cola Report for GDS2954

Date: 2019-12-25 20:37:45 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 21168    50

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:skmeans 2 1.000 1.000 1.000 **
CV:skmeans 2 1.000 0.982 0.993 **
CV:pam 2 1.000 0.982 0.987 **
CV:mclust 2 1.000 0.994 0.997 **
MAD:kmeans 2 1.000 0.999 0.999 **
MAD:skmeans 2 1.000 1.000 1.000 **
MAD:mclust 2 1.000 0.973 0.890 **
ATC:kmeans 2 1.000 1.000 1.000 **
ATC:skmeans 2 1.000 1.000 1.000 **
ATC:NMF 2 1.000 0.961 0.984 **
SD:pam 4 0.997 0.956 0.980 **
SD:mclust 3 0.995 0.946 0.965 ** 2
SD:NMF 5 0.979 0.940 0.969 ** 2
CV:NMF 5 0.949 0.903 0.954 * 2
MAD:NMF 5 0.944 0.910 0.951 * 2
ATC:mclust 2 0.933 0.929 0.965 *
MAD:pam 4 0.909 0.938 0.973 *
MAD:hclust 2 0.901 0.877 0.940 *
ATC:pam 6 0.900 0.845 0.923 * 3
CV:kmeans 5 0.756 0.790 0.856
SD:hclust 5 0.708 0.525 0.780
CV:hclust 5 0.684 0.769 0.884
SD:kmeans 2 0.600 0.906 0.924
ATC:hclust 2 0.554 0.817 0.914

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.999           0.945       0.978          0.492 0.503   0.503
#> CV:NMF      2 0.998           0.965       0.984          0.485 0.510   0.510
#> MAD:NMF     2 1.000           0.964       0.985          0.504 0.493   0.493
#> ATC:NMF     2 1.000           0.961       0.984          0.504 0.493   0.493
#> SD:skmeans  2 1.000           1.000       1.000          0.507 0.493   0.493
#> CV:skmeans  2 1.000           0.982       0.993          0.506 0.493   0.493
#> MAD:skmeans 2 1.000           1.000       1.000          0.507 0.493   0.493
#> ATC:skmeans 2 1.000           1.000       1.000          0.507 0.493   0.493
#> SD:mclust   2 1.000           0.994       0.997          0.271 0.726   0.726
#> CV:mclust   2 1.000           0.994       0.997          0.271 0.726   0.726
#> MAD:mclust  2 1.000           0.973       0.890          0.262 0.754   0.754
#> ATC:mclust  2 0.933           0.929       0.965          0.312 0.699   0.699
#> SD:kmeans   2 0.600           0.906       0.924          0.457 0.493   0.493
#> CV:kmeans   2 0.628           0.917       0.928          0.429 0.510   0.510
#> MAD:kmeans  2 1.000           0.999       0.999          0.507 0.493   0.493
#> ATC:kmeans  2 1.000           1.000       1.000          0.498 0.503   0.503
#> SD:pam      2 0.651           0.887       0.931          0.333 0.726   0.726
#> CV:pam      2 1.000           0.982       0.987          0.285 0.726   0.726
#> MAD:pam     2 0.505           0.716       0.857          0.414 0.503   0.503
#> ATC:pam     2 0.846           0.939       0.973          0.505 0.493   0.493
#> SD:hclust   2 0.240           0.486       0.755          0.399 0.650   0.650
#> CV:hclust   2 0.317           0.729       0.843          0.361 0.628   0.628
#> MAD:hclust  2 0.901           0.877       0.940          0.488 0.493   0.493
#> ATC:hclust  2 0.554           0.817       0.914          0.479 0.503   0.503
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.743           0.839       0.927          0.372 0.678   0.441
#> CV:NMF      3 0.700           0.872       0.936          0.386 0.699   0.469
#> MAD:NMF     3 0.788           0.829       0.929          0.341 0.742   0.520
#> ATC:NMF     3 0.706           0.808       0.904          0.322 0.725   0.495
#> SD:skmeans  3 0.687           0.812       0.844          0.294 0.771   0.563
#> CV:skmeans  3 0.657           0.851       0.884          0.314 0.771   0.563
#> MAD:skmeans 3 0.833           0.886       0.934          0.311 0.799   0.608
#> ATC:skmeans 3 0.809           0.831       0.888          0.266 0.823   0.648
#> SD:mclust   3 0.995           0.946       0.965          0.802 0.778   0.694
#> CV:mclust   3 0.540           0.703       0.834          1.000 0.739   0.640
#> MAD:mclust  3 0.388           0.687       0.789          0.941 0.760   0.684
#> ATC:mclust  3 0.851           0.922       0.955          0.802 0.673   0.548
#> SD:kmeans   3 0.570           0.817       0.810          0.363 0.902   0.801
#> CV:kmeans   3 0.390           0.708       0.742          0.432 0.798   0.632
#> MAD:kmeans  3 0.610           0.406       0.753          0.263 0.941   0.881
#> ATC:kmeans  3 0.689           0.820       0.862          0.285 0.739   0.539
#> SD:pam      3 0.779           0.836       0.927          0.878 0.641   0.505
#> CV:pam      3 0.750           0.798       0.922          1.177 0.643   0.508
#> MAD:pam     3 0.822           0.951       0.970          0.515 0.739   0.539
#> ATC:pam     3 1.000           0.963       0.984          0.244 0.778   0.590
#> SD:hclust   3 0.356           0.335       0.597          0.409 0.458   0.304
#> CV:hclust   3 0.498           0.783       0.864          0.503 0.804   0.688
#> MAD:hclust  3 0.603           0.792       0.803          0.218 0.902   0.801
#> ATC:hclust  3 0.616           0.723       0.804          0.329 0.715   0.506
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.673           0.745       0.870         0.1134 0.784   0.453
#> CV:NMF      4 0.668           0.735       0.853         0.1287 0.820   0.513
#> MAD:NMF     4 0.734           0.791       0.881         0.0982 0.799   0.489
#> ATC:NMF     4 0.583           0.563       0.783         0.1261 0.730   0.347
#> SD:skmeans  4 0.774           0.759       0.877         0.1506 0.856   0.597
#> CV:skmeans  4 0.697           0.765       0.862         0.1333 0.875   0.642
#> MAD:skmeans 4 0.705           0.800       0.870         0.1348 0.891   0.682
#> ATC:skmeans 4 0.668           0.597       0.740         0.1277 0.887   0.674
#> SD:mclust   4 0.585           0.700       0.808         0.4001 0.767   0.538
#> CV:mclust   4 0.437           0.435       0.682         0.2980 0.745   0.488
#> MAD:mclust  4 0.531           0.528       0.722         0.3617 0.755   0.534
#> ATC:mclust  4 0.787           0.825       0.904         0.3197 0.807   0.550
#> SD:kmeans   4 0.599           0.561       0.726         0.1625 0.897   0.740
#> CV:kmeans   4 0.574           0.692       0.805         0.1835 0.802   0.524
#> MAD:kmeans  4 0.612           0.740       0.805         0.1353 0.778   0.511
#> ATC:kmeans  4 0.628           0.636       0.800         0.1423 0.900   0.736
#> SD:pam      4 0.997           0.956       0.980         0.1966 0.836   0.580
#> CV:pam      4 0.835           0.907       0.953         0.1868 0.799   0.514
#> MAD:pam     4 0.909           0.938       0.973         0.1901 0.837   0.583
#> ATC:pam     4 0.780           0.800       0.862         0.1772 0.826   0.561
#> SD:hclust   4 0.484           0.433       0.757         0.0714 0.651   0.389
#> CV:hclust   4 0.490           0.793       0.868         0.0784 0.984   0.962
#> MAD:hclust  4 0.601           0.479       0.773         0.1786 0.941   0.851
#> ATC:hclust  4 0.740           0.891       0.895         0.1229 0.903   0.739
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.979           0.940       0.969         0.0728 0.793   0.360
#> CV:NMF      5 0.949           0.903       0.954         0.0640 0.801   0.366
#> MAD:NMF     5 0.944           0.910       0.951         0.0868 0.851   0.504
#> ATC:NMF     5 0.675           0.705       0.814         0.0595 0.837   0.451
#> SD:skmeans  5 0.760           0.709       0.814         0.0665 0.919   0.693
#> CV:skmeans  5 0.744           0.680       0.819         0.0702 0.905   0.645
#> MAD:skmeans 5 0.747           0.711       0.756         0.0661 0.939   0.753
#> ATC:skmeans 5 0.701           0.653       0.756         0.0726 0.791   0.395
#> SD:mclust   5 0.821           0.856       0.920         0.1395 0.877   0.585
#> CV:mclust   5 0.770           0.768       0.888         0.1119 0.784   0.395
#> MAD:mclust  5 0.777           0.905       0.911         0.1149 0.806   0.453
#> ATC:mclust  5 0.821           0.857       0.914         0.0691 0.945   0.782
#> SD:kmeans   5 0.744           0.676       0.806         0.0814 0.869   0.591
#> CV:kmeans   5 0.756           0.790       0.856         0.0770 0.949   0.804
#> MAD:kmeans  5 0.747           0.716       0.783         0.0796 1.000   1.000
#> ATC:kmeans  5 0.714           0.644       0.722         0.0709 0.828   0.476
#> SD:pam      5 0.759           0.676       0.863         0.0681 0.897   0.624
#> CV:pam      5 0.771           0.446       0.770         0.0776 0.884   0.615
#> MAD:pam     5 0.813           0.579       0.800         0.0666 0.882   0.581
#> ATC:pam     5 0.830           0.879       0.883         0.0724 0.947   0.791
#> SD:hclust   5 0.708           0.525       0.780         0.2443 0.731   0.457
#> CV:hclust   5 0.684           0.769       0.884         0.2390 0.846   0.629
#> MAD:hclust  5 0.746           0.760       0.853         0.0843 0.842   0.558
#> ATC:hclust  5 0.783           0.806       0.884         0.0451 0.984   0.942
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.836           0.744       0.861         0.0331 0.967   0.838
#> CV:NMF      6 0.850           0.747       0.852         0.0316 0.975   0.872
#> MAD:NMF     6 0.818           0.736       0.841         0.0355 0.980   0.895
#> ATC:NMF     6 0.675           0.594       0.784         0.0307 0.995   0.975
#> SD:skmeans  6 0.761           0.747       0.840         0.0430 0.931   0.673
#> CV:skmeans  6 0.720           0.644       0.761         0.0416 0.918   0.621
#> MAD:skmeans 6 0.760           0.698       0.813         0.0423 0.953   0.762
#> ATC:skmeans 6 0.750           0.780       0.820         0.0484 0.915   0.653
#> SD:mclust   6 0.821           0.866       0.890         0.0735 0.918   0.620
#> CV:mclust   6 0.828           0.723       0.868         0.0448 0.868   0.502
#> MAD:mclust  6 0.808           0.613       0.797         0.0649 0.888   0.571
#> ATC:mclust  6 0.860           0.731       0.883         0.0401 0.945   0.752
#> SD:kmeans   6 0.767           0.752       0.769         0.0460 0.936   0.718
#> CV:kmeans   6 0.800           0.732       0.802         0.0427 0.981   0.918
#> MAD:kmeans  6 0.771           0.717       0.756         0.0455 0.907   0.643
#> ATC:kmeans  6 0.747           0.751       0.809         0.0487 0.937   0.700
#> SD:pam      6 0.845           0.716       0.888         0.0323 0.975   0.870
#> CV:pam      6 0.854           0.671       0.884         0.0297 0.889   0.572
#> MAD:pam     6 0.831           0.817       0.881         0.0419 0.920   0.637
#> ATC:pam     6 0.900           0.845       0.923         0.0610 0.931   0.682
#> SD:hclust   6 0.762           0.692       0.811         0.0448 0.891   0.655
#> CV:hclust   6 0.681           0.753       0.845         0.0375 0.983   0.934
#> MAD:hclust  6 0.740           0.788       0.813         0.0498 0.963   0.836
#> ATC:hclust  6 0.806           0.835       0.892         0.0213 0.990   0.963

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>              n cell.type(p) agent(p)  time(p) individual(p) k
#> SD:NMF      49     8.68e-04    0.695 6.27e-05      2.59e-02 2
#> CV:NMF      50     7.09e-04    0.768 4.25e-05      2.01e-02 2
#> MAD:NMF     49     2.39e-03    0.544 1.54e-04      2.91e-02 2
#> ATC:NMF     49     2.39e-03    0.779 4.64e-05      1.60e-02 2
#> SD:skmeans  50     3.11e-03    0.685 9.25e-05      2.11e-02 2
#> CV:skmeans  49     2.39e-03    0.544 1.54e-04      2.91e-02 2
#> MAD:skmeans 50     3.11e-03    0.685 9.25e-05      2.11e-02 2
#> ATC:skmeans 50     3.11e-03    0.685 9.25e-05      2.11e-02 2
#> SD:mclust   50     5.95e-11    0.813 4.48e-04      6.11e-06 2
#> CV:mclust   50     5.95e-11    0.813 4.48e-04      6.11e-06 2
#> MAD:mclust  49     1.39e-10    1.000 9.80e-04      8.97e-06 2
#> ATC:mclust  49     9.35e-11    0.854 5.67e-04      8.97e-06 2
#> SD:kmeans   50     3.11e-03    0.685 9.25e-05      2.11e-02 2
#> CV:kmeans   50     7.09e-04    0.768 4.25e-05      2.01e-02 2
#> MAD:kmeans  50     3.11e-03    0.685 9.25e-05      2.11e-02 2
#> ATC:kmeans  50     1.21e-03    1.000 6.73e-06      7.80e-03 2
#> SD:pam      49     9.35e-11    0.854 5.67e-04      8.97e-06 2
#> CV:pam      50     5.95e-11    0.813 4.48e-04      6.11e-06 2
#> MAD:pam     47     2.18e-03    1.000 9.17e-06      1.29e-02 2
#> ATC:pam     49     2.39e-03    0.779 1.86e-05      1.60e-02 2
#> SD:hclust   36     9.06e-02    0.499 9.24e-04      3.92e-01 2
#> CV:hclust   46     1.60e-01    0.131 8.47e-05      1.18e-01 2
#> MAD:hclust  46     9.18e-04    0.566 2.31e-04      2.83e-02 2
#> ATC:hclust  47     2.18e-03    1.000 3.99e-05      1.58e-02 2
test_to_known_factors(res_list, k = 3)
#>              n cell.type(p) agent(p)  time(p) individual(p) k
#> SD:NMF      46     4.51e-05 0.000664 1.33e-07      4.18e-02 3
#> CV:NMF      50     1.49e-05 0.006249 1.30e-05      6.86e-03 3
#> MAD:NMF     45     3.31e-04 0.000644 6.63e-08      6.11e-02 3
#> ATC:NMF     47     4.24e-04 0.044546 3.80e-06      2.47e-02 3
#> SD:skmeans  49     9.76e-04 0.094631 6.17e-05      3.16e-04 3
#> CV:skmeans  49     9.76e-04 0.094631 6.17e-05      3.16e-04 3
#> MAD:skmeans 49     1.71e-03 0.047956 6.31e-05      6.74e-04 3
#> ATC:skmeans 49     2.83e-03 0.035015 1.90e-06      2.31e-03 3
#> SD:mclust   49     2.29e-11 0.290491 1.16e-04      1.95e-04 3
#> CV:mclust   46     1.03e-10 0.222990 7.61e-06      4.09e-04 3
#> MAD:mclust  42     7.58e-10 0.290749 1.30e-06      3.31e-04 3
#> ATC:mclust  50     1.39e-11 0.338540 5.23e-05      1.88e-07 3
#> SD:kmeans   48     3.78e-11 0.622056 9.30e-08      2.16e-05 3
#> CV:kmeans   45     1.69e-10 0.443747 7.09e-08      7.39e-05 3
#> MAD:kmeans  27     1.97e-01 0.223130 3.19e-03      1.02e-03 3
#> ATC:kmeans  48     3.78e-11 0.596328 5.84e-08      3.17e-05 3
#> SD:pam      44     2.79e-10 0.836413 1.01e-06      2.19e-06 3
#> CV:pam      43     4.60e-10 0.842297 2.21e-07      2.22e-05 3
#> MAD:pam     50     1.39e-11 0.730048 4.33e-07      2.19e-06 3
#> ATC:pam     50     1.39e-11 0.810776 1.13e-07      1.39e-05 3
#> SD:hclust    8           NA       NA       NA            NA 3
#> CV:hclust   46     1.03e-10 0.175730 7.47e-06      1.10e-04 3
#> MAD:hclust  46     1.03e-10 0.253647 6.11e-06      1.65e-04 3
#> ATC:hclust  42     7.58e-10 0.631341 9.58e-07      2.28e-04 3
test_to_known_factors(res_list, k = 4)
#>              n cell.type(p) agent(p)  time(p) individual(p) k
#> SD:NMF      44     2.86e-04 0.000418 2.28e-04      6.78e-02 4
#> CV:NMF      43     1.28e-05 0.000880 1.66e-04      6.76e-02 4
#> MAD:NMF     46     1.76e-03 0.000589 8.57e-05      4.68e-02 4
#> ATC:NMF     36     6.67e-06 0.121184 3.16e-05      1.54e-02 4
#> SD:skmeans  45     1.81e-08 0.019635 1.63e-05      8.32e-05 4
#> CV:skmeans  44     1.51e-09 0.006026 3.69e-05      1.32e-04 4
#> MAD:skmeans 47     7.55e-09 0.059457 2.97e-06      1.08e-05 4
#> ATC:skmeans 43     4.32e-08 0.033966 4.49e-05      6.86e-04 4
#> SD:mclust   46     5.67e-10 0.033204 3.19e-06      4.51e-03 4
#> CV:mclust   20     4.54e-05 0.082085 3.17e-03      5.40e-02 4
#> MAD:mclust  30     3.06e-07 0.297259 4.02e-05      1.63e-03 4
#> ATC:mclust  45     9.25e-10 0.214722 1.52e-10      1.39e-05 4
#> SD:kmeans   25     3.73e-06 0.598957 7.45e-05      7.55e-05 4
#> CV:kmeans   39     1.74e-08 0.007748 1.56e-06      1.88e-04 4
#> MAD:kmeans  47     3.48e-10 0.035333 3.44e-07      3.79e-06 4
#> ATC:kmeans  33     3.22e-07 0.035931 2.14e-06      2.68e-02 4
#> SD:pam      50     7.99e-11 0.005935 1.26e-07      1.37e-05 4
#> CV:pam      49     1.30e-10 0.010631 2.55e-07      1.10e-05 4
#> MAD:pam     49     1.30e-10 0.010631 2.55e-07      1.10e-05 4
#> ATC:pam     46     5.67e-10 0.027439 2.14e-08      1.77e-05 4
#> SD:hclust   15     5.53e-04 0.874653 1.65e-03      8.57e-04 4
#> CV:hclust   46     5.67e-10 0.203783 1.10e-07      1.59e-07 4
#> MAD:hclust  28     3.63e-06 0.017082 2.01e-05      3.16e-02 4
#> ATC:hclust  50     7.99e-11 0.411903 8.74e-10      4.80e-05 4
test_to_known_factors(res_list, k = 5)
#>              n cell.type(p) agent(p)  time(p) individual(p) k
#> SD:NMF      50     3.61e-10  0.01885 1.26e-05      1.90e-06 5
#> CV:NMF      49     5.84e-10  0.02225 8.45e-06      1.43e-06 5
#> MAD:NMF     49     5.84e-10  0.01318 1.16e-05      9.26e-06 5
#> ATC:NMF     41     2.69e-08  0.00154 5.42e-07      1.14e-03 5
#> SD:skmeans  43     1.03e-08  0.07608 6.14e-06      1.68e-05 5
#> CV:skmeans  39     6.97e-08  0.08685 4.71e-04      1.91e-06 5
#> MAD:skmeans 42     1.67e-08  0.01940 1.12e-08      1.08e-03 5
#> ATC:skmeans 37     2.15e-06  0.70803 7.34e-06      8.42e-05 5
#> SD:mclust   48     9.44e-10  0.03260 1.77e-09      4.75e-04 5
#> CV:mclust   44     6.42e-09  0.00541 1.08e-06      9.66e-04 5
#> MAD:mclust  50     3.61e-10  0.23403 4.91e-10      1.10e-06 5
#> ATC:mclust  49     5.84e-10  0.40819 1.81e-11      5.55e-05 5
#> SD:kmeans   42     1.67e-08  0.06869 4.43e-05      2.89e-07 5
#> CV:kmeans   47     1.52e-09  0.03553 3.51e-05      1.72e-08 5
#> MAD:kmeans  48     2.13e-10  0.02861 6.12e-07      4.72e-06 5
#> ATC:kmeans  35     1.22e-07  0.40935 1.46e-06      3.61e-05 5
#> SD:pam      40     4.33e-08  0.08672 8.37e-08      8.39e-05 5
#> CV:pam      30     1.38e-06  0.10690 2.26e-04      1.15e-03 5
#> MAD:pam     29     5.04e-07  0.06336 8.63e-05      8.48e-03 5
#> ATC:pam     48     9.44e-10  0.02523 1.14e-10      9.28e-05 5
#> SD:hclust   28     3.63e-06  0.28360 7.17e-04      3.86e-05 5
#> CV:hclust   48     9.44e-10  0.03954 2.27e-08      1.75e-06 5
#> MAD:hclust  45     3.98e-09  0.09786 2.82e-05      1.19e-08 5
#> ATC:hclust  48     2.13e-10  0.60122 1.88e-09      1.54e-04 5
test_to_known_factors(res_list, k = 6)
#>              n cell.type(p) agent(p)  time(p) individual(p) k
#> SD:NMF      44     2.32e-08  0.42004 3.36e-05      1.02e-06 6
#> CV:NMF      42     5.89e-08  0.22160 4.32e-05      1.54e-05 6
#> MAD:NMF     43     3.70e-08  0.07660 2.26e-06      4.02e-04 6
#> ATC:NMF     37     1.80e-07  0.00595 1.30e-06      5.83e-03 6
#> SD:skmeans  44     2.32e-08  0.03246 5.47e-09      5.76e-04 6
#> CV:skmeans  38     3.77e-07  0.07969 2.28e-07      5.12e-03 6
#> MAD:skmeans 40     1.49e-07  0.04092 1.46e-08      2.90e-03 6
#> ATC:skmeans 45     1.45e-08  0.04581 3.90e-12      1.85e-03 6
#> SD:mclust   50     1.39e-09  0.00124 8.26e-09      8.46e-03 6
#> CV:mclust   39     2.37e-07  0.00110 3.73e-06      4.17e-04 6
#> MAD:mclust  38     3.77e-07  0.24499 1.92e-09      5.78e-04 6
#> ATC:mclust  44     6.42e-09  0.12781 3.17e-09      4.16e-03 6
#> SD:kmeans   41     9.38e-08  0.01671 1.67e-07      2.14e-05 6
#> CV:kmeans   45     3.98e-09  0.02438 3.97e-05      1.71e-07 6
#> MAD:kmeans  40     1.49e-07  0.19827 1.19e-07      3.84e-05 6
#> ATC:kmeans  45     1.45e-08  0.05610 2.02e-11      3.42e-03 6
#> SD:pam      40     1.49e-07  0.28354 1.68e-06      6.83e-08 6
#> CV:pam      38     3.77e-07  0.18997 3.57e-07      1.50e-07 6
#> MAD:pam     49     2.22e-09  0.00515 3.54e-07      8.57e-05 6
#> ATC:pam     46     9.08e-09  0.13268 9.02e-12      6.32e-04 6
#> SD:hclust   33     1.19e-06  0.04299 7.62e-07      1.64e-03 6
#> CV:hclust   42     5.89e-08  0.04418 9.07e-08      1.23e-06 6
#> MAD:hclust  46     9.08e-09  0.49319 1.48e-05      1.14e-08 6
#> ATC:hclust  48     9.44e-10  0.74988 4.16e-08      2.24e-05 6

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.240           0.486       0.755         0.3988 0.650   0.650
#> 3 3 0.356           0.335       0.597         0.4085 0.458   0.304
#> 4 4 0.484           0.433       0.757         0.0714 0.651   0.389
#> 5 5 0.708           0.525       0.780         0.2443 0.731   0.457
#> 6 6 0.762           0.692       0.811         0.0448 0.891   0.655

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM225374     1   0.966     0.6412 0.608 0.392
#> GSM225349     2   0.980     0.6361 0.416 0.584
#> GSM225367     2   0.971     0.5711 0.400 0.600
#> GSM225356     2   0.980     0.6361 0.416 0.584
#> GSM225353     2   0.980     0.6361 0.416 0.584
#> GSM225653     2   0.980     0.6361 0.416 0.584
#> GSM209847     2   0.980     0.6361 0.416 0.584
#> GSM225658     2   0.980     0.6361 0.416 0.584
#> GSM225370     1   0.955     0.6367 0.624 0.376
#> GSM225364     2   0.980     0.6361 0.416 0.584
#> GSM225645     1   0.767    -0.0798 0.776 0.224
#> GSM225350     1   0.760     0.5446 0.780 0.220
#> GSM225368     2   0.971     0.5711 0.400 0.600
#> GSM225357     1   0.738     0.5223 0.792 0.208
#> GSM225651     1   0.767    -0.0798 0.776 0.224
#> GSM225354     1   0.760     0.5446 0.780 0.220
#> GSM225360     1   1.000    -0.5585 0.504 0.496
#> GSM225657     1   0.966     0.6412 0.608 0.392
#> GSM225377     1   0.430     0.4429 0.912 0.088
#> GSM225656     1   0.966     0.6412 0.608 0.392
#> GSM225347     1   0.760     0.5446 0.780 0.220
#> GSM225660     1   0.966     0.6412 0.608 0.392
#> GSM225712     1   0.966     0.6412 0.608 0.392
#> GSM225663     1   0.966     0.6412 0.608 0.392
#> GSM225373     1   0.966     0.6412 0.608 0.392
#> GSM225366     1   0.311     0.3777 0.944 0.056
#> GSM225380     1   0.767    -0.0798 0.776 0.224
#> GSM225351     1   0.775     0.5356 0.772 0.228
#> GSM225369     2   0.971     0.5711 0.400 0.600
#> GSM225358     1   0.738     0.5223 0.792 0.208
#> GSM225649     1   0.767    -0.0798 0.776 0.224
#> GSM225355     1   0.775     0.5356 0.772 0.228
#> GSM225361     2   0.971     0.5711 0.400 0.600
#> GSM225655     1   0.595     0.1998 0.856 0.144
#> GSM225376     1   0.388     0.3510 0.924 0.076
#> GSM225654     1   0.595     0.1998 0.856 0.144
#> GSM225348     1   0.760     0.5446 0.780 0.220
#> GSM225659     1   0.204     0.4055 0.968 0.032
#> GSM225378     1   0.482     0.4875 0.896 0.104
#> GSM225661     1   0.311     0.3777 0.944 0.056
#> GSM225372     1   0.416     0.4094 0.916 0.084
#> GSM225365     1   0.966     0.6412 0.608 0.392
#> GSM225860     1   0.971     0.6382 0.600 0.400
#> GSM225875     1   0.971     0.6382 0.600 0.400
#> GSM225878     1   0.971     0.6382 0.600 0.400
#> GSM225885     1   0.971     0.6382 0.600 0.400
#> GSM225867     1   0.971     0.6382 0.600 0.400
#> GSM225871     1   0.971     0.6382 0.600 0.400
#> GSM225881     1   0.971     0.6382 0.600 0.400
#> GSM225887     1   0.971     0.6382 0.600 0.400

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     1   0.923      0.313 0.432 0.416 0.152
#> GSM225349     2   0.000      0.433 0.000 1.000 0.000
#> GSM225367     1   0.624     -0.095 0.560 0.440 0.000
#> GSM225356     2   0.000      0.433 0.000 1.000 0.000
#> GSM225353     2   0.000      0.433 0.000 1.000 0.000
#> GSM225653     2   0.000      0.433 0.000 1.000 0.000
#> GSM209847     2   0.000      0.433 0.000 1.000 0.000
#> GSM225658     2   0.000      0.433 0.000 1.000 0.000
#> GSM225370     1   0.922      0.300 0.440 0.408 0.152
#> GSM225364     2   0.000      0.433 0.000 1.000 0.000
#> GSM225645     2   0.627      0.169 0.452 0.548 0.000
#> GSM225350     2   0.601      0.142 0.372 0.628 0.000
#> GSM225368     1   0.624     -0.095 0.560 0.440 0.000
#> GSM225357     2   0.606      0.143 0.384 0.616 0.000
#> GSM225651     2   0.627      0.169 0.452 0.548 0.000
#> GSM225354     2   0.601      0.142 0.372 0.628 0.000
#> GSM225360     2   0.686      0.169 0.356 0.620 0.024
#> GSM225657     1   0.923      0.313 0.432 0.416 0.152
#> GSM225377     1   0.707      0.157 0.596 0.376 0.028
#> GSM225656     1   0.923      0.313 0.432 0.416 0.152
#> GSM225347     2   0.601      0.142 0.372 0.628 0.000
#> GSM225660     1   0.923      0.313 0.432 0.416 0.152
#> GSM225712     1   0.923      0.313 0.432 0.416 0.152
#> GSM225663     1   0.923      0.313 0.432 0.416 0.152
#> GSM225373     1   0.923      0.313 0.432 0.416 0.152
#> GSM225366     1   0.613      0.151 0.644 0.352 0.004
#> GSM225380     2   0.627      0.169 0.452 0.548 0.000
#> GSM225351     2   0.597      0.154 0.364 0.636 0.000
#> GSM225369     1   0.624     -0.095 0.560 0.440 0.000
#> GSM225358     2   0.606      0.143 0.384 0.616 0.000
#> GSM225649     2   0.627      0.169 0.452 0.548 0.000
#> GSM225355     2   0.597      0.154 0.364 0.636 0.000
#> GSM225361     2   0.621      0.115 0.428 0.572 0.000
#> GSM225655     1   0.615      0.018 0.592 0.408 0.000
#> GSM225376     1   0.601      0.118 0.628 0.372 0.000
#> GSM225654     1   0.615      0.018 0.592 0.408 0.000
#> GSM225348     2   0.601      0.142 0.372 0.628 0.000
#> GSM225659     1   0.625      0.145 0.620 0.376 0.004
#> GSM225378     1   0.728      0.135 0.564 0.404 0.032
#> GSM225661     1   0.613      0.151 0.644 0.352 0.004
#> GSM225372     1   0.698      0.175 0.632 0.336 0.032
#> GSM225365     1   0.923      0.313 0.432 0.416 0.152
#> GSM225860     3   0.000      1.000 0.000 0.000 1.000
#> GSM225875     3   0.000      1.000 0.000 0.000 1.000
#> GSM225878     3   0.000      1.000 0.000 0.000 1.000
#> GSM225885     3   0.000      1.000 0.000 0.000 1.000
#> GSM225867     3   0.000      1.000 0.000 0.000 1.000
#> GSM225871     3   0.000      1.000 0.000 0.000 1.000
#> GSM225881     3   0.000      1.000 0.000 0.000 1.000
#> GSM225887     3   0.000      1.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2 p3    p4
#> GSM225374     1  0.0188     0.4515 0.996 0.004  0 0.000
#> GSM225349     1  0.7648     0.1531 0.400 0.392  0 0.208
#> GSM225367     2  0.0376     1.0000 0.004 0.992  0 0.004
#> GSM225356     1  0.7648     0.1531 0.400 0.392  0 0.208
#> GSM225353     1  0.7648     0.1531 0.400 0.392  0 0.208
#> GSM225653     1  0.7648     0.1531 0.400 0.392  0 0.208
#> GSM209847     1  0.7648     0.1531 0.400 0.392  0 0.208
#> GSM225658     1  0.7648     0.1531 0.400 0.392  0 0.208
#> GSM225370     1  0.0707     0.4394 0.980 0.000  0 0.020
#> GSM225364     1  0.7648     0.1531 0.400 0.392  0 0.208
#> GSM225645     4  0.7414     0.5349 0.368 0.172  0 0.460
#> GSM225350     1  0.4420     0.4187 0.748 0.012  0 0.240
#> GSM225368     2  0.0376     1.0000 0.004 0.992  0 0.004
#> GSM225357     1  0.4927     0.3821 0.712 0.024  0 0.264
#> GSM225651     4  0.7414     0.5349 0.368 0.172  0 0.460
#> GSM225354     1  0.4420     0.4187 0.748 0.012  0 0.240
#> GSM225360     4  0.4149     0.3899 0.152 0.036  0 0.812
#> GSM225657     1  0.0188     0.4515 0.996 0.004  0 0.000
#> GSM225377     1  0.4855    -0.0919 0.600 0.000  0 0.400
#> GSM225656     1  0.0188     0.4515 0.996 0.004  0 0.000
#> GSM225347     1  0.4420     0.4187 0.748 0.012  0 0.240
#> GSM225660     1  0.0188     0.4515 0.996 0.004  0 0.000
#> GSM225712     1  0.0188     0.4515 0.996 0.004  0 0.000
#> GSM225663     1  0.0188     0.4515 0.996 0.004  0 0.000
#> GSM225373     1  0.0188     0.4515 0.996 0.004  0 0.000
#> GSM225366     1  0.4989    -0.2284 0.528 0.000  0 0.472
#> GSM225380     4  0.7414     0.5349 0.368 0.172  0 0.460
#> GSM225351     1  0.4642     0.4147 0.740 0.020  0 0.240
#> GSM225369     2  0.0376     1.0000 0.004 0.992  0 0.004
#> GSM225358     1  0.4927     0.3821 0.712 0.024  0 0.264
#> GSM225649     4  0.7414     0.5349 0.368 0.172  0 0.460
#> GSM225355     1  0.4642     0.4147 0.740 0.020  0 0.240
#> GSM225361     4  0.1302     0.1768 0.000 0.044  0 0.956
#> GSM225655     4  0.5112     0.3405 0.436 0.004  0 0.560
#> GSM225376     1  0.4999    -0.2572 0.508 0.000  0 0.492
#> GSM225654     4  0.5112     0.3405 0.436 0.004  0 0.560
#> GSM225348     1  0.4420     0.4187 0.748 0.012  0 0.240
#> GSM225659     1  0.4967    -0.1754 0.548 0.000  0 0.452
#> GSM225378     1  0.4679     0.0548 0.648 0.000  0 0.352
#> GSM225661     1  0.4989    -0.2284 0.528 0.000  0 0.472
#> GSM225372     1  0.4933    -0.1846 0.568 0.000  0 0.432
#> GSM225365     1  0.0188     0.4515 0.996 0.004  0 0.000
#> GSM225860     3  0.0000     1.0000 0.000 0.000  1 0.000
#> GSM225875     3  0.0000     1.0000 0.000 0.000  1 0.000
#> GSM225878     3  0.0000     1.0000 0.000 0.000  1 0.000
#> GSM225885     3  0.0000     1.0000 0.000 0.000  1 0.000
#> GSM225867     3  0.0000     1.0000 0.000 0.000  1 0.000
#> GSM225871     3  0.0000     1.0000 0.000 0.000  1 0.000
#> GSM225881     3  0.0000     1.0000 0.000 0.000  1 0.000
#> GSM225887     3  0.0000     1.0000 0.000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> GSM225374     1  0.0000      0.913 1.000 0.000  0 0.000 0.000
#> GSM225349     2  0.4126      0.335 0.000 0.620  0 0.000 0.380
#> GSM225367     5  0.0000      1.000 0.000 0.000  0 0.000 1.000
#> GSM225356     2  0.4126      0.335 0.000 0.620  0 0.000 0.380
#> GSM225353     2  0.4126      0.335 0.000 0.620  0 0.000 0.380
#> GSM225653     2  0.4126      0.335 0.000 0.620  0 0.000 0.380
#> GSM209847     2  0.4126      0.335 0.000 0.620  0 0.000 0.380
#> GSM225658     2  0.4126      0.335 0.000 0.620  0 0.000 0.380
#> GSM225370     1  0.1845      0.827 0.928 0.056  0 0.016 0.000
#> GSM225364     2  0.4126      0.335 0.000 0.620  0 0.000 0.380
#> GSM225645     2  0.6543      0.276 0.020 0.556  0 0.256 0.168
#> GSM225350     2  0.0290      0.507 0.008 0.992  0 0.000 0.000
#> GSM225368     5  0.0000      1.000 0.000 0.000  0 0.000 1.000
#> GSM225357     2  0.0865      0.500 0.000 0.972  0 0.024 0.004
#> GSM225651     2  0.6543      0.276 0.020 0.556  0 0.256 0.168
#> GSM225354     2  0.0290      0.507 0.008 0.992  0 0.000 0.000
#> GSM225360     4  0.2648      0.475 0.152 0.000  0 0.848 0.000
#> GSM225657     1  0.0000      0.913 1.000 0.000  0 0.000 0.000
#> GSM225377     4  0.6814      0.408 0.304 0.348  0 0.348 0.000
#> GSM225656     1  0.0000      0.913 1.000 0.000  0 0.000 0.000
#> GSM225347     2  0.0290      0.507 0.008 0.992  0 0.000 0.000
#> GSM225660     1  0.0000      0.913 1.000 0.000  0 0.000 0.000
#> GSM225712     1  0.0000      0.913 1.000 0.000  0 0.000 0.000
#> GSM225663     1  0.0000      0.913 1.000 0.000  0 0.000 0.000
#> GSM225373     1  0.0000      0.913 1.000 0.000  0 0.000 0.000
#> GSM225366     2  0.6296     -0.464 0.152 0.440  0 0.408 0.000
#> GSM225380     2  0.6543      0.276 0.020 0.556  0 0.256 0.168
#> GSM225351     2  0.0000      0.510 0.000 1.000  0 0.000 0.000
#> GSM225369     5  0.0000      1.000 0.000 0.000  0 0.000 1.000
#> GSM225358     2  0.0865      0.500 0.000 0.972  0 0.024 0.004
#> GSM225649     2  0.6543      0.276 0.020 0.556  0 0.256 0.168
#> GSM225355     2  0.0000      0.510 0.000 1.000  0 0.000 0.000
#> GSM225361     4  0.0000      0.414 0.000 0.000  0 1.000 0.000
#> GSM225655     4  0.5096      0.432 0.036 0.444  0 0.520 0.000
#> GSM225376     2  0.6092     -0.443 0.124 0.464  0 0.412 0.000
#> GSM225654     4  0.5096      0.432 0.036 0.444  0 0.520 0.000
#> GSM225348     2  0.0290      0.507 0.008 0.992  0 0.000 0.000
#> GSM225659     2  0.5607     -0.373 0.080 0.540  0 0.380 0.000
#> GSM225378     1  0.6536     -0.296 0.468 0.220  0 0.312 0.000
#> GSM225661     2  0.6296     -0.464 0.152 0.440  0 0.408 0.000
#> GSM225372     2  0.6603     -0.499 0.212 0.400  0 0.388 0.000
#> GSM225365     1  0.0000      0.913 1.000 0.000  0 0.000 0.000
#> GSM225860     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225875     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225878     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225885     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225867     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225871     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225881     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225887     3  0.0000      1.000 0.000 0.000  1 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4 p5    p6
#> GSM225374     1  0.0000      0.975 1.000 0.000  0 0.000  0 0.000
#> GSM225349     2  0.0000      0.590 0.000 1.000  0 0.000  0 0.000
#> GSM225367     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> GSM225356     2  0.0000      0.590 0.000 1.000  0 0.000  0 0.000
#> GSM225353     2  0.0000      0.590 0.000 1.000  0 0.000  0 0.000
#> GSM225653     2  0.0000      0.590 0.000 1.000  0 0.000  0 0.000
#> GSM209847     2  0.0000      0.590 0.000 1.000  0 0.000  0 0.000
#> GSM225658     2  0.0000      0.590 0.000 1.000  0 0.000  0 0.000
#> GSM225370     1  0.1863      0.838 0.896 0.000  0 0.104  0 0.000
#> GSM225364     2  0.0000      0.590 0.000 1.000  0 0.000  0 0.000
#> GSM225645     2  0.3996      0.244 0.000 0.512  0 0.484  0 0.004
#> GSM225350     2  0.3867      0.462 0.000 0.512  0 0.488  0 0.000
#> GSM225368     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> GSM225357     2  0.3843      0.484 0.000 0.548  0 0.452  0 0.000
#> GSM225651     2  0.3996      0.244 0.000 0.512  0 0.484  0 0.004
#> GSM225354     2  0.3867      0.462 0.000 0.512  0 0.488  0 0.000
#> GSM225360     6  0.5002      0.379 0.080 0.000  0 0.364  0 0.556
#> GSM225657     1  0.0000      0.975 1.000 0.000  0 0.000  0 0.000
#> GSM225377     4  0.3454      0.574 0.224 0.012  0 0.760  0 0.004
#> GSM225656     1  0.0000      0.975 1.000 0.000  0 0.000  0 0.000
#> GSM225347     2  0.3867      0.462 0.000 0.512  0 0.488  0 0.000
#> GSM225660     1  0.0000      0.975 1.000 0.000  0 0.000  0 0.000
#> GSM225712     1  0.0547      0.964 0.980 0.000  0 0.020  0 0.000
#> GSM225663     1  0.0000      0.975 1.000 0.000  0 0.000  0 0.000
#> GSM225373     1  0.0547      0.964 0.980 0.000  0 0.020  0 0.000
#> GSM225366     4  0.0937      0.727 0.040 0.000  0 0.960  0 0.000
#> GSM225380     2  0.3996      0.244 0.000 0.512  0 0.484  0 0.004
#> GSM225351     2  0.3864      0.471 0.000 0.520  0 0.480  0 0.000
#> GSM225369     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> GSM225358     2  0.3843      0.484 0.000 0.548  0 0.452  0 0.000
#> GSM225649     2  0.3996      0.244 0.000 0.512  0 0.484  0 0.004
#> GSM225355     2  0.3864      0.471 0.000 0.520  0 0.480  0 0.000
#> GSM225361     6  0.0000      0.401 0.000 0.000  0 0.000  0 1.000
#> GSM225655     4  0.4751      0.494 0.000 0.076  0 0.624  0 0.300
#> GSM225376     4  0.2100      0.722 0.036 0.032  0 0.916  0 0.016
#> GSM225654     4  0.4751      0.494 0.000 0.076  0 0.624  0 0.300
#> GSM225348     2  0.3867      0.462 0.000 0.512  0 0.488  0 0.000
#> GSM225659     4  0.1471      0.671 0.004 0.064  0 0.932  0 0.000
#> GSM225378     4  0.3756      0.235 0.400 0.000  0 0.600  0 0.000
#> GSM225661     4  0.0937      0.727 0.040 0.000  0 0.960  0 0.000
#> GSM225372     4  0.1958      0.699 0.100 0.000  0 0.896  0 0.004
#> GSM225365     1  0.0000      0.975 1.000 0.000  0 0.000  0 0.000
#> GSM225860     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> GSM225875     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> GSM225878     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> GSM225885     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> GSM225867     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> GSM225871     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> GSM225881     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> GSM225887     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n cell.type(p) agent(p)  time(p) individual(p) k
#> SD:hclust 36     9.06e-02    0.499 9.24e-04      3.92e-01 2
#> SD:hclust  8           NA       NA       NA            NA 3
#> SD:hclust 15     5.53e-04    0.875 1.65e-03      8.57e-04 4
#> SD:hclust 28     3.63e-06    0.284 7.17e-04      3.86e-05 5
#> SD:hclust 33     1.19e-06    0.043 7.62e-07      1.64e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.600           0.906       0.924         0.4569 0.493   0.493
#> 3 3 0.570           0.817       0.810         0.3630 0.902   0.801
#> 4 4 0.599           0.561       0.726         0.1625 0.897   0.740
#> 5 5 0.744           0.676       0.806         0.0814 0.869   0.591
#> 6 6 0.767           0.752       0.769         0.0460 0.936   0.718

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM225374     1   0.802      0.831 0.756 0.244
#> GSM225349     2   0.000      1.000 0.000 1.000
#> GSM225367     2   0.000      1.000 0.000 1.000
#> GSM225356     2   0.000      1.000 0.000 1.000
#> GSM225353     2   0.000      1.000 0.000 1.000
#> GSM225653     2   0.000      1.000 0.000 1.000
#> GSM209847     2   0.000      1.000 0.000 1.000
#> GSM225658     2   0.000      1.000 0.000 1.000
#> GSM225370     1   0.795      0.833 0.760 0.240
#> GSM225364     2   0.000      1.000 0.000 1.000
#> GSM225645     2   0.000      1.000 0.000 1.000
#> GSM225350     2   0.000      1.000 0.000 1.000
#> GSM225368     2   0.000      1.000 0.000 1.000
#> GSM225357     2   0.000      1.000 0.000 1.000
#> GSM225651     2   0.000      1.000 0.000 1.000
#> GSM225354     2   0.000      1.000 0.000 1.000
#> GSM225360     1   0.988      0.543 0.564 0.436
#> GSM225657     1   0.991      0.525 0.556 0.444
#> GSM225377     1   0.808      0.828 0.752 0.248
#> GSM225656     1   0.781      0.836 0.768 0.232
#> GSM225347     2   0.000      1.000 0.000 1.000
#> GSM225660     1   0.781      0.836 0.768 0.232
#> GSM225712     1   0.595      0.846 0.856 0.144
#> GSM225663     1   0.595      0.846 0.856 0.144
#> GSM225373     1   0.595      0.846 0.856 0.144
#> GSM225366     1   0.808      0.828 0.752 0.248
#> GSM225380     2   0.000      1.000 0.000 1.000
#> GSM225351     2   0.000      1.000 0.000 1.000
#> GSM225369     2   0.000      1.000 0.000 1.000
#> GSM225358     2   0.000      1.000 0.000 1.000
#> GSM225649     2   0.000      1.000 0.000 1.000
#> GSM225355     2   0.000      1.000 0.000 1.000
#> GSM225361     2   0.000      1.000 0.000 1.000
#> GSM225655     2   0.000      1.000 0.000 1.000
#> GSM225376     2   0.000      1.000 0.000 1.000
#> GSM225654     2   0.000      1.000 0.000 1.000
#> GSM225348     2   0.000      1.000 0.000 1.000
#> GSM225659     2   0.000      1.000 0.000 1.000
#> GSM225378     1   0.795      0.833 0.760 0.240
#> GSM225661     1   0.808      0.828 0.752 0.248
#> GSM225372     1   0.949      0.673 0.632 0.368
#> GSM225365     1   0.730      0.842 0.796 0.204
#> GSM225860     1   0.000      0.816 1.000 0.000
#> GSM225875     1   0.000      0.816 1.000 0.000
#> GSM225878     1   0.000      0.816 1.000 0.000
#> GSM225885     1   0.000      0.816 1.000 0.000
#> GSM225867     1   0.000      0.816 1.000 0.000
#> GSM225871     1   0.000      0.816 1.000 0.000
#> GSM225881     1   0.000      0.816 1.000 0.000
#> GSM225887     1   0.000      0.816 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     1  0.2301      0.802 0.936 0.060 0.004
#> GSM225349     2  0.4642      0.819 0.084 0.856 0.060
#> GSM225367     2  0.8280      0.730 0.092 0.564 0.344
#> GSM225356     2  0.4642      0.819 0.084 0.856 0.060
#> GSM225353     2  0.4556      0.821 0.080 0.860 0.060
#> GSM225653     2  0.4652      0.821 0.080 0.856 0.064
#> GSM209847     2  0.4642      0.819 0.084 0.856 0.060
#> GSM225658     2  0.4737      0.819 0.084 0.852 0.064
#> GSM225370     1  0.1267      0.826 0.972 0.024 0.004
#> GSM225364     2  0.4737      0.819 0.084 0.852 0.064
#> GSM225645     2  0.5977      0.800 0.020 0.728 0.252
#> GSM225350     2  0.2448      0.825 0.076 0.924 0.000
#> GSM225368     2  0.6912      0.738 0.028 0.628 0.344
#> GSM225357     2  0.2625      0.822 0.084 0.916 0.000
#> GSM225651     2  0.5731      0.803 0.020 0.752 0.228
#> GSM225354     2  0.2625      0.822 0.084 0.916 0.000
#> GSM225360     1  0.7995      0.485 0.608 0.088 0.304
#> GSM225657     1  0.6473      0.481 0.652 0.332 0.016
#> GSM225377     1  0.2443      0.817 0.940 0.032 0.028
#> GSM225656     1  0.1031      0.824 0.976 0.024 0.000
#> GSM225347     2  0.4409      0.749 0.172 0.824 0.004
#> GSM225660     1  0.0892      0.824 0.980 0.020 0.000
#> GSM225712     1  0.0661      0.813 0.988 0.008 0.004
#> GSM225663     1  0.0592      0.816 0.988 0.012 0.000
#> GSM225373     1  0.0661      0.813 0.988 0.008 0.004
#> GSM225366     1  0.4712      0.717 0.848 0.108 0.044
#> GSM225380     2  0.5285      0.793 0.004 0.752 0.244
#> GSM225351     2  0.1643      0.830 0.000 0.956 0.044
#> GSM225369     2  0.6600      0.730 0.012 0.604 0.384
#> GSM225358     2  0.1643      0.830 0.000 0.956 0.044
#> GSM225649     2  0.5365      0.790 0.004 0.744 0.252
#> GSM225355     2  0.1643      0.830 0.000 0.956 0.044
#> GSM225361     2  0.6404      0.726 0.012 0.644 0.344
#> GSM225655     2  0.3918      0.821 0.004 0.856 0.140
#> GSM225376     2  0.5285      0.790 0.004 0.752 0.244
#> GSM225654     2  0.5244      0.791 0.004 0.756 0.240
#> GSM225348     2  0.2229      0.830 0.012 0.944 0.044
#> GSM225659     2  0.4551      0.819 0.020 0.840 0.140
#> GSM225378     1  0.1585      0.822 0.964 0.028 0.008
#> GSM225661     1  0.3237      0.795 0.912 0.056 0.032
#> GSM225372     1  0.6850      0.600 0.720 0.072 0.208
#> GSM225365     1  0.0892      0.824 0.980 0.020 0.000
#> GSM225860     3  0.6126      1.000 0.400 0.000 0.600
#> GSM225875     3  0.6126      1.000 0.400 0.000 0.600
#> GSM225878     3  0.6126      1.000 0.400 0.000 0.600
#> GSM225885     3  0.6126      1.000 0.400 0.000 0.600
#> GSM225867     3  0.6126      1.000 0.400 0.000 0.600
#> GSM225871     3  0.6126      1.000 0.400 0.000 0.600
#> GSM225881     3  0.6126      1.000 0.400 0.000 0.600
#> GSM225887     3  0.6126      1.000 0.400 0.000 0.600

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM225374     1  0.2530     0.8722 0.912 0.008 0.072 0.008
#> GSM225349     2  0.7299     0.4493 0.092 0.584 0.036 0.288
#> GSM225367     4  0.3911     0.5926 0.024 0.092 0.028 0.856
#> GSM225356     2  0.7299     0.4493 0.092 0.584 0.036 0.288
#> GSM225353     2  0.7137     0.4232 0.068 0.568 0.036 0.328
#> GSM225653     2  0.7240     0.4253 0.076 0.564 0.036 0.324
#> GSM209847     2  0.7299     0.4493 0.092 0.584 0.036 0.288
#> GSM225658     2  0.7393     0.4358 0.092 0.564 0.036 0.308
#> GSM225370     1  0.2198     0.8771 0.920 0.008 0.072 0.000
#> GSM225364     2  0.7393     0.4358 0.092 0.564 0.036 0.308
#> GSM225645     4  0.6165     0.4900 0.072 0.284 0.004 0.640
#> GSM225350     2  0.5429     0.4757 0.068 0.732 0.004 0.196
#> GSM225368     4  0.2860     0.6239 0.004 0.100 0.008 0.888
#> GSM225357     2  0.5690     0.4781 0.084 0.716 0.004 0.196
#> GSM225651     4  0.6371     0.4604 0.072 0.324 0.004 0.600
#> GSM225354     2  0.5751     0.4782 0.088 0.712 0.004 0.196
#> GSM225360     1  0.5691     0.0991 0.520 0.012 0.008 0.460
#> GSM225657     1  0.3093     0.8116 0.884 0.092 0.004 0.020
#> GSM225377     1  0.1509     0.8588 0.960 0.020 0.012 0.008
#> GSM225656     1  0.2660     0.8781 0.908 0.008 0.072 0.012
#> GSM225347     2  0.5199     0.3783 0.240 0.720 0.004 0.036
#> GSM225660     1  0.2660     0.8781 0.908 0.008 0.072 0.012
#> GSM225712     1  0.2011     0.8734 0.920 0.000 0.080 0.000
#> GSM225663     1  0.2473     0.8743 0.908 0.000 0.080 0.012
#> GSM225373     1  0.2011     0.8734 0.920 0.000 0.080 0.000
#> GSM225366     1  0.5428     0.6572 0.744 0.164 0.004 0.088
#> GSM225380     2  0.6272    -0.3334 0.052 0.556 0.004 0.388
#> GSM225351     2  0.0188     0.4049 0.004 0.996 0.000 0.000
#> GSM225369     4  0.4442     0.6005 0.004 0.236 0.008 0.752
#> GSM225358     2  0.0000     0.4052 0.000 1.000 0.000 0.000
#> GSM225649     2  0.6158    -0.2960 0.056 0.560 0.000 0.384
#> GSM225355     2  0.0188     0.4049 0.004 0.996 0.000 0.000
#> GSM225361     4  0.6413     0.3996 0.052 0.392 0.008 0.548
#> GSM225655     2  0.5742    -0.1269 0.060 0.664 0.000 0.276
#> GSM225376     2  0.6348    -0.2738 0.060 0.568 0.004 0.368
#> GSM225654     2  0.6313    -0.2198 0.064 0.592 0.004 0.340
#> GSM225348     2  0.1004     0.3927 0.004 0.972 0.000 0.024
#> GSM225659     2  0.6614    -0.0482 0.180 0.644 0.004 0.172
#> GSM225378     1  0.2256     0.8747 0.924 0.020 0.056 0.000
#> GSM225661     1  0.3026     0.8299 0.900 0.056 0.012 0.032
#> GSM225372     1  0.4296     0.7414 0.824 0.060 0.004 0.112
#> GSM225365     1  0.2587     0.8767 0.908 0.004 0.076 0.012
#> GSM225860     3  0.3245     0.9561 0.056 0.000 0.880 0.064
#> GSM225875     3  0.1576     0.9823 0.048 0.000 0.948 0.004
#> GSM225878     3  0.1474     0.9826 0.052 0.000 0.948 0.000
#> GSM225885     3  0.1661     0.9823 0.052 0.000 0.944 0.004
#> GSM225867     3  0.3164     0.9560 0.052 0.000 0.884 0.064
#> GSM225871     3  0.1661     0.9823 0.052 0.000 0.944 0.004
#> GSM225881     3  0.1389     0.9826 0.048 0.000 0.952 0.000
#> GSM225887     3  0.1576     0.9823 0.048 0.000 0.948 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM225374     1  0.0566     0.9080 0.984 0.000 0.004 0.000 0.012
#> GSM225349     2  0.3900     0.6508 0.012 0.788 0.020 0.000 0.180
#> GSM225367     5  0.4181     0.7082 0.000 0.132 0.004 0.076 0.788
#> GSM225356     2  0.3900     0.6508 0.012 0.788 0.020 0.000 0.180
#> GSM225353     2  0.4204     0.6288 0.012 0.752 0.020 0.000 0.216
#> GSM225653     2  0.4295     0.6190 0.012 0.740 0.020 0.000 0.228
#> GSM209847     2  0.3900     0.6508 0.012 0.788 0.020 0.000 0.180
#> GSM225658     2  0.4295     0.6190 0.012 0.740 0.020 0.000 0.228
#> GSM225370     1  0.0162     0.9101 0.996 0.000 0.004 0.000 0.000
#> GSM225364     2  0.4295     0.6190 0.012 0.740 0.020 0.000 0.228
#> GSM225645     4  0.6080     0.1321 0.000 0.272 0.000 0.560 0.168
#> GSM225350     2  0.2563     0.6880 0.008 0.872 0.000 0.120 0.000
#> GSM225368     5  0.5437     0.7919 0.000 0.128 0.000 0.220 0.652
#> GSM225357     2  0.2411     0.6882 0.008 0.884 0.000 0.108 0.000
#> GSM225651     4  0.5887     0.2183 0.000 0.252 0.000 0.592 0.156
#> GSM225354     2  0.2563     0.6880 0.008 0.872 0.000 0.120 0.000
#> GSM225360     4  0.6558     0.1385 0.268 0.000 0.004 0.504 0.224
#> GSM225657     1  0.1989     0.8872 0.932 0.032 0.000 0.020 0.016
#> GSM225377     1  0.2450     0.8611 0.896 0.000 0.000 0.076 0.028
#> GSM225656     1  0.0960     0.9104 0.972 0.000 0.004 0.008 0.016
#> GSM225347     2  0.4887     0.6169 0.068 0.740 0.004 0.176 0.012
#> GSM225660     1  0.0960     0.9104 0.972 0.000 0.004 0.008 0.016
#> GSM225712     1  0.0324     0.9099 0.992 0.000 0.004 0.000 0.004
#> GSM225663     1  0.0960     0.9104 0.972 0.000 0.004 0.008 0.016
#> GSM225373     1  0.0324     0.9099 0.992 0.000 0.004 0.000 0.004
#> GSM225366     4  0.5593    -0.0565 0.428 0.008 0.008 0.520 0.036
#> GSM225380     4  0.4591     0.4491 0.000 0.120 0.000 0.748 0.132
#> GSM225351     2  0.4064     0.5834 0.000 0.716 0.008 0.272 0.004
#> GSM225369     5  0.5179     0.7190 0.000 0.072 0.000 0.288 0.640
#> GSM225358     2  0.4088     0.5792 0.000 0.712 0.008 0.276 0.004
#> GSM225649     4  0.3962     0.4937 0.000 0.088 0.000 0.800 0.112
#> GSM225355     2  0.4088     0.5802 0.000 0.712 0.008 0.276 0.004
#> GSM225361     4  0.4159     0.3068 0.000 0.008 0.008 0.716 0.268
#> GSM225655     4  0.3360     0.5265 0.000 0.168 0.012 0.816 0.004
#> GSM225376     4  0.1202     0.5441 0.004 0.032 0.000 0.960 0.004
#> GSM225654     4  0.3280     0.5283 0.000 0.160 0.012 0.824 0.004
#> GSM225348     2  0.4280     0.5354 0.000 0.676 0.008 0.312 0.004
#> GSM225659     4  0.4468     0.5066 0.036 0.164 0.012 0.776 0.012
#> GSM225378     1  0.1981     0.8797 0.924 0.000 0.000 0.048 0.028
#> GSM225661     1  0.4573     0.7241 0.748 0.008 0.008 0.200 0.036
#> GSM225372     1  0.4909     0.2899 0.560 0.000 0.000 0.412 0.028
#> GSM225365     1  0.0960     0.9104 0.972 0.000 0.004 0.008 0.016
#> GSM225860     3  0.4054     0.8721 0.040 0.000 0.800 0.016 0.144
#> GSM225875     3  0.1484     0.9534 0.048 0.000 0.944 0.000 0.008
#> GSM225878     3  0.1197     0.9542 0.048 0.000 0.952 0.000 0.000
#> GSM225885     3  0.1805     0.9517 0.048 0.004 0.936 0.008 0.004
#> GSM225867     3  0.4054     0.8721 0.040 0.000 0.800 0.016 0.144
#> GSM225871     3  0.1484     0.9534 0.048 0.000 0.944 0.000 0.008
#> GSM225881     3  0.1197     0.9542 0.048 0.000 0.952 0.000 0.000
#> GSM225887     3  0.1805     0.9517 0.048 0.004 0.936 0.008 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM225374     1  0.0146      0.901 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM225349     6  0.0508      0.916 0.004 0.012 0.000 0.000 0.000 0.984
#> GSM225367     5  0.2845      0.807 0.004 0.000 0.000 0.004 0.820 0.172
#> GSM225356     6  0.0508      0.916 0.004 0.012 0.000 0.000 0.000 0.984
#> GSM225353     6  0.0837      0.921 0.000 0.004 0.004 0.000 0.020 0.972
#> GSM225653     6  0.2044      0.915 0.008 0.028 0.000 0.004 0.040 0.920
#> GSM209847     6  0.0508      0.916 0.004 0.012 0.000 0.000 0.000 0.984
#> GSM225658     6  0.2044      0.915 0.008 0.028 0.000 0.004 0.040 0.920
#> GSM225370     1  0.0798      0.900 0.976 0.004 0.004 0.012 0.004 0.000
#> GSM225364     6  0.2044      0.915 0.008 0.028 0.000 0.004 0.040 0.920
#> GSM225645     4  0.7394      0.351 0.000 0.188 0.000 0.392 0.260 0.160
#> GSM225350     2  0.4224      0.797 0.000 0.512 0.000 0.004 0.008 0.476
#> GSM225368     5  0.2126      0.880 0.000 0.004 0.000 0.020 0.904 0.072
#> GSM225357     2  0.4224      0.794 0.004 0.512 0.000 0.000 0.008 0.476
#> GSM225651     4  0.7369      0.362 0.000 0.192 0.000 0.396 0.260 0.152
#> GSM225354     2  0.4224      0.794 0.004 0.512 0.000 0.000 0.008 0.476
#> GSM225360     4  0.6153      0.299 0.136 0.048 0.000 0.544 0.272 0.000
#> GSM225657     1  0.0458      0.898 0.984 0.016 0.000 0.000 0.000 0.000
#> GSM225377     1  0.3384      0.740 0.760 0.004 0.000 0.228 0.008 0.000
#> GSM225656     1  0.0405      0.902 0.988 0.008 0.004 0.000 0.000 0.000
#> GSM225347     2  0.4716      0.830 0.044 0.576 0.000 0.000 0.004 0.376
#> GSM225660     1  0.0405      0.902 0.988 0.008 0.004 0.000 0.000 0.000
#> GSM225712     1  0.0893      0.899 0.972 0.004 0.004 0.016 0.004 0.000
#> GSM225663     1  0.0405      0.902 0.988 0.008 0.004 0.000 0.000 0.000
#> GSM225373     1  0.0893      0.899 0.972 0.004 0.004 0.016 0.004 0.000
#> GSM225366     4  0.3789      0.424 0.196 0.040 0.004 0.760 0.000 0.000
#> GSM225380     4  0.7074      0.431 0.000 0.264 0.000 0.412 0.240 0.084
#> GSM225351     2  0.3898      0.862 0.000 0.652 0.000 0.012 0.000 0.336
#> GSM225369     5  0.2274      0.852 0.000 0.028 0.000 0.028 0.908 0.036
#> GSM225358     2  0.3953      0.855 0.000 0.656 0.000 0.016 0.000 0.328
#> GSM225649     4  0.6791      0.450 0.000 0.264 0.000 0.440 0.240 0.056
#> GSM225355     2  0.3898      0.862 0.000 0.652 0.000 0.012 0.000 0.336
#> GSM225361     4  0.6039      0.344 0.000 0.216 0.000 0.436 0.344 0.004
#> GSM225655     4  0.4312      0.504 0.000 0.396 0.000 0.584 0.008 0.012
#> GSM225376     4  0.4632      0.547 0.000 0.248 0.000 0.680 0.060 0.012
#> GSM225654     4  0.3650      0.515 0.000 0.280 0.000 0.708 0.000 0.012
#> GSM225348     2  0.4150      0.847 0.000 0.652 0.000 0.028 0.000 0.320
#> GSM225659     4  0.3608      0.514 0.000 0.272 0.000 0.716 0.000 0.012
#> GSM225378     1  0.3415      0.742 0.760 0.004 0.004 0.228 0.004 0.000
#> GSM225661     1  0.4107      0.392 0.540 0.004 0.004 0.452 0.000 0.000
#> GSM225372     4  0.3894      0.196 0.324 0.004 0.000 0.664 0.008 0.000
#> GSM225365     1  0.0405      0.902 0.988 0.008 0.004 0.000 0.000 0.000
#> GSM225860     3  0.4939      0.780 0.004 0.140 0.724 0.084 0.048 0.000
#> GSM225875     3  0.0982      0.921 0.004 0.000 0.968 0.004 0.020 0.004
#> GSM225878     3  0.0146      0.924 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM225885     3  0.0551      0.923 0.004 0.004 0.984 0.008 0.000 0.000
#> GSM225867     3  0.4939      0.780 0.004 0.140 0.724 0.084 0.048 0.000
#> GSM225871     3  0.0982      0.921 0.004 0.000 0.968 0.004 0.020 0.004
#> GSM225881     3  0.0146      0.924 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM225887     3  0.0551      0.923 0.004 0.004 0.984 0.008 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n cell.type(p) agent(p)  time(p) individual(p) k
#> SD:kmeans 50     3.11e-03   0.6852 9.25e-05      2.11e-02 2
#> SD:kmeans 48     3.78e-11   0.6221 9.30e-08      2.16e-05 3
#> SD:kmeans 25     3.73e-06   0.5990 7.45e-05      7.55e-05 4
#> SD:kmeans 42     1.67e-08   0.0687 4.43e-05      2.89e-07 5
#> SD:kmeans 41     9.38e-08   0.0167 1.67e-07      2.14e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.5074 0.493   0.493
#> 3 3 0.687           0.812       0.844         0.2939 0.771   0.563
#> 4 4 0.774           0.759       0.877         0.1506 0.856   0.597
#> 5 5 0.760           0.709       0.814         0.0665 0.919   0.693
#> 6 6 0.761           0.747       0.840         0.0430 0.931   0.673

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM225374     1       0          1  1  0
#> GSM225349     2       0          1  0  1
#> GSM225367     2       0          1  0  1
#> GSM225356     2       0          1  0  1
#> GSM225353     2       0          1  0  1
#> GSM225653     2       0          1  0  1
#> GSM209847     2       0          1  0  1
#> GSM225658     2       0          1  0  1
#> GSM225370     1       0          1  1  0
#> GSM225364     2       0          1  0  1
#> GSM225645     2       0          1  0  1
#> GSM225350     2       0          1  0  1
#> GSM225368     2       0          1  0  1
#> GSM225357     2       0          1  0  1
#> GSM225651     2       0          1  0  1
#> GSM225354     2       0          1  0  1
#> GSM225360     1       0          1  1  0
#> GSM225657     1       0          1  1  0
#> GSM225377     1       0          1  1  0
#> GSM225656     1       0          1  1  0
#> GSM225347     2       0          1  0  1
#> GSM225660     1       0          1  1  0
#> GSM225712     1       0          1  1  0
#> GSM225663     1       0          1  1  0
#> GSM225373     1       0          1  1  0
#> GSM225366     1       0          1  1  0
#> GSM225380     2       0          1  0  1
#> GSM225351     2       0          1  0  1
#> GSM225369     2       0          1  0  1
#> GSM225358     2       0          1  0  1
#> GSM225649     2       0          1  0  1
#> GSM225355     2       0          1  0  1
#> GSM225361     2       0          1  0  1
#> GSM225655     2       0          1  0  1
#> GSM225376     2       0          1  0  1
#> GSM225654     2       0          1  0  1
#> GSM225348     2       0          1  0  1
#> GSM225659     2       0          1  0  1
#> GSM225378     1       0          1  1  0
#> GSM225661     1       0          1  1  0
#> GSM225372     1       0          1  1  0
#> GSM225365     1       0          1  1  0
#> GSM225860     1       0          1  1  0
#> GSM225875     1       0          1  1  0
#> GSM225878     1       0          1  1  0
#> GSM225885     1       0          1  1  0
#> GSM225867     1       0          1  1  0
#> GSM225871     1       0          1  1  0
#> GSM225881     1       0          1  1  0
#> GSM225887     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     1  0.5678      0.831 0.684 0.316 0.000
#> GSM225349     2  0.5016      0.876 0.000 0.760 0.240
#> GSM225367     3  0.4605      0.670 0.000 0.204 0.796
#> GSM225356     2  0.5016      0.876 0.000 0.760 0.240
#> GSM225353     2  0.5016      0.876 0.000 0.760 0.240
#> GSM225653     2  0.5016      0.876 0.000 0.760 0.240
#> GSM209847     2  0.5016      0.876 0.000 0.760 0.240
#> GSM225658     2  0.5016      0.876 0.000 0.760 0.240
#> GSM225370     1  0.5016      0.886 0.760 0.240 0.000
#> GSM225364     2  0.5016      0.876 0.000 0.760 0.240
#> GSM225645     3  0.2796      0.826 0.000 0.092 0.908
#> GSM225350     2  0.5138      0.874 0.000 0.748 0.252
#> GSM225368     3  0.2878      0.823 0.000 0.096 0.904
#> GSM225357     2  0.5138      0.874 0.000 0.748 0.252
#> GSM225651     3  0.2711      0.829 0.000 0.088 0.912
#> GSM225354     2  0.5138      0.874 0.000 0.748 0.252
#> GSM225360     3  0.7932      0.528 0.140 0.200 0.660
#> GSM225657     2  0.6295     -0.544 0.472 0.528 0.000
#> GSM225377     1  0.5016      0.886 0.760 0.240 0.000
#> GSM225656     1  0.5016      0.886 0.760 0.240 0.000
#> GSM225347     2  0.4974      0.770 0.000 0.764 0.236
#> GSM225660     1  0.5016      0.886 0.760 0.240 0.000
#> GSM225712     1  0.5016      0.886 0.760 0.240 0.000
#> GSM225663     1  0.5016      0.886 0.760 0.240 0.000
#> GSM225373     1  0.5016      0.886 0.760 0.240 0.000
#> GSM225366     1  0.3851      0.736 0.860 0.004 0.136
#> GSM225380     3  0.0747      0.862 0.000 0.016 0.984
#> GSM225351     2  0.5785      0.825 0.000 0.668 0.332
#> GSM225369     3  0.0892      0.862 0.000 0.020 0.980
#> GSM225358     2  0.6062      0.764 0.000 0.616 0.384
#> GSM225649     3  0.0237      0.862 0.000 0.004 0.996
#> GSM225355     2  0.5785      0.825 0.000 0.668 0.332
#> GSM225361     3  0.0000      0.861 0.000 0.000 1.000
#> GSM225655     3  0.1163      0.848 0.000 0.028 0.972
#> GSM225376     3  0.0000      0.861 0.000 0.000 1.000
#> GSM225654     3  0.0237      0.861 0.000 0.004 0.996
#> GSM225348     2  0.5810      0.822 0.000 0.664 0.336
#> GSM225659     3  0.1753      0.834 0.000 0.048 0.952
#> GSM225378     1  0.5244      0.884 0.756 0.240 0.004
#> GSM225661     1  0.5158      0.885 0.764 0.232 0.004
#> GSM225372     3  0.7496      0.536 0.088 0.240 0.672
#> GSM225365     1  0.5016      0.886 0.760 0.240 0.000
#> GSM225860     1  0.0000      0.861 1.000 0.000 0.000
#> GSM225875     1  0.0000      0.861 1.000 0.000 0.000
#> GSM225878     1  0.0000      0.861 1.000 0.000 0.000
#> GSM225885     1  0.0000      0.861 1.000 0.000 0.000
#> GSM225867     1  0.0000      0.861 1.000 0.000 0.000
#> GSM225871     1  0.0000      0.861 1.000 0.000 0.000
#> GSM225881     1  0.0000      0.861 1.000 0.000 0.000
#> GSM225887     1  0.0000      0.861 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM225374     1  0.0779      0.951 0.980 0.004 0.016 0.000
#> GSM225349     2  0.0000      0.760 0.000 1.000 0.000 0.000
#> GSM225367     2  0.5143     -0.279 0.000 0.540 0.004 0.456
#> GSM225356     2  0.0000      0.760 0.000 1.000 0.000 0.000
#> GSM225353     2  0.0779      0.752 0.000 0.980 0.004 0.016
#> GSM225653     2  0.0779      0.752 0.000 0.980 0.004 0.016
#> GSM209847     2  0.0000      0.760 0.000 1.000 0.000 0.000
#> GSM225658     2  0.0469      0.756 0.000 0.988 0.000 0.012
#> GSM225370     1  0.0592      0.952 0.984 0.000 0.016 0.000
#> GSM225364     2  0.0657      0.755 0.000 0.984 0.004 0.012
#> GSM225645     4  0.4950      0.542 0.000 0.376 0.004 0.620
#> GSM225350     2  0.3166      0.746 0.000 0.868 0.016 0.116
#> GSM225368     4  0.5070      0.480 0.000 0.416 0.004 0.580
#> GSM225357     2  0.2546      0.754 0.000 0.900 0.008 0.092
#> GSM225651     4  0.4837      0.575 0.000 0.348 0.004 0.648
#> GSM225354     2  0.3224      0.745 0.000 0.864 0.016 0.120
#> GSM225360     4  0.6317      0.168 0.412 0.008 0.044 0.536
#> GSM225657     1  0.1182      0.936 0.968 0.016 0.016 0.000
#> GSM225377     1  0.0336      0.945 0.992 0.000 0.008 0.000
#> GSM225656     1  0.0592      0.952 0.984 0.000 0.016 0.000
#> GSM225347     2  0.6401      0.606 0.064 0.636 0.016 0.284
#> GSM225660     1  0.0592      0.952 0.984 0.000 0.016 0.000
#> GSM225712     1  0.0707      0.951 0.980 0.000 0.020 0.000
#> GSM225663     1  0.0592      0.952 0.984 0.000 0.016 0.000
#> GSM225373     1  0.0707      0.951 0.980 0.000 0.020 0.000
#> GSM225366     3  0.4171      0.817 0.060 0.000 0.824 0.116
#> GSM225380     4  0.3257      0.716 0.000 0.152 0.004 0.844
#> GSM225351     2  0.5220      0.590 0.000 0.632 0.016 0.352
#> GSM225369     4  0.4188      0.668 0.000 0.244 0.004 0.752
#> GSM225358     2  0.5378      0.449 0.000 0.540 0.012 0.448
#> GSM225649     4  0.1389      0.741 0.000 0.048 0.000 0.952
#> GSM225355     2  0.5253      0.582 0.000 0.624 0.016 0.360
#> GSM225361     4  0.0376      0.739 0.000 0.004 0.004 0.992
#> GSM225655     4  0.2215      0.717 0.016 0.024 0.024 0.936
#> GSM225376     4  0.0779      0.736 0.016 0.000 0.004 0.980
#> GSM225654     4  0.1739      0.726 0.016 0.008 0.024 0.952
#> GSM225348     2  0.5500      0.556 0.004 0.600 0.016 0.380
#> GSM225659     4  0.2915      0.696 0.024 0.044 0.024 0.908
#> GSM225378     1  0.0469      0.947 0.988 0.000 0.012 0.000
#> GSM225661     1  0.2466      0.885 0.916 0.000 0.028 0.056
#> GSM225372     1  0.5110      0.396 0.636 0.000 0.012 0.352
#> GSM225365     1  0.0707      0.951 0.980 0.000 0.020 0.000
#> GSM225860     3  0.0921      0.980 0.028 0.000 0.972 0.000
#> GSM225875     3  0.0921      0.980 0.028 0.000 0.972 0.000
#> GSM225878     3  0.0921      0.980 0.028 0.000 0.972 0.000
#> GSM225885     3  0.0921      0.980 0.028 0.000 0.972 0.000
#> GSM225867     3  0.0921      0.980 0.028 0.000 0.972 0.000
#> GSM225871     3  0.0921      0.980 0.028 0.000 0.972 0.000
#> GSM225881     3  0.0921      0.980 0.028 0.000 0.972 0.000
#> GSM225887     3  0.0921      0.980 0.028 0.000 0.972 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM225374     1  0.0162     0.9671 0.996 0.000 0.000 0.000 0.004
#> GSM225349     2  0.5692     0.6489 0.000 0.628 0.000 0.168 0.204
#> GSM225367     5  0.4373     0.4369 0.000 0.080 0.000 0.160 0.760
#> GSM225356     2  0.5747     0.6452 0.000 0.620 0.000 0.168 0.212
#> GSM225353     2  0.6062     0.6105 0.000 0.564 0.000 0.168 0.268
#> GSM225653     2  0.6353     0.5203 0.000 0.480 0.000 0.172 0.348
#> GSM209847     2  0.5692     0.6489 0.000 0.628 0.000 0.168 0.204
#> GSM225658     2  0.6290     0.5456 0.000 0.500 0.000 0.168 0.332
#> GSM225370     1  0.0404     0.9670 0.988 0.000 0.000 0.012 0.000
#> GSM225364     2  0.6300     0.5410 0.000 0.496 0.000 0.168 0.336
#> GSM225645     5  0.3051     0.7202 0.000 0.028 0.000 0.120 0.852
#> GSM225350     2  0.1041     0.6830 0.000 0.964 0.000 0.032 0.004
#> GSM225368     5  0.1205     0.6584 0.000 0.040 0.000 0.004 0.956
#> GSM225357     2  0.1195     0.6860 0.000 0.960 0.000 0.028 0.012
#> GSM225651     5  0.3454     0.7189 0.000 0.028 0.000 0.156 0.816
#> GSM225354     2  0.0771     0.6761 0.004 0.976 0.000 0.020 0.000
#> GSM225360     5  0.6521     0.3421 0.180 0.000 0.028 0.208 0.584
#> GSM225657     1  0.0609     0.9670 0.980 0.000 0.000 0.020 0.000
#> GSM225377     1  0.1717     0.9342 0.936 0.000 0.004 0.052 0.008
#> GSM225656     1  0.0609     0.9670 0.980 0.000 0.000 0.020 0.000
#> GSM225347     2  0.2735     0.6330 0.036 0.880 0.000 0.084 0.000
#> GSM225660     1  0.0510     0.9679 0.984 0.000 0.000 0.016 0.000
#> GSM225712     1  0.0510     0.9655 0.984 0.000 0.000 0.016 0.000
#> GSM225663     1  0.0510     0.9679 0.984 0.000 0.000 0.016 0.000
#> GSM225373     1  0.0510     0.9655 0.984 0.000 0.000 0.016 0.000
#> GSM225366     4  0.5326     0.2745 0.028 0.004 0.372 0.584 0.012
#> GSM225380     5  0.3455     0.6788 0.000 0.008 0.000 0.208 0.784
#> GSM225351     2  0.2769     0.6314 0.000 0.876 0.000 0.092 0.032
#> GSM225369     5  0.2077     0.7154 0.000 0.008 0.000 0.084 0.908
#> GSM225358     2  0.4117     0.5497 0.000 0.788 0.000 0.116 0.096
#> GSM225649     5  0.4193     0.5590 0.000 0.012 0.000 0.304 0.684
#> GSM225355     2  0.2795     0.6238 0.000 0.872 0.000 0.100 0.028
#> GSM225361     5  0.4321     0.3831 0.000 0.004 0.000 0.396 0.600
#> GSM225655     4  0.4872     0.5124 0.000 0.160 0.000 0.720 0.120
#> GSM225376     4  0.4288     0.0993 0.000 0.004 0.000 0.612 0.384
#> GSM225654     4  0.4444     0.5212 0.000 0.104 0.000 0.760 0.136
#> GSM225348     2  0.3276     0.5893 0.000 0.836 0.000 0.132 0.032
#> GSM225659     4  0.4098     0.5418 0.000 0.156 0.000 0.780 0.064
#> GSM225378     1  0.2536     0.8579 0.868 0.000 0.004 0.128 0.000
#> GSM225661     4  0.5197     0.1773 0.408 0.004 0.028 0.556 0.004
#> GSM225372     4  0.6218     0.3905 0.284 0.000 0.004 0.552 0.160
#> GSM225365     1  0.0290     0.9681 0.992 0.000 0.000 0.008 0.000
#> GSM225860     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225875     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225878     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225885     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225867     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225871     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225881     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225887     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM225374     1  0.1718     0.8700 0.932 0.000 0.000 0.044 0.008 0.016
#> GSM225349     6  0.2793     0.7994 0.000 0.200 0.000 0.000 0.000 0.800
#> GSM225367     6  0.4881     0.0532 0.000 0.000 0.004 0.060 0.356 0.580
#> GSM225356     6  0.2664     0.8126 0.000 0.184 0.000 0.000 0.000 0.816
#> GSM225353     6  0.3020     0.8240 0.000 0.156 0.000 0.008 0.012 0.824
#> GSM225653     6  0.2492     0.8125 0.000 0.068 0.000 0.008 0.036 0.888
#> GSM209847     6  0.2762     0.8032 0.000 0.196 0.000 0.000 0.000 0.804
#> GSM225658     6  0.2009     0.8298 0.000 0.084 0.000 0.004 0.008 0.904
#> GSM225370     1  0.1787     0.8686 0.920 0.000 0.000 0.068 0.004 0.008
#> GSM225364     6  0.2110     0.8298 0.000 0.084 0.000 0.004 0.012 0.900
#> GSM225645     5  0.3013     0.6861 0.000 0.004 0.000 0.024 0.832 0.140
#> GSM225350     2  0.2595     0.8135 0.004 0.836 0.000 0.000 0.000 0.160
#> GSM225368     5  0.4803     0.5193 0.000 0.000 0.004 0.064 0.616 0.316
#> GSM225357     2  0.3804     0.7332 0.004 0.756 0.000 0.012 0.016 0.212
#> GSM225651     5  0.2492     0.6955 0.000 0.004 0.000 0.020 0.876 0.100
#> GSM225354     2  0.2212     0.8484 0.008 0.880 0.000 0.000 0.000 0.112
#> GSM225360     5  0.6795     0.3790 0.120 0.004 0.028 0.240 0.548 0.060
#> GSM225657     1  0.2213     0.8398 0.908 0.048 0.000 0.032 0.000 0.012
#> GSM225377     1  0.4682     0.7000 0.704 0.004 0.004 0.220 0.056 0.012
#> GSM225656     1  0.1353     0.8672 0.952 0.012 0.000 0.024 0.000 0.012
#> GSM225347     2  0.1572     0.8622 0.028 0.936 0.000 0.000 0.000 0.036
#> GSM225660     1  0.1078     0.8706 0.964 0.008 0.000 0.016 0.000 0.012
#> GSM225712     1  0.2238     0.8606 0.900 0.004 0.000 0.076 0.016 0.004
#> GSM225663     1  0.0984     0.8713 0.968 0.008 0.000 0.012 0.000 0.012
#> GSM225373     1  0.2505     0.8551 0.888 0.004 0.000 0.080 0.016 0.012
#> GSM225366     4  0.4029     0.5825 0.020 0.012 0.164 0.780 0.020 0.004
#> GSM225380     5  0.2798     0.6767 0.000 0.020 0.000 0.056 0.876 0.048
#> GSM225351     2  0.1605     0.8720 0.000 0.936 0.000 0.016 0.004 0.044
#> GSM225369     5  0.3992     0.6508 0.000 0.000 0.004 0.064 0.756 0.176
#> GSM225358     2  0.4271     0.7223 0.000 0.768 0.000 0.044 0.136 0.052
#> GSM225649     5  0.2488     0.6633 0.000 0.016 0.000 0.076 0.888 0.020
#> GSM225355     2  0.1232     0.8698 0.000 0.956 0.000 0.016 0.004 0.024
#> GSM225361     5  0.4610     0.5274 0.000 0.024 0.004 0.240 0.696 0.036
#> GSM225655     4  0.6263     0.2874 0.000 0.240 0.000 0.432 0.316 0.012
#> GSM225376     5  0.4466     0.2099 0.000 0.032 0.000 0.352 0.612 0.004
#> GSM225654     4  0.4765     0.5587 0.000 0.112 0.000 0.680 0.204 0.004
#> GSM225348     2  0.1367     0.8505 0.000 0.944 0.000 0.044 0.000 0.012
#> GSM225659     4  0.4478     0.6135 0.000 0.148 0.000 0.728 0.116 0.008
#> GSM225378     1  0.4685     0.4450 0.576 0.004 0.000 0.388 0.016 0.016
#> GSM225661     4  0.3686     0.5739 0.172 0.008 0.012 0.788 0.000 0.020
#> GSM225372     4  0.5256     0.4684 0.152 0.004 0.000 0.676 0.144 0.024
#> GSM225365     1  0.1026     0.8719 0.968 0.008 0.004 0.012 0.000 0.008
#> GSM225860     3  0.0291     0.9969 0.004 0.000 0.992 0.004 0.000 0.000
#> GSM225875     3  0.0146     0.9990 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM225878     3  0.0146     0.9990 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM225885     3  0.0146     0.9990 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM225867     3  0.0291     0.9969 0.004 0.000 0.992 0.004 0.000 0.000
#> GSM225871     3  0.0146     0.9990 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM225881     3  0.0146     0.9990 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM225887     3  0.0146     0.9990 0.004 0.000 0.996 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n cell.type(p) agent(p)  time(p) individual(p) k
#> SD:skmeans 50     3.11e-03   0.6852 9.25e-05      2.11e-02 2
#> SD:skmeans 49     9.76e-04   0.0946 6.17e-05      3.16e-04 3
#> SD:skmeans 45     1.81e-08   0.0196 1.63e-05      8.32e-05 4
#> SD:skmeans 43     1.03e-08   0.0761 6.14e-06      1.68e-05 5
#> SD:skmeans 44     2.32e-08   0.0325 5.47e-09      5.76e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.651           0.887       0.931         0.3327 0.726   0.726
#> 3 3 0.779           0.836       0.927         0.8783 0.641   0.505
#> 4 4 0.997           0.956       0.980         0.1966 0.836   0.580
#> 5 5 0.759           0.676       0.863         0.0681 0.897   0.624
#> 6 6 0.845           0.716       0.888         0.0323 0.975   0.870

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM225374     2  0.6801      0.841 0.180 0.820
#> GSM225349     2  0.0000      0.914 0.000 1.000
#> GSM225367     2  0.0000      0.914 0.000 1.000
#> GSM225356     2  0.0000      0.914 0.000 1.000
#> GSM225353     2  0.0000      0.914 0.000 1.000
#> GSM225653     2  0.0000      0.914 0.000 1.000
#> GSM209847     2  0.0000      0.914 0.000 1.000
#> GSM225658     2  0.0000      0.914 0.000 1.000
#> GSM225370     2  0.6801      0.841 0.180 0.820
#> GSM225364     2  0.0000      0.914 0.000 1.000
#> GSM225645     2  0.0938      0.914 0.012 0.988
#> GSM225350     2  0.0000      0.914 0.000 1.000
#> GSM225368     2  0.0000      0.914 0.000 1.000
#> GSM225357     2  0.0000      0.914 0.000 1.000
#> GSM225651     2  0.0938      0.914 0.012 0.988
#> GSM225354     2  0.0000      0.914 0.000 1.000
#> GSM225360     2  0.4815      0.883 0.104 0.896
#> GSM225657     2  0.4431      0.888 0.092 0.908
#> GSM225377     2  0.6801      0.841 0.180 0.820
#> GSM225656     2  0.6801      0.841 0.180 0.820
#> GSM225347     2  0.0000      0.914 0.000 1.000
#> GSM225660     2  0.6801      0.841 0.180 0.820
#> GSM225712     2  0.9866      0.442 0.432 0.568
#> GSM225663     2  0.9732      0.507 0.404 0.596
#> GSM225373     2  0.9552      0.565 0.376 0.624
#> GSM225366     2  0.6801      0.841 0.180 0.820
#> GSM225380     2  0.0376      0.914 0.004 0.996
#> GSM225351     2  0.0000      0.914 0.000 1.000
#> GSM225369     2  0.0000      0.914 0.000 1.000
#> GSM225358     2  0.0000      0.914 0.000 1.000
#> GSM225649     2  0.0938      0.914 0.012 0.988
#> GSM225355     2  0.0000      0.914 0.000 1.000
#> GSM225361     2  0.1843      0.911 0.028 0.972
#> GSM225655     2  0.0938      0.914 0.012 0.988
#> GSM225376     2  0.4022      0.893 0.080 0.920
#> GSM225654     2  0.2423      0.907 0.040 0.960
#> GSM225348     2  0.0000      0.914 0.000 1.000
#> GSM225659     2  0.1843      0.911 0.028 0.972
#> GSM225378     2  0.6801      0.841 0.180 0.820
#> GSM225661     2  0.6801      0.841 0.180 0.820
#> GSM225372     2  0.6801      0.841 0.180 0.820
#> GSM225365     2  0.6801      0.841 0.180 0.820
#> GSM225860     1  0.0000      1.000 1.000 0.000
#> GSM225875     1  0.0000      1.000 1.000 0.000
#> GSM225878     1  0.0000      1.000 1.000 0.000
#> GSM225885     1  0.0000      1.000 1.000 0.000
#> GSM225867     1  0.0000      1.000 1.000 0.000
#> GSM225871     1  0.0000      1.000 1.000 0.000
#> GSM225881     1  0.0000      1.000 1.000 0.000
#> GSM225887     1  0.0000      1.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2 p3
#> GSM225374     1  0.0000      0.970 1.000 0.000  0
#> GSM225349     2  0.0000      0.807 0.000 1.000  0
#> GSM225367     2  0.0000      0.807 0.000 1.000  0
#> GSM225356     2  0.0000      0.807 0.000 1.000  0
#> GSM225353     2  0.0000      0.807 0.000 1.000  0
#> GSM225653     2  0.6026      0.498 0.376 0.624  0
#> GSM209847     2  0.0000      0.807 0.000 1.000  0
#> GSM225658     2  0.0000      0.807 0.000 1.000  0
#> GSM225370     1  0.0000      0.970 1.000 0.000  0
#> GSM225364     2  0.0000      0.807 0.000 1.000  0
#> GSM225645     2  0.6062      0.389 0.384 0.616  0
#> GSM225350     2  0.0237      0.806 0.004 0.996  0
#> GSM225368     2  0.0000      0.807 0.000 1.000  0
#> GSM225357     2  0.6026      0.498 0.376 0.624  0
#> GSM225651     1  0.5138      0.593 0.748 0.252  0
#> GSM225354     2  0.6008      0.505 0.372 0.628  0
#> GSM225360     1  0.1289      0.956 0.968 0.032  0
#> GSM225657     1  0.1289      0.956 0.968 0.032  0
#> GSM225377     1  0.0000      0.970 1.000 0.000  0
#> GSM225656     1  0.0000      0.970 1.000 0.000  0
#> GSM225347     2  0.6026      0.498 0.376 0.624  0
#> GSM225660     1  0.0000      0.970 1.000 0.000  0
#> GSM225712     1  0.0000      0.970 1.000 0.000  0
#> GSM225663     1  0.0000      0.970 1.000 0.000  0
#> GSM225373     1  0.0000      0.970 1.000 0.000  0
#> GSM225366     1  0.0424      0.967 0.992 0.008  0
#> GSM225380     2  0.4654      0.670 0.208 0.792  0
#> GSM225351     2  0.0000      0.807 0.000 1.000  0
#> GSM225369     2  0.0000      0.807 0.000 1.000  0
#> GSM225358     2  0.0000      0.807 0.000 1.000  0
#> GSM225649     2  0.6062      0.389 0.384 0.616  0
#> GSM225355     2  0.0000      0.807 0.000 1.000  0
#> GSM225361     1  0.1411      0.953 0.964 0.036  0
#> GSM225655     2  0.6299      0.263 0.476 0.524  0
#> GSM225376     1  0.1411      0.953 0.964 0.036  0
#> GSM225654     1  0.1289      0.956 0.968 0.032  0
#> GSM225348     2  0.5016      0.669 0.240 0.760  0
#> GSM225659     1  0.1411      0.953 0.964 0.036  0
#> GSM225378     1  0.0000      0.970 1.000 0.000  0
#> GSM225661     1  0.0000      0.970 1.000 0.000  0
#> GSM225372     1  0.0000      0.970 1.000 0.000  0
#> GSM225365     1  0.0000      0.970 1.000 0.000  0
#> GSM225860     3  0.0000      1.000 0.000 0.000  1
#> GSM225875     3  0.0000      1.000 0.000 0.000  1
#> GSM225878     3  0.0000      1.000 0.000 0.000  1
#> GSM225885     3  0.0000      1.000 0.000 0.000  1
#> GSM225867     3  0.0000      1.000 0.000 0.000  1
#> GSM225871     3  0.0000      1.000 0.000 0.000  1
#> GSM225881     3  0.0000      1.000 0.000 0.000  1
#> GSM225887     3  0.0000      1.000 0.000 0.000  1

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette   p1    p2 p3    p4
#> GSM225374     1  0.0000      0.985 1.00 0.000  0 0.000
#> GSM225349     2  0.0000      0.981 0.00 1.000  0 0.000
#> GSM225367     2  0.0000      0.981 0.00 1.000  0 0.000
#> GSM225356     2  0.0000      0.981 0.00 1.000  0 0.000
#> GSM225353     2  0.0000      0.981 0.00 1.000  0 0.000
#> GSM225653     2  0.0000      0.981 0.00 1.000  0 0.000
#> GSM209847     2  0.0000      0.981 0.00 1.000  0 0.000
#> GSM225658     2  0.0000      0.981 0.00 1.000  0 0.000
#> GSM225370     1  0.0000      0.985 1.00 0.000  0 0.000
#> GSM225364     2  0.0000      0.981 0.00 1.000  0 0.000
#> GSM225645     4  0.2281      0.880 0.00 0.096  0 0.904
#> GSM225350     2  0.0000      0.981 0.00 1.000  0 0.000
#> GSM225368     2  0.0469      0.972 0.00 0.988  0 0.012
#> GSM225357     2  0.0000      0.981 0.00 1.000  0 0.000
#> GSM225651     4  0.2281      0.880 0.00 0.096  0 0.904
#> GSM225354     2  0.0000      0.981 0.00 1.000  0 0.000
#> GSM225360     1  0.0000      0.985 1.00 0.000  0 0.000
#> GSM225657     1  0.0000      0.985 1.00 0.000  0 0.000
#> GSM225377     1  0.0000      0.985 1.00 0.000  0 0.000
#> GSM225656     1  0.0000      0.985 1.00 0.000  0 0.000
#> GSM225347     2  0.0000      0.981 0.00 1.000  0 0.000
#> GSM225660     1  0.0000      0.985 1.00 0.000  0 0.000
#> GSM225712     1  0.0000      0.985 1.00 0.000  0 0.000
#> GSM225663     1  0.0000      0.985 1.00 0.000  0 0.000
#> GSM225373     1  0.0000      0.985 1.00 0.000  0 0.000
#> GSM225366     1  0.3400      0.786 0.82 0.000  0 0.180
#> GSM225380     4  0.0592      0.929 0.00 0.016  0 0.984
#> GSM225351     2  0.2011      0.918 0.00 0.920  0 0.080
#> GSM225369     4  0.1211      0.919 0.00 0.040  0 0.960
#> GSM225358     4  0.4454      0.544 0.00 0.308  0 0.692
#> GSM225649     4  0.0000      0.933 0.00 0.000  0 1.000
#> GSM225355     2  0.2011      0.918 0.00 0.920  0 0.080
#> GSM225361     4  0.0000      0.933 0.00 0.000  0 1.000
#> GSM225655     4  0.0000      0.933 0.00 0.000  0 1.000
#> GSM225376     4  0.0000      0.933 0.00 0.000  0 1.000
#> GSM225654     4  0.0000      0.933 0.00 0.000  0 1.000
#> GSM225348     2  0.2281      0.903 0.00 0.904  0 0.096
#> GSM225659     4  0.0000      0.933 0.00 0.000  0 1.000
#> GSM225378     1  0.0000      0.985 1.00 0.000  0 0.000
#> GSM225661     1  0.0707      0.969 0.98 0.000  0 0.020
#> GSM225372     1  0.0000      0.985 1.00 0.000  0 0.000
#> GSM225365     1  0.0000      0.985 1.00 0.000  0 0.000
#> GSM225860     3  0.0000      1.000 0.00 0.000  1 0.000
#> GSM225875     3  0.0000      1.000 0.00 0.000  1 0.000
#> GSM225878     3  0.0000      1.000 0.00 0.000  1 0.000
#> GSM225885     3  0.0000      1.000 0.00 0.000  1 0.000
#> GSM225867     3  0.0000      1.000 0.00 0.000  1 0.000
#> GSM225871     3  0.0000      1.000 0.00 0.000  1 0.000
#> GSM225881     3  0.0000      1.000 0.00 0.000  1 0.000
#> GSM225887     3  0.0000      1.000 0.00 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> GSM225374     1  0.0000     0.8299 1.000 0.000  0 0.000 0.000
#> GSM225349     2  0.0000     0.8271 0.000 1.000  0 0.000 0.000
#> GSM225367     2  0.2280     0.7635 0.000 0.880  0 0.000 0.120
#> GSM225356     2  0.0000     0.8271 0.000 1.000  0 0.000 0.000
#> GSM225353     2  0.0000     0.8271 0.000 1.000  0 0.000 0.000
#> GSM225653     2  0.4268    -0.0574 0.000 0.556  0 0.444 0.000
#> GSM209847     2  0.0000     0.8271 0.000 1.000  0 0.000 0.000
#> GSM225658     2  0.0000     0.8271 0.000 1.000  0 0.000 0.000
#> GSM225370     1  0.0000     0.8299 1.000 0.000  0 0.000 0.000
#> GSM225364     2  0.0000     0.8271 0.000 1.000  0 0.000 0.000
#> GSM225645     5  0.2230     0.7845 0.000 0.116  0 0.000 0.884
#> GSM225350     2  0.0000     0.8271 0.000 1.000  0 0.000 0.000
#> GSM225368     2  0.2813     0.7318 0.000 0.832  0 0.000 0.168
#> GSM225357     2  0.4268    -0.0574 0.000 0.556  0 0.444 0.000
#> GSM225651     5  0.2338     0.7883 0.000 0.112  0 0.004 0.884
#> GSM225354     4  0.4294     0.0990 0.000 0.468  0 0.532 0.000
#> GSM225360     4  0.6070    -0.0643 0.436 0.000  0 0.444 0.120
#> GSM225657     1  0.4268     0.1670 0.556 0.000  0 0.444 0.000
#> GSM225377     1  0.0404     0.8304 0.988 0.000  0 0.012 0.000
#> GSM225656     1  0.4268     0.1670 0.556 0.000  0 0.444 0.000
#> GSM225347     4  0.4582     0.2080 0.012 0.416  0 0.572 0.000
#> GSM225660     1  0.4268     0.1670 0.556 0.000  0 0.444 0.000
#> GSM225712     1  0.0404     0.8304 0.988 0.000  0 0.012 0.000
#> GSM225663     1  0.0000     0.8299 1.000 0.000  0 0.000 0.000
#> GSM225373     1  0.0404     0.8304 0.988 0.000  0 0.012 0.000
#> GSM225366     4  0.2891     0.5666 0.176 0.000  0 0.824 0.000
#> GSM225380     5  0.2280     0.8259 0.000 0.000  0 0.120 0.880
#> GSM225351     2  0.2583     0.7277 0.000 0.864  0 0.132 0.004
#> GSM225369     5  0.0000     0.7822 0.000 0.000  0 0.000 1.000
#> GSM225358     5  0.6006     0.5017 0.000 0.300  0 0.144 0.556
#> GSM225649     5  0.2280     0.8259 0.000 0.000  0 0.120 0.880
#> GSM225355     2  0.3561     0.6138 0.000 0.740  0 0.260 0.000
#> GSM225361     5  0.4101     0.5804 0.000 0.000  0 0.372 0.628
#> GSM225655     4  0.2605     0.5265 0.000 0.000  0 0.852 0.148
#> GSM225376     5  0.2280     0.8259 0.000 0.000  0 0.120 0.880
#> GSM225654     4  0.1851     0.5797 0.000 0.000  0 0.912 0.088
#> GSM225348     4  0.3424     0.4181 0.000 0.240  0 0.760 0.000
#> GSM225659     4  0.0000     0.6102 0.000 0.000  0 1.000 0.000
#> GSM225378     1  0.0404     0.8304 0.988 0.000  0 0.012 0.000
#> GSM225661     4  0.3508     0.4502 0.252 0.000  0 0.748 0.000
#> GSM225372     1  0.0404     0.8304 0.988 0.000  0 0.012 0.000
#> GSM225365     1  0.0000     0.8299 1.000 0.000  0 0.000 0.000
#> GSM225860     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> GSM225875     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> GSM225878     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> GSM225885     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> GSM225867     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> GSM225871     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> GSM225881     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> GSM225887     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4    p5    p6
#> GSM225374     1  0.0260    0.83746 0.992 0.000  0 0.000 0.008 0.000
#> GSM225349     6  0.0000    0.84338 0.000 0.000  0 0.000 0.000 1.000
#> GSM225367     5  0.0363    0.98613 0.000 0.000  0 0.000 0.988 0.012
#> GSM225356     6  0.0000    0.84338 0.000 0.000  0 0.000 0.000 1.000
#> GSM225353     6  0.0000    0.84338 0.000 0.000  0 0.000 0.000 1.000
#> GSM225653     6  0.3823   -0.00846 0.000 0.000  0 0.436 0.000 0.564
#> GSM209847     6  0.0000    0.84338 0.000 0.000  0 0.000 0.000 1.000
#> GSM225658     6  0.0000    0.84338 0.000 0.000  0 0.000 0.000 1.000
#> GSM225370     1  0.0260    0.83746 0.992 0.000  0 0.000 0.008 0.000
#> GSM225364     6  0.0000    0.84338 0.000 0.000  0 0.000 0.000 1.000
#> GSM225645     2  0.0146    0.84832 0.000 0.996  0 0.000 0.000 0.004
#> GSM225350     6  0.0508    0.83625 0.000 0.012  0 0.000 0.004 0.984
#> GSM225368     5  0.0405    0.99145 0.000 0.008  0 0.000 0.988 0.004
#> GSM225357     6  0.4152   -0.03749 0.000 0.012  0 0.440 0.000 0.548
#> GSM225651     2  0.0146    0.84832 0.000 0.996  0 0.000 0.000 0.004
#> GSM225354     4  0.4300    0.06610 0.000 0.012  0 0.528 0.004 0.456
#> GSM225360     4  0.5561    0.21929 0.136 0.000  0 0.440 0.424 0.000
#> GSM225657     1  0.4385    0.19596 0.540 0.012  0 0.440 0.008 0.000
#> GSM225377     1  0.0146    0.83792 0.996 0.000  0 0.004 0.000 0.000
#> GSM225656     1  0.4062    0.21949 0.552 0.000  0 0.440 0.008 0.000
#> GSM225347     4  0.4536    0.19438 0.004 0.012  0 0.576 0.012 0.396
#> GSM225660     1  0.4062    0.21949 0.552 0.000  0 0.440 0.008 0.000
#> GSM225712     1  0.0146    0.83792 0.996 0.000  0 0.004 0.000 0.000
#> GSM225663     1  0.0260    0.83746 0.992 0.000  0 0.000 0.008 0.000
#> GSM225373     1  0.0146    0.83792 0.996 0.000  0 0.004 0.000 0.000
#> GSM225366     4  0.2664    0.59768 0.184 0.000  0 0.816 0.000 0.000
#> GSM225380     2  0.0363    0.85342 0.000 0.988  0 0.012 0.000 0.000
#> GSM225351     6  0.1605    0.80299 0.000 0.016  0 0.044 0.004 0.936
#> GSM225369     5  0.0363    0.98874 0.000 0.012  0 0.000 0.988 0.000
#> GSM225358     2  0.4302    0.52028 0.000 0.668  0 0.036 0.004 0.292
#> GSM225649     2  0.0363    0.85342 0.000 0.988  0 0.012 0.000 0.000
#> GSM225355     6  0.3089    0.67545 0.000 0.008  0 0.188 0.004 0.800
#> GSM225361     2  0.3647    0.48690 0.000 0.640  0 0.360 0.000 0.000
#> GSM225655     4  0.2219    0.61223 0.000 0.136  0 0.864 0.000 0.000
#> GSM225376     2  0.0363    0.85342 0.000 0.988  0 0.012 0.000 0.000
#> GSM225654     4  0.1556    0.65018 0.000 0.080  0 0.920 0.000 0.000
#> GSM225348     4  0.3276    0.47672 0.000 0.004  0 0.764 0.004 0.228
#> GSM225659     4  0.0146    0.65351 0.000 0.004  0 0.996 0.000 0.000
#> GSM225378     1  0.0146    0.83792 0.996 0.000  0 0.004 0.000 0.000
#> GSM225661     4  0.2454    0.61137 0.160 0.000  0 0.840 0.000 0.000
#> GSM225372     1  0.0146    0.83792 0.996 0.000  0 0.004 0.000 0.000
#> GSM225365     1  0.0260    0.83746 0.992 0.000  0 0.000 0.008 0.000
#> GSM225860     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225875     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225878     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225885     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225867     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225871     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225881     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225887     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n cell.type(p) agent(p)  time(p) individual(p) k
#> SD:pam 49     9.35e-11  0.85357 5.67e-04      8.97e-06 2
#> SD:pam 44     2.79e-10  0.83641 1.01e-06      2.19e-06 3
#> SD:pam 50     7.99e-11  0.00593 1.26e-07      1.37e-05 4
#> SD:pam 40     4.33e-08  0.08672 8.37e-08      8.39e-05 5
#> SD:pam 40     1.49e-07  0.28354 1.68e-06      6.83e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.994       0.997         0.2708 0.726   0.726
#> 3 3 0.995           0.946       0.965         0.8016 0.778   0.694
#> 4 4 0.585           0.700       0.808         0.4001 0.767   0.538
#> 5 5 0.821           0.856       0.920         0.1395 0.877   0.585
#> 6 6 0.821           0.866       0.890         0.0735 0.918   0.620

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM225374     2   0.000      1.000 0.000 1.000
#> GSM225349     2   0.000      1.000 0.000 1.000
#> GSM225367     2   0.000      1.000 0.000 1.000
#> GSM225356     2   0.000      1.000 0.000 1.000
#> GSM225353     2   0.000      1.000 0.000 1.000
#> GSM225653     2   0.000      1.000 0.000 1.000
#> GSM209847     2   0.000      1.000 0.000 1.000
#> GSM225658     2   0.000      1.000 0.000 1.000
#> GSM225370     2   0.000      1.000 0.000 1.000
#> GSM225364     2   0.000      1.000 0.000 1.000
#> GSM225645     2   0.000      1.000 0.000 1.000
#> GSM225350     2   0.000      1.000 0.000 1.000
#> GSM225368     2   0.000      1.000 0.000 1.000
#> GSM225357     2   0.000      1.000 0.000 1.000
#> GSM225651     2   0.000      1.000 0.000 1.000
#> GSM225354     2   0.000      1.000 0.000 1.000
#> GSM225360     2   0.000      1.000 0.000 1.000
#> GSM225657     2   0.000      1.000 0.000 1.000
#> GSM225377     2   0.000      1.000 0.000 1.000
#> GSM225656     2   0.000      1.000 0.000 1.000
#> GSM225347     2   0.000      1.000 0.000 1.000
#> GSM225660     2   0.000      1.000 0.000 1.000
#> GSM225712     2   0.000      1.000 0.000 1.000
#> GSM225663     2   0.000      1.000 0.000 1.000
#> GSM225373     2   0.000      1.000 0.000 1.000
#> GSM225366     2   0.000      1.000 0.000 1.000
#> GSM225380     2   0.000      1.000 0.000 1.000
#> GSM225351     2   0.000      1.000 0.000 1.000
#> GSM225369     2   0.000      1.000 0.000 1.000
#> GSM225358     2   0.000      1.000 0.000 1.000
#> GSM225649     2   0.000      1.000 0.000 1.000
#> GSM225355     2   0.000      1.000 0.000 1.000
#> GSM225361     2   0.000      1.000 0.000 1.000
#> GSM225655     2   0.000      1.000 0.000 1.000
#> GSM225376     2   0.000      1.000 0.000 1.000
#> GSM225654     2   0.000      1.000 0.000 1.000
#> GSM225348     2   0.000      1.000 0.000 1.000
#> GSM225659     2   0.000      1.000 0.000 1.000
#> GSM225378     2   0.000      1.000 0.000 1.000
#> GSM225661     2   0.000      1.000 0.000 1.000
#> GSM225372     2   0.000      1.000 0.000 1.000
#> GSM225365     2   0.000      1.000 0.000 1.000
#> GSM225860     1   0.000      0.979 1.000 0.000
#> GSM225875     1   0.000      0.979 1.000 0.000
#> GSM225878     1   0.000      0.979 1.000 0.000
#> GSM225885     1   0.000      0.979 1.000 0.000
#> GSM225867     1   0.605      0.826 0.852 0.148
#> GSM225871     1   0.000      0.979 1.000 0.000
#> GSM225881     1   0.000      0.979 1.000 0.000
#> GSM225887     1   0.000      0.979 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     1  0.6309     0.0736 0.504 0.496 0.000
#> GSM225349     2  0.0424     0.9755 0.008 0.992 0.000
#> GSM225367     2  0.2165     0.9589 0.064 0.936 0.000
#> GSM225356     2  0.0424     0.9755 0.008 0.992 0.000
#> GSM225353     2  0.0424     0.9755 0.008 0.992 0.000
#> GSM225653     2  0.0424     0.9755 0.008 0.992 0.000
#> GSM209847     2  0.0424     0.9755 0.008 0.992 0.000
#> GSM225658     2  0.0424     0.9755 0.008 0.992 0.000
#> GSM225370     1  0.2261     0.8710 0.932 0.068 0.000
#> GSM225364     2  0.0424     0.9755 0.008 0.992 0.000
#> GSM225645     2  0.1411     0.9760 0.036 0.964 0.000
#> GSM225350     2  0.0000     0.9768 0.000 1.000 0.000
#> GSM225368     2  0.2165     0.9589 0.064 0.936 0.000
#> GSM225357     2  0.0000     0.9768 0.000 1.000 0.000
#> GSM225651     2  0.1163     0.9770 0.028 0.972 0.000
#> GSM225354     2  0.0000     0.9768 0.000 1.000 0.000
#> GSM225360     2  0.2066     0.9601 0.060 0.940 0.000
#> GSM225657     2  0.1031     0.9772 0.024 0.976 0.000
#> GSM225377     2  0.1163     0.9757 0.028 0.972 0.000
#> GSM225656     1  0.1860     0.8863 0.948 0.052 0.000
#> GSM225347     2  0.0000     0.9768 0.000 1.000 0.000
#> GSM225660     1  0.1753     0.8892 0.952 0.048 0.000
#> GSM225712     1  0.1753     0.8892 0.952 0.048 0.000
#> GSM225663     1  0.1753     0.8892 0.952 0.048 0.000
#> GSM225373     1  0.1753     0.8892 0.952 0.048 0.000
#> GSM225366     2  0.1289     0.9761 0.032 0.968 0.000
#> GSM225380     2  0.1163     0.9770 0.028 0.972 0.000
#> GSM225351     2  0.0424     0.9749 0.008 0.992 0.000
#> GSM225369     2  0.2165     0.9589 0.064 0.936 0.000
#> GSM225358     2  0.1031     0.9780 0.024 0.976 0.000
#> GSM225649     2  0.1289     0.9770 0.032 0.968 0.000
#> GSM225355     2  0.0424     0.9749 0.008 0.992 0.000
#> GSM225361     2  0.2165     0.9587 0.064 0.936 0.000
#> GSM225655     2  0.1289     0.9771 0.032 0.968 0.000
#> GSM225376     2  0.1289     0.9761 0.032 0.968 0.000
#> GSM225654     2  0.1289     0.9761 0.032 0.968 0.000
#> GSM225348     2  0.0424     0.9749 0.008 0.992 0.000
#> GSM225659     2  0.1411     0.9759 0.036 0.964 0.000
#> GSM225378     2  0.1964     0.9557 0.056 0.944 0.000
#> GSM225661     2  0.1163     0.9757 0.028 0.972 0.000
#> GSM225372     2  0.1163     0.9757 0.028 0.972 0.000
#> GSM225365     1  0.1753     0.8892 0.952 0.048 0.000
#> GSM225860     3  0.0000     0.9943 0.000 0.000 1.000
#> GSM225875     3  0.0000     0.9943 0.000 0.000 1.000
#> GSM225878     3  0.0000     0.9943 0.000 0.000 1.000
#> GSM225885     3  0.0000     0.9943 0.000 0.000 1.000
#> GSM225867     3  0.1031     0.9598 0.000 0.024 0.976
#> GSM225871     3  0.0000     0.9943 0.000 0.000 1.000
#> GSM225881     3  0.0000     0.9943 0.000 0.000 1.000
#> GSM225887     3  0.0000     0.9943 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM225374     1  0.6284     0.6615 0.664 0.172 0.000 0.164
#> GSM225349     2  0.6041     0.6896 0.060 0.608 0.000 0.332
#> GSM225367     2  0.0817     0.5482 0.000 0.976 0.000 0.024
#> GSM225356     2  0.6041     0.6896 0.060 0.608 0.000 0.332
#> GSM225353     2  0.5990     0.6880 0.056 0.608 0.000 0.336
#> GSM225653     2  0.6041     0.6896 0.060 0.608 0.000 0.332
#> GSM209847     2  0.6041     0.6896 0.060 0.608 0.000 0.332
#> GSM225658     2  0.6041     0.6896 0.060 0.608 0.000 0.332
#> GSM225370     1  0.2593     0.9108 0.892 0.004 0.000 0.104
#> GSM225364     2  0.6041     0.6896 0.060 0.608 0.000 0.332
#> GSM225645     2  0.3311     0.6237 0.000 0.828 0.000 0.172
#> GSM225350     4  0.3972     0.6221 0.008 0.204 0.000 0.788
#> GSM225368     2  0.0817     0.5482 0.000 0.976 0.000 0.024
#> GSM225357     4  0.4158     0.5970 0.008 0.224 0.000 0.768
#> GSM225651     2  0.4585     0.6460 0.000 0.668 0.000 0.332
#> GSM225354     4  0.4466     0.6154 0.036 0.180 0.000 0.784
#> GSM225360     4  0.7171    -0.0657 0.136 0.400 0.000 0.464
#> GSM225657     4  0.5141     0.5420 0.268 0.032 0.000 0.700
#> GSM225377     4  0.5188     0.5439 0.240 0.044 0.000 0.716
#> GSM225656     1  0.2011     0.9283 0.920 0.000 0.000 0.080
#> GSM225347     4  0.3674     0.6636 0.044 0.104 0.000 0.852
#> GSM225660     1  0.1474     0.9334 0.948 0.000 0.000 0.052
#> GSM225712     1  0.1557     0.9205 0.944 0.000 0.000 0.056
#> GSM225663     1  0.1557     0.9335 0.944 0.000 0.000 0.056
#> GSM225373     1  0.1557     0.9205 0.944 0.000 0.000 0.056
#> GSM225366     4  0.4467     0.5973 0.172 0.040 0.000 0.788
#> GSM225380     2  0.4855     0.5317 0.000 0.600 0.000 0.400
#> GSM225351     4  0.3311     0.6381 0.000 0.172 0.000 0.828
#> GSM225369     2  0.1118     0.5467 0.000 0.964 0.000 0.036
#> GSM225358     4  0.3486     0.6316 0.000 0.188 0.000 0.812
#> GSM225649     2  0.4916     0.4346 0.000 0.576 0.000 0.424
#> GSM225355     4  0.3448     0.6361 0.004 0.168 0.000 0.828
#> GSM225361     2  0.4008     0.3410 0.000 0.756 0.000 0.244
#> GSM225655     4  0.3718     0.6461 0.012 0.168 0.000 0.820
#> GSM225376     4  0.3542     0.6706 0.028 0.120 0.000 0.852
#> GSM225654     4  0.2466     0.6697 0.028 0.056 0.000 0.916
#> GSM225348     4  0.3448     0.6361 0.004 0.168 0.000 0.828
#> GSM225659     4  0.2197     0.6687 0.024 0.048 0.000 0.928
#> GSM225378     4  0.5582     0.3762 0.348 0.032 0.000 0.620
#> GSM225661     4  0.4467     0.5973 0.172 0.040 0.000 0.788
#> GSM225372     4  0.5731     0.5227 0.172 0.116 0.000 0.712
#> GSM225365     1  0.1474     0.9334 0.948 0.000 0.000 0.052
#> GSM225860     3  0.0000     0.9991 0.000 0.000 1.000 0.000
#> GSM225875     3  0.0000     0.9991 0.000 0.000 1.000 0.000
#> GSM225878     3  0.0000     0.9991 0.000 0.000 1.000 0.000
#> GSM225885     3  0.0000     0.9991 0.000 0.000 1.000 0.000
#> GSM225867     3  0.0188     0.9938 0.000 0.000 0.996 0.004
#> GSM225871     3  0.0000     0.9991 0.000 0.000 1.000 0.000
#> GSM225881     3  0.0000     0.9991 0.000 0.000 1.000 0.000
#> GSM225887     3  0.0000     0.9991 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> GSM225374     1  0.2570      0.769 0.880 0.004  0 0.108 0.008
#> GSM225349     2  0.0000      0.967 0.000 1.000  0 0.000 0.000
#> GSM225367     5  0.0000      0.772 0.000 0.000  0 0.000 1.000
#> GSM225356     2  0.0000      0.967 0.000 1.000  0 0.000 0.000
#> GSM225353     2  0.2773      0.783 0.000 0.836  0 0.000 0.164
#> GSM225653     2  0.0000      0.967 0.000 1.000  0 0.000 0.000
#> GSM209847     2  0.0000      0.967 0.000 1.000  0 0.000 0.000
#> GSM225658     2  0.0162      0.965 0.000 0.996  0 0.000 0.004
#> GSM225370     1  0.2127      0.774 0.892 0.000  0 0.108 0.000
#> GSM225364     2  0.0290      0.962 0.000 0.992  0 0.000 0.008
#> GSM225645     5  0.3622      0.756 0.000 0.136  0 0.048 0.816
#> GSM225350     4  0.1549      0.936 0.000 0.040  0 0.944 0.016
#> GSM225368     5  0.0000      0.772 0.000 0.000  0 0.000 1.000
#> GSM225357     4  0.1981      0.920 0.000 0.064  0 0.920 0.016
#> GSM225651     5  0.4930      0.767 0.000 0.084  0 0.220 0.696
#> GSM225354     4  0.1549      0.936 0.000 0.040  0 0.944 0.016
#> GSM225360     5  0.4647      0.764 0.016 0.028  0 0.240 0.716
#> GSM225657     1  0.5131      0.298 0.532 0.024  0 0.436 0.008
#> GSM225377     1  0.4434      0.277 0.536 0.000  0 0.460 0.004
#> GSM225656     1  0.0000      0.804 1.000 0.000  0 0.000 0.000
#> GSM225347     4  0.1331      0.938 0.000 0.040  0 0.952 0.008
#> GSM225660     1  0.0000      0.804 1.000 0.000  0 0.000 0.000
#> GSM225712     1  0.0451      0.802 0.988 0.000  0 0.004 0.008
#> GSM225663     1  0.0162      0.804 0.996 0.000  0 0.004 0.000
#> GSM225373     1  0.0451      0.802 0.988 0.000  0 0.004 0.008
#> GSM225366     4  0.2171      0.908 0.064 0.000  0 0.912 0.024
#> GSM225380     5  0.4770      0.687 0.000 0.036  0 0.320 0.644
#> GSM225351     4  0.0404      0.947 0.000 0.000  0 0.988 0.012
#> GSM225369     5  0.0000      0.772 0.000 0.000  0 0.000 1.000
#> GSM225358     4  0.0404      0.947 0.000 0.000  0 0.988 0.012
#> GSM225649     5  0.4301      0.771 0.000 0.028  0 0.260 0.712
#> GSM225355     4  0.0404      0.947 0.000 0.000  0 0.988 0.012
#> GSM225361     5  0.3131      0.806 0.008 0.028  0 0.104 0.860
#> GSM225655     4  0.0451      0.949 0.008 0.000  0 0.988 0.004
#> GSM225376     4  0.0404      0.948 0.012 0.000  0 0.988 0.000
#> GSM225654     4  0.0404      0.948 0.012 0.000  0 0.988 0.000
#> GSM225348     4  0.0162      0.948 0.000 0.000  0 0.996 0.004
#> GSM225659     4  0.0404      0.948 0.012 0.000  0 0.988 0.000
#> GSM225378     1  0.4182      0.521 0.644 0.000  0 0.352 0.004
#> GSM225661     4  0.1952      0.899 0.084 0.000  0 0.912 0.004
#> GSM225372     4  0.3754      0.805 0.084 0.000  0 0.816 0.100
#> GSM225365     1  0.0000      0.804 1.000 0.000  0 0.000 0.000
#> GSM225860     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225875     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225878     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225885     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225867     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225871     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225881     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225887     3  0.0000      1.000 0.000 0.000  1 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4    p5    p6
#> GSM225374     1  0.4198      0.781 0.768 0.128  0 0.020 0.084 0.000
#> GSM225349     6  0.0000      0.983 0.000 0.000  0 0.000 0.000 1.000
#> GSM225367     5  0.0767      0.808 0.000 0.012  0 0.004 0.976 0.008
#> GSM225356     6  0.0000      0.983 0.000 0.000  0 0.000 0.000 1.000
#> GSM225353     6  0.1806      0.887 0.000 0.004  0 0.000 0.088 0.908
#> GSM225653     6  0.0000      0.983 0.000 0.000  0 0.000 0.000 1.000
#> GSM209847     6  0.0000      0.983 0.000 0.000  0 0.000 0.000 1.000
#> GSM225658     6  0.0000      0.983 0.000 0.000  0 0.000 0.000 1.000
#> GSM225370     1  0.1866      0.901 0.908 0.084  0 0.008 0.000 0.000
#> GSM225364     6  0.0000      0.983 0.000 0.000  0 0.000 0.000 1.000
#> GSM225645     5  0.4022      0.746 0.000 0.040  0 0.016 0.756 0.188
#> GSM225350     2  0.4664      0.712 0.000 0.676  0 0.236 0.004 0.084
#> GSM225368     5  0.0653      0.808 0.000 0.012  0 0.004 0.980 0.004
#> GSM225357     2  0.5056      0.691 0.000 0.644  0 0.220 0.004 0.132
#> GSM225651     5  0.4541      0.766 0.000 0.060  0 0.040 0.740 0.160
#> GSM225354     2  0.4710      0.711 0.000 0.672  0 0.236 0.004 0.088
#> GSM225360     5  0.5094      0.570 0.016 0.308  0 0.028 0.624 0.024
#> GSM225657     2  0.3734      0.782 0.132 0.796  0 0.064 0.004 0.004
#> GSM225377     2  0.1501      0.800 0.076 0.924  0 0.000 0.000 0.000
#> GSM225656     1  0.0632      0.936 0.976 0.024  0 0.000 0.000 0.000
#> GSM225347     2  0.3183      0.756 0.004 0.788  0 0.200 0.000 0.008
#> GSM225660     1  0.0547      0.936 0.980 0.020  0 0.000 0.000 0.000
#> GSM225712     1  0.1398      0.921 0.940 0.052  0 0.000 0.008 0.000
#> GSM225663     1  0.0000      0.931 1.000 0.000  0 0.000 0.000 0.000
#> GSM225373     1  0.1285      0.922 0.944 0.052  0 0.000 0.004 0.000
#> GSM225366     2  0.2886      0.781 0.028 0.872  0 0.060 0.040 0.000
#> GSM225380     5  0.4575      0.770 0.000 0.040  0 0.164 0.736 0.060
#> GSM225351     4  0.1075      0.866 0.000 0.048  0 0.952 0.000 0.000
#> GSM225369     5  0.1074      0.808 0.000 0.012  0 0.028 0.960 0.000
#> GSM225358     4  0.1434      0.864 0.000 0.048  0 0.940 0.012 0.000
#> GSM225649     5  0.4253      0.725 0.000 0.052  0 0.220 0.720 0.008
#> GSM225355     4  0.1075      0.866 0.000 0.048  0 0.952 0.000 0.000
#> GSM225361     5  0.4077      0.760 0.000 0.124  0 0.100 0.768 0.008
#> GSM225655     4  0.2703      0.877 0.000 0.172  0 0.824 0.004 0.000
#> GSM225376     4  0.4196      0.809 0.008 0.240  0 0.712 0.040 0.000
#> GSM225654     4  0.3103      0.867 0.008 0.208  0 0.784 0.000 0.000
#> GSM225348     4  0.2416      0.862 0.000 0.156  0 0.844 0.000 0.000
#> GSM225659     4  0.3292      0.871 0.008 0.200  0 0.784 0.008 0.000
#> GSM225378     2  0.2003      0.781 0.116 0.884  0 0.000 0.000 0.000
#> GSM225661     2  0.1934      0.807 0.044 0.916  0 0.040 0.000 0.000
#> GSM225372     2  0.1798      0.801 0.028 0.932  0 0.020 0.020 0.000
#> GSM225365     1  0.0260      0.934 0.992 0.008  0 0.000 0.000 0.000
#> GSM225860     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225875     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225878     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225885     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225867     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225871     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225881     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225887     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n cell.type(p) agent(p)  time(p) individual(p) k
#> SD:mclust 50     5.95e-11  0.81326 4.48e-04      6.11e-06 2
#> SD:mclust 49     2.29e-11  0.29049 1.16e-04      1.95e-04 3
#> SD:mclust 46     5.67e-10  0.03320 3.19e-06      4.51e-03 4
#> SD:mclust 48     9.44e-10  0.03260 1.77e-09      4.75e-04 5
#> SD:mclust 50     1.39e-09  0.00124 8.26e-09      8.46e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.999           0.945       0.978         0.4919 0.503   0.503
#> 3 3 0.743           0.839       0.927         0.3718 0.678   0.441
#> 4 4 0.673           0.745       0.870         0.1134 0.784   0.453
#> 5 5 0.979           0.940       0.969         0.0728 0.793   0.360
#> 6 6 0.836           0.744       0.861         0.0331 0.967   0.838

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM225374     1  0.8555     0.6211 0.720 0.280
#> GSM225349     2  0.0000     0.9911 0.000 1.000
#> GSM225367     2  0.0000     0.9911 0.000 1.000
#> GSM225356     2  0.0000     0.9911 0.000 1.000
#> GSM225353     2  0.0000     0.9911 0.000 1.000
#> GSM225653     2  0.0000     0.9911 0.000 1.000
#> GSM209847     2  0.0000     0.9911 0.000 1.000
#> GSM225658     2  0.0000     0.9911 0.000 1.000
#> GSM225370     1  0.0672     0.9511 0.992 0.008
#> GSM225364     2  0.0000     0.9911 0.000 1.000
#> GSM225645     2  0.0000     0.9911 0.000 1.000
#> GSM225350     2  0.0000     0.9911 0.000 1.000
#> GSM225368     2  0.0000     0.9911 0.000 1.000
#> GSM225357     2  0.0000     0.9911 0.000 1.000
#> GSM225651     2  0.0000     0.9911 0.000 1.000
#> GSM225354     2  0.0000     0.9911 0.000 1.000
#> GSM225360     1  0.9993     0.0919 0.516 0.484
#> GSM225657     2  0.3733     0.9165 0.072 0.928
#> GSM225377     1  0.4161     0.8835 0.916 0.084
#> GSM225656     1  0.0000     0.9554 1.000 0.000
#> GSM225347     2  0.0000     0.9911 0.000 1.000
#> GSM225660     1  0.0000     0.9554 1.000 0.000
#> GSM225712     1  0.0000     0.9554 1.000 0.000
#> GSM225663     1  0.0000     0.9554 1.000 0.000
#> GSM225373     1  0.0000     0.9554 1.000 0.000
#> GSM225366     1  0.0672     0.9512 0.992 0.008
#> GSM225380     2  0.0000     0.9911 0.000 1.000
#> GSM225351     2  0.0000     0.9911 0.000 1.000
#> GSM225369     2  0.0000     0.9911 0.000 1.000
#> GSM225358     2  0.0000     0.9911 0.000 1.000
#> GSM225649     2  0.0000     0.9911 0.000 1.000
#> GSM225355     2  0.0000     0.9911 0.000 1.000
#> GSM225361     2  0.0000     0.9911 0.000 1.000
#> GSM225655     2  0.0000     0.9911 0.000 1.000
#> GSM225376     2  0.0000     0.9911 0.000 1.000
#> GSM225654     2  0.0000     0.9911 0.000 1.000
#> GSM225348     2  0.0000     0.9911 0.000 1.000
#> GSM225659     2  0.0000     0.9911 0.000 1.000
#> GSM225378     1  0.0000     0.9554 1.000 0.000
#> GSM225661     1  0.0938     0.9484 0.988 0.012
#> GSM225372     2  0.6438     0.7970 0.164 0.836
#> GSM225365     1  0.0000     0.9554 1.000 0.000
#> GSM225860     1  0.0000     0.9554 1.000 0.000
#> GSM225875     1  0.0000     0.9554 1.000 0.000
#> GSM225878     1  0.0000     0.9554 1.000 0.000
#> GSM225885     1  0.0000     0.9554 1.000 0.000
#> GSM225867     1  0.0000     0.9554 1.000 0.000
#> GSM225871     1  0.0000     0.9554 1.000 0.000
#> GSM225881     1  0.0000     0.9554 1.000 0.000
#> GSM225887     1  0.0000     0.9554 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     1  0.0000     0.8696 1.000 0.000 0.000
#> GSM225349     1  0.0000     0.8696 1.000 0.000 0.000
#> GSM225367     1  0.4002     0.7306 0.840 0.160 0.000
#> GSM225356     1  0.0000     0.8696 1.000 0.000 0.000
#> GSM225353     1  0.0592     0.8633 0.988 0.012 0.000
#> GSM225653     1  0.0000     0.8696 1.000 0.000 0.000
#> GSM209847     1  0.0000     0.8696 1.000 0.000 0.000
#> GSM225658     1  0.0000     0.8696 1.000 0.000 0.000
#> GSM225370     1  0.1289     0.8534 0.968 0.000 0.032
#> GSM225364     1  0.0000     0.8696 1.000 0.000 0.000
#> GSM225645     2  0.4555     0.7661 0.200 0.800 0.000
#> GSM225350     1  0.3267     0.7895 0.884 0.116 0.000
#> GSM225368     2  0.4062     0.8090 0.164 0.836 0.000
#> GSM225357     1  0.0000     0.8696 1.000 0.000 0.000
#> GSM225651     2  0.2448     0.8902 0.076 0.924 0.000
#> GSM225354     1  0.0000     0.8696 1.000 0.000 0.000
#> GSM225360     2  0.6158     0.7495 0.052 0.760 0.188
#> GSM225657     1  0.0000     0.8696 1.000 0.000 0.000
#> GSM225377     3  0.2448     0.9106 0.076 0.000 0.924
#> GSM225656     1  0.6026     0.4108 0.624 0.000 0.376
#> GSM225347     1  0.0000     0.8696 1.000 0.000 0.000
#> GSM225660     1  0.5859     0.4842 0.656 0.000 0.344
#> GSM225712     3  0.1289     0.9504 0.032 0.000 0.968
#> GSM225663     3  0.3879     0.8148 0.152 0.000 0.848
#> GSM225373     3  0.1411     0.9477 0.036 0.000 0.964
#> GSM225366     3  0.3192     0.8669 0.000 0.112 0.888
#> GSM225380     2  0.0000     0.9256 0.000 1.000 0.000
#> GSM225351     2  0.2448     0.8793 0.076 0.924 0.000
#> GSM225369     2  0.0000     0.9256 0.000 1.000 0.000
#> GSM225358     2  0.0000     0.9256 0.000 1.000 0.000
#> GSM225649     2  0.0000     0.9256 0.000 1.000 0.000
#> GSM225355     1  0.6308     0.0953 0.508 0.492 0.000
#> GSM225361     2  0.0000     0.9256 0.000 1.000 0.000
#> GSM225655     2  0.0000     0.9256 0.000 1.000 0.000
#> GSM225376     2  0.0000     0.9256 0.000 1.000 0.000
#> GSM225654     2  0.0000     0.9256 0.000 1.000 0.000
#> GSM225348     1  0.5497     0.5822 0.708 0.292 0.000
#> GSM225659     2  0.1031     0.9155 0.024 0.976 0.000
#> GSM225378     3  0.0000     0.9679 0.000 0.000 1.000
#> GSM225661     3  0.0237     0.9655 0.000 0.004 0.996
#> GSM225372     2  0.4555     0.7672 0.000 0.800 0.200
#> GSM225365     1  0.6252     0.2434 0.556 0.000 0.444
#> GSM225860     3  0.0000     0.9679 0.000 0.000 1.000
#> GSM225875     3  0.0000     0.9679 0.000 0.000 1.000
#> GSM225878     3  0.0000     0.9679 0.000 0.000 1.000
#> GSM225885     3  0.0000     0.9679 0.000 0.000 1.000
#> GSM225867     3  0.0000     0.9679 0.000 0.000 1.000
#> GSM225871     3  0.0000     0.9679 0.000 0.000 1.000
#> GSM225881     3  0.0000     0.9679 0.000 0.000 1.000
#> GSM225887     3  0.0000     0.9679 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM225374     2  0.5631     0.5673 0.232 0.696 0.072 0.000
#> GSM225349     2  0.5057     0.4903 0.340 0.648 0.000 0.012
#> GSM225367     2  0.0469     0.8283 0.000 0.988 0.000 0.012
#> GSM225356     2  0.2675     0.7870 0.100 0.892 0.000 0.008
#> GSM225353     2  0.0895     0.8278 0.004 0.976 0.000 0.020
#> GSM225653     2  0.0188     0.8268 0.004 0.996 0.000 0.000
#> GSM209847     2  0.5408     0.1281 0.488 0.500 0.000 0.012
#> GSM225658     2  0.0817     0.8220 0.024 0.976 0.000 0.000
#> GSM225370     3  0.6630     0.5875 0.252 0.136 0.612 0.000
#> GSM225364     2  0.0817     0.8220 0.024 0.976 0.000 0.000
#> GSM225645     2  0.1557     0.8187 0.000 0.944 0.000 0.056
#> GSM225350     1  0.2489     0.7565 0.912 0.068 0.000 0.020
#> GSM225368     2  0.1022     0.8260 0.000 0.968 0.000 0.032
#> GSM225357     1  0.2142     0.7661 0.928 0.056 0.000 0.016
#> GSM225651     2  0.3219     0.7701 0.000 0.836 0.000 0.164
#> GSM225354     1  0.2142     0.7660 0.928 0.056 0.000 0.016
#> GSM225360     2  0.5798     0.6517 0.000 0.704 0.184 0.112
#> GSM225657     1  0.0921     0.7487 0.972 0.028 0.000 0.000
#> GSM225377     3  0.3994     0.8274 0.140 0.028 0.828 0.004
#> GSM225656     1  0.5833     0.0439 0.572 0.028 0.396 0.004
#> GSM225347     1  0.1059     0.7693 0.972 0.016 0.000 0.012
#> GSM225660     1  0.5022     0.4382 0.708 0.028 0.264 0.000
#> GSM225712     3  0.3404     0.8454 0.104 0.032 0.864 0.000
#> GSM225663     3  0.3991     0.8053 0.172 0.020 0.808 0.000
#> GSM225373     3  0.3587     0.8443 0.104 0.032 0.860 0.004
#> GSM225366     4  0.3428     0.7848 0.012 0.000 0.144 0.844
#> GSM225380     4  0.1118     0.8824 0.000 0.036 0.000 0.964
#> GSM225351     4  0.5021     0.6709 0.180 0.064 0.000 0.756
#> GSM225369     2  0.3873     0.7074 0.000 0.772 0.000 0.228
#> GSM225358     4  0.1733     0.8778 0.028 0.024 0.000 0.948
#> GSM225649     4  0.0592     0.8911 0.000 0.016 0.000 0.984
#> GSM225355     1  0.5882     0.3617 0.608 0.048 0.000 0.344
#> GSM225361     4  0.0707     0.8899 0.000 0.020 0.000 0.980
#> GSM225655     4  0.1004     0.8874 0.024 0.004 0.000 0.972
#> GSM225376     4  0.0336     0.8924 0.000 0.008 0.000 0.992
#> GSM225654     4  0.0188     0.8925 0.004 0.000 0.000 0.996
#> GSM225348     1  0.3390     0.7140 0.852 0.016 0.000 0.132
#> GSM225659     4  0.2149     0.8551 0.088 0.000 0.000 0.912
#> GSM225378     3  0.3171     0.8489 0.104 0.016 0.876 0.004
#> GSM225661     3  0.5653     0.6700 0.096 0.000 0.712 0.192
#> GSM225372     4  0.5897     0.6156 0.024 0.048 0.224 0.704
#> GSM225365     3  0.5712     0.4535 0.384 0.032 0.584 0.000
#> GSM225860     3  0.0000     0.8736 0.000 0.000 1.000 0.000
#> GSM225875     3  0.0000     0.8736 0.000 0.000 1.000 0.000
#> GSM225878     3  0.0000     0.8736 0.000 0.000 1.000 0.000
#> GSM225885     3  0.0000     0.8736 0.000 0.000 1.000 0.000
#> GSM225867     3  0.0000     0.8736 0.000 0.000 1.000 0.000
#> GSM225871     3  0.0000     0.8736 0.000 0.000 1.000 0.000
#> GSM225881     3  0.0000     0.8736 0.000 0.000 1.000 0.000
#> GSM225887     3  0.0000     0.8736 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM225374     1  0.0510      0.971 0.984 0.000 0.000 0.000 0.016
#> GSM225349     2  0.1732      0.886 0.000 0.920 0.000 0.000 0.080
#> GSM225367     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> GSM225356     2  0.3983      0.503 0.000 0.660 0.000 0.000 0.340
#> GSM225353     5  0.0880      0.938 0.000 0.032 0.000 0.000 0.968
#> GSM225653     5  0.0162      0.948 0.000 0.004 0.000 0.000 0.996
#> GSM209847     2  0.1341      0.903 0.000 0.944 0.000 0.000 0.056
#> GSM225658     5  0.1544      0.911 0.000 0.068 0.000 0.000 0.932
#> GSM225370     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000
#> GSM225364     5  0.0404      0.947 0.000 0.012 0.000 0.000 0.988
#> GSM225645     5  0.0324      0.948 0.000 0.004 0.000 0.004 0.992
#> GSM225350     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM225368     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> GSM225357     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM225651     5  0.3652      0.754 0.012 0.004 0.000 0.200 0.784
#> GSM225354     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM225360     1  0.4021      0.741 0.780 0.000 0.000 0.168 0.052
#> GSM225657     1  0.0404      0.973 0.988 0.012 0.000 0.000 0.000
#> GSM225377     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000
#> GSM225656     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000
#> GSM225347     2  0.0162      0.927 0.004 0.996 0.000 0.000 0.000
#> GSM225660     1  0.0162      0.977 0.996 0.004 0.000 0.000 0.000
#> GSM225712     1  0.0162      0.978 0.996 0.000 0.004 0.000 0.000
#> GSM225663     1  0.0290      0.976 0.992 0.000 0.008 0.000 0.000
#> GSM225373     1  0.0162      0.978 0.996 0.000 0.004 0.000 0.000
#> GSM225366     4  0.1043      0.957 0.040 0.000 0.000 0.960 0.000
#> GSM225380     4  0.1357      0.939 0.000 0.004 0.000 0.948 0.048
#> GSM225351     2  0.0609      0.923 0.000 0.980 0.000 0.020 0.000
#> GSM225369     5  0.1908      0.898 0.000 0.000 0.000 0.092 0.908
#> GSM225358     2  0.2966      0.772 0.000 0.816 0.000 0.184 0.000
#> GSM225649     4  0.0000      0.979 0.000 0.000 0.000 1.000 0.000
#> GSM225355     2  0.0290      0.927 0.000 0.992 0.000 0.008 0.000
#> GSM225361     4  0.0000      0.979 0.000 0.000 0.000 1.000 0.000
#> GSM225655     4  0.0000      0.979 0.000 0.000 0.000 1.000 0.000
#> GSM225376     4  0.0290      0.978 0.008 0.000 0.000 0.992 0.000
#> GSM225654     4  0.0162      0.979 0.004 0.000 0.000 0.996 0.000
#> GSM225348     2  0.0324      0.927 0.004 0.992 0.000 0.004 0.000
#> GSM225659     4  0.0880      0.966 0.032 0.000 0.000 0.968 0.000
#> GSM225378     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000
#> GSM225661     1  0.0162      0.977 0.996 0.000 0.000 0.004 0.000
#> GSM225372     1  0.0510      0.969 0.984 0.000 0.000 0.016 0.000
#> GSM225365     1  0.0324      0.977 0.992 0.004 0.004 0.000 0.000
#> GSM225860     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM225875     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM225878     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM225885     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM225867     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM225871     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM225881     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM225887     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM225374     1  0.4499      0.670 0.708 0.000 0.000 0.000 0.140 0.152
#> GSM225349     2  0.2907      0.799 0.000 0.828 0.000 0.000 0.020 0.152
#> GSM225367     6  0.3409      0.614 0.000 0.000 0.000 0.000 0.300 0.700
#> GSM225356     6  0.4535     -0.107 0.000 0.480 0.000 0.000 0.032 0.488
#> GSM225353     6  0.4204      0.620 0.000 0.052 0.000 0.000 0.252 0.696
#> GSM225653     6  0.0520      0.520 0.008 0.008 0.000 0.000 0.000 0.984
#> GSM209847     2  0.2896      0.790 0.000 0.824 0.000 0.000 0.016 0.160
#> GSM225658     6  0.2801      0.398 0.000 0.072 0.000 0.000 0.068 0.860
#> GSM225370     1  0.1204      0.866 0.944 0.000 0.000 0.000 0.056 0.000
#> GSM225364     6  0.1194      0.486 0.004 0.008 0.000 0.000 0.032 0.956
#> GSM225645     5  0.4264      0.654 0.000 0.000 0.000 0.016 0.492 0.492
#> GSM225350     2  0.0260      0.923 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM225368     6  0.3668      0.606 0.000 0.004 0.000 0.000 0.328 0.668
#> GSM225357     2  0.0725      0.919 0.000 0.976 0.000 0.000 0.012 0.012
#> GSM225651     5  0.5138      0.755 0.012 0.000 0.000 0.060 0.544 0.384
#> GSM225354     2  0.0291      0.923 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM225360     1  0.5352      0.553 0.596 0.000 0.004 0.100 0.292 0.008
#> GSM225657     1  0.1405      0.861 0.948 0.004 0.000 0.000 0.024 0.024
#> GSM225377     1  0.4486      0.279 0.512 0.000 0.000 0.016 0.464 0.008
#> GSM225656     1  0.0603      0.865 0.980 0.000 0.000 0.000 0.004 0.016
#> GSM225347     2  0.0405      0.922 0.008 0.988 0.000 0.000 0.004 0.000
#> GSM225660     1  0.0717      0.865 0.976 0.000 0.000 0.000 0.008 0.016
#> GSM225712     1  0.1663      0.859 0.912 0.000 0.000 0.000 0.088 0.000
#> GSM225663     1  0.0909      0.866 0.968 0.000 0.000 0.000 0.012 0.020
#> GSM225373     1  0.1663      0.860 0.912 0.000 0.000 0.000 0.088 0.000
#> GSM225366     4  0.3031      0.694 0.108 0.000 0.004 0.844 0.044 0.000
#> GSM225380     5  0.5890      0.593 0.000 0.000 0.000 0.240 0.472 0.288
#> GSM225351     2  0.1088      0.913 0.000 0.960 0.000 0.016 0.024 0.000
#> GSM225369     6  0.5464      0.513 0.000 0.008 0.000 0.104 0.360 0.528
#> GSM225358     2  0.3445      0.767 0.000 0.796 0.000 0.156 0.048 0.000
#> GSM225649     4  0.5492     -0.136 0.000 0.000 0.000 0.472 0.400 0.128
#> GSM225355     2  0.0146      0.923 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM225361     4  0.1531      0.729 0.000 0.004 0.000 0.928 0.068 0.000
#> GSM225655     4  0.0458      0.756 0.000 0.000 0.000 0.984 0.016 0.000
#> GSM225376     4  0.4110      0.359 0.016 0.000 0.000 0.608 0.376 0.000
#> GSM225654     4  0.0146      0.756 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM225348     2  0.0551      0.921 0.008 0.984 0.000 0.004 0.004 0.000
#> GSM225659     4  0.1693      0.747 0.044 0.000 0.000 0.932 0.020 0.004
#> GSM225378     1  0.2070      0.857 0.896 0.000 0.000 0.012 0.092 0.000
#> GSM225661     1  0.2202      0.845 0.908 0.000 0.000 0.052 0.028 0.012
#> GSM225372     1  0.2875      0.842 0.852 0.000 0.000 0.052 0.096 0.000
#> GSM225365     1  0.1624      0.859 0.936 0.004 0.000 0.000 0.040 0.020
#> GSM225860     3  0.0713      0.980 0.000 0.000 0.972 0.000 0.028 0.000
#> GSM225875     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225878     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225885     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225867     3  0.0713      0.980 0.000 0.000 0.972 0.000 0.028 0.000
#> GSM225871     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225881     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225887     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n cell.type(p) agent(p)  time(p) individual(p) k
#> SD:NMF 49     8.68e-04 0.694880 6.27e-05      2.59e-02 2
#> SD:NMF 46     4.51e-05 0.000664 1.33e-07      4.18e-02 3
#> SD:NMF 44     2.86e-04 0.000418 2.28e-04      6.78e-02 4
#> SD:NMF 50     3.61e-10 0.018851 1.26e-05      1.90e-06 5
#> SD:NMF 44     2.32e-08 0.420040 3.36e-05      1.02e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.317           0.729       0.843         0.3606 0.628   0.628
#> 3 3 0.498           0.783       0.864         0.5034 0.804   0.688
#> 4 4 0.490           0.793       0.868         0.0784 0.984   0.962
#> 5 5 0.684           0.769       0.884         0.2390 0.846   0.629
#> 6 6 0.681           0.753       0.845         0.0375 0.983   0.934

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM225374     1   0.000      0.792 1.000 0.000
#> GSM225349     2   0.900      0.700 0.316 0.684
#> GSM225367     2   0.260      0.774 0.044 0.956
#> GSM225356     2   0.900      0.700 0.316 0.684
#> GSM225353     2   0.260      0.774 0.044 0.956
#> GSM225653     2   0.895      0.705 0.312 0.688
#> GSM209847     2   0.900      0.700 0.316 0.684
#> GSM225658     2   0.895      0.705 0.312 0.688
#> GSM225370     1   0.141      0.793 0.980 0.020
#> GSM225364     2   0.895      0.705 0.312 0.688
#> GSM225645     1   0.983      0.288 0.576 0.424
#> GSM225350     1   0.730      0.774 0.796 0.204
#> GSM225368     2   0.260      0.774 0.044 0.956
#> GSM225357     1   0.753      0.763 0.784 0.216
#> GSM225651     1   0.983      0.288 0.576 0.424
#> GSM225354     1   0.730      0.774 0.796 0.204
#> GSM225360     2   0.595      0.744 0.144 0.856
#> GSM225657     1   0.000      0.792 1.000 0.000
#> GSM225377     1   0.615      0.792 0.848 0.152
#> GSM225656     1   0.000      0.792 1.000 0.000
#> GSM225347     1   0.730      0.774 0.796 0.204
#> GSM225660     1   0.000      0.792 1.000 0.000
#> GSM225712     1   0.000      0.792 1.000 0.000
#> GSM225663     1   0.000      0.792 1.000 0.000
#> GSM225373     1   0.000      0.792 1.000 0.000
#> GSM225366     1   0.697      0.783 0.812 0.188
#> GSM225380     1   0.983      0.288 0.576 0.424
#> GSM225351     1   0.730      0.774 0.796 0.204
#> GSM225369     2   0.260      0.774 0.044 0.956
#> GSM225358     1   0.760      0.758 0.780 0.220
#> GSM225649     1   0.983      0.288 0.576 0.424
#> GSM225355     1   0.730      0.774 0.796 0.204
#> GSM225361     2   0.260      0.774 0.044 0.956
#> GSM225655     1   0.706      0.782 0.808 0.192
#> GSM225376     1   0.738      0.770 0.792 0.208
#> GSM225654     1   0.706      0.782 0.808 0.192
#> GSM225348     1   0.730      0.774 0.796 0.204
#> GSM225659     1   0.697      0.783 0.812 0.188
#> GSM225378     1   0.584      0.792 0.860 0.140
#> GSM225661     1   0.697      0.783 0.812 0.188
#> GSM225372     1   0.706      0.781 0.808 0.192
#> GSM225365     1   0.000      0.792 1.000 0.000
#> GSM225860     1   0.260      0.766 0.956 0.044
#> GSM225875     1   0.260      0.766 0.956 0.044
#> GSM225878     1   0.260      0.766 0.956 0.044
#> GSM225885     1   0.260      0.766 0.956 0.044
#> GSM225867     1   0.260      0.766 0.956 0.044
#> GSM225871     1   0.260      0.766 0.956 0.044
#> GSM225881     1   0.260      0.766 0.956 0.044
#> GSM225887     1   0.260      0.766 0.956 0.044

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     1  0.1529      0.765 0.960 0.000 0.040
#> GSM225349     2  0.5529      0.680 0.296 0.704 0.000
#> GSM225367     2  0.0000      0.734 0.000 1.000 0.000
#> GSM225356     2  0.5529      0.680 0.296 0.704 0.000
#> GSM225353     2  0.0892      0.745 0.020 0.980 0.000
#> GSM225653     2  0.5497      0.685 0.292 0.708 0.000
#> GSM209847     2  0.5529      0.680 0.296 0.704 0.000
#> GSM225658     2  0.5497      0.685 0.292 0.708 0.000
#> GSM225370     1  0.2414      0.771 0.940 0.020 0.040
#> GSM225364     2  0.5497      0.685 0.292 0.708 0.000
#> GSM225645     1  0.6111      0.423 0.604 0.396 0.000
#> GSM225350     1  0.4291      0.830 0.820 0.180 0.000
#> GSM225368     2  0.0000      0.734 0.000 1.000 0.000
#> GSM225357     1  0.4504      0.820 0.804 0.196 0.000
#> GSM225651     1  0.6111      0.423 0.604 0.396 0.000
#> GSM225354     1  0.4291      0.830 0.820 0.180 0.000
#> GSM225360     2  0.3879      0.702 0.152 0.848 0.000
#> GSM225657     1  0.1529      0.765 0.960 0.000 0.040
#> GSM225377     1  0.4059      0.831 0.860 0.128 0.012
#> GSM225656     1  0.1529      0.765 0.960 0.000 0.040
#> GSM225347     1  0.4291      0.830 0.820 0.180 0.000
#> GSM225660     1  0.1529      0.765 0.960 0.000 0.040
#> GSM225712     1  0.1529      0.765 0.960 0.000 0.040
#> GSM225663     1  0.1529      0.765 0.960 0.000 0.040
#> GSM225373     1  0.1529      0.765 0.960 0.000 0.040
#> GSM225366     1  0.3879      0.834 0.848 0.152 0.000
#> GSM225380     1  0.6111      0.423 0.604 0.396 0.000
#> GSM225351     1  0.4291      0.830 0.820 0.180 0.000
#> GSM225369     2  0.0000      0.734 0.000 1.000 0.000
#> GSM225358     1  0.4504      0.819 0.804 0.196 0.000
#> GSM225649     1  0.6111      0.423 0.604 0.396 0.000
#> GSM225355     1  0.4291      0.830 0.820 0.180 0.000
#> GSM225361     2  0.1529      0.731 0.040 0.960 0.000
#> GSM225655     1  0.3941      0.834 0.844 0.156 0.000
#> GSM225376     1  0.4178      0.827 0.828 0.172 0.000
#> GSM225654     1  0.3941      0.834 0.844 0.156 0.000
#> GSM225348     1  0.4291      0.830 0.820 0.180 0.000
#> GSM225659     1  0.3879      0.835 0.848 0.152 0.000
#> GSM225378     1  0.3532      0.825 0.884 0.108 0.008
#> GSM225661     1  0.3879      0.834 0.848 0.152 0.000
#> GSM225372     1  0.3941      0.834 0.844 0.156 0.000
#> GSM225365     1  0.1529      0.765 0.960 0.000 0.040
#> GSM225860     3  0.0000      1.000 0.000 0.000 1.000
#> GSM225875     3  0.0000      1.000 0.000 0.000 1.000
#> GSM225878     3  0.0000      1.000 0.000 0.000 1.000
#> GSM225885     3  0.0000      1.000 0.000 0.000 1.000
#> GSM225867     3  0.0000      1.000 0.000 0.000 1.000
#> GSM225871     3  0.0000      1.000 0.000 0.000 1.000
#> GSM225881     3  0.0000      1.000 0.000 0.000 1.000
#> GSM225887     3  0.0000      1.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2 p3    p4
#> GSM225374     1  0.4152      0.791 0.808 0.032  0 0.160
#> GSM225349     2  0.4564      0.752 0.328 0.672  0 0.000
#> GSM225367     2  0.1452      0.590 0.036 0.956  0 0.008
#> GSM225356     2  0.4564      0.752 0.328 0.672  0 0.000
#> GSM225353     2  0.1389      0.603 0.048 0.952  0 0.000
#> GSM225653     2  0.4522      0.756 0.320 0.680  0 0.000
#> GSM209847     2  0.4564      0.752 0.328 0.672  0 0.000
#> GSM225658     2  0.4522      0.756 0.320 0.680  0 0.000
#> GSM225370     1  0.4149      0.797 0.812 0.036  0 0.152
#> GSM225364     2  0.4522      0.756 0.320 0.680  0 0.000
#> GSM225645     1  0.5113      0.491 0.712 0.252  0 0.036
#> GSM225350     1  0.2216      0.822 0.908 0.092  0 0.000
#> GSM225368     2  0.1452      0.590 0.036 0.956  0 0.008
#> GSM225357     1  0.2469      0.812 0.892 0.108  0 0.000
#> GSM225651     1  0.5113      0.491 0.712 0.252  0 0.036
#> GSM225354     1  0.2216      0.822 0.908 0.092  0 0.000
#> GSM225360     4  0.4576      0.799 0.260 0.012  0 0.728
#> GSM225657     1  0.4152      0.791 0.808 0.032  0 0.160
#> GSM225377     1  0.1302      0.838 0.956 0.000  0 0.044
#> GSM225656     1  0.4152      0.791 0.808 0.032  0 0.160
#> GSM225347     1  0.2216      0.822 0.908 0.092  0 0.000
#> GSM225660     1  0.4152      0.791 0.808 0.032  0 0.160
#> GSM225712     1  0.4152      0.791 0.808 0.032  0 0.160
#> GSM225663     1  0.4152      0.791 0.808 0.032  0 0.160
#> GSM225373     1  0.4152      0.791 0.808 0.032  0 0.160
#> GSM225366     1  0.0336      0.835 0.992 0.000  0 0.008
#> GSM225380     1  0.5113      0.491 0.712 0.252  0 0.036
#> GSM225351     1  0.2216      0.822 0.908 0.092  0 0.000
#> GSM225369     2  0.1452      0.590 0.036 0.956  0 0.008
#> GSM225358     1  0.2611      0.817 0.896 0.096  0 0.008
#> GSM225649     1  0.5113      0.491 0.712 0.252  0 0.036
#> GSM225355     1  0.2216      0.822 0.908 0.092  0 0.000
#> GSM225361     4  0.3479      0.804 0.148 0.012  0 0.840
#> GSM225655     1  0.0469      0.835 0.988 0.000  0 0.012
#> GSM225376     1  0.1004      0.830 0.972 0.004  0 0.024
#> GSM225654     1  0.0469      0.835 0.988 0.000  0 0.012
#> GSM225348     1  0.2216      0.822 0.908 0.092  0 0.000
#> GSM225659     1  0.0336      0.835 0.992 0.000  0 0.008
#> GSM225378     1  0.1913      0.836 0.940 0.020  0 0.040
#> GSM225661     1  0.0336      0.835 0.992 0.000  0 0.008
#> GSM225372     1  0.0524      0.835 0.988 0.004  0 0.008
#> GSM225365     1  0.4152      0.791 0.808 0.032  0 0.160
#> GSM225860     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225875     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225878     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225885     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225867     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225871     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225881     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225887     3  0.0000      1.000 0.000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> GSM225374     1  0.0000      0.890 1.000 0.000  0 0.000 0.000
#> GSM225349     5  0.3876      0.733 0.000 0.316  0 0.000 0.684
#> GSM225367     5  0.1410      0.555 0.000 0.000  0 0.060 0.940
#> GSM225356     5  0.3876      0.733 0.000 0.316  0 0.000 0.684
#> GSM225353     5  0.0963      0.611 0.000 0.036  0 0.000 0.964
#> GSM225653     5  0.3837      0.738 0.000 0.308  0 0.000 0.692
#> GSM209847     5  0.3876      0.733 0.000 0.316  0 0.000 0.684
#> GSM225658     5  0.3837      0.738 0.000 0.308  0 0.000 0.692
#> GSM225370     1  0.4102      0.458 0.692 0.300  0 0.004 0.004
#> GSM225364     5  0.3837      0.738 0.000 0.308  0 0.000 0.692
#> GSM225645     2  0.4248      0.526 0.000 0.728  0 0.032 0.240
#> GSM225350     2  0.1628      0.814 0.000 0.936  0 0.008 0.056
#> GSM225368     5  0.1410      0.555 0.000 0.000  0 0.060 0.940
#> GSM225357     2  0.1894      0.804 0.000 0.920  0 0.008 0.072
#> GSM225651     2  0.4248      0.526 0.000 0.728  0 0.032 0.240
#> GSM225354     2  0.1628      0.814 0.000 0.936  0 0.008 0.056
#> GSM225360     4  0.4088      0.786 0.036 0.176  0 0.780 0.008
#> GSM225657     1  0.0000      0.890 1.000 0.000  0 0.000 0.000
#> GSM225377     2  0.4181      0.540 0.268 0.712  0 0.020 0.000
#> GSM225656     1  0.0000      0.890 1.000 0.000  0 0.000 0.000
#> GSM225347     2  0.1628      0.814 0.000 0.936  0 0.008 0.056
#> GSM225660     1  0.0000      0.890 1.000 0.000  0 0.000 0.000
#> GSM225712     1  0.0000      0.890 1.000 0.000  0 0.000 0.000
#> GSM225663     1  0.0000      0.890 1.000 0.000  0 0.000 0.000
#> GSM225373     1  0.3039      0.648 0.808 0.192  0 0.000 0.000
#> GSM225366     2  0.2079      0.792 0.064 0.916  0 0.020 0.000
#> GSM225380     2  0.4248      0.526 0.000 0.728  0 0.032 0.240
#> GSM225351     2  0.1628      0.814 0.000 0.936  0 0.008 0.056
#> GSM225369     5  0.1410      0.555 0.000 0.000  0 0.060 0.940
#> GSM225358     2  0.2079      0.810 0.000 0.916  0 0.020 0.064
#> GSM225649     2  0.4248      0.526 0.000 0.728  0 0.032 0.240
#> GSM225355     2  0.1628      0.814 0.000 0.936  0 0.008 0.056
#> GSM225361     4  0.1502      0.793 0.000 0.056  0 0.940 0.004
#> GSM225655     2  0.1310      0.811 0.020 0.956  0 0.024 0.000
#> GSM225376     2  0.2074      0.800 0.044 0.920  0 0.036 0.000
#> GSM225654     2  0.1310      0.811 0.020 0.956  0 0.024 0.000
#> GSM225348     2  0.1628      0.814 0.000 0.936  0 0.008 0.056
#> GSM225659     2  0.1216      0.811 0.020 0.960  0 0.020 0.000
#> GSM225378     2  0.4958      0.116 0.452 0.524  0 0.020 0.004
#> GSM225661     2  0.2012      0.794 0.060 0.920  0 0.020 0.000
#> GSM225372     2  0.2172      0.795 0.060 0.916  0 0.020 0.004
#> GSM225365     1  0.0162      0.886 0.996 0.004  0 0.000 0.000
#> GSM225860     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225875     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225878     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225885     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225867     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225871     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225881     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225887     3  0.0000      1.000 0.000 0.000  1 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4    p5    p6
#> GSM225374     1  0.0000     0.8879 1.000 0.000  0 0.000 0.000 0.000
#> GSM225349     6  0.3309     0.8984 0.000 0.280  0 0.000 0.000 0.720
#> GSM225367     5  0.2730     1.0000 0.000 0.000  0 0.000 0.808 0.192
#> GSM225356     6  0.3309     0.8984 0.000 0.280  0 0.000 0.000 0.720
#> GSM225353     6  0.0458     0.3396 0.000 0.000  0 0.000 0.016 0.984
#> GSM225653     6  0.3266     0.9003 0.000 0.272  0 0.000 0.000 0.728
#> GSM209847     6  0.3309     0.8984 0.000 0.280  0 0.000 0.000 0.720
#> GSM225658     6  0.3266     0.9003 0.000 0.272  0 0.000 0.000 0.728
#> GSM225370     1  0.4320     0.4535 0.664 0.296  0 0.036 0.004 0.000
#> GSM225364     6  0.3266     0.9003 0.000 0.272  0 0.000 0.000 0.728
#> GSM225645     2  0.4330     0.3501 0.000 0.680  0 0.036 0.008 0.276
#> GSM225350     2  0.3854     0.6813 0.000 0.772  0 0.000 0.136 0.092
#> GSM225368     5  0.2730     1.0000 0.000 0.000  0 0.000 0.808 0.192
#> GSM225357     2  0.3918     0.6739 0.000 0.768  0 0.000 0.124 0.108
#> GSM225651     2  0.4330     0.3501 0.000 0.680  0 0.036 0.008 0.276
#> GSM225354     2  0.3854     0.6813 0.000 0.772  0 0.000 0.136 0.092
#> GSM225360     4  0.3025     0.6694 0.008 0.164  0 0.820 0.004 0.004
#> GSM225657     1  0.0000     0.8879 1.000 0.000  0 0.000 0.000 0.000
#> GSM225377     2  0.4039     0.4898 0.232 0.724  0 0.040 0.004 0.000
#> GSM225656     1  0.0000     0.8879 1.000 0.000  0 0.000 0.000 0.000
#> GSM225347     2  0.3854     0.6813 0.000 0.772  0 0.000 0.136 0.092
#> GSM225660     1  0.0000     0.8879 1.000 0.000  0 0.000 0.000 0.000
#> GSM225712     1  0.0000     0.8879 1.000 0.000  0 0.000 0.000 0.000
#> GSM225663     1  0.0000     0.8879 1.000 0.000  0 0.000 0.000 0.000
#> GSM225373     1  0.3136     0.6453 0.796 0.188  0 0.016 0.000 0.000
#> GSM225366     2  0.1391     0.6932 0.016 0.944  0 0.040 0.000 0.000
#> GSM225380     2  0.4330     0.3501 0.000 0.680  0 0.036 0.008 0.276
#> GSM225351     2  0.3854     0.6813 0.000 0.772  0 0.000 0.136 0.092
#> GSM225369     5  0.2730     1.0000 0.000 0.000  0 0.000 0.808 0.192
#> GSM225358     2  0.3922     0.6821 0.000 0.776  0 0.004 0.124 0.096
#> GSM225649     2  0.4330     0.3501 0.000 0.680  0 0.036 0.008 0.276
#> GSM225355     2  0.3854     0.6813 0.000 0.772  0 0.000 0.136 0.092
#> GSM225361     4  0.1528     0.6549 0.000 0.000  0 0.936 0.048 0.016
#> GSM225655     2  0.0291     0.7081 0.000 0.992  0 0.004 0.004 0.000
#> GSM225376     2  0.1750     0.6925 0.008 0.928  0 0.056 0.004 0.004
#> GSM225654     2  0.0291     0.7081 0.000 0.992  0 0.004 0.004 0.000
#> GSM225348     2  0.3854     0.6813 0.000 0.772  0 0.000 0.136 0.092
#> GSM225659     2  0.0146     0.7076 0.000 0.996  0 0.000 0.004 0.000
#> GSM225378     2  0.4687     0.0582 0.424 0.536  0 0.036 0.004 0.000
#> GSM225661     2  0.1297     0.6944 0.012 0.948  0 0.040 0.000 0.000
#> GSM225372     2  0.1578     0.6902 0.012 0.936  0 0.048 0.004 0.000
#> GSM225365     1  0.0260     0.8815 0.992 0.008  0 0.000 0.000 0.000
#> GSM225860     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225875     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225878     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225885     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225867     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225871     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225881     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225887     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n cell.type(p) agent(p)  time(p) individual(p) k
#> CV:hclust 46     1.60e-01   0.1309 8.47e-05      1.18e-01 2
#> CV:hclust 46     1.03e-10   0.1757 7.47e-06      1.10e-04 3
#> CV:hclust 46     5.67e-10   0.2038 1.10e-07      1.59e-07 4
#> CV:hclust 48     9.44e-10   0.0395 2.27e-08      1.75e-06 5
#> CV:hclust 42     5.89e-08   0.0442 9.07e-08      1.23e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.628           0.917       0.928         0.4289 0.510   0.510
#> 3 3 0.390           0.708       0.742         0.4316 0.798   0.632
#> 4 4 0.574           0.692       0.805         0.1835 0.802   0.524
#> 5 5 0.756           0.790       0.856         0.0770 0.949   0.804
#> 6 6 0.800           0.732       0.802         0.0427 0.981   0.918

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM225374     1   0.895      0.796 0.688 0.312
#> GSM225349     2   0.000      0.996 0.000 1.000
#> GSM225367     2   0.000      0.996 0.000 1.000
#> GSM225356     2   0.000      0.996 0.000 1.000
#> GSM225353     2   0.000      0.996 0.000 1.000
#> GSM225653     2   0.000      0.996 0.000 1.000
#> GSM209847     2   0.000      0.996 0.000 1.000
#> GSM225658     2   0.000      0.996 0.000 1.000
#> GSM225370     1   0.881      0.811 0.700 0.300
#> GSM225364     2   0.000      0.996 0.000 1.000
#> GSM225645     2   0.000      0.996 0.000 1.000
#> GSM225350     2   0.000      0.996 0.000 1.000
#> GSM225368     2   0.000      0.996 0.000 1.000
#> GSM225357     2   0.000      0.996 0.000 1.000
#> GSM225651     2   0.000      0.996 0.000 1.000
#> GSM225354     2   0.000      0.996 0.000 1.000
#> GSM225360     2   0.204      0.959 0.032 0.968
#> GSM225657     2   0.204      0.959 0.032 0.968
#> GSM225377     1   0.881      0.811 0.700 0.300
#> GSM225656     1   0.876      0.814 0.704 0.296
#> GSM225347     2   0.000      0.996 0.000 1.000
#> GSM225660     1   0.876      0.814 0.704 0.296
#> GSM225712     1   0.839      0.821 0.732 0.268
#> GSM225663     1   0.839      0.821 0.732 0.268
#> GSM225373     1   0.850      0.820 0.724 0.276
#> GSM225366     1   0.881      0.811 0.700 0.300
#> GSM225380     2   0.000      0.996 0.000 1.000
#> GSM225351     2   0.000      0.996 0.000 1.000
#> GSM225369     2   0.000      0.996 0.000 1.000
#> GSM225358     2   0.000      0.996 0.000 1.000
#> GSM225649     2   0.000      0.996 0.000 1.000
#> GSM225355     2   0.000      0.996 0.000 1.000
#> GSM225361     2   0.000      0.996 0.000 1.000
#> GSM225655     2   0.000      0.996 0.000 1.000
#> GSM225376     2   0.000      0.996 0.000 1.000
#> GSM225654     2   0.000      0.996 0.000 1.000
#> GSM225348     2   0.000      0.996 0.000 1.000
#> GSM225659     2   0.000      0.996 0.000 1.000
#> GSM225378     1   0.876      0.814 0.704 0.296
#> GSM225661     1   0.881      0.811 0.700 0.300
#> GSM225372     2   0.224      0.954 0.036 0.964
#> GSM225365     1   0.876      0.814 0.704 0.296
#> GSM225860     1   0.000      0.794 1.000 0.000
#> GSM225875     1   0.000      0.794 1.000 0.000
#> GSM225878     1   0.000      0.794 1.000 0.000
#> GSM225885     1   0.000      0.794 1.000 0.000
#> GSM225867     1   0.000      0.794 1.000 0.000
#> GSM225871     1   0.000      0.794 1.000 0.000
#> GSM225881     1   0.000      0.794 1.000 0.000
#> GSM225887     1   0.000      0.794 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     1  0.8157     0.7678 0.596 0.096 0.308
#> GSM225349     2  0.4842     0.6851 0.224 0.776 0.000
#> GSM225367     2  0.6168     0.6368 0.412 0.588 0.000
#> GSM225356     2  0.4842     0.6851 0.224 0.776 0.000
#> GSM225353     2  0.3482     0.7289 0.128 0.872 0.000
#> GSM225653     2  0.3619     0.7266 0.136 0.864 0.000
#> GSM209847     2  0.4842     0.6851 0.224 0.776 0.000
#> GSM225658     2  0.4842     0.6851 0.224 0.776 0.000
#> GSM225370     1  0.8044     0.7707 0.600 0.088 0.312
#> GSM225364     2  0.4842     0.6851 0.224 0.776 0.000
#> GSM225645     2  0.5397     0.7046 0.280 0.720 0.000
#> GSM225350     2  0.4504     0.6888 0.196 0.804 0.000
#> GSM225368     2  0.6225     0.6324 0.432 0.568 0.000
#> GSM225357     2  0.4504     0.6888 0.196 0.804 0.000
#> GSM225651     2  0.5327     0.7041 0.272 0.728 0.000
#> GSM225354     2  0.4504     0.6888 0.196 0.804 0.000
#> GSM225360     1  0.4682     0.3360 0.804 0.192 0.004
#> GSM225657     1  0.6451     0.4109 0.608 0.384 0.008
#> GSM225377     1  0.7477     0.7581 0.648 0.068 0.284
#> GSM225656     1  0.8159     0.7677 0.588 0.092 0.320
#> GSM225347     1  0.6308     0.0883 0.508 0.492 0.000
#> GSM225660     1  0.8159     0.7677 0.588 0.092 0.320
#> GSM225712     1  0.7786     0.7581 0.600 0.068 0.332
#> GSM225663     1  0.8013     0.7575 0.588 0.080 0.332
#> GSM225373     1  0.7786     0.7581 0.600 0.068 0.332
#> GSM225366     1  0.8683     0.6813 0.592 0.172 0.236
#> GSM225380     2  0.4796     0.6915 0.220 0.780 0.000
#> GSM225351     2  0.0747     0.7375 0.016 0.984 0.000
#> GSM225369     2  0.5948     0.6234 0.360 0.640 0.000
#> GSM225358     2  0.1529     0.7358 0.040 0.960 0.000
#> GSM225649     2  0.4887     0.6886 0.228 0.772 0.000
#> GSM225355     2  0.1753     0.7346 0.048 0.952 0.000
#> GSM225361     2  0.5926     0.6127 0.356 0.644 0.000
#> GSM225655     2  0.3551     0.7214 0.132 0.868 0.000
#> GSM225376     2  0.5397     0.6568 0.280 0.720 0.000
#> GSM225654     2  0.5363     0.6580 0.276 0.724 0.000
#> GSM225348     2  0.4002     0.6759 0.160 0.840 0.000
#> GSM225659     2  0.6267     0.2336 0.452 0.548 0.000
#> GSM225378     1  0.7588     0.7626 0.624 0.064 0.312
#> GSM225661     1  0.8670     0.6874 0.592 0.168 0.240
#> GSM225372     1  0.6566     0.2396 0.636 0.348 0.016
#> GSM225365     1  0.8159     0.7677 0.588 0.092 0.320
#> GSM225860     3  0.0747     0.9847 0.016 0.000 0.984
#> GSM225875     3  0.0237     0.9949 0.004 0.000 0.996
#> GSM225878     3  0.0237     0.9949 0.004 0.000 0.996
#> GSM225885     3  0.0237     0.9949 0.004 0.000 0.996
#> GSM225867     3  0.0747     0.9847 0.016 0.000 0.984
#> GSM225871     3  0.0237     0.9949 0.004 0.000 0.996
#> GSM225881     3  0.0237     0.9949 0.004 0.000 0.996
#> GSM225887     3  0.0237     0.9949 0.004 0.000 0.996

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM225374     1   0.119      0.898 0.968 0.024 0.004 0.004
#> GSM225349     2   0.164      0.765 0.060 0.940 0.000 0.000
#> GSM225367     2   0.696     -0.346 0.012 0.456 0.076 0.456
#> GSM225356     2   0.164      0.765 0.060 0.940 0.000 0.000
#> GSM225353     2   0.114      0.734 0.008 0.972 0.008 0.012
#> GSM225653     2   0.225      0.751 0.040 0.932 0.008 0.020
#> GSM209847     2   0.164      0.765 0.060 0.940 0.000 0.000
#> GSM225658     2   0.243      0.760 0.060 0.920 0.008 0.012
#> GSM225370     1   0.119      0.900 0.968 0.024 0.004 0.004
#> GSM225364     2   0.243      0.760 0.060 0.920 0.008 0.012
#> GSM225645     4   0.567      0.420 0.012 0.444 0.008 0.536
#> GSM225350     2   0.464      0.752 0.056 0.820 0.024 0.100
#> GSM225368     4   0.696      0.285 0.012 0.436 0.076 0.476
#> GSM225357     2   0.454      0.756 0.064 0.828 0.024 0.084
#> GSM225651     4   0.549      0.448 0.012 0.416 0.004 0.568
#> GSM225354     2   0.467      0.754 0.064 0.820 0.024 0.092
#> GSM225360     4   0.592      0.277 0.368 0.016 0.020 0.596
#> GSM225657     1   0.374      0.801 0.864 0.088 0.020 0.028
#> GSM225377     1   0.253      0.834 0.896 0.004 0.000 0.100
#> GSM225656     1   0.119      0.899 0.968 0.024 0.004 0.004
#> GSM225347     2   0.699      0.463 0.312 0.584 0.024 0.080
#> GSM225660     1   0.119      0.899 0.968 0.024 0.004 0.004
#> GSM225712     1   0.125      0.897 0.968 0.016 0.004 0.012
#> GSM225663     1   0.119      0.899 0.968 0.024 0.004 0.004
#> GSM225373     1   0.125      0.897 0.968 0.016 0.004 0.012
#> GSM225366     1   0.545      0.378 0.584 0.004 0.012 0.400
#> GSM225380     4   0.481      0.536 0.004 0.308 0.004 0.684
#> GSM225351     2   0.499      0.646 0.004 0.732 0.028 0.236
#> GSM225369     4   0.694      0.319 0.012 0.416 0.076 0.496
#> GSM225358     2   0.511      0.621 0.004 0.716 0.028 0.252
#> GSM225649     4   0.401      0.617 0.004 0.204 0.004 0.788
#> GSM225355     2   0.533      0.650 0.016 0.724 0.028 0.232
#> GSM225361     4   0.209      0.617 0.000 0.048 0.020 0.932
#> GSM225655     4   0.454      0.579 0.012 0.192 0.016 0.780
#> GSM225376     4   0.403      0.635 0.044 0.116 0.004 0.836
#> GSM225654     4   0.466      0.626 0.056 0.116 0.016 0.812
#> GSM225348     2   0.650      0.482 0.040 0.600 0.028 0.332
#> GSM225659     4   0.724      0.349 0.296 0.112 0.020 0.572
#> GSM225378     1   0.168      0.881 0.948 0.004 0.004 0.044
#> GSM225661     1   0.502      0.578 0.684 0.004 0.012 0.300
#> GSM225372     4   0.474      0.347 0.328 0.004 0.000 0.668
#> GSM225365     1   0.119      0.899 0.968 0.024 0.004 0.004
#> GSM225860     3   0.413      0.954 0.116 0.012 0.836 0.036
#> GSM225875     3   0.259      0.985 0.116 0.000 0.884 0.000
#> GSM225878     3   0.259      0.985 0.116 0.000 0.884 0.000
#> GSM225885     3   0.259      0.985 0.116 0.000 0.884 0.000
#> GSM225867     3   0.413      0.954 0.116 0.012 0.836 0.036
#> GSM225871     3   0.259      0.985 0.116 0.000 0.884 0.000
#> GSM225881     3   0.259      0.985 0.116 0.000 0.884 0.000
#> GSM225887     3   0.259      0.985 0.116 0.000 0.884 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM225374     1  0.0162      0.945 0.996 0.000 0.000 0.004 0.000
#> GSM225349     2  0.3127      0.790 0.020 0.848 0.004 0.000 0.128
#> GSM225367     5  0.4657      0.938 0.004 0.128 0.000 0.116 0.752
#> GSM225356     2  0.3127      0.790 0.020 0.848 0.004 0.000 0.128
#> GSM225353     2  0.3485      0.762 0.008 0.808 0.004 0.004 0.176
#> GSM225653     2  0.4263      0.736 0.020 0.768 0.004 0.016 0.192
#> GSM209847     2  0.3127      0.790 0.020 0.848 0.004 0.000 0.128
#> GSM225658     2  0.4251      0.739 0.024 0.768 0.004 0.012 0.192
#> GSM225370     1  0.0486      0.947 0.988 0.000 0.004 0.004 0.004
#> GSM225364     2  0.4251      0.739 0.024 0.768 0.004 0.012 0.192
#> GSM225645     4  0.5754      0.466 0.000 0.136 0.000 0.604 0.260
#> GSM225350     2  0.2074      0.812 0.016 0.920 0.000 0.060 0.004
#> GSM225368     5  0.4548      0.951 0.000 0.120 0.000 0.128 0.752
#> GSM225357     2  0.2074      0.812 0.016 0.920 0.000 0.060 0.004
#> GSM225651     4  0.5657      0.488 0.000 0.128 0.000 0.616 0.256
#> GSM225354     2  0.2074      0.812 0.016 0.920 0.000 0.060 0.004
#> GSM225360     4  0.5856      0.522 0.224 0.000 0.000 0.604 0.172
#> GSM225657     1  0.0968      0.938 0.972 0.012 0.000 0.012 0.004
#> GSM225377     1  0.1012      0.936 0.968 0.000 0.000 0.012 0.020
#> GSM225656     1  0.0613      0.946 0.984 0.000 0.004 0.008 0.004
#> GSM225347     2  0.3859      0.747 0.100 0.820 0.000 0.072 0.008
#> GSM225660     1  0.0613      0.945 0.984 0.000 0.004 0.004 0.008
#> GSM225712     1  0.0613      0.946 0.984 0.000 0.004 0.008 0.004
#> GSM225663     1  0.0613      0.945 0.984 0.000 0.004 0.004 0.008
#> GSM225373     1  0.0613      0.946 0.984 0.000 0.004 0.008 0.004
#> GSM225366     4  0.4061      0.541 0.240 0.004 0.000 0.740 0.016
#> GSM225380     4  0.5289      0.529 0.000 0.096 0.000 0.652 0.252
#> GSM225351     2  0.2719      0.780 0.000 0.852 0.000 0.144 0.004
#> GSM225369     5  0.4444      0.918 0.000 0.088 0.000 0.156 0.756
#> GSM225358     2  0.2806      0.774 0.000 0.844 0.000 0.152 0.004
#> GSM225649     4  0.4646      0.603 0.000 0.060 0.000 0.712 0.228
#> GSM225355     2  0.2719      0.780 0.000 0.852 0.000 0.144 0.004
#> GSM225361     4  0.3551      0.619 0.000 0.008 0.000 0.772 0.220
#> GSM225655     4  0.1768      0.661 0.004 0.072 0.000 0.924 0.000
#> GSM225376     4  0.2204      0.687 0.016 0.016 0.000 0.920 0.048
#> GSM225654     4  0.1893      0.669 0.024 0.048 0.000 0.928 0.000
#> GSM225348     2  0.3242      0.752 0.012 0.816 0.000 0.172 0.000
#> GSM225659     4  0.3112      0.632 0.100 0.044 0.000 0.856 0.000
#> GSM225378     1  0.0740      0.945 0.980 0.000 0.004 0.008 0.008
#> GSM225661     1  0.4798      0.307 0.576 0.004 0.000 0.404 0.016
#> GSM225372     4  0.3734      0.625 0.168 0.000 0.000 0.796 0.036
#> GSM225365     1  0.0613      0.945 0.984 0.000 0.004 0.004 0.008
#> GSM225860     3  0.3795      0.846 0.004 0.008 0.804 0.020 0.164
#> GSM225875     3  0.1340      0.941 0.016 0.004 0.960 0.004 0.016
#> GSM225878     3  0.0510      0.946 0.016 0.000 0.984 0.000 0.000
#> GSM225885     3  0.0671      0.946 0.016 0.000 0.980 0.004 0.000
#> GSM225867     3  0.3795      0.846 0.004 0.008 0.804 0.020 0.164
#> GSM225871     3  0.1340      0.941 0.016 0.004 0.960 0.004 0.016
#> GSM225881     3  0.0510      0.946 0.016 0.000 0.984 0.000 0.000
#> GSM225887     3  0.0671      0.946 0.016 0.000 0.980 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM225374     1  0.0603      0.958 0.980 0.000 0.004 0.000 0.000 NA
#> GSM225349     2  0.0260      0.610 0.008 0.992 0.000 0.000 0.000 NA
#> GSM225367     5  0.2547      0.964 0.000 0.112 0.000 0.016 0.868 NA
#> GSM225356     2  0.0405      0.608 0.008 0.988 0.000 0.000 0.004 NA
#> GSM225353     2  0.2003      0.560 0.000 0.912 0.000 0.000 0.044 NA
#> GSM225653     2  0.2822      0.524 0.008 0.868 0.000 0.000 0.056 NA
#> GSM209847     2  0.0260      0.610 0.008 0.992 0.000 0.000 0.000 NA
#> GSM225658     2  0.2860      0.528 0.012 0.868 0.000 0.000 0.052 NA
#> GSM225370     1  0.0405      0.958 0.988 0.000 0.008 0.000 0.004 NA
#> GSM225364     2  0.2860      0.528 0.012 0.868 0.000 0.000 0.052 NA
#> GSM225645     4  0.6825      0.424 0.004 0.140 0.000 0.520 0.216 NA
#> GSM225350     2  0.5108      0.679 0.008 0.536 0.000 0.052 0.004 NA
#> GSM225368     5  0.2333      0.982 0.000 0.092 0.000 0.024 0.884 NA
#> GSM225357     2  0.4883      0.679 0.008 0.552 0.000 0.036 0.004 NA
#> GSM225651     4  0.6795      0.430 0.004 0.136 0.000 0.524 0.216 NA
#> GSM225354     2  0.5108      0.679 0.008 0.536 0.000 0.052 0.004 NA
#> GSM225360     4  0.6219      0.472 0.204 0.000 0.000 0.576 0.148 NA
#> GSM225657     1  0.1584      0.954 0.928 0.000 0.000 0.000 0.008 NA
#> GSM225377     1  0.0692      0.950 0.976 0.000 0.000 0.020 0.004 NA
#> GSM225656     1  0.1719      0.956 0.928 0.000 0.008 0.000 0.008 NA
#> GSM225347     2  0.5593      0.653 0.040 0.488 0.000 0.044 0.004 NA
#> GSM225660     1  0.2058      0.950 0.908 0.000 0.008 0.000 0.012 NA
#> GSM225712     1  0.0405      0.958 0.988 0.000 0.008 0.000 0.004 NA
#> GSM225663     1  0.2001      0.952 0.912 0.000 0.008 0.000 0.012 NA
#> GSM225373     1  0.0405      0.958 0.988 0.000 0.008 0.000 0.004 NA
#> GSM225366     4  0.4257      0.590 0.100 0.000 0.004 0.760 0.008 NA
#> GSM225380     4  0.6517      0.467 0.004 0.104 0.000 0.560 0.208 NA
#> GSM225351     2  0.5216      0.661 0.000 0.484 0.000 0.092 0.000 NA
#> GSM225369     5  0.2333      0.982 0.000 0.092 0.000 0.024 0.884 NA
#> GSM225358     2  0.5218      0.659 0.000 0.480 0.000 0.092 0.000 NA
#> GSM225649     4  0.5845      0.519 0.004 0.048 0.000 0.620 0.204 NA
#> GSM225355     2  0.5252      0.659 0.000 0.480 0.000 0.096 0.000 NA
#> GSM225361     4  0.4280      0.558 0.004 0.000 0.000 0.736 0.168 NA
#> GSM225655     4  0.2362      0.624 0.000 0.004 0.000 0.860 0.000 NA
#> GSM225376     4  0.2926      0.629 0.012 0.000 0.000 0.852 0.024 NA
#> GSM225654     4  0.2346      0.625 0.008 0.000 0.000 0.868 0.000 NA
#> GSM225348     2  0.5389      0.645 0.000 0.460 0.000 0.112 0.000 NA
#> GSM225659     4  0.2925      0.617 0.016 0.000 0.000 0.832 0.004 NA
#> GSM225378     1  0.0893      0.950 0.972 0.000 0.004 0.016 0.004 NA
#> GSM225661     4  0.5780      0.134 0.392 0.000 0.004 0.476 0.008 NA
#> GSM225372     4  0.3340      0.588 0.196 0.000 0.000 0.784 0.004 NA
#> GSM225365     1  0.2058      0.950 0.908 0.000 0.008 0.000 0.012 NA
#> GSM225860     3  0.3878      0.816 0.000 0.000 0.764 0.004 0.056 NA
#> GSM225875     3  0.0951      0.930 0.000 0.008 0.968 0.004 0.020 NA
#> GSM225878     3  0.0000      0.934 0.000 0.000 1.000 0.000 0.000 NA
#> GSM225885     3  0.0260      0.933 0.000 0.000 0.992 0.000 0.000 NA
#> GSM225867     3  0.3852      0.816 0.000 0.000 0.764 0.004 0.052 NA
#> GSM225871     3  0.0951      0.930 0.000 0.008 0.968 0.004 0.020 NA
#> GSM225881     3  0.0000      0.934 0.000 0.000 1.000 0.000 0.000 NA
#> GSM225887     3  0.0260      0.933 0.000 0.000 0.992 0.000 0.000 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n cell.type(p) agent(p)  time(p) individual(p) k
#> CV:kmeans 50     7.09e-04  0.76828 4.25e-05      2.01e-02 2
#> CV:kmeans 45     1.69e-10  0.44375 7.09e-08      7.39e-05 3
#> CV:kmeans 39     1.74e-08  0.00775 1.56e-06      1.88e-04 4
#> CV:kmeans 47     1.52e-09  0.03553 3.51e-05      1.72e-08 5
#> CV:kmeans 45     3.98e-09  0.02438 3.97e-05      1.71e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.982       0.993         0.5060 0.493   0.493
#> 3 3 0.657           0.851       0.884         0.3138 0.771   0.563
#> 4 4 0.697           0.765       0.862         0.1333 0.875   0.642
#> 5 5 0.744           0.680       0.819         0.0702 0.905   0.645
#> 6 6 0.720           0.644       0.761         0.0416 0.918   0.621

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM225374     1  0.0000      0.984 1.000 0.000
#> GSM225349     2  0.0000      1.000 0.000 1.000
#> GSM225367     2  0.0000      1.000 0.000 1.000
#> GSM225356     2  0.0000      1.000 0.000 1.000
#> GSM225353     2  0.0000      1.000 0.000 1.000
#> GSM225653     2  0.0000      1.000 0.000 1.000
#> GSM209847     2  0.0000      1.000 0.000 1.000
#> GSM225658     2  0.0000      1.000 0.000 1.000
#> GSM225370     1  0.0000      0.984 1.000 0.000
#> GSM225364     2  0.0000      1.000 0.000 1.000
#> GSM225645     2  0.0000      1.000 0.000 1.000
#> GSM225350     2  0.0000      1.000 0.000 1.000
#> GSM225368     2  0.0000      1.000 0.000 1.000
#> GSM225357     2  0.0000      1.000 0.000 1.000
#> GSM225651     2  0.0000      1.000 0.000 1.000
#> GSM225354     2  0.0000      1.000 0.000 1.000
#> GSM225360     1  0.0000      0.984 1.000 0.000
#> GSM225657     1  0.0376      0.980 0.996 0.004
#> GSM225377     1  0.0000      0.984 1.000 0.000
#> GSM225656     1  0.0000      0.984 1.000 0.000
#> GSM225347     2  0.0000      1.000 0.000 1.000
#> GSM225660     1  0.0000      0.984 1.000 0.000
#> GSM225712     1  0.0000      0.984 1.000 0.000
#> GSM225663     1  0.0000      0.984 1.000 0.000
#> GSM225373     1  0.0000      0.984 1.000 0.000
#> GSM225366     1  0.0000      0.984 1.000 0.000
#> GSM225380     2  0.0000      1.000 0.000 1.000
#> GSM225351     2  0.0000      1.000 0.000 1.000
#> GSM225369     2  0.0000      1.000 0.000 1.000
#> GSM225358     2  0.0000      1.000 0.000 1.000
#> GSM225649     2  0.0000      1.000 0.000 1.000
#> GSM225355     2  0.0000      1.000 0.000 1.000
#> GSM225361     2  0.0000      1.000 0.000 1.000
#> GSM225655     2  0.0000      1.000 0.000 1.000
#> GSM225376     2  0.0000      1.000 0.000 1.000
#> GSM225654     2  0.0000      1.000 0.000 1.000
#> GSM225348     2  0.0000      1.000 0.000 1.000
#> GSM225659     2  0.0000      1.000 0.000 1.000
#> GSM225378     1  0.0000      0.984 1.000 0.000
#> GSM225661     1  0.0000      0.984 1.000 0.000
#> GSM225372     1  0.9358      0.457 0.648 0.352
#> GSM225365     1  0.0000      0.984 1.000 0.000
#> GSM225860     1  0.0000      0.984 1.000 0.000
#> GSM225875     1  0.0000      0.984 1.000 0.000
#> GSM225878     1  0.0000      0.984 1.000 0.000
#> GSM225885     1  0.0000      0.984 1.000 0.000
#> GSM225867     1  0.0000      0.984 1.000 0.000
#> GSM225871     1  0.0000      0.984 1.000 0.000
#> GSM225881     1  0.0000      0.984 1.000 0.000
#> GSM225887     1  0.0000      0.984 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     1  0.1163      0.897 0.972 0.028 0.000
#> GSM225349     2  0.0000      0.915 0.000 1.000 0.000
#> GSM225367     3  0.6225      0.570 0.000 0.432 0.568
#> GSM225356     2  0.0000      0.915 0.000 1.000 0.000
#> GSM225353     2  0.0592      0.911 0.000 0.988 0.012
#> GSM225653     2  0.1289      0.897 0.000 0.968 0.032
#> GSM209847     2  0.0000      0.915 0.000 1.000 0.000
#> GSM225658     2  0.0424      0.913 0.000 0.992 0.008
#> GSM225370     1  0.0000      0.912 1.000 0.000 0.000
#> GSM225364     2  0.0592      0.911 0.000 0.988 0.012
#> GSM225645     3  0.4654      0.864 0.000 0.208 0.792
#> GSM225350     2  0.0237      0.914 0.000 0.996 0.004
#> GSM225368     3  0.5882      0.725 0.000 0.348 0.652
#> GSM225357     2  0.0000      0.915 0.000 1.000 0.000
#> GSM225651     3  0.4452      0.871 0.000 0.192 0.808
#> GSM225354     2  0.0424      0.913 0.000 0.992 0.008
#> GSM225360     3  0.5036      0.740 0.172 0.020 0.808
#> GSM225657     2  0.7268      0.200 0.448 0.524 0.028
#> GSM225377     1  0.2711      0.858 0.912 0.000 0.088
#> GSM225656     1  0.0000      0.912 1.000 0.000 0.000
#> GSM225347     2  0.3502      0.823 0.084 0.896 0.020
#> GSM225660     1  0.0000      0.912 1.000 0.000 0.000
#> GSM225712     1  0.0000      0.912 1.000 0.000 0.000
#> GSM225663     1  0.0000      0.912 1.000 0.000 0.000
#> GSM225373     1  0.0000      0.912 1.000 0.000 0.000
#> GSM225366     1  0.6244      0.535 0.560 0.000 0.440
#> GSM225380     3  0.4235      0.874 0.000 0.176 0.824
#> GSM225351     2  0.1753      0.893 0.000 0.952 0.048
#> GSM225369     3  0.5397      0.796 0.000 0.280 0.720
#> GSM225358     2  0.4062      0.740 0.000 0.836 0.164
#> GSM225649     3  0.4002      0.875 0.000 0.160 0.840
#> GSM225355     2  0.1964      0.889 0.000 0.944 0.056
#> GSM225361     3  0.3752      0.873 0.000 0.144 0.856
#> GSM225655     3  0.4504      0.859 0.000 0.196 0.804
#> GSM225376     3  0.3983      0.873 0.004 0.144 0.852
#> GSM225654     3  0.3784      0.865 0.004 0.132 0.864
#> GSM225348     2  0.2165      0.883 0.000 0.936 0.064
#> GSM225659     3  0.5967      0.809 0.032 0.216 0.752
#> GSM225378     1  0.0237      0.912 0.996 0.000 0.004
#> GSM225661     1  0.4235      0.825 0.824 0.000 0.176
#> GSM225372     3  0.3941      0.752 0.156 0.000 0.844
#> GSM225365     1  0.0000      0.912 1.000 0.000 0.000
#> GSM225860     1  0.3752      0.903 0.856 0.000 0.144
#> GSM225875     1  0.3752      0.903 0.856 0.000 0.144
#> GSM225878     1  0.3752      0.903 0.856 0.000 0.144
#> GSM225885     1  0.3752      0.903 0.856 0.000 0.144
#> GSM225867     1  0.3752      0.903 0.856 0.000 0.144
#> GSM225871     1  0.3752      0.903 0.856 0.000 0.144
#> GSM225881     1  0.3752      0.903 0.856 0.000 0.144
#> GSM225887     1  0.3752      0.903 0.856 0.000 0.144

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM225374     1  0.1796     0.9257 0.948 0.016 0.032 0.004
#> GSM225349     2  0.0000     0.8181 0.000 1.000 0.000 0.000
#> GSM225367     2  0.5623    -0.0941 0.004 0.552 0.016 0.428
#> GSM225356     2  0.0188     0.8179 0.004 0.996 0.000 0.000
#> GSM225353     2  0.1509     0.8086 0.008 0.960 0.012 0.020
#> GSM225653     2  0.2957     0.7673 0.016 0.900 0.016 0.068
#> GSM209847     2  0.0188     0.8179 0.004 0.996 0.000 0.000
#> GSM225658     2  0.1394     0.8112 0.016 0.964 0.008 0.012
#> GSM225370     1  0.1211     0.9350 0.960 0.000 0.040 0.000
#> GSM225364     2  0.1377     0.8098 0.008 0.964 0.008 0.020
#> GSM225645     4  0.4776     0.6490 0.000 0.272 0.016 0.712
#> GSM225350     2  0.2474     0.8089 0.008 0.920 0.016 0.056
#> GSM225368     4  0.5570     0.4422 0.004 0.404 0.016 0.576
#> GSM225357     2  0.1732     0.8178 0.004 0.948 0.008 0.040
#> GSM225651     4  0.4803     0.6690 0.008 0.248 0.012 0.732
#> GSM225354     2  0.2882     0.8041 0.016 0.904 0.016 0.064
#> GSM225360     4  0.7102     0.3128 0.368 0.012 0.096 0.524
#> GSM225657     1  0.2165     0.8922 0.936 0.032 0.024 0.008
#> GSM225377     1  0.2089     0.9201 0.932 0.000 0.048 0.020
#> GSM225656     1  0.1389     0.9358 0.952 0.000 0.048 0.000
#> GSM225347     2  0.6017     0.6530 0.180 0.716 0.020 0.084
#> GSM225660     1  0.1557     0.9349 0.944 0.000 0.056 0.000
#> GSM225712     1  0.1867     0.9295 0.928 0.000 0.072 0.000
#> GSM225663     1  0.1716     0.9327 0.936 0.000 0.064 0.000
#> GSM225373     1  0.1474     0.9354 0.948 0.000 0.052 0.000
#> GSM225366     3  0.6570     0.4640 0.116 0.000 0.604 0.280
#> GSM225380     4  0.3249     0.7305 0.000 0.140 0.008 0.852
#> GSM225351     2  0.4692     0.7224 0.012 0.772 0.020 0.196
#> GSM225369     4  0.5202     0.5837 0.004 0.312 0.016 0.668
#> GSM225358     2  0.5404     0.4684 0.004 0.600 0.012 0.384
#> GSM225649     4  0.1824     0.7540 0.000 0.060 0.004 0.936
#> GSM225355     2  0.4770     0.7159 0.012 0.764 0.020 0.204
#> GSM225361     4  0.1124     0.7538 0.004 0.012 0.012 0.972
#> GSM225655     4  0.3102     0.7194 0.016 0.064 0.024 0.896
#> GSM225376     4  0.1362     0.7500 0.020 0.004 0.012 0.964
#> GSM225654     4  0.2057     0.7435 0.032 0.008 0.020 0.940
#> GSM225348     2  0.5512     0.6215 0.016 0.680 0.020 0.284
#> GSM225659     4  0.5758     0.6271 0.124 0.096 0.028 0.752
#> GSM225378     1  0.1489     0.9297 0.952 0.000 0.044 0.004
#> GSM225661     1  0.6689     0.4919 0.620 0.000 0.196 0.184
#> GSM225372     4  0.4542     0.6202 0.228 0.000 0.020 0.752
#> GSM225365     1  0.1940     0.9197 0.924 0.000 0.076 0.000
#> GSM225860     3  0.1389     0.9504 0.048 0.000 0.952 0.000
#> GSM225875     3  0.1389     0.9504 0.048 0.000 0.952 0.000
#> GSM225878     3  0.1389     0.9504 0.048 0.000 0.952 0.000
#> GSM225885     3  0.1389     0.9504 0.048 0.000 0.952 0.000
#> GSM225867     3  0.1389     0.9504 0.048 0.000 0.952 0.000
#> GSM225871     3  0.1389     0.9504 0.048 0.000 0.952 0.000
#> GSM225881     3  0.1389     0.9504 0.048 0.000 0.952 0.000
#> GSM225887     3  0.1389     0.9504 0.048 0.000 0.952 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM225374     1  0.0703     0.9402 0.976 0.000 0.000 0.000 0.024
#> GSM225349     2  0.3398     0.6982 0.000 0.780 0.000 0.004 0.216
#> GSM225367     5  0.1952     0.5490 0.004 0.084 0.000 0.000 0.912
#> GSM225356     2  0.3579     0.6837 0.000 0.756 0.000 0.004 0.240
#> GSM225353     2  0.4527     0.5323 0.000 0.596 0.000 0.012 0.392
#> GSM225653     5  0.4814    -0.2650 0.004 0.412 0.000 0.016 0.568
#> GSM209847     2  0.3430     0.6961 0.000 0.776 0.000 0.004 0.220
#> GSM225658     2  0.4802     0.3598 0.004 0.504 0.000 0.012 0.480
#> GSM225370     1  0.0613     0.9427 0.984 0.000 0.004 0.008 0.004
#> GSM225364     2  0.4803     0.3509 0.004 0.496 0.000 0.012 0.488
#> GSM225645     5  0.3209     0.5960 0.000 0.008 0.000 0.180 0.812
#> GSM225350     2  0.1493     0.7374 0.000 0.948 0.000 0.024 0.028
#> GSM225368     5  0.2659     0.5930 0.000 0.052 0.000 0.060 0.888
#> GSM225357     2  0.2731     0.7313 0.004 0.876 0.000 0.016 0.104
#> GSM225651     5  0.4106     0.5498 0.000 0.020 0.000 0.256 0.724
#> GSM225354     2  0.1197     0.7319 0.000 0.952 0.000 0.048 0.000
#> GSM225360     5  0.7694     0.0701 0.152 0.008 0.076 0.300 0.464
#> GSM225657     1  0.2201     0.9139 0.920 0.040 0.000 0.032 0.008
#> GSM225377     1  0.3753     0.8361 0.832 0.000 0.044 0.104 0.020
#> GSM225656     1  0.0992     0.9409 0.968 0.000 0.000 0.024 0.008
#> GSM225347     2  0.3270     0.7020 0.044 0.852 0.000 0.100 0.004
#> GSM225660     1  0.0932     0.9423 0.972 0.000 0.004 0.020 0.004
#> GSM225712     1  0.1026     0.9403 0.968 0.000 0.024 0.004 0.004
#> GSM225663     1  0.0740     0.9432 0.980 0.000 0.008 0.008 0.004
#> GSM225373     1  0.0898     0.9411 0.972 0.000 0.020 0.008 0.000
#> GSM225366     4  0.5105     0.4932 0.052 0.008 0.252 0.684 0.004
#> GSM225380     5  0.4836     0.4413 0.000 0.036 0.000 0.336 0.628
#> GSM225351     2  0.2848     0.7115 0.000 0.868 0.000 0.104 0.028
#> GSM225369     5  0.2966     0.6059 0.000 0.016 0.000 0.136 0.848
#> GSM225358     2  0.5344     0.5553 0.000 0.672 0.000 0.168 0.160
#> GSM225649     5  0.4807     0.1879 0.000 0.020 0.000 0.448 0.532
#> GSM225355     2  0.2753     0.7010 0.000 0.856 0.000 0.136 0.008
#> GSM225361     4  0.4674     0.1237 0.000 0.016 0.000 0.568 0.416
#> GSM225655     4  0.3476     0.5885 0.000 0.076 0.000 0.836 0.088
#> GSM225376     4  0.3706     0.4727 0.004 0.004 0.000 0.756 0.236
#> GSM225654     4  0.2171     0.6127 0.000 0.024 0.000 0.912 0.064
#> GSM225348     2  0.3086     0.6717 0.000 0.816 0.000 0.180 0.004
#> GSM225659     4  0.3113     0.5944 0.020 0.100 0.000 0.864 0.016
#> GSM225378     1  0.3428     0.8515 0.848 0.000 0.052 0.092 0.008
#> GSM225661     4  0.5375     0.3596 0.320 0.000 0.076 0.604 0.000
#> GSM225372     4  0.5764     0.4439 0.152 0.000 0.000 0.612 0.236
#> GSM225365     1  0.2199     0.9262 0.928 0.020 0.020 0.024 0.008
#> GSM225860     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225875     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225878     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225885     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225867     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225871     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225881     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225887     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM225374     1  0.2039      0.818 0.908 0.004 0.000 0.016 0.000 0.072
#> GSM225349     6  0.3706      0.502 0.000 0.380 0.000 0.000 0.000 0.620
#> GSM225367     6  0.5628     -0.205 0.004 0.020 0.000 0.076 0.396 0.504
#> GSM225356     6  0.4140      0.578 0.000 0.328 0.004 0.012 0.004 0.652
#> GSM225353     6  0.4767      0.628 0.000 0.252 0.000 0.020 0.056 0.672
#> GSM225653     6  0.3732      0.634 0.000 0.084 0.000 0.024 0.080 0.812
#> GSM209847     6  0.3795      0.530 0.000 0.364 0.000 0.004 0.000 0.632
#> GSM225658     6  0.3135      0.673 0.000 0.124 0.000 0.012 0.028 0.836
#> GSM225370     1  0.2094      0.825 0.912 0.004 0.000 0.060 0.004 0.020
#> GSM225364     6  0.2696      0.670 0.000 0.116 0.000 0.000 0.028 0.856
#> GSM225645     5  0.3043      0.593 0.000 0.008 0.000 0.020 0.832 0.140
#> GSM225350     2  0.3197      0.692 0.000 0.804 0.000 0.012 0.008 0.176
#> GSM225368     5  0.5602      0.314 0.000 0.020 0.000 0.088 0.508 0.384
#> GSM225357     2  0.5287      0.462 0.000 0.624 0.004 0.036 0.052 0.284
#> GSM225651     5  0.2560      0.597 0.000 0.000 0.000 0.036 0.872 0.092
#> GSM225354     2  0.2742      0.748 0.008 0.856 0.000 0.008 0.004 0.124
#> GSM225360     5  0.7660      0.258 0.120 0.008 0.032 0.264 0.452 0.124
#> GSM225657     1  0.4967      0.751 0.744 0.072 0.000 0.096 0.016 0.072
#> GSM225377     1  0.5887      0.577 0.632 0.000 0.020 0.160 0.160 0.028
#> GSM225656     1  0.3272      0.815 0.852 0.024 0.000 0.080 0.008 0.036
#> GSM225347     2  0.2936      0.743 0.044 0.872 0.000 0.020 0.004 0.060
#> GSM225660     1  0.3012      0.819 0.876 0.024 0.004 0.052 0.008 0.036
#> GSM225712     1  0.2438      0.815 0.892 0.000 0.004 0.076 0.008 0.020
#> GSM225663     1  0.2443      0.824 0.908 0.012 0.008 0.036 0.008 0.028
#> GSM225373     1  0.2349      0.817 0.892 0.000 0.000 0.080 0.008 0.020
#> GSM225366     4  0.4890      0.488 0.032 0.008 0.224 0.692 0.044 0.000
#> GSM225380     5  0.3534      0.566 0.000 0.020 0.000 0.092 0.824 0.064
#> GSM225351     2  0.2394      0.769 0.000 0.900 0.000 0.032 0.020 0.048
#> GSM225369     5  0.5207      0.515 0.000 0.020 0.000 0.092 0.636 0.252
#> GSM225358     2  0.6470      0.447 0.000 0.572 0.004 0.128 0.188 0.108
#> GSM225649     5  0.3354      0.540 0.000 0.020 0.000 0.128 0.824 0.028
#> GSM225355     2  0.1755      0.775 0.000 0.932 0.000 0.028 0.008 0.032
#> GSM225361     5  0.4882      0.353 0.000 0.028 0.000 0.308 0.628 0.036
#> GSM225655     4  0.6080      0.385 0.000 0.188 0.000 0.496 0.300 0.016
#> GSM225376     5  0.4479      0.105 0.004 0.032 0.000 0.356 0.608 0.000
#> GSM225654     4  0.5125      0.491 0.000 0.132 0.000 0.632 0.232 0.004
#> GSM225348     2  0.1760      0.759 0.000 0.928 0.000 0.048 0.004 0.020
#> GSM225659     4  0.5114      0.550 0.008 0.196 0.004 0.680 0.104 0.008
#> GSM225378     1  0.5233      0.616 0.660 0.000 0.044 0.244 0.012 0.040
#> GSM225661     4  0.6065      0.436 0.196 0.036 0.104 0.632 0.004 0.028
#> GSM225372     4  0.6634      0.163 0.124 0.012 0.004 0.484 0.332 0.044
#> GSM225365     1  0.4586      0.777 0.792 0.044 0.044 0.072 0.012 0.036
#> GSM225860     3  0.0146      0.999 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM225875     3  0.0146      0.999 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM225878     3  0.0146      0.999 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM225885     3  0.0146      0.999 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM225867     3  0.0000      0.994 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225871     3  0.0146      0.999 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM225881     3  0.0146      0.999 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM225887     3  0.0146      0.999 0.004 0.000 0.996 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n cell.type(p) agent(p)  time(p) individual(p) k
#> CV:skmeans 49     2.39e-03  0.54351 1.54e-04      2.91e-02 2
#> CV:skmeans 49     9.76e-04  0.09463 6.17e-05      3.16e-04 3
#> CV:skmeans 44     1.51e-09  0.00603 3.69e-05      1.32e-04 4
#> CV:skmeans 39     6.97e-08  0.08685 4.71e-04      1.91e-06 5
#> CV:skmeans 38     3.77e-07  0.07969 2.28e-07      5.12e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.982       0.987         0.2851 0.726   0.726
#> 3 3 0.750           0.798       0.922         1.1770 0.643   0.508
#> 4 4 0.835           0.907       0.953         0.1868 0.799   0.514
#> 5 5 0.771           0.446       0.770         0.0776 0.884   0.615
#> 6 6 0.854           0.671       0.884         0.0297 0.889   0.572

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM225374     2   0.204      0.977 0.032 0.968
#> GSM225349     2   0.000      0.984 0.000 1.000
#> GSM225367     2   0.000      0.984 0.000 1.000
#> GSM225356     2   0.000      0.984 0.000 1.000
#> GSM225353     2   0.000      0.984 0.000 1.000
#> GSM225653     2   0.000      0.984 0.000 1.000
#> GSM209847     2   0.000      0.984 0.000 1.000
#> GSM225658     2   0.000      0.984 0.000 1.000
#> GSM225370     2   0.204      0.977 0.032 0.968
#> GSM225364     2   0.000      0.984 0.000 1.000
#> GSM225645     2   0.000      0.984 0.000 1.000
#> GSM225350     2   0.000      0.984 0.000 1.000
#> GSM225368     2   0.000      0.984 0.000 1.000
#> GSM225357     2   0.000      0.984 0.000 1.000
#> GSM225651     2   0.000      0.984 0.000 1.000
#> GSM225354     2   0.000      0.984 0.000 1.000
#> GSM225360     2   0.204      0.977 0.032 0.968
#> GSM225657     2   0.204      0.977 0.032 0.968
#> GSM225377     2   0.204      0.977 0.032 0.968
#> GSM225656     2   0.204      0.977 0.032 0.968
#> GSM225347     2   0.000      0.984 0.000 1.000
#> GSM225660     2   0.204      0.977 0.032 0.968
#> GSM225712     2   0.552      0.879 0.128 0.872
#> GSM225663     2   0.242      0.972 0.040 0.960
#> GSM225373     2   0.204      0.977 0.032 0.968
#> GSM225366     2   0.204      0.977 0.032 0.968
#> GSM225380     2   0.000      0.984 0.000 1.000
#> GSM225351     2   0.000      0.984 0.000 1.000
#> GSM225369     2   0.000      0.984 0.000 1.000
#> GSM225358     2   0.000      0.984 0.000 1.000
#> GSM225649     2   0.000      0.984 0.000 1.000
#> GSM225355     2   0.000      0.984 0.000 1.000
#> GSM225361     2   0.000      0.984 0.000 1.000
#> GSM225655     2   0.000      0.984 0.000 1.000
#> GSM225376     2   0.204      0.977 0.032 0.968
#> GSM225654     2   0.184      0.978 0.028 0.972
#> GSM225348     2   0.000      0.984 0.000 1.000
#> GSM225659     2   0.000      0.984 0.000 1.000
#> GSM225378     2   0.204      0.977 0.032 0.968
#> GSM225661     2   0.204      0.977 0.032 0.968
#> GSM225372     2   0.204      0.977 0.032 0.968
#> GSM225365     2   0.204      0.977 0.032 0.968
#> GSM225860     1   0.000      1.000 1.000 0.000
#> GSM225875     1   0.000      1.000 1.000 0.000
#> GSM225878     1   0.000      1.000 1.000 0.000
#> GSM225885     1   0.000      1.000 1.000 0.000
#> GSM225867     1   0.000      1.000 1.000 0.000
#> GSM225871     1   0.000      1.000 1.000 0.000
#> GSM225881     1   0.000      1.000 1.000 0.000
#> GSM225887     1   0.000      1.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2 p3
#> GSM225374     1  0.0000     0.8780 1.000 0.000  0
#> GSM225349     2  0.0000     0.8902 0.000 1.000  0
#> GSM225367     2  0.0000     0.8902 0.000 1.000  0
#> GSM225356     2  0.0000     0.8902 0.000 1.000  0
#> GSM225353     2  0.0000     0.8902 0.000 1.000  0
#> GSM225653     1  0.6235     0.2910 0.564 0.436  0
#> GSM209847     2  0.0000     0.8902 0.000 1.000  0
#> GSM225658     2  0.0000     0.8902 0.000 1.000  0
#> GSM225370     1  0.0000     0.8780 1.000 0.000  0
#> GSM225364     2  0.0000     0.8902 0.000 1.000  0
#> GSM225645     2  0.3551     0.7895 0.132 0.868  0
#> GSM225350     2  0.0000     0.8902 0.000 1.000  0
#> GSM225368     2  0.0000     0.8902 0.000 1.000  0
#> GSM225357     2  0.6180     0.1823 0.416 0.584  0
#> GSM225651     1  0.6168     0.3368 0.588 0.412  0
#> GSM225354     2  0.6302    -0.0712 0.480 0.520  0
#> GSM225360     1  0.0237     0.8767 0.996 0.004  0
#> GSM225657     1  0.1643     0.8556 0.956 0.044  0
#> GSM225377     1  0.0000     0.8780 1.000 0.000  0
#> GSM225656     1  0.0000     0.8780 1.000 0.000  0
#> GSM225347     1  0.6244     0.2791 0.560 0.440  0
#> GSM225660     1  0.0000     0.8780 1.000 0.000  0
#> GSM225712     1  0.0000     0.8780 1.000 0.000  0
#> GSM225663     1  0.0000     0.8780 1.000 0.000  0
#> GSM225373     1  0.0000     0.8780 1.000 0.000  0
#> GSM225366     1  0.0000     0.8780 1.000 0.000  0
#> GSM225380     2  0.1860     0.8552 0.052 0.948  0
#> GSM225351     2  0.0000     0.8902 0.000 1.000  0
#> GSM225369     2  0.0000     0.8902 0.000 1.000  0
#> GSM225358     2  0.0000     0.8902 0.000 1.000  0
#> GSM225649     2  0.3192     0.8098 0.112 0.888  0
#> GSM225355     2  0.0000     0.8902 0.000 1.000  0
#> GSM225361     1  0.4974     0.6718 0.764 0.236  0
#> GSM225655     1  0.6062     0.4227 0.616 0.384  0
#> GSM225376     1  0.0424     0.8749 0.992 0.008  0
#> GSM225654     1  0.2796     0.8201 0.908 0.092  0
#> GSM225348     2  0.6111     0.2502 0.396 0.604  0
#> GSM225659     1  0.4974     0.6718 0.764 0.236  0
#> GSM225378     1  0.0000     0.8780 1.000 0.000  0
#> GSM225661     1  0.0000     0.8780 1.000 0.000  0
#> GSM225372     1  0.0000     0.8780 1.000 0.000  0
#> GSM225365     1  0.0000     0.8780 1.000 0.000  0
#> GSM225860     3  0.0000     1.0000 0.000 0.000  1
#> GSM225875     3  0.0000     1.0000 0.000 0.000  1
#> GSM225878     3  0.0000     1.0000 0.000 0.000  1
#> GSM225885     3  0.0000     1.0000 0.000 0.000  1
#> GSM225867     3  0.0000     1.0000 0.000 0.000  1
#> GSM225871     3  0.0000     1.0000 0.000 0.000  1
#> GSM225881     3  0.0000     1.0000 0.000 0.000  1
#> GSM225887     3  0.0000     1.0000 0.000 0.000  1

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2 p3    p4
#> GSM225374     1   0.000      0.988 1.000 0.000  0 0.000
#> GSM225349     2   0.000      0.896 0.000 1.000  0 0.000
#> GSM225367     2   0.000      0.896 0.000 1.000  0 0.000
#> GSM225356     2   0.000      0.896 0.000 1.000  0 0.000
#> GSM225353     2   0.000      0.896 0.000 1.000  0 0.000
#> GSM225653     2   0.365      0.778 0.204 0.796  0 0.000
#> GSM209847     2   0.000      0.896 0.000 1.000  0 0.000
#> GSM225658     2   0.000      0.896 0.000 1.000  0 0.000
#> GSM225370     1   0.000      0.988 1.000 0.000  0 0.000
#> GSM225364     2   0.000      0.896 0.000 1.000  0 0.000
#> GSM225645     4   0.112      0.885 0.000 0.036  0 0.964
#> GSM225350     2   0.000      0.896 0.000 1.000  0 0.000
#> GSM225368     2   0.112      0.873 0.000 0.964  0 0.036
#> GSM225357     2   0.357      0.786 0.196 0.804  0 0.000
#> GSM225651     4   0.112      0.885 0.000 0.036  0 0.964
#> GSM225354     2   0.357      0.786 0.196 0.804  0 0.000
#> GSM225360     1   0.000      0.988 1.000 0.000  0 0.000
#> GSM225657     1   0.000      0.988 1.000 0.000  0 0.000
#> GSM225377     1   0.000      0.988 1.000 0.000  0 0.000
#> GSM225656     1   0.000      0.988 1.000 0.000  0 0.000
#> GSM225347     2   0.365      0.778 0.204 0.796  0 0.000
#> GSM225660     1   0.000      0.988 1.000 0.000  0 0.000
#> GSM225712     1   0.000      0.988 1.000 0.000  0 0.000
#> GSM225663     1   0.000      0.988 1.000 0.000  0 0.000
#> GSM225373     1   0.000      0.988 1.000 0.000  0 0.000
#> GSM225366     1   0.215      0.904 0.912 0.000  0 0.088
#> GSM225380     4   0.102      0.885 0.000 0.032  0 0.968
#> GSM225351     2   0.000      0.896 0.000 1.000  0 0.000
#> GSM225369     4   0.179      0.862 0.000 0.068  0 0.932
#> GSM225358     2   0.448      0.477 0.000 0.688  0 0.312
#> GSM225649     4   0.000      0.884 0.000 0.000  0 1.000
#> GSM225355     2   0.000      0.896 0.000 1.000  0 0.000
#> GSM225361     4   0.000      0.884 0.000 0.000  0 1.000
#> GSM225655     4   0.365      0.772 0.204 0.000  0 0.796
#> GSM225376     4   0.000      0.884 0.000 0.000  0 1.000
#> GSM225654     4   0.365      0.772 0.204 0.000  0 0.796
#> GSM225348     2   0.431      0.772 0.192 0.784  0 0.024
#> GSM225659     4   0.425      0.746 0.220 0.012  0 0.768
#> GSM225378     1   0.000      0.988 1.000 0.000  0 0.000
#> GSM225661     1   0.102      0.963 0.968 0.000  0 0.032
#> GSM225372     1   0.121      0.947 0.960 0.000  0 0.040
#> GSM225365     1   0.000      0.988 1.000 0.000  0 0.000
#> GSM225860     3   0.000      1.000 0.000 0.000  1 0.000
#> GSM225875     3   0.000      1.000 0.000 0.000  1 0.000
#> GSM225878     3   0.000      1.000 0.000 0.000  1 0.000
#> GSM225885     3   0.000      1.000 0.000 0.000  1 0.000
#> GSM225867     3   0.000      1.000 0.000 0.000  1 0.000
#> GSM225871     3   0.000      1.000 0.000 0.000  1 0.000
#> GSM225881     3   0.000      1.000 0.000 0.000  1 0.000
#> GSM225887     3   0.000      1.000 0.000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> GSM225374     1  0.0000    0.79525 1.000 0.000  0 0.000 0.000
#> GSM225349     2  0.4278   -0.55026 0.000 0.548  0 0.000 0.452
#> GSM225367     5  0.4256    0.64025 0.000 0.436  0 0.000 0.564
#> GSM225356     2  0.4278   -0.55026 0.000 0.548  0 0.000 0.452
#> GSM225353     2  0.4278   -0.55026 0.000 0.548  0 0.000 0.452
#> GSM225653     2  0.0162    0.12008 0.000 0.996  0 0.000 0.004
#> GSM209847     2  0.4278   -0.55026 0.000 0.548  0 0.000 0.452
#> GSM225658     2  0.4278   -0.55026 0.000 0.548  0 0.000 0.452
#> GSM225370     1  0.0000    0.79525 1.000 0.000  0 0.000 0.000
#> GSM225364     2  0.4278   -0.55026 0.000 0.548  0 0.000 0.452
#> GSM225645     4  0.0000    0.94767 0.000 0.000  0 1.000 0.000
#> GSM225350     2  0.4278   -0.55026 0.000 0.548  0 0.000 0.452
#> GSM225368     5  0.4604    0.64951 0.000 0.428  0 0.012 0.560
#> GSM225357     2  0.1792    0.00408 0.000 0.916  0 0.000 0.084
#> GSM225651     4  0.0000    0.94767 0.000 0.000  0 1.000 0.000
#> GSM225354     2  0.2127    0.11469 0.000 0.892  0 0.000 0.108
#> GSM225360     1  0.4278    0.54546 0.548 0.452  0 0.000 0.000
#> GSM225657     1  0.4278    0.54546 0.548 0.452  0 0.000 0.000
#> GSM225377     1  0.0000    0.79525 1.000 0.000  0 0.000 0.000
#> GSM225656     1  0.4278    0.54546 0.548 0.452  0 0.000 0.000
#> GSM225347     2  0.3210    0.19109 0.000 0.788  0 0.000 0.212
#> GSM225660     1  0.4278    0.54546 0.548 0.452  0 0.000 0.000
#> GSM225712     1  0.0000    0.79525 1.000 0.000  0 0.000 0.000
#> GSM225663     1  0.0404    0.79241 0.988 0.012  0 0.000 0.000
#> GSM225373     1  0.0000    0.79525 1.000 0.000  0 0.000 0.000
#> GSM225366     1  0.7441    0.30892 0.372 0.352  0 0.036 0.240
#> GSM225380     4  0.0000    0.94767 0.000 0.000  0 1.000 0.000
#> GSM225351     2  0.4283   -0.55507 0.000 0.544  0 0.000 0.456
#> GSM225369     4  0.2179    0.86679 0.000 0.000  0 0.888 0.112
#> GSM225358     5  0.6554    0.48555 0.000 0.272  0 0.252 0.476
#> GSM225649     4  0.0000    0.94767 0.000 0.000  0 1.000 0.000
#> GSM225355     5  0.4015    0.48333 0.000 0.348  0 0.000 0.652
#> GSM225361     4  0.3305    0.77435 0.000 0.000  0 0.776 0.224
#> GSM225655     2  0.6581    0.01106 0.000 0.452  0 0.224 0.324
#> GSM225376     4  0.0000    0.94767 0.000 0.000  0 1.000 0.000
#> GSM225654     2  0.6099    0.11429 0.000 0.452  0 0.124 0.424
#> GSM225348     2  0.4227    0.14680 0.000 0.580  0 0.000 0.420
#> GSM225659     2  0.6002    0.12355 0.000 0.452  0 0.112 0.436
#> GSM225378     1  0.0000    0.79525 1.000 0.000  0 0.000 0.000
#> GSM225661     2  0.6588   -0.38745 0.360 0.452  0 0.004 0.184
#> GSM225372     1  0.0000    0.79525 1.000 0.000  0 0.000 0.000
#> GSM225365     1  0.0162    0.79471 0.996 0.004  0 0.000 0.000
#> GSM225860     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000
#> GSM225875     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000
#> GSM225878     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000
#> GSM225885     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000
#> GSM225867     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000
#> GSM225871     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000
#> GSM225881     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000
#> GSM225887     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4    p5    p6
#> GSM225374     1  0.0000     0.8212 1.000 0.000  0 0.000 0.000 0.000
#> GSM225349     6  0.0000     0.7958 0.000 0.000  0 0.000 0.000 1.000
#> GSM225367     2  0.0000     1.0000 0.000 1.000  0 0.000 0.000 0.000
#> GSM225356     6  0.0000     0.7958 0.000 0.000  0 0.000 0.000 1.000
#> GSM225353     6  0.0000     0.7958 0.000 0.000  0 0.000 0.000 1.000
#> GSM225653     6  0.3847     0.0515 0.000 0.000  0 0.456 0.000 0.544
#> GSM209847     6  0.0000     0.7958 0.000 0.000  0 0.000 0.000 1.000
#> GSM225658     6  0.0000     0.7958 0.000 0.000  0 0.000 0.000 1.000
#> GSM225370     1  0.0000     0.8212 1.000 0.000  0 0.000 0.000 0.000
#> GSM225364     6  0.0000     0.7958 0.000 0.000  0 0.000 0.000 1.000
#> GSM225645     5  0.0000     0.9179 0.000 0.000  0 0.000 1.000 0.000
#> GSM225350     6  0.0000     0.7958 0.000 0.000  0 0.000 0.000 1.000
#> GSM225368     2  0.0000     1.0000 0.000 1.000  0 0.000 0.000 0.000
#> GSM225357     6  0.3789     0.1714 0.000 0.000  0 0.416 0.000 0.584
#> GSM225651     5  0.0000     0.9179 0.000 0.000  0 0.000 1.000 0.000
#> GSM225354     6  0.3817     0.1425 0.000 0.000  0 0.432 0.000 0.568
#> GSM225360     4  0.4903    -0.0851 0.468 0.060  0 0.472 0.000 0.000
#> GSM225657     1  0.3860     0.0363 0.528 0.000  0 0.472 0.000 0.000
#> GSM225377     1  0.0000     0.8212 1.000 0.000  0 0.000 0.000 0.000
#> GSM225656     1  0.3860     0.0363 0.528 0.000  0 0.472 0.000 0.000
#> GSM225347     4  0.3838    -0.0343 0.000 0.000  0 0.552 0.000 0.448
#> GSM225660     1  0.3860     0.0363 0.528 0.000  0 0.472 0.000 0.000
#> GSM225712     1  0.0000     0.8212 1.000 0.000  0 0.000 0.000 0.000
#> GSM225663     1  0.0363     0.8131 0.988 0.000  0 0.012 0.000 0.000
#> GSM225373     1  0.0000     0.8212 1.000 0.000  0 0.000 0.000 0.000
#> GSM225366     4  0.3198     0.4477 0.260 0.000  0 0.740 0.000 0.000
#> GSM225380     5  0.0000     0.9179 0.000 0.000  0 0.000 1.000 0.000
#> GSM225351     6  0.0458     0.7877 0.000 0.000  0 0.016 0.000 0.984
#> GSM225369     2  0.0000     1.0000 0.000 1.000  0 0.000 0.000 0.000
#> GSM225358     6  0.4443     0.2619 0.000 0.000  0 0.036 0.368 0.596
#> GSM225649     5  0.0000     0.9179 0.000 0.000  0 0.000 1.000 0.000
#> GSM225355     6  0.2340     0.6861 0.000 0.000  0 0.148 0.000 0.852
#> GSM225361     5  0.3795     0.5342 0.000 0.004  0 0.364 0.632 0.000
#> GSM225655     4  0.1765     0.5639 0.000 0.000  0 0.904 0.096 0.000
#> GSM225376     5  0.0000     0.9179 0.000 0.000  0 0.000 1.000 0.000
#> GSM225654     4  0.0000     0.5939 0.000 0.000  0 1.000 0.000 0.000
#> GSM225348     4  0.3868    -0.1587 0.000 0.000  0 0.508 0.000 0.492
#> GSM225659     4  0.0000     0.5939 0.000 0.000  0 1.000 0.000 0.000
#> GSM225378     1  0.0000     0.8212 1.000 0.000  0 0.000 0.000 0.000
#> GSM225661     4  0.3515     0.3462 0.324 0.000  0 0.676 0.000 0.000
#> GSM225372     1  0.0000     0.8212 1.000 0.000  0 0.000 0.000 0.000
#> GSM225365     1  0.0146     0.8190 0.996 0.000  0 0.004 0.000 0.000
#> GSM225860     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225875     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225878     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225885     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225867     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225871     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225881     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225887     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n cell.type(p) agent(p)  time(p) individual(p) k
#> CV:pam 50     5.95e-11   0.8133 4.48e-04      6.11e-06 2
#> CV:pam 43     4.60e-10   0.8423 2.21e-07      2.22e-05 3
#> CV:pam 49     1.30e-10   0.0106 2.55e-07      1.10e-05 4
#> CV:pam 30     1.38e-06   0.1069 2.26e-04      1.15e-03 5
#> CV:pam 38     3.77e-07   0.1900 3.57e-07      1.50e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.994       0.997         0.2710 0.726   0.726
#> 3 3 0.540           0.703       0.834         0.9999 0.739   0.640
#> 4 4 0.437           0.435       0.682         0.2980 0.745   0.488
#> 5 5 0.770           0.768       0.888         0.1119 0.784   0.395
#> 6 6 0.828           0.723       0.868         0.0448 0.868   0.502

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette   p1   p2
#> GSM225374     2   0.000      1.000 0.00 1.00
#> GSM225349     2   0.000      1.000 0.00 1.00
#> GSM225367     2   0.000      1.000 0.00 1.00
#> GSM225356     2   0.000      1.000 0.00 1.00
#> GSM225353     2   0.000      1.000 0.00 1.00
#> GSM225653     2   0.000      1.000 0.00 1.00
#> GSM209847     2   0.000      1.000 0.00 1.00
#> GSM225658     2   0.000      1.000 0.00 1.00
#> GSM225370     2   0.000      1.000 0.00 1.00
#> GSM225364     2   0.000      1.000 0.00 1.00
#> GSM225645     2   0.000      1.000 0.00 1.00
#> GSM225350     2   0.000      1.000 0.00 1.00
#> GSM225368     2   0.000      1.000 0.00 1.00
#> GSM225357     2   0.000      1.000 0.00 1.00
#> GSM225651     2   0.000      1.000 0.00 1.00
#> GSM225354     2   0.000      1.000 0.00 1.00
#> GSM225360     2   0.000      1.000 0.00 1.00
#> GSM225657     2   0.000      1.000 0.00 1.00
#> GSM225377     2   0.000      1.000 0.00 1.00
#> GSM225656     2   0.000      1.000 0.00 1.00
#> GSM225347     2   0.000      1.000 0.00 1.00
#> GSM225660     2   0.000      1.000 0.00 1.00
#> GSM225712     2   0.000      1.000 0.00 1.00
#> GSM225663     2   0.000      1.000 0.00 1.00
#> GSM225373     2   0.000      1.000 0.00 1.00
#> GSM225366     2   0.000      1.000 0.00 1.00
#> GSM225380     2   0.000      1.000 0.00 1.00
#> GSM225351     2   0.000      1.000 0.00 1.00
#> GSM225369     2   0.000      1.000 0.00 1.00
#> GSM225358     2   0.000      1.000 0.00 1.00
#> GSM225649     2   0.000      1.000 0.00 1.00
#> GSM225355     2   0.000      1.000 0.00 1.00
#> GSM225361     2   0.000      1.000 0.00 1.00
#> GSM225655     2   0.000      1.000 0.00 1.00
#> GSM225376     2   0.000      1.000 0.00 1.00
#> GSM225654     2   0.000      1.000 0.00 1.00
#> GSM225348     2   0.000      1.000 0.00 1.00
#> GSM225659     2   0.000      1.000 0.00 1.00
#> GSM225378     2   0.000      1.000 0.00 1.00
#> GSM225661     2   0.000      1.000 0.00 1.00
#> GSM225372     2   0.000      1.000 0.00 1.00
#> GSM225365     2   0.000      1.000 0.00 1.00
#> GSM225860     1   0.000      0.980 1.00 0.00
#> GSM225875     1   0.000      0.980 1.00 0.00
#> GSM225878     1   0.000      0.980 1.00 0.00
#> GSM225885     1   0.000      0.980 1.00 0.00
#> GSM225867     1   0.584      0.837 0.86 0.14
#> GSM225871     1   0.000      0.980 1.00 0.00
#> GSM225881     1   0.000      0.980 1.00 0.00
#> GSM225887     1   0.000      0.980 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     1  0.5178     0.5357 0.744 0.256 0.000
#> GSM225349     2  0.0000     0.7120 0.000 1.000 0.000
#> GSM225367     2  0.5650     0.6853 0.312 0.688 0.000
#> GSM225356     2  0.0000     0.7120 0.000 1.000 0.000
#> GSM225353     2  0.0000     0.7120 0.000 1.000 0.000
#> GSM225653     2  0.1411     0.7152 0.036 0.964 0.000
#> GSM209847     2  0.0000     0.7120 0.000 1.000 0.000
#> GSM225658     2  0.0000     0.7120 0.000 1.000 0.000
#> GSM225370     1  0.1411     0.8263 0.964 0.036 0.000
#> GSM225364     2  0.0000     0.7120 0.000 1.000 0.000
#> GSM225645     2  0.5591     0.6878 0.304 0.696 0.000
#> GSM225350     2  0.0000     0.7120 0.000 1.000 0.000
#> GSM225368     2  0.5650     0.6853 0.312 0.688 0.000
#> GSM225357     2  0.0000     0.7120 0.000 1.000 0.000
#> GSM225651     2  0.5591     0.6878 0.304 0.696 0.000
#> GSM225354     2  0.0000     0.7120 0.000 1.000 0.000
#> GSM225360     2  0.6140     0.5552 0.404 0.596 0.000
#> GSM225657     2  0.5529     0.6051 0.296 0.704 0.000
#> GSM225377     1  0.6215    -0.0643 0.572 0.428 0.000
#> GSM225656     1  0.1163     0.8313 0.972 0.028 0.000
#> GSM225347     2  0.1411     0.6949 0.036 0.964 0.000
#> GSM225660     1  0.1163     0.8313 0.972 0.028 0.000
#> GSM225712     1  0.1163     0.8313 0.972 0.028 0.000
#> GSM225663     1  0.1163     0.8313 0.972 0.028 0.000
#> GSM225373     1  0.1163     0.8313 0.972 0.028 0.000
#> GSM225366     2  0.6302     0.4137 0.480 0.520 0.000
#> GSM225380     2  0.5560     0.6899 0.300 0.700 0.000
#> GSM225351     2  0.0892     0.7047 0.020 0.980 0.000
#> GSM225369     2  0.5650     0.6853 0.312 0.688 0.000
#> GSM225358     2  0.5621     0.6941 0.308 0.692 0.000
#> GSM225649     2  0.5733     0.6869 0.324 0.676 0.000
#> GSM225355     2  0.1031     0.7023 0.024 0.976 0.000
#> GSM225361     2  0.5882     0.6721 0.348 0.652 0.000
#> GSM225655     2  0.5882     0.6726 0.348 0.652 0.000
#> GSM225376     2  0.5948     0.6606 0.360 0.640 0.000
#> GSM225654     2  0.5948     0.6606 0.360 0.640 0.000
#> GSM225348     2  0.1163     0.7053 0.028 0.972 0.000
#> GSM225659     2  0.5948     0.6606 0.360 0.640 0.000
#> GSM225378     1  0.6062     0.1430 0.616 0.384 0.000
#> GSM225661     2  0.6302     0.4137 0.480 0.520 0.000
#> GSM225372     2  0.6204     0.5060 0.424 0.576 0.000
#> GSM225365     1  0.1163     0.8313 0.972 0.028 0.000
#> GSM225860     3  0.0000     0.9634 0.000 0.000 1.000
#> GSM225875     3  0.0000     0.9634 0.000 0.000 1.000
#> GSM225878     3  0.0000     0.9634 0.000 0.000 1.000
#> GSM225885     3  0.0000     0.9634 0.000 0.000 1.000
#> GSM225867     3  0.4235     0.7039 0.000 0.176 0.824
#> GSM225871     3  0.0000     0.9634 0.000 0.000 1.000
#> GSM225881     3  0.0000     0.9634 0.000 0.000 1.000
#> GSM225887     3  0.0000     0.9634 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2   p3    p4
#> GSM225374     1  0.1488     0.6922 0.956 0.032 0.00 0.012
#> GSM225349     2  0.7289     0.3281 0.200 0.532 0.00 0.268
#> GSM225367     2  0.3726     0.3155 0.000 0.788 0.00 0.212
#> GSM225356     2  0.7289     0.3281 0.200 0.532 0.00 0.268
#> GSM225353     2  0.6915     0.3489 0.296 0.564 0.00 0.140
#> GSM225653     2  0.7028     0.3572 0.280 0.560 0.00 0.160
#> GSM209847     2  0.7289     0.3281 0.200 0.532 0.00 0.268
#> GSM225658     2  0.7293     0.3469 0.248 0.536 0.00 0.216
#> GSM225370     1  0.0672     0.6995 0.984 0.008 0.00 0.008
#> GSM225364     2  0.7121     0.3540 0.292 0.544 0.00 0.164
#> GSM225645     2  0.3335     0.2918 0.128 0.856 0.00 0.016
#> GSM225350     2  0.7521    -0.0626 0.184 0.420 0.00 0.396
#> GSM225368     2  0.3726     0.3155 0.000 0.788 0.00 0.212
#> GSM225357     2  0.7542     0.1718 0.208 0.472 0.00 0.320
#> GSM225651     2  0.4621     0.2134 0.128 0.796 0.00 0.076
#> GSM225354     4  0.7609    -0.1349 0.200 0.396 0.00 0.404
#> GSM225360     2  0.7271     0.0920 0.216 0.540 0.00 0.244
#> GSM225657     1  0.5863     0.3465 0.700 0.120 0.00 0.180
#> GSM225377     1  0.5102     0.6142 0.732 0.220 0.00 0.048
#> GSM225656     1  0.0336     0.7025 0.992 0.008 0.00 0.000
#> GSM225347     1  0.7731    -0.3633 0.396 0.228 0.00 0.376
#> GSM225660     1  0.0657     0.6976 0.984 0.004 0.00 0.012
#> GSM225712     1  0.3674     0.6610 0.848 0.116 0.00 0.036
#> GSM225663     1  0.0524     0.7021 0.988 0.004 0.00 0.008
#> GSM225373     1  0.3674     0.6610 0.848 0.116 0.00 0.036
#> GSM225366     1  0.7824     0.0834 0.404 0.328 0.00 0.268
#> GSM225380     2  0.5332     0.1573 0.124 0.748 0.00 0.128
#> GSM225351     4  0.7119     0.2895 0.132 0.388 0.00 0.480
#> GSM225369     2  0.3726     0.3155 0.000 0.788 0.00 0.212
#> GSM225358     2  0.7278    -0.1990 0.188 0.528 0.00 0.284
#> GSM225649     2  0.5613     0.0941 0.120 0.724 0.00 0.156
#> GSM225355     4  0.6813     0.4595 0.132 0.292 0.00 0.576
#> GSM225361     2  0.5399     0.0401 0.012 0.520 0.00 0.468
#> GSM225655     4  0.7331     0.5282 0.212 0.260 0.00 0.528
#> GSM225376     4  0.7379     0.3540 0.164 0.384 0.00 0.452
#> GSM225654     4  0.7309     0.3814 0.172 0.324 0.00 0.504
#> GSM225348     4  0.6523     0.4957 0.136 0.236 0.00 0.628
#> GSM225659     4  0.7344     0.5283 0.248 0.224 0.00 0.528
#> GSM225378     1  0.5109     0.6153 0.736 0.212 0.00 0.052
#> GSM225661     1  0.7798     0.1108 0.416 0.320 0.00 0.264
#> GSM225372     2  0.7450    -0.1638 0.280 0.504 0.00 0.216
#> GSM225365     1  0.0376     0.7000 0.992 0.004 0.00 0.004
#> GSM225860     3  0.0000     0.9961 0.000 0.000 1.00 0.000
#> GSM225875     3  0.0000     0.9961 0.000 0.000 1.00 0.000
#> GSM225878     3  0.0000     0.9961 0.000 0.000 1.00 0.000
#> GSM225885     3  0.0000     0.9961 0.000 0.000 1.00 0.000
#> GSM225867     3  0.0707     0.9724 0.000 0.020 0.98 0.000
#> GSM225871     3  0.0000     0.9961 0.000 0.000 1.00 0.000
#> GSM225881     3  0.0000     0.9961 0.000 0.000 1.00 0.000
#> GSM225887     3  0.0000     0.9961 0.000 0.000 1.00 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM225374     1  0.0865     0.9534 0.972 0.000 0.000 0.004 0.024
#> GSM225349     2  0.0000     0.8276 0.000 1.000 0.000 0.000 0.000
#> GSM225367     5  0.0000     0.8336 0.000 0.000 0.000 0.000 1.000
#> GSM225356     2  0.0000     0.8276 0.000 1.000 0.000 0.000 0.000
#> GSM225353     2  0.4561    -0.0433 0.000 0.504 0.000 0.008 0.488
#> GSM225653     2  0.1106     0.8066 0.000 0.964 0.000 0.012 0.024
#> GSM209847     2  0.0000     0.8276 0.000 1.000 0.000 0.000 0.000
#> GSM225658     2  0.0000     0.8276 0.000 1.000 0.000 0.000 0.000
#> GSM225370     1  0.0000     0.9656 1.000 0.000 0.000 0.000 0.000
#> GSM225364     2  0.0290     0.8234 0.000 0.992 0.000 0.008 0.000
#> GSM225645     5  0.5565     0.5326 0.000 0.144 0.000 0.216 0.640
#> GSM225350     4  0.4405     0.6315 0.020 0.260 0.000 0.712 0.008
#> GSM225368     5  0.0000     0.8336 0.000 0.000 0.000 0.000 1.000
#> GSM225357     2  0.4620     0.0700 0.016 0.592 0.000 0.392 0.000
#> GSM225651     4  0.6009     0.4154 0.000 0.136 0.000 0.544 0.320
#> GSM225354     4  0.4649     0.3819 0.016 0.404 0.000 0.580 0.000
#> GSM225360     4  0.6036     0.1564 0.072 0.016 0.000 0.468 0.444
#> GSM225657     1  0.3267     0.8259 0.844 0.044 0.000 0.112 0.000
#> GSM225377     1  0.1211     0.9478 0.960 0.000 0.000 0.016 0.024
#> GSM225656     1  0.0000     0.9656 1.000 0.000 0.000 0.000 0.000
#> GSM225347     4  0.4974     0.5108 0.288 0.048 0.000 0.660 0.004
#> GSM225660     1  0.0000     0.9656 1.000 0.000 0.000 0.000 0.000
#> GSM225712     1  0.0671     0.9577 0.980 0.000 0.000 0.004 0.016
#> GSM225663     1  0.0000     0.9656 1.000 0.000 0.000 0.000 0.000
#> GSM225373     1  0.0162     0.9646 0.996 0.000 0.000 0.004 0.000
#> GSM225366     4  0.3242     0.7308 0.116 0.000 0.000 0.844 0.040
#> GSM225380     4  0.5265     0.5340 0.000 0.080 0.000 0.636 0.284
#> GSM225351     4  0.2017     0.7625 0.000 0.080 0.000 0.912 0.008
#> GSM225369     5  0.0000     0.8336 0.000 0.000 0.000 0.000 1.000
#> GSM225358     4  0.2110     0.7618 0.000 0.072 0.000 0.912 0.016
#> GSM225649     4  0.5382     0.4209 0.000 0.072 0.000 0.592 0.336
#> GSM225355     4  0.1764     0.7655 0.000 0.064 0.000 0.928 0.008
#> GSM225361     5  0.3536     0.7428 0.000 0.032 0.000 0.156 0.812
#> GSM225655     4  0.0566     0.7628 0.000 0.004 0.000 0.984 0.012
#> GSM225376     4  0.1121     0.7634 0.000 0.000 0.000 0.956 0.044
#> GSM225654     4  0.0912     0.7636 0.012 0.000 0.000 0.972 0.016
#> GSM225348     4  0.0865     0.7622 0.000 0.024 0.000 0.972 0.004
#> GSM225659     4  0.0579     0.7615 0.000 0.008 0.000 0.984 0.008
#> GSM225378     1  0.1893     0.9176 0.928 0.000 0.000 0.048 0.024
#> GSM225661     4  0.3366     0.7196 0.140 0.000 0.000 0.828 0.032
#> GSM225372     4  0.4592     0.6914 0.100 0.004 0.000 0.756 0.140
#> GSM225365     1  0.0000     0.9656 1.000 0.000 0.000 0.000 0.000
#> GSM225860     3  0.0000     0.9992 0.000 0.000 1.000 0.000 0.000
#> GSM225875     3  0.0000     0.9992 0.000 0.000 1.000 0.000 0.000
#> GSM225878     3  0.0000     0.9992 0.000 0.000 1.000 0.000 0.000
#> GSM225885     3  0.0000     0.9992 0.000 0.000 1.000 0.000 0.000
#> GSM225867     3  0.0162     0.9945 0.000 0.000 0.996 0.000 0.004
#> GSM225871     3  0.0000     0.9992 0.000 0.000 1.000 0.000 0.000
#> GSM225881     3  0.0000     0.9992 0.000 0.000 1.000 0.000 0.000
#> GSM225887     3  0.0000     0.9992 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4    p5    p6
#> GSM225374     1  0.1262     0.8921 0.956 0.020  0 0.008 0.000 0.016
#> GSM225349     6  0.0551     0.8371 0.000 0.008  0 0.004 0.004 0.984
#> GSM225367     5  0.0291     0.9347 0.000 0.004  0 0.000 0.992 0.004
#> GSM225356     6  0.0405     0.8373 0.000 0.008  0 0.000 0.004 0.988
#> GSM225353     6  0.0767     0.8349 0.004 0.012  0 0.000 0.008 0.976
#> GSM225653     6  0.0508     0.8358 0.004 0.012  0 0.000 0.000 0.984
#> GSM209847     6  0.0551     0.8371 0.000 0.008  0 0.004 0.004 0.984
#> GSM225658     6  0.0146     0.8387 0.004 0.000  0 0.000 0.000 0.996
#> GSM225370     1  0.0622     0.9010 0.980 0.012  0 0.008 0.000 0.000
#> GSM225364     6  0.0146     0.8387 0.004 0.000  0 0.000 0.000 0.996
#> GSM225645     6  0.4933    -0.0328 0.000 0.396  0 0.000 0.068 0.536
#> GSM225350     6  0.2469     0.7856 0.008 0.044  0 0.048 0.004 0.896
#> GSM225368     5  0.0291     0.9347 0.000 0.004  0 0.000 0.992 0.004
#> GSM225357     6  0.1893     0.8081 0.008 0.036  0 0.024 0.004 0.928
#> GSM225651     6  0.4945    -0.0773 0.000 0.412  0 0.004 0.056 0.528
#> GSM225354     6  0.3166     0.7071 0.008 0.032  0 0.116 0.004 0.840
#> GSM225360     2  0.5229     0.4727 0.040 0.716  0 0.024 0.084 0.136
#> GSM225657     1  0.4709     0.5080 0.644 0.016  0 0.304 0.004 0.032
#> GSM225377     1  0.1418     0.8891 0.944 0.032  0 0.024 0.000 0.000
#> GSM225656     1  0.0146     0.9030 0.996 0.000  0 0.004 0.000 0.000
#> GSM225347     1  0.5378     0.3215 0.536 0.020  0 0.384 0.004 0.056
#> GSM225660     1  0.0146     0.9030 0.996 0.000  0 0.004 0.000 0.000
#> GSM225712     1  0.0551     0.9012 0.984 0.004  0 0.008 0.004 0.000
#> GSM225663     1  0.0146     0.9029 0.996 0.000  0 0.004 0.000 0.000
#> GSM225373     1  0.0405     0.9018 0.988 0.004  0 0.008 0.000 0.000
#> GSM225366     4  0.4476     0.4881 0.308 0.052  0 0.640 0.000 0.000
#> GSM225380     2  0.5228     0.4469 0.000 0.564  0 0.048 0.028 0.360
#> GSM225351     4  0.6102    -0.2074 0.004 0.256  0 0.440 0.000 0.300
#> GSM225369     5  0.2544     0.8597 0.000 0.140  0 0.004 0.852 0.004
#> GSM225358     2  0.6295     0.3931 0.004 0.408  0 0.276 0.004 0.308
#> GSM225649     2  0.5137     0.5129 0.004 0.612  0 0.068 0.012 0.304
#> GSM225355     4  0.3395     0.6118 0.004 0.136  0 0.812 0.000 0.048
#> GSM225361     2  0.2984     0.3847 0.004 0.848  0 0.044 0.104 0.000
#> GSM225655     4  0.1429     0.7094 0.004 0.052  0 0.940 0.000 0.004
#> GSM225376     4  0.2914     0.6632 0.004 0.152  0 0.832 0.004 0.008
#> GSM225654     4  0.1296     0.7110 0.004 0.044  0 0.948 0.004 0.000
#> GSM225348     4  0.0717     0.7108 0.000 0.008  0 0.976 0.000 0.016
#> GSM225659     4  0.0405     0.7152 0.008 0.004  0 0.988 0.000 0.000
#> GSM225378     1  0.1334     0.8885 0.948 0.032  0 0.020 0.000 0.000
#> GSM225661     4  0.4482     0.4742 0.324 0.048  0 0.628 0.000 0.000
#> GSM225372     2  0.5286     0.4544 0.060 0.688  0 0.188 0.012 0.052
#> GSM225365     1  0.0291     0.9023 0.992 0.004  0 0.004 0.000 0.000
#> GSM225860     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225875     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225878     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225885     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225867     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225871     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225881     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225887     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n cell.type(p) agent(p)  time(p) individual(p) k
#> CV:mclust 50     5.95e-11  0.81326 4.48e-04      6.11e-06 2
#> CV:mclust 46     1.03e-10  0.22299 7.61e-06      4.09e-04 3
#> CV:mclust 20     4.54e-05  0.08208 3.17e-03      5.40e-02 4
#> CV:mclust 44     6.42e-09  0.00541 1.08e-06      9.66e-04 5
#> CV:mclust 39     2.37e-07  0.00110 3.73e-06      4.17e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.998           0.965       0.984         0.4851 0.510   0.510
#> 3 3 0.700           0.872       0.936         0.3864 0.699   0.469
#> 4 4 0.668           0.735       0.853         0.1287 0.820   0.513
#> 5 5 0.949           0.903       0.954         0.0640 0.801   0.366
#> 6 6 0.850           0.747       0.852         0.0316 0.975   0.872

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM225374     1  0.9044      0.555 0.680 0.320
#> GSM225349     2  0.0000      0.994 0.000 1.000
#> GSM225367     2  0.0000      0.994 0.000 1.000
#> GSM225356     2  0.0000      0.994 0.000 1.000
#> GSM225353     2  0.0000      0.994 0.000 1.000
#> GSM225653     2  0.0000      0.994 0.000 1.000
#> GSM209847     2  0.0000      0.994 0.000 1.000
#> GSM225658     2  0.0000      0.994 0.000 1.000
#> GSM225370     1  0.7219      0.763 0.800 0.200
#> GSM225364     2  0.0000      0.994 0.000 1.000
#> GSM225645     2  0.0000      0.994 0.000 1.000
#> GSM225350     2  0.0000      0.994 0.000 1.000
#> GSM225368     2  0.0000      0.994 0.000 1.000
#> GSM225357     2  0.0000      0.994 0.000 1.000
#> GSM225651     2  0.0000      0.994 0.000 1.000
#> GSM225354     2  0.0000      0.994 0.000 1.000
#> GSM225360     2  0.5519      0.847 0.128 0.872
#> GSM225657     2  0.1843      0.967 0.028 0.972
#> GSM225377     1  0.4022      0.902 0.920 0.080
#> GSM225656     1  0.0376      0.964 0.996 0.004
#> GSM225347     2  0.0000      0.994 0.000 1.000
#> GSM225660     1  0.0938      0.959 0.988 0.012
#> GSM225712     1  0.0000      0.966 1.000 0.000
#> GSM225663     1  0.0000      0.966 1.000 0.000
#> GSM225373     1  0.0000      0.966 1.000 0.000
#> GSM225366     1  0.0000      0.966 1.000 0.000
#> GSM225380     2  0.0000      0.994 0.000 1.000
#> GSM225351     2  0.0000      0.994 0.000 1.000
#> GSM225369     2  0.0000      0.994 0.000 1.000
#> GSM225358     2  0.0000      0.994 0.000 1.000
#> GSM225649     2  0.0000      0.994 0.000 1.000
#> GSM225355     2  0.0000      0.994 0.000 1.000
#> GSM225361     2  0.0000      0.994 0.000 1.000
#> GSM225655     2  0.0000      0.994 0.000 1.000
#> GSM225376     2  0.0000      0.994 0.000 1.000
#> GSM225654     2  0.0000      0.994 0.000 1.000
#> GSM225348     2  0.0000      0.994 0.000 1.000
#> GSM225659     2  0.0000      0.994 0.000 1.000
#> GSM225378     1  0.0000      0.966 1.000 0.000
#> GSM225661     1  0.1414      0.954 0.980 0.020
#> GSM225372     2  0.0376      0.991 0.004 0.996
#> GSM225365     1  0.0000      0.966 1.000 0.000
#> GSM225860     1  0.0000      0.966 1.000 0.000
#> GSM225875     1  0.0000      0.966 1.000 0.000
#> GSM225878     1  0.0000      0.966 1.000 0.000
#> GSM225885     1  0.0000      0.966 1.000 0.000
#> GSM225867     1  0.0000      0.966 1.000 0.000
#> GSM225871     1  0.0000      0.966 1.000 0.000
#> GSM225881     1  0.0000      0.966 1.000 0.000
#> GSM225887     1  0.0000      0.966 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     1  0.0000      0.924 1.000 0.000 0.000
#> GSM225349     1  0.0424      0.924 0.992 0.008 0.000
#> GSM225367     2  0.5948      0.508 0.360 0.640 0.000
#> GSM225356     1  0.0237      0.925 0.996 0.004 0.000
#> GSM225353     1  0.4504      0.727 0.804 0.196 0.000
#> GSM225653     1  0.2537      0.872 0.920 0.080 0.000
#> GSM209847     1  0.0237      0.925 0.996 0.004 0.000
#> GSM225658     1  0.0237      0.925 0.996 0.004 0.000
#> GSM225370     1  0.0237      0.923 0.996 0.000 0.004
#> GSM225364     1  0.0424      0.924 0.992 0.008 0.000
#> GSM225645     2  0.3619      0.842 0.136 0.864 0.000
#> GSM225350     1  0.0237      0.925 0.996 0.004 0.000
#> GSM225368     2  0.3752      0.832 0.144 0.856 0.000
#> GSM225357     1  0.0237      0.925 0.996 0.004 0.000
#> GSM225651     2  0.3412      0.854 0.124 0.876 0.000
#> GSM225354     1  0.0237      0.925 0.996 0.004 0.000
#> GSM225360     2  0.1399      0.897 0.004 0.968 0.028
#> GSM225657     1  0.0000      0.924 1.000 0.000 0.000
#> GSM225377     3  0.3340      0.859 0.120 0.000 0.880
#> GSM225656     1  0.4887      0.709 0.772 0.000 0.228
#> GSM225347     1  0.0000      0.924 1.000 0.000 0.000
#> GSM225660     1  0.3267      0.845 0.884 0.000 0.116
#> GSM225712     3  0.0424      0.945 0.008 0.000 0.992
#> GSM225663     3  0.5254      0.647 0.264 0.000 0.736
#> GSM225373     3  0.1643      0.927 0.044 0.000 0.956
#> GSM225366     3  0.4399      0.768 0.000 0.188 0.812
#> GSM225380     2  0.0000      0.910 0.000 1.000 0.000
#> GSM225351     2  0.4002      0.806 0.160 0.840 0.000
#> GSM225369     2  0.0000      0.910 0.000 1.000 0.000
#> GSM225358     2  0.0424      0.909 0.008 0.992 0.000
#> GSM225649     2  0.0000      0.910 0.000 1.000 0.000
#> GSM225355     1  0.4452      0.764 0.808 0.192 0.000
#> GSM225361     2  0.0237      0.908 0.000 0.996 0.004
#> GSM225655     2  0.0000      0.910 0.000 1.000 0.000
#> GSM225376     2  0.0000      0.910 0.000 1.000 0.000
#> GSM225654     2  0.0237      0.908 0.000 0.996 0.004
#> GSM225348     1  0.3752      0.817 0.856 0.144 0.000
#> GSM225659     2  0.5465      0.591 0.288 0.712 0.000
#> GSM225378     3  0.0592      0.944 0.012 0.000 0.988
#> GSM225661     3  0.3310      0.899 0.028 0.064 0.908
#> GSM225372     2  0.0000      0.910 0.000 1.000 0.000
#> GSM225365     1  0.4842      0.716 0.776 0.000 0.224
#> GSM225860     3  0.0000      0.947 0.000 0.000 1.000
#> GSM225875     3  0.0000      0.947 0.000 0.000 1.000
#> GSM225878     3  0.0237      0.946 0.004 0.000 0.996
#> GSM225885     3  0.0000      0.947 0.000 0.000 1.000
#> GSM225867     3  0.0000      0.947 0.000 0.000 1.000
#> GSM225871     3  0.0000      0.947 0.000 0.000 1.000
#> GSM225881     3  0.0000      0.947 0.000 0.000 1.000
#> GSM225887     3  0.0000      0.947 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM225374     1  0.5883     0.4853 0.640 0.300 0.060 0.000
#> GSM225349     2  0.5156     0.5223 0.236 0.720 0.000 0.044
#> GSM225367     2  0.0921     0.8341 0.000 0.972 0.000 0.028
#> GSM225356     2  0.2983     0.7645 0.068 0.892 0.000 0.040
#> GSM225353     2  0.0895     0.8327 0.004 0.976 0.000 0.020
#> GSM225653     2  0.1256     0.8335 0.008 0.964 0.000 0.028
#> GSM209847     1  0.5969     0.3840 0.564 0.392 0.000 0.044
#> GSM225658     2  0.2647     0.7596 0.120 0.880 0.000 0.000
#> GSM225370     1  0.5141     0.6173 0.756 0.084 0.160 0.000
#> GSM225364     2  0.1867     0.7930 0.072 0.928 0.000 0.000
#> GSM225645     2  0.2281     0.8212 0.000 0.904 0.000 0.096
#> GSM225350     1  0.4046     0.7653 0.828 0.124 0.000 0.048
#> GSM225368     2  0.1867     0.8295 0.000 0.928 0.000 0.072
#> GSM225357     1  0.4017     0.7634 0.828 0.128 0.000 0.044
#> GSM225651     2  0.3726     0.7313 0.000 0.788 0.000 0.212
#> GSM225354     1  0.3818     0.7723 0.844 0.108 0.000 0.048
#> GSM225360     2  0.6713     0.1802 0.004 0.488 0.076 0.432
#> GSM225657     1  0.0376     0.7679 0.992 0.004 0.000 0.004
#> GSM225377     3  0.5392     0.7110 0.252 0.024 0.708 0.016
#> GSM225656     1  0.3317     0.7035 0.868 0.012 0.112 0.008
#> GSM225347     1  0.3229     0.7803 0.880 0.072 0.000 0.048
#> GSM225660     1  0.2207     0.7459 0.928 0.012 0.056 0.004
#> GSM225712     3  0.3829     0.8185 0.152 0.016 0.828 0.004
#> GSM225663     3  0.5088     0.4160 0.424 0.004 0.572 0.000
#> GSM225373     3  0.4173     0.8047 0.172 0.020 0.804 0.004
#> GSM225366     4  0.3850     0.7767 0.044 0.000 0.116 0.840
#> GSM225380     4  0.2281     0.8069 0.000 0.096 0.000 0.904
#> GSM225351     4  0.7012     0.0727 0.372 0.124 0.000 0.504
#> GSM225369     2  0.3400     0.7704 0.000 0.820 0.000 0.180
#> GSM225358     4  0.1474     0.8236 0.000 0.052 0.000 0.948
#> GSM225649     4  0.1557     0.8331 0.000 0.056 0.000 0.944
#> GSM225355     1  0.5102     0.7237 0.764 0.100 0.000 0.136
#> GSM225361     4  0.1637     0.8316 0.000 0.060 0.000 0.940
#> GSM225655     4  0.0657     0.8339 0.004 0.012 0.000 0.984
#> GSM225376     4  0.1118     0.8392 0.000 0.036 0.000 0.964
#> GSM225654     4  0.0895     0.8413 0.000 0.020 0.004 0.976
#> GSM225348     1  0.4083     0.7634 0.832 0.068 0.000 0.100
#> GSM225659     4  0.3143     0.7840 0.100 0.024 0.000 0.876
#> GSM225378     3  0.4458     0.7854 0.196 0.008 0.780 0.016
#> GSM225661     4  0.7227     0.3893 0.256 0.000 0.200 0.544
#> GSM225372     4  0.2300     0.8325 0.016 0.064 0.000 0.920
#> GSM225365     1  0.4720     0.4869 0.720 0.016 0.264 0.000
#> GSM225860     3  0.0000     0.8875 0.000 0.000 1.000 0.000
#> GSM225875     3  0.0000     0.8875 0.000 0.000 1.000 0.000
#> GSM225878     3  0.0000     0.8875 0.000 0.000 1.000 0.000
#> GSM225885     3  0.0000     0.8875 0.000 0.000 1.000 0.000
#> GSM225867     3  0.0000     0.8875 0.000 0.000 1.000 0.000
#> GSM225871     3  0.0000     0.8875 0.000 0.000 1.000 0.000
#> GSM225881     3  0.0000     0.8875 0.000 0.000 1.000 0.000
#> GSM225887     3  0.0000     0.8875 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM225374     1  0.0609     0.9213 0.980 0.000 0.000 0.000 0.020
#> GSM225349     2  0.1270     0.8976 0.000 0.948 0.000 0.000 0.052
#> GSM225367     5  0.0000     0.9346 0.000 0.000 0.000 0.000 1.000
#> GSM225356     2  0.3837     0.5553 0.000 0.692 0.000 0.000 0.308
#> GSM225353     5  0.0703     0.9315 0.000 0.024 0.000 0.000 0.976
#> GSM225653     5  0.0162     0.9352 0.000 0.004 0.000 0.000 0.996
#> GSM209847     2  0.0510     0.9214 0.000 0.984 0.000 0.000 0.016
#> GSM225658     5  0.1894     0.8931 0.008 0.072 0.000 0.000 0.920
#> GSM225370     1  0.0324     0.9295 0.992 0.000 0.004 0.000 0.004
#> GSM225364     5  0.0703     0.9307 0.000 0.024 0.000 0.000 0.976
#> GSM225645     5  0.0703     0.9275 0.024 0.000 0.000 0.000 0.976
#> GSM225350     2  0.0000     0.9279 0.000 1.000 0.000 0.000 0.000
#> GSM225368     5  0.0000     0.9346 0.000 0.000 0.000 0.000 1.000
#> GSM225357     2  0.0290     0.9260 0.008 0.992 0.000 0.000 0.000
#> GSM225651     5  0.5404     0.6056 0.152 0.000 0.000 0.184 0.664
#> GSM225354     2  0.0162     0.9279 0.004 0.996 0.000 0.000 0.000
#> GSM225360     1  0.6108     0.0542 0.456 0.000 0.004 0.432 0.108
#> GSM225657     1  0.0609     0.9236 0.980 0.020 0.000 0.000 0.000
#> GSM225377     1  0.0162     0.9291 0.996 0.000 0.000 0.004 0.000
#> GSM225656     1  0.0162     0.9294 0.996 0.004 0.000 0.000 0.000
#> GSM225347     2  0.0162     0.9279 0.004 0.996 0.000 0.000 0.000
#> GSM225660     1  0.0290     0.9285 0.992 0.008 0.000 0.000 0.000
#> GSM225712     1  0.0510     0.9267 0.984 0.000 0.016 0.000 0.000
#> GSM225663     1  0.0290     0.9292 0.992 0.000 0.008 0.000 0.000
#> GSM225373     1  0.0290     0.9293 0.992 0.000 0.008 0.000 0.000
#> GSM225366     4  0.0609     0.9780 0.020 0.000 0.000 0.980 0.000
#> GSM225380     4  0.1106     0.9646 0.012 0.000 0.000 0.964 0.024
#> GSM225351     2  0.0000     0.9279 0.000 1.000 0.000 0.000 0.000
#> GSM225369     5  0.1430     0.9111 0.000 0.004 0.000 0.052 0.944
#> GSM225358     2  0.3796     0.5832 0.000 0.700 0.000 0.300 0.000
#> GSM225649     4  0.0162     0.9836 0.004 0.000 0.000 0.996 0.000
#> GSM225355     2  0.0000     0.9279 0.000 1.000 0.000 0.000 0.000
#> GSM225361     4  0.0162     0.9827 0.000 0.000 0.000 0.996 0.004
#> GSM225655     4  0.0000     0.9835 0.000 0.000 0.000 1.000 0.000
#> GSM225376     4  0.0609     0.9794 0.020 0.000 0.000 0.980 0.000
#> GSM225654     4  0.0000     0.9835 0.000 0.000 0.000 1.000 0.000
#> GSM225348     2  0.0162     0.9279 0.004 0.996 0.000 0.000 0.000
#> GSM225659     4  0.0703     0.9748 0.024 0.000 0.000 0.976 0.000
#> GSM225378     1  0.0324     0.9295 0.992 0.000 0.004 0.004 0.000
#> GSM225661     1  0.1851     0.8747 0.912 0.000 0.000 0.088 0.000
#> GSM225372     1  0.3143     0.7391 0.796 0.000 0.000 0.204 0.000
#> GSM225365     1  0.0566     0.9270 0.984 0.012 0.004 0.000 0.000
#> GSM225860     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225875     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225878     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225885     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225867     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225871     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225881     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM225887     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM225374     1  0.4025      0.372 0.576 0.000 0.000 0.000 0.008 0.416
#> GSM225349     2  0.1421      0.896 0.000 0.944 0.000 0.000 0.028 0.028
#> GSM225367     5  0.0603      0.762 0.004 0.000 0.000 0.000 0.980 0.016
#> GSM225356     2  0.5434      0.334 0.000 0.576 0.000 0.000 0.192 0.232
#> GSM225353     5  0.1633      0.738 0.000 0.044 0.000 0.000 0.932 0.024
#> GSM225653     5  0.4082     -0.223 0.004 0.004 0.000 0.000 0.560 0.432
#> GSM209847     2  0.1528      0.890 0.000 0.936 0.000 0.000 0.016 0.048
#> GSM225658     6  0.4760      0.356 0.008 0.040 0.000 0.000 0.376 0.576
#> GSM225370     1  0.1082      0.844 0.956 0.000 0.000 0.000 0.004 0.040
#> GSM225364     6  0.4300      0.217 0.004 0.012 0.000 0.000 0.456 0.528
#> GSM225645     6  0.4078      0.490 0.000 0.000 0.000 0.020 0.340 0.640
#> GSM225350     2  0.0000      0.915 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM225368     5  0.0291      0.765 0.004 0.004 0.000 0.000 0.992 0.000
#> GSM225357     2  0.0547      0.913 0.000 0.980 0.000 0.000 0.000 0.020
#> GSM225651     6  0.4971      0.533 0.032 0.004 0.000 0.100 0.152 0.712
#> GSM225354     2  0.0000      0.915 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM225360     1  0.7200      0.203 0.412 0.000 0.000 0.228 0.252 0.108
#> GSM225657     1  0.2001      0.836 0.912 0.012 0.000 0.008 0.000 0.068
#> GSM225377     1  0.3835      0.633 0.684 0.000 0.000 0.016 0.000 0.300
#> GSM225656     1  0.1226      0.843 0.952 0.004 0.000 0.004 0.000 0.040
#> GSM225347     2  0.0436      0.914 0.004 0.988 0.000 0.000 0.004 0.004
#> GSM225660     1  0.1340      0.843 0.948 0.008 0.000 0.004 0.000 0.040
#> GSM225712     1  0.1701      0.839 0.920 0.000 0.008 0.000 0.000 0.072
#> GSM225663     1  0.0935      0.845 0.964 0.004 0.000 0.000 0.000 0.032
#> GSM225373     1  0.1398      0.842 0.940 0.000 0.008 0.000 0.000 0.052
#> GSM225366     4  0.2563      0.814 0.068 0.000 0.008 0.884 0.000 0.040
#> GSM225380     6  0.4274      0.244 0.000 0.004 0.000 0.336 0.024 0.636
#> GSM225351     2  0.0653      0.913 0.000 0.980 0.000 0.004 0.004 0.012
#> GSM225369     5  0.2209      0.702 0.000 0.004 0.000 0.024 0.900 0.072
#> GSM225358     2  0.3889      0.737 0.000 0.776 0.000 0.160 0.012 0.052
#> GSM225649     4  0.3563      0.549 0.000 0.000 0.000 0.664 0.000 0.336
#> GSM225355     2  0.0260      0.915 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM225361     4  0.1838      0.816 0.000 0.000 0.000 0.916 0.016 0.068
#> GSM225655     4  0.0547      0.843 0.000 0.000 0.000 0.980 0.000 0.020
#> GSM225376     4  0.3136      0.731 0.004 0.000 0.000 0.768 0.000 0.228
#> GSM225654     4  0.0363      0.839 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM225348     2  0.0551      0.913 0.004 0.984 0.000 0.000 0.004 0.008
#> GSM225659     4  0.2263      0.822 0.056 0.000 0.000 0.896 0.000 0.048
#> GSM225378     1  0.1531      0.840 0.928 0.000 0.000 0.004 0.000 0.068
#> GSM225661     1  0.2320      0.816 0.892 0.000 0.004 0.080 0.000 0.024
#> GSM225372     1  0.3568      0.795 0.828 0.000 0.000 0.084 0.044 0.044
#> GSM225365     1  0.2376      0.822 0.884 0.012 0.000 0.008 0.000 0.096
#> GSM225860     3  0.1556      0.940 0.000 0.000 0.920 0.000 0.000 0.080
#> GSM225875     3  0.0000      0.979 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225878     3  0.0146      0.977 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM225885     3  0.0000      0.979 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225867     3  0.1714      0.933 0.000 0.000 0.908 0.000 0.000 0.092
#> GSM225871     3  0.0000      0.979 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225881     3  0.0000      0.979 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225887     3  0.0000      0.979 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n cell.type(p) agent(p)  time(p) individual(p) k
#> CV:NMF 50     7.09e-04  0.76828 4.25e-05      2.01e-02 2
#> CV:NMF 50     1.49e-05  0.00625 1.30e-05      6.86e-03 3
#> CV:NMF 43     1.28e-05  0.00088 1.66e-04      6.76e-02 4
#> CV:NMF 49     5.84e-10  0.02225 8.45e-06      1.43e-06 5
#> CV:NMF 42     5.89e-08  0.22160 4.32e-05      1.54e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.901           0.877       0.940         0.4876 0.493   0.493
#> 3 3 0.603           0.792       0.803         0.2184 0.902   0.801
#> 4 4 0.601           0.479       0.773         0.1786 0.941   0.851
#> 5 5 0.746           0.760       0.853         0.0843 0.842   0.558
#> 6 6 0.740           0.788       0.813         0.0498 0.963   0.836

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM225374     1  0.0000     0.9072 1.000 0.000
#> GSM225349     2  0.3274     0.9637 0.060 0.940
#> GSM225367     2  0.0376     0.9554 0.004 0.996
#> GSM225356     2  0.3274     0.9637 0.060 0.940
#> GSM225353     2  0.3274     0.9637 0.060 0.940
#> GSM225653     2  0.3431     0.9621 0.064 0.936
#> GSM209847     2  0.3274     0.9637 0.060 0.940
#> GSM225658     2  0.3431     0.9621 0.064 0.936
#> GSM225370     1  0.1414     0.8955 0.980 0.020
#> GSM225364     2  0.3431     0.9621 0.064 0.936
#> GSM225645     2  0.0938     0.9618 0.012 0.988
#> GSM225350     2  0.3274     0.9640 0.060 0.940
#> GSM225368     2  0.0000     0.9549 0.000 1.000
#> GSM225357     2  0.2043     0.9661 0.032 0.968
#> GSM225651     2  0.0938     0.9618 0.012 0.988
#> GSM225354     2  0.3274     0.9640 0.060 0.940
#> GSM225360     1  0.9933     0.2188 0.548 0.452
#> GSM225657     1  0.0000     0.9072 1.000 0.000
#> GSM225377     1  0.2423     0.8806 0.960 0.040
#> GSM225656     1  0.0000     0.9072 1.000 0.000
#> GSM225347     2  0.3274     0.9640 0.060 0.940
#> GSM225660     1  0.0000     0.9072 1.000 0.000
#> GSM225712     1  0.0000     0.9072 1.000 0.000
#> GSM225663     1  0.0000     0.9072 1.000 0.000
#> GSM225373     1  0.0000     0.9072 1.000 0.000
#> GSM225366     1  0.9996     0.0713 0.512 0.488
#> GSM225380     2  0.0938     0.9618 0.012 0.988
#> GSM225351     2  0.1633     0.9650 0.024 0.976
#> GSM225369     2  0.0000     0.9549 0.000 1.000
#> GSM225358     2  0.1843     0.9656 0.028 0.972
#> GSM225649     2  0.0938     0.9618 0.012 0.988
#> GSM225355     2  0.1633     0.9650 0.024 0.976
#> GSM225361     2  0.0000     0.9549 0.000 1.000
#> GSM225655     2  0.3274     0.9487 0.060 0.940
#> GSM225376     2  0.3733     0.9325 0.072 0.928
#> GSM225654     2  0.3274     0.9487 0.060 0.940
#> GSM225348     2  0.3274     0.9640 0.060 0.940
#> GSM225659     2  0.4815     0.9060 0.104 0.896
#> GSM225378     1  0.2043     0.8872 0.968 0.032
#> GSM225661     1  0.9988     0.1017 0.520 0.480
#> GSM225372     1  0.9427     0.4351 0.640 0.360
#> GSM225365     1  0.0000     0.9072 1.000 0.000
#> GSM225860     1  0.0000     0.9072 1.000 0.000
#> GSM225875     1  0.0000     0.9072 1.000 0.000
#> GSM225878     1  0.0000     0.9072 1.000 0.000
#> GSM225885     1  0.0000     0.9072 1.000 0.000
#> GSM225867     1  0.0000     0.9072 1.000 0.000
#> GSM225871     1  0.0000     0.9072 1.000 0.000
#> GSM225881     1  0.0000     0.9072 1.000 0.000
#> GSM225887     1  0.0000     0.9072 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     1  0.0829      0.699 0.984 0.012 0.004
#> GSM225349     2  0.2903      0.876 0.048 0.924 0.028
#> GSM225367     2  0.6051      0.712 0.012 0.696 0.292
#> GSM225356     2  0.2903      0.876 0.048 0.924 0.028
#> GSM225353     2  0.2903      0.876 0.048 0.924 0.028
#> GSM225653     2  0.3009      0.875 0.052 0.920 0.028
#> GSM209847     2  0.2903      0.876 0.048 0.924 0.028
#> GSM225658     2  0.3009      0.875 0.052 0.920 0.028
#> GSM225370     1  0.1399      0.696 0.968 0.028 0.004
#> GSM225364     2  0.3009      0.875 0.052 0.920 0.028
#> GSM225645     2  0.3038      0.859 0.000 0.896 0.104
#> GSM225350     2  0.3983      0.871 0.048 0.884 0.068
#> GSM225368     2  0.6019      0.716 0.012 0.700 0.288
#> GSM225357     2  0.3045      0.880 0.020 0.916 0.064
#> GSM225651     2  0.3038      0.859 0.000 0.896 0.104
#> GSM225354     2  0.3983      0.871 0.048 0.884 0.068
#> GSM225360     1  0.8376      0.285 0.496 0.420 0.084
#> GSM225657     1  0.0592      0.701 0.988 0.012 0.000
#> GSM225377     1  0.2527      0.681 0.936 0.044 0.020
#> GSM225656     1  0.0592      0.701 0.988 0.012 0.000
#> GSM225347     2  0.3983      0.871 0.048 0.884 0.068
#> GSM225660     1  0.0592      0.701 0.988 0.012 0.000
#> GSM225712     1  0.1182      0.689 0.976 0.012 0.012
#> GSM225663     1  0.0592      0.701 0.988 0.012 0.000
#> GSM225373     1  0.1182      0.689 0.976 0.012 0.012
#> GSM225366     1  0.9014      0.194 0.460 0.408 0.132
#> GSM225380     2  0.3038      0.859 0.000 0.896 0.104
#> GSM225351     2  0.2845      0.876 0.012 0.920 0.068
#> GSM225369     2  0.6019      0.716 0.012 0.700 0.288
#> GSM225358     2  0.2902      0.880 0.016 0.920 0.064
#> GSM225649     2  0.3038      0.859 0.000 0.896 0.104
#> GSM225355     2  0.2845      0.876 0.012 0.920 0.068
#> GSM225361     2  0.4390      0.835 0.012 0.840 0.148
#> GSM225655     2  0.5241      0.845 0.048 0.820 0.132
#> GSM225376     2  0.5042      0.826 0.060 0.836 0.104
#> GSM225654     2  0.5241      0.845 0.048 0.820 0.132
#> GSM225348     2  0.3983      0.871 0.048 0.884 0.068
#> GSM225659     2  0.6157      0.809 0.092 0.780 0.128
#> GSM225378     1  0.2550      0.681 0.936 0.040 0.024
#> GSM225661     1  0.9004      0.220 0.468 0.400 0.132
#> GSM225372     1  0.8246      0.402 0.588 0.312 0.100
#> GSM225365     1  0.0592      0.701 0.988 0.012 0.000
#> GSM225860     3  0.6126      1.000 0.400 0.000 0.600
#> GSM225875     3  0.6126      1.000 0.400 0.000 0.600
#> GSM225878     3  0.6126      1.000 0.400 0.000 0.600
#> GSM225885     3  0.6126      1.000 0.400 0.000 0.600
#> GSM225867     3  0.6126      1.000 0.400 0.000 0.600
#> GSM225871     3  0.6126      1.000 0.400 0.000 0.600
#> GSM225881     3  0.6126      1.000 0.400 0.000 0.600
#> GSM225887     3  0.6126      1.000 0.400 0.000 0.600

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM225374     1  0.0376     0.8026 0.992 0.004 0.004 0.000
#> GSM225349     2  0.1398     0.5245 0.040 0.956 0.000 0.004
#> GSM225367     2  0.6065     0.1595 0.004 0.532 0.036 0.428
#> GSM225356     2  0.1398     0.5245 0.040 0.956 0.000 0.004
#> GSM225353     2  0.1398     0.5245 0.040 0.956 0.000 0.004
#> GSM225653     2  0.1302     0.5240 0.044 0.956 0.000 0.000
#> GSM209847     2  0.1398     0.5245 0.040 0.956 0.000 0.004
#> GSM225658     2  0.1302     0.5240 0.044 0.956 0.000 0.000
#> GSM225370     1  0.1394     0.8015 0.964 0.016 0.008 0.012
#> GSM225364     2  0.1302     0.5240 0.044 0.956 0.000 0.000
#> GSM225645     2  0.5500    -0.4632 0.000 0.520 0.016 0.464
#> GSM225350     2  0.4556     0.4760 0.032 0.800 0.012 0.156
#> GSM225368     2  0.5991     0.1590 0.004 0.532 0.032 0.432
#> GSM225357     2  0.3870     0.4496 0.008 0.820 0.008 0.164
#> GSM225651     2  0.5500    -0.4632 0.000 0.520 0.016 0.464
#> GSM225354     2  0.4556     0.4760 0.032 0.800 0.012 0.156
#> GSM225360     1  0.9033     0.2729 0.412 0.112 0.140 0.336
#> GSM225657     1  0.0188     0.8041 0.996 0.004 0.000 0.000
#> GSM225377     1  0.2928     0.7846 0.904 0.012 0.056 0.028
#> GSM225656     1  0.0188     0.8041 0.996 0.004 0.000 0.000
#> GSM225347     2  0.4556     0.4760 0.032 0.800 0.012 0.156
#> GSM225660     1  0.0188     0.8041 0.996 0.004 0.000 0.000
#> GSM225712     1  0.1557     0.7886 0.944 0.000 0.056 0.000
#> GSM225663     1  0.0188     0.8041 0.996 0.004 0.000 0.000
#> GSM225373     1  0.1557     0.7886 0.944 0.000 0.056 0.000
#> GSM225366     1  0.9239     0.0605 0.400 0.192 0.104 0.304
#> GSM225380     2  0.5500    -0.4632 0.000 0.520 0.016 0.464
#> GSM225351     2  0.3625     0.4461 0.000 0.828 0.012 0.160
#> GSM225369     2  0.5991     0.1590 0.004 0.532 0.032 0.432
#> GSM225358     2  0.3916     0.4447 0.008 0.816 0.008 0.168
#> GSM225649     2  0.5500    -0.4632 0.000 0.520 0.016 0.464
#> GSM225355     2  0.3625     0.4461 0.000 0.828 0.012 0.160
#> GSM225361     4  0.5062     0.3824 0.000 0.300 0.020 0.680
#> GSM225655     4  0.6414     0.6110 0.040 0.460 0.012 0.488
#> GSM225376     2  0.6899    -0.5393 0.064 0.464 0.016 0.456
#> GSM225654     4  0.6414     0.6110 0.040 0.460 0.012 0.488
#> GSM225348     2  0.4556     0.4760 0.032 0.800 0.012 0.156
#> GSM225659     2  0.7061    -0.6744 0.084 0.460 0.012 0.444
#> GSM225378     1  0.3354     0.7684 0.880 0.020 0.084 0.016
#> GSM225661     1  0.9208     0.0859 0.408 0.188 0.104 0.300
#> GSM225372     1  0.8669     0.3900 0.504 0.108 0.132 0.256
#> GSM225365     1  0.0188     0.8041 0.996 0.004 0.000 0.000
#> GSM225860     3  0.1792     1.0000 0.068 0.000 0.932 0.000
#> GSM225875     3  0.1792     1.0000 0.068 0.000 0.932 0.000
#> GSM225878     3  0.1792     1.0000 0.068 0.000 0.932 0.000
#> GSM225885     3  0.1792     1.0000 0.068 0.000 0.932 0.000
#> GSM225867     3  0.1792     1.0000 0.068 0.000 0.932 0.000
#> GSM225871     3  0.1792     1.0000 0.068 0.000 0.932 0.000
#> GSM225881     3  0.1792     1.0000 0.068 0.000 0.932 0.000
#> GSM225887     3  0.1792     1.0000 0.068 0.000 0.932 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM225374     1  0.0162    0.82633 0.996 0.000 0.000 0.000 0.004
#> GSM225349     2  0.3282    0.82894 0.008 0.804 0.000 0.000 0.188
#> GSM225367     5  0.0324    0.99605 0.000 0.004 0.000 0.004 0.992
#> GSM225356     2  0.3282    0.82894 0.008 0.804 0.000 0.000 0.188
#> GSM225353     2  0.3282    0.82894 0.008 0.804 0.000 0.000 0.188
#> GSM225653     2  0.3355    0.82886 0.012 0.804 0.000 0.000 0.184
#> GSM209847     2  0.3282    0.82894 0.008 0.804 0.000 0.000 0.188
#> GSM225658     2  0.3355    0.82886 0.012 0.804 0.000 0.000 0.184
#> GSM225370     1  0.1095    0.82441 0.968 0.012 0.008 0.012 0.000
#> GSM225364     2  0.3355    0.82886 0.012 0.804 0.000 0.000 0.184
#> GSM225645     4  0.3992    0.72618 0.000 0.268 0.000 0.720 0.012
#> GSM225350     2  0.0162    0.82089 0.000 0.996 0.000 0.004 0.000
#> GSM225368     5  0.0451    0.99802 0.000 0.004 0.000 0.008 0.988
#> GSM225357     2  0.3197    0.70996 0.008 0.852 0.000 0.116 0.024
#> GSM225651     4  0.3992    0.72618 0.000 0.268 0.000 0.720 0.012
#> GSM225354     2  0.0162    0.82089 0.000 0.996 0.000 0.004 0.000
#> GSM225360     4  0.6576   -0.26451 0.408 0.008 0.136 0.444 0.004
#> GSM225657     1  0.0000    0.82864 1.000 0.000 0.000 0.000 0.000
#> GSM225377     1  0.2451    0.80902 0.904 0.004 0.056 0.036 0.000
#> GSM225656     1  0.0000    0.82864 1.000 0.000 0.000 0.000 0.000
#> GSM225347     2  0.0162    0.82089 0.000 0.996 0.000 0.004 0.000
#> GSM225660     1  0.0000    0.82864 1.000 0.000 0.000 0.000 0.000
#> GSM225712     1  0.1341    0.81857 0.944 0.000 0.056 0.000 0.000
#> GSM225663     1  0.0000    0.82864 1.000 0.000 0.000 0.000 0.000
#> GSM225373     1  0.1341    0.81857 0.944 0.000 0.056 0.000 0.000
#> GSM225366     1  0.7516    0.00964 0.396 0.104 0.108 0.392 0.000
#> GSM225380     4  0.3992    0.72618 0.000 0.268 0.000 0.720 0.012
#> GSM225351     2  0.1043    0.79757 0.000 0.960 0.000 0.040 0.000
#> GSM225369     5  0.0451    0.99802 0.000 0.004 0.000 0.008 0.988
#> GSM225358     2  0.3246    0.70395 0.008 0.848 0.000 0.120 0.024
#> GSM225649     4  0.3992    0.72618 0.000 0.268 0.000 0.720 0.012
#> GSM225355     2  0.1043    0.79757 0.000 0.960 0.000 0.040 0.000
#> GSM225361     4  0.0162    0.47637 0.000 0.000 0.000 0.996 0.004
#> GSM225655     4  0.5452    0.58283 0.040 0.444 0.004 0.508 0.004
#> GSM225376     4  0.4938    0.71282 0.064 0.208 0.000 0.716 0.012
#> GSM225654     4  0.5452    0.58283 0.040 0.444 0.004 0.508 0.004
#> GSM225348     2  0.0162    0.82089 0.000 0.996 0.000 0.004 0.000
#> GSM225659     4  0.5878    0.56479 0.084 0.444 0.004 0.468 0.000
#> GSM225378     1  0.2878    0.79320 0.880 0.012 0.084 0.024 0.000
#> GSM225661     1  0.7482    0.02942 0.404 0.100 0.108 0.388 0.000
#> GSM225372     1  0.7052    0.29254 0.500 0.052 0.136 0.312 0.000
#> GSM225365     1  0.0000    0.82864 1.000 0.000 0.000 0.000 0.000
#> GSM225860     3  0.0162    1.00000 0.004 0.000 0.996 0.000 0.000
#> GSM225875     3  0.0162    1.00000 0.004 0.000 0.996 0.000 0.000
#> GSM225878     3  0.0162    1.00000 0.004 0.000 0.996 0.000 0.000
#> GSM225885     3  0.0162    1.00000 0.004 0.000 0.996 0.000 0.000
#> GSM225867     3  0.0162    1.00000 0.004 0.000 0.996 0.000 0.000
#> GSM225871     3  0.0162    1.00000 0.004 0.000 0.996 0.000 0.000
#> GSM225881     3  0.0162    1.00000 0.004 0.000 0.996 0.000 0.000
#> GSM225887     3  0.0162    1.00000 0.004 0.000 0.996 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM225374     1  0.0146     0.9208 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM225349     2  0.4278     0.7823 0.000 0.764 0.000 0.072 0.136 0.028
#> GSM225367     5  0.0000     0.9952 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM225356     2  0.4278     0.7823 0.000 0.764 0.000 0.072 0.136 0.028
#> GSM225353     2  0.4278     0.7823 0.000 0.764 0.000 0.072 0.136 0.028
#> GSM225653     2  0.4412     0.7816 0.008 0.764 0.000 0.072 0.132 0.024
#> GSM209847     2  0.4278     0.7823 0.000 0.764 0.000 0.072 0.136 0.028
#> GSM225658     2  0.4412     0.7816 0.008 0.764 0.000 0.072 0.132 0.024
#> GSM225370     1  0.2384     0.8469 0.884 0.000 0.000 0.032 0.000 0.084
#> GSM225364     2  0.4412     0.7816 0.008 0.764 0.000 0.072 0.132 0.024
#> GSM225645     4  0.2631     0.6583 0.000 0.180 0.000 0.820 0.000 0.000
#> GSM225350     2  0.0993     0.7664 0.000 0.964 0.000 0.012 0.000 0.024
#> GSM225368     5  0.0146     0.9976 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM225357     2  0.2738     0.6632 0.000 0.820 0.000 0.176 0.000 0.004
#> GSM225651     4  0.2631     0.6583 0.000 0.180 0.000 0.820 0.000 0.000
#> GSM225354     2  0.0993     0.7664 0.000 0.964 0.000 0.012 0.000 0.024
#> GSM225360     6  0.4880     0.5719 0.116 0.000 0.020 0.164 0.000 0.700
#> GSM225657     1  0.0000     0.9227 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM225377     1  0.3565     0.8007 0.812 0.004 0.016 0.032 0.000 0.136
#> GSM225656     1  0.0000     0.9227 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM225347     2  0.0993     0.7664 0.000 0.964 0.000 0.012 0.000 0.024
#> GSM225660     1  0.0000     0.9227 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM225712     1  0.1895     0.8922 0.912 0.000 0.016 0.000 0.000 0.072
#> GSM225663     1  0.0000     0.9227 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM225373     1  0.1895     0.8922 0.912 0.000 0.016 0.000 0.000 0.072
#> GSM225366     6  0.5962     0.7293 0.064 0.064 0.004 0.320 0.000 0.548
#> GSM225380     4  0.2631     0.6583 0.000 0.180 0.000 0.820 0.000 0.000
#> GSM225351     2  0.1700     0.7404 0.000 0.928 0.000 0.048 0.000 0.024
#> GSM225369     5  0.0146     0.9976 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM225358     2  0.2772     0.6573 0.000 0.816 0.000 0.180 0.000 0.004
#> GSM225649     4  0.2631     0.6583 0.000 0.180 0.000 0.820 0.000 0.000
#> GSM225355     2  0.1700     0.7404 0.000 0.928 0.000 0.048 0.000 0.024
#> GSM225361     4  0.3695     0.0667 0.000 0.000 0.000 0.624 0.000 0.376
#> GSM225655     4  0.5400     0.4499 0.000 0.400 0.000 0.484 0.000 0.116
#> GSM225376     4  0.3454     0.5588 0.004 0.124 0.000 0.812 0.000 0.060
#> GSM225654     4  0.5400     0.4499 0.000 0.400 0.000 0.484 0.000 0.116
#> GSM225348     2  0.0993     0.7664 0.000 0.964 0.000 0.012 0.000 0.024
#> GSM225659     4  0.5729     0.4136 0.004 0.400 0.000 0.452 0.000 0.144
#> GSM225378     1  0.4010     0.7527 0.764 0.000 0.020 0.040 0.000 0.176
#> GSM225661     6  0.5994     0.7373 0.072 0.060 0.004 0.316 0.000 0.548
#> GSM225372     6  0.6268     0.7289 0.136 0.020 0.020 0.292 0.000 0.532
#> GSM225365     1  0.0000     0.9227 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM225860     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225875     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225878     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225885     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225867     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225871     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225881     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225887     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n cell.type(p) agent(p)  time(p) individual(p) k
#> MAD:hclust 46     9.18e-04   0.5663 2.31e-04      2.83e-02 2
#> MAD:hclust 46     1.03e-10   0.2536 6.11e-06      1.65e-04 3
#> MAD:hclust 28     3.63e-06   0.0171 2.01e-05      3.16e-02 4
#> MAD:hclust 45     3.98e-09   0.0979 2.82e-05      1.19e-08 5
#> MAD:hclust 46     9.08e-09   0.4932 1.48e-05      1.14e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.999       0.999         0.5070 0.493   0.493
#> 3 3 0.610           0.406       0.753         0.2632 0.941   0.881
#> 4 4 0.612           0.740       0.805         0.1353 0.778   0.511
#> 5 5 0.747           0.716       0.783         0.0796 1.000   1.000
#> 6 6 0.771           0.717       0.756         0.0455 0.907   0.643

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM225374     1  0.0376      0.998 0.996 0.004
#> GSM225349     2  0.0000      1.000 0.000 1.000
#> GSM225367     2  0.0000      1.000 0.000 1.000
#> GSM225356     2  0.0000      1.000 0.000 1.000
#> GSM225353     2  0.0000      1.000 0.000 1.000
#> GSM225653     2  0.0000      1.000 0.000 1.000
#> GSM209847     2  0.0000      1.000 0.000 1.000
#> GSM225658     2  0.0000      1.000 0.000 1.000
#> GSM225370     1  0.0376      0.998 0.996 0.004
#> GSM225364     2  0.0000      1.000 0.000 1.000
#> GSM225645     2  0.0000      1.000 0.000 1.000
#> GSM225350     2  0.0000      1.000 0.000 1.000
#> GSM225368     2  0.0000      1.000 0.000 1.000
#> GSM225357     2  0.0000      1.000 0.000 1.000
#> GSM225651     2  0.0000      1.000 0.000 1.000
#> GSM225354     2  0.0000      1.000 0.000 1.000
#> GSM225360     1  0.0376      0.998 0.996 0.004
#> GSM225657     1  0.0376      0.998 0.996 0.004
#> GSM225377     1  0.0376      0.998 0.996 0.004
#> GSM225656     1  0.0376      0.998 0.996 0.004
#> GSM225347     2  0.0000      1.000 0.000 1.000
#> GSM225660     1  0.0376      0.998 0.996 0.004
#> GSM225712     1  0.0000      0.998 1.000 0.000
#> GSM225663     1  0.0000      0.998 1.000 0.000
#> GSM225373     1  0.0000      0.998 1.000 0.000
#> GSM225366     1  0.0376      0.998 0.996 0.004
#> GSM225380     2  0.0000      1.000 0.000 1.000
#> GSM225351     2  0.0000      1.000 0.000 1.000
#> GSM225369     2  0.0000      1.000 0.000 1.000
#> GSM225358     2  0.0000      1.000 0.000 1.000
#> GSM225649     2  0.0000      1.000 0.000 1.000
#> GSM225355     2  0.0000      1.000 0.000 1.000
#> GSM225361     2  0.0000      1.000 0.000 1.000
#> GSM225655     2  0.0000      1.000 0.000 1.000
#> GSM225376     2  0.0000      1.000 0.000 1.000
#> GSM225654     2  0.0000      1.000 0.000 1.000
#> GSM225348     2  0.0000      1.000 0.000 1.000
#> GSM225659     2  0.0000      1.000 0.000 1.000
#> GSM225378     1  0.0376      0.998 0.996 0.004
#> GSM225661     1  0.0376      0.998 0.996 0.004
#> GSM225372     1  0.0376      0.998 0.996 0.004
#> GSM225365     1  0.0376      0.998 0.996 0.004
#> GSM225860     1  0.0000      0.998 1.000 0.000
#> GSM225875     1  0.0000      0.998 1.000 0.000
#> GSM225878     1  0.0000      0.998 1.000 0.000
#> GSM225885     1  0.0000      0.998 1.000 0.000
#> GSM225867     1  0.0000      0.998 1.000 0.000
#> GSM225871     1  0.0000      0.998 1.000 0.000
#> GSM225881     1  0.0000      0.998 1.000 0.000
#> GSM225887     1  0.0000      0.998 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     1  0.3237      0.774 0.912 0.056 0.032
#> GSM225349     2  0.3995      0.499 0.016 0.868 0.116
#> GSM225367     2  0.6954     -0.563 0.016 0.500 0.484
#> GSM225356     2  0.3995      0.499 0.016 0.868 0.116
#> GSM225353     2  0.3995      0.499 0.016 0.868 0.116
#> GSM225653     2  0.3995      0.499 0.016 0.868 0.116
#> GSM209847     2  0.3995      0.499 0.016 0.868 0.116
#> GSM225658     2  0.3995      0.499 0.016 0.868 0.116
#> GSM225370     1  0.0892      0.807 0.980 0.020 0.000
#> GSM225364     2  0.3995      0.499 0.016 0.868 0.116
#> GSM225645     2  0.6291     -0.620 0.000 0.532 0.468
#> GSM225350     2  0.0747      0.507 0.016 0.984 0.000
#> GSM225368     3  0.6518      0.502 0.004 0.484 0.512
#> GSM225357     2  0.0747      0.507 0.016 0.984 0.000
#> GSM225651     2  0.6252     -0.622 0.000 0.556 0.444
#> GSM225354     2  0.0747      0.507 0.016 0.984 0.000
#> GSM225360     1  0.6919      0.264 0.536 0.016 0.448
#> GSM225657     1  0.4165      0.765 0.876 0.076 0.048
#> GSM225377     1  0.2496      0.791 0.928 0.004 0.068
#> GSM225656     1  0.0892      0.807 0.980 0.020 0.000
#> GSM225347     2  0.2318      0.485 0.028 0.944 0.028
#> GSM225660     1  0.0892      0.807 0.980 0.020 0.000
#> GSM225712     1  0.0000      0.808 1.000 0.000 0.000
#> GSM225663     1  0.0592      0.807 0.988 0.012 0.000
#> GSM225373     1  0.0000      0.808 1.000 0.000 0.000
#> GSM225366     1  0.4390      0.733 0.840 0.012 0.148
#> GSM225380     2  0.6252     -0.620 0.000 0.556 0.444
#> GSM225351     2  0.2448      0.453 0.000 0.924 0.076
#> GSM225369     3  0.6280      0.639 0.000 0.460 0.540
#> GSM225358     2  0.2625      0.444 0.000 0.916 0.084
#> GSM225649     2  0.6267     -0.619 0.000 0.548 0.452
#> GSM225355     2  0.2448      0.453 0.000 0.924 0.076
#> GSM225361     3  0.6299      0.513 0.000 0.476 0.524
#> GSM225655     2  0.6252     -0.542 0.000 0.556 0.444
#> GSM225376     2  0.6305     -0.612 0.000 0.516 0.484
#> GSM225654     2  0.6305     -0.612 0.000 0.516 0.484
#> GSM225348     2  0.2959      0.431 0.000 0.900 0.100
#> GSM225659     2  0.6260     -0.544 0.000 0.552 0.448
#> GSM225378     1  0.2496      0.791 0.928 0.004 0.068
#> GSM225661     1  0.3207      0.780 0.904 0.012 0.084
#> GSM225372     1  0.6688      0.343 0.580 0.012 0.408
#> GSM225365     1  0.0892      0.807 0.980 0.020 0.000
#> GSM225860     1  0.5926      0.731 0.644 0.000 0.356
#> GSM225875     1  0.5948      0.731 0.640 0.000 0.360
#> GSM225878     1  0.5926      0.731 0.644 0.000 0.356
#> GSM225885     1  0.5926      0.731 0.644 0.000 0.356
#> GSM225867     1  0.5948      0.731 0.640 0.000 0.360
#> GSM225871     1  0.5926      0.731 0.644 0.000 0.356
#> GSM225881     1  0.5948      0.731 0.640 0.000 0.360
#> GSM225887     1  0.5948      0.731 0.640 0.000 0.360

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM225374     1  0.1631      0.850 0.956 0.020 0.016 0.008
#> GSM225349     2  0.0188      0.730 0.004 0.996 0.000 0.000
#> GSM225367     2  0.7292     -0.386 0.004 0.472 0.132 0.392
#> GSM225356     2  0.0188      0.730 0.004 0.996 0.000 0.000
#> GSM225353     2  0.0188      0.730 0.004 0.996 0.000 0.000
#> GSM225653     2  0.0779      0.725 0.004 0.980 0.016 0.000
#> GSM209847     2  0.0188      0.730 0.004 0.996 0.000 0.000
#> GSM225658     2  0.0779      0.725 0.004 0.980 0.016 0.000
#> GSM225370     1  0.0188      0.863 0.996 0.000 0.004 0.000
#> GSM225364     2  0.0779      0.725 0.004 0.980 0.016 0.000
#> GSM225645     4  0.5508      0.606 0.000 0.408 0.020 0.572
#> GSM225350     2  0.5082      0.713 0.004 0.776 0.108 0.112
#> GSM225368     4  0.7202      0.480 0.004 0.364 0.128 0.504
#> GSM225357     2  0.5082      0.713 0.004 0.776 0.108 0.112
#> GSM225651     4  0.5440      0.631 0.000 0.384 0.020 0.596
#> GSM225354     2  0.5082      0.713 0.004 0.776 0.108 0.112
#> GSM225360     1  0.6213      0.187 0.484 0.000 0.052 0.464
#> GSM225657     1  0.3048      0.814 0.900 0.016 0.056 0.028
#> GSM225377     1  0.1545      0.854 0.952 0.000 0.008 0.040
#> GSM225656     1  0.0657      0.863 0.984 0.000 0.004 0.012
#> GSM225347     2  0.6513      0.674 0.056 0.712 0.112 0.120
#> GSM225660     1  0.0657      0.863 0.984 0.000 0.004 0.012
#> GSM225712     1  0.0188      0.863 0.996 0.000 0.004 0.000
#> GSM225663     1  0.0657      0.863 0.984 0.000 0.004 0.012
#> GSM225373     1  0.0188      0.863 0.996 0.000 0.004 0.000
#> GSM225366     1  0.4319      0.702 0.760 0.000 0.012 0.228
#> GSM225380     4  0.4228      0.748 0.000 0.232 0.008 0.760
#> GSM225351     2  0.6377      0.592 0.000 0.632 0.112 0.256
#> GSM225369     4  0.6233      0.659 0.000 0.216 0.124 0.660
#> GSM225358     2  0.6476      0.566 0.000 0.616 0.112 0.272
#> GSM225649     4  0.3768      0.765 0.000 0.184 0.008 0.808
#> GSM225355     2  0.6377      0.592 0.000 0.632 0.112 0.256
#> GSM225361     4  0.2635      0.741 0.000 0.076 0.020 0.904
#> GSM225655     4  0.5199      0.725 0.004 0.144 0.088 0.764
#> GSM225376     4  0.3508      0.762 0.004 0.136 0.012 0.848
#> GSM225654     4  0.5037      0.735 0.004 0.136 0.084 0.776
#> GSM225348     2  0.6377      0.592 0.000 0.632 0.112 0.256
#> GSM225659     4  0.5850      0.707 0.028 0.136 0.092 0.744
#> GSM225378     1  0.1256      0.857 0.964 0.000 0.008 0.028
#> GSM225661     1  0.2676      0.824 0.896 0.000 0.012 0.092
#> GSM225372     1  0.4831      0.644 0.704 0.000 0.016 0.280
#> GSM225365     1  0.0657      0.863 0.984 0.000 0.004 0.012
#> GSM225860     3  0.5742      0.957 0.260 0.004 0.680 0.056
#> GSM225875     3  0.4283      0.981 0.256 0.000 0.740 0.004
#> GSM225878     3  0.4134      0.982 0.260 0.000 0.740 0.000
#> GSM225885     3  0.4492      0.981 0.260 0.004 0.732 0.004
#> GSM225867     3  0.5714      0.957 0.256 0.004 0.684 0.056
#> GSM225871     3  0.4313      0.981 0.260 0.000 0.736 0.004
#> GSM225881     3  0.4103      0.982 0.256 0.000 0.744 0.000
#> GSM225887     3  0.4462      0.981 0.256 0.004 0.736 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4 p5
#> GSM225374     1  0.1731      0.869 0.940 0.008 0.012 0.000 NA
#> GSM225349     2  0.0000      0.659 0.000 1.000 0.000 0.000 NA
#> GSM225367     2  0.7775     -0.165 0.000 0.400 0.068 0.240 NA
#> GSM225356     2  0.0000      0.659 0.000 1.000 0.000 0.000 NA
#> GSM225353     2  0.0404      0.655 0.000 0.988 0.000 0.000 NA
#> GSM225653     2  0.2457      0.613 0.000 0.900 0.016 0.008 NA
#> GSM209847     2  0.0000      0.659 0.000 1.000 0.000 0.000 NA
#> GSM225658     2  0.2457      0.613 0.000 0.900 0.016 0.008 NA
#> GSM225370     1  0.0324      0.875 0.992 0.004 0.000 0.000 NA
#> GSM225364     2  0.2457      0.613 0.000 0.900 0.016 0.008 NA
#> GSM225645     4  0.4863      0.624 0.000 0.212 0.008 0.716 NA
#> GSM225350     2  0.4592      0.656 0.000 0.644 0.000 0.024 NA
#> GSM225368     4  0.7517      0.380 0.000 0.200 0.060 0.448 NA
#> GSM225357     2  0.4473      0.658 0.000 0.656 0.000 0.020 NA
#> GSM225651     4  0.4708      0.632 0.000 0.208 0.008 0.728 NA
#> GSM225354     2  0.4592      0.656 0.000 0.644 0.000 0.024 NA
#> GSM225360     1  0.6550      0.504 0.560 0.000 0.020 0.240 NA
#> GSM225657     1  0.1798      0.871 0.928 0.004 0.000 0.004 NA
#> GSM225377     1  0.2624      0.843 0.872 0.000 0.000 0.012 NA
#> GSM225656     1  0.1357      0.873 0.948 0.004 0.000 0.000 NA
#> GSM225347     2  0.5598      0.619 0.040 0.556 0.000 0.020 NA
#> GSM225660     1  0.1357      0.873 0.948 0.004 0.000 0.000 NA
#> GSM225712     1  0.0162      0.875 0.996 0.004 0.000 0.000 NA
#> GSM225663     1  0.1357      0.873 0.948 0.004 0.000 0.000 NA
#> GSM225373     1  0.0162      0.875 0.996 0.004 0.000 0.000 NA
#> GSM225366     1  0.6046      0.578 0.596 0.000 0.004 0.216 NA
#> GSM225380     4  0.1851      0.714 0.000 0.088 0.000 0.912 NA
#> GSM225351     2  0.6296      0.560 0.000 0.480 0.000 0.160 NA
#> GSM225369     4  0.6197      0.545 0.000 0.060 0.060 0.604 NA
#> GSM225358     2  0.6360      0.546 0.000 0.476 0.000 0.172 NA
#> GSM225649     4  0.1270      0.722 0.000 0.052 0.000 0.948 NA
#> GSM225355     2  0.6296      0.560 0.000 0.480 0.000 0.160 NA
#> GSM225361     4  0.1710      0.718 0.000 0.004 0.016 0.940 NA
#> GSM225655     4  0.4829      0.617 0.000 0.036 0.004 0.660 NA
#> GSM225376     4  0.3478      0.700 0.000 0.032 0.004 0.828 NA
#> GSM225654     4  0.4867      0.615 0.000 0.036 0.004 0.652 NA
#> GSM225348     2  0.6296      0.560 0.000 0.480 0.000 0.160 NA
#> GSM225659     4  0.5121      0.591 0.004 0.036 0.004 0.624 NA
#> GSM225378     1  0.2389      0.844 0.880 0.000 0.000 0.004 NA
#> GSM225661     1  0.4077      0.799 0.780 0.000 0.004 0.044 NA
#> GSM225372     1  0.4960      0.742 0.728 0.000 0.008 0.104 NA
#> GSM225365     1  0.1357      0.873 0.948 0.004 0.000 0.000 NA
#> GSM225860     3  0.3992      0.916 0.080 0.000 0.796 0.000 NA
#> GSM225875     3  0.2077      0.968 0.084 0.000 0.908 0.000 NA
#> GSM225878     3  0.1792      0.968 0.084 0.000 0.916 0.000 NA
#> GSM225885     3  0.2170      0.968 0.088 0.000 0.904 0.004 NA
#> GSM225867     3  0.4083      0.914 0.080 0.000 0.788 0.000 NA
#> GSM225871     3  0.1792      0.968 0.084 0.000 0.916 0.000 NA
#> GSM225881     3  0.2077      0.968 0.084 0.000 0.908 0.000 NA
#> GSM225887     3  0.2170      0.968 0.088 0.000 0.904 0.004 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM225374     1  0.1151      0.807 0.956 0.032 0.000 0.000 0.012 0.000
#> GSM225349     6  0.0937      0.921 0.000 0.040 0.000 0.000 0.000 0.960
#> GSM225367     5  0.3437      0.664 0.000 0.004 0.000 0.008 0.752 0.236
#> GSM225356     6  0.0937      0.921 0.000 0.040 0.000 0.000 0.000 0.960
#> GSM225353     6  0.1010      0.921 0.000 0.036 0.004 0.000 0.000 0.960
#> GSM225653     6  0.1265      0.904 0.000 0.000 0.000 0.008 0.044 0.948
#> GSM209847     6  0.0937      0.921 0.000 0.040 0.000 0.000 0.000 0.960
#> GSM225658     6  0.1265      0.904 0.000 0.000 0.000 0.008 0.044 0.948
#> GSM225370     1  0.0291      0.811 0.992 0.004 0.000 0.000 0.004 0.000
#> GSM225364     6  0.1265      0.904 0.000 0.000 0.000 0.008 0.044 0.948
#> GSM225645     4  0.7042      0.254 0.000 0.120 0.004 0.384 0.376 0.116
#> GSM225350     2  0.3851      0.791 0.000 0.540 0.000 0.000 0.000 0.460
#> GSM225368     5  0.2420      0.768 0.000 0.000 0.000 0.040 0.884 0.076
#> GSM225357     2  0.3854      0.788 0.000 0.536 0.000 0.000 0.000 0.464
#> GSM225651     4  0.7042      0.254 0.000 0.120 0.004 0.384 0.376 0.116
#> GSM225354     2  0.3851      0.791 0.000 0.540 0.000 0.000 0.000 0.460
#> GSM225360     1  0.6471      0.323 0.452 0.040 0.000 0.332 0.176 0.000
#> GSM225657     1  0.2108      0.809 0.912 0.056 0.000 0.016 0.016 0.000
#> GSM225377     1  0.3883      0.701 0.744 0.024 0.000 0.220 0.012 0.000
#> GSM225656     1  0.2108      0.809 0.912 0.056 0.000 0.016 0.016 0.000
#> GSM225347     2  0.4523      0.814 0.016 0.592 0.000 0.000 0.016 0.376
#> GSM225660     1  0.2133      0.810 0.912 0.052 0.000 0.016 0.020 0.000
#> GSM225712     1  0.0363      0.810 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM225663     1  0.2133      0.810 0.912 0.052 0.000 0.016 0.020 0.000
#> GSM225373     1  0.0363      0.810 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM225366     4  0.4631     -0.213 0.332 0.040 0.000 0.620 0.008 0.000
#> GSM225380     4  0.6678      0.400 0.000 0.180 0.004 0.436 0.336 0.044
#> GSM225351     2  0.4436      0.852 0.000 0.640 0.000 0.048 0.000 0.312
#> GSM225369     5  0.2586      0.690 0.000 0.032 0.000 0.080 0.880 0.008
#> GSM225358     2  0.4467      0.852 0.000 0.632 0.000 0.048 0.000 0.320
#> GSM225649     4  0.6678      0.400 0.000 0.180 0.004 0.436 0.336 0.044
#> GSM225355     2  0.4436      0.852 0.000 0.640 0.000 0.048 0.000 0.312
#> GSM225361     4  0.5740      0.408 0.000 0.168 0.000 0.512 0.316 0.004
#> GSM225655     4  0.4259      0.461 0.000 0.324 0.000 0.648 0.008 0.020
#> GSM225376     4  0.4325      0.502 0.000 0.180 0.004 0.740 0.068 0.008
#> GSM225654     4  0.2848      0.459 0.000 0.160 0.000 0.828 0.004 0.008
#> GSM225348     2  0.4571      0.851 0.000 0.636 0.000 0.048 0.004 0.312
#> GSM225659     4  0.2848      0.453 0.000 0.160 0.000 0.828 0.004 0.008
#> GSM225378     1  0.3936      0.695 0.736 0.024 0.000 0.228 0.012 0.000
#> GSM225661     1  0.4797      0.521 0.524 0.036 0.000 0.432 0.008 0.000
#> GSM225372     1  0.4644      0.519 0.564 0.024 0.000 0.400 0.012 0.000
#> GSM225365     1  0.2133      0.810 0.912 0.052 0.000 0.016 0.020 0.000
#> GSM225860     3  0.4007      0.848 0.008 0.124 0.796 0.032 0.040 0.000
#> GSM225875     3  0.0520      0.942 0.008 0.000 0.984 0.000 0.008 0.000
#> GSM225878     3  0.0260      0.942 0.008 0.000 0.992 0.000 0.000 0.000
#> GSM225885     3  0.1337      0.935 0.008 0.016 0.956 0.012 0.008 0.000
#> GSM225867     3  0.4052      0.848 0.008 0.116 0.796 0.032 0.048 0.000
#> GSM225871     3  0.0520      0.942 0.008 0.000 0.984 0.000 0.008 0.000
#> GSM225881     3  0.0260      0.942 0.008 0.000 0.992 0.000 0.000 0.000
#> GSM225887     3  0.1337      0.935 0.008 0.016 0.956 0.012 0.008 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n cell.type(p) agent(p)  time(p) individual(p) k
#> MAD:kmeans 50     3.11e-03   0.6852 9.25e-05      2.11e-02 2
#> MAD:kmeans 27     1.97e-01   0.2231 3.19e-03      1.02e-03 3
#> MAD:kmeans 47     3.48e-10   0.0353 3.44e-07      3.79e-06 4
#> MAD:kmeans 48     2.13e-10   0.0286 6.12e-07      4.72e-06 5
#> MAD:kmeans 40     1.49e-07   0.1983 1.19e-07      3.84e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.5074 0.493   0.493
#> 3 3 0.833           0.886       0.934         0.3114 0.799   0.608
#> 4 4 0.705           0.800       0.870         0.1348 0.891   0.682
#> 5 5 0.747           0.711       0.756         0.0661 0.939   0.753
#> 6 6 0.760           0.698       0.813         0.0423 0.953   0.762

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM225374     1       0          1  1  0
#> GSM225349     2       0          1  0  1
#> GSM225367     2       0          1  0  1
#> GSM225356     2       0          1  0  1
#> GSM225353     2       0          1  0  1
#> GSM225653     2       0          1  0  1
#> GSM209847     2       0          1  0  1
#> GSM225658     2       0          1  0  1
#> GSM225370     1       0          1  1  0
#> GSM225364     2       0          1  0  1
#> GSM225645     2       0          1  0  1
#> GSM225350     2       0          1  0  1
#> GSM225368     2       0          1  0  1
#> GSM225357     2       0          1  0  1
#> GSM225651     2       0          1  0  1
#> GSM225354     2       0          1  0  1
#> GSM225360     1       0          1  1  0
#> GSM225657     1       0          1  1  0
#> GSM225377     1       0          1  1  0
#> GSM225656     1       0          1  1  0
#> GSM225347     2       0          1  0  1
#> GSM225660     1       0          1  1  0
#> GSM225712     1       0          1  1  0
#> GSM225663     1       0          1  1  0
#> GSM225373     1       0          1  1  0
#> GSM225366     1       0          1  1  0
#> GSM225380     2       0          1  0  1
#> GSM225351     2       0          1  0  1
#> GSM225369     2       0          1  0  1
#> GSM225358     2       0          1  0  1
#> GSM225649     2       0          1  0  1
#> GSM225355     2       0          1  0  1
#> GSM225361     2       0          1  0  1
#> GSM225655     2       0          1  0  1
#> GSM225376     2       0          1  0  1
#> GSM225654     2       0          1  0  1
#> GSM225348     2       0          1  0  1
#> GSM225659     2       0          1  0  1
#> GSM225378     1       0          1  1  0
#> GSM225661     1       0          1  1  0
#> GSM225372     1       0          1  1  0
#> GSM225365     1       0          1  1  0
#> GSM225860     1       0          1  1  0
#> GSM225875     1       0          1  1  0
#> GSM225878     1       0          1  1  0
#> GSM225885     1       0          1  1  0
#> GSM225867     1       0          1  1  0
#> GSM225871     1       0          1  1  0
#> GSM225881     1       0          1  1  0
#> GSM225887     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     1  0.2625      0.899 0.916 0.084 0.000
#> GSM225349     2  0.0000      0.924 0.000 1.000 0.000
#> GSM225367     3  0.6111      0.496 0.000 0.396 0.604
#> GSM225356     2  0.0000      0.924 0.000 1.000 0.000
#> GSM225353     2  0.0000      0.924 0.000 1.000 0.000
#> GSM225653     2  0.0000      0.924 0.000 1.000 0.000
#> GSM209847     2  0.0000      0.924 0.000 1.000 0.000
#> GSM225658     2  0.0000      0.924 0.000 1.000 0.000
#> GSM225370     1  0.0000      0.973 1.000 0.000 0.000
#> GSM225364     2  0.0000      0.924 0.000 1.000 0.000
#> GSM225645     3  0.4121      0.803 0.000 0.168 0.832
#> GSM225350     2  0.1031      0.921 0.000 0.976 0.024
#> GSM225368     3  0.4842      0.752 0.000 0.224 0.776
#> GSM225357     2  0.0747      0.923 0.000 0.984 0.016
#> GSM225651     3  0.3192      0.840 0.000 0.112 0.888
#> GSM225354     2  0.0892      0.922 0.000 0.980 0.020
#> GSM225360     3  0.5706      0.546 0.320 0.000 0.680
#> GSM225657     1  0.2878      0.887 0.904 0.096 0.000
#> GSM225377     1  0.0000      0.973 1.000 0.000 0.000
#> GSM225656     1  0.0000      0.973 1.000 0.000 0.000
#> GSM225347     2  0.2492      0.905 0.016 0.936 0.048
#> GSM225660     1  0.0000      0.973 1.000 0.000 0.000
#> GSM225712     1  0.0000      0.973 1.000 0.000 0.000
#> GSM225663     1  0.0000      0.973 1.000 0.000 0.000
#> GSM225373     1  0.0000      0.973 1.000 0.000 0.000
#> GSM225366     1  0.4291      0.795 0.820 0.000 0.180
#> GSM225380     3  0.1411      0.865 0.000 0.036 0.964
#> GSM225351     2  0.4605      0.805 0.000 0.796 0.204
#> GSM225369     3  0.1753      0.864 0.000 0.048 0.952
#> GSM225358     2  0.5291      0.725 0.000 0.732 0.268
#> GSM225649     3  0.1031      0.866 0.000 0.024 0.976
#> GSM225355     2  0.4605      0.805 0.000 0.796 0.204
#> GSM225361     3  0.0892      0.865 0.000 0.020 0.980
#> GSM225655     3  0.1643      0.857 0.000 0.044 0.956
#> GSM225376     3  0.0892      0.865 0.000 0.020 0.980
#> GSM225654     3  0.0892      0.865 0.000 0.020 0.980
#> GSM225348     2  0.4605      0.805 0.000 0.796 0.204
#> GSM225659     3  0.1878      0.856 0.004 0.044 0.952
#> GSM225378     1  0.0000      0.973 1.000 0.000 0.000
#> GSM225661     1  0.0592      0.968 0.988 0.000 0.012
#> GSM225372     3  0.5591      0.592 0.304 0.000 0.696
#> GSM225365     1  0.0000      0.973 1.000 0.000 0.000
#> GSM225860     1  0.0892      0.972 0.980 0.000 0.020
#> GSM225875     1  0.0892      0.972 0.980 0.000 0.020
#> GSM225878     1  0.0892      0.972 0.980 0.000 0.020
#> GSM225885     1  0.0892      0.972 0.980 0.000 0.020
#> GSM225867     1  0.0892      0.972 0.980 0.000 0.020
#> GSM225871     1  0.0892      0.972 0.980 0.000 0.020
#> GSM225881     1  0.0892      0.972 0.980 0.000 0.020
#> GSM225887     1  0.0892      0.972 0.980 0.000 0.020

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM225374     1  0.1191    0.91136 0.968 0.024 0.004 0.004
#> GSM225349     2  0.0188    0.82126 0.000 0.996 0.000 0.004
#> GSM225367     4  0.5399    0.38232 0.012 0.468 0.000 0.520
#> GSM225356     2  0.0188    0.82126 0.000 0.996 0.000 0.004
#> GSM225353     2  0.0336    0.81987 0.000 0.992 0.000 0.008
#> GSM225653     2  0.0817    0.81136 0.000 0.976 0.000 0.024
#> GSM209847     2  0.0188    0.82126 0.000 0.996 0.000 0.004
#> GSM225658     2  0.0707    0.81410 0.000 0.980 0.000 0.020
#> GSM225370     1  0.0188    0.92857 0.996 0.000 0.004 0.000
#> GSM225364     2  0.0707    0.81410 0.000 0.980 0.000 0.020
#> GSM225645     4  0.4134    0.69491 0.000 0.260 0.000 0.740
#> GSM225350     2  0.3533    0.81631 0.000 0.864 0.056 0.080
#> GSM225368     4  0.4564    0.62335 0.000 0.328 0.000 0.672
#> GSM225357     2  0.3439    0.81704 0.000 0.868 0.048 0.084
#> GSM225651     4  0.3726    0.73162 0.000 0.212 0.000 0.788
#> GSM225354     2  0.3916    0.81128 0.004 0.848 0.056 0.092
#> GSM225360     4  0.7661    0.00685 0.376 0.000 0.212 0.412
#> GSM225657     1  0.1211    0.90965 0.960 0.000 0.040 0.000
#> GSM225377     1  0.2053    0.88508 0.924 0.000 0.072 0.004
#> GSM225656     1  0.0188    0.92867 0.996 0.000 0.004 0.000
#> GSM225347     2  0.5546    0.77435 0.044 0.768 0.056 0.132
#> GSM225660     1  0.0188    0.92867 0.996 0.000 0.004 0.000
#> GSM225712     1  0.0336    0.92858 0.992 0.000 0.008 0.000
#> GSM225663     1  0.0336    0.92858 0.992 0.000 0.008 0.000
#> GSM225373     1  0.0188    0.92857 0.996 0.000 0.004 0.000
#> GSM225366     3  0.3687    0.84605 0.064 0.000 0.856 0.080
#> GSM225380     4  0.2281    0.78001 0.000 0.096 0.000 0.904
#> GSM225351     2  0.5769    0.67429 0.000 0.652 0.056 0.292
#> GSM225369     4  0.2589    0.77558 0.000 0.116 0.000 0.884
#> GSM225358     2  0.6214    0.47996 0.000 0.536 0.056 0.408
#> GSM225649     4  0.1792    0.78200 0.000 0.068 0.000 0.932
#> GSM225355     2  0.5769    0.67524 0.000 0.652 0.056 0.292
#> GSM225361     4  0.0524    0.77090 0.000 0.004 0.008 0.988
#> GSM225655     4  0.2919    0.73439 0.000 0.044 0.060 0.896
#> GSM225376     4  0.0707    0.76862 0.000 0.000 0.020 0.980
#> GSM225654     4  0.2234    0.75161 0.004 0.008 0.064 0.924
#> GSM225348     2  0.5745    0.67961 0.000 0.656 0.056 0.288
#> GSM225659     4  0.4407    0.68513 0.016 0.076 0.076 0.832
#> GSM225378     1  0.1743    0.90369 0.940 0.000 0.056 0.004
#> GSM225661     1  0.4542    0.71501 0.752 0.000 0.228 0.020
#> GSM225372     1  0.6560    0.52653 0.620 0.000 0.132 0.248
#> GSM225365     1  0.0336    0.92858 0.992 0.000 0.008 0.000
#> GSM225860     3  0.2408    0.98172 0.104 0.000 0.896 0.000
#> GSM225875     3  0.2408    0.98172 0.104 0.000 0.896 0.000
#> GSM225878     3  0.2408    0.98172 0.104 0.000 0.896 0.000
#> GSM225885     3  0.2408    0.98172 0.104 0.000 0.896 0.000
#> GSM225867     3  0.2408    0.98172 0.104 0.000 0.896 0.000
#> GSM225871     3  0.2408    0.98172 0.104 0.000 0.896 0.000
#> GSM225881     3  0.2408    0.98172 0.104 0.000 0.896 0.000
#> GSM225887     3  0.2408    0.98172 0.104 0.000 0.896 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM225374     1  0.0290     0.8613 0.992 0.000 0.000 0.000 0.008
#> GSM225349     5  0.4307     0.7030 0.000 0.500 0.000 0.000 0.500
#> GSM225367     5  0.5273     0.0802 0.000 0.060 0.000 0.352 0.588
#> GSM225356     5  0.4304     0.7241 0.000 0.484 0.000 0.000 0.516
#> GSM225353     5  0.4803     0.7572 0.000 0.444 0.000 0.020 0.536
#> GSM225653     5  0.5215     0.7467 0.000 0.352 0.000 0.056 0.592
#> GSM209847     5  0.4307     0.7027 0.000 0.500 0.000 0.000 0.500
#> GSM225658     5  0.4909     0.7701 0.000 0.380 0.000 0.032 0.588
#> GSM225370     1  0.0794     0.8592 0.972 0.000 0.000 0.000 0.028
#> GSM225364     5  0.4909     0.7701 0.000 0.380 0.000 0.032 0.588
#> GSM225645     4  0.4509     0.5849 0.000 0.048 0.000 0.716 0.236
#> GSM225350     2  0.1544     0.7951 0.000 0.932 0.000 0.000 0.068
#> GSM225368     4  0.5095     0.3383 0.000 0.040 0.000 0.560 0.400
#> GSM225357     2  0.2574     0.7322 0.000 0.876 0.000 0.012 0.112
#> GSM225651     4  0.4065     0.6291 0.000 0.048 0.000 0.772 0.180
#> GSM225354     2  0.1341     0.8092 0.000 0.944 0.000 0.000 0.056
#> GSM225360     4  0.7752     0.3247 0.224 0.000 0.120 0.480 0.176
#> GSM225657     1  0.1220     0.8595 0.964 0.008 0.004 0.004 0.020
#> GSM225377     1  0.3791     0.7940 0.836 0.000 0.060 0.024 0.080
#> GSM225656     1  0.0932     0.8616 0.972 0.004 0.000 0.004 0.020
#> GSM225347     2  0.2036     0.8137 0.056 0.920 0.000 0.000 0.024
#> GSM225660     1  0.0833     0.8623 0.976 0.004 0.000 0.004 0.016
#> GSM225712     1  0.0609     0.8607 0.980 0.000 0.000 0.000 0.020
#> GSM225663     1  0.0671     0.8627 0.980 0.004 0.000 0.000 0.016
#> GSM225373     1  0.0609     0.8607 0.980 0.000 0.000 0.000 0.020
#> GSM225366     3  0.7494     0.2096 0.032 0.016 0.452 0.176 0.324
#> GSM225380     4  0.2573     0.6780 0.000 0.016 0.000 0.880 0.104
#> GSM225351     2  0.1502     0.8523 0.000 0.940 0.000 0.056 0.004
#> GSM225369     4  0.3759     0.6361 0.000 0.016 0.000 0.764 0.220
#> GSM225358     2  0.3194     0.7479 0.000 0.832 0.000 0.148 0.020
#> GSM225649     4  0.2079     0.6860 0.000 0.020 0.000 0.916 0.064
#> GSM225355     2  0.1502     0.8523 0.000 0.940 0.000 0.056 0.004
#> GSM225361     4  0.2153     0.6858 0.000 0.044 0.000 0.916 0.040
#> GSM225655     4  0.6269     0.4836 0.000 0.232 0.012 0.584 0.172
#> GSM225376     4  0.3431     0.6606 0.000 0.020 0.008 0.828 0.144
#> GSM225654     4  0.6226     0.5162 0.000 0.148 0.012 0.580 0.260
#> GSM225348     2  0.1740     0.8466 0.000 0.932 0.000 0.056 0.012
#> GSM225659     4  0.7047     0.3729 0.004 0.232 0.012 0.452 0.300
#> GSM225378     1  0.4361     0.7550 0.784 0.000 0.052 0.020 0.144
#> GSM225661     1  0.7904     0.3132 0.408 0.004 0.160 0.096 0.332
#> GSM225372     1  0.7724    -0.0321 0.336 0.004 0.040 0.320 0.300
#> GSM225365     1  0.0671     0.8627 0.980 0.004 0.000 0.000 0.016
#> GSM225860     3  0.0404     0.9330 0.012 0.000 0.988 0.000 0.000
#> GSM225875     3  0.0404     0.9330 0.012 0.000 0.988 0.000 0.000
#> GSM225878     3  0.0404     0.9330 0.012 0.000 0.988 0.000 0.000
#> GSM225885     3  0.0404     0.9330 0.012 0.000 0.988 0.000 0.000
#> GSM225867     3  0.0404     0.9330 0.012 0.000 0.988 0.000 0.000
#> GSM225871     3  0.0404     0.9330 0.012 0.000 0.988 0.000 0.000
#> GSM225881     3  0.0404     0.9330 0.012 0.000 0.988 0.000 0.000
#> GSM225887     3  0.0404     0.9330 0.012 0.000 0.988 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM225374     1  0.3112     0.8068 0.836 0.000 0.000 0.096 0.000 0.068
#> GSM225349     6  0.3309     0.7566 0.000 0.280 0.000 0.000 0.000 0.720
#> GSM225367     6  0.4863     0.2232 0.000 0.000 0.000 0.092 0.284 0.624
#> GSM225356     6  0.3126     0.7807 0.000 0.248 0.000 0.000 0.000 0.752
#> GSM225353     6  0.3441     0.7969 0.000 0.188 0.000 0.004 0.024 0.784
#> GSM225653     6  0.3323     0.8014 0.000 0.128 0.000 0.012 0.036 0.824
#> GSM209847     6  0.3330     0.7518 0.000 0.284 0.000 0.000 0.000 0.716
#> GSM225658     6  0.3013     0.8096 0.000 0.140 0.000 0.004 0.024 0.832
#> GSM225370     1  0.2999     0.8092 0.840 0.000 0.000 0.112 0.000 0.048
#> GSM225364     6  0.2892     0.8103 0.000 0.136 0.000 0.004 0.020 0.840
#> GSM225645     5  0.2826     0.6413 0.000 0.000 0.000 0.028 0.844 0.128
#> GSM225350     2  0.2989     0.7498 0.000 0.812 0.000 0.008 0.004 0.176
#> GSM225368     5  0.4939     0.4977 0.000 0.000 0.000 0.096 0.612 0.292
#> GSM225357     2  0.4328     0.6667 0.008 0.720 0.000 0.012 0.032 0.228
#> GSM225651     5  0.1951     0.6563 0.000 0.000 0.000 0.016 0.908 0.076
#> GSM225354     2  0.2333     0.8000 0.004 0.872 0.000 0.004 0.000 0.120
#> GSM225360     5  0.8307     0.0402 0.140 0.004 0.080 0.312 0.340 0.124
#> GSM225657     1  0.1750     0.7958 0.932 0.016 0.000 0.040 0.000 0.012
#> GSM225377     1  0.6682     0.5148 0.524 0.000 0.048 0.300 0.060 0.068
#> GSM225656     1  0.1210     0.8112 0.960 0.008 0.008 0.020 0.000 0.004
#> GSM225347     2  0.1401     0.8396 0.020 0.948 0.000 0.004 0.000 0.028
#> GSM225660     1  0.0912     0.8136 0.972 0.008 0.004 0.012 0.000 0.004
#> GSM225712     1  0.3585     0.7909 0.792 0.000 0.004 0.156 0.000 0.048
#> GSM225663     1  0.0551     0.8158 0.984 0.004 0.008 0.004 0.000 0.000
#> GSM225373     1  0.3656     0.7867 0.784 0.000 0.004 0.164 0.000 0.048
#> GSM225366     4  0.4952     0.5049 0.024 0.004 0.220 0.684 0.068 0.000
#> GSM225380     5  0.1970     0.6514 0.000 0.028 0.000 0.008 0.920 0.044
#> GSM225351     2  0.1369     0.8459 0.000 0.952 0.000 0.016 0.016 0.016
#> GSM225369     5  0.3946     0.6199 0.000 0.004 0.000 0.076 0.768 0.152
#> GSM225358     2  0.4128     0.7138 0.000 0.776 0.000 0.032 0.136 0.056
#> GSM225649     5  0.1434     0.6423 0.000 0.020 0.000 0.024 0.948 0.008
#> GSM225355     2  0.0862     0.8444 0.000 0.972 0.000 0.016 0.008 0.004
#> GSM225361     5  0.3917     0.5631 0.000 0.040 0.000 0.140 0.788 0.032
#> GSM225655     5  0.6362    -0.2244 0.000 0.268 0.000 0.336 0.384 0.012
#> GSM225376     5  0.3970     0.4547 0.004 0.036 0.000 0.196 0.756 0.008
#> GSM225654     4  0.5828     0.3167 0.000 0.156 0.000 0.524 0.308 0.012
#> GSM225348     2  0.1036     0.8412 0.000 0.964 0.000 0.024 0.008 0.004
#> GSM225659     4  0.5808     0.4427 0.012 0.176 0.000 0.588 0.216 0.008
#> GSM225378     1  0.5903     0.4378 0.504 0.000 0.052 0.380 0.004 0.060
#> GSM225661     4  0.4823     0.4444 0.256 0.000 0.068 0.664 0.008 0.004
#> GSM225372     4  0.5844     0.3995 0.152 0.000 0.008 0.640 0.148 0.052
#> GSM225365     1  0.0984     0.8151 0.968 0.008 0.012 0.012 0.000 0.000
#> GSM225860     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225875     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225878     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225885     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225867     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225871     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225881     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225887     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n cell.type(p) agent(p)  time(p) individual(p) k
#> MAD:skmeans 50     3.11e-03   0.6852 9.25e-05      2.11e-02 2
#> MAD:skmeans 49     1.71e-03   0.0480 6.31e-05      6.74e-04 3
#> MAD:skmeans 47     7.55e-09   0.0595 2.97e-06      1.08e-05 4
#> MAD:skmeans 42     1.67e-08   0.0194 1.12e-08      1.08e-03 5
#> MAD:skmeans 40     1.49e-07   0.0409 1.46e-08      2.90e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.505           0.716       0.857         0.4136 0.503   0.503
#> 3 3 0.822           0.951       0.970         0.5155 0.739   0.539
#> 4 4 0.909           0.938       0.973         0.1901 0.837   0.583
#> 5 5 0.813           0.579       0.800         0.0666 0.882   0.581
#> 6 6 0.831           0.817       0.881         0.0419 0.920   0.637

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM225374     1  0.9732     0.6686 0.596 0.404
#> GSM225349     2  0.0000     0.8981 0.000 1.000
#> GSM225367     2  0.1414     0.8795 0.020 0.980
#> GSM225356     2  0.0000     0.8981 0.000 1.000
#> GSM225353     2  0.0000     0.8981 0.000 1.000
#> GSM225653     2  0.0000     0.8981 0.000 1.000
#> GSM209847     2  0.0000     0.8981 0.000 1.000
#> GSM225658     2  0.0000     0.8981 0.000 1.000
#> GSM225370     1  0.9732     0.6686 0.596 0.404
#> GSM225364     2  0.0000     0.8981 0.000 1.000
#> GSM225645     2  0.0672     0.8926 0.008 0.992
#> GSM225350     2  0.0000     0.8981 0.000 1.000
#> GSM225368     2  0.0000     0.8981 0.000 1.000
#> GSM225357     2  0.0000     0.8981 0.000 1.000
#> GSM225651     2  0.0938     0.8892 0.012 0.988
#> GSM225354     2  0.0000     0.8981 0.000 1.000
#> GSM225360     2  0.9988    -0.3897 0.480 0.520
#> GSM225657     2  0.9795    -0.1444 0.416 0.584
#> GSM225377     1  0.9732     0.6686 0.596 0.404
#> GSM225656     1  0.9732     0.6686 0.596 0.404
#> GSM225347     2  0.0000     0.8981 0.000 1.000
#> GSM225660     1  0.9732     0.6686 0.596 0.404
#> GSM225712     1  0.9393     0.6709 0.644 0.356
#> GSM225663     1  0.9710     0.6702 0.600 0.400
#> GSM225373     1  0.9710     0.6702 0.600 0.400
#> GSM225366     1  0.9933     0.5596 0.548 0.452
#> GSM225380     2  0.0000     0.8981 0.000 1.000
#> GSM225351     2  0.0000     0.8981 0.000 1.000
#> GSM225369     2  0.0000     0.8981 0.000 1.000
#> GSM225358     2  0.0000     0.8981 0.000 1.000
#> GSM225649     2  0.0672     0.8926 0.008 0.992
#> GSM225355     2  0.0000     0.8981 0.000 1.000
#> GSM225361     2  0.7056     0.6352 0.192 0.808
#> GSM225655     2  0.0000     0.8981 0.000 1.000
#> GSM225376     2  0.9635    -0.0134 0.388 0.612
#> GSM225654     2  0.7299     0.6104 0.204 0.796
#> GSM225348     2  0.0000     0.8981 0.000 1.000
#> GSM225659     2  0.7056     0.6352 0.192 0.808
#> GSM225378     1  0.9732     0.6686 0.596 0.404
#> GSM225661     1  0.9732     0.6686 0.596 0.404
#> GSM225372     1  0.9732     0.6686 0.596 0.404
#> GSM225365     1  0.9732     0.6686 0.596 0.404
#> GSM225860     1  0.0000     0.6577 1.000 0.000
#> GSM225875     1  0.0000     0.6577 1.000 0.000
#> GSM225878     1  0.0000     0.6577 1.000 0.000
#> GSM225885     1  0.0000     0.6577 1.000 0.000
#> GSM225867     1  0.0000     0.6577 1.000 0.000
#> GSM225871     1  0.0000     0.6577 1.000 0.000
#> GSM225881     1  0.0000     0.6577 1.000 0.000
#> GSM225887     1  0.0000     0.6577 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     1  0.0000      0.949 1.000 0.000 0.000
#> GSM225349     2  0.0000      0.969 0.000 1.000 0.000
#> GSM225367     2  0.0424      0.966 0.008 0.992 0.000
#> GSM225356     2  0.0000      0.969 0.000 1.000 0.000
#> GSM225353     2  0.0000      0.969 0.000 1.000 0.000
#> GSM225653     2  0.0747      0.965 0.016 0.984 0.000
#> GSM209847     2  0.0000      0.969 0.000 1.000 0.000
#> GSM225658     2  0.0000      0.969 0.000 1.000 0.000
#> GSM225370     1  0.0000      0.949 1.000 0.000 0.000
#> GSM225364     2  0.0000      0.969 0.000 1.000 0.000
#> GSM225645     2  0.3293      0.897 0.088 0.900 0.012
#> GSM225350     2  0.0000      0.969 0.000 1.000 0.000
#> GSM225368     2  0.0237      0.968 0.000 0.996 0.004
#> GSM225357     2  0.1411      0.954 0.036 0.964 0.000
#> GSM225651     2  0.4968      0.776 0.188 0.800 0.012
#> GSM225354     2  0.1289      0.957 0.032 0.968 0.000
#> GSM225360     1  0.2356      0.920 0.928 0.072 0.000
#> GSM225657     1  0.3038      0.900 0.896 0.104 0.000
#> GSM225377     1  0.0000      0.949 1.000 0.000 0.000
#> GSM225656     1  0.0000      0.949 1.000 0.000 0.000
#> GSM225347     2  0.1411      0.954 0.036 0.964 0.000
#> GSM225660     1  0.0000      0.949 1.000 0.000 0.000
#> GSM225712     1  0.0237      0.947 0.996 0.000 0.004
#> GSM225663     1  0.1411      0.923 0.964 0.000 0.036
#> GSM225373     1  0.0000      0.949 1.000 0.000 0.000
#> GSM225366     1  0.1753      0.932 0.952 0.048 0.000
#> GSM225380     2  0.0592      0.966 0.000 0.988 0.012
#> GSM225351     2  0.0000      0.969 0.000 1.000 0.000
#> GSM225369     2  0.0592      0.966 0.000 0.988 0.012
#> GSM225358     2  0.0592      0.966 0.000 0.988 0.012
#> GSM225649     2  0.3293      0.897 0.088 0.900 0.012
#> GSM225355     2  0.0000      0.969 0.000 1.000 0.000
#> GSM225361     1  0.3771      0.888 0.876 0.112 0.012
#> GSM225655     2  0.2229      0.946 0.044 0.944 0.012
#> GSM225376     1  0.3618      0.895 0.884 0.104 0.012
#> GSM225654     1  0.3771      0.888 0.876 0.112 0.012
#> GSM225348     2  0.0747      0.965 0.016 0.984 0.000
#> GSM225659     1  0.3771      0.888 0.876 0.112 0.012
#> GSM225378     1  0.0000      0.949 1.000 0.000 0.000
#> GSM225661     1  0.0000      0.949 1.000 0.000 0.000
#> GSM225372     1  0.0000      0.949 1.000 0.000 0.000
#> GSM225365     1  0.0000      0.949 1.000 0.000 0.000
#> GSM225860     3  0.0592      1.000 0.012 0.000 0.988
#> GSM225875     3  0.0592      1.000 0.012 0.000 0.988
#> GSM225878     3  0.0592      1.000 0.012 0.000 0.988
#> GSM225885     3  0.0592      1.000 0.012 0.000 0.988
#> GSM225867     3  0.0592      1.000 0.012 0.000 0.988
#> GSM225871     3  0.0592      1.000 0.012 0.000 0.988
#> GSM225881     3  0.0592      1.000 0.012 0.000 0.988
#> GSM225887     3  0.0592      1.000 0.012 0.000 0.988

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette   p1    p2 p3    p4
#> GSM225374     1  0.0000      0.983 1.00 0.000  0 0.000
#> GSM225349     2  0.0000      0.982 0.00 1.000  0 0.000
#> GSM225367     2  0.0000      0.982 0.00 1.000  0 0.000
#> GSM225356     2  0.0000      0.982 0.00 1.000  0 0.000
#> GSM225353     2  0.0000      0.982 0.00 1.000  0 0.000
#> GSM225653     2  0.0000      0.982 0.00 1.000  0 0.000
#> GSM209847     2  0.0000      0.982 0.00 1.000  0 0.000
#> GSM225658     2  0.0000      0.982 0.00 1.000  0 0.000
#> GSM225370     1  0.0000      0.983 1.00 0.000  0 0.000
#> GSM225364     2  0.0000      0.982 0.00 1.000  0 0.000
#> GSM225645     4  0.2647      0.849 0.00 0.120  0 0.880
#> GSM225350     2  0.0000      0.982 0.00 1.000  0 0.000
#> GSM225368     2  0.3219      0.781 0.00 0.836  0 0.164
#> GSM225357     2  0.0000      0.982 0.00 1.000  0 0.000
#> GSM225651     4  0.2647      0.849 0.00 0.120  0 0.880
#> GSM225354     2  0.0000      0.982 0.00 1.000  0 0.000
#> GSM225360     1  0.0000      0.983 1.00 0.000  0 0.000
#> GSM225657     1  0.0000      0.983 1.00 0.000  0 0.000
#> GSM225377     1  0.0000      0.983 1.00 0.000  0 0.000
#> GSM225656     1  0.0000      0.983 1.00 0.000  0 0.000
#> GSM225347     2  0.0000      0.982 0.00 1.000  0 0.000
#> GSM225660     1  0.0000      0.983 1.00 0.000  0 0.000
#> GSM225712     1  0.0000      0.983 1.00 0.000  0 0.000
#> GSM225663     1  0.0000      0.983 1.00 0.000  0 0.000
#> GSM225373     1  0.0000      0.983 1.00 0.000  0 0.000
#> GSM225366     1  0.2647      0.880 0.88 0.000  0 0.120
#> GSM225380     4  0.2647      0.849 0.00 0.120  0 0.880
#> GSM225351     2  0.0000      0.982 0.00 1.000  0 0.000
#> GSM225369     4  0.0707      0.892 0.00 0.020  0 0.980
#> GSM225358     4  0.4992      0.110 0.00 0.476  0 0.524
#> GSM225649     4  0.0000      0.896 0.00 0.000  0 1.000
#> GSM225355     2  0.0000      0.982 0.00 1.000  0 0.000
#> GSM225361     4  0.0000      0.896 0.00 0.000  0 1.000
#> GSM225655     4  0.0000      0.896 0.00 0.000  0 1.000
#> GSM225376     4  0.0000      0.896 0.00 0.000  0 1.000
#> GSM225654     4  0.0000      0.896 0.00 0.000  0 1.000
#> GSM225348     2  0.1867      0.907 0.00 0.928  0 0.072
#> GSM225659     4  0.0000      0.896 0.00 0.000  0 1.000
#> GSM225378     1  0.0000      0.983 1.00 0.000  0 0.000
#> GSM225661     1  0.2647      0.880 0.88 0.000  0 0.120
#> GSM225372     1  0.0000      0.983 1.00 0.000  0 0.000
#> GSM225365     1  0.0000      0.983 1.00 0.000  0 0.000
#> GSM225860     3  0.0000      1.000 0.00 0.000  1 0.000
#> GSM225875     3  0.0000      1.000 0.00 0.000  1 0.000
#> GSM225878     3  0.0000      1.000 0.00 0.000  1 0.000
#> GSM225885     3  0.0000      1.000 0.00 0.000  1 0.000
#> GSM225867     3  0.0000      1.000 0.00 0.000  1 0.000
#> GSM225871     3  0.0000      1.000 0.00 0.000  1 0.000
#> GSM225881     3  0.0000      1.000 0.00 0.000  1 0.000
#> GSM225887     3  0.0000      1.000 0.00 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> GSM225374     1  0.0000     0.9130 1.000 0.000  0 0.000 0.000
#> GSM225349     5  0.4210     0.3374 0.000 0.412  0 0.000 0.588
#> GSM225367     5  0.4350     0.3334 0.000 0.408  0 0.004 0.588
#> GSM225356     5  0.4219     0.3339 0.000 0.416  0 0.000 0.584
#> GSM225353     5  0.4219     0.3339 0.000 0.416  0 0.000 0.584
#> GSM225653     2  0.4262    -0.0753 0.000 0.560  0 0.000 0.440
#> GSM209847     5  0.4210     0.3374 0.000 0.412  0 0.000 0.588
#> GSM225658     5  0.4210     0.3374 0.000 0.412  0 0.000 0.588
#> GSM225370     1  0.0000     0.9130 1.000 0.000  0 0.000 0.000
#> GSM225364     5  0.4210     0.3374 0.000 0.412  0 0.000 0.588
#> GSM225645     4  0.0162     0.8192 0.000 0.004  0 0.996 0.000
#> GSM225350     5  0.4249     0.3035 0.000 0.432  0 0.000 0.568
#> GSM225368     5  0.6199     0.1010 0.000 0.392  0 0.140 0.468
#> GSM225357     2  0.4030     0.1271 0.000 0.648  0 0.000 0.352
#> GSM225651     4  0.0290     0.8185 0.000 0.008  0 0.992 0.000
#> GSM225354     2  0.1608     0.4447 0.000 0.928  0 0.000 0.072
#> GSM225360     1  0.3579     0.7892 0.756 0.240  0 0.004 0.000
#> GSM225657     1  0.3452     0.7882 0.756 0.244  0 0.000 0.000
#> GSM225377     1  0.0000     0.9130 1.000 0.000  0 0.000 0.000
#> GSM225656     1  0.3424     0.7913 0.760 0.240  0 0.000 0.000
#> GSM225347     2  0.0000     0.4466 0.000 1.000  0 0.000 0.000
#> GSM225660     1  0.3424     0.7913 0.760 0.240  0 0.000 0.000
#> GSM225712     1  0.0000     0.9130 1.000 0.000  0 0.000 0.000
#> GSM225663     1  0.0510     0.9088 0.984 0.016  0 0.000 0.000
#> GSM225373     1  0.0000     0.9130 1.000 0.000  0 0.000 0.000
#> GSM225366     5  0.6775    -0.3406 0.360 0.224  0 0.004 0.412
#> GSM225380     4  0.0324     0.8186 0.000 0.004  0 0.992 0.004
#> GSM225351     2  0.4045     0.1177 0.000 0.644  0 0.000 0.356
#> GSM225369     4  0.0404     0.8183 0.000 0.000  0 0.988 0.012
#> GSM225358     4  0.6417    -0.0290 0.000 0.172  0 0.424 0.404
#> GSM225649     4  0.0162     0.8206 0.000 0.000  0 0.996 0.004
#> GSM225355     2  0.3424     0.3049 0.000 0.760  0 0.000 0.240
#> GSM225361     4  0.4201     0.5799 0.000 0.000  0 0.592 0.408
#> GSM225655     4  0.5182     0.5365 0.000 0.044  0 0.544 0.412
#> GSM225376     4  0.0162     0.8206 0.000 0.000  0 0.996 0.004
#> GSM225654     5  0.6723    -0.3698 0.000 0.324  0 0.264 0.412
#> GSM225348     2  0.4060     0.3818 0.000 0.640  0 0.000 0.360
#> GSM225659     2  0.4507     0.1020 0.004 0.580  0 0.004 0.412
#> GSM225378     1  0.0000     0.9130 1.000 0.000  0 0.000 0.000
#> GSM225661     5  0.6775    -0.3406 0.360 0.224  0 0.004 0.412
#> GSM225372     1  0.0000     0.9130 1.000 0.000  0 0.000 0.000
#> GSM225365     1  0.0510     0.9088 0.984 0.016  0 0.000 0.000
#> GSM225860     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> GSM225875     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> GSM225878     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> GSM225885     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> GSM225867     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> GSM225871     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> GSM225881     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> GSM225887     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4    p5    p6
#> GSM225374     1  0.0000      0.905 1.000 0.000  0 0.000 0.000 0.000
#> GSM225349     6  0.0000      0.820 0.000 0.000  0 0.000 0.000 1.000
#> GSM225367     6  0.3706      0.517 0.000 0.000  0 0.000 0.380 0.620
#> GSM225356     6  0.0000      0.820 0.000 0.000  0 0.000 0.000 1.000
#> GSM225353     6  0.0000      0.820 0.000 0.000  0 0.000 0.000 1.000
#> GSM225653     6  0.2260      0.702 0.000 0.000  0 0.140 0.000 0.860
#> GSM209847     6  0.0000      0.820 0.000 0.000  0 0.000 0.000 1.000
#> GSM225658     6  0.0000      0.820 0.000 0.000  0 0.000 0.000 1.000
#> GSM225370     1  0.0000      0.905 1.000 0.000  0 0.000 0.000 0.000
#> GSM225364     6  0.0000      0.820 0.000 0.000  0 0.000 0.000 1.000
#> GSM225645     5  0.4538      0.916 0.000 0.324  0 0.052 0.624 0.000
#> GSM225350     6  0.1075      0.772 0.000 0.048  0 0.000 0.000 0.952
#> GSM225368     6  0.3843      0.438 0.000 0.000  0 0.000 0.452 0.548
#> GSM225357     6  0.3023      0.602 0.000 0.004  0 0.212 0.000 0.784
#> GSM225651     5  0.4673      0.916 0.000 0.324  0 0.052 0.620 0.004
#> GSM225354     2  0.5066      0.712 0.000 0.636  0 0.188 0.000 0.176
#> GSM225360     1  0.5119      0.614 0.624 0.000  0 0.220 0.156 0.000
#> GSM225657     1  0.3081      0.767 0.776 0.004  0 0.220 0.000 0.000
#> GSM225377     1  0.0000      0.905 1.000 0.000  0 0.000 0.000 0.000
#> GSM225656     1  0.2941      0.770 0.780 0.000  0 0.220 0.000 0.000
#> GSM225347     2  0.4863      0.689 0.000 0.660  0 0.200 0.000 0.140
#> GSM225660     1  0.2941      0.770 0.780 0.000  0 0.220 0.000 0.000
#> GSM225712     1  0.0000      0.905 1.000 0.000  0 0.000 0.000 0.000
#> GSM225663     1  0.0458      0.900 0.984 0.000  0 0.016 0.000 0.000
#> GSM225373     1  0.0000      0.905 1.000 0.000  0 0.000 0.000 0.000
#> GSM225366     4  0.1327      0.811 0.064 0.000  0 0.936 0.000 0.000
#> GSM225380     5  0.4673      0.916 0.000 0.324  0 0.052 0.620 0.004
#> GSM225351     2  0.3789      0.646 0.000 0.584  0 0.000 0.000 0.416
#> GSM225369     5  0.0000      0.583 0.000 0.000  0 0.000 1.000 0.000
#> GSM225358     2  0.5564      0.560 0.000 0.576  0 0.056 0.052 0.316
#> GSM225649     5  0.4631      0.915 0.000 0.320  0 0.060 0.620 0.000
#> GSM225355     2  0.3499      0.732 0.000 0.680  0 0.000 0.000 0.320
#> GSM225361     4  0.3551      0.645 0.000 0.192  0 0.772 0.036 0.000
#> GSM225655     4  0.2968      0.706 0.000 0.168  0 0.816 0.016 0.000
#> GSM225376     5  0.4631      0.915 0.000 0.320  0 0.060 0.620 0.000
#> GSM225654     4  0.0603      0.816 0.000 0.016  0 0.980 0.004 0.000
#> GSM225348     2  0.4695      0.754 0.000 0.676  0 0.116 0.000 0.208
#> GSM225659     4  0.1531      0.797 0.004 0.068  0 0.928 0.000 0.000
#> GSM225378     1  0.0000      0.905 1.000 0.000  0 0.000 0.000 0.000
#> GSM225661     4  0.1714      0.788 0.092 0.000  0 0.908 0.000 0.000
#> GSM225372     1  0.0000      0.905 1.000 0.000  0 0.000 0.000 0.000
#> GSM225365     1  0.0458      0.900 0.984 0.000  0 0.016 0.000 0.000
#> GSM225860     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225875     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225878     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225885     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225867     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225871     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225881     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225887     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n cell.type(p) agent(p)  time(p) individual(p) k
#> MAD:pam 47     2.18e-03  1.00000 9.17e-06      1.29e-02 2
#> MAD:pam 50     1.39e-11  0.73005 4.33e-07      2.19e-06 3
#> MAD:pam 49     1.30e-10  0.01063 2.55e-07      1.10e-05 4
#> MAD:pam 29     5.04e-07  0.06336 8.63e-05      8.48e-03 5
#> MAD:pam 49     2.22e-09  0.00515 3.54e-07      8.57e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.973       0.890         0.2618 0.754   0.754
#> 3 3 0.388           0.687       0.789         0.9415 0.760   0.684
#> 4 4 0.531           0.528       0.722         0.3617 0.755   0.534
#> 5 5 0.777           0.905       0.911         0.1149 0.806   0.453
#> 6 6 0.808           0.613       0.797         0.0649 0.888   0.571

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM225374     2   0.141      0.978 0.020 0.980
#> GSM225349     2   0.000      0.984 0.000 1.000
#> GSM225367     2   0.000      0.984 0.000 1.000
#> GSM225356     2   0.000      0.984 0.000 1.000
#> GSM225353     2   0.000      0.984 0.000 1.000
#> GSM225653     2   0.000      0.984 0.000 1.000
#> GSM209847     2   0.000      0.984 0.000 1.000
#> GSM225658     2   0.000      0.984 0.000 1.000
#> GSM225370     2   0.141      0.978 0.020 0.980
#> GSM225364     2   0.000      0.984 0.000 1.000
#> GSM225645     2   0.000      0.984 0.000 1.000
#> GSM225350     2   0.000      0.984 0.000 1.000
#> GSM225368     2   0.000      0.984 0.000 1.000
#> GSM225357     2   0.000      0.984 0.000 1.000
#> GSM225651     2   0.000      0.984 0.000 1.000
#> GSM225354     2   0.000      0.984 0.000 1.000
#> GSM225360     2   0.141      0.978 0.020 0.980
#> GSM225657     2   0.141      0.978 0.020 0.980
#> GSM225377     2   0.141      0.978 0.020 0.980
#> GSM225656     2   0.141      0.978 0.020 0.980
#> GSM225347     2   0.000      0.984 0.000 1.000
#> GSM225660     2   0.141      0.978 0.020 0.980
#> GSM225712     2   0.141      0.978 0.020 0.980
#> GSM225663     2   0.141      0.978 0.020 0.980
#> GSM225373     2   0.141      0.978 0.020 0.980
#> GSM225366     2   0.141      0.978 0.020 0.980
#> GSM225380     2   0.000      0.984 0.000 1.000
#> GSM225351     2   0.000      0.984 0.000 1.000
#> GSM225369     2   0.000      0.984 0.000 1.000
#> GSM225358     2   0.000      0.984 0.000 1.000
#> GSM225649     2   0.000      0.984 0.000 1.000
#> GSM225355     2   0.000      0.984 0.000 1.000
#> GSM225361     2   0.000      0.984 0.000 1.000
#> GSM225655     2   0.000      0.984 0.000 1.000
#> GSM225376     2   0.000      0.984 0.000 1.000
#> GSM225654     2   0.000      0.984 0.000 1.000
#> GSM225348     2   0.000      0.984 0.000 1.000
#> GSM225659     2   0.000      0.984 0.000 1.000
#> GSM225378     2   0.141      0.978 0.020 0.980
#> GSM225661     2   0.141      0.978 0.020 0.980
#> GSM225372     2   0.141      0.978 0.020 0.980
#> GSM225365     2   0.141      0.978 0.020 0.980
#> GSM225860     1   0.000      1.000 1.000 0.000
#> GSM225875     1   0.000      1.000 1.000 0.000
#> GSM225878     1   0.000      1.000 1.000 0.000
#> GSM225885     1   0.000      1.000 1.000 0.000
#> GSM225867     2   0.961      0.400 0.384 0.616
#> GSM225871     1   0.000      1.000 1.000 0.000
#> GSM225881     1   0.000      1.000 1.000 0.000
#> GSM225887     1   0.000      1.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     2  0.6299     -0.500 0.476 0.524 0.000
#> GSM225349     2  0.0000      0.720 0.000 1.000 0.000
#> GSM225367     2  0.5016      0.660 0.240 0.760 0.000
#> GSM225356     2  0.0000      0.720 0.000 1.000 0.000
#> GSM225353     2  0.0000      0.720 0.000 1.000 0.000
#> GSM225653     2  0.0000      0.720 0.000 1.000 0.000
#> GSM209847     2  0.0000      0.720 0.000 1.000 0.000
#> GSM225658     2  0.0000      0.720 0.000 1.000 0.000
#> GSM225370     1  0.5882      0.982 0.652 0.348 0.000
#> GSM225364     2  0.0000      0.720 0.000 1.000 0.000
#> GSM225645     2  0.4974      0.663 0.236 0.764 0.000
#> GSM225350     2  0.1031      0.715 0.024 0.976 0.000
#> GSM225368     2  0.5016      0.660 0.240 0.760 0.000
#> GSM225357     2  0.0237      0.720 0.004 0.996 0.000
#> GSM225651     2  0.4974      0.663 0.236 0.764 0.000
#> GSM225354     2  0.1031      0.716 0.024 0.976 0.000
#> GSM225360     2  0.6267      0.312 0.452 0.548 0.000
#> GSM225657     2  0.5678      0.374 0.316 0.684 0.000
#> GSM225377     2  0.5706      0.375 0.320 0.680 0.000
#> GSM225656     1  0.5835      0.994 0.660 0.340 0.000
#> GSM225347     2  0.1289      0.713 0.032 0.968 0.000
#> GSM225660     1  0.5835      0.994 0.660 0.340 0.000
#> GSM225712     1  0.5810      0.991 0.664 0.336 0.000
#> GSM225663     1  0.5835      0.994 0.660 0.340 0.000
#> GSM225373     1  0.5810      0.991 0.664 0.336 0.000
#> GSM225366     2  0.5706      0.375 0.320 0.680 0.000
#> GSM225380     2  0.4974      0.663 0.236 0.764 0.000
#> GSM225351     2  0.4887      0.528 0.228 0.772 0.000
#> GSM225369     2  0.5058      0.657 0.244 0.756 0.000
#> GSM225358     2  0.3482      0.674 0.128 0.872 0.000
#> GSM225649     2  0.5016      0.661 0.240 0.760 0.000
#> GSM225355     2  0.4887      0.528 0.228 0.772 0.000
#> GSM225361     2  0.5397      0.653 0.280 0.720 0.000
#> GSM225655     2  0.5363      0.633 0.276 0.724 0.000
#> GSM225376     2  0.3752      0.682 0.144 0.856 0.000
#> GSM225654     2  0.3752      0.683 0.144 0.856 0.000
#> GSM225348     2  0.4842      0.533 0.224 0.776 0.000
#> GSM225659     2  0.3879      0.687 0.152 0.848 0.000
#> GSM225378     2  0.5810      0.322 0.336 0.664 0.000
#> GSM225661     2  0.5706      0.375 0.320 0.680 0.000
#> GSM225372     2  0.5926      0.369 0.356 0.644 0.000
#> GSM225365     1  0.5835      0.994 0.660 0.340 0.000
#> GSM225860     3  0.0000      0.957 0.000 0.000 1.000
#> GSM225875     3  0.0000      0.957 0.000 0.000 1.000
#> GSM225878     3  0.0000      0.957 0.000 0.000 1.000
#> GSM225885     3  0.0000      0.957 0.000 0.000 1.000
#> GSM225867     3  0.6902      0.582 0.148 0.116 0.736
#> GSM225871     3  0.0000      0.957 0.000 0.000 1.000
#> GSM225881     3  0.0000      0.957 0.000 0.000 1.000
#> GSM225887     3  0.0000      0.957 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM225374     4   0.535    -0.5919 0.432 0.012 0.000 0.556
#> GSM225349     2   0.375     0.6692 0.004 0.800 0.000 0.196
#> GSM225367     4   0.763     0.3421 0.368 0.208 0.000 0.424
#> GSM225356     2   0.375     0.6692 0.004 0.800 0.000 0.196
#> GSM225353     2   0.442     0.6257 0.012 0.748 0.000 0.240
#> GSM225653     2   0.432     0.6415 0.012 0.760 0.000 0.228
#> GSM209847     2   0.367     0.6712 0.004 0.808 0.000 0.188
#> GSM225658     2   0.410     0.6630 0.012 0.784 0.000 0.204
#> GSM225370     1   0.521     0.9361 0.572 0.008 0.000 0.420
#> GSM225364     2   0.432     0.6415 0.012 0.760 0.000 0.228
#> GSM225645     4   0.764     0.3419 0.372 0.208 0.000 0.420
#> GSM225350     2   0.517     0.6482 0.004 0.508 0.000 0.488
#> GSM225368     4   0.763     0.3421 0.368 0.208 0.000 0.424
#> GSM225357     2   0.521     0.6476 0.008 0.572 0.000 0.420
#> GSM225651     4   0.759     0.3457 0.368 0.200 0.000 0.432
#> GSM225354     2   0.500     0.6504 0.000 0.516 0.000 0.484
#> GSM225360     4   0.387     0.2212 0.208 0.004 0.000 0.788
#> GSM225657     4   0.628    -0.1326 0.284 0.092 0.000 0.624
#> GSM225377     4   0.485    -0.0415 0.268 0.020 0.000 0.712
#> GSM225656     1   0.508     0.9728 0.616 0.008 0.000 0.376
#> GSM225347     2   0.499     0.6487 0.000 0.520 0.000 0.480
#> GSM225660     1   0.508     0.9728 0.616 0.008 0.000 0.376
#> GSM225712     1   0.488     0.9572 0.592 0.000 0.000 0.408
#> GSM225663     1   0.508     0.9728 0.616 0.008 0.000 0.376
#> GSM225373     1   0.488     0.9572 0.592 0.000 0.000 0.408
#> GSM225366     4   0.536     0.1316 0.200 0.072 0.000 0.728
#> GSM225380     4   0.761     0.3430 0.384 0.200 0.000 0.416
#> GSM225351     2   0.468     0.5899 0.000 0.648 0.000 0.352
#> GSM225369     4   0.761     0.3430 0.384 0.200 0.000 0.416
#> GSM225358     2   0.529     0.6449 0.008 0.508 0.000 0.484
#> GSM225649     4   0.761     0.3430 0.384 0.200 0.000 0.416
#> GSM225355     2   0.450     0.5654 0.000 0.684 0.000 0.316
#> GSM225361     4   0.727     0.3431 0.332 0.164 0.000 0.504
#> GSM225655     4   0.525    -0.5525 0.008 0.440 0.000 0.552
#> GSM225376     4   0.397     0.3809 0.016 0.180 0.000 0.804
#> GSM225654     4   0.222     0.2608 0.000 0.092 0.000 0.908
#> GSM225348     2   0.450     0.5654 0.000 0.684 0.000 0.316
#> GSM225659     4   0.385     0.1321 0.012 0.180 0.000 0.808
#> GSM225378     4   0.462    -0.2710 0.340 0.000 0.000 0.660
#> GSM225661     4   0.558     0.1213 0.204 0.084 0.000 0.712
#> GSM225372     4   0.399     0.1701 0.172 0.020 0.000 0.808
#> GSM225365     1   0.508     0.9728 0.616 0.008 0.000 0.376
#> GSM225860     3   0.000     0.9706 0.000 0.000 1.000 0.000
#> GSM225875     3   0.000     0.9706 0.000 0.000 1.000 0.000
#> GSM225878     3   0.000     0.9706 0.000 0.000 1.000 0.000
#> GSM225885     3   0.000     0.9706 0.000 0.000 1.000 0.000
#> GSM225867     3   0.406     0.7497 0.160 0.000 0.812 0.028
#> GSM225871     3   0.000     0.9706 0.000 0.000 1.000 0.000
#> GSM225881     3   0.000     0.9706 0.000 0.000 1.000 0.000
#> GSM225887     3   0.000     0.9706 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM225374     1  0.4797      0.752 0.724 0.104 0.000 0.000 0.172
#> GSM225349     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM225367     5  0.0000      0.989 0.000 0.000 0.000 0.000 1.000
#> GSM225356     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM225353     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM225653     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM209847     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM225658     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM225370     1  0.2824      0.820 0.872 0.096 0.000 0.000 0.032
#> GSM225364     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM225645     5  0.0290      0.994 0.000 0.008 0.000 0.000 0.992
#> GSM225350     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> GSM225368     5  0.0000      0.989 0.000 0.000 0.000 0.000 1.000
#> GSM225357     2  0.1270      0.942 0.000 0.948 0.000 0.052 0.000
#> GSM225651     5  0.0290      0.994 0.000 0.008 0.000 0.000 0.992
#> GSM225354     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> GSM225360     1  0.5537      0.748 0.624 0.112 0.000 0.000 0.264
#> GSM225657     1  0.3318      0.802 0.808 0.180 0.000 0.000 0.012
#> GSM225377     1  0.4073      0.826 0.792 0.104 0.000 0.000 0.104
#> GSM225656     1  0.0000      0.784 1.000 0.000 0.000 0.000 0.000
#> GSM225347     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> GSM225660     1  0.0000      0.784 1.000 0.000 0.000 0.000 0.000
#> GSM225712     1  0.1668      0.809 0.940 0.028 0.000 0.000 0.032
#> GSM225663     1  0.0000      0.784 1.000 0.000 0.000 0.000 0.000
#> GSM225373     1  0.1668      0.809 0.940 0.028 0.000 0.000 0.032
#> GSM225366     1  0.5618      0.772 0.632 0.224 0.000 0.000 0.144
#> GSM225380     5  0.0404      0.992 0.000 0.012 0.000 0.000 0.988
#> GSM225351     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> GSM225369     5  0.0290      0.994 0.000 0.008 0.000 0.000 0.992
#> GSM225358     2  0.0290      0.982 0.000 0.992 0.000 0.000 0.008
#> GSM225649     5  0.0404      0.992 0.000 0.012 0.000 0.000 0.988
#> GSM225355     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> GSM225361     1  0.5512      0.738 0.620 0.104 0.000 0.000 0.276
#> GSM225655     1  0.4538      0.673 0.620 0.364 0.000 0.000 0.016
#> GSM225376     1  0.5690      0.766 0.624 0.152 0.000 0.000 0.224
#> GSM225654     1  0.5612      0.761 0.624 0.248 0.000 0.000 0.128
#> GSM225348     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> GSM225659     1  0.4525      0.678 0.624 0.360 0.000 0.000 0.016
#> GSM225378     1  0.3532      0.826 0.832 0.076 0.000 0.000 0.092
#> GSM225661     1  0.4981      0.803 0.704 0.188 0.000 0.000 0.108
#> GSM225372     1  0.5577      0.752 0.624 0.120 0.000 0.000 0.256
#> GSM225365     1  0.0000      0.784 1.000 0.000 0.000 0.000 0.000
#> GSM225860     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000
#> GSM225875     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000
#> GSM225878     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000
#> GSM225885     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000
#> GSM225867     3  0.0162      0.995 0.000 0.000 0.996 0.000 0.004
#> GSM225871     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000
#> GSM225881     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000
#> GSM225887     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM225374     1  0.5076     0.3343 0.708 0.140 0.000 0.064 0.088 0.000
#> GSM225349     6  0.0000     0.9993 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM225367     5  0.3052     0.7561 0.004 0.000 0.000 0.216 0.780 0.000
#> GSM225356     6  0.0000     0.9993 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM225353     6  0.0000     0.9993 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM225653     6  0.0146     0.9956 0.000 0.000 0.000 0.000 0.004 0.996
#> GSM209847     6  0.0000     0.9993 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM225658     6  0.0000     0.9993 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM225370     1  0.2006     0.4981 0.904 0.080 0.000 0.016 0.000 0.000
#> GSM225364     6  0.0000     0.9993 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM225645     5  0.2378     0.7720 0.000 0.000 0.000 0.152 0.848 0.000
#> GSM225350     2  0.0508     0.7555 0.000 0.984 0.000 0.004 0.000 0.012
#> GSM225368     5  0.2912     0.7579 0.000 0.000 0.000 0.216 0.784 0.000
#> GSM225357     2  0.1700     0.6975 0.000 0.916 0.000 0.004 0.000 0.080
#> GSM225651     5  0.2883     0.7694 0.000 0.000 0.000 0.212 0.788 0.000
#> GSM225354     2  0.0603     0.7536 0.000 0.980 0.000 0.004 0.000 0.016
#> GSM225360     4  0.6823     0.6181 0.284 0.080 0.000 0.460 0.176 0.000
#> GSM225657     1  0.3798     0.4058 0.748 0.216 0.000 0.032 0.004 0.000
#> GSM225377     1  0.5022     0.0109 0.576 0.064 0.000 0.352 0.008 0.000
#> GSM225656     1  0.2730     0.5301 0.808 0.000 0.000 0.192 0.000 0.000
#> GSM225347     2  0.0912     0.7531 0.004 0.972 0.000 0.012 0.004 0.008
#> GSM225660     1  0.2793     0.5281 0.800 0.000 0.000 0.200 0.000 0.000
#> GSM225712     1  0.2058     0.5058 0.908 0.036 0.000 0.056 0.000 0.000
#> GSM225663     1  0.2793     0.5281 0.800 0.000 0.000 0.200 0.000 0.000
#> GSM225373     1  0.2058     0.5058 0.908 0.036 0.000 0.056 0.000 0.000
#> GSM225366     1  0.5944    -0.2611 0.468 0.200 0.000 0.328 0.004 0.000
#> GSM225380     5  0.1387     0.7564 0.000 0.000 0.000 0.068 0.932 0.000
#> GSM225351     2  0.0000     0.7577 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM225369     5  0.0000     0.7639 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM225358     2  0.0146     0.7573 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM225649     5  0.1387     0.7564 0.000 0.000 0.000 0.068 0.932 0.000
#> GSM225355     2  0.0000     0.7577 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM225361     5  0.7141    -0.6557 0.216 0.088 0.000 0.344 0.352 0.000
#> GSM225655     2  0.5472    -0.0111 0.256 0.564 0.000 0.180 0.000 0.000
#> GSM225376     4  0.7617     0.6012 0.236 0.236 0.000 0.336 0.192 0.000
#> GSM225654     2  0.6045    -0.3172 0.364 0.420 0.000 0.212 0.004 0.000
#> GSM225348     2  0.0508     0.7534 0.004 0.984 0.000 0.012 0.000 0.000
#> GSM225659     2  0.6006    -0.3063 0.376 0.420 0.000 0.200 0.004 0.000
#> GSM225378     1  0.4872     0.0653 0.600 0.056 0.000 0.336 0.008 0.000
#> GSM225661     1  0.5856    -0.2133 0.492 0.188 0.000 0.316 0.004 0.000
#> GSM225372     4  0.5395     0.4910 0.320 0.108 0.000 0.564 0.008 0.000
#> GSM225365     1  0.2793     0.5281 0.800 0.000 0.000 0.200 0.000 0.000
#> GSM225860     3  0.0000     0.9972 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225875     3  0.0000     0.9972 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225878     3  0.0000     0.9972 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225885     3  0.0000     0.9972 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225867     3  0.0508     0.9800 0.012 0.000 0.984 0.000 0.004 0.000
#> GSM225871     3  0.0000     0.9972 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225881     3  0.0000     0.9972 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225887     3  0.0000     0.9972 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n cell.type(p) agent(p)  time(p) individual(p) k
#> MAD:mclust 49     1.39e-10    1.000 9.80e-04      8.97e-06 2
#> MAD:mclust 42     7.58e-10    0.291 1.30e-06      3.31e-04 3
#> MAD:mclust 30     3.06e-07    0.297 4.02e-05      1.63e-03 4
#> MAD:mclust 50     3.61e-10    0.234 4.91e-10      1.10e-06 5
#> MAD:mclust 38     3.77e-07    0.245 1.92e-09      5.78e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.964       0.985         0.5038 0.493   0.493
#> 3 3 0.788           0.829       0.929         0.3408 0.742   0.520
#> 4 4 0.734           0.791       0.881         0.0982 0.799   0.489
#> 5 5 0.944           0.910       0.951         0.0868 0.851   0.504
#> 6 6 0.818           0.736       0.841         0.0355 0.980   0.895

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM225374     1   0.000      0.966 1.000 0.000
#> GSM225349     2   0.000      1.000 0.000 1.000
#> GSM225367     2   0.000      1.000 0.000 1.000
#> GSM225356     2   0.000      1.000 0.000 1.000
#> GSM225353     2   0.000      1.000 0.000 1.000
#> GSM225653     2   0.000      1.000 0.000 1.000
#> GSM209847     2   0.000      1.000 0.000 1.000
#> GSM225658     2   0.000      1.000 0.000 1.000
#> GSM225370     1   0.000      0.966 1.000 0.000
#> GSM225364     2   0.000      1.000 0.000 1.000
#> GSM225645     2   0.000      1.000 0.000 1.000
#> GSM225350     2   0.000      1.000 0.000 1.000
#> GSM225368     2   0.000      1.000 0.000 1.000
#> GSM225357     2   0.000      1.000 0.000 1.000
#> GSM225651     2   0.000      1.000 0.000 1.000
#> GSM225354     2   0.000      1.000 0.000 1.000
#> GSM225360     1   0.224      0.935 0.964 0.036
#> GSM225657     1   0.904      0.549 0.680 0.320
#> GSM225377     1   0.000      0.966 1.000 0.000
#> GSM225656     1   0.000      0.966 1.000 0.000
#> GSM225347     2   0.000      1.000 0.000 1.000
#> GSM225660     1   0.000      0.966 1.000 0.000
#> GSM225712     1   0.000      0.966 1.000 0.000
#> GSM225663     1   0.000      0.966 1.000 0.000
#> GSM225373     1   0.000      0.966 1.000 0.000
#> GSM225366     1   0.000      0.966 1.000 0.000
#> GSM225380     2   0.000      1.000 0.000 1.000
#> GSM225351     2   0.000      1.000 0.000 1.000
#> GSM225369     2   0.000      1.000 0.000 1.000
#> GSM225358     2   0.000      1.000 0.000 1.000
#> GSM225649     2   0.000      1.000 0.000 1.000
#> GSM225355     2   0.000      1.000 0.000 1.000
#> GSM225361     2   0.000      1.000 0.000 1.000
#> GSM225655     2   0.000      1.000 0.000 1.000
#> GSM225376     2   0.000      1.000 0.000 1.000
#> GSM225654     2   0.000      1.000 0.000 1.000
#> GSM225348     2   0.000      1.000 0.000 1.000
#> GSM225659     2   0.000      1.000 0.000 1.000
#> GSM225378     1   0.000      0.966 1.000 0.000
#> GSM225661     1   0.000      0.966 1.000 0.000
#> GSM225372     1   0.963      0.398 0.612 0.388
#> GSM225365     1   0.000      0.966 1.000 0.000
#> GSM225860     1   0.000      0.966 1.000 0.000
#> GSM225875     1   0.000      0.966 1.000 0.000
#> GSM225878     1   0.000      0.966 1.000 0.000
#> GSM225885     1   0.000      0.966 1.000 0.000
#> GSM225867     1   0.000      0.966 1.000 0.000
#> GSM225871     1   0.000      0.966 1.000 0.000
#> GSM225881     1   0.000      0.966 1.000 0.000
#> GSM225887     1   0.000      0.966 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     2  0.0424     0.9097 0.008 0.992 0.000
#> GSM225349     2  0.0747     0.9102 0.000 0.984 0.016
#> GSM225367     2  0.2356     0.8684 0.000 0.928 0.072
#> GSM225356     2  0.0000     0.9135 0.000 1.000 0.000
#> GSM225353     2  0.1031     0.9063 0.000 0.976 0.024
#> GSM225653     2  0.0237     0.9136 0.000 0.996 0.004
#> GSM209847     2  0.0424     0.9130 0.000 0.992 0.008
#> GSM225658     2  0.0000     0.9135 0.000 1.000 0.000
#> GSM225370     2  0.5706     0.4504 0.320 0.680 0.000
#> GSM225364     2  0.0000     0.9135 0.000 1.000 0.000
#> GSM225645     3  0.2261     0.8919 0.000 0.068 0.932
#> GSM225350     2  0.1753     0.8910 0.000 0.952 0.048
#> GSM225368     3  0.4291     0.7534 0.000 0.180 0.820
#> GSM225357     2  0.0424     0.9130 0.000 0.992 0.008
#> GSM225651     3  0.1031     0.9257 0.000 0.024 0.976
#> GSM225354     2  0.0000     0.9135 0.000 1.000 0.000
#> GSM225360     1  0.6302     0.0258 0.520 0.000 0.480
#> GSM225657     2  0.0424     0.9106 0.008 0.992 0.000
#> GSM225377     1  0.0000     0.9103 1.000 0.000 0.000
#> GSM225656     1  0.3267     0.8395 0.884 0.116 0.000
#> GSM225347     2  0.0000     0.9135 0.000 1.000 0.000
#> GSM225660     1  0.4750     0.7275 0.784 0.216 0.000
#> GSM225712     1  0.0747     0.9047 0.984 0.016 0.000
#> GSM225663     1  0.3482     0.8283 0.872 0.128 0.000
#> GSM225373     1  0.0747     0.9047 0.984 0.016 0.000
#> GSM225366     1  0.4121     0.7540 0.832 0.000 0.168
#> GSM225380     3  0.0000     0.9365 0.000 0.000 1.000
#> GSM225351     3  0.1753     0.9057 0.000 0.048 0.952
#> GSM225369     3  0.0000     0.9365 0.000 0.000 1.000
#> GSM225358     3  0.0424     0.9332 0.000 0.008 0.992
#> GSM225649     3  0.0000     0.9365 0.000 0.000 1.000
#> GSM225355     2  0.6309     0.0837 0.000 0.504 0.496
#> GSM225361     3  0.0000     0.9365 0.000 0.000 1.000
#> GSM225655     3  0.0000     0.9365 0.000 0.000 1.000
#> GSM225376     3  0.0000     0.9365 0.000 0.000 1.000
#> GSM225654     3  0.0000     0.9365 0.000 0.000 1.000
#> GSM225348     2  0.5363     0.6265 0.000 0.724 0.276
#> GSM225659     3  0.0000     0.9365 0.000 0.000 1.000
#> GSM225378     1  0.0000     0.9103 1.000 0.000 0.000
#> GSM225661     1  0.0000     0.9103 1.000 0.000 0.000
#> GSM225372     3  0.6192     0.2311 0.420 0.000 0.580
#> GSM225365     1  0.6008     0.4389 0.628 0.372 0.000
#> GSM225860     1  0.0000     0.9103 1.000 0.000 0.000
#> GSM225875     1  0.0000     0.9103 1.000 0.000 0.000
#> GSM225878     1  0.0000     0.9103 1.000 0.000 0.000
#> GSM225885     1  0.0000     0.9103 1.000 0.000 0.000
#> GSM225867     1  0.0000     0.9103 1.000 0.000 0.000
#> GSM225871     1  0.0000     0.9103 1.000 0.000 0.000
#> GSM225881     1  0.0000     0.9103 1.000 0.000 0.000
#> GSM225887     1  0.0000     0.9103 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM225374     3  0.3384     0.6962 0.116 0.024 0.860 0.000
#> GSM225349     2  0.4999     0.0164 0.000 0.508 0.492 0.000
#> GSM225367     3  0.1629     0.8488 0.000 0.024 0.952 0.024
#> GSM225356     3  0.3219     0.7558 0.000 0.164 0.836 0.000
#> GSM225353     3  0.2759     0.8467 0.000 0.052 0.904 0.044
#> GSM225653     3  0.2131     0.8506 0.000 0.036 0.932 0.032
#> GSM209847     2  0.3837     0.6868 0.000 0.776 0.224 0.000
#> GSM225658     3  0.1716     0.8348 0.000 0.064 0.936 0.000
#> GSM225370     1  0.5105     0.7350 0.696 0.028 0.276 0.000
#> GSM225364     3  0.1118     0.8373 0.000 0.036 0.964 0.000
#> GSM225645     3  0.2999     0.8316 0.000 0.004 0.864 0.132
#> GSM225350     2  0.1109     0.8592 0.000 0.968 0.028 0.004
#> GSM225368     3  0.2861     0.8431 0.000 0.016 0.888 0.096
#> GSM225357     2  0.1118     0.8594 0.000 0.964 0.036 0.000
#> GSM225651     3  0.3837     0.7690 0.000 0.000 0.776 0.224
#> GSM225354     2  0.0817     0.8597 0.000 0.976 0.024 0.000
#> GSM225360     3  0.5121     0.7490 0.120 0.000 0.764 0.116
#> GSM225657     2  0.2861     0.7655 0.016 0.888 0.096 0.000
#> GSM225377     1  0.3182     0.8942 0.876 0.028 0.096 0.000
#> GSM225656     1  0.3497     0.8906 0.860 0.036 0.104 0.000
#> GSM225347     2  0.0188     0.8524 0.000 0.996 0.004 0.000
#> GSM225660     1  0.4352     0.8706 0.816 0.080 0.104 0.000
#> GSM225712     1  0.3542     0.8868 0.852 0.028 0.120 0.000
#> GSM225663     1  0.3399     0.8930 0.868 0.040 0.092 0.000
#> GSM225373     1  0.3707     0.8814 0.840 0.028 0.132 0.000
#> GSM225366     4  0.5149     0.5016 0.320 0.008 0.008 0.664
#> GSM225380     4  0.1389     0.8277 0.000 0.000 0.048 0.952
#> GSM225351     4  0.5691     0.0913 0.000 0.468 0.024 0.508
#> GSM225369     3  0.4888     0.4758 0.000 0.000 0.588 0.412
#> GSM225358     4  0.2796     0.8141 0.000 0.092 0.016 0.892
#> GSM225649     4  0.0188     0.8561 0.000 0.000 0.004 0.996
#> GSM225355     2  0.2413     0.8219 0.000 0.916 0.020 0.064
#> GSM225361     4  0.0188     0.8561 0.000 0.000 0.004 0.996
#> GSM225655     4  0.1211     0.8548 0.000 0.040 0.000 0.960
#> GSM225376     4  0.0524     0.8586 0.000 0.008 0.004 0.988
#> GSM225654     4  0.0779     0.8591 0.004 0.016 0.000 0.980
#> GSM225348     2  0.0927     0.8544 0.000 0.976 0.008 0.016
#> GSM225659     4  0.2197     0.8334 0.000 0.080 0.004 0.916
#> GSM225378     1  0.2623     0.8984 0.908 0.028 0.064 0.000
#> GSM225661     1  0.2400     0.8976 0.928 0.032 0.028 0.012
#> GSM225372     1  0.7755     0.3935 0.512 0.016 0.176 0.296
#> GSM225365     1  0.5067     0.8343 0.768 0.116 0.116 0.000
#> GSM225860     1  0.0188     0.8987 0.996 0.000 0.000 0.004
#> GSM225875     1  0.0188     0.8987 0.996 0.000 0.000 0.004
#> GSM225878     1  0.0188     0.8987 0.996 0.000 0.000 0.004
#> GSM225885     1  0.0188     0.8987 0.996 0.000 0.000 0.004
#> GSM225867     1  0.0188     0.8987 0.996 0.000 0.000 0.004
#> GSM225871     1  0.0188     0.8987 0.996 0.000 0.000 0.004
#> GSM225881     1  0.0188     0.8987 0.996 0.000 0.000 0.004
#> GSM225887     1  0.0188     0.8987 0.996 0.000 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM225374     1  0.1124      0.946 0.960 0.000 0.004 0.000 0.036
#> GSM225349     2  0.3661      0.609 0.000 0.724 0.000 0.000 0.276
#> GSM225367     5  0.0324      0.911 0.004 0.004 0.000 0.000 0.992
#> GSM225356     5  0.3424      0.674 0.000 0.240 0.000 0.000 0.760
#> GSM225353     5  0.0963      0.908 0.000 0.036 0.000 0.000 0.964
#> GSM225653     5  0.0404      0.913 0.000 0.012 0.000 0.000 0.988
#> GSM209847     2  0.2230      0.828 0.000 0.884 0.000 0.000 0.116
#> GSM225658     5  0.1121      0.904 0.000 0.044 0.000 0.000 0.956
#> GSM225370     1  0.0290      0.958 0.992 0.000 0.008 0.000 0.000
#> GSM225364     5  0.0771      0.912 0.004 0.020 0.000 0.000 0.976
#> GSM225645     5  0.1082      0.904 0.008 0.000 0.000 0.028 0.964
#> GSM225350     2  0.0162      0.905 0.000 0.996 0.000 0.000 0.004
#> GSM225368     5  0.0162      0.910 0.004 0.000 0.000 0.000 0.996
#> GSM225357     2  0.0324      0.905 0.004 0.992 0.000 0.000 0.004
#> GSM225651     5  0.4326      0.633 0.028 0.000 0.000 0.264 0.708
#> GSM225354     2  0.0162      0.905 0.004 0.996 0.000 0.000 0.000
#> GSM225360     1  0.5060      0.606 0.684 0.000 0.000 0.092 0.224
#> GSM225657     1  0.0703      0.951 0.976 0.024 0.000 0.000 0.000
#> GSM225377     1  0.0579      0.957 0.984 0.000 0.008 0.008 0.000
#> GSM225656     1  0.0290      0.958 0.992 0.000 0.008 0.000 0.000
#> GSM225347     2  0.0290      0.904 0.008 0.992 0.000 0.000 0.000
#> GSM225660     1  0.0566      0.957 0.984 0.004 0.012 0.000 0.000
#> GSM225712     1  0.0404      0.958 0.988 0.000 0.012 0.000 0.000
#> GSM225663     1  0.0880      0.949 0.968 0.000 0.032 0.000 0.000
#> GSM225373     1  0.0404      0.958 0.988 0.000 0.012 0.000 0.000
#> GSM225366     4  0.1270      0.945 0.052 0.000 0.000 0.948 0.000
#> GSM225380     4  0.1168      0.960 0.008 0.000 0.000 0.960 0.032
#> GSM225351     2  0.1124      0.890 0.000 0.960 0.004 0.036 0.000
#> GSM225369     5  0.2074      0.866 0.000 0.000 0.000 0.104 0.896
#> GSM225358     2  0.4283      0.484 0.000 0.644 0.008 0.348 0.000
#> GSM225649     4  0.0579      0.975 0.008 0.000 0.000 0.984 0.008
#> GSM225355     2  0.0000      0.905 0.000 1.000 0.000 0.000 0.000
#> GSM225361     4  0.0451      0.974 0.000 0.000 0.004 0.988 0.008
#> GSM225655     4  0.0162      0.974 0.000 0.000 0.004 0.996 0.000
#> GSM225376     4  0.0671      0.974 0.016 0.000 0.000 0.980 0.004
#> GSM225654     4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> GSM225348     2  0.0162      0.905 0.000 0.996 0.000 0.004 0.000
#> GSM225659     4  0.0963      0.961 0.036 0.000 0.000 0.964 0.000
#> GSM225378     1  0.0451      0.956 0.988 0.000 0.004 0.008 0.000
#> GSM225661     1  0.0932      0.952 0.972 0.004 0.004 0.020 0.000
#> GSM225372     1  0.1124      0.940 0.960 0.000 0.000 0.036 0.004
#> GSM225365     1  0.1469      0.940 0.948 0.016 0.036 0.000 0.000
#> GSM225860     3  0.0290      0.999 0.008 0.000 0.992 0.000 0.000
#> GSM225875     3  0.0290      0.999 0.008 0.000 0.992 0.000 0.000
#> GSM225878     3  0.0290      0.999 0.008 0.000 0.992 0.000 0.000
#> GSM225885     3  0.0290      0.999 0.008 0.000 0.992 0.000 0.000
#> GSM225867     3  0.0000      0.991 0.000 0.000 1.000 0.000 0.000
#> GSM225871     3  0.0290      0.999 0.008 0.000 0.992 0.000 0.000
#> GSM225881     3  0.0290      0.999 0.008 0.000 0.992 0.000 0.000
#> GSM225887     3  0.0290      0.999 0.008 0.000 0.992 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM225374     1  0.4310      0.650 0.684 0.000 0.004 0.000 0.268 0.044
#> GSM225349     2  0.4746      0.547 0.000 0.668 0.000 0.000 0.116 0.216
#> GSM225367     6  0.0632      0.641 0.000 0.000 0.000 0.000 0.024 0.976
#> GSM225356     6  0.5609      0.407 0.000 0.236 0.000 0.000 0.220 0.544
#> GSM225353     6  0.2618      0.645 0.000 0.052 0.000 0.000 0.076 0.872
#> GSM225653     6  0.3684      0.590 0.004 0.000 0.000 0.000 0.332 0.664
#> GSM209847     2  0.3775      0.727 0.000 0.780 0.000 0.000 0.128 0.092
#> GSM225658     6  0.4709      0.525 0.008 0.036 0.000 0.000 0.380 0.576
#> GSM225370     1  0.1923      0.841 0.916 0.000 0.004 0.000 0.064 0.016
#> GSM225364     6  0.4089      0.571 0.004 0.012 0.000 0.000 0.352 0.632
#> GSM225645     5  0.3515      0.393 0.000 0.000 0.000 0.000 0.676 0.324
#> GSM225350     2  0.0717      0.883 0.000 0.976 0.000 0.000 0.016 0.008
#> GSM225368     6  0.0790      0.623 0.000 0.000 0.000 0.000 0.032 0.968
#> GSM225357     2  0.1219      0.875 0.000 0.948 0.000 0.000 0.048 0.004
#> GSM225651     5  0.4213      0.604 0.008 0.004 0.000 0.072 0.756 0.160
#> GSM225354     2  0.0146      0.884 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM225360     1  0.6573      0.376 0.492 0.000 0.004 0.040 0.228 0.236
#> GSM225657     1  0.1807      0.837 0.920 0.020 0.000 0.000 0.060 0.000
#> GSM225377     1  0.4057      0.456 0.556 0.000 0.000 0.008 0.436 0.000
#> GSM225656     1  0.0937      0.839 0.960 0.000 0.000 0.000 0.040 0.000
#> GSM225347     2  0.0520      0.881 0.008 0.984 0.000 0.000 0.008 0.000
#> GSM225660     1  0.1340      0.837 0.948 0.008 0.004 0.000 0.040 0.000
#> GSM225712     1  0.2431      0.830 0.860 0.000 0.008 0.000 0.132 0.000
#> GSM225663     1  0.1483      0.835 0.944 0.008 0.012 0.000 0.036 0.000
#> GSM225373     1  0.2006      0.836 0.892 0.000 0.004 0.000 0.104 0.000
#> GSM225366     4  0.3573      0.674 0.148 0.000 0.004 0.796 0.052 0.000
#> GSM225380     5  0.4211      0.248 0.000 0.004 0.000 0.364 0.616 0.016
#> GSM225351     2  0.1832      0.869 0.000 0.928 0.000 0.032 0.032 0.008
#> GSM225369     6  0.4022      0.464 0.000 0.004 0.000 0.144 0.088 0.764
#> GSM225358     2  0.4640      0.668 0.000 0.700 0.000 0.208 0.080 0.012
#> GSM225649     4  0.3774      0.281 0.000 0.000 0.000 0.592 0.408 0.000
#> GSM225355     2  0.0146      0.885 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM225361     4  0.1349      0.739 0.000 0.000 0.000 0.940 0.056 0.004
#> GSM225655     4  0.0291      0.762 0.004 0.000 0.000 0.992 0.004 0.000
#> GSM225376     4  0.3668      0.504 0.004 0.000 0.000 0.668 0.328 0.000
#> GSM225654     4  0.0405      0.763 0.004 0.000 0.000 0.988 0.008 0.000
#> GSM225348     2  0.0260      0.884 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM225659     4  0.2965      0.732 0.080 0.000 0.000 0.848 0.072 0.000
#> GSM225378     1  0.2520      0.825 0.844 0.000 0.000 0.004 0.152 0.000
#> GSM225661     1  0.2190      0.817 0.900 0.000 0.000 0.040 0.060 0.000
#> GSM225372     1  0.2803      0.832 0.856 0.000 0.000 0.012 0.116 0.016
#> GSM225365     1  0.2840      0.809 0.872 0.032 0.008 0.000 0.080 0.008
#> GSM225860     3  0.0713      0.980 0.000 0.000 0.972 0.000 0.028 0.000
#> GSM225875     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225878     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225885     3  0.0146      0.991 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM225867     3  0.0790      0.978 0.000 0.000 0.968 0.000 0.032 0.000
#> GSM225871     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225881     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225887     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n cell.type(p) agent(p)  time(p) individual(p) k
#> MAD:NMF 49     2.39e-03 0.543508 1.54e-04      2.91e-02 2
#> MAD:NMF 45     3.31e-04 0.000644 6.63e-08      6.11e-02 3
#> MAD:NMF 46     1.76e-03 0.000589 8.57e-05      4.68e-02 4
#> MAD:NMF 49     5.84e-10 0.013181 1.16e-05      9.26e-06 5
#> MAD:NMF 43     3.70e-08 0.076599 2.26e-06      4.02e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.554           0.817       0.914         0.4786 0.503   0.503
#> 3 3 0.616           0.723       0.804         0.3292 0.715   0.506
#> 4 4 0.740           0.891       0.895         0.1229 0.903   0.739
#> 5 5 0.783           0.806       0.884         0.0451 0.984   0.942
#> 6 6 0.806           0.835       0.892         0.0213 0.990   0.963

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM225374     1   0.000      0.903 1.000 0.000
#> GSM225349     2   0.000      0.882 0.000 1.000
#> GSM225367     2   0.000      0.882 0.000 1.000
#> GSM225356     2   0.000      0.882 0.000 1.000
#> GSM225353     2   0.000      0.882 0.000 1.000
#> GSM225653     2   0.000      0.882 0.000 1.000
#> GSM209847     2   0.000      0.882 0.000 1.000
#> GSM225658     2   0.000      0.882 0.000 1.000
#> GSM225370     1   0.697      0.812 0.812 0.188
#> GSM225364     2   0.000      0.882 0.000 1.000
#> GSM225645     2   0.000      0.882 0.000 1.000
#> GSM225350     2   0.000      0.882 0.000 1.000
#> GSM225368     2   0.000      0.882 0.000 1.000
#> GSM225357     2   0.000      0.882 0.000 1.000
#> GSM225651     2   0.000      0.882 0.000 1.000
#> GSM225354     2   0.000      0.882 0.000 1.000
#> GSM225360     2   0.949      0.473 0.368 0.632
#> GSM225657     1   0.722      0.801 0.800 0.200
#> GSM225377     2   0.961      0.436 0.384 0.616
#> GSM225656     1   0.706      0.809 0.808 0.192
#> GSM225347     2   0.866      0.610 0.288 0.712
#> GSM225660     1   0.680      0.818 0.820 0.180
#> GSM225712     1   0.000      0.903 1.000 0.000
#> GSM225663     1   0.000      0.903 1.000 0.000
#> GSM225373     1   0.000      0.903 1.000 0.000
#> GSM225366     1   0.722      0.801 0.800 0.200
#> GSM225380     2   0.000      0.882 0.000 1.000
#> GSM225351     2   0.000      0.882 0.000 1.000
#> GSM225369     2   0.000      0.882 0.000 1.000
#> GSM225358     2   0.000      0.882 0.000 1.000
#> GSM225649     2   0.000      0.882 0.000 1.000
#> GSM225355     2   0.000      0.882 0.000 1.000
#> GSM225361     2   0.000      0.882 0.000 1.000
#> GSM225655     2   0.932      0.515 0.348 0.652
#> GSM225376     2   0.949      0.473 0.368 0.632
#> GSM225654     2   0.932      0.515 0.348 0.652
#> GSM225348     2   0.866      0.610 0.288 0.712
#> GSM225659     2   0.932      0.515 0.348 0.652
#> GSM225378     1   0.706      0.809 0.808 0.192
#> GSM225661     1   0.722      0.801 0.800 0.200
#> GSM225372     1   0.722      0.801 0.800 0.200
#> GSM225365     1   0.000      0.903 1.000 0.000
#> GSM225860     1   0.000      0.903 1.000 0.000
#> GSM225875     1   0.000      0.903 1.000 0.000
#> GSM225878     1   0.000      0.903 1.000 0.000
#> GSM225885     1   0.000      0.903 1.000 0.000
#> GSM225867     1   0.000      0.903 1.000 0.000
#> GSM225871     1   0.000      0.903 1.000 0.000
#> GSM225881     1   0.000      0.903 1.000 0.000
#> GSM225887     1   0.000      0.903 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     1  0.4555      0.262 0.800 0.000 0.200
#> GSM225349     2  0.0000      0.910 0.000 1.000 0.000
#> GSM225367     2  0.1643      0.907 0.000 0.956 0.044
#> GSM225356     2  0.0000      0.910 0.000 1.000 0.000
#> GSM225353     2  0.0000      0.910 0.000 1.000 0.000
#> GSM225653     2  0.0000      0.910 0.000 1.000 0.000
#> GSM209847     2  0.0000      0.910 0.000 1.000 0.000
#> GSM225658     2  0.0000      0.910 0.000 1.000 0.000
#> GSM225370     1  0.0592      0.571 0.988 0.000 0.012
#> GSM225364     2  0.0000      0.910 0.000 1.000 0.000
#> GSM225645     2  0.3340      0.894 0.000 0.880 0.120
#> GSM225350     2  0.0000      0.910 0.000 1.000 0.000
#> GSM225368     2  0.4062      0.869 0.000 0.836 0.164
#> GSM225357     2  0.3340      0.894 0.000 0.880 0.120
#> GSM225651     2  0.3340      0.894 0.000 0.880 0.120
#> GSM225354     2  0.0000      0.910 0.000 1.000 0.000
#> GSM225360     1  0.8940      0.536 0.568 0.200 0.232
#> GSM225657     1  0.0000      0.579 1.000 0.000 0.000
#> GSM225377     1  0.8854      0.538 0.576 0.188 0.236
#> GSM225656     1  0.0424      0.575 0.992 0.000 0.008
#> GSM225347     1  0.9517      0.481 0.488 0.280 0.232
#> GSM225660     1  0.0892      0.564 0.980 0.000 0.020
#> GSM225712     1  0.4555      0.262 0.800 0.000 0.200
#> GSM225663     1  0.4555      0.262 0.800 0.000 0.200
#> GSM225373     1  0.4555      0.262 0.800 0.000 0.200
#> GSM225366     1  0.0000      0.579 1.000 0.000 0.000
#> GSM225380     2  0.3340      0.894 0.000 0.880 0.120
#> GSM225351     2  0.0000      0.910 0.000 1.000 0.000
#> GSM225369     2  0.4062      0.869 0.000 0.836 0.164
#> GSM225358     2  0.3340      0.894 0.000 0.880 0.120
#> GSM225649     2  0.3340      0.894 0.000 0.880 0.120
#> GSM225355     2  0.0000      0.910 0.000 1.000 0.000
#> GSM225361     2  0.4062      0.869 0.000 0.836 0.164
#> GSM225655     2  0.9752     -0.283 0.352 0.416 0.232
#> GSM225376     1  0.8940      0.536 0.568 0.200 0.232
#> GSM225654     1  0.9182      0.525 0.540 0.228 0.232
#> GSM225348     1  0.9517      0.481 0.488 0.280 0.232
#> GSM225659     1  0.9182      0.525 0.540 0.228 0.232
#> GSM225378     1  0.0424      0.575 0.992 0.000 0.008
#> GSM225661     1  0.0000      0.579 1.000 0.000 0.000
#> GSM225372     1  0.0000      0.579 1.000 0.000 0.000
#> GSM225365     1  0.4555      0.262 0.800 0.000 0.200
#> GSM225860     3  0.6111      1.000 0.396 0.000 0.604
#> GSM225875     3  0.6111      1.000 0.396 0.000 0.604
#> GSM225878     3  0.6111      1.000 0.396 0.000 0.604
#> GSM225885     3  0.6111      1.000 0.396 0.000 0.604
#> GSM225867     3  0.6111      1.000 0.396 0.000 0.604
#> GSM225871     3  0.6111      1.000 0.396 0.000 0.604
#> GSM225881     3  0.6111      1.000 0.396 0.000 0.604
#> GSM225887     3  0.6111      1.000 0.396 0.000 0.604

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2 p3    p4
#> GSM225374     1   0.000      0.847 1.000 0.000  0 0.000
#> GSM225349     2   0.112      0.886 0.000 0.964  0 0.036
#> GSM225367     2   0.187      0.877 0.000 0.928  0 0.072
#> GSM225356     2   0.112      0.886 0.000 0.964  0 0.036
#> GSM225353     2   0.112      0.886 0.000 0.964  0 0.036
#> GSM225653     2   0.112      0.886 0.000 0.964  0 0.036
#> GSM209847     2   0.112      0.886 0.000 0.964  0 0.036
#> GSM225658     2   0.112      0.886 0.000 0.964  0 0.036
#> GSM225370     1   0.349      0.894 0.812 0.000  0 0.188
#> GSM225364     2   0.112      0.886 0.000 0.964  0 0.036
#> GSM225645     2   0.322      0.863 0.000 0.836  0 0.164
#> GSM225350     2   0.112      0.886 0.000 0.964  0 0.036
#> GSM225368     2   0.353      0.839 0.000 0.808  0 0.192
#> GSM225357     2   0.322      0.863 0.000 0.836  0 0.164
#> GSM225651     2   0.322      0.863 0.000 0.836  0 0.164
#> GSM225354     2   0.112      0.886 0.000 0.964  0 0.036
#> GSM225360     4   0.475      0.897 0.084 0.128  0 0.788
#> GSM225657     1   0.361      0.891 0.800 0.000  0 0.200
#> GSM225377     4   0.500      0.885 0.100 0.128  0 0.772
#> GSM225656     1   0.353      0.893 0.808 0.000  0 0.192
#> GSM225347     4   0.353      0.880 0.000 0.192  0 0.808
#> GSM225660     1   0.340      0.893 0.820 0.000  0 0.180
#> GSM225712     1   0.000      0.847 1.000 0.000  0 0.000
#> GSM225663     1   0.000      0.847 1.000 0.000  0 0.000
#> GSM225373     1   0.000      0.847 1.000 0.000  0 0.000
#> GSM225366     1   0.361      0.891 0.800 0.000  0 0.200
#> GSM225380     2   0.322      0.863 0.000 0.836  0 0.164
#> GSM225351     2   0.112      0.886 0.000 0.964  0 0.036
#> GSM225369     2   0.353      0.839 0.000 0.808  0 0.192
#> GSM225358     2   0.322      0.863 0.000 0.836  0 0.164
#> GSM225649     2   0.322      0.863 0.000 0.836  0 0.164
#> GSM225355     2   0.112      0.886 0.000 0.964  0 0.036
#> GSM225361     2   0.353      0.839 0.000 0.808  0 0.192
#> GSM225655     4   0.614      0.629 0.064 0.340  0 0.596
#> GSM225376     4   0.475      0.897 0.084 0.128  0 0.788
#> GSM225654     4   0.456      0.905 0.064 0.140  0 0.796
#> GSM225348     4   0.353      0.880 0.000 0.192  0 0.808
#> GSM225659     4   0.456      0.905 0.064 0.140  0 0.796
#> GSM225378     1   0.353      0.893 0.808 0.000  0 0.192
#> GSM225661     1   0.361      0.891 0.800 0.000  0 0.200
#> GSM225372     1   0.361      0.891 0.800 0.000  0 0.200
#> GSM225365     1   0.000      0.847 1.000 0.000  0 0.000
#> GSM225860     3   0.000      1.000 0.000 0.000  1 0.000
#> GSM225875     3   0.000      1.000 0.000 0.000  1 0.000
#> GSM225878     3   0.000      1.000 0.000 0.000  1 0.000
#> GSM225885     3   0.000      1.000 0.000 0.000  1 0.000
#> GSM225867     3   0.000      1.000 0.000 0.000  1 0.000
#> GSM225871     3   0.000      1.000 0.000 0.000  1 0.000
#> GSM225881     3   0.000      1.000 0.000 0.000  1 0.000
#> GSM225887     3   0.000      1.000 0.000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> GSM225374     1  0.3449      0.838 0.812 0.000  0 0.164 0.024
#> GSM225349     2  0.0000      0.822 0.000 1.000  0 0.000 0.000
#> GSM225367     5  0.5673      0.000 0.000 0.184  0 0.184 0.632
#> GSM225356     2  0.0000      0.822 0.000 1.000  0 0.000 0.000
#> GSM225353     2  0.0000      0.822 0.000 1.000  0 0.000 0.000
#> GSM225653     2  0.0000      0.822 0.000 1.000  0 0.000 0.000
#> GSM209847     2  0.0000      0.822 0.000 1.000  0 0.000 0.000
#> GSM225658     2  0.0000      0.822 0.000 1.000  0 0.000 0.000
#> GSM225370     1  0.0000      0.893 1.000 0.000  0 0.000 0.000
#> GSM225364     2  0.0000      0.822 0.000 1.000  0 0.000 0.000
#> GSM225645     2  0.4298      0.745 0.000 0.756  0 0.060 0.184
#> GSM225350     2  0.0000      0.822 0.000 1.000  0 0.000 0.000
#> GSM225368     2  0.4138      0.583 0.000 0.616  0 0.000 0.384
#> GSM225357     2  0.4298      0.745 0.000 0.756  0 0.060 0.184
#> GSM225651     2  0.4298      0.745 0.000 0.756  0 0.060 0.184
#> GSM225354     2  0.0000      0.822 0.000 1.000  0 0.000 0.000
#> GSM225360     4  0.4080      0.807 0.252 0.020  0 0.728 0.000
#> GSM225657     1  0.0404      0.890 0.988 0.000  0 0.012 0.000
#> GSM225377     4  0.4181      0.797 0.268 0.020  0 0.712 0.000
#> GSM225656     1  0.0162      0.893 0.996 0.000  0 0.004 0.000
#> GSM225347     4  0.5998      0.639 0.168 0.228  0 0.600 0.004
#> GSM225660     1  0.0324      0.893 0.992 0.000  0 0.004 0.004
#> GSM225712     1  0.3449      0.838 0.812 0.000  0 0.164 0.024
#> GSM225663     1  0.3449      0.838 0.812 0.000  0 0.164 0.024
#> GSM225373     1  0.3449      0.838 0.812 0.000  0 0.164 0.024
#> GSM225366     1  0.0404      0.890 0.988 0.000  0 0.012 0.000
#> GSM225380     2  0.4298      0.745 0.000 0.756  0 0.060 0.184
#> GSM225351     2  0.0000      0.822 0.000 1.000  0 0.000 0.000
#> GSM225369     2  0.4138      0.583 0.000 0.616  0 0.000 0.384
#> GSM225358     2  0.4298      0.745 0.000 0.756  0 0.060 0.184
#> GSM225649     2  0.4298      0.745 0.000 0.756  0 0.060 0.184
#> GSM225355     2  0.0000      0.822 0.000 1.000  0 0.000 0.000
#> GSM225361     2  0.4138      0.583 0.000 0.616  0 0.000 0.384
#> GSM225655     4  0.4384      0.436 0.044 0.228  0 0.728 0.000
#> GSM225376     4  0.4080      0.807 0.252 0.020  0 0.728 0.000
#> GSM225654     4  0.4054      0.807 0.224 0.028  0 0.748 0.000
#> GSM225348     4  0.5998      0.639 0.168 0.228  0 0.600 0.004
#> GSM225659     4  0.4054      0.807 0.224 0.028  0 0.748 0.000
#> GSM225378     1  0.0162      0.893 0.996 0.000  0 0.004 0.000
#> GSM225661     1  0.0404      0.890 0.988 0.000  0 0.012 0.000
#> GSM225372     1  0.0404      0.890 0.988 0.000  0 0.012 0.000
#> GSM225365     1  0.3449      0.838 0.812 0.000  0 0.164 0.024
#> GSM225860     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225875     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225878     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225885     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225867     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225871     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225881     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225887     3  0.0000      1.000 0.000 0.000  1 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4    p5    p6
#> GSM225374     1  0.0000      0.841 1.000 0.000  0 0.000 0.000 0.000
#> GSM225349     6  0.2664      0.827 0.000 0.184  0 0.000 0.000 0.816
#> GSM225367     5  0.2416      0.000 0.000 0.000  0 0.000 0.844 0.156
#> GSM225356     6  0.2664      0.827 0.000 0.184  0 0.000 0.000 0.816
#> GSM225353     6  0.2664      0.827 0.000 0.184  0 0.000 0.000 0.816
#> GSM225653     6  0.2664      0.827 0.000 0.184  0 0.000 0.000 0.816
#> GSM209847     6  0.2664      0.827 0.000 0.184  0 0.000 0.000 0.816
#> GSM225658     6  0.2664      0.827 0.000 0.184  0 0.000 0.000 0.816
#> GSM225370     1  0.2915      0.898 0.808 0.008  0 0.184 0.000 0.000
#> GSM225364     6  0.2664      0.827 0.000 0.184  0 0.000 0.000 0.816
#> GSM225645     6  0.1444      0.757 0.000 0.000  0 0.072 0.000 0.928
#> GSM225350     6  0.2664      0.827 0.000 0.184  0 0.000 0.000 0.816
#> GSM225368     6  0.3381      0.619 0.000 0.044  0 0.000 0.156 0.800
#> GSM225357     6  0.1444      0.757 0.000 0.000  0 0.072 0.000 0.928
#> GSM225651     6  0.1444      0.757 0.000 0.000  0 0.072 0.000 0.928
#> GSM225354     6  0.2664      0.827 0.000 0.184  0 0.000 0.000 0.816
#> GSM225360     4  0.0806      0.882 0.020 0.008  0 0.972 0.000 0.000
#> GSM225657     1  0.2980      0.896 0.800 0.008  0 0.192 0.000 0.000
#> GSM225377     4  0.1124      0.870 0.036 0.008  0 0.956 0.000 0.000
#> GSM225656     1  0.2915      0.899 0.808 0.008  0 0.184 0.000 0.000
#> GSM225347     2  0.1007      1.000 0.000 0.956  0 0.000 0.000 0.044
#> GSM225660     1  0.2631      0.898 0.820 0.000  0 0.180 0.000 0.000
#> GSM225712     1  0.0000      0.841 1.000 0.000  0 0.000 0.000 0.000
#> GSM225663     1  0.0000      0.841 1.000 0.000  0 0.000 0.000 0.000
#> GSM225373     1  0.0000      0.841 1.000 0.000  0 0.000 0.000 0.000
#> GSM225366     1  0.3012      0.895 0.796 0.008  0 0.196 0.000 0.000
#> GSM225380     6  0.1444      0.757 0.000 0.000  0 0.072 0.000 0.928
#> GSM225351     6  0.2664      0.827 0.000 0.184  0 0.000 0.000 0.816
#> GSM225369     6  0.3381      0.619 0.000 0.044  0 0.000 0.156 0.800
#> GSM225358     6  0.1444      0.757 0.000 0.000  0 0.072 0.000 0.928
#> GSM225649     6  0.1444      0.757 0.000 0.000  0 0.072 0.000 0.928
#> GSM225355     6  0.2664      0.827 0.000 0.184  0 0.000 0.000 0.816
#> GSM225361     6  0.3381      0.619 0.000 0.044  0 0.000 0.156 0.800
#> GSM225655     4  0.2933      0.479 0.000 0.004  0 0.796 0.000 0.200
#> GSM225376     4  0.0806      0.882 0.020 0.008  0 0.972 0.000 0.000
#> GSM225654     4  0.0146      0.878 0.000 0.004  0 0.996 0.000 0.000
#> GSM225348     2  0.1007      1.000 0.000 0.956  0 0.000 0.000 0.044
#> GSM225659     4  0.0146      0.878 0.000 0.004  0 0.996 0.000 0.000
#> GSM225378     1  0.2915      0.899 0.808 0.008  0 0.184 0.000 0.000
#> GSM225661     1  0.3012      0.895 0.796 0.008  0 0.196 0.000 0.000
#> GSM225372     1  0.3012      0.895 0.796 0.008  0 0.196 0.000 0.000
#> GSM225365     1  0.0000      0.841 1.000 0.000  0 0.000 0.000 0.000
#> GSM225860     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225875     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225878     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225885     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225867     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225871     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225881     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225887     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n cell.type(p) agent(p)  time(p) individual(p) k
#> ATC:hclust 47     2.18e-03    1.000 3.99e-05      1.58e-02 2
#> ATC:hclust 42     7.58e-10    0.631 9.58e-07      2.28e-04 3
#> ATC:hclust 50     7.99e-11    0.412 8.74e-10      4.80e-05 4
#> ATC:hclust 48     2.13e-10    0.601 1.88e-09      1.54e-04 5
#> ATC:hclust 48     9.44e-10    0.750 4.16e-08      2.24e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4976 0.503   0.503
#> 3 3 0.689           0.820       0.862         0.2848 0.739   0.539
#> 4 4 0.628           0.636       0.800         0.1423 0.900   0.736
#> 5 5 0.714           0.644       0.722         0.0709 0.828   0.476
#> 6 6 0.747           0.751       0.809         0.0487 0.937   0.700

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM225374     1       0          1  1  0
#> GSM225349     2       0          1  0  1
#> GSM225367     2       0          1  0  1
#> GSM225356     2       0          1  0  1
#> GSM225353     2       0          1  0  1
#> GSM225653     2       0          1  0  1
#> GSM209847     2       0          1  0  1
#> GSM225658     2       0          1  0  1
#> GSM225370     1       0          1  1  0
#> GSM225364     2       0          1  0  1
#> GSM225645     2       0          1  0  1
#> GSM225350     2       0          1  0  1
#> GSM225368     2       0          1  0  1
#> GSM225357     2       0          1  0  1
#> GSM225651     2       0          1  0  1
#> GSM225354     2       0          1  0  1
#> GSM225360     2       0          1  0  1
#> GSM225657     2       0          1  0  1
#> GSM225377     1       0          1  1  0
#> GSM225656     1       0          1  1  0
#> GSM225347     2       0          1  0  1
#> GSM225660     1       0          1  1  0
#> GSM225712     1       0          1  1  0
#> GSM225663     1       0          1  1  0
#> GSM225373     1       0          1  1  0
#> GSM225366     1       0          1  1  0
#> GSM225380     2       0          1  0  1
#> GSM225351     2       0          1  0  1
#> GSM225369     2       0          1  0  1
#> GSM225358     2       0          1  0  1
#> GSM225649     2       0          1  0  1
#> GSM225355     2       0          1  0  1
#> GSM225361     2       0          1  0  1
#> GSM225655     2       0          1  0  1
#> GSM225376     2       0          1  0  1
#> GSM225654     2       0          1  0  1
#> GSM225348     2       0          1  0  1
#> GSM225659     2       0          1  0  1
#> GSM225378     1       0          1  1  0
#> GSM225661     1       0          1  1  0
#> GSM225372     1       0          1  1  0
#> GSM225365     1       0          1  1  0
#> GSM225860     1       0          1  1  0
#> GSM225875     1       0          1  1  0
#> GSM225878     1       0          1  1  0
#> GSM225885     1       0          1  1  0
#> GSM225867     1       0          1  1  0
#> GSM225871     1       0          1  1  0
#> GSM225881     1       0          1  1  0
#> GSM225887     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     1  0.5098      0.782 0.752 0.000 0.248
#> GSM225349     2  0.0000      0.901 0.000 1.000 0.000
#> GSM225367     2  0.0237      0.901 0.004 0.996 0.000
#> GSM225356     2  0.0000      0.901 0.000 1.000 0.000
#> GSM225353     2  0.0237      0.901 0.004 0.996 0.000
#> GSM225653     2  0.0000      0.901 0.000 1.000 0.000
#> GSM209847     2  0.0000      0.901 0.000 1.000 0.000
#> GSM225658     2  0.0000      0.901 0.000 1.000 0.000
#> GSM225370     1  0.5098      0.782 0.752 0.000 0.248
#> GSM225364     2  0.0000      0.901 0.000 1.000 0.000
#> GSM225645     2  0.4654      0.869 0.208 0.792 0.000
#> GSM225350     2  0.1753      0.897 0.048 0.952 0.000
#> GSM225368     2  0.4121      0.880 0.168 0.832 0.000
#> GSM225357     2  0.4974      0.862 0.236 0.764 0.000
#> GSM225651     2  0.4931      0.865 0.232 0.768 0.000
#> GSM225354     2  0.1753      0.897 0.048 0.952 0.000
#> GSM225360     1  0.0000      0.641 1.000 0.000 0.000
#> GSM225657     1  0.2749      0.690 0.924 0.012 0.064
#> GSM225377     1  0.5016      0.781 0.760 0.000 0.240
#> GSM225656     1  0.5098      0.782 0.752 0.000 0.248
#> GSM225347     1  0.4555      0.616 0.800 0.200 0.000
#> GSM225660     1  0.5098      0.782 0.752 0.000 0.248
#> GSM225712     1  0.6154      0.598 0.592 0.000 0.408
#> GSM225663     1  0.6140      0.605 0.596 0.000 0.404
#> GSM225373     1  0.6154      0.598 0.592 0.000 0.408
#> GSM225366     1  0.5058      0.782 0.756 0.000 0.244
#> GSM225380     2  0.4654      0.869 0.208 0.792 0.000
#> GSM225351     2  0.0424      0.902 0.008 0.992 0.000
#> GSM225369     2  0.4121      0.880 0.168 0.832 0.000
#> GSM225358     2  0.4931      0.865 0.232 0.768 0.000
#> GSM225649     2  0.4931      0.865 0.232 0.768 0.000
#> GSM225355     2  0.1753      0.897 0.048 0.952 0.000
#> GSM225361     2  0.4931      0.865 0.232 0.768 0.000
#> GSM225655     2  0.5058      0.858 0.244 0.756 0.000
#> GSM225376     1  0.5363      0.270 0.724 0.276 0.000
#> GSM225654     1  0.5363      0.270 0.724 0.276 0.000
#> GSM225348     2  0.1753      0.897 0.048 0.952 0.000
#> GSM225659     1  0.3816      0.522 0.852 0.148 0.000
#> GSM225378     1  0.5098      0.782 0.752 0.000 0.248
#> GSM225661     1  0.5098      0.782 0.752 0.000 0.248
#> GSM225372     1  0.5058      0.782 0.756 0.000 0.244
#> GSM225365     1  0.5098      0.782 0.752 0.000 0.248
#> GSM225860     3  0.0000      1.000 0.000 0.000 1.000
#> GSM225875     3  0.0000      1.000 0.000 0.000 1.000
#> GSM225878     3  0.0000      1.000 0.000 0.000 1.000
#> GSM225885     3  0.0000      1.000 0.000 0.000 1.000
#> GSM225867     3  0.0000      1.000 0.000 0.000 1.000
#> GSM225871     3  0.0000      1.000 0.000 0.000 1.000
#> GSM225881     3  0.0000      1.000 0.000 0.000 1.000
#> GSM225887     3  0.0000      1.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM225374     1  0.0000     0.9178 1.000 0.000 0.000 0.000
#> GSM225349     2  0.0000     0.6089 0.000 1.000 0.000 0.000
#> GSM225367     2  0.2036     0.5908 0.000 0.936 0.032 0.032
#> GSM225356     2  0.0000     0.6089 0.000 1.000 0.000 0.000
#> GSM225353     2  0.1059     0.6039 0.000 0.972 0.016 0.012
#> GSM225653     2  0.0188     0.6081 0.000 0.996 0.000 0.004
#> GSM209847     2  0.0000     0.6089 0.000 1.000 0.000 0.000
#> GSM225658     2  0.0188     0.6081 0.000 0.996 0.000 0.004
#> GSM225370     1  0.0000     0.9178 1.000 0.000 0.000 0.000
#> GSM225364     2  0.0188     0.6081 0.000 0.996 0.000 0.004
#> GSM225645     2  0.5488     0.3425 0.000 0.532 0.016 0.452
#> GSM225350     2  0.5546     0.3647 0.000 0.680 0.052 0.268
#> GSM225368     2  0.5756     0.3758 0.000 0.568 0.032 0.400
#> GSM225357     4  0.5008     0.3571 0.000 0.228 0.040 0.732
#> GSM225651     2  0.5510     0.3124 0.000 0.504 0.016 0.480
#> GSM225354     2  0.6121     0.1234 0.000 0.552 0.052 0.396
#> GSM225360     4  0.4564     0.4178 0.328 0.000 0.000 0.672
#> GSM225657     1  0.6169     0.2830 0.572 0.004 0.048 0.376
#> GSM225377     1  0.2469     0.8795 0.892 0.000 0.000 0.108
#> GSM225656     1  0.0000     0.9178 1.000 0.000 0.000 0.000
#> GSM225347     4  0.8820     0.1620 0.224 0.336 0.052 0.388
#> GSM225660     1  0.0000     0.9178 1.000 0.000 0.000 0.000
#> GSM225712     1  0.1211     0.8975 0.960 0.000 0.040 0.000
#> GSM225663     1  0.1118     0.9004 0.964 0.000 0.036 0.000
#> GSM225373     1  0.1211     0.8975 0.960 0.000 0.040 0.000
#> GSM225366     1  0.2469     0.8795 0.892 0.000 0.000 0.108
#> GSM225380     2  0.5488     0.3425 0.000 0.532 0.016 0.452
#> GSM225351     2  0.3601     0.5582 0.000 0.860 0.056 0.084
#> GSM225369     2  0.5756     0.3758 0.000 0.568 0.032 0.400
#> GSM225358     2  0.5511     0.3106 0.000 0.500 0.016 0.484
#> GSM225649     2  0.5510     0.3124 0.000 0.504 0.016 0.480
#> GSM225355     2  0.5546     0.3647 0.000 0.680 0.052 0.268
#> GSM225361     2  0.5511     0.3106 0.000 0.500 0.016 0.484
#> GSM225655     4  0.4543     0.0915 0.000 0.324 0.000 0.676
#> GSM225376     4  0.3647     0.6392 0.108 0.040 0.000 0.852
#> GSM225654     4  0.3647     0.6392 0.108 0.040 0.000 0.852
#> GSM225348     2  0.6170     0.0695 0.000 0.528 0.052 0.420
#> GSM225659     4  0.5086     0.6255 0.144 0.024 0.048 0.784
#> GSM225378     1  0.1637     0.9058 0.940 0.000 0.000 0.060
#> GSM225661     1  0.1637     0.9058 0.940 0.000 0.000 0.060
#> GSM225372     1  0.2081     0.8939 0.916 0.000 0.000 0.084
#> GSM225365     1  0.0000     0.9178 1.000 0.000 0.000 0.000
#> GSM225860     3  0.3935     0.9618 0.100 0.000 0.840 0.060
#> GSM225875     3  0.2345     0.9875 0.100 0.000 0.900 0.000
#> GSM225878     3  0.2345     0.9875 0.100 0.000 0.900 0.000
#> GSM225885     3  0.2345     0.9875 0.100 0.000 0.900 0.000
#> GSM225867     3  0.3935     0.9618 0.100 0.000 0.840 0.060
#> GSM225871     3  0.2345     0.9875 0.100 0.000 0.900 0.000
#> GSM225881     3  0.2345     0.9875 0.100 0.000 0.900 0.000
#> GSM225887     3  0.2345     0.9875 0.100 0.000 0.900 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM225374     1  0.0510     0.8603 0.984 0.000 0.000 0.000 0.016
#> GSM225349     5  0.7041     0.3934 0.000 0.296 0.008 0.336 0.360
#> GSM225367     5  0.7206     0.3335 0.000 0.248 0.024 0.300 0.428
#> GSM225356     5  0.7041     0.3934 0.000 0.296 0.008 0.336 0.360
#> GSM225353     5  0.7162     0.3844 0.000 0.264 0.016 0.344 0.376
#> GSM225653     5  0.6939     0.3918 0.000 0.300 0.004 0.328 0.368
#> GSM209847     5  0.7041     0.3934 0.000 0.296 0.008 0.336 0.360
#> GSM225658     5  0.6939     0.3918 0.000 0.300 0.004 0.328 0.368
#> GSM225370     1  0.0290     0.8607 0.992 0.000 0.000 0.000 0.008
#> GSM225364     5  0.6939     0.3918 0.000 0.300 0.004 0.328 0.368
#> GSM225645     4  0.0609     0.8189 0.000 0.000 0.000 0.980 0.020
#> GSM225350     2  0.3143     0.7094 0.000 0.796 0.000 0.204 0.000
#> GSM225368     4  0.2959     0.7082 0.000 0.008 0.016 0.864 0.112
#> GSM225357     4  0.5713     0.0720 0.000 0.416 0.000 0.500 0.084
#> GSM225651     4  0.0290     0.8267 0.000 0.008 0.000 0.992 0.000
#> GSM225354     2  0.1792     0.7228 0.000 0.916 0.000 0.084 0.000
#> GSM225360     5  0.7735    -0.0814 0.112 0.132 0.000 0.344 0.412
#> GSM225657     1  0.6993     0.2994 0.384 0.228 0.000 0.012 0.376
#> GSM225377     1  0.4451     0.6950 0.644 0.016 0.000 0.000 0.340
#> GSM225656     1  0.0566     0.8611 0.984 0.004 0.000 0.000 0.012
#> GSM225347     2  0.3354     0.6010 0.068 0.844 0.000 0.000 0.088
#> GSM225660     1  0.0671     0.8603 0.980 0.004 0.000 0.000 0.016
#> GSM225712     1  0.0000     0.8613 1.000 0.000 0.000 0.000 0.000
#> GSM225663     1  0.0671     0.8603 0.980 0.004 0.000 0.000 0.016
#> GSM225373     1  0.0000     0.8613 1.000 0.000 0.000 0.000 0.000
#> GSM225366     1  0.4451     0.6950 0.644 0.016 0.000 0.000 0.340
#> GSM225380     4  0.0609     0.8189 0.000 0.000 0.000 0.980 0.020
#> GSM225351     2  0.4787     0.4509 0.000 0.640 0.000 0.324 0.036
#> GSM225369     4  0.2959     0.7082 0.000 0.008 0.016 0.864 0.112
#> GSM225358     4  0.0290     0.8267 0.000 0.008 0.000 0.992 0.000
#> GSM225649     4  0.0290     0.8267 0.000 0.008 0.000 0.992 0.000
#> GSM225355     2  0.3143     0.7094 0.000 0.796 0.000 0.204 0.000
#> GSM225361     4  0.0451     0.8263 0.000 0.008 0.004 0.988 0.000
#> GSM225655     4  0.4219     0.5893 0.000 0.156 0.000 0.772 0.072
#> GSM225376     5  0.6980    -0.1058 0.012 0.224 0.000 0.380 0.384
#> GSM225654     5  0.6980    -0.1058 0.012 0.224 0.000 0.380 0.384
#> GSM225348     2  0.3242     0.6807 0.000 0.852 0.000 0.072 0.076
#> GSM225659     5  0.7530    -0.0590 0.040 0.308 0.000 0.268 0.384
#> GSM225378     1  0.2179     0.8367 0.888 0.000 0.000 0.000 0.112
#> GSM225661     1  0.2377     0.8317 0.872 0.000 0.000 0.000 0.128
#> GSM225372     1  0.3636     0.7558 0.728 0.000 0.000 0.000 0.272
#> GSM225365     1  0.0671     0.8603 0.980 0.004 0.000 0.000 0.016
#> GSM225860     3  0.4012     0.9005 0.036 0.032 0.816 0.000 0.116
#> GSM225875     3  0.0963     0.9665 0.036 0.000 0.964 0.000 0.000
#> GSM225878     3  0.0963     0.9665 0.036 0.000 0.964 0.000 0.000
#> GSM225885     3  0.1251     0.9654 0.036 0.008 0.956 0.000 0.000
#> GSM225867     3  0.4012     0.9005 0.036 0.032 0.816 0.000 0.116
#> GSM225871     3  0.0963     0.9665 0.036 0.000 0.964 0.000 0.000
#> GSM225881     3  0.0963     0.9665 0.036 0.000 0.964 0.000 0.000
#> GSM225887     3  0.1251     0.9654 0.036 0.008 0.956 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM225374     1  0.0291      0.867 0.992 0.004 0.000 0.000 0.000 0.004
#> GSM225349     6  0.6141      0.883 0.000 0.256 0.000 0.052 0.136 0.556
#> GSM225367     6  0.4974      0.610 0.000 0.104 0.000 0.084 0.088 0.724
#> GSM225356     6  0.6141      0.883 0.000 0.256 0.000 0.052 0.136 0.556
#> GSM225353     6  0.5981      0.856 0.000 0.208 0.000 0.056 0.140 0.596
#> GSM225653     6  0.5342      0.881 0.000 0.248 0.004 0.000 0.148 0.600
#> GSM209847     6  0.6141      0.883 0.000 0.256 0.000 0.052 0.136 0.556
#> GSM225658     6  0.5342      0.881 0.000 0.248 0.004 0.000 0.148 0.600
#> GSM225370     1  0.1075      0.861 0.952 0.000 0.000 0.048 0.000 0.000
#> GSM225364     6  0.5342      0.881 0.000 0.248 0.004 0.000 0.148 0.600
#> GSM225645     5  0.0622      0.845 0.000 0.008 0.000 0.000 0.980 0.012
#> GSM225350     2  0.1918      0.800 0.000 0.904 0.000 0.000 0.088 0.008
#> GSM225368     5  0.3663      0.710 0.000 0.004 0.000 0.072 0.796 0.128
#> GSM225357     5  0.6079      0.116 0.000 0.320 0.000 0.212 0.460 0.008
#> GSM225651     5  0.0146      0.844 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM225354     2  0.1644      0.806 0.000 0.932 0.000 0.028 0.040 0.000
#> GSM225360     4  0.4234      0.613 0.024 0.008 0.000 0.708 0.252 0.008
#> GSM225657     4  0.5002      0.490 0.284 0.056 0.000 0.636 0.000 0.024
#> GSM225377     4  0.4294      0.137 0.428 0.000 0.000 0.552 0.000 0.020
#> GSM225656     1  0.1036      0.866 0.964 0.008 0.000 0.004 0.000 0.024
#> GSM225347     2  0.3973      0.709 0.048 0.784 0.000 0.140 0.000 0.028
#> GSM225660     1  0.0891      0.864 0.968 0.008 0.000 0.000 0.000 0.024
#> GSM225712     1  0.1196      0.863 0.952 0.000 0.008 0.040 0.000 0.000
#> GSM225663     1  0.1065      0.861 0.964 0.008 0.008 0.000 0.000 0.020
#> GSM225373     1  0.1196      0.863 0.952 0.000 0.008 0.040 0.000 0.000
#> GSM225366     4  0.4294      0.135 0.428 0.000 0.000 0.552 0.000 0.020
#> GSM225380     5  0.0622      0.845 0.000 0.008 0.000 0.000 0.980 0.012
#> GSM225351     2  0.4099      0.585 0.000 0.748 0.000 0.020 0.196 0.036
#> GSM225369     5  0.3703      0.707 0.000 0.004 0.000 0.072 0.792 0.132
#> GSM225358     5  0.0779      0.839 0.000 0.008 0.000 0.008 0.976 0.008
#> GSM225649     5  0.0146      0.844 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM225355     2  0.1918      0.800 0.000 0.904 0.000 0.000 0.088 0.008
#> GSM225361     5  0.0865      0.839 0.000 0.000 0.000 0.036 0.964 0.000
#> GSM225655     5  0.3493      0.655 0.000 0.056 0.000 0.148 0.796 0.000
#> GSM225376     4  0.4771      0.600 0.012 0.064 0.000 0.660 0.264 0.000
#> GSM225654     4  0.4771      0.600 0.012 0.064 0.000 0.660 0.264 0.000
#> GSM225348     2  0.3306      0.763 0.000 0.820 0.000 0.136 0.036 0.008
#> GSM225659     4  0.5085      0.624 0.024 0.100 0.000 0.672 0.204 0.000
#> GSM225378     1  0.3189      0.735 0.796 0.000 0.000 0.184 0.000 0.020
#> GSM225661     1  0.3454      0.707 0.768 0.000 0.000 0.208 0.000 0.024
#> GSM225372     1  0.4269      0.218 0.568 0.000 0.000 0.412 0.000 0.020
#> GSM225365     1  0.0806      0.865 0.972 0.008 0.000 0.000 0.000 0.020
#> GSM225860     3  0.4371      0.838 0.004 0.032 0.768 0.072 0.000 0.124
#> GSM225875     3  0.0291      0.944 0.004 0.004 0.992 0.000 0.000 0.000
#> GSM225878     3  0.0146      0.944 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM225885     3  0.0767      0.942 0.004 0.012 0.976 0.008 0.000 0.000
#> GSM225867     3  0.4371      0.838 0.004 0.032 0.768 0.072 0.000 0.124
#> GSM225871     3  0.0291      0.944 0.004 0.004 0.992 0.000 0.000 0.000
#> GSM225881     3  0.0146      0.944 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM225887     3  0.0767      0.942 0.004 0.012 0.976 0.008 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n cell.type(p) agent(p)  time(p) individual(p) k
#> ATC:kmeans 50     1.21e-03   1.0000 6.73e-06      7.80e-03 2
#> ATC:kmeans 48     3.78e-11   0.5963 5.84e-08      3.17e-05 3
#> ATC:kmeans 33     3.22e-07   0.0359 2.14e-06      2.68e-02 4
#> ATC:kmeans 35     1.22e-07   0.4094 1.46e-06      3.61e-05 5
#> ATC:kmeans 45     1.45e-08   0.0561 2.02e-11      3.42e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.5074 0.493   0.493
#> 3 3 0.809           0.831       0.888         0.2661 0.823   0.648
#> 4 4 0.668           0.597       0.740         0.1277 0.887   0.674
#> 5 5 0.701           0.653       0.756         0.0726 0.791   0.395
#> 6 6 0.750           0.780       0.820         0.0484 0.915   0.653

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM225374     1       0          1  1  0
#> GSM225349     2       0          1  0  1
#> GSM225367     2       0          1  0  1
#> GSM225356     2       0          1  0  1
#> GSM225353     2       0          1  0  1
#> GSM225653     2       0          1  0  1
#> GSM209847     2       0          1  0  1
#> GSM225658     2       0          1  0  1
#> GSM225370     1       0          1  1  0
#> GSM225364     2       0          1  0  1
#> GSM225645     2       0          1  0  1
#> GSM225350     2       0          1  0  1
#> GSM225368     2       0          1  0  1
#> GSM225357     2       0          1  0  1
#> GSM225651     2       0          1  0  1
#> GSM225354     2       0          1  0  1
#> GSM225360     1       0          1  1  0
#> GSM225657     1       0          1  1  0
#> GSM225377     1       0          1  1  0
#> GSM225656     1       0          1  1  0
#> GSM225347     2       0          1  0  1
#> GSM225660     1       0          1  1  0
#> GSM225712     1       0          1  1  0
#> GSM225663     1       0          1  1  0
#> GSM225373     1       0          1  1  0
#> GSM225366     1       0          1  1  0
#> GSM225380     2       0          1  0  1
#> GSM225351     2       0          1  0  1
#> GSM225369     2       0          1  0  1
#> GSM225358     2       0          1  0  1
#> GSM225649     2       0          1  0  1
#> GSM225355     2       0          1  0  1
#> GSM225361     2       0          1  0  1
#> GSM225655     2       0          1  0  1
#> GSM225376     2       0          1  0  1
#> GSM225654     2       0          1  0  1
#> GSM225348     2       0          1  0  1
#> GSM225659     2       0          1  0  1
#> GSM225378     1       0          1  1  0
#> GSM225661     1       0          1  1  0
#> GSM225372     1       0          1  1  0
#> GSM225365     1       0          1  1  0
#> GSM225860     1       0          1  1  0
#> GSM225875     1       0          1  1  0
#> GSM225878     1       0          1  1  0
#> GSM225885     1       0          1  1  0
#> GSM225867     1       0          1  1  0
#> GSM225871     1       0          1  1  0
#> GSM225881     1       0          1  1  0
#> GSM225887     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     1  0.0000      0.976 1.000 0.000 0.000
#> GSM225349     2  0.6154      0.945 0.000 0.592 0.408
#> GSM225367     2  0.6154      0.945 0.000 0.592 0.408
#> GSM225356     2  0.6154      0.945 0.000 0.592 0.408
#> GSM225353     2  0.6154      0.945 0.000 0.592 0.408
#> GSM225653     2  0.6154      0.945 0.000 0.592 0.408
#> GSM209847     2  0.6154      0.945 0.000 0.592 0.408
#> GSM225658     2  0.6154      0.945 0.000 0.592 0.408
#> GSM225370     1  0.0000      0.976 1.000 0.000 0.000
#> GSM225364     2  0.6154      0.945 0.000 0.592 0.408
#> GSM225645     3  0.0000      0.721 0.000 0.000 1.000
#> GSM225350     2  0.6154      0.945 0.000 0.592 0.408
#> GSM225368     3  0.0000      0.721 0.000 0.000 1.000
#> GSM225357     3  0.6267     -0.705 0.000 0.452 0.548
#> GSM225651     3  0.0000      0.721 0.000 0.000 1.000
#> GSM225354     2  0.6154      0.945 0.000 0.592 0.408
#> GSM225360     3  0.8641      0.532 0.160 0.248 0.592
#> GSM225657     1  0.6154      0.518 0.592 0.408 0.000
#> GSM225377     1  0.3686      0.855 0.860 0.140 0.000
#> GSM225656     1  0.0000      0.976 1.000 0.000 0.000
#> GSM225347     2  0.4346      0.651 0.000 0.816 0.184
#> GSM225660     1  0.0000      0.976 1.000 0.000 0.000
#> GSM225712     1  0.0000      0.976 1.000 0.000 0.000
#> GSM225663     1  0.0000      0.976 1.000 0.000 0.000
#> GSM225373     1  0.0000      0.976 1.000 0.000 0.000
#> GSM225366     1  0.0747      0.964 0.984 0.016 0.000
#> GSM225380     3  0.0000      0.721 0.000 0.000 1.000
#> GSM225351     2  0.6154      0.945 0.000 0.592 0.408
#> GSM225369     3  0.0000      0.721 0.000 0.000 1.000
#> GSM225358     3  0.0000      0.721 0.000 0.000 1.000
#> GSM225649     3  0.0000      0.721 0.000 0.000 1.000
#> GSM225355     2  0.6154      0.945 0.000 0.592 0.408
#> GSM225361     3  0.0592      0.720 0.000 0.012 0.988
#> GSM225655     3  0.2537      0.699 0.000 0.080 0.920
#> GSM225376     3  0.6154      0.574 0.000 0.408 0.592
#> GSM225654     3  0.6154      0.574 0.000 0.408 0.592
#> GSM225348     2  0.4399      0.657 0.000 0.812 0.188
#> GSM225659     3  0.6154      0.574 0.000 0.408 0.592
#> GSM225378     1  0.0000      0.976 1.000 0.000 0.000
#> GSM225661     1  0.0000      0.976 1.000 0.000 0.000
#> GSM225372     1  0.0000      0.976 1.000 0.000 0.000
#> GSM225365     1  0.0000      0.976 1.000 0.000 0.000
#> GSM225860     1  0.0000      0.976 1.000 0.000 0.000
#> GSM225875     1  0.0000      0.976 1.000 0.000 0.000
#> GSM225878     1  0.0000      0.976 1.000 0.000 0.000
#> GSM225885     1  0.0000      0.976 1.000 0.000 0.000
#> GSM225867     1  0.0000      0.976 1.000 0.000 0.000
#> GSM225871     1  0.0000      0.976 1.000 0.000 0.000
#> GSM225881     1  0.0000      0.976 1.000 0.000 0.000
#> GSM225887     1  0.0000      0.976 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM225374     1  0.4898      0.716 0.584 0.000 0.416 0.000
#> GSM225349     2  0.0000      0.847 0.000 1.000 0.000 0.000
#> GSM225367     2  0.0188      0.844 0.000 0.996 0.000 0.004
#> GSM225356     2  0.0000      0.847 0.000 1.000 0.000 0.000
#> GSM225353     2  0.0000      0.847 0.000 1.000 0.000 0.000
#> GSM225653     2  0.0000      0.847 0.000 1.000 0.000 0.000
#> GSM209847     2  0.0000      0.847 0.000 1.000 0.000 0.000
#> GSM225658     2  0.0000      0.847 0.000 1.000 0.000 0.000
#> GSM225370     1  0.4925      0.704 0.572 0.000 0.428 0.000
#> GSM225364     2  0.0000      0.847 0.000 1.000 0.000 0.000
#> GSM225645     4  0.4761      0.736 0.000 0.372 0.000 0.628
#> GSM225350     2  0.3402      0.782 0.164 0.832 0.000 0.004
#> GSM225368     4  0.4761      0.736 0.000 0.372 0.000 0.628
#> GSM225357     2  0.4331      0.266 0.000 0.712 0.000 0.288
#> GSM225651     4  0.4661      0.752 0.000 0.348 0.000 0.652
#> GSM225354     2  0.3725      0.769 0.180 0.812 0.000 0.008
#> GSM225360     4  0.4134      0.545 0.260 0.000 0.000 0.740
#> GSM225657     1  0.3649      0.329 0.796 0.000 0.000 0.204
#> GSM225377     1  0.5312      0.526 0.692 0.000 0.268 0.040
#> GSM225656     1  0.4817      0.708 0.612 0.000 0.388 0.000
#> GSM225347     2  0.6729      0.547 0.312 0.572 0.000 0.116
#> GSM225660     1  0.4877      0.718 0.592 0.000 0.408 0.000
#> GSM225712     3  0.4989     -0.495 0.472 0.000 0.528 0.000
#> GSM225663     1  0.4967      0.665 0.548 0.000 0.452 0.000
#> GSM225373     3  0.4992     -0.509 0.476 0.000 0.524 0.000
#> GSM225366     3  0.2401      0.605 0.092 0.000 0.904 0.004
#> GSM225380     4  0.4661      0.752 0.000 0.348 0.000 0.652
#> GSM225351     2  0.1109      0.839 0.028 0.968 0.000 0.004
#> GSM225369     4  0.4761      0.736 0.000 0.372 0.000 0.628
#> GSM225358     4  0.4746      0.740 0.000 0.368 0.000 0.632
#> GSM225649     4  0.4624      0.753 0.000 0.340 0.000 0.660
#> GSM225355     2  0.3591      0.777 0.168 0.824 0.000 0.008
#> GSM225361     4  0.4500      0.752 0.000 0.316 0.000 0.684
#> GSM225655     4  0.4868      0.729 0.024 0.256 0.000 0.720
#> GSM225376     4  0.3306      0.583 0.156 0.004 0.000 0.840
#> GSM225654     4  0.3355      0.581 0.160 0.004 0.000 0.836
#> GSM225348     2  0.6134      0.637 0.216 0.668 0.000 0.116
#> GSM225659     4  0.3311      0.571 0.172 0.000 0.000 0.828
#> GSM225378     3  0.4843     -0.206 0.396 0.000 0.604 0.000
#> GSM225661     3  0.4925     -0.301 0.428 0.000 0.572 0.000
#> GSM225372     3  0.4804     -0.152 0.384 0.000 0.616 0.000
#> GSM225365     1  0.4967      0.665 0.548 0.000 0.452 0.000
#> GSM225860     3  0.0000      0.692 0.000 0.000 1.000 0.000
#> GSM225875     3  0.0000      0.692 0.000 0.000 1.000 0.000
#> GSM225878     3  0.0000      0.692 0.000 0.000 1.000 0.000
#> GSM225885     3  0.0000      0.692 0.000 0.000 1.000 0.000
#> GSM225867     3  0.0000      0.692 0.000 0.000 1.000 0.000
#> GSM225871     3  0.0000      0.692 0.000 0.000 1.000 0.000
#> GSM225881     3  0.0000      0.692 0.000 0.000 1.000 0.000
#> GSM225887     3  0.0000      0.692 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM225374     1  0.3154      0.833 0.836 0.004 0.148 0.012 0.000
#> GSM225349     5  0.6988      0.366 0.020 0.328 0.000 0.200 0.452
#> GSM225367     5  0.6868      0.398 0.020 0.284 0.000 0.200 0.496
#> GSM225356     5  0.6988      0.366 0.020 0.328 0.000 0.200 0.452
#> GSM225353     5  0.6931      0.386 0.020 0.304 0.000 0.200 0.476
#> GSM225653     5  0.6988      0.366 0.020 0.328 0.000 0.200 0.452
#> GSM209847     5  0.6988      0.366 0.020 0.328 0.000 0.200 0.452
#> GSM225658     5  0.6988      0.366 0.020 0.328 0.000 0.200 0.452
#> GSM225370     1  0.2890      0.839 0.836 0.000 0.160 0.004 0.000
#> GSM225364     5  0.6988      0.366 0.020 0.328 0.000 0.200 0.452
#> GSM225645     5  0.0000      0.528 0.000 0.000 0.000 0.000 1.000
#> GSM225350     2  0.1965      0.840 0.000 0.904 0.000 0.000 0.096
#> GSM225368     5  0.0290      0.531 0.000 0.000 0.000 0.008 0.992
#> GSM225357     5  0.2144      0.535 0.000 0.068 0.000 0.020 0.912
#> GSM225651     5  0.0880      0.506 0.000 0.000 0.000 0.032 0.968
#> GSM225354     2  0.1410      0.855 0.000 0.940 0.000 0.000 0.060
#> GSM225360     4  0.6438      0.603 0.152 0.004 0.000 0.436 0.408
#> GSM225657     1  0.4400      0.474 0.736 0.052 0.000 0.212 0.000
#> GSM225377     1  0.2291      0.740 0.908 0.000 0.036 0.056 0.000
#> GSM225656     1  0.2520      0.813 0.888 0.004 0.096 0.012 0.000
#> GSM225347     2  0.1493      0.779 0.024 0.948 0.000 0.028 0.000
#> GSM225660     1  0.3022      0.832 0.848 0.004 0.136 0.012 0.000
#> GSM225712     1  0.3508      0.818 0.748 0.000 0.252 0.000 0.000
#> GSM225663     1  0.3686      0.835 0.780 0.004 0.204 0.012 0.000
#> GSM225373     1  0.3480      0.820 0.752 0.000 0.248 0.000 0.000
#> GSM225366     3  0.4981      0.621 0.172 0.000 0.708 0.120 0.000
#> GSM225380     5  0.0963      0.502 0.000 0.000 0.000 0.036 0.964
#> GSM225351     2  0.3861      0.486 0.004 0.712 0.000 0.000 0.284
#> GSM225369     5  0.0162      0.530 0.000 0.000 0.000 0.004 0.996
#> GSM225358     5  0.0794      0.510 0.000 0.000 0.000 0.028 0.972
#> GSM225649     5  0.1671      0.450 0.000 0.000 0.000 0.076 0.924
#> GSM225355     2  0.1732      0.852 0.000 0.920 0.000 0.000 0.080
#> GSM225361     5  0.2929      0.243 0.000 0.000 0.000 0.180 0.820
#> GSM225655     5  0.4219     -0.280 0.000 0.000 0.000 0.416 0.584
#> GSM225376     4  0.4647      0.802 0.028 0.016 0.000 0.716 0.240
#> GSM225654     4  0.4534      0.805 0.028 0.016 0.000 0.732 0.224
#> GSM225348     2  0.0992      0.805 0.008 0.968 0.000 0.024 0.000
#> GSM225659     4  0.4367      0.605 0.028 0.172 0.000 0.772 0.028
#> GSM225378     1  0.4540      0.705 0.656 0.000 0.320 0.024 0.000
#> GSM225661     1  0.4924      0.734 0.668 0.000 0.272 0.060 0.000
#> GSM225372     1  0.5418      0.566 0.568 0.000 0.364 0.068 0.000
#> GSM225365     1  0.3783      0.832 0.768 0.004 0.216 0.012 0.000
#> GSM225860     3  0.0000      0.962 0.000 0.000 1.000 0.000 0.000
#> GSM225875     3  0.0000      0.962 0.000 0.000 1.000 0.000 0.000
#> GSM225878     3  0.0000      0.962 0.000 0.000 1.000 0.000 0.000
#> GSM225885     3  0.0000      0.962 0.000 0.000 1.000 0.000 0.000
#> GSM225867     3  0.0000      0.962 0.000 0.000 1.000 0.000 0.000
#> GSM225871     3  0.0000      0.962 0.000 0.000 1.000 0.000 0.000
#> GSM225881     3  0.0000      0.962 0.000 0.000 1.000 0.000 0.000
#> GSM225887     3  0.0000      0.962 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM225374     1  0.2534      0.806 0.896 0.032 0.052 0.012 0.008 0.000
#> GSM225349     6  0.0000      0.988 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM225367     6  0.0790      0.951 0.000 0.000 0.000 0.000 0.032 0.968
#> GSM225356     6  0.0000      0.988 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM225353     6  0.0458      0.972 0.000 0.000 0.000 0.000 0.016 0.984
#> GSM225653     6  0.0000      0.988 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM209847     6  0.0000      0.988 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM225658     6  0.0000      0.988 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM225370     1  0.1923      0.806 0.916 0.000 0.064 0.004 0.016 0.000
#> GSM225364     6  0.0000      0.988 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM225645     5  0.3244      0.887 0.000 0.000 0.000 0.000 0.732 0.268
#> GSM225350     2  0.3816      0.771 0.000 0.688 0.000 0.000 0.016 0.296
#> GSM225368     5  0.3371      0.870 0.000 0.000 0.000 0.000 0.708 0.292
#> GSM225357     5  0.4316      0.800 0.000 0.040 0.000 0.000 0.648 0.312
#> GSM225651     5  0.3221      0.887 0.000 0.000 0.000 0.000 0.736 0.264
#> GSM225354     2  0.2793      0.825 0.000 0.800 0.000 0.000 0.000 0.200
#> GSM225360     5  0.5425     -0.184 0.056 0.052 0.000 0.280 0.612 0.000
#> GSM225657     1  0.6739      0.391 0.520 0.152 0.000 0.208 0.120 0.000
#> GSM225377     1  0.4966      0.648 0.724 0.048 0.004 0.096 0.128 0.000
#> GSM225656     1  0.3671      0.769 0.836 0.064 0.028 0.020 0.052 0.000
#> GSM225347     2  0.1806      0.750 0.000 0.908 0.000 0.004 0.000 0.088
#> GSM225660     1  0.3269      0.799 0.860 0.048 0.052 0.020 0.020 0.000
#> GSM225712     1  0.2402      0.795 0.856 0.000 0.140 0.000 0.004 0.000
#> GSM225663     1  0.3656      0.804 0.832 0.044 0.084 0.020 0.020 0.000
#> GSM225373     1  0.2234      0.801 0.872 0.000 0.124 0.000 0.004 0.000
#> GSM225366     3  0.7768      0.201 0.180 0.036 0.428 0.228 0.128 0.000
#> GSM225380     5  0.3337      0.887 0.000 0.000 0.000 0.004 0.736 0.260
#> GSM225351     2  0.4971      0.447 0.000 0.508 0.000 0.000 0.068 0.424
#> GSM225369     5  0.3266      0.885 0.000 0.000 0.000 0.000 0.728 0.272
#> GSM225358     5  0.3421      0.883 0.000 0.008 0.000 0.000 0.736 0.256
#> GSM225649     5  0.3421      0.885 0.000 0.000 0.000 0.008 0.736 0.256
#> GSM225355     2  0.3457      0.823 0.000 0.752 0.000 0.000 0.016 0.232
#> GSM225361     5  0.3830      0.839 0.000 0.000 0.000 0.044 0.744 0.212
#> GSM225655     4  0.5480     -0.126 0.000 0.000 0.000 0.444 0.432 0.124
#> GSM225376     4  0.2257      0.742 0.000 0.008 0.000 0.876 0.116 0.000
#> GSM225654     4  0.1501      0.745 0.000 0.000 0.000 0.924 0.076 0.000
#> GSM225348     2  0.2178      0.793 0.000 0.868 0.000 0.000 0.000 0.132
#> GSM225659     4  0.1296      0.691 0.004 0.032 0.000 0.952 0.012 0.000
#> GSM225378     1  0.5642      0.686 0.676 0.032 0.172 0.044 0.076 0.000
#> GSM225661     1  0.6026      0.684 0.664 0.036 0.100 0.084 0.116 0.000
#> GSM225372     1  0.6698      0.583 0.584 0.032 0.176 0.096 0.112 0.000
#> GSM225365     1  0.3706      0.804 0.828 0.044 0.088 0.020 0.020 0.000
#> GSM225860     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225875     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225878     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225885     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225867     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225871     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225881     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225887     3  0.0000      0.931 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n cell.type(p) agent(p)  time(p) individual(p) k
#> ATC:skmeans 50     3.11e-03   0.6852 9.25e-05      2.11e-02 2
#> ATC:skmeans 49     2.83e-03   0.0350 1.90e-06      2.31e-03 3
#> ATC:skmeans 43     4.32e-08   0.0340 4.49e-05      6.86e-04 4
#> ATC:skmeans 37     2.15e-06   0.7080 7.34e-06      8.42e-05 5
#> ATC:skmeans 45     1.45e-08   0.0458 3.90e-12      1.85e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.846           0.939       0.973         0.5051 0.493   0.493
#> 3 3 1.000           0.963       0.984         0.2442 0.778   0.590
#> 4 4 0.780           0.800       0.862         0.1772 0.826   0.561
#> 5 5 0.830           0.879       0.883         0.0724 0.947   0.791
#> 6 6 0.900           0.845       0.923         0.0610 0.931   0.682

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 3

There is also optional best \(k\) = 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM225374     1   0.000      0.978 1.000 0.000
#> GSM225349     2   0.000      0.963 0.000 1.000
#> GSM225367     2   0.000      0.963 0.000 1.000
#> GSM225356     2   0.000      0.963 0.000 1.000
#> GSM225353     2   0.000      0.963 0.000 1.000
#> GSM225653     2   0.000      0.963 0.000 1.000
#> GSM209847     2   0.000      0.963 0.000 1.000
#> GSM225658     2   0.000      0.963 0.000 1.000
#> GSM225370     1   0.000      0.978 1.000 0.000
#> GSM225364     2   0.000      0.963 0.000 1.000
#> GSM225645     2   0.000      0.963 0.000 1.000
#> GSM225350     2   0.000      0.963 0.000 1.000
#> GSM225368     2   0.000      0.963 0.000 1.000
#> GSM225357     2   0.000      0.963 0.000 1.000
#> GSM225651     2   0.000      0.963 0.000 1.000
#> GSM225354     2   0.000      0.963 0.000 1.000
#> GSM225360     2   0.738      0.765 0.208 0.792
#> GSM225657     1   0.388      0.900 0.924 0.076
#> GSM225377     1   0.000      0.978 1.000 0.000
#> GSM225656     1   0.000      0.978 1.000 0.000
#> GSM225347     1   0.952      0.360 0.628 0.372
#> GSM225660     1   0.000      0.978 1.000 0.000
#> GSM225712     1   0.000      0.978 1.000 0.000
#> GSM225663     1   0.000      0.978 1.000 0.000
#> GSM225373     1   0.000      0.978 1.000 0.000
#> GSM225366     1   0.000      0.978 1.000 0.000
#> GSM225380     2   0.000      0.963 0.000 1.000
#> GSM225351     2   0.000      0.963 0.000 1.000
#> GSM225369     2   0.000      0.963 0.000 1.000
#> GSM225358     2   0.000      0.963 0.000 1.000
#> GSM225649     2   0.000      0.963 0.000 1.000
#> GSM225355     2   0.000      0.963 0.000 1.000
#> GSM225361     2   0.000      0.963 0.000 1.000
#> GSM225655     2   0.000      0.963 0.000 1.000
#> GSM225376     2   0.738      0.765 0.208 0.792
#> GSM225654     2   0.738      0.765 0.208 0.792
#> GSM225348     2   0.416      0.896 0.084 0.916
#> GSM225659     2   0.738      0.765 0.208 0.792
#> GSM225378     1   0.000      0.978 1.000 0.000
#> GSM225661     1   0.000      0.978 1.000 0.000
#> GSM225372     1   0.000      0.978 1.000 0.000
#> GSM225365     1   0.000      0.978 1.000 0.000
#> GSM225860     1   0.000      0.978 1.000 0.000
#> GSM225875     1   0.000      0.978 1.000 0.000
#> GSM225878     1   0.000      0.978 1.000 0.000
#> GSM225885     1   0.000      0.978 1.000 0.000
#> GSM225867     1   0.000      0.978 1.000 0.000
#> GSM225871     1   0.000      0.978 1.000 0.000
#> GSM225881     1   0.000      0.978 1.000 0.000
#> GSM225887     1   0.000      0.978 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     1   0.000      0.952 1.000 0.000 0.000
#> GSM225349     2   0.000      0.995 0.000 1.000 0.000
#> GSM225367     2   0.000      0.995 0.000 1.000 0.000
#> GSM225356     2   0.000      0.995 0.000 1.000 0.000
#> GSM225353     2   0.000      0.995 0.000 1.000 0.000
#> GSM225653     2   0.000      0.995 0.000 1.000 0.000
#> GSM209847     2   0.000      0.995 0.000 1.000 0.000
#> GSM225658     2   0.000      0.995 0.000 1.000 0.000
#> GSM225370     1   0.000      0.952 1.000 0.000 0.000
#> GSM225364     2   0.000      0.995 0.000 1.000 0.000
#> GSM225645     2   0.000      0.995 0.000 1.000 0.000
#> GSM225350     2   0.000      0.995 0.000 1.000 0.000
#> GSM225368     2   0.000      0.995 0.000 1.000 0.000
#> GSM225357     2   0.000      0.995 0.000 1.000 0.000
#> GSM225651     2   0.000      0.995 0.000 1.000 0.000
#> GSM225354     2   0.000      0.995 0.000 1.000 0.000
#> GSM225360     1   0.000      0.952 1.000 0.000 0.000
#> GSM225657     1   0.000      0.952 1.000 0.000 0.000
#> GSM225377     1   0.000      0.952 1.000 0.000 0.000
#> GSM225656     1   0.000      0.952 1.000 0.000 0.000
#> GSM225347     1   0.000      0.952 1.000 0.000 0.000
#> GSM225660     1   0.000      0.952 1.000 0.000 0.000
#> GSM225712     1   0.141      0.923 0.964 0.000 0.036
#> GSM225663     1   0.000      0.952 1.000 0.000 0.000
#> GSM225373     1   0.000      0.952 1.000 0.000 0.000
#> GSM225366     1   0.000      0.952 1.000 0.000 0.000
#> GSM225380     2   0.000      0.995 0.000 1.000 0.000
#> GSM225351     2   0.000      0.995 0.000 1.000 0.000
#> GSM225369     2   0.000      0.995 0.000 1.000 0.000
#> GSM225358     2   0.000      0.995 0.000 1.000 0.000
#> GSM225649     2   0.000      0.995 0.000 1.000 0.000
#> GSM225355     2   0.000      0.995 0.000 1.000 0.000
#> GSM225361     2   0.000      0.995 0.000 1.000 0.000
#> GSM225655     2   0.000      0.995 0.000 1.000 0.000
#> GSM225376     1   0.518      0.673 0.744 0.256 0.000
#> GSM225654     1   0.525      0.661 0.736 0.264 0.000
#> GSM225348     2   0.288      0.881 0.096 0.904 0.000
#> GSM225659     1   0.362      0.818 0.864 0.136 0.000
#> GSM225378     1   0.000      0.952 1.000 0.000 0.000
#> GSM225661     1   0.000      0.952 1.000 0.000 0.000
#> GSM225372     1   0.000      0.952 1.000 0.000 0.000
#> GSM225365     1   0.000      0.952 1.000 0.000 0.000
#> GSM225860     3   0.000      1.000 0.000 0.000 1.000
#> GSM225875     3   0.000      1.000 0.000 0.000 1.000
#> GSM225878     3   0.000      1.000 0.000 0.000 1.000
#> GSM225885     3   0.000      1.000 0.000 0.000 1.000
#> GSM225867     3   0.000      1.000 0.000 0.000 1.000
#> GSM225871     3   0.000      1.000 0.000 0.000 1.000
#> GSM225881     3   0.000      1.000 0.000 0.000 1.000
#> GSM225887     3   0.000      1.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2 p3    p4
#> GSM225374     1  0.0592      0.950 0.984 0.000  0 0.016
#> GSM225349     2  0.1792      0.758 0.000 0.932  0 0.068
#> GSM225367     2  0.0000      0.775 0.000 1.000  0 0.000
#> GSM225356     2  0.0000      0.775 0.000 1.000  0 0.000
#> GSM225353     2  0.0000      0.775 0.000 1.000  0 0.000
#> GSM225653     2  0.0000      0.775 0.000 1.000  0 0.000
#> GSM209847     2  0.0000      0.775 0.000 1.000  0 0.000
#> GSM225658     2  0.0000      0.775 0.000 1.000  0 0.000
#> GSM225370     1  0.0336      0.950 0.992 0.000  0 0.008
#> GSM225364     2  0.0000      0.775 0.000 1.000  0 0.000
#> GSM225645     4  0.4916      0.773 0.000 0.424  0 0.576
#> GSM225350     2  0.3837      0.678 0.000 0.776  0 0.224
#> GSM225368     4  0.4916      0.773 0.000 0.424  0 0.576
#> GSM225357     2  0.3311      0.596 0.000 0.828  0 0.172
#> GSM225651     4  0.4916      0.773 0.000 0.424  0 0.576
#> GSM225354     2  0.3975      0.672 0.000 0.760  0 0.240
#> GSM225360     1  0.3400      0.843 0.820 0.000  0 0.180
#> GSM225657     1  0.3528      0.833 0.808 0.000  0 0.192
#> GSM225377     1  0.0817      0.950 0.976 0.000  0 0.024
#> GSM225656     1  0.0817      0.950 0.976 0.000  0 0.024
#> GSM225347     2  0.5526      0.503 0.020 0.564  0 0.416
#> GSM225660     1  0.0188      0.950 0.996 0.000  0 0.004
#> GSM225712     1  0.0336      0.950 0.992 0.000  0 0.008
#> GSM225663     1  0.0336      0.950 0.992 0.000  0 0.008
#> GSM225373     1  0.0336      0.950 0.992 0.000  0 0.008
#> GSM225366     1  0.0817      0.950 0.976 0.000  0 0.024
#> GSM225380     4  0.4916      0.773 0.000 0.424  0 0.576
#> GSM225351     4  0.4817      0.161 0.000 0.388  0 0.612
#> GSM225369     4  0.4916      0.773 0.000 0.424  0 0.576
#> GSM225358     4  0.4916      0.773 0.000 0.424  0 0.576
#> GSM225649     4  0.4916      0.773 0.000 0.424  0 0.576
#> GSM225355     2  0.4989      0.259 0.000 0.528  0 0.472
#> GSM225361     4  0.4916      0.773 0.000 0.424  0 0.576
#> GSM225655     4  0.1389      0.483 0.000 0.048  0 0.952
#> GSM225376     4  0.4832      0.507 0.176 0.056  0 0.768
#> GSM225654     4  0.4579      0.485 0.200 0.032  0 0.768
#> GSM225348     2  0.4830      0.544 0.000 0.608  0 0.392
#> GSM225659     1  0.4382      0.732 0.704 0.000  0 0.296
#> GSM225378     1  0.0188      0.950 0.996 0.000  0 0.004
#> GSM225661     1  0.0817      0.950 0.976 0.000  0 0.024
#> GSM225372     1  0.0817      0.950 0.976 0.000  0 0.024
#> GSM225365     1  0.0336      0.950 0.992 0.000  0 0.008
#> GSM225860     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225875     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225878     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225885     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225867     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225871     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225881     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225887     3  0.0000      1.000 0.000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> GSM225374     1  0.1403      0.908 0.952 0.024  0 0.024 0.000
#> GSM225349     5  0.0000      0.949 0.000 0.000  0 0.000 1.000
#> GSM225367     5  0.1851      0.907 0.000 0.000  0 0.088 0.912
#> GSM225356     5  0.0000      0.949 0.000 0.000  0 0.000 1.000
#> GSM225353     5  0.0000      0.949 0.000 0.000  0 0.000 1.000
#> GSM225653     5  0.1671      0.915 0.000 0.000  0 0.076 0.924
#> GSM209847     5  0.0000      0.949 0.000 0.000  0 0.000 1.000
#> GSM225658     5  0.0000      0.949 0.000 0.000  0 0.000 1.000
#> GSM225370     1  0.0162      0.904 0.996 0.004  0 0.000 0.000
#> GSM225364     5  0.1851      0.907 0.000 0.000  0 0.088 0.912
#> GSM225645     4  0.2280      0.918 0.000 0.000  0 0.880 0.120
#> GSM225350     2  0.2813      0.808 0.000 0.876  0 0.084 0.040
#> GSM225368     4  0.2280      0.918 0.000 0.000  0 0.880 0.120
#> GSM225357     2  0.5964      0.358 0.000 0.536  0 0.124 0.340
#> GSM225651     4  0.2280      0.918 0.000 0.000  0 0.880 0.120
#> GSM225354     2  0.2793      0.806 0.000 0.876  0 0.088 0.036
#> GSM225360     1  0.4458      0.836 0.760 0.120  0 0.120 0.000
#> GSM225657     1  0.4458      0.836 0.760 0.120  0 0.120 0.000
#> GSM225377     1  0.2974      0.902 0.868 0.052  0 0.080 0.000
#> GSM225656     1  0.2974      0.902 0.868 0.052  0 0.080 0.000
#> GSM225347     2  0.0324      0.772 0.004 0.992  0 0.004 0.000
#> GSM225660     1  0.0162      0.906 0.996 0.004  0 0.000 0.000
#> GSM225712     1  0.0162      0.904 0.996 0.004  0 0.000 0.000
#> GSM225663     1  0.0162      0.904 0.996 0.004  0 0.000 0.000
#> GSM225373     1  0.0162      0.904 0.996 0.004  0 0.000 0.000
#> GSM225366     1  0.3090      0.899 0.860 0.052  0 0.088 0.000
#> GSM225380     4  0.2280      0.918 0.000 0.000  0 0.880 0.120
#> GSM225351     2  0.5923      0.451 0.000 0.576  0 0.280 0.144
#> GSM225369     4  0.2561      0.900 0.000 0.000  0 0.856 0.144
#> GSM225358     4  0.2280      0.918 0.000 0.000  0 0.880 0.120
#> GSM225649     4  0.2280      0.918 0.000 0.000  0 0.880 0.120
#> GSM225355     2  0.2793      0.790 0.000 0.876  0 0.036 0.088
#> GSM225361     4  0.2280      0.918 0.000 0.000  0 0.880 0.120
#> GSM225655     4  0.3215      0.824 0.000 0.092  0 0.852 0.056
#> GSM225376     4  0.2439      0.712 0.004 0.120  0 0.876 0.000
#> GSM225654     4  0.2439      0.712 0.004 0.120  0 0.876 0.000
#> GSM225348     2  0.1579      0.802 0.000 0.944  0 0.024 0.032
#> GSM225659     1  0.5508      0.698 0.636 0.244  0 0.120 0.000
#> GSM225378     1  0.0324      0.905 0.992 0.004  0 0.004 0.000
#> GSM225661     1  0.2974      0.902 0.868 0.052  0 0.080 0.000
#> GSM225372     1  0.2974      0.902 0.868 0.052  0 0.080 0.000
#> GSM225365     1  0.0162      0.904 0.996 0.004  0 0.000 0.000
#> GSM225860     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225875     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225878     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225885     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225867     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225871     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225881     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225887     3  0.0000      1.000 0.000 0.000  1 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4    p5    p6
#> GSM225374     1  0.1501      0.817 0.924 0.000  0 0.076 0.000 0.000
#> GSM225349     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> GSM225367     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> GSM225356     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> GSM225353     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> GSM225653     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> GSM209847     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> GSM225658     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> GSM225370     1  0.0000      0.831 1.000 0.000  0 0.000 0.000 0.000
#> GSM225364     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> GSM225645     5  0.0000      0.999 0.000 0.000  0 0.000 1.000 0.000
#> GSM225350     2  0.0000      0.832 0.000 1.000  0 0.000 0.000 0.000
#> GSM225368     5  0.0146      0.995 0.000 0.000  0 0.000 0.996 0.004
#> GSM225357     2  0.4783      0.453 0.000 0.616  0 0.076 0.000 0.308
#> GSM225651     5  0.0000      0.999 0.000 0.000  0 0.000 1.000 0.000
#> GSM225354     2  0.0000      0.832 0.000 1.000  0 0.000 0.000 0.000
#> GSM225360     4  0.1501      0.761 0.076 0.000  0 0.924 0.000 0.000
#> GSM225657     4  0.0000      0.745 0.000 0.000  0 1.000 0.000 0.000
#> GSM225377     1  0.3151      0.699 0.748 0.000  0 0.252 0.000 0.000
#> GSM225656     1  0.3843      0.535 0.548 0.000  0 0.452 0.000 0.000
#> GSM225347     2  0.1863      0.768 0.000 0.896  0 0.104 0.000 0.000
#> GSM225660     1  0.2941      0.728 0.780 0.000  0 0.220 0.000 0.000
#> GSM225712     1  0.0000      0.831 1.000 0.000  0 0.000 0.000 0.000
#> GSM225663     1  0.1765      0.801 0.904 0.000  0 0.096 0.000 0.000
#> GSM225373     1  0.0000      0.831 1.000 0.000  0 0.000 0.000 0.000
#> GSM225366     4  0.3563      0.413 0.336 0.000  0 0.664 0.000 0.000
#> GSM225380     5  0.0000      0.999 0.000 0.000  0 0.000 1.000 0.000
#> GSM225351     2  0.3789      0.235 0.000 0.584  0 0.000 0.416 0.000
#> GSM225369     5  0.0000      0.999 0.000 0.000  0 0.000 1.000 0.000
#> GSM225358     5  0.0000      0.999 0.000 0.000  0 0.000 1.000 0.000
#> GSM225649     5  0.0000      0.999 0.000 0.000  0 0.000 1.000 0.000
#> GSM225355     2  0.0000      0.832 0.000 1.000  0 0.000 0.000 0.000
#> GSM225361     5  0.0000      0.999 0.000 0.000  0 0.000 1.000 0.000
#> GSM225655     4  0.3843      0.208 0.000 0.000  0 0.548 0.452 0.000
#> GSM225376     4  0.2793      0.715 0.000 0.000  0 0.800 0.200 0.000
#> GSM225654     4  0.1765      0.767 0.000 0.000  0 0.904 0.096 0.000
#> GSM225348     2  0.0000      0.832 0.000 1.000  0 0.000 0.000 0.000
#> GSM225659     4  0.1765      0.755 0.096 0.000  0 0.904 0.000 0.000
#> GSM225378     1  0.0146      0.831 0.996 0.000  0 0.004 0.000 0.000
#> GSM225661     1  0.3151      0.699 0.748 0.000  0 0.252 0.000 0.000
#> GSM225372     1  0.2996      0.723 0.772 0.000  0 0.228 0.000 0.000
#> GSM225365     1  0.1765      0.801 0.904 0.000  0 0.096 0.000 0.000
#> GSM225860     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225875     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225878     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225885     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225867     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225871     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225881     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM225887     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n cell.type(p) agent(p)  time(p) individual(p) k
#> ATC:pam 49     2.39e-03   0.7793 1.86e-05      1.60e-02 2
#> ATC:pam 50     1.39e-11   0.8108 1.13e-07      1.39e-05 3
#> ATC:pam 46     5.67e-10   0.0274 2.14e-08      1.77e-05 4
#> ATC:pam 48     9.44e-10   0.0252 1.14e-10      9.28e-05 5
#> ATC:pam 46     9.08e-09   0.1327 9.02e-12      6.32e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.933           0.929       0.965         0.3125 0.699   0.699
#> 3 3 0.851           0.922       0.955         0.8021 0.673   0.548
#> 4 4 0.787           0.825       0.904         0.3197 0.807   0.550
#> 5 5 0.821           0.857       0.914         0.0691 0.945   0.782
#> 6 6 0.860           0.731       0.883         0.0401 0.945   0.752

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM225374     2   0.456      0.914 0.096 0.904
#> GSM225349     2   0.000      0.965 0.000 1.000
#> GSM225367     2   0.000      0.965 0.000 1.000
#> GSM225356     2   0.000      0.965 0.000 1.000
#> GSM225353     2   0.000      0.965 0.000 1.000
#> GSM225653     2   0.000      0.965 0.000 1.000
#> GSM209847     2   0.000      0.965 0.000 1.000
#> GSM225658     2   0.000      0.965 0.000 1.000
#> GSM225370     2   0.456      0.914 0.096 0.904
#> GSM225364     2   0.000      0.965 0.000 1.000
#> GSM225645     2   0.000      0.965 0.000 1.000
#> GSM225350     2   0.000      0.965 0.000 1.000
#> GSM225368     2   0.000      0.965 0.000 1.000
#> GSM225357     2   0.000      0.965 0.000 1.000
#> GSM225651     2   0.000      0.965 0.000 1.000
#> GSM225354     2   0.000      0.965 0.000 1.000
#> GSM225360     2   0.000      0.965 0.000 1.000
#> GSM225657     2   0.141      0.955 0.020 0.980
#> GSM225377     2   0.456      0.914 0.096 0.904
#> GSM225656     2   0.456      0.914 0.096 0.904
#> GSM225347     2   0.000      0.965 0.000 1.000
#> GSM225660     2   0.456      0.914 0.096 0.904
#> GSM225712     1   0.987      0.142 0.568 0.432
#> GSM225663     2   0.456      0.914 0.096 0.904
#> GSM225373     2   0.680      0.822 0.180 0.820
#> GSM225366     2   0.506      0.901 0.112 0.888
#> GSM225380     2   0.000      0.965 0.000 1.000
#> GSM225351     2   0.000      0.965 0.000 1.000
#> GSM225369     2   0.000      0.965 0.000 1.000
#> GSM225358     2   0.000      0.965 0.000 1.000
#> GSM225649     2   0.000      0.965 0.000 1.000
#> GSM225355     2   0.000      0.965 0.000 1.000
#> GSM225361     2   0.000      0.965 0.000 1.000
#> GSM225655     2   0.000      0.965 0.000 1.000
#> GSM225376     2   0.000      0.965 0.000 1.000
#> GSM225654     2   0.000      0.965 0.000 1.000
#> GSM225348     2   0.000      0.965 0.000 1.000
#> GSM225659     2   0.000      0.965 0.000 1.000
#> GSM225378     2   0.563      0.881 0.132 0.868
#> GSM225661     2   0.456      0.914 0.096 0.904
#> GSM225372     2   0.482      0.908 0.104 0.896
#> GSM225365     2   0.456      0.914 0.096 0.904
#> GSM225860     1   0.000      0.941 1.000 0.000
#> GSM225875     1   0.000      0.941 1.000 0.000
#> GSM225878     1   0.000      0.941 1.000 0.000
#> GSM225885     1   0.000      0.941 1.000 0.000
#> GSM225867     1   0.000      0.941 1.000 0.000
#> GSM225871     1   0.000      0.941 1.000 0.000
#> GSM225881     1   0.000      0.941 1.000 0.000
#> GSM225887     1   0.000      0.941 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2 p3
#> GSM225374     1  0.0892      0.966 0.980 0.020  0
#> GSM225349     2  0.0000      0.828 0.000 1.000  0
#> GSM225367     1  0.4842      0.725 0.776 0.224  0
#> GSM225356     2  0.0000      0.828 0.000 1.000  0
#> GSM225353     2  0.2625      0.834 0.084 0.916  0
#> GSM225653     2  0.0000      0.828 0.000 1.000  0
#> GSM209847     2  0.0000      0.828 0.000 1.000  0
#> GSM225658     2  0.0000      0.828 0.000 1.000  0
#> GSM225370     1  0.0592      0.970 0.988 0.012  0
#> GSM225364     2  0.0000      0.828 0.000 1.000  0
#> GSM225645     1  0.1411      0.966 0.964 0.036  0
#> GSM225350     2  0.4062      0.823 0.164 0.836  0
#> GSM225368     1  0.1411      0.966 0.964 0.036  0
#> GSM225357     1  0.1289      0.969 0.968 0.032  0
#> GSM225651     1  0.1411      0.966 0.964 0.036  0
#> GSM225354     2  0.4887      0.785 0.228 0.772  0
#> GSM225360     1  0.0424      0.971 0.992 0.008  0
#> GSM225657     1  0.1031      0.970 0.976 0.024  0
#> GSM225377     1  0.0000      0.970 1.000 0.000  0
#> GSM225656     1  0.0592      0.970 0.988 0.012  0
#> GSM225347     2  0.6126      0.502 0.400 0.600  0
#> GSM225660     1  0.0592      0.970 0.988 0.012  0
#> GSM225712     1  0.0592      0.970 0.988 0.012  0
#> GSM225663     1  0.0747      0.968 0.984 0.016  0
#> GSM225373     1  0.0592      0.970 0.988 0.012  0
#> GSM225366     1  0.0000      0.970 1.000 0.000  0
#> GSM225380     1  0.1411      0.966 0.964 0.036  0
#> GSM225351     2  0.4291      0.816 0.180 0.820  0
#> GSM225369     1  0.1411      0.966 0.964 0.036  0
#> GSM225358     1  0.1411      0.966 0.964 0.036  0
#> GSM225649     1  0.1411      0.966 0.964 0.036  0
#> GSM225355     2  0.4002      0.825 0.160 0.840  0
#> GSM225361     1  0.1411      0.966 0.964 0.036  0
#> GSM225655     1  0.1031      0.970 0.976 0.024  0
#> GSM225376     1  0.0592      0.971 0.988 0.012  0
#> GSM225654     1  0.0592      0.971 0.988 0.012  0
#> GSM225348     2  0.5138      0.766 0.252 0.748  0
#> GSM225659     1  0.0592      0.971 0.988 0.012  0
#> GSM225378     1  0.0000      0.970 1.000 0.000  0
#> GSM225661     1  0.0000      0.970 1.000 0.000  0
#> GSM225372     1  0.0000      0.970 1.000 0.000  0
#> GSM225365     1  0.2165      0.924 0.936 0.064  0
#> GSM225860     3  0.0000      1.000 0.000 0.000  1
#> GSM225875     3  0.0000      1.000 0.000 0.000  1
#> GSM225878     3  0.0000      1.000 0.000 0.000  1
#> GSM225885     3  0.0000      1.000 0.000 0.000  1
#> GSM225867     3  0.0000      1.000 0.000 0.000  1
#> GSM225871     3  0.0000      1.000 0.000 0.000  1
#> GSM225881     3  0.0000      1.000 0.000 0.000  1
#> GSM225887     3  0.0000      1.000 0.000 0.000  1

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2 p3    p4
#> GSM225374     1  0.0000      0.985 1.000 0.000  0 0.000
#> GSM225349     2  0.0000      0.792 0.000 1.000  0 0.000
#> GSM225367     2  0.2944      0.706 0.128 0.868  0 0.004
#> GSM225356     2  0.0000      0.792 0.000 1.000  0 0.000
#> GSM225353     2  0.4103      0.771 0.000 0.744  0 0.256
#> GSM225653     2  0.0188      0.793 0.000 0.996  0 0.004
#> GSM209847     2  0.0000      0.792 0.000 1.000  0 0.000
#> GSM225658     2  0.0188      0.793 0.000 0.996  0 0.004
#> GSM225370     1  0.0000      0.985 1.000 0.000  0 0.000
#> GSM225364     2  0.0000      0.792 0.000 1.000  0 0.000
#> GSM225645     4  0.0336      0.788 0.000 0.008  0 0.992
#> GSM225350     2  0.4543      0.747 0.000 0.676  0 0.324
#> GSM225368     4  0.0336      0.788 0.000 0.008  0 0.992
#> GSM225357     4  0.0188      0.784 0.000 0.004  0 0.996
#> GSM225651     4  0.0336      0.788 0.000 0.008  0 0.992
#> GSM225354     2  0.4564      0.747 0.000 0.672  0 0.328
#> GSM225360     4  0.4830      0.480 0.392 0.000  0 0.608
#> GSM225657     4  0.5000      0.218 0.496 0.000  0 0.504
#> GSM225377     1  0.1557      0.921 0.944 0.000  0 0.056
#> GSM225656     1  0.0000      0.985 1.000 0.000  0 0.000
#> GSM225347     2  0.6910      0.644 0.128 0.548  0 0.324
#> GSM225660     1  0.0000      0.985 1.000 0.000  0 0.000
#> GSM225712     1  0.0000      0.985 1.000 0.000  0 0.000
#> GSM225663     1  0.0000      0.985 1.000 0.000  0 0.000
#> GSM225373     1  0.0000      0.985 1.000 0.000  0 0.000
#> GSM225366     1  0.0000      0.985 1.000 0.000  0 0.000
#> GSM225380     4  0.0336      0.788 0.000 0.008  0 0.992
#> GSM225351     2  0.4543      0.747 0.000 0.676  0 0.324
#> GSM225369     4  0.0336      0.788 0.000 0.008  0 0.992
#> GSM225358     4  0.0336      0.788 0.000 0.008  0 0.992
#> GSM225649     4  0.0336      0.788 0.000 0.008  0 0.992
#> GSM225355     2  0.4543      0.747 0.000 0.676  0 0.324
#> GSM225361     4  0.0336      0.788 0.000 0.008  0 0.992
#> GSM225655     4  0.0657      0.784 0.012 0.004  0 0.984
#> GSM225376     4  0.4830      0.480 0.392 0.000  0 0.608
#> GSM225654     4  0.4830      0.480 0.392 0.000  0 0.608
#> GSM225348     2  0.4585      0.746 0.000 0.668  0 0.332
#> GSM225659     4  0.4817      0.485 0.388 0.000  0 0.612
#> GSM225378     1  0.0000      0.985 1.000 0.000  0 0.000
#> GSM225661     1  0.0000      0.985 1.000 0.000  0 0.000
#> GSM225372     1  0.0000      0.985 1.000 0.000  0 0.000
#> GSM225365     1  0.2081      0.884 0.916 0.084  0 0.000
#> GSM225860     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225875     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225878     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225885     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225867     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225871     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225881     3  0.0000      1.000 0.000 0.000  1 0.000
#> GSM225887     3  0.0000      1.000 0.000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> GSM225374     1  0.0609      0.847 0.980 0.000  0 0.020 0.000
#> GSM225349     2  0.0000      0.835 0.000 1.000  0 0.000 0.000
#> GSM225367     2  0.1717      0.803 0.052 0.936  0 0.004 0.008
#> GSM225356     2  0.0000      0.835 0.000 1.000  0 0.000 0.000
#> GSM225353     2  0.2329      0.822 0.000 0.876  0 0.000 0.124
#> GSM225653     2  0.0162      0.836 0.000 0.996  0 0.000 0.004
#> GSM209847     2  0.0162      0.834 0.000 0.996  0 0.004 0.000
#> GSM225658     2  0.0162      0.836 0.000 0.996  0 0.000 0.004
#> GSM225370     1  0.1121      0.863 0.956 0.000  0 0.044 0.000
#> GSM225364     2  0.0000      0.835 0.000 1.000  0 0.000 0.000
#> GSM225645     5  0.0000      0.967 0.000 0.000  0 0.000 1.000
#> GSM225350     2  0.3689      0.764 0.000 0.740  0 0.004 0.256
#> GSM225368     5  0.0290      0.963 0.000 0.008  0 0.000 0.992
#> GSM225357     5  0.4332      0.727 0.064 0.132  0 0.016 0.788
#> GSM225651     5  0.0000      0.967 0.000 0.000  0 0.000 1.000
#> GSM225354     2  0.3689      0.764 0.000 0.740  0 0.004 0.256
#> GSM225360     4  0.0955      0.861 0.028 0.000  0 0.968 0.004
#> GSM225657     4  0.4540      0.575 0.320 0.000  0 0.656 0.024
#> GSM225377     4  0.3074      0.752 0.196 0.000  0 0.804 0.000
#> GSM225656     1  0.2074      0.849 0.896 0.000  0 0.104 0.000
#> GSM225347     2  0.6225      0.488 0.336 0.556  0 0.036 0.072
#> GSM225660     1  0.1792      0.856 0.916 0.000  0 0.084 0.000
#> GSM225712     1  0.0000      0.858 1.000 0.000  0 0.000 0.000
#> GSM225663     1  0.0290      0.861 0.992 0.000  0 0.008 0.000
#> GSM225373     1  0.0000      0.858 1.000 0.000  0 0.000 0.000
#> GSM225366     1  0.3816      0.665 0.696 0.000  0 0.304 0.000
#> GSM225380     5  0.0000      0.967 0.000 0.000  0 0.000 1.000
#> GSM225351     2  0.3534      0.765 0.000 0.744  0 0.000 0.256
#> GSM225369     5  0.0794      0.948 0.000 0.028  0 0.000 0.972
#> GSM225358     5  0.0000      0.967 0.000 0.000  0 0.000 1.000
#> GSM225649     5  0.0000      0.967 0.000 0.000  0 0.000 1.000
#> GSM225355     2  0.3715      0.760 0.000 0.736  0 0.004 0.260
#> GSM225361     5  0.0000      0.967 0.000 0.000  0 0.000 1.000
#> GSM225655     5  0.0609      0.954 0.000 0.000  0 0.020 0.980
#> GSM225376     4  0.0807      0.860 0.012 0.000  0 0.976 0.012
#> GSM225654     4  0.0807      0.860 0.012 0.000  0 0.976 0.012
#> GSM225348     2  0.4114      0.763 0.000 0.732  0 0.024 0.244
#> GSM225659     4  0.2130      0.850 0.080 0.000  0 0.908 0.012
#> GSM225378     1  0.3143      0.788 0.796 0.000  0 0.204 0.000
#> GSM225661     1  0.3210      0.781 0.788 0.000  0 0.212 0.000
#> GSM225372     1  0.3816      0.665 0.696 0.000  0 0.304 0.000
#> GSM225365     1  0.0609      0.848 0.980 0.000  0 0.020 0.000
#> GSM225860     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225875     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225878     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225885     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225867     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225871     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225881     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM225887     3  0.0000      1.000 0.000 0.000  1 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM225374     1  0.3101     0.7341 0.756 0.244 0.000 0.000 0.000 0.000
#> GSM225349     6  0.0000     0.7583 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM225367     6  0.0000     0.7583 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM225356     6  0.0000     0.7583 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM225353     6  0.0632     0.7473 0.000 0.000 0.000 0.000 0.024 0.976
#> GSM225653     6  0.0000     0.7583 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM209847     6  0.0000     0.7583 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM225658     6  0.0000     0.7583 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM225370     1  0.2165     0.7969 0.884 0.108 0.000 0.008 0.000 0.000
#> GSM225364     6  0.0000     0.7583 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM225645     5  0.0260     0.9726 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM225350     6  0.4181     0.5096 0.000 0.248 0.000 0.000 0.052 0.700
#> GSM225368     5  0.0520     0.9695 0.000 0.008 0.000 0.000 0.984 0.008
#> GSM225357     6  0.6359    -0.1318 0.000 0.272 0.000 0.012 0.324 0.392
#> GSM225651     5  0.0260     0.9726 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM225354     6  0.4452     0.3981 0.004 0.312 0.000 0.000 0.040 0.644
#> GSM225360     4  0.0146     0.7760 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM225657     4  0.3860     0.0467 0.472 0.000 0.000 0.528 0.000 0.000
#> GSM225377     4  0.1444     0.7703 0.072 0.000 0.000 0.928 0.000 0.000
#> GSM225656     1  0.2301     0.7679 0.884 0.020 0.000 0.096 0.000 0.000
#> GSM225347     2  0.4986     0.0000 0.072 0.664 0.000 0.000 0.024 0.240
#> GSM225660     1  0.2858     0.7959 0.844 0.124 0.000 0.032 0.000 0.000
#> GSM225712     1  0.0260     0.7891 0.992 0.008 0.000 0.000 0.000 0.000
#> GSM225663     1  0.3244     0.7189 0.732 0.268 0.000 0.000 0.000 0.000
#> GSM225373     1  0.0260     0.7891 0.992 0.008 0.000 0.000 0.000 0.000
#> GSM225366     4  0.3592     0.5620 0.344 0.000 0.000 0.656 0.000 0.000
#> GSM225380     5  0.0000     0.9721 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM225351     6  0.2706     0.6216 0.000 0.008 0.000 0.000 0.160 0.832
#> GSM225369     5  0.1663     0.8831 0.000 0.000 0.000 0.000 0.912 0.088
#> GSM225358     5  0.0260     0.9726 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM225649     5  0.0260     0.9696 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM225355     6  0.3953     0.5719 0.000 0.196 0.000 0.000 0.060 0.744
#> GSM225361     5  0.1049     0.9494 0.000 0.008 0.000 0.032 0.960 0.000
#> GSM225655     5  0.0622     0.9663 0.000 0.012 0.000 0.008 0.980 0.000
#> GSM225376     4  0.0000     0.7751 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM225654     4  0.0000     0.7751 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM225348     6  0.4746     0.0466 0.004 0.424 0.000 0.000 0.040 0.532
#> GSM225659     4  0.0858     0.7757 0.028 0.000 0.000 0.968 0.004 0.000
#> GSM225378     1  0.2697     0.5977 0.812 0.000 0.000 0.188 0.000 0.000
#> GSM225661     1  0.2762     0.5829 0.804 0.000 0.000 0.196 0.000 0.000
#> GSM225372     4  0.3684     0.5290 0.372 0.000 0.000 0.628 0.000 0.000
#> GSM225365     1  0.3868     0.4264 0.508 0.492 0.000 0.000 0.000 0.000
#> GSM225860     3  0.1141     0.9596 0.000 0.052 0.948 0.000 0.000 0.000
#> GSM225875     3  0.0000     0.9864 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225878     3  0.0000     0.9864 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225885     3  0.0000     0.9864 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225867     3  0.1267     0.9547 0.000 0.060 0.940 0.000 0.000 0.000
#> GSM225871     3  0.0000     0.9864 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225881     3  0.0000     0.9864 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225887     3  0.0000     0.9864 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n cell.type(p) agent(p)  time(p) individual(p) k
#> ATC:mclust 49     9.35e-11    0.854 5.67e-04      8.97e-06 2
#> ATC:mclust 50     1.39e-11    0.339 5.23e-05      1.88e-07 3
#> ATC:mclust 45     9.25e-10    0.215 1.52e-10      1.39e-05 4
#> ATC:mclust 49     5.84e-10    0.408 1.81e-11      5.55e-05 5
#> ATC:mclust 44     6.42e-09    0.128 3.17e-09      4.16e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.961       0.984         0.5039 0.493   0.493
#> 3 3 0.706           0.808       0.904         0.3217 0.725   0.495
#> 4 4 0.583           0.563       0.783         0.1261 0.730   0.347
#> 5 5 0.675           0.705       0.814         0.0595 0.837   0.451
#> 6 6 0.675           0.594       0.784         0.0307 0.995   0.975

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM225374     1   0.000      0.965 1.000 0.000
#> GSM225349     2   0.000      0.999 0.000 1.000
#> GSM225367     2   0.000      0.999 0.000 1.000
#> GSM225356     2   0.000      0.999 0.000 1.000
#> GSM225353     2   0.000      0.999 0.000 1.000
#> GSM225653     2   0.000      0.999 0.000 1.000
#> GSM209847     2   0.000      0.999 0.000 1.000
#> GSM225658     2   0.000      0.999 0.000 1.000
#> GSM225370     1   0.000      0.965 1.000 0.000
#> GSM225364     2   0.000      0.999 0.000 1.000
#> GSM225645     2   0.000      0.999 0.000 1.000
#> GSM225350     2   0.000      0.999 0.000 1.000
#> GSM225368     2   0.000      0.999 0.000 1.000
#> GSM225357     2   0.000      0.999 0.000 1.000
#> GSM225651     2   0.000      0.999 0.000 1.000
#> GSM225354     2   0.000      0.999 0.000 1.000
#> GSM225360     1   0.980      0.316 0.584 0.416
#> GSM225657     1   0.921      0.508 0.664 0.336
#> GSM225377     1   0.000      0.965 1.000 0.000
#> GSM225656     1   0.000      0.965 1.000 0.000
#> GSM225347     2   0.184      0.970 0.028 0.972
#> GSM225660     1   0.000      0.965 1.000 0.000
#> GSM225712     1   0.000      0.965 1.000 0.000
#> GSM225663     1   0.000      0.965 1.000 0.000
#> GSM225373     1   0.000      0.965 1.000 0.000
#> GSM225366     1   0.000      0.965 1.000 0.000
#> GSM225380     2   0.000      0.999 0.000 1.000
#> GSM225351     2   0.000      0.999 0.000 1.000
#> GSM225369     2   0.000      0.999 0.000 1.000
#> GSM225358     2   0.000      0.999 0.000 1.000
#> GSM225649     2   0.000      0.999 0.000 1.000
#> GSM225355     2   0.000      0.999 0.000 1.000
#> GSM225361     2   0.000      0.999 0.000 1.000
#> GSM225655     2   0.000      0.999 0.000 1.000
#> GSM225376     2   0.000      0.999 0.000 1.000
#> GSM225654     2   0.000      0.999 0.000 1.000
#> GSM225348     2   0.000      0.999 0.000 1.000
#> GSM225659     2   0.000      0.999 0.000 1.000
#> GSM225378     1   0.000      0.965 1.000 0.000
#> GSM225661     1   0.000      0.965 1.000 0.000
#> GSM225372     1   0.000      0.965 1.000 0.000
#> GSM225365     1   0.000      0.965 1.000 0.000
#> GSM225860     1   0.000      0.965 1.000 0.000
#> GSM225875     1   0.000      0.965 1.000 0.000
#> GSM225878     1   0.000      0.965 1.000 0.000
#> GSM225885     1   0.000      0.965 1.000 0.000
#> GSM225867     1   0.000      0.965 1.000 0.000
#> GSM225871     1   0.000      0.965 1.000 0.000
#> GSM225881     1   0.000      0.965 1.000 0.000
#> GSM225887     1   0.000      0.965 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM225374     1  0.3752      0.673 0.856 0.000 0.144
#> GSM225349     1  0.5678      0.650 0.684 0.316 0.000
#> GSM225367     1  0.6154      0.472 0.592 0.408 0.000
#> GSM225356     1  0.5138      0.705 0.748 0.252 0.000
#> GSM225353     2  0.5465      0.503 0.288 0.712 0.000
#> GSM225653     1  0.5948      0.582 0.640 0.360 0.000
#> GSM209847     1  0.5497      0.677 0.708 0.292 0.000
#> GSM225658     1  0.5529      0.673 0.704 0.296 0.000
#> GSM225370     3  0.2711      0.904 0.088 0.000 0.912
#> GSM225364     1  0.4750      0.722 0.784 0.216 0.000
#> GSM225645     2  0.0747      0.881 0.016 0.984 0.000
#> GSM225350     1  0.2448      0.749 0.924 0.076 0.000
#> GSM225368     2  0.0747      0.881 0.016 0.984 0.000
#> GSM225357     2  0.5216      0.568 0.260 0.740 0.000
#> GSM225651     2  0.0000      0.886 0.000 1.000 0.000
#> GSM225354     1  0.0000      0.743 1.000 0.000 0.000
#> GSM225360     2  0.5621      0.496 0.000 0.692 0.308
#> GSM225657     1  0.1411      0.733 0.964 0.000 0.036
#> GSM225377     3  0.0000      0.974 0.000 0.000 1.000
#> GSM225656     3  0.4452      0.792 0.192 0.000 0.808
#> GSM225347     1  0.0000      0.743 1.000 0.000 0.000
#> GSM225660     1  0.5733      0.370 0.676 0.000 0.324
#> GSM225712     3  0.0000      0.974 0.000 0.000 1.000
#> GSM225663     3  0.3941      0.834 0.156 0.000 0.844
#> GSM225373     3  0.0000      0.974 0.000 0.000 1.000
#> GSM225366     3  0.0237      0.971 0.000 0.004 0.996
#> GSM225380     2  0.0000      0.886 0.000 1.000 0.000
#> GSM225351     2  0.5178      0.574 0.256 0.744 0.000
#> GSM225369     2  0.0747      0.881 0.016 0.984 0.000
#> GSM225358     2  0.0000      0.886 0.000 1.000 0.000
#> GSM225649     2  0.0000      0.886 0.000 1.000 0.000
#> GSM225355     1  0.5216      0.682 0.740 0.260 0.000
#> GSM225361     2  0.0000      0.886 0.000 1.000 0.000
#> GSM225655     2  0.0000      0.886 0.000 1.000 0.000
#> GSM225376     2  0.0000      0.886 0.000 1.000 0.000
#> GSM225654     2  0.0000      0.886 0.000 1.000 0.000
#> GSM225348     1  0.0000      0.743 1.000 0.000 0.000
#> GSM225659     2  0.3234      0.806 0.072 0.908 0.020
#> GSM225378     3  0.0000      0.974 0.000 0.000 1.000
#> GSM225661     3  0.0000      0.974 0.000 0.000 1.000
#> GSM225372     3  0.0000      0.974 0.000 0.000 1.000
#> GSM225365     1  0.3879      0.667 0.848 0.000 0.152
#> GSM225860     3  0.0000      0.974 0.000 0.000 1.000
#> GSM225875     3  0.0000      0.974 0.000 0.000 1.000
#> GSM225878     3  0.0000      0.974 0.000 0.000 1.000
#> GSM225885     3  0.0000      0.974 0.000 0.000 1.000
#> GSM225867     3  0.0000      0.974 0.000 0.000 1.000
#> GSM225871     3  0.0000      0.974 0.000 0.000 1.000
#> GSM225881     3  0.0000      0.974 0.000 0.000 1.000
#> GSM225887     3  0.0000      0.974 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM225374     1  0.5883    0.53678 0.708 0.108 0.180 0.004
#> GSM225349     2  0.1406    0.79229 0.024 0.960 0.000 0.016
#> GSM225367     2  0.2722    0.78993 0.032 0.904 0.000 0.064
#> GSM225356     2  0.0779    0.78584 0.016 0.980 0.000 0.004
#> GSM225353     2  0.2647    0.76902 0.000 0.880 0.000 0.120
#> GSM225653     2  0.2300    0.79319 0.016 0.920 0.000 0.064
#> GSM209847     2  0.1388    0.78846 0.028 0.960 0.000 0.012
#> GSM225658     2  0.1624    0.79592 0.020 0.952 0.000 0.028
#> GSM225370     1  0.5886    0.56093 0.720 0.008 0.152 0.120
#> GSM225364     2  0.1305    0.78250 0.036 0.960 0.000 0.004
#> GSM225645     2  0.4989    0.25630 0.000 0.528 0.000 0.472
#> GSM225350     2  0.4539    0.49838 0.272 0.720 0.000 0.008
#> GSM225368     2  0.4585    0.53589 0.000 0.668 0.000 0.332
#> GSM225357     1  0.7916   -0.17627 0.356 0.328 0.000 0.316
#> GSM225651     4  0.3569    0.51286 0.000 0.196 0.000 0.804
#> GSM225354     1  0.4964    0.32195 0.616 0.380 0.000 0.004
#> GSM225360     4  0.4090    0.54107 0.140 0.004 0.032 0.824
#> GSM225657     1  0.3401    0.58595 0.840 0.008 0.000 0.152
#> GSM225377     4  0.6795   -0.05502 0.432 0.000 0.096 0.472
#> GSM225656     1  0.5077    0.56509 0.760 0.000 0.080 0.160
#> GSM225347     1  0.4252    0.52711 0.744 0.252 0.000 0.004
#> GSM225660     1  0.3360    0.61594 0.876 0.004 0.036 0.084
#> GSM225712     3  0.4599    0.62125 0.248 0.000 0.736 0.016
#> GSM225663     1  0.5519    0.39891 0.652 0.028 0.316 0.004
#> GSM225373     3  0.5184    0.52784 0.304 0.000 0.672 0.024
#> GSM225366     4  0.5727    0.40591 0.228 0.000 0.080 0.692
#> GSM225380     4  0.4356    0.34657 0.000 0.292 0.000 0.708
#> GSM225351     2  0.3996    0.77103 0.060 0.836 0.000 0.104
#> GSM225369     2  0.4933    0.35928 0.000 0.568 0.000 0.432
#> GSM225358     4  0.4855    0.05398 0.000 0.400 0.000 0.600
#> GSM225649     4  0.3444    0.52306 0.000 0.184 0.000 0.816
#> GSM225355     2  0.4609    0.60701 0.224 0.752 0.000 0.024
#> GSM225361     4  0.3400    0.52683 0.000 0.180 0.000 0.820
#> GSM225655     4  0.3208    0.54996 0.004 0.148 0.000 0.848
#> GSM225376     4  0.2466    0.58075 0.096 0.004 0.000 0.900
#> GSM225654     4  0.2593    0.57897 0.104 0.004 0.000 0.892
#> GSM225348     1  0.4482    0.51439 0.728 0.264 0.000 0.008
#> GSM225659     4  0.5033    0.35121 0.324 0.004 0.008 0.664
#> GSM225378     3  0.7289    0.25883 0.280 0.000 0.528 0.192
#> GSM225661     1  0.6390    0.47392 0.644 0.000 0.132 0.224
#> GSM225372     4  0.7795    0.00638 0.280 0.000 0.296 0.424
#> GSM225365     1  0.5309    0.61157 0.744 0.164 0.092 0.000
#> GSM225860     3  0.0000    0.86830 0.000 0.000 1.000 0.000
#> GSM225875     3  0.0000    0.86830 0.000 0.000 1.000 0.000
#> GSM225878     3  0.0000    0.86830 0.000 0.000 1.000 0.000
#> GSM225885     3  0.0000    0.86830 0.000 0.000 1.000 0.000
#> GSM225867     3  0.0188    0.86455 0.004 0.000 0.996 0.000
#> GSM225871     3  0.0000    0.86830 0.000 0.000 1.000 0.000
#> GSM225881     3  0.0000    0.86830 0.000 0.000 1.000 0.000
#> GSM225887     3  0.0000    0.86830 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM225374     1  0.5483      0.692 0.756 0.068 0.032 0.080 0.064
#> GSM225349     5  0.3141      0.744 0.000 0.152 0.000 0.016 0.832
#> GSM225367     5  0.4690      0.627 0.100 0.040 0.000 0.080 0.780
#> GSM225356     5  0.1671      0.791 0.000 0.076 0.000 0.000 0.924
#> GSM225353     5  0.1121      0.803 0.000 0.000 0.000 0.044 0.956
#> GSM225653     5  0.0579      0.804 0.000 0.008 0.000 0.008 0.984
#> GSM209847     5  0.2929      0.744 0.000 0.152 0.000 0.008 0.840
#> GSM225658     5  0.1740      0.802 0.000 0.056 0.000 0.012 0.932
#> GSM225370     1  0.3206      0.768 0.880 0.020 0.020 0.060 0.020
#> GSM225364     5  0.1461      0.785 0.004 0.016 0.000 0.028 0.952
#> GSM225645     5  0.3003      0.704 0.000 0.000 0.000 0.188 0.812
#> GSM225350     2  0.3246      0.705 0.000 0.808 0.000 0.008 0.184
#> GSM225368     5  0.2280      0.765 0.000 0.000 0.000 0.120 0.880
#> GSM225357     5  0.7740      0.265 0.096 0.240 0.000 0.200 0.464
#> GSM225651     4  0.5382      0.469 0.072 0.000 0.000 0.592 0.336
#> GSM225354     2  0.2270      0.758 0.020 0.904 0.000 0.000 0.076
#> GSM225360     1  0.4045      0.369 0.644 0.000 0.000 0.356 0.000
#> GSM225657     1  0.3305      0.725 0.776 0.224 0.000 0.000 0.000
#> GSM225377     1  0.2439      0.761 0.876 0.000 0.004 0.120 0.000
#> GSM225656     1  0.2074      0.788 0.896 0.104 0.000 0.000 0.000
#> GSM225347     2  0.1818      0.751 0.044 0.932 0.000 0.000 0.024
#> GSM225660     1  0.3039      0.750 0.808 0.192 0.000 0.000 0.000
#> GSM225712     1  0.4422      0.705 0.732 0.016 0.232 0.020 0.000
#> GSM225663     1  0.5761      0.672 0.680 0.160 0.136 0.020 0.004
#> GSM225373     1  0.4446      0.731 0.764 0.016 0.184 0.032 0.004
#> GSM225366     4  0.4211      0.447 0.360 0.000 0.004 0.636 0.000
#> GSM225380     4  0.3949      0.487 0.000 0.000 0.000 0.668 0.332
#> GSM225351     2  0.6032      0.195 0.000 0.492 0.000 0.120 0.388
#> GSM225369     5  0.4047      0.496 0.000 0.004 0.000 0.320 0.676
#> GSM225358     4  0.4341      0.307 0.000 0.004 0.000 0.592 0.404
#> GSM225649     4  0.2612      0.708 0.008 0.000 0.000 0.868 0.124
#> GSM225355     2  0.4017      0.712 0.000 0.788 0.000 0.064 0.148
#> GSM225361     4  0.2338      0.709 0.000 0.004 0.000 0.884 0.112
#> GSM225655     4  0.2681      0.710 0.004 0.012 0.000 0.876 0.108
#> GSM225376     4  0.3550      0.638 0.236 0.000 0.000 0.760 0.004
#> GSM225654     4  0.3289      0.670 0.172 0.008 0.004 0.816 0.000
#> GSM225348     2  0.1828      0.755 0.032 0.936 0.000 0.004 0.028
#> GSM225659     4  0.4890      0.549 0.256 0.064 0.000 0.680 0.000
#> GSM225378     1  0.2491      0.789 0.896 0.000 0.036 0.068 0.000
#> GSM225661     1  0.3294      0.788 0.852 0.104 0.008 0.036 0.000
#> GSM225372     1  0.2522      0.770 0.880 0.000 0.012 0.108 0.000
#> GSM225365     2  0.6067      0.102 0.384 0.540 0.020 0.036 0.020
#> GSM225860     3  0.0740      0.985 0.000 0.008 0.980 0.008 0.004
#> GSM225875     3  0.0162      0.993 0.000 0.000 0.996 0.004 0.000
#> GSM225878     3  0.0324      0.991 0.004 0.004 0.992 0.000 0.000
#> GSM225885     3  0.0324      0.992 0.004 0.004 0.992 0.000 0.000
#> GSM225867     3  0.0404      0.989 0.000 0.012 0.988 0.000 0.000
#> GSM225871     3  0.0162      0.992 0.004 0.000 0.996 0.000 0.000
#> GSM225881     3  0.0162      0.993 0.000 0.000 0.996 0.004 0.000
#> GSM225887     3  0.0162      0.993 0.000 0.000 0.996 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM225374     1  0.4235    0.37388 0.672 0.004 0.000 0.000 0.292 0.032
#> GSM225349     6  0.2790    0.68692 0.000 0.140 0.000 0.000 0.020 0.840
#> GSM225367     6  0.4910    0.22410 0.052 0.000 0.000 0.004 0.424 0.520
#> GSM225356     6  0.1411    0.74414 0.000 0.060 0.000 0.000 0.004 0.936
#> GSM225353     6  0.1434    0.73798 0.000 0.008 0.000 0.020 0.024 0.948
#> GSM225653     6  0.1003    0.74293 0.000 0.016 0.000 0.000 0.020 0.964
#> GSM209847     6  0.2830    0.68418 0.000 0.144 0.000 0.000 0.020 0.836
#> GSM225658     6  0.1349    0.74467 0.000 0.056 0.000 0.000 0.004 0.940
#> GSM225370     1  0.2597    0.58894 0.824 0.000 0.000 0.000 0.176 0.000
#> GSM225364     6  0.1888    0.72926 0.004 0.012 0.000 0.000 0.068 0.916
#> GSM225645     6  0.3133    0.60732 0.000 0.000 0.000 0.212 0.008 0.780
#> GSM225350     2  0.2880    0.70439 0.000 0.856 0.000 0.012 0.024 0.108
#> GSM225368     6  0.4220    0.55326 0.000 0.008 0.000 0.244 0.040 0.708
#> GSM225357     6  0.7584    0.20606 0.096 0.196 0.000 0.240 0.032 0.436
#> GSM225651     4  0.5428    0.36976 0.072 0.000 0.000 0.556 0.024 0.348
#> GSM225354     2  0.1911    0.69738 0.012 0.928 0.000 0.004 0.020 0.036
#> GSM225360     1  0.4852   -0.00121 0.492 0.000 0.000 0.452 0.056 0.000
#> GSM225657     1  0.4676    0.53153 0.724 0.136 0.000 0.020 0.120 0.000
#> GSM225377     1  0.3511    0.59354 0.800 0.004 0.000 0.148 0.048 0.000
#> GSM225656     1  0.2806    0.63162 0.872 0.060 0.000 0.012 0.056 0.000
#> GSM225347     2  0.3142    0.63837 0.048 0.860 0.000 0.008 0.068 0.016
#> GSM225660     1  0.3578    0.52944 0.784 0.164 0.000 0.000 0.052 0.000
#> GSM225712     1  0.3865    0.53879 0.752 0.000 0.192 0.000 0.056 0.000
#> GSM225663     1  0.5321    0.44852 0.688 0.124 0.120 0.000 0.068 0.000
#> GSM225373     1  0.3650    0.58340 0.792 0.000 0.116 0.000 0.092 0.000
#> GSM225366     4  0.5615    0.26071 0.364 0.020 0.004 0.532 0.080 0.000
#> GSM225380     4  0.3872    0.28683 0.000 0.000 0.000 0.604 0.004 0.392
#> GSM225351     2  0.6671    0.41341 0.000 0.512 0.000 0.136 0.104 0.248
#> GSM225369     6  0.4564    0.26967 0.000 0.012 0.000 0.396 0.020 0.572
#> GSM225358     4  0.4717    0.23361 0.000 0.012 0.000 0.584 0.032 0.372
#> GSM225649     4  0.2558    0.60010 0.004 0.000 0.000 0.840 0.000 0.156
#> GSM225355     2  0.4337    0.66231 0.000 0.776 0.000 0.068 0.084 0.072
#> GSM225361     4  0.2591    0.62533 0.000 0.004 0.000 0.880 0.052 0.064
#> GSM225655     4  0.3272    0.61950 0.008 0.024 0.000 0.852 0.080 0.036
#> GSM225376     4  0.3525    0.58382 0.180 0.004 0.000 0.784 0.032 0.000
#> GSM225654     4  0.3723    0.59992 0.096 0.008 0.000 0.800 0.096 0.000
#> GSM225348     2  0.2936    0.66977 0.024 0.868 0.000 0.004 0.080 0.024
#> GSM225659     4  0.6495    0.34104 0.148 0.148 0.000 0.564 0.140 0.000
#> GSM225378     1  0.2703    0.63888 0.876 0.000 0.016 0.080 0.028 0.000
#> GSM225661     1  0.4298    0.58730 0.776 0.084 0.000 0.048 0.092 0.000
#> GSM225372     1  0.3946    0.58064 0.764 0.004 0.000 0.068 0.164 0.000
#> GSM225365     5  0.6281    0.00000 0.276 0.320 0.008 0.000 0.396 0.000
#> GSM225860     3  0.1155    0.96350 0.004 0.004 0.956 0.000 0.036 0.000
#> GSM225875     3  0.0000    0.98570 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225878     3  0.0291    0.98317 0.004 0.000 0.992 0.000 0.004 0.000
#> GSM225885     3  0.0146    0.98489 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM225867     3  0.1364    0.95551 0.004 0.004 0.944 0.000 0.048 0.000
#> GSM225871     3  0.0000    0.98570 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225881     3  0.0000    0.98570 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM225887     3  0.0000    0.98570 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n cell.type(p) agent(p)  time(p) individual(p) k
#> ATC:NMF 49     2.39e-03  0.77928 4.64e-05       0.01596 2
#> ATC:NMF 47     4.24e-04  0.04455 3.80e-06       0.02469 3
#> ATC:NMF 36     6.67e-06  0.12118 3.16e-05       0.01544 4
#> ATC:NMF 41     2.69e-08  0.00154 5.42e-07       0.00114 5
#> ATC:NMF 37     1.80e-07  0.00595 1.30e-06       0.00583 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0