cola Report for GDS3627

Date: 2019-12-25 20:49:38 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 51941    58

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:skmeans 2 1.000 0.973 0.988 **
SD:pam 2 1.000 0.965 0.986 **
CV:kmeans 2 1.000 0.975 0.989 **
CV:skmeans 2 1.000 0.985 0.994 **
MAD:skmeans 2 1.000 0.958 0.984 **
ATC:mclust 2 1.000 1.000 1.000 **
MAD:pam 2 0.999 0.957 0.982 **
CV:NMF 2 0.997 0.966 0.985 **
ATC:skmeans 3 0.968 0.913 0.963 ** 2
MAD:kmeans 2 0.964 0.946 0.979 **
SD:NMF 2 0.963 0.943 0.976 **
SD:kmeans 3 0.956 0.891 0.943 **
ATC:pam 2 0.928 0.919 0.970 *
MAD:NMF 2 0.893 0.931 0.971
SD:mclust 2 0.863 0.864 0.948
ATC:kmeans 3 0.805 0.906 0.952
ATC:NMF 2 0.664 0.869 0.934
CV:mclust 2 0.624 0.842 0.930
ATC:hclust 3 0.580 0.668 0.861
MAD:mclust 4 0.507 0.613 0.787
CV:pam 3 0.500 0.762 0.867
CV:hclust 2 0.428 0.683 0.868
SD:hclust 2 0.323 0.694 0.856
MAD:hclust 2 0.308 0.790 0.875

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.963           0.943       0.976          0.463 0.540   0.540
#> CV:NMF      2 0.997           0.966       0.985          0.454 0.552   0.552
#> MAD:NMF     2 0.893           0.931       0.971          0.494 0.506   0.506
#> ATC:NMF     2 0.664           0.869       0.934          0.462 0.530   0.530
#> SD:skmeans  2 1.000           0.973       0.988          0.493 0.506   0.506
#> CV:skmeans  2 1.000           0.985       0.994          0.493 0.506   0.506
#> MAD:skmeans 2 1.000           0.958       0.984          0.504 0.494   0.494
#> ATC:skmeans 2 1.000           1.000       1.000          0.509 0.491   0.491
#> SD:mclust   2 0.863           0.864       0.948          0.454 0.530   0.530
#> CV:mclust   2 0.624           0.842       0.930          0.475 0.513   0.513
#> MAD:mclust  2 0.402           0.795       0.862          0.391 0.578   0.578
#> ATC:mclust  2 1.000           1.000       1.000          0.132 0.869   0.869
#> SD:kmeans   2 0.833           0.935       0.971          0.426 0.578   0.578
#> CV:kmeans   2 1.000           0.975       0.989          0.405 0.593   0.593
#> MAD:kmeans  2 0.964           0.946       0.979          0.486 0.513   0.513
#> ATC:kmeans  2 0.617           0.823       0.928          0.480 0.501   0.501
#> SD:pam      2 1.000           0.965       0.986          0.397 0.610   0.610
#> CV:pam      2 0.896           0.946       0.977          0.386 0.627   0.627
#> MAD:pam     2 0.999           0.957       0.982          0.472 0.521   0.521
#> ATC:pam     2 0.928           0.919       0.970          0.504 0.494   0.494
#> SD:hclust   2 0.323           0.694       0.856          0.454 0.491   0.491
#> CV:hclust   2 0.428           0.683       0.868          0.462 0.501   0.501
#> MAD:hclust  2 0.308           0.790       0.875          0.467 0.501   0.501
#> ATC:hclust  2 0.576           0.861       0.927          0.418 0.610   0.610
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.875           0.878       0.947          0.442 0.700   0.486
#> CV:NMF      3 0.684           0.832       0.916          0.471 0.696   0.488
#> MAD:NMF     3 0.514           0.597       0.805          0.358 0.756   0.548
#> ATC:NMF     3 0.452           0.695       0.846          0.288 0.670   0.465
#> SD:skmeans  3 0.868           0.910       0.950          0.362 0.705   0.477
#> CV:skmeans  3 0.837           0.859       0.937          0.360 0.705   0.477
#> MAD:skmeans 3 0.673           0.634       0.862          0.327 0.758   0.545
#> ATC:skmeans 3 0.968           0.913       0.963          0.174 0.907   0.810
#> SD:mclust   3 0.554           0.762       0.852          0.368 0.826   0.688
#> CV:mclust   3 0.474           0.700       0.759          0.313 0.867   0.749
#> MAD:mclust  3 0.466           0.544       0.778          0.654 0.691   0.493
#> ATC:mclust  3 0.399           0.676       0.804          2.861 0.564   0.499
#> SD:kmeans   3 0.956           0.891       0.943          0.543 0.704   0.511
#> CV:kmeans   3 0.703           0.869       0.922          0.597 0.672   0.484
#> MAD:kmeans  3 0.720           0.851       0.918          0.368 0.666   0.434
#> ATC:kmeans  3 0.805           0.906       0.952          0.352 0.666   0.432
#> SD:pam      3 0.729           0.858       0.927          0.633 0.721   0.549
#> CV:pam      3 0.500           0.762       0.867          0.655 0.686   0.510
#> MAD:pam     3 0.865           0.886       0.954          0.380 0.682   0.465
#> ATC:pam     3 0.830           0.885       0.953          0.267 0.718   0.502
#> SD:hclust   3 0.392           0.642       0.786          0.363 0.735   0.530
#> CV:hclust   3 0.385           0.653       0.779          0.356 0.676   0.438
#> MAD:hclust  3 0.341           0.689       0.799          0.329 0.879   0.758
#> ATC:hclust  3 0.580           0.668       0.861          0.522 0.704   0.524
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.776           0.871       0.915         0.1347 0.854   0.592
#> CV:NMF      4 0.738           0.853       0.904         0.1341 0.857   0.603
#> MAD:NMF     4 0.609           0.667       0.826         0.1242 0.792   0.472
#> ATC:NMF     4 0.474           0.703       0.829         0.0576 0.950   0.874
#> SD:skmeans  4 0.737           0.691       0.826         0.1173 0.861   0.613
#> CV:skmeans  4 0.700           0.640       0.734         0.1215 0.818   0.515
#> MAD:skmeans 4 0.796           0.799       0.897         0.1234 0.833   0.550
#> ATC:skmeans 4 0.786           0.834       0.914         0.0865 0.964   0.910
#> SD:mclust   4 0.557           0.755       0.791         0.0969 0.962   0.908
#> CV:mclust   4 0.630           0.747       0.832         0.1606 0.754   0.462
#> MAD:mclust  4 0.507           0.613       0.787         0.1394 0.851   0.593
#> ATC:mclust  4 0.793           0.850       0.915         0.3504 0.672   0.388
#> SD:kmeans   4 0.679           0.653       0.799         0.1257 0.895   0.720
#> CV:kmeans   4 0.674           0.657       0.799         0.1400 0.920   0.780
#> MAD:kmeans  4 0.630           0.660       0.792         0.1261 0.863   0.617
#> ATC:kmeans  4 0.646           0.694       0.842         0.1239 0.768   0.439
#> SD:pam      4 0.623           0.690       0.805         0.1020 0.923   0.787
#> CV:pam      4 0.550           0.699       0.812         0.1268 0.909   0.741
#> MAD:pam     4 0.817           0.771       0.900         0.1118 0.873   0.662
#> ATC:pam     4 0.806           0.843       0.919         0.1096 0.889   0.711
#> SD:hclust   4 0.510           0.492       0.717         0.1738 0.758   0.453
#> CV:hclust   4 0.523           0.594       0.773         0.1471 0.838   0.571
#> MAD:hclust  4 0.509           0.515       0.717         0.1665 0.872   0.673
#> ATC:hclust  4 0.642           0.701       0.836         0.0876 0.858   0.642
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.811           0.800       0.896         0.0681 0.880   0.565
#> CV:NMF      5 0.879           0.843       0.919         0.0689 0.921   0.694
#> MAD:NMF     5 0.716           0.663       0.818         0.0676 0.883   0.587
#> ATC:NMF     5 0.424           0.423       0.723         0.0640 0.860   0.684
#> SD:skmeans  5 0.772           0.730       0.848         0.0656 0.866   0.539
#> CV:skmeans  5 0.763           0.775       0.859         0.0644 0.929   0.722
#> MAD:skmeans 5 0.699           0.583       0.767         0.0641 0.967   0.869
#> ATC:skmeans 5 0.749           0.701       0.877         0.0641 0.967   0.913
#> SD:mclust   5 0.580           0.517       0.708         0.1311 0.745   0.391
#> CV:mclust   5 0.752           0.803       0.891         0.0683 0.800   0.416
#> MAD:mclust  5 0.577           0.502       0.712         0.0699 0.909   0.675
#> ATC:mclust  5 0.761           0.817       0.900         0.1217 0.886   0.651
#> SD:kmeans   5 0.677           0.525       0.748         0.0751 0.877   0.605
#> CV:kmeans   5 0.684           0.606       0.761         0.0677 0.878   0.610
#> MAD:kmeans  5 0.648           0.501       0.724         0.0691 0.978   0.913
#> ATC:kmeans  5 0.694           0.622       0.745         0.0639 0.848   0.508
#> SD:pam      5 0.687           0.747       0.836         0.0879 0.901   0.682
#> CV:pam      5 0.609           0.585       0.761         0.0787 0.855   0.547
#> MAD:pam     5 0.865           0.755       0.900         0.0542 0.938   0.786
#> ATC:pam     5 0.758           0.783       0.863         0.0992 0.863   0.577
#> SD:hclust   5 0.585           0.545       0.719         0.0759 0.840   0.491
#> CV:hclust   5 0.601           0.520       0.713         0.0749 0.915   0.691
#> MAD:hclust  5 0.577           0.499       0.697         0.0681 0.881   0.621
#> ATC:hclust  5 0.657           0.699       0.762         0.0780 0.853   0.567
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.827           0.763       0.863         0.0346 0.962   0.809
#> CV:NMF      6 0.817           0.653       0.840         0.0372 0.938   0.698
#> MAD:NMF     6 0.758           0.730       0.832         0.0412 0.869   0.460
#> ATC:NMF     6 0.420           0.461       0.667         0.0561 0.762   0.497
#> SD:skmeans  6 0.759           0.604       0.780         0.0371 0.967   0.842
#> CV:skmeans  6 0.734           0.617       0.779         0.0343 0.961   0.815
#> MAD:skmeans 6 0.679           0.484       0.698         0.0370 0.938   0.741
#> ATC:skmeans 6 0.758           0.736       0.872         0.0343 0.937   0.817
#> SD:mclust   6 0.736           0.526       0.743         0.0641 0.854   0.435
#> CV:mclust   6 0.785           0.656       0.812         0.0580 0.945   0.767
#> MAD:mclust  6 0.680           0.575       0.752         0.0499 0.877   0.518
#> ATC:mclust  6 0.724           0.703       0.814         0.0502 0.986   0.940
#> SD:kmeans   6 0.743           0.516       0.690         0.0440 0.862   0.441
#> CV:kmeans   6 0.721           0.621       0.738         0.0468 0.959   0.809
#> MAD:kmeans  6 0.673           0.434       0.685         0.0419 0.896   0.592
#> ATC:kmeans  6 0.821           0.840       0.873         0.0468 0.913   0.639
#> SD:pam      6 0.777           0.751       0.859         0.0562 0.904   0.608
#> CV:pam      6 0.688           0.460       0.673         0.0571 0.841   0.408
#> MAD:pam     6 0.826           0.734       0.888         0.0662 0.947   0.780
#> ATC:pam     6 0.830           0.671       0.822         0.0509 0.885   0.552
#> SD:hclust   6 0.664           0.511       0.699         0.0485 0.918   0.662
#> CV:hclust   6 0.685           0.505       0.724         0.0548 0.924   0.672
#> MAD:hclust  6 0.636           0.548       0.704         0.0574 0.862   0.496
#> ATC:hclust  6 0.730           0.597       0.746         0.0503 0.811   0.370

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>              n disease.state(p) k
#> SD:NMF      56         1.38e-08 2
#> CV:NMF      57         9.33e-09 2
#> MAD:NMF     57         2.62e-07 2
#> ATC:NMF     56         7.29e-01 2
#> SD:skmeans  57         2.62e-07 2
#> CV:skmeans  58         1.83e-07 2
#> MAD:skmeans 56         1.11e-06 2
#> ATC:skmeans 58         7.77e-01 2
#> SD:mclust   51         7.01e-10 2
#> CV:mclust   54         7.96e-10 2
#> MAD:mclust  53         2.93e-10 2
#> ATC:mclust  58         7.72e-01 2
#> SD:kmeans   57         3.66e-10 2
#> CV:kmeans   57         2.94e-09 2
#> MAD:kmeans  56         3.31e-08 2
#> ATC:kmeans  53         4.29e-01 2
#> SD:pam      57         2.94e-09 2
#> CV:pam      57         2.15e-08 2
#> MAD:pam     57         5.56e-09 2
#> ATC:pam     55         1.00e+00 2
#> SD:hclust   49         1.44e-05 2
#> CV:hclust   47         1.68e-06 2
#> MAD:hclust  56         3.78e-07 2
#> ATC:hclust  58         9.20e-01 2
test_to_known_factors(res_list, k = 3)
#>              n disease.state(p) k
#> SD:NMF      55         8.59e-10 3
#> CV:NMF      53         2.16e-10 3
#> MAD:NMF     45         1.33e-09 3
#> ATC:NMF     52         6.26e-01 3
#> SD:skmeans  56         2.05e-09 3
#> CV:skmeans  53         1.53e-09 3
#> MAD:skmeans 43         2.46e-08 3
#> ATC:skmeans 56         4.14e-01 3
#> SD:mclust   51         9.53e-10 3
#> CV:mclust   51         3.27e-07 3
#> MAD:mclust  32         1.22e-07 3
#> ATC:mclust  54         6.63e-01 3
#> SD:kmeans   55         2.79e-09 3
#> CV:kmeans   57         4.80e-09 3
#> MAD:kmeans  55         4.91e-10 3
#> ATC:kmeans  57         9.04e-01 3
#> SD:pam      55         2.36e-09 3
#> CV:pam      52         1.44e-08 3
#> MAD:pam     54         8.05e-09 3
#> ATC:pam     55         7.74e-01 3
#> SD:hclust   44         2.32e-07 3
#> CV:hclust   49         7.32e-09 3
#> MAD:hclust  51         3.49e-06 3
#> ATC:hclust  48         9.03e-01 3
test_to_known_factors(res_list, k = 4)
#>              n disease.state(p) k
#> SD:NMF      56         3.40e-09 4
#> CV:NMF      56         2.17e-09 4
#> MAD:NMF     44         6.32e-07 4
#> ATC:NMF     51         5.63e-01 4
#> SD:skmeans  50         2.77e-08 4
#> CV:skmeans  41         2.91e-07 4
#> MAD:skmeans 52         6.98e-08 4
#> ATC:skmeans 53         1.25e-01 4
#> SD:mclust   55         5.44e-09 4
#> CV:mclust   55         2.22e-09 4
#> MAD:mclust  45         1.92e-07 4
#> ATC:mclust  53         6.61e-01 4
#> SD:kmeans   51         1.23e-08 4
#> CV:kmeans   50         8.37e-08 4
#> MAD:kmeans  48         6.18e-08 4
#> ATC:kmeans  46         1.76e-01 4
#> SD:pam      50         4.05e-08 4
#> CV:pam      52         5.05e-08 4
#> MAD:pam     47         1.37e-06 4
#> ATC:pam     55         8.00e-01 4
#> SD:hclust   31         1.97e-03 4
#> CV:hclust   45         1.60e-07 4
#> MAD:hclust  30         2.53e-03 4
#> ATC:hclust  49         6.10e-01 4
test_to_known_factors(res_list, k = 5)
#>              n disease.state(p) k
#> SD:NMF      55         7.94e-08 5
#> CV:NMF      54         1.72e-08 5
#> MAD:NMF     49         2.32e-07 5
#> ATC:NMF     29         5.61e-01 5
#> SD:skmeans  52         5.04e-08 5
#> CV:skmeans  54         7.28e-08 5
#> MAD:skmeans 41         1.45e-06 5
#> ATC:skmeans 46         1.34e-01 5
#> SD:mclust   34         2.11e-05 5
#> CV:mclust   54         1.11e-07 5
#> MAD:mclust  38         9.80e-07 5
#> ATC:mclust  53         6.44e-01 5
#> SD:kmeans   33         5.94e-06 5
#> CV:kmeans   47         2.17e-07 5
#> MAD:kmeans  41         1.03e-06 5
#> ATC:kmeans  44         9.06e-01 5
#> SD:pam      51         3.65e-07 5
#> CV:pam      38         9.26e-07 5
#> MAD:pam     47         1.05e-07 5
#> ATC:pam     54         5.49e-01 5
#> SD:hclust   36         2.28e-04 5
#> CV:hclust   37         8.42e-07 5
#> MAD:hclust  28         1.57e-03 5
#> ATC:hclust  49         5.80e-01 5
test_to_known_factors(res_list, k = 6)
#>              n disease.state(p) k
#> SD:NMF      54         4.27e-07 6
#> CV:NMF      44         1.27e-06 6
#> MAD:NMF     49         3.50e-06 6
#> ATC:NMF     34         5.80e-01 6
#> SD:skmeans  45         2.75e-06 6
#> CV:skmeans  44         7.05e-07 6
#> MAD:skmeans 29         1.12e-05 6
#> ATC:skmeans 47         2.76e-01 6
#> SD:mclust   36         4.16e-07 6
#> CV:mclust   42         2.82e-05 6
#> MAD:mclust  39         6.51e-06 6
#> ATC:mclust  50         5.55e-01 6
#> SD:kmeans   29         1.33e-05 6
#> CV:kmeans   41         9.54e-06 6
#> MAD:kmeans  26         1.54e-04 6
#> ATC:kmeans  55         2.06e-01 6
#> SD:pam      52         8.35e-07 6
#> CV:pam      26         5.18e-05 6
#> MAD:pam     47         3.36e-07 6
#> ATC:pam     50         7.07e-01 6
#> SD:hclust   37         2.06e-03 6
#> CV:hclust   40         1.36e-06 6
#> MAD:hclust  31         9.50e-05 6
#> ATC:hclust  37         2.88e-01 6

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.323           0.694       0.856         0.4542 0.491   0.491
#> 3 3 0.392           0.642       0.786         0.3629 0.735   0.530
#> 4 4 0.510           0.492       0.717         0.1738 0.758   0.453
#> 5 5 0.585           0.545       0.719         0.0759 0.840   0.491
#> 6 6 0.664           0.511       0.699         0.0485 0.918   0.662

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     1  0.0000     0.8157 1.000 0.000
#> GSM258555     1  0.0000     0.8157 1.000 0.000
#> GSM258556     2  0.6048     0.7961 0.148 0.852
#> GSM258557     1  0.1414     0.8204 0.980 0.020
#> GSM258562     1  0.7950     0.6841 0.760 0.240
#> GSM258563     1  0.1414     0.8204 0.980 0.020
#> GSM258565     1  0.0000     0.8157 1.000 0.000
#> GSM258566     1  0.0000     0.8157 1.000 0.000
#> GSM258570     1  0.0000     0.8157 1.000 0.000
#> GSM258578     1  0.0000     0.8157 1.000 0.000
#> GSM258580     1  0.7950     0.6841 0.760 0.240
#> GSM258583     1  0.0938     0.8189 0.988 0.012
#> GSM258585     1  0.1414     0.8204 0.980 0.020
#> GSM258590     1  0.0000     0.8157 1.000 0.000
#> GSM258594     1  0.0000     0.8157 1.000 0.000
#> GSM258596     1  0.1414     0.8204 0.980 0.020
#> GSM258599     1  0.1414     0.8204 0.980 0.020
#> GSM258603     1  0.0000     0.8157 1.000 0.000
#> GSM258551     2  0.4939     0.8147 0.108 0.892
#> GSM258552     1  0.9522     0.4032 0.628 0.372
#> GSM258554     2  0.2603     0.8147 0.044 0.956
#> GSM258558     2  0.3584     0.8194 0.068 0.932
#> GSM258559     2  0.6801     0.7763 0.180 0.820
#> GSM258560     1  0.9983     0.0280 0.524 0.476
#> GSM258561     2  0.5059     0.8130 0.112 0.888
#> GSM258564     2  0.3733     0.8187 0.072 0.928
#> GSM258567     1  0.9983     0.0285 0.524 0.476
#> GSM258568     2  0.1414     0.8070 0.020 0.980
#> GSM258569     1  0.7950     0.6841 0.760 0.240
#> GSM258571     1  0.6623     0.7602 0.828 0.172
#> GSM258572     2  0.9954     0.2236 0.460 0.540
#> GSM258573     2  0.0000     0.7989 0.000 1.000
#> GSM258574     2  0.9866     0.3134 0.432 0.568
#> GSM258575     2  0.4022     0.8172 0.080 0.920
#> GSM258576     2  0.0000     0.7989 0.000 1.000
#> GSM258577     2  0.8955     0.6082 0.312 0.688
#> GSM258579     2  0.0000     0.7989 0.000 1.000
#> GSM258581     2  0.0000     0.7989 0.000 1.000
#> GSM258582     1  0.6623     0.7602 0.828 0.172
#> GSM258584     2  0.8813     0.6282 0.300 0.700
#> GSM258586     2  0.6247     0.7917 0.156 0.844
#> GSM258587     2  0.0000     0.7989 0.000 1.000
#> GSM258588     2  0.9552     0.4105 0.376 0.624
#> GSM258589     2  0.9970     0.1944 0.468 0.532
#> GSM258591     2  0.4161     0.8178 0.084 0.916
#> GSM258592     1  0.9963     0.0833 0.536 0.464
#> GSM258593     1  0.3431     0.8088 0.936 0.064
#> GSM258595     1  0.8499     0.6245 0.724 0.276
#> GSM258597     2  0.0000     0.7989 0.000 1.000
#> GSM258598     2  0.0000     0.7989 0.000 1.000
#> GSM258600     2  0.9977     0.1780 0.472 0.528
#> GSM258601     1  0.6712     0.7571 0.824 0.176
#> GSM258602     2  0.6623     0.7823 0.172 0.828
#> GSM258604     1  0.6623     0.7602 0.828 0.172
#> GSM258605     1  0.6623     0.7602 0.828 0.172
#> GSM258606     2  0.3733     0.8183 0.072 0.928
#> GSM258607     2  0.6048     0.7961 0.148 0.852
#> GSM258608     2  0.7528     0.7376 0.216 0.784

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     1  0.3340     1.0000 0.880 0.000 0.120
#> GSM258555     1  0.3340     1.0000 0.880 0.000 0.120
#> GSM258556     2  0.8573     0.5989 0.116 0.556 0.328
#> GSM258557     3  0.6225     0.2549 0.432 0.000 0.568
#> GSM258562     3  0.2066     0.6722 0.060 0.000 0.940
#> GSM258563     3  0.6225     0.2549 0.432 0.000 0.568
#> GSM258565     1  0.3340     1.0000 0.880 0.000 0.120
#> GSM258566     1  0.3340     1.0000 0.880 0.000 0.120
#> GSM258570     1  0.3340     1.0000 0.880 0.000 0.120
#> GSM258578     1  0.3340     1.0000 0.880 0.000 0.120
#> GSM258580     3  0.2066     0.6722 0.060 0.000 0.940
#> GSM258583     3  0.6252     0.2163 0.444 0.000 0.556
#> GSM258585     3  0.6225     0.2549 0.432 0.000 0.568
#> GSM258590     1  0.3340     1.0000 0.880 0.000 0.120
#> GSM258594     1  0.3340     1.0000 0.880 0.000 0.120
#> GSM258596     3  0.6225     0.2549 0.432 0.000 0.568
#> GSM258599     3  0.6225     0.2549 0.432 0.000 0.568
#> GSM258603     1  0.3340     1.0000 0.880 0.000 0.120
#> GSM258551     2  0.4842     0.7517 0.000 0.776 0.224
#> GSM258552     3  0.2356     0.6287 0.000 0.072 0.928
#> GSM258554     2  0.3267     0.7949 0.000 0.884 0.116
#> GSM258558     2  0.4452     0.7747 0.000 0.808 0.192
#> GSM258559     2  0.5859     0.6199 0.000 0.656 0.344
#> GSM258560     3  0.4346     0.5341 0.000 0.184 0.816
#> GSM258561     2  0.5689     0.7706 0.036 0.780 0.184
#> GSM258564     2  0.6721     0.7712 0.116 0.748 0.136
#> GSM258567     3  0.4235     0.5395 0.000 0.176 0.824
#> GSM258568     2  0.2878     0.7938 0.000 0.904 0.096
#> GSM258569     3  0.2066     0.6722 0.060 0.000 0.940
#> GSM258571     3  0.3482     0.6529 0.128 0.000 0.872
#> GSM258572     3  0.5812     0.4441 0.012 0.264 0.724
#> GSM258573     2  0.2066     0.7708 0.060 0.940 0.000
#> GSM258574     3  0.5397     0.3938 0.000 0.280 0.720
#> GSM258575     2  0.3038     0.7914 0.000 0.896 0.104
#> GSM258576     2  0.0829     0.7816 0.004 0.984 0.012
#> GSM258577     3  0.6111     0.0478 0.000 0.396 0.604
#> GSM258579     2  0.0829     0.7816 0.004 0.984 0.012
#> GSM258581     2  0.0829     0.7816 0.004 0.984 0.012
#> GSM258582     3  0.3482     0.6529 0.128 0.000 0.872
#> GSM258584     3  0.6154    -0.0107 0.000 0.408 0.592
#> GSM258586     2  0.8645     0.5787 0.116 0.540 0.344
#> GSM258587     2  0.2860     0.7654 0.084 0.912 0.004
#> GSM258588     2  0.6307     0.2875 0.000 0.512 0.488
#> GSM258589     3  0.5881     0.4610 0.016 0.256 0.728
#> GSM258591     2  0.4136     0.7930 0.020 0.864 0.116
#> GSM258592     3  0.4062     0.5537 0.000 0.164 0.836
#> GSM258593     3  0.5254     0.5223 0.264 0.000 0.736
#> GSM258595     3  0.2527     0.6763 0.044 0.020 0.936
#> GSM258597     2  0.2860     0.7654 0.084 0.912 0.004
#> GSM258598     2  0.3340     0.7469 0.120 0.880 0.000
#> GSM258600     3  0.5803     0.4727 0.016 0.248 0.736
#> GSM258601     3  0.3715     0.6541 0.128 0.004 0.868
#> GSM258602     2  0.5785     0.6400 0.000 0.668 0.332
#> GSM258604     3  0.3482     0.6529 0.128 0.000 0.872
#> GSM258605     3  0.3482     0.6529 0.128 0.000 0.872
#> GSM258606     2  0.3879     0.7897 0.000 0.848 0.152
#> GSM258607     2  0.8554     0.6031 0.116 0.560 0.324
#> GSM258608     2  0.6180     0.4579 0.000 0.584 0.416

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     1  0.0188     1.0000 0.996 0.000 0.004 0.000
#> GSM258555     1  0.0188     1.0000 0.996 0.000 0.004 0.000
#> GSM258556     4  0.4855     0.5123 0.004 0.352 0.000 0.644
#> GSM258557     3  0.5070     0.5131 0.372 0.008 0.620 0.000
#> GSM258562     3  0.3895     0.5753 0.012 0.184 0.804 0.000
#> GSM258563     3  0.5070     0.5131 0.372 0.008 0.620 0.000
#> GSM258565     1  0.0188     1.0000 0.996 0.000 0.004 0.000
#> GSM258566     1  0.0188     1.0000 0.996 0.000 0.004 0.000
#> GSM258570     1  0.0188     1.0000 0.996 0.000 0.004 0.000
#> GSM258578     1  0.0188     1.0000 0.996 0.000 0.004 0.000
#> GSM258580     3  0.3895     0.5753 0.012 0.184 0.804 0.000
#> GSM258583     3  0.5112     0.4972 0.384 0.008 0.608 0.000
#> GSM258585     3  0.5070     0.5131 0.372 0.008 0.620 0.000
#> GSM258590     1  0.0188     1.0000 0.996 0.000 0.004 0.000
#> GSM258594     1  0.0188     1.0000 0.996 0.000 0.004 0.000
#> GSM258596     3  0.5070     0.5131 0.372 0.008 0.620 0.000
#> GSM258599     3  0.5070     0.5131 0.372 0.008 0.620 0.000
#> GSM258603     1  0.0188     1.0000 0.996 0.000 0.004 0.000
#> GSM258551     2  0.5928    -0.2996 0.000 0.508 0.036 0.456
#> GSM258552     3  0.4776     0.2308 0.000 0.376 0.624 0.000
#> GSM258554     4  0.5119     0.3383 0.000 0.440 0.004 0.556
#> GSM258558     2  0.4123     0.2602 0.000 0.772 0.008 0.220
#> GSM258559     2  0.3996     0.3683 0.000 0.836 0.060 0.104
#> GSM258560     2  0.5137     0.2091 0.000 0.544 0.452 0.004
#> GSM258561     4  0.6242     0.3888 0.004 0.356 0.056 0.584
#> GSM258564     4  0.3710     0.6220 0.004 0.192 0.000 0.804
#> GSM258567     2  0.4981     0.1781 0.000 0.536 0.464 0.000
#> GSM258568     2  0.4836     0.1890 0.000 0.672 0.008 0.320
#> GSM258569     3  0.4019     0.5669 0.012 0.196 0.792 0.000
#> GSM258571     3  0.0937     0.6819 0.012 0.012 0.976 0.000
#> GSM258572     2  0.5088     0.2425 0.000 0.572 0.424 0.004
#> GSM258573     4  0.3448     0.6027 0.000 0.168 0.004 0.828
#> GSM258574     2  0.4978     0.3062 0.000 0.612 0.384 0.004
#> GSM258575     2  0.5882     0.2072 0.000 0.608 0.048 0.344
#> GSM258576     2  0.5060     0.1127 0.000 0.584 0.004 0.412
#> GSM258577     2  0.3982     0.4185 0.000 0.776 0.220 0.004
#> GSM258579     2  0.5060     0.1127 0.000 0.584 0.004 0.412
#> GSM258581     2  0.5060     0.1127 0.000 0.584 0.004 0.412
#> GSM258582     3  0.0937     0.6819 0.012 0.012 0.976 0.000
#> GSM258584     2  0.3801     0.4215 0.000 0.780 0.220 0.000
#> GSM258586     4  0.5395     0.4950 0.004 0.352 0.016 0.628
#> GSM258587     4  0.3074     0.6226 0.000 0.152 0.000 0.848
#> GSM258588     2  0.7659     0.3077 0.000 0.444 0.332 0.224
#> GSM258589     2  0.4941     0.2154 0.000 0.564 0.436 0.000
#> GSM258591     2  0.6068    -0.0352 0.000 0.508 0.044 0.448
#> GSM258592     2  0.4992     0.1544 0.000 0.524 0.476 0.000
#> GSM258593     3  0.3208     0.6722 0.148 0.004 0.848 0.000
#> GSM258595     3  0.4088     0.5119 0.004 0.232 0.764 0.000
#> GSM258597     4  0.3074     0.6226 0.000 0.152 0.000 0.848
#> GSM258598     4  0.1209     0.6228 0.004 0.032 0.000 0.964
#> GSM258600     2  0.4955     0.2001 0.000 0.556 0.444 0.000
#> GSM258601     3  0.1174     0.6792 0.012 0.020 0.968 0.000
#> GSM258602     2  0.4171     0.3646 0.000 0.824 0.060 0.116
#> GSM258604     3  0.0937     0.6819 0.012 0.012 0.976 0.000
#> GSM258605     3  0.0937     0.6819 0.012 0.012 0.976 0.000
#> GSM258606     2  0.5417     0.2387 0.000 0.676 0.040 0.284
#> GSM258607     4  0.4837     0.5169 0.004 0.348 0.000 0.648
#> GSM258608     2  0.6439     0.3302 0.000 0.648 0.172 0.180

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     1   0.000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM258555     1   0.000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM258556     4   0.120     0.6200 0.000 0.000 0.048 0.952 0.000
#> GSM258557     5   0.474     0.6935 0.332 0.000 0.024 0.004 0.640
#> GSM258562     3   0.427     0.2847 0.000 0.000 0.556 0.000 0.444
#> GSM258563     5   0.474     0.6935 0.332 0.000 0.024 0.004 0.640
#> GSM258565     1   0.000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM258566     1   0.000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM258570     1   0.000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM258578     1   0.000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM258580     3   0.427     0.2847 0.000 0.000 0.556 0.000 0.444
#> GSM258583     5   0.479     0.6783 0.344 0.000 0.024 0.004 0.628
#> GSM258585     5   0.474     0.6935 0.332 0.000 0.024 0.004 0.640
#> GSM258590     1   0.000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM258594     1   0.000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM258596     5   0.474     0.6935 0.332 0.000 0.024 0.004 0.640
#> GSM258599     5   0.474     0.6935 0.332 0.000 0.024 0.004 0.640
#> GSM258603     1   0.000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM258551     2   0.684     0.0456 0.000 0.404 0.188 0.396 0.012
#> GSM258552     3   0.550     0.4960 0.000 0.048 0.632 0.024 0.296
#> GSM258554     2   0.604     0.1136 0.000 0.516 0.128 0.356 0.000
#> GSM258558     2   0.442     0.5873 0.000 0.728 0.224 0.048 0.000
#> GSM258559     2   0.512     0.4245 0.000 0.576 0.388 0.008 0.028
#> GSM258560     3   0.542     0.4204 0.000 0.052 0.588 0.008 0.352
#> GSM258561     4   0.662     0.0537 0.000 0.416 0.088 0.456 0.040
#> GSM258564     4   0.388     0.6102 0.000 0.184 0.036 0.780 0.000
#> GSM258567     3   0.568     0.4384 0.000 0.044 0.572 0.024 0.360
#> GSM258568     2   0.233     0.6157 0.000 0.876 0.124 0.000 0.000
#> GSM258569     3   0.425     0.2975 0.000 0.000 0.568 0.000 0.432
#> GSM258571     5   0.104     0.5669 0.000 0.000 0.040 0.000 0.960
#> GSM258572     3   0.625     0.5550 0.000 0.164 0.640 0.044 0.152
#> GSM258573     2   0.473    -0.4263 0.000 0.524 0.016 0.460 0.000
#> GSM258574     3   0.619     0.5215 0.000 0.176 0.648 0.048 0.128
#> GSM258575     2   0.290     0.6107 0.000 0.880 0.076 0.008 0.036
#> GSM258576     2   0.029     0.5806 0.000 0.992 0.008 0.000 0.000
#> GSM258577     3   0.629     0.2415 0.000 0.288 0.588 0.048 0.076
#> GSM258579     2   0.029     0.5806 0.000 0.992 0.008 0.000 0.000
#> GSM258581     2   0.029     0.5806 0.000 0.992 0.008 0.000 0.000
#> GSM258582     5   0.104     0.5669 0.000 0.000 0.040 0.000 0.960
#> GSM258584     3   0.585     0.1306 0.000 0.296 0.576 0.000 0.128
#> GSM258586     4   0.163     0.6150 0.000 0.000 0.056 0.936 0.008
#> GSM258587     4   0.445     0.3921 0.000 0.488 0.004 0.508 0.000
#> GSM258588     2   0.731     0.2717 0.000 0.436 0.256 0.032 0.276
#> GSM258589     3   0.625     0.5629 0.000 0.156 0.640 0.044 0.160
#> GSM258591     2   0.527     0.4803 0.000 0.720 0.072 0.172 0.036
#> GSM258592     3   0.495     0.4202 0.000 0.036 0.596 0.000 0.368
#> GSM258593     5   0.574     0.3923 0.108 0.000 0.284 0.004 0.604
#> GSM258595     3   0.487     0.3473 0.000 0.004 0.532 0.016 0.448
#> GSM258597     4   0.445     0.3921 0.000 0.488 0.004 0.508 0.000
#> GSM258598     4   0.428     0.5460 0.000 0.348 0.008 0.644 0.000
#> GSM258600     3   0.618     0.5674 0.000 0.148 0.648 0.044 0.160
#> GSM258601     5   0.141     0.5633 0.000 0.000 0.044 0.008 0.948
#> GSM258602     2   0.512     0.4758 0.000 0.616 0.340 0.008 0.036
#> GSM258604     5   0.112     0.5661 0.000 0.000 0.044 0.000 0.956
#> GSM258605     5   0.112     0.5661 0.000 0.000 0.044 0.000 0.956
#> GSM258606     2   0.333     0.6188 0.000 0.828 0.144 0.000 0.028
#> GSM258607     4   0.112     0.6200 0.000 0.000 0.044 0.956 0.000
#> GSM258608     2   0.699     0.2493 0.000 0.432 0.408 0.104 0.056

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4 p5    p6
#> GSM258553     1  0.0000     0.9989 1.000 0.000 0.000 0.000 NA 0.000
#> GSM258555     1  0.0000     0.9989 1.000 0.000 0.000 0.000 NA 0.000
#> GSM258556     4  0.0790     0.6190 0.000 0.032 0.000 0.968 NA 0.000
#> GSM258557     3  0.5977     0.5396 0.204 0.004 0.456 0.000 NA 0.000
#> GSM258562     2  0.3979     0.6254 0.000 0.752 0.076 0.000 NA 0.000
#> GSM258563     3  0.5977     0.5396 0.204 0.004 0.456 0.000 NA 0.000
#> GSM258565     1  0.0000     0.9989 1.000 0.000 0.000 0.000 NA 0.000
#> GSM258566     1  0.0000     0.9989 1.000 0.000 0.000 0.000 NA 0.000
#> GSM258570     1  0.0000     0.9989 1.000 0.000 0.000 0.000 NA 0.000
#> GSM258578     1  0.0000     0.9989 1.000 0.000 0.000 0.000 NA 0.000
#> GSM258580     2  0.3979     0.6254 0.000 0.752 0.076 0.000 NA 0.000
#> GSM258583     3  0.6015     0.5293 0.216 0.004 0.452 0.000 NA 0.000
#> GSM258585     3  0.5977     0.5396 0.204 0.004 0.456 0.000 NA 0.000
#> GSM258590     1  0.0146     0.9961 0.996 0.000 0.000 0.000 NA 0.000
#> GSM258594     1  0.0000     0.9989 1.000 0.000 0.000 0.000 NA 0.000
#> GSM258596     3  0.5977     0.5396 0.204 0.004 0.456 0.000 NA 0.000
#> GSM258599     3  0.5977     0.5396 0.204 0.004 0.456 0.000 NA 0.000
#> GSM258603     1  0.0146     0.9961 0.996 0.000 0.000 0.000 NA 0.000
#> GSM258551     6  0.6026     0.0925 0.000 0.096 0.004 0.404 NA 0.464
#> GSM258552     2  0.5909     0.6314 0.000 0.672 0.080 0.032 NA 0.096
#> GSM258554     6  0.5880     0.1283 0.000 0.048 0.000 0.304 NA 0.556
#> GSM258558     6  0.3977     0.5357 0.000 0.144 0.000 0.056 NA 0.780
#> GSM258559     6  0.5462     0.4257 0.000 0.180 0.008 0.008 NA 0.632
#> GSM258560     3  0.7557    -0.0686 0.000 0.312 0.332 0.008 NA 0.112
#> GSM258561     6  0.5506    -0.0524 0.000 0.004 0.008 0.444 NA 0.460
#> GSM258564     4  0.3706     0.5763 0.000 0.024 0.000 0.776 NA 0.184
#> GSM258567     3  0.7698    -0.0844 0.000 0.324 0.348 0.024 NA 0.104
#> GSM258568     6  0.2350     0.5570 0.000 0.020 0.000 0.000 NA 0.880
#> GSM258569     2  0.3825     0.6307 0.000 0.768 0.072 0.000 NA 0.000
#> GSM258571     3  0.0820     0.5331 0.000 0.016 0.972 0.000 NA 0.000
#> GSM258572     2  0.3886     0.5991 0.000 0.772 0.008 0.056 NA 0.164
#> GSM258573     6  0.6332    -0.4197 0.000 0.012 0.000 0.368 NA 0.372
#> GSM258574     2  0.4570     0.5498 0.000 0.720 0.008 0.060 NA 0.200
#> GSM258575     6  0.2627     0.5484 0.000 0.008 0.008 0.008 NA 0.872
#> GSM258576     6  0.2859     0.4966 0.000 0.016 0.000 0.000 NA 0.828
#> GSM258577     2  0.5883     0.2066 0.000 0.532 0.012 0.060 NA 0.356
#> GSM258579     6  0.2859     0.4966 0.000 0.016 0.000 0.000 NA 0.828
#> GSM258581     6  0.2859     0.4966 0.000 0.016 0.000 0.000 NA 0.828
#> GSM258582     3  0.0820     0.5331 0.000 0.016 0.972 0.000 NA 0.000
#> GSM258584     6  0.7433     0.0243 0.000 0.284 0.128 0.000 NA 0.344
#> GSM258586     4  0.1152     0.6125 0.000 0.044 0.000 0.952 NA 0.000
#> GSM258587     4  0.5937     0.3634 0.000 0.000 0.000 0.416 NA 0.368
#> GSM258588     6  0.7163     0.3766 0.000 0.128 0.228 0.032 NA 0.512
#> GSM258589     2  0.3883     0.6086 0.000 0.784 0.008 0.056 NA 0.148
#> GSM258591     6  0.4457     0.4539 0.000 0.008 0.008 0.164 NA 0.740
#> GSM258592     3  0.7210    -0.0309 0.000 0.304 0.364 0.000 NA 0.092
#> GSM258593     2  0.5811     0.2474 0.020 0.488 0.112 0.000 NA 0.000
#> GSM258595     2  0.5289     0.5485 0.000 0.648 0.220 0.016 NA 0.004
#> GSM258597     4  0.5937     0.3634 0.000 0.000 0.000 0.416 NA 0.368
#> GSM258598     4  0.5507     0.4931 0.000 0.000 0.000 0.548 NA 0.284
#> GSM258600     2  0.3666     0.6145 0.000 0.796 0.008 0.056 NA 0.140
#> GSM258601     3  0.0622     0.5304 0.000 0.012 0.980 0.008 NA 0.000
#> GSM258602     6  0.4987     0.4742 0.000 0.152 0.008 0.008 NA 0.692
#> GSM258604     3  0.0363     0.5321 0.000 0.012 0.988 0.000 NA 0.000
#> GSM258605     3  0.0363     0.5321 0.000 0.012 0.988 0.000 NA 0.000
#> GSM258606     6  0.2094     0.5641 0.000 0.016 0.008 0.000 NA 0.908
#> GSM258607     4  0.0713     0.6192 0.000 0.028 0.000 0.972 NA 0.000
#> GSM258608     6  0.6185     0.2137 0.000 0.352 0.004 0.116 NA 0.492

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> SD:hclust 49         1.44e-05 2
#> SD:hclust 44         2.32e-07 3
#> SD:hclust 31         1.97e-03 4
#> SD:hclust 36         2.28e-04 5
#> SD:hclust 37         2.06e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.833           0.935       0.971         0.4257 0.578   0.578
#> 3 3 0.956           0.891       0.943         0.5426 0.704   0.511
#> 4 4 0.679           0.653       0.799         0.1257 0.895   0.720
#> 5 5 0.677           0.525       0.748         0.0751 0.877   0.605
#> 6 6 0.743           0.516       0.690         0.0440 0.862   0.441

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     1  0.0000      0.961 1.000 0.000
#> GSM258555     1  0.0000      0.961 1.000 0.000
#> GSM258556     2  0.0000      0.971 0.000 1.000
#> GSM258557     1  0.0376      0.959 0.996 0.004
#> GSM258562     1  0.9608      0.361 0.616 0.384
#> GSM258563     1  0.0376      0.959 0.996 0.004
#> GSM258565     1  0.0000      0.961 1.000 0.000
#> GSM258566     1  0.0000      0.961 1.000 0.000
#> GSM258570     1  0.0000      0.961 1.000 0.000
#> GSM258578     1  0.0000      0.961 1.000 0.000
#> GSM258580     2  0.3879      0.908 0.076 0.924
#> GSM258583     1  0.0376      0.959 0.996 0.004
#> GSM258585     1  0.6973      0.751 0.812 0.188
#> GSM258590     1  0.0000      0.961 1.000 0.000
#> GSM258594     1  0.0000      0.961 1.000 0.000
#> GSM258596     1  0.0000      0.961 1.000 0.000
#> GSM258599     1  0.0000      0.961 1.000 0.000
#> GSM258603     1  0.0000      0.961 1.000 0.000
#> GSM258551     2  0.0376      0.972 0.004 0.996
#> GSM258552     2  0.0000      0.971 0.000 1.000
#> GSM258554     2  0.0376      0.972 0.004 0.996
#> GSM258558     2  0.0376      0.972 0.004 0.996
#> GSM258559     2  0.0376      0.972 0.004 0.996
#> GSM258560     2  0.0000      0.971 0.000 1.000
#> GSM258561     2  0.0376      0.972 0.004 0.996
#> GSM258564     2  0.0376      0.972 0.004 0.996
#> GSM258567     2  0.0000      0.971 0.000 1.000
#> GSM258568     2  0.0376      0.972 0.004 0.996
#> GSM258569     2  0.0672      0.966 0.008 0.992
#> GSM258571     2  0.8327      0.649 0.264 0.736
#> GSM258572     2  0.0000      0.971 0.000 1.000
#> GSM258573     2  0.0376      0.972 0.004 0.996
#> GSM258574     2  0.0000      0.971 0.000 1.000
#> GSM258575     2  0.0376      0.972 0.004 0.996
#> GSM258576     2  0.0376      0.972 0.004 0.996
#> GSM258577     2  0.0000      0.971 0.000 1.000
#> GSM258579     2  0.0376      0.972 0.004 0.996
#> GSM258581     2  0.0376      0.972 0.004 0.996
#> GSM258582     2  0.8327      0.649 0.264 0.736
#> GSM258584     2  0.0000      0.971 0.000 1.000
#> GSM258586     2  0.0000      0.971 0.000 1.000
#> GSM258587     2  0.0376      0.972 0.004 0.996
#> GSM258588     2  0.0376      0.972 0.004 0.996
#> GSM258589     2  0.0000      0.971 0.000 1.000
#> GSM258591     2  0.0376      0.972 0.004 0.996
#> GSM258592     2  0.0000      0.971 0.000 1.000
#> GSM258593     1  0.0376      0.959 0.996 0.004
#> GSM258595     2  0.0000      0.971 0.000 1.000
#> GSM258597     2  0.0376      0.972 0.004 0.996
#> GSM258598     2  0.0376      0.972 0.004 0.996
#> GSM258600     2  0.0000      0.971 0.000 1.000
#> GSM258601     2  0.0000      0.971 0.000 1.000
#> GSM258602     2  0.0376      0.972 0.004 0.996
#> GSM258604     2  0.5294      0.855 0.120 0.880
#> GSM258605     2  0.8327      0.649 0.264 0.736
#> GSM258606     2  0.0376      0.972 0.004 0.996
#> GSM258607     2  0.0000      0.971 0.000 1.000
#> GSM258608     2  0.0376      0.972 0.004 0.996

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     1  0.0000     0.9236 1.000 0.000 0.000
#> GSM258555     1  0.0000     0.9236 1.000 0.000 0.000
#> GSM258556     3  0.2711     0.9056 0.000 0.088 0.912
#> GSM258557     1  0.6291     0.0972 0.532 0.000 0.468
#> GSM258562     3  0.2165     0.9059 0.064 0.000 0.936
#> GSM258563     1  0.0237     0.9226 0.996 0.000 0.004
#> GSM258565     1  0.0000     0.9236 1.000 0.000 0.000
#> GSM258566     1  0.0000     0.9236 1.000 0.000 0.000
#> GSM258570     1  0.0000     0.9236 1.000 0.000 0.000
#> GSM258578     1  0.0000     0.9236 1.000 0.000 0.000
#> GSM258580     3  0.0475     0.9359 0.004 0.004 0.992
#> GSM258583     1  0.0237     0.9226 0.996 0.000 0.004
#> GSM258585     3  0.4504     0.7503 0.196 0.000 0.804
#> GSM258590     1  0.0000     0.9236 1.000 0.000 0.000
#> GSM258594     1  0.0000     0.9236 1.000 0.000 0.000
#> GSM258596     1  0.0237     0.9226 0.996 0.000 0.004
#> GSM258599     1  0.0237     0.9226 0.996 0.000 0.004
#> GSM258603     1  0.0000     0.9236 1.000 0.000 0.000
#> GSM258551     2  0.1031     0.9524 0.000 0.976 0.024
#> GSM258552     3  0.0237     0.9359 0.000 0.004 0.996
#> GSM258554     2  0.0892     0.9516 0.000 0.980 0.020
#> GSM258558     2  0.2625     0.9535 0.000 0.916 0.084
#> GSM258559     2  0.2625     0.9535 0.000 0.916 0.084
#> GSM258560     3  0.0592     0.9343 0.000 0.012 0.988
#> GSM258561     2  0.0892     0.9516 0.000 0.980 0.020
#> GSM258564     2  0.0424     0.9457 0.000 0.992 0.008
#> GSM258567     3  0.0592     0.9343 0.000 0.012 0.988
#> GSM258568     2  0.2625     0.9535 0.000 0.916 0.084
#> GSM258569     3  0.0829     0.9354 0.004 0.012 0.984
#> GSM258571     3  0.3112     0.9043 0.056 0.028 0.916
#> GSM258572     3  0.0424     0.9354 0.000 0.008 0.992
#> GSM258573     2  0.0424     0.9457 0.000 0.992 0.008
#> GSM258574     3  0.0592     0.9343 0.000 0.012 0.988
#> GSM258575     2  0.2625     0.9535 0.000 0.916 0.084
#> GSM258576     2  0.2625     0.9535 0.000 0.916 0.084
#> GSM258577     3  0.0424     0.9354 0.000 0.008 0.992
#> GSM258579     2  0.2625     0.9535 0.000 0.916 0.084
#> GSM258581     2  0.2625     0.9535 0.000 0.916 0.084
#> GSM258582     3  0.3112     0.9043 0.056 0.028 0.916
#> GSM258584     3  0.0747     0.9330 0.000 0.016 0.984
#> GSM258586     3  0.2711     0.9056 0.000 0.088 0.912
#> GSM258587     2  0.1031     0.9524 0.000 0.976 0.024
#> GSM258588     3  0.6008     0.3533 0.000 0.372 0.628
#> GSM258589     3  0.0592     0.9343 0.000 0.012 0.988
#> GSM258591     2  0.0892     0.9516 0.000 0.980 0.020
#> GSM258592     3  0.0592     0.9343 0.000 0.012 0.988
#> GSM258593     1  0.6280     0.1244 0.540 0.000 0.460
#> GSM258595     3  0.1525     0.9306 0.004 0.032 0.964
#> GSM258597     2  0.0424     0.9457 0.000 0.992 0.008
#> GSM258598     2  0.0424     0.9457 0.000 0.992 0.008
#> GSM258600     3  0.0237     0.9359 0.000 0.004 0.996
#> GSM258601     3  0.1289     0.9308 0.000 0.032 0.968
#> GSM258602     2  0.2625     0.9535 0.000 0.916 0.084
#> GSM258604     3  0.3112     0.9043 0.056 0.028 0.916
#> GSM258605     3  0.3112     0.9043 0.056 0.028 0.916
#> GSM258606     2  0.2625     0.9535 0.000 0.916 0.084
#> GSM258607     3  0.2711     0.9056 0.000 0.088 0.912
#> GSM258608     3  0.1529     0.9184 0.000 0.040 0.960

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     1  0.0000     0.9411 1.000 0.000 0.000 0.000
#> GSM258555     1  0.0000     0.9411 1.000 0.000 0.000 0.000
#> GSM258556     4  0.5174     0.8847 0.000 0.012 0.368 0.620
#> GSM258557     3  0.7135     0.1508 0.240 0.000 0.560 0.200
#> GSM258562     3  0.3569     0.5708 0.000 0.000 0.804 0.196
#> GSM258563     1  0.4281     0.8402 0.792 0.000 0.028 0.180
#> GSM258565     1  0.0000     0.9411 1.000 0.000 0.000 0.000
#> GSM258566     1  0.0000     0.9411 1.000 0.000 0.000 0.000
#> GSM258570     1  0.0000     0.9411 1.000 0.000 0.000 0.000
#> GSM258578     1  0.0000     0.9411 1.000 0.000 0.000 0.000
#> GSM258580     3  0.2197     0.5644 0.000 0.004 0.916 0.080
#> GSM258583     1  0.3356     0.8645 0.824 0.000 0.000 0.176
#> GSM258585     3  0.5031     0.3919 0.048 0.000 0.740 0.212
#> GSM258590     1  0.0000     0.9411 1.000 0.000 0.000 0.000
#> GSM258594     1  0.0000     0.9411 1.000 0.000 0.000 0.000
#> GSM258596     1  0.3725     0.8573 0.812 0.000 0.008 0.180
#> GSM258599     1  0.3725     0.8573 0.812 0.000 0.008 0.180
#> GSM258603     1  0.0000     0.9411 1.000 0.000 0.000 0.000
#> GSM258551     2  0.4511     0.7070 0.000 0.724 0.008 0.268
#> GSM258552     3  0.0779     0.5764 0.000 0.004 0.980 0.016
#> GSM258554     2  0.3810     0.7572 0.000 0.804 0.008 0.188
#> GSM258558     2  0.0524     0.7821 0.000 0.988 0.008 0.004
#> GSM258559     2  0.5346     0.5420 0.000 0.732 0.076 0.192
#> GSM258560     3  0.5383     0.4962 0.000 0.036 0.672 0.292
#> GSM258561     2  0.4277     0.7169 0.000 0.720 0.000 0.280
#> GSM258564     2  0.5212     0.5439 0.000 0.572 0.008 0.420
#> GSM258567     3  0.4483     0.5367 0.000 0.004 0.712 0.284
#> GSM258568     2  0.0000     0.7835 0.000 1.000 0.000 0.000
#> GSM258569     3  0.2921     0.5710 0.000 0.000 0.860 0.140
#> GSM258571     3  0.4679     0.5415 0.000 0.000 0.648 0.352
#> GSM258572     3  0.1452     0.5611 0.000 0.008 0.956 0.036
#> GSM258573     2  0.3400     0.7605 0.000 0.820 0.000 0.180
#> GSM258574     3  0.2840     0.5241 0.000 0.044 0.900 0.056
#> GSM258575     2  0.0657     0.7783 0.000 0.984 0.012 0.004
#> GSM258576     2  0.0000     0.7835 0.000 1.000 0.000 0.000
#> GSM258577     3  0.2255     0.5414 0.000 0.012 0.920 0.068
#> GSM258579     2  0.0000     0.7835 0.000 1.000 0.000 0.000
#> GSM258581     2  0.0000     0.7835 0.000 1.000 0.000 0.000
#> GSM258582     3  0.4679     0.5415 0.000 0.000 0.648 0.352
#> GSM258584     3  0.7490     0.1069 0.000 0.220 0.496 0.284
#> GSM258586     4  0.5294     0.7714 0.000 0.008 0.484 0.508
#> GSM258587     2  0.3266     0.7646 0.000 0.832 0.000 0.168
#> GSM258588     2  0.7201    -0.0397 0.000 0.496 0.356 0.148
#> GSM258589     3  0.3367     0.5483 0.000 0.028 0.864 0.108
#> GSM258591     2  0.3400     0.7614 0.000 0.820 0.000 0.180
#> GSM258592     3  0.4632     0.5321 0.000 0.004 0.688 0.308
#> GSM258593     3  0.7241     0.1662 0.196 0.000 0.540 0.264
#> GSM258595     3  0.3764     0.5685 0.000 0.000 0.784 0.216
#> GSM258597     2  0.5183     0.5515 0.000 0.584 0.008 0.408
#> GSM258598     2  0.4877     0.5602 0.000 0.592 0.000 0.408
#> GSM258600     3  0.0524     0.5708 0.000 0.004 0.988 0.008
#> GSM258601     3  0.4605     0.5439 0.000 0.000 0.664 0.336
#> GSM258602     2  0.4153     0.6502 0.000 0.820 0.048 0.132
#> GSM258604     3  0.4624     0.5457 0.000 0.000 0.660 0.340
#> GSM258605     3  0.4679     0.5415 0.000 0.000 0.648 0.352
#> GSM258606     2  0.0000     0.7835 0.000 1.000 0.000 0.000
#> GSM258607     4  0.5189     0.8835 0.000 0.012 0.372 0.616
#> GSM258608     3  0.6307    -0.0131 0.000 0.288 0.620 0.092

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     1  0.0404     0.8755 0.988 0.000 0.000 0.012 0.000
#> GSM258555     1  0.0404     0.8752 0.988 0.000 0.000 0.012 0.000
#> GSM258556     4  0.5296     0.5938 0.000 0.000 0.180 0.676 0.144
#> GSM258557     5  0.7780     0.2682 0.144 0.000 0.184 0.184 0.488
#> GSM258562     3  0.4419     0.2440 0.000 0.000 0.668 0.020 0.312
#> GSM258563     1  0.6597     0.6501 0.592 0.000 0.040 0.176 0.192
#> GSM258565     1  0.0162     0.8757 0.996 0.000 0.000 0.004 0.000
#> GSM258566     1  0.0162     0.8757 0.996 0.000 0.000 0.004 0.000
#> GSM258570     1  0.0510     0.8755 0.984 0.000 0.000 0.016 0.000
#> GSM258578     1  0.0404     0.8752 0.988 0.000 0.000 0.012 0.000
#> GSM258580     5  0.4675     0.4569 0.000 0.004 0.360 0.016 0.620
#> GSM258583     1  0.6166     0.6936 0.632 0.000 0.028 0.176 0.164
#> GSM258585     5  0.6016     0.3486 0.000 0.000 0.236 0.184 0.580
#> GSM258590     1  0.0510     0.8755 0.984 0.000 0.000 0.016 0.000
#> GSM258594     1  0.0000     0.8759 1.000 0.000 0.000 0.000 0.000
#> GSM258596     1  0.6242     0.6895 0.628 0.000 0.032 0.176 0.164
#> GSM258599     1  0.6208     0.6931 0.632 0.000 0.032 0.176 0.160
#> GSM258603     1  0.0404     0.8755 0.988 0.000 0.000 0.012 0.000
#> GSM258551     4  0.5295     0.2104 0.000 0.464 0.000 0.488 0.048
#> GSM258552     5  0.4470     0.4691 0.000 0.012 0.372 0.000 0.616
#> GSM258554     2  0.4731     0.2692 0.000 0.640 0.000 0.328 0.032
#> GSM258558     2  0.1124     0.6738 0.000 0.960 0.000 0.004 0.036
#> GSM258559     2  0.6358     0.4263 0.000 0.640 0.076 0.100 0.184
#> GSM258560     3  0.6508     0.2937 0.000 0.028 0.508 0.104 0.360
#> GSM258561     2  0.6249    -0.1908 0.000 0.452 0.084 0.444 0.020
#> GSM258564     4  0.4623     0.5961 0.000 0.304 0.000 0.664 0.032
#> GSM258567     3  0.5865     0.3373 0.000 0.004 0.568 0.104 0.324
#> GSM258568     2  0.0162     0.6843 0.000 0.996 0.000 0.004 0.000
#> GSM258569     3  0.4516    -0.0954 0.000 0.004 0.576 0.004 0.416
#> GSM258571     3  0.0000     0.5894 0.000 0.000 1.000 0.000 0.000
#> GSM258572     5  0.4109     0.5147 0.000 0.012 0.288 0.000 0.700
#> GSM258573     2  0.4249     0.3561 0.000 0.688 0.000 0.296 0.016
#> GSM258574     5  0.4550     0.5103 0.000 0.064 0.188 0.004 0.744
#> GSM258575     2  0.0404     0.6837 0.000 0.988 0.000 0.000 0.012
#> GSM258576     2  0.0162     0.6843 0.000 0.996 0.000 0.004 0.000
#> GSM258577     5  0.5165     0.4537 0.000 0.032 0.244 0.036 0.688
#> GSM258579     2  0.0290     0.6837 0.000 0.992 0.000 0.000 0.008
#> GSM258581     2  0.0000     0.6851 0.000 1.000 0.000 0.000 0.000
#> GSM258582     3  0.0609     0.5831 0.000 0.000 0.980 0.000 0.020
#> GSM258584     3  0.7682     0.1892 0.000 0.128 0.412 0.108 0.352
#> GSM258586     4  0.5149     0.5714 0.000 0.000 0.104 0.680 0.216
#> GSM258587     2  0.3890     0.4348 0.000 0.736 0.000 0.252 0.012
#> GSM258588     2  0.7358     0.2068 0.000 0.500 0.116 0.100 0.284
#> GSM258589     5  0.5417     0.3531 0.000 0.036 0.304 0.028 0.632
#> GSM258591     2  0.4380     0.3404 0.000 0.676 0.000 0.304 0.020
#> GSM258592     3  0.5329     0.4455 0.000 0.004 0.672 0.104 0.220
#> GSM258593     5  0.7171     0.2690 0.056 0.000 0.284 0.156 0.504
#> GSM258595     3  0.4047     0.2121 0.000 0.000 0.676 0.004 0.320
#> GSM258597     4  0.4366     0.5771 0.000 0.320 0.000 0.664 0.016
#> GSM258598     4  0.4066     0.5767 0.000 0.324 0.000 0.672 0.004
#> GSM258600     5  0.4678     0.4976 0.000 0.012 0.328 0.012 0.648
#> GSM258601     3  0.1168     0.5880 0.000 0.000 0.960 0.008 0.032
#> GSM258602     2  0.5741     0.4733 0.000 0.692 0.048 0.100 0.160
#> GSM258604     3  0.0566     0.5887 0.000 0.000 0.984 0.004 0.012
#> GSM258605     3  0.0290     0.5895 0.000 0.000 0.992 0.000 0.008
#> GSM258606     2  0.0000     0.6851 0.000 1.000 0.000 0.000 0.000
#> GSM258607     4  0.5263     0.5971 0.000 0.000 0.176 0.680 0.144
#> GSM258608     5  0.5744     0.3258 0.000 0.160 0.112 0.040 0.688

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     1  0.0405     0.9760 0.988 0.000 0.008 0.004 0.000 0.000
#> GSM258555     1  0.1124     0.9710 0.956 0.000 0.008 0.036 0.000 0.000
#> GSM258556     4  0.2153     0.7258 0.000 0.040 0.040 0.912 0.004 0.004
#> GSM258557     5  0.2881     0.3649 0.084 0.032 0.012 0.004 0.868 0.000
#> GSM258562     2  0.4454     0.4457 0.000 0.736 0.108 0.012 0.144 0.000
#> GSM258563     5  0.3923     0.1663 0.416 0.004 0.000 0.000 0.580 0.000
#> GSM258565     1  0.0806     0.9744 0.972 0.000 0.008 0.020 0.000 0.000
#> GSM258566     1  0.0806     0.9744 0.972 0.000 0.008 0.020 0.000 0.000
#> GSM258570     1  0.0725     0.9752 0.976 0.000 0.012 0.012 0.000 0.000
#> GSM258578     1  0.1124     0.9710 0.956 0.000 0.008 0.036 0.000 0.000
#> GSM258580     2  0.5743     0.2822 0.000 0.508 0.064 0.036 0.388 0.004
#> GSM258583     5  0.3996     0.0269 0.484 0.004 0.000 0.000 0.512 0.000
#> GSM258585     5  0.2076     0.2959 0.000 0.060 0.012 0.016 0.912 0.000
#> GSM258590     1  0.0622     0.9758 0.980 0.000 0.012 0.008 0.000 0.000
#> GSM258594     1  0.0146     0.9774 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM258596     5  0.4214     0.0850 0.460 0.004 0.000 0.008 0.528 0.000
#> GSM258599     5  0.3995     0.0388 0.480 0.004 0.000 0.000 0.516 0.000
#> GSM258603     1  0.0405     0.9760 0.988 0.000 0.008 0.004 0.000 0.000
#> GSM258551     4  0.6008     0.3319 0.000 0.044 0.036 0.516 0.032 0.372
#> GSM258552     2  0.5919     0.2600 0.000 0.468 0.072 0.040 0.416 0.004
#> GSM258554     6  0.6121     0.4585 0.000 0.060 0.036 0.232 0.060 0.612
#> GSM258558     6  0.1710     0.7871 0.000 0.028 0.020 0.000 0.016 0.936
#> GSM258559     3  0.4072     0.4561 0.000 0.000 0.544 0.008 0.000 0.448
#> GSM258560     3  0.3508     0.5275 0.000 0.152 0.808 0.020 0.008 0.012
#> GSM258561     4  0.6768     0.4683 0.000 0.048 0.096 0.524 0.048 0.284
#> GSM258564     4  0.2340     0.7381 0.000 0.000 0.000 0.852 0.000 0.148
#> GSM258567     3  0.2408     0.5292 0.000 0.068 0.896 0.008 0.024 0.004
#> GSM258568     6  0.0891     0.7980 0.000 0.000 0.024 0.000 0.008 0.968
#> GSM258569     2  0.4035     0.3929 0.000 0.712 0.016 0.016 0.256 0.000
#> GSM258571     2  0.5135     0.3502 0.000 0.584 0.344 0.040 0.032 0.000
#> GSM258572     2  0.6372     0.2238 0.000 0.432 0.112 0.048 0.404 0.004
#> GSM258573     6  0.5608     0.5742 0.000 0.052 0.044 0.184 0.044 0.676
#> GSM258574     5  0.7071    -0.2793 0.000 0.380 0.152 0.048 0.392 0.028
#> GSM258575     6  0.1218     0.7828 0.000 0.000 0.028 0.004 0.012 0.956
#> GSM258576     6  0.0405     0.8073 0.000 0.000 0.004 0.000 0.008 0.988
#> GSM258577     5  0.7509    -0.2185 0.000 0.308 0.260 0.064 0.344 0.024
#> GSM258579     6  0.0551     0.8057 0.000 0.000 0.008 0.004 0.004 0.984
#> GSM258581     6  0.0000     0.8076 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258582     2  0.5123     0.3519 0.000 0.588 0.340 0.040 0.032 0.000
#> GSM258584     3  0.4289     0.5891 0.000 0.104 0.780 0.020 0.012 0.084
#> GSM258586     4  0.2259     0.7171 0.000 0.032 0.040 0.908 0.020 0.000
#> GSM258587     6  0.5326     0.6161 0.000 0.052 0.040 0.156 0.044 0.708
#> GSM258588     3  0.5186     0.5217 0.000 0.028 0.548 0.004 0.032 0.388
#> GSM258589     2  0.6742     0.2006 0.000 0.408 0.344 0.040 0.204 0.004
#> GSM258591     6  0.5460     0.5517 0.000 0.032 0.040 0.208 0.048 0.672
#> GSM258592     3  0.2488     0.4794 0.000 0.124 0.864 0.008 0.000 0.004
#> GSM258593     5  0.3623     0.1821 0.020 0.208 0.000 0.008 0.764 0.000
#> GSM258595     2  0.5431     0.4509 0.000 0.652 0.128 0.036 0.184 0.000
#> GSM258597     4  0.5516     0.6828 0.000 0.052 0.040 0.684 0.044 0.180
#> GSM258598     4  0.4593     0.7167 0.000 0.028 0.024 0.748 0.036 0.164
#> GSM258600     2  0.5979     0.2704 0.000 0.484 0.080 0.040 0.392 0.004
#> GSM258601     2  0.4949     0.3458 0.000 0.588 0.352 0.040 0.020 0.000
#> GSM258602     3  0.4097     0.3610 0.000 0.000 0.500 0.008 0.000 0.492
#> GSM258604     2  0.5135     0.3502 0.000 0.584 0.344 0.040 0.032 0.000
#> GSM258605     2  0.5147     0.3447 0.000 0.580 0.348 0.040 0.032 0.000
#> GSM258606     6  0.0146     0.8060 0.000 0.000 0.004 0.000 0.000 0.996
#> GSM258607     4  0.2077     0.7266 0.000 0.044 0.032 0.916 0.004 0.004
#> GSM258608     5  0.8222    -0.1218 0.000 0.220 0.296 0.064 0.312 0.108

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> SD:kmeans 57         3.66e-10 2
#> SD:kmeans 55         2.79e-09 3
#> SD:kmeans 51         1.23e-08 4
#> SD:kmeans 33         5.94e-06 5
#> SD:kmeans 29         1.33e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.973       0.988         0.4934 0.506   0.506
#> 3 3 0.868           0.910       0.950         0.3618 0.705   0.477
#> 4 4 0.737           0.691       0.826         0.1173 0.861   0.613
#> 5 5 0.772           0.730       0.848         0.0656 0.866   0.539
#> 6 6 0.759           0.604       0.780         0.0371 0.967   0.842

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     1   0.000      0.985 1.000 0.000
#> GSM258555     1   0.000      0.985 1.000 0.000
#> GSM258556     2   0.000      0.990 0.000 1.000
#> GSM258557     1   0.000      0.985 1.000 0.000
#> GSM258562     1   0.000      0.985 1.000 0.000
#> GSM258563     1   0.000      0.985 1.000 0.000
#> GSM258565     1   0.000      0.985 1.000 0.000
#> GSM258566     1   0.000      0.985 1.000 0.000
#> GSM258570     1   0.000      0.985 1.000 0.000
#> GSM258578     1   0.000      0.985 1.000 0.000
#> GSM258580     1   0.706      0.769 0.808 0.192
#> GSM258583     1   0.000      0.985 1.000 0.000
#> GSM258585     1   0.000      0.985 1.000 0.000
#> GSM258590     1   0.000      0.985 1.000 0.000
#> GSM258594     1   0.000      0.985 1.000 0.000
#> GSM258596     1   0.000      0.985 1.000 0.000
#> GSM258599     1   0.000      0.985 1.000 0.000
#> GSM258603     1   0.000      0.985 1.000 0.000
#> GSM258551     2   0.000      0.990 0.000 1.000
#> GSM258552     2   0.000      0.990 0.000 1.000
#> GSM258554     2   0.000      0.990 0.000 1.000
#> GSM258558     2   0.000      0.990 0.000 1.000
#> GSM258559     2   0.000      0.990 0.000 1.000
#> GSM258560     2   0.000      0.990 0.000 1.000
#> GSM258561     2   0.000      0.990 0.000 1.000
#> GSM258564     2   0.000      0.990 0.000 1.000
#> GSM258567     2   0.000      0.990 0.000 1.000
#> GSM258568     2   0.000      0.990 0.000 1.000
#> GSM258569     1   0.552      0.856 0.872 0.128
#> GSM258571     1   0.000      0.985 1.000 0.000
#> GSM258572     2   0.000      0.990 0.000 1.000
#> GSM258573     2   0.000      0.990 0.000 1.000
#> GSM258574     2   0.000      0.990 0.000 1.000
#> GSM258575     2   0.000      0.990 0.000 1.000
#> GSM258576     2   0.000      0.990 0.000 1.000
#> GSM258577     2   0.000      0.990 0.000 1.000
#> GSM258579     2   0.000      0.990 0.000 1.000
#> GSM258581     2   0.000      0.990 0.000 1.000
#> GSM258582     1   0.000      0.985 1.000 0.000
#> GSM258584     2   0.000      0.990 0.000 1.000
#> GSM258586     2   0.000      0.990 0.000 1.000
#> GSM258587     2   0.000      0.990 0.000 1.000
#> GSM258588     2   0.000      0.990 0.000 1.000
#> GSM258589     2   0.000      0.990 0.000 1.000
#> GSM258591     2   0.000      0.990 0.000 1.000
#> GSM258592     2   0.000      0.990 0.000 1.000
#> GSM258593     1   0.000      0.985 1.000 0.000
#> GSM258595     1   0.184      0.961 0.972 0.028
#> GSM258597     2   0.000      0.990 0.000 1.000
#> GSM258598     2   0.000      0.990 0.000 1.000
#> GSM258600     2   0.000      0.990 0.000 1.000
#> GSM258601     2   0.913      0.495 0.328 0.672
#> GSM258602     2   0.000      0.990 0.000 1.000
#> GSM258604     1   0.000      0.985 1.000 0.000
#> GSM258605     1   0.000      0.985 1.000 0.000
#> GSM258606     2   0.000      0.990 0.000 1.000
#> GSM258607     2   0.000      0.990 0.000 1.000
#> GSM258608     2   0.000      0.990 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     1  0.0000      0.999 1.000 0.000 0.000
#> GSM258555     1  0.0000      0.999 1.000 0.000 0.000
#> GSM258556     3  0.2878      0.880 0.000 0.096 0.904
#> GSM258557     1  0.0747      0.982 0.984 0.000 0.016
#> GSM258562     3  0.2878      0.880 0.096 0.000 0.904
#> GSM258563     1  0.0000      0.999 1.000 0.000 0.000
#> GSM258565     1  0.0000      0.999 1.000 0.000 0.000
#> GSM258566     1  0.0000      0.999 1.000 0.000 0.000
#> GSM258570     1  0.0000      0.999 1.000 0.000 0.000
#> GSM258578     1  0.0000      0.999 1.000 0.000 0.000
#> GSM258580     3  0.7308      0.560 0.296 0.056 0.648
#> GSM258583     1  0.0000      0.999 1.000 0.000 0.000
#> GSM258585     1  0.0000      0.999 1.000 0.000 0.000
#> GSM258590     1  0.0000      0.999 1.000 0.000 0.000
#> GSM258594     1  0.0000      0.999 1.000 0.000 0.000
#> GSM258596     1  0.0000      0.999 1.000 0.000 0.000
#> GSM258599     1  0.0000      0.999 1.000 0.000 0.000
#> GSM258603     1  0.0000      0.999 1.000 0.000 0.000
#> GSM258551     2  0.0000      0.948 0.000 1.000 0.000
#> GSM258552     3  0.1643      0.903 0.000 0.044 0.956
#> GSM258554     2  0.0000      0.948 0.000 1.000 0.000
#> GSM258558     2  0.0424      0.948 0.000 0.992 0.008
#> GSM258559     2  0.1643      0.930 0.000 0.956 0.044
#> GSM258560     3  0.1753      0.901 0.000 0.048 0.952
#> GSM258561     2  0.0892      0.936 0.000 0.980 0.020
#> GSM258564     2  0.0237      0.946 0.000 0.996 0.004
#> GSM258567     3  0.0000      0.906 0.000 0.000 1.000
#> GSM258568     2  0.0424      0.948 0.000 0.992 0.008
#> GSM258569     3  0.1031      0.908 0.024 0.000 0.976
#> GSM258571     3  0.1529      0.906 0.040 0.000 0.960
#> GSM258572     3  0.1860      0.900 0.000 0.052 0.948
#> GSM258573     2  0.0000      0.948 0.000 1.000 0.000
#> GSM258574     2  0.5859      0.493 0.000 0.656 0.344
#> GSM258575     2  0.0424      0.948 0.000 0.992 0.008
#> GSM258576     2  0.0424      0.948 0.000 0.992 0.008
#> GSM258577     3  0.5016      0.694 0.000 0.240 0.760
#> GSM258579     2  0.0424      0.948 0.000 0.992 0.008
#> GSM258581     2  0.0424      0.948 0.000 0.992 0.008
#> GSM258582     3  0.1643      0.905 0.044 0.000 0.956
#> GSM258584     2  0.6204      0.276 0.000 0.576 0.424
#> GSM258586     3  0.3941      0.842 0.000 0.156 0.844
#> GSM258587     2  0.0000      0.948 0.000 1.000 0.000
#> GSM258588     2  0.3267      0.863 0.000 0.884 0.116
#> GSM258589     3  0.3551      0.843 0.000 0.132 0.868
#> GSM258591     2  0.0000      0.948 0.000 1.000 0.000
#> GSM258592     3  0.0000      0.906 0.000 0.000 1.000
#> GSM258593     1  0.0000      0.999 1.000 0.000 0.000
#> GSM258595     3  0.2096      0.903 0.052 0.004 0.944
#> GSM258597     2  0.0000      0.948 0.000 1.000 0.000
#> GSM258598     2  0.0000      0.948 0.000 1.000 0.000
#> GSM258600     3  0.1529      0.904 0.000 0.040 0.960
#> GSM258601     3  0.0983      0.908 0.004 0.016 0.980
#> GSM258602     2  0.0592      0.947 0.000 0.988 0.012
#> GSM258604     3  0.2860      0.886 0.084 0.004 0.912
#> GSM258605     3  0.2356      0.894 0.072 0.000 0.928
#> GSM258606     2  0.0424      0.948 0.000 0.992 0.008
#> GSM258607     3  0.4654      0.777 0.000 0.208 0.792
#> GSM258608     2  0.1753      0.924 0.000 0.952 0.048

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     1  0.0000     0.9851 1.000 0.000 0.000 0.000
#> GSM258555     1  0.0000     0.9851 1.000 0.000 0.000 0.000
#> GSM258556     3  0.7799     0.0490 0.000 0.272 0.420 0.308
#> GSM258557     1  0.3105     0.8271 0.856 0.000 0.004 0.140
#> GSM258562     3  0.5374     0.5194 0.052 0.000 0.704 0.244
#> GSM258563     1  0.0000     0.9851 1.000 0.000 0.000 0.000
#> GSM258565     1  0.0000     0.9851 1.000 0.000 0.000 0.000
#> GSM258566     1  0.0000     0.9851 1.000 0.000 0.000 0.000
#> GSM258570     1  0.0000     0.9851 1.000 0.000 0.000 0.000
#> GSM258578     1  0.0000     0.9851 1.000 0.000 0.000 0.000
#> GSM258580     4  0.4552     0.5606 0.072 0.000 0.128 0.800
#> GSM258583     1  0.0000     0.9851 1.000 0.000 0.000 0.000
#> GSM258585     1  0.0188     0.9818 0.996 0.000 0.000 0.004
#> GSM258590     1  0.0000     0.9851 1.000 0.000 0.000 0.000
#> GSM258594     1  0.0000     0.9851 1.000 0.000 0.000 0.000
#> GSM258596     1  0.0000     0.9851 1.000 0.000 0.000 0.000
#> GSM258599     1  0.0000     0.9851 1.000 0.000 0.000 0.000
#> GSM258603     1  0.0000     0.9851 1.000 0.000 0.000 0.000
#> GSM258551     2  0.0707     0.7923 0.000 0.980 0.000 0.020
#> GSM258552     4  0.3908     0.5206 0.000 0.004 0.212 0.784
#> GSM258554     2  0.0469     0.7952 0.000 0.988 0.000 0.012
#> GSM258558     2  0.4008     0.7567 0.000 0.756 0.000 0.244
#> GSM258559     2  0.6248     0.6150 0.000 0.640 0.100 0.260
#> GSM258560     3  0.6028     0.3314 0.000 0.052 0.584 0.364
#> GSM258561     2  0.1661     0.7697 0.000 0.944 0.052 0.004
#> GSM258564     2  0.1284     0.7841 0.000 0.964 0.012 0.024
#> GSM258567     3  0.3873     0.5614 0.000 0.000 0.772 0.228
#> GSM258568     2  0.3610     0.7783 0.000 0.800 0.000 0.200
#> GSM258569     3  0.4998     0.0641 0.000 0.000 0.512 0.488
#> GSM258571     3  0.0469     0.6981 0.000 0.000 0.988 0.012
#> GSM258572     4  0.2999     0.6006 0.000 0.004 0.132 0.864
#> GSM258573     2  0.0188     0.7967 0.000 0.996 0.004 0.000
#> GSM258574     4  0.0895     0.6262 0.000 0.020 0.004 0.976
#> GSM258575     2  0.3873     0.7629 0.000 0.772 0.000 0.228
#> GSM258576     2  0.3610     0.7783 0.000 0.800 0.000 0.200
#> GSM258577     4  0.3647     0.6136 0.000 0.040 0.108 0.852
#> GSM258579     2  0.3801     0.7679 0.000 0.780 0.000 0.220
#> GSM258581     2  0.3610     0.7783 0.000 0.800 0.000 0.200
#> GSM258582     3  0.1209     0.6979 0.004 0.000 0.964 0.032
#> GSM258584     3  0.7459     0.0892 0.000 0.188 0.476 0.336
#> GSM258586     4  0.7203     0.3106 0.000 0.288 0.176 0.536
#> GSM258587     2  0.0524     0.7989 0.000 0.988 0.004 0.008
#> GSM258588     4  0.6197    -0.0876 0.000 0.400 0.056 0.544
#> GSM258589     4  0.4673     0.5712 0.000 0.076 0.132 0.792
#> GSM258591     2  0.0376     0.7982 0.000 0.992 0.004 0.004
#> GSM258592     3  0.2281     0.6691 0.000 0.000 0.904 0.096
#> GSM258593     1  0.1938     0.9266 0.936 0.000 0.012 0.052
#> GSM258595     3  0.5251     0.5707 0.032 0.016 0.740 0.212
#> GSM258597     2  0.1059     0.7884 0.000 0.972 0.012 0.016
#> GSM258598     2  0.0469     0.7941 0.000 0.988 0.012 0.000
#> GSM258600     4  0.4059     0.5454 0.000 0.012 0.200 0.788
#> GSM258601     3  0.0707     0.6990 0.000 0.000 0.980 0.020
#> GSM258602     2  0.5083     0.7092 0.000 0.716 0.036 0.248
#> GSM258604     3  0.0967     0.6980 0.004 0.004 0.976 0.016
#> GSM258605     3  0.0657     0.6963 0.012 0.000 0.984 0.004
#> GSM258606     2  0.3610     0.7783 0.000 0.800 0.000 0.200
#> GSM258607     2  0.7845    -0.2891 0.000 0.400 0.320 0.280
#> GSM258608     4  0.4401     0.3967 0.000 0.272 0.004 0.724

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM258555     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM258556     4  0.4555      0.588 0.000 0.004 0.196 0.740 0.060
#> GSM258557     1  0.2624      0.860 0.872 0.012 0.000 0.000 0.116
#> GSM258562     3  0.5551      0.158 0.036 0.004 0.540 0.012 0.408
#> GSM258563     1  0.0290      0.973 0.992 0.008 0.000 0.000 0.000
#> GSM258565     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM258580     5  0.2073      0.831 0.012 0.016 0.032 0.008 0.932
#> GSM258583     1  0.0290      0.973 0.992 0.008 0.000 0.000 0.000
#> GSM258585     1  0.0693      0.967 0.980 0.012 0.000 0.000 0.008
#> GSM258590     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM258594     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM258596     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM258599     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM258603     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM258551     4  0.2462      0.757 0.000 0.112 0.000 0.880 0.008
#> GSM258552     5  0.0992      0.844 0.000 0.008 0.024 0.000 0.968
#> GSM258554     4  0.2929      0.738 0.000 0.152 0.000 0.840 0.008
#> GSM258558     2  0.4754      0.640 0.000 0.684 0.000 0.264 0.052
#> GSM258559     2  0.1806      0.655 0.000 0.940 0.028 0.016 0.016
#> GSM258560     2  0.6060     -0.145 0.000 0.504 0.384 0.004 0.108
#> GSM258561     4  0.3994      0.740 0.000 0.140 0.068 0.792 0.000
#> GSM258564     4  0.0579      0.775 0.000 0.008 0.008 0.984 0.000
#> GSM258567     3  0.5158      0.582 0.000 0.264 0.656 0.000 0.080
#> GSM258568     2  0.3700      0.683 0.000 0.752 0.000 0.240 0.008
#> GSM258569     5  0.4142      0.495 0.000 0.004 0.308 0.004 0.684
#> GSM258571     3  0.0451      0.787 0.000 0.008 0.988 0.000 0.004
#> GSM258572     5  0.0566      0.845 0.000 0.012 0.004 0.000 0.984
#> GSM258573     4  0.3039      0.701 0.000 0.192 0.000 0.808 0.000
#> GSM258574     5  0.1121      0.838 0.000 0.044 0.000 0.000 0.956
#> GSM258575     2  0.4058      0.685 0.000 0.740 0.000 0.236 0.024
#> GSM258576     2  0.3689      0.671 0.000 0.740 0.000 0.256 0.004
#> GSM258577     5  0.3993      0.730 0.000 0.160 0.024 0.020 0.796
#> GSM258579     2  0.4114      0.680 0.000 0.732 0.000 0.244 0.024
#> GSM258581     2  0.3689      0.671 0.000 0.740 0.000 0.256 0.004
#> GSM258582     3  0.0566      0.786 0.000 0.000 0.984 0.004 0.012
#> GSM258584     2  0.4920      0.199 0.000 0.644 0.308 0.000 0.048
#> GSM258586     4  0.4703      0.625 0.000 0.008 0.096 0.752 0.144
#> GSM258587     4  0.3928      0.536 0.000 0.296 0.000 0.700 0.004
#> GSM258588     2  0.3174      0.590 0.000 0.844 0.020 0.004 0.132
#> GSM258589     5  0.5114      0.593 0.000 0.236 0.056 0.016 0.692
#> GSM258591     4  0.3586      0.608 0.000 0.264 0.000 0.736 0.000
#> GSM258592     3  0.4223      0.637 0.000 0.248 0.724 0.000 0.028
#> GSM258593     1  0.3289      0.784 0.816 0.004 0.008 0.000 0.172
#> GSM258595     3  0.6131      0.446 0.044 0.000 0.612 0.076 0.268
#> GSM258597     4  0.0963      0.779 0.000 0.036 0.000 0.964 0.000
#> GSM258598     4  0.0963      0.779 0.000 0.036 0.000 0.964 0.000
#> GSM258600     5  0.0566      0.844 0.000 0.000 0.012 0.004 0.984
#> GSM258601     3  0.0912      0.784 0.000 0.000 0.972 0.016 0.012
#> GSM258602     2  0.1186      0.665 0.000 0.964 0.008 0.020 0.008
#> GSM258604     3  0.0880      0.780 0.000 0.000 0.968 0.032 0.000
#> GSM258605     3  0.0798      0.785 0.008 0.016 0.976 0.000 0.000
#> GSM258606     2  0.3274      0.690 0.000 0.780 0.000 0.220 0.000
#> GSM258607     4  0.3983      0.641 0.000 0.000 0.164 0.784 0.052
#> GSM258608     2  0.5351      0.335 0.000 0.624 0.004 0.068 0.304

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     1  0.0000     0.8669 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258555     1  0.0146     0.8669 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM258556     4  0.3597     0.6689 0.000 0.016 0.072 0.832 0.068 0.012
#> GSM258557     1  0.6175     0.6745 0.572 0.092 0.012 0.056 0.268 0.000
#> GSM258562     3  0.6976     0.1246 0.076 0.336 0.460 0.028 0.100 0.000
#> GSM258563     1  0.4668     0.7757 0.688 0.004 0.012 0.056 0.240 0.000
#> GSM258565     1  0.0146     0.8669 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM258566     1  0.0146     0.8669 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM258570     1  0.0146     0.8669 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM258578     1  0.0146     0.8669 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM258580     2  0.3553     0.7514 0.004 0.840 0.040 0.020 0.084 0.012
#> GSM258583     1  0.3956     0.8062 0.748 0.000 0.008 0.040 0.204 0.000
#> GSM258585     1  0.5406     0.7461 0.640 0.036 0.012 0.056 0.256 0.000
#> GSM258590     1  0.0000     0.8669 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258594     1  0.0146     0.8669 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM258596     1  0.3708     0.8187 0.784 0.004 0.008 0.032 0.172 0.000
#> GSM258599     1  0.4179     0.7990 0.732 0.004 0.008 0.040 0.216 0.000
#> GSM258603     1  0.0000     0.8669 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258551     4  0.4585     0.6770 0.000 0.000 0.000 0.648 0.068 0.284
#> GSM258552     2  0.1375     0.8044 0.000 0.952 0.008 0.004 0.028 0.008
#> GSM258554     4  0.4716     0.6038 0.000 0.004 0.000 0.576 0.044 0.376
#> GSM258558     6  0.2112     0.6446 0.000 0.020 0.000 0.028 0.036 0.916
#> GSM258559     6  0.4587    -0.0639 0.000 0.004 0.020 0.004 0.456 0.516
#> GSM258560     5  0.6983     0.6471 0.000 0.108 0.196 0.008 0.508 0.180
#> GSM258561     4  0.4827     0.7022 0.000 0.000 0.044 0.708 0.060 0.188
#> GSM258564     4  0.2282     0.7372 0.000 0.000 0.000 0.888 0.024 0.088
#> GSM258567     5  0.4613     0.3790 0.000 0.024 0.440 0.000 0.528 0.008
#> GSM258568     6  0.1152     0.6760 0.000 0.004 0.000 0.000 0.044 0.952
#> GSM258569     2  0.4253     0.4902 0.000 0.668 0.296 0.004 0.032 0.000
#> GSM258571     3  0.0260     0.6650 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM258572     2  0.0909     0.8047 0.000 0.968 0.000 0.000 0.020 0.012
#> GSM258573     4  0.4834     0.4644 0.000 0.004 0.000 0.484 0.044 0.468
#> GSM258574     2  0.2209     0.7882 0.000 0.904 0.000 0.004 0.052 0.040
#> GSM258575     6  0.2136     0.6569 0.000 0.016 0.000 0.012 0.064 0.908
#> GSM258576     6  0.0000     0.6827 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258577     2  0.5017     0.6053 0.000 0.684 0.004 0.064 0.216 0.032
#> GSM258579     6  0.1059     0.6777 0.000 0.016 0.000 0.004 0.016 0.964
#> GSM258581     6  0.0000     0.6827 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258582     3  0.0810     0.6685 0.004 0.008 0.976 0.004 0.008 0.000
#> GSM258584     5  0.5872     0.6331 0.000 0.012 0.192 0.004 0.564 0.228
#> GSM258586     4  0.3777     0.6693 0.000 0.060 0.020 0.820 0.088 0.012
#> GSM258587     6  0.4597    -0.2664 0.000 0.004 0.000 0.376 0.036 0.584
#> GSM258588     6  0.5260     0.0194 0.000 0.068 0.012 0.000 0.400 0.520
#> GSM258589     2  0.6119     0.4527 0.000 0.612 0.032 0.024 0.168 0.164
#> GSM258591     4  0.4780     0.4424 0.000 0.004 0.000 0.484 0.040 0.472
#> GSM258592     3  0.4181    -0.4926 0.000 0.000 0.512 0.000 0.476 0.012
#> GSM258593     1  0.6495     0.6013 0.580 0.176 0.036 0.036 0.172 0.000
#> GSM258595     3  0.7336     0.2409 0.032 0.288 0.468 0.120 0.088 0.004
#> GSM258597     4  0.3722     0.7365 0.000 0.004 0.000 0.764 0.036 0.196
#> GSM258598     4  0.3212     0.7428 0.000 0.004 0.000 0.800 0.016 0.180
#> GSM258600     2  0.1198     0.7976 0.000 0.960 0.004 0.012 0.020 0.004
#> GSM258601     3  0.1448     0.6654 0.000 0.016 0.948 0.024 0.012 0.000
#> GSM258602     6  0.4053     0.2445 0.000 0.004 0.004 0.004 0.360 0.628
#> GSM258604     3  0.1720     0.6528 0.000 0.000 0.928 0.040 0.032 0.000
#> GSM258605     3  0.0777     0.6553 0.000 0.000 0.972 0.004 0.024 0.000
#> GSM258606     6  0.1007     0.6758 0.000 0.000 0.000 0.000 0.044 0.956
#> GSM258607     4  0.3039     0.7023 0.000 0.012 0.040 0.872 0.052 0.024
#> GSM258608     6  0.7274    -0.0959 0.000 0.260 0.004 0.080 0.300 0.356

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> SD:skmeans 57         2.62e-07 2
#> SD:skmeans 56         2.05e-09 3
#> SD:skmeans 50         2.77e-08 4
#> SD:skmeans 52         5.04e-08 5
#> SD:skmeans 45         2.75e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.965       0.986         0.3965 0.610   0.610
#> 3 3 0.729           0.858       0.927         0.6328 0.721   0.549
#> 4 4 0.623           0.690       0.805         0.1020 0.923   0.787
#> 5 5 0.687           0.747       0.836         0.0879 0.901   0.682
#> 6 6 0.777           0.751       0.859         0.0562 0.904   0.608

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     1  0.0000      0.985 1.000 0.000
#> GSM258555     1  0.0000      0.985 1.000 0.000
#> GSM258556     2  0.0000      0.986 0.000 1.000
#> GSM258557     2  0.9922      0.175 0.448 0.552
#> GSM258562     1  0.7219      0.743 0.800 0.200
#> GSM258563     1  0.0000      0.985 1.000 0.000
#> GSM258565     1  0.0000      0.985 1.000 0.000
#> GSM258566     1  0.0000      0.985 1.000 0.000
#> GSM258570     1  0.0000      0.985 1.000 0.000
#> GSM258578     1  0.0000      0.985 1.000 0.000
#> GSM258580     2  0.2423      0.950 0.040 0.960
#> GSM258583     1  0.0000      0.985 1.000 0.000
#> GSM258585     2  0.2423      0.950 0.040 0.960
#> GSM258590     1  0.0000      0.985 1.000 0.000
#> GSM258594     1  0.0000      0.985 1.000 0.000
#> GSM258596     1  0.0000      0.985 1.000 0.000
#> GSM258599     1  0.0000      0.985 1.000 0.000
#> GSM258603     1  0.0000      0.985 1.000 0.000
#> GSM258551     2  0.0000      0.986 0.000 1.000
#> GSM258552     2  0.0000      0.986 0.000 1.000
#> GSM258554     2  0.0000      0.986 0.000 1.000
#> GSM258558     2  0.0000      0.986 0.000 1.000
#> GSM258559     2  0.0000      0.986 0.000 1.000
#> GSM258560     2  0.0000      0.986 0.000 1.000
#> GSM258561     2  0.0000      0.986 0.000 1.000
#> GSM258564     2  0.0000      0.986 0.000 1.000
#> GSM258567     2  0.0000      0.986 0.000 1.000
#> GSM258568     2  0.0000      0.986 0.000 1.000
#> GSM258569     2  0.0376      0.983 0.004 0.996
#> GSM258571     2  0.0000      0.986 0.000 1.000
#> GSM258572     2  0.0000      0.986 0.000 1.000
#> GSM258573     2  0.0000      0.986 0.000 1.000
#> GSM258574     2  0.0000      0.986 0.000 1.000
#> GSM258575     2  0.0000      0.986 0.000 1.000
#> GSM258576     2  0.0000      0.986 0.000 1.000
#> GSM258577     2  0.0000      0.986 0.000 1.000
#> GSM258579     2  0.0000      0.986 0.000 1.000
#> GSM258581     2  0.0000      0.986 0.000 1.000
#> GSM258582     2  0.1184      0.972 0.016 0.984
#> GSM258584     2  0.0000      0.986 0.000 1.000
#> GSM258586     2  0.0000      0.986 0.000 1.000
#> GSM258587     2  0.0000      0.986 0.000 1.000
#> GSM258588     2  0.0000      0.986 0.000 1.000
#> GSM258589     2  0.0000      0.986 0.000 1.000
#> GSM258591     2  0.0000      0.986 0.000 1.000
#> GSM258592     2  0.0000      0.986 0.000 1.000
#> GSM258593     1  0.0000      0.985 1.000 0.000
#> GSM258595     2  0.0000      0.986 0.000 1.000
#> GSM258597     2  0.0000      0.986 0.000 1.000
#> GSM258598     2  0.0000      0.986 0.000 1.000
#> GSM258600     2  0.0000      0.986 0.000 1.000
#> GSM258601     2  0.0000      0.986 0.000 1.000
#> GSM258602     2  0.0000      0.986 0.000 1.000
#> GSM258604     2  0.0000      0.986 0.000 1.000
#> GSM258605     2  0.2423      0.950 0.040 0.960
#> GSM258606     2  0.0000      0.986 0.000 1.000
#> GSM258607     2  0.0000      0.986 0.000 1.000
#> GSM258608     2  0.0000      0.986 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     1  0.0000     0.9791 1.000 0.000 0.000
#> GSM258555     1  0.0000     0.9791 1.000 0.000 0.000
#> GSM258556     2  0.4555     0.8128 0.000 0.800 0.200
#> GSM258557     3  0.0592     0.9237 0.012 0.000 0.988
#> GSM258562     1  0.4931     0.6467 0.768 0.000 0.232
#> GSM258563     1  0.0000     0.9791 1.000 0.000 0.000
#> GSM258565     1  0.0000     0.9791 1.000 0.000 0.000
#> GSM258566     1  0.0000     0.9791 1.000 0.000 0.000
#> GSM258570     1  0.0000     0.9791 1.000 0.000 0.000
#> GSM258578     1  0.0000     0.9791 1.000 0.000 0.000
#> GSM258580     3  0.0000     0.9334 0.000 0.000 1.000
#> GSM258583     1  0.0000     0.9791 1.000 0.000 0.000
#> GSM258585     3  0.0000     0.9334 0.000 0.000 1.000
#> GSM258590     1  0.0000     0.9791 1.000 0.000 0.000
#> GSM258594     1  0.0000     0.9791 1.000 0.000 0.000
#> GSM258596     1  0.0000     0.9791 1.000 0.000 0.000
#> GSM258599     1  0.0000     0.9791 1.000 0.000 0.000
#> GSM258603     1  0.0000     0.9791 1.000 0.000 0.000
#> GSM258551     2  0.5591     0.7096 0.000 0.696 0.304
#> GSM258552     3  0.0000     0.9334 0.000 0.000 1.000
#> GSM258554     2  0.1529     0.8806 0.000 0.960 0.040
#> GSM258558     3  0.0000     0.9334 0.000 0.000 1.000
#> GSM258559     2  0.4654     0.8068 0.000 0.792 0.208
#> GSM258560     3  0.6235    -0.0348 0.000 0.436 0.564
#> GSM258561     2  0.1529     0.8806 0.000 0.960 0.040
#> GSM258564     2  0.1529     0.8806 0.000 0.960 0.040
#> GSM258567     3  0.0000     0.9334 0.000 0.000 1.000
#> GSM258568     2  0.0000     0.8712 0.000 1.000 0.000
#> GSM258569     3  0.0424     0.9268 0.000 0.008 0.992
#> GSM258571     2  0.1529     0.8806 0.000 0.960 0.040
#> GSM258572     3  0.0000     0.9334 0.000 0.000 1.000
#> GSM258573     2  0.0000     0.8712 0.000 1.000 0.000
#> GSM258574     3  0.0000     0.9334 0.000 0.000 1.000
#> GSM258575     2  0.0000     0.8712 0.000 1.000 0.000
#> GSM258576     2  0.0000     0.8712 0.000 1.000 0.000
#> GSM258577     3  0.0000     0.9334 0.000 0.000 1.000
#> GSM258579     2  0.3941     0.8111 0.000 0.844 0.156
#> GSM258581     2  0.0000     0.8712 0.000 1.000 0.000
#> GSM258582     2  0.1860     0.8786 0.000 0.948 0.052
#> GSM258584     2  0.6235     0.4466 0.000 0.564 0.436
#> GSM258586     3  0.3267     0.7987 0.000 0.116 0.884
#> GSM258587     2  0.0000     0.8712 0.000 1.000 0.000
#> GSM258588     3  0.0000     0.9334 0.000 0.000 1.000
#> GSM258589     3  0.0000     0.9334 0.000 0.000 1.000
#> GSM258591     2  0.0000     0.8712 0.000 1.000 0.000
#> GSM258592     2  0.5650     0.6984 0.000 0.688 0.312
#> GSM258593     3  0.5760     0.4331 0.328 0.000 0.672
#> GSM258595     2  0.1529     0.8806 0.000 0.960 0.040
#> GSM258597     2  0.1529     0.8806 0.000 0.960 0.040
#> GSM258598     2  0.0000     0.8712 0.000 1.000 0.000
#> GSM258600     3  0.0000     0.9334 0.000 0.000 1.000
#> GSM258601     2  0.4702     0.8045 0.000 0.788 0.212
#> GSM258602     2  0.5560     0.7146 0.000 0.700 0.300
#> GSM258604     2  0.4399     0.8225 0.000 0.812 0.188
#> GSM258605     2  0.5678     0.6927 0.000 0.684 0.316
#> GSM258606     2  0.4002     0.8251 0.000 0.840 0.160
#> GSM258607     2  0.1529     0.8806 0.000 0.960 0.040
#> GSM258608     3  0.0000     0.9334 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     1  0.4877      0.893 0.592 0.000 0.000 0.408
#> GSM258555     1  0.4877      0.893 0.592 0.000 0.000 0.408
#> GSM258556     2  0.5147      0.731 0.060 0.740 0.200 0.000
#> GSM258557     4  0.6197      0.415 0.072 0.000 0.324 0.604
#> GSM258562     1  0.6930     -0.190 0.524 0.000 0.356 0.120
#> GSM258563     4  0.0469      0.541 0.012 0.000 0.000 0.988
#> GSM258565     1  0.4877      0.893 0.592 0.000 0.000 0.408
#> GSM258566     1  0.4877      0.893 0.592 0.000 0.000 0.408
#> GSM258570     1  0.4877      0.893 0.592 0.000 0.000 0.408
#> GSM258578     1  0.4877      0.893 0.592 0.000 0.000 0.408
#> GSM258580     3  0.0469      0.829 0.000 0.000 0.988 0.012
#> GSM258583     4  0.0000      0.535 0.000 0.000 0.000 1.000
#> GSM258585     4  0.4877      0.340 0.000 0.000 0.408 0.592
#> GSM258590     1  0.4877      0.893 0.592 0.000 0.000 0.408
#> GSM258594     1  0.4877      0.893 0.592 0.000 0.000 0.408
#> GSM258596     4  0.0000      0.535 0.000 0.000 0.000 1.000
#> GSM258599     4  0.0000      0.535 0.000 0.000 0.000 1.000
#> GSM258603     1  0.4877      0.893 0.592 0.000 0.000 0.408
#> GSM258551     2  0.4134      0.696 0.000 0.740 0.260 0.000
#> GSM258552     3  0.1452      0.812 0.000 0.008 0.956 0.036
#> GSM258554     2  0.1305      0.812 0.004 0.960 0.036 0.000
#> GSM258558     3  0.0927      0.824 0.008 0.016 0.976 0.000
#> GSM258559     2  0.7031      0.574 0.224 0.576 0.200 0.000
#> GSM258560     3  0.7800     -0.225 0.248 0.376 0.376 0.000
#> GSM258561     2  0.1302      0.812 0.000 0.956 0.044 0.000
#> GSM258564     2  0.1305      0.808 0.036 0.960 0.004 0.000
#> GSM258567     3  0.6761      0.487 0.224 0.000 0.608 0.168
#> GSM258568     2  0.4507      0.768 0.168 0.788 0.044 0.000
#> GSM258569     3  0.1151      0.827 0.024 0.008 0.968 0.000
#> GSM258571     2  0.5922      0.686 0.204 0.716 0.040 0.040
#> GSM258572     3  0.0592      0.831 0.016 0.000 0.984 0.000
#> GSM258573     2  0.0000      0.808 0.000 1.000 0.000 0.000
#> GSM258574     3  0.0000      0.831 0.000 0.000 1.000 0.000
#> GSM258575     2  0.2469      0.793 0.108 0.892 0.000 0.000
#> GSM258576     2  0.2647      0.790 0.120 0.880 0.000 0.000
#> GSM258577     3  0.0707      0.826 0.000 0.000 0.980 0.020
#> GSM258579     2  0.4773      0.749 0.120 0.788 0.092 0.000
#> GSM258581     2  0.2704      0.789 0.124 0.876 0.000 0.000
#> GSM258582     2  0.6305      0.679 0.204 0.696 0.060 0.040
#> GSM258584     2  0.8983      0.207 0.224 0.376 0.336 0.064
#> GSM258586     3  0.4740      0.684 0.080 0.132 0.788 0.000
#> GSM258587     2  0.0000      0.808 0.000 1.000 0.000 0.000
#> GSM258588     3  0.5170      0.641 0.228 0.048 0.724 0.000
#> GSM258589     3  0.1004      0.828 0.024 0.004 0.972 0.000
#> GSM258591     2  0.0000      0.808 0.000 1.000 0.000 0.000
#> GSM258592     2  0.7636      0.410 0.248 0.468 0.284 0.000
#> GSM258593     4  0.5574      0.505 0.048 0.000 0.284 0.668
#> GSM258595     2  0.1302      0.812 0.000 0.956 0.044 0.000
#> GSM258597     2  0.1305      0.808 0.036 0.960 0.004 0.000
#> GSM258598     2  0.1118      0.807 0.036 0.964 0.000 0.000
#> GSM258600     3  0.0817      0.828 0.024 0.000 0.976 0.000
#> GSM258601     2  0.5968      0.668 0.092 0.672 0.236 0.000
#> GSM258602     2  0.5200      0.675 0.036 0.700 0.264 0.000
#> GSM258604     2  0.8134      0.578 0.092 0.580 0.176 0.152
#> GSM258605     4  0.9265      0.246 0.244 0.156 0.156 0.444
#> GSM258606     2  0.4139      0.786 0.144 0.816 0.040 0.000
#> GSM258607     2  0.1305      0.808 0.036 0.960 0.004 0.000
#> GSM258608     3  0.1118      0.815 0.000 0.000 0.964 0.036

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     1   0.000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM258555     1   0.000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM258556     4   0.547     0.6821 0.000 0.096 0.208 0.680 0.016
#> GSM258557     5   0.155     0.9163 0.016 0.040 0.000 0.000 0.944
#> GSM258562     3   0.554     0.5899 0.100 0.188 0.688 0.000 0.024
#> GSM258563     5   0.134     0.9425 0.056 0.000 0.000 0.000 0.944
#> GSM258565     1   0.000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM258566     1   0.000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM258570     1   0.000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM258578     1   0.000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM258580     2   0.000     0.8450 0.000 1.000 0.000 0.000 0.000
#> GSM258583     5   0.167     0.9330 0.076 0.000 0.000 0.000 0.924
#> GSM258585     5   0.134     0.8968 0.000 0.056 0.000 0.000 0.944
#> GSM258590     1   0.000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM258594     1   0.000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM258596     5   0.141     0.9420 0.060 0.000 0.000 0.000 0.940
#> GSM258599     5   0.134     0.9425 0.056 0.000 0.000 0.000 0.944
#> GSM258603     1   0.000     1.0000 1.000 0.000 0.000 0.000 0.000
#> GSM258551     4   0.425     0.5696 0.000 0.340 0.008 0.652 0.000
#> GSM258552     2   0.000     0.8450 0.000 1.000 0.000 0.000 0.000
#> GSM258554     4   0.227     0.7823 0.000 0.076 0.020 0.904 0.000
#> GSM258558     2   0.106     0.8251 0.000 0.968 0.004 0.020 0.008
#> GSM258559     4   0.683    -0.1261 0.000 0.208 0.384 0.400 0.008
#> GSM258560     3   0.314     0.6289 0.000 0.204 0.796 0.000 0.000
#> GSM258561     4   0.207     0.7740 0.000 0.104 0.000 0.896 0.000
#> GSM258564     4   0.223     0.7847 0.000 0.000 0.080 0.904 0.016
#> GSM258567     3   0.403     0.6183 0.000 0.352 0.648 0.000 0.000
#> GSM258568     4   0.480     0.6233 0.000 0.000 0.312 0.648 0.040
#> GSM258569     2   0.297     0.7821 0.000 0.836 0.156 0.008 0.000
#> GSM258571     3   0.586     0.4926 0.000 0.000 0.592 0.260 0.148
#> GSM258572     2   0.252     0.7977 0.000 0.860 0.140 0.000 0.000
#> GSM258573     4   0.000     0.7920 0.000 0.000 0.000 1.000 0.000
#> GSM258574     2   0.000     0.8450 0.000 1.000 0.000 0.000 0.000
#> GSM258575     4   0.228     0.7804 0.000 0.000 0.060 0.908 0.032
#> GSM258576     4   0.257     0.7770 0.000 0.000 0.068 0.892 0.040
#> GSM258577     2   0.000     0.8450 0.000 1.000 0.000 0.000 0.000
#> GSM258579     4   0.418     0.7430 0.000 0.080 0.064 0.816 0.040
#> GSM258581     4   0.263     0.7763 0.000 0.000 0.072 0.888 0.040
#> GSM258582     3   0.581     0.4987 0.000 0.000 0.600 0.256 0.144
#> GSM258584     3   0.403     0.6183 0.000 0.352 0.648 0.000 0.000
#> GSM258586     2   0.557    -0.0697 0.000 0.580 0.332 0.088 0.000
#> GSM258587     4   0.000     0.7920 0.000 0.000 0.000 1.000 0.000
#> GSM258588     3   0.418     0.6167 0.000 0.352 0.644 0.000 0.004
#> GSM258589     2   0.269     0.7871 0.000 0.844 0.156 0.000 0.000
#> GSM258591     4   0.029     0.7917 0.000 0.000 0.008 0.992 0.000
#> GSM258592     3   0.304     0.6352 0.000 0.192 0.808 0.000 0.000
#> GSM258593     5   0.390     0.8448 0.116 0.080 0.000 0.000 0.804
#> GSM258595     4   0.213     0.7720 0.000 0.108 0.000 0.892 0.000
#> GSM258597     4   0.223     0.7847 0.000 0.000 0.080 0.904 0.016
#> GSM258598     4   0.223     0.7847 0.000 0.000 0.080 0.904 0.016
#> GSM258600     2   0.269     0.7871 0.000 0.844 0.156 0.000 0.000
#> GSM258601     4   0.576     0.5514 0.000 0.192 0.188 0.620 0.000
#> GSM258602     4   0.598     0.4564 0.000 0.336 0.100 0.556 0.008
#> GSM258604     4   0.688     0.3767 0.000 0.016 0.248 0.488 0.248
#> GSM258605     3   0.429     0.2817 0.000 0.000 0.612 0.004 0.384
#> GSM258606     4   0.369     0.7334 0.000 0.000 0.156 0.804 0.040
#> GSM258607     4   0.223     0.7847 0.000 0.000 0.080 0.904 0.016
#> GSM258608     2   0.000     0.8450 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258555     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258556     4  0.3150     0.7503 0.000 0.096 0.024 0.848 0.000 0.032
#> GSM258557     5  0.0146     0.9664 0.004 0.000 0.000 0.000 0.996 0.000
#> GSM258562     3  0.4662     0.5977 0.052 0.180 0.728 0.000 0.004 0.036
#> GSM258563     5  0.0146     0.9664 0.004 0.000 0.000 0.000 0.996 0.000
#> GSM258565     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258580     2  0.0146     0.8999 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM258583     5  0.0363     0.9644 0.012 0.000 0.000 0.000 0.988 0.000
#> GSM258585     5  0.0508     0.9553 0.000 0.012 0.004 0.000 0.984 0.000
#> GSM258590     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258594     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258596     5  0.0713     0.9545 0.028 0.000 0.000 0.000 0.972 0.000
#> GSM258599     5  0.0146     0.9664 0.004 0.000 0.000 0.000 0.996 0.000
#> GSM258603     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258551     4  0.3189     0.6653 0.000 0.236 0.004 0.760 0.000 0.000
#> GSM258552     2  0.0000     0.9013 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM258554     4  0.1531     0.8350 0.000 0.068 0.004 0.928 0.000 0.000
#> GSM258558     6  0.4378     0.2694 0.000 0.388 0.008 0.016 0.000 0.588
#> GSM258559     3  0.7610     0.3095 0.000 0.184 0.304 0.300 0.000 0.212
#> GSM258560     3  0.5421     0.6301 0.000 0.204 0.580 0.000 0.000 0.216
#> GSM258561     4  0.2163     0.8201 0.000 0.096 0.008 0.892 0.000 0.004
#> GSM258564     4  0.0000     0.8384 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM258567     3  0.5468     0.6373 0.000 0.244 0.568 0.000 0.000 0.188
#> GSM258568     6  0.0260     0.5999 0.000 0.000 0.008 0.000 0.000 0.992
#> GSM258569     2  0.1829     0.8837 0.000 0.928 0.028 0.008 0.000 0.036
#> GSM258571     3  0.1297     0.5515 0.000 0.000 0.948 0.040 0.012 0.000
#> GSM258572     2  0.1408     0.8912 0.000 0.944 0.020 0.000 0.000 0.036
#> GSM258573     4  0.2048     0.8079 0.000 0.000 0.000 0.880 0.000 0.120
#> GSM258574     2  0.0000     0.9013 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM258575     4  0.2730     0.7438 0.000 0.000 0.000 0.808 0.000 0.192
#> GSM258576     6  0.2883     0.6698 0.000 0.000 0.000 0.212 0.000 0.788
#> GSM258577     2  0.0000     0.9013 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM258579     6  0.2996     0.6514 0.000 0.000 0.000 0.228 0.000 0.772
#> GSM258581     6  0.2854     0.6721 0.000 0.000 0.000 0.208 0.000 0.792
#> GSM258582     3  0.1151     0.5540 0.000 0.000 0.956 0.032 0.012 0.000
#> GSM258584     3  0.5473     0.6387 0.000 0.240 0.568 0.000 0.000 0.192
#> GSM258586     2  0.5185     0.0858 0.000 0.564 0.328 0.108 0.000 0.000
#> GSM258587     4  0.1765     0.8209 0.000 0.000 0.000 0.904 0.000 0.096
#> GSM258588     3  0.5516     0.6353 0.000 0.244 0.560 0.000 0.000 0.196
#> GSM258589     2  0.1572     0.8875 0.000 0.936 0.028 0.000 0.000 0.036
#> GSM258591     4  0.1863     0.8182 0.000 0.000 0.000 0.896 0.000 0.104
#> GSM258592     3  0.5309     0.6441 0.000 0.176 0.596 0.000 0.000 0.228
#> GSM258593     5  0.2846     0.8543 0.060 0.084 0.000 0.000 0.856 0.000
#> GSM258595     4  0.2006     0.8184 0.000 0.104 0.004 0.892 0.000 0.000
#> GSM258597     4  0.0000     0.8384 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM258598     4  0.0000     0.8384 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM258600     2  0.1572     0.8875 0.000 0.936 0.028 0.000 0.000 0.036
#> GSM258601     4  0.6132     0.3894 0.000 0.180 0.236 0.548 0.000 0.036
#> GSM258602     6  0.6256    -0.0642 0.000 0.220 0.012 0.372 0.000 0.396
#> GSM258604     3  0.5831    -0.2097 0.000 0.000 0.452 0.412 0.120 0.016
#> GSM258605     3  0.1141     0.5491 0.000 0.000 0.948 0.000 0.052 0.000
#> GSM258606     6  0.0865     0.6236 0.000 0.000 0.000 0.036 0.000 0.964
#> GSM258607     4  0.0000     0.8384 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM258608     2  0.0146     0.8999 0.000 0.996 0.004 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) k
#> SD:pam 57         2.94e-09 2
#> SD:pam 55         2.36e-09 3
#> SD:pam 50         4.05e-08 4
#> SD:pam 51         3.65e-07 5
#> SD:pam 52         8.35e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.863           0.864       0.948         0.4538 0.530   0.530
#> 3 3 0.554           0.762       0.852         0.3679 0.826   0.688
#> 4 4 0.557           0.755       0.791         0.0969 0.962   0.908
#> 5 5 0.580           0.517       0.708         0.1311 0.745   0.391
#> 6 6 0.736           0.526       0.743         0.0641 0.854   0.435

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     1  0.0000      0.891 1.000 0.000
#> GSM258555     1  0.0000      0.891 1.000 0.000
#> GSM258556     2  0.0000      0.967 0.000 1.000
#> GSM258557     1  0.0000      0.891 1.000 0.000
#> GSM258562     1  0.9686      0.435 0.604 0.396
#> GSM258563     1  0.0000      0.891 1.000 0.000
#> GSM258565     1  0.0000      0.891 1.000 0.000
#> GSM258566     1  0.0000      0.891 1.000 0.000
#> GSM258570     1  0.0000      0.891 1.000 0.000
#> GSM258578     1  0.0000      0.891 1.000 0.000
#> GSM258580     1  0.9552      0.472 0.624 0.376
#> GSM258583     1  0.0000      0.891 1.000 0.000
#> GSM258585     1  0.0000      0.891 1.000 0.000
#> GSM258590     1  0.0000      0.891 1.000 0.000
#> GSM258594     1  0.0000      0.891 1.000 0.000
#> GSM258596     1  0.0000      0.891 1.000 0.000
#> GSM258599     1  0.0000      0.891 1.000 0.000
#> GSM258603     1  0.0000      0.891 1.000 0.000
#> GSM258551     2  0.0000      0.967 0.000 1.000
#> GSM258552     2  0.0000      0.967 0.000 1.000
#> GSM258554     2  0.0000      0.967 0.000 1.000
#> GSM258558     2  0.0000      0.967 0.000 1.000
#> GSM258559     2  0.0000      0.967 0.000 1.000
#> GSM258560     2  0.1414      0.949 0.020 0.980
#> GSM258561     2  0.0000      0.967 0.000 1.000
#> GSM258564     2  0.0000      0.967 0.000 1.000
#> GSM258567     2  0.0000      0.967 0.000 1.000
#> GSM258568     2  0.0000      0.967 0.000 1.000
#> GSM258569     1  0.9881      0.332 0.564 0.436
#> GSM258571     2  0.2778      0.920 0.048 0.952
#> GSM258572     2  0.0000      0.967 0.000 1.000
#> GSM258573     2  0.0000      0.967 0.000 1.000
#> GSM258574     2  0.0000      0.967 0.000 1.000
#> GSM258575     2  0.0000      0.967 0.000 1.000
#> GSM258576     2  0.0000      0.967 0.000 1.000
#> GSM258577     2  0.0000      0.967 0.000 1.000
#> GSM258579     2  0.0000      0.967 0.000 1.000
#> GSM258581     2  0.0000      0.967 0.000 1.000
#> GSM258582     2  1.0000     -0.165 0.496 0.504
#> GSM258584     2  0.0000      0.967 0.000 1.000
#> GSM258586     2  0.0000      0.967 0.000 1.000
#> GSM258587     2  0.0000      0.967 0.000 1.000
#> GSM258588     2  0.0000      0.967 0.000 1.000
#> GSM258589     2  0.0000      0.967 0.000 1.000
#> GSM258591     2  0.0000      0.967 0.000 1.000
#> GSM258592     2  0.0376      0.964 0.004 0.996
#> GSM258593     1  0.0000      0.891 1.000 0.000
#> GSM258595     1  0.9686      0.435 0.604 0.396
#> GSM258597     2  0.0000      0.967 0.000 1.000
#> GSM258598     2  0.0000      0.967 0.000 1.000
#> GSM258600     2  0.0376      0.964 0.004 0.996
#> GSM258601     2  0.2236      0.933 0.036 0.964
#> GSM258602     2  0.0000      0.967 0.000 1.000
#> GSM258604     1  0.9686      0.435 0.604 0.396
#> GSM258605     2  0.9795      0.149 0.416 0.584
#> GSM258606     2  0.0000      0.967 0.000 1.000
#> GSM258607     2  0.0000      0.967 0.000 1.000
#> GSM258608     2  0.0000      0.967 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     1  0.6252     1.0000 0.556 0.000 0.444
#> GSM258555     1  0.6252     1.0000 0.556 0.000 0.444
#> GSM258556     2  0.9736    -0.0723 0.228 0.416 0.356
#> GSM258557     3  0.0747     0.4909 0.016 0.000 0.984
#> GSM258562     3  0.7240     0.7203 0.432 0.028 0.540
#> GSM258563     3  0.0000     0.4742 0.000 0.000 1.000
#> GSM258565     1  0.6252     1.0000 0.556 0.000 0.444
#> GSM258566     1  0.6252     1.0000 0.556 0.000 0.444
#> GSM258570     1  0.6252     1.0000 0.556 0.000 0.444
#> GSM258578     1  0.6252     1.0000 0.556 0.000 0.444
#> GSM258580     3  0.7250     0.7165 0.396 0.032 0.572
#> GSM258583     3  0.0237     0.4685 0.004 0.000 0.996
#> GSM258585     3  0.0237     0.4793 0.004 0.000 0.996
#> GSM258590     1  0.6252     1.0000 0.556 0.000 0.444
#> GSM258594     1  0.6252     1.0000 0.556 0.000 0.444
#> GSM258596     3  0.0237     0.4685 0.004 0.000 0.996
#> GSM258599     3  0.0237     0.4685 0.004 0.000 0.996
#> GSM258603     1  0.6252     1.0000 0.556 0.000 0.444
#> GSM258551     2  0.4235     0.7999 0.176 0.824 0.000
#> GSM258552     2  0.4679     0.7884 0.148 0.832 0.020
#> GSM258554     2  0.4235     0.7999 0.176 0.824 0.000
#> GSM258558     2  0.0424     0.8361 0.008 0.992 0.000
#> GSM258559     2  0.1289     0.8351 0.032 0.968 0.000
#> GSM258560     2  0.5207     0.7659 0.052 0.824 0.124
#> GSM258561     2  0.4235     0.7999 0.176 0.824 0.000
#> GSM258564     2  0.4750     0.7748 0.216 0.784 0.000
#> GSM258567     2  0.4811     0.7873 0.148 0.828 0.024
#> GSM258568     2  0.0000     0.8355 0.000 1.000 0.000
#> GSM258569     3  0.9236     0.5858 0.248 0.220 0.532
#> GSM258571     3  0.7152     0.7207 0.444 0.024 0.532
#> GSM258572     2  0.4937     0.7836 0.148 0.824 0.028
#> GSM258573     2  0.4235     0.7999 0.176 0.824 0.000
#> GSM258574     2  0.3752     0.8022 0.144 0.856 0.000
#> GSM258575     2  0.0892     0.8381 0.020 0.980 0.000
#> GSM258576     2  0.0000     0.8355 0.000 1.000 0.000
#> GSM258577     2  0.4937     0.7841 0.148 0.824 0.028
#> GSM258579     2  0.0000     0.8355 0.000 1.000 0.000
#> GSM258581     2  0.0000     0.8355 0.000 1.000 0.000
#> GSM258582     3  0.7152     0.7207 0.444 0.024 0.532
#> GSM258584     2  0.7026     0.6830 0.152 0.728 0.120
#> GSM258586     2  0.4968     0.7923 0.188 0.800 0.012
#> GSM258587     2  0.4235     0.7999 0.176 0.824 0.000
#> GSM258588     2  0.3267     0.8138 0.116 0.884 0.000
#> GSM258589     2  0.1163     0.8363 0.028 0.972 0.000
#> GSM258591     2  0.4235     0.7999 0.176 0.824 0.000
#> GSM258592     2  0.6679     0.7107 0.152 0.748 0.100
#> GSM258593     3  0.2165     0.5238 0.064 0.000 0.936
#> GSM258595     3  0.7152     0.7207 0.444 0.024 0.532
#> GSM258597     2  0.4750     0.7748 0.216 0.784 0.000
#> GSM258598     2  0.4750     0.7748 0.216 0.784 0.000
#> GSM258600     2  0.6007     0.7701 0.192 0.764 0.044
#> GSM258601     3  0.7534     0.7151 0.428 0.040 0.532
#> GSM258602     2  0.0892     0.8362 0.020 0.980 0.000
#> GSM258604     3  0.7152     0.7207 0.444 0.024 0.532
#> GSM258605     3  0.7353     0.7203 0.436 0.032 0.532
#> GSM258606     2  0.0237     0.8358 0.004 0.996 0.000
#> GSM258607     2  0.4796     0.7745 0.220 0.780 0.000
#> GSM258608     2  0.3686     0.8039 0.140 0.860 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     1  0.0188      0.897 0.996 0.000 0.000 0.004
#> GSM258555     1  0.0000      0.900 1.000 0.000 0.000 0.000
#> GSM258556     2  0.7410      0.553 0.000 0.488 0.184 0.328
#> GSM258557     4  0.4897      0.937 0.332 0.000 0.008 0.660
#> GSM258562     3  0.0188      0.871 0.000 0.004 0.996 0.000
#> GSM258563     4  0.4761      0.936 0.332 0.000 0.004 0.664
#> GSM258565     1  0.0000      0.900 1.000 0.000 0.000 0.000
#> GSM258566     1  0.0000      0.900 1.000 0.000 0.000 0.000
#> GSM258570     1  0.0000      0.900 1.000 0.000 0.000 0.000
#> GSM258578     1  0.0000      0.900 1.000 0.000 0.000 0.000
#> GSM258580     3  0.7464      0.324 0.080 0.044 0.548 0.328
#> GSM258583     4  0.5367      0.918 0.304 0.000 0.032 0.664
#> GSM258585     4  0.5271      0.930 0.320 0.000 0.024 0.656
#> GSM258590     1  0.4008      0.485 0.756 0.000 0.000 0.244
#> GSM258594     1  0.0000      0.900 1.000 0.000 0.000 0.000
#> GSM258596     4  0.4837      0.930 0.348 0.000 0.004 0.648
#> GSM258599     4  0.4837      0.930 0.348 0.000 0.004 0.648
#> GSM258603     1  0.4008      0.485 0.756 0.000 0.000 0.244
#> GSM258551     2  0.4995      0.696 0.000 0.720 0.032 0.248
#> GSM258552     2  0.3836      0.728 0.000 0.816 0.168 0.016
#> GSM258554     2  0.5085      0.691 0.000 0.708 0.032 0.260
#> GSM258558     2  0.0188      0.767 0.000 0.996 0.004 0.000
#> GSM258559     2  0.2593      0.755 0.000 0.892 0.104 0.004
#> GSM258560     2  0.4849      0.702 0.000 0.772 0.164 0.064
#> GSM258561     2  0.6138      0.682 0.000 0.648 0.092 0.260
#> GSM258564     2  0.6430      0.618 0.000 0.596 0.092 0.312
#> GSM258567     2  0.3610      0.719 0.000 0.800 0.200 0.000
#> GSM258568     2  0.1022      0.765 0.000 0.968 0.000 0.032
#> GSM258569     3  0.5997      0.628 0.004 0.232 0.680 0.084
#> GSM258571     3  0.0657      0.870 0.000 0.012 0.984 0.004
#> GSM258572     2  0.4050      0.725 0.000 0.808 0.168 0.024
#> GSM258573     2  0.5557      0.661 0.000 0.652 0.040 0.308
#> GSM258574     2  0.3257      0.742 0.000 0.844 0.152 0.004
#> GSM258575     2  0.0524      0.768 0.000 0.988 0.008 0.004
#> GSM258576     2  0.1004      0.764 0.000 0.972 0.004 0.024
#> GSM258577     2  0.4423      0.717 0.000 0.792 0.168 0.040
#> GSM258579     2  0.0779      0.766 0.000 0.980 0.004 0.016
#> GSM258581     2  0.0779      0.766 0.000 0.980 0.004 0.016
#> GSM258582     3  0.0188      0.871 0.000 0.004 0.996 0.000
#> GSM258584     2  0.5250      0.672 0.000 0.736 0.196 0.068
#> GSM258586     2  0.7185      0.631 0.000 0.540 0.176 0.284
#> GSM258587     2  0.5883      0.654 0.000 0.640 0.060 0.300
#> GSM258588     2  0.3335      0.745 0.000 0.860 0.120 0.020
#> GSM258589     2  0.2831      0.755 0.000 0.876 0.120 0.004
#> GSM258591     2  0.5113      0.689 0.000 0.704 0.032 0.264
#> GSM258592     2  0.4546      0.666 0.000 0.732 0.256 0.012
#> GSM258593     4  0.6845      0.788 0.308 0.000 0.128 0.564
#> GSM258595     3  0.2401      0.841 0.000 0.004 0.904 0.092
#> GSM258597     2  0.6430      0.618 0.000 0.596 0.092 0.312
#> GSM258598     2  0.6430      0.618 0.000 0.596 0.092 0.312
#> GSM258600     2  0.5235      0.681 0.000 0.716 0.236 0.048
#> GSM258601     3  0.2021      0.862 0.000 0.024 0.936 0.040
#> GSM258602     2  0.0707      0.768 0.000 0.980 0.020 0.000
#> GSM258604     3  0.1743      0.859 0.000 0.004 0.940 0.056
#> GSM258605     3  0.0657      0.870 0.000 0.012 0.984 0.004
#> GSM258606     2  0.0376      0.766 0.000 0.992 0.004 0.004
#> GSM258607     2  0.7442      0.559 0.000 0.504 0.212 0.284
#> GSM258608     2  0.2814      0.747 0.000 0.868 0.132 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     1  0.0162     0.9844 0.996 0.000 0.000 0.000 0.004
#> GSM258555     1  0.0000     0.9856 1.000 0.000 0.000 0.000 0.000
#> GSM258556     3  0.6578     0.3701 0.000 0.288 0.568 0.072 0.072
#> GSM258557     5  0.3967     0.9677 0.200 0.020 0.008 0.000 0.772
#> GSM258562     3  0.1571     0.6457 0.000 0.060 0.936 0.000 0.004
#> GSM258563     5  0.3300     0.9734 0.204 0.004 0.000 0.000 0.792
#> GSM258565     1  0.0162     0.9844 0.996 0.000 0.000 0.000 0.004
#> GSM258566     1  0.0000     0.9856 1.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000     0.9856 1.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000     0.9856 1.000 0.000 0.000 0.000 0.000
#> GSM258580     3  0.5939     0.5151 0.000 0.216 0.620 0.008 0.156
#> GSM258583     5  0.3177     0.9737 0.208 0.000 0.000 0.000 0.792
#> GSM258585     5  0.3759     0.9538 0.180 0.024 0.004 0.000 0.792
#> GSM258590     1  0.1043     0.9538 0.960 0.000 0.000 0.000 0.040
#> GSM258594     1  0.0000     0.9856 1.000 0.000 0.000 0.000 0.000
#> GSM258596     5  0.3210     0.9727 0.212 0.000 0.000 0.000 0.788
#> GSM258599     5  0.3210     0.9727 0.212 0.000 0.000 0.000 0.788
#> GSM258603     1  0.1121     0.9507 0.956 0.000 0.000 0.000 0.044
#> GSM258551     4  0.4672     0.5395 0.000 0.064 0.012 0.748 0.176
#> GSM258552     2  0.6339     0.1512 0.000 0.512 0.328 0.156 0.004
#> GSM258554     4  0.4732     0.5373 0.000 0.068 0.012 0.744 0.176
#> GSM258558     4  0.0771     0.6091 0.000 0.020 0.004 0.976 0.000
#> GSM258559     4  0.6918    -0.3383 0.000 0.280 0.344 0.372 0.004
#> GSM258560     3  0.6316     0.4517 0.000 0.296 0.544 0.152 0.008
#> GSM258561     2  0.8074    -0.1892 0.000 0.352 0.348 0.124 0.176
#> GSM258564     2  0.6942    -0.3414 0.000 0.424 0.016 0.364 0.196
#> GSM258567     3  0.6104     0.4314 0.004 0.296 0.560 0.140 0.000
#> GSM258568     4  0.3231     0.5828 0.000 0.196 0.004 0.800 0.000
#> GSM258569     3  0.4626     0.5587 0.000 0.224 0.728 0.028 0.020
#> GSM258571     3  0.0451     0.6467 0.000 0.008 0.988 0.000 0.004
#> GSM258572     2  0.6370     0.1356 0.000 0.516 0.332 0.144 0.008
#> GSM258573     4  0.6701     0.4123 0.000 0.268 0.016 0.520 0.196
#> GSM258574     2  0.6814     0.1482 0.000 0.420 0.332 0.244 0.004
#> GSM258575     4  0.1768     0.5981 0.000 0.072 0.004 0.924 0.000
#> GSM258576     4  0.2648     0.6033 0.000 0.152 0.000 0.848 0.000
#> GSM258577     2  0.6685     0.1422 0.000 0.488 0.336 0.160 0.016
#> GSM258579     4  0.0703     0.6128 0.000 0.024 0.000 0.976 0.000
#> GSM258581     4  0.2280     0.6101 0.000 0.120 0.000 0.880 0.000
#> GSM258582     3  0.0162     0.6450 0.000 0.000 0.996 0.000 0.004
#> GSM258584     2  0.6633     0.0412 0.000 0.484 0.368 0.124 0.024
#> GSM258586     3  0.6180     0.4972 0.000 0.228 0.632 0.088 0.052
#> GSM258587     4  0.6915     0.3614 0.000 0.324 0.020 0.468 0.188
#> GSM258588     4  0.7053    -0.4050 0.000 0.328 0.312 0.352 0.008
#> GSM258589     3  0.6369     0.3816 0.000 0.244 0.520 0.236 0.000
#> GSM258591     4  0.6535     0.4336 0.000 0.260 0.016 0.548 0.176
#> GSM258592     3  0.5819     0.4845 0.000 0.252 0.600 0.148 0.000
#> GSM258593     5  0.4426     0.9340 0.196 0.004 0.052 0.000 0.748
#> GSM258595     3  0.3186     0.6326 0.000 0.080 0.864 0.008 0.048
#> GSM258597     2  0.6956    -0.3684 0.000 0.396 0.016 0.392 0.196
#> GSM258598     2  0.6869    -0.3078 0.000 0.468 0.016 0.320 0.196
#> GSM258600     3  0.6906     0.1676 0.000 0.360 0.460 0.152 0.028
#> GSM258601     3  0.2286     0.6488 0.000 0.108 0.888 0.000 0.004
#> GSM258602     4  0.3865     0.4502 0.000 0.092 0.100 0.808 0.000
#> GSM258604     3  0.1043     0.6475 0.000 0.040 0.960 0.000 0.000
#> GSM258605     3  0.0566     0.6470 0.000 0.012 0.984 0.000 0.004
#> GSM258606     4  0.0290     0.6132 0.000 0.008 0.000 0.992 0.000
#> GSM258607     3  0.7034     0.2909 0.000 0.332 0.496 0.104 0.068
#> GSM258608     2  0.7012     0.1425 0.000 0.388 0.316 0.288 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     1  0.0146    0.99562 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM258555     1  0.0000    0.99824 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258556     4  0.4429    0.17788 0.000 0.244 0.032 0.700 0.000 0.024
#> GSM258557     5  0.2033    0.92854 0.004 0.004 0.056 0.020 0.916 0.000
#> GSM258562     4  0.5360   -0.45937 0.000 0.108 0.436 0.456 0.000 0.000
#> GSM258563     5  0.0146    0.98438 0.004 0.000 0.000 0.000 0.996 0.000
#> GSM258565     1  0.0000    0.99824 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000    0.99824 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000    0.99824 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000    0.99824 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258580     2  0.7035   -0.00855 0.000 0.460 0.312 0.148 0.036 0.044
#> GSM258583     5  0.0260    0.98266 0.008 0.000 0.000 0.000 0.992 0.000
#> GSM258585     5  0.0363    0.98066 0.000 0.000 0.012 0.000 0.988 0.000
#> GSM258590     1  0.0146    0.99569 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM258594     1  0.0000    0.99824 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258596     5  0.0146    0.98438 0.004 0.000 0.000 0.000 0.996 0.000
#> GSM258599     5  0.0146    0.98438 0.004 0.000 0.000 0.000 0.996 0.000
#> GSM258603     1  0.0260    0.99457 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM258551     6  0.3081    0.62591 0.000 0.000 0.004 0.220 0.000 0.776
#> GSM258552     2  0.0551    0.75100 0.000 0.984 0.004 0.004 0.000 0.008
#> GSM258554     6  0.3323    0.61584 0.000 0.000 0.008 0.240 0.000 0.752
#> GSM258558     6  0.0146    0.70339 0.000 0.004 0.000 0.000 0.000 0.996
#> GSM258559     2  0.6060    0.48115 0.000 0.596 0.084 0.108 0.000 0.212
#> GSM258560     2  0.5186    0.47112 0.000 0.624 0.100 0.264 0.000 0.012
#> GSM258561     4  0.4836    0.22192 0.000 0.288 0.004 0.632 0.000 0.076
#> GSM258564     4  0.5919   -0.25978 0.000 0.000 0.248 0.464 0.000 0.288
#> GSM258567     4  0.5451   -0.22548 0.000 0.444 0.092 0.456 0.000 0.008
#> GSM258568     6  0.4265    0.64424 0.000 0.000 0.172 0.100 0.000 0.728
#> GSM258569     2  0.4613    0.52899 0.000 0.692 0.128 0.180 0.000 0.000
#> GSM258571     3  0.4757    0.33884 0.000 0.048 0.484 0.468 0.000 0.000
#> GSM258572     2  0.0291    0.74908 0.000 0.992 0.004 0.000 0.000 0.004
#> GSM258573     3  0.6078   -0.52875 0.000 0.000 0.388 0.336 0.000 0.276
#> GSM258574     2  0.0405    0.75231 0.000 0.988 0.000 0.004 0.000 0.008
#> GSM258575     6  0.1333    0.69040 0.000 0.048 0.008 0.000 0.000 0.944
#> GSM258576     6  0.4718    0.57429 0.000 0.000 0.316 0.068 0.000 0.616
#> GSM258577     2  0.0405    0.74877 0.000 0.988 0.004 0.000 0.000 0.008
#> GSM258579     6  0.1700    0.69273 0.000 0.004 0.080 0.000 0.000 0.916
#> GSM258581     6  0.3952    0.59206 0.000 0.000 0.308 0.020 0.000 0.672
#> GSM258582     3  0.4529    0.34094 0.000 0.032 0.508 0.460 0.000 0.000
#> GSM258584     2  0.1599    0.74964 0.000 0.940 0.024 0.028 0.000 0.008
#> GSM258586     4  0.5525    0.04009 0.000 0.364 0.084 0.532 0.000 0.020
#> GSM258587     6  0.5981    0.29696 0.000 0.000 0.228 0.376 0.000 0.396
#> GSM258588     2  0.1897    0.71135 0.000 0.908 0.004 0.004 0.000 0.084
#> GSM258589     2  0.5050    0.52690 0.000 0.664 0.092 0.224 0.000 0.020
#> GSM258591     6  0.6069    0.41477 0.000 0.036 0.116 0.360 0.000 0.488
#> GSM258592     4  0.5603   -0.20811 0.000 0.432 0.100 0.456 0.000 0.012
#> GSM258593     5  0.0508    0.98231 0.004 0.000 0.012 0.000 0.984 0.000
#> GSM258595     3  0.5739    0.25469 0.000 0.348 0.492 0.156 0.000 0.004
#> GSM258597     4  0.5930   -0.26464 0.000 0.000 0.248 0.460 0.000 0.292
#> GSM258598     4  0.4574   -0.09510 0.000 0.000 0.440 0.524 0.000 0.036
#> GSM258600     2  0.3115    0.70236 0.000 0.848 0.048 0.092 0.000 0.012
#> GSM258601     3  0.6067    0.27074 0.000 0.332 0.396 0.272 0.000 0.000
#> GSM258602     6  0.3911    0.52476 0.000 0.160 0.004 0.068 0.000 0.768
#> GSM258604     3  0.5767    0.39169 0.000 0.232 0.508 0.260 0.000 0.000
#> GSM258605     4  0.4992   -0.47949 0.000 0.068 0.464 0.468 0.000 0.000
#> GSM258606     6  0.0146    0.70350 0.000 0.004 0.000 0.000 0.000 0.996
#> GSM258607     4  0.4935    0.22391 0.000 0.280 0.016 0.640 0.000 0.064
#> GSM258608     2  0.1194    0.74794 0.000 0.956 0.000 0.008 0.004 0.032

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> SD:mclust 51         7.01e-10 2
#> SD:mclust 51         9.53e-10 3
#> SD:mclust 55         5.44e-09 4
#> SD:mclust 34         2.11e-05 5
#> SD:mclust 36         4.16e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.963           0.943       0.976         0.4634 0.540   0.540
#> 3 3 0.875           0.878       0.947         0.4422 0.700   0.486
#> 4 4 0.776           0.871       0.915         0.1347 0.854   0.592
#> 5 5 0.811           0.800       0.896         0.0681 0.880   0.565
#> 6 6 0.827           0.763       0.863         0.0346 0.962   0.809

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     1  0.0000      0.974 1.000 0.000
#> GSM258555     1  0.0000      0.974 1.000 0.000
#> GSM258556     2  0.0000      0.974 0.000 1.000
#> GSM258557     1  0.0000      0.974 1.000 0.000
#> GSM258562     1  0.4431      0.886 0.908 0.092
#> GSM258563     1  0.0000      0.974 1.000 0.000
#> GSM258565     1  0.0000      0.974 1.000 0.000
#> GSM258566     1  0.0000      0.974 1.000 0.000
#> GSM258570     1  0.0000      0.974 1.000 0.000
#> GSM258578     1  0.0000      0.974 1.000 0.000
#> GSM258580     2  0.8081      0.673 0.248 0.752
#> GSM258583     1  0.0000      0.974 1.000 0.000
#> GSM258585     1  0.0000      0.974 1.000 0.000
#> GSM258590     1  0.0000      0.974 1.000 0.000
#> GSM258594     1  0.0000      0.974 1.000 0.000
#> GSM258596     1  0.0000      0.974 1.000 0.000
#> GSM258599     1  0.0000      0.974 1.000 0.000
#> GSM258603     1  0.0000      0.974 1.000 0.000
#> GSM258551     2  0.0000      0.974 0.000 1.000
#> GSM258552     2  0.0000      0.974 0.000 1.000
#> GSM258554     2  0.0000      0.974 0.000 1.000
#> GSM258558     2  0.0000      0.974 0.000 1.000
#> GSM258559     2  0.0000      0.974 0.000 1.000
#> GSM258560     2  0.0000      0.974 0.000 1.000
#> GSM258561     2  0.0000      0.974 0.000 1.000
#> GSM258564     2  0.0000      0.974 0.000 1.000
#> GSM258567     2  0.0000      0.974 0.000 1.000
#> GSM258568     2  0.0000      0.974 0.000 1.000
#> GSM258569     2  0.7674      0.713 0.224 0.776
#> GSM258571     1  0.9323      0.448 0.652 0.348
#> GSM258572     2  0.0000      0.974 0.000 1.000
#> GSM258573     2  0.0000      0.974 0.000 1.000
#> GSM258574     2  0.0000      0.974 0.000 1.000
#> GSM258575     2  0.0000      0.974 0.000 1.000
#> GSM258576     2  0.0000      0.974 0.000 1.000
#> GSM258577     2  0.0000      0.974 0.000 1.000
#> GSM258579     2  0.0000      0.974 0.000 1.000
#> GSM258581     2  0.0000      0.974 0.000 1.000
#> GSM258582     1  0.0672      0.969 0.992 0.008
#> GSM258584     2  0.0000      0.974 0.000 1.000
#> GSM258586     2  0.0000      0.974 0.000 1.000
#> GSM258587     2  0.0000      0.974 0.000 1.000
#> GSM258588     2  0.0000      0.974 0.000 1.000
#> GSM258589     2  0.0000      0.974 0.000 1.000
#> GSM258591     2  0.0000      0.974 0.000 1.000
#> GSM258592     2  0.0000      0.974 0.000 1.000
#> GSM258593     1  0.0000      0.974 1.000 0.000
#> GSM258595     2  0.3431      0.914 0.064 0.936
#> GSM258597     2  0.0000      0.974 0.000 1.000
#> GSM258598     2  0.0000      0.974 0.000 1.000
#> GSM258600     2  0.0000      0.974 0.000 1.000
#> GSM258601     2  0.0000      0.974 0.000 1.000
#> GSM258602     2  0.0000      0.974 0.000 1.000
#> GSM258604     2  0.9580      0.393 0.380 0.620
#> GSM258605     1  0.1414      0.959 0.980 0.020
#> GSM258606     2  0.0000      0.974 0.000 1.000
#> GSM258607     2  0.0000      0.974 0.000 1.000
#> GSM258608     2  0.0000      0.974 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     1  0.0000     0.9624 1.000 0.000 0.000
#> GSM258555     1  0.0000     0.9624 1.000 0.000 0.000
#> GSM258556     3  0.6111     0.4281 0.000 0.396 0.604
#> GSM258557     1  0.6307    -0.0276 0.512 0.000 0.488
#> GSM258562     3  0.0892     0.9127 0.020 0.000 0.980
#> GSM258563     1  0.0000     0.9624 1.000 0.000 0.000
#> GSM258565     1  0.0000     0.9624 1.000 0.000 0.000
#> GSM258566     1  0.0000     0.9624 1.000 0.000 0.000
#> GSM258570     1  0.0000     0.9624 1.000 0.000 0.000
#> GSM258578     1  0.0000     0.9624 1.000 0.000 0.000
#> GSM258580     3  0.5431     0.6133 0.000 0.284 0.716
#> GSM258583     1  0.0000     0.9624 1.000 0.000 0.000
#> GSM258585     1  0.1031     0.9433 0.976 0.000 0.024
#> GSM258590     1  0.0000     0.9624 1.000 0.000 0.000
#> GSM258594     1  0.0000     0.9624 1.000 0.000 0.000
#> GSM258596     1  0.0000     0.9624 1.000 0.000 0.000
#> GSM258599     1  0.0000     0.9624 1.000 0.000 0.000
#> GSM258603     1  0.0000     0.9624 1.000 0.000 0.000
#> GSM258551     2  0.0000     0.9441 0.000 1.000 0.000
#> GSM258552     3  0.0000     0.9206 0.000 0.000 1.000
#> GSM258554     2  0.0000     0.9441 0.000 1.000 0.000
#> GSM258558     2  0.1163     0.9430 0.000 0.972 0.028
#> GSM258559     2  0.5431     0.6031 0.000 0.716 0.284
#> GSM258560     3  0.0000     0.9206 0.000 0.000 1.000
#> GSM258561     2  0.0592     0.9401 0.000 0.988 0.012
#> GSM258564     2  0.0000     0.9441 0.000 1.000 0.000
#> GSM258567     3  0.0000     0.9206 0.000 0.000 1.000
#> GSM258568     2  0.1163     0.9430 0.000 0.972 0.028
#> GSM258569     3  0.0000     0.9206 0.000 0.000 1.000
#> GSM258571     3  0.0983     0.9161 0.004 0.016 0.980
#> GSM258572     3  0.0000     0.9206 0.000 0.000 1.000
#> GSM258573     2  0.0000     0.9441 0.000 1.000 0.000
#> GSM258574     3  0.0424     0.9191 0.000 0.008 0.992
#> GSM258575     2  0.1163     0.9430 0.000 0.972 0.028
#> GSM258576     2  0.0892     0.9438 0.000 0.980 0.020
#> GSM258577     3  0.0424     0.9195 0.000 0.008 0.992
#> GSM258579     2  0.1031     0.9436 0.000 0.976 0.024
#> GSM258581     2  0.1163     0.9430 0.000 0.972 0.028
#> GSM258582     3  0.1491     0.9095 0.016 0.016 0.968
#> GSM258584     3  0.1289     0.9051 0.000 0.032 0.968
#> GSM258586     3  0.5327     0.6651 0.000 0.272 0.728
#> GSM258587     2  0.0000     0.9441 0.000 1.000 0.000
#> GSM258588     3  0.6111     0.3753 0.000 0.396 0.604
#> GSM258589     3  0.0592     0.9181 0.000 0.012 0.988
#> GSM258591     2  0.0000     0.9441 0.000 1.000 0.000
#> GSM258592     3  0.0000     0.9206 0.000 0.000 1.000
#> GSM258593     1  0.0747     0.9502 0.984 0.000 0.016
#> GSM258595     3  0.0983     0.9167 0.004 0.016 0.980
#> GSM258597     2  0.0000     0.9441 0.000 1.000 0.000
#> GSM258598     2  0.0000     0.9441 0.000 1.000 0.000
#> GSM258600     3  0.0000     0.9206 0.000 0.000 1.000
#> GSM258601     3  0.0747     0.9173 0.000 0.016 0.984
#> GSM258602     2  0.1289     0.9408 0.000 0.968 0.032
#> GSM258604     3  0.1453     0.9102 0.008 0.024 0.968
#> GSM258605     3  0.0747     0.9145 0.016 0.000 0.984
#> GSM258606     2  0.1163     0.9430 0.000 0.972 0.028
#> GSM258607     2  0.5733     0.5019 0.000 0.676 0.324
#> GSM258608     2  0.3941     0.8179 0.000 0.844 0.156

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM258555     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM258556     4  0.3143      0.842 0.000 0.024 0.100 0.876
#> GSM258557     1  0.7093      0.472 0.568 0.220 0.212 0.000
#> GSM258562     3  0.1022      0.890 0.000 0.032 0.968 0.000
#> GSM258563     1  0.0188      0.940 0.996 0.004 0.000 0.000
#> GSM258565     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM258566     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM258570     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM258578     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM258580     3  0.4907      0.425 0.000 0.420 0.580 0.000
#> GSM258583     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM258585     1  0.5727      0.662 0.692 0.228 0.080 0.000
#> GSM258590     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM258594     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM258596     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM258599     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM258603     1  0.0000      0.942 1.000 0.000 0.000 0.000
#> GSM258551     4  0.3801      0.700 0.000 0.220 0.000 0.780
#> GSM258552     3  0.1867      0.879 0.000 0.072 0.928 0.000
#> GSM258554     4  0.1022      0.929 0.000 0.032 0.000 0.968
#> GSM258558     2  0.2281      0.910 0.000 0.904 0.000 0.096
#> GSM258559     2  0.2670      0.863 0.000 0.904 0.072 0.024
#> GSM258560     3  0.3495      0.828 0.000 0.140 0.844 0.016
#> GSM258561     4  0.1833      0.899 0.000 0.024 0.032 0.944
#> GSM258564     4  0.0336      0.936 0.000 0.008 0.000 0.992
#> GSM258567     3  0.1677      0.892 0.000 0.040 0.948 0.012
#> GSM258568     2  0.3726      0.822 0.000 0.788 0.000 0.212
#> GSM258569     3  0.1474      0.885 0.000 0.052 0.948 0.000
#> GSM258571     3  0.1510      0.893 0.000 0.028 0.956 0.016
#> GSM258572     3  0.2149      0.874 0.000 0.088 0.912 0.000
#> GSM258573     4  0.0592      0.937 0.000 0.016 0.000 0.984
#> GSM258574     2  0.3123      0.744 0.000 0.844 0.156 0.000
#> GSM258575     2  0.2408      0.910 0.000 0.896 0.000 0.104
#> GSM258576     2  0.3123      0.883 0.000 0.844 0.000 0.156
#> GSM258577     3  0.4072      0.720 0.000 0.252 0.748 0.000
#> GSM258579     2  0.2281      0.910 0.000 0.904 0.000 0.096
#> GSM258581     2  0.2647      0.906 0.000 0.880 0.000 0.120
#> GSM258582     3  0.1510      0.893 0.000 0.028 0.956 0.016
#> GSM258584     2  0.3335      0.815 0.000 0.856 0.128 0.016
#> GSM258586     4  0.2919      0.866 0.000 0.044 0.060 0.896
#> GSM258587     4  0.0707      0.936 0.000 0.020 0.000 0.980
#> GSM258588     2  0.2565      0.888 0.000 0.912 0.056 0.032
#> GSM258589     3  0.3681      0.801 0.000 0.176 0.816 0.008
#> GSM258591     4  0.0707      0.936 0.000 0.020 0.000 0.980
#> GSM258592     3  0.1610      0.892 0.000 0.032 0.952 0.016
#> GSM258593     1  0.4374      0.791 0.812 0.068 0.120 0.000
#> GSM258595     3  0.2300      0.882 0.000 0.028 0.924 0.048
#> GSM258597     4  0.0592      0.937 0.000 0.016 0.000 0.984
#> GSM258598     4  0.0592      0.937 0.000 0.016 0.000 0.984
#> GSM258600     3  0.1867      0.879 0.000 0.072 0.928 0.000
#> GSM258601     3  0.1624      0.892 0.000 0.028 0.952 0.020
#> GSM258602     2  0.2408      0.911 0.000 0.896 0.000 0.104
#> GSM258604     3  0.3307      0.841 0.000 0.028 0.868 0.104
#> GSM258605     3  0.1510      0.893 0.000 0.028 0.956 0.016
#> GSM258606     2  0.2704      0.904 0.000 0.876 0.000 0.124
#> GSM258607     4  0.0672      0.926 0.000 0.008 0.008 0.984
#> GSM258608     2  0.1256      0.862 0.000 0.964 0.028 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     1  0.0000     0.9888 1.000 0.000 0.000 0.000 0.000
#> GSM258555     1  0.0000     0.9888 1.000 0.000 0.000 0.000 0.000
#> GSM258556     4  0.1043     0.9259 0.000 0.000 0.000 0.960 0.040
#> GSM258557     5  0.5487     0.5387 0.252 0.100 0.004 0.000 0.644
#> GSM258562     5  0.4030     0.5016 0.000 0.000 0.352 0.000 0.648
#> GSM258563     1  0.2068     0.8982 0.904 0.000 0.004 0.000 0.092
#> GSM258565     1  0.0000     0.9888 1.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000     0.9888 1.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000     0.9888 1.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000     0.9888 1.000 0.000 0.000 0.000 0.000
#> GSM258580     5  0.2519     0.7352 0.000 0.100 0.016 0.000 0.884
#> GSM258583     1  0.0451     0.9841 0.988 0.000 0.004 0.000 0.008
#> GSM258585     5  0.4210     0.6735 0.140 0.072 0.004 0.000 0.784
#> GSM258590     1  0.0162     0.9875 0.996 0.000 0.000 0.000 0.004
#> GSM258594     1  0.0000     0.9888 1.000 0.000 0.000 0.000 0.000
#> GSM258596     1  0.0510     0.9811 0.984 0.000 0.000 0.000 0.016
#> GSM258599     1  0.0451     0.9841 0.988 0.000 0.004 0.000 0.008
#> GSM258603     1  0.0000     0.9888 1.000 0.000 0.000 0.000 0.000
#> GSM258551     4  0.2554     0.8898 0.000 0.072 0.000 0.892 0.036
#> GSM258552     5  0.1544     0.7512 0.000 0.000 0.068 0.000 0.932
#> GSM258554     4  0.0162     0.9420 0.000 0.004 0.000 0.996 0.000
#> GSM258558     2  0.1197     0.8570 0.000 0.952 0.000 0.000 0.048
#> GSM258559     3  0.4305    -0.0722 0.000 0.488 0.512 0.000 0.000
#> GSM258560     3  0.2193     0.7594 0.000 0.028 0.912 0.000 0.060
#> GSM258561     4  0.2179     0.8682 0.000 0.000 0.112 0.888 0.000
#> GSM258564     4  0.0000     0.9424 0.000 0.000 0.000 1.000 0.000
#> GSM258567     3  0.0324     0.7875 0.000 0.004 0.992 0.000 0.004
#> GSM258568     2  0.2423     0.8334 0.000 0.896 0.024 0.080 0.000
#> GSM258569     5  0.3612     0.5969 0.000 0.000 0.268 0.000 0.732
#> GSM258571     3  0.2824     0.7577 0.000 0.000 0.864 0.020 0.116
#> GSM258572     5  0.1043     0.7562 0.000 0.000 0.040 0.000 0.960
#> GSM258573     4  0.1197     0.9284 0.000 0.048 0.000 0.952 0.000
#> GSM258574     5  0.3123     0.6953 0.000 0.160 0.012 0.000 0.828
#> GSM258575     2  0.0000     0.8768 0.000 1.000 0.000 0.000 0.000
#> GSM258576     2  0.1043     0.8694 0.000 0.960 0.000 0.040 0.000
#> GSM258577     5  0.3409     0.6942 0.000 0.024 0.160 0.000 0.816
#> GSM258579     2  0.0609     0.8731 0.000 0.980 0.000 0.000 0.020
#> GSM258581     2  0.0162     0.8774 0.000 0.996 0.000 0.004 0.000
#> GSM258582     3  0.3452     0.6188 0.000 0.000 0.756 0.000 0.244
#> GSM258584     3  0.3305     0.5959 0.000 0.224 0.776 0.000 0.000
#> GSM258586     4  0.1270     0.9238 0.000 0.000 0.000 0.948 0.052
#> GSM258587     4  0.2813     0.8053 0.000 0.168 0.000 0.832 0.000
#> GSM258588     2  0.1608     0.8599 0.000 0.928 0.072 0.000 0.000
#> GSM258589     5  0.5671     0.5029 0.000 0.092 0.308 0.004 0.596
#> GSM258591     4  0.1544     0.9159 0.000 0.068 0.000 0.932 0.000
#> GSM258592     3  0.0162     0.7878 0.000 0.000 0.996 0.000 0.004
#> GSM258593     5  0.2017     0.7449 0.080 0.000 0.008 0.000 0.912
#> GSM258595     5  0.5821     0.4774 0.000 0.000 0.240 0.156 0.604
#> GSM258597     4  0.0000     0.9424 0.000 0.000 0.000 1.000 0.000
#> GSM258598     4  0.0000     0.9424 0.000 0.000 0.000 1.000 0.000
#> GSM258600     5  0.0404     0.7547 0.000 0.000 0.012 0.000 0.988
#> GSM258601     3  0.2540     0.7750 0.000 0.000 0.888 0.024 0.088
#> GSM258602     2  0.2929     0.7552 0.000 0.820 0.180 0.000 0.000
#> GSM258604     3  0.3692     0.7085 0.000 0.000 0.812 0.136 0.052
#> GSM258605     3  0.1410     0.7862 0.000 0.000 0.940 0.000 0.060
#> GSM258606     2  0.1331     0.8708 0.000 0.952 0.040 0.008 0.000
#> GSM258607     4  0.0000     0.9424 0.000 0.000 0.000 1.000 0.000
#> GSM258608     2  0.5891     0.0586 0.000 0.468 0.100 0.000 0.432

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     1  0.0000      0.944 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258555     1  0.0000      0.944 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258556     4  0.0291      0.911 0.000 0.004 0.000 0.992 0.004 0.000
#> GSM258557     5  0.4478      0.685 0.200 0.088 0.004 0.000 0.708 0.000
#> GSM258562     2  0.3314      0.787 0.000 0.828 0.052 0.008 0.112 0.000
#> GSM258563     1  0.4032      0.219 0.572 0.000 0.008 0.000 0.420 0.000
#> GSM258565     1  0.0000      0.944 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000      0.944 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000      0.944 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000      0.944 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258580     2  0.2537      0.780 0.000 0.872 0.000 0.000 0.096 0.032
#> GSM258583     1  0.2165      0.847 0.884 0.000 0.008 0.000 0.108 0.000
#> GSM258585     5  0.5097      0.739 0.036 0.184 0.044 0.000 0.708 0.028
#> GSM258590     1  0.0146      0.943 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM258594     1  0.0000      0.944 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258596     1  0.0937      0.924 0.960 0.000 0.000 0.000 0.040 0.000
#> GSM258599     1  0.0858      0.928 0.968 0.000 0.004 0.000 0.028 0.000
#> GSM258603     1  0.0146      0.943 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM258551     4  0.3240      0.668 0.000 0.004 0.000 0.752 0.244 0.000
#> GSM258552     2  0.1753      0.803 0.000 0.912 0.084 0.000 0.004 0.000
#> GSM258554     4  0.0622      0.909 0.000 0.000 0.008 0.980 0.012 0.000
#> GSM258558     6  0.1341      0.811 0.000 0.024 0.000 0.000 0.028 0.948
#> GSM258559     3  0.5002      0.641 0.000 0.000 0.636 0.000 0.228 0.136
#> GSM258560     3  0.4470      0.687 0.000 0.004 0.696 0.000 0.228 0.072
#> GSM258561     4  0.2006      0.845 0.000 0.000 0.104 0.892 0.004 0.000
#> GSM258564     4  0.0146      0.912 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM258567     3  0.3349      0.700 0.000 0.000 0.748 0.000 0.244 0.008
#> GSM258568     6  0.0725      0.821 0.000 0.000 0.012 0.000 0.012 0.976
#> GSM258569     2  0.2300      0.775 0.000 0.856 0.144 0.000 0.000 0.000
#> GSM258571     3  0.2400      0.655 0.000 0.116 0.872 0.004 0.008 0.000
#> GSM258572     2  0.0458      0.821 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM258573     4  0.3023      0.728 0.000 0.000 0.000 0.784 0.004 0.212
#> GSM258574     2  0.3351      0.664 0.000 0.800 0.000 0.000 0.160 0.040
#> GSM258575     6  0.0632      0.823 0.000 0.000 0.000 0.000 0.024 0.976
#> GSM258576     6  0.0260      0.825 0.000 0.000 0.000 0.008 0.000 0.992
#> GSM258577     5  0.4395      0.663 0.000 0.280 0.028 0.016 0.676 0.000
#> GSM258579     6  0.2034      0.791 0.000 0.024 0.004 0.000 0.060 0.912
#> GSM258581     6  0.0458      0.825 0.000 0.000 0.000 0.000 0.016 0.984
#> GSM258582     3  0.3874      0.265 0.000 0.356 0.636 0.000 0.008 0.000
#> GSM258584     3  0.4476      0.662 0.000 0.000 0.664 0.000 0.272 0.064
#> GSM258586     4  0.0508      0.909 0.000 0.004 0.000 0.984 0.012 0.000
#> GSM258587     6  0.4253      0.212 0.000 0.000 0.008 0.412 0.008 0.572
#> GSM258588     6  0.5378      0.406 0.000 0.020 0.300 0.000 0.088 0.592
#> GSM258589     2  0.4762      0.639 0.000 0.720 0.100 0.000 0.152 0.028
#> GSM258591     4  0.2921      0.797 0.000 0.000 0.008 0.828 0.008 0.156
#> GSM258592     3  0.3357      0.706 0.000 0.004 0.764 0.000 0.224 0.008
#> GSM258593     2  0.0725      0.820 0.012 0.976 0.000 0.000 0.012 0.000
#> GSM258595     2  0.3198      0.671 0.000 0.740 0.260 0.000 0.000 0.000
#> GSM258597     4  0.0520      0.909 0.000 0.000 0.008 0.984 0.008 0.000
#> GSM258598     4  0.0000      0.912 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM258600     2  0.1327      0.805 0.000 0.936 0.000 0.000 0.064 0.000
#> GSM258601     3  0.2669      0.670 0.000 0.108 0.864 0.024 0.004 0.000
#> GSM258602     6  0.4772      0.534 0.000 0.000 0.124 0.000 0.208 0.668
#> GSM258604     3  0.4597      0.531 0.000 0.072 0.716 0.192 0.020 0.000
#> GSM258605     3  0.1838      0.681 0.000 0.068 0.916 0.000 0.016 0.000
#> GSM258606     6  0.0622      0.825 0.000 0.000 0.008 0.000 0.012 0.980
#> GSM258607     4  0.0146      0.912 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM258608     5  0.2400      0.696 0.000 0.064 0.016 0.000 0.896 0.024

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) k
#> SD:NMF 56         1.38e-08 2
#> SD:NMF 55         8.59e-10 3
#> SD:NMF 56         3.40e-09 4
#> SD:NMF 55         7.94e-08 5
#> SD:NMF 54         4.27e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.428           0.683       0.868         0.4618 0.501   0.501
#> 3 3 0.385           0.653       0.779         0.3556 0.676   0.438
#> 4 4 0.523           0.594       0.773         0.1471 0.838   0.571
#> 5 5 0.601           0.520       0.713         0.0749 0.915   0.691
#> 6 6 0.685           0.505       0.724         0.0548 0.924   0.672

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     1  0.0000     0.8115 1.000 0.000
#> GSM258555     1  0.0000     0.8115 1.000 0.000
#> GSM258556     2  0.0376     0.8317 0.004 0.996
#> GSM258557     1  0.0000     0.8115 1.000 0.000
#> GSM258562     1  0.9552     0.4241 0.624 0.376
#> GSM258563     1  0.0000     0.8115 1.000 0.000
#> GSM258565     1  0.0000     0.8115 1.000 0.000
#> GSM258566     1  0.0000     0.8115 1.000 0.000
#> GSM258570     1  0.0000     0.8115 1.000 0.000
#> GSM258578     1  0.0000     0.8115 1.000 0.000
#> GSM258580     1  0.9552     0.4241 0.624 0.376
#> GSM258583     1  0.0000     0.8115 1.000 0.000
#> GSM258585     1  0.0938     0.8069 0.988 0.012
#> GSM258590     1  0.0000     0.8115 1.000 0.000
#> GSM258594     1  0.0000     0.8115 1.000 0.000
#> GSM258596     1  0.0376     0.8103 0.996 0.004
#> GSM258599     1  0.0000     0.8115 1.000 0.000
#> GSM258603     1  0.0000     0.8115 1.000 0.000
#> GSM258551     2  0.0938     0.8313 0.012 0.988
#> GSM258552     2  0.9522     0.4005 0.372 0.628
#> GSM258554     2  0.0672     0.8318 0.008 0.992
#> GSM258558     2  0.0672     0.8318 0.008 0.992
#> GSM258559     2  0.5178     0.7907 0.116 0.884
#> GSM258560     2  0.8555     0.6129 0.280 0.720
#> GSM258561     2  0.3274     0.8162 0.060 0.940
#> GSM258564     2  0.0376     0.8317 0.004 0.996
#> GSM258567     2  0.9522     0.4255 0.372 0.628
#> GSM258568     2  0.0000     0.8302 0.000 1.000
#> GSM258569     1  0.9491     0.4434 0.632 0.368
#> GSM258571     1  0.9170     0.5191 0.668 0.332
#> GSM258572     2  0.9954     0.1427 0.460 0.540
#> GSM258573     2  0.0000     0.8302 0.000 1.000
#> GSM258574     2  0.7299     0.7101 0.204 0.796
#> GSM258575     2  0.0376     0.8317 0.004 0.996
#> GSM258576     2  0.0000     0.8302 0.000 1.000
#> GSM258577     2  0.6531     0.7476 0.168 0.832
#> GSM258579     2  0.0376     0.8317 0.004 0.996
#> GSM258581     2  0.0000     0.8302 0.000 1.000
#> GSM258582     1  0.9170     0.5191 0.668 0.332
#> GSM258584     2  0.7299     0.7113 0.204 0.796
#> GSM258586     2  0.0376     0.8317 0.004 0.996
#> GSM258587     2  0.0000     0.8302 0.000 1.000
#> GSM258588     2  0.8499     0.6085 0.276 0.724
#> GSM258589     2  0.9993     0.0456 0.484 0.516
#> GSM258591     2  0.0938     0.8314 0.012 0.988
#> GSM258592     2  0.9977     0.1059 0.472 0.528
#> GSM258593     1  0.3114     0.7826 0.944 0.056
#> GSM258595     1  0.9954     0.1387 0.540 0.460
#> GSM258597     2  0.0000     0.8302 0.000 1.000
#> GSM258598     2  0.0000     0.8302 0.000 1.000
#> GSM258600     2  0.9993     0.0456 0.484 0.516
#> GSM258601     1  0.9358     0.4826 0.648 0.352
#> GSM258602     2  0.5059     0.7923 0.112 0.888
#> GSM258604     1  0.9170     0.5191 0.668 0.332
#> GSM258605     1  0.9170     0.5191 0.668 0.332
#> GSM258606     2  0.4562     0.8007 0.096 0.904
#> GSM258607     2  0.0376     0.8317 0.004 0.996
#> GSM258608     2  0.4690     0.7952 0.100 0.900

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     1   0.000     0.8951 1.000 0.000 0.000
#> GSM258555     1   0.000     0.8951 1.000 0.000 0.000
#> GSM258556     2   0.236     0.7130 0.000 0.928 0.072
#> GSM258557     1   0.394     0.8525 0.844 0.000 0.156
#> GSM258562     3   0.512     0.6490 0.200 0.012 0.788
#> GSM258563     1   0.394     0.8525 0.844 0.000 0.156
#> GSM258565     1   0.000     0.8951 1.000 0.000 0.000
#> GSM258566     1   0.000     0.8951 1.000 0.000 0.000
#> GSM258570     1   0.000     0.8951 1.000 0.000 0.000
#> GSM258578     1   0.000     0.8951 1.000 0.000 0.000
#> GSM258580     3   0.512     0.6490 0.200 0.012 0.788
#> GSM258583     1   0.394     0.8525 0.844 0.000 0.156
#> GSM258585     1   0.412     0.8390 0.832 0.000 0.168
#> GSM258590     1   0.000     0.8951 1.000 0.000 0.000
#> GSM258594     1   0.000     0.8951 1.000 0.000 0.000
#> GSM258596     1   0.400     0.8487 0.840 0.000 0.160
#> GSM258599     1   0.394     0.8525 0.844 0.000 0.156
#> GSM258603     1   0.000     0.8951 1.000 0.000 0.000
#> GSM258551     2   0.536     0.7518 0.000 0.724 0.276
#> GSM258552     3   0.657     0.5806 0.088 0.160 0.752
#> GSM258554     2   0.603     0.7539 0.000 0.624 0.376
#> GSM258558     2   0.611     0.7298 0.000 0.604 0.396
#> GSM258559     3   0.623    -0.3704 0.000 0.436 0.564
#> GSM258560     3   0.394     0.4947 0.000 0.156 0.844
#> GSM258561     2   0.588     0.7156 0.000 0.652 0.348
#> GSM258564     2   0.236     0.7130 0.000 0.928 0.072
#> GSM258567     3   0.372     0.6022 0.024 0.088 0.888
#> GSM258568     2   0.536     0.7917 0.000 0.724 0.276
#> GSM258569     3   0.501     0.6416 0.204 0.008 0.788
#> GSM258571     3   0.493     0.5967 0.232 0.000 0.768
#> GSM258572     3   0.542     0.6670 0.100 0.080 0.820
#> GSM258573     2   0.475     0.8063 0.000 0.784 0.216
#> GSM258574     3   0.533     0.3524 0.004 0.248 0.748
#> GSM258575     2   0.581     0.7884 0.000 0.664 0.336
#> GSM258576     2   0.514     0.8035 0.000 0.748 0.252
#> GSM258577     3   0.536     0.2662 0.000 0.276 0.724
#> GSM258579     2   0.581     0.7884 0.000 0.664 0.336
#> GSM258581     2   0.514     0.8035 0.000 0.748 0.252
#> GSM258582     3   0.493     0.5967 0.232 0.000 0.768
#> GSM258584     3   0.502     0.3555 0.000 0.240 0.760
#> GSM258586     2   0.355     0.7176 0.000 0.868 0.132
#> GSM258587     2   0.475     0.8063 0.000 0.784 0.216
#> GSM258588     3   0.688    -0.0253 0.024 0.360 0.616
#> GSM258589     3   0.521     0.6769 0.108 0.064 0.828
#> GSM258591     2   0.590     0.7780 0.000 0.648 0.352
#> GSM258592     3   0.489     0.6604 0.096 0.060 0.844
#> GSM258593     1   0.619     0.3888 0.580 0.000 0.420
#> GSM258595     3   0.480     0.6847 0.132 0.032 0.836
#> GSM258597     2   0.475     0.8063 0.000 0.784 0.216
#> GSM258598     2   0.000     0.6802 0.000 1.000 0.000
#> GSM258600     3   0.521     0.6769 0.108 0.064 0.828
#> GSM258601     3   0.498     0.6215 0.216 0.004 0.780
#> GSM258602     3   0.630    -0.4993 0.000 0.484 0.516
#> GSM258604     3   0.493     0.5967 0.232 0.000 0.768
#> GSM258605     3   0.493     0.5967 0.232 0.000 0.768
#> GSM258606     2   0.625     0.6371 0.000 0.556 0.444
#> GSM258607     2   0.236     0.7130 0.000 0.928 0.072
#> GSM258608     3   0.597    -0.0543 0.000 0.364 0.636

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     1   0.000     0.8720 1.000 0.000 0.000 0.000
#> GSM258555     1   0.000     0.8720 1.000 0.000 0.000 0.000
#> GSM258556     4   0.130     0.7266 0.000 0.044 0.000 0.956
#> GSM258557     1   0.482     0.7912 0.740 0.016 0.236 0.008
#> GSM258562     3   0.240     0.7297 0.000 0.076 0.912 0.012
#> GSM258563     1   0.482     0.7912 0.740 0.016 0.236 0.008
#> GSM258565     1   0.000     0.8720 1.000 0.000 0.000 0.000
#> GSM258566     1   0.000     0.8720 1.000 0.000 0.000 0.000
#> GSM258570     1   0.000     0.8720 1.000 0.000 0.000 0.000
#> GSM258578     1   0.000     0.8720 1.000 0.000 0.000 0.000
#> GSM258580     3   0.240     0.7297 0.000 0.076 0.912 0.012
#> GSM258583     1   0.482     0.7912 0.740 0.016 0.236 0.008
#> GSM258585     1   0.506     0.7775 0.728 0.024 0.240 0.008
#> GSM258590     1   0.000     0.8720 1.000 0.000 0.000 0.000
#> GSM258594     1   0.000     0.8720 1.000 0.000 0.000 0.000
#> GSM258596     1   0.485     0.7869 0.736 0.016 0.240 0.008
#> GSM258599     1   0.482     0.7912 0.740 0.016 0.236 0.008
#> GSM258603     1   0.000     0.8720 1.000 0.000 0.000 0.000
#> GSM258551     4   0.573     0.2105 0.000 0.344 0.040 0.616
#> GSM258552     3   0.642     0.5480 0.000 0.156 0.648 0.196
#> GSM258554     2   0.496     0.5274 0.000 0.684 0.016 0.300
#> GSM258558     2   0.480     0.5705 0.000 0.744 0.032 0.224
#> GSM258559     2   0.640     0.5024 0.000 0.652 0.172 0.176
#> GSM258560     3   0.690     0.3133 0.000 0.380 0.508 0.112
#> GSM258561     4   0.655    -0.0506 0.000 0.400 0.080 0.520
#> GSM258564     4   0.130     0.7266 0.000 0.044 0.000 0.956
#> GSM258567     3   0.626     0.5133 0.000 0.312 0.608 0.080
#> GSM258568     2   0.147     0.5516 0.000 0.948 0.000 0.052
#> GSM258569     3   0.225     0.7286 0.000 0.068 0.920 0.012
#> GSM258571     3   0.130     0.7053 0.000 0.016 0.964 0.020
#> GSM258572     3   0.529     0.6729 0.000 0.168 0.744 0.088
#> GSM258573     2   0.413     0.3561 0.000 0.740 0.000 0.260
#> GSM258574     3   0.755     0.1690 0.000 0.344 0.456 0.200
#> GSM258575     2   0.416     0.5606 0.000 0.736 0.000 0.264
#> GSM258576     2   0.194     0.5432 0.000 0.924 0.000 0.076
#> GSM258577     2   0.758    -0.0815 0.000 0.420 0.384 0.196
#> GSM258579     2   0.416     0.5606 0.000 0.736 0.000 0.264
#> GSM258581     2   0.194     0.5432 0.000 0.924 0.000 0.076
#> GSM258582     3   0.130     0.7053 0.000 0.016 0.964 0.020
#> GSM258584     3   0.757     0.0743 0.000 0.396 0.412 0.192
#> GSM258586     4   0.312     0.6766 0.000 0.092 0.028 0.880
#> GSM258587     2   0.413     0.3561 0.000 0.740 0.000 0.260
#> GSM258588     2   0.619     0.4018 0.000 0.640 0.268 0.092
#> GSM258589     3   0.499     0.6914 0.000 0.152 0.768 0.080
#> GSM258591     2   0.541     0.4369 0.000 0.604 0.020 0.376
#> GSM258592     3   0.480     0.6201 0.000 0.276 0.708 0.016
#> GSM258593     3   0.516     0.0302 0.364 0.000 0.624 0.012
#> GSM258595     3   0.419     0.7158 0.000 0.112 0.824 0.064
#> GSM258597     2   0.413     0.3561 0.000 0.740 0.000 0.260
#> GSM258598     4   0.404     0.5374 0.000 0.248 0.000 0.752
#> GSM258600     3   0.499     0.6914 0.000 0.152 0.768 0.080
#> GSM258601     3   0.266     0.7170 0.000 0.056 0.908 0.036
#> GSM258602     2   0.537     0.5513 0.000 0.740 0.164 0.096
#> GSM258604     3   0.183     0.7032 0.000 0.024 0.944 0.032
#> GSM258605     3   0.183     0.7032 0.000 0.024 0.944 0.032
#> GSM258606     2   0.415     0.5888 0.000 0.828 0.072 0.100
#> GSM258607     4   0.130     0.7266 0.000 0.044 0.000 0.956
#> GSM258608     2   0.766     0.2085 0.000 0.452 0.316 0.232

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     1  0.0000     0.8283 1.000 0.000 0.000 0.000 0.000
#> GSM258555     1  0.0000     0.8283 1.000 0.000 0.000 0.000 0.000
#> GSM258556     4  0.0000     0.7081 0.000 0.000 0.000 1.000 0.000
#> GSM258557     1  0.4787     0.7090 0.608 0.000 0.364 0.000 0.028
#> GSM258562     5  0.1281     0.4483 0.000 0.032 0.012 0.000 0.956
#> GSM258563     1  0.4787     0.7090 0.608 0.000 0.364 0.000 0.028
#> GSM258565     1  0.0000     0.8283 1.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000     0.8283 1.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000     0.8283 1.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000     0.8283 1.000 0.000 0.000 0.000 0.000
#> GSM258580     5  0.1281     0.4483 0.000 0.032 0.012 0.000 0.956
#> GSM258583     1  0.4787     0.7090 0.608 0.000 0.364 0.000 0.028
#> GSM258585     1  0.5002     0.6962 0.596 0.000 0.364 0.000 0.040
#> GSM258590     1  0.0000     0.8283 1.000 0.000 0.000 0.000 0.000
#> GSM258594     1  0.0000     0.8283 1.000 0.000 0.000 0.000 0.000
#> GSM258596     1  0.4849     0.7067 0.608 0.000 0.360 0.000 0.032
#> GSM258599     1  0.4787     0.7090 0.608 0.000 0.364 0.000 0.028
#> GSM258603     1  0.0000     0.8283 1.000 0.000 0.000 0.000 0.000
#> GSM258551     4  0.6997     0.1279 0.000 0.284 0.156 0.516 0.044
#> GSM258552     5  0.5421     0.3681 0.000 0.092 0.028 0.176 0.704
#> GSM258554     2  0.6625     0.5320 0.000 0.560 0.192 0.224 0.024
#> GSM258558     2  0.6679     0.5455 0.000 0.600 0.148 0.192 0.060
#> GSM258559     2  0.7721     0.4254 0.000 0.460 0.280 0.144 0.116
#> GSM258560     3  0.7576     0.0955 0.000 0.152 0.424 0.080 0.344
#> GSM258561     4  0.6755    -0.0455 0.000 0.368 0.176 0.444 0.012
#> GSM258564     4  0.0000     0.7081 0.000 0.000 0.000 1.000 0.000
#> GSM258567     3  0.6757     0.2054 0.000 0.084 0.488 0.056 0.372
#> GSM258568     2  0.2011     0.6157 0.000 0.908 0.088 0.000 0.004
#> GSM258569     5  0.0992     0.4395 0.000 0.024 0.008 0.000 0.968
#> GSM258571     3  0.4273     0.5160 0.000 0.000 0.552 0.000 0.448
#> GSM258572     5  0.4433     0.5001 0.000 0.084 0.044 0.072 0.800
#> GSM258573     2  0.3780     0.4717 0.000 0.808 0.060 0.132 0.000
#> GSM258574     5  0.7881     0.1689 0.000 0.152 0.200 0.176 0.472
#> GSM258575     2  0.4305     0.6027 0.000 0.760 0.040 0.192 0.008
#> GSM258576     2  0.0671     0.6037 0.000 0.980 0.016 0.000 0.004
#> GSM258577     5  0.8321    -0.0502 0.000 0.188 0.300 0.164 0.348
#> GSM258579     2  0.4512     0.6025 0.000 0.752 0.040 0.192 0.016
#> GSM258581     2  0.0671     0.6037 0.000 0.980 0.016 0.000 0.004
#> GSM258582     3  0.4273     0.5160 0.000 0.000 0.552 0.000 0.448
#> GSM258584     3  0.8238    -0.0727 0.000 0.168 0.336 0.160 0.336
#> GSM258586     4  0.3654     0.6473 0.000 0.036 0.108 0.836 0.020
#> GSM258587     2  0.3780     0.4717 0.000 0.808 0.060 0.132 0.000
#> GSM258588     2  0.6241     0.3836 0.000 0.492 0.412 0.056 0.040
#> GSM258589     5  0.4074     0.5115 0.000 0.068 0.044 0.064 0.824
#> GSM258591     2  0.5946     0.4729 0.000 0.604 0.112 0.272 0.012
#> GSM258592     3  0.5107     0.3453 0.000 0.048 0.596 0.000 0.356
#> GSM258593     5  0.5993     0.0592 0.232 0.000 0.184 0.000 0.584
#> GSM258595     5  0.3154     0.4960 0.000 0.048 0.028 0.048 0.876
#> GSM258597     2  0.3780     0.4717 0.000 0.808 0.060 0.132 0.000
#> GSM258598     4  0.3480     0.5049 0.000 0.248 0.000 0.752 0.000
#> GSM258600     5  0.4074     0.5115 0.000 0.068 0.044 0.064 0.824
#> GSM258601     3  0.4670     0.5225 0.000 0.008 0.548 0.004 0.440
#> GSM258602     2  0.6702     0.5360 0.000 0.592 0.228 0.076 0.104
#> GSM258604     3  0.4192     0.5373 0.000 0.000 0.596 0.000 0.404
#> GSM258605     3  0.4192     0.5373 0.000 0.000 0.596 0.000 0.404
#> GSM258606     2  0.5147     0.6098 0.000 0.708 0.200 0.076 0.016
#> GSM258607     4  0.0000     0.7081 0.000 0.000 0.000 1.000 0.000
#> GSM258608     5  0.8492     0.0382 0.000 0.276 0.220 0.188 0.316

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     1  0.0000     0.7560 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258555     1  0.0000     0.7560 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258556     4  0.0000     0.7684 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM258557     1  0.6324     0.5392 0.464 0.324 0.184 0.000 0.028 0.000
#> GSM258562     2  0.4300     0.7003 0.000 0.608 0.028 0.000 0.364 0.000
#> GSM258563     1  0.6324     0.5392 0.464 0.324 0.184 0.000 0.028 0.000
#> GSM258565     1  0.0000     0.7560 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000     0.7560 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000     0.7560 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000     0.7560 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258580     2  0.4300     0.7003 0.000 0.608 0.028 0.000 0.364 0.000
#> GSM258583     1  0.6324     0.5392 0.464 0.324 0.184 0.000 0.028 0.000
#> GSM258585     1  0.6474     0.5332 0.464 0.312 0.184 0.000 0.040 0.000
#> GSM258590     1  0.0000     0.7560 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258594     1  0.0000     0.7560 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258596     1  0.6377     0.5379 0.464 0.320 0.184 0.000 0.032 0.000
#> GSM258599     1  0.6324     0.5392 0.464 0.324 0.184 0.000 0.028 0.000
#> GSM258603     1  0.0000     0.7560 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258551     5  0.7574    -0.2499 0.000 0.068 0.032 0.292 0.380 0.228
#> GSM258552     5  0.4830    -0.1222 0.000 0.336 0.032 0.004 0.612 0.016
#> GSM258554     6  0.5593     0.5214 0.000 0.056 0.024 0.008 0.416 0.496
#> GSM258558     6  0.3993     0.4375 0.000 0.000 0.000 0.004 0.476 0.520
#> GSM258559     5  0.4686    -0.1740 0.000 0.004 0.044 0.000 0.588 0.364
#> GSM258560     5  0.3631     0.4496 0.000 0.000 0.156 0.008 0.792 0.044
#> GSM258561     4  0.7755    -0.0997 0.000 0.068 0.084 0.364 0.128 0.356
#> GSM258564     4  0.0000     0.7684 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM258567     5  0.3420     0.3819 0.000 0.012 0.240 0.000 0.748 0.000
#> GSM258568     6  0.2146     0.6384 0.000 0.004 0.000 0.000 0.116 0.880
#> GSM258569     2  0.4356     0.6956 0.000 0.608 0.032 0.000 0.360 0.000
#> GSM258571     3  0.1745     0.9040 0.000 0.020 0.924 0.000 0.056 0.000
#> GSM258572     5  0.4714    -0.4416 0.000 0.460 0.008 0.008 0.508 0.016
#> GSM258573     6  0.3748     0.5173 0.000 0.068 0.028 0.092 0.000 0.812
#> GSM258574     5  0.3491     0.3805 0.000 0.124 0.012 0.004 0.820 0.040
#> GSM258575     6  0.3508     0.6174 0.000 0.000 0.000 0.004 0.292 0.704
#> GSM258576     6  0.0777     0.6270 0.000 0.004 0.000 0.000 0.024 0.972
#> GSM258577     5  0.2237     0.4796 0.000 0.000 0.036 0.000 0.896 0.068
#> GSM258579     6  0.3547     0.6119 0.000 0.000 0.000 0.004 0.300 0.696
#> GSM258581     6  0.0777     0.6270 0.000 0.004 0.000 0.000 0.024 0.972
#> GSM258582     3  0.1745     0.9040 0.000 0.020 0.924 0.000 0.056 0.000
#> GSM258584     5  0.2685     0.4825 0.000 0.000 0.072 0.000 0.868 0.060
#> GSM258586     4  0.4318     0.6922 0.000 0.068 0.028 0.796 0.072 0.036
#> GSM258587     6  0.3748     0.5173 0.000 0.068 0.028 0.092 0.000 0.812
#> GSM258588     6  0.6155     0.3164 0.000 0.012 0.196 0.000 0.360 0.432
#> GSM258589     5  0.4452    -0.4946 0.000 0.472 0.008 0.008 0.508 0.004
#> GSM258591     6  0.6127     0.5640 0.000 0.060 0.024 0.056 0.288 0.572
#> GSM258592     5  0.3634     0.2475 0.000 0.000 0.356 0.000 0.644 0.000
#> GSM258593     2  0.2113     0.2933 0.092 0.896 0.008 0.000 0.004 0.000
#> GSM258595     2  0.4690     0.5117 0.000 0.512 0.028 0.008 0.452 0.000
#> GSM258597     6  0.3748     0.5173 0.000 0.068 0.028 0.092 0.000 0.812
#> GSM258598     4  0.3126     0.6233 0.000 0.000 0.000 0.752 0.000 0.248
#> GSM258600     5  0.4452    -0.4946 0.000 0.472 0.008 0.008 0.508 0.004
#> GSM258601     3  0.2558     0.8507 0.000 0.000 0.840 0.004 0.156 0.000
#> GSM258602     6  0.5071     0.3738 0.000 0.004 0.068 0.000 0.400 0.528
#> GSM258604     3  0.1644     0.9168 0.000 0.004 0.920 0.000 0.076 0.000
#> GSM258605     3  0.1644     0.9168 0.000 0.004 0.920 0.000 0.076 0.000
#> GSM258606     6  0.4632     0.5755 0.000 0.004 0.064 0.000 0.276 0.656
#> GSM258607     4  0.0000     0.7684 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM258608     5  0.3109     0.4211 0.000 0.000 0.016 0.004 0.812 0.168

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> CV:hclust 47         1.68e-06 2
#> CV:hclust 49         7.32e-09 3
#> CV:hclust 45         1.60e-07 4
#> CV:hclust 37         8.42e-07 5
#> CV:hclust 40         1.36e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.975       0.989         0.4046 0.593   0.593
#> 3 3 0.703           0.869       0.922         0.5974 0.672   0.484
#> 4 4 0.674           0.657       0.799         0.1400 0.920   0.780
#> 5 5 0.684           0.606       0.761         0.0677 0.878   0.610
#> 6 6 0.721           0.621       0.738         0.0468 0.959   0.809

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     1  0.0000      0.975 1.000 0.000
#> GSM258555     1  0.0000      0.975 1.000 0.000
#> GSM258556     2  0.0000      0.993 0.000 1.000
#> GSM258557     1  0.0672      0.969 0.992 0.008
#> GSM258562     2  0.4022      0.917 0.080 0.920
#> GSM258563     1  0.0000      0.975 1.000 0.000
#> GSM258565     1  0.0000      0.975 1.000 0.000
#> GSM258566     1  0.0000      0.975 1.000 0.000
#> GSM258570     1  0.0000      0.975 1.000 0.000
#> GSM258578     1  0.0000      0.975 1.000 0.000
#> GSM258580     2  0.0000      0.993 0.000 1.000
#> GSM258583     1  0.0000      0.975 1.000 0.000
#> GSM258585     1  0.9358      0.448 0.648 0.352
#> GSM258590     1  0.0000      0.975 1.000 0.000
#> GSM258594     1  0.0000      0.975 1.000 0.000
#> GSM258596     1  0.0000      0.975 1.000 0.000
#> GSM258599     1  0.0000      0.975 1.000 0.000
#> GSM258603     1  0.0000      0.975 1.000 0.000
#> GSM258551     2  0.0000      0.993 0.000 1.000
#> GSM258552     2  0.0000      0.993 0.000 1.000
#> GSM258554     2  0.0000      0.993 0.000 1.000
#> GSM258558     2  0.0000      0.993 0.000 1.000
#> GSM258559     2  0.0000      0.993 0.000 1.000
#> GSM258560     2  0.0000      0.993 0.000 1.000
#> GSM258561     2  0.0000      0.993 0.000 1.000
#> GSM258564     2  0.0000      0.993 0.000 1.000
#> GSM258567     2  0.0000      0.993 0.000 1.000
#> GSM258568     2  0.0000      0.993 0.000 1.000
#> GSM258569     2  0.0000      0.993 0.000 1.000
#> GSM258571     2  0.3274      0.938 0.060 0.940
#> GSM258572     2  0.0000      0.993 0.000 1.000
#> GSM258573     2  0.0000      0.993 0.000 1.000
#> GSM258574     2  0.0000      0.993 0.000 1.000
#> GSM258575     2  0.0000      0.993 0.000 1.000
#> GSM258576     2  0.0000      0.993 0.000 1.000
#> GSM258577     2  0.0000      0.993 0.000 1.000
#> GSM258579     2  0.0000      0.993 0.000 1.000
#> GSM258581     2  0.0000      0.993 0.000 1.000
#> GSM258582     2  0.3274      0.938 0.060 0.940
#> GSM258584     2  0.0000      0.993 0.000 1.000
#> GSM258586     2  0.0000      0.993 0.000 1.000
#> GSM258587     2  0.0000      0.993 0.000 1.000
#> GSM258588     2  0.0000      0.993 0.000 1.000
#> GSM258589     2  0.0000      0.993 0.000 1.000
#> GSM258591     2  0.0000      0.993 0.000 1.000
#> GSM258592     2  0.0000      0.993 0.000 1.000
#> GSM258593     1  0.0672      0.969 0.992 0.008
#> GSM258595     2  0.0000      0.993 0.000 1.000
#> GSM258597     2  0.0000      0.993 0.000 1.000
#> GSM258598     2  0.0000      0.993 0.000 1.000
#> GSM258600     2  0.0000      0.993 0.000 1.000
#> GSM258601     2  0.0000      0.993 0.000 1.000
#> GSM258602     2  0.0000      0.993 0.000 1.000
#> GSM258604     2  0.0000      0.993 0.000 1.000
#> GSM258605     2  0.3274      0.938 0.060 0.940
#> GSM258606     2  0.0000      0.993 0.000 1.000
#> GSM258607     2  0.0000      0.993 0.000 1.000
#> GSM258608     2  0.0000      0.993 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258555     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258556     3  0.5882      0.571 0.000 0.348 0.652
#> GSM258557     3  0.6102      0.543 0.320 0.008 0.672
#> GSM258562     3  0.0592      0.890 0.012 0.000 0.988
#> GSM258563     1  0.0424      0.995 0.992 0.008 0.000
#> GSM258565     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258566     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258570     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258578     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258580     3  0.0237      0.892 0.000 0.004 0.996
#> GSM258583     1  0.0424      0.995 0.992 0.008 0.000
#> GSM258585     3  0.2173      0.866 0.048 0.008 0.944
#> GSM258590     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258594     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258596     1  0.0424      0.995 0.992 0.008 0.000
#> GSM258599     1  0.0424      0.995 0.992 0.008 0.000
#> GSM258603     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258551     2  0.1163      0.888 0.000 0.972 0.028
#> GSM258552     3  0.0237      0.892 0.000 0.004 0.996
#> GSM258554     2  0.1163      0.888 0.000 0.972 0.028
#> GSM258558     2  0.4346      0.876 0.000 0.816 0.184
#> GSM258559     2  0.4654      0.853 0.000 0.792 0.208
#> GSM258560     3  0.0747      0.889 0.000 0.016 0.984
#> GSM258561     2  0.1163      0.888 0.000 0.972 0.028
#> GSM258564     2  0.0747      0.879 0.000 0.984 0.016
#> GSM258567     3  0.0424      0.891 0.000 0.008 0.992
#> GSM258568     2  0.4346      0.876 0.000 0.816 0.184
#> GSM258569     3  0.0000      0.892 0.000 0.000 1.000
#> GSM258571     3  0.1015      0.890 0.008 0.012 0.980
#> GSM258572     3  0.0237      0.892 0.000 0.004 0.996
#> GSM258573     2  0.0747      0.879 0.000 0.984 0.016
#> GSM258574     3  0.0424      0.891 0.000 0.008 0.992
#> GSM258575     2  0.4399      0.875 0.000 0.812 0.188
#> GSM258576     2  0.4346      0.876 0.000 0.816 0.184
#> GSM258577     3  0.0892      0.886 0.000 0.020 0.980
#> GSM258579     2  0.4399      0.875 0.000 0.812 0.188
#> GSM258581     2  0.4346      0.876 0.000 0.816 0.184
#> GSM258582     3  0.0848      0.890 0.008 0.008 0.984
#> GSM258584     3  0.3686      0.772 0.000 0.140 0.860
#> GSM258586     3  0.5591      0.638 0.000 0.304 0.696
#> GSM258587     2  0.1163      0.885 0.000 0.972 0.028
#> GSM258588     3  0.4931      0.653 0.000 0.232 0.768
#> GSM258589     3  0.0237      0.892 0.000 0.004 0.996
#> GSM258591     2  0.1163      0.888 0.000 0.972 0.028
#> GSM258592     3  0.0424      0.891 0.000 0.008 0.992
#> GSM258593     3  0.5692      0.622 0.268 0.008 0.724
#> GSM258595     3  0.0237      0.892 0.000 0.004 0.996
#> GSM258597     2  0.0747      0.879 0.000 0.984 0.016
#> GSM258598     2  0.0747      0.879 0.000 0.984 0.016
#> GSM258600     3  0.0237      0.892 0.000 0.004 0.996
#> GSM258601     3  0.0424      0.892 0.000 0.008 0.992
#> GSM258602     2  0.4605      0.855 0.000 0.796 0.204
#> GSM258604     3  0.1015      0.890 0.008 0.012 0.980
#> GSM258605     3  0.1015      0.888 0.008 0.012 0.980
#> GSM258606     2  0.4346      0.876 0.000 0.816 0.184
#> GSM258607     3  0.6045      0.516 0.000 0.380 0.620
#> GSM258608     3  0.5835      0.422 0.000 0.340 0.660

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     1  0.0000      0.947 1.000 0.000 0.000 0.000
#> GSM258555     1  0.0000      0.947 1.000 0.000 0.000 0.000
#> GSM258556     4  0.7724      0.651 0.000 0.328 0.240 0.432
#> GSM258557     3  0.6159      0.477 0.132 0.000 0.672 0.196
#> GSM258562     3  0.1716      0.724 0.000 0.000 0.936 0.064
#> GSM258563     1  0.3853      0.865 0.820 0.000 0.020 0.160
#> GSM258565     1  0.0000      0.947 1.000 0.000 0.000 0.000
#> GSM258566     1  0.0000      0.947 1.000 0.000 0.000 0.000
#> GSM258570     1  0.0000      0.947 1.000 0.000 0.000 0.000
#> GSM258578     1  0.0000      0.947 1.000 0.000 0.000 0.000
#> GSM258580     3  0.0921      0.720 0.000 0.000 0.972 0.028
#> GSM258583     1  0.3306      0.878 0.840 0.000 0.004 0.156
#> GSM258585     3  0.4019      0.625 0.012 0.000 0.792 0.196
#> GSM258590     1  0.0000      0.947 1.000 0.000 0.000 0.000
#> GSM258594     1  0.0000      0.947 1.000 0.000 0.000 0.000
#> GSM258596     1  0.3695      0.871 0.828 0.000 0.016 0.156
#> GSM258599     1  0.3695      0.871 0.828 0.000 0.016 0.156
#> GSM258603     1  0.0000      0.947 1.000 0.000 0.000 0.000
#> GSM258551     2  0.2011      0.607 0.000 0.920 0.000 0.080
#> GSM258552     3  0.0927      0.715 0.000 0.008 0.976 0.016
#> GSM258554     2  0.0000      0.659 0.000 1.000 0.000 0.000
#> GSM258558     2  0.4464      0.708 0.000 0.768 0.024 0.208
#> GSM258559     2  0.5985      0.538 0.000 0.596 0.052 0.352
#> GSM258560     3  0.6221      0.475 0.000 0.076 0.608 0.316
#> GSM258561     2  0.1576      0.633 0.000 0.948 0.004 0.048
#> GSM258564     2  0.4431      0.271 0.000 0.696 0.000 0.304
#> GSM258567     3  0.4304      0.649 0.000 0.000 0.716 0.284
#> GSM258568     2  0.4464      0.708 0.000 0.768 0.024 0.208
#> GSM258569     3  0.1474      0.724 0.000 0.000 0.948 0.052
#> GSM258571     3  0.4673      0.658 0.000 0.008 0.700 0.292
#> GSM258572     3  0.1042      0.714 0.000 0.008 0.972 0.020
#> GSM258573     2  0.1637      0.621 0.000 0.940 0.000 0.060
#> GSM258574     3  0.3182      0.650 0.000 0.028 0.876 0.096
#> GSM258575     2  0.4868      0.698 0.000 0.748 0.040 0.212
#> GSM258576     2  0.4464      0.708 0.000 0.768 0.024 0.208
#> GSM258577     3  0.5076      0.606 0.000 0.072 0.756 0.172
#> GSM258579     2  0.4868      0.698 0.000 0.748 0.040 0.212
#> GSM258581     2  0.4464      0.708 0.000 0.768 0.024 0.208
#> GSM258582     3  0.4482      0.665 0.000 0.008 0.728 0.264
#> GSM258584     4  0.7524     -0.195 0.000 0.184 0.408 0.408
#> GSM258586     4  0.7884      0.632 0.000 0.312 0.304 0.384
#> GSM258587     2  0.1389      0.631 0.000 0.952 0.000 0.048
#> GSM258588     3  0.7883     -0.244 0.000 0.316 0.384 0.300
#> GSM258589     3  0.2593      0.684 0.000 0.016 0.904 0.080
#> GSM258591     2  0.0000      0.659 0.000 1.000 0.000 0.000
#> GSM258592     3  0.4477      0.645 0.000 0.000 0.688 0.312
#> GSM258593     3  0.4875      0.582 0.068 0.000 0.772 0.160
#> GSM258595     3  0.1722      0.721 0.000 0.008 0.944 0.048
#> GSM258597     2  0.4382      0.275 0.000 0.704 0.000 0.296
#> GSM258598     2  0.4431      0.271 0.000 0.696 0.000 0.304
#> GSM258600     3  0.1042      0.714 0.000 0.008 0.972 0.020
#> GSM258601     3  0.4539      0.667 0.000 0.008 0.720 0.272
#> GSM258602     2  0.5359      0.633 0.000 0.676 0.036 0.288
#> GSM258604     3  0.4567      0.664 0.000 0.008 0.716 0.276
#> GSM258605     3  0.4769      0.650 0.000 0.008 0.684 0.308
#> GSM258606     2  0.4464      0.708 0.000 0.768 0.024 0.208
#> GSM258607     4  0.7645      0.615 0.000 0.360 0.212 0.428
#> GSM258608     2  0.7744      0.196 0.000 0.440 0.268 0.292

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     1  0.0404     0.8635 0.988 0.000 0.000 0.012 0.000
#> GSM258555     1  0.0609     0.8634 0.980 0.000 0.000 0.020 0.000
#> GSM258556     4  0.4865     0.7312 0.000 0.044 0.040 0.748 0.168
#> GSM258557     5  0.7692     0.1985 0.092 0.000 0.312 0.160 0.436
#> GSM258562     5  0.3115     0.5260 0.000 0.000 0.112 0.036 0.852
#> GSM258563     1  0.6263     0.6601 0.580 0.000 0.248 0.160 0.012
#> GSM258565     1  0.0703     0.8634 0.976 0.000 0.000 0.024 0.000
#> GSM258566     1  0.0703     0.8634 0.976 0.000 0.000 0.024 0.000
#> GSM258570     1  0.0162     0.8640 0.996 0.000 0.000 0.004 0.000
#> GSM258578     1  0.0609     0.8634 0.980 0.000 0.000 0.020 0.000
#> GSM258580     5  0.1901     0.5890 0.000 0.004 0.024 0.040 0.932
#> GSM258583     1  0.5924     0.6841 0.608 0.000 0.232 0.156 0.004
#> GSM258585     5  0.6444     0.2639 0.004 0.000 0.336 0.168 0.492
#> GSM258590     1  0.0162     0.8640 0.996 0.000 0.000 0.004 0.000
#> GSM258594     1  0.0404     0.8635 0.988 0.000 0.000 0.012 0.000
#> GSM258596     1  0.6072     0.6786 0.600 0.000 0.232 0.160 0.008
#> GSM258599     1  0.6005     0.6839 0.608 0.000 0.232 0.152 0.008
#> GSM258603     1  0.0162     0.8638 0.996 0.000 0.000 0.004 0.000
#> GSM258551     2  0.5215     0.4620 0.000 0.656 0.088 0.256 0.000
#> GSM258552     5  0.1369     0.5834 0.000 0.008 0.028 0.008 0.956
#> GSM258554     2  0.4094     0.6410 0.000 0.788 0.084 0.128 0.000
#> GSM258558     2  0.0960     0.7359 0.000 0.972 0.004 0.008 0.016
#> GSM258559     2  0.5503     0.5479 0.000 0.688 0.212 0.048 0.052
#> GSM258560     5  0.6674    -0.3550 0.000 0.100 0.412 0.036 0.452
#> GSM258561     2  0.5198     0.5555 0.000 0.692 0.108 0.196 0.004
#> GSM258564     4  0.3661     0.6876 0.000 0.276 0.000 0.724 0.000
#> GSM258567     3  0.5257     0.4523 0.000 0.004 0.492 0.036 0.468
#> GSM258568     2  0.0451     0.7377 0.000 0.988 0.004 0.000 0.008
#> GSM258569     5  0.2966     0.4899 0.000 0.000 0.136 0.016 0.848
#> GSM258571     3  0.5061     0.6930 0.000 0.008 0.572 0.024 0.396
#> GSM258572     5  0.1369     0.5888 0.000 0.008 0.028 0.008 0.956
#> GSM258573     2  0.4637     0.5351 0.000 0.728 0.076 0.196 0.000
#> GSM258574     5  0.2474     0.5507 0.000 0.040 0.040 0.012 0.908
#> GSM258575     2  0.1518     0.7251 0.000 0.944 0.004 0.004 0.048
#> GSM258576     2  0.0451     0.7373 0.000 0.988 0.004 0.000 0.008
#> GSM258577     5  0.6181     0.0927 0.000 0.128 0.224 0.028 0.620
#> GSM258579     2  0.1518     0.7251 0.000 0.944 0.004 0.004 0.048
#> GSM258581     2  0.0451     0.7373 0.000 0.988 0.004 0.000 0.008
#> GSM258582     3  0.5101     0.6782 0.000 0.008 0.552 0.024 0.416
#> GSM258584     3  0.7367     0.2696 0.000 0.204 0.460 0.048 0.288
#> GSM258586     4  0.5005     0.7092 0.000 0.044 0.028 0.716 0.212
#> GSM258587     2  0.4537     0.5542 0.000 0.740 0.076 0.184 0.000
#> GSM258588     2  0.7025     0.3069 0.000 0.496 0.172 0.036 0.296
#> GSM258589     5  0.1967     0.5663 0.000 0.020 0.036 0.012 0.932
#> GSM258591     2  0.3791     0.6422 0.000 0.812 0.076 0.112 0.000
#> GSM258592     3  0.5005     0.5579 0.000 0.004 0.580 0.028 0.388
#> GSM258593     5  0.6390     0.3413 0.020 0.000 0.264 0.144 0.572
#> GSM258595     5  0.2805     0.5091 0.000 0.008 0.108 0.012 0.872
#> GSM258597     4  0.5396     0.5538 0.000 0.340 0.072 0.588 0.000
#> GSM258598     4  0.3928     0.6770 0.000 0.296 0.004 0.700 0.000
#> GSM258600     5  0.0981     0.5910 0.000 0.008 0.008 0.012 0.972
#> GSM258601     3  0.5140     0.6618 0.000 0.008 0.524 0.024 0.444
#> GSM258602     2  0.4897     0.5996 0.000 0.748 0.164 0.040 0.048
#> GSM258604     3  0.5070     0.6867 0.000 0.008 0.568 0.024 0.400
#> GSM258605     3  0.4709     0.6849 0.000 0.000 0.612 0.024 0.364
#> GSM258606     2  0.0451     0.7377 0.000 0.988 0.004 0.000 0.008
#> GSM258607     4  0.4914     0.7425 0.000 0.056 0.040 0.752 0.152
#> GSM258608     2  0.6814     0.3957 0.000 0.568 0.164 0.048 0.220

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     1  0.1151    0.94081 0.956 0.000 0.032 0.012 0.000 0.000
#> GSM258555     1  0.1572    0.94008 0.936 0.000 0.036 0.028 0.000 0.000
#> GSM258556     4  0.3182    0.82832 0.000 0.080 0.040 0.856 0.012 0.012
#> GSM258557     5  0.5461    0.36565 0.064 0.324 0.036 0.000 0.576 0.000
#> GSM258562     2  0.3111    0.69100 0.000 0.852 0.088 0.020 0.040 0.000
#> GSM258563     5  0.4493    0.62759 0.424 0.004 0.024 0.000 0.548 0.000
#> GSM258565     1  0.1700    0.94023 0.928 0.000 0.048 0.024 0.000 0.000
#> GSM258566     1  0.1700    0.94023 0.928 0.000 0.048 0.024 0.000 0.000
#> GSM258570     1  0.0820    0.94407 0.972 0.000 0.016 0.012 0.000 0.000
#> GSM258578     1  0.1572    0.94008 0.936 0.000 0.036 0.028 0.000 0.000
#> GSM258580     2  0.2103    0.72219 0.000 0.916 0.024 0.020 0.040 0.000
#> GSM258583     5  0.4314    0.61591 0.444 0.000 0.020 0.000 0.536 0.000
#> GSM258585     5  0.4707    0.21473 0.000 0.360 0.056 0.000 0.584 0.000
#> GSM258590     1  0.0820    0.94407 0.972 0.000 0.016 0.012 0.000 0.000
#> GSM258594     1  0.1151    0.94081 0.956 0.000 0.032 0.012 0.000 0.000
#> GSM258596     5  0.4533    0.62698 0.432 0.008 0.020 0.000 0.540 0.000
#> GSM258599     5  0.4314    0.61591 0.444 0.000 0.020 0.000 0.536 0.000
#> GSM258603     1  0.0458    0.94555 0.984 0.000 0.000 0.016 0.000 0.000
#> GSM258551     6  0.6513    0.28824 0.000 0.000 0.040 0.288 0.204 0.468
#> GSM258552     2  0.1786    0.72620 0.000 0.932 0.032 0.004 0.028 0.004
#> GSM258554     6  0.5893    0.46810 0.000 0.000 0.032 0.172 0.212 0.584
#> GSM258558     6  0.0881    0.66587 0.000 0.000 0.012 0.008 0.008 0.972
#> GSM258559     6  0.6405    0.46889 0.000 0.024 0.112 0.064 0.208 0.592
#> GSM258560     2  0.7973   -0.30633 0.000 0.324 0.320 0.068 0.220 0.068
#> GSM258561     6  0.6861    0.28566 0.000 0.000 0.068 0.280 0.212 0.440
#> GSM258564     4  0.2135    0.82842 0.000 0.000 0.000 0.872 0.000 0.128
#> GSM258567     3  0.6672    0.43201 0.000 0.288 0.480 0.044 0.180 0.008
#> GSM258568     6  0.0653    0.66488 0.000 0.000 0.012 0.004 0.004 0.980
#> GSM258569     2  0.2482    0.65538 0.000 0.848 0.148 0.000 0.004 0.000
#> GSM258571     3  0.2955    0.72396 0.000 0.172 0.816 0.004 0.008 0.000
#> GSM258572     2  0.1294    0.73024 0.000 0.956 0.008 0.008 0.024 0.004
#> GSM258573     6  0.5694    0.40632 0.000 0.000 0.020 0.224 0.164 0.592
#> GSM258574     2  0.2051    0.71519 0.000 0.924 0.028 0.008 0.024 0.016
#> GSM258575     6  0.1780    0.64970 0.000 0.028 0.000 0.012 0.028 0.932
#> GSM258576     6  0.0508    0.66178 0.000 0.000 0.000 0.012 0.004 0.984
#> GSM258577     2  0.7182    0.17701 0.000 0.540 0.160 0.052 0.160 0.088
#> GSM258579     6  0.1700    0.65035 0.000 0.024 0.000 0.012 0.028 0.936
#> GSM258581     6  0.0405    0.66273 0.000 0.000 0.000 0.008 0.004 0.988
#> GSM258582     3  0.2979    0.71462 0.000 0.188 0.804 0.004 0.004 0.000
#> GSM258584     3  0.8307    0.28405 0.000 0.212 0.356 0.064 0.220 0.148
#> GSM258586     4  0.3745    0.81454 0.000 0.104 0.028 0.820 0.036 0.012
#> GSM258587     6  0.5626    0.42285 0.000 0.000 0.020 0.212 0.164 0.604
#> GSM258588     6  0.7415    0.31915 0.000 0.212 0.076 0.044 0.188 0.480
#> GSM258589     2  0.1647    0.72279 0.000 0.940 0.032 0.016 0.008 0.004
#> GSM258591     6  0.5810    0.46653 0.000 0.000 0.028 0.180 0.200 0.592
#> GSM258592     3  0.6320    0.51737 0.000 0.224 0.560 0.044 0.164 0.008
#> GSM258593     2  0.4835   -0.00125 0.004 0.540 0.048 0.000 0.408 0.000
#> GSM258595     2  0.2053    0.68951 0.000 0.888 0.108 0.000 0.004 0.000
#> GSM258597     4  0.5108    0.67187 0.000 0.000 0.020 0.676 0.160 0.144
#> GSM258598     4  0.2755    0.81833 0.000 0.000 0.004 0.844 0.012 0.140
#> GSM258600     2  0.1109    0.73335 0.000 0.964 0.012 0.016 0.004 0.004
#> GSM258601     3  0.2980    0.71642 0.000 0.192 0.800 0.008 0.000 0.000
#> GSM258602     6  0.6207    0.49427 0.000 0.024 0.092 0.064 0.208 0.612
#> GSM258604     3  0.3219    0.72218 0.000 0.168 0.808 0.008 0.016 0.000
#> GSM258605     3  0.3128    0.72366 0.000 0.168 0.812 0.008 0.012 0.000
#> GSM258606     6  0.0767    0.66478 0.000 0.000 0.012 0.008 0.004 0.976
#> GSM258607     4  0.2620    0.83746 0.000 0.048 0.040 0.888 0.000 0.024
#> GSM258608     6  0.7519    0.34861 0.000 0.144 0.084 0.060 0.232 0.480

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> CV:kmeans 57         2.94e-09 2
#> CV:kmeans 57         4.80e-09 3
#> CV:kmeans 50         8.37e-08 4
#> CV:kmeans 47         2.17e-07 5
#> CV:kmeans 41         9.54e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.985       0.994         0.4935 0.506   0.506
#> 3 3 0.837           0.859       0.937         0.3602 0.705   0.477
#> 4 4 0.700           0.640       0.734         0.1215 0.818   0.515
#> 5 5 0.763           0.775       0.859         0.0644 0.929   0.722
#> 6 6 0.734           0.617       0.779         0.0343 0.961   0.815

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     1  0.0000      0.990 1.000 0.000
#> GSM258555     1  0.0000      0.990 1.000 0.000
#> GSM258556     2  0.0000      0.995 0.000 1.000
#> GSM258557     1  0.0000      0.990 1.000 0.000
#> GSM258562     1  0.0000      0.990 1.000 0.000
#> GSM258563     1  0.0000      0.990 1.000 0.000
#> GSM258565     1  0.0000      0.990 1.000 0.000
#> GSM258566     1  0.0000      0.990 1.000 0.000
#> GSM258570     1  0.0000      0.990 1.000 0.000
#> GSM258578     1  0.0000      0.990 1.000 0.000
#> GSM258580     1  0.7453      0.729 0.788 0.212
#> GSM258583     1  0.0000      0.990 1.000 0.000
#> GSM258585     1  0.0000      0.990 1.000 0.000
#> GSM258590     1  0.0000      0.990 1.000 0.000
#> GSM258594     1  0.0000      0.990 1.000 0.000
#> GSM258596     1  0.0000      0.990 1.000 0.000
#> GSM258599     1  0.0000      0.990 1.000 0.000
#> GSM258603     1  0.0000      0.990 1.000 0.000
#> GSM258551     2  0.0000      0.995 0.000 1.000
#> GSM258552     2  0.0000      0.995 0.000 1.000
#> GSM258554     2  0.0000      0.995 0.000 1.000
#> GSM258558     2  0.0000      0.995 0.000 1.000
#> GSM258559     2  0.0000      0.995 0.000 1.000
#> GSM258560     2  0.0000      0.995 0.000 1.000
#> GSM258561     2  0.0000      0.995 0.000 1.000
#> GSM258564     2  0.0000      0.995 0.000 1.000
#> GSM258567     2  0.0000      0.995 0.000 1.000
#> GSM258568     2  0.0000      0.995 0.000 1.000
#> GSM258569     1  0.0376      0.987 0.996 0.004
#> GSM258571     1  0.0000      0.990 1.000 0.000
#> GSM258572     2  0.0000      0.995 0.000 1.000
#> GSM258573     2  0.0000      0.995 0.000 1.000
#> GSM258574     2  0.0000      0.995 0.000 1.000
#> GSM258575     2  0.0000      0.995 0.000 1.000
#> GSM258576     2  0.0000      0.995 0.000 1.000
#> GSM258577     2  0.0000      0.995 0.000 1.000
#> GSM258579     2  0.0000      0.995 0.000 1.000
#> GSM258581     2  0.0000      0.995 0.000 1.000
#> GSM258582     1  0.0000      0.990 1.000 0.000
#> GSM258584     2  0.0000      0.995 0.000 1.000
#> GSM258586     2  0.0000      0.995 0.000 1.000
#> GSM258587     2  0.0000      0.995 0.000 1.000
#> GSM258588     2  0.0000      0.995 0.000 1.000
#> GSM258589     2  0.0000      0.995 0.000 1.000
#> GSM258591     2  0.0000      0.995 0.000 1.000
#> GSM258592     2  0.0000      0.995 0.000 1.000
#> GSM258593     1  0.0000      0.990 1.000 0.000
#> GSM258595     1  0.0672      0.983 0.992 0.008
#> GSM258597     2  0.0000      0.995 0.000 1.000
#> GSM258598     2  0.0000      0.995 0.000 1.000
#> GSM258600     2  0.0000      0.995 0.000 1.000
#> GSM258601     2  0.6148      0.818 0.152 0.848
#> GSM258602     2  0.0000      0.995 0.000 1.000
#> GSM258604     1  0.0000      0.990 1.000 0.000
#> GSM258605     1  0.0000      0.990 1.000 0.000
#> GSM258606     2  0.0000      0.995 0.000 1.000
#> GSM258607     2  0.0000      0.995 0.000 1.000
#> GSM258608     2  0.0000      0.995 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258555     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258556     3  0.6154      0.318 0.000 0.408 0.592
#> GSM258557     1  0.1031      0.975 0.976 0.000 0.024
#> GSM258562     3  0.1529      0.858 0.040 0.000 0.960
#> GSM258563     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258565     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258566     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258570     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258578     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258580     3  0.2165      0.841 0.064 0.000 0.936
#> GSM258583     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258585     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258590     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258594     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258596     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258599     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258603     1  0.0000      0.998 1.000 0.000 0.000
#> GSM258551     2  0.0000      0.937 0.000 1.000 0.000
#> GSM258552     3  0.0592      0.861 0.000 0.012 0.988
#> GSM258554     2  0.0000      0.937 0.000 1.000 0.000
#> GSM258558     2  0.0424      0.937 0.000 0.992 0.008
#> GSM258559     2  0.0747      0.934 0.000 0.984 0.016
#> GSM258560     3  0.5254      0.635 0.000 0.264 0.736
#> GSM258561     2  0.0424      0.933 0.000 0.992 0.008
#> GSM258564     2  0.0237      0.936 0.000 0.996 0.004
#> GSM258567     3  0.0000      0.861 0.000 0.000 1.000
#> GSM258568     2  0.0424      0.937 0.000 0.992 0.008
#> GSM258569     3  0.0592      0.862 0.012 0.000 0.988
#> GSM258571     3  0.1525      0.859 0.032 0.004 0.964
#> GSM258572     3  0.0592      0.861 0.000 0.012 0.988
#> GSM258573     2  0.0000      0.937 0.000 1.000 0.000
#> GSM258574     3  0.5621      0.555 0.000 0.308 0.692
#> GSM258575     2  0.1031      0.928 0.000 0.976 0.024
#> GSM258576     2  0.0424      0.937 0.000 0.992 0.008
#> GSM258577     3  0.6045      0.414 0.000 0.380 0.620
#> GSM258579     2  0.0592      0.936 0.000 0.988 0.012
#> GSM258581     2  0.0424      0.937 0.000 0.992 0.008
#> GSM258582     3  0.1267      0.861 0.024 0.004 0.972
#> GSM258584     2  0.6180      0.183 0.000 0.584 0.416
#> GSM258586     3  0.6126      0.343 0.000 0.400 0.600
#> GSM258587     2  0.0000      0.937 0.000 1.000 0.000
#> GSM258588     2  0.5529      0.536 0.000 0.704 0.296
#> GSM258589     3  0.2261      0.836 0.000 0.068 0.932
#> GSM258591     2  0.0000      0.937 0.000 1.000 0.000
#> GSM258592     3  0.0000      0.861 0.000 0.000 1.000
#> GSM258593     1  0.0424      0.990 0.992 0.000 0.008
#> GSM258595     3  0.0661      0.862 0.008 0.004 0.988
#> GSM258597     2  0.0237      0.936 0.000 0.996 0.004
#> GSM258598     2  0.0237      0.936 0.000 0.996 0.004
#> GSM258600     3  0.0592      0.861 0.000 0.012 0.988
#> GSM258601     3  0.1482      0.861 0.012 0.020 0.968
#> GSM258602     2  0.0424      0.937 0.000 0.992 0.008
#> GSM258604     3  0.4110      0.771 0.152 0.004 0.844
#> GSM258605     3  0.4555      0.718 0.200 0.000 0.800
#> GSM258606     2  0.0424      0.937 0.000 0.992 0.008
#> GSM258607     2  0.5591      0.491 0.000 0.696 0.304
#> GSM258608     2  0.0592      0.936 0.000 0.988 0.012

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     1  0.0000    0.98314 1.000 0.000 0.000 0.000
#> GSM258555     1  0.0000    0.98314 1.000 0.000 0.000 0.000
#> GSM258556     4  0.6545    0.48038 0.000 0.216 0.152 0.632
#> GSM258557     1  0.1902    0.92188 0.932 0.064 0.004 0.000
#> GSM258562     3  0.4776    0.70211 0.016 0.272 0.712 0.000
#> GSM258563     1  0.0000    0.98314 1.000 0.000 0.000 0.000
#> GSM258565     1  0.0000    0.98314 1.000 0.000 0.000 0.000
#> GSM258566     1  0.0000    0.98314 1.000 0.000 0.000 0.000
#> GSM258570     1  0.0000    0.98314 1.000 0.000 0.000 0.000
#> GSM258578     1  0.0000    0.98314 1.000 0.000 0.000 0.000
#> GSM258580     2  0.5680   -0.47194 0.012 0.584 0.392 0.012
#> GSM258583     1  0.0000    0.98314 1.000 0.000 0.000 0.000
#> GSM258585     1  0.0000    0.98314 1.000 0.000 0.000 0.000
#> GSM258590     1  0.0000    0.98314 1.000 0.000 0.000 0.000
#> GSM258594     1  0.0000    0.98314 1.000 0.000 0.000 0.000
#> GSM258596     1  0.0000    0.98314 1.000 0.000 0.000 0.000
#> GSM258599     1  0.0000    0.98314 1.000 0.000 0.000 0.000
#> GSM258603     1  0.0000    0.98314 1.000 0.000 0.000 0.000
#> GSM258551     4  0.1118    0.80337 0.000 0.036 0.000 0.964
#> GSM258552     3  0.5236    0.62768 0.000 0.432 0.560 0.008
#> GSM258554     4  0.1474    0.78528 0.000 0.052 0.000 0.948
#> GSM258558     2  0.4999    0.45730 0.000 0.508 0.000 0.492
#> GSM258559     2  0.6813    0.50665 0.000 0.576 0.132 0.292
#> GSM258560     2  0.6609   -0.00857 0.000 0.472 0.448 0.080
#> GSM258561     4  0.2124    0.79729 0.000 0.028 0.040 0.932
#> GSM258564     4  0.0927    0.81364 0.000 0.016 0.008 0.976
#> GSM258567     3  0.4522    0.48525 0.000 0.320 0.680 0.000
#> GSM258568     2  0.5000    0.45381 0.000 0.504 0.000 0.496
#> GSM258569     3  0.4193    0.70721 0.000 0.268 0.732 0.000
#> GSM258571     3  0.1191    0.70324 0.004 0.024 0.968 0.004
#> GSM258572     3  0.5506    0.59095 0.000 0.472 0.512 0.016
#> GSM258573     4  0.1118    0.80833 0.000 0.036 0.000 0.964
#> GSM258574     2  0.4434   -0.14886 0.000 0.756 0.228 0.016
#> GSM258575     2  0.5137    0.45901 0.000 0.544 0.004 0.452
#> GSM258576     2  0.5000    0.45381 0.000 0.504 0.000 0.496
#> GSM258577     2  0.6875   -0.14189 0.000 0.504 0.388 0.108
#> GSM258579     2  0.4961    0.47155 0.000 0.552 0.000 0.448
#> GSM258581     2  0.5000    0.45381 0.000 0.504 0.000 0.496
#> GSM258582     3  0.1396    0.71900 0.004 0.032 0.960 0.004
#> GSM258584     2  0.6664    0.39916 0.000 0.580 0.308 0.112
#> GSM258586     4  0.6412    0.41467 0.000 0.320 0.088 0.592
#> GSM258587     4  0.1474    0.78680 0.000 0.052 0.000 0.948
#> GSM258588     2  0.5102    0.48332 0.000 0.764 0.100 0.136
#> GSM258589     2  0.5565   -0.37123 0.000 0.624 0.344 0.032
#> GSM258591     4  0.1118    0.80026 0.000 0.036 0.000 0.964
#> GSM258592     3  0.3975    0.51799 0.000 0.240 0.760 0.000
#> GSM258593     1  0.4274    0.78701 0.820 0.108 0.072 0.000
#> GSM258595     3  0.5256    0.69730 0.000 0.272 0.692 0.036
#> GSM258597     4  0.0524    0.81680 0.000 0.008 0.004 0.988
#> GSM258598     4  0.0524    0.81680 0.000 0.008 0.004 0.988
#> GSM258600     3  0.5586    0.60292 0.000 0.452 0.528 0.020
#> GSM258601     3  0.2282    0.69057 0.000 0.024 0.924 0.052
#> GSM258602     2  0.6020    0.50464 0.000 0.568 0.048 0.384
#> GSM258604     3  0.3266    0.66858 0.032 0.004 0.880 0.084
#> GSM258605     3  0.2494    0.68296 0.048 0.036 0.916 0.000
#> GSM258606     2  0.4999    0.45699 0.000 0.508 0.000 0.492
#> GSM258607     4  0.4940    0.64338 0.000 0.096 0.128 0.776
#> GSM258608     2  0.5130    0.51468 0.000 0.652 0.016 0.332

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     1  0.0000     0.9599 1.000 0.000 0.000 0.000 0.000
#> GSM258555     1  0.0000     0.9599 1.000 0.000 0.000 0.000 0.000
#> GSM258556     4  0.3736     0.7296 0.000 0.004 0.100 0.824 0.072
#> GSM258557     1  0.3625     0.8489 0.844 0.028 0.016 0.008 0.104
#> GSM258562     5  0.4401     0.5697 0.016 0.000 0.296 0.004 0.684
#> GSM258563     1  0.1200     0.9503 0.964 0.012 0.016 0.008 0.000
#> GSM258565     1  0.0000     0.9599 1.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000     0.9599 1.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000     0.9599 1.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000     0.9599 1.000 0.000 0.000 0.000 0.000
#> GSM258580     5  0.1901     0.7700 0.004 0.040 0.024 0.000 0.932
#> GSM258583     1  0.1200     0.9503 0.964 0.012 0.016 0.008 0.000
#> GSM258585     1  0.2288     0.9280 0.924 0.020 0.020 0.008 0.028
#> GSM258590     1  0.0000     0.9599 1.000 0.000 0.000 0.000 0.000
#> GSM258594     1  0.0000     0.9599 1.000 0.000 0.000 0.000 0.000
#> GSM258596     1  0.0740     0.9551 0.980 0.008 0.008 0.004 0.000
#> GSM258599     1  0.1200     0.9503 0.964 0.012 0.016 0.008 0.000
#> GSM258603     1  0.0000     0.9599 1.000 0.000 0.000 0.000 0.000
#> GSM258551     4  0.3333     0.7514 0.000 0.208 0.000 0.788 0.004
#> GSM258552     5  0.2349     0.7628 0.000 0.012 0.084 0.004 0.900
#> GSM258554     4  0.3398     0.7532 0.000 0.216 0.000 0.780 0.004
#> GSM258558     2  0.2997     0.7688 0.000 0.840 0.000 0.148 0.012
#> GSM258559     2  0.2460     0.7478 0.000 0.900 0.072 0.024 0.004
#> GSM258560     2  0.7344    -0.0741 0.000 0.404 0.348 0.036 0.212
#> GSM258561     4  0.2919     0.8176 0.000 0.104 0.024 0.868 0.004
#> GSM258564     4  0.0833     0.8203 0.000 0.016 0.004 0.976 0.004
#> GSM258567     3  0.4444     0.7279 0.000 0.104 0.760 0.000 0.136
#> GSM258568     2  0.2471     0.7743 0.000 0.864 0.000 0.136 0.000
#> GSM258569     5  0.4101     0.5588 0.000 0.000 0.332 0.004 0.664
#> GSM258571     3  0.1251     0.8825 0.000 0.008 0.956 0.000 0.036
#> GSM258572     5  0.1195     0.7716 0.000 0.012 0.028 0.000 0.960
#> GSM258573     4  0.3333     0.7571 0.000 0.208 0.000 0.788 0.004
#> GSM258574     5  0.2825     0.7310 0.000 0.124 0.016 0.000 0.860
#> GSM258575     2  0.4386     0.7298 0.000 0.764 0.000 0.140 0.096
#> GSM258576     2  0.2605     0.7689 0.000 0.852 0.000 0.148 0.000
#> GSM258577     5  0.6674     0.4089 0.000 0.284 0.132 0.036 0.548
#> GSM258579     2  0.4038     0.7489 0.000 0.792 0.000 0.128 0.080
#> GSM258581     2  0.2471     0.7743 0.000 0.864 0.000 0.136 0.000
#> GSM258582     3  0.1571     0.8695 0.004 0.000 0.936 0.000 0.060
#> GSM258584     2  0.5724     0.4324 0.000 0.640 0.260 0.024 0.076
#> GSM258586     4  0.3895     0.7154 0.000 0.012 0.044 0.812 0.132
#> GSM258587     4  0.3809     0.6967 0.000 0.256 0.000 0.736 0.008
#> GSM258588     2  0.4673     0.5907 0.000 0.716 0.052 0.004 0.228
#> GSM258589     5  0.3318     0.7524 0.000 0.072 0.040 0.024 0.864
#> GSM258591     4  0.3790     0.6849 0.000 0.272 0.000 0.724 0.004
#> GSM258592     3  0.3442     0.8030 0.000 0.104 0.836 0.000 0.060
#> GSM258593     1  0.4974     0.6121 0.692 0.008 0.036 0.008 0.256
#> GSM258595     5  0.5288     0.4653 0.004 0.004 0.360 0.040 0.592
#> GSM258597     4  0.1124     0.8252 0.000 0.036 0.000 0.960 0.004
#> GSM258598     4  0.1043     0.8249 0.000 0.040 0.000 0.960 0.000
#> GSM258600     5  0.0451     0.7692 0.000 0.004 0.000 0.008 0.988
#> GSM258601     3  0.2513     0.8692 0.000 0.008 0.904 0.040 0.048
#> GSM258602     2  0.1997     0.7669 0.000 0.924 0.040 0.036 0.000
#> GSM258604     3  0.2555     0.8543 0.016 0.000 0.904 0.052 0.028
#> GSM258605     3  0.1278     0.8821 0.004 0.016 0.960 0.000 0.020
#> GSM258606     2  0.2389     0.7792 0.000 0.880 0.004 0.116 0.000
#> GSM258607     4  0.2608     0.7713 0.000 0.004 0.088 0.888 0.020
#> GSM258608     2  0.3546     0.7410 0.000 0.848 0.016 0.060 0.076

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     1  0.0000    0.89176 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258555     1  0.0000    0.89176 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258556     4  0.2959    0.71176 0.000 0.048 0.036 0.876 0.032 0.008
#> GSM258557     1  0.5550    0.67419 0.632 0.096 0.008 0.028 0.236 0.000
#> GSM258562     2  0.5835    0.53651 0.012 0.612 0.216 0.024 0.136 0.000
#> GSM258563     1  0.3349    0.82721 0.804 0.000 0.008 0.024 0.164 0.000
#> GSM258565     1  0.0000    0.89176 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000    0.89176 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000    0.89176 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000    0.89176 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258580     2  0.3919    0.67363 0.004 0.808 0.012 0.012 0.108 0.056
#> GSM258583     1  0.3239    0.83381 0.816 0.000 0.008 0.024 0.152 0.000
#> GSM258585     1  0.5278    0.73407 0.676 0.064 0.016 0.032 0.212 0.000
#> GSM258590     1  0.0000    0.89176 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258594     1  0.0000    0.89176 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258596     1  0.1701    0.87323 0.920 0.000 0.000 0.008 0.072 0.000
#> GSM258599     1  0.3010    0.83964 0.828 0.000 0.004 0.020 0.148 0.000
#> GSM258603     1  0.0291    0.89040 0.992 0.000 0.000 0.004 0.004 0.000
#> GSM258551     4  0.4402    0.69805 0.000 0.000 0.000 0.712 0.104 0.184
#> GSM258552     2  0.2365    0.71225 0.000 0.892 0.012 0.008 0.084 0.004
#> GSM258554     4  0.5209    0.56916 0.000 0.000 0.000 0.564 0.112 0.324
#> GSM258558     6  0.3113    0.63594 0.000 0.028 0.000 0.040 0.076 0.856
#> GSM258559     6  0.4591    0.16907 0.000 0.000 0.040 0.000 0.408 0.552
#> GSM258560     5  0.7671    0.47675 0.000 0.156 0.204 0.028 0.444 0.168
#> GSM258561     4  0.4621    0.72334 0.000 0.000 0.040 0.720 0.048 0.192
#> GSM258564     4  0.2034    0.76166 0.000 0.004 0.000 0.912 0.024 0.060
#> GSM258567     5  0.5556    0.00275 0.000 0.040 0.440 0.012 0.480 0.028
#> GSM258568     6  0.1141    0.66908 0.000 0.000 0.000 0.000 0.052 0.948
#> GSM258569     2  0.4354    0.61232 0.000 0.716 0.228 0.012 0.040 0.004
#> GSM258571     3  0.0622    0.81124 0.000 0.000 0.980 0.008 0.012 0.000
#> GSM258572     2  0.1949    0.71078 0.000 0.904 0.004 0.004 0.088 0.000
#> GSM258573     4  0.4692    0.43583 0.000 0.000 0.000 0.512 0.044 0.444
#> GSM258574     2  0.4031    0.62677 0.000 0.776 0.004 0.008 0.140 0.072
#> GSM258575     6  0.2966    0.63682 0.000 0.072 0.000 0.020 0.044 0.864
#> GSM258576     6  0.0363    0.67134 0.000 0.000 0.000 0.012 0.000 0.988
#> GSM258577     5  0.6897    0.01501 0.000 0.368 0.020 0.088 0.436 0.088
#> GSM258579     6  0.2719    0.64028 0.000 0.072 0.000 0.012 0.040 0.876
#> GSM258581     6  0.0458    0.67145 0.000 0.000 0.000 0.016 0.000 0.984
#> GSM258582     3  0.1659    0.80122 0.004 0.028 0.940 0.008 0.020 0.000
#> GSM258584     5  0.6117    0.32068 0.000 0.016 0.160 0.008 0.524 0.292
#> GSM258586     4  0.3618    0.68686 0.000 0.100 0.016 0.824 0.052 0.008
#> GSM258587     6  0.4853   -0.39138 0.000 0.000 0.000 0.456 0.056 0.488
#> GSM258588     6  0.6161    0.21867 0.000 0.128 0.028 0.008 0.312 0.524
#> GSM258589     2  0.5510    0.54849 0.000 0.676 0.024 0.028 0.172 0.100
#> GSM258591     4  0.4644    0.42208 0.000 0.000 0.000 0.504 0.040 0.456
#> GSM258592     3  0.5019   -0.06864 0.000 0.012 0.544 0.008 0.404 0.032
#> GSM258593     1  0.6299    0.26732 0.492 0.348 0.020 0.012 0.124 0.004
#> GSM258595     2  0.6184    0.49695 0.012 0.588 0.256 0.076 0.064 0.004
#> GSM258597     4  0.3123    0.75844 0.000 0.000 0.000 0.824 0.040 0.136
#> GSM258598     4  0.1957    0.76817 0.000 0.000 0.000 0.888 0.000 0.112
#> GSM258600     2  0.1398    0.71583 0.000 0.940 0.000 0.008 0.052 0.000
#> GSM258601     3  0.2414    0.78399 0.000 0.028 0.900 0.028 0.044 0.000
#> GSM258602     6  0.3867    0.38868 0.000 0.000 0.012 0.000 0.328 0.660
#> GSM258604     3  0.1972    0.77841 0.000 0.004 0.916 0.056 0.024 0.000
#> GSM258605     3  0.0891    0.80701 0.000 0.008 0.968 0.000 0.024 0.000
#> GSM258606     6  0.1471    0.66596 0.000 0.000 0.000 0.004 0.064 0.932
#> GSM258607     4  0.2159    0.73528 0.000 0.004 0.040 0.916 0.024 0.016
#> GSM258608     6  0.5985    0.09299 0.000 0.052 0.004 0.064 0.412 0.468

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> CV:skmeans 58         1.83e-07 2
#> CV:skmeans 53         1.53e-09 3
#> CV:skmeans 41         2.91e-07 4
#> CV:skmeans 54         7.28e-08 5
#> CV:skmeans 44         7.05e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.896           0.946       0.977         0.3860 0.627   0.627
#> 3 3 0.500           0.762       0.867         0.6549 0.686   0.510
#> 4 4 0.550           0.699       0.812         0.1268 0.909   0.741
#> 5 5 0.609           0.585       0.761         0.0787 0.855   0.547
#> 6 6 0.688           0.460       0.673         0.0571 0.841   0.408

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     1  0.0000      0.979 1.000 0.000
#> GSM258555     1  0.0000      0.979 1.000 0.000
#> GSM258556     2  0.0000      0.974 0.000 1.000
#> GSM258557     2  0.7674      0.721 0.224 0.776
#> GSM258562     2  0.9933      0.191 0.452 0.548
#> GSM258563     1  0.1843      0.958 0.972 0.028
#> GSM258565     1  0.0000      0.979 1.000 0.000
#> GSM258566     1  0.0000      0.979 1.000 0.000
#> GSM258570     1  0.0000      0.979 1.000 0.000
#> GSM258578     1  0.0000      0.979 1.000 0.000
#> GSM258580     2  0.4815      0.878 0.104 0.896
#> GSM258583     1  0.0672      0.974 0.992 0.008
#> GSM258585     2  0.5408      0.856 0.124 0.876
#> GSM258590     1  0.0000      0.979 1.000 0.000
#> GSM258594     1  0.0000      0.979 1.000 0.000
#> GSM258596     1  0.0376      0.977 0.996 0.004
#> GSM258599     1  0.0000      0.979 1.000 0.000
#> GSM258603     1  0.0000      0.979 1.000 0.000
#> GSM258551     2  0.0000      0.974 0.000 1.000
#> GSM258552     2  0.0000      0.974 0.000 1.000
#> GSM258554     2  0.0000      0.974 0.000 1.000
#> GSM258558     2  0.0000      0.974 0.000 1.000
#> GSM258559     2  0.0000      0.974 0.000 1.000
#> GSM258560     2  0.0000      0.974 0.000 1.000
#> GSM258561     2  0.0000      0.974 0.000 1.000
#> GSM258564     2  0.0000      0.974 0.000 1.000
#> GSM258567     2  0.0000      0.974 0.000 1.000
#> GSM258568     2  0.0000      0.974 0.000 1.000
#> GSM258569     2  0.0672      0.968 0.008 0.992
#> GSM258571     2  0.0000      0.974 0.000 1.000
#> GSM258572     2  0.0000      0.974 0.000 1.000
#> GSM258573     2  0.0000      0.974 0.000 1.000
#> GSM258574     2  0.0000      0.974 0.000 1.000
#> GSM258575     2  0.0000      0.974 0.000 1.000
#> GSM258576     2  0.0000      0.974 0.000 1.000
#> GSM258577     2  0.0000      0.974 0.000 1.000
#> GSM258579     2  0.0000      0.974 0.000 1.000
#> GSM258581     2  0.0000      0.974 0.000 1.000
#> GSM258582     2  0.2778      0.933 0.048 0.952
#> GSM258584     2  0.0000      0.974 0.000 1.000
#> GSM258586     2  0.0000      0.974 0.000 1.000
#> GSM258587     2  0.0000      0.974 0.000 1.000
#> GSM258588     2  0.0000      0.974 0.000 1.000
#> GSM258589     2  0.0000      0.974 0.000 1.000
#> GSM258591     2  0.0000      0.974 0.000 1.000
#> GSM258592     2  0.0000      0.974 0.000 1.000
#> GSM258593     1  0.7602      0.708 0.780 0.220
#> GSM258595     2  0.0000      0.974 0.000 1.000
#> GSM258597     2  0.0000      0.974 0.000 1.000
#> GSM258598     2  0.0000      0.974 0.000 1.000
#> GSM258600     2  0.0000      0.974 0.000 1.000
#> GSM258601     2  0.0000      0.974 0.000 1.000
#> GSM258602     2  0.0000      0.974 0.000 1.000
#> GSM258604     2  0.0000      0.974 0.000 1.000
#> GSM258605     2  0.5408      0.856 0.124 0.876
#> GSM258606     2  0.0000      0.974 0.000 1.000
#> GSM258607     2  0.0000      0.974 0.000 1.000
#> GSM258608     2  0.0000      0.974 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     1  0.0000      0.943 1.000 0.000 0.000
#> GSM258555     1  0.0000      0.943 1.000 0.000 0.000
#> GSM258556     2  0.2878      0.833 0.000 0.904 0.096
#> GSM258557     3  0.1964      0.757 0.056 0.000 0.944
#> GSM258562     3  0.6630      0.491 0.300 0.028 0.672
#> GSM258563     1  0.5397      0.701 0.720 0.000 0.280
#> GSM258565     1  0.0000      0.943 1.000 0.000 0.000
#> GSM258566     1  0.0000      0.943 1.000 0.000 0.000
#> GSM258570     1  0.0000      0.943 1.000 0.000 0.000
#> GSM258578     1  0.0000      0.943 1.000 0.000 0.000
#> GSM258580     3  0.0747      0.793 0.000 0.016 0.984
#> GSM258583     1  0.3816      0.869 0.852 0.000 0.148
#> GSM258585     3  0.1031      0.787 0.000 0.024 0.976
#> GSM258590     1  0.0000      0.943 1.000 0.000 0.000
#> GSM258594     1  0.0000      0.943 1.000 0.000 0.000
#> GSM258596     1  0.3816      0.869 0.852 0.000 0.148
#> GSM258599     1  0.3752      0.872 0.856 0.000 0.144
#> GSM258603     1  0.0000      0.943 1.000 0.000 0.000
#> GSM258551     3  0.6079      0.541 0.000 0.388 0.612
#> GSM258552     3  0.1031      0.793 0.000 0.024 0.976
#> GSM258554     2  0.4796      0.698 0.000 0.780 0.220
#> GSM258558     3  0.4002      0.756 0.000 0.160 0.840
#> GSM258559     3  0.6204      0.312 0.000 0.424 0.576
#> GSM258560     3  0.5706      0.549 0.000 0.320 0.680
#> GSM258561     2  0.1643      0.846 0.000 0.956 0.044
#> GSM258564     2  0.1031      0.828 0.000 0.976 0.024
#> GSM258567     3  0.0747      0.793 0.000 0.016 0.984
#> GSM258568     2  0.4504      0.805 0.000 0.804 0.196
#> GSM258569     3  0.3752      0.760 0.000 0.144 0.856
#> GSM258571     2  0.3116      0.848 0.000 0.892 0.108
#> GSM258572     3  0.0747      0.793 0.000 0.016 0.984
#> GSM258573     2  0.2356      0.852 0.000 0.928 0.072
#> GSM258574     3  0.0747      0.793 0.000 0.016 0.984
#> GSM258575     2  0.3116      0.849 0.000 0.892 0.108
#> GSM258576     2  0.3116      0.849 0.000 0.892 0.108
#> GSM258577     3  0.1860      0.786 0.000 0.052 0.948
#> GSM258579     2  0.4702      0.785 0.000 0.788 0.212
#> GSM258581     2  0.5138      0.718 0.000 0.748 0.252
#> GSM258582     2  0.3412      0.849 0.000 0.876 0.124
#> GSM258584     3  0.4887      0.687 0.000 0.228 0.772
#> GSM258586     3  0.4291      0.761 0.000 0.180 0.820
#> GSM258587     2  0.2066      0.851 0.000 0.940 0.060
#> GSM258588     3  0.4291      0.749 0.000 0.180 0.820
#> GSM258589     3  0.4002      0.751 0.000 0.160 0.840
#> GSM258591     2  0.2356      0.852 0.000 0.928 0.072
#> GSM258592     3  0.4002      0.735 0.000 0.160 0.840
#> GSM258593     3  0.5733      0.304 0.324 0.000 0.676
#> GSM258595     2  0.3551      0.847 0.000 0.868 0.132
#> GSM258597     2  0.0000      0.826 0.000 1.000 0.000
#> GSM258598     2  0.0000      0.826 0.000 1.000 0.000
#> GSM258600     3  0.1964      0.776 0.000 0.056 0.944
#> GSM258601     2  0.5882      0.564 0.000 0.652 0.348
#> GSM258602     3  0.5733      0.568 0.000 0.324 0.676
#> GSM258604     2  0.6008      0.313 0.000 0.628 0.372
#> GSM258605     3  0.5859      0.472 0.000 0.344 0.656
#> GSM258606     2  0.6045      0.433 0.000 0.620 0.380
#> GSM258607     2  0.1163      0.829 0.000 0.972 0.028
#> GSM258608     3  0.2625      0.791 0.000 0.084 0.916

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM258555     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM258556     4  0.1510      0.760 0.000 0.028 0.016 0.956
#> GSM258557     3  0.3870      0.699 0.004 0.208 0.788 0.000
#> GSM258562     3  0.4077      0.539 0.012 0.184 0.800 0.004
#> GSM258563     3  0.4466      0.717 0.036 0.180 0.784 0.000
#> GSM258565     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM258566     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM258570     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM258578     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM258580     2  0.3610      0.684 0.000 0.800 0.200 0.000
#> GSM258583     3  0.4250      0.661 0.276 0.000 0.724 0.000
#> GSM258585     3  0.4584      0.657 0.000 0.300 0.696 0.004
#> GSM258590     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM258594     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM258596     3  0.4250      0.661 0.276 0.000 0.724 0.000
#> GSM258599     3  0.4250      0.661 0.276 0.000 0.724 0.000
#> GSM258603     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM258551     2  0.4843      0.405 0.000 0.604 0.000 0.396
#> GSM258552     2  0.4008      0.674 0.000 0.756 0.244 0.000
#> GSM258554     4  0.3649      0.697 0.000 0.204 0.000 0.796
#> GSM258558     2  0.1576      0.728 0.000 0.948 0.004 0.048
#> GSM258559     2  0.5172      0.176 0.000 0.588 0.008 0.404
#> GSM258560     2  0.5631      0.559 0.000 0.696 0.072 0.232
#> GSM258561     4  0.1792      0.784 0.000 0.068 0.000 0.932
#> GSM258564     4  0.0376      0.764 0.000 0.004 0.004 0.992
#> GSM258567     2  0.4164      0.580 0.000 0.736 0.264 0.000
#> GSM258568     4  0.3870      0.761 0.000 0.208 0.004 0.788
#> GSM258569     2  0.4049      0.679 0.000 0.780 0.212 0.008
#> GSM258571     4  0.4973      0.491 0.000 0.008 0.348 0.644
#> GSM258572     2  0.3837      0.675 0.000 0.776 0.224 0.000
#> GSM258573     4  0.2589      0.789 0.000 0.116 0.000 0.884
#> GSM258574     2  0.0592      0.719 0.000 0.984 0.016 0.000
#> GSM258575     4  0.3444      0.772 0.000 0.184 0.000 0.816
#> GSM258576     4  0.3444      0.772 0.000 0.184 0.000 0.816
#> GSM258577     2  0.4015      0.658 0.000 0.832 0.052 0.116
#> GSM258579     4  0.4134      0.723 0.000 0.260 0.000 0.740
#> GSM258581     4  0.4304      0.683 0.000 0.284 0.000 0.716
#> GSM258582     4  0.5353      0.326 0.000 0.012 0.432 0.556
#> GSM258584     2  0.5272      0.654 0.000 0.752 0.136 0.112
#> GSM258586     2  0.4989      0.626 0.000 0.764 0.072 0.164
#> GSM258587     4  0.1867      0.786 0.000 0.072 0.000 0.928
#> GSM258588     2  0.4030      0.717 0.000 0.836 0.072 0.092
#> GSM258589     2  0.3649      0.683 0.000 0.796 0.204 0.000
#> GSM258591     4  0.2868      0.787 0.000 0.136 0.000 0.864
#> GSM258592     2  0.4283      0.591 0.000 0.740 0.256 0.004
#> GSM258593     3  0.2469      0.650 0.000 0.108 0.892 0.000
#> GSM258595     4  0.3852      0.772 0.000 0.180 0.012 0.808
#> GSM258597     4  0.0188      0.764 0.000 0.000 0.004 0.996
#> GSM258598     4  0.0188      0.764 0.000 0.000 0.004 0.996
#> GSM258600     2  0.5359      0.585 0.000 0.676 0.288 0.036
#> GSM258601     4  0.5306      0.561 0.000 0.348 0.020 0.632
#> GSM258602     2  0.4193      0.506 0.000 0.732 0.000 0.268
#> GSM258604     4  0.7588      0.175 0.000 0.312 0.220 0.468
#> GSM258605     3  0.4635      0.579 0.000 0.028 0.756 0.216
#> GSM258606     4  0.4888      0.424 0.000 0.412 0.000 0.588
#> GSM258607     4  0.0524      0.765 0.000 0.008 0.004 0.988
#> GSM258608     2  0.1520      0.721 0.000 0.956 0.024 0.020

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000
#> GSM258555     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000
#> GSM258556     4  0.3707    0.68439 0.000 0.284 0.000 0.716 0.000
#> GSM258557     5  0.0162    0.70148 0.000 0.000 0.004 0.000 0.996
#> GSM258562     3  0.6252   -0.05711 0.000 0.328 0.508 0.000 0.164
#> GSM258563     5  0.0000    0.70108 0.000 0.000 0.000 0.000 1.000
#> GSM258565     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000
#> GSM258580     2  0.4687    0.84871 0.000 0.672 0.288 0.040 0.000
#> GSM258583     5  0.2020    0.70256 0.100 0.000 0.000 0.000 0.900
#> GSM258585     5  0.3487    0.58565 0.000 0.008 0.212 0.000 0.780
#> GSM258590     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000
#> GSM258594     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000
#> GSM258596     5  0.2020    0.70256 0.100 0.000 0.000 0.000 0.900
#> GSM258599     5  0.2020    0.70256 0.100 0.000 0.000 0.000 0.900
#> GSM258603     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000
#> GSM258551     4  0.4632    0.06881 0.000 0.012 0.448 0.540 0.000
#> GSM258552     2  0.5534    0.65892 0.000 0.668 0.196 0.128 0.008
#> GSM258554     4  0.2629    0.69497 0.000 0.004 0.136 0.860 0.000
#> GSM258558     3  0.5341   -0.09869 0.000 0.356 0.580 0.064 0.000
#> GSM258559     4  0.5489    0.02867 0.000 0.008 0.460 0.488 0.044
#> GSM258560     3  0.5156    0.38569 0.000 0.076 0.752 0.072 0.100
#> GSM258561     4  0.1732    0.73743 0.000 0.000 0.080 0.920 0.000
#> GSM258564     4  0.3452    0.70242 0.000 0.244 0.000 0.756 0.000
#> GSM258567     3  0.3332    0.43836 0.000 0.008 0.844 0.028 0.120
#> GSM258568     4  0.4974    0.62901 0.000 0.092 0.212 0.696 0.000
#> GSM258569     2  0.4400    0.86820 0.000 0.672 0.308 0.020 0.000
#> GSM258571     5  0.6641    0.14500 0.000 0.000 0.224 0.368 0.408
#> GSM258572     2  0.3895    0.87694 0.000 0.680 0.320 0.000 0.000
#> GSM258573     4  0.0324    0.75774 0.000 0.004 0.004 0.992 0.000
#> GSM258574     3  0.4403   -0.18488 0.000 0.384 0.608 0.008 0.000
#> GSM258575     4  0.1872    0.75033 0.000 0.052 0.020 0.928 0.000
#> GSM258576     4  0.2770    0.73630 0.000 0.076 0.044 0.880 0.000
#> GSM258577     3  0.4380   -0.17472 0.000 0.376 0.616 0.008 0.000
#> GSM258579     4  0.3521    0.69924 0.000 0.140 0.040 0.820 0.000
#> GSM258581     4  0.3043    0.73159 0.000 0.080 0.056 0.864 0.000
#> GSM258582     5  0.6613    0.28059 0.000 0.000 0.332 0.228 0.440
#> GSM258584     3  0.1082    0.44316 0.000 0.008 0.964 0.028 0.000
#> GSM258586     3  0.3164    0.41580 0.000 0.104 0.852 0.044 0.000
#> GSM258587     4  0.0404    0.75908 0.000 0.000 0.012 0.988 0.000
#> GSM258588     3  0.5372    0.39814 0.000 0.008 0.676 0.216 0.100
#> GSM258589     2  0.3895    0.87694 0.000 0.680 0.320 0.000 0.000
#> GSM258591     4  0.0324    0.75774 0.000 0.004 0.004 0.992 0.000
#> GSM258592     3  0.2914    0.43260 0.000 0.016 0.872 0.012 0.100
#> GSM258593     5  0.4047    0.49031 0.004 0.320 0.000 0.000 0.676
#> GSM258595     4  0.4106    0.60077 0.000 0.020 0.256 0.724 0.000
#> GSM258597     4  0.3424    0.70429 0.000 0.240 0.000 0.760 0.000
#> GSM258598     4  0.3452    0.70242 0.000 0.244 0.000 0.756 0.000
#> GSM258600     2  0.3895    0.87694 0.000 0.680 0.320 0.000 0.000
#> GSM258601     4  0.5313    0.39695 0.000 0.048 0.376 0.572 0.004
#> GSM258602     3  0.4644   -0.00172 0.000 0.012 0.528 0.460 0.000
#> GSM258604     3  0.6131   -0.06524 0.000 0.024 0.488 0.420 0.068
#> GSM258605     5  0.5368    0.41903 0.000 0.000 0.332 0.072 0.596
#> GSM258606     4  0.3043    0.73123 0.000 0.080 0.056 0.864 0.000
#> GSM258607     4  0.3452    0.70242 0.000 0.244 0.000 0.756 0.000
#> GSM258608     3  0.6405   -0.00167 0.000 0.364 0.460 0.176 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258555     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258556     4  0.5312    0.16374 0.000 0.040 0.052 0.600 0.000 0.308
#> GSM258557     5  0.0000    0.86111 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM258562     2  0.4775    0.06017 0.000 0.588 0.348 0.000 0.064 0.000
#> GSM258563     5  0.0000    0.86111 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM258565     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258580     2  0.1858    0.68233 0.000 0.904 0.092 0.000 0.000 0.004
#> GSM258583     5  0.0000    0.86111 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM258585     5  0.4741    0.54218 0.000 0.016 0.012 0.244 0.688 0.040
#> GSM258590     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258594     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258596     5  0.0000    0.86111 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM258599     5  0.0000    0.86111 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM258603     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258551     4  0.4981    0.16244 0.000 0.064 0.080 0.716 0.000 0.140
#> GSM258552     2  0.2914    0.65444 0.000 0.860 0.092 0.004 0.004 0.040
#> GSM258554     6  0.5808   -0.01310 0.000 0.052 0.060 0.408 0.000 0.480
#> GSM258558     6  0.6964   -0.20428 0.000 0.184 0.080 0.344 0.000 0.392
#> GSM258559     3  0.6550    0.11364 0.000 0.068 0.520 0.212 0.000 0.200
#> GSM258560     3  0.3656    0.54168 0.000 0.256 0.728 0.012 0.000 0.004
#> GSM258561     6  0.5337    0.01194 0.000 0.024 0.052 0.448 0.000 0.476
#> GSM258564     4  0.4552    0.15557 0.000 0.000 0.044 0.592 0.000 0.364
#> GSM258567     3  0.2408    0.62361 0.000 0.108 0.876 0.012 0.004 0.000
#> GSM258568     6  0.2859    0.31440 0.000 0.156 0.016 0.000 0.000 0.828
#> GSM258569     2  0.1444    0.68929 0.000 0.928 0.072 0.000 0.000 0.000
#> GSM258571     3  0.5865    0.45711 0.000 0.004 0.612 0.140 0.204 0.040
#> GSM258572     2  0.0000    0.69185 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM258573     6  0.4261    0.10705 0.000 0.000 0.020 0.408 0.000 0.572
#> GSM258574     2  0.4881    0.44800 0.000 0.588 0.076 0.336 0.000 0.000
#> GSM258575     6  0.4851    0.28134 0.000 0.000 0.096 0.272 0.000 0.632
#> GSM258576     6  0.1910    0.40241 0.000 0.000 0.108 0.000 0.000 0.892
#> GSM258577     2  0.4787    0.44916 0.000 0.596 0.068 0.336 0.000 0.000
#> GSM258579     6  0.4027    0.38723 0.000 0.044 0.124 0.044 0.000 0.788
#> GSM258581     6  0.2053    0.40171 0.000 0.000 0.108 0.004 0.000 0.888
#> GSM258582     3  0.4006    0.52693 0.000 0.016 0.748 0.032 0.204 0.000
#> GSM258584     3  0.5471    0.24020 0.000 0.140 0.524 0.336 0.000 0.000
#> GSM258586     4  0.6316   -0.28499 0.000 0.108 0.336 0.492 0.000 0.064
#> GSM258587     6  0.4046    0.15621 0.000 0.004 0.008 0.368 0.000 0.620
#> GSM258588     3  0.2984    0.61661 0.000 0.064 0.860 0.012 0.000 0.064
#> GSM258589     2  0.0363    0.69265 0.000 0.988 0.012 0.000 0.000 0.000
#> GSM258591     6  0.4355    0.09142 0.000 0.000 0.024 0.420 0.000 0.556
#> GSM258592     3  0.2668    0.61178 0.000 0.168 0.828 0.004 0.000 0.000
#> GSM258593     5  0.3890    0.39910 0.004 0.400 0.000 0.000 0.596 0.000
#> GSM258595     4  0.6436   -0.06424 0.000 0.264 0.016 0.368 0.000 0.352
#> GSM258597     4  0.4076    0.00767 0.000 0.000 0.008 0.540 0.000 0.452
#> GSM258598     4  0.4563    0.15346 0.000 0.000 0.044 0.588 0.000 0.368
#> GSM258600     2  0.0000    0.69185 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM258601     6  0.7649   -0.05162 0.000 0.224 0.200 0.256 0.000 0.320
#> GSM258602     4  0.6780    0.02385 0.000 0.088 0.204 0.496 0.000 0.212
#> GSM258604     4  0.7524    0.13169 0.000 0.132 0.216 0.492 0.064 0.096
#> GSM258605     3  0.3405    0.47035 0.000 0.004 0.724 0.000 0.272 0.000
#> GSM258606     6  0.2165    0.39963 0.000 0.000 0.108 0.008 0.000 0.884
#> GSM258607     4  0.4580    0.15925 0.000 0.000 0.052 0.612 0.000 0.336
#> GSM258608     2  0.6728    0.30496 0.000 0.412 0.184 0.348 0.000 0.056

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) k
#> CV:pam 57         2.15e-08 2
#> CV:pam 52         1.44e-08 3
#> CV:pam 52         5.05e-08 4
#> CV:pam 38         9.26e-07 5
#> CV:pam 26         5.18e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.624           0.842       0.930         0.4755 0.513   0.513
#> 3 3 0.474           0.700       0.759         0.3126 0.867   0.749
#> 4 4 0.630           0.747       0.832         0.1606 0.754   0.462
#> 5 5 0.752           0.803       0.891         0.0683 0.800   0.416
#> 6 6 0.785           0.656       0.812         0.0580 0.945   0.767

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     1  0.0000      0.882 1.000 0.000
#> GSM258555     1  0.0000      0.882 1.000 0.000
#> GSM258556     2  0.0000      0.943 0.000 1.000
#> GSM258557     1  0.6343      0.765 0.840 0.160
#> GSM258562     1  0.3114      0.852 0.944 0.056
#> GSM258563     1  0.0000      0.882 1.000 0.000
#> GSM258565     1  0.0000      0.882 1.000 0.000
#> GSM258566     1  0.0000      0.882 1.000 0.000
#> GSM258570     1  0.0000      0.882 1.000 0.000
#> GSM258578     1  0.0000      0.882 1.000 0.000
#> GSM258580     1  0.6148      0.774 0.848 0.152
#> GSM258583     1  0.0000      0.882 1.000 0.000
#> GSM258585     1  0.0376      0.880 0.996 0.004
#> GSM258590     1  0.0000      0.882 1.000 0.000
#> GSM258594     1  0.0000      0.882 1.000 0.000
#> GSM258596     1  0.0000      0.882 1.000 0.000
#> GSM258599     1  0.0000      0.882 1.000 0.000
#> GSM258603     1  0.0000      0.882 1.000 0.000
#> GSM258551     2  0.0000      0.943 0.000 1.000
#> GSM258552     2  0.7056      0.769 0.192 0.808
#> GSM258554     2  0.0000      0.943 0.000 1.000
#> GSM258558     2  0.0000      0.943 0.000 1.000
#> GSM258559     2  0.0000      0.943 0.000 1.000
#> GSM258560     2  0.8608      0.550 0.284 0.716
#> GSM258561     2  0.0000      0.943 0.000 1.000
#> GSM258564     2  0.0000      0.943 0.000 1.000
#> GSM258567     2  0.6801      0.785 0.180 0.820
#> GSM258568     2  0.0000      0.943 0.000 1.000
#> GSM258569     1  0.9833      0.383 0.576 0.424
#> GSM258571     2  0.8207      0.673 0.256 0.744
#> GSM258572     2  0.7376      0.749 0.208 0.792
#> GSM258573     2  0.0000      0.943 0.000 1.000
#> GSM258574     2  0.5059      0.858 0.112 0.888
#> GSM258575     2  0.0000      0.943 0.000 1.000
#> GSM258576     2  0.0000      0.943 0.000 1.000
#> GSM258577     2  0.0000      0.943 0.000 1.000
#> GSM258579     2  0.0000      0.943 0.000 1.000
#> GSM258581     2  0.0000      0.943 0.000 1.000
#> GSM258582     1  0.9963      0.155 0.536 0.464
#> GSM258584     2  0.0000      0.943 0.000 1.000
#> GSM258586     2  0.0000      0.943 0.000 1.000
#> GSM258587     2  0.0000      0.943 0.000 1.000
#> GSM258588     2  0.6343      0.809 0.160 0.840
#> GSM258589     2  0.0000      0.943 0.000 1.000
#> GSM258591     2  0.0000      0.943 0.000 1.000
#> GSM258592     2  0.6247      0.817 0.156 0.844
#> GSM258593     1  0.0376      0.880 0.996 0.004
#> GSM258595     1  0.9000      0.596 0.684 0.316
#> GSM258597     2  0.0000      0.943 0.000 1.000
#> GSM258598     2  0.0000      0.943 0.000 1.000
#> GSM258600     2  0.2236      0.920 0.036 0.964
#> GSM258601     2  0.3584      0.887 0.068 0.932
#> GSM258602     2  0.0000      0.943 0.000 1.000
#> GSM258604     1  0.9922      0.309 0.552 0.448
#> GSM258605     1  0.9710      0.362 0.600 0.400
#> GSM258606     2  0.0000      0.943 0.000 1.000
#> GSM258607     2  0.0000      0.943 0.000 1.000
#> GSM258608     2  0.0000      0.943 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     1  0.0000     0.9993 1.000 0.000 0.000
#> GSM258555     1  0.0000     0.9993 1.000 0.000 0.000
#> GSM258556     2  0.6225     0.6323 0.000 0.568 0.432
#> GSM258557     3  0.6297     0.5996 0.352 0.008 0.640
#> GSM258562     3  0.4750     0.7305 0.000 0.216 0.784
#> GSM258563     3  0.6154     0.5402 0.408 0.000 0.592
#> GSM258565     1  0.0000     0.9993 1.000 0.000 0.000
#> GSM258566     1  0.0000     0.9993 1.000 0.000 0.000
#> GSM258570     1  0.0000     0.9993 1.000 0.000 0.000
#> GSM258578     1  0.0000     0.9993 1.000 0.000 0.000
#> GSM258580     3  0.4750     0.7305 0.000 0.216 0.784
#> GSM258583     3  0.6235     0.4920 0.436 0.000 0.564
#> GSM258585     3  0.6379     0.5863 0.368 0.008 0.624
#> GSM258590     1  0.0000     0.9993 1.000 0.000 0.000
#> GSM258594     1  0.0000     0.9993 1.000 0.000 0.000
#> GSM258596     3  0.6225     0.5005 0.432 0.000 0.568
#> GSM258599     3  0.6225     0.5005 0.432 0.000 0.568
#> GSM258603     1  0.0237     0.9944 0.996 0.000 0.004
#> GSM258551     2  0.4750     0.7099 0.000 0.784 0.216
#> GSM258552     2  0.5178     0.5620 0.000 0.744 0.256
#> GSM258554     2  0.4654     0.7136 0.000 0.792 0.208
#> GSM258558     2  0.0000     0.7578 0.000 1.000 0.000
#> GSM258559     2  0.0000     0.7578 0.000 1.000 0.000
#> GSM258560     2  0.5397     0.4942 0.000 0.720 0.280
#> GSM258561     2  0.5058     0.7068 0.000 0.756 0.244
#> GSM258564     2  0.5785     0.6727 0.000 0.668 0.332
#> GSM258567     2  0.5733     0.4416 0.000 0.676 0.324
#> GSM258568     2  0.0000     0.7578 0.000 1.000 0.000
#> GSM258569     3  0.6062     0.7440 0.064 0.160 0.776
#> GSM258571     3  0.4796     0.7277 0.000 0.220 0.780
#> GSM258572     2  0.5497     0.5039 0.000 0.708 0.292
#> GSM258573     2  0.5678     0.6805 0.000 0.684 0.316
#> GSM258574     2  0.3619     0.6966 0.000 0.864 0.136
#> GSM258575     2  0.0747     0.7562 0.000 0.984 0.016
#> GSM258576     2  0.0237     0.7582 0.000 0.996 0.004
#> GSM258577     2  0.5591     0.4255 0.000 0.696 0.304
#> GSM258579     2  0.0747     0.7562 0.000 0.984 0.016
#> GSM258581     2  0.0747     0.7580 0.000 0.984 0.016
#> GSM258582     3  0.4750     0.7305 0.000 0.216 0.784
#> GSM258584     2  0.5591     0.4091 0.000 0.696 0.304
#> GSM258586     2  0.5859     0.6930 0.000 0.656 0.344
#> GSM258587     2  0.5706     0.6788 0.000 0.680 0.320
#> GSM258588     2  0.3116     0.7142 0.000 0.892 0.108
#> GSM258589     2  0.3686     0.6961 0.000 0.860 0.140
#> GSM258591     2  0.4796     0.7109 0.000 0.780 0.220
#> GSM258592     2  0.5882     0.3847 0.000 0.652 0.348
#> GSM258593     3  0.5465     0.6259 0.288 0.000 0.712
#> GSM258595     3  0.4750     0.7305 0.000 0.216 0.784
#> GSM258597     2  0.5785     0.6727 0.000 0.668 0.332
#> GSM258598     2  0.5785     0.6727 0.000 0.668 0.332
#> GSM258600     2  0.6252     0.0985 0.000 0.556 0.444
#> GSM258601     3  0.4887     0.7196 0.000 0.228 0.772
#> GSM258602     2  0.0000     0.7578 0.000 1.000 0.000
#> GSM258604     3  0.4842     0.7273 0.000 0.224 0.776
#> GSM258605     3  0.7596     0.7226 0.100 0.228 0.672
#> GSM258606     2  0.0000     0.7578 0.000 1.000 0.000
#> GSM258607     2  0.5785     0.6727 0.000 0.668 0.332
#> GSM258608     2  0.0592     0.7566 0.000 0.988 0.012

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     1  0.0000      0.820 1.000 0.000 0.000 0.000
#> GSM258555     1  0.0000      0.820 1.000 0.000 0.000 0.000
#> GSM258556     4  0.2450      0.719 0.000 0.016 0.072 0.912
#> GSM258557     1  0.5821      0.474 0.536 0.000 0.432 0.032
#> GSM258562     3  0.2002      0.938 0.000 0.044 0.936 0.020
#> GSM258563     1  0.6061      0.520 0.552 0.000 0.400 0.048
#> GSM258565     1  0.0000      0.820 1.000 0.000 0.000 0.000
#> GSM258566     1  0.0000      0.820 1.000 0.000 0.000 0.000
#> GSM258570     1  0.0000      0.820 1.000 0.000 0.000 0.000
#> GSM258578     1  0.0000      0.820 1.000 0.000 0.000 0.000
#> GSM258580     3  0.1182      0.901 0.000 0.016 0.968 0.016
#> GSM258583     1  0.4761      0.743 0.764 0.000 0.192 0.044
#> GSM258585     1  0.6368      0.504 0.540 0.004 0.400 0.056
#> GSM258590     1  0.0000      0.820 1.000 0.000 0.000 0.000
#> GSM258594     1  0.0000      0.820 1.000 0.000 0.000 0.000
#> GSM258596     1  0.5381      0.719 0.716 0.004 0.232 0.048
#> GSM258599     1  0.5203      0.720 0.720 0.000 0.232 0.048
#> GSM258603     1  0.0188      0.819 0.996 0.000 0.004 0.000
#> GSM258551     4  0.5151      0.622 0.000 0.464 0.004 0.532
#> GSM258552     2  0.5489      0.652 0.000 0.664 0.296 0.040
#> GSM258554     4  0.5151      0.622 0.000 0.464 0.004 0.532
#> GSM258558     2  0.0188      0.770 0.000 0.996 0.000 0.004
#> GSM258559     2  0.1557      0.780 0.000 0.944 0.056 0.000
#> GSM258560     2  0.4214      0.745 0.000 0.780 0.204 0.016
#> GSM258561     4  0.5602      0.663 0.000 0.408 0.024 0.568
#> GSM258564     4  0.2300      0.760 0.000 0.064 0.016 0.920
#> GSM258567     2  0.5466      0.656 0.000 0.668 0.292 0.040
#> GSM258568     2  0.0188      0.770 0.000 0.996 0.000 0.004
#> GSM258569     3  0.4050      0.797 0.016 0.148 0.824 0.012
#> GSM258571     3  0.1975      0.937 0.000 0.048 0.936 0.016
#> GSM258572     2  0.5578      0.631 0.000 0.648 0.312 0.040
#> GSM258573     4  0.4539      0.752 0.000 0.272 0.008 0.720
#> GSM258574     2  0.4932      0.713 0.000 0.728 0.240 0.032
#> GSM258575     2  0.0336      0.771 0.000 0.992 0.000 0.008
#> GSM258576     2  0.0188      0.770 0.000 0.996 0.000 0.004
#> GSM258577     2  0.4889      0.476 0.000 0.636 0.360 0.004
#> GSM258579     2  0.0469      0.771 0.000 0.988 0.000 0.012
#> GSM258581     2  0.0188      0.770 0.000 0.996 0.000 0.004
#> GSM258582     3  0.2002      0.938 0.000 0.044 0.936 0.020
#> GSM258584     2  0.3444      0.735 0.000 0.816 0.184 0.000
#> GSM258586     4  0.5478      0.543 0.000 0.056 0.248 0.696
#> GSM258587     4  0.4767      0.755 0.000 0.256 0.020 0.724
#> GSM258588     2  0.4964      0.711 0.000 0.724 0.244 0.032
#> GSM258589     2  0.5661      0.695 0.000 0.700 0.220 0.080
#> GSM258591     4  0.5586      0.627 0.000 0.452 0.020 0.528
#> GSM258592     2  0.5535      0.639 0.000 0.656 0.304 0.040
#> GSM258593     1  0.6265      0.492 0.532 0.004 0.416 0.048
#> GSM258595     3  0.1297      0.922 0.000 0.016 0.964 0.020
#> GSM258597     4  0.2662      0.767 0.000 0.084 0.016 0.900
#> GSM258598     4  0.2300      0.760 0.000 0.064 0.016 0.920
#> GSM258600     3  0.4046      0.823 0.000 0.124 0.828 0.048
#> GSM258601     3  0.2002      0.937 0.000 0.044 0.936 0.020
#> GSM258602     2  0.0336      0.773 0.000 0.992 0.008 0.000
#> GSM258604     3  0.1510      0.922 0.000 0.016 0.956 0.028
#> GSM258605     3  0.2335      0.932 0.000 0.060 0.920 0.020
#> GSM258606     2  0.0188      0.770 0.000 0.996 0.000 0.004
#> GSM258607     4  0.2466      0.757 0.000 0.056 0.028 0.916
#> GSM258608     2  0.1557      0.780 0.000 0.944 0.056 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM258555     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM258556     4  0.3231      0.734 0.000 0.000 0.196 0.800 0.004
#> GSM258557     5  0.0579      0.834 0.008 0.000 0.008 0.000 0.984
#> GSM258562     3  0.0510      0.869 0.000 0.000 0.984 0.000 0.016
#> GSM258563     5  0.0566      0.838 0.012 0.000 0.004 0.000 0.984
#> GSM258565     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM258580     3  0.0404      0.868 0.000 0.000 0.988 0.000 0.012
#> GSM258583     5  0.3231      0.812 0.196 0.000 0.004 0.000 0.800
#> GSM258585     5  0.0693      0.836 0.008 0.000 0.012 0.000 0.980
#> GSM258590     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM258594     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM258596     5  0.3462      0.814 0.196 0.000 0.012 0.000 0.792
#> GSM258599     5  0.3462      0.814 0.196 0.000 0.012 0.000 0.792
#> GSM258603     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM258551     2  0.4538      0.271 0.000 0.564 0.004 0.428 0.004
#> GSM258552     3  0.1981      0.869 0.000 0.016 0.920 0.000 0.064
#> GSM258554     2  0.4531      0.281 0.000 0.568 0.004 0.424 0.004
#> GSM258558     2  0.0000      0.810 0.000 1.000 0.000 0.000 0.000
#> GSM258559     3  0.4310      0.518 0.000 0.392 0.604 0.000 0.004
#> GSM258560     3  0.3922      0.793 0.000 0.180 0.780 0.000 0.040
#> GSM258561     4  0.5191      0.485 0.000 0.244 0.080 0.672 0.004
#> GSM258564     4  0.0162      0.838 0.000 0.000 0.000 0.996 0.004
#> GSM258567     3  0.3492      0.825 0.000 0.016 0.796 0.000 0.188
#> GSM258568     2  0.0000      0.810 0.000 1.000 0.000 0.000 0.000
#> GSM258569     3  0.0566      0.869 0.000 0.004 0.984 0.000 0.012
#> GSM258571     3  0.1478      0.869 0.000 0.000 0.936 0.000 0.064
#> GSM258572     3  0.1549      0.872 0.000 0.016 0.944 0.000 0.040
#> GSM258573     4  0.1731      0.810 0.000 0.060 0.004 0.932 0.004
#> GSM258574     3  0.3527      0.832 0.000 0.024 0.804 0.000 0.172
#> GSM258575     2  0.0000      0.810 0.000 1.000 0.000 0.000 0.000
#> GSM258576     2  0.0000      0.810 0.000 1.000 0.000 0.000 0.000
#> GSM258577     3  0.4381      0.825 0.000 0.088 0.780 0.008 0.124
#> GSM258579     2  0.0000      0.810 0.000 1.000 0.000 0.000 0.000
#> GSM258581     2  0.0000      0.810 0.000 1.000 0.000 0.000 0.000
#> GSM258582     3  0.0510      0.869 0.000 0.000 0.984 0.000 0.016
#> GSM258584     3  0.4002      0.783 0.000 0.184 0.780 0.008 0.028
#> GSM258586     4  0.3766      0.662 0.000 0.000 0.268 0.728 0.004
#> GSM258587     4  0.3088      0.701 0.000 0.164 0.004 0.828 0.004
#> GSM258588     3  0.5791      0.681 0.000 0.196 0.616 0.000 0.188
#> GSM258589     3  0.0609      0.871 0.000 0.020 0.980 0.000 0.000
#> GSM258591     2  0.4538      0.270 0.000 0.564 0.004 0.428 0.004
#> GSM258592     3  0.3492      0.825 0.000 0.016 0.796 0.000 0.188
#> GSM258593     5  0.3519      0.718 0.008 0.000 0.216 0.000 0.776
#> GSM258595     3  0.0404      0.868 0.000 0.000 0.988 0.000 0.012
#> GSM258597     4  0.0000      0.837 0.000 0.000 0.000 1.000 0.000
#> GSM258598     4  0.0162      0.838 0.000 0.000 0.000 0.996 0.004
#> GSM258600     3  0.0290      0.868 0.000 0.000 0.992 0.000 0.008
#> GSM258601     3  0.0290      0.868 0.000 0.000 0.992 0.000 0.008
#> GSM258602     2  0.3109      0.604 0.000 0.800 0.200 0.000 0.000
#> GSM258604     3  0.1281      0.854 0.000 0.000 0.956 0.032 0.012
#> GSM258605     3  0.3210      0.817 0.000 0.000 0.788 0.000 0.212
#> GSM258606     2  0.0000      0.810 0.000 1.000 0.000 0.000 0.000
#> GSM258607     4  0.0162      0.838 0.000 0.000 0.000 0.996 0.004
#> GSM258608     3  0.3579      0.746 0.000 0.240 0.756 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     1  0.0000     0.9994 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258555     1  0.0000     0.9994 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258556     4  0.3488     0.6304 0.000 0.008 0.244 0.744 0.000 0.004
#> GSM258557     5  0.1802     0.8702 0.000 0.072 0.012 0.000 0.916 0.000
#> GSM258562     3  0.0748     0.6599 0.000 0.016 0.976 0.000 0.004 0.004
#> GSM258563     5  0.0000     0.9395 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM258565     1  0.0000     0.9994 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000     0.9994 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000     0.9994 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000     0.9994 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258580     3  0.0653     0.6598 0.000 0.004 0.980 0.000 0.012 0.004
#> GSM258583     5  0.0000     0.9395 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM258585     5  0.0291     0.9364 0.000 0.004 0.004 0.000 0.992 0.000
#> GSM258590     1  0.0000     0.9994 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258594     1  0.0146     0.9953 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM258596     5  0.0000     0.9395 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM258599     5  0.0000     0.9395 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM258603     1  0.0000     0.9994 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258551     6  0.5561     0.4346 0.000 0.168 0.004 0.264 0.000 0.564
#> GSM258552     3  0.3862     0.3583 0.000 0.476 0.524 0.000 0.000 0.000
#> GSM258554     6  0.5561     0.4346 0.000 0.168 0.004 0.264 0.000 0.564
#> GSM258558     6  0.0000     0.7514 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258559     2  0.4317     0.4189 0.000 0.572 0.016 0.004 0.000 0.408
#> GSM258560     3  0.5629     0.2809 0.000 0.324 0.524 0.000 0.004 0.148
#> GSM258561     6  0.6378     0.0506 0.000 0.168 0.032 0.396 0.000 0.404
#> GSM258564     4  0.0146     0.7636 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM258567     3  0.3867     0.3565 0.000 0.488 0.512 0.000 0.000 0.000
#> GSM258568     6  0.0000     0.7514 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258569     3  0.0837     0.6634 0.000 0.020 0.972 0.000 0.004 0.004
#> GSM258571     3  0.1967     0.6516 0.000 0.084 0.904 0.000 0.012 0.000
#> GSM258572     3  0.3862     0.3583 0.000 0.476 0.524 0.000 0.000 0.000
#> GSM258573     4  0.5297     0.4236 0.000 0.168 0.004 0.616 0.000 0.212
#> GSM258574     2  0.3468     0.2209 0.000 0.712 0.284 0.000 0.000 0.004
#> GSM258575     6  0.0000     0.7514 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258576     6  0.0000     0.7514 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258577     3  0.6027     0.1366 0.000 0.316 0.480 0.004 0.004 0.196
#> GSM258579     6  0.0000     0.7514 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258581     6  0.0000     0.7514 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258582     3  0.0972     0.6565 0.000 0.028 0.964 0.000 0.008 0.000
#> GSM258584     3  0.5983     0.0412 0.000 0.352 0.444 0.004 0.000 0.200
#> GSM258586     4  0.4507     0.5796 0.000 0.048 0.268 0.676 0.004 0.004
#> GSM258587     4  0.5667     0.2594 0.000 0.168 0.004 0.536 0.000 0.292
#> GSM258588     2  0.4282     0.5834 0.000 0.720 0.088 0.000 0.000 0.192
#> GSM258589     3  0.3163     0.5746 0.000 0.232 0.764 0.000 0.000 0.004
#> GSM258591     6  0.5578     0.4266 0.000 0.168 0.004 0.268 0.000 0.560
#> GSM258592     3  0.3867     0.3565 0.000 0.488 0.512 0.000 0.000 0.000
#> GSM258593     5  0.2823     0.7174 0.000 0.000 0.204 0.000 0.796 0.000
#> GSM258595     3  0.0748     0.6584 0.000 0.004 0.976 0.000 0.016 0.004
#> GSM258597     4  0.0508     0.7610 0.000 0.004 0.000 0.984 0.000 0.012
#> GSM258598     4  0.0000     0.7632 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM258600     3  0.2482     0.6254 0.000 0.148 0.848 0.000 0.004 0.000
#> GSM258601     3  0.0405     0.6634 0.000 0.004 0.988 0.000 0.008 0.000
#> GSM258602     6  0.2772     0.5960 0.000 0.180 0.000 0.004 0.000 0.816
#> GSM258604     3  0.0820     0.6553 0.000 0.016 0.972 0.000 0.012 0.000
#> GSM258605     3  0.4300     0.4919 0.000 0.080 0.712 0.000 0.208 0.000
#> GSM258606     6  0.0000     0.7514 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258607     4  0.0146     0.7635 0.000 0.000 0.004 0.996 0.000 0.000
#> GSM258608     2  0.5441     0.5700 0.000 0.584 0.156 0.004 0.000 0.256

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> CV:mclust 54         7.96e-10 2
#> CV:mclust 51         3.27e-07 3
#> CV:mclust 55         2.22e-09 4
#> CV:mclust 54         1.11e-07 5
#> CV:mclust 42         2.82e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.997           0.966       0.985         0.4536 0.552   0.552
#> 3 3 0.684           0.832       0.916         0.4709 0.696   0.488
#> 4 4 0.738           0.853       0.904         0.1341 0.857   0.603
#> 5 5 0.879           0.843       0.919         0.0689 0.921   0.694
#> 6 6 0.817           0.653       0.840         0.0372 0.938   0.698

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     1  0.0000      0.988 1.000 0.000
#> GSM258555     1  0.0000      0.988 1.000 0.000
#> GSM258556     2  0.0000      0.982 0.000 1.000
#> GSM258557     1  0.0000      0.988 1.000 0.000
#> GSM258562     1  0.4298      0.909 0.912 0.088
#> GSM258563     1  0.0000      0.988 1.000 0.000
#> GSM258565     1  0.0000      0.988 1.000 0.000
#> GSM258566     1  0.0000      0.988 1.000 0.000
#> GSM258570     1  0.0000      0.988 1.000 0.000
#> GSM258578     1  0.0000      0.988 1.000 0.000
#> GSM258580     2  0.3274      0.927 0.060 0.940
#> GSM258583     1  0.0000      0.988 1.000 0.000
#> GSM258585     1  0.0000      0.988 1.000 0.000
#> GSM258590     1  0.0000      0.988 1.000 0.000
#> GSM258594     1  0.0000      0.988 1.000 0.000
#> GSM258596     1  0.0000      0.988 1.000 0.000
#> GSM258599     1  0.0000      0.988 1.000 0.000
#> GSM258603     1  0.0000      0.988 1.000 0.000
#> GSM258551     2  0.0000      0.982 0.000 1.000
#> GSM258552     2  0.0000      0.982 0.000 1.000
#> GSM258554     2  0.0000      0.982 0.000 1.000
#> GSM258558     2  0.0000      0.982 0.000 1.000
#> GSM258559     2  0.0000      0.982 0.000 1.000
#> GSM258560     2  0.0000      0.982 0.000 1.000
#> GSM258561     2  0.0000      0.982 0.000 1.000
#> GSM258564     2  0.0000      0.982 0.000 1.000
#> GSM258567     2  0.0000      0.982 0.000 1.000
#> GSM258568     2  0.0000      0.982 0.000 1.000
#> GSM258569     2  0.7056      0.766 0.192 0.808
#> GSM258571     2  0.9491      0.419 0.368 0.632
#> GSM258572     2  0.0000      0.982 0.000 1.000
#> GSM258573     2  0.0000      0.982 0.000 1.000
#> GSM258574     2  0.0000      0.982 0.000 1.000
#> GSM258575     2  0.0000      0.982 0.000 1.000
#> GSM258576     2  0.0000      0.982 0.000 1.000
#> GSM258577     2  0.0000      0.982 0.000 1.000
#> GSM258579     2  0.0000      0.982 0.000 1.000
#> GSM258581     2  0.0000      0.982 0.000 1.000
#> GSM258582     1  0.3274      0.940 0.940 0.060
#> GSM258584     2  0.0000      0.982 0.000 1.000
#> GSM258586     2  0.0000      0.982 0.000 1.000
#> GSM258587     2  0.0000      0.982 0.000 1.000
#> GSM258588     2  0.0000      0.982 0.000 1.000
#> GSM258589     2  0.0000      0.982 0.000 1.000
#> GSM258591     2  0.0000      0.982 0.000 1.000
#> GSM258592     2  0.0000      0.982 0.000 1.000
#> GSM258593     1  0.0000      0.988 1.000 0.000
#> GSM258595     2  0.0938      0.972 0.012 0.988
#> GSM258597     2  0.0000      0.982 0.000 1.000
#> GSM258598     2  0.0000      0.982 0.000 1.000
#> GSM258600     2  0.0000      0.982 0.000 1.000
#> GSM258601     2  0.0000      0.982 0.000 1.000
#> GSM258602     2  0.0000      0.982 0.000 1.000
#> GSM258604     2  0.2778      0.940 0.048 0.952
#> GSM258605     1  0.3274      0.940 0.940 0.060
#> GSM258606     2  0.0000      0.982 0.000 1.000
#> GSM258607     2  0.0000      0.982 0.000 1.000
#> GSM258608     2  0.0000      0.982 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     1  0.0000     0.9633 1.000 0.000 0.000
#> GSM258555     1  0.0000     0.9633 1.000 0.000 0.000
#> GSM258556     2  0.5706     0.4752 0.000 0.680 0.320
#> GSM258557     3  0.6308     0.0972 0.492 0.000 0.508
#> GSM258562     3  0.2537     0.8477 0.080 0.000 0.920
#> GSM258563     1  0.0000     0.9633 1.000 0.000 0.000
#> GSM258565     1  0.0000     0.9633 1.000 0.000 0.000
#> GSM258566     1  0.0000     0.9633 1.000 0.000 0.000
#> GSM258570     1  0.0000     0.9633 1.000 0.000 0.000
#> GSM258578     1  0.0000     0.9633 1.000 0.000 0.000
#> GSM258580     3  0.4047     0.7760 0.004 0.148 0.848
#> GSM258583     1  0.0000     0.9633 1.000 0.000 0.000
#> GSM258585     1  0.3752     0.8202 0.856 0.000 0.144
#> GSM258590     1  0.0000     0.9633 1.000 0.000 0.000
#> GSM258594     1  0.0000     0.9633 1.000 0.000 0.000
#> GSM258596     1  0.0000     0.9633 1.000 0.000 0.000
#> GSM258599     1  0.0000     0.9633 1.000 0.000 0.000
#> GSM258603     1  0.0000     0.9633 1.000 0.000 0.000
#> GSM258551     2  0.0424     0.8740 0.000 0.992 0.008
#> GSM258552     3  0.0237     0.8838 0.000 0.004 0.996
#> GSM258554     2  0.0747     0.8738 0.000 0.984 0.016
#> GSM258558     2  0.3267     0.8751 0.000 0.884 0.116
#> GSM258559     2  0.3267     0.8751 0.000 0.884 0.116
#> GSM258560     3  0.0237     0.8838 0.000 0.004 0.996
#> GSM258561     2  0.1753     0.8653 0.000 0.952 0.048
#> GSM258564     2  0.1753     0.8653 0.000 0.952 0.048
#> GSM258567     3  0.1753     0.8695 0.000 0.048 0.952
#> GSM258568     2  0.3267     0.8751 0.000 0.884 0.116
#> GSM258569     3  0.0000     0.8840 0.000 0.000 1.000
#> GSM258571     3  0.3267     0.8313 0.000 0.116 0.884
#> GSM258572     3  0.0000     0.8840 0.000 0.000 1.000
#> GSM258573     2  0.0424     0.8736 0.000 0.992 0.008
#> GSM258574     3  0.1753     0.8692 0.000 0.048 0.952
#> GSM258575     2  0.3267     0.8751 0.000 0.884 0.116
#> GSM258576     2  0.3267     0.8751 0.000 0.884 0.116
#> GSM258577     3  0.1031     0.8808 0.000 0.024 0.976
#> GSM258579     2  0.3267     0.8751 0.000 0.884 0.116
#> GSM258581     2  0.3267     0.8751 0.000 0.884 0.116
#> GSM258582     3  0.3921     0.8406 0.036 0.080 0.884
#> GSM258584     3  0.5138     0.6344 0.000 0.252 0.748
#> GSM258586     2  0.6309    -0.1226 0.000 0.504 0.496
#> GSM258587     2  0.0892     0.8731 0.000 0.980 0.020
#> GSM258588     3  0.5859     0.4267 0.000 0.344 0.656
#> GSM258589     3  0.1289     0.8783 0.000 0.032 0.968
#> GSM258591     2  0.1031     0.8723 0.000 0.976 0.024
#> GSM258592     3  0.1643     0.8704 0.000 0.044 0.956
#> GSM258593     1  0.5810     0.4630 0.664 0.000 0.336
#> GSM258595     3  0.2703     0.8654 0.016 0.056 0.928
#> GSM258597     2  0.1753     0.8653 0.000 0.952 0.048
#> GSM258598     2  0.1753     0.8653 0.000 0.952 0.048
#> GSM258600     3  0.0000     0.8840 0.000 0.000 1.000
#> GSM258601     3  0.2796     0.8493 0.000 0.092 0.908
#> GSM258602     2  0.3267     0.8751 0.000 0.884 0.116
#> GSM258604     3  0.3267     0.8313 0.000 0.116 0.884
#> GSM258605     3  0.1643     0.8737 0.044 0.000 0.956
#> GSM258606     2  0.3267     0.8751 0.000 0.884 0.116
#> GSM258607     2  0.1964     0.8611 0.000 0.944 0.056
#> GSM258608     2  0.3267     0.8751 0.000 0.884 0.116

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> GSM258555     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> GSM258556     4  0.1209      0.936 0.000 0.004 0.032 0.964
#> GSM258557     3  0.5273      0.143 0.456 0.008 0.536 0.000
#> GSM258562     3  0.0000      0.827 0.000 0.000 1.000 0.000
#> GSM258563     1  0.0188      0.975 0.996 0.004 0.000 0.000
#> GSM258565     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> GSM258566     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> GSM258570     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> GSM258578     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> GSM258580     3  0.3945      0.684 0.000 0.216 0.780 0.004
#> GSM258583     1  0.0188      0.975 0.996 0.004 0.000 0.000
#> GSM258585     1  0.5025      0.607 0.716 0.032 0.252 0.000
#> GSM258590     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> GSM258594     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> GSM258596     1  0.0188      0.975 0.996 0.004 0.000 0.000
#> GSM258599     1  0.0188      0.975 0.996 0.004 0.000 0.000
#> GSM258603     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> GSM258551     4  0.2760      0.825 0.000 0.128 0.000 0.872
#> GSM258552     3  0.0000      0.827 0.000 0.000 1.000 0.000
#> GSM258554     4  0.1716      0.906 0.000 0.064 0.000 0.936
#> GSM258558     2  0.2868      0.919 0.000 0.864 0.000 0.136
#> GSM258559     2  0.0188      0.831 0.000 0.996 0.000 0.004
#> GSM258560     3  0.4661      0.657 0.000 0.348 0.652 0.000
#> GSM258561     4  0.1022      0.939 0.000 0.032 0.000 0.968
#> GSM258564     4  0.0000      0.958 0.000 0.000 0.000 1.000
#> GSM258567     3  0.4431      0.721 0.000 0.304 0.696 0.000
#> GSM258568     2  0.2868      0.919 0.000 0.864 0.000 0.136
#> GSM258569     3  0.0000      0.827 0.000 0.000 1.000 0.000
#> GSM258571     3  0.2760      0.820 0.000 0.128 0.872 0.000
#> GSM258572     3  0.0000      0.827 0.000 0.000 1.000 0.000
#> GSM258573     4  0.0000      0.958 0.000 0.000 0.000 1.000
#> GSM258574     2  0.4843      0.391 0.000 0.604 0.396 0.000
#> GSM258575     2  0.2868      0.919 0.000 0.864 0.000 0.136
#> GSM258576     2  0.2868      0.919 0.000 0.864 0.000 0.136
#> GSM258577     3  0.4304      0.693 0.000 0.284 0.716 0.000
#> GSM258579     2  0.2868      0.919 0.000 0.864 0.000 0.136
#> GSM258581     2  0.2868      0.919 0.000 0.864 0.000 0.136
#> GSM258582     3  0.2760      0.820 0.000 0.128 0.872 0.000
#> GSM258584     2  0.0188      0.827 0.000 0.996 0.004 0.000
#> GSM258586     4  0.2530      0.863 0.000 0.004 0.100 0.896
#> GSM258587     4  0.0000      0.958 0.000 0.000 0.000 1.000
#> GSM258588     2  0.2924      0.835 0.000 0.884 0.100 0.016
#> GSM258589     3  0.4543      0.505 0.000 0.324 0.676 0.000
#> GSM258591     4  0.0000      0.958 0.000 0.000 0.000 1.000
#> GSM258592     3  0.3764      0.792 0.000 0.216 0.784 0.000
#> GSM258593     3  0.3539      0.708 0.176 0.004 0.820 0.000
#> GSM258595     3  0.0000      0.827 0.000 0.000 1.000 0.000
#> GSM258597     4  0.0000      0.958 0.000 0.000 0.000 1.000
#> GSM258598     4  0.0000      0.958 0.000 0.000 0.000 1.000
#> GSM258600     3  0.0000      0.827 0.000 0.000 1.000 0.000
#> GSM258601     3  0.3217      0.820 0.000 0.128 0.860 0.012
#> GSM258602     2  0.2704      0.917 0.000 0.876 0.000 0.124
#> GSM258604     3  0.5842      0.713 0.000 0.128 0.704 0.168
#> GSM258605     3  0.2814      0.820 0.000 0.132 0.868 0.000
#> GSM258606     2  0.2814      0.919 0.000 0.868 0.000 0.132
#> GSM258607     4  0.0376      0.955 0.000 0.004 0.004 0.992
#> GSM258608     2  0.2944      0.918 0.000 0.868 0.004 0.128

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     1  0.0000     0.9529 1.000 0.000 0.000 0.000 0.000
#> GSM258555     1  0.0000     0.9529 1.000 0.000 0.000 0.000 0.000
#> GSM258556     4  0.0290     0.9536 0.000 0.000 0.000 0.992 0.008
#> GSM258557     5  0.4855     0.1186 0.436 0.004 0.016 0.000 0.544
#> GSM258562     5  0.2248     0.8324 0.000 0.000 0.088 0.012 0.900
#> GSM258563     1  0.1372     0.9363 0.956 0.004 0.016 0.000 0.024
#> GSM258565     1  0.0000     0.9529 1.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000     0.9529 1.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000     0.9529 1.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000     0.9529 1.000 0.000 0.000 0.000 0.000
#> GSM258580     5  0.3086     0.7933 0.000 0.092 0.040 0.004 0.864
#> GSM258583     1  0.1372     0.9363 0.956 0.004 0.016 0.000 0.024
#> GSM258585     1  0.5262     0.1926 0.536 0.008 0.032 0.000 0.424
#> GSM258590     1  0.0000     0.9529 1.000 0.000 0.000 0.000 0.000
#> GSM258594     1  0.0000     0.9529 1.000 0.000 0.000 0.000 0.000
#> GSM258596     1  0.0865     0.9432 0.972 0.000 0.004 0.000 0.024
#> GSM258599     1  0.1372     0.9363 0.956 0.004 0.016 0.000 0.024
#> GSM258603     1  0.0000     0.9529 1.000 0.000 0.000 0.000 0.000
#> GSM258551     4  0.3282     0.7868 0.000 0.188 0.000 0.804 0.008
#> GSM258552     5  0.1043     0.8523 0.000 0.000 0.040 0.000 0.960
#> GSM258554     4  0.2873     0.8608 0.000 0.128 0.016 0.856 0.000
#> GSM258558     2  0.1041     0.9054 0.000 0.964 0.032 0.004 0.000
#> GSM258559     2  0.4306     0.0829 0.000 0.508 0.492 0.000 0.000
#> GSM258560     3  0.3399     0.7624 0.000 0.020 0.812 0.000 0.168
#> GSM258561     4  0.0510     0.9516 0.000 0.000 0.016 0.984 0.000
#> GSM258564     4  0.0290     0.9536 0.000 0.000 0.000 0.992 0.008
#> GSM258567     3  0.1478     0.8595 0.000 0.064 0.936 0.000 0.000
#> GSM258568     2  0.0162     0.9140 0.000 0.996 0.000 0.004 0.000
#> GSM258569     5  0.1121     0.8515 0.000 0.000 0.044 0.000 0.956
#> GSM258571     3  0.1792     0.8811 0.000 0.000 0.916 0.000 0.084
#> GSM258572     5  0.0880     0.8533 0.000 0.000 0.032 0.000 0.968
#> GSM258573     4  0.1469     0.9404 0.000 0.036 0.016 0.948 0.000
#> GSM258574     5  0.1668     0.8468 0.000 0.032 0.028 0.000 0.940
#> GSM258575     2  0.0162     0.9140 0.000 0.996 0.000 0.004 0.000
#> GSM258576     2  0.0162     0.9140 0.000 0.996 0.000 0.004 0.000
#> GSM258577     5  0.4860     0.0509 0.000 0.004 0.440 0.016 0.540
#> GSM258579     2  0.0324     0.9123 0.000 0.992 0.000 0.004 0.004
#> GSM258581     2  0.0162     0.9140 0.000 0.996 0.000 0.004 0.000
#> GSM258582     3  0.2773     0.8332 0.000 0.000 0.836 0.000 0.164
#> GSM258584     3  0.1732     0.8471 0.000 0.080 0.920 0.000 0.000
#> GSM258586     4  0.0290     0.9536 0.000 0.000 0.000 0.992 0.008
#> GSM258587     4  0.1018     0.9502 0.000 0.016 0.016 0.968 0.000
#> GSM258588     2  0.3523     0.7980 0.000 0.832 0.044 0.004 0.120
#> GSM258589     5  0.2595     0.8202 0.000 0.032 0.080 0.000 0.888
#> GSM258591     4  0.1300     0.9460 0.000 0.028 0.016 0.956 0.000
#> GSM258592     3  0.1399     0.8784 0.000 0.028 0.952 0.000 0.020
#> GSM258593     5  0.1059     0.8373 0.008 0.004 0.020 0.000 0.968
#> GSM258595     5  0.1121     0.8527 0.000 0.000 0.044 0.000 0.956
#> GSM258597     4  0.0510     0.9516 0.000 0.000 0.016 0.984 0.000
#> GSM258598     4  0.0000     0.9537 0.000 0.000 0.000 1.000 0.000
#> GSM258600     5  0.1331     0.8501 0.000 0.000 0.040 0.008 0.952
#> GSM258601     3  0.2221     0.8751 0.000 0.000 0.912 0.052 0.036
#> GSM258602     2  0.2011     0.8778 0.000 0.908 0.088 0.004 0.000
#> GSM258604     3  0.3906     0.8030 0.000 0.000 0.800 0.132 0.068
#> GSM258605     3  0.1792     0.8797 0.000 0.000 0.916 0.000 0.084
#> GSM258606     2  0.0162     0.9140 0.000 0.996 0.000 0.004 0.000
#> GSM258607     4  0.0290     0.9536 0.000 0.000 0.000 0.992 0.008
#> GSM258608     2  0.1704     0.8899 0.000 0.928 0.068 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     1  0.0000     0.9135 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258555     1  0.0000     0.9135 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258556     4  0.0146     0.8926 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM258557     5  0.6335     0.1001 0.300 0.156 0.044 0.000 0.500 0.000
#> GSM258562     2  0.2501     0.8295 0.000 0.888 0.028 0.012 0.072 0.000
#> GSM258563     1  0.4715     0.2619 0.508 0.004 0.036 0.000 0.452 0.000
#> GSM258565     1  0.0000     0.9135 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000     0.9135 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000     0.9135 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000     0.9135 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258580     2  0.2635     0.8113 0.000 0.880 0.004 0.004 0.036 0.076
#> GSM258583     1  0.3999     0.6136 0.696 0.000 0.032 0.000 0.272 0.000
#> GSM258585     5  0.6947     0.2172 0.212 0.216 0.068 0.000 0.492 0.012
#> GSM258590     1  0.0000     0.9135 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258594     1  0.0000     0.9135 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258596     1  0.1657     0.8724 0.928 0.000 0.016 0.000 0.056 0.000
#> GSM258599     1  0.2221     0.8489 0.896 0.000 0.032 0.000 0.072 0.000
#> GSM258603     1  0.0000     0.9135 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258551     4  0.2257     0.8032 0.000 0.000 0.000 0.876 0.116 0.008
#> GSM258552     2  0.1644     0.8414 0.000 0.932 0.040 0.000 0.028 0.000
#> GSM258554     4  0.2038     0.8774 0.000 0.000 0.032 0.920 0.028 0.020
#> GSM258558     6  0.1267     0.7661 0.000 0.000 0.000 0.000 0.060 0.940
#> GSM258559     5  0.5958     0.0239 0.000 0.000 0.248 0.000 0.448 0.304
#> GSM258560     5  0.5725    -0.3037 0.000 0.076 0.432 0.000 0.460 0.032
#> GSM258561     4  0.1141     0.8783 0.000 0.000 0.052 0.948 0.000 0.000
#> GSM258564     4  0.0146     0.8926 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM258567     3  0.4072     0.2740 0.000 0.000 0.544 0.000 0.448 0.008
#> GSM258568     6  0.0405     0.7888 0.000 0.000 0.000 0.004 0.008 0.988
#> GSM258569     2  0.2597     0.7573 0.000 0.824 0.176 0.000 0.000 0.000
#> GSM258571     3  0.1003     0.7312 0.000 0.020 0.964 0.016 0.000 0.000
#> GSM258572     2  0.0790     0.8434 0.000 0.968 0.000 0.000 0.032 0.000
#> GSM258573     4  0.3958     0.7109 0.000 0.000 0.020 0.756 0.028 0.196
#> GSM258574     2  0.3141     0.7570 0.000 0.828 0.020 0.000 0.140 0.012
#> GSM258575     6  0.0632     0.7829 0.000 0.000 0.000 0.000 0.024 0.976
#> GSM258576     6  0.0000     0.7894 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258577     5  0.5271    -0.1083 0.000 0.456 0.052 0.020 0.472 0.000
#> GSM258579     6  0.1082     0.7740 0.000 0.004 0.000 0.000 0.040 0.956
#> GSM258581     6  0.0000     0.7894 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258582     3  0.1610     0.6980 0.000 0.084 0.916 0.000 0.000 0.000
#> GSM258584     5  0.4172     0.0730 0.000 0.000 0.280 0.000 0.680 0.040
#> GSM258586     4  0.0260     0.8916 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM258587     4  0.5105     0.2428 0.000 0.000 0.032 0.520 0.028 0.420
#> GSM258588     6  0.6047     0.1614 0.000 0.160 0.016 0.000 0.360 0.464
#> GSM258589     2  0.2302     0.7969 0.000 0.872 0.000 0.000 0.120 0.008
#> GSM258591     6  0.5293    -0.1026 0.000 0.000 0.044 0.436 0.028 0.492
#> GSM258592     3  0.4204     0.2719 0.000 0.004 0.540 0.000 0.448 0.008
#> GSM258593     2  0.1794     0.8278 0.000 0.924 0.036 0.000 0.040 0.000
#> GSM258595     2  0.3636     0.5800 0.000 0.676 0.320 0.000 0.004 0.000
#> GSM258597     4  0.1485     0.8830 0.000 0.000 0.024 0.944 0.028 0.004
#> GSM258598     4  0.0458     0.8916 0.000 0.000 0.000 0.984 0.016 0.000
#> GSM258600     2  0.0405     0.8448 0.000 0.988 0.000 0.004 0.008 0.000
#> GSM258601     3  0.1679     0.7243 0.000 0.016 0.936 0.036 0.012 0.000
#> GSM258602     6  0.4002     0.3036 0.000 0.000 0.008 0.000 0.404 0.588
#> GSM258604     3  0.1536     0.7152 0.000 0.016 0.940 0.040 0.004 0.000
#> GSM258605     3  0.2070     0.7026 0.000 0.044 0.908 0.000 0.048 0.000
#> GSM258606     6  0.0363     0.7887 0.000 0.000 0.000 0.000 0.012 0.988
#> GSM258607     4  0.0146     0.8926 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM258608     5  0.2340     0.3328 0.000 0.000 0.000 0.000 0.852 0.148

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) k
#> CV:NMF 57         9.33e-09 2
#> CV:NMF 53         2.16e-10 3
#> CV:NMF 56         2.17e-09 4
#> CV:NMF 54         1.72e-08 5
#> CV:NMF 44         1.27e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.308           0.790       0.875         0.4669 0.501   0.501
#> 3 3 0.341           0.689       0.799         0.3290 0.879   0.758
#> 4 4 0.509           0.515       0.717         0.1665 0.872   0.673
#> 5 5 0.577           0.499       0.697         0.0681 0.881   0.621
#> 6 6 0.636           0.548       0.704         0.0574 0.862   0.496

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     1  0.0000      0.876 1.000 0.000
#> GSM258555     1  0.0000      0.876 1.000 0.000
#> GSM258556     2  0.7883      0.788 0.236 0.764
#> GSM258557     1  0.7528      0.713 0.784 0.216
#> GSM258562     1  0.3733      0.858 0.928 0.072
#> GSM258563     1  0.7528      0.713 0.784 0.216
#> GSM258565     1  0.0000      0.876 1.000 0.000
#> GSM258566     1  0.0000      0.876 1.000 0.000
#> GSM258570     1  0.0000      0.876 1.000 0.000
#> GSM258578     1  0.0000      0.876 1.000 0.000
#> GSM258580     1  0.3733      0.858 0.928 0.072
#> GSM258583     1  0.7528      0.713 0.784 0.216
#> GSM258585     1  0.7528      0.713 0.784 0.216
#> GSM258590     1  0.0000      0.876 1.000 0.000
#> GSM258594     1  0.0000      0.876 1.000 0.000
#> GSM258596     1  0.7528      0.713 0.784 0.216
#> GSM258599     1  0.7528      0.713 0.784 0.216
#> GSM258603     1  0.0000      0.876 1.000 0.000
#> GSM258551     2  0.0672      0.816 0.008 0.992
#> GSM258552     2  0.9248      0.634 0.340 0.660
#> GSM258554     2  0.0000      0.812 0.000 1.000
#> GSM258558     2  0.0672      0.813 0.008 0.992
#> GSM258559     2  0.6712      0.819 0.176 0.824
#> GSM258560     2  0.9286      0.643 0.344 0.656
#> GSM258561     2  0.7219      0.814 0.200 0.800
#> GSM258564     2  0.7139      0.813 0.196 0.804
#> GSM258567     2  0.8955      0.687 0.312 0.688
#> GSM258568     2  0.1414      0.813 0.020 0.980
#> GSM258569     1  0.4161      0.850 0.916 0.084
#> GSM258571     1  0.1633      0.876 0.976 0.024
#> GSM258572     2  0.8144      0.766 0.252 0.748
#> GSM258573     2  0.1414      0.813 0.020 0.980
#> GSM258574     2  0.7139      0.809 0.196 0.804
#> GSM258575     2  0.5408      0.829 0.124 0.876
#> GSM258576     2  0.1414      0.813 0.020 0.980
#> GSM258577     2  0.6623      0.821 0.172 0.828
#> GSM258579     2  0.0000      0.812 0.000 1.000
#> GSM258581     2  0.1414      0.813 0.020 0.980
#> GSM258582     1  0.1633      0.876 0.976 0.024
#> GSM258584     2  0.7883      0.780 0.236 0.764
#> GSM258586     2  0.7745      0.794 0.228 0.772
#> GSM258587     2  0.1414      0.813 0.020 0.980
#> GSM258588     2  0.7745      0.788 0.228 0.772
#> GSM258589     2  0.8608      0.731 0.284 0.716
#> GSM258591     2  0.1633      0.820 0.024 0.976
#> GSM258592     2  1.0000      0.224 0.496 0.504
#> GSM258593     1  0.4161      0.850 0.916 0.084
#> GSM258595     1  0.8909      0.459 0.692 0.308
#> GSM258597     2  0.1414      0.813 0.020 0.980
#> GSM258598     2  0.1414      0.813 0.020 0.980
#> GSM258600     2  0.8608      0.731 0.284 0.716
#> GSM258601     1  0.2778      0.870 0.952 0.048
#> GSM258602     2  0.6247      0.827 0.156 0.844
#> GSM258604     1  0.5842      0.793 0.860 0.140
#> GSM258605     1  0.2043      0.875 0.968 0.032
#> GSM258606     2  0.6148      0.827 0.152 0.848
#> GSM258607     2  0.7815      0.791 0.232 0.768
#> GSM258608     2  0.3431      0.828 0.064 0.936

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     1  0.0237     0.7897 0.996 0.004 0.000
#> GSM258555     1  0.0237     0.7897 0.996 0.004 0.000
#> GSM258556     3  0.4709     0.7622 0.056 0.092 0.852
#> GSM258557     1  0.5754     0.5962 0.700 0.004 0.296
#> GSM258562     1  0.5987     0.7268 0.756 0.036 0.208
#> GSM258563     1  0.5754     0.5962 0.700 0.004 0.296
#> GSM258565     1  0.0237     0.7897 0.996 0.004 0.000
#> GSM258566     1  0.0237     0.7897 0.996 0.004 0.000
#> GSM258570     1  0.0237     0.7897 0.996 0.004 0.000
#> GSM258578     1  0.0237     0.7897 0.996 0.004 0.000
#> GSM258580     1  0.5987     0.7268 0.756 0.036 0.208
#> GSM258583     1  0.5529     0.5963 0.704 0.000 0.296
#> GSM258585     1  0.5754     0.5962 0.700 0.004 0.296
#> GSM258590     1  0.0237     0.7897 0.996 0.004 0.000
#> GSM258594     1  0.0237     0.7897 0.996 0.004 0.000
#> GSM258596     1  0.5465     0.6042 0.712 0.000 0.288
#> GSM258599     1  0.5722     0.5997 0.704 0.004 0.292
#> GSM258603     1  0.0237     0.7897 0.996 0.004 0.000
#> GSM258551     3  0.5968     0.4554 0.000 0.364 0.636
#> GSM258552     3  0.6091     0.7120 0.124 0.092 0.784
#> GSM258554     3  0.6180     0.3336 0.000 0.416 0.584
#> GSM258558     3  0.6111     0.3700 0.000 0.396 0.604
#> GSM258559     3  0.3412     0.7325 0.000 0.124 0.876
#> GSM258560     3  0.4544     0.7262 0.084 0.056 0.860
#> GSM258561     3  0.5574     0.7377 0.032 0.184 0.784
#> GSM258564     3  0.5267     0.7560 0.044 0.140 0.816
#> GSM258567     3  0.5505     0.7305 0.096 0.088 0.816
#> GSM258568     2  0.3816     0.8065 0.000 0.852 0.148
#> GSM258569     1  0.6276     0.7107 0.736 0.040 0.224
#> GSM258571     1  0.5222     0.7644 0.816 0.040 0.144
#> GSM258572     3  0.6037     0.7539 0.112 0.100 0.788
#> GSM258573     2  0.1753     0.8803 0.000 0.952 0.048
#> GSM258574     3  0.5377     0.7654 0.068 0.112 0.820
#> GSM258575     3  0.6482     0.5976 0.024 0.296 0.680
#> GSM258576     2  0.2959     0.8679 0.000 0.900 0.100
#> GSM258577     3  0.2448     0.7498 0.000 0.076 0.924
#> GSM258579     2  0.6286    -0.0622 0.000 0.536 0.464
#> GSM258581     2  0.2959     0.8679 0.000 0.900 0.100
#> GSM258582     1  0.5222     0.7644 0.816 0.040 0.144
#> GSM258584     3  0.2590     0.7421 0.004 0.072 0.924
#> GSM258586     3  0.4505     0.7625 0.048 0.092 0.860
#> GSM258587     2  0.1753     0.8803 0.000 0.952 0.048
#> GSM258588     3  0.5407     0.7636 0.076 0.104 0.820
#> GSM258589     3  0.5848     0.7445 0.124 0.080 0.796
#> GSM258591     3  0.6225     0.3114 0.000 0.432 0.568
#> GSM258592     3  0.6337     0.4950 0.220 0.044 0.736
#> GSM258593     1  0.5921     0.7231 0.756 0.032 0.212
#> GSM258595     1  0.7138     0.3227 0.540 0.024 0.436
#> GSM258597     2  0.1753     0.8803 0.000 0.952 0.048
#> GSM258598     2  0.1753     0.8803 0.000 0.952 0.048
#> GSM258600     3  0.5848     0.7445 0.124 0.080 0.796
#> GSM258601     1  0.6348     0.7347 0.740 0.048 0.212
#> GSM258602     3  0.7097     0.6467 0.052 0.280 0.668
#> GSM258604     1  0.7260     0.6179 0.636 0.048 0.316
#> GSM258605     1  0.6106     0.7448 0.756 0.044 0.200
#> GSM258606     3  0.7246     0.6189 0.052 0.300 0.648
#> GSM258607     3  0.4945     0.7596 0.056 0.104 0.840
#> GSM258608     3  0.4842     0.6604 0.000 0.224 0.776

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     1  0.0000    0.76065 1.000 0.000 0.000 0.000
#> GSM258555     1  0.0000    0.76065 1.000 0.000 0.000 0.000
#> GSM258556     2  0.5853    0.45114 0.000 0.508 0.460 0.032
#> GSM258557     1  0.5769    0.59012 0.652 0.292 0.056 0.000
#> GSM258562     1  0.6810    0.58431 0.596 0.248 0.156 0.000
#> GSM258563     1  0.5769    0.59012 0.652 0.292 0.056 0.000
#> GSM258565     1  0.0000    0.76065 1.000 0.000 0.000 0.000
#> GSM258566     1  0.0000    0.76065 1.000 0.000 0.000 0.000
#> GSM258570     1  0.0000    0.76065 1.000 0.000 0.000 0.000
#> GSM258578     1  0.0000    0.76065 1.000 0.000 0.000 0.000
#> GSM258580     1  0.6810    0.58431 0.596 0.248 0.156 0.000
#> GSM258583     1  0.5745    0.59016 0.656 0.288 0.056 0.000
#> GSM258585     1  0.5769    0.59012 0.652 0.292 0.056 0.000
#> GSM258590     1  0.0000    0.76065 1.000 0.000 0.000 0.000
#> GSM258594     1  0.0000    0.76065 1.000 0.000 0.000 0.000
#> GSM258596     1  0.5649    0.59643 0.664 0.284 0.052 0.000
#> GSM258599     1  0.5745    0.59288 0.656 0.288 0.056 0.000
#> GSM258603     1  0.0000    0.76065 1.000 0.000 0.000 0.000
#> GSM258551     3  0.7064    0.29674 0.000 0.164 0.556 0.280
#> GSM258552     3  0.3569    0.38185 0.000 0.196 0.804 0.000
#> GSM258554     3  0.7368    0.20295 0.000 0.164 0.460 0.376
#> GSM258558     3  0.6945    0.30558 0.000 0.136 0.552 0.312
#> GSM258559     2  0.6852    0.36981 0.000 0.556 0.320 0.124
#> GSM258560     2  0.5212    0.40868 0.000 0.572 0.420 0.008
#> GSM258561     2  0.7323    0.46573 0.000 0.484 0.352 0.164
#> GSM258564     2  0.6602    0.44545 0.000 0.484 0.436 0.080
#> GSM258567     3  0.3725    0.36928 0.008 0.180 0.812 0.000
#> GSM258568     4  0.2623    0.74662 0.000 0.064 0.028 0.908
#> GSM258569     1  0.7001    0.56084 0.576 0.244 0.180 0.000
#> GSM258571     1  0.5540    0.69165 0.728 0.164 0.108 0.000
#> GSM258572     3  0.1209    0.45408 0.000 0.032 0.964 0.004
#> GSM258573     4  0.0336    0.79516 0.000 0.008 0.000 0.992
#> GSM258574     3  0.2300    0.40674 0.000 0.064 0.920 0.016
#> GSM258575     3  0.6993    0.31058 0.004 0.152 0.588 0.256
#> GSM258576     4  0.2021    0.78311 0.000 0.040 0.024 0.936
#> GSM258577     3  0.5386    0.00358 0.000 0.344 0.632 0.024
#> GSM258579     4  0.6813    0.07363 0.000 0.104 0.380 0.516
#> GSM258581     4  0.2021    0.78311 0.000 0.040 0.024 0.936
#> GSM258582     1  0.5540    0.69165 0.728 0.164 0.108 0.000
#> GSM258584     2  0.5403    0.35833 0.000 0.628 0.348 0.024
#> GSM258586     2  0.5859    0.44361 0.000 0.496 0.472 0.032
#> GSM258587     4  0.0707    0.79420 0.000 0.020 0.000 0.980
#> GSM258588     3  0.4010    0.39576 0.000 0.100 0.836 0.064
#> GSM258589     3  0.2384    0.44799 0.004 0.072 0.916 0.008
#> GSM258591     4  0.7835   -0.15994 0.000 0.268 0.336 0.396
#> GSM258592     2  0.6949    0.29502 0.124 0.528 0.348 0.000
#> GSM258593     1  0.6897    0.57607 0.592 0.228 0.180 0.000
#> GSM258595     3  0.7444   -0.21217 0.428 0.120 0.440 0.012
#> GSM258597     4  0.0707    0.79420 0.000 0.020 0.000 0.980
#> GSM258598     4  0.0707    0.79420 0.000 0.020 0.000 0.980
#> GSM258600     3  0.2384    0.44799 0.004 0.072 0.916 0.008
#> GSM258601     1  0.6027    0.64941 0.660 0.252 0.088 0.000
#> GSM258602     2  0.7831    0.38486 0.000 0.408 0.280 0.312
#> GSM258604     1  0.7113    0.49969 0.552 0.276 0.172 0.000
#> GSM258605     1  0.5940    0.65998 0.672 0.240 0.088 0.000
#> GSM258606     2  0.7852    0.36800 0.000 0.392 0.276 0.332
#> GSM258607     2  0.6068    0.45443 0.000 0.508 0.448 0.044
#> GSM258608     3  0.6167    0.31571 0.000 0.208 0.668 0.124

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     1  0.0000      0.708 1.000 0.000 0.000 0.000 0.000
#> GSM258555     1  0.0000      0.708 1.000 0.000 0.000 0.000 0.000
#> GSM258556     5  0.7344      0.200 0.000 0.312 0.300 0.024 0.364
#> GSM258557     1  0.5697      0.569 0.620 0.016 0.288 0.000 0.076
#> GSM258562     5  0.4865      0.250 0.356 0.020 0.008 0.000 0.616
#> GSM258563     1  0.5697      0.569 0.620 0.016 0.288 0.000 0.076
#> GSM258565     1  0.0000      0.708 1.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000      0.708 1.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000      0.708 1.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000      0.708 1.000 0.000 0.000 0.000 0.000
#> GSM258580     5  0.4865      0.250 0.356 0.020 0.008 0.000 0.616
#> GSM258583     1  0.5644      0.571 0.624 0.016 0.288 0.000 0.072
#> GSM258585     1  0.5697      0.569 0.620 0.016 0.288 0.000 0.076
#> GSM258590     1  0.0000      0.708 1.000 0.000 0.000 0.000 0.000
#> GSM258594     1  0.0000      0.708 1.000 0.000 0.000 0.000 0.000
#> GSM258596     1  0.5530      0.577 0.632 0.012 0.284 0.000 0.072
#> GSM258599     1  0.5678      0.573 0.624 0.016 0.284 0.000 0.076
#> GSM258603     1  0.0000      0.708 1.000 0.000 0.000 0.000 0.000
#> GSM258551     2  0.5279      0.450 0.000 0.680 0.052 0.244 0.024
#> GSM258552     2  0.4697      0.420 0.000 0.648 0.032 0.000 0.320
#> GSM258554     2  0.5616      0.390 0.000 0.576 0.040 0.360 0.024
#> GSM258558     2  0.4875      0.451 0.000 0.668 0.016 0.292 0.024
#> GSM258559     3  0.5940      0.482 0.000 0.348 0.544 0.104 0.004
#> GSM258560     3  0.5807      0.473 0.000 0.256 0.612 0.004 0.128
#> GSM258561     3  0.8191      0.139 0.000 0.216 0.408 0.152 0.224
#> GSM258564     5  0.7915      0.176 0.000 0.292 0.284 0.072 0.352
#> GSM258567     2  0.5204      0.371 0.008 0.680 0.236 0.000 0.076
#> GSM258568     4  0.2608      0.857 0.000 0.020 0.088 0.888 0.004
#> GSM258569     5  0.5209      0.238 0.368 0.036 0.008 0.000 0.588
#> GSM258571     1  0.5833      0.554 0.684 0.044 0.148 0.000 0.124
#> GSM258572     2  0.3649      0.505 0.000 0.808 0.040 0.000 0.152
#> GSM258573     4  0.0290      0.935 0.000 0.008 0.000 0.992 0.000
#> GSM258574     2  0.2949      0.498 0.000 0.876 0.052 0.004 0.068
#> GSM258575     2  0.6017      0.350 0.000 0.624 0.108 0.244 0.024
#> GSM258576     4  0.2110      0.900 0.000 0.072 0.016 0.912 0.000
#> GSM258577     2  0.3968      0.237 0.000 0.768 0.204 0.004 0.024
#> GSM258579     2  0.4748      0.102 0.000 0.492 0.016 0.492 0.000
#> GSM258581     4  0.2110      0.900 0.000 0.072 0.016 0.912 0.000
#> GSM258582     1  0.5833      0.554 0.684 0.044 0.148 0.000 0.124
#> GSM258584     3  0.4389      0.477 0.000 0.368 0.624 0.004 0.004
#> GSM258586     5  0.7355      0.191 0.000 0.328 0.300 0.024 0.348
#> GSM258587     4  0.0324      0.936 0.000 0.000 0.004 0.992 0.004
#> GSM258588     2  0.5421      0.425 0.000 0.720 0.152 0.052 0.076
#> GSM258589     2  0.4359      0.492 0.004 0.752 0.048 0.000 0.196
#> GSM258591     2  0.7496      0.167 0.000 0.404 0.088 0.384 0.124
#> GSM258592     3  0.6434      0.432 0.092 0.148 0.644 0.000 0.116
#> GSM258593     5  0.4920      0.226 0.384 0.032 0.000 0.000 0.584
#> GSM258595     1  0.7820     -0.310 0.332 0.296 0.060 0.000 0.312
#> GSM258597     4  0.0324      0.936 0.000 0.000 0.004 0.992 0.004
#> GSM258598     4  0.0324      0.936 0.000 0.000 0.004 0.992 0.004
#> GSM258600     2  0.4359      0.492 0.004 0.752 0.048 0.000 0.196
#> GSM258601     1  0.5984      0.530 0.628 0.028 0.248 0.000 0.096
#> GSM258602     3  0.7613      0.504 0.000 0.148 0.460 0.296 0.096
#> GSM258604     1  0.7278      0.361 0.516 0.108 0.272 0.000 0.104
#> GSM258605     1  0.6042      0.536 0.632 0.028 0.228 0.000 0.112
#> GSM258606     3  0.7605      0.487 0.000 0.140 0.448 0.316 0.096
#> GSM258607     5  0.7516      0.200 0.000 0.308 0.292 0.036 0.364
#> GSM258608     2  0.4118      0.463 0.000 0.812 0.060 0.104 0.024

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258555     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258556     4  0.3925      0.556 0.000 0.260 0.008 0.716 0.012 0.004
#> GSM258557     3  0.5162      0.445 0.336 0.012 0.580 0.000 0.072 0.000
#> GSM258562     5  0.1418      0.836 0.032 0.000 0.024 0.000 0.944 0.000
#> GSM258563     3  0.5162      0.445 0.336 0.012 0.580 0.000 0.072 0.000
#> GSM258565     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258580     5  0.1418      0.836 0.032 0.000 0.024 0.000 0.944 0.000
#> GSM258583     3  0.5127      0.442 0.340 0.012 0.580 0.000 0.068 0.000
#> GSM258585     3  0.5162      0.445 0.336 0.012 0.580 0.000 0.072 0.000
#> GSM258590     1  0.0146      0.994 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM258594     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258596     3  0.5059      0.433 0.348 0.008 0.576 0.000 0.068 0.000
#> GSM258599     3  0.5174      0.442 0.340 0.012 0.576 0.000 0.072 0.000
#> GSM258603     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258551     2  0.5752      0.466 0.000 0.608 0.084 0.064 0.000 0.244
#> GSM258552     2  0.4183      0.490 0.000 0.692 0.036 0.004 0.268 0.000
#> GSM258554     2  0.5719      0.350 0.000 0.524 0.084 0.032 0.000 0.360
#> GSM258558     2  0.5363      0.460 0.000 0.608 0.056 0.044 0.000 0.292
#> GSM258559     3  0.7125     -0.125 0.000 0.300 0.396 0.228 0.004 0.072
#> GSM258560     3  0.6513     -0.122 0.000 0.288 0.416 0.276 0.016 0.004
#> GSM258561     4  0.6474      0.406 0.000 0.200 0.120 0.568 0.004 0.108
#> GSM258564     4  0.4296      0.546 0.000 0.244 0.000 0.700 0.004 0.052
#> GSM258567     2  0.4648      0.512 0.000 0.740 0.116 0.108 0.036 0.000
#> GSM258568     6  0.2342      0.768 0.000 0.020 0.004 0.088 0.000 0.888
#> GSM258569     5  0.2832      0.824 0.056 0.016 0.040 0.008 0.880 0.000
#> GSM258571     3  0.5773      0.301 0.332 0.016 0.552 0.016 0.084 0.000
#> GSM258572     2  0.2887      0.573 0.000 0.856 0.032 0.008 0.104 0.000
#> GSM258573     6  0.0260      0.835 0.000 0.000 0.000 0.008 0.000 0.992
#> GSM258574     2  0.2045      0.563 0.000 0.920 0.028 0.024 0.028 0.000
#> GSM258575     2  0.6546      0.466 0.000 0.576 0.072 0.128 0.020 0.204
#> GSM258576     6  0.2614      0.801 0.000 0.060 0.012 0.044 0.000 0.884
#> GSM258577     2  0.4457      0.385 0.000 0.704 0.228 0.056 0.000 0.012
#> GSM258579     6  0.5776     -0.153 0.000 0.432 0.052 0.056 0.000 0.460
#> GSM258581     6  0.2614      0.801 0.000 0.060 0.012 0.044 0.000 0.884
#> GSM258582     3  0.5773      0.301 0.332 0.016 0.552 0.016 0.084 0.000
#> GSM258584     3  0.6318     -0.044 0.000 0.316 0.448 0.220 0.004 0.012
#> GSM258586     4  0.3810      0.547 0.000 0.276 0.008 0.708 0.004 0.004
#> GSM258587     6  0.0777      0.835 0.000 0.000 0.004 0.024 0.000 0.972
#> GSM258588     2  0.4203      0.540 0.000 0.784 0.040 0.132 0.028 0.016
#> GSM258589     2  0.4030      0.549 0.000 0.776 0.032 0.040 0.152 0.000
#> GSM258591     2  0.7300      0.115 0.000 0.352 0.096 0.208 0.004 0.340
#> GSM258592     3  0.6530      0.106 0.000 0.192 0.528 0.208 0.072 0.000
#> GSM258593     5  0.2504      0.823 0.104 0.012 0.004 0.004 0.876 0.000
#> GSM258595     5  0.6804      0.450 0.080 0.264 0.032 0.092 0.532 0.000
#> GSM258597     6  0.0777      0.835 0.000 0.000 0.004 0.024 0.000 0.972
#> GSM258598     6  0.0777      0.835 0.000 0.000 0.004 0.024 0.000 0.972
#> GSM258600     2  0.4030      0.549 0.000 0.776 0.032 0.040 0.152 0.000
#> GSM258601     3  0.5284      0.359 0.288 0.004 0.616 0.020 0.072 0.000
#> GSM258602     4  0.7967      0.106 0.000 0.200 0.260 0.280 0.012 0.248
#> GSM258604     3  0.7201      0.344 0.264 0.072 0.504 0.084 0.076 0.000
#> GSM258605     3  0.4788      0.359 0.288 0.004 0.636 0.000 0.072 0.000
#> GSM258606     4  0.7957      0.105 0.000 0.192 0.256 0.272 0.012 0.268
#> GSM258607     4  0.4146      0.559 0.000 0.248 0.008 0.716 0.012 0.016
#> GSM258608     2  0.4604      0.511 0.000 0.752 0.088 0.056 0.000 0.104

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> MAD:hclust 56         3.78e-07 2
#> MAD:hclust 51         3.49e-06 3
#> MAD:hclust 30         2.53e-03 4
#> MAD:hclust 28         1.57e-03 5
#> MAD:hclust 31         9.50e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.964           0.946       0.979         0.4862 0.513   0.513
#> 3 3 0.720           0.851       0.918         0.3676 0.666   0.434
#> 4 4 0.630           0.660       0.792         0.1261 0.863   0.617
#> 5 5 0.648           0.501       0.724         0.0691 0.978   0.913
#> 6 6 0.673           0.434       0.685         0.0419 0.896   0.592

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     1  0.0000      0.971 1.000 0.000
#> GSM258555     1  0.0000      0.971 1.000 0.000
#> GSM258556     2  0.0000      0.981 0.000 1.000
#> GSM258557     1  0.0000      0.971 1.000 0.000
#> GSM258562     1  0.0000      0.971 1.000 0.000
#> GSM258563     1  0.0000      0.971 1.000 0.000
#> GSM258565     1  0.0000      0.971 1.000 0.000
#> GSM258566     1  0.0000      0.971 1.000 0.000
#> GSM258570     1  0.0000      0.971 1.000 0.000
#> GSM258578     1  0.0000      0.971 1.000 0.000
#> GSM258580     1  0.6973      0.757 0.812 0.188
#> GSM258583     1  0.0000      0.971 1.000 0.000
#> GSM258585     1  0.0000      0.971 1.000 0.000
#> GSM258590     1  0.0000      0.971 1.000 0.000
#> GSM258594     1  0.0000      0.971 1.000 0.000
#> GSM258596     1  0.0000      0.971 1.000 0.000
#> GSM258599     1  0.0000      0.971 1.000 0.000
#> GSM258603     1  0.0000      0.971 1.000 0.000
#> GSM258551     2  0.0000      0.981 0.000 1.000
#> GSM258552     2  0.0000      0.981 0.000 1.000
#> GSM258554     2  0.0000      0.981 0.000 1.000
#> GSM258558     2  0.0000      0.981 0.000 1.000
#> GSM258559     2  0.0000      0.981 0.000 1.000
#> GSM258560     2  0.0000      0.981 0.000 1.000
#> GSM258561     2  0.0000      0.981 0.000 1.000
#> GSM258564     2  0.0000      0.981 0.000 1.000
#> GSM258567     2  0.1184      0.967 0.016 0.984
#> GSM258568     2  0.0000      0.981 0.000 1.000
#> GSM258569     1  0.9732      0.314 0.596 0.404
#> GSM258571     1  0.0000      0.971 1.000 0.000
#> GSM258572     2  0.0000      0.981 0.000 1.000
#> GSM258573     2  0.0000      0.981 0.000 1.000
#> GSM258574     2  0.0000      0.981 0.000 1.000
#> GSM258575     2  0.0000      0.981 0.000 1.000
#> GSM258576     2  0.0000      0.981 0.000 1.000
#> GSM258577     2  0.0000      0.981 0.000 1.000
#> GSM258579     2  0.0000      0.981 0.000 1.000
#> GSM258581     2  0.0000      0.981 0.000 1.000
#> GSM258582     1  0.0000      0.971 1.000 0.000
#> GSM258584     2  0.0000      0.981 0.000 1.000
#> GSM258586     2  0.0000      0.981 0.000 1.000
#> GSM258587     2  0.0000      0.981 0.000 1.000
#> GSM258588     2  0.0000      0.981 0.000 1.000
#> GSM258589     2  0.0000      0.981 0.000 1.000
#> GSM258591     2  0.0000      0.981 0.000 1.000
#> GSM258592     2  0.1184      0.967 0.016 0.984
#> GSM258593     1  0.0000      0.971 1.000 0.000
#> GSM258595     2  0.9686      0.322 0.396 0.604
#> GSM258597     2  0.0000      0.981 0.000 1.000
#> GSM258598     2  0.0000      0.981 0.000 1.000
#> GSM258600     2  0.0376      0.978 0.004 0.996
#> GSM258601     2  0.6887      0.763 0.184 0.816
#> GSM258602     2  0.0000      0.981 0.000 1.000
#> GSM258604     1  0.1633      0.950 0.976 0.024
#> GSM258605     1  0.0000      0.971 1.000 0.000
#> GSM258606     2  0.0000      0.981 0.000 1.000
#> GSM258607     2  0.0000      0.981 0.000 1.000
#> GSM258608     2  0.0000      0.981 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     1  0.0000     0.9455 1.000 0.000 0.000
#> GSM258555     1  0.0000     0.9455 1.000 0.000 0.000
#> GSM258556     3  0.2537     0.8665 0.000 0.080 0.920
#> GSM258557     3  0.6617     0.1421 0.436 0.008 0.556
#> GSM258562     3  0.4002     0.8072 0.160 0.000 0.840
#> GSM258563     1  0.3192     0.8697 0.888 0.000 0.112
#> GSM258565     1  0.0000     0.9455 1.000 0.000 0.000
#> GSM258566     1  0.0000     0.9455 1.000 0.000 0.000
#> GSM258570     1  0.0000     0.9455 1.000 0.000 0.000
#> GSM258578     1  0.0000     0.9455 1.000 0.000 0.000
#> GSM258580     3  0.2959     0.8464 0.100 0.000 0.900
#> GSM258583     1  0.1411     0.9231 0.964 0.000 0.036
#> GSM258585     1  0.3686     0.8395 0.860 0.000 0.140
#> GSM258590     1  0.0000     0.9455 1.000 0.000 0.000
#> GSM258594     1  0.0000     0.9455 1.000 0.000 0.000
#> GSM258596     1  0.0000     0.9455 1.000 0.000 0.000
#> GSM258599     1  0.0000     0.9455 1.000 0.000 0.000
#> GSM258603     1  0.0000     0.9455 1.000 0.000 0.000
#> GSM258551     2  0.0424     0.9508 0.000 0.992 0.008
#> GSM258552     3  0.2796     0.8596 0.000 0.092 0.908
#> GSM258554     2  0.0424     0.9508 0.000 0.992 0.008
#> GSM258558     2  0.1529     0.9493 0.000 0.960 0.040
#> GSM258559     2  0.3116     0.8962 0.000 0.892 0.108
#> GSM258560     3  0.1753     0.8658 0.000 0.048 0.952
#> GSM258561     2  0.1643     0.9252 0.000 0.956 0.044
#> GSM258564     2  0.0892     0.9460 0.000 0.980 0.020
#> GSM258567     3  0.0892     0.8631 0.000 0.020 0.980
#> GSM258568     2  0.1289     0.9505 0.000 0.968 0.032
#> GSM258569     3  0.2866     0.8591 0.076 0.008 0.916
#> GSM258571     3  0.3030     0.8440 0.092 0.004 0.904
#> GSM258572     3  0.2796     0.8596 0.000 0.092 0.908
#> GSM258573     2  0.0892     0.9460 0.000 0.980 0.020
#> GSM258574     3  0.4002     0.8098 0.000 0.160 0.840
#> GSM258575     2  0.2261     0.9319 0.000 0.932 0.068
#> GSM258576     2  0.1289     0.9505 0.000 0.968 0.032
#> GSM258577     3  0.4605     0.7095 0.000 0.204 0.796
#> GSM258579     2  0.1964     0.9395 0.000 0.944 0.056
#> GSM258581     2  0.1289     0.9505 0.000 0.968 0.032
#> GSM258582     3  0.3349     0.8410 0.108 0.004 0.888
#> GSM258584     3  0.6267     0.0807 0.000 0.452 0.548
#> GSM258586     3  0.3267     0.8579 0.000 0.116 0.884
#> GSM258587     2  0.0892     0.9460 0.000 0.980 0.020
#> GSM258588     3  0.5363     0.6678 0.000 0.276 0.724
#> GSM258589     3  0.2625     0.8610 0.000 0.084 0.916
#> GSM258591     2  0.0237     0.9505 0.000 0.996 0.004
#> GSM258592     3  0.1031     0.8639 0.000 0.024 0.976
#> GSM258593     1  0.6215     0.1440 0.572 0.000 0.428
#> GSM258595     3  0.2663     0.8695 0.024 0.044 0.932
#> GSM258597     2  0.0892     0.9460 0.000 0.980 0.020
#> GSM258598     2  0.0892     0.9460 0.000 0.980 0.020
#> GSM258600     3  0.2625     0.8610 0.000 0.084 0.916
#> GSM258601     3  0.2269     0.8641 0.040 0.016 0.944
#> GSM258602     2  0.1289     0.9505 0.000 0.968 0.032
#> GSM258604     3  0.2804     0.8568 0.060 0.016 0.924
#> GSM258605     3  0.3030     0.8440 0.092 0.004 0.904
#> GSM258606     2  0.1289     0.9505 0.000 0.968 0.032
#> GSM258607     3  0.2878     0.8644 0.000 0.096 0.904
#> GSM258608     2  0.5706     0.5306 0.000 0.680 0.320

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     1  0.0000     0.9295 1.000 0.000 0.000 0.000
#> GSM258555     1  0.0188     0.9292 0.996 0.000 0.000 0.004
#> GSM258556     4  0.4925     0.5723 0.000 0.000 0.428 0.572
#> GSM258557     3  0.6993     0.4139 0.224 0.008 0.608 0.160
#> GSM258562     4  0.6240     0.6750 0.076 0.000 0.320 0.604
#> GSM258563     1  0.7215     0.1704 0.500 0.000 0.348 0.152
#> GSM258565     1  0.0188     0.9292 0.996 0.000 0.000 0.004
#> GSM258566     1  0.0188     0.9292 0.996 0.000 0.000 0.004
#> GSM258570     1  0.0000     0.9295 1.000 0.000 0.000 0.000
#> GSM258578     1  0.0188     0.9292 0.996 0.000 0.000 0.004
#> GSM258580     3  0.3182     0.5038 0.028 0.000 0.876 0.096
#> GSM258583     1  0.3659     0.8305 0.840 0.000 0.024 0.136
#> GSM258585     3  0.7423     0.0214 0.404 0.000 0.428 0.168
#> GSM258590     1  0.0779     0.9250 0.980 0.000 0.004 0.016
#> GSM258594     1  0.0000     0.9295 1.000 0.000 0.000 0.000
#> GSM258596     1  0.1792     0.9037 0.932 0.000 0.000 0.068
#> GSM258599     1  0.2053     0.9009 0.924 0.000 0.004 0.072
#> GSM258603     1  0.0895     0.9237 0.976 0.000 0.004 0.020
#> GSM258551     2  0.3820     0.8557 0.000 0.848 0.064 0.088
#> GSM258552     3  0.2399     0.5591 0.000 0.048 0.920 0.032
#> GSM258554     2  0.3687     0.8578 0.000 0.856 0.064 0.080
#> GSM258558     2  0.2124     0.8603 0.000 0.924 0.068 0.008
#> GSM258559     2  0.4893     0.7197 0.000 0.768 0.064 0.168
#> GSM258560     4  0.6307     0.5953 0.000 0.092 0.288 0.620
#> GSM258561     2  0.3764     0.8254 0.000 0.816 0.012 0.172
#> GSM258564     2  0.5229     0.8126 0.000 0.748 0.084 0.168
#> GSM258567     3  0.5075     0.1231 0.000 0.012 0.644 0.344
#> GSM258568     2  0.0804     0.8666 0.000 0.980 0.008 0.012
#> GSM258569     3  0.6178    -0.6043 0.040 0.004 0.484 0.472
#> GSM258571     4  0.5174     0.7202 0.032 0.004 0.248 0.716
#> GSM258572     3  0.1854     0.5637 0.000 0.048 0.940 0.012
#> GSM258573     2  0.3443     0.8497 0.000 0.848 0.016 0.136
#> GSM258574     3  0.2704     0.5594 0.000 0.124 0.876 0.000
#> GSM258575     2  0.4053     0.6601 0.000 0.768 0.228 0.004
#> GSM258576     2  0.0188     0.8668 0.000 0.996 0.004 0.000
#> GSM258577     3  0.5496     0.4522 0.000 0.108 0.732 0.160
#> GSM258579     2  0.3610     0.7054 0.000 0.800 0.200 0.000
#> GSM258581     2  0.0188     0.8668 0.000 0.996 0.004 0.000
#> GSM258582     4  0.5636     0.7187 0.044 0.000 0.308 0.648
#> GSM258584     4  0.7500    -0.1183 0.000 0.180 0.408 0.412
#> GSM258586     3  0.2773     0.5407 0.000 0.028 0.900 0.072
#> GSM258587     2  0.3335     0.8508 0.000 0.856 0.016 0.128
#> GSM258588     3  0.5491     0.4564 0.000 0.260 0.688 0.052
#> GSM258589     3  0.3421     0.5072 0.000 0.044 0.868 0.088
#> GSM258591     2  0.1867     0.8702 0.000 0.928 0.000 0.072
#> GSM258592     4  0.4936     0.6775 0.000 0.012 0.316 0.672
#> GSM258593     3  0.7772     0.0719 0.368 0.000 0.392 0.240
#> GSM258595     4  0.5296     0.5754 0.008 0.000 0.492 0.500
#> GSM258597     2  0.5096     0.8149 0.000 0.760 0.084 0.156
#> GSM258598     2  0.3853     0.8383 0.000 0.820 0.020 0.160
#> GSM258600     3  0.2313     0.5452 0.000 0.032 0.924 0.044
#> GSM258601     4  0.5409     0.7253 0.020 0.004 0.332 0.644
#> GSM258602     2  0.2644     0.8442 0.000 0.908 0.032 0.060
#> GSM258604     4  0.5214     0.7307 0.024 0.004 0.280 0.692
#> GSM258605     4  0.5013     0.7096 0.032 0.004 0.228 0.736
#> GSM258606     2  0.0927     0.8661 0.000 0.976 0.008 0.016
#> GSM258607     4  0.4920     0.5196 0.000 0.004 0.368 0.628
#> GSM258608     3  0.6086     0.4665 0.000 0.188 0.680 0.132

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     1  0.0404     0.8774 0.988 0.000 0.000 0.000 0.012
#> GSM258555     1  0.0162     0.8775 0.996 0.000 0.004 0.000 0.000
#> GSM258556     3  0.6009     0.5173 0.000 0.180 0.580 0.000 0.240
#> GSM258557     2  0.6843     0.3426 0.116 0.572 0.072 0.000 0.240
#> GSM258562     3  0.3538     0.6605 0.020 0.088 0.848 0.000 0.044
#> GSM258563     1  0.7572     0.2504 0.424 0.276 0.052 0.000 0.248
#> GSM258565     1  0.0162     0.8775 0.996 0.000 0.004 0.000 0.000
#> GSM258566     1  0.0162     0.8775 0.996 0.000 0.004 0.000 0.000
#> GSM258570     1  0.0162     0.8777 0.996 0.000 0.000 0.000 0.004
#> GSM258578     1  0.0162     0.8775 0.996 0.000 0.004 0.000 0.000
#> GSM258580     2  0.3845     0.5757 0.004 0.812 0.124 0.000 0.060
#> GSM258583     1  0.5355     0.7078 0.680 0.044 0.036 0.000 0.240
#> GSM258585     2  0.7849     0.0300 0.288 0.372 0.068 0.000 0.272
#> GSM258590     1  0.2125     0.8648 0.920 0.024 0.004 0.000 0.052
#> GSM258594     1  0.0162     0.8777 0.996 0.000 0.000 0.000 0.004
#> GSM258596     1  0.4588     0.7917 0.768 0.048 0.028 0.000 0.156
#> GSM258599     1  0.4588     0.7917 0.768 0.048 0.028 0.000 0.156
#> GSM258603     1  0.2460     0.8585 0.900 0.024 0.004 0.000 0.072
#> GSM258551     4  0.4301     0.5955 0.000 0.028 0.000 0.712 0.260
#> GSM258552     2  0.2692     0.5959 0.000 0.884 0.092 0.008 0.016
#> GSM258554     4  0.3940     0.6148 0.000 0.024 0.000 0.756 0.220
#> GSM258558     4  0.2370     0.6255 0.000 0.040 0.000 0.904 0.056
#> GSM258559     4  0.6505    -0.2564 0.000 0.072 0.064 0.568 0.296
#> GSM258560     3  0.7681    -0.3364 0.000 0.116 0.476 0.148 0.260
#> GSM258561     4  0.6107     0.3201 0.000 0.012 0.144 0.600 0.244
#> GSM258564     4  0.5254     0.5023 0.000 0.036 0.004 0.500 0.460
#> GSM258567     2  0.6503    -0.1286 0.000 0.436 0.372 0.000 0.192
#> GSM258568     4  0.0703     0.6155 0.000 0.000 0.000 0.976 0.024
#> GSM258569     3  0.4623     0.5171 0.000 0.304 0.664 0.000 0.032
#> GSM258571     3  0.0865     0.6544 0.000 0.004 0.972 0.000 0.024
#> GSM258572     2  0.1956     0.5860 0.000 0.928 0.052 0.008 0.012
#> GSM258573     4  0.4329     0.5945 0.000 0.016 0.000 0.672 0.312
#> GSM258574     2  0.2244     0.5718 0.000 0.920 0.024 0.040 0.016
#> GSM258575     4  0.4841     0.1543 0.000 0.416 0.000 0.560 0.024
#> GSM258576     4  0.0162     0.6236 0.000 0.000 0.000 0.996 0.004
#> GSM258577     2  0.7564    -0.2508 0.000 0.460 0.076 0.176 0.288
#> GSM258579     4  0.4045     0.3044 0.000 0.356 0.000 0.644 0.000
#> GSM258581     4  0.0000     0.6226 0.000 0.000 0.000 1.000 0.000
#> GSM258582     3  0.1270     0.6820 0.000 0.052 0.948 0.000 0.000
#> GSM258584     5  0.8238     0.0000 0.000 0.128 0.272 0.236 0.364
#> GSM258586     2  0.4514     0.5230 0.000 0.760 0.068 0.008 0.164
#> GSM258587     4  0.4025     0.6004 0.000 0.008 0.000 0.700 0.292
#> GSM258588     2  0.6179     0.2701 0.000 0.636 0.044 0.212 0.108
#> GSM258589     2  0.4038     0.5553 0.000 0.812 0.088 0.012 0.088
#> GSM258591     4  0.2763     0.6244 0.000 0.004 0.000 0.848 0.148
#> GSM258592     3  0.4581     0.3326 0.000 0.072 0.732 0.000 0.196
#> GSM258593     2  0.7954     0.0945 0.172 0.392 0.324 0.000 0.112
#> GSM258595     3  0.4616     0.5391 0.000 0.288 0.676 0.000 0.036
#> GSM258597     4  0.5249     0.5093 0.000 0.036 0.004 0.508 0.452
#> GSM258598     4  0.4752     0.5330 0.000 0.012 0.004 0.556 0.428
#> GSM258600     2  0.3346     0.5919 0.000 0.848 0.108 0.008 0.036
#> GSM258601     3  0.1893     0.6793 0.000 0.048 0.928 0.000 0.024
#> GSM258602     4  0.4918     0.1960 0.000 0.044 0.016 0.704 0.236
#> GSM258604     3  0.1753     0.6779 0.000 0.032 0.936 0.000 0.032
#> GSM258605     3  0.1168     0.6429 0.000 0.008 0.960 0.000 0.032
#> GSM258606     4  0.1502     0.5937 0.000 0.004 0.000 0.940 0.056
#> GSM258607     3  0.6366     0.3526 0.000 0.164 0.440 0.000 0.396
#> GSM258608     2  0.6395    -0.0129 0.000 0.552 0.008 0.248 0.192

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     1  0.0937     0.8098 0.960 0.000 0.000 0.000 0.040 0.000
#> GSM258555     1  0.0891     0.8135 0.968 0.000 0.000 0.008 0.000 0.024
#> GSM258556     3  0.7462     0.3090 0.000 0.152 0.388 0.304 0.148 0.008
#> GSM258557     5  0.5604     0.4684 0.072 0.412 0.020 0.000 0.492 0.004
#> GSM258562     3  0.5448     0.5859 0.000 0.068 0.676 0.012 0.188 0.056
#> GSM258563     5  0.6247     0.4713 0.252 0.228 0.016 0.000 0.500 0.004
#> GSM258565     1  0.0891     0.8135 0.968 0.000 0.000 0.008 0.000 0.024
#> GSM258566     1  0.0891     0.8135 0.968 0.000 0.000 0.008 0.000 0.024
#> GSM258570     1  0.0146     0.8143 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM258578     1  0.0891     0.8135 0.968 0.000 0.000 0.008 0.000 0.024
#> GSM258580     2  0.4392     0.4028 0.000 0.744 0.024 0.012 0.188 0.032
#> GSM258583     1  0.4222     0.2591 0.516 0.000 0.008 0.000 0.472 0.004
#> GSM258585     5  0.5944     0.5785 0.140 0.264 0.020 0.000 0.568 0.008
#> GSM258590     1  0.2378     0.7638 0.848 0.000 0.000 0.000 0.152 0.000
#> GSM258594     1  0.0000     0.8146 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258596     1  0.3942     0.5143 0.624 0.004 0.004 0.000 0.368 0.000
#> GSM258599     1  0.3911     0.5152 0.624 0.000 0.008 0.000 0.368 0.000
#> GSM258603     1  0.2416     0.7613 0.844 0.000 0.000 0.000 0.156 0.000
#> GSM258551     4  0.5638    -0.1247 0.000 0.024 0.000 0.468 0.080 0.428
#> GSM258552     2  0.1500     0.5059 0.000 0.936 0.012 0.000 0.052 0.000
#> GSM258554     6  0.5405     0.0458 0.000 0.020 0.000 0.436 0.064 0.480
#> GSM258558     6  0.5374     0.2288 0.000 0.060 0.000 0.356 0.028 0.556
#> GSM258559     6  0.4716     0.3574 0.000 0.020 0.024 0.020 0.244 0.692
#> GSM258560     6  0.7283    -0.1179 0.000 0.076 0.328 0.008 0.228 0.360
#> GSM258561     6  0.6636     0.1855 0.000 0.000 0.128 0.264 0.100 0.508
#> GSM258564     4  0.1737     0.5457 0.000 0.008 0.000 0.932 0.040 0.020
#> GSM258567     2  0.7239     0.1496 0.000 0.400 0.280 0.000 0.204 0.116
#> GSM258568     6  0.4644     0.3200 0.000 0.000 0.004 0.316 0.052 0.628
#> GSM258569     3  0.6219     0.4397 0.000 0.264 0.528 0.008 0.180 0.020
#> GSM258571     3  0.0665     0.7231 0.000 0.008 0.980 0.000 0.008 0.004
#> GSM258572     2  0.0665     0.5294 0.000 0.980 0.008 0.000 0.008 0.004
#> GSM258573     4  0.3828     0.3473 0.000 0.012 0.000 0.696 0.004 0.288
#> GSM258574     2  0.1401     0.5291 0.000 0.948 0.000 0.004 0.020 0.028
#> GSM258575     6  0.5535     0.0955 0.000 0.428 0.000 0.084 0.016 0.472
#> GSM258576     6  0.4119     0.2894 0.000 0.004 0.000 0.336 0.016 0.644
#> GSM258577     2  0.6763     0.1298 0.000 0.404 0.016 0.016 0.268 0.296
#> GSM258579     6  0.5855     0.2336 0.000 0.328 0.000 0.152 0.012 0.508
#> GSM258581     6  0.4090     0.2980 0.000 0.004 0.000 0.328 0.016 0.652
#> GSM258582     3  0.0767     0.7246 0.000 0.012 0.976 0.000 0.008 0.004
#> GSM258584     6  0.6697     0.1084 0.000 0.068 0.152 0.000 0.352 0.428
#> GSM258586     2  0.4606     0.4241 0.000 0.720 0.012 0.184 0.080 0.004
#> GSM258587     4  0.3935     0.3385 0.000 0.008 0.000 0.692 0.012 0.288
#> GSM258588     2  0.5448     0.3481 0.000 0.588 0.012 0.000 0.120 0.280
#> GSM258589     2  0.4027     0.5009 0.000 0.736 0.008 0.004 0.224 0.028
#> GSM258591     6  0.4792     0.1587 0.000 0.004 0.000 0.416 0.044 0.536
#> GSM258592     3  0.4673     0.5236 0.000 0.008 0.708 0.000 0.148 0.136
#> GSM258593     5  0.7759     0.0622 0.068 0.344 0.164 0.008 0.372 0.044
#> GSM258595     3  0.6025     0.3343 0.000 0.340 0.480 0.008 0.168 0.004
#> GSM258597     4  0.1036     0.5631 0.000 0.008 0.000 0.964 0.004 0.024
#> GSM258598     4  0.1410     0.5589 0.000 0.004 0.000 0.944 0.008 0.044
#> GSM258600     2  0.2572     0.4902 0.000 0.852 0.012 0.000 0.136 0.000
#> GSM258601     3  0.1440     0.7277 0.000 0.012 0.948 0.004 0.032 0.004
#> GSM258602     6  0.4539     0.3878 0.000 0.016 0.008 0.080 0.152 0.744
#> GSM258604     3  0.1799     0.7222 0.000 0.008 0.928 0.008 0.052 0.004
#> GSM258605     3  0.0405     0.7204 0.000 0.000 0.988 0.000 0.008 0.004
#> GSM258606     6  0.3217     0.3749 0.000 0.000 0.000 0.224 0.008 0.768
#> GSM258607     4  0.7206    -0.1263 0.000 0.144 0.240 0.476 0.128 0.012
#> GSM258608     2  0.6195     0.1907 0.000 0.476 0.000 0.016 0.216 0.292

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> MAD:kmeans 56         3.31e-08 2
#> MAD:kmeans 55         4.91e-10 3
#> MAD:kmeans 48         6.18e-08 4
#> MAD:kmeans 41         1.03e-06 5
#> MAD:kmeans 26         1.54e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.958       0.984         0.5039 0.494   0.494
#> 3 3 0.673           0.634       0.862         0.3267 0.758   0.545
#> 4 4 0.796           0.799       0.897         0.1234 0.833   0.550
#> 5 5 0.699           0.583       0.767         0.0641 0.967   0.869
#> 6 6 0.679           0.484       0.698         0.0370 0.938   0.741

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     1  0.0000      0.966 1.000 0.000
#> GSM258555     1  0.0000      0.966 1.000 0.000
#> GSM258556     2  0.0000      0.998 0.000 1.000
#> GSM258557     1  0.0000      0.966 1.000 0.000
#> GSM258562     1  0.0000      0.966 1.000 0.000
#> GSM258563     1  0.0000      0.966 1.000 0.000
#> GSM258565     1  0.0000      0.966 1.000 0.000
#> GSM258566     1  0.0000      0.966 1.000 0.000
#> GSM258570     1  0.0000      0.966 1.000 0.000
#> GSM258578     1  0.0000      0.966 1.000 0.000
#> GSM258580     1  0.0000      0.966 1.000 0.000
#> GSM258583     1  0.0000      0.966 1.000 0.000
#> GSM258585     1  0.0000      0.966 1.000 0.000
#> GSM258590     1  0.0000      0.966 1.000 0.000
#> GSM258594     1  0.0000      0.966 1.000 0.000
#> GSM258596     1  0.0000      0.966 1.000 0.000
#> GSM258599     1  0.0000      0.966 1.000 0.000
#> GSM258603     1  0.0000      0.966 1.000 0.000
#> GSM258551     2  0.0000      0.998 0.000 1.000
#> GSM258552     2  0.0000      0.998 0.000 1.000
#> GSM258554     2  0.0000      0.998 0.000 1.000
#> GSM258558     2  0.0000      0.998 0.000 1.000
#> GSM258559     2  0.0000      0.998 0.000 1.000
#> GSM258560     2  0.0000      0.998 0.000 1.000
#> GSM258561     2  0.0000      0.998 0.000 1.000
#> GSM258564     2  0.0000      0.998 0.000 1.000
#> GSM258567     1  0.9833      0.290 0.576 0.424
#> GSM258568     2  0.0000      0.998 0.000 1.000
#> GSM258569     1  0.0000      0.966 1.000 0.000
#> GSM258571     1  0.0000      0.966 1.000 0.000
#> GSM258572     2  0.0000      0.998 0.000 1.000
#> GSM258573     2  0.0000      0.998 0.000 1.000
#> GSM258574     2  0.0000      0.998 0.000 1.000
#> GSM258575     2  0.0000      0.998 0.000 1.000
#> GSM258576     2  0.0000      0.998 0.000 1.000
#> GSM258577     2  0.0000      0.998 0.000 1.000
#> GSM258579     2  0.0000      0.998 0.000 1.000
#> GSM258581     2  0.0000      0.998 0.000 1.000
#> GSM258582     1  0.0000      0.966 1.000 0.000
#> GSM258584     2  0.0000      0.998 0.000 1.000
#> GSM258586     2  0.0000      0.998 0.000 1.000
#> GSM258587     2  0.0000      0.998 0.000 1.000
#> GSM258588     2  0.0000      0.998 0.000 1.000
#> GSM258589     2  0.0000      0.998 0.000 1.000
#> GSM258591     2  0.0000      0.998 0.000 1.000
#> GSM258592     1  0.9833      0.290 0.576 0.424
#> GSM258593     1  0.0000      0.966 1.000 0.000
#> GSM258595     1  0.0376      0.963 0.996 0.004
#> GSM258597     2  0.0000      0.998 0.000 1.000
#> GSM258598     2  0.0000      0.998 0.000 1.000
#> GSM258600     2  0.3733      0.920 0.072 0.928
#> GSM258601     1  0.0672      0.960 0.992 0.008
#> GSM258602     2  0.0000      0.998 0.000 1.000
#> GSM258604     1  0.0000      0.966 1.000 0.000
#> GSM258605     1  0.0000      0.966 1.000 0.000
#> GSM258606     2  0.0000      0.998 0.000 1.000
#> GSM258607     2  0.0000      0.998 0.000 1.000
#> GSM258608     2  0.0000      0.998 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     1  0.0000     0.8656 1.000 0.000 0.000
#> GSM258555     1  0.0000     0.8656 1.000 0.000 0.000
#> GSM258556     3  0.1031     0.6545 0.000 0.024 0.976
#> GSM258557     1  0.6192     0.1443 0.580 0.000 0.420
#> GSM258562     1  0.6045     0.2636 0.620 0.000 0.380
#> GSM258563     1  0.0892     0.8471 0.980 0.000 0.020
#> GSM258565     1  0.0000     0.8656 1.000 0.000 0.000
#> GSM258566     1  0.0000     0.8656 1.000 0.000 0.000
#> GSM258570     1  0.0000     0.8656 1.000 0.000 0.000
#> GSM258578     1  0.0000     0.8656 1.000 0.000 0.000
#> GSM258580     3  0.6307    -0.0315 0.488 0.000 0.512
#> GSM258583     1  0.0000     0.8656 1.000 0.000 0.000
#> GSM258585     1  0.0000     0.8656 1.000 0.000 0.000
#> GSM258590     1  0.0000     0.8656 1.000 0.000 0.000
#> GSM258594     1  0.0000     0.8656 1.000 0.000 0.000
#> GSM258596     1  0.0000     0.8656 1.000 0.000 0.000
#> GSM258599     1  0.0000     0.8656 1.000 0.000 0.000
#> GSM258603     1  0.0000     0.8656 1.000 0.000 0.000
#> GSM258551     2  0.0000     0.8822 0.000 1.000 0.000
#> GSM258552     3  0.1753     0.6602 0.000 0.048 0.952
#> GSM258554     2  0.0000     0.8822 0.000 1.000 0.000
#> GSM258558     2  0.0000     0.8822 0.000 1.000 0.000
#> GSM258559     2  0.0424     0.8772 0.000 0.992 0.008
#> GSM258560     2  0.6154     0.3303 0.000 0.592 0.408
#> GSM258561     2  0.1031     0.8664 0.000 0.976 0.024
#> GSM258564     2  0.0000     0.8822 0.000 1.000 0.000
#> GSM258567     3  0.0000     0.6537 0.000 0.000 1.000
#> GSM258568     2  0.0000     0.8822 0.000 1.000 0.000
#> GSM258569     3  0.6180     0.2267 0.416 0.000 0.584
#> GSM258571     3  0.6280     0.1197 0.460 0.000 0.540
#> GSM258572     3  0.3267     0.6125 0.000 0.116 0.884
#> GSM258573     2  0.0000     0.8822 0.000 1.000 0.000
#> GSM258574     3  0.6305    -0.1217 0.000 0.484 0.516
#> GSM258575     2  0.5733     0.4874 0.000 0.676 0.324
#> GSM258576     2  0.0000     0.8822 0.000 1.000 0.000
#> GSM258577     2  0.5733     0.5278 0.000 0.676 0.324
#> GSM258579     2  0.5529     0.5415 0.000 0.704 0.296
#> GSM258581     2  0.0000     0.8822 0.000 1.000 0.000
#> GSM258582     3  0.6252     0.1604 0.444 0.000 0.556
#> GSM258584     2  0.4702     0.6978 0.000 0.788 0.212
#> GSM258586     3  0.1031     0.6593 0.000 0.024 0.976
#> GSM258587     2  0.0000     0.8822 0.000 1.000 0.000
#> GSM258588     3  0.6308    -0.1289 0.000 0.492 0.508
#> GSM258589     3  0.4399     0.5320 0.000 0.188 0.812
#> GSM258591     2  0.0000     0.8822 0.000 1.000 0.000
#> GSM258592     3  0.0000     0.6537 0.000 0.000 1.000
#> GSM258593     1  0.0892     0.8490 0.980 0.000 0.020
#> GSM258595     3  0.6148     0.3364 0.356 0.004 0.640
#> GSM258597     2  0.0000     0.8822 0.000 1.000 0.000
#> GSM258598     2  0.0000     0.8822 0.000 1.000 0.000
#> GSM258600     3  0.1753     0.6602 0.000 0.048 0.952
#> GSM258601     3  0.6095     0.2724 0.392 0.000 0.608
#> GSM258602     2  0.0000     0.8822 0.000 1.000 0.000
#> GSM258604     1  0.6308    -0.0743 0.508 0.000 0.492
#> GSM258605     1  0.6295    -0.0122 0.528 0.000 0.472
#> GSM258606     2  0.0000     0.8822 0.000 1.000 0.000
#> GSM258607     2  0.6309     0.0819 0.000 0.504 0.496
#> GSM258608     2  0.3192     0.8046 0.000 0.888 0.112

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     1  0.0188      0.992 0.996 0.000 0.004 0.000
#> GSM258555     1  0.0188      0.992 0.996 0.000 0.004 0.000
#> GSM258556     3  0.4262      0.718 0.000 0.008 0.756 0.236
#> GSM258557     4  0.5172      0.334 0.404 0.000 0.008 0.588
#> GSM258562     3  0.4831      0.692 0.208 0.000 0.752 0.040
#> GSM258563     1  0.1042      0.969 0.972 0.000 0.008 0.020
#> GSM258565     1  0.0188      0.992 0.996 0.000 0.004 0.000
#> GSM258566     1  0.0188      0.992 0.996 0.000 0.004 0.000
#> GSM258570     1  0.0188      0.992 0.996 0.000 0.004 0.000
#> GSM258578     1  0.0188      0.992 0.996 0.000 0.004 0.000
#> GSM258580     4  0.3355      0.671 0.160 0.000 0.004 0.836
#> GSM258583     1  0.0336      0.986 0.992 0.000 0.008 0.000
#> GSM258585     1  0.0336      0.986 0.992 0.000 0.008 0.000
#> GSM258590     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM258594     1  0.0188      0.992 0.996 0.000 0.004 0.000
#> GSM258596     1  0.0188      0.992 0.996 0.000 0.004 0.000
#> GSM258599     1  0.0188      0.992 0.996 0.000 0.004 0.000
#> GSM258603     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM258551     2  0.1792      0.865 0.000 0.932 0.000 0.068
#> GSM258552     4  0.1109      0.744 0.000 0.004 0.028 0.968
#> GSM258554     2  0.1118      0.885 0.000 0.964 0.000 0.036
#> GSM258558     2  0.1557      0.879 0.000 0.944 0.000 0.056
#> GSM258559     2  0.1820      0.870 0.000 0.944 0.036 0.020
#> GSM258560     3  0.5608      0.553 0.000 0.256 0.684 0.060
#> GSM258561     2  0.2011      0.854 0.000 0.920 0.080 0.000
#> GSM258564     2  0.2623      0.864 0.000 0.908 0.028 0.064
#> GSM258567     4  0.4830      0.375 0.000 0.000 0.392 0.608
#> GSM258568     2  0.0336      0.889 0.000 0.992 0.000 0.008
#> GSM258569     3  0.4562      0.752 0.028 0.000 0.764 0.208
#> GSM258571     3  0.1004      0.834 0.024 0.000 0.972 0.004
#> GSM258572     4  0.0188      0.748 0.000 0.004 0.000 0.996
#> GSM258573     2  0.1520      0.885 0.000 0.956 0.020 0.024
#> GSM258574     4  0.1022      0.751 0.000 0.032 0.000 0.968
#> GSM258575     2  0.4746      0.353 0.000 0.632 0.000 0.368
#> GSM258576     2  0.0336      0.889 0.000 0.992 0.000 0.008
#> GSM258577     4  0.6282      0.295 0.004 0.368 0.056 0.572
#> GSM258579     2  0.4776      0.349 0.000 0.624 0.000 0.376
#> GSM258581     2  0.0336      0.889 0.000 0.992 0.000 0.008
#> GSM258582     3  0.1610      0.835 0.032 0.000 0.952 0.016
#> GSM258584     2  0.6799      0.393 0.004 0.584 0.300 0.112
#> GSM258586     4  0.1545      0.741 0.000 0.008 0.040 0.952
#> GSM258587     2  0.1059      0.887 0.000 0.972 0.016 0.012
#> GSM258588     4  0.4661      0.598 0.000 0.256 0.016 0.728
#> GSM258589     4  0.3687      0.714 0.000 0.080 0.064 0.856
#> GSM258591     2  0.0000      0.888 0.000 1.000 0.000 0.000
#> GSM258592     3  0.1557      0.817 0.000 0.000 0.944 0.056
#> GSM258593     1  0.1520      0.958 0.956 0.000 0.020 0.024
#> GSM258595     3  0.4425      0.778 0.036 0.004 0.800 0.160
#> GSM258597     2  0.2466      0.870 0.000 0.916 0.028 0.056
#> GSM258598     2  0.1388      0.883 0.000 0.960 0.028 0.012
#> GSM258600     4  0.0707      0.746 0.000 0.000 0.020 0.980
#> GSM258601     3  0.0672      0.833 0.008 0.000 0.984 0.008
#> GSM258602     2  0.0927      0.885 0.000 0.976 0.016 0.008
#> GSM258604     3  0.1209      0.836 0.032 0.000 0.964 0.004
#> GSM258605     3  0.1004      0.834 0.024 0.000 0.972 0.004
#> GSM258606     2  0.0336      0.889 0.000 0.992 0.000 0.008
#> GSM258607     3  0.6110      0.626 0.000 0.100 0.660 0.240
#> GSM258608     4  0.4762      0.520 0.004 0.300 0.004 0.692

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     1  0.0162     0.9534 0.996 0.000 0.004 0.000 0.000
#> GSM258555     1  0.0324     0.9539 0.992 0.000 0.004 0.000 0.004
#> GSM258556     3  0.5341     0.3333 0.000 0.064 0.580 0.000 0.356
#> GSM258557     2  0.6081     0.2364 0.376 0.496 0.000 0.000 0.128
#> GSM258562     3  0.4874     0.5399 0.208 0.048 0.724 0.000 0.020
#> GSM258563     1  0.2771     0.8654 0.860 0.012 0.000 0.000 0.128
#> GSM258565     1  0.0324     0.9539 0.992 0.000 0.004 0.000 0.004
#> GSM258566     1  0.0324     0.9539 0.992 0.000 0.004 0.000 0.004
#> GSM258570     1  0.0324     0.9539 0.992 0.000 0.004 0.000 0.004
#> GSM258578     1  0.0324     0.9539 0.992 0.000 0.004 0.000 0.004
#> GSM258580     2  0.2830     0.6149 0.080 0.884 0.020 0.000 0.016
#> GSM258583     1  0.2230     0.8816 0.884 0.000 0.000 0.000 0.116
#> GSM258585     1  0.2864     0.8609 0.852 0.012 0.000 0.000 0.136
#> GSM258590     1  0.0000     0.9527 1.000 0.000 0.000 0.000 0.000
#> GSM258594     1  0.0324     0.9539 0.992 0.000 0.004 0.000 0.004
#> GSM258596     1  0.0451     0.9522 0.988 0.000 0.004 0.000 0.008
#> GSM258599     1  0.0566     0.9512 0.984 0.000 0.004 0.000 0.012
#> GSM258603     1  0.0162     0.9515 0.996 0.000 0.000 0.000 0.004
#> GSM258551     4  0.4491     0.5313 0.000 0.020 0.000 0.652 0.328
#> GSM258552     2  0.0579     0.6492 0.000 0.984 0.008 0.000 0.008
#> GSM258554     4  0.3957     0.5805 0.000 0.008 0.000 0.712 0.280
#> GSM258558     4  0.3346     0.5853 0.000 0.064 0.000 0.844 0.092
#> GSM258559     4  0.4436    -0.0233 0.000 0.000 0.008 0.596 0.396
#> GSM258560     5  0.7117     0.2766 0.000 0.012 0.312 0.300 0.376
#> GSM258561     4  0.5144     0.5184 0.000 0.000 0.068 0.640 0.292
#> GSM258564     4  0.4446     0.4773 0.000 0.000 0.004 0.520 0.476
#> GSM258567     2  0.6733     0.1181 0.000 0.416 0.296 0.000 0.288
#> GSM258568     4  0.1121     0.5860 0.000 0.000 0.000 0.956 0.044
#> GSM258569     3  0.3996     0.5969 0.008 0.228 0.752 0.000 0.012
#> GSM258571     3  0.0794     0.7485 0.000 0.000 0.972 0.000 0.028
#> GSM258572     2  0.0451     0.6492 0.000 0.988 0.000 0.004 0.008
#> GSM258573     4  0.4045     0.5675 0.000 0.000 0.000 0.644 0.356
#> GSM258574     2  0.1012     0.6467 0.000 0.968 0.000 0.020 0.012
#> GSM258575     4  0.4654     0.2812 0.000 0.348 0.000 0.628 0.024
#> GSM258576     4  0.0162     0.6080 0.000 0.000 0.000 0.996 0.004
#> GSM258577     5  0.6865     0.0262 0.004 0.388 0.004 0.208 0.396
#> GSM258579     4  0.4505     0.2319 0.000 0.384 0.000 0.604 0.012
#> GSM258581     4  0.0000     0.6069 0.000 0.000 0.000 1.000 0.000
#> GSM258582     3  0.0324     0.7491 0.000 0.004 0.992 0.000 0.004
#> GSM258584     5  0.6671     0.3358 0.004 0.016 0.140 0.332 0.508
#> GSM258586     2  0.4475     0.4744 0.000 0.692 0.032 0.000 0.276
#> GSM258587     4  0.3452     0.6007 0.000 0.000 0.000 0.756 0.244
#> GSM258588     2  0.5959     0.3594 0.000 0.600 0.004 0.244 0.152
#> GSM258589     2  0.5370     0.5231 0.000 0.708 0.020 0.124 0.148
#> GSM258591     4  0.2929     0.6270 0.000 0.000 0.000 0.820 0.180
#> GSM258592     3  0.3662     0.5036 0.000 0.004 0.744 0.000 0.252
#> GSM258593     1  0.4287     0.7796 0.800 0.116 0.056 0.000 0.028
#> GSM258595     3  0.6563     0.4733 0.040 0.168 0.596 0.000 0.196
#> GSM258597     4  0.4278     0.4990 0.000 0.000 0.000 0.548 0.452
#> GSM258598     4  0.4171     0.5411 0.000 0.000 0.000 0.604 0.396
#> GSM258600     2  0.0798     0.6476 0.000 0.976 0.008 0.000 0.016
#> GSM258601     3  0.0880     0.7482 0.000 0.000 0.968 0.000 0.032
#> GSM258602     4  0.3752     0.2270 0.000 0.000 0.000 0.708 0.292
#> GSM258604     3  0.1282     0.7460 0.004 0.000 0.952 0.000 0.044
#> GSM258605     3  0.1121     0.7432 0.000 0.000 0.956 0.000 0.044
#> GSM258606     4  0.1197     0.5875 0.000 0.000 0.000 0.952 0.048
#> GSM258607     5  0.6676    -0.2044 0.000 0.040 0.388 0.096 0.476
#> GSM258608     2  0.6888    -0.2317 0.004 0.392 0.000 0.268 0.336

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     1  0.0937     0.8250 0.960 0.000 0.000 0.040 0.000 0.000
#> GSM258555     1  0.0363     0.8250 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM258556     4  0.7277    -0.3278 0.000 0.044 0.344 0.348 0.024 0.240
#> GSM258557     4  0.6589    -0.2256 0.288 0.320 0.000 0.368 0.024 0.000
#> GSM258562     3  0.6570     0.3094 0.284 0.076 0.520 0.112 0.008 0.000
#> GSM258563     1  0.4549     0.5599 0.596 0.008 0.000 0.368 0.028 0.000
#> GSM258565     1  0.0363     0.8250 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM258566     1  0.0363     0.8250 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM258570     1  0.0000     0.8262 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0363     0.8250 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM258580     2  0.4115     0.6001 0.068 0.796 0.024 0.100 0.012 0.000
#> GSM258583     1  0.4029     0.6513 0.680 0.000 0.000 0.292 0.028 0.000
#> GSM258585     1  0.4699     0.5335 0.580 0.008 0.000 0.376 0.036 0.000
#> GSM258590     1  0.1610     0.8183 0.916 0.000 0.000 0.084 0.000 0.000
#> GSM258594     1  0.0000     0.8262 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258596     1  0.2664     0.7808 0.816 0.000 0.000 0.184 0.000 0.000
#> GSM258599     1  0.2631     0.7808 0.820 0.000 0.000 0.180 0.000 0.000
#> GSM258603     1  0.1910     0.8114 0.892 0.000 0.000 0.108 0.000 0.000
#> GSM258551     6  0.5890     0.3966 0.000 0.008 0.000 0.180 0.308 0.504
#> GSM258552     2  0.0777     0.7025 0.000 0.972 0.000 0.024 0.004 0.000
#> GSM258554     6  0.5246     0.4709 0.000 0.008 0.000 0.108 0.280 0.604
#> GSM258558     6  0.5733     0.4471 0.000 0.052 0.000 0.072 0.308 0.568
#> GSM258559     5  0.2308     0.3352 0.000 0.000 0.004 0.008 0.880 0.108
#> GSM258560     5  0.5420     0.3581 0.000 0.004 0.228 0.080 0.648 0.040
#> GSM258561     6  0.6551     0.3723 0.000 0.000 0.096 0.104 0.312 0.488
#> GSM258564     6  0.3670     0.3713 0.000 0.000 0.000 0.284 0.012 0.704
#> GSM258567     5  0.7390     0.0252 0.000 0.296 0.252 0.116 0.336 0.000
#> GSM258568     6  0.3986     0.4190 0.000 0.000 0.000 0.004 0.464 0.532
#> GSM258569     3  0.5722     0.4502 0.020 0.264 0.604 0.100 0.008 0.004
#> GSM258571     3  0.0508     0.6930 0.000 0.000 0.984 0.004 0.012 0.000
#> GSM258572     2  0.1572     0.7040 0.000 0.936 0.000 0.036 0.028 0.000
#> GSM258573     6  0.1793     0.5471 0.000 0.004 0.000 0.032 0.036 0.928
#> GSM258574     2  0.2314     0.6946 0.000 0.900 0.000 0.036 0.056 0.008
#> GSM258575     6  0.6436     0.1666 0.000 0.312 0.000 0.016 0.280 0.392
#> GSM258576     6  0.4004     0.4904 0.000 0.000 0.000 0.012 0.368 0.620
#> GSM258577     5  0.6227     0.2662 0.000 0.264 0.000 0.268 0.456 0.012
#> GSM258579     6  0.6201     0.2900 0.000 0.288 0.000 0.016 0.220 0.476
#> GSM258581     6  0.4088     0.4897 0.000 0.000 0.000 0.016 0.368 0.616
#> GSM258582     3  0.1152     0.6904 0.004 0.000 0.952 0.044 0.000 0.000
#> GSM258584     5  0.4806     0.4966 0.000 0.012 0.108 0.156 0.716 0.008
#> GSM258586     2  0.6588     0.2245 0.000 0.464 0.020 0.336 0.024 0.156
#> GSM258587     6  0.2617     0.5437 0.000 0.004 0.000 0.040 0.080 0.876
#> GSM258588     2  0.6041     0.0992 0.000 0.480 0.008 0.040 0.396 0.076
#> GSM258589     2  0.5879     0.5705 0.000 0.656 0.012 0.120 0.132 0.080
#> GSM258591     6  0.4234     0.5371 0.000 0.000 0.000 0.044 0.280 0.676
#> GSM258592     3  0.4832     0.2920 0.000 0.008 0.612 0.056 0.324 0.000
#> GSM258593     1  0.6179     0.3350 0.588 0.180 0.056 0.172 0.000 0.004
#> GSM258595     3  0.8478     0.1837 0.092 0.204 0.372 0.248 0.028 0.056
#> GSM258597     6  0.2738     0.4723 0.000 0.000 0.000 0.176 0.004 0.820
#> GSM258598     6  0.2692     0.5001 0.000 0.000 0.000 0.148 0.012 0.840
#> GSM258600     2  0.1010     0.6991 0.000 0.960 0.000 0.036 0.004 0.000
#> GSM258601     3  0.1590     0.6850 0.000 0.000 0.936 0.048 0.008 0.008
#> GSM258602     5  0.3265     0.0994 0.000 0.000 0.000 0.004 0.748 0.248
#> GSM258604     3  0.2153     0.6693 0.004 0.000 0.900 0.084 0.008 0.004
#> GSM258605     3  0.0725     0.6921 0.000 0.000 0.976 0.012 0.012 0.000
#> GSM258606     6  0.4067     0.4400 0.000 0.000 0.000 0.008 0.444 0.548
#> GSM258607     6  0.6712    -0.1927 0.000 0.016 0.172 0.376 0.028 0.408
#> GSM258608     5  0.7111     0.2541 0.000 0.260 0.000 0.244 0.408 0.088

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> MAD:skmeans 56         1.11e-06 2
#> MAD:skmeans 43         2.46e-08 3
#> MAD:skmeans 52         6.98e-08 4
#> MAD:skmeans 41         1.45e-06 5
#> MAD:skmeans 29         1.12e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.999           0.957       0.982         0.4720 0.521   0.521
#> 3 3 0.865           0.886       0.954         0.3796 0.682   0.465
#> 4 4 0.817           0.771       0.900         0.1118 0.873   0.662
#> 5 5 0.865           0.755       0.900         0.0542 0.938   0.786
#> 6 6 0.826           0.734       0.888         0.0662 0.947   0.780

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     1  0.0000      0.956 1.000 0.000
#> GSM258555     1  0.0000      0.956 1.000 0.000
#> GSM258556     2  0.0000      0.995 0.000 1.000
#> GSM258557     1  0.0672      0.952 0.992 0.008
#> GSM258562     1  0.0000      0.956 1.000 0.000
#> GSM258563     1  0.0000      0.956 1.000 0.000
#> GSM258565     1  0.0000      0.956 1.000 0.000
#> GSM258566     1  0.0000      0.956 1.000 0.000
#> GSM258570     1  0.0000      0.956 1.000 0.000
#> GSM258578     1  0.0000      0.956 1.000 0.000
#> GSM258580     1  0.6048      0.824 0.852 0.148
#> GSM258583     1  0.0000      0.956 1.000 0.000
#> GSM258585     1  0.2603      0.927 0.956 0.044
#> GSM258590     1  0.0000      0.956 1.000 0.000
#> GSM258594     1  0.0000      0.956 1.000 0.000
#> GSM258596     1  0.0000      0.956 1.000 0.000
#> GSM258599     1  0.0000      0.956 1.000 0.000
#> GSM258603     1  0.0000      0.956 1.000 0.000
#> GSM258551     2  0.0000      0.995 0.000 1.000
#> GSM258552     2  0.0000      0.995 0.000 1.000
#> GSM258554     2  0.0000      0.995 0.000 1.000
#> GSM258558     2  0.0000      0.995 0.000 1.000
#> GSM258559     2  0.0000      0.995 0.000 1.000
#> GSM258560     2  0.0000      0.995 0.000 1.000
#> GSM258561     2  0.0000      0.995 0.000 1.000
#> GSM258564     2  0.0000      0.995 0.000 1.000
#> GSM258567     2  0.0938      0.984 0.012 0.988
#> GSM258568     2  0.0000      0.995 0.000 1.000
#> GSM258569     1  0.9988      0.126 0.520 0.480
#> GSM258571     1  0.7219      0.759 0.800 0.200
#> GSM258572     2  0.0000      0.995 0.000 1.000
#> GSM258573     2  0.0000      0.995 0.000 1.000
#> GSM258574     2  0.0000      0.995 0.000 1.000
#> GSM258575     2  0.0000      0.995 0.000 1.000
#> GSM258576     2  0.0000      0.995 0.000 1.000
#> GSM258577     2  0.0000      0.995 0.000 1.000
#> GSM258579     2  0.0000      0.995 0.000 1.000
#> GSM258581     2  0.0000      0.995 0.000 1.000
#> GSM258582     1  0.0000      0.956 1.000 0.000
#> GSM258584     2  0.0376      0.992 0.004 0.996
#> GSM258586     2  0.0000      0.995 0.000 1.000
#> GSM258587     2  0.0000      0.995 0.000 1.000
#> GSM258588     2  0.0000      0.995 0.000 1.000
#> GSM258589     2  0.0000      0.995 0.000 1.000
#> GSM258591     2  0.0000      0.995 0.000 1.000
#> GSM258592     2  0.3431      0.932 0.064 0.936
#> GSM258593     1  0.0000      0.956 1.000 0.000
#> GSM258595     2  0.0000      0.995 0.000 1.000
#> GSM258597     2  0.0000      0.995 0.000 1.000
#> GSM258598     2  0.0000      0.995 0.000 1.000
#> GSM258600     2  0.0376      0.992 0.004 0.996
#> GSM258601     2  0.0000      0.995 0.000 1.000
#> GSM258602     2  0.0000      0.995 0.000 1.000
#> GSM258604     2  0.3879      0.917 0.076 0.924
#> GSM258605     1  0.2043      0.936 0.968 0.032
#> GSM258606     2  0.0000      0.995 0.000 1.000
#> GSM258607     2  0.0000      0.995 0.000 1.000
#> GSM258608     2  0.0000      0.995 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     1  0.0000      0.990 1.000 0.000 0.000
#> GSM258555     1  0.0000      0.990 1.000 0.000 0.000
#> GSM258556     2  0.0000      0.947 0.000 1.000 0.000
#> GSM258557     3  0.0000      0.896 0.000 0.000 1.000
#> GSM258562     1  0.0000      0.990 1.000 0.000 0.000
#> GSM258563     1  0.3551      0.846 0.868 0.000 0.132
#> GSM258565     1  0.0000      0.990 1.000 0.000 0.000
#> GSM258566     1  0.0000      0.990 1.000 0.000 0.000
#> GSM258570     1  0.0000      0.990 1.000 0.000 0.000
#> GSM258578     1  0.0000      0.990 1.000 0.000 0.000
#> GSM258580     3  0.0000      0.896 0.000 0.000 1.000
#> GSM258583     1  0.0000      0.990 1.000 0.000 0.000
#> GSM258585     3  0.5988      0.417 0.000 0.368 0.632
#> GSM258590     1  0.0000      0.990 1.000 0.000 0.000
#> GSM258594     1  0.0000      0.990 1.000 0.000 0.000
#> GSM258596     1  0.0000      0.990 1.000 0.000 0.000
#> GSM258599     1  0.0000      0.990 1.000 0.000 0.000
#> GSM258603     1  0.0000      0.990 1.000 0.000 0.000
#> GSM258551     2  0.1163      0.926 0.000 0.972 0.028
#> GSM258552     3  0.0000      0.896 0.000 0.000 1.000
#> GSM258554     2  0.0000      0.947 0.000 1.000 0.000
#> GSM258558     3  0.2261      0.852 0.000 0.068 0.932
#> GSM258559     2  0.0000      0.947 0.000 1.000 0.000
#> GSM258560     2  0.0000      0.947 0.000 1.000 0.000
#> GSM258561     2  0.0000      0.947 0.000 1.000 0.000
#> GSM258564     2  0.0000      0.947 0.000 1.000 0.000
#> GSM258567     3  0.0000      0.896 0.000 0.000 1.000
#> GSM258568     2  0.0000      0.947 0.000 1.000 0.000
#> GSM258569     2  0.6126      0.302 0.000 0.600 0.400
#> GSM258571     2  0.2165      0.893 0.064 0.936 0.000
#> GSM258572     3  0.0000      0.896 0.000 0.000 1.000
#> GSM258573     2  0.0000      0.947 0.000 1.000 0.000
#> GSM258574     3  0.0000      0.896 0.000 0.000 1.000
#> GSM258575     2  0.0000      0.947 0.000 1.000 0.000
#> GSM258576     2  0.0000      0.947 0.000 1.000 0.000
#> GSM258577     3  0.5810      0.491 0.000 0.336 0.664
#> GSM258579     3  0.5785      0.518 0.000 0.332 0.668
#> GSM258581     2  0.0000      0.947 0.000 1.000 0.000
#> GSM258582     1  0.0000      0.990 1.000 0.000 0.000
#> GSM258584     2  0.4555      0.729 0.000 0.800 0.200
#> GSM258586     3  0.0000      0.896 0.000 0.000 1.000
#> GSM258587     2  0.0000      0.947 0.000 1.000 0.000
#> GSM258588     3  0.0000      0.896 0.000 0.000 1.000
#> GSM258589     3  0.0000      0.896 0.000 0.000 1.000
#> GSM258591     2  0.0000      0.947 0.000 1.000 0.000
#> GSM258592     2  0.4063      0.828 0.020 0.868 0.112
#> GSM258593     3  0.4555      0.678 0.200 0.000 0.800
#> GSM258595     2  0.0000      0.947 0.000 1.000 0.000
#> GSM258597     2  0.0000      0.947 0.000 1.000 0.000
#> GSM258598     2  0.0000      0.947 0.000 1.000 0.000
#> GSM258600     3  0.0000      0.896 0.000 0.000 1.000
#> GSM258601     2  0.0000      0.947 0.000 1.000 0.000
#> GSM258602     2  0.0000      0.947 0.000 1.000 0.000
#> GSM258604     2  0.0424      0.942 0.008 0.992 0.000
#> GSM258605     2  0.6192      0.311 0.420 0.580 0.000
#> GSM258606     2  0.0000      0.947 0.000 1.000 0.000
#> GSM258607     2  0.0000      0.947 0.000 1.000 0.000
#> GSM258608     3  0.0000      0.896 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     1  0.0000     0.9863 1.000 0.000 0.000 0.000
#> GSM258555     1  0.0000     0.9863 1.000 0.000 0.000 0.000
#> GSM258556     4  0.0000     0.9382 0.000 0.000 0.000 1.000
#> GSM258557     3  0.4925     0.1004 0.000 0.428 0.572 0.000
#> GSM258562     1  0.0000     0.9863 1.000 0.000 0.000 0.000
#> GSM258563     3  0.0707     0.6561 0.020 0.000 0.980 0.000
#> GSM258565     1  0.0000     0.9863 1.000 0.000 0.000 0.000
#> GSM258566     1  0.0000     0.9863 1.000 0.000 0.000 0.000
#> GSM258570     1  0.0000     0.9863 1.000 0.000 0.000 0.000
#> GSM258578     1  0.0000     0.9863 1.000 0.000 0.000 0.000
#> GSM258580     2  0.0000     0.8793 0.000 1.000 0.000 0.000
#> GSM258583     3  0.3172     0.6258 0.160 0.000 0.840 0.000
#> GSM258585     3  0.2011     0.6483 0.000 0.080 0.920 0.000
#> GSM258590     3  0.4730     0.4081 0.364 0.000 0.636 0.000
#> GSM258594     1  0.0000     0.9863 1.000 0.000 0.000 0.000
#> GSM258596     3  0.2469     0.6464 0.108 0.000 0.892 0.000
#> GSM258599     3  0.4843     0.3068 0.396 0.000 0.604 0.000
#> GSM258603     3  0.4585     0.4576 0.332 0.000 0.668 0.000
#> GSM258551     4  0.0921     0.9143 0.000 0.028 0.000 0.972
#> GSM258552     2  0.0000     0.8793 0.000 1.000 0.000 0.000
#> GSM258554     4  0.0000     0.9382 0.000 0.000 0.000 1.000
#> GSM258558     2  0.1792     0.8147 0.000 0.932 0.000 0.068
#> GSM258559     4  0.0000     0.9382 0.000 0.000 0.000 1.000
#> GSM258560     4  0.1637     0.8855 0.000 0.000 0.060 0.940
#> GSM258561     4  0.0000     0.9382 0.000 0.000 0.000 1.000
#> GSM258564     4  0.0000     0.9382 0.000 0.000 0.000 1.000
#> GSM258567     2  0.4134     0.6107 0.000 0.740 0.260 0.000
#> GSM258568     4  0.0000     0.9382 0.000 0.000 0.000 1.000
#> GSM258569     4  0.7186     0.0955 0.000 0.384 0.140 0.476
#> GSM258571     4  0.4992     0.1196 0.000 0.000 0.476 0.524
#> GSM258572     2  0.0000     0.8793 0.000 1.000 0.000 0.000
#> GSM258573     4  0.0000     0.9382 0.000 0.000 0.000 1.000
#> GSM258574     2  0.0000     0.8793 0.000 1.000 0.000 0.000
#> GSM258575     4  0.0000     0.9382 0.000 0.000 0.000 1.000
#> GSM258576     4  0.0000     0.9382 0.000 0.000 0.000 1.000
#> GSM258577     2  0.6238     0.3643 0.000 0.632 0.276 0.092
#> GSM258579     2  0.4585     0.4310 0.000 0.668 0.000 0.332
#> GSM258581     4  0.0000     0.9382 0.000 0.000 0.000 1.000
#> GSM258582     1  0.2081     0.8850 0.916 0.000 0.084 0.000
#> GSM258584     3  0.7410     0.3041 0.000 0.184 0.488 0.328
#> GSM258586     2  0.0000     0.8793 0.000 1.000 0.000 0.000
#> GSM258587     4  0.0000     0.9382 0.000 0.000 0.000 1.000
#> GSM258588     2  0.1637     0.8354 0.000 0.940 0.060 0.000
#> GSM258589     2  0.0000     0.8793 0.000 1.000 0.000 0.000
#> GSM258591     4  0.0000     0.9382 0.000 0.000 0.000 1.000
#> GSM258592     4  0.4934     0.7173 0.004 0.084 0.128 0.784
#> GSM258593     3  0.5602     0.0620 0.020 0.472 0.508 0.000
#> GSM258595     4  0.0000     0.9382 0.000 0.000 0.000 1.000
#> GSM258597     4  0.0000     0.9382 0.000 0.000 0.000 1.000
#> GSM258598     4  0.0000     0.9382 0.000 0.000 0.000 1.000
#> GSM258600     2  0.0000     0.8793 0.000 1.000 0.000 0.000
#> GSM258601     4  0.0188     0.9354 0.000 0.000 0.004 0.996
#> GSM258602     4  0.0000     0.9382 0.000 0.000 0.000 1.000
#> GSM258604     3  0.4605     0.4215 0.000 0.000 0.664 0.336
#> GSM258605     3  0.2256     0.6500 0.020 0.000 0.924 0.056
#> GSM258606     4  0.0000     0.9382 0.000 0.000 0.000 1.000
#> GSM258607     4  0.0000     0.9382 0.000 0.000 0.000 1.000
#> GSM258608     2  0.0000     0.8793 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     1  0.0000   0.876112 1.000 0.000 0.000 0.000 0.000
#> GSM258555     1  0.0000   0.876112 1.000 0.000 0.000 0.000 0.000
#> GSM258556     4  0.0000   0.953924 0.000 0.000 0.000 1.000 0.000
#> GSM258557     5  0.4310   0.284539 0.000 0.392 0.004 0.000 0.604
#> GSM258562     1  0.1270   0.833588 0.948 0.000 0.052 0.000 0.000
#> GSM258563     5  0.0000   0.645997 0.000 0.000 0.000 0.000 1.000
#> GSM258565     1  0.0000   0.876112 1.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000   0.876112 1.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000   0.876112 1.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000   0.876112 1.000 0.000 0.000 0.000 0.000
#> GSM258580     2  0.0000   0.831526 0.000 1.000 0.000 0.000 0.000
#> GSM258583     5  0.1121   0.642732 0.044 0.000 0.000 0.000 0.956
#> GSM258585     5  0.0000   0.645997 0.000 0.000 0.000 0.000 1.000
#> GSM258590     1  0.4278   0.294711 0.548 0.000 0.000 0.000 0.452
#> GSM258594     1  0.0000   0.876112 1.000 0.000 0.000 0.000 0.000
#> GSM258596     5  0.1341   0.637571 0.056 0.000 0.000 0.000 0.944
#> GSM258599     5  0.3774   0.409844 0.296 0.000 0.000 0.000 0.704
#> GSM258603     1  0.4294   0.263434 0.532 0.000 0.000 0.000 0.468
#> GSM258551     4  0.0794   0.935112 0.000 0.028 0.000 0.972 0.000
#> GSM258552     2  0.0000   0.831526 0.000 1.000 0.000 0.000 0.000
#> GSM258554     4  0.0000   0.953924 0.000 0.000 0.000 1.000 0.000
#> GSM258558     2  0.2079   0.763361 0.000 0.916 0.020 0.064 0.000
#> GSM258559     4  0.0609   0.946600 0.000 0.000 0.020 0.980 0.000
#> GSM258560     4  0.3395   0.684285 0.000 0.000 0.236 0.764 0.000
#> GSM258561     4  0.0000   0.953924 0.000 0.000 0.000 1.000 0.000
#> GSM258564     4  0.0000   0.953924 0.000 0.000 0.000 1.000 0.000
#> GSM258567     2  0.6513   0.000929 0.000 0.424 0.384 0.000 0.192
#> GSM258568     4  0.1043   0.938577 0.000 0.000 0.040 0.960 0.000
#> GSM258569     4  0.5213   0.243657 0.000 0.396 0.000 0.556 0.048
#> GSM258571     3  0.1216   0.929354 0.000 0.000 0.960 0.020 0.020
#> GSM258572     2  0.0000   0.831526 0.000 1.000 0.000 0.000 0.000
#> GSM258573     4  0.0000   0.953924 0.000 0.000 0.000 1.000 0.000
#> GSM258574     2  0.0000   0.831526 0.000 1.000 0.000 0.000 0.000
#> GSM258575     4  0.0000   0.953924 0.000 0.000 0.000 1.000 0.000
#> GSM258576     4  0.1043   0.938577 0.000 0.000 0.040 0.960 0.000
#> GSM258577     2  0.5400   0.356617 0.000 0.632 0.000 0.096 0.272
#> GSM258579     2  0.3949   0.415312 0.000 0.668 0.000 0.332 0.000
#> GSM258581     4  0.0609   0.945394 0.000 0.000 0.020 0.980 0.000
#> GSM258582     3  0.1197   0.911987 0.048 0.000 0.952 0.000 0.000
#> GSM258584     5  0.7538  -0.077102 0.000 0.056 0.360 0.192 0.392
#> GSM258586     2  0.0000   0.831526 0.000 1.000 0.000 0.000 0.000
#> GSM258587     4  0.0000   0.953924 0.000 0.000 0.000 1.000 0.000
#> GSM258588     2  0.3424   0.615862 0.000 0.760 0.240 0.000 0.000
#> GSM258589     2  0.0000   0.831526 0.000 1.000 0.000 0.000 0.000
#> GSM258591     4  0.0000   0.953924 0.000 0.000 0.000 1.000 0.000
#> GSM258592     3  0.0609   0.922567 0.000 0.000 0.980 0.020 0.000
#> GSM258593     5  0.5159   0.256922 0.044 0.400 0.000 0.000 0.556
#> GSM258595     4  0.0000   0.953924 0.000 0.000 0.000 1.000 0.000
#> GSM258597     4  0.0000   0.953924 0.000 0.000 0.000 1.000 0.000
#> GSM258598     4  0.0000   0.953924 0.000 0.000 0.000 1.000 0.000
#> GSM258600     2  0.0000   0.831526 0.000 1.000 0.000 0.000 0.000
#> GSM258601     4  0.0703   0.940477 0.000 0.000 0.024 0.976 0.000
#> GSM258602     4  0.0609   0.946600 0.000 0.000 0.020 0.980 0.000
#> GSM258604     5  0.4696   0.470684 0.000 0.000 0.108 0.156 0.736
#> GSM258605     3  0.2179   0.865273 0.000 0.000 0.888 0.000 0.112
#> GSM258606     4  0.1043   0.938577 0.000 0.000 0.040 0.960 0.000
#> GSM258607     4  0.0000   0.953924 0.000 0.000 0.000 1.000 0.000
#> GSM258608     2  0.0000   0.831526 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     1  0.0146     0.8744 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM258555     1  0.0000     0.8756 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258556     4  0.0000     0.9287 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM258557     5  0.3872     0.2540 0.000 0.392 0.004 0.000 0.604 0.000
#> GSM258562     1  0.1141     0.8363 0.948 0.000 0.052 0.000 0.000 0.000
#> GSM258563     5  0.0000     0.6533 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM258565     1  0.0000     0.8756 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000     0.8756 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0146     0.8744 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM258578     1  0.0000     0.8756 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258580     2  0.0000     0.8255 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM258583     5  0.0713     0.6526 0.028 0.000 0.000 0.000 0.972 0.000
#> GSM258585     5  0.0000     0.6533 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM258590     1  0.3971     0.2989 0.548 0.000 0.000 0.000 0.448 0.004
#> GSM258594     1  0.0000     0.8756 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258596     5  0.1204     0.6426 0.056 0.000 0.000 0.000 0.944 0.000
#> GSM258599     5  0.3528     0.4074 0.296 0.000 0.000 0.000 0.700 0.004
#> GSM258603     1  0.3986     0.2680 0.532 0.000 0.000 0.000 0.464 0.004
#> GSM258551     4  0.0713     0.9113 0.000 0.028 0.000 0.972 0.000 0.000
#> GSM258552     2  0.0000     0.8255 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM258554     4  0.0000     0.9287 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM258558     6  0.2664     0.7296 0.000 0.184 0.000 0.000 0.000 0.816
#> GSM258559     4  0.1910     0.8478 0.000 0.000 0.000 0.892 0.000 0.108
#> GSM258560     4  0.4668     0.5832 0.000 0.000 0.204 0.680 0.000 0.116
#> GSM258561     4  0.0000     0.9287 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM258564     4  0.0000     0.9287 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM258567     2  0.6036     0.0628 0.000 0.424 0.384 0.000 0.184 0.008
#> GSM258568     6  0.0458     0.8823 0.000 0.000 0.000 0.016 0.000 0.984
#> GSM258569     4  0.4682     0.3074 0.000 0.396 0.000 0.556 0.048 0.000
#> GSM258571     3  0.0000     0.9338 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM258572     2  0.0000     0.8255 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM258573     4  0.0363     0.9223 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM258574     2  0.0000     0.8255 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM258575     4  0.0000     0.9287 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM258576     6  0.0790     0.8826 0.000 0.000 0.000 0.032 0.000 0.968
#> GSM258577     2  0.4851     0.3373 0.000 0.632 0.000 0.096 0.272 0.000
#> GSM258579     2  0.5133     0.3486 0.000 0.592 0.000 0.116 0.000 0.292
#> GSM258581     6  0.2048     0.8036 0.000 0.000 0.000 0.120 0.000 0.880
#> GSM258582     3  0.0260     0.9338 0.008 0.000 0.992 0.000 0.000 0.000
#> GSM258584     5  0.7567    -0.0405 0.000 0.016 0.288 0.188 0.392 0.116
#> GSM258586     2  0.0000     0.8255 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM258587     4  0.0000     0.9287 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM258588     2  0.4681     0.5194 0.000 0.676 0.212 0.000 0.000 0.112
#> GSM258589     2  0.0000     0.8255 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM258591     4  0.0000     0.9287 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM258592     3  0.1663     0.8765 0.000 0.000 0.912 0.000 0.000 0.088
#> GSM258593     5  0.4634     0.2250 0.044 0.400 0.000 0.000 0.556 0.000
#> GSM258595     4  0.0000     0.9287 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM258597     4  0.0000     0.9287 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM258598     4  0.0000     0.9287 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM258600     2  0.0000     0.8255 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM258601     4  0.0790     0.9116 0.000 0.000 0.032 0.968 0.000 0.000
#> GSM258602     4  0.2762     0.7706 0.000 0.000 0.000 0.804 0.000 0.196
#> GSM258604     5  0.4736     0.4383 0.000 0.000 0.164 0.156 0.680 0.000
#> GSM258605     3  0.1267     0.8944 0.000 0.000 0.940 0.000 0.060 0.000
#> GSM258606     6  0.0363     0.8791 0.000 0.000 0.000 0.012 0.000 0.988
#> GSM258607     4  0.0000     0.9287 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM258608     2  0.0000     0.8255 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> MAD:pam 57         5.56e-09 2
#> MAD:pam 54         8.05e-09 3
#> MAD:pam 47         1.37e-06 4
#> MAD:pam 47         1.05e-07 5
#> MAD:pam 47         3.36e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.402           0.795       0.862         0.3906 0.578   0.578
#> 3 3 0.466           0.544       0.778         0.6542 0.691   0.493
#> 4 4 0.507           0.613       0.787         0.1394 0.851   0.593
#> 5 5 0.577           0.502       0.712         0.0699 0.909   0.675
#> 6 6 0.680           0.575       0.752         0.0499 0.877   0.518

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     1  0.8267      0.908 0.740 0.260
#> GSM258555     1  0.8267      0.908 0.740 0.260
#> GSM258556     2  0.0000      0.879 0.000 1.000
#> GSM258557     1  0.8955      0.583 0.688 0.312
#> GSM258562     2  0.8955      0.293 0.312 0.688
#> GSM258563     1  0.6148      0.778 0.848 0.152
#> GSM258565     1  0.8267      0.908 0.740 0.260
#> GSM258566     1  0.8267      0.908 0.740 0.260
#> GSM258570     1  0.8267      0.908 0.740 0.260
#> GSM258578     1  0.8267      0.908 0.740 0.260
#> GSM258580     1  0.9358      0.198 0.648 0.352
#> GSM258583     1  0.8267      0.908 0.740 0.260
#> GSM258585     1  0.9795      0.701 0.584 0.416
#> GSM258590     1  0.8267      0.908 0.740 0.260
#> GSM258594     1  0.8267      0.908 0.740 0.260
#> GSM258596     1  0.8499      0.896 0.724 0.276
#> GSM258599     1  0.8327      0.906 0.736 0.264
#> GSM258603     1  0.8267      0.908 0.740 0.260
#> GSM258551     2  0.0000      0.879 0.000 1.000
#> GSM258552     2  0.8327      0.654 0.264 0.736
#> GSM258554     2  0.0000      0.879 0.000 1.000
#> GSM258558     2  0.0000      0.879 0.000 1.000
#> GSM258559     2  0.0000      0.879 0.000 1.000
#> GSM258560     2  0.0000      0.879 0.000 1.000
#> GSM258561     2  0.0000      0.879 0.000 1.000
#> GSM258564     2  0.0000      0.879 0.000 1.000
#> GSM258567     2  0.8267      0.661 0.260 0.740
#> GSM258568     2  0.0000      0.879 0.000 1.000
#> GSM258569     2  0.2778      0.836 0.048 0.952
#> GSM258571     2  0.8207      0.462 0.256 0.744
#> GSM258572     2  0.8327      0.654 0.264 0.736
#> GSM258573     2  0.0000      0.879 0.000 1.000
#> GSM258574     2  0.8267      0.656 0.260 0.740
#> GSM258575     2  0.0000      0.879 0.000 1.000
#> GSM258576     2  0.0000      0.879 0.000 1.000
#> GSM258577     2  0.0000      0.879 0.000 1.000
#> GSM258579     2  0.6148      0.751 0.152 0.848
#> GSM258581     2  0.0000      0.879 0.000 1.000
#> GSM258582     2  0.8386      0.432 0.268 0.732
#> GSM258584     2  0.0376      0.876 0.004 0.996
#> GSM258586     2  0.8386      0.652 0.268 0.732
#> GSM258587     2  0.0000      0.879 0.000 1.000
#> GSM258588     2  0.8267      0.656 0.260 0.740
#> GSM258589     2  0.0000      0.879 0.000 1.000
#> GSM258591     2  0.0000      0.879 0.000 1.000
#> GSM258592     2  0.0376      0.876 0.004 0.996
#> GSM258593     1  0.8955      0.855 0.688 0.312
#> GSM258595     2  0.2423      0.844 0.040 0.960
#> GSM258597     2  0.0000      0.879 0.000 1.000
#> GSM258598     2  0.0000      0.879 0.000 1.000
#> GSM258600     2  0.8327      0.654 0.264 0.736
#> GSM258601     2  0.1414      0.862 0.020 0.980
#> GSM258602     2  0.0000      0.879 0.000 1.000
#> GSM258604     2  0.4298      0.786 0.088 0.912
#> GSM258605     2  0.8909      0.308 0.308 0.692
#> GSM258606     2  0.0000      0.879 0.000 1.000
#> GSM258607     2  0.0000      0.879 0.000 1.000
#> GSM258608     2  0.0000      0.879 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     1  0.0000     0.8433 1.000 0.000 0.000
#> GSM258555     1  0.0592     0.8395 0.988 0.000 0.012
#> GSM258556     3  0.8220     0.1132 0.076 0.408 0.516
#> GSM258557     3  0.6804    -0.1088 0.460 0.012 0.528
#> GSM258562     3  0.8179     0.1561 0.424 0.072 0.504
#> GSM258563     1  0.6518     0.1157 0.512 0.004 0.484
#> GSM258565     1  0.0000     0.8433 1.000 0.000 0.000
#> GSM258566     1  0.0424     0.8414 0.992 0.000 0.008
#> GSM258570     1  0.0000     0.8433 1.000 0.000 0.000
#> GSM258578     1  0.0592     0.8395 0.988 0.000 0.012
#> GSM258580     3  0.5982     0.1124 0.328 0.004 0.668
#> GSM258583     1  0.1163     0.8331 0.972 0.000 0.028
#> GSM258585     1  0.5480     0.5471 0.732 0.004 0.264
#> GSM258590     1  0.0000     0.8433 1.000 0.000 0.000
#> GSM258594     1  0.0424     0.8414 0.992 0.000 0.008
#> GSM258596     1  0.1399     0.8299 0.968 0.004 0.028
#> GSM258599     1  0.1163     0.8331 0.972 0.000 0.028
#> GSM258603     1  0.0000     0.8433 1.000 0.000 0.000
#> GSM258551     2  0.1643     0.8118 0.000 0.956 0.044
#> GSM258552     3  0.5591     0.3429 0.000 0.304 0.696
#> GSM258554     2  0.1163     0.8220 0.000 0.972 0.028
#> GSM258558     2  0.2796     0.7902 0.000 0.908 0.092
#> GSM258559     2  0.3412     0.7481 0.000 0.876 0.124
#> GSM258560     2  0.5678     0.4968 0.000 0.684 0.316
#> GSM258561     2  0.3116     0.7631 0.000 0.892 0.108
#> GSM258564     2  0.1860     0.8186 0.000 0.948 0.052
#> GSM258567     3  0.7640     0.3468 0.056 0.352 0.592
#> GSM258568     2  0.0237     0.8309 0.000 0.996 0.004
#> GSM258569     3  0.8675     0.2270 0.388 0.108 0.504
#> GSM258571     3  0.8260     0.1416 0.432 0.076 0.492
#> GSM258572     3  0.5591     0.3429 0.000 0.304 0.696
#> GSM258573     2  0.0892     0.8301 0.000 0.980 0.020
#> GSM258574     3  0.5650     0.3327 0.000 0.312 0.688
#> GSM258575     2  0.5882     0.3257 0.000 0.652 0.348
#> GSM258576     2  0.0237     0.8309 0.000 0.996 0.004
#> GSM258577     2  0.4842     0.6574 0.000 0.776 0.224
#> GSM258579     2  0.6026     0.3051 0.000 0.624 0.376
#> GSM258581     2  0.0747     0.8252 0.000 0.984 0.016
#> GSM258582     3  0.8249     0.1568 0.424 0.076 0.500
#> GSM258584     2  0.5138     0.5929 0.000 0.748 0.252
#> GSM258586     3  0.5760     0.3236 0.000 0.328 0.672
#> GSM258587     2  0.0424     0.8313 0.000 0.992 0.008
#> GSM258588     3  0.6126     0.2574 0.000 0.400 0.600
#> GSM258589     3  0.6180     0.2085 0.000 0.416 0.584
#> GSM258591     2  0.0237     0.8305 0.000 0.996 0.004
#> GSM258592     3  0.9488     0.3553 0.256 0.248 0.496
#> GSM258593     1  0.6476     0.2197 0.548 0.004 0.448
#> GSM258595     3  0.8549     0.2264 0.384 0.100 0.516
#> GSM258597     2  0.2066     0.8140 0.000 0.940 0.060
#> GSM258598     2  0.0424     0.8313 0.000 0.992 0.008
#> GSM258600     3  0.5591     0.3429 0.000 0.304 0.696
#> GSM258601     3  0.9438     0.3454 0.244 0.252 0.504
#> GSM258602     2  0.0424     0.8302 0.000 0.992 0.008
#> GSM258604     3  0.8363     0.1832 0.412 0.084 0.504
#> GSM258605     1  0.8249    -0.0617 0.500 0.076 0.424
#> GSM258606     2  0.0000     0.8300 0.000 1.000 0.000
#> GSM258607     2  0.6225     0.2785 0.000 0.568 0.432
#> GSM258608     2  0.5560     0.5476 0.000 0.700 0.300

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     1  0.0469     0.9210 0.988 0.000 0.000 0.012
#> GSM258555     1  0.0336     0.9183 0.992 0.000 0.000 0.008
#> GSM258556     3  0.4625     0.5409 0.008 0.092 0.812 0.088
#> GSM258557     4  0.5938     0.4472 0.216 0.012 0.072 0.700
#> GSM258562     3  0.4633     0.6701 0.172 0.000 0.780 0.048
#> GSM258563     4  0.7154     0.2330 0.320 0.008 0.124 0.548
#> GSM258565     1  0.0188     0.9206 0.996 0.000 0.004 0.000
#> GSM258566     1  0.0000     0.9209 1.000 0.000 0.000 0.000
#> GSM258570     1  0.0188     0.9215 0.996 0.000 0.000 0.004
#> GSM258578     1  0.0336     0.9183 0.992 0.000 0.000 0.008
#> GSM258580     4  0.3899     0.5492 0.052 0.000 0.108 0.840
#> GSM258583     1  0.2973     0.8477 0.856 0.000 0.000 0.144
#> GSM258585     4  0.7996    -0.2230 0.336 0.004 0.268 0.392
#> GSM258590     1  0.1389     0.9105 0.952 0.000 0.000 0.048
#> GSM258594     1  0.0000     0.9209 1.000 0.000 0.000 0.000
#> GSM258596     1  0.6205     0.5803 0.668 0.000 0.196 0.136
#> GSM258599     1  0.4286     0.7991 0.812 0.000 0.052 0.136
#> GSM258603     1  0.1389     0.9105 0.952 0.000 0.000 0.048
#> GSM258551     2  0.2048     0.7375 0.000 0.928 0.008 0.064
#> GSM258552     4  0.4231     0.6865 0.000 0.080 0.096 0.824
#> GSM258554     2  0.0376     0.7552 0.000 0.992 0.004 0.004
#> GSM258558     2  0.4220     0.6856 0.004 0.828 0.056 0.112
#> GSM258559     2  0.4468     0.6301 0.000 0.752 0.232 0.016
#> GSM258560     2  0.6315     0.2446 0.004 0.480 0.468 0.048
#> GSM258561     2  0.4276     0.6883 0.004 0.788 0.192 0.016
#> GSM258564     2  0.4119     0.7097 0.004 0.796 0.188 0.012
#> GSM258567     4  0.5894     0.6239 0.000 0.108 0.200 0.692
#> GSM258568     2  0.0967     0.7561 0.004 0.976 0.004 0.016
#> GSM258569     3  0.4821     0.6632 0.068 0.056 0.820 0.056
#> GSM258571     3  0.5093     0.5591 0.348 0.000 0.640 0.012
#> GSM258572     4  0.4359     0.6859 0.000 0.084 0.100 0.816
#> GSM258573     2  0.4151     0.7160 0.004 0.800 0.180 0.016
#> GSM258574     4  0.4364     0.6856 0.000 0.092 0.092 0.816
#> GSM258575     2  0.5660     0.1582 0.004 0.576 0.020 0.400
#> GSM258576     2  0.0592     0.7548 0.000 0.984 0.000 0.016
#> GSM258577     2  0.7215     0.2166 0.004 0.520 0.136 0.340
#> GSM258579     2  0.5163    -0.0614 0.000 0.516 0.004 0.480
#> GSM258581     2  0.0707     0.7543 0.000 0.980 0.000 0.020
#> GSM258582     3  0.3790     0.6797 0.164 0.000 0.820 0.016
#> GSM258584     2  0.6164     0.4192 0.004 0.604 0.336 0.056
#> GSM258586     4  0.4426     0.6862 0.000 0.092 0.096 0.812
#> GSM258587     2  0.3448     0.7268 0.004 0.828 0.168 0.000
#> GSM258588     4  0.5926     0.6248 0.000 0.192 0.116 0.692
#> GSM258589     4  0.6982     0.3460 0.004 0.104 0.380 0.512
#> GSM258591     2  0.1489     0.7579 0.000 0.952 0.044 0.004
#> GSM258592     3  0.4343     0.6528 0.060 0.040 0.844 0.056
#> GSM258593     3  0.7818     0.1321 0.268 0.000 0.408 0.324
#> GSM258595     3  0.3102     0.6800 0.064 0.024 0.896 0.016
#> GSM258597     2  0.4114     0.7042 0.004 0.788 0.200 0.008
#> GSM258598     2  0.3901     0.7245 0.004 0.816 0.168 0.012
#> GSM258600     4  0.3796     0.6780 0.000 0.056 0.096 0.848
#> GSM258601     3  0.2352     0.6522 0.016 0.044 0.928 0.012
#> GSM258602     2  0.3443     0.7135 0.000 0.848 0.136 0.016
#> GSM258604     3  0.5090     0.6076 0.312 0.004 0.672 0.012
#> GSM258605     3  0.4985     0.3264 0.468 0.000 0.532 0.000
#> GSM258606     2  0.1042     0.7575 0.000 0.972 0.020 0.008
#> GSM258607     3  0.5768     0.2168 0.004 0.300 0.652 0.044
#> GSM258608     4  0.6790     0.1335 0.004 0.408 0.084 0.504

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     1  0.3636    0.63791 0.728 0.000 0.000 0.000 0.272
#> GSM258555     1  0.0000    0.76324 1.000 0.000 0.000 0.000 0.000
#> GSM258556     3  0.4210    0.57009 0.000 0.184 0.772 0.028 0.016
#> GSM258557     2  0.6065   -0.02700 0.028 0.476 0.056 0.000 0.440
#> GSM258562     3  0.4268    0.54635 0.184 0.012 0.768 0.000 0.036
#> GSM258563     5  0.6592    0.20090 0.068 0.336 0.064 0.000 0.532
#> GSM258565     1  0.0000    0.76324 1.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000    0.76324 1.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0963    0.76247 0.964 0.000 0.000 0.000 0.036
#> GSM258578     1  0.0000    0.76324 1.000 0.000 0.000 0.000 0.000
#> GSM258580     2  0.5815    0.14878 0.000 0.540 0.104 0.000 0.356
#> GSM258583     5  0.4227   -0.00724 0.420 0.000 0.000 0.000 0.580
#> GSM258585     5  0.3561    0.47397 0.052 0.028 0.068 0.000 0.852
#> GSM258590     1  0.3796    0.60807 0.700 0.000 0.000 0.000 0.300
#> GSM258594     1  0.2230    0.72700 0.884 0.000 0.000 0.000 0.116
#> GSM258596     1  0.5825   -0.21160 0.508 0.008 0.072 0.000 0.412
#> GSM258599     5  0.5080    0.30571 0.316 0.000 0.056 0.000 0.628
#> GSM258603     1  0.3816    0.60566 0.696 0.000 0.000 0.000 0.304
#> GSM258551     4  0.4080    0.67019 0.000 0.104 0.012 0.808 0.076
#> GSM258552     2  0.1153    0.65513 0.000 0.964 0.024 0.008 0.004
#> GSM258554     4  0.2625    0.72314 0.000 0.048 0.012 0.900 0.040
#> GSM258558     4  0.6373    0.43396 0.000 0.240 0.040 0.604 0.116
#> GSM258559     4  0.6072    0.47646 0.000 0.068 0.224 0.644 0.064
#> GSM258560     3  0.7008    0.07637 0.000 0.136 0.480 0.340 0.044
#> GSM258561     4  0.5927    0.51544 0.000 0.076 0.284 0.612 0.028
#> GSM258564     4  0.4725    0.65844 0.000 0.024 0.196 0.740 0.040
#> GSM258567     2  0.4930    0.52541 0.000 0.700 0.244 0.032 0.024
#> GSM258568     4  0.1731    0.72825 0.000 0.008 0.012 0.940 0.040
#> GSM258569     3  0.4193    0.65445 0.016 0.088 0.824 0.048 0.024
#> GSM258571     3  0.6263    0.38313 0.276 0.028 0.588 0.000 0.108
#> GSM258572     2  0.0992    0.65577 0.000 0.968 0.024 0.008 0.000
#> GSM258573     4  0.5122    0.65692 0.000 0.016 0.204 0.708 0.072
#> GSM258574     2  0.1179    0.65418 0.000 0.964 0.016 0.016 0.004
#> GSM258575     4  0.5807    0.09225 0.000 0.396 0.020 0.532 0.052
#> GSM258576     4  0.2266    0.72662 0.000 0.008 0.016 0.912 0.064
#> GSM258577     2  0.7474    0.20241 0.000 0.428 0.044 0.280 0.248
#> GSM258579     2  0.5502    0.28519 0.000 0.576 0.008 0.360 0.056
#> GSM258581     4  0.2611    0.72547 0.000 0.016 0.016 0.896 0.072
#> GSM258582     3  0.4032    0.56432 0.176 0.008 0.788 0.008 0.020
#> GSM258584     4  0.7695   -0.05241 0.000 0.072 0.352 0.388 0.188
#> GSM258586     2  0.2795    0.64960 0.000 0.884 0.080 0.028 0.008
#> GSM258587     4  0.4074    0.66829 0.000 0.012 0.180 0.780 0.028
#> GSM258588     2  0.3641    0.64176 0.000 0.844 0.060 0.076 0.020
#> GSM258589     2  0.5864    0.14801 0.000 0.528 0.396 0.056 0.020
#> GSM258591     4  0.1661    0.73245 0.000 0.024 0.036 0.940 0.000
#> GSM258592     3  0.3036    0.63944 0.012 0.104 0.868 0.008 0.008
#> GSM258593     5  0.7295    0.19583 0.196 0.036 0.380 0.000 0.388
#> GSM258595     3  0.3736    0.63266 0.092 0.052 0.836 0.000 0.020
#> GSM258597     4  0.4899    0.65764 0.000 0.024 0.192 0.732 0.052
#> GSM258598     4  0.4538    0.65485 0.000 0.008 0.180 0.752 0.060
#> GSM258600     2  0.1869    0.65579 0.000 0.936 0.028 0.028 0.008
#> GSM258601     3  0.3272    0.65750 0.004 0.048 0.868 0.068 0.012
#> GSM258602     4  0.3575    0.68082 0.000 0.056 0.120 0.824 0.000
#> GSM258604     3  0.4631    0.59850 0.176 0.016 0.764 0.024 0.020
#> GSM258605     3  0.6408    0.27351 0.268 0.008 0.544 0.000 0.180
#> GSM258606     4  0.1836    0.73057 0.000 0.032 0.036 0.932 0.000
#> GSM258607     3  0.6429    0.30389 0.000 0.092 0.584 0.276 0.048
#> GSM258608     2  0.7182    0.19607 0.000 0.436 0.024 0.296 0.244

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     1  0.3937   -0.04960 0.572 0.000 0.000 0.004 0.424 0.000
#> GSM258555     1  0.0000    0.89233 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258556     3  0.3373    0.66257 0.000 0.140 0.816 0.032 0.000 0.012
#> GSM258557     5  0.5497    0.00854 0.000 0.352 0.060 0.028 0.556 0.004
#> GSM258562     3  0.4839    0.69357 0.064 0.004 0.704 0.200 0.028 0.000
#> GSM258563     5  0.1375    0.66260 0.004 0.008 0.008 0.028 0.952 0.000
#> GSM258565     1  0.0260    0.89037 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM258566     1  0.0146    0.89157 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM258570     1  0.0363    0.89054 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM258578     1  0.0000    0.89233 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258580     2  0.5094    0.32035 0.000 0.568 0.096 0.000 0.336 0.000
#> GSM258583     5  0.3215    0.60938 0.240 0.000 0.000 0.004 0.756 0.000
#> GSM258585     5  0.0622    0.66783 0.000 0.000 0.008 0.000 0.980 0.012
#> GSM258590     5  0.3997    0.12963 0.488 0.000 0.000 0.004 0.508 0.000
#> GSM258594     1  0.0547    0.87893 0.980 0.000 0.000 0.000 0.020 0.000
#> GSM258596     5  0.2768    0.67244 0.156 0.000 0.012 0.000 0.832 0.000
#> GSM258599     5  0.2357    0.68144 0.116 0.000 0.012 0.000 0.872 0.000
#> GSM258603     5  0.3907    0.34933 0.408 0.000 0.000 0.004 0.588 0.000
#> GSM258551     6  0.3368    0.53794 0.000 0.088 0.000 0.084 0.004 0.824
#> GSM258552     2  0.0146    0.76776 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM258554     6  0.2147    0.51676 0.000 0.020 0.000 0.084 0.000 0.896
#> GSM258558     6  0.4026    0.53542 0.000 0.144 0.000 0.072 0.012 0.772
#> GSM258559     6  0.4840    0.53400 0.000 0.044 0.224 0.044 0.000 0.688
#> GSM258560     6  0.6753    0.30008 0.000 0.104 0.396 0.092 0.004 0.404
#> GSM258561     6  0.6046    0.40098 0.000 0.036 0.240 0.164 0.000 0.560
#> GSM258564     4  0.4787    0.88650 0.000 0.004 0.052 0.584 0.000 0.360
#> GSM258567     2  0.5552    0.52524 0.000 0.636 0.176 0.164 0.008 0.016
#> GSM258568     6  0.3314    0.30077 0.000 0.004 0.000 0.256 0.000 0.740
#> GSM258569     3  0.2308    0.70897 0.000 0.108 0.880 0.008 0.000 0.004
#> GSM258571     3  0.4713    0.69929 0.036 0.024 0.704 0.224 0.012 0.000
#> GSM258572     2  0.0146    0.76776 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM258573     4  0.4555    0.86308 0.000 0.004 0.048 0.640 0.000 0.308
#> GSM258574     2  0.0862    0.76329 0.000 0.972 0.000 0.016 0.004 0.008
#> GSM258575     6  0.5362   -0.10573 0.000 0.436 0.020 0.036 0.012 0.496
#> GSM258576     6  0.2442    0.47823 0.000 0.000 0.004 0.144 0.000 0.852
#> GSM258577     6  0.4885    0.39105 0.000 0.416 0.024 0.004 0.016 0.540
#> GSM258579     2  0.5322    0.11722 0.000 0.472 0.000 0.104 0.000 0.424
#> GSM258581     6  0.2178    0.49168 0.000 0.000 0.000 0.132 0.000 0.868
#> GSM258582     3  0.3709    0.70606 0.040 0.000 0.756 0.204 0.000 0.000
#> GSM258584     6  0.5537    0.47045 0.000 0.052 0.360 0.024 0.012 0.552
#> GSM258586     2  0.1049    0.76436 0.000 0.960 0.032 0.008 0.000 0.000
#> GSM258587     4  0.4875    0.84277 0.000 0.004 0.052 0.544 0.000 0.400
#> GSM258588     2  0.2664    0.73999 0.000 0.888 0.032 0.020 0.004 0.056
#> GSM258589     2  0.5101    0.28416 0.000 0.544 0.392 0.044 0.000 0.020
#> GSM258591     6  0.2308    0.49203 0.000 0.012 0.016 0.076 0.000 0.896
#> GSM258592     3  0.4583    0.69403 0.000 0.072 0.708 0.208 0.004 0.008
#> GSM258593     3  0.5147    0.27180 0.044 0.020 0.512 0.000 0.424 0.000
#> GSM258595     3  0.1802    0.71977 0.000 0.072 0.916 0.000 0.000 0.012
#> GSM258597     4  0.4836    0.87545 0.000 0.004 0.052 0.564 0.000 0.380
#> GSM258598     4  0.4497    0.84841 0.000 0.000 0.048 0.624 0.000 0.328
#> GSM258600     2  0.0665    0.76750 0.000 0.980 0.008 0.008 0.004 0.000
#> GSM258601     3  0.1003    0.73198 0.000 0.028 0.964 0.004 0.000 0.004
#> GSM258602     6  0.4044    0.54047 0.000 0.020 0.128 0.072 0.000 0.780
#> GSM258604     3  0.1863    0.74254 0.008 0.004 0.924 0.056 0.000 0.008
#> GSM258605     3  0.7387    0.02202 0.128 0.000 0.352 0.216 0.304 0.000
#> GSM258606     6  0.1503    0.52608 0.000 0.008 0.016 0.032 0.000 0.944
#> GSM258607     3  0.3336    0.67429 0.000 0.100 0.832 0.012 0.000 0.056
#> GSM258608     6  0.4638    0.42091 0.000 0.392 0.000 0.020 0.016 0.572

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> MAD:mclust 53         2.93e-10 2
#> MAD:mclust 32         1.22e-07 3
#> MAD:mclust 45         1.92e-07 4
#> MAD:mclust 38         9.80e-07 5
#> MAD:mclust 39         6.51e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.893           0.931       0.971         0.4940 0.506   0.506
#> 3 3 0.514           0.597       0.805         0.3581 0.756   0.548
#> 4 4 0.609           0.667       0.826         0.1242 0.792   0.472
#> 5 5 0.716           0.663       0.818         0.0676 0.883   0.587
#> 6 6 0.758           0.730       0.832         0.0412 0.869   0.460

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     1   0.000      0.970 1.000 0.000
#> GSM258555     1   0.000      0.970 1.000 0.000
#> GSM258556     2   0.000      0.968 0.000 1.000
#> GSM258557     1   0.000      0.970 1.000 0.000
#> GSM258562     1   0.000      0.970 1.000 0.000
#> GSM258563     1   0.000      0.970 1.000 0.000
#> GSM258565     1   0.000      0.970 1.000 0.000
#> GSM258566     1   0.000      0.970 1.000 0.000
#> GSM258570     1   0.000      0.970 1.000 0.000
#> GSM258578     1   0.000      0.970 1.000 0.000
#> GSM258580     1   0.615      0.815 0.848 0.152
#> GSM258583     1   0.000      0.970 1.000 0.000
#> GSM258585     1   0.000      0.970 1.000 0.000
#> GSM258590     1   0.000      0.970 1.000 0.000
#> GSM258594     1   0.000      0.970 1.000 0.000
#> GSM258596     1   0.000      0.970 1.000 0.000
#> GSM258599     1   0.000      0.970 1.000 0.000
#> GSM258603     1   0.000      0.970 1.000 0.000
#> GSM258551     2   0.000      0.968 0.000 1.000
#> GSM258552     2   0.000      0.968 0.000 1.000
#> GSM258554     2   0.000      0.968 0.000 1.000
#> GSM258558     2   0.000      0.968 0.000 1.000
#> GSM258559     2   0.000      0.968 0.000 1.000
#> GSM258560     2   0.000      0.968 0.000 1.000
#> GSM258561     2   0.000      0.968 0.000 1.000
#> GSM258564     2   0.000      0.968 0.000 1.000
#> GSM258567     2   0.963      0.362 0.388 0.612
#> GSM258568     2   0.000      0.968 0.000 1.000
#> GSM258569     1   0.808      0.676 0.752 0.248
#> GSM258571     1   0.000      0.970 1.000 0.000
#> GSM258572     2   0.000      0.968 0.000 1.000
#> GSM258573     2   0.000      0.968 0.000 1.000
#> GSM258574     2   0.000      0.968 0.000 1.000
#> GSM258575     2   0.000      0.968 0.000 1.000
#> GSM258576     2   0.000      0.968 0.000 1.000
#> GSM258577     2   0.000      0.968 0.000 1.000
#> GSM258579     2   0.000      0.968 0.000 1.000
#> GSM258581     2   0.000      0.968 0.000 1.000
#> GSM258582     1   0.000      0.970 1.000 0.000
#> GSM258584     2   0.000      0.968 0.000 1.000
#> GSM258586     2   0.000      0.968 0.000 1.000
#> GSM258587     2   0.000      0.968 0.000 1.000
#> GSM258588     2   0.000      0.968 0.000 1.000
#> GSM258589     2   0.000      0.968 0.000 1.000
#> GSM258591     2   0.000      0.968 0.000 1.000
#> GSM258592     2   0.886      0.559 0.304 0.696
#> GSM258593     1   0.000      0.970 1.000 0.000
#> GSM258595     1   0.821      0.659 0.744 0.256
#> GSM258597     2   0.000      0.968 0.000 1.000
#> GSM258598     2   0.000      0.968 0.000 1.000
#> GSM258600     2   0.000      0.968 0.000 1.000
#> GSM258601     2   0.900      0.534 0.316 0.684
#> GSM258602     2   0.000      0.968 0.000 1.000
#> GSM258604     1   0.000      0.970 1.000 0.000
#> GSM258605     1   0.000      0.970 1.000 0.000
#> GSM258606     2   0.000      0.968 0.000 1.000
#> GSM258607     2   0.000      0.968 0.000 1.000
#> GSM258608     2   0.000      0.968 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     1  0.0237     0.8190 0.996 0.000 0.004
#> GSM258555     1  0.0000     0.8199 1.000 0.000 0.000
#> GSM258556     3  0.4842     0.6084 0.000 0.224 0.776
#> GSM258557     1  0.7728     0.4861 0.640 0.084 0.276
#> GSM258562     3  0.5859     0.4854 0.344 0.000 0.656
#> GSM258563     1  0.2261     0.7864 0.932 0.000 0.068
#> GSM258565     1  0.0000     0.8199 1.000 0.000 0.000
#> GSM258566     1  0.0000     0.8199 1.000 0.000 0.000
#> GSM258570     1  0.0000     0.8199 1.000 0.000 0.000
#> GSM258578     1  0.0000     0.8199 1.000 0.000 0.000
#> GSM258580     1  0.9488    -0.0927 0.424 0.184 0.392
#> GSM258583     1  0.1919     0.8008 0.956 0.020 0.024
#> GSM258585     1  0.7485     0.5221 0.680 0.096 0.224
#> GSM258590     1  0.0424     0.8177 0.992 0.000 0.008
#> GSM258594     1  0.0000     0.8199 1.000 0.000 0.000
#> GSM258596     1  0.0000     0.8199 1.000 0.000 0.000
#> GSM258599     1  0.0000     0.8199 1.000 0.000 0.000
#> GSM258603     1  0.2176     0.7964 0.948 0.020 0.032
#> GSM258551     2  0.4605     0.7002 0.000 0.796 0.204
#> GSM258552     3  0.2261     0.6471 0.000 0.068 0.932
#> GSM258554     2  0.2878     0.7530 0.000 0.904 0.096
#> GSM258558     2  0.4235     0.7187 0.000 0.824 0.176
#> GSM258559     2  0.6140     0.4078 0.000 0.596 0.404
#> GSM258560     2  0.6204     0.0458 0.000 0.576 0.424
#> GSM258561     2  0.4605     0.6666 0.000 0.796 0.204
#> GSM258564     2  0.3192     0.7476 0.000 0.888 0.112
#> GSM258567     3  0.4295     0.5928 0.032 0.104 0.864
#> GSM258568     2  0.1529     0.7738 0.000 0.960 0.040
#> GSM258569     3  0.6075     0.5255 0.316 0.008 0.676
#> GSM258571     3  0.6299     0.1837 0.476 0.000 0.524
#> GSM258572     3  0.3752     0.5928 0.000 0.144 0.856
#> GSM258573     2  0.3116     0.7494 0.000 0.892 0.108
#> GSM258574     2  0.4796     0.7081 0.000 0.780 0.220
#> GSM258575     2  0.2537     0.7633 0.000 0.920 0.080
#> GSM258576     2  0.1753     0.7716 0.000 0.952 0.048
#> GSM258577     3  0.6154    -0.0334 0.000 0.408 0.592
#> GSM258579     2  0.4605     0.7045 0.000 0.796 0.204
#> GSM258581     2  0.2878     0.7518 0.000 0.904 0.096
#> GSM258582     3  0.5650     0.5267 0.312 0.000 0.688
#> GSM258584     3  0.6274    -0.0778 0.000 0.456 0.544
#> GSM258586     3  0.4002     0.6430 0.000 0.160 0.840
#> GSM258587     2  0.3340     0.7431 0.000 0.880 0.120
#> GSM258588     2  0.6295     0.3307 0.000 0.528 0.472
#> GSM258589     3  0.5058     0.5953 0.000 0.244 0.756
#> GSM258591     2  0.1163     0.7749 0.000 0.972 0.028
#> GSM258592     3  0.7180     0.6248 0.216 0.084 0.700
#> GSM258593     1  0.5733     0.4038 0.676 0.000 0.324
#> GSM258595     3  0.8000     0.5342 0.284 0.096 0.620
#> GSM258597     2  0.4796     0.6337 0.000 0.780 0.220
#> GSM258598     2  0.3686     0.7274 0.000 0.860 0.140
#> GSM258600     3  0.4555     0.5675 0.000 0.200 0.800
#> GSM258601     3  0.6336     0.6539 0.064 0.180 0.756
#> GSM258602     2  0.0424     0.7739 0.000 0.992 0.008
#> GSM258604     1  0.6180     0.0762 0.584 0.000 0.416
#> GSM258605     1  0.6154     0.1054 0.592 0.000 0.408
#> GSM258606     2  0.0424     0.7748 0.000 0.992 0.008
#> GSM258607     2  0.6192     0.2079 0.000 0.580 0.420
#> GSM258608     2  0.5058     0.6733 0.000 0.756 0.244

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     1  0.0188     0.9437 0.996 0.004 0.000 0.000
#> GSM258555     1  0.0000     0.9443 1.000 0.000 0.000 0.000
#> GSM258556     3  0.2888     0.6433 0.000 0.004 0.872 0.124
#> GSM258557     2  0.3161     0.6135 0.124 0.864 0.012 0.000
#> GSM258562     3  0.1706     0.6650 0.036 0.016 0.948 0.000
#> GSM258563     2  0.4992     0.1119 0.476 0.524 0.000 0.000
#> GSM258565     1  0.0000     0.9443 1.000 0.000 0.000 0.000
#> GSM258566     1  0.0000     0.9443 1.000 0.000 0.000 0.000
#> GSM258570     1  0.0000     0.9443 1.000 0.000 0.000 0.000
#> GSM258578     1  0.0000     0.9443 1.000 0.000 0.000 0.000
#> GSM258580     3  0.5709     0.3707 0.024 0.384 0.588 0.004
#> GSM258583     1  0.0817     0.9275 0.976 0.024 0.000 0.000
#> GSM258585     2  0.3266     0.6067 0.168 0.832 0.000 0.000
#> GSM258590     1  0.0188     0.9437 0.996 0.004 0.000 0.000
#> GSM258594     1  0.0000     0.9443 1.000 0.000 0.000 0.000
#> GSM258596     1  0.0469     0.9389 0.988 0.012 0.000 0.000
#> GSM258599     1  0.0188     0.9437 0.996 0.004 0.000 0.000
#> GSM258603     1  0.0592     0.9352 0.984 0.016 0.000 0.000
#> GSM258551     2  0.4948     0.2602 0.000 0.560 0.000 0.440
#> GSM258552     3  0.4283     0.5285 0.000 0.256 0.740 0.004
#> GSM258554     4  0.0817     0.8686 0.000 0.024 0.000 0.976
#> GSM258558     4  0.4977     0.2579 0.000 0.460 0.000 0.540
#> GSM258559     2  0.6714     0.4576 0.000 0.616 0.176 0.208
#> GSM258560     3  0.6536     0.3134 0.000 0.088 0.560 0.352
#> GSM258561     4  0.3333     0.7800 0.000 0.040 0.088 0.872
#> GSM258564     4  0.0188     0.8699 0.000 0.000 0.004 0.996
#> GSM258567     3  0.2921     0.6160 0.000 0.140 0.860 0.000
#> GSM258568     4  0.2799     0.8520 0.000 0.108 0.008 0.884
#> GSM258569     3  0.5532     0.5765 0.212 0.040 0.728 0.020
#> GSM258571     3  0.5917     0.4592 0.320 0.056 0.624 0.000
#> GSM258572     3  0.4406     0.4804 0.000 0.300 0.700 0.000
#> GSM258573     4  0.0469     0.8737 0.000 0.012 0.000 0.988
#> GSM258574     2  0.5279     0.3876 0.000 0.716 0.232 0.052
#> GSM258575     4  0.4644     0.7132 0.000 0.228 0.024 0.748
#> GSM258576     4  0.2530     0.8515 0.000 0.112 0.000 0.888
#> GSM258577     2  0.3172     0.5474 0.000 0.840 0.160 0.000
#> GSM258579     2  0.4088     0.5074 0.000 0.764 0.004 0.232
#> GSM258581     4  0.2760     0.8462 0.000 0.128 0.000 0.872
#> GSM258582     3  0.1059     0.6637 0.016 0.012 0.972 0.000
#> GSM258584     2  0.4991     0.2663 0.000 0.608 0.388 0.004
#> GSM258586     3  0.5175     0.6001 0.000 0.120 0.760 0.120
#> GSM258587     4  0.0188     0.8722 0.000 0.004 0.000 0.996
#> GSM258588     3  0.5565     0.4931 0.000 0.260 0.684 0.056
#> GSM258589     3  0.1109     0.6653 0.000 0.004 0.968 0.028
#> GSM258591     4  0.0524     0.8730 0.000 0.008 0.004 0.988
#> GSM258592     3  0.2164     0.6504 0.004 0.068 0.924 0.004
#> GSM258593     1  0.6694     0.0818 0.516 0.092 0.392 0.000
#> GSM258595     3  0.5145     0.6178 0.076 0.008 0.772 0.144
#> GSM258597     4  0.0469     0.8677 0.000 0.000 0.012 0.988
#> GSM258598     4  0.0336     0.8691 0.000 0.000 0.008 0.992
#> GSM258600     3  0.5820     0.5164 0.000 0.240 0.680 0.080
#> GSM258601     3  0.5618     0.5300 0.024 0.036 0.720 0.220
#> GSM258602     4  0.3392     0.8435 0.000 0.124 0.020 0.856
#> GSM258604     3  0.7746     0.2694 0.416 0.056 0.456 0.072
#> GSM258605     3  0.6465     0.3920 0.364 0.080 0.556 0.000
#> GSM258606     4  0.2918     0.8492 0.000 0.116 0.008 0.876
#> GSM258607     4  0.2737     0.7824 0.000 0.008 0.104 0.888
#> GSM258608     2  0.1118     0.6235 0.000 0.964 0.000 0.036

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000
#> GSM258555     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000
#> GSM258556     5  0.3527     0.4724 0.000 0.000 0.192 0.016 0.792
#> GSM258557     2  0.0798     0.7094 0.008 0.976 0.000 0.000 0.016
#> GSM258562     5  0.4617     0.5291 0.004 0.024 0.304 0.000 0.668
#> GSM258563     1  0.4658     0.2053 0.556 0.432 0.008 0.000 0.004
#> GSM258565     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000
#> GSM258580     5  0.4066     0.6012 0.000 0.324 0.004 0.000 0.672
#> GSM258583     1  0.1408     0.9116 0.948 0.044 0.008 0.000 0.000
#> GSM258585     2  0.1544     0.6942 0.068 0.932 0.000 0.000 0.000
#> GSM258590     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000
#> GSM258594     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000
#> GSM258596     1  0.0609     0.9377 0.980 0.020 0.000 0.000 0.000
#> GSM258599     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000
#> GSM258603     1  0.0162     0.9511 0.996 0.004 0.000 0.000 0.000
#> GSM258551     2  0.6014     0.2845 0.000 0.576 0.000 0.252 0.172
#> GSM258552     5  0.4275     0.6275 0.000 0.284 0.020 0.000 0.696
#> GSM258554     4  0.3783     0.7431 0.000 0.008 0.000 0.740 0.252
#> GSM258558     4  0.4583     0.0454 0.000 0.464 0.004 0.528 0.004
#> GSM258559     3  0.4594     0.5416 0.000 0.036 0.680 0.284 0.000
#> GSM258560     3  0.0609     0.7347 0.000 0.000 0.980 0.020 0.000
#> GSM258561     3  0.5568     0.4464 0.000 0.000 0.596 0.308 0.096
#> GSM258564     4  0.3906     0.7251 0.000 0.000 0.004 0.704 0.292
#> GSM258567     3  0.0807     0.7341 0.000 0.012 0.976 0.000 0.012
#> GSM258568     4  0.0771     0.7318 0.000 0.004 0.020 0.976 0.000
#> GSM258569     3  0.6477     0.1618 0.028 0.064 0.540 0.016 0.352
#> GSM258571     3  0.1282     0.7237 0.004 0.000 0.952 0.000 0.044
#> GSM258572     5  0.4380     0.5216 0.000 0.376 0.008 0.000 0.616
#> GSM258573     4  0.3039     0.7623 0.000 0.000 0.000 0.808 0.192
#> GSM258574     2  0.2462     0.6406 0.000 0.880 0.000 0.008 0.112
#> GSM258575     4  0.3292     0.6116 0.000 0.140 0.008 0.836 0.016
#> GSM258576     4  0.0671     0.7313 0.000 0.016 0.004 0.980 0.000
#> GSM258577     2  0.4990     0.2606 0.000 0.580 0.384 0.000 0.036
#> GSM258579     2  0.4552     0.5933 0.000 0.716 0.004 0.240 0.040
#> GSM258581     4  0.0798     0.7299 0.000 0.016 0.008 0.976 0.000
#> GSM258582     3  0.3395     0.5511 0.000 0.000 0.764 0.000 0.236
#> GSM258584     3  0.3758     0.6531 0.000 0.088 0.816 0.096 0.000
#> GSM258586     5  0.1059     0.6654 0.000 0.020 0.008 0.004 0.968
#> GSM258587     4  0.2732     0.7659 0.000 0.000 0.000 0.840 0.160
#> GSM258588     3  0.8340     0.1031 0.000 0.196 0.384 0.216 0.204
#> GSM258589     5  0.3266     0.6318 0.000 0.000 0.200 0.004 0.796
#> GSM258591     4  0.2471     0.7652 0.000 0.000 0.000 0.864 0.136
#> GSM258592     3  0.0162     0.7352 0.004 0.000 0.996 0.000 0.000
#> GSM258593     5  0.5678     0.5080 0.260 0.128 0.000 0.000 0.612
#> GSM258595     5  0.2180     0.6373 0.020 0.000 0.032 0.024 0.924
#> GSM258597     4  0.3949     0.7204 0.000 0.000 0.004 0.696 0.300
#> GSM258598     4  0.3884     0.7275 0.000 0.000 0.004 0.708 0.288
#> GSM258600     5  0.2970     0.6823 0.000 0.168 0.004 0.000 0.828
#> GSM258601     3  0.3231     0.6555 0.000 0.000 0.800 0.004 0.196
#> GSM258602     4  0.4161     0.4033 0.000 0.016 0.280 0.704 0.000
#> GSM258604     3  0.4521     0.5384 0.012 0.000 0.664 0.008 0.316
#> GSM258605     3  0.0613     0.7345 0.004 0.008 0.984 0.000 0.004
#> GSM258606     4  0.1493     0.7191 0.000 0.024 0.028 0.948 0.000
#> GSM258607     4  0.4649     0.5889 0.000 0.000 0.016 0.580 0.404
#> GSM258608     2  0.0404     0.7142 0.000 0.988 0.012 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258555     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258556     4  0.4321      0.571 0.000 0.084 0.204 0.712 0.000 0.000
#> GSM258557     5  0.2265      0.746 0.000 0.024 0.076 0.000 0.896 0.004
#> GSM258562     2  0.3449      0.700 0.016 0.784 0.192 0.004 0.004 0.000
#> GSM258563     5  0.3381      0.725 0.156 0.000 0.044 0.000 0.800 0.000
#> GSM258565     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258566     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258570     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258578     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258580     2  0.1851      0.828 0.000 0.924 0.004 0.004 0.056 0.012
#> GSM258583     5  0.3944      0.348 0.428 0.000 0.004 0.000 0.568 0.000
#> GSM258585     5  0.1562      0.752 0.032 0.024 0.000 0.000 0.940 0.004
#> GSM258590     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258594     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258596     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258599     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258603     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM258551     5  0.3853      0.438 0.000 0.000 0.000 0.304 0.680 0.016
#> GSM258552     2  0.2493      0.823 0.000 0.884 0.036 0.000 0.076 0.004
#> GSM258554     4  0.2499      0.757 0.000 0.000 0.000 0.880 0.072 0.048
#> GSM258558     6  0.4977      0.675 0.000 0.040 0.000 0.092 0.164 0.704
#> GSM258559     6  0.3930      0.234 0.000 0.000 0.420 0.000 0.004 0.576
#> GSM258560     3  0.3377      0.662 0.000 0.028 0.784 0.000 0.000 0.188
#> GSM258561     3  0.4539      0.450 0.000 0.004 0.644 0.304 0.000 0.048
#> GSM258564     4  0.0547      0.780 0.000 0.000 0.000 0.980 0.000 0.020
#> GSM258567     3  0.1370      0.771 0.000 0.012 0.948 0.000 0.036 0.004
#> GSM258568     6  0.3089      0.704 0.000 0.004 0.008 0.188 0.000 0.800
#> GSM258569     3  0.4080      0.172 0.000 0.456 0.536 0.008 0.000 0.000
#> GSM258571     3  0.1082      0.771 0.000 0.040 0.956 0.004 0.000 0.000
#> GSM258572     2  0.1921      0.820 0.000 0.920 0.000 0.012 0.056 0.012
#> GSM258573     4  0.1863      0.763 0.000 0.000 0.000 0.896 0.000 0.104
#> GSM258574     2  0.4672      0.658 0.000 0.684 0.000 0.000 0.188 0.128
#> GSM258575     6  0.1092      0.808 0.000 0.000 0.000 0.020 0.020 0.960
#> GSM258576     6  0.0865      0.810 0.000 0.000 0.000 0.036 0.000 0.964
#> GSM258577     5  0.3838      0.694 0.000 0.116 0.096 0.000 0.784 0.004
#> GSM258579     6  0.3602      0.714 0.000 0.088 0.000 0.000 0.116 0.796
#> GSM258581     6  0.0993      0.810 0.000 0.000 0.000 0.024 0.012 0.964
#> GSM258582     3  0.2346      0.728 0.000 0.124 0.868 0.008 0.000 0.000
#> GSM258584     3  0.5520      0.400 0.000 0.020 0.592 0.000 0.112 0.276
#> GSM258586     4  0.4928      0.283 0.000 0.056 0.004 0.592 0.344 0.004
#> GSM258587     4  0.3531      0.481 0.000 0.000 0.000 0.672 0.000 0.328
#> GSM258588     6  0.4830      0.644 0.000 0.160 0.100 0.000 0.028 0.712
#> GSM258589     2  0.3210      0.777 0.000 0.844 0.096 0.020 0.000 0.040
#> GSM258591     4  0.3050      0.640 0.000 0.000 0.000 0.764 0.000 0.236
#> GSM258592     3  0.1088      0.777 0.000 0.024 0.960 0.000 0.000 0.016
#> GSM258593     2  0.3758      0.579 0.284 0.700 0.000 0.000 0.016 0.000
#> GSM258595     4  0.4072      0.585 0.004 0.216 0.040 0.736 0.004 0.000
#> GSM258597     4  0.0713      0.781 0.000 0.000 0.000 0.972 0.000 0.028
#> GSM258598     4  0.0790      0.781 0.000 0.000 0.000 0.968 0.000 0.032
#> GSM258600     2  0.1251      0.828 0.000 0.956 0.012 0.008 0.024 0.000
#> GSM258601     3  0.3254      0.723 0.000 0.048 0.816 0.136 0.000 0.000
#> GSM258602     6  0.2558      0.730 0.000 0.000 0.156 0.004 0.000 0.840
#> GSM258604     4  0.5348      0.500 0.000 0.012 0.208 0.628 0.152 0.000
#> GSM258605     3  0.1010      0.773 0.000 0.004 0.960 0.000 0.036 0.000
#> GSM258606     6  0.2003      0.801 0.000 0.000 0.044 0.044 0.000 0.912
#> GSM258607     4  0.0858      0.771 0.000 0.028 0.004 0.968 0.000 0.000
#> GSM258608     5  0.0603      0.753 0.000 0.016 0.000 0.004 0.980 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> MAD:NMF 57         2.62e-07 2
#> MAD:NMF 45         1.33e-09 3
#> MAD:NMF 44         6.32e-07 4
#> MAD:NMF 49         2.32e-07 5
#> MAD:NMF 49         3.50e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.576           0.861       0.927         0.4176 0.610   0.610
#> 3 3 0.580           0.668       0.861         0.5221 0.704   0.524
#> 4 4 0.642           0.701       0.836         0.0876 0.858   0.642
#> 5 5 0.657           0.699       0.762         0.0780 0.853   0.567
#> 6 6 0.730           0.597       0.746         0.0503 0.811   0.370

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     1  0.0000      0.964 1.000 0.000
#> GSM258555     2  0.0000      0.898 0.000 1.000
#> GSM258556     2  0.0000      0.898 0.000 1.000
#> GSM258557     2  0.8763      0.690 0.296 0.704
#> GSM258562     2  0.0000      0.898 0.000 1.000
#> GSM258563     2  0.1184      0.892 0.016 0.984
#> GSM258565     2  0.0000      0.898 0.000 1.000
#> GSM258566     2  0.0000      0.898 0.000 1.000
#> GSM258570     2  0.0376      0.897 0.004 0.996
#> GSM258578     2  0.6438      0.806 0.164 0.836
#> GSM258580     2  0.0000      0.898 0.000 1.000
#> GSM258583     1  0.0000      0.964 1.000 0.000
#> GSM258585     2  0.0000      0.898 0.000 1.000
#> GSM258590     1  0.0000      0.964 1.000 0.000
#> GSM258594     2  0.0376      0.897 0.004 0.996
#> GSM258596     2  0.6438      0.806 0.164 0.836
#> GSM258599     2  0.8763      0.690 0.296 0.704
#> GSM258603     1  0.0000      0.964 1.000 0.000
#> GSM258551     1  0.0000      0.964 1.000 0.000
#> GSM258552     2  0.0000      0.898 0.000 1.000
#> GSM258554     1  0.0000      0.964 1.000 0.000
#> GSM258558     1  0.0000      0.964 1.000 0.000
#> GSM258559     1  0.0000      0.964 1.000 0.000
#> GSM258560     2  0.0672      0.895 0.008 0.992
#> GSM258561     1  0.0000      0.964 1.000 0.000
#> GSM258564     2  0.0000      0.898 0.000 1.000
#> GSM258567     2  0.0000      0.898 0.000 1.000
#> GSM258568     2  0.8763      0.690 0.296 0.704
#> GSM258569     1  0.0000      0.964 1.000 0.000
#> GSM258571     1  0.0000      0.964 1.000 0.000
#> GSM258572     2  0.0000      0.898 0.000 1.000
#> GSM258573     2  0.0000      0.898 0.000 1.000
#> GSM258574     2  0.0000      0.898 0.000 1.000
#> GSM258575     2  0.0000      0.898 0.000 1.000
#> GSM258576     2  0.8763      0.690 0.296 0.704
#> GSM258577     1  0.0000      0.964 1.000 0.000
#> GSM258579     2  0.0000      0.898 0.000 1.000
#> GSM258581     2  0.8763      0.690 0.296 0.704
#> GSM258582     2  0.8763      0.690 0.296 0.704
#> GSM258584     1  0.0000      0.964 1.000 0.000
#> GSM258586     2  0.0000      0.898 0.000 1.000
#> GSM258587     2  0.8763      0.690 0.296 0.704
#> GSM258588     2  0.0000      0.898 0.000 1.000
#> GSM258589     2  0.0000      0.898 0.000 1.000
#> GSM258591     2  0.8763      0.690 0.296 0.704
#> GSM258592     2  0.0000      0.898 0.000 1.000
#> GSM258593     2  0.0000      0.898 0.000 1.000
#> GSM258595     2  0.0000      0.898 0.000 1.000
#> GSM258597     2  0.8661      0.699 0.288 0.712
#> GSM258598     2  0.0000      0.898 0.000 1.000
#> GSM258600     2  0.0000      0.898 0.000 1.000
#> GSM258601     2  0.0000      0.898 0.000 1.000
#> GSM258602     2  0.8763      0.690 0.296 0.704
#> GSM258604     2  0.0000      0.898 0.000 1.000
#> GSM258605     1  0.5842      0.801 0.860 0.140
#> GSM258606     2  0.8763      0.690 0.296 0.704
#> GSM258607     2  0.6887      0.791 0.184 0.816
#> GSM258608     1  0.8499      0.542 0.724 0.276

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     1  0.5363     0.8035 0.724 0.276 0.000
#> GSM258555     3  0.0000     0.8241 0.000 0.000 1.000
#> GSM258556     3  0.6302     0.1145 0.000 0.480 0.520
#> GSM258557     2  0.0000     0.7842 0.000 1.000 0.000
#> GSM258562     3  0.5988     0.4157 0.000 0.368 0.632
#> GSM258563     2  0.5397     0.5111 0.000 0.720 0.280
#> GSM258565     3  0.0000     0.8241 0.000 0.000 1.000
#> GSM258566     3  0.0237     0.8261 0.000 0.004 0.996
#> GSM258570     2  0.6291     0.0127 0.000 0.532 0.468
#> GSM258578     2  0.3551     0.7231 0.000 0.868 0.132
#> GSM258580     3  0.0000     0.8241 0.000 0.000 1.000
#> GSM258583     1  0.5363     0.8035 0.724 0.276 0.000
#> GSM258585     3  0.4974     0.6435 0.000 0.236 0.764
#> GSM258590     1  0.0000     0.8433 1.000 0.000 0.000
#> GSM258594     2  0.6299    -0.0190 0.000 0.524 0.476
#> GSM258596     2  0.3551     0.7231 0.000 0.868 0.132
#> GSM258599     2  0.0000     0.7842 0.000 1.000 0.000
#> GSM258603     1  0.0000     0.8433 1.000 0.000 0.000
#> GSM258551     1  0.0000     0.8433 1.000 0.000 0.000
#> GSM258552     3  0.0237     0.8261 0.000 0.004 0.996
#> GSM258554     1  0.2066     0.8614 0.940 0.060 0.000
#> GSM258558     1  0.5363     0.8035 0.724 0.276 0.000
#> GSM258559     1  0.2066     0.8614 0.940 0.060 0.000
#> GSM258560     2  0.5733     0.4268 0.000 0.676 0.324
#> GSM258561     1  0.2066     0.8614 0.940 0.060 0.000
#> GSM258564     2  0.6308    -0.0852 0.000 0.508 0.492
#> GSM258567     3  0.4974     0.6435 0.000 0.236 0.764
#> GSM258568     2  0.0000     0.7842 0.000 1.000 0.000
#> GSM258569     1  0.5363     0.8035 0.724 0.276 0.000
#> GSM258571     1  0.5363     0.8035 0.724 0.276 0.000
#> GSM258572     3  0.0000     0.8241 0.000 0.000 1.000
#> GSM258573     3  0.0237     0.8261 0.000 0.004 0.996
#> GSM258574     3  0.0000     0.8241 0.000 0.000 1.000
#> GSM258575     3  0.0237     0.8261 0.000 0.004 0.996
#> GSM258576     2  0.0000     0.7842 0.000 1.000 0.000
#> GSM258577     1  0.2066     0.8614 0.940 0.060 0.000
#> GSM258579     3  0.0237     0.8261 0.000 0.004 0.996
#> GSM258581     2  0.0000     0.7842 0.000 1.000 0.000
#> GSM258582     2  0.0000     0.7842 0.000 1.000 0.000
#> GSM258584     1  0.0000     0.8433 1.000 0.000 0.000
#> GSM258586     3  0.6302     0.1145 0.000 0.480 0.520
#> GSM258587     2  0.0000     0.7842 0.000 1.000 0.000
#> GSM258588     3  0.0237     0.8261 0.000 0.004 0.996
#> GSM258589     3  0.5058     0.6325 0.000 0.244 0.756
#> GSM258591     2  0.0000     0.7842 0.000 1.000 0.000
#> GSM258592     3  0.0237     0.8261 0.000 0.004 0.996
#> GSM258593     3  0.0237     0.8261 0.000 0.004 0.996
#> GSM258595     3  0.3116     0.7615 0.000 0.108 0.892
#> GSM258597     2  0.0424     0.7834 0.000 0.992 0.008
#> GSM258598     3  0.6302     0.1140 0.000 0.480 0.520
#> GSM258600     3  0.6299     0.1280 0.000 0.476 0.524
#> GSM258601     3  0.0237     0.8261 0.000 0.004 0.996
#> GSM258602     2  0.0000     0.7842 0.000 1.000 0.000
#> GSM258604     3  0.0237     0.8261 0.000 0.004 0.996
#> GSM258605     1  0.6235     0.5425 0.564 0.436 0.000
#> GSM258606     2  0.0000     0.7842 0.000 1.000 0.000
#> GSM258607     2  0.3192     0.7389 0.000 0.888 0.112
#> GSM258608     2  0.6215    -0.2249 0.428 0.572 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     2  0.4008      0.825 0.000 0.756 0.000 0.244
#> GSM258555     3  0.1733      0.851 0.024 0.028 0.948 0.000
#> GSM258556     4  0.7433      0.492 0.216 0.000 0.276 0.508
#> GSM258557     4  0.0921      0.695 0.000 0.028 0.000 0.972
#> GSM258562     4  0.7684      0.219 0.216 0.000 0.388 0.396
#> GSM258563     4  0.4818      0.670 0.216 0.000 0.036 0.748
#> GSM258565     3  0.1733      0.851 0.024 0.028 0.948 0.000
#> GSM258566     3  0.0927      0.873 0.000 0.008 0.976 0.016
#> GSM258570     4  0.7147      0.558 0.216 0.000 0.224 0.560
#> GSM258578     4  0.2892      0.705 0.068 0.000 0.036 0.896
#> GSM258580     3  0.1733      0.851 0.024 0.028 0.948 0.000
#> GSM258583     2  0.4008      0.825 0.000 0.756 0.000 0.244
#> GSM258585     3  0.7015      0.300 0.168 0.000 0.568 0.264
#> GSM258590     1  0.3975      1.000 0.760 0.240 0.000 0.000
#> GSM258594     4  0.7199      0.549 0.216 0.000 0.232 0.552
#> GSM258596     4  0.2892      0.705 0.068 0.000 0.036 0.896
#> GSM258599     4  0.0921      0.695 0.000 0.028 0.000 0.972
#> GSM258603     1  0.3975      1.000 0.760 0.240 0.000 0.000
#> GSM258551     1  0.3975      1.000 0.760 0.240 0.000 0.000
#> GSM258552     3  0.0188      0.874 0.000 0.000 0.996 0.004
#> GSM258554     2  0.0921      0.711 0.000 0.972 0.000 0.028
#> GSM258558     2  0.4008      0.825 0.000 0.756 0.000 0.244
#> GSM258559     2  0.0921      0.711 0.000 0.972 0.000 0.028
#> GSM258560     4  0.5628      0.660 0.216 0.000 0.080 0.704
#> GSM258561     2  0.0921      0.711 0.000 0.972 0.000 0.028
#> GSM258564     4  0.7293      0.531 0.216 0.000 0.248 0.536
#> GSM258567     3  0.7015      0.300 0.168 0.000 0.568 0.264
#> GSM258568     4  0.1022      0.693 0.000 0.032 0.000 0.968
#> GSM258569     2  0.4008      0.825 0.000 0.756 0.000 0.244
#> GSM258571     2  0.4008      0.825 0.000 0.756 0.000 0.244
#> GSM258572     3  0.1733      0.851 0.024 0.028 0.948 0.000
#> GSM258573     3  0.1247      0.865 0.012 0.016 0.968 0.004
#> GSM258574     3  0.1733      0.851 0.024 0.028 0.948 0.000
#> GSM258575     3  0.0188      0.874 0.000 0.000 0.996 0.004
#> GSM258576     4  0.0921      0.695 0.000 0.028 0.000 0.972
#> GSM258577     2  0.0921      0.711 0.000 0.972 0.000 0.028
#> GSM258579     3  0.0336      0.874 0.000 0.000 0.992 0.008
#> GSM258581     4  0.1022      0.693 0.000 0.032 0.000 0.968
#> GSM258582     4  0.0921      0.695 0.000 0.028 0.000 0.972
#> GSM258584     1  0.3975      1.000 0.760 0.240 0.000 0.000
#> GSM258586     4  0.7433      0.492 0.216 0.000 0.276 0.508
#> GSM258587     4  0.0921      0.695 0.000 0.028 0.000 0.972
#> GSM258588     3  0.0592      0.872 0.000 0.000 0.984 0.016
#> GSM258589     3  0.7415      0.162 0.216 0.000 0.512 0.272
#> GSM258591     4  0.1022      0.693 0.000 0.032 0.000 0.968
#> GSM258592     3  0.0592      0.872 0.000 0.000 0.984 0.016
#> GSM258593     3  0.0188      0.874 0.000 0.000 0.996 0.004
#> GSM258595     3  0.2868      0.764 0.000 0.000 0.864 0.136
#> GSM258597     4  0.1296      0.697 0.004 0.028 0.004 0.964
#> GSM258598     4  0.7433      0.492 0.216 0.000 0.276 0.508
#> GSM258600     4  0.7450      0.484 0.216 0.000 0.280 0.504
#> GSM258601     3  0.0592      0.872 0.000 0.000 0.984 0.016
#> GSM258602     4  0.0921      0.695 0.000 0.028 0.000 0.972
#> GSM258604     3  0.0592      0.872 0.000 0.000 0.984 0.016
#> GSM258605     2  0.4866      0.613 0.000 0.596 0.000 0.404
#> GSM258606     4  0.1022      0.693 0.000 0.032 0.000 0.968
#> GSM258607     4  0.2466      0.705 0.056 0.000 0.028 0.916
#> GSM258608     4  0.4977     -0.328 0.000 0.460 0.000 0.540

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3    p4    p5
#> GSM258553     3  0.3242    0.75077  0 0.000 0.784 0.216 0.000
#> GSM258555     2  0.0290    0.71619  0 0.992 0.000 0.008 0.000
#> GSM258556     5  0.0162    0.71610  0 0.000 0.000 0.004 0.996
#> GSM258557     4  0.3508    0.93212  0 0.000 0.000 0.748 0.252
#> GSM258562     5  0.2127    0.59459  0 0.108 0.000 0.000 0.892
#> GSM258563     5  0.3480    0.41848  0 0.000 0.000 0.248 0.752
#> GSM258565     2  0.0290    0.71619  0 0.992 0.000 0.008 0.000
#> GSM258566     2  0.3684    0.84720  0 0.720 0.000 0.000 0.280
#> GSM258570     5  0.1341    0.69465  0 0.000 0.000 0.056 0.944
#> GSM258578     5  0.4171    0.00481  0 0.000 0.000 0.396 0.604
#> GSM258580     2  0.0290    0.71619  0 0.992 0.000 0.008 0.000
#> GSM258583     3  0.3242    0.75077  0 0.000 0.784 0.216 0.000
#> GSM258585     5  0.3730    0.19908  0 0.288 0.000 0.000 0.712
#> GSM258590     1  0.0000    1.00000  1 0.000 0.000 0.000 0.000
#> GSM258594     5  0.1197    0.70056  0 0.000 0.000 0.048 0.952
#> GSM258596     5  0.4171    0.00481  0 0.000 0.000 0.396 0.604
#> GSM258599     4  0.3508    0.93212  0 0.000 0.000 0.748 0.252
#> GSM258603     1  0.0000    1.00000  1 0.000 0.000 0.000 0.000
#> GSM258551     1  0.0000    1.00000  1 0.000 0.000 0.000 0.000
#> GSM258552     2  0.3661    0.84872  0 0.724 0.000 0.000 0.276
#> GSM258554     3  0.3452    0.61710  0 0.000 0.756 0.244 0.000
#> GSM258558     3  0.3242    0.75077  0 0.000 0.784 0.216 0.000
#> GSM258559     3  0.3452    0.61710  0 0.000 0.756 0.244 0.000
#> GSM258560     5  0.3109    0.51444  0 0.000 0.000 0.200 0.800
#> GSM258561     3  0.3452    0.61710  0 0.000 0.756 0.244 0.000
#> GSM258564     5  0.0880    0.70811  0 0.000 0.000 0.032 0.968
#> GSM258567     5  0.3730    0.19908  0 0.288 0.000 0.000 0.712
#> GSM258568     4  0.3662    0.93116  0 0.000 0.004 0.744 0.252
#> GSM258569     3  0.3242    0.75077  0 0.000 0.784 0.216 0.000
#> GSM258571     3  0.3242    0.75077  0 0.000 0.784 0.216 0.000
#> GSM258572     2  0.0290    0.71619  0 0.992 0.000 0.008 0.000
#> GSM258573     2  0.3480    0.84158  0 0.752 0.000 0.000 0.248
#> GSM258574     2  0.0290    0.71619  0 0.992 0.000 0.008 0.000
#> GSM258575     2  0.3661    0.84872  0 0.724 0.000 0.000 0.276
#> GSM258576     4  0.3508    0.93212  0 0.000 0.000 0.748 0.252
#> GSM258577     3  0.3452    0.61710  0 0.000 0.756 0.244 0.000
#> GSM258579     2  0.3730    0.84551  0 0.712 0.000 0.000 0.288
#> GSM258581     4  0.3662    0.93116  0 0.000 0.004 0.744 0.252
#> GSM258582     4  0.3508    0.93212  0 0.000 0.000 0.748 0.252
#> GSM258584     1  0.0000    1.00000  1 0.000 0.000 0.000 0.000
#> GSM258586     5  0.0162    0.71610  0 0.000 0.000 0.004 0.996
#> GSM258587     4  0.3508    0.93212  0 0.000 0.000 0.748 0.252
#> GSM258588     2  0.3774    0.84028  0 0.704 0.000 0.000 0.296
#> GSM258589     5  0.3366    0.33668  0 0.232 0.000 0.000 0.768
#> GSM258591     4  0.3662    0.93116  0 0.000 0.004 0.744 0.252
#> GSM258592     2  0.3774    0.84128  0 0.704 0.000 0.000 0.296
#> GSM258593     2  0.3661    0.84872  0 0.724 0.000 0.000 0.276
#> GSM258595     2  0.4219    0.65740  0 0.584 0.000 0.000 0.416
#> GSM258597     4  0.3707    0.88668  0 0.000 0.000 0.716 0.284
#> GSM258598     5  0.0162    0.71592  0 0.000 0.000 0.004 0.996
#> GSM258600     5  0.0000    0.71511  0 0.000 0.000 0.000 1.000
#> GSM258601     2  0.3774    0.84128  0 0.704 0.000 0.000 0.296
#> GSM258602     4  0.3508    0.93212  0 0.000 0.000 0.748 0.252
#> GSM258604     2  0.3774    0.84128  0 0.704 0.000 0.000 0.296
#> GSM258605     3  0.4171    0.47090  0 0.000 0.604 0.396 0.000
#> GSM258606     4  0.3662    0.93116  0 0.000 0.004 0.744 0.252
#> GSM258607     5  0.4256   -0.16632  0 0.000 0.000 0.436 0.564
#> GSM258608     4  0.4249   -0.11331  0 0.000 0.432 0.568 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     5  0.1267    0.82156 0.000 0.000 0.000 0.000 0.940 0.060
#> GSM258555     1  0.3428    0.15332 0.696 0.304 0.000 0.000 0.000 0.000
#> GSM258556     1  0.7685    0.33979 0.304 0.256 0.000 0.220 0.000 0.220
#> GSM258557     6  0.0146    0.80312 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM258562     2  0.7274   -0.19538 0.304 0.368 0.000 0.220 0.000 0.108
#> GSM258563     6  0.6349    0.14999 0.304 0.024 0.000 0.212 0.000 0.460
#> GSM258565     1  0.3428    0.15332 0.696 0.304 0.000 0.000 0.000 0.000
#> GSM258566     2  0.0692    0.74281 0.020 0.976 0.000 0.004 0.000 0.000
#> GSM258570     1  0.7670    0.31207 0.304 0.204 0.000 0.224 0.000 0.268
#> GSM258578     6  0.5410    0.48916 0.128 0.024 0.000 0.212 0.000 0.636
#> GSM258580     1  0.3428    0.15332 0.696 0.304 0.000 0.000 0.000 0.000
#> GSM258583     5  0.1267    0.82156 0.000 0.000 0.000 0.000 0.940 0.060
#> GSM258585     2  0.5378    0.27178 0.304 0.556 0.000 0.140 0.000 0.000
#> GSM258590     3  0.0000    0.99712 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM258594     1  0.7677    0.32550 0.304 0.212 0.000 0.220 0.000 0.264
#> GSM258596     6  0.5410    0.48916 0.128 0.024 0.000 0.212 0.000 0.636
#> GSM258599     6  0.0146    0.80198 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM258603     3  0.0363    0.99135 0.000 0.000 0.988 0.012 0.000 0.000
#> GSM258551     3  0.0000    0.99712 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM258552     2  0.0458    0.74146 0.016 0.984 0.000 0.000 0.000 0.000
#> GSM258554     4  0.3126    0.84786 0.000 0.000 0.000 0.752 0.248 0.000
#> GSM258558     5  0.1524    0.81859 0.000 0.000 0.000 0.008 0.932 0.060
#> GSM258559     4  0.3804    0.82268 0.000 0.000 0.000 0.576 0.424 0.000
#> GSM258560     6  0.6872    0.00249 0.304 0.060 0.000 0.224 0.000 0.412
#> GSM258561     4  0.3126    0.84786 0.000 0.000 0.000 0.752 0.248 0.000
#> GSM258564     1  0.7693    0.35266 0.304 0.228 0.000 0.224 0.000 0.244
#> GSM258567     2  0.5438    0.25802 0.304 0.548 0.000 0.148 0.000 0.000
#> GSM258568     6  0.0291    0.80040 0.000 0.000 0.000 0.004 0.004 0.992
#> GSM258569     5  0.1267    0.82156 0.000 0.000 0.000 0.000 0.940 0.060
#> GSM258571     5  0.1524    0.81859 0.000 0.000 0.000 0.008 0.932 0.060
#> GSM258572     1  0.3428    0.15332 0.696 0.304 0.000 0.000 0.000 0.000
#> GSM258573     2  0.1327    0.70396 0.064 0.936 0.000 0.000 0.000 0.000
#> GSM258574     1  0.3428    0.15332 0.696 0.304 0.000 0.000 0.000 0.000
#> GSM258575     2  0.1327    0.70792 0.064 0.936 0.000 0.000 0.000 0.000
#> GSM258576     6  0.0000    0.80300 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258577     4  0.3833    0.80654 0.000 0.000 0.000 0.556 0.444 0.000
#> GSM258579     2  0.0520    0.74567 0.008 0.984 0.000 0.008 0.000 0.000
#> GSM258581     6  0.0291    0.80040 0.000 0.000 0.000 0.004 0.004 0.992
#> GSM258582     6  0.0146    0.80312 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM258584     3  0.0000    0.99712 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM258586     1  0.7685    0.33979 0.304 0.256 0.000 0.220 0.000 0.220
#> GSM258587     6  0.0146    0.80312 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM258588     2  0.0725    0.74438 0.012 0.976 0.000 0.012 0.000 0.000
#> GSM258589     2  0.5794    0.14631 0.296 0.492 0.000 0.212 0.000 0.000
#> GSM258591     6  0.0291    0.80040 0.000 0.000 0.000 0.004 0.004 0.992
#> GSM258592     2  0.0146    0.74684 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM258593     2  0.0458    0.74146 0.016 0.984 0.000 0.000 0.000 0.000
#> GSM258595     2  0.2905    0.63636 0.064 0.852 0.000 0.084 0.000 0.000
#> GSM258597     6  0.0993    0.79138 0.012 0.000 0.000 0.024 0.000 0.964
#> GSM258598     1  0.7685    0.33845 0.304 0.256 0.000 0.224 0.000 0.216
#> GSM258600     1  0.7682    0.33385 0.304 0.260 0.000 0.220 0.000 0.216
#> GSM258601     2  0.0146    0.74684 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM258602     6  0.0000    0.80300 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258604     2  0.0146    0.74684 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM258605     5  0.3189    0.66844 0.000 0.000 0.000 0.004 0.760 0.236
#> GSM258606     6  0.0291    0.80040 0.000 0.000 0.000 0.004 0.004 0.992
#> GSM258607     6  0.4982    0.54887 0.108 0.020 0.000 0.188 0.000 0.684
#> GSM258608     5  0.3907    0.47578 0.000 0.000 0.000 0.004 0.588 0.408

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> ATC:hclust 58            0.920 2
#> ATC:hclust 48            0.903 3
#> ATC:hclust 49            0.610 4
#> ATC:hclust 49            0.580 5
#> ATC:hclust 37            0.288 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.617           0.823       0.928         0.4802 0.501   0.501
#> 3 3 0.805           0.906       0.952         0.3520 0.666   0.432
#> 4 4 0.646           0.694       0.842         0.1239 0.768   0.439
#> 5 5 0.694           0.622       0.745         0.0639 0.848   0.508
#> 6 6 0.821           0.840       0.873         0.0468 0.913   0.639

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     2   0.000      0.888 0.000 1.000
#> GSM258555     1   0.000      0.930 1.000 0.000
#> GSM258556     1   0.000      0.930 1.000 0.000
#> GSM258557     2   0.961      0.480 0.384 0.616
#> GSM258562     1   0.000      0.930 1.000 0.000
#> GSM258563     1   0.000      0.930 1.000 0.000
#> GSM258565     1   0.000      0.930 1.000 0.000
#> GSM258566     1   0.000      0.930 1.000 0.000
#> GSM258570     1   0.000      0.930 1.000 0.000
#> GSM258578     1   0.996     -0.019 0.536 0.464
#> GSM258580     1   0.000      0.930 1.000 0.000
#> GSM258583     2   0.000      0.888 0.000 1.000
#> GSM258585     1   0.000      0.930 1.000 0.000
#> GSM258590     2   0.000      0.888 0.000 1.000
#> GSM258594     1   0.000      0.930 1.000 0.000
#> GSM258596     1   0.996     -0.019 0.536 0.464
#> GSM258599     2   0.760      0.788 0.220 0.780
#> GSM258603     2   0.000      0.888 0.000 1.000
#> GSM258551     2   0.000      0.888 0.000 1.000
#> GSM258552     1   0.000      0.930 1.000 0.000
#> GSM258554     2   0.000      0.888 0.000 1.000
#> GSM258558     2   0.000      0.888 0.000 1.000
#> GSM258559     2   0.000      0.888 0.000 1.000
#> GSM258560     1   0.000      0.930 1.000 0.000
#> GSM258561     2   0.000      0.888 0.000 1.000
#> GSM258564     1   0.000      0.930 1.000 0.000
#> GSM258567     1   0.000      0.930 1.000 0.000
#> GSM258568     2   0.760      0.788 0.220 0.780
#> GSM258569     2   0.000      0.888 0.000 1.000
#> GSM258571     2   0.000      0.888 0.000 1.000
#> GSM258572     1   0.000      0.930 1.000 0.000
#> GSM258573     1   0.000      0.930 1.000 0.000
#> GSM258574     1   0.000      0.930 1.000 0.000
#> GSM258575     1   0.000      0.930 1.000 0.000
#> GSM258576     2   0.775      0.780 0.228 0.772
#> GSM258577     2   0.000      0.888 0.000 1.000
#> GSM258579     1   0.000      0.930 1.000 0.000
#> GSM258581     2   0.760      0.788 0.220 0.780
#> GSM258582     2   0.775      0.780 0.228 0.772
#> GSM258584     2   0.000      0.888 0.000 1.000
#> GSM258586     1   0.000      0.930 1.000 0.000
#> GSM258587     2   0.775      0.780 0.228 0.772
#> GSM258588     1   0.000      0.930 1.000 0.000
#> GSM258589     1   0.000      0.930 1.000 0.000
#> GSM258591     2   0.615      0.827 0.152 0.848
#> GSM258592     1   0.000      0.930 1.000 0.000
#> GSM258593     1   0.000      0.930 1.000 0.000
#> GSM258595     1   0.000      0.930 1.000 0.000
#> GSM258597     1   0.999     -0.100 0.516 0.484
#> GSM258598     1   0.000      0.930 1.000 0.000
#> GSM258600     1   0.000      0.930 1.000 0.000
#> GSM258601     1   0.000      0.930 1.000 0.000
#> GSM258602     2   0.775      0.780 0.228 0.772
#> GSM258604     1   0.000      0.930 1.000 0.000
#> GSM258605     2   0.000      0.888 0.000 1.000
#> GSM258606     2   0.760      0.788 0.220 0.780
#> GSM258607     1   0.996     -0.019 0.536 0.464
#> GSM258608     2   0.000      0.888 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     1   0.514      0.791 0.748 0.252 0.000
#> GSM258555     3   0.000      1.000 0.000 0.000 1.000
#> GSM258556     2   0.514      0.698 0.000 0.748 0.252
#> GSM258557     2   0.000      0.912 0.000 1.000 0.000
#> GSM258562     3   0.000      1.000 0.000 0.000 1.000
#> GSM258563     2   0.000      0.912 0.000 1.000 0.000
#> GSM258565     3   0.000      1.000 0.000 0.000 1.000
#> GSM258566     3   0.000      1.000 0.000 0.000 1.000
#> GSM258570     2   0.388      0.795 0.000 0.848 0.152
#> GSM258578     2   0.000      0.912 0.000 1.000 0.000
#> GSM258580     3   0.000      1.000 0.000 0.000 1.000
#> GSM258583     1   0.514      0.791 0.748 0.252 0.000
#> GSM258585     3   0.000      1.000 0.000 0.000 1.000
#> GSM258590     1   0.000      0.892 1.000 0.000 0.000
#> GSM258594     2   0.388      0.795 0.000 0.848 0.152
#> GSM258596     2   0.000      0.912 0.000 1.000 0.000
#> GSM258599     2   0.000      0.912 0.000 1.000 0.000
#> GSM258603     1   0.000      0.892 1.000 0.000 0.000
#> GSM258551     1   0.000      0.892 1.000 0.000 0.000
#> GSM258552     3   0.000      1.000 0.000 0.000 1.000
#> GSM258554     1   0.000      0.892 1.000 0.000 0.000
#> GSM258558     1   0.514      0.791 0.748 0.252 0.000
#> GSM258559     1   0.000      0.892 1.000 0.000 0.000
#> GSM258560     2   0.000      0.912 0.000 1.000 0.000
#> GSM258561     1   0.000      0.892 1.000 0.000 0.000
#> GSM258564     2   0.514      0.698 0.000 0.748 0.252
#> GSM258567     3   0.000      1.000 0.000 0.000 1.000
#> GSM258568     2   0.000      0.912 0.000 1.000 0.000
#> GSM258569     1   0.514      0.791 0.748 0.252 0.000
#> GSM258571     1   0.514      0.791 0.748 0.252 0.000
#> GSM258572     3   0.000      1.000 0.000 0.000 1.000
#> GSM258573     3   0.000      1.000 0.000 0.000 1.000
#> GSM258574     3   0.000      1.000 0.000 0.000 1.000
#> GSM258575     3   0.000      1.000 0.000 0.000 1.000
#> GSM258576     2   0.000      0.912 0.000 1.000 0.000
#> GSM258577     1   0.000      0.892 1.000 0.000 0.000
#> GSM258579     3   0.000      1.000 0.000 0.000 1.000
#> GSM258581     2   0.000      0.912 0.000 1.000 0.000
#> GSM258582     2   0.000      0.912 0.000 1.000 0.000
#> GSM258584     1   0.000      0.892 1.000 0.000 0.000
#> GSM258586     2   0.581      0.568 0.000 0.664 0.336
#> GSM258587     2   0.000      0.912 0.000 1.000 0.000
#> GSM258588     3   0.000      1.000 0.000 0.000 1.000
#> GSM258589     3   0.000      1.000 0.000 0.000 1.000
#> GSM258591     2   0.000      0.912 0.000 1.000 0.000
#> GSM258592     3   0.000      1.000 0.000 0.000 1.000
#> GSM258593     3   0.000      1.000 0.000 0.000 1.000
#> GSM258595     3   0.000      1.000 0.000 0.000 1.000
#> GSM258597     2   0.000      0.912 0.000 1.000 0.000
#> GSM258598     3   0.000      1.000 0.000 0.000 1.000
#> GSM258600     2   0.606      0.469 0.000 0.616 0.384
#> GSM258601     3   0.000      1.000 0.000 0.000 1.000
#> GSM258602     2   0.000      0.912 0.000 1.000 0.000
#> GSM258604     3   0.000      1.000 0.000 0.000 1.000
#> GSM258605     2   0.000      0.912 0.000 1.000 0.000
#> GSM258606     2   0.000      0.912 0.000 1.000 0.000
#> GSM258607     2   0.000      0.912 0.000 1.000 0.000
#> GSM258608     2   0.000      0.912 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     2  0.3074      0.487 0.152 0.848 0.000 0.000
#> GSM258555     3  0.0000      0.925 0.000 0.000 1.000 0.000
#> GSM258556     4  0.0469      0.690 0.000 0.012 0.000 0.988
#> GSM258557     2  0.4907      0.445 0.000 0.580 0.000 0.420
#> GSM258562     4  0.3649      0.555 0.000 0.000 0.204 0.796
#> GSM258563     4  0.2530      0.655 0.000 0.112 0.000 0.888
#> GSM258565     3  0.0000      0.925 0.000 0.000 1.000 0.000
#> GSM258566     3  0.0469      0.926 0.000 0.000 0.988 0.012
#> GSM258570     4  0.2469      0.658 0.000 0.108 0.000 0.892
#> GSM258578     4  0.4746      0.263 0.000 0.368 0.000 0.632
#> GSM258580     3  0.0000      0.925 0.000 0.000 1.000 0.000
#> GSM258583     2  0.3123      0.481 0.156 0.844 0.000 0.000
#> GSM258585     4  0.4222      0.436 0.000 0.000 0.272 0.728
#> GSM258590     1  0.0000      0.859 1.000 0.000 0.000 0.000
#> GSM258594     4  0.2469      0.658 0.000 0.108 0.000 0.892
#> GSM258596     4  0.4730      0.273 0.000 0.364 0.000 0.636
#> GSM258599     2  0.4500      0.660 0.000 0.684 0.000 0.316
#> GSM258603     1  0.0000      0.859 1.000 0.000 0.000 0.000
#> GSM258551     1  0.0000      0.859 1.000 0.000 0.000 0.000
#> GSM258552     3  0.2469      0.922 0.000 0.000 0.892 0.108
#> GSM258554     1  0.3801      0.844 0.780 0.220 0.000 0.000
#> GSM258558     2  0.3123      0.481 0.156 0.844 0.000 0.000
#> GSM258559     1  0.4500      0.787 0.684 0.316 0.000 0.000
#> GSM258560     4  0.3074      0.622 0.000 0.152 0.000 0.848
#> GSM258561     1  0.3801      0.844 0.780 0.220 0.000 0.000
#> GSM258564     4  0.0000      0.689 0.000 0.000 0.000 1.000
#> GSM258567     4  0.4500      0.342 0.000 0.000 0.316 0.684
#> GSM258568     2  0.4134      0.696 0.000 0.740 0.000 0.260
#> GSM258569     2  0.2530      0.535 0.112 0.888 0.000 0.000
#> GSM258571     2  0.3123      0.481 0.156 0.844 0.000 0.000
#> GSM258572     3  0.0000      0.925 0.000 0.000 1.000 0.000
#> GSM258573     3  0.0000      0.925 0.000 0.000 1.000 0.000
#> GSM258574     3  0.0000      0.925 0.000 0.000 1.000 0.000
#> GSM258575     3  0.0000      0.925 0.000 0.000 1.000 0.000
#> GSM258576     2  0.4500      0.660 0.000 0.684 0.000 0.316
#> GSM258577     1  0.4500      0.787 0.684 0.316 0.000 0.000
#> GSM258579     3  0.2469      0.922 0.000 0.000 0.892 0.108
#> GSM258581     2  0.4134      0.696 0.000 0.740 0.000 0.260
#> GSM258582     2  0.4500      0.660 0.000 0.684 0.000 0.316
#> GSM258584     1  0.0000      0.859 1.000 0.000 0.000 0.000
#> GSM258586     4  0.0469      0.690 0.000 0.012 0.000 0.988
#> GSM258587     2  0.4500      0.660 0.000 0.684 0.000 0.316
#> GSM258588     3  0.2647      0.917 0.000 0.000 0.880 0.120
#> GSM258589     4  0.4500      0.342 0.000 0.000 0.316 0.684
#> GSM258591     2  0.4134      0.696 0.000 0.740 0.000 0.260
#> GSM258592     3  0.2647      0.917 0.000 0.000 0.880 0.120
#> GSM258593     3  0.2469      0.922 0.000 0.000 0.892 0.108
#> GSM258595     3  0.4164      0.745 0.000 0.000 0.736 0.264
#> GSM258597     4  0.4746      0.263 0.000 0.368 0.000 0.632
#> GSM258598     4  0.3172      0.613 0.000 0.000 0.160 0.840
#> GSM258600     4  0.0000      0.689 0.000 0.000 0.000 1.000
#> GSM258601     3  0.2647      0.917 0.000 0.000 0.880 0.120
#> GSM258602     2  0.4500      0.660 0.000 0.684 0.000 0.316
#> GSM258604     3  0.2647      0.917 0.000 0.000 0.880 0.120
#> GSM258605     2  0.0000      0.642 0.000 1.000 0.000 0.000
#> GSM258606     2  0.4134      0.696 0.000 0.740 0.000 0.260
#> GSM258607     4  0.4746      0.263 0.000 0.368 0.000 0.632
#> GSM258608     2  0.0000      0.642 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     3  0.0290     0.6685 0.000 0.000 0.992 0.008 0.000
#> GSM258555     2  0.0609     0.6214 0.020 0.980 0.000 0.000 0.000
#> GSM258556     5  0.2561     0.6822 0.000 0.000 0.000 0.144 0.856
#> GSM258557     4  0.4934     0.7882 0.000 0.000 0.188 0.708 0.104
#> GSM258562     5  0.1701     0.6759 0.000 0.048 0.000 0.016 0.936
#> GSM258563     5  0.4045     0.3694 0.000 0.000 0.000 0.356 0.644
#> GSM258565     2  0.0609     0.6214 0.020 0.980 0.000 0.000 0.000
#> GSM258566     2  0.5899     0.7274 0.012 0.604 0.000 0.280 0.104
#> GSM258570     5  0.4370     0.4307 0.008 0.000 0.004 0.332 0.656
#> GSM258578     4  0.4737     0.7137 0.000 0.000 0.068 0.708 0.224
#> GSM258580     2  0.0609     0.6214 0.020 0.980 0.000 0.000 0.000
#> GSM258583     3  0.0162     0.6691 0.000 0.000 0.996 0.004 0.000
#> GSM258585     5  0.5452     0.4220 0.020 0.064 0.004 0.232 0.680
#> GSM258590     1  0.1043     0.9991 0.960 0.000 0.040 0.000 0.000
#> GSM258594     5  0.4642     0.4389 0.020 0.000 0.004 0.328 0.648
#> GSM258596     4  0.4737     0.7137 0.000 0.000 0.068 0.708 0.224
#> GSM258599     4  0.3816     0.8133 0.000 0.000 0.304 0.696 0.000
#> GSM258603     1  0.1205     0.9972 0.956 0.000 0.040 0.000 0.004
#> GSM258551     1  0.1043     0.9991 0.960 0.000 0.040 0.000 0.000
#> GSM258552     2  0.6358     0.7120 0.000 0.516 0.000 0.276 0.208
#> GSM258554     3  0.5533     0.1771 0.396 0.000 0.540 0.004 0.060
#> GSM258558     3  0.0162     0.6685 0.004 0.000 0.996 0.000 0.000
#> GSM258559     3  0.5237     0.3413 0.304 0.000 0.632 0.004 0.060
#> GSM258560     4  0.4434     0.1438 0.000 0.000 0.004 0.536 0.460
#> GSM258561     3  0.5516     0.1949 0.388 0.000 0.548 0.004 0.060
#> GSM258564     5  0.2835     0.7031 0.016 0.000 0.004 0.112 0.868
#> GSM258567     5  0.4708     0.4292 0.000 0.068 0.000 0.220 0.712
#> GSM258568     4  0.3932     0.7939 0.000 0.000 0.328 0.672 0.000
#> GSM258569     3  0.0963     0.6558 0.000 0.000 0.964 0.036 0.000
#> GSM258571     3  0.0162     0.6685 0.004 0.000 0.996 0.000 0.000
#> GSM258572     2  0.0609     0.6214 0.020 0.980 0.000 0.000 0.000
#> GSM258573     2  0.4315     0.7247 0.000 0.700 0.000 0.276 0.024
#> GSM258574     2  0.0609     0.6214 0.020 0.980 0.000 0.000 0.000
#> GSM258575     2  0.4141     0.7209 0.000 0.728 0.000 0.248 0.024
#> GSM258576     4  0.3884     0.8171 0.000 0.000 0.288 0.708 0.004
#> GSM258577     3  0.5237     0.3413 0.304 0.000 0.632 0.004 0.060
#> GSM258579     2  0.6358     0.7120 0.000 0.516 0.000 0.276 0.208
#> GSM258581     4  0.3932     0.7939 0.000 0.000 0.328 0.672 0.000
#> GSM258582     4  0.3949     0.8155 0.000 0.000 0.300 0.696 0.004
#> GSM258584     1  0.1043     0.9991 0.960 0.000 0.040 0.000 0.000
#> GSM258586     5  0.2561     0.6822 0.000 0.000 0.000 0.144 0.856
#> GSM258587     4  0.3949     0.8155 0.000 0.000 0.300 0.696 0.004
#> GSM258588     2  0.6694     0.6202 0.000 0.432 0.000 0.276 0.292
#> GSM258589     5  0.4708     0.4292 0.000 0.068 0.000 0.220 0.712
#> GSM258591     4  0.3932     0.7939 0.000 0.000 0.328 0.672 0.000
#> GSM258592     2  0.7090     0.6928 0.020 0.476 0.004 0.288 0.212
#> GSM258593     2  0.6358     0.7120 0.000 0.516 0.000 0.276 0.208
#> GSM258595     5  0.6518    -0.2369 0.000 0.240 0.000 0.276 0.484
#> GSM258597     4  0.4737     0.7137 0.000 0.000 0.068 0.708 0.224
#> GSM258598     5  0.1750     0.6856 0.000 0.036 0.000 0.028 0.936
#> GSM258600     5  0.1792     0.7085 0.000 0.000 0.000 0.084 0.916
#> GSM258601     2  0.7090     0.6928 0.020 0.476 0.004 0.288 0.212
#> GSM258602     4  0.3884     0.8171 0.000 0.000 0.288 0.708 0.004
#> GSM258604     2  0.7090     0.6928 0.020 0.476 0.004 0.288 0.212
#> GSM258605     3  0.3913     0.0913 0.000 0.000 0.676 0.324 0.000
#> GSM258606     4  0.3876     0.8049 0.000 0.000 0.316 0.684 0.000
#> GSM258607     4  0.4737     0.7137 0.000 0.000 0.068 0.708 0.224
#> GSM258608     3  0.3999     0.0179 0.000 0.000 0.656 0.344 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     5  0.1584      0.861 0.000 0.008 0.000 0.000 0.928 0.064
#> GSM258555     2  0.3360      0.994 0.000 0.732 0.264 0.000 0.004 0.000
#> GSM258556     4  0.1088      0.848 0.000 0.016 0.000 0.960 0.000 0.024
#> GSM258557     6  0.1334      0.885 0.000 0.020 0.000 0.032 0.000 0.948
#> GSM258562     4  0.0858      0.844 0.000 0.000 0.028 0.968 0.000 0.004
#> GSM258563     4  0.4332      0.686 0.000 0.072 0.000 0.700 0.000 0.228
#> GSM258565     2  0.3468      0.995 0.000 0.728 0.264 0.000 0.008 0.000
#> GSM258566     3  0.0993      0.863 0.012 0.000 0.964 0.000 0.024 0.000
#> GSM258570     4  0.3416      0.779 0.000 0.056 0.000 0.804 0.000 0.140
#> GSM258578     6  0.2448      0.857 0.000 0.064 0.000 0.052 0.000 0.884
#> GSM258580     2  0.3221      0.996 0.000 0.736 0.264 0.000 0.000 0.000
#> GSM258583     5  0.1584      0.861 0.000 0.008 0.000 0.000 0.928 0.064
#> GSM258585     4  0.3943      0.764 0.012 0.028 0.144 0.792 0.024 0.000
#> GSM258590     1  0.0363      0.996 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM258594     4  0.3944      0.784 0.008 0.056 0.016 0.796 0.000 0.124
#> GSM258596     6  0.2448      0.857 0.000 0.064 0.000 0.052 0.000 0.884
#> GSM258599     6  0.0458      0.893 0.000 0.016 0.000 0.000 0.000 0.984
#> GSM258603     1  0.0984      0.987 0.968 0.012 0.000 0.008 0.012 0.000
#> GSM258551     1  0.0363      0.996 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM258552     3  0.1749      0.872 0.000 0.024 0.932 0.036 0.008 0.000
#> GSM258554     5  0.4720      0.717 0.176 0.128 0.000 0.004 0.692 0.000
#> GSM258558     5  0.1327      0.863 0.000 0.000 0.000 0.000 0.936 0.064
#> GSM258559     5  0.3436      0.818 0.056 0.128 0.000 0.004 0.812 0.000
#> GSM258560     4  0.5007      0.280 0.000 0.072 0.000 0.512 0.000 0.416
#> GSM258561     5  0.4689      0.722 0.172 0.128 0.000 0.004 0.696 0.000
#> GSM258564     4  0.2068      0.841 0.000 0.048 0.020 0.916 0.000 0.016
#> GSM258567     4  0.1588      0.817 0.000 0.000 0.072 0.924 0.004 0.000
#> GSM258568     6  0.1265      0.885 0.000 0.044 0.000 0.000 0.008 0.948
#> GSM258569     5  0.1757      0.850 0.000 0.008 0.000 0.000 0.916 0.076
#> GSM258571     5  0.1327      0.863 0.000 0.000 0.000 0.000 0.936 0.064
#> GSM258572     2  0.3468      0.995 0.000 0.728 0.264 0.000 0.008 0.000
#> GSM258573     3  0.1524      0.850 0.000 0.060 0.932 0.000 0.008 0.000
#> GSM258574     2  0.3221      0.996 0.000 0.736 0.264 0.000 0.000 0.000
#> GSM258575     3  0.1524      0.850 0.000 0.060 0.932 0.000 0.008 0.000
#> GSM258576     6  0.0806      0.896 0.000 0.020 0.000 0.008 0.000 0.972
#> GSM258577     5  0.3561      0.818 0.056 0.120 0.000 0.012 0.812 0.000
#> GSM258579     3  0.1492      0.873 0.000 0.024 0.940 0.036 0.000 0.000
#> GSM258581     6  0.1265      0.885 0.000 0.044 0.000 0.000 0.008 0.948
#> GSM258582     6  0.0405      0.896 0.000 0.004 0.000 0.008 0.000 0.988
#> GSM258584     1  0.0363      0.996 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM258586     4  0.0777      0.849 0.000 0.004 0.000 0.972 0.000 0.024
#> GSM258587     6  0.0405      0.896 0.000 0.004 0.000 0.008 0.000 0.988
#> GSM258588     3  0.2595      0.776 0.000 0.004 0.836 0.160 0.000 0.000
#> GSM258589     4  0.1444      0.818 0.000 0.000 0.072 0.928 0.000 0.000
#> GSM258591     6  0.1265      0.885 0.000 0.044 0.000 0.000 0.008 0.948
#> GSM258592     3  0.1611      0.864 0.012 0.008 0.944 0.012 0.024 0.000
#> GSM258593     3  0.1492      0.873 0.000 0.024 0.940 0.036 0.000 0.000
#> GSM258595     3  0.3351      0.603 0.000 0.000 0.712 0.288 0.000 0.000
#> GSM258597     6  0.1995      0.871 0.000 0.052 0.000 0.036 0.000 0.912
#> GSM258598     4  0.0858      0.844 0.000 0.000 0.028 0.968 0.000 0.004
#> GSM258600     4  0.0717      0.849 0.000 0.000 0.008 0.976 0.000 0.016
#> GSM258601     3  0.1611      0.864 0.012 0.008 0.944 0.012 0.024 0.000
#> GSM258602     6  0.0725      0.895 0.000 0.012 0.000 0.012 0.000 0.976
#> GSM258604     3  0.1842      0.858 0.012 0.008 0.932 0.012 0.036 0.000
#> GSM258605     6  0.4530      0.417 0.000 0.044 0.000 0.000 0.356 0.600
#> GSM258606     6  0.1152      0.886 0.000 0.044 0.000 0.000 0.004 0.952
#> GSM258607     6  0.2448      0.857 0.000 0.064 0.000 0.052 0.000 0.884
#> GSM258608     6  0.4438      0.482 0.000 0.044 0.000 0.000 0.328 0.628

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> ATC:kmeans 53            0.429 2
#> ATC:kmeans 57            0.904 3
#> ATC:kmeans 46            0.176 4
#> ATC:kmeans 44            0.906 5
#> ATC:kmeans 55            0.206 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.5093 0.491   0.491
#> 3 3 0.968           0.913       0.963         0.1745 0.907   0.810
#> 4 4 0.786           0.834       0.914         0.0865 0.964   0.910
#> 5 5 0.749           0.701       0.877         0.0641 0.967   0.913
#> 6 6 0.758           0.736       0.872         0.0343 0.937   0.817

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM258553     2       0          1  0  1
#> GSM258555     1       0          1  1  0
#> GSM258556     1       0          1  1  0
#> GSM258557     2       0          1  0  1
#> GSM258562     1       0          1  1  0
#> GSM258563     1       0          1  1  0
#> GSM258565     1       0          1  1  0
#> GSM258566     1       0          1  1  0
#> GSM258570     1       0          1  1  0
#> GSM258578     2       0          1  0  1
#> GSM258580     1       0          1  1  0
#> GSM258583     2       0          1  0  1
#> GSM258585     1       0          1  1  0
#> GSM258590     2       0          1  0  1
#> GSM258594     1       0          1  1  0
#> GSM258596     2       0          1  0  1
#> GSM258599     2       0          1  0  1
#> GSM258603     2       0          1  0  1
#> GSM258551     2       0          1  0  1
#> GSM258552     1       0          1  1  0
#> GSM258554     2       0          1  0  1
#> GSM258558     2       0          1  0  1
#> GSM258559     2       0          1  0  1
#> GSM258560     1       0          1  1  0
#> GSM258561     2       0          1  0  1
#> GSM258564     1       0          1  1  0
#> GSM258567     1       0          1  1  0
#> GSM258568     2       0          1  0  1
#> GSM258569     2       0          1  0  1
#> GSM258571     2       0          1  0  1
#> GSM258572     1       0          1  1  0
#> GSM258573     1       0          1  1  0
#> GSM258574     1       0          1  1  0
#> GSM258575     1       0          1  1  0
#> GSM258576     2       0          1  0  1
#> GSM258577     2       0          1  0  1
#> GSM258579     1       0          1  1  0
#> GSM258581     2       0          1  0  1
#> GSM258582     2       0          1  0  1
#> GSM258584     2       0          1  0  1
#> GSM258586     1       0          1  1  0
#> GSM258587     2       0          1  0  1
#> GSM258588     1       0          1  1  0
#> GSM258589     1       0          1  1  0
#> GSM258591     2       0          1  0  1
#> GSM258592     1       0          1  1  0
#> GSM258593     1       0          1  1  0
#> GSM258595     1       0          1  1  0
#> GSM258597     2       0          1  0  1
#> GSM258598     1       0          1  1  0
#> GSM258600     1       0          1  1  0
#> GSM258601     1       0          1  1  0
#> GSM258602     2       0          1  0  1
#> GSM258604     1       0          1  1  0
#> GSM258605     2       0          1  0  1
#> GSM258606     2       0          1  0  1
#> GSM258607     2       0          1  0  1
#> GSM258608     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     2  0.0000      0.949 0.000 1.000 0.000
#> GSM258555     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258556     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258557     1  0.6045      0.567 0.620 0.380 0.000
#> GSM258562     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258563     3  0.0237      0.995 0.004 0.000 0.996
#> GSM258565     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258566     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258570     3  0.0747      0.985 0.016 0.000 0.984
#> GSM258578     1  0.0000      0.780 1.000 0.000 0.000
#> GSM258580     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258583     2  0.0000      0.949 0.000 1.000 0.000
#> GSM258585     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258590     2  0.0000      0.949 0.000 1.000 0.000
#> GSM258594     3  0.0747      0.985 0.016 0.000 0.984
#> GSM258596     1  0.0592      0.782 0.988 0.012 0.000
#> GSM258599     2  0.6062      0.247 0.384 0.616 0.000
#> GSM258603     2  0.0000      0.949 0.000 1.000 0.000
#> GSM258551     2  0.0000      0.949 0.000 1.000 0.000
#> GSM258552     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258554     2  0.0000      0.949 0.000 1.000 0.000
#> GSM258558     2  0.0000      0.949 0.000 1.000 0.000
#> GSM258559     2  0.0000      0.949 0.000 1.000 0.000
#> GSM258560     3  0.1163      0.975 0.028 0.000 0.972
#> GSM258561     2  0.0000      0.949 0.000 1.000 0.000
#> GSM258564     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258567     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258568     2  0.0000      0.949 0.000 1.000 0.000
#> GSM258569     2  0.0000      0.949 0.000 1.000 0.000
#> GSM258571     2  0.0000      0.949 0.000 1.000 0.000
#> GSM258572     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258573     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258574     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258575     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258576     2  0.6215      0.111 0.428 0.572 0.000
#> GSM258577     2  0.0000      0.949 0.000 1.000 0.000
#> GSM258579     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258581     2  0.1031      0.926 0.024 0.976 0.000
#> GSM258582     1  0.6045      0.567 0.620 0.380 0.000
#> GSM258584     2  0.0000      0.949 0.000 1.000 0.000
#> GSM258586     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258587     1  0.6154      0.511 0.592 0.408 0.000
#> GSM258588     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258589     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258591     2  0.1289      0.917 0.032 0.968 0.000
#> GSM258592     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258593     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258595     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258597     1  0.0747      0.783 0.984 0.016 0.000
#> GSM258598     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258600     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258601     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258602     2  0.0000      0.949 0.000 1.000 0.000
#> GSM258604     3  0.0000      0.998 0.000 0.000 1.000
#> GSM258605     2  0.0000      0.949 0.000 1.000 0.000
#> GSM258606     2  0.0000      0.949 0.000 1.000 0.000
#> GSM258607     1  0.0237      0.783 0.996 0.004 0.000
#> GSM258608     2  0.0000      0.949 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM258555     3  0.0188      0.918 0.004 0.000 0.996 0.000
#> GSM258556     3  0.3764      0.776 0.216 0.000 0.784 0.000
#> GSM258557     4  0.2773      0.566 0.004 0.116 0.000 0.880
#> GSM258562     3  0.1302      0.900 0.044 0.000 0.956 0.000
#> GSM258563     3  0.4605      0.637 0.336 0.000 0.664 0.000
#> GSM258565     3  0.0000      0.919 0.000 0.000 1.000 0.000
#> GSM258566     3  0.0336      0.917 0.008 0.000 0.992 0.000
#> GSM258570     3  0.3649      0.762 0.204 0.000 0.796 0.000
#> GSM258578     1  0.4855      0.916 0.600 0.000 0.000 0.400
#> GSM258580     3  0.0000      0.919 0.000 0.000 1.000 0.000
#> GSM258583     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM258585     3  0.1389      0.899 0.048 0.000 0.952 0.000
#> GSM258590     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM258594     3  0.3975      0.714 0.240 0.000 0.760 0.000
#> GSM258596     1  0.4973      0.918 0.644 0.008 0.000 0.348
#> GSM258599     4  0.5244      0.444 0.012 0.388 0.000 0.600
#> GSM258603     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM258551     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM258552     3  0.0000      0.919 0.000 0.000 1.000 0.000
#> GSM258554     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM258558     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM258559     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM258560     3  0.4948      0.387 0.440 0.000 0.560 0.000
#> GSM258561     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM258564     3  0.0817      0.911 0.024 0.000 0.976 0.000
#> GSM258567     3  0.0000      0.919 0.000 0.000 1.000 0.000
#> GSM258568     2  0.0469      0.956 0.012 0.988 0.000 0.000
#> GSM258569     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM258571     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM258572     3  0.0000      0.919 0.000 0.000 1.000 0.000
#> GSM258573     3  0.0000      0.919 0.000 0.000 1.000 0.000
#> GSM258574     3  0.0000      0.919 0.000 0.000 1.000 0.000
#> GSM258575     3  0.0000      0.919 0.000 0.000 1.000 0.000
#> GSM258576     4  0.5093      0.463 0.012 0.348 0.000 0.640
#> GSM258577     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM258579     3  0.0000      0.919 0.000 0.000 1.000 0.000
#> GSM258581     2  0.4098      0.666 0.012 0.784 0.000 0.204
#> GSM258582     4  0.3157      0.585 0.004 0.144 0.000 0.852
#> GSM258584     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM258586     3  0.3764      0.776 0.216 0.000 0.784 0.000
#> GSM258587     4  0.3444      0.576 0.000 0.184 0.000 0.816
#> GSM258588     3  0.0000      0.919 0.000 0.000 1.000 0.000
#> GSM258589     3  0.3726      0.779 0.212 0.000 0.788 0.000
#> GSM258591     2  0.4453      0.583 0.012 0.744 0.000 0.244
#> GSM258592     3  0.0336      0.917 0.008 0.000 0.992 0.000
#> GSM258593     3  0.0000      0.919 0.000 0.000 1.000 0.000
#> GSM258595     3  0.0000      0.919 0.000 0.000 1.000 0.000
#> GSM258597     4  0.0188      0.363 0.004 0.000 0.000 0.996
#> GSM258598     3  0.0336      0.917 0.008 0.000 0.992 0.000
#> GSM258600     3  0.3764      0.776 0.216 0.000 0.784 0.000
#> GSM258601     3  0.0592      0.915 0.016 0.000 0.984 0.000
#> GSM258602     2  0.0336      0.959 0.008 0.992 0.000 0.000
#> GSM258604     3  0.1389      0.899 0.048 0.000 0.952 0.000
#> GSM258605     2  0.0000      0.965 0.000 1.000 0.000 0.000
#> GSM258606     2  0.1488      0.924 0.012 0.956 0.000 0.032
#> GSM258607     4  0.3105      0.149 0.140 0.004 0.000 0.856
#> GSM258608     2  0.0000      0.965 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     3  0.0000     0.9324 0.000 0.000 1.000 0.000 0.000
#> GSM258555     2  0.0510     0.8269 0.000 0.984 0.000 0.000 0.016
#> GSM258556     2  0.4300    -0.0734 0.000 0.524 0.000 0.000 0.476
#> GSM258557     4  0.4015     0.6111 0.016 0.000 0.204 0.768 0.012
#> GSM258562     2  0.2471     0.7130 0.000 0.864 0.000 0.000 0.136
#> GSM258563     5  0.4842     0.3523 0.048 0.264 0.000 0.004 0.684
#> GSM258565     2  0.0404     0.8281 0.000 0.988 0.000 0.000 0.012
#> GSM258566     2  0.0510     0.8269 0.000 0.984 0.000 0.000 0.016
#> GSM258570     2  0.5348     0.4070 0.112 0.656 0.000 0.000 0.232
#> GSM258578     1  0.2890     0.8316 0.836 0.000 0.000 0.160 0.004
#> GSM258580     2  0.0290     0.8290 0.000 0.992 0.000 0.000 0.008
#> GSM258583     3  0.0000     0.9324 0.000 0.000 1.000 0.000 0.000
#> GSM258585     2  0.2970     0.6842 0.004 0.828 0.000 0.000 0.168
#> GSM258590     3  0.0000     0.9324 0.000 0.000 1.000 0.000 0.000
#> GSM258594     2  0.5122     0.4622 0.112 0.688 0.000 0.000 0.200
#> GSM258596     1  0.1484     0.8275 0.944 0.000 0.000 0.048 0.008
#> GSM258599     4  0.5158     0.4799 0.020 0.000 0.316 0.636 0.028
#> GSM258603     3  0.0000     0.9324 0.000 0.000 1.000 0.000 0.000
#> GSM258551     3  0.0000     0.9324 0.000 0.000 1.000 0.000 0.000
#> GSM258552     2  0.0162     0.8300 0.000 0.996 0.000 0.000 0.004
#> GSM258554     3  0.0000     0.9324 0.000 0.000 1.000 0.000 0.000
#> GSM258558     3  0.0000     0.9324 0.000 0.000 1.000 0.000 0.000
#> GSM258559     3  0.0000     0.9324 0.000 0.000 1.000 0.000 0.000
#> GSM258560     5  0.6269     0.0892 0.284 0.188 0.000 0.000 0.528
#> GSM258561     3  0.0000     0.9324 0.000 0.000 1.000 0.000 0.000
#> GSM258564     2  0.1544     0.7952 0.000 0.932 0.000 0.000 0.068
#> GSM258567     2  0.0290     0.8291 0.000 0.992 0.000 0.000 0.008
#> GSM258568     3  0.2925     0.8312 0.024 0.000 0.884 0.068 0.024
#> GSM258569     3  0.0000     0.9324 0.000 0.000 1.000 0.000 0.000
#> GSM258571     3  0.0000     0.9324 0.000 0.000 1.000 0.000 0.000
#> GSM258572     2  0.0162     0.8300 0.000 0.996 0.000 0.000 0.004
#> GSM258573     2  0.0162     0.8300 0.000 0.996 0.000 0.000 0.004
#> GSM258574     2  0.0162     0.8297 0.000 0.996 0.000 0.000 0.004
#> GSM258575     2  0.0000     0.8300 0.000 1.000 0.000 0.000 0.000
#> GSM258576     4  0.4938     0.5147 0.020 0.000 0.272 0.680 0.028
#> GSM258577     3  0.0000     0.9324 0.000 0.000 1.000 0.000 0.000
#> GSM258579     2  0.0162     0.8300 0.000 0.996 0.000 0.000 0.004
#> GSM258581     3  0.4965     0.5002 0.024 0.000 0.676 0.276 0.024
#> GSM258582     4  0.3832     0.6191 0.016 0.000 0.172 0.796 0.016
#> GSM258584     3  0.0000     0.9324 0.000 0.000 1.000 0.000 0.000
#> GSM258586     2  0.4300    -0.0741 0.000 0.524 0.000 0.000 0.476
#> GSM258587     4  0.3266     0.6267 0.004 0.000 0.200 0.796 0.000
#> GSM258588     2  0.0404     0.8273 0.000 0.988 0.000 0.000 0.012
#> GSM258589     2  0.4219     0.1341 0.000 0.584 0.000 0.000 0.416
#> GSM258591     3  0.5307     0.3490 0.024 0.000 0.616 0.332 0.028
#> GSM258592     2  0.0963     0.8169 0.000 0.964 0.000 0.000 0.036
#> GSM258593     2  0.0162     0.8300 0.000 0.996 0.000 0.000 0.004
#> GSM258595     2  0.0290     0.8288 0.000 0.992 0.000 0.000 0.008
#> GSM258597     4  0.0566     0.4772 0.012 0.000 0.000 0.984 0.004
#> GSM258598     2  0.1341     0.7979 0.000 0.944 0.000 0.000 0.056
#> GSM258600     2  0.4273     0.0293 0.000 0.552 0.000 0.000 0.448
#> GSM258601     2  0.1341     0.8042 0.000 0.944 0.000 0.000 0.056
#> GSM258602     3  0.1787     0.8899 0.032 0.000 0.940 0.016 0.012
#> GSM258604     2  0.2674     0.7189 0.004 0.856 0.000 0.000 0.140
#> GSM258605     3  0.0000     0.9324 0.000 0.000 1.000 0.000 0.000
#> GSM258606     3  0.3917     0.7389 0.024 0.000 0.808 0.144 0.024
#> GSM258607     4  0.5026     0.1253 0.280 0.000 0.000 0.656 0.064
#> GSM258608     3  0.0000     0.9324 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     6  0.0000     0.8830 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258555     2  0.0363     0.9148 0.000 0.988 0.012 0.000 0.000 0.000
#> GSM258556     4  0.3578     0.8148 0.000 0.340 0.000 0.660 0.000 0.000
#> GSM258557     5  0.3150     0.5275 0.000 0.000 0.052 0.000 0.828 0.120
#> GSM258562     2  0.2378     0.7201 0.000 0.848 0.000 0.152 0.000 0.000
#> GSM258563     4  0.2315     0.2386 0.008 0.084 0.016 0.892 0.000 0.000
#> GSM258565     2  0.0146     0.9170 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM258566     2  0.0725     0.9094 0.000 0.976 0.012 0.012 0.000 0.000
#> GSM258570     2  0.5313     0.4760 0.068 0.684 0.156 0.092 0.000 0.000
#> GSM258578     1  0.3322     0.7778 0.832 0.000 0.052 0.012 0.104 0.000
#> GSM258580     2  0.0000     0.9177 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM258583     6  0.0000     0.8830 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258585     2  0.2457     0.8231 0.000 0.880 0.084 0.036 0.000 0.000
#> GSM258590     6  0.0508     0.8754 0.000 0.000 0.012 0.004 0.000 0.984
#> GSM258594     2  0.4934     0.4633 0.040 0.672 0.240 0.048 0.000 0.000
#> GSM258596     1  0.0603     0.7845 0.980 0.000 0.016 0.000 0.004 0.000
#> GSM258599     5  0.5781     0.4518 0.024 0.000 0.140 0.000 0.572 0.264
#> GSM258603     6  0.0508     0.8754 0.000 0.000 0.012 0.004 0.000 0.984
#> GSM258551     6  0.0508     0.8754 0.000 0.000 0.012 0.004 0.000 0.984
#> GSM258552     2  0.0260     0.9168 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM258554     6  0.0000     0.8830 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258558     6  0.0000     0.8830 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258559     6  0.0000     0.8830 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258560     3  0.6634    -0.0401 0.128 0.076 0.436 0.360 0.000 0.000
#> GSM258561     6  0.0000     0.8830 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258564     2  0.1334     0.8913 0.000 0.948 0.032 0.020 0.000 0.000
#> GSM258567     2  0.0260     0.9168 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM258568     6  0.4330     0.6506 0.028 0.000 0.136 0.000 0.076 0.760
#> GSM258569     6  0.0000     0.8830 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258571     6  0.0000     0.8830 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258572     2  0.0146     0.9180 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM258573     2  0.0146     0.9180 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM258574     2  0.0146     0.9180 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM258575     2  0.0146     0.9180 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM258576     5  0.5593     0.4855 0.028 0.000 0.144 0.000 0.620 0.208
#> GSM258577     6  0.0000     0.8830 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258579     2  0.0260     0.9168 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM258581     6  0.6099     0.0872 0.028 0.000 0.148 0.000 0.320 0.504
#> GSM258582     5  0.2848     0.5633 0.004 0.000 0.024 0.000 0.848 0.124
#> GSM258584     6  0.0508     0.8754 0.000 0.000 0.012 0.004 0.000 0.984
#> GSM258586     4  0.3578     0.8149 0.000 0.340 0.000 0.660 0.000 0.000
#> GSM258587     5  0.2482     0.5862 0.000 0.000 0.004 0.000 0.848 0.148
#> GSM258588     2  0.0632     0.9062 0.000 0.976 0.000 0.024 0.000 0.000
#> GSM258589     4  0.3789     0.7631 0.000 0.416 0.000 0.584 0.000 0.000
#> GSM258591     6  0.6140    -0.0212 0.028 0.000 0.144 0.000 0.352 0.476
#> GSM258592     2  0.0725     0.9094 0.000 0.976 0.012 0.012 0.000 0.000
#> GSM258593     2  0.0146     0.9180 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM258595     2  0.0790     0.9003 0.000 0.968 0.000 0.032 0.000 0.000
#> GSM258597     5  0.1807     0.4438 0.020 0.000 0.060 0.000 0.920 0.000
#> GSM258598     2  0.1387     0.8615 0.000 0.932 0.000 0.068 0.000 0.000
#> GSM258600     4  0.3717     0.8058 0.000 0.384 0.000 0.616 0.000 0.000
#> GSM258601     2  0.0993     0.9031 0.000 0.964 0.024 0.012 0.000 0.000
#> GSM258602     6  0.3546     0.7427 0.056 0.000 0.096 0.000 0.024 0.824
#> GSM258604     2  0.1984     0.8571 0.000 0.912 0.056 0.032 0.000 0.000
#> GSM258605     6  0.0000     0.8830 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258606     6  0.5608     0.3971 0.028 0.000 0.140 0.000 0.216 0.616
#> GSM258607     3  0.5987    -0.1048 0.136 0.000 0.468 0.020 0.376 0.000
#> GSM258608     6  0.0000     0.8830 0.000 0.000 0.000 0.000 0.000 1.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> ATC:skmeans 58            0.777 2
#> ATC:skmeans 56            0.414 3
#> ATC:skmeans 53            0.125 4
#> ATC:skmeans 46            0.134 5
#> ATC:skmeans 47            0.276 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.928           0.919       0.970         0.5042 0.494   0.494
#> 3 3 0.830           0.885       0.953         0.2666 0.718   0.502
#> 4 4 0.806           0.843       0.919         0.1096 0.889   0.711
#> 5 5 0.758           0.783       0.863         0.0992 0.863   0.577
#> 6 6 0.830           0.671       0.822         0.0509 0.885   0.552

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     2   0.000      0.972 0.000 1.000
#> GSM258555     1   0.000      0.960 1.000 0.000
#> GSM258556     1   0.808      0.670 0.752 0.248
#> GSM258557     2   0.000      0.972 0.000 1.000
#> GSM258562     1   0.000      0.960 1.000 0.000
#> GSM258563     2   0.994      0.108 0.456 0.544
#> GSM258565     1   0.000      0.960 1.000 0.000
#> GSM258566     1   0.000      0.960 1.000 0.000
#> GSM258570     1   0.992      0.188 0.552 0.448
#> GSM258578     2   0.000      0.972 0.000 1.000
#> GSM258580     1   0.000      0.960 1.000 0.000
#> GSM258583     2   0.000      0.972 0.000 1.000
#> GSM258585     1   0.000      0.960 1.000 0.000
#> GSM258590     2   0.000      0.972 0.000 1.000
#> GSM258594     1   0.781      0.695 0.768 0.232
#> GSM258596     2   0.000      0.972 0.000 1.000
#> GSM258599     2   0.000      0.972 0.000 1.000
#> GSM258603     2   0.000      0.972 0.000 1.000
#> GSM258551     2   0.000      0.972 0.000 1.000
#> GSM258552     1   0.000      0.960 1.000 0.000
#> GSM258554     2   0.000      0.972 0.000 1.000
#> GSM258558     2   0.000      0.972 0.000 1.000
#> GSM258559     2   0.000      0.972 0.000 1.000
#> GSM258560     2   0.917      0.469 0.332 0.668
#> GSM258561     2   0.000      0.972 0.000 1.000
#> GSM258564     1   0.000      0.960 1.000 0.000
#> GSM258567     1   0.000      0.960 1.000 0.000
#> GSM258568     2   0.000      0.972 0.000 1.000
#> GSM258569     2   0.000      0.972 0.000 1.000
#> GSM258571     2   0.000      0.972 0.000 1.000
#> GSM258572     1   0.000      0.960 1.000 0.000
#> GSM258573     1   0.000      0.960 1.000 0.000
#> GSM258574     1   0.000      0.960 1.000 0.000
#> GSM258575     1   0.000      0.960 1.000 0.000
#> GSM258576     2   0.000      0.972 0.000 1.000
#> GSM258577     2   0.000      0.972 0.000 1.000
#> GSM258579     1   0.000      0.960 1.000 0.000
#> GSM258581     2   0.000      0.972 0.000 1.000
#> GSM258582     2   0.000      0.972 0.000 1.000
#> GSM258584     2   0.000      0.972 0.000 1.000
#> GSM258586     1   0.295      0.915 0.948 0.052
#> GSM258587     2   0.000      0.972 0.000 1.000
#> GSM258588     1   0.000      0.960 1.000 0.000
#> GSM258589     1   0.000      0.960 1.000 0.000
#> GSM258591     2   0.000      0.972 0.000 1.000
#> GSM258592     1   0.000      0.960 1.000 0.000
#> GSM258593     1   0.000      0.960 1.000 0.000
#> GSM258595     1   0.000      0.960 1.000 0.000
#> GSM258597     2   0.000      0.972 0.000 1.000
#> GSM258598     1   0.000      0.960 1.000 0.000
#> GSM258600     1   0.000      0.960 1.000 0.000
#> GSM258601     1   0.000      0.960 1.000 0.000
#> GSM258602     2   0.000      0.972 0.000 1.000
#> GSM258604     1   0.000      0.960 1.000 0.000
#> GSM258605     2   0.000      0.972 0.000 1.000
#> GSM258606     2   0.000      0.972 0.000 1.000
#> GSM258607     2   0.000      0.972 0.000 1.000
#> GSM258608     2   0.000      0.972 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     2  0.6286     -0.023 0.464 0.536 0.000
#> GSM258555     3  0.0000      0.957 0.000 0.000 1.000
#> GSM258556     2  0.2625      0.870 0.000 0.916 0.084
#> GSM258557     2  0.0000      0.941 0.000 1.000 0.000
#> GSM258562     3  0.3038      0.851 0.000 0.104 0.896
#> GSM258563     2  0.0592      0.935 0.000 0.988 0.012
#> GSM258565     3  0.0000      0.957 0.000 0.000 1.000
#> GSM258566     3  0.0000      0.957 0.000 0.000 1.000
#> GSM258570     2  0.0592      0.935 0.000 0.988 0.012
#> GSM258578     2  0.0000      0.941 0.000 1.000 0.000
#> GSM258580     3  0.0000      0.957 0.000 0.000 1.000
#> GSM258583     1  0.6026      0.468 0.624 0.376 0.000
#> GSM258585     3  0.4750      0.710 0.000 0.216 0.784
#> GSM258590     1  0.0000      0.913 1.000 0.000 0.000
#> GSM258594     2  0.0592      0.935 0.000 0.988 0.012
#> GSM258596     2  0.0000      0.941 0.000 1.000 0.000
#> GSM258599     2  0.0000      0.941 0.000 1.000 0.000
#> GSM258603     1  0.0000      0.913 1.000 0.000 0.000
#> GSM258551     1  0.0000      0.913 1.000 0.000 0.000
#> GSM258552     3  0.0000      0.957 0.000 0.000 1.000
#> GSM258554     1  0.0000      0.913 1.000 0.000 0.000
#> GSM258558     1  0.4235      0.816 0.824 0.176 0.000
#> GSM258559     1  0.1753      0.905 0.952 0.048 0.000
#> GSM258560     2  0.0000      0.941 0.000 1.000 0.000
#> GSM258561     1  0.0000      0.913 1.000 0.000 0.000
#> GSM258564     2  0.2625      0.870 0.000 0.916 0.084
#> GSM258567     3  0.0000      0.957 0.000 0.000 1.000
#> GSM258568     2  0.0000      0.941 0.000 1.000 0.000
#> GSM258569     2  0.4504      0.708 0.196 0.804 0.000
#> GSM258571     1  0.4235      0.816 0.824 0.176 0.000
#> GSM258572     3  0.0000      0.957 0.000 0.000 1.000
#> GSM258573     3  0.0000      0.957 0.000 0.000 1.000
#> GSM258574     3  0.0000      0.957 0.000 0.000 1.000
#> GSM258575     3  0.0000      0.957 0.000 0.000 1.000
#> GSM258576     2  0.0000      0.941 0.000 1.000 0.000
#> GSM258577     1  0.1860      0.903 0.948 0.052 0.000
#> GSM258579     3  0.0000      0.957 0.000 0.000 1.000
#> GSM258581     2  0.0000      0.941 0.000 1.000 0.000
#> GSM258582     2  0.0000      0.941 0.000 1.000 0.000
#> GSM258584     1  0.0000      0.913 1.000 0.000 0.000
#> GSM258586     2  0.4121      0.773 0.000 0.832 0.168
#> GSM258587     2  0.0000      0.941 0.000 1.000 0.000
#> GSM258588     3  0.0000      0.957 0.000 0.000 1.000
#> GSM258589     3  0.0000      0.957 0.000 0.000 1.000
#> GSM258591     2  0.0000      0.941 0.000 1.000 0.000
#> GSM258592     3  0.0000      0.957 0.000 0.000 1.000
#> GSM258593     3  0.0000      0.957 0.000 0.000 1.000
#> GSM258595     3  0.0000      0.957 0.000 0.000 1.000
#> GSM258597     2  0.0000      0.941 0.000 1.000 0.000
#> GSM258598     3  0.6026      0.383 0.000 0.376 0.624
#> GSM258600     2  0.4235      0.763 0.000 0.824 0.176
#> GSM258601     3  0.0000      0.957 0.000 0.000 1.000
#> GSM258602     2  0.0000      0.941 0.000 1.000 0.000
#> GSM258604     3  0.0000      0.957 0.000 0.000 1.000
#> GSM258605     2  0.0000      0.941 0.000 1.000 0.000
#> GSM258606     2  0.0000      0.941 0.000 1.000 0.000
#> GSM258607     2  0.0000      0.941 0.000 1.000 0.000
#> GSM258608     2  0.0000      0.941 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> GSM258555     3  0.0000      0.923 0.000 0.000 1.000 0.000
#> GSM258556     4  0.0000      0.833 0.000 0.000 0.000 1.000
#> GSM258557     4  0.2345      0.829 0.000 0.100 0.000 0.900
#> GSM258562     3  0.4761      0.535 0.000 0.000 0.628 0.372
#> GSM258563     4  0.0000      0.833 0.000 0.000 0.000 1.000
#> GSM258565     3  0.0000      0.923 0.000 0.000 1.000 0.000
#> GSM258566     3  0.0000      0.923 0.000 0.000 1.000 0.000
#> GSM258570     4  0.0000      0.833 0.000 0.000 0.000 1.000
#> GSM258578     4  0.0817      0.839 0.000 0.024 0.000 0.976
#> GSM258580     3  0.0000      0.923 0.000 0.000 1.000 0.000
#> GSM258583     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> GSM258585     3  0.4985      0.311 0.000 0.000 0.532 0.468
#> GSM258590     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM258594     4  0.0000      0.833 0.000 0.000 0.000 1.000
#> GSM258596     4  0.0817      0.839 0.000 0.024 0.000 0.976
#> GSM258599     4  0.4356      0.732 0.000 0.292 0.000 0.708
#> GSM258603     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM258551     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM258552     3  0.0000      0.923 0.000 0.000 1.000 0.000
#> GSM258554     1  0.0188      0.996 0.996 0.004 0.000 0.000
#> GSM258558     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> GSM258559     2  0.0336      0.949 0.008 0.992 0.000 0.000
#> GSM258560     4  0.0592      0.837 0.000 0.016 0.000 0.984
#> GSM258561     2  0.4454      0.458 0.308 0.692 0.000 0.000
#> GSM258564     4  0.0000      0.833 0.000 0.000 0.000 1.000
#> GSM258567     3  0.4250      0.661 0.000 0.000 0.724 0.276
#> GSM258568     4  0.4356      0.732 0.000 0.292 0.000 0.708
#> GSM258569     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> GSM258571     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> GSM258572     3  0.0000      0.923 0.000 0.000 1.000 0.000
#> GSM258573     3  0.0000      0.923 0.000 0.000 1.000 0.000
#> GSM258574     3  0.0000      0.923 0.000 0.000 1.000 0.000
#> GSM258575     3  0.0000      0.923 0.000 0.000 1.000 0.000
#> GSM258576     4  0.4356      0.732 0.000 0.292 0.000 0.708
#> GSM258577     2  0.0188      0.953 0.004 0.996 0.000 0.000
#> GSM258579     3  0.0000      0.923 0.000 0.000 1.000 0.000
#> GSM258581     4  0.4356      0.732 0.000 0.292 0.000 0.708
#> GSM258582     4  0.2345      0.829 0.000 0.100 0.000 0.900
#> GSM258584     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> GSM258586     4  0.0000      0.833 0.000 0.000 0.000 1.000
#> GSM258587     4  0.4356      0.732 0.000 0.292 0.000 0.708
#> GSM258588     3  0.0000      0.923 0.000 0.000 1.000 0.000
#> GSM258589     3  0.2216      0.856 0.000 0.000 0.908 0.092
#> GSM258591     4  0.4356      0.732 0.000 0.292 0.000 0.708
#> GSM258592     3  0.0000      0.923 0.000 0.000 1.000 0.000
#> GSM258593     3  0.0000      0.923 0.000 0.000 1.000 0.000
#> GSM258595     3  0.0707      0.912 0.000 0.000 0.980 0.020
#> GSM258597     4  0.2345      0.829 0.000 0.100 0.000 0.900
#> GSM258598     4  0.4761      0.190 0.000 0.000 0.372 0.628
#> GSM258600     4  0.0000      0.833 0.000 0.000 0.000 1.000
#> GSM258601     3  0.0000      0.923 0.000 0.000 1.000 0.000
#> GSM258602     4  0.4356      0.732 0.000 0.292 0.000 0.708
#> GSM258604     3  0.0921      0.908 0.000 0.000 0.972 0.028
#> GSM258605     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> GSM258606     4  0.4356      0.732 0.000 0.292 0.000 0.708
#> GSM258607     4  0.0817      0.839 0.000 0.024 0.000 0.976
#> GSM258608     2  0.0000      0.956 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     3  0.3895      0.827 0.000 0.000 0.680 0.320 0.000
#> GSM258555     2  0.0000      0.933 0.000 1.000 0.000 0.000 0.000
#> GSM258556     5  0.0000      0.850 0.000 0.000 0.000 0.000 1.000
#> GSM258557     4  0.2179      0.732 0.000 0.000 0.000 0.888 0.112
#> GSM258562     5  0.0290      0.845 0.000 0.008 0.000 0.000 0.992
#> GSM258563     5  0.3661      0.658 0.000 0.000 0.000 0.276 0.724
#> GSM258565     2  0.0000      0.933 0.000 1.000 0.000 0.000 0.000
#> GSM258566     2  0.0963      0.938 0.000 0.964 0.000 0.000 0.036
#> GSM258570     5  0.3586      0.674 0.000 0.000 0.000 0.264 0.736
#> GSM258578     4  0.3876      0.451 0.000 0.000 0.000 0.684 0.316
#> GSM258580     2  0.0000      0.933 0.000 1.000 0.000 0.000 0.000
#> GSM258583     3  0.3895      0.827 0.000 0.000 0.680 0.320 0.000
#> GSM258585     5  0.0000      0.850 0.000 0.000 0.000 0.000 1.000
#> GSM258590     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> GSM258594     5  0.3612      0.669 0.000 0.000 0.000 0.268 0.732
#> GSM258596     4  0.3876      0.451 0.000 0.000 0.000 0.684 0.316
#> GSM258599     4  0.2424      0.690 0.000 0.000 0.132 0.868 0.000
#> GSM258603     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> GSM258551     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> GSM258552     2  0.1270      0.938 0.000 0.948 0.000 0.000 0.052
#> GSM258554     1  0.3895      0.709 0.680 0.000 0.320 0.000 0.000
#> GSM258558     3  0.3895      0.827 0.000 0.000 0.680 0.320 0.000
#> GSM258559     3  0.0000      0.608 0.000 0.000 1.000 0.000 0.000
#> GSM258560     5  0.3774      0.622 0.000 0.000 0.000 0.296 0.704
#> GSM258561     3  0.2648      0.348 0.152 0.000 0.848 0.000 0.000
#> GSM258564     5  0.0000      0.850 0.000 0.000 0.000 0.000 1.000
#> GSM258567     5  0.1341      0.801 0.000 0.056 0.000 0.000 0.944
#> GSM258568     4  0.2424      0.690 0.000 0.000 0.132 0.868 0.000
#> GSM258569     3  0.3895      0.827 0.000 0.000 0.680 0.320 0.000
#> GSM258571     3  0.3895      0.827 0.000 0.000 0.680 0.320 0.000
#> GSM258572     2  0.0000      0.933 0.000 1.000 0.000 0.000 0.000
#> GSM258573     2  0.0404      0.936 0.000 0.988 0.000 0.000 0.012
#> GSM258574     2  0.0000      0.933 0.000 1.000 0.000 0.000 0.000
#> GSM258575     2  0.0290      0.935 0.000 0.992 0.000 0.000 0.008
#> GSM258576     4  0.2424      0.690 0.000 0.000 0.132 0.868 0.000
#> GSM258577     3  0.0000      0.608 0.000 0.000 1.000 0.000 0.000
#> GSM258579     2  0.1270      0.938 0.000 0.948 0.000 0.000 0.052
#> GSM258581     4  0.2424      0.690 0.000 0.000 0.132 0.868 0.000
#> GSM258582     4  0.2669      0.739 0.000 0.000 0.020 0.876 0.104
#> GSM258584     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> GSM258586     5  0.0000      0.850 0.000 0.000 0.000 0.000 1.000
#> GSM258587     4  0.0609      0.740 0.000 0.000 0.000 0.980 0.020
#> GSM258588     2  0.1270      0.938 0.000 0.948 0.000 0.000 0.052
#> GSM258589     5  0.3366      0.584 0.000 0.232 0.000 0.000 0.768
#> GSM258591     4  0.2424      0.690 0.000 0.000 0.132 0.868 0.000
#> GSM258592     2  0.1270      0.938 0.000 0.948 0.000 0.000 0.052
#> GSM258593     2  0.1270      0.938 0.000 0.948 0.000 0.000 0.052
#> GSM258595     2  0.3684      0.703 0.000 0.720 0.000 0.000 0.280
#> GSM258597     4  0.2179      0.732 0.000 0.000 0.000 0.888 0.112
#> GSM258598     5  0.0000      0.850 0.000 0.000 0.000 0.000 1.000
#> GSM258600     5  0.0000      0.850 0.000 0.000 0.000 0.000 1.000
#> GSM258601     2  0.1270      0.938 0.000 0.948 0.000 0.000 0.052
#> GSM258602     4  0.0609      0.740 0.000 0.000 0.000 0.980 0.020
#> GSM258604     2  0.3707      0.697 0.000 0.716 0.000 0.000 0.284
#> GSM258605     3  0.3895      0.827 0.000 0.000 0.680 0.320 0.000
#> GSM258606     4  0.2424      0.690 0.000 0.000 0.132 0.868 0.000
#> GSM258607     4  0.3876      0.451 0.000 0.000 0.000 0.684 0.316
#> GSM258608     3  0.3966      0.806 0.000 0.000 0.664 0.336 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     6  0.3789     0.5407 0.000 0.000 0.000 0.000 0.416 0.584
#> GSM258555     2  0.3862     0.5647 0.000 0.524 0.000 0.476 0.000 0.000
#> GSM258556     4  0.4824     0.9829 0.000 0.056 0.420 0.524 0.000 0.000
#> GSM258557     1  0.3797     0.7455 0.580 0.000 0.000 0.000 0.000 0.420
#> GSM258562     4  0.4824     0.9829 0.000 0.056 0.420 0.524 0.000 0.000
#> GSM258563     1  0.4504     0.4879 0.576 0.000 0.392 0.004 0.000 0.028
#> GSM258565     2  0.3862     0.5647 0.000 0.524 0.000 0.476 0.000 0.000
#> GSM258566     2  0.0547     0.7502 0.000 0.980 0.000 0.020 0.000 0.000
#> GSM258570     1  0.4999     0.4104 0.544 0.000 0.400 0.036 0.000 0.020
#> GSM258578     1  0.3923     0.7478 0.580 0.000 0.004 0.000 0.000 0.416
#> GSM258580     2  0.3862     0.5647 0.000 0.524 0.000 0.476 0.000 0.000
#> GSM258583     6  0.3789     0.5407 0.000 0.000 0.000 0.000 0.416 0.584
#> GSM258585     4  0.4824     0.9829 0.000 0.056 0.420 0.524 0.000 0.000
#> GSM258590     3  0.3797     1.0000 0.420 0.000 0.580 0.000 0.000 0.000
#> GSM258594     1  0.4310     0.4865 0.580 0.000 0.396 0.000 0.000 0.024
#> GSM258596     1  0.3923     0.7478 0.580 0.000 0.004 0.000 0.000 0.416
#> GSM258599     6  0.0000     0.5957 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258603     3  0.3797     1.0000 0.420 0.000 0.580 0.000 0.000 0.000
#> GSM258551     3  0.3797     1.0000 0.420 0.000 0.580 0.000 0.000 0.000
#> GSM258552     2  0.0458     0.7550 0.000 0.984 0.000 0.016 0.000 0.000
#> GSM258554     5  0.3789     0.0442 0.416 0.000 0.000 0.000 0.584 0.000
#> GSM258558     6  0.3789     0.5407 0.000 0.000 0.000 0.000 0.416 0.584
#> GSM258559     5  0.0000     0.8041 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM258560     1  0.4371     0.4930 0.580 0.000 0.392 0.000 0.000 0.028
#> GSM258561     5  0.0547     0.7992 0.020 0.000 0.000 0.000 0.980 0.000
#> GSM258564     4  0.4824     0.9829 0.000 0.056 0.420 0.524 0.000 0.000
#> GSM258567     4  0.4868     0.9795 0.000 0.060 0.416 0.524 0.000 0.000
#> GSM258568     6  0.0000     0.5957 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258569     6  0.3789     0.5407 0.000 0.000 0.000 0.000 0.416 0.584
#> GSM258571     6  0.3789     0.5407 0.000 0.000 0.000 0.000 0.416 0.584
#> GSM258572     2  0.3862     0.5647 0.000 0.524 0.000 0.476 0.000 0.000
#> GSM258573     2  0.0865     0.7452 0.000 0.964 0.000 0.036 0.000 0.000
#> GSM258574     2  0.3862     0.5647 0.000 0.524 0.000 0.476 0.000 0.000
#> GSM258575     2  0.1007     0.7421 0.000 0.956 0.000 0.044 0.000 0.000
#> GSM258576     6  0.0000     0.5957 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258577     5  0.0000     0.8041 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM258579     2  0.0458     0.7550 0.000 0.984 0.000 0.016 0.000 0.000
#> GSM258581     6  0.0000     0.5957 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258582     6  0.3843    -0.5887 0.452 0.000 0.000 0.000 0.000 0.548
#> GSM258584     3  0.3797     1.0000 0.420 0.000 0.580 0.000 0.000 0.000
#> GSM258586     4  0.4824     0.9829 0.000 0.056 0.420 0.524 0.000 0.000
#> GSM258587     1  0.3823     0.7262 0.564 0.000 0.000 0.000 0.000 0.436
#> GSM258588     2  0.0458     0.7550 0.000 0.984 0.000 0.016 0.000 0.000
#> GSM258589     4  0.5543     0.8638 0.000 0.156 0.320 0.524 0.000 0.000
#> GSM258591     6  0.0000     0.5957 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258592     2  0.0458     0.7550 0.000 0.984 0.000 0.016 0.000 0.000
#> GSM258593     2  0.0458     0.7550 0.000 0.984 0.000 0.016 0.000 0.000
#> GSM258595     2  0.4101     0.1049 0.000 0.580 0.012 0.408 0.000 0.000
#> GSM258597     1  0.3797     0.7455 0.580 0.000 0.000 0.000 0.000 0.420
#> GSM258598     4  0.4824     0.9829 0.000 0.056 0.420 0.524 0.000 0.000
#> GSM258600     4  0.4824     0.9829 0.000 0.056 0.420 0.524 0.000 0.000
#> GSM258601     2  0.0458     0.7550 0.000 0.984 0.000 0.016 0.000 0.000
#> GSM258602     1  0.3797     0.7455 0.580 0.000 0.000 0.000 0.000 0.420
#> GSM258604     2  0.3737     0.1818 0.000 0.608 0.000 0.392 0.000 0.000
#> GSM258605     6  0.3789     0.5407 0.000 0.000 0.000 0.000 0.416 0.584
#> GSM258606     6  0.0000     0.5957 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM258607     1  0.3923     0.7478 0.580 0.000 0.004 0.000 0.000 0.416
#> GSM258608     6  0.3789     0.5407 0.000 0.000 0.000 0.000 0.416 0.584

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> ATC:pam 55            1.000 2
#> ATC:pam 55            0.774 3
#> ATC:pam 55            0.800 4
#> ATC:pam 54            0.549 5
#> ATC:pam 50            0.707 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.1315 0.869   0.869
#> 3 3 0.399           0.676       0.804         2.8605 0.564   0.499
#> 4 4 0.793           0.850       0.915         0.3504 0.672   0.388
#> 5 5 0.761           0.817       0.900         0.1217 0.886   0.651
#> 6 6 0.724           0.703       0.814         0.0502 0.986   0.940

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM258553     2       0          1  0  1
#> GSM258555     2       0          1  0  1
#> GSM258556     2       0          1  0  1
#> GSM258557     2       0          1  0  1
#> GSM258562     2       0          1  0  1
#> GSM258563     2       0          1  0  1
#> GSM258565     2       0          1  0  1
#> GSM258566     2       0          1  0  1
#> GSM258570     2       0          1  0  1
#> GSM258578     2       0          1  0  1
#> GSM258580     2       0          1  0  1
#> GSM258583     2       0          1  0  1
#> GSM258585     2       0          1  0  1
#> GSM258590     1       0          1  1  0
#> GSM258594     2       0          1  0  1
#> GSM258596     2       0          1  0  1
#> GSM258599     2       0          1  0  1
#> GSM258603     1       0          1  1  0
#> GSM258551     1       0          1  1  0
#> GSM258552     2       0          1  0  1
#> GSM258554     2       0          1  0  1
#> GSM258558     2       0          1  0  1
#> GSM258559     2       0          1  0  1
#> GSM258560     2       0          1  0  1
#> GSM258561     2       0          1  0  1
#> GSM258564     2       0          1  0  1
#> GSM258567     2       0          1  0  1
#> GSM258568     2       0          1  0  1
#> GSM258569     2       0          1  0  1
#> GSM258571     2       0          1  0  1
#> GSM258572     2       0          1  0  1
#> GSM258573     2       0          1  0  1
#> GSM258574     2       0          1  0  1
#> GSM258575     2       0          1  0  1
#> GSM258576     2       0          1  0  1
#> GSM258577     2       0          1  0  1
#> GSM258579     2       0          1  0  1
#> GSM258581     2       0          1  0  1
#> GSM258582     2       0          1  0  1
#> GSM258584     1       0          1  1  0
#> GSM258586     2       0          1  0  1
#> GSM258587     2       0          1  0  1
#> GSM258588     2       0          1  0  1
#> GSM258589     2       0          1  0  1
#> GSM258591     2       0          1  0  1
#> GSM258592     2       0          1  0  1
#> GSM258593     2       0          1  0  1
#> GSM258595     2       0          1  0  1
#> GSM258597     2       0          1  0  1
#> GSM258598     2       0          1  0  1
#> GSM258600     2       0          1  0  1
#> GSM258601     2       0          1  0  1
#> GSM258602     2       0          1  0  1
#> GSM258604     2       0          1  0  1
#> GSM258605     2       0          1  0  1
#> GSM258606     2       0          1  0  1
#> GSM258607     2       0          1  0  1
#> GSM258608     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     2  0.2448      0.695 0.000 0.924 0.076
#> GSM258555     3  0.0237      0.784 0.000 0.004 0.996
#> GSM258556     2  0.6309      0.303 0.000 0.504 0.496
#> GSM258557     2  0.6062      0.599 0.000 0.616 0.384
#> GSM258562     3  0.4002      0.756 0.000 0.160 0.840
#> GSM258563     2  0.6079      0.599 0.000 0.612 0.388
#> GSM258565     3  0.0237      0.784 0.000 0.004 0.996
#> GSM258566     3  0.0237      0.784 0.000 0.004 0.996
#> GSM258570     3  0.4887      0.740 0.000 0.228 0.772
#> GSM258578     2  0.5706      0.623 0.000 0.680 0.320
#> GSM258580     3  0.0237      0.784 0.000 0.004 0.996
#> GSM258583     2  0.0000      0.681 0.000 1.000 0.000
#> GSM258585     3  0.4842      0.743 0.000 0.224 0.776
#> GSM258590     1  0.0000      1.000 1.000 0.000 0.000
#> GSM258594     3  0.5098      0.723 0.000 0.248 0.752
#> GSM258596     2  0.5706      0.623 0.000 0.680 0.320
#> GSM258599     3  0.5465      0.674 0.000 0.288 0.712
#> GSM258603     1  0.0000      1.000 1.000 0.000 0.000
#> GSM258551     1  0.0000      1.000 1.000 0.000 0.000
#> GSM258552     3  0.0000      0.783 0.000 0.000 1.000
#> GSM258554     2  0.0000      0.681 0.000 1.000 0.000
#> GSM258558     2  0.0000      0.681 0.000 1.000 0.000
#> GSM258559     2  0.0237      0.679 0.000 0.996 0.004
#> GSM258560     3  0.4887      0.740 0.000 0.228 0.772
#> GSM258561     2  0.0000      0.681 0.000 1.000 0.000
#> GSM258564     3  0.4931      0.739 0.000 0.232 0.768
#> GSM258567     3  0.4002      0.756 0.000 0.160 0.840
#> GSM258568     2  0.6308     -0.169 0.000 0.508 0.492
#> GSM258569     2  0.4504      0.670 0.000 0.804 0.196
#> GSM258571     2  0.0000      0.681 0.000 1.000 0.000
#> GSM258572     3  0.0424      0.786 0.000 0.008 0.992
#> GSM258573     3  0.0237      0.784 0.000 0.004 0.996
#> GSM258574     3  0.0237      0.784 0.000 0.004 0.996
#> GSM258575     3  0.0424      0.786 0.000 0.008 0.992
#> GSM258576     3  0.5178      0.707 0.000 0.256 0.744
#> GSM258577     2  0.0237      0.676 0.004 0.996 0.000
#> GSM258579     3  0.0424      0.786 0.000 0.008 0.992
#> GSM258581     3  0.6026      0.533 0.000 0.376 0.624
#> GSM258582     2  0.6062      0.599 0.000 0.616 0.384
#> GSM258584     1  0.0000      1.000 1.000 0.000 0.000
#> GSM258586     2  0.6126      0.573 0.000 0.600 0.400
#> GSM258587     2  0.6079      0.599 0.000 0.612 0.388
#> GSM258588     3  0.3816      0.764 0.000 0.148 0.852
#> GSM258589     2  0.6111      0.587 0.000 0.604 0.396
#> GSM258591     3  0.5988      0.549 0.000 0.368 0.632
#> GSM258592     3  0.2165      0.776 0.000 0.064 0.936
#> GSM258593     3  0.0592      0.786 0.000 0.012 0.988
#> GSM258595     2  0.6215      0.519 0.000 0.572 0.428
#> GSM258597     3  0.4974      0.729 0.000 0.236 0.764
#> GSM258598     3  0.4002      0.756 0.000 0.160 0.840
#> GSM258600     3  0.6252     -0.133 0.000 0.444 0.556
#> GSM258601     3  0.2261      0.774 0.000 0.068 0.932
#> GSM258602     2  0.5178      0.662 0.000 0.744 0.256
#> GSM258604     3  0.2356      0.774 0.000 0.072 0.928
#> GSM258605     2  0.0000      0.681 0.000 1.000 0.000
#> GSM258606     3  0.6299      0.228 0.000 0.476 0.524
#> GSM258607     2  0.5706      0.623 0.000 0.680 0.320
#> GSM258608     2  0.0000      0.681 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1    p2    p3    p4
#> GSM258553     2  0.2530      0.857  0 0.888 0.000 0.112
#> GSM258555     3  0.0817      0.881  0 0.024 0.976 0.000
#> GSM258556     4  0.5193      0.477  0 0.020 0.324 0.656
#> GSM258557     4  0.2111      0.878  0 0.044 0.024 0.932
#> GSM258562     3  0.2081      0.849  0 0.000 0.916 0.084
#> GSM258563     4  0.2500      0.884  0 0.044 0.040 0.916
#> GSM258565     3  0.0817      0.881  0 0.024 0.976 0.000
#> GSM258566     3  0.0817      0.881  0 0.024 0.976 0.000
#> GSM258570     4  0.2281      0.876  0 0.000 0.096 0.904
#> GSM258578     4  0.1637      0.877  0 0.060 0.000 0.940
#> GSM258580     3  0.0817      0.881  0 0.024 0.976 0.000
#> GSM258583     2  0.1022      0.958  0 0.968 0.000 0.032
#> GSM258585     3  0.6270      0.313  0 0.060 0.536 0.404
#> GSM258590     1  0.0000      1.000  1 0.000 0.000 0.000
#> GSM258594     4  0.2002      0.893  0 0.020 0.044 0.936
#> GSM258596     4  0.1807      0.882  0 0.052 0.008 0.940
#> GSM258599     4  0.2142      0.894  0 0.016 0.056 0.928
#> GSM258603     1  0.0000      1.000  1 0.000 0.000 0.000
#> GSM258551     1  0.0000      1.000  1 0.000 0.000 0.000
#> GSM258552     3  0.1635      0.858  0 0.044 0.948 0.008
#> GSM258554     2  0.0921      0.959  0 0.972 0.000 0.028
#> GSM258558     2  0.2081      0.913  0 0.916 0.000 0.084
#> GSM258559     2  0.0817      0.958  0 0.976 0.000 0.024
#> GSM258560     4  0.1867      0.890  0 0.000 0.072 0.928
#> GSM258561     2  0.2081      0.913  0 0.916 0.000 0.084
#> GSM258564     4  0.1716      0.892  0 0.000 0.064 0.936
#> GSM258567     3  0.2011      0.851  0 0.000 0.920 0.080
#> GSM258568     4  0.2300      0.892  0 0.016 0.064 0.920
#> GSM258569     4  0.2647      0.797  0 0.120 0.000 0.880
#> GSM258571     2  0.0921      0.959  0 0.972 0.000 0.028
#> GSM258572     3  0.0817      0.881  0 0.024 0.976 0.000
#> GSM258573     3  0.0817      0.881  0 0.024 0.976 0.000
#> GSM258574     3  0.0817      0.881  0 0.024 0.976 0.000
#> GSM258575     3  0.0000      0.879  0 0.000 1.000 0.000
#> GSM258576     4  0.2142      0.894  0 0.016 0.056 0.928
#> GSM258577     2  0.0921      0.959  0 0.972 0.000 0.028
#> GSM258579     3  0.0817      0.881  0 0.024 0.976 0.000
#> GSM258581     4  0.2300      0.892  0 0.016 0.064 0.920
#> GSM258582     4  0.1004      0.869  0 0.004 0.024 0.972
#> GSM258584     1  0.0000      1.000  1 0.000 0.000 0.000
#> GSM258586     4  0.4720      0.474  0 0.004 0.324 0.672
#> GSM258587     4  0.1004      0.869  0 0.004 0.024 0.972
#> GSM258588     3  0.1940      0.853  0 0.000 0.924 0.076
#> GSM258589     3  0.3208      0.818  0 0.004 0.848 0.148
#> GSM258591     4  0.2300      0.892  0 0.016 0.064 0.920
#> GSM258592     3  0.2644      0.843  0 0.060 0.908 0.032
#> GSM258593     3  0.0000      0.879  0 0.000 1.000 0.000
#> GSM258595     3  0.3208      0.818  0 0.004 0.848 0.148
#> GSM258597     4  0.0817      0.887  0 0.000 0.024 0.976
#> GSM258598     3  0.4072      0.632  0 0.000 0.748 0.252
#> GSM258600     4  0.4920      0.369  0 0.004 0.368 0.628
#> GSM258601     3  0.2644      0.843  0 0.060 0.908 0.032
#> GSM258602     4  0.1637      0.877  0 0.060 0.000 0.940
#> GSM258604     3  0.5090      0.475  0 0.016 0.660 0.324
#> GSM258605     2  0.1211      0.955  0 0.960 0.000 0.040
#> GSM258606     4  0.2335      0.893  0 0.020 0.060 0.920
#> GSM258607     4  0.1807      0.882  0 0.052 0.008 0.940
#> GSM258608     2  0.1302      0.951  0 0.956 0.000 0.044

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3    p4    p5
#> GSM258553     3  0.2233      0.845  0 0.000 0.892 0.104 0.004
#> GSM258555     2  0.0162      0.855  0 0.996 0.000 0.000 0.004
#> GSM258556     5  0.4538      0.107  0 0.008 0.000 0.452 0.540
#> GSM258557     4  0.2773      0.810  0 0.000 0.000 0.836 0.164
#> GSM258562     5  0.1282      0.813  0 0.044 0.000 0.004 0.952
#> GSM258563     4  0.2605      0.818  0 0.000 0.000 0.852 0.148
#> GSM258565     2  0.0162      0.855  0 0.996 0.000 0.000 0.004
#> GSM258566     2  0.0693      0.854  0 0.980 0.000 0.008 0.012
#> GSM258570     4  0.4414      0.379  0 0.004 0.004 0.616 0.376
#> GSM258578     4  0.1121      0.890  0 0.000 0.000 0.956 0.044
#> GSM258580     2  0.0162      0.855  0 0.996 0.000 0.000 0.004
#> GSM258583     3  0.1408      0.938  0 0.000 0.948 0.044 0.008
#> GSM258585     5  0.5875      0.398  0 0.256 0.000 0.152 0.592
#> GSM258590     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM258594     4  0.1282      0.892  0 0.000 0.004 0.952 0.044
#> GSM258596     4  0.1211      0.893  0 0.000 0.024 0.960 0.016
#> GSM258599     4  0.1907      0.899  0 0.000 0.028 0.928 0.044
#> GSM258603     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM258551     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM258552     2  0.3816      0.563  0 0.696 0.000 0.000 0.304
#> GSM258554     3  0.0290      0.953  0 0.000 0.992 0.000 0.008
#> GSM258558     3  0.0771      0.944  0 0.000 0.976 0.020 0.004
#> GSM258559     3  0.0000      0.952  0 0.000 1.000 0.000 0.000
#> GSM258560     4  0.1978      0.899  0 0.004 0.024 0.928 0.044
#> GSM258561     3  0.0290      0.953  0 0.000 0.992 0.000 0.008
#> GSM258564     4  0.3031      0.846  0 0.016 0.004 0.852 0.128
#> GSM258567     5  0.1484      0.813  0 0.048 0.000 0.008 0.944
#> GSM258568     4  0.2149      0.898  0 0.000 0.048 0.916 0.036
#> GSM258569     4  0.3010      0.807  0 0.000 0.172 0.824 0.004
#> GSM258571     3  0.0290      0.954  0 0.000 0.992 0.008 0.000
#> GSM258572     2  0.0579      0.855  0 0.984 0.000 0.008 0.008
#> GSM258573     2  0.0609      0.855  0 0.980 0.000 0.000 0.020
#> GSM258574     2  0.0290      0.855  0 0.992 0.000 0.000 0.008
#> GSM258575     2  0.3519      0.703  0 0.776 0.000 0.008 0.216
#> GSM258576     4  0.1907      0.899  0 0.000 0.028 0.928 0.044
#> GSM258577     3  0.0290      0.953  0 0.000 0.992 0.000 0.008
#> GSM258579     2  0.4446      0.244  0 0.592 0.000 0.008 0.400
#> GSM258581     4  0.1992      0.899  0 0.000 0.044 0.924 0.032
#> GSM258582     4  0.2773      0.810  0 0.000 0.000 0.836 0.164
#> GSM258584     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM258586     5  0.2886      0.717  0 0.008 0.000 0.148 0.844
#> GSM258587     4  0.2516      0.828  0 0.000 0.000 0.860 0.140
#> GSM258588     5  0.1557      0.811  0 0.052 0.000 0.008 0.940
#> GSM258589     5  0.1818      0.794  0 0.024 0.000 0.044 0.932
#> GSM258591     4  0.1992      0.899  0 0.000 0.044 0.924 0.032
#> GSM258592     2  0.3622      0.781  0 0.816 0.000 0.136 0.048
#> GSM258593     5  0.4268      0.391  0 0.344 0.000 0.008 0.648
#> GSM258595     5  0.1410      0.799  0 0.060 0.000 0.000 0.940
#> GSM258597     4  0.1704      0.894  0 0.004 0.000 0.928 0.068
#> GSM258598     5  0.1485      0.811  0 0.032 0.000 0.020 0.948
#> GSM258600     5  0.1012      0.805  0 0.012 0.000 0.020 0.968
#> GSM258601     2  0.3779      0.772  0 0.804 0.000 0.144 0.052
#> GSM258602     4  0.1386      0.891  0 0.000 0.032 0.952 0.016
#> GSM258604     2  0.3197      0.783  0 0.836 0.000 0.140 0.024
#> GSM258605     3  0.1725      0.934  0 0.000 0.936 0.044 0.020
#> GSM258606     4  0.1992      0.899  0 0.000 0.044 0.924 0.032
#> GSM258607     4  0.1197      0.889  0 0.000 0.000 0.952 0.048
#> GSM258608     3  0.1626      0.935  0 0.000 0.940 0.044 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1    p2    p3    p4 p5    p6
#> GSM258553     4  0.2163    0.86728  0 0.000 0.000 0.892 NA 0.092
#> GSM258555     3  0.4946    0.77397  0 0.068 0.528 0.000 NA 0.000
#> GSM258556     2  0.5870    0.13098  0 0.480 0.000 0.000 NA 0.244
#> GSM258557     6  0.5694    0.49754  0 0.188 0.000 0.000 NA 0.508
#> GSM258562     2  0.0405    0.75215  0 0.988 0.000 0.000 NA 0.004
#> GSM258563     6  0.5528    0.57193  0 0.192 0.000 0.000 NA 0.556
#> GSM258565     3  0.4952    0.77319  0 0.068 0.524 0.000 NA 0.000
#> GSM258566     3  0.5358    0.76505  0 0.112 0.496 0.000 NA 0.000
#> GSM258570     6  0.6447    0.32217  0 0.348 0.088 0.000 NA 0.472
#> GSM258578     6  0.4002    0.74739  0 0.028 0.080 0.000 NA 0.792
#> GSM258580     3  0.4885    0.77337  0 0.068 0.560 0.000 NA 0.000
#> GSM258583     4  0.0405    0.95406  0 0.008 0.000 0.988 NA 0.004
#> GSM258585     2  0.5148    0.27056  0 0.476 0.460 0.000 NA 0.048
#> GSM258590     1  0.0000    1.00000  1 0.000 0.000 0.000 NA 0.000
#> GSM258594     6  0.6287    0.61535  0 0.112 0.148 0.000 NA 0.588
#> GSM258596     6  0.3717    0.75046  0 0.016 0.084 0.000 NA 0.808
#> GSM258599     6  0.0858    0.75904  0 0.004 0.000 0.000 NA 0.968
#> GSM258603     1  0.0000    1.00000  1 0.000 0.000 0.000 NA 0.000
#> GSM258551     1  0.0000    1.00000  1 0.000 0.000 0.000 NA 0.000
#> GSM258552     3  0.5099    0.25772  0 0.424 0.496 0.000 NA 0.000
#> GSM258554     4  0.1765    0.91495  0 0.000 0.000 0.904 NA 0.000
#> GSM258558     4  0.1007    0.93615  0 0.000 0.000 0.956 NA 0.044
#> GSM258559     4  0.0603    0.95359  0 0.000 0.000 0.980 NA 0.004
#> GSM258560     6  0.3731    0.70715  0 0.072 0.008 0.000 NA 0.796
#> GSM258561     4  0.2020    0.91423  0 0.000 0.000 0.896 NA 0.008
#> GSM258564     6  0.6619    0.53509  0 0.196 0.096 0.000 NA 0.532
#> GSM258567     2  0.1219    0.74455  0 0.948 0.000 0.000 NA 0.004
#> GSM258568     6  0.1787    0.74986  0 0.004 0.000 0.008 NA 0.920
#> GSM258569     6  0.4885    0.26915  0 0.000 0.000 0.372 NA 0.560
#> GSM258571     4  0.0146    0.95376  0 0.000 0.000 0.996 NA 0.004
#> GSM258572     3  0.4952    0.77319  0 0.068 0.524 0.000 NA 0.000
#> GSM258573     3  0.5278    0.76801  0 0.104 0.512 0.000 NA 0.000
#> GSM258574     3  0.4946    0.77397  0 0.068 0.528 0.000 NA 0.000
#> GSM258575     3  0.5974    0.63815  0 0.248 0.440 0.000 NA 0.000
#> GSM258576     6  0.1010    0.75944  0 0.004 0.000 0.000 NA 0.960
#> GSM258577     4  0.0777    0.95309  0 0.000 0.000 0.972 NA 0.004
#> GSM258579     2  0.5864   -0.00104  0 0.512 0.228 0.000 NA 0.004
#> GSM258581     6  0.1410    0.75601  0 0.004 0.000 0.008 NA 0.944
#> GSM258582     6  0.6046    0.48581  0 0.180 0.000 0.016 NA 0.500
#> GSM258584     1  0.0000    1.00000  1 0.000 0.000 0.000 NA 0.000
#> GSM258586     2  0.4787    0.51363  0 0.672 0.000 0.000 NA 0.144
#> GSM258587     6  0.4756    0.64600  0 0.128 0.000 0.000 NA 0.672
#> GSM258588     2  0.1707    0.73758  0 0.928 0.012 0.000 NA 0.004
#> GSM258589     2  0.0405    0.75218  0 0.988 0.000 0.000 NA 0.004
#> GSM258591     6  0.1152    0.75622  0 0.004 0.000 0.000 NA 0.952
#> GSM258592     3  0.1610    0.50523  0 0.084 0.916 0.000 NA 0.000
#> GSM258593     2  0.4209    0.51012  0 0.736 0.160 0.000 NA 0.000
#> GSM258595     2  0.1367    0.74228  0 0.944 0.012 0.000 NA 0.000
#> GSM258597     6  0.1643    0.75860  0 0.008 0.000 0.000 NA 0.924
#> GSM258598     2  0.0935    0.74959  0 0.964 0.000 0.000 NA 0.004
#> GSM258600     2  0.1349    0.73371  0 0.940 0.000 0.000 NA 0.004
#> GSM258601     3  0.1610    0.50523  0 0.084 0.916 0.000 NA 0.000
#> GSM258602     6  0.3807    0.75059  0 0.016 0.080 0.000 NA 0.800
#> GSM258604     3  0.2411    0.54533  0 0.032 0.900 0.000 NA 0.024
#> GSM258605     4  0.0520    0.95456  0 0.008 0.000 0.984 NA 0.008
#> GSM258606     6  0.1477    0.75534  0 0.004 0.000 0.008 NA 0.940
#> GSM258607     6  0.4243    0.74379  0 0.032 0.076 0.000 NA 0.772
#> GSM258608     4  0.0520    0.95456  0 0.008 0.000 0.984 NA 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> ATC:mclust 58            0.772 2
#> ATC:mclust 54            0.663 3
#> ATC:mclust 53            0.661 4
#> ATC:mclust 53            0.644 5
#> ATC:mclust 50            0.555 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 58 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.664           0.869       0.934         0.4620 0.530   0.530
#> 3 3 0.452           0.695       0.846         0.2884 0.670   0.465
#> 4 4 0.474           0.703       0.829         0.0576 0.950   0.874
#> 5 5 0.424           0.423       0.723         0.0640 0.860   0.684
#> 6 6 0.420           0.461       0.667         0.0561 0.762   0.497

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM258553     1  0.1633     0.9247 0.976 0.024
#> GSM258555     2  0.0000     0.9324 0.000 1.000
#> GSM258556     1  0.9993     0.1260 0.516 0.484
#> GSM258557     1  0.0938     0.9245 0.988 0.012
#> GSM258562     2  0.5178     0.8368 0.116 0.884
#> GSM258563     1  0.6343     0.8519 0.840 0.160
#> GSM258565     2  0.0000     0.9324 0.000 1.000
#> GSM258566     2  0.0000     0.9324 0.000 1.000
#> GSM258570     1  0.7376     0.8014 0.792 0.208
#> GSM258578     1  0.2423     0.9231 0.960 0.040
#> GSM258580     2  0.0376     0.9295 0.004 0.996
#> GSM258583     1  0.0000     0.9221 1.000 0.000
#> GSM258585     1  0.7139     0.8159 0.804 0.196
#> GSM258590     1  0.0000     0.9221 1.000 0.000
#> GSM258594     1  0.2948     0.9207 0.948 0.052
#> GSM258596     1  0.2948     0.9207 0.948 0.052
#> GSM258599     1  0.6531     0.8448 0.832 0.168
#> GSM258603     1  0.0000     0.9221 1.000 0.000
#> GSM258551     1  0.0000     0.9221 1.000 0.000
#> GSM258552     2  0.0000     0.9324 0.000 1.000
#> GSM258554     1  0.0376     0.9233 0.996 0.004
#> GSM258558     1  0.0672     0.9239 0.992 0.008
#> GSM258559     1  0.0000     0.9221 1.000 0.000
#> GSM258560     1  0.7056     0.8199 0.808 0.192
#> GSM258561     1  0.0000     0.9221 1.000 0.000
#> GSM258564     1  0.2948     0.9207 0.948 0.052
#> GSM258567     2  0.4298     0.8650 0.088 0.912
#> GSM258568     1  0.1414     0.9248 0.980 0.020
#> GSM258569     1  0.2043     0.9242 0.968 0.032
#> GSM258571     1  0.0376     0.9233 0.996 0.004
#> GSM258572     2  0.0000     0.9324 0.000 1.000
#> GSM258573     2  0.0000     0.9324 0.000 1.000
#> GSM258574     2  0.0000     0.9324 0.000 1.000
#> GSM258575     2  0.0000     0.9324 0.000 1.000
#> GSM258576     1  0.6712     0.8369 0.824 0.176
#> GSM258577     1  0.0000     0.9221 1.000 0.000
#> GSM258579     2  0.0672     0.9281 0.008 0.992
#> GSM258581     1  0.4161     0.9060 0.916 0.084
#> GSM258582     1  0.0938     0.9245 0.988 0.012
#> GSM258584     1  0.0000     0.9221 1.000 0.000
#> GSM258586     2  0.8144     0.6421 0.252 0.748
#> GSM258587     1  0.2948     0.9208 0.948 0.052
#> GSM258588     2  0.0000     0.9324 0.000 1.000
#> GSM258589     2  0.0000     0.9324 0.000 1.000
#> GSM258591     1  0.6438     0.8484 0.836 0.164
#> GSM258592     2  0.0000     0.9324 0.000 1.000
#> GSM258593     2  0.0000     0.9324 0.000 1.000
#> GSM258595     2  0.0000     0.9324 0.000 1.000
#> GSM258597     1  0.7056     0.8199 0.808 0.192
#> GSM258598     2  0.9998    -0.0971 0.492 0.508
#> GSM258600     2  0.7453     0.7104 0.212 0.788
#> GSM258601     2  0.0672     0.9283 0.008 0.992
#> GSM258602     1  0.0376     0.9233 0.996 0.004
#> GSM258604     1  0.5178     0.8845 0.884 0.116
#> GSM258605     1  0.0000     0.9221 1.000 0.000
#> GSM258606     1  0.3733     0.9123 0.928 0.072
#> GSM258607     1  0.3114     0.9192 0.944 0.056
#> GSM258608     1  0.0000     0.9221 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM258553     2  0.4062     0.7530 0.164 0.836 0.000
#> GSM258555     3  0.0592     0.8422 0.012 0.000 0.988
#> GSM258556     2  0.4931     0.6043 0.000 0.768 0.232
#> GSM258557     2  0.3412     0.7858 0.124 0.876 0.000
#> GSM258562     2  0.5443     0.5580 0.004 0.736 0.260
#> GSM258563     2  0.2096     0.8023 0.052 0.944 0.004
#> GSM258565     3  0.0237     0.8444 0.004 0.000 0.996
#> GSM258566     3  0.0475     0.8463 0.004 0.004 0.992
#> GSM258570     2  0.3425     0.7464 0.004 0.884 0.112
#> GSM258578     2  0.3619     0.7768 0.136 0.864 0.000
#> GSM258580     3  0.0592     0.8422 0.012 0.000 0.988
#> GSM258583     1  0.5465     0.6753 0.712 0.288 0.000
#> GSM258585     2  0.1411     0.7866 0.000 0.964 0.036
#> GSM258590     1  0.0747     0.7187 0.984 0.016 0.000
#> GSM258594     2  0.3755     0.7869 0.120 0.872 0.008
#> GSM258596     2  0.3349     0.7930 0.108 0.888 0.004
#> GSM258599     2  0.0592     0.7936 0.012 0.988 0.000
#> GSM258603     1  0.0747     0.7187 0.984 0.016 0.000
#> GSM258551     1  0.0592     0.7150 0.988 0.012 0.000
#> GSM258552     3  0.0892     0.8481 0.000 0.020 0.980
#> GSM258554     1  0.5363     0.6782 0.724 0.276 0.000
#> GSM258558     2  0.4702     0.6810 0.212 0.788 0.000
#> GSM258559     1  0.6291     0.2973 0.532 0.468 0.000
#> GSM258560     2  0.0237     0.7872 0.000 0.996 0.004
#> GSM258561     1  0.6045     0.5337 0.620 0.380 0.000
#> GSM258564     2  0.3267     0.7902 0.116 0.884 0.000
#> GSM258567     2  0.6460     0.1116 0.004 0.556 0.440
#> GSM258568     2  0.3619     0.7727 0.136 0.864 0.000
#> GSM258569     2  0.3267     0.7908 0.116 0.884 0.000
#> GSM258571     1  0.6225     0.4108 0.568 0.432 0.000
#> GSM258572     3  0.4733     0.7904 0.004 0.196 0.800
#> GSM258573     3  0.0592     0.8480 0.000 0.012 0.988
#> GSM258574     3  0.0237     0.8467 0.000 0.004 0.996
#> GSM258575     3  0.2945     0.8349 0.004 0.088 0.908
#> GSM258576     2  0.0237     0.7905 0.004 0.996 0.000
#> GSM258577     1  0.3619     0.7450 0.864 0.136 0.000
#> GSM258579     3  0.4629     0.7957 0.004 0.188 0.808
#> GSM258581     2  0.2448     0.8022 0.076 0.924 0.000
#> GSM258582     2  0.3192     0.7919 0.112 0.888 0.000
#> GSM258584     1  0.0747     0.7187 0.984 0.016 0.000
#> GSM258586     2  0.6148     0.3142 0.004 0.640 0.356
#> GSM258587     2  0.2878     0.7983 0.096 0.904 0.000
#> GSM258588     3  0.6033     0.5959 0.004 0.336 0.660
#> GSM258589     3  0.6489     0.2951 0.004 0.456 0.540
#> GSM258591     2  0.1031     0.7971 0.024 0.976 0.000
#> GSM258592     3  0.1453     0.8414 0.008 0.024 0.968
#> GSM258593     3  0.4291     0.8004 0.000 0.180 0.820
#> GSM258595     2  0.4351     0.6735 0.004 0.828 0.168
#> GSM258597     2  0.0000     0.7887 0.000 1.000 0.000
#> GSM258598     2  0.4291     0.6639 0.000 0.820 0.180
#> GSM258600     2  0.4784     0.6415 0.004 0.796 0.200
#> GSM258601     3  0.5580     0.5964 0.008 0.256 0.736
#> GSM258602     2  0.6260    -0.0629 0.448 0.552 0.000
#> GSM258604     1  0.6767     0.5093 0.720 0.064 0.216
#> GSM258605     1  0.5465     0.6726 0.712 0.288 0.000
#> GSM258606     2  0.2945     0.8007 0.088 0.908 0.004
#> GSM258607     2  0.2711     0.8005 0.088 0.912 0.000
#> GSM258608     1  0.4002     0.7416 0.840 0.160 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM258553     4  0.2973      0.806 0.000 0.096 0.020 0.884
#> GSM258555     1  0.4996      0.245 0.516 0.000 0.484 0.000
#> GSM258556     4  0.4182      0.717 0.180 0.000 0.024 0.796
#> GSM258557     4  0.2742      0.823 0.000 0.076 0.024 0.900
#> GSM258562     4  0.4511      0.617 0.268 0.000 0.008 0.724
#> GSM258563     4  0.0712      0.844 0.004 0.008 0.004 0.984
#> GSM258565     1  0.2944      0.700 0.868 0.004 0.128 0.000
#> GSM258566     1  0.5250      0.590 0.660 0.000 0.316 0.024
#> GSM258570     4  0.3852      0.737 0.008 0.000 0.192 0.800
#> GSM258578     4  0.2586      0.833 0.000 0.048 0.040 0.912
#> GSM258580     1  0.4193      0.647 0.732 0.000 0.268 0.000
#> GSM258583     2  0.5309      0.698 0.000 0.700 0.044 0.256
#> GSM258585     4  0.1545      0.840 0.008 0.000 0.040 0.952
#> GSM258590     2  0.0188      0.590 0.000 0.996 0.004 0.000
#> GSM258594     4  0.3431      0.812 0.004 0.060 0.060 0.876
#> GSM258596     4  0.3181      0.824 0.004 0.044 0.064 0.888
#> GSM258599     4  0.0657      0.841 0.004 0.000 0.012 0.984
#> GSM258603     2  0.0188      0.590 0.000 0.996 0.004 0.000
#> GSM258551     2  0.0469      0.585 0.000 0.988 0.012 0.000
#> GSM258552     1  0.4332      0.710 0.792 0.000 0.176 0.032
#> GSM258554     2  0.5013      0.689 0.000 0.688 0.020 0.292
#> GSM258558     4  0.3356      0.723 0.000 0.176 0.000 0.824
#> GSM258559     2  0.5931      0.357 0.000 0.504 0.036 0.460
#> GSM258560     4  0.1398      0.841 0.004 0.000 0.040 0.956
#> GSM258561     2  0.4781      0.646 0.000 0.660 0.004 0.336
#> GSM258564     4  0.1854      0.837 0.000 0.048 0.012 0.940
#> GSM258567     4  0.5686      0.357 0.376 0.000 0.032 0.592
#> GSM258568     4  0.3820      0.789 0.000 0.064 0.088 0.848
#> GSM258569     4  0.2021      0.832 0.000 0.056 0.012 0.932
#> GSM258571     2  0.5750      0.419 0.000 0.532 0.028 0.440
#> GSM258572     1  0.2342      0.703 0.912 0.000 0.008 0.080
#> GSM258573     1  0.2859      0.721 0.880 0.000 0.112 0.008
#> GSM258574     1  0.3249      0.718 0.852 0.000 0.140 0.008
#> GSM258575     1  0.2036      0.709 0.936 0.000 0.032 0.032
#> GSM258576     4  0.0336      0.839 0.000 0.000 0.008 0.992
#> GSM258577     2  0.5000      0.658 0.000 0.772 0.100 0.128
#> GSM258579     1  0.3946      0.660 0.812 0.000 0.020 0.168
#> GSM258581     4  0.1624      0.841 0.000 0.020 0.028 0.952
#> GSM258582     4  0.2670      0.825 0.000 0.072 0.024 0.904
#> GSM258584     2  0.0188      0.590 0.000 0.996 0.004 0.000
#> GSM258586     4  0.5118      0.653 0.224 0.008 0.032 0.736
#> GSM258587     4  0.1004      0.843 0.000 0.024 0.004 0.972
#> GSM258588     1  0.5818      0.410 0.600 0.004 0.032 0.364
#> GSM258589     4  0.5859      0.329 0.376 0.004 0.032 0.588
#> GSM258591     4  0.1082      0.843 0.004 0.004 0.020 0.972
#> GSM258592     3  0.2796      0.912 0.092 0.000 0.892 0.016
#> GSM258593     1  0.4011      0.628 0.784 0.000 0.008 0.208
#> GSM258595     4  0.3266      0.789 0.084 0.004 0.032 0.880
#> GSM258597     4  0.0524      0.840 0.004 0.000 0.008 0.988
#> GSM258598     4  0.3606      0.764 0.132 0.000 0.024 0.844
#> GSM258600     4  0.3932      0.758 0.128 0.004 0.032 0.836
#> GSM258601     3  0.1920      0.946 0.028 0.004 0.944 0.024
#> GSM258602     4  0.5736      0.272 0.000 0.328 0.044 0.628
#> GSM258604     3  0.2021      0.944 0.040 0.000 0.936 0.024
#> GSM258605     2  0.6708      0.653 0.000 0.596 0.132 0.272
#> GSM258606     4  0.2124      0.837 0.000 0.028 0.040 0.932
#> GSM258607     4  0.1488      0.840 0.000 0.032 0.012 0.956
#> GSM258608     2  0.3962      0.691 0.000 0.820 0.028 0.152

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM258553     4  0.2853     0.6827 0.040 0.000 0.008 0.884 0.068
#> GSM258555     3  0.6100    -0.0554 0.000 0.128 0.484 0.000 0.388
#> GSM258556     4  0.5136     0.4671 0.000 0.260 0.000 0.660 0.080
#> GSM258557     4  0.2316     0.7241 0.036 0.012 0.000 0.916 0.036
#> GSM258562     4  0.6670     0.3349 0.000 0.172 0.028 0.556 0.244
#> GSM258563     4  0.1522     0.7278 0.000 0.044 0.000 0.944 0.012
#> GSM258565     5  0.5655     0.3214 0.000 0.304 0.092 0.004 0.600
#> GSM258566     5  0.6946     0.1614 0.000 0.248 0.264 0.016 0.472
#> GSM258570     4  0.6385     0.4668 0.000 0.052 0.224 0.616 0.108
#> GSM258578     4  0.4384     0.6590 0.020 0.000 0.032 0.764 0.184
#> GSM258580     3  0.6756    -0.3680 0.000 0.308 0.404 0.000 0.288
#> GSM258583     1  0.6237     0.2984 0.476 0.000 0.016 0.416 0.092
#> GSM258585     4  0.4442     0.6261 0.000 0.116 0.016 0.784 0.084
#> GSM258590     1  0.0162     0.5660 0.996 0.004 0.000 0.000 0.000
#> GSM258594     4  0.5468     0.6628 0.032 0.056 0.052 0.752 0.108
#> GSM258596     4  0.2614     0.7185 0.012 0.012 0.024 0.908 0.044
#> GSM258599     4  0.1364     0.7276 0.000 0.012 0.000 0.952 0.036
#> GSM258603     1  0.0162     0.5660 0.996 0.004 0.000 0.000 0.000
#> GSM258551     1  0.0162     0.5649 0.996 0.000 0.000 0.000 0.004
#> GSM258552     2  0.4953     0.2240 0.000 0.740 0.172 0.032 0.056
#> GSM258554     1  0.6160     0.2807 0.476 0.000 0.016 0.424 0.084
#> GSM258558     4  0.3948     0.6034 0.112 0.000 0.004 0.808 0.076
#> GSM258559     4  0.6557     0.0850 0.292 0.000 0.036 0.556 0.116
#> GSM258560     4  0.1538     0.7294 0.000 0.036 0.008 0.948 0.008
#> GSM258561     4  0.5828    -0.2138 0.432 0.000 0.004 0.484 0.080
#> GSM258564     4  0.4031     0.6983 0.028 0.108 0.008 0.824 0.032
#> GSM258567     4  0.6575     0.0473 0.000 0.360 0.020 0.492 0.128
#> GSM258568     4  0.4478     0.6258 0.024 0.000 0.104 0.788 0.084
#> GSM258569     4  0.2236     0.6919 0.024 0.000 0.000 0.908 0.068
#> GSM258571     4  0.6034     0.1802 0.300 0.000 0.020 0.588 0.092
#> GSM258572     2  0.5028    -0.1763 0.000 0.524 0.000 0.032 0.444
#> GSM258573     2  0.4584     0.1498 0.000 0.752 0.160 0.004 0.084
#> GSM258574     2  0.5041     0.0856 0.000 0.716 0.148 0.004 0.132
#> GSM258575     2  0.4521     0.1987 0.000 0.716 0.012 0.024 0.248
#> GSM258576     4  0.0898     0.7282 0.000 0.020 0.000 0.972 0.008
#> GSM258577     1  0.8005     0.4600 0.424 0.000 0.212 0.248 0.116
#> GSM258579     2  0.4140     0.3851 0.000 0.800 0.012 0.124 0.064
#> GSM258581     4  0.2116     0.7082 0.004 0.008 0.012 0.924 0.052
#> GSM258582     4  0.2606     0.7256 0.032 0.012 0.000 0.900 0.056
#> GSM258584     1  0.0162     0.5660 0.996 0.004 0.000 0.000 0.000
#> GSM258586     4  0.5516     0.3684 0.000 0.296 0.000 0.608 0.096
#> GSM258587     4  0.2003     0.7075 0.008 0.008 0.004 0.928 0.052
#> GSM258588     2  0.6262     0.3202 0.000 0.520 0.000 0.304 0.176
#> GSM258589     2  0.5964     0.1013 0.000 0.464 0.000 0.428 0.108
#> GSM258591     4  0.0566     0.7249 0.000 0.004 0.000 0.984 0.012
#> GSM258592     3  0.3019     0.5041 0.000 0.012 0.864 0.016 0.108
#> GSM258593     2  0.6326     0.3089 0.000 0.588 0.016 0.180 0.216
#> GSM258595     4  0.5060     0.5156 0.000 0.204 0.000 0.692 0.104
#> GSM258597     4  0.1836     0.7217 0.000 0.036 0.000 0.932 0.032
#> GSM258598     4  0.4988     0.2061 0.000 0.416 0.004 0.556 0.024
#> GSM258600     4  0.4960     0.4729 0.000 0.268 0.000 0.668 0.064
#> GSM258601     3  0.1018     0.5183 0.000 0.000 0.968 0.016 0.016
#> GSM258602     4  0.6009     0.2880 0.256 0.000 0.032 0.624 0.088
#> GSM258604     3  0.3625     0.4877 0.000 0.096 0.840 0.016 0.048
#> GSM258605     4  0.8064    -0.3651 0.312 0.000 0.192 0.380 0.116
#> GSM258606     4  0.1652     0.7136 0.004 0.008 0.004 0.944 0.040
#> GSM258607     4  0.1911     0.7280 0.004 0.028 0.000 0.932 0.036
#> GSM258608     1  0.5818     0.5738 0.620 0.000 0.012 0.264 0.104

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM258553     6  0.1565     0.6443 0.008 0.032 0.000 0.008 0.008 0.944
#> GSM258555     3  0.6403     0.0709 0.356 0.060 0.476 0.004 0.104 0.000
#> GSM258556     2  0.4914     0.5268 0.016 0.576 0.000 0.000 0.040 0.368
#> GSM258557     6  0.3056     0.5646 0.004 0.184 0.000 0.008 0.000 0.804
#> GSM258562     2  0.6632     0.5126 0.136 0.488 0.068 0.000 0.004 0.304
#> GSM258563     6  0.3383     0.4653 0.000 0.268 0.000 0.000 0.004 0.728
#> GSM258565     1  0.4775     0.1788 0.712 0.052 0.188 0.000 0.048 0.000
#> GSM258566     1  0.7519    -0.0594 0.388 0.204 0.292 0.004 0.104 0.008
#> GSM258570     6  0.7909    -0.1422 0.136 0.188 0.228 0.000 0.040 0.408
#> GSM258578     6  0.4551     0.5527 0.112 0.064 0.068 0.000 0.000 0.756
#> GSM258580     3  0.6868    -0.0221 0.196 0.128 0.504 0.000 0.172 0.000
#> GSM258583     6  0.4538     0.4822 0.020 0.004 0.016 0.284 0.004 0.672
#> GSM258585     2  0.5026     0.5187 0.020 0.592 0.016 0.000 0.020 0.352
#> GSM258590     4  0.0458     0.9877 0.000 0.000 0.000 0.984 0.000 0.016
#> GSM258594     6  0.6669     0.0384 0.088 0.304 0.072 0.004 0.016 0.516
#> GSM258596     6  0.2094     0.6352 0.000 0.068 0.008 0.000 0.016 0.908
#> GSM258599     6  0.3565     0.4112 0.000 0.304 0.004 0.000 0.000 0.692
#> GSM258603     4  0.0653     0.9851 0.000 0.004 0.000 0.980 0.004 0.012
#> GSM258551     4  0.0405     0.9801 0.000 0.000 0.000 0.988 0.004 0.008
#> GSM258552     5  0.4848     0.8118 0.032 0.196 0.072 0.000 0.700 0.000
#> GSM258554     6  0.4902     0.3948 0.024 0.004 0.016 0.328 0.008 0.620
#> GSM258558     6  0.2270     0.6331 0.012 0.004 0.004 0.060 0.012 0.908
#> GSM258559     6  0.4321     0.5859 0.024 0.004 0.044 0.140 0.012 0.776
#> GSM258560     6  0.3535     0.5013 0.000 0.220 0.008 0.000 0.012 0.760
#> GSM258561     6  0.4359     0.4779 0.012 0.004 0.012 0.300 0.004 0.668
#> GSM258564     6  0.5621     0.2014 0.000 0.260 0.004 0.004 0.160 0.572
#> GSM258567     2  0.6157     0.6105 0.044 0.608 0.052 0.000 0.060 0.236
#> GSM258568     6  0.2451     0.6306 0.020 0.004 0.060 0.004 0.012 0.900
#> GSM258569     6  0.0692     0.6434 0.004 0.020 0.000 0.000 0.000 0.976
#> GSM258571     6  0.3708     0.5855 0.020 0.000 0.012 0.188 0.004 0.776
#> GSM258572     1  0.6373     0.0398 0.480 0.264 0.012 0.004 0.236 0.004
#> GSM258573     5  0.4626     0.7852 0.020 0.196 0.072 0.000 0.712 0.000
#> GSM258574     5  0.4021     0.7845 0.028 0.116 0.068 0.000 0.788 0.000
#> GSM258575     2  0.6624    -0.3100 0.180 0.540 0.052 0.004 0.216 0.008
#> GSM258576     6  0.3288     0.4470 0.000 0.276 0.000 0.000 0.000 0.724
#> GSM258577     6  0.6799     0.3139 0.032 0.012 0.128 0.208 0.048 0.572
#> GSM258579     2  0.6163    -0.4040 0.100 0.456 0.008 0.004 0.408 0.024
#> GSM258581     6  0.1219     0.6393 0.000 0.048 0.004 0.000 0.000 0.948
#> GSM258582     6  0.3276     0.5201 0.004 0.228 0.000 0.004 0.000 0.764
#> GSM258584     4  0.0458     0.9877 0.000 0.000 0.000 0.984 0.000 0.016
#> GSM258586     2  0.5374     0.5961 0.032 0.600 0.000 0.004 0.056 0.308
#> GSM258587     6  0.1429     0.6402 0.004 0.052 0.000 0.000 0.004 0.940
#> GSM258588     2  0.5382     0.4761 0.072 0.712 0.020 0.004 0.056 0.136
#> GSM258589     2  0.5641     0.5782 0.068 0.644 0.000 0.000 0.100 0.188
#> GSM258591     6  0.2320     0.5969 0.000 0.132 0.004 0.000 0.000 0.864
#> GSM258592     3  0.4398     0.4863 0.044 0.032 0.792 0.000 0.052 0.080
#> GSM258593     2  0.7205    -0.2188 0.208 0.420 0.020 0.000 0.296 0.056
#> GSM258595     2  0.4560     0.5563 0.008 0.632 0.004 0.004 0.020 0.332
#> GSM258597     6  0.3563     0.3442 0.000 0.336 0.000 0.000 0.000 0.664
#> GSM258598     2  0.6021     0.5887 0.016 0.500 0.000 0.000 0.172 0.312
#> GSM258600     2  0.4302     0.5657 0.004 0.628 0.000 0.000 0.024 0.344
#> GSM258601     3  0.2917     0.5037 0.008 0.012 0.872 0.000 0.040 0.068
#> GSM258602     6  0.3875     0.5844 0.020 0.000 0.008 0.184 0.016 0.772
#> GSM258604     3  0.5845     0.4079 0.088 0.064 0.656 0.004 0.176 0.012
#> GSM258605     6  0.5458     0.5305 0.032 0.008 0.124 0.120 0.016 0.700
#> GSM258606     6  0.1812     0.6287 0.000 0.080 0.008 0.000 0.000 0.912
#> GSM258607     6  0.3586     0.4527 0.004 0.280 0.000 0.004 0.000 0.712
#> GSM258608     6  0.5031     0.1906 0.024 0.004 0.012 0.412 0.008 0.540

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> ATC:NMF 56            0.729 2
#> ATC:NMF 52            0.626 3
#> ATC:NMF 51            0.563 4
#> ATC:NMF 29            0.561 5
#> ATC:NMF 34            0.580 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0