241458     1   0.601      0.921 0.628 0.372 0.000
#> GSM241459     2   0.000      0.909 0.000 1.000 0.000
#> GSM241460     1   0.601      0.921 0.628 0.372 0.000
#> GSM241461     2   0.000      0.909 0.000 1.000 0.000
#> GSM241462     1   0.601      0.921 0.628 0.372 0.000
#> GSM241463     2   0.000      0.909 0.000 1.000 0.000
#> GSM241464     1   0.601      0.921 0.628 0.372 0.000
#> GSM241465     2   0.000      0.909 0.000 1.000 0.000
#> GSM241466     1   0.601      0.921 0.628 0.372 0.000
#> GSM241467     1   0.601      0.921 0.628 0.372 0.000
#> GSM241468     2   0.000      0.909 0.000 1.000 0.000
#> GSM241469     1   0.601      0.921 0.628 0.372 0.000
#> GSM241470     2   0.000      0.909 0.000 1.000 0.000
#> GSM241471     2   0.000      0.909 0.000 1.000 0.000
#> GSM241472     1   0.601      0.921 0.628 0.372 0.000
#> GSM241473     2   0.000      0.909 0.000 1.000 0.000
#> GSM241474     1   0.601      0.921 0.628 0.372 0.000
#> GSM241475     2   0.000      0.909 0.000 1.000 0.000
#> GSM241476     1   0.601      0.921 0.628 0.372 0.000
#> GSM241477     2   0.000      0.909 0.000 1.000 0.000
#> GSM241478     2   0.000      0.909 0.000 1.000 0.000
#> GSM241479     1   0.601      0.921 0.628 0.372 0.000
#> GSM241480     1   0.601      0.921 0.628 0.372 0.000
#> GSM241481     2   0.000      0.909 0.000 1.000 0.000
#> GSM241482     1   0.601      0.921 0.628 0.372 0.000
#> GSM241483     2   0.000      0.909 0.000 1.000 0.000
#> GSM241484     1   0.601      0.921 0.628 0.372 0.000
#> GSM241485     1   0.601      0.921 0.628 0.372 0.000
#> GSM241486     2   0.000      0.909 0.000 1.000 0.000
#> GSM241487     2   0.000      0.909 0.000 1.000 0.000
#> GSM241488     2   0.000      0.909 0.000 1.000 0.000
#> GSM241489     1   0.601      0.921 0.628 0.372 0.000
#> GSM241490     1   0.601      0.921 0.628 0.372 0.000
#> GSM241491     2   0.000      0.909 0.000 1.000 0.000
#> GSM241492     1   0.601      0.921 0.628 0.372 0.000
#> GSM241493     2   0.000      0.909 0.000 1.000 0.000
#> GSM241494     1   0.601      0.921 0.628 0.372 0.000
#> GSM241495     2   0.000      0.909 0.000 1.000 0.000
#> GSM241496     2   0.000      0.909 0.000 1.000 0.000
#> GSM241497     1   0.601      0.921 0.628 0.372 0.000
#> GSM241498     1   0.601      0.921 0.628 0.372 0.000
#> GSM241499     1   0.601      0.921 0.628 0.372 0.000
#> GSM241500     2   0.601      0.510 0.000 0.628 0.372
#> GSM241501     2   0.412      0.718 0.000 0.832 0.168
#> GSM241502     2   0.440      0.696 0.000 0.812 0.188
#> GSM241503     1   0.835      0.675 0.628 0.188 0.184
#> GSM241504     1   0.786      0.558 0.628 0.088 0.284
#> GSM241505     1   0.786      0.558 0.628 0.088 0.284
#> GSM241506     2   0.604      0.498 0.000 0.620 0.380
#> GSM241507     1   0.601      0.921 0.628 0.372 0.000
#> GSM241508     2   0.601      0.510 0.000 0.628 0.372
#> GSM241509     3   0.271      0.831 0.088 0.000 0.912
#> GSM241510     3   0.000      0.810 0.000 0.000 1.000
#> GSM241511     3   0.000      0.810 0.000 0.000 1.000
#> GSM241512     3   0.280      0.832 0.092 0.000 0.908
#> GSM241513     3   0.601      0.858 0.372 0.000 0.628
#> GSM241514     3   0.601      0.858 0.372 0.000 0.628
#> GSM241515     3   0.601      0.858 0.372 0.000 0.628
#> GSM241516     3   0.601      0.858 0.372 0.000 0.628
#> GSM241517     3   0.601      0.858 0.372 0.000 0.628
#> GSM241518     3   0.601      0.858 0.372 0.000 0.628
#> GSM241519     3   0.601      0.858 0.372 0.000 0.628
#> GSM241520     3   0.601      0.858 0.372 0.000 0.628
#> GSM241521     3   0.601      0.858 0.372 0.000 0.628
#> GSM241522     1   0.525     -0.323 0.736 0.000 0.264
#> GSM241523     3   0.601      0.858 0.372 0.000 0.628
#> GSM241524     3   0.601      0.858 0.372 0.000 0.628
#> GSM241525     3   0.000      0.810 0.000 0.000 1.000
#> GSM241526     3   0.000      0.810 0.000 0.000 1.000
#> GSM241527     3   0.000      0.810 0.000 0.000 1.000
#> GSM241528     3   0.000      0.810 0.000 0.000 1.000
#> GSM241529     3   0.000      0.810 0.000 0.000 1.000
#> GSM241530     3   0.000      0.810 0.000 0.000 1.000
#> GSM241531     3   0.000      0.810 0.000 0.000 1.000
#> GSM241532     3   0.000      0.810 0.000 0.000 1.000
#> GSM241533     3   0.000      0.810 0.000 0.000 1.000
#> GSM241534     3   0.000      0.810 0.000 0.000 1.000
#> GSM241535     3   0.000      0.810 0.000 0.000 1.000
#> GSM241536     3   0.000      0.810 0.000 0.000 1.000
#> GSM241537     3   0.525      0.861 0.264 0.000 0.736
#> GSM241538     3   0.525      0.861 0.264 0.000 0.736
#> GSM241539     3   0.525      0.861 0.264 0.000 0.736
#> GSM241540     3   0.525      0.861 0.264 0.000 0.736
#> GSM241541     3   0.525      0.861 0.264 0.000 0.736
#> GSM241542     3   0.525      0.861 0.264 0.000 0.736
#> GSM241543     3   0.601      0.858 0.372 0.000 0.628
#> GSM241544     3   0.601      0.858 0.372 0.000 0.628
#> GSM241545     3   0.601      0.858 0.372 0.000 0.628
#> GSM241546     3   0.601      0.858 0.372 0.000 0.628
#> GSM241547     3   0.601      0.858 0.372 0.000 0.628
#> GSM241548     3   0.601      0.858 0.372 0.000 0.628

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241452     1  0.0336      0.992 0.992 0.008 0.000 0.000
#> GSM241453     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241454     1  0.0336      0.992 0.992 0.008 0.000 0.000
#> GSM241455     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241456     1  0.0336      0.992 0.992 0.008 0.000 0.000
#> GSM241457     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241458     1  0.0188      0.991 0.996 0.004 0.000 0.000
#> GSM241459     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241460     1  0.0188      0.991 0.996 0.004 0.000 0.000
#> GSM241461     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241462     1  0.0188      0.991 0.996 0.004 0.000 0.000
#> GSM241463     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241464     1  0.0336      0.992 0.992 0.008 0.000 0.000
#> GSM241465     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241466     1  0.0336      0.992 0.992 0.008 0.000 0.000
#> GSM241467     1  0.0336      0.992 0.992 0.008 0.000 0.000
#> GSM241468     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241469     1  0.0336      0.992 0.992 0.008 0.000 0.000
#> GSM241470     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241471     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241472     1  0.0336      0.992 0.992 0.008 0.000 0.000
#> GSM241473     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241474     1  0.0336      0.992 0.992 0.008 0.000 0.000
#> GSM241475     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241476     1  0.0336      0.992 0.992 0.008 0.000 0.000
#> GSM241477     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241478     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241479     1  0.0336      0.992 0.992 0.008 0.000 0.000
#> GSM241480     1  0.0336      0.992 0.992 0.008 0.000 0.000
#> GSM241481     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241482     1  0.0188      0.991 0.996 0.004 0.000 0.000
#> GSM241483     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241484     1  0.0188      0.991 0.996 0.004 0.000 0.000
#> GSM241485     1  0.0188      0.991 0.996 0.004 0.000 0.000
#> GSM241486     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241487     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241488     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241489     1  0.0336      0.992 0.992 0.008 0.000 0.000
#> GSM241490     1  0.0336      0.992 0.992 0.008 0.000 0.000
#> GSM241491     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241492     1  0.0336      0.992 0.992 0.008 0.000 0.000
#> GSM241493     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241494     1  0.0336      0.992 0.992 0.008 0.000 0.000
#> GSM241495     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241496     2  0.0000      0.982 0.000 1.000 0.000 0.000
#> GSM241497     1  0.0336      0.992 0.992 0.008 0.000 0.000
#> GSM241498     1  0.0336      0.992 0.992 0.008 0.000 0.000
#> GSM241499     1  0.0188      0.986 0.996 0.000 0.000 0.004
#> GSM241500     2  0.4356      0.616 0.000 0.708 0.000 0.292
#> GSM241501     2  0.0188      0.978 0.000 0.996 0.000 0.004
#> GSM241502     2  0.2469      0.880 0.000 0.892 0.000 0.108
#> GSM241503     1  0.0592      0.978 0.984 0.000 0.000 0.016
#> GSM241504     1  0.1867      0.926 0.928 0.000 0.000 0.072
#> GSM241505     1  0.1867      0.926 0.928 0.000 0.000 0.072
#> GSM241506     4  0.3610      0.721 0.000 0.200 0.000 0.800
#> GSM241507     1  0.0188      0.986 0.996 0.000 0.000 0.004
#> GSM241508     2  0.2081      0.908 0.000 0.916 0.000 0.084
#> GSM241509     4  0.0336      0.937 0.000 0.000 0.008 0.992
#> GSM241510     4  0.0188      0.938 0.000 0.000 0.004 0.996
#> GSM241511     4  0.0336      0.934 0.008 0.000 0.000 0.992
#> GSM241512     4  0.1474      0.917 0.000 0.000 0.052 0.948
#> GSM241513     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM241514     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM241515     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM241516     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM241517     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM241518     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM241519     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM241520     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM241521     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM241522     3  0.0188      0.995 0.000 0.000 0.996 0.004
#> GSM241523     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM241524     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM241525     4  0.0000      0.936 0.000 0.000 0.000 1.000
#> GSM241526     4  0.0188      0.938 0.000 0.000 0.004 0.996
#> GSM241527     4  0.0188      0.938 0.000 0.000 0.004 0.996
#> GSM241528     4  0.0188      0.938 0.000 0.000 0.004 0.996
#> GSM241529     4  0.0188      0.938 0.000 0.000 0.004 0.996
#> GSM241530     4  0.0000      0.936 0.000 0.000 0.000 1.000
#> GSM241531     4  0.0188      0.935 0.004 0.000 0.000 0.996
#> GSM241532     4  0.0188      0.938 0.000 0.000 0.004 0.996
#> GSM241533     4  0.0188      0.938 0.000 0.000 0.004 0.996
#> GSM241534     4  0.0188      0.938 0.000 0.000 0.004 0.996
#> GSM241535     4  0.0188      0.938 0.000 0.000 0.004 0.996
#> GSM241536     4  0.0336      0.934 0.008 0.000 0.000 0.992
#> GSM241537     4  0.3266      0.842 0.000 0.000 0.168 0.832
#> GSM241538     4  0.3266      0.842 0.000 0.000 0.168 0.832
#> GSM241539     4  0.3266      0.842 0.000 0.000 0.168 0.832
#> GSM241540     4  0.3266      0.842 0.000 0.000 0.168 0.832
#> GSM241541     4  0.3266      0.842 0.000 0.000 0.168 0.832
#> GSM241542     4  0.3266      0.842 0.000 0.000 0.168 0.832
#> GSM241543     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM241544     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM241545     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM241546     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM241547     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM241548     3  0.0000      1.000 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2  0.0404      0.904 0.000 0.988 0.000 0.000 0.012
#> GSM241452     1  0.0404      0.930 0.988 0.012 0.000 0.000 0.000
#> GSM241453     2  0.0404      0.904 0.000 0.988 0.000 0.000 0.012
#> GSM241454     1  0.0290      0.931 0.992 0.008 0.000 0.000 0.000
#> GSM241455     2  0.0162      0.903 0.000 0.996 0.000 0.000 0.004
#> GSM241456     1  0.0290      0.931 0.992 0.008 0.000 0.000 0.000
#> GSM241457     2  0.1792      0.838 0.000 0.916 0.000 0.000 0.084
#> GSM241458     1  0.0798      0.929 0.976 0.008 0.000 0.000 0.016
#> GSM241459     2  0.1792      0.838 0.000 0.916 0.000 0.000 0.084
#> GSM241460     1  0.1018      0.927 0.968 0.016 0.000 0.000 0.016
#> GSM241461     2  0.4305     -0.352 0.000 0.512 0.000 0.000 0.488
#> GSM241462     1  0.1168      0.926 0.960 0.008 0.000 0.000 0.032
#> GSM241463     2  0.0290      0.901 0.000 0.992 0.000 0.000 0.008
#> GSM241464     1  0.1300      0.919 0.956 0.028 0.000 0.000 0.016
#> GSM241465     2  0.0404      0.900 0.000 0.988 0.000 0.000 0.012
#> GSM241466     1  0.0798      0.929 0.976 0.008 0.000 0.000 0.016
#> GSM241467     1  0.0798      0.929 0.976 0.008 0.000 0.000 0.016
#> GSM241468     2  0.0404      0.900 0.000 0.988 0.000 0.000 0.012
#> GSM241469     1  0.0290      0.931 0.992 0.008 0.000 0.000 0.000
#> GSM241470     2  0.0404      0.904 0.000 0.988 0.000 0.000 0.012
#> GSM241471     2  0.0404      0.900 0.000 0.988 0.000 0.000 0.012
#> GSM241472     1  0.0798      0.929 0.976 0.008 0.000 0.000 0.016
#> GSM241473     2  0.0404      0.900 0.000 0.988 0.000 0.000 0.012
#> GSM241474     1  0.1018      0.927 0.968 0.016 0.000 0.000 0.016
#> GSM241475     2  0.0404      0.904 0.000 0.988 0.000 0.000 0.012
#> GSM241476     1  0.0290      0.931 0.992 0.008 0.000 0.000 0.000
#> GSM241477     2  0.0404      0.904 0.000 0.988 0.000 0.000 0.012
#> GSM241478     2  0.0404      0.904 0.000 0.988 0.000 0.000 0.012
#> GSM241479     1  0.0290      0.931 0.992 0.008 0.000 0.000 0.000
#> GSM241480     1  0.0290      0.931 0.992 0.008 0.000 0.000 0.000
#> GSM241481     2  0.1792      0.838 0.000 0.916 0.000 0.000 0.084
#> GSM241482     1  0.0798      0.929 0.976 0.008 0.000 0.000 0.016
#> GSM241483     2  0.3242      0.631 0.000 0.784 0.000 0.000 0.216
#> GSM241484     1  0.0579      0.929 0.984 0.008 0.000 0.000 0.008
#> GSM241485     1  0.1168      0.926 0.960 0.008 0.000 0.000 0.032
#> GSM241486     2  0.4306     -0.353 0.000 0.508 0.000 0.000 0.492
#> GSM241487     2  0.0290      0.903 0.000 0.992 0.000 0.000 0.008
#> GSM241488     2  0.0290      0.904 0.000 0.992 0.000 0.000 0.008
#> GSM241489     1  0.0290      0.931 0.992 0.008 0.000 0.000 0.000
#> GSM241490     1  0.0290      0.931 0.992 0.008 0.000 0.000 0.000
#> GSM241491     2  0.0290      0.901 0.000 0.992 0.000 0.000 0.008
#> GSM241492     1  0.1117      0.925 0.964 0.020 0.000 0.000 0.016
#> GSM241493     2  0.0404      0.904 0.000 0.988 0.000 0.000 0.012
#> GSM241494     1  0.0798      0.929 0.976 0.008 0.000 0.000 0.016
#> GSM241495     2  0.0404      0.904 0.000 0.988 0.000 0.000 0.012
#> GSM241496     2  0.0404      0.904 0.000 0.988 0.000 0.000 0.012
#> GSM241497     1  0.0290      0.931 0.992 0.008 0.000 0.000 0.000
#> GSM241498     1  0.0290      0.931 0.992 0.008 0.000 0.000 0.000
#> GSM241499     1  0.3707      0.695 0.716 0.000 0.000 0.000 0.284
#> GSM241500     5  0.5480      0.731 0.000 0.176 0.000 0.168 0.656
#> GSM241501     5  0.4375      0.491 0.000 0.420 0.000 0.004 0.576
#> GSM241502     5  0.5210      0.731 0.000 0.184 0.000 0.132 0.684
#> GSM241503     1  0.4367      0.581 0.620 0.000 0.000 0.008 0.372
#> GSM241504     1  0.4505      0.558 0.604 0.000 0.000 0.012 0.384
#> GSM241505     1  0.4482      0.570 0.612 0.000 0.000 0.012 0.376
#> GSM241506     5  0.4302      0.576 0.000 0.048 0.000 0.208 0.744
#> GSM241507     1  0.3816      0.691 0.696 0.000 0.000 0.000 0.304
#> GSM241508     5  0.4708      0.458 0.000 0.436 0.000 0.016 0.548
#> GSM241509     4  0.0404      0.871 0.000 0.000 0.000 0.988 0.012
#> GSM241510     4  0.2966      0.739 0.000 0.000 0.000 0.816 0.184
#> GSM241511     4  0.4046      0.668 0.008 0.000 0.000 0.696 0.296
#> GSM241512     4  0.0324      0.872 0.000 0.000 0.004 0.992 0.004
#> GSM241513     3  0.0703      0.981 0.000 0.000 0.976 0.000 0.024
#> GSM241514     3  0.0703      0.981 0.000 0.000 0.976 0.000 0.024
#> GSM241515     3  0.0865      0.979 0.000 0.000 0.972 0.004 0.024
#> GSM241516     3  0.0865      0.979 0.000 0.000 0.972 0.004 0.024
#> GSM241517     3  0.0703      0.981 0.000 0.000 0.976 0.000 0.024
#> GSM241518     3  0.0703      0.981 0.000 0.000 0.976 0.000 0.024
#> GSM241519     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000
#> GSM241520     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000
#> GSM241521     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000
#> GSM241522     3  0.1168      0.958 0.008 0.000 0.960 0.000 0.032
#> GSM241523     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000
#> GSM241524     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000
#> GSM241525     4  0.2471      0.830 0.000 0.000 0.000 0.864 0.136
#> GSM241526     4  0.1792      0.855 0.000 0.000 0.000 0.916 0.084
#> GSM241527     4  0.1792      0.855 0.000 0.000 0.000 0.916 0.084
#> GSM241528     4  0.1851      0.853 0.000 0.000 0.000 0.912 0.088
#> GSM241529     4  0.1851      0.853 0.000 0.000 0.000 0.912 0.088
#> GSM241530     4  0.2127      0.844 0.000 0.000 0.000 0.892 0.108
#> GSM241531     4  0.3582      0.748 0.008 0.000 0.000 0.768 0.224
#> GSM241532     4  0.1410      0.859 0.000 0.000 0.000 0.940 0.060
#> GSM241533     4  0.0404      0.871 0.000 0.000 0.000 0.988 0.012
#> GSM241534     4  0.0000      0.871 0.000 0.000 0.000 1.000 0.000
#> GSM241535     4  0.0000      0.871 0.000 0.000 0.000 1.000 0.000
#> GSM241536     4  0.3700      0.731 0.008 0.000 0.000 0.752 0.240
#> GSM241537     4  0.2597      0.845 0.000 0.000 0.092 0.884 0.024
#> GSM241538     4  0.2597      0.845 0.000 0.000 0.092 0.884 0.024
#> GSM241539     4  0.2597      0.845 0.000 0.000 0.092 0.884 0.024
#> GSM241540     4  0.2597      0.845 0.000 0.000 0.092 0.884 0.024
#> GSM241541     4  0.2597      0.845 0.000 0.000 0.092 0.884 0.024
#> GSM241542     4  0.2597      0.845 0.000 0.000 0.092 0.884 0.024
#> GSM241543     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000
#> GSM241544     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000
#> GSM241545     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000
#> GSM241546     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000
#> GSM241547     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000
#> GSM241548     3  0.0000      0.989 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM241451     2  0.0405    0.93286 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM241452     1  0.2020    0.91559 0.896 0.008 0.000 0.000 0.000 0.096
#> GSM241453     2  0.0260    0.93330 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM241454     1  0.1714    0.92080 0.908 0.000 0.000 0.000 0.000 0.092
#> GSM241455     2  0.0622    0.93317 0.000 0.980 0.000 0.000 0.008 0.012
#> GSM241456     1  0.1714    0.92080 0.908 0.000 0.000 0.000 0.000 0.092
#> GSM241457     2  0.3141    0.83880 0.004 0.836 0.000 0.000 0.112 0.048
#> GSM241458     1  0.0632    0.91084 0.976 0.000 0.000 0.000 0.000 0.024
#> GSM241459     2  0.3185    0.83428 0.004 0.832 0.000 0.000 0.116 0.048
#> GSM241460     1  0.1003    0.90425 0.964 0.004 0.000 0.000 0.004 0.028
#> GSM241461     5  0.3789    0.58665 0.000 0.332 0.000 0.000 0.660 0.008
#> GSM241462     1  0.1444    0.87821 0.928 0.000 0.000 0.000 0.000 0.072
#> GSM241463     2  0.1760    0.91767 0.004 0.928 0.000 0.000 0.020 0.048
#> GSM241464     1  0.1760    0.86962 0.928 0.020 0.000 0.000 0.004 0.048
#> GSM241465     2  0.1092    0.92847 0.000 0.960 0.000 0.000 0.020 0.020
#> GSM241466     1  0.0146    0.91568 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM241467     1  0.0363    0.91370 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM241468     2  0.1218    0.92700 0.004 0.956 0.000 0.000 0.012 0.028
#> GSM241469     1  0.1765    0.91975 0.904 0.000 0.000 0.000 0.000 0.096
#> GSM241470     2  0.0405    0.93286 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM241471     2  0.1693    0.91842 0.004 0.932 0.000 0.000 0.020 0.044
#> GSM241472     1  0.0547    0.91116 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM241473     2  0.1693    0.91842 0.004 0.932 0.000 0.000 0.020 0.044
#> GSM241474     1  0.0922    0.90486 0.968 0.004 0.000 0.000 0.004 0.024
#> GSM241475     2  0.0405    0.93286 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM241476     1  0.1714    0.92080 0.908 0.000 0.000 0.000 0.000 0.092
#> GSM241477     2  0.0146    0.93385 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM241478     2  0.0508    0.93195 0.000 0.984 0.000 0.000 0.004 0.012
#> GSM241479     1  0.1714    0.92080 0.908 0.000 0.000 0.000 0.000 0.092
#> GSM241480     1  0.1714    0.92080 0.908 0.000 0.000 0.000 0.000 0.092
#> GSM241481     2  0.3141    0.83880 0.004 0.836 0.000 0.000 0.112 0.048
#> GSM241482     1  0.0632    0.91084 0.976 0.000 0.000 0.000 0.000 0.024
#> GSM241483     2  0.4020    0.56705 0.000 0.692 0.000 0.000 0.276 0.032
#> GSM241484     1  0.2048    0.89585 0.880 0.000 0.000 0.000 0.000 0.120
#> GSM241485     1  0.1387    0.88221 0.932 0.000 0.000 0.000 0.000 0.068
#> GSM241486     5  0.3758    0.60173 0.000 0.324 0.000 0.000 0.668 0.008
#> GSM241487     2  0.0717    0.93174 0.000 0.976 0.000 0.000 0.016 0.008
#> GSM241488     2  0.0405    0.93386 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM241489     1  0.1714    0.92080 0.908 0.000 0.000 0.000 0.000 0.092
#> GSM241490     1  0.1714    0.92080 0.908 0.000 0.000 0.000 0.000 0.092
#> GSM241491     2  0.1760    0.91767 0.004 0.928 0.000 0.000 0.020 0.048
#> GSM241492     1  0.1410    0.88645 0.944 0.008 0.000 0.000 0.004 0.044
#> GSM241493     2  0.0405    0.93286 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM241494     1  0.0000    0.91633 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0405    0.93286 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM241496     2  0.0405    0.93286 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM241497     1  0.1765    0.91975 0.904 0.000 0.000 0.000 0.000 0.096
#> GSM241498     1  0.1765    0.91975 0.904 0.000 0.000 0.000 0.000 0.096
#> GSM241499     6  0.3266    0.66752 0.272 0.000 0.000 0.000 0.000 0.728
#> GSM241500     5  0.1958    0.72703 0.000 0.004 0.000 0.100 0.896 0.000
#> GSM241501     5  0.2178    0.77129 0.000 0.132 0.000 0.000 0.868 0.000
#> GSM241502     5  0.2563    0.74802 0.000 0.040 0.000 0.068 0.884 0.008
#> GSM241503     6  0.3977    0.73056 0.200 0.000 0.000 0.016 0.032 0.752
#> GSM241504     6  0.3906    0.73221 0.180 0.000 0.000 0.020 0.032 0.768
#> GSM241505     6  0.3906    0.73221 0.180 0.000 0.000 0.020 0.032 0.768
#> GSM241506     5  0.2586    0.70671 0.000 0.000 0.000 0.100 0.868 0.032
#> GSM241507     6  0.3652    0.65535 0.324 0.000 0.000 0.000 0.004 0.672
#> GSM241508     5  0.3771    0.75649 0.000 0.132 0.000 0.032 0.800 0.036
#> GSM241509     4  0.0790    0.80534 0.000 0.000 0.000 0.968 0.032 0.000
#> GSM241510     4  0.4150    0.50262 0.000 0.000 0.000 0.652 0.320 0.028
#> GSM241511     6  0.3714    0.37129 0.000 0.000 0.000 0.340 0.004 0.656
#> GSM241512     4  0.0820    0.80310 0.000 0.000 0.000 0.972 0.012 0.016
#> GSM241513     3  0.3942    0.83277 0.000 0.000 0.780 0.008 0.092 0.120
#> GSM241514     3  0.3808    0.83607 0.000 0.000 0.792 0.008 0.088 0.112
#> GSM241515     3  0.4294    0.81795 0.000 0.000 0.760 0.020 0.092 0.128
#> GSM241516     3  0.4401    0.81034 0.000 0.000 0.756 0.028 0.088 0.128
#> GSM241517     3  0.3984    0.83014 0.000 0.000 0.776 0.008 0.092 0.124
#> GSM241518     3  0.3900    0.83497 0.000 0.000 0.784 0.008 0.092 0.116
#> GSM241519     3  0.0291    0.91209 0.000 0.000 0.992 0.000 0.004 0.004
#> GSM241520     3  0.0000    0.91261 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241521     3  0.0291    0.91209 0.000 0.000 0.992 0.000 0.004 0.004
#> GSM241522     3  0.2006    0.82901 0.004 0.000 0.892 0.000 0.000 0.104
#> GSM241523     3  0.0291    0.91209 0.000 0.000 0.992 0.000 0.004 0.004
#> GSM241524     3  0.0000    0.91261 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241525     4  0.3563    0.73029 0.000 0.000 0.000 0.796 0.072 0.132
#> GSM241526     4  0.2776    0.78240 0.000 0.000 0.000 0.860 0.088 0.052
#> GSM241527     4  0.2685    0.78279 0.000 0.000 0.000 0.868 0.072 0.060
#> GSM241528     4  0.2776    0.78240 0.000 0.000 0.000 0.860 0.088 0.052
#> GSM241529     4  0.2776    0.78240 0.000 0.000 0.000 0.860 0.088 0.052
#> GSM241530     4  0.3017    0.77084 0.000 0.000 0.000 0.844 0.072 0.084
#> GSM241531     4  0.3997   -0.13218 0.000 0.000 0.000 0.508 0.004 0.488
#> GSM241532     4  0.2983    0.74161 0.000 0.000 0.000 0.832 0.136 0.032
#> GSM241533     4  0.0790    0.80514 0.000 0.000 0.000 0.968 0.032 0.000
#> GSM241534     4  0.0713    0.80547 0.000 0.000 0.000 0.972 0.028 0.000
#> GSM241535     4  0.0363    0.80305 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM241536     6  0.3999   -0.00996 0.000 0.000 0.000 0.496 0.004 0.500
#> GSM241537     4  0.3656    0.75947 0.000 0.000 0.008 0.804 0.076 0.112
#> GSM241538     4  0.3656    0.75947 0.000 0.000 0.008 0.804 0.076 0.112
#> GSM241539     4  0.3656    0.75947 0.000 0.000 0.008 0.804 0.076 0.112
#> GSM241540     4  0.3656    0.75947 0.000 0.000 0.008 0.804 0.076 0.112
#> GSM241541     4  0.3708    0.75666 0.000 0.000 0.008 0.800 0.080 0.112
#> GSM241542     4  0.3708    0.75666 0.000 0.000 0.008 0.800 0.080 0.112
#> GSM241543     3  0.0000    0.91261 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241544     3  0.0000    0.91261 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241545     3  0.0000    0.91261 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241546     3  0.0000    0.91261 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241547     3  0.0291    0.91209 0.000 0.000 0.992 0.000 0.004 0.004
#> GSM241548     3  0.0000    0.91261 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n  dose(p)  time(p) k
#> CV:skmeans 98 3.00e-16 4.64e-01 2
#> CV:skmeans 96 1.11e-13 6.38e-01 3
#> CV:skmeans 98 1.71e-15 1.05e-04 4
#> CV:skmeans 94 3.12e-17 3.55e-05 5
#> CV:skmeans 95 3.71e-20 1.18e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.719           0.910       0.954         0.4798 0.508   0.508
#> 3 3 0.823           0.783       0.907         0.3846 0.642   0.403
#> 4 4 0.822           0.812       0.914         0.0849 0.927   0.791
#> 5 5 0.738           0.700       0.869         0.0479 0.962   0.871
#> 6 6 0.869           0.814       0.922         0.0384 0.918   0.705

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     1   0.000      0.972 1.000 0.000
#> GSM241452     1   0.000      0.972 1.000 0.000
#> GSM241453     1   0.000      0.972 1.000 0.000
#> GSM241454     1   0.000      0.972 1.000 0.000
#> GSM241455     1   0.000      0.972 1.000 0.000
#> GSM241456     1   0.000      0.972 1.000 0.000
#> GSM241457     1   0.000      0.972 1.000 0.000
#> GSM241458     1   0.000      0.972 1.000 0.000
#> GSM241459     1   0.000      0.972 1.000 0.000
#> GSM241460     1   0.000      0.972 1.000 0.000
#> GSM241461     1   0.000      0.972 1.000 0.000
#> GSM241462     1   0.000      0.972 1.000 0.000
#> GSM241463     1   0.000      0.972 1.000 0.000
#> GSM241464     1   0.000      0.972 1.000 0.000
#> GSM241465     1   0.000      0.972 1.000 0.000
#> GSM241466     1   0.000      0.972 1.000 0.000
#> GSM241467     1   0.000      0.972 1.000 0.000
#> GSM241468     1   0.000      0.972 1.000 0.000
#> GSM241469     1   0.000      0.972 1.000 0.000
#> GSM241470     1   0.000      0.972 1.000 0.000
#> GSM241471     1   0.000      0.972 1.000 0.000
#> GSM241472     1   0.000      0.972 1.000 0.000
#> GSM241473     1   0.000      0.972 1.000 0.000
#> GSM241474     1   0.000      0.972 1.000 0.000
#> GSM241475     1   0.000      0.972 1.000 0.000
#> GSM241476     1   0.000      0.972 1.000 0.000
#> GSM241477     1   0.000      0.972 1.000 0.000
#> GSM241478     1   0.000      0.972 1.000 0.000
#> GSM241479     1   0.000      0.972 1.000 0.000
#> GSM241480     1   0.000      0.972 1.000 0.000
#> GSM241481     1   0.000      0.972 1.000 0.000
#> GSM241482     1   0.000      0.972 1.000 0.000
#> GSM241483     1   0.000      0.972 1.000 0.000
#> GSM241484     1   0.000      0.972 1.000 0.000
#> GSM241485     1   0.000      0.972 1.000 0.000
#> GSM241486     1   0.000      0.972 1.000 0.000
#> GSM241487     1   0.000      0.972 1.000 0.000
#> GSM241488     1   0.000      0.972 1.000 0.000
#> GSM241489     1   0.000      0.972 1.000 0.000
#> GSM241490     1   0.443      0.877 0.908 0.092
#> GSM241491     1   0.000      0.972 1.000 0.000
#> GSM241492     1   0.000      0.972 1.000 0.000
#> GSM241493     1   0.000      0.972 1.000 0.000
#> GSM241494     1   0.000      0.972 1.000 0.000
#> GSM241495     1   0.000      0.972 1.000 0.000
#> GSM241496     1   0.000      0.972 1.000 0.000
#> GSM241497     1   0.000      0.972 1.000 0.000
#> GSM241498     1   0.000      0.972 1.000 0.000
#> GSM241499     1   0.000      0.972 1.000 0.000
#> GSM241500     1   0.662      0.758 0.828 0.172
#> GSM241501     1   0.000      0.972 1.000 0.000
#> GSM241502     1   0.000      0.972 1.000 0.000
#> GSM241503     1   0.000      0.972 1.000 0.000
#> GSM241504     1   0.563      0.822 0.868 0.132
#> GSM241505     1   0.929      0.480 0.656 0.344
#> GSM241506     1   0.985      0.104 0.572 0.428
#> GSM241507     1   0.814      0.636 0.748 0.252
#> GSM241508     2   0.980      0.421 0.416 0.584
#> GSM241509     2   0.000      0.919 0.000 1.000
#> GSM241510     2   0.644      0.849 0.164 0.836
#> GSM241511     2   0.644      0.849 0.164 0.836
#> GSM241512     2   0.000      0.919 0.000 1.000
#> GSM241513     2   0.644      0.849 0.164 0.836
#> GSM241514     2   0.000      0.919 0.000 1.000
#> GSM241515     2   0.644      0.849 0.164 0.836
#> GSM241516     2   0.644      0.849 0.164 0.836
#> GSM241517     2   0.714      0.819 0.196 0.804
#> GSM241518     2   0.644      0.849 0.164 0.836
#> GSM241519     2   0.753      0.796 0.216 0.784
#> GSM241520     2   0.482      0.884 0.104 0.896
#> GSM241521     2   0.886      0.664 0.304 0.696
#> GSM241522     2   0.644      0.849 0.164 0.836
#> GSM241523     2   0.753      0.796 0.216 0.784
#> GSM241524     2   0.000      0.919 0.000 1.000
#> GSM241525     2   0.163      0.911 0.024 0.976
#> GSM241526     2   0.260      0.905 0.044 0.956
#> GSM241527     2   0.000      0.919 0.000 1.000
#> GSM241528     2   0.311      0.899 0.056 0.944
#> GSM241529     2   0.278      0.903 0.048 0.952
#> GSM241530     2   0.000      0.919 0.000 1.000
#> GSM241531     2   0.000      0.919 0.000 1.000
#> GSM241532     2   0.000      0.919 0.000 1.000
#> GSM241533     2   0.000      0.919 0.000 1.000
#> GSM241534     2   0.000      0.919 0.000 1.000
#> GSM241535     2   0.000      0.919 0.000 1.000
#> GSM241536     2   0.000      0.919 0.000 1.000
#> GSM241537     2   0.000      0.919 0.000 1.000
#> GSM241538     2   0.000      0.919 0.000 1.000
#> GSM241539     2   0.000      0.919 0.000 1.000
#> GSM241540     2   0.000      0.919 0.000 1.000
#> GSM241541     2   0.000      0.919 0.000 1.000
#> GSM241542     2   0.000      0.919 0.000 1.000
#> GSM241543     2   0.000      0.919 0.000 1.000
#> GSM241544     2   0.000      0.919 0.000 1.000
#> GSM241545     2   0.644      0.849 0.164 0.836
#> GSM241546     2   0.000      0.919 0.000 1.000
#> GSM241547     2   0.506      0.880 0.112 0.888
#> GSM241548     2   0.000      0.919 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2  0.6919      0.823 0.016 0.536 0.448
#> GSM241452     1  0.0747      0.935 0.984 0.000 0.016
#> GSM241453     2  0.6919      0.823 0.016 0.536 0.448
#> GSM241454     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241455     2  0.6919      0.823 0.016 0.536 0.448
#> GSM241456     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241457     3  0.9707     -0.664 0.228 0.340 0.432
#> GSM241458     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241459     2  0.9910      0.445 0.344 0.384 0.272
#> GSM241460     1  0.0829      0.935 0.984 0.004 0.012
#> GSM241461     2  0.6919      0.823 0.016 0.536 0.448
#> GSM241462     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241463     2  0.6919      0.823 0.016 0.536 0.448
#> GSM241464     1  0.0424      0.942 0.992 0.000 0.008
#> GSM241465     2  0.6919      0.823 0.016 0.536 0.448
#> GSM241466     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241467     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241468     2  0.9182      0.676 0.204 0.536 0.260
#> GSM241469     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241470     2  0.6919      0.823 0.016 0.536 0.448
#> GSM241471     2  0.7248      0.818 0.028 0.536 0.436
#> GSM241472     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241473     2  0.7346      0.816 0.032 0.536 0.432
#> GSM241474     1  0.0237      0.944 0.996 0.004 0.000
#> GSM241475     2  0.6919      0.823 0.016 0.536 0.448
#> GSM241476     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241477     2  0.6919      0.823 0.016 0.536 0.448
#> GSM241478     2  0.6919      0.823 0.016 0.536 0.448
#> GSM241479     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241480     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241481     2  0.7542      0.811 0.040 0.528 0.432
#> GSM241482     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241483     2  0.6919      0.823 0.016 0.536 0.448
#> GSM241484     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241485     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241486     2  0.6919      0.823 0.016 0.536 0.448
#> GSM241487     2  0.6919      0.823 0.016 0.536 0.448
#> GSM241488     2  0.7438      0.814 0.036 0.536 0.428
#> GSM241489     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241490     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241491     2  0.6919      0.823 0.016 0.536 0.448
#> GSM241492     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241493     2  0.6919      0.823 0.016 0.536 0.448
#> GSM241494     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241495     2  0.6919      0.823 0.016 0.536 0.448
#> GSM241496     2  0.6919      0.823 0.016 0.536 0.448
#> GSM241497     1  0.0237      0.944 0.996 0.004 0.000
#> GSM241498     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241499     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241500     2  0.6641      0.819 0.008 0.544 0.448
#> GSM241501     2  0.6786      0.821 0.012 0.540 0.448
#> GSM241502     2  0.6786      0.821 0.012 0.540 0.448
#> GSM241503     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241504     1  0.1031      0.928 0.976 0.000 0.024
#> GSM241505     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241506     2  0.6260      0.814 0.000 0.552 0.448
#> GSM241507     1  0.0000      0.947 1.000 0.000 0.000
#> GSM241508     2  0.6225      0.808 0.000 0.568 0.432
#> GSM241509     3  0.6280      0.948 0.000 0.460 0.540
#> GSM241510     2  0.0237      0.326 0.004 0.996 0.000
#> GSM241511     1  0.6286      0.136 0.536 0.464 0.000
#> GSM241512     3  0.6286      0.947 0.000 0.464 0.536
#> GSM241513     2  0.0237      0.326 0.004 0.996 0.000
#> GSM241514     3  0.6500      0.946 0.004 0.464 0.532
#> GSM241515     2  0.0237      0.326 0.004 0.996 0.000
#> GSM241516     1  0.6286      0.136 0.536 0.464 0.000
#> GSM241517     2  0.0000      0.331 0.000 1.000 0.000
#> GSM241518     2  0.0237      0.326 0.004 0.996 0.000
#> GSM241519     2  0.0000      0.331 0.000 1.000 0.000
#> GSM241520     2  0.4784     -0.323 0.004 0.796 0.200
#> GSM241521     2  0.2448      0.451 0.000 0.924 0.076
#> GSM241522     1  0.6286      0.136 0.536 0.464 0.000
#> GSM241523     2  0.0237      0.323 0.000 0.996 0.004
#> GSM241524     3  0.6505      0.943 0.004 0.468 0.528
#> GSM241525     3  0.6912      0.938 0.016 0.444 0.540
#> GSM241526     3  0.6260      0.947 0.000 0.448 0.552
#> GSM241527     3  0.6280      0.948 0.000 0.460 0.540
#> GSM241528     3  0.6095      0.870 0.000 0.392 0.608
#> GSM241529     3  0.6260      0.941 0.000 0.448 0.552
#> GSM241530     3  0.6280      0.948 0.000 0.460 0.540
#> GSM241531     3  0.6495      0.947 0.004 0.460 0.536
#> GSM241532     3  0.6280      0.948 0.000 0.460 0.540
#> GSM241533     3  0.6280      0.948 0.000 0.460 0.540
#> GSM241534     3  0.6260      0.947 0.000 0.448 0.552
#> GSM241535     3  0.6260      0.947 0.000 0.448 0.552
#> GSM241536     3  0.6280      0.948 0.000 0.460 0.540
#> GSM241537     3  0.6260      0.947 0.000 0.448 0.552
#> GSM241538     3  0.6260      0.947 0.000 0.448 0.552
#> GSM241539     3  0.6260      0.947 0.000 0.448 0.552
#> GSM241540     3  0.6260      0.947 0.000 0.448 0.552
#> GSM241541     3  0.6260      0.947 0.000 0.448 0.552
#> GSM241542     3  0.6260      0.947 0.000 0.448 0.552
#> GSM241543     3  0.6286      0.947 0.000 0.464 0.536
#> GSM241544     3  0.6286      0.947 0.000 0.464 0.536
#> GSM241545     2  0.0237      0.323 0.000 0.996 0.004
#> GSM241546     3  0.6500      0.946 0.004 0.464 0.532
#> GSM241547     2  0.3816     -0.139 0.000 0.852 0.148
#> GSM241548     3  0.6286      0.947 0.000 0.464 0.536

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241452     1  0.0592     0.9431 0.984 0.016 0.000 0.000
#> GSM241453     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241454     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241455     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241456     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241457     2  0.4008     0.6111 0.244 0.756 0.000 0.000
#> GSM241458     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241459     2  0.4746     0.4436 0.368 0.632 0.000 0.000
#> GSM241460     1  0.0336     0.9506 0.992 0.008 0.000 0.000
#> GSM241461     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241462     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241463     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241464     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241465     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241466     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241467     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241468     2  0.3610     0.6970 0.200 0.800 0.000 0.000
#> GSM241469     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241470     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241471     2  0.0469     0.8701 0.012 0.988 0.000 0.000
#> GSM241472     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241473     2  0.0592     0.8677 0.016 0.984 0.000 0.000
#> GSM241474     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241475     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241476     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241477     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241478     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241479     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241480     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241481     2  0.0921     0.8594 0.028 0.972 0.000 0.000
#> GSM241482     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241483     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241484     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241485     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241486     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241487     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241488     2  0.1022     0.8564 0.032 0.968 0.000 0.000
#> GSM241489     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241490     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241491     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241492     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241493     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241494     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241495     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241496     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241497     1  0.0188     0.9540 0.996 0.004 0.000 0.000
#> GSM241498     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241499     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241500     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241501     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241502     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241503     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241504     1  0.0817     0.9350 0.976 0.024 0.000 0.000
#> GSM241505     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241506     2  0.0000     0.8764 0.000 1.000 0.000 0.000
#> GSM241507     1  0.0000     0.9575 1.000 0.000 0.000 0.000
#> GSM241508     2  0.0592     0.8671 0.000 0.984 0.016 0.000
#> GSM241509     4  0.3610     0.7920 0.000 0.000 0.200 0.800
#> GSM241510     2  0.5327     0.5999 0.000 0.720 0.220 0.060
#> GSM241511     1  0.3801     0.6616 0.780 0.000 0.220 0.000
#> GSM241512     4  0.4967     0.4127 0.000 0.000 0.452 0.548
#> GSM241513     2  0.4999     0.1138 0.000 0.508 0.492 0.000
#> GSM241514     3  0.0000     0.9558 0.000 0.000 1.000 0.000
#> GSM241515     2  0.4999     0.1138 0.000 0.508 0.492 0.000
#> GSM241516     1  0.4989     0.0849 0.528 0.000 0.472 0.000
#> GSM241517     2  0.3801     0.6578 0.000 0.780 0.220 0.000
#> GSM241518     2  0.4999     0.1138 0.000 0.508 0.492 0.000
#> GSM241519     2  0.4933     0.2806 0.000 0.568 0.432 0.000
#> GSM241520     3  0.0000     0.9558 0.000 0.000 1.000 0.000
#> GSM241521     2  0.4817     0.3802 0.000 0.612 0.388 0.000
#> GSM241522     1  0.4933     0.2095 0.568 0.000 0.432 0.000
#> GSM241523     3  0.4072     0.5967 0.000 0.252 0.748 0.000
#> GSM241524     3  0.0000     0.9558 0.000 0.000 1.000 0.000
#> GSM241525     4  0.6823     0.5808 0.196 0.000 0.200 0.604
#> GSM241526     4  0.0000     0.7967 0.000 0.000 0.000 1.000
#> GSM241527     4  0.4134     0.7576 0.000 0.000 0.260 0.740
#> GSM241528     4  0.6823     0.5505 0.000 0.196 0.200 0.604
#> GSM241529     4  0.4755     0.7654 0.000 0.040 0.200 0.760
#> GSM241530     4  0.5147     0.7620 0.060 0.000 0.200 0.740
#> GSM241531     4  0.3801     0.7833 0.000 0.000 0.220 0.780
#> GSM241532     4  0.3649     0.7908 0.000 0.000 0.204 0.796
#> GSM241533     4  0.3610     0.7920 0.000 0.000 0.200 0.800
#> GSM241534     4  0.0000     0.7967 0.000 0.000 0.000 1.000
#> GSM241535     4  0.0592     0.8027 0.000 0.000 0.016 0.984
#> GSM241536     4  0.3764     0.7855 0.000 0.000 0.216 0.784
#> GSM241537     4  0.0000     0.7967 0.000 0.000 0.000 1.000
#> GSM241538     4  0.1792     0.7898 0.000 0.000 0.068 0.932
#> GSM241539     4  0.0707     0.7982 0.000 0.000 0.020 0.980
#> GSM241540     4  0.2011     0.7886 0.000 0.000 0.080 0.920
#> GSM241541     4  0.0000     0.7967 0.000 0.000 0.000 1.000
#> GSM241542     4  0.2011     0.7886 0.000 0.000 0.080 0.920
#> GSM241543     3  0.0000     0.9558 0.000 0.000 1.000 0.000
#> GSM241544     3  0.0000     0.9558 0.000 0.000 1.000 0.000
#> GSM241545     3  0.0000     0.9558 0.000 0.000 1.000 0.000
#> GSM241546     3  0.0000     0.9558 0.000 0.000 1.000 0.000
#> GSM241547     3  0.0000     0.9558 0.000 0.000 1.000 0.000
#> GSM241548     3  0.0000     0.9558 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2  0.0000   0.823045 0.000 1.000 0.000 0.000 0.000
#> GSM241452     1  0.0510   0.918977 0.984 0.016 0.000 0.000 0.000
#> GSM241453     2  0.0000   0.823045 0.000 1.000 0.000 0.000 0.000
#> GSM241454     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0000   0.823045 0.000 1.000 0.000 0.000 0.000
#> GSM241456     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241457     2  0.1908   0.759555 0.092 0.908 0.000 0.000 0.000
#> GSM241458     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241459     2  0.3424   0.603496 0.240 0.760 0.000 0.000 0.000
#> GSM241460     1  0.0290   0.927025 0.992 0.008 0.000 0.000 0.000
#> GSM241461     2  0.0000   0.823045 0.000 1.000 0.000 0.000 0.000
#> GSM241462     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241463     2  0.0000   0.823045 0.000 1.000 0.000 0.000 0.000
#> GSM241464     1  0.0290   0.927025 0.992 0.008 0.000 0.000 0.000
#> GSM241465     2  0.0000   0.823045 0.000 1.000 0.000 0.000 0.000
#> GSM241466     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.3109   0.651851 0.200 0.800 0.000 0.000 0.000
#> GSM241469     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0000   0.823045 0.000 1.000 0.000 0.000 0.000
#> GSM241471     2  0.0404   0.818216 0.012 0.988 0.000 0.000 0.000
#> GSM241472     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.0510   0.816314 0.016 0.984 0.000 0.000 0.000
#> GSM241474     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.0000   0.823045 0.000 1.000 0.000 0.000 0.000
#> GSM241476     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.0000   0.823045 0.000 1.000 0.000 0.000 0.000
#> GSM241478     2  0.0000   0.823045 0.000 1.000 0.000 0.000 0.000
#> GSM241479     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241481     2  0.0510   0.816314 0.016 0.984 0.000 0.000 0.000
#> GSM241482     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241483     2  0.0000   0.823045 0.000 1.000 0.000 0.000 0.000
#> GSM241484     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241485     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241486     2  0.0000   0.823045 0.000 1.000 0.000 0.000 0.000
#> GSM241487     2  0.0000   0.823045 0.000 1.000 0.000 0.000 0.000
#> GSM241488     2  0.0880   0.806327 0.032 0.968 0.000 0.000 0.000
#> GSM241489     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241490     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241491     2  0.0000   0.823045 0.000 1.000 0.000 0.000 0.000
#> GSM241492     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241493     2  0.0000   0.823045 0.000 1.000 0.000 0.000 0.000
#> GSM241494     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0000   0.823045 0.000 1.000 0.000 0.000 0.000
#> GSM241496     2  0.0000   0.823045 0.000 1.000 0.000 0.000 0.000
#> GSM241497     1  0.0162   0.930466 0.996 0.004 0.000 0.000 0.000
#> GSM241498     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241499     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241500     2  0.3534   0.611209 0.000 0.744 0.000 0.256 0.000
#> GSM241501     2  0.3480   0.620404 0.000 0.752 0.000 0.248 0.000
#> GSM241502     2  0.3508   0.615956 0.000 0.748 0.000 0.252 0.000
#> GSM241503     1  0.2230   0.809740 0.884 0.000 0.000 0.116 0.000
#> GSM241504     1  0.4114   0.585384 0.732 0.024 0.000 0.244 0.000
#> GSM241505     1  0.3452   0.617120 0.756 0.000 0.000 0.244 0.000
#> GSM241506     2  0.3480   0.620404 0.000 0.752 0.000 0.248 0.000
#> GSM241507     1  0.0000   0.933587 1.000 0.000 0.000 0.000 0.000
#> GSM241508     2  0.3861   0.597078 0.000 0.728 0.008 0.264 0.000
#> GSM241509     4  0.2280   0.581650 0.000 0.000 0.120 0.880 0.000
#> GSM241510     4  0.7640   0.346000 0.000 0.136 0.120 0.480 0.264
#> GSM241511     4  0.8257   0.278216 0.280 0.000 0.120 0.336 0.264
#> GSM241512     4  0.7735   0.407040 0.144 0.000 0.124 0.468 0.264
#> GSM241513     2  0.8097   0.097357 0.000 0.404 0.208 0.124 0.264
#> GSM241514     3  0.5158   0.476525 0.000 0.000 0.656 0.080 0.264
#> GSM241515     2  0.8296  -0.193787 0.000 0.308 0.124 0.304 0.264
#> GSM241516     1  0.7542   0.065858 0.492 0.000 0.120 0.124 0.264
#> GSM241517     2  0.7098   0.308285 0.000 0.536 0.120 0.080 0.264
#> GSM241518     2  0.8780   0.078185 0.052 0.388 0.208 0.088 0.264
#> GSM241519     2  0.7383   0.030707 0.000 0.408 0.344 0.040 0.208
#> GSM241520     3  0.0000   0.903062 0.000 0.000 1.000 0.000 0.000
#> GSM241521     2  0.7752   0.255527 0.000 0.492 0.172 0.192 0.144
#> GSM241522     1  0.7704   0.000173 0.448 0.000 0.208 0.080 0.264
#> GSM241523     3  0.3395   0.568347 0.000 0.236 0.764 0.000 0.000
#> GSM241524     3  0.0609   0.885656 0.000 0.000 0.980 0.020 0.000
#> GSM241525     4  0.2648   0.524679 0.152 0.000 0.000 0.848 0.000
#> GSM241526     4  0.1732   0.504672 0.000 0.000 0.000 0.920 0.080
#> GSM241527     4  0.2020   0.531585 0.000 0.000 0.000 0.900 0.100
#> GSM241528     4  0.2561   0.498086 0.000 0.144 0.000 0.856 0.000
#> GSM241529     4  0.0000   0.574604 0.000 0.000 0.000 1.000 0.000
#> GSM241530     4  0.2648   0.524679 0.152 0.000 0.000 0.848 0.000
#> GSM241531     4  0.5620   0.460717 0.000 0.000 0.120 0.616 0.264
#> GSM241532     4  0.3134   0.577474 0.000 0.000 0.120 0.848 0.032
#> GSM241533     4  0.0000   0.574604 0.000 0.000 0.000 1.000 0.000
#> GSM241534     4  0.3932  -0.043254 0.000 0.000 0.000 0.672 0.328
#> GSM241535     4  0.3895  -0.020879 0.000 0.000 0.000 0.680 0.320
#> GSM241536     4  0.5620   0.460717 0.000 0.000 0.120 0.616 0.264
#> GSM241537     5  0.3586   0.706006 0.000 0.000 0.000 0.264 0.736
#> GSM241538     5  0.3561   0.708754 0.000 0.000 0.000 0.260 0.740
#> GSM241539     5  0.0000   0.728757 0.000 0.000 0.000 0.000 1.000
#> GSM241540     5  0.0000   0.728757 0.000 0.000 0.000 0.000 1.000
#> GSM241541     5  0.3586   0.706006 0.000 0.000 0.000 0.264 0.736
#> GSM241542     5  0.0000   0.728757 0.000 0.000 0.000 0.000 1.000
#> GSM241543     3  0.0000   0.903062 0.000 0.000 1.000 0.000 0.000
#> GSM241544     3  0.0000   0.903062 0.000 0.000 1.000 0.000 0.000
#> GSM241545     3  0.0000   0.903062 0.000 0.000 1.000 0.000 0.000
#> GSM241546     3  0.0000   0.903062 0.000 0.000 1.000 0.000 0.000
#> GSM241547     3  0.0000   0.903062 0.000 0.000 1.000 0.000 0.000
#> GSM241548     3  0.0000   0.903062 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4 p5    p6
#> GSM241451     2  0.0000      0.922 0.000 1.000 0.000 0.000  0 0.000
#> GSM241452     1  0.0458      0.950 0.984 0.016 0.000 0.000  0 0.000
#> GSM241453     2  0.0000      0.922 0.000 1.000 0.000 0.000  0 0.000
#> GSM241454     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241455     2  0.0000      0.922 0.000 1.000 0.000 0.000  0 0.000
#> GSM241456     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241457     2  0.1204      0.879 0.056 0.944 0.000 0.000  0 0.000
#> GSM241458     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241459     2  0.2969      0.659 0.224 0.776 0.000 0.000  0 0.000
#> GSM241460     1  0.0146      0.965 0.996 0.004 0.000 0.000  0 0.000
#> GSM241461     2  0.0000      0.922 0.000 1.000 0.000 0.000  0 0.000
#> GSM241462     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241463     2  0.0000      0.922 0.000 1.000 0.000 0.000  0 0.000
#> GSM241464     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241465     2  0.0000      0.922 0.000 1.000 0.000 0.000  0 0.000
#> GSM241466     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241467     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241468     2  0.2793      0.685 0.200 0.800 0.000 0.000  0 0.000
#> GSM241469     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241470     2  0.0000      0.922 0.000 1.000 0.000 0.000  0 0.000
#> GSM241471     2  0.0363      0.915 0.012 0.988 0.000 0.000  0 0.000
#> GSM241472     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241473     2  0.0458      0.913 0.016 0.984 0.000 0.000  0 0.000
#> GSM241474     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241475     2  0.0000      0.922 0.000 1.000 0.000 0.000  0 0.000
#> GSM241476     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241477     2  0.0000      0.922 0.000 1.000 0.000 0.000  0 0.000
#> GSM241478     2  0.0000      0.922 0.000 1.000 0.000 0.000  0 0.000
#> GSM241479     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241480     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241481     2  0.0458      0.913 0.016 0.984 0.000 0.000  0 0.000
#> GSM241482     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241483     2  0.0000      0.922 0.000 1.000 0.000 0.000  0 0.000
#> GSM241484     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241485     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241486     2  0.0000      0.922 0.000 1.000 0.000 0.000  0 0.000
#> GSM241487     2  0.0000      0.922 0.000 1.000 0.000 0.000  0 0.000
#> GSM241488     2  0.0790      0.899 0.032 0.968 0.000 0.000  0 0.000
#> GSM241489     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241490     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241491     2  0.0000      0.922 0.000 1.000 0.000 0.000  0 0.000
#> GSM241492     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241493     2  0.0000      0.922 0.000 1.000 0.000 0.000  0 0.000
#> GSM241494     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241495     2  0.0000      0.922 0.000 1.000 0.000 0.000  0 0.000
#> GSM241496     2  0.0000      0.922 0.000 1.000 0.000 0.000  0 0.000
#> GSM241497     1  0.0146      0.966 0.996 0.004 0.000 0.000  0 0.000
#> GSM241498     1  0.0000      0.970 1.000 0.000 0.000 0.000  0 0.000
#> GSM241499     1  0.2793      0.709 0.800 0.000 0.000 0.000  0 0.200
#> GSM241500     2  0.1910      0.821 0.000 0.892 0.000 0.000  0 0.108
#> GSM241501     2  0.0000      0.922 0.000 1.000 0.000 0.000  0 0.000
#> GSM241502     2  0.0547      0.910 0.000 0.980 0.000 0.000  0 0.020
#> GSM241503     6  0.3774      0.349 0.408 0.000 0.000 0.000  0 0.592
#> GSM241504     6  0.4263      0.408 0.376 0.024 0.000 0.000  0 0.600
#> GSM241505     6  0.3747      0.376 0.396 0.000 0.000 0.000  0 0.604
#> GSM241506     2  0.1267      0.874 0.000 0.940 0.000 0.000  0 0.060
#> GSM241507     6  0.3446      0.513 0.308 0.000 0.000 0.000  0 0.692
#> GSM241508     2  0.3765      0.268 0.000 0.596 0.000 0.000  0 0.404
#> GSM241509     4  0.3446      0.612 0.000 0.000 0.000 0.692  0 0.308
#> GSM241510     6  0.0713      0.626 0.000 0.000 0.000 0.028  0 0.972
#> GSM241511     6  0.0000      0.633 0.000 0.000 0.000 0.000  0 1.000
#> GSM241512     6  0.0000      0.633 0.000 0.000 0.000 0.000  0 1.000
#> GSM241513     6  0.4829      0.216 0.000 0.424 0.056 0.000  0 0.520
#> GSM241514     3  0.3607      0.453 0.000 0.000 0.652 0.000  0 0.348
#> GSM241515     6  0.3890      0.316 0.000 0.400 0.004 0.000  0 0.596
#> GSM241516     6  0.0632      0.633 0.024 0.000 0.000 0.000  0 0.976
#> GSM241517     6  0.3833      0.208 0.000 0.444 0.000 0.000  0 0.556
#> GSM241518     6  0.4062      0.561 0.160 0.064 0.012 0.000  0 0.764
#> GSM241519     2  0.4258      0.122 0.000 0.516 0.468 0.016  0 0.000
#> GSM241520     3  0.0000      0.897 0.000 0.000 1.000 0.000  0 0.000
#> GSM241521     2  0.5123      0.459 0.000 0.628 0.184 0.000  0 0.188
#> GSM241522     1  0.4524      0.201 0.560 0.000 0.036 0.000  0 0.404
#> GSM241523     3  0.3126      0.561 0.000 0.248 0.752 0.000  0 0.000
#> GSM241524     3  0.1387      0.844 0.000 0.000 0.932 0.000  0 0.068
#> GSM241525     4  0.3867      0.686 0.052 0.000 0.000 0.748  0 0.200
#> GSM241526     4  0.0000      0.886 0.000 0.000 0.000 1.000  0 0.000
#> GSM241527     4  0.0713      0.892 0.000 0.000 0.000 0.972  0 0.028
#> GSM241528     4  0.0713      0.892 0.000 0.000 0.000 0.972  0 0.028
#> GSM241529     4  0.0632      0.892 0.000 0.000 0.000 0.976  0 0.024
#> GSM241530     4  0.0713      0.892 0.000 0.000 0.000 0.972  0 0.028
#> GSM241531     6  0.0000      0.633 0.000 0.000 0.000 0.000  0 1.000
#> GSM241532     6  0.2793      0.464 0.000 0.000 0.000 0.200  0 0.800
#> GSM241533     4  0.1910      0.848 0.000 0.000 0.000 0.892  0 0.108
#> GSM241534     4  0.1910      0.848 0.000 0.000 0.000 0.892  0 0.108
#> GSM241535     4  0.0000      0.886 0.000 0.000 0.000 1.000  0 0.000
#> GSM241536     6  0.0632      0.628 0.000 0.000 0.000 0.024  0 0.976
#> GSM241537     5  0.0000      1.000 0.000 0.000 0.000 0.000  1 0.000
#> GSM241538     5  0.0000      1.000 0.000 0.000 0.000 0.000  1 0.000
#> GSM241539     5  0.0000      1.000 0.000 0.000 0.000 0.000  1 0.000
#> GSM241540     5  0.0000      1.000 0.000 0.000 0.000 0.000  1 0.000
#> GSM241541     5  0.0000      1.000 0.000 0.000 0.000 0.000  1 0.000
#> GSM241542     5  0.0000      1.000 0.000 0.000 0.000 0.000  1 0.000
#> GSM241543     3  0.0000      0.897 0.000 0.000 1.000 0.000  0 0.000
#> GSM241544     3  0.0000      0.897 0.000 0.000 1.000 0.000  0 0.000
#> GSM241545     3  0.0000      0.897 0.000 0.000 1.000 0.000  0 0.000
#> GSM241546     3  0.0000      0.897 0.000 0.000 1.000 0.000  0 0.000
#> GSM241547     3  0.0000      0.897 0.000 0.000 1.000 0.000  0 0.000
#> GSM241548     3  0.0000      0.897 0.000 0.000 1.000 0.000  0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n  dose(p)  time(p) k
#> CV:pam 95 3.58e-16 2.48e-01 2
#> CV:pam 82 6.67e-13 9.16e-01 3
#> CV:pam 89 1.99e-13 2.02e-04 4
#> CV:pam 81 1.86e-10 1.54e-07 5
#> CV:pam 86 4.23e-14 3.89e-09 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.408           0.853       0.900         0.4614 0.495   0.495
#> 3 3 0.907           0.911       0.940         0.3508 0.863   0.730
#> 4 4 0.781           0.923       0.913         0.1870 0.854   0.620
#> 5 5 0.782           0.868       0.863         0.0533 0.922   0.701
#> 6 6 0.830           0.762       0.831         0.0362 0.968   0.852

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     1  0.0000      0.814 1.000 0.000
#> GSM241452     1  0.8081      0.825 0.752 0.248
#> GSM241453     1  0.0000      0.814 1.000 0.000
#> GSM241454     1  0.8081      0.825 0.752 0.248
#> GSM241455     1  0.0000      0.814 1.000 0.000
#> GSM241456     1  0.8081      0.825 0.752 0.248
#> GSM241457     1  0.0938      0.816 0.988 0.012
#> GSM241458     1  0.8081      0.825 0.752 0.248
#> GSM241459     1  0.0000      0.814 1.000 0.000
#> GSM241460     1  0.8081      0.825 0.752 0.248
#> GSM241461     1  0.6531      0.690 0.832 0.168
#> GSM241462     1  0.8081      0.825 0.752 0.248
#> GSM241463     1  0.0000      0.814 1.000 0.000
#> GSM241464     1  0.7883      0.825 0.764 0.236
#> GSM241465     1  0.0000      0.814 1.000 0.000
#> GSM241466     1  0.8081      0.825 0.752 0.248
#> GSM241467     1  0.8081      0.825 0.752 0.248
#> GSM241468     1  0.0000      0.814 1.000 0.000
#> GSM241469     1  0.8081      0.825 0.752 0.248
#> GSM241470     1  0.0000      0.814 1.000 0.000
#> GSM241471     1  0.0000      0.814 1.000 0.000
#> GSM241472     1  0.8081      0.825 0.752 0.248
#> GSM241473     1  0.0000      0.814 1.000 0.000
#> GSM241474     1  0.8081      0.825 0.752 0.248
#> GSM241475     1  0.0000      0.814 1.000 0.000
#> GSM241476     1  0.8081      0.825 0.752 0.248
#> GSM241477     1  0.0000      0.814 1.000 0.000
#> GSM241478     1  0.0000      0.814 1.000 0.000
#> GSM241479     1  0.8081      0.825 0.752 0.248
#> GSM241480     1  0.8081      0.825 0.752 0.248
#> GSM241481     1  0.0000      0.814 1.000 0.000
#> GSM241482     1  0.8081      0.825 0.752 0.248
#> GSM241483     1  0.0000      0.814 1.000 0.000
#> GSM241484     1  0.8081      0.825 0.752 0.248
#> GSM241485     1  0.8081      0.825 0.752 0.248
#> GSM241486     1  0.6973      0.664 0.812 0.188
#> GSM241487     1  0.7219      0.646 0.800 0.200
#> GSM241488     1  0.7528      0.825 0.784 0.216
#> GSM241489     1  0.8081      0.825 0.752 0.248
#> GSM241490     1  0.8081      0.825 0.752 0.248
#> GSM241491     1  0.0000      0.814 1.000 0.000
#> GSM241492     1  0.8081      0.825 0.752 0.248
#> GSM241493     1  0.0000      0.814 1.000 0.000
#> GSM241494     1  0.8081      0.825 0.752 0.248
#> GSM241495     1  0.0000      0.814 1.000 0.000
#> GSM241496     1  0.8081      0.825 0.752 0.248
#> GSM241497     1  0.8081      0.825 0.752 0.248
#> GSM241498     1  0.8081      0.825 0.752 0.248
#> GSM241499     2  0.2423      0.906 0.040 0.960
#> GSM241500     2  0.0376      0.925 0.004 0.996
#> GSM241501     2  0.9580      0.513 0.380 0.620
#> GSM241502     2  0.2423      0.906 0.040 0.960
#> GSM241503     2  0.1414      0.922 0.020 0.980
#> GSM241504     2  0.1184      0.920 0.016 0.984
#> GSM241505     2  0.0376      0.925 0.004 0.996
#> GSM241506     2  0.0672      0.924 0.008 0.992
#> GSM241507     2  0.2423      0.906 0.040 0.960
#> GSM241508     2  0.0376      0.925 0.004 0.996
#> GSM241509     2  0.0000      0.926 0.000 1.000
#> GSM241510     2  0.0000      0.926 0.000 1.000
#> GSM241511     2  0.0000      0.926 0.000 1.000
#> GSM241512     2  0.0000      0.926 0.000 1.000
#> GSM241513     2  0.5737      0.860 0.136 0.864
#> GSM241514     2  0.5737      0.860 0.136 0.864
#> GSM241515     2  0.4022      0.894 0.080 0.920
#> GSM241516     2  0.0000      0.926 0.000 1.000
#> GSM241517     2  0.5842      0.856 0.140 0.860
#> GSM241518     2  0.5737      0.860 0.136 0.864
#> GSM241519     2  0.5737      0.860 0.136 0.864
#> GSM241520     2  0.5737      0.860 0.136 0.864
#> GSM241521     2  0.5842      0.856 0.140 0.860
#> GSM241522     2  0.5842      0.856 0.140 0.860
#> GSM241523     2  0.5737      0.860 0.136 0.864
#> GSM241524     2  0.5737      0.860 0.136 0.864
#> GSM241525     2  0.0000      0.926 0.000 1.000
#> GSM241526     2  0.0000      0.926 0.000 1.000
#> GSM241527     2  0.0000      0.926 0.000 1.000
#> GSM241528     2  0.0000      0.926 0.000 1.000
#> GSM241529     2  0.0000      0.926 0.000 1.000
#> GSM241530     2  0.0000      0.926 0.000 1.000
#> GSM241531     2  0.0000      0.926 0.000 1.000
#> GSM241532     2  0.0000      0.926 0.000 1.000
#> GSM241533     2  0.0000      0.926 0.000 1.000
#> GSM241534     2  0.0000      0.926 0.000 1.000
#> GSM241535     2  0.0000      0.926 0.000 1.000
#> GSM241536     2  0.0000      0.926 0.000 1.000
#> GSM241537     2  0.0000      0.926 0.000 1.000
#> GSM241538     2  0.0000      0.926 0.000 1.000
#> GSM241539     2  0.0000      0.926 0.000 1.000
#> GSM241540     2  0.0000      0.926 0.000 1.000
#> GSM241541     2  0.0000      0.926 0.000 1.000
#> GSM241542     2  0.0000      0.926 0.000 1.000
#> GSM241543     2  0.5737      0.860 0.136 0.864
#> GSM241544     2  0.5737      0.860 0.136 0.864
#> GSM241545     2  0.5737      0.860 0.136 0.864
#> GSM241546     2  0.5737      0.860 0.136 0.864
#> GSM241547     2  0.5737      0.860 0.136 0.864
#> GSM241548     2  0.5737      0.860 0.136 0.864

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2  0.3116      0.918 0.108 0.892 0.000
#> GSM241452     1  0.1753      0.955 0.952 0.048 0.000
#> GSM241453     2  0.1964      0.947 0.056 0.944 0.000
#> GSM241454     1  0.1289      0.959 0.968 0.032 0.000
#> GSM241455     2  0.2066      0.947 0.060 0.940 0.000
#> GSM241456     1  0.1289      0.959 0.968 0.032 0.000
#> GSM241457     2  0.2384      0.944 0.056 0.936 0.008
#> GSM241458     1  0.1529      0.941 0.960 0.040 0.000
#> GSM241459     2  0.1964      0.947 0.056 0.944 0.000
#> GSM241460     1  0.1878      0.938 0.952 0.044 0.004
#> GSM241461     2  0.2846      0.934 0.056 0.924 0.020
#> GSM241462     1  0.0237      0.941 0.996 0.004 0.000
#> GSM241463     2  0.2066      0.947 0.060 0.940 0.000
#> GSM241464     2  0.6305      0.119 0.484 0.516 0.000
#> GSM241465     2  0.2200      0.946 0.056 0.940 0.004
#> GSM241466     1  0.1289      0.959 0.968 0.032 0.000
#> GSM241467     1  0.2261      0.946 0.932 0.068 0.000
#> GSM241468     2  0.3619      0.890 0.136 0.864 0.000
#> GSM241469     1  0.1753      0.956 0.952 0.048 0.000
#> GSM241470     2  0.3038      0.921 0.104 0.896 0.000
#> GSM241471     2  0.1964      0.947 0.056 0.944 0.000
#> GSM241472     1  0.2356      0.944 0.928 0.072 0.000
#> GSM241473     2  0.2066      0.947 0.060 0.940 0.000
#> GSM241474     1  0.2356      0.944 0.928 0.072 0.000
#> GSM241475     2  0.2165      0.947 0.064 0.936 0.000
#> GSM241476     1  0.1289      0.959 0.968 0.032 0.000
#> GSM241477     2  0.1964      0.947 0.056 0.944 0.000
#> GSM241478     2  0.2711      0.933 0.088 0.912 0.000
#> GSM241479     1  0.1289      0.959 0.968 0.032 0.000
#> GSM241480     1  0.1289      0.959 0.968 0.032 0.000
#> GSM241481     2  0.1964      0.947 0.056 0.944 0.000
#> GSM241482     1  0.1529      0.941 0.960 0.040 0.000
#> GSM241483     2  0.1964      0.947 0.056 0.944 0.000
#> GSM241484     1  0.0000      0.937 1.000 0.000 0.000
#> GSM241485     1  0.1289      0.959 0.968 0.032 0.000
#> GSM241486     2  0.2846      0.934 0.056 0.924 0.020
#> GSM241487     2  0.3500      0.809 0.004 0.880 0.116
#> GSM241488     2  0.5070      0.770 0.224 0.772 0.004
#> GSM241489     1  0.1860      0.955 0.948 0.052 0.000
#> GSM241490     1  0.6393      0.716 0.764 0.088 0.148
#> GSM241491     2  0.2066      0.947 0.060 0.940 0.000
#> GSM241492     1  0.4291      0.813 0.820 0.180 0.000
#> GSM241493     2  0.2165      0.947 0.064 0.936 0.000
#> GSM241494     1  0.1289      0.959 0.968 0.032 0.000
#> GSM241495     2  0.2261      0.945 0.068 0.932 0.000
#> GSM241496     3  0.9713     -0.172 0.220 0.376 0.404
#> GSM241497     1  0.2902      0.944 0.920 0.064 0.016
#> GSM241498     1  0.1411      0.958 0.964 0.036 0.000
#> GSM241499     3  0.7890      0.189 0.432 0.056 0.512
#> GSM241500     3  0.1964      0.921 0.000 0.056 0.944
#> GSM241501     3  0.2261      0.911 0.000 0.068 0.932
#> GSM241502     3  0.2356      0.908 0.000 0.072 0.928
#> GSM241503     3  0.3237      0.922 0.032 0.056 0.912
#> GSM241504     3  0.3237      0.922 0.032 0.056 0.912
#> GSM241505     3  0.3237      0.922 0.032 0.056 0.912
#> GSM241506     3  0.1860      0.924 0.000 0.052 0.948
#> GSM241507     3  0.3237      0.922 0.032 0.056 0.912
#> GSM241508     3  0.1964      0.921 0.000 0.056 0.944
#> GSM241509     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241510     3  0.0424      0.954 0.000 0.008 0.992
#> GSM241511     3  0.3237      0.922 0.032 0.056 0.912
#> GSM241512     3  0.1411      0.947 0.000 0.036 0.964
#> GSM241513     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241514     3  0.1411      0.947 0.000 0.036 0.964
#> GSM241515     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241516     3  0.1411      0.947 0.000 0.036 0.964
#> GSM241517     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241518     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241519     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241520     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241521     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241522     3  0.1411      0.947 0.000 0.036 0.964
#> GSM241523     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241524     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241525     3  0.2446      0.935 0.012 0.052 0.936
#> GSM241526     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241527     3  0.1411      0.947 0.000 0.036 0.964
#> GSM241528     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241529     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241530     3  0.2280      0.937 0.008 0.052 0.940
#> GSM241531     3  0.2446      0.935 0.012 0.052 0.936
#> GSM241532     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241533     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241534     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241535     3  0.1411      0.947 0.000 0.036 0.964
#> GSM241536     3  0.3112      0.924 0.028 0.056 0.916
#> GSM241537     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241538     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241539     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241540     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241541     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241542     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241543     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241544     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241545     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241546     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241547     3  0.0000      0.957 0.000 0.000 1.000
#> GSM241548     3  0.0000      0.957 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM241452     1  0.3801      0.945 0.780 0.220 0.000 0.000
#> GSM241453     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM241454     1  0.3266      0.950 0.832 0.168 0.000 0.000
#> GSM241455     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM241456     1  0.3444      0.952 0.816 0.184 0.000 0.000
#> GSM241457     2  0.1022      0.964 0.032 0.968 0.000 0.000
#> GSM241458     1  0.3342      0.885 0.868 0.100 0.000 0.032
#> GSM241459     2  0.1022      0.964 0.032 0.968 0.000 0.000
#> GSM241460     1  0.2408      0.909 0.896 0.104 0.000 0.000
#> GSM241461     2  0.1302      0.938 0.000 0.956 0.000 0.044
#> GSM241462     1  0.2589      0.919 0.884 0.116 0.000 0.000
#> GSM241463     2  0.0188      0.976 0.004 0.996 0.000 0.000
#> GSM241464     2  0.1022      0.955 0.032 0.968 0.000 0.000
#> GSM241465     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM241466     1  0.3400      0.952 0.820 0.180 0.000 0.000
#> GSM241467     1  0.3444      0.952 0.816 0.184 0.000 0.000
#> GSM241468     2  0.1022      0.964 0.032 0.968 0.000 0.000
#> GSM241469     1  0.3764      0.947 0.784 0.216 0.000 0.000
#> GSM241470     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM241471     2  0.1022      0.964 0.032 0.968 0.000 0.000
#> GSM241472     1  0.3444      0.952 0.816 0.184 0.000 0.000
#> GSM241473     2  0.1022      0.964 0.032 0.968 0.000 0.000
#> GSM241474     1  0.3444      0.952 0.816 0.184 0.000 0.000
#> GSM241475     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM241476     1  0.3726      0.948 0.788 0.212 0.000 0.000
#> GSM241477     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM241478     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM241479     1  0.3444      0.952 0.816 0.184 0.000 0.000
#> GSM241480     1  0.3266      0.950 0.832 0.168 0.000 0.000
#> GSM241481     2  0.1022      0.964 0.032 0.968 0.000 0.000
#> GSM241482     1  0.2345      0.906 0.900 0.100 0.000 0.000
#> GSM241483     2  0.0188      0.976 0.004 0.996 0.000 0.000
#> GSM241484     1  0.2345      0.906 0.900 0.100 0.000 0.000
#> GSM241485     1  0.3219      0.949 0.836 0.164 0.000 0.000
#> GSM241486     2  0.1302      0.938 0.000 0.956 0.000 0.044
#> GSM241487     2  0.2926      0.866 0.000 0.896 0.056 0.048
#> GSM241488     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM241489     1  0.3764      0.947 0.784 0.216 0.000 0.000
#> GSM241490     1  0.3831      0.946 0.792 0.204 0.000 0.004
#> GSM241491     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM241492     1  0.4277      0.846 0.720 0.280 0.000 0.000
#> GSM241493     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM241494     1  0.3764      0.947 0.784 0.216 0.000 0.000
#> GSM241495     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM241496     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM241497     1  0.3801      0.945 0.780 0.220 0.000 0.000
#> GSM241498     1  0.3764      0.947 0.784 0.216 0.000 0.000
#> GSM241499     4  0.5054      0.724 0.328 0.008 0.004 0.660
#> GSM241500     3  0.3301      0.906 0.048 0.000 0.876 0.076
#> GSM241501     3  0.3521      0.907 0.032 0.016 0.876 0.076
#> GSM241502     3  0.3521      0.907 0.032 0.016 0.876 0.076
#> GSM241503     4  0.4761      0.737 0.332 0.000 0.004 0.664
#> GSM241504     4  0.3626      0.876 0.184 0.000 0.004 0.812
#> GSM241505     4  0.3626      0.876 0.184 0.000 0.004 0.812
#> GSM241506     3  0.5898      0.432 0.048 0.000 0.604 0.348
#> GSM241507     4  0.3626      0.876 0.184 0.000 0.004 0.812
#> GSM241508     3  0.3370      0.903 0.048 0.000 0.872 0.080
#> GSM241509     4  0.4206      0.826 0.048 0.000 0.136 0.816
#> GSM241510     4  0.4257      0.822 0.048 0.000 0.140 0.812
#> GSM241511     4  0.4004      0.876 0.164 0.000 0.024 0.812
#> GSM241512     4  0.4356      0.836 0.064 0.000 0.124 0.812
#> GSM241513     3  0.1854      0.934 0.012 0.000 0.940 0.048
#> GSM241514     3  0.1975      0.933 0.016 0.000 0.936 0.048
#> GSM241515     3  0.2926      0.919 0.048 0.000 0.896 0.056
#> GSM241516     3  0.4010      0.871 0.064 0.000 0.836 0.100
#> GSM241517     3  0.1854      0.934 0.012 0.000 0.940 0.048
#> GSM241518     3  0.1854      0.934 0.012 0.000 0.940 0.048
#> GSM241519     3  0.0000      0.933 0.000 0.000 1.000 0.000
#> GSM241520     3  0.0000      0.933 0.000 0.000 1.000 0.000
#> GSM241521     3  0.1854      0.931 0.000 0.012 0.940 0.048
#> GSM241522     3  0.2287      0.928 0.004 0.012 0.924 0.060
#> GSM241523     3  0.0000      0.933 0.000 0.000 1.000 0.000
#> GSM241524     3  0.0000      0.933 0.000 0.000 1.000 0.000
#> GSM241525     4  0.3082      0.902 0.084 0.000 0.032 0.884
#> GSM241526     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241527     4  0.0469      0.925 0.012 0.000 0.000 0.988
#> GSM241528     4  0.2840      0.896 0.044 0.000 0.056 0.900
#> GSM241529     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241530     4  0.1305      0.923 0.036 0.000 0.004 0.960
#> GSM241531     4  0.1118      0.923 0.036 0.000 0.000 0.964
#> GSM241532     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241533     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241534     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241535     4  0.0469      0.925 0.012 0.000 0.000 0.988
#> GSM241536     4  0.1474      0.921 0.052 0.000 0.000 0.948
#> GSM241537     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241538     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241539     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241540     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241541     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241542     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241543     3  0.0000      0.933 0.000 0.000 1.000 0.000
#> GSM241544     3  0.0000      0.933 0.000 0.000 1.000 0.000
#> GSM241545     3  0.0000      0.933 0.000 0.000 1.000 0.000
#> GSM241546     3  0.0000      0.933 0.000 0.000 1.000 0.000
#> GSM241547     3  0.0000      0.933 0.000 0.000 1.000 0.000
#> GSM241548     3  0.0000      0.933 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2  0.2629      0.979 0.136 0.860 0.000 0.000 0.004
#> GSM241452     1  0.0000      0.965 1.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.2629      0.979 0.136 0.860 0.000 0.000 0.004
#> GSM241454     1  0.0162      0.964 0.996 0.000 0.000 0.000 0.004
#> GSM241455     2  0.2629      0.979 0.136 0.860 0.000 0.000 0.004
#> GSM241456     1  0.0000      0.965 1.000 0.000 0.000 0.000 0.000
#> GSM241457     2  0.3653      0.944 0.124 0.828 0.000 0.036 0.012
#> GSM241458     1  0.1410      0.941 0.940 0.000 0.000 0.000 0.060
#> GSM241459     2  0.2865      0.976 0.132 0.856 0.000 0.004 0.008
#> GSM241460     1  0.1410      0.941 0.940 0.000 0.000 0.000 0.060
#> GSM241461     2  0.4218      0.933 0.128 0.804 0.004 0.040 0.024
#> GSM241462     1  0.1341      0.942 0.944 0.000 0.000 0.000 0.056
#> GSM241463     2  0.2583      0.979 0.132 0.864 0.000 0.000 0.004
#> GSM241464     2  0.3521      0.882 0.232 0.764 0.000 0.000 0.004
#> GSM241465     2  0.2818      0.977 0.132 0.856 0.000 0.000 0.012
#> GSM241466     1  0.0000      0.965 1.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.965 1.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.2629      0.979 0.136 0.860 0.000 0.000 0.004
#> GSM241469     1  0.0000      0.965 1.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.2629      0.979 0.136 0.860 0.000 0.000 0.004
#> GSM241471     2  0.2583      0.979 0.132 0.864 0.000 0.000 0.004
#> GSM241472     1  0.0162      0.964 0.996 0.000 0.000 0.000 0.004
#> GSM241473     2  0.2583      0.979 0.132 0.864 0.000 0.000 0.004
#> GSM241474     1  0.0324      0.962 0.992 0.004 0.000 0.000 0.004
#> GSM241475     2  0.2629      0.979 0.136 0.860 0.000 0.000 0.004
#> GSM241476     1  0.0000      0.965 1.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.2629      0.979 0.136 0.860 0.000 0.000 0.004
#> GSM241478     2  0.2629      0.979 0.136 0.860 0.000 0.000 0.004
#> GSM241479     1  0.0000      0.965 1.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.965 1.000 0.000 0.000 0.000 0.000
#> GSM241481     2  0.2976      0.976 0.132 0.852 0.000 0.004 0.012
#> GSM241482     1  0.1410      0.941 0.940 0.000 0.000 0.000 0.060
#> GSM241483     2  0.2753      0.978 0.136 0.856 0.000 0.000 0.008
#> GSM241484     1  0.1341      0.942 0.944 0.000 0.000 0.000 0.056
#> GSM241485     1  0.1270      0.945 0.948 0.000 0.000 0.000 0.052
#> GSM241486     2  0.4263      0.934 0.132 0.800 0.004 0.040 0.024
#> GSM241487     2  0.3972      0.943 0.124 0.820 0.024 0.008 0.024
#> GSM241488     2  0.2629      0.979 0.136 0.860 0.000 0.000 0.004
#> GSM241489     1  0.0000      0.965 1.000 0.000 0.000 0.000 0.000
#> GSM241490     1  0.0579      0.959 0.984 0.000 0.000 0.008 0.008
#> GSM241491     2  0.2583      0.979 0.132 0.864 0.000 0.000 0.004
#> GSM241492     1  0.4268      0.303 0.648 0.344 0.000 0.000 0.008
#> GSM241493     2  0.2629      0.979 0.136 0.860 0.000 0.000 0.004
#> GSM241494     1  0.0000      0.965 1.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.2629      0.979 0.136 0.860 0.000 0.000 0.004
#> GSM241496     2  0.3124      0.970 0.136 0.844 0.016 0.000 0.004
#> GSM241497     1  0.0000      0.965 1.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.965 1.000 0.000 0.000 0.000 0.000
#> GSM241499     5  0.3386      0.710 0.020 0.084 0.016 0.016 0.864
#> GSM241500     5  0.5389      0.694 0.000 0.044 0.224 0.044 0.688
#> GSM241501     5  0.6157      0.684 0.036 0.052 0.220 0.032 0.660
#> GSM241502     5  0.6272      0.662 0.056 0.068 0.216 0.012 0.648
#> GSM241503     5  0.3386      0.710 0.020 0.084 0.016 0.016 0.864
#> GSM241504     5  0.3164      0.714 0.012 0.076 0.016 0.020 0.876
#> GSM241505     5  0.3164      0.714 0.012 0.076 0.016 0.020 0.876
#> GSM241506     5  0.5211      0.709 0.000 0.044 0.200 0.044 0.712
#> GSM241507     5  0.3164      0.714 0.012 0.076 0.016 0.020 0.876
#> GSM241508     5  0.5389      0.694 0.000 0.044 0.224 0.044 0.688
#> GSM241509     4  0.5329      0.514 0.000 0.036 0.044 0.684 0.236
#> GSM241510     5  0.5862      0.448 0.000 0.044 0.032 0.372 0.552
#> GSM241511     5  0.5484      0.689 0.000 0.076 0.032 0.200 0.692
#> GSM241512     5  0.4865      0.656 0.000 0.004 0.048 0.268 0.680
#> GSM241513     3  0.3301      0.829 0.000 0.008 0.856 0.048 0.088
#> GSM241514     5  0.5187      0.586 0.000 0.004 0.336 0.048 0.612
#> GSM241515     3  0.5466      0.148 0.000 0.008 0.572 0.052 0.368
#> GSM241516     5  0.5154      0.679 0.000 0.016 0.252 0.052 0.680
#> GSM241517     3  0.3412      0.826 0.000 0.012 0.852 0.048 0.088
#> GSM241518     3  0.3062      0.838 0.000 0.004 0.868 0.048 0.080
#> GSM241519     3  0.0404      0.911 0.000 0.000 0.988 0.012 0.000
#> GSM241520     3  0.0000      0.918 0.000 0.000 1.000 0.000 0.000
#> GSM241521     3  0.2744      0.855 0.024 0.004 0.900 0.048 0.024
#> GSM241522     5  0.6208      0.354 0.044 0.000 0.432 0.048 0.476
#> GSM241523     3  0.0000      0.918 0.000 0.000 1.000 0.000 0.000
#> GSM241524     3  0.0000      0.918 0.000 0.000 1.000 0.000 0.000
#> GSM241525     5  0.5701      0.624 0.000 0.060 0.032 0.268 0.640
#> GSM241526     4  0.0451      0.938 0.000 0.008 0.000 0.988 0.004
#> GSM241527     4  0.0404      0.937 0.000 0.000 0.000 0.988 0.012
#> GSM241528     5  0.5880      0.716 0.000 0.036 0.104 0.196 0.664
#> GSM241529     4  0.0671      0.936 0.000 0.016 0.000 0.980 0.004
#> GSM241530     4  0.3906      0.605 0.000 0.016 0.000 0.744 0.240
#> GSM241531     4  0.2036      0.894 0.000 0.056 0.000 0.920 0.024
#> GSM241532     4  0.0579      0.936 0.000 0.008 0.000 0.984 0.008
#> GSM241533     4  0.0579      0.936 0.000 0.008 0.000 0.984 0.008
#> GSM241534     4  0.0579      0.936 0.000 0.008 0.000 0.984 0.008
#> GSM241535     4  0.0510      0.935 0.000 0.000 0.000 0.984 0.016
#> GSM241536     4  0.2554      0.871 0.000 0.072 0.000 0.892 0.036
#> GSM241537     4  0.0000      0.940 0.000 0.000 0.000 1.000 0.000
#> GSM241538     4  0.0000      0.940 0.000 0.000 0.000 1.000 0.000
#> GSM241539     4  0.0000      0.940 0.000 0.000 0.000 1.000 0.000
#> GSM241540     4  0.0000      0.940 0.000 0.000 0.000 1.000 0.000
#> GSM241541     4  0.0000      0.940 0.000 0.000 0.000 1.000 0.000
#> GSM241542     4  0.0000      0.940 0.000 0.000 0.000 1.000 0.000
#> GSM241543     3  0.0000      0.918 0.000 0.000 1.000 0.000 0.000
#> GSM241544     3  0.0000      0.918 0.000 0.000 1.000 0.000 0.000
#> GSM241545     3  0.0000      0.918 0.000 0.000 1.000 0.000 0.000
#> GSM241546     3  0.0000      0.918 0.000 0.000 1.000 0.000 0.000
#> GSM241547     3  0.0000      0.918 0.000 0.000 1.000 0.000 0.000
#> GSM241548     3  0.0000      0.918 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM241451     2  0.4060     0.7830 0.032 0.684 0.000 0.000 0.000 0.284
#> GSM241452     1  0.1367     0.9332 0.944 0.044 0.000 0.000 0.000 0.012
#> GSM241453     2  0.0935     0.8733 0.032 0.964 0.000 0.000 0.000 0.004
#> GSM241454     1  0.1333     0.9330 0.944 0.048 0.000 0.000 0.000 0.008
#> GSM241455     2  0.0935     0.8733 0.032 0.964 0.000 0.000 0.000 0.004
#> GSM241456     1  0.1349     0.9336 0.940 0.056 0.000 0.000 0.000 0.004
#> GSM241457     2  0.2630     0.8478 0.032 0.872 0.000 0.000 0.092 0.004
#> GSM241458     1  0.3861     0.8611 0.756 0.060 0.000 0.000 0.000 0.184
#> GSM241459     2  0.2630     0.8478 0.032 0.872 0.000 0.000 0.092 0.004
#> GSM241460     1  0.3819     0.8751 0.764 0.064 0.000 0.000 0.000 0.172
#> GSM241461     2  0.2544     0.8017 0.004 0.852 0.000 0.000 0.140 0.004
#> GSM241462     1  0.3295     0.8797 0.816 0.056 0.000 0.000 0.000 0.128
#> GSM241463     2  0.0935     0.8733 0.032 0.964 0.000 0.000 0.000 0.004
#> GSM241464     2  0.5088     0.7218 0.168 0.632 0.000 0.000 0.000 0.200
#> GSM241465     2  0.1116     0.8717 0.028 0.960 0.000 0.000 0.008 0.004
#> GSM241466     1  0.1349     0.9336 0.940 0.056 0.000 0.000 0.000 0.004
#> GSM241467     1  0.2389     0.9243 0.888 0.060 0.000 0.000 0.000 0.052
#> GSM241468     2  0.3427     0.8440 0.032 0.804 0.000 0.000 0.008 0.156
#> GSM241469     1  0.1434     0.9338 0.940 0.048 0.000 0.000 0.000 0.012
#> GSM241470     2  0.4060     0.7830 0.032 0.684 0.000 0.000 0.000 0.284
#> GSM241471     2  0.1049     0.8726 0.032 0.960 0.000 0.000 0.008 0.000
#> GSM241472     1  0.2740     0.9164 0.864 0.060 0.000 0.000 0.000 0.076
#> GSM241473     2  0.1049     0.8726 0.032 0.960 0.000 0.000 0.008 0.000
#> GSM241474     1  0.2799     0.9146 0.860 0.064 0.000 0.000 0.000 0.076
#> GSM241475     2  0.2384     0.8624 0.032 0.884 0.000 0.000 0.000 0.084
#> GSM241476     1  0.1333     0.9330 0.944 0.048 0.000 0.000 0.000 0.008
#> GSM241477     2  0.1194     0.8720 0.032 0.956 0.000 0.000 0.008 0.004
#> GSM241478     2  0.3888     0.8007 0.032 0.716 0.000 0.000 0.000 0.252
#> GSM241479     1  0.1196     0.9302 0.952 0.040 0.000 0.000 0.000 0.008
#> GSM241480     1  0.1333     0.9330 0.944 0.048 0.000 0.000 0.000 0.008
#> GSM241481     2  0.2630     0.8478 0.032 0.872 0.000 0.000 0.092 0.004
#> GSM241482     1  0.3803     0.8626 0.760 0.056 0.000 0.000 0.000 0.184
#> GSM241483     2  0.2630     0.8478 0.032 0.872 0.000 0.000 0.092 0.004
#> GSM241484     1  0.3083     0.8745 0.828 0.040 0.000 0.000 0.000 0.132
#> GSM241485     1  0.2999     0.8900 0.840 0.048 0.000 0.000 0.000 0.112
#> GSM241486     2  0.2402     0.7977 0.000 0.856 0.000 0.000 0.140 0.004
#> GSM241487     2  0.1531     0.8350 0.000 0.928 0.000 0.000 0.068 0.004
#> GSM241488     2  0.4344     0.7301 0.032 0.612 0.000 0.000 0.000 0.356
#> GSM241489     1  0.2325     0.9257 0.892 0.060 0.000 0.000 0.000 0.048
#> GSM241490     1  0.1075     0.9336 0.952 0.048 0.000 0.000 0.000 0.000
#> GSM241491     2  0.0935     0.8733 0.032 0.964 0.000 0.000 0.000 0.004
#> GSM241492     1  0.4757     0.6942 0.676 0.144 0.000 0.000 0.000 0.180
#> GSM241493     2  0.3062     0.8456 0.032 0.824 0.000 0.000 0.000 0.144
#> GSM241494     1  0.1829     0.9310 0.920 0.056 0.000 0.000 0.000 0.024
#> GSM241495     2  0.4020     0.7877 0.032 0.692 0.000 0.000 0.000 0.276
#> GSM241496     2  0.4582     0.7218 0.032 0.604 0.000 0.000 0.008 0.356
#> GSM241497     1  0.2257     0.9227 0.904 0.040 0.000 0.000 0.008 0.048
#> GSM241498     1  0.1265     0.9318 0.948 0.044 0.000 0.000 0.000 0.008
#> GSM241499     5  0.3860     0.6448 0.000 0.000 0.000 0.000 0.528 0.472
#> GSM241500     5  0.3236     0.5057 0.000 0.024 0.180 0.000 0.796 0.000
#> GSM241501     5  0.3071     0.5012 0.000 0.016 0.180 0.000 0.804 0.000
#> GSM241502     5  0.3523     0.4970 0.000 0.040 0.180 0.000 0.780 0.000
#> GSM241503     5  0.3860     0.6448 0.000 0.000 0.000 0.000 0.528 0.472
#> GSM241504     5  0.3860     0.6444 0.000 0.000 0.000 0.000 0.528 0.472
#> GSM241505     5  0.3860     0.6444 0.000 0.000 0.000 0.000 0.528 0.472
#> GSM241506     5  0.4398     0.5248 0.004 0.024 0.152 0.048 0.764 0.008
#> GSM241507     5  0.3857     0.6448 0.000 0.000 0.000 0.000 0.532 0.468
#> GSM241508     5  0.3236     0.5057 0.000 0.024 0.180 0.000 0.796 0.000
#> GSM241509     4  0.5239     0.6488 0.024 0.012 0.040 0.712 0.176 0.036
#> GSM241510     4  0.5510     0.2444 0.004 0.024 0.012 0.532 0.392 0.036
#> GSM241511     5  0.6348     0.4270 0.012 0.000 0.000 0.260 0.388 0.340
#> GSM241512     4  0.6324     0.0939 0.008 0.004 0.088 0.476 0.380 0.044
#> GSM241513     3  0.3706     0.7670 0.008 0.004 0.808 0.048 0.128 0.004
#> GSM241514     3  0.4946     0.4203 0.008 0.004 0.624 0.048 0.312 0.004
#> GSM241515     3  0.5351     0.2266 0.008 0.004 0.516 0.060 0.408 0.004
#> GSM241516     5  0.6626     0.1770 0.008 0.004 0.360 0.072 0.468 0.088
#> GSM241517     3  0.3664     0.7697 0.008 0.004 0.812 0.048 0.124 0.004
#> GSM241518     3  0.3664     0.7697 0.008 0.004 0.812 0.048 0.124 0.004
#> GSM241519     3  0.1285     0.8230 0.000 0.004 0.944 0.000 0.052 0.000
#> GSM241520     3  0.1152     0.8171 0.000 0.004 0.952 0.000 0.000 0.044
#> GSM241521     3  0.3309     0.7886 0.008 0.008 0.848 0.048 0.084 0.004
#> GSM241522     3  0.7219    -0.1905 0.008 0.008 0.396 0.048 0.300 0.240
#> GSM241523     3  0.1152     0.8241 0.000 0.004 0.952 0.000 0.044 0.000
#> GSM241524     3  0.1152     0.8171 0.000 0.004 0.952 0.000 0.000 0.044
#> GSM241525     5  0.6398     0.3662 0.012 0.000 0.000 0.296 0.368 0.324
#> GSM241526     4  0.0862     0.8713 0.008 0.000 0.000 0.972 0.016 0.004
#> GSM241527     4  0.0870     0.8707 0.004 0.000 0.000 0.972 0.012 0.012
#> GSM241528     4  0.6686    -0.0498 0.024 0.012 0.084 0.436 0.408 0.036
#> GSM241529     4  0.0862     0.8713 0.008 0.000 0.000 0.972 0.016 0.004
#> GSM241530     4  0.3275     0.7680 0.012 0.000 0.000 0.836 0.100 0.052
#> GSM241531     4  0.1836     0.8505 0.012 0.004 0.000 0.928 0.008 0.048
#> GSM241532     4  0.0777     0.8706 0.004 0.000 0.000 0.972 0.024 0.000
#> GSM241533     4  0.0777     0.8706 0.004 0.000 0.000 0.972 0.024 0.000
#> GSM241534     4  0.0363     0.8715 0.012 0.000 0.000 0.988 0.000 0.000
#> GSM241535     4  0.0653     0.8719 0.004 0.000 0.000 0.980 0.012 0.004
#> GSM241536     4  0.2002     0.8477 0.012 0.004 0.000 0.920 0.012 0.052
#> GSM241537     4  0.0146     0.8708 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM241538     4  0.0146     0.8708 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM241539     4  0.0146     0.8708 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM241540     4  0.0146     0.8708 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM241541     4  0.0146     0.8708 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM241542     4  0.0146     0.8708 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM241543     3  0.0000     0.8250 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241544     3  0.1007     0.8176 0.000 0.000 0.956 0.000 0.000 0.044
#> GSM241545     3  0.0000     0.8250 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241546     3  0.1007     0.8176 0.000 0.000 0.956 0.000 0.000 0.044
#> GSM241547     3  0.1075     0.8235 0.000 0.000 0.952 0.000 0.048 0.000
#> GSM241548     3  0.0000     0.8250 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n  dose(p)  time(p) k
#> CV:mclust 98 4.18e-21 9.90e-01 2
#> CV:mclust 95 2.54e-18 1.00e+00 3
#> CV:mclust 97 5.56e-20 4.34e-03 4
#> CV:mclust 94 9.28e-24 1.65e-05 5
#> CV:mclust 88 2.09e-23 1.96e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.607           0.883       0.937         0.4779 0.520   0.520
#> 3 3 0.537           0.632       0.786         0.3068 0.854   0.728
#> 4 4 0.837           0.876       0.938         0.1957 0.791   0.521
#> 5 5 0.734           0.735       0.855         0.0540 0.951   0.817
#> 6 6 0.697           0.612       0.766         0.0364 0.975   0.894

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     1  0.0000      0.944 1.000 0.000
#> GSM241452     1  0.0000      0.944 1.000 0.000
#> GSM241453     1  0.0000      0.944 1.000 0.000
#> GSM241454     1  0.0000      0.944 1.000 0.000
#> GSM241455     1  0.0000      0.944 1.000 0.000
#> GSM241456     1  0.0000      0.944 1.000 0.000
#> GSM241457     1  0.7219      0.777 0.800 0.200
#> GSM241458     1  0.5629      0.846 0.868 0.132
#> GSM241459     1  0.7219      0.777 0.800 0.200
#> GSM241460     1  0.7219      0.777 0.800 0.200
#> GSM241461     1  0.6343      0.820 0.840 0.160
#> GSM241462     1  0.0000      0.944 1.000 0.000
#> GSM241463     1  0.0000      0.944 1.000 0.000
#> GSM241464     1  0.0000      0.944 1.000 0.000
#> GSM241465     1  0.0672      0.940 0.992 0.008
#> GSM241466     1  0.0000      0.944 1.000 0.000
#> GSM241467     1  0.0000      0.944 1.000 0.000
#> GSM241468     1  0.0000      0.944 1.000 0.000
#> GSM241469     1  0.0000      0.944 1.000 0.000
#> GSM241470     1  0.0000      0.944 1.000 0.000
#> GSM241471     1  0.0376      0.943 0.996 0.004
#> GSM241472     1  0.0000      0.944 1.000 0.000
#> GSM241473     1  0.0376      0.943 0.996 0.004
#> GSM241474     1  0.0000      0.944 1.000 0.000
#> GSM241475     1  0.0000      0.944 1.000 0.000
#> GSM241476     1  0.0000      0.944 1.000 0.000
#> GSM241477     1  0.0000      0.944 1.000 0.000
#> GSM241478     1  0.0000      0.944 1.000 0.000
#> GSM241479     1  0.0000      0.944 1.000 0.000
#> GSM241480     1  0.0000      0.944 1.000 0.000
#> GSM241481     1  0.6148      0.828 0.848 0.152
#> GSM241482     1  0.0376      0.942 0.996 0.004
#> GSM241483     1  0.0376      0.943 0.996 0.004
#> GSM241484     1  0.0000      0.944 1.000 0.000
#> GSM241485     1  0.0000      0.944 1.000 0.000
#> GSM241486     1  0.0376      0.943 0.996 0.004
#> GSM241487     1  0.0376      0.943 0.996 0.004
#> GSM241488     1  0.0000      0.944 1.000 0.000
#> GSM241489     1  0.0000      0.944 1.000 0.000
#> GSM241490     1  0.0000      0.944 1.000 0.000
#> GSM241491     1  0.0000      0.944 1.000 0.000
#> GSM241492     1  0.0000      0.944 1.000 0.000
#> GSM241493     1  0.0000      0.944 1.000 0.000
#> GSM241494     1  0.0000      0.944 1.000 0.000
#> GSM241495     1  0.0000      0.944 1.000 0.000
#> GSM241496     1  0.0000      0.944 1.000 0.000
#> GSM241497     1  0.0000      0.944 1.000 0.000
#> GSM241498     1  0.0000      0.944 1.000 0.000
#> GSM241499     1  0.0000      0.944 1.000 0.000
#> GSM241500     1  0.8955      0.633 0.688 0.312
#> GSM241501     1  0.2603      0.917 0.956 0.044
#> GSM241502     1  0.3431      0.892 0.936 0.064
#> GSM241503     1  0.0376      0.942 0.996 0.004
#> GSM241504     1  0.6438      0.818 0.836 0.164
#> GSM241505     1  0.5519      0.857 0.872 0.128
#> GSM241506     1  0.9522      0.517 0.628 0.372
#> GSM241507     1  0.7219      0.777 0.800 0.200
#> GSM241508     1  0.7219      0.777 0.800 0.200
#> GSM241509     2  0.6148      0.850 0.152 0.848
#> GSM241510     2  0.0000      0.904 0.000 1.000
#> GSM241511     2  0.9795      0.159 0.416 0.584
#> GSM241512     2  0.7219      0.826 0.200 0.800
#> GSM241513     2  0.0000      0.904 0.000 1.000
#> GSM241514     2  0.7219      0.826 0.200 0.800
#> GSM241515     2  0.0000      0.904 0.000 1.000
#> GSM241516     2  0.0000      0.904 0.000 1.000
#> GSM241517     2  0.2236      0.884 0.036 0.964
#> GSM241518     2  0.6148      0.850 0.152 0.848
#> GSM241519     2  0.7219      0.826 0.200 0.800
#> GSM241520     2  0.7219      0.826 0.200 0.800
#> GSM241521     1  0.7219      0.715 0.800 0.200
#> GSM241522     1  0.7219      0.715 0.800 0.200
#> GSM241523     2  0.7219      0.826 0.200 0.800
#> GSM241524     2  0.7219      0.826 0.200 0.800
#> GSM241525     2  0.1184      0.896 0.016 0.984
#> GSM241526     2  0.0000      0.904 0.000 1.000
#> GSM241527     2  0.0000      0.904 0.000 1.000
#> GSM241528     2  0.0000      0.904 0.000 1.000
#> GSM241529     2  0.0000      0.904 0.000 1.000
#> GSM241530     2  0.0000      0.904 0.000 1.000
#> GSM241531     2  0.0000      0.904 0.000 1.000
#> GSM241532     2  0.0000      0.904 0.000 1.000
#> GSM241533     2  0.0000      0.904 0.000 1.000
#> GSM241534     2  0.0000      0.904 0.000 1.000
#> GSM241535     2  0.0000      0.904 0.000 1.000
#> GSM241536     2  0.0000      0.904 0.000 1.000
#> GSM241537     2  0.0000      0.904 0.000 1.000
#> GSM241538     2  0.0000      0.904 0.000 1.000
#> GSM241539     2  0.0000      0.904 0.000 1.000
#> GSM241540     2  0.0000      0.904 0.000 1.000
#> GSM241541     2  0.0000      0.904 0.000 1.000
#> GSM241542     2  0.0000      0.904 0.000 1.000
#> GSM241543     2  0.7219      0.826 0.200 0.800
#> GSM241544     2  0.7219      0.826 0.200 0.800
#> GSM241545     2  0.7219      0.826 0.200 0.800
#> GSM241546     2  0.7219      0.826 0.200 0.800
#> GSM241547     2  0.7219      0.826 0.200 0.800
#> GSM241548     2  0.7219      0.826 0.200 0.800

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     1  0.6235     0.6348 0.564 0.436 0.000
#> GSM241452     1  0.0237     0.6841 0.996 0.004 0.000
#> GSM241453     1  0.6244     0.6355 0.560 0.440 0.000
#> GSM241454     1  0.0000     0.6834 1.000 0.000 0.000
#> GSM241455     1  0.6225     0.6413 0.568 0.432 0.000
#> GSM241456     1  0.0237     0.6841 0.996 0.004 0.000
#> GSM241457     1  0.6451     0.6415 0.560 0.436 0.004
#> GSM241458     1  0.2749     0.6663 0.924 0.012 0.064
#> GSM241459     1  0.6398     0.6487 0.580 0.416 0.004
#> GSM241460     1  0.5470     0.6153 0.796 0.036 0.168
#> GSM241461     1  0.6476     0.6341 0.548 0.448 0.004
#> GSM241462     1  0.0661     0.6832 0.988 0.004 0.008
#> GSM241463     1  0.6260     0.6375 0.552 0.448 0.000
#> GSM241464     1  0.3116     0.6850 0.892 0.108 0.000
#> GSM241465     1  0.6267     0.6347 0.548 0.452 0.000
#> GSM241466     1  0.0237     0.6846 0.996 0.004 0.000
#> GSM241467     1  0.0237     0.6846 0.996 0.004 0.000
#> GSM241468     1  0.6111     0.6542 0.604 0.396 0.000
#> GSM241469     1  0.0237     0.6841 0.996 0.004 0.000
#> GSM241470     1  0.6235     0.6348 0.564 0.436 0.000
#> GSM241471     1  0.6244     0.6424 0.560 0.440 0.000
#> GSM241472     1  0.0424     0.6857 0.992 0.008 0.000
#> GSM241473     1  0.6244     0.6424 0.560 0.440 0.000
#> GSM241474     1  0.1411     0.6880 0.964 0.036 0.000
#> GSM241475     1  0.6192     0.6455 0.580 0.420 0.000
#> GSM241476     1  0.0000     0.6834 1.000 0.000 0.000
#> GSM241477     1  0.6252     0.6394 0.556 0.444 0.000
#> GSM241478     1  0.6180     0.6392 0.584 0.416 0.000
#> GSM241479     1  0.0000     0.6834 1.000 0.000 0.000
#> GSM241480     1  0.0000     0.6834 1.000 0.000 0.000
#> GSM241481     1  0.6244     0.6424 0.560 0.440 0.000
#> GSM241482     1  0.1267     0.6777 0.972 0.004 0.024
#> GSM241483     1  0.6260     0.6375 0.552 0.448 0.000
#> GSM241484     1  0.1031     0.6763 0.976 0.000 0.024
#> GSM241485     1  0.0000     0.6834 1.000 0.000 0.000
#> GSM241486     1  0.6280     0.6280 0.540 0.460 0.000
#> GSM241487     1  0.6286     0.6239 0.536 0.464 0.000
#> GSM241488     1  0.6215     0.6384 0.572 0.428 0.000
#> GSM241489     1  0.0237     0.6841 0.996 0.004 0.000
#> GSM241490     1  0.0000     0.6834 1.000 0.000 0.000
#> GSM241491     1  0.6267     0.6347 0.548 0.452 0.000
#> GSM241492     1  0.1753     0.6878 0.952 0.048 0.000
#> GSM241493     1  0.6204     0.6434 0.576 0.424 0.000
#> GSM241494     1  0.0000     0.6834 1.000 0.000 0.000
#> GSM241495     1  0.6252     0.6300 0.556 0.444 0.000
#> GSM241496     2  0.6267    -0.3780 0.452 0.548 0.000
#> GSM241497     1  0.1289     0.6618 0.968 0.032 0.000
#> GSM241498     1  0.0237     0.6841 0.996 0.004 0.000
#> GSM241499     1  0.1031     0.6763 0.976 0.000 0.024
#> GSM241500     2  0.9544    -0.3972 0.364 0.440 0.196
#> GSM241501     1  0.6274     0.6314 0.544 0.456 0.000
#> GSM241502     1  0.8363     0.5661 0.504 0.412 0.084
#> GSM241503     1  0.0424     0.6816 0.992 0.000 0.008
#> GSM241504     1  0.5560     0.3965 0.700 0.000 0.300
#> GSM241505     1  0.5291     0.3755 0.732 0.000 0.268
#> GSM241506     3  0.9690    -0.0706 0.324 0.232 0.444
#> GSM241507     1  0.5623     0.4810 0.716 0.004 0.280
#> GSM241508     1  0.9959     0.3007 0.376 0.324 0.300
#> GSM241509     3  0.4555     0.6101 0.000 0.200 0.800
#> GSM241510     3  0.3551     0.7444 0.000 0.132 0.868
#> GSM241511     3  0.4702     0.6335 0.212 0.000 0.788
#> GSM241512     3  0.4399     0.6352 0.188 0.000 0.812
#> GSM241513     2  0.5138     0.5698 0.000 0.748 0.252
#> GSM241514     2  0.9258     0.5315 0.204 0.524 0.272
#> GSM241515     3  0.6192     0.1238 0.000 0.420 0.580
#> GSM241516     3  0.4521     0.6591 0.004 0.180 0.816
#> GSM241517     2  0.2066     0.5725 0.000 0.940 0.060
#> GSM241518     2  0.7034     0.5715 0.048 0.668 0.284
#> GSM241519     2  0.2297     0.5961 0.020 0.944 0.036
#> GSM241520     2  0.8728     0.5932 0.200 0.592 0.208
#> GSM241521     2  0.1170     0.5812 0.008 0.976 0.016
#> GSM241522     2  0.6305     0.3917 0.484 0.516 0.000
#> GSM241523     2  0.3590     0.6128 0.028 0.896 0.076
#> GSM241524     2  0.8749     0.5404 0.300 0.560 0.140
#> GSM241525     3  0.4750     0.6297 0.216 0.000 0.784
#> GSM241526     3  0.0000     0.8608 0.000 0.000 1.000
#> GSM241527     3  0.0000     0.8608 0.000 0.000 1.000
#> GSM241528     3  0.2448     0.8038 0.000 0.076 0.924
#> GSM241529     3  0.0000     0.8608 0.000 0.000 1.000
#> GSM241530     3  0.1411     0.8381 0.036 0.000 0.964
#> GSM241531     3  0.0000     0.8608 0.000 0.000 1.000
#> GSM241532     3  0.1031     0.8522 0.000 0.024 0.976
#> GSM241533     3  0.0237     0.8605 0.000 0.004 0.996
#> GSM241534     3  0.0592     0.8580 0.000 0.012 0.988
#> GSM241535     3  0.0000     0.8608 0.000 0.000 1.000
#> GSM241536     3  0.0237     0.8590 0.004 0.000 0.996
#> GSM241537     3  0.0424     0.8599 0.000 0.008 0.992
#> GSM241538     3  0.0000     0.8608 0.000 0.000 1.000
#> GSM241539     3  0.0424     0.8599 0.000 0.008 0.992
#> GSM241540     3  0.0000     0.8608 0.000 0.000 1.000
#> GSM241541     3  0.1031     0.8505 0.000 0.024 0.976
#> GSM241542     3  0.0424     0.8599 0.000 0.008 0.992
#> GSM241543     2  0.7145     0.6268 0.072 0.692 0.236
#> GSM241544     2  0.8987     0.5640 0.192 0.560 0.248
#> GSM241545     2  0.6025     0.6202 0.028 0.740 0.232
#> GSM241546     2  0.9125     0.5457 0.192 0.540 0.268
#> GSM241547     2  0.4931     0.6046 0.000 0.768 0.232
#> GSM241548     2  0.7295     0.6140 0.072 0.676 0.252

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.1022      0.931 0.032 0.968 0.000 0.000
#> GSM241452     1  0.0524      0.907 0.988 0.004 0.008 0.000
#> GSM241453     2  0.0000      0.944 0.000 1.000 0.000 0.000
#> GSM241454     1  0.0000      0.908 1.000 0.000 0.000 0.000
#> GSM241455     2  0.0188      0.943 0.004 0.996 0.000 0.000
#> GSM241456     1  0.0469      0.907 0.988 0.012 0.000 0.000
#> GSM241457     2  0.0000      0.944 0.000 1.000 0.000 0.000
#> GSM241458     1  0.4731      0.804 0.800 0.100 0.004 0.096
#> GSM241459     2  0.0000      0.944 0.000 1.000 0.000 0.000
#> GSM241460     1  0.6686      0.612 0.620 0.200 0.000 0.180
#> GSM241461     2  0.0000      0.944 0.000 1.000 0.000 0.000
#> GSM241462     1  0.0336      0.907 0.992 0.000 0.008 0.000
#> GSM241463     2  0.2760      0.842 0.000 0.872 0.128 0.000
#> GSM241464     1  0.7448      0.196 0.452 0.372 0.176 0.000
#> GSM241465     2  0.0000      0.944 0.000 1.000 0.000 0.000
#> GSM241466     1  0.0469      0.906 0.988 0.012 0.000 0.000
#> GSM241467     1  0.1211      0.893 0.960 0.040 0.000 0.000
#> GSM241468     2  0.0592      0.938 0.016 0.984 0.000 0.000
#> GSM241469     1  0.0376      0.908 0.992 0.004 0.004 0.000
#> GSM241470     2  0.0779      0.939 0.016 0.980 0.004 0.000
#> GSM241471     2  0.0000      0.944 0.000 1.000 0.000 0.000
#> GSM241472     1  0.2216      0.856 0.908 0.092 0.000 0.000
#> GSM241473     2  0.0188      0.943 0.004 0.996 0.000 0.000
#> GSM241474     1  0.3610      0.748 0.800 0.200 0.000 0.000
#> GSM241475     2  0.0336      0.942 0.008 0.992 0.000 0.000
#> GSM241476     1  0.0000      0.908 1.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      0.944 0.000 1.000 0.000 0.000
#> GSM241478     2  0.1118      0.928 0.036 0.964 0.000 0.000
#> GSM241479     1  0.0188      0.908 0.996 0.000 0.004 0.000
#> GSM241480     1  0.0000      0.908 1.000 0.000 0.000 0.000
#> GSM241481     2  0.0000      0.944 0.000 1.000 0.000 0.000
#> GSM241482     1  0.1610      0.896 0.952 0.032 0.000 0.016
#> GSM241483     2  0.0000      0.944 0.000 1.000 0.000 0.000
#> GSM241484     1  0.0336      0.906 0.992 0.000 0.000 0.008
#> GSM241485     1  0.0000      0.908 1.000 0.000 0.000 0.000
#> GSM241486     2  0.0000      0.944 0.000 1.000 0.000 0.000
#> GSM241487     2  0.0000      0.944 0.000 1.000 0.000 0.000
#> GSM241488     2  0.3842      0.824 0.036 0.836 0.128 0.000
#> GSM241489     1  0.0336      0.907 0.992 0.000 0.008 0.000
#> GSM241490     1  0.0188      0.908 0.996 0.000 0.004 0.000
#> GSM241491     2  0.3311      0.792 0.000 0.828 0.172 0.000
#> GSM241492     1  0.7058      0.502 0.572 0.228 0.200 0.000
#> GSM241493     2  0.0707      0.938 0.020 0.980 0.000 0.000
#> GSM241494     1  0.0188      0.908 0.996 0.000 0.004 0.000
#> GSM241495     2  0.0336      0.942 0.008 0.992 0.000 0.000
#> GSM241496     2  0.4444      0.799 0.120 0.808 0.072 0.000
#> GSM241497     1  0.0469      0.906 0.988 0.000 0.012 0.000
#> GSM241498     1  0.0188      0.908 0.996 0.000 0.004 0.000
#> GSM241499     1  0.0336      0.906 0.992 0.000 0.000 0.008
#> GSM241500     2  0.0921      0.927 0.000 0.972 0.000 0.028
#> GSM241501     2  0.0000      0.944 0.000 1.000 0.000 0.000
#> GSM241502     2  0.2593      0.852 0.004 0.892 0.000 0.104
#> GSM241503     1  0.0188      0.908 0.996 0.000 0.004 0.000
#> GSM241504     1  0.2011      0.867 0.920 0.000 0.000 0.080
#> GSM241505     1  0.1302      0.890 0.956 0.000 0.000 0.044
#> GSM241506     4  0.5212      0.319 0.008 0.420 0.000 0.572
#> GSM241507     1  0.3831      0.745 0.792 0.004 0.000 0.204
#> GSM241508     2  0.2469      0.863 0.000 0.892 0.000 0.108
#> GSM241509     4  0.3610      0.766 0.000 0.200 0.000 0.800
#> GSM241510     4  0.1022      0.913 0.000 0.032 0.000 0.968
#> GSM241511     4  0.0592      0.918 0.016 0.000 0.000 0.984
#> GSM241512     4  0.3649      0.746 0.204 0.000 0.000 0.796
#> GSM241513     3  0.0524      0.974 0.000 0.004 0.988 0.008
#> GSM241514     3  0.0188      0.975 0.000 0.000 0.996 0.004
#> GSM241515     3  0.1474      0.940 0.000 0.000 0.948 0.052
#> GSM241516     3  0.3681      0.781 0.008 0.000 0.816 0.176
#> GSM241517     2  0.4992      0.153 0.000 0.524 0.476 0.000
#> GSM241518     3  0.0336      0.974 0.000 0.000 0.992 0.008
#> GSM241519     3  0.0592      0.968 0.000 0.016 0.984 0.000
#> GSM241520     3  0.0188      0.973 0.004 0.000 0.996 0.000
#> GSM241521     3  0.0707      0.965 0.000 0.020 0.980 0.000
#> GSM241522     1  0.4500      0.546 0.684 0.000 0.316 0.000
#> GSM241523     3  0.0188      0.974 0.000 0.004 0.996 0.000
#> GSM241524     3  0.1302      0.937 0.044 0.000 0.956 0.000
#> GSM241525     4  0.1940      0.870 0.076 0.000 0.000 0.924
#> GSM241526     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241527     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241528     4  0.2281      0.865 0.000 0.096 0.000 0.904
#> GSM241529     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241530     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241531     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> GSM241532     4  0.0469      0.922 0.000 0.012 0.000 0.988
#> GSM241533     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241534     4  0.0707      0.919 0.000 0.020 0.000 0.980
#> GSM241535     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241536     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> GSM241537     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241538     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241539     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241540     4  0.0000      0.926 0.000 0.000 0.000 1.000
#> GSM241541     4  0.3400      0.759 0.000 0.000 0.180 0.820
#> GSM241542     4  0.3486      0.749 0.000 0.000 0.188 0.812
#> GSM241543     3  0.0188      0.975 0.000 0.000 0.996 0.004
#> GSM241544     3  0.0000      0.974 0.000 0.000 1.000 0.000
#> GSM241545     3  0.0188      0.975 0.000 0.000 0.996 0.004
#> GSM241546     3  0.0000      0.974 0.000 0.000 1.000 0.000
#> GSM241547     3  0.0336      0.974 0.000 0.000 0.992 0.008
#> GSM241548     3  0.0188      0.975 0.000 0.000 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2  0.3895     0.7086 0.000 0.680 0.000 0.000 0.320
#> GSM241452     5  0.3913     0.5181 0.324 0.000 0.000 0.000 0.676
#> GSM241453     2  0.2424     0.8100 0.000 0.868 0.000 0.000 0.132
#> GSM241454     1  0.0880     0.7897 0.968 0.000 0.000 0.000 0.032
#> GSM241455     2  0.3521     0.7593 0.004 0.764 0.000 0.000 0.232
#> GSM241456     1  0.3039     0.7017 0.836 0.012 0.000 0.000 0.152
#> GSM241457     2  0.2077     0.8076 0.040 0.920 0.000 0.000 0.040
#> GSM241458     1  0.2046     0.7648 0.916 0.068 0.000 0.000 0.016
#> GSM241459     2  0.1893     0.8122 0.048 0.928 0.000 0.000 0.024
#> GSM241460     1  0.3115     0.6931 0.852 0.112 0.000 0.000 0.036
#> GSM241461     2  0.1671     0.8042 0.000 0.924 0.000 0.000 0.076
#> GSM241462     1  0.0992     0.7989 0.968 0.024 0.000 0.000 0.008
#> GSM241463     2  0.5499     0.7171 0.040 0.712 0.104 0.000 0.144
#> GSM241464     1  0.7076     0.2869 0.576 0.180 0.132 0.000 0.112
#> GSM241465     2  0.1444     0.8179 0.012 0.948 0.000 0.000 0.040
#> GSM241466     1  0.0703     0.7983 0.976 0.024 0.000 0.000 0.000
#> GSM241467     1  0.0703     0.7983 0.976 0.024 0.000 0.000 0.000
#> GSM241468     2  0.2439     0.7588 0.120 0.876 0.000 0.000 0.004
#> GSM241469     1  0.3074     0.6549 0.804 0.000 0.000 0.000 0.196
#> GSM241470     2  0.3242     0.7656 0.000 0.784 0.000 0.000 0.216
#> GSM241471     2  0.2209     0.8031 0.056 0.912 0.000 0.000 0.032
#> GSM241472     1  0.1197     0.7891 0.952 0.048 0.000 0.000 0.000
#> GSM241473     2  0.2569     0.7921 0.068 0.892 0.000 0.000 0.040
#> GSM241474     1  0.2470     0.7281 0.884 0.104 0.000 0.000 0.012
#> GSM241475     2  0.3480     0.7548 0.000 0.752 0.000 0.000 0.248
#> GSM241476     1  0.2230     0.7461 0.884 0.000 0.000 0.000 0.116
#> GSM241477     2  0.0963     0.8203 0.000 0.964 0.000 0.000 0.036
#> GSM241478     2  0.3534     0.7514 0.000 0.744 0.000 0.000 0.256
#> GSM241479     1  0.3837     0.4104 0.692 0.000 0.000 0.000 0.308
#> GSM241480     1  0.0880     0.7897 0.968 0.000 0.000 0.000 0.032
#> GSM241481     2  0.1216     0.8180 0.020 0.960 0.000 0.000 0.020
#> GSM241482     1  0.1043     0.7930 0.960 0.040 0.000 0.000 0.000
#> GSM241483     2  0.1410     0.8101 0.000 0.940 0.000 0.000 0.060
#> GSM241484     1  0.0162     0.7968 0.996 0.000 0.000 0.000 0.004
#> GSM241485     1  0.1671     0.7761 0.924 0.000 0.000 0.000 0.076
#> GSM241486     2  0.2338     0.7848 0.000 0.884 0.000 0.004 0.112
#> GSM241487     2  0.3002     0.8091 0.004 0.872 0.048 0.000 0.076
#> GSM241488     2  0.6324     0.5692 0.024 0.596 0.144 0.000 0.236
#> GSM241489     1  0.1410     0.7804 0.940 0.000 0.000 0.000 0.060
#> GSM241490     1  0.0162     0.7968 0.996 0.000 0.000 0.000 0.004
#> GSM241491     2  0.5328     0.6933 0.036 0.720 0.160 0.000 0.084
#> GSM241492     1  0.6247     0.3776 0.624 0.144 0.200 0.000 0.032
#> GSM241493     2  0.2773     0.7983 0.000 0.836 0.000 0.000 0.164
#> GSM241494     1  0.0451     0.7984 0.988 0.008 0.000 0.000 0.004
#> GSM241495     2  0.1908     0.8197 0.000 0.908 0.000 0.000 0.092
#> GSM241496     5  0.3586     0.4689 0.000 0.076 0.096 0.000 0.828
#> GSM241497     5  0.4713     0.3991 0.440 0.000 0.016 0.000 0.544
#> GSM241498     1  0.3508     0.5756 0.748 0.000 0.000 0.000 0.252
#> GSM241499     1  0.1197     0.7823 0.952 0.000 0.000 0.000 0.048
#> GSM241500     2  0.4219     0.6872 0.000 0.780 0.000 0.104 0.116
#> GSM241501     2  0.3276     0.7571 0.000 0.836 0.000 0.032 0.132
#> GSM241502     5  0.5651     0.3007 0.000 0.248 0.000 0.132 0.620
#> GSM241503     5  0.4552     0.3326 0.468 0.000 0.000 0.008 0.524
#> GSM241504     1  0.2426     0.7454 0.900 0.000 0.000 0.064 0.036
#> GSM241505     1  0.2946     0.7095 0.868 0.000 0.000 0.088 0.044
#> GSM241506     2  0.5964     0.0619 0.000 0.464 0.000 0.428 0.108
#> GSM241507     1  0.3061     0.6742 0.844 0.020 0.000 0.136 0.000
#> GSM241508     2  0.1522     0.8160 0.012 0.944 0.000 0.000 0.044
#> GSM241509     4  0.5567     0.5121 0.000 0.160 0.000 0.644 0.196
#> GSM241510     4  0.2006     0.8176 0.000 0.072 0.000 0.916 0.012
#> GSM241511     4  0.4607     0.5940 0.228 0.004 0.000 0.720 0.048
#> GSM241512     4  0.3783     0.6407 0.008 0.000 0.000 0.740 0.252
#> GSM241513     3  0.1341     0.8902 0.000 0.000 0.944 0.000 0.056
#> GSM241514     3  0.1121     0.9019 0.000 0.000 0.956 0.000 0.044
#> GSM241515     3  0.2423     0.8619 0.000 0.000 0.896 0.024 0.080
#> GSM241516     3  0.3071     0.8458 0.012 0.000 0.872 0.036 0.080
#> GSM241517     3  0.4428     0.5787 0.000 0.268 0.700 0.000 0.032
#> GSM241518     3  0.1991     0.8773 0.000 0.004 0.916 0.004 0.076
#> GSM241519     3  0.2661     0.8652 0.000 0.056 0.888 0.000 0.056
#> GSM241520     3  0.2280     0.8685 0.000 0.000 0.880 0.000 0.120
#> GSM241521     3  0.2193     0.8778 0.000 0.060 0.912 0.000 0.028
#> GSM241522     1  0.5399    -0.0549 0.496 0.000 0.448 0.000 0.056
#> GSM241523     3  0.1831     0.8885 0.000 0.004 0.920 0.000 0.076
#> GSM241524     3  0.3669     0.7934 0.056 0.000 0.816 0.000 0.128
#> GSM241525     4  0.3731     0.7090 0.040 0.000 0.000 0.800 0.160
#> GSM241526     4  0.0794     0.8522 0.000 0.000 0.000 0.972 0.028
#> GSM241527     4  0.0290     0.8558 0.000 0.000 0.000 0.992 0.008
#> GSM241528     4  0.1043     0.8491 0.000 0.000 0.000 0.960 0.040
#> GSM241529     4  0.0703     0.8531 0.000 0.000 0.000 0.976 0.024
#> GSM241530     4  0.0404     0.8554 0.000 0.000 0.000 0.988 0.012
#> GSM241531     4  0.1430     0.8469 0.004 0.000 0.000 0.944 0.052
#> GSM241532     4  0.0451     0.8564 0.000 0.004 0.000 0.988 0.008
#> GSM241533     4  0.0404     0.8556 0.000 0.000 0.000 0.988 0.012
#> GSM241534     4  0.0703     0.8536 0.000 0.000 0.000 0.976 0.024
#> GSM241535     4  0.0162     0.8559 0.000 0.000 0.000 0.996 0.004
#> GSM241536     4  0.0609     0.8546 0.000 0.000 0.000 0.980 0.020
#> GSM241537     4  0.3239     0.8109 0.000 0.000 0.068 0.852 0.080
#> GSM241538     4  0.3301     0.8089 0.000 0.000 0.072 0.848 0.080
#> GSM241539     4  0.3301     0.8089 0.000 0.000 0.072 0.848 0.080
#> GSM241540     4  0.3301     0.8089 0.000 0.000 0.072 0.848 0.080
#> GSM241541     4  0.5547     0.4264 0.000 0.000 0.356 0.564 0.080
#> GSM241542     4  0.4987     0.6515 0.000 0.000 0.236 0.684 0.080
#> GSM241543     3  0.1270     0.8987 0.000 0.000 0.948 0.000 0.052
#> GSM241544     3  0.1270     0.8986 0.000 0.000 0.948 0.000 0.052
#> GSM241545     3  0.0880     0.9035 0.000 0.000 0.968 0.000 0.032
#> GSM241546     3  0.0794     0.9041 0.000 0.000 0.972 0.000 0.028
#> GSM241547     3  0.0794     0.9002 0.000 0.000 0.972 0.000 0.028
#> GSM241548     3  0.0162     0.9041 0.000 0.000 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM241451     2  0.4648    0.39360 0.004 0.584 0.000 0.000 0.372 NA
#> GSM241452     5  0.4452    0.20964 0.312 0.004 0.000 0.000 0.644 NA
#> GSM241453     2  0.2658    0.65705 0.000 0.864 0.000 0.000 0.100 NA
#> GSM241454     1  0.2030    0.71903 0.908 0.000 0.000 0.000 0.064 NA
#> GSM241455     2  0.4415    0.57430 0.004 0.724 0.000 0.000 0.104 NA
#> GSM241456     1  0.4078    0.61782 0.748 0.004 0.000 0.000 0.180 NA
#> GSM241457     2  0.3766    0.66597 0.040 0.748 0.000 0.000 0.000 NA
#> GSM241458     1  0.3235    0.70013 0.848 0.060 0.004 0.000 0.012 NA
#> GSM241459     2  0.4684    0.61564 0.052 0.640 0.000 0.000 0.008 NA
#> GSM241460     1  0.4167    0.63315 0.776 0.096 0.000 0.000 0.024 NA
#> GSM241461     2  0.4850    0.51858 0.024 0.524 0.000 0.000 0.020 NA
#> GSM241462     1  0.4085    0.66777 0.784 0.076 0.000 0.000 0.028 NA
#> GSM241463     2  0.5477    0.46454 0.032 0.596 0.008 0.000 0.056 NA
#> GSM241464     1  0.7411    0.13129 0.436 0.192 0.024 0.000 0.084 NA
#> GSM241465     2  0.2302    0.68873 0.008 0.872 0.000 0.000 0.000 NA
#> GSM241466     1  0.1167    0.73884 0.960 0.008 0.000 0.000 0.020 NA
#> GSM241467     1  0.1138    0.73932 0.960 0.024 0.000 0.000 0.012 NA
#> GSM241468     2  0.4986    0.63363 0.108 0.700 0.000 0.000 0.032 NA
#> GSM241469     1  0.4651    0.48635 0.652 0.004 0.000 0.000 0.280 NA
#> GSM241470     2  0.3094    0.63128 0.000 0.824 0.000 0.000 0.140 NA
#> GSM241471     2  0.3530    0.67323 0.056 0.792 0.000 0.000 0.000 NA
#> GSM241472     1  0.1168    0.73602 0.956 0.028 0.000 0.000 0.000 NA
#> GSM241473     2  0.4022    0.65664 0.088 0.764 0.000 0.000 0.004 NA
#> GSM241474     1  0.2862    0.69907 0.864 0.080 0.000 0.000 0.008 NA
#> GSM241475     2  0.4033    0.56515 0.000 0.724 0.000 0.000 0.224 NA
#> GSM241476     1  0.3450    0.63837 0.780 0.000 0.000 0.000 0.188 NA
#> GSM241477     2  0.0909    0.68283 0.000 0.968 0.000 0.000 0.020 NA
#> GSM241478     2  0.5324    0.38158 0.000 0.540 0.000 0.000 0.340 NA
#> GSM241479     1  0.4711    0.38955 0.608 0.000 0.000 0.000 0.328 NA
#> GSM241480     1  0.2145    0.71624 0.900 0.000 0.000 0.000 0.072 NA
#> GSM241481     2  0.3766    0.66331 0.040 0.748 0.000 0.000 0.000 NA
#> GSM241482     1  0.2119    0.72805 0.912 0.036 0.000 0.000 0.008 NA
#> GSM241483     2  0.4004    0.59537 0.000 0.620 0.000 0.000 0.012 NA
#> GSM241484     1  0.1225    0.73482 0.952 0.000 0.000 0.000 0.012 NA
#> GSM241485     1  0.3562    0.71258 0.828 0.032 0.000 0.000 0.064 NA
#> GSM241486     2  0.5043    0.45880 0.016 0.476 0.000 0.000 0.040 NA
#> GSM241487     2  0.1552    0.68257 0.000 0.940 0.020 0.000 0.004 NA
#> GSM241488     2  0.6469    0.33743 0.024 0.556 0.100 0.000 0.264 NA
#> GSM241489     1  0.4008    0.65036 0.768 0.012 0.004 0.000 0.172 NA
#> GSM241490     1  0.2179    0.72267 0.900 0.000 0.000 0.000 0.064 NA
#> GSM241491     2  0.5762    0.49613 0.028 0.612 0.060 0.000 0.032 NA
#> GSM241492     1  0.6907    0.34376 0.548 0.128 0.084 0.000 0.032 NA
#> GSM241493     2  0.2624    0.64425 0.000 0.856 0.000 0.000 0.124 NA
#> GSM241494     1  0.0363    0.73559 0.988 0.000 0.000 0.000 0.012 NA
#> GSM241495     2  0.2094    0.66436 0.000 0.900 0.000 0.000 0.080 NA
#> GSM241496     5  0.5124    0.10616 0.004 0.288 0.044 0.000 0.632 NA
#> GSM241497     5  0.4691   -0.14600 0.464 0.008 0.004 0.000 0.504 NA
#> GSM241498     1  0.4738    0.39089 0.600 0.000 0.000 0.000 0.336 NA
#> GSM241499     1  0.3328    0.70311 0.832 0.004 0.000 0.008 0.112 NA
#> GSM241500     2  0.5282    0.50142 0.000 0.528 0.000 0.064 0.016 NA
#> GSM241501     2  0.4686    0.62164 0.000 0.676 0.000 0.016 0.056 NA
#> GSM241502     5  0.7077    0.04845 0.000 0.220 0.000 0.092 0.424 NA
#> GSM241503     1  0.4708    0.00157 0.496 0.004 0.000 0.016 0.472 NA
#> GSM241504     1  0.4186    0.61278 0.772 0.000 0.000 0.132 0.068 NA
#> GSM241505     1  0.4866    0.55192 0.716 0.000 0.000 0.160 0.080 NA
#> GSM241506     4  0.6139    0.33724 0.000 0.260 0.000 0.548 0.044 NA
#> GSM241507     1  0.3039    0.71688 0.868 0.008 0.000 0.040 0.020 NA
#> GSM241508     2  0.3957    0.65328 0.004 0.696 0.000 0.020 0.000 NA
#> GSM241509     4  0.6783    0.24999 0.000 0.088 0.000 0.444 0.140 NA
#> GSM241510     4  0.4444    0.62903 0.000 0.072 0.000 0.700 0.004 NA
#> GSM241511     4  0.4640    0.55576 0.240 0.000 0.000 0.684 0.012 NA
#> GSM241512     4  0.5099    0.55472 0.008 0.000 0.000 0.644 0.228 NA
#> GSM241513     3  0.1995    0.81324 0.000 0.000 0.912 0.000 0.036 NA
#> GSM241514     3  0.2767    0.79960 0.004 0.000 0.868 0.000 0.072 NA
#> GSM241515     3  0.4022    0.77031 0.000 0.020 0.804 0.016 0.064 NA
#> GSM241516     3  0.4589    0.73163 0.028 0.000 0.768 0.024 0.072 NA
#> GSM241517     3  0.5998    0.29470 0.000 0.316 0.492 0.000 0.012 NA
#> GSM241518     3  0.3206    0.77543 0.000 0.000 0.816 0.004 0.028 NA
#> GSM241519     3  0.5073    0.62923 0.000 0.180 0.692 0.000 0.044 NA
#> GSM241520     3  0.2022    0.81163 0.000 0.008 0.916 0.000 0.052 NA
#> GSM241521     3  0.2215    0.79803 0.000 0.076 0.900 0.000 0.012 NA
#> GSM241522     3  0.5740    0.07219 0.408 0.000 0.484 0.000 0.068 NA
#> GSM241523     3  0.4381    0.67999 0.000 0.136 0.748 0.000 0.100 NA
#> GSM241524     3  0.3080    0.76930 0.024 0.008 0.848 0.000 0.112 NA
#> GSM241525     4  0.3889    0.67313 0.028 0.004 0.000 0.772 0.180 NA
#> GSM241526     4  0.1577    0.77751 0.000 0.008 0.000 0.940 0.036 NA
#> GSM241527     4  0.1092    0.78348 0.000 0.000 0.000 0.960 0.020 NA
#> GSM241528     4  0.3726    0.71240 0.000 0.072 0.000 0.812 0.092 NA
#> GSM241529     4  0.1887    0.77382 0.000 0.012 0.000 0.924 0.048 NA
#> GSM241530     4  0.1644    0.77636 0.000 0.004 0.000 0.932 0.052 NA
#> GSM241531     4  0.1913    0.78223 0.016 0.000 0.000 0.924 0.016 NA
#> GSM241532     4  0.1007    0.78536 0.000 0.000 0.000 0.956 0.000 NA
#> GSM241533     4  0.0547    0.78491 0.000 0.000 0.000 0.980 0.000 NA
#> GSM241534     4  0.1471    0.77956 0.000 0.000 0.000 0.932 0.004 NA
#> GSM241535     4  0.0520    0.78449 0.000 0.000 0.000 0.984 0.008 NA
#> GSM241536     4  0.1483    0.78249 0.012 0.000 0.000 0.944 0.008 NA
#> GSM241537     4  0.3982    0.73623 0.000 0.000 0.032 0.792 0.060 NA
#> GSM241538     4  0.4425    0.72355 0.000 0.000 0.056 0.764 0.064 NA
#> GSM241539     4  0.4242    0.72925 0.000 0.000 0.044 0.776 0.064 NA
#> GSM241540     4  0.4483    0.72153 0.000 0.000 0.060 0.760 0.064 NA
#> GSM241541     4  0.6151    0.53044 0.000 0.000 0.220 0.576 0.064 NA
#> GSM241542     4  0.6084    0.55442 0.000 0.000 0.208 0.588 0.064 NA
#> GSM241543     3  0.0870    0.82471 0.000 0.012 0.972 0.000 0.012 NA
#> GSM241544     3  0.0717    0.82628 0.000 0.000 0.976 0.000 0.016 NA
#> GSM241545     3  0.0146    0.82697 0.000 0.000 0.996 0.000 0.004 NA
#> GSM241546     3  0.0717    0.82894 0.000 0.000 0.976 0.000 0.016 NA
#> GSM241547     3  0.0622    0.82800 0.000 0.000 0.980 0.000 0.008 NA
#> GSM241548     3  0.0405    0.82822 0.000 0.000 0.988 0.000 0.004 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n  dose(p)  time(p) k
#> CV:NMF 97 3.25e-15 2.54e-01 2
#> CV:NMF 89 8.74e-17 1.51e-05 3
#> CV:NMF 95 1.31e-14 2.22e-04 4
#> CV:NMF 88 2.84e-13 5.84e-04 5
#> CV:NMF 78 1.46e-12 2.22e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.992       0.997         0.5056 0.495   0.495
#> 3 3 0.706           0.820       0.853         0.2288 0.879   0.758
#> 4 4 0.846           0.929       0.953         0.1787 0.886   0.702
#> 5 5 0.852           0.931       0.910         0.0624 0.939   0.778
#> 6 6 0.862           0.899       0.908         0.0369 0.976   0.889

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     2   0.000      1.000 0.000 1.000
#> GSM241452     1   0.000      0.994 1.000 0.000
#> GSM241453     2   0.000      1.000 0.000 1.000
#> GSM241454     1   0.000      0.994 1.000 0.000
#> GSM241455     2   0.000      1.000 0.000 1.000
#> GSM241456     1   0.000      0.994 1.000 0.000
#> GSM241457     2   0.000      1.000 0.000 1.000
#> GSM241458     1   0.000      0.994 1.000 0.000
#> GSM241459     2   0.000      1.000 0.000 1.000
#> GSM241460     1   0.000      0.994 1.000 0.000
#> GSM241461     2   0.000      1.000 0.000 1.000
#> GSM241462     1   0.000      0.994 1.000 0.000
#> GSM241463     2   0.000      1.000 0.000 1.000
#> GSM241464     1   0.000      0.994 1.000 0.000
#> GSM241465     2   0.000      1.000 0.000 1.000
#> GSM241466     1   0.000      0.994 1.000 0.000
#> GSM241467     1   0.000      0.994 1.000 0.000
#> GSM241468     2   0.000      1.000 0.000 1.000
#> GSM241469     1   0.000      0.994 1.000 0.000
#> GSM241470     2   0.000      1.000 0.000 1.000
#> GSM241471     2   0.000      1.000 0.000 1.000
#> GSM241472     1   0.000      0.994 1.000 0.000
#> GSM241473     2   0.000      1.000 0.000 1.000
#> GSM241474     1   0.000      0.994 1.000 0.000
#> GSM241475     2   0.000      1.000 0.000 1.000
#> GSM241476     1   0.000      0.994 1.000 0.000
#> GSM241477     2   0.000      1.000 0.000 1.000
#> GSM241478     2   0.000      1.000 0.000 1.000
#> GSM241479     1   0.000      0.994 1.000 0.000
#> GSM241480     1   0.000      0.994 1.000 0.000
#> GSM241481     2   0.000      1.000 0.000 1.000
#> GSM241482     1   0.000      0.994 1.000 0.000
#> GSM241483     2   0.000      1.000 0.000 1.000
#> GSM241484     1   0.000      0.994 1.000 0.000
#> GSM241485     1   0.000      0.994 1.000 0.000
#> GSM241486     2   0.000      1.000 0.000 1.000
#> GSM241487     2   0.000      1.000 0.000 1.000
#> GSM241488     2   0.000      1.000 0.000 1.000
#> GSM241489     1   0.000      0.994 1.000 0.000
#> GSM241490     1   0.000      0.994 1.000 0.000
#> GSM241491     2   0.000      1.000 0.000 1.000
#> GSM241492     1   0.000      0.994 1.000 0.000
#> GSM241493     2   0.000      1.000 0.000 1.000
#> GSM241494     1   0.000      0.994 1.000 0.000
#> GSM241495     2   0.000      1.000 0.000 1.000
#> GSM241496     2   0.000      1.000 0.000 1.000
#> GSM241497     1   0.000      0.994 1.000 0.000
#> GSM241498     1   0.000      0.994 1.000 0.000
#> GSM241499     1   0.000      0.994 1.000 0.000
#> GSM241500     2   0.000      1.000 0.000 1.000
#> GSM241501     2   0.000      1.000 0.000 1.000
#> GSM241502     2   0.000      1.000 0.000 1.000
#> GSM241503     1   0.000      0.994 1.000 0.000
#> GSM241504     1   0.000      0.994 1.000 0.000
#> GSM241505     1   0.000      0.994 1.000 0.000
#> GSM241506     2   0.000      1.000 0.000 1.000
#> GSM241507     1   0.000      0.994 1.000 0.000
#> GSM241508     2   0.000      1.000 0.000 1.000
#> GSM241509     2   0.000      1.000 0.000 1.000
#> GSM241510     2   0.000      1.000 0.000 1.000
#> GSM241511     1   0.000      0.994 1.000 0.000
#> GSM241512     1   0.000      0.994 1.000 0.000
#> GSM241513     2   0.000      1.000 0.000 1.000
#> GSM241514     1   0.000      0.994 1.000 0.000
#> GSM241515     2   0.000      1.000 0.000 1.000
#> GSM241516     1   0.000      0.994 1.000 0.000
#> GSM241517     2   0.000      1.000 0.000 1.000
#> GSM241518     1   0.000      0.994 1.000 0.000
#> GSM241519     2   0.000      1.000 0.000 1.000
#> GSM241520     1   0.000      0.994 1.000 0.000
#> GSM241521     2   0.000      1.000 0.000 1.000
#> GSM241522     1   0.000      0.994 1.000 0.000
#> GSM241523     2   0.000      1.000 0.000 1.000
#> GSM241524     1   0.000      0.994 1.000 0.000
#> GSM241525     1   0.000      0.994 1.000 0.000
#> GSM241526     2   0.000      1.000 0.000 1.000
#> GSM241527     1   0.000      0.994 1.000 0.000
#> GSM241528     2   0.000      1.000 0.000 1.000
#> GSM241529     2   0.000      1.000 0.000 1.000
#> GSM241530     1   0.000      0.994 1.000 0.000
#> GSM241531     1   0.000      0.994 1.000 0.000
#> GSM241532     2   0.000      1.000 0.000 1.000
#> GSM241533     2   0.000      1.000 0.000 1.000
#> GSM241534     2   0.000      1.000 0.000 1.000
#> GSM241535     1   0.000      0.994 1.000 0.000
#> GSM241536     1   0.000      0.994 1.000 0.000
#> GSM241537     2   0.000      1.000 0.000 1.000
#> GSM241538     1   0.000      0.994 1.000 0.000
#> GSM241539     2   0.000      1.000 0.000 1.000
#> GSM241540     1   0.000      0.994 1.000 0.000
#> GSM241541     2   0.000      1.000 0.000 1.000
#> GSM241542     1   0.886      0.563 0.696 0.304
#> GSM241543     2   0.000      1.000 0.000 1.000
#> GSM241544     1   0.000      0.994 1.000 0.000
#> GSM241545     2   0.000      1.000 0.000 1.000
#> GSM241546     1   0.000      0.994 1.000 0.000
#> GSM241547     2   0.000      1.000 0.000 1.000
#> GSM241548     1   0.000      0.994 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2   0.334      0.846 0.000 0.880 0.120
#> GSM241452     1   0.000      0.895 1.000 0.000 0.000
#> GSM241453     2   0.334      0.846 0.000 0.880 0.120
#> GSM241454     1   0.000      0.895 1.000 0.000 0.000
#> GSM241455     2   0.334      0.846 0.000 0.880 0.120
#> GSM241456     1   0.000      0.895 1.000 0.000 0.000
#> GSM241457     2   0.000      0.811 0.000 1.000 0.000
#> GSM241458     1   0.000      0.895 1.000 0.000 0.000
#> GSM241459     2   0.000      0.811 0.000 1.000 0.000
#> GSM241460     1   0.000      0.895 1.000 0.000 0.000
#> GSM241461     2   0.000      0.811 0.000 1.000 0.000
#> GSM241462     1   0.000      0.895 1.000 0.000 0.000
#> GSM241463     2   0.334      0.846 0.000 0.880 0.120
#> GSM241464     1   0.000      0.895 1.000 0.000 0.000
#> GSM241465     2   0.334      0.846 0.000 0.880 0.120
#> GSM241466     1   0.000      0.895 1.000 0.000 0.000
#> GSM241467     1   0.000      0.895 1.000 0.000 0.000
#> GSM241468     2   0.334      0.846 0.000 0.880 0.120
#> GSM241469     1   0.000      0.895 1.000 0.000 0.000
#> GSM241470     2   0.334      0.846 0.000 0.880 0.120
#> GSM241471     2   0.334      0.846 0.000 0.880 0.120
#> GSM241472     1   0.000      0.895 1.000 0.000 0.000
#> GSM241473     2   0.334      0.846 0.000 0.880 0.120
#> GSM241474     1   0.000      0.895 1.000 0.000 0.000
#> GSM241475     2   0.334      0.846 0.000 0.880 0.120
#> GSM241476     1   0.000      0.895 1.000 0.000 0.000
#> GSM241477     2   0.334      0.846 0.000 0.880 0.120
#> GSM241478     2   0.334      0.846 0.000 0.880 0.120
#> GSM241479     1   0.000      0.895 1.000 0.000 0.000
#> GSM241480     1   0.000      0.895 1.000 0.000 0.000
#> GSM241481     2   0.000      0.811 0.000 1.000 0.000
#> GSM241482     1   0.000      0.895 1.000 0.000 0.000
#> GSM241483     2   0.000      0.811 0.000 1.000 0.000
#> GSM241484     1   0.000      0.895 1.000 0.000 0.000
#> GSM241485     1   0.000      0.895 1.000 0.000 0.000
#> GSM241486     2   0.000      0.811 0.000 1.000 0.000
#> GSM241487     2   0.334      0.846 0.000 0.880 0.120
#> GSM241488     2   0.334      0.846 0.000 0.880 0.120
#> GSM241489     1   0.000      0.895 1.000 0.000 0.000
#> GSM241490     1   0.000      0.895 1.000 0.000 0.000
#> GSM241491     2   0.334      0.846 0.000 0.880 0.120
#> GSM241492     1   0.000      0.895 1.000 0.000 0.000
#> GSM241493     2   0.334      0.846 0.000 0.880 0.120
#> GSM241494     1   0.000      0.895 1.000 0.000 0.000
#> GSM241495     2   0.334      0.846 0.000 0.880 0.120
#> GSM241496     2   0.334      0.846 0.000 0.880 0.120
#> GSM241497     1   0.000      0.895 1.000 0.000 0.000
#> GSM241498     1   0.000      0.895 1.000 0.000 0.000
#> GSM241499     1   0.000      0.895 1.000 0.000 0.000
#> GSM241500     2   0.000      0.811 0.000 1.000 0.000
#> GSM241501     2   0.000      0.811 0.000 1.000 0.000
#> GSM241502     2   0.000      0.811 0.000 1.000 0.000
#> GSM241503     1   0.000      0.895 1.000 0.000 0.000
#> GSM241504     1   0.000      0.895 1.000 0.000 0.000
#> GSM241505     1   0.000      0.895 1.000 0.000 0.000
#> GSM241506     2   0.000      0.811 0.000 1.000 0.000
#> GSM241507     1   0.000      0.895 1.000 0.000 0.000
#> GSM241508     2   0.484      0.479 0.000 0.776 0.224
#> GSM241509     2   0.493      0.460 0.000 0.768 0.232
#> GSM241510     2   0.493      0.460 0.000 0.768 0.232
#> GSM241511     1   0.186      0.881 0.948 0.000 0.052
#> GSM241512     1   0.576      0.781 0.672 0.000 0.328
#> GSM241513     3   0.576      0.903 0.000 0.328 0.672
#> GSM241514     1   0.576      0.781 0.672 0.000 0.328
#> GSM241515     3   0.576      0.903 0.000 0.328 0.672
#> GSM241516     1   0.576      0.781 0.672 0.000 0.328
#> GSM241517     3   0.576      0.903 0.000 0.328 0.672
#> GSM241518     1   0.576      0.781 0.672 0.000 0.328
#> GSM241519     3   0.576      0.903 0.000 0.328 0.672
#> GSM241520     1   0.576      0.781 0.672 0.000 0.328
#> GSM241521     3   0.576      0.903 0.000 0.328 0.672
#> GSM241522     1   0.576      0.781 0.672 0.000 0.328
#> GSM241523     3   0.576      0.903 0.000 0.328 0.672
#> GSM241524     1   0.576      0.781 0.672 0.000 0.328
#> GSM241525     1   0.576      0.781 0.672 0.000 0.328
#> GSM241526     3   0.583      0.888 0.000 0.340 0.660
#> GSM241527     1   0.576      0.781 0.672 0.000 0.328
#> GSM241528     3   0.583      0.888 0.000 0.340 0.660
#> GSM241529     3   0.583      0.888 0.000 0.340 0.660
#> GSM241530     1   0.576      0.781 0.672 0.000 0.328
#> GSM241531     1   0.186      0.881 0.948 0.000 0.052
#> GSM241532     2   0.493      0.460 0.000 0.768 0.232
#> GSM241533     2   0.493      0.460 0.000 0.768 0.232
#> GSM241534     2   0.493      0.460 0.000 0.768 0.232
#> GSM241535     1   0.576      0.781 0.672 0.000 0.328
#> GSM241536     1   0.186      0.881 0.948 0.000 0.052
#> GSM241537     3   0.576      0.903 0.000 0.328 0.672
#> GSM241538     1   0.576      0.781 0.672 0.000 0.328
#> GSM241539     3   0.576      0.903 0.000 0.328 0.672
#> GSM241540     1   0.576      0.781 0.672 0.000 0.328
#> GSM241541     3   0.576      0.903 0.000 0.328 0.672
#> GSM241542     3   0.599     -0.307 0.368 0.000 0.632
#> GSM241543     3   0.576      0.903 0.000 0.328 0.672
#> GSM241544     1   0.576      0.781 0.672 0.000 0.328
#> GSM241545     3   0.576      0.903 0.000 0.328 0.672
#> GSM241546     1   0.576      0.781 0.672 0.000 0.328
#> GSM241547     3   0.576      0.903 0.000 0.328 0.672
#> GSM241548     1   0.576      0.781 0.672 0.000 0.328

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.2647      0.892 0.000 0.880 0.000 0.120
#> GSM241452     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241453     2  0.2647      0.892 0.000 0.880 0.000 0.120
#> GSM241454     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241455     2  0.2647      0.892 0.000 0.880 0.000 0.120
#> GSM241456     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241457     2  0.0000      0.865 0.000 1.000 0.000 0.000
#> GSM241458     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241459     2  0.0000      0.865 0.000 1.000 0.000 0.000
#> GSM241460     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241461     2  0.0000      0.865 0.000 1.000 0.000 0.000
#> GSM241462     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241463     2  0.2647      0.892 0.000 0.880 0.000 0.120
#> GSM241464     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241465     2  0.2647      0.892 0.000 0.880 0.000 0.120
#> GSM241466     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241468     2  0.2647      0.892 0.000 0.880 0.000 0.120
#> GSM241469     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241470     2  0.2647      0.892 0.000 0.880 0.000 0.120
#> GSM241471     2  0.2647      0.892 0.000 0.880 0.000 0.120
#> GSM241472     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241473     2  0.2647      0.892 0.000 0.880 0.000 0.120
#> GSM241474     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241475     2  0.2647      0.892 0.000 0.880 0.000 0.120
#> GSM241476     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241477     2  0.2647      0.892 0.000 0.880 0.000 0.120
#> GSM241478     2  0.2647      0.892 0.000 0.880 0.000 0.120
#> GSM241479     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241481     2  0.0000      0.865 0.000 1.000 0.000 0.000
#> GSM241482     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241483     2  0.0000      0.865 0.000 1.000 0.000 0.000
#> GSM241484     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241485     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241486     2  0.0000      0.865 0.000 1.000 0.000 0.000
#> GSM241487     2  0.2647      0.892 0.000 0.880 0.000 0.120
#> GSM241488     2  0.2647      0.892 0.000 0.880 0.000 0.120
#> GSM241489     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241491     2  0.2647      0.892 0.000 0.880 0.000 0.120
#> GSM241492     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241493     2  0.2647      0.892 0.000 0.880 0.000 0.120
#> GSM241494     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241495     2  0.2647      0.892 0.000 0.880 0.000 0.120
#> GSM241496     2  0.2647      0.892 0.000 0.880 0.000 0.120
#> GSM241497     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241499     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241500     2  0.1022      0.859 0.000 0.968 0.000 0.032
#> GSM241501     2  0.1022      0.859 0.000 0.968 0.000 0.032
#> GSM241502     2  0.1022      0.859 0.000 0.968 0.000 0.032
#> GSM241503     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241504     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241505     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> GSM241506     2  0.1022      0.859 0.000 0.968 0.000 0.032
#> GSM241507     1  0.0921      0.967 0.972 0.000 0.028 0.000
#> GSM241508     2  0.4103      0.657 0.000 0.744 0.000 0.256
#> GSM241509     2  0.4164      0.646 0.000 0.736 0.000 0.264
#> GSM241510     2  0.4164      0.646 0.000 0.736 0.000 0.264
#> GSM241511     1  0.2281      0.902 0.904 0.000 0.096 0.000
#> GSM241512     3  0.0000      0.979 0.000 0.000 1.000 0.000
#> GSM241513     4  0.0000      0.997 0.000 0.000 0.000 1.000
#> GSM241514     3  0.0188      0.976 0.004 0.000 0.996 0.000
#> GSM241515     4  0.0000      0.997 0.000 0.000 0.000 1.000
#> GSM241516     3  0.0188      0.976 0.004 0.000 0.996 0.000
#> GSM241517     4  0.0000      0.997 0.000 0.000 0.000 1.000
#> GSM241518     3  0.0000      0.979 0.000 0.000 1.000 0.000
#> GSM241519     4  0.0000      0.997 0.000 0.000 0.000 1.000
#> GSM241520     3  0.0000      0.979 0.000 0.000 1.000 0.000
#> GSM241521     4  0.0000      0.997 0.000 0.000 0.000 1.000
#> GSM241522     3  0.0188      0.976 0.004 0.000 0.996 0.000
#> GSM241523     4  0.0000      0.997 0.000 0.000 0.000 1.000
#> GSM241524     3  0.0000      0.979 0.000 0.000 1.000 0.000
#> GSM241525     3  0.0000      0.979 0.000 0.000 1.000 0.000
#> GSM241526     4  0.0469      0.987 0.000 0.012 0.000 0.988
#> GSM241527     3  0.0000      0.979 0.000 0.000 1.000 0.000
#> GSM241528     4  0.0469      0.987 0.000 0.012 0.000 0.988
#> GSM241529     4  0.0469      0.987 0.000 0.012 0.000 0.988
#> GSM241530     3  0.0000      0.979 0.000 0.000 1.000 0.000
#> GSM241531     1  0.2281      0.902 0.904 0.000 0.096 0.000
#> GSM241532     2  0.4164      0.646 0.000 0.736 0.000 0.264
#> GSM241533     2  0.4164      0.646 0.000 0.736 0.000 0.264
#> GSM241534     2  0.4164      0.646 0.000 0.736 0.000 0.264
#> GSM241535     3  0.0000      0.979 0.000 0.000 1.000 0.000
#> GSM241536     1  0.2281      0.902 0.904 0.000 0.096 0.000
#> GSM241537     4  0.0000      0.997 0.000 0.000 0.000 1.000
#> GSM241538     3  0.0000      0.979 0.000 0.000 1.000 0.000
#> GSM241539     4  0.0000      0.997 0.000 0.000 0.000 1.000
#> GSM241540     3  0.0000      0.979 0.000 0.000 1.000 0.000
#> GSM241541     4  0.0000      0.997 0.000 0.000 0.000 1.000
#> GSM241542     3  0.4431      0.532 0.000 0.000 0.696 0.304
#> GSM241543     4  0.0000      0.997 0.000 0.000 0.000 1.000
#> GSM241544     3  0.0000      0.979 0.000 0.000 1.000 0.000
#> GSM241545     4  0.0000      0.997 0.000 0.000 0.000 1.000
#> GSM241546     3  0.0000      0.979 0.000 0.000 1.000 0.000
#> GSM241547     4  0.0000      0.997 0.000 0.000 0.000 1.000
#> GSM241548     3  0.0000      0.979 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241452     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241454     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241456     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241457     5  0.3586      0.825 0.000 0.264 0.000 0.000 0.736
#> GSM241458     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241459     5  0.3586      0.825 0.000 0.264 0.000 0.000 0.736
#> GSM241460     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241461     5  0.3586      0.825 0.000 0.264 0.000 0.000 0.736
#> GSM241462     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241463     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241464     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241465     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241466     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241469     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241471     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241472     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241474     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241476     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241478     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241479     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241481     5  0.3586      0.825 0.000 0.264 0.000 0.000 0.736
#> GSM241482     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241483     5  0.3586      0.825 0.000 0.264 0.000 0.000 0.736
#> GSM241484     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241485     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241486     5  0.3586      0.825 0.000 0.264 0.000 0.000 0.736
#> GSM241487     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241488     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241489     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241491     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241492     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241493     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241494     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241496     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM241497     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000
#> GSM241499     1  0.0794      0.966 0.972 0.000 0.000 0.000 0.028
#> GSM241500     5  0.4192      0.839 0.000 0.232 0.000 0.032 0.736
#> GSM241501     5  0.4192      0.839 0.000 0.232 0.000 0.032 0.736
#> GSM241502     5  0.4192      0.839 0.000 0.232 0.000 0.032 0.736
#> GSM241503     1  0.0794      0.966 0.972 0.000 0.000 0.000 0.028
#> GSM241504     1  0.0794      0.966 0.972 0.000 0.000 0.000 0.028
#> GSM241505     1  0.0794      0.966 0.972 0.000 0.000 0.000 0.028
#> GSM241506     5  0.4192      0.839 0.000 0.232 0.000 0.032 0.736
#> GSM241507     1  0.2305      0.914 0.896 0.000 0.012 0.000 0.092
#> GSM241508     5  0.3728      0.730 0.000 0.008 0.000 0.244 0.748
#> GSM241509     5  0.3508      0.723 0.000 0.000 0.000 0.252 0.748
#> GSM241510     5  0.3508      0.723 0.000 0.000 0.000 0.252 0.748
#> GSM241511     1  0.3579      0.852 0.828 0.000 0.072 0.000 0.100
#> GSM241512     3  0.0703      0.973 0.000 0.000 0.976 0.000 0.024
#> GSM241513     4  0.2280      0.937 0.000 0.120 0.000 0.880 0.000
#> GSM241514     3  0.0162      0.974 0.004 0.000 0.996 0.000 0.000
#> GSM241515     4  0.2280      0.937 0.000 0.120 0.000 0.880 0.000
#> GSM241516     3  0.0162      0.974 0.004 0.000 0.996 0.000 0.000
#> GSM241517     4  0.2280      0.937 0.000 0.120 0.000 0.880 0.000
#> GSM241518     3  0.0162      0.974 0.000 0.000 0.996 0.000 0.004
#> GSM241519     4  0.2280      0.937 0.000 0.120 0.000 0.880 0.000
#> GSM241520     3  0.0162      0.974 0.000 0.000 0.996 0.000 0.004
#> GSM241521     4  0.2280      0.937 0.000 0.120 0.000 0.880 0.000
#> GSM241522     3  0.0162      0.974 0.004 0.000 0.996 0.000 0.000
#> GSM241523     4  0.2280      0.937 0.000 0.120 0.000 0.880 0.000
#> GSM241524     3  0.0162      0.974 0.000 0.000 0.996 0.000 0.004
#> GSM241525     3  0.0703      0.973 0.000 0.000 0.976 0.000 0.024
#> GSM241526     4  0.2813      0.925 0.000 0.108 0.000 0.868 0.024
#> GSM241527     3  0.0703      0.973 0.000 0.000 0.976 0.000 0.024
#> GSM241528     4  0.2813      0.925 0.000 0.108 0.000 0.868 0.024
#> GSM241529     4  0.2813      0.925 0.000 0.108 0.000 0.868 0.024
#> GSM241530     3  0.0703      0.973 0.000 0.000 0.976 0.000 0.024
#> GSM241531     1  0.3579      0.852 0.828 0.000 0.072 0.000 0.100
#> GSM241532     5  0.3508      0.723 0.000 0.000 0.000 0.252 0.748
#> GSM241533     5  0.3508      0.723 0.000 0.000 0.000 0.252 0.748
#> GSM241534     5  0.3508      0.723 0.000 0.000 0.000 0.252 0.748
#> GSM241535     3  0.0703      0.973 0.000 0.000 0.976 0.000 0.024
#> GSM241536     1  0.3579      0.852 0.828 0.000 0.072 0.000 0.100
#> GSM241537     4  0.2605      0.762 0.000 0.000 0.000 0.852 0.148
#> GSM241538     3  0.0609      0.973 0.000 0.000 0.980 0.000 0.020
#> GSM241539     4  0.2605      0.762 0.000 0.000 0.000 0.852 0.148
#> GSM241540     3  0.0609      0.973 0.000 0.000 0.980 0.000 0.020
#> GSM241541     4  0.2605      0.762 0.000 0.000 0.000 0.852 0.148
#> GSM241542     3  0.5125      0.702 0.000 0.000 0.696 0.156 0.148
#> GSM241543     4  0.2280      0.937 0.000 0.120 0.000 0.880 0.000
#> GSM241544     3  0.0162      0.974 0.000 0.000 0.996 0.000 0.004
#> GSM241545     4  0.2280      0.937 0.000 0.120 0.000 0.880 0.000
#> GSM241546     3  0.0162      0.974 0.000 0.000 0.996 0.000 0.004
#> GSM241547     4  0.2280      0.937 0.000 0.120 0.000 0.880 0.000
#> GSM241548     3  0.0162      0.974 0.000 0.000 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM241451     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241452     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241454     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241456     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241457     5  0.3023      0.841 0.000 0.232 0.000 0.000 0.768 0.000
#> GSM241458     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241459     5  0.3023      0.841 0.000 0.232 0.000 0.000 0.768 0.000
#> GSM241460     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241461     5  0.3023      0.841 0.000 0.232 0.000 0.000 0.768 0.000
#> GSM241462     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241463     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241464     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241465     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241466     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241469     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241471     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241472     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241474     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241476     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241478     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241479     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241481     5  0.3023      0.841 0.000 0.232 0.000 0.000 0.768 0.000
#> GSM241482     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241483     5  0.3023      0.841 0.000 0.232 0.000 0.000 0.768 0.000
#> GSM241484     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241485     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241486     5  0.3023      0.841 0.000 0.232 0.000 0.000 0.768 0.000
#> GSM241487     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241488     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241489     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241491     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241492     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241493     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241494     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241496     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241497     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241499     1  0.3547      0.537 0.668 0.000 0.000 0.000 0.000 0.332
#> GSM241500     5  0.2793      0.847 0.000 0.200 0.000 0.000 0.800 0.000
#> GSM241501     5  0.2793      0.847 0.000 0.200 0.000 0.000 0.800 0.000
#> GSM241502     5  0.2793      0.847 0.000 0.200 0.000 0.000 0.800 0.000
#> GSM241503     1  0.3547      0.537 0.668 0.000 0.000 0.000 0.000 0.332
#> GSM241504     1  0.3547      0.537 0.668 0.000 0.000 0.000 0.000 0.332
#> GSM241505     1  0.3547      0.537 0.668 0.000 0.000 0.000 0.000 0.332
#> GSM241506     5  0.2793      0.847 0.000 0.200 0.000 0.000 0.800 0.000
#> GSM241507     6  0.2100      0.841 0.112 0.000 0.000 0.004 0.000 0.884
#> GSM241508     5  0.2762      0.750 0.000 0.000 0.196 0.000 0.804 0.000
#> GSM241509     5  0.2823      0.748 0.000 0.000 0.204 0.000 0.796 0.000
#> GSM241510     5  0.2823      0.748 0.000 0.000 0.204 0.000 0.796 0.000
#> GSM241511     6  0.1141      0.947 0.000 0.000 0.000 0.052 0.000 0.948
#> GSM241512     4  0.1007      0.935 0.000 0.000 0.000 0.956 0.000 0.044
#> GSM241513     3  0.2048      0.923 0.000 0.120 0.880 0.000 0.000 0.000
#> GSM241514     4  0.0146      0.942 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM241515     3  0.2048      0.923 0.000 0.120 0.880 0.000 0.000 0.000
#> GSM241516     4  0.0146      0.942 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM241517     3  0.2048      0.923 0.000 0.120 0.880 0.000 0.000 0.000
#> GSM241518     4  0.1141      0.934 0.000 0.000 0.000 0.948 0.000 0.052
#> GSM241519     3  0.2048      0.923 0.000 0.120 0.880 0.000 0.000 0.000
#> GSM241520     4  0.1141      0.934 0.000 0.000 0.000 0.948 0.000 0.052
#> GSM241521     3  0.2048      0.923 0.000 0.120 0.880 0.000 0.000 0.000
#> GSM241522     4  0.0146      0.942 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM241523     3  0.2048      0.923 0.000 0.120 0.880 0.000 0.000 0.000
#> GSM241524     4  0.1141      0.934 0.000 0.000 0.000 0.948 0.000 0.052
#> GSM241525     4  0.0865      0.939 0.000 0.000 0.000 0.964 0.000 0.036
#> GSM241526     3  0.2822      0.903 0.000 0.108 0.852 0.000 0.040 0.000
#> GSM241527     4  0.0865      0.939 0.000 0.000 0.000 0.964 0.000 0.036
#> GSM241528     3  0.2822      0.903 0.000 0.108 0.852 0.000 0.040 0.000
#> GSM241529     3  0.2822      0.903 0.000 0.108 0.852 0.000 0.040 0.000
#> GSM241530     4  0.0865      0.939 0.000 0.000 0.000 0.964 0.000 0.036
#> GSM241531     6  0.1141      0.947 0.000 0.000 0.000 0.052 0.000 0.948
#> GSM241532     5  0.2823      0.748 0.000 0.000 0.204 0.000 0.796 0.000
#> GSM241533     5  0.2823      0.748 0.000 0.000 0.204 0.000 0.796 0.000
#> GSM241534     5  0.2823      0.748 0.000 0.000 0.204 0.000 0.796 0.000
#> GSM241535     4  0.1007      0.935 0.000 0.000 0.000 0.956 0.000 0.044
#> GSM241536     6  0.1141      0.947 0.000 0.000 0.000 0.052 0.000 0.948
#> GSM241537     3  0.2562      0.687 0.000 0.000 0.828 0.000 0.172 0.000
#> GSM241538     4  0.0790      0.940 0.000 0.000 0.000 0.968 0.000 0.032
#> GSM241539     3  0.2562      0.687 0.000 0.000 0.828 0.000 0.172 0.000
#> GSM241540     4  0.0790      0.940 0.000 0.000 0.000 0.968 0.000 0.032
#> GSM241541     3  0.2562      0.687 0.000 0.000 0.828 0.000 0.172 0.000
#> GSM241542     4  0.5564      0.607 0.000 0.000 0.132 0.648 0.172 0.048
#> GSM241543     3  0.2048      0.923 0.000 0.120 0.880 0.000 0.000 0.000
#> GSM241544     4  0.1141      0.934 0.000 0.000 0.000 0.948 0.000 0.052
#> GSM241545     3  0.2048      0.923 0.000 0.120 0.880 0.000 0.000 0.000
#> GSM241546     4  0.1141      0.934 0.000 0.000 0.000 0.948 0.000 0.052
#> GSM241547     3  0.2048      0.923 0.000 0.120 0.880 0.000 0.000 0.000
#> GSM241548     4  0.1141      0.934 0.000 0.000 0.000 0.948 0.000 0.052

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n  dose(p)  time(p) k
#> MAD:hclust 98 1.00e+00 1.00e+00 2
#> MAD:hclust 91 1.32e-05 2.77e-01 3
#> MAD:hclust 98 8.37e-08 9.47e-02 4
#> MAD:hclust 98 3.14e-09 3.05e-05 5
#> MAD:hclust 98 5.27e-10 2.58e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.990       0.991         0.5053 0.495   0.495
#> 3 3 0.692           0.704       0.860         0.2831 0.815   0.641
#> 4 4 0.697           0.771       0.824         0.1379 0.821   0.544
#> 5 5 0.794           0.689       0.816         0.0672 0.954   0.821
#> 6 6 0.826           0.765       0.823         0.0391 0.909   0.614

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     2  0.1414      0.991 0.020 0.980
#> GSM241452     1  0.0000      0.992 1.000 0.000
#> GSM241453     2  0.1414      0.991 0.020 0.980
#> GSM241454     1  0.0000      0.992 1.000 0.000
#> GSM241455     2  0.1414      0.991 0.020 0.980
#> GSM241456     1  0.0000      0.992 1.000 0.000
#> GSM241457     2  0.1414      0.991 0.020 0.980
#> GSM241458     1  0.0000      0.992 1.000 0.000
#> GSM241459     2  0.1414      0.991 0.020 0.980
#> GSM241460     1  0.0000      0.992 1.000 0.000
#> GSM241461     2  0.1414      0.991 0.020 0.980
#> GSM241462     1  0.0000      0.992 1.000 0.000
#> GSM241463     2  0.1414      0.991 0.020 0.980
#> GSM241464     1  0.0000      0.992 1.000 0.000
#> GSM241465     2  0.1414      0.991 0.020 0.980
#> GSM241466     1  0.0000      0.992 1.000 0.000
#> GSM241467     1  0.0000      0.992 1.000 0.000
#> GSM241468     2  0.1414      0.991 0.020 0.980
#> GSM241469     1  0.0000      0.992 1.000 0.000
#> GSM241470     2  0.1414      0.991 0.020 0.980
#> GSM241471     2  0.1414      0.991 0.020 0.980
#> GSM241472     1  0.0000      0.992 1.000 0.000
#> GSM241473     2  0.1414      0.991 0.020 0.980
#> GSM241474     1  0.0000      0.992 1.000 0.000
#> GSM241475     2  0.1414      0.991 0.020 0.980
#> GSM241476     1  0.0000      0.992 1.000 0.000
#> GSM241477     2  0.1414      0.991 0.020 0.980
#> GSM241478     2  0.1414      0.991 0.020 0.980
#> GSM241479     1  0.0000      0.992 1.000 0.000
#> GSM241480     1  0.0000      0.992 1.000 0.000
#> GSM241481     2  0.1414      0.991 0.020 0.980
#> GSM241482     1  0.0000      0.992 1.000 0.000
#> GSM241483     2  0.1414      0.991 0.020 0.980
#> GSM241484     1  0.0000      0.992 1.000 0.000
#> GSM241485     1  0.0000      0.992 1.000 0.000
#> GSM241486     2  0.1414      0.991 0.020 0.980
#> GSM241487     2  0.1414      0.991 0.020 0.980
#> GSM241488     2  0.1414      0.991 0.020 0.980
#> GSM241489     1  0.0000      0.992 1.000 0.000
#> GSM241490     1  0.0000      0.992 1.000 0.000
#> GSM241491     2  0.1414      0.991 0.020 0.980
#> GSM241492     1  0.0000      0.992 1.000 0.000
#> GSM241493     2  0.1414      0.991 0.020 0.980
#> GSM241494     1  0.0000      0.992 1.000 0.000
#> GSM241495     2  0.1414      0.991 0.020 0.980
#> GSM241496     2  0.1414      0.991 0.020 0.980
#> GSM241497     1  0.0000      0.992 1.000 0.000
#> GSM241498     1  0.0000      0.992 1.000 0.000
#> GSM241499     1  0.0000      0.992 1.000 0.000
#> GSM241500     2  0.1184      0.991 0.016 0.984
#> GSM241501     2  0.1414      0.991 0.020 0.980
#> GSM241502     2  0.1414      0.991 0.020 0.980
#> GSM241503     1  0.0000      0.992 1.000 0.000
#> GSM241504     1  0.0000      0.992 1.000 0.000
#> GSM241505     1  0.0000      0.992 1.000 0.000
#> GSM241506     2  0.1414      0.991 0.020 0.980
#> GSM241507     1  0.0000      0.992 1.000 0.000
#> GSM241508     2  0.0000      0.988 0.000 1.000
#> GSM241509     2  0.0000      0.988 0.000 1.000
#> GSM241510     2  0.0000      0.988 0.000 1.000
#> GSM241511     1  0.1414      0.987 0.980 0.020
#> GSM241512     1  0.1414      0.987 0.980 0.020
#> GSM241513     2  0.0000      0.988 0.000 1.000
#> GSM241514     1  0.1414      0.987 0.980 0.020
#> GSM241515     2  0.0000      0.988 0.000 1.000
#> GSM241516     1  0.1414      0.987 0.980 0.020
#> GSM241517     2  0.0000      0.988 0.000 1.000
#> GSM241518     1  0.1414      0.987 0.980 0.020
#> GSM241519     2  0.0000      0.988 0.000 1.000
#> GSM241520     1  0.1414      0.987 0.980 0.020
#> GSM241521     2  0.0000      0.988 0.000 1.000
#> GSM241522     1  0.0000      0.992 1.000 0.000
#> GSM241523     2  0.0000      0.988 0.000 1.000
#> GSM241524     1  0.1414      0.987 0.980 0.020
#> GSM241525     1  0.0672      0.990 0.992 0.008
#> GSM241526     2  0.0000      0.988 0.000 1.000
#> GSM241527     1  0.1414      0.987 0.980 0.020
#> GSM241528     2  0.0000      0.988 0.000 1.000
#> GSM241529     2  0.0000      0.988 0.000 1.000
#> GSM241530     1  0.1414      0.987 0.980 0.020
#> GSM241531     1  0.1414      0.987 0.980 0.020
#> GSM241532     2  0.0000      0.988 0.000 1.000
#> GSM241533     2  0.0000      0.988 0.000 1.000
#> GSM241534     2  0.0000      0.988 0.000 1.000
#> GSM241535     1  0.1414      0.987 0.980 0.020
#> GSM241536     1  0.1414      0.987 0.980 0.020
#> GSM241537     2  0.0000      0.988 0.000 1.000
#> GSM241538     1  0.1414      0.987 0.980 0.020
#> GSM241539     2  0.0000      0.988 0.000 1.000
#> GSM241540     1  0.1414      0.987 0.980 0.020
#> GSM241541     2  0.0000      0.988 0.000 1.000
#> GSM241542     1  0.1414      0.987 0.980 0.020
#> GSM241543     2  0.0000      0.988 0.000 1.000
#> GSM241544     1  0.1414      0.987 0.980 0.020
#> GSM241545     2  0.0000      0.988 0.000 1.000
#> GSM241546     1  0.1414      0.987 0.980 0.020
#> GSM241547     2  0.0000      0.988 0.000 1.000
#> GSM241548     1  0.1414      0.987 0.980 0.020

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2  0.0000     0.8648 0.000 1.000 0.000
#> GSM241452     1  0.0237     0.8909 0.996 0.004 0.000
#> GSM241453     2  0.0000     0.8648 0.000 1.000 0.000
#> GSM241454     1  0.0237     0.8909 0.996 0.004 0.000
#> GSM241455     2  0.0000     0.8648 0.000 1.000 0.000
#> GSM241456     1  0.0237     0.8909 0.996 0.004 0.000
#> GSM241457     2  0.2165     0.8487 0.000 0.936 0.064
#> GSM241458     1  0.2261     0.8725 0.932 0.000 0.068
#> GSM241459     2  0.2165     0.8487 0.000 0.936 0.064
#> GSM241460     1  0.2400     0.8722 0.932 0.004 0.064
#> GSM241461     2  0.2261     0.8491 0.000 0.932 0.068
#> GSM241462     1  0.2261     0.8725 0.932 0.000 0.068
#> GSM241463     2  0.0000     0.8648 0.000 1.000 0.000
#> GSM241464     1  0.0237     0.8909 0.996 0.004 0.000
#> GSM241465     2  0.0000     0.8648 0.000 1.000 0.000
#> GSM241466     1  0.0237     0.8909 0.996 0.004 0.000
#> GSM241467     1  0.0237     0.8909 0.996 0.004 0.000
#> GSM241468     2  0.0000     0.8648 0.000 1.000 0.000
#> GSM241469     1  0.0237     0.8909 0.996 0.004 0.000
#> GSM241470     2  0.0000     0.8648 0.000 1.000 0.000
#> GSM241471     2  0.0000     0.8648 0.000 1.000 0.000
#> GSM241472     1  0.0237     0.8909 0.996 0.004 0.000
#> GSM241473     2  0.0000     0.8648 0.000 1.000 0.000
#> GSM241474     1  0.0237     0.8909 0.996 0.004 0.000
#> GSM241475     2  0.0000     0.8648 0.000 1.000 0.000
#> GSM241476     1  0.0237     0.8909 0.996 0.004 0.000
#> GSM241477     2  0.0000     0.8648 0.000 1.000 0.000
#> GSM241478     2  0.0000     0.8648 0.000 1.000 0.000
#> GSM241479     1  0.0237     0.8909 0.996 0.004 0.000
#> GSM241480     1  0.0237     0.8909 0.996 0.004 0.000
#> GSM241481     2  0.2165     0.8487 0.000 0.936 0.064
#> GSM241482     1  0.2165     0.8729 0.936 0.000 0.064
#> GSM241483     2  0.2261     0.8491 0.000 0.932 0.068
#> GSM241484     1  0.2261     0.8725 0.932 0.000 0.068
#> GSM241485     1  0.2261     0.8725 0.932 0.000 0.068
#> GSM241486     2  0.2261     0.8491 0.000 0.932 0.068
#> GSM241487     2  0.0237     0.8633 0.000 0.996 0.004
#> GSM241488     2  0.0000     0.8648 0.000 1.000 0.000
#> GSM241489     1  0.0237     0.8909 0.996 0.004 0.000
#> GSM241490     1  0.0237     0.8909 0.996 0.004 0.000
#> GSM241491     2  0.0000     0.8648 0.000 1.000 0.000
#> GSM241492     1  0.0237     0.8909 0.996 0.004 0.000
#> GSM241493     2  0.0000     0.8648 0.000 1.000 0.000
#> GSM241494     1  0.0237     0.8909 0.996 0.004 0.000
#> GSM241495     2  0.0000     0.8648 0.000 1.000 0.000
#> GSM241496     2  0.0000     0.8648 0.000 1.000 0.000
#> GSM241497     1  0.0237     0.8909 0.996 0.004 0.000
#> GSM241498     1  0.0237     0.8909 0.996 0.004 0.000
#> GSM241499     1  0.2261     0.8725 0.932 0.000 0.068
#> GSM241500     2  0.2261     0.8491 0.000 0.932 0.068
#> GSM241501     2  0.2261     0.8491 0.000 0.932 0.068
#> GSM241502     2  0.2261     0.8491 0.000 0.932 0.068
#> GSM241503     1  0.2261     0.8725 0.932 0.000 0.068
#> GSM241504     1  0.2261     0.8725 0.932 0.000 0.068
#> GSM241505     1  0.2261     0.8725 0.932 0.000 0.068
#> GSM241506     2  0.2261     0.8491 0.000 0.932 0.068
#> GSM241507     1  0.2261     0.8725 0.932 0.000 0.068
#> GSM241508     2  0.2261     0.8491 0.000 0.932 0.068
#> GSM241509     2  0.4291     0.7718 0.000 0.820 0.180
#> GSM241510     2  0.5397     0.6543 0.000 0.720 0.280
#> GSM241511     1  0.5178     0.7399 0.744 0.000 0.256
#> GSM241512     1  0.6267     0.2416 0.548 0.000 0.452
#> GSM241513     3  0.5733     0.4935 0.000 0.324 0.676
#> GSM241514     1  0.6252     0.2561 0.556 0.000 0.444
#> GSM241515     3  0.5706     0.5013 0.000 0.320 0.680
#> GSM241516     1  0.6252     0.2561 0.556 0.000 0.444
#> GSM241517     2  0.6062     0.3510 0.000 0.616 0.384
#> GSM241518     3  0.4047     0.6640 0.148 0.004 0.848
#> GSM241519     2  0.6008     0.3790 0.000 0.628 0.372
#> GSM241520     3  0.5623     0.5070 0.280 0.004 0.716
#> GSM241521     2  0.2796     0.8015 0.000 0.908 0.092
#> GSM241522     1  0.0424     0.8867 0.992 0.000 0.008
#> GSM241523     2  0.6045     0.3605 0.000 0.620 0.380
#> GSM241524     1  0.6252     0.2561 0.556 0.000 0.444
#> GSM241525     1  0.4504     0.7324 0.804 0.000 0.196
#> GSM241526     2  0.6307     0.0567 0.000 0.512 0.488
#> GSM241527     3  0.6274     0.0308 0.456 0.000 0.544
#> GSM241528     2  0.6252     0.2089 0.000 0.556 0.444
#> GSM241529     2  0.6307     0.0567 0.000 0.512 0.488
#> GSM241530     1  0.4842     0.6977 0.776 0.000 0.224
#> GSM241531     1  0.5216     0.7354 0.740 0.000 0.260
#> GSM241532     2  0.6267     0.3280 0.000 0.548 0.452
#> GSM241533     3  0.6280    -0.1058 0.000 0.460 0.540
#> GSM241534     3  0.6280    -0.1058 0.000 0.460 0.540
#> GSM241535     3  0.3551     0.6726 0.132 0.000 0.868
#> GSM241536     1  0.5178     0.7399 0.744 0.000 0.256
#> GSM241537     3  0.3482     0.6551 0.000 0.128 0.872
#> GSM241538     3  0.3551     0.6726 0.132 0.000 0.868
#> GSM241539     3  0.3482     0.6551 0.000 0.128 0.872
#> GSM241540     3  0.5905     0.3522 0.352 0.000 0.648
#> GSM241541     3  0.4796     0.5966 0.000 0.220 0.780
#> GSM241542     3  0.3715     0.6748 0.128 0.004 0.868
#> GSM241543     3  0.5706     0.5013 0.000 0.320 0.680
#> GSM241544     3  0.5178     0.5441 0.256 0.000 0.744
#> GSM241545     3  0.5706     0.5013 0.000 0.320 0.680
#> GSM241546     3  0.6302    -0.0507 0.480 0.000 0.520
#> GSM241547     3  0.5706     0.5013 0.000 0.320 0.680
#> GSM241548     3  0.3784     0.6744 0.132 0.004 0.864

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.5771      0.852 0.004 0.704 0.212 0.080
#> GSM241452     1  0.0000      0.916 1.000 0.000 0.000 0.000
#> GSM241453     2  0.5771      0.852 0.004 0.704 0.212 0.080
#> GSM241454     1  0.0000      0.916 1.000 0.000 0.000 0.000
#> GSM241455     2  0.5771      0.852 0.004 0.704 0.212 0.080
#> GSM241456     1  0.0000      0.916 1.000 0.000 0.000 0.000
#> GSM241457     2  0.0000      0.747 0.000 1.000 0.000 0.000
#> GSM241458     1  0.3444      0.849 0.816 0.000 0.184 0.000
#> GSM241459     2  0.0000      0.747 0.000 1.000 0.000 0.000
#> GSM241460     1  0.1867      0.890 0.928 0.000 0.072 0.000
#> GSM241461     2  0.0376      0.743 0.000 0.992 0.004 0.004
#> GSM241462     1  0.3626      0.848 0.812 0.000 0.184 0.004
#> GSM241463     2  0.5771      0.852 0.004 0.704 0.212 0.080
#> GSM241464     1  0.0188      0.915 0.996 0.000 0.000 0.004
#> GSM241465     2  0.5593      0.850 0.000 0.708 0.212 0.080
#> GSM241466     1  0.0000      0.916 1.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.916 1.000 0.000 0.000 0.000
#> GSM241468     2  0.5771      0.852 0.004 0.704 0.212 0.080
#> GSM241469     1  0.0000      0.916 1.000 0.000 0.000 0.000
#> GSM241470     2  0.5771      0.852 0.004 0.704 0.212 0.080
#> GSM241471     2  0.5771      0.852 0.004 0.704 0.212 0.080
#> GSM241472     1  0.0000      0.916 1.000 0.000 0.000 0.000
#> GSM241473     2  0.5771      0.852 0.004 0.704 0.212 0.080
#> GSM241474     1  0.0000      0.916 1.000 0.000 0.000 0.000
#> GSM241475     2  0.5771      0.852 0.004 0.704 0.212 0.080
#> GSM241476     1  0.0000      0.916 1.000 0.000 0.000 0.000
#> GSM241477     2  0.5771      0.852 0.004 0.704 0.212 0.080
#> GSM241478     2  0.5771      0.852 0.004 0.704 0.212 0.080
#> GSM241479     1  0.0000      0.916 1.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.916 1.000 0.000 0.000 0.000
#> GSM241481     2  0.0000      0.747 0.000 1.000 0.000 0.000
#> GSM241482     1  0.3444      0.849 0.816 0.000 0.184 0.000
#> GSM241483     2  0.0188      0.745 0.000 0.996 0.004 0.000
#> GSM241484     1  0.3486      0.847 0.812 0.000 0.188 0.000
#> GSM241485     1  0.3306      0.860 0.840 0.000 0.156 0.004
#> GSM241486     2  0.0376      0.743 0.000 0.992 0.004 0.004
#> GSM241487     2  0.5593      0.850 0.000 0.708 0.212 0.080
#> GSM241488     2  0.5771      0.852 0.004 0.704 0.212 0.080
#> GSM241489     1  0.0000      0.916 1.000 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.916 1.000 0.000 0.000 0.000
#> GSM241491     2  0.5771      0.852 0.004 0.704 0.212 0.080
#> GSM241492     1  0.0188      0.915 0.996 0.000 0.000 0.004
#> GSM241493     2  0.5771      0.852 0.004 0.704 0.212 0.080
#> GSM241494     1  0.0000      0.916 1.000 0.000 0.000 0.000
#> GSM241495     2  0.5771      0.852 0.004 0.704 0.212 0.080
#> GSM241496     2  0.5771      0.852 0.004 0.704 0.212 0.080
#> GSM241497     1  0.0000      0.916 1.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.916 1.000 0.000 0.000 0.000
#> GSM241499     1  0.3569      0.842 0.804 0.000 0.196 0.000
#> GSM241500     2  0.0895      0.730 0.000 0.976 0.004 0.020
#> GSM241501     2  0.0376      0.743 0.000 0.992 0.004 0.004
#> GSM241502     2  0.0657      0.737 0.000 0.984 0.004 0.012
#> GSM241503     1  0.3569      0.842 0.804 0.000 0.196 0.000
#> GSM241504     1  0.3569      0.842 0.804 0.000 0.196 0.000
#> GSM241505     1  0.3569      0.842 0.804 0.000 0.196 0.000
#> GSM241506     2  0.0895      0.730 0.000 0.976 0.004 0.020
#> GSM241507     1  0.3569      0.842 0.804 0.000 0.196 0.000
#> GSM241508     2  0.0895      0.730 0.000 0.976 0.004 0.020
#> GSM241509     4  0.5137      0.573 0.000 0.452 0.004 0.544
#> GSM241510     4  0.5119      0.588 0.000 0.440 0.004 0.556
#> GSM241511     3  0.4356      0.481 0.292 0.000 0.708 0.000
#> GSM241512     3  0.7085      0.756 0.200 0.000 0.568 0.232
#> GSM241513     4  0.2623      0.694 0.000 0.028 0.064 0.908
#> GSM241514     3  0.7220      0.758 0.212 0.000 0.548 0.240
#> GSM241515     4  0.2623      0.694 0.000 0.028 0.064 0.908
#> GSM241516     3  0.7324      0.754 0.228 0.000 0.532 0.240
#> GSM241517     4  0.5889      0.687 0.000 0.100 0.212 0.688
#> GSM241518     3  0.6121      0.699 0.060 0.000 0.588 0.352
#> GSM241519     4  0.5889      0.687 0.000 0.100 0.212 0.688
#> GSM241520     3  0.6501      0.725 0.096 0.000 0.588 0.316
#> GSM241521     4  0.7026      0.509 0.000 0.180 0.248 0.572
#> GSM241522     1  0.3400      0.668 0.820 0.000 0.180 0.000
#> GSM241523     4  0.5889      0.687 0.000 0.100 0.212 0.688
#> GSM241524     3  0.6897      0.759 0.160 0.000 0.584 0.256
#> GSM241525     3  0.5582      0.496 0.400 0.000 0.576 0.024
#> GSM241526     4  0.2773      0.732 0.000 0.116 0.004 0.880
#> GSM241527     3  0.6801      0.759 0.124 0.000 0.568 0.308
#> GSM241528     4  0.5080      0.701 0.000 0.092 0.144 0.764
#> GSM241529     4  0.4318      0.735 0.000 0.116 0.068 0.816
#> GSM241530     3  0.6280      0.589 0.344 0.000 0.584 0.072
#> GSM241531     3  0.4356      0.481 0.292 0.000 0.708 0.000
#> GSM241532     4  0.4991      0.641 0.000 0.388 0.004 0.608
#> GSM241533     4  0.4978      0.645 0.000 0.384 0.004 0.612
#> GSM241534     4  0.4978      0.645 0.000 0.384 0.004 0.612
#> GSM241535     3  0.5097      0.659 0.004 0.000 0.568 0.428
#> GSM241536     3  0.4356      0.481 0.292 0.000 0.708 0.000
#> GSM241537     4  0.1940      0.570 0.000 0.000 0.076 0.924
#> GSM241538     3  0.5147      0.637 0.004 0.000 0.536 0.460
#> GSM241539     4  0.1940      0.570 0.000 0.000 0.076 0.924
#> GSM241540     3  0.6794      0.756 0.116 0.000 0.556 0.328
#> GSM241541     4  0.1489      0.621 0.000 0.004 0.044 0.952
#> GSM241542     3  0.5151      0.632 0.004 0.000 0.532 0.464
#> GSM241543     4  0.2845      0.687 0.000 0.028 0.076 0.896
#> GSM241544     3  0.6412      0.724 0.088 0.000 0.592 0.320
#> GSM241545     4  0.2845      0.687 0.000 0.028 0.076 0.896
#> GSM241546     3  0.6883      0.759 0.156 0.000 0.584 0.260
#> GSM241547     4  0.2845      0.687 0.000 0.028 0.076 0.896
#> GSM241548     3  0.5172      0.635 0.008 0.000 0.588 0.404

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2  0.0000      0.814 0.000 1.000 0.000 0.000 0.000
#> GSM241452     1  0.0162      0.862 0.996 0.004 0.000 0.000 0.000
#> GSM241453     2  0.0000      0.814 0.000 1.000 0.000 0.000 0.000
#> GSM241454     1  0.0162      0.862 0.996 0.004 0.000 0.000 0.000
#> GSM241455     2  0.0000      0.814 0.000 1.000 0.000 0.000 0.000
#> GSM241456     1  0.0162      0.862 0.996 0.004 0.000 0.000 0.000
#> GSM241457     2  0.4302     -0.174 0.000 0.520 0.000 0.000 0.480
#> GSM241458     1  0.5804      0.711 0.648 0.000 0.056 0.048 0.248
#> GSM241459     2  0.4302     -0.174 0.000 0.520 0.000 0.000 0.480
#> GSM241460     1  0.0671      0.854 0.980 0.000 0.000 0.016 0.004
#> GSM241461     2  0.4307     -0.227 0.000 0.504 0.000 0.000 0.496
#> GSM241462     1  0.5879      0.712 0.648 0.000 0.060 0.052 0.240
#> GSM241463     2  0.0000      0.814 0.000 1.000 0.000 0.000 0.000
#> GSM241464     1  0.0162      0.862 0.996 0.004 0.000 0.000 0.000
#> GSM241465     2  0.0162      0.810 0.000 0.996 0.000 0.000 0.004
#> GSM241466     1  0.0162      0.862 0.996 0.004 0.000 0.000 0.000
#> GSM241467     1  0.0162      0.862 0.996 0.004 0.000 0.000 0.000
#> GSM241468     2  0.0000      0.814 0.000 1.000 0.000 0.000 0.000
#> GSM241469     1  0.0162      0.862 0.996 0.004 0.000 0.000 0.000
#> GSM241470     2  0.0000      0.814 0.000 1.000 0.000 0.000 0.000
#> GSM241471     2  0.0000      0.814 0.000 1.000 0.000 0.000 0.000
#> GSM241472     1  0.0162      0.862 0.996 0.004 0.000 0.000 0.000
#> GSM241473     2  0.0000      0.814 0.000 1.000 0.000 0.000 0.000
#> GSM241474     1  0.0162      0.862 0.996 0.004 0.000 0.000 0.000
#> GSM241475     2  0.0000      0.814 0.000 1.000 0.000 0.000 0.000
#> GSM241476     1  0.0162      0.862 0.996 0.004 0.000 0.000 0.000
#> GSM241477     2  0.0000      0.814 0.000 1.000 0.000 0.000 0.000
#> GSM241478     2  0.0000      0.814 0.000 1.000 0.000 0.000 0.000
#> GSM241479     1  0.0162      0.862 0.996 0.004 0.000 0.000 0.000
#> GSM241480     1  0.0162      0.862 0.996 0.004 0.000 0.000 0.000
#> GSM241481     2  0.4302     -0.174 0.000 0.520 0.000 0.000 0.480
#> GSM241482     1  0.5599      0.719 0.660 0.000 0.056 0.036 0.248
#> GSM241483     2  0.4302     -0.174 0.000 0.520 0.000 0.000 0.480
#> GSM241484     1  0.5804      0.711 0.648 0.000 0.056 0.048 0.248
#> GSM241485     1  0.5180      0.750 0.724 0.000 0.044 0.052 0.180
#> GSM241486     2  0.4307     -0.227 0.000 0.504 0.000 0.000 0.496
#> GSM241487     2  0.0162      0.810 0.000 0.996 0.000 0.000 0.004
#> GSM241488     2  0.0000      0.814 0.000 1.000 0.000 0.000 0.000
#> GSM241489     1  0.0162      0.862 0.996 0.004 0.000 0.000 0.000
#> GSM241490     1  0.0162      0.862 0.996 0.004 0.000 0.000 0.000
#> GSM241491     2  0.0000      0.814 0.000 1.000 0.000 0.000 0.000
#> GSM241492     1  0.0162      0.862 0.996 0.004 0.000 0.000 0.000
#> GSM241493     2  0.0000      0.814 0.000 1.000 0.000 0.000 0.000
#> GSM241494     1  0.0162      0.862 0.996 0.004 0.000 0.000 0.000
#> GSM241495     2  0.0000      0.814 0.000 1.000 0.000 0.000 0.000
#> GSM241496     2  0.0000      0.814 0.000 1.000 0.000 0.000 0.000
#> GSM241497     1  0.0162      0.862 0.996 0.004 0.000 0.000 0.000
#> GSM241498     1  0.0162      0.862 0.996 0.004 0.000 0.000 0.000
#> GSM241499     1  0.6171      0.668 0.592 0.000 0.060 0.052 0.296
#> GSM241500     5  0.4818      0.277 0.000 0.460 0.020 0.000 0.520
#> GSM241501     5  0.4650      0.250 0.000 0.468 0.012 0.000 0.520
#> GSM241502     5  0.4738      0.265 0.000 0.464 0.016 0.000 0.520
#> GSM241503     1  0.6171      0.668 0.592 0.000 0.060 0.052 0.296
#> GSM241504     1  0.6171      0.668 0.592 0.000 0.060 0.052 0.296
#> GSM241505     1  0.6171      0.668 0.592 0.000 0.060 0.052 0.296
#> GSM241506     5  0.4818      0.277 0.000 0.460 0.020 0.000 0.520
#> GSM241507     1  0.6171      0.668 0.592 0.000 0.060 0.052 0.296
#> GSM241508     5  0.4818      0.277 0.000 0.460 0.020 0.000 0.520
#> GSM241509     5  0.4733      0.397 0.000 0.028 0.348 0.000 0.624
#> GSM241510     5  0.4733      0.397 0.000 0.028 0.348 0.000 0.624
#> GSM241511     4  0.6191      0.597 0.048 0.000 0.060 0.576 0.316
#> GSM241512     4  0.3428      0.812 0.052 0.000 0.008 0.848 0.092
#> GSM241513     3  0.2846      0.855 0.000 0.052 0.888 0.048 0.012
#> GSM241514     4  0.3673      0.829 0.040 0.000 0.060 0.848 0.052
#> GSM241515     3  0.2450      0.858 0.000 0.052 0.900 0.048 0.000
#> GSM241516     4  0.3388      0.830 0.056 0.000 0.040 0.864 0.040
#> GSM241517     3  0.2424      0.832 0.000 0.132 0.868 0.000 0.000
#> GSM241518     4  0.3567      0.815 0.004 0.000 0.112 0.832 0.052
#> GSM241519     3  0.2424      0.832 0.000 0.132 0.868 0.000 0.000
#> GSM241520     4  0.3640      0.817 0.008 0.000 0.108 0.832 0.052
#> GSM241521     3  0.2813      0.793 0.000 0.168 0.832 0.000 0.000
#> GSM241522     1  0.4644      0.461 0.680 0.000 0.000 0.280 0.040
#> GSM241523     3  0.3101      0.844 0.000 0.100 0.864 0.024 0.012
#> GSM241524     4  0.3714      0.824 0.024 0.000 0.084 0.840 0.052
#> GSM241525     4  0.4086      0.794 0.080 0.000 0.012 0.808 0.100
#> GSM241526     3  0.5218      0.802 0.000 0.072 0.736 0.048 0.144
#> GSM241527     4  0.2925      0.822 0.016 0.000 0.036 0.884 0.064
#> GSM241528     3  0.5325      0.790 0.000 0.112 0.720 0.028 0.140
#> GSM241529     3  0.5262      0.799 0.000 0.080 0.732 0.044 0.144
#> GSM241530     4  0.3576      0.808 0.048 0.000 0.012 0.840 0.100
#> GSM241531     4  0.5979      0.604 0.032 0.000 0.064 0.588 0.316
#> GSM241532     5  0.4607      0.340 0.000 0.004 0.368 0.012 0.616
#> GSM241533     5  0.5024      0.251 0.000 0.004 0.396 0.028 0.572
#> GSM241534     5  0.4644      0.324 0.000 0.004 0.380 0.012 0.604
#> GSM241535     4  0.3055      0.812 0.000 0.000 0.064 0.864 0.072
#> GSM241536     4  0.6152      0.601 0.044 0.000 0.064 0.584 0.308
#> GSM241537     3  0.4221      0.793 0.000 0.000 0.780 0.108 0.112
#> GSM241538     4  0.2450      0.820 0.000 0.000 0.076 0.896 0.028
#> GSM241539     3  0.4221      0.793 0.000 0.000 0.780 0.108 0.112
#> GSM241540     4  0.2590      0.825 0.012 0.000 0.060 0.900 0.028
#> GSM241541     3  0.4221      0.793 0.000 0.000 0.780 0.108 0.112
#> GSM241542     4  0.1956      0.821 0.000 0.000 0.076 0.916 0.008
#> GSM241543     3  0.2766      0.851 0.000 0.040 0.892 0.056 0.012
#> GSM241544     4  0.3536      0.821 0.008 0.000 0.100 0.840 0.052
#> GSM241545     3  0.2766      0.851 0.000 0.040 0.892 0.056 0.012
#> GSM241546     4  0.3597      0.826 0.024 0.000 0.076 0.848 0.052
#> GSM241547     3  0.2370      0.855 0.000 0.040 0.904 0.056 0.000
#> GSM241548     4  0.3459      0.813 0.000 0.000 0.116 0.832 0.052

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM241451     2  0.0000    0.99607 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241452     1  0.0000    0.92387 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.0000    0.99607 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241454     1  0.0000    0.92387 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0363    0.98887 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM241456     1  0.0000    0.92387 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241457     5  0.4410    0.62233 0.000 0.412 0.000 0.000 0.560 0.028
#> GSM241458     6  0.3979    0.62292 0.456 0.000 0.000 0.000 0.004 0.540
#> GSM241459     5  0.4410    0.62233 0.000 0.412 0.000 0.000 0.560 0.028
#> GSM241460     1  0.0405    0.91838 0.988 0.000 0.004 0.000 0.008 0.000
#> GSM241461     5  0.4300    0.67439 0.000 0.364 0.000 0.000 0.608 0.028
#> GSM241462     6  0.4250    0.61722 0.456 0.000 0.000 0.000 0.016 0.528
#> GSM241463     2  0.0363    0.98887 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM241464     1  0.0665    0.91008 0.980 0.000 0.004 0.000 0.008 0.008
#> GSM241465     2  0.0000    0.99607 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241466     1  0.0000    0.92387 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0291    0.92089 0.992 0.000 0.004 0.000 0.004 0.000
#> GSM241468     2  0.0146    0.99410 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM241469     1  0.0000    0.92387 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0000    0.99607 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241471     2  0.0000    0.99607 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241472     1  0.0291    0.92089 0.992 0.000 0.004 0.000 0.004 0.000
#> GSM241473     2  0.0000    0.99607 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241474     1  0.0291    0.92089 0.992 0.000 0.004 0.000 0.004 0.000
#> GSM241475     2  0.0000    0.99607 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241476     1  0.0000    0.92387 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.0000    0.99607 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241478     2  0.0363    0.98887 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM241479     1  0.0000    0.92387 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000    0.92387 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241481     5  0.4410    0.62233 0.000 0.412 0.000 0.000 0.560 0.028
#> GSM241482     6  0.3979    0.62292 0.456 0.000 0.000 0.000 0.004 0.540
#> GSM241483     5  0.4403    0.62763 0.000 0.408 0.000 0.000 0.564 0.028
#> GSM241484     6  0.3979    0.62292 0.456 0.000 0.000 0.000 0.004 0.540
#> GSM241485     1  0.4199   -0.37415 0.568 0.000 0.000 0.000 0.016 0.416
#> GSM241486     5  0.4300    0.67439 0.000 0.364 0.000 0.000 0.608 0.028
#> GSM241487     2  0.0000    0.99607 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241488     2  0.0146    0.99410 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM241489     1  0.0291    0.92089 0.992 0.000 0.004 0.000 0.004 0.000
#> GSM241490     1  0.0000    0.92387 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241491     2  0.0363    0.98887 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM241492     1  0.0665    0.91008 0.980 0.000 0.004 0.000 0.008 0.008
#> GSM241493     2  0.0000    0.99607 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241494     1  0.0000    0.92387 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0000    0.99607 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241496     2  0.0146    0.99410 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM241497     1  0.0000    0.92387 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000    0.92387 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241499     6  0.3742    0.73219 0.348 0.000 0.000 0.004 0.000 0.648
#> GSM241500     5  0.3816    0.71755 0.000 0.296 0.016 0.000 0.688 0.000
#> GSM241501     5  0.3672    0.71523 0.000 0.304 0.008 0.000 0.688 0.000
#> GSM241502     5  0.3672    0.71523 0.000 0.304 0.008 0.000 0.688 0.000
#> GSM241503     6  0.3833    0.73339 0.344 0.000 0.000 0.008 0.000 0.648
#> GSM241504     6  0.3969    0.73230 0.344 0.000 0.000 0.008 0.004 0.644
#> GSM241505     6  0.3833    0.73339 0.344 0.000 0.000 0.008 0.000 0.648
#> GSM241506     5  0.4060    0.71621 0.000 0.296 0.016 0.000 0.680 0.008
#> GSM241507     6  0.3742    0.73219 0.348 0.000 0.000 0.004 0.000 0.648
#> GSM241508     5  0.3816    0.71755 0.000 0.296 0.016 0.000 0.688 0.000
#> GSM241509     5  0.3488    0.43644 0.000 0.000 0.216 0.004 0.764 0.016
#> GSM241510     5  0.3488    0.43644 0.000 0.000 0.216 0.004 0.764 0.016
#> GSM241511     6  0.3411    0.29510 0.008 0.000 0.000 0.232 0.004 0.756
#> GSM241512     4  0.3806    0.72629 0.008 0.000 0.004 0.736 0.012 0.240
#> GSM241513     3  0.1148    0.84346 0.000 0.016 0.960 0.004 0.020 0.000
#> GSM241514     4  0.3561    0.79327 0.016 0.000 0.020 0.808 0.148 0.008
#> GSM241515     3  0.0748    0.84668 0.000 0.016 0.976 0.004 0.004 0.000
#> GSM241516     4  0.3322    0.79486 0.024 0.000 0.012 0.836 0.116 0.012
#> GSM241517     3  0.0935    0.84381 0.000 0.032 0.964 0.000 0.004 0.000
#> GSM241518     4  0.4308    0.77548 0.000 0.000 0.088 0.740 0.164 0.008
#> GSM241519     3  0.0935    0.84381 0.000 0.032 0.964 0.000 0.004 0.000
#> GSM241520     4  0.4154    0.77415 0.000 0.000 0.096 0.740 0.164 0.000
#> GSM241521     3  0.1411    0.82299 0.000 0.060 0.936 0.000 0.004 0.000
#> GSM241522     1  0.5432    0.03540 0.500 0.000 0.000 0.376 0.124 0.000
#> GSM241523     3  0.1176    0.84128 0.000 0.020 0.956 0.000 0.024 0.000
#> GSM241524     4  0.3691    0.79145 0.004 0.000 0.060 0.788 0.148 0.000
#> GSM241525     4  0.3861    0.73233 0.028 0.000 0.000 0.744 0.008 0.220
#> GSM241526     3  0.5417    0.73238 0.000 0.004 0.656 0.024 0.168 0.148
#> GSM241527     4  0.3243    0.74546 0.000 0.000 0.004 0.780 0.008 0.208
#> GSM241528     3  0.5540    0.73142 0.000 0.020 0.652 0.012 0.168 0.148
#> GSM241529     3  0.5417    0.73238 0.000 0.004 0.656 0.024 0.168 0.148
#> GSM241530     4  0.3578    0.73849 0.008 0.000 0.004 0.760 0.008 0.220
#> GSM241531     6  0.4090   -0.00768 0.004 0.000 0.000 0.384 0.008 0.604
#> GSM241532     5  0.5477    0.19221 0.000 0.000 0.264 0.004 0.576 0.156
#> GSM241533     5  0.5686    0.16630 0.000 0.000 0.268 0.012 0.564 0.156
#> GSM241534     5  0.5477    0.19221 0.000 0.000 0.264 0.004 0.576 0.156
#> GSM241535     4  0.3806    0.73598 0.000 0.000 0.008 0.752 0.028 0.212
#> GSM241536     6  0.3704    0.28866 0.008 0.000 0.000 0.232 0.016 0.744
#> GSM241537     3  0.5386    0.75633 0.000 0.000 0.664 0.044 0.116 0.176
#> GSM241538     4  0.3178    0.77123 0.000 0.000 0.012 0.832 0.028 0.128
#> GSM241539     3  0.5386    0.75633 0.000 0.000 0.664 0.044 0.116 0.176
#> GSM241540     4  0.2871    0.77619 0.000 0.000 0.008 0.852 0.024 0.116
#> GSM241541     3  0.5203    0.76411 0.000 0.000 0.684 0.044 0.104 0.168
#> GSM241542     4  0.3150    0.77660 0.000 0.000 0.016 0.844 0.036 0.104
#> GSM241543     3  0.1490    0.83861 0.000 0.004 0.948 0.016 0.024 0.008
#> GSM241544     4  0.3608    0.79167 0.000 0.000 0.064 0.788 0.148 0.000
#> GSM241545     3  0.1490    0.83861 0.000 0.004 0.948 0.016 0.024 0.008
#> GSM241546     4  0.3447    0.79520 0.004 0.000 0.044 0.804 0.148 0.000
#> GSM241547     3  0.0767    0.84610 0.000 0.004 0.976 0.012 0.000 0.008
#> GSM241548     4  0.4120    0.77525 0.000 0.000 0.096 0.744 0.160 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n  dose(p)  time(p) k
#> MAD:kmeans 98 1.00e+00 1.00e+00 2
#> MAD:kmeans 81 5.94e-08 2.80e-02 3
#> MAD:kmeans 94 4.28e-11 6.68e-01 4
#> MAD:kmeans 81 3.18e-11 1.52e-01 5
#> MAD:kmeans 88 1.56e-11 6.03e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.5056 0.495   0.495
#> 3 3 1.000           0.953       0.981         0.3090 0.787   0.593
#> 4 4 0.953           0.965       0.984         0.1318 0.877   0.657
#> 5 5 0.925           0.949       0.955         0.0597 0.931   0.739
#> 6 6 0.955           0.880       0.932         0.0522 0.932   0.686

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5

There is also optional best \(k\) = 2 3 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM241451     2       0          1  0  1
#> GSM241452     1       0          1  1  0
#> GSM241453     2       0          1  0  1
#> GSM241454     1       0          1  1  0
#> GSM241455     2       0          1  0  1
#> GSM241456     1       0          1  1  0
#> GSM241457     2       0          1  0  1
#> GSM241458     1       0          1  1  0
#> GSM241459     2       0          1  0  1
#> GSM241460     1       0          1  1  0
#> GSM241461     2       0          1  0  1
#> GSM241462     1       0          1  1  0
#> GSM241463     2       0          1  0  1
#> GSM241464     1       0          1  1  0
#> GSM241465     2       0          1  0  1
#> GSM241466     1       0          1  1  0
#> GSM241467     1       0          1  1  0
#> GSM241468     2       0          1  0  1
#> GSM241469     1       0          1  1  0
#> GSM241470     2       0          1  0  1
#> GSM241471     2       0          1  0  1
#> GSM241472     1       0          1  1  0
#> GSM241473     2       0          1  0  1
#> GSM241474     1       0          1  1  0
#> GSM241475     2       0          1  0  1
#> GSM241476     1       0          1  1  0
#> GSM241477     2       0          1  0  1
#> GSM241478     2       0          1  0  1
#> GSM241479     1       0          1  1  0
#> GSM241480     1       0          1  1  0
#> GSM241481     2       0          1  0  1
#> GSM241482     1       0          1  1  0
#> GSM241483     2       0          1  0  1
#> GSM241484     1       0          1  1  0
#> GSM241485     1       0          1  1  0
#> GSM241486     2       0          1  0  1
#> GSM241487     2       0          1  0  1
#> GSM241488     2       0          1  0  1
#> GSM241489     1       0          1  1  0
#> GSM241490     1       0          1  1  0
#> GSM241491     2       0          1  0  1
#> GSM241492     1       0          1  1  0
#> GSM241493     2       0          1  0  1
#> GSM241494     1       0          1  1  0
#> GSM241495     2       0          1  0  1
#> GSM241496     2       0          1  0  1
#> GSM241497     1       0          1  1  0
#> GSM241498     1       0          1  1  0
#> GSM241499     1       0          1  1  0
#> GSM241500     2       0          1  0  1
#> GSM241501     2       0          1  0  1
#> GSM241502     2       0          1  0  1
#> GSM241503     1       0          1  1  0
#> GSM241504     1       0          1  1  0
#> GSM241505     1       0          1  1  0
#> GSM241506     2       0          1  0  1
#> GSM241507     1       0          1  1  0
#> GSM241508     2       0          1  0  1
#> GSM241509     2       0          1  0  1
#> GSM241510     2       0          1  0  1
#> GSM241511     1       0          1  1  0
#> GSM241512     1       0          1  1  0
#> GSM241513     2       0          1  0  1
#> GSM241514     1       0          1  1  0
#> GSM241515     2       0          1  0  1
#> GSM241516     1       0          1  1  0
#> GSM241517     2       0          1  0  1
#> GSM241518     1       0          1  1  0
#> GSM241519     2       0          1  0  1
#> GSM241520     1       0          1  1  0
#> GSM241521     2       0          1  0  1
#> GSM241522     1       0          1  1  0
#> GSM241523     2       0          1  0  1
#> GSM241524     1       0          1  1  0
#> GSM241525     1       0          1  1  0
#> GSM241526     2       0          1  0  1
#> GSM241527     1       0          1  1  0
#> GSM241528     2       0          1  0  1
#> GSM241529     2       0          1  0  1
#> GSM241530     1       0          1  1  0
#> GSM241531     1       0          1  1  0
#> GSM241532     2       0          1  0  1
#> GSM241533     2       0          1  0  1
#> GSM241534     2       0          1  0  1
#> GSM241535     1       0          1  1  0
#> GSM241536     1       0          1  1  0
#> GSM241537     2       0          1  0  1
#> GSM241538     1       0          1  1  0
#> GSM241539     2       0          1  0  1
#> GSM241540     1       0          1  1  0
#> GSM241541     2       0          1  0  1
#> GSM241542     1       0          1  1  0
#> GSM241543     2       0          1  0  1
#> GSM241544     1       0          1  1  0
#> GSM241545     2       0          1  0  1
#> GSM241546     1       0          1  1  0
#> GSM241547     2       0          1  0  1
#> GSM241548     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241452     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241453     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241454     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241455     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241456     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241457     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241458     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241459     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241460     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241461     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241462     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241463     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241464     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241465     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241466     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241467     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241468     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241469     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241470     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241471     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241472     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241473     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241474     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241475     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241476     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241477     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241478     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241479     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241480     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241481     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241482     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241483     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241484     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241485     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241486     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241487     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241488     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241489     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241490     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241491     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241492     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241493     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241494     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241495     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241496     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241497     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241498     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241499     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241500     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241501     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241502     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241503     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241504     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241505     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241506     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241507     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241508     2  0.0000     1.0000 0.000 1.000 0.000
#> GSM241509     3  0.2796     0.8957 0.000 0.092 0.908
#> GSM241510     3  0.0747     0.9664 0.000 0.016 0.984
#> GSM241511     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241512     1  0.0747     0.9639 0.984 0.000 0.016
#> GSM241513     3  0.0000     0.9685 0.000 0.000 1.000
#> GSM241514     1  0.0747     0.9639 0.984 0.000 0.016
#> GSM241515     3  0.0000     0.9685 0.000 0.000 1.000
#> GSM241516     1  0.0747     0.9639 0.984 0.000 0.016
#> GSM241517     3  0.0747     0.9664 0.000 0.016 0.984
#> GSM241518     3  0.0000     0.9685 0.000 0.000 1.000
#> GSM241519     3  0.0747     0.9664 0.000 0.016 0.984
#> GSM241520     3  0.2537     0.8916 0.080 0.000 0.920
#> GSM241521     3  0.6274     0.1682 0.000 0.456 0.544
#> GSM241522     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241523     3  0.0747     0.9664 0.000 0.016 0.984
#> GSM241524     1  0.0747     0.9639 0.984 0.000 0.016
#> GSM241525     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241526     3  0.0747     0.9664 0.000 0.016 0.984
#> GSM241527     1  0.6267     0.2016 0.548 0.000 0.452
#> GSM241528     3  0.0747     0.9664 0.000 0.016 0.984
#> GSM241529     3  0.0747     0.9664 0.000 0.016 0.984
#> GSM241530     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241531     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241532     3  0.0747     0.9664 0.000 0.016 0.984
#> GSM241533     3  0.0747     0.9664 0.000 0.016 0.984
#> GSM241534     3  0.0747     0.9664 0.000 0.016 0.984
#> GSM241535     3  0.0000     0.9685 0.000 0.000 1.000
#> GSM241536     1  0.0000     0.9748 1.000 0.000 0.000
#> GSM241537     3  0.0000     0.9685 0.000 0.000 1.000
#> GSM241538     3  0.0000     0.9685 0.000 0.000 1.000
#> GSM241539     3  0.0000     0.9685 0.000 0.000 1.000
#> GSM241540     1  0.6305     0.0949 0.516 0.000 0.484
#> GSM241541     3  0.0000     0.9685 0.000 0.000 1.000
#> GSM241542     3  0.0000     0.9685 0.000 0.000 1.000
#> GSM241543     3  0.0000     0.9685 0.000 0.000 1.000
#> GSM241544     3  0.0237     0.9662 0.004 0.000 0.996
#> GSM241545     3  0.0000     0.9685 0.000 0.000 1.000
#> GSM241546     1  0.1031     0.9573 0.976 0.000 0.024
#> GSM241547     3  0.0000     0.9685 0.000 0.000 1.000
#> GSM241548     3  0.0000     0.9685 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.0000      0.962 0.000 1.000 0.000 0.000
#> GSM241452     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241453     2  0.0000      0.962 0.000 1.000 0.000 0.000
#> GSM241454     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241455     2  0.0000      0.962 0.000 1.000 0.000 0.000
#> GSM241456     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241457     2  0.0188      0.960 0.000 0.996 0.000 0.004
#> GSM241458     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241459     2  0.0188      0.960 0.000 0.996 0.000 0.004
#> GSM241460     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241461     2  0.0188      0.960 0.000 0.996 0.000 0.004
#> GSM241462     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241463     2  0.0000      0.962 0.000 1.000 0.000 0.000
#> GSM241464     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241465     2  0.0000      0.962 0.000 1.000 0.000 0.000
#> GSM241466     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      0.962 0.000 1.000 0.000 0.000
#> GSM241469     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241470     2  0.0000      0.962 0.000 1.000 0.000 0.000
#> GSM241471     2  0.0000      0.962 0.000 1.000 0.000 0.000
#> GSM241472     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241473     2  0.0000      0.962 0.000 1.000 0.000 0.000
#> GSM241474     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241475     2  0.0000      0.962 0.000 1.000 0.000 0.000
#> GSM241476     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      0.962 0.000 1.000 0.000 0.000
#> GSM241478     2  0.0000      0.962 0.000 1.000 0.000 0.000
#> GSM241479     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241481     2  0.0188      0.960 0.000 0.996 0.000 0.004
#> GSM241482     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241483     2  0.0188      0.960 0.000 0.996 0.000 0.004
#> GSM241484     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241485     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241486     2  0.0188      0.960 0.000 0.996 0.000 0.004
#> GSM241487     2  0.0000      0.962 0.000 1.000 0.000 0.000
#> GSM241488     2  0.0000      0.962 0.000 1.000 0.000 0.000
#> GSM241489     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241491     2  0.0000      0.962 0.000 1.000 0.000 0.000
#> GSM241492     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241493     2  0.0000      0.962 0.000 1.000 0.000 0.000
#> GSM241494     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241495     2  0.0000      0.962 0.000 1.000 0.000 0.000
#> GSM241496     2  0.0000      0.962 0.000 1.000 0.000 0.000
#> GSM241497     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241499     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241500     2  0.3649      0.783 0.000 0.796 0.000 0.204
#> GSM241501     2  0.3649      0.783 0.000 0.796 0.000 0.204
#> GSM241502     2  0.3649      0.783 0.000 0.796 0.000 0.204
#> GSM241503     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241504     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241505     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241506     2  0.3649      0.783 0.000 0.796 0.000 0.204
#> GSM241507     1  0.0000      0.984 1.000 0.000 0.000 0.000
#> GSM241508     2  0.3649      0.783 0.000 0.796 0.000 0.204
#> GSM241509     4  0.0000      0.997 0.000 0.000 0.000 1.000
#> GSM241510     4  0.0000      0.997 0.000 0.000 0.000 1.000
#> GSM241511     3  0.0188      0.996 0.004 0.000 0.996 0.000
#> GSM241512     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM241513     4  0.0188      0.997 0.000 0.000 0.004 0.996
#> GSM241514     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM241515     4  0.0188      0.997 0.000 0.000 0.004 0.996
#> GSM241516     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM241517     4  0.0188      0.996 0.000 0.004 0.000 0.996
#> GSM241518     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM241519     4  0.0188      0.996 0.000 0.004 0.000 0.996
#> GSM241520     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM241521     4  0.0188      0.996 0.000 0.004 0.000 0.996
#> GSM241522     1  0.4981      0.132 0.536 0.000 0.464 0.000
#> GSM241523     4  0.0188      0.996 0.000 0.004 0.000 0.996
#> GSM241524     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM241525     3  0.0188      0.996 0.004 0.000 0.996 0.000
#> GSM241526     4  0.0000      0.997 0.000 0.000 0.000 1.000
#> GSM241527     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM241528     4  0.0000      0.997 0.000 0.000 0.000 1.000
#> GSM241529     4  0.0000      0.997 0.000 0.000 0.000 1.000
#> GSM241530     3  0.0188      0.996 0.004 0.000 0.996 0.000
#> GSM241531     3  0.0188      0.996 0.004 0.000 0.996 0.000
#> GSM241532     4  0.0000      0.997 0.000 0.000 0.000 1.000
#> GSM241533     4  0.0000      0.997 0.000 0.000 0.000 1.000
#> GSM241534     4  0.0000      0.997 0.000 0.000 0.000 1.000
#> GSM241535     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM241536     3  0.0188      0.996 0.004 0.000 0.996 0.000
#> GSM241537     4  0.0188      0.997 0.000 0.000 0.004 0.996
#> GSM241538     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM241539     4  0.0188      0.997 0.000 0.000 0.004 0.996
#> GSM241540     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM241541     4  0.0188      0.997 0.000 0.000 0.004 0.996
#> GSM241542     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM241543     4  0.0188      0.997 0.000 0.000 0.004 0.996
#> GSM241544     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM241545     4  0.0188      0.997 0.000 0.000 0.004 0.996
#> GSM241546     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM241547     4  0.0188      0.997 0.000 0.000 0.004 0.996
#> GSM241548     3  0.0000      0.999 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM241452     1   0.000     0.9516 1.000 0.000 0.000 0.000 0.000
#> GSM241453     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM241454     1   0.000     0.9516 1.000 0.000 0.000 0.000 0.000
#> GSM241455     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM241456     1   0.000     0.9516 1.000 0.000 0.000 0.000 0.000
#> GSM241457     5   0.252     0.9099 0.000 0.140 0.000 0.000 0.860
#> GSM241458     1   0.154     0.9344 0.932 0.000 0.000 0.000 0.068
#> GSM241459     5   0.252     0.9099 0.000 0.140 0.000 0.000 0.860
#> GSM241460     1   0.154     0.9344 0.932 0.000 0.000 0.000 0.068
#> GSM241461     5   0.242     0.9142 0.000 0.132 0.000 0.000 0.868
#> GSM241462     1   0.154     0.9344 0.932 0.000 0.000 0.000 0.068
#> GSM241463     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM241464     1   0.000     0.9516 1.000 0.000 0.000 0.000 0.000
#> GSM241465     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM241466     1   0.000     0.9516 1.000 0.000 0.000 0.000 0.000
#> GSM241467     1   0.000     0.9516 1.000 0.000 0.000 0.000 0.000
#> GSM241468     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM241469     1   0.000     0.9516 1.000 0.000 0.000 0.000 0.000
#> GSM241470     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM241471     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM241472     1   0.000     0.9516 1.000 0.000 0.000 0.000 0.000
#> GSM241473     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM241474     1   0.000     0.9516 1.000 0.000 0.000 0.000 0.000
#> GSM241475     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM241476     1   0.000     0.9516 1.000 0.000 0.000 0.000 0.000
#> GSM241477     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM241478     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM241479     1   0.000     0.9516 1.000 0.000 0.000 0.000 0.000
#> GSM241480     1   0.000     0.9516 1.000 0.000 0.000 0.000 0.000
#> GSM241481     5   0.252     0.9099 0.000 0.140 0.000 0.000 0.860
#> GSM241482     1   0.154     0.9344 0.932 0.000 0.000 0.000 0.068
#> GSM241483     5   0.247     0.9123 0.000 0.136 0.000 0.000 0.864
#> GSM241484     1   0.154     0.9344 0.932 0.000 0.000 0.000 0.068
#> GSM241485     1   0.154     0.9344 0.932 0.000 0.000 0.000 0.068
#> GSM241486     5   0.242     0.9142 0.000 0.132 0.000 0.000 0.868
#> GSM241487     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM241488     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM241489     1   0.000     0.9516 1.000 0.000 0.000 0.000 0.000
#> GSM241490     1   0.000     0.9516 1.000 0.000 0.000 0.000 0.000
#> GSM241491     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM241492     1   0.000     0.9516 1.000 0.000 0.000 0.000 0.000
#> GSM241493     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM241494     1   0.000     0.9516 1.000 0.000 0.000 0.000 0.000
#> GSM241495     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM241496     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM241497     1   0.000     0.9516 1.000 0.000 0.000 0.000 0.000
#> GSM241498     1   0.000     0.9516 1.000 0.000 0.000 0.000 0.000
#> GSM241499     1   0.242     0.9014 0.868 0.000 0.000 0.000 0.132
#> GSM241500     5   0.298     0.9334 0.000 0.076 0.056 0.000 0.868
#> GSM241501     5   0.298     0.9334 0.000 0.076 0.056 0.000 0.868
#> GSM241502     5   0.298     0.9334 0.000 0.076 0.056 0.000 0.868
#> GSM241503     1   0.242     0.9014 0.868 0.000 0.000 0.000 0.132
#> GSM241504     1   0.242     0.9014 0.868 0.000 0.000 0.000 0.132
#> GSM241505     1   0.242     0.9014 0.868 0.000 0.000 0.000 0.132
#> GSM241506     5   0.298     0.9334 0.000 0.076 0.056 0.000 0.868
#> GSM241507     1   0.242     0.9014 0.868 0.000 0.000 0.000 0.132
#> GSM241508     5   0.298     0.9334 0.000 0.076 0.056 0.000 0.868
#> GSM241509     5   0.242     0.8892 0.000 0.000 0.132 0.000 0.868
#> GSM241510     5   0.242     0.8892 0.000 0.000 0.132 0.000 0.868
#> GSM241511     4   0.242     0.9142 0.000 0.000 0.000 0.868 0.132
#> GSM241512     4   0.154     0.9525 0.000 0.000 0.000 0.932 0.068
#> GSM241513     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM241514     4   0.000     0.9664 0.000 0.000 0.000 1.000 0.000
#> GSM241515     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM241516     4   0.000     0.9664 0.000 0.000 0.000 1.000 0.000
#> GSM241517     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM241518     4   0.000     0.9664 0.000 0.000 0.000 1.000 0.000
#> GSM241519     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM241520     4   0.000     0.9664 0.000 0.000 0.000 1.000 0.000
#> GSM241521     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM241522     1   0.431     0.0586 0.508 0.000 0.000 0.492 0.000
#> GSM241523     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM241524     4   0.000     0.9664 0.000 0.000 0.000 1.000 0.000
#> GSM241525     4   0.148     0.9541 0.000 0.000 0.000 0.936 0.064
#> GSM241526     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM241527     4   0.148     0.9541 0.000 0.000 0.000 0.936 0.064
#> GSM241528     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM241529     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM241530     4   0.148     0.9541 0.000 0.000 0.000 0.936 0.064
#> GSM241531     4   0.242     0.9142 0.000 0.000 0.000 0.868 0.132
#> GSM241532     5   0.242     0.8892 0.000 0.000 0.132 0.000 0.868
#> GSM241533     5   0.242     0.8892 0.000 0.000 0.132 0.000 0.868
#> GSM241534     5   0.242     0.8892 0.000 0.000 0.132 0.000 0.868
#> GSM241535     4   0.148     0.9541 0.000 0.000 0.000 0.936 0.064
#> GSM241536     4   0.242     0.9142 0.000 0.000 0.000 0.868 0.132
#> GSM241537     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM241538     4   0.000     0.9664 0.000 0.000 0.000 1.000 0.000
#> GSM241539     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM241540     4   0.000     0.9664 0.000 0.000 0.000 1.000 0.000
#> GSM241541     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM241542     4   0.000     0.9664 0.000 0.000 0.000 1.000 0.000
#> GSM241543     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM241544     4   0.000     0.9664 0.000 0.000 0.000 1.000 0.000
#> GSM241545     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM241546     4   0.000     0.9664 0.000 0.000 0.000 1.000 0.000
#> GSM241547     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM241548     4   0.000     0.9664 0.000 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM241451     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241452     1  0.3756      0.999 0.600 0.000 0.000 0.000 0.000 0.400
#> GSM241453     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241454     1  0.3756      0.999 0.600 0.000 0.000 0.000 0.000 0.400
#> GSM241455     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241456     1  0.3756      0.999 0.600 0.000 0.000 0.000 0.000 0.400
#> GSM241457     5  0.1327      0.945 0.000 0.064 0.000 0.000 0.936 0.000
#> GSM241458     6  0.0547      0.529 0.020 0.000 0.000 0.000 0.000 0.980
#> GSM241459     5  0.1327      0.945 0.000 0.064 0.000 0.000 0.936 0.000
#> GSM241460     6  0.2527      0.107 0.168 0.000 0.000 0.000 0.000 0.832
#> GSM241461     5  0.0937      0.958 0.000 0.040 0.000 0.000 0.960 0.000
#> GSM241462     6  0.0000      0.559 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241463     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241464     1  0.3747      0.995 0.604 0.000 0.000 0.000 0.000 0.396
#> GSM241465     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241466     1  0.3756      0.999 0.600 0.000 0.000 0.000 0.000 0.400
#> GSM241467     1  0.3756      0.999 0.600 0.000 0.000 0.000 0.000 0.400
#> GSM241468     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241469     1  0.3756      0.999 0.600 0.000 0.000 0.000 0.000 0.400
#> GSM241470     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241471     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241472     1  0.3756      0.999 0.600 0.000 0.000 0.000 0.000 0.400
#> GSM241473     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241474     1  0.3756      0.999 0.600 0.000 0.000 0.000 0.000 0.400
#> GSM241475     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241476     1  0.3756      0.999 0.600 0.000 0.000 0.000 0.000 0.400
#> GSM241477     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241478     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241479     1  0.3756      0.999 0.600 0.000 0.000 0.000 0.000 0.400
#> GSM241480     1  0.3756      0.999 0.600 0.000 0.000 0.000 0.000 0.400
#> GSM241481     5  0.1327      0.945 0.000 0.064 0.000 0.000 0.936 0.000
#> GSM241482     6  0.0790      0.505 0.032 0.000 0.000 0.000 0.000 0.968
#> GSM241483     5  0.1141      0.952 0.000 0.052 0.000 0.000 0.948 0.000
#> GSM241484     6  0.0000      0.559 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241485     6  0.0260      0.549 0.008 0.000 0.000 0.000 0.000 0.992
#> GSM241486     5  0.0937      0.958 0.000 0.040 0.000 0.000 0.960 0.000
#> GSM241487     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241488     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241489     1  0.3756      0.999 0.600 0.000 0.000 0.000 0.000 0.400
#> GSM241490     1  0.3756      0.999 0.600 0.000 0.000 0.000 0.000 0.400
#> GSM241491     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241492     1  0.3747      0.995 0.604 0.000 0.000 0.000 0.000 0.396
#> GSM241493     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241494     1  0.3756      0.999 0.600 0.000 0.000 0.000 0.000 0.400
#> GSM241495     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241496     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241497     1  0.3756      0.999 0.600 0.000 0.000 0.000 0.000 0.400
#> GSM241498     1  0.3756      0.999 0.600 0.000 0.000 0.000 0.000 0.400
#> GSM241499     6  0.3607      0.717 0.348 0.000 0.000 0.000 0.000 0.652
#> GSM241500     5  0.0405      0.965 0.000 0.004 0.008 0.000 0.988 0.000
#> GSM241501     5  0.0520      0.965 0.000 0.008 0.008 0.000 0.984 0.000
#> GSM241502     5  0.0520      0.965 0.000 0.008 0.008 0.000 0.984 0.000
#> GSM241503     6  0.3847      0.714 0.348 0.000 0.000 0.008 0.000 0.644
#> GSM241504     6  0.3861      0.712 0.352 0.000 0.000 0.008 0.000 0.640
#> GSM241505     6  0.3861      0.712 0.352 0.000 0.000 0.008 0.000 0.640
#> GSM241506     5  0.0551      0.964 0.004 0.004 0.008 0.000 0.984 0.000
#> GSM241507     6  0.3607      0.717 0.348 0.000 0.000 0.000 0.000 0.652
#> GSM241508     5  0.0405      0.965 0.000 0.004 0.008 0.000 0.988 0.000
#> GSM241509     5  0.0508      0.962 0.004 0.000 0.012 0.000 0.984 0.000
#> GSM241510     5  0.0508      0.962 0.004 0.000 0.012 0.000 0.984 0.000
#> GSM241511     6  0.4530      0.669 0.356 0.000 0.000 0.044 0.000 0.600
#> GSM241512     4  0.6094      0.286 0.356 0.000 0.000 0.448 0.012 0.184
#> GSM241513     3  0.0000      0.979 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241514     4  0.0146      0.829 0.000 0.000 0.004 0.996 0.000 0.000
#> GSM241515     3  0.0146      0.978 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM241516     4  0.0405      0.829 0.000 0.000 0.000 0.988 0.008 0.004
#> GSM241517     3  0.0000      0.979 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241518     4  0.0603      0.824 0.004 0.000 0.016 0.980 0.000 0.000
#> GSM241519     3  0.0000      0.979 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241520     4  0.0508      0.826 0.004 0.000 0.012 0.984 0.000 0.000
#> GSM241521     3  0.0000      0.979 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241522     4  0.3743      0.543 0.252 0.000 0.000 0.724 0.000 0.024
#> GSM241523     3  0.0000      0.979 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241524     4  0.0146      0.829 0.000 0.000 0.004 0.996 0.000 0.000
#> GSM241525     4  0.5171      0.521 0.356 0.000 0.000 0.564 0.012 0.068
#> GSM241526     3  0.1864      0.954 0.040 0.000 0.924 0.004 0.032 0.000
#> GSM241527     4  0.4299      0.581 0.356 0.000 0.000 0.620 0.012 0.012
#> GSM241528     3  0.1864      0.954 0.040 0.000 0.924 0.004 0.032 0.000
#> GSM241529     3  0.1864      0.954 0.040 0.000 0.924 0.004 0.032 0.000
#> GSM241530     4  0.5171      0.521 0.356 0.000 0.000 0.564 0.012 0.068
#> GSM241531     6  0.4858      0.660 0.356 0.000 0.000 0.044 0.012 0.588
#> GSM241532     5  0.1564      0.941 0.040 0.000 0.024 0.000 0.936 0.000
#> GSM241533     5  0.1788      0.936 0.040 0.000 0.028 0.004 0.928 0.000
#> GSM241534     5  0.1708      0.939 0.040 0.000 0.024 0.004 0.932 0.000
#> GSM241535     4  0.5134      0.522 0.360 0.000 0.000 0.564 0.012 0.064
#> GSM241536     6  0.4530      0.669 0.356 0.000 0.000 0.044 0.000 0.600
#> GSM241537     3  0.1226      0.968 0.040 0.000 0.952 0.004 0.004 0.000
#> GSM241538     4  0.0622      0.827 0.008 0.000 0.000 0.980 0.012 0.000
#> GSM241539     3  0.1226      0.968 0.040 0.000 0.952 0.004 0.004 0.000
#> GSM241540     4  0.0622      0.827 0.008 0.000 0.000 0.980 0.012 0.000
#> GSM241541     3  0.1010      0.970 0.036 0.000 0.960 0.004 0.000 0.000
#> GSM241542     4  0.0508      0.828 0.004 0.000 0.000 0.984 0.012 0.000
#> GSM241543     3  0.0000      0.979 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241544     4  0.0146      0.829 0.000 0.000 0.004 0.996 0.000 0.000
#> GSM241545     3  0.0000      0.979 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241546     4  0.0146      0.829 0.000 0.000 0.004 0.996 0.000 0.000
#> GSM241547     3  0.0000      0.979 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241548     4  0.0508      0.826 0.004 0.000 0.012 0.984 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n  dose(p)  time(p) k
#> MAD:skmeans 98 1.00e+00 1.00e+00 2
#> MAD:skmeans 95 4.45e-09 4.81e-01 3
#> MAD:skmeans 97 5.84e-12 8.53e-01 4
#> MAD:skmeans 97 7.57e-11 9.09e-05 5
#> MAD:skmeans 96 2.97e-10 1.38e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.993       0.997         0.5054 0.495   0.495
#> 3 3 1.000           0.973       0.990         0.2618 0.842   0.689
#> 4 4 0.861           0.839       0.905         0.1709 0.868   0.644
#> 5 5 0.802           0.786       0.873         0.0552 0.919   0.697
#> 6 6 0.876           0.804       0.909         0.0480 0.965   0.834

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     2   0.000      0.995 0.000 1.000
#> GSM241452     1   0.000      0.998 1.000 0.000
#> GSM241453     2   0.000      0.995 0.000 1.000
#> GSM241454     1   0.000      0.998 1.000 0.000
#> GSM241455     2   0.000      0.995 0.000 1.000
#> GSM241456     1   0.000      0.998 1.000 0.000
#> GSM241457     2   0.000      0.995 0.000 1.000
#> GSM241458     1   0.000      0.998 1.000 0.000
#> GSM241459     2   0.000      0.995 0.000 1.000
#> GSM241460     1   0.000      0.998 1.000 0.000
#> GSM241461     2   0.000      0.995 0.000 1.000
#> GSM241462     1   0.000      0.998 1.000 0.000
#> GSM241463     2   0.000      0.995 0.000 1.000
#> GSM241464     1   0.000      0.998 1.000 0.000
#> GSM241465     2   0.000      0.995 0.000 1.000
#> GSM241466     1   0.000      0.998 1.000 0.000
#> GSM241467     1   0.000      0.998 1.000 0.000
#> GSM241468     2   0.000      0.995 0.000 1.000
#> GSM241469     1   0.000      0.998 1.000 0.000
#> GSM241470     2   0.000      0.995 0.000 1.000
#> GSM241471     2   0.000      0.995 0.000 1.000
#> GSM241472     1   0.000      0.998 1.000 0.000
#> GSM241473     2   0.000      0.995 0.000 1.000
#> GSM241474     1   0.000      0.998 1.000 0.000
#> GSM241475     2   0.000      0.995 0.000 1.000
#> GSM241476     1   0.000      0.998 1.000 0.000
#> GSM241477     2   0.000      0.995 0.000 1.000
#> GSM241478     2   0.000      0.995 0.000 1.000
#> GSM241479     1   0.000      0.998 1.000 0.000
#> GSM241480     1   0.000      0.998 1.000 0.000
#> GSM241481     2   0.000      0.995 0.000 1.000
#> GSM241482     1   0.000      0.998 1.000 0.000
#> GSM241483     2   0.000      0.995 0.000 1.000
#> GSM241484     1   0.000      0.998 1.000 0.000
#> GSM241485     1   0.000      0.998 1.000 0.000
#> GSM241486     2   0.000      0.995 0.000 1.000
#> GSM241487     2   0.000      0.995 0.000 1.000
#> GSM241488     2   0.000      0.995 0.000 1.000
#> GSM241489     1   0.000      0.998 1.000 0.000
#> GSM241490     1   0.000      0.998 1.000 0.000
#> GSM241491     2   0.000      0.995 0.000 1.000
#> GSM241492     1   0.000      0.998 1.000 0.000
#> GSM241493     2   0.000      0.995 0.000 1.000
#> GSM241494     1   0.000      0.998 1.000 0.000
#> GSM241495     2   0.000      0.995 0.000 1.000
#> GSM241496     2   0.000      0.995 0.000 1.000
#> GSM241497     1   0.000      0.998 1.000 0.000
#> GSM241498     1   0.000      0.998 1.000 0.000
#> GSM241499     1   0.000      0.998 1.000 0.000
#> GSM241500     2   0.000      0.995 0.000 1.000
#> GSM241501     2   0.000      0.995 0.000 1.000
#> GSM241502     2   0.000      0.995 0.000 1.000
#> GSM241503     1   0.000      0.998 1.000 0.000
#> GSM241504     1   0.000      0.998 1.000 0.000
#> GSM241505     1   0.000      0.998 1.000 0.000
#> GSM241506     2   0.000      0.995 0.000 1.000
#> GSM241507     1   0.000      0.998 1.000 0.000
#> GSM241508     2   0.000      0.995 0.000 1.000
#> GSM241509     2   0.000      0.995 0.000 1.000
#> GSM241510     2   0.000      0.995 0.000 1.000
#> GSM241511     1   0.000      0.998 1.000 0.000
#> GSM241512     1   0.000      0.998 1.000 0.000
#> GSM241513     2   0.000      0.995 0.000 1.000
#> GSM241514     1   0.000      0.998 1.000 0.000
#> GSM241515     2   0.000      0.995 0.000 1.000
#> GSM241516     1   0.000      0.998 1.000 0.000
#> GSM241517     2   0.000      0.995 0.000 1.000
#> GSM241518     1   0.000      0.998 1.000 0.000
#> GSM241519     2   0.000      0.995 0.000 1.000
#> GSM241520     1   0.000      0.998 1.000 0.000
#> GSM241521     2   0.000      0.995 0.000 1.000
#> GSM241522     1   0.000      0.998 1.000 0.000
#> GSM241523     2   0.000      0.995 0.000 1.000
#> GSM241524     1   0.000      0.998 1.000 0.000
#> GSM241525     1   0.000      0.998 1.000 0.000
#> GSM241526     2   0.000      0.995 0.000 1.000
#> GSM241527     1   0.000      0.998 1.000 0.000
#> GSM241528     2   0.000      0.995 0.000 1.000
#> GSM241529     2   0.000      0.995 0.000 1.000
#> GSM241530     1   0.000      0.998 1.000 0.000
#> GSM241531     1   0.000      0.998 1.000 0.000
#> GSM241532     2   0.000      0.995 0.000 1.000
#> GSM241533     2   0.000      0.995 0.000 1.000
#> GSM241534     2   0.000      0.995 0.000 1.000
#> GSM241535     2   0.781      0.697 0.232 0.768
#> GSM241536     1   0.000      0.998 1.000 0.000
#> GSM241537     2   0.000      0.995 0.000 1.000
#> GSM241538     1   0.000      0.998 1.000 0.000
#> GSM241539     2   0.000      0.995 0.000 1.000
#> GSM241540     1   0.000      0.998 1.000 0.000
#> GSM241541     2   0.000      0.995 0.000 1.000
#> GSM241542     1   0.373      0.922 0.928 0.072
#> GSM241543     2   0.000      0.995 0.000 1.000
#> GSM241544     1   0.000      0.998 1.000 0.000
#> GSM241545     2   0.000      0.995 0.000 1.000
#> GSM241546     1   0.000      0.998 1.000 0.000
#> GSM241547     2   0.000      0.995 0.000 1.000
#> GSM241548     1   0.000      0.998 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241452     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241453     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241454     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241455     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241456     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241457     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241458     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241459     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241460     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241461     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241462     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241463     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241464     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241465     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241466     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241467     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241468     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241469     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241470     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241471     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241472     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241473     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241474     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241475     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241476     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241477     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241478     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241479     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241480     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241481     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241482     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241483     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241484     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241485     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241486     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241487     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241488     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241489     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241490     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241491     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241492     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241493     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241494     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241495     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241496     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241497     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241498     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241499     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241500     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241501     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241502     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241503     1  0.0424     0.9886 0.992 0.000 0.008
#> GSM241504     1  0.2261     0.9290 0.932 0.000 0.068
#> GSM241505     1  0.1964     0.9425 0.944 0.000 0.056
#> GSM241506     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241507     1  0.0000     0.9953 1.000 0.000 0.000
#> GSM241508     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241509     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241510     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241511     3  0.0000     0.9683 0.000 0.000 1.000
#> GSM241512     3  0.0000     0.9683 0.000 0.000 1.000
#> GSM241513     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241514     3  0.0000     0.9683 0.000 0.000 1.000
#> GSM241515     2  0.2711     0.9032 0.000 0.912 0.088
#> GSM241516     3  0.0000     0.9683 0.000 0.000 1.000
#> GSM241517     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241518     3  0.0000     0.9683 0.000 0.000 1.000
#> GSM241519     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241520     3  0.0000     0.9683 0.000 0.000 1.000
#> GSM241521     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241522     3  0.2711     0.8769 0.088 0.000 0.912
#> GSM241523     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241524     3  0.0000     0.9683 0.000 0.000 1.000
#> GSM241525     3  0.0000     0.9683 0.000 0.000 1.000
#> GSM241526     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241527     3  0.0000     0.9683 0.000 0.000 1.000
#> GSM241528     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241529     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241530     3  0.0000     0.9683 0.000 0.000 1.000
#> GSM241531     3  0.0000     0.9683 0.000 0.000 1.000
#> GSM241532     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241533     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241534     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241535     3  0.0000     0.9683 0.000 0.000 1.000
#> GSM241536     3  0.0000     0.9683 0.000 0.000 1.000
#> GSM241537     3  0.0000     0.9683 0.000 0.000 1.000
#> GSM241538     3  0.0000     0.9683 0.000 0.000 1.000
#> GSM241539     3  0.6307     0.0314 0.000 0.488 0.512
#> GSM241540     3  0.0000     0.9683 0.000 0.000 1.000
#> GSM241541     2  0.2959     0.8892 0.000 0.900 0.100
#> GSM241542     3  0.0000     0.9683 0.000 0.000 1.000
#> GSM241543     2  0.3116     0.8769 0.000 0.892 0.108
#> GSM241544     3  0.0000     0.9683 0.000 0.000 1.000
#> GSM241545     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241546     3  0.0000     0.9683 0.000 0.000 1.000
#> GSM241547     2  0.0000     0.9933 0.000 1.000 0.000
#> GSM241548     3  0.0000     0.9683 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.4790      0.875 0.000 0.620 0.000 0.380
#> GSM241452     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> GSM241453     2  0.4790      0.875 0.000 0.620 0.000 0.380
#> GSM241454     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> GSM241455     2  0.4790      0.875 0.000 0.620 0.000 0.380
#> GSM241456     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> GSM241457     4  0.1211      0.700 0.000 0.040 0.000 0.960
#> GSM241458     1  0.0921      0.976 0.972 0.000 0.028 0.000
#> GSM241459     4  0.1211      0.700 0.000 0.040 0.000 0.960
#> GSM241460     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> GSM241461     4  0.0707      0.717 0.000 0.020 0.000 0.980
#> GSM241462     1  0.0921      0.976 0.972 0.000 0.028 0.000
#> GSM241463     2  0.4790      0.875 0.000 0.620 0.000 0.380
#> GSM241464     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> GSM241465     2  0.4790      0.875 0.000 0.620 0.000 0.380
#> GSM241466     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> GSM241468     2  0.4790      0.875 0.000 0.620 0.000 0.380
#> GSM241469     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> GSM241470     2  0.4790      0.875 0.000 0.620 0.000 0.380
#> GSM241471     2  0.4790      0.875 0.000 0.620 0.000 0.380
#> GSM241472     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> GSM241473     2  0.4790      0.875 0.000 0.620 0.000 0.380
#> GSM241474     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> GSM241475     2  0.4790      0.875 0.000 0.620 0.000 0.380
#> GSM241476     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> GSM241477     2  0.4790      0.875 0.000 0.620 0.000 0.380
#> GSM241478     2  0.4790      0.875 0.000 0.620 0.000 0.380
#> GSM241479     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> GSM241481     4  0.1211      0.700 0.000 0.040 0.000 0.960
#> GSM241482     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> GSM241483     4  0.1118      0.704 0.000 0.036 0.000 0.964
#> GSM241484     1  0.0921      0.976 0.972 0.000 0.028 0.000
#> GSM241485     1  0.0921      0.976 0.972 0.000 0.028 0.000
#> GSM241486     4  0.0707      0.717 0.000 0.020 0.000 0.980
#> GSM241487     2  0.4790      0.875 0.000 0.620 0.000 0.380
#> GSM241488     2  0.4790      0.875 0.000 0.620 0.000 0.380
#> GSM241489     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> GSM241491     2  0.4790      0.875 0.000 0.620 0.000 0.380
#> GSM241492     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> GSM241493     2  0.4790      0.875 0.000 0.620 0.000 0.380
#> GSM241494     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> GSM241495     2  0.4790      0.875 0.000 0.620 0.000 0.380
#> GSM241496     2  0.4790      0.875 0.000 0.620 0.000 0.380
#> GSM241497     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> GSM241499     1  0.0921      0.976 0.972 0.000 0.028 0.000
#> GSM241500     4  0.0000      0.721 0.000 0.000 0.000 1.000
#> GSM241501     4  0.1211      0.700 0.000 0.040 0.000 0.960
#> GSM241502     4  0.0707      0.717 0.000 0.020 0.000 0.980
#> GSM241503     1  0.1118      0.972 0.964 0.000 0.036 0.000
#> GSM241504     1  0.1474      0.960 0.948 0.000 0.052 0.000
#> GSM241505     1  0.2011      0.933 0.920 0.000 0.080 0.000
#> GSM241506     4  0.0707      0.717 0.000 0.020 0.000 0.980
#> GSM241507     1  0.0921      0.976 0.972 0.000 0.028 0.000
#> GSM241508     4  0.0000      0.721 0.000 0.000 0.000 1.000
#> GSM241509     4  0.4605      0.686 0.000 0.336 0.000 0.664
#> GSM241510     4  0.4134      0.700 0.000 0.260 0.000 0.740
#> GSM241511     3  0.0000      0.908 0.000 0.000 1.000 0.000
#> GSM241512     3  0.0000      0.908 0.000 0.000 1.000 0.000
#> GSM241513     2  0.6399      0.555 0.000 0.620 0.276 0.104
#> GSM241514     3  0.0921      0.905 0.028 0.000 0.972 0.000
#> GSM241515     3  0.4617      0.661 0.000 0.204 0.764 0.032
#> GSM241516     3  0.0921      0.905 0.028 0.000 0.972 0.000
#> GSM241517     2  0.1474      0.535 0.000 0.948 0.000 0.052
#> GSM241518     3  0.0921      0.905 0.028 0.000 0.972 0.000
#> GSM241519     2  0.1474      0.536 0.000 0.948 0.000 0.052
#> GSM241520     3  0.0921      0.905 0.028 0.000 0.972 0.000
#> GSM241521     2  0.4790      0.875 0.000 0.620 0.000 0.380
#> GSM241522     3  0.2408      0.841 0.104 0.000 0.896 0.000
#> GSM241523     2  0.4679      0.852 0.000 0.648 0.000 0.352
#> GSM241524     3  0.0921      0.905 0.028 0.000 0.972 0.000
#> GSM241525     3  0.0000      0.908 0.000 0.000 1.000 0.000
#> GSM241526     4  0.4790      0.669 0.000 0.380 0.000 0.620
#> GSM241527     3  0.0000      0.908 0.000 0.000 1.000 0.000
#> GSM241528     4  0.4713      0.679 0.000 0.360 0.000 0.640
#> GSM241529     4  0.4679      0.679 0.000 0.352 0.000 0.648
#> GSM241530     3  0.0000      0.908 0.000 0.000 1.000 0.000
#> GSM241531     3  0.0000      0.908 0.000 0.000 1.000 0.000
#> GSM241532     4  0.4790      0.669 0.000 0.380 0.000 0.620
#> GSM241533     4  0.4790      0.669 0.000 0.380 0.000 0.620
#> GSM241534     4  0.4790      0.669 0.000 0.380 0.000 0.620
#> GSM241535     3  0.2345      0.848 0.000 0.100 0.900 0.000
#> GSM241536     3  0.0000      0.908 0.000 0.000 1.000 0.000
#> GSM241537     3  0.5860      0.514 0.000 0.380 0.580 0.040
#> GSM241538     3  0.0921      0.906 0.000 0.028 0.972 0.000
#> GSM241539     3  0.5860      0.514 0.000 0.380 0.580 0.040
#> GSM241540     3  0.0921      0.906 0.000 0.028 0.972 0.000
#> GSM241541     3  0.7538      0.202 0.000 0.384 0.428 0.188
#> GSM241542     3  0.0921      0.906 0.000 0.028 0.972 0.000
#> GSM241543     2  0.1209      0.463 0.000 0.964 0.032 0.004
#> GSM241544     3  0.0000      0.908 0.000 0.000 1.000 0.000
#> GSM241545     2  0.1510      0.513 0.000 0.956 0.016 0.028
#> GSM241546     3  0.0921      0.905 0.028 0.000 0.972 0.000
#> GSM241547     2  0.0469      0.458 0.000 0.988 0.000 0.012
#> GSM241548     3  0.0921      0.906 0.000 0.028 0.972 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2  0.0000      0.891 0.000 1.000 0.000 0.000 0.000
#> GSM241452     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.0000      0.891 0.000 1.000 0.000 0.000 0.000
#> GSM241454     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0000      0.891 0.000 1.000 0.000 0.000 0.000
#> GSM241456     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM241457     5  0.5375      0.690 0.000 0.368 0.000 0.064 0.568
#> GSM241458     4  0.3561      0.726 0.260 0.000 0.000 0.740 0.000
#> GSM241459     5  0.5375      0.690 0.000 0.368 0.000 0.064 0.568
#> GSM241460     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM241461     5  0.5180      0.738 0.000 0.312 0.000 0.064 0.624
#> GSM241462     4  0.4015      0.574 0.348 0.000 0.000 0.652 0.000
#> GSM241463     2  0.0000      0.891 0.000 1.000 0.000 0.000 0.000
#> GSM241464     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM241465     2  0.0000      0.891 0.000 1.000 0.000 0.000 0.000
#> GSM241466     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      0.891 0.000 1.000 0.000 0.000 0.000
#> GSM241469     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0000      0.891 0.000 1.000 0.000 0.000 0.000
#> GSM241471     2  0.0000      0.891 0.000 1.000 0.000 0.000 0.000
#> GSM241472     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.0000      0.891 0.000 1.000 0.000 0.000 0.000
#> GSM241474     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.0000      0.891 0.000 1.000 0.000 0.000 0.000
#> GSM241476     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      0.891 0.000 1.000 0.000 0.000 0.000
#> GSM241478     2  0.0000      0.891 0.000 1.000 0.000 0.000 0.000
#> GSM241479     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM241481     5  0.5375      0.690 0.000 0.368 0.000 0.064 0.568
#> GSM241482     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM241483     5  0.5353      0.698 0.000 0.360 0.000 0.064 0.576
#> GSM241484     4  0.1792      0.891 0.084 0.000 0.000 0.916 0.000
#> GSM241485     1  0.4088      0.244 0.632 0.000 0.000 0.368 0.000
#> GSM241486     5  0.5180      0.738 0.000 0.312 0.000 0.064 0.624
#> GSM241487     2  0.0000      0.891 0.000 1.000 0.000 0.000 0.000
#> GSM241488     2  0.0000      0.891 0.000 1.000 0.000 0.000 0.000
#> GSM241489     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM241491     2  0.0000      0.891 0.000 1.000 0.000 0.000 0.000
#> GSM241492     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM241493     2  0.0000      0.891 0.000 1.000 0.000 0.000 0.000
#> GSM241494     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0000      0.891 0.000 1.000 0.000 0.000 0.000
#> GSM241496     2  0.0000      0.891 0.000 1.000 0.000 0.000 0.000
#> GSM241497     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM241499     4  0.1792      0.891 0.084 0.000 0.000 0.916 0.000
#> GSM241500     5  0.4914      0.749 0.000 0.260 0.000 0.064 0.676
#> GSM241501     5  0.5316      0.709 0.000 0.348 0.000 0.064 0.588
#> GSM241502     5  0.5180      0.738 0.000 0.312 0.000 0.064 0.624
#> GSM241503     4  0.1792      0.891 0.084 0.000 0.000 0.916 0.000
#> GSM241504     4  0.2006      0.892 0.072 0.000 0.012 0.916 0.000
#> GSM241505     4  0.1956      0.892 0.076 0.000 0.008 0.916 0.000
#> GSM241506     5  0.5180      0.738 0.000 0.312 0.000 0.064 0.624
#> GSM241507     4  0.1792      0.891 0.084 0.000 0.000 0.916 0.000
#> GSM241508     5  0.4914      0.749 0.000 0.260 0.000 0.064 0.676
#> GSM241509     5  0.1877      0.700 0.000 0.012 0.000 0.064 0.924
#> GSM241510     5  0.2992      0.724 0.000 0.068 0.000 0.064 0.868
#> GSM241511     4  0.1792      0.861 0.000 0.000 0.084 0.916 0.000
#> GSM241512     3  0.3730      0.493 0.000 0.000 0.712 0.288 0.000
#> GSM241513     2  0.3789      0.686 0.000 0.768 0.212 0.020 0.000
#> GSM241514     3  0.3730      0.675 0.288 0.000 0.712 0.000 0.000
#> GSM241515     2  0.4138      0.590 0.000 0.708 0.276 0.016 0.000
#> GSM241516     3  0.3730      0.675 0.288 0.000 0.712 0.000 0.000
#> GSM241517     2  0.4106      0.645 0.000 0.724 0.000 0.020 0.256
#> GSM241518     3  0.3730      0.675 0.288 0.000 0.712 0.000 0.000
#> GSM241519     2  0.4054      0.654 0.000 0.732 0.000 0.020 0.248
#> GSM241520     3  0.3730      0.675 0.288 0.000 0.712 0.000 0.000
#> GSM241521     2  0.0510      0.882 0.000 0.984 0.000 0.016 0.000
#> GSM241522     3  0.3730      0.675 0.288 0.000 0.712 0.000 0.000
#> GSM241523     2  0.0898      0.875 0.000 0.972 0.000 0.020 0.008
#> GSM241524     3  0.3730      0.675 0.288 0.000 0.712 0.000 0.000
#> GSM241525     4  0.2074      0.849 0.000 0.000 0.104 0.896 0.000
#> GSM241526     5  0.0290      0.676 0.000 0.000 0.000 0.008 0.992
#> GSM241527     3  0.4161      0.280 0.000 0.000 0.608 0.392 0.000
#> GSM241528     5  0.1408      0.683 0.000 0.044 0.000 0.008 0.948
#> GSM241529     5  0.0290      0.676 0.000 0.000 0.000 0.008 0.992
#> GSM241530     4  0.2377      0.827 0.000 0.000 0.128 0.872 0.000
#> GSM241531     4  0.1792      0.861 0.000 0.000 0.084 0.916 0.000
#> GSM241532     5  0.0000      0.679 0.000 0.000 0.000 0.000 1.000
#> GSM241533     5  0.0000      0.679 0.000 0.000 0.000 0.000 1.000
#> GSM241534     5  0.0000      0.679 0.000 0.000 0.000 0.000 1.000
#> GSM241535     3  0.2249      0.688 0.000 0.000 0.896 0.008 0.096
#> GSM241536     4  0.1792      0.861 0.000 0.000 0.084 0.916 0.000
#> GSM241537     3  0.4497      0.339 0.000 0.000 0.568 0.008 0.424
#> GSM241538     3  0.0000      0.738 0.000 0.000 1.000 0.000 0.000
#> GSM241539     3  0.4497      0.339 0.000 0.000 0.568 0.008 0.424
#> GSM241540     3  0.0000      0.738 0.000 0.000 1.000 0.000 0.000
#> GSM241541     5  0.4568      0.291 0.000 0.020 0.288 0.008 0.684
#> GSM241542     3  0.0000      0.738 0.000 0.000 1.000 0.000 0.000
#> GSM241543     2  0.6019      0.470 0.000 0.576 0.084 0.020 0.320
#> GSM241544     3  0.0000      0.738 0.000 0.000 1.000 0.000 0.000
#> GSM241545     2  0.4260      0.642 0.000 0.720 0.004 0.020 0.256
#> GSM241546     3  0.0000      0.738 0.000 0.000 1.000 0.000 0.000
#> GSM241547     2  0.4585      0.522 0.000 0.628 0.000 0.020 0.352
#> GSM241548     3  0.0000      0.738 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM241451     2  0.0000     0.8844 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241452     1  0.0000     0.9794 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.0000     0.8844 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241454     1  0.0000     0.9794 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0000     0.8844 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241456     1  0.0000     0.9794 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241457     5  0.2178     0.7580 0.000 0.132 0.000 0.000 0.868 0.000
#> GSM241458     6  0.2762     0.7377 0.196 0.000 0.000 0.000 0.000 0.804
#> GSM241459     5  0.2631     0.7114 0.000 0.180 0.000 0.000 0.820 0.000
#> GSM241460     1  0.0000     0.9794 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241461     5  0.0713     0.8117 0.000 0.028 0.000 0.000 0.972 0.000
#> GSM241462     6  0.3531     0.5307 0.328 0.000 0.000 0.000 0.000 0.672
#> GSM241463     2  0.0000     0.8844 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241464     1  0.0000     0.9794 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241465     2  0.0000     0.8844 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241466     1  0.0000     0.9794 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000     0.9794 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.0000     0.8844 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241469     1  0.0000     0.9794 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0000     0.8844 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241471     2  0.0000     0.8844 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241472     1  0.0000     0.9794 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.0000     0.8844 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241474     1  0.0000     0.9794 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.0000     0.8844 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241476     1  0.0000     0.9794 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.0000     0.8844 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241478     2  0.0000     0.8844 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241479     1  0.0000     0.9794 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000     0.9794 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241481     5  0.2597     0.7161 0.000 0.176 0.000 0.000 0.824 0.000
#> GSM241482     1  0.0000     0.9794 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241483     5  0.1501     0.7984 0.000 0.076 0.000 0.000 0.924 0.000
#> GSM241484     6  0.0000     0.9374 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241485     1  0.3672     0.3477 0.632 0.000 0.000 0.000 0.000 0.368
#> GSM241486     5  0.0713     0.8117 0.000 0.028 0.000 0.000 0.972 0.000
#> GSM241487     2  0.0000     0.8844 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241488     2  0.0000     0.8844 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241489     1  0.0000     0.9794 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241490     1  0.0000     0.9794 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241491     2  0.0000     0.8844 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241492     1  0.0000     0.9794 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241493     2  0.0000     0.8844 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241494     1  0.0000     0.9794 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0000     0.8844 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241496     2  0.0000     0.8844 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241497     1  0.0000     0.9794 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000     0.9794 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241499     6  0.0000     0.9374 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241500     5  0.0000     0.8012 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241501     5  0.0713     0.8117 0.000 0.028 0.000 0.000 0.972 0.000
#> GSM241502     5  0.1714     0.7872 0.000 0.092 0.000 0.000 0.908 0.000
#> GSM241503     6  0.0000     0.9374 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241504     6  0.0000     0.9374 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241505     6  0.0000     0.9374 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241506     5  0.1387     0.8034 0.000 0.068 0.000 0.000 0.932 0.000
#> GSM241507     6  0.0000     0.9374 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241508     5  0.0260     0.8057 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM241509     5  0.0865     0.7905 0.000 0.000 0.000 0.036 0.964 0.000
#> GSM241510     5  0.0865     0.7905 0.000 0.000 0.000 0.036 0.964 0.000
#> GSM241511     6  0.0000     0.9374 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241512     3  0.2854     0.7321 0.000 0.000 0.792 0.000 0.000 0.208
#> GSM241513     2  0.4493     0.5618 0.000 0.636 0.052 0.312 0.000 0.000
#> GSM241514     3  0.0000     0.8745 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241515     2  0.4843     0.5342 0.000 0.616 0.084 0.300 0.000 0.000
#> GSM241516     3  0.0260     0.8726 0.008 0.000 0.992 0.000 0.000 0.000
#> GSM241517     2  0.3841     0.5092 0.000 0.616 0.000 0.380 0.004 0.000
#> GSM241518     3  0.0260     0.8726 0.008 0.000 0.992 0.000 0.000 0.000
#> GSM241519     2  0.4319     0.5294 0.000 0.620 0.000 0.348 0.032 0.000
#> GSM241520     3  0.0000     0.8745 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241521     2  0.3101     0.6935 0.000 0.756 0.000 0.244 0.000 0.000
#> GSM241522     3  0.0632     0.8640 0.024 0.000 0.976 0.000 0.000 0.000
#> GSM241523     2  0.3464     0.6174 0.000 0.688 0.000 0.312 0.000 0.000
#> GSM241524     3  0.0000     0.8745 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241525     6  0.0547     0.9242 0.000 0.000 0.020 0.000 0.000 0.980
#> GSM241526     4  0.3126     0.6307 0.000 0.000 0.000 0.752 0.248 0.000
#> GSM241527     3  0.3717     0.4288 0.000 0.000 0.616 0.000 0.000 0.384
#> GSM241528     4  0.5672     0.4480 0.000 0.212 0.000 0.528 0.260 0.000
#> GSM241529     4  0.3371     0.5662 0.000 0.000 0.000 0.708 0.292 0.000
#> GSM241530     6  0.1007     0.9035 0.000 0.000 0.044 0.000 0.000 0.956
#> GSM241531     6  0.0000     0.9374 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241532     5  0.3817     0.1476 0.000 0.000 0.000 0.432 0.568 0.000
#> GSM241533     5  0.3851     0.0674 0.000 0.000 0.000 0.460 0.540 0.000
#> GSM241534     5  0.3851     0.0674 0.000 0.000 0.000 0.460 0.540 0.000
#> GSM241535     3  0.4649     0.5294 0.000 0.000 0.572 0.380 0.000 0.048
#> GSM241536     6  0.0000     0.9374 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241537     4  0.0713     0.7496 0.000 0.000 0.000 0.972 0.028 0.000
#> GSM241538     3  0.2996     0.7780 0.000 0.000 0.772 0.228 0.000 0.000
#> GSM241539     4  0.0713     0.7496 0.000 0.000 0.000 0.972 0.028 0.000
#> GSM241540     3  0.2823     0.7905 0.000 0.000 0.796 0.204 0.000 0.000
#> GSM241541     4  0.0713     0.7496 0.000 0.000 0.000 0.972 0.028 0.000
#> GSM241542     3  0.2996     0.7780 0.000 0.000 0.772 0.228 0.000 0.000
#> GSM241543     4  0.3349     0.6294 0.000 0.008 0.244 0.748 0.000 0.000
#> GSM241544     3  0.0000     0.8745 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241545     2  0.3955     0.4958 0.000 0.608 0.008 0.384 0.000 0.000
#> GSM241546     3  0.0000     0.8745 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241547     4  0.3076     0.5542 0.000 0.240 0.000 0.760 0.000 0.000
#> GSM241548     3  0.0000     0.8745 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n  dose(p)  time(p) k
#> MAD:pam 98 9.89e-01 9.89e-01 2
#> MAD:pam 97 7.77e-07 7.73e-01 3
#> MAD:pam 95 6.03e-08 4.44e-05 4
#> MAD:pam 91 8.91e-06 5.35e-08 5
#> MAD:pam 91 5.86e-11 2.93e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.998       0.997         0.5040 0.495   0.495
#> 3 3 1.000           0.971       0.989         0.0503 0.559   0.374
#> 4 4 0.901           0.929       0.965         0.3318 0.816   0.615
#> 5 5 0.906           0.930       0.947         0.1218 0.905   0.686
#> 6 6 0.935           0.903       0.949         0.0536 0.955   0.780

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5

There is also optional best \(k\) = 2 3 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     2  0.0000      1.000 0.000 1.000
#> GSM241452     1  0.0000      0.994 1.000 0.000
#> GSM241453     2  0.0000      1.000 0.000 1.000
#> GSM241454     1  0.0000      0.994 1.000 0.000
#> GSM241455     2  0.0000      1.000 0.000 1.000
#> GSM241456     1  0.0000      0.994 1.000 0.000
#> GSM241457     2  0.0000      1.000 0.000 1.000
#> GSM241458     1  0.0672      0.997 0.992 0.008
#> GSM241459     2  0.0000      1.000 0.000 1.000
#> GSM241460     1  0.0000      0.994 1.000 0.000
#> GSM241461     2  0.0000      1.000 0.000 1.000
#> GSM241462     1  0.0672      0.997 0.992 0.008
#> GSM241463     2  0.0000      1.000 0.000 1.000
#> GSM241464     1  0.0672      0.997 0.992 0.008
#> GSM241465     2  0.0000      1.000 0.000 1.000
#> GSM241466     1  0.0000      0.994 1.000 0.000
#> GSM241467     1  0.0000      0.994 1.000 0.000
#> GSM241468     2  0.0000      1.000 0.000 1.000
#> GSM241469     1  0.0000      0.994 1.000 0.000
#> GSM241470     2  0.0000      1.000 0.000 1.000
#> GSM241471     2  0.0000      1.000 0.000 1.000
#> GSM241472     1  0.0000      0.994 1.000 0.000
#> GSM241473     2  0.0000      1.000 0.000 1.000
#> GSM241474     1  0.0000      0.994 1.000 0.000
#> GSM241475     2  0.0000      1.000 0.000 1.000
#> GSM241476     1  0.0000      0.994 1.000 0.000
#> GSM241477     2  0.0000      1.000 0.000 1.000
#> GSM241478     2  0.0000      1.000 0.000 1.000
#> GSM241479     1  0.0000      0.994 1.000 0.000
#> GSM241480     1  0.0000      0.994 1.000 0.000
#> GSM241481     2  0.0000      1.000 0.000 1.000
#> GSM241482     1  0.0672      0.997 0.992 0.008
#> GSM241483     2  0.0000      1.000 0.000 1.000
#> GSM241484     1  0.0672      0.997 0.992 0.008
#> GSM241485     1  0.0672      0.997 0.992 0.008
#> GSM241486     2  0.0000      1.000 0.000 1.000
#> GSM241487     2  0.0000      1.000 0.000 1.000
#> GSM241488     2  0.0000      1.000 0.000 1.000
#> GSM241489     1  0.0672      0.997 0.992 0.008
#> GSM241490     1  0.0000      0.994 1.000 0.000
#> GSM241491     2  0.0000      1.000 0.000 1.000
#> GSM241492     1  0.0672      0.997 0.992 0.008
#> GSM241493     2  0.0000      1.000 0.000 1.000
#> GSM241494     1  0.0000      0.994 1.000 0.000
#> GSM241495     2  0.0000      1.000 0.000 1.000
#> GSM241496     2  0.0000      1.000 0.000 1.000
#> GSM241497     1  0.0376      0.996 0.996 0.004
#> GSM241498     1  0.0000      0.994 1.000 0.000
#> GSM241499     1  0.0672      0.997 0.992 0.008
#> GSM241500     2  0.0000      1.000 0.000 1.000
#> GSM241501     2  0.0000      1.000 0.000 1.000
#> GSM241502     2  0.0000      1.000 0.000 1.000
#> GSM241503     1  0.0672      0.997 0.992 0.008
#> GSM241504     1  0.0672      0.997 0.992 0.008
#> GSM241505     1  0.0672      0.997 0.992 0.008
#> GSM241506     2  0.0000      1.000 0.000 1.000
#> GSM241507     1  0.0672      0.997 0.992 0.008
#> GSM241508     2  0.0000      1.000 0.000 1.000
#> GSM241509     2  0.0000      1.000 0.000 1.000
#> GSM241510     2  0.0000      1.000 0.000 1.000
#> GSM241511     1  0.0672      0.997 0.992 0.008
#> GSM241512     1  0.0672      0.997 0.992 0.008
#> GSM241513     2  0.0000      1.000 0.000 1.000
#> GSM241514     1  0.0672      0.997 0.992 0.008
#> GSM241515     2  0.0000      1.000 0.000 1.000
#> GSM241516     1  0.0672      0.997 0.992 0.008
#> GSM241517     2  0.0000      1.000 0.000 1.000
#> GSM241518     1  0.0672      0.997 0.992 0.008
#> GSM241519     2  0.0000      1.000 0.000 1.000
#> GSM241520     1  0.0672      0.997 0.992 0.008
#> GSM241521     2  0.0000      1.000 0.000 1.000
#> GSM241522     1  0.0672      0.997 0.992 0.008
#> GSM241523     2  0.0000      1.000 0.000 1.000
#> GSM241524     1  0.0672      0.997 0.992 0.008
#> GSM241525     1  0.0672      0.997 0.992 0.008
#> GSM241526     2  0.0000      1.000 0.000 1.000
#> GSM241527     1  0.0672      0.997 0.992 0.008
#> GSM241528     2  0.0000      1.000 0.000 1.000
#> GSM241529     2  0.0000      1.000 0.000 1.000
#> GSM241530     1  0.0672      0.997 0.992 0.008
#> GSM241531     1  0.0672      0.997 0.992 0.008
#> GSM241532     2  0.0000      1.000 0.000 1.000
#> GSM241533     2  0.0000      1.000 0.000 1.000
#> GSM241534     2  0.0000      1.000 0.000 1.000
#> GSM241535     1  0.0672      0.997 0.992 0.008
#> GSM241536     1  0.0672      0.997 0.992 0.008
#> GSM241537     2  0.0000      1.000 0.000 1.000
#> GSM241538     1  0.0672      0.997 0.992 0.008
#> GSM241539     2  0.0000      1.000 0.000 1.000
#> GSM241540     1  0.0672      0.997 0.992 0.008
#> GSM241541     2  0.0000      1.000 0.000 1.000
#> GSM241542     1  0.0672      0.997 0.992 0.008
#> GSM241543     2  0.0000      1.000 0.000 1.000
#> GSM241544     1  0.0672      0.997 0.992 0.008
#> GSM241545     2  0.0000      1.000 0.000 1.000
#> GSM241546     1  0.0672      0.997 0.992 0.008
#> GSM241547     2  0.0000      1.000 0.000 1.000
#> GSM241548     1  0.0672      0.997 0.992 0.008

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2  0.0000      0.984 0.000 1.000 0.000
#> GSM241452     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241453     2  0.0000      0.984 0.000 1.000 0.000
#> GSM241454     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241455     2  0.0000      0.984 0.000 1.000 0.000
#> GSM241456     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241457     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241458     3  0.1031      0.970 0.024 0.000 0.976
#> GSM241459     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241460     1  0.1289      0.931 0.968 0.000 0.032
#> GSM241461     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241462     3  0.0237      0.987 0.004 0.000 0.996
#> GSM241463     2  0.4062      0.732 0.000 0.836 0.164
#> GSM241464     3  0.4002      0.812 0.160 0.000 0.840
#> GSM241465     2  0.0000      0.984 0.000 1.000 0.000
#> GSM241466     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241467     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241468     2  0.0000      0.984 0.000 1.000 0.000
#> GSM241469     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241470     2  0.0000      0.984 0.000 1.000 0.000
#> GSM241471     2  0.0000      0.984 0.000 1.000 0.000
#> GSM241472     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241473     2  0.0000      0.984 0.000 1.000 0.000
#> GSM241474     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241475     2  0.0000      0.984 0.000 1.000 0.000
#> GSM241476     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241477     2  0.0000      0.984 0.000 1.000 0.000
#> GSM241478     2  0.0000      0.984 0.000 1.000 0.000
#> GSM241479     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241480     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241481     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241482     3  0.1163      0.966 0.028 0.000 0.972
#> GSM241483     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241484     3  0.0747      0.977 0.016 0.000 0.984
#> GSM241485     3  0.3340      0.866 0.120 0.000 0.880
#> GSM241486     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241487     2  0.0424      0.975 0.000 0.992 0.008
#> GSM241488     2  0.0000      0.984 0.000 1.000 0.000
#> GSM241489     1  0.5327      0.572 0.728 0.000 0.272
#> GSM241490     1  0.0592      0.956 0.988 0.000 0.012
#> GSM241491     2  0.0424      0.974 0.000 0.992 0.008
#> GSM241492     3  0.5058      0.682 0.244 0.000 0.756
#> GSM241493     2  0.0000      0.984 0.000 1.000 0.000
#> GSM241494     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241495     2  0.0000      0.984 0.000 1.000 0.000
#> GSM241496     2  0.0000      0.984 0.000 1.000 0.000
#> GSM241497     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241498     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241499     3  0.0237      0.987 0.004 0.000 0.996
#> GSM241500     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241501     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241502     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241503     3  0.0237      0.987 0.004 0.000 0.996
#> GSM241504     3  0.0237      0.987 0.004 0.000 0.996
#> GSM241505     3  0.0237      0.987 0.004 0.000 0.996
#> GSM241506     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241507     3  0.0237      0.987 0.004 0.000 0.996
#> GSM241508     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241509     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241510     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241511     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241512     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241513     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241514     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241515     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241516     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241517     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241518     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241519     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241520     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241521     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241522     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241523     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241524     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241525     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241526     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241527     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241528     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241529     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241530     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241531     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241532     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241533     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241534     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241535     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241536     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241537     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241538     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241539     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241540     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241541     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241542     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241543     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241544     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241545     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241546     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241547     3  0.0000      0.990 0.000 0.000 1.000
#> GSM241548     3  0.0000      0.990 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.0000      0.985 0.000 1.000 0.000 0.000
#> GSM241452     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> GSM241453     2  0.0000      0.985 0.000 1.000 0.000 0.000
#> GSM241454     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> GSM241455     2  0.0000      0.985 0.000 1.000 0.000 0.000
#> GSM241456     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> GSM241457     4  0.0000      0.964 0.000 0.000 0.000 1.000
#> GSM241458     3  0.4008      0.694 0.244 0.000 0.756 0.000
#> GSM241459     4  0.0000      0.964 0.000 0.000 0.000 1.000
#> GSM241460     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> GSM241461     4  0.0000      0.964 0.000 0.000 0.000 1.000
#> GSM241462     3  0.3569      0.761 0.196 0.000 0.804 0.000
#> GSM241463     2  0.0000      0.985 0.000 1.000 0.000 0.000
#> GSM241464     1  0.0336      0.969 0.992 0.000 0.008 0.000
#> GSM241465     2  0.0000      0.985 0.000 1.000 0.000 0.000
#> GSM241466     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      0.985 0.000 1.000 0.000 0.000
#> GSM241469     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> GSM241470     2  0.0000      0.985 0.000 1.000 0.000 0.000
#> GSM241471     2  0.0000      0.985 0.000 1.000 0.000 0.000
#> GSM241472     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> GSM241473     2  0.0000      0.985 0.000 1.000 0.000 0.000
#> GSM241474     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> GSM241475     2  0.0000      0.985 0.000 1.000 0.000 0.000
#> GSM241476     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      0.985 0.000 1.000 0.000 0.000
#> GSM241478     2  0.0000      0.985 0.000 1.000 0.000 0.000
#> GSM241479     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> GSM241481     4  0.0000      0.964 0.000 0.000 0.000 1.000
#> GSM241482     3  0.4008      0.694 0.244 0.000 0.756 0.000
#> GSM241483     4  0.0000      0.964 0.000 0.000 0.000 1.000
#> GSM241484     3  0.3907      0.712 0.232 0.000 0.768 0.000
#> GSM241485     3  0.4277      0.642 0.280 0.000 0.720 0.000
#> GSM241486     4  0.0000      0.964 0.000 0.000 0.000 1.000
#> GSM241487     2  0.4008      0.656 0.000 0.756 0.000 0.244
#> GSM241488     2  0.0000      0.985 0.000 1.000 0.000 0.000
#> GSM241489     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> GSM241490     1  0.4406      0.530 0.700 0.000 0.300 0.000
#> GSM241491     2  0.0000      0.985 0.000 1.000 0.000 0.000
#> GSM241492     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> GSM241493     2  0.0000      0.985 0.000 1.000 0.000 0.000
#> GSM241494     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> GSM241495     2  0.0000      0.985 0.000 1.000 0.000 0.000
#> GSM241496     2  0.0000      0.985 0.000 1.000 0.000 0.000
#> GSM241497     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> GSM241499     3  0.0469      0.935 0.012 0.000 0.988 0.000
#> GSM241500     4  0.1211      0.979 0.000 0.000 0.040 0.960
#> GSM241501     4  0.1211      0.979 0.000 0.000 0.040 0.960
#> GSM241502     4  0.1211      0.979 0.000 0.000 0.040 0.960
#> GSM241503     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241504     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241505     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241506     4  0.1211      0.979 0.000 0.000 0.040 0.960
#> GSM241507     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241508     4  0.1211      0.979 0.000 0.000 0.040 0.960
#> GSM241509     4  0.1211      0.979 0.000 0.000 0.040 0.960
#> GSM241510     4  0.1211      0.979 0.000 0.000 0.040 0.960
#> GSM241511     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241512     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241513     3  0.0592      0.936 0.000 0.000 0.984 0.016
#> GSM241514     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241515     3  0.0592      0.936 0.000 0.000 0.984 0.016
#> GSM241516     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241517     3  0.0592      0.936 0.000 0.000 0.984 0.016
#> GSM241518     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241519     3  0.0592      0.936 0.000 0.000 0.984 0.016
#> GSM241520     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241521     3  0.4008      0.689 0.000 0.000 0.756 0.244
#> GSM241522     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241523     3  0.0592      0.936 0.000 0.000 0.984 0.016
#> GSM241524     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241525     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241526     3  0.4164      0.660 0.000 0.000 0.736 0.264
#> GSM241527     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241528     3  0.4164      0.660 0.000 0.000 0.736 0.264
#> GSM241529     3  0.4164      0.660 0.000 0.000 0.736 0.264
#> GSM241530     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241531     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241532     4  0.1211      0.979 0.000 0.000 0.040 0.960
#> GSM241533     4  0.1211      0.979 0.000 0.000 0.040 0.960
#> GSM241534     4  0.1211      0.979 0.000 0.000 0.040 0.960
#> GSM241535     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241536     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241537     3  0.0707      0.934 0.000 0.000 0.980 0.020
#> GSM241538     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241539     3  0.1389      0.915 0.000 0.000 0.952 0.048
#> GSM241540     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241541     3  0.0592      0.936 0.000 0.000 0.984 0.016
#> GSM241542     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241543     3  0.0592      0.936 0.000 0.000 0.984 0.016
#> GSM241544     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241545     3  0.0592      0.936 0.000 0.000 0.984 0.016
#> GSM241546     3  0.0000      0.941 0.000 0.000 1.000 0.000
#> GSM241547     3  0.0592      0.936 0.000 0.000 0.984 0.016
#> GSM241548     3  0.0000      0.941 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2  0.0000      0.994 0.000 1.000 0.000 0.000 0.000
#> GSM241452     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.0000      0.994 0.000 1.000 0.000 0.000 0.000
#> GSM241454     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0000      0.994 0.000 1.000 0.000 0.000 0.000
#> GSM241456     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> GSM241457     5  0.0000      0.850 0.000 0.000 0.000 0.000 1.000
#> GSM241458     3  0.1671      0.886 0.076 0.000 0.924 0.000 0.000
#> GSM241459     5  0.0000      0.850 0.000 0.000 0.000 0.000 1.000
#> GSM241460     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> GSM241461     5  0.0000      0.850 0.000 0.000 0.000 0.000 1.000
#> GSM241462     3  0.1671      0.886 0.076 0.000 0.924 0.000 0.000
#> GSM241463     2  0.0000      0.994 0.000 1.000 0.000 0.000 0.000
#> GSM241464     1  0.1908      0.896 0.908 0.000 0.092 0.000 0.000
#> GSM241465     2  0.0000      0.994 0.000 1.000 0.000 0.000 0.000
#> GSM241466     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      0.994 0.000 1.000 0.000 0.000 0.000
#> GSM241469     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0000      0.994 0.000 1.000 0.000 0.000 0.000
#> GSM241471     2  0.0000      0.994 0.000 1.000 0.000 0.000 0.000
#> GSM241472     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.0000      0.994 0.000 1.000 0.000 0.000 0.000
#> GSM241474     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.0000      0.994 0.000 1.000 0.000 0.000 0.000
#> GSM241476     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      0.994 0.000 1.000 0.000 0.000 0.000
#> GSM241478     2  0.0000      0.994 0.000 1.000 0.000 0.000 0.000
#> GSM241479     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> GSM241481     5  0.0000      0.850 0.000 0.000 0.000 0.000 1.000
#> GSM241482     3  0.1671      0.886 0.076 0.000 0.924 0.000 0.000
#> GSM241483     5  0.0000      0.850 0.000 0.000 0.000 0.000 1.000
#> GSM241484     3  0.1671      0.886 0.076 0.000 0.924 0.000 0.000
#> GSM241485     3  0.3074      0.744 0.196 0.000 0.804 0.000 0.000
#> GSM241486     5  0.0000      0.850 0.000 0.000 0.000 0.000 1.000
#> GSM241487     2  0.2017      0.896 0.000 0.912 0.000 0.008 0.080
#> GSM241488     2  0.0000      0.994 0.000 1.000 0.000 0.000 0.000
#> GSM241489     1  0.1121      0.947 0.956 0.000 0.044 0.000 0.000
#> GSM241490     1  0.1270      0.943 0.948 0.000 0.052 0.000 0.000
#> GSM241491     2  0.0000      0.994 0.000 1.000 0.000 0.000 0.000
#> GSM241492     1  0.1671      0.914 0.924 0.000 0.076 0.000 0.000
#> GSM241493     2  0.0000      0.994 0.000 1.000 0.000 0.000 0.000
#> GSM241494     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0000      0.994 0.000 1.000 0.000 0.000 0.000
#> GSM241496     2  0.0000      0.994 0.000 1.000 0.000 0.000 0.000
#> GSM241497     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> GSM241499     3  0.0510      0.919 0.016 0.000 0.984 0.000 0.000
#> GSM241500     5  0.2179      0.869 0.000 0.000 0.000 0.112 0.888
#> GSM241501     5  0.2179      0.869 0.000 0.000 0.000 0.112 0.888
#> GSM241502     5  0.2852      0.854 0.000 0.000 0.000 0.172 0.828
#> GSM241503     3  0.0510      0.919 0.016 0.000 0.984 0.000 0.000
#> GSM241504     3  0.0510      0.919 0.016 0.000 0.984 0.000 0.000
#> GSM241505     3  0.0510      0.919 0.016 0.000 0.984 0.000 0.000
#> GSM241506     5  0.3177      0.839 0.000 0.000 0.000 0.208 0.792
#> GSM241507     3  0.0510      0.919 0.016 0.000 0.984 0.000 0.000
#> GSM241508     5  0.2179      0.869 0.000 0.000 0.000 0.112 0.888
#> GSM241509     5  0.3561      0.805 0.000 0.000 0.000 0.260 0.740
#> GSM241510     5  0.3586      0.802 0.000 0.000 0.000 0.264 0.736
#> GSM241511     3  0.0162      0.923 0.000 0.000 0.996 0.004 0.000
#> GSM241512     3  0.1792      0.934 0.000 0.000 0.916 0.084 0.000
#> GSM241513     4  0.0000      0.954 0.000 0.000 0.000 1.000 0.000
#> GSM241514     3  0.1851      0.934 0.000 0.000 0.912 0.088 0.000
#> GSM241515     4  0.0000      0.954 0.000 0.000 0.000 1.000 0.000
#> GSM241516     3  0.1792      0.934 0.000 0.000 0.916 0.084 0.000
#> GSM241517     4  0.0000      0.954 0.000 0.000 0.000 1.000 0.000
#> GSM241518     3  0.2377      0.916 0.000 0.000 0.872 0.128 0.000
#> GSM241519     4  0.0000      0.954 0.000 0.000 0.000 1.000 0.000
#> GSM241520     3  0.2377      0.916 0.000 0.000 0.872 0.128 0.000
#> GSM241521     4  0.1732      0.904 0.000 0.000 0.000 0.920 0.080
#> GSM241522     3  0.1626      0.931 0.016 0.000 0.940 0.044 0.000
#> GSM241523     4  0.0000      0.954 0.000 0.000 0.000 1.000 0.000
#> GSM241524     3  0.2020      0.931 0.000 0.000 0.900 0.100 0.000
#> GSM241525     3  0.1270      0.933 0.000 0.000 0.948 0.052 0.000
#> GSM241526     4  0.1851      0.899 0.000 0.000 0.000 0.912 0.088
#> GSM241527     3  0.1851      0.934 0.000 0.000 0.912 0.088 0.000
#> GSM241528     4  0.1792      0.902 0.000 0.000 0.000 0.916 0.084
#> GSM241529     4  0.1851      0.899 0.000 0.000 0.000 0.912 0.088
#> GSM241530     3  0.1671      0.935 0.000 0.000 0.924 0.076 0.000
#> GSM241531     3  0.1671      0.935 0.000 0.000 0.924 0.076 0.000
#> GSM241532     5  0.3586      0.802 0.000 0.000 0.000 0.264 0.736
#> GSM241533     5  0.3586      0.802 0.000 0.000 0.000 0.264 0.736
#> GSM241534     5  0.3586      0.802 0.000 0.000 0.000 0.264 0.736
#> GSM241535     3  0.2230      0.923 0.000 0.000 0.884 0.116 0.000
#> GSM241536     3  0.0162      0.923 0.000 0.000 0.996 0.004 0.000
#> GSM241537     4  0.0404      0.949 0.000 0.000 0.000 0.988 0.012
#> GSM241538     3  0.2074      0.929 0.000 0.000 0.896 0.104 0.000
#> GSM241539     4  0.1792      0.903 0.000 0.000 0.000 0.916 0.084
#> GSM241540     3  0.2020      0.930 0.000 0.000 0.900 0.100 0.000
#> GSM241541     4  0.0000      0.954 0.000 0.000 0.000 1.000 0.000
#> GSM241542     3  0.2732      0.885 0.000 0.000 0.840 0.160 0.000
#> GSM241543     4  0.0000      0.954 0.000 0.000 0.000 1.000 0.000
#> GSM241544     3  0.2179      0.925 0.000 0.000 0.888 0.112 0.000
#> GSM241545     4  0.0000      0.954 0.000 0.000 0.000 1.000 0.000
#> GSM241546     3  0.1908      0.933 0.000 0.000 0.908 0.092 0.000
#> GSM241547     4  0.0000      0.954 0.000 0.000 0.000 1.000 0.000
#> GSM241548     3  0.2424      0.913 0.000 0.000 0.868 0.132 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM241451     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241452     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241454     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241456     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241457     5  0.0000      0.794 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241458     6  0.0405      0.881 0.008 0.000 0.000 0.004 0.000 0.988
#> GSM241459     5  0.0000      0.794 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241460     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241461     5  0.0000      0.794 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241462     6  0.0405      0.881 0.008 0.000 0.000 0.004 0.000 0.988
#> GSM241463     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241464     1  0.1714      0.908 0.908 0.000 0.000 0.000 0.000 0.092
#> GSM241465     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241466     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241469     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241471     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241472     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241474     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241476     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241478     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241479     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241481     5  0.0000      0.794 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241482     6  0.0405      0.881 0.008 0.000 0.000 0.004 0.000 0.988
#> GSM241483     5  0.0000      0.794 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241484     6  0.0405      0.881 0.008 0.000 0.000 0.004 0.000 0.988
#> GSM241485     6  0.2632      0.752 0.164 0.000 0.000 0.004 0.000 0.832
#> GSM241486     5  0.0000      0.794 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241487     2  0.2340      0.825 0.000 0.852 0.148 0.000 0.000 0.000
#> GSM241488     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241489     1  0.1141      0.946 0.948 0.000 0.000 0.000 0.000 0.052
#> GSM241490     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241491     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241492     1  0.1714      0.908 0.908 0.000 0.000 0.000 0.000 0.092
#> GSM241493     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241494     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241496     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241497     1  0.0146      0.984 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM241498     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241499     6  0.0146      0.881 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM241500     5  0.2003      0.816 0.000 0.000 0.116 0.000 0.884 0.000
#> GSM241501     5  0.2003      0.816 0.000 0.000 0.116 0.000 0.884 0.000
#> GSM241502     5  0.2664      0.794 0.000 0.000 0.184 0.000 0.816 0.000
#> GSM241503     6  0.0146      0.881 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM241504     6  0.1765      0.828 0.000 0.000 0.000 0.096 0.000 0.904
#> GSM241505     6  0.0146      0.881 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM241506     5  0.3023      0.769 0.000 0.000 0.232 0.000 0.768 0.000
#> GSM241507     6  0.0146      0.881 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM241508     5  0.2003      0.816 0.000 0.000 0.116 0.000 0.884 0.000
#> GSM241509     5  0.3862      0.633 0.000 0.000 0.388 0.000 0.608 0.004
#> GSM241510     5  0.3890      0.617 0.000 0.000 0.400 0.000 0.596 0.004
#> GSM241511     6  0.3843      0.246 0.000 0.000 0.000 0.452 0.000 0.548
#> GSM241512     4  0.0000      0.966 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241513     3  0.0260      1.000 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM241514     4  0.0000      0.966 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241515     3  0.0260      1.000 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM241516     4  0.0000      0.966 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241517     3  0.0260      1.000 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM241518     4  0.0000      0.966 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241519     3  0.0260      1.000 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM241520     4  0.0000      0.966 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241521     3  0.0260      1.000 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM241522     4  0.0547      0.945 0.000 0.000 0.000 0.980 0.000 0.020
#> GSM241523     3  0.0260      1.000 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM241524     4  0.0000      0.966 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241525     4  0.0000      0.966 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241526     3  0.0260      1.000 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM241527     4  0.0000      0.966 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241528     3  0.0260      1.000 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM241529     3  0.0260      1.000 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM241530     4  0.0000      0.966 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241531     4  0.3862     -0.113 0.000 0.000 0.000 0.524 0.000 0.476
#> GSM241532     5  0.4109      0.609 0.000 0.000 0.392 0.008 0.596 0.004
#> GSM241533     5  0.4135      0.587 0.000 0.000 0.404 0.008 0.584 0.004
#> GSM241534     5  0.4109      0.609 0.000 0.000 0.392 0.008 0.596 0.004
#> GSM241535     4  0.0000      0.966 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241536     6  0.3810      0.313 0.000 0.000 0.000 0.428 0.000 0.572
#> GSM241537     3  0.0260      1.000 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM241538     4  0.0000      0.966 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241539     3  0.0260      1.000 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM241540     4  0.0000      0.966 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241541     3  0.0260      1.000 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM241542     4  0.0000      0.966 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241543     3  0.0260      1.000 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM241544     4  0.0000      0.966 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241545     3  0.0260      1.000 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM241546     4  0.0000      0.966 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241547     3  0.0260      1.000 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM241548     4  0.0000      0.966 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n  dose(p)  time(p) k
#> MAD:mclust 98 1.00e+00 1.00e+00 2
#> MAD:mclust 98 1.95e-10 2.33e-02 3
#> MAD:mclust 98 4.66e-11 6.70e-05 4
#> MAD:mclust 98 3.52e-10 1.85e-05 5
#> MAD:mclust 95 6.18e-11 6.10e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.976       0.990         0.5038 0.497   0.497
#> 3 3 0.947           0.948       0.977         0.3269 0.778   0.579
#> 4 4 0.797           0.831       0.867         0.0843 0.913   0.751
#> 5 5 0.756           0.778       0.838         0.0731 0.905   0.683
#> 6 6 0.631           0.530       0.736         0.0508 0.969   0.865

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     2  0.0000      0.987 0.000 1.000
#> GSM241452     1  0.0000      0.991 1.000 0.000
#> GSM241453     2  0.0000      0.987 0.000 1.000
#> GSM241454     1  0.0000      0.991 1.000 0.000
#> GSM241455     2  0.0000      0.987 0.000 1.000
#> GSM241456     1  0.0000      0.991 1.000 0.000
#> GSM241457     2  0.0000      0.987 0.000 1.000
#> GSM241458     1  0.0000      0.991 1.000 0.000
#> GSM241459     2  0.0000      0.987 0.000 1.000
#> GSM241460     1  0.0000      0.991 1.000 0.000
#> GSM241461     2  0.0000      0.987 0.000 1.000
#> GSM241462     1  0.0000      0.991 1.000 0.000
#> GSM241463     2  0.1633      0.967 0.024 0.976
#> GSM241464     1  0.0000      0.991 1.000 0.000
#> GSM241465     2  0.0000      0.987 0.000 1.000
#> GSM241466     1  0.0000      0.991 1.000 0.000
#> GSM241467     1  0.0000      0.991 1.000 0.000
#> GSM241468     2  0.2236      0.957 0.036 0.964
#> GSM241469     1  0.0000      0.991 1.000 0.000
#> GSM241470     2  0.0000      0.987 0.000 1.000
#> GSM241471     2  0.0000      0.987 0.000 1.000
#> GSM241472     1  0.0000      0.991 1.000 0.000
#> GSM241473     2  0.1414      0.971 0.020 0.980
#> GSM241474     1  0.0000      0.991 1.000 0.000
#> GSM241475     2  0.0000      0.987 0.000 1.000
#> GSM241476     1  0.0000      0.991 1.000 0.000
#> GSM241477     2  0.0000      0.987 0.000 1.000
#> GSM241478     2  0.0000      0.987 0.000 1.000
#> GSM241479     1  0.0000      0.991 1.000 0.000
#> GSM241480     1  0.0000      0.991 1.000 0.000
#> GSM241481     2  0.0000      0.987 0.000 1.000
#> GSM241482     1  0.0000      0.991 1.000 0.000
#> GSM241483     2  0.0000      0.987 0.000 1.000
#> GSM241484     1  0.0000      0.991 1.000 0.000
#> GSM241485     1  0.0000      0.991 1.000 0.000
#> GSM241486     2  0.0000      0.987 0.000 1.000
#> GSM241487     2  0.0000      0.987 0.000 1.000
#> GSM241488     2  0.2778      0.945 0.048 0.952
#> GSM241489     1  0.0000      0.991 1.000 0.000
#> GSM241490     1  0.0000      0.991 1.000 0.000
#> GSM241491     2  0.0000      0.987 0.000 1.000
#> GSM241492     1  0.0000      0.991 1.000 0.000
#> GSM241493     2  0.0000      0.987 0.000 1.000
#> GSM241494     1  0.0000      0.991 1.000 0.000
#> GSM241495     2  0.0000      0.987 0.000 1.000
#> GSM241496     2  0.0000      0.987 0.000 1.000
#> GSM241497     1  0.0000      0.991 1.000 0.000
#> GSM241498     1  0.0000      0.991 1.000 0.000
#> GSM241499     1  0.0000      0.991 1.000 0.000
#> GSM241500     2  0.0000      0.987 0.000 1.000
#> GSM241501     2  0.0000      0.987 0.000 1.000
#> GSM241502     2  0.0000      0.987 0.000 1.000
#> GSM241503     1  0.0000      0.991 1.000 0.000
#> GSM241504     1  0.0000      0.991 1.000 0.000
#> GSM241505     1  0.0000      0.991 1.000 0.000
#> GSM241506     2  0.0000      0.987 0.000 1.000
#> GSM241507     1  0.0000      0.991 1.000 0.000
#> GSM241508     2  0.0000      0.987 0.000 1.000
#> GSM241509     2  0.0000      0.987 0.000 1.000
#> GSM241510     2  0.0000      0.987 0.000 1.000
#> GSM241511     1  0.0000      0.991 1.000 0.000
#> GSM241512     1  0.0000      0.991 1.000 0.000
#> GSM241513     2  0.0000      0.987 0.000 1.000
#> GSM241514     1  0.0000      0.991 1.000 0.000
#> GSM241515     2  0.0000      0.987 0.000 1.000
#> GSM241516     1  0.0000      0.991 1.000 0.000
#> GSM241517     2  0.0000      0.987 0.000 1.000
#> GSM241518     1  0.1843      0.963 0.972 0.028
#> GSM241519     2  0.0000      0.987 0.000 1.000
#> GSM241520     1  0.0000      0.991 1.000 0.000
#> GSM241521     2  0.0000      0.987 0.000 1.000
#> GSM241522     1  0.0000      0.991 1.000 0.000
#> GSM241523     2  0.0000      0.987 0.000 1.000
#> GSM241524     1  0.0000      0.991 1.000 0.000
#> GSM241525     1  0.0000      0.991 1.000 0.000
#> GSM241526     2  0.0000      0.987 0.000 1.000
#> GSM241527     1  0.0000      0.991 1.000 0.000
#> GSM241528     2  0.0000      0.987 0.000 1.000
#> GSM241529     2  0.0000      0.987 0.000 1.000
#> GSM241530     1  0.0000      0.991 1.000 0.000
#> GSM241531     1  0.0000      0.991 1.000 0.000
#> GSM241532     2  0.0000      0.987 0.000 1.000
#> GSM241533     2  0.0000      0.987 0.000 1.000
#> GSM241534     2  0.0000      0.987 0.000 1.000
#> GSM241535     2  0.8443      0.629 0.272 0.728
#> GSM241536     1  0.0000      0.991 1.000 0.000
#> GSM241537     2  0.0000      0.987 0.000 1.000
#> GSM241538     1  0.9358      0.446 0.648 0.352
#> GSM241539     2  0.0000      0.987 0.000 1.000
#> GSM241540     1  0.0000      0.991 1.000 0.000
#> GSM241541     2  0.0000      0.987 0.000 1.000
#> GSM241542     2  0.0376      0.984 0.004 0.996
#> GSM241543     2  0.0000      0.987 0.000 1.000
#> GSM241544     1  0.0000      0.991 1.000 0.000
#> GSM241545     2  0.0000      0.987 0.000 1.000
#> GSM241546     1  0.0000      0.991 1.000 0.000
#> GSM241547     2  0.0000      0.987 0.000 1.000
#> GSM241548     2  0.7815      0.703 0.232 0.768

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2   0.000      0.992 0.000 1.000 0.000
#> GSM241452     1   0.000      0.959 1.000 0.000 0.000
#> GSM241453     2   0.000      0.992 0.000 1.000 0.000
#> GSM241454     1   0.000      0.959 1.000 0.000 0.000
#> GSM241455     2   0.000      0.992 0.000 1.000 0.000
#> GSM241456     1   0.000      0.959 1.000 0.000 0.000
#> GSM241457     2   0.000      0.992 0.000 1.000 0.000
#> GSM241458     1   0.000      0.959 1.000 0.000 0.000
#> GSM241459     2   0.000      0.992 0.000 1.000 0.000
#> GSM241460     1   0.000      0.959 1.000 0.000 0.000
#> GSM241461     2   0.000      0.992 0.000 1.000 0.000
#> GSM241462     1   0.000      0.959 1.000 0.000 0.000
#> GSM241463     2   0.000      0.992 0.000 1.000 0.000
#> GSM241464     1   0.000      0.959 1.000 0.000 0.000
#> GSM241465     2   0.000      0.992 0.000 1.000 0.000
#> GSM241466     1   0.000      0.959 1.000 0.000 0.000
#> GSM241467     1   0.000      0.959 1.000 0.000 0.000
#> GSM241468     2   0.000      0.992 0.000 1.000 0.000
#> GSM241469     1   0.000      0.959 1.000 0.000 0.000
#> GSM241470     2   0.000      0.992 0.000 1.000 0.000
#> GSM241471     2   0.000      0.992 0.000 1.000 0.000
#> GSM241472     1   0.000      0.959 1.000 0.000 0.000
#> GSM241473     2   0.000      0.992 0.000 1.000 0.000
#> GSM241474     1   0.000      0.959 1.000 0.000 0.000
#> GSM241475     2   0.000      0.992 0.000 1.000 0.000
#> GSM241476     1   0.000      0.959 1.000 0.000 0.000
#> GSM241477     2   0.000      0.992 0.000 1.000 0.000
#> GSM241478     2   0.000      0.992 0.000 1.000 0.000
#> GSM241479     1   0.000      0.959 1.000 0.000 0.000
#> GSM241480     1   0.000      0.959 1.000 0.000 0.000
#> GSM241481     2   0.000      0.992 0.000 1.000 0.000
#> GSM241482     1   0.000      0.959 1.000 0.000 0.000
#> GSM241483     2   0.000      0.992 0.000 1.000 0.000
#> GSM241484     1   0.000      0.959 1.000 0.000 0.000
#> GSM241485     1   0.000      0.959 1.000 0.000 0.000
#> GSM241486     2   0.000      0.992 0.000 1.000 0.000
#> GSM241487     2   0.000      0.992 0.000 1.000 0.000
#> GSM241488     2   0.000      0.992 0.000 1.000 0.000
#> GSM241489     1   0.000      0.959 1.000 0.000 0.000
#> GSM241490     1   0.000      0.959 1.000 0.000 0.000
#> GSM241491     2   0.000      0.992 0.000 1.000 0.000
#> GSM241492     1   0.000      0.959 1.000 0.000 0.000
#> GSM241493     2   0.000      0.992 0.000 1.000 0.000
#> GSM241494     1   0.000      0.959 1.000 0.000 0.000
#> GSM241495     2   0.000      0.992 0.000 1.000 0.000
#> GSM241496     2   0.000      0.992 0.000 1.000 0.000
#> GSM241497     1   0.000      0.959 1.000 0.000 0.000
#> GSM241498     1   0.000      0.959 1.000 0.000 0.000
#> GSM241499     1   0.000      0.959 1.000 0.000 0.000
#> GSM241500     2   0.000      0.992 0.000 1.000 0.000
#> GSM241501     2   0.000      0.992 0.000 1.000 0.000
#> GSM241502     2   0.000      0.992 0.000 1.000 0.000
#> GSM241503     1   0.000      0.959 1.000 0.000 0.000
#> GSM241504     1   0.000      0.959 1.000 0.000 0.000
#> GSM241505     1   0.000      0.959 1.000 0.000 0.000
#> GSM241506     2   0.000      0.992 0.000 1.000 0.000
#> GSM241507     1   0.000      0.959 1.000 0.000 0.000
#> GSM241508     2   0.000      0.992 0.000 1.000 0.000
#> GSM241509     2   0.000      0.992 0.000 1.000 0.000
#> GSM241510     2   0.362      0.842 0.000 0.864 0.136
#> GSM241511     1   0.000      0.959 1.000 0.000 0.000
#> GSM241512     1   0.595      0.482 0.640 0.000 0.360
#> GSM241513     3   0.000      0.981 0.000 0.000 1.000
#> GSM241514     1   0.514      0.689 0.748 0.000 0.252
#> GSM241515     3   0.000      0.981 0.000 0.000 1.000
#> GSM241516     1   0.470      0.743 0.788 0.000 0.212
#> GSM241517     3   0.000      0.981 0.000 0.000 1.000
#> GSM241518     3   0.000      0.981 0.000 0.000 1.000
#> GSM241519     3   0.375      0.832 0.000 0.144 0.856
#> GSM241520     3   0.103      0.959 0.024 0.000 0.976
#> GSM241521     2   0.312      0.878 0.000 0.892 0.108
#> GSM241522     1   0.000      0.959 1.000 0.000 0.000
#> GSM241523     3   0.153      0.947 0.000 0.040 0.960
#> GSM241524     1   0.103      0.940 0.976 0.000 0.024
#> GSM241525     1   0.000      0.959 1.000 0.000 0.000
#> GSM241526     3   0.000      0.981 0.000 0.000 1.000
#> GSM241527     3   0.000      0.981 0.000 0.000 1.000
#> GSM241528     3   0.000      0.981 0.000 0.000 1.000
#> GSM241529     3   0.000      0.981 0.000 0.000 1.000
#> GSM241530     1   0.623      0.282 0.564 0.000 0.436
#> GSM241531     1   0.522      0.676 0.740 0.000 0.260
#> GSM241532     3   0.533      0.633 0.000 0.272 0.728
#> GSM241533     3   0.000      0.981 0.000 0.000 1.000
#> GSM241534     3   0.000      0.981 0.000 0.000 1.000
#> GSM241535     3   0.000      0.981 0.000 0.000 1.000
#> GSM241536     1   0.000      0.959 1.000 0.000 0.000
#> GSM241537     3   0.000      0.981 0.000 0.000 1.000
#> GSM241538     3   0.000      0.981 0.000 0.000 1.000
#> GSM241539     3   0.000      0.981 0.000 0.000 1.000
#> GSM241540     3   0.000      0.981 0.000 0.000 1.000
#> GSM241541     3   0.000      0.981 0.000 0.000 1.000
#> GSM241542     3   0.000      0.981 0.000 0.000 1.000
#> GSM241543     3   0.000      0.981 0.000 0.000 1.000
#> GSM241544     3   0.000      0.981 0.000 0.000 1.000
#> GSM241545     3   0.000      0.981 0.000 0.000 1.000
#> GSM241546     3   0.000      0.981 0.000 0.000 1.000
#> GSM241547     3   0.000      0.981 0.000 0.000 1.000
#> GSM241548     3   0.000      0.981 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.1022      0.853 0.000 0.968 0.000 0.032
#> GSM241452     1  0.0921      0.925 0.972 0.000 0.000 0.028
#> GSM241453     2  0.1389      0.843 0.000 0.952 0.000 0.048
#> GSM241454     1  0.0469      0.928 0.988 0.000 0.000 0.012
#> GSM241455     2  0.0817      0.855 0.000 0.976 0.000 0.024
#> GSM241456     1  0.0817      0.926 0.976 0.000 0.000 0.024
#> GSM241457     4  0.4522      0.931 0.000 0.320 0.000 0.680
#> GSM241458     1  0.1743      0.920 0.940 0.004 0.000 0.056
#> GSM241459     4  0.4500      0.931 0.000 0.316 0.000 0.684
#> GSM241460     1  0.1743      0.920 0.940 0.004 0.000 0.056
#> GSM241461     4  0.4382      0.925 0.000 0.296 0.000 0.704
#> GSM241462     1  0.2021      0.917 0.932 0.012 0.000 0.056
#> GSM241463     2  0.0469      0.853 0.000 0.988 0.000 0.012
#> GSM241464     1  0.0469      0.928 0.988 0.000 0.000 0.012
#> GSM241465     2  0.1022      0.853 0.000 0.968 0.000 0.032
#> GSM241466     1  0.0707      0.926 0.980 0.000 0.000 0.020
#> GSM241467     1  0.0336      0.928 0.992 0.000 0.000 0.008
#> GSM241468     2  0.3610      0.584 0.000 0.800 0.000 0.200
#> GSM241469     1  0.0817      0.926 0.976 0.000 0.000 0.024
#> GSM241470     2  0.0817      0.857 0.000 0.976 0.000 0.024
#> GSM241471     2  0.3123      0.685 0.000 0.844 0.000 0.156
#> GSM241472     1  0.0336      0.928 0.992 0.000 0.000 0.008
#> GSM241473     2  0.1867      0.809 0.000 0.928 0.000 0.072
#> GSM241474     1  0.1211      0.925 0.960 0.000 0.000 0.040
#> GSM241475     2  0.1022      0.852 0.000 0.968 0.000 0.032
#> GSM241476     1  0.0817      0.926 0.976 0.000 0.000 0.024
#> GSM241477     2  0.1389      0.842 0.000 0.952 0.000 0.048
#> GSM241478     2  0.0336      0.854 0.000 0.992 0.000 0.008
#> GSM241479     1  0.0817      0.926 0.976 0.000 0.000 0.024
#> GSM241480     1  0.0469      0.927 0.988 0.000 0.000 0.012
#> GSM241481     4  0.4522      0.931 0.000 0.320 0.000 0.680
#> GSM241482     1  0.1743      0.920 0.940 0.004 0.000 0.056
#> GSM241483     4  0.4585      0.919 0.000 0.332 0.000 0.668
#> GSM241484     1  0.1661      0.921 0.944 0.004 0.000 0.052
#> GSM241485     1  0.1890      0.919 0.936 0.008 0.000 0.056
#> GSM241486     4  0.4356      0.922 0.000 0.292 0.000 0.708
#> GSM241487     2  0.0707      0.857 0.000 0.980 0.000 0.020
#> GSM241488     2  0.0188      0.858 0.000 0.996 0.000 0.004
#> GSM241489     1  0.0817      0.926 0.976 0.000 0.000 0.024
#> GSM241490     1  0.0817      0.926 0.976 0.000 0.000 0.024
#> GSM241491     2  0.0592      0.856 0.000 0.984 0.000 0.016
#> GSM241492     1  0.0592      0.928 0.984 0.000 0.000 0.016
#> GSM241493     2  0.0592      0.857 0.000 0.984 0.000 0.016
#> GSM241494     1  0.0817      0.926 0.976 0.000 0.000 0.024
#> GSM241495     2  0.0336      0.857 0.000 0.992 0.000 0.008
#> GSM241496     2  0.0469      0.852 0.000 0.988 0.000 0.012
#> GSM241497     1  0.0921      0.925 0.972 0.000 0.000 0.028
#> GSM241498     1  0.0817      0.926 0.976 0.000 0.000 0.024
#> GSM241499     1  0.1743      0.920 0.940 0.004 0.000 0.056
#> GSM241500     4  0.4431      0.929 0.000 0.304 0.000 0.696
#> GSM241501     4  0.4585      0.919 0.000 0.332 0.000 0.668
#> GSM241502     4  0.4522      0.931 0.000 0.320 0.000 0.680
#> GSM241503     1  0.1474      0.923 0.948 0.000 0.000 0.052
#> GSM241504     1  0.1389      0.923 0.952 0.000 0.000 0.048
#> GSM241505     1  0.1474      0.923 0.948 0.000 0.000 0.052
#> GSM241506     4  0.5471      0.895 0.000 0.268 0.048 0.684
#> GSM241507     1  0.1474      0.923 0.948 0.000 0.000 0.052
#> GSM241508     4  0.4522      0.931 0.000 0.320 0.000 0.680
#> GSM241509     4  0.5548      0.831 0.000 0.200 0.084 0.716
#> GSM241510     4  0.5964      0.658 0.000 0.096 0.228 0.676
#> GSM241511     1  0.1661      0.921 0.944 0.004 0.000 0.052
#> GSM241512     1  0.4690      0.674 0.720 0.004 0.268 0.008
#> GSM241513     2  0.6823      0.421 0.000 0.604 0.196 0.200
#> GSM241514     1  0.4426      0.792 0.812 0.000 0.096 0.092
#> GSM241515     3  0.5250      0.787 0.000 0.068 0.736 0.196
#> GSM241516     1  0.3552      0.819 0.848 0.000 0.128 0.024
#> GSM241517     2  0.5218      0.639 0.000 0.736 0.064 0.200
#> GSM241518     3  0.4845      0.796 0.008 0.028 0.760 0.204
#> GSM241519     2  0.4485      0.677 0.000 0.772 0.028 0.200
#> GSM241520     3  0.8377      0.579 0.232 0.044 0.496 0.228
#> GSM241521     2  0.3688      0.696 0.000 0.792 0.000 0.208
#> GSM241522     1  0.1022      0.924 0.968 0.000 0.000 0.032
#> GSM241523     2  0.4524      0.673 0.000 0.768 0.028 0.204
#> GSM241524     1  0.4464      0.727 0.760 0.004 0.012 0.224
#> GSM241525     1  0.1520      0.919 0.956 0.000 0.020 0.024
#> GSM241526     3  0.0000      0.840 0.000 0.000 1.000 0.000
#> GSM241527     3  0.0336      0.839 0.008 0.000 0.992 0.000
#> GSM241528     3  0.4790      0.324 0.000 0.380 0.620 0.000
#> GSM241529     3  0.0188      0.839 0.000 0.004 0.996 0.000
#> GSM241530     1  0.5285      0.192 0.524 0.000 0.468 0.008
#> GSM241531     1  0.5517      0.389 0.568 0.000 0.412 0.020
#> GSM241532     3  0.4419      0.679 0.000 0.104 0.812 0.084
#> GSM241533     3  0.0000      0.840 0.000 0.000 1.000 0.000
#> GSM241534     3  0.2300      0.803 0.000 0.028 0.924 0.048
#> GSM241535     3  0.0000      0.840 0.000 0.000 1.000 0.000
#> GSM241536     1  0.1890      0.919 0.936 0.008 0.000 0.056
#> GSM241537     3  0.0000      0.840 0.000 0.000 1.000 0.000
#> GSM241538     3  0.0000      0.840 0.000 0.000 1.000 0.000
#> GSM241539     3  0.0000      0.840 0.000 0.000 1.000 0.000
#> GSM241540     3  0.0469      0.837 0.012 0.000 0.988 0.000
#> GSM241541     3  0.2647      0.829 0.000 0.000 0.880 0.120
#> GSM241542     3  0.0921      0.841 0.000 0.000 0.972 0.028
#> GSM241543     3  0.5218      0.784 0.000 0.064 0.736 0.200
#> GSM241544     3  0.5605      0.777 0.056 0.008 0.712 0.224
#> GSM241545     3  0.5421      0.778 0.000 0.076 0.724 0.200
#> GSM241546     3  0.6683      0.685 0.176 0.000 0.620 0.204
#> GSM241547     3  0.6650      0.677 0.000 0.176 0.624 0.200
#> GSM241548     3  0.4471      0.801 0.016 0.004 0.768 0.212

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2  0.2329      0.841 0.000 0.876 0.000 0.000 0.124
#> GSM241452     1  0.2329      0.852 0.876 0.000 0.124 0.000 0.000
#> GSM241453     2  0.2966      0.806 0.000 0.816 0.000 0.000 0.184
#> GSM241454     1  0.0290      0.891 0.992 0.000 0.008 0.000 0.000
#> GSM241455     2  0.1043      0.834 0.000 0.960 0.000 0.000 0.040
#> GSM241456     1  0.1168      0.891 0.960 0.000 0.032 0.000 0.008
#> GSM241457     5  0.1892      0.938 0.000 0.080 0.004 0.000 0.916
#> GSM241458     1  0.2850      0.851 0.872 0.092 0.000 0.000 0.036
#> GSM241459     5  0.2115      0.942 0.000 0.068 0.008 0.008 0.916
#> GSM241460     1  0.3012      0.843 0.860 0.104 0.000 0.000 0.036
#> GSM241461     5  0.1430      0.934 0.000 0.052 0.004 0.000 0.944
#> GSM241462     1  0.3772      0.782 0.792 0.172 0.000 0.000 0.036
#> GSM241463     2  0.0609      0.792 0.000 0.980 0.000 0.000 0.020
#> GSM241464     1  0.1831      0.880 0.920 0.000 0.076 0.000 0.004
#> GSM241465     2  0.2230      0.843 0.000 0.884 0.000 0.000 0.116
#> GSM241466     1  0.0794      0.891 0.972 0.000 0.028 0.000 0.000
#> GSM241467     1  0.0794      0.891 0.972 0.000 0.028 0.000 0.000
#> GSM241468     2  0.4283      0.629 0.012 0.692 0.004 0.000 0.292
#> GSM241469     1  0.2362      0.874 0.900 0.000 0.076 0.000 0.024
#> GSM241470     2  0.2127      0.844 0.000 0.892 0.000 0.000 0.108
#> GSM241471     2  0.3913      0.601 0.000 0.676 0.000 0.000 0.324
#> GSM241472     1  0.0162      0.891 0.996 0.000 0.004 0.000 0.000
#> GSM241473     2  0.3554      0.736 0.004 0.776 0.004 0.000 0.216
#> GSM241474     1  0.0807      0.889 0.976 0.012 0.000 0.000 0.012
#> GSM241475     2  0.1792      0.845 0.000 0.916 0.000 0.000 0.084
#> GSM241476     1  0.1270      0.887 0.948 0.000 0.052 0.000 0.000
#> GSM241477     2  0.2732      0.820 0.000 0.840 0.000 0.000 0.160
#> GSM241478     2  0.0162      0.814 0.000 0.996 0.000 0.000 0.004
#> GSM241479     1  0.1697      0.884 0.932 0.000 0.060 0.000 0.008
#> GSM241480     1  0.0609      0.891 0.980 0.000 0.020 0.000 0.000
#> GSM241481     5  0.1892      0.938 0.000 0.080 0.004 0.000 0.916
#> GSM241482     1  0.2616      0.860 0.888 0.076 0.000 0.000 0.036
#> GSM241483     5  0.1952      0.938 0.000 0.084 0.000 0.004 0.912
#> GSM241484     1  0.2291      0.869 0.908 0.056 0.000 0.000 0.036
#> GSM241485     1  0.3695      0.791 0.800 0.164 0.000 0.000 0.036
#> GSM241486     5  0.1282      0.930 0.000 0.044 0.004 0.000 0.952
#> GSM241487     2  0.2074      0.845 0.000 0.896 0.000 0.000 0.104
#> GSM241488     2  0.0404      0.819 0.000 0.988 0.000 0.000 0.012
#> GSM241489     1  0.2011      0.873 0.908 0.000 0.088 0.000 0.004
#> GSM241490     1  0.2798      0.836 0.852 0.000 0.140 0.000 0.008
#> GSM241491     2  0.2069      0.844 0.000 0.912 0.012 0.000 0.076
#> GSM241492     1  0.0963      0.892 0.964 0.000 0.036 0.000 0.000
#> GSM241493     2  0.1270      0.839 0.000 0.948 0.000 0.000 0.052
#> GSM241494     1  0.1792      0.876 0.916 0.000 0.084 0.000 0.000
#> GSM241495     2  0.2124      0.845 0.000 0.900 0.004 0.000 0.096
#> GSM241496     2  0.1522      0.837 0.000 0.944 0.012 0.000 0.044
#> GSM241497     1  0.2561      0.838 0.856 0.000 0.144 0.000 0.000
#> GSM241498     1  0.1270      0.887 0.948 0.000 0.052 0.000 0.000
#> GSM241499     1  0.2554      0.862 0.892 0.072 0.000 0.000 0.036
#> GSM241500     5  0.1697      0.940 0.000 0.060 0.000 0.008 0.932
#> GSM241501     5  0.2305      0.931 0.000 0.092 0.000 0.012 0.896
#> GSM241502     5  0.2069      0.941 0.000 0.076 0.000 0.012 0.912
#> GSM241503     1  0.1386      0.884 0.952 0.016 0.000 0.000 0.032
#> GSM241504     1  0.1386      0.884 0.952 0.016 0.000 0.000 0.032
#> GSM241505     1  0.1469      0.883 0.948 0.016 0.000 0.000 0.036
#> GSM241506     5  0.2888      0.917 0.000 0.060 0.004 0.056 0.880
#> GSM241507     1  0.1661      0.881 0.940 0.024 0.000 0.000 0.036
#> GSM241508     5  0.2130      0.939 0.000 0.080 0.000 0.012 0.908
#> GSM241509     5  0.1901      0.927 0.000 0.040 0.004 0.024 0.932
#> GSM241510     5  0.4367      0.406 0.000 0.008 0.000 0.372 0.620
#> GSM241511     1  0.3011      0.860 0.884 0.048 0.000 0.032 0.036
#> GSM241512     4  0.5031      0.296 0.384 0.024 0.000 0.584 0.008
#> GSM241513     3  0.4714      0.444 0.000 0.372 0.608 0.016 0.004
#> GSM241514     3  0.3807      0.539 0.240 0.000 0.748 0.012 0.000
#> GSM241515     2  0.6415      0.285 0.000 0.548 0.252 0.192 0.008
#> GSM241516     1  0.4937      0.310 0.544 0.000 0.428 0.028 0.000
#> GSM241517     2  0.3920      0.562 0.000 0.724 0.268 0.004 0.004
#> GSM241518     3  0.1362      0.744 0.012 0.008 0.960 0.016 0.004
#> GSM241519     2  0.4009      0.482 0.000 0.684 0.312 0.000 0.004
#> GSM241520     3  0.0807      0.747 0.012 0.012 0.976 0.000 0.000
#> GSM241521     2  0.3684      0.553 0.000 0.720 0.280 0.000 0.000
#> GSM241522     1  0.4542      0.283 0.536 0.000 0.456 0.000 0.008
#> GSM241523     3  0.4350      0.361 0.000 0.408 0.588 0.000 0.004
#> GSM241524     3  0.1704      0.721 0.068 0.000 0.928 0.004 0.000
#> GSM241525     1  0.2951      0.847 0.860 0.000 0.112 0.028 0.000
#> GSM241526     4  0.0162      0.841 0.000 0.000 0.004 0.996 0.000
#> GSM241527     4  0.0451      0.841 0.004 0.000 0.008 0.988 0.000
#> GSM241528     4  0.3475      0.689 0.000 0.180 0.004 0.804 0.012
#> GSM241529     4  0.0162      0.841 0.000 0.000 0.004 0.996 0.000
#> GSM241530     4  0.2798      0.746 0.140 0.000 0.008 0.852 0.000
#> GSM241531     4  0.2583      0.764 0.132 0.000 0.000 0.864 0.004
#> GSM241532     4  0.1197      0.824 0.000 0.000 0.000 0.952 0.048
#> GSM241533     4  0.0510      0.837 0.000 0.000 0.000 0.984 0.016
#> GSM241534     4  0.0609      0.836 0.000 0.000 0.000 0.980 0.020
#> GSM241535     4  0.0290      0.841 0.000 0.000 0.008 0.992 0.000
#> GSM241536     1  0.4039      0.818 0.820 0.100 0.000 0.044 0.036
#> GSM241537     4  0.0671      0.839 0.000 0.000 0.016 0.980 0.004
#> GSM241538     4  0.3109      0.726 0.000 0.000 0.200 0.800 0.000
#> GSM241539     4  0.0404      0.840 0.000 0.000 0.012 0.988 0.000
#> GSM241540     4  0.4921      0.461 0.036 0.000 0.360 0.604 0.000
#> GSM241541     4  0.3585      0.665 0.000 0.004 0.220 0.772 0.004
#> GSM241542     4  0.4066      0.543 0.000 0.000 0.324 0.672 0.004
#> GSM241543     3  0.3912      0.673 0.000 0.208 0.768 0.020 0.004
#> GSM241544     3  0.1106      0.742 0.024 0.000 0.964 0.012 0.000
#> GSM241545     3  0.3846      0.679 0.000 0.200 0.776 0.020 0.004
#> GSM241546     3  0.2771      0.670 0.128 0.000 0.860 0.012 0.000
#> GSM241547     3  0.4763      0.466 0.000 0.360 0.616 0.020 0.004
#> GSM241548     3  0.0898      0.743 0.008 0.000 0.972 0.020 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM241451     2  0.2918     0.7261 0.000 0.856 0.004 0.000 0.052 0.088
#> GSM241452     1  0.3181     0.5419 0.856 0.000 0.048 0.000 0.044 0.052
#> GSM241453     2  0.3516     0.7373 0.000 0.832 0.036 0.000 0.076 0.056
#> GSM241454     1  0.2442     0.4622 0.852 0.000 0.000 0.000 0.004 0.144
#> GSM241455     2  0.2925     0.7261 0.000 0.832 0.004 0.000 0.016 0.148
#> GSM241456     1  0.4821     0.4044 0.660 0.000 0.004 0.000 0.240 0.096
#> GSM241457     5  0.2903     0.8777 0.000 0.084 0.016 0.000 0.864 0.036
#> GSM241458     6  0.5153     0.4219 0.452 0.084 0.000 0.000 0.000 0.464
#> GSM241459     5  0.1398     0.8874 0.000 0.052 0.000 0.000 0.940 0.008
#> GSM241460     6  0.5547     0.6268 0.344 0.148 0.000 0.000 0.000 0.508
#> GSM241461     5  0.2221     0.8730 0.004 0.044 0.004 0.000 0.908 0.040
#> GSM241462     6  0.5719     0.6463 0.248 0.232 0.000 0.000 0.000 0.520
#> GSM241463     2  0.3453     0.7124 0.000 0.788 0.004 0.000 0.028 0.180
#> GSM241464     1  0.7286     0.1734 0.492 0.068 0.096 0.000 0.076 0.268
#> GSM241465     2  0.3511     0.7436 0.000 0.808 0.004 0.000 0.064 0.124
#> GSM241466     1  0.1901     0.5210 0.912 0.000 0.004 0.000 0.008 0.076
#> GSM241467     1  0.2703     0.5143 0.860 0.000 0.016 0.000 0.008 0.116
#> GSM241468     2  0.6748     0.3450 0.004 0.464 0.052 0.000 0.196 0.284
#> GSM241469     1  0.5003     0.3980 0.656 0.000 0.020 0.000 0.248 0.076
#> GSM241470     2  0.1980     0.7519 0.000 0.920 0.008 0.000 0.036 0.036
#> GSM241471     2  0.6389     0.4385 0.000 0.548 0.088 0.000 0.240 0.124
#> GSM241472     1  0.3516     0.4549 0.792 0.000 0.012 0.000 0.024 0.172
#> GSM241473     2  0.6436     0.5164 0.000 0.548 0.100 0.000 0.120 0.232
#> GSM241474     1  0.6433    -0.1709 0.488 0.032 0.024 0.000 0.104 0.352
#> GSM241475     2  0.2034     0.7512 0.000 0.912 0.004 0.000 0.024 0.060
#> GSM241476     1  0.3960     0.4797 0.760 0.000 0.008 0.000 0.180 0.052
#> GSM241477     2  0.4019     0.7231 0.000 0.796 0.040 0.000 0.088 0.076
#> GSM241478     2  0.2473     0.7290 0.000 0.856 0.008 0.000 0.000 0.136
#> GSM241479     1  0.2520     0.5451 0.888 0.000 0.012 0.000 0.068 0.032
#> GSM241480     1  0.1141     0.5300 0.948 0.000 0.000 0.000 0.000 0.052
#> GSM241481     5  0.2432     0.8831 0.000 0.080 0.008 0.000 0.888 0.024
#> GSM241482     1  0.4944    -0.4396 0.488 0.064 0.000 0.000 0.000 0.448
#> GSM241483     5  0.2537     0.8818 0.000 0.096 0.000 0.000 0.872 0.032
#> GSM241484     1  0.4371    -0.1092 0.580 0.028 0.000 0.000 0.000 0.392
#> GSM241485     6  0.5718     0.6516 0.252 0.228 0.000 0.000 0.000 0.520
#> GSM241486     5  0.2217     0.8644 0.004 0.036 0.004 0.000 0.908 0.048
#> GSM241487     2  0.3705     0.7053 0.000 0.792 0.008 0.000 0.056 0.144
#> GSM241488     2  0.1841     0.7434 0.000 0.920 0.008 0.000 0.008 0.064
#> GSM241489     1  0.4419     0.5244 0.776 0.004 0.060 0.000 0.080 0.080
#> GSM241490     1  0.2507     0.5439 0.892 0.000 0.060 0.000 0.028 0.020
#> GSM241491     2  0.3350     0.7445 0.000 0.828 0.012 0.000 0.048 0.112
#> GSM241492     1  0.7383    -0.0182 0.440 0.092 0.116 0.000 0.040 0.312
#> GSM241493     2  0.2039     0.7452 0.000 0.908 0.004 0.000 0.016 0.072
#> GSM241494     1  0.1340     0.5458 0.948 0.000 0.040 0.000 0.004 0.008
#> GSM241495     2  0.3051     0.7181 0.000 0.844 0.008 0.000 0.036 0.112
#> GSM241496     2  0.2575     0.7294 0.000 0.872 0.024 0.000 0.004 0.100
#> GSM241497     1  0.3361     0.5404 0.844 0.000 0.044 0.000 0.064 0.048
#> GSM241498     1  0.3063     0.5215 0.840 0.000 0.000 0.000 0.092 0.068
#> GSM241499     1  0.4829    -0.2146 0.544 0.048 0.000 0.004 0.000 0.404
#> GSM241500     5  0.1584     0.8893 0.000 0.064 0.000 0.000 0.928 0.008
#> GSM241501     5  0.2934     0.8700 0.000 0.112 0.000 0.000 0.844 0.044
#> GSM241502     5  0.2822     0.8755 0.000 0.108 0.000 0.004 0.856 0.032
#> GSM241503     1  0.4241     0.1298 0.644 0.016 0.000 0.004 0.004 0.332
#> GSM241504     1  0.4326     0.0700 0.608 0.016 0.000 0.008 0.000 0.368
#> GSM241505     1  0.3930     0.1081 0.628 0.000 0.000 0.004 0.004 0.364
#> GSM241506     5  0.3666     0.7675 0.000 0.024 0.000 0.160 0.792 0.024
#> GSM241507     1  0.3878     0.1040 0.644 0.000 0.000 0.004 0.004 0.348
#> GSM241508     5  0.3215     0.8639 0.000 0.100 0.000 0.000 0.828 0.072
#> GSM241509     5  0.2845     0.8226 0.004 0.008 0.000 0.064 0.872 0.052
#> GSM241510     5  0.5334     0.3815 0.000 0.032 0.000 0.336 0.576 0.056
#> GSM241511     1  0.5687    -0.1707 0.508 0.000 0.004 0.152 0.000 0.336
#> GSM241512     4  0.6029    -0.1546 0.300 0.000 0.000 0.424 0.000 0.276
#> GSM241513     3  0.4269     0.6202 0.000 0.220 0.724 0.020 0.000 0.036
#> GSM241514     3  0.4234     0.4741 0.372 0.000 0.608 0.000 0.004 0.016
#> GSM241515     2  0.6669     0.1411 0.000 0.472 0.304 0.076 0.000 0.148
#> GSM241516     1  0.4703     0.3559 0.644 0.000 0.300 0.008 0.004 0.044
#> GSM241517     2  0.5065     0.1614 0.000 0.532 0.396 0.004 0.000 0.068
#> GSM241518     3  0.3475     0.7364 0.144 0.004 0.816 0.008 0.008 0.020
#> GSM241519     2  0.4453     0.0495 0.000 0.528 0.444 0.000 0.000 0.028
#> GSM241520     3  0.3324     0.7512 0.164 0.008 0.808 0.000 0.004 0.016
#> GSM241521     2  0.4905     0.0892 0.000 0.528 0.408 0.000 0.000 0.064
#> GSM241522     1  0.3800     0.4511 0.764 0.000 0.192 0.000 0.008 0.036
#> GSM241523     3  0.4428     0.3194 0.000 0.388 0.580 0.000 0.000 0.032
#> GSM241524     3  0.3189     0.7112 0.236 0.000 0.760 0.000 0.000 0.004
#> GSM241525     1  0.5034     0.3180 0.660 0.000 0.024 0.252 0.004 0.060
#> GSM241526     4  0.1059     0.7575 0.000 0.000 0.004 0.964 0.016 0.016
#> GSM241527     4  0.1480     0.7578 0.020 0.000 0.000 0.940 0.000 0.040
#> GSM241528     4  0.3421     0.6268 0.000 0.200 0.004 0.780 0.004 0.012
#> GSM241529     4  0.1176     0.7573 0.000 0.000 0.000 0.956 0.020 0.024
#> GSM241530     4  0.3925     0.6293 0.200 0.000 0.000 0.744 0.000 0.056
#> GSM241531     4  0.4691     0.5226 0.108 0.000 0.000 0.672 0.000 0.220
#> GSM241532     4  0.3908     0.5827 0.000 0.000 0.004 0.724 0.244 0.028
#> GSM241533     4  0.3178     0.6678 0.000 0.000 0.004 0.804 0.176 0.016
#> GSM241534     4  0.3398     0.6261 0.000 0.000 0.004 0.768 0.216 0.012
#> GSM241535     4  0.0790     0.7587 0.000 0.000 0.000 0.968 0.000 0.032
#> GSM241536     6  0.6297     0.2470 0.356 0.012 0.000 0.236 0.000 0.396
#> GSM241537     4  0.1088     0.7563 0.000 0.000 0.024 0.960 0.000 0.016
#> GSM241538     4  0.4164     0.6816 0.016 0.000 0.168 0.756 0.000 0.060
#> GSM241539     4  0.0951     0.7569 0.000 0.000 0.008 0.968 0.004 0.020
#> GSM241540     4  0.6526     0.4372 0.248 0.000 0.148 0.524 0.000 0.080
#> GSM241541     4  0.4138     0.4717 0.000 0.004 0.320 0.656 0.000 0.020
#> GSM241542     4  0.4389     0.4308 0.000 0.000 0.372 0.596 0.000 0.032
#> GSM241543     3  0.3543     0.6489 0.000 0.200 0.768 0.000 0.000 0.032
#> GSM241544     3  0.2743     0.7497 0.164 0.000 0.828 0.000 0.000 0.008
#> GSM241545     3  0.3630     0.6391 0.000 0.212 0.756 0.000 0.000 0.032
#> GSM241546     3  0.3374     0.7223 0.208 0.000 0.772 0.000 0.000 0.020
#> GSM241547     3  0.4278     0.6210 0.000 0.220 0.724 0.024 0.000 0.032
#> GSM241548     3  0.2708     0.7473 0.112 0.004 0.864 0.008 0.000 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n  dose(p)  time(p) k
#> MAD:NMF 97 6.52e-01 0.974192 2
#> MAD:NMF 96 7.14e-11 0.376726 3
#> MAD:NMF 94 1.30e-12 0.000622 4
#> MAD:NMF 88 2.00e-12 0.000016 5
#> MAD:NMF 64 2.43e-11 0.000002 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.999       1.000         0.5056 0.495   0.495
#> 3 3 0.946           0.933       0.968         0.2132 0.886   0.769
#> 4 4 0.854           0.882       0.939         0.1914 0.875   0.671
#> 5 5 0.857           0.840       0.920         0.0258 0.985   0.942
#> 6 6 0.892           0.806       0.895         0.0342 0.990   0.957

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     2  0.0000      1.000 0.000 1.000
#> GSM241452     1  0.0000      0.999 1.000 0.000
#> GSM241453     2  0.0000      1.000 0.000 1.000
#> GSM241454     1  0.0000      0.999 1.000 0.000
#> GSM241455     2  0.0000      1.000 0.000 1.000
#> GSM241456     1  0.0000      0.999 1.000 0.000
#> GSM241457     2  0.0000      1.000 0.000 1.000
#> GSM241458     1  0.0000      0.999 1.000 0.000
#> GSM241459     2  0.0000      1.000 0.000 1.000
#> GSM241460     1  0.0000      0.999 1.000 0.000
#> GSM241461     2  0.0000      1.000 0.000 1.000
#> GSM241462     1  0.0000      0.999 1.000 0.000
#> GSM241463     2  0.0000      1.000 0.000 1.000
#> GSM241464     1  0.0000      0.999 1.000 0.000
#> GSM241465     2  0.0000      1.000 0.000 1.000
#> GSM241466     1  0.0000      0.999 1.000 0.000
#> GSM241467     1  0.0000      0.999 1.000 0.000
#> GSM241468     2  0.0000      1.000 0.000 1.000
#> GSM241469     1  0.0000      0.999 1.000 0.000
#> GSM241470     2  0.0000      1.000 0.000 1.000
#> GSM241471     2  0.0000      1.000 0.000 1.000
#> GSM241472     1  0.0000      0.999 1.000 0.000
#> GSM241473     2  0.0000      1.000 0.000 1.000
#> GSM241474     1  0.0000      0.999 1.000 0.000
#> GSM241475     2  0.0000      1.000 0.000 1.000
#> GSM241476     1  0.0000      0.999 1.000 0.000
#> GSM241477     2  0.0000      1.000 0.000 1.000
#> GSM241478     2  0.0000      1.000 0.000 1.000
#> GSM241479     1  0.0000      0.999 1.000 0.000
#> GSM241480     1  0.0000      0.999 1.000 0.000
#> GSM241481     2  0.0000      1.000 0.000 1.000
#> GSM241482     1  0.0000      0.999 1.000 0.000
#> GSM241483     2  0.0000      1.000 0.000 1.000
#> GSM241484     1  0.0000      0.999 1.000 0.000
#> GSM241485     1  0.0000      0.999 1.000 0.000
#> GSM241486     2  0.0000      1.000 0.000 1.000
#> GSM241487     2  0.0000      1.000 0.000 1.000
#> GSM241488     2  0.0000      1.000 0.000 1.000
#> GSM241489     1  0.0000      0.999 1.000 0.000
#> GSM241490     1  0.0000      0.999 1.000 0.000
#> GSM241491     2  0.0000      1.000 0.000 1.000
#> GSM241492     1  0.0000      0.999 1.000 0.000
#> GSM241493     2  0.0000      1.000 0.000 1.000
#> GSM241494     1  0.0000      0.999 1.000 0.000
#> GSM241495     2  0.0000      1.000 0.000 1.000
#> GSM241496     2  0.0000      1.000 0.000 1.000
#> GSM241497     1  0.0000      0.999 1.000 0.000
#> GSM241498     1  0.0000      0.999 1.000 0.000
#> GSM241499     1  0.0000      0.999 1.000 0.000
#> GSM241500     2  0.0000      1.000 0.000 1.000
#> GSM241501     2  0.0000      1.000 0.000 1.000
#> GSM241502     2  0.0000      1.000 0.000 1.000
#> GSM241503     1  0.0000      0.999 1.000 0.000
#> GSM241504     1  0.0000      0.999 1.000 0.000
#> GSM241505     1  0.0000      0.999 1.000 0.000
#> GSM241506     2  0.0000      1.000 0.000 1.000
#> GSM241507     1  0.0000      0.999 1.000 0.000
#> GSM241508     2  0.0000      1.000 0.000 1.000
#> GSM241509     2  0.0000      1.000 0.000 1.000
#> GSM241510     2  0.0000      1.000 0.000 1.000
#> GSM241511     1  0.0000      0.999 1.000 0.000
#> GSM241512     1  0.0000      0.999 1.000 0.000
#> GSM241513     2  0.0000      1.000 0.000 1.000
#> GSM241514     1  0.0000      0.999 1.000 0.000
#> GSM241515     2  0.0000      1.000 0.000 1.000
#> GSM241516     1  0.0000      0.999 1.000 0.000
#> GSM241517     2  0.0000      1.000 0.000 1.000
#> GSM241518     1  0.0376      0.996 0.996 0.004
#> GSM241519     2  0.0000      1.000 0.000 1.000
#> GSM241520     1  0.0376      0.996 0.996 0.004
#> GSM241521     2  0.0000      1.000 0.000 1.000
#> GSM241522     1  0.0000      0.999 1.000 0.000
#> GSM241523     2  0.0000      1.000 0.000 1.000
#> GSM241524     1  0.0000      0.999 1.000 0.000
#> GSM241525     1  0.0000      0.999 1.000 0.000
#> GSM241526     2  0.0000      1.000 0.000 1.000
#> GSM241527     1  0.0000      0.999 1.000 0.000
#> GSM241528     2  0.0000      1.000 0.000 1.000
#> GSM241529     2  0.0000      1.000 0.000 1.000
#> GSM241530     1  0.0000      0.999 1.000 0.000
#> GSM241531     1  0.0000      0.999 1.000 0.000
#> GSM241532     2  0.0000      1.000 0.000 1.000
#> GSM241533     2  0.0000      1.000 0.000 1.000
#> GSM241534     2  0.0000      1.000 0.000 1.000
#> GSM241535     1  0.0000      0.999 1.000 0.000
#> GSM241536     1  0.0000      0.999 1.000 0.000
#> GSM241537     2  0.0000      1.000 0.000 1.000
#> GSM241538     1  0.0672      0.993 0.992 0.008
#> GSM241539     2  0.0000      1.000 0.000 1.000
#> GSM241540     1  0.0000      0.999 1.000 0.000
#> GSM241541     2  0.0000      1.000 0.000 1.000
#> GSM241542     1  0.0672      0.993 0.992 0.008
#> GSM241543     2  0.0000      1.000 0.000 1.000
#> GSM241544     1  0.0000      0.999 1.000 0.000
#> GSM241545     2  0.0000      1.000 0.000 1.000
#> GSM241546     1  0.0000      0.999 1.000 0.000
#> GSM241547     2  0.0000      1.000 0.000 1.000
#> GSM241548     1  0.0672      0.993 0.992 0.008

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241452     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241453     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241454     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241455     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241456     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241457     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241458     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241459     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241460     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241461     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241462     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241463     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241464     1  0.0592      0.958 0.988 0.000 0.012
#> GSM241465     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241466     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241467     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241468     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241469     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241470     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241471     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241472     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241473     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241474     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241475     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241476     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241477     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241478     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241479     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241480     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241481     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241482     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241483     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241484     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241485     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241486     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241487     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241488     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241489     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241490     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241491     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241492     1  0.0592      0.958 0.988 0.000 0.012
#> GSM241493     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241494     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241495     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241496     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241497     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241498     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241499     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241500     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241501     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241502     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241503     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241504     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241505     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241506     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241507     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241508     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241509     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241510     2  0.0000      0.998 0.000 1.000 0.000
#> GSM241511     3  0.0592      0.851 0.012 0.000 0.988
#> GSM241512     3  0.0592      0.851 0.012 0.000 0.988
#> GSM241513     2  0.0424      0.995 0.000 0.992 0.008
#> GSM241514     3  0.4796      0.782 0.220 0.000 0.780
#> GSM241515     2  0.0424      0.995 0.000 0.992 0.008
#> GSM241516     3  0.4796      0.782 0.220 0.000 0.780
#> GSM241517     2  0.0237      0.997 0.000 0.996 0.004
#> GSM241518     3  0.6192      0.334 0.420 0.000 0.580
#> GSM241519     2  0.0237      0.997 0.000 0.996 0.004
#> GSM241520     3  0.6192      0.334 0.420 0.000 0.580
#> GSM241521     2  0.0424      0.995 0.000 0.992 0.008
#> GSM241522     1  0.0000      0.970 1.000 0.000 0.000
#> GSM241523     2  0.0424      0.995 0.000 0.992 0.008
#> GSM241524     1  0.6026      0.215 0.624 0.000 0.376
#> GSM241525     1  0.5948      0.289 0.640 0.000 0.360
#> GSM241526     2  0.0237      0.997 0.000 0.996 0.004
#> GSM241527     3  0.4842      0.779 0.224 0.000 0.776
#> GSM241528     2  0.0237      0.997 0.000 0.996 0.004
#> GSM241529     2  0.0237      0.997 0.000 0.996 0.004
#> GSM241530     3  0.4842      0.779 0.224 0.000 0.776
#> GSM241531     3  0.0592      0.851 0.012 0.000 0.988
#> GSM241532     2  0.0237      0.997 0.000 0.996 0.004
#> GSM241533     2  0.0237      0.997 0.000 0.996 0.004
#> GSM241534     2  0.0237      0.997 0.000 0.996 0.004
#> GSM241535     3  0.0592      0.851 0.012 0.000 0.988
#> GSM241536     3  0.0592      0.851 0.012 0.000 0.988
#> GSM241537     2  0.0237      0.997 0.000 0.996 0.004
#> GSM241538     3  0.0000      0.846 0.000 0.000 1.000
#> GSM241539     2  0.0237      0.997 0.000 0.996 0.004
#> GSM241540     3  0.0424      0.850 0.008 0.000 0.992
#> GSM241541     2  0.0237      0.997 0.000 0.996 0.004
#> GSM241542     3  0.0000      0.846 0.000 0.000 1.000
#> GSM241543     2  0.0424      0.995 0.000 0.992 0.008
#> GSM241544     3  0.4796      0.782 0.220 0.000 0.780
#> GSM241545     2  0.0424      0.995 0.000 0.992 0.008
#> GSM241546     3  0.4796      0.782 0.220 0.000 0.780
#> GSM241547     2  0.0237      0.997 0.000 0.996 0.004
#> GSM241548     3  0.0000      0.846 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241452     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241453     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241454     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241455     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241456     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241457     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241458     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241459     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241460     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241461     2  0.0188      0.982 0.000 0.996 0.000 0.004
#> GSM241462     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241463     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241464     1  0.0592      0.954 0.984 0.000 0.016 0.000
#> GSM241465     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241466     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241469     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241470     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241471     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241472     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241473     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241474     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241475     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241476     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241478     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241479     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241481     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241482     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241483     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241484     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241485     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241486     2  0.0188      0.982 0.000 0.996 0.000 0.004
#> GSM241487     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241488     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241489     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241491     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241492     1  0.0592      0.954 0.984 0.000 0.016 0.000
#> GSM241493     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241494     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241495     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241496     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241497     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241499     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241500     4  0.4989      0.309 0.000 0.472 0.000 0.528
#> GSM241501     2  0.4331      0.495 0.000 0.712 0.000 0.288
#> GSM241502     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241503     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241504     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241505     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241506     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM241507     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241508     4  0.4925      0.429 0.000 0.428 0.000 0.572
#> GSM241509     4  0.3726      0.809 0.000 0.212 0.000 0.788
#> GSM241510     4  0.3726      0.809 0.000 0.212 0.000 0.788
#> GSM241511     3  0.0188      0.834 0.004 0.000 0.996 0.000
#> GSM241512     3  0.0188      0.834 0.004 0.000 0.996 0.000
#> GSM241513     4  0.2704      0.876 0.000 0.124 0.000 0.876
#> GSM241514     3  0.3764      0.781 0.216 0.000 0.784 0.000
#> GSM241515     4  0.2704      0.876 0.000 0.124 0.000 0.876
#> GSM241516     3  0.3764      0.781 0.216 0.000 0.784 0.000
#> GSM241517     4  0.1637      0.885 0.000 0.060 0.000 0.940
#> GSM241518     3  0.5070      0.338 0.416 0.000 0.580 0.004
#> GSM241519     4  0.1637      0.885 0.000 0.060 0.000 0.940
#> GSM241520     3  0.5070      0.338 0.416 0.000 0.580 0.004
#> GSM241521     4  0.4040      0.771 0.000 0.248 0.000 0.752
#> GSM241522     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> GSM241523     4  0.3764      0.808 0.000 0.216 0.000 0.784
#> GSM241524     1  0.4790      0.210 0.620 0.000 0.380 0.000
#> GSM241525     1  0.4730      0.284 0.636 0.000 0.364 0.000
#> GSM241526     4  0.1716      0.886 0.000 0.064 0.000 0.936
#> GSM241527     3  0.3801      0.778 0.220 0.000 0.780 0.000
#> GSM241528     4  0.1716      0.886 0.000 0.064 0.000 0.936
#> GSM241529     4  0.1716      0.886 0.000 0.064 0.000 0.936
#> GSM241530     3  0.3801      0.778 0.220 0.000 0.780 0.000
#> GSM241531     3  0.0188      0.834 0.004 0.000 0.996 0.000
#> GSM241532     4  0.0188      0.859 0.000 0.004 0.000 0.996
#> GSM241533     4  0.0188      0.859 0.000 0.004 0.000 0.996
#> GSM241534     4  0.0188      0.859 0.000 0.004 0.000 0.996
#> GSM241535     3  0.0188      0.834 0.004 0.000 0.996 0.000
#> GSM241536     3  0.0188      0.834 0.004 0.000 0.996 0.000
#> GSM241537     4  0.0188      0.859 0.000 0.004 0.000 0.996
#> GSM241538     3  0.0336      0.830 0.000 0.000 0.992 0.008
#> GSM241539     4  0.0188      0.859 0.000 0.004 0.000 0.996
#> GSM241540     3  0.0000      0.831 0.000 0.000 1.000 0.000
#> GSM241541     4  0.0188      0.859 0.000 0.004 0.000 0.996
#> GSM241542     3  0.0336      0.830 0.000 0.000 0.992 0.008
#> GSM241543     4  0.2704      0.876 0.000 0.124 0.000 0.876
#> GSM241544     3  0.3764      0.781 0.216 0.000 0.784 0.000
#> GSM241545     4  0.2704      0.876 0.000 0.124 0.000 0.876
#> GSM241546     3  0.3764      0.781 0.216 0.000 0.784 0.000
#> GSM241547     4  0.1637      0.885 0.000 0.060 0.000 0.940
#> GSM241548     3  0.0336      0.830 0.000 0.000 0.992 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241452     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241454     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241456     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241457     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241458     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241459     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241460     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241461     2  0.0162     0.9756 0.000 0.996 0.000 0.000 0.004
#> GSM241462     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241463     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241464     1  0.1800     0.8939 0.932 0.000 0.048 0.020 0.000
#> GSM241465     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241466     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241469     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241471     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241472     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241474     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241476     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241478     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241479     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241481     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241482     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241483     2  0.1197     0.9386 0.000 0.952 0.000 0.000 0.048
#> GSM241484     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241485     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241486     2  0.0162     0.9756 0.000 0.996 0.000 0.000 0.004
#> GSM241487     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241488     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241489     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241490     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241491     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241492     1  0.1800     0.8939 0.932 0.000 0.048 0.020 0.000
#> GSM241493     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241494     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241496     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000
#> GSM241497     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241499     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241500     5  0.4227     0.3584 0.000 0.420 0.000 0.000 0.580
#> GSM241501     2  0.3983     0.4235 0.000 0.660 0.000 0.000 0.340
#> GSM241502     2  0.1197     0.9386 0.000 0.952 0.000 0.000 0.048
#> GSM241503     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241504     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241505     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241506     2  0.1197     0.9386 0.000 0.952 0.000 0.000 0.048
#> GSM241507     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241508     5  0.4114     0.4679 0.000 0.376 0.000 0.000 0.624
#> GSM241509     5  0.2732     0.7955 0.000 0.160 0.000 0.000 0.840
#> GSM241510     5  0.2732     0.7955 0.000 0.160 0.000 0.000 0.840
#> GSM241511     4  0.0000     0.8388 0.000 0.000 0.000 1.000 0.000
#> GSM241512     4  0.0000     0.8388 0.000 0.000 0.000 1.000 0.000
#> GSM241513     5  0.1768     0.8602 0.000 0.072 0.004 0.000 0.924
#> GSM241514     3  0.6351     0.4865 0.204 0.000 0.516 0.280 0.000
#> GSM241515     5  0.1768     0.8602 0.000 0.072 0.004 0.000 0.924
#> GSM241516     3  0.6351     0.4865 0.204 0.000 0.516 0.280 0.000
#> GSM241517     5  0.0162     0.8659 0.000 0.004 0.000 0.000 0.996
#> GSM241518     3  0.4626     0.3717 0.364 0.000 0.616 0.020 0.000
#> GSM241519     5  0.0162     0.8659 0.000 0.004 0.000 0.000 0.996
#> GSM241520     3  0.4626     0.3717 0.364 0.000 0.616 0.020 0.000
#> GSM241521     5  0.3491     0.7412 0.000 0.228 0.004 0.000 0.768
#> GSM241522     1  0.0000     0.9630 1.000 0.000 0.000 0.000 0.000
#> GSM241523     5  0.3231     0.7760 0.000 0.196 0.004 0.000 0.800
#> GSM241524     1  0.6043     0.0772 0.568 0.000 0.264 0.168 0.000
#> GSM241525     1  0.4444     0.2859 0.624 0.000 0.012 0.364 0.000
#> GSM241526     5  0.0290     0.8671 0.000 0.008 0.000 0.000 0.992
#> GSM241527     4  0.3630     0.5353 0.204 0.000 0.016 0.780 0.000
#> GSM241528     5  0.0290     0.8671 0.000 0.008 0.000 0.000 0.992
#> GSM241529     5  0.0290     0.8671 0.000 0.008 0.000 0.000 0.992
#> GSM241530     4  0.3630     0.5353 0.204 0.000 0.016 0.780 0.000
#> GSM241531     4  0.0000     0.8388 0.000 0.000 0.000 1.000 0.000
#> GSM241532     5  0.1732     0.8491 0.000 0.000 0.080 0.000 0.920
#> GSM241533     5  0.1732     0.8491 0.000 0.000 0.080 0.000 0.920
#> GSM241534     5  0.1732     0.8491 0.000 0.000 0.080 0.000 0.920
#> GSM241535     4  0.0000     0.8388 0.000 0.000 0.000 1.000 0.000
#> GSM241536     4  0.0000     0.8388 0.000 0.000 0.000 1.000 0.000
#> GSM241537     5  0.1732     0.8491 0.000 0.000 0.080 0.000 0.920
#> GSM241538     3  0.2377     0.5041 0.000 0.000 0.872 0.128 0.000
#> GSM241539     5  0.1732     0.8491 0.000 0.000 0.080 0.000 0.920
#> GSM241540     3  0.4114     0.3295 0.000 0.000 0.624 0.376 0.000
#> GSM241541     5  0.1732     0.8491 0.000 0.000 0.080 0.000 0.920
#> GSM241542     3  0.2377     0.5041 0.000 0.000 0.872 0.128 0.000
#> GSM241543     5  0.1768     0.8602 0.000 0.072 0.004 0.000 0.924
#> GSM241544     3  0.6351     0.4865 0.204 0.000 0.516 0.280 0.000
#> GSM241545     5  0.1768     0.8602 0.000 0.072 0.004 0.000 0.924
#> GSM241546     3  0.6351     0.4865 0.204 0.000 0.516 0.280 0.000
#> GSM241547     5  0.0162     0.8659 0.000 0.004 0.000 0.000 0.996
#> GSM241548     3  0.2377     0.5041 0.000 0.000 0.872 0.128 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM241451     2  0.0000     0.9766 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241452     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.0000     0.9766 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241454     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0000     0.9766 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241456     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241457     2  0.0146     0.9748 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM241458     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241459     2  0.0146     0.9748 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM241460     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241461     2  0.0260     0.9724 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM241462     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241463     2  0.0000     0.9766 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241464     1  0.5830    -0.1495 0.488 0.000 0.000 0.228 0.284 0.000
#> GSM241465     2  0.0000     0.9766 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241466     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.0000     0.9766 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241469     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0000     0.9766 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241471     2  0.0000     0.9766 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241472     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.0000     0.9766 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241474     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.0000     0.9766 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241476     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.0000     0.9766 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241478     2  0.0000     0.9766 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241479     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241481     2  0.0146     0.9748 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM241482     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241483     2  0.1285     0.9299 0.000 0.944 0.052 0.000 0.004 0.000
#> GSM241484     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241485     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241486     2  0.0260     0.9724 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM241487     2  0.0000     0.9766 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241488     2  0.0000     0.9766 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241489     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241490     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241491     2  0.0000     0.9766 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241492     1  0.5830    -0.1495 0.488 0.000 0.000 0.228 0.284 0.000
#> GSM241493     2  0.0000     0.9766 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241494     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0000     0.9766 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241496     2  0.0000     0.9766 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241497     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241499     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241500     3  0.4018     0.3380 0.000 0.412 0.580 0.000 0.008 0.000
#> GSM241501     2  0.3819     0.4245 0.000 0.652 0.340 0.000 0.008 0.000
#> GSM241502     2  0.1285     0.9299 0.000 0.944 0.052 0.000 0.004 0.000
#> GSM241503     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241504     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241505     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241506     2  0.1141     0.9317 0.000 0.948 0.052 0.000 0.000 0.000
#> GSM241507     1  0.0000     0.9391 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241508     3  0.3911     0.4488 0.000 0.368 0.624 0.000 0.008 0.000
#> GSM241509     3  0.2631     0.7499 0.000 0.152 0.840 0.000 0.008 0.000
#> GSM241510     3  0.2631     0.7499 0.000 0.152 0.840 0.000 0.008 0.000
#> GSM241511     6  0.0000     0.8673 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241512     6  0.0632     0.8669 0.000 0.000 0.000 0.024 0.000 0.976
#> GSM241513     3  0.1531     0.8110 0.000 0.068 0.928 0.000 0.004 0.000
#> GSM241514     4  0.3962     0.5601 0.004 0.000 0.000 0.772 0.128 0.096
#> GSM241515     3  0.1531     0.8110 0.000 0.068 0.928 0.000 0.004 0.000
#> GSM241516     4  0.3962     0.5601 0.004 0.000 0.000 0.772 0.128 0.096
#> GSM241517     3  0.0000     0.8113 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241518     5  0.4343     0.6744 0.120 0.000 0.000 0.156 0.724 0.000
#> GSM241519     3  0.0000     0.8113 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241520     5  0.4343     0.6744 0.120 0.000 0.000 0.156 0.724 0.000
#> GSM241521     3  0.3136     0.6991 0.000 0.228 0.768 0.000 0.004 0.000
#> GSM241522     1  0.0547     0.9181 0.980 0.000 0.000 0.020 0.000 0.000
#> GSM241523     3  0.2902     0.7334 0.000 0.196 0.800 0.000 0.004 0.000
#> GSM241524     5  0.6697     0.3226 0.124 0.000 0.000 0.380 0.412 0.084
#> GSM241525     1  0.5865    -0.0816 0.476 0.000 0.000 0.228 0.000 0.296
#> GSM241526     3  0.0146     0.8127 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM241527     6  0.3508     0.6464 0.004 0.000 0.000 0.292 0.000 0.704
#> GSM241528     3  0.0146     0.8127 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM241529     3  0.0146     0.8127 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM241530     6  0.3508     0.6464 0.004 0.000 0.000 0.292 0.000 0.704
#> GSM241531     6  0.0000     0.8673 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241532     3  0.2969     0.7396 0.000 0.000 0.776 0.000 0.224 0.000
#> GSM241533     3  0.2969     0.7396 0.000 0.000 0.776 0.000 0.224 0.000
#> GSM241534     3  0.2969     0.7396 0.000 0.000 0.776 0.000 0.224 0.000
#> GSM241535     6  0.0632     0.8669 0.000 0.000 0.000 0.024 0.000 0.976
#> GSM241536     6  0.0000     0.8673 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM241537     3  0.3076     0.7268 0.000 0.000 0.760 0.000 0.240 0.000
#> GSM241538     4  0.3508     0.4324 0.000 0.000 0.000 0.704 0.292 0.004
#> GSM241539     3  0.3076     0.7268 0.000 0.000 0.760 0.000 0.240 0.000
#> GSM241540     4  0.4099     0.4174 0.000 0.000 0.000 0.708 0.048 0.244
#> GSM241541     3  0.3076     0.7268 0.000 0.000 0.760 0.000 0.240 0.000
#> GSM241542     4  0.3508     0.4324 0.000 0.000 0.000 0.704 0.292 0.004
#> GSM241543     3  0.1531     0.8110 0.000 0.068 0.928 0.000 0.004 0.000
#> GSM241544     4  0.3962     0.5601 0.004 0.000 0.000 0.772 0.128 0.096
#> GSM241545     3  0.1531     0.8110 0.000 0.068 0.928 0.000 0.004 0.000
#> GSM241546     4  0.3962     0.5601 0.004 0.000 0.000 0.772 0.128 0.096
#> GSM241547     3  0.0000     0.8113 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241548     4  0.3986     0.3840 0.000 0.000 0.000 0.532 0.464 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n  dose(p) time(p) k
#> ATC:hclust 98 1.00e+00   1.000 2
#> ATC:hclust 94 4.39e-06   0.838 3
#> ATC:hclust 91 3.30e-12   0.868 4
#> ATC:hclust 86 1.47e-10   0.213 5
#> ATC:hclust 87 8.71e-10   0.201 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.976       0.989         0.5018 0.500   0.500
#> 3 3 0.753           0.789       0.856         0.2738 0.838   0.679
#> 4 4 0.805           0.924       0.916         0.1438 0.865   0.636
#> 5 5 0.857           0.852       0.875         0.0577 1.000   1.000
#> 6 6 0.840           0.747       0.798         0.0384 1.000   1.000

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     2   0.000      0.980 0.000 1.000
#> GSM241452     1   0.000      1.000 1.000 0.000
#> GSM241453     2   0.000      0.980 0.000 1.000
#> GSM241454     1   0.000      1.000 1.000 0.000
#> GSM241455     2   0.000      0.980 0.000 1.000
#> GSM241456     1   0.000      1.000 1.000 0.000
#> GSM241457     2   0.000      0.980 0.000 1.000
#> GSM241458     1   0.000      1.000 1.000 0.000
#> GSM241459     2   0.000      0.980 0.000 1.000
#> GSM241460     1   0.000      1.000 1.000 0.000
#> GSM241461     2   0.000      0.980 0.000 1.000
#> GSM241462     1   0.000      1.000 1.000 0.000
#> GSM241463     2   0.000      0.980 0.000 1.000
#> GSM241464     1   0.000      1.000 1.000 0.000
#> GSM241465     2   0.000      0.980 0.000 1.000
#> GSM241466     1   0.000      1.000 1.000 0.000
#> GSM241467     1   0.000      1.000 1.000 0.000
#> GSM241468     2   0.000      0.980 0.000 1.000
#> GSM241469     1   0.000      1.000 1.000 0.000
#> GSM241470     2   0.000      0.980 0.000 1.000
#> GSM241471     2   0.000      0.980 0.000 1.000
#> GSM241472     1   0.000      1.000 1.000 0.000
#> GSM241473     2   0.000      0.980 0.000 1.000
#> GSM241474     1   0.000      1.000 1.000 0.000
#> GSM241475     2   0.000      0.980 0.000 1.000
#> GSM241476     1   0.000      1.000 1.000 0.000
#> GSM241477     2   0.000      0.980 0.000 1.000
#> GSM241478     2   0.000      0.980 0.000 1.000
#> GSM241479     1   0.000      1.000 1.000 0.000
#> GSM241480     1   0.000      1.000 1.000 0.000
#> GSM241481     2   0.000      0.980 0.000 1.000
#> GSM241482     1   0.000      1.000 1.000 0.000
#> GSM241483     2   0.000      0.980 0.000 1.000
#> GSM241484     1   0.000      1.000 1.000 0.000
#> GSM241485     1   0.000      1.000 1.000 0.000
#> GSM241486     2   0.000      0.980 0.000 1.000
#> GSM241487     2   0.000      0.980 0.000 1.000
#> GSM241488     2   0.000      0.980 0.000 1.000
#> GSM241489     1   0.000      1.000 1.000 0.000
#> GSM241490     1   0.000      1.000 1.000 0.000
#> GSM241491     2   0.000      0.980 0.000 1.000
#> GSM241492     1   0.000      1.000 1.000 0.000
#> GSM241493     2   0.000      0.980 0.000 1.000
#> GSM241494     1   0.000      1.000 1.000 0.000
#> GSM241495     2   0.000      0.980 0.000 1.000
#> GSM241496     2   0.000      0.980 0.000 1.000
#> GSM241497     1   0.000      1.000 1.000 0.000
#> GSM241498     1   0.000      1.000 1.000 0.000
#> GSM241499     1   0.000      1.000 1.000 0.000
#> GSM241500     2   0.000      0.980 0.000 1.000
#> GSM241501     2   0.000      0.980 0.000 1.000
#> GSM241502     2   0.000      0.980 0.000 1.000
#> GSM241503     1   0.000      1.000 1.000 0.000
#> GSM241504     1   0.000      1.000 1.000 0.000
#> GSM241505     1   0.000      1.000 1.000 0.000
#> GSM241506     2   0.000      0.980 0.000 1.000
#> GSM241507     1   0.000      1.000 1.000 0.000
#> GSM241508     2   0.000      0.980 0.000 1.000
#> GSM241509     2   0.000      0.980 0.000 1.000
#> GSM241510     2   0.000      0.980 0.000 1.000
#> GSM241511     1   0.000      1.000 1.000 0.000
#> GSM241512     1   0.000      1.000 1.000 0.000
#> GSM241513     2   0.000      0.980 0.000 1.000
#> GSM241514     1   0.000      1.000 1.000 0.000
#> GSM241515     2   0.000      0.980 0.000 1.000
#> GSM241516     1   0.000      1.000 1.000 0.000
#> GSM241517     2   0.000      0.980 0.000 1.000
#> GSM241518     2   0.943      0.465 0.360 0.640
#> GSM241519     2   0.000      0.980 0.000 1.000
#> GSM241520     1   0.000      1.000 1.000 0.000
#> GSM241521     2   0.000      0.980 0.000 1.000
#> GSM241522     1   0.000      1.000 1.000 0.000
#> GSM241523     2   0.000      0.980 0.000 1.000
#> GSM241524     1   0.000      1.000 1.000 0.000
#> GSM241525     1   0.000      1.000 1.000 0.000
#> GSM241526     2   0.000      0.980 0.000 1.000
#> GSM241527     1   0.000      1.000 1.000 0.000
#> GSM241528     2   0.000      0.980 0.000 1.000
#> GSM241529     2   0.000      0.980 0.000 1.000
#> GSM241530     1   0.000      1.000 1.000 0.000
#> GSM241531     1   0.000      1.000 1.000 0.000
#> GSM241532     2   0.000      0.980 0.000 1.000
#> GSM241533     2   0.000      0.980 0.000 1.000
#> GSM241534     2   0.000      0.980 0.000 1.000
#> GSM241535     2   0.767      0.724 0.224 0.776
#> GSM241536     1   0.000      1.000 1.000 0.000
#> GSM241537     2   0.000      0.980 0.000 1.000
#> GSM241538     2   0.767      0.724 0.224 0.776
#> GSM241539     2   0.000      0.980 0.000 1.000
#> GSM241540     1   0.000      1.000 1.000 0.000
#> GSM241541     2   0.000      0.980 0.000 1.000
#> GSM241542     2   0.000      0.980 0.000 1.000
#> GSM241543     2   0.000      0.980 0.000 1.000
#> GSM241544     1   0.000      1.000 1.000 0.000
#> GSM241545     2   0.000      0.980 0.000 1.000
#> GSM241546     1   0.000      1.000 1.000 0.000
#> GSM241547     2   0.000      0.980 0.000 1.000
#> GSM241548     2   0.767      0.724 0.224 0.776

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2  0.0000      0.959 0.000 1.000 0.000
#> GSM241452     1  0.0000      0.879 1.000 0.000 0.000
#> GSM241453     2  0.0000      0.959 0.000 1.000 0.000
#> GSM241454     1  0.0000      0.879 1.000 0.000 0.000
#> GSM241455     2  0.0000      0.959 0.000 1.000 0.000
#> GSM241456     1  0.0000      0.879 1.000 0.000 0.000
#> GSM241457     2  0.0237      0.957 0.000 0.996 0.004
#> GSM241458     1  0.1031      0.874 0.976 0.000 0.024
#> GSM241459     2  0.0237      0.957 0.000 0.996 0.004
#> GSM241460     1  0.0892      0.875 0.980 0.000 0.020
#> GSM241461     2  0.0237      0.957 0.000 0.996 0.004
#> GSM241462     1  0.1031      0.874 0.976 0.000 0.024
#> GSM241463     2  0.0000      0.959 0.000 1.000 0.000
#> GSM241464     1  0.0000      0.879 1.000 0.000 0.000
#> GSM241465     2  0.0000      0.959 0.000 1.000 0.000
#> GSM241466     1  0.0000      0.879 1.000 0.000 0.000
#> GSM241467     1  0.0000      0.879 1.000 0.000 0.000
#> GSM241468     2  0.0000      0.959 0.000 1.000 0.000
#> GSM241469     1  0.0000      0.879 1.000 0.000 0.000
#> GSM241470     2  0.0000      0.959 0.000 1.000 0.000
#> GSM241471     2  0.0000      0.959 0.000 1.000 0.000
#> GSM241472     1  0.0000      0.879 1.000 0.000 0.000
#> GSM241473     2  0.0000      0.959 0.000 1.000 0.000
#> GSM241474     1  0.0000      0.879 1.000 0.000 0.000
#> GSM241475     2  0.0000      0.959 0.000 1.000 0.000
#> GSM241476     1  0.0000      0.879 1.000 0.000 0.000
#> GSM241477     2  0.0000      0.959 0.000 1.000 0.000
#> GSM241478     2  0.0000      0.959 0.000 1.000 0.000
#> GSM241479     1  0.0000      0.879 1.000 0.000 0.000
#> GSM241480     1  0.0000      0.879 1.000 0.000 0.000
#> GSM241481     2  0.0237      0.957 0.000 0.996 0.004
#> GSM241482     1  0.1031      0.874 0.976 0.000 0.024
#> GSM241483     2  0.0237      0.957 0.000 0.996 0.004
#> GSM241484     1  0.1031      0.874 0.976 0.000 0.024
#> GSM241485     1  0.1031      0.874 0.976 0.000 0.024
#> GSM241486     2  0.0237      0.957 0.000 0.996 0.004
#> GSM241487     2  0.0000      0.959 0.000 1.000 0.000
#> GSM241488     2  0.0000      0.959 0.000 1.000 0.000
#> GSM241489     1  0.0000      0.879 1.000 0.000 0.000
#> GSM241490     1  0.0000      0.879 1.000 0.000 0.000
#> GSM241491     2  0.0000      0.959 0.000 1.000 0.000
#> GSM241492     1  0.0000      0.879 1.000 0.000 0.000
#> GSM241493     2  0.0000      0.959 0.000 1.000 0.000
#> GSM241494     1  0.0000      0.879 1.000 0.000 0.000
#> GSM241495     2  0.0000      0.959 0.000 1.000 0.000
#> GSM241496     2  0.0000      0.959 0.000 1.000 0.000
#> GSM241497     1  0.0000      0.879 1.000 0.000 0.000
#> GSM241498     1  0.0000      0.879 1.000 0.000 0.000
#> GSM241499     1  0.1031      0.874 0.976 0.000 0.024
#> GSM241500     2  0.0237      0.957 0.000 0.996 0.004
#> GSM241501     2  0.0237      0.957 0.000 0.996 0.004
#> GSM241502     2  0.0237      0.957 0.000 0.996 0.004
#> GSM241503     1  0.1031      0.874 0.976 0.000 0.024
#> GSM241504     1  0.1031      0.874 0.976 0.000 0.024
#> GSM241505     1  0.1031      0.874 0.976 0.000 0.024
#> GSM241506     2  0.0000      0.959 0.000 1.000 0.000
#> GSM241507     1  0.1031      0.874 0.976 0.000 0.024
#> GSM241508     2  0.4605      0.561 0.000 0.796 0.204
#> GSM241509     3  0.6252      0.691 0.000 0.444 0.556
#> GSM241510     3  0.6252      0.691 0.000 0.444 0.556
#> GSM241511     1  0.6235      0.634 0.564 0.000 0.436
#> GSM241512     1  0.6192      0.635 0.580 0.000 0.420
#> GSM241513     3  0.6244      0.699 0.000 0.440 0.560
#> GSM241514     1  0.6180      0.636 0.584 0.000 0.416
#> GSM241515     3  0.6235      0.700 0.000 0.436 0.564
#> GSM241516     1  0.6180      0.636 0.584 0.000 0.416
#> GSM241517     3  0.6260      0.691 0.000 0.448 0.552
#> GSM241518     3  0.6829      0.247 0.168 0.096 0.736
#> GSM241519     2  0.6302     -0.550 0.000 0.520 0.480
#> GSM241520     1  0.6410      0.628 0.576 0.004 0.420
#> GSM241521     2  0.0000      0.959 0.000 1.000 0.000
#> GSM241522     1  0.0000      0.879 1.000 0.000 0.000
#> GSM241523     2  0.2625      0.828 0.000 0.916 0.084
#> GSM241524     1  0.6062      0.660 0.616 0.000 0.384
#> GSM241525     1  0.0237      0.879 0.996 0.000 0.004
#> GSM241526     3  0.6252      0.696 0.000 0.444 0.556
#> GSM241527     1  0.6204      0.631 0.576 0.000 0.424
#> GSM241528     3  0.6280      0.669 0.000 0.460 0.540
#> GSM241529     3  0.6260      0.691 0.000 0.448 0.552
#> GSM241530     1  0.6180      0.639 0.584 0.000 0.416
#> GSM241531     1  0.6244      0.630 0.560 0.000 0.440
#> GSM241532     3  0.6252      0.691 0.000 0.444 0.556
#> GSM241533     3  0.6244      0.696 0.000 0.440 0.560
#> GSM241534     3  0.6244      0.696 0.000 0.440 0.560
#> GSM241535     3  0.1163      0.537 0.000 0.028 0.972
#> GSM241536     1  0.6235      0.634 0.564 0.000 0.436
#> GSM241537     3  0.5760      0.663 0.000 0.328 0.672
#> GSM241538     3  0.1163      0.537 0.000 0.028 0.972
#> GSM241539     3  0.5760      0.663 0.000 0.328 0.672
#> GSM241540     3  0.6008     -0.294 0.372 0.000 0.628
#> GSM241541     3  0.6204      0.698 0.000 0.424 0.576
#> GSM241542     3  0.1163      0.537 0.000 0.028 0.972
#> GSM241543     3  0.6235      0.700 0.000 0.436 0.564
#> GSM241544     1  0.6192      0.632 0.580 0.000 0.420
#> GSM241545     3  0.6235      0.700 0.000 0.436 0.564
#> GSM241546     1  0.6180      0.636 0.584 0.000 0.416
#> GSM241547     3  0.6244      0.699 0.000 0.440 0.560
#> GSM241548     3  0.1163      0.537 0.000 0.028 0.972

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.0000      0.966 0.000 1.000 0.000 0.000
#> GSM241452     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM241453     2  0.0000      0.966 0.000 1.000 0.000 0.000
#> GSM241454     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM241455     2  0.0000      0.966 0.000 1.000 0.000 0.000
#> GSM241456     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM241457     2  0.2216      0.931 0.000 0.908 0.092 0.000
#> GSM241458     1  0.3533      0.898 0.864 0.000 0.080 0.056
#> GSM241459     2  0.2216      0.931 0.000 0.908 0.092 0.000
#> GSM241460     1  0.2011      0.914 0.920 0.000 0.080 0.000
#> GSM241461     2  0.2216      0.931 0.000 0.908 0.092 0.000
#> GSM241462     1  0.3533      0.898 0.864 0.000 0.080 0.056
#> GSM241463     2  0.0000      0.966 0.000 1.000 0.000 0.000
#> GSM241464     1  0.0592      0.931 0.984 0.000 0.016 0.000
#> GSM241465     2  0.0000      0.966 0.000 1.000 0.000 0.000
#> GSM241466     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      0.966 0.000 1.000 0.000 0.000
#> GSM241469     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM241470     2  0.0000      0.966 0.000 1.000 0.000 0.000
#> GSM241471     2  0.0000      0.966 0.000 1.000 0.000 0.000
#> GSM241472     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM241473     2  0.0000      0.966 0.000 1.000 0.000 0.000
#> GSM241474     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM241475     2  0.0000      0.966 0.000 1.000 0.000 0.000
#> GSM241476     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      0.966 0.000 1.000 0.000 0.000
#> GSM241478     2  0.0000      0.966 0.000 1.000 0.000 0.000
#> GSM241479     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM241481     2  0.2216      0.931 0.000 0.908 0.092 0.000
#> GSM241482     1  0.3533      0.898 0.864 0.000 0.080 0.056
#> GSM241483     2  0.2216      0.931 0.000 0.908 0.092 0.000
#> GSM241484     1  0.3533      0.898 0.864 0.000 0.080 0.056
#> GSM241485     1  0.3533      0.898 0.864 0.000 0.080 0.056
#> GSM241486     2  0.2216      0.931 0.000 0.908 0.092 0.000
#> GSM241487     2  0.0000      0.966 0.000 1.000 0.000 0.000
#> GSM241488     2  0.0000      0.966 0.000 1.000 0.000 0.000
#> GSM241489     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM241491     2  0.0000      0.966 0.000 1.000 0.000 0.000
#> GSM241492     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM241493     2  0.0000      0.966 0.000 1.000 0.000 0.000
#> GSM241494     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM241495     2  0.0000      0.966 0.000 1.000 0.000 0.000
#> GSM241496     2  0.0000      0.966 0.000 1.000 0.000 0.000
#> GSM241497     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM241499     1  0.3533      0.898 0.864 0.000 0.080 0.056
#> GSM241500     2  0.3117      0.909 0.000 0.880 0.092 0.028
#> GSM241501     2  0.2216      0.931 0.000 0.908 0.092 0.000
#> GSM241502     2  0.2216      0.931 0.000 0.908 0.092 0.000
#> GSM241503     1  0.3533      0.898 0.864 0.000 0.080 0.056
#> GSM241504     1  0.3533      0.898 0.864 0.000 0.080 0.056
#> GSM241505     1  0.3533      0.898 0.864 0.000 0.080 0.056
#> GSM241506     2  0.0000      0.966 0.000 1.000 0.000 0.000
#> GSM241507     1  0.3533      0.898 0.864 0.000 0.080 0.056
#> GSM241508     4  0.5174      0.848 0.000 0.152 0.092 0.756
#> GSM241509     4  0.4426      0.905 0.000 0.092 0.096 0.812
#> GSM241510     4  0.2676      0.967 0.000 0.092 0.012 0.896
#> GSM241511     3  0.3435      0.864 0.100 0.000 0.864 0.036
#> GSM241512     3  0.3852      0.900 0.180 0.000 0.808 0.012
#> GSM241513     4  0.2401      0.968 0.000 0.092 0.004 0.904
#> GSM241514     3  0.3725      0.901 0.180 0.000 0.812 0.008
#> GSM241515     4  0.4122      0.810 0.000 0.236 0.004 0.760
#> GSM241516     3  0.3725      0.901 0.180 0.000 0.812 0.008
#> GSM241517     4  0.2676      0.966 0.000 0.092 0.012 0.896
#> GSM241518     3  0.5130      0.863 0.084 0.040 0.800 0.076
#> GSM241519     4  0.2988      0.953 0.000 0.112 0.012 0.876
#> GSM241520     3  0.4360      0.894 0.140 0.032 0.816 0.012
#> GSM241521     2  0.0188      0.963 0.000 0.996 0.000 0.004
#> GSM241522     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM241523     2  0.3306      0.783 0.000 0.840 0.004 0.156
#> GSM241524     3  0.3852      0.894 0.192 0.000 0.800 0.008
#> GSM241525     1  0.3764      0.713 0.816 0.000 0.172 0.012
#> GSM241526     4  0.2401      0.968 0.000 0.092 0.004 0.904
#> GSM241527     3  0.3925      0.902 0.176 0.000 0.808 0.016
#> GSM241528     4  0.2675      0.964 0.000 0.100 0.008 0.892
#> GSM241529     4  0.2216      0.968 0.000 0.092 0.000 0.908
#> GSM241530     3  0.3852      0.900 0.180 0.000 0.808 0.012
#> GSM241531     3  0.3143      0.870 0.100 0.000 0.876 0.024
#> GSM241532     4  0.2676      0.967 0.000 0.092 0.012 0.896
#> GSM241533     4  0.2401      0.968 0.000 0.092 0.004 0.904
#> GSM241534     4  0.2401      0.968 0.000 0.092 0.004 0.904
#> GSM241535     3  0.3893      0.793 0.000 0.008 0.796 0.196
#> GSM241536     3  0.4010      0.845 0.100 0.000 0.836 0.064
#> GSM241537     4  0.2593      0.958 0.000 0.080 0.016 0.904
#> GSM241538     3  0.3528      0.790 0.000 0.000 0.808 0.192
#> GSM241539     4  0.2593      0.958 0.000 0.080 0.016 0.904
#> GSM241540     3  0.4477      0.883 0.108 0.000 0.808 0.084
#> GSM241541     4  0.2480      0.966 0.000 0.088 0.008 0.904
#> GSM241542     3  0.3528      0.790 0.000 0.000 0.808 0.192
#> GSM241543     4  0.2401      0.968 0.000 0.092 0.004 0.904
#> GSM241544     3  0.3681      0.902 0.176 0.000 0.816 0.008
#> GSM241545     4  0.2401      0.968 0.000 0.092 0.004 0.904
#> GSM241546     3  0.3725      0.901 0.180 0.000 0.812 0.008
#> GSM241547     4  0.2401      0.968 0.000 0.092 0.004 0.904
#> GSM241548     3  0.3852      0.793 0.000 0.008 0.800 0.192

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4 p5
#> GSM241451     2  0.0000      0.896 0.000 1.000 0.000 0.000 NA
#> GSM241452     1  0.0000      0.905 1.000 0.000 0.000 0.000 NA
#> GSM241453     2  0.0000      0.896 0.000 1.000 0.000 0.000 NA
#> GSM241454     1  0.0000      0.905 1.000 0.000 0.000 0.000 NA
#> GSM241455     2  0.0000      0.896 0.000 1.000 0.000 0.000 NA
#> GSM241456     1  0.0000      0.905 1.000 0.000 0.000 0.000 NA
#> GSM241457     2  0.3752      0.770 0.000 0.708 0.000 0.000 NA
#> GSM241458     1  0.3940      0.823 0.756 0.000 0.024 0.000 NA
#> GSM241459     2  0.3730      0.772 0.000 0.712 0.000 0.000 NA
#> GSM241460     1  0.1267      0.893 0.960 0.000 0.024 0.004 NA
#> GSM241461     2  0.4339      0.730 0.000 0.652 0.000 0.012 NA
#> GSM241462     1  0.4000      0.819 0.748 0.000 0.024 0.000 NA
#> GSM241463     2  0.0000      0.896 0.000 1.000 0.000 0.000 NA
#> GSM241464     1  0.2158      0.853 0.920 0.000 0.052 0.008 NA
#> GSM241465     2  0.0000      0.896 0.000 1.000 0.000 0.000 NA
#> GSM241466     1  0.0000      0.905 1.000 0.000 0.000 0.000 NA
#> GSM241467     1  0.0162      0.905 0.996 0.000 0.000 0.004 NA
#> GSM241468     2  0.0000      0.896 0.000 1.000 0.000 0.000 NA
#> GSM241469     1  0.0000      0.905 1.000 0.000 0.000 0.000 NA
#> GSM241470     2  0.0000      0.896 0.000 1.000 0.000 0.000 NA
#> GSM241471     2  0.0000      0.896 0.000 1.000 0.000 0.000 NA
#> GSM241472     1  0.0162      0.905 0.996 0.000 0.000 0.004 NA
#> GSM241473     2  0.0000      0.896 0.000 1.000 0.000 0.000 NA
#> GSM241474     1  0.0162      0.905 0.996 0.000 0.000 0.004 NA
#> GSM241475     2  0.0000      0.896 0.000 1.000 0.000 0.000 NA
#> GSM241476     1  0.0000      0.905 1.000 0.000 0.000 0.000 NA
#> GSM241477     2  0.0000      0.896 0.000 1.000 0.000 0.000 NA
#> GSM241478     2  0.0000      0.896 0.000 1.000 0.000 0.000 NA
#> GSM241479     1  0.0000      0.905 1.000 0.000 0.000 0.000 NA
#> GSM241480     1  0.0000      0.905 1.000 0.000 0.000 0.000 NA
#> GSM241481     2  0.3730      0.772 0.000 0.712 0.000 0.000 NA
#> GSM241482     1  0.3940      0.823 0.756 0.000 0.024 0.000 NA
#> GSM241483     2  0.3816      0.763 0.000 0.696 0.000 0.000 NA
#> GSM241484     1  0.3940      0.823 0.756 0.000 0.024 0.000 NA
#> GSM241485     1  0.3970      0.821 0.752 0.000 0.024 0.000 NA
#> GSM241486     2  0.4339      0.730 0.000 0.652 0.000 0.012 NA
#> GSM241487     2  0.0000      0.896 0.000 1.000 0.000 0.000 NA
#> GSM241488     2  0.0000      0.896 0.000 1.000 0.000 0.000 NA
#> GSM241489     1  0.0162      0.905 0.996 0.000 0.000 0.004 NA
#> GSM241490     1  0.0000      0.905 1.000 0.000 0.000 0.000 NA
#> GSM241491     2  0.0000      0.896 0.000 1.000 0.000 0.000 NA
#> GSM241492     1  0.0324      0.903 0.992 0.000 0.000 0.004 NA
#> GSM241493     2  0.0000      0.896 0.000 1.000 0.000 0.000 NA
#> GSM241494     1  0.0000      0.905 1.000 0.000 0.000 0.000 NA
#> GSM241495     2  0.0000      0.896 0.000 1.000 0.000 0.000 NA
#> GSM241496     2  0.0000      0.896 0.000 1.000 0.000 0.000 NA
#> GSM241497     1  0.0000      0.905 1.000 0.000 0.000 0.000 NA
#> GSM241498     1  0.0000      0.905 1.000 0.000 0.000 0.000 NA
#> GSM241499     1  0.4000      0.819 0.748 0.000 0.024 0.000 NA
#> GSM241500     2  0.4921      0.696 0.000 0.620 0.000 0.040 NA
#> GSM241501     2  0.4323      0.734 0.000 0.656 0.000 0.012 NA
#> GSM241502     2  0.3816      0.763 0.000 0.696 0.000 0.000 NA
#> GSM241503     1  0.4000      0.819 0.748 0.000 0.024 0.000 NA
#> GSM241504     1  0.4000      0.819 0.748 0.000 0.024 0.000 NA
#> GSM241505     1  0.4000      0.819 0.748 0.000 0.024 0.000 NA
#> GSM241506     2  0.0000      0.896 0.000 1.000 0.000 0.000 NA
#> GSM241507     1  0.4029      0.816 0.744 0.000 0.024 0.000 NA
#> GSM241508     4  0.5606      0.599 0.000 0.088 0.000 0.568 NA
#> GSM241509     4  0.3124      0.872 0.000 0.016 0.004 0.844 NA
#> GSM241510     4  0.2984      0.880 0.000 0.016 0.004 0.856 NA
#> GSM241511     3  0.2912      0.851 0.028 0.000 0.876 0.008 NA
#> GSM241512     3  0.2504      0.871 0.064 0.000 0.900 0.004 NA
#> GSM241513     4  0.3357      0.870 0.000 0.016 0.012 0.836 NA
#> GSM241514     3  0.3715      0.874 0.064 0.000 0.824 0.004 NA
#> GSM241515     4  0.5570      0.721 0.000 0.168 0.012 0.676 NA
#> GSM241516     3  0.3715      0.874 0.064 0.000 0.824 0.004 NA
#> GSM241517     4  0.2331      0.891 0.000 0.016 0.008 0.908 NA
#> GSM241518     3  0.4979      0.828 0.024 0.004 0.704 0.028 NA
#> GSM241519     4  0.2521      0.890 0.000 0.024 0.008 0.900 NA
#> GSM241520     3  0.4389      0.853 0.040 0.000 0.772 0.020 NA
#> GSM241521     2  0.2149      0.839 0.000 0.916 0.000 0.036 NA
#> GSM241522     1  0.0000      0.905 1.000 0.000 0.000 0.000 NA
#> GSM241523     2  0.5113      0.581 0.000 0.700 0.008 0.208 NA
#> GSM241524     3  0.3827      0.872 0.068 0.000 0.816 0.004 NA
#> GSM241525     1  0.4747      0.486 0.676 0.000 0.284 0.004 NA
#> GSM241526     4  0.0798      0.897 0.000 0.016 0.000 0.976 NA
#> GSM241527     3  0.2519      0.871 0.060 0.000 0.900 0.004 NA
#> GSM241528     4  0.2278      0.894 0.000 0.032 0.000 0.908 NA
#> GSM241529     4  0.1914      0.896 0.000 0.016 0.000 0.924 NA
#> GSM241530     3  0.2740      0.869 0.064 0.000 0.888 0.004 NA
#> GSM241531     3  0.3077      0.849 0.028 0.000 0.864 0.008 NA
#> GSM241532     4  0.2792      0.883 0.000 0.016 0.016 0.884 NA
#> GSM241533     4  0.2861      0.883 0.000 0.016 0.024 0.884 NA
#> GSM241534     4  0.2861      0.883 0.000 0.016 0.024 0.884 NA
#> GSM241535     3  0.3615      0.830 0.000 0.000 0.808 0.036 NA
#> GSM241536     3  0.4237      0.772 0.028 0.000 0.752 0.008 NA
#> GSM241537     4  0.2949      0.880 0.000 0.012 0.036 0.880 NA
#> GSM241538     3  0.3577      0.818 0.000 0.000 0.808 0.032 NA
#> GSM241539     4  0.2949      0.880 0.000 0.012 0.036 0.880 NA
#> GSM241540     3  0.2907      0.853 0.016 0.000 0.876 0.016 NA
#> GSM241541     4  0.2674      0.885 0.000 0.012 0.032 0.896 NA
#> GSM241542     3  0.4065      0.796 0.000 0.000 0.772 0.048 NA
#> GSM241543     4  0.3357      0.870 0.000 0.016 0.012 0.836 NA
#> GSM241544     3  0.3584      0.873 0.056 0.000 0.832 0.004 NA
#> GSM241545     4  0.3357      0.870 0.000 0.016 0.012 0.836 NA
#> GSM241546     3  0.3715      0.874 0.064 0.000 0.824 0.004 NA
#> GSM241547     4  0.2507      0.890 0.000 0.016 0.012 0.900 NA
#> GSM241548     3  0.4730      0.807 0.000 0.000 0.688 0.052 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM241451     2  0.0000     0.8456 0.000 1.000 0.000 0.000 0.000 NA
#> GSM241452     1  0.0000     0.8229 1.000 0.000 0.000 0.000 0.000 NA
#> GSM241453     2  0.0000     0.8456 0.000 1.000 0.000 0.000 0.000 NA
#> GSM241454     1  0.0000     0.8229 1.000 0.000 0.000 0.000 0.000 NA
#> GSM241455     2  0.0146     0.8449 0.000 0.996 0.000 0.000 0.004 NA
#> GSM241456     1  0.0000     0.8229 1.000 0.000 0.000 0.000 0.000 NA
#> GSM241457     2  0.5184     0.6514 0.000 0.584 0.000 0.000 0.120 NA
#> GSM241458     1  0.3860     0.6280 0.528 0.000 0.000 0.000 0.000 NA
#> GSM241459     2  0.5137     0.6593 0.000 0.596 0.000 0.000 0.120 NA
#> GSM241460     1  0.0520     0.8198 0.984 0.000 0.000 0.000 0.008 NA
#> GSM241461     2  0.5463     0.6149 0.000 0.540 0.000 0.000 0.148 NA
#> GSM241462     1  0.4214     0.6273 0.528 0.000 0.004 0.000 0.008 NA
#> GSM241463     2  0.0146     0.8449 0.000 0.996 0.000 0.000 0.004 NA
#> GSM241464     1  0.2479     0.7477 0.892 0.000 0.000 0.064 0.028 NA
#> GSM241465     2  0.0405     0.8433 0.000 0.988 0.000 0.000 0.008 NA
#> GSM241466     1  0.0000     0.8229 1.000 0.000 0.000 0.000 0.000 NA
#> GSM241467     1  0.0146     0.8222 0.996 0.000 0.000 0.000 0.004 NA
#> GSM241468     2  0.0000     0.8456 0.000 1.000 0.000 0.000 0.000 NA
#> GSM241469     1  0.0000     0.8229 1.000 0.000 0.000 0.000 0.000 NA
#> GSM241470     2  0.0000     0.8456 0.000 1.000 0.000 0.000 0.000 NA
#> GSM241471     2  0.0000     0.8456 0.000 1.000 0.000 0.000 0.000 NA
#> GSM241472     1  0.0146     0.8222 0.996 0.000 0.000 0.000 0.004 NA
#> GSM241473     2  0.0000     0.8456 0.000 1.000 0.000 0.000 0.000 NA
#> GSM241474     1  0.0260     0.8213 0.992 0.000 0.000 0.000 0.008 NA
#> GSM241475     2  0.0000     0.8456 0.000 1.000 0.000 0.000 0.000 NA
#> GSM241476     1  0.0000     0.8229 1.000 0.000 0.000 0.000 0.000 NA
#> GSM241477     2  0.0000     0.8456 0.000 1.000 0.000 0.000 0.000 NA
#> GSM241478     2  0.0000     0.8456 0.000 1.000 0.000 0.000 0.000 NA
#> GSM241479     1  0.0000     0.8229 1.000 0.000 0.000 0.000 0.000 NA
#> GSM241480     1  0.0000     0.8229 1.000 0.000 0.000 0.000 0.000 NA
#> GSM241481     2  0.5137     0.6593 0.000 0.596 0.000 0.000 0.120 NA
#> GSM241482     1  0.3860     0.6280 0.528 0.000 0.000 0.000 0.000 NA
#> GSM241483     2  0.5219     0.6485 0.000 0.580 0.000 0.000 0.124 NA
#> GSM241484     1  0.3860     0.6280 0.528 0.000 0.000 0.000 0.000 NA
#> GSM241485     1  0.4214     0.6273 0.528 0.000 0.004 0.000 0.008 NA
#> GSM241486     2  0.5463     0.6149 0.000 0.540 0.000 0.000 0.148 NA
#> GSM241487     2  0.0405     0.8433 0.000 0.988 0.000 0.000 0.008 NA
#> GSM241488     2  0.0000     0.8456 0.000 1.000 0.000 0.000 0.000 NA
#> GSM241489     1  0.0405     0.8198 0.988 0.000 0.000 0.000 0.008 NA
#> GSM241490     1  0.0000     0.8229 1.000 0.000 0.000 0.000 0.000 NA
#> GSM241491     2  0.0146     0.8449 0.000 0.996 0.000 0.000 0.004 NA
#> GSM241492     1  0.0914     0.8101 0.968 0.000 0.000 0.000 0.016 NA
#> GSM241493     2  0.0000     0.8456 0.000 1.000 0.000 0.000 0.000 NA
#> GSM241494     1  0.0000     0.8229 1.000 0.000 0.000 0.000 0.000 NA
#> GSM241495     2  0.0000     0.8456 0.000 1.000 0.000 0.000 0.000 NA
#> GSM241496     2  0.0000     0.8456 0.000 1.000 0.000 0.000 0.000 NA
#> GSM241497     1  0.0000     0.8229 1.000 0.000 0.000 0.000 0.000 NA
#> GSM241498     1  0.0000     0.8229 1.000 0.000 0.000 0.000 0.000 NA
#> GSM241499     1  0.3860     0.6280 0.528 0.000 0.000 0.000 0.000 NA
#> GSM241500     2  0.6749     0.5037 0.000 0.456 0.084 0.000 0.144 NA
#> GSM241501     2  0.5428     0.6143 0.000 0.540 0.000 0.000 0.140 NA
#> GSM241502     2  0.5222     0.6513 0.000 0.584 0.000 0.000 0.128 NA
#> GSM241503     1  0.3860     0.6280 0.528 0.000 0.000 0.000 0.000 NA
#> GSM241504     1  0.3860     0.6280 0.528 0.000 0.000 0.000 0.000 NA
#> GSM241505     1  0.3860     0.6280 0.528 0.000 0.000 0.000 0.000 NA
#> GSM241506     2  0.0405     0.8427 0.000 0.988 0.000 0.000 0.004 NA
#> GSM241507     1  0.3864     0.6210 0.520 0.000 0.000 0.000 0.000 NA
#> GSM241508     3  0.6413     0.4514 0.000 0.056 0.492 0.000 0.140 NA
#> GSM241509     3  0.2249     0.7785 0.000 0.004 0.900 0.000 0.032 NA
#> GSM241510     3  0.2173     0.7811 0.000 0.004 0.904 0.000 0.028 NA
#> GSM241511     4  0.3055     0.7657 0.000 0.000 0.000 0.840 0.064 NA
#> GSM241512     4  0.2146     0.7864 0.008 0.000 0.000 0.908 0.060 NA
#> GSM241513     3  0.4242     0.7503 0.000 0.004 0.572 0.000 0.412 NA
#> GSM241514     4  0.3852     0.7944 0.008 0.000 0.000 0.788 0.116 NA
#> GSM241515     3  0.5785     0.6419 0.000 0.124 0.448 0.000 0.416 NA
#> GSM241516     4  0.3852     0.7944 0.008 0.000 0.000 0.788 0.116 NA
#> GSM241517     3  0.3265     0.8055 0.000 0.004 0.748 0.000 0.248 NA
#> GSM241518     4  0.5284     0.7411 0.000 0.000 0.008 0.600 0.280 NA
#> GSM241519     3  0.3265     0.8055 0.000 0.004 0.748 0.000 0.248 NA
#> GSM241520     4  0.4522     0.7782 0.008 0.000 0.000 0.720 0.168 NA
#> GSM241521     2  0.2809     0.7171 0.000 0.824 0.004 0.000 0.168 NA
#> GSM241522     1  0.0000     0.8229 1.000 0.000 0.000 0.000 0.000 NA
#> GSM241523     2  0.5965     0.1500 0.000 0.500 0.176 0.000 0.312 NA
#> GSM241524     4  0.3947     0.7926 0.008 0.000 0.000 0.780 0.116 NA
#> GSM241525     1  0.5178     0.0571 0.508 0.000 0.000 0.424 0.052 NA
#> GSM241526     3  0.2191     0.8101 0.000 0.004 0.876 0.000 0.120 NA
#> GSM241527     4  0.2146     0.7864 0.008 0.000 0.000 0.908 0.060 NA
#> GSM241528     3  0.3533     0.8022 0.000 0.004 0.748 0.000 0.236 NA
#> GSM241529     3  0.3533     0.8022 0.000 0.004 0.748 0.000 0.236 NA
#> GSM241530     4  0.2146     0.7864 0.008 0.000 0.000 0.908 0.060 NA
#> GSM241531     4  0.3509     0.7585 0.000 0.000 0.000 0.804 0.084 NA
#> GSM241532     3  0.1623     0.7813 0.000 0.004 0.940 0.004 0.020 NA
#> GSM241533     3  0.1647     0.7813 0.000 0.004 0.940 0.008 0.016 NA
#> GSM241534     3  0.1647     0.7813 0.000 0.004 0.940 0.008 0.016 NA
#> GSM241535     4  0.4443     0.7231 0.000 0.000 0.000 0.664 0.276 NA
#> GSM241536     4  0.4586     0.6876 0.000 0.000 0.004 0.692 0.088 NA
#> GSM241537     3  0.3265     0.7639 0.000 0.004 0.824 0.008 0.140 NA
#> GSM241538     4  0.4515     0.6831 0.000 0.000 0.000 0.640 0.304 NA
#> GSM241539     3  0.3265     0.7639 0.000 0.004 0.824 0.008 0.140 NA
#> GSM241540     4  0.3488     0.7568 0.000 0.000 0.000 0.780 0.184 NA
#> GSM241541     3  0.2841     0.7790 0.000 0.004 0.860 0.008 0.108 NA
#> GSM241542     4  0.5126     0.6250 0.000 0.000 0.016 0.564 0.364 NA
#> GSM241543     3  0.4165     0.7496 0.000 0.004 0.568 0.000 0.420 NA
#> GSM241544     4  0.3936     0.7934 0.008 0.000 0.000 0.780 0.124 NA
#> GSM241545     3  0.4256     0.7484 0.000 0.004 0.564 0.000 0.420 NA
#> GSM241546     4  0.3894     0.7943 0.008 0.000 0.000 0.784 0.120 NA
#> GSM241547     3  0.3547     0.7968 0.000 0.004 0.696 0.000 0.300 NA
#> GSM241548     4  0.5405     0.7213 0.000 0.000 0.008 0.552 0.336 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n  dose(p) time(p) k
#> ATC:kmeans 97 5.96e-01   0.899 2
#> ATC:kmeans 95 1.44e-08   0.571 3
#> ATC:kmeans 98 7.21e-11   0.691 4
#> ATC:kmeans 97 1.79e-11   0.743 5
#> ATC:kmeans 95 1.54e-11   0.789 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.978       0.990         0.5047 0.495   0.495
#> 3 3 1.000           0.971       0.988         0.2961 0.817   0.643
#> 4 4 1.000           0.979       0.991         0.1386 0.870   0.645
#> 5 5 0.930           0.804       0.909         0.0378 0.991   0.963
#> 6 6 0.906           0.910       0.922         0.0407 0.942   0.768

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4

There is also optional best \(k\) = 2 3 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     2   0.000      0.995 0.000 1.000
#> GSM241452     1   0.000      0.984 1.000 0.000
#> GSM241453     2   0.000      0.995 0.000 1.000
#> GSM241454     1   0.000      0.984 1.000 0.000
#> GSM241455     2   0.000      0.995 0.000 1.000
#> GSM241456     1   0.000      0.984 1.000 0.000
#> GSM241457     2   0.000      0.995 0.000 1.000
#> GSM241458     1   0.000      0.984 1.000 0.000
#> GSM241459     2   0.000      0.995 0.000 1.000
#> GSM241460     1   0.000      0.984 1.000 0.000
#> GSM241461     2   0.000      0.995 0.000 1.000
#> GSM241462     1   0.000      0.984 1.000 0.000
#> GSM241463     2   0.000      0.995 0.000 1.000
#> GSM241464     1   0.000      0.984 1.000 0.000
#> GSM241465     2   0.000      0.995 0.000 1.000
#> GSM241466     1   0.000      0.984 1.000 0.000
#> GSM241467     1   0.000      0.984 1.000 0.000
#> GSM241468     2   0.000      0.995 0.000 1.000
#> GSM241469     1   0.000      0.984 1.000 0.000
#> GSM241470     2   0.000      0.995 0.000 1.000
#> GSM241471     2   0.000      0.995 0.000 1.000
#> GSM241472     1   0.000      0.984 1.000 0.000
#> GSM241473     2   0.000      0.995 0.000 1.000
#> GSM241474     1   0.000      0.984 1.000 0.000
#> GSM241475     2   0.000      0.995 0.000 1.000
#> GSM241476     1   0.000      0.984 1.000 0.000
#> GSM241477     2   0.000      0.995 0.000 1.000
#> GSM241478     2   0.000      0.995 0.000 1.000
#> GSM241479     1   0.000      0.984 1.000 0.000
#> GSM241480     1   0.000      0.984 1.000 0.000
#> GSM241481     2   0.000      0.995 0.000 1.000
#> GSM241482     1   0.000      0.984 1.000 0.000
#> GSM241483     2   0.000      0.995 0.000 1.000
#> GSM241484     1   0.000      0.984 1.000 0.000
#> GSM241485     1   0.000      0.984 1.000 0.000
#> GSM241486     2   0.000      0.995 0.000 1.000
#> GSM241487     2   0.000      0.995 0.000 1.000
#> GSM241488     2   0.000      0.995 0.000 1.000
#> GSM241489     1   0.000      0.984 1.000 0.000
#> GSM241490     1   0.000      0.984 1.000 0.000
#> GSM241491     2   0.000      0.995 0.000 1.000
#> GSM241492     1   0.000      0.984 1.000 0.000
#> GSM241493     2   0.000      0.995 0.000 1.000
#> GSM241494     1   0.000      0.984 1.000 0.000
#> GSM241495     2   0.000      0.995 0.000 1.000
#> GSM241496     2   0.000      0.995 0.000 1.000
#> GSM241497     1   0.000      0.984 1.000 0.000
#> GSM241498     1   0.000      0.984 1.000 0.000
#> GSM241499     1   0.000      0.984 1.000 0.000
#> GSM241500     2   0.000      0.995 0.000 1.000
#> GSM241501     2   0.000      0.995 0.000 1.000
#> GSM241502     2   0.000      0.995 0.000 1.000
#> GSM241503     1   0.000      0.984 1.000 0.000
#> GSM241504     1   0.000      0.984 1.000 0.000
#> GSM241505     1   0.000      0.984 1.000 0.000
#> GSM241506     2   0.000      0.995 0.000 1.000
#> GSM241507     1   0.000      0.984 1.000 0.000
#> GSM241508     2   0.000      0.995 0.000 1.000
#> GSM241509     2   0.000      0.995 0.000 1.000
#> GSM241510     2   0.000      0.995 0.000 1.000
#> GSM241511     1   0.000      0.984 1.000 0.000
#> GSM241512     1   0.000      0.984 1.000 0.000
#> GSM241513     2   0.000      0.995 0.000 1.000
#> GSM241514     1   0.000      0.984 1.000 0.000
#> GSM241515     2   0.000      0.995 0.000 1.000
#> GSM241516     1   0.000      0.984 1.000 0.000
#> GSM241517     2   0.000      0.995 0.000 1.000
#> GSM241518     1   0.430      0.899 0.912 0.088
#> GSM241519     2   0.000      0.995 0.000 1.000
#> GSM241520     1   0.000      0.984 1.000 0.000
#> GSM241521     2   0.000      0.995 0.000 1.000
#> GSM241522     1   0.000      0.984 1.000 0.000
#> GSM241523     2   0.000      0.995 0.000 1.000
#> GSM241524     1   0.000      0.984 1.000 0.000
#> GSM241525     1   0.000      0.984 1.000 0.000
#> GSM241526     2   0.000      0.995 0.000 1.000
#> GSM241527     1   0.000      0.984 1.000 0.000
#> GSM241528     2   0.000      0.995 0.000 1.000
#> GSM241529     2   0.000      0.995 0.000 1.000
#> GSM241530     1   0.000      0.984 1.000 0.000
#> GSM241531     1   0.000      0.984 1.000 0.000
#> GSM241532     2   0.000      0.995 0.000 1.000
#> GSM241533     2   0.000      0.995 0.000 1.000
#> GSM241534     2   0.000      0.995 0.000 1.000
#> GSM241535     1   0.827      0.663 0.740 0.260
#> GSM241536     1   0.000      0.984 1.000 0.000
#> GSM241537     2   0.000      0.995 0.000 1.000
#> GSM241538     1   0.722      0.760 0.800 0.200
#> GSM241539     2   0.000      0.995 0.000 1.000
#> GSM241540     1   0.000      0.984 1.000 0.000
#> GSM241541     2   0.000      0.995 0.000 1.000
#> GSM241542     2   0.775      0.694 0.228 0.772
#> GSM241543     2   0.000      0.995 0.000 1.000
#> GSM241544     1   0.000      0.984 1.000 0.000
#> GSM241545     2   0.000      0.995 0.000 1.000
#> GSM241546     1   0.000      0.984 1.000 0.000
#> GSM241547     2   0.000      0.995 0.000 1.000
#> GSM241548     1   0.722      0.760 0.800 0.200

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241452     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241453     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241454     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241455     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241456     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241457     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241458     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241459     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241460     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241461     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241462     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241463     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241464     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241465     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241466     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241467     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241468     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241469     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241470     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241471     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241472     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241473     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241474     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241475     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241476     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241477     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241478     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241479     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241480     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241481     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241482     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241483     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241484     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241485     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241486     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241487     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241488     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241489     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241490     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241491     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241492     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241493     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241494     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241495     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241496     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241497     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241498     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241499     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241500     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241501     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241502     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241503     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241504     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241505     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241506     2  0.0000      0.991 0.000 1.000 0.000
#> GSM241507     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241508     3  0.6140      0.306 0.000 0.404 0.596
#> GSM241509     3  0.0237      0.980 0.000 0.004 0.996
#> GSM241510     3  0.0237      0.980 0.000 0.004 0.996
#> GSM241511     1  0.0237      0.988 0.996 0.000 0.004
#> GSM241512     1  0.0237      0.988 0.996 0.000 0.004
#> GSM241513     3  0.0237      0.980 0.000 0.004 0.996
#> GSM241514     1  0.0237      0.988 0.996 0.000 0.004
#> GSM241515     3  0.0000      0.980 0.000 0.000 1.000
#> GSM241516     1  0.0237      0.988 0.996 0.000 0.004
#> GSM241517     3  0.0237      0.980 0.000 0.004 0.996
#> GSM241518     3  0.0000      0.980 0.000 0.000 1.000
#> GSM241519     3  0.0237      0.980 0.000 0.004 0.996
#> GSM241520     1  0.0237      0.988 0.996 0.000 0.004
#> GSM241521     2  0.4931      0.688 0.000 0.768 0.232
#> GSM241522     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241523     3  0.0424      0.977 0.000 0.008 0.992
#> GSM241524     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241525     1  0.0000      0.990 1.000 0.000 0.000
#> GSM241526     3  0.0237      0.980 0.000 0.004 0.996
#> GSM241527     1  0.0237      0.988 0.996 0.000 0.004
#> GSM241528     3  0.0237      0.980 0.000 0.004 0.996
#> GSM241529     3  0.0237      0.980 0.000 0.004 0.996
#> GSM241530     1  0.0237      0.988 0.996 0.000 0.004
#> GSM241531     1  0.0237      0.988 0.996 0.000 0.004
#> GSM241532     3  0.0237      0.980 0.000 0.004 0.996
#> GSM241533     3  0.0237      0.980 0.000 0.004 0.996
#> GSM241534     3  0.0237      0.980 0.000 0.004 0.996
#> GSM241535     3  0.0000      0.980 0.000 0.000 1.000
#> GSM241536     1  0.0237      0.988 0.996 0.000 0.004
#> GSM241537     3  0.0000      0.980 0.000 0.000 1.000
#> GSM241538     3  0.0000      0.980 0.000 0.000 1.000
#> GSM241539     3  0.0000      0.980 0.000 0.000 1.000
#> GSM241540     1  0.6126      0.343 0.600 0.000 0.400
#> GSM241541     3  0.0000      0.980 0.000 0.000 1.000
#> GSM241542     3  0.0000      0.980 0.000 0.000 1.000
#> GSM241543     3  0.0000      0.980 0.000 0.000 1.000
#> GSM241544     1  0.0237      0.988 0.996 0.000 0.004
#> GSM241545     3  0.0000      0.980 0.000 0.000 1.000
#> GSM241546     1  0.0237      0.988 0.996 0.000 0.004
#> GSM241547     3  0.0237      0.980 0.000 0.004 0.996
#> GSM241548     3  0.0000      0.980 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> GSM241452     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241453     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> GSM241454     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241455     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> GSM241456     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241457     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> GSM241458     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241459     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> GSM241460     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241461     2  0.0188      0.997 0.000 0.996 0.000 0.004
#> GSM241462     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241463     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> GSM241464     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241465     2  0.0188      0.997 0.000 0.996 0.000 0.004
#> GSM241466     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> GSM241469     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241470     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> GSM241471     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> GSM241472     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241473     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> GSM241474     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241475     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> GSM241476     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> GSM241478     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> GSM241479     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241481     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> GSM241482     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241483     2  0.0188      0.997 0.000 0.996 0.000 0.004
#> GSM241484     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241485     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241486     2  0.0188      0.997 0.000 0.996 0.000 0.004
#> GSM241487     2  0.0188      0.997 0.000 0.996 0.000 0.004
#> GSM241488     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> GSM241489     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241491     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> GSM241492     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241493     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> GSM241494     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241495     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> GSM241496     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> GSM241497     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241499     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241500     2  0.0188      0.997 0.000 0.996 0.000 0.004
#> GSM241501     2  0.0188      0.997 0.000 0.996 0.000 0.004
#> GSM241502     2  0.0188      0.997 0.000 0.996 0.000 0.004
#> GSM241503     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241504     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241505     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241506     2  0.0188      0.997 0.000 0.996 0.000 0.004
#> GSM241507     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241508     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM241509     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM241510     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM241511     3  0.0188      0.951 0.004 0.000 0.996 0.000
#> GSM241512     3  0.0000      0.951 0.000 0.000 1.000 0.000
#> GSM241513     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM241514     3  0.0188      0.951 0.004 0.000 0.996 0.000
#> GSM241515     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM241516     3  0.0188      0.951 0.004 0.000 0.996 0.000
#> GSM241517     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM241518     3  0.0000      0.951 0.000 0.000 1.000 0.000
#> GSM241519     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM241520     3  0.0000      0.951 0.000 0.000 1.000 0.000
#> GSM241521     4  0.0188      0.995 0.000 0.004 0.000 0.996
#> GSM241522     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> GSM241523     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM241524     3  0.4643      0.501 0.344 0.000 0.656 0.000
#> GSM241525     1  0.2345      0.882 0.900 0.000 0.100 0.000
#> GSM241526     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM241527     3  0.0000      0.951 0.000 0.000 1.000 0.000
#> GSM241528     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM241529     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM241530     3  0.3569      0.760 0.196 0.000 0.804 0.000
#> GSM241531     3  0.0188      0.951 0.004 0.000 0.996 0.000
#> GSM241532     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM241533     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM241534     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM241535     3  0.0000      0.951 0.000 0.000 1.000 0.000
#> GSM241536     3  0.0188      0.951 0.004 0.000 0.996 0.000
#> GSM241537     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM241538     3  0.0000      0.951 0.000 0.000 1.000 0.000
#> GSM241539     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM241540     3  0.0000      0.951 0.000 0.000 1.000 0.000
#> GSM241541     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM241542     3  0.3569      0.746 0.000 0.000 0.804 0.196
#> GSM241543     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM241544     3  0.0000      0.951 0.000 0.000 1.000 0.000
#> GSM241545     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM241546     3  0.0188      0.951 0.004 0.000 0.996 0.000
#> GSM241547     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM241548     3  0.0000      0.951 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2  0.4201      0.851 0.000 0.592 0.408 0.000 0.000
#> GSM241452     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.4201      0.851 0.000 0.592 0.408 0.000 0.000
#> GSM241454     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.4201      0.851 0.000 0.592 0.408 0.000 0.000
#> GSM241456     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241457     2  0.0000      0.710 0.000 1.000 0.000 0.000 0.000
#> GSM241458     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241459     2  0.0000      0.710 0.000 1.000 0.000 0.000 0.000
#> GSM241460     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241461     2  0.0000      0.710 0.000 1.000 0.000 0.000 0.000
#> GSM241462     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241463     2  0.4201      0.851 0.000 0.592 0.408 0.000 0.000
#> GSM241464     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241465     2  0.4150      0.846 0.000 0.612 0.388 0.000 0.000
#> GSM241466     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.4201      0.851 0.000 0.592 0.408 0.000 0.000
#> GSM241469     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.4201      0.851 0.000 0.592 0.408 0.000 0.000
#> GSM241471     2  0.4201      0.851 0.000 0.592 0.408 0.000 0.000
#> GSM241472     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.4201      0.851 0.000 0.592 0.408 0.000 0.000
#> GSM241474     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.4201      0.851 0.000 0.592 0.408 0.000 0.000
#> GSM241476     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.4201      0.851 0.000 0.592 0.408 0.000 0.000
#> GSM241478     2  0.4201      0.851 0.000 0.592 0.408 0.000 0.000
#> GSM241479     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241481     2  0.0000      0.710 0.000 1.000 0.000 0.000 0.000
#> GSM241482     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241483     2  0.0000      0.710 0.000 1.000 0.000 0.000 0.000
#> GSM241484     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241485     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241486     2  0.0000      0.710 0.000 1.000 0.000 0.000 0.000
#> GSM241487     2  0.4150      0.846 0.000 0.612 0.388 0.000 0.000
#> GSM241488     2  0.4201      0.851 0.000 0.592 0.408 0.000 0.000
#> GSM241489     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241491     2  0.4201      0.851 0.000 0.592 0.408 0.000 0.000
#> GSM241492     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241493     2  0.4201      0.851 0.000 0.592 0.408 0.000 0.000
#> GSM241494     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.4201      0.851 0.000 0.592 0.408 0.000 0.000
#> GSM241496     2  0.4201      0.851 0.000 0.592 0.408 0.000 0.000
#> GSM241497     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241499     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241500     2  0.0404      0.699 0.000 0.988 0.012 0.000 0.000
#> GSM241501     2  0.0000      0.710 0.000 1.000 0.000 0.000 0.000
#> GSM241502     2  0.0000      0.710 0.000 1.000 0.000 0.000 0.000
#> GSM241503     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241504     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241505     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241506     2  0.0000      0.710 0.000 1.000 0.000 0.000 0.000
#> GSM241507     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241508     3  0.4201      0.478 0.000 0.408 0.592 0.000 0.000
#> GSM241509     3  0.5382      0.907 0.000 0.072 0.592 0.000 0.336
#> GSM241510     3  0.4201      0.974 0.000 0.000 0.592 0.000 0.408
#> GSM241511     4  0.0000      0.587 0.000 0.000 0.000 1.000 0.000
#> GSM241512     4  0.0000      0.587 0.000 0.000 0.000 1.000 0.000
#> GSM241513     3  0.4210      0.973 0.000 0.000 0.588 0.000 0.412
#> GSM241514     4  0.4242     -0.491 0.000 0.000 0.000 0.572 0.428
#> GSM241515     3  0.4210      0.973 0.000 0.000 0.588 0.000 0.412
#> GSM241516     4  0.4242     -0.491 0.000 0.000 0.000 0.572 0.428
#> GSM241517     3  0.4210      0.973 0.000 0.000 0.588 0.000 0.412
#> GSM241518     5  0.4210      1.000 0.000 0.000 0.000 0.412 0.588
#> GSM241519     3  0.4210      0.973 0.000 0.000 0.588 0.000 0.412
#> GSM241520     5  0.4210      1.000 0.000 0.000 0.000 0.412 0.588
#> GSM241521     3  0.4201      0.970 0.000 0.000 0.592 0.000 0.408
#> GSM241522     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM241523     3  0.4210      0.973 0.000 0.000 0.588 0.000 0.412
#> GSM241524     4  0.5850     -0.447 0.096 0.000 0.000 0.476 0.428
#> GSM241525     1  0.2852      0.793 0.828 0.000 0.000 0.172 0.000
#> GSM241526     3  0.4201      0.974 0.000 0.000 0.592 0.000 0.408
#> GSM241527     4  0.0000      0.587 0.000 0.000 0.000 1.000 0.000
#> GSM241528     3  0.4201      0.974 0.000 0.000 0.592 0.000 0.408
#> GSM241529     3  0.4201      0.974 0.000 0.000 0.592 0.000 0.408
#> GSM241530     4  0.0510      0.570 0.016 0.000 0.000 0.984 0.000
#> GSM241531     4  0.0000      0.587 0.000 0.000 0.000 1.000 0.000
#> GSM241532     3  0.4201      0.974 0.000 0.000 0.592 0.000 0.408
#> GSM241533     3  0.4201      0.974 0.000 0.000 0.592 0.000 0.408
#> GSM241534     3  0.4201      0.974 0.000 0.000 0.592 0.000 0.408
#> GSM241535     4  0.2732      0.424 0.000 0.000 0.000 0.840 0.160
#> GSM241536     4  0.0000      0.587 0.000 0.000 0.000 1.000 0.000
#> GSM241537     3  0.4201      0.974 0.000 0.000 0.592 0.000 0.408
#> GSM241538     4  0.2852      0.415 0.000 0.000 0.000 0.828 0.172
#> GSM241539     3  0.4201      0.974 0.000 0.000 0.592 0.000 0.408
#> GSM241540     4  0.0404      0.579 0.000 0.000 0.000 0.988 0.012
#> GSM241541     3  0.4201      0.974 0.000 0.000 0.592 0.000 0.408
#> GSM241542     4  0.3988      0.349 0.000 0.000 0.036 0.768 0.196
#> GSM241543     3  0.4210      0.973 0.000 0.000 0.588 0.000 0.412
#> GSM241544     4  0.4242     -0.491 0.000 0.000 0.000 0.572 0.428
#> GSM241545     3  0.4210      0.973 0.000 0.000 0.588 0.000 0.412
#> GSM241546     4  0.4242     -0.491 0.000 0.000 0.000 0.572 0.428
#> GSM241547     3  0.4210      0.973 0.000 0.000 0.588 0.000 0.412
#> GSM241548     5  0.4210      1.000 0.000 0.000 0.000 0.412 0.588

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM241451     2  0.0000      0.968 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241452     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.0146      0.969 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM241454     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0146      0.969 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM241456     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241457     5  0.2003      0.975 0.000 0.116 0.000 0.000 0.884 0.000
#> GSM241458     1  0.1644      0.946 0.932 0.000 0.000 0.000 0.028 0.040
#> GSM241459     5  0.2003      0.975 0.000 0.116 0.000 0.000 0.884 0.000
#> GSM241460     1  0.0260      0.966 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM241461     5  0.1957      0.977 0.000 0.112 0.000 0.000 0.888 0.000
#> GSM241462     1  0.1713      0.945 0.928 0.000 0.000 0.000 0.028 0.044
#> GSM241463     2  0.1075      0.931 0.000 0.952 0.000 0.000 0.048 0.000
#> GSM241464     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241465     2  0.2762      0.746 0.000 0.804 0.000 0.000 0.196 0.000
#> GSM241466     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      0.968 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241469     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0146      0.969 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM241471     2  0.0146      0.969 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM241472     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.0146      0.969 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM241474     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.0000      0.968 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241476     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.0146      0.969 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM241478     2  0.0000      0.968 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241479     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241481     5  0.2003      0.975 0.000 0.116 0.000 0.000 0.884 0.000
#> GSM241482     1  0.1257      0.954 0.952 0.000 0.000 0.000 0.028 0.020
#> GSM241483     5  0.1957      0.977 0.000 0.112 0.000 0.000 0.888 0.000
#> GSM241484     1  0.1644      0.946 0.932 0.000 0.000 0.000 0.028 0.040
#> GSM241485     1  0.1713      0.945 0.928 0.000 0.000 0.000 0.028 0.044
#> GSM241486     5  0.1957      0.977 0.000 0.112 0.000 0.000 0.888 0.000
#> GSM241487     2  0.2793      0.740 0.000 0.800 0.000 0.000 0.200 0.000
#> GSM241488     2  0.0000      0.968 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241489     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241491     2  0.0146      0.969 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM241492     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241493     2  0.0146      0.969 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM241494     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0146      0.969 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM241496     2  0.0000      0.968 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241497     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241499     1  0.1713      0.945 0.928 0.000 0.000 0.000 0.028 0.044
#> GSM241500     5  0.2070      0.969 0.000 0.100 0.000 0.008 0.892 0.000
#> GSM241501     5  0.1910      0.977 0.000 0.108 0.000 0.000 0.892 0.000
#> GSM241502     5  0.1910      0.977 0.000 0.108 0.000 0.000 0.892 0.000
#> GSM241503     1  0.1713      0.945 0.928 0.000 0.000 0.000 0.028 0.044
#> GSM241504     1  0.1713      0.945 0.928 0.000 0.000 0.000 0.028 0.044
#> GSM241505     1  0.1780      0.942 0.924 0.000 0.000 0.000 0.028 0.048
#> GSM241506     5  0.1910      0.977 0.000 0.108 0.000 0.000 0.892 0.000
#> GSM241507     1  0.1845      0.940 0.920 0.000 0.000 0.000 0.028 0.052
#> GSM241508     5  0.1957      0.816 0.000 0.000 0.000 0.112 0.888 0.000
#> GSM241509     4  0.2527      0.766 0.000 0.000 0.000 0.832 0.168 0.000
#> GSM241510     4  0.0260      0.921 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM241511     6  0.0632      0.815 0.000 0.000 0.000 0.000 0.024 0.976
#> GSM241512     6  0.0858      0.829 0.000 0.000 0.028 0.000 0.004 0.968
#> GSM241513     4  0.2889      0.912 0.000 0.000 0.108 0.848 0.044 0.000
#> GSM241514     3  0.3515      0.832 0.000 0.000 0.676 0.000 0.000 0.324
#> GSM241515     4  0.2889      0.912 0.000 0.000 0.108 0.848 0.044 0.000
#> GSM241516     3  0.3547      0.826 0.000 0.000 0.668 0.000 0.000 0.332
#> GSM241517     4  0.2889      0.912 0.000 0.000 0.108 0.848 0.044 0.000
#> GSM241518     3  0.2605      0.745 0.000 0.000 0.864 0.000 0.028 0.108
#> GSM241519     4  0.2889      0.912 0.000 0.000 0.108 0.848 0.044 0.000
#> GSM241520     3  0.2358      0.751 0.000 0.000 0.876 0.000 0.016 0.108
#> GSM241521     4  0.2889      0.912 0.000 0.000 0.108 0.848 0.044 0.000
#> GSM241522     1  0.0260      0.966 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM241523     4  0.2889      0.912 0.000 0.000 0.108 0.848 0.044 0.000
#> GSM241524     3  0.3969      0.818 0.020 0.000 0.668 0.000 0.000 0.312
#> GSM241525     1  0.4029      0.616 0.680 0.000 0.000 0.000 0.028 0.292
#> GSM241526     4  0.0260      0.921 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM241527     6  0.1075      0.817 0.000 0.000 0.048 0.000 0.000 0.952
#> GSM241528     4  0.0260      0.921 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM241529     4  0.0260      0.921 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM241530     6  0.0665      0.830 0.004 0.000 0.008 0.000 0.008 0.980
#> GSM241531     6  0.0405      0.830 0.000 0.000 0.004 0.000 0.008 0.988
#> GSM241532     4  0.0260      0.921 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM241533     4  0.0260      0.921 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM241534     4  0.0260      0.921 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM241535     6  0.3721      0.692 0.000 0.000 0.252 0.004 0.016 0.728
#> GSM241536     6  0.0260      0.828 0.000 0.000 0.000 0.000 0.008 0.992
#> GSM241537     4  0.0000      0.922 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241538     6  0.4079      0.650 0.000 0.000 0.288 0.000 0.032 0.680
#> GSM241539     4  0.0000      0.922 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241540     6  0.1951      0.795 0.000 0.000 0.076 0.000 0.016 0.908
#> GSM241541     4  0.0000      0.922 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241542     6  0.4994      0.608 0.000 0.000 0.288 0.040 0.036 0.636
#> GSM241543     4  0.2889      0.912 0.000 0.000 0.108 0.848 0.044 0.000
#> GSM241544     3  0.3515      0.832 0.000 0.000 0.676 0.000 0.000 0.324
#> GSM241545     4  0.2889      0.912 0.000 0.000 0.108 0.848 0.044 0.000
#> GSM241546     3  0.3531      0.830 0.000 0.000 0.672 0.000 0.000 0.328
#> GSM241547     4  0.2889      0.912 0.000 0.000 0.108 0.848 0.044 0.000
#> GSM241548     3  0.2605      0.745 0.000 0.000 0.864 0.000 0.028 0.108

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n  dose(p) time(p) k
#> ATC:skmeans 98 9.89e-01 0.98856 2
#> ATC:skmeans 96 2.70e-08 0.50459 3
#> ATC:skmeans 98 2.56e-11 0.68525 4
#> ATC:skmeans 89 5.33e-09 0.41198 5
#> ATC:skmeans 98 3.11e-11 0.00168 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.967       0.987         0.5022 0.500   0.500
#> 3 3 0.921           0.915       0.964         0.2889 0.852   0.704
#> 4 4 0.951           0.935       0.973         0.1425 0.879   0.670
#> 5 5 0.823           0.779       0.854         0.0613 0.926   0.726
#> 6 6 0.922           0.879       0.934         0.0482 0.924   0.671

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4

There is also optional best \(k\) = 2 3 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     2  0.0000      0.975 0.000 1.000
#> GSM241452     1  0.0000      1.000 1.000 0.000
#> GSM241453     2  0.0000      0.975 0.000 1.000
#> GSM241454     1  0.0000      1.000 1.000 0.000
#> GSM241455     2  0.0000      0.975 0.000 1.000
#> GSM241456     1  0.0000      1.000 1.000 0.000
#> GSM241457     2  0.0000      0.975 0.000 1.000
#> GSM241458     1  0.0000      1.000 1.000 0.000
#> GSM241459     2  0.0000      0.975 0.000 1.000
#> GSM241460     1  0.0000      1.000 1.000 0.000
#> GSM241461     2  0.0000      0.975 0.000 1.000
#> GSM241462     1  0.0000      1.000 1.000 0.000
#> GSM241463     2  0.0000      0.975 0.000 1.000
#> GSM241464     1  0.0000      1.000 1.000 0.000
#> GSM241465     2  0.0000      0.975 0.000 1.000
#> GSM241466     1  0.0000      1.000 1.000 0.000
#> GSM241467     1  0.0000      1.000 1.000 0.000
#> GSM241468     2  0.0000      0.975 0.000 1.000
#> GSM241469     1  0.0000      1.000 1.000 0.000
#> GSM241470     2  0.0000      0.975 0.000 1.000
#> GSM241471     2  0.0000      0.975 0.000 1.000
#> GSM241472     1  0.0000      1.000 1.000 0.000
#> GSM241473     2  0.0000      0.975 0.000 1.000
#> GSM241474     1  0.0000      1.000 1.000 0.000
#> GSM241475     2  0.0000      0.975 0.000 1.000
#> GSM241476     1  0.0000      1.000 1.000 0.000
#> GSM241477     2  0.0000      0.975 0.000 1.000
#> GSM241478     2  0.0000      0.975 0.000 1.000
#> GSM241479     1  0.0000      1.000 1.000 0.000
#> GSM241480     1  0.0000      1.000 1.000 0.000
#> GSM241481     2  0.0000      0.975 0.000 1.000
#> GSM241482     1  0.0000      1.000 1.000 0.000
#> GSM241483     2  0.0000      0.975 0.000 1.000
#> GSM241484     1  0.0000      1.000 1.000 0.000
#> GSM241485     1  0.0000      1.000 1.000 0.000
#> GSM241486     2  0.0000      0.975 0.000 1.000
#> GSM241487     2  0.0000      0.975 0.000 1.000
#> GSM241488     2  0.0000      0.975 0.000 1.000
#> GSM241489     1  0.0000      1.000 1.000 0.000
#> GSM241490     1  0.0000      1.000 1.000 0.000
#> GSM241491     2  0.0000      0.975 0.000 1.000
#> GSM241492     1  0.0000      1.000 1.000 0.000
#> GSM241493     2  0.0000      0.975 0.000 1.000
#> GSM241494     1  0.0000      1.000 1.000 0.000
#> GSM241495     2  0.0000      0.975 0.000 1.000
#> GSM241496     2  0.0000      0.975 0.000 1.000
#> GSM241497     1  0.0000      1.000 1.000 0.000
#> GSM241498     1  0.0000      1.000 1.000 0.000
#> GSM241499     1  0.0000      1.000 1.000 0.000
#> GSM241500     2  0.0000      0.975 0.000 1.000
#> GSM241501     2  0.0000      0.975 0.000 1.000
#> GSM241502     2  0.0000      0.975 0.000 1.000
#> GSM241503     1  0.0000      1.000 1.000 0.000
#> GSM241504     1  0.0000      1.000 1.000 0.000
#> GSM241505     1  0.0000      1.000 1.000 0.000
#> GSM241506     2  0.0000      0.975 0.000 1.000
#> GSM241507     1  0.0000      1.000 1.000 0.000
#> GSM241508     2  0.0000      0.975 0.000 1.000
#> GSM241509     2  0.0000      0.975 0.000 1.000
#> GSM241510     2  0.0000      0.975 0.000 1.000
#> GSM241511     1  0.0000      1.000 1.000 0.000
#> GSM241512     1  0.0000      1.000 1.000 0.000
#> GSM241513     2  0.0000      0.975 0.000 1.000
#> GSM241514     1  0.0000      1.000 1.000 0.000
#> GSM241515     2  0.0000      0.975 0.000 1.000
#> GSM241516     1  0.0000      1.000 1.000 0.000
#> GSM241517     2  0.0000      0.975 0.000 1.000
#> GSM241518     2  0.9635      0.397 0.388 0.612
#> GSM241519     2  0.0000      0.975 0.000 1.000
#> GSM241520     1  0.0376      0.996 0.996 0.004
#> GSM241521     2  0.0000      0.975 0.000 1.000
#> GSM241522     1  0.0000      1.000 1.000 0.000
#> GSM241523     2  0.0000      0.975 0.000 1.000
#> GSM241524     1  0.0000      1.000 1.000 0.000
#> GSM241525     1  0.0000      1.000 1.000 0.000
#> GSM241526     2  0.0000      0.975 0.000 1.000
#> GSM241527     1  0.0000      1.000 1.000 0.000
#> GSM241528     2  0.0000      0.975 0.000 1.000
#> GSM241529     2  0.0000      0.975 0.000 1.000
#> GSM241530     1  0.0000      1.000 1.000 0.000
#> GSM241531     1  0.0000      1.000 1.000 0.000
#> GSM241532     2  0.0000      0.975 0.000 1.000
#> GSM241533     2  0.0000      0.975 0.000 1.000
#> GSM241534     2  0.0000      0.975 0.000 1.000
#> GSM241535     2  0.5946      0.823 0.144 0.856
#> GSM241536     1  0.0000      1.000 1.000 0.000
#> GSM241537     2  0.0000      0.975 0.000 1.000
#> GSM241538     2  0.9608      0.407 0.384 0.616
#> GSM241539     2  0.0000      0.975 0.000 1.000
#> GSM241540     1  0.0000      1.000 1.000 0.000
#> GSM241541     2  0.0000      0.975 0.000 1.000
#> GSM241542     2  0.0000      0.975 0.000 1.000
#> GSM241543     2  0.0000      0.975 0.000 1.000
#> GSM241544     1  0.0000      1.000 1.000 0.000
#> GSM241545     2  0.0000      0.975 0.000 1.000
#> GSM241546     1  0.0000      1.000 1.000 0.000
#> GSM241547     2  0.0000      0.975 0.000 1.000
#> GSM241548     2  0.9608      0.407 0.384 0.616

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241452     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241453     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241454     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241455     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241456     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241457     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241458     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241459     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241460     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241461     2  0.1753     0.8948 0.000 0.952 0.048
#> GSM241462     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241463     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241464     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241465     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241466     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241467     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241468     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241469     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241470     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241471     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241472     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241473     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241474     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241475     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241476     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241477     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241478     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241479     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241480     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241481     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241482     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241483     2  0.0237     0.9334 0.000 0.996 0.004
#> GSM241484     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241485     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241486     2  0.6168     0.2255 0.000 0.588 0.412
#> GSM241487     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241488     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241489     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241490     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241491     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241492     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241493     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241494     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241495     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241496     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241497     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241498     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241499     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241500     3  0.3412     0.8809 0.000 0.124 0.876
#> GSM241501     2  0.1964     0.8868 0.000 0.944 0.056
#> GSM241502     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241503     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241504     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241505     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241506     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241507     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241508     3  0.1753     0.9240 0.000 0.048 0.952
#> GSM241509     3  0.0000     0.9401 0.000 0.000 1.000
#> GSM241510     3  0.0000     0.9401 0.000 0.000 1.000
#> GSM241511     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241512     1  0.1964     0.9263 0.944 0.056 0.000
#> GSM241513     3  0.3482     0.8777 0.000 0.128 0.872
#> GSM241514     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241515     2  0.5591     0.5174 0.000 0.696 0.304
#> GSM241516     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241517     3  0.2356     0.9125 0.000 0.072 0.928
#> GSM241518     2  0.6305     0.0452 0.484 0.516 0.000
#> GSM241519     3  0.4842     0.7423 0.000 0.224 0.776
#> GSM241520     1  0.5529     0.5654 0.704 0.296 0.000
#> GSM241521     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241522     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241523     2  0.0000     0.9366 0.000 1.000 0.000
#> GSM241524     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241525     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241526     3  0.0000     0.9401 0.000 0.000 1.000
#> GSM241527     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241528     3  0.3482     0.8777 0.000 0.128 0.872
#> GSM241529     3  0.0000     0.9401 0.000 0.000 1.000
#> GSM241530     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241531     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241532     3  0.0000     0.9401 0.000 0.000 1.000
#> GSM241533     3  0.0000     0.9401 0.000 0.000 1.000
#> GSM241534     3  0.0000     0.9401 0.000 0.000 1.000
#> GSM241535     3  0.2711     0.8999 0.000 0.088 0.912
#> GSM241536     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241537     3  0.0000     0.9401 0.000 0.000 1.000
#> GSM241538     3  0.0000     0.9401 0.000 0.000 1.000
#> GSM241539     3  0.0000     0.9401 0.000 0.000 1.000
#> GSM241540     1  0.5254     0.6265 0.736 0.000 0.264
#> GSM241541     3  0.0000     0.9401 0.000 0.000 1.000
#> GSM241542     3  0.0000     0.9401 0.000 0.000 1.000
#> GSM241543     3  0.3482     0.8777 0.000 0.128 0.872
#> GSM241544     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241545     2  0.6026     0.3366 0.000 0.624 0.376
#> GSM241546     1  0.0000     0.9846 1.000 0.000 0.000
#> GSM241547     3  0.0000     0.9401 0.000 0.000 1.000
#> GSM241548     3  0.6678     0.7137 0.064 0.208 0.728

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette   p1    p2    p3    p4
#> GSM241451     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241452     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241453     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241454     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241455     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241456     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241457     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241458     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241459     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241460     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241461     2  0.0817      0.940 0.00 0.976 0.000 0.024
#> GSM241462     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241463     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241464     1  0.2345      0.890 0.90 0.000 0.100 0.000
#> GSM241465     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241466     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241468     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241469     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241470     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241471     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241472     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241473     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241474     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241475     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241476     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241477     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241478     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241479     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241481     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241482     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241483     2  0.0188      0.957 0.00 0.996 0.000 0.004
#> GSM241484     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241485     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241486     2  0.4277      0.572 0.00 0.720 0.000 0.280
#> GSM241487     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241488     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241489     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241491     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241492     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241493     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241494     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241495     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241496     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241497     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241499     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241500     4  0.3610      0.782 0.00 0.200 0.000 0.800
#> GSM241501     2  0.0921      0.936 0.00 0.972 0.000 0.028
#> GSM241502     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241503     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241504     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241505     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241506     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241507     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241508     4  0.0336      0.920 0.00 0.008 0.000 0.992
#> GSM241509     4  0.0000      0.923 0.00 0.000 0.000 1.000
#> GSM241510     4  0.0000      0.923 0.00 0.000 0.000 1.000
#> GSM241511     3  0.0000      0.977 0.00 0.000 1.000 0.000
#> GSM241512     3  0.0000      0.977 0.00 0.000 1.000 0.000
#> GSM241513     4  0.3688      0.773 0.00 0.208 0.000 0.792
#> GSM241514     3  0.0000      0.977 0.00 0.000 1.000 0.000
#> GSM241515     2  0.4643      0.433 0.00 0.656 0.000 0.344
#> GSM241516     3  0.0000      0.977 0.00 0.000 1.000 0.000
#> GSM241517     4  0.0707      0.915 0.00 0.020 0.000 0.980
#> GSM241518     3  0.0000      0.977 0.00 0.000 1.000 0.000
#> GSM241519     4  0.3764      0.731 0.00 0.216 0.000 0.784
#> GSM241520     3  0.0000      0.977 0.00 0.000 1.000 0.000
#> GSM241521     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241522     1  0.0000      0.995 1.00 0.000 0.000 0.000
#> GSM241523     2  0.0000      0.960 0.00 1.000 0.000 0.000
#> GSM241524     3  0.0000      0.977 0.00 0.000 1.000 0.000
#> GSM241525     1  0.1637      0.936 0.94 0.000 0.060 0.000
#> GSM241526     4  0.0000      0.923 0.00 0.000 0.000 1.000
#> GSM241527     3  0.0000      0.977 0.00 0.000 1.000 0.000
#> GSM241528     4  0.3688      0.773 0.00 0.208 0.000 0.792
#> GSM241529     4  0.0000      0.923 0.00 0.000 0.000 1.000
#> GSM241530     3  0.0000      0.977 0.00 0.000 1.000 0.000
#> GSM241531     3  0.0000      0.977 0.00 0.000 1.000 0.000
#> GSM241532     4  0.0000      0.923 0.00 0.000 0.000 1.000
#> GSM241533     4  0.0000      0.923 0.00 0.000 0.000 1.000
#> GSM241534     4  0.0000      0.923 0.00 0.000 0.000 1.000
#> GSM241535     3  0.0336      0.971 0.00 0.000 0.992 0.008
#> GSM241536     3  0.0000      0.977 0.00 0.000 1.000 0.000
#> GSM241537     4  0.0000      0.923 0.00 0.000 0.000 1.000
#> GSM241538     3  0.0000      0.977 0.00 0.000 1.000 0.000
#> GSM241539     4  0.0000      0.923 0.00 0.000 0.000 1.000
#> GSM241540     3  0.0000      0.977 0.00 0.000 1.000 0.000
#> GSM241541     4  0.0000      0.923 0.00 0.000 0.000 1.000
#> GSM241542     3  0.4776      0.410 0.00 0.000 0.624 0.376
#> GSM241543     4  0.3688      0.773 0.00 0.208 0.000 0.792
#> GSM241544     3  0.0000      0.977 0.00 0.000 1.000 0.000
#> GSM241545     2  0.4817      0.307 0.00 0.612 0.000 0.388
#> GSM241546     3  0.0000      0.977 0.00 0.000 1.000 0.000
#> GSM241547     4  0.0000      0.923 0.00 0.000 0.000 1.000
#> GSM241548     3  0.0000      0.977 0.00 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> GSM241452     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> GSM241454     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> GSM241456     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM241457     2  0.4210      0.512 0.000 0.588 0.000 0.000 0.412
#> GSM241458     4  0.4291      0.627 0.464 0.000 0.000 0.536 0.000
#> GSM241459     2  0.3336      0.702 0.000 0.772 0.000 0.000 0.228
#> GSM241460     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM241461     2  0.4227      0.500 0.000 0.580 0.000 0.000 0.420
#> GSM241462     4  0.4210      0.713 0.412 0.000 0.000 0.588 0.000
#> GSM241463     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> GSM241464     1  0.2020      0.809 0.900 0.000 0.100 0.000 0.000
#> GSM241465     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> GSM241466     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> GSM241469     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> GSM241471     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> GSM241472     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> GSM241474     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> GSM241476     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> GSM241478     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> GSM241479     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM241481     2  0.4030      0.582 0.000 0.648 0.000 0.000 0.352
#> GSM241482     1  0.1341      0.908 0.944 0.000 0.000 0.056 0.000
#> GSM241483     2  0.4219      0.507 0.000 0.584 0.000 0.000 0.416
#> GSM241484     4  0.4210      0.713 0.412 0.000 0.000 0.588 0.000
#> GSM241485     4  0.4249      0.687 0.432 0.000 0.000 0.568 0.000
#> GSM241486     5  0.4306     -0.370 0.000 0.492 0.000 0.000 0.508
#> GSM241487     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> GSM241488     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> GSM241489     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM241491     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> GSM241492     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM241493     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> GSM241494     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> GSM241496     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> GSM241497     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM241499     4  0.4210      0.713 0.412 0.000 0.000 0.588 0.000
#> GSM241500     5  0.0404      0.697 0.000 0.012 0.000 0.000 0.988
#> GSM241501     2  0.4227      0.500 0.000 0.580 0.000 0.000 0.420
#> GSM241502     2  0.4192      0.522 0.000 0.596 0.000 0.000 0.404
#> GSM241503     4  0.4210      0.713 0.412 0.000 0.000 0.588 0.000
#> GSM241504     4  0.4210      0.713 0.412 0.000 0.000 0.588 0.000
#> GSM241505     4  0.4210      0.713 0.412 0.000 0.000 0.588 0.000
#> GSM241506     2  0.0404      0.862 0.000 0.988 0.000 0.000 0.012
#> GSM241507     4  0.4210      0.713 0.412 0.000 0.000 0.588 0.000
#> GSM241508     5  0.0290      0.698 0.000 0.008 0.000 0.000 0.992
#> GSM241509     5  0.3424      0.752 0.000 0.000 0.000 0.240 0.760
#> GSM241510     5  0.3424      0.752 0.000 0.000 0.000 0.240 0.760
#> GSM241511     4  0.4287      0.168 0.000 0.000 0.460 0.540 0.000
#> GSM241512     3  0.0000      0.975 0.000 0.000 1.000 0.000 0.000
#> GSM241513     5  0.4235      0.358 0.000 0.424 0.000 0.000 0.576
#> GSM241514     3  0.0000      0.975 0.000 0.000 1.000 0.000 0.000
#> GSM241515     2  0.3966      0.332 0.000 0.664 0.000 0.000 0.336
#> GSM241516     3  0.0000      0.975 0.000 0.000 1.000 0.000 0.000
#> GSM241517     5  0.3242      0.729 0.000 0.012 0.000 0.172 0.816
#> GSM241518     3  0.0000      0.975 0.000 0.000 1.000 0.000 0.000
#> GSM241519     5  0.5752      0.520 0.000 0.208 0.000 0.172 0.620
#> GSM241520     3  0.0000      0.975 0.000 0.000 1.000 0.000 0.000
#> GSM241521     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> GSM241522     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM241523     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> GSM241524     3  0.0000      0.975 0.000 0.000 1.000 0.000 0.000
#> GSM241525     4  0.4287      0.646 0.460 0.000 0.000 0.540 0.000
#> GSM241526     5  0.3983      0.762 0.000 0.000 0.000 0.340 0.660
#> GSM241527     3  0.0000      0.975 0.000 0.000 1.000 0.000 0.000
#> GSM241528     5  0.0510      0.698 0.000 0.016 0.000 0.000 0.984
#> GSM241529     5  0.0000      0.699 0.000 0.000 0.000 0.000 1.000
#> GSM241530     4  0.4287      0.168 0.000 0.000 0.460 0.540 0.000
#> GSM241531     4  0.4287      0.168 0.000 0.000 0.460 0.540 0.000
#> GSM241532     5  0.4210      0.762 0.000 0.000 0.000 0.412 0.588
#> GSM241533     5  0.4210      0.762 0.000 0.000 0.000 0.412 0.588
#> GSM241534     5  0.4210      0.762 0.000 0.000 0.000 0.412 0.588
#> GSM241535     3  0.0290      0.967 0.000 0.000 0.992 0.000 0.008
#> GSM241536     4  0.4210      0.250 0.000 0.000 0.412 0.588 0.000
#> GSM241537     5  0.4210      0.762 0.000 0.000 0.000 0.412 0.588
#> GSM241538     3  0.0000      0.975 0.000 0.000 1.000 0.000 0.000
#> GSM241539     5  0.4210      0.762 0.000 0.000 0.000 0.412 0.588
#> GSM241540     3  0.0000      0.975 0.000 0.000 1.000 0.000 0.000
#> GSM241541     5  0.4210      0.762 0.000 0.000 0.000 0.412 0.588
#> GSM241542     3  0.4519      0.628 0.000 0.000 0.720 0.228 0.052
#> GSM241543     5  0.3966      0.487 0.000 0.336 0.000 0.000 0.664
#> GSM241544     3  0.0000      0.975 0.000 0.000 1.000 0.000 0.000
#> GSM241545     2  0.3857      0.393 0.000 0.688 0.000 0.000 0.312
#> GSM241546     3  0.0000      0.975 0.000 0.000 1.000 0.000 0.000
#> GSM241547     5  0.4210      0.762 0.000 0.000 0.000 0.412 0.588
#> GSM241548     3  0.0000      0.975 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM241451     2  0.0000      0.966 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241452     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241453     2  0.0000      0.966 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241454     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0000      0.966 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241456     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241457     5  0.1327      0.872 0.000 0.064 0.000 0.000 0.936 0.000
#> GSM241458     6  0.1556      0.809 0.080 0.000 0.000 0.000 0.000 0.920
#> GSM241459     5  0.3288      0.681 0.000 0.276 0.000 0.000 0.724 0.000
#> GSM241460     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241461     5  0.1327      0.872 0.000 0.064 0.000 0.000 0.936 0.000
#> GSM241462     6  0.0713      0.842 0.028 0.000 0.000 0.000 0.000 0.972
#> GSM241463     2  0.0000      0.966 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241464     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241465     2  0.0000      0.966 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241466     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      0.966 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241469     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0000      0.966 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241471     2  0.0000      0.966 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241472     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.0000      0.966 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241474     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.0000      0.966 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241476     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      0.966 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241478     2  0.0000      0.966 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241479     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241481     5  0.2092      0.839 0.000 0.124 0.000 0.000 0.876 0.000
#> GSM241482     1  0.3765      0.307 0.596 0.000 0.000 0.000 0.000 0.404
#> GSM241483     5  0.1327      0.872 0.000 0.064 0.000 0.000 0.936 0.000
#> GSM241484     6  0.0713      0.842 0.028 0.000 0.000 0.000 0.000 0.972
#> GSM241485     6  0.1663      0.805 0.088 0.000 0.000 0.000 0.000 0.912
#> GSM241486     5  0.1327      0.872 0.000 0.064 0.000 0.000 0.936 0.000
#> GSM241487     2  0.0000      0.966 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241488     2  0.0000      0.966 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241489     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241490     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241491     2  0.0000      0.966 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241492     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241493     2  0.0000      0.966 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241494     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0000      0.966 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241496     2  0.0000      0.966 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241497     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241499     6  0.0713      0.842 0.028 0.000 0.000 0.000 0.000 0.972
#> GSM241500     5  0.1007      0.830 0.000 0.000 0.000 0.044 0.956 0.000
#> GSM241501     5  0.1327      0.872 0.000 0.064 0.000 0.000 0.936 0.000
#> GSM241502     5  0.1444      0.870 0.000 0.072 0.000 0.000 0.928 0.000
#> GSM241503     6  0.0713      0.842 0.028 0.000 0.000 0.000 0.000 0.972
#> GSM241504     6  0.0790      0.840 0.032 0.000 0.000 0.000 0.000 0.968
#> GSM241505     6  0.0713      0.842 0.028 0.000 0.000 0.000 0.000 0.972
#> GSM241506     2  0.3175      0.593 0.000 0.744 0.000 0.000 0.256 0.000
#> GSM241507     6  0.0713      0.842 0.028 0.000 0.000 0.000 0.000 0.972
#> GSM241508     5  0.1007      0.830 0.000 0.000 0.000 0.044 0.956 0.000
#> GSM241509     4  0.2854      0.782 0.000 0.000 0.000 0.792 0.208 0.000
#> GSM241510     4  0.2854      0.782 0.000 0.000 0.000 0.792 0.208 0.000
#> GSM241511     6  0.3756      0.421 0.000 0.000 0.400 0.000 0.000 0.600
#> GSM241512     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241513     2  0.2318      0.886 0.000 0.904 0.000 0.048 0.020 0.028
#> GSM241514     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241515     2  0.2252      0.889 0.000 0.908 0.000 0.044 0.020 0.028
#> GSM241516     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241517     5  0.5288      0.633 0.000 0.096 0.000 0.232 0.644 0.028
#> GSM241518     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241519     5  0.5591      0.668 0.000 0.160 0.000 0.188 0.624 0.028
#> GSM241520     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241521     2  0.0000      0.966 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241522     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241523     2  0.0713      0.948 0.000 0.972 0.000 0.000 0.000 0.028
#> GSM241524     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241525     6  0.3756      0.376 0.400 0.000 0.000 0.000 0.000 0.600
#> GSM241526     4  0.1765      0.886 0.000 0.000 0.000 0.904 0.096 0.000
#> GSM241527     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241528     5  0.3610      0.791 0.000 0.100 0.000 0.052 0.820 0.028
#> GSM241529     5  0.3139      0.735 0.000 0.000 0.000 0.160 0.812 0.028
#> GSM241530     6  0.3756      0.421 0.000 0.000 0.400 0.000 0.000 0.600
#> GSM241531     6  0.3756      0.421 0.000 0.000 0.400 0.000 0.000 0.600
#> GSM241532     4  0.0547      0.921 0.000 0.000 0.000 0.980 0.020 0.000
#> GSM241533     4  0.0547      0.921 0.000 0.000 0.000 0.980 0.020 0.000
#> GSM241534     4  0.0547      0.921 0.000 0.000 0.000 0.980 0.020 0.000
#> GSM241535     3  0.2795      0.852 0.000 0.000 0.856 0.100 0.044 0.000
#> GSM241536     6  0.0713      0.822 0.000 0.000 0.028 0.000 0.000 0.972
#> GSM241537     4  0.1007      0.897 0.000 0.000 0.000 0.956 0.044 0.000
#> GSM241538     3  0.1549      0.925 0.000 0.000 0.936 0.020 0.044 0.000
#> GSM241539     4  0.1007      0.897 0.000 0.000 0.000 0.956 0.044 0.000
#> GSM241540     3  0.1007      0.936 0.000 0.000 0.956 0.000 0.044 0.000
#> GSM241541     4  0.0000      0.918 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM241542     3  0.4173      0.601 0.000 0.000 0.688 0.268 0.044 0.000
#> GSM241543     2  0.4146      0.728 0.000 0.768 0.000 0.052 0.152 0.028
#> GSM241544     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241545     2  0.1332      0.933 0.000 0.952 0.000 0.012 0.008 0.028
#> GSM241546     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM241547     4  0.1074      0.910 0.000 0.000 0.000 0.960 0.012 0.028
#> GSM241548     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n  dose(p)  time(p) k
#> ATC:pam 95 7.61e-01 0.935256 2
#> ATC:pam 95 1.66e-07 0.773430 3
#> ATC:pam 95 1.70e-10 0.835206 4
#> ATC:pam 89 4.85e-10 0.052599 5
#> ATC:pam 93 1.39e-07 0.000184 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.667           0.900       0.943         0.4299 0.597   0.597
#> 3 3 0.812           0.900       0.955         0.4178 0.783   0.639
#> 4 4 0.709           0.822       0.888         0.1608 0.904   0.759
#> 5 5 0.776           0.807       0.856         0.1044 0.870   0.606
#> 6 6 0.776           0.721       0.812         0.0468 0.935   0.719

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     2   0.000      0.915 0.000 1.000
#> GSM241452     1   0.000      0.997 1.000 0.000
#> GSM241453     2   0.000      0.915 0.000 1.000
#> GSM241454     1   0.000      0.997 1.000 0.000
#> GSM241455     2   0.000      0.915 0.000 1.000
#> GSM241456     1   0.000      0.997 1.000 0.000
#> GSM241457     2   0.000      0.915 0.000 1.000
#> GSM241458     1   0.000      0.997 1.000 0.000
#> GSM241459     2   0.000      0.915 0.000 1.000
#> GSM241460     1   0.000      0.997 1.000 0.000
#> GSM241461     2   0.000      0.915 0.000 1.000
#> GSM241462     2   0.998      0.298 0.476 0.524
#> GSM241463     2   0.000      0.915 0.000 1.000
#> GSM241464     2   0.788      0.776 0.236 0.764
#> GSM241465     2   0.000      0.915 0.000 1.000
#> GSM241466     1   0.000      0.997 1.000 0.000
#> GSM241467     1   0.000      0.997 1.000 0.000
#> GSM241468     2   0.000      0.915 0.000 1.000
#> GSM241469     1   0.000      0.997 1.000 0.000
#> GSM241470     2   0.000      0.915 0.000 1.000
#> GSM241471     2   0.000      0.915 0.000 1.000
#> GSM241472     1   0.000      0.997 1.000 0.000
#> GSM241473     2   0.000      0.915 0.000 1.000
#> GSM241474     1   0.000      0.997 1.000 0.000
#> GSM241475     2   0.000      0.915 0.000 1.000
#> GSM241476     1   0.000      0.997 1.000 0.000
#> GSM241477     2   0.000      0.915 0.000 1.000
#> GSM241478     2   0.000      0.915 0.000 1.000
#> GSM241479     1   0.000      0.997 1.000 0.000
#> GSM241480     1   0.000      0.997 1.000 0.000
#> GSM241481     2   0.000      0.915 0.000 1.000
#> GSM241482     1   0.000      0.997 1.000 0.000
#> GSM241483     2   0.000      0.915 0.000 1.000
#> GSM241484     1   0.000      0.997 1.000 0.000
#> GSM241485     1   0.000      0.997 1.000 0.000
#> GSM241486     2   0.000      0.915 0.000 1.000
#> GSM241487     2   0.000      0.915 0.000 1.000
#> GSM241488     2   0.000      0.915 0.000 1.000
#> GSM241489     1   0.358      0.915 0.932 0.068
#> GSM241490     1   0.000      0.997 1.000 0.000
#> GSM241491     2   0.000      0.915 0.000 1.000
#> GSM241492     2   0.866      0.708 0.288 0.712
#> GSM241493     2   0.000      0.915 0.000 1.000
#> GSM241494     1   0.000      0.997 1.000 0.000
#> GSM241495     2   0.000      0.915 0.000 1.000
#> GSM241496     2   0.000      0.915 0.000 1.000
#> GSM241497     1   0.000      0.997 1.000 0.000
#> GSM241498     1   0.000      0.997 1.000 0.000
#> GSM241499     1   0.000      0.997 1.000 0.000
#> GSM241500     2   0.000      0.915 0.000 1.000
#> GSM241501     2   0.000      0.915 0.000 1.000
#> GSM241502     2   0.000      0.915 0.000 1.000
#> GSM241503     1   0.000      0.997 1.000 0.000
#> GSM241504     1   0.000      0.997 1.000 0.000
#> GSM241505     1   0.000      0.997 1.000 0.000
#> GSM241506     2   0.000      0.915 0.000 1.000
#> GSM241507     1   0.000      0.997 1.000 0.000
#> GSM241508     2   0.000      0.915 0.000 1.000
#> GSM241509     2   0.000      0.915 0.000 1.000
#> GSM241510     2   0.000      0.915 0.000 1.000
#> GSM241511     2   0.788      0.776 0.236 0.764
#> GSM241512     2   0.788      0.776 0.236 0.764
#> GSM241513     2   0.000      0.915 0.000 1.000
#> GSM241514     2   0.788      0.776 0.236 0.764
#> GSM241515     2   0.000      0.915 0.000 1.000
#> GSM241516     2   0.788      0.776 0.236 0.764
#> GSM241517     2   0.000      0.915 0.000 1.000
#> GSM241518     2   0.788      0.776 0.236 0.764
#> GSM241519     2   0.000      0.915 0.000 1.000
#> GSM241520     2   0.788      0.776 0.236 0.764
#> GSM241521     2   0.000      0.915 0.000 1.000
#> GSM241522     1   0.000      0.997 1.000 0.000
#> GSM241523     2   0.000      0.915 0.000 1.000
#> GSM241524     2   0.788      0.776 0.236 0.764
#> GSM241525     2   0.788      0.776 0.236 0.764
#> GSM241526     2   0.000      0.915 0.000 1.000
#> GSM241527     2   0.788      0.776 0.236 0.764
#> GSM241528     2   0.000      0.915 0.000 1.000
#> GSM241529     2   0.000      0.915 0.000 1.000
#> GSM241530     2   0.788      0.776 0.236 0.764
#> GSM241531     2   0.788      0.776 0.236 0.764
#> GSM241532     2   0.000      0.915 0.000 1.000
#> GSM241533     2   0.000      0.915 0.000 1.000
#> GSM241534     2   0.000      0.915 0.000 1.000
#> GSM241535     2   0.788      0.776 0.236 0.764
#> GSM241536     2   0.788      0.776 0.236 0.764
#> GSM241537     2   0.000      0.915 0.000 1.000
#> GSM241538     2   0.788      0.776 0.236 0.764
#> GSM241539     2   0.000      0.915 0.000 1.000
#> GSM241540     2   0.788      0.776 0.236 0.764
#> GSM241541     2   0.000      0.915 0.000 1.000
#> GSM241542     2   0.788      0.776 0.236 0.764
#> GSM241543     2   0.000      0.915 0.000 1.000
#> GSM241544     2   0.788      0.776 0.236 0.764
#> GSM241545     2   0.000      0.915 0.000 1.000
#> GSM241546     2   0.788      0.776 0.236 0.764
#> GSM241547     2   0.000      0.915 0.000 1.000
#> GSM241548     2   0.788      0.776 0.236 0.764

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2  0.0000      0.956 0.000 1.000 0.000
#> GSM241452     1  0.0000      0.928 1.000 0.000 0.000
#> GSM241453     2  0.0000      0.956 0.000 1.000 0.000
#> GSM241454     1  0.0000      0.928 1.000 0.000 0.000
#> GSM241455     2  0.0000      0.956 0.000 1.000 0.000
#> GSM241456     1  0.0000      0.928 1.000 0.000 0.000
#> GSM241457     3  0.4399      0.789 0.000 0.188 0.812
#> GSM241458     1  0.0747      0.924 0.984 0.000 0.016
#> GSM241459     3  0.4399      0.789 0.000 0.188 0.812
#> GSM241460     1  0.0000      0.928 1.000 0.000 0.000
#> GSM241461     3  0.4399      0.789 0.000 0.188 0.812
#> GSM241462     3  0.6168      0.321 0.412 0.000 0.588
#> GSM241463     2  0.5621      0.529 0.000 0.692 0.308
#> GSM241464     3  0.4452      0.767 0.192 0.000 0.808
#> GSM241465     2  0.0000      0.956 0.000 1.000 0.000
#> GSM241466     1  0.0000      0.928 1.000 0.000 0.000
#> GSM241467     1  0.0000      0.928 1.000 0.000 0.000
#> GSM241468     2  0.2711      0.878 0.000 0.912 0.088
#> GSM241469     1  0.0000      0.928 1.000 0.000 0.000
#> GSM241470     2  0.0000      0.956 0.000 1.000 0.000
#> GSM241471     2  0.0000      0.956 0.000 1.000 0.000
#> GSM241472     1  0.0000      0.928 1.000 0.000 0.000
#> GSM241473     2  0.0000      0.956 0.000 1.000 0.000
#> GSM241474     1  0.0000      0.928 1.000 0.000 0.000
#> GSM241475     2  0.0000      0.956 0.000 1.000 0.000
#> GSM241476     1  0.0000      0.928 1.000 0.000 0.000
#> GSM241477     2  0.0000      0.956 0.000 1.000 0.000
#> GSM241478     2  0.0000      0.956 0.000 1.000 0.000
#> GSM241479     1  0.0000      0.928 1.000 0.000 0.000
#> GSM241480     1  0.0000      0.928 1.000 0.000 0.000
#> GSM241481     3  0.4399      0.789 0.000 0.188 0.812
#> GSM241482     1  0.0747      0.924 0.984 0.000 0.016
#> GSM241483     3  0.4399      0.789 0.000 0.188 0.812
#> GSM241484     1  0.0747      0.924 0.984 0.000 0.016
#> GSM241485     1  0.0747      0.924 0.984 0.000 0.016
#> GSM241486     3  0.4399      0.789 0.000 0.188 0.812
#> GSM241487     2  0.3551      0.819 0.000 0.868 0.132
#> GSM241488     2  0.0000      0.956 0.000 1.000 0.000
#> GSM241489     1  0.0000      0.928 1.000 0.000 0.000
#> GSM241490     1  0.0747      0.924 0.984 0.000 0.016
#> GSM241491     2  0.1643      0.921 0.000 0.956 0.044
#> GSM241492     1  0.4555      0.705 0.800 0.000 0.200
#> GSM241493     2  0.0000      0.956 0.000 1.000 0.000
#> GSM241494     1  0.0000      0.928 1.000 0.000 0.000
#> GSM241495     2  0.0000      0.956 0.000 1.000 0.000
#> GSM241496     2  0.0000      0.956 0.000 1.000 0.000
#> GSM241497     1  0.0000      0.928 1.000 0.000 0.000
#> GSM241498     1  0.0000      0.928 1.000 0.000 0.000
#> GSM241499     1  0.0747      0.924 0.984 0.000 0.016
#> GSM241500     3  0.4399      0.789 0.000 0.188 0.812
#> GSM241501     3  0.4399      0.789 0.000 0.188 0.812
#> GSM241502     3  0.4399      0.789 0.000 0.188 0.812
#> GSM241503     1  0.0747      0.924 0.984 0.000 0.016
#> GSM241504     1  0.5363      0.660 0.724 0.000 0.276
#> GSM241505     1  0.5431      0.650 0.716 0.000 0.284
#> GSM241506     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241507     1  0.5760      0.587 0.672 0.000 0.328
#> GSM241508     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241509     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241510     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241511     3  0.0237      0.948 0.004 0.000 0.996
#> GSM241512     3  0.0237      0.948 0.004 0.000 0.996
#> GSM241513     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241514     3  0.0237      0.948 0.004 0.000 0.996
#> GSM241515     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241516     3  0.0237      0.948 0.004 0.000 0.996
#> GSM241517     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241518     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241519     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241520     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241521     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241522     1  0.5431      0.650 0.716 0.000 0.284
#> GSM241523     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241524     3  0.0237      0.948 0.004 0.000 0.996
#> GSM241525     3  0.0237      0.948 0.004 0.000 0.996
#> GSM241526     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241527     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241528     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241529     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241530     3  0.0237      0.948 0.004 0.000 0.996
#> GSM241531     3  0.0237      0.948 0.004 0.000 0.996
#> GSM241532     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241533     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241534     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241535     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241536     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241537     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241538     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241539     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241540     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241541     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241542     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241543     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241544     3  0.0237      0.948 0.004 0.000 0.996
#> GSM241545     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241546     3  0.0237      0.948 0.004 0.000 0.996
#> GSM241547     3  0.0000      0.950 0.000 0.000 1.000
#> GSM241548     3  0.0000      0.950 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.0000      0.950 0.000 1.000 0.000 0.000
#> GSM241452     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> GSM241453     2  0.0000      0.950 0.000 1.000 0.000 0.000
#> GSM241454     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> GSM241455     2  0.0000      0.950 0.000 1.000 0.000 0.000
#> GSM241456     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> GSM241457     4  0.4105      0.933 0.000 0.156 0.032 0.812
#> GSM241458     1  0.0817      0.910 0.976 0.000 0.024 0.000
#> GSM241459     4  0.4105      0.933 0.000 0.156 0.032 0.812
#> GSM241460     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> GSM241461     4  0.4105      0.933 0.000 0.156 0.032 0.812
#> GSM241462     3  0.4761      0.413 0.372 0.000 0.628 0.000
#> GSM241463     2  0.5113      0.375 0.000 0.684 0.292 0.024
#> GSM241464     3  0.4941      0.290 0.436 0.000 0.564 0.000
#> GSM241465     2  0.0921      0.922 0.000 0.972 0.000 0.028
#> GSM241466     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      0.950 0.000 1.000 0.000 0.000
#> GSM241469     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> GSM241470     2  0.0000      0.950 0.000 1.000 0.000 0.000
#> GSM241471     2  0.0000      0.950 0.000 1.000 0.000 0.000
#> GSM241472     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> GSM241473     2  0.0000      0.950 0.000 1.000 0.000 0.000
#> GSM241474     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> GSM241475     2  0.0000      0.950 0.000 1.000 0.000 0.000
#> GSM241476     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      0.950 0.000 1.000 0.000 0.000
#> GSM241478     2  0.0000      0.950 0.000 1.000 0.000 0.000
#> GSM241479     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> GSM241481     4  0.4105      0.933 0.000 0.156 0.032 0.812
#> GSM241482     1  0.0817      0.910 0.976 0.000 0.024 0.000
#> GSM241483     4  0.4105      0.933 0.000 0.156 0.032 0.812
#> GSM241484     1  0.0817      0.910 0.976 0.000 0.024 0.000
#> GSM241485     1  0.0817      0.910 0.976 0.000 0.024 0.000
#> GSM241486     4  0.4105      0.933 0.000 0.156 0.032 0.812
#> GSM241487     2  0.3528      0.673 0.000 0.808 0.000 0.192
#> GSM241488     2  0.0000      0.950 0.000 1.000 0.000 0.000
#> GSM241489     1  0.0188      0.916 0.996 0.000 0.004 0.000
#> GSM241490     1  0.3024      0.810 0.852 0.000 0.148 0.000
#> GSM241491     2  0.0707      0.929 0.000 0.980 0.000 0.020
#> GSM241492     1  0.2814      0.809 0.868 0.000 0.132 0.000
#> GSM241493     2  0.0000      0.950 0.000 1.000 0.000 0.000
#> GSM241494     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> GSM241495     2  0.0000      0.950 0.000 1.000 0.000 0.000
#> GSM241496     2  0.0000      0.950 0.000 1.000 0.000 0.000
#> GSM241497     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> GSM241499     1  0.2921      0.819 0.860 0.000 0.140 0.000
#> GSM241500     4  0.3626      0.793 0.000 0.004 0.184 0.812
#> GSM241501     4  0.4105      0.933 0.000 0.156 0.032 0.812
#> GSM241502     4  0.3626      0.793 0.000 0.004 0.184 0.812
#> GSM241503     1  0.3024      0.811 0.852 0.000 0.148 0.000
#> GSM241504     1  0.4746      0.558 0.632 0.000 0.368 0.000
#> GSM241505     1  0.4746      0.558 0.632 0.000 0.368 0.000
#> GSM241506     3  0.3837      0.688 0.000 0.000 0.776 0.224
#> GSM241507     3  0.3266      0.695 0.168 0.000 0.832 0.000
#> GSM241508     3  0.4817      0.381 0.000 0.000 0.612 0.388
#> GSM241509     3  0.3764      0.697 0.000 0.000 0.784 0.216
#> GSM241510     3  0.3764      0.697 0.000 0.000 0.784 0.216
#> GSM241511     3  0.0000      0.819 0.000 0.000 1.000 0.000
#> GSM241512     3  0.0000      0.819 0.000 0.000 1.000 0.000
#> GSM241513     3  0.3837      0.796 0.000 0.000 0.776 0.224
#> GSM241514     3  0.3486      0.792 0.000 0.000 0.812 0.188
#> GSM241515     3  0.3837      0.796 0.000 0.000 0.776 0.224
#> GSM241516     3  0.0000      0.819 0.000 0.000 1.000 0.000
#> GSM241517     3  0.3837      0.796 0.000 0.000 0.776 0.224
#> GSM241518     3  0.3528      0.793 0.000 0.000 0.808 0.192
#> GSM241519     3  0.3837      0.796 0.000 0.000 0.776 0.224
#> GSM241520     3  0.3528      0.793 0.000 0.000 0.808 0.192
#> GSM241521     3  0.4277      0.773 0.000 0.000 0.720 0.280
#> GSM241522     1  0.4746      0.558 0.632 0.000 0.368 0.000
#> GSM241523     3  0.3837      0.796 0.000 0.000 0.776 0.224
#> GSM241524     3  0.3486      0.792 0.000 0.000 0.812 0.188
#> GSM241525     3  0.0000      0.819 0.000 0.000 1.000 0.000
#> GSM241526     3  0.3764      0.697 0.000 0.000 0.784 0.216
#> GSM241527     3  0.0000      0.819 0.000 0.000 1.000 0.000
#> GSM241528     3  0.3764      0.697 0.000 0.000 0.784 0.216
#> GSM241529     3  0.3764      0.697 0.000 0.000 0.784 0.216
#> GSM241530     3  0.0000      0.819 0.000 0.000 1.000 0.000
#> GSM241531     3  0.0000      0.819 0.000 0.000 1.000 0.000
#> GSM241532     3  0.3764      0.697 0.000 0.000 0.784 0.216
#> GSM241533     3  0.3764      0.697 0.000 0.000 0.784 0.216
#> GSM241534     3  0.3764      0.697 0.000 0.000 0.784 0.216
#> GSM241535     3  0.0188      0.819 0.000 0.000 0.996 0.004
#> GSM241536     3  0.0000      0.819 0.000 0.000 1.000 0.000
#> GSM241537     3  0.2149      0.794 0.000 0.000 0.912 0.088
#> GSM241538     3  0.0188      0.819 0.000 0.000 0.996 0.004
#> GSM241539     3  0.2149      0.794 0.000 0.000 0.912 0.088
#> GSM241540     3  0.0188      0.819 0.000 0.000 0.996 0.004
#> GSM241541     3  0.1118      0.814 0.000 0.000 0.964 0.036
#> GSM241542     3  0.0592      0.818 0.000 0.000 0.984 0.016
#> GSM241543     3  0.3837      0.796 0.000 0.000 0.776 0.224
#> GSM241544     3  0.3486      0.792 0.000 0.000 0.812 0.188
#> GSM241545     3  0.3837      0.796 0.000 0.000 0.776 0.224
#> GSM241546     3  0.3486      0.792 0.000 0.000 0.812 0.188
#> GSM241547     3  0.3837      0.796 0.000 0.000 0.776 0.224
#> GSM241548     3  0.3528      0.793 0.000 0.000 0.808 0.192

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> GSM241452     1  0.0510      0.910 0.984 0.000 0.000 0.016 0.000
#> GSM241453     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> GSM241454     1  0.0000      0.911 1.000 0.000 0.000 0.000 0.000
#> GSM241455     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> GSM241456     1  0.0000      0.911 1.000 0.000 0.000 0.000 0.000
#> GSM241457     5  0.0290      1.000 0.000 0.000 0.008 0.000 0.992
#> GSM241458     1  0.2463      0.895 0.888 0.000 0.004 0.100 0.008
#> GSM241459     5  0.0290      1.000 0.000 0.000 0.008 0.000 0.992
#> GSM241460     1  0.0404      0.911 0.988 0.000 0.000 0.012 0.000
#> GSM241461     5  0.0290      1.000 0.000 0.000 0.008 0.000 0.992
#> GSM241462     1  0.3796      0.794 0.768 0.000 0.008 0.216 0.008
#> GSM241463     2  0.5290      0.651 0.000 0.732 0.140 0.080 0.048
#> GSM241464     1  0.4251      0.586 0.672 0.000 0.012 0.316 0.000
#> GSM241465     2  0.1942      0.902 0.000 0.920 0.012 0.000 0.068
#> GSM241466     1  0.0000      0.911 1.000 0.000 0.000 0.000 0.000
#> GSM241467     1  0.0000      0.911 1.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> GSM241469     1  0.0000      0.911 1.000 0.000 0.000 0.000 0.000
#> GSM241470     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> GSM241471     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> GSM241472     1  0.0000      0.911 1.000 0.000 0.000 0.000 0.000
#> GSM241473     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> GSM241474     1  0.0000      0.911 1.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> GSM241476     1  0.0000      0.911 1.000 0.000 0.000 0.000 0.000
#> GSM241477     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> GSM241478     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> GSM241479     1  0.0000      0.911 1.000 0.000 0.000 0.000 0.000
#> GSM241480     1  0.0000      0.911 1.000 0.000 0.000 0.000 0.000
#> GSM241481     5  0.0290      1.000 0.000 0.000 0.008 0.000 0.992
#> GSM241482     1  0.2463      0.895 0.888 0.000 0.004 0.100 0.008
#> GSM241483     5  0.0290      1.000 0.000 0.000 0.008 0.000 0.992
#> GSM241484     1  0.2463      0.895 0.888 0.000 0.004 0.100 0.008
#> GSM241485     1  0.2463      0.895 0.888 0.000 0.004 0.100 0.008
#> GSM241486     5  0.0290      1.000 0.000 0.000 0.008 0.000 0.992
#> GSM241487     2  0.3242      0.774 0.000 0.816 0.012 0.000 0.172
#> GSM241488     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> GSM241489     1  0.1478      0.904 0.936 0.000 0.000 0.064 0.000
#> GSM241490     1  0.2280      0.883 0.880 0.000 0.000 0.120 0.000
#> GSM241491     2  0.1597      0.919 0.000 0.940 0.012 0.000 0.048
#> GSM241492     1  0.2583      0.867 0.864 0.000 0.004 0.132 0.000
#> GSM241493     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> GSM241494     1  0.0000      0.911 1.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> GSM241496     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> GSM241497     1  0.0000      0.911 1.000 0.000 0.000 0.000 0.000
#> GSM241498     1  0.0000      0.911 1.000 0.000 0.000 0.000 0.000
#> GSM241499     1  0.3044      0.875 0.840 0.000 0.004 0.148 0.008
#> GSM241500     5  0.0290      1.000 0.000 0.000 0.008 0.000 0.992
#> GSM241501     5  0.0290      1.000 0.000 0.000 0.008 0.000 0.992
#> GSM241502     5  0.0290      1.000 0.000 0.000 0.008 0.000 0.992
#> GSM241503     1  0.3044      0.875 0.840 0.000 0.004 0.148 0.008
#> GSM241504     1  0.3167      0.862 0.820 0.000 0.004 0.172 0.004
#> GSM241505     1  0.3289      0.860 0.816 0.000 0.004 0.172 0.008
#> GSM241506     3  0.5742      0.464 0.000 0.000 0.508 0.088 0.404
#> GSM241507     1  0.6584      0.320 0.512 0.000 0.200 0.280 0.008
#> GSM241508     3  0.5439      0.514 0.000 0.000 0.560 0.068 0.372
#> GSM241509     3  0.4411      0.703 0.000 0.000 0.764 0.116 0.120
#> GSM241510     3  0.4411      0.703 0.000 0.000 0.764 0.116 0.120
#> GSM241511     4  0.3177      0.792 0.000 0.000 0.208 0.792 0.000
#> GSM241512     4  0.3177      0.792 0.000 0.000 0.208 0.792 0.000
#> GSM241513     3  0.4096      0.644 0.000 0.000 0.760 0.200 0.040
#> GSM241514     4  0.0703      0.728 0.000 0.000 0.024 0.976 0.000
#> GSM241515     3  0.4339      0.653 0.000 0.000 0.652 0.336 0.012
#> GSM241516     4  0.3177      0.792 0.000 0.000 0.208 0.792 0.000
#> GSM241517     3  0.3109      0.642 0.000 0.000 0.800 0.200 0.000
#> GSM241518     4  0.3143      0.610 0.000 0.000 0.204 0.796 0.000
#> GSM241519     3  0.3109      0.642 0.000 0.000 0.800 0.200 0.000
#> GSM241520     4  0.3109      0.615 0.000 0.000 0.200 0.800 0.000
#> GSM241521     3  0.5804      0.649 0.000 0.000 0.576 0.304 0.120
#> GSM241522     1  0.3086      0.858 0.816 0.000 0.000 0.180 0.004
#> GSM241523     3  0.3690      0.644 0.000 0.000 0.780 0.200 0.020
#> GSM241524     4  0.1732      0.685 0.000 0.000 0.080 0.920 0.000
#> GSM241525     4  0.3421      0.786 0.008 0.000 0.204 0.788 0.000
#> GSM241526     3  0.4269      0.703 0.000 0.000 0.776 0.116 0.108
#> GSM241527     4  0.3274      0.792 0.000 0.000 0.220 0.780 0.000
#> GSM241528     3  0.4411      0.703 0.000 0.000 0.764 0.120 0.116
#> GSM241529     3  0.4411      0.703 0.000 0.000 0.764 0.116 0.120
#> GSM241530     4  0.3177      0.792 0.000 0.000 0.208 0.792 0.000
#> GSM241531     4  0.3534      0.785 0.000 0.000 0.256 0.744 0.000
#> GSM241532     3  0.3898      0.699 0.000 0.000 0.804 0.116 0.080
#> GSM241533     3  0.3898      0.699 0.000 0.000 0.804 0.116 0.080
#> GSM241534     3  0.3898      0.699 0.000 0.000 0.804 0.116 0.080
#> GSM241535     4  0.3857      0.746 0.000 0.000 0.312 0.688 0.000
#> GSM241536     4  0.3752      0.776 0.000 0.000 0.292 0.708 0.000
#> GSM241537     3  0.3535      0.661 0.000 0.000 0.808 0.164 0.028
#> GSM241538     4  0.3876      0.743 0.000 0.000 0.316 0.684 0.000
#> GSM241539     3  0.3535      0.661 0.000 0.000 0.808 0.164 0.028
#> GSM241540     4  0.3876      0.743 0.000 0.000 0.316 0.684 0.000
#> GSM241541     3  0.2930      0.650 0.000 0.000 0.832 0.164 0.004
#> GSM241542     3  0.4262     -0.185 0.000 0.000 0.560 0.440 0.000
#> GSM241543     3  0.4021      0.645 0.000 0.000 0.764 0.200 0.036
#> GSM241544     4  0.1792      0.684 0.000 0.000 0.084 0.916 0.000
#> GSM241545     3  0.4622      0.662 0.000 0.000 0.692 0.264 0.044
#> GSM241546     4  0.0510      0.725 0.000 0.000 0.016 0.984 0.000
#> GSM241547     3  0.3109      0.642 0.000 0.000 0.800 0.200 0.000
#> GSM241548     4  0.3143      0.610 0.000 0.000 0.204 0.796 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM241451     2  0.0000     0.9572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241452     1  0.1074     0.8138 0.960 0.000 0.012 0.000 0.000 0.028
#> GSM241453     2  0.0000     0.9572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241454     1  0.0146     0.8152 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM241455     2  0.0000     0.9572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241456     1  0.0146     0.8152 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM241457     5  0.0260     0.8988 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM241458     1  0.5142     0.7161 0.624 0.000 0.204 0.000 0.000 0.172
#> GSM241459     5  0.0260     0.8988 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM241460     1  0.0858     0.8151 0.968 0.000 0.028 0.000 0.000 0.004
#> GSM241461     5  0.0000     0.9010 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241462     1  0.5546     0.6746 0.576 0.000 0.192 0.004 0.000 0.228
#> GSM241463     2  0.4626     0.7017 0.000 0.736 0.156 0.064 0.044 0.000
#> GSM241464     1  0.5287     0.5131 0.588 0.000 0.120 0.004 0.000 0.288
#> GSM241465     2  0.3130     0.8470 0.000 0.852 0.072 0.016 0.060 0.000
#> GSM241466     1  0.0146     0.8152 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM241467     1  0.0000     0.8155 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241468     2  0.0000     0.9572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241469     1  0.0146     0.8152 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM241470     2  0.0000     0.9572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241471     2  0.0000     0.9572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241472     1  0.0146     0.8152 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM241473     2  0.0000     0.9572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241474     1  0.0000     0.8155 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241475     2  0.0000     0.9572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241476     1  0.0146     0.8152 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM241477     2  0.0000     0.9572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241478     2  0.0000     0.9572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241479     1  0.0146     0.8152 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM241480     1  0.0146     0.8152 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM241481     5  0.0260     0.8988 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM241482     1  0.5142     0.7161 0.624 0.000 0.204 0.000 0.000 0.172
#> GSM241483     5  0.0146     0.9005 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM241484     1  0.5252     0.7059 0.608 0.000 0.204 0.000 0.000 0.188
#> GSM241485     1  0.5253     0.7044 0.608 0.000 0.192 0.000 0.000 0.200
#> GSM241486     5  0.0000     0.9010 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241487     2  0.4588     0.7009 0.000 0.728 0.092 0.020 0.160 0.000
#> GSM241488     2  0.0000     0.9572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241489     1  0.4589     0.7186 0.696 0.000 0.132 0.000 0.000 0.172
#> GSM241490     1  0.2558     0.7709 0.840 0.000 0.004 0.000 0.000 0.156
#> GSM241491     2  0.1633     0.9115 0.000 0.932 0.024 0.000 0.044 0.000
#> GSM241492     1  0.4680     0.7079 0.684 0.000 0.132 0.000 0.000 0.184
#> GSM241493     2  0.0000     0.9572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241494     1  0.0000     0.8155 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM241495     2  0.0000     0.9572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241496     2  0.0000     0.9572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM241497     1  0.0937     0.8128 0.960 0.000 0.000 0.000 0.000 0.040
#> GSM241498     1  0.0146     0.8152 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM241499     1  0.5328     0.6968 0.596 0.000 0.204 0.000 0.000 0.200
#> GSM241500     5  0.0146     0.8985 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM241501     5  0.0000     0.9010 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241502     5  0.0000     0.9010 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM241503     1  0.5328     0.6968 0.596 0.000 0.204 0.000 0.000 0.200
#> GSM241504     1  0.5415     0.7075 0.620 0.000 0.164 0.012 0.000 0.204
#> GSM241505     1  0.5802     0.6541 0.556 0.000 0.196 0.012 0.000 0.236
#> GSM241506     5  0.3483     0.5516 0.000 0.000 0.016 0.236 0.748 0.000
#> GSM241507     6  0.5711     0.3714 0.160 0.000 0.196 0.032 0.000 0.612
#> GSM241508     5  0.5396    -0.0636 0.000 0.000 0.116 0.396 0.488 0.000
#> GSM241509     4  0.2482     0.6619 0.000 0.000 0.000 0.848 0.148 0.004
#> GSM241510     4  0.3232     0.6454 0.000 0.000 0.020 0.812 0.160 0.008
#> GSM241511     6  0.0865     0.7707 0.000 0.000 0.000 0.036 0.000 0.964
#> GSM241512     6  0.0865     0.7707 0.000 0.000 0.000 0.036 0.000 0.964
#> GSM241513     3  0.3390     0.7744 0.000 0.000 0.704 0.296 0.000 0.000
#> GSM241514     6  0.2994     0.6244 0.000 0.000 0.208 0.004 0.000 0.788
#> GSM241515     3  0.5096     0.6930 0.000 0.000 0.600 0.316 0.012 0.072
#> GSM241516     6  0.1995     0.7578 0.000 0.000 0.052 0.036 0.000 0.912
#> GSM241517     3  0.3390     0.7744 0.000 0.000 0.704 0.296 0.000 0.000
#> GSM241518     3  0.4285     0.3800 0.000 0.000 0.644 0.036 0.000 0.320
#> GSM241519     3  0.3390     0.7744 0.000 0.000 0.704 0.296 0.000 0.000
#> GSM241520     3  0.4249     0.3733 0.000 0.000 0.640 0.032 0.000 0.328
#> GSM241521     3  0.5602     0.7077 0.000 0.004 0.620 0.256 0.052 0.068
#> GSM241522     1  0.5481     0.5624 0.520 0.000 0.140 0.000 0.000 0.340
#> GSM241523     3  0.3390     0.7744 0.000 0.000 0.704 0.296 0.000 0.000
#> GSM241524     6  0.3872     0.3119 0.000 0.000 0.392 0.004 0.000 0.604
#> GSM241525     6  0.1944     0.7495 0.024 0.000 0.016 0.036 0.000 0.924
#> GSM241526     4  0.3743     0.6421 0.000 0.000 0.032 0.792 0.152 0.024
#> GSM241527     6  0.0865     0.7707 0.000 0.000 0.000 0.036 0.000 0.964
#> GSM241528     4  0.6639    -0.0662 0.000 0.000 0.316 0.464 0.152 0.068
#> GSM241529     4  0.5361     0.4521 0.000 0.000 0.156 0.660 0.152 0.032
#> GSM241530     6  0.0865     0.7707 0.000 0.000 0.000 0.036 0.000 0.964
#> GSM241531     6  0.0937     0.7698 0.000 0.000 0.000 0.040 0.000 0.960
#> GSM241532     4  0.0508     0.6983 0.000 0.000 0.000 0.984 0.012 0.004
#> GSM241533     4  0.0508     0.6983 0.000 0.000 0.000 0.984 0.012 0.004
#> GSM241534     4  0.0508     0.6983 0.000 0.000 0.000 0.984 0.012 0.004
#> GSM241535     6  0.4925     0.1354 0.000 0.000 0.064 0.424 0.000 0.512
#> GSM241536     6  0.2384     0.7459 0.000 0.000 0.048 0.064 0.000 0.888
#> GSM241537     4  0.2520     0.6749 0.000 0.000 0.004 0.844 0.000 0.152
#> GSM241538     4  0.4899     0.0447 0.000 0.000 0.064 0.532 0.000 0.404
#> GSM241539     4  0.2520     0.6749 0.000 0.000 0.004 0.844 0.000 0.152
#> GSM241540     6  0.4936     0.1059 0.000 0.000 0.064 0.436 0.000 0.500
#> GSM241541     4  0.2730     0.6709 0.000 0.000 0.012 0.836 0.000 0.152
#> GSM241542     4  0.4422     0.5034 0.000 0.000 0.068 0.680 0.000 0.252
#> GSM241543     3  0.3390     0.7744 0.000 0.000 0.704 0.296 0.000 0.000
#> GSM241544     6  0.3508     0.5014 0.000 0.000 0.292 0.004 0.000 0.704
#> GSM241545     3  0.3729     0.7644 0.000 0.000 0.692 0.296 0.012 0.000
#> GSM241546     6  0.2772     0.6616 0.000 0.000 0.180 0.004 0.000 0.816
#> GSM241547     3  0.3464     0.7624 0.000 0.000 0.688 0.312 0.000 0.000
#> GSM241548     3  0.4621     0.3995 0.000 0.000 0.632 0.064 0.000 0.304

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n  dose(p) time(p) k
#> ATC:mclust 97 1.02e-03 0.39038 2
#> ATC:mclust 97 1.28e-10 0.11443 3
#> ATC:mclust 94 9.40e-13 0.01335 4
#> ATC:mclust 95 1.32e-11 0.05667 5
#> ATC:mclust 87 7.28e-11 0.00111 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16250 rows and 98 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.979           0.964       0.984         0.5038 0.497   0.497
#> 3 3 0.914           0.907       0.958         0.3020 0.801   0.617
#> 4 4 0.619           0.532       0.775         0.0834 0.968   0.911
#> 5 5 0.598           0.595       0.748         0.0690 0.848   0.574
#> 6 6 0.576           0.507       0.694         0.0455 0.930   0.723

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM241451     2  0.0000      0.974 0.000 1.000
#> GSM241452     1  0.0000      0.994 1.000 0.000
#> GSM241453     2  0.0000      0.974 0.000 1.000
#> GSM241454     1  0.0000      0.994 1.000 0.000
#> GSM241455     2  0.0000      0.974 0.000 1.000
#> GSM241456     1  0.0000      0.994 1.000 0.000
#> GSM241457     2  0.0000      0.974 0.000 1.000
#> GSM241458     1  0.0000      0.994 1.000 0.000
#> GSM241459     2  0.0000      0.974 0.000 1.000
#> GSM241460     1  0.0000      0.994 1.000 0.000
#> GSM241461     2  0.0000      0.974 0.000 1.000
#> GSM241462     1  0.0000      0.994 1.000 0.000
#> GSM241463     2  0.0000      0.974 0.000 1.000
#> GSM241464     1  0.0000      0.994 1.000 0.000
#> GSM241465     2  0.0000      0.974 0.000 1.000
#> GSM241466     1  0.0000      0.994 1.000 0.000
#> GSM241467     1  0.0000      0.994 1.000 0.000
#> GSM241468     1  0.7602      0.703 0.780 0.220
#> GSM241469     1  0.0000      0.994 1.000 0.000
#> GSM241470     2  0.0000      0.974 0.000 1.000
#> GSM241471     2  0.0376      0.971 0.004 0.996
#> GSM241472     1  0.0000      0.994 1.000 0.000
#> GSM241473     2  0.3431      0.919 0.064 0.936
#> GSM241474     1  0.0000      0.994 1.000 0.000
#> GSM241475     2  0.0000      0.974 0.000 1.000
#> GSM241476     1  0.0000      0.994 1.000 0.000
#> GSM241477     2  0.0000      0.974 0.000 1.000
#> GSM241478     2  0.0000      0.974 0.000 1.000
#> GSM241479     1  0.0000      0.994 1.000 0.000
#> GSM241480     1  0.0000      0.994 1.000 0.000
#> GSM241481     2  0.0000      0.974 0.000 1.000
#> GSM241482     1  0.0000      0.994 1.000 0.000
#> GSM241483     2  0.0000      0.974 0.000 1.000
#> GSM241484     1  0.0000      0.994 1.000 0.000
#> GSM241485     1  0.0000      0.994 1.000 0.000
#> GSM241486     2  0.0000      0.974 0.000 1.000
#> GSM241487     2  0.0000      0.974 0.000 1.000
#> GSM241488     2  0.9209      0.526 0.336 0.664
#> GSM241489     1  0.0000      0.994 1.000 0.000
#> GSM241490     1  0.0000      0.994 1.000 0.000
#> GSM241491     2  0.0000      0.974 0.000 1.000
#> GSM241492     1  0.0000      0.994 1.000 0.000
#> GSM241493     2  0.2778      0.934 0.048 0.952
#> GSM241494     1  0.0000      0.994 1.000 0.000
#> GSM241495     2  0.0000      0.974 0.000 1.000
#> GSM241496     2  0.7376      0.753 0.208 0.792
#> GSM241497     1  0.0000      0.994 1.000 0.000
#> GSM241498     1  0.0000      0.994 1.000 0.000
#> GSM241499     1  0.0000      0.994 1.000 0.000
#> GSM241500     2  0.0000      0.974 0.000 1.000
#> GSM241501     2  0.0000      0.974 0.000 1.000
#> GSM241502     2  0.0000      0.974 0.000 1.000
#> GSM241503     1  0.0000      0.994 1.000 0.000
#> GSM241504     1  0.0000      0.994 1.000 0.000
#> GSM241505     1  0.0000      0.994 1.000 0.000
#> GSM241506     2  0.0000      0.974 0.000 1.000
#> GSM241507     1  0.0000      0.994 1.000 0.000
#> GSM241508     2  0.0000      0.974 0.000 1.000
#> GSM241509     2  0.0000      0.974 0.000 1.000
#> GSM241510     2  0.0000      0.974 0.000 1.000
#> GSM241511     1  0.0000      0.994 1.000 0.000
#> GSM241512     1  0.0000      0.994 1.000 0.000
#> GSM241513     2  0.0000      0.974 0.000 1.000
#> GSM241514     1  0.0000      0.994 1.000 0.000
#> GSM241515     2  0.0000      0.974 0.000 1.000
#> GSM241516     1  0.0000      0.994 1.000 0.000
#> GSM241517     2  0.0000      0.974 0.000 1.000
#> GSM241518     1  0.2423      0.953 0.960 0.040
#> GSM241519     2  0.0000      0.974 0.000 1.000
#> GSM241520     1  0.0000      0.994 1.000 0.000
#> GSM241521     2  0.0000      0.974 0.000 1.000
#> GSM241522     1  0.0000      0.994 1.000 0.000
#> GSM241523     2  0.0000      0.974 0.000 1.000
#> GSM241524     1  0.0000      0.994 1.000 0.000
#> GSM241525     1  0.0000      0.994 1.000 0.000
#> GSM241526     2  0.0000      0.974 0.000 1.000
#> GSM241527     1  0.0000      0.994 1.000 0.000
#> GSM241528     2  0.0000      0.974 0.000 1.000
#> GSM241529     2  0.0000      0.974 0.000 1.000
#> GSM241530     1  0.0000      0.994 1.000 0.000
#> GSM241531     1  0.0000      0.994 1.000 0.000
#> GSM241532     2  0.0000      0.974 0.000 1.000
#> GSM241533     2  0.0000      0.974 0.000 1.000
#> GSM241534     2  0.0000      0.974 0.000 1.000
#> GSM241535     2  0.7883      0.711 0.236 0.764
#> GSM241536     1  0.0000      0.994 1.000 0.000
#> GSM241537     2  0.0000      0.974 0.000 1.000
#> GSM241538     2  0.5737      0.844 0.136 0.864
#> GSM241539     2  0.0000      0.974 0.000 1.000
#> GSM241540     1  0.0000      0.994 1.000 0.000
#> GSM241541     2  0.0000      0.974 0.000 1.000
#> GSM241542     2  0.0000      0.974 0.000 1.000
#> GSM241543     2  0.0000      0.974 0.000 1.000
#> GSM241544     1  0.0000      0.994 1.000 0.000
#> GSM241545     2  0.0000      0.974 0.000 1.000
#> GSM241546     1  0.0000      0.994 1.000 0.000
#> GSM241547     2  0.0000      0.974 0.000 1.000
#> GSM241548     2  0.8713      0.616 0.292 0.708

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM241451     2  0.0000     0.9633 0.000 1.000 0.000
#> GSM241452     1  0.0237     0.9706 0.996 0.004 0.000
#> GSM241453     2  0.0000     0.9633 0.000 1.000 0.000
#> GSM241454     1  0.0237     0.9706 0.996 0.004 0.000
#> GSM241455     2  0.0000     0.9633 0.000 1.000 0.000
#> GSM241456     1  0.0592     0.9672 0.988 0.012 0.000
#> GSM241457     2  0.0237     0.9630 0.000 0.996 0.004
#> GSM241458     1  0.0000     0.9705 1.000 0.000 0.000
#> GSM241459     2  0.0000     0.9633 0.000 1.000 0.000
#> GSM241460     1  0.0237     0.9706 0.996 0.004 0.000
#> GSM241461     2  0.0592     0.9615 0.000 0.988 0.012
#> GSM241462     1  0.0000     0.9705 1.000 0.000 0.000
#> GSM241463     2  0.0892     0.9594 0.000 0.980 0.020
#> GSM241464     1  0.0424     0.9697 0.992 0.008 0.000
#> GSM241465     2  0.0892     0.9594 0.000 0.980 0.020
#> GSM241466     1  0.0237     0.9706 0.996 0.004 0.000
#> GSM241467     1  0.0424     0.9697 0.992 0.008 0.000
#> GSM241468     2  0.0237     0.9602 0.004 0.996 0.000
#> GSM241469     1  0.0592     0.9672 0.988 0.012 0.000
#> GSM241470     2  0.0000     0.9633 0.000 1.000 0.000
#> GSM241471     2  0.0000     0.9633 0.000 1.000 0.000
#> GSM241472     1  0.0424     0.9697 0.992 0.008 0.000
#> GSM241473     2  0.0000     0.9633 0.000 1.000 0.000
#> GSM241474     1  0.0592     0.9672 0.988 0.012 0.000
#> GSM241475     2  0.0000     0.9633 0.000 1.000 0.000
#> GSM241476     1  0.0424     0.9697 0.992 0.008 0.000
#> GSM241477     2  0.0000     0.9633 0.000 1.000 0.000
#> GSM241478     2  0.0000     0.9633 0.000 1.000 0.000
#> GSM241479     1  0.0424     0.9697 0.992 0.008 0.000
#> GSM241480     1  0.0237     0.9706 0.996 0.004 0.000
#> GSM241481     2  0.0000     0.9633 0.000 1.000 0.000
#> GSM241482     1  0.0000     0.9705 1.000 0.000 0.000
#> GSM241483     2  0.0747     0.9606 0.000 0.984 0.016
#> GSM241484     1  0.0000     0.9705 1.000 0.000 0.000
#> GSM241485     1  0.0000     0.9705 1.000 0.000 0.000
#> GSM241486     2  0.0747     0.9606 0.000 0.984 0.016
#> GSM241487     2  0.0892     0.9594 0.000 0.980 0.020
#> GSM241488     2  0.0000     0.9633 0.000 1.000 0.000
#> GSM241489     1  0.0424     0.9697 0.992 0.008 0.000
#> GSM241490     1  0.0237     0.9706 0.996 0.004 0.000
#> GSM241491     2  0.0237     0.9630 0.000 0.996 0.004
#> GSM241492     1  0.0592     0.9672 0.988 0.012 0.000
#> GSM241493     2  0.0000     0.9633 0.000 1.000 0.000
#> GSM241494     1  0.0424     0.9697 0.992 0.008 0.000
#> GSM241495     2  0.0000     0.9633 0.000 1.000 0.000
#> GSM241496     2  0.0000     0.9633 0.000 1.000 0.000
#> GSM241497     1  0.0424     0.9697 0.992 0.008 0.000
#> GSM241498     1  0.0424     0.9697 0.992 0.008 0.000
#> GSM241499     1  0.0000     0.9705 1.000 0.000 0.000
#> GSM241500     2  0.0892     0.9594 0.000 0.980 0.020
#> GSM241501     2  0.0892     0.9594 0.000 0.980 0.020
#> GSM241502     2  0.0892     0.9594 0.000 0.980 0.020
#> GSM241503     1  0.0000     0.9705 1.000 0.000 0.000
#> GSM241504     1  0.0000     0.9705 1.000 0.000 0.000
#> GSM241505     1  0.0000     0.9705 1.000 0.000 0.000
#> GSM241506     2  0.0424     0.9625 0.000 0.992 0.008
#> GSM241507     1  0.0000     0.9705 1.000 0.000 0.000
#> GSM241508     2  0.1753     0.9405 0.000 0.952 0.048
#> GSM241509     2  0.3192     0.8805 0.000 0.888 0.112
#> GSM241510     3  0.4842     0.6647 0.000 0.224 0.776
#> GSM241511     1  0.0237     0.9688 0.996 0.000 0.004
#> GSM241512     1  0.4974     0.6800 0.764 0.000 0.236
#> GSM241513     3  0.0424     0.9088 0.000 0.008 0.992
#> GSM241514     1  0.3879     0.8087 0.848 0.000 0.152
#> GSM241515     3  0.0000     0.9098 0.000 0.000 1.000
#> GSM241516     1  0.1031     0.9544 0.976 0.000 0.024
#> GSM241517     3  0.6260     0.0969 0.000 0.448 0.552
#> GSM241518     3  0.2796     0.8567 0.092 0.000 0.908
#> GSM241519     2  0.6026     0.4405 0.000 0.624 0.376
#> GSM241520     1  0.0000     0.9705 1.000 0.000 0.000
#> GSM241521     2  0.1753     0.9405 0.000 0.952 0.048
#> GSM241522     1  0.0000     0.9705 1.000 0.000 0.000
#> GSM241523     2  0.4504     0.7796 0.000 0.804 0.196
#> GSM241524     1  0.0000     0.9705 1.000 0.000 0.000
#> GSM241525     1  0.0000     0.9705 1.000 0.000 0.000
#> GSM241526     3  0.0424     0.9088 0.000 0.008 0.992
#> GSM241527     3  0.4796     0.7082 0.220 0.000 0.780
#> GSM241528     2  0.4974     0.7205 0.000 0.764 0.236
#> GSM241529     3  0.1411     0.8919 0.000 0.036 0.964
#> GSM241530     1  0.1411     0.9434 0.964 0.000 0.036
#> GSM241531     1  0.6305     0.0208 0.516 0.000 0.484
#> GSM241532     3  0.1860     0.8790 0.000 0.052 0.948
#> GSM241533     3  0.0237     0.9099 0.000 0.004 0.996
#> GSM241534     3  0.0592     0.9071 0.000 0.012 0.988
#> GSM241535     3  0.1289     0.8993 0.032 0.000 0.968
#> GSM241536     1  0.0747     0.9613 0.984 0.000 0.016
#> GSM241537     3  0.0000     0.9098 0.000 0.000 1.000
#> GSM241538     3  0.1031     0.9030 0.024 0.000 0.976
#> GSM241539     3  0.0000     0.9098 0.000 0.000 1.000
#> GSM241540     3  0.4555     0.7364 0.200 0.000 0.800
#> GSM241541     3  0.0237     0.9099 0.000 0.004 0.996
#> GSM241542     3  0.0592     0.9070 0.012 0.000 0.988
#> GSM241543     3  0.0237     0.9099 0.000 0.004 0.996
#> GSM241544     3  0.5926     0.4475 0.356 0.000 0.644
#> GSM241545     3  0.0000     0.9098 0.000 0.000 1.000
#> GSM241546     1  0.0747     0.9609 0.984 0.000 0.016
#> GSM241547     3  0.0237     0.9099 0.000 0.004 0.996
#> GSM241548     3  0.1163     0.9014 0.028 0.000 0.972

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM241451     2  0.0921     0.6371 0.000 0.972 0.000 0.028
#> GSM241452     1  0.0895     0.8780 0.976 0.004 0.000 0.020
#> GSM241453     2  0.2831     0.6168 0.000 0.876 0.004 0.120
#> GSM241454     1  0.1389     0.8787 0.952 0.000 0.000 0.048
#> GSM241455     2  0.1082     0.6267 0.004 0.972 0.004 0.020
#> GSM241456     1  0.2530     0.8605 0.896 0.004 0.000 0.100
#> GSM241457     2  0.4889     0.4066 0.000 0.636 0.004 0.360
#> GSM241458     1  0.0817     0.8764 0.976 0.000 0.000 0.024
#> GSM241459     2  0.4817     0.3709 0.000 0.612 0.000 0.388
#> GSM241460     1  0.1389     0.8806 0.952 0.000 0.000 0.048
#> GSM241461     2  0.5040     0.4027 0.000 0.628 0.008 0.364
#> GSM241462     1  0.1867     0.8654 0.928 0.000 0.000 0.072
#> GSM241463     2  0.2197     0.5876 0.000 0.916 0.004 0.080
#> GSM241464     1  0.4055     0.7912 0.832 0.060 0.000 0.108
#> GSM241465     2  0.2412     0.5604 0.000 0.908 0.008 0.084
#> GSM241466     1  0.1902     0.8744 0.932 0.000 0.004 0.064
#> GSM241467     1  0.1489     0.8780 0.952 0.004 0.000 0.044
#> GSM241468     2  0.5036     0.5089 0.024 0.696 0.000 0.280
#> GSM241469     1  0.2675     0.8615 0.892 0.008 0.000 0.100
#> GSM241470     2  0.2281     0.6298 0.000 0.904 0.000 0.096
#> GSM241471     2  0.4360     0.5416 0.008 0.744 0.000 0.248
#> GSM241472     1  0.1978     0.8745 0.928 0.004 0.000 0.068
#> GSM241473     2  0.1716     0.6388 0.000 0.936 0.000 0.064
#> GSM241474     1  0.2976     0.8585 0.872 0.008 0.000 0.120
#> GSM241475     2  0.1637     0.6156 0.000 0.940 0.000 0.060
#> GSM241476     1  0.2480     0.8656 0.904 0.008 0.000 0.088
#> GSM241477     2  0.1940     0.6377 0.000 0.924 0.000 0.076
#> GSM241478     2  0.1584     0.6282 0.012 0.952 0.000 0.036
#> GSM241479     1  0.2401     0.8660 0.904 0.004 0.000 0.092
#> GSM241480     1  0.1576     0.8775 0.948 0.000 0.004 0.048
#> GSM241481     2  0.4730     0.4075 0.000 0.636 0.000 0.364
#> GSM241482     1  0.0817     0.8766 0.976 0.000 0.000 0.024
#> GSM241483     2  0.4422     0.4172 0.000 0.736 0.008 0.256
#> GSM241484     1  0.0817     0.8764 0.976 0.000 0.000 0.024
#> GSM241485     1  0.1474     0.8717 0.948 0.000 0.000 0.052
#> GSM241486     2  0.5110     0.4012 0.000 0.636 0.012 0.352
#> GSM241487     2  0.2124     0.5842 0.000 0.924 0.008 0.068
#> GSM241488     2  0.4462     0.5514 0.064 0.804 0.000 0.132
#> GSM241489     1  0.1661     0.8726 0.944 0.004 0.000 0.052
#> GSM241490     1  0.1722     0.8786 0.944 0.000 0.008 0.048
#> GSM241491     2  0.1151     0.6260 0.000 0.968 0.008 0.024
#> GSM241492     1  0.1940     0.8653 0.924 0.000 0.000 0.076
#> GSM241493     2  0.1042     0.6382 0.008 0.972 0.000 0.020
#> GSM241494     1  0.1576     0.8778 0.948 0.004 0.000 0.048
#> GSM241495     2  0.1792     0.6379 0.000 0.932 0.000 0.068
#> GSM241496     2  0.4139     0.5718 0.040 0.816 0.000 0.144
#> GSM241497     1  0.1489     0.8762 0.952 0.004 0.000 0.044
#> GSM241498     1  0.2266     0.8681 0.912 0.004 0.000 0.084
#> GSM241499     1  0.0707     0.8766 0.980 0.000 0.000 0.020
#> GSM241500     2  0.4999     0.2584 0.000 0.660 0.012 0.328
#> GSM241501     2  0.4606     0.3864 0.000 0.724 0.012 0.264
#> GSM241502     2  0.4978     0.2532 0.000 0.664 0.012 0.324
#> GSM241503     1  0.0895     0.8768 0.976 0.000 0.004 0.020
#> GSM241504     1  0.1042     0.8768 0.972 0.000 0.020 0.008
#> GSM241505     1  0.1520     0.8752 0.956 0.000 0.020 0.024
#> GSM241506     2  0.5229    -0.0133 0.000 0.564 0.008 0.428
#> GSM241507     1  0.2002     0.8712 0.936 0.000 0.020 0.044
#> GSM241508     2  0.5883    -0.2451 0.000 0.572 0.040 0.388
#> GSM241509     4  0.7463     0.0000 0.000 0.384 0.176 0.440
#> GSM241510     3  0.7738    -0.3437 0.000 0.300 0.440 0.260
#> GSM241511     1  0.2586     0.8603 0.912 0.000 0.048 0.040
#> GSM241512     1  0.5723     0.6054 0.684 0.000 0.244 0.072
#> GSM241513     3  0.7002     0.1364 0.000 0.388 0.492 0.120
#> GSM241514     1  0.6275     0.1369 0.484 0.000 0.460 0.056
#> GSM241515     3  0.4274     0.4925 0.000 0.108 0.820 0.072
#> GSM241516     3  0.5781    -0.2166 0.480 0.000 0.492 0.028
#> GSM241517     2  0.5990     0.1021 0.000 0.688 0.124 0.188
#> GSM241518     3  0.5863     0.4690 0.180 0.000 0.700 0.120
#> GSM241519     2  0.5850     0.1268 0.000 0.700 0.116 0.184
#> GSM241520     1  0.7387     0.1253 0.468 0.004 0.384 0.144
#> GSM241521     2  0.3107     0.5702 0.000 0.884 0.036 0.080
#> GSM241522     1  0.1042     0.8770 0.972 0.000 0.020 0.008
#> GSM241523     2  0.6921     0.1177 0.000 0.580 0.260 0.160
#> GSM241524     1  0.6549     0.4530 0.612 0.000 0.268 0.120
#> GSM241525     1  0.2048     0.8641 0.928 0.000 0.064 0.008
#> GSM241526     3  0.7224     0.1040 0.000 0.216 0.548 0.236
#> GSM241527     3  0.6050     0.4193 0.232 0.000 0.668 0.100
#> GSM241528     2  0.6134    -0.1473 0.000 0.660 0.104 0.236
#> GSM241529     3  0.7571    -0.1278 0.000 0.272 0.484 0.244
#> GSM241530     1  0.4635     0.7091 0.756 0.000 0.216 0.028
#> GSM241531     1  0.6362     0.3508 0.560 0.000 0.368 0.072
#> GSM241532     3  0.7536    -0.0857 0.000 0.264 0.492 0.244
#> GSM241533     3  0.7196     0.1007 0.000 0.212 0.552 0.236
#> GSM241534     3  0.7250     0.0823 0.000 0.220 0.544 0.236
#> GSM241535     3  0.4417     0.5011 0.044 0.000 0.796 0.160
#> GSM241536     1  0.3834     0.8234 0.848 0.000 0.076 0.076
#> GSM241537     3  0.4307     0.4743 0.000 0.024 0.784 0.192
#> GSM241538     3  0.1406     0.5288 0.024 0.000 0.960 0.016
#> GSM241539     3  0.4079     0.4765 0.000 0.020 0.800 0.180
#> GSM241540     3  0.3497     0.4977 0.124 0.000 0.852 0.024
#> GSM241541     3  0.6308     0.3422 0.000 0.120 0.648 0.232
#> GSM241542     3  0.0524     0.5302 0.008 0.000 0.988 0.004
#> GSM241543     3  0.6403     0.3339 0.000 0.260 0.628 0.112
#> GSM241544     3  0.6141     0.3401 0.300 0.000 0.624 0.076
#> GSM241545     3  0.5609     0.4064 0.000 0.200 0.712 0.088
#> GSM241546     1  0.6265     0.2068 0.500 0.000 0.444 0.056
#> GSM241547     3  0.7369     0.2364 0.000 0.228 0.524 0.248
#> GSM241548     3  0.3266     0.5233 0.040 0.000 0.876 0.084

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM241451     5  0.6324    -0.4952 0.000 0.412 0.000 0.156 0.432
#> GSM241452     1  0.1270     0.8944 0.948 0.052 0.000 0.000 0.000
#> GSM241453     2  0.5541     0.6078 0.000 0.552 0.000 0.076 0.372
#> GSM241454     1  0.0404     0.8969 0.988 0.000 0.012 0.000 0.000
#> GSM241455     2  0.5629     0.6783 0.000 0.644 0.004 0.132 0.220
#> GSM241456     1  0.1405     0.8967 0.956 0.008 0.016 0.000 0.020
#> GSM241457     5  0.0798     0.6154 0.000 0.016 0.000 0.008 0.976
#> GSM241458     1  0.2304     0.8827 0.908 0.068 0.020 0.004 0.000
#> GSM241459     5  0.0807     0.6079 0.000 0.012 0.000 0.012 0.976
#> GSM241460     1  0.3218     0.8554 0.844 0.128 0.024 0.004 0.000
#> GSM241461     5  0.0955     0.5957 0.000 0.004 0.000 0.028 0.968
#> GSM241462     1  0.3786     0.8089 0.776 0.204 0.016 0.004 0.000
#> GSM241463     2  0.5455     0.6511 0.000 0.680 0.008 0.176 0.136
#> GSM241464     1  0.5730     0.5583 0.628 0.296 0.016 0.016 0.044
#> GSM241465     2  0.6380     0.5540 0.000 0.516 0.000 0.260 0.224
#> GSM241466     1  0.0566     0.8948 0.984 0.012 0.004 0.000 0.000
#> GSM241467     1  0.1270     0.8937 0.948 0.052 0.000 0.000 0.000
#> GSM241468     5  0.4614     0.2926 0.012 0.252 0.004 0.020 0.712
#> GSM241469     1  0.2569     0.8836 0.904 0.012 0.020 0.004 0.060
#> GSM241470     2  0.5415     0.5978 0.000 0.552 0.000 0.064 0.384
#> GSM241471     5  0.4223     0.3222 0.000 0.248 0.000 0.028 0.724
#> GSM241472     1  0.1673     0.8976 0.944 0.032 0.016 0.000 0.008
#> GSM241473     2  0.5697     0.4332 0.000 0.480 0.004 0.068 0.448
#> GSM241474     1  0.2961     0.8850 0.888 0.064 0.020 0.008 0.020
#> GSM241475     2  0.6733     0.4639 0.004 0.416 0.000 0.212 0.368
#> GSM241476     1  0.1059     0.8979 0.968 0.004 0.008 0.000 0.020
#> GSM241477     5  0.5658    -0.1505 0.000 0.332 0.000 0.096 0.572
#> GSM241478     2  0.5072     0.6687 0.000 0.704 0.004 0.100 0.192
#> GSM241479     1  0.1016     0.8962 0.972 0.012 0.004 0.004 0.008
#> GSM241480     1  0.0162     0.8948 0.996 0.000 0.004 0.000 0.000
#> GSM241481     5  0.0798     0.6144 0.000 0.016 0.000 0.008 0.976
#> GSM241482     1  0.2233     0.8845 0.904 0.080 0.016 0.000 0.000
#> GSM241483     5  0.3622     0.5823 0.000 0.048 0.000 0.136 0.816
#> GSM241484     1  0.1197     0.8973 0.952 0.048 0.000 0.000 0.000
#> GSM241485     1  0.3351     0.8451 0.828 0.148 0.020 0.004 0.000
#> GSM241486     5  0.1282     0.6197 0.000 0.004 0.000 0.044 0.952
#> GSM241487     2  0.6623     0.4819 0.000 0.452 0.000 0.300 0.248
#> GSM241488     2  0.4314     0.5716 0.016 0.772 0.008 0.020 0.184
#> GSM241489     1  0.3470     0.8621 0.864 0.072 0.012 0.028 0.024
#> GSM241490     1  0.1334     0.8930 0.960 0.012 0.020 0.004 0.004
#> GSM241491     2  0.5499     0.6826 0.000 0.652 0.004 0.112 0.232
#> GSM241492     1  0.4097     0.8201 0.804 0.144 0.008 0.028 0.016
#> GSM241493     2  0.5916     0.6021 0.000 0.528 0.004 0.096 0.372
#> GSM241494     1  0.1205     0.8959 0.956 0.040 0.004 0.000 0.000
#> GSM241495     2  0.5952     0.5345 0.000 0.480 0.000 0.108 0.412
#> GSM241496     2  0.4845     0.5861 0.012 0.700 0.008 0.024 0.256
#> GSM241497     1  0.1731     0.8917 0.932 0.060 0.004 0.000 0.004
#> GSM241498     1  0.0960     0.8975 0.972 0.004 0.016 0.000 0.008
#> GSM241499     1  0.1202     0.8983 0.960 0.032 0.004 0.004 0.000
#> GSM241500     5  0.3916     0.5464 0.000 0.012 0.000 0.256 0.732
#> GSM241501     5  0.4873     0.4957 0.000 0.068 0.000 0.244 0.688
#> GSM241502     5  0.5405     0.3287 0.000 0.064 0.000 0.380 0.556
#> GSM241503     1  0.0609     0.8975 0.980 0.020 0.000 0.000 0.000
#> GSM241504     1  0.0566     0.8975 0.984 0.004 0.012 0.000 0.000
#> GSM241505     1  0.1173     0.8964 0.964 0.020 0.012 0.004 0.000
#> GSM241506     5  0.5068     0.3024 0.000 0.032 0.004 0.384 0.580
#> GSM241507     1  0.2437     0.8682 0.904 0.032 0.060 0.004 0.000
#> GSM241508     4  0.5359     0.0405 0.000 0.056 0.000 0.532 0.412
#> GSM241509     4  0.4780     0.3978 0.000 0.048 0.000 0.672 0.280
#> GSM241510     4  0.4288     0.4920 0.000 0.032 0.004 0.740 0.224
#> GSM241511     1  0.3625     0.8233 0.840 0.048 0.096 0.016 0.000
#> GSM241512     1  0.5018     0.6827 0.728 0.012 0.100 0.160 0.000
#> GSM241513     3  0.7202     0.0481 0.000 0.336 0.392 0.252 0.020
#> GSM241514     3  0.3530     0.6613 0.204 0.012 0.784 0.000 0.000
#> GSM241515     3  0.5346     0.5352 0.000 0.132 0.692 0.168 0.008
#> GSM241516     3  0.4674     0.6215 0.244 0.016 0.712 0.028 0.000
#> GSM241517     4  0.7374    -0.1653 0.000 0.348 0.100 0.452 0.100
#> GSM241518     3  0.5078     0.6615 0.064 0.108 0.756 0.072 0.000
#> GSM241519     4  0.7450    -0.2492 0.000 0.348 0.068 0.432 0.152
#> GSM241520     3  0.6334     0.6082 0.124 0.208 0.628 0.036 0.004
#> GSM241521     2  0.7083     0.5771 0.000 0.528 0.048 0.224 0.200
#> GSM241522     1  0.1901     0.8765 0.928 0.012 0.056 0.004 0.000
#> GSM241523     2  0.6895     0.4384 0.000 0.588 0.188 0.140 0.084
#> GSM241524     3  0.6276     0.6077 0.232 0.100 0.628 0.032 0.008
#> GSM241525     1  0.2906     0.8522 0.880 0.028 0.080 0.012 0.000
#> GSM241526     4  0.3437     0.6082 0.000 0.032 0.044 0.860 0.064
#> GSM241527     3  0.7019     0.2744 0.208 0.020 0.448 0.324 0.000
#> GSM241528     4  0.5607     0.3532 0.000 0.228 0.000 0.632 0.140
#> GSM241529     4  0.3913     0.5988 0.000 0.032 0.036 0.824 0.108
#> GSM241530     1  0.5181     0.6944 0.724 0.020 0.152 0.104 0.000
#> GSM241531     1  0.6922     0.4088 0.568 0.060 0.204 0.168 0.000
#> GSM241532     4  0.3570     0.5881 0.000 0.044 0.004 0.828 0.124
#> GSM241533     4  0.3051     0.6005 0.000 0.000 0.028 0.852 0.120
#> GSM241534     4  0.3122     0.6019 0.000 0.004 0.024 0.852 0.120
#> GSM241535     3  0.5447     0.2096 0.008 0.044 0.532 0.416 0.000
#> GSM241536     1  0.4657     0.7578 0.764 0.068 0.148 0.020 0.000
#> GSM241537     4  0.4331    -0.0247 0.000 0.004 0.400 0.596 0.000
#> GSM241538     3  0.3031     0.6179 0.004 0.016 0.852 0.128 0.000
#> GSM241539     4  0.4794    -0.1855 0.000 0.012 0.464 0.520 0.004
#> GSM241540     3  0.3912     0.6318 0.040 0.036 0.828 0.096 0.000
#> GSM241541     4  0.3970     0.3896 0.000 0.024 0.224 0.752 0.000
#> GSM241542     3  0.3203     0.5979 0.000 0.012 0.820 0.168 0.000
#> GSM241543     3  0.6332     0.4472 0.000 0.208 0.596 0.176 0.020
#> GSM241544     3  0.3902     0.6773 0.152 0.028 0.804 0.016 0.000
#> GSM241545     3  0.4219     0.6209 0.004 0.068 0.792 0.132 0.004
#> GSM241546     3  0.3762     0.6342 0.244 0.004 0.748 0.004 0.000
#> GSM241547     4  0.6359     0.3307 0.000 0.196 0.236 0.560 0.008
#> GSM241548     3  0.3798     0.6625 0.044 0.032 0.836 0.088 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM241451     6  0.6265    -0.3160 0.000 0.176 0.032 0.004 0.256 0.532
#> GSM241452     1  0.3007     0.7771 0.836 0.012 0.140 0.004 0.008 0.000
#> GSM241453     2  0.6192     0.7690 0.000 0.476 0.008 0.004 0.232 0.280
#> GSM241454     1  0.0972     0.7896 0.964 0.008 0.028 0.000 0.000 0.000
#> GSM241455     2  0.5534     0.7730 0.000 0.596 0.004 0.004 0.176 0.220
#> GSM241456     1  0.4635     0.7385 0.708 0.036 0.044 0.000 0.212 0.000
#> GSM241457     5  0.1320     0.6046 0.000 0.016 0.000 0.000 0.948 0.036
#> GSM241458     1  0.3761     0.7316 0.764 0.196 0.032 0.008 0.000 0.000
#> GSM241459     5  0.1442     0.6060 0.000 0.012 0.004 0.000 0.944 0.040
#> GSM241460     1  0.4490     0.6050 0.604 0.360 0.032 0.004 0.000 0.000
#> GSM241461     5  0.1285     0.6095 0.000 0.004 0.000 0.000 0.944 0.052
#> GSM241462     1  0.4497     0.6012 0.600 0.368 0.012 0.020 0.000 0.000
#> GSM241463     2  0.5061     0.7437 0.000 0.644 0.008 0.004 0.088 0.256
#> GSM241464     1  0.7094     0.4975 0.448 0.268 0.184 0.004 0.096 0.000
#> GSM241465     2  0.5727     0.6698 0.000 0.456 0.000 0.004 0.144 0.396
#> GSM241466     1  0.2744     0.7918 0.876 0.012 0.052 0.000 0.060 0.000
#> GSM241467     1  0.3162     0.7949 0.856 0.040 0.064 0.000 0.040 0.000
#> GSM241468     5  0.6509     0.0208 0.024 0.316 0.008 0.004 0.480 0.168
#> GSM241469     1  0.5346     0.6727 0.612 0.020 0.096 0.000 0.272 0.000
#> GSM241470     2  0.6435     0.7388 0.000 0.444 0.016 0.004 0.248 0.288
#> GSM241471     5  0.5913     0.0614 0.000 0.280 0.004 0.000 0.496 0.220
#> GSM241472     1  0.3753     0.7907 0.808 0.084 0.020 0.000 0.088 0.000
#> GSM241473     2  0.5839     0.6829 0.000 0.524 0.000 0.008 0.284 0.184
#> GSM241474     1  0.5540     0.6760 0.608 0.172 0.008 0.004 0.208 0.000
#> GSM241475     6  0.6269    -0.4994 0.016 0.292 0.004 0.000 0.204 0.484
#> GSM241476     1  0.4323     0.7557 0.740 0.028 0.044 0.000 0.188 0.000
#> GSM241477     5  0.6190    -0.3531 0.000 0.264 0.004 0.000 0.376 0.356
#> GSM241478     2  0.5472     0.7560 0.020 0.640 0.004 0.004 0.104 0.228
#> GSM241479     1  0.3721     0.7812 0.804 0.012 0.084 0.000 0.100 0.000
#> GSM241480     1  0.1155     0.7896 0.956 0.004 0.036 0.000 0.004 0.000
#> GSM241481     5  0.1528     0.6108 0.000 0.016 0.000 0.000 0.936 0.048
#> GSM241482     1  0.3239     0.7516 0.808 0.164 0.024 0.004 0.000 0.000
#> GSM241483     5  0.4292     0.4513 0.000 0.024 0.000 0.000 0.588 0.388
#> GSM241484     1  0.1364     0.7846 0.944 0.048 0.004 0.004 0.000 0.000
#> GSM241485     1  0.4444     0.6422 0.644 0.316 0.032 0.008 0.000 0.000
#> GSM241486     5  0.1958     0.6130 0.000 0.004 0.000 0.000 0.896 0.100
#> GSM241487     6  0.5887    -0.5549 0.000 0.340 0.004 0.000 0.184 0.472
#> GSM241488     2  0.6983     0.7230 0.020 0.504 0.076 0.004 0.120 0.276
#> GSM241489     1  0.5469     0.7380 0.664 0.052 0.144 0.000 0.140 0.000
#> GSM241490     1  0.3924     0.7754 0.788 0.008 0.124 0.004 0.076 0.000
#> GSM241491     2  0.5780     0.7884 0.000 0.532 0.008 0.000 0.172 0.288
#> GSM241492     1  0.6345     0.6300 0.532 0.272 0.048 0.004 0.144 0.000
#> GSM241493     2  0.6275     0.7782 0.012 0.496 0.004 0.004 0.200 0.284
#> GSM241494     1  0.2890     0.7882 0.860 0.012 0.096 0.000 0.032 0.000
#> GSM241495     6  0.6515    -0.6476 0.000 0.336 0.016 0.004 0.248 0.396
#> GSM241496     2  0.7238     0.7237 0.016 0.468 0.080 0.004 0.168 0.264
#> GSM241497     1  0.4152     0.7727 0.772 0.028 0.140 0.000 0.060 0.000
#> GSM241498     1  0.3139     0.7901 0.852 0.020 0.048 0.000 0.080 0.000
#> GSM241499     1  0.1841     0.7804 0.920 0.064 0.008 0.008 0.000 0.000
#> GSM241500     5  0.3706     0.4206 0.000 0.000 0.000 0.000 0.620 0.380
#> GSM241501     5  0.4657     0.3516 0.000 0.032 0.004 0.000 0.508 0.456
#> GSM241502     6  0.4161     0.0111 0.000 0.016 0.000 0.004 0.348 0.632
#> GSM241503     1  0.1010     0.7844 0.960 0.036 0.000 0.004 0.000 0.000
#> GSM241504     1  0.1148     0.7786 0.960 0.016 0.020 0.004 0.000 0.000
#> GSM241505     1  0.1167     0.7792 0.960 0.020 0.012 0.008 0.000 0.000
#> GSM241506     5  0.4395     0.4478 0.000 0.016 0.000 0.008 0.580 0.396
#> GSM241507     1  0.2103     0.7657 0.916 0.024 0.020 0.040 0.000 0.000
#> GSM241508     6  0.3778     0.1480 0.000 0.016 0.000 0.000 0.288 0.696
#> GSM241509     6  0.3043     0.3937 0.000 0.012 0.000 0.012 0.148 0.828
#> GSM241510     6  0.2473     0.3925 0.000 0.000 0.000 0.008 0.136 0.856
#> GSM241511     1  0.4661     0.5380 0.688 0.048 0.024 0.240 0.000 0.000
#> GSM241512     1  0.3540     0.7101 0.812 0.020 0.036 0.132 0.000 0.000
#> GSM241513     3  0.5717     0.4983 0.000 0.124 0.608 0.028 0.004 0.236
#> GSM241514     3  0.4184     0.6557 0.124 0.000 0.752 0.120 0.004 0.000
#> GSM241515     4  0.6466     0.0341 0.000 0.036 0.248 0.480 0.000 0.236
#> GSM241516     4  0.6016     0.0903 0.192 0.004 0.320 0.480 0.004 0.000
#> GSM241517     6  0.4431     0.2745 0.000 0.136 0.100 0.004 0.012 0.748
#> GSM241518     3  0.3835     0.7191 0.028 0.016 0.804 0.132 0.000 0.020
#> GSM241519     6  0.4830     0.2903 0.000 0.116 0.168 0.000 0.016 0.700
#> GSM241520     3  0.2744     0.7186 0.068 0.024 0.884 0.016 0.004 0.004
#> GSM241521     6  0.7003    -0.3588 0.000 0.292 0.168 0.004 0.088 0.448
#> GSM241522     1  0.3444     0.7514 0.800 0.020 0.168 0.004 0.008 0.000
#> GSM241523     3  0.6019     0.3486 0.000 0.224 0.556 0.000 0.028 0.192
#> GSM241524     3  0.2747     0.6947 0.108 0.000 0.860 0.028 0.004 0.000
#> GSM241525     1  0.3562     0.7570 0.828 0.032 0.076 0.064 0.000 0.000
#> GSM241526     6  0.4087     0.2925 0.000 0.004 0.000 0.276 0.028 0.692
#> GSM241527     4  0.5479     0.4809 0.244 0.000 0.020 0.612 0.000 0.124
#> GSM241528     6  0.3399     0.4145 0.000 0.088 0.000 0.064 0.016 0.832
#> GSM241529     6  0.4660     0.2518 0.000 0.008 0.000 0.308 0.048 0.636
#> GSM241530     1  0.4561     0.3519 0.568 0.000 0.040 0.392 0.000 0.000
#> GSM241531     4  0.4243     0.4817 0.272 0.008 0.032 0.688 0.000 0.000
#> GSM241532     6  0.2358     0.4145 0.000 0.000 0.000 0.016 0.108 0.876
#> GSM241533     6  0.4154     0.4153 0.000 0.000 0.000 0.164 0.096 0.740
#> GSM241534     6  0.3985     0.4190 0.000 0.000 0.000 0.140 0.100 0.760
#> GSM241535     4  0.3522     0.6435 0.040 0.008 0.028 0.836 0.000 0.088
#> GSM241536     1  0.5741    -0.0930 0.460 0.084 0.028 0.428 0.000 0.000
#> GSM241537     4  0.3659     0.4241 0.000 0.000 0.000 0.636 0.000 0.364
#> GSM241538     4  0.1471     0.6384 0.000 0.000 0.064 0.932 0.000 0.004
#> GSM241539     4  0.3351     0.5192 0.000 0.000 0.000 0.712 0.000 0.288
#> GSM241540     4  0.2039     0.6313 0.020 0.000 0.076 0.904 0.000 0.000
#> GSM241541     6  0.4225    -0.1270 0.000 0.004 0.004 0.440 0.004 0.548
#> GSM241542     4  0.1951     0.6353 0.000 0.000 0.076 0.908 0.000 0.016
#> GSM241543     3  0.4216     0.6473 0.000 0.048 0.752 0.024 0.000 0.176
#> GSM241544     3  0.3557     0.7046 0.056 0.000 0.800 0.140 0.004 0.000
#> GSM241545     3  0.4271     0.6794 0.000 0.036 0.772 0.076 0.000 0.116
#> GSM241546     3  0.4449     0.6369 0.088 0.000 0.712 0.196 0.004 0.000
#> GSM241547     6  0.5140    -0.0756 0.000 0.052 0.396 0.016 0.000 0.536
#> GSM241548     3  0.3121     0.6878 0.004 0.000 0.796 0.192 0.000 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n  dose(p)  time(p) k
#> ATC:NMF 98 4.80e-01 9.88e-01 2
#> ATC:NMF 94 8.47e-10 4.44e-01 3
#> ATC:NMF 58 3.19e-06 1.11e-01 4
#> ATC:NMF 72 2.29e-06 9.24e-05 5
#> ATC:NMF 62 3.10e-07 1.74e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0