cola Report for GDS2831

Date: 2019-12-25 20:17:21 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 16753    50

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
ATC:hclust 2 1.000 0.961 0.974 **
ATC:NMF 2 0.998 0.970 0.985 **
CV:skmeans 2 0.995 0.966 0.977 **
ATC:pam 3 0.963 0.941 0.978 ** 2
ATC:skmeans 3 0.921 0.917 0.967 * 2
SD:pam 5 0.902 0.891 0.960 *
ATC:mclust 6 0.899 0.831 0.926
CV:pam 5 0.894 0.875 0.941
MAD:skmeans 3 0.865 0.870 0.947
MAD:pam 5 0.860 0.848 0.938
ATC:kmeans 3 0.810 0.859 0.921
CV:NMF 2 0.759 0.834 0.933
SD:NMF 2 0.755 0.826 0.933
SD:skmeans 3 0.747 0.875 0.934
CV:kmeans 5 0.708 0.780 0.852
SD:kmeans 5 0.635 0.682 0.800
MAD:mclust 4 0.633 0.793 0.854
MAD:NMF 3 0.618 0.773 0.889
MAD:kmeans 4 0.602 0.753 0.838
MAD:hclust 3 0.586 0.850 0.911
SD:mclust 5 0.579 0.717 0.812
CV:mclust 4 0.510 0.651 0.764
CV:hclust 5 0.458 0.673 0.752
SD:hclust 3 0.445 0.804 0.873

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.755           0.826       0.933          0.458 0.542   0.542
#> CV:NMF      2 0.759           0.834       0.933          0.479 0.510   0.510
#> MAD:NMF     2 0.451           0.692       0.879          0.476 0.519   0.519
#> ATC:NMF     2 0.998           0.970       0.985          0.404 0.607   0.607
#> SD:skmeans  2 0.509           0.848       0.914          0.503 0.493   0.493
#> CV:skmeans  2 0.995           0.966       0.977          0.507 0.493   0.493
#> MAD:skmeans 2 0.836           0.858       0.930          0.510 0.491   0.491
#> ATC:skmeans 2 1.000           1.000       1.000          0.510 0.491   0.491
#> SD:mclust   2 0.352           0.725       0.860          0.315 0.673   0.673
#> CV:mclust   2 0.291           0.142       0.666          0.329 0.699   0.699
#> MAD:mclust  2 0.191           0.463       0.785          0.307 0.816   0.816
#> ATC:mclust  2 0.512           0.824       0.902          0.496 0.493   0.493
#> SD:kmeans   2 0.324           0.510       0.778          0.462 0.589   0.589
#> CV:kmeans   2 0.377           0.265       0.622          0.465 0.571   0.571
#> MAD:kmeans  2 0.310           0.490       0.709          0.475 0.530   0.530
#> ATC:kmeans  2 0.628           0.932       0.959          0.335 0.699   0.699
#> SD:pam      2 0.590           0.788       0.897          0.462 0.497   0.497
#> CV:pam      2 0.340           0.679       0.809          0.449 0.542   0.542
#> MAD:pam     2 0.552           0.857       0.929          0.495 0.493   0.493
#> ATC:pam     2 1.000           0.956       0.982          0.247 0.754   0.754
#> SD:hclust   2 0.640           0.884       0.922          0.244 0.850   0.850
#> CV:hclust   2 0.372           0.856       0.877          0.264 0.850   0.850
#> MAD:hclust  2 0.658           0.924       0.945          0.212 0.850   0.850
#> ATC:hclust  2 1.000           0.961       0.974          0.213 0.816   0.816
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.497           0.665       0.851          0.409 0.714   0.522
#> CV:NMF      3 0.598           0.795       0.902          0.369 0.654   0.418
#> MAD:NMF     3 0.618           0.773       0.889          0.380 0.666   0.434
#> ATC:NMF     3 0.543           0.744       0.847          0.589 0.647   0.463
#> SD:skmeans  3 0.747           0.875       0.934          0.346 0.725   0.495
#> CV:skmeans  3 0.792           0.810       0.916          0.336 0.747   0.527
#> MAD:skmeans 3 0.865           0.870       0.947          0.332 0.743   0.519
#> ATC:skmeans 3 0.921           0.917       0.967          0.303 0.758   0.544
#> SD:mclust   3 0.377           0.766       0.798          0.985 0.552   0.380
#> CV:mclust   3 0.361           0.531       0.720          0.839 0.531   0.389
#> MAD:mclust  3 0.280           0.748       0.781          0.956 0.402   0.312
#> ATC:mclust  3 0.321           0.532       0.698          0.199 0.669   0.422
#> SD:kmeans   3 0.399           0.599       0.785          0.401 0.664   0.464
#> CV:kmeans   3 0.416           0.634       0.803          0.367 0.602   0.385
#> MAD:kmeans  3 0.491           0.637       0.830          0.387 0.661   0.439
#> ATC:kmeans  3 0.810           0.859       0.921          0.873 0.657   0.509
#> SD:pam      3 0.500           0.633       0.830          0.285 0.831   0.670
#> CV:pam      3 0.388           0.683       0.803          0.228 0.806   0.674
#> MAD:pam     3 0.562           0.681       0.846          0.240 0.833   0.672
#> ATC:pam     3 0.963           0.941       0.978          0.941 0.771   0.697
#> SD:hclust   3 0.445           0.804       0.873          0.919 0.752   0.708
#> CV:hclust   3 0.258           0.654       0.760          0.902 0.752   0.708
#> MAD:hclust  3 0.586           0.850       0.911          1.093 0.752   0.708
#> ATC:hclust  3 0.468           0.699       0.854          1.598 0.587   0.494
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.531           0.701       0.785         0.1357 0.796   0.510
#> CV:NMF      4 0.571           0.645       0.796         0.1322 0.880   0.663
#> MAD:NMF     4 0.617           0.632       0.811         0.1366 0.784   0.458
#> ATC:NMF     4 0.858           0.842       0.930         0.1485 0.791   0.489
#> SD:skmeans  4 0.603           0.496       0.712         0.1173 0.847   0.572
#> CV:skmeans  4 0.599           0.488       0.740         0.1208 0.829   0.535
#> MAD:skmeans 4 0.704           0.761       0.860         0.1162 0.856   0.594
#> ATC:skmeans 4 0.753           0.724       0.876         0.1072 0.854   0.602
#> SD:mclust   4 0.582           0.749       0.824         0.0862 0.873   0.660
#> CV:mclust   4 0.510           0.651       0.764         0.1324 0.762   0.473
#> MAD:mclust  4 0.633           0.793       0.854         0.1612 0.894   0.709
#> ATC:mclust  4 0.832           0.799       0.921         0.1883 0.805   0.514
#> SD:kmeans   4 0.546           0.640       0.783         0.1191 0.891   0.698
#> CV:kmeans   4 0.517           0.604       0.780         0.1203 0.845   0.607
#> MAD:kmeans  4 0.602           0.753       0.838         0.1157 0.866   0.640
#> ATC:kmeans  4 0.641           0.664       0.804         0.1457 0.806   0.525
#> SD:pam      4 0.589           0.560       0.770         0.1424 0.750   0.480
#> CV:pam      4 0.527           0.679       0.778         0.2209 0.782   0.567
#> MAD:pam     4 0.568           0.564       0.758         0.1457 0.824   0.557
#> ATC:pam     4 0.881           0.883       0.950         0.2206 0.909   0.828
#> SD:hclust   4 0.430           0.592       0.769         0.4282 0.718   0.532
#> CV:hclust   4 0.392           0.643       0.751         0.3156 0.706   0.512
#> MAD:hclust  4 0.417           0.728       0.814         0.4886 0.758   0.597
#> ATC:hclust  4 0.516           0.605       0.824         0.1707 0.878   0.722
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.603           0.595       0.777         0.0862 0.905   0.666
#> CV:NMF      5 0.643           0.517       0.731         0.0732 0.849   0.496
#> MAD:NMF     5 0.654           0.716       0.836         0.0743 0.828   0.440
#> ATC:NMF     5 0.742           0.699       0.841         0.0634 0.933   0.746
#> SD:skmeans  5 0.665           0.580       0.756         0.0694 0.873   0.540
#> CV:skmeans  5 0.691           0.656       0.811         0.0690 0.875   0.545
#> MAD:skmeans 5 0.654           0.539       0.760         0.0666 0.885   0.578
#> ATC:skmeans 5 0.747           0.661       0.837         0.0616 0.890   0.624
#> SD:mclust   5 0.579           0.717       0.812         0.0942 0.954   0.847
#> CV:mclust   5 0.562           0.558       0.755         0.1031 0.920   0.747
#> MAD:mclust  5 0.616           0.734       0.834         0.0691 0.932   0.779
#> ATC:mclust  5 0.809           0.859       0.906         0.0872 0.926   0.747
#> SD:kmeans   5 0.635           0.682       0.800         0.0722 0.842   0.517
#> CV:kmeans   5 0.708           0.780       0.852         0.0843 0.820   0.490
#> MAD:kmeans  5 0.640           0.640       0.754         0.0692 0.914   0.700
#> ATC:kmeans  5 0.685           0.716       0.822         0.0767 0.873   0.594
#> SD:pam      5 0.902           0.891       0.960         0.1145 0.856   0.614
#> CV:pam      5 0.894           0.875       0.941         0.1270 0.841   0.565
#> MAD:pam     5 0.860           0.848       0.938         0.0941 0.840   0.505
#> ATC:pam     5 0.852           0.857       0.931         0.2180 0.873   0.713
#> SD:hclust   5 0.508           0.457       0.668         0.0986 0.868   0.603
#> CV:hclust   5 0.458           0.673       0.752         0.1061 0.918   0.735
#> MAD:hclust  5 0.509           0.694       0.800         0.1036 0.925   0.791
#> ATC:hclust  5 0.520           0.595       0.757         0.1367 0.897   0.711
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.617           0.476       0.671         0.0467 0.899   0.569
#> CV:NMF      6 0.658           0.603       0.781         0.0410 0.883   0.507
#> MAD:NMF     6 0.660           0.499       0.728         0.0396 0.944   0.738
#> ATC:NMF     6 0.737           0.645       0.822         0.0403 0.993   0.964
#> SD:skmeans  6 0.694           0.586       0.766         0.0390 0.936   0.690
#> CV:skmeans  6 0.698           0.584       0.774         0.0376 0.962   0.803
#> MAD:skmeans 6 0.684           0.497       0.731         0.0397 0.940   0.710
#> ATC:skmeans 6 0.747           0.641       0.790         0.0376 0.909   0.629
#> SD:mclust   6 0.657           0.603       0.782         0.0613 0.918   0.706
#> CV:mclust   6 0.664           0.526       0.751         0.0520 0.819   0.432
#> MAD:mclust  6 0.698           0.693       0.811         0.0596 0.936   0.746
#> ATC:mclust  6 0.899           0.831       0.926         0.0406 0.971   0.871
#> SD:kmeans   6 0.708           0.571       0.706         0.0531 0.882   0.520
#> CV:kmeans   6 0.747           0.712       0.822         0.0568 0.987   0.939
#> MAD:kmeans  6 0.685           0.621       0.755         0.0487 0.939   0.736
#> ATC:kmeans  6 0.748           0.561       0.769         0.0529 0.986   0.940
#> SD:pam      6 0.840           0.841       0.896         0.0864 0.901   0.616
#> CV:pam      6 0.809           0.632       0.795         0.0729 0.861   0.491
#> MAD:pam     6 0.807           0.803       0.897         0.0801 0.906   0.606
#> ATC:pam     6 0.737           0.754       0.875         0.1411 0.809   0.445
#> SD:hclust   6 0.622           0.631       0.788         0.0706 0.884   0.556
#> CV:hclust   6 0.673           0.720       0.812         0.0630 0.987   0.942
#> MAD:hclust  6 0.574           0.636       0.765         0.0622 0.998   0.991
#> ATC:hclust  6 0.609           0.552       0.763         0.0540 0.900   0.662

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>              n disease.state(p) k
#> SD:NMF      45           0.7373 2
#> CV:NMF      44           0.9518 2
#> MAD:NMF     39           0.1942 2
#> ATC:NMF     50           0.3544 2
#> SD:skmeans  50           0.6009 2
#> CV:skmeans  50           0.6009 2
#> MAD:skmeans 46           0.5293 2
#> ATC:skmeans 50           0.6188 2
#> SD:mclust   43           0.3591 2
#> CV:mclust    8               NA 2
#> MAD:mclust  34               NA 2
#> ATC:mclust  46           0.0814 2
#> SD:kmeans   34           0.6356 2
#> CV:kmeans   11               NA 2
#> MAD:kmeans  28           0.4447 2
#> ATC:kmeans  49           0.5510 2
#> SD:pam      48           0.3545 2
#> CV:pam      45           0.9331 2
#> MAD:pam     49           0.4201 2
#> ATC:pam     49           0.1522 2
#> SD:hclust   50           0.1728 2
#> CV:hclust   50           0.1728 2
#> MAD:hclust  50           0.1728 2
#> ATC:hclust  50           0.0548 2
test_to_known_factors(res_list, k = 3)
#>              n disease.state(p) k
#> SD:NMF      42           0.2569 3
#> CV:NMF      46           0.4297 3
#> MAD:NMF     47           0.2441 3
#> ATC:NMF     46           0.6995 3
#> SD:skmeans  50           0.8294 3
#> CV:skmeans  45           0.9636 3
#> MAD:skmeans 48           0.9124 3
#> ATC:skmeans 46           0.2934 3
#> SD:mclust   48           0.8704 3
#> CV:mclust   38           0.7099 3
#> MAD:mclust  49           0.7325 3
#> ATC:mclust  35           1.0000 3
#> SD:kmeans   40           0.8436 3
#> CV:kmeans   42           0.6620 3
#> MAD:kmeans  40           0.9905 3
#> ATC:kmeans  47           0.4686 3
#> SD:pam      33           0.6033 3
#> CV:pam      45           0.0472 3
#> MAD:pam     41           0.9405 3
#> ATC:pam     49           0.1624 3
#> SD:hclust   49           0.1638 3
#> CV:hclust   41           0.1925 3
#> MAD:hclust  49           0.1638 3
#> ATC:hclust  39           0.0883 3
test_to_known_factors(res_list, k = 4)
#>              n disease.state(p) k
#> SD:NMF      47           0.1481 4
#> CV:NMF      41           0.5058 4
#> MAD:NMF     39           0.2326 4
#> ATC:NMF     46           0.0982 4
#> SD:skmeans  32           0.4487 4
#> CV:skmeans  27           0.8630 4
#> MAD:skmeans 44           0.2951 4
#> ATC:skmeans 42           0.1656 4
#> SD:mclust   46           0.2447 4
#> CV:mclust   44           0.2182 4
#> MAD:mclust  48           0.2712 4
#> ATC:mclust  43           0.1042 4
#> SD:kmeans   44           0.3074 4
#> CV:kmeans   36           0.2058 4
#> MAD:kmeans  48           0.3058 4
#> ATC:kmeans  41           0.3333 4
#> SD:pam      36           0.5802 4
#> CV:pam      42           0.0410 4
#> MAD:pam     35           0.4217 4
#> ATC:pam     49           0.0518 4
#> SD:hclust   40           0.2156 4
#> CV:hclust   43           0.1915 4
#> MAD:hclust  49           0.2063 4
#> ATC:hclust  34           0.0906 4
test_to_known_factors(res_list, k = 5)
#>              n disease.state(p) k
#> SD:NMF      38           0.2775 5
#> CV:NMF      27           0.5599 5
#> MAD:NMF     45           0.0816 5
#> ATC:NMF     39           0.4078 5
#> SD:skmeans  35           0.1256 5
#> CV:skmeans  41           0.2371 5
#> MAD:skmeans 34           0.1727 5
#> ATC:skmeans 38           0.3292 5
#> SD:mclust   45           0.2069 5
#> CV:mclust   40           0.1499 5
#> MAD:mclust  47           0.2022 5
#> ATC:mclust  50           0.0981 5
#> SD:kmeans   43           0.2648 5
#> CV:kmeans   44           0.2423 5
#> MAD:kmeans  38           0.1928 5
#> ATC:kmeans  44           0.0741 5
#> SD:pam      48           0.0558 5
#> CV:pam      47           0.1086 5
#> MAD:pam     48           0.0499 5
#> ATC:pam     49           0.1016 5
#> SD:hclust   27           0.1604 5
#> CV:hclust   44           0.2491 5
#> MAD:hclust  46           0.2163 5
#> ATC:hclust  34           0.1073 5
test_to_known_factors(res_list, k = 6)
#>              n disease.state(p) k
#> SD:NMF      28           0.1872 6
#> CV:NMF      35           0.0671 6
#> MAD:NMF     28           0.0584 6
#> ATC:NMF     41           0.1202 6
#> SD:skmeans  36           0.2222 6
#> CV:skmeans  34           0.4315 6
#> MAD:skmeans 26           0.0609 6
#> ATC:skmeans 36           0.5561 6
#> SD:mclust   39           0.1989 6
#> CV:mclust   26           0.1337 6
#> MAD:mclust  44           0.0521 6
#> ATC:mclust  46           0.0421 6
#> SD:kmeans   37           0.1813 6
#> CV:kmeans   47           0.2091 6
#> MAD:kmeans  37           0.1652 6
#> ATC:kmeans  30           0.0342 6
#> SD:pam      46           0.2157 6
#> CV:pam      42           0.2315 6
#> MAD:pam     48           0.1283 6
#> ATC:pam     47           0.1182 6
#> SD:hclust   39           0.2293 6
#> CV:hclust   45           0.2821 6
#> MAD:hclust  41           0.1488 6
#> ATC:hclust  30           0.0360 6

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.640           0.884       0.922         0.2442 0.850   0.850
#> 3 3 0.445           0.804       0.873         0.9190 0.752   0.708
#> 4 4 0.430           0.592       0.769         0.4282 0.718   0.532
#> 5 5 0.508           0.457       0.668         0.0986 0.868   0.603
#> 6 6 0.622           0.631       0.788         0.0706 0.884   0.556

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     1  0.4939      0.894 0.892 0.108
#> GSM198622     1  0.0000      0.916 1.000 0.000
#> GSM198623     1  0.0376      0.916 0.996 0.004
#> GSM198626     1  0.0000      0.916 1.000 0.000
#> GSM198627     1  0.0000      0.916 1.000 0.000
#> GSM198628     1  0.0000      0.916 1.000 0.000
#> GSM198629     1  0.0000      0.916 1.000 0.000
#> GSM198630     1  0.0000      0.916 1.000 0.000
#> GSM198631     1  0.0000      0.916 1.000 0.000
#> GSM198632     1  0.3733      0.905 0.928 0.072
#> GSM198633     1  0.1843      0.916 0.972 0.028
#> GSM198634     1  0.0000      0.916 1.000 0.000
#> GSM198635     1  0.6623      0.841 0.828 0.172
#> GSM198636     1  0.0000      0.916 1.000 0.000
#> GSM198639     1  0.3879      0.903 0.924 0.076
#> GSM198641     1  0.2948      0.907 0.948 0.052
#> GSM198642     1  0.0000      0.916 1.000 0.000
#> GSM198643     1  0.0376      0.916 0.996 0.004
#> GSM198644     1  0.7453      0.778 0.788 0.212
#> GSM198645     1  0.3733      0.905 0.928 0.072
#> GSM198649     2  0.0000      1.000 0.000 1.000
#> GSM198651     1  0.4161      0.902 0.916 0.084
#> GSM198653     1  0.9286      0.648 0.656 0.344
#> GSM198654     1  0.8016      0.783 0.756 0.244
#> GSM198655     1  0.1633      0.917 0.976 0.024
#> GSM198656     1  0.0376      0.917 0.996 0.004
#> GSM198657     1  0.7883      0.790 0.764 0.236
#> GSM198658     1  0.7950      0.786 0.760 0.240
#> GSM198659     1  0.3584      0.897 0.932 0.068
#> GSM198660     1  0.3114      0.911 0.944 0.056
#> GSM198662     1  0.7883      0.790 0.764 0.236
#> GSM198663     1  0.3274      0.896 0.940 0.060
#> GSM198664     1  0.3114      0.910 0.944 0.056
#> GSM198665     1  0.7674      0.799 0.776 0.224
#> GSM198616     1  0.0376      0.916 0.996 0.004
#> GSM198617     1  0.3879      0.903 0.924 0.076
#> GSM198619     1  0.0376      0.916 0.996 0.004
#> GSM198620     2  0.0000      1.000 0.000 1.000
#> GSM198621     1  0.3879      0.903 0.924 0.076
#> GSM198624     1  0.0376      0.916 0.996 0.004
#> GSM198625     1  0.0000      0.916 1.000 0.000
#> GSM198637     1  0.0376      0.916 0.996 0.004
#> GSM198638     1  0.1843      0.916 0.972 0.028
#> GSM198640     1  0.3733      0.905 0.928 0.072
#> GSM198646     2  0.0000      1.000 0.000 1.000
#> GSM198647     2  0.0000      1.000 0.000 1.000
#> GSM198648     1  0.4022      0.893 0.920 0.080
#> GSM198650     1  0.9044      0.683 0.680 0.320
#> GSM198652     1  0.9248      0.654 0.660 0.340
#> GSM198661     1  0.7950      0.787 0.760 0.240

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     1  0.5426      0.831 0.820 0.092 0.088
#> GSM198622     1  0.5138      0.745 0.748 0.252 0.000
#> GSM198623     1  0.0237      0.867 0.996 0.004 0.000
#> GSM198626     1  0.0475      0.865 0.992 0.004 0.004
#> GSM198627     1  0.0892      0.866 0.980 0.020 0.000
#> GSM198628     1  0.0475      0.865 0.992 0.004 0.004
#> GSM198629     1  0.0475      0.865 0.992 0.004 0.004
#> GSM198630     1  0.0475      0.865 0.992 0.004 0.004
#> GSM198631     1  0.0475      0.865 0.992 0.004 0.004
#> GSM198632     1  0.4288      0.850 0.872 0.060 0.068
#> GSM198633     1  0.6025      0.753 0.740 0.232 0.028
#> GSM198634     1  0.5138      0.745 0.748 0.252 0.000
#> GSM198635     1  0.6902      0.782 0.732 0.100 0.168
#> GSM198636     1  0.3752      0.825 0.856 0.144 0.000
#> GSM198639     1  0.2356      0.860 0.928 0.000 0.072
#> GSM198641     2  0.1411      0.767 0.036 0.964 0.000
#> GSM198642     1  0.0661      0.866 0.988 0.008 0.004
#> GSM198643     1  0.0000      0.866 1.000 0.000 0.000
#> GSM198644     2  0.7453      0.621 0.152 0.700 0.148
#> GSM198645     1  0.4288      0.850 0.872 0.060 0.068
#> GSM198649     3  0.0237      1.000 0.004 0.000 0.996
#> GSM198651     2  0.2681      0.767 0.040 0.932 0.028
#> GSM198653     2  0.5580      0.589 0.008 0.736 0.256
#> GSM198654     1  0.5420      0.778 0.752 0.008 0.240
#> GSM198655     1  0.4748      0.823 0.832 0.144 0.024
#> GSM198656     1  0.0848      0.867 0.984 0.008 0.008
#> GSM198657     1  0.5335      0.784 0.760 0.008 0.232
#> GSM198658     1  0.5378      0.782 0.756 0.008 0.236
#> GSM198659     2  0.5580      0.507 0.256 0.736 0.008
#> GSM198660     1  0.6835      0.679 0.676 0.284 0.040
#> GSM198662     1  0.5335      0.784 0.760 0.008 0.232
#> GSM198663     2  0.1163      0.760 0.028 0.972 0.000
#> GSM198664     1  0.7319      0.390 0.548 0.420 0.032
#> GSM198665     1  0.5202      0.792 0.772 0.008 0.220
#> GSM198616     1  0.0000      0.866 1.000 0.000 0.000
#> GSM198617     1  0.2356      0.860 0.928 0.000 0.072
#> GSM198619     1  0.0000      0.866 1.000 0.000 0.000
#> GSM198620     3  0.0237      1.000 0.004 0.000 0.996
#> GSM198621     1  0.2356      0.860 0.928 0.000 0.072
#> GSM198624     1  0.0237      0.866 0.996 0.004 0.000
#> GSM198625     1  0.0475      0.865 0.992 0.004 0.004
#> GSM198637     1  0.0000      0.866 1.000 0.000 0.000
#> GSM198638     1  0.6025      0.753 0.740 0.232 0.028
#> GSM198640     1  0.4288      0.850 0.872 0.060 0.068
#> GSM198646     3  0.0237      1.000 0.004 0.000 0.996
#> GSM198647     3  0.0237      1.000 0.004 0.000 0.996
#> GSM198648     2  0.0424      0.755 0.008 0.992 0.000
#> GSM198650     1  0.6075      0.698 0.676 0.008 0.316
#> GSM198652     2  0.5848      0.581 0.012 0.720 0.268
#> GSM198661     1  0.5378      0.781 0.756 0.008 0.236

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     1  0.5993     0.6218 0.684 0.088 0.224 0.004
#> GSM198622     1  0.6762     0.6328 0.680 0.164 0.040 0.116
#> GSM198623     3  0.4605     0.5468 0.336 0.000 0.664 0.000
#> GSM198626     1  0.0336     0.6985 0.992 0.000 0.000 0.008
#> GSM198627     1  0.0804     0.6999 0.980 0.008 0.000 0.012
#> GSM198628     1  0.0927     0.6965 0.976 0.000 0.016 0.008
#> GSM198629     1  0.0657     0.6999 0.984 0.000 0.012 0.004
#> GSM198630     1  0.0336     0.6985 0.992 0.000 0.000 0.008
#> GSM198631     1  0.0376     0.6993 0.992 0.000 0.004 0.004
#> GSM198632     1  0.5070     0.6524 0.748 0.060 0.192 0.000
#> GSM198633     1  0.7433     0.6307 0.648 0.144 0.096 0.112
#> GSM198634     1  0.6762     0.6328 0.680 0.164 0.040 0.116
#> GSM198635     1  0.6538     0.6011 0.676 0.100 0.200 0.024
#> GSM198636     3  0.7999     0.3696 0.364 0.088 0.484 0.064
#> GSM198639     3  0.4989     0.0845 0.472 0.000 0.528 0.000
#> GSM198641     2  0.1356     0.7617 0.032 0.960 0.000 0.008
#> GSM198642     3  0.4072     0.6091 0.252 0.000 0.748 0.000
#> GSM198643     1  0.4222     0.5161 0.728 0.000 0.272 0.000
#> GSM198644     2  0.7245     0.6089 0.072 0.652 0.100 0.176
#> GSM198645     1  0.5791     0.5491 0.656 0.060 0.284 0.000
#> GSM198649     4  0.3649     1.0000 0.000 0.000 0.204 0.796
#> GSM198651     2  0.2644     0.7570 0.032 0.908 0.000 0.060
#> GSM198653     2  0.5664     0.6309 0.000 0.720 0.124 0.156
#> GSM198654     3  0.0188     0.6183 0.000 0.000 0.996 0.004
#> GSM198655     3  0.8066     0.3870 0.344 0.088 0.496 0.072
#> GSM198656     3  0.4040     0.6121 0.248 0.000 0.752 0.000
#> GSM198657     3  0.0188     0.6259 0.004 0.000 0.996 0.000
#> GSM198658     3  0.0376     0.6233 0.004 0.000 0.992 0.004
#> GSM198659     2  0.7204     0.4892 0.176 0.652 0.060 0.112
#> GSM198660     1  0.9289     0.3371 0.412 0.200 0.276 0.112
#> GSM198662     3  0.0188     0.6262 0.004 0.000 0.996 0.000
#> GSM198663     2  0.2589     0.7201 0.000 0.884 0.000 0.116
#> GSM198664     1  0.8618     0.3354 0.456 0.336 0.096 0.112
#> GSM198665     3  0.1557     0.6400 0.056 0.000 0.944 0.000
#> GSM198616     1  0.4830     0.2058 0.608 0.000 0.392 0.000
#> GSM198617     3  0.4999     0.0238 0.492 0.000 0.508 0.000
#> GSM198619     1  0.4830     0.2058 0.608 0.000 0.392 0.000
#> GSM198620     4  0.3649     1.0000 0.000 0.000 0.204 0.796
#> GSM198621     3  0.4999     0.0238 0.492 0.000 0.508 0.000
#> GSM198624     1  0.0817     0.6998 0.976 0.000 0.024 0.000
#> GSM198625     1  0.0336     0.6985 0.992 0.000 0.000 0.008
#> GSM198637     1  0.4222     0.5161 0.728 0.000 0.272 0.000
#> GSM198638     1  0.7433     0.6307 0.648 0.144 0.096 0.112
#> GSM198640     1  0.5070     0.6524 0.748 0.060 0.192 0.000
#> GSM198646     4  0.3649     1.0000 0.000 0.000 0.204 0.796
#> GSM198647     4  0.3649     1.0000 0.000 0.000 0.204 0.796
#> GSM198648     2  0.0336     0.7580 0.000 0.992 0.000 0.008
#> GSM198650     3  0.4359     0.5497 0.084 0.000 0.816 0.100
#> GSM198652     2  0.5859     0.6249 0.000 0.704 0.140 0.156
#> GSM198661     3  0.0000     0.6222 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     5  0.7171    0.01815 0.384 0.028 0.196 0.000 0.392
#> GSM198622     5  0.4954    0.44659 0.352 0.020 0.012 0.000 0.616
#> GSM198623     3  0.4366    0.48302 0.320 0.000 0.664 0.000 0.016
#> GSM198626     1  0.0324    0.51900 0.992 0.000 0.000 0.004 0.004
#> GSM198627     1  0.0510    0.51099 0.984 0.000 0.000 0.000 0.016
#> GSM198628     1  0.0994    0.51218 0.972 0.004 0.004 0.004 0.016
#> GSM198629     1  0.0404    0.52182 0.988 0.000 0.012 0.000 0.000
#> GSM198630     1  0.0324    0.51900 0.992 0.000 0.000 0.004 0.004
#> GSM198631     1  0.0324    0.52086 0.992 0.000 0.004 0.000 0.004
#> GSM198632     1  0.6366   -0.08333 0.440 0.000 0.164 0.000 0.396
#> GSM198633     5  0.5759    0.45158 0.328 0.016 0.068 0.000 0.588
#> GSM198634     5  0.5029    0.43101 0.376 0.020 0.012 0.000 0.592
#> GSM198635     5  0.7097    0.32216 0.376 0.024 0.168 0.004 0.428
#> GSM198636     5  0.8571   -0.00262 0.168 0.092 0.152 0.096 0.492
#> GSM198639     3  0.6410    0.12399 0.284 0.000 0.504 0.000 0.212
#> GSM198641     2  0.2389    0.76549 0.004 0.880 0.000 0.000 0.116
#> GSM198642     3  0.3942    0.57466 0.232 0.000 0.748 0.000 0.020
#> GSM198643     1  0.6618    0.18195 0.452 0.000 0.244 0.000 0.304
#> GSM198644     2  0.6248    0.61486 0.008 0.660 0.044 0.164 0.124
#> GSM198645     1  0.6725   -0.02785 0.400 0.000 0.256 0.000 0.344
#> GSM198649     4  0.1965    1.00000 0.000 0.000 0.096 0.904 0.000
#> GSM198651     2  0.1864    0.75609 0.004 0.924 0.000 0.004 0.068
#> GSM198653     2  0.4473    0.69155 0.000 0.768 0.112 0.116 0.004
#> GSM198654     3  0.0613    0.66061 0.000 0.004 0.984 0.004 0.008
#> GSM198655     5  0.8661   -0.01193 0.152 0.108 0.164 0.092 0.484
#> GSM198656     3  0.3912    0.57843 0.228 0.000 0.752 0.000 0.020
#> GSM198657     3  0.0162    0.67651 0.004 0.000 0.996 0.000 0.000
#> GSM198658     3  0.0324    0.67362 0.000 0.000 0.992 0.004 0.004
#> GSM198659     2  0.5886    0.30304 0.040 0.508 0.032 0.000 0.420
#> GSM198660     5  0.7604    0.37977 0.228 0.068 0.248 0.000 0.456
#> GSM198662     3  0.0162    0.67611 0.000 0.000 0.996 0.000 0.004
#> GSM198663     2  0.3210    0.72161 0.000 0.788 0.000 0.000 0.212
#> GSM198664     5  0.7418    0.41078 0.232 0.204 0.068 0.000 0.496
#> GSM198665     3  0.1549    0.66504 0.016 0.000 0.944 0.000 0.040
#> GSM198616     1  0.6718    0.09488 0.384 0.000 0.368 0.000 0.248
#> GSM198617     3  0.6510    0.08856 0.284 0.000 0.484 0.000 0.232
#> GSM198619     1  0.6718    0.09488 0.384 0.000 0.368 0.000 0.248
#> GSM198620     4  0.1965    1.00000 0.000 0.000 0.096 0.904 0.000
#> GSM198621     3  0.6510    0.08856 0.284 0.000 0.484 0.000 0.232
#> GSM198624     1  0.1012    0.51578 0.968 0.000 0.020 0.000 0.012
#> GSM198625     1  0.0324    0.51900 0.992 0.000 0.000 0.004 0.004
#> GSM198637     1  0.6618    0.18195 0.452 0.000 0.244 0.000 0.304
#> GSM198638     5  0.5759    0.45158 0.328 0.016 0.068 0.000 0.588
#> GSM198640     1  0.6366   -0.08333 0.440 0.000 0.164 0.000 0.396
#> GSM198646     4  0.1965    1.00000 0.000 0.000 0.096 0.904 0.000
#> GSM198647     4  0.1965    1.00000 0.000 0.000 0.096 0.904 0.000
#> GSM198648     2  0.1908    0.76725 0.000 0.908 0.000 0.000 0.092
#> GSM198650     3  0.6414    0.18646 0.000 0.032 0.500 0.084 0.384
#> GSM198652     2  0.4657    0.68567 0.000 0.752 0.128 0.116 0.004
#> GSM198661     3  0.0000    0.67410 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     5  0.4046     0.6226 0.068 0.004 0.176 0.000 0.752 0.000
#> GSM198622     5  0.2733     0.6367 0.080 0.056 0.000 0.000 0.864 0.000
#> GSM198623     3  0.4755     0.5476 0.244 0.000 0.664 0.000 0.088 0.004
#> GSM198626     1  0.1092     0.9335 0.960 0.000 0.000 0.000 0.020 0.020
#> GSM198627     1  0.0922     0.9271 0.968 0.004 0.000 0.000 0.024 0.004
#> GSM198628     1  0.1563     0.9119 0.932 0.000 0.000 0.000 0.012 0.056
#> GSM198629     1  0.2002     0.8979 0.908 0.000 0.012 0.000 0.076 0.004
#> GSM198630     1  0.1092     0.9335 0.960 0.000 0.000 0.000 0.020 0.020
#> GSM198631     1  0.1674     0.9088 0.924 0.000 0.004 0.000 0.068 0.004
#> GSM198632     5  0.4308     0.6332 0.120 0.000 0.152 0.000 0.728 0.000
#> GSM198633     5  0.3557     0.6517 0.056 0.056 0.056 0.000 0.832 0.000
#> GSM198634     5  0.3254     0.6187 0.124 0.056 0.000 0.000 0.820 0.000
#> GSM198635     5  0.5182     0.5812 0.140 0.020 0.144 0.008 0.688 0.000
#> GSM198636     6  0.1124     0.7221 0.036 0.008 0.000 0.000 0.000 0.956
#> GSM198639     3  0.5253     0.0204 0.084 0.000 0.504 0.000 0.408 0.004
#> GSM198641     2  0.2660     0.7111 0.000 0.868 0.000 0.000 0.048 0.084
#> GSM198642     3  0.4151     0.6175 0.164 0.000 0.748 0.000 0.084 0.004
#> GSM198643     5  0.5516     0.4471 0.160 0.000 0.244 0.000 0.588 0.008
#> GSM198644     2  0.6219     0.5040 0.008 0.568 0.020 0.100 0.024 0.280
#> GSM198645     5  0.4777     0.5509 0.088 0.000 0.248 0.000 0.660 0.004
#> GSM198649     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198651     2  0.2357     0.6956 0.000 0.872 0.000 0.000 0.012 0.116
#> GSM198653     2  0.4787     0.6547 0.004 0.752 0.104 0.100 0.016 0.024
#> GSM198654     3  0.0964     0.6486 0.000 0.004 0.968 0.016 0.012 0.000
#> GSM198655     6  0.1528     0.7265 0.028 0.016 0.012 0.000 0.000 0.944
#> GSM198656     3  0.4117     0.6201 0.160 0.000 0.752 0.000 0.084 0.004
#> GSM198657     3  0.0146     0.6798 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM198658     3  0.0622     0.6762 0.000 0.000 0.980 0.008 0.012 0.000
#> GSM198659     2  0.4297     0.3018 0.000 0.532 0.012 0.004 0.452 0.000
#> GSM198660     5  0.4697     0.4801 0.008 0.084 0.224 0.000 0.684 0.000
#> GSM198662     3  0.0363     0.6806 0.000 0.000 0.988 0.000 0.012 0.000
#> GSM198663     2  0.2300     0.6675 0.000 0.856 0.000 0.000 0.144 0.000
#> GSM198664     5  0.4173     0.4258 0.012 0.212 0.044 0.000 0.732 0.000
#> GSM198665     3  0.1285     0.6771 0.000 0.000 0.944 0.000 0.052 0.004
#> GSM198616     5  0.5792     0.1434 0.144 0.000 0.368 0.000 0.480 0.008
#> GSM198617     3  0.5272    -0.0360 0.084 0.000 0.484 0.000 0.428 0.004
#> GSM198619     5  0.5792     0.1434 0.144 0.000 0.368 0.000 0.480 0.008
#> GSM198620     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198621     3  0.5272    -0.0360 0.084 0.000 0.484 0.000 0.428 0.004
#> GSM198624     1  0.2393     0.8742 0.884 0.000 0.020 0.000 0.092 0.004
#> GSM198625     1  0.1003     0.9318 0.964 0.000 0.000 0.000 0.016 0.020
#> GSM198637     5  0.5516     0.4471 0.160 0.000 0.244 0.000 0.588 0.008
#> GSM198638     5  0.3557     0.6517 0.056 0.056 0.056 0.000 0.832 0.000
#> GSM198640     5  0.4308     0.6332 0.120 0.000 0.152 0.000 0.728 0.000
#> GSM198646     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198647     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198648     2  0.2250     0.7134 0.000 0.896 0.000 0.000 0.064 0.040
#> GSM198650     6  0.6426     0.4703 0.012 0.020 0.316 0.080 0.036 0.536
#> GSM198652     2  0.5326     0.6428 0.004 0.720 0.112 0.100 0.032 0.032
#> GSM198661     3  0.0260     0.6780 0.000 0.000 0.992 0.000 0.008 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> SD:hclust 50            0.173 2
#> SD:hclust 49            0.164 3
#> SD:hclust 40            0.216 4
#> SD:hclust 27            0.160 5
#> SD:hclust 39            0.229 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.324           0.510       0.778         0.4616 0.589   0.589
#> 3 3 0.399           0.599       0.785         0.4007 0.664   0.464
#> 4 4 0.546           0.640       0.783         0.1191 0.891   0.698
#> 5 5 0.635           0.682       0.800         0.0722 0.842   0.517
#> 6 6 0.708           0.571       0.706         0.0531 0.882   0.520

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     1  0.9393    -0.4826 0.644 0.356
#> GSM198622     1  0.9988     0.6279 0.520 0.480
#> GSM198623     1  0.8909     0.6500 0.692 0.308
#> GSM198626     1  0.9850     0.6549 0.572 0.428
#> GSM198627     1  0.9988     0.6279 0.520 0.480
#> GSM198628     1  0.9988     0.6279 0.520 0.480
#> GSM198629     1  0.9795     0.6591 0.584 0.416
#> GSM198630     1  0.9977     0.6327 0.528 0.472
#> GSM198631     1  0.9977     0.6327 0.528 0.472
#> GSM198632     1  0.9635     0.6656 0.612 0.388
#> GSM198633     1  0.9580     0.6648 0.620 0.380
#> GSM198634     1  0.9977     0.6327 0.528 0.472
#> GSM198635     1  0.9988     0.6299 0.520 0.480
#> GSM198636     2  0.9129    -0.3960 0.328 0.672
#> GSM198639     1  0.0938     0.4976 0.988 0.012
#> GSM198641     2  0.2043     0.3169 0.032 0.968
#> GSM198642     1  0.9833     0.6519 0.576 0.424
#> GSM198643     1  0.9661     0.6653 0.608 0.392
#> GSM198644     2  0.9754     0.7058 0.408 0.592
#> GSM198645     1  0.7139     0.6108 0.804 0.196
#> GSM198649     2  0.9988     0.6989 0.480 0.520
#> GSM198651     2  0.6531     0.5604 0.168 0.832
#> GSM198653     2  0.9896     0.7106 0.440 0.560
#> GSM198654     1  0.6531     0.1040 0.832 0.168
#> GSM198655     1  0.9522    -0.4662 0.628 0.372
#> GSM198656     1  0.1843     0.5091 0.972 0.028
#> GSM198657     1  0.0376     0.4894 0.996 0.004
#> GSM198658     1  0.1414     0.4589 0.980 0.020
#> GSM198659     2  0.9522     0.7079 0.372 0.628
#> GSM198660     1  0.1633     0.4733 0.976 0.024
#> GSM198662     1  0.1184     0.4639 0.984 0.016
#> GSM198663     2  0.6148     0.5694 0.152 0.848
#> GSM198664     2  0.9833     0.1754 0.424 0.576
#> GSM198665     1  0.1414     0.4589 0.980 0.020
#> GSM198616     1  0.9608     0.6657 0.616 0.384
#> GSM198617     1  0.1414     0.4589 0.980 0.020
#> GSM198619     1  0.7056     0.6074 0.808 0.192
#> GSM198620     2  0.9977     0.7033 0.472 0.528
#> GSM198621     1  0.0938     0.4976 0.988 0.012
#> GSM198624     1  0.9754     0.6616 0.592 0.408
#> GSM198625     1  0.9988     0.6279 0.520 0.480
#> GSM198637     1  0.9661     0.6653 0.608 0.392
#> GSM198638     1  0.5737     0.5288 0.864 0.136
#> GSM198640     1  0.9580     0.6656 0.620 0.380
#> GSM198646     2  0.9977     0.7033 0.472 0.528
#> GSM198647     2  0.9988     0.6989 0.480 0.520
#> GSM198648     2  0.8813     0.6785 0.300 0.700
#> GSM198650     1  0.7376    -0.0317 0.792 0.208
#> GSM198652     2  0.9996     0.6958 0.488 0.512
#> GSM198661     1  0.0376     0.4894 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     3  0.6994   -0.15757 0.020 0.424 0.556
#> GSM198622     1  0.2496    0.72758 0.928 0.068 0.004
#> GSM198623     3  0.6215    0.10241 0.428 0.000 0.572
#> GSM198626     1  0.4293    0.77368 0.832 0.004 0.164
#> GSM198627     1  0.1399    0.76470 0.968 0.004 0.028
#> GSM198628     1  0.3918    0.77718 0.856 0.004 0.140
#> GSM198629     1  0.4178    0.76972 0.828 0.000 0.172
#> GSM198630     1  0.4110    0.77600 0.844 0.004 0.152
#> GSM198631     1  0.3879    0.77609 0.848 0.000 0.152
#> GSM198632     1  0.5291    0.69609 0.732 0.000 0.268
#> GSM198633     1  0.8587    0.50828 0.592 0.148 0.260
#> GSM198634     1  0.1031    0.76419 0.976 0.000 0.024
#> GSM198635     1  0.4409    0.63281 0.824 0.172 0.004
#> GSM198636     1  0.5982    0.51749 0.744 0.228 0.028
#> GSM198639     3  0.1267    0.75915 0.024 0.004 0.972
#> GSM198641     1  0.6509    0.00426 0.524 0.472 0.004
#> GSM198642     3  0.6308   -0.07935 0.492 0.000 0.508
#> GSM198643     1  0.5882    0.57082 0.652 0.000 0.348
#> GSM198644     2  0.5219    0.66890 0.016 0.788 0.196
#> GSM198645     3  0.4796    0.62818 0.220 0.000 0.780
#> GSM198649     2  0.6984    0.43731 0.020 0.560 0.420
#> GSM198651     2  0.4634    0.64588 0.164 0.824 0.012
#> GSM198653     2  0.2116    0.69855 0.040 0.948 0.012
#> GSM198654     3  0.2625    0.65452 0.000 0.084 0.916
#> GSM198655     2  0.6302    0.24965 0.000 0.520 0.480
#> GSM198656     3  0.3267    0.74186 0.116 0.000 0.884
#> GSM198657     3  0.2165    0.76119 0.064 0.000 0.936
#> GSM198658     3  0.1182    0.74899 0.012 0.012 0.976
#> GSM198659     2  0.2845    0.69687 0.068 0.920 0.012
#> GSM198660     3  0.2878    0.75057 0.096 0.000 0.904
#> GSM198662     3  0.0592    0.75465 0.012 0.000 0.988
#> GSM198663     2  0.4228    0.66018 0.148 0.844 0.008
#> GSM198664     2  0.9137    0.39419 0.276 0.536 0.188
#> GSM198665     3  0.1337    0.74622 0.012 0.016 0.972
#> GSM198616     1  0.5431    0.67943 0.716 0.000 0.284
#> GSM198617     3  0.1482    0.74548 0.012 0.020 0.968
#> GSM198619     3  0.5115    0.60223 0.228 0.004 0.768
#> GSM198620     2  0.5503    0.64444 0.020 0.772 0.208
#> GSM198621     3  0.1267    0.75915 0.024 0.004 0.972
#> GSM198624     1  0.3551    0.78167 0.868 0.000 0.132
#> GSM198625     1  0.1170    0.76015 0.976 0.008 0.016
#> GSM198637     1  0.4702    0.72786 0.788 0.000 0.212
#> GSM198638     3  0.9636    0.17076 0.248 0.284 0.468
#> GSM198640     1  0.5397    0.68267 0.720 0.000 0.280
#> GSM198646     2  0.6973    0.44422 0.020 0.564 0.416
#> GSM198647     2  0.7075    0.30191 0.020 0.492 0.488
#> GSM198648     2  0.2537    0.68938 0.080 0.920 0.000
#> GSM198650     3  0.3482    0.59939 0.000 0.128 0.872
#> GSM198652     2  0.5318    0.66722 0.016 0.780 0.204
#> GSM198661     3  0.2165    0.76119 0.064 0.000 0.936

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     3  0.8187    0.11285 0.020 0.276 0.460 0.244
#> GSM198622     1  0.6697    0.67057 0.688 0.176 0.072 0.064
#> GSM198623     3  0.3345    0.70508 0.124 0.012 0.860 0.004
#> GSM198626     1  0.1211    0.77396 0.960 0.000 0.040 0.000
#> GSM198627     1  0.0672    0.76539 0.984 0.008 0.000 0.008
#> GSM198628     1  0.1443    0.76729 0.960 0.004 0.028 0.008
#> GSM198629     1  0.3143    0.77789 0.888 0.024 0.080 0.008
#> GSM198630     1  0.1443    0.76729 0.960 0.004 0.028 0.008
#> GSM198631     1  0.1443    0.76729 0.960 0.004 0.028 0.008
#> GSM198632     1  0.7307    0.68597 0.636 0.096 0.204 0.064
#> GSM198633     2  0.8979   -0.04813 0.256 0.420 0.256 0.068
#> GSM198634     1  0.6521    0.70796 0.712 0.128 0.100 0.060
#> GSM198635     2  0.7796   -0.11506 0.404 0.464 0.072 0.060
#> GSM198636     1  0.3523    0.66489 0.856 0.112 0.000 0.032
#> GSM198639     3  0.3571    0.75234 0.024 0.028 0.876 0.072
#> GSM198641     2  0.1716    0.65388 0.064 0.936 0.000 0.000
#> GSM198642     3  0.4690    0.59122 0.268 0.004 0.720 0.008
#> GSM198643     1  0.7312    0.39716 0.484 0.040 0.416 0.060
#> GSM198644     2  0.5434    0.53720 0.004 0.696 0.040 0.260
#> GSM198645     3  0.3576    0.73002 0.048 0.028 0.880 0.044
#> GSM198649     4  0.2861    0.91733 0.000 0.016 0.096 0.888
#> GSM198651     2  0.2706    0.66712 0.020 0.900 0.000 0.080
#> GSM198653     2  0.3610    0.62822 0.000 0.800 0.000 0.200
#> GSM198654     3  0.3751    0.66748 0.000 0.004 0.800 0.196
#> GSM198655     3  0.7896    0.00437 0.004 0.324 0.428 0.244
#> GSM198656     3  0.1975    0.77287 0.016 0.000 0.936 0.048
#> GSM198657     3  0.1743    0.77309 0.004 0.000 0.940 0.056
#> GSM198658     3  0.2345    0.76026 0.000 0.000 0.900 0.100
#> GSM198659     2  0.3355    0.65245 0.004 0.836 0.000 0.160
#> GSM198660     3  0.2353    0.77539 0.012 0.008 0.924 0.056
#> GSM198662     3  0.2149    0.76530 0.000 0.000 0.912 0.088
#> GSM198663     2  0.2048    0.66462 0.008 0.928 0.000 0.064
#> GSM198664     2  0.4716    0.56213 0.028 0.820 0.084 0.068
#> GSM198665     3  0.2469    0.76096 0.000 0.000 0.892 0.108
#> GSM198616     1  0.6542    0.70766 0.672 0.040 0.224 0.064
#> GSM198617     3  0.3236    0.76164 0.004 0.028 0.880 0.088
#> GSM198619     3  0.3841    0.73153 0.048 0.032 0.868 0.052
#> GSM198620     4  0.3447    0.75540 0.000 0.128 0.020 0.852
#> GSM198621     3  0.3391    0.75844 0.020 0.028 0.884 0.068
#> GSM198624     1  0.3841    0.77350 0.852 0.024 0.108 0.016
#> GSM198625     1  0.0672    0.76539 0.984 0.008 0.000 0.008
#> GSM198637     1  0.7865    0.65060 0.592 0.140 0.200 0.068
#> GSM198638     3  0.7741    0.02043 0.052 0.424 0.448 0.076
#> GSM198640     1  0.7650    0.64324 0.588 0.096 0.252 0.064
#> GSM198646     4  0.2861    0.91733 0.000 0.016 0.096 0.888
#> GSM198647     4  0.2714    0.89558 0.000 0.004 0.112 0.884
#> GSM198648     2  0.3668    0.62926 0.004 0.808 0.000 0.188
#> GSM198650     3  0.3982    0.64849 0.000 0.004 0.776 0.220
#> GSM198652     2  0.5393    0.52290 0.000 0.688 0.044 0.268
#> GSM198661     3  0.1743    0.77309 0.004 0.000 0.940 0.056

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     5  0.6032     0.5880 0.004 0.044 0.140 0.136 0.676
#> GSM198622     5  0.5158     0.6181 0.212 0.064 0.000 0.020 0.704
#> GSM198623     3  0.4637     0.6764 0.076 0.000 0.728 0.000 0.196
#> GSM198626     1  0.1965     0.8303 0.924 0.000 0.024 0.000 0.052
#> GSM198627     1  0.1282     0.8476 0.952 0.000 0.000 0.004 0.044
#> GSM198628     1  0.0162     0.8588 0.996 0.000 0.004 0.000 0.000
#> GSM198629     1  0.3224     0.7064 0.824 0.000 0.016 0.000 0.160
#> GSM198630     1  0.0566     0.8602 0.984 0.000 0.012 0.000 0.004
#> GSM198631     1  0.0566     0.8602 0.984 0.000 0.012 0.000 0.004
#> GSM198632     5  0.4384     0.6808 0.228 0.000 0.044 0.000 0.728
#> GSM198633     5  0.4608     0.7159 0.052 0.064 0.056 0.020 0.808
#> GSM198634     5  0.4843     0.6131 0.256 0.028 0.000 0.020 0.696
#> GSM198635     5  0.5326     0.6348 0.136 0.140 0.000 0.016 0.708
#> GSM198636     1  0.3511     0.7498 0.848 0.068 0.000 0.012 0.072
#> GSM198639     3  0.4824     0.4824 0.004 0.000 0.596 0.020 0.380
#> GSM198641     2  0.2548     0.7517 0.004 0.876 0.000 0.004 0.116
#> GSM198642     3  0.5117     0.6320 0.240 0.000 0.672 0.000 0.088
#> GSM198643     5  0.5888     0.4661 0.136 0.000 0.288 0.000 0.576
#> GSM198644     2  0.5801     0.6529 0.012 0.712 0.056 0.080 0.140
#> GSM198645     3  0.4808     0.4434 0.024 0.000 0.576 0.000 0.400
#> GSM198649     4  0.1443     0.9847 0.000 0.004 0.044 0.948 0.004
#> GSM198651     2  0.2074     0.7452 0.000 0.920 0.000 0.036 0.044
#> GSM198653     2  0.1845     0.7514 0.000 0.928 0.000 0.056 0.016
#> GSM198654     3  0.2390     0.7336 0.000 0.004 0.908 0.044 0.044
#> GSM198655     2  0.7832     0.1758 0.012 0.392 0.384 0.088 0.124
#> GSM198656     3  0.2367     0.7873 0.020 0.000 0.904 0.004 0.072
#> GSM198657     3  0.1764     0.7901 0.008 0.000 0.928 0.000 0.064
#> GSM198658     3  0.0898     0.7760 0.000 0.000 0.972 0.020 0.008
#> GSM198659     2  0.2770     0.7503 0.000 0.880 0.000 0.044 0.076
#> GSM198660     3  0.2166     0.7879 0.004 0.000 0.912 0.012 0.072
#> GSM198662     3  0.1444     0.7899 0.000 0.000 0.948 0.012 0.040
#> GSM198663     2  0.2305     0.7453 0.000 0.896 0.000 0.012 0.092
#> GSM198664     2  0.4981     0.3072 0.000 0.560 0.004 0.024 0.412
#> GSM198665     3  0.1444     0.7759 0.000 0.000 0.948 0.012 0.040
#> GSM198616     5  0.4908     0.5781 0.320 0.000 0.044 0.000 0.636
#> GSM198617     3  0.4747     0.5563 0.000 0.000 0.636 0.032 0.332
#> GSM198619     5  0.5029    -0.0604 0.024 0.000 0.444 0.004 0.528
#> GSM198620     4  0.1278     0.9580 0.000 0.020 0.016 0.960 0.004
#> GSM198621     3  0.4819     0.5359 0.004 0.000 0.620 0.024 0.352
#> GSM198624     1  0.4768     0.1276 0.592 0.000 0.024 0.000 0.384
#> GSM198625     1  0.0932     0.8586 0.972 0.000 0.004 0.004 0.020
#> GSM198637     5  0.4239     0.7117 0.168 0.008 0.028 0.012 0.784
#> GSM198638     5  0.4660     0.6830 0.008 0.080 0.108 0.020 0.784
#> GSM198640     5  0.4064     0.7119 0.116 0.000 0.092 0.000 0.792
#> GSM198646     4  0.1443     0.9847 0.000 0.004 0.044 0.948 0.004
#> GSM198647     4  0.1569     0.9822 0.000 0.004 0.044 0.944 0.008
#> GSM198648     2  0.2645     0.7489 0.000 0.888 0.000 0.044 0.068
#> GSM198650     3  0.2929     0.7123 0.000 0.008 0.880 0.068 0.044
#> GSM198652     2  0.5550     0.6530 0.000 0.716 0.060 0.088 0.136
#> GSM198661     3  0.1764     0.7901 0.008 0.000 0.928 0.000 0.064

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     6  0.5279    -0.2182 0.000 0.004 0.000 0.096 0.356 0.544
#> GSM198622     5  0.4227     0.5892 0.052 0.016 0.008 0.000 0.764 0.160
#> GSM198623     6  0.5503    -0.4344 0.080 0.000 0.452 0.000 0.016 0.452
#> GSM198626     1  0.1588     0.8350 0.924 0.000 0.000 0.000 0.004 0.072
#> GSM198627     1  0.1434     0.8492 0.940 0.000 0.012 0.000 0.048 0.000
#> GSM198628     1  0.0767     0.8573 0.976 0.000 0.008 0.000 0.012 0.004
#> GSM198629     1  0.2994     0.7497 0.820 0.000 0.008 0.000 0.008 0.164
#> GSM198630     1  0.0146     0.8576 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM198631     1  0.0870     0.8556 0.972 0.000 0.012 0.000 0.012 0.004
#> GSM198632     6  0.4719    -0.4389 0.036 0.000 0.004 0.000 0.460 0.500
#> GSM198633     5  0.4075     0.5969 0.004 0.000 0.012 0.004 0.668 0.312
#> GSM198634     5  0.4886     0.6153 0.060 0.008 0.008 0.000 0.656 0.268
#> GSM198635     5  0.4517     0.6184 0.032 0.028 0.008 0.000 0.724 0.208
#> GSM198636     1  0.5021     0.6608 0.724 0.080 0.124 0.004 0.068 0.000
#> GSM198639     6  0.1332     0.5429 0.000 0.000 0.028 0.008 0.012 0.952
#> GSM198641     2  0.3566     0.7319 0.000 0.788 0.056 0.000 0.156 0.000
#> GSM198642     3  0.6383     0.4712 0.216 0.000 0.448 0.000 0.024 0.312
#> GSM198643     6  0.4988     0.2999 0.028 0.000 0.076 0.000 0.220 0.676
#> GSM198644     2  0.6956     0.5205 0.004 0.528 0.244 0.032 0.136 0.056
#> GSM198645     6  0.3048     0.4887 0.004 0.000 0.152 0.000 0.020 0.824
#> GSM198649     4  0.0291     0.9933 0.000 0.000 0.004 0.992 0.000 0.004
#> GSM198651     2  0.2295     0.7227 0.004 0.900 0.072 0.008 0.016 0.000
#> GSM198653     2  0.2118     0.7420 0.000 0.920 0.020 0.016 0.036 0.008
#> GSM198654     3  0.4695     0.7471 0.000 0.000 0.616 0.016 0.032 0.336
#> GSM198655     3  0.7496    -0.3993 0.004 0.368 0.380 0.028 0.104 0.116
#> GSM198656     3  0.3874     0.7471 0.008 0.000 0.704 0.000 0.012 0.276
#> GSM198657     3  0.3772     0.7535 0.000 0.000 0.692 0.004 0.008 0.296
#> GSM198658     3  0.3923     0.7657 0.000 0.000 0.620 0.000 0.008 0.372
#> GSM198659     2  0.3939     0.7259 0.000 0.760 0.024 0.016 0.196 0.004
#> GSM198660     3  0.3979     0.7684 0.000 0.000 0.628 0.000 0.012 0.360
#> GSM198662     3  0.3852     0.7672 0.000 0.000 0.612 0.004 0.000 0.384
#> GSM198663     2  0.3543     0.7082 0.000 0.756 0.016 0.004 0.224 0.000
#> GSM198664     5  0.4416    -0.0530 0.000 0.340 0.016 0.000 0.628 0.016
#> GSM198665     3  0.4561     0.7312 0.000 0.000 0.544 0.004 0.028 0.424
#> GSM198616     6  0.5446    -0.0423 0.176 0.000 0.000 0.000 0.256 0.568
#> GSM198617     6  0.1718     0.5354 0.000 0.000 0.044 0.008 0.016 0.932
#> GSM198619     6  0.3018     0.4141 0.012 0.000 0.004 0.000 0.168 0.816
#> GSM198620     4  0.0146     0.9909 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM198621     6  0.1268     0.5339 0.004 0.000 0.036 0.008 0.000 0.952
#> GSM198624     1  0.5202     0.4113 0.612 0.000 0.000 0.000 0.164 0.224
#> GSM198625     1  0.0632     0.8563 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM198637     5  0.4951     0.3641 0.036 0.004 0.008 0.000 0.480 0.472
#> GSM198638     5  0.4487     0.5443 0.000 0.004 0.024 0.004 0.608 0.360
#> GSM198640     5  0.4582     0.4463 0.008 0.000 0.024 0.000 0.552 0.416
#> GSM198646     4  0.0291     0.9933 0.000 0.000 0.004 0.992 0.000 0.004
#> GSM198647     4  0.0653     0.9846 0.000 0.000 0.004 0.980 0.004 0.012
#> GSM198648     2  0.3648     0.7249 0.000 0.788 0.016 0.028 0.168 0.000
#> GSM198650     3  0.5103     0.7172 0.000 0.000 0.576 0.028 0.040 0.356
#> GSM198652     2  0.6721     0.5563 0.004 0.568 0.212 0.028 0.128 0.060
#> GSM198661     3  0.3772     0.7535 0.000 0.000 0.692 0.004 0.008 0.296

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> SD:kmeans 34            0.636 2
#> SD:kmeans 40            0.844 3
#> SD:kmeans 44            0.307 4
#> SD:kmeans 43            0.265 5
#> SD:kmeans 37            0.181 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.509           0.848       0.914         0.5034 0.493   0.493
#> 3 3 0.747           0.875       0.934         0.3463 0.725   0.495
#> 4 4 0.603           0.496       0.712         0.1173 0.847   0.572
#> 5 5 0.665           0.580       0.756         0.0694 0.873   0.540
#> 6 6 0.694           0.586       0.766         0.0390 0.936   0.690

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     2  0.0000      0.857 0.000 1.000
#> GSM198622     1  0.0000      0.944 1.000 0.000
#> GSM198623     1  0.3431      0.890 0.936 0.064
#> GSM198626     1  0.0000      0.944 1.000 0.000
#> GSM198627     1  0.0000      0.944 1.000 0.000
#> GSM198628     1  0.0000      0.944 1.000 0.000
#> GSM198629     1  0.0000      0.944 1.000 0.000
#> GSM198630     1  0.0000      0.944 1.000 0.000
#> GSM198631     1  0.0000      0.944 1.000 0.000
#> GSM198632     1  0.0000      0.944 1.000 0.000
#> GSM198633     1  0.0672      0.939 0.992 0.008
#> GSM198634     1  0.0000      0.944 1.000 0.000
#> GSM198635     1  0.7453      0.720 0.788 0.212
#> GSM198636     1  0.7376      0.724 0.792 0.208
#> GSM198639     2  0.9170      0.652 0.332 0.668
#> GSM198641     1  0.7453      0.720 0.788 0.212
#> GSM198642     1  0.1633      0.926 0.976 0.024
#> GSM198643     1  0.0000      0.944 1.000 0.000
#> GSM198644     2  0.0000      0.857 0.000 1.000
#> GSM198645     1  0.6531      0.754 0.832 0.168
#> GSM198649     2  0.0000      0.857 0.000 1.000
#> GSM198651     2  0.6623      0.749 0.172 0.828
#> GSM198653     2  0.1184      0.852 0.016 0.984
#> GSM198654     2  0.0000      0.857 0.000 1.000
#> GSM198655     2  0.0000      0.857 0.000 1.000
#> GSM198656     2  0.8861      0.696 0.304 0.696
#> GSM198657     2  0.7453      0.795 0.212 0.788
#> GSM198658     2  0.7376      0.797 0.208 0.792
#> GSM198659     2  0.1633      0.850 0.024 0.976
#> GSM198660     2  0.7453      0.795 0.212 0.788
#> GSM198662     2  0.7453      0.795 0.212 0.788
#> GSM198663     2  0.6623      0.749 0.172 0.828
#> GSM198664     2  0.6438      0.758 0.164 0.836
#> GSM198665     2  0.7056      0.806 0.192 0.808
#> GSM198616     1  0.0000      0.944 1.000 0.000
#> GSM198617     2  0.7376      0.797 0.208 0.792
#> GSM198619     1  0.4562      0.856 0.904 0.096
#> GSM198620     2  0.0000      0.857 0.000 1.000
#> GSM198621     2  0.9087      0.665 0.324 0.676
#> GSM198624     1  0.0000      0.944 1.000 0.000
#> GSM198625     1  0.0000      0.944 1.000 0.000
#> GSM198637     1  0.0000      0.944 1.000 0.000
#> GSM198638     2  0.8499      0.750 0.276 0.724
#> GSM198640     1  0.0000      0.944 1.000 0.000
#> GSM198646     2  0.0000      0.857 0.000 1.000
#> GSM198647     2  0.0000      0.857 0.000 1.000
#> GSM198648     2  0.3274      0.833 0.060 0.940
#> GSM198650     2  0.0000      0.857 0.000 1.000
#> GSM198652     2  0.0000      0.857 0.000 1.000
#> GSM198661     2  0.7453      0.795 0.212 0.788

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     2  0.5115      0.752 0.004 0.768 0.228
#> GSM198622     1  0.0237      0.954 0.996 0.004 0.000
#> GSM198623     3  0.4555      0.782 0.200 0.000 0.800
#> GSM198626     1  0.0237      0.955 0.996 0.000 0.004
#> GSM198627     1  0.0237      0.954 0.996 0.004 0.000
#> GSM198628     1  0.0475      0.955 0.992 0.004 0.004
#> GSM198629     1  0.0237      0.955 0.996 0.000 0.004
#> GSM198630     1  0.0475      0.955 0.992 0.004 0.004
#> GSM198631     1  0.0475      0.955 0.992 0.004 0.004
#> GSM198632     1  0.0237      0.955 0.996 0.000 0.004
#> GSM198633     1  0.5331      0.753 0.792 0.024 0.184
#> GSM198634     1  0.0000      0.955 1.000 0.000 0.000
#> GSM198635     1  0.3686      0.835 0.860 0.140 0.000
#> GSM198636     1  0.5058      0.697 0.756 0.244 0.000
#> GSM198639     3  0.0237      0.923 0.004 0.000 0.996
#> GSM198641     2  0.4750      0.673 0.216 0.784 0.000
#> GSM198642     3  0.5244      0.724 0.240 0.004 0.756
#> GSM198643     1  0.2066      0.910 0.940 0.000 0.060
#> GSM198644     2  0.0237      0.890 0.000 0.996 0.004
#> GSM198645     3  0.2356      0.890 0.072 0.000 0.928
#> GSM198649     2  0.4750      0.767 0.000 0.784 0.216
#> GSM198651     2  0.0237      0.890 0.004 0.996 0.000
#> GSM198653     2  0.0237      0.890 0.000 0.996 0.004
#> GSM198654     3  0.0424      0.921 0.000 0.008 0.992
#> GSM198655     2  0.4452      0.734 0.000 0.808 0.192
#> GSM198656     3  0.1765      0.908 0.040 0.004 0.956
#> GSM198657     3  0.0000      0.924 0.000 0.000 1.000
#> GSM198658     3  0.0237      0.923 0.000 0.004 0.996
#> GSM198659     2  0.0237      0.890 0.004 0.996 0.000
#> GSM198660     3  0.0475      0.922 0.004 0.004 0.992
#> GSM198662     3  0.0000      0.924 0.000 0.000 1.000
#> GSM198663     2  0.0237      0.890 0.004 0.996 0.000
#> GSM198664     2  0.0424      0.889 0.008 0.992 0.000
#> GSM198665     3  0.0237      0.923 0.000 0.004 0.996
#> GSM198616     1  0.0424      0.953 0.992 0.000 0.008
#> GSM198617     3  0.0237      0.923 0.000 0.004 0.996
#> GSM198619     3  0.4399      0.798 0.188 0.000 0.812
#> GSM198620     2  0.0237      0.890 0.000 0.996 0.004
#> GSM198621     3  0.0000      0.924 0.000 0.000 1.000
#> GSM198624     1  0.0237      0.955 0.996 0.000 0.004
#> GSM198625     1  0.0237      0.954 0.996 0.004 0.000
#> GSM198637     1  0.0000      0.955 1.000 0.000 0.000
#> GSM198638     2  0.6019      0.678 0.012 0.700 0.288
#> GSM198640     1  0.1643      0.930 0.956 0.000 0.044
#> GSM198646     2  0.2261      0.866 0.000 0.932 0.068
#> GSM198647     2  0.5560      0.668 0.000 0.700 0.300
#> GSM198648     2  0.0237      0.890 0.004 0.996 0.000
#> GSM198650     3  0.4555      0.728 0.000 0.200 0.800
#> GSM198652     2  0.0237      0.890 0.000 0.996 0.004
#> GSM198661     3  0.0000      0.924 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     4  0.6187    0.12985 0.000 0.336 0.068 0.596
#> GSM198622     1  0.6696    0.38844 0.484 0.088 0.000 0.428
#> GSM198623     3  0.4610    0.63236 0.236 0.000 0.744 0.020
#> GSM198626     1  0.0336    0.81408 0.992 0.000 0.000 0.008
#> GSM198627     1  0.0188    0.81360 0.996 0.000 0.000 0.004
#> GSM198628     1  0.0000    0.81380 1.000 0.000 0.000 0.000
#> GSM198629     1  0.1557    0.80623 0.944 0.000 0.000 0.056
#> GSM198630     1  0.0000    0.81380 1.000 0.000 0.000 0.000
#> GSM198631     1  0.0000    0.81380 1.000 0.000 0.000 0.000
#> GSM198632     1  0.4477    0.67418 0.688 0.000 0.000 0.312
#> GSM198633     4  0.6925   -0.23510 0.080 0.380 0.012 0.528
#> GSM198634     1  0.5212    0.51433 0.572 0.008 0.000 0.420
#> GSM198635     2  0.7521    0.19424 0.184 0.420 0.000 0.396
#> GSM198636     1  0.3852    0.66876 0.808 0.180 0.000 0.012
#> GSM198639     4  0.4933    0.11721 0.000 0.000 0.432 0.568
#> GSM198641     2  0.5836    0.44126 0.056 0.640 0.000 0.304
#> GSM198642     3  0.4741    0.53232 0.328 0.000 0.668 0.004
#> GSM198643     1  0.5763    0.66244 0.712 0.000 0.132 0.156
#> GSM198644     2  0.2466    0.58065 0.004 0.900 0.000 0.096
#> GSM198645     3  0.4037    0.71534 0.040 0.000 0.824 0.136
#> GSM198649     4  0.7001    0.00044 0.000 0.420 0.116 0.464
#> GSM198651     2  0.1356    0.62597 0.008 0.960 0.000 0.032
#> GSM198653     2  0.0336    0.62746 0.000 0.992 0.000 0.008
#> GSM198654     3  0.1888    0.81089 0.000 0.016 0.940 0.044
#> GSM198655     2  0.7061    0.24994 0.008 0.604 0.204 0.184
#> GSM198656     3  0.1661    0.81680 0.052 0.000 0.944 0.004
#> GSM198657     3  0.0188    0.83342 0.000 0.000 0.996 0.004
#> GSM198658     3  0.0817    0.82945 0.000 0.000 0.976 0.024
#> GSM198659     2  0.0817    0.62564 0.000 0.976 0.000 0.024
#> GSM198660     3  0.1302    0.81704 0.000 0.000 0.956 0.044
#> GSM198662     3  0.0592    0.83183 0.000 0.000 0.984 0.016
#> GSM198663     2  0.4250    0.50344 0.000 0.724 0.000 0.276
#> GSM198664     2  0.5482    0.41025 0.000 0.608 0.024 0.368
#> GSM198665     3  0.1211    0.82074 0.000 0.000 0.960 0.040
#> GSM198616     1  0.4035    0.74158 0.804 0.000 0.020 0.176
#> GSM198617     4  0.4992    0.05723 0.000 0.000 0.476 0.524
#> GSM198619     4  0.7155    0.20811 0.168 0.000 0.292 0.540
#> GSM198620     2  0.5277    0.07202 0.000 0.532 0.008 0.460
#> GSM198621     4  0.4985    0.06103 0.000 0.000 0.468 0.532
#> GSM198624     1  0.1305    0.80934 0.960 0.000 0.004 0.036
#> GSM198625     1  0.0707    0.81109 0.980 0.000 0.000 0.020
#> GSM198637     4  0.5607   -0.52533 0.484 0.020 0.000 0.496
#> GSM198638     4  0.6796   -0.23931 0.004 0.384 0.088 0.524
#> GSM198640     1  0.6386    0.57622 0.572 0.004 0.064 0.360
#> GSM198646     2  0.6336   -0.03869 0.000 0.480 0.060 0.460
#> GSM198647     4  0.7292    0.13029 0.000 0.352 0.160 0.488
#> GSM198648     2  0.1302    0.62523 0.000 0.956 0.000 0.044
#> GSM198650     3  0.6313    0.38844 0.000 0.128 0.652 0.220
#> GSM198652     2  0.2131    0.60247 0.000 0.932 0.032 0.036
#> GSM198661     3  0.0188    0.83342 0.000 0.000 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     4  0.5340      0.600 0.000 0.324 0.020 0.620 0.036
#> GSM198622     5  0.4007      0.533 0.220 0.020 0.000 0.004 0.756
#> GSM198623     3  0.4778      0.667 0.184 0.000 0.744 0.044 0.028
#> GSM198626     1  0.0451      0.828 0.988 0.000 0.000 0.008 0.004
#> GSM198627     1  0.0609      0.825 0.980 0.000 0.000 0.000 0.020
#> GSM198628     1  0.0000      0.829 1.000 0.000 0.000 0.000 0.000
#> GSM198629     1  0.3912      0.679 0.804 0.000 0.000 0.108 0.088
#> GSM198630     1  0.0000      0.829 1.000 0.000 0.000 0.000 0.000
#> GSM198631     1  0.0162      0.828 0.996 0.000 0.004 0.000 0.000
#> GSM198632     5  0.6400      0.320 0.260 0.000 0.000 0.228 0.512
#> GSM198633     5  0.3307      0.495 0.004 0.080 0.012 0.040 0.864
#> GSM198634     5  0.4335      0.426 0.324 0.008 0.000 0.004 0.664
#> GSM198635     5  0.4439      0.408 0.056 0.176 0.000 0.008 0.760
#> GSM198636     1  0.3734      0.632 0.796 0.168 0.000 0.000 0.036
#> GSM198639     4  0.3301      0.506 0.000 0.000 0.080 0.848 0.072
#> GSM198641     2  0.4504      0.395 0.008 0.564 0.000 0.000 0.428
#> GSM198642     3  0.4838      0.513 0.332 0.004 0.640 0.008 0.016
#> GSM198643     5  0.7898      0.233 0.224 0.000 0.080 0.332 0.364
#> GSM198644     2  0.2220      0.658 0.008 0.920 0.004 0.052 0.016
#> GSM198645     3  0.6342      0.509 0.036 0.000 0.620 0.184 0.160
#> GSM198649     4  0.4909      0.583 0.000 0.380 0.032 0.588 0.000
#> GSM198651     2  0.3318      0.712 0.012 0.808 0.000 0.000 0.180
#> GSM198653     2  0.2408      0.754 0.000 0.892 0.000 0.016 0.092
#> GSM198654     3  0.2550      0.798 0.000 0.020 0.892 0.084 0.004
#> GSM198655     2  0.5743      0.401 0.032 0.708 0.112 0.136 0.012
#> GSM198656     3  0.1012      0.818 0.020 0.000 0.968 0.000 0.012
#> GSM198657     3  0.0162      0.823 0.000 0.000 0.996 0.000 0.004
#> GSM198658     3  0.1591      0.818 0.000 0.004 0.940 0.052 0.004
#> GSM198659     2  0.2769      0.747 0.000 0.876 0.000 0.032 0.092
#> GSM198660     3  0.1547      0.820 0.000 0.004 0.948 0.016 0.032
#> GSM198662     3  0.1121      0.821 0.000 0.000 0.956 0.044 0.000
#> GSM198663     2  0.4171      0.472 0.000 0.604 0.000 0.000 0.396
#> GSM198664     5  0.4791     -0.127 0.000 0.392 0.012 0.008 0.588
#> GSM198665     3  0.1991      0.809 0.000 0.004 0.916 0.076 0.004
#> GSM198616     1  0.6794     -0.165 0.368 0.000 0.000 0.344 0.288
#> GSM198617     4  0.3432      0.547 0.000 0.000 0.132 0.828 0.040
#> GSM198619     4  0.5115      0.215 0.052 0.000 0.020 0.696 0.232
#> GSM198620     4  0.4227      0.546 0.000 0.420 0.000 0.580 0.000
#> GSM198621     4  0.3202      0.535 0.004 0.000 0.080 0.860 0.056
#> GSM198624     1  0.3051      0.748 0.864 0.000 0.000 0.076 0.060
#> GSM198625     1  0.0794      0.818 0.972 0.000 0.000 0.000 0.028
#> GSM198637     5  0.5599      0.436 0.092 0.000 0.000 0.328 0.580
#> GSM198638     5  0.4863      0.415 0.000 0.140 0.028 0.076 0.756
#> GSM198640     5  0.6706      0.359 0.276 0.000 0.040 0.132 0.552
#> GSM198646     4  0.4455      0.566 0.000 0.404 0.008 0.588 0.000
#> GSM198647     4  0.4950      0.598 0.000 0.348 0.040 0.612 0.000
#> GSM198648     2  0.3098      0.738 0.000 0.836 0.000 0.016 0.148
#> GSM198650     3  0.6377      0.166 0.000 0.124 0.500 0.364 0.012
#> GSM198652     2  0.2036      0.711 0.000 0.928 0.008 0.028 0.036
#> GSM198661     3  0.0162      0.823 0.000 0.000 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     4  0.2547     0.7519 0.000 0.004 0.000 0.880 0.080 0.036
#> GSM198622     5  0.6384     0.5387 0.116 0.152 0.000 0.000 0.576 0.156
#> GSM198623     3  0.5031     0.6115 0.184 0.004 0.700 0.000 0.040 0.072
#> GSM198626     1  0.0458     0.8777 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM198627     1  0.1630     0.8578 0.940 0.016 0.000 0.000 0.020 0.024
#> GSM198628     1  0.0146     0.8793 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM198629     1  0.3398     0.6212 0.740 0.000 0.000 0.000 0.008 0.252
#> GSM198630     1  0.0000     0.8796 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198631     1  0.0146     0.8795 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM198632     6  0.5703     0.0435 0.160 0.000 0.000 0.000 0.412 0.428
#> GSM198633     5  0.2986     0.5770 0.000 0.104 0.000 0.012 0.852 0.032
#> GSM198634     5  0.6735     0.4322 0.244 0.092 0.000 0.000 0.500 0.164
#> GSM198635     5  0.6134     0.4245 0.016 0.332 0.000 0.000 0.468 0.184
#> GSM198636     1  0.4685     0.5476 0.680 0.252 0.000 0.000 0.032 0.036
#> GSM198639     6  0.4995     0.2734 0.000 0.000 0.036 0.320 0.032 0.612
#> GSM198641     2  0.2462     0.5853 0.004 0.860 0.000 0.000 0.132 0.004
#> GSM198642     3  0.5482     0.5375 0.264 0.004 0.620 0.000 0.080 0.032
#> GSM198643     6  0.5417     0.4286 0.092 0.004 0.068 0.000 0.152 0.684
#> GSM198644     2  0.5389     0.5987 0.012 0.652 0.000 0.236 0.032 0.068
#> GSM198645     3  0.6661     0.3097 0.032 0.000 0.476 0.012 0.284 0.196
#> GSM198649     4  0.0653     0.8285 0.000 0.012 0.004 0.980 0.000 0.004
#> GSM198651     2  0.1963     0.6701 0.004 0.924 0.000 0.044 0.016 0.012
#> GSM198653     2  0.3037     0.6941 0.000 0.808 0.000 0.176 0.016 0.000
#> GSM198654     3  0.3542     0.7511 0.000 0.016 0.836 0.068 0.012 0.068
#> GSM198655     2  0.7438     0.4397 0.020 0.516 0.084 0.236 0.040 0.104
#> GSM198656     3  0.1210     0.7816 0.008 0.008 0.960 0.000 0.020 0.004
#> GSM198657     3  0.0692     0.7801 0.000 0.000 0.976 0.000 0.020 0.004
#> GSM198658     3  0.2638     0.7685 0.000 0.012 0.888 0.020 0.012 0.068
#> GSM198659     2  0.4089     0.6448 0.000 0.696 0.000 0.264 0.040 0.000
#> GSM198660     3  0.1700     0.7824 0.000 0.012 0.936 0.000 0.024 0.028
#> GSM198662     3  0.1477     0.7816 0.000 0.000 0.940 0.008 0.004 0.048
#> GSM198663     2  0.2714     0.5905 0.000 0.848 0.000 0.012 0.136 0.004
#> GSM198664     2  0.4220    -0.1134 0.000 0.520 0.000 0.008 0.468 0.004
#> GSM198665     3  0.4125     0.7232 0.000 0.008 0.788 0.060 0.024 0.120
#> GSM198616     6  0.4050     0.4540 0.236 0.000 0.000 0.000 0.048 0.716
#> GSM198617     4  0.5682    -0.1262 0.000 0.000 0.048 0.456 0.052 0.444
#> GSM198619     6  0.3214     0.5272 0.008 0.000 0.004 0.152 0.016 0.820
#> GSM198620     4  0.0632     0.8218 0.000 0.024 0.000 0.976 0.000 0.000
#> GSM198621     6  0.5038     0.1618 0.000 0.000 0.048 0.372 0.016 0.564
#> GSM198624     1  0.2655     0.7855 0.848 0.008 0.000 0.000 0.004 0.140
#> GSM198625     1  0.0405     0.8777 0.988 0.008 0.000 0.000 0.004 0.000
#> GSM198637     6  0.4659     0.2787 0.024 0.032 0.000 0.000 0.288 0.656
#> GSM198638     5  0.3600     0.5521 0.000 0.116 0.004 0.028 0.820 0.032
#> GSM198640     5  0.5015     0.3101 0.128 0.004 0.008 0.008 0.700 0.152
#> GSM198646     4  0.0458     0.8273 0.000 0.016 0.000 0.984 0.000 0.000
#> GSM198647     4  0.0436     0.8242 0.000 0.000 0.004 0.988 0.004 0.004
#> GSM198648     2  0.3835     0.6714 0.000 0.748 0.000 0.204 0.048 0.000
#> GSM198650     3  0.7148     0.1495 0.000 0.032 0.400 0.324 0.032 0.212
#> GSM198652     2  0.5050     0.6100 0.000 0.676 0.004 0.224 0.028 0.068
#> GSM198661     3  0.0820     0.7809 0.000 0.000 0.972 0.000 0.016 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> SD:skmeans 50            0.601 2
#> SD:skmeans 50            0.829 3
#> SD:skmeans 32            0.449 4
#> SD:skmeans 35            0.126 5
#> SD:skmeans 36            0.222 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.590           0.788       0.897         0.4623 0.497   0.497
#> 3 3 0.500           0.633       0.830         0.2847 0.831   0.670
#> 4 4 0.589           0.560       0.770         0.1424 0.750   0.480
#> 5 5 0.902           0.891       0.960         0.1145 0.856   0.614
#> 6 6 0.840           0.841       0.896         0.0864 0.901   0.616

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     2  0.9775      0.561 0.412 0.588
#> GSM198622     1  0.0000      0.957 1.000 0.000
#> GSM198623     2  0.0672      0.764 0.008 0.992
#> GSM198626     1  0.0000      0.957 1.000 0.000
#> GSM198627     1  0.0000      0.957 1.000 0.000
#> GSM198628     1  0.0000      0.957 1.000 0.000
#> GSM198629     1  0.0000      0.957 1.000 0.000
#> GSM198630     1  0.0000      0.957 1.000 0.000
#> GSM198631     1  0.0000      0.957 1.000 0.000
#> GSM198632     1  0.0000      0.957 1.000 0.000
#> GSM198633     1  0.0000      0.957 1.000 0.000
#> GSM198634     1  0.0000      0.957 1.000 0.000
#> GSM198635     1  0.0000      0.957 1.000 0.000
#> GSM198636     1  0.0000      0.957 1.000 0.000
#> GSM198639     2  0.9815      0.551 0.420 0.580
#> GSM198641     1  0.0000      0.957 1.000 0.000
#> GSM198642     1  0.8144      0.573 0.748 0.252
#> GSM198643     1  0.9833     -0.149 0.576 0.424
#> GSM198644     1  0.0938      0.943 0.988 0.012
#> GSM198645     2  0.9815      0.551 0.420 0.580
#> GSM198649     2  0.0000      0.763 0.000 1.000
#> GSM198651     1  0.0000      0.957 1.000 0.000
#> GSM198653     1  0.6438      0.733 0.836 0.164
#> GSM198654     2  0.0376      0.765 0.004 0.996
#> GSM198655     2  0.9815      0.551 0.420 0.580
#> GSM198656     2  0.0376      0.765 0.004 0.996
#> GSM198657     2  0.0376      0.765 0.004 0.996
#> GSM198658     2  0.0376      0.765 0.004 0.996
#> GSM198659     1  0.0000      0.957 1.000 0.000
#> GSM198660     2  0.9833      0.182 0.424 0.576
#> GSM198662     2  0.0376      0.765 0.004 0.996
#> GSM198663     1  0.0000      0.957 1.000 0.000
#> GSM198664     1  0.0000      0.957 1.000 0.000
#> GSM198665     2  0.0376      0.765 0.004 0.996
#> GSM198616     1  0.0000      0.957 1.000 0.000
#> GSM198617     2  0.9775      0.561 0.412 0.588
#> GSM198619     2  0.9815      0.551 0.420 0.580
#> GSM198620     2  0.9795      0.554 0.416 0.584
#> GSM198621     2  0.9754      0.565 0.408 0.592
#> GSM198624     1  0.0000      0.957 1.000 0.000
#> GSM198625     1  0.0000      0.957 1.000 0.000
#> GSM198637     1  0.0000      0.957 1.000 0.000
#> GSM198638     1  0.0000      0.957 1.000 0.000
#> GSM198640     1  0.0000      0.957 1.000 0.000
#> GSM198646     2  0.9795      0.554 0.416 0.584
#> GSM198647     2  0.4815      0.735 0.104 0.896
#> GSM198648     1  0.0376      0.952 0.996 0.004
#> GSM198650     2  0.0000      0.763 0.000 1.000
#> GSM198652     2  0.0376      0.765 0.004 0.996
#> GSM198661     2  0.0376      0.765 0.004 0.996

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     3  0.6225     0.4482 0.432 0.000 0.568
#> GSM198622     1  0.0000     0.9199 1.000 0.000 0.000
#> GSM198623     3  0.0237     0.5982 0.004 0.000 0.996
#> GSM198626     1  0.0000     0.9199 1.000 0.000 0.000
#> GSM198627     1  0.0000     0.9199 1.000 0.000 0.000
#> GSM198628     1  0.0000     0.9199 1.000 0.000 0.000
#> GSM198629     1  0.0000     0.9199 1.000 0.000 0.000
#> GSM198630     1  0.0000     0.9199 1.000 0.000 0.000
#> GSM198631     1  0.0000     0.9199 1.000 0.000 0.000
#> GSM198632     1  0.0000     0.9199 1.000 0.000 0.000
#> GSM198633     1  0.0000     0.9199 1.000 0.000 0.000
#> GSM198634     1  0.0000     0.9199 1.000 0.000 0.000
#> GSM198635     1  0.0000     0.9199 1.000 0.000 0.000
#> GSM198636     1  0.4399     0.6335 0.812 0.188 0.000
#> GSM198639     3  0.6305     0.3663 0.484 0.000 0.516
#> GSM198641     2  0.5529     0.6389 0.296 0.704 0.000
#> GSM198642     1  0.5706     0.3800 0.680 0.000 0.320
#> GSM198643     1  0.6111    -0.0465 0.604 0.000 0.396
#> GSM198644     1  0.5268     0.6038 0.776 0.212 0.012
#> GSM198645     3  0.6305     0.3663 0.484 0.000 0.516
#> GSM198649     2  0.4555     0.4443 0.000 0.800 0.200
#> GSM198651     2  0.5722     0.6436 0.292 0.704 0.004
#> GSM198653     2  0.7393     0.6274 0.156 0.704 0.140
#> GSM198654     3  0.0000     0.5999 0.000 0.000 1.000
#> GSM198655     3  0.9248     0.3105 0.296 0.188 0.516
#> GSM198656     3  0.0000     0.5999 0.000 0.000 1.000
#> GSM198657     3  0.0000     0.5999 0.000 0.000 1.000
#> GSM198658     3  0.0000     0.5999 0.000 0.000 1.000
#> GSM198659     2  0.6305     0.2871 0.484 0.516 0.000
#> GSM198660     3  0.5948     0.1902 0.360 0.000 0.640
#> GSM198662     3  0.0000     0.5999 0.000 0.000 1.000
#> GSM198663     2  0.5431     0.6497 0.284 0.716 0.000
#> GSM198664     1  0.0000     0.9199 1.000 0.000 0.000
#> GSM198665     3  0.0000     0.5999 0.000 0.000 1.000
#> GSM198616     1  0.0000     0.9199 1.000 0.000 0.000
#> GSM198617     3  0.6274     0.4148 0.456 0.000 0.544
#> GSM198619     3  0.6305     0.3663 0.484 0.000 0.516
#> GSM198620     2  0.8605     0.1986 0.188 0.604 0.208
#> GSM198621     3  0.6295     0.3886 0.472 0.000 0.528
#> GSM198624     1  0.0000     0.9199 1.000 0.000 0.000
#> GSM198625     1  0.0000     0.9199 1.000 0.000 0.000
#> GSM198637     1  0.0000     0.9199 1.000 0.000 0.000
#> GSM198638     1  0.0000     0.9199 1.000 0.000 0.000
#> GSM198640     1  0.0000     0.9199 1.000 0.000 0.000
#> GSM198646     3  0.9248     0.4185 0.188 0.296 0.516
#> GSM198647     3  0.8013     0.4514 0.092 0.296 0.612
#> GSM198648     2  0.0592     0.5719 0.012 0.988 0.000
#> GSM198650     3  0.5327     0.4679 0.000 0.272 0.728
#> GSM198652     2  0.5529     0.4857 0.000 0.704 0.296
#> GSM198661     3  0.0000     0.5999 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     1  0.7526     0.1118 0.440 0.372 0.188 0.000
#> GSM198622     1  0.5835     0.7194 0.588 0.040 0.372 0.000
#> GSM198623     3  0.4920     0.3377 0.368 0.004 0.628 0.000
#> GSM198626     1  0.0000     0.5815 1.000 0.000 0.000 0.000
#> GSM198627     1  0.0000     0.5815 1.000 0.000 0.000 0.000
#> GSM198628     1  0.0000     0.5815 1.000 0.000 0.000 0.000
#> GSM198629     1  0.5835     0.7194 0.588 0.040 0.372 0.000
#> GSM198630     1  0.0000     0.5815 1.000 0.000 0.000 0.000
#> GSM198631     1  0.0000     0.5815 1.000 0.000 0.000 0.000
#> GSM198632     1  0.5835     0.7194 0.588 0.040 0.372 0.000
#> GSM198633     1  0.5835     0.7194 0.588 0.040 0.372 0.000
#> GSM198634     1  0.5835     0.7194 0.588 0.040 0.372 0.000
#> GSM198635     1  0.5835     0.7194 0.588 0.040 0.372 0.000
#> GSM198636     1  0.4585    -0.0404 0.668 0.332 0.000 0.000
#> GSM198639     1  0.4888     0.5164 0.588 0.412 0.000 0.000
#> GSM198641     2  0.4761     0.7969 0.000 0.628 0.000 0.372
#> GSM198642     3  0.3219     0.0994 0.164 0.000 0.836 0.000
#> GSM198643     1  0.6391     0.5823 0.588 0.328 0.084 0.000
#> GSM198644     1  0.9396     0.3678 0.368 0.268 0.264 0.100
#> GSM198645     1  0.4888     0.5164 0.588 0.412 0.000 0.000
#> GSM198649     4  0.0469     0.1962 0.000 0.012 0.000 0.988
#> GSM198651     2  0.4761     0.7969 0.000 0.628 0.000 0.372
#> GSM198653     2  0.4761     0.7969 0.000 0.628 0.000 0.372
#> GSM198654     3  0.4761     0.7641 0.000 0.372 0.628 0.000
#> GSM198655     2  0.4222    -0.1776 0.272 0.728 0.000 0.000
#> GSM198656     3  0.4761     0.7641 0.000 0.372 0.628 0.000
#> GSM198657     3  0.4761     0.7641 0.000 0.372 0.628 0.000
#> GSM198658     3  0.4761     0.7641 0.000 0.372 0.628 0.000
#> GSM198659     4  0.7894    -0.3273 0.332 0.296 0.000 0.372
#> GSM198660     3  0.2530     0.4769 0.000 0.112 0.888 0.000
#> GSM198662     3  0.4761     0.7641 0.000 0.372 0.628 0.000
#> GSM198663     2  0.4761     0.7969 0.000 0.628 0.000 0.372
#> GSM198664     1  0.5835     0.7194 0.588 0.040 0.372 0.000
#> GSM198665     3  0.4761     0.7641 0.000 0.372 0.628 0.000
#> GSM198616     1  0.5835     0.7194 0.588 0.040 0.372 0.000
#> GSM198617     1  0.5784     0.4800 0.556 0.412 0.032 0.000
#> GSM198619     1  0.4888     0.5164 0.588 0.412 0.000 0.000
#> GSM198620     4  0.3219     0.4635 0.000 0.164 0.000 0.836
#> GSM198621     1  0.5310     0.5051 0.576 0.412 0.012 0.000
#> GSM198624     1  0.5835     0.7194 0.588 0.040 0.372 0.000
#> GSM198625     1  0.0000     0.5815 1.000 0.000 0.000 0.000
#> GSM198637     1  0.5835     0.7194 0.588 0.040 0.372 0.000
#> GSM198638     1  0.5835     0.7194 0.588 0.040 0.372 0.000
#> GSM198640     1  0.5835     0.7194 0.588 0.040 0.372 0.000
#> GSM198646     4  0.4761     0.4721 0.000 0.372 0.000 0.628
#> GSM198647     4  0.4761     0.4721 0.000 0.372 0.000 0.628
#> GSM198648     2  0.4888     0.7548 0.000 0.588 0.000 0.412
#> GSM198650     4  0.6885     0.2952 0.000 0.372 0.112 0.516
#> GSM198652     2  0.5911     0.7478 0.000 0.584 0.044 0.372
#> GSM198661     3  0.4761     0.7641 0.000 0.372 0.628 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     5  0.4425      0.127 0.000 0.000 0.452 0.004 0.544
#> GSM198622     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM198623     3  0.0000      0.973 0.000 0.000 1.000 0.000 0.000
#> GSM198626     1  0.0000      0.970 1.000 0.000 0.000 0.000 0.000
#> GSM198627     1  0.0000      0.970 1.000 0.000 0.000 0.000 0.000
#> GSM198628     1  0.0703      0.945 0.976 0.000 0.000 0.000 0.024
#> GSM198629     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM198630     1  0.0000      0.970 1.000 0.000 0.000 0.000 0.000
#> GSM198631     1  0.0000      0.970 1.000 0.000 0.000 0.000 0.000
#> GSM198632     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM198633     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM198634     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM198635     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM198636     1  0.2377      0.847 0.872 0.128 0.000 0.000 0.000
#> GSM198639     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM198641     2  0.0162      0.949 0.004 0.996 0.000 0.000 0.000
#> GSM198642     3  0.3013      0.736 0.008 0.000 0.832 0.000 0.160
#> GSM198643     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM198644     5  0.4297      0.101 0.000 0.472 0.000 0.000 0.528
#> GSM198645     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM198649     4  0.0000      0.931 0.000 0.000 0.000 1.000 0.000
#> GSM198651     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> GSM198653     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> GSM198654     3  0.0000      0.973 0.000 0.000 1.000 0.000 0.000
#> GSM198655     5  0.3177      0.706 0.000 0.208 0.000 0.000 0.792
#> GSM198656     3  0.0000      0.973 0.000 0.000 1.000 0.000 0.000
#> GSM198657     3  0.0000      0.973 0.000 0.000 1.000 0.000 0.000
#> GSM198658     3  0.0000      0.973 0.000 0.000 1.000 0.000 0.000
#> GSM198659     2  0.2852      0.716 0.000 0.828 0.000 0.000 0.172
#> GSM198660     3  0.0000      0.973 0.000 0.000 1.000 0.000 0.000
#> GSM198662     3  0.0000      0.973 0.000 0.000 1.000 0.000 0.000
#> GSM198663     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> GSM198664     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM198665     3  0.0000      0.973 0.000 0.000 1.000 0.000 0.000
#> GSM198616     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM198617     5  0.2124      0.843 0.000 0.000 0.096 0.004 0.900
#> GSM198619     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM198620     4  0.0000      0.931 0.000 0.000 0.000 1.000 0.000
#> GSM198621     5  0.0404      0.923 0.000 0.000 0.012 0.000 0.988
#> GSM198624     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM198625     1  0.0000      0.970 1.000 0.000 0.000 0.000 0.000
#> GSM198637     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM198638     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM198640     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM198646     4  0.0000      0.931 0.000 0.000 0.000 1.000 0.000
#> GSM198647     4  0.0000      0.931 0.000 0.000 0.000 1.000 0.000
#> GSM198648     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> GSM198650     4  0.3366      0.684 0.000 0.000 0.232 0.768 0.000
#> GSM198652     2  0.0404      0.942 0.000 0.988 0.012 0.000 0.000
#> GSM198661     3  0.0000      0.973 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     6  0.3578      0.818 0.000 0.000 0.000 0.000 0.340 0.660
#> GSM198622     5  0.2949      0.796 0.000 0.028 0.000 0.000 0.832 0.140
#> GSM198623     3  0.0000      0.961 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198626     1  0.0000      0.959 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198627     1  0.1765      0.891 0.904 0.000 0.000 0.000 0.000 0.096
#> GSM198628     1  0.0632      0.944 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM198629     5  0.0000      0.884 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM198630     1  0.0000      0.959 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198631     1  0.0000      0.959 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198632     5  0.0000      0.884 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM198633     5  0.1765      0.853 0.000 0.000 0.000 0.000 0.904 0.096
#> GSM198634     5  0.1765      0.853 0.000 0.000 0.000 0.000 0.904 0.096
#> GSM198635     5  0.1765      0.853 0.000 0.000 0.000 0.000 0.904 0.096
#> GSM198636     1  0.2255      0.882 0.892 0.080 0.000 0.000 0.000 0.028
#> GSM198639     6  0.3390      0.852 0.000 0.000 0.000 0.000 0.296 0.704
#> GSM198641     2  0.2697      0.835 0.000 0.812 0.000 0.000 0.000 0.188
#> GSM198642     3  0.2706      0.745 0.008 0.000 0.832 0.000 0.160 0.000
#> GSM198643     6  0.3838      0.490 0.000 0.000 0.000 0.000 0.448 0.552
#> GSM198644     5  0.4463      0.134 0.000 0.456 0.000 0.000 0.516 0.028
#> GSM198645     6  0.3428      0.848 0.000 0.000 0.000 0.000 0.304 0.696
#> GSM198649     4  0.0000      0.881 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198651     2  0.0937      0.890 0.000 0.960 0.000 0.000 0.000 0.040
#> GSM198653     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM198654     3  0.0000      0.961 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198655     6  0.4199      0.627 0.000 0.164 0.000 0.000 0.100 0.736
#> GSM198656     3  0.0000      0.961 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198657     3  0.0000      0.961 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198658     3  0.0000      0.961 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198659     2  0.2527      0.880 0.000 0.868 0.000 0.000 0.024 0.108
#> GSM198660     3  0.1713      0.904 0.000 0.028 0.928 0.000 0.000 0.044
#> GSM198662     3  0.0000      0.961 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198663     2  0.2562      0.882 0.000 0.828 0.000 0.000 0.000 0.172
#> GSM198664     5  0.1713      0.841 0.000 0.028 0.000 0.000 0.928 0.044
#> GSM198665     6  0.3499      0.453 0.000 0.000 0.320 0.000 0.000 0.680
#> GSM198616     5  0.0260      0.879 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM198617     6  0.3508      0.852 0.000 0.000 0.004 0.000 0.292 0.704
#> GSM198619     6  0.3390      0.852 0.000 0.000 0.000 0.000 0.296 0.704
#> GSM198620     4  0.0000      0.881 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198621     6  0.3595      0.850 0.000 0.000 0.008 0.000 0.288 0.704
#> GSM198624     5  0.0000      0.884 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM198625     1  0.0000      0.959 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198637     5  0.0000      0.884 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM198638     5  0.0000      0.884 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM198640     5  0.0000      0.884 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM198646     4  0.0000      0.881 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198647     4  0.0000      0.881 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198648     2  0.2454      0.882 0.000 0.840 0.000 0.000 0.000 0.160
#> GSM198650     4  0.3782      0.304 0.000 0.000 0.000 0.588 0.000 0.412
#> GSM198652     2  0.1074      0.889 0.000 0.960 0.012 0.000 0.000 0.028
#> GSM198661     3  0.0000      0.961 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) k
#> SD:pam 48           0.3545 2
#> SD:pam 33           0.6033 3
#> SD:pam 36           0.5802 4
#> SD:pam 48           0.0558 5
#> SD:pam 46           0.2157 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.352           0.725       0.860         0.3155 0.673   0.673
#> 3 3 0.377           0.766       0.798         0.9847 0.552   0.380
#> 4 4 0.582           0.749       0.824         0.0862 0.873   0.660
#> 5 5 0.579           0.717       0.812         0.0942 0.954   0.847
#> 6 6 0.657           0.603       0.782         0.0613 0.918   0.706

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     1  0.4298      0.842 0.912 0.088
#> GSM198622     1  0.5408      0.834 0.876 0.124
#> GSM198623     1  0.2778      0.807 0.952 0.048
#> GSM198626     1  0.5408      0.834 0.876 0.124
#> GSM198627     1  0.5408      0.834 0.876 0.124
#> GSM198628     1  0.5408      0.834 0.876 0.124
#> GSM198629     1  0.3733      0.844 0.928 0.072
#> GSM198630     1  0.5408      0.834 0.876 0.124
#> GSM198631     1  0.5408      0.834 0.876 0.124
#> GSM198632     1  0.2423      0.846 0.960 0.040
#> GSM198633     1  0.5294      0.835 0.880 0.120
#> GSM198634     1  0.5408      0.834 0.876 0.124
#> GSM198635     1  0.5408      0.834 0.876 0.124
#> GSM198636     1  0.9661      0.250 0.608 0.392
#> GSM198639     1  0.0672      0.835 0.992 0.008
#> GSM198641     1  0.9661      0.250 0.608 0.392
#> GSM198642     1  0.4161      0.833 0.916 0.084
#> GSM198643     1  0.0000      0.839 1.000 0.000
#> GSM198644     1  0.9661      0.250 0.608 0.392
#> GSM198645     1  0.0672      0.835 0.992 0.008
#> GSM198649     2  0.3114      0.691 0.056 0.944
#> GSM198651     2  0.9933      0.408 0.452 0.548
#> GSM198653     2  0.9522      0.552 0.372 0.628
#> GSM198654     1  0.8661      0.638 0.712 0.288
#> GSM198655     1  0.9661      0.250 0.608 0.392
#> GSM198656     1  0.2778      0.807 0.952 0.048
#> GSM198657     1  0.2778      0.807 0.952 0.048
#> GSM198658     1  0.3274      0.815 0.940 0.060
#> GSM198659     2  0.9881      0.451 0.436 0.564
#> GSM198660     1  0.0000      0.839 1.000 0.000
#> GSM198662     1  0.2948      0.811 0.948 0.052
#> GSM198663     2  0.9754      0.505 0.408 0.592
#> GSM198664     1  0.5408      0.834 0.876 0.124
#> GSM198665     1  0.3879      0.822 0.924 0.076
#> GSM198616     1  0.1843      0.845 0.972 0.028
#> GSM198617     1  0.0938      0.841 0.988 0.012
#> GSM198619     1  0.0672      0.835 0.992 0.008
#> GSM198620     2  0.2778      0.691 0.048 0.952
#> GSM198621     1  0.0672      0.835 0.992 0.008
#> GSM198624     1  0.1843      0.845 0.972 0.028
#> GSM198625     1  0.5408      0.834 0.876 0.124
#> GSM198637     1  0.5408      0.834 0.876 0.124
#> GSM198638     1  0.5178      0.836 0.884 0.116
#> GSM198640     1  0.0672      0.841 0.992 0.008
#> GSM198646     2  0.2778      0.691 0.048 0.952
#> GSM198647     2  0.6801      0.627 0.180 0.820
#> GSM198648     2  0.2778      0.691 0.048 0.952
#> GSM198650     1  0.8207      0.632 0.744 0.256
#> GSM198652     2  0.9933      0.408 0.452 0.548
#> GSM198661     1  0.2948      0.811 0.948 0.052

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     2   0.798      0.502 0.108 0.636 0.256
#> GSM198622     1   0.392      0.775 0.856 0.140 0.004
#> GSM198623     3   0.355      0.901 0.132 0.000 0.868
#> GSM198626     1   0.455      0.794 0.844 0.132 0.024
#> GSM198627     1   0.478      0.756 0.796 0.200 0.004
#> GSM198628     1   0.426      0.787 0.848 0.140 0.012
#> GSM198629     1   0.562      0.724 0.744 0.012 0.244
#> GSM198630     1   0.426      0.787 0.848 0.140 0.012
#> GSM198631     1   0.454      0.795 0.848 0.124 0.028
#> GSM198632     1   0.506      0.721 0.756 0.000 0.244
#> GSM198633     1   0.429      0.783 0.872 0.060 0.068
#> GSM198634     1   0.345      0.786 0.888 0.104 0.008
#> GSM198635     1   0.410      0.769 0.852 0.140 0.008
#> GSM198636     1   0.575      0.620 0.700 0.296 0.004
#> GSM198639     3   0.428      0.899 0.132 0.016 0.852
#> GSM198641     2   0.368      0.835 0.080 0.892 0.028
#> GSM198642     3   0.742      0.558 0.364 0.044 0.592
#> GSM198643     1   0.506      0.721 0.756 0.000 0.244
#> GSM198644     2   0.321      0.834 0.092 0.900 0.008
#> GSM198645     3   0.369      0.898 0.140 0.000 0.860
#> GSM198649     2   0.314      0.822 0.020 0.912 0.068
#> GSM198651     2   0.359      0.835 0.076 0.896 0.028
#> GSM198653     2   0.341      0.837 0.080 0.900 0.020
#> GSM198654     3   0.546      0.624 0.020 0.204 0.776
#> GSM198655     2   0.835      0.337 0.092 0.548 0.360
#> GSM198656     3   0.334      0.903 0.120 0.000 0.880
#> GSM198657     3   0.334      0.903 0.120 0.000 0.880
#> GSM198658     3   0.327      0.901 0.116 0.000 0.884
#> GSM198659     2   0.409      0.831 0.100 0.872 0.028
#> GSM198660     3   0.435      0.886 0.156 0.008 0.836
#> GSM198662     3   0.334      0.903 0.120 0.000 0.880
#> GSM198663     2   0.346      0.837 0.076 0.900 0.024
#> GSM198664     2   0.616      0.686 0.288 0.696 0.016
#> GSM198665     3   0.440      0.888 0.116 0.028 0.856
#> GSM198616     1   0.506      0.721 0.756 0.000 0.244
#> GSM198617     3   0.514      0.886 0.132 0.044 0.824
#> GSM198619     1   0.576      0.613 0.672 0.000 0.328
#> GSM198620     2   0.255      0.827 0.012 0.932 0.056
#> GSM198621     3   0.468      0.895 0.132 0.028 0.840
#> GSM198624     1   0.506      0.721 0.756 0.000 0.244
#> GSM198625     1   0.429      0.783 0.840 0.152 0.008
#> GSM198637     1   0.389      0.790 0.888 0.064 0.048
#> GSM198638     2   0.879      0.103 0.428 0.460 0.112
#> GSM198640     1   0.506      0.721 0.756 0.000 0.244
#> GSM198646     2   0.285      0.824 0.012 0.920 0.068
#> GSM198647     2   0.462      0.784 0.020 0.836 0.144
#> GSM198648     2   0.346      0.837 0.076 0.900 0.024
#> GSM198650     3   0.722      0.609 0.084 0.220 0.696
#> GSM198652     2   0.178      0.831 0.020 0.960 0.020
#> GSM198661     3   0.334      0.903 0.120 0.000 0.880

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     3  0.3095      0.843 0.020 0.076 0.892 0.012
#> GSM198622     1  0.5658      0.775 0.724 0.048 0.208 0.020
#> GSM198623     3  0.0469      0.902 0.012 0.000 0.988 0.000
#> GSM198626     1  0.3949      0.652 0.832 0.012 0.016 0.140
#> GSM198627     1  0.3007      0.676 0.900 0.060 0.012 0.028
#> GSM198628     1  0.3949      0.652 0.832 0.012 0.016 0.140
#> GSM198629     1  0.5291      0.763 0.652 0.000 0.324 0.024
#> GSM198630     1  0.3949      0.652 0.832 0.012 0.016 0.140
#> GSM198631     1  0.3896      0.664 0.844 0.012 0.024 0.120
#> GSM198632     1  0.4677      0.766 0.680 0.000 0.316 0.004
#> GSM198633     1  0.4675      0.782 0.736 0.000 0.244 0.020
#> GSM198634     1  0.4715      0.784 0.740 0.004 0.240 0.016
#> GSM198635     1  0.5411      0.774 0.736 0.036 0.208 0.020
#> GSM198636     1  0.4387      0.536 0.752 0.236 0.000 0.012
#> GSM198639     3  0.0336      0.904 0.008 0.000 0.992 0.000
#> GSM198641     2  0.0469      0.692 0.012 0.988 0.000 0.000
#> GSM198642     3  0.3189      0.827 0.088 0.012 0.884 0.016
#> GSM198643     1  0.4564      0.761 0.672 0.000 0.328 0.000
#> GSM198644     2  0.7574      0.216 0.016 0.504 0.344 0.136
#> GSM198645     3  0.0000      0.906 0.000 0.000 1.000 0.000
#> GSM198649     4  0.3380      0.962 0.004 0.136 0.008 0.852
#> GSM198651     2  0.1733      0.685 0.024 0.948 0.000 0.028
#> GSM198653     2  0.3306      0.615 0.004 0.840 0.000 0.156
#> GSM198654     3  0.4833      0.629 0.000 0.032 0.740 0.228
#> GSM198655     3  0.7296      0.297 0.016 0.260 0.580 0.144
#> GSM198656     3  0.0000      0.906 0.000 0.000 1.000 0.000
#> GSM198657     3  0.0000      0.906 0.000 0.000 1.000 0.000
#> GSM198658     3  0.0592      0.902 0.000 0.000 0.984 0.016
#> GSM198659     2  0.4030      0.588 0.012 0.820 0.012 0.156
#> GSM198660     3  0.1174      0.896 0.020 0.000 0.968 0.012
#> GSM198662     3  0.0000      0.906 0.000 0.000 1.000 0.000
#> GSM198663     2  0.0188      0.693 0.000 0.996 0.000 0.004
#> GSM198664     2  0.7793      0.239 0.232 0.536 0.212 0.020
#> GSM198665     3  0.1211      0.884 0.000 0.000 0.960 0.040
#> GSM198616     1  0.4564      0.761 0.672 0.000 0.328 0.000
#> GSM198617     3  0.1059      0.899 0.016 0.000 0.972 0.012
#> GSM198619     3  0.0592      0.901 0.016 0.000 0.984 0.000
#> GSM198620     4  0.3324      0.957 0.012 0.136 0.000 0.852
#> GSM198621     3  0.0000      0.906 0.000 0.000 1.000 0.000
#> GSM198624     1  0.4699      0.765 0.676 0.000 0.320 0.004
#> GSM198625     1  0.3174      0.663 0.888 0.076 0.008 0.028
#> GSM198637     1  0.4675      0.782 0.736 0.000 0.244 0.020
#> GSM198638     3  0.4237      0.781 0.136 0.020 0.824 0.020
#> GSM198640     1  0.4720      0.762 0.672 0.000 0.324 0.004
#> GSM198646     4  0.3380      0.963 0.008 0.136 0.004 0.852
#> GSM198647     4  0.3674      0.909 0.000 0.104 0.044 0.852
#> GSM198648     2  0.0188      0.693 0.000 0.996 0.000 0.004
#> GSM198650     3  0.4798      0.677 0.004 0.032 0.760 0.204
#> GSM198652     2  0.6149      0.479 0.004 0.688 0.132 0.176
#> GSM198661     3  0.0000      0.906 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     3  0.4913     0.7306 0.064 0.080 0.784 0.012 0.060
#> GSM198622     5  0.2929     0.6249 0.008 0.068 0.044 0.000 0.880
#> GSM198623     3  0.0880     0.8277 0.000 0.000 0.968 0.000 0.032
#> GSM198626     1  0.4073     0.9955 0.752 0.000 0.032 0.000 0.216
#> GSM198627     5  0.4418     0.2493 0.332 0.016 0.000 0.000 0.652
#> GSM198628     1  0.3993     0.9955 0.756 0.000 0.028 0.000 0.216
#> GSM198629     5  0.5090     0.6994 0.036 0.000 0.272 0.020 0.672
#> GSM198630     1  0.4073     0.9955 0.752 0.000 0.032 0.000 0.216
#> GSM198631     1  0.3993     0.9955 0.756 0.000 0.028 0.000 0.216
#> GSM198632     5  0.4132     0.7146 0.000 0.000 0.260 0.020 0.720
#> GSM198633     5  0.2741     0.7012 0.000 0.004 0.132 0.004 0.860
#> GSM198634     5  0.2230     0.6940 0.000 0.000 0.116 0.000 0.884
#> GSM198635     5  0.3002     0.6100 0.000 0.068 0.048 0.008 0.876
#> GSM198636     5  0.5822     0.1423 0.112 0.292 0.000 0.004 0.592
#> GSM198639     3  0.3667     0.7670 0.156 0.000 0.812 0.020 0.012
#> GSM198641     2  0.1356     0.7962 0.028 0.956 0.000 0.004 0.012
#> GSM198642     3  0.3359     0.7148 0.164 0.000 0.816 0.000 0.020
#> GSM198643     5  0.4437     0.6798 0.000 0.000 0.316 0.020 0.664
#> GSM198644     2  0.6642     0.6890 0.084 0.676 0.108 0.052 0.080
#> GSM198645     3  0.0451     0.8350 0.000 0.000 0.988 0.008 0.004
#> GSM198649     4  0.0324     0.9640 0.000 0.004 0.000 0.992 0.004
#> GSM198651     2  0.2903     0.7728 0.048 0.872 0.000 0.000 0.080
#> GSM198653     2  0.2970     0.7421 0.004 0.828 0.000 0.168 0.000
#> GSM198654     3  0.3919     0.6599 0.000 0.000 0.776 0.188 0.036
#> GSM198655     3  0.7448    -0.0689 0.032 0.372 0.460 0.056 0.080
#> GSM198656     3  0.0000     0.8357 0.000 0.000 1.000 0.000 0.000
#> GSM198657     3  0.0162     0.8354 0.000 0.000 0.996 0.000 0.004
#> GSM198658     3  0.0290     0.8354 0.000 0.000 0.992 0.000 0.008
#> GSM198659     2  0.5089     0.7374 0.072 0.756 0.000 0.104 0.068
#> GSM198660     3  0.1106     0.8310 0.000 0.000 0.964 0.024 0.012
#> GSM198662     3  0.0290     0.8354 0.000 0.000 0.992 0.000 0.008
#> GSM198663     2  0.0566     0.7983 0.000 0.984 0.000 0.004 0.012
#> GSM198664     2  0.6438     0.5167 0.060 0.572 0.048 0.008 0.312
#> GSM198665     3  0.0451     0.8352 0.000 0.000 0.988 0.004 0.008
#> GSM198616     5  0.4318     0.7023 0.000 0.000 0.292 0.020 0.688
#> GSM198617     3  0.3757     0.7669 0.156 0.000 0.808 0.024 0.012
#> GSM198619     3  0.4037     0.7544 0.156 0.000 0.796 0.020 0.028
#> GSM198620     4  0.1560     0.9483 0.004 0.028 0.000 0.948 0.020
#> GSM198621     3  0.2848     0.7771 0.156 0.000 0.840 0.000 0.004
#> GSM198624     5  0.4181     0.7122 0.000 0.000 0.268 0.020 0.712
#> GSM198625     5  0.5227    -0.0328 0.404 0.032 0.008 0.000 0.556
#> GSM198637     5  0.2583     0.7015 0.000 0.000 0.132 0.004 0.864
#> GSM198638     3  0.6977     0.4212 0.060 0.116 0.584 0.012 0.228
#> GSM198640     5  0.4400     0.6812 0.000 0.000 0.308 0.020 0.672
#> GSM198646     4  0.0771     0.9623 0.000 0.004 0.000 0.976 0.020
#> GSM198647     4  0.1074     0.9500 0.000 0.004 0.016 0.968 0.012
#> GSM198648     2  0.0566     0.7983 0.000 0.984 0.000 0.004 0.012
#> GSM198650     3  0.4313     0.6300 0.000 0.000 0.732 0.228 0.040
#> GSM198652     2  0.6402     0.6379 0.064 0.644 0.108 0.180 0.004
#> GSM198661     3  0.0000     0.8357 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     3  0.7145     0.2814 0.040 0.248 0.520 0.004 0.084 0.104
#> GSM198622     5  0.0790     0.6092 0.000 0.000 0.000 0.000 0.968 0.032
#> GSM198623     3  0.0622     0.7714 0.000 0.000 0.980 0.000 0.008 0.012
#> GSM198626     1  0.1584     0.8766 0.928 0.000 0.008 0.000 0.064 0.000
#> GSM198627     5  0.4809     0.3192 0.276 0.032 0.000 0.000 0.656 0.036
#> GSM198628     1  0.1327     0.8776 0.936 0.000 0.000 0.000 0.064 0.000
#> GSM198629     5  0.6058     0.5633 0.088 0.000 0.216 0.004 0.604 0.088
#> GSM198630     1  0.1471     0.8795 0.932 0.000 0.004 0.000 0.064 0.000
#> GSM198631     1  0.1471     0.8795 0.932 0.000 0.004 0.000 0.064 0.000
#> GSM198632     5  0.3983     0.6344 0.000 0.000 0.208 0.000 0.736 0.056
#> GSM198633     5  0.1647     0.6115 0.004 0.032 0.016 0.000 0.940 0.008
#> GSM198634     5  0.0865     0.6090 0.000 0.000 0.000 0.000 0.964 0.036
#> GSM198635     5  0.0972     0.6089 0.000 0.008 0.000 0.000 0.964 0.028
#> GSM198636     5  0.6427     0.1845 0.064 0.124 0.000 0.000 0.484 0.328
#> GSM198639     3  0.5407     0.5636 0.024 0.000 0.552 0.004 0.056 0.364
#> GSM198641     2  0.0000     0.7385 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM198642     3  0.3560     0.6106 0.176 0.000 0.788 0.000 0.016 0.020
#> GSM198643     5  0.4771     0.5898 0.000 0.000 0.256 0.000 0.648 0.096
#> GSM198644     6  0.5125     0.3015 0.040 0.368 0.020 0.000 0.004 0.568
#> GSM198645     3  0.1492     0.7638 0.000 0.000 0.940 0.000 0.024 0.036
#> GSM198649     4  0.0000     0.9860 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198651     2  0.3807     0.0740 0.004 0.628 0.000 0.000 0.000 0.368
#> GSM198653     2  0.3450     0.5413 0.000 0.780 0.000 0.188 0.000 0.032
#> GSM198654     3  0.2805     0.5914 0.000 0.000 0.812 0.184 0.000 0.004
#> GSM198655     6  0.5360     0.3402 0.000 0.136 0.308 0.000 0.000 0.556
#> GSM198656     3  0.0000     0.7729 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198657     3  0.0260     0.7720 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM198658     3  0.0458     0.7731 0.000 0.000 0.984 0.000 0.000 0.016
#> GSM198659     2  0.4974     0.5422 0.040 0.752 0.000 0.092 0.048 0.068
#> GSM198660     3  0.2905     0.7287 0.000 0.000 0.852 0.000 0.084 0.064
#> GSM198662     3  0.0363     0.7724 0.000 0.000 0.988 0.000 0.000 0.012
#> GSM198663     2  0.0000     0.7385 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM198664     5  0.5786    -0.1352 0.040 0.376 0.008 0.000 0.520 0.056
#> GSM198665     3  0.0260     0.7720 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM198616     5  0.4549     0.6157 0.000 0.000 0.232 0.000 0.680 0.088
#> GSM198617     3  0.5284     0.5621 0.024 0.000 0.552 0.000 0.056 0.368
#> GSM198619     3  0.6043     0.4488 0.024 0.000 0.496 0.000 0.144 0.336
#> GSM198620     4  0.0603     0.9778 0.000 0.004 0.000 0.980 0.000 0.016
#> GSM198621     3  0.4831     0.6053 0.024 0.000 0.616 0.004 0.024 0.332
#> GSM198624     5  0.4230     0.6298 0.000 0.000 0.224 0.004 0.716 0.056
#> GSM198625     1  0.4928     0.3739 0.572 0.076 0.000 0.000 0.352 0.000
#> GSM198637     5  0.0405     0.6201 0.000 0.000 0.004 0.000 0.988 0.008
#> GSM198638     5  0.7799    -0.0352 0.040 0.220 0.192 0.004 0.440 0.104
#> GSM198640     5  0.4818     0.5662 0.000 0.000 0.284 0.004 0.636 0.076
#> GSM198646     4  0.0260     0.9866 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM198647     4  0.0146     0.9833 0.000 0.000 0.004 0.996 0.000 0.000
#> GSM198648     2  0.0000     0.7385 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM198650     3  0.5280     0.5612 0.004 0.000 0.656 0.212 0.020 0.108
#> GSM198652     6  0.6859     0.2078 0.040 0.376 0.016 0.168 0.000 0.400
#> GSM198661     3  0.0260     0.7720 0.000 0.000 0.992 0.000 0.000 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> SD:mclust 43            0.359 2
#> SD:mclust 48            0.870 3
#> SD:mclust 46            0.245 4
#> SD:mclust 45            0.207 5
#> SD:mclust 39            0.199 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.755           0.826       0.933         0.4582 0.542   0.542
#> 3 3 0.497           0.665       0.851         0.4091 0.714   0.522
#> 4 4 0.531           0.701       0.785         0.1357 0.796   0.510
#> 5 5 0.603           0.595       0.777         0.0862 0.905   0.666
#> 6 6 0.617           0.476       0.671         0.0467 0.899   0.569

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     2  0.7745     0.6807 0.228 0.772
#> GSM198622     1  0.0000     0.9377 1.000 0.000
#> GSM198623     1  0.0000     0.9377 1.000 0.000
#> GSM198626     1  0.0000     0.9377 1.000 0.000
#> GSM198627     1  0.0376     0.9358 0.996 0.004
#> GSM198628     1  0.0000     0.9377 1.000 0.000
#> GSM198629     1  0.0000     0.9377 1.000 0.000
#> GSM198630     1  0.0000     0.9377 1.000 0.000
#> GSM198631     1  0.0000     0.9377 1.000 0.000
#> GSM198632     1  0.0000     0.9377 1.000 0.000
#> GSM198633     1  0.0000     0.9377 1.000 0.000
#> GSM198634     1  0.0000     0.9377 1.000 0.000
#> GSM198635     1  0.0376     0.9358 0.996 0.004
#> GSM198636     1  0.6531     0.7567 0.832 0.168
#> GSM198639     1  0.1184     0.9291 0.984 0.016
#> GSM198641     1  0.0672     0.9341 0.992 0.008
#> GSM198642     1  0.0000     0.9377 1.000 0.000
#> GSM198643     1  0.0000     0.9377 1.000 0.000
#> GSM198644     2  0.0000     0.8924 0.000 1.000
#> GSM198645     1  0.0000     0.9377 1.000 0.000
#> GSM198649     2  0.0000     0.8924 0.000 1.000
#> GSM198651     2  0.2236     0.8803 0.036 0.964
#> GSM198653     2  0.0000     0.8924 0.000 1.000
#> GSM198654     2  0.0376     0.8918 0.004 0.996
#> GSM198655     2  0.5059     0.8195 0.112 0.888
#> GSM198656     1  0.0672     0.9345 0.992 0.008
#> GSM198657     1  0.2948     0.9021 0.948 0.052
#> GSM198658     1  0.9795     0.2323 0.584 0.416
#> GSM198659     2  0.0000     0.8924 0.000 1.000
#> GSM198660     1  0.3431     0.8924 0.936 0.064
#> GSM198662     1  0.9896     0.1494 0.560 0.440
#> GSM198663     2  0.1843     0.8819 0.028 0.972
#> GSM198664     1  0.9933     0.0941 0.548 0.452
#> GSM198665     2  0.9998     0.0315 0.492 0.508
#> GSM198616     1  0.0000     0.9377 1.000 0.000
#> GSM198617     2  0.9970     0.1272 0.468 0.532
#> GSM198619     1  0.0376     0.9359 0.996 0.004
#> GSM198620     2  0.0000     0.8924 0.000 1.000
#> GSM198621     1  0.2236     0.9147 0.964 0.036
#> GSM198624     1  0.0000     0.9377 1.000 0.000
#> GSM198625     1  0.0000     0.9377 1.000 0.000
#> GSM198637     1  0.0000     0.9377 1.000 0.000
#> GSM198638     1  0.4161     0.8631 0.916 0.084
#> GSM198640     1  0.0000     0.9377 1.000 0.000
#> GSM198646     2  0.0000     0.8924 0.000 1.000
#> GSM198647     2  0.0376     0.8918 0.004 0.996
#> GSM198648     2  0.0938     0.8897 0.012 0.988
#> GSM198650     2  0.6887     0.7442 0.184 0.816
#> GSM198652     2  0.0000     0.8924 0.000 1.000
#> GSM198661     1  0.0938     0.9317 0.988 0.012

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     3  0.4609     0.7462 0.128 0.028 0.844
#> GSM198622     1  0.6309    -0.0227 0.504 0.496 0.000
#> GSM198623     1  0.1964     0.7909 0.944 0.000 0.056
#> GSM198626     1  0.0000     0.8098 1.000 0.000 0.000
#> GSM198627     1  0.5058     0.6063 0.756 0.244 0.000
#> GSM198628     1  0.2165     0.7825 0.936 0.064 0.000
#> GSM198629     1  0.0000     0.8098 1.000 0.000 0.000
#> GSM198630     1  0.0237     0.8092 0.996 0.004 0.000
#> GSM198631     1  0.0237     0.8092 0.996 0.004 0.000
#> GSM198632     1  0.0000     0.8098 1.000 0.000 0.000
#> GSM198633     1  0.5797     0.5429 0.712 0.280 0.008
#> GSM198634     1  0.3412     0.7354 0.876 0.124 0.000
#> GSM198635     2  0.5591     0.5605 0.304 0.696 0.000
#> GSM198636     2  0.3879     0.7893 0.152 0.848 0.000
#> GSM198639     1  0.6295     0.0387 0.528 0.000 0.472
#> GSM198641     2  0.1411     0.8662 0.036 0.964 0.000
#> GSM198642     1  0.0829     0.8093 0.984 0.004 0.012
#> GSM198643     1  0.0747     0.8077 0.984 0.000 0.016
#> GSM198644     2  0.2796     0.8298 0.000 0.908 0.092
#> GSM198645     1  0.2878     0.7648 0.904 0.000 0.096
#> GSM198649     3  0.1529     0.7666 0.000 0.040 0.960
#> GSM198651     2  0.0475     0.8721 0.004 0.992 0.004
#> GSM198653     2  0.3619     0.8004 0.000 0.864 0.136
#> GSM198654     3  0.0892     0.7724 0.000 0.020 0.980
#> GSM198655     3  0.5024     0.6262 0.004 0.220 0.776
#> GSM198656     1  0.5327     0.5586 0.728 0.000 0.272
#> GSM198657     3  0.6309    -0.0292 0.496 0.000 0.504
#> GSM198658     3  0.2796     0.7723 0.092 0.000 0.908
#> GSM198659     2  0.2796     0.8381 0.000 0.908 0.092
#> GSM198660     1  0.6683    -0.0588 0.500 0.008 0.492
#> GSM198662     3  0.3116     0.7659 0.108 0.000 0.892
#> GSM198663     2  0.0237     0.8711 0.000 0.996 0.004
#> GSM198664     2  0.4609     0.8108 0.128 0.844 0.028
#> GSM198665     3  0.2796     0.7718 0.092 0.000 0.908
#> GSM198616     1  0.1163     0.8038 0.972 0.000 0.028
#> GSM198617     3  0.4346     0.6895 0.184 0.000 0.816
#> GSM198619     1  0.3879     0.7166 0.848 0.000 0.152
#> GSM198620     3  0.5968     0.3682 0.000 0.364 0.636
#> GSM198621     3  0.6095     0.3190 0.392 0.000 0.608
#> GSM198624     1  0.0424     0.8093 0.992 0.000 0.008
#> GSM198625     1  0.5327     0.5621 0.728 0.272 0.000
#> GSM198637     1  0.1289     0.8007 0.968 0.032 0.000
#> GSM198638     1  0.7311     0.3283 0.580 0.384 0.036
#> GSM198640     1  0.0424     0.8093 0.992 0.000 0.008
#> GSM198646     3  0.3267     0.7265 0.000 0.116 0.884
#> GSM198647     3  0.0475     0.7748 0.004 0.004 0.992
#> GSM198648     2  0.0661     0.8725 0.008 0.988 0.004
#> GSM198650     3  0.1585     0.7740 0.008 0.028 0.964
#> GSM198652     3  0.4842     0.6198 0.000 0.224 0.776
#> GSM198661     1  0.5835     0.4292 0.660 0.000 0.340

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     4  0.3451     0.8118 0.052 0.044 0.020 0.884
#> GSM198622     1  0.4792     0.5698 0.680 0.312 0.000 0.008
#> GSM198623     1  0.3991     0.7513 0.808 0.000 0.172 0.020
#> GSM198626     1  0.2546     0.8441 0.900 0.008 0.092 0.000
#> GSM198627     1  0.2926     0.8337 0.896 0.056 0.048 0.000
#> GSM198628     1  0.3965     0.8100 0.840 0.032 0.120 0.008
#> GSM198629     1  0.0000     0.8581 1.000 0.000 0.000 0.000
#> GSM198630     1  0.2775     0.8423 0.896 0.020 0.084 0.000
#> GSM198631     1  0.2255     0.8483 0.920 0.012 0.068 0.000
#> GSM198632     1  0.1690     0.8526 0.952 0.032 0.008 0.008
#> GSM198633     2  0.5795     0.0931 0.460 0.516 0.008 0.016
#> GSM198634     1  0.3895     0.7488 0.804 0.184 0.000 0.012
#> GSM198635     2  0.4011     0.6226 0.208 0.784 0.000 0.008
#> GSM198636     2  0.8299     0.5031 0.216 0.500 0.244 0.040
#> GSM198639     4  0.4630     0.7096 0.196 0.000 0.036 0.768
#> GSM198641     2  0.1661     0.7160 0.004 0.944 0.052 0.000
#> GSM198642     1  0.3972     0.7389 0.788 0.008 0.204 0.000
#> GSM198643     1  0.0712     0.8568 0.984 0.004 0.008 0.004
#> GSM198644     3  0.6783    -0.2691 0.004 0.404 0.508 0.084
#> GSM198645     1  0.5632     0.6479 0.712 0.000 0.196 0.092
#> GSM198649     4  0.1042     0.8127 0.000 0.008 0.020 0.972
#> GSM198651     2  0.4825     0.6263 0.004 0.700 0.288 0.008
#> GSM198653     2  0.5074     0.6351 0.000 0.724 0.236 0.040
#> GSM198654     3  0.3942     0.7403 0.000 0.000 0.764 0.236
#> GSM198655     3  0.2246     0.6312 0.004 0.016 0.928 0.052
#> GSM198656     3  0.4831     0.6758 0.208 0.000 0.752 0.040
#> GSM198657     3  0.5512     0.7446 0.100 0.000 0.728 0.172
#> GSM198658     3  0.5374     0.7253 0.052 0.000 0.704 0.244
#> GSM198659     2  0.5217     0.6542 0.000 0.756 0.136 0.108
#> GSM198660     3  0.5416     0.7490 0.112 0.000 0.740 0.148
#> GSM198662     3  0.6280     0.5693 0.072 0.000 0.584 0.344
#> GSM198663     2  0.1284     0.7127 0.000 0.964 0.024 0.012
#> GSM198664     2  0.4342     0.6010 0.012 0.784 0.196 0.008
#> GSM198665     3  0.4630     0.7372 0.016 0.000 0.732 0.252
#> GSM198616     1  0.0992     0.8559 0.976 0.004 0.008 0.012
#> GSM198617     4  0.3796     0.7815 0.096 0.000 0.056 0.848
#> GSM198619     1  0.3743     0.7614 0.824 0.000 0.016 0.160
#> GSM198620     4  0.4608     0.6815 0.000 0.104 0.096 0.800
#> GSM198621     4  0.3763     0.7814 0.144 0.000 0.024 0.832
#> GSM198624     1  0.0188     0.8582 0.996 0.000 0.004 0.000
#> GSM198625     1  0.3548     0.8289 0.864 0.068 0.068 0.000
#> GSM198637     1  0.3108     0.8066 0.872 0.112 0.000 0.016
#> GSM198638     2  0.8462     0.4438 0.240 0.532 0.120 0.108
#> GSM198640     1  0.2531     0.8487 0.924 0.032 0.024 0.020
#> GSM198646     4  0.2589     0.7855 0.000 0.044 0.044 0.912
#> GSM198647     4  0.1004     0.8150 0.000 0.004 0.024 0.972
#> GSM198648     2  0.1182     0.7112 0.000 0.968 0.016 0.016
#> GSM198650     3  0.4072     0.7288 0.000 0.000 0.748 0.252
#> GSM198652     3  0.3071     0.6483 0.000 0.044 0.888 0.068
#> GSM198661     3  0.5167     0.7322 0.132 0.000 0.760 0.108

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     4  0.4696      0.741 0.000 0.064 0.108 0.780 0.048
#> GSM198622     2  0.3266      0.654 0.004 0.796 0.000 0.000 0.200
#> GSM198623     5  0.5152      0.394 0.044 0.004 0.344 0.000 0.608
#> GSM198626     5  0.4238      0.385 0.368 0.004 0.000 0.000 0.628
#> GSM198627     5  0.4217      0.529 0.232 0.020 0.008 0.000 0.740
#> GSM198628     1  0.4595     -0.224 0.504 0.004 0.004 0.000 0.488
#> GSM198629     5  0.2280      0.605 0.120 0.000 0.000 0.000 0.880
#> GSM198630     5  0.4552      0.413 0.352 0.004 0.012 0.000 0.632
#> GSM198631     5  0.4096      0.520 0.260 0.004 0.012 0.000 0.724
#> GSM198632     5  0.2438      0.623 0.000 0.040 0.044 0.008 0.908
#> GSM198633     2  0.3894      0.735 0.008 0.832 0.024 0.032 0.104
#> GSM198634     5  0.4268      0.148 0.000 0.444 0.000 0.000 0.556
#> GSM198635     2  0.1270      0.774 0.000 0.948 0.000 0.000 0.052
#> GSM198636     1  0.3648      0.559 0.828 0.020 0.000 0.024 0.128
#> GSM198639     4  0.5621      0.613 0.004 0.000 0.112 0.632 0.252
#> GSM198641     2  0.3074      0.696 0.196 0.804 0.000 0.000 0.000
#> GSM198642     5  0.6122      0.326 0.124 0.004 0.344 0.000 0.528
#> GSM198643     5  0.2276      0.621 0.004 0.008 0.076 0.004 0.908
#> GSM198644     1  0.3213      0.580 0.836 0.004 0.016 0.144 0.000
#> GSM198645     3  0.6593      0.138 0.008 0.004 0.488 0.148 0.352
#> GSM198649     4  0.0992      0.748 0.024 0.000 0.008 0.968 0.000
#> GSM198651     1  0.4792      0.357 0.716 0.228 0.040 0.016 0.000
#> GSM198653     2  0.6282      0.552 0.164 0.628 0.172 0.036 0.000
#> GSM198654     3  0.2535      0.801 0.076 0.000 0.892 0.032 0.000
#> GSM198655     1  0.3485      0.597 0.828 0.000 0.124 0.048 0.000
#> GSM198656     3  0.2446      0.809 0.056 0.000 0.900 0.000 0.044
#> GSM198657     3  0.1016      0.829 0.008 0.004 0.972 0.012 0.004
#> GSM198658     3  0.1954      0.820 0.008 0.000 0.932 0.032 0.028
#> GSM198659     2  0.7365      0.430 0.160 0.540 0.112 0.188 0.000
#> GSM198660     3  0.2291      0.822 0.024 0.000 0.916 0.012 0.048
#> GSM198662     3  0.3151      0.771 0.004 0.000 0.864 0.064 0.068
#> GSM198663     2  0.0963      0.778 0.036 0.964 0.000 0.000 0.000
#> GSM198664     2  0.1928      0.775 0.004 0.920 0.072 0.004 0.000
#> GSM198665     3  0.1251      0.826 0.008 0.000 0.956 0.036 0.000
#> GSM198616     5  0.1914      0.625 0.000 0.008 0.056 0.008 0.928
#> GSM198617     4  0.6354      0.515 0.000 0.008 0.240 0.560 0.192
#> GSM198619     5  0.5176      0.413 0.008 0.000 0.080 0.224 0.688
#> GSM198620     4  0.2852      0.624 0.172 0.000 0.000 0.828 0.000
#> GSM198621     4  0.3629      0.756 0.004 0.000 0.072 0.832 0.092
#> GSM198624     5  0.2389      0.607 0.116 0.004 0.000 0.000 0.880
#> GSM198625     5  0.5360      0.463 0.296 0.056 0.012 0.000 0.636
#> GSM198637     5  0.4652      0.547 0.008 0.152 0.048 0.020 0.772
#> GSM198638     2  0.4577      0.716 0.008 0.796 0.104 0.056 0.036
#> GSM198640     5  0.6554      0.457 0.004 0.104 0.184 0.076 0.632
#> GSM198646     4  0.1732      0.711 0.080 0.000 0.000 0.920 0.000
#> GSM198647     4  0.1282      0.761 0.004 0.000 0.044 0.952 0.000
#> GSM198648     2  0.1800      0.774 0.048 0.932 0.000 0.020 0.000
#> GSM198650     3  0.5722      0.648 0.124 0.000 0.680 0.168 0.028
#> GSM198652     3  0.4540      0.588 0.268 0.008 0.700 0.024 0.000
#> GSM198661     3  0.1518      0.819 0.048 0.004 0.944 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     4   0.450     0.6432 0.048 0.016 0.028 0.792 0.024 0.092
#> GSM198622     2   0.349     0.5857 0.000 0.724 0.000 0.000 0.268 0.008
#> GSM198623     1   0.714     0.2736 0.468 0.000 0.148 0.016 0.276 0.092
#> GSM198626     1   0.395     0.3771 0.748 0.000 0.000 0.000 0.188 0.064
#> GSM198627     5   0.544    -0.0397 0.408 0.016 0.000 0.000 0.500 0.076
#> GSM198628     1   0.497     0.3832 0.640 0.000 0.000 0.000 0.228 0.132
#> GSM198629     5   0.363     0.2465 0.356 0.000 0.000 0.000 0.644 0.000
#> GSM198630     1   0.382     0.3995 0.728 0.000 0.000 0.000 0.240 0.032
#> GSM198631     1   0.388     0.3063 0.644 0.000 0.004 0.000 0.348 0.004
#> GSM198632     5   0.476     0.5416 0.152 0.060 0.004 0.020 0.744 0.020
#> GSM198633     2   0.428     0.6431 0.044 0.788 0.000 0.008 0.092 0.068
#> GSM198634     2   0.437     0.2102 0.016 0.532 0.000 0.000 0.448 0.004
#> GSM198635     2   0.239     0.6784 0.000 0.864 0.000 0.000 0.128 0.008
#> GSM198636     6   0.418     0.3334 0.384 0.000 0.000 0.004 0.012 0.600
#> GSM198639     4   0.436     0.5687 0.008 0.000 0.008 0.672 0.292 0.020
#> GSM198641     2   0.405     0.5485 0.100 0.764 0.000 0.000 0.004 0.132
#> GSM198642     1   0.637     0.3193 0.552 0.000 0.180 0.000 0.200 0.068
#> GSM198643     5   0.146     0.6170 0.028 0.000 0.016 0.004 0.948 0.004
#> GSM198644     6   0.627     0.4854 0.340 0.004 0.028 0.148 0.000 0.480
#> GSM198645     1   0.861    -0.0465 0.300 0.000 0.164 0.276 0.124 0.136
#> GSM198649     4   0.133     0.7014 0.000 0.000 0.000 0.936 0.000 0.064
#> GSM198651     6   0.727     0.3899 0.204 0.208 0.156 0.000 0.000 0.432
#> GSM198653     2   0.564     0.3810 0.084 0.656 0.152 0.000 0.000 0.108
#> GSM198654     3   0.133     0.6842 0.008 0.000 0.944 0.000 0.000 0.048
#> GSM198655     6   0.560     0.3540 0.144 0.000 0.292 0.008 0.000 0.556
#> GSM198656     3   0.316     0.6980 0.056 0.000 0.852 0.000 0.072 0.020
#> GSM198657     3   0.452     0.6755 0.128 0.000 0.760 0.024 0.012 0.076
#> GSM198658     3   0.201     0.7039 0.000 0.000 0.904 0.004 0.084 0.008
#> GSM198659     6   0.751     0.1112 0.004 0.296 0.136 0.204 0.000 0.360
#> GSM198660     3   0.305     0.6868 0.008 0.004 0.848 0.000 0.112 0.028
#> GSM198662     3   0.520     0.6894 0.088 0.000 0.736 0.036 0.068 0.072
#> GSM198663     2   0.107     0.6795 0.000 0.952 0.000 0.000 0.000 0.048
#> GSM198664     2   0.125     0.6868 0.000 0.956 0.024 0.000 0.012 0.008
#> GSM198665     3   0.624     0.5896 0.132 0.000 0.640 0.076 0.036 0.116
#> GSM198616     5   0.186     0.6160 0.092 0.000 0.000 0.004 0.904 0.000
#> GSM198617     4   0.748     0.4286 0.084 0.004 0.068 0.500 0.236 0.108
#> GSM198619     5   0.287     0.5304 0.008 0.000 0.008 0.136 0.844 0.004
#> GSM198620     4   0.355     0.5029 0.000 0.004 0.000 0.696 0.000 0.300
#> GSM198621     4   0.155     0.7173 0.000 0.000 0.004 0.932 0.060 0.004
#> GSM198624     1   0.400     0.0197 0.508 0.000 0.000 0.004 0.488 0.000
#> GSM198625     1   0.356     0.3551 0.724 0.012 0.000 0.000 0.264 0.000
#> GSM198637     5   0.287     0.5673 0.008 0.096 0.004 0.012 0.868 0.012
#> GSM198638     2   0.719     0.4263 0.088 0.596 0.056 0.120 0.032 0.108
#> GSM198640     1   0.907     0.1184 0.340 0.044 0.084 0.212 0.180 0.140
#> GSM198646     4   0.284     0.6271 0.000 0.000 0.000 0.808 0.004 0.188
#> GSM198647     4   0.052     0.7177 0.000 0.000 0.008 0.984 0.000 0.008
#> GSM198648     2   0.238     0.6563 0.004 0.892 0.000 0.036 0.000 0.068
#> GSM198650     3   0.469     0.5445 0.004 0.000 0.704 0.008 0.196 0.088
#> GSM198652     3   0.549     0.2500 0.152 0.012 0.604 0.000 0.000 0.232
#> GSM198661     3   0.547     0.6214 0.172 0.000 0.676 0.040 0.012 0.100

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) k
#> SD:NMF 45            0.737 2
#> SD:NMF 42            0.257 3
#> SD:NMF 47            0.148 4
#> SD:NMF 38            0.278 5
#> SD:NMF 28            0.187 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.372           0.856       0.877          0.264 0.850   0.850
#> 3 3 0.258           0.654       0.760          0.902 0.752   0.708
#> 4 4 0.392           0.643       0.751          0.316 0.706   0.512
#> 5 5 0.458           0.673       0.752          0.106 0.918   0.735
#> 6 6 0.673           0.720       0.812          0.063 0.987   0.942

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     1   0.373      0.888 0.928 0.072
#> GSM198622     1   0.184      0.878 0.972 0.028
#> GSM198623     1   0.402      0.887 0.920 0.080
#> GSM198626     1   0.260      0.873 0.956 0.044
#> GSM198627     1   0.260      0.873 0.956 0.044
#> GSM198628     1   0.260      0.873 0.956 0.044
#> GSM198629     1   0.260      0.873 0.956 0.044
#> GSM198630     1   0.260      0.873 0.956 0.044
#> GSM198631     1   0.260      0.873 0.956 0.044
#> GSM198632     1   0.327      0.885 0.940 0.060
#> GSM198633     1   0.163      0.879 0.976 0.024
#> GSM198634     1   0.184      0.878 0.972 0.028
#> GSM198635     1   0.204      0.879 0.968 0.032
#> GSM198636     1   0.260      0.873 0.956 0.044
#> GSM198639     1   0.456      0.878 0.904 0.096
#> GSM198641     1   0.541      0.860 0.876 0.124
#> GSM198642     1   0.388      0.887 0.924 0.076
#> GSM198643     1   0.311      0.884 0.944 0.056
#> GSM198644     1   0.833      0.742 0.736 0.264
#> GSM198645     1   0.388      0.883 0.924 0.076
#> GSM198649     2   0.260      0.992 0.044 0.956
#> GSM198651     1   0.605      0.845 0.852 0.148
#> GSM198653     1   0.833      0.742 0.736 0.264
#> GSM198654     1   0.917      0.685 0.668 0.332
#> GSM198655     1   0.456      0.879 0.904 0.096
#> GSM198656     1   0.416      0.883 0.916 0.084
#> GSM198657     1   0.714      0.827 0.804 0.196
#> GSM198658     1   0.895      0.712 0.688 0.312
#> GSM198659     1   0.714      0.813 0.804 0.196
#> GSM198660     1   0.416      0.879 0.916 0.084
#> GSM198662     1   0.821      0.776 0.744 0.256
#> GSM198663     1   0.615      0.842 0.848 0.152
#> GSM198664     1   0.402      0.880 0.920 0.080
#> GSM198665     1   0.871      0.738 0.708 0.292
#> GSM198616     1   0.311      0.884 0.944 0.056
#> GSM198617     1   0.443      0.879 0.908 0.092
#> GSM198619     1   0.311      0.884 0.944 0.056
#> GSM198620     2   0.327      0.976 0.060 0.940
#> GSM198621     1   0.443      0.879 0.908 0.092
#> GSM198624     1   0.260      0.873 0.956 0.044
#> GSM198625     1   0.260      0.873 0.956 0.044
#> GSM198637     1   0.311      0.884 0.944 0.056
#> GSM198638     1   0.204      0.883 0.968 0.032
#> GSM198640     1   0.327      0.885 0.940 0.060
#> GSM198646     2   0.260      0.992 0.044 0.956
#> GSM198647     2   0.260      0.992 0.044 0.956
#> GSM198648     1   0.584      0.847 0.860 0.140
#> GSM198650     1   0.917      0.685 0.668 0.332
#> GSM198652     1   0.876      0.699 0.704 0.296
#> GSM198661     1   0.808      0.782 0.752 0.248

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     1   0.484      0.672 0.844 0.104 0.052
#> GSM198622     1   0.480      0.653 0.824 0.156 0.020
#> GSM198623     1   0.496      0.672 0.832 0.128 0.040
#> GSM198626     1   0.654      0.603 0.728 0.220 0.052
#> GSM198627     1   0.684      0.590 0.704 0.240 0.056
#> GSM198628     1   0.682      0.589 0.700 0.248 0.052
#> GSM198629     1   0.616      0.622 0.760 0.188 0.052
#> GSM198630     1   0.654      0.603 0.728 0.220 0.052
#> GSM198631     1   0.654      0.603 0.728 0.220 0.052
#> GSM198632     1   0.321      0.690 0.912 0.060 0.028
#> GSM198633     1   0.468      0.655 0.832 0.148 0.020
#> GSM198634     1   0.480      0.653 0.824 0.156 0.020
#> GSM198635     1   0.480      0.655 0.824 0.156 0.020
#> GSM198636     1   0.728      0.535 0.620 0.336 0.044
#> GSM198639     1   0.334      0.694 0.908 0.032 0.060
#> GSM198641     2   0.516      0.834 0.216 0.776 0.008
#> GSM198642     1   0.453      0.666 0.856 0.104 0.040
#> GSM198643     1   0.238      0.697 0.936 0.056 0.008
#> GSM198644     2   0.934      0.450 0.412 0.424 0.164
#> GSM198645     1   0.327      0.697 0.912 0.044 0.044
#> GSM198649     3   0.226      0.983 0.068 0.000 0.932
#> GSM198651     2   0.558      0.841 0.204 0.772 0.024
#> GSM198653     2   0.854      0.786 0.220 0.608 0.172
#> GSM198654     1   0.815      0.349 0.604 0.100 0.296
#> GSM198655     1   0.750      0.476 0.572 0.384 0.044
#> GSM198656     1   0.494      0.655 0.840 0.104 0.056
#> GSM198657     1   0.674      0.562 0.744 0.100 0.156
#> GSM198658     1   0.801      0.390 0.624 0.100 0.276
#> GSM198659     2   0.721      0.835 0.212 0.700 0.088
#> GSM198660     1   0.615      0.609 0.772 0.160 0.068
#> GSM198662     1   0.747      0.489 0.684 0.100 0.216
#> GSM198663     2   0.580      0.828 0.184 0.776 0.040
#> GSM198664     1   0.734      0.324 0.652 0.288 0.060
#> GSM198665     1   0.785      0.426 0.644 0.100 0.256
#> GSM198616     1   0.304      0.687 0.908 0.084 0.008
#> GSM198617     1   0.469      0.662 0.852 0.096 0.052
#> GSM198619     1   0.304      0.687 0.908 0.084 0.008
#> GSM198620     3   0.334      0.947 0.060 0.032 0.908
#> GSM198621     1   0.469      0.662 0.852 0.096 0.052
#> GSM198624     1   0.654      0.603 0.728 0.220 0.052
#> GSM198625     1   0.654      0.603 0.728 0.220 0.052
#> GSM198637     1   0.238      0.697 0.936 0.056 0.008
#> GSM198638     1   0.441      0.661 0.852 0.124 0.024
#> GSM198640     1   0.321      0.690 0.912 0.060 0.028
#> GSM198646     3   0.226      0.983 0.068 0.000 0.932
#> GSM198647     3   0.226      0.983 0.068 0.000 0.932
#> GSM198648     2   0.541      0.842 0.200 0.780 0.020
#> GSM198650     1   0.815      0.349 0.604 0.100 0.296
#> GSM198652     2   0.888      0.758 0.220 0.576 0.204
#> GSM198661     1   0.739      0.500 0.692 0.100 0.208

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     1  0.7597      0.552 0.564 0.192 0.224 0.020
#> GSM198622     1  0.6758      0.640 0.652 0.220 0.104 0.024
#> GSM198623     3  0.4331      0.681 0.288 0.000 0.712 0.000
#> GSM198626     1  0.0188      0.673 0.996 0.000 0.004 0.000
#> GSM198627     1  0.2542      0.642 0.904 0.012 0.000 0.084
#> GSM198628     1  0.3080      0.636 0.880 0.024 0.000 0.096
#> GSM198629     1  0.1474      0.662 0.948 0.000 0.052 0.000
#> GSM198630     1  0.0188      0.673 0.996 0.000 0.004 0.000
#> GSM198631     1  0.0188      0.673 0.996 0.000 0.004 0.000
#> GSM198632     1  0.6592      0.233 0.552 0.076 0.368 0.004
#> GSM198633     1  0.7144      0.618 0.620 0.220 0.136 0.024
#> GSM198634     1  0.6758      0.640 0.652 0.220 0.104 0.024
#> GSM198635     1  0.6681      0.640 0.656 0.216 0.108 0.020
#> GSM198636     1  0.8020      0.516 0.600 0.128 0.128 0.144
#> GSM198639     3  0.4897      0.608 0.332 0.008 0.660 0.000
#> GSM198641     2  0.2882      0.802 0.016 0.904 0.064 0.016
#> GSM198642     3  0.3837      0.712 0.224 0.000 0.776 0.000
#> GSM198643     3  0.4977      0.391 0.460 0.000 0.540 0.000
#> GSM198644     2  0.8312      0.524 0.132 0.540 0.244 0.084
#> GSM198645     3  0.5543      0.572 0.340 0.024 0.632 0.004
#> GSM198649     4  0.3444      0.978 0.000 0.000 0.184 0.816
#> GSM198651     2  0.2750      0.800 0.004 0.908 0.056 0.032
#> GSM198653     2  0.5096      0.746 0.000 0.760 0.156 0.084
#> GSM198654     3  0.1557      0.587 0.000 0.000 0.944 0.056
#> GSM198655     1  0.7948      0.490 0.592 0.188 0.140 0.080
#> GSM198656     3  0.3791      0.720 0.200 0.000 0.796 0.004
#> GSM198657     3  0.2546      0.716 0.092 0.000 0.900 0.008
#> GSM198658     3  0.1398      0.616 0.004 0.000 0.956 0.040
#> GSM198659     2  0.3547      0.771 0.000 0.864 0.064 0.072
#> GSM198660     1  0.8701      0.344 0.392 0.248 0.320 0.040
#> GSM198662     3  0.1356      0.683 0.032 0.000 0.960 0.008
#> GSM198663     2  0.1398      0.777 0.000 0.956 0.004 0.040
#> GSM198664     1  0.8380      0.377 0.408 0.384 0.168 0.040
#> GSM198665     3  0.3107      0.681 0.080 0.000 0.884 0.036
#> GSM198616     3  0.4746      0.605 0.368 0.000 0.632 0.000
#> GSM198617     3  0.4277      0.686 0.280 0.000 0.720 0.000
#> GSM198619     3  0.4746      0.605 0.368 0.000 0.632 0.000
#> GSM198620     4  0.4274      0.932 0.000 0.044 0.148 0.808
#> GSM198621     3  0.4277      0.686 0.280 0.000 0.720 0.000
#> GSM198624     1  0.0336      0.673 0.992 0.000 0.008 0.000
#> GSM198625     1  0.0188      0.673 0.996 0.000 0.004 0.000
#> GSM198637     3  0.4977      0.391 0.460 0.000 0.540 0.000
#> GSM198638     1  0.7415      0.582 0.588 0.212 0.180 0.020
#> GSM198640     1  0.6592      0.233 0.552 0.076 0.368 0.004
#> GSM198646     4  0.3444      0.978 0.000 0.000 0.184 0.816
#> GSM198647     4  0.3444      0.978 0.000 0.000 0.184 0.816
#> GSM198648     2  0.0336      0.787 0.000 0.992 0.008 0.000
#> GSM198650     3  0.1557      0.587 0.000 0.000 0.944 0.056
#> GSM198652     2  0.5907      0.681 0.000 0.680 0.228 0.092
#> GSM198661     3  0.1398      0.692 0.040 0.000 0.956 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     5   0.256      0.749 0.000 0.000 0.144 0.000 0.856
#> GSM198622     5   0.165      0.754 0.032 0.000 0.020 0.004 0.944
#> GSM198623     3   0.502      0.653 0.096 0.000 0.692 0.000 0.212
#> GSM198626     1   0.425      0.777 0.700 0.000 0.020 0.000 0.280
#> GSM198627     1   0.404      0.742 0.768 0.004 0.004 0.020 0.204
#> GSM198628     1   0.427      0.733 0.748 0.008 0.000 0.028 0.216
#> GSM198629     1   0.507      0.715 0.648 0.000 0.064 0.000 0.288
#> GSM198630     1   0.425      0.777 0.700 0.000 0.020 0.000 0.280
#> GSM198631     1   0.425      0.777 0.700 0.000 0.020 0.000 0.280
#> GSM198632     5   0.405      0.372 0.004 0.000 0.320 0.000 0.676
#> GSM198633     5   0.136      0.774 0.000 0.000 0.048 0.004 0.948
#> GSM198634     5   0.165      0.754 0.032 0.000 0.020 0.004 0.944
#> GSM198635     5   0.205      0.739 0.052 0.000 0.028 0.000 0.920
#> GSM198636     1   0.751      0.260 0.568 0.080 0.076 0.052 0.224
#> GSM198639     3   0.414      0.561 0.000 0.000 0.616 0.000 0.384
#> GSM198641     2   0.243      0.767 0.020 0.904 0.000 0.008 0.068
#> GSM198642     3   0.400      0.698 0.024 0.000 0.748 0.000 0.228
#> GSM198643     3   0.475      0.395 0.016 0.000 0.504 0.000 0.480
#> GSM198644     2   0.710      0.559 0.020 0.608 0.112 0.088 0.172
#> GSM198645     3   0.422      0.512 0.000 0.000 0.584 0.000 0.416
#> GSM198649     4   0.141      0.980 0.000 0.000 0.060 0.940 0.000
#> GSM198651     2   0.171      0.762 0.016 0.940 0.000 0.004 0.040
#> GSM198653     2   0.493      0.744 0.000 0.768 0.068 0.096 0.068
#> GSM198654     3   0.173      0.633 0.000 0.000 0.920 0.080 0.000
#> GSM198655     1   0.808      0.182 0.500 0.148 0.088 0.036 0.228
#> GSM198656     3   0.385      0.705 0.016 0.000 0.768 0.004 0.212
#> GSM198657     3   0.298      0.706 0.004 0.000 0.856 0.016 0.124
#> GSM198658     3   0.211      0.651 0.000 0.000 0.912 0.072 0.016
#> GSM198659     2   0.566      0.706 0.016 0.664 0.012 0.064 0.244
#> GSM198660     5   0.538      0.599 0.000 0.044 0.244 0.036 0.676
#> GSM198662     3   0.221      0.687 0.000 0.000 0.908 0.020 0.072
#> GSM198663     2   0.414      0.734 0.016 0.752 0.000 0.012 0.220
#> GSM198664     5   0.554      0.581 0.000 0.172 0.092 0.036 0.700
#> GSM198665     3   0.340      0.671 0.000 0.000 0.840 0.064 0.096
#> GSM198616     3   0.460      0.598 0.016 0.000 0.600 0.000 0.384
#> GSM198617     3   0.388      0.667 0.000 0.000 0.684 0.000 0.316
#> GSM198619     3   0.460      0.598 0.016 0.000 0.600 0.000 0.384
#> GSM198620     4   0.223      0.936 0.000 0.036 0.032 0.920 0.012
#> GSM198621     3   0.388      0.667 0.000 0.000 0.684 0.000 0.316
#> GSM198624     1   0.425      0.773 0.688 0.000 0.016 0.000 0.296
#> GSM198625     1   0.411      0.773 0.700 0.000 0.012 0.000 0.288
#> GSM198637     3   0.475      0.395 0.016 0.000 0.504 0.000 0.480
#> GSM198638     5   0.196      0.771 0.000 0.000 0.096 0.000 0.904
#> GSM198640     5   0.405      0.372 0.004 0.000 0.320 0.000 0.676
#> GSM198646     4   0.141      0.980 0.000 0.000 0.060 0.940 0.000
#> GSM198647     4   0.141      0.980 0.000 0.000 0.060 0.940 0.000
#> GSM198648     2   0.309      0.769 0.000 0.824 0.000 0.008 0.168
#> GSM198650     3   0.202      0.617 0.000 0.000 0.900 0.100 0.000
#> GSM198652     2   0.462      0.674 0.000 0.752 0.148 0.096 0.004
#> GSM198661     3   0.213      0.691 0.000 0.000 0.908 0.012 0.080

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     5  0.2320      0.749 0.000 0.004 0.132 0.000 0.864 0.000
#> GSM198622     5  0.1461      0.770 0.044 0.000 0.016 0.000 0.940 0.000
#> GSM198623     3  0.4252      0.659 0.188 0.000 0.724 0.000 0.088 0.000
#> GSM198626     1  0.0806      0.932 0.972 0.000 0.008 0.000 0.020 0.000
#> GSM198627     1  0.2113      0.866 0.896 0.000 0.000 0.008 0.004 0.092
#> GSM198628     1  0.2488      0.848 0.864 0.000 0.000 0.008 0.004 0.124
#> GSM198629     1  0.2058      0.866 0.908 0.000 0.056 0.000 0.036 0.000
#> GSM198630     1  0.0806      0.932 0.972 0.000 0.008 0.000 0.020 0.000
#> GSM198631     1  0.0806      0.932 0.972 0.000 0.008 0.000 0.020 0.000
#> GSM198632     5  0.4441      0.297 0.032 0.004 0.344 0.000 0.620 0.000
#> GSM198633     5  0.1461      0.777 0.016 0.000 0.044 0.000 0.940 0.000
#> GSM198634     5  0.1528      0.768 0.048 0.000 0.016 0.000 0.936 0.000
#> GSM198635     5  0.2537      0.747 0.088 0.000 0.024 0.008 0.880 0.000
#> GSM198636     6  0.0551      0.898 0.008 0.004 0.000 0.000 0.004 0.984
#> GSM198639     3  0.4048      0.583 0.012 0.004 0.644 0.000 0.340 0.000
#> GSM198641     2  0.2737      0.707 0.004 0.876 0.000 0.004 0.060 0.056
#> GSM198642     3  0.3735      0.715 0.092 0.000 0.784 0.000 0.124 0.000
#> GSM198643     3  0.4768      0.444 0.052 0.000 0.532 0.000 0.416 0.000
#> GSM198644     2  0.6178      0.433 0.000 0.596 0.080 0.072 0.016 0.236
#> GSM198645     3  0.4234      0.531 0.016 0.004 0.608 0.000 0.372 0.000
#> GSM198649     4  0.0547      0.980 0.000 0.000 0.020 0.980 0.000 0.000
#> GSM198651     2  0.1970      0.706 0.000 0.912 0.000 0.000 0.028 0.060
#> GSM198653     2  0.4842      0.707 0.000 0.748 0.080 0.076 0.088 0.008
#> GSM198654     3  0.2084      0.648 0.000 0.016 0.916 0.044 0.024 0.000
#> GSM198655     6  0.2086      0.892 0.000 0.064 0.012 0.008 0.004 0.912
#> GSM198656     3  0.3439      0.722 0.072 0.000 0.808 0.000 0.120 0.000
#> GSM198657     3  0.2034      0.724 0.024 0.000 0.912 0.004 0.060 0.000
#> GSM198658     3  0.1155      0.676 0.000 0.004 0.956 0.036 0.004 0.000
#> GSM198659     2  0.5641      0.643 0.008 0.636 0.028 0.048 0.256 0.024
#> GSM198660     5  0.4814      0.610 0.004 0.044 0.268 0.020 0.664 0.000
#> GSM198662     3  0.0858      0.710 0.000 0.000 0.968 0.004 0.028 0.000
#> GSM198663     2  0.4053      0.674 0.008 0.732 0.000 0.004 0.228 0.028
#> GSM198664     5  0.4957      0.593 0.004 0.152 0.120 0.020 0.704 0.000
#> GSM198665     3  0.2658      0.701 0.000 0.008 0.876 0.036 0.080 0.000
#> GSM198616     3  0.4524      0.623 0.052 0.000 0.628 0.000 0.320 0.000
#> GSM198617     3  0.3746      0.677 0.012 0.004 0.712 0.000 0.272 0.000
#> GSM198619     3  0.4524      0.623 0.052 0.000 0.628 0.000 0.320 0.000
#> GSM198620     4  0.1155      0.937 0.000 0.036 0.004 0.956 0.004 0.000
#> GSM198621     3  0.3746      0.677 0.012 0.004 0.712 0.000 0.272 0.000
#> GSM198624     1  0.1297      0.925 0.948 0.000 0.012 0.000 0.040 0.000
#> GSM198625     1  0.1124      0.923 0.956 0.000 0.000 0.008 0.036 0.000
#> GSM198637     3  0.4768      0.444 0.052 0.000 0.532 0.000 0.416 0.000
#> GSM198638     5  0.1806      0.769 0.004 0.000 0.088 0.000 0.908 0.000
#> GSM198640     5  0.4441      0.297 0.032 0.004 0.344 0.000 0.620 0.000
#> GSM198646     4  0.0547      0.980 0.000 0.000 0.020 0.980 0.000 0.000
#> GSM198647     4  0.0547      0.980 0.000 0.000 0.020 0.980 0.000 0.000
#> GSM198648     2  0.2946      0.714 0.004 0.808 0.000 0.000 0.184 0.004
#> GSM198650     3  0.2432      0.627 0.000 0.016 0.892 0.072 0.020 0.000
#> GSM198652     2  0.4504      0.637 0.000 0.768 0.112 0.076 0.032 0.012
#> GSM198661     3  0.1155      0.713 0.000 0.004 0.956 0.004 0.036 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> CV:hclust 50            0.173 2
#> CV:hclust 41            0.193 3
#> CV:hclust 43            0.191 4
#> CV:hclust 44            0.249 5
#> CV:hclust 45            0.282 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.377           0.265       0.622         0.4647 0.571   0.571
#> 3 3 0.416           0.634       0.803         0.3671 0.602   0.385
#> 4 4 0.517           0.604       0.780         0.1203 0.845   0.607
#> 5 5 0.708           0.780       0.852         0.0843 0.820   0.490
#> 6 6 0.747           0.712       0.822         0.0568 0.987   0.939

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     2  0.8555      0.448 0.280 0.720
#> GSM198622     1  0.9881      0.671 0.564 0.436
#> GSM198623     2  0.9993     -0.593 0.484 0.516
#> GSM198626     1  0.9933      0.672 0.548 0.452
#> GSM198627     1  0.9866      0.671 0.568 0.432
#> GSM198628     1  0.9933      0.672 0.548 0.452
#> GSM198629     1  0.9933      0.672 0.548 0.452
#> GSM198630     1  0.9933      0.672 0.548 0.452
#> GSM198631     1  0.9933      0.672 0.548 0.452
#> GSM198632     2  0.9983     -0.579 0.476 0.524
#> GSM198633     2  0.9661     -0.416 0.392 0.608
#> GSM198634     1  0.9881      0.671 0.564 0.436
#> GSM198635     1  0.9977      0.626 0.528 0.472
#> GSM198636     1  0.8267      0.475 0.740 0.260
#> GSM198639     2  0.0938      0.450 0.012 0.988
#> GSM198641     1  0.2043      0.182 0.968 0.032
#> GSM198642     2  0.9983     -0.579 0.476 0.524
#> GSM198643     2  0.9983     -0.579 0.476 0.524
#> GSM198644     2  0.9909      0.411 0.444 0.556
#> GSM198645     2  0.5737      0.241 0.136 0.864
#> GSM198649     2  0.9866      0.416 0.432 0.568
#> GSM198651     1  0.9970     -0.409 0.532 0.468
#> GSM198653     2  0.9954      0.403 0.460 0.540
#> GSM198654     2  0.5842      0.465 0.140 0.860
#> GSM198655     2  0.9248      0.425 0.340 0.660
#> GSM198656     2  0.0672      0.454 0.008 0.992
#> GSM198657     2  0.0672      0.454 0.008 0.992
#> GSM198658     2  0.0000      0.459 0.000 1.000
#> GSM198659     2  0.9970      0.398 0.468 0.532
#> GSM198660     2  0.0000      0.459 0.000 1.000
#> GSM198662     2  0.0376      0.457 0.004 0.996
#> GSM198663     1  0.9983     -0.414 0.524 0.476
#> GSM198664     2  0.8327      0.447 0.264 0.736
#> GSM198665     2  0.0000      0.459 0.000 1.000
#> GSM198616     2  1.0000     -0.616 0.496 0.504
#> GSM198617     2  0.0000      0.459 0.000 1.000
#> GSM198619     2  0.9954     -0.556 0.460 0.540
#> GSM198620     2  0.9944      0.405 0.456 0.544
#> GSM198621     2  0.0938      0.450 0.012 0.988
#> GSM198624     1  0.9933      0.672 0.548 0.452
#> GSM198625     1  0.9866      0.671 0.568 0.432
#> GSM198637     2  0.9998     -0.596 0.492 0.508
#> GSM198638     2  0.0000      0.459 0.000 1.000
#> GSM198640     2  0.9983     -0.579 0.476 0.524
#> GSM198646     2  0.9866      0.416 0.432 0.568
#> GSM198647     2  0.9866      0.416 0.432 0.568
#> GSM198648     2  1.0000      0.377 0.496 0.504
#> GSM198650     2  0.5842      0.465 0.140 0.860
#> GSM198652     2  0.9866      0.416 0.432 0.568
#> GSM198661     2  0.0672      0.454 0.008 0.992

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     3  0.5158   0.504370 0.004 0.232 0.764
#> GSM198622     1  0.6572   0.752686 0.748 0.080 0.172
#> GSM198623     3  0.6154   0.065081 0.408 0.000 0.592
#> GSM198626     1  0.3116   0.808981 0.892 0.000 0.108
#> GSM198627     1  0.1964   0.787903 0.944 0.000 0.056
#> GSM198628     1  0.2878   0.804821 0.904 0.000 0.096
#> GSM198629     1  0.3116   0.808981 0.892 0.000 0.108
#> GSM198630     1  0.3038   0.808023 0.896 0.000 0.104
#> GSM198631     1  0.3116   0.808981 0.892 0.000 0.108
#> GSM198632     1  0.6026   0.593170 0.624 0.000 0.376
#> GSM198633     3  0.9006   0.103170 0.304 0.160 0.536
#> GSM198634     1  0.6138   0.763999 0.768 0.060 0.172
#> GSM198635     1  0.8303   0.655841 0.632 0.172 0.196
#> GSM198636     1  0.5072   0.557661 0.792 0.196 0.012
#> GSM198639     3  0.0424   0.828085 0.008 0.000 0.992
#> GSM198641     2  0.6816  -0.000993 0.472 0.516 0.012
#> GSM198642     3  0.6154   0.059231 0.408 0.000 0.592
#> GSM198643     1  0.6062   0.578944 0.616 0.000 0.384
#> GSM198644     2  0.5618   0.646523 0.008 0.732 0.260
#> GSM198645     3  0.1031   0.825957 0.024 0.000 0.976
#> GSM198649     2  0.7559   0.560020 0.056 0.608 0.336
#> GSM198651     2  0.2280   0.688491 0.052 0.940 0.008
#> GSM198653     2  0.1170   0.697736 0.016 0.976 0.008
#> GSM198654     3  0.3370   0.724490 0.024 0.072 0.904
#> GSM198655     2  0.6682   0.322246 0.008 0.504 0.488
#> GSM198656     3  0.1315   0.829627 0.020 0.008 0.972
#> GSM198657     3  0.1315   0.829627 0.020 0.008 0.972
#> GSM198658     3  0.0661   0.826430 0.004 0.008 0.988
#> GSM198659     2  0.1453   0.696832 0.024 0.968 0.008
#> GSM198660     3  0.1315   0.829627 0.020 0.008 0.972
#> GSM198662     3  0.0661   0.826430 0.004 0.008 0.988
#> GSM198663     2  0.2280   0.688491 0.052 0.940 0.008
#> GSM198664     2  0.7584  -0.023039 0.040 0.488 0.472
#> GSM198665     3  0.0661   0.826430 0.004 0.008 0.988
#> GSM198616     1  0.5529   0.702468 0.704 0.000 0.296
#> GSM198617     3  0.0000   0.826043 0.000 0.000 1.000
#> GSM198619     3  0.4291   0.645184 0.180 0.000 0.820
#> GSM198620     2  0.6254   0.662696 0.056 0.756 0.188
#> GSM198621     3  0.0424   0.828085 0.008 0.000 0.992
#> GSM198624     1  0.3116   0.809493 0.892 0.000 0.108
#> GSM198625     1  0.2165   0.793988 0.936 0.000 0.064
#> GSM198637     1  0.8143   0.545867 0.560 0.080 0.360
#> GSM198638     3  0.5000   0.702655 0.044 0.124 0.832
#> GSM198640     1  0.6302   0.338723 0.520 0.000 0.480
#> GSM198646     2  0.7491   0.573438 0.056 0.620 0.324
#> GSM198647     2  0.7920   0.316986 0.056 0.476 0.468
#> GSM198648     2  0.1399   0.694296 0.028 0.968 0.004
#> GSM198650     3  0.3370   0.724490 0.024 0.072 0.904
#> GSM198652     2  0.5728   0.639861 0.008 0.720 0.272
#> GSM198661     3  0.1315   0.829627 0.020 0.008 0.972

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     3  0.7128     0.5001 0.000 0.184 0.556 0.260
#> GSM198622     1  0.8275     0.4141 0.500 0.068 0.120 0.312
#> GSM198623     3  0.4692     0.6477 0.212 0.000 0.756 0.032
#> GSM198626     1  0.0469     0.8090 0.988 0.000 0.012 0.000
#> GSM198627     1  0.0707     0.8024 0.980 0.000 0.000 0.020
#> GSM198628     1  0.1284     0.7996 0.964 0.000 0.012 0.024
#> GSM198629     1  0.0657     0.8091 0.984 0.000 0.012 0.004
#> GSM198630     1  0.0469     0.8090 0.988 0.000 0.012 0.000
#> GSM198631     1  0.0469     0.8090 0.988 0.000 0.012 0.000
#> GSM198632     3  0.8157     0.3095 0.284 0.012 0.424 0.280
#> GSM198633     3  0.8709     0.3923 0.076 0.148 0.436 0.340
#> GSM198634     1  0.8217     0.4196 0.504 0.064 0.120 0.312
#> GSM198635     2  0.9580     0.0636 0.224 0.336 0.128 0.312
#> GSM198636     1  0.4540     0.6178 0.772 0.196 0.000 0.032
#> GSM198639     3  0.3024     0.7320 0.000 0.000 0.852 0.148
#> GSM198641     2  0.5215     0.5062 0.052 0.740 0.004 0.204
#> GSM198642     3  0.4285     0.7141 0.104 0.000 0.820 0.076
#> GSM198643     3  0.7567     0.3919 0.276 0.000 0.484 0.240
#> GSM198644     2  0.5228     0.4247 0.000 0.756 0.120 0.124
#> GSM198645     3  0.3946     0.7258 0.020 0.000 0.812 0.168
#> GSM198649     4  0.6326     0.8983 0.000 0.264 0.104 0.632
#> GSM198651     2  0.1118     0.5734 0.000 0.964 0.000 0.036
#> GSM198653     2  0.0921     0.5521 0.000 0.972 0.000 0.028
#> GSM198654     3  0.3196     0.5883 0.000 0.008 0.856 0.136
#> GSM198655     2  0.7081     0.0175 0.000 0.452 0.424 0.124
#> GSM198656     3  0.0967     0.7257 0.016 0.004 0.976 0.004
#> GSM198657     3  0.0844     0.7251 0.012 0.004 0.980 0.004
#> GSM198658     3  0.0895     0.7116 0.000 0.004 0.976 0.020
#> GSM198659     2  0.1022     0.5570 0.000 0.968 0.000 0.032
#> GSM198660     3  0.1124     0.7253 0.012 0.004 0.972 0.012
#> GSM198662     3  0.0779     0.7136 0.000 0.004 0.980 0.016
#> GSM198663     2  0.1792     0.5711 0.000 0.932 0.000 0.068
#> GSM198664     2  0.7740     0.3174 0.012 0.504 0.188 0.296
#> GSM198665     3  0.1305     0.7139 0.000 0.004 0.960 0.036
#> GSM198616     1  0.7247     0.3605 0.544 0.000 0.216 0.240
#> GSM198617     3  0.3172     0.7284 0.000 0.000 0.840 0.160
#> GSM198619     3  0.4939     0.6967 0.040 0.000 0.740 0.220
#> GSM198620     4  0.5658     0.8213 0.000 0.328 0.040 0.632
#> GSM198621     3  0.3024     0.7309 0.000 0.000 0.852 0.148
#> GSM198624     1  0.1888     0.7908 0.940 0.000 0.016 0.044
#> GSM198625     1  0.0188     0.8052 0.996 0.000 0.000 0.004
#> GSM198637     3  0.8779     0.2714 0.256 0.044 0.388 0.312
#> GSM198638     3  0.7418     0.4959 0.016 0.124 0.528 0.332
#> GSM198640     3  0.7836     0.4691 0.200 0.012 0.488 0.300
#> GSM198646     4  0.6298     0.8984 0.000 0.268 0.100 0.632
#> GSM198647     4  0.6360     0.7940 0.000 0.164 0.180 0.656
#> GSM198648     2  0.1474     0.5326 0.000 0.948 0.000 0.052
#> GSM198650     3  0.3249     0.5858 0.000 0.008 0.852 0.140
#> GSM198652     2  0.5484     0.3816 0.000 0.732 0.164 0.104
#> GSM198661     3  0.0967     0.7257 0.016 0.004 0.976 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     5  0.3053      0.773 0.000 0.012 0.128 0.008 0.852
#> GSM198622     5  0.3969      0.700 0.156 0.040 0.000 0.008 0.796
#> GSM198623     3  0.4766      0.773 0.132 0.000 0.732 0.000 0.136
#> GSM198626     1  0.0510      0.943 0.984 0.000 0.000 0.000 0.016
#> GSM198627     1  0.1267      0.930 0.960 0.000 0.004 0.024 0.012
#> GSM198628     1  0.1554      0.921 0.952 0.004 0.012 0.024 0.008
#> GSM198629     1  0.0671      0.943 0.980 0.000 0.000 0.004 0.016
#> GSM198630     1  0.0510      0.943 0.984 0.000 0.000 0.000 0.016
#> GSM198631     1  0.0510      0.943 0.984 0.000 0.000 0.000 0.016
#> GSM198632     5  0.3242      0.787 0.072 0.000 0.076 0.000 0.852
#> GSM198633     5  0.3601      0.773 0.020 0.052 0.064 0.008 0.856
#> GSM198634     5  0.3969      0.700 0.156 0.040 0.000 0.008 0.796
#> GSM198635     5  0.4366      0.664 0.064 0.140 0.004 0.008 0.784
#> GSM198636     1  0.5916      0.635 0.692 0.176 0.024 0.028 0.080
#> GSM198639     5  0.4582      0.426 0.000 0.000 0.416 0.012 0.572
#> GSM198641     2  0.2017      0.760 0.000 0.912 0.000 0.008 0.080
#> GSM198642     3  0.3772      0.831 0.036 0.000 0.792 0.000 0.172
#> GSM198643     5  0.3323      0.785 0.056 0.000 0.100 0.000 0.844
#> GSM198644     2  0.6187      0.643 0.008 0.672 0.160 0.056 0.104
#> GSM198645     5  0.4350      0.420 0.000 0.000 0.408 0.004 0.588
#> GSM198649     4  0.1251      0.983 0.000 0.036 0.008 0.956 0.000
#> GSM198651     2  0.0807      0.774 0.000 0.976 0.000 0.012 0.012
#> GSM198653     2  0.1808      0.771 0.000 0.936 0.008 0.044 0.012
#> GSM198654     3  0.1041      0.872 0.000 0.000 0.964 0.032 0.004
#> GSM198655     2  0.6959      0.338 0.012 0.456 0.404 0.040 0.088
#> GSM198656     3  0.2127      0.918 0.000 0.000 0.892 0.000 0.108
#> GSM198657     3  0.2127      0.918 0.000 0.000 0.892 0.000 0.108
#> GSM198658     3  0.1282      0.905 0.000 0.000 0.952 0.004 0.044
#> GSM198659     2  0.2075      0.776 0.000 0.924 0.004 0.032 0.040
#> GSM198660     3  0.2074      0.918 0.000 0.000 0.896 0.000 0.104
#> GSM198662     3  0.1965      0.917 0.000 0.000 0.904 0.000 0.096
#> GSM198663     2  0.1043      0.772 0.000 0.960 0.000 0.000 0.040
#> GSM198664     2  0.5497      0.288 0.000 0.560 0.052 0.008 0.380
#> GSM198665     3  0.1484      0.903 0.000 0.000 0.944 0.008 0.048
#> GSM198616     5  0.3449      0.748 0.164 0.000 0.024 0.000 0.812
#> GSM198617     5  0.4604      0.398 0.000 0.000 0.428 0.012 0.560
#> GSM198619     5  0.3209      0.751 0.000 0.000 0.180 0.008 0.812
#> GSM198620     4  0.1121      0.975 0.000 0.044 0.000 0.956 0.000
#> GSM198621     5  0.4590      0.416 0.000 0.000 0.420 0.012 0.568
#> GSM198624     1  0.1270      0.909 0.948 0.000 0.000 0.000 0.052
#> GSM198625     1  0.0510      0.943 0.984 0.000 0.000 0.000 0.016
#> GSM198637     5  0.2867      0.783 0.072 0.004 0.044 0.000 0.880
#> GSM198638     5  0.2908      0.779 0.000 0.016 0.108 0.008 0.868
#> GSM198640     5  0.2653      0.786 0.024 0.000 0.096 0.000 0.880
#> GSM198646     4  0.1251      0.983 0.000 0.036 0.008 0.956 0.000
#> GSM198647     4  0.1082      0.957 0.000 0.008 0.028 0.964 0.000
#> GSM198648     2  0.2067      0.768 0.000 0.920 0.000 0.048 0.032
#> GSM198650     3  0.1041      0.872 0.000 0.000 0.964 0.032 0.004
#> GSM198652     2  0.5002      0.684 0.000 0.740 0.168 0.052 0.040
#> GSM198661     3  0.2127      0.918 0.000 0.000 0.892 0.000 0.108

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     5  0.3715      0.745 0.000 0.016 0.032 0.008 0.804 0.140
#> GSM198622     5  0.4604      0.658 0.016 0.064 0.000 0.000 0.700 0.220
#> GSM198623     3  0.5662      0.574 0.152 0.000 0.624 0.000 0.188 0.036
#> GSM198626     1  0.0000      0.901 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198627     1  0.1588      0.876 0.924 0.000 0.000 0.004 0.000 0.072
#> GSM198628     1  0.1908      0.858 0.900 0.000 0.000 0.004 0.000 0.096
#> GSM198629     1  0.0692      0.894 0.976 0.000 0.000 0.000 0.020 0.004
#> GSM198630     1  0.0000      0.901 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198631     1  0.0000      0.901 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198632     5  0.0767      0.760 0.012 0.004 0.008 0.000 0.976 0.000
#> GSM198633     5  0.3947      0.678 0.000 0.048 0.000 0.000 0.732 0.220
#> GSM198634     5  0.4604      0.658 0.016 0.064 0.000 0.000 0.700 0.220
#> GSM198635     5  0.4601      0.650 0.008 0.076 0.000 0.000 0.692 0.224
#> GSM198636     1  0.4779      0.190 0.488 0.040 0.000 0.004 0.000 0.468
#> GSM198639     5  0.4969      0.552 0.000 0.000 0.240 0.008 0.652 0.100
#> GSM198641     2  0.3349      0.533 0.000 0.748 0.000 0.000 0.008 0.244
#> GSM198642     3  0.5033      0.627 0.040 0.000 0.672 0.000 0.228 0.060
#> GSM198643     5  0.1801      0.755 0.004 0.000 0.056 0.000 0.924 0.016
#> GSM198644     6  0.5545      0.676 0.000 0.292 0.036 0.016 0.048 0.608
#> GSM198645     5  0.4937      0.501 0.000 0.000 0.280 0.004 0.628 0.088
#> GSM198649     4  0.0458      0.988 0.000 0.016 0.000 0.984 0.000 0.000
#> GSM198651     2  0.2664      0.547 0.000 0.816 0.000 0.000 0.000 0.184
#> GSM198653     2  0.2100      0.673 0.000 0.916 0.008 0.024 0.004 0.048
#> GSM198654     3  0.2964      0.731 0.000 0.000 0.836 0.012 0.012 0.140
#> GSM198655     6  0.5330      0.721 0.004 0.188 0.144 0.004 0.008 0.652
#> GSM198656     3  0.1890      0.832 0.000 0.000 0.916 0.000 0.060 0.024
#> GSM198657     3  0.1719      0.835 0.000 0.000 0.924 0.000 0.060 0.016
#> GSM198658     3  0.1633      0.806 0.000 0.000 0.932 0.000 0.024 0.044
#> GSM198659     2  0.1225      0.688 0.000 0.952 0.000 0.012 0.000 0.036
#> GSM198660     3  0.1267      0.836 0.000 0.000 0.940 0.000 0.060 0.000
#> GSM198662     3  0.1152      0.834 0.000 0.000 0.952 0.000 0.044 0.004
#> GSM198663     2  0.0909      0.689 0.000 0.968 0.000 0.012 0.000 0.020
#> GSM198664     2  0.5439      0.306 0.000 0.628 0.020 0.000 0.212 0.140
#> GSM198665     3  0.3385      0.738 0.000 0.000 0.812 0.008 0.036 0.144
#> GSM198616     5  0.2283      0.747 0.056 0.000 0.020 0.000 0.904 0.020
#> GSM198617     5  0.5093      0.542 0.000 0.000 0.248 0.008 0.636 0.108
#> GSM198619     5  0.2113      0.748 0.000 0.000 0.060 0.004 0.908 0.028
#> GSM198620     4  0.0458      0.988 0.000 0.016 0.000 0.984 0.000 0.000
#> GSM198621     5  0.5033      0.533 0.000 0.000 0.252 0.008 0.640 0.100
#> GSM198624     1  0.1644      0.842 0.920 0.000 0.000 0.000 0.076 0.004
#> GSM198625     1  0.0146      0.900 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM198637     5  0.2454      0.740 0.008 0.020 0.000 0.000 0.884 0.088
#> GSM198638     5  0.3678      0.730 0.000 0.020 0.020 0.000 0.780 0.180
#> GSM198640     5  0.1572      0.761 0.000 0.000 0.028 0.000 0.936 0.036
#> GSM198646     4  0.0717      0.987 0.000 0.016 0.000 0.976 0.000 0.008
#> GSM198647     4  0.0520      0.973 0.000 0.000 0.008 0.984 0.000 0.008
#> GSM198648     2  0.0865      0.685 0.000 0.964 0.000 0.036 0.000 0.000
#> GSM198650     3  0.3134      0.725 0.000 0.000 0.824 0.012 0.016 0.148
#> GSM198652     2  0.5936     -0.272 0.000 0.512 0.096 0.024 0.008 0.360
#> GSM198661     3  0.1719      0.835 0.000 0.000 0.924 0.000 0.060 0.016

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> CV:kmeans 11               NA 2
#> CV:kmeans 42            0.662 3
#> CV:kmeans 36            0.206 4
#> CV:kmeans 44            0.242 5
#> CV:kmeans 47            0.209 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.995           0.966       0.977         0.5065 0.493   0.493
#> 3 3 0.792           0.810       0.916         0.3361 0.747   0.527
#> 4 4 0.599           0.488       0.740         0.1208 0.829   0.535
#> 5 5 0.691           0.656       0.811         0.0690 0.875   0.545
#> 6 6 0.698           0.584       0.774         0.0376 0.962   0.803

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     2  0.0000      0.969 0.000 1.000
#> GSM198622     1  0.0000      0.985 1.000 0.000
#> GSM198623     1  0.0000      0.985 1.000 0.000
#> GSM198626     1  0.0000      0.985 1.000 0.000
#> GSM198627     1  0.0000      0.985 1.000 0.000
#> GSM198628     1  0.0376      0.983 0.996 0.004
#> GSM198629     1  0.0000      0.985 1.000 0.000
#> GSM198630     1  0.0000      0.985 1.000 0.000
#> GSM198631     1  0.0000      0.985 1.000 0.000
#> GSM198632     1  0.0000      0.985 1.000 0.000
#> GSM198633     1  0.2778      0.956 0.952 0.048
#> GSM198634     1  0.0000      0.985 1.000 0.000
#> GSM198635     1  0.3431      0.940 0.936 0.064
#> GSM198636     1  0.3431      0.940 0.936 0.064
#> GSM198639     2  0.4939      0.918 0.108 0.892
#> GSM198641     1  0.3431      0.940 0.936 0.064
#> GSM198642     1  0.0000      0.985 1.000 0.000
#> GSM198643     1  0.0000      0.985 1.000 0.000
#> GSM198644     2  0.0000      0.969 0.000 1.000
#> GSM198645     1  0.3733      0.921 0.928 0.072
#> GSM198649     2  0.0000      0.969 0.000 1.000
#> GSM198651     2  0.0672      0.966 0.008 0.992
#> GSM198653     2  0.0000      0.969 0.000 1.000
#> GSM198654     2  0.0000      0.969 0.000 1.000
#> GSM198655     2  0.0000      0.969 0.000 1.000
#> GSM198656     2  0.4431      0.933 0.092 0.908
#> GSM198657     2  0.3431      0.951 0.064 0.936
#> GSM198658     2  0.3114      0.955 0.056 0.944
#> GSM198659     2  0.0000      0.969 0.000 1.000
#> GSM198660     2  0.2948      0.957 0.052 0.948
#> GSM198662     2  0.3431      0.951 0.064 0.936
#> GSM198663     2  0.0672      0.966 0.008 0.992
#> GSM198664     2  0.0000      0.969 0.000 1.000
#> GSM198665     2  0.3114      0.955 0.056 0.944
#> GSM198616     1  0.0000      0.985 1.000 0.000
#> GSM198617     2  0.3584      0.949 0.068 0.932
#> GSM198619     1  0.0672      0.980 0.992 0.008
#> GSM198620     2  0.0000      0.969 0.000 1.000
#> GSM198621     2  0.4815      0.922 0.104 0.896
#> GSM198624     1  0.0000      0.985 1.000 0.000
#> GSM198625     1  0.0000      0.985 1.000 0.000
#> GSM198637     1  0.0000      0.985 1.000 0.000
#> GSM198638     2  0.4022      0.934 0.080 0.920
#> GSM198640     1  0.0000      0.985 1.000 0.000
#> GSM198646     2  0.0000      0.969 0.000 1.000
#> GSM198647     2  0.0000      0.969 0.000 1.000
#> GSM198648     2  0.0000      0.969 0.000 1.000
#> GSM198650     2  0.0000      0.969 0.000 1.000
#> GSM198652     2  0.0000      0.969 0.000 1.000
#> GSM198661     2  0.3431      0.951 0.064 0.936

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     2  0.5465      0.648 0.000 0.712 0.288
#> GSM198622     1  0.0237      0.909 0.996 0.004 0.000
#> GSM198623     3  0.6192      0.289 0.420 0.000 0.580
#> GSM198626     1  0.0000      0.910 1.000 0.000 0.000
#> GSM198627     1  0.0000      0.910 1.000 0.000 0.000
#> GSM198628     1  0.0000      0.910 1.000 0.000 0.000
#> GSM198629     1  0.0000      0.910 1.000 0.000 0.000
#> GSM198630     1  0.0000      0.910 1.000 0.000 0.000
#> GSM198631     1  0.0000      0.910 1.000 0.000 0.000
#> GSM198632     1  0.1031      0.903 0.976 0.000 0.024
#> GSM198633     1  0.9931      0.017 0.392 0.300 0.308
#> GSM198634     1  0.0237      0.909 0.996 0.004 0.000
#> GSM198635     1  0.4605      0.727 0.796 0.204 0.000
#> GSM198636     1  0.5591      0.569 0.696 0.304 0.000
#> GSM198639     3  0.0000      0.920 0.000 0.000 1.000
#> GSM198641     2  0.2261      0.836 0.068 0.932 0.000
#> GSM198642     3  0.6026      0.399 0.376 0.000 0.624
#> GSM198643     1  0.1163      0.901 0.972 0.000 0.028
#> GSM198644     2  0.0237      0.876 0.000 0.996 0.004
#> GSM198645     3  0.0000      0.920 0.000 0.000 1.000
#> GSM198649     2  0.2796      0.842 0.000 0.908 0.092
#> GSM198651     2  0.0000      0.876 0.000 1.000 0.000
#> GSM198653     2  0.0000      0.876 0.000 1.000 0.000
#> GSM198654     3  0.1031      0.899 0.000 0.024 0.976
#> GSM198655     2  0.5859      0.475 0.000 0.656 0.344
#> GSM198656     3  0.0424      0.915 0.008 0.000 0.992
#> GSM198657     3  0.0000      0.920 0.000 0.000 1.000
#> GSM198658     3  0.0000      0.920 0.000 0.000 1.000
#> GSM198659     2  0.0000      0.876 0.000 1.000 0.000
#> GSM198660     3  0.0237      0.917 0.000 0.004 0.996
#> GSM198662     3  0.0000      0.920 0.000 0.000 1.000
#> GSM198663     2  0.0000      0.876 0.000 1.000 0.000
#> GSM198664     2  0.3038      0.829 0.000 0.896 0.104
#> GSM198665     3  0.0000      0.920 0.000 0.000 1.000
#> GSM198616     1  0.1031      0.903 0.976 0.000 0.024
#> GSM198617     3  0.0000      0.920 0.000 0.000 1.000
#> GSM198619     1  0.5397      0.601 0.720 0.000 0.280
#> GSM198620     2  0.0237      0.876 0.000 0.996 0.004
#> GSM198621     3  0.0000      0.920 0.000 0.000 1.000
#> GSM198624     1  0.0000      0.910 1.000 0.000 0.000
#> GSM198625     1  0.0000      0.910 1.000 0.000 0.000
#> GSM198637     1  0.1399      0.901 0.968 0.004 0.028
#> GSM198638     2  0.6008      0.518 0.000 0.628 0.372
#> GSM198640     1  0.2066      0.880 0.940 0.000 0.060
#> GSM198646     2  0.1289      0.870 0.000 0.968 0.032
#> GSM198647     2  0.6215      0.410 0.000 0.572 0.428
#> GSM198648     2  0.0000      0.876 0.000 1.000 0.000
#> GSM198650     3  0.2165      0.861 0.000 0.064 0.936
#> GSM198652     2  0.0424      0.876 0.000 0.992 0.008
#> GSM198661     3  0.0000      0.920 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     4  0.5271    -0.0402 0.000 0.320 0.024 0.656
#> GSM198622     4  0.6915    -0.1885 0.416 0.108 0.000 0.476
#> GSM198623     1  0.4994    -0.0614 0.520 0.000 0.480 0.000
#> GSM198626     1  0.0000     0.7609 1.000 0.000 0.000 0.000
#> GSM198627     1  0.0000     0.7609 1.000 0.000 0.000 0.000
#> GSM198628     1  0.0000     0.7609 1.000 0.000 0.000 0.000
#> GSM198629     1  0.0188     0.7591 0.996 0.000 0.000 0.004
#> GSM198630     1  0.0000     0.7609 1.000 0.000 0.000 0.000
#> GSM198631     1  0.0000     0.7609 1.000 0.000 0.000 0.000
#> GSM198632     1  0.4978     0.4793 0.612 0.000 0.004 0.384
#> GSM198633     4  0.6781     0.1525 0.072 0.368 0.012 0.548
#> GSM198634     1  0.6257     0.2541 0.508 0.056 0.000 0.436
#> GSM198635     4  0.7538     0.0924 0.188 0.384 0.000 0.428
#> GSM198636     1  0.3448     0.6146 0.828 0.168 0.000 0.004
#> GSM198639     4  0.4730     0.1732 0.000 0.000 0.364 0.636
#> GSM198641     2  0.5833     0.3872 0.096 0.692 0.000 0.212
#> GSM198642     3  0.4855     0.3122 0.400 0.000 0.600 0.000
#> GSM198643     1  0.6186     0.4647 0.584 0.000 0.064 0.352
#> GSM198644     2  0.2773     0.6386 0.000 0.880 0.004 0.116
#> GSM198645     3  0.4253     0.6224 0.016 0.000 0.776 0.208
#> GSM198649     2  0.5928     0.3003 0.000 0.508 0.036 0.456
#> GSM198651     2  0.0921     0.6578 0.000 0.972 0.000 0.028
#> GSM198653     2  0.0188     0.6681 0.000 0.996 0.000 0.004
#> GSM198654     3  0.1635     0.8482 0.000 0.008 0.948 0.044
#> GSM198655     2  0.6656     0.4245 0.000 0.620 0.220 0.160
#> GSM198656     3  0.0469     0.8638 0.012 0.000 0.988 0.000
#> GSM198657     3  0.0000     0.8673 0.000 0.000 1.000 0.000
#> GSM198658     3  0.0592     0.8653 0.000 0.000 0.984 0.016
#> GSM198659     2  0.0188     0.6680 0.000 0.996 0.000 0.004
#> GSM198660     3  0.0779     0.8594 0.000 0.004 0.980 0.016
#> GSM198662     3  0.0188     0.8678 0.000 0.000 0.996 0.004
#> GSM198663     2  0.2921     0.5708 0.000 0.860 0.000 0.140
#> GSM198664     2  0.6477     0.2467 0.000 0.600 0.100 0.300
#> GSM198665     3  0.1211     0.8550 0.000 0.000 0.960 0.040
#> GSM198616     1  0.4720     0.5395 0.672 0.000 0.004 0.324
#> GSM198617     4  0.4776     0.1548 0.000 0.000 0.376 0.624
#> GSM198619     4  0.5891     0.3507 0.132 0.000 0.168 0.700
#> GSM198620     2  0.4967     0.3533 0.000 0.548 0.000 0.452
#> GSM198621     4  0.4964     0.1439 0.004 0.000 0.380 0.616
#> GSM198624     1  0.0000     0.7609 1.000 0.000 0.000 0.000
#> GSM198625     1  0.0000     0.7609 1.000 0.000 0.000 0.000
#> GSM198637     4  0.6785    -0.1252 0.360 0.092 0.004 0.544
#> GSM198638     4  0.6813     0.1044 0.000 0.380 0.104 0.516
#> GSM198640     1  0.6826     0.3291 0.484 0.000 0.100 0.416
#> GSM198646     2  0.5388     0.3346 0.000 0.532 0.012 0.456
#> GSM198647     4  0.7486    -0.1263 0.000 0.348 0.188 0.464
#> GSM198648     2  0.0592     0.6656 0.000 0.984 0.000 0.016
#> GSM198650     3  0.4655     0.6203 0.000 0.032 0.760 0.208
#> GSM198652     2  0.2996     0.6434 0.000 0.892 0.064 0.044
#> GSM198661     3  0.0188     0.8665 0.004 0.000 0.996 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     4  0.4939      0.680 0.000 0.180 0.012 0.728 0.080
#> GSM198622     5  0.3229      0.651 0.128 0.032 0.000 0.000 0.840
#> GSM198623     1  0.4782      0.127 0.544 0.000 0.440 0.008 0.008
#> GSM198626     1  0.0162      0.888 0.996 0.000 0.004 0.000 0.000
#> GSM198627     1  0.0000      0.889 1.000 0.000 0.000 0.000 0.000
#> GSM198628     1  0.0000      0.889 1.000 0.000 0.000 0.000 0.000
#> GSM198629     1  0.0865      0.868 0.972 0.000 0.000 0.004 0.024
#> GSM198630     1  0.0162      0.888 0.996 0.000 0.004 0.000 0.000
#> GSM198631     1  0.0324      0.887 0.992 0.000 0.004 0.000 0.004
#> GSM198632     5  0.5862      0.579 0.220 0.000 0.000 0.176 0.604
#> GSM198633     5  0.2770      0.575 0.000 0.124 0.004 0.008 0.864
#> GSM198634     5  0.3492      0.648 0.188 0.016 0.000 0.000 0.796
#> GSM198635     5  0.4114      0.432 0.024 0.244 0.000 0.000 0.732
#> GSM198636     1  0.3728      0.592 0.748 0.244 0.000 0.000 0.008
#> GSM198639     4  0.3950      0.563 0.000 0.000 0.068 0.796 0.136
#> GSM198641     2  0.4227      0.573 0.016 0.692 0.000 0.000 0.292
#> GSM198642     3  0.4888      0.413 0.320 0.000 0.644 0.008 0.028
#> GSM198643     5  0.7227      0.536 0.172 0.000 0.088 0.192 0.548
#> GSM198644     2  0.2660      0.669 0.000 0.864 0.000 0.128 0.008
#> GSM198645     3  0.5875      0.483 0.008 0.000 0.632 0.172 0.188
#> GSM198649     4  0.4157      0.655 0.000 0.264 0.020 0.716 0.000
#> GSM198651     2  0.1671      0.771 0.000 0.924 0.000 0.000 0.076
#> GSM198653     2  0.1195      0.777 0.000 0.960 0.000 0.012 0.028
#> GSM198654     3  0.2588      0.808 0.000 0.008 0.884 0.100 0.008
#> GSM198655     2  0.6543      0.393 0.040 0.624 0.148 0.180 0.008
#> GSM198656     3  0.0324      0.839 0.004 0.000 0.992 0.000 0.004
#> GSM198657     3  0.0162      0.839 0.000 0.000 0.996 0.000 0.004
#> GSM198658     3  0.1857      0.831 0.000 0.004 0.928 0.060 0.008
#> GSM198659     2  0.1211      0.774 0.000 0.960 0.000 0.016 0.024
#> GSM198660     3  0.0579      0.840 0.000 0.000 0.984 0.008 0.008
#> GSM198662     3  0.1124      0.838 0.000 0.000 0.960 0.036 0.004
#> GSM198663     2  0.3039      0.699 0.000 0.808 0.000 0.000 0.192
#> GSM198664     2  0.5533      0.316 0.000 0.536 0.044 0.012 0.408
#> GSM198665     3  0.2856      0.806 0.000 0.008 0.872 0.104 0.016
#> GSM198616     5  0.6619      0.313 0.392 0.000 0.000 0.216 0.392
#> GSM198617     4  0.3090      0.614 0.000 0.000 0.040 0.856 0.104
#> GSM198619     4  0.4879      0.167 0.020 0.000 0.008 0.612 0.360
#> GSM198620     4  0.3857      0.600 0.000 0.312 0.000 0.688 0.000
#> GSM198621     4  0.2473      0.636 0.000 0.000 0.032 0.896 0.072
#> GSM198624     1  0.0162      0.887 0.996 0.000 0.000 0.000 0.004
#> GSM198625     1  0.0000      0.889 1.000 0.000 0.000 0.000 0.000
#> GSM198637     5  0.4173      0.588 0.028 0.008 0.000 0.204 0.760
#> GSM198638     5  0.5147      0.502 0.000 0.148 0.056 0.056 0.740
#> GSM198640     5  0.6385      0.584 0.236 0.000 0.056 0.096 0.612
#> GSM198646     4  0.3992      0.654 0.000 0.268 0.012 0.720 0.000
#> GSM198647     4  0.4054      0.681 0.000 0.204 0.036 0.760 0.000
#> GSM198648     2  0.1661      0.777 0.000 0.940 0.000 0.024 0.036
#> GSM198650     3  0.5321      0.375 0.000 0.016 0.588 0.364 0.032
#> GSM198652     2  0.3436      0.695 0.000 0.856 0.048 0.076 0.020
#> GSM198661     3  0.0290      0.839 0.000 0.000 0.992 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     4  0.3405     0.7097 0.000 0.024 0.000 0.836 0.080 0.060
#> GSM198622     5  0.4887     0.5998 0.072 0.052 0.000 0.000 0.716 0.160
#> GSM198623     1  0.5572     0.2352 0.548 0.000 0.356 0.004 0.032 0.060
#> GSM198626     1  0.0000     0.8650 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198627     1  0.0767     0.8575 0.976 0.004 0.000 0.000 0.012 0.008
#> GSM198628     1  0.0551     0.8602 0.984 0.000 0.000 0.004 0.008 0.004
#> GSM198629     1  0.1843     0.7983 0.912 0.000 0.000 0.004 0.004 0.080
#> GSM198630     1  0.0000     0.8650 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198631     1  0.0000     0.8650 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198632     6  0.5731     0.2324 0.144 0.000 0.000 0.012 0.304 0.540
#> GSM198633     5  0.2796     0.6156 0.004 0.056 0.004 0.000 0.872 0.064
#> GSM198634     5  0.4919     0.5625 0.120 0.020 0.000 0.000 0.696 0.164
#> GSM198635     5  0.5521     0.5174 0.008 0.196 0.000 0.004 0.612 0.180
#> GSM198636     1  0.5391     0.4012 0.604 0.296 0.000 0.004 0.024 0.072
#> GSM198639     6  0.5823    -0.2612 0.000 0.000 0.052 0.436 0.060 0.452
#> GSM198641     2  0.3089     0.6404 0.004 0.800 0.000 0.000 0.188 0.008
#> GSM198642     3  0.6705     0.3308 0.260 0.000 0.516 0.008 0.076 0.140
#> GSM198643     6  0.5936     0.3589 0.108 0.000 0.068 0.004 0.200 0.620
#> GSM198644     2  0.4783     0.6266 0.000 0.700 0.000 0.200 0.024 0.076
#> GSM198645     3  0.7045     0.1491 0.016 0.004 0.404 0.028 0.252 0.296
#> GSM198649     4  0.1141     0.7738 0.000 0.052 0.000 0.948 0.000 0.000
#> GSM198651     2  0.0508     0.7386 0.000 0.984 0.000 0.004 0.000 0.012
#> GSM198653     2  0.1429     0.7476 0.000 0.940 0.000 0.052 0.004 0.004
#> GSM198654     3  0.3877     0.7299 0.000 0.004 0.800 0.120 0.020 0.056
#> GSM198655     2  0.7740     0.4287 0.032 0.516 0.112 0.184 0.040 0.116
#> GSM198656     3  0.1092     0.7687 0.000 0.000 0.960 0.000 0.020 0.020
#> GSM198657     3  0.0909     0.7709 0.000 0.000 0.968 0.000 0.012 0.020
#> GSM198658     3  0.3052     0.7553 0.000 0.004 0.864 0.044 0.020 0.068
#> GSM198659     2  0.3510     0.7197 0.000 0.812 0.000 0.136 0.032 0.020
#> GSM198660     3  0.1659     0.7737 0.000 0.004 0.940 0.008 0.020 0.028
#> GSM198662     3  0.1168     0.7758 0.000 0.000 0.956 0.016 0.000 0.028
#> GSM198663     2  0.2742     0.6944 0.000 0.852 0.000 0.012 0.128 0.008
#> GSM198664     2  0.5629     0.0571 0.000 0.480 0.056 0.016 0.432 0.016
#> GSM198665     3  0.4418     0.7215 0.000 0.004 0.764 0.088 0.028 0.116
#> GSM198616     6  0.5036     0.3743 0.340 0.000 0.000 0.008 0.068 0.584
#> GSM198617     4  0.5551     0.3401 0.000 0.000 0.032 0.564 0.076 0.328
#> GSM198619     6  0.4425     0.3608 0.008 0.000 0.000 0.248 0.052 0.692
#> GSM198620     4  0.1812     0.7556 0.000 0.080 0.000 0.912 0.000 0.008
#> GSM198621     4  0.4689     0.3291 0.000 0.000 0.020 0.580 0.020 0.380
#> GSM198624     1  0.0951     0.8546 0.968 0.000 0.000 0.004 0.008 0.020
#> GSM198625     1  0.0000     0.8650 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198637     6  0.4242     0.0756 0.012 0.004 0.000 0.000 0.412 0.572
#> GSM198638     5  0.4935     0.5106 0.000 0.044 0.024 0.068 0.744 0.120
#> GSM198640     5  0.6135     0.2776 0.108 0.004 0.036 0.016 0.596 0.240
#> GSM198646     4  0.1411     0.7711 0.000 0.060 0.000 0.936 0.000 0.004
#> GSM198647     4  0.0922     0.7694 0.000 0.024 0.004 0.968 0.000 0.004
#> GSM198648     2  0.2255     0.7439 0.000 0.892 0.000 0.080 0.028 0.000
#> GSM198650     3  0.5969     0.4633 0.000 0.008 0.564 0.276 0.024 0.128
#> GSM198652     2  0.4904     0.6653 0.000 0.740 0.044 0.140 0.024 0.052
#> GSM198661     3  0.1793     0.7623 0.000 0.000 0.928 0.004 0.032 0.036

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> CV:skmeans 50            0.601 2
#> CV:skmeans 45            0.964 3
#> CV:skmeans 27            0.863 4
#> CV:skmeans 41            0.237 5
#> CV:skmeans 34            0.432 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.340           0.679       0.809         0.4489 0.542   0.542
#> 3 3 0.388           0.683       0.803         0.2280 0.806   0.674
#> 4 4 0.527           0.679       0.778         0.2209 0.782   0.567
#> 5 5 0.894           0.875       0.941         0.1270 0.841   0.565
#> 6 6 0.809           0.632       0.795         0.0729 0.861   0.491

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     2  0.9909    -0.0876 0.444 0.556
#> GSM198622     1  0.2603     0.7992 0.956 0.044
#> GSM198623     2  0.4161     0.7928 0.084 0.916
#> GSM198626     1  0.5737     0.7668 0.864 0.136
#> GSM198627     1  0.0000     0.7837 1.000 0.000
#> GSM198628     1  0.5737     0.7668 0.864 0.136
#> GSM198629     1  0.0376     0.7859 0.996 0.004
#> GSM198630     1  0.5737     0.7668 0.864 0.136
#> GSM198631     1  0.5737     0.7668 0.864 0.136
#> GSM198632     1  0.2603     0.7992 0.956 0.044
#> GSM198633     1  0.6048     0.7844 0.852 0.148
#> GSM198634     1  0.2778     0.7992 0.952 0.048
#> GSM198635     1  0.2603     0.7992 0.956 0.044
#> GSM198636     1  0.5842     0.7671 0.860 0.140
#> GSM198639     1  0.9608     0.5659 0.616 0.384
#> GSM198641     1  0.1184     0.7757 0.984 0.016
#> GSM198642     2  0.9954     0.0910 0.460 0.540
#> GSM198643     1  0.8081     0.6659 0.752 0.248
#> GSM198644     1  0.9732     0.5388 0.596 0.404
#> GSM198645     2  1.0000    -0.2993 0.496 0.504
#> GSM198649     2  0.0000     0.8049 0.000 1.000
#> GSM198651     1  0.9580     0.3926 0.620 0.380
#> GSM198653     2  0.9988     0.1887 0.480 0.520
#> GSM198654     2  0.1843     0.8215 0.028 0.972
#> GSM198655     1  0.9661     0.5614 0.608 0.392
#> GSM198656     2  0.2423     0.8234 0.040 0.960
#> GSM198657     2  0.2236     0.8247 0.036 0.964
#> GSM198658     2  0.2236     0.8247 0.036 0.964
#> GSM198659     1  0.3879     0.7951 0.924 0.076
#> GSM198660     2  0.2423     0.8237 0.040 0.960
#> GSM198662     2  0.2236     0.8247 0.036 0.964
#> GSM198663     1  0.3879     0.7873 0.924 0.076
#> GSM198664     1  0.3274     0.7933 0.940 0.060
#> GSM198665     2  0.2236     0.8247 0.036 0.964
#> GSM198616     1  0.2603     0.7992 0.956 0.044
#> GSM198617     1  0.9608     0.5659 0.616 0.384
#> GSM198619     1  0.8081     0.6599 0.752 0.248
#> GSM198620     1  0.8608     0.6451 0.716 0.284
#> GSM198621     1  0.9608     0.5659 0.616 0.384
#> GSM198624     1  0.2236     0.7960 0.964 0.036
#> GSM198625     1  0.5737     0.7668 0.864 0.136
#> GSM198637     1  0.2603     0.7992 0.956 0.044
#> GSM198638     1  0.9552     0.5787 0.624 0.376
#> GSM198640     1  0.6801     0.7659 0.820 0.180
#> GSM198646     1  0.9044     0.5748 0.680 0.320
#> GSM198647     2  0.4022     0.7774 0.080 0.920
#> GSM198648     1  0.4022     0.7849 0.920 0.080
#> GSM198650     2  0.6148     0.6883 0.152 0.848
#> GSM198652     2  0.1184     0.8156 0.016 0.984
#> GSM198661     2  0.2236     0.8247 0.036 0.964

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     1  0.5835     0.0587 0.660 0.000 0.340
#> GSM198622     1  0.2711     0.7903 0.912 0.088 0.000
#> GSM198623     3  0.2165     0.6435 0.064 0.000 0.936
#> GSM198626     1  0.5098     0.7256 0.752 0.000 0.248
#> GSM198627     1  0.5098     0.7256 0.752 0.000 0.248
#> GSM198628     1  0.5098     0.7256 0.752 0.000 0.248
#> GSM198629     1  0.5058     0.7282 0.756 0.000 0.244
#> GSM198630     1  0.5098     0.7256 0.752 0.000 0.248
#> GSM198631     1  0.5098     0.7256 0.752 0.000 0.248
#> GSM198632     1  0.0000     0.7953 1.000 0.000 0.000
#> GSM198633     1  0.2711     0.7903 0.912 0.088 0.000
#> GSM198634     1  0.0000     0.7953 1.000 0.000 0.000
#> GSM198635     1  0.2711     0.7903 0.912 0.088 0.000
#> GSM198636     1  0.4978     0.7443 0.780 0.004 0.216
#> GSM198639     1  0.0000     0.7953 1.000 0.000 0.000
#> GSM198641     1  0.6537     0.6970 0.740 0.196 0.064
#> GSM198642     3  0.6299     0.5152 0.476 0.000 0.524
#> GSM198643     1  0.1529     0.7731 0.960 0.000 0.040
#> GSM198644     1  0.3618     0.7232 0.884 0.104 0.012
#> GSM198645     1  0.3482     0.6784 0.872 0.000 0.128
#> GSM198649     2  0.2878     0.6824 0.096 0.904 0.000
#> GSM198651     1  0.9901    -0.1815 0.384 0.268 0.348
#> GSM198653     3  0.8965     0.4920 0.240 0.196 0.564
#> GSM198654     3  0.5098     0.8297 0.248 0.000 0.752
#> GSM198655     1  0.4235     0.6139 0.824 0.176 0.000
#> GSM198656     3  0.5098     0.8297 0.248 0.000 0.752
#> GSM198657     3  0.5098     0.8297 0.248 0.000 0.752
#> GSM198658     3  0.5098     0.8297 0.248 0.000 0.752
#> GSM198659     1  0.4605     0.7210 0.796 0.204 0.000
#> GSM198660     3  0.6424     0.7819 0.180 0.068 0.752
#> GSM198662     3  0.5098     0.8297 0.248 0.000 0.752
#> GSM198663     2  0.6295    -0.1905 0.472 0.528 0.000
#> GSM198664     1  0.4291     0.7389 0.820 0.180 0.000
#> GSM198665     3  0.5098     0.8297 0.248 0.000 0.752
#> GSM198616     1  0.0592     0.7956 0.988 0.000 0.012
#> GSM198617     1  0.0000     0.7953 1.000 0.000 0.000
#> GSM198619     1  0.0000     0.7953 1.000 0.000 0.000
#> GSM198620     2  0.4346     0.7115 0.184 0.816 0.000
#> GSM198621     1  0.0000     0.7953 1.000 0.000 0.000
#> GSM198624     1  0.4235     0.7628 0.824 0.000 0.176
#> GSM198625     1  0.5098     0.7256 0.752 0.000 0.248
#> GSM198637     1  0.0000     0.7953 1.000 0.000 0.000
#> GSM198638     1  0.2356     0.7938 0.928 0.072 0.000
#> GSM198640     1  0.0000     0.7953 1.000 0.000 0.000
#> GSM198646     2  0.4504     0.7075 0.196 0.804 0.000
#> GSM198647     2  0.4915     0.7035 0.184 0.804 0.012
#> GSM198648     2  0.2537     0.6185 0.080 0.920 0.000
#> GSM198650     3  0.9402     0.3082 0.184 0.344 0.472
#> GSM198652     3  0.6537     0.6480 0.064 0.196 0.740
#> GSM198661     3  0.5098     0.8297 0.248 0.000 0.752

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     2  0.4500     0.2821 0.000 0.684 0.316 0.000
#> GSM198622     2  0.2530     0.7335 0.000 0.888 0.112 0.000
#> GSM198623     3  0.5632     0.6101 0.196 0.092 0.712 0.000
#> GSM198626     1  0.1792     0.9798 0.932 0.068 0.000 0.000
#> GSM198627     1  0.1792     0.9798 0.932 0.068 0.000 0.000
#> GSM198628     1  0.2216     0.9566 0.908 0.092 0.000 0.000
#> GSM198629     2  0.4331     0.5142 0.288 0.712 0.000 0.000
#> GSM198630     1  0.1792     0.9798 0.932 0.068 0.000 0.000
#> GSM198631     1  0.1792     0.9798 0.932 0.068 0.000 0.000
#> GSM198632     2  0.0000     0.7592 0.000 1.000 0.000 0.000
#> GSM198633     2  0.2868     0.7399 0.000 0.864 0.136 0.000
#> GSM198634     2  0.0000     0.7592 0.000 1.000 0.000 0.000
#> GSM198635     2  0.2530     0.7335 0.000 0.888 0.112 0.000
#> GSM198636     1  0.2714     0.9171 0.884 0.112 0.004 0.000
#> GSM198639     2  0.1716     0.7415 0.000 0.936 0.064 0.000
#> GSM198641     2  0.7684     0.4514 0.160 0.548 0.268 0.024
#> GSM198642     2  0.4996    -0.3679 0.000 0.516 0.484 0.000
#> GSM198643     2  0.1557     0.7429 0.000 0.944 0.056 0.000
#> GSM198644     2  0.5194     0.6700 0.068 0.800 0.068 0.064
#> GSM198645     2  0.3486     0.6096 0.000 0.812 0.188 0.000
#> GSM198649     4  0.0188     0.8805 0.000 0.000 0.004 0.996
#> GSM198651     3  0.8289     0.0326 0.132 0.260 0.532 0.076
#> GSM198653     3  0.5817     0.3563 0.068 0.176 0.732 0.024
#> GSM198654     3  0.4193     0.7737 0.000 0.268 0.732 0.000
#> GSM198655     2  0.5214     0.6207 0.008 0.760 0.064 0.168
#> GSM198656     3  0.4193     0.7737 0.000 0.268 0.732 0.000
#> GSM198657     3  0.4193     0.7737 0.000 0.268 0.732 0.000
#> GSM198658     3  0.4193     0.7737 0.000 0.268 0.732 0.000
#> GSM198659     2  0.6751     0.5281 0.068 0.632 0.268 0.032
#> GSM198660     3  0.3649     0.7433 0.000 0.204 0.796 0.000
#> GSM198662     3  0.4193     0.7737 0.000 0.268 0.732 0.000
#> GSM198663     2  0.8959     0.1673 0.068 0.424 0.268 0.240
#> GSM198664     2  0.3837     0.6512 0.000 0.776 0.224 0.000
#> GSM198665     3  0.4193     0.7737 0.000 0.268 0.732 0.000
#> GSM198616     2  0.0707     0.7581 0.020 0.980 0.000 0.000
#> GSM198617     2  0.1716     0.7415 0.000 0.936 0.064 0.000
#> GSM198619     2  0.0707     0.7563 0.000 0.980 0.020 0.000
#> GSM198620     4  0.0707     0.8896 0.000 0.000 0.020 0.980
#> GSM198621     2  0.1716     0.7415 0.000 0.936 0.064 0.000
#> GSM198624     2  0.4103     0.5880 0.256 0.744 0.000 0.000
#> GSM198625     1  0.1792     0.9798 0.932 0.068 0.000 0.000
#> GSM198637     2  0.0000     0.7592 0.000 1.000 0.000 0.000
#> GSM198638     2  0.3024     0.7462 0.000 0.852 0.148 0.000
#> GSM198640     2  0.1302     0.7478 0.000 0.956 0.044 0.000
#> GSM198646     4  0.0895     0.8880 0.000 0.004 0.020 0.976
#> GSM198647     4  0.0817     0.8880 0.000 0.000 0.024 0.976
#> GSM198648     4  0.7344     0.5634 0.068 0.064 0.268 0.600
#> GSM198650     3  0.7697     0.2562 0.000 0.220 0.404 0.376
#> GSM198652     3  0.3177     0.4913 0.068 0.016 0.892 0.024
#> GSM198661     3  0.4193     0.7737 0.000 0.268 0.732 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     3  0.4249      0.205 0.000 0.000 0.568 0.000 0.432
#> GSM198622     5  0.0404      0.927 0.000 0.012 0.000 0.000 0.988
#> GSM198623     3  0.0290      0.870 0.008 0.000 0.992 0.000 0.000
#> GSM198626     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000
#> GSM198627     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000
#> GSM198628     1  0.0963      0.944 0.964 0.000 0.000 0.000 0.036
#> GSM198629     5  0.1608      0.908 0.072 0.000 0.000 0.000 0.928
#> GSM198630     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000
#> GSM198631     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000
#> GSM198632     5  0.0000      0.929 0.000 0.000 0.000 0.000 1.000
#> GSM198633     5  0.1670      0.926 0.000 0.012 0.052 0.000 0.936
#> GSM198634     5  0.0290      0.930 0.000 0.000 0.008 0.000 0.992
#> GSM198635     5  0.0404      0.927 0.000 0.012 0.000 0.000 0.988
#> GSM198636     1  0.0510      0.970 0.984 0.000 0.016 0.000 0.000
#> GSM198639     5  0.1908      0.911 0.000 0.000 0.092 0.000 0.908
#> GSM198641     2  0.1493      0.874 0.024 0.948 0.000 0.000 0.028
#> GSM198642     3  0.3395      0.641 0.000 0.000 0.764 0.000 0.236
#> GSM198643     5  0.1341      0.915 0.000 0.000 0.056 0.000 0.944
#> GSM198644     2  0.5522      0.391 0.000 0.600 0.092 0.000 0.308
#> GSM198645     5  0.3305      0.769 0.000 0.000 0.224 0.000 0.776
#> GSM198649     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM198651     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000
#> GSM198653     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000
#> GSM198654     3  0.0000      0.876 0.000 0.000 1.000 0.000 0.000
#> GSM198655     5  0.4955      0.753 0.000 0.012 0.092 0.164 0.732
#> GSM198656     3  0.0000      0.876 0.000 0.000 1.000 0.000 0.000
#> GSM198657     3  0.0000      0.876 0.000 0.000 1.000 0.000 0.000
#> GSM198658     3  0.0000      0.876 0.000 0.000 1.000 0.000 0.000
#> GSM198659     2  0.0510      0.893 0.000 0.984 0.000 0.000 0.016
#> GSM198660     3  0.0290      0.873 0.000 0.000 0.992 0.000 0.008
#> GSM198662     3  0.0000      0.876 0.000 0.000 1.000 0.000 0.000
#> GSM198663     2  0.0963      0.881 0.000 0.964 0.000 0.036 0.000
#> GSM198664     5  0.0404      0.927 0.000 0.012 0.000 0.000 0.988
#> GSM198665     3  0.0404      0.870 0.000 0.000 0.988 0.000 0.012
#> GSM198616     5  0.0000      0.929 0.000 0.000 0.000 0.000 1.000
#> GSM198617     5  0.2408      0.908 0.000 0.000 0.092 0.016 0.892
#> GSM198619     5  0.0290      0.930 0.000 0.000 0.008 0.000 0.992
#> GSM198620     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM198621     5  0.1908      0.911 0.000 0.000 0.092 0.000 0.908
#> GSM198624     5  0.1792      0.902 0.084 0.000 0.000 0.000 0.916
#> GSM198625     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000
#> GSM198637     5  0.0000      0.929 0.000 0.000 0.000 0.000 1.000
#> GSM198638     5  0.2305      0.912 0.000 0.012 0.092 0.000 0.896
#> GSM198640     5  0.1671      0.918 0.000 0.000 0.076 0.000 0.924
#> GSM198646     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM198647     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM198648     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000
#> GSM198650     3  0.5440      0.393 0.000 0.000 0.612 0.300 0.088
#> GSM198652     2  0.0794      0.883 0.000 0.972 0.028 0.000 0.000
#> GSM198661     3  0.0000      0.876 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     6  0.4264     0.6305 0.000 0.000 0.488 0.000 0.016 0.496
#> GSM198622     5  0.3351     0.8562 0.000 0.000 0.000 0.000 0.712 0.288
#> GSM198623     3  0.3838     0.6250 0.000 0.000 0.552 0.000 0.000 0.448
#> GSM198626     1  0.0000     0.8975 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198627     1  0.3244     0.8136 0.732 0.000 0.000 0.000 0.268 0.000
#> GSM198628     1  0.2805     0.8532 0.812 0.000 0.000 0.000 0.184 0.004
#> GSM198629     5  0.3907     0.8964 0.004 0.000 0.000 0.000 0.588 0.408
#> GSM198630     1  0.0000     0.8975 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198631     1  0.0000     0.8975 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198632     5  0.3774     0.8963 0.000 0.000 0.000 0.000 0.592 0.408
#> GSM198633     5  0.3489     0.8552 0.000 0.000 0.004 0.000 0.708 0.288
#> GSM198634     5  0.3351     0.8562 0.000 0.000 0.000 0.000 0.712 0.288
#> GSM198635     5  0.3351     0.8562 0.000 0.000 0.000 0.000 0.712 0.288
#> GSM198636     1  0.3489     0.7982 0.708 0.000 0.004 0.000 0.288 0.000
#> GSM198639     6  0.3838     0.6752 0.000 0.000 0.448 0.000 0.000 0.552
#> GSM198641     2  0.3235     0.7737 0.020 0.832 0.000 0.000 0.124 0.024
#> GSM198642     6  0.3668    -0.4493 0.000 0.000 0.328 0.000 0.004 0.668
#> GSM198643     6  0.4833     0.6287 0.000 0.000 0.428 0.000 0.056 0.516
#> GSM198644     2  0.3975     0.3888 0.000 0.600 0.392 0.000 0.008 0.000
#> GSM198645     3  0.5208    -0.6329 0.000 0.000 0.556 0.000 0.108 0.336
#> GSM198649     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198651     2  0.0146     0.8904 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM198653     2  0.0000     0.8907 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM198654     3  0.3838     0.6250 0.000 0.000 0.552 0.000 0.000 0.448
#> GSM198655     3  0.5451    -0.4217 0.000 0.000 0.448 0.000 0.432 0.120
#> GSM198656     3  0.3838     0.6250 0.000 0.000 0.552 0.000 0.000 0.448
#> GSM198657     3  0.3838     0.6250 0.000 0.000 0.552 0.000 0.000 0.448
#> GSM198658     3  0.3838     0.6250 0.000 0.000 0.552 0.000 0.000 0.448
#> GSM198659     2  0.0458     0.8851 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM198660     3  0.3797     0.6144 0.000 0.000 0.580 0.000 0.000 0.420
#> GSM198662     3  0.3838     0.6250 0.000 0.000 0.552 0.000 0.000 0.448
#> GSM198663     2  0.0935     0.8770 0.000 0.964 0.000 0.032 0.004 0.000
#> GSM198664     5  0.3782     0.8952 0.000 0.000 0.000 0.000 0.588 0.412
#> GSM198665     3  0.0000     0.2041 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198616     6  0.3838    -0.6671 0.000 0.000 0.000 0.000 0.448 0.552
#> GSM198617     6  0.3971     0.6748 0.000 0.000 0.448 0.004 0.000 0.548
#> GSM198619     6  0.3966     0.6740 0.000 0.000 0.444 0.000 0.004 0.552
#> GSM198620     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198621     6  0.3838     0.6752 0.000 0.000 0.448 0.000 0.000 0.552
#> GSM198624     5  0.3907     0.8964 0.004 0.000 0.000 0.000 0.588 0.408
#> GSM198625     1  0.0000     0.8975 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198637     5  0.3774     0.8963 0.000 0.000 0.000 0.000 0.592 0.408
#> GSM198638     3  0.5656    -0.6651 0.000 0.000 0.440 0.000 0.152 0.408
#> GSM198640     5  0.3907     0.8943 0.000 0.000 0.004 0.000 0.588 0.408
#> GSM198646     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198647     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198648     2  0.0000     0.8907 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM198650     3  0.5252    -0.0467 0.000 0.000 0.624 0.172 0.004 0.200
#> GSM198652     2  0.0458     0.8850 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM198661     3  0.3838     0.6250 0.000 0.000 0.552 0.000 0.000 0.448

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) k
#> CV:pam 45           0.9331 2
#> CV:pam 45           0.0472 3
#> CV:pam 42           0.0410 4
#> CV:pam 47           0.1086 5
#> CV:pam 42           0.2315 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.291           0.142       0.666          0.329 0.699   0.699
#> 3 3 0.361           0.531       0.720          0.839 0.531   0.389
#> 4 4 0.510           0.651       0.764          0.132 0.762   0.473
#> 5 5 0.562           0.558       0.755          0.103 0.920   0.747
#> 6 6 0.664           0.526       0.751          0.052 0.819   0.432

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     1   0.971   -0.06674 0.600 0.400
#> GSM198622     1   0.936    0.06932 0.648 0.352
#> GSM198623     2   0.995    0.70881 0.460 0.540
#> GSM198626     1   0.943    0.03998 0.640 0.360
#> GSM198627     1   0.871    0.07946 0.708 0.292
#> GSM198628     1   0.833    0.06347 0.736 0.264
#> GSM198629     1   0.952    0.03052 0.628 0.372
#> GSM198630     1   0.943    0.03998 0.640 0.360
#> GSM198631     1   0.943    0.03998 0.640 0.360
#> GSM198632     1   0.978   -0.09612 0.588 0.412
#> GSM198633     1   0.949    0.03172 0.632 0.368
#> GSM198634     1   0.936    0.06932 0.648 0.352
#> GSM198635     1   0.929    0.07659 0.656 0.344
#> GSM198636     1   0.295    0.21336 0.948 0.052
#> GSM198639     1   0.987   -0.20099 0.568 0.432
#> GSM198641     1   0.163    0.20205 0.976 0.024
#> GSM198642     2   0.997    0.68796 0.468 0.532
#> GSM198643     1   0.978   -0.09612 0.588 0.412
#> GSM198644     1   0.242    0.21409 0.960 0.040
#> GSM198645     1   0.987   -0.22267 0.568 0.432
#> GSM198649     1   0.994    0.14177 0.544 0.456
#> GSM198651     1   0.662    0.21564 0.828 0.172
#> GSM198653     1   0.697    0.21267 0.812 0.188
#> GSM198654     1   1.000   -0.48727 0.512 0.488
#> GSM198655     1   0.242    0.21409 0.960 0.040
#> GSM198656     2   0.987    0.78463 0.432 0.568
#> GSM198657     2   0.987    0.78463 0.432 0.568
#> GSM198658     2   0.987    0.78463 0.432 0.568
#> GSM198659     1   0.653    0.21823 0.832 0.168
#> GSM198660     1   0.973   -0.10459 0.596 0.404
#> GSM198662     2   0.987    0.78463 0.432 0.568
#> GSM198663     1   0.680    0.21585 0.820 0.180
#> GSM198664     1   0.921    0.07306 0.664 0.336
#> GSM198665     2   0.987    0.78463 0.432 0.568
#> GSM198616     1   0.978   -0.09612 0.588 0.412
#> GSM198617     1   0.981   -0.14710 0.580 0.420
#> GSM198619     1   0.988   -0.20141 0.564 0.436
#> GSM198620     1   0.980    0.14552 0.584 0.416
#> GSM198621     1   0.987   -0.20099 0.568 0.432
#> GSM198624     1   0.952    0.03111 0.628 0.372
#> GSM198625     1   0.909    0.04770 0.676 0.324
#> GSM198637     1   0.958    0.00975 0.620 0.380
#> GSM198638     1   0.961   -0.01615 0.616 0.384
#> GSM198640     1   0.975   -0.08310 0.592 0.408
#> GSM198646     1   0.987    0.14503 0.568 0.432
#> GSM198647     2   0.833   -0.09711 0.264 0.736
#> GSM198648     1   0.985    0.14297 0.572 0.428
#> GSM198650     1   0.961   -0.07539 0.616 0.384
#> GSM198652     1   0.680    0.21305 0.820 0.180
#> GSM198661     2   0.987    0.78463 0.432 0.568

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     2  0.9642     0.0922 0.344 0.440 0.216
#> GSM198622     1  0.5094     0.6126 0.824 0.040 0.136
#> GSM198623     1  0.6026    -0.3900 0.624 0.000 0.376
#> GSM198626     1  0.5235     0.6220 0.812 0.152 0.036
#> GSM198627     1  0.5728     0.6051 0.772 0.196 0.032
#> GSM198628     1  0.6535     0.5839 0.728 0.220 0.052
#> GSM198629     1  0.3148     0.6173 0.916 0.048 0.036
#> GSM198630     1  0.5635     0.6121 0.784 0.180 0.036
#> GSM198631     1  0.5295     0.6210 0.808 0.156 0.036
#> GSM198632     1  0.0892     0.5884 0.980 0.000 0.020
#> GSM198633     1  0.3896     0.6116 0.864 0.008 0.128
#> GSM198634     1  0.4749     0.6197 0.844 0.040 0.116
#> GSM198635     1  0.5330     0.6116 0.812 0.044 0.144
#> GSM198636     1  0.7395     0.0846 0.492 0.476 0.032
#> GSM198639     1  0.7582    -0.5295 0.572 0.048 0.380
#> GSM198641     2  0.1919     0.8085 0.020 0.956 0.024
#> GSM198642     1  0.7138    -0.5465 0.540 0.024 0.436
#> GSM198643     1  0.1163     0.5831 0.972 0.000 0.028
#> GSM198644     2  0.1765     0.8213 0.004 0.956 0.040
#> GSM198645     3  0.6295     0.8233 0.472 0.000 0.528
#> GSM198649     2  0.3752     0.8061 0.000 0.856 0.144
#> GSM198651     2  0.0424     0.8191 0.000 0.992 0.008
#> GSM198653     2  0.0000     0.8204 0.000 1.000 0.000
#> GSM198654     3  0.7248     0.6817 0.256 0.068 0.676
#> GSM198655     2  0.6451     0.3092 0.004 0.560 0.436
#> GSM198656     3  0.6540     0.8861 0.408 0.008 0.584
#> GSM198657     3  0.6154     0.8903 0.408 0.000 0.592
#> GSM198658     3  0.6180     0.8904 0.416 0.000 0.584
#> GSM198659     2  0.1031     0.8238 0.000 0.976 0.024
#> GSM198660     3  0.6460     0.8581 0.440 0.004 0.556
#> GSM198662     3  0.6180     0.8904 0.416 0.000 0.584
#> GSM198663     2  0.0000     0.8204 0.000 1.000 0.000
#> GSM198664     2  0.9527     0.2571 0.300 0.480 0.220
#> GSM198665     3  0.6062     0.8776 0.384 0.000 0.616
#> GSM198616     1  0.1163     0.5831 0.972 0.000 0.028
#> GSM198617     1  0.9627    -0.5150 0.452 0.220 0.328
#> GSM198619     1  0.3340     0.4681 0.880 0.000 0.120
#> GSM198620     2  0.3551     0.8102 0.000 0.868 0.132
#> GSM198621     1  0.8518    -0.5037 0.540 0.104 0.356
#> GSM198624     1  0.1877     0.6036 0.956 0.032 0.012
#> GSM198625     1  0.5728     0.6051 0.772 0.196 0.032
#> GSM198637     1  0.3340     0.6105 0.880 0.000 0.120
#> GSM198638     1  0.9750    -0.3026 0.404 0.228 0.368
#> GSM198640     1  0.0592     0.5919 0.988 0.000 0.012
#> GSM198646     2  0.3551     0.8102 0.000 0.868 0.132
#> GSM198647     2  0.9231     0.4263 0.180 0.512 0.308
#> GSM198648     2  0.0000     0.8204 0.000 1.000 0.000
#> GSM198650     3  0.6956     0.7253 0.300 0.040 0.660
#> GSM198652     2  0.1753     0.8228 0.000 0.952 0.048
#> GSM198661     3  0.6168     0.8915 0.412 0.000 0.588

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     3  0.6224     0.7372 0.040 0.096 0.724 0.140
#> GSM198622     1  0.7650     0.6802 0.608 0.096 0.080 0.216
#> GSM198623     3  0.2310     0.8538 0.032 0.020 0.932 0.016
#> GSM198626     1  0.2884     0.5984 0.900 0.028 0.004 0.068
#> GSM198627     1  0.3726     0.5885 0.788 0.212 0.000 0.000
#> GSM198628     1  0.3598     0.6045 0.848 0.124 0.000 0.028
#> GSM198629     1  0.5715     0.6948 0.756 0.028 0.108 0.108
#> GSM198630     1  0.2797     0.5959 0.900 0.032 0.000 0.068
#> GSM198631     1  0.2884     0.5984 0.900 0.028 0.004 0.068
#> GSM198632     1  0.6907     0.6547 0.588 0.000 0.240 0.172
#> GSM198633     1  0.7357     0.6477 0.524 0.004 0.164 0.308
#> GSM198634     1  0.7514     0.6810 0.616 0.084 0.080 0.220
#> GSM198635     1  0.7541     0.6796 0.616 0.088 0.080 0.216
#> GSM198636     1  0.4955     0.3154 0.556 0.444 0.000 0.000
#> GSM198639     3  0.2988     0.8483 0.012 0.000 0.876 0.112
#> GSM198641     2  0.0804     0.5416 0.012 0.980 0.000 0.008
#> GSM198642     3  0.2319     0.8472 0.024 0.028 0.932 0.016
#> GSM198643     1  0.6811     0.6384 0.588 0.000 0.268 0.144
#> GSM198644     2  0.6086     0.1345 0.008 0.548 0.412 0.032
#> GSM198645     3  0.2197     0.8597 0.004 0.000 0.916 0.080
#> GSM198649     4  0.4877     0.8705 0.000 0.408 0.000 0.592
#> GSM198651     2  0.0336     0.5497 0.008 0.992 0.000 0.000
#> GSM198653     2  0.1305     0.5180 0.004 0.960 0.000 0.036
#> GSM198654     3  0.4735     0.6620 0.000 0.148 0.784 0.068
#> GSM198655     3  0.6136    -0.0799 0.008 0.444 0.516 0.032
#> GSM198656     3  0.0000     0.8655 0.000 0.000 1.000 0.000
#> GSM198657     3  0.0000     0.8655 0.000 0.000 1.000 0.000
#> GSM198658     3  0.0000     0.8655 0.000 0.000 1.000 0.000
#> GSM198659     2  0.1807     0.5050 0.008 0.940 0.000 0.052
#> GSM198660     3  0.3822     0.8335 0.032 0.004 0.844 0.120
#> GSM198662     3  0.0000     0.8655 0.000 0.000 1.000 0.000
#> GSM198663     2  0.0336     0.5497 0.008 0.992 0.000 0.000
#> GSM198664     2  0.8182     0.1243 0.036 0.512 0.216 0.236
#> GSM198665     3  0.0000     0.8655 0.000 0.000 1.000 0.000
#> GSM198616     1  0.6904     0.6596 0.600 0.004 0.248 0.148
#> GSM198617     3  0.3278     0.8452 0.020 0.000 0.864 0.116
#> GSM198619     3  0.3552     0.8374 0.024 0.000 0.848 0.128
#> GSM198620     4  0.4925     0.8475 0.000 0.428 0.000 0.572
#> GSM198621     3  0.2101     0.8639 0.012 0.000 0.928 0.060
#> GSM198624     1  0.7219     0.6753 0.604 0.020 0.232 0.144
#> GSM198625     1  0.3726     0.5885 0.788 0.212 0.000 0.000
#> GSM198637     1  0.6473     0.6859 0.604 0.004 0.084 0.308
#> GSM198638     3  0.6170     0.7102 0.048 0.036 0.692 0.224
#> GSM198640     1  0.7443     0.3549 0.436 0.000 0.392 0.172
#> GSM198646     4  0.4877     0.8705 0.000 0.408 0.000 0.592
#> GSM198647     4  0.6578     0.6630 0.000 0.300 0.108 0.592
#> GSM198648     2  0.0336     0.5497 0.008 0.992 0.000 0.000
#> GSM198650     3  0.3821     0.8184 0.000 0.040 0.840 0.120
#> GSM198652     2  0.6498     0.0761 0.000 0.488 0.440 0.072
#> GSM198661     3  0.0000     0.8655 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     3  0.6662    0.61457 0.080 0.000 0.616 0.140 0.164
#> GSM198622     5  0.1200    0.55881 0.016 0.000 0.008 0.012 0.964
#> GSM198623     3  0.1310    0.76857 0.024 0.000 0.956 0.000 0.020
#> GSM198626     1  0.3242    0.92334 0.784 0.000 0.000 0.000 0.216
#> GSM198627     5  0.6731   -0.34777 0.372 0.188 0.000 0.008 0.432
#> GSM198628     1  0.5097    0.73842 0.624 0.056 0.000 0.000 0.320
#> GSM198629     5  0.6431    0.33944 0.228 0.008 0.024 0.132 0.608
#> GSM198630     1  0.3242    0.92334 0.784 0.000 0.000 0.000 0.216
#> GSM198631     1  0.3242    0.92334 0.784 0.000 0.000 0.000 0.216
#> GSM198632     5  0.4630    0.57191 0.000 0.000 0.116 0.140 0.744
#> GSM198633     5  0.1568    0.57415 0.036 0.000 0.020 0.000 0.944
#> GSM198634     5  0.1200    0.55881 0.016 0.000 0.008 0.012 0.964
#> GSM198635     5  0.1419    0.56000 0.016 0.000 0.016 0.012 0.956
#> GSM198636     2  0.6860   -0.17484 0.140 0.436 0.000 0.028 0.396
#> GSM198639     3  0.7035    0.57940 0.188 0.000 0.576 0.140 0.096
#> GSM198641     2  0.0671    0.64344 0.004 0.980 0.000 0.000 0.016
#> GSM198642     3  0.0566    0.77013 0.012 0.000 0.984 0.000 0.004
#> GSM198643     5  0.6026    0.51451 0.024 0.000 0.196 0.140 0.640
#> GSM198644     2  0.6791    0.23009 0.032 0.496 0.356 0.112 0.004
#> GSM198645     3  0.4391    0.71726 0.032 0.000 0.788 0.136 0.044
#> GSM198649     4  0.2929    0.91281 0.000 0.180 0.000 0.820 0.000
#> GSM198651     2  0.1243    0.64143 0.004 0.960 0.000 0.028 0.008
#> GSM198653     2  0.1965    0.59922 0.000 0.904 0.000 0.096 0.000
#> GSM198654     3  0.3109    0.60058 0.000 0.000 0.800 0.200 0.000
#> GSM198655     3  0.6152   -0.00472 0.004 0.376 0.512 0.104 0.004
#> GSM198656     3  0.0000    0.76954 0.000 0.000 1.000 0.000 0.000
#> GSM198657     3  0.0000    0.76954 0.000 0.000 1.000 0.000 0.000
#> GSM198658     3  0.0162    0.76990 0.000 0.000 0.996 0.000 0.004
#> GSM198659     2  0.2388    0.61118 0.028 0.900 0.000 0.072 0.000
#> GSM198660     3  0.4025    0.71899 0.004 0.000 0.796 0.140 0.060
#> GSM198662     3  0.0162    0.76990 0.000 0.000 0.996 0.000 0.004
#> GSM198663     2  0.0162    0.64681 0.000 0.996 0.000 0.000 0.004
#> GSM198664     5  0.5478   -0.03439 0.028 0.436 0.020 0.000 0.516
#> GSM198665     3  0.0000    0.76954 0.000 0.000 1.000 0.000 0.000
#> GSM198616     5  0.5823    0.52289 0.016 0.000 0.192 0.140 0.652
#> GSM198617     3  0.7079    0.57525 0.188 0.000 0.572 0.140 0.100
#> GSM198619     3  0.8058    0.29222 0.188 0.000 0.428 0.140 0.244
#> GSM198620     4  0.3707    0.79697 0.000 0.284 0.000 0.716 0.000
#> GSM198621     3  0.4788    0.67414 0.188 0.000 0.732 0.008 0.072
#> GSM198624     5  0.5577    0.55767 0.044 0.000 0.108 0.140 0.708
#> GSM198625     5  0.6537   -0.41256 0.400 0.196 0.000 0.000 0.404
#> GSM198637     5  0.2206    0.56447 0.068 0.000 0.016 0.004 0.912
#> GSM198638     3  0.7248    0.33982 0.060 0.000 0.452 0.136 0.352
#> GSM198640     5  0.5593    0.51645 0.016 0.000 0.164 0.140 0.680
#> GSM198646     4  0.3003    0.91296 0.000 0.188 0.000 0.812 0.000
#> GSM198647     4  0.3563    0.87664 0.000 0.140 0.028 0.824 0.008
#> GSM198648     2  0.0162    0.64681 0.000 0.996 0.000 0.000 0.004
#> GSM198650     3  0.4798    0.62071 0.008 0.000 0.684 0.272 0.036
#> GSM198652     2  0.7181    0.12501 0.024 0.428 0.316 0.232 0.000
#> GSM198661     3  0.0000    0.76954 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     5  0.7170   0.101181 0.000 0.228 0.336 0.000 0.348 0.088
#> GSM198622     5  0.5253   0.428343 0.056 0.000 0.000 0.020 0.536 0.388
#> GSM198623     3  0.1390   0.902213 0.004 0.000 0.948 0.000 0.032 0.016
#> GSM198626     1  0.0000   0.657637 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198627     1  0.5998   0.344302 0.508 0.008 0.000 0.016 0.124 0.344
#> GSM198628     1  0.2114   0.648440 0.904 0.008 0.000 0.012 0.000 0.076
#> GSM198629     1  0.6860   0.037377 0.372 0.000 0.032 0.008 0.248 0.340
#> GSM198630     1  0.0000   0.657637 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198631     1  0.0000   0.657637 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198632     5  0.6091   0.467232 0.052 0.000 0.096 0.000 0.504 0.348
#> GSM198633     5  0.4628   0.450096 0.024 0.000 0.000 0.012 0.572 0.392
#> GSM198634     5  0.5253   0.428343 0.056 0.000 0.000 0.020 0.536 0.388
#> GSM198635     5  0.5212   0.436213 0.056 0.000 0.004 0.012 0.548 0.380
#> GSM198636     6  0.5465  -0.140806 0.196 0.088 0.000 0.016 0.032 0.668
#> GSM198639     5  0.3823  -0.076158 0.000 0.000 0.436 0.000 0.564 0.000
#> GSM198641     2  0.0291   0.779041 0.000 0.992 0.000 0.004 0.000 0.004
#> GSM198642     3  0.1173   0.908777 0.016 0.000 0.960 0.000 0.016 0.008
#> GSM198643     5  0.6692   0.433607 0.052 0.000 0.196 0.000 0.436 0.316
#> GSM198644     6  0.5591   0.060359 0.000 0.316 0.072 0.040 0.000 0.572
#> GSM198645     3  0.1714   0.867761 0.000 0.000 0.908 0.000 0.092 0.000
#> GSM198649     4  0.0632   0.959939 0.000 0.024 0.000 0.976 0.000 0.000
#> GSM198651     2  0.4184   0.243865 0.000 0.576 0.000 0.016 0.000 0.408
#> GSM198653     2  0.3612   0.662578 0.000 0.780 0.000 0.168 0.000 0.052
#> GSM198654     3  0.2823   0.691034 0.000 0.000 0.796 0.204 0.000 0.000
#> GSM198655     6  0.5540   0.279434 0.000 0.060 0.356 0.024 0.008 0.552
#> GSM198656     3  0.0000   0.917820 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198657     3  0.0000   0.917820 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198658     3  0.0713   0.908438 0.000 0.000 0.972 0.000 0.028 0.000
#> GSM198659     2  0.3534   0.684340 0.000 0.800 0.000 0.124 0.000 0.076
#> GSM198660     3  0.2009   0.868748 0.000 0.000 0.908 0.000 0.068 0.024
#> GSM198662     3  0.0000   0.917820 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198663     2  0.0000   0.779559 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM198664     5  0.5671  -0.000673 0.000 0.364 0.008 0.000 0.500 0.128
#> GSM198665     3  0.0000   0.917820 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198616     5  0.6690   0.438348 0.056 0.000 0.180 0.000 0.432 0.332
#> GSM198617     5  0.3789  -0.038228 0.000 0.000 0.416 0.000 0.584 0.000
#> GSM198619     5  0.3647   0.118252 0.000 0.000 0.360 0.000 0.640 0.000
#> GSM198620     4  0.1556   0.912739 0.000 0.080 0.000 0.920 0.000 0.000
#> GSM198621     5  0.3868  -0.199679 0.000 0.000 0.496 0.000 0.504 0.000
#> GSM198624     5  0.6725   0.392335 0.120 0.000 0.092 0.000 0.428 0.360
#> GSM198625     1  0.4232   0.574531 0.708 0.020 0.000 0.016 0.004 0.252
#> GSM198637     5  0.5106   0.442840 0.048 0.000 0.000 0.020 0.564 0.368
#> GSM198638     5  0.6835   0.142909 0.000 0.208 0.172 0.000 0.504 0.116
#> GSM198640     5  0.6382   0.466278 0.052 0.000 0.136 0.000 0.480 0.332
#> GSM198646     4  0.0632   0.959939 0.000 0.024 0.000 0.976 0.000 0.000
#> GSM198647     4  0.0717   0.935646 0.000 0.000 0.008 0.976 0.016 0.000
#> GSM198648     2  0.0000   0.779559 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM198650     3  0.4109   0.684160 0.000 0.000 0.748 0.196 0.032 0.024
#> GSM198652     6  0.7107  -0.031024 0.000 0.300 0.072 0.276 0.000 0.352
#> GSM198661     3  0.0000   0.917820 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> CV:mclust  8               NA 2
#> CV:mclust 38            0.710 3
#> CV:mclust 44            0.218 4
#> CV:mclust 40            0.150 5
#> CV:mclust 26            0.134 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.759           0.834       0.933         0.4792 0.510   0.510
#> 3 3 0.598           0.795       0.902         0.3692 0.654   0.418
#> 4 4 0.571           0.645       0.796         0.1322 0.880   0.663
#> 5 5 0.643           0.517       0.731         0.0732 0.849   0.496
#> 6 6 0.658           0.603       0.781         0.0410 0.883   0.507

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     2  0.7453     0.7234 0.212 0.788
#> GSM198622     1  0.0000     0.9481 1.000 0.000
#> GSM198623     1  0.0000     0.9481 1.000 0.000
#> GSM198626     1  0.0000     0.9481 1.000 0.000
#> GSM198627     1  0.0000     0.9481 1.000 0.000
#> GSM198628     1  0.0000     0.9481 1.000 0.000
#> GSM198629     1  0.0000     0.9481 1.000 0.000
#> GSM198630     1  0.0000     0.9481 1.000 0.000
#> GSM198631     1  0.0000     0.9481 1.000 0.000
#> GSM198632     1  0.0000     0.9481 1.000 0.000
#> GSM198633     1  0.0000     0.9481 1.000 0.000
#> GSM198634     1  0.0000     0.9481 1.000 0.000
#> GSM198635     1  0.0000     0.9481 1.000 0.000
#> GSM198636     1  0.9170     0.4587 0.668 0.332
#> GSM198639     1  0.0376     0.9452 0.996 0.004
#> GSM198641     1  0.0376     0.9451 0.996 0.004
#> GSM198642     1  0.0000     0.9481 1.000 0.000
#> GSM198643     1  0.0000     0.9481 1.000 0.000
#> GSM198644     2  0.0000     0.8835 0.000 1.000
#> GSM198645     1  0.0000     0.9481 1.000 0.000
#> GSM198649     2  0.0000     0.8835 0.000 1.000
#> GSM198651     2  0.0000     0.8835 0.000 1.000
#> GSM198653     2  0.0000     0.8835 0.000 1.000
#> GSM198654     2  0.0000     0.8835 0.000 1.000
#> GSM198655     2  0.0938     0.8771 0.012 0.988
#> GSM198656     1  0.1184     0.9349 0.984 0.016
#> GSM198657     1  0.4161     0.8623 0.916 0.084
#> GSM198658     2  0.8608     0.6356 0.284 0.716
#> GSM198659     2  0.0000     0.8835 0.000 1.000
#> GSM198660     2  0.9983     0.1900 0.476 0.524
#> GSM198662     2  0.9635     0.4583 0.388 0.612
#> GSM198663     2  0.0000     0.8835 0.000 1.000
#> GSM198664     2  0.8327     0.6675 0.264 0.736
#> GSM198665     1  0.9988    -0.0108 0.520 0.480
#> GSM198616     1  0.0000     0.9481 1.000 0.000
#> GSM198617     2  0.9775     0.4031 0.412 0.588
#> GSM198619     1  0.0000     0.9481 1.000 0.000
#> GSM198620     2  0.0000     0.8835 0.000 1.000
#> GSM198621     1  0.2236     0.9173 0.964 0.036
#> GSM198624     1  0.0000     0.9481 1.000 0.000
#> GSM198625     1  0.0000     0.9481 1.000 0.000
#> GSM198637     1  0.0000     0.9481 1.000 0.000
#> GSM198638     1  0.9358     0.3403 0.648 0.352
#> GSM198640     1  0.0000     0.9481 1.000 0.000
#> GSM198646     2  0.0000     0.8835 0.000 1.000
#> GSM198647     2  0.0000     0.8835 0.000 1.000
#> GSM198648     2  0.0000     0.8835 0.000 1.000
#> GSM198650     2  0.0000     0.8835 0.000 1.000
#> GSM198652     2  0.0000     0.8835 0.000 1.000
#> GSM198661     1  0.0000     0.9481 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     3  0.3500      0.813 0.116 0.004 0.880
#> GSM198622     1  0.3551      0.830 0.868 0.132 0.000
#> GSM198623     1  0.0747      0.929 0.984 0.000 0.016
#> GSM198626     1  0.0000      0.934 1.000 0.000 0.000
#> GSM198627     1  0.3619      0.822 0.864 0.136 0.000
#> GSM198628     1  0.3038      0.850 0.896 0.104 0.000
#> GSM198629     1  0.0000      0.934 1.000 0.000 0.000
#> GSM198630     1  0.0000      0.934 1.000 0.000 0.000
#> GSM198631     1  0.0000      0.934 1.000 0.000 0.000
#> GSM198632     1  0.0000      0.934 1.000 0.000 0.000
#> GSM198633     1  0.4551      0.814 0.840 0.140 0.020
#> GSM198634     1  0.1411      0.916 0.964 0.036 0.000
#> GSM198635     2  0.6168      0.278 0.412 0.588 0.000
#> GSM198636     2  0.3038      0.796 0.104 0.896 0.000
#> GSM198639     3  0.5016      0.727 0.240 0.000 0.760
#> GSM198641     2  0.1411      0.835 0.036 0.964 0.000
#> GSM198642     1  0.0892      0.926 0.980 0.000 0.020
#> GSM198643     1  0.0237      0.934 0.996 0.000 0.004
#> GSM198644     2  0.0892      0.841 0.000 0.980 0.020
#> GSM198645     1  0.4605      0.706 0.796 0.000 0.204
#> GSM198649     3  0.1411      0.823 0.000 0.036 0.964
#> GSM198651     2  0.0000      0.845 0.000 1.000 0.000
#> GSM198653     2  0.0892      0.842 0.000 0.980 0.020
#> GSM198654     3  0.0237      0.836 0.000 0.004 0.996
#> GSM198655     2  0.6252      0.181 0.000 0.556 0.444
#> GSM198656     3  0.6154      0.380 0.408 0.000 0.592
#> GSM198657     3  0.2537      0.832 0.080 0.000 0.920
#> GSM198658     3  0.0424      0.839 0.008 0.000 0.992
#> GSM198659     2  0.0424      0.844 0.000 0.992 0.008
#> GSM198660     3  0.1525      0.843 0.032 0.004 0.964
#> GSM198662     3  0.0424      0.839 0.008 0.000 0.992
#> GSM198663     2  0.0000      0.845 0.000 1.000 0.000
#> GSM198664     2  0.6778      0.672 0.188 0.732 0.080
#> GSM198665     3  0.1289      0.842 0.032 0.000 0.968
#> GSM198616     1  0.0237      0.934 0.996 0.000 0.004
#> GSM198617     3  0.2448      0.832 0.076 0.000 0.924
#> GSM198619     1  0.4842      0.671 0.776 0.000 0.224
#> GSM198620     2  0.4654      0.673 0.000 0.792 0.208
#> GSM198621     3  0.3752      0.806 0.144 0.000 0.856
#> GSM198624     1  0.0000      0.934 1.000 0.000 0.000
#> GSM198625     1  0.0892      0.926 0.980 0.020 0.000
#> GSM198637     1  0.0475      0.934 0.992 0.004 0.004
#> GSM198638     3  0.8362      0.428 0.348 0.096 0.556
#> GSM198640     1  0.0237      0.934 0.996 0.000 0.004
#> GSM198646     3  0.5058      0.599 0.000 0.244 0.756
#> GSM198647     3  0.0237      0.836 0.000 0.004 0.996
#> GSM198648     2  0.0000      0.845 0.000 1.000 0.000
#> GSM198650     3  0.0237      0.836 0.000 0.004 0.996
#> GSM198652     3  0.4121      0.704 0.000 0.168 0.832
#> GSM198661     3  0.5058      0.706 0.244 0.000 0.756

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     4  0.3718      0.575 0.012 0.000 0.168 0.820
#> GSM198622     1  0.6473      0.587 0.612 0.108 0.000 0.280
#> GSM198623     1  0.3681      0.718 0.816 0.000 0.176 0.008
#> GSM198626     1  0.0376      0.806 0.992 0.000 0.004 0.004
#> GSM198627     1  0.1042      0.804 0.972 0.020 0.000 0.008
#> GSM198628     1  0.1854      0.784 0.940 0.048 0.000 0.012
#> GSM198629     1  0.0524      0.807 0.988 0.000 0.004 0.008
#> GSM198630     1  0.0376      0.806 0.992 0.004 0.000 0.004
#> GSM198631     1  0.0188      0.806 0.996 0.000 0.000 0.004
#> GSM198632     1  0.4323      0.740 0.776 0.000 0.020 0.204
#> GSM198633     4  0.8295     -0.148 0.280 0.300 0.016 0.404
#> GSM198634     1  0.5462      0.674 0.692 0.040 0.004 0.264
#> GSM198635     2  0.7387      0.376 0.224 0.520 0.000 0.256
#> GSM198636     2  0.4819      0.645 0.156 0.788 0.012 0.044
#> GSM198639     4  0.5284      0.518 0.016 0.000 0.368 0.616
#> GSM198641     2  0.4504      0.644 0.020 0.772 0.004 0.204
#> GSM198642     1  0.4594      0.585 0.712 0.000 0.280 0.008
#> GSM198643     1  0.2928      0.796 0.896 0.000 0.052 0.052
#> GSM198644     2  0.6255      0.543 0.012 0.696 0.144 0.148
#> GSM198645     1  0.6536      0.442 0.580 0.000 0.324 0.096
#> GSM198649     4  0.5195      0.559 0.000 0.032 0.276 0.692
#> GSM198651     2  0.1339      0.747 0.004 0.964 0.024 0.008
#> GSM198653     2  0.1767      0.746 0.000 0.944 0.044 0.012
#> GSM198654     3  0.0895      0.845 0.000 0.004 0.976 0.020
#> GSM198655     3  0.7359      0.351 0.024 0.292 0.568 0.116
#> GSM198656     3  0.2737      0.767 0.104 0.008 0.888 0.000
#> GSM198657     3  0.1059      0.847 0.012 0.000 0.972 0.016
#> GSM198658     3  0.1118      0.842 0.000 0.000 0.964 0.036
#> GSM198659     2  0.3037      0.711 0.000 0.880 0.020 0.100
#> GSM198660     3  0.1697      0.843 0.004 0.016 0.952 0.028
#> GSM198662     3  0.1305      0.838 0.004 0.000 0.960 0.036
#> GSM198663     2  0.1211      0.750 0.000 0.960 0.000 0.040
#> GSM198664     2  0.7200      0.489 0.004 0.564 0.172 0.260
#> GSM198665     3  0.1211      0.843 0.000 0.000 0.960 0.040
#> GSM198616     1  0.2489      0.799 0.912 0.000 0.020 0.068
#> GSM198617     4  0.4999      0.545 0.012 0.000 0.328 0.660
#> GSM198619     1  0.7297      0.307 0.536 0.000 0.220 0.244
#> GSM198620     4  0.5599      0.253 0.000 0.352 0.032 0.616
#> GSM198621     4  0.5384      0.557 0.028 0.000 0.324 0.648
#> GSM198624     1  0.0657      0.808 0.984 0.000 0.004 0.012
#> GSM198625     1  0.0657      0.804 0.984 0.012 0.000 0.004
#> GSM198637     1  0.5834      0.654 0.664 0.028 0.020 0.288
#> GSM198638     4  0.7989      0.144 0.076 0.224 0.124 0.576
#> GSM198640     1  0.6313      0.662 0.652 0.000 0.128 0.220
#> GSM198646     4  0.5894      0.495 0.000 0.200 0.108 0.692
#> GSM198647     4  0.4655      0.556 0.000 0.004 0.312 0.684
#> GSM198648     2  0.2266      0.746 0.004 0.912 0.000 0.084
#> GSM198650     3  0.1256      0.843 0.000 0.008 0.964 0.028
#> GSM198652     3  0.5022      0.564 0.000 0.264 0.708 0.028
#> GSM198661     3  0.1489      0.828 0.044 0.000 0.952 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     4  0.4599     0.5986 0.000 0.000 0.040 0.688 0.272
#> GSM198622     5  0.3962     0.5026 0.088 0.112 0.000 0.000 0.800
#> GSM198623     1  0.3950     0.6786 0.796 0.000 0.136 0.000 0.068
#> GSM198626     1  0.0000     0.7903 1.000 0.000 0.000 0.000 0.000
#> GSM198627     1  0.0609     0.7815 0.980 0.020 0.000 0.000 0.000
#> GSM198628     1  0.3143     0.5825 0.796 0.204 0.000 0.000 0.000
#> GSM198629     1  0.0162     0.7898 0.996 0.000 0.000 0.000 0.004
#> GSM198630     1  0.0000     0.7903 1.000 0.000 0.000 0.000 0.000
#> GSM198631     1  0.0000     0.7903 1.000 0.000 0.000 0.000 0.000
#> GSM198632     1  0.4968     0.2093 0.516 0.000 0.028 0.000 0.456
#> GSM198633     5  0.2251     0.4935 0.000 0.024 0.008 0.052 0.916
#> GSM198634     5  0.4948     0.4891 0.184 0.108 0.000 0.000 0.708
#> GSM198635     5  0.4288     0.2063 0.012 0.324 0.000 0.000 0.664
#> GSM198636     2  0.5410     0.2744 0.344 0.584 0.000 0.072 0.000
#> GSM198639     4  0.5484     0.5353 0.000 0.000 0.080 0.584 0.336
#> GSM198641     5  0.4440    -0.1029 0.000 0.468 0.004 0.000 0.528
#> GSM198642     1  0.4907     0.5014 0.656 0.000 0.292 0.000 0.052
#> GSM198643     1  0.5142     0.4054 0.600 0.000 0.052 0.000 0.348
#> GSM198644     2  0.5705     0.2656 0.048 0.600 0.020 0.328 0.004
#> GSM198645     3  0.8432    -0.1846 0.188 0.000 0.316 0.192 0.304
#> GSM198649     4  0.0609     0.5986 0.000 0.020 0.000 0.980 0.000
#> GSM198651     2  0.2426     0.4398 0.000 0.900 0.036 0.000 0.064
#> GSM198653     2  0.6071     0.2417 0.000 0.548 0.152 0.000 0.300
#> GSM198654     3  0.0566     0.8558 0.000 0.004 0.984 0.012 0.000
#> GSM198655     2  0.7335     0.3196 0.092 0.520 0.248 0.140 0.000
#> GSM198656     3  0.0290     0.8545 0.000 0.008 0.992 0.000 0.000
#> GSM198657     3  0.0798     0.8592 0.000 0.000 0.976 0.008 0.016
#> GSM198658     3  0.2136     0.8367 0.000 0.000 0.904 0.008 0.088
#> GSM198659     2  0.7295     0.4256 0.000 0.548 0.116 0.196 0.140
#> GSM198660     3  0.2504     0.8444 0.000 0.040 0.896 0.000 0.064
#> GSM198662     3  0.2293     0.8368 0.000 0.000 0.900 0.016 0.084
#> GSM198663     2  0.4410     0.1092 0.000 0.556 0.000 0.004 0.440
#> GSM198664     5  0.6068     0.0774 0.000 0.328 0.140 0.000 0.532
#> GSM198665     3  0.2006     0.8463 0.000 0.000 0.916 0.012 0.072
#> GSM198616     1  0.4418     0.4746 0.652 0.000 0.016 0.000 0.332
#> GSM198617     4  0.5685     0.4714 0.000 0.000 0.084 0.520 0.396
#> GSM198619     4  0.7786     0.2260 0.200 0.000 0.076 0.372 0.352
#> GSM198620     4  0.3039     0.4412 0.000 0.192 0.000 0.808 0.000
#> GSM198621     4  0.3906     0.6605 0.000 0.000 0.068 0.800 0.132
#> GSM198624     1  0.0162     0.7898 0.996 0.000 0.000 0.000 0.004
#> GSM198625     1  0.0000     0.7903 1.000 0.000 0.000 0.000 0.000
#> GSM198637     5  0.5055     0.2333 0.308 0.000 0.008 0.040 0.644
#> GSM198638     5  0.4540     0.4537 0.000 0.124 0.036 0.056 0.784
#> GSM198640     5  0.6288     0.0608 0.340 0.000 0.088 0.028 0.544
#> GSM198646     4  0.2230     0.5285 0.000 0.116 0.000 0.884 0.000
#> GSM198647     4  0.1670     0.6301 0.000 0.000 0.052 0.936 0.012
#> GSM198648     2  0.4897     0.0826 0.000 0.516 0.000 0.024 0.460
#> GSM198650     3  0.1095     0.8569 0.000 0.012 0.968 0.008 0.012
#> GSM198652     3  0.2179     0.7656 0.000 0.112 0.888 0.000 0.000
#> GSM198661     3  0.0794     0.8416 0.000 0.028 0.972 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     4  0.2253      0.762 0.000 0.004 0.012 0.896 0.084 0.004
#> GSM198622     5  0.4366      0.349 0.024 0.324 0.000 0.004 0.644 0.004
#> GSM198623     1  0.2362      0.786 0.892 0.000 0.080 0.000 0.012 0.016
#> GSM198626     1  0.1003      0.828 0.964 0.000 0.000 0.000 0.020 0.016
#> GSM198627     1  0.2482      0.748 0.848 0.000 0.000 0.000 0.004 0.148
#> GSM198628     1  0.2402      0.748 0.856 0.004 0.000 0.000 0.000 0.140
#> GSM198629     1  0.1531      0.803 0.928 0.000 0.000 0.000 0.068 0.004
#> GSM198630     1  0.0363      0.834 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM198631     1  0.0291      0.833 0.992 0.000 0.004 0.000 0.000 0.004
#> GSM198632     5  0.4477      0.473 0.296 0.012 0.020 0.000 0.664 0.008
#> GSM198633     5  0.3972      0.312 0.000 0.320 0.000 0.012 0.664 0.004
#> GSM198634     5  0.5101      0.284 0.068 0.352 0.000 0.004 0.572 0.004
#> GSM198635     2  0.2755      0.668 0.012 0.844 0.000 0.000 0.140 0.004
#> GSM198636     6  0.2918      0.635 0.084 0.028 0.000 0.012 0.008 0.868
#> GSM198639     5  0.4481      0.222 0.000 0.000 0.024 0.416 0.556 0.004
#> GSM198641     2  0.1168      0.698 0.000 0.956 0.000 0.000 0.016 0.028
#> GSM198642     1  0.5057      0.522 0.656 0.000 0.244 0.000 0.076 0.024
#> GSM198643     1  0.4580     -0.147 0.488 0.000 0.016 0.000 0.484 0.012
#> GSM198644     6  0.6691      0.462 0.008 0.152 0.012 0.200 0.064 0.564
#> GSM198645     5  0.7677      0.216 0.116 0.000 0.224 0.280 0.364 0.016
#> GSM198649     4  0.0777      0.792 0.000 0.000 0.004 0.972 0.000 0.024
#> GSM198651     2  0.5798      0.151 0.000 0.580 0.072 0.000 0.064 0.284
#> GSM198653     2  0.2606      0.650 0.000 0.888 0.048 0.000 0.020 0.044
#> GSM198654     3  0.1370      0.836 0.000 0.000 0.948 0.012 0.004 0.036
#> GSM198655     6  0.2662      0.642 0.012 0.008 0.108 0.004 0.000 0.868
#> GSM198656     3  0.1036      0.842 0.004 0.000 0.964 0.000 0.024 0.008
#> GSM198657     3  0.0964      0.842 0.000 0.000 0.968 0.004 0.016 0.012
#> GSM198658     3  0.2791      0.824 0.000 0.000 0.852 0.008 0.124 0.016
#> GSM198659     6  0.6470      0.341 0.000 0.284 0.112 0.076 0.004 0.524
#> GSM198660     3  0.2203      0.842 0.000 0.004 0.896 0.000 0.084 0.016
#> GSM198662     3  0.2207      0.840 0.000 0.000 0.900 0.016 0.076 0.008
#> GSM198663     2  0.3101      0.645 0.000 0.820 0.000 0.000 0.032 0.148
#> GSM198664     2  0.4193      0.592 0.000 0.736 0.188 0.000 0.072 0.004
#> GSM198665     3  0.4691      0.663 0.000 0.000 0.676 0.044 0.256 0.024
#> GSM198616     5  0.4211      0.359 0.364 0.000 0.004 0.000 0.616 0.016
#> GSM198617     5  0.4326      0.392 0.000 0.000 0.044 0.300 0.656 0.000
#> GSM198619     5  0.6107      0.455 0.156 0.000 0.016 0.252 0.560 0.016
#> GSM198620     4  0.3360      0.575 0.000 0.000 0.000 0.732 0.004 0.264
#> GSM198621     4  0.3411      0.572 0.000 0.000 0.008 0.756 0.232 0.004
#> GSM198624     1  0.0547      0.829 0.980 0.000 0.000 0.000 0.020 0.000
#> GSM198625     1  0.0146      0.833 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM198637     5  0.4149      0.575 0.148 0.068 0.004 0.000 0.768 0.012
#> GSM198638     2  0.5672      0.206 0.000 0.492 0.032 0.052 0.416 0.008
#> GSM198640     5  0.5868      0.510 0.228 0.024 0.064 0.032 0.640 0.012
#> GSM198646     4  0.2260      0.734 0.000 0.000 0.000 0.860 0.000 0.140
#> GSM198647     4  0.0725      0.793 0.000 0.000 0.012 0.976 0.012 0.000
#> GSM198648     2  0.1949      0.693 0.000 0.924 0.000 0.036 0.020 0.020
#> GSM198650     3  0.3208      0.797 0.000 0.000 0.832 0.008 0.120 0.040
#> GSM198652     3  0.6056      0.438 0.000 0.168 0.620 0.004 0.084 0.124
#> GSM198661     3  0.2240      0.830 0.000 0.000 0.908 0.032 0.044 0.016

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) k
#> CV:NMF 44           0.9518 2
#> CV:NMF 46           0.4297 3
#> CV:NMF 41           0.5058 4
#> CV:NMF 27           0.5599 5
#> CV:NMF 35           0.0671 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.658           0.924       0.945         0.2116 0.850   0.850
#> 3 3 0.586           0.850       0.911         1.0925 0.752   0.708
#> 4 4 0.417           0.728       0.814         0.4886 0.758   0.597
#> 5 5 0.509           0.694       0.800         0.1036 0.925   0.791
#> 6 6 0.574           0.636       0.765         0.0622 0.998   0.991

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     1  0.3879      0.925 0.924 0.076
#> GSM198622     1  0.0000      0.940 1.000 0.000
#> GSM198623     1  0.3584      0.927 0.932 0.068
#> GSM198626     1  0.0000      0.940 1.000 0.000
#> GSM198627     1  0.0000      0.940 1.000 0.000
#> GSM198628     1  0.0000      0.940 1.000 0.000
#> GSM198629     1  0.0000      0.940 1.000 0.000
#> GSM198630     1  0.0000      0.940 1.000 0.000
#> GSM198631     1  0.0000      0.940 1.000 0.000
#> GSM198632     1  0.1843      0.938 0.972 0.028
#> GSM198633     1  0.1843      0.938 0.972 0.028
#> GSM198634     1  0.0000      0.940 1.000 0.000
#> GSM198635     1  0.0000      0.940 1.000 0.000
#> GSM198636     1  0.0000      0.940 1.000 0.000
#> GSM198639     1  0.5737      0.893 0.864 0.136
#> GSM198641     1  0.0000      0.940 1.000 0.000
#> GSM198642     1  0.0000      0.940 1.000 0.000
#> GSM198643     1  0.0376      0.941 0.996 0.004
#> GSM198644     1  0.7219      0.842 0.800 0.200
#> GSM198645     1  0.3879      0.924 0.924 0.076
#> GSM198649     2  0.0000      1.000 0.000 1.000
#> GSM198651     1  0.0000      0.940 1.000 0.000
#> GSM198653     1  0.7299      0.840 0.796 0.204
#> GSM198654     1  0.6623      0.869 0.828 0.172
#> GSM198655     1  0.0672      0.941 0.992 0.008
#> GSM198656     1  0.2236      0.937 0.964 0.036
#> GSM198657     1  0.6247      0.881 0.844 0.156
#> GSM198658     1  0.6623      0.869 0.828 0.172
#> GSM198659     1  0.1414      0.932 0.980 0.020
#> GSM198660     1  0.5408      0.900 0.876 0.124
#> GSM198662     1  0.6247      0.881 0.844 0.156
#> GSM198663     1  0.1414      0.932 0.980 0.020
#> GSM198664     1  0.0376      0.939 0.996 0.004
#> GSM198665     1  0.6247      0.881 0.844 0.156
#> GSM198616     1  0.0376      0.941 0.996 0.004
#> GSM198617     1  0.5737      0.893 0.864 0.136
#> GSM198619     1  0.0376      0.941 0.996 0.004
#> GSM198620     2  0.0000      1.000 0.000 1.000
#> GSM198621     1  0.5737      0.893 0.864 0.136
#> GSM198624     1  0.0376      0.941 0.996 0.004
#> GSM198625     1  0.0000      0.940 1.000 0.000
#> GSM198637     1  0.0376      0.941 0.996 0.004
#> GSM198638     1  0.1843      0.938 0.972 0.028
#> GSM198640     1  0.1843      0.938 0.972 0.028
#> GSM198646     2  0.0000      1.000 0.000 1.000
#> GSM198647     2  0.0000      1.000 0.000 1.000
#> GSM198648     1  0.1414      0.932 0.980 0.020
#> GSM198650     1  0.6887      0.859 0.816 0.184
#> GSM198652     1  0.7453      0.829 0.788 0.212
#> GSM198661     1  0.6247      0.881 0.844 0.156

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     1  0.7366      0.572 0.668 0.260 0.072
#> GSM198622     1  0.2400      0.886 0.932 0.064 0.004
#> GSM198623     1  0.2165      0.904 0.936 0.000 0.064
#> GSM198626     1  0.0237      0.908 0.996 0.000 0.004
#> GSM198627     1  0.0661      0.908 0.988 0.008 0.004
#> GSM198628     1  0.0237      0.908 0.996 0.000 0.004
#> GSM198629     1  0.0237      0.908 0.996 0.000 0.004
#> GSM198630     1  0.0237      0.908 0.996 0.000 0.004
#> GSM198631     1  0.0237      0.908 0.996 0.000 0.004
#> GSM198632     1  0.2773      0.896 0.928 0.048 0.024
#> GSM198633     1  0.3370      0.883 0.904 0.072 0.024
#> GSM198634     1  0.0661      0.908 0.988 0.008 0.004
#> GSM198635     1  0.1525      0.903 0.964 0.032 0.004
#> GSM198636     1  0.1964      0.898 0.944 0.056 0.000
#> GSM198639     1  0.3551      0.878 0.868 0.000 0.132
#> GSM198641     2  0.0892      0.789 0.020 0.980 0.000
#> GSM198642     1  0.0237      0.908 0.996 0.000 0.004
#> GSM198643     1  0.0000      0.909 1.000 0.000 0.000
#> GSM198644     1  0.9423      0.208 0.484 0.320 0.196
#> GSM198645     1  0.2939      0.901 0.916 0.012 0.072
#> GSM198649     3  0.0237      1.000 0.004 0.000 0.996
#> GSM198651     2  0.0892      0.789 0.020 0.980 0.000
#> GSM198653     2  0.4521      0.673 0.004 0.816 0.180
#> GSM198654     1  0.4121      0.857 0.832 0.000 0.168
#> GSM198655     1  0.2486      0.897 0.932 0.060 0.008
#> GSM198656     1  0.1289      0.910 0.968 0.000 0.032
#> GSM198657     1  0.3879      0.868 0.848 0.000 0.152
#> GSM198658     1  0.4121      0.857 0.832 0.000 0.168
#> GSM198659     2  0.4409      0.705 0.172 0.824 0.004
#> GSM198660     1  0.5036      0.863 0.832 0.048 0.120
#> GSM198662     1  0.3879      0.868 0.848 0.000 0.152
#> GSM198663     2  0.0000      0.775 0.000 1.000 0.000
#> GSM198664     2  0.5873      0.528 0.312 0.684 0.004
#> GSM198665     1  0.3879      0.868 0.848 0.000 0.152
#> GSM198616     1  0.0000      0.909 1.000 0.000 0.000
#> GSM198617     1  0.3551      0.878 0.868 0.000 0.132
#> GSM198619     1  0.0000      0.909 1.000 0.000 0.000
#> GSM198620     3  0.0237      1.000 0.004 0.000 0.996
#> GSM198621     1  0.3551      0.878 0.868 0.000 0.132
#> GSM198624     1  0.0000      0.909 1.000 0.000 0.000
#> GSM198625     1  0.0661      0.908 0.988 0.008 0.004
#> GSM198637     1  0.0000      0.909 1.000 0.000 0.000
#> GSM198638     1  0.3370      0.883 0.904 0.072 0.024
#> GSM198640     1  0.2773      0.896 0.928 0.048 0.024
#> GSM198646     3  0.0237      1.000 0.004 0.000 0.996
#> GSM198647     3  0.0237      1.000 0.004 0.000 0.996
#> GSM198648     2  0.0000      0.775 0.000 1.000 0.000
#> GSM198650     1  0.4700      0.843 0.812 0.008 0.180
#> GSM198652     2  0.7388      0.569 0.100 0.692 0.208
#> GSM198661     1  0.3879      0.868 0.848 0.000 0.152

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     3  0.6896      0.560 0.140 0.260 0.596 0.004
#> GSM198622     1  0.2156      0.852 0.928 0.060 0.008 0.004
#> GSM198623     3  0.4539      0.656 0.272 0.000 0.720 0.008
#> GSM198626     1  0.4544      0.805 0.788 0.000 0.164 0.048
#> GSM198627     1  0.0524      0.884 0.988 0.004 0.000 0.008
#> GSM198628     1  0.4104      0.813 0.808 0.000 0.164 0.028
#> GSM198629     1  0.3853      0.815 0.820 0.000 0.160 0.020
#> GSM198630     1  0.4544      0.805 0.788 0.000 0.164 0.048
#> GSM198631     1  0.0895      0.885 0.976 0.000 0.020 0.004
#> GSM198632     3  0.6241      0.541 0.404 0.048 0.544 0.004
#> GSM198633     3  0.6458      0.519 0.408 0.072 0.520 0.000
#> GSM198634     1  0.0712      0.886 0.984 0.004 0.004 0.008
#> GSM198635     1  0.1443      0.878 0.960 0.028 0.008 0.004
#> GSM198636     3  0.5397      0.665 0.108 0.004 0.752 0.136
#> GSM198639     3  0.3157      0.734 0.144 0.000 0.852 0.004
#> GSM198641     2  0.0707      0.813 0.020 0.980 0.000 0.000
#> GSM198642     3  0.4920      0.573 0.368 0.000 0.628 0.004
#> GSM198643     3  0.4920      0.596 0.368 0.000 0.628 0.004
#> GSM198644     3  0.7655      0.274 0.072 0.320 0.544 0.064
#> GSM198645     3  0.4019      0.730 0.196 0.012 0.792 0.000
#> GSM198649     4  0.2921      1.000 0.000 0.000 0.140 0.860
#> GSM198651     2  0.0707      0.813 0.020 0.980 0.000 0.000
#> GSM198653     2  0.4282      0.699 0.000 0.816 0.124 0.060
#> GSM198654     3  0.0469      0.708 0.000 0.000 0.988 0.012
#> GSM198655     3  0.5422      0.667 0.100 0.008 0.756 0.136
#> GSM198656     3  0.4897      0.610 0.332 0.000 0.660 0.008
#> GSM198657     3  0.0804      0.717 0.012 0.000 0.980 0.008
#> GSM198658     3  0.0469      0.708 0.000 0.000 0.988 0.012
#> GSM198659     2  0.3808      0.734 0.160 0.824 0.012 0.004
#> GSM198660     3  0.4336      0.725 0.132 0.048 0.816 0.004
#> GSM198662     3  0.0804      0.717 0.012 0.000 0.980 0.008
#> GSM198663     2  0.0000      0.808 0.000 1.000 0.000 0.000
#> GSM198664     2  0.5669      0.580 0.260 0.684 0.052 0.004
#> GSM198665     3  0.0927      0.719 0.016 0.000 0.976 0.008
#> GSM198616     3  0.4990      0.609 0.352 0.000 0.640 0.008
#> GSM198617     3  0.3157      0.734 0.144 0.000 0.852 0.004
#> GSM198619     3  0.4990      0.609 0.352 0.000 0.640 0.008
#> GSM198620     4  0.2921      1.000 0.000 0.000 0.140 0.860
#> GSM198621     3  0.3157      0.734 0.144 0.000 0.852 0.004
#> GSM198624     1  0.1256      0.883 0.964 0.000 0.028 0.008
#> GSM198625     1  0.0712      0.885 0.984 0.004 0.004 0.008
#> GSM198637     3  0.4920      0.596 0.368 0.000 0.628 0.004
#> GSM198638     3  0.6458      0.519 0.408 0.072 0.520 0.000
#> GSM198640     3  0.6241      0.541 0.404 0.048 0.544 0.004
#> GSM198646     4  0.2921      1.000 0.000 0.000 0.140 0.860
#> GSM198647     4  0.2921      1.000 0.000 0.000 0.140 0.860
#> GSM198648     2  0.0000      0.808 0.000 1.000 0.000 0.000
#> GSM198650     3  0.1557      0.694 0.000 0.000 0.944 0.056
#> GSM198652     2  0.5590      0.573 0.000 0.692 0.244 0.064
#> GSM198661     3  0.0804      0.717 0.012 0.000 0.980 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     5  0.6921      0.476 0.124 0.260 0.040 0.012 0.564
#> GSM198622     1  0.3104      0.808 0.876 0.056 0.004 0.056 0.008
#> GSM198623     5  0.4482      0.573 0.252 0.000 0.032 0.004 0.712
#> GSM198626     1  0.3663      0.800 0.776 0.000 0.208 0.000 0.016
#> GSM198627     1  0.0290      0.872 0.992 0.000 0.008 0.000 0.000
#> GSM198628     1  0.3427      0.815 0.796 0.000 0.192 0.000 0.012
#> GSM198629     1  0.3280      0.821 0.812 0.000 0.176 0.000 0.012
#> GSM198630     1  0.3663      0.800 0.776 0.000 0.208 0.000 0.016
#> GSM198631     1  0.1988      0.852 0.928 0.000 0.016 0.048 0.008
#> GSM198632     5  0.6173      0.571 0.388 0.048 0.036 0.004 0.524
#> GSM198633     5  0.6393      0.559 0.388 0.072 0.024 0.008 0.508
#> GSM198634     1  0.0451      0.871 0.988 0.000 0.008 0.000 0.004
#> GSM198635     1  0.2356      0.834 0.912 0.024 0.004 0.056 0.004
#> GSM198636     3  0.3242      0.621 0.040 0.000 0.844 0.000 0.116
#> GSM198639     5  0.2864      0.688 0.136 0.000 0.012 0.000 0.852
#> GSM198641     2  0.1408      0.804 0.008 0.948 0.044 0.000 0.000
#> GSM198642     5  0.5474      0.494 0.308 0.000 0.020 0.048 0.624
#> GSM198643     5  0.5030      0.638 0.348 0.000 0.036 0.004 0.612
#> GSM198644     3  0.8413      0.199 0.016 0.288 0.400 0.128 0.168
#> GSM198645     5  0.3972      0.693 0.188 0.012 0.020 0.000 0.780
#> GSM198649     4  0.1341      1.000 0.000 0.000 0.000 0.944 0.056
#> GSM198651     2  0.1408      0.804 0.008 0.948 0.044 0.000 0.000
#> GSM198653     2  0.4361      0.710 0.000 0.792 0.024 0.124 0.060
#> GSM198654     5  0.2488      0.548 0.000 0.000 0.124 0.004 0.872
#> GSM198655     3  0.3446      0.623 0.036 0.000 0.840 0.008 0.116
#> GSM198656     5  0.5360      0.513 0.272 0.000 0.020 0.052 0.656
#> GSM198657     5  0.0404      0.622 0.000 0.000 0.012 0.000 0.988
#> GSM198658     5  0.2488      0.548 0.000 0.000 0.124 0.004 0.872
#> GSM198659     2  0.3865      0.719 0.108 0.824 0.004 0.056 0.008
#> GSM198660     5  0.3704      0.654 0.116 0.048 0.004 0.004 0.828
#> GSM198662     5  0.0404      0.622 0.000 0.000 0.012 0.000 0.988
#> GSM198663     2  0.0000      0.805 0.000 1.000 0.000 0.000 0.000
#> GSM198664     2  0.5635      0.541 0.204 0.684 0.000 0.056 0.056
#> GSM198665     5  0.0671      0.625 0.004 0.000 0.016 0.000 0.980
#> GSM198616     5  0.5040      0.648 0.332 0.000 0.040 0.004 0.624
#> GSM198617     5  0.2864      0.688 0.136 0.000 0.012 0.000 0.852
#> GSM198619     5  0.5040      0.648 0.332 0.000 0.040 0.004 0.624
#> GSM198620     4  0.1341      1.000 0.000 0.000 0.000 0.944 0.056
#> GSM198621     5  0.2864      0.688 0.136 0.000 0.012 0.000 0.852
#> GSM198624     1  0.1461      0.860 0.952 0.000 0.028 0.004 0.016
#> GSM198625     1  0.0451      0.871 0.988 0.000 0.008 0.000 0.004
#> GSM198637     5  0.5030      0.638 0.348 0.000 0.036 0.004 0.612
#> GSM198638     5  0.6393      0.559 0.388 0.072 0.024 0.008 0.508
#> GSM198640     5  0.6173      0.571 0.388 0.048 0.036 0.004 0.524
#> GSM198646     4  0.1341      1.000 0.000 0.000 0.000 0.944 0.056
#> GSM198647     4  0.1341      1.000 0.000 0.000 0.000 0.944 0.056
#> GSM198648     2  0.0000      0.805 0.000 1.000 0.000 0.000 0.000
#> GSM198650     3  0.5080      0.404 0.000 0.000 0.604 0.048 0.348
#> GSM198652     2  0.6234      0.596 0.000 0.664 0.120 0.128 0.088
#> GSM198661     5  0.0404      0.622 0.000 0.000 0.012 0.000 0.988

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     3  0.7458     0.4621 0.064 0.244 0.480 0.008 0.164 0.040
#> GSM198622     1  0.4254     0.5877 0.656 0.028 0.000 0.004 0.312 0.000
#> GSM198623     3  0.4396     0.5378 0.204 0.000 0.724 0.004 0.060 0.008
#> GSM198626     1  0.3357     0.7540 0.764 0.000 0.008 0.000 0.004 0.224
#> GSM198627     1  0.0000     0.8138 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198628     1  0.3593     0.7629 0.764 0.000 0.004 0.000 0.024 0.208
#> GSM198629     1  0.3712     0.7665 0.760 0.000 0.004 0.000 0.032 0.204
#> GSM198630     1  0.3357     0.7540 0.764 0.000 0.008 0.000 0.004 0.224
#> GSM198631     1  0.3492     0.7484 0.796 0.000 0.016 0.004 0.172 0.012
#> GSM198632     3  0.6748     0.5932 0.208 0.032 0.452 0.000 0.296 0.012
#> GSM198633     3  0.6781     0.5813 0.200 0.048 0.436 0.004 0.312 0.000
#> GSM198634     1  0.0291     0.8135 0.992 0.000 0.004 0.000 0.004 0.000
#> GSM198635     1  0.2945     0.7394 0.832 0.004 0.004 0.004 0.152 0.004
#> GSM198636     6  0.4617     0.4353 0.012 0.000 0.040 0.000 0.304 0.644
#> GSM198639     3  0.3053     0.6849 0.020 0.000 0.812 0.000 0.168 0.000
#> GSM198641     2  0.2266     0.6874 0.000 0.880 0.000 0.000 0.108 0.012
#> GSM198642     3  0.5422     0.4510 0.176 0.000 0.636 0.004 0.172 0.012
#> GSM198643     3  0.5763     0.6380 0.156 0.000 0.544 0.000 0.288 0.012
#> GSM198644     5  0.8208     0.0000 0.000 0.244 0.064 0.164 0.376 0.152
#> GSM198645     3  0.4278     0.6893 0.104 0.008 0.748 0.000 0.140 0.000
#> GSM198649     4  0.0260     1.0000 0.000 0.000 0.008 0.992 0.000 0.000
#> GSM198651     2  0.2266     0.6874 0.000 0.880 0.000 0.000 0.108 0.012
#> GSM198653     2  0.3743     0.5634 0.000 0.788 0.024 0.160 0.028 0.000
#> GSM198654     3  0.2907     0.5282 0.000 0.000 0.828 0.000 0.020 0.152
#> GSM198655     6  0.4524     0.4275 0.000 0.000 0.040 0.008 0.304 0.648
#> GSM198656     3  0.5178     0.4723 0.160 0.000 0.668 0.004 0.156 0.012
#> GSM198657     3  0.0458     0.6359 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM198658     3  0.2907     0.5282 0.000 0.000 0.828 0.000 0.020 0.152
#> GSM198659     2  0.3454     0.6192 0.036 0.808 0.000 0.004 0.148 0.004
#> GSM198660     3  0.3463     0.6526 0.044 0.044 0.836 0.000 0.076 0.000
#> GSM198662     3  0.0458     0.6359 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM198663     2  0.0000     0.7117 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM198664     2  0.5561     0.4383 0.092 0.656 0.056 0.004 0.192 0.000
#> GSM198665     3  0.0790     0.6414 0.000 0.000 0.968 0.000 0.032 0.000
#> GSM198616     3  0.5772     0.6422 0.152 0.000 0.556 0.000 0.276 0.016
#> GSM198617     3  0.3053     0.6849 0.020 0.000 0.812 0.000 0.168 0.000
#> GSM198619     3  0.5772     0.6422 0.152 0.000 0.556 0.000 0.276 0.016
#> GSM198620     4  0.0260     1.0000 0.000 0.000 0.008 0.992 0.000 0.000
#> GSM198621     3  0.3053     0.6849 0.020 0.000 0.812 0.000 0.168 0.000
#> GSM198624     1  0.2602     0.7916 0.884 0.000 0.024 0.000 0.072 0.020
#> GSM198625     1  0.0146     0.8136 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM198637     3  0.5763     0.6380 0.156 0.000 0.544 0.000 0.288 0.012
#> GSM198638     3  0.6781     0.5813 0.200 0.048 0.436 0.004 0.312 0.000
#> GSM198640     3  0.6748     0.5932 0.208 0.032 0.452 0.000 0.296 0.012
#> GSM198646     4  0.0260     1.0000 0.000 0.000 0.008 0.992 0.000 0.000
#> GSM198647     4  0.0260     1.0000 0.000 0.000 0.008 0.992 0.000 0.000
#> GSM198648     2  0.0000     0.7117 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM198650     6  0.5661     0.0598 0.000 0.000 0.208 0.048 0.116 0.628
#> GSM198652     2  0.6953     0.2728 0.000 0.564 0.040 0.164 0.132 0.100
#> GSM198661     3  0.0458     0.6359 0.000 0.000 0.984 0.000 0.016 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> MAD:hclust 50            0.173 2
#> MAD:hclust 49            0.164 3
#> MAD:hclust 49            0.206 4
#> MAD:hclust 46            0.216 5
#> MAD:hclust 41            0.149 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.310           0.490       0.709         0.4746 0.530   0.530
#> 3 3 0.491           0.637       0.830         0.3873 0.661   0.439
#> 4 4 0.602           0.753       0.838         0.1157 0.866   0.640
#> 5 5 0.640           0.640       0.754         0.0692 0.914   0.700
#> 6 6 0.685           0.621       0.755         0.0487 0.939   0.736

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     2  0.3431     0.6369 0.064 0.936
#> GSM198622     1  0.3431     0.6221 0.936 0.064
#> GSM198623     1  0.8499     0.5307 0.724 0.276
#> GSM198626     1  0.1184     0.6593 0.984 0.016
#> GSM198627     1  0.3431     0.6221 0.936 0.064
#> GSM198628     1  0.0672     0.6556 0.992 0.008
#> GSM198629     1  0.0938     0.6594 0.988 0.012
#> GSM198630     1  0.0672     0.6556 0.992 0.008
#> GSM198631     1  0.0672     0.6556 0.992 0.008
#> GSM198632     1  0.1414     0.6589 0.980 0.020
#> GSM198633     1  0.6973     0.4822 0.812 0.188
#> GSM198634     1  0.3431     0.6221 0.936 0.064
#> GSM198635     1  0.9491     0.0127 0.632 0.368
#> GSM198636     1  0.3431     0.6221 0.936 0.064
#> GSM198639     1  0.9970     0.3532 0.532 0.468
#> GSM198641     2  0.9988     0.2698 0.480 0.520
#> GSM198642     1  0.6623     0.5876 0.828 0.172
#> GSM198643     1  0.0938     0.6594 0.988 0.012
#> GSM198644     2  0.3274     0.6403 0.060 0.940
#> GSM198645     1  0.9795     0.4193 0.584 0.416
#> GSM198649     2  0.3431     0.6369 0.064 0.936
#> GSM198651     2  0.9552     0.4350 0.376 0.624
#> GSM198653     2  0.5408     0.6120 0.124 0.876
#> GSM198654     2  0.9993    -0.2931 0.484 0.516
#> GSM198655     2  0.9129     0.1980 0.328 0.672
#> GSM198656     1  0.9775     0.4156 0.588 0.412
#> GSM198657     1  0.9933     0.3764 0.548 0.452
#> GSM198658     1  0.9977     0.3459 0.528 0.472
#> GSM198659     2  0.7139     0.5850 0.196 0.804
#> GSM198660     1  0.9795     0.4047 0.584 0.416
#> GSM198662     1  0.9977     0.3459 0.528 0.472
#> GSM198663     2  0.9491     0.4396 0.368 0.632
#> GSM198664     2  0.9580     0.4309 0.380 0.620
#> GSM198665     1  0.9977     0.3459 0.528 0.472
#> GSM198616     1  0.0938     0.6594 0.988 0.012
#> GSM198617     1  0.9977     0.3459 0.528 0.472
#> GSM198619     1  0.9209     0.4875 0.664 0.336
#> GSM198620     2  0.2603     0.6407 0.044 0.956
#> GSM198621     1  0.9970     0.3532 0.532 0.468
#> GSM198624     1  0.1843     0.6562 0.972 0.028
#> GSM198625     1  0.3431     0.6221 0.936 0.064
#> GSM198637     1  0.3431     0.6358 0.936 0.064
#> GSM198638     2  0.9866     0.2450 0.432 0.568
#> GSM198640     1  0.1414     0.6589 0.980 0.020
#> GSM198646     2  0.3274     0.6383 0.060 0.940
#> GSM198647     2  0.3431     0.6369 0.064 0.936
#> GSM198648     2  0.7602     0.5694 0.220 0.780
#> GSM198650     2  0.9608     0.0247 0.384 0.616
#> GSM198652     2  0.3274     0.6390 0.060 0.940
#> GSM198661     1  0.9933     0.3764 0.548 0.452

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     3  0.6260    0.00133 0.000 0.448 0.552
#> GSM198622     1  0.4504    0.68476 0.804 0.196 0.000
#> GSM198623     3  0.6587    0.27014 0.424 0.008 0.568
#> GSM198626     1  0.1411    0.84716 0.964 0.000 0.036
#> GSM198627     1  0.1163    0.83325 0.972 0.028 0.000
#> GSM198628     1  0.1411    0.84716 0.964 0.000 0.036
#> GSM198629     1  0.1411    0.84716 0.964 0.000 0.036
#> GSM198630     1  0.1411    0.84716 0.964 0.000 0.036
#> GSM198631     1  0.1411    0.84716 0.964 0.000 0.036
#> GSM198632     1  0.1711    0.84442 0.960 0.008 0.032
#> GSM198633     1  0.8618    0.20507 0.508 0.388 0.104
#> GSM198634     1  0.2261    0.81111 0.932 0.068 0.000
#> GSM198635     1  0.6274    0.17382 0.544 0.456 0.000
#> GSM198636     1  0.2486    0.81193 0.932 0.060 0.008
#> GSM198639     3  0.2625    0.76837 0.084 0.000 0.916
#> GSM198641     2  0.6297    0.34486 0.352 0.640 0.008
#> GSM198642     1  0.6625    0.05814 0.552 0.008 0.440
#> GSM198643     1  0.3965    0.77290 0.860 0.008 0.132
#> GSM198644     2  0.5335    0.66078 0.008 0.760 0.232
#> GSM198645     3  0.4291    0.74817 0.152 0.008 0.840
#> GSM198649     3  0.6309   -0.12759 0.000 0.500 0.500
#> GSM198651     2  0.3213    0.77587 0.092 0.900 0.008
#> GSM198653     2  0.0747    0.78120 0.000 0.984 0.016
#> GSM198654     3  0.1163    0.74815 0.028 0.000 0.972
#> GSM198655     3  0.4413    0.65784 0.024 0.124 0.852
#> GSM198656     3  0.5461    0.65693 0.244 0.008 0.748
#> GSM198657     3  0.3826    0.75973 0.124 0.008 0.868
#> GSM198658     3  0.2066    0.76434 0.060 0.000 0.940
#> GSM198659     2  0.0592    0.78244 0.000 0.988 0.012
#> GSM198660     3  0.4291    0.74824 0.152 0.008 0.840
#> GSM198662     3  0.2625    0.76837 0.084 0.000 0.916
#> GSM198663     2  0.2066    0.78424 0.060 0.940 0.000
#> GSM198664     2  0.2860    0.77802 0.084 0.912 0.004
#> GSM198665     3  0.1753    0.75947 0.048 0.000 0.952
#> GSM198616     1  0.2774    0.83111 0.920 0.008 0.072
#> GSM198617     3  0.2066    0.76434 0.060 0.000 0.940
#> GSM198619     3  0.5254    0.62707 0.264 0.000 0.736
#> GSM198620     2  0.6280    0.12001 0.000 0.540 0.460
#> GSM198621     3  0.2796    0.76802 0.092 0.000 0.908
#> GSM198624     1  0.0661    0.84548 0.988 0.004 0.008
#> GSM198625     1  0.2356    0.80467 0.928 0.072 0.000
#> GSM198637     1  0.1919    0.84255 0.956 0.020 0.024
#> GSM198638     2  0.7542    0.60393 0.120 0.688 0.192
#> GSM198640     1  0.3375    0.80308 0.892 0.008 0.100
#> GSM198646     3  0.6309   -0.12759 0.000 0.500 0.500
#> GSM198647     3  0.5926    0.26104 0.000 0.356 0.644
#> GSM198648     2  0.0592    0.78244 0.000 0.988 0.012
#> GSM198650     3  0.3499    0.70405 0.028 0.072 0.900
#> GSM198652     2  0.5623    0.60536 0.004 0.716 0.280
#> GSM198661     3  0.4033    0.75576 0.136 0.008 0.856

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     4  0.6939      0.336 0.000 0.332 0.128 0.540
#> GSM198622     1  0.5125      0.647 0.720 0.248 0.008 0.024
#> GSM198623     3  0.2408      0.820 0.044 0.000 0.920 0.036
#> GSM198626     1  0.3529      0.825 0.876 0.012 0.068 0.044
#> GSM198627     1  0.0592      0.836 0.984 0.016 0.000 0.000
#> GSM198628     1  0.3697      0.822 0.868 0.012 0.068 0.052
#> GSM198629     1  0.1598      0.842 0.956 0.004 0.020 0.020
#> GSM198630     1  0.3529      0.825 0.876 0.012 0.068 0.044
#> GSM198631     1  0.3614      0.823 0.872 0.012 0.068 0.048
#> GSM198632     1  0.4773      0.793 0.816 0.048 0.100 0.036
#> GSM198633     2  0.7056      0.554 0.160 0.652 0.152 0.036
#> GSM198634     1  0.3344      0.801 0.876 0.092 0.008 0.024
#> GSM198635     2  0.4607      0.642 0.204 0.768 0.004 0.024
#> GSM198636     1  0.3659      0.816 0.872 0.048 0.016 0.064
#> GSM198639     3  0.3375      0.844 0.012 0.008 0.864 0.116
#> GSM198641     2  0.1938      0.749 0.052 0.936 0.000 0.012
#> GSM198642     3  0.4436      0.710 0.148 0.000 0.800 0.052
#> GSM198643     1  0.5992      0.399 0.584 0.008 0.376 0.032
#> GSM198644     2  0.4795      0.555 0.000 0.696 0.012 0.292
#> GSM198645     3  0.1943      0.851 0.016 0.008 0.944 0.032
#> GSM198649     4  0.3266      0.867 0.000 0.040 0.084 0.876
#> GSM198651     2  0.1545      0.753 0.008 0.952 0.000 0.040
#> GSM198653     2  0.3726      0.674 0.000 0.788 0.000 0.212
#> GSM198654     3  0.3157      0.802 0.000 0.004 0.852 0.144
#> GSM198655     3  0.5955      0.502 0.000 0.056 0.616 0.328
#> GSM198656     3  0.2411      0.821 0.040 0.000 0.920 0.040
#> GSM198657     3  0.1059      0.852 0.012 0.000 0.972 0.016
#> GSM198658     3  0.2053      0.853 0.000 0.004 0.924 0.072
#> GSM198659     2  0.3105      0.738 0.012 0.868 0.000 0.120
#> GSM198660     3  0.2870      0.841 0.044 0.012 0.908 0.036
#> GSM198662     3  0.1661      0.858 0.004 0.000 0.944 0.052
#> GSM198663     2  0.1510      0.756 0.016 0.956 0.000 0.028
#> GSM198664     2  0.2019      0.752 0.032 0.940 0.004 0.024
#> GSM198665     3  0.2334      0.851 0.000 0.004 0.908 0.088
#> GSM198616     1  0.3812      0.811 0.848 0.008 0.116 0.028
#> GSM198617     3  0.3470      0.834 0.008 0.008 0.852 0.132
#> GSM198619     3  0.4549      0.810 0.076 0.008 0.816 0.100
#> GSM198620     4  0.3245      0.853 0.000 0.056 0.064 0.880
#> GSM198621     3  0.3375      0.844 0.012 0.008 0.864 0.116
#> GSM198624     1  0.1878      0.841 0.944 0.008 0.040 0.008
#> GSM198625     1  0.1833      0.835 0.944 0.032 0.000 0.024
#> GSM198637     1  0.5174      0.780 0.796 0.080 0.088 0.036
#> GSM198638     2  0.6858      0.555 0.084 0.668 0.196 0.052
#> GSM198640     1  0.6049      0.723 0.716 0.052 0.192 0.040
#> GSM198646     4  0.2984      0.868 0.000 0.028 0.084 0.888
#> GSM198647     4  0.2805      0.857 0.000 0.012 0.100 0.888
#> GSM198648     2  0.3569      0.675 0.000 0.804 0.000 0.196
#> GSM198650     3  0.4509      0.625 0.000 0.004 0.708 0.288
#> GSM198652     2  0.5173      0.502 0.000 0.660 0.020 0.320
#> GSM198661     3  0.1182      0.851 0.016 0.000 0.968 0.016

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     4  0.6475      0.577 0.000 0.132 0.088 0.640 0.140
#> GSM198622     5  0.6160      0.464 0.284 0.172 0.000 0.000 0.544
#> GSM198623     3  0.3342      0.763 0.100 0.000 0.848 0.004 0.048
#> GSM198626     1  0.0771      0.787 0.976 0.000 0.020 0.000 0.004
#> GSM198627     1  0.2612      0.752 0.868 0.008 0.000 0.000 0.124
#> GSM198628     1  0.0968      0.782 0.972 0.000 0.012 0.012 0.004
#> GSM198629     1  0.2771      0.741 0.860 0.000 0.012 0.000 0.128
#> GSM198630     1  0.0404      0.787 0.988 0.000 0.012 0.000 0.000
#> GSM198631     1  0.0693      0.784 0.980 0.000 0.012 0.008 0.000
#> GSM198632     5  0.4929      0.413 0.340 0.000 0.032 0.004 0.624
#> GSM198633     5  0.5339      0.463 0.028 0.260 0.036 0.004 0.672
#> GSM198634     5  0.5000      0.349 0.388 0.036 0.000 0.000 0.576
#> GSM198635     5  0.5550      0.315 0.072 0.400 0.000 0.000 0.528
#> GSM198636     1  0.3496      0.735 0.840 0.028 0.000 0.016 0.116
#> GSM198639     3  0.4325      0.694 0.000 0.000 0.736 0.044 0.220
#> GSM198641     2  0.1914      0.768 0.008 0.928 0.000 0.008 0.056
#> GSM198642     3  0.4804      0.664 0.224 0.000 0.716 0.012 0.048
#> GSM198643     5  0.6536      0.239 0.216 0.000 0.320 0.000 0.464
#> GSM198644     2  0.6333      0.557 0.000 0.592 0.024 0.140 0.244
#> GSM198645     3  0.4116      0.728 0.028 0.000 0.756 0.004 0.212
#> GSM198649     4  0.1195      0.900 0.000 0.012 0.028 0.960 0.000
#> GSM198651     2  0.2351      0.767 0.000 0.896 0.000 0.016 0.088
#> GSM198653     2  0.3075      0.750 0.000 0.860 0.000 0.092 0.048
#> GSM198654     3  0.2962      0.747 0.000 0.000 0.868 0.048 0.084
#> GSM198655     3  0.7788      0.308 0.004 0.104 0.484 0.176 0.232
#> GSM198656     3  0.2965      0.779 0.068 0.000 0.880 0.012 0.040
#> GSM198657     3  0.2153      0.788 0.044 0.000 0.916 0.000 0.040
#> GSM198658     3  0.0865      0.791 0.000 0.000 0.972 0.024 0.004
#> GSM198659     2  0.3216      0.742 0.000 0.848 0.000 0.044 0.108
#> GSM198660     3  0.1956      0.793 0.000 0.000 0.916 0.008 0.076
#> GSM198662     3  0.0290      0.795 0.000 0.000 0.992 0.008 0.000
#> GSM198663     2  0.2177      0.749 0.004 0.908 0.000 0.008 0.080
#> GSM198664     2  0.3957      0.517 0.000 0.712 0.000 0.008 0.280
#> GSM198665     3  0.1893      0.789 0.000 0.000 0.928 0.024 0.048
#> GSM198616     1  0.5599     -0.138 0.484 0.000 0.072 0.000 0.444
#> GSM198617     3  0.4199      0.727 0.000 0.000 0.764 0.056 0.180
#> GSM198619     3  0.5983      0.376 0.048 0.000 0.548 0.036 0.368
#> GSM198620     4  0.1278      0.891 0.000 0.020 0.016 0.960 0.004
#> GSM198621     3  0.4170      0.718 0.000 0.000 0.760 0.048 0.192
#> GSM198624     1  0.4540      0.386 0.640 0.000 0.020 0.000 0.340
#> GSM198625     1  0.2361      0.763 0.892 0.012 0.000 0.000 0.096
#> GSM198637     5  0.5023      0.505 0.272 0.024 0.028 0.000 0.676
#> GSM198638     5  0.5671      0.302 0.000 0.308 0.092 0.004 0.596
#> GSM198640     5  0.5630      0.495 0.216 0.004 0.120 0.004 0.656
#> GSM198646     4  0.0955      0.900 0.000 0.004 0.028 0.968 0.000
#> GSM198647     4  0.1168      0.896 0.000 0.000 0.032 0.960 0.008
#> GSM198648     2  0.2423      0.762 0.000 0.896 0.000 0.080 0.024
#> GSM198650     3  0.5585      0.541 0.000 0.004 0.644 0.232 0.120
#> GSM198652     2  0.6598      0.516 0.000 0.568 0.028 0.168 0.236
#> GSM198661     3  0.2153      0.788 0.044 0.000 0.916 0.000 0.040

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     4  0.6830     0.3366 0.000 0.032 0.080 0.564 0.148 0.176
#> GSM198622     5  0.5444     0.4882 0.092 0.244 0.000 0.000 0.628 0.036
#> GSM198623     3  0.2458     0.6976 0.068 0.000 0.892 0.000 0.024 0.016
#> GSM198626     1  0.0551     0.8412 0.984 0.000 0.004 0.000 0.008 0.004
#> GSM198627     1  0.3168     0.7839 0.820 0.004 0.000 0.000 0.148 0.028
#> GSM198628     1  0.1080     0.8309 0.960 0.000 0.004 0.000 0.004 0.032
#> GSM198629     1  0.2979     0.7418 0.804 0.000 0.004 0.000 0.188 0.004
#> GSM198630     1  0.0436     0.8409 0.988 0.000 0.004 0.000 0.004 0.004
#> GSM198631     1  0.0858     0.8314 0.968 0.000 0.004 0.000 0.000 0.028
#> GSM198632     5  0.2932     0.6444 0.080 0.000 0.028 0.004 0.868 0.020
#> GSM198633     5  0.5588     0.5648 0.008 0.140 0.044 0.004 0.676 0.128
#> GSM198634     5  0.4514     0.5621 0.152 0.068 0.000 0.000 0.744 0.036
#> GSM198635     5  0.4897     0.4051 0.028 0.312 0.000 0.000 0.624 0.036
#> GSM198636     1  0.3236     0.7720 0.820 0.004 0.000 0.000 0.036 0.140
#> GSM198639     3  0.6140     0.4104 0.000 0.000 0.460 0.008 0.272 0.260
#> GSM198641     2  0.2581     0.6609 0.000 0.856 0.000 0.000 0.016 0.128
#> GSM198642     3  0.4230     0.5657 0.196 0.000 0.740 0.000 0.020 0.044
#> GSM198643     5  0.5275     0.4750 0.048 0.000 0.200 0.000 0.668 0.084
#> GSM198644     6  0.4850     0.6331 0.000 0.232 0.024 0.036 0.016 0.692
#> GSM198645     3  0.5196     0.6020 0.024 0.000 0.680 0.004 0.172 0.120
#> GSM198649     4  0.0291     0.8640 0.000 0.000 0.004 0.992 0.000 0.004
#> GSM198651     2  0.3690     0.4095 0.000 0.684 0.000 0.000 0.008 0.308
#> GSM198653     2  0.3753     0.5239 0.000 0.748 0.000 0.028 0.004 0.220
#> GSM198654     3  0.3492     0.6785 0.000 0.000 0.796 0.016 0.020 0.168
#> GSM198655     6  0.4743     0.4827 0.004 0.016 0.216 0.056 0.004 0.704
#> GSM198656     3  0.2818     0.6912 0.052 0.000 0.876 0.000 0.024 0.048
#> GSM198657     3  0.1528     0.7131 0.028 0.000 0.944 0.000 0.016 0.012
#> GSM198658     3  0.2745     0.7093 0.000 0.000 0.860 0.008 0.020 0.112
#> GSM198659     2  0.3119     0.6903 0.000 0.856 0.000 0.036 0.076 0.032
#> GSM198660     3  0.2278     0.7241 0.000 0.000 0.900 0.004 0.044 0.052
#> GSM198662     3  0.1845     0.7243 0.000 0.000 0.916 0.004 0.008 0.072
#> GSM198663     2  0.0458     0.7154 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM198664     2  0.4342     0.4774 0.000 0.692 0.000 0.004 0.252 0.052
#> GSM198665     3  0.3596     0.6692 0.000 0.000 0.760 0.008 0.016 0.216
#> GSM198616     5  0.5622     0.4589 0.204 0.000 0.072 0.000 0.640 0.084
#> GSM198617     3  0.6079     0.5200 0.000 0.000 0.520 0.020 0.196 0.264
#> GSM198619     5  0.6418     0.0907 0.020 0.000 0.272 0.008 0.488 0.212
#> GSM198620     4  0.0260     0.8617 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM198621     3  0.6029     0.4650 0.000 0.000 0.492 0.008 0.240 0.260
#> GSM198624     1  0.4521     0.1562 0.524 0.000 0.004 0.000 0.448 0.024
#> GSM198625     1  0.2069     0.8249 0.908 0.004 0.000 0.000 0.068 0.020
#> GSM198637     5  0.3277     0.6299 0.040 0.008 0.016 0.000 0.848 0.088
#> GSM198638     5  0.6244     0.5115 0.000 0.144 0.100 0.004 0.604 0.148
#> GSM198640     5  0.5245     0.5910 0.044 0.008 0.116 0.004 0.712 0.116
#> GSM198646     4  0.0291     0.8648 0.000 0.000 0.004 0.992 0.000 0.004
#> GSM198647     4  0.0291     0.8648 0.000 0.000 0.004 0.992 0.000 0.004
#> GSM198648     2  0.1434     0.7039 0.000 0.940 0.000 0.048 0.000 0.012
#> GSM198650     3  0.6522     0.4407 0.000 0.000 0.516 0.180 0.064 0.240
#> GSM198652     6  0.5590     0.5862 0.000 0.272 0.024 0.056 0.028 0.620
#> GSM198661     3  0.1528     0.7131 0.028 0.000 0.944 0.000 0.016 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> MAD:kmeans 28            0.445 2
#> MAD:kmeans 40            0.991 3
#> MAD:kmeans 48            0.306 4
#> MAD:kmeans 38            0.193 5
#> MAD:kmeans 37            0.165 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.836           0.858       0.930         0.5095 0.491   0.491
#> 3 3 0.865           0.870       0.947         0.3316 0.743   0.519
#> 4 4 0.704           0.761       0.860         0.1162 0.856   0.594
#> 5 5 0.654           0.539       0.760         0.0666 0.885   0.578
#> 6 6 0.684           0.497       0.731         0.0397 0.940   0.710

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     2  0.0000      0.932 0.000 1.000
#> GSM198622     1  0.0376      0.917 0.996 0.004
#> GSM198623     2  0.8713      0.634 0.292 0.708
#> GSM198626     1  0.0000      0.918 1.000 0.000
#> GSM198627     1  0.0000      0.918 1.000 0.000
#> GSM198628     1  0.0000      0.918 1.000 0.000
#> GSM198629     1  0.0000      0.918 1.000 0.000
#> GSM198630     1  0.0000      0.918 1.000 0.000
#> GSM198631     1  0.0000      0.918 1.000 0.000
#> GSM198632     1  0.0000      0.918 1.000 0.000
#> GSM198633     1  0.2778      0.900 0.952 0.048
#> GSM198634     1  0.0000      0.918 1.000 0.000
#> GSM198635     1  0.2778      0.900 0.952 0.048
#> GSM198636     1  0.1414      0.911 0.980 0.020
#> GSM198639     2  0.2948      0.931 0.052 0.948
#> GSM198641     1  0.2778      0.900 0.952 0.048
#> GSM198642     2  0.9963      0.227 0.464 0.536
#> GSM198643     1  0.0000      0.918 1.000 0.000
#> GSM198644     2  0.0000      0.932 0.000 1.000
#> GSM198645     2  0.3879      0.914 0.076 0.924
#> GSM198649     2  0.0000      0.932 0.000 1.000
#> GSM198651     1  0.3733      0.889 0.928 0.072
#> GSM198653     1  0.9977      0.261 0.528 0.472
#> GSM198654     2  0.0376      0.933 0.004 0.996
#> GSM198655     2  0.0000      0.932 0.000 1.000
#> GSM198656     2  0.2778      0.932 0.048 0.952
#> GSM198657     2  0.2778      0.932 0.048 0.952
#> GSM198658     2  0.2236      0.935 0.036 0.964
#> GSM198659     1  0.9933      0.315 0.548 0.452
#> GSM198660     2  0.3114      0.930 0.056 0.944
#> GSM198662     2  0.2778      0.932 0.048 0.952
#> GSM198663     1  0.3733      0.889 0.928 0.072
#> GSM198664     1  0.3733      0.889 0.928 0.072
#> GSM198665     2  0.2043      0.935 0.032 0.968
#> GSM198616     1  0.0000      0.918 1.000 0.000
#> GSM198617     2  0.2236      0.935 0.036 0.964
#> GSM198619     2  0.6887      0.799 0.184 0.816
#> GSM198620     2  0.0000      0.932 0.000 1.000
#> GSM198621     2  0.2948      0.931 0.052 0.948
#> GSM198624     1  0.0000      0.918 1.000 0.000
#> GSM198625     1  0.0000      0.918 1.000 0.000
#> GSM198637     1  0.0000      0.918 1.000 0.000
#> GSM198638     1  0.9661      0.466 0.608 0.392
#> GSM198640     1  0.0000      0.918 1.000 0.000
#> GSM198646     2  0.0000      0.932 0.000 1.000
#> GSM198647     2  0.0000      0.932 0.000 1.000
#> GSM198648     1  0.9000      0.607 0.684 0.316
#> GSM198650     2  0.0000      0.932 0.000 1.000
#> GSM198652     2  0.0000      0.932 0.000 1.000
#> GSM198661     2  0.2778      0.932 0.048 0.952

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     2  0.1529     0.9062 0.000 0.960 0.040
#> GSM198622     1  0.0892     0.9600 0.980 0.020 0.000
#> GSM198623     3  0.0892     0.9072 0.020 0.000 0.980
#> GSM198626     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM198627     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM198628     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM198629     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM198630     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM198631     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM198632     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM198633     2  0.7484     0.0350 0.460 0.504 0.036
#> GSM198634     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM198635     1  0.5465     0.5858 0.712 0.288 0.000
#> GSM198636     1  0.0237     0.9731 0.996 0.004 0.000
#> GSM198639     3  0.0000     0.9174 0.000 0.000 1.000
#> GSM198641     2  0.1529     0.8977 0.040 0.960 0.000
#> GSM198642     3  0.5291     0.6322 0.268 0.000 0.732
#> GSM198643     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM198644     2  0.0000     0.9227 0.000 1.000 0.000
#> GSM198645     3  0.0237     0.9158 0.004 0.000 0.996
#> GSM198649     2  0.4178     0.7715 0.000 0.828 0.172
#> GSM198651     2  0.0000     0.9227 0.000 1.000 0.000
#> GSM198653     2  0.0000     0.9227 0.000 1.000 0.000
#> GSM198654     3  0.0000     0.9174 0.000 0.000 1.000
#> GSM198655     3  0.5706     0.5403 0.000 0.320 0.680
#> GSM198656     3  0.0747     0.9099 0.016 0.000 0.984
#> GSM198657     3  0.0000     0.9174 0.000 0.000 1.000
#> GSM198658     3  0.0000     0.9174 0.000 0.000 1.000
#> GSM198659     2  0.0000     0.9227 0.000 1.000 0.000
#> GSM198660     3  0.0000     0.9174 0.000 0.000 1.000
#> GSM198662     3  0.0000     0.9174 0.000 0.000 1.000
#> GSM198663     2  0.0000     0.9227 0.000 1.000 0.000
#> GSM198664     2  0.0000     0.9227 0.000 1.000 0.000
#> GSM198665     3  0.0000     0.9174 0.000 0.000 1.000
#> GSM198616     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM198617     3  0.0000     0.9174 0.000 0.000 1.000
#> GSM198619     3  0.3116     0.8347 0.108 0.000 0.892
#> GSM198620     2  0.0747     0.9168 0.000 0.984 0.016
#> GSM198621     3  0.0000     0.9174 0.000 0.000 1.000
#> GSM198624     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM198625     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM198637     1  0.0000     0.9759 1.000 0.000 0.000
#> GSM198638     2  0.2165     0.8835 0.000 0.936 0.064
#> GSM198640     1  0.1860     0.9271 0.948 0.000 0.052
#> GSM198646     2  0.3941     0.7889 0.000 0.844 0.156
#> GSM198647     3  0.6307    -0.0147 0.000 0.488 0.512
#> GSM198648     2  0.0000     0.9227 0.000 1.000 0.000
#> GSM198650     3  0.2356     0.8657 0.000 0.072 0.928
#> GSM198652     2  0.0237     0.9217 0.000 0.996 0.004
#> GSM198661     3  0.0000     0.9174 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     4  0.2335      0.653 0.000 0.060 0.020 0.920
#> GSM198622     1  0.4898      0.457 0.584 0.416 0.000 0.000
#> GSM198623     3  0.0469      0.909 0.012 0.000 0.988 0.000
#> GSM198626     1  0.1484      0.893 0.960 0.004 0.020 0.016
#> GSM198627     1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM198628     1  0.1484      0.893 0.960 0.004 0.020 0.016
#> GSM198629     1  0.0712      0.893 0.984 0.004 0.004 0.008
#> GSM198630     1  0.1484      0.893 0.960 0.004 0.020 0.016
#> GSM198631     1  0.1484      0.893 0.960 0.004 0.020 0.016
#> GSM198632     1  0.1639      0.888 0.952 0.036 0.004 0.008
#> GSM198633     2  0.1635      0.793 0.044 0.948 0.008 0.000
#> GSM198634     1  0.4072      0.735 0.748 0.252 0.000 0.000
#> GSM198635     2  0.2149      0.762 0.088 0.912 0.000 0.000
#> GSM198636     1  0.2222      0.884 0.932 0.032 0.004 0.032
#> GSM198639     4  0.5088      0.404 0.004 0.000 0.424 0.572
#> GSM198641     2  0.1059      0.814 0.012 0.972 0.000 0.016
#> GSM198642     3  0.3625      0.715 0.160 0.000 0.828 0.012
#> GSM198643     1  0.3415      0.818 0.856 0.008 0.128 0.008
#> GSM198644     2  0.4933      0.555 0.000 0.568 0.000 0.432
#> GSM198645     3  0.0188      0.913 0.000 0.000 0.996 0.004
#> GSM198649     4  0.1297      0.692 0.000 0.016 0.020 0.964
#> GSM198651     2  0.3400      0.790 0.000 0.820 0.000 0.180
#> GSM198653     2  0.4454      0.705 0.000 0.692 0.000 0.308
#> GSM198654     3  0.2408      0.863 0.000 0.000 0.896 0.104
#> GSM198655     4  0.4290      0.630 0.000 0.036 0.164 0.800
#> GSM198656     3  0.1042      0.900 0.020 0.000 0.972 0.008
#> GSM198657     3  0.0000      0.913 0.000 0.000 1.000 0.000
#> GSM198658     3  0.2011      0.880 0.000 0.000 0.920 0.080
#> GSM198659     2  0.3626      0.795 0.004 0.812 0.000 0.184
#> GSM198660     3  0.1674      0.896 0.004 0.032 0.952 0.012
#> GSM198662     3  0.1716      0.891 0.000 0.000 0.936 0.064
#> GSM198663     2  0.0779      0.817 0.004 0.980 0.000 0.016
#> GSM198664     2  0.0657      0.816 0.004 0.984 0.000 0.012
#> GSM198665     3  0.2647      0.834 0.000 0.000 0.880 0.120
#> GSM198616     1  0.1690      0.887 0.952 0.008 0.032 0.008
#> GSM198617     4  0.4941      0.380 0.000 0.000 0.436 0.564
#> GSM198619     4  0.7647      0.424 0.232 0.008 0.240 0.520
#> GSM198620     4  0.0817      0.675 0.000 0.024 0.000 0.976
#> GSM198621     4  0.4948      0.376 0.000 0.000 0.440 0.560
#> GSM198624     1  0.0524      0.894 0.988 0.004 0.008 0.000
#> GSM198625     1  0.2635      0.876 0.908 0.072 0.004 0.016
#> GSM198637     1  0.4114      0.782 0.788 0.200 0.004 0.008
#> GSM198638     2  0.2039      0.803 0.008 0.940 0.036 0.016
#> GSM198640     1  0.5501      0.777 0.744 0.112 0.140 0.004
#> GSM198646     4  0.1182      0.689 0.000 0.016 0.016 0.968
#> GSM198647     4  0.1388      0.694 0.000 0.012 0.028 0.960
#> GSM198648     2  0.3400      0.797 0.000 0.820 0.000 0.180
#> GSM198650     4  0.4746      0.448 0.000 0.000 0.368 0.632
#> GSM198652     2  0.4916      0.567 0.000 0.576 0.000 0.424
#> GSM198661     3  0.0000      0.913 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     4  0.1830    0.63690 0.000 0.052 0.004 0.932 0.012
#> GSM198622     2  0.6380    0.25365 0.224 0.516 0.000 0.000 0.260
#> GSM198623     3  0.0865    0.88587 0.024 0.000 0.972 0.000 0.004
#> GSM198626     1  0.0771    0.74666 0.976 0.000 0.004 0.000 0.020
#> GSM198627     1  0.2753    0.69932 0.856 0.008 0.000 0.000 0.136
#> GSM198628     1  0.0162    0.74844 0.996 0.000 0.004 0.000 0.000
#> GSM198629     1  0.3508    0.55035 0.748 0.000 0.000 0.000 0.252
#> GSM198630     1  0.0162    0.74844 0.996 0.000 0.004 0.000 0.000
#> GSM198631     1  0.0162    0.74844 0.996 0.000 0.004 0.000 0.000
#> GSM198632     5  0.5452   -0.14799 0.448 0.060 0.000 0.000 0.492
#> GSM198633     2  0.3870    0.62934 0.000 0.732 0.004 0.004 0.260
#> GSM198634     1  0.6584    0.21705 0.468 0.260 0.000 0.000 0.272
#> GSM198635     2  0.3779    0.64179 0.024 0.776 0.000 0.000 0.200
#> GSM198636     1  0.3115    0.64428 0.852 0.036 0.000 0.000 0.112
#> GSM198639     5  0.6095    0.09988 0.000 0.000 0.124 0.416 0.460
#> GSM198641     2  0.2615    0.69535 0.020 0.892 0.000 0.008 0.080
#> GSM198642     3  0.2890    0.78384 0.160 0.000 0.836 0.000 0.004
#> GSM198643     5  0.5880    0.25979 0.304 0.000 0.128 0.000 0.568
#> GSM198644     4  0.6818    0.12896 0.032 0.340 0.000 0.492 0.136
#> GSM198645     3  0.2945    0.84888 0.020 0.004 0.880 0.012 0.084
#> GSM198649     4  0.0451    0.64582 0.000 0.008 0.004 0.988 0.000
#> GSM198651     2  0.4885    0.58910 0.024 0.756 0.000 0.116 0.104
#> GSM198653     2  0.5420    0.32286 0.000 0.592 0.000 0.332 0.076
#> GSM198654     3  0.3362    0.84064 0.000 0.000 0.844 0.076 0.080
#> GSM198655     4  0.7639    0.48743 0.056 0.072 0.104 0.568 0.200
#> GSM198656     3  0.1544    0.86844 0.068 0.000 0.932 0.000 0.000
#> GSM198657     3  0.0290    0.88883 0.008 0.000 0.992 0.000 0.000
#> GSM198658     3  0.2782    0.86035 0.000 0.000 0.880 0.048 0.072
#> GSM198659     2  0.4109    0.51024 0.000 0.700 0.000 0.288 0.012
#> GSM198660     3  0.2313    0.87357 0.000 0.040 0.912 0.004 0.044
#> GSM198662     3  0.2344    0.87123 0.000 0.000 0.904 0.032 0.064
#> GSM198663     2  0.0510    0.70134 0.000 0.984 0.000 0.016 0.000
#> GSM198664     2  0.2011    0.69944 0.000 0.908 0.000 0.004 0.088
#> GSM198665     3  0.4183    0.78187 0.000 0.000 0.780 0.084 0.136
#> GSM198616     5  0.4557   -0.00560 0.476 0.000 0.008 0.000 0.516
#> GSM198617     4  0.6593   -0.14394 0.000 0.000 0.220 0.440 0.340
#> GSM198619     5  0.5901    0.32840 0.048 0.000 0.044 0.304 0.604
#> GSM198620     4  0.0579    0.64593 0.000 0.008 0.000 0.984 0.008
#> GSM198621     5  0.6554    0.04240 0.000 0.000 0.200 0.396 0.404
#> GSM198624     1  0.3231    0.63519 0.800 0.004 0.000 0.000 0.196
#> GSM198625     1  0.1701    0.73579 0.936 0.048 0.000 0.000 0.016
#> GSM198637     5  0.5555    0.24723 0.232 0.132 0.000 0.000 0.636
#> GSM198638     2  0.4219    0.66065 0.000 0.772 0.024 0.020 0.184
#> GSM198640     1  0.7953    0.10315 0.396 0.168 0.096 0.004 0.336
#> GSM198646     4  0.0290    0.64250 0.000 0.000 0.000 0.992 0.008
#> GSM198647     4  0.1106    0.62669 0.000 0.000 0.012 0.964 0.024
#> GSM198648     2  0.4665    0.51500 0.000 0.692 0.000 0.260 0.048
#> GSM198650     4  0.6291    0.28439 0.000 0.004 0.280 0.544 0.172
#> GSM198652     4  0.6404    0.00271 0.000 0.408 0.008 0.452 0.132
#> GSM198661     3  0.0290    0.88883 0.008 0.000 0.992 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     4  0.1605    0.71723 0.000 0.016 0.004 0.936 0.044 0.000
#> GSM198622     2  0.7377   -0.11610 0.188 0.408 0.000 0.000 0.172 0.232
#> GSM198623     3  0.1480    0.80811 0.040 0.000 0.940 0.000 0.020 0.000
#> GSM198626     1  0.0603    0.78780 0.980 0.000 0.004 0.000 0.000 0.016
#> GSM198627     1  0.3542    0.70507 0.784 0.016 0.000 0.000 0.016 0.184
#> GSM198628     1  0.0291    0.78537 0.992 0.000 0.004 0.000 0.004 0.000
#> GSM198629     1  0.3531    0.52017 0.672 0.000 0.000 0.000 0.000 0.328
#> GSM198630     1  0.0291    0.78681 0.992 0.000 0.004 0.000 0.000 0.004
#> GSM198631     1  0.0665    0.78582 0.980 0.000 0.008 0.000 0.008 0.004
#> GSM198632     6  0.6237    0.11822 0.244 0.016 0.000 0.000 0.268 0.472
#> GSM198633     5  0.5050    0.22702 0.000 0.416 0.000 0.000 0.508 0.076
#> GSM198634     1  0.7374    0.09439 0.360 0.224 0.000 0.000 0.124 0.292
#> GSM198635     2  0.5206    0.19215 0.036 0.680 0.000 0.000 0.120 0.164
#> GSM198636     1  0.4209    0.59916 0.744 0.052 0.000 0.000 0.188 0.016
#> GSM198639     6  0.5903    0.43604 0.000 0.000 0.068 0.256 0.088 0.588
#> GSM198641     2  0.1726    0.48478 0.012 0.932 0.000 0.000 0.044 0.012
#> GSM198642     3  0.3593    0.70762 0.164 0.000 0.788 0.000 0.044 0.004
#> GSM198643     6  0.4707    0.46311 0.096 0.000 0.116 0.000 0.048 0.740
#> GSM198644     2  0.6686    0.00566 0.016 0.360 0.000 0.304 0.312 0.008
#> GSM198645     3  0.4407    0.66008 0.020 0.000 0.720 0.004 0.220 0.036
#> GSM198649     4  0.0146    0.73962 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM198651     2  0.3874    0.44787 0.012 0.752 0.000 0.028 0.208 0.000
#> GSM198653     2  0.4455    0.45837 0.000 0.684 0.000 0.240 0.076 0.000
#> GSM198654     3  0.4871    0.72768 0.000 0.000 0.724 0.088 0.136 0.052
#> GSM198655     5  0.8201   -0.35033 0.064 0.132 0.044 0.344 0.364 0.052
#> GSM198656     3  0.1367    0.81314 0.044 0.000 0.944 0.000 0.012 0.000
#> GSM198657     3  0.0146    0.81872 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM198658     3  0.4121    0.76488 0.000 0.000 0.784 0.032 0.104 0.080
#> GSM198659     2  0.3778    0.45904 0.000 0.696 0.000 0.288 0.016 0.000
#> GSM198660     3  0.3374    0.79375 0.000 0.016 0.824 0.004 0.132 0.024
#> GSM198662     3  0.3442    0.78180 0.000 0.000 0.824 0.012 0.060 0.104
#> GSM198663     2  0.0935    0.46767 0.000 0.964 0.000 0.004 0.032 0.000
#> GSM198664     2  0.3488    0.19664 0.000 0.744 0.000 0.008 0.244 0.004
#> GSM198665     3  0.6099    0.61789 0.000 0.000 0.600 0.092 0.192 0.116
#> GSM198616     6  0.3134    0.42471 0.208 0.000 0.004 0.000 0.004 0.784
#> GSM198617     6  0.6873    0.21412 0.000 0.000 0.128 0.356 0.104 0.412
#> GSM198619     6  0.3082    0.54630 0.004 0.000 0.004 0.112 0.036 0.844
#> GSM198620     4  0.0622    0.73463 0.000 0.012 0.000 0.980 0.008 0.000
#> GSM198621     6  0.6353    0.39552 0.000 0.000 0.112 0.276 0.080 0.532
#> GSM198624     1  0.3451    0.68772 0.776 0.004 0.004 0.000 0.012 0.204
#> GSM198625     1  0.1448    0.78323 0.948 0.024 0.000 0.000 0.016 0.012
#> GSM198637     6  0.3755    0.45281 0.056 0.044 0.000 0.000 0.084 0.816
#> GSM198638     5  0.5014    0.18312 0.000 0.468 0.012 0.008 0.484 0.028
#> GSM198640     5  0.7456    0.19747 0.184 0.088 0.060 0.000 0.504 0.164
#> GSM198646     4  0.0405    0.73567 0.000 0.000 0.000 0.988 0.008 0.004
#> GSM198647     4  0.0951    0.72460 0.000 0.000 0.004 0.968 0.020 0.008
#> GSM198648     2  0.3190    0.49940 0.000 0.772 0.000 0.220 0.008 0.000
#> GSM198650     4  0.7166    0.05151 0.000 0.000 0.292 0.416 0.164 0.128
#> GSM198652     4  0.6602   -0.11241 0.000 0.332 0.016 0.348 0.300 0.004
#> GSM198661     3  0.0508    0.81838 0.004 0.000 0.984 0.000 0.012 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> MAD:skmeans 46           0.5293 2
#> MAD:skmeans 48           0.9124 3
#> MAD:skmeans 44           0.2951 4
#> MAD:skmeans 34           0.1727 5
#> MAD:skmeans 26           0.0609 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.552           0.857       0.929         0.4954 0.493   0.493
#> 3 3 0.562           0.681       0.846         0.2405 0.833   0.672
#> 4 4 0.568           0.564       0.758         0.1457 0.824   0.557
#> 5 5 0.860           0.848       0.938         0.0941 0.840   0.505
#> 6 6 0.807           0.803       0.897         0.0801 0.906   0.606

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     2  0.7139     0.7920 0.196 0.804
#> GSM198622     1  0.0000     0.9391 1.000 0.000
#> GSM198623     2  0.0000     0.8894 0.000 1.000
#> GSM198626     1  0.2948     0.9112 0.948 0.052
#> GSM198627     1  0.0000     0.9391 1.000 0.000
#> GSM198628     1  0.0376     0.9380 0.996 0.004
#> GSM198629     1  0.5519     0.8505 0.872 0.128
#> GSM198630     1  0.0000     0.9391 1.000 0.000
#> GSM198631     1  0.1184     0.9299 0.984 0.016
#> GSM198632     1  0.5629     0.8471 0.868 0.132
#> GSM198633     1  0.0000     0.9391 1.000 0.000
#> GSM198634     1  0.0000     0.9391 1.000 0.000
#> GSM198635     1  0.0000     0.9391 1.000 0.000
#> GSM198636     1  0.0376     0.9380 0.996 0.004
#> GSM198639     2  0.7376     0.7827 0.208 0.792
#> GSM198641     1  0.0000     0.9391 1.000 0.000
#> GSM198642     1  0.9248     0.5638 0.660 0.340
#> GSM198643     2  0.8144     0.6778 0.252 0.748
#> GSM198644     1  0.9000     0.6055 0.684 0.316
#> GSM198645     2  0.2236     0.8820 0.036 0.964
#> GSM198649     2  0.0000     0.8894 0.000 1.000
#> GSM198651     1  0.0000     0.9391 1.000 0.000
#> GSM198653     1  0.0376     0.9380 0.996 0.004
#> GSM198654     2  0.0000     0.8894 0.000 1.000
#> GSM198655     2  0.7376     0.7827 0.208 0.792
#> GSM198656     2  0.0000     0.8894 0.000 1.000
#> GSM198657     2  0.0000     0.8894 0.000 1.000
#> GSM198658     2  0.0000     0.8894 0.000 1.000
#> GSM198659     1  0.5408     0.8542 0.876 0.124
#> GSM198660     2  0.9933     0.0467 0.452 0.548
#> GSM198662     2  0.0000     0.8894 0.000 1.000
#> GSM198663     1  0.0000     0.9391 1.000 0.000
#> GSM198664     1  0.0000     0.9391 1.000 0.000
#> GSM198665     2  0.0000     0.8894 0.000 1.000
#> GSM198616     1  0.5519     0.8505 0.872 0.128
#> GSM198617     2  0.1633     0.8853 0.024 0.976
#> GSM198619     2  0.7376     0.7827 0.208 0.792
#> GSM198620     2  0.7376     0.7827 0.208 0.792
#> GSM198621     2  0.5629     0.8372 0.132 0.868
#> GSM198624     1  0.0000     0.9391 1.000 0.000
#> GSM198625     1  0.0000     0.9391 1.000 0.000
#> GSM198637     1  0.0000     0.9391 1.000 0.000
#> GSM198638     1  0.5629     0.8471 0.868 0.132
#> GSM198640     1  0.1843     0.9268 0.972 0.028
#> GSM198646     2  0.7219     0.7902 0.200 0.800
#> GSM198647     2  0.0000     0.8894 0.000 1.000
#> GSM198648     1  0.0000     0.9391 1.000 0.000
#> GSM198650     2  0.0376     0.8882 0.004 0.996
#> GSM198652     2  0.1414     0.8829 0.020 0.980
#> GSM198661     2  0.0000     0.8894 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     3  0.4504     0.6151 0.196 0.000 0.804
#> GSM198622     1  0.0237     0.9309 0.996 0.004 0.000
#> GSM198623     3  0.0000     0.6986 0.000 0.000 1.000
#> GSM198626     1  0.0000     0.9311 1.000 0.000 0.000
#> GSM198627     1  0.0237     0.9309 0.996 0.004 0.000
#> GSM198628     1  0.0237     0.9292 0.996 0.000 0.004
#> GSM198629     1  0.0000     0.9311 1.000 0.000 0.000
#> GSM198630     1  0.0237     0.9309 0.996 0.004 0.000
#> GSM198631     1  0.0983     0.9156 0.980 0.004 0.016
#> GSM198632     1  0.0237     0.9292 0.996 0.000 0.004
#> GSM198633     1  0.0000     0.9311 1.000 0.000 0.000
#> GSM198634     1  0.0237     0.9309 0.996 0.004 0.000
#> GSM198635     1  0.0237     0.9309 0.996 0.004 0.000
#> GSM198636     1  0.2301     0.8694 0.936 0.060 0.004
#> GSM198639     3  0.6244     0.4141 0.440 0.000 0.560
#> GSM198641     2  0.5926     0.6162 0.356 0.644 0.000
#> GSM198642     1  0.6252     0.1721 0.556 0.000 0.444
#> GSM198643     3  0.5873     0.5359 0.312 0.004 0.684
#> GSM198644     1  0.8790    -0.0558 0.532 0.340 0.128
#> GSM198645     3  0.5254     0.5804 0.264 0.000 0.736
#> GSM198649     2  0.2066     0.5580 0.000 0.940 0.060
#> GSM198651     2  0.8043     0.6429 0.228 0.644 0.128
#> GSM198653     2  0.6148     0.6161 0.356 0.640 0.004
#> GSM198654     3  0.0000     0.6986 0.000 0.000 1.000
#> GSM198655     3  0.6984     0.4169 0.420 0.020 0.560
#> GSM198656     3  0.0000     0.6986 0.000 0.000 1.000
#> GSM198657     3  0.0000     0.6986 0.000 0.000 1.000
#> GSM198658     3  0.0000     0.6986 0.000 0.000 1.000
#> GSM198659     2  0.6225     0.5009 0.432 0.568 0.000
#> GSM198660     3  0.6286     0.0881 0.464 0.000 0.536
#> GSM198662     3  0.0000     0.6986 0.000 0.000 1.000
#> GSM198663     2  0.5926     0.6162 0.356 0.644 0.000
#> GSM198664     1  0.0000     0.9311 1.000 0.000 0.000
#> GSM198665     3  0.0000     0.6986 0.000 0.000 1.000
#> GSM198616     1  0.0000     0.9311 1.000 0.000 0.000
#> GSM198617     3  0.5698     0.6032 0.012 0.252 0.736
#> GSM198619     3  0.6244     0.4141 0.440 0.000 0.560
#> GSM198620     2  0.5486     0.3717 0.024 0.780 0.196
#> GSM198621     3  0.5968     0.4992 0.364 0.000 0.636
#> GSM198624     1  0.0000     0.9311 1.000 0.000 0.000
#> GSM198625     1  0.0237     0.9309 0.996 0.004 0.000
#> GSM198637     1  0.0237     0.9309 0.996 0.004 0.000
#> GSM198638     1  0.0237     0.9292 0.996 0.000 0.004
#> GSM198640     1  0.0237     0.9292 0.996 0.000 0.004
#> GSM198646     3  0.7102     0.4437 0.024 0.420 0.556
#> GSM198647     3  0.5926     0.5301 0.000 0.356 0.644
#> GSM198648     2  0.0000     0.5827 0.000 1.000 0.000
#> GSM198650     3  0.5431     0.5802 0.000 0.284 0.716
#> GSM198652     2  0.5098     0.5059 0.000 0.752 0.248
#> GSM198661     3  0.0000     0.6986 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     3  0.4959     0.5753 0.000 0.196 0.752 0.052
#> GSM198622     2  0.1302     0.7113 0.044 0.956 0.000 0.000
#> GSM198623     3  0.4304     0.4370 0.284 0.000 0.716 0.000
#> GSM198626     1  0.4999     0.8678 0.508 0.492 0.000 0.000
#> GSM198627     1  0.4961     0.9113 0.552 0.448 0.000 0.000
#> GSM198628     1  0.5167     0.8654 0.508 0.488 0.004 0.000
#> GSM198629     2  0.0000     0.7468 0.000 1.000 0.000 0.000
#> GSM198630     1  0.4961     0.9113 0.552 0.448 0.000 0.000
#> GSM198631     1  0.5126     0.9080 0.552 0.444 0.004 0.000
#> GSM198632     2  0.0188     0.7452 0.000 0.996 0.004 0.000
#> GSM198633     2  0.0000     0.7468 0.000 1.000 0.000 0.000
#> GSM198634     2  0.1302     0.7113 0.044 0.956 0.000 0.000
#> GSM198635     2  0.1302     0.7113 0.044 0.956 0.000 0.000
#> GSM198636     1  0.4454     0.6988 0.692 0.308 0.000 0.000
#> GSM198639     2  0.4996    -0.1003 0.000 0.516 0.484 0.000
#> GSM198641     4  0.4999     0.7219 0.492 0.000 0.000 0.508
#> GSM198642     3  0.5594     0.1181 0.020 0.460 0.520 0.000
#> GSM198643     3  0.5897     0.3078 0.044 0.368 0.588 0.000
#> GSM198644     2  0.8214    -0.0252 0.116 0.496 0.064 0.324
#> GSM198645     3  0.4624     0.3971 0.000 0.340 0.660 0.000
#> GSM198649     4  0.0000     0.5382 0.000 0.000 0.000 1.000
#> GSM198651     4  0.4999     0.7219 0.492 0.000 0.000 0.508
#> GSM198653     4  0.6068     0.7127 0.448 0.044 0.000 0.508
#> GSM198654     3  0.0000     0.6610 0.000 0.000 1.000 0.000
#> GSM198655     3  0.7088     0.2121 0.128 0.392 0.480 0.000
#> GSM198656     3  0.0000     0.6610 0.000 0.000 1.000 0.000
#> GSM198657     3  0.0000     0.6610 0.000 0.000 1.000 0.000
#> GSM198658     3  0.0000     0.6610 0.000 0.000 1.000 0.000
#> GSM198659     4  0.7402     0.5715 0.308 0.192 0.000 0.500
#> GSM198660     3  0.4967     0.1772 0.000 0.452 0.548 0.000
#> GSM198662     3  0.0000     0.6610 0.000 0.000 1.000 0.000
#> GSM198663     4  0.5167     0.7208 0.488 0.004 0.000 0.508
#> GSM198664     2  0.0000     0.7468 0.000 1.000 0.000 0.000
#> GSM198665     3  0.0000     0.6610 0.000 0.000 1.000 0.000
#> GSM198616     2  0.0000     0.7468 0.000 1.000 0.000 0.000
#> GSM198617     3  0.5057     0.4830 0.000 0.012 0.648 0.340
#> GSM198619     2  0.4996    -0.1003 0.000 0.516 0.484 0.000
#> GSM198620     4  0.3444     0.2789 0.000 0.000 0.184 0.816
#> GSM198621     3  0.4948     0.1926 0.000 0.440 0.560 0.000
#> GSM198624     2  0.0000     0.7468 0.000 1.000 0.000 0.000
#> GSM198625     1  0.4961     0.9113 0.552 0.448 0.000 0.000
#> GSM198637     2  0.1211     0.7157 0.040 0.960 0.000 0.000
#> GSM198638     2  0.0188     0.7452 0.000 0.996 0.004 0.000
#> GSM198640     2  0.0188     0.7452 0.000 0.996 0.004 0.000
#> GSM198646     4  0.4994    -0.3878 0.000 0.000 0.480 0.520
#> GSM198647     3  0.4999     0.3292 0.000 0.000 0.508 0.492
#> GSM198648     4  0.4961     0.7243 0.448 0.000 0.000 0.552
#> GSM198650     3  0.4624     0.4714 0.000 0.000 0.660 0.340
#> GSM198652     4  0.7168     0.6160 0.256 0.000 0.192 0.552
#> GSM198661     3  0.0000     0.6610 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     3   0.437     0.6174 0.000 0.000 0.744 0.056 0.200
#> GSM198622     5   0.134     0.9236 0.056 0.000 0.000 0.000 0.944
#> GSM198623     3   0.000     0.9250 0.000 0.000 1.000 0.000 0.000
#> GSM198626     1   0.134     0.9312 0.944 0.000 0.000 0.000 0.056
#> GSM198627     1   0.000     0.9602 1.000 0.000 0.000 0.000 0.000
#> GSM198628     1   0.134     0.9312 0.944 0.000 0.000 0.000 0.056
#> GSM198629     5   0.000     0.9432 0.000 0.000 0.000 0.000 1.000
#> GSM198630     1   0.000     0.9602 1.000 0.000 0.000 0.000 0.000
#> GSM198631     1   0.000     0.9602 1.000 0.000 0.000 0.000 0.000
#> GSM198632     5   0.000     0.9432 0.000 0.000 0.000 0.000 1.000
#> GSM198633     5   0.000     0.9432 0.000 0.000 0.000 0.000 1.000
#> GSM198634     5   0.134     0.9236 0.056 0.000 0.000 0.000 0.944
#> GSM198635     5   0.134     0.9236 0.056 0.000 0.000 0.000 0.944
#> GSM198636     1   0.148     0.9205 0.936 0.064 0.000 0.000 0.000
#> GSM198639     5   0.000     0.9432 0.000 0.000 0.000 0.000 1.000
#> GSM198641     2   0.000     0.8119 0.000 1.000 0.000 0.000 0.000
#> GSM198642     3   0.000     0.9250 0.000 0.000 1.000 0.000 0.000
#> GSM198643     5   0.393     0.7902 0.056 0.000 0.152 0.000 0.792
#> GSM198644     2   0.518    -0.0471 0.000 0.480 0.040 0.000 0.480
#> GSM198645     5   0.300     0.7822 0.000 0.000 0.188 0.000 0.812
#> GSM198649     4   0.000     0.8662 0.000 0.000 0.000 1.000 0.000
#> GSM198651     2   0.000     0.8119 0.000 1.000 0.000 0.000 0.000
#> GSM198653     2   0.000     0.8119 0.000 1.000 0.000 0.000 0.000
#> GSM198654     3   0.000     0.9250 0.000 0.000 1.000 0.000 0.000
#> GSM198655     5   0.281     0.7985 0.000 0.168 0.000 0.000 0.832
#> GSM198656     3   0.000     0.9250 0.000 0.000 1.000 0.000 0.000
#> GSM198657     3   0.000     0.9250 0.000 0.000 1.000 0.000 0.000
#> GSM198658     3   0.000     0.9250 0.000 0.000 1.000 0.000 0.000
#> GSM198659     2   0.293     0.6759 0.000 0.820 0.000 0.000 0.180
#> GSM198660     3   0.364     0.5505 0.000 0.000 0.728 0.000 0.272
#> GSM198662     3   0.000     0.9250 0.000 0.000 1.000 0.000 0.000
#> GSM198663     2   0.134     0.7835 0.056 0.944 0.000 0.000 0.000
#> GSM198664     5   0.000     0.9432 0.000 0.000 0.000 0.000 1.000
#> GSM198665     3   0.000     0.9250 0.000 0.000 1.000 0.000 0.000
#> GSM198616     5   0.000     0.9432 0.000 0.000 0.000 0.000 1.000
#> GSM198617     4   0.483     0.3598 0.000 0.000 0.380 0.592 0.028
#> GSM198619     5   0.000     0.9432 0.000 0.000 0.000 0.000 1.000
#> GSM198620     4   0.000     0.8662 0.000 0.000 0.000 1.000 0.000
#> GSM198621     5   0.173     0.8948 0.000 0.000 0.080 0.000 0.920
#> GSM198624     5   0.000     0.9432 0.000 0.000 0.000 0.000 1.000
#> GSM198625     1   0.000     0.9602 1.000 0.000 0.000 0.000 0.000
#> GSM198637     5   0.134     0.9236 0.056 0.000 0.000 0.000 0.944
#> GSM198638     5   0.000     0.9432 0.000 0.000 0.000 0.000 1.000
#> GSM198640     5   0.000     0.9432 0.000 0.000 0.000 0.000 1.000
#> GSM198646     4   0.000     0.8662 0.000 0.000 0.000 1.000 0.000
#> GSM198647     4   0.000     0.8662 0.000 0.000 0.000 1.000 0.000
#> GSM198648     2   0.000     0.8119 0.000 1.000 0.000 0.000 0.000
#> GSM198650     4   0.273     0.7574 0.000 0.000 0.160 0.840 0.000
#> GSM198652     2   0.311     0.6377 0.000 0.800 0.200 0.000 0.000
#> GSM198661     3   0.000     0.9250 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     6  0.5884     0.2667 0.000 0.000 0.384 0.000 0.200 0.416
#> GSM198622     5  0.2793     0.8183 0.000 0.000 0.000 0.000 0.800 0.200
#> GSM198623     3  0.0458     0.9103 0.000 0.000 0.984 0.000 0.000 0.016
#> GSM198626     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198627     1  0.2793     0.7680 0.800 0.000 0.000 0.000 0.000 0.200
#> GSM198628     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198629     5  0.0000     0.9120 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM198630     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198631     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198632     5  0.0000     0.9120 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM198633     5  0.0000     0.9120 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM198634     5  0.2793     0.8183 0.000 0.000 0.000 0.000 0.800 0.200
#> GSM198635     5  0.2793     0.8183 0.000 0.000 0.000 0.000 0.800 0.200
#> GSM198636     1  0.0363     0.9536 0.988 0.012 0.000 0.000 0.000 0.000
#> GSM198639     6  0.2793     0.7409 0.000 0.000 0.000 0.000 0.200 0.800
#> GSM198641     2  0.0865     0.7971 0.000 0.964 0.000 0.000 0.000 0.036
#> GSM198642     3  0.0547     0.9089 0.000 0.000 0.980 0.000 0.000 0.020
#> GSM198643     6  0.1910     0.6120 0.000 0.000 0.000 0.000 0.108 0.892
#> GSM198644     2  0.5115     0.0112 0.000 0.480 0.040 0.000 0.460 0.020
#> GSM198645     6  0.3236     0.7438 0.000 0.000 0.180 0.000 0.024 0.796
#> GSM198649     4  0.0000     0.9126 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198651     2  0.0000     0.8039 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM198653     2  0.0000     0.8039 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM198654     3  0.0000     0.9081 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198655     6  0.3319     0.7083 0.000 0.164 0.000 0.000 0.036 0.800
#> GSM198656     3  0.0000     0.9081 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198657     3  0.0458     0.9103 0.000 0.000 0.984 0.000 0.000 0.016
#> GSM198658     3  0.0000     0.9081 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198659     2  0.2597     0.6950 0.000 0.824 0.000 0.000 0.176 0.000
#> GSM198660     3  0.4151     0.5533 0.000 0.000 0.692 0.000 0.264 0.044
#> GSM198662     3  0.2762     0.6658 0.000 0.000 0.804 0.000 0.000 0.196
#> GSM198663     2  0.2631     0.7118 0.000 0.820 0.000 0.000 0.000 0.180
#> GSM198664     5  0.0000     0.9120 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM198665     6  0.2793     0.7220 0.000 0.000 0.200 0.000 0.000 0.800
#> GSM198616     5  0.0000     0.9120 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM198617     6  0.3842     0.7088 0.000 0.000 0.100 0.112 0.004 0.784
#> GSM198619     6  0.2941     0.7302 0.000 0.000 0.000 0.000 0.220 0.780
#> GSM198620     4  0.0000     0.9126 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198621     6  0.3534     0.7730 0.000 0.000 0.076 0.000 0.124 0.800
#> GSM198624     5  0.0000     0.9120 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM198625     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198637     5  0.2762     0.8207 0.000 0.000 0.000 0.000 0.804 0.196
#> GSM198638     5  0.0547     0.8955 0.000 0.000 0.000 0.000 0.980 0.020
#> GSM198640     5  0.0000     0.9120 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM198646     4  0.0000     0.9126 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198647     4  0.0000     0.9126 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198648     2  0.0000     0.8039 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM198650     4  0.3898     0.5157 0.000 0.000 0.020 0.684 0.000 0.296
#> GSM198652     2  0.2730     0.6703 0.000 0.808 0.192 0.000 0.000 0.000
#> GSM198661     3  0.0547     0.9089 0.000 0.000 0.980 0.000 0.000 0.020

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> MAD:pam 49           0.4201 2
#> MAD:pam 41           0.9405 3
#> MAD:pam 35           0.4217 4
#> MAD:pam 48           0.0499 5
#> MAD:pam 48           0.1283 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.191           0.463       0.785         0.3074 0.816   0.816
#> 3 3 0.280           0.748       0.781         0.9561 0.402   0.312
#> 4 4 0.633           0.793       0.854         0.1612 0.894   0.709
#> 5 5 0.616           0.734       0.834         0.0691 0.932   0.779
#> 6 6 0.698           0.693       0.811         0.0596 0.936   0.746

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     1  0.0938     0.6413 0.988 0.012
#> GSM198622     1  0.0376     0.6408 0.996 0.004
#> GSM198623     1  0.9866     0.2763 0.568 0.432
#> GSM198626     1  0.6148     0.6175 0.848 0.152
#> GSM198627     1  0.0376     0.6408 0.996 0.004
#> GSM198628     1  0.6148     0.6175 0.848 0.152
#> GSM198629     1  0.2043     0.6437 0.968 0.032
#> GSM198630     1  0.6148     0.6175 0.848 0.152
#> GSM198631     1  0.6148     0.6175 0.848 0.152
#> GSM198632     1  0.3733     0.6311 0.928 0.072
#> GSM198633     1  0.0000     0.6421 1.000 0.000
#> GSM198634     1  0.0000     0.6421 1.000 0.000
#> GSM198635     1  0.0938     0.6368 0.988 0.012
#> GSM198636     1  0.5842     0.6158 0.860 0.140
#> GSM198639     1  0.7815     0.5018 0.768 0.232
#> GSM198641     1  0.6343     0.6039 0.840 0.160
#> GSM198642     1  0.8661     0.4336 0.712 0.288
#> GSM198643     1  0.6712     0.5675 0.824 0.176
#> GSM198644     1  0.6343     0.6110 0.840 0.160
#> GSM198645     1  0.9491     0.4126 0.632 0.368
#> GSM198649     2  1.0000     0.4412 0.496 0.504
#> GSM198651     1  0.7674     0.5277 0.776 0.224
#> GSM198653     1  0.8081     0.4954 0.752 0.248
#> GSM198654     1  0.7815     0.5449 0.768 0.232
#> GSM198655     1  0.6247     0.6134 0.844 0.156
#> GSM198656     1  0.9993     0.1171 0.516 0.484
#> GSM198657     2  1.0000    -0.2613 0.496 0.504
#> GSM198658     1  0.8661     0.4147 0.712 0.288
#> GSM198659     1  0.4431     0.5475 0.908 0.092
#> GSM198660     1  0.6623     0.5692 0.828 0.172
#> GSM198662     1  0.8713     0.4197 0.708 0.292
#> GSM198663     1  0.4562     0.5330 0.904 0.096
#> GSM198664     1  0.0938     0.6368 0.988 0.012
#> GSM198665     1  1.0000     0.0661 0.500 0.500
#> GSM198616     1  0.6712     0.5675 0.824 0.176
#> GSM198617     1  0.6801     0.5656 0.820 0.180
#> GSM198619     1  0.7453     0.5283 0.788 0.212
#> GSM198620     2  1.0000     0.4412 0.496 0.504
#> GSM198621     1  0.7883     0.4969 0.764 0.236
#> GSM198624     1  0.6343     0.5752 0.840 0.160
#> GSM198625     1  0.5842     0.6158 0.860 0.140
#> GSM198637     1  0.0376     0.6408 0.996 0.004
#> GSM198638     1  0.0672     0.6413 0.992 0.008
#> GSM198640     1  0.7453     0.5684 0.788 0.212
#> GSM198646     2  1.0000     0.4412 0.496 0.504
#> GSM198647     1  1.0000    -0.5531 0.500 0.500
#> GSM198648     1  0.9998    -0.5496 0.508 0.492
#> GSM198650     1  0.0672     0.6426 0.992 0.008
#> GSM198652     1  0.7815     0.5287 0.768 0.232
#> GSM198661     2  1.0000    -0.2613 0.496 0.504

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     2   0.821      0.739 0.140 0.632 0.228
#> GSM198622     1   0.418      0.822 0.828 0.172 0.000
#> GSM198623     3   0.529      0.691 0.268 0.000 0.732
#> GSM198626     1   0.200      0.799 0.952 0.036 0.012
#> GSM198627     1   0.423      0.832 0.836 0.160 0.004
#> GSM198628     1   0.200      0.799 0.952 0.036 0.012
#> GSM198629     1   0.459      0.797 0.820 0.008 0.172
#> GSM198630     1   0.200      0.799 0.952 0.036 0.012
#> GSM198631     1   0.205      0.803 0.952 0.028 0.020
#> GSM198632     1   0.448      0.810 0.840 0.016 0.144
#> GSM198633     1   0.459      0.820 0.820 0.172 0.008
#> GSM198634     1   0.412      0.826 0.832 0.168 0.000
#> GSM198635     1   0.459      0.820 0.820 0.172 0.008
#> GSM198636     1   0.486      0.814 0.820 0.160 0.020
#> GSM198639     3   0.749      0.683 0.248 0.084 0.668
#> GSM198641     2   0.285      0.761 0.056 0.924 0.020
#> GSM198642     3   0.714      0.591 0.396 0.028 0.576
#> GSM198643     1   0.441      0.801 0.832 0.008 0.160
#> GSM198644     2   0.817      0.752 0.168 0.644 0.188
#> GSM198645     3   0.550      0.685 0.292 0.000 0.708
#> GSM198649     2   0.754      0.784 0.064 0.632 0.304
#> GSM198651     2   0.323      0.751 0.072 0.908 0.020
#> GSM198653     2   0.379      0.765 0.048 0.892 0.060
#> GSM198654     3   0.385      0.768 0.088 0.028 0.884
#> GSM198655     3   0.851      0.359 0.152 0.244 0.604
#> GSM198656     3   0.566      0.694 0.264 0.008 0.728
#> GSM198657     3   0.327      0.787 0.116 0.000 0.884
#> GSM198658     3   0.303      0.777 0.092 0.004 0.904
#> GSM198659     2   0.803      0.749 0.180 0.656 0.164
#> GSM198660     3   0.613      0.648 0.324 0.008 0.668
#> GSM198662     3   0.319      0.782 0.100 0.004 0.896
#> GSM198663     2   0.277      0.764 0.072 0.920 0.008
#> GSM198664     2   0.623      0.565 0.340 0.652 0.008
#> GSM198665     3   0.280      0.778 0.092 0.000 0.908
#> GSM198616     1   0.466      0.805 0.828 0.016 0.156
#> GSM198617     3   0.780      0.590 0.112 0.228 0.660
#> GSM198619     1   0.506      0.781 0.800 0.016 0.184
#> GSM198620     2   0.754      0.784 0.064 0.632 0.304
#> GSM198621     3   0.806      0.636 0.140 0.212 0.648
#> GSM198624     1   0.447      0.792 0.820 0.004 0.176
#> GSM198625     1   0.472      0.817 0.824 0.160 0.016
#> GSM198637     1   0.400      0.831 0.840 0.160 0.000
#> GSM198638     2   0.745      0.655 0.292 0.644 0.064
#> GSM198640     1   0.452      0.792 0.816 0.004 0.180
#> GSM198646     2   0.754      0.784 0.064 0.632 0.304
#> GSM198647     2   0.742      0.780 0.056 0.632 0.312
#> GSM198648     2   0.277      0.764 0.072 0.920 0.008
#> GSM198650     3   0.711      0.589 0.112 0.168 0.720
#> GSM198652     2   0.705      0.787 0.084 0.712 0.204
#> GSM198661     3   0.448      0.786 0.144 0.016 0.840

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     3  0.5448     0.7518 0.144 0.052 0.768 0.036
#> GSM198622     1  0.1853     0.8182 0.948 0.028 0.012 0.012
#> GSM198623     3  0.0000     0.8763 0.000 0.000 1.000 0.000
#> GSM198626     1  0.5226     0.7617 0.744 0.000 0.076 0.180
#> GSM198627     1  0.1520     0.8263 0.956 0.020 0.024 0.000
#> GSM198628     1  0.5200     0.7611 0.744 0.000 0.072 0.184
#> GSM198629     1  0.3852     0.8006 0.800 0.000 0.192 0.008
#> GSM198630     1  0.5226     0.7617 0.744 0.000 0.076 0.180
#> GSM198631     1  0.5143     0.7659 0.752 0.000 0.076 0.172
#> GSM198632     1  0.2271     0.8237 0.916 0.000 0.076 0.008
#> GSM198633     1  0.1985     0.8185 0.944 0.024 0.012 0.020
#> GSM198634     1  0.1598     0.8247 0.956 0.020 0.020 0.004
#> GSM198635     1  0.1936     0.8083 0.940 0.032 0.000 0.028
#> GSM198636     1  0.5769     0.7289 0.736 0.180 0.048 0.036
#> GSM198639     3  0.2179     0.8639 0.064 0.000 0.924 0.012
#> GSM198641     2  0.0859     0.8161 0.004 0.980 0.008 0.008
#> GSM198642     3  0.3659     0.7618 0.024 0.000 0.840 0.136
#> GSM198643     1  0.3768     0.8023 0.808 0.000 0.184 0.008
#> GSM198644     2  0.5909     0.4189 0.004 0.668 0.264 0.064
#> GSM198645     3  0.0188     0.8775 0.004 0.000 0.996 0.000
#> GSM198649     4  0.5352     0.9487 0.060 0.176 0.012 0.752
#> GSM198651     2  0.1389     0.8089 0.000 0.952 0.000 0.048
#> GSM198653     2  0.1059     0.8121 0.000 0.972 0.016 0.012
#> GSM198654     3  0.0817     0.8686 0.000 0.000 0.976 0.024
#> GSM198655     3  0.5576     0.6321 0.004 0.212 0.716 0.068
#> GSM198656     3  0.0336     0.8741 0.000 0.000 0.992 0.008
#> GSM198657     3  0.0000     0.8763 0.000 0.000 1.000 0.000
#> GSM198658     3  0.1545     0.8740 0.040 0.000 0.952 0.008
#> GSM198659     2  0.4289     0.6899 0.172 0.796 0.000 0.032
#> GSM198660     3  0.3196     0.8283 0.136 0.000 0.856 0.008
#> GSM198662     3  0.0524     0.8778 0.004 0.000 0.988 0.008
#> GSM198663     2  0.1174     0.8197 0.012 0.968 0.000 0.020
#> GSM198664     2  0.4900     0.6180 0.236 0.732 0.000 0.032
#> GSM198665     3  0.0188     0.8775 0.004 0.000 0.996 0.000
#> GSM198616     1  0.3486     0.8027 0.812 0.000 0.188 0.000
#> GSM198617     3  0.2329     0.8613 0.072 0.000 0.916 0.012
#> GSM198619     3  0.2266     0.8607 0.084 0.000 0.912 0.004
#> GSM198620     4  0.5352     0.9487 0.060 0.176 0.012 0.752
#> GSM198621     3  0.1854     0.8698 0.048 0.000 0.940 0.012
#> GSM198624     1  0.3768     0.8023 0.808 0.000 0.184 0.008
#> GSM198625     1  0.5142     0.7499 0.772 0.160 0.052 0.016
#> GSM198637     1  0.1520     0.8263 0.956 0.020 0.024 0.000
#> GSM198638     3  0.8250    -0.0366 0.216 0.364 0.400 0.020
#> GSM198640     1  0.4086     0.7952 0.776 0.000 0.216 0.008
#> GSM198646     4  0.5434     0.9452 0.072 0.164 0.012 0.752
#> GSM198647     4  0.5896     0.8796 0.056 0.124 0.068 0.752
#> GSM198648     2  0.1174     0.8197 0.012 0.968 0.000 0.020
#> GSM198650     3  0.5349     0.7695 0.136 0.036 0.776 0.052
#> GSM198652     2  0.2587     0.7915 0.004 0.908 0.012 0.076
#> GSM198661     3  0.0336     0.8741 0.000 0.000 0.992 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     3  0.5656     0.5226 0.036 0.212 0.692 0.040 0.020
#> GSM198622     5  0.0854     0.6787 0.004 0.000 0.012 0.008 0.976
#> GSM198623     3  0.0000     0.8750 0.000 0.000 1.000 0.000 0.000
#> GSM198626     1  0.3910     0.9760 0.720 0.000 0.008 0.000 0.272
#> GSM198627     5  0.2407     0.6668 0.088 0.000 0.012 0.004 0.896
#> GSM198628     1  0.4114     0.9719 0.712 0.000 0.016 0.000 0.272
#> GSM198629     5  0.4096     0.7117 0.072 0.000 0.144 0.000 0.784
#> GSM198630     1  0.3910     0.9760 0.720 0.000 0.008 0.000 0.272
#> GSM198631     1  0.4269     0.9446 0.684 0.000 0.016 0.000 0.300
#> GSM198632     5  0.2629     0.7417 0.000 0.000 0.136 0.004 0.860
#> GSM198633     5  0.3272     0.7309 0.000 0.032 0.100 0.012 0.856
#> GSM198634     5  0.1202     0.7022 0.004 0.000 0.032 0.004 0.960
#> GSM198635     5  0.0833     0.6702 0.004 0.000 0.004 0.016 0.976
#> GSM198636     5  0.4737    -0.0594 0.380 0.016 0.004 0.000 0.600
#> GSM198639     3  0.3826     0.7622 0.236 0.000 0.752 0.004 0.008
#> GSM198641     2  0.2464     0.7290 0.012 0.892 0.000 0.004 0.092
#> GSM198642     3  0.2966     0.7311 0.184 0.000 0.816 0.000 0.000
#> GSM198643     5  0.3662     0.6625 0.000 0.000 0.252 0.004 0.744
#> GSM198644     2  0.6154     0.5856 0.048 0.676 0.176 0.084 0.016
#> GSM198645     3  0.0609     0.8719 0.000 0.000 0.980 0.000 0.020
#> GSM198649     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> GSM198651     2  0.0451     0.7131 0.008 0.988 0.000 0.000 0.004
#> GSM198653     2  0.2136     0.6923 0.000 0.904 0.000 0.088 0.008
#> GSM198654     3  0.1892     0.8368 0.000 0.000 0.916 0.080 0.004
#> GSM198655     3  0.4873     0.7058 0.012 0.112 0.772 0.084 0.020
#> GSM198656     3  0.0290     0.8741 0.008 0.000 0.992 0.000 0.000
#> GSM198657     3  0.0000     0.8750 0.000 0.000 1.000 0.000 0.000
#> GSM198658     3  0.0324     0.8747 0.000 0.000 0.992 0.004 0.004
#> GSM198659     2  0.5457     0.6320 0.036 0.624 0.004 0.020 0.316
#> GSM198660     3  0.1041     0.8681 0.000 0.000 0.964 0.004 0.032
#> GSM198662     3  0.0451     0.8742 0.000 0.000 0.988 0.004 0.008
#> GSM198663     2  0.2179     0.7286 0.000 0.896 0.000 0.004 0.100
#> GSM198664     2  0.5564     0.6076 0.036 0.596 0.004 0.020 0.344
#> GSM198665     3  0.0162     0.8747 0.000 0.000 0.996 0.000 0.004
#> GSM198616     5  0.3530     0.7089 0.012 0.000 0.204 0.000 0.784
#> GSM198617     3  0.4153     0.7572 0.236 0.000 0.740 0.016 0.008
#> GSM198619     3  0.3779     0.7613 0.236 0.000 0.752 0.000 0.012
#> GSM198620     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> GSM198621     3  0.3706     0.7634 0.236 0.000 0.756 0.004 0.004
#> GSM198624     5  0.3160     0.7208 0.000 0.000 0.188 0.004 0.808
#> GSM198625     5  0.4692    -0.2429 0.432 0.004 0.004 0.004 0.556
#> GSM198637     5  0.2616     0.7413 0.000 0.000 0.100 0.020 0.880
#> GSM198638     2  0.7583     0.2685 0.036 0.416 0.372 0.020 0.156
#> GSM198640     5  0.3857     0.5636 0.000 0.000 0.312 0.000 0.688
#> GSM198646     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> GSM198647     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> GSM198648     2  0.2179     0.7286 0.000 0.896 0.000 0.004 0.100
#> GSM198650     3  0.2532     0.8393 0.012 0.000 0.892 0.088 0.008
#> GSM198652     2  0.5612     0.5959 0.048 0.700 0.168 0.084 0.000
#> GSM198661     3  0.0290     0.8741 0.008 0.000 0.992 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     2  0.5923     0.3822 0.000 0.556 0.256 0.164 0.024 0.000
#> GSM198622     5  0.0458     0.7745 0.000 0.000 0.000 0.000 0.984 0.016
#> GSM198623     3  0.0146     0.7723 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM198626     1  0.1267     0.9835 0.940 0.000 0.000 0.000 0.060 0.000
#> GSM198627     5  0.0458     0.7745 0.000 0.000 0.000 0.000 0.984 0.016
#> GSM198628     1  0.1267     0.9835 0.940 0.000 0.000 0.000 0.060 0.000
#> GSM198629     5  0.3838     0.7119 0.020 0.000 0.156 0.000 0.784 0.040
#> GSM198630     1  0.1267     0.9835 0.940 0.000 0.000 0.000 0.060 0.000
#> GSM198631     1  0.2112     0.9503 0.896 0.000 0.016 0.000 0.088 0.000
#> GSM198632     5  0.1668     0.7727 0.004 0.000 0.060 0.000 0.928 0.008
#> GSM198633     5  0.3296     0.5463 0.000 0.180 0.020 0.000 0.796 0.004
#> GSM198634     5  0.0458     0.7745 0.000 0.000 0.000 0.000 0.984 0.016
#> GSM198635     5  0.0862     0.7717 0.000 0.008 0.004 0.000 0.972 0.016
#> GSM198636     5  0.4873     0.3731 0.320 0.080 0.000 0.000 0.600 0.000
#> GSM198639     6  0.4768     0.8070 0.000 0.000 0.416 0.000 0.052 0.532
#> GSM198641     2  0.4462     0.6783 0.060 0.660 0.000 0.000 0.000 0.280
#> GSM198642     3  0.2941     0.5039 0.220 0.000 0.780 0.000 0.000 0.000
#> GSM198643     5  0.3728     0.6877 0.004 0.000 0.180 0.000 0.772 0.044
#> GSM198644     2  0.2632     0.6308 0.004 0.832 0.000 0.000 0.000 0.164
#> GSM198645     3  0.0000     0.7723 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198649     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198651     2  0.2389     0.6797 0.060 0.888 0.000 0.000 0.000 0.052
#> GSM198653     2  0.4238     0.6785 0.060 0.780 0.000 0.056 0.000 0.104
#> GSM198654     3  0.1003     0.7597 0.000 0.000 0.964 0.020 0.000 0.016
#> GSM198655     3  0.5608     0.2619 0.016 0.300 0.564 0.000 0.000 0.120
#> GSM198656     3  0.0000     0.7723 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198657     3  0.0458     0.7730 0.000 0.000 0.984 0.000 0.000 0.016
#> GSM198658     3  0.0713     0.7529 0.000 0.000 0.972 0.000 0.000 0.028
#> GSM198659     2  0.4131     0.5705 0.000 0.624 0.020 0.000 0.356 0.000
#> GSM198660     3  0.3426     0.1736 0.000 0.000 0.720 0.000 0.276 0.004
#> GSM198662     3  0.0713     0.7529 0.000 0.000 0.972 0.000 0.000 0.028
#> GSM198663     2  0.4462     0.6783 0.060 0.660 0.000 0.000 0.000 0.280
#> GSM198664     2  0.4394     0.5591 0.000 0.608 0.020 0.000 0.364 0.008
#> GSM198665     3  0.0363     0.7740 0.000 0.000 0.988 0.000 0.000 0.012
#> GSM198616     5  0.3662     0.6981 0.004 0.000 0.172 0.000 0.780 0.044
#> GSM198617     6  0.4899     0.8070 0.000 0.000 0.404 0.000 0.064 0.532
#> GSM198619     6  0.6065     0.5882 0.000 0.000 0.352 0.000 0.264 0.384
#> GSM198620     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198621     6  0.4172     0.7328 0.000 0.000 0.460 0.000 0.012 0.528
#> GSM198624     5  0.2778     0.7203 0.000 0.000 0.168 0.000 0.824 0.008
#> GSM198625     5  0.4218     0.2161 0.428 0.016 0.000 0.000 0.556 0.000
#> GSM198637     5  0.0865     0.7725 0.000 0.000 0.000 0.000 0.964 0.036
#> GSM198638     2  0.5806     0.5310 0.000 0.548 0.084 0.000 0.324 0.044
#> GSM198640     5  0.3759     0.6375 0.004 0.008 0.248 0.000 0.732 0.008
#> GSM198646     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198647     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198648     2  0.4462     0.6783 0.060 0.660 0.000 0.000 0.000 0.280
#> GSM198650     3  0.6028     0.0137 0.000 0.000 0.584 0.144 0.052 0.220
#> GSM198652     2  0.2048     0.6483 0.000 0.880 0.000 0.000 0.000 0.120
#> GSM198661     3  0.0458     0.7730 0.000 0.000 0.984 0.000 0.000 0.016

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> MAD:mclust 34               NA 2
#> MAD:mclust 49           0.7325 3
#> MAD:mclust 48           0.2712 4
#> MAD:mclust 47           0.2022 5
#> MAD:mclust 44           0.0521 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.451           0.692       0.879         0.4765 0.519   0.519
#> 3 3 0.618           0.773       0.889         0.3798 0.666   0.434
#> 4 4 0.617           0.632       0.811         0.1366 0.784   0.458
#> 5 5 0.654           0.716       0.836         0.0743 0.828   0.440
#> 6 6 0.660           0.499       0.728         0.0396 0.944   0.738

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     2  0.0000      0.805 0.000 1.000
#> GSM198622     1  0.0000      0.861 1.000 0.000
#> GSM198623     1  0.6438      0.724 0.836 0.164
#> GSM198626     1  0.0000      0.861 1.000 0.000
#> GSM198627     1  0.0000      0.861 1.000 0.000
#> GSM198628     1  0.0000      0.861 1.000 0.000
#> GSM198629     1  0.0000      0.861 1.000 0.000
#> GSM198630     1  0.0000      0.861 1.000 0.000
#> GSM198631     1  0.0000      0.861 1.000 0.000
#> GSM198632     1  0.0000      0.861 1.000 0.000
#> GSM198633     1  0.0000      0.861 1.000 0.000
#> GSM198634     1  0.0000      0.861 1.000 0.000
#> GSM198635     1  0.0000      0.861 1.000 0.000
#> GSM198636     1  0.0000      0.861 1.000 0.000
#> GSM198639     1  0.9754      0.300 0.592 0.408
#> GSM198641     1  0.0000      0.861 1.000 0.000
#> GSM198642     1  0.0000      0.861 1.000 0.000
#> GSM198643     1  0.0000      0.861 1.000 0.000
#> GSM198644     2  0.3879      0.778 0.076 0.924
#> GSM198645     1  0.7674      0.655 0.776 0.224
#> GSM198649     2  0.0000      0.805 0.000 1.000
#> GSM198651     1  0.9686      0.130 0.604 0.396
#> GSM198653     2  0.0000      0.805 0.000 1.000
#> GSM198654     2  0.0938      0.803 0.012 0.988
#> GSM198655     2  0.9087      0.479 0.324 0.676
#> GSM198656     1  0.5408      0.768 0.876 0.124
#> GSM198657     1  0.9732      0.310 0.596 0.404
#> GSM198658     2  0.9850      0.217 0.428 0.572
#> GSM198659     2  0.7139      0.675 0.196 0.804
#> GSM198660     1  0.2948      0.827 0.948 0.052
#> GSM198662     2  0.7376      0.667 0.208 0.792
#> GSM198663     2  0.9710      0.359 0.400 0.600
#> GSM198664     1  0.9977     -0.100 0.528 0.472
#> GSM198665     2  0.9922      0.152 0.448 0.552
#> GSM198616     1  0.0000      0.861 1.000 0.000
#> GSM198617     2  0.0376      0.804 0.004 0.996
#> GSM198619     1  0.7602      0.661 0.780 0.220
#> GSM198620     2  0.0000      0.805 0.000 1.000
#> GSM198621     1  0.9754      0.300 0.592 0.408
#> GSM198624     1  0.0000      0.861 1.000 0.000
#> GSM198625     1  0.0000      0.861 1.000 0.000
#> GSM198637     1  0.0000      0.861 1.000 0.000
#> GSM198638     2  0.9795      0.361 0.416 0.584
#> GSM198640     1  0.0000      0.861 1.000 0.000
#> GSM198646     2  0.0000      0.805 0.000 1.000
#> GSM198647     2  0.0000      0.805 0.000 1.000
#> GSM198648     2  0.7219      0.670 0.200 0.800
#> GSM198650     2  0.5842      0.736 0.140 0.860
#> GSM198652     2  0.0000      0.805 0.000 1.000
#> GSM198661     1  0.9129      0.482 0.672 0.328

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     3  0.1529      0.813 0.000 0.040 0.960
#> GSM198622     2  0.5905      0.515 0.352 0.648 0.000
#> GSM198623     1  0.1529      0.892 0.960 0.000 0.040
#> GSM198626     1  0.0000      0.908 1.000 0.000 0.000
#> GSM198627     1  0.2625      0.838 0.916 0.084 0.000
#> GSM198628     1  0.0000      0.908 1.000 0.000 0.000
#> GSM198629     1  0.0000      0.908 1.000 0.000 0.000
#> GSM198630     1  0.0000      0.908 1.000 0.000 0.000
#> GSM198631     1  0.0000      0.908 1.000 0.000 0.000
#> GSM198632     1  0.0424      0.904 0.992 0.008 0.000
#> GSM198633     2  0.3941      0.770 0.156 0.844 0.000
#> GSM198634     1  0.5363      0.522 0.724 0.276 0.000
#> GSM198635     2  0.1289      0.836 0.032 0.968 0.000
#> GSM198636     2  0.6192      0.345 0.420 0.580 0.000
#> GSM198639     3  0.6026      0.503 0.376 0.000 0.624
#> GSM198641     2  0.0592      0.841 0.012 0.988 0.000
#> GSM198642     1  0.1031      0.900 0.976 0.000 0.024
#> GSM198643     1  0.0424      0.906 0.992 0.000 0.008
#> GSM198644     2  0.4062      0.730 0.000 0.836 0.164
#> GSM198645     1  0.4750      0.698 0.784 0.000 0.216
#> GSM198649     3  0.0892      0.822 0.000 0.020 0.980
#> GSM198651     2  0.0000      0.841 0.000 1.000 0.000
#> GSM198653     2  0.1529      0.832 0.000 0.960 0.040
#> GSM198654     3  0.1411      0.838 0.036 0.000 0.964
#> GSM198655     3  0.4663      0.806 0.156 0.016 0.828
#> GSM198656     1  0.2796      0.855 0.908 0.000 0.092
#> GSM198657     3  0.6225      0.354 0.432 0.000 0.568
#> GSM198658     3  0.3879      0.809 0.152 0.000 0.848
#> GSM198659     2  0.2878      0.796 0.000 0.904 0.096
#> GSM198660     1  0.4555      0.725 0.800 0.000 0.200
#> GSM198662     3  0.2537      0.839 0.080 0.000 0.920
#> GSM198663     2  0.0000      0.841 0.000 1.000 0.000
#> GSM198664     2  0.0000      0.841 0.000 1.000 0.000
#> GSM198665     3  0.4002      0.803 0.160 0.000 0.840
#> GSM198616     1  0.0000      0.908 1.000 0.000 0.000
#> GSM198617     3  0.1529      0.840 0.040 0.000 0.960
#> GSM198619     1  0.2711      0.859 0.912 0.000 0.088
#> GSM198620     3  0.2878      0.774 0.000 0.096 0.904
#> GSM198621     3  0.5678      0.616 0.316 0.000 0.684
#> GSM198624     1  0.0592      0.901 0.988 0.012 0.000
#> GSM198625     2  0.6309      0.130 0.496 0.504 0.000
#> GSM198637     1  0.3412      0.791 0.876 0.124 0.000
#> GSM198638     2  0.1999      0.833 0.012 0.952 0.036
#> GSM198640     1  0.0000      0.908 1.000 0.000 0.000
#> GSM198646     3  0.1289      0.817 0.000 0.032 0.968
#> GSM198647     3  0.0424      0.826 0.000 0.008 0.992
#> GSM198648     2  0.1163      0.835 0.000 0.972 0.028
#> GSM198650     3  0.2261      0.840 0.068 0.000 0.932
#> GSM198652     3  0.4750      0.628 0.000 0.216 0.784
#> GSM198661     1  0.5363      0.581 0.724 0.000 0.276

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     4  0.0927      0.831 0.000 0.016 0.008 0.976
#> GSM198622     1  0.4679      0.446 0.648 0.352 0.000 0.000
#> GSM198623     1  0.5508     -0.239 0.508 0.000 0.476 0.016
#> GSM198626     1  0.4877      0.526 0.592 0.000 0.408 0.000
#> GSM198627     1  0.0657      0.783 0.984 0.012 0.004 0.000
#> GSM198628     1  0.4804      0.556 0.616 0.000 0.384 0.000
#> GSM198629     1  0.0188      0.781 0.996 0.000 0.004 0.000
#> GSM198630     1  0.4585      0.601 0.668 0.000 0.332 0.000
#> GSM198631     1  0.1637      0.773 0.940 0.000 0.060 0.000
#> GSM198632     1  0.0895      0.782 0.976 0.020 0.004 0.000
#> GSM198633     2  0.2867      0.826 0.104 0.884 0.012 0.000
#> GSM198634     1  0.1557      0.772 0.944 0.056 0.000 0.000
#> GSM198635     2  0.1474      0.875 0.052 0.948 0.000 0.000
#> GSM198636     1  0.6257      0.432 0.508 0.056 0.436 0.000
#> GSM198639     4  0.3401      0.712 0.152 0.000 0.008 0.840
#> GSM198641     2  0.2197      0.864 0.004 0.916 0.080 0.000
#> GSM198642     3  0.4730      0.390 0.364 0.000 0.636 0.000
#> GSM198643     1  0.0336      0.780 0.992 0.000 0.008 0.000
#> GSM198644     3  0.4720      0.198 0.000 0.264 0.720 0.016
#> GSM198645     3  0.7172      0.509 0.304 0.000 0.532 0.164
#> GSM198649     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM198651     2  0.5095      0.538 0.004 0.624 0.368 0.004
#> GSM198653     2  0.2131      0.876 0.000 0.932 0.032 0.036
#> GSM198654     3  0.5257      0.266 0.008 0.000 0.548 0.444
#> GSM198655     3  0.1807      0.531 0.000 0.008 0.940 0.052
#> GSM198656     3  0.4011      0.571 0.208 0.000 0.784 0.008
#> GSM198657     3  0.5289      0.414 0.020 0.000 0.636 0.344
#> GSM198658     3  0.5597      0.192 0.020 0.000 0.516 0.464
#> GSM198659     2  0.3688      0.726 0.000 0.792 0.000 0.208
#> GSM198660     3  0.7358      0.400 0.392 0.000 0.448 0.160
#> GSM198662     4  0.5453      0.102 0.020 0.000 0.388 0.592
#> GSM198663     2  0.0188      0.890 0.004 0.996 0.000 0.000
#> GSM198664     2  0.0000      0.890 0.000 1.000 0.000 0.000
#> GSM198665     3  0.5097      0.298 0.004 0.000 0.568 0.428
#> GSM198616     1  0.0376      0.780 0.992 0.000 0.004 0.004
#> GSM198617     4  0.1913      0.816 0.020 0.000 0.040 0.940
#> GSM198619     1  0.2216      0.734 0.908 0.000 0.000 0.092
#> GSM198620     4  0.1284      0.812 0.000 0.024 0.012 0.964
#> GSM198621     4  0.2611      0.781 0.096 0.000 0.008 0.896
#> GSM198624     1  0.0712      0.783 0.984 0.008 0.004 0.004
#> GSM198625     1  0.5416      0.674 0.740 0.112 0.148 0.000
#> GSM198637     1  0.1022      0.778 0.968 0.032 0.000 0.000
#> GSM198638     2  0.1486      0.882 0.008 0.960 0.024 0.008
#> GSM198640     1  0.3324      0.671 0.852 0.012 0.136 0.000
#> GSM198646     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM198647     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM198648     2  0.0376      0.890 0.000 0.992 0.004 0.004
#> GSM198650     4  0.4453      0.505 0.012 0.000 0.244 0.744
#> GSM198652     3  0.3037      0.519 0.000 0.076 0.888 0.036
#> GSM198661     3  0.4525      0.593 0.116 0.000 0.804 0.080

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     4  0.3702      0.802 0.000 0.096 0.084 0.820 0.000
#> GSM198622     2  0.3876      0.500 0.000 0.684 0.000 0.000 0.316
#> GSM198623     3  0.1792      0.829 0.000 0.000 0.916 0.000 0.084
#> GSM198626     1  0.4009      0.543 0.684 0.000 0.004 0.000 0.312
#> GSM198627     5  0.2338      0.748 0.112 0.000 0.004 0.000 0.884
#> GSM198628     1  0.4066      0.520 0.672 0.000 0.004 0.000 0.324
#> GSM198629     5  0.2497      0.748 0.112 0.000 0.004 0.004 0.880
#> GSM198630     1  0.4380      0.420 0.616 0.000 0.008 0.000 0.376
#> GSM198631     5  0.5359      0.524 0.256 0.000 0.100 0.000 0.644
#> GSM198632     5  0.2269      0.777 0.020 0.028 0.032 0.000 0.920
#> GSM198633     2  0.2812      0.802 0.004 0.876 0.096 0.000 0.024
#> GSM198634     5  0.3548      0.672 0.004 0.188 0.012 0.000 0.796
#> GSM198635     2  0.1197      0.840 0.000 0.952 0.000 0.000 0.048
#> GSM198636     1  0.3422      0.622 0.792 0.004 0.004 0.000 0.200
#> GSM198639     4  0.4423      0.682 0.004 0.000 0.036 0.728 0.232
#> GSM198641     2  0.1831      0.829 0.076 0.920 0.000 0.000 0.004
#> GSM198642     3  0.3800      0.773 0.108 0.000 0.812 0.000 0.080
#> GSM198643     5  0.2806      0.701 0.000 0.000 0.152 0.004 0.844
#> GSM198644     1  0.2647      0.638 0.892 0.008 0.076 0.024 0.000
#> GSM198645     3  0.1695      0.840 0.008 0.000 0.940 0.008 0.044
#> GSM198649     4  0.1106      0.875 0.012 0.000 0.024 0.964 0.000
#> GSM198651     1  0.3728      0.453 0.748 0.244 0.000 0.008 0.000
#> GSM198653     2  0.2983      0.802 0.076 0.868 0.000 0.056 0.000
#> GSM198654     3  0.3691      0.786 0.076 0.000 0.820 0.104 0.000
#> GSM198655     1  0.2374      0.648 0.912 0.000 0.020 0.052 0.016
#> GSM198656     3  0.2616      0.805 0.100 0.000 0.880 0.000 0.020
#> GSM198657     3  0.0955      0.835 0.028 0.000 0.968 0.004 0.000
#> GSM198658     3  0.2700      0.824 0.004 0.000 0.884 0.088 0.024
#> GSM198659     2  0.2462      0.808 0.008 0.880 0.000 0.112 0.000
#> GSM198660     3  0.2825      0.814 0.000 0.000 0.860 0.016 0.124
#> GSM198662     3  0.3201      0.818 0.000 0.000 0.852 0.096 0.052
#> GSM198663     2  0.0290      0.850 0.008 0.992 0.000 0.000 0.000
#> GSM198664     2  0.0324      0.850 0.000 0.992 0.004 0.000 0.004
#> GSM198665     3  0.3631      0.793 0.072 0.000 0.824 0.104 0.000
#> GSM198616     5  0.1822      0.770 0.004 0.004 0.056 0.004 0.932
#> GSM198617     3  0.5593      0.442 0.000 0.000 0.572 0.340 0.088
#> GSM198619     5  0.3599      0.710 0.004 0.000 0.060 0.104 0.832
#> GSM198620     4  0.1211      0.865 0.024 0.016 0.000 0.960 0.000
#> GSM198621     4  0.2046      0.852 0.000 0.000 0.016 0.916 0.068
#> GSM198624     5  0.2497      0.748 0.112 0.004 0.000 0.004 0.880
#> GSM198625     5  0.5044      0.332 0.352 0.036 0.004 0.000 0.608
#> GSM198637     5  0.3281      0.755 0.008 0.052 0.028 0.036 0.876
#> GSM198638     2  0.4213      0.526 0.000 0.680 0.308 0.000 0.012
#> GSM198640     3  0.5384      0.622 0.008 0.048 0.672 0.016 0.256
#> GSM198646     4  0.0798      0.873 0.016 0.000 0.008 0.976 0.000
#> GSM198647     4  0.1331      0.874 0.008 0.000 0.040 0.952 0.000
#> GSM198648     2  0.1117      0.848 0.016 0.964 0.000 0.020 0.000
#> GSM198650     4  0.4756      0.728 0.072 0.000 0.152 0.756 0.020
#> GSM198652     1  0.5543      0.272 0.612 0.016 0.316 0.056 0.000
#> GSM198661     3  0.1830      0.824 0.068 0.000 0.924 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     4  0.4629     0.6384 0.004 0.032 0.056 0.752 0.148 0.008
#> GSM198622     2  0.4792     0.4675 0.180 0.672 0.000 0.000 0.148 0.000
#> GSM198623     3  0.3332     0.6529 0.144 0.000 0.808 0.000 0.048 0.000
#> GSM198626     1  0.4566    -0.0224 0.488 0.000 0.008 0.000 0.020 0.484
#> GSM198627     1  0.2400     0.4272 0.872 0.004 0.000 0.000 0.116 0.008
#> GSM198628     1  0.5084     0.1079 0.504 0.000 0.044 0.000 0.016 0.436
#> GSM198629     1  0.2249     0.4748 0.900 0.000 0.000 0.004 0.064 0.032
#> GSM198630     1  0.4388     0.3573 0.636 0.000 0.016 0.000 0.016 0.332
#> GSM198631     1  0.4820     0.4779 0.716 0.000 0.112 0.000 0.028 0.144
#> GSM198632     1  0.4310     0.2644 0.764 0.064 0.024 0.000 0.144 0.004
#> GSM198633     2  0.5243     0.5850 0.032 0.704 0.088 0.004 0.160 0.012
#> GSM198634     1  0.5486    -0.0230 0.496 0.372 0.000 0.000 0.132 0.000
#> GSM198635     2  0.2532     0.7026 0.052 0.884 0.000 0.000 0.060 0.004
#> GSM198636     6  0.4087     0.4678 0.264 0.004 0.004 0.000 0.024 0.704
#> GSM198639     4  0.6228    -0.0625 0.180 0.000 0.020 0.440 0.360 0.000
#> GSM198641     2  0.2946     0.6627 0.012 0.824 0.000 0.000 0.004 0.160
#> GSM198642     3  0.4159     0.6300 0.132 0.000 0.776 0.000 0.036 0.056
#> GSM198643     1  0.5498    -0.3265 0.504 0.000 0.116 0.000 0.376 0.004
#> GSM198644     6  0.3140     0.7362 0.036 0.004 0.016 0.024 0.048 0.872
#> GSM198645     3  0.4099     0.6900 0.020 0.000 0.776 0.016 0.160 0.028
#> GSM198649     4  0.0436     0.7841 0.000 0.004 0.000 0.988 0.004 0.004
#> GSM198651     6  0.3231     0.6549 0.000 0.180 0.000 0.012 0.008 0.800
#> GSM198653     2  0.3413     0.6783 0.000 0.824 0.000 0.052 0.012 0.112
#> GSM198654     3  0.4663     0.6862 0.000 0.000 0.736 0.040 0.144 0.080
#> GSM198655     6  0.2622     0.7309 0.064 0.000 0.004 0.028 0.016 0.888
#> GSM198656     3  0.4441     0.6318 0.028 0.000 0.724 0.000 0.204 0.044
#> GSM198657     3  0.0935     0.7276 0.000 0.000 0.964 0.000 0.004 0.032
#> GSM198658     3  0.4374     0.6436 0.000 0.000 0.680 0.040 0.272 0.008
#> GSM198659     2  0.5381     0.2605 0.000 0.536 0.008 0.388 0.048 0.020
#> GSM198660     3  0.3550     0.6824 0.000 0.004 0.752 0.004 0.232 0.008
#> GSM198662     3  0.2954     0.7235 0.000 0.000 0.852 0.048 0.096 0.004
#> GSM198663     2  0.0717     0.7285 0.000 0.976 0.000 0.000 0.008 0.016
#> GSM198664     2  0.0291     0.7300 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM198665     3  0.5776     0.6221 0.000 0.000 0.624 0.060 0.200 0.116
#> GSM198616     1  0.4320     0.0681 0.692 0.004 0.028 0.004 0.268 0.004
#> GSM198617     3  0.6271     0.2422 0.008 0.000 0.404 0.212 0.372 0.004
#> GSM198619     5  0.5478     0.2947 0.452 0.000 0.024 0.064 0.460 0.000
#> GSM198620     4  0.1426     0.7659 0.000 0.008 0.000 0.948 0.028 0.016
#> GSM198621     4  0.3704     0.6622 0.052 0.000 0.012 0.796 0.140 0.000
#> GSM198624     1  0.1245     0.4971 0.952 0.000 0.000 0.000 0.016 0.032
#> GSM198625     1  0.4321     0.4907 0.732 0.020 0.008 0.000 0.028 0.212
#> GSM198637     5  0.4588     0.4132 0.340 0.020 0.008 0.004 0.624 0.004
#> GSM198638     2  0.6030     0.1308 0.000 0.492 0.336 0.004 0.156 0.012
#> GSM198640     3  0.6907     0.4480 0.204 0.044 0.528 0.012 0.196 0.016
#> GSM198646     4  0.0909     0.7828 0.000 0.000 0.000 0.968 0.020 0.012
#> GSM198647     4  0.1053     0.7815 0.000 0.004 0.012 0.964 0.020 0.000
#> GSM198648     2  0.2637     0.7067 0.000 0.876 0.000 0.088 0.012 0.024
#> GSM198650     5  0.6392     0.1369 0.008 0.000 0.132 0.244 0.556 0.060
#> GSM198652     6  0.5086     0.6017 0.000 0.024 0.112 0.040 0.092 0.732
#> GSM198661     3  0.1682     0.7268 0.000 0.000 0.928 0.000 0.020 0.052

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> MAD:NMF 39           0.1942 2
#> MAD:NMF 47           0.2441 3
#> MAD:NMF 39           0.2326 4
#> MAD:NMF 45           0.0816 5
#> MAD:NMF 28           0.0584 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.961       0.974          0.213 0.816   0.816
#> 3 3 0.468           0.699       0.854          1.598 0.587   0.494
#> 4 4 0.516           0.605       0.824          0.171 0.878   0.722
#> 5 5 0.520           0.595       0.757          0.137 0.897   0.711
#> 6 6 0.609           0.552       0.763          0.054 0.900   0.662

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     1  0.3733      0.942 0.928 0.072
#> GSM198622     1  0.0000      0.970 1.000 0.000
#> GSM198623     1  0.0000      0.970 1.000 0.000
#> GSM198626     1  0.0000      0.970 1.000 0.000
#> GSM198627     1  0.0000      0.970 1.000 0.000
#> GSM198628     1  0.0000      0.970 1.000 0.000
#> GSM198629     1  0.0000      0.970 1.000 0.000
#> GSM198630     1  0.0000      0.970 1.000 0.000
#> GSM198631     1  0.0000      0.970 1.000 0.000
#> GSM198632     1  0.0000      0.970 1.000 0.000
#> GSM198633     1  0.0000      0.970 1.000 0.000
#> GSM198634     1  0.0000      0.970 1.000 0.000
#> GSM198635     1  0.0000      0.970 1.000 0.000
#> GSM198636     1  0.0000      0.970 1.000 0.000
#> GSM198639     1  0.0000      0.970 1.000 0.000
#> GSM198641     1  0.0000      0.970 1.000 0.000
#> GSM198642     1  0.0000      0.970 1.000 0.000
#> GSM198643     1  0.0000      0.970 1.000 0.000
#> GSM198644     1  0.0376      0.969 0.996 0.004
#> GSM198645     1  0.0000      0.970 1.000 0.000
#> GSM198649     2  0.0000      1.000 0.000 1.000
#> GSM198651     1  0.3733      0.942 0.928 0.072
#> GSM198653     1  0.5946      0.877 0.856 0.144
#> GSM198654     1  0.3733      0.942 0.928 0.072
#> GSM198655     1  0.0376      0.969 0.996 0.004
#> GSM198656     1  0.0000      0.970 1.000 0.000
#> GSM198657     1  0.0000      0.970 1.000 0.000
#> GSM198658     1  0.3584      0.944 0.932 0.068
#> GSM198659     1  0.6048      0.873 0.852 0.148
#> GSM198660     1  0.3733      0.942 0.928 0.072
#> GSM198662     1  0.3733      0.942 0.928 0.072
#> GSM198663     1  0.5946      0.877 0.856 0.144
#> GSM198664     1  0.3733      0.942 0.928 0.072
#> GSM198665     1  0.0376      0.969 0.996 0.004
#> GSM198616     1  0.0000      0.970 1.000 0.000
#> GSM198617     1  0.3733      0.942 0.928 0.072
#> GSM198619     1  0.0000      0.970 1.000 0.000
#> GSM198620     2  0.0000      1.000 0.000 1.000
#> GSM198621     1  0.3733      0.942 0.928 0.072
#> GSM198624     1  0.0000      0.970 1.000 0.000
#> GSM198625     1  0.0000      0.970 1.000 0.000
#> GSM198637     1  0.0000      0.970 1.000 0.000
#> GSM198638     1  0.3733      0.942 0.928 0.072
#> GSM198640     1  0.0000      0.970 1.000 0.000
#> GSM198646     2  0.0000      1.000 0.000 1.000
#> GSM198647     2  0.0000      1.000 0.000 1.000
#> GSM198648     2  0.0000      1.000 0.000 1.000
#> GSM198650     1  0.3584      0.944 0.932 0.068
#> GSM198652     1  0.3733      0.942 0.928 0.072
#> GSM198661     1  0.0000      0.970 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     3  0.2356      0.770 0.072 0.000 0.928
#> GSM198622     1  0.4399      0.739 0.812 0.000 0.188
#> GSM198623     1  0.5431      0.497 0.716 0.000 0.284
#> GSM198626     1  0.0000      0.846 1.000 0.000 0.000
#> GSM198627     1  0.0000      0.846 1.000 0.000 0.000
#> GSM198628     1  0.0000      0.846 1.000 0.000 0.000
#> GSM198629     1  0.0000      0.846 1.000 0.000 0.000
#> GSM198630     1  0.0000      0.846 1.000 0.000 0.000
#> GSM198631     1  0.0000      0.846 1.000 0.000 0.000
#> GSM198632     1  0.1529      0.853 0.960 0.000 0.040
#> GSM198633     1  0.4399      0.739 0.812 0.000 0.188
#> GSM198634     1  0.2261      0.841 0.932 0.000 0.068
#> GSM198635     1  0.4399      0.739 0.812 0.000 0.188
#> GSM198636     1  0.1411      0.853 0.964 0.000 0.036
#> GSM198639     3  0.6244      0.382 0.440 0.000 0.560
#> GSM198641     1  0.4399      0.739 0.812 0.000 0.188
#> GSM198642     1  0.5431      0.497 0.716 0.000 0.284
#> GSM198643     1  0.1529      0.853 0.960 0.000 0.040
#> GSM198644     1  0.6305     -0.203 0.516 0.000 0.484
#> GSM198645     3  0.6244      0.382 0.440 0.000 0.560
#> GSM198649     2  0.0000      0.989 0.000 1.000 0.000
#> GSM198651     3  0.2796      0.765 0.092 0.000 0.908
#> GSM198653     3  0.0000      0.709 0.000 0.000 1.000
#> GSM198654     3  0.2356      0.770 0.072 0.000 0.928
#> GSM198655     3  0.6244      0.383 0.440 0.000 0.560
#> GSM198656     3  0.6274      0.312 0.456 0.000 0.544
#> GSM198657     3  0.6274      0.312 0.456 0.000 0.544
#> GSM198658     3  0.2448      0.770 0.076 0.000 0.924
#> GSM198659     3  0.0237      0.707 0.000 0.004 0.996
#> GSM198660     3  0.3879      0.737 0.152 0.000 0.848
#> GSM198662     3  0.2356      0.770 0.072 0.000 0.928
#> GSM198663     3  0.0000      0.709 0.000 0.000 1.000
#> GSM198664     3  0.6274      0.294 0.456 0.000 0.544
#> GSM198665     3  0.5926      0.538 0.356 0.000 0.644
#> GSM198616     1  0.1411      0.853 0.964 0.000 0.036
#> GSM198617     3  0.2356      0.770 0.072 0.000 0.928
#> GSM198619     1  0.3752      0.764 0.856 0.000 0.144
#> GSM198620     2  0.0000      0.989 0.000 1.000 0.000
#> GSM198621     3  0.2356      0.770 0.072 0.000 0.928
#> GSM198624     1  0.1529      0.853 0.960 0.000 0.040
#> GSM198625     1  0.0000      0.846 1.000 0.000 0.000
#> GSM198637     1  0.4702      0.678 0.788 0.000 0.212
#> GSM198638     3  0.6280      0.282 0.460 0.000 0.540
#> GSM198640     1  0.1529      0.853 0.960 0.000 0.040
#> GSM198646     2  0.0000      0.989 0.000 1.000 0.000
#> GSM198647     2  0.0000      0.989 0.000 1.000 0.000
#> GSM198648     2  0.2356      0.955 0.000 0.928 0.072
#> GSM198650     3  0.2448      0.770 0.076 0.000 0.924
#> GSM198652     3  0.2356      0.770 0.072 0.000 0.928
#> GSM198661     3  0.6274      0.312 0.456 0.000 0.544

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     3  0.5760   -0.12664 0.028 0.448 0.524 0.000
#> GSM198622     1  0.3351    0.74394 0.844 0.148 0.008 0.000
#> GSM198623     1  0.4872    0.24484 0.640 0.004 0.356 0.000
#> GSM198626     1  0.1211    0.80761 0.960 0.040 0.000 0.000
#> GSM198627     1  0.1211    0.80761 0.960 0.040 0.000 0.000
#> GSM198628     1  0.1211    0.80761 0.960 0.040 0.000 0.000
#> GSM198629     1  0.1211    0.80761 0.960 0.040 0.000 0.000
#> GSM198630     1  0.1211    0.80761 0.960 0.040 0.000 0.000
#> GSM198631     1  0.1211    0.80761 0.960 0.040 0.000 0.000
#> GSM198632     1  0.0336    0.81176 0.992 0.000 0.008 0.000
#> GSM198633     1  0.3351    0.74394 0.844 0.148 0.008 0.000
#> GSM198634     1  0.1118    0.80468 0.964 0.036 0.000 0.000
#> GSM198635     1  0.3351    0.74394 0.844 0.148 0.008 0.000
#> GSM198636     1  0.0188    0.81226 0.996 0.000 0.004 0.000
#> GSM198639     3  0.5119    0.32542 0.440 0.004 0.556 0.000
#> GSM198641     1  0.3351    0.74394 0.844 0.148 0.008 0.000
#> GSM198642     1  0.4872    0.24484 0.640 0.004 0.356 0.000
#> GSM198643     1  0.0336    0.81176 0.992 0.000 0.008 0.000
#> GSM198644     1  0.5873   -0.00148 0.548 0.036 0.416 0.000
#> GSM198645     3  0.5119    0.32542 0.440 0.004 0.556 0.000
#> GSM198649     4  0.0000    0.98345 0.000 0.000 0.000 1.000
#> GSM198651     2  0.5920    0.35981 0.052 0.612 0.336 0.000
#> GSM198653     2  0.1356    0.84226 0.032 0.960 0.008 0.000
#> GSM198654     3  0.0000    0.53036 0.000 0.000 1.000 0.000
#> GSM198655     3  0.5771    0.24280 0.460 0.028 0.512 0.000
#> GSM198656     3  0.4817    0.42781 0.388 0.000 0.612 0.000
#> GSM198657     3  0.4817    0.42781 0.388 0.000 0.612 0.000
#> GSM198658     3  0.0336    0.53568 0.008 0.000 0.992 0.000
#> GSM198659     2  0.1796    0.83862 0.032 0.948 0.016 0.004
#> GSM198660     3  0.4424    0.54651 0.088 0.100 0.812 0.000
#> GSM198662     3  0.3764    0.41281 0.000 0.216 0.784 0.000
#> GSM198663     2  0.1356    0.84226 0.032 0.960 0.008 0.000
#> GSM198664     1  0.7375    0.16492 0.488 0.336 0.176 0.000
#> GSM198665     3  0.5527    0.45828 0.356 0.028 0.616 0.000
#> GSM198616     1  0.0524    0.81175 0.988 0.004 0.008 0.000
#> GSM198617     3  0.3598    0.50358 0.028 0.124 0.848 0.000
#> GSM198619     1  0.2773    0.73184 0.880 0.004 0.116 0.000
#> GSM198620     4  0.0000    0.98345 0.000 0.000 0.000 1.000
#> GSM198621     3  0.3598    0.50358 0.028 0.124 0.848 0.000
#> GSM198624     1  0.0336    0.81176 0.992 0.000 0.008 0.000
#> GSM198625     1  0.1211    0.80761 0.960 0.040 0.000 0.000
#> GSM198637     1  0.4181    0.68881 0.820 0.052 0.128 0.000
#> GSM198638     1  0.7363    0.17276 0.492 0.332 0.176 0.000
#> GSM198640     1  0.0336    0.81176 0.992 0.000 0.008 0.000
#> GSM198646     4  0.0000    0.98345 0.000 0.000 0.000 1.000
#> GSM198647     4  0.0000    0.98345 0.000 0.000 0.000 1.000
#> GSM198648     4  0.1867    0.93078 0.000 0.072 0.000 0.928
#> GSM198650     3  0.0336    0.53568 0.008 0.000 0.992 0.000
#> GSM198652     3  0.5638   -0.10194 0.028 0.388 0.584 0.000
#> GSM198661     3  0.4817    0.42781 0.388 0.000 0.612 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     3  0.6600    -0.0790 0.080 0.424 0.452 0.000 0.044
#> GSM198622     5  0.0000     0.6549 0.000 0.000 0.000 0.000 1.000
#> GSM198623     5  0.6801     0.1115 0.292 0.000 0.348 0.000 0.360
#> GSM198626     1  0.2074     1.0000 0.896 0.000 0.000 0.000 0.104
#> GSM198627     1  0.2074     1.0000 0.896 0.000 0.000 0.000 0.104
#> GSM198628     1  0.2074     1.0000 0.896 0.000 0.000 0.000 0.104
#> GSM198629     1  0.2074     1.0000 0.896 0.000 0.000 0.000 0.104
#> GSM198630     1  0.2074     1.0000 0.896 0.000 0.000 0.000 0.104
#> GSM198631     1  0.2074     1.0000 0.896 0.000 0.000 0.000 0.104
#> GSM198632     5  0.3395     0.6705 0.236 0.000 0.000 0.000 0.764
#> GSM198633     5  0.0000     0.6549 0.000 0.000 0.000 0.000 1.000
#> GSM198634     5  0.2377     0.6801 0.128 0.000 0.000 0.000 0.872
#> GSM198635     5  0.0000     0.6549 0.000 0.000 0.000 0.000 1.000
#> GSM198636     5  0.3177     0.6798 0.208 0.000 0.000 0.000 0.792
#> GSM198639     3  0.4996     0.2735 0.032 0.000 0.548 0.000 0.420
#> GSM198641     5  0.0000     0.6549 0.000 0.000 0.000 0.000 1.000
#> GSM198642     5  0.6801     0.1115 0.292 0.000 0.348 0.000 0.360
#> GSM198643     5  0.3395     0.6705 0.236 0.000 0.000 0.000 0.764
#> GSM198644     5  0.6401     0.0197 0.080 0.032 0.408 0.000 0.480
#> GSM198645     3  0.4996     0.2735 0.032 0.000 0.548 0.000 0.420
#> GSM198649     4  0.0000     0.9820 0.000 0.000 0.000 1.000 0.000
#> GSM198651     2  0.6163     0.3544 0.028 0.580 0.304 0.000 0.088
#> GSM198653     2  0.1270     0.8170 0.000 0.948 0.000 0.000 0.052
#> GSM198654     3  0.0609     0.5502 0.020 0.000 0.980 0.000 0.000
#> GSM198655     3  0.6238     0.1847 0.080 0.024 0.504 0.000 0.392
#> GSM198656     3  0.5588     0.3945 0.104 0.000 0.604 0.000 0.292
#> GSM198657     3  0.5588     0.3945 0.104 0.000 0.604 0.000 0.292
#> GSM198658     3  0.0898     0.5561 0.020 0.000 0.972 0.000 0.008
#> GSM198659     2  0.1364     0.7854 0.036 0.952 0.000 0.000 0.012
#> GSM198660     3  0.4325     0.5701 0.020 0.108 0.796 0.000 0.076
#> GSM198662     3  0.4010     0.4584 0.032 0.208 0.760 0.000 0.000
#> GSM198663     2  0.1270     0.8170 0.000 0.948 0.000 0.000 0.052
#> GSM198664     5  0.5638     0.2461 0.000 0.192 0.172 0.000 0.636
#> GSM198665     3  0.5397     0.3890 0.032 0.024 0.608 0.000 0.336
#> GSM198616     5  0.3661     0.6349 0.276 0.000 0.000 0.000 0.724
#> GSM198617     3  0.4781     0.5175 0.048 0.132 0.768 0.000 0.052
#> GSM198619     5  0.5329     0.6416 0.236 0.000 0.108 0.000 0.656
#> GSM198620     4  0.0000     0.9820 0.000 0.000 0.000 1.000 0.000
#> GSM198621     3  0.4781     0.5175 0.048 0.132 0.768 0.000 0.052
#> GSM198624     5  0.3395     0.6698 0.236 0.000 0.000 0.000 0.764
#> GSM198625     1  0.2074     1.0000 0.896 0.000 0.000 0.000 0.104
#> GSM198637     5  0.4909     0.6324 0.164 0.000 0.120 0.000 0.716
#> GSM198638     5  0.5608     0.2515 0.000 0.188 0.172 0.000 0.640
#> GSM198640     5  0.3395     0.6705 0.236 0.000 0.000 0.000 0.764
#> GSM198646     4  0.0000     0.9820 0.000 0.000 0.000 1.000 0.000
#> GSM198647     4  0.0000     0.9820 0.000 0.000 0.000 1.000 0.000
#> GSM198648     4  0.1768     0.9244 0.004 0.072 0.000 0.924 0.000
#> GSM198650     3  0.0898     0.5561 0.020 0.000 0.972 0.000 0.008
#> GSM198652     3  0.6011    -0.1506 0.048 0.380 0.536 0.000 0.036
#> GSM198661     3  0.5588     0.3945 0.104 0.000 0.604 0.000 0.292

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     6  0.3454     0.3384 0.000 0.208 0.024 0.000 0.000 0.768
#> GSM198622     5  0.0972     0.6113 0.000 0.008 0.000 0.000 0.964 0.028
#> GSM198623     5  0.6362     0.0261 0.268 0.000 0.336 0.000 0.384 0.012
#> GSM198626     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198627     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198628     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198629     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198630     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198631     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198632     5  0.2883     0.6441 0.212 0.000 0.000 0.000 0.788 0.000
#> GSM198633     5  0.0972     0.6113 0.000 0.008 0.000 0.000 0.964 0.028
#> GSM198634     5  0.3079     0.6376 0.128 0.008 0.000 0.000 0.836 0.028
#> GSM198635     5  0.0972     0.6113 0.000 0.008 0.000 0.000 0.964 0.028
#> GSM198636     5  0.2562     0.6476 0.172 0.000 0.000 0.000 0.828 0.000
#> GSM198639     5  0.6241     0.0663 0.016 0.000 0.352 0.000 0.432 0.200
#> GSM198641     5  0.0972     0.6113 0.000 0.008 0.000 0.000 0.964 0.028
#> GSM198642     5  0.6362     0.0261 0.268 0.000 0.336 0.000 0.384 0.012
#> GSM198643     5  0.2883     0.6441 0.212 0.000 0.000 0.000 0.788 0.000
#> GSM198644     5  0.6515     0.3184 0.044 0.004 0.204 0.000 0.512 0.236
#> GSM198645     5  0.6241     0.0663 0.016 0.000 0.352 0.000 0.432 0.200
#> GSM198649     4  0.0000     0.9810 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198651     2  0.5193     0.0113 0.000 0.468 0.028 0.000 0.036 0.468
#> GSM198653     2  0.0000     0.7353 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM198654     3  0.0000     0.4147 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198655     5  0.6710     0.1331 0.044 0.000 0.296 0.000 0.424 0.236
#> GSM198656     3  0.5460     0.4016 0.076 0.000 0.576 0.000 0.320 0.028
#> GSM198657     3  0.5460     0.4016 0.076 0.000 0.576 0.000 0.320 0.028
#> GSM198658     3  0.0260     0.4242 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM198659     2  0.2416     0.6549 0.000 0.844 0.000 0.000 0.000 0.156
#> GSM198660     3  0.5128     0.3237 0.012 0.008 0.656 0.000 0.084 0.240
#> GSM198662     3  0.4076     0.0361 0.000 0.008 0.540 0.000 0.000 0.452
#> GSM198663     2  0.0000     0.7353 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM198664     5  0.5422     0.2857 0.000 0.100 0.020 0.000 0.600 0.280
#> GSM198665     3  0.6367    -0.0299 0.016 0.000 0.400 0.000 0.348 0.236
#> GSM198616     5  0.3175     0.6259 0.256 0.000 0.000 0.000 0.744 0.000
#> GSM198617     6  0.3271     0.7415 0.000 0.000 0.232 0.000 0.008 0.760
#> GSM198619     5  0.4851     0.6186 0.212 0.000 0.012 0.000 0.680 0.096
#> GSM198620     4  0.0000     0.9810 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198621     6  0.3271     0.7415 0.000 0.000 0.232 0.000 0.008 0.760
#> GSM198624     5  0.2883     0.6437 0.212 0.000 0.000 0.000 0.788 0.000
#> GSM198625     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198637     5  0.4502     0.6197 0.140 0.000 0.020 0.000 0.740 0.100
#> GSM198638     5  0.5381     0.2926 0.000 0.096 0.020 0.000 0.604 0.280
#> GSM198640     5  0.2883     0.6441 0.212 0.000 0.000 0.000 0.788 0.000
#> GSM198646     4  0.0000     0.9810 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198647     4  0.0000     0.9810 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198648     4  0.1588     0.9197 0.000 0.072 0.000 0.924 0.000 0.004
#> GSM198650     3  0.0260     0.4242 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM198652     3  0.6217    -0.3797 0.000 0.328 0.380 0.000 0.004 0.288
#> GSM198661     3  0.5460     0.4016 0.076 0.000 0.576 0.000 0.320 0.028

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> ATC:hclust 50           0.0548 2
#> ATC:hclust 39           0.0883 3
#> ATC:hclust 34           0.0906 4
#> ATC:hclust 34           0.1073 5
#> ATC:hclust 30           0.0360 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.628           0.932       0.959         0.3353 0.699   0.699
#> 3 3 0.810           0.859       0.921         0.8730 0.657   0.509
#> 4 4 0.641           0.664       0.804         0.1457 0.806   0.525
#> 5 5 0.685           0.716       0.822         0.0767 0.873   0.594
#> 6 6 0.748           0.561       0.769         0.0529 0.986   0.940

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     2   0.000      1.000 0.000 1.000
#> GSM198622     1   0.000      0.948 1.000 0.000
#> GSM198623     1   0.000      0.948 1.000 0.000
#> GSM198626     1   0.000      0.948 1.000 0.000
#> GSM198627     1   0.000      0.948 1.000 0.000
#> GSM198628     1   0.000      0.948 1.000 0.000
#> GSM198629     1   0.000      0.948 1.000 0.000
#> GSM198630     1   0.000      0.948 1.000 0.000
#> GSM198631     1   0.000      0.948 1.000 0.000
#> GSM198632     1   0.000      0.948 1.000 0.000
#> GSM198633     1   0.000      0.948 1.000 0.000
#> GSM198634     1   0.000      0.948 1.000 0.000
#> GSM198635     1   0.000      0.948 1.000 0.000
#> GSM198636     1   0.000      0.948 1.000 0.000
#> GSM198639     1   0.260      0.932 0.956 0.044
#> GSM198641     1   0.000      0.948 1.000 0.000
#> GSM198642     1   0.000      0.948 1.000 0.000
#> GSM198643     1   0.000      0.948 1.000 0.000
#> GSM198644     1   0.506      0.904 0.888 0.112
#> GSM198645     1   0.000      0.948 1.000 0.000
#> GSM198649     2   0.000      1.000 0.000 1.000
#> GSM198651     1   0.506      0.904 0.888 0.112
#> GSM198653     2   0.000      1.000 0.000 1.000
#> GSM198654     1   0.506      0.904 0.888 0.112
#> GSM198655     1   0.506      0.904 0.888 0.112
#> GSM198656     1   0.000      0.948 1.000 0.000
#> GSM198657     1   0.000      0.948 1.000 0.000
#> GSM198658     1   0.506      0.904 0.888 0.112
#> GSM198659     2   0.000      1.000 0.000 1.000
#> GSM198660     1   0.506      0.904 0.888 0.112
#> GSM198662     1   0.506      0.904 0.888 0.112
#> GSM198663     2   0.000      1.000 0.000 1.000
#> GSM198664     1   0.506      0.904 0.888 0.112
#> GSM198665     1   0.506      0.904 0.888 0.112
#> GSM198616     1   0.000      0.948 1.000 0.000
#> GSM198617     1   0.978      0.424 0.588 0.412
#> GSM198619     1   0.000      0.948 1.000 0.000
#> GSM198620     2   0.000      1.000 0.000 1.000
#> GSM198621     1   0.506      0.904 0.888 0.112
#> GSM198624     1   0.000      0.948 1.000 0.000
#> GSM198625     1   0.000      0.948 1.000 0.000
#> GSM198637     1   0.000      0.948 1.000 0.000
#> GSM198638     1   0.506      0.904 0.888 0.112
#> GSM198640     1   0.000      0.948 1.000 0.000
#> GSM198646     2   0.000      1.000 0.000 1.000
#> GSM198647     2   0.000      1.000 0.000 1.000
#> GSM198648     2   0.000      1.000 0.000 1.000
#> GSM198650     1   0.506      0.904 0.888 0.112
#> GSM198652     1   0.781      0.770 0.768 0.232
#> GSM198661     1   0.000      0.948 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     2  0.4235      0.878 0.000 0.824 0.176
#> GSM198622     1  0.1964      0.833 0.944 0.000 0.056
#> GSM198623     1  0.6260      0.140 0.552 0.000 0.448
#> GSM198626     1  0.0237      0.880 0.996 0.000 0.004
#> GSM198627     1  0.0000      0.880 1.000 0.000 0.000
#> GSM198628     1  0.0237      0.880 0.996 0.000 0.004
#> GSM198629     1  0.0237      0.880 0.996 0.000 0.004
#> GSM198630     1  0.0237      0.880 0.996 0.000 0.004
#> GSM198631     1  0.0237      0.880 0.996 0.000 0.004
#> GSM198632     1  0.0000      0.880 1.000 0.000 0.000
#> GSM198633     1  0.5465      0.649 0.712 0.000 0.288
#> GSM198634     1  0.0000      0.880 1.000 0.000 0.000
#> GSM198635     1  0.1964      0.833 0.944 0.000 0.056
#> GSM198636     1  0.0000      0.880 1.000 0.000 0.000
#> GSM198639     3  0.2165      0.967 0.064 0.000 0.936
#> GSM198641     1  0.5529      0.643 0.704 0.000 0.296
#> GSM198642     1  0.6225      0.193 0.568 0.000 0.432
#> GSM198643     1  0.0237      0.880 0.996 0.000 0.004
#> GSM198644     3  0.0237      0.928 0.004 0.000 0.996
#> GSM198645     3  0.2165      0.967 0.064 0.000 0.936
#> GSM198649     2  0.0000      0.910 0.000 1.000 0.000
#> GSM198651     3  0.0237      0.923 0.004 0.000 0.996
#> GSM198653     2  0.4504      0.869 0.000 0.804 0.196
#> GSM198654     3  0.2165      0.967 0.064 0.000 0.936
#> GSM198655     3  0.2165      0.967 0.064 0.000 0.936
#> GSM198656     3  0.2165      0.967 0.064 0.000 0.936
#> GSM198657     3  0.2165      0.967 0.064 0.000 0.936
#> GSM198658     3  0.2165      0.967 0.064 0.000 0.936
#> GSM198659     2  0.4235      0.878 0.000 0.824 0.176
#> GSM198660     3  0.2066      0.965 0.060 0.000 0.940
#> GSM198662     3  0.2165      0.967 0.064 0.000 0.936
#> GSM198663     2  0.4978      0.846 0.004 0.780 0.216
#> GSM198664     3  0.0237      0.923 0.004 0.000 0.996
#> GSM198665     3  0.2165      0.967 0.064 0.000 0.936
#> GSM198616     1  0.0237      0.880 0.996 0.000 0.004
#> GSM198617     3  0.1753      0.959 0.048 0.000 0.952
#> GSM198619     3  0.4504      0.791 0.196 0.000 0.804
#> GSM198620     2  0.0000      0.910 0.000 1.000 0.000
#> GSM198621     3  0.2165      0.967 0.064 0.000 0.936
#> GSM198624     1  0.0000      0.880 1.000 0.000 0.000
#> GSM198625     1  0.0000      0.880 1.000 0.000 0.000
#> GSM198637     1  0.6045      0.382 0.620 0.000 0.380
#> GSM198638     3  0.0237      0.923 0.004 0.000 0.996
#> GSM198640     1  0.0000      0.880 1.000 0.000 0.000
#> GSM198646     2  0.0000      0.910 0.000 1.000 0.000
#> GSM198647     2  0.0000      0.910 0.000 1.000 0.000
#> GSM198648     2  0.0000      0.910 0.000 1.000 0.000
#> GSM198650     3  0.2165      0.967 0.064 0.000 0.936
#> GSM198652     3  0.0000      0.925 0.000 0.000 1.000
#> GSM198661     3  0.2165      0.967 0.064 0.000 0.936

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     4  0.5835      0.544 0.000 0.372 0.040 0.588
#> GSM198622     2  0.5453      0.203 0.320 0.648 0.032 0.000
#> GSM198623     3  0.6655      0.455 0.184 0.192 0.624 0.000
#> GSM198626     1  0.0000      0.763 1.000 0.000 0.000 0.000
#> GSM198627     1  0.0000      0.763 1.000 0.000 0.000 0.000
#> GSM198628     1  0.0000      0.763 1.000 0.000 0.000 0.000
#> GSM198629     1  0.0000      0.763 1.000 0.000 0.000 0.000
#> GSM198630     1  0.0000      0.763 1.000 0.000 0.000 0.000
#> GSM198631     1  0.0000      0.763 1.000 0.000 0.000 0.000
#> GSM198632     1  0.5686      0.549 0.592 0.376 0.032 0.000
#> GSM198633     2  0.5495      0.487 0.176 0.728 0.096 0.000
#> GSM198634     1  0.4643      0.617 0.656 0.344 0.000 0.000
#> GSM198635     2  0.5453      0.203 0.320 0.648 0.032 0.000
#> GSM198636     1  0.5289      0.601 0.636 0.344 0.020 0.000
#> GSM198639     3  0.0817      0.859 0.000 0.024 0.976 0.000
#> GSM198641     2  0.3716      0.581 0.052 0.852 0.096 0.000
#> GSM198642     3  0.6886      0.404 0.204 0.200 0.596 0.000
#> GSM198643     1  0.6317      0.575 0.624 0.280 0.096 0.000
#> GSM198644     3  0.3907      0.585 0.000 0.232 0.768 0.000
#> GSM198645     3  0.3801      0.684 0.000 0.220 0.780 0.000
#> GSM198649     4  0.0000      0.860 0.000 0.000 0.000 1.000
#> GSM198651     2  0.4134      0.530 0.000 0.740 0.260 0.000
#> GSM198653     2  0.5793     -0.130 0.000 0.600 0.040 0.360
#> GSM198654     3  0.1302      0.849 0.000 0.044 0.956 0.000
#> GSM198655     3  0.0000      0.860 0.000 0.000 1.000 0.000
#> GSM198656     3  0.1118      0.853 0.000 0.036 0.964 0.000
#> GSM198657     3  0.1118      0.853 0.000 0.036 0.964 0.000
#> GSM198658     3  0.0817      0.859 0.000 0.024 0.976 0.000
#> GSM198659     4  0.5807      0.548 0.000 0.364 0.040 0.596
#> GSM198660     3  0.0469      0.857 0.000 0.012 0.988 0.000
#> GSM198662     3  0.0817      0.853 0.000 0.024 0.976 0.000
#> GSM198663     2  0.4716      0.316 0.000 0.764 0.040 0.196
#> GSM198664     2  0.4193      0.535 0.000 0.732 0.268 0.000
#> GSM198665     3  0.0000      0.860 0.000 0.000 1.000 0.000
#> GSM198616     1  0.1940      0.746 0.924 0.076 0.000 0.000
#> GSM198617     3  0.1867      0.833 0.000 0.072 0.928 0.000
#> GSM198619     3  0.3837      0.682 0.000 0.224 0.776 0.000
#> GSM198620     4  0.0000      0.860 0.000 0.000 0.000 1.000
#> GSM198621     3  0.0592      0.860 0.000 0.016 0.984 0.000
#> GSM198624     1  0.5686      0.549 0.592 0.376 0.032 0.000
#> GSM198625     1  0.0000      0.763 1.000 0.000 0.000 0.000
#> GSM198637     2  0.6437      0.444 0.184 0.648 0.168 0.000
#> GSM198638     2  0.4713      0.482 0.000 0.640 0.360 0.000
#> GSM198640     1  0.5686      0.549 0.592 0.376 0.032 0.000
#> GSM198646     4  0.0000      0.860 0.000 0.000 0.000 1.000
#> GSM198647     4  0.0000      0.860 0.000 0.000 0.000 1.000
#> GSM198648     4  0.0000      0.860 0.000 0.000 0.000 1.000
#> GSM198650     3  0.0817      0.859 0.000 0.024 0.976 0.000
#> GSM198652     3  0.3444      0.717 0.000 0.184 0.816 0.000
#> GSM198661     3  0.1118      0.853 0.000 0.036 0.964 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     2  0.4110      0.680 0.000 0.776 0.012 0.184 0.028
#> GSM198622     5  0.3526      0.679 0.096 0.072 0.000 0.000 0.832
#> GSM198623     3  0.6501      0.376 0.076 0.060 0.568 0.000 0.296
#> GSM198626     1  0.0000      0.960 1.000 0.000 0.000 0.000 0.000
#> GSM198627     1  0.0000      0.960 1.000 0.000 0.000 0.000 0.000
#> GSM198628     1  0.0000      0.960 1.000 0.000 0.000 0.000 0.000
#> GSM198629     1  0.0000      0.960 1.000 0.000 0.000 0.000 0.000
#> GSM198630     1  0.0000      0.960 1.000 0.000 0.000 0.000 0.000
#> GSM198631     1  0.0000      0.960 1.000 0.000 0.000 0.000 0.000
#> GSM198632     5  0.3730      0.677 0.288 0.000 0.000 0.000 0.712
#> GSM198633     5  0.3530      0.625 0.024 0.104 0.028 0.000 0.844
#> GSM198634     5  0.3983      0.624 0.340 0.000 0.000 0.000 0.660
#> GSM198635     5  0.3812      0.667 0.096 0.092 0.000 0.000 0.812
#> GSM198636     5  0.3837      0.657 0.308 0.000 0.000 0.000 0.692
#> GSM198639     3  0.3416      0.761 0.000 0.072 0.840 0.000 0.088
#> GSM198641     5  0.3289      0.571 0.004 0.172 0.008 0.000 0.816
#> GSM198642     3  0.6763      0.320 0.096 0.060 0.540 0.000 0.304
#> GSM198643     5  0.5334      0.619 0.284 0.052 0.016 0.000 0.648
#> GSM198644     3  0.5739      0.496 0.000 0.124 0.596 0.000 0.280
#> GSM198645     3  0.5694      0.223 0.000 0.080 0.464 0.000 0.456
#> GSM198649     4  0.0000      0.985 0.000 0.000 0.000 1.000 0.000
#> GSM198651     2  0.5668      0.671 0.000 0.624 0.144 0.000 0.232
#> GSM198653     2  0.4139      0.744 0.000 0.784 0.000 0.132 0.084
#> GSM198654     3  0.2504      0.762 0.000 0.064 0.896 0.000 0.040
#> GSM198655     3  0.2580      0.776 0.000 0.064 0.892 0.000 0.044
#> GSM198656     3  0.2450      0.773 0.000 0.052 0.900 0.000 0.048
#> GSM198657     3  0.2450      0.773 0.000 0.052 0.900 0.000 0.048
#> GSM198658     3  0.2426      0.764 0.000 0.064 0.900 0.000 0.036
#> GSM198659     2  0.3779      0.683 0.000 0.776 0.000 0.200 0.024
#> GSM198660     3  0.0000      0.785 0.000 0.000 1.000 0.000 0.000
#> GSM198662     3  0.0880      0.787 0.000 0.032 0.968 0.000 0.000
#> GSM198663     2  0.3909      0.754 0.000 0.800 0.004 0.048 0.148
#> GSM198664     2  0.5689      0.670 0.000 0.616 0.136 0.000 0.248
#> GSM198665     3  0.1818      0.787 0.000 0.024 0.932 0.000 0.044
#> GSM198616     1  0.3143      0.640 0.796 0.000 0.000 0.000 0.204
#> GSM198617     3  0.3840      0.757 0.000 0.116 0.808 0.000 0.076
#> GSM198619     5  0.5470      0.270 0.000 0.104 0.268 0.000 0.628
#> GSM198620     4  0.0000      0.985 0.000 0.000 0.000 1.000 0.000
#> GSM198621     3  0.3532      0.758 0.000 0.076 0.832 0.000 0.092
#> GSM198624     5  0.3730      0.677 0.288 0.000 0.000 0.000 0.712
#> GSM198625     1  0.0000      0.960 1.000 0.000 0.000 0.000 0.000
#> GSM198637     5  0.2730      0.641 0.016 0.044 0.044 0.000 0.896
#> GSM198638     5  0.6551     -0.119 0.000 0.228 0.304 0.000 0.468
#> GSM198640     5  0.3612      0.683 0.268 0.000 0.000 0.000 0.732
#> GSM198646     4  0.0404      0.985 0.000 0.000 0.000 0.988 0.012
#> GSM198647     4  0.0404      0.985 0.000 0.000 0.000 0.988 0.012
#> GSM198648     4  0.0963      0.959 0.000 0.036 0.000 0.964 0.000
#> GSM198650     3  0.2426      0.764 0.000 0.064 0.900 0.000 0.036
#> GSM198652     3  0.4134      0.645 0.000 0.196 0.760 0.000 0.044
#> GSM198661     3  0.2450      0.773 0.000 0.052 0.900 0.000 0.048

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     2  0.3522     0.7577 0.000 0.832 0.024 0.036 0.008 0.100
#> GSM198622     5  0.1710     0.7104 0.020 0.016 0.000 0.000 0.936 0.028
#> GSM198623     3  0.5977    -0.1759 0.016 0.004 0.548 0.000 0.172 0.260
#> GSM198626     1  0.0935     0.9509 0.964 0.004 0.000 0.000 0.000 0.032
#> GSM198627     1  0.0000     0.9505 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198628     1  0.0632     0.9517 0.976 0.000 0.000 0.000 0.000 0.024
#> GSM198629     1  0.0000     0.9505 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198630     1  0.0935     0.9509 0.964 0.004 0.000 0.000 0.000 0.032
#> GSM198631     1  0.0935     0.9509 0.964 0.004 0.000 0.000 0.000 0.032
#> GSM198632     5  0.3048     0.7160 0.100 0.000 0.008 0.000 0.848 0.044
#> GSM198633     5  0.1901     0.6901 0.000 0.028 0.008 0.000 0.924 0.040
#> GSM198634     5  0.2704     0.7016 0.140 0.000 0.000 0.000 0.844 0.016
#> GSM198635     5  0.1882     0.7071 0.020 0.024 0.000 0.000 0.928 0.028
#> GSM198636     5  0.3120     0.7119 0.112 0.000 0.008 0.000 0.840 0.040
#> GSM198639     3  0.4292     0.1924 0.000 0.000 0.628 0.000 0.032 0.340
#> GSM198641     5  0.2209     0.6806 0.000 0.040 0.004 0.000 0.904 0.052
#> GSM198642     3  0.6190    -0.2147 0.024 0.004 0.528 0.000 0.180 0.264
#> GSM198643     5  0.4649     0.5622 0.084 0.004 0.016 0.000 0.724 0.172
#> GSM198644     3  0.5103     0.0581 0.000 0.004 0.532 0.000 0.072 0.392
#> GSM198645     6  0.6150     0.0000 0.000 0.004 0.284 0.000 0.288 0.424
#> GSM198649     4  0.0000     0.9632 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198651     2  0.5947     0.6850 0.000 0.624 0.116 0.000 0.164 0.096
#> GSM198653     2  0.1261     0.8134 0.000 0.952 0.000 0.024 0.024 0.000
#> GSM198654     3  0.3987     0.4529 0.000 0.040 0.732 0.000 0.004 0.224
#> GSM198655     3  0.3835     0.2700 0.000 0.000 0.684 0.000 0.016 0.300
#> GSM198656     3  0.3052     0.3468 0.000 0.004 0.780 0.000 0.000 0.216
#> GSM198657     3  0.3052     0.3468 0.000 0.004 0.780 0.000 0.000 0.216
#> GSM198658     3  0.3722     0.4634 0.000 0.036 0.764 0.000 0.004 0.196
#> GSM198659     2  0.1893     0.7992 0.000 0.928 0.024 0.036 0.004 0.008
#> GSM198660     3  0.0547     0.4688 0.000 0.000 0.980 0.000 0.000 0.020
#> GSM198662     3  0.1194     0.4718 0.000 0.008 0.956 0.000 0.004 0.032
#> GSM198663     2  0.1644     0.8146 0.000 0.932 0.000 0.004 0.052 0.012
#> GSM198664     2  0.5524     0.7165 0.000 0.668 0.104 0.000 0.148 0.080
#> GSM198665     3  0.3421     0.3174 0.000 0.000 0.736 0.000 0.008 0.256
#> GSM198616     1  0.3088     0.7250 0.808 0.000 0.000 0.000 0.172 0.020
#> GSM198617     3  0.4659     0.2010 0.000 0.012 0.556 0.000 0.024 0.408
#> GSM198619     5  0.6159    -0.6906 0.004 0.000 0.248 0.000 0.376 0.372
#> GSM198620     4  0.0000     0.9632 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198621     3  0.4661     0.1773 0.000 0.012 0.584 0.000 0.028 0.376
#> GSM198624     5  0.3095     0.7151 0.104 0.000 0.008 0.000 0.844 0.044
#> GSM198625     1  0.0000     0.9505 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198637     5  0.1408     0.6979 0.000 0.000 0.020 0.000 0.944 0.036
#> GSM198638     5  0.6694    -0.2244 0.000 0.056 0.280 0.000 0.460 0.204
#> GSM198640     5  0.3115     0.7146 0.092 0.000 0.012 0.000 0.848 0.048
#> GSM198646     4  0.1524     0.9560 0.000 0.000 0.000 0.932 0.008 0.060
#> GSM198647     4  0.1524     0.9560 0.000 0.000 0.000 0.932 0.008 0.060
#> GSM198648     4  0.1007     0.9405 0.000 0.044 0.000 0.956 0.000 0.000
#> GSM198650     3  0.3722     0.4634 0.000 0.036 0.764 0.000 0.004 0.196
#> GSM198652     3  0.4713     0.4100 0.000 0.072 0.652 0.000 0.004 0.272
#> GSM198661     3  0.3052     0.3468 0.000 0.004 0.780 0.000 0.000 0.216

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> ATC:kmeans 49           0.5510 2
#> ATC:kmeans 47           0.4686 3
#> ATC:kmeans 41           0.3333 4
#> ATC:kmeans 44           0.0741 5
#> ATC:kmeans 30           0.0342 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.5099 0.491   0.491
#> 3 3 0.921           0.917       0.967         0.3033 0.758   0.544
#> 4 4 0.753           0.724       0.876         0.1072 0.854   0.602
#> 5 5 0.747           0.661       0.837         0.0616 0.890   0.624
#> 6 6 0.747           0.641       0.790         0.0376 0.909   0.629

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM198618     2       0          1  0  1
#> GSM198622     1       0          1  1  0
#> GSM198623     1       0          1  1  0
#> GSM198626     1       0          1  1  0
#> GSM198627     1       0          1  1  0
#> GSM198628     1       0          1  1  0
#> GSM198629     1       0          1  1  0
#> GSM198630     1       0          1  1  0
#> GSM198631     1       0          1  1  0
#> GSM198632     1       0          1  1  0
#> GSM198633     1       0          1  1  0
#> GSM198634     1       0          1  1  0
#> GSM198635     1       0          1  1  0
#> GSM198636     1       0          1  1  0
#> GSM198639     2       0          1  0  1
#> GSM198641     1       0          1  1  0
#> GSM198642     1       0          1  1  0
#> GSM198643     1       0          1  1  0
#> GSM198644     2       0          1  0  1
#> GSM198645     1       0          1  1  0
#> GSM198649     2       0          1  0  1
#> GSM198651     2       0          1  0  1
#> GSM198653     2       0          1  0  1
#> GSM198654     2       0          1  0  1
#> GSM198655     2       0          1  0  1
#> GSM198656     1       0          1  1  0
#> GSM198657     1       0          1  1  0
#> GSM198658     2       0          1  0  1
#> GSM198659     2       0          1  0  1
#> GSM198660     2       0          1  0  1
#> GSM198662     2       0          1  0  1
#> GSM198663     2       0          1  0  1
#> GSM198664     2       0          1  0  1
#> GSM198665     2       0          1  0  1
#> GSM198616     1       0          1  1  0
#> GSM198617     2       0          1  0  1
#> GSM198619     1       0          1  1  0
#> GSM198620     2       0          1  0  1
#> GSM198621     2       0          1  0  1
#> GSM198624     1       0          1  1  0
#> GSM198625     1       0          1  1  0
#> GSM198637     1       0          1  1  0
#> GSM198638     2       0          1  0  1
#> GSM198640     1       0          1  1  0
#> GSM198646     2       0          1  0  1
#> GSM198647     2       0          1  0  1
#> GSM198648     2       0          1  0  1
#> GSM198650     2       0          1  0  1
#> GSM198652     2       0          1  0  1
#> GSM198661     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette  p1    p2    p3
#> GSM198618     2  0.0000      0.969 0.0 1.000 0.000
#> GSM198622     1  0.0000      1.000 1.0 0.000 0.000
#> GSM198623     3  0.6126      0.440 0.4 0.000 0.600
#> GSM198626     1  0.0000      1.000 1.0 0.000 0.000
#> GSM198627     1  0.0000      1.000 1.0 0.000 0.000
#> GSM198628     1  0.0000      1.000 1.0 0.000 0.000
#> GSM198629     1  0.0000      1.000 1.0 0.000 0.000
#> GSM198630     1  0.0000      1.000 1.0 0.000 0.000
#> GSM198631     1  0.0000      1.000 1.0 0.000 0.000
#> GSM198632     1  0.0000      1.000 1.0 0.000 0.000
#> GSM198633     1  0.0000      1.000 1.0 0.000 0.000
#> GSM198634     1  0.0000      1.000 1.0 0.000 0.000
#> GSM198635     1  0.0000      1.000 1.0 0.000 0.000
#> GSM198636     1  0.0000      1.000 1.0 0.000 0.000
#> GSM198639     3  0.0000      0.894 0.0 0.000 1.000
#> GSM198641     1  0.0000      1.000 1.0 0.000 0.000
#> GSM198642     3  0.6126      0.440 0.4 0.000 0.600
#> GSM198643     1  0.0000      1.000 1.0 0.000 0.000
#> GSM198644     2  0.0000      0.969 0.0 1.000 0.000
#> GSM198645     3  0.6126      0.440 0.4 0.000 0.600
#> GSM198649     2  0.0000      0.969 0.0 1.000 0.000
#> GSM198651     2  0.0000      0.969 0.0 1.000 0.000
#> GSM198653     2  0.0000      0.969 0.0 1.000 0.000
#> GSM198654     3  0.0000      0.894 0.0 0.000 1.000
#> GSM198655     3  0.0000      0.894 0.0 0.000 1.000
#> GSM198656     3  0.0000      0.894 0.0 0.000 1.000
#> GSM198657     3  0.0000      0.894 0.0 0.000 1.000
#> GSM198658     3  0.0000      0.894 0.0 0.000 1.000
#> GSM198659     2  0.0000      0.969 0.0 1.000 0.000
#> GSM198660     3  0.0000      0.894 0.0 0.000 1.000
#> GSM198662     3  0.0000      0.894 0.0 0.000 1.000
#> GSM198663     2  0.0000      0.969 0.0 1.000 0.000
#> GSM198664     2  0.0000      0.969 0.0 1.000 0.000
#> GSM198665     3  0.0000      0.894 0.0 0.000 1.000
#> GSM198616     1  0.0000      1.000 1.0 0.000 0.000
#> GSM198617     2  0.0237      0.965 0.0 0.996 0.004
#> GSM198619     1  0.0000      1.000 1.0 0.000 0.000
#> GSM198620     2  0.0000      0.969 0.0 1.000 0.000
#> GSM198621     2  0.6244      0.185 0.0 0.560 0.440
#> GSM198624     1  0.0000      1.000 1.0 0.000 0.000
#> GSM198625     1  0.0000      1.000 1.0 0.000 0.000
#> GSM198637     1  0.0000      1.000 1.0 0.000 0.000
#> GSM198638     2  0.0000      0.969 0.0 1.000 0.000
#> GSM198640     1  0.0000      1.000 1.0 0.000 0.000
#> GSM198646     2  0.0000      0.969 0.0 1.000 0.000
#> GSM198647     2  0.0000      0.969 0.0 1.000 0.000
#> GSM198648     2  0.0000      0.969 0.0 1.000 0.000
#> GSM198650     3  0.0000      0.894 0.0 0.000 1.000
#> GSM198652     2  0.0000      0.969 0.0 1.000 0.000
#> GSM198661     3  0.0000      0.894 0.0 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     4  0.0000    0.88300 0.000 0.000 0.000 1.000
#> GSM198622     1  0.4877    0.21834 0.592 0.408 0.000 0.000
#> GSM198623     1  0.5220    0.22413 0.568 0.008 0.424 0.000
#> GSM198626     1  0.0000    0.87563 1.000 0.000 0.000 0.000
#> GSM198627     1  0.0000    0.87563 1.000 0.000 0.000 0.000
#> GSM198628     1  0.0000    0.87563 1.000 0.000 0.000 0.000
#> GSM198629     1  0.0000    0.87563 1.000 0.000 0.000 0.000
#> GSM198630     1  0.0000    0.87563 1.000 0.000 0.000 0.000
#> GSM198631     1  0.0000    0.87563 1.000 0.000 0.000 0.000
#> GSM198632     1  0.0000    0.87563 1.000 0.000 0.000 0.000
#> GSM198633     2  0.4164    0.58165 0.264 0.736 0.000 0.000
#> GSM198634     1  0.0000    0.87563 1.000 0.000 0.000 0.000
#> GSM198635     2  0.4661    0.43273 0.348 0.652 0.000 0.000
#> GSM198636     1  0.0000    0.87563 1.000 0.000 0.000 0.000
#> GSM198639     3  0.4922    0.74174 0.000 0.228 0.736 0.036
#> GSM198641     2  0.3907    0.61818 0.232 0.768 0.000 0.000
#> GSM198642     1  0.5212    0.23607 0.572 0.008 0.420 0.000
#> GSM198643     1  0.0000    0.87563 1.000 0.000 0.000 0.000
#> GSM198644     2  0.5847   -0.06852 0.000 0.560 0.036 0.404
#> GSM198645     3  0.6752   -0.00153 0.440 0.092 0.468 0.000
#> GSM198649     4  0.0000    0.88300 0.000 0.000 0.000 1.000
#> GSM198651     2  0.4193    0.64436 0.000 0.732 0.000 0.268
#> GSM198653     4  0.4008    0.55278 0.000 0.244 0.000 0.756
#> GSM198654     3  0.0000    0.90020 0.000 0.000 1.000 0.000
#> GSM198655     3  0.2530    0.85415 0.000 0.112 0.888 0.000
#> GSM198656     3  0.0336    0.89928 0.000 0.008 0.992 0.000
#> GSM198657     3  0.0336    0.89928 0.000 0.008 0.992 0.000
#> GSM198658     3  0.0000    0.90020 0.000 0.000 1.000 0.000
#> GSM198659     4  0.0000    0.88300 0.000 0.000 0.000 1.000
#> GSM198660     3  0.0188    0.89962 0.000 0.004 0.996 0.000
#> GSM198662     3  0.2816    0.85116 0.000 0.036 0.900 0.064
#> GSM198663     2  0.4382    0.62194 0.000 0.704 0.000 0.296
#> GSM198664     2  0.4277    0.63738 0.000 0.720 0.000 0.280
#> GSM198665     3  0.1474    0.88425 0.000 0.052 0.948 0.000
#> GSM198616     1  0.0000    0.87563 1.000 0.000 0.000 0.000
#> GSM198617     4  0.1716    0.83652 0.000 0.064 0.000 0.936
#> GSM198619     1  0.2868    0.75464 0.864 0.136 0.000 0.000
#> GSM198620     4  0.0000    0.88300 0.000 0.000 0.000 1.000
#> GSM198621     4  0.3893    0.69311 0.000 0.196 0.008 0.796
#> GSM198624     1  0.0000    0.87563 1.000 0.000 0.000 0.000
#> GSM198625     1  0.0000    0.87563 1.000 0.000 0.000 0.000
#> GSM198637     1  0.4941    0.19640 0.564 0.436 0.000 0.000
#> GSM198638     2  0.4008    0.64592 0.000 0.756 0.000 0.244
#> GSM198640     1  0.0000    0.87563 1.000 0.000 0.000 0.000
#> GSM198646     4  0.0000    0.88300 0.000 0.000 0.000 1.000
#> GSM198647     4  0.0000    0.88300 0.000 0.000 0.000 1.000
#> GSM198648     4  0.0000    0.88300 0.000 0.000 0.000 1.000
#> GSM198650     3  0.0000    0.90020 0.000 0.000 1.000 0.000
#> GSM198652     4  0.6931    0.33112 0.000 0.184 0.228 0.588
#> GSM198661     3  0.0336    0.89928 0.000 0.008 0.992 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     4  0.0000    0.87269 0.000 0.000 0.000 1.000 0.000
#> GSM198622     2  0.3895    0.44854 0.320 0.680 0.000 0.000 0.000
#> GSM198623     1  0.5000    0.23175 0.516 0.012 0.460 0.000 0.012
#> GSM198626     1  0.0000    0.87232 1.000 0.000 0.000 0.000 0.000
#> GSM198627     1  0.0290    0.87163 0.992 0.008 0.000 0.000 0.000
#> GSM198628     1  0.0000    0.87232 1.000 0.000 0.000 0.000 0.000
#> GSM198629     1  0.0000    0.87232 1.000 0.000 0.000 0.000 0.000
#> GSM198630     1  0.0000    0.87232 1.000 0.000 0.000 0.000 0.000
#> GSM198631     1  0.0000    0.87232 1.000 0.000 0.000 0.000 0.000
#> GSM198632     1  0.0404    0.87023 0.988 0.012 0.000 0.000 0.000
#> GSM198633     2  0.1544    0.61528 0.068 0.932 0.000 0.000 0.000
#> GSM198634     1  0.1851    0.80188 0.912 0.088 0.000 0.000 0.000
#> GSM198635     2  0.2471    0.59424 0.136 0.864 0.000 0.000 0.000
#> GSM198636     1  0.0404    0.87016 0.988 0.012 0.000 0.000 0.000
#> GSM198639     5  0.3589    0.45177 0.000 0.004 0.132 0.040 0.824
#> GSM198641     2  0.1341    0.61475 0.056 0.944 0.000 0.000 0.000
#> GSM198642     1  0.4997    0.24383 0.520 0.012 0.456 0.000 0.012
#> GSM198643     1  0.0404    0.86540 0.988 0.000 0.000 0.000 0.012
#> GSM198644     5  0.4918    0.28646 0.000 0.128 0.004 0.140 0.728
#> GSM198645     1  0.7239   -0.00109 0.412 0.032 0.356 0.000 0.200
#> GSM198649     4  0.0000    0.87269 0.000 0.000 0.000 1.000 0.000
#> GSM198651     2  0.5344    0.57379 0.000 0.672 0.000 0.160 0.168
#> GSM198653     4  0.3734    0.70228 0.000 0.060 0.000 0.812 0.128
#> GSM198654     3  0.2233    0.86686 0.000 0.016 0.904 0.000 0.080
#> GSM198655     5  0.4779   -0.01758 0.000 0.016 0.396 0.004 0.584
#> GSM198656     3  0.0510    0.84466 0.000 0.016 0.984 0.000 0.000
#> GSM198657     3  0.0510    0.84466 0.000 0.016 0.984 0.000 0.000
#> GSM198658     3  0.2233    0.86686 0.000 0.016 0.904 0.000 0.080
#> GSM198659     4  0.0290    0.86833 0.000 0.000 0.000 0.992 0.008
#> GSM198660     3  0.2289    0.86381 0.000 0.004 0.904 0.012 0.080
#> GSM198662     3  0.4712    0.64978 0.000 0.000 0.732 0.168 0.100
#> GSM198663     2  0.6178    0.46204 0.000 0.536 0.000 0.296 0.168
#> GSM198664     2  0.6004    0.51574 0.000 0.576 0.000 0.256 0.168
#> GSM198665     3  0.4401    0.54285 0.000 0.016 0.656 0.000 0.328
#> GSM198616     1  0.0000    0.87232 1.000 0.000 0.000 0.000 0.000
#> GSM198617     4  0.3707    0.51770 0.000 0.000 0.000 0.716 0.284
#> GSM198619     5  0.4297   -0.04011 0.472 0.000 0.000 0.000 0.528
#> GSM198620     4  0.0000    0.87269 0.000 0.000 0.000 1.000 0.000
#> GSM198621     5  0.3999    0.25105 0.000 0.000 0.000 0.344 0.656
#> GSM198624     1  0.0510    0.86764 0.984 0.016 0.000 0.000 0.000
#> GSM198625     1  0.0290    0.87163 0.992 0.008 0.000 0.000 0.000
#> GSM198637     2  0.5229    0.38277 0.324 0.612 0.000 0.000 0.064
#> GSM198638     2  0.5931    0.54747 0.000 0.596 0.000 0.204 0.200
#> GSM198640     1  0.0290    0.87163 0.992 0.008 0.000 0.000 0.000
#> GSM198646     4  0.0000    0.87269 0.000 0.000 0.000 1.000 0.000
#> GSM198647     4  0.0000    0.87269 0.000 0.000 0.000 1.000 0.000
#> GSM198648     4  0.0000    0.87269 0.000 0.000 0.000 1.000 0.000
#> GSM198650     3  0.2233    0.86686 0.000 0.016 0.904 0.000 0.080
#> GSM198652     4  0.7247    0.26310 0.000 0.052 0.208 0.504 0.236
#> GSM198661     3  0.0510    0.84466 0.000 0.016 0.984 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     4  0.0000     0.8831 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198622     5  0.3714     0.5264 0.340 0.004 0.000 0.000 0.656 0.000
#> GSM198623     3  0.4440     0.2012 0.420 0.016 0.556 0.000 0.000 0.008
#> GSM198626     1  0.0000     0.9674 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198627     1  0.0146     0.9673 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM198628     1  0.0000     0.9674 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198629     1  0.0146     0.9673 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM198630     1  0.0000     0.9674 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198631     1  0.0000     0.9674 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198632     1  0.0779     0.9613 0.976 0.008 0.000 0.000 0.008 0.008
#> GSM198633     5  0.1049     0.6783 0.032 0.008 0.000 0.000 0.960 0.000
#> GSM198634     1  0.2664     0.7397 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM198635     5  0.1814     0.7175 0.100 0.000 0.000 0.000 0.900 0.000
#> GSM198636     1  0.0767     0.9565 0.976 0.008 0.000 0.000 0.012 0.004
#> GSM198639     6  0.1672     0.5062 0.000 0.048 0.016 0.000 0.004 0.932
#> GSM198641     5  0.1257     0.6395 0.020 0.028 0.000 0.000 0.952 0.000
#> GSM198642     3  0.4721     0.1870 0.420 0.032 0.540 0.000 0.000 0.008
#> GSM198643     1  0.1851     0.9119 0.928 0.036 0.024 0.000 0.000 0.012
#> GSM198644     2  0.6033    -0.0573 0.000 0.496 0.000 0.064 0.072 0.368
#> GSM198645     3  0.7897     0.0938 0.192 0.152 0.444 0.000 0.056 0.156
#> GSM198649     4  0.0000     0.8831 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198651     2  0.5359     0.4909 0.000 0.500 0.000 0.096 0.400 0.004
#> GSM198653     4  0.4204     0.4249 0.000 0.252 0.000 0.696 0.052 0.000
#> GSM198654     3  0.4544     0.5513 0.000 0.292 0.652 0.000 0.004 0.052
#> GSM198655     6  0.5767     0.1714 0.000 0.300 0.180 0.000 0.004 0.516
#> GSM198656     3  0.0146     0.5642 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM198657     3  0.0146     0.5642 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM198658     3  0.4291     0.5584 0.000 0.268 0.680 0.000 0.000 0.052
#> GSM198659     4  0.1007     0.8520 0.000 0.044 0.000 0.956 0.000 0.000
#> GSM198660     3  0.4829     0.5405 0.000 0.240 0.672 0.016 0.000 0.072
#> GSM198662     3  0.6885     0.3056 0.000 0.156 0.504 0.196 0.000 0.144
#> GSM198663     2  0.6089     0.5266 0.000 0.388 0.000 0.288 0.324 0.000
#> GSM198664     2  0.5952     0.5411 0.000 0.424 0.000 0.224 0.352 0.000
#> GSM198665     3  0.6015     0.3090 0.000 0.312 0.460 0.000 0.004 0.224
#> GSM198616     1  0.0520     0.9639 0.984 0.008 0.000 0.000 0.000 0.008
#> GSM198617     4  0.3672     0.3812 0.000 0.000 0.000 0.632 0.000 0.368
#> GSM198619     6  0.4013     0.3675 0.280 0.016 0.004 0.000 0.004 0.696
#> GSM198620     4  0.0000     0.8831 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198621     6  0.2941     0.4292 0.000 0.000 0.000 0.220 0.000 0.780
#> GSM198624     1  0.0436     0.9658 0.988 0.004 0.000 0.000 0.004 0.004
#> GSM198625     1  0.0146     0.9673 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM198637     5  0.4811     0.6359 0.160 0.032 0.000 0.000 0.716 0.092
#> GSM198638     2  0.6066     0.4927 0.000 0.472 0.000 0.112 0.380 0.036
#> GSM198640     1  0.1218     0.9454 0.956 0.012 0.000 0.000 0.028 0.004
#> GSM198646     4  0.0000     0.8831 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198647     4  0.0000     0.8831 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198648     4  0.0260     0.8790 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM198650     3  0.4332     0.5562 0.000 0.276 0.672 0.000 0.000 0.052
#> GSM198652     2  0.5793     0.2215 0.000 0.612 0.088 0.252 0.016 0.032
#> GSM198661     3  0.0405     0.5658 0.000 0.008 0.988 0.000 0.004 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> ATC:skmeans 50            0.619 2
#> ATC:skmeans 46            0.293 3
#> ATC:skmeans 42            0.166 4
#> ATC:skmeans 38            0.329 5
#> ATC:skmeans 36            0.556 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.956       0.982          0.247 0.754   0.754
#> 3 3 0.963           0.941       0.978          0.941 0.771   0.697
#> 4 4 0.881           0.883       0.950          0.221 0.909   0.828
#> 5 5 0.852           0.857       0.931          0.218 0.873   0.713
#> 6 6 0.737           0.754       0.875          0.141 0.809   0.445

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     1  0.7602      0.697 0.780 0.220
#> GSM198622     1  0.0000      0.988 1.000 0.000
#> GSM198623     1  0.0000      0.988 1.000 0.000
#> GSM198626     1  0.0376      0.986 0.996 0.004
#> GSM198627     1  0.0376      0.986 0.996 0.004
#> GSM198628     1  0.0376      0.986 0.996 0.004
#> GSM198629     1  0.0376      0.986 0.996 0.004
#> GSM198630     1  0.0376      0.986 0.996 0.004
#> GSM198631     1  0.0376      0.986 0.996 0.004
#> GSM198632     1  0.0000      0.988 1.000 0.000
#> GSM198633     1  0.0000      0.988 1.000 0.000
#> GSM198634     1  0.0376      0.986 0.996 0.004
#> GSM198635     1  0.0000      0.988 1.000 0.000
#> GSM198636     1  0.0000      0.988 1.000 0.000
#> GSM198639     1  0.0000      0.988 1.000 0.000
#> GSM198641     1  0.0000      0.988 1.000 0.000
#> GSM198642     1  0.0376      0.986 0.996 0.004
#> GSM198643     1  0.0000      0.988 1.000 0.000
#> GSM198644     1  0.0000      0.988 1.000 0.000
#> GSM198645     1  0.0000      0.988 1.000 0.000
#> GSM198649     2  0.0376      0.931 0.004 0.996
#> GSM198651     1  0.0000      0.988 1.000 0.000
#> GSM198653     2  0.9732      0.304 0.404 0.596
#> GSM198654     1  0.0000      0.988 1.000 0.000
#> GSM198655     1  0.0000      0.988 1.000 0.000
#> GSM198656     1  0.0000      0.988 1.000 0.000
#> GSM198657     1  0.0000      0.988 1.000 0.000
#> GSM198658     1  0.0000      0.988 1.000 0.000
#> GSM198659     2  0.0376      0.931 0.004 0.996
#> GSM198660     1  0.0000      0.988 1.000 0.000
#> GSM198662     1  0.0000      0.988 1.000 0.000
#> GSM198663     1  0.7453      0.711 0.788 0.212
#> GSM198664     1  0.0000      0.988 1.000 0.000
#> GSM198665     1  0.0000      0.988 1.000 0.000
#> GSM198616     1  0.0376      0.986 0.996 0.004
#> GSM198617     1  0.0000      0.988 1.000 0.000
#> GSM198619     1  0.0000      0.988 1.000 0.000
#> GSM198620     2  0.0376      0.931 0.004 0.996
#> GSM198621     1  0.0000      0.988 1.000 0.000
#> GSM198624     1  0.0000      0.988 1.000 0.000
#> GSM198625     1  0.0376      0.986 0.996 0.004
#> GSM198637     1  0.0000      0.988 1.000 0.000
#> GSM198638     1  0.0000      0.988 1.000 0.000
#> GSM198640     1  0.0000      0.988 1.000 0.000
#> GSM198646     2  0.0376      0.931 0.004 0.996
#> GSM198647     2  0.0376      0.931 0.004 0.996
#> GSM198648     2  0.0376      0.931 0.004 0.996
#> GSM198650     1  0.0000      0.988 1.000 0.000
#> GSM198652     1  0.0000      0.988 1.000 0.000
#> GSM198661     1  0.0000      0.988 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     3  0.4796      0.699 0.000 0.220 0.780
#> GSM198622     3  0.0237      0.977 0.004 0.000 0.996
#> GSM198623     3  0.0237      0.977 0.004 0.000 0.996
#> GSM198626     1  0.0000      1.000 1.000 0.000 0.000
#> GSM198627     1  0.0000      1.000 1.000 0.000 0.000
#> GSM198628     1  0.0000      1.000 1.000 0.000 0.000
#> GSM198629     1  0.0000      1.000 1.000 0.000 0.000
#> GSM198630     1  0.0000      1.000 1.000 0.000 0.000
#> GSM198631     1  0.0000      1.000 1.000 0.000 0.000
#> GSM198632     3  0.0237      0.977 0.004 0.000 0.996
#> GSM198633     3  0.0237      0.977 0.004 0.000 0.996
#> GSM198634     3  0.4504      0.752 0.196 0.000 0.804
#> GSM198635     3  0.0237      0.977 0.004 0.000 0.996
#> GSM198636     3  0.0424      0.974 0.008 0.000 0.992
#> GSM198639     3  0.0000      0.978 0.000 0.000 1.000
#> GSM198641     3  0.0237      0.977 0.004 0.000 0.996
#> GSM198642     3  0.0592      0.971 0.012 0.000 0.988
#> GSM198643     3  0.0237      0.977 0.004 0.000 0.996
#> GSM198644     3  0.0000      0.978 0.000 0.000 1.000
#> GSM198645     3  0.0000      0.978 0.000 0.000 1.000
#> GSM198649     2  0.0000      0.883 0.000 1.000 0.000
#> GSM198651     3  0.0000      0.978 0.000 0.000 1.000
#> GSM198653     2  0.6126      0.295 0.000 0.600 0.400
#> GSM198654     3  0.0000      0.978 0.000 0.000 1.000
#> GSM198655     3  0.0000      0.978 0.000 0.000 1.000
#> GSM198656     3  0.0000      0.978 0.000 0.000 1.000
#> GSM198657     3  0.0000      0.978 0.000 0.000 1.000
#> GSM198658     3  0.0000      0.978 0.000 0.000 1.000
#> GSM198659     2  0.0592      0.873 0.000 0.988 0.012
#> GSM198660     3  0.0000      0.978 0.000 0.000 1.000
#> GSM198662     3  0.0000      0.978 0.000 0.000 1.000
#> GSM198663     3  0.4605      0.729 0.000 0.204 0.796
#> GSM198664     3  0.0000      0.978 0.000 0.000 1.000
#> GSM198665     3  0.0000      0.978 0.000 0.000 1.000
#> GSM198616     1  0.0000      1.000 1.000 0.000 0.000
#> GSM198617     3  0.0000      0.978 0.000 0.000 1.000
#> GSM198619     3  0.0000      0.978 0.000 0.000 1.000
#> GSM198620     2  0.0000      0.883 0.000 1.000 0.000
#> GSM198621     3  0.0000      0.978 0.000 0.000 1.000
#> GSM198624     3  0.0237      0.977 0.004 0.000 0.996
#> GSM198625     1  0.0000      1.000 1.000 0.000 0.000
#> GSM198637     3  0.0000      0.978 0.000 0.000 1.000
#> GSM198638     3  0.0000      0.978 0.000 0.000 1.000
#> GSM198640     3  0.0237      0.977 0.004 0.000 0.996
#> GSM198646     2  0.0000      0.883 0.000 1.000 0.000
#> GSM198647     2  0.0000      0.883 0.000 1.000 0.000
#> GSM198648     2  0.0000      0.883 0.000 1.000 0.000
#> GSM198650     3  0.0000      0.978 0.000 0.000 1.000
#> GSM198652     3  0.0000      0.978 0.000 0.000 1.000
#> GSM198661     3  0.0000      0.978 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     2  0.0707      0.855 0.000 0.980 0.020 0.000
#> GSM198622     3  0.4699      0.558 0.004 0.320 0.676 0.000
#> GSM198623     3  0.0779      0.921 0.004 0.016 0.980 0.000
#> GSM198626     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> GSM198627     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> GSM198628     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> GSM198629     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> GSM198630     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> GSM198631     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> GSM198632     3  0.0779      0.921 0.004 0.016 0.980 0.000
#> GSM198633     3  0.0657      0.922 0.004 0.012 0.984 0.000
#> GSM198634     3  0.3925      0.728 0.176 0.016 0.808 0.000
#> GSM198635     3  0.4699      0.558 0.004 0.320 0.676 0.000
#> GSM198636     3  0.0927      0.919 0.008 0.016 0.976 0.000
#> GSM198639     3  0.0000      0.927 0.000 0.000 1.000 0.000
#> GSM198641     3  0.4905      0.458 0.004 0.364 0.632 0.000
#> GSM198642     3  0.0927      0.920 0.008 0.016 0.976 0.000
#> GSM198643     3  0.0779      0.921 0.004 0.016 0.980 0.000
#> GSM198644     3  0.0000      0.927 0.000 0.000 1.000 0.000
#> GSM198645     3  0.0000      0.927 0.000 0.000 1.000 0.000
#> GSM198649     4  0.0000      0.976 0.000 0.000 0.000 1.000
#> GSM198651     2  0.4356      0.509 0.000 0.708 0.292 0.000
#> GSM198653     2  0.0707      0.836 0.000 0.980 0.000 0.020
#> GSM198654     3  0.0188      0.926 0.000 0.004 0.996 0.000
#> GSM198655     3  0.0000      0.927 0.000 0.000 1.000 0.000
#> GSM198656     3  0.0336      0.926 0.000 0.008 0.992 0.000
#> GSM198657     3  0.0188      0.926 0.000 0.004 0.996 0.000
#> GSM198658     3  0.0188      0.926 0.000 0.004 0.996 0.000
#> GSM198659     2  0.0804      0.851 0.000 0.980 0.012 0.008
#> GSM198660     3  0.0000      0.927 0.000 0.000 1.000 0.000
#> GSM198662     3  0.0188      0.926 0.000 0.004 0.996 0.000
#> GSM198663     2  0.0707      0.855 0.000 0.980 0.020 0.000
#> GSM198664     3  0.4477      0.550 0.000 0.312 0.688 0.000
#> GSM198665     3  0.0188      0.926 0.000 0.004 0.996 0.000
#> GSM198616     1  0.0592      0.980 0.984 0.016 0.000 0.000
#> GSM198617     3  0.0000      0.927 0.000 0.000 1.000 0.000
#> GSM198619     3  0.0000      0.927 0.000 0.000 1.000 0.000
#> GSM198620     4  0.0000      0.976 0.000 0.000 0.000 1.000
#> GSM198621     3  0.0000      0.927 0.000 0.000 1.000 0.000
#> GSM198624     3  0.0779      0.921 0.004 0.016 0.980 0.000
#> GSM198625     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> GSM198637     3  0.0000      0.927 0.000 0.000 1.000 0.000
#> GSM198638     3  0.4382      0.579 0.000 0.296 0.704 0.000
#> GSM198640     3  0.0779      0.921 0.004 0.016 0.980 0.000
#> GSM198646     4  0.0000      0.976 0.000 0.000 0.000 1.000
#> GSM198647     4  0.0000      0.976 0.000 0.000 0.000 1.000
#> GSM198648     4  0.2281      0.894 0.000 0.096 0.000 0.904
#> GSM198650     3  0.0188      0.926 0.000 0.004 0.996 0.000
#> GSM198652     3  0.0188      0.926 0.000 0.004 0.996 0.000
#> GSM198661     3  0.0188      0.926 0.000 0.004 0.996 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     2  0.0000      0.875 0.000 1.000 0.000 0.000 0.000
#> GSM198622     5  0.3969      0.552 0.000 0.304 0.004 0.000 0.692
#> GSM198623     5  0.1341      0.864 0.000 0.000 0.056 0.000 0.944
#> GSM198626     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM198627     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM198628     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM198629     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM198630     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM198631     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM198632     5  0.0162      0.867 0.000 0.000 0.004 0.000 0.996
#> GSM198633     5  0.0000      0.868 0.000 0.000 0.000 0.000 1.000
#> GSM198634     5  0.2930      0.726 0.164 0.000 0.004 0.000 0.832
#> GSM198635     5  0.3969      0.552 0.000 0.304 0.004 0.000 0.692
#> GSM198636     5  0.0290      0.868 0.000 0.000 0.008 0.000 0.992
#> GSM198639     5  0.0963      0.871 0.000 0.000 0.036 0.000 0.964
#> GSM198641     5  0.4030      0.457 0.000 0.352 0.000 0.000 0.648
#> GSM198642     5  0.1493      0.860 0.028 0.000 0.024 0.000 0.948
#> GSM198643     5  0.0290      0.868 0.000 0.000 0.008 0.000 0.992
#> GSM198644     5  0.0963      0.871 0.000 0.000 0.036 0.000 0.964
#> GSM198645     5  0.0963      0.871 0.000 0.000 0.036 0.000 0.964
#> GSM198649     4  0.0000      0.976 0.000 0.000 0.000 1.000 0.000
#> GSM198651     2  0.4350      0.517 0.000 0.704 0.028 0.000 0.268
#> GSM198653     2  0.0000      0.875 0.000 1.000 0.000 0.000 0.000
#> GSM198654     3  0.0162      0.980 0.000 0.000 0.996 0.000 0.004
#> GSM198655     5  0.1478      0.865 0.000 0.000 0.064 0.000 0.936
#> GSM198656     3  0.1410      0.896 0.000 0.000 0.940 0.000 0.060
#> GSM198657     5  0.4015      0.515 0.000 0.000 0.348 0.000 0.652
#> GSM198658     3  0.0162      0.980 0.000 0.000 0.996 0.000 0.004
#> GSM198659     2  0.0000      0.875 0.000 1.000 0.000 0.000 0.000
#> GSM198660     5  0.2605      0.805 0.000 0.000 0.148 0.000 0.852
#> GSM198662     3  0.0162      0.980 0.000 0.000 0.996 0.000 0.004
#> GSM198663     2  0.0000      0.875 0.000 1.000 0.000 0.000 0.000
#> GSM198664     5  0.4503      0.544 0.000 0.312 0.024 0.000 0.664
#> GSM198665     5  0.1732      0.859 0.000 0.000 0.080 0.000 0.920
#> GSM198616     1  0.1041      0.955 0.964 0.000 0.004 0.000 0.032
#> GSM198617     5  0.1965      0.850 0.000 0.000 0.096 0.000 0.904
#> GSM198619     5  0.0880      0.871 0.000 0.000 0.032 0.000 0.968
#> GSM198620     4  0.0000      0.976 0.000 0.000 0.000 1.000 0.000
#> GSM198621     5  0.0963      0.871 0.000 0.000 0.036 0.000 0.964
#> GSM198624     5  0.0162      0.867 0.000 0.000 0.004 0.000 0.996
#> GSM198625     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000
#> GSM198637     5  0.0703      0.871 0.000 0.000 0.024 0.000 0.976
#> GSM198638     5  0.4657      0.575 0.000 0.296 0.036 0.000 0.668
#> GSM198640     5  0.0290      0.868 0.000 0.000 0.008 0.000 0.992
#> GSM198646     4  0.0000      0.976 0.000 0.000 0.000 1.000 0.000
#> GSM198647     4  0.0000      0.976 0.000 0.000 0.000 1.000 0.000
#> GSM198648     4  0.1965      0.894 0.000 0.096 0.000 0.904 0.000
#> GSM198650     3  0.0162      0.980 0.000 0.000 0.996 0.000 0.004
#> GSM198652     3  0.0162      0.980 0.000 0.000 0.996 0.000 0.004
#> GSM198661     5  0.1732      0.859 0.000 0.000 0.080 0.000 0.920

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     2  0.2562     0.7272 0.000 0.828 0.000 0.000 0.000 0.172
#> GSM198622     5  0.2562     0.6732 0.000 0.172 0.000 0.000 0.828 0.000
#> GSM198623     5  0.6056    -0.0559 0.000 0.000 0.316 0.000 0.408 0.276
#> GSM198626     1  0.0000     0.9645 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198627     1  0.0000     0.9645 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198628     1  0.0000     0.9645 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198629     1  0.2416     0.7759 0.844 0.000 0.000 0.000 0.156 0.000
#> GSM198630     1  0.0000     0.9645 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198631     1  0.0000     0.9645 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198632     5  0.0000     0.7737 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM198633     5  0.0632     0.7726 0.000 0.000 0.000 0.000 0.976 0.024
#> GSM198634     5  0.0260     0.7740 0.008 0.000 0.000 0.000 0.992 0.000
#> GSM198635     5  0.2562     0.6732 0.000 0.172 0.000 0.000 0.828 0.000
#> GSM198636     5  0.1444     0.7545 0.000 0.000 0.000 0.000 0.928 0.072
#> GSM198639     6  0.2562     0.8700 0.000 0.000 0.000 0.000 0.172 0.828
#> GSM198641     5  0.2562     0.6732 0.000 0.172 0.000 0.000 0.828 0.000
#> GSM198642     5  0.3725     0.4119 0.000 0.000 0.008 0.000 0.676 0.316
#> GSM198643     5  0.1863     0.7391 0.000 0.000 0.000 0.000 0.896 0.104
#> GSM198644     6  0.2562     0.8700 0.000 0.000 0.000 0.000 0.172 0.828
#> GSM198645     6  0.2562     0.8700 0.000 0.000 0.000 0.000 0.172 0.828
#> GSM198649     4  0.0000     0.8939 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198651     2  0.3447     0.7174 0.000 0.804 0.044 0.000 0.004 0.148
#> GSM198653     2  0.0000     0.8802 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM198654     3  0.0000     0.8202 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198655     6  0.2597     0.8695 0.000 0.000 0.000 0.000 0.176 0.824
#> GSM198656     3  0.0405     0.8158 0.000 0.000 0.988 0.000 0.004 0.008
#> GSM198657     3  0.4174     0.5960 0.000 0.000 0.736 0.000 0.172 0.092
#> GSM198658     3  0.0000     0.8202 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198659     2  0.0000     0.8802 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM198660     6  0.2730     0.8627 0.000 0.000 0.000 0.000 0.192 0.808
#> GSM198662     6  0.3288     0.5877 0.000 0.000 0.276 0.000 0.000 0.724
#> GSM198663     2  0.0000     0.8802 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM198664     5  0.5117     0.5329 0.000 0.172 0.000 0.000 0.628 0.200
#> GSM198665     6  0.2562     0.8700 0.000 0.000 0.000 0.000 0.172 0.828
#> GSM198616     5  0.3309     0.5381 0.280 0.000 0.000 0.000 0.720 0.000
#> GSM198617     6  0.0146     0.7746 0.000 0.000 0.004 0.000 0.000 0.996
#> GSM198619     6  0.3288     0.7898 0.000 0.000 0.000 0.000 0.276 0.724
#> GSM198620     4  0.0000     0.8939 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198621     6  0.0458     0.7732 0.000 0.000 0.000 0.000 0.016 0.984
#> GSM198624     5  0.0000     0.7737 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM198625     1  0.0000     0.9645 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198637     5  0.2969     0.5413 0.000 0.000 0.000 0.000 0.776 0.224
#> GSM198638     6  0.2562     0.7281 0.000 0.172 0.000 0.000 0.000 0.828
#> GSM198640     5  0.1863     0.7391 0.000 0.000 0.000 0.000 0.896 0.104
#> GSM198646     4  0.0000     0.8939 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198647     4  0.2562     0.7897 0.000 0.000 0.000 0.828 0.000 0.172
#> GSM198648     4  0.2996     0.6754 0.000 0.228 0.000 0.772 0.000 0.000
#> GSM198650     3  0.0000     0.8202 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198652     3  0.0000     0.8202 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198661     3  0.5713     0.0371 0.000 0.000 0.476 0.000 0.172 0.352

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> ATC:pam 49           0.1522 2
#> ATC:pam 49           0.1624 3
#> ATC:pam 49           0.0518 4
#> ATC:pam 49           0.1016 5
#> ATC:pam 47           0.1182 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.512           0.824       0.902         0.4959 0.493   0.493
#> 3 3 0.321           0.532       0.698         0.1994 0.669   0.422
#> 4 4 0.832           0.799       0.921         0.1883 0.805   0.514
#> 5 5 0.809           0.859       0.906         0.0872 0.926   0.747
#> 6 6 0.899           0.831       0.926         0.0406 0.971   0.871

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     1   0.000     0.8830 1.000 0.000
#> GSM198622     2   0.991     0.0211 0.444 0.556
#> GSM198623     2   0.973     0.1944 0.404 0.596
#> GSM198626     1   0.518     0.8979 0.884 0.116
#> GSM198627     1   0.518     0.8979 0.884 0.116
#> GSM198628     1   0.518     0.8979 0.884 0.116
#> GSM198629     1   0.518     0.8979 0.884 0.116
#> GSM198630     1   0.518     0.8979 0.884 0.116
#> GSM198631     1   0.518     0.8979 0.884 0.116
#> GSM198632     1   0.518     0.8979 0.884 0.116
#> GSM198633     2   0.118     0.9037 0.016 0.984
#> GSM198634     1   0.980     0.4228 0.584 0.416
#> GSM198635     2   0.327     0.8847 0.060 0.940
#> GSM198636     1   0.518     0.8979 0.884 0.116
#> GSM198639     1   0.163     0.8773 0.976 0.024
#> GSM198641     2   0.327     0.8847 0.060 0.940
#> GSM198642     2   0.653     0.7424 0.168 0.832
#> GSM198643     1   0.552     0.8908 0.872 0.128
#> GSM198644     2   0.000     0.9087 0.000 1.000
#> GSM198645     2   0.000     0.9087 0.000 1.000
#> GSM198649     1   0.000     0.8830 1.000 0.000
#> GSM198651     2   0.327     0.8847 0.060 0.940
#> GSM198653     2   0.518     0.8368 0.116 0.884
#> GSM198654     2   0.000     0.9087 0.000 1.000
#> GSM198655     2   0.680     0.7267 0.180 0.820
#> GSM198656     2   0.000     0.9087 0.000 1.000
#> GSM198657     2   0.000     0.9087 0.000 1.000
#> GSM198658     2   0.000     0.9087 0.000 1.000
#> GSM198659     1   0.000     0.8830 1.000 0.000
#> GSM198660     2   0.000     0.9087 0.000 1.000
#> GSM198662     1   0.997    -0.1026 0.532 0.468
#> GSM198663     2   0.518     0.8368 0.116 0.884
#> GSM198664     2   0.327     0.8847 0.060 0.940
#> GSM198665     2   0.000     0.9087 0.000 1.000
#> GSM198616     1   0.518     0.8979 0.884 0.116
#> GSM198617     1   0.000     0.8830 1.000 0.000
#> GSM198619     1   0.000     0.8830 1.000 0.000
#> GSM198620     1   0.000     0.8830 1.000 0.000
#> GSM198621     1   0.224     0.8726 0.964 0.036
#> GSM198624     1   0.518     0.8979 0.884 0.116
#> GSM198625     1   0.518     0.8979 0.884 0.116
#> GSM198637     1   0.644     0.8627 0.836 0.164
#> GSM198638     2   0.000     0.9087 0.000 1.000
#> GSM198640     1   0.714     0.8302 0.804 0.196
#> GSM198646     1   0.000     0.8830 1.000 0.000
#> GSM198647     1   0.000     0.8830 1.000 0.000
#> GSM198648     1   0.000     0.8830 1.000 0.000
#> GSM198650     2   0.000     0.9087 0.000 1.000
#> GSM198652     2   0.000     0.9087 0.000 1.000
#> GSM198661     2   0.000     0.9087 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     2  0.3879      0.615 0.000 0.848 0.152
#> GSM198622     1  0.6225      0.507 0.568 0.000 0.432
#> GSM198623     3  0.5591      0.266 0.304 0.000 0.696
#> GSM198626     1  0.0237      0.644 0.996 0.000 0.004
#> GSM198627     1  0.1031      0.643 0.976 0.000 0.024
#> GSM198628     1  0.0237      0.644 0.996 0.000 0.004
#> GSM198629     1  0.5138      0.629 0.748 0.000 0.252
#> GSM198630     1  0.0237      0.644 0.996 0.000 0.004
#> GSM198631     1  0.0237      0.644 0.996 0.000 0.004
#> GSM198632     1  0.6192      0.537 0.580 0.000 0.420
#> GSM198633     2  0.7578      0.500 0.040 0.500 0.460
#> GSM198634     1  0.8683      0.386 0.592 0.236 0.172
#> GSM198635     2  0.7059      0.518 0.020 0.520 0.460
#> GSM198636     1  0.6168      0.547 0.588 0.000 0.412
#> GSM198639     2  0.9231      0.445 0.300 0.516 0.184
#> GSM198641     2  0.7059      0.518 0.020 0.520 0.460
#> GSM198642     3  0.5678      0.227 0.316 0.000 0.684
#> GSM198643     1  0.6168      0.544 0.588 0.000 0.412
#> GSM198644     3  0.6301      0.382 0.028 0.260 0.712
#> GSM198645     3  0.5016      0.397 0.240 0.000 0.760
#> GSM198649     2  0.0000      0.578 0.000 1.000 0.000
#> GSM198651     2  0.6941      0.515 0.016 0.520 0.464
#> GSM198653     2  0.6154      0.560 0.000 0.592 0.408
#> GSM198654     3  0.5363      0.353 0.000 0.276 0.724
#> GSM198655     3  0.7507      0.289 0.288 0.068 0.644
#> GSM198656     3  0.0000      0.693 0.000 0.000 1.000
#> GSM198657     3  0.0424      0.694 0.008 0.000 0.992
#> GSM198658     3  0.0892      0.689 0.000 0.020 0.980
#> GSM198659     2  0.4178      0.617 0.000 0.828 0.172
#> GSM198660     3  0.0424      0.694 0.008 0.000 0.992
#> GSM198662     2  0.9333      0.486 0.216 0.516 0.268
#> GSM198663     2  0.6410      0.554 0.004 0.576 0.420
#> GSM198664     2  0.6941      0.515 0.016 0.520 0.464
#> GSM198665     3  0.4121      0.536 0.168 0.000 0.832
#> GSM198616     1  0.5098      0.630 0.752 0.000 0.248
#> GSM198617     2  0.9153      0.454 0.300 0.524 0.176
#> GSM198619     2  0.9133      0.453 0.304 0.524 0.172
#> GSM198620     2  0.0000      0.578 0.000 1.000 0.000
#> GSM198621     2  0.9153      0.454 0.300 0.524 0.176
#> GSM198624     1  0.6095      0.553 0.608 0.000 0.392
#> GSM198625     1  0.1289      0.641 0.968 0.000 0.032
#> GSM198637     1  0.6483      0.458 0.544 0.004 0.452
#> GSM198638     3  0.5919      0.346 0.012 0.276 0.712
#> GSM198640     1  0.6180      0.546 0.584 0.000 0.416
#> GSM198646     2  0.0000      0.578 0.000 1.000 0.000
#> GSM198647     2  0.0000      0.578 0.000 1.000 0.000
#> GSM198648     2  0.0000      0.578 0.000 1.000 0.000
#> GSM198650     3  0.1163      0.684 0.000 0.028 0.972
#> GSM198652     3  0.5363      0.353 0.000 0.276 0.724
#> GSM198661     3  0.0000      0.693 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     4  0.5038     0.6087 0.000 0.296 0.020 0.684
#> GSM198622     1  0.0469     0.9047 0.988 0.000 0.012 0.000
#> GSM198623     3  0.1302     0.9039 0.044 0.000 0.956 0.000
#> GSM198626     1  0.0336     0.9031 0.992 0.008 0.000 0.000
#> GSM198627     1  0.0336     0.9031 0.992 0.008 0.000 0.000
#> GSM198628     1  0.0336     0.9031 0.992 0.008 0.000 0.000
#> GSM198629     1  0.0336     0.9031 0.992 0.008 0.000 0.000
#> GSM198630     1  0.0336     0.9031 0.992 0.008 0.000 0.000
#> GSM198631     1  0.0336     0.9031 0.992 0.008 0.000 0.000
#> GSM198632     1  0.0469     0.9047 0.988 0.000 0.012 0.000
#> GSM198633     1  0.5396    -0.0234 0.524 0.464 0.012 0.000
#> GSM198634     1  0.0469     0.9047 0.988 0.000 0.012 0.000
#> GSM198635     2  0.4891     0.4799 0.308 0.680 0.012 0.000
#> GSM198636     1  0.0469     0.9047 0.988 0.000 0.012 0.000
#> GSM198639     3  0.4866     0.3461 0.404 0.000 0.596 0.000
#> GSM198641     2  0.0804     0.8072 0.008 0.980 0.012 0.000
#> GSM198642     3  0.1792     0.8792 0.068 0.000 0.932 0.000
#> GSM198643     1  0.0469     0.9047 0.988 0.000 0.012 0.000
#> GSM198644     3  0.3528     0.7626 0.192 0.000 0.808 0.000
#> GSM198645     3  0.2530     0.8569 0.112 0.000 0.888 0.000
#> GSM198649     4  0.0000     0.8752 0.000 0.000 0.000 1.000
#> GSM198651     2  0.0707     0.8108 0.000 0.980 0.020 0.000
#> GSM198653     2  0.0336     0.8051 0.000 0.992 0.008 0.000
#> GSM198654     3  0.0000     0.9157 0.000 0.000 1.000 0.000
#> GSM198655     3  0.1716     0.8895 0.064 0.000 0.936 0.000
#> GSM198656     3  0.0336     0.9140 0.008 0.000 0.992 0.000
#> GSM198657     3  0.0336     0.9140 0.008 0.000 0.992 0.000
#> GSM198658     3  0.0000     0.9157 0.000 0.000 1.000 0.000
#> GSM198659     4  0.5414     0.4877 0.000 0.376 0.020 0.604
#> GSM198660     3  0.0000     0.9157 0.000 0.000 1.000 0.000
#> GSM198662     3  0.0000     0.9157 0.000 0.000 1.000 0.000
#> GSM198663     2  0.0336     0.8051 0.000 0.992 0.008 0.000
#> GSM198664     2  0.0707     0.8108 0.000 0.980 0.020 0.000
#> GSM198665     3  0.0000     0.9157 0.000 0.000 1.000 0.000
#> GSM198616     1  0.0000     0.9034 1.000 0.000 0.000 0.000
#> GSM198617     3  0.3088     0.8330 0.128 0.000 0.864 0.008
#> GSM198619     1  0.4477     0.4810 0.688 0.000 0.312 0.000
#> GSM198620     4  0.0000     0.8752 0.000 0.000 0.000 1.000
#> GSM198621     1  0.4972     0.0668 0.544 0.000 0.456 0.000
#> GSM198624     1  0.0469     0.9047 0.988 0.000 0.012 0.000
#> GSM198625     1  0.0336     0.9031 0.992 0.008 0.000 0.000
#> GSM198637     1  0.0592     0.9022 0.984 0.000 0.016 0.000
#> GSM198638     2  0.5298     0.3660 0.016 0.612 0.372 0.000
#> GSM198640     1  0.0469     0.9047 0.988 0.000 0.012 0.000
#> GSM198646     4  0.0000     0.8752 0.000 0.000 0.000 1.000
#> GSM198647     4  0.0000     0.8752 0.000 0.000 0.000 1.000
#> GSM198648     4  0.0000     0.8752 0.000 0.000 0.000 1.000
#> GSM198650     3  0.0000     0.9157 0.000 0.000 1.000 0.000
#> GSM198652     3  0.0188     0.9138 0.000 0.004 0.996 0.000
#> GSM198661     3  0.0188     0.9152 0.004 0.000 0.996 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     4  0.4394      0.723 0.000 0.048 0.000 0.732 0.220
#> GSM198622     1  0.1981      0.943 0.924 0.028 0.000 0.000 0.048
#> GSM198623     3  0.3377      0.765 0.076 0.012 0.856 0.000 0.056
#> GSM198626     1  0.0000      0.943 1.000 0.000 0.000 0.000 0.000
#> GSM198627     1  0.0000      0.943 1.000 0.000 0.000 0.000 0.000
#> GSM198628     1  0.0000      0.943 1.000 0.000 0.000 0.000 0.000
#> GSM198629     1  0.0000      0.943 1.000 0.000 0.000 0.000 0.000
#> GSM198630     1  0.0000      0.943 1.000 0.000 0.000 0.000 0.000
#> GSM198631     1  0.0000      0.943 1.000 0.000 0.000 0.000 0.000
#> GSM198632     1  0.1981      0.943 0.924 0.028 0.000 0.000 0.048
#> GSM198633     2  0.2962      0.796 0.084 0.868 0.000 0.000 0.048
#> GSM198634     1  0.1981      0.943 0.924 0.028 0.000 0.000 0.048
#> GSM198635     2  0.1197      0.870 0.000 0.952 0.000 0.000 0.048
#> GSM198636     1  0.1981      0.943 0.924 0.028 0.000 0.000 0.048
#> GSM198639     5  0.3336      0.957 0.000 0.000 0.228 0.000 0.772
#> GSM198641     2  0.1197      0.870 0.000 0.952 0.000 0.000 0.048
#> GSM198642     3  0.2710      0.808 0.032 0.016 0.896 0.000 0.056
#> GSM198643     1  0.4198      0.811 0.804 0.028 0.120 0.000 0.048
#> GSM198644     3  0.2798      0.728 0.140 0.000 0.852 0.000 0.008
#> GSM198645     3  0.2751      0.802 0.052 0.004 0.888 0.000 0.056
#> GSM198649     4  0.0000      0.887 0.000 0.000 0.000 1.000 0.000
#> GSM198651     2  0.1341      0.865 0.000 0.944 0.056 0.000 0.000
#> GSM198653     2  0.0794      0.859 0.000 0.972 0.000 0.000 0.028
#> GSM198654     3  0.2648      0.800 0.000 0.000 0.848 0.000 0.152
#> GSM198655     3  0.0290      0.857 0.000 0.000 0.992 0.000 0.008
#> GSM198656     3  0.0000      0.859 0.000 0.000 1.000 0.000 0.000
#> GSM198657     3  0.0000      0.859 0.000 0.000 1.000 0.000 0.000
#> GSM198658     3  0.2648      0.800 0.000 0.000 0.848 0.000 0.152
#> GSM198659     4  0.4276      0.717 0.000 0.256 0.000 0.716 0.028
#> GSM198660     3  0.0290      0.857 0.000 0.000 0.992 0.000 0.008
#> GSM198662     3  0.3424      0.551 0.000 0.000 0.760 0.000 0.240
#> GSM198663     2  0.0794      0.859 0.000 0.972 0.000 0.000 0.028
#> GSM198664     2  0.1197      0.870 0.000 0.952 0.048 0.000 0.000
#> GSM198665     3  0.0290      0.857 0.000 0.000 0.992 0.000 0.008
#> GSM198616     1  0.0963      0.945 0.964 0.000 0.000 0.000 0.036
#> GSM198617     5  0.3336      0.957 0.000 0.000 0.228 0.000 0.772
#> GSM198619     5  0.3368      0.869 0.000 0.024 0.156 0.000 0.820
#> GSM198620     4  0.0000      0.887 0.000 0.000 0.000 1.000 0.000
#> GSM198621     5  0.3336      0.957 0.000 0.000 0.228 0.000 0.772
#> GSM198624     1  0.1981      0.943 0.924 0.028 0.000 0.000 0.048
#> GSM198625     1  0.0000      0.943 1.000 0.000 0.000 0.000 0.000
#> GSM198637     1  0.3490      0.882 0.856 0.028 0.068 0.000 0.048
#> GSM198638     2  0.4047      0.500 0.004 0.676 0.320 0.000 0.000
#> GSM198640     1  0.1981      0.943 0.924 0.028 0.000 0.000 0.048
#> GSM198646     4  0.0000      0.887 0.000 0.000 0.000 1.000 0.000
#> GSM198647     4  0.0000      0.887 0.000 0.000 0.000 1.000 0.000
#> GSM198648     4  0.2561      0.824 0.000 0.144 0.000 0.856 0.000
#> GSM198650     3  0.2648      0.800 0.000 0.000 0.848 0.000 0.152
#> GSM198652     3  0.3141      0.792 0.000 0.016 0.832 0.000 0.152
#> GSM198661     3  0.0000      0.859 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     4  0.3309      0.819 0.000 0.004 0.000 0.788 0.016 0.192
#> GSM198622     1  0.1327      0.929 0.936 0.064 0.000 0.000 0.000 0.000
#> GSM198623     3  0.0405      0.869 0.004 0.008 0.988 0.000 0.000 0.000
#> GSM198626     1  0.0146      0.961 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM198627     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM198628     1  0.0146      0.961 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM198629     1  0.0146      0.961 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM198630     1  0.0146      0.961 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM198631     1  0.0146      0.961 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM198632     1  0.0458      0.960 0.984 0.016 0.000 0.000 0.000 0.000
#> GSM198633     2  0.0858      0.878 0.004 0.968 0.028 0.000 0.000 0.000
#> GSM198634     1  0.0547      0.959 0.980 0.020 0.000 0.000 0.000 0.000
#> GSM198635     2  0.0146      0.889 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM198636     1  0.0547      0.959 0.980 0.020 0.000 0.000 0.000 0.000
#> GSM198639     6  0.2178      0.897 0.000 0.000 0.132 0.000 0.000 0.868
#> GSM198641     2  0.0000      0.890 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM198642     3  0.0260      0.872 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM198643     1  0.3046      0.760 0.800 0.012 0.188 0.000 0.000 0.000
#> GSM198644     3  0.1594      0.796 0.052 0.016 0.932 0.000 0.000 0.000
#> GSM198645     3  0.0146      0.877 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM198649     4  0.0000      0.915 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198651     2  0.1967      0.848 0.000 0.904 0.012 0.000 0.084 0.000
#> GSM198653     2  0.1838      0.855 0.000 0.916 0.000 0.000 0.016 0.068
#> GSM198654     5  0.1863      0.657 0.000 0.000 0.104 0.000 0.896 0.000
#> GSM198655     3  0.0146      0.877 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM198656     3  0.0000      0.876 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198657     3  0.0000      0.876 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM198658     5  0.3857      0.148 0.000 0.000 0.468 0.000 0.532 0.000
#> GSM198659     4  0.4165      0.813 0.000 0.120 0.000 0.772 0.020 0.088
#> GSM198660     3  0.0146      0.877 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM198662     3  0.3737      0.279 0.000 0.000 0.608 0.000 0.000 0.392
#> GSM198663     2  0.1003      0.883 0.000 0.964 0.000 0.000 0.016 0.020
#> GSM198664     2  0.0405      0.889 0.000 0.988 0.008 0.000 0.004 0.000
#> GSM198665     3  0.0146      0.877 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM198616     1  0.0146      0.961 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM198617     6  0.1387      0.962 0.000 0.000 0.068 0.000 0.000 0.932
#> GSM198619     6  0.1524      0.954 0.000 0.008 0.060 0.000 0.000 0.932
#> GSM198620     4  0.0000      0.915 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198621     6  0.1387      0.962 0.000 0.000 0.068 0.000 0.000 0.932
#> GSM198624     1  0.0458      0.960 0.984 0.016 0.000 0.000 0.000 0.000
#> GSM198625     1  0.0146      0.962 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM198637     1  0.2282      0.885 0.888 0.024 0.088 0.000 0.000 0.000
#> GSM198638     2  0.3830      0.403 0.004 0.620 0.376 0.000 0.000 0.000
#> GSM198640     1  0.1807      0.917 0.920 0.020 0.060 0.000 0.000 0.000
#> GSM198646     4  0.0000      0.915 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198647     4  0.0000      0.915 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198648     4  0.2806      0.877 0.000 0.056 0.000 0.872 0.012 0.060
#> GSM198650     3  0.3864     -0.323 0.000 0.000 0.520 0.000 0.480 0.000
#> GSM198652     5  0.0692      0.601 0.000 0.004 0.020 0.000 0.976 0.000
#> GSM198661     3  0.0000      0.876 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> ATC:mclust 46           0.0814 2
#> ATC:mclust 35           1.0000 3
#> ATC:mclust 43           0.1042 4
#> ATC:mclust 50           0.0981 5
#> ATC:mclust 46           0.0421 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16753 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.998           0.970       0.985         0.4036 0.607   0.607
#> 3 3 0.543           0.744       0.847         0.5893 0.647   0.463
#> 4 4 0.858           0.842       0.930         0.1485 0.791   0.489
#> 5 5 0.742           0.699       0.841         0.0634 0.933   0.746
#> 6 6 0.737           0.645       0.822         0.0403 0.993   0.964

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM198618     2  0.0000      0.996 0.000 1.000
#> GSM198622     1  0.0000      0.981 1.000 0.000
#> GSM198623     1  0.0000      0.981 1.000 0.000
#> GSM198626     1  0.0000      0.981 1.000 0.000
#> GSM198627     1  0.0000      0.981 1.000 0.000
#> GSM198628     1  0.0000      0.981 1.000 0.000
#> GSM198629     1  0.0000      0.981 1.000 0.000
#> GSM198630     1  0.0000      0.981 1.000 0.000
#> GSM198631     1  0.0000      0.981 1.000 0.000
#> GSM198632     1  0.0000      0.981 1.000 0.000
#> GSM198633     1  0.0000      0.981 1.000 0.000
#> GSM198634     1  0.0000      0.981 1.000 0.000
#> GSM198635     1  0.0000      0.981 1.000 0.000
#> GSM198636     1  0.0000      0.981 1.000 0.000
#> GSM198639     1  0.0000      0.981 1.000 0.000
#> GSM198641     1  0.0000      0.981 1.000 0.000
#> GSM198642     1  0.0000      0.981 1.000 0.000
#> GSM198643     1  0.0000      0.981 1.000 0.000
#> GSM198644     1  0.0376      0.978 0.996 0.004
#> GSM198645     1  0.0000      0.981 1.000 0.000
#> GSM198649     2  0.0000      0.996 0.000 1.000
#> GSM198651     1  0.4431      0.902 0.908 0.092
#> GSM198653     2  0.0000      0.996 0.000 1.000
#> GSM198654     2  0.1633      0.976 0.024 0.976
#> GSM198655     1  0.0000      0.981 1.000 0.000
#> GSM198656     1  0.0000      0.981 1.000 0.000
#> GSM198657     1  0.0000      0.981 1.000 0.000
#> GSM198658     1  0.0672      0.975 0.992 0.008
#> GSM198659     2  0.0000      0.996 0.000 1.000
#> GSM198660     1  0.3733      0.921 0.928 0.072
#> GSM198662     2  0.1633      0.976 0.024 0.976
#> GSM198663     2  0.0000      0.996 0.000 1.000
#> GSM198664     1  0.8327      0.668 0.736 0.264
#> GSM198665     1  0.0000      0.981 1.000 0.000
#> GSM198616     1  0.0000      0.981 1.000 0.000
#> GSM198617     2  0.0000      0.996 0.000 1.000
#> GSM198619     1  0.0000      0.981 1.000 0.000
#> GSM198620     2  0.0000      0.996 0.000 1.000
#> GSM198621     1  0.5946      0.845 0.856 0.144
#> GSM198624     1  0.0000      0.981 1.000 0.000
#> GSM198625     1  0.0000      0.981 1.000 0.000
#> GSM198637     1  0.0000      0.981 1.000 0.000
#> GSM198638     1  0.4939      0.886 0.892 0.108
#> GSM198640     1  0.0000      0.981 1.000 0.000
#> GSM198646     2  0.0000      0.996 0.000 1.000
#> GSM198647     2  0.0000      0.996 0.000 1.000
#> GSM198648     2  0.0000      0.996 0.000 1.000
#> GSM198650     1  0.0000      0.981 1.000 0.000
#> GSM198652     2  0.0000      0.996 0.000 1.000
#> GSM198661     1  0.0000      0.981 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM198618     2  0.0000      0.868 0.000 1.000 0.000
#> GSM198622     1  0.0000      0.734 1.000 0.000 0.000
#> GSM198623     3  0.3267      0.755 0.116 0.000 0.884
#> GSM198626     1  0.5254      0.793 0.736 0.000 0.264
#> GSM198627     1  0.4399      0.806 0.812 0.000 0.188
#> GSM198628     1  0.5254      0.793 0.736 0.000 0.264
#> GSM198629     1  0.5216      0.796 0.740 0.000 0.260
#> GSM198630     1  0.5254      0.793 0.736 0.000 0.264
#> GSM198631     1  0.5327      0.788 0.728 0.000 0.272
#> GSM198632     1  0.4974      0.802 0.764 0.000 0.236
#> GSM198633     1  0.0237      0.738 0.996 0.000 0.004
#> GSM198634     1  0.1031      0.753 0.976 0.000 0.024
#> GSM198635     1  0.0237      0.738 0.996 0.000 0.004
#> GSM198636     1  0.4702      0.806 0.788 0.000 0.212
#> GSM198639     3  0.2165      0.815 0.064 0.000 0.936
#> GSM198641     1  0.0000      0.734 1.000 0.000 0.000
#> GSM198642     3  0.3340      0.750 0.120 0.000 0.880
#> GSM198643     1  0.5497      0.770 0.708 0.000 0.292
#> GSM198644     1  0.8128      0.450 0.492 0.068 0.440
#> GSM198645     3  0.1289      0.841 0.032 0.000 0.968
#> GSM198649     2  0.0000      0.868 0.000 1.000 0.000
#> GSM198651     1  0.5982      0.155 0.668 0.328 0.004
#> GSM198653     2  0.5178      0.764 0.256 0.744 0.000
#> GSM198654     3  0.4974      0.695 0.000 0.236 0.764
#> GSM198655     3  0.0747      0.850 0.016 0.000 0.984
#> GSM198656     3  0.0000      0.856 0.000 0.000 1.000
#> GSM198657     3  0.0000      0.856 0.000 0.000 1.000
#> GSM198658     3  0.1163      0.854 0.000 0.028 0.972
#> GSM198659     2  0.2625      0.858 0.084 0.916 0.000
#> GSM198660     3  0.2165      0.841 0.000 0.064 0.936
#> GSM198662     3  0.5216      0.668 0.000 0.260 0.740
#> GSM198663     2  0.5291      0.755 0.268 0.732 0.000
#> GSM198664     2  0.6305      0.383 0.484 0.516 0.000
#> GSM198665     3  0.0000      0.856 0.000 0.000 1.000
#> GSM198616     1  0.5216      0.796 0.740 0.000 0.260
#> GSM198617     3  0.5363      0.649 0.000 0.276 0.724
#> GSM198619     1  0.6235      0.546 0.564 0.000 0.436
#> GSM198620     2  0.0000      0.868 0.000 1.000 0.000
#> GSM198621     3  0.8357      0.539 0.232 0.148 0.620
#> GSM198624     1  0.3116      0.797 0.892 0.000 0.108
#> GSM198625     1  0.2959      0.793 0.900 0.000 0.100
#> GSM198637     1  0.1643      0.766 0.956 0.000 0.044
#> GSM198638     1  0.7760      0.110 0.580 0.360 0.060
#> GSM198640     1  0.5138      0.799 0.748 0.000 0.252
#> GSM198646     2  0.0000      0.868 0.000 1.000 0.000
#> GSM198647     2  0.0000      0.868 0.000 1.000 0.000
#> GSM198648     2  0.1964      0.865 0.056 0.944 0.000
#> GSM198650     3  0.0592      0.856 0.000 0.012 0.988
#> GSM198652     3  0.5291      0.659 0.000 0.268 0.732
#> GSM198661     3  0.0000      0.856 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM198618     4  0.0817      0.942 0.000 0.024 0.000 0.976
#> GSM198622     2  0.4907      0.288 0.420 0.580 0.000 0.000
#> GSM198623     1  0.4730      0.378 0.636 0.000 0.364 0.000
#> GSM198626     1  0.0000      0.950 1.000 0.000 0.000 0.000
#> GSM198627     1  0.0000      0.950 1.000 0.000 0.000 0.000
#> GSM198628     1  0.0000      0.950 1.000 0.000 0.000 0.000
#> GSM198629     1  0.0188      0.949 0.996 0.004 0.000 0.000
#> GSM198630     1  0.0000      0.950 1.000 0.000 0.000 0.000
#> GSM198631     1  0.0188      0.949 0.996 0.000 0.004 0.000
#> GSM198632     1  0.0000      0.950 1.000 0.000 0.000 0.000
#> GSM198633     2  0.1474      0.858 0.052 0.948 0.000 0.000
#> GSM198634     1  0.3444      0.742 0.816 0.184 0.000 0.000
#> GSM198635     2  0.1637      0.853 0.060 0.940 0.000 0.000
#> GSM198636     1  0.0000      0.950 1.000 0.000 0.000 0.000
#> GSM198639     1  0.3540      0.855 0.872 0.012 0.032 0.084
#> GSM198641     2  0.1211      0.862 0.040 0.960 0.000 0.000
#> GSM198642     3  0.4356      0.582 0.292 0.000 0.708 0.000
#> GSM198643     1  0.0188      0.949 0.996 0.000 0.004 0.000
#> GSM198644     2  0.6079      0.269 0.048 0.544 0.408 0.000
#> GSM198645     3  0.1398      0.871 0.040 0.004 0.956 0.000
#> GSM198649     4  0.0895      0.943 0.000 0.020 0.004 0.976
#> GSM198651     2  0.0992      0.864 0.012 0.976 0.004 0.008
#> GSM198653     2  0.1022      0.854 0.000 0.968 0.000 0.032
#> GSM198654     3  0.0000      0.893 0.000 0.000 1.000 0.000
#> GSM198655     3  0.5568      0.119 0.468 0.012 0.516 0.004
#> GSM198656     3  0.0524      0.893 0.004 0.008 0.988 0.000
#> GSM198657     3  0.0524      0.893 0.004 0.008 0.988 0.000
#> GSM198658     3  0.0000      0.893 0.000 0.000 1.000 0.000
#> GSM198659     4  0.1637      0.930 0.000 0.060 0.000 0.940
#> GSM198660     3  0.0336      0.892 0.000 0.008 0.992 0.000
#> GSM198662     3  0.3978      0.714 0.000 0.012 0.796 0.192
#> GSM198663     2  0.0921      0.856 0.000 0.972 0.000 0.028
#> GSM198664     2  0.0927      0.862 0.008 0.976 0.000 0.016
#> GSM198665     3  0.0188      0.893 0.004 0.000 0.996 0.000
#> GSM198616     1  0.0376      0.947 0.992 0.004 0.000 0.004
#> GSM198617     4  0.2805      0.862 0.000 0.012 0.100 0.888
#> GSM198619     1  0.1388      0.926 0.960 0.012 0.000 0.028
#> GSM198620     4  0.0779      0.943 0.000 0.016 0.004 0.980
#> GSM198621     4  0.3900      0.753 0.164 0.020 0.000 0.816
#> GSM198624     1  0.0000      0.950 1.000 0.000 0.000 0.000
#> GSM198625     1  0.0000      0.950 1.000 0.000 0.000 0.000
#> GSM198637     1  0.0657      0.944 0.984 0.012 0.000 0.004
#> GSM198638     2  0.1247      0.865 0.016 0.968 0.004 0.012
#> GSM198640     1  0.0895      0.938 0.976 0.020 0.004 0.000
#> GSM198646     4  0.0524      0.942 0.000 0.008 0.004 0.988
#> GSM198647     4  0.0188      0.939 0.000 0.000 0.004 0.996
#> GSM198648     4  0.1302      0.934 0.000 0.044 0.000 0.956
#> GSM198650     3  0.0000      0.893 0.000 0.000 1.000 0.000
#> GSM198652     3  0.0707      0.882 0.000 0.020 0.980 0.000
#> GSM198661     3  0.0524      0.893 0.004 0.008 0.988 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM198618     4  0.0404      0.934 0.000 0.000 0.000 0.988 0.012
#> GSM198622     2  0.4734      0.442 0.312 0.652 0.000 0.000 0.036
#> GSM198623     1  0.4863      0.425 0.672 0.000 0.272 0.000 0.056
#> GSM198626     1  0.0000      0.875 1.000 0.000 0.000 0.000 0.000
#> GSM198627     1  0.0290      0.873 0.992 0.000 0.000 0.000 0.008
#> GSM198628     1  0.0451      0.874 0.988 0.000 0.004 0.000 0.008
#> GSM198629     1  0.0324      0.874 0.992 0.004 0.000 0.000 0.004
#> GSM198630     1  0.0000      0.875 1.000 0.000 0.000 0.000 0.000
#> GSM198631     1  0.0451      0.873 0.988 0.000 0.008 0.000 0.004
#> GSM198632     1  0.2011      0.825 0.908 0.004 0.000 0.000 0.088
#> GSM198633     2  0.1493      0.871 0.028 0.948 0.000 0.000 0.024
#> GSM198634     1  0.4626      0.342 0.616 0.364 0.000 0.000 0.020
#> GSM198635     2  0.1124      0.869 0.036 0.960 0.000 0.000 0.004
#> GSM198636     1  0.0703      0.869 0.976 0.000 0.000 0.000 0.024
#> GSM198639     5  0.6289      0.535 0.244 0.000 0.056 0.084 0.616
#> GSM198641     2  0.1106      0.873 0.024 0.964 0.000 0.000 0.012
#> GSM198642     3  0.5126      0.398 0.300 0.000 0.636 0.000 0.064
#> GSM198643     1  0.2540      0.809 0.888 0.000 0.024 0.000 0.088
#> GSM198644     2  0.7465      0.403 0.100 0.516 0.124 0.004 0.256
#> GSM198645     5  0.4818     -0.371 0.020 0.000 0.460 0.000 0.520
#> GSM198649     4  0.0000      0.938 0.000 0.000 0.000 1.000 0.000
#> GSM198651     2  0.2150      0.858 0.016 0.928 0.032 0.004 0.020
#> GSM198653     2  0.0703      0.866 0.000 0.976 0.000 0.024 0.000
#> GSM198654     3  0.2813      0.746 0.000 0.000 0.832 0.000 0.168
#> GSM198655     3  0.6884      0.242 0.348 0.004 0.504 0.052 0.092
#> GSM198656     3  0.0880      0.753 0.000 0.000 0.968 0.000 0.032
#> GSM198657     3  0.1638      0.743 0.000 0.004 0.932 0.000 0.064
#> GSM198658     3  0.2773      0.748 0.000 0.000 0.836 0.000 0.164
#> GSM198659     4  0.5530      0.666 0.000 0.104 0.096 0.724 0.076
#> GSM198660     3  0.2295      0.728 0.000 0.004 0.900 0.008 0.088
#> GSM198662     3  0.5679      0.537 0.000 0.020 0.676 0.168 0.136
#> GSM198663     2  0.0609      0.867 0.000 0.980 0.000 0.020 0.000
#> GSM198664     2  0.1405      0.862 0.000 0.956 0.008 0.020 0.016
#> GSM198665     3  0.3561      0.687 0.000 0.000 0.740 0.000 0.260
#> GSM198616     1  0.2732      0.740 0.840 0.000 0.000 0.000 0.160
#> GSM198617     5  0.4638      0.279 0.000 0.000 0.028 0.324 0.648
#> GSM198619     5  0.4836      0.306 0.412 0.000 0.012 0.008 0.568
#> GSM198620     4  0.0162      0.937 0.000 0.000 0.000 0.996 0.004
#> GSM198621     5  0.5994      0.359 0.088 0.000 0.016 0.324 0.572
#> GSM198624     1  0.0566      0.872 0.984 0.004 0.000 0.000 0.012
#> GSM198625     1  0.0162      0.875 0.996 0.000 0.000 0.000 0.004
#> GSM198637     5  0.6424      0.236 0.380 0.176 0.000 0.000 0.444
#> GSM198638     2  0.1310      0.872 0.020 0.956 0.000 0.000 0.024
#> GSM198640     1  0.2909      0.743 0.848 0.140 0.000 0.000 0.012
#> GSM198646     4  0.0000      0.938 0.000 0.000 0.000 1.000 0.000
#> GSM198647     4  0.0703      0.923 0.000 0.000 0.000 0.976 0.024
#> GSM198648     4  0.0510      0.928 0.000 0.016 0.000 0.984 0.000
#> GSM198650     3  0.2929      0.743 0.000 0.000 0.820 0.000 0.180
#> GSM198652     3  0.3795      0.721 0.000 0.028 0.780 0.000 0.192
#> GSM198661     3  0.0290      0.759 0.000 0.000 0.992 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM198618     4  0.3418     0.6996 0.000 0.032 0.000 0.784 0.000 0.184
#> GSM198622     2  0.5003     0.1172 0.332 0.596 0.000 0.000 0.060 0.012
#> GSM198623     1  0.5581    -0.0525 0.460 0.000 0.424 0.000 0.108 0.008
#> GSM198626     1  0.0260     0.8298 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM198627     1  0.1226     0.8205 0.952 0.004 0.000 0.000 0.040 0.004
#> GSM198628     1  0.0146     0.8298 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM198629     1  0.0603     0.8290 0.980 0.000 0.000 0.000 0.016 0.004
#> GSM198630     1  0.0146     0.8300 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM198631     1  0.0291     0.8294 0.992 0.000 0.004 0.000 0.004 0.000
#> GSM198632     1  0.4143     0.6565 0.736 0.000 0.000 0.000 0.084 0.180
#> GSM198633     2  0.2703     0.7607 0.016 0.876 0.000 0.000 0.080 0.028
#> GSM198634     1  0.3260     0.7440 0.832 0.092 0.000 0.000 0.072 0.004
#> GSM198635     2  0.3416     0.6037 0.140 0.804 0.000 0.000 0.056 0.000
#> GSM198636     1  0.2973     0.7526 0.836 0.004 0.000 0.000 0.136 0.024
#> GSM198639     6  0.3070     0.6992 0.044 0.000 0.028 0.000 0.068 0.860
#> GSM198641     2  0.1663     0.7624 0.000 0.912 0.000 0.000 0.088 0.000
#> GSM198642     3  0.5201     0.4010 0.232 0.000 0.652 0.000 0.088 0.028
#> GSM198643     1  0.4110     0.7259 0.796 0.004 0.040 0.000 0.076 0.084
#> GSM198644     5  0.8638     0.0000 0.160 0.232 0.124 0.004 0.348 0.132
#> GSM198645     6  0.5236     0.2649 0.004 0.008 0.284 0.000 0.092 0.612
#> GSM198649     4  0.0000     0.8772 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM198651     2  0.3418     0.6360 0.000 0.784 0.032 0.000 0.184 0.000
#> GSM198653     2  0.0891     0.7791 0.000 0.968 0.000 0.008 0.024 0.000
#> GSM198654     3  0.2858     0.6789 0.000 0.000 0.844 0.000 0.124 0.032
#> GSM198655     3  0.7886     0.0303 0.132 0.000 0.408 0.128 0.276 0.056
#> GSM198656     3  0.1010     0.7036 0.000 0.000 0.960 0.000 0.036 0.004
#> GSM198657     3  0.2266     0.6831 0.000 0.000 0.880 0.000 0.108 0.012
#> GSM198658     3  0.2747     0.6898 0.000 0.000 0.860 0.000 0.096 0.044
#> GSM198659     4  0.6566     0.3694 0.000 0.120 0.072 0.496 0.308 0.004
#> GSM198660     3  0.2494     0.6767 0.000 0.000 0.864 0.000 0.120 0.016
#> GSM198662     3  0.5792     0.2858 0.004 0.000 0.472 0.060 0.424 0.040
#> GSM198663     2  0.0713     0.7804 0.000 0.972 0.000 0.000 0.028 0.000
#> GSM198664     2  0.1563     0.7666 0.000 0.932 0.012 0.000 0.056 0.000
#> GSM198665     3  0.4884     0.5173 0.000 0.000 0.652 0.000 0.128 0.220
#> GSM198616     1  0.4145     0.5996 0.700 0.000 0.000 0.000 0.048 0.252
#> GSM198617     6  0.2036     0.7022 0.000 0.000 0.008 0.064 0.016 0.912
#> GSM198619     6  0.2094     0.7047 0.080 0.000 0.000 0.000 0.020 0.900
#> GSM198620     4  0.0146     0.8781 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM198621     6  0.2463     0.7121 0.020 0.000 0.000 0.068 0.020 0.892
#> GSM198624     1  0.0790     0.8247 0.968 0.000 0.000 0.000 0.032 0.000
#> GSM198625     1  0.0363     0.8297 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM198637     6  0.5708     0.4257 0.160 0.108 0.000 0.000 0.084 0.648
#> GSM198638     2  0.1700     0.7741 0.000 0.928 0.000 0.000 0.048 0.024
#> GSM198640     1  0.4309     0.6541 0.764 0.148 0.004 0.000 0.028 0.056
#> GSM198646     4  0.0146     0.8781 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM198647     4  0.0146     0.8781 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM198648     4  0.0603     0.8684 0.000 0.016 0.000 0.980 0.004 0.000
#> GSM198650     3  0.2983     0.6737 0.000 0.000 0.832 0.000 0.136 0.032
#> GSM198652     3  0.4257     0.5540 0.000 0.028 0.712 0.000 0.240 0.020
#> GSM198661     3  0.0777     0.7048 0.000 0.000 0.972 0.000 0.024 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> ATC:NMF 50           0.3544 2
#> ATC:NMF 46           0.6995 3
#> ATC:NMF 46           0.0982 4
#> ATC:NMF 39           0.4078 5
#> ATC:NMF 41           0.1202 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0