cola Report for GDS2736

Date: 2019-12-25 20:17:16 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 21168   105

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
MAD:mclust 2 1.000 0.992 0.996 **
ATC:kmeans 2 1.000 0.980 0.986 **
ATC:mclust 2 1.000 0.970 0.977 **
ATC:NMF 2 1.000 0.964 0.985 **
SD:mclust 5 0.994 0.946 0.974 ** 2,3
SD:skmeans 3 0.984 0.944 0.972 **
CV:skmeans 3 0.981 0.943 0.974 **
ATC:pam 6 0.951 0.901 0.962 ** 2,4,5
ATC:skmeans 5 0.948 0.926 0.966 * 2,3
MAD:skmeans 3 0.920 0.883 0.945 *
MAD:NMF 2 0.900 0.919 0.966 *
SD:NMF 2 0.899 0.925 0.968
SD:pam 4 0.890 0.917 0.962
MAD:pam 4 0.882 0.892 0.956
CV:NMF 2 0.875 0.921 0.965
CV:pam 5 0.860 0.854 0.931
CV:kmeans 3 0.789 0.919 0.942
CV:mclust 2 0.694 0.945 0.963
ATC:hclust 2 0.666 0.877 0.934
CV:hclust 4 0.548 0.738 0.825
MAD:hclust 2 0.418 0.734 0.864
SD:hclust 3 0.402 0.772 0.845
MAD:kmeans 2 0.375 0.871 0.908
SD:kmeans 2 0.309 0.853 0.898

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.899           0.925       0.968          0.479 0.519   0.519
#> CV:NMF      2 0.875           0.921       0.965          0.487 0.508   0.508
#> MAD:NMF     2 0.900           0.919       0.966          0.483 0.512   0.512
#> ATC:NMF     2 1.000           0.964       0.985          0.469 0.534   0.534
#> SD:skmeans  2 0.766           0.887       0.951          0.493 0.512   0.512
#> CV:skmeans  2 0.686           0.768       0.912          0.502 0.495   0.495
#> MAD:skmeans 2 0.761           0.897       0.952          0.494 0.508   0.508
#> ATC:skmeans 2 1.000           0.988       0.996          0.483 0.519   0.519
#> SD:mclust   2 1.000           0.988       0.996          0.432 0.572   0.572
#> CV:mclust   2 0.694           0.945       0.963          0.440 0.572   0.572
#> MAD:mclust  2 1.000           0.992       0.996          0.429 0.572   0.572
#> ATC:mclust  2 1.000           0.970       0.977          0.453 0.545   0.545
#> SD:kmeans   2 0.309           0.853       0.898          0.418 0.558   0.558
#> CV:kmeans   2 0.312           0.687       0.841          0.414 0.558   0.558
#> MAD:kmeans  2 0.375           0.871       0.908          0.424 0.558   0.558
#> ATC:kmeans  2 1.000           0.980       0.986          0.441 0.558   0.558
#> SD:pam      2 0.411           0.770       0.873          0.476 0.505   0.505
#> CV:pam      2 0.353           0.765       0.836          0.436 0.529   0.529
#> MAD:pam     2 0.436           0.799       0.832          0.471 0.534   0.534
#> ATC:pam     2 0.978           0.960       0.983          0.466 0.534   0.534
#> SD:hclust   2 0.380           0.787       0.875          0.371 0.605   0.605
#> CV:hclust   2 0.274           0.689       0.823          0.369 0.605   0.605
#> MAD:hclust  2 0.418           0.734       0.864          0.414 0.596   0.596
#> ATC:hclust  2 0.666           0.877       0.934          0.408 0.565   0.565
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.857           0.875       0.950          0.352 0.695   0.481
#> CV:NMF      3 0.844           0.868       0.944          0.352 0.706   0.485
#> MAD:NMF     3 0.860           0.882       0.946          0.358 0.697   0.475
#> ATC:NMF     3 0.782           0.874       0.940          0.362 0.714   0.515
#> SD:skmeans  3 0.984           0.944       0.972          0.338 0.711   0.496
#> CV:skmeans  3 0.981           0.943       0.974          0.314 0.766   0.562
#> MAD:skmeans 3 0.920           0.883       0.945          0.345 0.687   0.459
#> ATC:skmeans 3 0.972           0.931       0.969          0.353 0.788   0.606
#> SD:mclust   3 1.000           0.961       0.977          0.420 0.793   0.644
#> CV:mclust   3 0.773           0.928       0.955          0.299 0.832   0.712
#> MAD:mclust  3 0.631           0.793       0.881          0.288 0.810   0.669
#> ATC:mclust  3 0.499           0.597       0.791          0.352 0.692   0.496
#> SD:kmeans   3 0.617           0.775       0.872          0.413 0.726   0.551
#> CV:kmeans   3 0.789           0.919       0.942          0.442 0.726   0.551
#> MAD:kmeans  3 0.601           0.781       0.876          0.412 0.736   0.566
#> ATC:kmeans  3 0.630           0.778       0.852          0.401 0.773   0.603
#> SD:pam      3 0.638           0.851       0.910          0.251 0.861   0.728
#> CV:pam      3 0.653           0.804       0.905          0.366 0.850   0.718
#> MAD:pam     3 0.826           0.862       0.938          0.322 0.809   0.653
#> ATC:pam     3 0.623           0.751       0.866          0.352 0.694   0.483
#> SD:hclust   3 0.402           0.772       0.845          0.445 0.900   0.838
#> CV:hclust   3 0.378           0.676       0.822          0.464 0.827   0.725
#> MAD:hclust  3 0.378           0.679       0.785          0.371 0.914   0.857
#> ATC:hclust  3 0.692           0.833       0.903          0.298 0.919   0.859
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.791           0.800       0.909          0.145 0.780   0.467
#> CV:NMF      4 0.660           0.712       0.848          0.129 0.805   0.505
#> MAD:NMF     4 0.717           0.780       0.889          0.132 0.759   0.423
#> ATC:NMF     4 0.692           0.786       0.871          0.130 0.786   0.494
#> SD:skmeans  4 0.758           0.781       0.891          0.119 0.823   0.547
#> CV:skmeans  4 0.664           0.740       0.850          0.124 0.864   0.628
#> MAD:skmeans 4 0.686           0.730       0.865          0.118 0.827   0.548
#> ATC:skmeans 4 0.899           0.902       0.939          0.112 0.914   0.758
#> SD:mclust   4 0.745           0.773       0.861          0.102 0.689   0.376
#> CV:mclust   4 0.730           0.900       0.921          0.125 0.929   0.836
#> MAD:mclust  4 0.686           0.845       0.914          0.228 0.701   0.397
#> ATC:mclust  4 0.765           0.908       0.946          0.141 0.907   0.755
#> SD:kmeans   4 0.636           0.779       0.838          0.206 0.886   0.719
#> CV:kmeans   4 0.651           0.772       0.848          0.179 0.875   0.694
#> MAD:kmeans  4 0.620           0.727       0.818          0.198 0.791   0.529
#> ATC:kmeans  4 0.695           0.785       0.790          0.167 0.906   0.748
#> SD:pam      4 0.890           0.917       0.962          0.186 0.923   0.796
#> CV:pam      4 0.638           0.436       0.759          0.196 0.791   0.546
#> MAD:pam     4 0.882           0.892       0.956          0.126 0.917   0.783
#> ATC:pam     4 0.957           0.905       0.952          0.133 0.921   0.777
#> SD:hclust   4 0.463           0.663       0.778          0.296 0.764   0.556
#> CV:hclust   4 0.548           0.738       0.825          0.176 0.865   0.726
#> MAD:hclust  4 0.476           0.611       0.751          0.222 0.789   0.612
#> ATC:hclust  4 0.539           0.461       0.753          0.266 0.751   0.514
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.763           0.718       0.854         0.0784 0.872   0.556
#> CV:NMF      5 0.699           0.669       0.815         0.0745 0.855   0.510
#> MAD:NMF     5 0.714           0.693       0.836         0.0764 0.895   0.622
#> ATC:NMF     5 0.657           0.698       0.820         0.0934 0.853   0.519
#> SD:skmeans  5 0.705           0.613       0.800         0.0794 0.850   0.506
#> CV:skmeans  5 0.650           0.554       0.767         0.0763 0.873   0.567
#> MAD:skmeans 5 0.666           0.546       0.730         0.0731 0.862   0.536
#> ATC:skmeans 5 0.948           0.926       0.966         0.0895 0.896   0.645
#> SD:mclust   5 0.994           0.946       0.974         0.1646 0.873   0.604
#> CV:mclust   5 0.736           0.773       0.874         0.2068 0.821   0.532
#> MAD:mclust  5 0.785           0.454       0.716         0.1433 0.769   0.407
#> ATC:mclust  5 0.889           0.921       0.938         0.1258 0.871   0.599
#> SD:kmeans   5 0.751           0.810       0.855         0.1010 0.864   0.587
#> CV:kmeans   5 0.651           0.664       0.791         0.0967 0.870   0.601
#> MAD:kmeans  5 0.742           0.759       0.843         0.0940 0.803   0.432
#> ATC:kmeans  5 0.788           0.865       0.888         0.0929 0.890   0.640
#> SD:pam      5 0.871           0.911       0.952         0.1215 0.878   0.614
#> CV:pam      5 0.860           0.854       0.931         0.1114 0.809   0.477
#> MAD:pam     5 0.865           0.883       0.943         0.1204 0.876   0.620
#> ATC:pam     5 0.933           0.888       0.956         0.1182 0.885   0.619
#> SD:hclust   5 0.566           0.673       0.788         0.0633 0.958   0.864
#> CV:hclust   5 0.556           0.691       0.812         0.0966 0.968   0.915
#> MAD:hclust  5 0.558           0.683       0.782         0.0921 0.846   0.579
#> ATC:hclust  5 0.647           0.697       0.813         0.0882 0.823   0.516
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.763           0.591       0.766         0.0405 0.929   0.689
#> CV:NMF      6 0.729           0.608       0.789         0.0409 0.915   0.619
#> MAD:NMF     6 0.737           0.632       0.794         0.0407 0.916   0.621
#> ATC:NMF     6 0.706           0.632       0.789         0.0398 0.952   0.775
#> SD:skmeans  6 0.736           0.606       0.757         0.0414 0.901   0.581
#> CV:skmeans  6 0.677           0.507       0.707         0.0400 0.933   0.694
#> MAD:skmeans 6 0.706           0.634       0.772         0.0414 0.918   0.635
#> ATC:skmeans 6 0.894           0.856       0.925         0.0311 0.962   0.827
#> SD:mclust   6 0.873           0.841       0.894         0.0308 1.000   1.000
#> CV:mclust   6 0.758           0.780       0.843         0.0593 0.930   0.692
#> MAD:mclust  6 0.813           0.792       0.885         0.0509 0.868   0.513
#> ATC:mclust  6 0.806           0.746       0.864         0.0338 0.866   0.494
#> SD:kmeans   6 0.781           0.671       0.788         0.0484 0.972   0.870
#> CV:kmeans   6 0.704           0.670       0.785         0.0495 0.957   0.815
#> MAD:kmeans  6 0.756           0.776       0.834         0.0485 0.945   0.749
#> ATC:kmeans  6 0.850           0.749       0.857         0.0434 0.967   0.844
#> SD:pam      6 0.854           0.703       0.877         0.0375 0.936   0.715
#> CV:pam      6 0.841           0.778       0.894         0.0241 0.978   0.897
#> MAD:pam     6 0.867           0.747       0.877         0.0356 0.960   0.822
#> ATC:pam     6 0.951           0.901       0.962         0.0347 0.968   0.846
#> SD:hclust   6 0.622           0.657       0.760         0.0650 0.915   0.705
#> CV:hclust   6 0.611           0.523       0.726         0.0898 0.838   0.551
#> MAD:hclust  6 0.653           0.672       0.787         0.0534 0.980   0.913
#> ATC:hclust  6 0.663           0.653       0.798         0.0325 0.971   0.899

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>               n disease.state(p) k
#> SD:NMF      101         4.70e-12 2
#> CV:NMF      101         4.00e-11 2
#> MAD:NMF     102         7.44e-11 2
#> ATC:NMF     104         7.94e-12 2
#> SD:skmeans  102         2.24e-11 2
#> CV:skmeans   88         8.13e-12 2
#> MAD:skmeans 103         2.97e-10 2
#> ATC:skmeans 104         6.66e-11 2
#> SD:mclust   104         3.35e-14 2
#> CV:mclust   105         3.23e-14 2
#> MAD:mclust  105         3.23e-14 2
#> ATC:mclust  105         1.39e-11 2
#> SD:kmeans   105         3.75e-13 2
#> CV:kmeans    87         2.02e-14 2
#> MAD:kmeans  105         3.75e-13 2
#> ATC:kmeans  105         1.55e-11 2
#> SD:pam      101         1.32e-09 2
#> CV:pam       97         3.07e-11 2
#> MAD:pam     102         4.33e-12 2
#> ATC:pam     103         3.81e-12 2
#> SD:hclust   103         3.78e-13 2
#> CV:hclust    97         3.63e-15 2
#> MAD:hclust   97         5.54e-13 2
#> ATC:hclust  101         2.68e-12 2
test_to_known_factors(res_list, k = 3)
#>               n disease.state(p) k
#> SD:NMF       98         1.05e-22 3
#> CV:NMF       99         1.09e-22 3
#> MAD:NMF     101         2.98e-22 3
#> ATC:NMF     101         2.81e-23 3
#> SD:skmeans  103         2.33e-22 3
#> CV:skmeans  103         1.00e-22 3
#> MAD:skmeans  99         1.19e-21 3
#> ATC:skmeans 102         5.92e-19 3
#> SD:mclust   105         3.47e-23 3
#> CV:mclust   104         1.86e-27 3
#> MAD:mclust   97         9.91e-27 3
#> ATC:mclust   61         8.46e-10 3
#> SD:kmeans    88         6.83e-21 3
#> CV:kmeans   105         1.08e-27 3
#> MAD:kmeans  103         1.13e-27 3
#> ATC:kmeans  101         8.08e-19 3
#> SD:pam      103         5.30e-26 3
#> CV:pam       99         7.59e-26 3
#> MAD:pam     100         3.50e-26 3
#> ATC:pam      93         2.31e-14 3
#> SD:hclust    99         7.00e-28 3
#> CV:hclust    86         2.70e-29 3
#> MAD:hclust   95         9.20e-28 3
#> ATC:hclust   99         1.77e-25 3
test_to_known_factors(res_list, k = 4)
#>               n disease.state(p) k
#> SD:NMF       94         2.32e-31 4
#> CV:NMF       89         7.26e-25 4
#> MAD:NMF      95         1.58e-27 4
#> ATC:NMF      95         5.26e-28 4
#> SD:skmeans   93         3.58e-29 4
#> CV:skmeans   93         1.13e-27 4
#> MAD:skmeans  89         4.42e-28 4
#> ATC:skmeans 105         3.81e-29 4
#> SD:mclust    98         6.92e-31 4
#> CV:mclust   103         1.38e-30 4
#> MAD:mclust  102         4.92e-28 4
#> ATC:mclust  103         3.43e-31 4
#> SD:kmeans    95         6.75e-34 4
#> CV:kmeans    96         7.41e-36 4
#> MAD:kmeans   91         1.94e-32 4
#> ATC:kmeans   96         1.11e-28 4
#> SD:pam      102         4.46e-33 4
#> CV:pam       71         1.16e-26 4
#> MAD:pam     102         1.33e-33 4
#> ATC:pam     101         5.41e-28 4
#> SD:hclust    88         8.74e-26 4
#> CV:hclust    90         7.15e-35 4
#> MAD:hclust   69         4.32e-27 4
#> ATC:hclust   49         1.30e-19 4
test_to_known_factors(res_list, k = 5)
#>               n disease.state(p) k
#> SD:NMF       86         3.55e-28 5
#> CV:NMF       84         5.63e-28 5
#> MAD:NMF      85         1.71e-25 5
#> ATC:NMF      86         1.14e-27 5
#> SD:skmeans   74         1.77e-25 5
#> CV:skmeans   61         1.57e-24 5
#> MAD:skmeans  66         1.58e-22 5
#> ATC:skmeans 102         1.67e-30 5
#> SD:mclust   104         1.99e-34 5
#> CV:mclust    95         4.58e-35 5
#> MAD:mclust   53         1.39e-18 5
#> ATC:mclust  102         5.23e-34 5
#> SD:kmeans    99         1.04e-34 5
#> CV:kmeans    85         1.47e-27 5
#> MAD:kmeans   92         7.29e-32 5
#> ATC:kmeans  101         3.73e-30 5
#> SD:pam      105         1.59e-39 5
#> CV:pam       97         1.14e-37 5
#> MAD:pam     102         1.93e-39 5
#> ATC:pam      99         6.00e-25 5
#> SD:hclust    82         9.69e-26 5
#> CV:hclust    89         2.02e-31 5
#> MAD:hclust   84         3.00e-32 5
#> ATC:hclust   90         5.45e-28 5
test_to_known_factors(res_list, k = 6)
#>               n disease.state(p) k
#> SD:NMF       61         1.54e-18 6
#> CV:NMF       68         1.59e-20 6
#> MAD:NMF      67         6.11e-23 6
#> ATC:NMF      76         9.82e-27 6
#> SD:skmeans   68         8.81e-23 6
#> CV:skmeans   54         1.71e-23 6
#> MAD:skmeans  77         5.51e-30 6
#> ATC:skmeans  99         6.43e-30 6
#> SD:mclust   102         1.58e-33 6
#> CV:mclust   100         1.74e-33 6
#> MAD:mclust   96         2.45e-33 6
#> ATC:mclust   91         4.00e-28 6
#> SD:kmeans    81         1.25e-28 6
#> CV:kmeans    90         5.07e-31 6
#> MAD:kmeans   96         1.17e-33 6
#> ATC:kmeans   88         6.55e-29 6
#> SD:pam       83         6.17e-32 6
#> CV:pam       95         2.25e-37 6
#> MAD:pam      90         2.08e-33 6
#> ATC:pam      99         2.51e-29 6
#> SD:hclust    78         6.48e-28 6
#> CV:hclust    64         9.51e-23 6
#> MAD:hclust   86         7.79e-33 6
#> ATC:hclust   78         1.23e-27 6

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.380           0.787       0.875         0.3714 0.605   0.605
#> 3 3 0.402           0.772       0.845         0.4448 0.900   0.838
#> 4 4 0.463           0.663       0.778         0.2963 0.764   0.556
#> 5 5 0.566           0.673       0.788         0.0633 0.958   0.864
#> 6 6 0.622           0.657       0.760         0.0650 0.915   0.705

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     1  0.0376      0.730 0.996 0.004
#> GSM149100     1  0.0376      0.730 0.996 0.004
#> GSM149101     1  0.0376      0.730 0.996 0.004
#> GSM149102     1  0.0376      0.730 0.996 0.004
#> GSM149103     2  0.7528      0.735 0.216 0.784
#> GSM149104     1  0.0376      0.730 0.996 0.004
#> GSM149105     1  0.0376      0.730 0.996 0.004
#> GSM149106     2  0.8267      0.635 0.260 0.740
#> GSM149107     1  0.0376      0.730 0.996 0.004
#> GSM149108     1  0.0376      0.730 0.996 0.004
#> GSM149109     1  0.0376      0.730 0.996 0.004
#> GSM149110     1  0.0376      0.730 0.996 0.004
#> GSM149111     1  0.0376      0.730 0.996 0.004
#> GSM149112     1  0.0376      0.730 0.996 0.004
#> GSM149113     1  0.0376      0.730 0.996 0.004
#> GSM149114     1  0.0376      0.730 0.996 0.004
#> GSM149115     2  0.8909      0.421 0.308 0.692
#> GSM149116     1  0.9866      0.542 0.568 0.432
#> GSM149117     2  0.0672      0.892 0.008 0.992
#> GSM149118     1  0.9866      0.542 0.568 0.432
#> GSM149119     1  0.9866      0.542 0.568 0.432
#> GSM149120     1  0.9866      0.542 0.568 0.432
#> GSM149121     2  0.6438      0.805 0.164 0.836
#> GSM149122     1  0.9866      0.542 0.568 0.432
#> GSM149123     1  0.9866      0.542 0.568 0.432
#> GSM149124     1  0.9866      0.542 0.568 0.432
#> GSM149125     1  0.9866      0.542 0.568 0.432
#> GSM149126     1  0.9866      0.542 0.568 0.432
#> GSM149127     1  0.9866      0.542 0.568 0.432
#> GSM149128     1  0.9866      0.542 0.568 0.432
#> GSM149129     1  0.9866      0.542 0.568 0.432
#> GSM149130     2  0.6801      0.753 0.180 0.820
#> GSM149131     2  0.6712      0.755 0.176 0.824
#> GSM149132     1  0.9866      0.542 0.568 0.432
#> GSM149133     1  0.9963      0.453 0.536 0.464
#> GSM149134     2  0.5408      0.849 0.124 0.876
#> GSM149135     2  0.0672      0.894 0.008 0.992
#> GSM149136     2  0.0672      0.894 0.008 0.992
#> GSM149137     2  0.0672      0.894 0.008 0.992
#> GSM149138     2  0.5408      0.849 0.124 0.876
#> GSM149139     2  0.0672      0.894 0.008 0.992
#> GSM149140     2  0.0672      0.894 0.008 0.992
#> GSM149141     2  0.5629      0.856 0.132 0.868
#> GSM149142     2  0.2043      0.892 0.032 0.968
#> GSM149143     2  0.5737      0.855 0.136 0.864
#> GSM149144     2  0.0376      0.890 0.004 0.996
#> GSM149145     2  0.5629      0.856 0.132 0.868
#> GSM149146     2  0.0672      0.891 0.008 0.992
#> GSM149147     2  0.0672      0.894 0.008 0.992
#> GSM149148     2  0.0672      0.894 0.008 0.992
#> GSM149149     2  0.0672      0.894 0.008 0.992
#> GSM149150     2  0.2236      0.892 0.036 0.964
#> GSM149151     2  0.1843      0.893 0.028 0.972
#> GSM149152     2  0.4298      0.879 0.088 0.912
#> GSM149153     2  0.5629      0.856 0.132 0.868
#> GSM149154     2  0.5842      0.852 0.140 0.860
#> GSM149155     2  0.0376      0.890 0.004 0.996
#> GSM149156     2  0.0938      0.895 0.012 0.988
#> GSM149157     2  0.3733      0.885 0.072 0.928
#> GSM149158     2  0.1184      0.895 0.016 0.984
#> GSM149159     2  0.6973      0.810 0.188 0.812
#> GSM149160     2  0.3274      0.889 0.060 0.940
#> GSM149161     2  0.1184      0.895 0.016 0.984
#> GSM149162     2  0.0000      0.892 0.000 1.000
#> GSM149163     2  0.0376      0.890 0.004 0.996
#> GSM149164     2  0.4431      0.877 0.092 0.908
#> GSM149165     2  0.1843      0.895 0.028 0.972
#> GSM149166     2  0.0672      0.891 0.008 0.992
#> GSM149167     2  0.0938      0.895 0.012 0.988
#> GSM149168     2  0.7299      0.793 0.204 0.796
#> GSM149169     2  0.1184      0.895 0.016 0.984
#> GSM149170     2  0.6887      0.812 0.184 0.816
#> GSM149171     2  0.6973      0.808 0.188 0.812
#> GSM149172     2  0.8327      0.712 0.264 0.736
#> GSM149173     2  0.8016      0.741 0.244 0.756
#> GSM149174     2  0.1184      0.895 0.016 0.984
#> GSM149175     2  0.8016      0.742 0.244 0.756
#> GSM149176     2  0.4161      0.875 0.084 0.916
#> GSM149177     2  0.6973      0.778 0.188 0.812
#> GSM149178     2  0.9170      0.575 0.332 0.668
#> GSM149179     2  0.0938      0.894 0.012 0.988
#> GSM149180     2  0.0376      0.890 0.004 0.996
#> GSM149181     2  0.4562      0.878 0.096 0.904
#> GSM149182     2  0.0376      0.890 0.004 0.996
#> GSM149183     2  0.0376      0.890 0.004 0.996
#> GSM149184     2  0.0938      0.894 0.012 0.988
#> GSM149185     2  0.5842      0.848 0.140 0.860
#> GSM149186     2  0.1843      0.896 0.028 0.972
#> GSM149187     2  0.0376      0.890 0.004 0.996
#> GSM149188     2  0.0376      0.890 0.004 0.996
#> GSM149189     2  0.8713      0.668 0.292 0.708
#> GSM149190     2  0.0938      0.895 0.012 0.988
#> GSM149191     2  0.5629      0.857 0.132 0.868
#> GSM149192     2  0.1843      0.894 0.028 0.972
#> GSM149193     2  0.0938      0.894 0.012 0.988
#> GSM149194     2  0.5294      0.864 0.120 0.880
#> GSM149195     2  0.9393      0.533 0.356 0.644
#> GSM149196     2  0.0938      0.894 0.012 0.988
#> GSM149197     2  0.0376      0.890 0.004 0.996
#> GSM149198     2  0.5519      0.846 0.128 0.872
#> GSM149199     2  0.0672      0.895 0.008 0.992
#> GSM149200     2  0.6887      0.812 0.184 0.816
#> GSM149201     2  0.0376      0.890 0.004 0.996
#> GSM149202     2  0.6887      0.812 0.184 0.816
#> GSM149203     2  0.7299      0.793 0.204 0.796

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0000     1.0000 0.000 0.000 1.000
#> GSM149100     3  0.0000     1.0000 0.000 0.000 1.000
#> GSM149101     3  0.0000     1.0000 0.000 0.000 1.000
#> GSM149102     3  0.0000     1.0000 0.000 0.000 1.000
#> GSM149103     2  0.6247     0.7234 0.044 0.744 0.212
#> GSM149104     3  0.0000     1.0000 0.000 0.000 1.000
#> GSM149105     3  0.0000     1.0000 0.000 0.000 1.000
#> GSM149106     2  0.6596     0.6564 0.040 0.704 0.256
#> GSM149107     3  0.0000     1.0000 0.000 0.000 1.000
#> GSM149108     3  0.0000     1.0000 0.000 0.000 1.000
#> GSM149109     3  0.0000     1.0000 0.000 0.000 1.000
#> GSM149110     3  0.0000     1.0000 0.000 0.000 1.000
#> GSM149111     3  0.0000     1.0000 0.000 0.000 1.000
#> GSM149112     3  0.0000     1.0000 0.000 0.000 1.000
#> GSM149113     3  0.0000     1.0000 0.000 0.000 1.000
#> GSM149114     3  0.0000     1.0000 0.000 0.000 1.000
#> GSM149115     1  0.5443     0.5393 0.736 0.260 0.004
#> GSM149116     1  0.3038     0.8283 0.896 0.000 0.104
#> GSM149117     2  0.3038     0.8055 0.104 0.896 0.000
#> GSM149118     1  0.3038     0.8283 0.896 0.000 0.104
#> GSM149119     1  0.3038     0.8283 0.896 0.000 0.104
#> GSM149120     1  0.3038     0.8283 0.896 0.000 0.104
#> GSM149121     1  0.6936    -0.3100 0.524 0.460 0.016
#> GSM149122     1  0.3038     0.8283 0.896 0.000 0.104
#> GSM149123     1  0.3038     0.8283 0.896 0.000 0.104
#> GSM149124     1  0.3038     0.8283 0.896 0.000 0.104
#> GSM149125     1  0.3038     0.8283 0.896 0.000 0.104
#> GSM149126     1  0.3038     0.8283 0.896 0.000 0.104
#> GSM149127     1  0.3038     0.8283 0.896 0.000 0.104
#> GSM149128     1  0.3038     0.8283 0.896 0.000 0.104
#> GSM149129     1  0.3038     0.8283 0.896 0.000 0.104
#> GSM149130     1  0.6410     0.0699 0.576 0.420 0.004
#> GSM149131     1  0.6460    -0.0128 0.556 0.440 0.004
#> GSM149132     1  0.3038     0.8283 0.896 0.000 0.104
#> GSM149133     1  0.4094     0.8014 0.872 0.028 0.100
#> GSM149134     2  0.6825     0.3772 0.492 0.496 0.012
#> GSM149135     2  0.5497     0.6801 0.292 0.708 0.000
#> GSM149136     2  0.5497     0.6801 0.292 0.708 0.000
#> GSM149137     2  0.5529     0.6750 0.296 0.704 0.000
#> GSM149138     2  0.6825     0.3772 0.492 0.496 0.012
#> GSM149139     2  0.5497     0.6801 0.292 0.708 0.000
#> GSM149140     2  0.5497     0.6801 0.292 0.708 0.000
#> GSM149141     2  0.7317     0.7515 0.208 0.696 0.096
#> GSM149142     2  0.5201     0.7531 0.236 0.760 0.004
#> GSM149143     2  0.6243     0.7968 0.124 0.776 0.100
#> GSM149144     2  0.1031     0.8190 0.024 0.976 0.000
#> GSM149145     2  0.7317     0.7515 0.208 0.696 0.096
#> GSM149146     2  0.0661     0.8194 0.008 0.988 0.004
#> GSM149147     2  0.5497     0.6801 0.292 0.708 0.000
#> GSM149148     2  0.5497     0.6801 0.292 0.708 0.000
#> GSM149149     2  0.5497     0.6801 0.292 0.708 0.000
#> GSM149150     2  0.4963     0.7825 0.200 0.792 0.008
#> GSM149151     2  0.5016     0.7487 0.240 0.760 0.000
#> GSM149152     2  0.6935     0.6704 0.312 0.652 0.036
#> GSM149153     2  0.7317     0.7515 0.208 0.696 0.096
#> GSM149154     2  0.7603     0.7271 0.236 0.668 0.096
#> GSM149155     2  0.0424     0.8185 0.008 0.992 0.000
#> GSM149156     2  0.1643     0.8248 0.044 0.956 0.000
#> GSM149157     2  0.4689     0.8216 0.096 0.852 0.052
#> GSM149158     2  0.3272     0.8191 0.104 0.892 0.004
#> GSM149159     2  0.5743     0.7810 0.044 0.784 0.172
#> GSM149160     2  0.4479     0.8230 0.096 0.860 0.044
#> GSM149161     2  0.3272     0.8191 0.104 0.892 0.004
#> GSM149162     2  0.1529     0.8245 0.040 0.960 0.000
#> GSM149163     2  0.0424     0.8185 0.008 0.992 0.000
#> GSM149164     2  0.6007     0.7995 0.184 0.768 0.048
#> GSM149165     2  0.1267     0.8233 0.004 0.972 0.024
#> GSM149166     2  0.1989     0.8170 0.048 0.948 0.004
#> GSM149167     2  0.3551     0.8088 0.132 0.868 0.000
#> GSM149168     2  0.5901     0.7694 0.040 0.768 0.192
#> GSM149169     2  0.3349     0.8182 0.108 0.888 0.004
#> GSM149170     2  0.5692     0.7754 0.040 0.784 0.176
#> GSM149171     2  0.5746     0.7727 0.040 0.780 0.180
#> GSM149172     2  0.7053     0.7141 0.064 0.692 0.244
#> GSM149173     2  0.6715     0.7279 0.056 0.716 0.228
#> GSM149174     2  0.3272     0.8191 0.104 0.892 0.004
#> GSM149175     2  0.7515     0.7241 0.100 0.680 0.220
#> GSM149176     2  0.3272     0.8226 0.016 0.904 0.080
#> GSM149177     2  0.5905     0.7579 0.044 0.772 0.184
#> GSM149178     2  0.7353     0.6314 0.052 0.632 0.316
#> GSM149179     2  0.0592     0.8208 0.012 0.988 0.000
#> GSM149180     2  0.0892     0.8214 0.020 0.980 0.000
#> GSM149181     2  0.3765     0.8164 0.028 0.888 0.084
#> GSM149182     2  0.0424     0.8185 0.008 0.992 0.000
#> GSM149183     2  0.0000     0.8196 0.000 1.000 0.000
#> GSM149184     2  0.0747     0.8213 0.016 0.984 0.000
#> GSM149185     2  0.4915     0.7988 0.036 0.832 0.132
#> GSM149186     2  0.1636     0.8230 0.020 0.964 0.016
#> GSM149187     2  0.1031     0.8232 0.024 0.976 0.000
#> GSM149188     2  0.0000     0.8196 0.000 1.000 0.000
#> GSM149189     2  0.6621     0.6965 0.032 0.684 0.284
#> GSM149190     2  0.2448     0.8227 0.076 0.924 0.000
#> GSM149191     2  0.5892     0.8024 0.100 0.796 0.104
#> GSM149192     2  0.1267     0.8237 0.004 0.972 0.024
#> GSM149193     2  0.1015     0.8223 0.012 0.980 0.008
#> GSM149194     2  0.5737     0.8088 0.104 0.804 0.092
#> GSM149195     2  0.7492     0.6077 0.052 0.608 0.340
#> GSM149196     2  0.0747     0.8213 0.016 0.984 0.000
#> GSM149197     2  0.0237     0.8187 0.004 0.996 0.000
#> GSM149198     2  0.6955     0.3793 0.488 0.496 0.016
#> GSM149199     2  0.2261     0.8237 0.068 0.932 0.000
#> GSM149200     2  0.5692     0.7754 0.040 0.784 0.176
#> GSM149201     2  0.0424     0.8185 0.008 0.992 0.000
#> GSM149202     2  0.5581     0.7775 0.036 0.788 0.176
#> GSM149203     2  0.5901     0.7694 0.040 0.768 0.192

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.0336     1.0000 0.000 0.000 0.992 0.008
#> GSM149100     3  0.0336     1.0000 0.000 0.000 0.992 0.008
#> GSM149101     3  0.0336     1.0000 0.000 0.000 0.992 0.008
#> GSM149102     3  0.0336     1.0000 0.000 0.000 0.992 0.008
#> GSM149103     2  0.7219     0.4179 0.176 0.604 0.204 0.016
#> GSM149104     3  0.0336     1.0000 0.000 0.000 0.992 0.008
#> GSM149105     3  0.0336     1.0000 0.000 0.000 0.992 0.008
#> GSM149106     2  0.6806     0.4345 0.112 0.620 0.256 0.012
#> GSM149107     3  0.0336     1.0000 0.000 0.000 0.992 0.008
#> GSM149108     3  0.0336     1.0000 0.000 0.000 0.992 0.008
#> GSM149109     3  0.0336     1.0000 0.000 0.000 0.992 0.008
#> GSM149110     3  0.0336     1.0000 0.000 0.000 0.992 0.008
#> GSM149111     3  0.0336     1.0000 0.000 0.000 0.992 0.008
#> GSM149112     3  0.0336     1.0000 0.000 0.000 0.992 0.008
#> GSM149113     3  0.0336     1.0000 0.000 0.000 0.992 0.008
#> GSM149114     3  0.0336     1.0000 0.000 0.000 0.992 0.008
#> GSM149115     4  0.5963     0.5716 0.116 0.196 0.000 0.688
#> GSM149116     4  0.1474     0.8980 0.000 0.000 0.052 0.948
#> GSM149117     2  0.4070     0.6445 0.132 0.824 0.000 0.044
#> GSM149118     4  0.1474     0.8980 0.000 0.000 0.052 0.948
#> GSM149119     4  0.1474     0.8980 0.000 0.000 0.052 0.948
#> GSM149120     4  0.1474     0.8980 0.000 0.000 0.052 0.948
#> GSM149121     1  0.5883     0.3143 0.640 0.060 0.000 0.300
#> GSM149122     4  0.1474     0.8980 0.000 0.000 0.052 0.948
#> GSM149123     4  0.1474     0.8980 0.000 0.000 0.052 0.948
#> GSM149124     4  0.1474     0.8980 0.000 0.000 0.052 0.948
#> GSM149125     4  0.1474     0.8980 0.000 0.000 0.052 0.948
#> GSM149126     4  0.1474     0.8980 0.000 0.000 0.052 0.948
#> GSM149127     4  0.1474     0.8980 0.000 0.000 0.052 0.948
#> GSM149128     4  0.1474     0.8980 0.000 0.000 0.052 0.948
#> GSM149129     4  0.1474     0.8980 0.000 0.000 0.052 0.948
#> GSM149130     4  0.7238     0.2453 0.172 0.304 0.000 0.524
#> GSM149131     4  0.7309     0.1868 0.172 0.324 0.000 0.504
#> GSM149132     4  0.1474     0.8980 0.000 0.000 0.052 0.948
#> GSM149133     4  0.2814     0.8686 0.032 0.008 0.052 0.908
#> GSM149134     1  0.5559     0.3900 0.696 0.064 0.000 0.240
#> GSM149135     2  0.6693     0.5307 0.304 0.580 0.000 0.116
#> GSM149136     2  0.6693     0.5307 0.304 0.580 0.000 0.116
#> GSM149137     2  0.6711     0.5268 0.308 0.576 0.000 0.116
#> GSM149138     1  0.5559     0.3900 0.696 0.064 0.000 0.240
#> GSM149139     2  0.6693     0.5307 0.304 0.580 0.000 0.116
#> GSM149140     2  0.6693     0.5307 0.304 0.580 0.000 0.116
#> GSM149141     1  0.6268     0.5786 0.692 0.216 0.044 0.048
#> GSM149142     2  0.6212     0.4859 0.380 0.560 0.000 0.060
#> GSM149143     1  0.5709     0.6535 0.704 0.236 0.044 0.016
#> GSM149144     2  0.1042     0.6943 0.008 0.972 0.000 0.020
#> GSM149145     1  0.6302     0.5807 0.688 0.220 0.044 0.048
#> GSM149146     2  0.0967     0.6902 0.016 0.976 0.004 0.004
#> GSM149147     2  0.6693     0.5307 0.304 0.580 0.000 0.116
#> GSM149148     2  0.6693     0.5307 0.304 0.580 0.000 0.116
#> GSM149149     2  0.6693     0.5307 0.304 0.580 0.000 0.116
#> GSM149150     2  0.5937     0.5088 0.340 0.608 0.000 0.052
#> GSM149151     2  0.6212     0.4905 0.380 0.560 0.000 0.060
#> GSM149152     1  0.7258    -0.2869 0.484 0.400 0.012 0.104
#> GSM149153     1  0.6302     0.5807 0.688 0.220 0.044 0.048
#> GSM149154     1  0.6023     0.6027 0.732 0.160 0.044 0.064
#> GSM149155     2  0.0188     0.6916 0.004 0.996 0.000 0.000
#> GSM149156     2  0.3266     0.6680 0.168 0.832 0.000 0.000
#> GSM149157     2  0.5389     0.4767 0.328 0.648 0.020 0.004
#> GSM149158     2  0.4690     0.6237 0.260 0.724 0.000 0.016
#> GSM149159     1  0.6746     0.6342 0.568 0.316 0.116 0.000
#> GSM149160     2  0.5421     0.5241 0.308 0.664 0.020 0.008
#> GSM149161     2  0.4630     0.6304 0.252 0.732 0.000 0.016
#> GSM149162     2  0.2921     0.6851 0.140 0.860 0.000 0.000
#> GSM149163     2  0.0188     0.6916 0.004 0.996 0.000 0.000
#> GSM149164     1  0.6626     0.5595 0.628 0.284 0.028 0.060
#> GSM149165     2  0.3836     0.5468 0.168 0.816 0.016 0.000
#> GSM149166     2  0.3231     0.6724 0.116 0.868 0.004 0.012
#> GSM149167     2  0.5105     0.6291 0.276 0.696 0.000 0.028
#> GSM149168     1  0.6506     0.6827 0.628 0.240 0.132 0.000
#> GSM149169     2  0.4675     0.6271 0.244 0.736 0.000 0.020
#> GSM149170     1  0.6595     0.6686 0.604 0.276 0.120 0.000
#> GSM149171     1  0.6547     0.6753 0.616 0.260 0.124 0.000
#> GSM149172     1  0.6688     0.6732 0.636 0.176 0.184 0.004
#> GSM149173     1  0.6813     0.6761 0.632 0.196 0.164 0.008
#> GSM149174     2  0.4630     0.6220 0.252 0.732 0.000 0.016
#> GSM149175     1  0.7192     0.6823 0.628 0.184 0.160 0.028
#> GSM149176     2  0.4673     0.6147 0.132 0.792 0.076 0.000
#> GSM149177     2  0.7230     0.3789 0.220 0.592 0.176 0.012
#> GSM149178     1  0.7920     0.5520 0.484 0.236 0.268 0.012
#> GSM149179     2  0.1637     0.6798 0.060 0.940 0.000 0.000
#> GSM149180     2  0.1798     0.6909 0.040 0.944 0.000 0.016
#> GSM149181     1  0.6337     0.4350 0.476 0.464 0.060 0.000
#> GSM149182     2  0.0657     0.6888 0.012 0.984 0.000 0.004
#> GSM149183     2  0.2408     0.6487 0.104 0.896 0.000 0.000
#> GSM149184     2  0.2011     0.6792 0.080 0.920 0.000 0.000
#> GSM149185     1  0.6698     0.5756 0.532 0.372 0.096 0.000
#> GSM149186     2  0.4746     0.0309 0.368 0.632 0.000 0.000
#> GSM149187     2  0.2647     0.6892 0.120 0.880 0.000 0.000
#> GSM149188     2  0.2589     0.6355 0.116 0.884 0.000 0.000
#> GSM149189     1  0.7054     0.6566 0.572 0.196 0.232 0.000
#> GSM149190     2  0.3893     0.6546 0.196 0.796 0.000 0.008
#> GSM149191     1  0.5536     0.6499 0.696 0.252 0.048 0.004
#> GSM149192     2  0.2335     0.6723 0.060 0.920 0.020 0.000
#> GSM149193     2  0.4222     0.3436 0.272 0.728 0.000 0.000
#> GSM149194     1  0.6181     0.3036 0.536 0.420 0.036 0.008
#> GSM149195     1  0.7172     0.5787 0.572 0.128 0.288 0.012
#> GSM149196     2  0.2530     0.6639 0.100 0.896 0.004 0.000
#> GSM149197     2  0.1118     0.6841 0.036 0.964 0.000 0.000
#> GSM149198     1  0.5458     0.3916 0.704 0.060 0.000 0.236
#> GSM149199     2  0.3450     0.6782 0.156 0.836 0.000 0.008
#> GSM149200     1  0.6595     0.6686 0.604 0.276 0.120 0.000
#> GSM149201     2  0.0779     0.6901 0.016 0.980 0.000 0.004
#> GSM149202     1  0.6617     0.6666 0.600 0.280 0.120 0.000
#> GSM149203     1  0.6478     0.6828 0.632 0.236 0.132 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM149100     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM149101     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM149102     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM149103     2  0.6324     0.4152 0.024 0.644 0.184 0.016 0.132
#> GSM149104     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM149105     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM149106     2  0.5104     0.4352 0.012 0.692 0.252 0.016 0.028
#> GSM149107     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM149108     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM149109     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM149110     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM149111     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM149112     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM149113     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM149114     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM149115     4  0.5477     0.4085 0.132 0.220 0.000 0.648 0.000
#> GSM149116     4  0.0609     0.8778 0.000 0.000 0.020 0.980 0.000
#> GSM149117     2  0.1869     0.6280 0.028 0.936 0.000 0.028 0.008
#> GSM149118     4  0.0609     0.8778 0.000 0.000 0.020 0.980 0.000
#> GSM149119     4  0.0609     0.8778 0.000 0.000 0.020 0.980 0.000
#> GSM149120     4  0.0609     0.8778 0.000 0.000 0.020 0.980 0.000
#> GSM149121     1  0.2011     0.9229 0.908 0.000 0.000 0.088 0.004
#> GSM149122     4  0.0609     0.8778 0.000 0.000 0.020 0.980 0.000
#> GSM149123     4  0.0609     0.8778 0.000 0.000 0.020 0.980 0.000
#> GSM149124     4  0.0609     0.8778 0.000 0.000 0.020 0.980 0.000
#> GSM149125     4  0.0609     0.8778 0.000 0.000 0.020 0.980 0.000
#> GSM149126     4  0.0609     0.8778 0.000 0.000 0.020 0.980 0.000
#> GSM149127     4  0.0609     0.8778 0.000 0.000 0.020 0.980 0.000
#> GSM149128     4  0.0609     0.8778 0.000 0.000 0.020 0.980 0.000
#> GSM149129     4  0.0609     0.8778 0.000 0.000 0.020 0.980 0.000
#> GSM149130     4  0.6370     0.0864 0.176 0.344 0.000 0.480 0.000
#> GSM149131     4  0.6381     0.0553 0.172 0.364 0.000 0.464 0.000
#> GSM149132     4  0.0609     0.8778 0.000 0.000 0.020 0.980 0.000
#> GSM149133     4  0.1934     0.8393 0.040 0.008 0.020 0.932 0.000
#> GSM149134     1  0.0865     0.9683 0.972 0.000 0.000 0.024 0.004
#> GSM149135     2  0.4929     0.4561 0.340 0.624 0.000 0.032 0.004
#> GSM149136     2  0.4929     0.4561 0.340 0.624 0.000 0.032 0.004
#> GSM149137     2  0.5060     0.4437 0.344 0.616 0.000 0.032 0.008
#> GSM149138     1  0.1153     0.9650 0.964 0.008 0.000 0.024 0.004
#> GSM149139     2  0.4929     0.4561 0.340 0.624 0.000 0.032 0.004
#> GSM149140     2  0.4929     0.4561 0.340 0.624 0.000 0.032 0.004
#> GSM149141     5  0.6431     0.5370 0.252 0.116 0.020 0.012 0.600
#> GSM149142     2  0.6086     0.4520 0.320 0.556 0.000 0.008 0.116
#> GSM149143     5  0.4280     0.7089 0.152 0.044 0.008 0.008 0.788
#> GSM149144     2  0.3127     0.6687 0.020 0.848 0.000 0.004 0.128
#> GSM149145     5  0.6409     0.5445 0.248 0.116 0.020 0.012 0.604
#> GSM149146     2  0.2694     0.6618 0.004 0.864 0.000 0.004 0.128
#> GSM149147     2  0.4929     0.4561 0.340 0.624 0.000 0.032 0.004
#> GSM149148     2  0.4929     0.4561 0.340 0.624 0.000 0.032 0.004
#> GSM149149     2  0.4929     0.4561 0.340 0.624 0.000 0.032 0.004
#> GSM149150     2  0.6418     0.5201 0.264 0.544 0.000 0.008 0.184
#> GSM149151     2  0.5832     0.4428 0.320 0.580 0.000 0.008 0.092
#> GSM149152     2  0.7380     0.1343 0.396 0.408 0.008 0.044 0.144
#> GSM149153     5  0.6409     0.5445 0.248 0.116 0.020 0.012 0.604
#> GSM149154     5  0.5969     0.5342 0.288 0.056 0.020 0.016 0.620
#> GSM149155     2  0.2471     0.6634 0.000 0.864 0.000 0.000 0.136
#> GSM149156     2  0.5164     0.6280 0.084 0.660 0.000 0.000 0.256
#> GSM149157     2  0.6380     0.3846 0.124 0.452 0.004 0.004 0.416
#> GSM149158     2  0.5957     0.5786 0.148 0.572 0.000 0.000 0.280
#> GSM149159     5  0.3347     0.7297 0.028 0.100 0.012 0.004 0.856
#> GSM149160     2  0.6265     0.4442 0.132 0.484 0.004 0.000 0.380
#> GSM149161     2  0.5935     0.5885 0.152 0.580 0.000 0.000 0.268
#> GSM149162     2  0.5037     0.6506 0.088 0.684 0.000 0.000 0.228
#> GSM149163     2  0.2516     0.6652 0.000 0.860 0.000 0.000 0.140
#> GSM149164     5  0.5481     0.5924 0.236 0.108 0.000 0.004 0.652
#> GSM149165     2  0.4166     0.4874 0.004 0.648 0.000 0.000 0.348
#> GSM149166     2  0.1799     0.6446 0.020 0.940 0.000 0.012 0.028
#> GSM149167     2  0.5946     0.5997 0.184 0.592 0.000 0.000 0.224
#> GSM149168     5  0.1679     0.7495 0.020 0.016 0.012 0.004 0.948
#> GSM149169     2  0.5987     0.5875 0.156 0.572 0.000 0.000 0.272
#> GSM149170     5  0.2162     0.7522 0.008 0.064 0.012 0.000 0.916
#> GSM149171     5  0.1996     0.7526 0.012 0.048 0.012 0.000 0.928
#> GSM149172     5  0.3146     0.7098 0.052 0.012 0.056 0.004 0.876
#> GSM149173     5  0.2710     0.7255 0.044 0.012 0.040 0.004 0.900
#> GSM149174     2  0.6007     0.5777 0.152 0.564 0.000 0.000 0.284
#> GSM149175     5  0.4158     0.7011 0.100 0.028 0.044 0.008 0.820
#> GSM149176     2  0.4897     0.5714 0.008 0.704 0.036 0.008 0.244
#> GSM149177     2  0.6549     0.3394 0.020 0.588 0.128 0.012 0.252
#> GSM149178     5  0.6578     0.5408 0.052 0.172 0.168 0.000 0.608
#> GSM149179     2  0.3366     0.6424 0.004 0.784 0.000 0.000 0.212
#> GSM149180     2  0.3716     0.6606 0.020 0.800 0.000 0.008 0.172
#> GSM149181     5  0.3885     0.5476 0.008 0.268 0.000 0.000 0.724
#> GSM149182     2  0.2833     0.6604 0.004 0.852 0.000 0.004 0.140
#> GSM149183     2  0.3741     0.6040 0.004 0.732 0.000 0.000 0.264
#> GSM149184     2  0.3491     0.6371 0.004 0.768 0.000 0.000 0.228
#> GSM149185     5  0.3403     0.6855 0.008 0.160 0.012 0.000 0.820
#> GSM149186     5  0.4538     0.0729 0.008 0.452 0.000 0.000 0.540
#> GSM149187     2  0.4679     0.6576 0.068 0.716 0.000 0.000 0.216
#> GSM149188     2  0.3814     0.5892 0.004 0.720 0.000 0.000 0.276
#> GSM149189     5  0.4070     0.7040 0.020 0.048 0.124 0.000 0.808
#> GSM149190     2  0.5639     0.6143 0.124 0.616 0.000 0.000 0.260
#> GSM149191     5  0.3728     0.7224 0.124 0.044 0.004 0.004 0.824
#> GSM149192     2  0.3521     0.6341 0.004 0.764 0.000 0.000 0.232
#> GSM149193     2  0.4522     0.2427 0.008 0.552 0.000 0.000 0.440
#> GSM149194     5  0.5842     0.3995 0.128 0.236 0.004 0.004 0.628
#> GSM149195     5  0.4709     0.6034 0.060 0.016 0.176 0.000 0.748
#> GSM149196     2  0.3715     0.6130 0.004 0.736 0.000 0.000 0.260
#> GSM149197     2  0.3160     0.6495 0.004 0.808 0.000 0.000 0.188
#> GSM149198     1  0.1106     0.9661 0.964 0.000 0.000 0.024 0.012
#> GSM149199     2  0.5288     0.6411 0.100 0.656 0.000 0.000 0.244
#> GSM149200     5  0.2162     0.7522 0.008 0.064 0.012 0.000 0.916
#> GSM149201     2  0.2877     0.6626 0.004 0.848 0.000 0.004 0.144
#> GSM149202     5  0.2228     0.7511 0.008 0.068 0.012 0.000 0.912
#> GSM149203     5  0.1777     0.7496 0.020 0.020 0.012 0.004 0.944

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.0000    0.99909 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149100     3  0.0000    0.99909 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149101     3  0.0000    0.99909 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149102     3  0.0000    0.99909 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149103     2  0.8033    0.09921 0.252 0.404 0.168 0.000 0.100 0.076
#> GSM149104     3  0.0000    0.99909 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149105     3  0.0000    0.99909 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149106     2  0.7286    0.07502 0.244 0.428 0.240 0.000 0.016 0.072
#> GSM149107     3  0.0000    0.99909 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149108     3  0.0363    0.98804 0.012 0.000 0.988 0.000 0.000 0.000
#> GSM149109     3  0.0000    0.99909 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149110     3  0.0000    0.99909 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149111     3  0.0000    0.99909 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149112     3  0.0000    0.99909 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149113     3  0.0000    0.99909 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149114     3  0.0000    0.99909 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149115     4  0.5187    0.44777 0.256 0.104 0.000 0.628 0.000 0.012
#> GSM149116     4  0.0000    0.88326 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149117     2  0.5358    0.05043 0.300 0.604 0.000 0.016 0.008 0.072
#> GSM149118     4  0.0000    0.88326 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149119     4  0.0000    0.88326 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149120     4  0.0000    0.88326 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149121     6  0.4201    0.91439 0.196 0.000 0.000 0.068 0.004 0.732
#> GSM149122     4  0.0000    0.88326 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149123     4  0.0000    0.88326 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149124     4  0.0000    0.88326 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149125     4  0.0000    0.88326 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149126     4  0.0000    0.88326 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149127     4  0.0000    0.88326 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149128     4  0.0000    0.88326 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149129     4  0.0000    0.88326 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149130     4  0.5899    0.06698 0.384 0.144 0.000 0.460 0.000 0.012
#> GSM149131     4  0.5894   -0.00154 0.392 0.156 0.000 0.444 0.000 0.008
#> GSM149132     4  0.0000    0.88326 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149133     4  0.1367    0.84251 0.044 0.000 0.000 0.944 0.000 0.012
#> GSM149134     6  0.2964    0.96256 0.204 0.000 0.000 0.000 0.004 0.792
#> GSM149135     1  0.4103    0.86683 0.684 0.288 0.000 0.020 0.000 0.008
#> GSM149136     1  0.4103    0.86683 0.684 0.288 0.000 0.020 0.000 0.008
#> GSM149137     1  0.4138    0.85594 0.692 0.276 0.000 0.020 0.000 0.012
#> GSM149138     6  0.3134    0.95910 0.208 0.004 0.000 0.000 0.004 0.784
#> GSM149139     1  0.4103    0.86683 0.684 0.288 0.000 0.020 0.000 0.008
#> GSM149140     1  0.4103    0.86683 0.684 0.288 0.000 0.020 0.000 0.008
#> GSM149141     5  0.5859    0.48775 0.332 0.068 0.004 0.004 0.552 0.040
#> GSM149142     1  0.5327    0.72136 0.612 0.280 0.000 0.000 0.084 0.024
#> GSM149143     5  0.5001    0.65638 0.196 0.080 0.004 0.004 0.696 0.020
#> GSM149144     2  0.2129    0.59966 0.056 0.904 0.000 0.000 0.000 0.040
#> GSM149145     5  0.5847    0.49165 0.328 0.068 0.004 0.004 0.556 0.040
#> GSM149146     2  0.1856    0.60029 0.032 0.920 0.000 0.000 0.000 0.048
#> GSM149147     1  0.4103    0.86683 0.684 0.288 0.000 0.020 0.000 0.008
#> GSM149148     1  0.4103    0.86683 0.684 0.288 0.000 0.020 0.000 0.008
#> GSM149149     1  0.4103    0.86683 0.684 0.288 0.000 0.020 0.000 0.008
#> GSM149150     1  0.5798    0.43711 0.464 0.420 0.000 0.000 0.084 0.032
#> GSM149151     1  0.5271    0.75072 0.624 0.272 0.000 0.000 0.076 0.028
#> GSM149152     1  0.5611    0.45708 0.692 0.092 0.000 0.024 0.124 0.068
#> GSM149153     5  0.5847    0.49165 0.328 0.068 0.004 0.004 0.556 0.040
#> GSM149154     5  0.5260    0.52261 0.348 0.028 0.004 0.008 0.584 0.028
#> GSM149155     2  0.1320    0.61164 0.036 0.948 0.000 0.000 0.000 0.016
#> GSM149156     2  0.4619    0.53015 0.192 0.704 0.000 0.000 0.096 0.008
#> GSM149157     2  0.6175    0.30346 0.256 0.472 0.000 0.000 0.260 0.012
#> GSM149158     2  0.5804    0.35641 0.304 0.548 0.000 0.000 0.124 0.024
#> GSM149159     5  0.4552    0.62381 0.048 0.240 0.004 0.000 0.696 0.012
#> GSM149160     2  0.6245    0.28236 0.292 0.464 0.000 0.000 0.228 0.016
#> GSM149161     2  0.5677    0.36238 0.308 0.556 0.000 0.000 0.116 0.020
#> GSM149162     2  0.4093    0.52082 0.204 0.736 0.000 0.000 0.056 0.004
#> GSM149163     2  0.1391    0.61142 0.040 0.944 0.000 0.000 0.000 0.016
#> GSM149164     5  0.6331    0.54202 0.248 0.100 0.000 0.000 0.552 0.100
#> GSM149165     2  0.2738    0.58248 0.004 0.820 0.000 0.000 0.176 0.000
#> GSM149166     2  0.4814    0.29758 0.244 0.668 0.000 0.000 0.012 0.076
#> GSM149167     2  0.5678    0.13038 0.424 0.460 0.000 0.000 0.100 0.016
#> GSM149168     5  0.3797    0.69751 0.048 0.124 0.004 0.000 0.804 0.020
#> GSM149169     2  0.5628    0.37138 0.304 0.564 0.000 0.000 0.112 0.020
#> GSM149170     5  0.3229    0.67225 0.008 0.188 0.004 0.000 0.796 0.004
#> GSM149171     5  0.3025    0.69230 0.008 0.152 0.004 0.000 0.828 0.008
#> GSM149172     5  0.3125    0.63567 0.060 0.012 0.004 0.000 0.856 0.068
#> GSM149173     5  0.3036    0.66535 0.044 0.040 0.008 0.000 0.872 0.036
#> GSM149174     2  0.5743    0.37318 0.296 0.560 0.000 0.000 0.120 0.024
#> GSM149175     5  0.3943    0.62818 0.128 0.008 0.004 0.004 0.792 0.064
#> GSM149176     2  0.5576    0.49881 0.108 0.684 0.012 0.000 0.128 0.068
#> GSM149177     2  0.8102    0.12500 0.244 0.392 0.100 0.000 0.188 0.076
#> GSM149178     5  0.7291    0.43819 0.132 0.104 0.104 0.000 0.552 0.108
#> GSM149179     2  0.2463    0.62119 0.020 0.892 0.000 0.000 0.068 0.020
#> GSM149180     2  0.2271    0.62139 0.036 0.908 0.000 0.000 0.032 0.024
#> GSM149181     5  0.3899    0.39537 0.004 0.404 0.000 0.000 0.592 0.000
#> GSM149182     2  0.1176    0.61152 0.020 0.956 0.000 0.000 0.000 0.024
#> GSM149183     2  0.1918    0.62194 0.008 0.904 0.000 0.000 0.088 0.000
#> GSM149184     2  0.2149    0.62396 0.016 0.900 0.000 0.000 0.080 0.004
#> GSM149185     5  0.3772    0.57220 0.008 0.296 0.004 0.000 0.692 0.000
#> GSM149186     2  0.3747    0.12975 0.000 0.604 0.000 0.000 0.396 0.000
#> GSM149187     2  0.4130    0.55668 0.164 0.760 0.000 0.000 0.060 0.016
#> GSM149188     2  0.2070    0.61664 0.008 0.892 0.000 0.000 0.100 0.000
#> GSM149189     5  0.5539    0.64000 0.044 0.112 0.072 0.000 0.708 0.064
#> GSM149190     2  0.5082    0.45609 0.260 0.636 0.000 0.000 0.092 0.012
#> GSM149191     5  0.4869    0.66340 0.176 0.092 0.000 0.000 0.704 0.028
#> GSM149192     2  0.1584    0.62763 0.008 0.928 0.000 0.000 0.064 0.000
#> GSM149193     2  0.3390    0.39549 0.000 0.704 0.000 0.000 0.296 0.000
#> GSM149194     5  0.6172    0.32088 0.216 0.284 0.000 0.000 0.484 0.016
#> GSM149195     5  0.5448    0.52351 0.084 0.012 0.108 0.000 0.700 0.096
#> GSM149196     2  0.2408    0.61780 0.012 0.876 0.000 0.000 0.108 0.004
#> GSM149197     2  0.0909    0.62471 0.012 0.968 0.000 0.000 0.020 0.000
#> GSM149198     6  0.2871    0.95828 0.192 0.000 0.000 0.000 0.004 0.804
#> GSM149199     2  0.4498    0.52954 0.188 0.720 0.000 0.000 0.080 0.012
#> GSM149200     5  0.3229    0.67225 0.008 0.188 0.004 0.000 0.796 0.004
#> GSM149201     2  0.1237    0.61526 0.020 0.956 0.000 0.000 0.004 0.020
#> GSM149202     5  0.3261    0.66958 0.008 0.192 0.004 0.000 0.792 0.004
#> GSM149203     5  0.3298    0.69101 0.056 0.072 0.004 0.000 0.848 0.020

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> SD:hclust 103         3.78e-13 2
#> SD:hclust  99         7.00e-28 3
#> SD:hclust  88         8.74e-26 4
#> SD:hclust  82         9.69e-26 5
#> SD:hclust  78         6.48e-28 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.309           0.853       0.898         0.4175 0.558   0.558
#> 3 3 0.617           0.775       0.872         0.4135 0.726   0.551
#> 4 4 0.636           0.779       0.838         0.2056 0.886   0.719
#> 5 5 0.751           0.810       0.855         0.1010 0.864   0.587
#> 6 6 0.781           0.671       0.788         0.0484 0.972   0.870

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     1   0.671      0.848 0.824 0.176
#> GSM149100     1   0.671      0.848 0.824 0.176
#> GSM149101     1   0.671      0.848 0.824 0.176
#> GSM149102     1   0.671      0.848 0.824 0.176
#> GSM149103     1   0.861      0.755 0.716 0.284
#> GSM149104     1   0.671      0.848 0.824 0.176
#> GSM149105     1   0.671      0.848 0.824 0.176
#> GSM149106     1   0.671      0.848 0.824 0.176
#> GSM149107     1   0.671      0.848 0.824 0.176
#> GSM149108     1   0.671      0.848 0.824 0.176
#> GSM149109     1   0.671      0.848 0.824 0.176
#> GSM149110     1   0.671      0.848 0.824 0.176
#> GSM149111     1   0.671      0.848 0.824 0.176
#> GSM149112     1   0.671      0.848 0.824 0.176
#> GSM149113     1   0.671      0.848 0.824 0.176
#> GSM149114     1   0.671      0.848 0.824 0.176
#> GSM149115     2   0.866      0.676 0.288 0.712
#> GSM149116     1   0.605      0.833 0.852 0.148
#> GSM149117     2   0.552      0.815 0.128 0.872
#> GSM149118     1   0.605      0.833 0.852 0.148
#> GSM149119     1   0.605      0.833 0.852 0.148
#> GSM149120     1   0.605      0.833 0.852 0.148
#> GSM149121     1   0.605      0.833 0.852 0.148
#> GSM149122     1   0.605      0.833 0.852 0.148
#> GSM149123     1   0.605      0.833 0.852 0.148
#> GSM149124     1   0.605      0.833 0.852 0.148
#> GSM149125     1   0.605      0.833 0.852 0.148
#> GSM149126     1   0.605      0.833 0.852 0.148
#> GSM149127     1   0.605      0.833 0.852 0.148
#> GSM149128     1   0.605      0.833 0.852 0.148
#> GSM149129     1   0.605      0.833 0.852 0.148
#> GSM149130     2   0.821      0.719 0.256 0.744
#> GSM149131     2   0.866      0.676 0.288 0.712
#> GSM149132     1   0.605      0.833 0.852 0.148
#> GSM149133     1   0.605      0.833 0.852 0.148
#> GSM149134     2   0.844      0.699 0.272 0.728
#> GSM149135     2   0.821      0.719 0.256 0.744
#> GSM149136     2   0.821      0.719 0.256 0.744
#> GSM149137     2   0.821      0.719 0.256 0.744
#> GSM149138     2   0.821      0.719 0.256 0.744
#> GSM149139     2   0.821      0.719 0.256 0.744
#> GSM149140     2   0.821      0.719 0.256 0.744
#> GSM149141     2   0.506      0.827 0.112 0.888
#> GSM149142     2   0.000      0.916 0.000 1.000
#> GSM149143     2   0.506      0.827 0.112 0.888
#> GSM149144     2   0.000      0.916 0.000 1.000
#> GSM149145     2   0.506      0.827 0.112 0.888
#> GSM149146     2   0.000      0.916 0.000 1.000
#> GSM149147     2   0.821      0.719 0.256 0.744
#> GSM149148     2   0.821      0.719 0.256 0.744
#> GSM149149     2   0.821      0.719 0.256 0.744
#> GSM149150     2   0.000      0.916 0.000 1.000
#> GSM149151     2   0.781      0.742 0.232 0.768
#> GSM149152     2   0.821      0.719 0.256 0.744
#> GSM149153     2   0.506      0.827 0.112 0.888
#> GSM149154     1   0.738      0.813 0.792 0.208
#> GSM149155     2   0.000      0.916 0.000 1.000
#> GSM149156     2   0.000      0.916 0.000 1.000
#> GSM149157     2   0.000      0.916 0.000 1.000
#> GSM149158     2   0.000      0.916 0.000 1.000
#> GSM149159     2   0.000      0.916 0.000 1.000
#> GSM149160     2   0.000      0.916 0.000 1.000
#> GSM149161     2   0.000      0.916 0.000 1.000
#> GSM149162     2   0.000      0.916 0.000 1.000
#> GSM149163     2   0.000      0.916 0.000 1.000
#> GSM149164     2   0.000      0.916 0.000 1.000
#> GSM149165     2   0.000      0.916 0.000 1.000
#> GSM149166     2   0.000      0.916 0.000 1.000
#> GSM149167     2   0.000      0.916 0.000 1.000
#> GSM149168     2   0.000      0.916 0.000 1.000
#> GSM149169     2   0.000      0.916 0.000 1.000
#> GSM149170     2   0.000      0.916 0.000 1.000
#> GSM149171     2   0.000      0.916 0.000 1.000
#> GSM149172     2   0.416      0.853 0.084 0.916
#> GSM149173     2   0.000      0.916 0.000 1.000
#> GSM149174     2   0.000      0.916 0.000 1.000
#> GSM149175     1   0.909      0.746 0.676 0.324
#> GSM149176     2   0.000      0.916 0.000 1.000
#> GSM149177     2   0.118      0.905 0.016 0.984
#> GSM149178     2   0.000      0.916 0.000 1.000
#> GSM149179     2   0.000      0.916 0.000 1.000
#> GSM149180     2   0.000      0.916 0.000 1.000
#> GSM149181     2   0.000      0.916 0.000 1.000
#> GSM149182     2   0.000      0.916 0.000 1.000
#> GSM149183     2   0.000      0.916 0.000 1.000
#> GSM149184     2   0.000      0.916 0.000 1.000
#> GSM149185     2   0.000      0.916 0.000 1.000
#> GSM149186     2   0.000      0.916 0.000 1.000
#> GSM149187     2   0.000      0.916 0.000 1.000
#> GSM149188     2   0.000      0.916 0.000 1.000
#> GSM149189     2   0.000      0.916 0.000 1.000
#> GSM149190     2   0.000      0.916 0.000 1.000
#> GSM149191     2   0.000      0.916 0.000 1.000
#> GSM149192     2   0.000      0.916 0.000 1.000
#> GSM149193     2   0.000      0.916 0.000 1.000
#> GSM149194     2   0.000      0.916 0.000 1.000
#> GSM149195     1   0.671      0.848 0.824 0.176
#> GSM149196     2   0.000      0.916 0.000 1.000
#> GSM149197     2   0.000      0.916 0.000 1.000
#> GSM149198     2   0.844      0.697 0.272 0.728
#> GSM149199     2   0.000      0.916 0.000 1.000
#> GSM149200     2   0.000      0.916 0.000 1.000
#> GSM149201     2   0.000      0.916 0.000 1.000
#> GSM149202     2   0.000      0.916 0.000 1.000
#> GSM149203     2   0.000      0.916 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0237     0.9935 0.004 0.000 0.996
#> GSM149100     3  0.0237     0.9935 0.004 0.000 0.996
#> GSM149101     3  0.0000     0.9938 0.000 0.000 1.000
#> GSM149102     3  0.0000     0.9938 0.000 0.000 1.000
#> GSM149103     3  0.1753     0.9208 0.000 0.048 0.952
#> GSM149104     3  0.0000     0.9938 0.000 0.000 1.000
#> GSM149105     3  0.0237     0.9935 0.004 0.000 0.996
#> GSM149106     3  0.0000     0.9938 0.000 0.000 1.000
#> GSM149107     3  0.0000     0.9938 0.000 0.000 1.000
#> GSM149108     3  0.0000     0.9938 0.000 0.000 1.000
#> GSM149109     3  0.0237     0.9935 0.004 0.000 0.996
#> GSM149110     3  0.0237     0.9935 0.004 0.000 0.996
#> GSM149111     3  0.0237     0.9935 0.004 0.000 0.996
#> GSM149112     3  0.0237     0.9935 0.004 0.000 0.996
#> GSM149113     3  0.0000     0.9938 0.000 0.000 1.000
#> GSM149114     3  0.0000     0.9938 0.000 0.000 1.000
#> GSM149115     1  0.0237     0.5597 0.996 0.004 0.000
#> GSM149116     1  0.5873     0.4507 0.684 0.004 0.312
#> GSM149117     1  0.6295     0.0642 0.528 0.472 0.000
#> GSM149118     1  0.5873     0.4507 0.684 0.004 0.312
#> GSM149119     1  0.5873     0.4507 0.684 0.004 0.312
#> GSM149120     1  0.5873     0.4507 0.684 0.004 0.312
#> GSM149121     1  0.0237     0.5597 0.996 0.004 0.000
#> GSM149122     1  0.5873     0.4507 0.684 0.004 0.312
#> GSM149123     1  0.5873     0.4507 0.684 0.004 0.312
#> GSM149124     1  0.5873     0.4507 0.684 0.004 0.312
#> GSM149125     1  0.5873     0.4507 0.684 0.004 0.312
#> GSM149126     1  0.5873     0.4507 0.684 0.004 0.312
#> GSM149127     1  0.5873     0.4507 0.684 0.004 0.312
#> GSM149128     1  0.5873     0.4507 0.684 0.004 0.312
#> GSM149129     1  0.5873     0.4507 0.684 0.004 0.312
#> GSM149130     1  0.6075     0.5159 0.676 0.316 0.008
#> GSM149131     1  0.0237     0.5597 0.996 0.004 0.000
#> GSM149132     1  0.5873     0.4507 0.684 0.004 0.312
#> GSM149133     1  0.5690     0.4618 0.708 0.004 0.288
#> GSM149134     1  0.3532     0.5941 0.884 0.108 0.008
#> GSM149135     1  0.6075     0.5159 0.676 0.316 0.008
#> GSM149136     1  0.6075     0.5159 0.676 0.316 0.008
#> GSM149137     1  0.6075     0.5159 0.676 0.316 0.008
#> GSM149138     1  0.6075     0.5159 0.676 0.316 0.008
#> GSM149139     1  0.6075     0.5159 0.676 0.316 0.008
#> GSM149140     1  0.6075     0.5159 0.676 0.316 0.008
#> GSM149141     2  0.5541     0.7077 0.252 0.740 0.008
#> GSM149142     2  0.5529     0.6468 0.296 0.704 0.000
#> GSM149143     2  0.5335     0.7402 0.232 0.760 0.008
#> GSM149144     2  0.3941     0.8403 0.156 0.844 0.000
#> GSM149145     2  0.5335     0.7380 0.232 0.760 0.008
#> GSM149146     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149147     1  0.6075     0.5159 0.676 0.316 0.008
#> GSM149148     1  0.6075     0.5159 0.676 0.316 0.008
#> GSM149149     1  0.6075     0.5159 0.676 0.316 0.008
#> GSM149150     2  0.2796     0.8876 0.092 0.908 0.000
#> GSM149151     1  0.6075     0.5159 0.676 0.316 0.008
#> GSM149152     1  0.6075     0.5159 0.676 0.316 0.008
#> GSM149153     2  0.5335     0.7380 0.232 0.760 0.008
#> GSM149154     1  0.9876     0.4764 0.412 0.288 0.300
#> GSM149155     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149156     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149157     2  0.0892     0.9256 0.020 0.980 0.000
#> GSM149158     2  0.3941     0.8403 0.156 0.844 0.000
#> GSM149159     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149160     2  0.3941     0.8403 0.156 0.844 0.000
#> GSM149161     2  0.3619     0.8562 0.136 0.864 0.000
#> GSM149162     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149163     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149164     2  0.3941     0.8403 0.156 0.844 0.000
#> GSM149165     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149166     2  0.2448     0.8977 0.076 0.924 0.000
#> GSM149167     2  0.3941     0.8403 0.156 0.844 0.000
#> GSM149168     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149169     2  0.4062     0.8322 0.164 0.836 0.000
#> GSM149170     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149171     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149172     2  0.0892     0.9197 0.000 0.980 0.020
#> GSM149173     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149174     2  0.3941     0.8403 0.156 0.844 0.000
#> GSM149175     1  0.9991     0.4191 0.344 0.312 0.344
#> GSM149176     2  0.1411     0.9185 0.036 0.964 0.000
#> GSM149177     2  0.2280     0.9080 0.052 0.940 0.008
#> GSM149178     2  0.1170     0.9243 0.016 0.976 0.008
#> GSM149179     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149180     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149181     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149182     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149183     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149184     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149185     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149186     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149187     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149188     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149189     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149190     2  0.2356     0.9000 0.072 0.928 0.000
#> GSM149191     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149192     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149193     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149194     2  0.3941     0.8403 0.156 0.844 0.000
#> GSM149195     3  0.0000     0.9938 0.000 0.000 1.000
#> GSM149196     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149197     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149198     1  0.3532     0.5941 0.884 0.108 0.008
#> GSM149199     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149200     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149201     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149202     2  0.0000     0.9327 0.000 1.000 0.000
#> GSM149203     2  0.0000     0.9327 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.0188      0.966 0.000 0.000 0.996 0.004
#> GSM149100     3  0.0376      0.966 0.004 0.000 0.992 0.004
#> GSM149101     3  0.0376      0.966 0.004 0.000 0.992 0.004
#> GSM149102     3  0.0376      0.966 0.004 0.000 0.992 0.004
#> GSM149103     3  0.3463      0.841 0.004 0.032 0.868 0.096
#> GSM149104     3  0.0376      0.966 0.004 0.000 0.992 0.004
#> GSM149105     3  0.0188      0.966 0.000 0.000 0.996 0.004
#> GSM149106     3  0.0469      0.962 0.000 0.000 0.988 0.012
#> GSM149107     3  0.0524      0.966 0.004 0.000 0.988 0.008
#> GSM149108     3  0.0376      0.966 0.004 0.000 0.992 0.004
#> GSM149109     3  0.0188      0.966 0.000 0.000 0.996 0.004
#> GSM149110     3  0.0188      0.966 0.000 0.000 0.996 0.004
#> GSM149111     3  0.0188      0.966 0.000 0.000 0.996 0.004
#> GSM149112     3  0.0188      0.966 0.000 0.000 0.996 0.004
#> GSM149113     3  0.0188      0.966 0.000 0.000 0.996 0.004
#> GSM149114     3  0.0524      0.966 0.004 0.000 0.988 0.008
#> GSM149115     1  0.4543      0.155 0.676 0.000 0.000 0.324
#> GSM149116     4  0.5913      0.979 0.180 0.000 0.124 0.696
#> GSM149117     1  0.4212      0.694 0.772 0.216 0.000 0.012
#> GSM149118     4  0.5874      0.981 0.176 0.000 0.124 0.700
#> GSM149119     4  0.5874      0.981 0.176 0.000 0.124 0.700
#> GSM149120     4  0.5874      0.981 0.176 0.000 0.124 0.700
#> GSM149121     4  0.4679      0.735 0.352 0.000 0.000 0.648
#> GSM149122     4  0.5874      0.981 0.176 0.000 0.124 0.700
#> GSM149123     4  0.5874      0.981 0.176 0.000 0.124 0.700
#> GSM149124     4  0.5913      0.979 0.180 0.000 0.124 0.696
#> GSM149125     4  0.5874      0.981 0.176 0.000 0.124 0.700
#> GSM149126     4  0.5874      0.981 0.176 0.000 0.124 0.700
#> GSM149127     4  0.5874      0.981 0.176 0.000 0.124 0.700
#> GSM149128     4  0.5874      0.981 0.176 0.000 0.124 0.700
#> GSM149129     4  0.5874      0.981 0.176 0.000 0.124 0.700
#> GSM149130     1  0.1022      0.837 0.968 0.032 0.000 0.000
#> GSM149131     1  0.1389      0.790 0.952 0.000 0.000 0.048
#> GSM149132     4  0.5874      0.981 0.176 0.000 0.124 0.700
#> GSM149133     4  0.5784      0.954 0.200 0.000 0.100 0.700
#> GSM149134     1  0.1118      0.801 0.964 0.000 0.000 0.036
#> GSM149135     1  0.1022      0.837 0.968 0.032 0.000 0.000
#> GSM149136     1  0.1022      0.837 0.968 0.032 0.000 0.000
#> GSM149137     1  0.1022      0.837 0.968 0.032 0.000 0.000
#> GSM149138     1  0.1022      0.837 0.968 0.032 0.000 0.000
#> GSM149139     1  0.1022      0.837 0.968 0.032 0.000 0.000
#> GSM149140     1  0.1022      0.837 0.968 0.032 0.000 0.000
#> GSM149141     1  0.6201      0.635 0.664 0.124 0.000 0.212
#> GSM149142     1  0.5256      0.657 0.732 0.204 0.000 0.064
#> GSM149143     1  0.6138      0.632 0.648 0.092 0.000 0.260
#> GSM149144     2  0.5678      0.499 0.316 0.640 0.000 0.044
#> GSM149145     1  0.6248      0.631 0.660 0.128 0.000 0.212
#> GSM149146     2  0.0804      0.792 0.012 0.980 0.000 0.008
#> GSM149147     1  0.1022      0.837 0.968 0.032 0.000 0.000
#> GSM149148     1  0.1022      0.837 0.968 0.032 0.000 0.000
#> GSM149149     1  0.1022      0.837 0.968 0.032 0.000 0.000
#> GSM149150     2  0.6036      0.530 0.292 0.636 0.000 0.072
#> GSM149151     1  0.1767      0.829 0.944 0.044 0.000 0.012
#> GSM149152     1  0.1022      0.837 0.968 0.032 0.000 0.000
#> GSM149153     1  0.6248      0.631 0.660 0.128 0.000 0.212
#> GSM149154     1  0.5425      0.705 0.752 0.020 0.052 0.176
#> GSM149155     2  0.1388      0.789 0.012 0.960 0.000 0.028
#> GSM149156     2  0.1938      0.784 0.012 0.936 0.000 0.052
#> GSM149157     2  0.3833      0.755 0.080 0.848 0.000 0.072
#> GSM149158     2  0.5937      0.447 0.340 0.608 0.000 0.052
#> GSM149159     2  0.4711      0.717 0.024 0.740 0.000 0.236
#> GSM149160     2  0.6265      0.439 0.340 0.588 0.000 0.072
#> GSM149161     2  0.5827      0.492 0.316 0.632 0.000 0.052
#> GSM149162     2  0.1854      0.785 0.012 0.940 0.000 0.048
#> GSM149163     2  0.1488      0.788 0.012 0.956 0.000 0.032
#> GSM149164     2  0.7793      0.268 0.356 0.396 0.000 0.248
#> GSM149165     2  0.1411      0.788 0.020 0.960 0.000 0.020
#> GSM149166     2  0.4406      0.675 0.192 0.780 0.000 0.028
#> GSM149167     2  0.5920      0.456 0.336 0.612 0.000 0.052
#> GSM149168     2  0.4609      0.717 0.024 0.752 0.000 0.224
#> GSM149169     2  0.6187      0.192 0.432 0.516 0.000 0.052
#> GSM149170     2  0.4574      0.717 0.024 0.756 0.000 0.220
#> GSM149171     2  0.4678      0.711 0.024 0.744 0.000 0.232
#> GSM149172     2  0.4776      0.708 0.024 0.732 0.000 0.244
#> GSM149173     2  0.4609      0.715 0.024 0.752 0.000 0.224
#> GSM149174     2  0.5937      0.447 0.340 0.608 0.000 0.052
#> GSM149175     1  0.6888      0.659 0.664 0.064 0.068 0.204
#> GSM149176     2  0.3910      0.710 0.156 0.820 0.000 0.024
#> GSM149177     2  0.4881      0.672 0.196 0.756 0.000 0.048
#> GSM149178     2  0.5995      0.676 0.096 0.672 0.000 0.232
#> GSM149179     2  0.0657      0.792 0.012 0.984 0.000 0.004
#> GSM149180     2  0.0657      0.792 0.012 0.984 0.000 0.004
#> GSM149181     2  0.2002      0.784 0.020 0.936 0.000 0.044
#> GSM149182     2  0.0657      0.792 0.012 0.984 0.000 0.004
#> GSM149183     2  0.1109      0.792 0.004 0.968 0.000 0.028
#> GSM149184     2  0.1042      0.792 0.008 0.972 0.000 0.020
#> GSM149185     2  0.4574      0.717 0.024 0.756 0.000 0.220
#> GSM149186     2  0.0927      0.792 0.008 0.976 0.000 0.016
#> GSM149187     2  0.1388      0.789 0.012 0.960 0.000 0.028
#> GSM149188     2  0.0707      0.792 0.000 0.980 0.000 0.020
#> GSM149189     2  0.4711      0.709 0.024 0.740 0.000 0.236
#> GSM149190     2  0.5144      0.634 0.216 0.732 0.000 0.052
#> GSM149191     2  0.4993      0.712 0.028 0.712 0.000 0.260
#> GSM149192     2  0.0707      0.792 0.000 0.980 0.000 0.020
#> GSM149193     2  0.0817      0.791 0.000 0.976 0.000 0.024
#> GSM149194     2  0.6324      0.434 0.340 0.584 0.000 0.076
#> GSM149195     3  0.5133      0.695 0.024 0.016 0.740 0.220
#> GSM149196     2  0.0895      0.792 0.004 0.976 0.000 0.020
#> GSM149197     2  0.1488      0.788 0.012 0.956 0.000 0.032
#> GSM149198     1  0.1118      0.801 0.964 0.000 0.000 0.036
#> GSM149199     2  0.1938      0.784 0.012 0.936 0.000 0.052
#> GSM149200     2  0.4574      0.717 0.024 0.756 0.000 0.220
#> GSM149201     2  0.0469      0.792 0.012 0.988 0.000 0.000
#> GSM149202     2  0.4574      0.717 0.024 0.756 0.000 0.220
#> GSM149203     2  0.4711      0.717 0.024 0.740 0.000 0.236

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0451      0.970 0.000 0.000 0.988 0.008 0.004
#> GSM149100     3  0.0162      0.974 0.000 0.000 0.996 0.000 0.004
#> GSM149101     3  0.0162      0.974 0.000 0.000 0.996 0.000 0.004
#> GSM149102     3  0.0162      0.974 0.000 0.000 0.996 0.000 0.004
#> GSM149103     3  0.4380      0.650 0.012 0.000 0.728 0.020 0.240
#> GSM149104     3  0.0162      0.974 0.000 0.000 0.996 0.000 0.004
#> GSM149105     3  0.0000      0.973 0.000 0.000 1.000 0.000 0.000
#> GSM149106     3  0.1538      0.934 0.008 0.000 0.948 0.008 0.036
#> GSM149107     3  0.0162      0.974 0.000 0.000 0.996 0.000 0.004
#> GSM149108     3  0.0162      0.974 0.000 0.000 0.996 0.000 0.004
#> GSM149109     3  0.0451      0.970 0.000 0.000 0.988 0.008 0.004
#> GSM149110     3  0.0451      0.970 0.000 0.000 0.988 0.008 0.004
#> GSM149111     3  0.0000      0.973 0.000 0.000 1.000 0.000 0.000
#> GSM149112     3  0.0451      0.970 0.000 0.000 0.988 0.008 0.004
#> GSM149113     3  0.0000      0.973 0.000 0.000 1.000 0.000 0.000
#> GSM149114     3  0.0162      0.974 0.000 0.000 0.996 0.000 0.004
#> GSM149115     1  0.3284      0.829 0.828 0.000 0.000 0.148 0.024
#> GSM149116     4  0.2354      0.964 0.012 0.000 0.076 0.904 0.008
#> GSM149117     1  0.4672      0.688 0.748 0.176 0.000 0.012 0.064
#> GSM149118     4  0.2116      0.967 0.008 0.000 0.076 0.912 0.004
#> GSM149119     4  0.1956      0.968 0.008 0.000 0.076 0.916 0.000
#> GSM149120     4  0.2116      0.967 0.008 0.000 0.076 0.912 0.004
#> GSM149121     4  0.4654      0.400 0.348 0.000 0.000 0.628 0.024
#> GSM149122     4  0.1956      0.968 0.008 0.000 0.076 0.916 0.000
#> GSM149123     4  0.1956      0.968 0.008 0.000 0.076 0.916 0.000
#> GSM149124     4  0.2354      0.964 0.012 0.000 0.076 0.904 0.008
#> GSM149125     4  0.2116      0.967 0.008 0.000 0.076 0.912 0.004
#> GSM149126     4  0.1956      0.968 0.008 0.000 0.076 0.916 0.000
#> GSM149127     4  0.1956      0.968 0.008 0.000 0.076 0.916 0.000
#> GSM149128     4  0.1956      0.968 0.008 0.000 0.076 0.916 0.000
#> GSM149129     4  0.1956      0.968 0.008 0.000 0.076 0.916 0.000
#> GSM149130     1  0.2227      0.931 0.916 0.004 0.000 0.048 0.032
#> GSM149131     1  0.2036      0.930 0.920 0.000 0.000 0.056 0.024
#> GSM149132     4  0.1956      0.968 0.008 0.000 0.076 0.916 0.000
#> GSM149133     4  0.2364      0.955 0.020 0.000 0.064 0.908 0.008
#> GSM149134     1  0.1872      0.931 0.928 0.000 0.000 0.052 0.020
#> GSM149135     1  0.1357      0.940 0.948 0.004 0.000 0.048 0.000
#> GSM149136     1  0.1357      0.940 0.948 0.004 0.000 0.048 0.000
#> GSM149137     1  0.1357      0.940 0.948 0.004 0.000 0.048 0.000
#> GSM149138     1  0.1960      0.933 0.928 0.004 0.000 0.048 0.020
#> GSM149139     1  0.1357      0.940 0.948 0.004 0.000 0.048 0.000
#> GSM149140     1  0.1357      0.940 0.948 0.004 0.000 0.048 0.000
#> GSM149141     5  0.5145      0.480 0.332 0.020 0.000 0.024 0.624
#> GSM149142     1  0.5505      0.557 0.704 0.168 0.000 0.036 0.092
#> GSM149143     5  0.5636      0.558 0.276 0.044 0.000 0.040 0.640
#> GSM149144     2  0.3511      0.771 0.072 0.848 0.000 0.012 0.068
#> GSM149145     5  0.5129      0.484 0.328 0.020 0.000 0.024 0.628
#> GSM149146     2  0.2789      0.802 0.008 0.880 0.000 0.020 0.092
#> GSM149147     1  0.1357      0.940 0.948 0.004 0.000 0.048 0.000
#> GSM149148     1  0.1357      0.940 0.948 0.004 0.000 0.048 0.000
#> GSM149149     1  0.1357      0.940 0.948 0.004 0.000 0.048 0.000
#> GSM149150     5  0.7061      0.244 0.176 0.324 0.000 0.032 0.468
#> GSM149151     1  0.1280      0.926 0.960 0.008 0.000 0.024 0.008
#> GSM149152     1  0.2609      0.914 0.896 0.004 0.000 0.052 0.048
#> GSM149153     5  0.5129      0.484 0.328 0.020 0.000 0.024 0.628
#> GSM149154     5  0.5338      0.494 0.320 0.000 0.028 0.028 0.624
#> GSM149155     2  0.0290      0.817 0.000 0.992 0.000 0.000 0.008
#> GSM149156     2  0.2095      0.803 0.024 0.928 0.000 0.028 0.020
#> GSM149157     2  0.5217      0.704 0.088 0.736 0.000 0.040 0.136
#> GSM149158     2  0.5246      0.698 0.136 0.732 0.000 0.036 0.096
#> GSM149159     5  0.4048      0.738 0.016 0.196 0.000 0.016 0.772
#> GSM149160     2  0.6039      0.629 0.156 0.660 0.000 0.040 0.144
#> GSM149161     2  0.4931      0.720 0.108 0.760 0.000 0.036 0.096
#> GSM149162     2  0.1200      0.811 0.016 0.964 0.000 0.012 0.008
#> GSM149163     2  0.0324      0.816 0.004 0.992 0.000 0.000 0.004
#> GSM149164     5  0.6146      0.590 0.148 0.164 0.000 0.040 0.648
#> GSM149165     2  0.2753      0.775 0.000 0.856 0.000 0.008 0.136
#> GSM149166     2  0.3591      0.788 0.028 0.836 0.000 0.020 0.116
#> GSM149167     2  0.5338      0.700 0.124 0.728 0.000 0.040 0.108
#> GSM149168     5  0.3559      0.746 0.008 0.176 0.000 0.012 0.804
#> GSM149169     2  0.5658      0.651 0.180 0.688 0.000 0.036 0.096
#> GSM149170     5  0.3388      0.735 0.000 0.200 0.000 0.008 0.792
#> GSM149171     5  0.3086      0.745 0.000 0.180 0.000 0.004 0.816
#> GSM149172     5  0.2352      0.754 0.008 0.092 0.000 0.004 0.896
#> GSM149173     5  0.3388      0.735 0.000 0.200 0.000 0.008 0.792
#> GSM149174     2  0.5246      0.698 0.136 0.732 0.000 0.036 0.096
#> GSM149175     5  0.4561      0.614 0.220 0.004 0.028 0.012 0.736
#> GSM149176     2  0.4289      0.765 0.024 0.764 0.000 0.020 0.192
#> GSM149177     2  0.5502      0.570 0.036 0.612 0.000 0.028 0.324
#> GSM149178     5  0.3209      0.746 0.020 0.100 0.000 0.020 0.860
#> GSM149179     2  0.2408      0.805 0.000 0.892 0.000 0.016 0.092
#> GSM149180     2  0.2408      0.805 0.000 0.892 0.000 0.016 0.092
#> GSM149181     2  0.3720      0.672 0.000 0.760 0.000 0.012 0.228
#> GSM149182     2  0.2293      0.807 0.000 0.900 0.000 0.016 0.084
#> GSM149183     2  0.2304      0.799 0.000 0.892 0.000 0.008 0.100
#> GSM149184     2  0.3194      0.779 0.000 0.832 0.000 0.020 0.148
#> GSM149185     5  0.3487      0.727 0.000 0.212 0.000 0.008 0.780
#> GSM149186     2  0.2920      0.780 0.000 0.852 0.000 0.016 0.132
#> GSM149187     2  0.0404      0.817 0.000 0.988 0.000 0.000 0.012
#> GSM149188     2  0.2411      0.794 0.000 0.884 0.000 0.008 0.108
#> GSM149189     5  0.3360      0.749 0.004 0.168 0.000 0.012 0.816
#> GSM149190     2  0.3730      0.768 0.048 0.840 0.000 0.028 0.084
#> GSM149191     5  0.3599      0.720 0.020 0.140 0.000 0.016 0.824
#> GSM149192     2  0.2358      0.797 0.000 0.888 0.000 0.008 0.104
#> GSM149193     2  0.2909      0.776 0.000 0.848 0.000 0.012 0.140
#> GSM149194     2  0.6105      0.618 0.168 0.652 0.000 0.040 0.140
#> GSM149195     5  0.4194      0.512 0.004 0.000 0.276 0.012 0.708
#> GSM149196     2  0.2920      0.780 0.000 0.852 0.000 0.016 0.132
#> GSM149197     2  0.0486      0.816 0.004 0.988 0.000 0.004 0.004
#> GSM149198     1  0.1800      0.930 0.932 0.000 0.000 0.048 0.020
#> GSM149199     2  0.2269      0.802 0.020 0.920 0.000 0.028 0.032
#> GSM149200     5  0.3388      0.735 0.000 0.200 0.000 0.008 0.792
#> GSM149201     2  0.1942      0.810 0.000 0.920 0.000 0.012 0.068
#> GSM149202     5  0.3496      0.734 0.000 0.200 0.000 0.012 0.788
#> GSM149203     5  0.3488      0.745 0.008 0.180 0.000 0.008 0.804

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.1410     0.9206 0.000 0.000 0.944 0.004 0.008 0.044
#> GSM149100     3  0.1003     0.9284 0.000 0.000 0.964 0.004 0.004 0.028
#> GSM149101     3  0.0922     0.9285 0.000 0.000 0.968 0.004 0.004 0.024
#> GSM149102     3  0.0922     0.9285 0.000 0.000 0.968 0.004 0.004 0.024
#> GSM149103     3  0.6340     0.1417 0.012 0.000 0.492 0.028 0.132 0.336
#> GSM149104     3  0.0922     0.9285 0.000 0.000 0.968 0.004 0.004 0.024
#> GSM149105     3  0.0951     0.9270 0.000 0.000 0.968 0.008 0.004 0.020
#> GSM149106     3  0.3250     0.7680 0.004 0.000 0.808 0.016 0.004 0.168
#> GSM149107     3  0.1149     0.9276 0.000 0.000 0.960 0.008 0.008 0.024
#> GSM149108     3  0.1003     0.9284 0.000 0.000 0.964 0.004 0.004 0.028
#> GSM149109     3  0.1410     0.9206 0.000 0.000 0.944 0.004 0.008 0.044
#> GSM149110     3  0.1410     0.9206 0.000 0.000 0.944 0.004 0.008 0.044
#> GSM149111     3  0.0951     0.9270 0.000 0.000 0.968 0.008 0.004 0.020
#> GSM149112     3  0.1410     0.9206 0.000 0.000 0.944 0.004 0.008 0.044
#> GSM149113     3  0.0951     0.9270 0.000 0.000 0.968 0.008 0.004 0.020
#> GSM149114     3  0.1036     0.9278 0.000 0.000 0.964 0.008 0.004 0.024
#> GSM149115     1  0.2325     0.8428 0.892 0.000 0.000 0.048 0.000 0.060
#> GSM149116     4  0.1823     0.9823 0.028 0.000 0.008 0.932 0.004 0.028
#> GSM149117     1  0.5803     0.4021 0.584 0.160 0.000 0.012 0.008 0.236
#> GSM149118     4  0.1116     0.9928 0.028 0.000 0.008 0.960 0.000 0.004
#> GSM149119     4  0.1476     0.9896 0.028 0.000 0.008 0.948 0.004 0.012
#> GSM149120     4  0.1116     0.9928 0.028 0.000 0.008 0.960 0.000 0.004
#> GSM149121     1  0.5217     0.2033 0.504 0.000 0.000 0.412 0.004 0.080
#> GSM149122     4  0.1261     0.9923 0.028 0.000 0.008 0.956 0.004 0.004
#> GSM149123     4  0.0972     0.9932 0.028 0.000 0.008 0.964 0.000 0.000
#> GSM149124     4  0.1823     0.9823 0.028 0.000 0.008 0.932 0.004 0.028
#> GSM149125     4  0.1375     0.9918 0.028 0.000 0.008 0.952 0.004 0.008
#> GSM149126     4  0.0972     0.9932 0.028 0.000 0.008 0.964 0.000 0.000
#> GSM149127     4  0.1261     0.9923 0.028 0.000 0.008 0.956 0.004 0.004
#> GSM149128     4  0.0972     0.9932 0.028 0.000 0.008 0.964 0.000 0.000
#> GSM149129     4  0.0972     0.9932 0.028 0.000 0.008 0.964 0.000 0.000
#> GSM149130     1  0.1524     0.8624 0.932 0.000 0.000 0.008 0.000 0.060
#> GSM149131     1  0.1461     0.8669 0.940 0.000 0.000 0.016 0.000 0.044
#> GSM149132     4  0.0972     0.9932 0.028 0.000 0.008 0.964 0.000 0.000
#> GSM149133     4  0.1080     0.9903 0.032 0.000 0.004 0.960 0.000 0.004
#> GSM149134     1  0.2264     0.8447 0.888 0.000 0.000 0.012 0.004 0.096
#> GSM149135     1  0.0363     0.8762 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM149136     1  0.0363     0.8762 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM149137     1  0.0363     0.8762 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM149138     1  0.2002     0.8547 0.908 0.000 0.000 0.012 0.004 0.076
#> GSM149139     1  0.0363     0.8762 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM149140     1  0.0363     0.8762 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM149141     6  0.6524     0.3835 0.204 0.004 0.004 0.016 0.372 0.400
#> GSM149142     1  0.5824     0.0354 0.472 0.148 0.000 0.000 0.008 0.372
#> GSM149143     5  0.6687    -0.2969 0.156 0.028 0.004 0.012 0.400 0.400
#> GSM149144     2  0.2703     0.6369 0.004 0.824 0.000 0.000 0.000 0.172
#> GSM149145     6  0.6524     0.3835 0.204 0.004 0.004 0.016 0.372 0.400
#> GSM149146     2  0.3676     0.6448 0.000 0.808 0.000 0.012 0.088 0.092
#> GSM149147     1  0.0363     0.8762 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM149148     1  0.0363     0.8762 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM149149     1  0.0363     0.8762 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM149150     6  0.7507     0.3072 0.084 0.200 0.004 0.016 0.296 0.400
#> GSM149151     1  0.0000     0.8693 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149152     1  0.2264     0.8242 0.888 0.000 0.000 0.012 0.004 0.096
#> GSM149153     6  0.6524     0.3835 0.204 0.004 0.004 0.016 0.372 0.400
#> GSM149154     5  0.6473    -0.2362 0.244 0.000 0.004 0.020 0.452 0.280
#> GSM149155     2  0.0405     0.6810 0.000 0.988 0.000 0.000 0.008 0.004
#> GSM149156     2  0.3271     0.6038 0.000 0.760 0.000 0.000 0.008 0.232
#> GSM149157     2  0.5438     0.4022 0.024 0.536 0.000 0.000 0.068 0.372
#> GSM149158     2  0.4799     0.4728 0.040 0.592 0.000 0.000 0.012 0.356
#> GSM149159     5  0.1857     0.6808 0.000 0.044 0.000 0.004 0.924 0.028
#> GSM149160     2  0.5893     0.3485 0.048 0.500 0.000 0.000 0.076 0.376
#> GSM149161     2  0.4462     0.4904 0.020 0.612 0.000 0.000 0.012 0.356
#> GSM149162     2  0.2879     0.6326 0.000 0.816 0.000 0.004 0.004 0.176
#> GSM149163     2  0.0260     0.6794 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM149164     6  0.6552     0.0754 0.040 0.184 0.000 0.000 0.368 0.408
#> GSM149165     2  0.3957     0.5329 0.000 0.696 0.000 0.004 0.280 0.020
#> GSM149166     2  0.3908     0.5978 0.008 0.772 0.000 0.012 0.028 0.180
#> GSM149167     2  0.4913     0.4255 0.040 0.540 0.000 0.000 0.012 0.408
#> GSM149168     5  0.1562     0.6897 0.000 0.032 0.000 0.004 0.940 0.024
#> GSM149169     2  0.5094     0.4412 0.060 0.564 0.000 0.000 0.012 0.364
#> GSM149170     5  0.1075     0.6922 0.000 0.048 0.000 0.000 0.952 0.000
#> GSM149171     5  0.0865     0.6931 0.000 0.036 0.000 0.000 0.964 0.000
#> GSM149172     5  0.2398     0.6444 0.000 0.020 0.000 0.000 0.876 0.104
#> GSM149173     5  0.1219     0.6919 0.000 0.048 0.000 0.000 0.948 0.004
#> GSM149174     2  0.4810     0.4692 0.040 0.588 0.000 0.000 0.012 0.360
#> GSM149175     5  0.6167    -0.1951 0.144 0.000 0.008 0.016 0.476 0.356
#> GSM149176     2  0.4981     0.5048 0.008 0.684 0.004 0.016 0.060 0.228
#> GSM149177     6  0.6828     0.1577 0.020 0.380 0.004 0.024 0.168 0.404
#> GSM149178     5  0.5298     0.2422 0.012 0.032 0.004 0.024 0.596 0.332
#> GSM149179     2  0.3347     0.6539 0.000 0.824 0.000 0.004 0.104 0.068
#> GSM149180     2  0.3244     0.6566 0.000 0.832 0.000 0.004 0.100 0.064
#> GSM149181     2  0.4371     0.3589 0.000 0.580 0.000 0.000 0.392 0.028
#> GSM149182     2  0.3148     0.6600 0.000 0.840 0.000 0.004 0.092 0.064
#> GSM149183     2  0.2100     0.6721 0.000 0.884 0.000 0.004 0.112 0.000
#> GSM149184     2  0.4674     0.5720 0.000 0.696 0.000 0.004 0.180 0.120
#> GSM149185     5  0.1471     0.6783 0.000 0.064 0.000 0.004 0.932 0.000
#> GSM149186     2  0.3968     0.6117 0.000 0.756 0.000 0.004 0.180 0.060
#> GSM149187     2  0.0717     0.6815 0.000 0.976 0.000 0.000 0.016 0.008
#> GSM149188     2  0.2773     0.6482 0.000 0.828 0.000 0.004 0.164 0.004
#> GSM149189     5  0.4125     0.5074 0.004 0.036 0.000 0.016 0.752 0.192
#> GSM149190     2  0.3518     0.5843 0.000 0.732 0.000 0.000 0.012 0.256
#> GSM149191     5  0.3183     0.5472 0.000 0.060 0.000 0.000 0.828 0.112
#> GSM149192     2  0.2632     0.6505 0.000 0.832 0.000 0.004 0.164 0.000
#> GSM149193     2  0.3660     0.6178 0.000 0.772 0.000 0.004 0.188 0.036
#> GSM149194     2  0.5956     0.3287 0.052 0.488 0.000 0.000 0.076 0.384
#> GSM149195     5  0.5314     0.3419 0.004 0.000 0.128 0.016 0.652 0.200
#> GSM149196     2  0.4024     0.6112 0.000 0.752 0.000 0.004 0.180 0.064
#> GSM149197     2  0.0551     0.6802 0.000 0.984 0.000 0.004 0.004 0.008
#> GSM149198     1  0.2408     0.8385 0.876 0.000 0.000 0.012 0.004 0.108
#> GSM149199     2  0.3023     0.6164 0.000 0.784 0.000 0.000 0.004 0.212
#> GSM149200     5  0.1075     0.6922 0.000 0.048 0.000 0.000 0.952 0.000
#> GSM149201     2  0.2344     0.6746 0.000 0.892 0.000 0.004 0.076 0.028
#> GSM149202     5  0.1765     0.6724 0.000 0.052 0.000 0.000 0.924 0.024
#> GSM149203     5  0.1788     0.6757 0.000 0.028 0.000 0.004 0.928 0.040

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> SD:kmeans 105         3.75e-13 2
#> SD:kmeans  88         6.83e-21 3
#> SD:kmeans  95         6.75e-34 4
#> SD:kmeans  99         1.04e-34 5
#> SD:kmeans  81         1.25e-28 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.766           0.887       0.951         0.4927 0.512   0.512
#> 3 3 0.984           0.944       0.972         0.3381 0.711   0.496
#> 4 4 0.758           0.781       0.891         0.1193 0.823   0.547
#> 5 5 0.705           0.613       0.800         0.0794 0.850   0.506
#> 6 6 0.736           0.606       0.757         0.0414 0.901   0.581

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     1  0.0000   0.968492 1.000 0.000
#> GSM149100     1  0.0000   0.968492 1.000 0.000
#> GSM149101     1  0.0000   0.968492 1.000 0.000
#> GSM149102     1  0.0000   0.968492 1.000 0.000
#> GSM149103     1  0.0000   0.968492 1.000 0.000
#> GSM149104     1  0.0000   0.968492 1.000 0.000
#> GSM149105     1  0.0000   0.968492 1.000 0.000
#> GSM149106     1  0.0000   0.968492 1.000 0.000
#> GSM149107     1  0.0000   0.968492 1.000 0.000
#> GSM149108     1  0.0000   0.968492 1.000 0.000
#> GSM149109     1  0.0000   0.968492 1.000 0.000
#> GSM149110     1  0.0000   0.968492 1.000 0.000
#> GSM149111     1  0.0000   0.968492 1.000 0.000
#> GSM149112     1  0.0000   0.968492 1.000 0.000
#> GSM149113     1  0.0000   0.968492 1.000 0.000
#> GSM149114     1  0.0000   0.968492 1.000 0.000
#> GSM149115     1  0.0000   0.968492 1.000 0.000
#> GSM149116     1  0.0000   0.968492 1.000 0.000
#> GSM149117     2  0.0000   0.929623 0.000 1.000
#> GSM149118     1  0.0000   0.968492 1.000 0.000
#> GSM149119     1  0.0000   0.968492 1.000 0.000
#> GSM149120     1  0.0000   0.968492 1.000 0.000
#> GSM149121     1  0.0000   0.968492 1.000 0.000
#> GSM149122     1  0.0000   0.968492 1.000 0.000
#> GSM149123     1  0.0000   0.968492 1.000 0.000
#> GSM149124     1  0.0000   0.968492 1.000 0.000
#> GSM149125     1  0.0000   0.968492 1.000 0.000
#> GSM149126     1  0.0000   0.968492 1.000 0.000
#> GSM149127     1  0.0000   0.968492 1.000 0.000
#> GSM149128     1  0.0000   0.968492 1.000 0.000
#> GSM149129     1  0.0000   0.968492 1.000 0.000
#> GSM149130     2  0.8909   0.616017 0.308 0.692
#> GSM149131     1  0.0000   0.968492 1.000 0.000
#> GSM149132     1  0.0000   0.968492 1.000 0.000
#> GSM149133     1  0.0000   0.968492 1.000 0.000
#> GSM149134     1  0.0376   0.964889 0.996 0.004
#> GSM149135     2  0.8081   0.705005 0.248 0.752
#> GSM149136     2  0.8081   0.705005 0.248 0.752
#> GSM149137     2  0.8081   0.705005 0.248 0.752
#> GSM149138     2  0.8499   0.666302 0.276 0.724
#> GSM149139     2  0.8608   0.654443 0.284 0.716
#> GSM149140     2  0.8081   0.705005 0.248 0.752
#> GSM149141     1  0.9460   0.364726 0.636 0.364
#> GSM149142     2  0.0000   0.929623 0.000 1.000
#> GSM149143     1  0.9775   0.207493 0.588 0.412
#> GSM149144     2  0.0000   0.929623 0.000 1.000
#> GSM149145     1  0.7056   0.731936 0.808 0.192
#> GSM149146     2  0.0000   0.929623 0.000 1.000
#> GSM149147     2  0.8713   0.641822 0.292 0.708
#> GSM149148     2  0.8608   0.654443 0.284 0.716
#> GSM149149     2  0.8713   0.641822 0.292 0.708
#> GSM149150     2  0.0000   0.929623 0.000 1.000
#> GSM149151     2  0.7056   0.768359 0.192 0.808
#> GSM149152     1  0.0672   0.961182 0.992 0.008
#> GSM149153     2  0.9393   0.517419 0.356 0.644
#> GSM149154     1  0.0000   0.968492 1.000 0.000
#> GSM149155     2  0.0000   0.929623 0.000 1.000
#> GSM149156     2  0.0000   0.929623 0.000 1.000
#> GSM149157     2  0.0000   0.929623 0.000 1.000
#> GSM149158     2  0.0000   0.929623 0.000 1.000
#> GSM149159     2  0.0000   0.929623 0.000 1.000
#> GSM149160     2  0.0000   0.929623 0.000 1.000
#> GSM149161     2  0.0000   0.929623 0.000 1.000
#> GSM149162     2  0.0000   0.929623 0.000 1.000
#> GSM149163     2  0.0000   0.929623 0.000 1.000
#> GSM149164     2  0.0000   0.929623 0.000 1.000
#> GSM149165     2  0.0000   0.929623 0.000 1.000
#> GSM149166     2  0.0000   0.929623 0.000 1.000
#> GSM149167     2  0.0000   0.929623 0.000 1.000
#> GSM149168     2  0.0000   0.929623 0.000 1.000
#> GSM149169     2  0.0000   0.929623 0.000 1.000
#> GSM149170     2  0.0000   0.929623 0.000 1.000
#> GSM149171     2  0.0000   0.929623 0.000 1.000
#> GSM149172     1  0.7299   0.715648 0.796 0.204
#> GSM149173     2  0.0376   0.927029 0.004 0.996
#> GSM149174     2  0.0000   0.929623 0.000 1.000
#> GSM149175     1  0.0000   0.968492 1.000 0.000
#> GSM149176     2  0.0000   0.929623 0.000 1.000
#> GSM149177     2  0.1843   0.911395 0.028 0.972
#> GSM149178     2  0.6623   0.768405 0.172 0.828
#> GSM149179     2  0.0000   0.929623 0.000 1.000
#> GSM149180     2  0.0000   0.929623 0.000 1.000
#> GSM149181     2  0.0000   0.929623 0.000 1.000
#> GSM149182     2  0.0000   0.929623 0.000 1.000
#> GSM149183     2  0.0000   0.929623 0.000 1.000
#> GSM149184     2  0.0000   0.929623 0.000 1.000
#> GSM149185     2  0.0000   0.929623 0.000 1.000
#> GSM149186     2  0.0000   0.929623 0.000 1.000
#> GSM149187     2  0.0000   0.929623 0.000 1.000
#> GSM149188     2  0.0000   0.929623 0.000 1.000
#> GSM149189     2  0.0376   0.927015 0.004 0.996
#> GSM149190     2  0.0000   0.929623 0.000 1.000
#> GSM149191     2  0.0000   0.929623 0.000 1.000
#> GSM149192     2  0.0000   0.929623 0.000 1.000
#> GSM149193     2  0.0000   0.929623 0.000 1.000
#> GSM149194     2  0.0000   0.929623 0.000 1.000
#> GSM149195     1  0.0000   0.968492 1.000 0.000
#> GSM149196     2  0.0000   0.929623 0.000 1.000
#> GSM149197     2  0.0000   0.929623 0.000 1.000
#> GSM149198     1  0.0000   0.968492 1.000 0.000
#> GSM149199     2  0.0000   0.929623 0.000 1.000
#> GSM149200     2  0.0000   0.929623 0.000 1.000
#> GSM149201     2  0.0000   0.929623 0.000 1.000
#> GSM149202     2  0.0000   0.929623 0.000 1.000
#> GSM149203     2  0.9998  -0.000773 0.492 0.508

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0000      0.975 0.000 0.000 1.000
#> GSM149100     3  0.0000      0.975 0.000 0.000 1.000
#> GSM149101     3  0.0000      0.975 0.000 0.000 1.000
#> GSM149102     3  0.0000      0.975 0.000 0.000 1.000
#> GSM149103     3  0.0000      0.975 0.000 0.000 1.000
#> GSM149104     3  0.0000      0.975 0.000 0.000 1.000
#> GSM149105     3  0.0000      0.975 0.000 0.000 1.000
#> GSM149106     3  0.0000      0.975 0.000 0.000 1.000
#> GSM149107     3  0.0000      0.975 0.000 0.000 1.000
#> GSM149108     3  0.0000      0.975 0.000 0.000 1.000
#> GSM149109     3  0.0000      0.975 0.000 0.000 1.000
#> GSM149110     3  0.0000      0.975 0.000 0.000 1.000
#> GSM149111     3  0.0000      0.975 0.000 0.000 1.000
#> GSM149112     3  0.0000      0.975 0.000 0.000 1.000
#> GSM149113     3  0.0000      0.975 0.000 0.000 1.000
#> GSM149114     3  0.0000      0.975 0.000 0.000 1.000
#> GSM149115     1  0.0000      0.981 1.000 0.000 0.000
#> GSM149116     1  0.1411      0.978 0.964 0.000 0.036
#> GSM149117     1  0.1529      0.944 0.960 0.040 0.000
#> GSM149118     1  0.1411      0.978 0.964 0.000 0.036
#> GSM149119     1  0.1411      0.978 0.964 0.000 0.036
#> GSM149120     1  0.1411      0.978 0.964 0.000 0.036
#> GSM149121     1  0.0592      0.980 0.988 0.000 0.012
#> GSM149122     1  0.1411      0.978 0.964 0.000 0.036
#> GSM149123     1  0.1411      0.978 0.964 0.000 0.036
#> GSM149124     1  0.1411      0.978 0.964 0.000 0.036
#> GSM149125     1  0.1411      0.978 0.964 0.000 0.036
#> GSM149126     1  0.1411      0.978 0.964 0.000 0.036
#> GSM149127     1  0.1411      0.978 0.964 0.000 0.036
#> GSM149128     1  0.1411      0.978 0.964 0.000 0.036
#> GSM149129     1  0.1411      0.978 0.964 0.000 0.036
#> GSM149130     1  0.0000      0.981 1.000 0.000 0.000
#> GSM149131     1  0.0000      0.981 1.000 0.000 0.000
#> GSM149132     1  0.1411      0.978 0.964 0.000 0.036
#> GSM149133     1  0.1411      0.978 0.964 0.000 0.036
#> GSM149134     1  0.0000      0.981 1.000 0.000 0.000
#> GSM149135     1  0.0000      0.981 1.000 0.000 0.000
#> GSM149136     1  0.0000      0.981 1.000 0.000 0.000
#> GSM149137     1  0.0000      0.981 1.000 0.000 0.000
#> GSM149138     1  0.0000      0.981 1.000 0.000 0.000
#> GSM149139     1  0.0000      0.981 1.000 0.000 0.000
#> GSM149140     1  0.0000      0.981 1.000 0.000 0.000
#> GSM149141     3  0.2066      0.941 0.060 0.000 0.940
#> GSM149142     2  0.1411      0.941 0.036 0.964 0.000
#> GSM149143     3  0.3851      0.868 0.136 0.004 0.860
#> GSM149144     2  0.0592      0.957 0.012 0.988 0.000
#> GSM149145     3  0.1411      0.953 0.036 0.000 0.964
#> GSM149146     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149147     1  0.0000      0.981 1.000 0.000 0.000
#> GSM149148     1  0.0000      0.981 1.000 0.000 0.000
#> GSM149149     1  0.0000      0.981 1.000 0.000 0.000
#> GSM149150     2  0.0747      0.955 0.016 0.984 0.000
#> GSM149151     1  0.0000      0.981 1.000 0.000 0.000
#> GSM149152     1  0.0000      0.981 1.000 0.000 0.000
#> GSM149153     3  0.1411      0.953 0.036 0.000 0.964
#> GSM149154     3  0.3267      0.867 0.116 0.000 0.884
#> GSM149155     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149156     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149157     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149158     2  0.0747      0.955 0.016 0.984 0.000
#> GSM149159     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149160     2  0.0747      0.955 0.016 0.984 0.000
#> GSM149161     2  0.0747      0.955 0.016 0.984 0.000
#> GSM149162     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149163     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149164     2  0.0892      0.953 0.020 0.980 0.000
#> GSM149165     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149166     2  0.0237      0.960 0.004 0.996 0.000
#> GSM149167     2  0.0747      0.955 0.016 0.984 0.000
#> GSM149168     2  0.2261      0.910 0.000 0.932 0.068
#> GSM149169     2  0.1163      0.947 0.028 0.972 0.000
#> GSM149170     2  0.2878      0.883 0.000 0.904 0.096
#> GSM149171     2  0.6305      0.097 0.000 0.516 0.484
#> GSM149172     3  0.0000      0.975 0.000 0.000 1.000
#> GSM149173     2  0.4750      0.734 0.000 0.784 0.216
#> GSM149174     2  0.0747      0.955 0.016 0.984 0.000
#> GSM149175     3  0.0000      0.975 0.000 0.000 1.000
#> GSM149176     2  0.0237      0.960 0.004 0.996 0.000
#> GSM149177     3  0.4782      0.801 0.016 0.164 0.820
#> GSM149178     3  0.1529      0.947 0.000 0.040 0.960
#> GSM149179     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149180     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149181     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149182     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149183     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149184     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149185     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149186     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149187     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149188     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149189     3  0.1643      0.943 0.000 0.044 0.956
#> GSM149190     2  0.0424      0.958 0.008 0.992 0.000
#> GSM149191     2  0.2537      0.899 0.000 0.920 0.080
#> GSM149192     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149193     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149194     2  0.0747      0.955 0.016 0.984 0.000
#> GSM149195     3  0.0000      0.975 0.000 0.000 1.000
#> GSM149196     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149197     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149198     1  0.0237      0.981 0.996 0.000 0.004
#> GSM149199     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149200     2  0.3686      0.835 0.000 0.860 0.140
#> GSM149201     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149202     2  0.0000      0.961 0.000 1.000 0.000
#> GSM149203     2  0.6215      0.287 0.000 0.572 0.428

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.0188     0.9184 0.000 0.000 0.996 0.004
#> GSM149100     3  0.0188     0.9184 0.000 0.000 0.996 0.004
#> GSM149101     3  0.0188     0.9184 0.000 0.000 0.996 0.004
#> GSM149102     3  0.0188     0.9184 0.000 0.000 0.996 0.004
#> GSM149103     3  0.0188     0.9184 0.000 0.000 0.996 0.004
#> GSM149104     3  0.0188     0.9184 0.000 0.000 0.996 0.004
#> GSM149105     3  0.0188     0.9184 0.000 0.000 0.996 0.004
#> GSM149106     3  0.0188     0.9184 0.000 0.000 0.996 0.004
#> GSM149107     3  0.0188     0.9184 0.000 0.000 0.996 0.004
#> GSM149108     3  0.0188     0.9184 0.000 0.000 0.996 0.004
#> GSM149109     3  0.0188     0.9184 0.000 0.000 0.996 0.004
#> GSM149110     3  0.0188     0.9184 0.000 0.000 0.996 0.004
#> GSM149111     3  0.0188     0.9184 0.000 0.000 0.996 0.004
#> GSM149112     3  0.0188     0.9184 0.000 0.000 0.996 0.004
#> GSM149113     3  0.0188     0.9184 0.000 0.000 0.996 0.004
#> GSM149114     3  0.0188     0.9184 0.000 0.000 0.996 0.004
#> GSM149115     4  0.2530     0.8682 0.112 0.000 0.000 0.888
#> GSM149116     4  0.0000     0.9786 0.000 0.000 0.000 1.000
#> GSM149117     1  0.6164     0.5247 0.644 0.092 0.000 0.264
#> GSM149118     4  0.0000     0.9786 0.000 0.000 0.000 1.000
#> GSM149119     4  0.0000     0.9786 0.000 0.000 0.000 1.000
#> GSM149120     4  0.0000     0.9786 0.000 0.000 0.000 1.000
#> GSM149121     4  0.0336     0.9717 0.008 0.000 0.000 0.992
#> GSM149122     4  0.0000     0.9786 0.000 0.000 0.000 1.000
#> GSM149123     4  0.0000     0.9786 0.000 0.000 0.000 1.000
#> GSM149124     4  0.0000     0.9786 0.000 0.000 0.000 1.000
#> GSM149125     4  0.0000     0.9786 0.000 0.000 0.000 1.000
#> GSM149126     4  0.0000     0.9786 0.000 0.000 0.000 1.000
#> GSM149127     4  0.0000     0.9786 0.000 0.000 0.000 1.000
#> GSM149128     4  0.0000     0.9786 0.000 0.000 0.000 1.000
#> GSM149129     4  0.0000     0.9786 0.000 0.000 0.000 1.000
#> GSM149130     1  0.4730     0.3982 0.636 0.000 0.000 0.364
#> GSM149131     4  0.3569     0.7563 0.196 0.000 0.000 0.804
#> GSM149132     4  0.0000     0.9786 0.000 0.000 0.000 1.000
#> GSM149133     4  0.0000     0.9786 0.000 0.000 0.000 1.000
#> GSM149134     1  0.4072     0.5676 0.748 0.000 0.000 0.252
#> GSM149135     1  0.1716     0.7389 0.936 0.000 0.000 0.064
#> GSM149136     1  0.1716     0.7389 0.936 0.000 0.000 0.064
#> GSM149137     1  0.1716     0.7389 0.936 0.000 0.000 0.064
#> GSM149138     1  0.1716     0.7389 0.936 0.000 0.000 0.064
#> GSM149139     1  0.1716     0.7389 0.936 0.000 0.000 0.064
#> GSM149140     1  0.1716     0.7389 0.936 0.000 0.000 0.064
#> GSM149141     1  0.5297    -0.0281 0.548 0.004 0.444 0.004
#> GSM149142     1  0.0817     0.7356 0.976 0.024 0.000 0.000
#> GSM149143     1  0.2602     0.7116 0.908 0.008 0.076 0.008
#> GSM149144     1  0.4605     0.5449 0.664 0.336 0.000 0.000
#> GSM149145     3  0.5028     0.3937 0.400 0.004 0.596 0.000
#> GSM149146     2  0.0707     0.9020 0.020 0.980 0.000 0.000
#> GSM149147     1  0.1716     0.7389 0.936 0.000 0.000 0.064
#> GSM149148     1  0.1716     0.7389 0.936 0.000 0.000 0.064
#> GSM149149     1  0.1716     0.7389 0.936 0.000 0.000 0.064
#> GSM149150     2  0.5004     0.3178 0.392 0.604 0.004 0.000
#> GSM149151     1  0.1637     0.7391 0.940 0.000 0.000 0.060
#> GSM149152     1  0.4746     0.3998 0.632 0.000 0.000 0.368
#> GSM149153     3  0.5158     0.2134 0.472 0.004 0.524 0.000
#> GSM149154     3  0.4599     0.7658 0.088 0.000 0.800 0.112
#> GSM149155     2  0.1022     0.8991 0.032 0.968 0.000 0.000
#> GSM149156     2  0.1211     0.8962 0.040 0.960 0.000 0.000
#> GSM149157     2  0.4713     0.3715 0.360 0.640 0.000 0.000
#> GSM149158     1  0.4454     0.5845 0.692 0.308 0.000 0.000
#> GSM149159     2  0.1109     0.8957 0.028 0.968 0.004 0.000
#> GSM149160     1  0.4431     0.5827 0.696 0.304 0.000 0.000
#> GSM149161     1  0.4746     0.4856 0.632 0.368 0.000 0.000
#> GSM149162     2  0.1211     0.8962 0.040 0.960 0.000 0.000
#> GSM149163     2  0.1211     0.8962 0.040 0.960 0.000 0.000
#> GSM149164     1  0.4088     0.6494 0.764 0.232 0.004 0.000
#> GSM149165     2  0.0469     0.9021 0.012 0.988 0.000 0.000
#> GSM149166     2  0.4134     0.6218 0.260 0.740 0.000 0.000
#> GSM149167     1  0.4679     0.5178 0.648 0.352 0.000 0.000
#> GSM149168     2  0.1284     0.8920 0.024 0.964 0.012 0.000
#> GSM149169     1  0.3266     0.7034 0.832 0.168 0.000 0.000
#> GSM149170     2  0.1629     0.8854 0.024 0.952 0.024 0.000
#> GSM149171     2  0.3659     0.7824 0.024 0.840 0.136 0.000
#> GSM149172     3  0.2761     0.8523 0.016 0.064 0.908 0.012
#> GSM149173     2  0.2882     0.8381 0.024 0.892 0.084 0.000
#> GSM149174     1  0.4477     0.5793 0.688 0.312 0.000 0.000
#> GSM149175     3  0.0336     0.9159 0.000 0.000 0.992 0.008
#> GSM149176     2  0.3172     0.7764 0.160 0.840 0.000 0.000
#> GSM149177     3  0.6759     0.3481 0.108 0.344 0.548 0.000
#> GSM149178     3  0.3636     0.7461 0.008 0.172 0.820 0.000
#> GSM149179     2  0.0707     0.9020 0.020 0.980 0.000 0.000
#> GSM149180     2  0.0707     0.9020 0.020 0.980 0.000 0.000
#> GSM149181     2  0.0707     0.8977 0.020 0.980 0.000 0.000
#> GSM149182     2  0.0707     0.9020 0.020 0.980 0.000 0.000
#> GSM149183     2  0.0469     0.9036 0.012 0.988 0.000 0.000
#> GSM149184     2  0.0188     0.9032 0.004 0.996 0.000 0.000
#> GSM149185     2  0.0895     0.8964 0.020 0.976 0.004 0.000
#> GSM149186     2  0.0336     0.9032 0.008 0.992 0.000 0.000
#> GSM149187     2  0.1022     0.8995 0.032 0.968 0.000 0.000
#> GSM149188     2  0.0188     0.9032 0.004 0.996 0.000 0.000
#> GSM149189     2  0.5611     0.2510 0.024 0.564 0.412 0.000
#> GSM149190     1  0.4981     0.2433 0.536 0.464 0.000 0.000
#> GSM149191     2  0.3691     0.8335 0.076 0.856 0.068 0.000
#> GSM149192     2  0.0592     0.9037 0.016 0.984 0.000 0.000
#> GSM149193     2  0.0000     0.9026 0.000 1.000 0.000 0.000
#> GSM149194     1  0.4250     0.6147 0.724 0.276 0.000 0.000
#> GSM149195     3  0.0000     0.9156 0.000 0.000 1.000 0.000
#> GSM149196     2  0.0336     0.9030 0.008 0.992 0.000 0.000
#> GSM149197     2  0.1211     0.8962 0.040 0.960 0.000 0.000
#> GSM149198     1  0.4994     0.0682 0.520 0.000 0.000 0.480
#> GSM149199     2  0.2281     0.8533 0.096 0.904 0.000 0.000
#> GSM149200     2  0.1929     0.8777 0.024 0.940 0.036 0.000
#> GSM149201     2  0.0707     0.9020 0.020 0.980 0.000 0.000
#> GSM149202     2  0.1004     0.8950 0.024 0.972 0.004 0.000
#> GSM149203     2  0.5321     0.5597 0.032 0.672 0.296 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0162     0.9227 0.000 0.000 0.996 0.004 0.000
#> GSM149100     3  0.0162     0.9227 0.000 0.000 0.996 0.004 0.000
#> GSM149101     3  0.0162     0.9227 0.000 0.000 0.996 0.004 0.000
#> GSM149102     3  0.0162     0.9227 0.000 0.000 0.996 0.004 0.000
#> GSM149103     3  0.0727     0.9083 0.004 0.004 0.980 0.000 0.012
#> GSM149104     3  0.0162     0.9227 0.000 0.000 0.996 0.004 0.000
#> GSM149105     3  0.0162     0.9227 0.000 0.000 0.996 0.004 0.000
#> GSM149106     3  0.0162     0.9227 0.000 0.000 0.996 0.004 0.000
#> GSM149107     3  0.0162     0.9227 0.000 0.000 0.996 0.004 0.000
#> GSM149108     3  0.0162     0.9227 0.000 0.000 0.996 0.004 0.000
#> GSM149109     3  0.0162     0.9227 0.000 0.000 0.996 0.004 0.000
#> GSM149110     3  0.0162     0.9227 0.000 0.000 0.996 0.004 0.000
#> GSM149111     3  0.0162     0.9227 0.000 0.000 0.996 0.004 0.000
#> GSM149112     3  0.0162     0.9227 0.000 0.000 0.996 0.004 0.000
#> GSM149113     3  0.0162     0.9227 0.000 0.000 0.996 0.004 0.000
#> GSM149114     3  0.0162     0.9227 0.000 0.000 0.996 0.004 0.000
#> GSM149115     4  0.4307    -0.0853 0.496 0.000 0.000 0.504 0.000
#> GSM149116     4  0.0000     0.9542 0.000 0.000 0.000 1.000 0.000
#> GSM149117     1  0.5803     0.5593 0.660 0.224 0.000 0.076 0.040
#> GSM149118     4  0.0000     0.9542 0.000 0.000 0.000 1.000 0.000
#> GSM149119     4  0.0000     0.9542 0.000 0.000 0.000 1.000 0.000
#> GSM149120     4  0.0000     0.9542 0.000 0.000 0.000 1.000 0.000
#> GSM149121     4  0.2074     0.8414 0.104 0.000 0.000 0.896 0.000
#> GSM149122     4  0.0000     0.9542 0.000 0.000 0.000 1.000 0.000
#> GSM149123     4  0.0000     0.9542 0.000 0.000 0.000 1.000 0.000
#> GSM149124     4  0.0000     0.9542 0.000 0.000 0.000 1.000 0.000
#> GSM149125     4  0.0000     0.9542 0.000 0.000 0.000 1.000 0.000
#> GSM149126     4  0.0000     0.9542 0.000 0.000 0.000 1.000 0.000
#> GSM149127     4  0.0000     0.9542 0.000 0.000 0.000 1.000 0.000
#> GSM149128     4  0.0000     0.9542 0.000 0.000 0.000 1.000 0.000
#> GSM149129     4  0.0000     0.9542 0.000 0.000 0.000 1.000 0.000
#> GSM149130     1  0.2930     0.7101 0.832 0.000 0.000 0.164 0.004
#> GSM149131     1  0.4138     0.3621 0.616 0.000 0.000 0.384 0.000
#> GSM149132     4  0.0000     0.9542 0.000 0.000 0.000 1.000 0.000
#> GSM149133     4  0.0000     0.9542 0.000 0.000 0.000 1.000 0.000
#> GSM149134     1  0.1792     0.7730 0.916 0.000 0.000 0.084 0.000
#> GSM149135     1  0.0290     0.8110 0.992 0.000 0.000 0.008 0.000
#> GSM149136     1  0.0290     0.8110 0.992 0.000 0.000 0.008 0.000
#> GSM149137     1  0.0290     0.8110 0.992 0.000 0.000 0.008 0.000
#> GSM149138     1  0.0162     0.8109 0.996 0.000 0.000 0.004 0.000
#> GSM149139     1  0.0290     0.8110 0.992 0.000 0.000 0.008 0.000
#> GSM149140     1  0.0290     0.8110 0.992 0.000 0.000 0.008 0.000
#> GSM149141     1  0.6779     0.2840 0.508 0.028 0.316 0.000 0.148
#> GSM149142     1  0.3949     0.5065 0.696 0.300 0.000 0.000 0.004
#> GSM149143     1  0.7982     0.2049 0.408 0.316 0.080 0.008 0.188
#> GSM149144     2  0.2370     0.6234 0.040 0.904 0.000 0.000 0.056
#> GSM149145     3  0.6878     0.0576 0.372 0.024 0.448 0.000 0.156
#> GSM149146     2  0.4567     0.1107 0.004 0.544 0.004 0.000 0.448
#> GSM149147     1  0.0162     0.8109 0.996 0.000 0.000 0.004 0.000
#> GSM149148     1  0.0162     0.8109 0.996 0.000 0.000 0.004 0.000
#> GSM149149     1  0.0162     0.8109 0.996 0.000 0.000 0.004 0.000
#> GSM149150     5  0.6597     0.2405 0.232 0.268 0.004 0.000 0.496
#> GSM149151     1  0.0162     0.8109 0.996 0.000 0.000 0.004 0.000
#> GSM149152     1  0.3550     0.6367 0.760 0.004 0.000 0.236 0.000
#> GSM149153     1  0.7068     0.0803 0.424 0.028 0.372 0.000 0.176
#> GSM149154     3  0.6528     0.5033 0.180 0.004 0.612 0.168 0.036
#> GSM149155     2  0.3395     0.5047 0.000 0.764 0.000 0.000 0.236
#> GSM149156     2  0.1121     0.6175 0.000 0.956 0.000 0.000 0.044
#> GSM149157     2  0.3697     0.5471 0.080 0.820 0.000 0.000 0.100
#> GSM149158     2  0.2424     0.5847 0.132 0.868 0.000 0.000 0.000
#> GSM149159     5  0.3796     0.4137 0.000 0.300 0.000 0.000 0.700
#> GSM149160     2  0.4489     0.5088 0.140 0.764 0.004 0.000 0.092
#> GSM149161     2  0.1792     0.6046 0.084 0.916 0.000 0.000 0.000
#> GSM149162     2  0.2127     0.6085 0.000 0.892 0.000 0.000 0.108
#> GSM149163     2  0.2561     0.5885 0.000 0.856 0.000 0.000 0.144
#> GSM149164     2  0.5876     0.2856 0.140 0.608 0.004 0.000 0.248
#> GSM149165     5  0.4045     0.3931 0.000 0.356 0.000 0.000 0.644
#> GSM149166     2  0.5255     0.3890 0.068 0.644 0.004 0.000 0.284
#> GSM149167     2  0.2462     0.5928 0.112 0.880 0.000 0.000 0.008
#> GSM149168     5  0.2732     0.5571 0.000 0.160 0.000 0.000 0.840
#> GSM149169     2  0.3586     0.4773 0.264 0.736 0.000 0.000 0.000
#> GSM149170     5  0.1168     0.6122 0.000 0.032 0.008 0.000 0.960
#> GSM149171     5  0.1012     0.6061 0.000 0.020 0.012 0.000 0.968
#> GSM149172     3  0.4902     0.2298 0.000 0.008 0.520 0.012 0.460
#> GSM149173     5  0.1106     0.6112 0.000 0.024 0.012 0.000 0.964
#> GSM149174     2  0.2806     0.5712 0.152 0.844 0.000 0.000 0.004
#> GSM149175     3  0.2325     0.8565 0.000 0.000 0.904 0.068 0.028
#> GSM149176     2  0.4748     0.2648 0.016 0.596 0.004 0.000 0.384
#> GSM149177     5  0.8052     0.1475 0.088 0.288 0.280 0.000 0.344
#> GSM149178     5  0.4826     0.3551 0.008 0.024 0.324 0.000 0.644
#> GSM149179     2  0.4440     0.0580 0.000 0.528 0.004 0.000 0.468
#> GSM149180     2  0.4297     0.0599 0.000 0.528 0.000 0.000 0.472
#> GSM149181     5  0.3109     0.5426 0.000 0.200 0.000 0.000 0.800
#> GSM149182     2  0.4235     0.1681 0.000 0.576 0.000 0.000 0.424
#> GSM149183     2  0.4268     0.0596 0.000 0.556 0.000 0.000 0.444
#> GSM149184     5  0.4350     0.2800 0.000 0.408 0.004 0.000 0.588
#> GSM149185     5  0.1671     0.6077 0.000 0.076 0.000 0.000 0.924
#> GSM149186     5  0.4242     0.2269 0.000 0.428 0.000 0.000 0.572
#> GSM149187     2  0.3305     0.5217 0.000 0.776 0.000 0.000 0.224
#> GSM149188     5  0.4283     0.1694 0.000 0.456 0.000 0.000 0.544
#> GSM149189     5  0.2770     0.5585 0.004 0.008 0.124 0.000 0.864
#> GSM149190     2  0.2077     0.6224 0.040 0.920 0.000 0.000 0.040
#> GSM149191     5  0.4582     0.1851 0.000 0.416 0.012 0.000 0.572
#> GSM149192     5  0.4300     0.1154 0.000 0.476 0.000 0.000 0.524
#> GSM149193     5  0.4161     0.3079 0.000 0.392 0.000 0.000 0.608
#> GSM149194     2  0.4524     0.4906 0.208 0.736 0.004 0.000 0.052
#> GSM149195     3  0.1043     0.8978 0.000 0.000 0.960 0.000 0.040
#> GSM149196     5  0.4288     0.3195 0.000 0.384 0.004 0.000 0.612
#> GSM149197     2  0.2561     0.5879 0.000 0.856 0.000 0.000 0.144
#> GSM149198     1  0.4283     0.5451 0.692 0.000 0.012 0.292 0.004
#> GSM149199     2  0.1478     0.6177 0.000 0.936 0.000 0.000 0.064
#> GSM149200     5  0.1041     0.6121 0.000 0.032 0.004 0.000 0.964
#> GSM149201     2  0.4210     0.2088 0.000 0.588 0.000 0.000 0.412
#> GSM149202     5  0.1341     0.6114 0.000 0.056 0.000 0.000 0.944
#> GSM149203     5  0.5277     0.4035 0.000 0.228 0.108 0.000 0.664

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.0000     0.9382 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149100     3  0.0000     0.9382 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149101     3  0.0000     0.9382 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149102     3  0.0000     0.9382 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149103     3  0.2320     0.8313 0.000 0.000 0.864 0.000 0.004 0.132
#> GSM149104     3  0.0000     0.9382 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149105     3  0.0000     0.9382 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149106     3  0.0865     0.9154 0.000 0.000 0.964 0.000 0.000 0.036
#> GSM149107     3  0.0000     0.9382 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149108     3  0.0000     0.9382 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149109     3  0.0000     0.9382 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149110     3  0.0000     0.9382 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149111     3  0.0000     0.9382 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149112     3  0.0000     0.9382 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149113     3  0.0000     0.9382 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149114     3  0.0000     0.9382 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149115     1  0.4219     0.4093 0.592 0.000 0.000 0.388 0.000 0.020
#> GSM149116     4  0.0000     0.9842 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149117     1  0.6493     0.2573 0.520 0.284 0.000 0.044 0.012 0.140
#> GSM149118     4  0.0000     0.9842 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149119     4  0.0000     0.9842 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149120     4  0.0000     0.9842 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149121     4  0.3087     0.7317 0.176 0.000 0.000 0.808 0.004 0.012
#> GSM149122     4  0.0000     0.9842 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149123     4  0.0000     0.9842 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149124     4  0.0000     0.9842 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149125     4  0.0000     0.9842 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149126     4  0.0000     0.9842 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149127     4  0.0000     0.9842 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149128     4  0.0000     0.9842 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149129     4  0.0000     0.9842 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149130     1  0.2968     0.7656 0.852 0.004 0.000 0.092 0.000 0.052
#> GSM149131     1  0.4045     0.5649 0.664 0.000 0.000 0.312 0.000 0.024
#> GSM149132     4  0.0000     0.9842 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149133     4  0.0000     0.9842 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149134     1  0.1857     0.8003 0.924 0.000 0.000 0.044 0.004 0.028
#> GSM149135     1  0.0146     0.8190 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM149136     1  0.0146     0.8190 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM149137     1  0.0363     0.8181 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM149138     1  0.0692     0.8153 0.976 0.000 0.000 0.000 0.004 0.020
#> GSM149139     1  0.0146     0.8187 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM149140     1  0.0000     0.8189 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149141     6  0.7053     0.1884 0.288 0.004 0.112 0.000 0.144 0.452
#> GSM149142     1  0.5772    -0.1072 0.468 0.184 0.000 0.000 0.000 0.348
#> GSM149143     6  0.6652     0.3222 0.224 0.072 0.052 0.000 0.076 0.576
#> GSM149144     2  0.2425     0.4497 0.024 0.884 0.000 0.000 0.004 0.088
#> GSM149145     6  0.7064     0.2149 0.212 0.000 0.168 0.000 0.148 0.472
#> GSM149146     2  0.4595     0.5293 0.000 0.668 0.000 0.000 0.248 0.084
#> GSM149147     1  0.0458     0.8161 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM149148     1  0.0260     0.8183 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM149149     1  0.0260     0.8183 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM149150     6  0.7445    -0.0220 0.128 0.288 0.000 0.000 0.248 0.336
#> GSM149151     1  0.0790     0.8118 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM149152     1  0.3601     0.7087 0.792 0.008 0.000 0.160 0.000 0.040
#> GSM149153     6  0.7027     0.2125 0.220 0.000 0.148 0.000 0.156 0.476
#> GSM149154     3  0.7402     0.2458 0.200 0.000 0.488 0.148 0.028 0.136
#> GSM149155     2  0.2070     0.5579 0.000 0.892 0.000 0.000 0.100 0.008
#> GSM149156     2  0.3489     0.2385 0.000 0.708 0.000 0.000 0.004 0.288
#> GSM149157     2  0.5114    -0.1714 0.020 0.484 0.000 0.000 0.040 0.456
#> GSM149158     2  0.4671    -0.0863 0.044 0.532 0.000 0.000 0.000 0.424
#> GSM149159     5  0.4117     0.6101 0.000 0.112 0.000 0.000 0.748 0.140
#> GSM149160     6  0.5295     0.1523 0.040 0.428 0.000 0.000 0.032 0.500
#> GSM149161     2  0.4355    -0.0336 0.024 0.556 0.000 0.000 0.000 0.420
#> GSM149162     2  0.3240     0.4333 0.000 0.812 0.000 0.000 0.040 0.148
#> GSM149163     2  0.1829     0.5329 0.000 0.920 0.000 0.000 0.056 0.024
#> GSM149164     6  0.6186     0.2495 0.032 0.312 0.004 0.000 0.136 0.516
#> GSM149165     2  0.4751     0.2895 0.000 0.500 0.000 0.000 0.452 0.048
#> GSM149166     2  0.4911     0.4864 0.048 0.712 0.000 0.000 0.076 0.164
#> GSM149167     2  0.4649    -0.0318 0.036 0.560 0.000 0.000 0.004 0.400
#> GSM149168     5  0.2442     0.7267 0.000 0.048 0.000 0.000 0.884 0.068
#> GSM149169     6  0.5262     0.1273 0.096 0.448 0.000 0.000 0.000 0.456
#> GSM149170     5  0.1341     0.7431 0.000 0.024 0.000 0.000 0.948 0.028
#> GSM149171     5  0.1074     0.7413 0.000 0.012 0.000 0.000 0.960 0.028
#> GSM149172     5  0.5101     0.4573 0.000 0.004 0.232 0.008 0.652 0.104
#> GSM149173     5  0.1672     0.7386 0.000 0.016 0.004 0.000 0.932 0.048
#> GSM149174     2  0.4636    -0.1119 0.040 0.516 0.000 0.000 0.000 0.444
#> GSM149175     3  0.4712     0.6918 0.008 0.000 0.732 0.040 0.048 0.172
#> GSM149176     2  0.5498     0.4379 0.020 0.616 0.000 0.000 0.136 0.228
#> GSM149177     6  0.7759    -0.0532 0.032 0.328 0.104 0.000 0.184 0.352
#> GSM149178     5  0.6911     0.2037 0.004 0.064 0.188 0.000 0.432 0.312
#> GSM149179     2  0.4869     0.5009 0.000 0.628 0.000 0.000 0.276 0.096
#> GSM149180     2  0.4595     0.5318 0.000 0.668 0.000 0.000 0.248 0.084
#> GSM149181     5  0.4045     0.3459 0.000 0.268 0.000 0.000 0.696 0.036
#> GSM149182     2  0.4176     0.5567 0.000 0.716 0.000 0.000 0.220 0.064
#> GSM149183     2  0.3575     0.5350 0.000 0.708 0.000 0.000 0.284 0.008
#> GSM149184     2  0.5104     0.3882 0.000 0.540 0.000 0.000 0.372 0.088
#> GSM149185     5  0.2039     0.7190 0.000 0.076 0.000 0.000 0.904 0.020
#> GSM149186     2  0.4818     0.4305 0.000 0.572 0.000 0.000 0.364 0.064
#> GSM149187     2  0.2704     0.5635 0.000 0.844 0.000 0.000 0.140 0.016
#> GSM149188     2  0.3830     0.4517 0.000 0.620 0.000 0.000 0.376 0.004
#> GSM149189     5  0.4083     0.6460 0.000 0.024 0.072 0.000 0.780 0.124
#> GSM149190     2  0.3454     0.3086 0.012 0.760 0.000 0.000 0.004 0.224
#> GSM149191     5  0.5778     0.1739 0.000 0.176 0.004 0.000 0.508 0.312
#> GSM149192     2  0.4206     0.4498 0.000 0.620 0.000 0.000 0.356 0.024
#> GSM149193     2  0.4500     0.4133 0.000 0.572 0.000 0.000 0.392 0.036
#> GSM149194     6  0.5642     0.2054 0.072 0.388 0.000 0.000 0.032 0.508
#> GSM149195     3  0.2815     0.8064 0.000 0.000 0.848 0.000 0.120 0.032
#> GSM149196     2  0.5050     0.3356 0.000 0.508 0.000 0.000 0.416 0.076
#> GSM149197     2  0.2001     0.5171 0.000 0.912 0.000 0.000 0.040 0.048
#> GSM149198     1  0.4335     0.6770 0.736 0.000 0.000 0.180 0.012 0.072
#> GSM149199     2  0.2871     0.3581 0.000 0.804 0.000 0.000 0.004 0.192
#> GSM149200     5  0.1003     0.7429 0.000 0.020 0.000 0.000 0.964 0.016
#> GSM149201     2  0.3713     0.5662 0.000 0.744 0.000 0.000 0.224 0.032
#> GSM149202     5  0.2134     0.7091 0.000 0.052 0.000 0.000 0.904 0.044
#> GSM149203     5  0.4750     0.6181 0.000 0.044 0.088 0.000 0.732 0.136

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> SD:skmeans 102         2.24e-11 2
#> SD:skmeans 103         2.33e-22 3
#> SD:skmeans  93         3.58e-29 4
#> SD:skmeans  74         1.77e-25 5
#> SD:skmeans  68         8.81e-23 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.411           0.770       0.873         0.4757 0.505   0.505
#> 3 3 0.638           0.851       0.910         0.2515 0.861   0.728
#> 4 4 0.890           0.917       0.962         0.1857 0.923   0.796
#> 5 5 0.871           0.911       0.952         0.1215 0.878   0.614
#> 6 6 0.854           0.703       0.877         0.0375 0.936   0.715

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     2  0.9209      0.562 0.336 0.664
#> GSM149100     2  0.7528      0.698 0.216 0.784
#> GSM149101     1  0.8661      0.549 0.712 0.288
#> GSM149102     2  0.9209      0.562 0.336 0.664
#> GSM149103     2  0.2043      0.866 0.032 0.968
#> GSM149104     2  0.9209      0.562 0.336 0.664
#> GSM149105     2  0.8861      0.603 0.304 0.696
#> GSM149106     1  0.8499      0.748 0.724 0.276
#> GSM149107     2  0.9427      0.331 0.360 0.640
#> GSM149108     2  0.9209      0.562 0.336 0.664
#> GSM149109     2  0.9209      0.562 0.336 0.664
#> GSM149110     2  0.8499      0.636 0.276 0.724
#> GSM149111     2  0.6623      0.741 0.172 0.828
#> GSM149112     2  0.9209      0.562 0.336 0.664
#> GSM149113     2  0.9209      0.562 0.336 0.664
#> GSM149114     2  0.8861      0.377 0.304 0.696
#> GSM149115     1  0.0000      0.777 1.000 0.000
#> GSM149116     1  0.0000      0.777 1.000 0.000
#> GSM149117     1  0.9248      0.700 0.660 0.340
#> GSM149118     1  0.0000      0.777 1.000 0.000
#> GSM149119     1  0.0000      0.777 1.000 0.000
#> GSM149120     1  0.0000      0.777 1.000 0.000
#> GSM149121     1  0.0000      0.777 1.000 0.000
#> GSM149122     1  0.0000      0.777 1.000 0.000
#> GSM149123     1  0.0000      0.777 1.000 0.000
#> GSM149124     1  0.0000      0.777 1.000 0.000
#> GSM149125     1  0.0000      0.777 1.000 0.000
#> GSM149126     1  0.0000      0.777 1.000 0.000
#> GSM149127     1  0.0000      0.777 1.000 0.000
#> GSM149128     1  0.0000      0.777 1.000 0.000
#> GSM149129     1  0.0000      0.777 1.000 0.000
#> GSM149130     1  0.7528      0.784 0.784 0.216
#> GSM149131     1  0.5059      0.792 0.888 0.112
#> GSM149132     1  0.0000      0.777 1.000 0.000
#> GSM149133     1  0.0000      0.777 1.000 0.000
#> GSM149134     1  0.7139      0.790 0.804 0.196
#> GSM149135     1  0.7453      0.786 0.788 0.212
#> GSM149136     1  0.8955      0.724 0.688 0.312
#> GSM149137     1  0.7376      0.787 0.792 0.208
#> GSM149138     1  0.9209      0.703 0.664 0.336
#> GSM149139     1  0.7219      0.789 0.800 0.200
#> GSM149140     1  0.7376      0.787 0.792 0.208
#> GSM149141     2  0.5629      0.741 0.132 0.868
#> GSM149142     1  0.9209      0.703 0.664 0.336
#> GSM149143     1  0.9850      0.579 0.572 0.428
#> GSM149144     1  0.9248      0.700 0.660 0.340
#> GSM149145     1  0.9970      0.495 0.532 0.468
#> GSM149146     2  0.0000      0.890 0.000 1.000
#> GSM149147     1  0.7883      0.775 0.764 0.236
#> GSM149148     1  0.7376      0.787 0.792 0.208
#> GSM149149     1  0.7376      0.787 0.792 0.208
#> GSM149150     2  0.0000      0.890 0.000 1.000
#> GSM149151     1  0.9209      0.703 0.664 0.336
#> GSM149152     1  0.3114      0.786 0.944 0.056
#> GSM149153     2  0.5408      0.753 0.124 0.876
#> GSM149154     1  0.5408      0.790 0.876 0.124
#> GSM149155     2  0.0000      0.890 0.000 1.000
#> GSM149156     2  0.0000      0.890 0.000 1.000
#> GSM149157     2  0.0000      0.890 0.000 1.000
#> GSM149158     1  0.9850      0.579 0.572 0.428
#> GSM149159     2  0.0000      0.890 0.000 1.000
#> GSM149160     2  0.0672      0.884 0.008 0.992
#> GSM149161     2  0.8499      0.426 0.276 0.724
#> GSM149162     2  0.0000      0.890 0.000 1.000
#> GSM149163     2  0.0000      0.890 0.000 1.000
#> GSM149164     2  0.0000      0.890 0.000 1.000
#> GSM149165     2  0.0000      0.890 0.000 1.000
#> GSM149166     1  0.9522      0.666 0.628 0.372
#> GSM149167     1  0.9933      0.530 0.548 0.452
#> GSM149168     2  0.0000      0.890 0.000 1.000
#> GSM149169     1  0.9552      0.660 0.624 0.376
#> GSM149170     2  0.0000      0.890 0.000 1.000
#> GSM149171     2  0.0000      0.890 0.000 1.000
#> GSM149172     2  0.0000      0.890 0.000 1.000
#> GSM149173     2  0.0000      0.890 0.000 1.000
#> GSM149174     1  0.9248      0.700 0.660 0.340
#> GSM149175     2  0.7376      0.679 0.208 0.792
#> GSM149176     2  0.0672      0.884 0.008 0.992
#> GSM149177     2  0.5059      0.779 0.112 0.888
#> GSM149178     2  0.0000      0.890 0.000 1.000
#> GSM149179     2  0.0000      0.890 0.000 1.000
#> GSM149180     2  0.0000      0.890 0.000 1.000
#> GSM149181     2  0.0000      0.890 0.000 1.000
#> GSM149182     2  0.0000      0.890 0.000 1.000
#> GSM149183     2  0.0000      0.890 0.000 1.000
#> GSM149184     2  0.0000      0.890 0.000 1.000
#> GSM149185     2  0.0000      0.890 0.000 1.000
#> GSM149186     2  0.0000      0.890 0.000 1.000
#> GSM149187     2  0.0000      0.890 0.000 1.000
#> GSM149188     2  0.0000      0.890 0.000 1.000
#> GSM149189     2  0.0000      0.890 0.000 1.000
#> GSM149190     2  0.2236      0.862 0.036 0.964
#> GSM149191     2  0.0000      0.890 0.000 1.000
#> GSM149192     2  0.0000      0.890 0.000 1.000
#> GSM149193     2  0.0000      0.890 0.000 1.000
#> GSM149194     1  0.9850      0.579 0.572 0.428
#> GSM149195     2  0.0000      0.890 0.000 1.000
#> GSM149196     2  0.0000      0.890 0.000 1.000
#> GSM149197     2  0.0938      0.881 0.012 0.988
#> GSM149198     1  0.8608      0.683 0.716 0.284
#> GSM149199     2  0.2423      0.858 0.040 0.960
#> GSM149200     2  0.0000      0.890 0.000 1.000
#> GSM149201     2  0.0000      0.890 0.000 1.000
#> GSM149202     2  0.0000      0.890 0.000 1.000
#> GSM149203     2  0.0000      0.890 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0000      0.981 0.000 0.000 1.000
#> GSM149100     3  0.0000      0.981 0.000 0.000 1.000
#> GSM149101     3  0.0000      0.981 0.000 0.000 1.000
#> GSM149102     3  0.0000      0.981 0.000 0.000 1.000
#> GSM149103     3  0.4702      0.662 0.000 0.212 0.788
#> GSM149104     3  0.0000      0.981 0.000 0.000 1.000
#> GSM149105     3  0.0000      0.981 0.000 0.000 1.000
#> GSM149106     3  0.0000      0.981 0.000 0.000 1.000
#> GSM149107     3  0.0000      0.981 0.000 0.000 1.000
#> GSM149108     3  0.0000      0.981 0.000 0.000 1.000
#> GSM149109     3  0.0000      0.981 0.000 0.000 1.000
#> GSM149110     3  0.0000      0.981 0.000 0.000 1.000
#> GSM149111     3  0.0000      0.981 0.000 0.000 1.000
#> GSM149112     3  0.0000      0.981 0.000 0.000 1.000
#> GSM149113     3  0.0000      0.981 0.000 0.000 1.000
#> GSM149114     3  0.0000      0.981 0.000 0.000 1.000
#> GSM149115     1  0.0000      0.773 1.000 0.000 0.000
#> GSM149116     1  0.0237      0.770 0.996 0.000 0.004
#> GSM149117     1  0.5397      0.786 0.720 0.280 0.000
#> GSM149118     1  0.0000      0.773 1.000 0.000 0.000
#> GSM149119     1  0.0000      0.773 1.000 0.000 0.000
#> GSM149120     1  0.0000      0.773 1.000 0.000 0.000
#> GSM149121     1  0.0000      0.773 1.000 0.000 0.000
#> GSM149122     1  0.0592      0.765 0.988 0.000 0.012
#> GSM149123     1  0.0000      0.773 1.000 0.000 0.000
#> GSM149124     1  0.0000      0.773 1.000 0.000 0.000
#> GSM149125     1  0.0000      0.773 1.000 0.000 0.000
#> GSM149126     1  0.0000      0.773 1.000 0.000 0.000
#> GSM149127     1  0.0000      0.773 1.000 0.000 0.000
#> GSM149128     1  0.0000      0.773 1.000 0.000 0.000
#> GSM149129     1  0.0000      0.773 1.000 0.000 0.000
#> GSM149130     1  0.4796      0.804 0.780 0.220 0.000
#> GSM149131     1  0.3116      0.804 0.892 0.108 0.000
#> GSM149132     1  0.0000      0.773 1.000 0.000 0.000
#> GSM149133     1  0.0000      0.773 1.000 0.000 0.000
#> GSM149134     1  0.4235      0.810 0.824 0.176 0.000
#> GSM149135     1  0.5363      0.789 0.724 0.276 0.000
#> GSM149136     1  0.5363      0.789 0.724 0.276 0.000
#> GSM149137     1  0.5363      0.789 0.724 0.276 0.000
#> GSM149138     1  0.5363      0.789 0.724 0.276 0.000
#> GSM149139     1  0.4605      0.807 0.796 0.204 0.000
#> GSM149140     1  0.5291      0.792 0.732 0.268 0.000
#> GSM149141     2  0.3551      0.790 0.132 0.868 0.000
#> GSM149142     1  0.5363      0.789 0.724 0.276 0.000
#> GSM149143     1  0.6045      0.658 0.620 0.380 0.000
#> GSM149144     1  0.5497      0.775 0.708 0.292 0.000
#> GSM149145     1  0.6483      0.512 0.544 0.452 0.004
#> GSM149146     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149147     1  0.5327      0.791 0.728 0.272 0.000
#> GSM149148     1  0.5327      0.791 0.728 0.272 0.000
#> GSM149149     1  0.5291      0.792 0.732 0.268 0.000
#> GSM149150     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149151     1  0.5363      0.789 0.724 0.276 0.000
#> GSM149152     1  0.1643      0.787 0.956 0.044 0.000
#> GSM149153     2  0.3482      0.796 0.128 0.872 0.000
#> GSM149154     1  0.3551      0.802 0.868 0.132 0.000
#> GSM149155     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149156     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149157     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149158     1  0.6095      0.639 0.608 0.392 0.000
#> GSM149159     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149160     2  0.0747      0.939 0.016 0.984 0.000
#> GSM149161     2  0.5431      0.446 0.284 0.716 0.000
#> GSM149162     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149163     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149164     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149165     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149166     1  0.5760      0.738 0.672 0.328 0.000
#> GSM149167     1  0.6180      0.593 0.584 0.416 0.000
#> GSM149168     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149169     1  0.5835      0.719 0.660 0.340 0.000
#> GSM149170     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149171     2  0.1964      0.903 0.000 0.944 0.056
#> GSM149172     2  0.0892      0.936 0.000 0.980 0.020
#> GSM149173     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149174     1  0.5431      0.782 0.716 0.284 0.000
#> GSM149175     2  0.6576      0.645 0.192 0.740 0.068
#> GSM149176     2  0.0592      0.943 0.012 0.988 0.000
#> GSM149177     2  0.3752      0.782 0.144 0.856 0.000
#> GSM149178     2  0.1964      0.903 0.000 0.944 0.056
#> GSM149179     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149180     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149181     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149182     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149183     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149184     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149185     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149186     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149187     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149188     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149189     2  0.1964      0.903 0.000 0.944 0.056
#> GSM149190     2  0.1964      0.902 0.056 0.944 0.000
#> GSM149191     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149192     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149193     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149194     1  0.6111      0.633 0.604 0.396 0.000
#> GSM149195     2  0.6280      0.098 0.000 0.540 0.460
#> GSM149196     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149197     2  0.1163      0.929 0.028 0.972 0.000
#> GSM149198     1  0.5178      0.725 0.744 0.256 0.000
#> GSM149199     2  0.2066      0.897 0.060 0.940 0.000
#> GSM149200     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149201     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149202     2  0.0000      0.951 0.000 1.000 0.000
#> GSM149203     2  0.0000      0.951 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM149100     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM149101     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM149102     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM149103     3  0.0469      0.982 0.000 0.012 0.988 0.000
#> GSM149104     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM149105     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM149106     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM149107     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM149108     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM149109     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM149110     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM149111     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM149112     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM149113     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM149114     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM149115     1  0.1211      0.913 0.960 0.000 0.000 0.040
#> GSM149116     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM149117     1  0.2345      0.870 0.900 0.100 0.000 0.000
#> GSM149118     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM149119     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM149120     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM149121     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM149122     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM149123     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM149124     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM149125     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM149126     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM149127     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM149128     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM149129     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM149130     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM149131     1  0.0188      0.935 0.996 0.000 0.000 0.004
#> GSM149132     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM149133     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM149134     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM149135     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM149136     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM149137     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM149138     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM149139     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM149140     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM149141     2  0.3266      0.796 0.168 0.832 0.000 0.000
#> GSM149142     1  0.0592      0.933 0.984 0.016 0.000 0.000
#> GSM149143     1  0.1637      0.902 0.940 0.060 0.000 0.000
#> GSM149144     1  0.1302      0.915 0.956 0.044 0.000 0.000
#> GSM149145     1  0.4406      0.595 0.700 0.300 0.000 0.000
#> GSM149146     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149147     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM149148     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM149149     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM149150     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149151     1  0.0469      0.934 0.988 0.012 0.000 0.000
#> GSM149152     1  0.0336      0.934 0.992 0.000 0.000 0.008
#> GSM149153     2  0.3801      0.724 0.220 0.780 0.000 0.000
#> GSM149154     1  0.3402      0.791 0.832 0.004 0.000 0.164
#> GSM149155     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149156     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149157     2  0.1302      0.917 0.044 0.956 0.000 0.000
#> GSM149158     1  0.0817      0.928 0.976 0.024 0.000 0.000
#> GSM149159     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149160     2  0.2408      0.873 0.104 0.896 0.000 0.000
#> GSM149161     2  0.4967      0.168 0.452 0.548 0.000 0.000
#> GSM149162     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149163     2  0.0817      0.929 0.024 0.976 0.000 0.000
#> GSM149164     2  0.1637      0.906 0.060 0.940 0.000 0.000
#> GSM149165     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149166     1  0.4776      0.450 0.624 0.376 0.000 0.000
#> GSM149167     1  0.1022      0.924 0.968 0.032 0.000 0.000
#> GSM149168     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149169     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM149170     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149171     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149172     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149173     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149174     1  0.0592      0.933 0.984 0.016 0.000 0.000
#> GSM149175     2  0.6217      0.475 0.016 0.624 0.044 0.316
#> GSM149176     2  0.0469      0.936 0.012 0.988 0.000 0.000
#> GSM149177     2  0.3400      0.783 0.180 0.820 0.000 0.000
#> GSM149178     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149179     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149180     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149181     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149182     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149183     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149184     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149185     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149186     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149187     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149188     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149189     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149190     2  0.4103      0.673 0.256 0.744 0.000 0.000
#> GSM149191     2  0.1022      0.923 0.032 0.968 0.000 0.000
#> GSM149192     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149193     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149194     1  0.1637      0.904 0.940 0.060 0.000 0.000
#> GSM149195     2  0.4543      0.545 0.000 0.676 0.324 0.000
#> GSM149196     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149197     2  0.2973      0.825 0.144 0.856 0.000 0.000
#> GSM149198     1  0.4740      0.750 0.788 0.132 0.000 0.080
#> GSM149199     2  0.2760      0.843 0.128 0.872 0.000 0.000
#> GSM149200     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149201     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149202     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> GSM149203     2  0.0657      0.934 0.012 0.984 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149100     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149101     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149102     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149103     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149104     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149105     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149106     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149107     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149108     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149109     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149110     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149111     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149112     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149113     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149114     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149115     1  0.0162      0.945 0.996 0.000 0.000 0.004 0.000
#> GSM149116     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149117     1  0.1725      0.906 0.936 0.020 0.000 0.000 0.044
#> GSM149118     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149119     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149120     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149121     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149122     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149123     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149124     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149125     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149126     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149127     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149128     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149129     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149130     1  0.0162      0.945 0.996 0.004 0.000 0.000 0.000
#> GSM149131     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000
#> GSM149132     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149133     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149134     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000
#> GSM149135     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000
#> GSM149136     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000
#> GSM149137     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000
#> GSM149138     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000
#> GSM149139     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000
#> GSM149140     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000
#> GSM149141     5  0.2561      0.806 0.144 0.000 0.000 0.000 0.856
#> GSM149142     1  0.2338      0.857 0.884 0.112 0.000 0.000 0.004
#> GSM149143     1  0.2813      0.809 0.832 0.168 0.000 0.000 0.000
#> GSM149144     2  0.2361      0.872 0.096 0.892 0.000 0.000 0.012
#> GSM149145     1  0.3612      0.706 0.764 0.008 0.000 0.000 0.228
#> GSM149146     5  0.2377      0.833 0.000 0.128 0.000 0.000 0.872
#> GSM149147     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000
#> GSM149148     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000
#> GSM149149     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000
#> GSM149150     5  0.0000      0.910 0.000 0.000 0.000 0.000 1.000
#> GSM149151     1  0.0000      0.947 1.000 0.000 0.000 0.000 0.000
#> GSM149152     1  0.0290      0.943 0.992 0.000 0.000 0.008 0.000
#> GSM149153     5  0.3274      0.714 0.220 0.000 0.000 0.000 0.780
#> GSM149154     1  0.3180      0.855 0.856 0.076 0.000 0.068 0.000
#> GSM149155     2  0.1792      0.900 0.000 0.916 0.000 0.000 0.084
#> GSM149156     2  0.0000      0.927 0.000 1.000 0.000 0.000 0.000
#> GSM149157     2  0.0162      0.927 0.000 0.996 0.000 0.000 0.004
#> GSM149158     2  0.0290      0.926 0.008 0.992 0.000 0.000 0.000
#> GSM149159     5  0.3109      0.774 0.000 0.200 0.000 0.000 0.800
#> GSM149160     2  0.0451      0.926 0.004 0.988 0.000 0.000 0.008
#> GSM149161     2  0.0000      0.927 0.000 1.000 0.000 0.000 0.000
#> GSM149162     2  0.1121      0.922 0.000 0.956 0.000 0.000 0.044
#> GSM149163     2  0.1121      0.922 0.000 0.956 0.000 0.000 0.044
#> GSM149164     2  0.3109      0.749 0.000 0.800 0.000 0.000 0.200
#> GSM149165     5  0.0880      0.898 0.000 0.032 0.000 0.000 0.968
#> GSM149166     2  0.2873      0.869 0.020 0.860 0.000 0.000 0.120
#> GSM149167     2  0.0162      0.927 0.004 0.996 0.000 0.000 0.000
#> GSM149168     5  0.2074      0.858 0.000 0.104 0.000 0.000 0.896
#> GSM149169     2  0.0162      0.927 0.004 0.996 0.000 0.000 0.000
#> GSM149170     5  0.0000      0.910 0.000 0.000 0.000 0.000 1.000
#> GSM149171     5  0.0000      0.910 0.000 0.000 0.000 0.000 1.000
#> GSM149172     5  0.0000      0.910 0.000 0.000 0.000 0.000 1.000
#> GSM149173     5  0.0000      0.910 0.000 0.000 0.000 0.000 1.000
#> GSM149174     2  0.0000      0.927 0.000 1.000 0.000 0.000 0.000
#> GSM149175     5  0.5189      0.536 0.012 0.000 0.044 0.300 0.644
#> GSM149176     2  0.3684      0.674 0.000 0.720 0.000 0.000 0.280
#> GSM149177     5  0.4469      0.746 0.148 0.096 0.000 0.000 0.756
#> GSM149178     5  0.0000      0.910 0.000 0.000 0.000 0.000 1.000
#> GSM149179     5  0.0000      0.910 0.000 0.000 0.000 0.000 1.000
#> GSM149180     5  0.0000      0.910 0.000 0.000 0.000 0.000 1.000
#> GSM149181     5  0.0000      0.910 0.000 0.000 0.000 0.000 1.000
#> GSM149182     5  0.0000      0.910 0.000 0.000 0.000 0.000 1.000
#> GSM149183     2  0.1851      0.900 0.000 0.912 0.000 0.000 0.088
#> GSM149184     5  0.0000      0.910 0.000 0.000 0.000 0.000 1.000
#> GSM149185     5  0.0290      0.907 0.000 0.008 0.000 0.000 0.992
#> GSM149186     5  0.0000      0.910 0.000 0.000 0.000 0.000 1.000
#> GSM149187     5  0.3586      0.685 0.000 0.264 0.000 0.000 0.736
#> GSM149188     5  0.3242      0.744 0.000 0.216 0.000 0.000 0.784
#> GSM149189     5  0.0000      0.910 0.000 0.000 0.000 0.000 1.000
#> GSM149190     2  0.1579      0.920 0.024 0.944 0.000 0.000 0.032
#> GSM149191     5  0.2852      0.805 0.000 0.172 0.000 0.000 0.828
#> GSM149192     5  0.1608      0.879 0.000 0.072 0.000 0.000 0.928
#> GSM149193     5  0.0000      0.910 0.000 0.000 0.000 0.000 1.000
#> GSM149194     2  0.2605      0.797 0.148 0.852 0.000 0.000 0.000
#> GSM149195     5  0.3707      0.627 0.000 0.000 0.284 0.000 0.716
#> GSM149196     5  0.0000      0.910 0.000 0.000 0.000 0.000 1.000
#> GSM149197     2  0.1121      0.922 0.000 0.956 0.000 0.000 0.044
#> GSM149198     1  0.5659      0.658 0.692 0.032 0.000 0.128 0.148
#> GSM149199     2  0.0000      0.927 0.000 1.000 0.000 0.000 0.000
#> GSM149200     5  0.0162      0.909 0.000 0.004 0.000 0.000 0.996
#> GSM149201     5  0.3074      0.764 0.000 0.196 0.000 0.000 0.804
#> GSM149202     5  0.0000      0.910 0.000 0.000 0.000 0.000 1.000
#> GSM149203     5  0.2127      0.854 0.000 0.108 0.000 0.000 0.892

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.0000    0.99975 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149100     3  0.0000    0.99975 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149101     3  0.0000    0.99975 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149102     3  0.0000    0.99975 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149103     3  0.0146    0.99623 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM149104     3  0.0000    0.99975 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149105     3  0.0000    0.99975 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149106     3  0.0000    0.99975 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149107     3  0.0000    0.99975 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149108     3  0.0000    0.99975 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149109     3  0.0000    0.99975 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149110     3  0.0000    0.99975 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149111     3  0.0000    0.99975 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149112     3  0.0000    0.99975 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149113     3  0.0000    0.99975 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149114     3  0.0000    0.99975 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149115     1  0.0000    0.95221 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149116     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149117     1  0.1663    0.87530 0.912 0.000 0.000 0.000 0.000 0.088
#> GSM149118     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149119     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149120     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149121     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149122     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149123     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149124     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149125     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149126     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149127     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149128     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149129     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149130     1  0.0000    0.95221 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149131     1  0.0000    0.95221 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149132     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149133     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149134     1  0.0000    0.95221 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149135     1  0.0000    0.95221 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149136     1  0.0000    0.95221 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149137     1  0.0000    0.95221 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149138     1  0.0000    0.95221 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149139     1  0.0000    0.95221 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149140     1  0.0000    0.95221 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149141     5  0.4095    0.14230 0.008 0.000 0.000 0.000 0.512 0.480
#> GSM149142     1  0.1806    0.87517 0.908 0.088 0.000 0.000 0.000 0.004
#> GSM149143     2  0.3864   -0.18211 0.480 0.520 0.000 0.000 0.000 0.000
#> GSM149144     2  0.4705   -0.02528 0.044 0.480 0.000 0.000 0.000 0.476
#> GSM149145     6  0.6142   -0.00933 0.296 0.020 0.000 0.000 0.188 0.496
#> GSM149146     5  0.2912    0.65660 0.000 0.000 0.000 0.000 0.784 0.216
#> GSM149147     1  0.0000    0.95221 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149148     1  0.0000    0.95221 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149149     1  0.0000    0.95221 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149150     5  0.0363    0.84944 0.000 0.000 0.000 0.000 0.988 0.012
#> GSM149151     1  0.0000    0.95221 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149152     1  0.0260    0.94638 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM149153     6  0.5553    0.03266 0.156 0.000 0.000 0.000 0.324 0.520
#> GSM149154     1  0.3112    0.81306 0.840 0.104 0.000 0.052 0.000 0.004
#> GSM149155     6  0.3864   -0.05494 0.000 0.480 0.000 0.000 0.000 0.520
#> GSM149156     2  0.3765    0.17096 0.000 0.596 0.000 0.000 0.000 0.404
#> GSM149157     2  0.0000    0.64923 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149158     2  0.0000    0.64923 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149159     5  0.3868    0.23789 0.000 0.492 0.000 0.000 0.508 0.000
#> GSM149160     2  0.0000    0.64923 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149161     2  0.0790    0.63163 0.000 0.968 0.000 0.000 0.000 0.032
#> GSM149162     6  0.3867   -0.07244 0.000 0.488 0.000 0.000 0.000 0.512
#> GSM149163     6  0.3864   -0.05494 0.000 0.480 0.000 0.000 0.000 0.520
#> GSM149164     2  0.0000    0.64923 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149165     5  0.2219    0.74045 0.000 0.000 0.000 0.000 0.864 0.136
#> GSM149166     2  0.3869   -0.05392 0.000 0.500 0.000 0.000 0.000 0.500
#> GSM149167     2  0.0000    0.64923 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149168     5  0.2178    0.75853 0.000 0.132 0.000 0.000 0.868 0.000
#> GSM149169     2  0.0146    0.64710 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM149170     5  0.0000    0.85073 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149171     5  0.0000    0.85073 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149172     5  0.0000    0.85073 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149173     5  0.0000    0.85073 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149174     2  0.0000    0.64923 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149175     6  0.6327    0.01289 0.004 0.000 0.016 0.256 0.244 0.480
#> GSM149176     2  0.5372   -0.03746 0.000 0.484 0.000 0.000 0.404 0.112
#> GSM149177     5  0.5007    0.60685 0.136 0.100 0.000 0.000 0.712 0.052
#> GSM149178     5  0.0000    0.85073 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149179     5  0.1075    0.83760 0.000 0.000 0.000 0.000 0.952 0.048
#> GSM149180     5  0.0000    0.85073 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149181     5  0.0632    0.84675 0.000 0.000 0.000 0.000 0.976 0.024
#> GSM149182     5  0.1007    0.83351 0.000 0.000 0.000 0.000 0.956 0.044
#> GSM149183     6  0.4460   -0.02953 0.000 0.452 0.000 0.000 0.028 0.520
#> GSM149184     5  0.1075    0.83760 0.000 0.000 0.000 0.000 0.952 0.048
#> GSM149185     5  0.0000    0.85073 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149186     5  0.1075    0.83760 0.000 0.000 0.000 0.000 0.952 0.048
#> GSM149187     6  0.4091    0.01221 0.000 0.008 0.000 0.000 0.472 0.520
#> GSM149188     6  0.3993    0.00244 0.000 0.004 0.000 0.000 0.476 0.520
#> GSM149189     5  0.0937    0.84319 0.000 0.000 0.000 0.000 0.960 0.040
#> GSM149190     2  0.3168    0.50402 0.024 0.804 0.000 0.000 0.000 0.172
#> GSM149191     2  0.3862   -0.23582 0.000 0.524 0.000 0.000 0.476 0.000
#> GSM149192     5  0.4797    0.37484 0.000 0.356 0.000 0.000 0.580 0.064
#> GSM149193     5  0.0000    0.85073 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149194     2  0.0000    0.64923 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149195     5  0.3101    0.57964 0.000 0.000 0.244 0.000 0.756 0.000
#> GSM149196     5  0.1075    0.83760 0.000 0.000 0.000 0.000 0.952 0.048
#> GSM149197     6  0.3868   -0.07637 0.000 0.492 0.000 0.000 0.000 0.508
#> GSM149198     1  0.6082    0.27922 0.516 0.324 0.000 0.040 0.120 0.000
#> GSM149199     2  0.3851    0.06325 0.000 0.540 0.000 0.000 0.000 0.460
#> GSM149200     5  0.0000    0.85073 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149201     6  0.3864   -0.00827 0.000 0.000 0.000 0.000 0.480 0.520
#> GSM149202     5  0.0000    0.85073 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149203     5  0.3390    0.56088 0.000 0.296 0.000 0.000 0.704 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> SD:pam 101         1.32e-09 2
#> SD:pam 103         5.30e-26 3
#> SD:pam 102         4.46e-33 4
#> SD:pam 105         1.59e-39 5
#> SD:pam  83         6.17e-32 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.988       0.996         0.4317 0.572   0.572
#> 3 3 1.000           0.961       0.977         0.4201 0.793   0.644
#> 4 4 0.745           0.773       0.861         0.1023 0.689   0.376
#> 5 5 0.994           0.946       0.974         0.1646 0.873   0.604
#> 6 6 0.873           0.841       0.894         0.0308 1.000   1.000

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     2  0.0000      0.994 0.000 1.000
#> GSM149100     2  0.0000      0.994 0.000 1.000
#> GSM149101     2  0.0000      0.994 0.000 1.000
#> GSM149102     2  0.0000      0.994 0.000 1.000
#> GSM149103     2  0.0000      0.994 0.000 1.000
#> GSM149104     2  0.0000      0.994 0.000 1.000
#> GSM149105     2  0.0000      0.994 0.000 1.000
#> GSM149106     2  0.0000      0.994 0.000 1.000
#> GSM149107     2  0.0000      0.994 0.000 1.000
#> GSM149108     2  0.0000      0.994 0.000 1.000
#> GSM149109     2  0.0000      0.994 0.000 1.000
#> GSM149110     2  0.0000      0.994 0.000 1.000
#> GSM149111     2  0.0000      0.994 0.000 1.000
#> GSM149112     2  0.0000      0.994 0.000 1.000
#> GSM149113     2  0.0000      0.994 0.000 1.000
#> GSM149114     2  0.0000      0.994 0.000 1.000
#> GSM149115     1  0.0000      1.000 1.000 0.000
#> GSM149116     1  0.0000      1.000 1.000 0.000
#> GSM149117     1  0.0376      0.996 0.996 0.004
#> GSM149118     1  0.0000      1.000 1.000 0.000
#> GSM149119     1  0.0000      1.000 1.000 0.000
#> GSM149120     1  0.0000      1.000 1.000 0.000
#> GSM149121     1  0.0000      1.000 1.000 0.000
#> GSM149122     1  0.0000      1.000 1.000 0.000
#> GSM149123     1  0.0000      1.000 1.000 0.000
#> GSM149124     1  0.0000      1.000 1.000 0.000
#> GSM149125     1  0.0000      1.000 1.000 0.000
#> GSM149126     1  0.0000      1.000 1.000 0.000
#> GSM149127     1  0.0000      1.000 1.000 0.000
#> GSM149128     1  0.0000      1.000 1.000 0.000
#> GSM149129     1  0.0000      1.000 1.000 0.000
#> GSM149130     1  0.0000      1.000 1.000 0.000
#> GSM149131     1  0.0000      1.000 1.000 0.000
#> GSM149132     1  0.0000      1.000 1.000 0.000
#> GSM149133     1  0.0000      1.000 1.000 0.000
#> GSM149134     1  0.0000      1.000 1.000 0.000
#> GSM149135     1  0.0000      1.000 1.000 0.000
#> GSM149136     1  0.0000      1.000 1.000 0.000
#> GSM149137     1  0.0000      1.000 1.000 0.000
#> GSM149138     1  0.0000      1.000 1.000 0.000
#> GSM149139     1  0.0000      1.000 1.000 0.000
#> GSM149140     1  0.0000      1.000 1.000 0.000
#> GSM149141     2  0.0000      0.994 0.000 1.000
#> GSM149142     2  0.9922      0.188 0.448 0.552
#> GSM149143     2  0.0000      0.994 0.000 1.000
#> GSM149144     2  0.0000      0.994 0.000 1.000
#> GSM149145     2  0.0000      0.994 0.000 1.000
#> GSM149146     2  0.0000      0.994 0.000 1.000
#> GSM149147     1  0.0000      1.000 1.000 0.000
#> GSM149148     1  0.0000      1.000 1.000 0.000
#> GSM149149     1  0.0000      1.000 1.000 0.000
#> GSM149150     2  0.0000      0.994 0.000 1.000
#> GSM149151     1  0.0000      1.000 1.000 0.000
#> GSM149152     1  0.0000      1.000 1.000 0.000
#> GSM149153     2  0.0000      0.994 0.000 1.000
#> GSM149154     2  0.0672      0.986 0.008 0.992
#> GSM149155     2  0.0000      0.994 0.000 1.000
#> GSM149156     2  0.0000      0.994 0.000 1.000
#> GSM149157     2  0.0000      0.994 0.000 1.000
#> GSM149158     2  0.0000      0.994 0.000 1.000
#> GSM149159     2  0.0000      0.994 0.000 1.000
#> GSM149160     2  0.0000      0.994 0.000 1.000
#> GSM149161     2  0.0000      0.994 0.000 1.000
#> GSM149162     2  0.0000      0.994 0.000 1.000
#> GSM149163     2  0.0000      0.994 0.000 1.000
#> GSM149164     2  0.0000      0.994 0.000 1.000
#> GSM149165     2  0.0000      0.994 0.000 1.000
#> GSM149166     2  0.0000      0.994 0.000 1.000
#> GSM149167     2  0.0000      0.994 0.000 1.000
#> GSM149168     2  0.0000      0.994 0.000 1.000
#> GSM149169     2  0.0000      0.994 0.000 1.000
#> GSM149170     2  0.0000      0.994 0.000 1.000
#> GSM149171     2  0.0000      0.994 0.000 1.000
#> GSM149172     2  0.0000      0.994 0.000 1.000
#> GSM149173     2  0.0000      0.994 0.000 1.000
#> GSM149174     2  0.0000      0.994 0.000 1.000
#> GSM149175     2  0.0376      0.990 0.004 0.996
#> GSM149176     2  0.0000      0.994 0.000 1.000
#> GSM149177     2  0.0000      0.994 0.000 1.000
#> GSM149178     2  0.0000      0.994 0.000 1.000
#> GSM149179     2  0.0000      0.994 0.000 1.000
#> GSM149180     2  0.0000      0.994 0.000 1.000
#> GSM149181     2  0.0000      0.994 0.000 1.000
#> GSM149182     2  0.0000      0.994 0.000 1.000
#> GSM149183     2  0.0000      0.994 0.000 1.000
#> GSM149184     2  0.0000      0.994 0.000 1.000
#> GSM149185     2  0.0000      0.994 0.000 1.000
#> GSM149186     2  0.0000      0.994 0.000 1.000
#> GSM149187     2  0.0000      0.994 0.000 1.000
#> GSM149188     2  0.0000      0.994 0.000 1.000
#> GSM149189     2  0.0000      0.994 0.000 1.000
#> GSM149190     2  0.0000      0.994 0.000 1.000
#> GSM149191     2  0.0000      0.994 0.000 1.000
#> GSM149192     2  0.0000      0.994 0.000 1.000
#> GSM149193     2  0.0000      0.994 0.000 1.000
#> GSM149194     2  0.0000      0.994 0.000 1.000
#> GSM149195     2  0.0000      0.994 0.000 1.000
#> GSM149196     2  0.0000      0.994 0.000 1.000
#> GSM149197     2  0.0000      0.994 0.000 1.000
#> GSM149198     1  0.0000      1.000 1.000 0.000
#> GSM149199     2  0.0000      0.994 0.000 1.000
#> GSM149200     2  0.0000      0.994 0.000 1.000
#> GSM149201     2  0.0000      0.994 0.000 1.000
#> GSM149202     2  0.0000      0.994 0.000 1.000
#> GSM149203     2  0.0000      0.994 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0000      0.964 0.000 0.000 1.000
#> GSM149100     3  0.0000      0.964 0.000 0.000 1.000
#> GSM149101     3  0.0000      0.964 0.000 0.000 1.000
#> GSM149102     3  0.0000      0.964 0.000 0.000 1.000
#> GSM149103     2  0.0892      0.980 0.000 0.980 0.020
#> GSM149104     3  0.0000      0.964 0.000 0.000 1.000
#> GSM149105     3  0.0000      0.964 0.000 0.000 1.000
#> GSM149106     3  0.1753      0.924 0.000 0.048 0.952
#> GSM149107     3  0.0000      0.964 0.000 0.000 1.000
#> GSM149108     3  0.0000      0.964 0.000 0.000 1.000
#> GSM149109     3  0.0000      0.964 0.000 0.000 1.000
#> GSM149110     3  0.0000      0.964 0.000 0.000 1.000
#> GSM149111     3  0.0000      0.964 0.000 0.000 1.000
#> GSM149112     3  0.0000      0.964 0.000 0.000 1.000
#> GSM149113     3  0.0000      0.964 0.000 0.000 1.000
#> GSM149114     3  0.0000      0.964 0.000 0.000 1.000
#> GSM149115     1  0.1337      0.952 0.972 0.016 0.012
#> GSM149116     1  0.0000      0.955 1.000 0.000 0.000
#> GSM149117     3  0.2031      0.939 0.032 0.016 0.952
#> GSM149118     1  0.0000      0.955 1.000 0.000 0.000
#> GSM149119     1  0.0000      0.955 1.000 0.000 0.000
#> GSM149120     1  0.0000      0.955 1.000 0.000 0.000
#> GSM149121     1  0.1015      0.953 0.980 0.012 0.008
#> GSM149122     1  0.0000      0.955 1.000 0.000 0.000
#> GSM149123     1  0.0000      0.955 1.000 0.000 0.000
#> GSM149124     1  0.0000      0.955 1.000 0.000 0.000
#> GSM149125     1  0.0000      0.955 1.000 0.000 0.000
#> GSM149126     1  0.0000      0.955 1.000 0.000 0.000
#> GSM149127     1  0.0000      0.955 1.000 0.000 0.000
#> GSM149128     1  0.0000      0.955 1.000 0.000 0.000
#> GSM149129     1  0.0000      0.955 1.000 0.000 0.000
#> GSM149130     1  0.5318      0.774 0.780 0.016 0.204
#> GSM149131     1  0.1337      0.952 0.972 0.016 0.012
#> GSM149132     1  0.0000      0.955 1.000 0.000 0.000
#> GSM149133     1  0.0424      0.955 0.992 0.000 0.008
#> GSM149134     1  0.1337      0.952 0.972 0.016 0.012
#> GSM149135     1  0.2804      0.938 0.924 0.016 0.060
#> GSM149136     1  0.2998      0.934 0.916 0.016 0.068
#> GSM149137     1  0.2998      0.934 0.916 0.016 0.068
#> GSM149138     1  0.3091      0.932 0.912 0.016 0.072
#> GSM149139     1  0.2152      0.946 0.948 0.016 0.036
#> GSM149140     1  0.2703      0.940 0.928 0.016 0.056
#> GSM149141     2  0.0747      0.984 0.000 0.984 0.016
#> GSM149142     2  0.0747      0.984 0.000 0.984 0.016
#> GSM149143     2  0.4346      0.780 0.000 0.816 0.184
#> GSM149144     2  0.0424      0.989 0.000 0.992 0.008
#> GSM149145     2  0.0747      0.984 0.000 0.984 0.016
#> GSM149146     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149147     1  0.3091      0.932 0.912 0.016 0.072
#> GSM149148     1  0.3091      0.932 0.912 0.016 0.072
#> GSM149149     1  0.3091      0.932 0.912 0.016 0.072
#> GSM149150     2  0.0424      0.989 0.000 0.992 0.008
#> GSM149151     1  0.5681      0.732 0.748 0.016 0.236
#> GSM149152     3  0.3528      0.880 0.092 0.016 0.892
#> GSM149153     2  0.0747      0.984 0.000 0.984 0.016
#> GSM149154     3  0.0747      0.953 0.000 0.016 0.984
#> GSM149155     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149156     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149157     2  0.0237      0.990 0.000 0.996 0.004
#> GSM149158     2  0.0424      0.989 0.000 0.992 0.008
#> GSM149159     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149160     2  0.0424      0.989 0.000 0.992 0.008
#> GSM149161     2  0.0424      0.989 0.000 0.992 0.008
#> GSM149162     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149163     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149164     2  0.0424      0.989 0.000 0.992 0.008
#> GSM149165     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149166     2  0.0424      0.989 0.000 0.992 0.008
#> GSM149167     2  0.0424      0.989 0.000 0.992 0.008
#> GSM149168     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149169     2  0.0424      0.989 0.000 0.992 0.008
#> GSM149170     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149171     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149172     3  0.4796      0.703 0.000 0.220 0.780
#> GSM149173     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149174     2  0.0424      0.989 0.000 0.992 0.008
#> GSM149175     3  0.0747      0.953 0.000 0.016 0.984
#> GSM149176     2  0.0424      0.989 0.000 0.992 0.008
#> GSM149177     2  0.1964      0.945 0.000 0.944 0.056
#> GSM149178     2  0.0424      0.989 0.000 0.992 0.008
#> GSM149179     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149180     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149181     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149182     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149183     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149184     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149185     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149186     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149187     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149188     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149189     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149190     2  0.0424      0.989 0.000 0.992 0.008
#> GSM149191     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149192     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149193     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149194     2  0.0424      0.989 0.000 0.992 0.008
#> GSM149195     2  0.1860      0.949 0.000 0.948 0.052
#> GSM149196     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149197     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149198     3  0.4539      0.801 0.148 0.016 0.836
#> GSM149199     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149200     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149201     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149202     2  0.0000      0.991 0.000 1.000 0.000
#> GSM149203     2  0.0237      0.989 0.000 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3   0.498      0.910 0.000 0.464 0.536 0.000
#> GSM149100     3   0.498      0.910 0.000 0.464 0.536 0.000
#> GSM149101     3   0.498      0.910 0.000 0.464 0.536 0.000
#> GSM149102     3   0.498      0.910 0.000 0.464 0.536 0.000
#> GSM149103     1   0.662      0.599 0.532 0.088 0.380 0.000
#> GSM149104     3   0.498      0.910 0.000 0.464 0.536 0.000
#> GSM149105     3   0.498      0.910 0.000 0.464 0.536 0.000
#> GSM149106     1   0.692      0.460 0.544 0.328 0.128 0.000
#> GSM149107     3   0.498      0.910 0.000 0.464 0.536 0.000
#> GSM149108     3   0.498      0.910 0.000 0.464 0.536 0.000
#> GSM149109     3   0.498      0.910 0.000 0.464 0.536 0.000
#> GSM149110     3   0.498      0.910 0.000 0.464 0.536 0.000
#> GSM149111     3   0.498      0.910 0.000 0.464 0.536 0.000
#> GSM149112     3   0.498      0.910 0.000 0.464 0.536 0.000
#> GSM149113     3   0.498      0.910 0.000 0.464 0.536 0.000
#> GSM149114     3   0.498      0.910 0.000 0.464 0.536 0.000
#> GSM149115     1   0.484      0.291 0.604 0.000 0.000 0.396
#> GSM149116     4   0.000      0.961 0.000 0.000 0.000 1.000
#> GSM149117     1   0.000      0.616 1.000 0.000 0.000 0.000
#> GSM149118     4   0.000      0.961 0.000 0.000 0.000 1.000
#> GSM149119     4   0.000      0.961 0.000 0.000 0.000 1.000
#> GSM149120     4   0.000      0.961 0.000 0.000 0.000 1.000
#> GSM149121     1   0.487      0.280 0.596 0.000 0.000 0.404
#> GSM149122     4   0.000      0.961 0.000 0.000 0.000 1.000
#> GSM149123     4   0.000      0.961 0.000 0.000 0.000 1.000
#> GSM149124     4   0.000      0.961 0.000 0.000 0.000 1.000
#> GSM149125     4   0.000      0.961 0.000 0.000 0.000 1.000
#> GSM149126     4   0.000      0.961 0.000 0.000 0.000 1.000
#> GSM149127     4   0.000      0.961 0.000 0.000 0.000 1.000
#> GSM149128     4   0.000      0.961 0.000 0.000 0.000 1.000
#> GSM149129     4   0.000      0.961 0.000 0.000 0.000 1.000
#> GSM149130     1   0.000      0.616 1.000 0.000 0.000 0.000
#> GSM149131     1   0.130      0.597 0.956 0.000 0.000 0.044
#> GSM149132     4   0.000      0.961 0.000 0.000 0.000 1.000
#> GSM149133     4   0.478      0.325 0.376 0.000 0.000 0.624
#> GSM149134     1   0.000      0.616 1.000 0.000 0.000 0.000
#> GSM149135     1   0.000      0.616 1.000 0.000 0.000 0.000
#> GSM149136     1   0.000      0.616 1.000 0.000 0.000 0.000
#> GSM149137     1   0.000      0.616 1.000 0.000 0.000 0.000
#> GSM149138     1   0.000      0.616 1.000 0.000 0.000 0.000
#> GSM149139     1   0.000      0.616 1.000 0.000 0.000 0.000
#> GSM149140     1   0.000      0.616 1.000 0.000 0.000 0.000
#> GSM149141     1   0.558      0.591 0.536 0.020 0.444 0.000
#> GSM149142     1   0.498      0.584 0.540 0.000 0.460 0.000
#> GSM149143     1   0.578      0.616 0.584 0.036 0.380 0.000
#> GSM149144     1   0.500      0.563 0.516 0.000 0.484 0.000
#> GSM149145     1   0.558      0.590 0.536 0.020 0.444 0.000
#> GSM149146     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149147     1   0.000      0.616 1.000 0.000 0.000 0.000
#> GSM149148     1   0.000      0.616 1.000 0.000 0.000 0.000
#> GSM149149     1   0.000      0.616 1.000 0.000 0.000 0.000
#> GSM149150     1   0.500      0.563 0.516 0.000 0.484 0.000
#> GSM149151     1   0.000      0.616 1.000 0.000 0.000 0.000
#> GSM149152     1   0.000      0.616 1.000 0.000 0.000 0.000
#> GSM149153     1   0.538      0.587 0.536 0.012 0.452 0.000
#> GSM149154     1   0.220      0.591 0.916 0.080 0.004 0.000
#> GSM149155     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149156     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149157     3   0.711     -0.598 0.408 0.128 0.464 0.000
#> GSM149158     1   0.500      0.563 0.516 0.000 0.484 0.000
#> GSM149159     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149160     1   0.500      0.563 0.516 0.000 0.484 0.000
#> GSM149161     1   0.500      0.563 0.516 0.000 0.484 0.000
#> GSM149162     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149163     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149164     1   0.500      0.563 0.516 0.000 0.484 0.000
#> GSM149165     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149166     1   0.540      0.546 0.512 0.012 0.476 0.000
#> GSM149167     1   0.500      0.563 0.516 0.000 0.484 0.000
#> GSM149168     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149169     1   0.500      0.563 0.516 0.000 0.484 0.000
#> GSM149170     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149171     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149172     1   0.699      0.594 0.524 0.128 0.348 0.000
#> GSM149173     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149174     1   0.500      0.563 0.516 0.000 0.484 0.000
#> GSM149175     1   0.599      0.504 0.656 0.264 0.080 0.000
#> GSM149176     1   0.541      0.545 0.508 0.012 0.480 0.000
#> GSM149177     1   0.576      0.587 0.528 0.028 0.444 0.000
#> GSM149178     1   0.551      0.540 0.508 0.016 0.476 0.000
#> GSM149179     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149180     2   0.540      0.978 0.012 0.520 0.468 0.000
#> GSM149181     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149182     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149183     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149184     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149185     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149186     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149187     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149188     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149189     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149190     1   0.500      0.563 0.516 0.000 0.484 0.000
#> GSM149191     1   0.615      0.475 0.488 0.048 0.464 0.000
#> GSM149192     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149193     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149194     1   0.500      0.563 0.516 0.000 0.484 0.000
#> GSM149195     1   0.660      0.357 0.520 0.396 0.084 0.000
#> GSM149196     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149197     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149198     1   0.000      0.616 1.000 0.000 0.000 0.000
#> GSM149199     2   0.550      0.976 0.016 0.520 0.464 0.000
#> GSM149200     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149201     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149202     2   0.498      0.997 0.000 0.536 0.464 0.000
#> GSM149203     2   0.550      0.966 0.016 0.524 0.460 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000
#> GSM149100     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000
#> GSM149101     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000
#> GSM149102     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000
#> GSM149103     2  0.0451      0.953 0.004 0.988 0.008 0.000 0.000
#> GSM149104     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000
#> GSM149105     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000
#> GSM149106     2  0.4101      0.520 0.004 0.664 0.332 0.000 0.000
#> GSM149107     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000
#> GSM149108     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000
#> GSM149109     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000
#> GSM149110     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000
#> GSM149111     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000
#> GSM149112     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000
#> GSM149113     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000
#> GSM149114     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000
#> GSM149115     4  0.1544      0.932 0.068 0.000 0.000 0.932 0.000
#> GSM149116     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000
#> GSM149117     1  0.1908      0.868 0.908 0.092 0.000 0.000 0.000
#> GSM149118     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000
#> GSM149119     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000
#> GSM149120     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000
#> GSM149121     4  0.1544      0.932 0.068 0.000 0.000 0.932 0.000
#> GSM149122     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000
#> GSM149123     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000
#> GSM149124     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000
#> GSM149125     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000
#> GSM149126     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000
#> GSM149127     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000
#> GSM149128     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000
#> GSM149129     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000
#> GSM149130     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149131     1  0.0404      0.951 0.988 0.000 0.000 0.012 0.000
#> GSM149132     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000
#> GSM149133     4  0.0162      0.988 0.004 0.000 0.000 0.996 0.000
#> GSM149134     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149135     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149136     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149137     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149138     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149139     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149140     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149141     2  0.0162      0.955 0.004 0.996 0.000 0.000 0.000
#> GSM149142     2  0.0671      0.960 0.004 0.980 0.000 0.000 0.016
#> GSM149143     2  0.0510      0.949 0.016 0.984 0.000 0.000 0.000
#> GSM149144     2  0.0609      0.961 0.000 0.980 0.000 0.000 0.020
#> GSM149145     2  0.0162      0.955 0.004 0.996 0.000 0.000 0.000
#> GSM149146     5  0.0000      0.969 0.000 0.000 0.000 0.000 1.000
#> GSM149147     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149148     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149149     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149150     2  0.0609      0.961 0.000 0.980 0.000 0.000 0.020
#> GSM149151     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149152     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149153     2  0.0162      0.955 0.004 0.996 0.000 0.000 0.000
#> GSM149154     1  0.4268      0.182 0.556 0.444 0.000 0.000 0.000
#> GSM149155     5  0.0000      0.969 0.000 0.000 0.000 0.000 1.000
#> GSM149156     5  0.0000      0.969 0.000 0.000 0.000 0.000 1.000
#> GSM149157     5  0.3480      0.695 0.000 0.248 0.000 0.000 0.752
#> GSM149158     2  0.0609      0.961 0.000 0.980 0.000 0.000 0.020
#> GSM149159     5  0.0404      0.966 0.000 0.012 0.000 0.000 0.988
#> GSM149160     2  0.0609      0.961 0.000 0.980 0.000 0.000 0.020
#> GSM149161     2  0.0609      0.961 0.000 0.980 0.000 0.000 0.020
#> GSM149162     5  0.0000      0.969 0.000 0.000 0.000 0.000 1.000
#> GSM149163     5  0.0000      0.969 0.000 0.000 0.000 0.000 1.000
#> GSM149164     2  0.0451      0.958 0.004 0.988 0.000 0.000 0.008
#> GSM149165     5  0.0000      0.969 0.000 0.000 0.000 0.000 1.000
#> GSM149166     2  0.0609      0.961 0.000 0.980 0.000 0.000 0.020
#> GSM149167     2  0.0609      0.961 0.000 0.980 0.000 0.000 0.020
#> GSM149168     5  0.0794      0.959 0.000 0.028 0.000 0.000 0.972
#> GSM149169     2  0.0671      0.960 0.004 0.980 0.000 0.000 0.016
#> GSM149170     5  0.0794      0.959 0.000 0.028 0.000 0.000 0.972
#> GSM149171     5  0.0794      0.959 0.000 0.028 0.000 0.000 0.972
#> GSM149172     2  0.1205      0.930 0.004 0.956 0.040 0.000 0.000
#> GSM149173     5  0.0794      0.959 0.000 0.028 0.000 0.000 0.972
#> GSM149174     2  0.0609      0.961 0.000 0.980 0.000 0.000 0.020
#> GSM149175     2  0.4689      0.601 0.048 0.688 0.264 0.000 0.000
#> GSM149176     2  0.0609      0.961 0.000 0.980 0.000 0.000 0.020
#> GSM149177     2  0.0162      0.955 0.004 0.996 0.000 0.000 0.000
#> GSM149178     2  0.0162      0.955 0.004 0.996 0.000 0.000 0.000
#> GSM149179     5  0.0000      0.969 0.000 0.000 0.000 0.000 1.000
#> GSM149180     5  0.2648      0.834 0.000 0.152 0.000 0.000 0.848
#> GSM149181     5  0.0000      0.969 0.000 0.000 0.000 0.000 1.000
#> GSM149182     5  0.0000      0.969 0.000 0.000 0.000 0.000 1.000
#> GSM149183     5  0.0000      0.969 0.000 0.000 0.000 0.000 1.000
#> GSM149184     5  0.0000      0.969 0.000 0.000 0.000 0.000 1.000
#> GSM149185     5  0.0290      0.967 0.000 0.008 0.000 0.000 0.992
#> GSM149186     5  0.0000      0.969 0.000 0.000 0.000 0.000 1.000
#> GSM149187     5  0.0000      0.969 0.000 0.000 0.000 0.000 1.000
#> GSM149188     5  0.0000      0.969 0.000 0.000 0.000 0.000 1.000
#> GSM149189     5  0.0794      0.959 0.000 0.028 0.000 0.000 0.972
#> GSM149190     2  0.0609      0.961 0.000 0.980 0.000 0.000 0.020
#> GSM149191     5  0.3336      0.745 0.000 0.228 0.000 0.000 0.772
#> GSM149192     5  0.0000      0.969 0.000 0.000 0.000 0.000 1.000
#> GSM149193     5  0.0000      0.969 0.000 0.000 0.000 0.000 1.000
#> GSM149194     2  0.0609      0.961 0.000 0.980 0.000 0.000 0.020
#> GSM149195     3  0.1952      0.896 0.004 0.084 0.912 0.000 0.000
#> GSM149196     5  0.0000      0.969 0.000 0.000 0.000 0.000 1.000
#> GSM149197     5  0.0162      0.967 0.000 0.004 0.000 0.000 0.996
#> GSM149198     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149199     5  0.1341      0.930 0.000 0.056 0.000 0.000 0.944
#> GSM149200     5  0.0794      0.959 0.000 0.028 0.000 0.000 0.972
#> GSM149201     5  0.0000      0.969 0.000 0.000 0.000 0.000 1.000
#> GSM149202     5  0.0404      0.966 0.000 0.012 0.000 0.000 0.988
#> GSM149203     5  0.2124      0.904 0.004 0.096 0.000 0.000 0.900

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4 p5    p6
#> GSM149099     3  0.0000     0.9759 0.000 0.000 1.000 0.000 NA 0.000
#> GSM149100     3  0.0000     0.9759 0.000 0.000 1.000 0.000 NA 0.000
#> GSM149101     3  0.0000     0.9759 0.000 0.000 1.000 0.000 NA 0.000
#> GSM149102     3  0.0000     0.9759 0.000 0.000 1.000 0.000 NA 0.000
#> GSM149103     6  0.3360     0.8139 0.000 0.000 0.004 0.000 NA 0.732
#> GSM149104     3  0.0000     0.9759 0.000 0.000 1.000 0.000 NA 0.000
#> GSM149105     3  0.0000     0.9759 0.000 0.000 1.000 0.000 NA 0.000
#> GSM149106     6  0.5556     0.6263 0.000 0.000 0.188 0.000 NA 0.548
#> GSM149107     3  0.0000     0.9759 0.000 0.000 1.000 0.000 NA 0.000
#> GSM149108     3  0.0000     0.9759 0.000 0.000 1.000 0.000 NA 0.000
#> GSM149109     3  0.0000     0.9759 0.000 0.000 1.000 0.000 NA 0.000
#> GSM149110     3  0.0000     0.9759 0.000 0.000 1.000 0.000 NA 0.000
#> GSM149111     3  0.0000     0.9759 0.000 0.000 1.000 0.000 NA 0.000
#> GSM149112     3  0.0000     0.9759 0.000 0.000 1.000 0.000 NA 0.000
#> GSM149113     3  0.0000     0.9759 0.000 0.000 1.000 0.000 NA 0.000
#> GSM149114     3  0.0146     0.9720 0.000 0.000 0.996 0.000 NA 0.004
#> GSM149115     4  0.6113     0.5431 0.176 0.000 0.000 0.572 NA 0.048
#> GSM149116     4  0.0000     0.9404 0.000 0.000 0.000 1.000 NA 0.000
#> GSM149117     1  0.4356     0.7494 0.724 0.000 0.000 0.000 NA 0.140
#> GSM149118     4  0.0000     0.9404 0.000 0.000 0.000 1.000 NA 0.000
#> GSM149119     4  0.0000     0.9404 0.000 0.000 0.000 1.000 NA 0.000
#> GSM149120     4  0.0000     0.9404 0.000 0.000 0.000 1.000 NA 0.000
#> GSM149121     4  0.6059     0.5572 0.168 0.000 0.000 0.580 NA 0.048
#> GSM149122     4  0.0000     0.9404 0.000 0.000 0.000 1.000 NA 0.000
#> GSM149123     4  0.0000     0.9404 0.000 0.000 0.000 1.000 NA 0.000
#> GSM149124     4  0.0000     0.9404 0.000 0.000 0.000 1.000 NA 0.000
#> GSM149125     4  0.0000     0.9404 0.000 0.000 0.000 1.000 NA 0.000
#> GSM149126     4  0.0000     0.9404 0.000 0.000 0.000 1.000 NA 0.000
#> GSM149127     4  0.0000     0.9404 0.000 0.000 0.000 1.000 NA 0.000
#> GSM149128     4  0.0000     0.9404 0.000 0.000 0.000 1.000 NA 0.000
#> GSM149129     4  0.0000     0.9404 0.000 0.000 0.000 1.000 NA 0.000
#> GSM149130     1  0.2070     0.8807 0.908 0.000 0.000 0.000 NA 0.048
#> GSM149131     1  0.3618     0.8019 0.776 0.000 0.000 0.000 NA 0.048
#> GSM149132     4  0.0000     0.9404 0.000 0.000 0.000 1.000 NA 0.000
#> GSM149133     4  0.3364     0.7996 0.024 0.000 0.000 0.780 NA 0.000
#> GSM149134     1  0.0260     0.9120 0.992 0.000 0.000 0.000 NA 0.000
#> GSM149135     1  0.0000     0.9136 1.000 0.000 0.000 0.000 NA 0.000
#> GSM149136     1  0.0000     0.9136 1.000 0.000 0.000 0.000 NA 0.000
#> GSM149137     1  0.0000     0.9136 1.000 0.000 0.000 0.000 NA 0.000
#> GSM149138     1  0.0000     0.9136 1.000 0.000 0.000 0.000 NA 0.000
#> GSM149139     1  0.0000     0.9136 1.000 0.000 0.000 0.000 NA 0.000
#> GSM149140     1  0.0000     0.9136 1.000 0.000 0.000 0.000 NA 0.000
#> GSM149141     6  0.3221     0.8152 0.000 0.000 0.000 0.000 NA 0.736
#> GSM149142     6  0.0000     0.8960 0.000 0.000 0.000 0.000 NA 1.000
#> GSM149143     6  0.3266     0.8109 0.000 0.000 0.000 0.000 NA 0.728
#> GSM149144     6  0.0000     0.8960 0.000 0.000 0.000 0.000 NA 1.000
#> GSM149145     6  0.3221     0.8152 0.000 0.000 0.000 0.000 NA 0.736
#> GSM149146     2  0.0000     0.8543 0.000 1.000 0.000 0.000 NA 0.000
#> GSM149147     1  0.0000     0.9136 1.000 0.000 0.000 0.000 NA 0.000
#> GSM149148     1  0.0000     0.9136 1.000 0.000 0.000 0.000 NA 0.000
#> GSM149149     1  0.0000     0.9136 1.000 0.000 0.000 0.000 NA 0.000
#> GSM149150     6  0.0000     0.8960 0.000 0.000 0.000 0.000 NA 1.000
#> GSM149151     1  0.0909     0.9048 0.968 0.000 0.000 0.000 NA 0.020
#> GSM149152     1  0.3276     0.8410 0.816 0.000 0.000 0.000 NA 0.052
#> GSM149153     6  0.3221     0.8152 0.000 0.000 0.000 0.000 NA 0.736
#> GSM149154     1  0.6088    -0.0266 0.380 0.000 0.000 0.000 NA 0.340
#> GSM149155     2  0.0000     0.8543 0.000 1.000 0.000 0.000 NA 0.000
#> GSM149156     2  0.0000     0.8543 0.000 1.000 0.000 0.000 NA 0.000
#> GSM149157     2  0.5071     0.3497 0.000 0.520 0.000 0.000 NA 0.400
#> GSM149158     6  0.0000     0.8960 0.000 0.000 0.000 0.000 NA 1.000
#> GSM149159     2  0.3862     0.7158 0.000 0.608 0.000 0.000 NA 0.004
#> GSM149160     6  0.0000     0.8960 0.000 0.000 0.000 0.000 NA 1.000
#> GSM149161     6  0.0000     0.8960 0.000 0.000 0.000 0.000 NA 1.000
#> GSM149162     2  0.0000     0.8543 0.000 1.000 0.000 0.000 NA 0.000
#> GSM149163     2  0.0000     0.8543 0.000 1.000 0.000 0.000 NA 0.000
#> GSM149164     6  0.0713     0.8910 0.000 0.000 0.000 0.000 NA 0.972
#> GSM149165     2  0.1267     0.8471 0.000 0.940 0.000 0.000 NA 0.000
#> GSM149166     6  0.0000     0.8960 0.000 0.000 0.000 0.000 NA 1.000
#> GSM149167     6  0.0000     0.8960 0.000 0.000 0.000 0.000 NA 1.000
#> GSM149168     2  0.3804     0.6972 0.000 0.576 0.000 0.000 NA 0.000
#> GSM149169     6  0.0000     0.8960 0.000 0.000 0.000 0.000 NA 1.000
#> GSM149170     2  0.3804     0.6972 0.000 0.576 0.000 0.000 NA 0.000
#> GSM149171     2  0.3804     0.6972 0.000 0.576 0.000 0.000 NA 0.000
#> GSM149172     6  0.4895     0.7371 0.000 0.000 0.124 0.000 NA 0.648
#> GSM149173     2  0.3804     0.6972 0.000 0.576 0.000 0.000 NA 0.000
#> GSM149174     6  0.0000     0.8960 0.000 0.000 0.000 0.000 NA 1.000
#> GSM149175     6  0.6162     0.5920 0.032 0.000 0.148 0.000 NA 0.500
#> GSM149176     6  0.0000     0.8960 0.000 0.000 0.000 0.000 NA 1.000
#> GSM149177     6  0.2135     0.8662 0.000 0.000 0.000 0.000 NA 0.872
#> GSM149178     6  0.1714     0.8768 0.000 0.000 0.000 0.000 NA 0.908
#> GSM149179     2  0.0000     0.8543 0.000 1.000 0.000 0.000 NA 0.000
#> GSM149180     2  0.3371     0.6058 0.000 0.708 0.000 0.000 NA 0.292
#> GSM149181     2  0.1141     0.8484 0.000 0.948 0.000 0.000 NA 0.000
#> GSM149182     2  0.0000     0.8543 0.000 1.000 0.000 0.000 NA 0.000
#> GSM149183     2  0.0000     0.8543 0.000 1.000 0.000 0.000 NA 0.000
#> GSM149184     2  0.0000     0.8543 0.000 1.000 0.000 0.000 NA 0.000
#> GSM149185     2  0.2178     0.8275 0.000 0.868 0.000 0.000 NA 0.000
#> GSM149186     2  0.0458     0.8534 0.000 0.984 0.000 0.000 NA 0.000
#> GSM149187     2  0.0000     0.8543 0.000 1.000 0.000 0.000 NA 0.000
#> GSM149188     2  0.0458     0.8534 0.000 0.984 0.000 0.000 NA 0.000
#> GSM149189     2  0.3930     0.6975 0.000 0.576 0.000 0.000 NA 0.004
#> GSM149190     6  0.0000     0.8960 0.000 0.000 0.000 0.000 NA 1.000
#> GSM149191     2  0.5631     0.4533 0.000 0.508 0.000 0.000 NA 0.324
#> GSM149192     2  0.0000     0.8543 0.000 1.000 0.000 0.000 NA 0.000
#> GSM149193     2  0.1204     0.8477 0.000 0.944 0.000 0.000 NA 0.000
#> GSM149194     6  0.0000     0.8960 0.000 0.000 0.000 0.000 NA 1.000
#> GSM149195     3  0.4479     0.5601 0.000 0.028 0.700 0.000 NA 0.240
#> GSM149196     2  0.0000     0.8543 0.000 1.000 0.000 0.000 NA 0.000
#> GSM149197     2  0.0146     0.8531 0.000 0.996 0.000 0.000 NA 0.004
#> GSM149198     1  0.2201     0.8783 0.900 0.000 0.000 0.000 NA 0.048
#> GSM149199     2  0.2135     0.7871 0.000 0.872 0.000 0.000 NA 0.128
#> GSM149200     2  0.3804     0.6972 0.000 0.576 0.000 0.000 NA 0.000
#> GSM149201     2  0.0000     0.8543 0.000 1.000 0.000 0.000 NA 0.000
#> GSM149202     2  0.3377     0.7986 0.000 0.784 0.000 0.000 NA 0.028
#> GSM149203     2  0.5685     0.5481 0.000 0.528 0.000 0.000 NA 0.240

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> SD:mclust 104         3.35e-14 2
#> SD:mclust 105         3.47e-23 3
#> SD:mclust  98         6.92e-31 4
#> SD:mclust 104         1.99e-34 5
#> SD:mclust 102         1.58e-33 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.899           0.925       0.968         0.4787 0.519   0.519
#> 3 3 0.857           0.875       0.950         0.3521 0.695   0.481
#> 4 4 0.791           0.800       0.909         0.1450 0.780   0.467
#> 5 5 0.763           0.718       0.854         0.0784 0.872   0.556
#> 6 6 0.763           0.591       0.766         0.0405 0.929   0.689

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     1  0.0000      0.955 1.000 0.000
#> GSM149100     1  0.0000      0.955 1.000 0.000
#> GSM149101     1  0.0000      0.955 1.000 0.000
#> GSM149102     1  0.0000      0.955 1.000 0.000
#> GSM149103     1  0.0000      0.955 1.000 0.000
#> GSM149104     1  0.0000      0.955 1.000 0.000
#> GSM149105     1  0.0000      0.955 1.000 0.000
#> GSM149106     1  0.0000      0.955 1.000 0.000
#> GSM149107     1  0.0000      0.955 1.000 0.000
#> GSM149108     1  0.0000      0.955 1.000 0.000
#> GSM149109     1  0.0000      0.955 1.000 0.000
#> GSM149110     1  0.0000      0.955 1.000 0.000
#> GSM149111     1  0.0000      0.955 1.000 0.000
#> GSM149112     1  0.0000      0.955 1.000 0.000
#> GSM149113     1  0.0000      0.955 1.000 0.000
#> GSM149114     1  0.0000      0.955 1.000 0.000
#> GSM149115     1  0.7219      0.756 0.800 0.200
#> GSM149116     1  0.0000      0.955 1.000 0.000
#> GSM149117     2  0.0000      0.972 0.000 1.000
#> GSM149118     1  0.0000      0.955 1.000 0.000
#> GSM149119     1  0.0000      0.955 1.000 0.000
#> GSM149120     1  0.0000      0.955 1.000 0.000
#> GSM149121     1  0.0000      0.955 1.000 0.000
#> GSM149122     1  0.0000      0.955 1.000 0.000
#> GSM149123     1  0.0000      0.955 1.000 0.000
#> GSM149124     1  0.0000      0.955 1.000 0.000
#> GSM149125     1  0.0000      0.955 1.000 0.000
#> GSM149126     1  0.0000      0.955 1.000 0.000
#> GSM149127     1  0.0000      0.955 1.000 0.000
#> GSM149128     1  0.0000      0.955 1.000 0.000
#> GSM149129     1  0.0000      0.955 1.000 0.000
#> GSM149130     2  0.2603      0.939 0.044 0.956
#> GSM149131     1  0.7376      0.743 0.792 0.208
#> GSM149132     1  0.0000      0.955 1.000 0.000
#> GSM149133     1  0.0000      0.955 1.000 0.000
#> GSM149134     1  0.5294      0.851 0.880 0.120
#> GSM149135     2  0.0000      0.972 0.000 1.000
#> GSM149136     2  0.0000      0.972 0.000 1.000
#> GSM149137     2  0.0000      0.972 0.000 1.000
#> GSM149138     2  0.0000      0.972 0.000 1.000
#> GSM149139     2  0.3879      0.909 0.076 0.924
#> GSM149140     2  0.0376      0.969 0.004 0.996
#> GSM149141     2  0.9608      0.357 0.384 0.616
#> GSM149142     2  0.0000      0.972 0.000 1.000
#> GSM149143     1  0.9795      0.301 0.584 0.416
#> GSM149144     2  0.0000      0.972 0.000 1.000
#> GSM149145     1  0.7883      0.704 0.764 0.236
#> GSM149146     2  0.0000      0.972 0.000 1.000
#> GSM149147     2  0.4022      0.905 0.080 0.920
#> GSM149148     2  0.4298      0.896 0.088 0.912
#> GSM149149     2  0.3584      0.916 0.068 0.932
#> GSM149150     2  0.0000      0.972 0.000 1.000
#> GSM149151     2  0.0000      0.972 0.000 1.000
#> GSM149152     2  0.9833      0.244 0.424 0.576
#> GSM149153     2  0.3431      0.921 0.064 0.936
#> GSM149154     1  0.0000      0.955 1.000 0.000
#> GSM149155     2  0.0000      0.972 0.000 1.000
#> GSM149156     2  0.0000      0.972 0.000 1.000
#> GSM149157     2  0.0000      0.972 0.000 1.000
#> GSM149158     2  0.0000      0.972 0.000 1.000
#> GSM149159     2  0.0000      0.972 0.000 1.000
#> GSM149160     2  0.0000      0.972 0.000 1.000
#> GSM149161     2  0.0000      0.972 0.000 1.000
#> GSM149162     2  0.0000      0.972 0.000 1.000
#> GSM149163     2  0.0000      0.972 0.000 1.000
#> GSM149164     2  0.0000      0.972 0.000 1.000
#> GSM149165     2  0.0000      0.972 0.000 1.000
#> GSM149166     2  0.0000      0.972 0.000 1.000
#> GSM149167     2  0.0000      0.972 0.000 1.000
#> GSM149168     2  0.0000      0.972 0.000 1.000
#> GSM149169     2  0.0000      0.972 0.000 1.000
#> GSM149170     2  0.0000      0.972 0.000 1.000
#> GSM149171     2  0.0672      0.966 0.008 0.992
#> GSM149172     1  0.9393      0.474 0.644 0.356
#> GSM149173     2  0.0376      0.969 0.004 0.996
#> GSM149174     2  0.0000      0.972 0.000 1.000
#> GSM149175     1  0.0000      0.955 1.000 0.000
#> GSM149176     2  0.0000      0.972 0.000 1.000
#> GSM149177     2  0.2948      0.932 0.052 0.948
#> GSM149178     2  0.6973      0.762 0.188 0.812
#> GSM149179     2  0.0000      0.972 0.000 1.000
#> GSM149180     2  0.0000      0.972 0.000 1.000
#> GSM149181     2  0.0000      0.972 0.000 1.000
#> GSM149182     2  0.0000      0.972 0.000 1.000
#> GSM149183     2  0.0000      0.972 0.000 1.000
#> GSM149184     2  0.0000      0.972 0.000 1.000
#> GSM149185     2  0.0000      0.972 0.000 1.000
#> GSM149186     2  0.0000      0.972 0.000 1.000
#> GSM149187     2  0.0000      0.972 0.000 1.000
#> GSM149188     2  0.0000      0.972 0.000 1.000
#> GSM149189     2  0.2043      0.948 0.032 0.968
#> GSM149190     2  0.0000      0.972 0.000 1.000
#> GSM149191     2  0.0000      0.972 0.000 1.000
#> GSM149192     2  0.0000      0.972 0.000 1.000
#> GSM149193     2  0.0000      0.972 0.000 1.000
#> GSM149194     2  0.0000      0.972 0.000 1.000
#> GSM149195     1  0.0000      0.955 1.000 0.000
#> GSM149196     2  0.0000      0.972 0.000 1.000
#> GSM149197     2  0.0000      0.972 0.000 1.000
#> GSM149198     1  0.7056      0.767 0.808 0.192
#> GSM149199     2  0.0000      0.972 0.000 1.000
#> GSM149200     2  0.0000      0.972 0.000 1.000
#> GSM149201     2  0.0000      0.972 0.000 1.000
#> GSM149202     2  0.0000      0.972 0.000 1.000
#> GSM149203     2  0.6343      0.801 0.160 0.840

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0000      0.915 0.000 0.000 1.000
#> GSM149100     3  0.0000      0.915 0.000 0.000 1.000
#> GSM149101     3  0.0000      0.915 0.000 0.000 1.000
#> GSM149102     3  0.0000      0.915 0.000 0.000 1.000
#> GSM149103     3  0.0000      0.915 0.000 0.000 1.000
#> GSM149104     3  0.0000      0.915 0.000 0.000 1.000
#> GSM149105     3  0.0000      0.915 0.000 0.000 1.000
#> GSM149106     3  0.0000      0.915 0.000 0.000 1.000
#> GSM149107     3  0.0000      0.915 0.000 0.000 1.000
#> GSM149108     3  0.0000      0.915 0.000 0.000 1.000
#> GSM149109     3  0.0000      0.915 0.000 0.000 1.000
#> GSM149110     3  0.0000      0.915 0.000 0.000 1.000
#> GSM149111     3  0.0000      0.915 0.000 0.000 1.000
#> GSM149112     3  0.0000      0.915 0.000 0.000 1.000
#> GSM149113     3  0.0000      0.915 0.000 0.000 1.000
#> GSM149114     3  0.0000      0.915 0.000 0.000 1.000
#> GSM149115     1  0.0000      0.964 1.000 0.000 0.000
#> GSM149116     1  0.0237      0.963 0.996 0.000 0.004
#> GSM149117     1  0.6299      0.108 0.524 0.476 0.000
#> GSM149118     1  0.0000      0.964 1.000 0.000 0.000
#> GSM149119     1  0.0237      0.963 0.996 0.000 0.004
#> GSM149120     1  0.0237      0.963 0.996 0.000 0.004
#> GSM149121     1  0.0000      0.964 1.000 0.000 0.000
#> GSM149122     1  0.0424      0.960 0.992 0.000 0.008
#> GSM149123     1  0.0000      0.964 1.000 0.000 0.000
#> GSM149124     1  0.0237      0.963 0.996 0.000 0.004
#> GSM149125     1  0.0000      0.964 1.000 0.000 0.000
#> GSM149126     1  0.0000      0.964 1.000 0.000 0.000
#> GSM149127     1  0.0237      0.963 0.996 0.000 0.004
#> GSM149128     1  0.0000      0.964 1.000 0.000 0.000
#> GSM149129     1  0.0000      0.964 1.000 0.000 0.000
#> GSM149130     1  0.0237      0.963 0.996 0.004 0.000
#> GSM149131     1  0.0000      0.964 1.000 0.000 0.000
#> GSM149132     1  0.0000      0.964 1.000 0.000 0.000
#> GSM149133     1  0.0000      0.964 1.000 0.000 0.000
#> GSM149134     1  0.0000      0.964 1.000 0.000 0.000
#> GSM149135     1  0.0592      0.958 0.988 0.012 0.000
#> GSM149136     1  0.2537      0.887 0.920 0.080 0.000
#> GSM149137     1  0.1031      0.947 0.976 0.024 0.000
#> GSM149138     1  0.0892      0.951 0.980 0.020 0.000
#> GSM149139     1  0.0237      0.963 0.996 0.004 0.000
#> GSM149140     1  0.0424      0.961 0.992 0.008 0.000
#> GSM149141     2  0.4121      0.783 0.000 0.832 0.168
#> GSM149142     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149143     2  0.7209      0.375 0.036 0.604 0.360
#> GSM149144     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149145     3  0.1753      0.886 0.000 0.048 0.952
#> GSM149146     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149147     1  0.0237      0.963 0.996 0.004 0.000
#> GSM149148     1  0.0237      0.963 0.996 0.004 0.000
#> GSM149149     1  0.0237      0.963 0.996 0.004 0.000
#> GSM149150     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149151     1  0.5178      0.659 0.744 0.256 0.000
#> GSM149152     1  0.0000      0.964 1.000 0.000 0.000
#> GSM149153     2  0.3879      0.802 0.000 0.848 0.152
#> GSM149154     3  0.6274      0.157 0.456 0.000 0.544
#> GSM149155     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149156     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149157     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149158     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149159     2  0.1163      0.922 0.000 0.972 0.028
#> GSM149160     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149161     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149162     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149163     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149164     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149165     2  0.0237      0.940 0.000 0.996 0.004
#> GSM149166     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149167     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149168     2  0.3192      0.846 0.000 0.888 0.112
#> GSM149169     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149170     2  0.6168      0.306 0.000 0.588 0.412
#> GSM149171     3  0.5254      0.631 0.000 0.264 0.736
#> GSM149172     3  0.4654      0.718 0.000 0.208 0.792
#> GSM149173     2  0.6095      0.353 0.000 0.608 0.392
#> GSM149174     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149175     3  0.1529      0.886 0.040 0.000 0.960
#> GSM149176     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149177     2  0.5363      0.624 0.000 0.724 0.276
#> GSM149178     3  0.5291      0.627 0.000 0.268 0.732
#> GSM149179     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149180     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149181     2  0.0237      0.940 0.000 0.996 0.004
#> GSM149182     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149183     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149184     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149185     2  0.0237      0.940 0.000 0.996 0.004
#> GSM149186     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149187     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149188     2  0.0237      0.940 0.000 0.996 0.004
#> GSM149189     3  0.3192      0.831 0.000 0.112 0.888
#> GSM149190     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149191     2  0.3192      0.847 0.000 0.888 0.112
#> GSM149192     2  0.0237      0.940 0.000 0.996 0.004
#> GSM149193     2  0.0237      0.940 0.000 0.996 0.004
#> GSM149194     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149195     3  0.0000      0.915 0.000 0.000 1.000
#> GSM149196     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149197     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149198     1  0.0000      0.964 1.000 0.000 0.000
#> GSM149199     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149200     2  0.6225      0.238 0.000 0.568 0.432
#> GSM149201     2  0.0000      0.942 0.000 1.000 0.000
#> GSM149202     2  0.0237      0.940 0.000 0.996 0.004
#> GSM149203     3  0.6260      0.169 0.000 0.448 0.552

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.0000     0.8932 0.000 0.000 1.000 0.000
#> GSM149100     3  0.0000     0.8932 0.000 0.000 1.000 0.000
#> GSM149101     3  0.0188     0.8934 0.004 0.000 0.996 0.000
#> GSM149102     3  0.0188     0.8934 0.004 0.000 0.996 0.000
#> GSM149103     3  0.0336     0.8923 0.008 0.000 0.992 0.000
#> GSM149104     3  0.0188     0.8934 0.004 0.000 0.996 0.000
#> GSM149105     3  0.0188     0.8934 0.004 0.000 0.996 0.000
#> GSM149106     3  0.0188     0.8934 0.004 0.000 0.996 0.000
#> GSM149107     3  0.0188     0.8934 0.004 0.000 0.996 0.000
#> GSM149108     3  0.0000     0.8932 0.000 0.000 1.000 0.000
#> GSM149109     3  0.0188     0.8919 0.000 0.004 0.996 0.000
#> GSM149110     3  0.0000     0.8932 0.000 0.000 1.000 0.000
#> GSM149111     3  0.0188     0.8934 0.004 0.000 0.996 0.000
#> GSM149112     3  0.0188     0.8919 0.000 0.004 0.996 0.000
#> GSM149113     3  0.0000     0.8932 0.000 0.000 1.000 0.000
#> GSM149114     3  0.0188     0.8934 0.004 0.000 0.996 0.000
#> GSM149115     4  0.0707     0.9415 0.020 0.000 0.000 0.980
#> GSM149116     4  0.0188     0.9511 0.000 0.000 0.004 0.996
#> GSM149117     4  0.5308     0.5578 0.036 0.280 0.000 0.684
#> GSM149118     4  0.0000     0.9529 0.000 0.000 0.000 1.000
#> GSM149119     4  0.0336     0.9480 0.000 0.000 0.008 0.992
#> GSM149120     4  0.0000     0.9529 0.000 0.000 0.000 1.000
#> GSM149121     4  0.0817     0.9384 0.024 0.000 0.000 0.976
#> GSM149122     4  0.0188     0.9511 0.000 0.000 0.004 0.996
#> GSM149123     4  0.0000     0.9529 0.000 0.000 0.000 1.000
#> GSM149124     4  0.0188     0.9511 0.000 0.000 0.004 0.996
#> GSM149125     4  0.0000     0.9529 0.000 0.000 0.000 1.000
#> GSM149126     4  0.0000     0.9529 0.000 0.000 0.000 1.000
#> GSM149127     4  0.0000     0.9529 0.000 0.000 0.000 1.000
#> GSM149128     4  0.0000     0.9529 0.000 0.000 0.000 1.000
#> GSM149129     4  0.0000     0.9529 0.000 0.000 0.000 1.000
#> GSM149130     4  0.4643     0.4377 0.344 0.000 0.000 0.656
#> GSM149131     4  0.1302     0.9220 0.044 0.000 0.000 0.956
#> GSM149132     4  0.0000     0.9529 0.000 0.000 0.000 1.000
#> GSM149133     4  0.0000     0.9529 0.000 0.000 0.000 1.000
#> GSM149134     1  0.3266     0.7424 0.832 0.000 0.000 0.168
#> GSM149135     1  0.1637     0.8351 0.940 0.000 0.000 0.060
#> GSM149136     1  0.1118     0.8412 0.964 0.000 0.000 0.036
#> GSM149137     1  0.1302     0.8398 0.956 0.000 0.000 0.044
#> GSM149138     1  0.1118     0.8402 0.964 0.000 0.000 0.036
#> GSM149139     1  0.2469     0.8054 0.892 0.000 0.000 0.108
#> GSM149140     1  0.2011     0.8254 0.920 0.000 0.000 0.080
#> GSM149141     1  0.2466     0.7848 0.900 0.004 0.096 0.000
#> GSM149142     1  0.0188     0.8409 0.996 0.004 0.000 0.000
#> GSM149143     1  0.3219     0.7142 0.836 0.000 0.164 0.000
#> GSM149144     1  0.4830     0.3639 0.608 0.392 0.000 0.000
#> GSM149145     3  0.4941     0.2642 0.436 0.000 0.564 0.000
#> GSM149146     2  0.0707     0.9191 0.020 0.980 0.000 0.000
#> GSM149147     1  0.0817     0.8417 0.976 0.000 0.000 0.024
#> GSM149148     1  0.1118     0.8412 0.964 0.000 0.000 0.036
#> GSM149149     1  0.1637     0.8344 0.940 0.000 0.000 0.060
#> GSM149150     2  0.4998     0.0162 0.488 0.512 0.000 0.000
#> GSM149151     1  0.0817     0.8424 0.976 0.000 0.000 0.024
#> GSM149152     1  0.4996     0.0909 0.516 0.000 0.000 0.484
#> GSM149153     1  0.3219     0.7196 0.836 0.000 0.164 0.000
#> GSM149154     3  0.5125     0.3887 0.388 0.000 0.604 0.008
#> GSM149155     2  0.1211     0.9121 0.040 0.960 0.000 0.000
#> GSM149156     2  0.1118     0.9160 0.036 0.964 0.000 0.000
#> GSM149157     1  0.5000     0.0057 0.504 0.496 0.000 0.000
#> GSM149158     1  0.1792     0.8263 0.932 0.068 0.000 0.000
#> GSM149159     2  0.0336     0.9171 0.008 0.992 0.000 0.000
#> GSM149160     1  0.1022     0.8383 0.968 0.032 0.000 0.000
#> GSM149161     1  0.4193     0.6178 0.732 0.268 0.000 0.000
#> GSM149162     2  0.1389     0.9099 0.048 0.952 0.000 0.000
#> GSM149163     2  0.1389     0.9073 0.048 0.952 0.000 0.000
#> GSM149164     1  0.0707     0.8413 0.980 0.020 0.000 0.000
#> GSM149165     2  0.0188     0.9192 0.004 0.996 0.000 0.000
#> GSM149166     2  0.4431     0.5551 0.304 0.696 0.000 0.000
#> GSM149167     1  0.3801     0.7001 0.780 0.220 0.000 0.000
#> GSM149168     2  0.1059     0.9093 0.016 0.972 0.012 0.000
#> GSM149169     1  0.0469     0.8415 0.988 0.012 0.000 0.000
#> GSM149170     2  0.1151     0.9056 0.008 0.968 0.024 0.000
#> GSM149171     2  0.2799     0.8321 0.008 0.884 0.108 0.000
#> GSM149172     3  0.4524     0.7084 0.028 0.204 0.768 0.000
#> GSM149173     2  0.1767     0.8901 0.012 0.944 0.044 0.000
#> GSM149174     1  0.2589     0.7986 0.884 0.116 0.000 0.000
#> GSM149175     3  0.1576     0.8679 0.048 0.000 0.948 0.004
#> GSM149176     2  0.3726     0.7221 0.212 0.788 0.000 0.000
#> GSM149177     3  0.6219     0.3575 0.068 0.344 0.588 0.000
#> GSM149178     3  0.3547     0.7798 0.016 0.144 0.840 0.000
#> GSM149179     2  0.1211     0.9122 0.040 0.960 0.000 0.000
#> GSM149180     2  0.0921     0.9169 0.028 0.972 0.000 0.000
#> GSM149181     2  0.0000     0.9179 0.000 1.000 0.000 0.000
#> GSM149182     2  0.1022     0.9156 0.032 0.968 0.000 0.000
#> GSM149183     2  0.0336     0.9198 0.008 0.992 0.000 0.000
#> GSM149184     2  0.0336     0.9198 0.008 0.992 0.000 0.000
#> GSM149185     2  0.0188     0.9177 0.004 0.996 0.000 0.000
#> GSM149186     2  0.0336     0.9198 0.008 0.992 0.000 0.000
#> GSM149187     2  0.0592     0.9197 0.016 0.984 0.000 0.000
#> GSM149188     2  0.0188     0.9192 0.004 0.996 0.000 0.000
#> GSM149189     2  0.4992     0.0189 0.000 0.524 0.476 0.000
#> GSM149190     1  0.4981     0.1496 0.536 0.464 0.000 0.000
#> GSM149191     3  0.7921     0.0214 0.328 0.324 0.348 0.000
#> GSM149192     2  0.0469     0.9198 0.012 0.988 0.000 0.000
#> GSM149193     2  0.0336     0.9198 0.008 0.992 0.000 0.000
#> GSM149194     1  0.1474     0.8322 0.948 0.052 0.000 0.000
#> GSM149195     3  0.0804     0.8860 0.008 0.012 0.980 0.000
#> GSM149196     2  0.0336     0.9198 0.008 0.992 0.000 0.000
#> GSM149197     2  0.1792     0.8924 0.068 0.932 0.000 0.000
#> GSM149198     1  0.2589     0.7933 0.884 0.000 0.000 0.116
#> GSM149199     2  0.3024     0.8094 0.148 0.852 0.000 0.000
#> GSM149200     2  0.1209     0.9022 0.004 0.964 0.032 0.000
#> GSM149201     2  0.0592     0.9197 0.016 0.984 0.000 0.000
#> GSM149202     2  0.0592     0.9190 0.016 0.984 0.000 0.000
#> GSM149203     2  0.3793     0.8065 0.044 0.844 0.112 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0451    0.91614 0.000 0.004 0.988 0.000 0.008
#> GSM149100     3  0.0451    0.91614 0.000 0.004 0.988 0.000 0.008
#> GSM149101     3  0.0162    0.91651 0.000 0.004 0.996 0.000 0.000
#> GSM149102     3  0.0324    0.91682 0.000 0.004 0.992 0.000 0.004
#> GSM149103     3  0.0290    0.91425 0.000 0.000 0.992 0.000 0.008
#> GSM149104     3  0.0000    0.91665 0.000 0.000 1.000 0.000 0.000
#> GSM149105     3  0.0162    0.91686 0.000 0.000 0.996 0.000 0.004
#> GSM149106     3  0.0324    0.91435 0.000 0.004 0.992 0.000 0.004
#> GSM149107     3  0.0000    0.91665 0.000 0.000 1.000 0.000 0.000
#> GSM149108     3  0.0162    0.91686 0.000 0.000 0.996 0.000 0.004
#> GSM149109     3  0.0404    0.91501 0.000 0.000 0.988 0.000 0.012
#> GSM149110     3  0.0451    0.91614 0.000 0.004 0.988 0.000 0.008
#> GSM149111     3  0.0324    0.91682 0.000 0.004 0.992 0.000 0.004
#> GSM149112     3  0.0510    0.91353 0.000 0.000 0.984 0.000 0.016
#> GSM149113     3  0.0000    0.91665 0.000 0.000 1.000 0.000 0.000
#> GSM149114     3  0.0162    0.91572 0.000 0.000 0.996 0.000 0.004
#> GSM149115     4  0.1168    0.95669 0.032 0.008 0.000 0.960 0.000
#> GSM149116     4  0.0162    0.97242 0.000 0.000 0.000 0.996 0.004
#> GSM149117     2  0.3449    0.60302 0.016 0.852 0.004 0.100 0.028
#> GSM149118     4  0.0000    0.97394 0.000 0.000 0.000 1.000 0.000
#> GSM149119     4  0.0162    0.97242 0.000 0.000 0.000 0.996 0.004
#> GSM149120     4  0.0290    0.97303 0.008 0.000 0.000 0.992 0.000
#> GSM149121     4  0.1043    0.95392 0.040 0.000 0.000 0.960 0.000
#> GSM149122     4  0.0451    0.97318 0.008 0.000 0.000 0.988 0.004
#> GSM149123     4  0.0162    0.97411 0.004 0.000 0.000 0.996 0.000
#> GSM149124     4  0.0162    0.97242 0.000 0.000 0.000 0.996 0.004
#> GSM149125     4  0.0162    0.97411 0.004 0.000 0.000 0.996 0.000
#> GSM149126     4  0.0162    0.97411 0.004 0.000 0.000 0.996 0.000
#> GSM149127     4  0.0324    0.97353 0.004 0.000 0.000 0.992 0.004
#> GSM149128     4  0.0000    0.97394 0.000 0.000 0.000 1.000 0.000
#> GSM149129     4  0.0000    0.97394 0.000 0.000 0.000 1.000 0.000
#> GSM149130     4  0.3727    0.72316 0.216 0.016 0.000 0.768 0.000
#> GSM149131     4  0.1952    0.91153 0.084 0.004 0.000 0.912 0.000
#> GSM149132     4  0.0000    0.97394 0.000 0.000 0.000 1.000 0.000
#> GSM149133     4  0.0404    0.97147 0.012 0.000 0.000 0.988 0.000
#> GSM149134     1  0.2352    0.84035 0.912 0.008 0.000 0.048 0.032
#> GSM149135     1  0.1750    0.84954 0.936 0.036 0.000 0.028 0.000
#> GSM149136     1  0.0865    0.85446 0.972 0.024 0.000 0.004 0.000
#> GSM149137     1  0.1403    0.85430 0.952 0.024 0.000 0.024 0.000
#> GSM149138     1  0.1074    0.85531 0.968 0.004 0.000 0.012 0.016
#> GSM149139     1  0.1608    0.83811 0.928 0.000 0.000 0.072 0.000
#> GSM149140     1  0.1471    0.85508 0.952 0.020 0.000 0.024 0.004
#> GSM149141     1  0.4160    0.77649 0.804 0.016 0.068 0.000 0.112
#> GSM149142     1  0.1041    0.85024 0.964 0.032 0.000 0.000 0.004
#> GSM149143     1  0.2635    0.82918 0.888 0.008 0.016 0.000 0.088
#> GSM149144     2  0.3551    0.57961 0.220 0.772 0.000 0.000 0.008
#> GSM149145     1  0.4916    0.56472 0.668 0.012 0.288 0.000 0.032
#> GSM149146     2  0.1331    0.66161 0.000 0.952 0.000 0.008 0.040
#> GSM149147     1  0.0404    0.85521 0.988 0.000 0.000 0.012 0.000
#> GSM149148     1  0.0404    0.85521 0.988 0.000 0.000 0.012 0.000
#> GSM149149     1  0.1106    0.85480 0.964 0.012 0.000 0.024 0.000
#> GSM149150     2  0.6825    0.04413 0.328 0.340 0.000 0.000 0.332
#> GSM149151     1  0.1059    0.85538 0.968 0.020 0.000 0.008 0.004
#> GSM149152     1  0.4695    0.13742 0.524 0.008 0.000 0.464 0.004
#> GSM149153     1  0.3129    0.82200 0.872 0.020 0.076 0.000 0.032
#> GSM149154     1  0.4706    0.76145 0.772 0.004 0.092 0.016 0.116
#> GSM149155     2  0.1571    0.66696 0.004 0.936 0.000 0.000 0.060
#> GSM149156     2  0.4876    0.35656 0.028 0.576 0.000 0.000 0.396
#> GSM149157     5  0.5952    0.24007 0.324 0.128 0.000 0.000 0.548
#> GSM149158     1  0.4475    0.53276 0.692 0.276 0.000 0.000 0.032
#> GSM149159     5  0.2179    0.76272 0.004 0.100 0.000 0.000 0.896
#> GSM149160     1  0.3090    0.80252 0.856 0.040 0.000 0.000 0.104
#> GSM149161     2  0.5100    0.11144 0.448 0.516 0.000 0.000 0.036
#> GSM149162     2  0.4697    0.34603 0.020 0.592 0.000 0.000 0.388
#> GSM149163     2  0.1626    0.66934 0.016 0.940 0.000 0.000 0.044
#> GSM149164     1  0.4676    0.42804 0.592 0.012 0.004 0.000 0.392
#> GSM149165     5  0.4126    0.43721 0.000 0.380 0.000 0.000 0.620
#> GSM149166     2  0.1444    0.66038 0.040 0.948 0.000 0.000 0.012
#> GSM149167     2  0.5220    0.13140 0.440 0.516 0.000 0.000 0.044
#> GSM149168     5  0.1571    0.77891 0.004 0.060 0.000 0.000 0.936
#> GSM149169     1  0.1943    0.83316 0.924 0.056 0.000 0.000 0.020
#> GSM149170     5  0.1478    0.78207 0.000 0.064 0.000 0.000 0.936
#> GSM149171     5  0.2020    0.77568 0.000 0.100 0.000 0.000 0.900
#> GSM149172     5  0.2220    0.72757 0.008 0.016 0.052 0.004 0.920
#> GSM149173     5  0.1732    0.77697 0.000 0.080 0.000 0.000 0.920
#> GSM149174     1  0.5083    0.48639 0.652 0.280 0.000 0.000 0.068
#> GSM149175     3  0.5881    0.56351 0.208 0.012 0.636 0.000 0.144
#> GSM149176     2  0.1403    0.66292 0.024 0.952 0.000 0.000 0.024
#> GSM149177     3  0.4024    0.68039 0.000 0.220 0.752 0.000 0.028
#> GSM149178     3  0.5230    0.21885 0.000 0.044 0.504 0.000 0.452
#> GSM149179     2  0.1410    0.65722 0.000 0.940 0.000 0.000 0.060
#> GSM149180     5  0.4201    0.42518 0.000 0.408 0.000 0.000 0.592
#> GSM149181     5  0.3274    0.70957 0.000 0.220 0.000 0.000 0.780
#> GSM149182     2  0.2179    0.63017 0.000 0.888 0.000 0.000 0.112
#> GSM149183     2  0.4251    0.33973 0.000 0.624 0.000 0.004 0.372
#> GSM149184     2  0.3752    0.42361 0.000 0.708 0.000 0.000 0.292
#> GSM149185     5  0.2074    0.78096 0.000 0.104 0.000 0.000 0.896
#> GSM149186     2  0.4297    0.01265 0.000 0.528 0.000 0.000 0.472
#> GSM149187     2  0.4045    0.38034 0.000 0.644 0.000 0.000 0.356
#> GSM149188     2  0.4211    0.37465 0.000 0.636 0.000 0.004 0.360
#> GSM149189     5  0.3670    0.72524 0.000 0.068 0.112 0.000 0.820
#> GSM149190     2  0.4522    0.55161 0.248 0.708 0.000 0.000 0.044
#> GSM149191     5  0.2708    0.70006 0.072 0.020 0.016 0.000 0.892
#> GSM149192     5  0.4452   -0.00195 0.000 0.496 0.000 0.004 0.500
#> GSM149193     5  0.3561    0.66446 0.000 0.260 0.000 0.000 0.740
#> GSM149194     1  0.2708    0.82056 0.884 0.044 0.000 0.000 0.072
#> GSM149195     3  0.4489    0.36397 0.000 0.008 0.572 0.000 0.420
#> GSM149196     5  0.4114    0.50480 0.000 0.376 0.000 0.000 0.624
#> GSM149197     2  0.2124    0.66885 0.028 0.916 0.000 0.000 0.056
#> GSM149198     1  0.2544    0.83830 0.900 0.008 0.000 0.028 0.064
#> GSM149199     2  0.4138    0.62791 0.064 0.776 0.000 0.000 0.160
#> GSM149200     5  0.1608    0.78372 0.000 0.072 0.000 0.000 0.928
#> GSM149201     2  0.3398    0.57561 0.000 0.780 0.000 0.004 0.216
#> GSM149202     5  0.2230    0.77961 0.000 0.116 0.000 0.000 0.884
#> GSM149203     5  0.1857    0.76614 0.000 0.060 0.008 0.004 0.928

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.0547     0.9291 0.000 0.000 0.980 0.000 0.000 0.020
#> GSM149100     3  0.0547     0.9291 0.000 0.000 0.980 0.000 0.000 0.020
#> GSM149101     3  0.0000     0.9317 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149102     3  0.0000     0.9317 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149103     3  0.0363     0.9272 0.000 0.000 0.988 0.000 0.000 0.012
#> GSM149104     3  0.0000     0.9317 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149105     3  0.0363     0.9311 0.000 0.000 0.988 0.000 0.000 0.012
#> GSM149106     3  0.0405     0.9292 0.000 0.000 0.988 0.004 0.000 0.008
#> GSM149107     3  0.0260     0.9304 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM149108     3  0.0260     0.9318 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM149109     3  0.0632     0.9290 0.000 0.000 0.976 0.000 0.000 0.024
#> GSM149110     3  0.0632     0.9276 0.000 0.000 0.976 0.000 0.000 0.024
#> GSM149111     3  0.0363     0.9312 0.000 0.000 0.988 0.000 0.000 0.012
#> GSM149112     3  0.0713     0.9257 0.000 0.000 0.972 0.000 0.000 0.028
#> GSM149113     3  0.0146     0.9314 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM149114     3  0.0363     0.9289 0.000 0.000 0.988 0.000 0.000 0.012
#> GSM149115     4  0.1152     0.9369 0.044 0.000 0.000 0.952 0.000 0.004
#> GSM149116     4  0.1080     0.9428 0.004 0.000 0.000 0.960 0.004 0.032
#> GSM149117     2  0.4184     0.6831 0.028 0.780 0.000 0.048 0.008 0.136
#> GSM149118     4  0.0291     0.9580 0.004 0.000 0.000 0.992 0.000 0.004
#> GSM149119     4  0.0291     0.9567 0.000 0.000 0.000 0.992 0.004 0.004
#> GSM149120     4  0.0291     0.9580 0.004 0.000 0.000 0.992 0.000 0.004
#> GSM149121     4  0.1531     0.9152 0.068 0.000 0.000 0.928 0.000 0.004
#> GSM149122     4  0.0000     0.9591 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149123     4  0.0260     0.9587 0.008 0.000 0.000 0.992 0.000 0.000
#> GSM149124     4  0.1080     0.9428 0.004 0.000 0.000 0.960 0.004 0.032
#> GSM149125     4  0.0146     0.9589 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM149126     4  0.0146     0.9594 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM149127     4  0.0146     0.9594 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM149128     4  0.0146     0.9594 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM149129     4  0.0436     0.9582 0.004 0.000 0.000 0.988 0.004 0.004
#> GSM149130     4  0.4754     0.5797 0.260 0.020 0.000 0.668 0.000 0.052
#> GSM149131     4  0.1556     0.9062 0.080 0.000 0.000 0.920 0.000 0.000
#> GSM149132     4  0.0291     0.9588 0.004 0.000 0.000 0.992 0.000 0.004
#> GSM149133     4  0.0520     0.9580 0.008 0.000 0.000 0.984 0.000 0.008
#> GSM149134     1  0.4284     0.4798 0.720 0.000 0.000 0.056 0.008 0.216
#> GSM149135     1  0.1485     0.6640 0.944 0.024 0.000 0.028 0.000 0.004
#> GSM149136     1  0.1167     0.6652 0.960 0.012 0.000 0.020 0.000 0.008
#> GSM149137     1  0.1364     0.6654 0.952 0.020 0.000 0.016 0.000 0.012
#> GSM149138     1  0.2361     0.6225 0.880 0.000 0.000 0.012 0.004 0.104
#> GSM149139     1  0.1075     0.6621 0.952 0.000 0.000 0.048 0.000 0.000
#> GSM149140     1  0.1616     0.6681 0.940 0.012 0.000 0.028 0.000 0.020
#> GSM149141     1  0.5989    -0.2106 0.424 0.000 0.020 0.000 0.132 0.424
#> GSM149142     1  0.1320     0.6652 0.948 0.016 0.000 0.000 0.000 0.036
#> GSM149143     1  0.4872     0.5227 0.644 0.008 0.008 0.000 0.052 0.288
#> GSM149144     2  0.1434     0.7689 0.048 0.940 0.000 0.000 0.000 0.012
#> GSM149145     1  0.6274     0.1907 0.548 0.000 0.176 0.000 0.052 0.224
#> GSM149146     2  0.1480     0.7790 0.000 0.940 0.000 0.000 0.020 0.040
#> GSM149147     1  0.0820     0.6673 0.972 0.000 0.000 0.012 0.000 0.016
#> GSM149148     1  0.1003     0.6678 0.964 0.000 0.000 0.020 0.000 0.016
#> GSM149149     1  0.0935     0.6651 0.964 0.000 0.000 0.032 0.000 0.004
#> GSM149150     6  0.7046     0.3262 0.148 0.112 0.004 0.000 0.276 0.460
#> GSM149151     1  0.2001     0.6426 0.912 0.008 0.000 0.012 0.000 0.068
#> GSM149152     1  0.4569     0.2236 0.564 0.000 0.000 0.396 0.000 0.040
#> GSM149153     1  0.5922     0.2623 0.596 0.000 0.084 0.000 0.080 0.240
#> GSM149154     1  0.3258     0.6433 0.848 0.000 0.008 0.016 0.036 0.092
#> GSM149155     2  0.1225     0.7748 0.000 0.952 0.000 0.000 0.012 0.036
#> GSM149156     5  0.6520     0.2964 0.040 0.180 0.000 0.000 0.428 0.352
#> GSM149157     6  0.6522    -0.3208 0.188 0.036 0.000 0.000 0.388 0.388
#> GSM149158     1  0.5554     0.4728 0.580 0.160 0.000 0.000 0.008 0.252
#> GSM149159     5  0.4114     0.3873 0.008 0.008 0.000 0.000 0.628 0.356
#> GSM149160     1  0.5576     0.4534 0.572 0.036 0.000 0.000 0.076 0.316
#> GSM149161     1  0.6044     0.1982 0.432 0.348 0.000 0.000 0.004 0.216
#> GSM149162     5  0.6556     0.3168 0.032 0.244 0.000 0.000 0.436 0.288
#> GSM149163     2  0.1801     0.7630 0.004 0.924 0.000 0.000 0.016 0.056
#> GSM149164     1  0.5945     0.3316 0.496 0.008 0.000 0.000 0.192 0.304
#> GSM149165     5  0.4449     0.4948 0.004 0.196 0.000 0.000 0.712 0.088
#> GSM149166     2  0.2001     0.7749 0.012 0.912 0.000 0.000 0.008 0.068
#> GSM149167     1  0.6363     0.2149 0.424 0.308 0.000 0.000 0.016 0.252
#> GSM149168     5  0.3089     0.4590 0.004 0.008 0.000 0.000 0.800 0.188
#> GSM149169     1  0.3952     0.5810 0.736 0.052 0.000 0.000 0.000 0.212
#> GSM149170     5  0.0458     0.4701 0.000 0.000 0.000 0.000 0.984 0.016
#> GSM149171     5  0.3349     0.2654 0.000 0.008 0.000 0.000 0.748 0.244
#> GSM149172     5  0.3765    -0.0603 0.000 0.000 0.000 0.000 0.596 0.404
#> GSM149173     5  0.3769     0.0552 0.000 0.004 0.000 0.000 0.640 0.356
#> GSM149174     1  0.6251     0.4092 0.516 0.120 0.000 0.000 0.056 0.308
#> GSM149175     6  0.7108     0.3548 0.216 0.000 0.164 0.000 0.156 0.464
#> GSM149176     2  0.2532     0.7679 0.012 0.884 0.000 0.000 0.024 0.080
#> GSM149177     3  0.4940     0.5325 0.004 0.216 0.668 0.000 0.004 0.108
#> GSM149178     6  0.5392     0.2391 0.012 0.020 0.044 0.000 0.376 0.548
#> GSM149179     2  0.2488     0.7575 0.000 0.880 0.000 0.000 0.044 0.076
#> GSM149180     5  0.5928    -0.0710 0.000 0.220 0.000 0.000 0.436 0.344
#> GSM149181     5  0.2630     0.4752 0.000 0.064 0.000 0.000 0.872 0.064
#> GSM149182     2  0.3492     0.6875 0.000 0.804 0.000 0.000 0.120 0.076
#> GSM149183     5  0.5508     0.1921 0.000 0.428 0.000 0.000 0.444 0.128
#> GSM149184     5  0.6233    -0.0225 0.004 0.328 0.000 0.000 0.368 0.300
#> GSM149185     5  0.1616     0.4697 0.000 0.020 0.000 0.000 0.932 0.048
#> GSM149186     5  0.4781     0.4094 0.000 0.296 0.000 0.000 0.624 0.080
#> GSM149187     5  0.5918     0.2602 0.000 0.348 0.000 0.000 0.436 0.216
#> GSM149188     5  0.5278     0.2440 0.000 0.412 0.000 0.000 0.488 0.100
#> GSM149189     5  0.2925     0.4470 0.000 0.012 0.060 0.000 0.864 0.064
#> GSM149190     2  0.5537     0.4786 0.216 0.620 0.000 0.000 0.024 0.140
#> GSM149191     5  0.4755     0.3358 0.044 0.008 0.000 0.000 0.596 0.352
#> GSM149192     5  0.5488     0.4460 0.000 0.216 0.000 0.000 0.568 0.216
#> GSM149193     5  0.3254     0.4783 0.000 0.124 0.000 0.000 0.820 0.056
#> GSM149194     1  0.4574     0.5437 0.680 0.020 0.000 0.000 0.040 0.260
#> GSM149195     3  0.5832    -0.1481 0.000 0.000 0.428 0.000 0.384 0.188
#> GSM149196     5  0.5096     0.2443 0.000 0.132 0.000 0.000 0.616 0.252
#> GSM149197     2  0.3120     0.6999 0.008 0.832 0.000 0.000 0.028 0.132
#> GSM149198     1  0.4859     0.3153 0.616 0.000 0.000 0.020 0.040 0.324
#> GSM149199     2  0.6424     0.3079 0.068 0.536 0.000 0.000 0.160 0.236
#> GSM149200     5  0.1501     0.4518 0.000 0.000 0.000 0.000 0.924 0.076
#> GSM149201     2  0.3620     0.6038 0.000 0.772 0.000 0.000 0.184 0.044
#> GSM149202     5  0.3420     0.2657 0.000 0.012 0.000 0.000 0.748 0.240
#> GSM149203     5  0.4009     0.3933 0.004 0.008 0.000 0.000 0.632 0.356

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> SD:NMF 101         4.70e-12 2
#> SD:NMF  98         1.05e-22 3
#> SD:NMF  94         2.32e-31 4
#> SD:NMF  86         3.55e-28 5
#> SD:NMF  61         1.54e-18 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.274           0.689       0.823         0.3693 0.605   0.605
#> 3 3 0.378           0.676       0.822         0.4640 0.827   0.725
#> 4 4 0.548           0.738       0.825         0.1759 0.865   0.726
#> 5 5 0.556           0.691       0.812         0.0966 0.968   0.915
#> 6 6 0.611           0.523       0.726         0.0898 0.838   0.551

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     1  0.8499     0.6614 0.724 0.276
#> GSM149100     1  0.8443     0.6645 0.728 0.272
#> GSM149101     1  0.8443     0.6645 0.728 0.272
#> GSM149102     1  0.8443     0.6645 0.728 0.272
#> GSM149103     2  0.9427     0.1819 0.360 0.640
#> GSM149104     1  0.8443     0.6645 0.728 0.272
#> GSM149105     1  0.8443     0.6645 0.728 0.272
#> GSM149106     2  0.9996    -0.3028 0.488 0.512
#> GSM149107     1  0.8443     0.6645 0.728 0.272
#> GSM149108     1  0.8443     0.6645 0.728 0.272
#> GSM149109     1  0.8499     0.6614 0.724 0.276
#> GSM149110     1  0.8499     0.6614 0.724 0.276
#> GSM149111     1  0.8443     0.6645 0.728 0.272
#> GSM149112     1  0.8499     0.6614 0.724 0.276
#> GSM149113     1  0.8443     0.6645 0.728 0.272
#> GSM149114     1  0.8443     0.6645 0.728 0.272
#> GSM149115     2  0.9909     0.0507 0.444 0.556
#> GSM149116     1  0.9248     0.5778 0.660 0.340
#> GSM149117     2  0.7745     0.6124 0.228 0.772
#> GSM149118     1  0.9358     0.5670 0.648 0.352
#> GSM149119     1  0.9286     0.5761 0.656 0.344
#> GSM149120     1  0.9358     0.5670 0.648 0.352
#> GSM149121     2  0.9795     0.1632 0.416 0.584
#> GSM149122     1  0.9286     0.5761 0.656 0.344
#> GSM149123     1  0.9635     0.4999 0.612 0.388
#> GSM149124     1  0.9286     0.5759 0.656 0.344
#> GSM149125     1  0.9286     0.5761 0.656 0.344
#> GSM149126     1  0.9552     0.5279 0.624 0.376
#> GSM149127     1  0.9286     0.5761 0.656 0.344
#> GSM149128     1  0.9522     0.5363 0.628 0.372
#> GSM149129     1  0.9522     0.5363 0.628 0.372
#> GSM149130     2  0.9491     0.3269 0.368 0.632
#> GSM149131     2  0.8608     0.5472 0.284 0.716
#> GSM149132     1  0.9522     0.5363 0.628 0.372
#> GSM149133     1  0.9993     0.2421 0.516 0.484
#> GSM149134     2  0.7883     0.6403 0.236 0.764
#> GSM149135     2  0.7950     0.6191 0.240 0.760
#> GSM149136     2  0.7950     0.6191 0.240 0.760
#> GSM149137     2  0.8207     0.5931 0.256 0.744
#> GSM149138     2  0.8267     0.6013 0.260 0.740
#> GSM149139     2  0.7950     0.6191 0.240 0.760
#> GSM149140     2  0.7950     0.6191 0.240 0.760
#> GSM149141     2  0.4298     0.8123 0.088 0.912
#> GSM149142     2  0.5178     0.7676 0.116 0.884
#> GSM149143     2  0.3733     0.8220 0.072 0.928
#> GSM149144     2  0.1414     0.8315 0.020 0.980
#> GSM149145     2  0.4161     0.8156 0.084 0.916
#> GSM149146     2  0.1184     0.8332 0.016 0.984
#> GSM149147     2  0.7950     0.6191 0.240 0.760
#> GSM149148     2  0.7950     0.6191 0.240 0.760
#> GSM149149     2  0.7950     0.6191 0.240 0.760
#> GSM149150     2  0.3114     0.8211 0.056 0.944
#> GSM149151     2  0.7602     0.6469 0.220 0.780
#> GSM149152     2  0.8713     0.5300 0.292 0.708
#> GSM149153     2  0.4161     0.8156 0.084 0.916
#> GSM149154     2  0.4022     0.8179 0.080 0.920
#> GSM149155     2  0.0672     0.8311 0.008 0.992
#> GSM149156     2  0.0672     0.8330 0.008 0.992
#> GSM149157     2  0.2043     0.8331 0.032 0.968
#> GSM149158     2  0.1633     0.8334 0.024 0.976
#> GSM149159     2  0.3733     0.8203 0.072 0.928
#> GSM149160     2  0.2043     0.8331 0.032 0.968
#> GSM149161     2  0.0938     0.8326 0.012 0.988
#> GSM149162     2  0.0672     0.8311 0.008 0.992
#> GSM149163     2  0.0672     0.8311 0.008 0.992
#> GSM149164     2  0.6048     0.7840 0.148 0.852
#> GSM149165     2  0.1633     0.8334 0.024 0.976
#> GSM149166     2  0.4562     0.7846 0.096 0.904
#> GSM149167     2  0.4939     0.8004 0.108 0.892
#> GSM149168     2  0.3733     0.8188 0.072 0.928
#> GSM149169     2  0.1184     0.8326 0.016 0.984
#> GSM149170     2  0.3274     0.8246 0.060 0.940
#> GSM149171     2  0.3879     0.8181 0.076 0.924
#> GSM149172     2  0.4562     0.8067 0.096 0.904
#> GSM149173     2  0.5408     0.7693 0.124 0.876
#> GSM149174     2  0.1184     0.8326 0.016 0.984
#> GSM149175     2  0.4690     0.8030 0.100 0.900
#> GSM149176     2  0.1184     0.8332 0.016 0.984
#> GSM149177     2  0.9129     0.3044 0.328 0.672
#> GSM149178     2  0.7299     0.6565 0.204 0.796
#> GSM149179     2  0.1414     0.8338 0.020 0.980
#> GSM149180     2  0.2043     0.8269 0.032 0.968
#> GSM149181     2  0.3114     0.8265 0.056 0.944
#> GSM149182     2  0.1184     0.8293 0.016 0.984
#> GSM149183     2  0.1633     0.8343 0.024 0.976
#> GSM149184     2  0.2043     0.8352 0.032 0.968
#> GSM149185     2  0.4161     0.8158 0.084 0.916
#> GSM149186     2  0.2043     0.8329 0.032 0.968
#> GSM149187     2  0.1414     0.8350 0.020 0.980
#> GSM149188     2  0.1184     0.8332 0.016 0.984
#> GSM149189     2  0.5178     0.7888 0.116 0.884
#> GSM149190     2  0.0672     0.8330 0.008 0.992
#> GSM149191     2  0.4022     0.8204 0.080 0.920
#> GSM149192     2  0.1633     0.8347 0.024 0.976
#> GSM149193     2  0.3431     0.8269 0.064 0.936
#> GSM149194     2  0.2948     0.8321 0.052 0.948
#> GSM149195     2  0.7602     0.6295 0.220 0.780
#> GSM149196     2  0.1843     0.8343 0.028 0.972
#> GSM149197     2  0.0938     0.8323 0.012 0.988
#> GSM149198     2  0.7883     0.6403 0.236 0.764
#> GSM149199     2  0.0672     0.8311 0.008 0.992
#> GSM149200     2  0.3584     0.8216 0.068 0.932
#> GSM149201     2  0.0672     0.8311 0.008 0.992
#> GSM149202     2  0.3274     0.8259 0.060 0.940
#> GSM149203     2  0.3584     0.8229 0.068 0.932

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.1289    0.96063 0.000 0.032 0.968
#> GSM149100     3  0.1163    0.96345 0.000 0.028 0.972
#> GSM149101     3  0.1163    0.96345 0.000 0.028 0.972
#> GSM149102     3  0.1163    0.96345 0.000 0.028 0.972
#> GSM149103     2  0.8983    0.21955 0.140 0.508 0.352
#> GSM149104     3  0.1163    0.96345 0.000 0.028 0.972
#> GSM149105     3  0.1163    0.96345 0.000 0.028 0.972
#> GSM149106     3  0.8652    0.36002 0.140 0.284 0.576
#> GSM149107     3  0.1163    0.96345 0.000 0.028 0.972
#> GSM149108     3  0.1163    0.96345 0.000 0.028 0.972
#> GSM149109     3  0.1289    0.96063 0.000 0.032 0.968
#> GSM149110     3  0.1289    0.96063 0.000 0.032 0.968
#> GSM149111     3  0.1163    0.96345 0.000 0.028 0.972
#> GSM149112     3  0.1289    0.96063 0.000 0.032 0.968
#> GSM149113     3  0.1163    0.96345 0.000 0.028 0.972
#> GSM149114     3  0.1163    0.96345 0.000 0.028 0.972
#> GSM149115     1  0.7222    0.64751 0.684 0.244 0.072
#> GSM149116     1  0.5558    0.71164 0.800 0.048 0.152
#> GSM149117     2  0.6836    0.07984 0.412 0.572 0.016
#> GSM149118     1  0.5696    0.72272 0.796 0.056 0.148
#> GSM149119     1  0.5659    0.71773 0.796 0.052 0.152
#> GSM149120     1  0.5696    0.72272 0.796 0.056 0.148
#> GSM149121     1  0.7366    0.62078 0.668 0.260 0.072
#> GSM149122     1  0.5659    0.71773 0.796 0.052 0.152
#> GSM149123     1  0.6271    0.72960 0.772 0.088 0.140
#> GSM149124     1  0.5497    0.71437 0.804 0.048 0.148
#> GSM149125     1  0.5659    0.71773 0.796 0.052 0.152
#> GSM149126     1  0.6087    0.73147 0.780 0.076 0.144
#> GSM149127     1  0.5659    0.71773 0.796 0.052 0.152
#> GSM149128     1  0.6001    0.73156 0.784 0.072 0.144
#> GSM149129     1  0.6001    0.73156 0.784 0.072 0.144
#> GSM149130     1  0.7905    0.49510 0.588 0.340 0.072
#> GSM149131     1  0.7909    0.20146 0.496 0.448 0.056
#> GSM149132     1  0.6001    0.73156 0.784 0.072 0.144
#> GSM149133     1  0.7756    0.69085 0.672 0.200 0.128
#> GSM149134     1  0.7164    0.06581 0.524 0.452 0.024
#> GSM149135     2  0.6944    0.00297 0.468 0.516 0.016
#> GSM149136     2  0.6944    0.00297 0.468 0.516 0.016
#> GSM149137     1  0.6955    0.03610 0.492 0.492 0.016
#> GSM149138     1  0.6754    0.15387 0.556 0.432 0.012
#> GSM149139     2  0.6944    0.00297 0.468 0.516 0.016
#> GSM149140     2  0.6944    0.00297 0.468 0.516 0.016
#> GSM149141     2  0.4807    0.79431 0.060 0.848 0.092
#> GSM149142     2  0.5292    0.61859 0.228 0.764 0.008
#> GSM149143     2  0.4569    0.80142 0.068 0.860 0.072
#> GSM149144     2  0.1525    0.80818 0.032 0.964 0.004
#> GSM149145     2  0.4725    0.79662 0.060 0.852 0.088
#> GSM149146     2  0.1182    0.81117 0.012 0.976 0.012
#> GSM149147     2  0.6944    0.00297 0.468 0.516 0.016
#> GSM149148     2  0.6944    0.00297 0.468 0.516 0.016
#> GSM149149     2  0.6944    0.00297 0.468 0.516 0.016
#> GSM149150     2  0.3415    0.78846 0.080 0.900 0.020
#> GSM149151     2  0.6779    0.09871 0.444 0.544 0.012
#> GSM149152     2  0.7278   -0.02348 0.456 0.516 0.028
#> GSM149153     2  0.4725    0.79662 0.060 0.852 0.088
#> GSM149154     2  0.4458    0.80155 0.056 0.864 0.080
#> GSM149155     2  0.0829    0.80794 0.012 0.984 0.004
#> GSM149156     2  0.1182    0.81573 0.012 0.976 0.012
#> GSM149157     2  0.3213    0.81229 0.060 0.912 0.028
#> GSM149158     2  0.3045    0.80931 0.064 0.916 0.020
#> GSM149159     2  0.3499    0.80884 0.028 0.900 0.072
#> GSM149160     2  0.3310    0.80998 0.064 0.908 0.028
#> GSM149161     2  0.1711    0.81290 0.032 0.960 0.008
#> GSM149162     2  0.0829    0.80794 0.012 0.984 0.004
#> GSM149163     2  0.0829    0.80794 0.012 0.984 0.004
#> GSM149164     2  0.7187    0.64554 0.232 0.692 0.076
#> GSM149165     2  0.1636    0.81508 0.016 0.964 0.020
#> GSM149166     2  0.4755    0.66943 0.184 0.808 0.008
#> GSM149167     2  0.4731    0.76353 0.128 0.840 0.032
#> GSM149168     2  0.3590    0.80654 0.028 0.896 0.076
#> GSM149169     2  0.2446    0.81075 0.052 0.936 0.012
#> GSM149170     2  0.3045    0.81150 0.020 0.916 0.064
#> GSM149171     2  0.3973    0.80397 0.032 0.880 0.088
#> GSM149172     2  0.5020    0.78576 0.056 0.836 0.108
#> GSM149173     2  0.6191    0.72579 0.084 0.776 0.140
#> GSM149174     2  0.2446    0.81075 0.052 0.936 0.012
#> GSM149175     2  0.5094    0.78251 0.056 0.832 0.112
#> GSM149176     2  0.1182    0.81117 0.012 0.976 0.012
#> GSM149177     2  0.8853    0.29214 0.140 0.540 0.320
#> GSM149178     2  0.8042    0.53578 0.116 0.636 0.248
#> GSM149179     2  0.1337    0.81261 0.016 0.972 0.012
#> GSM149180     2  0.2663    0.80606 0.044 0.932 0.024
#> GSM149181     2  0.2947    0.81234 0.020 0.920 0.060
#> GSM149182     2  0.1267    0.80594 0.024 0.972 0.004
#> GSM149183     2  0.1482    0.81741 0.012 0.968 0.020
#> GSM149184     2  0.2313    0.81616 0.024 0.944 0.032
#> GSM149185     2  0.4007    0.80399 0.036 0.880 0.084
#> GSM149186     2  0.2176    0.81766 0.020 0.948 0.032
#> GSM149187     2  0.1315    0.81795 0.008 0.972 0.020
#> GSM149188     2  0.1015    0.81475 0.012 0.980 0.008
#> GSM149189     2  0.4865    0.77742 0.032 0.832 0.136
#> GSM149190     2  0.1491    0.81383 0.016 0.968 0.016
#> GSM149191     2  0.4281    0.80634 0.056 0.872 0.072
#> GSM149192     2  0.1636    0.81734 0.020 0.964 0.016
#> GSM149193     2  0.3434    0.81318 0.032 0.904 0.064
#> GSM149194     2  0.3983    0.80809 0.068 0.884 0.048
#> GSM149195     2  0.8079    0.52538 0.108 0.624 0.268
#> GSM149196     2  0.2056    0.81650 0.024 0.952 0.024
#> GSM149197     2  0.0848    0.81478 0.008 0.984 0.008
#> GSM149198     1  0.7164    0.06581 0.524 0.452 0.024
#> GSM149199     2  0.0829    0.80959 0.012 0.984 0.004
#> GSM149200     2  0.3461    0.81071 0.024 0.900 0.076
#> GSM149201     2  0.0829    0.80794 0.012 0.984 0.004
#> GSM149202     2  0.3337    0.81372 0.032 0.908 0.060
#> GSM149203     2  0.3856    0.81071 0.040 0.888 0.072

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.0524     0.9628 0.000 0.008 0.988 0.004
#> GSM149100     3  0.0376     0.9653 0.000 0.004 0.992 0.004
#> GSM149101     3  0.0376     0.9653 0.000 0.004 0.992 0.004
#> GSM149102     3  0.0376     0.9653 0.000 0.004 0.992 0.004
#> GSM149103     2  0.8211     0.1263 0.040 0.452 0.360 0.148
#> GSM149104     3  0.0376     0.9653 0.000 0.004 0.992 0.004
#> GSM149105     3  0.0376     0.9653 0.000 0.004 0.992 0.004
#> GSM149106     3  0.7265     0.3614 0.016 0.236 0.592 0.156
#> GSM149107     3  0.0376     0.9653 0.000 0.004 0.992 0.004
#> GSM149108     3  0.0376     0.9653 0.000 0.004 0.992 0.004
#> GSM149109     3  0.0524     0.9628 0.000 0.008 0.988 0.004
#> GSM149110     3  0.0524     0.9628 0.000 0.008 0.988 0.004
#> GSM149111     3  0.0376     0.9653 0.000 0.004 0.992 0.004
#> GSM149112     3  0.0524     0.9628 0.000 0.008 0.988 0.004
#> GSM149113     3  0.0376     0.9653 0.000 0.004 0.992 0.004
#> GSM149114     3  0.0376     0.9653 0.000 0.004 0.992 0.004
#> GSM149115     4  0.5520     0.4081 0.244 0.060 0.000 0.696
#> GSM149116     4  0.1798     0.7519 0.016 0.000 0.040 0.944
#> GSM149117     4  0.7415    -0.2221 0.144 0.416 0.004 0.436
#> GSM149118     4  0.1452     0.7632 0.000 0.008 0.036 0.956
#> GSM149119     4  0.1211     0.7627 0.000 0.000 0.040 0.960
#> GSM149120     4  0.1305     0.7637 0.000 0.004 0.036 0.960
#> GSM149121     4  0.5682     0.3125 0.352 0.036 0.000 0.612
#> GSM149122     4  0.1211     0.7627 0.000 0.000 0.040 0.960
#> GSM149123     4  0.2222     0.7565 0.032 0.004 0.032 0.932
#> GSM149124     4  0.1706     0.7542 0.016 0.000 0.036 0.948
#> GSM149125     4  0.1211     0.7627 0.000 0.000 0.040 0.960
#> GSM149126     4  0.2115     0.7621 0.024 0.004 0.036 0.936
#> GSM149127     4  0.1211     0.7627 0.000 0.000 0.040 0.960
#> GSM149128     4  0.2007     0.7632 0.020 0.004 0.036 0.940
#> GSM149129     4  0.2007     0.7632 0.020 0.004 0.036 0.940
#> GSM149130     4  0.6881     0.0278 0.280 0.128 0.004 0.588
#> GSM149131     4  0.7505    -0.5043 0.412 0.156 0.004 0.428
#> GSM149132     4  0.2007     0.7632 0.020 0.004 0.036 0.940
#> GSM149133     4  0.5030     0.6101 0.160 0.032 0.028 0.780
#> GSM149134     1  0.1406     0.4422 0.960 0.024 0.000 0.016
#> GSM149135     1  0.7714     0.7813 0.484 0.236 0.004 0.276
#> GSM149136     1  0.7714     0.7813 0.484 0.236 0.004 0.276
#> GSM149137     1  0.7241     0.6679 0.536 0.188 0.000 0.276
#> GSM149138     1  0.3496     0.4832 0.872 0.052 0.004 0.072
#> GSM149139     1  0.7714     0.7813 0.484 0.236 0.004 0.276
#> GSM149140     1  0.7714     0.7813 0.484 0.236 0.004 0.276
#> GSM149141     2  0.5537     0.8059 0.088 0.776 0.092 0.044
#> GSM149142     2  0.6423     0.3985 0.256 0.644 0.008 0.092
#> GSM149143     2  0.5293     0.8187 0.088 0.792 0.072 0.048
#> GSM149144     2  0.1635     0.8414 0.044 0.948 0.000 0.008
#> GSM149145     2  0.5453     0.8076 0.092 0.780 0.088 0.040
#> GSM149146     2  0.1339     0.8451 0.024 0.964 0.008 0.004
#> GSM149147     1  0.7714     0.7813 0.484 0.236 0.004 0.276
#> GSM149148     1  0.7714     0.7813 0.484 0.236 0.004 0.276
#> GSM149149     1  0.7714     0.7813 0.484 0.236 0.004 0.276
#> GSM149150     2  0.4260     0.7737 0.116 0.828 0.008 0.048
#> GSM149151     1  0.7778     0.7410 0.472 0.264 0.004 0.260
#> GSM149152     4  0.8238    -0.3552 0.256 0.308 0.016 0.420
#> GSM149153     2  0.5453     0.8076 0.092 0.780 0.088 0.040
#> GSM149154     2  0.5232     0.8190 0.076 0.796 0.080 0.048
#> GSM149155     2  0.0895     0.8404 0.020 0.976 0.000 0.004
#> GSM149156     2  0.1631     0.8525 0.020 0.956 0.016 0.008
#> GSM149157     2  0.3934     0.8404 0.076 0.860 0.036 0.028
#> GSM149158     2  0.3813     0.8384 0.080 0.864 0.028 0.028
#> GSM149159     2  0.3863     0.8428 0.036 0.864 0.072 0.028
#> GSM149160     2  0.4003     0.8383 0.080 0.856 0.036 0.028
#> GSM149161     2  0.2284     0.8467 0.036 0.932 0.012 0.020
#> GSM149162     2  0.0895     0.8404 0.020 0.976 0.000 0.004
#> GSM149163     2  0.0895     0.8404 0.020 0.976 0.000 0.004
#> GSM149164     2  0.6948     0.5195 0.324 0.576 0.080 0.020
#> GSM149165     2  0.1640     0.8474 0.020 0.956 0.012 0.012
#> GSM149166     2  0.5136     0.5826 0.056 0.752 0.004 0.188
#> GSM149167     2  0.5971     0.7119 0.136 0.740 0.036 0.088
#> GSM149168     2  0.4010     0.8411 0.044 0.856 0.076 0.024
#> GSM149169     2  0.3363     0.8395 0.072 0.884 0.020 0.024
#> GSM149170     2  0.3215     0.8477 0.020 0.892 0.064 0.024
#> GSM149171     2  0.4126     0.8392 0.040 0.848 0.088 0.024
#> GSM149172     2  0.5320     0.8095 0.088 0.780 0.108 0.024
#> GSM149173     2  0.6177     0.7103 0.152 0.696 0.144 0.008
#> GSM149174     2  0.3363     0.8395 0.072 0.884 0.020 0.024
#> GSM149175     2  0.5411     0.8057 0.084 0.776 0.112 0.028
#> GSM149176     2  0.1486     0.8451 0.024 0.960 0.008 0.008
#> GSM149177     2  0.8077     0.1971 0.036 0.484 0.332 0.148
#> GSM149178     2  0.7598     0.4751 0.180 0.548 0.256 0.016
#> GSM149179     2  0.1486     0.8464 0.024 0.960 0.008 0.008
#> GSM149180     2  0.2521     0.8351 0.060 0.916 0.020 0.004
#> GSM149181     2  0.3138     0.8486 0.020 0.896 0.060 0.024
#> GSM149182     2  0.1209     0.8395 0.032 0.964 0.000 0.004
#> GSM149183     2  0.1377     0.8551 0.008 0.964 0.020 0.008
#> GSM149184     2  0.2700     0.8391 0.044 0.916 0.020 0.020
#> GSM149185     2  0.4231     0.8384 0.048 0.844 0.084 0.024
#> GSM149186     2  0.2521     0.8557 0.016 0.924 0.032 0.028
#> GSM149187     2  0.1174     0.8551 0.000 0.968 0.020 0.012
#> GSM149188     2  0.1114     0.8479 0.016 0.972 0.008 0.004
#> GSM149189     2  0.4934     0.8103 0.048 0.792 0.140 0.020
#> GSM149190     2  0.1362     0.8512 0.020 0.964 0.012 0.004
#> GSM149191     2  0.4946     0.8296 0.088 0.808 0.072 0.032
#> GSM149192     2  0.1640     0.8551 0.020 0.956 0.012 0.012
#> GSM149193     2  0.3272     0.8514 0.036 0.892 0.052 0.020
#> GSM149194     2  0.4638     0.8337 0.092 0.824 0.052 0.032
#> GSM149195     2  0.7395     0.4819 0.172 0.548 0.272 0.008
#> GSM149196     2  0.2221     0.8486 0.024 0.936 0.020 0.020
#> GSM149197     2  0.1124     0.8514 0.012 0.972 0.012 0.004
#> GSM149198     1  0.1406     0.4422 0.960 0.024 0.000 0.016
#> GSM149199     2  0.1004     0.8442 0.024 0.972 0.000 0.004
#> GSM149200     2  0.3536     0.8475 0.028 0.876 0.076 0.020
#> GSM149201     2  0.0895     0.8404 0.020 0.976 0.000 0.004
#> GSM149202     2  0.3353     0.8516 0.036 0.888 0.056 0.020
#> GSM149203     2  0.4551     0.8388 0.060 0.832 0.072 0.036

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0324     0.9059 0.000 0.004 0.992 0.000 0.004
#> GSM149100     3  0.0000     0.9098 0.000 0.000 1.000 0.000 0.000
#> GSM149101     3  0.0000     0.9098 0.000 0.000 1.000 0.000 0.000
#> GSM149102     3  0.0000     0.9098 0.000 0.000 1.000 0.000 0.000
#> GSM149103     3  0.8279    -0.3157 0.108 0.320 0.336 0.004 0.232
#> GSM149104     3  0.0000     0.9098 0.000 0.000 1.000 0.000 0.000
#> GSM149105     3  0.0000     0.9098 0.000 0.000 1.000 0.000 0.000
#> GSM149106     3  0.6621     0.2546 0.108 0.060 0.588 0.000 0.244
#> GSM149107     3  0.0000     0.9098 0.000 0.000 1.000 0.000 0.000
#> GSM149108     3  0.0162     0.9082 0.000 0.000 0.996 0.000 0.004
#> GSM149109     3  0.0451     0.9057 0.000 0.004 0.988 0.000 0.008
#> GSM149110     3  0.0324     0.9059 0.000 0.004 0.992 0.000 0.004
#> GSM149111     3  0.0000     0.9098 0.000 0.000 1.000 0.000 0.000
#> GSM149112     3  0.0451     0.9057 0.000 0.004 0.988 0.000 0.008
#> GSM149113     3  0.0290     0.9053 0.000 0.000 0.992 0.000 0.008
#> GSM149114     3  0.0290     0.9053 0.000 0.000 0.992 0.000 0.008
#> GSM149115     4  0.5212     0.1829 0.416 0.016 0.000 0.548 0.020
#> GSM149116     4  0.0451     0.8753 0.004 0.000 0.000 0.988 0.008
#> GSM149117     5  0.6383     0.0000 0.312 0.092 0.000 0.036 0.560
#> GSM149118     4  0.0671     0.8873 0.016 0.004 0.000 0.980 0.000
#> GSM149119     4  0.0162     0.8867 0.004 0.000 0.000 0.996 0.000
#> GSM149120     4  0.0566     0.8873 0.012 0.004 0.000 0.984 0.000
#> GSM149121     4  0.5976     0.0749 0.424 0.016 0.000 0.492 0.068
#> GSM149122     4  0.0162     0.8867 0.004 0.000 0.000 0.996 0.000
#> GSM149123     4  0.1662     0.8690 0.056 0.004 0.000 0.936 0.004
#> GSM149124     4  0.0579     0.8781 0.008 0.000 0.000 0.984 0.008
#> GSM149125     4  0.0162     0.8867 0.004 0.000 0.000 0.996 0.000
#> GSM149126     4  0.1285     0.8827 0.036 0.004 0.000 0.956 0.004
#> GSM149127     4  0.0162     0.8867 0.004 0.000 0.000 0.996 0.000
#> GSM149128     4  0.0955     0.8864 0.028 0.004 0.000 0.968 0.000
#> GSM149129     4  0.0955     0.8864 0.028 0.004 0.000 0.968 0.000
#> GSM149130     1  0.6067     0.2705 0.488 0.076 0.000 0.420 0.016
#> GSM149131     1  0.5404     0.5003 0.636 0.100 0.000 0.264 0.000
#> GSM149132     4  0.0955     0.8864 0.028 0.004 0.000 0.968 0.000
#> GSM149133     4  0.4436     0.6284 0.224 0.028 0.000 0.736 0.012
#> GSM149134     1  0.4453     0.2384 0.660 0.008 0.000 0.008 0.324
#> GSM149135     1  0.4300     0.6702 0.772 0.132 0.000 0.096 0.000
#> GSM149136     1  0.4300     0.6702 0.772 0.132 0.000 0.096 0.000
#> GSM149137     1  0.4308     0.4820 0.808 0.056 0.000 0.048 0.088
#> GSM149138     1  0.5038     0.3272 0.692 0.032 0.000 0.028 0.248
#> GSM149139     1  0.4300     0.6702 0.772 0.132 0.000 0.096 0.000
#> GSM149140     1  0.4300     0.6702 0.772 0.132 0.000 0.096 0.000
#> GSM149141     2  0.4339     0.7465 0.052 0.824 0.036 0.024 0.064
#> GSM149142     2  0.6222     0.2407 0.376 0.516 0.000 0.020 0.088
#> GSM149143     2  0.4164     0.7506 0.060 0.828 0.016 0.024 0.072
#> GSM149144     2  0.4873     0.6891 0.068 0.688 0.000 0.000 0.244
#> GSM149145     2  0.4253     0.7477 0.048 0.828 0.032 0.024 0.068
#> GSM149146     2  0.4218     0.7332 0.040 0.760 0.004 0.000 0.196
#> GSM149147     1  0.4300     0.6702 0.772 0.132 0.000 0.096 0.000
#> GSM149148     1  0.4300     0.6702 0.772 0.132 0.000 0.096 0.000
#> GSM149149     1  0.4300     0.6702 0.772 0.132 0.000 0.096 0.000
#> GSM149150     2  0.5388     0.6573 0.152 0.680 0.000 0.004 0.164
#> GSM149151     1  0.4693     0.6298 0.756 0.148 0.000 0.084 0.012
#> GSM149152     1  0.7791     0.1182 0.420 0.236 0.000 0.268 0.076
#> GSM149153     2  0.4253     0.7477 0.048 0.828 0.032 0.024 0.068
#> GSM149154     2  0.4084     0.7526 0.048 0.836 0.024 0.024 0.068
#> GSM149155     2  0.4584     0.7032 0.056 0.716 0.000 0.000 0.228
#> GSM149156     2  0.2932     0.7859 0.032 0.864 0.000 0.000 0.104
#> GSM149157     2  0.3148     0.7823 0.072 0.864 0.004 0.000 0.060
#> GSM149158     2  0.3338     0.7809 0.068 0.852 0.004 0.000 0.076
#> GSM149159     2  0.2359     0.7762 0.016 0.912 0.008 0.004 0.060
#> GSM149160     2  0.3277     0.7814 0.068 0.856 0.004 0.000 0.072
#> GSM149161     2  0.3323     0.7790 0.056 0.844 0.000 0.000 0.100
#> GSM149162     2  0.4584     0.7032 0.056 0.716 0.000 0.000 0.228
#> GSM149163     2  0.4584     0.7032 0.056 0.716 0.000 0.000 0.228
#> GSM149164     2  0.6529     0.5134 0.204 0.604 0.032 0.004 0.156
#> GSM149165     2  0.3011     0.7825 0.016 0.844 0.000 0.000 0.140
#> GSM149166     2  0.6515     0.0897 0.196 0.440 0.000 0.000 0.364
#> GSM149167     2  0.5293     0.6307 0.180 0.704 0.004 0.008 0.104
#> GSM149168     2  0.2275     0.7735 0.008 0.912 0.008 0.004 0.068
#> GSM149169     2  0.3242     0.7796 0.072 0.852 0.000 0.000 0.076
#> GSM149170     2  0.1766     0.7838 0.012 0.940 0.004 0.004 0.040
#> GSM149171     2  0.2856     0.7738 0.012 0.888 0.024 0.004 0.072
#> GSM149172     2  0.3798     0.7469 0.028 0.840 0.040 0.004 0.088
#> GSM149173     2  0.5361     0.6839 0.056 0.740 0.080 0.004 0.120
#> GSM149174     2  0.3242     0.7796 0.072 0.852 0.000 0.000 0.076
#> GSM149175     2  0.3996     0.7453 0.028 0.832 0.044 0.008 0.088
#> GSM149176     2  0.4039     0.7448 0.036 0.776 0.004 0.000 0.184
#> GSM149177     2  0.8316    -0.2597 0.108 0.364 0.308 0.008 0.212
#> GSM149178     2  0.7020     0.4668 0.076 0.576 0.216 0.004 0.128
#> GSM149179     2  0.4114     0.7472 0.044 0.776 0.004 0.000 0.176
#> GSM149180     2  0.4913     0.7162 0.056 0.720 0.016 0.000 0.208
#> GSM149181     2  0.1605     0.7846 0.012 0.944 0.000 0.004 0.040
#> GSM149182     2  0.4666     0.6949 0.056 0.704 0.000 0.000 0.240
#> GSM149183     2  0.3099     0.7822 0.028 0.848 0.000 0.000 0.124
#> GSM149184     2  0.3242     0.7700 0.012 0.816 0.000 0.000 0.172
#> GSM149185     2  0.2770     0.7752 0.016 0.892 0.016 0.004 0.072
#> GSM149186     2  0.2670     0.7980 0.028 0.888 0.000 0.004 0.080
#> GSM149187     2  0.2707     0.7903 0.024 0.876 0.000 0.000 0.100
#> GSM149188     2  0.4233     0.7325 0.044 0.748 0.000 0.000 0.208
#> GSM149189     2  0.3850     0.7597 0.012 0.832 0.080 0.004 0.072
#> GSM149190     2  0.3267     0.7808 0.044 0.844 0.000 0.000 0.112
#> GSM149191     2  0.3199     0.7670 0.044 0.872 0.012 0.004 0.068
#> GSM149192     2  0.3795     0.7800 0.044 0.808 0.000 0.004 0.144
#> GSM149193     2  0.3127     0.7932 0.028 0.868 0.008 0.004 0.092
#> GSM149194     2  0.3213     0.7754 0.072 0.860 0.004 0.000 0.064
#> GSM149195     2  0.6735     0.4832 0.056 0.596 0.220 0.004 0.124
#> GSM149196     2  0.3060     0.7903 0.024 0.848 0.000 0.000 0.128
#> GSM149197     2  0.3495     0.7688 0.032 0.816 0.000 0.000 0.152
#> GSM149198     1  0.4453     0.2384 0.660 0.008 0.000 0.008 0.324
#> GSM149199     2  0.3152     0.7759 0.024 0.840 0.000 0.000 0.136
#> GSM149200     2  0.2186     0.7862 0.012 0.924 0.016 0.004 0.044
#> GSM149201     2  0.4584     0.7032 0.056 0.716 0.000 0.000 0.228
#> GSM149202     2  0.2774     0.7935 0.020 0.888 0.008 0.004 0.080
#> GSM149203     2  0.2858     0.7735 0.024 0.880 0.004 0.004 0.088

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.0458     0.8645 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM149100     3  0.0260     0.8675 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM149101     3  0.0260     0.8675 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM149102     3  0.0260     0.8675 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM149103     3  0.8368    -0.2337 0.088 0.208 0.328 0.000 0.268 0.108
#> GSM149104     3  0.0260     0.8675 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM149105     3  0.0260     0.8675 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM149106     3  0.6405     0.2787 0.088 0.184 0.592 0.000 0.012 0.124
#> GSM149107     3  0.0260     0.8675 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM149108     3  0.0622     0.8627 0.000 0.000 0.980 0.000 0.012 0.008
#> GSM149109     3  0.0508     0.8633 0.000 0.004 0.984 0.000 0.012 0.000
#> GSM149110     3  0.0458     0.8645 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM149111     3  0.0260     0.8675 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM149112     3  0.0508     0.8633 0.000 0.004 0.984 0.000 0.012 0.000
#> GSM149113     3  0.0146     0.8614 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM149114     3  0.0146     0.8614 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM149115     4  0.5132     0.1401 0.428 0.016 0.000 0.516 0.008 0.032
#> GSM149116     4  0.1464     0.8337 0.004 0.016 0.000 0.944 0.000 0.036
#> GSM149117     6  0.6586     0.0000 0.304 0.304 0.000 0.016 0.004 0.372
#> GSM149118     4  0.0692     0.8741 0.020 0.000 0.000 0.976 0.004 0.000
#> GSM149119     4  0.0146     0.8725 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM149120     4  0.0603     0.8743 0.016 0.000 0.000 0.980 0.004 0.000
#> GSM149121     4  0.5464     0.0479 0.448 0.000 0.000 0.460 0.016 0.076
#> GSM149122     4  0.0146     0.8725 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM149123     4  0.1555     0.8552 0.060 0.000 0.000 0.932 0.004 0.004
#> GSM149124     4  0.1749     0.8329 0.008 0.024 0.000 0.932 0.000 0.036
#> GSM149125     4  0.0146     0.8725 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM149126     4  0.1155     0.8706 0.036 0.000 0.000 0.956 0.004 0.004
#> GSM149127     4  0.0146     0.8725 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM149128     4  0.0858     0.8739 0.028 0.000 0.000 0.968 0.004 0.000
#> GSM149129     4  0.0858     0.8739 0.028 0.000 0.000 0.968 0.004 0.000
#> GSM149130     1  0.5969     0.2456 0.496 0.036 0.000 0.392 0.060 0.016
#> GSM149131     1  0.5579     0.4661 0.640 0.044 0.000 0.236 0.068 0.012
#> GSM149132     4  0.0858     0.8739 0.028 0.000 0.000 0.968 0.004 0.000
#> GSM149133     4  0.4158     0.6174 0.236 0.000 0.000 0.720 0.020 0.024
#> GSM149134     1  0.4376     0.1332 0.592 0.012 0.000 0.000 0.012 0.384
#> GSM149135     1  0.4235     0.6323 0.784 0.068 0.000 0.072 0.076 0.000
#> GSM149136     1  0.4235     0.6323 0.784 0.068 0.000 0.072 0.076 0.000
#> GSM149137     1  0.3590     0.4459 0.836 0.072 0.000 0.024 0.012 0.056
#> GSM149138     1  0.5032     0.2510 0.640 0.020 0.000 0.020 0.028 0.292
#> GSM149139     1  0.4235     0.6323 0.784 0.068 0.000 0.072 0.076 0.000
#> GSM149140     1  0.4235     0.6323 0.784 0.068 0.000 0.072 0.076 0.000
#> GSM149141     5  0.3566     0.5396 0.048 0.044 0.012 0.016 0.852 0.028
#> GSM149142     1  0.6417    -0.1341 0.384 0.324 0.000 0.008 0.280 0.004
#> GSM149143     5  0.3186     0.5458 0.056 0.040 0.008 0.016 0.868 0.012
#> GSM149144     2  0.3741     0.7005 0.032 0.756 0.000 0.000 0.208 0.004
#> GSM149145     5  0.3402     0.5415 0.044 0.044 0.008 0.016 0.860 0.028
#> GSM149146     2  0.3614     0.7302 0.004 0.728 0.004 0.000 0.260 0.004
#> GSM149147     1  0.4235     0.6323 0.784 0.068 0.000 0.072 0.076 0.000
#> GSM149148     1  0.4235     0.6323 0.784 0.068 0.000 0.072 0.076 0.000
#> GSM149149     1  0.4235     0.6323 0.784 0.068 0.000 0.072 0.076 0.000
#> GSM149150     2  0.5652     0.4207 0.132 0.520 0.000 0.000 0.340 0.008
#> GSM149151     1  0.4362     0.6013 0.772 0.068 0.000 0.060 0.100 0.000
#> GSM149152     1  0.7873     0.0979 0.452 0.112 0.000 0.220 0.136 0.080
#> GSM149153     5  0.3402     0.5415 0.044 0.044 0.008 0.016 0.860 0.028
#> GSM149154     5  0.3097     0.5451 0.048 0.032 0.008 0.016 0.876 0.020
#> GSM149155     2  0.2994     0.7238 0.004 0.788 0.000 0.000 0.208 0.000
#> GSM149156     2  0.4371     0.5834 0.020 0.580 0.000 0.000 0.396 0.004
#> GSM149157     5  0.5157     0.1473 0.060 0.356 0.000 0.000 0.568 0.016
#> GSM149158     5  0.5053     0.1137 0.056 0.368 0.000 0.000 0.564 0.012
#> GSM149159     5  0.3411     0.4237 0.004 0.232 0.000 0.000 0.756 0.008
#> GSM149160     5  0.5023     0.1497 0.056 0.356 0.000 0.000 0.576 0.012
#> GSM149161     2  0.4957     0.4153 0.048 0.520 0.000 0.000 0.424 0.008
#> GSM149162     2  0.3052     0.7264 0.004 0.780 0.000 0.000 0.216 0.000
#> GSM149163     2  0.2994     0.7238 0.004 0.788 0.000 0.000 0.208 0.000
#> GSM149164     5  0.6416     0.3213 0.160 0.104 0.000 0.000 0.568 0.168
#> GSM149165     2  0.3967     0.6367 0.000 0.632 0.000 0.000 0.356 0.012
#> GSM149166     2  0.6370     0.1201 0.144 0.580 0.000 0.000 0.144 0.132
#> GSM149167     5  0.6441     0.2802 0.164 0.276 0.000 0.004 0.512 0.044
#> GSM149168     5  0.3052     0.4501 0.000 0.216 0.000 0.000 0.780 0.004
#> GSM149169     5  0.5258    -0.0265 0.060 0.408 0.000 0.000 0.516 0.016
#> GSM149170     5  0.4078     0.2017 0.000 0.340 0.000 0.000 0.640 0.020
#> GSM149171     5  0.3359     0.4652 0.000 0.196 0.008 0.000 0.784 0.012
#> GSM149172     5  0.2542     0.5388 0.008 0.036 0.012 0.000 0.896 0.048
#> GSM149173     5  0.5621     0.4370 0.020 0.156 0.024 0.000 0.660 0.140
#> GSM149174     5  0.5258    -0.0265 0.060 0.408 0.000 0.000 0.516 0.016
#> GSM149175     5  0.2756     0.5356 0.008 0.040 0.012 0.004 0.888 0.048
#> GSM149176     2  0.3851     0.7247 0.004 0.700 0.004 0.000 0.284 0.008
#> GSM149177     3  0.8421    -0.2769 0.092 0.228 0.296 0.000 0.280 0.104
#> GSM149178     5  0.7381     0.2902 0.028 0.176 0.104 0.000 0.480 0.212
#> GSM149179     2  0.3724     0.7268 0.004 0.708 0.004 0.000 0.280 0.004
#> GSM149180     2  0.4417     0.6766 0.016 0.704 0.000 0.000 0.236 0.044
#> GSM149181     5  0.4118     0.1674 0.000 0.352 0.000 0.000 0.628 0.020
#> GSM149182     2  0.3152     0.7149 0.008 0.792 0.000 0.000 0.196 0.004
#> GSM149183     2  0.3945     0.6396 0.000 0.612 0.000 0.000 0.380 0.008
#> GSM149184     2  0.4740     0.4191 0.008 0.584 0.000 0.000 0.368 0.040
#> GSM149185     5  0.3770     0.4035 0.000 0.244 0.000 0.000 0.728 0.028
#> GSM149186     5  0.4325    -0.2303 0.000 0.456 0.000 0.000 0.524 0.020
#> GSM149187     2  0.4262     0.5466 0.012 0.560 0.000 0.000 0.424 0.004
#> GSM149188     2  0.3468     0.7217 0.000 0.728 0.000 0.000 0.264 0.008
#> GSM149189     5  0.4385     0.4630 0.000 0.188 0.048 0.000 0.736 0.028
#> GSM149190     2  0.4560     0.5907 0.028 0.592 0.000 0.000 0.372 0.008
#> GSM149191     5  0.2703     0.5458 0.028 0.080 0.000 0.000 0.876 0.016
#> GSM149192     2  0.3930     0.5871 0.000 0.576 0.000 0.000 0.420 0.004
#> GSM149193     5  0.4746    -0.0836 0.004 0.424 0.000 0.000 0.532 0.040
#> GSM149194     5  0.4790     0.3520 0.056 0.272 0.000 0.000 0.656 0.016
#> GSM149195     5  0.7001     0.3125 0.016 0.144 0.108 0.000 0.520 0.212
#> GSM149196     2  0.4546     0.4512 0.012 0.540 0.000 0.000 0.432 0.016
#> GSM149197     2  0.3607     0.6831 0.000 0.652 0.000 0.000 0.348 0.000
#> GSM149198     1  0.4376     0.1332 0.592 0.012 0.000 0.000 0.012 0.384
#> GSM149199     2  0.3967     0.6473 0.012 0.632 0.000 0.000 0.356 0.000
#> GSM149200     5  0.4479     0.2076 0.000 0.336 0.004 0.000 0.624 0.036
#> GSM149201     2  0.3052     0.7254 0.004 0.780 0.000 0.000 0.216 0.000
#> GSM149202     5  0.4584     0.0071 0.000 0.404 0.000 0.000 0.556 0.040
#> GSM149203     5  0.3028     0.5292 0.008 0.104 0.000 0.000 0.848 0.040

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> CV:hclust 97         3.63e-15 2
#> CV:hclust 86         2.70e-29 3
#> CV:hclust 90         7.15e-35 4
#> CV:hclust 89         2.02e-31 5
#> CV:hclust 64         9.51e-23 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.312           0.687       0.841         0.4139 0.558   0.558
#> 3 3 0.789           0.919       0.942         0.4416 0.726   0.551
#> 4 4 0.651           0.772       0.848         0.1794 0.875   0.694
#> 5 5 0.651           0.664       0.791         0.0967 0.870   0.601
#> 6 6 0.704           0.670       0.785         0.0495 0.957   0.815

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     1  0.8207     0.7047 0.744 0.256
#> GSM149100     1  0.8207     0.7047 0.744 0.256
#> GSM149101     1  0.8207     0.7047 0.744 0.256
#> GSM149102     1  0.8207     0.7047 0.744 0.256
#> GSM149103     1  0.8207     0.7047 0.744 0.256
#> GSM149104     1  0.8207     0.7047 0.744 0.256
#> GSM149105     1  0.8207     0.7047 0.744 0.256
#> GSM149106     1  0.8207     0.7047 0.744 0.256
#> GSM149107     1  0.8207     0.7047 0.744 0.256
#> GSM149108     1  0.8207     0.7047 0.744 0.256
#> GSM149109     1  0.8207     0.7047 0.744 0.256
#> GSM149110     1  0.8207     0.7047 0.744 0.256
#> GSM149111     1  0.8207     0.7047 0.744 0.256
#> GSM149112     1  0.8207     0.7047 0.744 0.256
#> GSM149113     1  0.8207     0.7047 0.744 0.256
#> GSM149114     1  0.8207     0.7047 0.744 0.256
#> GSM149115     1  0.9988    -0.0393 0.520 0.480
#> GSM149116     1  0.7745     0.6697 0.772 0.228
#> GSM149117     2  0.9710     0.3869 0.400 0.600
#> GSM149118     1  0.7745     0.6697 0.772 0.228
#> GSM149119     1  0.7745     0.6697 0.772 0.228
#> GSM149120     1  0.7745     0.6697 0.772 0.228
#> GSM149121     1  0.7883     0.6585 0.764 0.236
#> GSM149122     1  0.7745     0.6697 0.772 0.228
#> GSM149123     1  0.7745     0.6697 0.772 0.228
#> GSM149124     1  0.7745     0.6697 0.772 0.228
#> GSM149125     1  0.7745     0.6697 0.772 0.228
#> GSM149126     1  0.7745     0.6697 0.772 0.228
#> GSM149127     1  0.7745     0.6697 0.772 0.228
#> GSM149128     1  0.7745     0.6697 0.772 0.228
#> GSM149129     1  0.7745     0.6697 0.772 0.228
#> GSM149130     2  0.9815     0.3477 0.420 0.580
#> GSM149131     2  0.9815     0.3477 0.420 0.580
#> GSM149132     1  0.7745     0.6697 0.772 0.228
#> GSM149133     1  0.7745     0.6697 0.772 0.228
#> GSM149134     2  0.9775     0.3654 0.412 0.588
#> GSM149135     2  0.9754     0.3735 0.408 0.592
#> GSM149136     2  0.9732     0.3811 0.404 0.596
#> GSM149137     2  0.9775     0.3654 0.412 0.588
#> GSM149138     2  0.9732     0.3811 0.404 0.596
#> GSM149139     2  0.9775     0.3654 0.412 0.588
#> GSM149140     2  0.9732     0.3811 0.404 0.596
#> GSM149141     2  0.6343     0.6697 0.160 0.840
#> GSM149142     2  0.0672     0.8336 0.008 0.992
#> GSM149143     2  0.6623     0.6640 0.172 0.828
#> GSM149144     2  0.0672     0.8336 0.008 0.992
#> GSM149145     2  0.6247     0.6755 0.156 0.844
#> GSM149146     2  0.0376     0.8314 0.004 0.996
#> GSM149147     2  0.9775     0.3654 0.412 0.588
#> GSM149148     2  0.9775     0.3654 0.412 0.588
#> GSM149149     2  0.9775     0.3654 0.412 0.588
#> GSM149150     2  0.0672     0.8336 0.008 0.992
#> GSM149151     2  0.9732     0.3811 0.404 0.596
#> GSM149152     2  0.9996     0.1253 0.488 0.512
#> GSM149153     2  0.5519     0.7132 0.128 0.872
#> GSM149154     1  0.8207     0.6369 0.744 0.256
#> GSM149155     2  0.0672     0.8336 0.008 0.992
#> GSM149156     2  0.0672     0.8336 0.008 0.992
#> GSM149157     2  0.0938     0.8332 0.012 0.988
#> GSM149158     2  0.0672     0.8336 0.008 0.992
#> GSM149159     2  0.0376     0.8314 0.004 0.996
#> GSM149160     2  0.0672     0.8336 0.008 0.992
#> GSM149161     2  0.0672     0.8336 0.008 0.992
#> GSM149162     2  0.0672     0.8336 0.008 0.992
#> GSM149163     2  0.0672     0.8336 0.008 0.992
#> GSM149164     2  0.0672     0.8336 0.008 0.992
#> GSM149165     2  0.0376     0.8314 0.004 0.996
#> GSM149166     2  0.0672     0.8336 0.008 0.992
#> GSM149167     2  0.0672     0.8336 0.008 0.992
#> GSM149168     2  0.0376     0.8314 0.004 0.996
#> GSM149169     2  0.0672     0.8336 0.008 0.992
#> GSM149170     2  0.0376     0.8314 0.004 0.996
#> GSM149171     2  0.0376     0.8314 0.004 0.996
#> GSM149172     2  0.3431     0.7859 0.064 0.936
#> GSM149173     2  0.0376     0.8314 0.004 0.996
#> GSM149174     2  0.0672     0.8336 0.008 0.992
#> GSM149175     2  0.9996    -0.2958 0.488 0.512
#> GSM149176     2  0.0000     0.8324 0.000 1.000
#> GSM149177     2  0.4690     0.7470 0.100 0.900
#> GSM149178     2  0.2423     0.8076 0.040 0.960
#> GSM149179     2  0.0000     0.8324 0.000 1.000
#> GSM149180     2  0.0376     0.8333 0.004 0.996
#> GSM149181     2  0.0376     0.8314 0.004 0.996
#> GSM149182     2  0.0672     0.8336 0.008 0.992
#> GSM149183     2  0.0376     0.8314 0.004 0.996
#> GSM149184     2  0.0376     0.8314 0.004 0.996
#> GSM149185     2  0.0376     0.8314 0.004 0.996
#> GSM149186     2  0.0376     0.8314 0.004 0.996
#> GSM149187     2  0.0672     0.8336 0.008 0.992
#> GSM149188     2  0.0376     0.8314 0.004 0.996
#> GSM149189     2  0.0938     0.8241 0.012 0.988
#> GSM149190     2  0.0672     0.8336 0.008 0.992
#> GSM149191     2  0.0376     0.8314 0.004 0.996
#> GSM149192     2  0.0376     0.8314 0.004 0.996
#> GSM149193     2  0.0376     0.8314 0.004 0.996
#> GSM149194     2  0.0672     0.8336 0.008 0.992
#> GSM149195     1  0.8207     0.7047 0.744 0.256
#> GSM149196     2  0.0376     0.8314 0.004 0.996
#> GSM149197     2  0.0672     0.8336 0.008 0.992
#> GSM149198     2  0.9732     0.3794 0.404 0.596
#> GSM149199     2  0.0672     0.8336 0.008 0.992
#> GSM149200     2  0.0376     0.8314 0.004 0.996
#> GSM149201     2  0.0376     0.8333 0.004 0.996
#> GSM149202     2  0.0376     0.8314 0.004 0.996
#> GSM149203     2  0.0938     0.8282 0.012 0.988

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0747      1.000 0.000 0.016 0.984
#> GSM149100     3  0.0747      1.000 0.000 0.016 0.984
#> GSM149101     3  0.0747      1.000 0.000 0.016 0.984
#> GSM149102     3  0.0747      1.000 0.000 0.016 0.984
#> GSM149103     3  0.0747      1.000 0.000 0.016 0.984
#> GSM149104     3  0.0747      1.000 0.000 0.016 0.984
#> GSM149105     3  0.0747      1.000 0.000 0.016 0.984
#> GSM149106     3  0.0747      1.000 0.000 0.016 0.984
#> GSM149107     3  0.0747      1.000 0.000 0.016 0.984
#> GSM149108     3  0.0747      1.000 0.000 0.016 0.984
#> GSM149109     3  0.0747      1.000 0.000 0.016 0.984
#> GSM149110     3  0.0747      1.000 0.000 0.016 0.984
#> GSM149111     3  0.0747      1.000 0.000 0.016 0.984
#> GSM149112     3  0.0747      1.000 0.000 0.016 0.984
#> GSM149113     3  0.0747      1.000 0.000 0.016 0.984
#> GSM149114     3  0.0747      1.000 0.000 0.016 0.984
#> GSM149115     1  0.0475      0.819 0.992 0.004 0.004
#> GSM149116     1  0.4033      0.809 0.856 0.008 0.136
#> GSM149117     1  0.3030      0.825 0.904 0.092 0.004
#> GSM149118     1  0.4033      0.809 0.856 0.008 0.136
#> GSM149119     1  0.4033      0.809 0.856 0.008 0.136
#> GSM149120     1  0.4033      0.809 0.856 0.008 0.136
#> GSM149121     1  0.0424      0.817 0.992 0.000 0.008
#> GSM149122     1  0.4033      0.809 0.856 0.008 0.136
#> GSM149123     1  0.4033      0.809 0.856 0.008 0.136
#> GSM149124     1  0.4033      0.809 0.856 0.008 0.136
#> GSM149125     1  0.4033      0.809 0.856 0.008 0.136
#> GSM149126     1  0.4033      0.809 0.856 0.008 0.136
#> GSM149127     1  0.4033      0.809 0.856 0.008 0.136
#> GSM149128     1  0.4033      0.809 0.856 0.008 0.136
#> GSM149129     1  0.4033      0.809 0.856 0.008 0.136
#> GSM149130     1  0.0424      0.820 0.992 0.008 0.000
#> GSM149131     1  0.0237      0.819 0.996 0.004 0.000
#> GSM149132     1  0.4033      0.809 0.856 0.008 0.136
#> GSM149133     1  0.3454      0.816 0.888 0.008 0.104
#> GSM149134     1  0.2866      0.826 0.916 0.076 0.008
#> GSM149135     1  0.4575      0.798 0.812 0.184 0.004
#> GSM149136     1  0.4575      0.798 0.812 0.184 0.004
#> GSM149137     1  0.4110      0.810 0.844 0.152 0.004
#> GSM149138     1  0.4700      0.796 0.812 0.180 0.008
#> GSM149139     1  0.4575      0.798 0.812 0.184 0.004
#> GSM149140     1  0.4575      0.798 0.812 0.184 0.004
#> GSM149141     2  0.5285      0.648 0.244 0.752 0.004
#> GSM149142     2  0.3112      0.897 0.096 0.900 0.004
#> GSM149143     2  0.4755      0.764 0.184 0.808 0.008
#> GSM149144     2  0.1453      0.966 0.024 0.968 0.008
#> GSM149145     2  0.1878      0.949 0.044 0.952 0.004
#> GSM149146     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149147     1  0.4575      0.798 0.812 0.184 0.004
#> GSM149148     1  0.4575      0.798 0.812 0.184 0.004
#> GSM149149     1  0.4575      0.798 0.812 0.184 0.004
#> GSM149150     2  0.0424      0.980 0.008 0.992 0.000
#> GSM149151     1  0.4575      0.798 0.812 0.184 0.004
#> GSM149152     1  0.2774      0.829 0.920 0.072 0.008
#> GSM149153     2  0.1878      0.949 0.044 0.952 0.004
#> GSM149154     1  0.5678      0.794 0.776 0.192 0.032
#> GSM149155     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149156     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149157     2  0.0237      0.981 0.000 0.996 0.004
#> GSM149158     2  0.0983      0.973 0.016 0.980 0.004
#> GSM149159     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149160     2  0.0983      0.973 0.016 0.980 0.004
#> GSM149161     2  0.0983      0.973 0.016 0.980 0.004
#> GSM149162     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149163     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149164     2  0.1585      0.965 0.028 0.964 0.008
#> GSM149165     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149166     2  0.0237      0.981 0.004 0.996 0.000
#> GSM149167     2  0.0983      0.973 0.016 0.980 0.004
#> GSM149168     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149169     2  0.1267      0.968 0.024 0.972 0.004
#> GSM149170     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149171     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149172     2  0.0237      0.980 0.000 0.996 0.004
#> GSM149173     2  0.0237      0.980 0.004 0.996 0.000
#> GSM149174     2  0.0983      0.973 0.016 0.980 0.004
#> GSM149175     1  0.7528      0.671 0.648 0.280 0.072
#> GSM149176     2  0.0237      0.981 0.004 0.996 0.000
#> GSM149177     2  0.0237      0.981 0.004 0.996 0.000
#> GSM149178     2  0.0424      0.980 0.008 0.992 0.000
#> GSM149179     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149180     2  0.0237      0.980 0.004 0.996 0.000
#> GSM149181     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149182     2  0.0237      0.980 0.004 0.996 0.000
#> GSM149183     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149184     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149185     2  0.0237      0.980 0.004 0.996 0.000
#> GSM149186     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149187     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149188     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149189     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149190     2  0.0475      0.979 0.004 0.992 0.004
#> GSM149191     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149192     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149193     2  0.0237      0.980 0.004 0.996 0.000
#> GSM149194     2  0.0983      0.973 0.016 0.980 0.004
#> GSM149195     3  0.0983      0.996 0.004 0.016 0.980
#> GSM149196     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149197     2  0.0237      0.981 0.004 0.996 0.000
#> GSM149198     1  0.4912      0.780 0.796 0.196 0.008
#> GSM149199     2  0.0000      0.982 0.000 1.000 0.000
#> GSM149200     2  0.0237      0.980 0.004 0.996 0.000
#> GSM149201     2  0.0237      0.980 0.004 0.996 0.000
#> GSM149202     2  0.0237      0.980 0.004 0.996 0.000
#> GSM149203     2  0.0237      0.980 0.000 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.0000     0.9813 0.000 0.000 1.000 0.000
#> GSM149100     3  0.0188     0.9813 0.004 0.000 0.996 0.000
#> GSM149101     3  0.0336     0.9810 0.008 0.000 0.992 0.000
#> GSM149102     3  0.0336     0.9810 0.008 0.000 0.992 0.000
#> GSM149103     3  0.0469     0.9728 0.012 0.000 0.988 0.000
#> GSM149104     3  0.0188     0.9813 0.004 0.000 0.996 0.000
#> GSM149105     3  0.0000     0.9813 0.000 0.000 1.000 0.000
#> GSM149106     3  0.0376     0.9788 0.004 0.000 0.992 0.004
#> GSM149107     3  0.0336     0.9810 0.008 0.000 0.992 0.000
#> GSM149108     3  0.0336     0.9810 0.008 0.000 0.992 0.000
#> GSM149109     3  0.0000     0.9813 0.000 0.000 1.000 0.000
#> GSM149110     3  0.0000     0.9813 0.000 0.000 1.000 0.000
#> GSM149111     3  0.0000     0.9813 0.000 0.000 1.000 0.000
#> GSM149112     3  0.0000     0.9813 0.000 0.000 1.000 0.000
#> GSM149113     3  0.0188     0.9812 0.004 0.000 0.996 0.000
#> GSM149114     3  0.0336     0.9810 0.008 0.000 0.992 0.000
#> GSM149115     4  0.4730     0.2883 0.364 0.000 0.000 0.636
#> GSM149116     4  0.1118     0.9526 0.000 0.000 0.036 0.964
#> GSM149117     1  0.6548     0.5961 0.608 0.116 0.000 0.276
#> GSM149118     4  0.1118     0.9526 0.000 0.000 0.036 0.964
#> GSM149119     4  0.1118     0.9526 0.000 0.000 0.036 0.964
#> GSM149120     4  0.1118     0.9526 0.000 0.000 0.036 0.964
#> GSM149121     4  0.3444     0.6970 0.184 0.000 0.000 0.816
#> GSM149122     4  0.1118     0.9526 0.000 0.000 0.036 0.964
#> GSM149123     4  0.1118     0.9526 0.000 0.000 0.036 0.964
#> GSM149124     4  0.1118     0.9526 0.000 0.000 0.036 0.964
#> GSM149125     4  0.1118     0.9526 0.000 0.000 0.036 0.964
#> GSM149126     4  0.1118     0.9526 0.000 0.000 0.036 0.964
#> GSM149127     4  0.1118     0.9526 0.000 0.000 0.036 0.964
#> GSM149128     4  0.1118     0.9526 0.000 0.000 0.036 0.964
#> GSM149129     4  0.1118     0.9526 0.000 0.000 0.036 0.964
#> GSM149130     1  0.4907     0.4144 0.580 0.000 0.000 0.420
#> GSM149131     1  0.4925     0.3937 0.572 0.000 0.000 0.428
#> GSM149132     4  0.1118     0.9526 0.000 0.000 0.036 0.964
#> GSM149133     4  0.1118     0.9526 0.000 0.000 0.036 0.964
#> GSM149134     1  0.3942     0.6691 0.764 0.000 0.000 0.236
#> GSM149135     1  0.4974     0.7055 0.736 0.040 0.000 0.224
#> GSM149136     1  0.4974     0.7055 0.736 0.040 0.000 0.224
#> GSM149137     1  0.4974     0.7055 0.736 0.040 0.000 0.224
#> GSM149138     1  0.3764     0.6912 0.816 0.012 0.000 0.172
#> GSM149139     1  0.4974     0.7055 0.736 0.040 0.000 0.224
#> GSM149140     1  0.4974     0.7055 0.736 0.040 0.000 0.224
#> GSM149141     1  0.4775     0.4462 0.740 0.232 0.000 0.028
#> GSM149142     1  0.4655     0.4811 0.684 0.312 0.000 0.004
#> GSM149143     1  0.4238     0.5373 0.796 0.176 0.000 0.028
#> GSM149144     2  0.4175     0.7206 0.212 0.776 0.000 0.012
#> GSM149145     1  0.5279    -0.0347 0.588 0.400 0.000 0.012
#> GSM149146     2  0.1109     0.8334 0.028 0.968 0.000 0.004
#> GSM149147     1  0.4904     0.7067 0.744 0.040 0.000 0.216
#> GSM149148     1  0.4974     0.7055 0.736 0.040 0.000 0.224
#> GSM149149     1  0.4974     0.7055 0.736 0.040 0.000 0.224
#> GSM149150     2  0.4095     0.8083 0.192 0.792 0.000 0.016
#> GSM149151     1  0.4793     0.7066 0.756 0.040 0.000 0.204
#> GSM149152     1  0.4831     0.6463 0.704 0.016 0.000 0.280
#> GSM149153     1  0.5279    -0.0347 0.588 0.400 0.000 0.012
#> GSM149154     1  0.4673     0.6769 0.796 0.032 0.016 0.156
#> GSM149155     2  0.1545     0.8292 0.040 0.952 0.000 0.008
#> GSM149156     2  0.1661     0.8309 0.052 0.944 0.000 0.004
#> GSM149157     2  0.3870     0.7441 0.208 0.788 0.000 0.004
#> GSM149158     2  0.4401     0.6414 0.272 0.724 0.000 0.004
#> GSM149159     2  0.3494     0.8142 0.172 0.824 0.000 0.004
#> GSM149160     2  0.4509     0.6368 0.288 0.708 0.000 0.004
#> GSM149161     2  0.4053     0.7022 0.228 0.768 0.000 0.004
#> GSM149162     2  0.1635     0.8296 0.044 0.948 0.000 0.008
#> GSM149163     2  0.1545     0.8292 0.040 0.952 0.000 0.008
#> GSM149164     1  0.5780    -0.4073 0.496 0.476 0.000 0.028
#> GSM149165     2  0.1807     0.8412 0.052 0.940 0.000 0.008
#> GSM149166     2  0.2480     0.8207 0.088 0.904 0.000 0.008
#> GSM149167     2  0.4608     0.5886 0.304 0.692 0.000 0.004
#> GSM149168     2  0.3895     0.8059 0.184 0.804 0.000 0.012
#> GSM149169     2  0.4920     0.4425 0.368 0.628 0.000 0.004
#> GSM149170     2  0.3808     0.8072 0.176 0.812 0.000 0.012
#> GSM149171     2  0.4059     0.7960 0.200 0.788 0.000 0.012
#> GSM149172     2  0.4387     0.7830 0.236 0.752 0.000 0.012
#> GSM149173     2  0.4253     0.7879 0.208 0.776 0.000 0.016
#> GSM149174     2  0.4539     0.6405 0.272 0.720 0.000 0.008
#> GSM149175     1  0.5271     0.5821 0.768 0.144 0.012 0.076
#> GSM149176     2  0.2859     0.8330 0.112 0.880 0.000 0.008
#> GSM149177     2  0.3937     0.8077 0.188 0.800 0.000 0.012
#> GSM149178     2  0.4838     0.7663 0.252 0.724 0.000 0.024
#> GSM149179     2  0.2124     0.8413 0.068 0.924 0.000 0.008
#> GSM149180     2  0.3447     0.8261 0.128 0.852 0.000 0.020
#> GSM149181     2  0.3047     0.8271 0.116 0.872 0.000 0.012
#> GSM149182     2  0.1576     0.8322 0.048 0.948 0.000 0.004
#> GSM149183     2  0.0817     0.8388 0.024 0.976 0.000 0.000
#> GSM149184     2  0.3161     0.8267 0.124 0.864 0.000 0.012
#> GSM149185     2  0.3937     0.8033 0.188 0.800 0.000 0.012
#> GSM149186     2  0.1807     0.8426 0.052 0.940 0.000 0.008
#> GSM149187     2  0.1661     0.8309 0.052 0.944 0.000 0.004
#> GSM149188     2  0.0779     0.8392 0.016 0.980 0.000 0.004
#> GSM149189     2  0.4059     0.7977 0.200 0.788 0.000 0.012
#> GSM149190     2  0.3583     0.7518 0.180 0.816 0.000 0.004
#> GSM149191     2  0.4399     0.7985 0.224 0.760 0.000 0.016
#> GSM149192     2  0.0707     0.8408 0.020 0.980 0.000 0.000
#> GSM149193     2  0.1824     0.8400 0.060 0.936 0.000 0.004
#> GSM149194     2  0.4401     0.6525 0.272 0.724 0.000 0.004
#> GSM149195     3  0.4939     0.7344 0.188 0.024 0.768 0.020
#> GSM149196     2  0.3047     0.8303 0.116 0.872 0.000 0.012
#> GSM149197     2  0.1661     0.8309 0.052 0.944 0.000 0.004
#> GSM149198     1  0.3080     0.6523 0.880 0.024 0.000 0.096
#> GSM149199     2  0.1635     0.8296 0.044 0.948 0.000 0.008
#> GSM149200     2  0.3895     0.8036 0.184 0.804 0.000 0.012
#> GSM149201     2  0.1109     0.8324 0.028 0.968 0.000 0.004
#> GSM149202     2  0.3937     0.8022 0.188 0.800 0.000 0.012
#> GSM149203     2  0.4098     0.7989 0.204 0.784 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0807    0.98395 0.012 0.000 0.976 0.000 0.012
#> GSM149100     3  0.0912    0.98416 0.012 0.000 0.972 0.000 0.016
#> GSM149101     3  0.0566    0.98446 0.004 0.000 0.984 0.000 0.012
#> GSM149102     3  0.0566    0.98446 0.004 0.000 0.984 0.000 0.012
#> GSM149103     3  0.1310    0.96389 0.024 0.000 0.956 0.000 0.020
#> GSM149104     3  0.0451    0.98484 0.004 0.000 0.988 0.000 0.008
#> GSM149105     3  0.0579    0.98453 0.008 0.000 0.984 0.000 0.008
#> GSM149106     3  0.1211    0.96914 0.024 0.000 0.960 0.000 0.016
#> GSM149107     3  0.0566    0.98446 0.004 0.000 0.984 0.000 0.012
#> GSM149108     3  0.0566    0.98446 0.004 0.000 0.984 0.000 0.012
#> GSM149109     3  0.0693    0.98374 0.008 0.000 0.980 0.000 0.012
#> GSM149110     3  0.0693    0.98374 0.008 0.000 0.980 0.000 0.012
#> GSM149111     3  0.0579    0.98453 0.008 0.000 0.984 0.000 0.008
#> GSM149112     3  0.0693    0.98374 0.008 0.000 0.980 0.000 0.012
#> GSM149113     3  0.0451    0.98351 0.008 0.000 0.988 0.000 0.004
#> GSM149114     3  0.0579    0.98348 0.008 0.000 0.984 0.000 0.008
#> GSM149115     1  0.5538    0.31320 0.504 0.000 0.000 0.428 0.068
#> GSM149116     4  0.1278    0.94131 0.004 0.000 0.016 0.960 0.020
#> GSM149117     1  0.6796    0.62515 0.612 0.124 0.000 0.128 0.136
#> GSM149118     4  0.1179    0.94321 0.004 0.000 0.016 0.964 0.016
#> GSM149119     4  0.0510    0.94837 0.000 0.000 0.016 0.984 0.000
#> GSM149120     4  0.1074    0.94447 0.004 0.000 0.016 0.968 0.012
#> GSM149121     4  0.6025   -0.01234 0.384 0.000 0.000 0.496 0.120
#> GSM149122     4  0.0510    0.94837 0.000 0.000 0.016 0.984 0.000
#> GSM149123     4  0.0671    0.94869 0.000 0.000 0.016 0.980 0.004
#> GSM149124     4  0.1461    0.93658 0.004 0.000 0.016 0.952 0.028
#> GSM149125     4  0.0510    0.94837 0.000 0.000 0.016 0.984 0.000
#> GSM149126     4  0.0671    0.94869 0.000 0.000 0.016 0.980 0.004
#> GSM149127     4  0.0510    0.94837 0.000 0.000 0.016 0.984 0.000
#> GSM149128     4  0.0671    0.94869 0.000 0.000 0.016 0.980 0.004
#> GSM149129     4  0.0671    0.94869 0.000 0.000 0.016 0.980 0.004
#> GSM149130     1  0.5088    0.68122 0.668 0.000 0.000 0.252 0.080
#> GSM149131     1  0.4645    0.68776 0.688 0.000 0.000 0.268 0.044
#> GSM149132     4  0.0671    0.94869 0.000 0.000 0.016 0.980 0.004
#> GSM149133     4  0.2266    0.90744 0.008 0.000 0.016 0.912 0.064
#> GSM149134     1  0.4467    0.71744 0.752 0.000 0.000 0.084 0.164
#> GSM149135     1  0.3124    0.81388 0.844 0.016 0.000 0.136 0.004
#> GSM149136     1  0.3247    0.81449 0.840 0.016 0.000 0.136 0.008
#> GSM149137     1  0.3312    0.80831 0.840 0.012 0.000 0.132 0.016
#> GSM149138     1  0.4315    0.72701 0.772 0.004 0.000 0.068 0.156
#> GSM149139     1  0.3247    0.81449 0.840 0.016 0.000 0.136 0.008
#> GSM149140     1  0.3247    0.81449 0.840 0.016 0.000 0.136 0.008
#> GSM149141     5  0.4897    0.37415 0.352 0.028 0.000 0.004 0.616
#> GSM149142     1  0.6073   -0.00104 0.496 0.392 0.000 0.004 0.108
#> GSM149143     5  0.5636    0.24148 0.416 0.044 0.000 0.016 0.524
#> GSM149144     2  0.3209    0.64182 0.076 0.860 0.000 0.004 0.060
#> GSM149145     5  0.5516    0.51662 0.296 0.096 0.000 0.000 0.608
#> GSM149146     2  0.1697    0.67291 0.008 0.932 0.000 0.000 0.060
#> GSM149147     1  0.3312    0.81323 0.840 0.016 0.000 0.132 0.012
#> GSM149148     1  0.3247    0.81449 0.840 0.016 0.000 0.136 0.008
#> GSM149149     1  0.3247    0.81449 0.840 0.016 0.000 0.136 0.008
#> GSM149150     2  0.5815    0.03592 0.104 0.540 0.000 0.000 0.356
#> GSM149151     1  0.3218    0.81210 0.848 0.016 0.000 0.124 0.012
#> GSM149152     1  0.4827    0.75524 0.724 0.000 0.000 0.160 0.116
#> GSM149153     5  0.5516    0.51662 0.296 0.096 0.000 0.000 0.608
#> GSM149154     1  0.5868    0.26324 0.516 0.000 0.004 0.088 0.392
#> GSM149155     2  0.0324    0.68334 0.004 0.992 0.000 0.000 0.004
#> GSM149156     2  0.2610    0.67414 0.028 0.892 0.000 0.004 0.076
#> GSM149157     2  0.5855    0.44239 0.148 0.616 0.000 0.004 0.232
#> GSM149158     2  0.5332    0.53553 0.196 0.680 0.000 0.004 0.120
#> GSM149159     5  0.4613    0.54710 0.020 0.360 0.000 0.000 0.620
#> GSM149160     2  0.6130    0.41423 0.196 0.584 0.000 0.004 0.216
#> GSM149161     2  0.5063    0.56203 0.164 0.712 0.000 0.004 0.120
#> GSM149162     2  0.1179    0.68428 0.016 0.964 0.000 0.004 0.016
#> GSM149163     2  0.0727    0.68370 0.012 0.980 0.000 0.004 0.004
#> GSM149164     5  0.6056    0.40072 0.208 0.164 0.000 0.012 0.616
#> GSM149165     2  0.3779    0.49265 0.012 0.752 0.000 0.000 0.236
#> GSM149166     2  0.1740    0.68004 0.012 0.932 0.000 0.000 0.056
#> GSM149167     2  0.5652    0.50561 0.212 0.644 0.000 0.004 0.140
#> GSM149168     5  0.4252    0.58076 0.008 0.340 0.000 0.000 0.652
#> GSM149169     2  0.5823    0.45807 0.252 0.612 0.000 0.004 0.132
#> GSM149170     5  0.4299    0.54595 0.004 0.388 0.000 0.000 0.608
#> GSM149171     5  0.3949    0.61507 0.004 0.300 0.000 0.000 0.696
#> GSM149172     5  0.3519    0.63165 0.008 0.216 0.000 0.000 0.776
#> GSM149173     5  0.4109    0.60457 0.012 0.288 0.000 0.000 0.700
#> GSM149174     2  0.5289    0.53230 0.196 0.684 0.000 0.004 0.116
#> GSM149175     5  0.4962    0.37241 0.316 0.020 0.004 0.012 0.648
#> GSM149176     2  0.3821    0.56245 0.020 0.764 0.000 0.000 0.216
#> GSM149177     2  0.5733   -0.14509 0.084 0.476 0.000 0.000 0.440
#> GSM149178     5  0.4656    0.57123 0.036 0.268 0.000 0.004 0.692
#> GSM149179     2  0.2843    0.63037 0.008 0.848 0.000 0.000 0.144
#> GSM149180     2  0.4309    0.35574 0.016 0.676 0.000 0.000 0.308
#> GSM149181     2  0.4527    0.10500 0.012 0.596 0.000 0.000 0.392
#> GSM149182     2  0.1628    0.67362 0.008 0.936 0.000 0.000 0.056
#> GSM149183     2  0.2136    0.66969 0.008 0.904 0.000 0.000 0.088
#> GSM149184     2  0.4957   -0.02712 0.028 0.528 0.000 0.000 0.444
#> GSM149185     5  0.4392    0.55348 0.008 0.380 0.000 0.000 0.612
#> GSM149186     2  0.3563    0.57403 0.012 0.780 0.000 0.000 0.208
#> GSM149187     2  0.2284    0.68019 0.028 0.912 0.000 0.004 0.056
#> GSM149188     2  0.2462    0.64430 0.008 0.880 0.000 0.000 0.112
#> GSM149189     5  0.4127    0.60987 0.008 0.312 0.000 0.000 0.680
#> GSM149190     2  0.4220    0.61829 0.116 0.788 0.000 0.004 0.092
#> GSM149191     5  0.4874    0.53176 0.040 0.328 0.000 0.000 0.632
#> GSM149192     2  0.2909    0.65593 0.012 0.848 0.000 0.000 0.140
#> GSM149193     2  0.2798    0.62212 0.008 0.852 0.000 0.000 0.140
#> GSM149194     2  0.6079    0.43267 0.196 0.592 0.000 0.004 0.208
#> GSM149195     5  0.4668    0.22860 0.024 0.000 0.352 0.000 0.624
#> GSM149196     2  0.4917    0.05048 0.028 0.556 0.000 0.000 0.416
#> GSM149197     2  0.2284    0.67981 0.028 0.912 0.000 0.004 0.056
#> GSM149198     1  0.4201    0.69913 0.752 0.000 0.000 0.044 0.204
#> GSM149199     2  0.2053    0.68157 0.024 0.924 0.000 0.004 0.048
#> GSM149200     5  0.4299    0.54511 0.004 0.388 0.000 0.000 0.608
#> GSM149201     2  0.1282    0.67657 0.004 0.952 0.000 0.000 0.044
#> GSM149202     5  0.4403    0.54865 0.008 0.384 0.000 0.000 0.608
#> GSM149203     5  0.3756    0.62965 0.008 0.248 0.000 0.000 0.744

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM149099     3  0.1082    0.94576 0.004 0.000 0.956 0.000 0.000 NA
#> GSM149100     3  0.1500    0.94881 0.000 0.000 0.936 0.000 0.012 NA
#> GSM149101     3  0.1391    0.94887 0.000 0.000 0.944 0.000 0.016 NA
#> GSM149102     3  0.1391    0.94887 0.000 0.000 0.944 0.000 0.016 NA
#> GSM149103     3  0.3129    0.85726 0.004 0.000 0.820 0.000 0.024 NA
#> GSM149104     3  0.1390    0.94996 0.004 0.000 0.948 0.000 0.016 NA
#> GSM149105     3  0.0291    0.95016 0.000 0.000 0.992 0.000 0.004 NA
#> GSM149106     3  0.2744    0.89420 0.000 0.000 0.840 0.000 0.016 NA
#> GSM149107     3  0.2011    0.94346 0.004 0.000 0.912 0.000 0.020 NA
#> GSM149108     3  0.2126    0.94734 0.004 0.000 0.904 0.000 0.020 NA
#> GSM149109     3  0.1082    0.94576 0.004 0.000 0.956 0.000 0.000 NA
#> GSM149110     3  0.1082    0.94576 0.004 0.000 0.956 0.000 0.000 NA
#> GSM149111     3  0.0291    0.95016 0.000 0.000 0.992 0.000 0.004 NA
#> GSM149112     3  0.1082    0.94576 0.004 0.000 0.956 0.000 0.000 NA
#> GSM149113     3  0.1863    0.93850 0.004 0.000 0.920 0.000 0.016 NA
#> GSM149114     3  0.2373    0.93528 0.004 0.000 0.888 0.000 0.024 NA
#> GSM149115     1  0.5599    0.52065 0.564 0.000 0.000 0.276 0.008 NA
#> GSM149116     4  0.1610    0.93733 0.000 0.000 0.000 0.916 0.000 NA
#> GSM149117     1  0.6543    0.49138 0.472 0.100 0.000 0.028 0.036 NA
#> GSM149118     4  0.1075    0.95506 0.000 0.000 0.000 0.952 0.000 NA
#> GSM149119     4  0.0146    0.96979 0.000 0.000 0.000 0.996 0.000 NA
#> GSM149120     4  0.1007    0.95796 0.000 0.000 0.000 0.956 0.000 NA
#> GSM149121     1  0.6267    0.23656 0.396 0.000 0.000 0.368 0.012 NA
#> GSM149122     4  0.0146    0.96979 0.000 0.000 0.000 0.996 0.000 NA
#> GSM149123     4  0.0000    0.97027 0.000 0.000 0.000 1.000 0.000 NA
#> GSM149124     4  0.1910    0.92066 0.000 0.000 0.000 0.892 0.000 NA
#> GSM149125     4  0.0260    0.96941 0.000 0.000 0.000 0.992 0.000 NA
#> GSM149126     4  0.0000    0.97027 0.000 0.000 0.000 1.000 0.000 NA
#> GSM149127     4  0.0146    0.96979 0.000 0.000 0.000 0.996 0.000 NA
#> GSM149128     4  0.0000    0.97027 0.000 0.000 0.000 1.000 0.000 NA
#> GSM149129     4  0.0000    0.97027 0.000 0.000 0.000 1.000 0.000 NA
#> GSM149130     1  0.4909    0.69148 0.680 0.000 0.000 0.144 0.008 NA
#> GSM149131     1  0.3874    0.73286 0.776 0.000 0.000 0.156 0.008 NA
#> GSM149132     4  0.0000    0.97027 0.000 0.000 0.000 1.000 0.000 NA
#> GSM149133     4  0.2553    0.87823 0.000 0.000 0.000 0.848 0.008 NA
#> GSM149134     1  0.4748    0.66755 0.684 0.000 0.000 0.036 0.040 NA
#> GSM149135     1  0.1901    0.78520 0.912 0.004 0.000 0.076 0.000 NA
#> GSM149136     1  0.1788    0.78559 0.916 0.004 0.000 0.076 0.000 NA
#> GSM149137     1  0.2487    0.78152 0.888 0.004 0.000 0.076 0.004 NA
#> GSM149138     1  0.4620    0.67118 0.704 0.000 0.000 0.032 0.044 NA
#> GSM149139     1  0.1644    0.78581 0.920 0.004 0.000 0.076 0.000 NA
#> GSM149140     1  0.1644    0.78581 0.920 0.004 0.000 0.076 0.000 NA
#> GSM149141     5  0.5497    0.50818 0.208 0.012 0.000 0.000 0.608 NA
#> GSM149142     1  0.6140   -0.16652 0.432 0.404 0.000 0.000 0.028 NA
#> GSM149143     5  0.6207    0.24168 0.340 0.016 0.000 0.000 0.448 NA
#> GSM149144     2  0.2101    0.68250 0.052 0.912 0.000 0.000 0.008 NA
#> GSM149145     5  0.5582    0.51978 0.220 0.020 0.000 0.000 0.608 NA
#> GSM149146     2  0.3525    0.62967 0.008 0.816 0.000 0.000 0.096 NA
#> GSM149147     1  0.1644    0.78581 0.920 0.004 0.000 0.076 0.000 NA
#> GSM149148     1  0.1644    0.78581 0.920 0.004 0.000 0.076 0.000 NA
#> GSM149149     1  0.1644    0.78581 0.920 0.004 0.000 0.076 0.000 NA
#> GSM149150     2  0.6805   -0.13003 0.104 0.404 0.000 0.000 0.376 NA
#> GSM149151     1  0.1769    0.78119 0.924 0.004 0.000 0.060 0.000 NA
#> GSM149152     1  0.5413    0.68364 0.636 0.000 0.000 0.080 0.044 NA
#> GSM149153     5  0.5582    0.51978 0.220 0.020 0.000 0.000 0.608 NA
#> GSM149154     1  0.6287   -0.00369 0.448 0.004 0.000 0.044 0.396 NA
#> GSM149155     2  0.0603    0.68813 0.000 0.980 0.000 0.000 0.004 NA
#> GSM149156     2  0.2981    0.66999 0.016 0.848 0.000 0.000 0.020 NA
#> GSM149157     2  0.6027    0.52661 0.112 0.620 0.000 0.000 0.128 NA
#> GSM149158     2  0.5600    0.56263 0.184 0.636 0.000 0.000 0.040 NA
#> GSM149159     5  0.3715    0.63059 0.000 0.188 0.000 0.000 0.764 NA
#> GSM149160     2  0.6286    0.50609 0.196 0.576 0.000 0.000 0.088 NA
#> GSM149161     2  0.5260    0.58970 0.148 0.676 0.000 0.000 0.036 NA
#> GSM149162     2  0.0653    0.69151 0.004 0.980 0.000 0.000 0.004 NA
#> GSM149163     2  0.0436    0.69083 0.004 0.988 0.000 0.000 0.004 NA
#> GSM149164     5  0.7197    0.26127 0.136 0.148 0.000 0.000 0.360 NA
#> GSM149165     2  0.5293    0.28039 0.004 0.568 0.000 0.000 0.320 NA
#> GSM149166     2  0.2209    0.67742 0.024 0.900 0.000 0.000 0.004 NA
#> GSM149167     2  0.6095    0.52741 0.192 0.584 0.000 0.000 0.056 NA
#> GSM149168     5  0.2703    0.65648 0.000 0.172 0.000 0.000 0.824 NA
#> GSM149169     2  0.5868    0.52324 0.228 0.592 0.000 0.000 0.040 NA
#> GSM149170     5  0.3014    0.64809 0.000 0.184 0.000 0.000 0.804 NA
#> GSM149171     5  0.2263    0.68143 0.000 0.100 0.000 0.000 0.884 NA
#> GSM149172     5  0.2910    0.67826 0.000 0.068 0.000 0.000 0.852 NA
#> GSM149173     5  0.2702    0.67956 0.004 0.092 0.000 0.000 0.868 NA
#> GSM149174     2  0.5564    0.56060 0.188 0.636 0.000 0.000 0.036 NA
#> GSM149175     5  0.5329    0.52835 0.180 0.012 0.000 0.004 0.648 NA
#> GSM149176     2  0.5423    0.46660 0.020 0.632 0.000 0.000 0.204 NA
#> GSM149177     5  0.7016    0.33583 0.072 0.272 0.000 0.000 0.404 NA
#> GSM149178     5  0.5242    0.62599 0.036 0.076 0.000 0.000 0.648 NA
#> GSM149179     2  0.4468    0.52992 0.008 0.712 0.000 0.000 0.204 NA
#> GSM149180     2  0.5216    0.33648 0.012 0.600 0.000 0.000 0.300 NA
#> GSM149181     5  0.4962    0.19302 0.000 0.416 0.000 0.000 0.516 NA
#> GSM149182     2  0.2905    0.64702 0.000 0.852 0.000 0.000 0.084 NA
#> GSM149183     2  0.2843    0.64567 0.000 0.848 0.000 0.000 0.116 NA
#> GSM149184     5  0.5882    0.18755 0.008 0.360 0.000 0.000 0.472 NA
#> GSM149185     5  0.3014    0.64809 0.000 0.184 0.000 0.000 0.804 NA
#> GSM149186     2  0.4460    0.43820 0.000 0.644 0.000 0.000 0.304 NA
#> GSM149187     2  0.2186    0.68866 0.012 0.908 0.000 0.000 0.024 NA
#> GSM149188     2  0.3892    0.56379 0.000 0.752 0.000 0.000 0.188 NA
#> GSM149189     5  0.3657    0.67766 0.000 0.100 0.000 0.000 0.792 NA
#> GSM149190     2  0.3647    0.65899 0.068 0.812 0.000 0.000 0.016 NA
#> GSM149191     5  0.5184    0.55175 0.012 0.188 0.000 0.000 0.652 NA
#> GSM149192     2  0.3930    0.57606 0.004 0.728 0.000 0.000 0.236 NA
#> GSM149193     2  0.3892    0.54558 0.000 0.740 0.000 0.000 0.212 NA
#> GSM149194     2  0.6327    0.50295 0.196 0.572 0.000 0.000 0.092 NA
#> GSM149195     5  0.5302    0.51372 0.020 0.000 0.160 0.000 0.652 NA
#> GSM149196     5  0.5819    0.20026 0.008 0.368 0.000 0.000 0.476 NA
#> GSM149197     2  0.2345    0.68576 0.016 0.896 0.000 0.000 0.016 NA
#> GSM149198     1  0.4801    0.64414 0.672 0.000 0.000 0.016 0.068 NA
#> GSM149199     2  0.1624    0.69097 0.012 0.936 0.000 0.000 0.008 NA
#> GSM149200     5  0.2980    0.65111 0.000 0.180 0.000 0.000 0.808 NA
#> GSM149201     2  0.2474    0.65720 0.000 0.880 0.000 0.000 0.080 NA
#> GSM149202     5  0.3189    0.64743 0.000 0.184 0.000 0.000 0.796 NA
#> GSM149203     5  0.3327    0.67434 0.000 0.088 0.000 0.000 0.820 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> CV:kmeans  87         2.02e-14 2
#> CV:kmeans 105         1.08e-27 3
#> CV:kmeans  96         7.41e-36 4
#> CV:kmeans  85         1.47e-27 5
#> CV:kmeans  90         5.07e-31 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.686           0.768       0.912         0.5021 0.495   0.495
#> 3 3 0.981           0.943       0.974         0.3143 0.766   0.562
#> 4 4 0.664           0.740       0.850         0.1244 0.864   0.628
#> 5 5 0.650           0.554       0.767         0.0763 0.873   0.567
#> 6 6 0.677           0.507       0.707         0.0400 0.933   0.694

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     1  0.0000     0.8770 1.000 0.000
#> GSM149100     1  0.0000     0.8770 1.000 0.000
#> GSM149101     1  0.0000     0.8770 1.000 0.000
#> GSM149102     1  0.0000     0.8770 1.000 0.000
#> GSM149103     1  0.0000     0.8770 1.000 0.000
#> GSM149104     1  0.0000     0.8770 1.000 0.000
#> GSM149105     1  0.0000     0.8770 1.000 0.000
#> GSM149106     1  0.0000     0.8770 1.000 0.000
#> GSM149107     1  0.0000     0.8770 1.000 0.000
#> GSM149108     1  0.0000     0.8770 1.000 0.000
#> GSM149109     1  0.0000     0.8770 1.000 0.000
#> GSM149110     1  0.0000     0.8770 1.000 0.000
#> GSM149111     1  0.0000     0.8770 1.000 0.000
#> GSM149112     1  0.0000     0.8770 1.000 0.000
#> GSM149113     1  0.0000     0.8770 1.000 0.000
#> GSM149114     1  0.0000     0.8770 1.000 0.000
#> GSM149115     1  0.2043     0.8592 0.968 0.032
#> GSM149116     1  0.0000     0.8770 1.000 0.000
#> GSM149117     1  0.9866     0.2987 0.568 0.432
#> GSM149118     1  0.0000     0.8770 1.000 0.000
#> GSM149119     1  0.0000     0.8770 1.000 0.000
#> GSM149120     1  0.0000     0.8770 1.000 0.000
#> GSM149121     1  0.0000     0.8770 1.000 0.000
#> GSM149122     1  0.0000     0.8770 1.000 0.000
#> GSM149123     1  0.0000     0.8770 1.000 0.000
#> GSM149124     1  0.0000     0.8770 1.000 0.000
#> GSM149125     1  0.0000     0.8770 1.000 0.000
#> GSM149126     1  0.0000     0.8770 1.000 0.000
#> GSM149127     1  0.0000     0.8770 1.000 0.000
#> GSM149128     1  0.0000     0.8770 1.000 0.000
#> GSM149129     1  0.0000     0.8770 1.000 0.000
#> GSM149130     1  0.3584     0.8356 0.932 0.068
#> GSM149131     1  0.5059     0.8012 0.888 0.112
#> GSM149132     1  0.0000     0.8770 1.000 0.000
#> GSM149133     1  0.0000     0.8770 1.000 0.000
#> GSM149134     1  0.8144     0.6427 0.748 0.252
#> GSM149135     1  0.9993     0.1675 0.516 0.484
#> GSM149136     2  0.9977    -0.0466 0.472 0.528
#> GSM149137     1  0.9944     0.2520 0.544 0.456
#> GSM149138     2  0.9970    -0.0311 0.468 0.532
#> GSM149139     1  0.9922     0.2736 0.552 0.448
#> GSM149140     2  0.9983    -0.0613 0.476 0.524
#> GSM149141     1  0.3584     0.8303 0.932 0.068
#> GSM149142     2  0.0000     0.9191 0.000 1.000
#> GSM149143     1  0.5178     0.7995 0.884 0.116
#> GSM149144     2  0.0000     0.9191 0.000 1.000
#> GSM149145     1  0.7219     0.7080 0.800 0.200
#> GSM149146     2  0.0000     0.9191 0.000 1.000
#> GSM149147     1  0.9944     0.2521 0.544 0.456
#> GSM149148     1  0.9988     0.1809 0.520 0.480
#> GSM149149     1  0.9710     0.3890 0.600 0.400
#> GSM149150     2  0.0000     0.9191 0.000 1.000
#> GSM149151     2  0.9996    -0.1047 0.488 0.512
#> GSM149152     1  0.0672     0.8728 0.992 0.008
#> GSM149153     1  0.9996     0.0929 0.512 0.488
#> GSM149154     1  0.0000     0.8770 1.000 0.000
#> GSM149155     2  0.0000     0.9191 0.000 1.000
#> GSM149156     2  0.0000     0.9191 0.000 1.000
#> GSM149157     2  0.0000     0.9191 0.000 1.000
#> GSM149158     2  0.0000     0.9191 0.000 1.000
#> GSM149159     2  0.0000     0.9191 0.000 1.000
#> GSM149160     2  0.0000     0.9191 0.000 1.000
#> GSM149161     2  0.0000     0.9191 0.000 1.000
#> GSM149162     2  0.0000     0.9191 0.000 1.000
#> GSM149163     2  0.0000     0.9191 0.000 1.000
#> GSM149164     2  0.3431     0.8630 0.064 0.936
#> GSM149165     2  0.0000     0.9191 0.000 1.000
#> GSM149166     2  0.0000     0.9191 0.000 1.000
#> GSM149167     2  0.0000     0.9191 0.000 1.000
#> GSM149168     2  0.0672     0.9126 0.008 0.992
#> GSM149169     2  0.0000     0.9191 0.000 1.000
#> GSM149170     2  0.1633     0.8985 0.024 0.976
#> GSM149171     2  0.9323     0.4214 0.348 0.652
#> GSM149172     1  0.9963     0.1141 0.536 0.464
#> GSM149173     2  0.3879     0.8482 0.076 0.924
#> GSM149174     2  0.0000     0.9191 0.000 1.000
#> GSM149175     1  0.0000     0.8770 1.000 0.000
#> GSM149176     2  0.0000     0.9191 0.000 1.000
#> GSM149177     1  0.9996     0.0753 0.512 0.488
#> GSM149178     2  0.9358     0.4160 0.352 0.648
#> GSM149179     2  0.0000     0.9191 0.000 1.000
#> GSM149180     2  0.0000     0.9191 0.000 1.000
#> GSM149181     2  0.0000     0.9191 0.000 1.000
#> GSM149182     2  0.0000     0.9191 0.000 1.000
#> GSM149183     2  0.0000     0.9191 0.000 1.000
#> GSM149184     2  0.0000     0.9191 0.000 1.000
#> GSM149185     2  0.0000     0.9191 0.000 1.000
#> GSM149186     2  0.0000     0.9191 0.000 1.000
#> GSM149187     2  0.0000     0.9191 0.000 1.000
#> GSM149188     2  0.0000     0.9191 0.000 1.000
#> GSM149189     2  0.8763     0.5258 0.296 0.704
#> GSM149190     2  0.0000     0.9191 0.000 1.000
#> GSM149191     2  0.0000     0.9191 0.000 1.000
#> GSM149192     2  0.0000     0.9191 0.000 1.000
#> GSM149193     2  0.0000     0.9191 0.000 1.000
#> GSM149194     2  0.0000     0.9191 0.000 1.000
#> GSM149195     1  0.0000     0.8770 1.000 0.000
#> GSM149196     2  0.0000     0.9191 0.000 1.000
#> GSM149197     2  0.0000     0.9191 0.000 1.000
#> GSM149198     1  0.8608     0.6003 0.716 0.284
#> GSM149199     2  0.0000     0.9191 0.000 1.000
#> GSM149200     2  0.0000     0.9191 0.000 1.000
#> GSM149201     2  0.0000     0.9191 0.000 1.000
#> GSM149202     2  0.0000     0.9191 0.000 1.000
#> GSM149203     2  0.9608     0.3362 0.384 0.616

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0000     0.9394 0.000 0.000 1.000
#> GSM149100     3  0.0000     0.9394 0.000 0.000 1.000
#> GSM149101     3  0.0000     0.9394 0.000 0.000 1.000
#> GSM149102     3  0.0000     0.9394 0.000 0.000 1.000
#> GSM149103     3  0.0000     0.9394 0.000 0.000 1.000
#> GSM149104     3  0.0000     0.9394 0.000 0.000 1.000
#> GSM149105     3  0.0000     0.9394 0.000 0.000 1.000
#> GSM149106     3  0.0000     0.9394 0.000 0.000 1.000
#> GSM149107     3  0.0000     0.9394 0.000 0.000 1.000
#> GSM149108     3  0.0000     0.9394 0.000 0.000 1.000
#> GSM149109     3  0.0000     0.9394 0.000 0.000 1.000
#> GSM149110     3  0.0000     0.9394 0.000 0.000 1.000
#> GSM149111     3  0.0000     0.9394 0.000 0.000 1.000
#> GSM149112     3  0.0000     0.9394 0.000 0.000 1.000
#> GSM149113     3  0.0000     0.9394 0.000 0.000 1.000
#> GSM149114     3  0.0000     0.9394 0.000 0.000 1.000
#> GSM149115     1  0.0000     0.9902 1.000 0.000 0.000
#> GSM149116     1  0.0424     0.9900 0.992 0.000 0.008
#> GSM149117     1  0.0237     0.9902 0.996 0.000 0.004
#> GSM149118     1  0.0424     0.9900 0.992 0.000 0.008
#> GSM149119     1  0.0424     0.9900 0.992 0.000 0.008
#> GSM149120     1  0.0424     0.9900 0.992 0.000 0.008
#> GSM149121     1  0.0237     0.9902 0.996 0.000 0.004
#> GSM149122     1  0.0424     0.9900 0.992 0.000 0.008
#> GSM149123     1  0.0424     0.9900 0.992 0.000 0.008
#> GSM149124     1  0.0424     0.9900 0.992 0.000 0.008
#> GSM149125     1  0.0424     0.9900 0.992 0.000 0.008
#> GSM149126     1  0.0424     0.9900 0.992 0.000 0.008
#> GSM149127     1  0.0424     0.9900 0.992 0.000 0.008
#> GSM149128     1  0.0424     0.9900 0.992 0.000 0.008
#> GSM149129     1  0.0424     0.9900 0.992 0.000 0.008
#> GSM149130     1  0.0000     0.9902 1.000 0.000 0.000
#> GSM149131     1  0.0000     0.9902 1.000 0.000 0.000
#> GSM149132     1  0.0424     0.9900 0.992 0.000 0.008
#> GSM149133     1  0.0424     0.9900 0.992 0.000 0.008
#> GSM149134     1  0.0000     0.9902 1.000 0.000 0.000
#> GSM149135     1  0.0000     0.9902 1.000 0.000 0.000
#> GSM149136     1  0.0000     0.9902 1.000 0.000 0.000
#> GSM149137     1  0.0000     0.9902 1.000 0.000 0.000
#> GSM149138     1  0.0000     0.9902 1.000 0.000 0.000
#> GSM149139     1  0.0000     0.9902 1.000 0.000 0.000
#> GSM149140     1  0.0000     0.9902 1.000 0.000 0.000
#> GSM149141     3  0.2625     0.8829 0.084 0.000 0.916
#> GSM149142     2  0.0592     0.9739 0.012 0.988 0.000
#> GSM149143     3  0.7187     0.0522 0.480 0.024 0.496
#> GSM149144     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149145     3  0.0424     0.9355 0.008 0.000 0.992
#> GSM149146     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149147     1  0.0000     0.9902 1.000 0.000 0.000
#> GSM149148     1  0.0000     0.9902 1.000 0.000 0.000
#> GSM149149     1  0.0000     0.9902 1.000 0.000 0.000
#> GSM149150     2  0.0237     0.9788 0.004 0.996 0.000
#> GSM149151     1  0.0000     0.9902 1.000 0.000 0.000
#> GSM149152     1  0.0237     0.9902 0.996 0.000 0.004
#> GSM149153     3  0.2116     0.9161 0.012 0.040 0.948
#> GSM149154     1  0.4291     0.7773 0.820 0.000 0.180
#> GSM149155     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149156     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149157     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149158     2  0.0237     0.9792 0.004 0.996 0.000
#> GSM149159     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149160     2  0.0237     0.9792 0.004 0.996 0.000
#> GSM149161     2  0.0237     0.9792 0.004 0.996 0.000
#> GSM149162     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149163     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149164     2  0.6677     0.6983 0.088 0.744 0.168
#> GSM149165     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149166     2  0.0237     0.9786 0.000 0.996 0.004
#> GSM149167     2  0.0892     0.9671 0.020 0.980 0.000
#> GSM149168     2  0.0237     0.9786 0.000 0.996 0.004
#> GSM149169     2  0.0237     0.9792 0.004 0.996 0.000
#> GSM149170     2  0.2261     0.9220 0.000 0.932 0.068
#> GSM149171     3  0.3686     0.8253 0.000 0.140 0.860
#> GSM149172     3  0.2845     0.8940 0.012 0.068 0.920
#> GSM149173     2  0.5178     0.6604 0.000 0.744 0.256
#> GSM149174     2  0.0237     0.9792 0.004 0.996 0.000
#> GSM149175     3  0.3619     0.8222 0.136 0.000 0.864
#> GSM149176     2  0.0237     0.9788 0.004 0.996 0.000
#> GSM149177     3  0.2939     0.8909 0.012 0.072 0.916
#> GSM149178     3  0.1163     0.9271 0.000 0.028 0.972
#> GSM149179     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149180     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149181     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149182     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149183     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149184     2  0.0592     0.9729 0.000 0.988 0.012
#> GSM149185     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149186     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149187     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149188     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149189     3  0.1411     0.9223 0.000 0.036 0.964
#> GSM149190     2  0.0237     0.9792 0.004 0.996 0.000
#> GSM149191     2  0.2796     0.8955 0.000 0.908 0.092
#> GSM149192     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149193     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149194     2  0.0237     0.9792 0.004 0.996 0.000
#> GSM149195     3  0.0000     0.9394 0.000 0.000 1.000
#> GSM149196     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149197     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149198     1  0.0000     0.9902 1.000 0.000 0.000
#> GSM149199     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149200     2  0.2261     0.9216 0.000 0.932 0.068
#> GSM149201     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149202     2  0.0000     0.9806 0.000 1.000 0.000
#> GSM149203     3  0.6888     0.2083 0.016 0.432 0.552

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.0000     0.8800 0.000 0.000 1.000 0.000
#> GSM149100     3  0.0000     0.8800 0.000 0.000 1.000 0.000
#> GSM149101     3  0.0000     0.8800 0.000 0.000 1.000 0.000
#> GSM149102     3  0.0000     0.8800 0.000 0.000 1.000 0.000
#> GSM149103     3  0.0000     0.8800 0.000 0.000 1.000 0.000
#> GSM149104     3  0.0000     0.8800 0.000 0.000 1.000 0.000
#> GSM149105     3  0.0000     0.8800 0.000 0.000 1.000 0.000
#> GSM149106     3  0.0000     0.8800 0.000 0.000 1.000 0.000
#> GSM149107     3  0.0000     0.8800 0.000 0.000 1.000 0.000
#> GSM149108     3  0.0000     0.8800 0.000 0.000 1.000 0.000
#> GSM149109     3  0.0000     0.8800 0.000 0.000 1.000 0.000
#> GSM149110     3  0.0000     0.8800 0.000 0.000 1.000 0.000
#> GSM149111     3  0.0000     0.8800 0.000 0.000 1.000 0.000
#> GSM149112     3  0.0000     0.8800 0.000 0.000 1.000 0.000
#> GSM149113     3  0.0000     0.8800 0.000 0.000 1.000 0.000
#> GSM149114     3  0.0000     0.8800 0.000 0.000 1.000 0.000
#> GSM149115     4  0.1302     0.8991 0.044 0.000 0.000 0.956
#> GSM149116     4  0.0188     0.9249 0.000 0.000 0.004 0.996
#> GSM149117     4  0.4057     0.7584 0.152 0.032 0.000 0.816
#> GSM149118     4  0.0188     0.9249 0.000 0.000 0.004 0.996
#> GSM149119     4  0.0376     0.9257 0.004 0.000 0.004 0.992
#> GSM149120     4  0.0188     0.9249 0.000 0.000 0.004 0.996
#> GSM149121     4  0.1022     0.9092 0.032 0.000 0.000 0.968
#> GSM149122     4  0.0376     0.9257 0.004 0.000 0.004 0.992
#> GSM149123     4  0.0376     0.9257 0.004 0.000 0.004 0.992
#> GSM149124     4  0.0188     0.9249 0.000 0.000 0.004 0.996
#> GSM149125     4  0.0188     0.9249 0.000 0.000 0.004 0.996
#> GSM149126     4  0.0376     0.9257 0.004 0.000 0.004 0.992
#> GSM149127     4  0.0376     0.9257 0.004 0.000 0.004 0.992
#> GSM149128     4  0.0376     0.9257 0.004 0.000 0.004 0.992
#> GSM149129     4  0.0376     0.9257 0.004 0.000 0.004 0.992
#> GSM149130     4  0.2281     0.8554 0.096 0.000 0.000 0.904
#> GSM149131     4  0.2704     0.8231 0.124 0.000 0.000 0.876
#> GSM149132     4  0.0376     0.9257 0.004 0.000 0.004 0.992
#> GSM149133     4  0.0188     0.9249 0.000 0.000 0.004 0.996
#> GSM149134     1  0.4500     0.5925 0.684 0.000 0.000 0.316
#> GSM149135     1  0.3837     0.7077 0.776 0.000 0.000 0.224
#> GSM149136     1  0.3726     0.7148 0.788 0.000 0.000 0.212
#> GSM149137     1  0.4164     0.6727 0.736 0.000 0.000 0.264
#> GSM149138     1  0.3444     0.7197 0.816 0.000 0.000 0.184
#> GSM149139     1  0.3975     0.6917 0.760 0.000 0.000 0.240
#> GSM149140     1  0.3688     0.7158 0.792 0.000 0.000 0.208
#> GSM149141     3  0.7029     0.5702 0.232 0.032 0.632 0.104
#> GSM149142     1  0.2593     0.6760 0.892 0.104 0.000 0.004
#> GSM149143     1  0.6528     0.5852 0.684 0.024 0.176 0.116
#> GSM149144     2  0.4955     0.2861 0.444 0.556 0.000 0.000
#> GSM149145     3  0.4603     0.7553 0.160 0.032 0.796 0.012
#> GSM149146     2  0.1716     0.8459 0.064 0.936 0.000 0.000
#> GSM149147     1  0.3649     0.7173 0.796 0.000 0.000 0.204
#> GSM149148     1  0.3688     0.7159 0.792 0.000 0.000 0.208
#> GSM149149     1  0.3837     0.7063 0.776 0.000 0.000 0.224
#> GSM149150     2  0.4194     0.7015 0.228 0.764 0.000 0.008
#> GSM149151     1  0.3569     0.7195 0.804 0.000 0.000 0.196
#> GSM149152     4  0.3764     0.6718 0.216 0.000 0.000 0.784
#> GSM149153     3  0.5746     0.6446 0.256 0.044 0.688 0.012
#> GSM149154     4  0.7796    -0.0753 0.360 0.000 0.248 0.392
#> GSM149155     2  0.2011     0.8369 0.080 0.920 0.000 0.000
#> GSM149156     2  0.2647     0.8253 0.120 0.880 0.000 0.000
#> GSM149157     2  0.4992     0.2114 0.476 0.524 0.000 0.000
#> GSM149158     1  0.4877     0.1734 0.592 0.408 0.000 0.000
#> GSM149159     2  0.2530     0.8413 0.100 0.896 0.004 0.000
#> GSM149160     1  0.4624     0.3572 0.660 0.340 0.000 0.000
#> GSM149161     2  0.5132     0.3104 0.448 0.548 0.000 0.004
#> GSM149162     2  0.2408     0.8354 0.104 0.896 0.000 0.000
#> GSM149163     2  0.2281     0.8330 0.096 0.904 0.000 0.000
#> GSM149164     1  0.6547     0.5733 0.700 0.168 0.072 0.060
#> GSM149165     2  0.1191     0.8466 0.024 0.968 0.004 0.004
#> GSM149166     2  0.4571     0.7023 0.252 0.736 0.008 0.004
#> GSM149167     1  0.4776     0.5001 0.712 0.272 0.000 0.016
#> GSM149168     2  0.3384     0.8208 0.116 0.860 0.024 0.000
#> GSM149169     1  0.3528     0.6044 0.808 0.192 0.000 0.000
#> GSM149170     2  0.3216     0.8106 0.076 0.880 0.044 0.000
#> GSM149171     3  0.6633     0.2165 0.084 0.416 0.500 0.000
#> GSM149172     3  0.7768     0.5612 0.092 0.232 0.592 0.084
#> GSM149173     2  0.5479     0.6917 0.088 0.748 0.156 0.008
#> GSM149174     1  0.4679     0.3378 0.648 0.352 0.000 0.000
#> GSM149175     3  0.5947     0.4795 0.060 0.000 0.628 0.312
#> GSM149176     2  0.2944     0.8189 0.128 0.868 0.004 0.000
#> GSM149177     3  0.6965     0.6367 0.084 0.192 0.664 0.060
#> GSM149178     3  0.5495     0.7028 0.096 0.176 0.728 0.000
#> GSM149179     2  0.1211     0.8469 0.040 0.960 0.000 0.000
#> GSM149180     2  0.1792     0.8447 0.068 0.932 0.000 0.000
#> GSM149181     2  0.1557     0.8349 0.056 0.944 0.000 0.000
#> GSM149182     2  0.1211     0.8467 0.040 0.960 0.000 0.000
#> GSM149183     2  0.1118     0.8485 0.036 0.964 0.000 0.000
#> GSM149184     2  0.3558     0.8138 0.052 0.880 0.044 0.024
#> GSM149185     2  0.2081     0.8272 0.084 0.916 0.000 0.000
#> GSM149186     2  0.1022     0.8484 0.032 0.968 0.000 0.000
#> GSM149187     2  0.2216     0.8388 0.092 0.908 0.000 0.000
#> GSM149188     2  0.1118     0.8490 0.036 0.964 0.000 0.000
#> GSM149189     3  0.4793     0.7171 0.040 0.204 0.756 0.000
#> GSM149190     2  0.4843     0.4530 0.396 0.604 0.000 0.000
#> GSM149191     2  0.6445     0.5833 0.304 0.600 0.096 0.000
#> GSM149192     2  0.1637     0.8505 0.060 0.940 0.000 0.000
#> GSM149193     2  0.0921     0.8434 0.028 0.972 0.000 0.000
#> GSM149194     1  0.4907     0.1304 0.580 0.420 0.000 0.000
#> GSM149195     3  0.1209     0.8651 0.032 0.004 0.964 0.000
#> GSM149196     2  0.1489     0.8411 0.044 0.952 0.000 0.004
#> GSM149197     2  0.2589     0.8248 0.116 0.884 0.000 0.000
#> GSM149198     1  0.4632     0.6619 0.740 0.004 0.012 0.244
#> GSM149199     2  0.2868     0.8121 0.136 0.864 0.000 0.000
#> GSM149200     2  0.3051     0.8136 0.088 0.884 0.028 0.000
#> GSM149201     2  0.1302     0.8455 0.044 0.956 0.000 0.000
#> GSM149202     2  0.2149     0.8246 0.088 0.912 0.000 0.000
#> GSM149203     2  0.8928     0.1409 0.156 0.428 0.324 0.092

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0000     0.8525 0.000 0.000 1.000 0.000 0.000
#> GSM149100     3  0.0000     0.8525 0.000 0.000 1.000 0.000 0.000
#> GSM149101     3  0.0000     0.8525 0.000 0.000 1.000 0.000 0.000
#> GSM149102     3  0.0000     0.8525 0.000 0.000 1.000 0.000 0.000
#> GSM149103     3  0.0727     0.8429 0.004 0.004 0.980 0.000 0.012
#> GSM149104     3  0.0000     0.8525 0.000 0.000 1.000 0.000 0.000
#> GSM149105     3  0.0000     0.8525 0.000 0.000 1.000 0.000 0.000
#> GSM149106     3  0.0486     0.8469 0.004 0.004 0.988 0.000 0.004
#> GSM149107     3  0.0000     0.8525 0.000 0.000 1.000 0.000 0.000
#> GSM149108     3  0.0000     0.8525 0.000 0.000 1.000 0.000 0.000
#> GSM149109     3  0.0000     0.8525 0.000 0.000 1.000 0.000 0.000
#> GSM149110     3  0.0000     0.8525 0.000 0.000 1.000 0.000 0.000
#> GSM149111     3  0.0000     0.8525 0.000 0.000 1.000 0.000 0.000
#> GSM149112     3  0.0000     0.8525 0.000 0.000 1.000 0.000 0.000
#> GSM149113     3  0.0000     0.8525 0.000 0.000 1.000 0.000 0.000
#> GSM149114     3  0.0000     0.8525 0.000 0.000 1.000 0.000 0.000
#> GSM149115     4  0.4064     0.6385 0.272 0.004 0.000 0.716 0.008
#> GSM149116     4  0.0162     0.8775 0.004 0.000 0.000 0.996 0.000
#> GSM149117     4  0.6920     0.4332 0.240 0.124 0.000 0.564 0.072
#> GSM149118     4  0.0000     0.8787 0.000 0.000 0.000 1.000 0.000
#> GSM149119     4  0.0000     0.8787 0.000 0.000 0.000 1.000 0.000
#> GSM149120     4  0.0162     0.8783 0.000 0.000 0.000 0.996 0.004
#> GSM149121     4  0.3474     0.7348 0.192 0.004 0.000 0.796 0.008
#> GSM149122     4  0.0162     0.8783 0.000 0.000 0.000 0.996 0.004
#> GSM149123     4  0.0162     0.8789 0.004 0.000 0.000 0.996 0.000
#> GSM149124     4  0.0451     0.8761 0.000 0.004 0.000 0.988 0.008
#> GSM149125     4  0.0162     0.8783 0.000 0.000 0.000 0.996 0.004
#> GSM149126     4  0.0162     0.8789 0.004 0.000 0.000 0.996 0.000
#> GSM149127     4  0.0000     0.8787 0.000 0.000 0.000 1.000 0.000
#> GSM149128     4  0.0162     0.8789 0.004 0.000 0.000 0.996 0.000
#> GSM149129     4  0.0162     0.8789 0.004 0.000 0.000 0.996 0.000
#> GSM149130     4  0.4776     0.5805 0.296 0.008 0.000 0.668 0.028
#> GSM149131     4  0.4654     0.4803 0.348 0.008 0.000 0.632 0.012
#> GSM149132     4  0.0162     0.8789 0.004 0.000 0.000 0.996 0.000
#> GSM149133     4  0.1124     0.8628 0.036 0.000 0.000 0.960 0.004
#> GSM149134     1  0.3848     0.6972 0.788 0.000 0.000 0.172 0.040
#> GSM149135     1  0.1478     0.8109 0.936 0.000 0.000 0.064 0.000
#> GSM149136     1  0.1430     0.8132 0.944 0.004 0.000 0.052 0.000
#> GSM149137     1  0.2720     0.7895 0.880 0.004 0.000 0.096 0.020
#> GSM149138     1  0.2157     0.8074 0.920 0.004 0.000 0.040 0.036
#> GSM149139     1  0.2136     0.7986 0.904 0.000 0.000 0.088 0.008
#> GSM149140     1  0.1270     0.8132 0.948 0.000 0.000 0.052 0.000
#> GSM149141     3  0.8617     0.0664 0.256 0.024 0.344 0.096 0.280
#> GSM149142     1  0.5154     0.2465 0.580 0.372 0.000 0.000 0.048
#> GSM149143     1  0.8532     0.4632 0.504 0.136 0.136 0.088 0.136
#> GSM149144     2  0.3966     0.5289 0.132 0.796 0.000 0.000 0.072
#> GSM149145     3  0.7156     0.4447 0.168 0.028 0.544 0.020 0.240
#> GSM149146     2  0.3928     0.3675 0.004 0.700 0.000 0.000 0.296
#> GSM149147     1  0.1764     0.8090 0.940 0.012 0.000 0.036 0.012
#> GSM149148     1  0.1270     0.8132 0.948 0.000 0.000 0.052 0.000
#> GSM149149     1  0.1410     0.8114 0.940 0.000 0.000 0.060 0.000
#> GSM149150     5  0.6576     0.1526 0.184 0.352 0.000 0.004 0.460
#> GSM149151     1  0.1756     0.8090 0.940 0.008 0.000 0.036 0.016
#> GSM149152     4  0.5268     0.2303 0.416 0.004 0.012 0.548 0.020
#> GSM149153     3  0.7811     0.2824 0.240 0.052 0.444 0.012 0.252
#> GSM149154     1  0.7980     0.3555 0.456 0.008 0.216 0.228 0.092
#> GSM149155     2  0.2389     0.5127 0.004 0.880 0.000 0.000 0.116
#> GSM149156     2  0.3064     0.5236 0.036 0.856 0.000 0.000 0.108
#> GSM149157     2  0.5477     0.3883 0.132 0.648 0.000 0.000 0.220
#> GSM149158     2  0.5137     0.4485 0.228 0.676 0.000 0.000 0.096
#> GSM149159     5  0.4781     0.1669 0.020 0.428 0.000 0.000 0.552
#> GSM149160     2  0.6008     0.3612 0.292 0.560 0.000 0.000 0.148
#> GSM149161     2  0.4298     0.4933 0.184 0.756 0.000 0.000 0.060
#> GSM149162     2  0.2707     0.5354 0.024 0.876 0.000 0.000 0.100
#> GSM149163     2  0.1952     0.5273 0.004 0.912 0.000 0.000 0.084
#> GSM149164     1  0.8503    -0.0322 0.308 0.304 0.084 0.020 0.284
#> GSM149165     2  0.4583    -0.0135 0.004 0.528 0.004 0.000 0.464
#> GSM149166     2  0.5002     0.4783 0.132 0.720 0.004 0.000 0.144
#> GSM149167     2  0.6104     0.3715 0.304 0.564 0.000 0.008 0.124
#> GSM149168     5  0.4486     0.5121 0.020 0.228 0.020 0.000 0.732
#> GSM149169     2  0.5635     0.1293 0.428 0.496 0.000 0.000 0.076
#> GSM149170     5  0.4100     0.5632 0.016 0.172 0.028 0.000 0.784
#> GSM149171     5  0.4537     0.5296 0.012 0.060 0.168 0.000 0.760
#> GSM149172     5  0.7216     0.3086 0.044 0.040 0.296 0.080 0.540
#> GSM149173     5  0.4426     0.5657 0.008 0.124 0.080 0.004 0.784
#> GSM149174     2  0.5164     0.4413 0.256 0.660 0.000 0.000 0.084
#> GSM149175     3  0.7735     0.2874 0.096 0.000 0.448 0.284 0.172
#> GSM149176     2  0.5620     0.1629 0.060 0.548 0.008 0.000 0.384
#> GSM149177     3  0.7981     0.2614 0.104 0.192 0.504 0.020 0.180
#> GSM149178     5  0.7130     0.0547 0.040 0.096 0.420 0.016 0.428
#> GSM149179     2  0.4696     0.0849 0.016 0.556 0.000 0.000 0.428
#> GSM149180     5  0.4974     0.1321 0.028 0.464 0.000 0.000 0.508
#> GSM149181     5  0.4015     0.4103 0.000 0.348 0.000 0.000 0.652
#> GSM149182     2  0.4206     0.3531 0.016 0.696 0.000 0.000 0.288
#> GSM149183     2  0.4015     0.2997 0.000 0.652 0.000 0.000 0.348
#> GSM149184     5  0.5137     0.2408 0.020 0.400 0.004 0.008 0.568
#> GSM149185     5  0.3885     0.5123 0.008 0.268 0.000 0.000 0.724
#> GSM149186     2  0.4287    -0.0276 0.000 0.540 0.000 0.000 0.460
#> GSM149187     2  0.3496     0.4734 0.012 0.788 0.000 0.000 0.200
#> GSM149188     2  0.4264     0.2081 0.004 0.620 0.000 0.000 0.376
#> GSM149189     3  0.5335     0.1997 0.004 0.044 0.536 0.000 0.416
#> GSM149190     2  0.4190     0.5162 0.172 0.768 0.000 0.000 0.060
#> GSM149191     5  0.6810     0.1317 0.080 0.368 0.064 0.000 0.488
#> GSM149192     2  0.4251     0.2610 0.004 0.624 0.000 0.000 0.372
#> GSM149193     2  0.4302    -0.1026 0.000 0.520 0.000 0.000 0.480
#> GSM149194     2  0.6158     0.3359 0.316 0.528 0.000 0.000 0.156
#> GSM149195     3  0.1732     0.8036 0.000 0.000 0.920 0.000 0.080
#> GSM149196     5  0.4211     0.3791 0.004 0.360 0.000 0.000 0.636
#> GSM149197     2  0.3134     0.5368 0.032 0.848 0.000 0.000 0.120
#> GSM149198     1  0.4961     0.7021 0.748 0.008 0.008 0.112 0.124
#> GSM149199     2  0.2782     0.5443 0.048 0.880 0.000 0.000 0.072
#> GSM149200     5  0.3293     0.5636 0.008 0.160 0.008 0.000 0.824
#> GSM149201     2  0.3636     0.3868 0.000 0.728 0.000 0.000 0.272
#> GSM149202     5  0.3462     0.5530 0.012 0.196 0.000 0.000 0.792
#> GSM149203     5  0.7844     0.4286 0.032 0.152 0.208 0.080 0.528

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.0146    0.86982 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM149100     3  0.0000    0.86993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149101     3  0.0146    0.86999 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM149102     3  0.0146    0.86978 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM149103     3  0.1528    0.84389 0.000 0.000 0.936 0.000 0.016 0.048
#> GSM149104     3  0.0146    0.86984 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM149105     3  0.0291    0.86951 0.000 0.000 0.992 0.000 0.004 0.004
#> GSM149106     3  0.1826    0.83635 0.000 0.004 0.924 0.000 0.020 0.052
#> GSM149107     3  0.0405    0.86885 0.000 0.000 0.988 0.000 0.004 0.008
#> GSM149108     3  0.0405    0.86885 0.000 0.000 0.988 0.000 0.008 0.004
#> GSM149109     3  0.0000    0.86993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149110     3  0.0146    0.86982 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM149111     3  0.0146    0.86988 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM149112     3  0.0291    0.86954 0.000 0.000 0.992 0.000 0.004 0.004
#> GSM149113     3  0.0508    0.86837 0.000 0.000 0.984 0.000 0.004 0.012
#> GSM149114     3  0.0725    0.86606 0.000 0.000 0.976 0.000 0.012 0.012
#> GSM149115     4  0.4394    0.43681 0.364 0.000 0.000 0.608 0.008 0.020
#> GSM149116     4  0.0603    0.84376 0.000 0.000 0.000 0.980 0.004 0.016
#> GSM149117     4  0.8259    0.02987 0.292 0.172 0.004 0.352 0.068 0.112
#> GSM149118     4  0.0405    0.84534 0.004 0.000 0.000 0.988 0.000 0.008
#> GSM149119     4  0.0000    0.84643 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149120     4  0.0520    0.84494 0.000 0.000 0.000 0.984 0.008 0.008
#> GSM149121     4  0.3976    0.64391 0.220 0.000 0.000 0.740 0.020 0.020
#> GSM149122     4  0.0146    0.84678 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM149123     4  0.0291    0.84634 0.000 0.000 0.000 0.992 0.004 0.004
#> GSM149124     4  0.0458    0.84451 0.000 0.000 0.000 0.984 0.000 0.016
#> GSM149125     4  0.0291    0.84576 0.000 0.000 0.000 0.992 0.004 0.004
#> GSM149126     4  0.0146    0.84678 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM149127     4  0.0146    0.84678 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM149128     4  0.0405    0.84654 0.000 0.000 0.000 0.988 0.008 0.004
#> GSM149129     4  0.0146    0.84678 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM149130     4  0.5658    0.32519 0.360 0.004 0.000 0.536 0.028 0.072
#> GSM149131     4  0.4379    0.35537 0.400 0.000 0.000 0.576 0.004 0.020
#> GSM149132     4  0.0146    0.84678 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM149133     4  0.1148    0.83631 0.020 0.000 0.000 0.960 0.004 0.016
#> GSM149134     1  0.4393    0.69550 0.772 0.000 0.000 0.076 0.072 0.080
#> GSM149135     1  0.1245    0.78253 0.952 0.000 0.000 0.032 0.000 0.016
#> GSM149136     1  0.0976    0.78248 0.968 0.008 0.000 0.016 0.000 0.008
#> GSM149137     1  0.2792    0.76503 0.880 0.004 0.000 0.048 0.016 0.052
#> GSM149138     1  0.2775    0.75291 0.880 0.008 0.000 0.008 0.052 0.052
#> GSM149139     1  0.1773    0.78286 0.932 0.000 0.000 0.036 0.016 0.016
#> GSM149140     1  0.1232    0.78131 0.956 0.004 0.000 0.016 0.000 0.024
#> GSM149141     6  0.8849   -0.10522 0.180 0.036 0.228 0.036 0.256 0.264
#> GSM149142     1  0.6150   -0.05498 0.504 0.204 0.000 0.000 0.020 0.272
#> GSM149143     1  0.8341   -0.00158 0.356 0.032 0.072 0.096 0.104 0.340
#> GSM149144     2  0.5052    0.35078 0.136 0.692 0.000 0.000 0.028 0.144
#> GSM149145     3  0.8030    0.02762 0.092 0.032 0.380 0.016 0.192 0.288
#> GSM149146     2  0.4053    0.52512 0.004 0.764 0.000 0.000 0.128 0.104
#> GSM149147     1  0.1881    0.76988 0.924 0.004 0.000 0.016 0.004 0.052
#> GSM149148     1  0.1478    0.78287 0.944 0.000 0.000 0.020 0.004 0.032
#> GSM149149     1  0.1599    0.78390 0.940 0.000 0.000 0.028 0.008 0.024
#> GSM149150     2  0.7585   -0.06645 0.172 0.320 0.000 0.000 0.288 0.220
#> GSM149151     1  0.2220    0.77748 0.908 0.004 0.000 0.016 0.012 0.060
#> GSM149152     4  0.6419    0.07331 0.404 0.008 0.004 0.448 0.056 0.080
#> GSM149153     6  0.8391   -0.06732 0.196 0.040 0.276 0.004 0.196 0.288
#> GSM149154     1  0.8419    0.23393 0.388 0.008 0.152 0.236 0.084 0.132
#> GSM149155     2  0.1789    0.57354 0.000 0.924 0.000 0.000 0.032 0.044
#> GSM149156     2  0.5185    0.15522 0.008 0.568 0.000 0.000 0.080 0.344
#> GSM149157     6  0.6378    0.37921 0.072 0.324 0.000 0.000 0.108 0.496
#> GSM149158     6  0.5762    0.31482 0.148 0.424 0.000 0.000 0.004 0.424
#> GSM149159     5  0.6270    0.11407 0.008 0.276 0.000 0.000 0.404 0.312
#> GSM149160     6  0.6444    0.42385 0.112 0.304 0.000 0.000 0.080 0.504
#> GSM149161     2  0.5769   -0.24671 0.088 0.472 0.000 0.000 0.028 0.412
#> GSM149162     2  0.2800    0.54165 0.004 0.860 0.000 0.000 0.036 0.100
#> GSM149163     2  0.1900    0.54877 0.008 0.916 0.000 0.000 0.008 0.068
#> GSM149164     6  0.8006    0.29981 0.172 0.108 0.040 0.024 0.192 0.464
#> GSM149165     2  0.5491    0.11820 0.004 0.532 0.008 0.000 0.364 0.092
#> GSM149166     2  0.5590    0.40839 0.104 0.660 0.000 0.000 0.080 0.156
#> GSM149167     6  0.7042    0.37065 0.200 0.348 0.000 0.004 0.068 0.380
#> GSM149168     5  0.5675    0.43076 0.004 0.188 0.004 0.000 0.572 0.232
#> GSM149169     6  0.6468    0.44013 0.252 0.292 0.000 0.000 0.024 0.432
#> GSM149170     5  0.4818    0.52583 0.008 0.160 0.024 0.000 0.724 0.084
#> GSM149171     5  0.4928    0.53599 0.004 0.080 0.112 0.004 0.740 0.060
#> GSM149172     5  0.7809    0.27810 0.040 0.044 0.244 0.040 0.460 0.172
#> GSM149173     5  0.4982    0.51670 0.008 0.152 0.048 0.004 0.728 0.060
#> GSM149174     6  0.6172    0.36169 0.164 0.396 0.000 0.000 0.020 0.420
#> GSM149175     3  0.8736   -0.08700 0.120 0.000 0.284 0.244 0.156 0.196
#> GSM149176     2  0.6196    0.35190 0.064 0.576 0.000 0.000 0.168 0.192
#> GSM149177     3  0.8877   -0.09959 0.092 0.144 0.356 0.036 0.124 0.248
#> GSM149178     5  0.8093    0.25905 0.036 0.168 0.308 0.004 0.340 0.144
#> GSM149179     2  0.5103    0.38549 0.012 0.644 0.000 0.000 0.240 0.104
#> GSM149180     2  0.5569    0.16803 0.020 0.540 0.000 0.000 0.348 0.092
#> GSM149181     5  0.4827    0.26392 0.004 0.376 0.000 0.000 0.568 0.052
#> GSM149182     2  0.3718    0.50102 0.004 0.780 0.000 0.000 0.164 0.052
#> GSM149183     2  0.3992    0.50897 0.000 0.748 0.000 0.000 0.180 0.072
#> GSM149184     5  0.6772    0.16390 0.044 0.356 0.008 0.008 0.448 0.136
#> GSM149185     5  0.5147    0.46127 0.004 0.236 0.000 0.000 0.628 0.132
#> GSM149186     2  0.5233    0.25465 0.000 0.556 0.000 0.000 0.332 0.112
#> GSM149187     2  0.4742    0.47778 0.004 0.688 0.000 0.000 0.124 0.184
#> GSM149188     2  0.3738    0.49325 0.000 0.752 0.000 0.000 0.208 0.040
#> GSM149189     5  0.6689    0.20356 0.004 0.100 0.400 0.000 0.408 0.088
#> GSM149190     2  0.6227   -0.00162 0.140 0.528 0.000 0.000 0.048 0.284
#> GSM149191     6  0.6689    0.10515 0.028 0.124 0.036 0.000 0.336 0.476
#> GSM149192     2  0.5516    0.38461 0.004 0.572 0.000 0.000 0.260 0.164
#> GSM149193     2  0.4458    0.25471 0.000 0.608 0.000 0.000 0.352 0.040
#> GSM149194     6  0.6689    0.44780 0.156 0.228 0.000 0.000 0.100 0.516
#> GSM149195     3  0.4312    0.63489 0.012 0.004 0.744 0.000 0.180 0.060
#> GSM149196     5  0.5721    0.15034 0.012 0.408 0.000 0.000 0.464 0.116
#> GSM149197     2  0.4509    0.33417 0.020 0.684 0.000 0.000 0.036 0.260
#> GSM149198     1  0.6591    0.48268 0.564 0.004 0.008 0.068 0.176 0.180
#> GSM149199     2  0.4680    0.39125 0.044 0.712 0.000 0.000 0.044 0.200
#> GSM149200     5  0.4731    0.51869 0.008 0.184 0.020 0.000 0.720 0.068
#> GSM149201     2  0.2988    0.55319 0.000 0.828 0.000 0.000 0.144 0.028
#> GSM149202     5  0.4881    0.44798 0.004 0.268 0.000 0.000 0.640 0.088
#> GSM149203     5  0.8296    0.33871 0.020 0.108 0.176 0.072 0.440 0.184

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> CV:skmeans  88         8.13e-12 2
#> CV:skmeans 103         1.00e-22 3
#> CV:skmeans  93         1.13e-27 4
#> CV:skmeans  61         1.57e-24 5
#> CV:skmeans  54         1.71e-23 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.353           0.765       0.836         0.4359 0.529   0.529
#> 3 3 0.653           0.804       0.905         0.3655 0.850   0.718
#> 4 4 0.638           0.436       0.759         0.1957 0.791   0.546
#> 5 5 0.860           0.854       0.931         0.1114 0.809   0.477
#> 6 6 0.841           0.778       0.894         0.0241 0.978   0.897

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     2  0.8813     0.6653 0.300 0.700
#> GSM149100     2  0.7528     0.7247 0.216 0.784
#> GSM149101     2  0.7883     0.7197 0.236 0.764
#> GSM149102     2  0.7602     0.7232 0.220 0.780
#> GSM149103     2  0.6801     0.7485 0.180 0.820
#> GSM149104     2  0.7674     0.7213 0.224 0.776
#> GSM149105     2  0.8327     0.6970 0.264 0.736
#> GSM149106     1  0.8207     0.3278 0.744 0.256
#> GSM149107     2  0.7602     0.7244 0.220 0.780
#> GSM149108     2  0.8499     0.6879 0.276 0.724
#> GSM149109     2  0.8499     0.6881 0.276 0.724
#> GSM149110     2  0.7528     0.7247 0.216 0.784
#> GSM149111     2  0.7602     0.7232 0.220 0.780
#> GSM149112     2  0.8661     0.6880 0.288 0.712
#> GSM149113     2  0.9087     0.6493 0.324 0.676
#> GSM149114     2  0.8081     0.7161 0.248 0.752
#> GSM149115     1  0.7528     0.9040 0.784 0.216
#> GSM149116     1  0.8327     0.8681 0.736 0.264
#> GSM149117     2  0.9552    -0.0568 0.376 0.624
#> GSM149118     1  0.7528     0.9040 0.784 0.216
#> GSM149119     1  0.7528     0.8974 0.784 0.216
#> GSM149120     1  0.7139     0.8901 0.804 0.196
#> GSM149121     1  0.7528     0.9040 0.784 0.216
#> GSM149122     1  0.3584     0.7390 0.932 0.068
#> GSM149123     1  0.7528     0.9040 0.784 0.216
#> GSM149124     1  0.8144     0.8806 0.748 0.252
#> GSM149125     1  0.7528     0.9040 0.784 0.216
#> GSM149126     1  0.7453     0.9023 0.788 0.212
#> GSM149127     1  0.7528     0.9040 0.784 0.216
#> GSM149128     1  0.7453     0.9023 0.788 0.212
#> GSM149129     1  0.7376     0.8996 0.792 0.208
#> GSM149130     1  0.7528     0.9040 0.784 0.216
#> GSM149131     1  0.7528     0.9040 0.784 0.216
#> GSM149132     1  0.7453     0.9023 0.788 0.212
#> GSM149133     1  0.7453     0.9024 0.788 0.212
#> GSM149134     1  0.9044     0.8679 0.680 0.320
#> GSM149135     1  0.8661     0.8890 0.712 0.288
#> GSM149136     1  0.9000     0.8713 0.684 0.316
#> GSM149137     1  0.8909     0.8774 0.692 0.308
#> GSM149138     1  0.9815     0.7223 0.580 0.420
#> GSM149139     1  0.7528     0.9040 0.784 0.216
#> GSM149140     1  0.8713     0.8869 0.708 0.292
#> GSM149141     2  0.7376     0.5483 0.208 0.792
#> GSM149142     1  0.9044     0.8679 0.680 0.320
#> GSM149143     1  0.9044     0.8687 0.680 0.320
#> GSM149144     1  0.9866     0.6978 0.568 0.432
#> GSM149145     2  0.1843     0.8343 0.028 0.972
#> GSM149146     2  0.0000     0.8436 0.000 1.000
#> GSM149147     1  0.8555     0.8920 0.720 0.280
#> GSM149148     1  0.8144     0.9001 0.748 0.252
#> GSM149149     1  0.7602     0.9042 0.780 0.220
#> GSM149150     2  0.0000     0.8436 0.000 1.000
#> GSM149151     1  0.9044     0.8679 0.680 0.320
#> GSM149152     1  0.7602     0.9042 0.780 0.220
#> GSM149153     2  0.0000     0.8436 0.000 1.000
#> GSM149154     1  0.8861     0.8799 0.696 0.304
#> GSM149155     2  0.0000     0.8436 0.000 1.000
#> GSM149156     2  0.2603     0.8050 0.044 0.956
#> GSM149157     2  0.0000     0.8436 0.000 1.000
#> GSM149158     1  0.9087     0.8639 0.676 0.324
#> GSM149159     2  0.0000     0.8436 0.000 1.000
#> GSM149160     2  0.2603     0.8047 0.044 0.956
#> GSM149161     2  0.6438     0.6372 0.164 0.836
#> GSM149162     2  0.0000     0.8436 0.000 1.000
#> GSM149163     2  0.0938     0.8345 0.012 0.988
#> GSM149164     2  0.0000     0.8436 0.000 1.000
#> GSM149165     2  0.0000     0.8436 0.000 1.000
#> GSM149166     2  0.9491    -0.0141 0.368 0.632
#> GSM149167     2  0.9933    -0.3798 0.452 0.548
#> GSM149168     2  0.0000     0.8436 0.000 1.000
#> GSM149169     1  0.9833     0.7108 0.576 0.424
#> GSM149170     2  0.0000     0.8436 0.000 1.000
#> GSM149171     2  0.0000     0.8436 0.000 1.000
#> GSM149172     2  0.0376     0.8421 0.004 0.996
#> GSM149173     2  0.0000     0.8436 0.000 1.000
#> GSM149174     1  0.9044     0.8679 0.680 0.320
#> GSM149175     2  0.6712     0.6549 0.176 0.824
#> GSM149176     2  0.0000     0.8436 0.000 1.000
#> GSM149177     2  0.7883     0.4731 0.236 0.764
#> GSM149178     2  0.1184     0.8372 0.016 0.984
#> GSM149179     2  0.0000     0.8436 0.000 1.000
#> GSM149180     2  0.0000     0.8436 0.000 1.000
#> GSM149181     2  0.0000     0.8436 0.000 1.000
#> GSM149182     2  0.0000     0.8436 0.000 1.000
#> GSM149183     2  0.0376     0.8407 0.004 0.996
#> GSM149184     2  0.0000     0.8436 0.000 1.000
#> GSM149185     2  0.0000     0.8436 0.000 1.000
#> GSM149186     2  0.0000     0.8436 0.000 1.000
#> GSM149187     2  0.0000     0.8436 0.000 1.000
#> GSM149188     2  0.0000     0.8436 0.000 1.000
#> GSM149189     2  0.6712     0.7509 0.176 0.824
#> GSM149190     1  0.9608     0.7839 0.616 0.384
#> GSM149191     2  0.0000     0.8436 0.000 1.000
#> GSM149192     2  0.0000     0.8436 0.000 1.000
#> GSM149193     2  0.0000     0.8436 0.000 1.000
#> GSM149194     2  0.9044     0.2001 0.320 0.680
#> GSM149195     2  0.7528     0.7247 0.216 0.784
#> GSM149196     2  0.0000     0.8436 0.000 1.000
#> GSM149197     2  0.9000     0.2069 0.316 0.684
#> GSM149198     2  0.0376     0.8408 0.004 0.996
#> GSM149199     2  0.9754    -0.2135 0.408 0.592
#> GSM149200     2  0.0000     0.8436 0.000 1.000
#> GSM149201     2  0.0000     0.8436 0.000 1.000
#> GSM149202     2  0.0000     0.8436 0.000 1.000
#> GSM149203     2  0.0000     0.8436 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0000     0.9968 0.000 0.000 1.000
#> GSM149100     3  0.0000     0.9968 0.000 0.000 1.000
#> GSM149101     3  0.0000     0.9968 0.000 0.000 1.000
#> GSM149102     3  0.0000     0.9968 0.000 0.000 1.000
#> GSM149103     3  0.1411     0.9499 0.000 0.036 0.964
#> GSM149104     3  0.0000     0.9968 0.000 0.000 1.000
#> GSM149105     3  0.0000     0.9968 0.000 0.000 1.000
#> GSM149106     3  0.0000     0.9968 0.000 0.000 1.000
#> GSM149107     3  0.0000     0.9968 0.000 0.000 1.000
#> GSM149108     3  0.0000     0.9968 0.000 0.000 1.000
#> GSM149109     3  0.0000     0.9968 0.000 0.000 1.000
#> GSM149110     3  0.0000     0.9968 0.000 0.000 1.000
#> GSM149111     3  0.0000     0.9968 0.000 0.000 1.000
#> GSM149112     3  0.0000     0.9968 0.000 0.000 1.000
#> GSM149113     3  0.0000     0.9968 0.000 0.000 1.000
#> GSM149114     3  0.0000     0.9968 0.000 0.000 1.000
#> GSM149115     1  0.0000     0.7908 1.000 0.000 0.000
#> GSM149116     1  0.3434     0.7492 0.904 0.064 0.032
#> GSM149117     2  0.6008     0.2612 0.372 0.628 0.000
#> GSM149118     1  0.0000     0.7908 1.000 0.000 0.000
#> GSM149119     1  0.0592     0.7904 0.988 0.012 0.000
#> GSM149120     1  0.0000     0.7908 1.000 0.000 0.000
#> GSM149121     1  0.0000     0.7908 1.000 0.000 0.000
#> GSM149122     1  0.1860     0.7560 0.948 0.000 0.052
#> GSM149123     1  0.0000     0.7908 1.000 0.000 0.000
#> GSM149124     1  0.1529     0.7853 0.960 0.040 0.000
#> GSM149125     1  0.0000     0.7908 1.000 0.000 0.000
#> GSM149126     1  0.0000     0.7908 1.000 0.000 0.000
#> GSM149127     1  0.0000     0.7908 1.000 0.000 0.000
#> GSM149128     1  0.0000     0.7908 1.000 0.000 0.000
#> GSM149129     1  0.0000     0.7908 1.000 0.000 0.000
#> GSM149130     1  0.4399     0.8028 0.812 0.188 0.000
#> GSM149131     1  0.2261     0.8101 0.932 0.068 0.000
#> GSM149132     1  0.0000     0.7908 1.000 0.000 0.000
#> GSM149133     1  0.0000     0.7908 1.000 0.000 0.000
#> GSM149134     1  0.5397     0.7543 0.720 0.280 0.000
#> GSM149135     1  0.4887     0.7905 0.772 0.228 0.000
#> GSM149136     1  0.5431     0.7505 0.716 0.284 0.000
#> GSM149137     1  0.5397     0.7543 0.720 0.280 0.000
#> GSM149138     1  0.6111     0.5679 0.604 0.396 0.000
#> GSM149139     1  0.2711     0.8132 0.912 0.088 0.000
#> GSM149140     1  0.4702     0.7972 0.788 0.212 0.000
#> GSM149141     2  0.4702     0.6552 0.212 0.788 0.000
#> GSM149142     1  0.5497     0.7424 0.708 0.292 0.000
#> GSM149143     1  0.5465     0.7471 0.712 0.288 0.000
#> GSM149144     1  0.6168     0.5329 0.588 0.412 0.000
#> GSM149145     2  0.2651     0.8509 0.012 0.928 0.060
#> GSM149146     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149147     1  0.4931     0.7893 0.768 0.232 0.000
#> GSM149148     1  0.5098     0.7790 0.752 0.248 0.000
#> GSM149149     1  0.4702     0.7968 0.788 0.212 0.000
#> GSM149150     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149151     1  0.5465     0.7462 0.712 0.288 0.000
#> GSM149152     1  0.4504     0.8023 0.804 0.196 0.000
#> GSM149153     2  0.0661     0.8937 0.004 0.988 0.008
#> GSM149154     1  0.5058     0.7796 0.756 0.244 0.000
#> GSM149155     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149156     2  0.1643     0.8677 0.044 0.956 0.000
#> GSM149157     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149158     1  0.5529     0.7375 0.704 0.296 0.000
#> GSM149159     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149160     2  0.1643     0.8677 0.044 0.956 0.000
#> GSM149161     2  0.4235     0.7125 0.176 0.824 0.000
#> GSM149162     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149163     2  0.0592     0.8927 0.012 0.988 0.000
#> GSM149164     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149165     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149166     2  0.6008     0.2498 0.372 0.628 0.000
#> GSM149167     2  0.6305    -0.2317 0.484 0.516 0.000
#> GSM149168     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149169     1  0.6140     0.5484 0.596 0.404 0.000
#> GSM149170     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149171     2  0.0424     0.8954 0.000 0.992 0.008
#> GSM149172     2  0.0747     0.8887 0.000 0.984 0.016
#> GSM149173     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149174     1  0.5497     0.7424 0.708 0.292 0.000
#> GSM149175     2  0.4808     0.7190 0.188 0.804 0.008
#> GSM149176     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149177     2  0.5058     0.5928 0.244 0.756 0.000
#> GSM149178     2  0.1753     0.8621 0.000 0.952 0.048
#> GSM149179     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149180     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149181     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149182     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149183     2  0.0237     0.8977 0.004 0.996 0.000
#> GSM149184     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149185     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149186     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149187     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149188     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149189     2  0.5497     0.5532 0.000 0.708 0.292
#> GSM149190     1  0.5926     0.6470 0.644 0.356 0.000
#> GSM149191     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149192     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149193     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149194     2  0.5785     0.3753 0.332 0.668 0.000
#> GSM149195     2  0.5254     0.5748 0.000 0.736 0.264
#> GSM149196     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149197     2  0.5785     0.3701 0.332 0.668 0.000
#> GSM149198     2  0.0424     0.8958 0.008 0.992 0.000
#> GSM149199     2  0.6244    -0.0512 0.440 0.560 0.000
#> GSM149200     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149201     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149202     2  0.0000     0.8998 0.000 1.000 0.000
#> GSM149203     2  0.0000     0.8998 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.4994     0.7169 0.480 0.000 0.520 0.000
#> GSM149100     3  0.4994     0.7169 0.480 0.000 0.520 0.000
#> GSM149101     3  0.4994     0.7169 0.480 0.000 0.520 0.000
#> GSM149102     3  0.4994     0.7169 0.480 0.000 0.520 0.000
#> GSM149103     3  0.5404     0.7035 0.476 0.012 0.512 0.000
#> GSM149104     3  0.4994     0.7169 0.480 0.000 0.520 0.000
#> GSM149105     3  0.4994     0.7169 0.480 0.000 0.520 0.000
#> GSM149106     3  0.4994     0.7169 0.480 0.000 0.520 0.000
#> GSM149107     3  0.4994     0.7169 0.480 0.000 0.520 0.000
#> GSM149108     3  0.4994     0.7169 0.480 0.000 0.520 0.000
#> GSM149109     3  0.4994     0.7169 0.480 0.000 0.520 0.000
#> GSM149110     3  0.4994     0.7169 0.480 0.000 0.520 0.000
#> GSM149111     3  0.4994     0.7169 0.480 0.000 0.520 0.000
#> GSM149112     3  0.4994     0.7169 0.480 0.000 0.520 0.000
#> GSM149113     3  0.4994     0.7169 0.480 0.000 0.520 0.000
#> GSM149114     3  0.4994     0.7169 0.480 0.000 0.520 0.000
#> GSM149115     4  0.5000     0.1610 0.496 0.000 0.000 0.504
#> GSM149116     4  0.0000     0.8808 0.000 0.000 0.000 1.000
#> GSM149117     2  0.8675     0.0275 0.308 0.388 0.268 0.036
#> GSM149118     4  0.0000     0.8808 0.000 0.000 0.000 1.000
#> GSM149119     4  0.0000     0.8808 0.000 0.000 0.000 1.000
#> GSM149120     4  0.0000     0.8808 0.000 0.000 0.000 1.000
#> GSM149121     4  0.4331     0.5913 0.288 0.000 0.000 0.712
#> GSM149122     4  0.0000     0.8808 0.000 0.000 0.000 1.000
#> GSM149123     4  0.0000     0.8808 0.000 0.000 0.000 1.000
#> GSM149124     4  0.0000     0.8808 0.000 0.000 0.000 1.000
#> GSM149125     4  0.0000     0.8808 0.000 0.000 0.000 1.000
#> GSM149126     4  0.0000     0.8808 0.000 0.000 0.000 1.000
#> GSM149127     4  0.0000     0.8808 0.000 0.000 0.000 1.000
#> GSM149128     4  0.0000     0.8808 0.000 0.000 0.000 1.000
#> GSM149129     4  0.0000     0.8808 0.000 0.000 0.000 1.000
#> GSM149130     4  0.6417     0.5112 0.200 0.136 0.004 0.660
#> GSM149131     4  0.4387     0.6912 0.200 0.024 0.000 0.776
#> GSM149132     4  0.0000     0.8808 0.000 0.000 0.000 1.000
#> GSM149133     4  0.0000     0.8808 0.000 0.000 0.000 1.000
#> GSM149134     1  0.7084     0.7084 0.520 0.340 0.140 0.000
#> GSM149135     1  0.4994     0.8301 0.520 0.480 0.000 0.000
#> GSM149136     1  0.4994     0.8301 0.520 0.480 0.000 0.000
#> GSM149137     1  0.5328     0.8321 0.520 0.472 0.004 0.004
#> GSM149138     1  0.6750     0.0564 0.472 0.092 0.436 0.000
#> GSM149139     1  0.5399     0.8310 0.520 0.468 0.000 0.012
#> GSM149140     1  0.4994     0.8301 0.520 0.480 0.000 0.000
#> GSM149141     3  0.7088    -0.5496 0.128 0.392 0.480 0.000
#> GSM149142     2  0.4961    -0.7502 0.448 0.552 0.000 0.000
#> GSM149143     1  0.6082     0.8222 0.520 0.444 0.024 0.012
#> GSM149144     2  0.5386    -0.5483 0.344 0.632 0.024 0.000
#> GSM149145     2  0.6271     0.5297 0.056 0.492 0.452 0.000
#> GSM149146     2  0.4948     0.5803 0.000 0.560 0.440 0.000
#> GSM149147     1  0.5161     0.8315 0.520 0.476 0.000 0.004
#> GSM149148     1  0.5161     0.8304 0.520 0.476 0.004 0.000
#> GSM149149     1  0.6620     0.7959 0.520 0.404 0.004 0.072
#> GSM149150     2  0.4994     0.5707 0.000 0.520 0.480 0.000
#> GSM149151     2  0.5155    -0.7805 0.468 0.528 0.004 0.000
#> GSM149152     1  0.6973     0.7696 0.516 0.376 0.004 0.104
#> GSM149153     2  0.5756     0.5822 0.032 0.568 0.400 0.000
#> GSM149154     1  0.7944     0.3177 0.520 0.028 0.276 0.176
#> GSM149155     2  0.0000     0.3516 0.000 1.000 0.000 0.000
#> GSM149156     2  0.3082     0.2651 0.084 0.884 0.032 0.000
#> GSM149157     2  0.0336     0.3427 0.008 0.992 0.000 0.000
#> GSM149158     2  0.4996    -0.8045 0.484 0.516 0.000 0.000
#> GSM149159     2  0.3688     0.5333 0.000 0.792 0.208 0.000
#> GSM149160     2  0.2654     0.1643 0.108 0.888 0.004 0.000
#> GSM149161     2  0.1118     0.2947 0.036 0.964 0.000 0.000
#> GSM149162     2  0.0000     0.3516 0.000 1.000 0.000 0.000
#> GSM149163     2  0.0469     0.3340 0.012 0.988 0.000 0.000
#> GSM149164     2  0.2737     0.4271 0.008 0.888 0.104 0.000
#> GSM149165     2  0.4992     0.5720 0.000 0.524 0.476 0.000
#> GSM149166     2  0.4220    -0.3123 0.248 0.748 0.004 0.000
#> GSM149167     2  0.4543    -0.4906 0.324 0.676 0.000 0.000
#> GSM149168     2  0.4730     0.5933 0.000 0.636 0.364 0.000
#> GSM149169     2  0.4898    -0.6931 0.416 0.584 0.000 0.000
#> GSM149170     2  0.4994     0.5707 0.000 0.520 0.480 0.000
#> GSM149171     2  0.4999     0.5604 0.000 0.508 0.492 0.000
#> GSM149172     2  0.4989     0.5736 0.000 0.528 0.472 0.000
#> GSM149173     2  0.4994     0.5707 0.000 0.520 0.480 0.000
#> GSM149174     2  0.4948    -0.7396 0.440 0.560 0.000 0.000
#> GSM149175     4  0.9319    -0.2185 0.084 0.272 0.316 0.328
#> GSM149176     2  0.3837     0.5289 0.000 0.776 0.224 0.000
#> GSM149177     2  0.7544     0.4346 0.196 0.452 0.352 0.000
#> GSM149178     3  0.5000    -0.5789 0.000 0.496 0.504 0.000
#> GSM149179     2  0.3400     0.5159 0.000 0.820 0.180 0.000
#> GSM149180     2  0.4994     0.5707 0.000 0.520 0.480 0.000
#> GSM149181     2  0.4994     0.5707 0.000 0.520 0.480 0.000
#> GSM149182     2  0.4994     0.5707 0.000 0.520 0.480 0.000
#> GSM149183     2  0.0188     0.3563 0.000 0.996 0.004 0.000
#> GSM149184     2  0.4994     0.5707 0.000 0.520 0.480 0.000
#> GSM149185     2  0.4994     0.5707 0.000 0.520 0.480 0.000
#> GSM149186     2  0.4961     0.5783 0.000 0.552 0.448 0.000
#> GSM149187     2  0.2469     0.4641 0.000 0.892 0.108 0.000
#> GSM149188     2  0.4730     0.5897 0.000 0.636 0.364 0.000
#> GSM149189     3  0.6091    -0.3661 0.060 0.344 0.596 0.000
#> GSM149190     2  0.4761    -0.6201 0.372 0.628 0.000 0.000
#> GSM149191     2  0.5155     0.5733 0.004 0.528 0.468 0.000
#> GSM149192     2  0.1867     0.4264 0.000 0.928 0.072 0.000
#> GSM149193     2  0.4994     0.5707 0.000 0.520 0.480 0.000
#> GSM149194     2  0.3123     0.0070 0.156 0.844 0.000 0.000
#> GSM149195     3  0.5387    -0.4701 0.016 0.400 0.584 0.000
#> GSM149196     2  0.4992     0.5725 0.000 0.524 0.476 0.000
#> GSM149197     2  0.3668    -0.1179 0.188 0.808 0.004 0.000
#> GSM149198     3  0.6214    -0.5787 0.052 0.472 0.476 0.000
#> GSM149199     2  0.3688    -0.1966 0.208 0.792 0.000 0.000
#> GSM149200     2  0.4994     0.5707 0.000 0.520 0.480 0.000
#> GSM149201     2  0.4992     0.5720 0.000 0.524 0.476 0.000
#> GSM149202     2  0.4994     0.5707 0.000 0.520 0.480 0.000
#> GSM149203     2  0.4830     0.5882 0.000 0.608 0.392 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149100     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149101     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149102     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149103     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149104     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149105     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149106     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149107     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149108     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149109     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149110     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149111     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149112     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149113     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149114     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149115     1  0.1121      0.922 0.956 0.000 0.000 0.044 0.000
#> GSM149116     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000
#> GSM149117     1  0.4799      0.731 0.760 0.148 0.000 0.036 0.056
#> GSM149118     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000
#> GSM149119     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000
#> GSM149120     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000
#> GSM149121     4  0.3684      0.627 0.280 0.000 0.000 0.720 0.000
#> GSM149122     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000
#> GSM149123     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000
#> GSM149124     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000
#> GSM149125     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000
#> GSM149126     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000
#> GSM149127     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000
#> GSM149128     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000
#> GSM149129     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000
#> GSM149130     4  0.4737      0.393 0.380 0.016 0.000 0.600 0.004
#> GSM149131     4  0.4084      0.535 0.328 0.000 0.000 0.668 0.004
#> GSM149132     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000
#> GSM149133     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000
#> GSM149134     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149135     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149136     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149137     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149138     1  0.3143      0.722 0.796 0.000 0.000 0.000 0.204
#> GSM149139     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149140     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149141     5  0.3480      0.631 0.248 0.000 0.000 0.000 0.752
#> GSM149142     2  0.3636      0.615 0.272 0.728 0.000 0.000 0.000
#> GSM149143     1  0.0404      0.952 0.988 0.012 0.000 0.000 0.000
#> GSM149144     2  0.0963      0.908 0.000 0.964 0.000 0.000 0.036
#> GSM149145     5  0.3870      0.798 0.060 0.020 0.092 0.000 0.828
#> GSM149146     5  0.2605      0.801 0.000 0.148 0.000 0.000 0.852
#> GSM149147     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149148     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149149     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149150     5  0.0000      0.866 0.000 0.000 0.000 0.000 1.000
#> GSM149151     1  0.0162      0.958 0.996 0.000 0.000 0.000 0.004
#> GSM149152     1  0.0162      0.959 0.996 0.000 0.000 0.004 0.000
#> GSM149153     5  0.3409      0.797 0.052 0.112 0.000 0.000 0.836
#> GSM149154     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> GSM149155     2  0.0000      0.924 0.000 1.000 0.000 0.000 0.000
#> GSM149156     2  0.1544      0.879 0.000 0.932 0.000 0.000 0.068
#> GSM149157     2  0.0290      0.924 0.000 0.992 0.000 0.000 0.008
#> GSM149158     2  0.0290      0.923 0.008 0.992 0.000 0.000 0.000
#> GSM149159     5  0.4287      0.215 0.000 0.460 0.000 0.000 0.540
#> GSM149160     2  0.1469      0.902 0.016 0.948 0.000 0.000 0.036
#> GSM149161     2  0.0000      0.924 0.000 1.000 0.000 0.000 0.000
#> GSM149162     2  0.0000      0.924 0.000 1.000 0.000 0.000 0.000
#> GSM149163     2  0.0000      0.924 0.000 1.000 0.000 0.000 0.000
#> GSM149164     2  0.4030      0.468 0.000 0.648 0.000 0.000 0.352
#> GSM149165     5  0.1544      0.846 0.000 0.068 0.000 0.000 0.932
#> GSM149166     2  0.0771      0.917 0.020 0.976 0.000 0.000 0.004
#> GSM149167     2  0.0404      0.922 0.012 0.988 0.000 0.000 0.000
#> GSM149168     5  0.3177      0.743 0.000 0.208 0.000 0.000 0.792
#> GSM149169     2  0.0290      0.923 0.008 0.992 0.000 0.000 0.000
#> GSM149170     5  0.0000      0.866 0.000 0.000 0.000 0.000 1.000
#> GSM149171     5  0.0000      0.866 0.000 0.000 0.000 0.000 1.000
#> GSM149172     5  0.0510      0.864 0.000 0.016 0.000 0.000 0.984
#> GSM149173     5  0.0000      0.866 0.000 0.000 0.000 0.000 1.000
#> GSM149174     2  0.0162      0.924 0.004 0.996 0.000 0.000 0.000
#> GSM149175     5  0.5907      0.323 0.060 0.024 0.000 0.356 0.560
#> GSM149176     5  0.4201      0.350 0.000 0.408 0.000 0.000 0.592
#> GSM149177     5  0.6305      0.588 0.156 0.204 0.028 0.000 0.612
#> GSM149178     5  0.0000      0.866 0.000 0.000 0.000 0.000 1.000
#> GSM149179     5  0.4304      0.163 0.000 0.484 0.000 0.000 0.516
#> GSM149180     5  0.0000      0.866 0.000 0.000 0.000 0.000 1.000
#> GSM149181     5  0.0162      0.866 0.000 0.004 0.000 0.000 0.996
#> GSM149182     5  0.0000      0.866 0.000 0.000 0.000 0.000 1.000
#> GSM149183     2  0.0510      0.920 0.000 0.984 0.000 0.000 0.016
#> GSM149184     5  0.0290      0.866 0.000 0.008 0.000 0.000 0.992
#> GSM149185     5  0.0000      0.866 0.000 0.000 0.000 0.000 1.000
#> GSM149186     5  0.1965      0.834 0.000 0.096 0.000 0.000 0.904
#> GSM149187     2  0.3876      0.465 0.000 0.684 0.000 0.000 0.316
#> GSM149188     5  0.4161      0.460 0.000 0.392 0.000 0.000 0.608
#> GSM149189     5  0.3366      0.690 0.000 0.000 0.232 0.000 0.768
#> GSM149190     2  0.0000      0.924 0.000 1.000 0.000 0.000 0.000
#> GSM149191     5  0.0794      0.860 0.000 0.028 0.000 0.000 0.972
#> GSM149192     2  0.3074      0.732 0.000 0.804 0.000 0.000 0.196
#> GSM149193     5  0.0000      0.866 0.000 0.000 0.000 0.000 1.000
#> GSM149194     2  0.1597      0.893 0.048 0.940 0.000 0.000 0.012
#> GSM149195     5  0.0963      0.854 0.000 0.000 0.036 0.000 0.964
#> GSM149196     5  0.0162      0.866 0.000 0.004 0.000 0.000 0.996
#> GSM149197     2  0.0000      0.924 0.000 1.000 0.000 0.000 0.000
#> GSM149198     5  0.0290      0.865 0.008 0.000 0.000 0.000 0.992
#> GSM149199     2  0.0000      0.924 0.000 1.000 0.000 0.000 0.000
#> GSM149200     5  0.0000      0.866 0.000 0.000 0.000 0.000 1.000
#> GSM149201     5  0.1851      0.838 0.000 0.088 0.000 0.000 0.912
#> GSM149202     5  0.0000      0.866 0.000 0.000 0.000 0.000 1.000
#> GSM149203     5  0.3242      0.740 0.000 0.216 0.000 0.000 0.784

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.0000     0.9993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149100     3  0.0000     0.9993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149101     3  0.0000     0.9993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149102     3  0.0000     0.9993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149103     3  0.0146     0.9949 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM149104     3  0.0000     0.9993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149105     3  0.0000     0.9993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149106     3  0.0146     0.9952 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM149107     3  0.0000     0.9993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149108     3  0.0000     0.9993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149109     3  0.0000     0.9993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149110     3  0.0000     0.9993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149111     3  0.0000     0.9993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149112     3  0.0000     0.9993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149113     3  0.0000     0.9993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149114     3  0.0000     0.9993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149115     1  0.0713     0.9197 0.972 0.000 0.000 0.028 0.000 0.000
#> GSM149116     4  0.0000     0.9138 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149117     1  0.5510     0.3588 0.524 0.056 0.000 0.000 0.036 0.384
#> GSM149118     4  0.0000     0.9138 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149119     4  0.0000     0.9138 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149120     4  0.0000     0.9138 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149121     4  0.3758     0.5995 0.284 0.000 0.000 0.700 0.000 0.016
#> GSM149122     4  0.0000     0.9138 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149123     4  0.0000     0.9138 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149124     4  0.1863     0.8439 0.000 0.000 0.000 0.896 0.000 0.104
#> GSM149125     4  0.0000     0.9138 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149126     4  0.0000     0.9138 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149127     4  0.0000     0.9138 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149128     4  0.0000     0.9138 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149129     4  0.0000     0.9138 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149130     4  0.5153     0.3252 0.376 0.016 0.000 0.552 0.000 0.056
#> GSM149131     4  0.4181     0.5046 0.328 0.000 0.000 0.644 0.000 0.028
#> GSM149132     4  0.0000     0.9138 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149133     4  0.0000     0.9138 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149134     1  0.0458     0.9331 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM149135     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149136     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149137     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149138     1  0.3168     0.6329 0.792 0.000 0.000 0.000 0.192 0.016
#> GSM149139     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149140     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149141     6  0.5558     0.6862 0.136 0.000 0.000 0.000 0.416 0.448
#> GSM149142     2  0.4142     0.5794 0.232 0.712 0.000 0.000 0.000 0.056
#> GSM149143     1  0.0777     0.9215 0.972 0.024 0.000 0.000 0.000 0.004
#> GSM149144     2  0.2968     0.8195 0.000 0.816 0.000 0.000 0.016 0.168
#> GSM149145     6  0.5753     0.7231 0.024 0.028 0.040 0.000 0.408 0.500
#> GSM149146     5  0.3612     0.6121 0.000 0.052 0.000 0.000 0.780 0.168
#> GSM149147     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149148     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149149     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149150     5  0.1204     0.7218 0.000 0.000 0.000 0.000 0.944 0.056
#> GSM149151     1  0.1075     0.9013 0.952 0.000 0.000 0.000 0.000 0.048
#> GSM149152     1  0.0436     0.9360 0.988 0.004 0.000 0.004 0.000 0.004
#> GSM149153     6  0.5585     0.7033 0.012 0.100 0.000 0.000 0.404 0.484
#> GSM149154     1  0.0146     0.9389 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM149155     2  0.2340     0.8301 0.000 0.852 0.000 0.000 0.000 0.148
#> GSM149156     2  0.2088     0.8251 0.000 0.904 0.000 0.000 0.068 0.028
#> GSM149157     2  0.0291     0.8619 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM149158     2  0.0146     0.8612 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM149159     5  0.4594    -0.0373 0.000 0.476 0.000 0.000 0.488 0.036
#> GSM149160     2  0.0837     0.8553 0.004 0.972 0.000 0.000 0.020 0.004
#> GSM149161     2  0.0713     0.8540 0.000 0.972 0.000 0.000 0.000 0.028
#> GSM149162     2  0.2340     0.8296 0.000 0.852 0.000 0.000 0.000 0.148
#> GSM149163     2  0.2491     0.8244 0.000 0.836 0.000 0.000 0.000 0.164
#> GSM149164     2  0.3620     0.4433 0.000 0.648 0.000 0.000 0.352 0.000
#> GSM149165     5  0.3381     0.6264 0.000 0.044 0.000 0.000 0.800 0.156
#> GSM149166     2  0.3253     0.8029 0.020 0.788 0.000 0.000 0.000 0.192
#> GSM149167     2  0.0260     0.8617 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM149168     5  0.3978     0.5423 0.000 0.160 0.000 0.000 0.756 0.084
#> GSM149169     2  0.0291     0.8627 0.004 0.992 0.000 0.000 0.000 0.004
#> GSM149170     5  0.0000     0.7459 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149171     5  0.0000     0.7459 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149172     5  0.1500     0.7369 0.000 0.012 0.000 0.000 0.936 0.052
#> GSM149173     5  0.0000     0.7459 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149174     2  0.0405     0.8624 0.004 0.988 0.000 0.000 0.000 0.008
#> GSM149175     6  0.6515     0.6674 0.036 0.008 0.000 0.168 0.296 0.492
#> GSM149176     5  0.5157     0.0591 0.000 0.360 0.000 0.000 0.544 0.096
#> GSM149177     5  0.6427     0.1463 0.144 0.116 0.012 0.000 0.600 0.128
#> GSM149178     5  0.0000     0.7459 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149179     5  0.5167     0.0110 0.000 0.412 0.000 0.000 0.500 0.088
#> GSM149180     5  0.0146     0.7452 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM149181     5  0.0790     0.7428 0.000 0.000 0.000 0.000 0.968 0.032
#> GSM149182     5  0.1501     0.7132 0.000 0.000 0.000 0.000 0.924 0.076
#> GSM149183     2  0.2848     0.8147 0.000 0.816 0.000 0.000 0.008 0.176
#> GSM149184     5  0.1398     0.7377 0.000 0.008 0.000 0.000 0.940 0.052
#> GSM149185     5  0.0000     0.7459 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149186     5  0.2263     0.7142 0.000 0.056 0.000 0.000 0.896 0.048
#> GSM149187     2  0.5463     0.2648 0.000 0.540 0.000 0.000 0.312 0.148
#> GSM149188     5  0.5296     0.2553 0.000 0.216 0.000 0.000 0.600 0.184
#> GSM149189     5  0.4680     0.2539 0.000 0.000 0.184 0.000 0.684 0.132
#> GSM149190     2  0.0547     0.8616 0.000 0.980 0.000 0.000 0.000 0.020
#> GSM149191     5  0.1082     0.7324 0.000 0.040 0.000 0.000 0.956 0.004
#> GSM149192     2  0.3683     0.6515 0.000 0.768 0.000 0.000 0.184 0.048
#> GSM149193     5  0.0000     0.7459 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149194     2  0.1148     0.8514 0.016 0.960 0.000 0.000 0.004 0.020
#> GSM149195     5  0.0790     0.7224 0.000 0.000 0.032 0.000 0.968 0.000
#> GSM149196     5  0.1753     0.7142 0.000 0.004 0.000 0.000 0.912 0.084
#> GSM149197     2  0.0146     0.8612 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM149198     5  0.0717     0.7349 0.008 0.000 0.000 0.000 0.976 0.016
#> GSM149199     2  0.1610     0.8528 0.000 0.916 0.000 0.000 0.000 0.084
#> GSM149200     5  0.0000     0.7459 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149201     5  0.3771     0.5651 0.000 0.056 0.000 0.000 0.764 0.180
#> GSM149202     5  0.0000     0.7459 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149203     5  0.3641     0.6096 0.000 0.140 0.000 0.000 0.788 0.072

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) k
#> CV:pam 97         3.07e-11 2
#> CV:pam 99         7.59e-26 3
#> CV:pam 71         1.16e-26 4
#> CV:pam 97         1.14e-37 5
#> CV:pam 95         2.25e-37 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.694           0.945       0.963         0.4397 0.572   0.572
#> 3 3 0.773           0.928       0.955         0.2990 0.832   0.712
#> 4 4 0.730           0.900       0.921         0.1249 0.929   0.836
#> 5 5 0.736           0.773       0.874         0.2068 0.821   0.532
#> 6 6 0.758           0.780       0.843         0.0593 0.930   0.692

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     2  0.6148      0.879 0.152 0.848
#> GSM149100     2  0.6148      0.879 0.152 0.848
#> GSM149101     2  0.6148      0.879 0.152 0.848
#> GSM149102     2  0.6148      0.879 0.152 0.848
#> GSM149103     2  0.5946      0.884 0.144 0.856
#> GSM149104     2  0.6148      0.879 0.152 0.848
#> GSM149105     2  0.6148      0.879 0.152 0.848
#> GSM149106     2  0.5842      0.887 0.140 0.860
#> GSM149107     2  0.6148      0.879 0.152 0.848
#> GSM149108     2  0.6148      0.879 0.152 0.848
#> GSM149109     2  0.6148      0.879 0.152 0.848
#> GSM149110     2  0.6148      0.879 0.152 0.848
#> GSM149111     2  0.6148      0.879 0.152 0.848
#> GSM149112     2  0.6148      0.879 0.152 0.848
#> GSM149113     2  0.6148      0.879 0.152 0.848
#> GSM149114     2  0.6148      0.879 0.152 0.848
#> GSM149115     1  0.0376      0.995 0.996 0.004
#> GSM149116     1  0.0000      0.995 1.000 0.000
#> GSM149117     1  0.1184      0.985 0.984 0.016
#> GSM149118     1  0.0000      0.995 1.000 0.000
#> GSM149119     1  0.0000      0.995 1.000 0.000
#> GSM149120     1  0.0000      0.995 1.000 0.000
#> GSM149121     1  0.0938      0.989 0.988 0.012
#> GSM149122     1  0.0000      0.995 1.000 0.000
#> GSM149123     1  0.0000      0.995 1.000 0.000
#> GSM149124     1  0.0000      0.995 1.000 0.000
#> GSM149125     1  0.0000      0.995 1.000 0.000
#> GSM149126     1  0.0000      0.995 1.000 0.000
#> GSM149127     1  0.0000      0.995 1.000 0.000
#> GSM149128     1  0.0000      0.995 1.000 0.000
#> GSM149129     1  0.0000      0.995 1.000 0.000
#> GSM149130     1  0.0376      0.995 0.996 0.004
#> GSM149131     1  0.0376      0.995 0.996 0.004
#> GSM149132     1  0.0000      0.995 1.000 0.000
#> GSM149133     1  0.0000      0.995 1.000 0.000
#> GSM149134     1  0.0938      0.989 0.988 0.012
#> GSM149135     1  0.0376      0.995 0.996 0.004
#> GSM149136     1  0.0376      0.995 0.996 0.004
#> GSM149137     1  0.0376      0.995 0.996 0.004
#> GSM149138     1  0.0938      0.989 0.988 0.012
#> GSM149139     1  0.0376      0.995 0.996 0.004
#> GSM149140     1  0.0376      0.995 0.996 0.004
#> GSM149141     2  0.5294      0.898 0.120 0.880
#> GSM149142     2  0.2603      0.934 0.044 0.956
#> GSM149143     2  0.6247      0.874 0.156 0.844
#> GSM149144     2  0.1184      0.947 0.016 0.984
#> GSM149145     2  0.5519      0.894 0.128 0.872
#> GSM149146     2  0.0000      0.947 0.000 1.000
#> GSM149147     1  0.0376      0.995 0.996 0.004
#> GSM149148     1  0.0376      0.995 0.996 0.004
#> GSM149149     1  0.0376      0.995 0.996 0.004
#> GSM149150     2  0.0000      0.947 0.000 1.000
#> GSM149151     1  0.0376      0.995 0.996 0.004
#> GSM149152     1  0.0672      0.992 0.992 0.008
#> GSM149153     2  0.1843      0.944 0.028 0.972
#> GSM149154     2  0.9087      0.628 0.324 0.676
#> GSM149155     2  0.0000      0.947 0.000 1.000
#> GSM149156     2  0.0000      0.947 0.000 1.000
#> GSM149157     2  0.0000      0.947 0.000 1.000
#> GSM149158     2  0.0000      0.947 0.000 1.000
#> GSM149159     2  0.0000      0.947 0.000 1.000
#> GSM149160     2  0.0000      0.947 0.000 1.000
#> GSM149161     2  0.0000      0.947 0.000 1.000
#> GSM149162     2  0.0000      0.947 0.000 1.000
#> GSM149163     2  0.0000      0.947 0.000 1.000
#> GSM149164     2  0.1184      0.947 0.016 0.984
#> GSM149165     2  0.0000      0.947 0.000 1.000
#> GSM149166     2  0.0000      0.947 0.000 1.000
#> GSM149167     2  0.0000      0.947 0.000 1.000
#> GSM149168     2  0.0000      0.947 0.000 1.000
#> GSM149169     2  0.0000      0.947 0.000 1.000
#> GSM149170     2  0.1184      0.947 0.016 0.984
#> GSM149171     2  0.1184      0.947 0.016 0.984
#> GSM149172     2  0.1184      0.947 0.016 0.984
#> GSM149173     2  0.1184      0.947 0.016 0.984
#> GSM149174     2  0.0000      0.947 0.000 1.000
#> GSM149175     2  0.6247      0.874 0.156 0.844
#> GSM149176     2  0.0000      0.947 0.000 1.000
#> GSM149177     2  0.1633      0.945 0.024 0.976
#> GSM149178     2  0.1184      0.947 0.016 0.984
#> GSM149179     2  0.0000      0.947 0.000 1.000
#> GSM149180     2  0.1184      0.947 0.016 0.984
#> GSM149181     2  0.0000      0.947 0.000 1.000
#> GSM149182     2  0.1184      0.947 0.016 0.984
#> GSM149183     2  0.0000      0.947 0.000 1.000
#> GSM149184     2  0.0000      0.947 0.000 1.000
#> GSM149185     2  0.1184      0.947 0.016 0.984
#> GSM149186     2  0.0000      0.947 0.000 1.000
#> GSM149187     2  0.0000      0.947 0.000 1.000
#> GSM149188     2  0.0000      0.947 0.000 1.000
#> GSM149189     2  0.1184      0.947 0.016 0.984
#> GSM149190     2  0.0000      0.947 0.000 1.000
#> GSM149191     2  0.0938      0.947 0.012 0.988
#> GSM149192     2  0.0000      0.947 0.000 1.000
#> GSM149193     2  0.1184      0.947 0.016 0.984
#> GSM149194     2  0.0000      0.947 0.000 1.000
#> GSM149195     2  0.5629      0.891 0.132 0.868
#> GSM149196     2  0.0000      0.947 0.000 1.000
#> GSM149197     2  0.0000      0.947 0.000 1.000
#> GSM149198     1  0.2948      0.948 0.948 0.052
#> GSM149199     2  0.0000      0.947 0.000 1.000
#> GSM149200     2  0.1184      0.947 0.016 0.984
#> GSM149201     2  0.0000      0.947 0.000 1.000
#> GSM149202     2  0.1184      0.947 0.016 0.984
#> GSM149203     2  0.1184      0.947 0.016 0.984

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0000      0.998 0.000 0.000 1.000
#> GSM149100     3  0.0000      0.998 0.000 0.000 1.000
#> GSM149101     3  0.0000      0.998 0.000 0.000 1.000
#> GSM149102     3  0.0000      0.998 0.000 0.000 1.000
#> GSM149103     2  0.4452      0.817 0.000 0.808 0.192
#> GSM149104     3  0.0000      0.998 0.000 0.000 1.000
#> GSM149105     3  0.0000      0.998 0.000 0.000 1.000
#> GSM149106     2  0.4504      0.808 0.000 0.804 0.196
#> GSM149107     3  0.0237      0.994 0.000 0.004 0.996
#> GSM149108     3  0.0237      0.995 0.000 0.004 0.996
#> GSM149109     3  0.0000      0.998 0.000 0.000 1.000
#> GSM149110     3  0.0000      0.998 0.000 0.000 1.000
#> GSM149111     3  0.0000      0.998 0.000 0.000 1.000
#> GSM149112     3  0.0237      0.995 0.000 0.004 0.996
#> GSM149113     3  0.0237      0.995 0.000 0.004 0.996
#> GSM149114     3  0.0000      0.998 0.000 0.000 1.000
#> GSM149115     1  0.3112      0.903 0.900 0.096 0.004
#> GSM149116     1  0.0000      0.892 1.000 0.000 0.000
#> GSM149117     1  0.4349      0.879 0.852 0.128 0.020
#> GSM149118     1  0.0000      0.892 1.000 0.000 0.000
#> GSM149119     1  0.0000      0.892 1.000 0.000 0.000
#> GSM149120     1  0.0000      0.892 1.000 0.000 0.000
#> GSM149121     1  0.3193      0.903 0.896 0.100 0.004
#> GSM149122     1  0.0000      0.892 1.000 0.000 0.000
#> GSM149123     1  0.0000      0.892 1.000 0.000 0.000
#> GSM149124     1  0.0000      0.892 1.000 0.000 0.000
#> GSM149125     1  0.0000      0.892 1.000 0.000 0.000
#> GSM149126     1  0.0000      0.892 1.000 0.000 0.000
#> GSM149127     1  0.0000      0.892 1.000 0.000 0.000
#> GSM149128     1  0.0000      0.892 1.000 0.000 0.000
#> GSM149129     1  0.0000      0.892 1.000 0.000 0.000
#> GSM149130     1  0.3539      0.902 0.888 0.100 0.012
#> GSM149131     1  0.3193      0.903 0.896 0.100 0.004
#> GSM149132     1  0.0000      0.892 1.000 0.000 0.000
#> GSM149133     1  0.0000      0.892 1.000 0.000 0.000
#> GSM149134     1  0.3896      0.888 0.864 0.128 0.008
#> GSM149135     1  0.3695      0.900 0.880 0.108 0.012
#> GSM149136     1  0.3695      0.900 0.880 0.108 0.012
#> GSM149137     1  0.3695      0.900 0.880 0.108 0.012
#> GSM149138     1  0.5775      0.714 0.728 0.260 0.012
#> GSM149139     1  0.3695      0.900 0.880 0.108 0.012
#> GSM149140     1  0.3771      0.898 0.876 0.112 0.012
#> GSM149141     2  0.1643      0.951 0.000 0.956 0.044
#> GSM149142     2  0.0424      0.962 0.000 0.992 0.008
#> GSM149143     2  0.2680      0.923 0.008 0.924 0.068
#> GSM149144     2  0.0592      0.961 0.000 0.988 0.012
#> GSM149145     2  0.2537      0.930 0.000 0.920 0.080
#> GSM149146     2  0.0000      0.962 0.000 1.000 0.000
#> GSM149147     1  0.6105      0.718 0.724 0.252 0.024
#> GSM149148     1  0.3918      0.892 0.868 0.120 0.012
#> GSM149149     1  0.3845      0.895 0.872 0.116 0.012
#> GSM149150     2  0.0237      0.962 0.000 0.996 0.004
#> GSM149151     1  0.3918      0.893 0.868 0.120 0.012
#> GSM149152     1  0.4446      0.889 0.856 0.112 0.032
#> GSM149153     2  0.1529      0.954 0.000 0.960 0.040
#> GSM149154     2  0.4121      0.878 0.040 0.876 0.084
#> GSM149155     2  0.0424      0.961 0.000 0.992 0.008
#> GSM149156     2  0.0000      0.962 0.000 1.000 0.000
#> GSM149157     2  0.1163      0.957 0.000 0.972 0.028
#> GSM149158     2  0.0237      0.962 0.000 0.996 0.004
#> GSM149159     2  0.1289      0.955 0.000 0.968 0.032
#> GSM149160     2  0.0237      0.962 0.000 0.996 0.004
#> GSM149161     2  0.0237      0.962 0.000 0.996 0.004
#> GSM149162     2  0.0000      0.962 0.000 1.000 0.000
#> GSM149163     2  0.0000      0.962 0.000 1.000 0.000
#> GSM149164     2  0.0424      0.962 0.000 0.992 0.008
#> GSM149165     2  0.0000      0.962 0.000 1.000 0.000
#> GSM149166     2  0.0237      0.962 0.000 0.996 0.004
#> GSM149167     2  0.0237      0.962 0.000 0.996 0.004
#> GSM149168     2  0.1964      0.943 0.000 0.944 0.056
#> GSM149169     2  0.0237      0.962 0.000 0.996 0.004
#> GSM149170     2  0.2356      0.933 0.000 0.928 0.072
#> GSM149171     2  0.2356      0.933 0.000 0.928 0.072
#> GSM149172     2  0.1643      0.952 0.000 0.956 0.044
#> GSM149173     2  0.2066      0.941 0.000 0.940 0.060
#> GSM149174     2  0.0237      0.962 0.000 0.996 0.004
#> GSM149175     2  0.2796      0.910 0.000 0.908 0.092
#> GSM149176     2  0.0000      0.962 0.000 1.000 0.000
#> GSM149177     2  0.1411      0.955 0.000 0.964 0.036
#> GSM149178     2  0.1860      0.948 0.000 0.948 0.052
#> GSM149179     2  0.0000      0.962 0.000 1.000 0.000
#> GSM149180     2  0.0237      0.962 0.000 0.996 0.004
#> GSM149181     2  0.0000      0.962 0.000 1.000 0.000
#> GSM149182     2  0.0424      0.962 0.000 0.992 0.008
#> GSM149183     2  0.0000      0.962 0.000 1.000 0.000
#> GSM149184     2  0.0424      0.961 0.000 0.992 0.008
#> GSM149185     2  0.1529      0.952 0.000 0.960 0.040
#> GSM149186     2  0.0237      0.962 0.000 0.996 0.004
#> GSM149187     2  0.0000      0.962 0.000 1.000 0.000
#> GSM149188     2  0.0000      0.962 0.000 1.000 0.000
#> GSM149189     2  0.2537      0.927 0.000 0.920 0.080
#> GSM149190     2  0.0237      0.962 0.000 0.996 0.004
#> GSM149191     2  0.1529      0.953 0.000 0.960 0.040
#> GSM149192     2  0.0000      0.962 0.000 1.000 0.000
#> GSM149193     2  0.0237      0.962 0.000 0.996 0.004
#> GSM149194     2  0.0237      0.962 0.000 0.996 0.004
#> GSM149195     2  0.5397      0.680 0.000 0.720 0.280
#> GSM149196     2  0.0000      0.962 0.000 1.000 0.000
#> GSM149197     2  0.0000      0.962 0.000 1.000 0.000
#> GSM149198     2  0.6794      0.414 0.324 0.648 0.028
#> GSM149199     2  0.0000      0.962 0.000 1.000 0.000
#> GSM149200     2  0.2356      0.933 0.000 0.928 0.072
#> GSM149201     2  0.0237      0.962 0.000 0.996 0.004
#> GSM149202     2  0.1753      0.948 0.000 0.952 0.048
#> GSM149203     2  0.1643      0.951 0.000 0.956 0.044

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM149100     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM149101     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM149102     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM149103     2  0.4139      0.889 0.176 0.800 0.024 0.000
#> GSM149104     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM149105     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM149106     2  0.4035      0.891 0.176 0.804 0.020 0.000
#> GSM149107     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM149108     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM149109     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM149110     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM149111     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM149112     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM149113     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM149114     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM149115     1  0.3982      0.789 0.776 0.004 0.000 0.220
#> GSM149116     4  0.0000      0.991 0.000 0.000 0.000 1.000
#> GSM149117     1  0.6049      0.645 0.680 0.200 0.000 0.120
#> GSM149118     4  0.1661      0.913 0.052 0.004 0.000 0.944
#> GSM149119     4  0.0000      0.991 0.000 0.000 0.000 1.000
#> GSM149120     4  0.0000      0.991 0.000 0.000 0.000 1.000
#> GSM149121     1  0.4018      0.785 0.772 0.004 0.000 0.224
#> GSM149122     4  0.0000      0.991 0.000 0.000 0.000 1.000
#> GSM149123     4  0.0000      0.991 0.000 0.000 0.000 1.000
#> GSM149124     4  0.0000      0.991 0.000 0.000 0.000 1.000
#> GSM149125     4  0.0000      0.991 0.000 0.000 0.000 1.000
#> GSM149126     4  0.0000      0.991 0.000 0.000 0.000 1.000
#> GSM149127     4  0.0000      0.991 0.000 0.000 0.000 1.000
#> GSM149128     4  0.0000      0.991 0.000 0.000 0.000 1.000
#> GSM149129     4  0.0000      0.991 0.000 0.000 0.000 1.000
#> GSM149130     1  0.2773      0.878 0.880 0.004 0.000 0.116
#> GSM149131     1  0.2714      0.881 0.884 0.004 0.000 0.112
#> GSM149132     4  0.0000      0.991 0.000 0.000 0.000 1.000
#> GSM149133     4  0.0921      0.965 0.028 0.000 0.000 0.972
#> GSM149134     1  0.1489      0.908 0.952 0.004 0.000 0.044
#> GSM149135     1  0.1398      0.909 0.956 0.004 0.000 0.040
#> GSM149136     1  0.0657      0.915 0.984 0.004 0.000 0.012
#> GSM149137     1  0.1489      0.907 0.952 0.004 0.000 0.044
#> GSM149138     1  0.0376      0.911 0.992 0.004 0.000 0.004
#> GSM149139     1  0.1004      0.914 0.972 0.004 0.000 0.024
#> GSM149140     1  0.0657      0.915 0.984 0.004 0.000 0.012
#> GSM149141     2  0.3668      0.891 0.188 0.808 0.004 0.000
#> GSM149142     2  0.3539      0.896 0.176 0.820 0.004 0.000
#> GSM149143     2  0.4053      0.858 0.228 0.768 0.004 0.000
#> GSM149144     2  0.3539      0.896 0.176 0.820 0.004 0.000
#> GSM149145     2  0.3668      0.891 0.188 0.808 0.004 0.000
#> GSM149146     2  0.0188      0.888 0.004 0.996 0.000 0.000
#> GSM149147     1  0.0376      0.911 0.992 0.004 0.000 0.004
#> GSM149148     1  0.0657      0.915 0.984 0.004 0.000 0.012
#> GSM149149     1  0.0657      0.915 0.984 0.004 0.000 0.012
#> GSM149150     2  0.3355      0.903 0.160 0.836 0.004 0.000
#> GSM149151     1  0.0657      0.915 0.984 0.004 0.000 0.012
#> GSM149152     1  0.4225      0.817 0.792 0.024 0.000 0.184
#> GSM149153     2  0.3668      0.891 0.188 0.808 0.004 0.000
#> GSM149154     2  0.4996      0.350 0.484 0.516 0.000 0.000
#> GSM149155     2  0.0336      0.893 0.008 0.992 0.000 0.000
#> GSM149156     2  0.0188      0.888 0.004 0.996 0.000 0.000
#> GSM149157     2  0.2944      0.909 0.128 0.868 0.004 0.000
#> GSM149158     2  0.2654      0.908 0.108 0.888 0.004 0.000
#> GSM149159     2  0.2011      0.911 0.080 0.920 0.000 0.000
#> GSM149160     2  0.3494      0.899 0.172 0.824 0.004 0.000
#> GSM149161     2  0.2593      0.907 0.104 0.892 0.004 0.000
#> GSM149162     2  0.0188      0.888 0.004 0.996 0.000 0.000
#> GSM149163     2  0.0336      0.893 0.008 0.992 0.000 0.000
#> GSM149164     2  0.3668      0.891 0.188 0.808 0.004 0.000
#> GSM149165     2  0.0188      0.888 0.004 0.996 0.000 0.000
#> GSM149166     2  0.1474      0.901 0.052 0.948 0.000 0.000
#> GSM149167     2  0.2944      0.908 0.128 0.868 0.004 0.000
#> GSM149168     2  0.2281      0.911 0.096 0.904 0.000 0.000
#> GSM149169     2  0.3583      0.896 0.180 0.816 0.004 0.000
#> GSM149170     2  0.3074      0.905 0.152 0.848 0.000 0.000
#> GSM149171     2  0.2760      0.906 0.128 0.872 0.000 0.000
#> GSM149172     2  0.3583      0.895 0.180 0.816 0.004 0.000
#> GSM149173     2  0.2814      0.906 0.132 0.868 0.000 0.000
#> GSM149174     2  0.2773      0.908 0.116 0.880 0.004 0.000
#> GSM149175     2  0.4252      0.831 0.252 0.744 0.004 0.000
#> GSM149176     2  0.1474      0.902 0.052 0.948 0.000 0.000
#> GSM149177     2  0.3626      0.893 0.184 0.812 0.004 0.000
#> GSM149178     2  0.3583      0.895 0.180 0.816 0.004 0.000
#> GSM149179     2  0.0188      0.888 0.004 0.996 0.000 0.000
#> GSM149180     2  0.2589      0.911 0.116 0.884 0.000 0.000
#> GSM149181     2  0.0000      0.890 0.000 1.000 0.000 0.000
#> GSM149182     2  0.1118      0.899 0.036 0.964 0.000 0.000
#> GSM149183     2  0.0188      0.888 0.004 0.996 0.000 0.000
#> GSM149184     2  0.0469      0.896 0.012 0.988 0.000 0.000
#> GSM149185     2  0.2530      0.906 0.112 0.888 0.000 0.000
#> GSM149186     2  0.0000      0.890 0.000 1.000 0.000 0.000
#> GSM149187     2  0.0188      0.888 0.004 0.996 0.000 0.000
#> GSM149188     2  0.0188      0.888 0.004 0.996 0.000 0.000
#> GSM149189     2  0.3219      0.902 0.164 0.836 0.000 0.000
#> GSM149190     2  0.2654      0.908 0.108 0.888 0.004 0.000
#> GSM149191     2  0.3626      0.893 0.184 0.812 0.004 0.000
#> GSM149192     2  0.0188      0.888 0.004 0.996 0.000 0.000
#> GSM149193     2  0.1118      0.901 0.036 0.964 0.000 0.000
#> GSM149194     2  0.3052      0.907 0.136 0.860 0.004 0.000
#> GSM149195     3  0.6943      0.271 0.160 0.264 0.576 0.000
#> GSM149196     2  0.0000      0.890 0.000 1.000 0.000 0.000
#> GSM149197     2  0.0336      0.891 0.008 0.992 0.000 0.000
#> GSM149198     1  0.2053      0.849 0.924 0.072 0.000 0.004
#> GSM149199     2  0.0817      0.894 0.024 0.976 0.000 0.000
#> GSM149200     2  0.3074      0.905 0.152 0.848 0.000 0.000
#> GSM149201     2  0.0188      0.888 0.004 0.996 0.000 0.000
#> GSM149202     2  0.3024      0.906 0.148 0.852 0.000 0.000
#> GSM149203     2  0.2944      0.911 0.128 0.868 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0000     0.9445 0.000 0.000 1.000 0.000 0.000
#> GSM149100     3  0.0000     0.9445 0.000 0.000 1.000 0.000 0.000
#> GSM149101     3  0.0000     0.9445 0.000 0.000 1.000 0.000 0.000
#> GSM149102     3  0.0000     0.9445 0.000 0.000 1.000 0.000 0.000
#> GSM149103     3  0.5030     0.3788 0.000 0.352 0.604 0.000 0.044
#> GSM149104     3  0.0000     0.9445 0.000 0.000 1.000 0.000 0.000
#> GSM149105     3  0.0000     0.9445 0.000 0.000 1.000 0.000 0.000
#> GSM149106     2  0.6776    -0.0927 0.000 0.392 0.316 0.000 0.292
#> GSM149107     3  0.0000     0.9445 0.000 0.000 1.000 0.000 0.000
#> GSM149108     3  0.0000     0.9445 0.000 0.000 1.000 0.000 0.000
#> GSM149109     3  0.0000     0.9445 0.000 0.000 1.000 0.000 0.000
#> GSM149110     3  0.0000     0.9445 0.000 0.000 1.000 0.000 0.000
#> GSM149111     3  0.0000     0.9445 0.000 0.000 1.000 0.000 0.000
#> GSM149112     3  0.0000     0.9445 0.000 0.000 1.000 0.000 0.000
#> GSM149113     3  0.0000     0.9445 0.000 0.000 1.000 0.000 0.000
#> GSM149114     3  0.0000     0.9445 0.000 0.000 1.000 0.000 0.000
#> GSM149115     4  0.4400     0.5737 0.308 0.020 0.000 0.672 0.000
#> GSM149116     4  0.0000     0.8797 0.000 0.000 0.000 1.000 0.000
#> GSM149117     4  0.5680     0.5426 0.264 0.092 0.000 0.632 0.012
#> GSM149118     4  0.0898     0.8658 0.020 0.008 0.000 0.972 0.000
#> GSM149119     4  0.0000     0.8797 0.000 0.000 0.000 1.000 0.000
#> GSM149120     4  0.0000     0.8797 0.000 0.000 0.000 1.000 0.000
#> GSM149121     4  0.5369     0.3605 0.388 0.060 0.000 0.552 0.000
#> GSM149122     4  0.0000     0.8797 0.000 0.000 0.000 1.000 0.000
#> GSM149123     4  0.0000     0.8797 0.000 0.000 0.000 1.000 0.000
#> GSM149124     4  0.0000     0.8797 0.000 0.000 0.000 1.000 0.000
#> GSM149125     4  0.0000     0.8797 0.000 0.000 0.000 1.000 0.000
#> GSM149126     4  0.0000     0.8797 0.000 0.000 0.000 1.000 0.000
#> GSM149127     4  0.0000     0.8797 0.000 0.000 0.000 1.000 0.000
#> GSM149128     4  0.0000     0.8797 0.000 0.000 0.000 1.000 0.000
#> GSM149129     4  0.0000     0.8797 0.000 0.000 0.000 1.000 0.000
#> GSM149130     4  0.4979     0.1555 0.480 0.028 0.000 0.492 0.000
#> GSM149131     1  0.3602     0.7094 0.796 0.024 0.000 0.180 0.000
#> GSM149132     4  0.0000     0.8797 0.000 0.000 0.000 1.000 0.000
#> GSM149133     4  0.0510     0.8720 0.016 0.000 0.000 0.984 0.000
#> GSM149134     1  0.1270     0.9205 0.948 0.052 0.000 0.000 0.000
#> GSM149135     1  0.0000     0.9504 1.000 0.000 0.000 0.000 0.000
#> GSM149136     1  0.0000     0.9504 1.000 0.000 0.000 0.000 0.000
#> GSM149137     1  0.0000     0.9504 1.000 0.000 0.000 0.000 0.000
#> GSM149138     1  0.1270     0.9205 0.948 0.052 0.000 0.000 0.000
#> GSM149139     1  0.0000     0.9504 1.000 0.000 0.000 0.000 0.000
#> GSM149140     1  0.0000     0.9504 1.000 0.000 0.000 0.000 0.000
#> GSM149141     2  0.0898     0.8053 0.008 0.972 0.000 0.000 0.020
#> GSM149142     2  0.3307     0.8290 0.052 0.844 0.000 0.000 0.104
#> GSM149143     2  0.1364     0.8067 0.036 0.952 0.000 0.000 0.012
#> GSM149144     2  0.3164     0.8301 0.044 0.852 0.000 0.000 0.104
#> GSM149145     2  0.0771     0.8032 0.004 0.976 0.000 0.000 0.020
#> GSM149146     5  0.0000     0.7952 0.000 0.000 0.000 0.000 1.000
#> GSM149147     1  0.0162     0.9491 0.996 0.004 0.000 0.000 0.000
#> GSM149148     1  0.0000     0.9504 1.000 0.000 0.000 0.000 0.000
#> GSM149149     1  0.0000     0.9504 1.000 0.000 0.000 0.000 0.000
#> GSM149150     2  0.3010     0.8198 0.004 0.824 0.000 0.000 0.172
#> GSM149151     1  0.0290     0.9476 0.992 0.008 0.000 0.000 0.000
#> GSM149152     4  0.5821     0.5118 0.276 0.108 0.000 0.608 0.008
#> GSM149153     2  0.0898     0.8053 0.008 0.972 0.000 0.000 0.020
#> GSM149154     2  0.3642     0.5780 0.232 0.760 0.000 0.000 0.008
#> GSM149155     5  0.0000     0.7952 0.000 0.000 0.000 0.000 1.000
#> GSM149156     5  0.0404     0.7984 0.000 0.012 0.000 0.000 0.988
#> GSM149157     2  0.2929     0.8278 0.008 0.840 0.000 0.000 0.152
#> GSM149158     2  0.3381     0.8151 0.016 0.808 0.000 0.000 0.176
#> GSM149159     5  0.3508     0.7311 0.000 0.252 0.000 0.000 0.748
#> GSM149160     2  0.2777     0.8359 0.016 0.864 0.000 0.000 0.120
#> GSM149161     2  0.3388     0.7942 0.008 0.792 0.000 0.000 0.200
#> GSM149162     5  0.0000     0.7952 0.000 0.000 0.000 0.000 1.000
#> GSM149163     5  0.0000     0.7952 0.000 0.000 0.000 0.000 1.000
#> GSM149164     2  0.1082     0.8072 0.028 0.964 0.000 0.000 0.008
#> GSM149165     5  0.0162     0.7969 0.000 0.004 0.000 0.000 0.996
#> GSM149166     5  0.4273     0.1464 0.000 0.448 0.000 0.000 0.552
#> GSM149167     2  0.3039     0.8299 0.012 0.836 0.000 0.000 0.152
#> GSM149168     5  0.3774     0.7092 0.000 0.296 0.000 0.000 0.704
#> GSM149169     2  0.3193     0.8353 0.028 0.840 0.000 0.000 0.132
#> GSM149170     5  0.3876     0.6939 0.000 0.316 0.000 0.000 0.684
#> GSM149171     5  0.3949     0.6797 0.000 0.332 0.000 0.000 0.668
#> GSM149172     5  0.4300     0.4407 0.000 0.476 0.000 0.000 0.524
#> GSM149173     5  0.3949     0.6820 0.000 0.332 0.000 0.000 0.668
#> GSM149174     2  0.3343     0.8182 0.016 0.812 0.000 0.000 0.172
#> GSM149175     2  0.1800     0.8007 0.048 0.932 0.000 0.000 0.020
#> GSM149176     5  0.4126     0.4087 0.000 0.380 0.000 0.000 0.620
#> GSM149177     2  0.3534     0.4605 0.000 0.744 0.000 0.000 0.256
#> GSM149178     5  0.4297     0.4715 0.000 0.472 0.000 0.000 0.528
#> GSM149179     5  0.0162     0.7967 0.000 0.004 0.000 0.000 0.996
#> GSM149180     5  0.3612     0.6967 0.000 0.268 0.000 0.000 0.732
#> GSM149181     5  0.1043     0.8016 0.000 0.040 0.000 0.000 0.960
#> GSM149182     5  0.1197     0.7987 0.000 0.048 0.000 0.000 0.952
#> GSM149183     5  0.0000     0.7952 0.000 0.000 0.000 0.000 1.000
#> GSM149184     5  0.2852     0.7583 0.000 0.172 0.000 0.000 0.828
#> GSM149185     5  0.3707     0.7182 0.000 0.284 0.000 0.000 0.716
#> GSM149186     5  0.0510     0.7994 0.000 0.016 0.000 0.000 0.984
#> GSM149187     5  0.0000     0.7952 0.000 0.000 0.000 0.000 1.000
#> GSM149188     5  0.0162     0.7969 0.000 0.004 0.000 0.000 0.996
#> GSM149189     5  0.5688     0.5830 0.000 0.328 0.100 0.000 0.572
#> GSM149190     2  0.3343     0.8182 0.016 0.812 0.000 0.000 0.172
#> GSM149191     2  0.3957     0.4271 0.008 0.712 0.000 0.000 0.280
#> GSM149192     5  0.1043     0.7997 0.000 0.040 0.000 0.000 0.960
#> GSM149193     5  0.1341     0.7987 0.000 0.056 0.000 0.000 0.944
#> GSM149194     2  0.3039     0.8302 0.012 0.836 0.000 0.000 0.152
#> GSM149195     3  0.3949     0.5632 0.000 0.300 0.696 0.000 0.004
#> GSM149196     5  0.1478     0.7952 0.000 0.064 0.000 0.000 0.936
#> GSM149197     5  0.1671     0.7690 0.000 0.076 0.000 0.000 0.924
#> GSM149198     1  0.3210     0.7544 0.788 0.212 0.000 0.000 0.000
#> GSM149199     5  0.3305     0.5588 0.000 0.224 0.000 0.000 0.776
#> GSM149200     5  0.3895     0.6928 0.000 0.320 0.000 0.000 0.680
#> GSM149201     5  0.0000     0.7952 0.000 0.000 0.000 0.000 1.000
#> GSM149202     5  0.3684     0.7194 0.000 0.280 0.000 0.000 0.720
#> GSM149203     5  0.4030     0.6578 0.000 0.352 0.000 0.000 0.648

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.0000     0.9745 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149100     3  0.0000     0.9745 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149101     3  0.0000     0.9745 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149102     3  0.0000     0.9745 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149103     5  0.3336     0.6446 0.000 0.000 0.056 0.000 0.812 0.132
#> GSM149104     3  0.0000     0.9745 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149105     3  0.0000     0.9745 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149106     5  0.3149     0.6505 0.000 0.000 0.044 0.000 0.824 0.132
#> GSM149107     3  0.0146     0.9736 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM149108     3  0.0146     0.9736 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM149109     3  0.0000     0.9745 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149110     3  0.0000     0.9745 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149111     3  0.0000     0.9745 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149112     3  0.0146     0.9736 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM149113     3  0.0146     0.9736 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM149114     3  0.0146     0.9736 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM149115     4  0.4428     0.6516 0.228 0.000 0.000 0.708 0.016 0.048
#> GSM149116     4  0.0000     0.8938 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149117     4  0.5221     0.6392 0.152 0.000 0.000 0.680 0.036 0.132
#> GSM149118     4  0.0622     0.8830 0.012 0.000 0.000 0.980 0.000 0.008
#> GSM149119     4  0.0000     0.8938 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149120     4  0.0000     0.8938 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149121     4  0.6007     0.4536 0.272 0.000 0.000 0.568 0.096 0.064
#> GSM149122     4  0.0000     0.8938 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149123     4  0.0000     0.8938 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149124     4  0.0000     0.8938 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149125     4  0.0000     0.8938 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149126     4  0.0000     0.8938 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149127     4  0.0000     0.8938 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149128     4  0.0000     0.8938 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149129     4  0.0000     0.8938 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149130     4  0.5290     0.0983 0.460 0.000 0.000 0.468 0.024 0.048
#> GSM149131     1  0.3882     0.7320 0.780 0.000 0.000 0.156 0.016 0.048
#> GSM149132     4  0.0000     0.8938 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149133     4  0.0146     0.8920 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM149134     1  0.2908     0.8773 0.848 0.000 0.000 0.000 0.104 0.048
#> GSM149135     1  0.0000     0.9347 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149136     1  0.0000     0.9347 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149137     1  0.0000     0.9347 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149138     1  0.2842     0.8787 0.852 0.000 0.000 0.000 0.104 0.044
#> GSM149139     1  0.0000     0.9347 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149140     1  0.0000     0.9347 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149141     6  0.3672     0.5772 0.000 0.000 0.000 0.000 0.368 0.632
#> GSM149142     6  0.0767     0.7811 0.004 0.012 0.000 0.000 0.008 0.976
#> GSM149143     6  0.4224     0.5922 0.028 0.000 0.000 0.000 0.340 0.632
#> GSM149144     6  0.0862     0.7816 0.004 0.016 0.000 0.000 0.008 0.972
#> GSM149145     6  0.3765     0.5209 0.000 0.000 0.000 0.000 0.404 0.596
#> GSM149146     2  0.1152     0.8282 0.000 0.952 0.000 0.000 0.004 0.044
#> GSM149147     1  0.0935     0.9215 0.964 0.000 0.000 0.000 0.004 0.032
#> GSM149148     1  0.0000     0.9347 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149149     1  0.0000     0.9347 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149150     6  0.1151     0.7823 0.000 0.032 0.000 0.000 0.012 0.956
#> GSM149151     1  0.0692     0.9276 0.976 0.000 0.000 0.000 0.004 0.020
#> GSM149152     4  0.5349     0.6162 0.136 0.000 0.000 0.660 0.032 0.172
#> GSM149153     6  0.3706     0.5595 0.000 0.000 0.000 0.000 0.380 0.620
#> GSM149154     6  0.5011     0.5700 0.112 0.000 0.000 0.000 0.272 0.616
#> GSM149155     2  0.2006     0.8237 0.000 0.892 0.000 0.000 0.004 0.104
#> GSM149156     2  0.1471     0.8316 0.000 0.932 0.000 0.000 0.004 0.064
#> GSM149157     6  0.2801     0.7490 0.000 0.068 0.000 0.000 0.072 0.860
#> GSM149158     6  0.1858     0.7522 0.000 0.092 0.000 0.000 0.004 0.904
#> GSM149159     5  0.5035     0.7860 0.000 0.296 0.000 0.000 0.600 0.104
#> GSM149160     6  0.1138     0.7838 0.004 0.024 0.000 0.000 0.012 0.960
#> GSM149161     6  0.2219     0.7118 0.000 0.136 0.000 0.000 0.000 0.864
#> GSM149162     2  0.2070     0.8240 0.000 0.892 0.000 0.000 0.008 0.100
#> GSM149163     2  0.2118     0.8242 0.000 0.888 0.000 0.000 0.008 0.104
#> GSM149164     6  0.3714     0.5968 0.004 0.000 0.000 0.000 0.340 0.656
#> GSM149165     2  0.0260     0.8090 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM149166     2  0.3961     0.3995 0.000 0.556 0.000 0.000 0.004 0.440
#> GSM149167     6  0.1219     0.7787 0.000 0.048 0.000 0.000 0.004 0.948
#> GSM149168     5  0.5063     0.8004 0.000 0.284 0.000 0.000 0.604 0.112
#> GSM149169     6  0.1116     0.7844 0.004 0.028 0.000 0.000 0.008 0.960
#> GSM149170     5  0.5029     0.8062 0.000 0.276 0.000 0.000 0.612 0.112
#> GSM149171     5  0.5011     0.8082 0.000 0.272 0.000 0.000 0.616 0.112
#> GSM149172     5  0.3874     0.6993 0.000 0.068 0.000 0.000 0.760 0.172
#> GSM149173     5  0.5138     0.8040 0.000 0.276 0.000 0.000 0.600 0.124
#> GSM149174     6  0.1663     0.7552 0.000 0.088 0.000 0.000 0.000 0.912
#> GSM149175     6  0.3911     0.5821 0.008 0.000 0.000 0.000 0.368 0.624
#> GSM149176     2  0.4594     0.5830 0.000 0.608 0.000 0.000 0.052 0.340
#> GSM149177     5  0.3619     0.3433 0.000 0.004 0.000 0.000 0.680 0.316
#> GSM149178     5  0.3027     0.6826 0.000 0.028 0.000 0.000 0.824 0.148
#> GSM149179     2  0.1863     0.8247 0.000 0.896 0.000 0.000 0.000 0.104
#> GSM149180     2  0.4141     0.5802 0.000 0.596 0.000 0.000 0.016 0.388
#> GSM149181     2  0.1168     0.7971 0.000 0.956 0.000 0.000 0.016 0.028
#> GSM149182     2  0.2882     0.7970 0.000 0.812 0.000 0.000 0.008 0.180
#> GSM149183     2  0.0603     0.8176 0.000 0.980 0.000 0.000 0.004 0.016
#> GSM149184     2  0.3328     0.6325 0.000 0.816 0.000 0.000 0.064 0.120
#> GSM149185     2  0.5336    -0.2406 0.000 0.544 0.000 0.000 0.332 0.124
#> GSM149186     2  0.1225     0.8131 0.000 0.952 0.000 0.000 0.012 0.036
#> GSM149187     2  0.1204     0.8298 0.000 0.944 0.000 0.000 0.000 0.056
#> GSM149188     2  0.0260     0.8090 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM149189     5  0.5108     0.8098 0.000 0.264 0.004 0.000 0.620 0.112
#> GSM149190     6  0.1806     0.7556 0.000 0.088 0.000 0.000 0.004 0.908
#> GSM149191     5  0.5100     0.6373 0.000 0.128 0.000 0.000 0.612 0.260
#> GSM149192     2  0.0363     0.8078 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM149193     2  0.2301     0.7640 0.000 0.884 0.000 0.000 0.020 0.096
#> GSM149194     6  0.1010     0.7830 0.000 0.036 0.000 0.000 0.004 0.960
#> GSM149195     3  0.4535     0.5269 0.000 0.000 0.704 0.000 0.152 0.144
#> GSM149196     2  0.1719     0.7838 0.000 0.924 0.000 0.000 0.016 0.060
#> GSM149197     2  0.2933     0.7590 0.000 0.796 0.000 0.000 0.004 0.200
#> GSM149198     1  0.4599     0.6905 0.684 0.000 0.000 0.000 0.104 0.212
#> GSM149199     2  0.3489     0.6591 0.000 0.708 0.000 0.000 0.004 0.288
#> GSM149200     5  0.5029     0.8062 0.000 0.276 0.000 0.000 0.612 0.112
#> GSM149201     2  0.1663     0.8270 0.000 0.912 0.000 0.000 0.000 0.088
#> GSM149202     5  0.5431     0.7153 0.000 0.344 0.000 0.000 0.524 0.132
#> GSM149203     5  0.5036     0.8044 0.000 0.228 0.000 0.000 0.632 0.140

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> CV:mclust 105         3.23e-14 2
#> CV:mclust 104         1.86e-27 3
#> CV:mclust 103         1.38e-30 4
#> CV:mclust  95         4.58e-35 5
#> CV:mclust 100         1.74e-33 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.875           0.921       0.965         0.4875 0.508   0.508
#> 3 3 0.844           0.868       0.944         0.3519 0.706   0.485
#> 4 4 0.660           0.712       0.848         0.1286 0.805   0.505
#> 5 5 0.699           0.669       0.815         0.0745 0.855   0.510
#> 6 6 0.729           0.608       0.789         0.0409 0.915   0.619

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     1  0.0672     0.9459 0.992 0.008
#> GSM149100     1  0.0672     0.9459 0.992 0.008
#> GSM149101     1  0.0672     0.9459 0.992 0.008
#> GSM149102     1  0.0672     0.9459 0.992 0.008
#> GSM149103     1  0.0672     0.9459 0.992 0.008
#> GSM149104     1  0.0672     0.9459 0.992 0.008
#> GSM149105     1  0.0672     0.9459 0.992 0.008
#> GSM149106     1  0.0672     0.9459 0.992 0.008
#> GSM149107     1  0.0672     0.9459 0.992 0.008
#> GSM149108     1  0.0672     0.9459 0.992 0.008
#> GSM149109     1  0.0672     0.9459 0.992 0.008
#> GSM149110     1  0.0672     0.9459 0.992 0.008
#> GSM149111     1  0.0672     0.9459 0.992 0.008
#> GSM149112     1  0.0672     0.9459 0.992 0.008
#> GSM149113     1  0.0672     0.9459 0.992 0.008
#> GSM149114     1  0.0672     0.9459 0.992 0.008
#> GSM149115     1  0.4431     0.8805 0.908 0.092
#> GSM149116     1  0.0000     0.9452 1.000 0.000
#> GSM149117     2  0.0672     0.9706 0.008 0.992
#> GSM149118     1  0.0000     0.9452 1.000 0.000
#> GSM149119     1  0.0000     0.9452 1.000 0.000
#> GSM149120     1  0.0000     0.9452 1.000 0.000
#> GSM149121     1  0.0938     0.9407 0.988 0.012
#> GSM149122     1  0.0000     0.9452 1.000 0.000
#> GSM149123     1  0.0000     0.9452 1.000 0.000
#> GSM149124     1  0.0000     0.9452 1.000 0.000
#> GSM149125     1  0.0000     0.9452 1.000 0.000
#> GSM149126     1  0.0000     0.9452 1.000 0.000
#> GSM149127     1  0.0000     0.9452 1.000 0.000
#> GSM149128     1  0.0000     0.9452 1.000 0.000
#> GSM149129     1  0.0000     0.9452 1.000 0.000
#> GSM149130     1  0.9710     0.3637 0.600 0.400
#> GSM149131     2  0.8207     0.6601 0.256 0.744
#> GSM149132     1  0.0000     0.9452 1.000 0.000
#> GSM149133     1  0.0000     0.9452 1.000 0.000
#> GSM149134     2  0.8608     0.5985 0.284 0.716
#> GSM149135     2  0.0672     0.9706 0.008 0.992
#> GSM149136     2  0.0672     0.9706 0.008 0.992
#> GSM149137     2  0.0672     0.9706 0.008 0.992
#> GSM149138     2  0.0672     0.9706 0.008 0.992
#> GSM149139     2  0.1414     0.9634 0.020 0.980
#> GSM149140     2  0.0672     0.9706 0.008 0.992
#> GSM149141     1  0.6343     0.8186 0.840 0.160
#> GSM149142     2  0.0000     0.9753 0.000 1.000
#> GSM149143     1  0.3114     0.9115 0.944 0.056
#> GSM149144     2  0.0000     0.9753 0.000 1.000
#> GSM149145     1  0.2423     0.9260 0.960 0.040
#> GSM149146     2  0.0000     0.9753 0.000 1.000
#> GSM149147     2  0.2603     0.9438 0.044 0.956
#> GSM149148     2  0.0672     0.9706 0.008 0.992
#> GSM149149     2  0.3274     0.9287 0.060 0.940
#> GSM149150     2  0.0000     0.9753 0.000 1.000
#> GSM149151     2  0.0672     0.9706 0.008 0.992
#> GSM149152     1  0.6048     0.8260 0.852 0.148
#> GSM149153     2  0.9427     0.4165 0.360 0.640
#> GSM149154     1  0.0000     0.9452 1.000 0.000
#> GSM149155     2  0.0000     0.9753 0.000 1.000
#> GSM149156     2  0.0000     0.9753 0.000 1.000
#> GSM149157     2  0.0000     0.9753 0.000 1.000
#> GSM149158     2  0.0000     0.9753 0.000 1.000
#> GSM149159     2  0.0000     0.9753 0.000 1.000
#> GSM149160     2  0.0000     0.9753 0.000 1.000
#> GSM149161     2  0.0000     0.9753 0.000 1.000
#> GSM149162     2  0.0000     0.9753 0.000 1.000
#> GSM149163     2  0.0000     0.9753 0.000 1.000
#> GSM149164     2  0.0000     0.9753 0.000 1.000
#> GSM149165     2  0.0000     0.9753 0.000 1.000
#> GSM149166     2  0.0000     0.9753 0.000 1.000
#> GSM149167     2  0.0000     0.9753 0.000 1.000
#> GSM149168     2  0.0000     0.9753 0.000 1.000
#> GSM149169     2  0.0000     0.9753 0.000 1.000
#> GSM149170     2  0.1184     0.9639 0.016 0.984
#> GSM149171     1  0.9522     0.4395 0.628 0.372
#> GSM149172     1  0.6801     0.7954 0.820 0.180
#> GSM149173     2  0.0000     0.9753 0.000 1.000
#> GSM149174     2  0.0000     0.9753 0.000 1.000
#> GSM149175     1  0.0000     0.9452 1.000 0.000
#> GSM149176     2  0.0000     0.9753 0.000 1.000
#> GSM149177     2  0.4939     0.8744 0.108 0.892
#> GSM149178     2  0.5408     0.8504 0.124 0.876
#> GSM149179     2  0.0000     0.9753 0.000 1.000
#> GSM149180     2  0.0000     0.9753 0.000 1.000
#> GSM149181     2  0.0000     0.9753 0.000 1.000
#> GSM149182     2  0.0000     0.9753 0.000 1.000
#> GSM149183     2  0.0000     0.9753 0.000 1.000
#> GSM149184     2  0.0000     0.9753 0.000 1.000
#> GSM149185     2  0.0000     0.9753 0.000 1.000
#> GSM149186     2  0.0000     0.9753 0.000 1.000
#> GSM149187     2  0.0000     0.9753 0.000 1.000
#> GSM149188     2  0.0000     0.9753 0.000 1.000
#> GSM149189     1  0.9998     0.0742 0.508 0.492
#> GSM149190     2  0.0000     0.9753 0.000 1.000
#> GSM149191     2  0.0000     0.9753 0.000 1.000
#> GSM149192     2  0.0000     0.9753 0.000 1.000
#> GSM149193     2  0.0000     0.9753 0.000 1.000
#> GSM149194     2  0.0000     0.9753 0.000 1.000
#> GSM149195     1  0.0672     0.9459 0.992 0.008
#> GSM149196     2  0.0000     0.9753 0.000 1.000
#> GSM149197     2  0.0000     0.9753 0.000 1.000
#> GSM149198     2  0.4022     0.9075 0.080 0.920
#> GSM149199     2  0.0000     0.9753 0.000 1.000
#> GSM149200     2  0.0000     0.9753 0.000 1.000
#> GSM149201     2  0.0000     0.9753 0.000 1.000
#> GSM149202     2  0.0000     0.9753 0.000 1.000
#> GSM149203     1  0.7453     0.7531 0.788 0.212

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0000     0.9194 0.000 0.000 1.000
#> GSM149100     3  0.0000     0.9194 0.000 0.000 1.000
#> GSM149101     3  0.0000     0.9194 0.000 0.000 1.000
#> GSM149102     3  0.0000     0.9194 0.000 0.000 1.000
#> GSM149103     3  0.0000     0.9194 0.000 0.000 1.000
#> GSM149104     3  0.0000     0.9194 0.000 0.000 1.000
#> GSM149105     3  0.0000     0.9194 0.000 0.000 1.000
#> GSM149106     3  0.0000     0.9194 0.000 0.000 1.000
#> GSM149107     3  0.0000     0.9194 0.000 0.000 1.000
#> GSM149108     3  0.0000     0.9194 0.000 0.000 1.000
#> GSM149109     3  0.0000     0.9194 0.000 0.000 1.000
#> GSM149110     3  0.0000     0.9194 0.000 0.000 1.000
#> GSM149111     3  0.0000     0.9194 0.000 0.000 1.000
#> GSM149112     3  0.0000     0.9194 0.000 0.000 1.000
#> GSM149113     3  0.0000     0.9194 0.000 0.000 1.000
#> GSM149114     3  0.0000     0.9194 0.000 0.000 1.000
#> GSM149115     1  0.0000     0.9471 1.000 0.000 0.000
#> GSM149116     1  0.0592     0.9457 0.988 0.000 0.012
#> GSM149117     1  0.5497     0.6242 0.708 0.292 0.000
#> GSM149118     1  0.0237     0.9475 0.996 0.000 0.004
#> GSM149119     1  0.0592     0.9457 0.988 0.000 0.012
#> GSM149120     1  0.0424     0.9474 0.992 0.000 0.008
#> GSM149121     1  0.0000     0.9471 1.000 0.000 0.000
#> GSM149122     1  0.0747     0.9434 0.984 0.000 0.016
#> GSM149123     1  0.0237     0.9475 0.996 0.000 0.004
#> GSM149124     1  0.0424     0.9474 0.992 0.000 0.008
#> GSM149125     1  0.0424     0.9474 0.992 0.000 0.008
#> GSM149126     1  0.0424     0.9474 0.992 0.000 0.008
#> GSM149127     1  0.0424     0.9474 0.992 0.000 0.008
#> GSM149128     1  0.0424     0.9474 0.992 0.000 0.008
#> GSM149129     1  0.0424     0.9474 0.992 0.000 0.008
#> GSM149130     1  0.0000     0.9471 1.000 0.000 0.000
#> GSM149131     1  0.0000     0.9471 1.000 0.000 0.000
#> GSM149132     1  0.0424     0.9474 0.992 0.000 0.008
#> GSM149133     1  0.0424     0.9474 0.992 0.000 0.008
#> GSM149134     1  0.0237     0.9467 0.996 0.004 0.000
#> GSM149135     1  0.0892     0.9388 0.980 0.020 0.000
#> GSM149136     1  0.3116     0.8704 0.892 0.108 0.000
#> GSM149137     1  0.0424     0.9454 0.992 0.008 0.000
#> GSM149138     1  0.5810     0.5502 0.664 0.336 0.000
#> GSM149139     1  0.0237     0.9465 0.996 0.004 0.000
#> GSM149140     1  0.2448     0.8983 0.924 0.076 0.000
#> GSM149141     3  0.2918     0.8820 0.032 0.044 0.924
#> GSM149142     2  0.0424     0.9363 0.008 0.992 0.000
#> GSM149143     3  0.7268     0.1362 0.448 0.028 0.524
#> GSM149144     2  0.0424     0.9363 0.008 0.992 0.000
#> GSM149145     3  0.0747     0.9130 0.000 0.016 0.984
#> GSM149146     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149147     1  0.0237     0.9465 0.996 0.004 0.000
#> GSM149148     1  0.1289     0.9312 0.968 0.032 0.000
#> GSM149149     1  0.0000     0.9471 1.000 0.000 0.000
#> GSM149150     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149151     1  0.3686     0.8392 0.860 0.140 0.000
#> GSM149152     1  0.0000     0.9471 1.000 0.000 0.000
#> GSM149153     3  0.6154     0.3026 0.000 0.408 0.592
#> GSM149154     1  0.4235     0.7710 0.824 0.000 0.176
#> GSM149155     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149156     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149157     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149158     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149159     2  0.3340     0.8406 0.000 0.880 0.120
#> GSM149160     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149161     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149162     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149163     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149164     2  0.0747     0.9336 0.000 0.984 0.016
#> GSM149165     2  0.2878     0.8663 0.000 0.904 0.096
#> GSM149166     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149167     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149168     2  0.5178     0.6568 0.000 0.744 0.256
#> GSM149169     2  0.0424     0.9363 0.008 0.992 0.000
#> GSM149170     3  0.4504     0.7235 0.000 0.196 0.804
#> GSM149171     3  0.1289     0.9045 0.000 0.032 0.968
#> GSM149172     3  0.1411     0.9019 0.000 0.036 0.964
#> GSM149173     2  0.6244     0.2306 0.000 0.560 0.440
#> GSM149174     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149175     3  0.4887     0.6673 0.228 0.000 0.772
#> GSM149176     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149177     2  0.6305     0.0819 0.000 0.516 0.484
#> GSM149178     3  0.6192     0.2414 0.000 0.420 0.580
#> GSM149179     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149180     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149181     2  0.2165     0.8964 0.000 0.936 0.064
#> GSM149182     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149183     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149184     2  0.0892     0.9308 0.000 0.980 0.020
#> GSM149185     2  0.1529     0.9164 0.000 0.960 0.040
#> GSM149186     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149187     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149188     2  0.1163     0.9254 0.000 0.972 0.028
#> GSM149189     3  0.1289     0.9045 0.000 0.032 0.968
#> GSM149190     2  0.0237     0.9388 0.004 0.996 0.000
#> GSM149191     2  0.5254     0.6439 0.000 0.736 0.264
#> GSM149192     2  0.0424     0.9374 0.000 0.992 0.008
#> GSM149193     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149194     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149195     3  0.0000     0.9194 0.000 0.000 1.000
#> GSM149196     2  0.0237     0.9394 0.000 0.996 0.004
#> GSM149197     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149198     1  0.4504     0.7640 0.804 0.196 0.000
#> GSM149199     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149200     2  0.6291     0.1345 0.000 0.532 0.468
#> GSM149201     2  0.0000     0.9410 0.000 1.000 0.000
#> GSM149202     2  0.1031     0.9280 0.000 0.976 0.024
#> GSM149203     3  0.3116     0.8369 0.000 0.108 0.892

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.0188     0.8799 0.004 0.000 0.996 0.000
#> GSM149100     3  0.0000     0.8804 0.000 0.000 1.000 0.000
#> GSM149101     3  0.0000     0.8804 0.000 0.000 1.000 0.000
#> GSM149102     3  0.0000     0.8804 0.000 0.000 1.000 0.000
#> GSM149103     3  0.0188     0.8792 0.004 0.000 0.996 0.000
#> GSM149104     3  0.0000     0.8804 0.000 0.000 1.000 0.000
#> GSM149105     3  0.0188     0.8799 0.004 0.000 0.996 0.000
#> GSM149106     3  0.0336     0.8794 0.008 0.000 0.992 0.000
#> GSM149107     3  0.0000     0.8804 0.000 0.000 1.000 0.000
#> GSM149108     3  0.0895     0.8723 0.004 0.000 0.976 0.020
#> GSM149109     3  0.0188     0.8799 0.004 0.000 0.996 0.000
#> GSM149110     3  0.0000     0.8804 0.000 0.000 1.000 0.000
#> GSM149111     3  0.0000     0.8804 0.000 0.000 1.000 0.000
#> GSM149112     3  0.0712     0.8768 0.004 0.004 0.984 0.008
#> GSM149113     3  0.0524     0.8775 0.004 0.000 0.988 0.008
#> GSM149114     3  0.0000     0.8804 0.000 0.000 1.000 0.000
#> GSM149115     4  0.1211     0.9269 0.040 0.000 0.000 0.960
#> GSM149116     4  0.0859     0.9397 0.008 0.008 0.004 0.980
#> GSM149117     4  0.4541     0.6829 0.060 0.144 0.000 0.796
#> GSM149118     4  0.0376     0.9471 0.004 0.000 0.004 0.992
#> GSM149119     4  0.0564     0.9450 0.004 0.004 0.004 0.988
#> GSM149120     4  0.0188     0.9486 0.000 0.000 0.004 0.996
#> GSM149121     4  0.3123     0.8050 0.156 0.000 0.000 0.844
#> GSM149122     4  0.0188     0.9486 0.000 0.000 0.004 0.996
#> GSM149123     4  0.0188     0.9489 0.004 0.000 0.000 0.996
#> GSM149124     4  0.0859     0.9397 0.008 0.008 0.004 0.980
#> GSM149125     4  0.0188     0.9486 0.000 0.000 0.004 0.996
#> GSM149126     4  0.0376     0.9490 0.004 0.000 0.004 0.992
#> GSM149127     4  0.0000     0.9489 0.000 0.000 0.000 1.000
#> GSM149128     4  0.0188     0.9489 0.004 0.000 0.000 0.996
#> GSM149129     4  0.0188     0.9489 0.004 0.000 0.000 0.996
#> GSM149130     4  0.2081     0.8886 0.084 0.000 0.000 0.916
#> GSM149131     4  0.3688     0.7206 0.208 0.000 0.000 0.792
#> GSM149132     4  0.0336     0.9475 0.008 0.000 0.000 0.992
#> GSM149133     4  0.0188     0.9488 0.004 0.000 0.000 0.996
#> GSM149134     1  0.5730     0.3852 0.616 0.040 0.000 0.344
#> GSM149135     1  0.4477     0.5077 0.688 0.000 0.000 0.312
#> GSM149136     1  0.2973     0.6682 0.856 0.000 0.000 0.144
#> GSM149137     1  0.4697     0.4303 0.644 0.000 0.000 0.356
#> GSM149138     1  0.3117     0.6771 0.880 0.028 0.000 0.092
#> GSM149139     1  0.4776     0.3929 0.624 0.000 0.000 0.376
#> GSM149140     1  0.3356     0.6509 0.824 0.000 0.000 0.176
#> GSM149141     3  0.6217     0.5364 0.292 0.084 0.624 0.000
#> GSM149142     1  0.1792     0.6596 0.932 0.068 0.000 0.000
#> GSM149143     1  0.6847     0.2075 0.536 0.004 0.364 0.096
#> GSM149144     1  0.4431     0.4057 0.696 0.304 0.000 0.000
#> GSM149145     3  0.1867     0.8451 0.072 0.000 0.928 0.000
#> GSM149146     2  0.3726     0.7678 0.212 0.788 0.000 0.000
#> GSM149147     1  0.3356     0.6478 0.824 0.000 0.000 0.176
#> GSM149148     1  0.2973     0.6674 0.856 0.000 0.000 0.144
#> GSM149149     1  0.3907     0.5992 0.768 0.000 0.000 0.232
#> GSM149150     2  0.4697     0.5604 0.356 0.644 0.000 0.000
#> GSM149151     1  0.2799     0.6807 0.884 0.008 0.000 0.108
#> GSM149152     4  0.0707     0.9396 0.020 0.000 0.000 0.980
#> GSM149153     3  0.5203     0.3386 0.416 0.008 0.576 0.000
#> GSM149154     3  0.7706     0.0306 0.348 0.000 0.424 0.228
#> GSM149155     2  0.3649     0.7725 0.204 0.796 0.000 0.000
#> GSM149156     2  0.3266     0.7926 0.168 0.832 0.000 0.000
#> GSM149157     1  0.5085     0.1957 0.616 0.376 0.008 0.000
#> GSM149158     1  0.3942     0.5111 0.764 0.236 0.000 0.000
#> GSM149159     2  0.1151     0.7906 0.024 0.968 0.008 0.000
#> GSM149160     1  0.3105     0.6118 0.856 0.140 0.004 0.000
#> GSM149161     1  0.4972    -0.0888 0.544 0.456 0.000 0.000
#> GSM149162     2  0.3649     0.7722 0.204 0.796 0.000 0.000
#> GSM149163     2  0.3942     0.7472 0.236 0.764 0.000 0.000
#> GSM149164     1  0.5312     0.5430 0.712 0.236 0.052 0.000
#> GSM149165     2  0.2124     0.8098 0.068 0.924 0.000 0.008
#> GSM149166     2  0.4624     0.6101 0.340 0.660 0.000 0.000
#> GSM149167     1  0.4916     0.0787 0.576 0.424 0.000 0.000
#> GSM149168     2  0.1356     0.7866 0.032 0.960 0.008 0.000
#> GSM149169     1  0.1743     0.6641 0.940 0.056 0.004 0.000
#> GSM149170     2  0.3647     0.7063 0.040 0.852 0.108 0.000
#> GSM149171     2  0.5651     0.4002 0.036 0.652 0.308 0.004
#> GSM149172     3  0.6972     0.2199 0.052 0.432 0.488 0.028
#> GSM149173     2  0.4059     0.6862 0.040 0.832 0.124 0.004
#> GSM149174     1  0.4331     0.4323 0.712 0.288 0.000 0.000
#> GSM149175     3  0.6527     0.5474 0.052 0.032 0.640 0.276
#> GSM149176     2  0.4406     0.6734 0.300 0.700 0.000 0.000
#> GSM149177     3  0.2466     0.8386 0.056 0.028 0.916 0.000
#> GSM149178     3  0.4565     0.7585 0.064 0.140 0.796 0.000
#> GSM149179     2  0.3356     0.7888 0.176 0.824 0.000 0.000
#> GSM149180     2  0.2345     0.8033 0.100 0.900 0.000 0.000
#> GSM149181     2  0.0469     0.7974 0.012 0.988 0.000 0.000
#> GSM149182     2  0.2973     0.8022 0.144 0.856 0.000 0.000
#> GSM149183     2  0.1716     0.8119 0.064 0.936 0.000 0.000
#> GSM149184     2  0.0672     0.7996 0.008 0.984 0.000 0.008
#> GSM149185     2  0.0817     0.7914 0.024 0.976 0.000 0.000
#> GSM149186     2  0.2469     0.8114 0.108 0.892 0.000 0.000
#> GSM149187     2  0.2469     0.8083 0.108 0.892 0.000 0.000
#> GSM149188     2  0.1867     0.8108 0.072 0.928 0.000 0.000
#> GSM149189     3  0.3625     0.7573 0.012 0.160 0.828 0.000
#> GSM149190     2  0.4925     0.4097 0.428 0.572 0.000 0.000
#> GSM149191     2  0.7456     0.1936 0.200 0.492 0.308 0.000
#> GSM149192     2  0.1716     0.8125 0.064 0.936 0.000 0.000
#> GSM149193     2  0.1637     0.8011 0.060 0.940 0.000 0.000
#> GSM149194     1  0.4382     0.4130 0.704 0.296 0.000 0.000
#> GSM149195     3  0.2915     0.8224 0.028 0.080 0.892 0.000
#> GSM149196     2  0.0592     0.7953 0.016 0.984 0.000 0.000
#> GSM149197     2  0.4103     0.7259 0.256 0.744 0.000 0.000
#> GSM149198     1  0.6042     0.5264 0.684 0.080 0.008 0.228
#> GSM149199     2  0.3942     0.7459 0.236 0.764 0.000 0.000
#> GSM149200     2  0.3176     0.7385 0.036 0.880 0.084 0.000
#> GSM149201     2  0.2530     0.8101 0.112 0.888 0.000 0.000
#> GSM149202     2  0.2345     0.7889 0.100 0.900 0.000 0.000
#> GSM149203     2  0.5735     0.5677 0.008 0.724 0.180 0.088

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0162     0.9242 0.000 0.000 0.996 0.000 0.004
#> GSM149100     3  0.0162     0.9242 0.000 0.000 0.996 0.000 0.004
#> GSM149101     3  0.0162     0.9248 0.000 0.000 0.996 0.000 0.004
#> GSM149102     3  0.0000     0.9247 0.000 0.000 1.000 0.000 0.000
#> GSM149103     3  0.0162     0.9248 0.000 0.000 0.996 0.000 0.004
#> GSM149104     3  0.0290     0.9240 0.000 0.000 0.992 0.000 0.008
#> GSM149105     3  0.0000     0.9247 0.000 0.000 1.000 0.000 0.000
#> GSM149106     3  0.0566     0.9218 0.004 0.000 0.984 0.000 0.012
#> GSM149107     3  0.0703     0.9173 0.000 0.000 0.976 0.000 0.024
#> GSM149108     3  0.0404     0.9232 0.000 0.000 0.988 0.000 0.012
#> GSM149109     3  0.0000     0.9247 0.000 0.000 1.000 0.000 0.000
#> GSM149110     3  0.0162     0.9242 0.000 0.000 0.996 0.000 0.004
#> GSM149111     3  0.0162     0.9242 0.000 0.000 0.996 0.000 0.004
#> GSM149112     3  0.0162     0.9248 0.000 0.000 0.996 0.000 0.004
#> GSM149113     3  0.0451     0.9232 0.000 0.000 0.988 0.004 0.008
#> GSM149114     3  0.0880     0.9119 0.000 0.000 0.968 0.000 0.032
#> GSM149115     4  0.1549     0.9152 0.040 0.000 0.000 0.944 0.016
#> GSM149116     4  0.1195     0.9147 0.012 0.000 0.000 0.960 0.028
#> GSM149117     4  0.6237     0.4023 0.016 0.332 0.000 0.544 0.108
#> GSM149118     4  0.0451     0.9240 0.004 0.000 0.000 0.988 0.008
#> GSM149119     4  0.0451     0.9252 0.008 0.000 0.000 0.988 0.004
#> GSM149120     4  0.0290     0.9252 0.000 0.000 0.000 0.992 0.008
#> GSM149121     4  0.3093     0.8021 0.168 0.000 0.000 0.824 0.008
#> GSM149122     4  0.0290     0.9267 0.008 0.000 0.000 0.992 0.000
#> GSM149123     4  0.0404     0.9268 0.012 0.000 0.000 0.988 0.000
#> GSM149124     4  0.0898     0.9180 0.008 0.000 0.000 0.972 0.020
#> GSM149125     4  0.0324     0.9262 0.004 0.000 0.000 0.992 0.004
#> GSM149126     4  0.0510     0.9264 0.016 0.000 0.000 0.984 0.000
#> GSM149127     4  0.0510     0.9264 0.016 0.000 0.000 0.984 0.000
#> GSM149128     4  0.0404     0.9268 0.012 0.000 0.000 0.988 0.000
#> GSM149129     4  0.0609     0.9253 0.020 0.000 0.000 0.980 0.000
#> GSM149130     4  0.3155     0.8515 0.120 0.008 0.000 0.852 0.020
#> GSM149131     4  0.3242     0.7493 0.216 0.000 0.000 0.784 0.000
#> GSM149132     4  0.0609     0.9253 0.020 0.000 0.000 0.980 0.000
#> GSM149133     4  0.1082     0.9200 0.008 0.000 0.000 0.964 0.028
#> GSM149134     1  0.4621     0.6964 0.744 0.004 0.000 0.076 0.176
#> GSM149135     1  0.2597     0.8093 0.884 0.024 0.000 0.092 0.000
#> GSM149136     1  0.1981     0.8194 0.920 0.064 0.000 0.016 0.000
#> GSM149137     1  0.3216     0.7944 0.852 0.020 0.000 0.116 0.012
#> GSM149138     1  0.2520     0.7921 0.888 0.004 0.000 0.012 0.096
#> GSM149139     1  0.2280     0.7971 0.880 0.000 0.000 0.120 0.000
#> GSM149140     1  0.1907     0.8237 0.928 0.044 0.000 0.028 0.000
#> GSM149141     5  0.6917    -0.0569 0.352 0.012 0.212 0.000 0.424
#> GSM149142     1  0.3242     0.6939 0.784 0.216 0.000 0.000 0.000
#> GSM149143     1  0.3513     0.7596 0.828 0.000 0.132 0.004 0.036
#> GSM149144     2  0.3906     0.5526 0.240 0.744 0.000 0.000 0.016
#> GSM149145     3  0.2540     0.8397 0.088 0.000 0.888 0.000 0.024
#> GSM149146     2  0.0992     0.6859 0.008 0.968 0.000 0.000 0.024
#> GSM149147     1  0.0807     0.8213 0.976 0.012 0.000 0.012 0.000
#> GSM149148     1  0.1741     0.8239 0.936 0.040 0.000 0.024 0.000
#> GSM149149     1  0.2036     0.8211 0.920 0.024 0.000 0.056 0.000
#> GSM149150     2  0.5915     0.2568 0.124 0.552 0.000 0.000 0.324
#> GSM149151     1  0.2248     0.8117 0.900 0.088 0.000 0.012 0.000
#> GSM149152     4  0.4643     0.7626 0.124 0.016 0.000 0.768 0.092
#> GSM149153     1  0.5078     0.3527 0.576 0.004 0.388 0.000 0.032
#> GSM149154     1  0.5055     0.6998 0.740 0.000 0.160 0.060 0.040
#> GSM149155     2  0.0693     0.6859 0.012 0.980 0.000 0.000 0.008
#> GSM149156     2  0.4167     0.5600 0.024 0.724 0.000 0.000 0.252
#> GSM149157     5  0.6817    -0.0118 0.344 0.308 0.000 0.000 0.348
#> GSM149158     2  0.4655     0.0700 0.476 0.512 0.000 0.000 0.012
#> GSM149159     5  0.3728     0.6081 0.008 0.244 0.000 0.000 0.748
#> GSM149160     1  0.4119     0.6941 0.780 0.152 0.000 0.000 0.068
#> GSM149161     2  0.3835     0.5649 0.244 0.744 0.000 0.000 0.012
#> GSM149162     2  0.3141     0.6463 0.016 0.832 0.000 0.000 0.152
#> GSM149163     2  0.0807     0.6863 0.012 0.976 0.000 0.000 0.012
#> GSM149164     5  0.4626     0.2143 0.364 0.020 0.000 0.000 0.616
#> GSM149165     5  0.5232     0.0324 0.008 0.472 0.000 0.028 0.492
#> GSM149166     2  0.2989     0.6457 0.072 0.868 0.000 0.000 0.060
#> GSM149167     2  0.5738     0.4648 0.264 0.604 0.000 0.000 0.132
#> GSM149168     5  0.2930     0.6622 0.004 0.164 0.000 0.000 0.832
#> GSM149169     1  0.2843     0.7625 0.848 0.144 0.000 0.000 0.008
#> GSM149170     5  0.3086     0.6564 0.000 0.180 0.004 0.000 0.816
#> GSM149171     5  0.2928     0.6683 0.004 0.092 0.032 0.000 0.872
#> GSM149172     5  0.2064     0.6351 0.016 0.020 0.028 0.004 0.932
#> GSM149173     5  0.2179     0.6633 0.008 0.072 0.008 0.000 0.912
#> GSM149174     2  0.4798     0.1759 0.440 0.540 0.000 0.000 0.020
#> GSM149175     3  0.8550     0.0025 0.220 0.004 0.316 0.164 0.296
#> GSM149176     2  0.2514     0.6789 0.060 0.896 0.000 0.000 0.044
#> GSM149177     3  0.2721     0.8433 0.028 0.068 0.892 0.000 0.012
#> GSM149178     5  0.5305     0.0267 0.028 0.012 0.436 0.000 0.524
#> GSM149179     2  0.2470     0.6628 0.012 0.884 0.000 0.000 0.104
#> GSM149180     5  0.3890     0.6081 0.012 0.252 0.000 0.000 0.736
#> GSM149181     5  0.4286     0.4873 0.004 0.340 0.000 0.004 0.652
#> GSM149182     2  0.2462     0.6567 0.008 0.880 0.000 0.000 0.112
#> GSM149183     2  0.4299     0.4095 0.008 0.672 0.000 0.004 0.316
#> GSM149184     5  0.5166     0.2977 0.012 0.368 0.000 0.028 0.592
#> GSM149185     5  0.2471     0.6689 0.000 0.136 0.000 0.000 0.864
#> GSM149186     2  0.4403     0.1218 0.004 0.560 0.000 0.000 0.436
#> GSM149187     2  0.3661     0.5221 0.000 0.724 0.000 0.000 0.276
#> GSM149188     2  0.4296     0.4609 0.008 0.692 0.000 0.008 0.292
#> GSM149189     5  0.5059     0.2878 0.000 0.036 0.416 0.000 0.548
#> GSM149190     2  0.2873     0.6648 0.120 0.860 0.000 0.000 0.020
#> GSM149191     5  0.4129     0.6537 0.060 0.112 0.020 0.000 0.808
#> GSM149192     2  0.4300     0.0221 0.000 0.524 0.000 0.000 0.476
#> GSM149193     5  0.3990     0.5550 0.004 0.308 0.000 0.000 0.688
#> GSM149194     1  0.5120     0.5707 0.696 0.164 0.000 0.000 0.140
#> GSM149195     3  0.4464     0.2672 0.008 0.000 0.584 0.000 0.408
#> GSM149196     5  0.4791     0.4198 0.008 0.360 0.000 0.016 0.616
#> GSM149197     2  0.2409     0.6864 0.032 0.900 0.000 0.000 0.068
#> GSM149198     1  0.4577     0.5822 0.676 0.004 0.000 0.024 0.296
#> GSM149199     2  0.2915     0.6720 0.024 0.860 0.000 0.000 0.116
#> GSM149200     5  0.3167     0.6669 0.008 0.148 0.008 0.000 0.836
#> GSM149201     2  0.3274     0.5720 0.000 0.780 0.000 0.000 0.220
#> GSM149202     5  0.3326     0.6617 0.024 0.152 0.000 0.000 0.824
#> GSM149203     5  0.4294     0.6109 0.004 0.152 0.016 0.040 0.788

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.0508    0.92491 0.004 0.000 0.984 0.000 0.000 0.012
#> GSM149100     3  0.0146    0.92651 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM149101     3  0.0260    0.92573 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM149102     3  0.0000    0.92658 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149103     3  0.0146    0.92630 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM149104     3  0.0146    0.92654 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM149105     3  0.0000    0.92658 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149106     3  0.0260    0.92598 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM149107     3  0.0937    0.91405 0.000 0.000 0.960 0.000 0.000 0.040
#> GSM149108     3  0.0937    0.91443 0.000 0.000 0.960 0.000 0.000 0.040
#> GSM149109     3  0.0260    0.92625 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM149110     3  0.0291    0.92599 0.004 0.000 0.992 0.000 0.000 0.004
#> GSM149111     3  0.0291    0.92584 0.004 0.000 0.992 0.000 0.000 0.004
#> GSM149112     3  0.0547    0.92330 0.000 0.000 0.980 0.000 0.000 0.020
#> GSM149113     3  0.0547    0.92322 0.000 0.000 0.980 0.000 0.000 0.020
#> GSM149114     3  0.1398    0.90071 0.000 0.008 0.940 0.000 0.000 0.052
#> GSM149115     4  0.1408    0.92577 0.036 0.000 0.000 0.944 0.000 0.020
#> GSM149116     4  0.0547    0.93586 0.000 0.000 0.000 0.980 0.000 0.020
#> GSM149117     2  0.5788    0.33145 0.004 0.568 0.000 0.220 0.008 0.200
#> GSM149118     4  0.0260    0.93935 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM149119     4  0.0146    0.94201 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM149120     4  0.0363    0.93895 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM149121     4  0.2860    0.84113 0.100 0.000 0.000 0.852 0.000 0.048
#> GSM149122     4  0.0260    0.94272 0.008 0.000 0.000 0.992 0.000 0.000
#> GSM149123     4  0.0260    0.94272 0.008 0.000 0.000 0.992 0.000 0.000
#> GSM149124     4  0.0458    0.93715 0.000 0.000 0.000 0.984 0.000 0.016
#> GSM149125     4  0.0405    0.94265 0.008 0.000 0.000 0.988 0.000 0.004
#> GSM149126     4  0.0260    0.94272 0.008 0.000 0.000 0.992 0.000 0.000
#> GSM149127     4  0.0363    0.94183 0.012 0.000 0.000 0.988 0.000 0.000
#> GSM149128     4  0.0260    0.94272 0.008 0.000 0.000 0.992 0.000 0.000
#> GSM149129     4  0.0260    0.94272 0.008 0.000 0.000 0.992 0.000 0.000
#> GSM149130     4  0.2313    0.87240 0.100 0.004 0.000 0.884 0.000 0.012
#> GSM149131     4  0.1910    0.87444 0.108 0.000 0.000 0.892 0.000 0.000
#> GSM149132     4  0.0458    0.94069 0.016 0.000 0.000 0.984 0.000 0.000
#> GSM149133     4  0.1296    0.91989 0.004 0.004 0.000 0.948 0.000 0.044
#> GSM149134     1  0.4987   -0.07468 0.480 0.000 0.000 0.036 0.016 0.468
#> GSM149135     1  0.1655    0.71516 0.932 0.008 0.000 0.052 0.000 0.008
#> GSM149136     1  0.1390    0.72608 0.948 0.032 0.000 0.016 0.000 0.004
#> GSM149137     1  0.2002    0.70699 0.916 0.008 0.000 0.056 0.000 0.020
#> GSM149138     1  0.3578    0.34211 0.660 0.000 0.000 0.000 0.000 0.340
#> GSM149139     1  0.1701    0.70265 0.920 0.000 0.000 0.072 0.000 0.008
#> GSM149140     1  0.1418    0.72864 0.944 0.032 0.000 0.024 0.000 0.000
#> GSM149141     6  0.6502    0.39736 0.304 0.012 0.028 0.000 0.168 0.488
#> GSM149142     1  0.2755    0.69554 0.856 0.120 0.000 0.000 0.012 0.012
#> GSM149143     1  0.3348    0.68779 0.836 0.000 0.016 0.008 0.112 0.028
#> GSM149144     2  0.2812    0.67818 0.096 0.856 0.000 0.000 0.000 0.048
#> GSM149145     3  0.4980    0.61567 0.116 0.000 0.712 0.000 0.044 0.128
#> GSM149146     2  0.1391    0.70664 0.016 0.944 0.000 0.000 0.040 0.000
#> GSM149147     1  0.0881    0.72552 0.972 0.012 0.000 0.008 0.000 0.008
#> GSM149148     1  0.1245    0.72846 0.952 0.032 0.000 0.016 0.000 0.000
#> GSM149149     1  0.1296    0.72414 0.952 0.012 0.000 0.032 0.000 0.004
#> GSM149150     2  0.6578    0.20293 0.064 0.504 0.000 0.000 0.184 0.248
#> GSM149151     1  0.1908    0.71975 0.924 0.044 0.000 0.012 0.000 0.020
#> GSM149152     4  0.6424    0.32712 0.160 0.020 0.000 0.512 0.020 0.288
#> GSM149153     1  0.6335    0.14719 0.500 0.000 0.316 0.000 0.056 0.128
#> GSM149154     1  0.3198    0.69115 0.868 0.000 0.032 0.036 0.032 0.032
#> GSM149155     2  0.0993    0.70517 0.012 0.964 0.000 0.000 0.024 0.000
#> GSM149156     5  0.5100    0.12289 0.036 0.332 0.000 0.000 0.596 0.036
#> GSM149157     5  0.4961    0.32333 0.236 0.056 0.000 0.000 0.672 0.036
#> GSM149158     1  0.5887    0.33573 0.540 0.300 0.000 0.000 0.136 0.024
#> GSM149159     5  0.0820    0.58643 0.000 0.016 0.000 0.000 0.972 0.012
#> GSM149160     1  0.4671    0.56971 0.692 0.052 0.000 0.000 0.232 0.024
#> GSM149161     2  0.5271    0.44149 0.264 0.620 0.000 0.000 0.100 0.016
#> GSM149162     2  0.4337    0.41682 0.016 0.604 0.000 0.000 0.372 0.008
#> GSM149163     2  0.1391    0.70601 0.016 0.944 0.000 0.000 0.040 0.000
#> GSM149164     6  0.5788    0.33051 0.276 0.000 0.000 0.000 0.224 0.500
#> GSM149165     5  0.5761    0.33269 0.000 0.168 0.000 0.004 0.504 0.324
#> GSM149166     2  0.1218    0.69338 0.012 0.956 0.000 0.004 0.000 0.028
#> GSM149167     1  0.7402    0.22909 0.404 0.172 0.000 0.000 0.220 0.204
#> GSM149168     5  0.1700    0.58194 0.000 0.004 0.000 0.000 0.916 0.080
#> GSM149169     1  0.3000    0.70087 0.864 0.048 0.000 0.000 0.064 0.024
#> GSM149170     5  0.2006    0.56723 0.000 0.004 0.000 0.000 0.892 0.104
#> GSM149171     5  0.4275    0.23611 0.000 0.016 0.004 0.000 0.592 0.388
#> GSM149172     6  0.3998    0.29700 0.008 0.004 0.000 0.004 0.316 0.668
#> GSM149173     6  0.4048    0.26136 0.000 0.012 0.000 0.004 0.340 0.644
#> GSM149174     1  0.6150    0.10456 0.452 0.380 0.000 0.000 0.140 0.028
#> GSM149175     6  0.7913    0.33237 0.140 0.004 0.176 0.044 0.192 0.444
#> GSM149176     2  0.4498    0.57757 0.048 0.736 0.000 0.000 0.176 0.040
#> GSM149177     3  0.4071    0.71059 0.024 0.152 0.772 0.000 0.000 0.052
#> GSM149178     6  0.5254    0.39289 0.008 0.016 0.224 0.000 0.096 0.656
#> GSM149179     2  0.3082    0.63340 0.008 0.828 0.000 0.000 0.144 0.020
#> GSM149180     6  0.5021    0.23362 0.004 0.080 0.000 0.000 0.324 0.592
#> GSM149181     5  0.3897    0.56306 0.000 0.084 0.000 0.004 0.776 0.136
#> GSM149182     2  0.2052    0.69039 0.004 0.912 0.000 0.000 0.056 0.028
#> GSM149183     5  0.4644    0.43301 0.000 0.268 0.000 0.004 0.660 0.068
#> GSM149184     6  0.5952   -0.19120 0.000 0.168 0.000 0.008 0.380 0.444
#> GSM149185     5  0.3652    0.39953 0.000 0.004 0.000 0.000 0.672 0.324
#> GSM149186     5  0.3835    0.56270 0.000 0.188 0.000 0.000 0.756 0.056
#> GSM149187     5  0.4700    0.19609 0.000 0.340 0.000 0.000 0.600 0.060
#> GSM149188     2  0.5210    0.18351 0.000 0.532 0.000 0.004 0.380 0.084
#> GSM149189     5  0.5182    0.30747 0.004 0.004 0.192 0.000 0.648 0.152
#> GSM149190     2  0.4737    0.61041 0.152 0.712 0.000 0.000 0.120 0.016
#> GSM149191     5  0.2456    0.54954 0.048 0.000 0.008 0.000 0.892 0.052
#> GSM149192     5  0.2624    0.58325 0.000 0.124 0.000 0.000 0.856 0.020
#> GSM149193     5  0.4887    0.38569 0.000 0.088 0.000 0.000 0.612 0.300
#> GSM149194     1  0.5135    0.41891 0.584 0.040 0.000 0.000 0.344 0.032
#> GSM149195     3  0.5423   -0.00872 0.000 0.000 0.488 0.000 0.120 0.392
#> GSM149196     5  0.5798    0.18681 0.000 0.144 0.000 0.008 0.476 0.372
#> GSM149197     2  0.4378    0.59087 0.044 0.700 0.000 0.000 0.244 0.012
#> GSM149198     6  0.4475    0.17471 0.412 0.000 0.000 0.000 0.032 0.556
#> GSM149199     2  0.4397    0.48923 0.020 0.632 0.000 0.000 0.336 0.012
#> GSM149200     5  0.3163    0.48970 0.004 0.004 0.000 0.000 0.780 0.212
#> GSM149201     2  0.3163    0.59662 0.004 0.764 0.000 0.000 0.232 0.000
#> GSM149202     5  0.4427    0.10113 0.004 0.020 0.000 0.000 0.548 0.428
#> GSM149203     5  0.3722    0.44092 0.004 0.004 0.000 0.008 0.724 0.260

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> CV:NMF 101         4.00e-11 2
#> CV:NMF  99         1.09e-22 3
#> CV:NMF  89         7.26e-25 4
#> CV:NMF  84         5.63e-28 5
#> CV:NMF  68         1.59e-20 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.418           0.734       0.864         0.4135 0.596   0.596
#> 3 3 0.378           0.679       0.785         0.3714 0.914   0.857
#> 4 4 0.476           0.611       0.751         0.2216 0.789   0.612
#> 5 5 0.558           0.683       0.782         0.0921 0.846   0.579
#> 6 6 0.653           0.672       0.787         0.0534 0.980   0.913

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     1  0.0000      0.794 1.000 0.000
#> GSM149100     1  0.0000      0.794 1.000 0.000
#> GSM149101     1  0.0000      0.794 1.000 0.000
#> GSM149102     1  0.0000      0.794 1.000 0.000
#> GSM149103     2  0.9129      0.555 0.328 0.672
#> GSM149104     1  0.0000      0.794 1.000 0.000
#> GSM149105     1  0.0000      0.794 1.000 0.000
#> GSM149106     2  0.9909      0.204 0.444 0.556
#> GSM149107     1  0.0000      0.794 1.000 0.000
#> GSM149108     1  0.0000      0.794 1.000 0.000
#> GSM149109     1  0.0000      0.794 1.000 0.000
#> GSM149110     1  0.0000      0.794 1.000 0.000
#> GSM149111     1  0.0000      0.794 1.000 0.000
#> GSM149112     1  0.0000      0.794 1.000 0.000
#> GSM149113     1  0.0000      0.794 1.000 0.000
#> GSM149114     1  0.0000      0.794 1.000 0.000
#> GSM149115     2  0.7674      0.683 0.224 0.776
#> GSM149116     1  0.8608      0.730 0.716 0.284
#> GSM149117     2  0.0000      0.845 0.000 1.000
#> GSM149118     1  0.8608      0.730 0.716 0.284
#> GSM149119     1  0.8608      0.730 0.716 0.284
#> GSM149120     1  0.8661      0.724 0.712 0.288
#> GSM149121     2  0.9833      0.126 0.424 0.576
#> GSM149122     1  0.8608      0.730 0.716 0.284
#> GSM149123     1  0.8713      0.722 0.708 0.292
#> GSM149124     1  0.8608      0.730 0.716 0.284
#> GSM149125     1  0.8661      0.724 0.712 0.288
#> GSM149126     1  0.8713      0.722 0.708 0.292
#> GSM149127     1  0.8608      0.730 0.716 0.284
#> GSM149128     1  0.8608      0.730 0.716 0.284
#> GSM149129     1  0.8608      0.730 0.716 0.284
#> GSM149130     2  0.7376      0.705 0.208 0.792
#> GSM149131     2  0.8499      0.592 0.276 0.724
#> GSM149132     1  0.8608      0.730 0.716 0.284
#> GSM149133     1  0.9427      0.588 0.640 0.360
#> GSM149134     2  0.1414      0.846 0.020 0.980
#> GSM149135     2  0.0672      0.846 0.008 0.992
#> GSM149136     2  0.0672      0.846 0.008 0.992
#> GSM149137     2  0.0672      0.846 0.008 0.992
#> GSM149138     2  0.1184      0.846 0.016 0.984
#> GSM149139     2  0.0672      0.846 0.008 0.992
#> GSM149140     2  0.0672      0.846 0.008 0.992
#> GSM149141     2  0.9580      0.478 0.380 0.620
#> GSM149142     2  0.0000      0.845 0.000 1.000
#> GSM149143     2  0.9248      0.560 0.340 0.660
#> GSM149144     2  0.0000      0.845 0.000 1.000
#> GSM149145     2  0.9552      0.490 0.376 0.624
#> GSM149146     2  0.0376      0.846 0.004 0.996
#> GSM149147     2  0.0672      0.846 0.008 0.992
#> GSM149148     2  0.0672      0.846 0.008 0.992
#> GSM149149     2  0.0672      0.846 0.008 0.992
#> GSM149150     2  0.2043      0.845 0.032 0.968
#> GSM149151     2  0.0672      0.846 0.008 0.992
#> GSM149152     2  0.2948      0.834 0.052 0.948
#> GSM149153     2  0.9552      0.490 0.376 0.624
#> GSM149154     2  0.9323      0.548 0.348 0.652
#> GSM149155     2  0.0000      0.845 0.000 1.000
#> GSM149156     2  0.0376      0.846 0.004 0.996
#> GSM149157     2  0.2236      0.843 0.036 0.964
#> GSM149158     2  0.1843      0.845 0.028 0.972
#> GSM149159     2  0.8909      0.623 0.308 0.692
#> GSM149160     2  0.1843      0.845 0.028 0.972
#> GSM149161     2  0.0672      0.847 0.008 0.992
#> GSM149162     2  0.0000      0.845 0.000 1.000
#> GSM149163     2  0.0000      0.845 0.000 1.000
#> GSM149164     2  0.4939      0.807 0.108 0.892
#> GSM149165     2  0.1843      0.846 0.028 0.972
#> GSM149166     2  0.0000      0.845 0.000 1.000
#> GSM149167     2  0.0000      0.845 0.000 1.000
#> GSM149168     2  0.9427      0.538 0.360 0.640
#> GSM149169     2  0.1843      0.845 0.028 0.972
#> GSM149170     2  0.8955      0.616 0.312 0.688
#> GSM149171     2  0.8813      0.635 0.300 0.700
#> GSM149172     2  0.9795      0.415 0.416 0.584
#> GSM149173     2  0.9358      0.549 0.352 0.648
#> GSM149174     2  0.1843      0.845 0.028 0.972
#> GSM149175     2  0.9896      0.333 0.440 0.560
#> GSM149176     2  0.3431      0.829 0.064 0.936
#> GSM149177     2  0.9129      0.557 0.328 0.672
#> GSM149178     2  0.9248      0.545 0.340 0.660
#> GSM149179     2  0.0376      0.846 0.004 0.996
#> GSM149180     2  0.0376      0.846 0.004 0.996
#> GSM149181     2  0.7139      0.743 0.196 0.804
#> GSM149182     2  0.0000      0.845 0.000 1.000
#> GSM149183     2  0.1843      0.845 0.028 0.972
#> GSM149184     2  0.0000      0.845 0.000 1.000
#> GSM149185     2  0.8443      0.669 0.272 0.728
#> GSM149186     2  0.2603      0.840 0.044 0.956
#> GSM149187     2  0.0000      0.845 0.000 1.000
#> GSM149188     2  0.2043      0.844 0.032 0.968
#> GSM149189     2  0.9393      0.550 0.356 0.644
#> GSM149190     2  0.0000      0.845 0.000 1.000
#> GSM149191     2  0.9044      0.594 0.320 0.680
#> GSM149192     2  0.2603      0.841 0.044 0.956
#> GSM149193     2  0.2236      0.843 0.036 0.964
#> GSM149194     2  0.2236      0.843 0.036 0.964
#> GSM149195     1  0.9996     -0.143 0.512 0.488
#> GSM149196     2  0.0000      0.845 0.000 1.000
#> GSM149197     2  0.0000      0.845 0.000 1.000
#> GSM149198     2  0.1414      0.846 0.020 0.980
#> GSM149199     2  0.0000      0.845 0.000 1.000
#> GSM149200     2  0.8909      0.621 0.308 0.692
#> GSM149201     2  0.0000      0.845 0.000 1.000
#> GSM149202     2  0.7299      0.736 0.204 0.796
#> GSM149203     2  0.9522      0.515 0.372 0.628

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0424    0.94213 0.008 0.000 0.992
#> GSM149100     3  0.0424    0.94213 0.008 0.000 0.992
#> GSM149101     3  0.0424    0.94213 0.008 0.000 0.992
#> GSM149102     3  0.0424    0.94213 0.008 0.000 0.992
#> GSM149103     2  0.7918    0.51218 0.076 0.596 0.328
#> GSM149104     3  0.0424    0.94213 0.008 0.000 0.992
#> GSM149105     3  0.0424    0.94213 0.008 0.000 0.992
#> GSM149106     2  0.7905    0.21514 0.056 0.500 0.444
#> GSM149107     3  0.0424    0.94213 0.008 0.000 0.992
#> GSM149108     3  0.0424    0.94213 0.008 0.000 0.992
#> GSM149109     3  0.0424    0.94213 0.008 0.000 0.992
#> GSM149110     3  0.0424    0.94213 0.008 0.000 0.992
#> GSM149111     3  0.0424    0.94213 0.008 0.000 0.992
#> GSM149112     3  0.0424    0.94213 0.008 0.000 0.992
#> GSM149113     3  0.0424    0.94213 0.008 0.000 0.992
#> GSM149114     3  0.0424    0.94213 0.008 0.000 0.992
#> GSM149115     1  0.7905   -0.13634 0.500 0.444 0.056
#> GSM149116     1  0.3879    0.86699 0.848 0.000 0.152
#> GSM149117     2  0.4291    0.68911 0.180 0.820 0.000
#> GSM149118     1  0.3879    0.86699 0.848 0.000 0.152
#> GSM149119     1  0.3879    0.86699 0.848 0.000 0.152
#> GSM149120     1  0.4110    0.86561 0.844 0.004 0.152
#> GSM149121     1  0.5956    0.57103 0.768 0.188 0.044
#> GSM149122     1  0.3879    0.86699 0.848 0.000 0.152
#> GSM149123     1  0.4291    0.86395 0.840 0.008 0.152
#> GSM149124     1  0.3879    0.86699 0.848 0.000 0.152
#> GSM149125     1  0.4110    0.86561 0.844 0.004 0.152
#> GSM149126     1  0.4291    0.86395 0.840 0.008 0.152
#> GSM149127     1  0.3879    0.86699 0.848 0.000 0.152
#> GSM149128     1  0.3879    0.86699 0.848 0.000 0.152
#> GSM149129     1  0.3879    0.86699 0.848 0.000 0.152
#> GSM149130     2  0.7920    0.19625 0.468 0.476 0.056
#> GSM149131     1  0.7931    0.00958 0.528 0.412 0.060
#> GSM149132     1  0.3879    0.86699 0.848 0.000 0.152
#> GSM149133     1  0.6062    0.79355 0.780 0.072 0.148
#> GSM149134     2  0.6724    0.52999 0.420 0.568 0.012
#> GSM149135     2  0.6026    0.56187 0.376 0.624 0.000
#> GSM149136     2  0.6026    0.56187 0.376 0.624 0.000
#> GSM149137     2  0.6095    0.53834 0.392 0.608 0.000
#> GSM149138     2  0.6565    0.53888 0.416 0.576 0.008
#> GSM149139     2  0.6026    0.56187 0.376 0.624 0.000
#> GSM149140     2  0.6026    0.56187 0.376 0.624 0.000
#> GSM149141     2  0.8655    0.46081 0.108 0.512 0.380
#> GSM149142     2  0.5621    0.62925 0.308 0.692 0.000
#> GSM149143     2  0.8452    0.53704 0.104 0.556 0.340
#> GSM149144     2  0.2448    0.74632 0.076 0.924 0.000
#> GSM149145     2  0.8643    0.47113 0.108 0.516 0.376
#> GSM149146     2  0.1267    0.74268 0.024 0.972 0.004
#> GSM149147     2  0.6026    0.56187 0.376 0.624 0.000
#> GSM149148     2  0.6026    0.56187 0.376 0.624 0.000
#> GSM149149     2  0.6026    0.56187 0.376 0.624 0.000
#> GSM149150     2  0.4874    0.72630 0.144 0.828 0.028
#> GSM149151     2  0.6008    0.56311 0.372 0.628 0.000
#> GSM149152     2  0.6421    0.51964 0.424 0.572 0.004
#> GSM149153     2  0.8643    0.47113 0.108 0.516 0.376
#> GSM149154     2  0.8769    0.51867 0.124 0.528 0.348
#> GSM149155     2  0.0424    0.74074 0.008 0.992 0.000
#> GSM149156     2  0.2200    0.74727 0.056 0.940 0.004
#> GSM149157     2  0.5355    0.73505 0.168 0.800 0.032
#> GSM149158     2  0.5178    0.73413 0.164 0.808 0.028
#> GSM149159     2  0.6935    0.59779 0.036 0.652 0.312
#> GSM149160     2  0.5178    0.73413 0.164 0.808 0.028
#> GSM149161     2  0.4291    0.73604 0.152 0.840 0.008
#> GSM149162     2  0.0747    0.74134 0.016 0.984 0.000
#> GSM149163     2  0.0424    0.74074 0.008 0.992 0.000
#> GSM149164     2  0.7457    0.70777 0.208 0.688 0.104
#> GSM149165     2  0.2031    0.74544 0.016 0.952 0.032
#> GSM149166     2  0.2537    0.72996 0.080 0.920 0.000
#> GSM149167     2  0.3941    0.73023 0.156 0.844 0.000
#> GSM149168     2  0.7517    0.52786 0.048 0.588 0.364
#> GSM149169     2  0.4937    0.73827 0.148 0.824 0.028
#> GSM149170     2  0.6651    0.59259 0.024 0.656 0.320
#> GSM149171     2  0.6445    0.59684 0.020 0.672 0.308
#> GSM149172     2  0.7517    0.44512 0.040 0.540 0.420
#> GSM149173     2  0.7209    0.52765 0.036 0.604 0.360
#> GSM149174     2  0.5292    0.73274 0.172 0.800 0.028
#> GSM149175     2  0.8203    0.36667 0.072 0.484 0.444
#> GSM149176     2  0.3045    0.74847 0.020 0.916 0.064
#> GSM149177     2  0.7683    0.51661 0.064 0.608 0.328
#> GSM149178     2  0.7685    0.50787 0.060 0.596 0.344
#> GSM149179     2  0.1129    0.74438 0.020 0.976 0.004
#> GSM149180     2  0.0983    0.74263 0.016 0.980 0.004
#> GSM149181     2  0.5455    0.67271 0.020 0.776 0.204
#> GSM149182     2  0.0747    0.74090 0.016 0.984 0.000
#> GSM149183     2  0.1751    0.74460 0.012 0.960 0.028
#> GSM149184     2  0.0747    0.74534 0.016 0.984 0.000
#> GSM149185     2  0.6355    0.63121 0.024 0.696 0.280
#> GSM149186     2  0.2636    0.74688 0.020 0.932 0.048
#> GSM149187     2  0.1860    0.74590 0.052 0.948 0.000
#> GSM149188     2  0.1877    0.74450 0.012 0.956 0.032
#> GSM149189     2  0.6490    0.55414 0.012 0.628 0.360
#> GSM149190     2  0.2878    0.74269 0.096 0.904 0.000
#> GSM149191     2  0.8354    0.56577 0.104 0.576 0.320
#> GSM149192     2  0.2229    0.74410 0.012 0.944 0.044
#> GSM149193     2  0.2414    0.74564 0.020 0.940 0.040
#> GSM149194     2  0.5355    0.73461 0.168 0.800 0.032
#> GSM149195     3  0.6941   -0.25390 0.016 0.464 0.520
#> GSM149196     2  0.0592    0.74463 0.012 0.988 0.000
#> GSM149197     2  0.0592    0.74154 0.012 0.988 0.000
#> GSM149198     2  0.6724    0.52999 0.420 0.568 0.012
#> GSM149199     2  0.2711    0.74390 0.088 0.912 0.000
#> GSM149200     2  0.6625    0.59613 0.024 0.660 0.316
#> GSM149201     2  0.0747    0.74090 0.016 0.984 0.000
#> GSM149202     2  0.5680    0.67097 0.024 0.764 0.212
#> GSM149203     2  0.7567    0.51367 0.048 0.576 0.376

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.0336      0.955 0.000 0.000 0.992 0.008
#> GSM149100     3  0.0336      0.955 0.000 0.000 0.992 0.008
#> GSM149101     3  0.0336      0.955 0.000 0.000 0.992 0.008
#> GSM149102     3  0.0336      0.955 0.000 0.000 0.992 0.008
#> GSM149103     2  0.8154      0.324 0.260 0.420 0.308 0.012
#> GSM149104     3  0.0336      0.955 0.000 0.000 0.992 0.008
#> GSM149105     3  0.0336      0.955 0.000 0.000 0.992 0.008
#> GSM149106     3  0.7875     -0.132 0.256 0.296 0.444 0.004
#> GSM149107     3  0.0336      0.955 0.000 0.000 0.992 0.008
#> GSM149108     3  0.0336      0.955 0.000 0.000 0.992 0.008
#> GSM149109     3  0.0336      0.955 0.000 0.000 0.992 0.008
#> GSM149110     3  0.0336      0.955 0.000 0.000 0.992 0.008
#> GSM149111     3  0.0336      0.955 0.000 0.000 0.992 0.008
#> GSM149112     3  0.0336      0.955 0.000 0.000 0.992 0.008
#> GSM149113     3  0.0336      0.955 0.000 0.000 0.992 0.008
#> GSM149114     3  0.0336      0.955 0.000 0.000 0.992 0.008
#> GSM149115     1  0.6454      0.419 0.544 0.076 0.000 0.380
#> GSM149116     4  0.0469      0.961 0.000 0.000 0.012 0.988
#> GSM149117     1  0.5691      0.205 0.564 0.408 0.000 0.028
#> GSM149118     4  0.0469      0.961 0.000 0.000 0.012 0.988
#> GSM149119     4  0.0469      0.961 0.000 0.000 0.012 0.988
#> GSM149120     4  0.0657      0.959 0.000 0.004 0.012 0.984
#> GSM149121     4  0.5446      0.389 0.340 0.020 0.004 0.636
#> GSM149122     4  0.0469      0.961 0.000 0.000 0.012 0.988
#> GSM149123     4  0.0804      0.956 0.008 0.000 0.012 0.980
#> GSM149124     4  0.0469      0.961 0.000 0.000 0.012 0.988
#> GSM149125     4  0.0657      0.959 0.000 0.004 0.012 0.984
#> GSM149126     4  0.0804      0.956 0.008 0.000 0.012 0.980
#> GSM149127     4  0.0469      0.961 0.000 0.000 0.012 0.988
#> GSM149128     4  0.0469      0.961 0.000 0.000 0.012 0.988
#> GSM149129     4  0.0469      0.961 0.000 0.000 0.012 0.988
#> GSM149130     1  0.6714      0.485 0.540 0.100 0.000 0.360
#> GSM149131     1  0.6750      0.304 0.472 0.092 0.000 0.436
#> GSM149132     4  0.0469      0.961 0.000 0.000 0.012 0.988
#> GSM149133     4  0.2933      0.870 0.080 0.012 0.012 0.896
#> GSM149134     1  0.3496      0.719 0.872 0.072 0.004 0.052
#> GSM149135     1  0.3383      0.791 0.872 0.076 0.000 0.052
#> GSM149136     1  0.3383      0.791 0.872 0.076 0.000 0.052
#> GSM149137     1  0.3009      0.782 0.892 0.052 0.000 0.056
#> GSM149138     1  0.3648      0.737 0.864 0.076 0.004 0.056
#> GSM149139     1  0.3383      0.791 0.872 0.076 0.000 0.052
#> GSM149140     1  0.3383      0.791 0.872 0.076 0.000 0.052
#> GSM149141     2  0.7513      0.390 0.152 0.524 0.312 0.012
#> GSM149142     1  0.4485      0.639 0.772 0.200 0.000 0.028
#> GSM149143     2  0.7419      0.441 0.180 0.548 0.264 0.008
#> GSM149144     2  0.5125      0.420 0.376 0.616 0.004 0.004
#> GSM149145     2  0.7439      0.398 0.144 0.532 0.312 0.012
#> GSM149146     2  0.4252      0.527 0.252 0.744 0.000 0.004
#> GSM149147     1  0.3383      0.791 0.872 0.076 0.000 0.052
#> GSM149148     1  0.3383      0.791 0.872 0.076 0.000 0.052
#> GSM149149     1  0.3383      0.791 0.872 0.076 0.000 0.052
#> GSM149150     2  0.5819      0.393 0.368 0.600 0.016 0.016
#> GSM149151     1  0.3570      0.784 0.860 0.092 0.000 0.048
#> GSM149152     1  0.4168      0.734 0.828 0.092 0.000 0.080
#> GSM149153     2  0.7439      0.398 0.144 0.532 0.312 0.012
#> GSM149154     2  0.7541      0.421 0.188 0.528 0.276 0.008
#> GSM149155     2  0.4302      0.535 0.236 0.756 0.004 0.004
#> GSM149156     2  0.4632      0.500 0.308 0.688 0.004 0.000
#> GSM149157     2  0.5539      0.292 0.432 0.552 0.008 0.008
#> GSM149158     2  0.5427      0.269 0.444 0.544 0.004 0.008
#> GSM149159     2  0.5874      0.546 0.064 0.688 0.240 0.008
#> GSM149160     2  0.5427      0.269 0.444 0.544 0.004 0.008
#> GSM149161     2  0.5250      0.297 0.440 0.552 0.000 0.008
#> GSM149162     2  0.4431      0.527 0.252 0.740 0.004 0.004
#> GSM149163     2  0.4268      0.537 0.232 0.760 0.004 0.004
#> GSM149164     2  0.6546      0.264 0.404 0.536 0.040 0.020
#> GSM149165     2  0.3969      0.569 0.180 0.804 0.016 0.000
#> GSM149166     2  0.5095      0.370 0.368 0.624 0.004 0.004
#> GSM149167     1  0.5168     -0.190 0.504 0.492 0.004 0.000
#> GSM149168     2  0.6375      0.466 0.080 0.636 0.276 0.008
#> GSM149169     2  0.5433      0.267 0.448 0.540 0.008 0.004
#> GSM149170     2  0.5636      0.540 0.060 0.700 0.236 0.004
#> GSM149171     2  0.5539      0.542 0.060 0.712 0.224 0.004
#> GSM149172     2  0.6521      0.397 0.072 0.592 0.328 0.008
#> GSM149173     2  0.6002      0.470 0.068 0.660 0.268 0.004
#> GSM149174     2  0.5658      0.249 0.452 0.528 0.004 0.016
#> GSM149175     2  0.7129      0.335 0.100 0.528 0.360 0.012
#> GSM149176     2  0.5608      0.541 0.256 0.684 0.060 0.000
#> GSM149177     2  0.7820      0.306 0.276 0.412 0.312 0.000
#> GSM149178     2  0.7886      0.349 0.248 0.436 0.312 0.004
#> GSM149179     2  0.4400      0.537 0.248 0.744 0.004 0.004
#> GSM149180     2  0.4155      0.537 0.240 0.756 0.004 0.000
#> GSM149181     2  0.4333      0.567 0.056 0.820 0.120 0.004
#> GSM149182     2  0.4335      0.531 0.240 0.752 0.004 0.004
#> GSM149183     2  0.3895      0.567 0.184 0.804 0.012 0.000
#> GSM149184     2  0.4401      0.521 0.272 0.724 0.000 0.004
#> GSM149185     2  0.5701      0.557 0.080 0.712 0.204 0.004
#> GSM149186     2  0.3863      0.573 0.176 0.812 0.008 0.004
#> GSM149187     2  0.4535      0.509 0.292 0.704 0.004 0.000
#> GSM149188     2  0.3672      0.572 0.164 0.824 0.012 0.000
#> GSM149189     2  0.5697      0.517 0.052 0.656 0.292 0.000
#> GSM149190     2  0.4936      0.433 0.372 0.624 0.004 0.000
#> GSM149191     2  0.7422      0.457 0.180 0.564 0.244 0.012
#> GSM149192     2  0.4199      0.577 0.164 0.804 0.032 0.000
#> GSM149193     2  0.3819      0.572 0.172 0.816 0.008 0.004
#> GSM149194     2  0.5539      0.287 0.432 0.552 0.008 0.008
#> GSM149195     2  0.6298      0.199 0.048 0.508 0.440 0.004
#> GSM149196     2  0.4155      0.546 0.240 0.756 0.000 0.004
#> GSM149197     2  0.3837      0.550 0.224 0.776 0.000 0.000
#> GSM149198     1  0.3496      0.719 0.872 0.072 0.004 0.052
#> GSM149199     2  0.4936      0.444 0.372 0.624 0.004 0.000
#> GSM149200     2  0.5604      0.543 0.060 0.704 0.232 0.004
#> GSM149201     2  0.4302      0.535 0.236 0.756 0.004 0.004
#> GSM149202     2  0.4890      0.566 0.080 0.776 0.144 0.000
#> GSM149203     2  0.6445      0.452 0.080 0.624 0.288 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0000     0.9540 0.000 0.000 1.000 0.000 0.000
#> GSM149100     3  0.0000     0.9540 0.000 0.000 1.000 0.000 0.000
#> GSM149101     3  0.0000     0.9540 0.000 0.000 1.000 0.000 0.000
#> GSM149102     3  0.0000     0.9540 0.000 0.000 1.000 0.000 0.000
#> GSM149103     2  0.8095     0.0478 0.112 0.428 0.248 0.004 0.208
#> GSM149104     3  0.0000     0.9540 0.000 0.000 1.000 0.000 0.000
#> GSM149105     3  0.0000     0.9540 0.000 0.000 1.000 0.000 0.000
#> GSM149106     3  0.7288    -0.0380 0.096 0.396 0.428 0.004 0.076
#> GSM149107     3  0.0000     0.9540 0.000 0.000 1.000 0.000 0.000
#> GSM149108     3  0.0000     0.9540 0.000 0.000 1.000 0.000 0.000
#> GSM149109     3  0.0000     0.9540 0.000 0.000 1.000 0.000 0.000
#> GSM149110     3  0.0000     0.9540 0.000 0.000 1.000 0.000 0.000
#> GSM149111     3  0.0000     0.9540 0.000 0.000 1.000 0.000 0.000
#> GSM149112     3  0.0000     0.9540 0.000 0.000 1.000 0.000 0.000
#> GSM149113     3  0.0000     0.9540 0.000 0.000 1.000 0.000 0.000
#> GSM149114     3  0.0000     0.9540 0.000 0.000 1.000 0.000 0.000
#> GSM149115     1  0.6275     0.4045 0.552 0.076 0.000 0.336 0.036
#> GSM149116     4  0.0290     0.9584 0.000 0.000 0.008 0.992 0.000
#> GSM149117     2  0.5697     0.2794 0.312 0.604 0.000 0.016 0.068
#> GSM149118     4  0.0290     0.9584 0.000 0.000 0.008 0.992 0.000
#> GSM149119     4  0.0290     0.9584 0.000 0.000 0.008 0.992 0.000
#> GSM149120     4  0.0451     0.9579 0.004 0.000 0.008 0.988 0.000
#> GSM149121     4  0.5174     0.3741 0.340 0.000 0.000 0.604 0.056
#> GSM149122     4  0.0290     0.9584 0.000 0.000 0.008 0.992 0.000
#> GSM149123     4  0.0798     0.9531 0.016 0.000 0.008 0.976 0.000
#> GSM149124     4  0.0290     0.9584 0.000 0.000 0.008 0.992 0.000
#> GSM149125     4  0.0451     0.9579 0.004 0.000 0.008 0.988 0.000
#> GSM149126     4  0.0798     0.9531 0.016 0.000 0.008 0.976 0.000
#> GSM149127     4  0.0290     0.9584 0.000 0.000 0.008 0.992 0.000
#> GSM149128     4  0.0579     0.9576 0.008 0.000 0.008 0.984 0.000
#> GSM149129     4  0.0579     0.9576 0.008 0.000 0.008 0.984 0.000
#> GSM149130     1  0.6478     0.4700 0.540 0.112 0.000 0.320 0.028
#> GSM149131     1  0.6296     0.3152 0.488 0.100 0.000 0.396 0.016
#> GSM149132     4  0.0579     0.9576 0.008 0.000 0.008 0.984 0.000
#> GSM149133     4  0.2692     0.8680 0.092 0.000 0.008 0.884 0.016
#> GSM149134     1  0.3489     0.6816 0.784 0.004 0.000 0.004 0.208
#> GSM149135     1  0.2424     0.8055 0.868 0.132 0.000 0.000 0.000
#> GSM149136     1  0.2424     0.8055 0.868 0.132 0.000 0.000 0.000
#> GSM149137     1  0.2519     0.7969 0.884 0.100 0.000 0.000 0.016
#> GSM149138     1  0.3929     0.7215 0.788 0.036 0.000 0.004 0.172
#> GSM149139     1  0.2424     0.8055 0.868 0.132 0.000 0.000 0.000
#> GSM149140     1  0.2424     0.8055 0.868 0.132 0.000 0.000 0.000
#> GSM149141     5  0.7526     0.6819 0.112 0.200 0.172 0.000 0.516
#> GSM149142     1  0.4292     0.5732 0.704 0.272 0.000 0.000 0.024
#> GSM149143     5  0.6625     0.7033 0.112 0.164 0.100 0.000 0.624
#> GSM149144     2  0.3730     0.6514 0.152 0.808 0.000 0.004 0.036
#> GSM149145     5  0.7559     0.6837 0.116 0.204 0.168 0.000 0.512
#> GSM149146     2  0.1547     0.6740 0.016 0.948 0.000 0.004 0.032
#> GSM149147     1  0.2424     0.8055 0.868 0.132 0.000 0.000 0.000
#> GSM149148     1  0.2424     0.8055 0.868 0.132 0.000 0.000 0.000
#> GSM149149     1  0.2424     0.8055 0.868 0.132 0.000 0.000 0.000
#> GSM149150     2  0.5274     0.4949 0.192 0.676 0.000 0.000 0.132
#> GSM149151     1  0.2909     0.7960 0.848 0.140 0.000 0.000 0.012
#> GSM149152     1  0.4370     0.7237 0.784 0.032 0.000 0.036 0.148
#> GSM149153     5  0.7559     0.6837 0.116 0.204 0.168 0.000 0.512
#> GSM149154     5  0.7022     0.6992 0.124 0.172 0.120 0.000 0.584
#> GSM149155     2  0.0486     0.6704 0.004 0.988 0.000 0.004 0.004
#> GSM149156     2  0.3075     0.6722 0.092 0.860 0.000 0.000 0.048
#> GSM149157     2  0.6540     0.3487 0.288 0.476 0.000 0.000 0.236
#> GSM149158     2  0.6498     0.3661 0.292 0.484 0.000 0.000 0.224
#> GSM149159     5  0.5316     0.6761 0.000 0.348 0.064 0.000 0.588
#> GSM149160     2  0.6498     0.3661 0.292 0.484 0.000 0.000 0.224
#> GSM149161     2  0.6005     0.4715 0.276 0.568 0.000 0.000 0.156
#> GSM149162     2  0.2536     0.6782 0.052 0.900 0.000 0.004 0.044
#> GSM149163     2  0.1377     0.6761 0.020 0.956 0.000 0.004 0.020
#> GSM149164     5  0.6455     0.3061 0.320 0.200 0.000 0.000 0.480
#> GSM149165     2  0.2068     0.6397 0.004 0.904 0.000 0.000 0.092
#> GSM149166     2  0.3497     0.6208 0.112 0.836 0.000 0.004 0.048
#> GSM149167     2  0.6470     0.3624 0.348 0.460 0.000 0.000 0.192
#> GSM149168     5  0.4860     0.7343 0.004 0.228 0.064 0.000 0.704
#> GSM149169     2  0.6284     0.4160 0.288 0.524 0.000 0.000 0.188
#> GSM149170     5  0.5114     0.6748 0.000 0.340 0.052 0.000 0.608
#> GSM149171     5  0.4890     0.6825 0.000 0.332 0.040 0.000 0.628
#> GSM149172     5  0.5246     0.7303 0.004 0.180 0.124 0.000 0.692
#> GSM149173     5  0.4976     0.7347 0.004 0.228 0.072 0.000 0.696
#> GSM149174     2  0.6627     0.3762 0.300 0.480 0.000 0.004 0.216
#> GSM149175     5  0.6749     0.7038 0.044 0.188 0.192 0.000 0.576
#> GSM149176     2  0.3106     0.6530 0.020 0.872 0.028 0.000 0.080
#> GSM149177     2  0.7896     0.1122 0.108 0.440 0.252 0.000 0.200
#> GSM149178     2  0.8153    -0.0913 0.092 0.372 0.244 0.004 0.288
#> GSM149179     2  0.1484     0.6676 0.008 0.944 0.000 0.000 0.048
#> GSM149180     2  0.0963     0.6696 0.000 0.964 0.000 0.000 0.036
#> GSM149181     5  0.4448     0.4452 0.000 0.480 0.004 0.000 0.516
#> GSM149182     2  0.0566     0.6682 0.000 0.984 0.000 0.004 0.012
#> GSM149183     2  0.2179     0.6183 0.000 0.888 0.000 0.000 0.112
#> GSM149184     2  0.2388     0.6601 0.028 0.900 0.000 0.000 0.072
#> GSM149185     5  0.5118     0.5700 0.000 0.412 0.040 0.000 0.548
#> GSM149186     2  0.3053     0.5736 0.008 0.828 0.000 0.000 0.164
#> GSM149187     2  0.3255     0.6630 0.100 0.848 0.000 0.000 0.052
#> GSM149188     2  0.2605     0.5740 0.000 0.852 0.000 0.000 0.148
#> GSM149189     5  0.6080     0.6656 0.000 0.332 0.140 0.000 0.528
#> GSM149190     2  0.4049     0.6341 0.164 0.780 0.000 0.000 0.056
#> GSM149191     5  0.6443     0.7030 0.104 0.176 0.084 0.000 0.636
#> GSM149192     2  0.2813     0.5543 0.000 0.832 0.000 0.000 0.168
#> GSM149193     2  0.2848     0.5844 0.000 0.840 0.000 0.004 0.156
#> GSM149194     2  0.6540     0.3438 0.288 0.476 0.000 0.000 0.236
#> GSM149195     5  0.6407     0.6016 0.004 0.176 0.304 0.000 0.516
#> GSM149196     2  0.1830     0.6624 0.008 0.924 0.000 0.000 0.068
#> GSM149197     2  0.2144     0.6645 0.020 0.912 0.000 0.000 0.068
#> GSM149198     1  0.3489     0.6816 0.784 0.004 0.000 0.004 0.208
#> GSM149199     2  0.3667     0.6501 0.140 0.812 0.000 0.000 0.048
#> GSM149200     5  0.5128     0.6712 0.000 0.344 0.052 0.000 0.604
#> GSM149201     2  0.0671     0.6691 0.000 0.980 0.000 0.004 0.016
#> GSM149202     5  0.4653     0.4687 0.000 0.472 0.012 0.000 0.516
#> GSM149203     5  0.4732     0.7354 0.000 0.208 0.076 0.000 0.716

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM149099     3  0.0000      0.955 0.000 0.000 1.000 0.000 0.000 NA
#> GSM149100     3  0.0000      0.955 0.000 0.000 1.000 0.000 0.000 NA
#> GSM149101     3  0.0000      0.955 0.000 0.000 1.000 0.000 0.000 NA
#> GSM149102     3  0.0000      0.955 0.000 0.000 1.000 0.000 0.000 NA
#> GSM149103     2  0.8861     -0.178 0.128 0.252 0.216 0.000 0.200 NA
#> GSM149104     3  0.0000      0.955 0.000 0.000 1.000 0.000 0.000 NA
#> GSM149105     3  0.0000      0.955 0.000 0.000 1.000 0.000 0.000 NA
#> GSM149106     3  0.7768      0.147 0.116 0.256 0.404 0.000 0.032 NA
#> GSM149107     3  0.0146      0.952 0.000 0.000 0.996 0.000 0.004 NA
#> GSM149108     3  0.0000      0.955 0.000 0.000 1.000 0.000 0.000 NA
#> GSM149109     3  0.0000      0.955 0.000 0.000 1.000 0.000 0.000 NA
#> GSM149110     3  0.0000      0.955 0.000 0.000 1.000 0.000 0.000 NA
#> GSM149111     3  0.0000      0.955 0.000 0.000 1.000 0.000 0.000 NA
#> GSM149112     3  0.0000      0.955 0.000 0.000 1.000 0.000 0.000 NA
#> GSM149113     3  0.0000      0.955 0.000 0.000 1.000 0.000 0.000 NA
#> GSM149114     3  0.0146      0.952 0.000 0.000 0.996 0.000 0.004 NA
#> GSM149115     1  0.5342      0.371 0.576 0.016 0.000 0.324 0.000 NA
#> GSM149116     4  0.0146      0.956 0.000 0.000 0.000 0.996 0.000 NA
#> GSM149117     1  0.6210      0.112 0.384 0.328 0.000 0.004 0.000 NA
#> GSM149118     4  0.0000      0.957 0.000 0.000 0.000 1.000 0.000 NA
#> GSM149119     4  0.0000      0.957 0.000 0.000 0.000 1.000 0.000 NA
#> GSM149120     4  0.0146      0.957 0.000 0.000 0.000 0.996 0.000 NA
#> GSM149121     4  0.5251      0.381 0.288 0.000 0.000 0.592 0.004 NA
#> GSM149122     4  0.0000      0.957 0.000 0.000 0.000 1.000 0.000 NA
#> GSM149123     4  0.0458      0.952 0.016 0.000 0.000 0.984 0.000 NA
#> GSM149124     4  0.0260      0.955 0.000 0.000 0.000 0.992 0.000 NA
#> GSM149125     4  0.0146      0.957 0.000 0.000 0.000 0.996 0.000 NA
#> GSM149126     4  0.0458      0.952 0.016 0.000 0.000 0.984 0.000 NA
#> GSM149127     4  0.0000      0.957 0.000 0.000 0.000 1.000 0.000 NA
#> GSM149128     4  0.0260      0.957 0.008 0.000 0.000 0.992 0.000 NA
#> GSM149129     4  0.0260      0.957 0.008 0.000 0.000 0.992 0.000 NA
#> GSM149130     1  0.5638      0.445 0.576 0.052 0.000 0.308 0.000 NA
#> GSM149131     1  0.5628      0.297 0.516 0.048 0.000 0.384 0.000 NA
#> GSM149132     4  0.0260      0.957 0.008 0.000 0.000 0.992 0.000 NA
#> GSM149133     4  0.2294      0.869 0.072 0.000 0.000 0.892 0.000 NA
#> GSM149134     1  0.4097      0.519 0.500 0.000 0.000 0.000 0.008 NA
#> GSM149135     1  0.1141      0.761 0.948 0.052 0.000 0.000 0.000 NA
#> GSM149136     1  0.1141      0.761 0.948 0.052 0.000 0.000 0.000 NA
#> GSM149137     1  0.1168      0.744 0.956 0.016 0.000 0.000 0.000 NA
#> GSM149138     1  0.4194      0.608 0.628 0.012 0.000 0.000 0.008 NA
#> GSM149139     1  0.1141      0.761 0.948 0.052 0.000 0.000 0.000 NA
#> GSM149140     1  0.1141      0.761 0.948 0.052 0.000 0.000 0.000 NA
#> GSM149141     5  0.6346      0.659 0.088 0.052 0.124 0.000 0.640 NA
#> GSM149142     1  0.3917      0.544 0.752 0.204 0.000 0.000 0.032 NA
#> GSM149143     5  0.5641      0.663 0.104 0.044 0.060 0.000 0.700 NA
#> GSM149144     2  0.3946      0.679 0.152 0.780 0.000 0.000 0.024 NA
#> GSM149145     5  0.6408      0.661 0.096 0.056 0.120 0.000 0.636 NA
#> GSM149146     2  0.2089      0.695 0.020 0.916 0.000 0.000 0.020 NA
#> GSM149147     1  0.1141      0.761 0.948 0.052 0.000 0.000 0.000 NA
#> GSM149148     1  0.1141      0.761 0.948 0.052 0.000 0.000 0.000 NA
#> GSM149149     1  0.1141      0.761 0.948 0.052 0.000 0.000 0.000 NA
#> GSM149150     2  0.5385      0.506 0.208 0.640 0.000 0.000 0.128 NA
#> GSM149151     1  0.1657      0.753 0.928 0.056 0.000 0.000 0.016 NA
#> GSM149152     1  0.4969      0.607 0.620 0.012 0.000 0.032 0.016 NA
#> GSM149153     5  0.6408      0.661 0.096 0.056 0.120 0.000 0.636 NA
#> GSM149154     5  0.5809      0.658 0.112 0.036 0.084 0.000 0.684 NA
#> GSM149155     2  0.0767      0.696 0.008 0.976 0.000 0.000 0.004 NA
#> GSM149156     2  0.3300      0.697 0.096 0.840 0.000 0.000 0.036 NA
#> GSM149157     2  0.7064      0.396 0.264 0.436 0.000 0.000 0.200 NA
#> GSM149158     2  0.7018      0.407 0.280 0.436 0.000 0.000 0.188 NA
#> GSM149159     5  0.4469      0.614 0.004 0.252 0.024 0.000 0.696 NA
#> GSM149160     2  0.7018      0.407 0.280 0.436 0.000 0.000 0.188 NA
#> GSM149161     2  0.6398      0.507 0.264 0.532 0.000 0.000 0.128 NA
#> GSM149162     2  0.2816      0.704 0.060 0.876 0.000 0.000 0.028 NA
#> GSM149163     2  0.1616      0.703 0.028 0.940 0.000 0.000 0.012 NA
#> GSM149164     5  0.6772      0.274 0.288 0.100 0.000 0.000 0.476 NA
#> GSM149165     2  0.2006      0.684 0.000 0.904 0.000 0.000 0.080 NA
#> GSM149166     2  0.4330      0.596 0.132 0.744 0.000 0.000 0.008 NA
#> GSM149167     2  0.7183      0.291 0.328 0.388 0.000 0.000 0.148 NA
#> GSM149168     5  0.3044      0.701 0.000 0.076 0.028 0.000 0.860 NA
#> GSM149169     2  0.6795      0.436 0.288 0.468 0.000 0.000 0.156 NA
#> GSM149170     5  0.3984      0.633 0.000 0.224 0.028 0.000 0.736 NA
#> GSM149171     5  0.3827      0.646 0.000 0.212 0.024 0.000 0.752 NA
#> GSM149172     5  0.2744      0.685 0.000 0.000 0.064 0.000 0.864 NA
#> GSM149173     5  0.3088      0.702 0.000 0.064 0.032 0.000 0.860 NA
#> GSM149174     2  0.6993      0.412 0.292 0.432 0.000 0.000 0.184 NA
#> GSM149175     5  0.5087      0.677 0.024 0.028 0.128 0.000 0.724 NA
#> GSM149176     2  0.4093      0.655 0.028 0.804 0.016 0.000 0.076 NA
#> GSM149177     2  0.8815     -0.118 0.124 0.272 0.220 0.000 0.184 NA
#> GSM149178     5  0.8779      0.207 0.108 0.220 0.192 0.000 0.264 NA
#> GSM149179     2  0.1657      0.695 0.012 0.936 0.000 0.000 0.040 NA
#> GSM149180     2  0.1232      0.696 0.004 0.956 0.000 0.000 0.024 NA
#> GSM149181     5  0.3992      0.459 0.000 0.364 0.000 0.000 0.624 NA
#> GSM149182     2  0.0777      0.694 0.004 0.972 0.000 0.000 0.000 NA
#> GSM149183     2  0.2261      0.662 0.004 0.884 0.000 0.000 0.104 NA
#> GSM149184     2  0.2484      0.685 0.024 0.896 0.000 0.000 0.036 NA
#> GSM149185     5  0.4574      0.515 0.004 0.324 0.020 0.000 0.636 NA
#> GSM149186     2  0.3321      0.604 0.008 0.796 0.000 0.000 0.180 NA
#> GSM149187     2  0.3576      0.688 0.120 0.816 0.000 0.000 0.032 NA
#> GSM149188     2  0.2734      0.625 0.004 0.840 0.000 0.000 0.148 NA
#> GSM149189     5  0.5352      0.626 0.000 0.224 0.088 0.000 0.648 NA
#> GSM149190     2  0.4332      0.658 0.180 0.744 0.000 0.000 0.044 NA
#> GSM149191     5  0.5514      0.664 0.092 0.056 0.048 0.000 0.712 NA
#> GSM149192     2  0.2738      0.598 0.000 0.820 0.000 0.000 0.176 NA
#> GSM149193     2  0.3104      0.602 0.000 0.800 0.000 0.000 0.184 NA
#> GSM149194     2  0.7107      0.390 0.268 0.428 0.000 0.000 0.200 NA
#> GSM149195     5  0.5697      0.576 0.000 0.040 0.228 0.000 0.612 NA
#> GSM149196     2  0.1788      0.691 0.004 0.928 0.000 0.000 0.040 NA
#> GSM149197     2  0.2326      0.697 0.028 0.900 0.000 0.000 0.060 NA
#> GSM149198     1  0.4097      0.519 0.500 0.000 0.000 0.000 0.008 NA
#> GSM149199     2  0.3855      0.678 0.148 0.788 0.000 0.000 0.032 NA
#> GSM149200     5  0.4011      0.630 0.000 0.228 0.028 0.000 0.732 NA
#> GSM149201     2  0.0951      0.695 0.004 0.968 0.000 0.000 0.008 NA
#> GSM149202     5  0.4255      0.424 0.000 0.380 0.004 0.000 0.600 NA
#> GSM149203     5  0.2614      0.700 0.000 0.024 0.036 0.000 0.888 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> MAD:hclust 97         5.54e-13 2
#> MAD:hclust 95         9.20e-28 3
#> MAD:hclust 69         4.32e-27 4
#> MAD:hclust 84         3.00e-32 5
#> MAD:hclust 86         7.79e-33 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.375           0.871       0.908         0.4242 0.558   0.558
#> 3 3 0.601           0.781       0.876         0.4119 0.736   0.566
#> 4 4 0.620           0.727       0.818         0.1976 0.791   0.529
#> 5 5 0.742           0.759       0.843         0.0940 0.803   0.432
#> 6 6 0.756           0.776       0.834         0.0485 0.945   0.749

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     1  0.6887      0.863 0.816 0.184
#> GSM149100     1  0.6887      0.863 0.816 0.184
#> GSM149101     1  0.6887      0.863 0.816 0.184
#> GSM149102     1  0.6887      0.863 0.816 0.184
#> GSM149103     1  0.8661      0.743 0.712 0.288
#> GSM149104     1  0.6887      0.863 0.816 0.184
#> GSM149105     1  0.6887      0.863 0.816 0.184
#> GSM149106     1  0.6887      0.863 0.816 0.184
#> GSM149107     1  0.6887      0.863 0.816 0.184
#> GSM149108     1  0.6801      0.863 0.820 0.180
#> GSM149109     1  0.6887      0.863 0.816 0.184
#> GSM149110     1  0.6887      0.863 0.816 0.184
#> GSM149111     1  0.6887      0.863 0.816 0.184
#> GSM149112     1  0.6887      0.863 0.816 0.184
#> GSM149113     1  0.6887      0.863 0.816 0.184
#> GSM149114     1  0.6887      0.863 0.816 0.184
#> GSM149115     2  0.8207      0.727 0.256 0.744
#> GSM149116     1  0.4815      0.855 0.896 0.104
#> GSM149117     2  0.5629      0.829 0.132 0.868
#> GSM149118     1  0.4815      0.855 0.896 0.104
#> GSM149119     1  0.4815      0.855 0.896 0.104
#> GSM149120     1  0.4815      0.855 0.896 0.104
#> GSM149121     1  0.4815      0.855 0.896 0.104
#> GSM149122     1  0.4815      0.855 0.896 0.104
#> GSM149123     1  0.4815      0.855 0.896 0.104
#> GSM149124     1  0.4815      0.855 0.896 0.104
#> GSM149125     1  0.4815      0.855 0.896 0.104
#> GSM149126     1  0.4815      0.855 0.896 0.104
#> GSM149127     1  0.4815      0.855 0.896 0.104
#> GSM149128     1  0.4815      0.855 0.896 0.104
#> GSM149129     1  0.4815      0.855 0.896 0.104
#> GSM149130     2  0.7528      0.776 0.216 0.784
#> GSM149131     2  0.8207      0.727 0.256 0.744
#> GSM149132     1  0.4815      0.855 0.896 0.104
#> GSM149133     1  0.4815      0.855 0.896 0.104
#> GSM149134     2  0.7883      0.753 0.236 0.764
#> GSM149135     2  0.7528      0.776 0.216 0.784
#> GSM149136     2  0.7528      0.776 0.216 0.784
#> GSM149137     2  0.7528      0.776 0.216 0.784
#> GSM149138     2  0.7528      0.776 0.216 0.784
#> GSM149139     2  0.7528      0.776 0.216 0.784
#> GSM149140     2  0.7528      0.776 0.216 0.784
#> GSM149141     2  0.3879      0.877 0.076 0.924
#> GSM149142     2  0.0000      0.925 0.000 1.000
#> GSM149143     2  0.3733      0.877 0.072 0.928
#> GSM149144     2  0.0000      0.925 0.000 1.000
#> GSM149145     2  0.3879      0.877 0.076 0.924
#> GSM149146     2  0.0376      0.924 0.004 0.996
#> GSM149147     2  0.7528      0.776 0.216 0.784
#> GSM149148     2  0.7528      0.776 0.216 0.784
#> GSM149149     2  0.7528      0.776 0.216 0.784
#> GSM149150     2  0.0000      0.925 0.000 1.000
#> GSM149151     2  0.7376      0.783 0.208 0.792
#> GSM149152     2  0.7602      0.772 0.220 0.780
#> GSM149153     2  0.3879      0.877 0.076 0.924
#> GSM149154     1  0.6048      0.842 0.852 0.148
#> GSM149155     2  0.0000      0.925 0.000 1.000
#> GSM149156     2  0.0000      0.925 0.000 1.000
#> GSM149157     2  0.0000      0.925 0.000 1.000
#> GSM149158     2  0.0000      0.925 0.000 1.000
#> GSM149159     2  0.0376      0.924 0.004 0.996
#> GSM149160     2  0.0000      0.925 0.000 1.000
#> GSM149161     2  0.0000      0.925 0.000 1.000
#> GSM149162     2  0.0000      0.925 0.000 1.000
#> GSM149163     2  0.0000      0.925 0.000 1.000
#> GSM149164     2  0.0000      0.925 0.000 1.000
#> GSM149165     2  0.0376      0.924 0.004 0.996
#> GSM149166     2  0.0000      0.925 0.000 1.000
#> GSM149167     2  0.0000      0.925 0.000 1.000
#> GSM149168     2  0.0672      0.921 0.008 0.992
#> GSM149169     2  0.0000      0.925 0.000 1.000
#> GSM149170     2  0.0672      0.921 0.008 0.992
#> GSM149171     2  0.0672      0.921 0.008 0.992
#> GSM149172     2  0.7453      0.687 0.212 0.788
#> GSM149173     2  0.0672      0.921 0.008 0.992
#> GSM149174     2  0.0000      0.925 0.000 1.000
#> GSM149175     1  0.8443      0.803 0.728 0.272
#> GSM149176     2  0.0000      0.925 0.000 1.000
#> GSM149177     2  0.2948      0.893 0.052 0.948
#> GSM149178     2  0.1633      0.914 0.024 0.976
#> GSM149179     2  0.0000      0.925 0.000 1.000
#> GSM149180     2  0.0000      0.925 0.000 1.000
#> GSM149181     2  0.0376      0.924 0.004 0.996
#> GSM149182     2  0.0000      0.925 0.000 1.000
#> GSM149183     2  0.0376      0.924 0.004 0.996
#> GSM149184     2  0.0376      0.924 0.004 0.996
#> GSM149185     2  0.0376      0.924 0.004 0.996
#> GSM149186     2  0.0000      0.925 0.000 1.000
#> GSM149187     2  0.0000      0.925 0.000 1.000
#> GSM149188     2  0.0376      0.924 0.004 0.996
#> GSM149189     2  0.0672      0.921 0.008 0.992
#> GSM149190     2  0.0000      0.925 0.000 1.000
#> GSM149191     2  0.0376      0.924 0.004 0.996
#> GSM149192     2  0.0376      0.924 0.004 0.996
#> GSM149193     2  0.0376      0.924 0.004 0.996
#> GSM149194     2  0.0000      0.925 0.000 1.000
#> GSM149195     1  0.6887      0.863 0.816 0.184
#> GSM149196     2  0.0000      0.925 0.000 1.000
#> GSM149197     2  0.0000      0.925 0.000 1.000
#> GSM149198     2  0.8909      0.641 0.308 0.692
#> GSM149199     2  0.0000      0.925 0.000 1.000
#> GSM149200     2  0.0672      0.921 0.008 0.992
#> GSM149201     2  0.0000      0.925 0.000 1.000
#> GSM149202     2  0.0376      0.924 0.004 0.996
#> GSM149203     2  0.0672      0.921 0.008 0.992

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0000      0.996 0.000 0.000 1.000
#> GSM149100     3  0.0000      0.996 0.000 0.000 1.000
#> GSM149101     3  0.0000      0.996 0.000 0.000 1.000
#> GSM149102     3  0.0000      0.996 0.000 0.000 1.000
#> GSM149103     3  0.1411      0.944 0.000 0.036 0.964
#> GSM149104     3  0.0000      0.996 0.000 0.000 1.000
#> GSM149105     3  0.0000      0.996 0.000 0.000 1.000
#> GSM149106     3  0.0000      0.996 0.000 0.000 1.000
#> GSM149107     3  0.0000      0.996 0.000 0.000 1.000
#> GSM149108     3  0.0000      0.996 0.000 0.000 1.000
#> GSM149109     3  0.0000      0.996 0.000 0.000 1.000
#> GSM149110     3  0.0000      0.996 0.000 0.000 1.000
#> GSM149111     3  0.0000      0.996 0.000 0.000 1.000
#> GSM149112     3  0.0000      0.996 0.000 0.000 1.000
#> GSM149113     3  0.0000      0.996 0.000 0.000 1.000
#> GSM149114     3  0.0000      0.996 0.000 0.000 1.000
#> GSM149115     1  0.0000      0.615 1.000 0.000 0.000
#> GSM149116     1  0.5722      0.542 0.704 0.004 0.292
#> GSM149117     2  0.6309      0.147 0.496 0.504 0.000
#> GSM149118     1  0.5722      0.542 0.704 0.004 0.292
#> GSM149119     1  0.5722      0.542 0.704 0.004 0.292
#> GSM149120     1  0.5722      0.542 0.704 0.004 0.292
#> GSM149121     1  0.0000      0.615 1.000 0.000 0.000
#> GSM149122     1  0.5722      0.542 0.704 0.004 0.292
#> GSM149123     1  0.5722      0.542 0.704 0.004 0.292
#> GSM149124     1  0.5722      0.542 0.704 0.004 0.292
#> GSM149125     1  0.5722      0.542 0.704 0.004 0.292
#> GSM149126     1  0.5722      0.542 0.704 0.004 0.292
#> GSM149127     1  0.5722      0.542 0.704 0.004 0.292
#> GSM149128     1  0.5722      0.542 0.704 0.004 0.292
#> GSM149129     1  0.5722      0.542 0.704 0.004 0.292
#> GSM149130     1  0.5623      0.542 0.716 0.280 0.004
#> GSM149131     1  0.0000      0.615 1.000 0.000 0.000
#> GSM149132     1  0.5722      0.542 0.704 0.004 0.292
#> GSM149133     1  0.5690      0.543 0.708 0.004 0.288
#> GSM149134     1  0.3851      0.638 0.860 0.136 0.004
#> GSM149135     1  0.5722      0.528 0.704 0.292 0.004
#> GSM149136     1  0.5722      0.528 0.704 0.292 0.004
#> GSM149137     1  0.5722      0.528 0.704 0.292 0.004
#> GSM149138     1  0.5722      0.528 0.704 0.292 0.004
#> GSM149139     1  0.5690      0.533 0.708 0.288 0.004
#> GSM149140     1  0.5722      0.528 0.704 0.292 0.004
#> GSM149141     2  0.5831      0.678 0.284 0.708 0.008
#> GSM149142     2  0.5529      0.676 0.296 0.704 0.000
#> GSM149143     2  0.6318      0.549 0.356 0.636 0.008
#> GSM149144     2  0.4504      0.800 0.196 0.804 0.000
#> GSM149145     2  0.5360      0.766 0.220 0.768 0.012
#> GSM149146     2  0.0000      0.911 0.000 1.000 0.000
#> GSM149147     1  0.5722      0.528 0.704 0.292 0.004
#> GSM149148     1  0.5722      0.528 0.704 0.292 0.004
#> GSM149149     1  0.5722      0.528 0.704 0.292 0.004
#> GSM149150     2  0.2066      0.890 0.060 0.940 0.000
#> GSM149151     1  0.5722      0.528 0.704 0.292 0.004
#> GSM149152     1  0.4293      0.637 0.832 0.164 0.004
#> GSM149153     2  0.5360      0.766 0.220 0.768 0.012
#> GSM149154     1  0.8292      0.561 0.612 0.124 0.264
#> GSM149155     2  0.0000      0.911 0.000 1.000 0.000
#> GSM149156     2  0.0237      0.911 0.004 0.996 0.000
#> GSM149157     2  0.1643      0.897 0.044 0.956 0.000
#> GSM149158     2  0.4504      0.800 0.196 0.804 0.000
#> GSM149159     2  0.0000      0.911 0.000 1.000 0.000
#> GSM149160     2  0.4504      0.800 0.196 0.804 0.000
#> GSM149161     2  0.4504      0.800 0.196 0.804 0.000
#> GSM149162     2  0.0000      0.911 0.000 1.000 0.000
#> GSM149163     2  0.0237      0.911 0.004 0.996 0.000
#> GSM149164     2  0.4605      0.792 0.204 0.796 0.000
#> GSM149165     2  0.0000      0.911 0.000 1.000 0.000
#> GSM149166     2  0.1163      0.904 0.028 0.972 0.000
#> GSM149167     2  0.4504      0.800 0.196 0.804 0.000
#> GSM149168     2  0.0424      0.908 0.000 0.992 0.008
#> GSM149169     2  0.4842      0.771 0.224 0.776 0.000
#> GSM149170     2  0.0424      0.908 0.000 0.992 0.008
#> GSM149171     2  0.0424      0.908 0.000 0.992 0.008
#> GSM149172     2  0.2537      0.854 0.000 0.920 0.080
#> GSM149173     2  0.0424      0.908 0.000 0.992 0.008
#> GSM149174     2  0.4504      0.800 0.196 0.804 0.000
#> GSM149175     1  0.8731      0.490 0.528 0.120 0.352
#> GSM149176     2  0.1411      0.900 0.036 0.964 0.000
#> GSM149177     2  0.1989      0.894 0.048 0.948 0.004
#> GSM149178     2  0.1999      0.899 0.036 0.952 0.012
#> GSM149179     2  0.0000      0.911 0.000 1.000 0.000
#> GSM149180     2  0.0000      0.911 0.000 1.000 0.000
#> GSM149181     2  0.0000      0.911 0.000 1.000 0.000
#> GSM149182     2  0.0000      0.911 0.000 1.000 0.000
#> GSM149183     2  0.0000      0.911 0.000 1.000 0.000
#> GSM149184     2  0.0000      0.911 0.000 1.000 0.000
#> GSM149185     2  0.0000      0.911 0.000 1.000 0.000
#> GSM149186     2  0.0000      0.911 0.000 1.000 0.000
#> GSM149187     2  0.0000      0.911 0.000 1.000 0.000
#> GSM149188     2  0.0000      0.911 0.000 1.000 0.000
#> GSM149189     2  0.0424      0.908 0.000 0.992 0.008
#> GSM149190     2  0.3752      0.838 0.144 0.856 0.000
#> GSM149191     2  0.0237      0.910 0.000 0.996 0.004
#> GSM149192     2  0.0000      0.911 0.000 1.000 0.000
#> GSM149193     2  0.0000      0.911 0.000 1.000 0.000
#> GSM149194     2  0.4504      0.800 0.196 0.804 0.000
#> GSM149195     3  0.0237      0.991 0.000 0.004 0.996
#> GSM149196     2  0.0000      0.911 0.000 1.000 0.000
#> GSM149197     2  0.0237      0.911 0.004 0.996 0.000
#> GSM149198     1  0.4047      0.639 0.848 0.148 0.004
#> GSM149199     2  0.0237      0.911 0.004 0.996 0.000
#> GSM149200     2  0.0424      0.908 0.000 0.992 0.008
#> GSM149201     2  0.0000      0.911 0.000 1.000 0.000
#> GSM149202     2  0.0000      0.911 0.000 1.000 0.000
#> GSM149203     2  0.0424      0.908 0.000 0.992 0.008

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.0000     0.9659 0.000 0.000 1.000 0.000
#> GSM149100     3  0.0000     0.9659 0.000 0.000 1.000 0.000
#> GSM149101     3  0.0000     0.9659 0.000 0.000 1.000 0.000
#> GSM149102     3  0.0000     0.9659 0.000 0.000 1.000 0.000
#> GSM149103     3  0.3760     0.7992 0.000 0.136 0.836 0.028
#> GSM149104     3  0.0000     0.9659 0.000 0.000 1.000 0.000
#> GSM149105     3  0.0000     0.9659 0.000 0.000 1.000 0.000
#> GSM149106     3  0.0657     0.9544 0.000 0.004 0.984 0.012
#> GSM149107     3  0.0000     0.9659 0.000 0.000 1.000 0.000
#> GSM149108     3  0.0000     0.9659 0.000 0.000 1.000 0.000
#> GSM149109     3  0.0188     0.9648 0.000 0.000 0.996 0.004
#> GSM149110     3  0.0188     0.9648 0.000 0.000 0.996 0.004
#> GSM149111     3  0.0000     0.9659 0.000 0.000 1.000 0.000
#> GSM149112     3  0.0188     0.9648 0.000 0.000 0.996 0.004
#> GSM149113     3  0.0000     0.9659 0.000 0.000 1.000 0.000
#> GSM149114     3  0.0188     0.9648 0.000 0.000 0.996 0.004
#> GSM149115     1  0.4477    -0.0661 0.688 0.000 0.000 0.312
#> GSM149116     4  0.6449     0.9696 0.204 0.000 0.152 0.644
#> GSM149117     1  0.3984     0.6436 0.828 0.040 0.000 0.132
#> GSM149118     4  0.6449     0.9743 0.204 0.000 0.152 0.644
#> GSM149119     4  0.6449     0.9743 0.204 0.000 0.152 0.644
#> GSM149120     4  0.6449     0.9743 0.204 0.000 0.152 0.644
#> GSM149121     4  0.4981     0.5948 0.464 0.000 0.000 0.536
#> GSM149122     4  0.6449     0.9743 0.204 0.000 0.152 0.644
#> GSM149123     4  0.6449     0.9743 0.204 0.000 0.152 0.644
#> GSM149124     4  0.6449     0.9696 0.204 0.000 0.152 0.644
#> GSM149125     4  0.6449     0.9743 0.204 0.000 0.152 0.644
#> GSM149126     4  0.6449     0.9743 0.204 0.000 0.152 0.644
#> GSM149127     4  0.6449     0.9743 0.204 0.000 0.152 0.644
#> GSM149128     4  0.6449     0.9743 0.204 0.000 0.152 0.644
#> GSM149129     4  0.6449     0.9743 0.204 0.000 0.152 0.644
#> GSM149130     1  0.0188     0.6443 0.996 0.004 0.000 0.000
#> GSM149131     1  0.1118     0.6044 0.964 0.000 0.000 0.036
#> GSM149132     4  0.6449     0.9743 0.204 0.000 0.152 0.644
#> GSM149133     4  0.6429     0.9657 0.212 0.000 0.144 0.644
#> GSM149134     1  0.0657     0.6316 0.984 0.004 0.000 0.012
#> GSM149135     1  0.0336     0.6488 0.992 0.008 0.000 0.000
#> GSM149136     1  0.0336     0.6488 0.992 0.008 0.000 0.000
#> GSM149137     1  0.0336     0.6488 0.992 0.008 0.000 0.000
#> GSM149138     1  0.0336     0.6488 0.992 0.008 0.000 0.000
#> GSM149139     1  0.0336     0.6488 0.992 0.008 0.000 0.000
#> GSM149140     1  0.0336     0.6488 0.992 0.008 0.000 0.000
#> GSM149141     1  0.5717     0.5556 0.632 0.324 0.000 0.044
#> GSM149142     1  0.4661     0.6224 0.728 0.016 0.000 0.256
#> GSM149143     1  0.6100     0.6047 0.680 0.216 0.004 0.100
#> GSM149144     1  0.7834     0.1262 0.408 0.284 0.000 0.308
#> GSM149145     1  0.6188     0.4577 0.548 0.396 0.000 0.056
#> GSM149146     2  0.4290     0.8265 0.016 0.772 0.000 0.212
#> GSM149147     1  0.0336     0.6488 0.992 0.008 0.000 0.000
#> GSM149148     1  0.0336     0.6488 0.992 0.008 0.000 0.000
#> GSM149149     1  0.0336     0.6488 0.992 0.008 0.000 0.000
#> GSM149150     2  0.6703     0.5250 0.232 0.612 0.000 0.156
#> GSM149151     1  0.1059     0.6514 0.972 0.012 0.000 0.016
#> GSM149152     1  0.0524     0.6363 0.988 0.004 0.000 0.008
#> GSM149153     1  0.6188     0.4577 0.548 0.396 0.000 0.056
#> GSM149154     1  0.5154     0.5623 0.776 0.140 0.072 0.012
#> GSM149155     2  0.4980     0.7863 0.016 0.680 0.000 0.304
#> GSM149156     2  0.5047     0.7799 0.016 0.668 0.000 0.316
#> GSM149157     2  0.7373     0.5023 0.192 0.508 0.000 0.300
#> GSM149158     1  0.7771     0.1991 0.424 0.256 0.000 0.320
#> GSM149159     2  0.0817     0.7698 0.000 0.976 0.000 0.024
#> GSM149160     1  0.7784     0.2221 0.428 0.280 0.000 0.292
#> GSM149161     1  0.7798     0.1765 0.416 0.264 0.000 0.320
#> GSM149162     2  0.5026     0.7821 0.016 0.672 0.000 0.312
#> GSM149163     2  0.4980     0.7863 0.016 0.680 0.000 0.304
#> GSM149164     1  0.7538     0.2816 0.428 0.384 0.000 0.188
#> GSM149165     2  0.3668     0.8303 0.004 0.808 0.000 0.188
#> GSM149166     2  0.6100     0.7561 0.084 0.644 0.000 0.272
#> GSM149167     1  0.7785     0.1889 0.420 0.260 0.000 0.320
#> GSM149168     2  0.0707     0.7686 0.000 0.980 0.000 0.020
#> GSM149169     1  0.7565     0.3088 0.472 0.216 0.000 0.312
#> GSM149170     2  0.0188     0.7725 0.000 0.996 0.000 0.004
#> GSM149171     2  0.0707     0.7652 0.000 0.980 0.000 0.020
#> GSM149172     2  0.1209     0.7580 0.000 0.964 0.004 0.032
#> GSM149173     2  0.0336     0.7714 0.000 0.992 0.000 0.008
#> GSM149174     1  0.7768     0.2112 0.428 0.260 0.000 0.312
#> GSM149175     1  0.7323     0.4909 0.588 0.268 0.116 0.028
#> GSM149176     2  0.5880     0.7734 0.088 0.680 0.000 0.232
#> GSM149177     2  0.5122     0.6112 0.164 0.756 0.000 0.080
#> GSM149178     2  0.2742     0.7027 0.076 0.900 0.000 0.024
#> GSM149179     2  0.4253     0.8261 0.016 0.776 0.000 0.208
#> GSM149180     2  0.4214     0.8271 0.016 0.780 0.000 0.204
#> GSM149181     2  0.2868     0.8208 0.000 0.864 0.000 0.136
#> GSM149182     2  0.4364     0.8226 0.016 0.764 0.000 0.220
#> GSM149183     2  0.4019     0.8292 0.012 0.792 0.000 0.196
#> GSM149184     2  0.3895     0.8300 0.012 0.804 0.000 0.184
#> GSM149185     2  0.0469     0.7799 0.000 0.988 0.000 0.012
#> GSM149186     2  0.4059     0.8287 0.012 0.788 0.000 0.200
#> GSM149187     2  0.4980     0.7863 0.016 0.680 0.000 0.304
#> GSM149188     2  0.3725     0.8296 0.008 0.812 0.000 0.180
#> GSM149189     2  0.0817     0.7632 0.000 0.976 0.000 0.024
#> GSM149190     2  0.7919     0.0857 0.336 0.348 0.000 0.316
#> GSM149191     2  0.3048     0.7374 0.016 0.876 0.000 0.108
#> GSM149192     2  0.3725     0.8296 0.008 0.812 0.000 0.180
#> GSM149193     2  0.3808     0.8291 0.012 0.812 0.000 0.176
#> GSM149194     1  0.7782     0.2199 0.428 0.276 0.000 0.296
#> GSM149195     3  0.4644     0.6956 0.000 0.228 0.748 0.024
#> GSM149196     2  0.4059     0.8287 0.012 0.788 0.000 0.200
#> GSM149197     2  0.4980     0.7863 0.016 0.680 0.000 0.304
#> GSM149198     1  0.0804     0.6361 0.980 0.012 0.000 0.008
#> GSM149199     2  0.5003     0.7839 0.016 0.676 0.000 0.308
#> GSM149200     2  0.0188     0.7725 0.000 0.996 0.000 0.004
#> GSM149201     2  0.4399     0.8213 0.016 0.760 0.000 0.224
#> GSM149202     2  0.0000     0.7744 0.000 1.000 0.000 0.000
#> GSM149203     2  0.0707     0.7686 0.000 0.980 0.000 0.020

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0290      0.962 0.000 0.000 0.992 0.000 0.008
#> GSM149100     3  0.0162      0.962 0.000 0.000 0.996 0.004 0.000
#> GSM149101     3  0.0162      0.962 0.000 0.000 0.996 0.004 0.000
#> GSM149102     3  0.0162      0.962 0.000 0.000 0.996 0.004 0.000
#> GSM149103     3  0.5281      0.277 0.012 0.004 0.576 0.024 0.384
#> GSM149104     3  0.0162      0.962 0.000 0.000 0.996 0.004 0.000
#> GSM149105     3  0.0162      0.962 0.000 0.000 0.996 0.000 0.004
#> GSM149106     3  0.1235      0.936 0.004 0.004 0.964 0.016 0.012
#> GSM149107     3  0.0162      0.962 0.000 0.000 0.996 0.004 0.000
#> GSM149108     3  0.0162      0.962 0.000 0.000 0.996 0.004 0.000
#> GSM149109     3  0.0290      0.962 0.000 0.000 0.992 0.000 0.008
#> GSM149110     3  0.0290      0.962 0.000 0.000 0.992 0.000 0.008
#> GSM149111     3  0.0162      0.962 0.000 0.000 0.996 0.000 0.004
#> GSM149112     3  0.0290      0.962 0.000 0.000 0.992 0.000 0.008
#> GSM149113     3  0.0162      0.962 0.000 0.000 0.996 0.000 0.004
#> GSM149114     3  0.0000      0.963 0.000 0.000 1.000 0.000 0.000
#> GSM149115     1  0.3565      0.806 0.816 0.000 0.000 0.144 0.040
#> GSM149116     4  0.2466      0.990 0.012 0.000 0.076 0.900 0.012
#> GSM149117     1  0.4530      0.736 0.780 0.136 0.000 0.032 0.052
#> GSM149118     4  0.1956      0.997 0.008 0.000 0.076 0.916 0.000
#> GSM149119     4  0.2116      0.996 0.008 0.000 0.076 0.912 0.004
#> GSM149120     4  0.1956      0.997 0.008 0.000 0.076 0.916 0.000
#> GSM149121     1  0.5161      0.201 0.516 0.000 0.000 0.444 0.040
#> GSM149122     4  0.2116      0.996 0.008 0.000 0.076 0.912 0.004
#> GSM149123     4  0.1956      0.997 0.008 0.000 0.076 0.916 0.000
#> GSM149124     4  0.2466      0.990 0.012 0.000 0.076 0.900 0.012
#> GSM149125     4  0.2116      0.996 0.008 0.000 0.076 0.912 0.004
#> GSM149126     4  0.1956      0.997 0.008 0.000 0.076 0.916 0.000
#> GSM149127     4  0.2116      0.996 0.008 0.000 0.076 0.912 0.004
#> GSM149128     4  0.1956      0.997 0.008 0.000 0.076 0.916 0.000
#> GSM149129     4  0.1956      0.997 0.008 0.000 0.076 0.916 0.000
#> GSM149130     1  0.1743      0.908 0.940 0.004 0.000 0.028 0.028
#> GSM149131     1  0.2300      0.887 0.904 0.000 0.000 0.072 0.024
#> GSM149132     4  0.1956      0.997 0.008 0.000 0.076 0.916 0.000
#> GSM149133     4  0.2241      0.994 0.008 0.000 0.076 0.908 0.008
#> GSM149134     1  0.2359      0.892 0.904 0.000 0.000 0.036 0.060
#> GSM149135     1  0.1116      0.911 0.964 0.004 0.000 0.028 0.004
#> GSM149136     1  0.0955      0.911 0.968 0.004 0.000 0.028 0.000
#> GSM149137     1  0.1116      0.911 0.964 0.004 0.000 0.028 0.004
#> GSM149138     1  0.2299      0.897 0.912 0.004 0.000 0.032 0.052
#> GSM149139     1  0.1116      0.911 0.964 0.004 0.000 0.028 0.004
#> GSM149140     1  0.0955      0.911 0.968 0.004 0.000 0.028 0.000
#> GSM149141     5  0.4546      0.590 0.284 0.008 0.000 0.020 0.688
#> GSM149142     1  0.4920      0.588 0.728 0.200 0.000 0.040 0.032
#> GSM149143     5  0.6017      0.354 0.388 0.052 0.000 0.032 0.528
#> GSM149144     2  0.3387      0.684 0.100 0.852 0.000 0.028 0.020
#> GSM149145     5  0.4651      0.602 0.284 0.012 0.000 0.020 0.684
#> GSM149146     2  0.3318      0.703 0.000 0.808 0.000 0.012 0.180
#> GSM149147     1  0.0955      0.911 0.968 0.004 0.000 0.028 0.000
#> GSM149148     1  0.0955      0.911 0.968 0.004 0.000 0.028 0.000
#> GSM149149     1  0.0955      0.911 0.968 0.004 0.000 0.028 0.000
#> GSM149150     5  0.6551      0.132 0.120 0.388 0.000 0.020 0.472
#> GSM149151     1  0.0833      0.906 0.976 0.004 0.000 0.016 0.004
#> GSM149152     1  0.1750      0.905 0.936 0.000 0.000 0.028 0.036
#> GSM149153     5  0.4651      0.602 0.284 0.012 0.000 0.020 0.684
#> GSM149154     5  0.5383      0.292 0.420 0.000 0.024 0.020 0.536
#> GSM149155     2  0.0162      0.733 0.000 0.996 0.000 0.000 0.004
#> GSM149156     2  0.1885      0.722 0.020 0.936 0.000 0.032 0.012
#> GSM149157     2  0.5926      0.548 0.196 0.664 0.000 0.044 0.096
#> GSM149158     2  0.5963      0.487 0.304 0.600 0.000 0.044 0.052
#> GSM149159     5  0.3039      0.734 0.000 0.152 0.000 0.012 0.836
#> GSM149160     2  0.6528      0.427 0.316 0.548 0.000 0.044 0.092
#> GSM149161     2  0.5465      0.577 0.216 0.688 0.000 0.044 0.052
#> GSM149162     2  0.1471      0.726 0.020 0.952 0.000 0.024 0.004
#> GSM149163     2  0.1074      0.731 0.016 0.968 0.000 0.012 0.004
#> GSM149164     5  0.7625      0.135 0.336 0.280 0.000 0.044 0.340
#> GSM149165     2  0.3266      0.688 0.000 0.796 0.000 0.004 0.200
#> GSM149166     2  0.3237      0.723 0.028 0.860 0.000 0.016 0.096
#> GSM149167     2  0.6005      0.488 0.300 0.600 0.000 0.044 0.056
#> GSM149168     5  0.2629      0.741 0.000 0.136 0.000 0.004 0.860
#> GSM149169     2  0.6082      0.432 0.336 0.568 0.000 0.044 0.052
#> GSM149170     5  0.2690      0.733 0.000 0.156 0.000 0.000 0.844
#> GSM149171     5  0.2424      0.740 0.000 0.132 0.000 0.000 0.868
#> GSM149172     5  0.2077      0.745 0.000 0.084 0.000 0.008 0.908
#> GSM149173     5  0.2690      0.732 0.000 0.156 0.000 0.000 0.844
#> GSM149174     2  0.6011      0.467 0.316 0.588 0.000 0.044 0.052
#> GSM149175     5  0.4270      0.639 0.204 0.004 0.016 0.016 0.760
#> GSM149176     2  0.4671      0.681 0.040 0.740 0.000 0.020 0.200
#> GSM149177     5  0.5639      0.618 0.108 0.200 0.000 0.020 0.672
#> GSM149178     5  0.3113      0.739 0.016 0.100 0.000 0.020 0.864
#> GSM149179     2  0.3048      0.707 0.000 0.820 0.000 0.004 0.176
#> GSM149180     2  0.3086      0.704 0.000 0.816 0.000 0.004 0.180
#> GSM149181     2  0.3774      0.561 0.000 0.704 0.000 0.000 0.296
#> GSM149182     2  0.2763      0.718 0.000 0.848 0.000 0.004 0.148
#> GSM149183     2  0.2813      0.713 0.000 0.832 0.000 0.000 0.168
#> GSM149184     2  0.3462      0.692 0.000 0.792 0.000 0.012 0.196
#> GSM149185     5  0.3305      0.664 0.000 0.224 0.000 0.000 0.776
#> GSM149186     2  0.3123      0.703 0.000 0.812 0.000 0.004 0.184
#> GSM149187     2  0.1087      0.731 0.016 0.968 0.000 0.008 0.008
#> GSM149188     2  0.3109      0.692 0.000 0.800 0.000 0.000 0.200
#> GSM149189     5  0.2833      0.744 0.004 0.120 0.000 0.012 0.864
#> GSM149190     2  0.3256      0.691 0.084 0.864 0.000 0.028 0.024
#> GSM149191     5  0.4547      0.630 0.012 0.252 0.000 0.024 0.712
#> GSM149192     2  0.3143      0.691 0.000 0.796 0.000 0.000 0.204
#> GSM149193     2  0.3242      0.675 0.000 0.784 0.000 0.000 0.216
#> GSM149194     2  0.6436      0.436 0.316 0.556 0.000 0.044 0.084
#> GSM149195     5  0.4464      0.445 0.008 0.000 0.304 0.012 0.676
#> GSM149196     2  0.3496      0.693 0.000 0.788 0.000 0.012 0.200
#> GSM149197     2  0.1200      0.731 0.016 0.964 0.000 0.012 0.008
#> GSM149198     1  0.2359      0.892 0.904 0.000 0.000 0.036 0.060
#> GSM149199     2  0.1893      0.722 0.024 0.936 0.000 0.028 0.012
#> GSM149200     5  0.2732      0.730 0.000 0.160 0.000 0.000 0.840
#> GSM149201     2  0.2561      0.720 0.000 0.856 0.000 0.000 0.144
#> GSM149202     5  0.2929      0.716 0.000 0.180 0.000 0.000 0.820
#> GSM149203     5  0.2629      0.741 0.000 0.136 0.000 0.004 0.860

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.1225     0.9348 0.000 0.000 0.952 0.012 0.000 0.036
#> GSM149100     3  0.0870     0.9398 0.000 0.000 0.972 0.012 0.004 0.012
#> GSM149101     3  0.0767     0.9397 0.000 0.000 0.976 0.012 0.004 0.008
#> GSM149102     3  0.0767     0.9397 0.000 0.000 0.976 0.012 0.004 0.008
#> GSM149103     3  0.6671    -0.0755 0.004 0.020 0.432 0.020 0.372 0.152
#> GSM149104     3  0.0767     0.9397 0.000 0.000 0.976 0.012 0.004 0.008
#> GSM149105     3  0.1059     0.9387 0.000 0.000 0.964 0.016 0.004 0.016
#> GSM149106     3  0.2865     0.8446 0.004 0.016 0.872 0.008 0.012 0.088
#> GSM149107     3  0.0767     0.9397 0.000 0.000 0.976 0.012 0.004 0.008
#> GSM149108     3  0.0767     0.9397 0.000 0.000 0.976 0.012 0.004 0.008
#> GSM149109     3  0.1225     0.9348 0.000 0.000 0.952 0.012 0.000 0.036
#> GSM149110     3  0.1464     0.9341 0.000 0.000 0.944 0.016 0.004 0.036
#> GSM149111     3  0.1059     0.9387 0.000 0.000 0.964 0.016 0.004 0.016
#> GSM149112     3  0.1464     0.9341 0.000 0.000 0.944 0.016 0.004 0.036
#> GSM149113     3  0.0748     0.9391 0.000 0.000 0.976 0.016 0.004 0.004
#> GSM149114     3  0.0551     0.9371 0.000 0.000 0.984 0.008 0.004 0.004
#> GSM149115     1  0.2963     0.8304 0.856 0.000 0.000 0.096 0.012 0.036
#> GSM149116     4  0.2302     0.9694 0.024 0.000 0.016 0.912 0.012 0.036
#> GSM149117     1  0.6177     0.4678 0.580 0.236 0.008 0.016 0.016 0.144
#> GSM149118     4  0.1088     0.9927 0.024 0.000 0.016 0.960 0.000 0.000
#> GSM149119     4  0.1088     0.9927 0.024 0.000 0.016 0.960 0.000 0.000
#> GSM149120     4  0.1490     0.9887 0.024 0.000 0.016 0.948 0.004 0.008
#> GSM149121     1  0.4398     0.6675 0.716 0.000 0.000 0.220 0.020 0.044
#> GSM149122     4  0.1088     0.9927 0.024 0.000 0.016 0.960 0.000 0.000
#> GSM149123     4  0.1088     0.9927 0.024 0.000 0.016 0.960 0.000 0.000
#> GSM149124     4  0.2441     0.9644 0.024 0.000 0.016 0.904 0.012 0.044
#> GSM149125     4  0.1232     0.9915 0.024 0.000 0.016 0.956 0.000 0.004
#> GSM149126     4  0.1088     0.9927 0.024 0.000 0.016 0.960 0.000 0.000
#> GSM149127     4  0.1088     0.9927 0.024 0.000 0.016 0.960 0.000 0.000
#> GSM149128     4  0.1088     0.9927 0.024 0.000 0.016 0.960 0.000 0.000
#> GSM149129     4  0.1088     0.9927 0.024 0.000 0.016 0.960 0.000 0.000
#> GSM149130     1  0.1829     0.8794 0.920 0.000 0.000 0.004 0.012 0.064
#> GSM149131     1  0.2186     0.8754 0.908 0.000 0.000 0.036 0.008 0.048
#> GSM149132     4  0.1088     0.9927 0.024 0.000 0.016 0.960 0.000 0.000
#> GSM149133     4  0.1592     0.9873 0.024 0.000 0.016 0.944 0.004 0.012
#> GSM149134     1  0.1832     0.8894 0.928 0.000 0.000 0.008 0.032 0.032
#> GSM149135     1  0.1049     0.9070 0.960 0.000 0.000 0.008 0.000 0.032
#> GSM149136     1  0.1049     0.9070 0.960 0.000 0.000 0.008 0.000 0.032
#> GSM149137     1  0.1010     0.9062 0.960 0.000 0.000 0.004 0.000 0.036
#> GSM149138     1  0.1675     0.8919 0.936 0.000 0.000 0.008 0.024 0.032
#> GSM149139     1  0.1124     0.9074 0.956 0.000 0.000 0.008 0.000 0.036
#> GSM149140     1  0.1124     0.9074 0.956 0.000 0.000 0.008 0.000 0.036
#> GSM149141     5  0.5820     0.6640 0.120 0.024 0.012 0.012 0.648 0.184
#> GSM149142     6  0.4544     0.6806 0.320 0.044 0.000 0.000 0.004 0.632
#> GSM149143     5  0.6163     0.2862 0.180 0.000 0.004 0.012 0.472 0.332
#> GSM149144     2  0.4379     0.2820 0.020 0.576 0.000 0.004 0.000 0.400
#> GSM149145     5  0.5781     0.6706 0.116 0.024 0.012 0.012 0.652 0.184
#> GSM149146     2  0.1820     0.7469 0.000 0.924 0.000 0.008 0.012 0.056
#> GSM149147     1  0.1124     0.9074 0.956 0.000 0.000 0.008 0.000 0.036
#> GSM149148     1  0.1124     0.9074 0.956 0.000 0.000 0.008 0.000 0.036
#> GSM149149     1  0.1124     0.9074 0.956 0.000 0.000 0.008 0.000 0.036
#> GSM149150     2  0.6503     0.0856 0.028 0.540 0.008 0.012 0.252 0.160
#> GSM149151     1  0.1049     0.9010 0.960 0.008 0.000 0.000 0.000 0.032
#> GSM149152     1  0.1887     0.8916 0.924 0.000 0.000 0.012 0.016 0.048
#> GSM149153     5  0.5781     0.6706 0.116 0.024 0.012 0.012 0.652 0.184
#> GSM149154     5  0.5464     0.6104 0.196 0.000 0.008 0.016 0.644 0.136
#> GSM149155     2  0.2668     0.6824 0.000 0.828 0.000 0.004 0.000 0.168
#> GSM149156     2  0.4098     0.1869 0.000 0.548 0.000 0.004 0.004 0.444
#> GSM149157     6  0.5575     0.8687 0.104 0.176 0.000 0.004 0.056 0.660
#> GSM149158     6  0.5043     0.8822 0.136 0.196 0.000 0.000 0.008 0.660
#> GSM149159     5  0.3236     0.7637 0.000 0.140 0.000 0.004 0.820 0.036
#> GSM149160     6  0.5604     0.8812 0.136 0.148 0.000 0.004 0.052 0.660
#> GSM149161     6  0.4917     0.8384 0.104 0.224 0.000 0.000 0.008 0.664
#> GSM149162     2  0.3986     0.3775 0.000 0.608 0.000 0.004 0.004 0.384
#> GSM149163     2  0.3314     0.5982 0.000 0.740 0.000 0.004 0.000 0.256
#> GSM149164     6  0.5562     0.7383 0.148 0.040 0.000 0.004 0.152 0.656
#> GSM149165     2  0.2350     0.7283 0.000 0.880 0.000 0.000 0.100 0.020
#> GSM149166     2  0.2921     0.7005 0.008 0.828 0.000 0.008 0.000 0.156
#> GSM149167     6  0.5100     0.8745 0.128 0.180 0.000 0.008 0.008 0.676
#> GSM149168     5  0.2809     0.7703 0.000 0.128 0.000 0.004 0.848 0.020
#> GSM149169     6  0.5057     0.8847 0.144 0.188 0.000 0.000 0.008 0.660
#> GSM149170     5  0.2809     0.7626 0.000 0.168 0.000 0.004 0.824 0.004
#> GSM149171     5  0.2442     0.7729 0.000 0.144 0.000 0.000 0.852 0.004
#> GSM149172     5  0.2068     0.7709 0.004 0.060 0.004 0.008 0.916 0.008
#> GSM149173     5  0.2845     0.7609 0.000 0.172 0.000 0.004 0.820 0.004
#> GSM149174     6  0.5043     0.8822 0.136 0.196 0.000 0.000 0.008 0.660
#> GSM149175     5  0.4496     0.7182 0.076 0.004 0.024 0.012 0.772 0.112
#> GSM149176     2  0.4145     0.6503 0.008 0.788 0.008 0.012 0.056 0.128
#> GSM149177     5  0.6848     0.5080 0.024 0.280 0.008 0.016 0.472 0.200
#> GSM149178     5  0.5491     0.6922 0.008 0.172 0.008 0.008 0.652 0.152
#> GSM149179     2  0.1442     0.7521 0.000 0.944 0.000 0.004 0.012 0.040
#> GSM149180     2  0.1074     0.7550 0.000 0.960 0.000 0.000 0.012 0.028
#> GSM149181     2  0.2442     0.6893 0.000 0.852 0.000 0.000 0.144 0.004
#> GSM149182     2  0.0858     0.7536 0.000 0.968 0.000 0.004 0.000 0.028
#> GSM149183     2  0.1738     0.7499 0.000 0.928 0.000 0.004 0.052 0.016
#> GSM149184     2  0.2503     0.7287 0.004 0.896 0.000 0.012 0.044 0.044
#> GSM149185     5  0.3489     0.6426 0.000 0.288 0.000 0.000 0.708 0.004
#> GSM149186     2  0.0935     0.7530 0.000 0.964 0.000 0.004 0.032 0.000
#> GSM149187     2  0.3265     0.6071 0.000 0.748 0.000 0.004 0.000 0.248
#> GSM149188     2  0.2039     0.7439 0.000 0.908 0.000 0.004 0.072 0.016
#> GSM149189     5  0.3307     0.7668 0.000 0.072 0.004 0.008 0.840 0.076
#> GSM149190     2  0.4370     0.1603 0.016 0.536 0.000 0.004 0.000 0.444
#> GSM149191     5  0.4653     0.5450 0.000 0.060 0.000 0.004 0.644 0.292
#> GSM149192     2  0.2126     0.7430 0.000 0.904 0.000 0.004 0.072 0.020
#> GSM149193     2  0.1674     0.7454 0.000 0.924 0.000 0.004 0.068 0.004
#> GSM149194     6  0.5569     0.8811 0.132 0.148 0.000 0.004 0.052 0.664
#> GSM149195     5  0.3743     0.7169 0.000 0.004 0.108 0.012 0.808 0.068
#> GSM149196     2  0.1624     0.7454 0.000 0.936 0.000 0.004 0.040 0.020
#> GSM149197     2  0.3547     0.5398 0.000 0.696 0.000 0.004 0.000 0.300
#> GSM149198     1  0.1832     0.8894 0.928 0.000 0.000 0.008 0.032 0.032
#> GSM149199     2  0.3890     0.3433 0.000 0.596 0.000 0.004 0.000 0.400
#> GSM149200     5  0.2845     0.7607 0.000 0.172 0.000 0.004 0.820 0.004
#> GSM149201     2  0.1226     0.7531 0.000 0.952 0.000 0.004 0.004 0.040
#> GSM149202     5  0.3595     0.6593 0.000 0.288 0.000 0.000 0.704 0.008
#> GSM149203     5  0.2633     0.7710 0.000 0.112 0.000 0.004 0.864 0.020

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> MAD:kmeans 105         3.75e-13 2
#> MAD:kmeans 103         1.13e-27 3
#> MAD:kmeans  91         1.94e-32 4
#> MAD:kmeans  92         7.29e-32 5
#> MAD:kmeans  96         1.17e-33 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.761           0.897       0.952         0.4940 0.508   0.508
#> 3 3 0.920           0.883       0.945         0.3449 0.687   0.459
#> 4 4 0.686           0.730       0.865         0.1176 0.827   0.548
#> 5 5 0.666           0.546       0.730         0.0731 0.862   0.536
#> 6 6 0.706           0.634       0.772         0.0414 0.918   0.635

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     1  0.0000      0.950 1.000 0.000
#> GSM149100     1  0.0000      0.950 1.000 0.000
#> GSM149101     1  0.0000      0.950 1.000 0.000
#> GSM149102     1  0.0000      0.950 1.000 0.000
#> GSM149103     1  0.0000      0.950 1.000 0.000
#> GSM149104     1  0.0000      0.950 1.000 0.000
#> GSM149105     1  0.0000      0.950 1.000 0.000
#> GSM149106     1  0.0000      0.950 1.000 0.000
#> GSM149107     1  0.0000      0.950 1.000 0.000
#> GSM149108     1  0.0000      0.950 1.000 0.000
#> GSM149109     1  0.0000      0.950 1.000 0.000
#> GSM149110     1  0.0000      0.950 1.000 0.000
#> GSM149111     1  0.0000      0.950 1.000 0.000
#> GSM149112     1  0.0000      0.950 1.000 0.000
#> GSM149113     1  0.0000      0.950 1.000 0.000
#> GSM149114     1  0.0000      0.950 1.000 0.000
#> GSM149115     1  0.6438      0.805 0.836 0.164
#> GSM149116     1  0.0000      0.950 1.000 0.000
#> GSM149117     2  0.0000      0.945 0.000 1.000
#> GSM149118     1  0.0000      0.950 1.000 0.000
#> GSM149119     1  0.0000      0.950 1.000 0.000
#> GSM149120     1  0.0000      0.950 1.000 0.000
#> GSM149121     1  0.0000      0.950 1.000 0.000
#> GSM149122     1  0.0000      0.950 1.000 0.000
#> GSM149123     1  0.0000      0.950 1.000 0.000
#> GSM149124     1  0.0000      0.950 1.000 0.000
#> GSM149125     1  0.0000      0.950 1.000 0.000
#> GSM149126     1  0.0000      0.950 1.000 0.000
#> GSM149127     1  0.0000      0.950 1.000 0.000
#> GSM149128     1  0.0000      0.950 1.000 0.000
#> GSM149129     1  0.0000      0.950 1.000 0.000
#> GSM149130     2  0.6247      0.818 0.156 0.844
#> GSM149131     1  0.6712      0.793 0.824 0.176
#> GSM149132     1  0.0000      0.950 1.000 0.000
#> GSM149133     1  0.0000      0.950 1.000 0.000
#> GSM149134     1  0.7528      0.738 0.784 0.216
#> GSM149135     2  0.3274      0.911 0.060 0.940
#> GSM149136     2  0.3114      0.914 0.056 0.944
#> GSM149137     2  0.3274      0.911 0.060 0.940
#> GSM149138     2  0.3431      0.908 0.064 0.936
#> GSM149139     2  0.3733      0.902 0.072 0.928
#> GSM149140     2  0.3274      0.911 0.060 0.940
#> GSM149141     1  0.8144      0.665 0.748 0.252
#> GSM149142     2  0.0000      0.945 0.000 1.000
#> GSM149143     1  0.7139      0.753 0.804 0.196
#> GSM149144     2  0.0000      0.945 0.000 1.000
#> GSM149145     1  0.8499      0.613 0.724 0.276
#> GSM149146     2  0.0000      0.945 0.000 1.000
#> GSM149147     2  0.6148      0.823 0.152 0.848
#> GSM149148     2  0.4022      0.896 0.080 0.920
#> GSM149149     2  0.4022      0.896 0.080 0.920
#> GSM149150     2  0.0000      0.945 0.000 1.000
#> GSM149151     2  0.1633      0.933 0.024 0.976
#> GSM149152     1  0.6148      0.821 0.848 0.152
#> GSM149153     2  0.9358      0.508 0.352 0.648
#> GSM149154     1  0.0000      0.950 1.000 0.000
#> GSM149155     2  0.0000      0.945 0.000 1.000
#> GSM149156     2  0.0000      0.945 0.000 1.000
#> GSM149157     2  0.0000      0.945 0.000 1.000
#> GSM149158     2  0.0000      0.945 0.000 1.000
#> GSM149159     2  0.0000      0.945 0.000 1.000
#> GSM149160     2  0.0000      0.945 0.000 1.000
#> GSM149161     2  0.0000      0.945 0.000 1.000
#> GSM149162     2  0.0000      0.945 0.000 1.000
#> GSM149163     2  0.0000      0.945 0.000 1.000
#> GSM149164     2  0.0000      0.945 0.000 1.000
#> GSM149165     2  0.0000      0.945 0.000 1.000
#> GSM149166     2  0.0000      0.945 0.000 1.000
#> GSM149167     2  0.0000      0.945 0.000 1.000
#> GSM149168     2  0.4431      0.879 0.092 0.908
#> GSM149169     2  0.0000      0.945 0.000 1.000
#> GSM149170     2  0.6438      0.801 0.164 0.836
#> GSM149171     2  0.7139      0.763 0.196 0.804
#> GSM149172     1  0.2948      0.909 0.948 0.052
#> GSM149173     2  0.4815      0.870 0.104 0.896
#> GSM149174     2  0.0000      0.945 0.000 1.000
#> GSM149175     1  0.0000      0.950 1.000 0.000
#> GSM149176     2  0.0000      0.945 0.000 1.000
#> GSM149177     2  0.9635      0.394 0.388 0.612
#> GSM149178     2  0.9954      0.162 0.460 0.540
#> GSM149179     2  0.0000      0.945 0.000 1.000
#> GSM149180     2  0.0000      0.945 0.000 1.000
#> GSM149181     2  0.0000      0.945 0.000 1.000
#> GSM149182     2  0.0000      0.945 0.000 1.000
#> GSM149183     2  0.0000      0.945 0.000 1.000
#> GSM149184     2  0.0000      0.945 0.000 1.000
#> GSM149185     2  0.0000      0.945 0.000 1.000
#> GSM149186     2  0.0000      0.945 0.000 1.000
#> GSM149187     2  0.0000      0.945 0.000 1.000
#> GSM149188     2  0.0000      0.945 0.000 1.000
#> GSM149189     2  0.8955      0.574 0.312 0.688
#> GSM149190     2  0.0000      0.945 0.000 1.000
#> GSM149191     2  0.0672      0.941 0.008 0.992
#> GSM149192     2  0.0000      0.945 0.000 1.000
#> GSM149193     2  0.0000      0.945 0.000 1.000
#> GSM149194     2  0.0000      0.945 0.000 1.000
#> GSM149195     1  0.0000      0.950 1.000 0.000
#> GSM149196     2  0.0000      0.945 0.000 1.000
#> GSM149197     2  0.0000      0.945 0.000 1.000
#> GSM149198     1  0.6973      0.778 0.812 0.188
#> GSM149199     2  0.0000      0.945 0.000 1.000
#> GSM149200     2  0.5946      0.825 0.144 0.856
#> GSM149201     2  0.0000      0.945 0.000 1.000
#> GSM149202     2  0.0000      0.945 0.000 1.000
#> GSM149203     1  0.8661      0.609 0.712 0.288

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0000    0.91115 0.000 0.000 1.000
#> GSM149100     3  0.0000    0.91115 0.000 0.000 1.000
#> GSM149101     3  0.0000    0.91115 0.000 0.000 1.000
#> GSM149102     3  0.0000    0.91115 0.000 0.000 1.000
#> GSM149103     3  0.0000    0.91115 0.000 0.000 1.000
#> GSM149104     3  0.0000    0.91115 0.000 0.000 1.000
#> GSM149105     3  0.0000    0.91115 0.000 0.000 1.000
#> GSM149106     3  0.0000    0.91115 0.000 0.000 1.000
#> GSM149107     3  0.0000    0.91115 0.000 0.000 1.000
#> GSM149108     3  0.0000    0.91115 0.000 0.000 1.000
#> GSM149109     3  0.0000    0.91115 0.000 0.000 1.000
#> GSM149110     3  0.0000    0.91115 0.000 0.000 1.000
#> GSM149111     3  0.0000    0.91115 0.000 0.000 1.000
#> GSM149112     3  0.0000    0.91115 0.000 0.000 1.000
#> GSM149113     3  0.0000    0.91115 0.000 0.000 1.000
#> GSM149114     3  0.0000    0.91115 0.000 0.000 1.000
#> GSM149115     1  0.0000    0.95545 1.000 0.000 0.000
#> GSM149116     1  0.2356    0.94686 0.928 0.000 0.072
#> GSM149117     1  0.4605    0.71697 0.796 0.204 0.000
#> GSM149118     1  0.2356    0.94686 0.928 0.000 0.072
#> GSM149119     1  0.2356    0.94686 0.928 0.000 0.072
#> GSM149120     1  0.2356    0.94686 0.928 0.000 0.072
#> GSM149121     1  0.0592    0.95502 0.988 0.000 0.012
#> GSM149122     1  0.2356    0.94686 0.928 0.000 0.072
#> GSM149123     1  0.2356    0.94686 0.928 0.000 0.072
#> GSM149124     1  0.2356    0.94686 0.928 0.000 0.072
#> GSM149125     1  0.2356    0.94686 0.928 0.000 0.072
#> GSM149126     1  0.2356    0.94686 0.928 0.000 0.072
#> GSM149127     1  0.2356    0.94686 0.928 0.000 0.072
#> GSM149128     1  0.2356    0.94686 0.928 0.000 0.072
#> GSM149129     1  0.2356    0.94686 0.928 0.000 0.072
#> GSM149130     1  0.0000    0.95545 1.000 0.000 0.000
#> GSM149131     1  0.0000    0.95545 1.000 0.000 0.000
#> GSM149132     1  0.2356    0.94686 0.928 0.000 0.072
#> GSM149133     1  0.2261    0.94745 0.932 0.000 0.068
#> GSM149134     1  0.0000    0.95545 1.000 0.000 0.000
#> GSM149135     1  0.0000    0.95545 1.000 0.000 0.000
#> GSM149136     1  0.0000    0.95545 1.000 0.000 0.000
#> GSM149137     1  0.0000    0.95545 1.000 0.000 0.000
#> GSM149138     1  0.0000    0.95545 1.000 0.000 0.000
#> GSM149139     1  0.0000    0.95545 1.000 0.000 0.000
#> GSM149140     1  0.0000    0.95545 1.000 0.000 0.000
#> GSM149141     3  0.4733    0.76669 0.196 0.004 0.800
#> GSM149142     2  0.2356    0.91112 0.072 0.928 0.000
#> GSM149143     3  0.6490    0.47308 0.360 0.012 0.628
#> GSM149144     2  0.1643    0.93037 0.044 0.956 0.000
#> GSM149145     3  0.2301    0.87708 0.060 0.004 0.936
#> GSM149146     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149147     1  0.0000    0.95545 1.000 0.000 0.000
#> GSM149148     1  0.0000    0.95545 1.000 0.000 0.000
#> GSM149149     1  0.0000    0.95545 1.000 0.000 0.000
#> GSM149150     2  0.1163    0.93778 0.028 0.972 0.000
#> GSM149151     1  0.0000    0.95545 1.000 0.000 0.000
#> GSM149152     1  0.0237    0.95560 0.996 0.000 0.004
#> GSM149153     3  0.3091    0.86961 0.072 0.016 0.912
#> GSM149154     3  0.6305    0.00113 0.484 0.000 0.516
#> GSM149155     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149156     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149157     2  0.0892    0.94065 0.020 0.980 0.000
#> GSM149158     2  0.1860    0.92602 0.052 0.948 0.000
#> GSM149159     2  0.0424    0.94310 0.000 0.992 0.008
#> GSM149160     2  0.1964    0.92358 0.056 0.944 0.000
#> GSM149161     2  0.1753    0.92866 0.048 0.952 0.000
#> GSM149162     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149163     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149164     2  0.2939    0.90640 0.072 0.916 0.012
#> GSM149165     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149166     2  0.0237    0.94633 0.004 0.996 0.000
#> GSM149167     2  0.1860    0.92636 0.052 0.948 0.000
#> GSM149168     2  0.5905    0.42369 0.000 0.648 0.352
#> GSM149169     2  0.2066    0.92070 0.060 0.940 0.000
#> GSM149170     2  0.6286    0.08373 0.000 0.536 0.464
#> GSM149171     3  0.5098    0.67306 0.000 0.248 0.752
#> GSM149172     3  0.0237    0.90946 0.000 0.004 0.996
#> GSM149173     3  0.6286    0.14337 0.000 0.464 0.536
#> GSM149174     2  0.1964    0.92358 0.056 0.944 0.000
#> GSM149175     3  0.0237    0.90889 0.004 0.000 0.996
#> GSM149176     2  0.0237    0.94633 0.004 0.996 0.000
#> GSM149177     3  0.5558    0.78385 0.048 0.152 0.800
#> GSM149178     3  0.2492    0.88174 0.016 0.048 0.936
#> GSM149179     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149180     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149181     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149182     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149183     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149184     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149185     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149186     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149187     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149188     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149189     3  0.2878    0.85448 0.000 0.096 0.904
#> GSM149190     2  0.1643    0.93037 0.044 0.956 0.000
#> GSM149191     2  0.3192    0.84433 0.000 0.888 0.112
#> GSM149192     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149193     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149194     2  0.1964    0.92358 0.056 0.944 0.000
#> GSM149195     3  0.0000    0.91115 0.000 0.000 1.000
#> GSM149196     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149197     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149198     1  0.0237    0.95560 0.996 0.000 0.004
#> GSM149199     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149200     2  0.6260    0.14210 0.000 0.552 0.448
#> GSM149201     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149202     2  0.0000    0.94738 0.000 1.000 0.000
#> GSM149203     3  0.4504    0.74768 0.000 0.196 0.804

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.0469    0.87133 0.000 0.000 0.988 0.012
#> GSM149100     3  0.0469    0.87133 0.000 0.000 0.988 0.012
#> GSM149101     3  0.0469    0.87133 0.000 0.000 0.988 0.012
#> GSM149102     3  0.0469    0.87133 0.000 0.000 0.988 0.012
#> GSM149103     3  0.0469    0.87133 0.000 0.000 0.988 0.012
#> GSM149104     3  0.0469    0.87133 0.000 0.000 0.988 0.012
#> GSM149105     3  0.0469    0.87133 0.000 0.000 0.988 0.012
#> GSM149106     3  0.0592    0.86913 0.000 0.000 0.984 0.016
#> GSM149107     3  0.0469    0.87133 0.000 0.000 0.988 0.012
#> GSM149108     3  0.0469    0.87133 0.000 0.000 0.988 0.012
#> GSM149109     3  0.0469    0.87133 0.000 0.000 0.988 0.012
#> GSM149110     3  0.0469    0.87133 0.000 0.000 0.988 0.012
#> GSM149111     3  0.0469    0.87133 0.000 0.000 0.988 0.012
#> GSM149112     3  0.0469    0.87133 0.000 0.000 0.988 0.012
#> GSM149113     3  0.0469    0.87133 0.000 0.000 0.988 0.012
#> GSM149114     3  0.0469    0.87133 0.000 0.000 0.988 0.012
#> GSM149115     4  0.2868    0.82033 0.136 0.000 0.000 0.864
#> GSM149116     4  0.0188    0.94232 0.000 0.000 0.004 0.996
#> GSM149117     1  0.7434    0.38919 0.512 0.232 0.000 0.256
#> GSM149118     4  0.0188    0.94232 0.000 0.000 0.004 0.996
#> GSM149119     4  0.0188    0.94232 0.000 0.000 0.004 0.996
#> GSM149120     4  0.0188    0.94232 0.000 0.000 0.004 0.996
#> GSM149121     4  0.1302    0.90898 0.044 0.000 0.000 0.956
#> GSM149122     4  0.0188    0.94232 0.000 0.000 0.004 0.996
#> GSM149123     4  0.0188    0.94232 0.000 0.000 0.004 0.996
#> GSM149124     4  0.0188    0.94232 0.000 0.000 0.004 0.996
#> GSM149125     4  0.0188    0.94232 0.000 0.000 0.004 0.996
#> GSM149126     4  0.0188    0.94232 0.000 0.000 0.004 0.996
#> GSM149127     4  0.0188    0.94232 0.000 0.000 0.004 0.996
#> GSM149128     4  0.0188    0.94232 0.000 0.000 0.004 0.996
#> GSM149129     4  0.0188    0.94232 0.000 0.000 0.004 0.996
#> GSM149130     1  0.4967    0.14569 0.548 0.000 0.000 0.452
#> GSM149131     4  0.4331    0.59172 0.288 0.000 0.000 0.712
#> GSM149132     4  0.0188    0.94232 0.000 0.000 0.004 0.996
#> GSM149133     4  0.0376    0.93898 0.004 0.000 0.004 0.992
#> GSM149134     1  0.4250    0.55374 0.724 0.000 0.000 0.276
#> GSM149135     1  0.2281    0.73465 0.904 0.000 0.000 0.096
#> GSM149136     1  0.2216    0.73555 0.908 0.000 0.000 0.092
#> GSM149137     1  0.2281    0.73465 0.904 0.000 0.000 0.096
#> GSM149138     1  0.2281    0.73465 0.904 0.000 0.000 0.096
#> GSM149139     1  0.2345    0.73196 0.900 0.000 0.000 0.100
#> GSM149140     1  0.2281    0.73465 0.904 0.000 0.000 0.096
#> GSM149141     1  0.6353    0.12985 0.552 0.016 0.396 0.036
#> GSM149142     1  0.1302    0.73180 0.956 0.044 0.000 0.000
#> GSM149143     1  0.5011    0.63155 0.764 0.000 0.160 0.076
#> GSM149144     1  0.5119    0.25304 0.556 0.440 0.000 0.004
#> GSM149145     3  0.5055    0.45491 0.368 0.008 0.624 0.000
#> GSM149146     2  0.0336    0.87020 0.008 0.992 0.000 0.000
#> GSM149147     1  0.2216    0.73501 0.908 0.000 0.000 0.092
#> GSM149148     1  0.2281    0.73465 0.904 0.000 0.000 0.096
#> GSM149149     1  0.2281    0.73465 0.904 0.000 0.000 0.096
#> GSM149150     2  0.4632    0.51636 0.308 0.688 0.004 0.000
#> GSM149151     1  0.2271    0.73674 0.916 0.008 0.000 0.076
#> GSM149152     4  0.4855    0.27715 0.400 0.000 0.000 0.600
#> GSM149153     3  0.5669    0.20748 0.464 0.016 0.516 0.004
#> GSM149154     3  0.7221   -0.01684 0.140 0.000 0.432 0.428
#> GSM149155     2  0.1398    0.86314 0.040 0.956 0.000 0.004
#> GSM149156     2  0.1978    0.85249 0.068 0.928 0.000 0.004
#> GSM149157     2  0.5161    0.04350 0.476 0.520 0.000 0.004
#> GSM149158     1  0.4401    0.59853 0.724 0.272 0.000 0.004
#> GSM149159     2  0.2335    0.85716 0.060 0.920 0.020 0.000
#> GSM149160     1  0.4522    0.59551 0.728 0.264 0.004 0.004
#> GSM149161     1  0.4964    0.40381 0.616 0.380 0.000 0.004
#> GSM149162     2  0.1978    0.85196 0.068 0.928 0.000 0.004
#> GSM149163     2  0.1743    0.85731 0.056 0.940 0.000 0.004
#> GSM149164     1  0.4132    0.67310 0.804 0.176 0.012 0.008
#> GSM149165     2  0.1042    0.86793 0.020 0.972 0.008 0.000
#> GSM149166     2  0.3266    0.76119 0.168 0.832 0.000 0.000
#> GSM149167     1  0.4584    0.56230 0.696 0.300 0.000 0.004
#> GSM149168     2  0.4532    0.74890 0.052 0.792 0.156 0.000
#> GSM149169     1  0.3105    0.70907 0.856 0.140 0.000 0.004
#> GSM149170     2  0.4671    0.67264 0.028 0.752 0.220 0.000
#> GSM149171     2  0.5495    0.41464 0.028 0.624 0.348 0.000
#> GSM149172     3  0.3806    0.79985 0.016 0.048 0.864 0.072
#> GSM149173     2  0.4524    0.68883 0.028 0.768 0.204 0.000
#> GSM149174     1  0.4372    0.60031 0.728 0.268 0.000 0.004
#> GSM149175     3  0.2647    0.79529 0.000 0.000 0.880 0.120
#> GSM149176     2  0.2760    0.79477 0.128 0.872 0.000 0.000
#> GSM149177     3  0.7857    0.44761 0.128 0.284 0.544 0.044
#> GSM149178     3  0.5187    0.64293 0.040 0.228 0.728 0.004
#> GSM149179     2  0.0336    0.87020 0.008 0.992 0.000 0.000
#> GSM149180     2  0.0592    0.87047 0.016 0.984 0.000 0.000
#> GSM149181     2  0.0779    0.86577 0.016 0.980 0.004 0.000
#> GSM149182     2  0.0469    0.87005 0.012 0.988 0.000 0.000
#> GSM149183     2  0.0844    0.87091 0.012 0.980 0.004 0.004
#> GSM149184     2  0.0707    0.87049 0.020 0.980 0.000 0.000
#> GSM149185     2  0.0927    0.86415 0.016 0.976 0.008 0.000
#> GSM149186     2  0.0336    0.87020 0.008 0.992 0.000 0.000
#> GSM149187     2  0.1398    0.86340 0.040 0.956 0.000 0.004
#> GSM149188     2  0.0524    0.86988 0.008 0.988 0.004 0.000
#> GSM149189     3  0.5271    0.48535 0.024 0.320 0.656 0.000
#> GSM149190     2  0.5161    0.00334 0.476 0.520 0.000 0.004
#> GSM149191     2  0.6801    0.43799 0.308 0.568 0.124 0.000
#> GSM149192     2  0.0657    0.87090 0.012 0.984 0.004 0.000
#> GSM149193     2  0.0188    0.86971 0.000 0.996 0.004 0.000
#> GSM149194     1  0.4401    0.58873 0.724 0.272 0.000 0.004
#> GSM149195     3  0.0376    0.86055 0.004 0.004 0.992 0.000
#> GSM149196     2  0.0000    0.86980 0.000 1.000 0.000 0.000
#> GSM149197     2  0.1978    0.85237 0.068 0.928 0.000 0.004
#> GSM149198     1  0.5329    0.25635 0.568 0.000 0.012 0.420
#> GSM149199     2  0.2530    0.82947 0.100 0.896 0.000 0.004
#> GSM149200     2  0.4104    0.74225 0.028 0.808 0.164 0.000
#> GSM149201     2  0.0657    0.87025 0.012 0.984 0.000 0.004
#> GSM149202     2  0.1388    0.85771 0.028 0.960 0.012 0.000
#> GSM149203     3  0.5769    0.52325 0.036 0.284 0.668 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0290     0.9097 0.000 0.000 0.992 0.008 0.000
#> GSM149100     3  0.0290     0.9097 0.000 0.000 0.992 0.008 0.000
#> GSM149101     3  0.0290     0.9097 0.000 0.000 0.992 0.008 0.000
#> GSM149102     3  0.0290     0.9097 0.000 0.000 0.992 0.008 0.000
#> GSM149103     3  0.0510     0.8952 0.000 0.000 0.984 0.000 0.016
#> GSM149104     3  0.0290     0.9097 0.000 0.000 0.992 0.008 0.000
#> GSM149105     3  0.0290     0.9097 0.000 0.000 0.992 0.008 0.000
#> GSM149106     3  0.0613     0.8999 0.004 0.000 0.984 0.004 0.008
#> GSM149107     3  0.0290     0.9097 0.000 0.000 0.992 0.008 0.000
#> GSM149108     3  0.0290     0.9097 0.000 0.000 0.992 0.008 0.000
#> GSM149109     3  0.0290     0.9097 0.000 0.000 0.992 0.008 0.000
#> GSM149110     3  0.0290     0.9097 0.000 0.000 0.992 0.008 0.000
#> GSM149111     3  0.0290     0.9097 0.000 0.000 0.992 0.008 0.000
#> GSM149112     3  0.0290     0.9097 0.000 0.000 0.992 0.008 0.000
#> GSM149113     3  0.0290     0.9097 0.000 0.000 0.992 0.008 0.000
#> GSM149114     3  0.0290     0.9097 0.000 0.000 0.992 0.008 0.000
#> GSM149115     4  0.4414     0.2801 0.376 0.000 0.004 0.616 0.004
#> GSM149116     4  0.0000     0.9245 0.000 0.000 0.000 1.000 0.000
#> GSM149117     1  0.7058     0.3584 0.536 0.280 0.004 0.120 0.060
#> GSM149118     4  0.0000     0.9245 0.000 0.000 0.000 1.000 0.000
#> GSM149119     4  0.0000     0.9245 0.000 0.000 0.000 1.000 0.000
#> GSM149120     4  0.0000     0.9245 0.000 0.000 0.000 1.000 0.000
#> GSM149121     4  0.2439     0.7935 0.120 0.000 0.000 0.876 0.004
#> GSM149122     4  0.0000     0.9245 0.000 0.000 0.000 1.000 0.000
#> GSM149123     4  0.0000     0.9245 0.000 0.000 0.000 1.000 0.000
#> GSM149124     4  0.0000     0.9245 0.000 0.000 0.000 1.000 0.000
#> GSM149125     4  0.0000     0.9245 0.000 0.000 0.000 1.000 0.000
#> GSM149126     4  0.0000     0.9245 0.000 0.000 0.000 1.000 0.000
#> GSM149127     4  0.0000     0.9245 0.000 0.000 0.000 1.000 0.000
#> GSM149128     4  0.0000     0.9245 0.000 0.000 0.000 1.000 0.000
#> GSM149129     4  0.0000     0.9245 0.000 0.000 0.000 1.000 0.000
#> GSM149130     1  0.4244     0.5753 0.712 0.000 0.004 0.268 0.016
#> GSM149131     1  0.4572     0.1857 0.540 0.000 0.004 0.452 0.004
#> GSM149132     4  0.0000     0.9245 0.000 0.000 0.000 1.000 0.000
#> GSM149133     4  0.0000     0.9245 0.000 0.000 0.000 1.000 0.000
#> GSM149134     1  0.2777     0.7172 0.864 0.000 0.000 0.120 0.016
#> GSM149135     1  0.0794     0.7576 0.972 0.000 0.000 0.028 0.000
#> GSM149136     1  0.0932     0.7558 0.972 0.000 0.004 0.020 0.004
#> GSM149137     1  0.0865     0.7573 0.972 0.000 0.000 0.024 0.004
#> GSM149138     1  0.0798     0.7535 0.976 0.000 0.000 0.016 0.008
#> GSM149139     1  0.0794     0.7576 0.972 0.000 0.000 0.028 0.000
#> GSM149140     1  0.0703     0.7574 0.976 0.000 0.000 0.024 0.000
#> GSM149141     1  0.8077     0.2296 0.468 0.040 0.172 0.056 0.264
#> GSM149142     1  0.4421     0.5044 0.748 0.068 0.000 0.000 0.184
#> GSM149143     1  0.7466     0.1655 0.456 0.024 0.108 0.048 0.364
#> GSM149144     2  0.6158     0.2884 0.156 0.528 0.000 0.000 0.316
#> GSM149145     5  0.7439    -0.0303 0.260 0.024 0.356 0.004 0.356
#> GSM149146     2  0.0955     0.6411 0.004 0.968 0.000 0.000 0.028
#> GSM149147     1  0.0771     0.7558 0.976 0.000 0.004 0.020 0.000
#> GSM149148     1  0.0865     0.7574 0.972 0.000 0.004 0.024 0.000
#> GSM149149     1  0.0865     0.7574 0.972 0.000 0.004 0.024 0.000
#> GSM149150     2  0.5654     0.3630 0.192 0.648 0.004 0.000 0.156
#> GSM149151     1  0.1153     0.7561 0.964 0.000 0.004 0.024 0.008
#> GSM149152     1  0.4747     0.4038 0.604 0.000 0.008 0.376 0.012
#> GSM149153     5  0.7888     0.0634 0.308 0.068 0.224 0.004 0.396
#> GSM149154     4  0.7610     0.1106 0.156 0.000 0.352 0.412 0.080
#> GSM149155     2  0.3039     0.5916 0.000 0.808 0.000 0.000 0.192
#> GSM149156     2  0.4457     0.4397 0.012 0.620 0.000 0.000 0.368
#> GSM149157     5  0.6589     0.0144 0.224 0.328 0.000 0.000 0.448
#> GSM149158     5  0.6791     0.0689 0.312 0.304 0.000 0.000 0.384
#> GSM149159     5  0.4438     0.0898 0.004 0.384 0.004 0.000 0.608
#> GSM149160     5  0.6586     0.1380 0.292 0.244 0.000 0.000 0.464
#> GSM149161     2  0.6571     0.0517 0.204 0.400 0.000 0.000 0.396
#> GSM149162     2  0.3913     0.5123 0.000 0.676 0.000 0.000 0.324
#> GSM149163     2  0.3534     0.5487 0.000 0.744 0.000 0.000 0.256
#> GSM149164     5  0.6351     0.2040 0.280 0.152 0.012 0.000 0.556
#> GSM149165     2  0.3398     0.5745 0.000 0.780 0.004 0.000 0.216
#> GSM149166     2  0.4901     0.5321 0.104 0.712 0.000 0.000 0.184
#> GSM149167     5  0.6884     0.0317 0.272 0.324 0.004 0.000 0.400
#> GSM149168     5  0.5088     0.1413 0.004 0.392 0.032 0.000 0.572
#> GSM149169     1  0.6598    -0.1480 0.412 0.212 0.000 0.000 0.376
#> GSM149170     5  0.5078     0.1289 0.004 0.424 0.028 0.000 0.544
#> GSM149171     5  0.5280     0.1587 0.008 0.396 0.036 0.000 0.560
#> GSM149172     5  0.6920    -0.1184 0.004 0.048 0.424 0.092 0.432
#> GSM149173     5  0.4886     0.1112 0.000 0.448 0.024 0.000 0.528
#> GSM149174     5  0.6785     0.0734 0.312 0.300 0.000 0.000 0.388
#> GSM149175     3  0.4891     0.6677 0.012 0.000 0.740 0.152 0.096
#> GSM149176     2  0.4104     0.5769 0.088 0.788 0.000 0.000 0.124
#> GSM149177     3  0.8837    -0.0632 0.156 0.256 0.380 0.032 0.176
#> GSM149178     3  0.7545    -0.1285 0.040 0.288 0.380 0.000 0.292
#> GSM149179     2  0.1894     0.6358 0.008 0.920 0.000 0.000 0.072
#> GSM149180     2  0.2488     0.6256 0.004 0.872 0.000 0.000 0.124
#> GSM149181     2  0.3424     0.4379 0.000 0.760 0.000 0.000 0.240
#> GSM149182     2  0.0963     0.6450 0.000 0.964 0.000 0.000 0.036
#> GSM149183     2  0.1965     0.6429 0.000 0.904 0.000 0.000 0.096
#> GSM149184     2  0.2068     0.6165 0.004 0.904 0.000 0.000 0.092
#> GSM149185     2  0.4278     0.0541 0.000 0.548 0.000 0.000 0.452
#> GSM149186     2  0.2304     0.6241 0.008 0.892 0.000 0.000 0.100
#> GSM149187     2  0.3550     0.5826 0.004 0.760 0.000 0.000 0.236
#> GSM149188     2  0.2516     0.5842 0.000 0.860 0.000 0.000 0.140
#> GSM149189     5  0.6679     0.2280 0.004 0.312 0.220 0.000 0.464
#> GSM149190     2  0.6262     0.2438 0.164 0.504 0.000 0.000 0.332
#> GSM149191     5  0.3319     0.2435 0.040 0.100 0.008 0.000 0.852
#> GSM149192     2  0.3398     0.5913 0.004 0.780 0.000 0.000 0.216
#> GSM149193     2  0.2127     0.5978 0.000 0.892 0.000 0.000 0.108
#> GSM149194     5  0.6728     0.1165 0.320 0.268 0.000 0.000 0.412
#> GSM149195     3  0.2074     0.8224 0.000 0.000 0.896 0.000 0.104
#> GSM149196     2  0.2488     0.5978 0.004 0.872 0.000 0.000 0.124
#> GSM149197     2  0.4127     0.4941 0.008 0.680 0.000 0.000 0.312
#> GSM149198     1  0.4749     0.5946 0.700 0.000 0.008 0.252 0.040
#> GSM149199     2  0.4731     0.4481 0.032 0.640 0.000 0.000 0.328
#> GSM149200     5  0.4882     0.1152 0.000 0.444 0.024 0.000 0.532
#> GSM149201     2  0.1121     0.6448 0.000 0.956 0.000 0.000 0.044
#> GSM149202     2  0.4430     0.0345 0.004 0.540 0.000 0.000 0.456
#> GSM149203     5  0.6556     0.2430 0.004 0.120 0.300 0.024 0.552

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.0000     0.9477 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149100     3  0.0000     0.9477 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149101     3  0.0000     0.9477 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149102     3  0.0000     0.9477 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149103     3  0.2030     0.8833 0.000 0.000 0.908 0.000 0.064 0.028
#> GSM149104     3  0.0000     0.9477 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149105     3  0.0146     0.9471 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM149106     3  0.1268     0.9183 0.000 0.004 0.952 0.000 0.036 0.008
#> GSM149107     3  0.0291     0.9455 0.000 0.000 0.992 0.000 0.004 0.004
#> GSM149108     3  0.0146     0.9465 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM149109     3  0.0146     0.9467 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM149110     3  0.0146     0.9467 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM149111     3  0.0146     0.9471 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM149112     3  0.0146     0.9467 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM149113     3  0.0146     0.9471 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM149114     3  0.0405     0.9437 0.000 0.000 0.988 0.000 0.008 0.004
#> GSM149115     1  0.4719     0.2346 0.516 0.000 0.000 0.448 0.020 0.016
#> GSM149116     4  0.0000     0.9351 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149117     1  0.7603     0.2956 0.456 0.272 0.000 0.108 0.076 0.088
#> GSM149118     4  0.0146     0.9345 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM149119     4  0.0146     0.9345 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM149120     4  0.0260     0.9324 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM149121     4  0.3546     0.6497 0.196 0.000 0.000 0.776 0.016 0.012
#> GSM149122     4  0.0000     0.9351 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149123     4  0.0146     0.9345 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM149124     4  0.0000     0.9351 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149125     4  0.0000     0.9351 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149126     4  0.0000     0.9351 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149127     4  0.0000     0.9351 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149128     4  0.0146     0.9345 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM149129     4  0.0000     0.9351 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149130     1  0.4852     0.6808 0.720 0.008 0.000 0.176 0.036 0.060
#> GSM149131     1  0.4979     0.4493 0.584 0.000 0.000 0.356 0.032 0.028
#> GSM149132     4  0.0000     0.9351 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149133     4  0.0363     0.9302 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM149134     1  0.2202     0.7778 0.908 0.000 0.000 0.052 0.012 0.028
#> GSM149135     1  0.0820     0.7945 0.972 0.000 0.000 0.000 0.016 0.012
#> GSM149136     1  0.0909     0.7948 0.968 0.000 0.000 0.000 0.020 0.012
#> GSM149137     1  0.0717     0.7949 0.976 0.000 0.000 0.000 0.008 0.016
#> GSM149138     1  0.1225     0.7903 0.952 0.000 0.000 0.000 0.012 0.036
#> GSM149139     1  0.0405     0.7962 0.988 0.000 0.000 0.004 0.000 0.008
#> GSM149140     1  0.0458     0.7952 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM149141     5  0.8334     0.2193 0.248 0.052 0.120 0.016 0.388 0.176
#> GSM149142     1  0.5691     0.0125 0.500 0.060 0.000 0.000 0.044 0.396
#> GSM149143     6  0.7303     0.2418 0.232 0.008 0.068 0.052 0.120 0.520
#> GSM149144     2  0.5260     0.0618 0.076 0.516 0.000 0.000 0.008 0.400
#> GSM149145     5  0.7868     0.3359 0.172 0.036 0.160 0.004 0.444 0.184
#> GSM149146     2  0.1865     0.6728 0.000 0.920 0.000 0.000 0.040 0.040
#> GSM149147     1  0.0858     0.7941 0.968 0.000 0.000 0.000 0.004 0.028
#> GSM149148     1  0.0603     0.7944 0.980 0.000 0.000 0.000 0.004 0.016
#> GSM149149     1  0.0692     0.7938 0.976 0.000 0.000 0.000 0.004 0.020
#> GSM149150     2  0.6792     0.1092 0.124 0.492 0.000 0.000 0.260 0.124
#> GSM149151     1  0.1995     0.7771 0.912 0.000 0.000 0.000 0.036 0.052
#> GSM149152     1  0.5113     0.4851 0.592 0.000 0.000 0.332 0.020 0.056
#> GSM149153     5  0.7646     0.2941 0.224 0.052 0.084 0.000 0.452 0.188
#> GSM149154     4  0.8125    -0.0572 0.232 0.000 0.304 0.312 0.072 0.080
#> GSM149155     2  0.3271     0.5587 0.000 0.760 0.000 0.000 0.008 0.232
#> GSM149156     6  0.4493    -0.0374 0.008 0.484 0.000 0.000 0.016 0.492
#> GSM149157     6  0.4394     0.7012 0.056 0.124 0.000 0.000 0.056 0.764
#> GSM149158     6  0.4267     0.7054 0.116 0.152 0.000 0.000 0.000 0.732
#> GSM149159     5  0.5826     0.3447 0.000 0.236 0.000 0.000 0.492 0.272
#> GSM149160     6  0.4029     0.7167 0.096 0.080 0.000 0.000 0.032 0.792
#> GSM149161     6  0.4733     0.6380 0.072 0.224 0.000 0.000 0.016 0.688
#> GSM149162     2  0.4780     0.2458 0.000 0.552 0.000 0.000 0.056 0.392
#> GSM149163     2  0.3670     0.4966 0.000 0.704 0.000 0.000 0.012 0.284
#> GSM149164     6  0.3841     0.6778 0.088 0.024 0.008 0.004 0.056 0.820
#> GSM149165     2  0.4503     0.5172 0.000 0.684 0.000 0.000 0.232 0.084
#> GSM149166     2  0.5171     0.5462 0.056 0.692 0.000 0.000 0.088 0.164
#> GSM149167     6  0.5655     0.6499 0.156 0.192 0.000 0.000 0.032 0.620
#> GSM149168     5  0.5129     0.5299 0.000 0.216 0.016 0.000 0.656 0.112
#> GSM149169     6  0.4767     0.6905 0.200 0.088 0.000 0.000 0.016 0.696
#> GSM149170     5  0.4448     0.5226 0.000 0.268 0.012 0.000 0.680 0.040
#> GSM149171     5  0.4153     0.5552 0.000 0.212 0.028 0.000 0.736 0.024
#> GSM149172     5  0.6372     0.3906 0.000 0.064 0.320 0.048 0.532 0.036
#> GSM149173     5  0.4199     0.5330 0.000 0.256 0.020 0.000 0.704 0.020
#> GSM149174     6  0.4396     0.7173 0.116 0.120 0.000 0.000 0.016 0.748
#> GSM149175     3  0.7236     0.2746 0.032 0.000 0.512 0.152 0.200 0.104
#> GSM149176     2  0.5454     0.5089 0.056 0.668 0.000 0.000 0.144 0.132
#> GSM149177     5  0.9252     0.2522 0.092 0.240 0.212 0.044 0.272 0.140
#> GSM149178     5  0.7624     0.4241 0.032 0.204 0.216 0.004 0.452 0.092
#> GSM149179     2  0.1995     0.6655 0.000 0.912 0.000 0.000 0.052 0.036
#> GSM149180     2  0.2488     0.6655 0.000 0.880 0.000 0.000 0.076 0.044
#> GSM149181     2  0.4088     0.2045 0.000 0.616 0.000 0.000 0.368 0.016
#> GSM149182     2  0.1168     0.6779 0.000 0.956 0.000 0.000 0.016 0.028
#> GSM149183     2  0.3112     0.6650 0.000 0.836 0.000 0.000 0.096 0.068
#> GSM149184     2  0.3062     0.5949 0.000 0.816 0.000 0.000 0.160 0.024
#> GSM149185     5  0.4491     0.3569 0.000 0.388 0.000 0.000 0.576 0.036
#> GSM149186     2  0.3062     0.6592 0.000 0.836 0.000 0.000 0.112 0.052
#> GSM149187     2  0.4493     0.4533 0.000 0.636 0.000 0.000 0.052 0.312
#> GSM149188     2  0.2901     0.6343 0.000 0.840 0.000 0.000 0.128 0.032
#> GSM149189     5  0.5605     0.5436 0.000 0.180 0.144 0.000 0.636 0.040
#> GSM149190     6  0.5716     0.0968 0.088 0.436 0.000 0.000 0.024 0.452
#> GSM149191     6  0.4840     0.2479 0.012 0.032 0.004 0.000 0.368 0.584
#> GSM149192     2  0.4628     0.5567 0.000 0.684 0.000 0.000 0.204 0.112
#> GSM149193     2  0.2730     0.6101 0.000 0.836 0.000 0.000 0.152 0.012
#> GSM149194     6  0.4598     0.7138 0.092 0.136 0.000 0.000 0.032 0.740
#> GSM149195     3  0.3168     0.7482 0.000 0.000 0.804 0.000 0.172 0.024
#> GSM149196     2  0.3456     0.5915 0.000 0.788 0.000 0.000 0.172 0.040
#> GSM149197     2  0.4313     0.3028 0.004 0.604 0.000 0.000 0.020 0.372
#> GSM149198     1  0.5414     0.6609 0.696 0.000 0.016 0.152 0.064 0.072
#> GSM149199     2  0.4427     0.1955 0.012 0.568 0.000 0.000 0.012 0.408
#> GSM149200     5  0.4099     0.5164 0.000 0.272 0.008 0.000 0.696 0.024
#> GSM149201     2  0.2277     0.6855 0.000 0.892 0.000 0.000 0.032 0.076
#> GSM149202     5  0.4224     0.3215 0.000 0.432 0.000 0.000 0.552 0.016
#> GSM149203     5  0.6444     0.5134 0.000 0.088 0.208 0.012 0.580 0.112

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>               n disease.state(p) k
#> MAD:skmeans 103         2.97e-10 2
#> MAD:skmeans  99         1.19e-21 3
#> MAD:skmeans  89         4.42e-28 4
#> MAD:skmeans  66         1.58e-22 5
#> MAD:skmeans  77         5.51e-30 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.436           0.799       0.832         0.4709 0.534   0.534
#> 3 3 0.826           0.862       0.938         0.3217 0.809   0.653
#> 4 4 0.882           0.892       0.956         0.1255 0.917   0.783
#> 5 5 0.865           0.883       0.943         0.1204 0.876   0.620
#> 6 6 0.867           0.747       0.877         0.0356 0.960   0.822

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     2  0.8713     0.6532 0.292 0.708
#> GSM149100     2  0.6438     0.7933 0.164 0.836
#> GSM149101     2  0.9209     0.6075 0.336 0.664
#> GSM149102     2  0.5842     0.8149 0.140 0.860
#> GSM149103     2  0.2423     0.8655 0.040 0.960
#> GSM149104     2  0.7602     0.7429 0.220 0.780
#> GSM149105     2  0.7528     0.7457 0.216 0.784
#> GSM149106     2  0.8016     0.7274 0.244 0.756
#> GSM149107     2  0.6438     0.7993 0.164 0.836
#> GSM149108     2  0.8081     0.7116 0.248 0.752
#> GSM149109     2  0.8661     0.6588 0.288 0.712
#> GSM149110     2  0.5946     0.8101 0.144 0.856
#> GSM149111     2  0.4022     0.8495 0.080 0.920
#> GSM149112     2  0.7883     0.7265 0.236 0.764
#> GSM149113     2  0.8016     0.7150 0.244 0.756
#> GSM149114     2  0.8016     0.6869 0.244 0.756
#> GSM149115     1  0.2423     0.8666 0.960 0.040
#> GSM149116     1  0.0000     0.8520 1.000 0.000
#> GSM149117     2  0.9710     0.1670 0.400 0.600
#> GSM149118     1  0.1633     0.8630 0.976 0.024
#> GSM149119     1  0.0376     0.8541 0.996 0.004
#> GSM149120     1  0.0000     0.8520 1.000 0.000
#> GSM149121     1  0.2423     0.8666 0.960 0.040
#> GSM149122     1  0.0000     0.8520 1.000 0.000
#> GSM149123     1  0.2423     0.8666 0.960 0.040
#> GSM149124     1  0.2423     0.8664 0.960 0.040
#> GSM149125     1  0.0000     0.8520 1.000 0.000
#> GSM149126     1  0.0000     0.8520 1.000 0.000
#> GSM149127     1  0.0000     0.8520 1.000 0.000
#> GSM149128     1  0.0000     0.8520 1.000 0.000
#> GSM149129     1  0.0000     0.8520 1.000 0.000
#> GSM149130     1  0.7815     0.7925 0.768 0.232
#> GSM149131     1  0.2778     0.8675 0.952 0.048
#> GSM149132     1  0.1414     0.8616 0.980 0.020
#> GSM149133     1  0.1633     0.8630 0.976 0.024
#> GSM149134     1  0.7376     0.8118 0.792 0.208
#> GSM149135     1  0.7056     0.8222 0.808 0.192
#> GSM149136     1  0.7376     0.8120 0.792 0.208
#> GSM149137     1  0.7056     0.8222 0.808 0.192
#> GSM149138     1  0.8909     0.7168 0.692 0.308
#> GSM149139     1  0.3114     0.8680 0.944 0.056
#> GSM149140     1  0.6531     0.8351 0.832 0.168
#> GSM149141     2  0.8267     0.5833 0.260 0.740
#> GSM149142     1  0.8909     0.7168 0.692 0.308
#> GSM149143     1  0.8763     0.7309 0.704 0.296
#> GSM149144     1  0.8909     0.7168 0.692 0.308
#> GSM149145     2  0.4815     0.8127 0.104 0.896
#> GSM149146     2  0.0000     0.8825 0.000 1.000
#> GSM149147     1  0.4939     0.8594 0.892 0.108
#> GSM149148     1  0.3274     0.8678 0.940 0.060
#> GSM149149     1  0.3733     0.8672 0.928 0.072
#> GSM149150     2  0.0000     0.8825 0.000 1.000
#> GSM149151     1  0.8713     0.7357 0.708 0.292
#> GSM149152     1  0.4022     0.8659 0.920 0.080
#> GSM149153     2  0.2948     0.8555 0.052 0.948
#> GSM149154     1  0.5408     0.8545 0.876 0.124
#> GSM149155     2  0.0000     0.8825 0.000 1.000
#> GSM149156     2  0.0000     0.8825 0.000 1.000
#> GSM149157     2  0.0000     0.8825 0.000 1.000
#> GSM149158     1  0.8955     0.7110 0.688 0.312
#> GSM149159     2  0.0000     0.8825 0.000 1.000
#> GSM149160     2  0.0938     0.8776 0.012 0.988
#> GSM149161     2  0.1843     0.8701 0.028 0.972
#> GSM149162     2  0.0000     0.8825 0.000 1.000
#> GSM149163     2  0.0672     0.8793 0.008 0.992
#> GSM149164     2  0.0000     0.8825 0.000 1.000
#> GSM149165     2  0.0000     0.8825 0.000 1.000
#> GSM149166     2  0.7528     0.6655 0.216 0.784
#> GSM149167     2  0.9393     0.3135 0.356 0.644
#> GSM149168     2  0.0000     0.8825 0.000 1.000
#> GSM149169     1  0.8909     0.7168 0.692 0.308
#> GSM149170     2  0.0000     0.8825 0.000 1.000
#> GSM149171     2  0.0000     0.8825 0.000 1.000
#> GSM149172     2  0.0672     0.8797 0.008 0.992
#> GSM149173     2  0.0000     0.8825 0.000 1.000
#> GSM149174     1  0.8909     0.7168 0.692 0.308
#> GSM149175     2  0.6148     0.8013 0.152 0.848
#> GSM149176     2  0.6247     0.7567 0.156 0.844
#> GSM149177     2  0.7674     0.6481 0.224 0.776
#> GSM149178     2  0.0000     0.8825 0.000 1.000
#> GSM149179     2  0.0000     0.8825 0.000 1.000
#> GSM149180     2  0.0000     0.8825 0.000 1.000
#> GSM149181     2  0.0000     0.8825 0.000 1.000
#> GSM149182     2  0.0000     0.8825 0.000 1.000
#> GSM149183     2  0.0000     0.8825 0.000 1.000
#> GSM149184     2  0.0000     0.8825 0.000 1.000
#> GSM149185     2  0.0000     0.8825 0.000 1.000
#> GSM149186     2  0.0000     0.8825 0.000 1.000
#> GSM149187     2  0.0000     0.8825 0.000 1.000
#> GSM149188     2  0.0000     0.8825 0.000 1.000
#> GSM149189     2  0.2423     0.8655 0.040 0.960
#> GSM149190     2  0.8555     0.5309 0.280 0.720
#> GSM149191     2  0.0000     0.8825 0.000 1.000
#> GSM149192     2  0.0000     0.8825 0.000 1.000
#> GSM149193     2  0.0000     0.8825 0.000 1.000
#> GSM149194     1  0.9286     0.6556 0.656 0.344
#> GSM149195     2  0.2423     0.8655 0.040 0.960
#> GSM149196     2  0.0000     0.8825 0.000 1.000
#> GSM149197     2  0.7674     0.6405 0.224 0.776
#> GSM149198     2  0.9954    -0.0881 0.460 0.540
#> GSM149199     2  0.6973     0.7019 0.188 0.812
#> GSM149200     2  0.0000     0.8825 0.000 1.000
#> GSM149201     2  0.0000     0.8825 0.000 1.000
#> GSM149202     2  0.0000     0.8825 0.000 1.000
#> GSM149203     2  0.2236     0.8675 0.036 0.964

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0000     0.9700 0.000 0.000 1.000
#> GSM149100     3  0.0000     0.9700 0.000 0.000 1.000
#> GSM149101     3  0.0000     0.9700 0.000 0.000 1.000
#> GSM149102     3  0.0000     0.9700 0.000 0.000 1.000
#> GSM149103     3  0.0000     0.9700 0.000 0.000 1.000
#> GSM149104     3  0.0000     0.9700 0.000 0.000 1.000
#> GSM149105     3  0.0000     0.9700 0.000 0.000 1.000
#> GSM149106     3  0.0000     0.9700 0.000 0.000 1.000
#> GSM149107     3  0.0000     0.9700 0.000 0.000 1.000
#> GSM149108     3  0.0000     0.9700 0.000 0.000 1.000
#> GSM149109     3  0.0000     0.9700 0.000 0.000 1.000
#> GSM149110     3  0.0000     0.9700 0.000 0.000 1.000
#> GSM149111     3  0.0000     0.9700 0.000 0.000 1.000
#> GSM149112     3  0.0000     0.9700 0.000 0.000 1.000
#> GSM149113     3  0.0000     0.9700 0.000 0.000 1.000
#> GSM149114     3  0.0000     0.9700 0.000 0.000 1.000
#> GSM149115     1  0.0000     0.9148 1.000 0.000 0.000
#> GSM149116     1  0.5529     0.5207 0.704 0.000 0.296
#> GSM149117     1  0.6291     0.1484 0.532 0.468 0.000
#> GSM149118     1  0.0000     0.9148 1.000 0.000 0.000
#> GSM149119     1  0.0592     0.9094 0.988 0.000 0.012
#> GSM149120     1  0.1163     0.8991 0.972 0.000 0.028
#> GSM149121     1  0.0000     0.9148 1.000 0.000 0.000
#> GSM149122     3  0.6302     0.1140 0.480 0.000 0.520
#> GSM149123     1  0.0000     0.9148 1.000 0.000 0.000
#> GSM149124     1  0.0237     0.9151 0.996 0.004 0.000
#> GSM149125     1  0.0237     0.9133 0.996 0.000 0.004
#> GSM149126     1  0.0000     0.9148 1.000 0.000 0.000
#> GSM149127     1  0.0000     0.9148 1.000 0.000 0.000
#> GSM149128     1  0.0000     0.9148 1.000 0.000 0.000
#> GSM149129     1  0.0000     0.9148 1.000 0.000 0.000
#> GSM149130     1  0.2537     0.9089 0.920 0.080 0.000
#> GSM149131     1  0.1031     0.9219 0.976 0.024 0.000
#> GSM149132     1  0.0000     0.9148 1.000 0.000 0.000
#> GSM149133     1  0.0000     0.9148 1.000 0.000 0.000
#> GSM149134     1  0.1753     0.9234 0.952 0.048 0.000
#> GSM149135     1  0.1753     0.9234 0.952 0.048 0.000
#> GSM149136     1  0.1753     0.9234 0.952 0.048 0.000
#> GSM149137     1  0.1753     0.9234 0.952 0.048 0.000
#> GSM149138     1  0.2796     0.9020 0.908 0.092 0.000
#> GSM149139     1  0.1411     0.9239 0.964 0.036 0.000
#> GSM149140     1  0.1753     0.9234 0.952 0.048 0.000
#> GSM149141     2  0.5621     0.5522 0.308 0.692 0.000
#> GSM149142     1  0.2796     0.9020 0.908 0.092 0.000
#> GSM149143     1  0.2796     0.9020 0.908 0.092 0.000
#> GSM149144     1  0.2796     0.9020 0.908 0.092 0.000
#> GSM149145     2  0.4047     0.7977 0.148 0.848 0.004
#> GSM149146     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149147     1  0.1529     0.9240 0.960 0.040 0.000
#> GSM149148     1  0.1529     0.9240 0.960 0.040 0.000
#> GSM149149     1  0.1753     0.9234 0.952 0.048 0.000
#> GSM149150     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149151     1  0.2625     0.9070 0.916 0.084 0.000
#> GSM149152     1  0.1289     0.9234 0.968 0.032 0.000
#> GSM149153     2  0.2356     0.8714 0.072 0.928 0.000
#> GSM149154     1  0.1765     0.9238 0.956 0.040 0.004
#> GSM149155     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149156     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149157     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149158     1  0.2878     0.8988 0.904 0.096 0.000
#> GSM149159     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149160     2  0.0592     0.9134 0.012 0.988 0.000
#> GSM149161     2  0.1411     0.8988 0.036 0.964 0.000
#> GSM149162     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149163     2  0.0424     0.9157 0.008 0.992 0.000
#> GSM149164     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149165     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149166     2  0.5363     0.6072 0.276 0.724 0.000
#> GSM149167     2  0.6305     0.0168 0.484 0.516 0.000
#> GSM149168     2  0.0237     0.9173 0.000 0.996 0.004
#> GSM149169     1  0.2796     0.9020 0.908 0.092 0.000
#> GSM149170     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149171     2  0.0237     0.9173 0.000 0.996 0.004
#> GSM149172     2  0.0892     0.9052 0.000 0.980 0.020
#> GSM149173     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149174     1  0.2796     0.9020 0.908 0.092 0.000
#> GSM149175     2  0.4912     0.7350 0.008 0.796 0.196
#> GSM149176     2  0.4346     0.7552 0.184 0.816 0.000
#> GSM149177     2  0.5529     0.5767 0.296 0.704 0.000
#> GSM149178     2  0.0237     0.9173 0.000 0.996 0.004
#> GSM149179     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149180     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149181     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149182     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149183     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149184     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149185     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149186     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149187     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149188     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149189     2  0.1529     0.8876 0.000 0.960 0.040
#> GSM149190     2  0.6008     0.4010 0.372 0.628 0.000
#> GSM149191     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149192     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149193     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149194     1  0.3941     0.8363 0.844 0.156 0.000
#> GSM149195     2  0.5098     0.6639 0.000 0.752 0.248
#> GSM149196     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149197     2  0.5397     0.6019 0.280 0.720 0.000
#> GSM149198     1  0.6111     0.3373 0.604 0.396 0.000
#> GSM149199     2  0.5138     0.6525 0.252 0.748 0.000
#> GSM149200     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149201     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149202     2  0.0000     0.9195 0.000 1.000 0.000
#> GSM149203     2  0.3551     0.8134 0.000 0.868 0.132

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM149100     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM149101     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM149102     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM149103     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM149104     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM149105     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM149106     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM149107     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM149108     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM149109     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM149110     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM149111     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM149112     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM149113     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM149114     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> GSM149115     1  0.0707     0.9089 0.980 0.000 0.000 0.020
#> GSM149116     4  0.0000     0.9897 0.000 0.000 0.000 1.000
#> GSM149117     1  0.4500     0.5176 0.684 0.316 0.000 0.000
#> GSM149118     4  0.0000     0.9897 0.000 0.000 0.000 1.000
#> GSM149119     4  0.0000     0.9897 0.000 0.000 0.000 1.000
#> GSM149120     4  0.0000     0.9897 0.000 0.000 0.000 1.000
#> GSM149121     4  0.2760     0.8497 0.128 0.000 0.000 0.872
#> GSM149122     4  0.0000     0.9897 0.000 0.000 0.000 1.000
#> GSM149123     4  0.0000     0.9897 0.000 0.000 0.000 1.000
#> GSM149124     4  0.0000     0.9897 0.000 0.000 0.000 1.000
#> GSM149125     4  0.0000     0.9897 0.000 0.000 0.000 1.000
#> GSM149126     4  0.0000     0.9897 0.000 0.000 0.000 1.000
#> GSM149127     4  0.0000     0.9897 0.000 0.000 0.000 1.000
#> GSM149128     4  0.0000     0.9897 0.000 0.000 0.000 1.000
#> GSM149129     4  0.0000     0.9897 0.000 0.000 0.000 1.000
#> GSM149130     1  0.0000     0.9231 1.000 0.000 0.000 0.000
#> GSM149131     1  0.2589     0.8122 0.884 0.000 0.000 0.116
#> GSM149132     4  0.0000     0.9897 0.000 0.000 0.000 1.000
#> GSM149133     4  0.0000     0.9897 0.000 0.000 0.000 1.000
#> GSM149134     1  0.0000     0.9231 1.000 0.000 0.000 0.000
#> GSM149135     1  0.0000     0.9231 1.000 0.000 0.000 0.000
#> GSM149136     1  0.0000     0.9231 1.000 0.000 0.000 0.000
#> GSM149137     1  0.0000     0.9231 1.000 0.000 0.000 0.000
#> GSM149138     1  0.0000     0.9231 1.000 0.000 0.000 0.000
#> GSM149139     1  0.0000     0.9231 1.000 0.000 0.000 0.000
#> GSM149140     1  0.0000     0.9231 1.000 0.000 0.000 0.000
#> GSM149141     2  0.4382     0.5929 0.296 0.704 0.000 0.000
#> GSM149142     1  0.0000     0.9231 1.000 0.000 0.000 0.000
#> GSM149143     1  0.0000     0.9231 1.000 0.000 0.000 0.000
#> GSM149144     1  0.0592     0.9113 0.984 0.016 0.000 0.000
#> GSM149145     2  0.3219     0.7923 0.164 0.836 0.000 0.000
#> GSM149146     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149147     1  0.0000     0.9231 1.000 0.000 0.000 0.000
#> GSM149148     1  0.0000     0.9231 1.000 0.000 0.000 0.000
#> GSM149149     1  0.0000     0.9231 1.000 0.000 0.000 0.000
#> GSM149150     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149151     1  0.0000     0.9231 1.000 0.000 0.000 0.000
#> GSM149152     1  0.0000     0.9231 1.000 0.000 0.000 0.000
#> GSM149153     2  0.2081     0.8744 0.084 0.916 0.000 0.000
#> GSM149154     1  0.0188     0.9206 0.996 0.000 0.000 0.004
#> GSM149155     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149156     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149157     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149158     1  0.0336     0.9177 0.992 0.008 0.000 0.000
#> GSM149159     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149160     2  0.0707     0.9206 0.020 0.980 0.000 0.000
#> GSM149161     2  0.1792     0.8855 0.068 0.932 0.000 0.000
#> GSM149162     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149163     2  0.0336     0.9270 0.008 0.992 0.000 0.000
#> GSM149164     2  0.0336     0.9272 0.008 0.992 0.000 0.000
#> GSM149165     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149166     2  0.4406     0.5755 0.300 0.700 0.000 0.000
#> GSM149167     1  0.5000    -0.0328 0.504 0.496 0.000 0.000
#> GSM149168     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149169     1  0.0000     0.9231 1.000 0.000 0.000 0.000
#> GSM149170     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149171     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149172     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149173     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149174     1  0.0000     0.9231 1.000 0.000 0.000 0.000
#> GSM149175     2  0.6627     0.1757 0.004 0.516 0.072 0.408
#> GSM149176     2  0.3726     0.7287 0.212 0.788 0.000 0.000
#> GSM149177     2  0.4605     0.5018 0.336 0.664 0.000 0.000
#> GSM149178     2  0.0336     0.9270 0.000 0.992 0.008 0.000
#> GSM149179     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149180     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149181     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149182     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149183     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149184     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149185     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149186     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149187     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149188     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149189     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149190     2  0.4477     0.5612 0.312 0.688 0.000 0.000
#> GSM149191     2  0.0188     0.9292 0.004 0.996 0.000 0.000
#> GSM149192     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149193     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149194     1  0.1867     0.8563 0.928 0.072 0.000 0.000
#> GSM149195     2  0.3801     0.7190 0.000 0.780 0.220 0.000
#> GSM149196     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149197     2  0.3649     0.7382 0.204 0.796 0.000 0.000
#> GSM149198     1  0.4955     0.1612 0.556 0.444 0.000 0.000
#> GSM149199     2  0.3649     0.7374 0.204 0.796 0.000 0.000
#> GSM149200     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149201     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149202     2  0.0000     0.9311 0.000 1.000 0.000 0.000
#> GSM149203     2  0.2589     0.8429 0.000 0.884 0.116 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149100     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149101     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149102     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149103     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149104     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149105     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149106     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149107     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149108     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149109     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149110     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149111     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149112     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149113     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149114     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149115     1  0.0510      0.966 0.984 0.000 0.000 0.016 0.000
#> GSM149116     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM149117     1  0.3209      0.747 0.812 0.008 0.000 0.000 0.180
#> GSM149118     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM149119     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM149120     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM149121     4  0.2179      0.873 0.112 0.000 0.000 0.888 0.000
#> GSM149122     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM149123     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM149124     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM149125     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM149126     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM149127     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM149128     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM149129     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM149130     1  0.0162      0.974 0.996 0.000 0.000 0.000 0.004
#> GSM149131     1  0.1121      0.943 0.956 0.000 0.000 0.044 0.000
#> GSM149132     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM149133     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM149134     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM149135     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM149136     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM149137     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM149138     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM149139     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM149140     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM149141     5  0.3774      0.601 0.296 0.000 0.000 0.000 0.704
#> GSM149142     1  0.1341      0.929 0.944 0.056 0.000 0.000 0.000
#> GSM149143     1  0.1341      0.931 0.944 0.056 0.000 0.000 0.000
#> GSM149144     2  0.1544      0.875 0.068 0.932 0.000 0.000 0.000
#> GSM149145     5  0.2813      0.769 0.168 0.000 0.000 0.000 0.832
#> GSM149146     5  0.0880      0.871 0.000 0.032 0.000 0.000 0.968
#> GSM149147     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM149148     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM149149     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM149150     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000
#> GSM149151     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM149152     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM149153     5  0.1671      0.845 0.076 0.000 0.000 0.000 0.924
#> GSM149154     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> GSM149155     2  0.2329      0.837 0.000 0.876 0.000 0.000 0.124
#> GSM149156     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000
#> GSM149157     2  0.3707      0.653 0.000 0.716 0.000 0.000 0.284
#> GSM149158     2  0.1270      0.887 0.052 0.948 0.000 0.000 0.000
#> GSM149159     5  0.3774      0.545 0.000 0.296 0.000 0.000 0.704
#> GSM149160     2  0.2707      0.836 0.008 0.860 0.000 0.000 0.132
#> GSM149161     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000
#> GSM149162     2  0.0162      0.894 0.000 0.996 0.000 0.000 0.004
#> GSM149163     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000
#> GSM149164     2  0.4047      0.582 0.004 0.676 0.000 0.000 0.320
#> GSM149165     5  0.1197      0.863 0.000 0.048 0.000 0.000 0.952
#> GSM149166     2  0.1792      0.870 0.000 0.916 0.000 0.000 0.084
#> GSM149167     2  0.1197      0.890 0.048 0.952 0.000 0.000 0.000
#> GSM149168     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000
#> GSM149169     2  0.2074      0.854 0.104 0.896 0.000 0.000 0.000
#> GSM149170     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000
#> GSM149171     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000
#> GSM149172     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000
#> GSM149173     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000
#> GSM149174     2  0.0703      0.894 0.024 0.976 0.000 0.000 0.000
#> GSM149175     5  0.5658      0.210 0.004 0.000 0.068 0.408 0.520
#> GSM149176     5  0.6036      0.308 0.144 0.308 0.000 0.000 0.548
#> GSM149177     5  0.3876      0.571 0.316 0.000 0.000 0.000 0.684
#> GSM149178     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000
#> GSM149179     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000
#> GSM149180     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000
#> GSM149181     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000
#> GSM149182     5  0.1121      0.866 0.000 0.044 0.000 0.000 0.956
#> GSM149183     5  0.3966      0.515 0.000 0.336 0.000 0.000 0.664
#> GSM149184     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000
#> GSM149185     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000
#> GSM149186     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000
#> GSM149187     5  0.2471      0.804 0.000 0.136 0.000 0.000 0.864
#> GSM149188     5  0.2280      0.815 0.000 0.120 0.000 0.000 0.880
#> GSM149189     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000
#> GSM149190     2  0.0992      0.896 0.024 0.968 0.000 0.000 0.008
#> GSM149191     5  0.1608      0.845 0.000 0.072 0.000 0.000 0.928
#> GSM149192     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000
#> GSM149193     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000
#> GSM149194     2  0.2629      0.823 0.136 0.860 0.000 0.000 0.004
#> GSM149195     5  0.3210      0.717 0.000 0.000 0.212 0.000 0.788
#> GSM149196     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000
#> GSM149197     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000
#> GSM149198     5  0.4440      0.186 0.468 0.004 0.000 0.000 0.528
#> GSM149199     2  0.3456      0.764 0.016 0.800 0.000 0.000 0.184
#> GSM149200     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000
#> GSM149201     5  0.2690      0.786 0.000 0.156 0.000 0.000 0.844
#> GSM149202     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000
#> GSM149203     5  0.2723      0.802 0.000 0.012 0.124 0.000 0.864

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.0000    0.99971 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149100     3  0.0000    0.99971 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149101     3  0.0000    0.99971 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149102     3  0.0000    0.99971 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149103     3  0.0000    0.99971 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149104     3  0.0000    0.99971 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149105     3  0.0000    0.99971 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149106     3  0.0146    0.99566 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM149107     3  0.0000    0.99971 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149108     3  0.0000    0.99971 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149109     3  0.0000    0.99971 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149110     3  0.0000    0.99971 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149111     3  0.0000    0.99971 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149112     3  0.0000    0.99971 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149113     3  0.0000    0.99971 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149114     3  0.0000    0.99971 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149115     1  0.0260    0.94400 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM149116     4  0.0000    0.99039 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149117     1  0.3017    0.71540 0.816 0.020 0.000 0.000 0.164 0.000
#> GSM149118     4  0.0000    0.99039 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149119     4  0.0000    0.99039 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149120     4  0.0000    0.99039 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149121     4  0.1957    0.85678 0.112 0.000 0.000 0.888 0.000 0.000
#> GSM149122     4  0.0000    0.99039 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149123     4  0.0000    0.99039 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149124     4  0.0000    0.99039 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149125     4  0.0000    0.99039 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149126     4  0.0000    0.99039 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149127     4  0.0000    0.99039 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149128     4  0.0000    0.99039 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149129     4  0.0000    0.99039 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149130     1  0.0291    0.94447 0.992 0.000 0.000 0.000 0.004 0.004
#> GSM149131     1  0.0790    0.92318 0.968 0.000 0.000 0.032 0.000 0.000
#> GSM149132     4  0.0000    0.99039 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149133     4  0.0000    0.99039 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149134     1  0.0000    0.94953 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149135     1  0.0000    0.94953 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149136     1  0.0000    0.94953 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149137     1  0.0000    0.94953 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149138     1  0.0000    0.94953 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149139     1  0.0000    0.94953 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149140     1  0.0000    0.94953 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149141     6  0.5190    0.43717 0.096 0.000 0.000 0.000 0.376 0.528
#> GSM149142     1  0.3063    0.81603 0.840 0.092 0.000 0.000 0.000 0.068
#> GSM149143     1  0.3833    0.35084 0.556 0.000 0.000 0.000 0.000 0.444
#> GSM149144     2  0.0291    0.63495 0.004 0.992 0.000 0.000 0.000 0.004
#> GSM149145     6  0.4389    0.39987 0.024 0.000 0.000 0.000 0.448 0.528
#> GSM149146     5  0.0865    0.78190 0.000 0.036 0.000 0.000 0.964 0.000
#> GSM149147     1  0.0000    0.94953 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149148     1  0.0000    0.94953 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149149     1  0.0000    0.94953 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149150     5  0.0000    0.80650 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149151     1  0.0000    0.94953 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149152     1  0.0000    0.94953 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149153     6  0.3860    0.36206 0.000 0.000 0.000 0.000 0.472 0.528
#> GSM149154     1  0.0000    0.94953 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149155     2  0.1349    0.59577 0.000 0.940 0.000 0.000 0.056 0.004
#> GSM149156     2  0.2048    0.66120 0.000 0.880 0.000 0.000 0.000 0.120
#> GSM149157     6  0.5521   -0.48743 0.000 0.400 0.000 0.000 0.132 0.468
#> GSM149158     2  0.3857    0.58406 0.000 0.532 0.000 0.000 0.000 0.468
#> GSM149159     5  0.3213    0.56043 0.000 0.160 0.000 0.000 0.808 0.032
#> GSM149160     2  0.3989    0.58030 0.000 0.528 0.000 0.000 0.004 0.468
#> GSM149161     2  0.3857    0.58406 0.000 0.532 0.000 0.000 0.000 0.468
#> GSM149162     2  0.1285    0.64820 0.000 0.944 0.000 0.000 0.004 0.052
#> GSM149163     2  0.0146    0.63588 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM149164     6  0.5521   -0.48856 0.000 0.400 0.000 0.000 0.132 0.468
#> GSM149165     5  0.1863    0.72444 0.000 0.104 0.000 0.000 0.896 0.000
#> GSM149166     2  0.1434    0.62300 0.000 0.940 0.000 0.000 0.048 0.012
#> GSM149167     2  0.4167    0.62236 0.024 0.632 0.000 0.000 0.000 0.344
#> GSM149168     5  0.0146    0.80447 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM149169     2  0.4228    0.60755 0.020 0.588 0.000 0.000 0.000 0.392
#> GSM149170     5  0.0000    0.80650 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149171     5  0.0000    0.80650 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149172     5  0.0000    0.80650 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149173     5  0.0000    0.80650 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149174     2  0.3817    0.59531 0.000 0.568 0.000 0.000 0.000 0.432
#> GSM149175     6  0.5804    0.44487 0.000 0.000 0.048 0.072 0.352 0.528
#> GSM149176     5  0.6688   -0.21064 0.112 0.312 0.000 0.000 0.472 0.104
#> GSM149177     5  0.3636    0.36819 0.320 0.000 0.000 0.000 0.676 0.004
#> GSM149178     5  0.0000    0.80650 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149179     5  0.0000    0.80650 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149180     5  0.0000    0.80650 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149181     5  0.0000    0.80650 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149182     5  0.2278    0.70048 0.000 0.128 0.000 0.000 0.868 0.004
#> GSM149183     2  0.3868   -0.25203 0.000 0.508 0.000 0.000 0.492 0.000
#> GSM149184     5  0.0000    0.80650 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149185     5  0.0000    0.80650 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149186     5  0.0000    0.80650 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149187     5  0.3647    0.39822 0.000 0.360 0.000 0.000 0.640 0.000
#> GSM149188     5  0.3747    0.34400 0.000 0.396 0.000 0.000 0.604 0.000
#> GSM149189     5  0.0146    0.80381 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM149190     2  0.3653    0.63143 0.000 0.692 0.000 0.000 0.008 0.300
#> GSM149191     5  0.3851    0.09754 0.000 0.000 0.000 0.000 0.540 0.460
#> GSM149192     5  0.0458    0.79684 0.000 0.000 0.000 0.000 0.984 0.016
#> GSM149193     5  0.0000    0.80650 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149194     2  0.3989    0.58136 0.004 0.528 0.000 0.000 0.000 0.468
#> GSM149195     5  0.2883    0.52708 0.000 0.000 0.212 0.000 0.788 0.000
#> GSM149196     5  0.0000    0.80650 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149197     2  0.1556    0.65495 0.000 0.920 0.000 0.000 0.000 0.080
#> GSM149198     5  0.5285    0.00677 0.420 0.000 0.000 0.000 0.480 0.100
#> GSM149199     2  0.2113    0.55020 0.004 0.896 0.000 0.000 0.092 0.008
#> GSM149200     5  0.0000    0.80650 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149201     5  0.3966    0.27115 0.000 0.444 0.000 0.000 0.552 0.004
#> GSM149202     5  0.0000    0.80650 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149203     5  0.2999    0.64809 0.000 0.000 0.124 0.000 0.836 0.040

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n disease.state(p) k
#> MAD:pam 102         4.33e-12 2
#> MAD:pam 100         3.50e-26 3
#> MAD:pam 102         1.33e-33 4
#> MAD:pam 102         1.93e-39 5
#> MAD:pam  90         2.08e-33 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.992       0.996         0.4288 0.572   0.572
#> 3 3 0.631           0.793       0.881         0.2885 0.810   0.669
#> 4 4 0.686           0.845       0.914         0.2278 0.701   0.397
#> 5 5 0.785           0.454       0.716         0.1433 0.769   0.407
#> 6 6 0.813           0.792       0.885         0.0509 0.868   0.513

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     2  0.0376      0.994 0.004 0.996
#> GSM149100     2  0.0376      0.994 0.004 0.996
#> GSM149101     2  0.0376      0.994 0.004 0.996
#> GSM149102     2  0.0376      0.994 0.004 0.996
#> GSM149103     2  0.0000      0.997 0.000 1.000
#> GSM149104     2  0.0376      0.994 0.004 0.996
#> GSM149105     2  0.0376      0.994 0.004 0.996
#> GSM149106     2  0.0000      0.997 0.000 1.000
#> GSM149107     2  0.0376      0.994 0.004 0.996
#> GSM149108     2  0.0376      0.994 0.004 0.996
#> GSM149109     2  0.0376      0.994 0.004 0.996
#> GSM149110     2  0.0376      0.994 0.004 0.996
#> GSM149111     2  0.0376      0.994 0.004 0.996
#> GSM149112     2  0.0376      0.994 0.004 0.996
#> GSM149113     2  0.0376      0.994 0.004 0.996
#> GSM149114     2  0.0376      0.994 0.004 0.996
#> GSM149115     1  0.0000      0.994 1.000 0.000
#> GSM149116     1  0.0000      0.994 1.000 0.000
#> GSM149117     1  0.4690      0.892 0.900 0.100
#> GSM149118     1  0.0000      0.994 1.000 0.000
#> GSM149119     1  0.0000      0.994 1.000 0.000
#> GSM149120     1  0.0000      0.994 1.000 0.000
#> GSM149121     1  0.0000      0.994 1.000 0.000
#> GSM149122     1  0.0000      0.994 1.000 0.000
#> GSM149123     1  0.0000      0.994 1.000 0.000
#> GSM149124     1  0.0000      0.994 1.000 0.000
#> GSM149125     1  0.0000      0.994 1.000 0.000
#> GSM149126     1  0.0000      0.994 1.000 0.000
#> GSM149127     1  0.0000      0.994 1.000 0.000
#> GSM149128     1  0.0000      0.994 1.000 0.000
#> GSM149129     1  0.0000      0.994 1.000 0.000
#> GSM149130     1  0.0376      0.994 0.996 0.004
#> GSM149131     1  0.0000      0.994 1.000 0.000
#> GSM149132     1  0.0000      0.994 1.000 0.000
#> GSM149133     1  0.0000      0.994 1.000 0.000
#> GSM149134     1  0.0376      0.994 0.996 0.004
#> GSM149135     1  0.0376      0.994 0.996 0.004
#> GSM149136     1  0.0376      0.994 0.996 0.004
#> GSM149137     1  0.0376      0.994 0.996 0.004
#> GSM149138     1  0.0376      0.994 0.996 0.004
#> GSM149139     1  0.0376      0.994 0.996 0.004
#> GSM149140     1  0.0376      0.994 0.996 0.004
#> GSM149141     2  0.0000      0.997 0.000 1.000
#> GSM149142     2  0.1184      0.982 0.016 0.984
#> GSM149143     2  0.0000      0.997 0.000 1.000
#> GSM149144     2  0.0000      0.997 0.000 1.000
#> GSM149145     2  0.0000      0.997 0.000 1.000
#> GSM149146     2  0.0000      0.997 0.000 1.000
#> GSM149147     1  0.0376      0.994 0.996 0.004
#> GSM149148     1  0.0376      0.994 0.996 0.004
#> GSM149149     1  0.0376      0.994 0.996 0.004
#> GSM149150     2  0.0000      0.997 0.000 1.000
#> GSM149151     1  0.0376      0.994 0.996 0.004
#> GSM149152     1  0.0376      0.994 0.996 0.004
#> GSM149153     2  0.0000      0.997 0.000 1.000
#> GSM149154     2  0.6531      0.798 0.168 0.832
#> GSM149155     2  0.0000      0.997 0.000 1.000
#> GSM149156     2  0.0000      0.997 0.000 1.000
#> GSM149157     2  0.0000      0.997 0.000 1.000
#> GSM149158     2  0.0000      0.997 0.000 1.000
#> GSM149159     2  0.0000      0.997 0.000 1.000
#> GSM149160     2  0.0000      0.997 0.000 1.000
#> GSM149161     2  0.0000      0.997 0.000 1.000
#> GSM149162     2  0.0000      0.997 0.000 1.000
#> GSM149163     2  0.0000      0.997 0.000 1.000
#> GSM149164     2  0.0000      0.997 0.000 1.000
#> GSM149165     2  0.0000      0.997 0.000 1.000
#> GSM149166     2  0.0000      0.997 0.000 1.000
#> GSM149167     2  0.0000      0.997 0.000 1.000
#> GSM149168     2  0.0000      0.997 0.000 1.000
#> GSM149169     2  0.0000      0.997 0.000 1.000
#> GSM149170     2  0.0000      0.997 0.000 1.000
#> GSM149171     2  0.0000      0.997 0.000 1.000
#> GSM149172     2  0.0000      0.997 0.000 1.000
#> GSM149173     2  0.0000      0.997 0.000 1.000
#> GSM149174     2  0.0000      0.997 0.000 1.000
#> GSM149175     2  0.0000      0.997 0.000 1.000
#> GSM149176     2  0.0000      0.997 0.000 1.000
#> GSM149177     2  0.0000      0.997 0.000 1.000
#> GSM149178     2  0.0000      0.997 0.000 1.000
#> GSM149179     2  0.0000      0.997 0.000 1.000
#> GSM149180     2  0.0000      0.997 0.000 1.000
#> GSM149181     2  0.0000      0.997 0.000 1.000
#> GSM149182     2  0.0000      0.997 0.000 1.000
#> GSM149183     2  0.0000      0.997 0.000 1.000
#> GSM149184     2  0.0000      0.997 0.000 1.000
#> GSM149185     2  0.0000      0.997 0.000 1.000
#> GSM149186     2  0.0000      0.997 0.000 1.000
#> GSM149187     2  0.0000      0.997 0.000 1.000
#> GSM149188     2  0.0000      0.997 0.000 1.000
#> GSM149189     2  0.0000      0.997 0.000 1.000
#> GSM149190     2  0.0000      0.997 0.000 1.000
#> GSM149191     2  0.0000      0.997 0.000 1.000
#> GSM149192     2  0.0000      0.997 0.000 1.000
#> GSM149193     2  0.0000      0.997 0.000 1.000
#> GSM149194     2  0.0000      0.997 0.000 1.000
#> GSM149195     2  0.0000      0.997 0.000 1.000
#> GSM149196     2  0.0000      0.997 0.000 1.000
#> GSM149197     2  0.0000      0.997 0.000 1.000
#> GSM149198     1  0.1843      0.972 0.972 0.028
#> GSM149199     2  0.0000      0.997 0.000 1.000
#> GSM149200     2  0.0000      0.997 0.000 1.000
#> GSM149201     2  0.0000      0.997 0.000 1.000
#> GSM149202     2  0.0000      0.997 0.000 1.000
#> GSM149203     2  0.0000      0.997 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0747      0.815 0.000 0.016 0.984
#> GSM149100     3  0.0747      0.815 0.000 0.016 0.984
#> GSM149101     3  0.0747      0.815 0.000 0.016 0.984
#> GSM149102     3  0.0747      0.815 0.000 0.016 0.984
#> GSM149103     2  0.3482      0.856 0.000 0.872 0.128
#> GSM149104     3  0.0747      0.815 0.000 0.016 0.984
#> GSM149105     3  0.0747      0.815 0.000 0.016 0.984
#> GSM149106     3  0.5926      0.432 0.000 0.356 0.644
#> GSM149107     3  0.1289      0.805 0.000 0.032 0.968
#> GSM149108     3  0.0747      0.815 0.000 0.016 0.984
#> GSM149109     3  0.0747      0.815 0.000 0.016 0.984
#> GSM149110     3  0.0892      0.813 0.000 0.020 0.980
#> GSM149111     3  0.0747      0.815 0.000 0.016 0.984
#> GSM149112     3  0.0892      0.813 0.000 0.020 0.980
#> GSM149113     3  0.0747      0.815 0.000 0.016 0.984
#> GSM149114     3  0.3752      0.700 0.000 0.144 0.856
#> GSM149115     1  0.7961      0.611 0.588 0.336 0.076
#> GSM149116     1  0.0000      0.613 1.000 0.000 0.000
#> GSM149117     3  0.8494      0.301 0.108 0.336 0.556
#> GSM149118     1  0.0000      0.613 1.000 0.000 0.000
#> GSM149119     1  0.0000      0.613 1.000 0.000 0.000
#> GSM149120     1  0.0000      0.613 1.000 0.000 0.000
#> GSM149121     1  0.7807      0.612 0.596 0.336 0.068
#> GSM149122     1  0.0000      0.613 1.000 0.000 0.000
#> GSM149123     1  0.0000      0.613 1.000 0.000 0.000
#> GSM149124     1  0.0000      0.613 1.000 0.000 0.000
#> GSM149125     1  0.0000      0.613 1.000 0.000 0.000
#> GSM149126     1  0.0000      0.613 1.000 0.000 0.000
#> GSM149127     1  0.0000      0.613 1.000 0.000 0.000
#> GSM149128     1  0.0000      0.613 1.000 0.000 0.000
#> GSM149129     1  0.0000      0.613 1.000 0.000 0.000
#> GSM149130     1  0.9596      0.497 0.452 0.336 0.212
#> GSM149131     1  0.7961      0.611 0.588 0.336 0.076
#> GSM149132     1  0.0000      0.613 1.000 0.000 0.000
#> GSM149133     1  0.0747      0.608 0.984 0.000 0.016
#> GSM149134     1  0.8494      0.608 0.556 0.336 0.108
#> GSM149135     1  0.8773      0.602 0.536 0.336 0.128
#> GSM149136     1  0.9017      0.593 0.516 0.336 0.148
#> GSM149137     1  0.9017      0.593 0.516 0.336 0.148
#> GSM149138     1  0.9306      0.571 0.488 0.336 0.176
#> GSM149139     1  0.8773      0.602 0.536 0.336 0.128
#> GSM149140     1  0.8924      0.597 0.524 0.336 0.140
#> GSM149141     2  0.3941      0.837 0.000 0.844 0.156
#> GSM149142     2  0.1643      0.953 0.000 0.956 0.044
#> GSM149143     2  0.4002      0.831 0.000 0.840 0.160
#> GSM149144     2  0.1643      0.953 0.000 0.956 0.044
#> GSM149145     2  0.3340      0.878 0.000 0.880 0.120
#> GSM149146     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149147     1  0.9306      0.571 0.488 0.336 0.176
#> GSM149148     1  0.9268      0.574 0.492 0.336 0.172
#> GSM149149     1  0.9148      0.585 0.504 0.336 0.160
#> GSM149150     2  0.1643      0.953 0.000 0.956 0.044
#> GSM149151     1  0.9457      0.551 0.468 0.340 0.192
#> GSM149152     1  0.9840      0.445 0.408 0.336 0.256
#> GSM149153     2  0.3267      0.883 0.000 0.884 0.116
#> GSM149154     3  0.6205      0.422 0.008 0.336 0.656
#> GSM149155     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149156     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149157     2  0.1411      0.955 0.000 0.964 0.036
#> GSM149158     2  0.1643      0.953 0.000 0.956 0.044
#> GSM149159     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149160     2  0.1643      0.953 0.000 0.956 0.044
#> GSM149161     2  0.1643      0.953 0.000 0.956 0.044
#> GSM149162     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149163     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149164     2  0.1643      0.953 0.000 0.956 0.044
#> GSM149165     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149166     2  0.1163      0.956 0.000 0.972 0.028
#> GSM149167     2  0.1643      0.953 0.000 0.956 0.044
#> GSM149168     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149169     2  0.1643      0.953 0.000 0.956 0.044
#> GSM149170     2  0.0237      0.962 0.000 0.996 0.004
#> GSM149171     2  0.0237      0.962 0.000 0.996 0.004
#> GSM149172     3  0.6280      0.260 0.000 0.460 0.540
#> GSM149173     2  0.0237      0.962 0.000 0.996 0.004
#> GSM149174     2  0.1643      0.953 0.000 0.956 0.044
#> GSM149175     3  0.5810      0.431 0.000 0.336 0.664
#> GSM149176     2  0.1163      0.956 0.000 0.972 0.028
#> GSM149177     2  0.3816      0.845 0.000 0.852 0.148
#> GSM149178     2  0.1529      0.950 0.000 0.960 0.040
#> GSM149179     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149180     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149181     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149182     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149183     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149184     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149185     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149186     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149187     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149188     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149189     2  0.0592      0.961 0.000 0.988 0.012
#> GSM149190     2  0.1643      0.953 0.000 0.956 0.044
#> GSM149191     2  0.1289      0.956 0.000 0.968 0.032
#> GSM149192     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149193     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149194     2  0.1643      0.953 0.000 0.956 0.044
#> GSM149195     2  0.4504      0.759 0.000 0.804 0.196
#> GSM149196     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149197     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149198     1  0.9978      0.384 0.360 0.336 0.304
#> GSM149199     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149200     2  0.0237      0.962 0.000 0.996 0.004
#> GSM149201     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149202     2  0.0000      0.963 0.000 1.000 0.000
#> GSM149203     2  0.1643      0.938 0.000 0.956 0.044

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.0000     0.9655 0.000 0.000 1.000 0.000
#> GSM149100     3  0.0000     0.9655 0.000 0.000 1.000 0.000
#> GSM149101     3  0.0000     0.9655 0.000 0.000 1.000 0.000
#> GSM149102     3  0.0000     0.9655 0.000 0.000 1.000 0.000
#> GSM149103     1  0.5558     0.6346 0.640 0.324 0.036 0.000
#> GSM149104     3  0.0000     0.9655 0.000 0.000 1.000 0.000
#> GSM149105     3  0.0000     0.9655 0.000 0.000 1.000 0.000
#> GSM149106     1  0.5524     0.6722 0.676 0.276 0.048 0.000
#> GSM149107     3  0.2775     0.8531 0.020 0.084 0.896 0.000
#> GSM149108     3  0.0000     0.9655 0.000 0.000 1.000 0.000
#> GSM149109     3  0.0000     0.9655 0.000 0.000 1.000 0.000
#> GSM149110     3  0.0000     0.9655 0.000 0.000 1.000 0.000
#> GSM149111     3  0.0000     0.9655 0.000 0.000 1.000 0.000
#> GSM149112     3  0.0000     0.9655 0.000 0.000 1.000 0.000
#> GSM149113     3  0.0000     0.9655 0.000 0.000 1.000 0.000
#> GSM149114     3  0.5228     0.6816 0.124 0.120 0.756 0.000
#> GSM149115     1  0.1211     0.8238 0.960 0.000 0.000 0.040
#> GSM149116     4  0.0000     0.9951 0.000 0.000 0.000 1.000
#> GSM149117     1  0.0188     0.8325 0.996 0.004 0.000 0.000
#> GSM149118     4  0.0000     0.9951 0.000 0.000 0.000 1.000
#> GSM149119     4  0.0000     0.9951 0.000 0.000 0.000 1.000
#> GSM149120     4  0.0000     0.9951 0.000 0.000 0.000 1.000
#> GSM149121     1  0.1211     0.8238 0.960 0.000 0.000 0.040
#> GSM149122     4  0.0000     0.9951 0.000 0.000 0.000 1.000
#> GSM149123     4  0.0000     0.9951 0.000 0.000 0.000 1.000
#> GSM149124     4  0.0000     0.9951 0.000 0.000 0.000 1.000
#> GSM149125     4  0.0000     0.9951 0.000 0.000 0.000 1.000
#> GSM149126     4  0.0000     0.9951 0.000 0.000 0.000 1.000
#> GSM149127     4  0.0000     0.9951 0.000 0.000 0.000 1.000
#> GSM149128     4  0.0000     0.9951 0.000 0.000 0.000 1.000
#> GSM149129     4  0.0000     0.9951 0.000 0.000 0.000 1.000
#> GSM149130     1  0.0000     0.8310 1.000 0.000 0.000 0.000
#> GSM149131     1  0.0188     0.8306 0.996 0.000 0.000 0.004
#> GSM149132     4  0.0000     0.9951 0.000 0.000 0.000 1.000
#> GSM149133     4  0.1474     0.9354 0.052 0.000 0.000 0.948
#> GSM149134     1  0.0000     0.8310 1.000 0.000 0.000 0.000
#> GSM149135     1  0.0000     0.8310 1.000 0.000 0.000 0.000
#> GSM149136     1  0.0000     0.8310 1.000 0.000 0.000 0.000
#> GSM149137     1  0.0000     0.8310 1.000 0.000 0.000 0.000
#> GSM149138     1  0.0000     0.8310 1.000 0.000 0.000 0.000
#> GSM149139     1  0.0000     0.8310 1.000 0.000 0.000 0.000
#> GSM149140     1  0.0000     0.8310 1.000 0.000 0.000 0.000
#> GSM149141     1  0.3881     0.8268 0.812 0.172 0.016 0.000
#> GSM149142     1  0.3610     0.8232 0.800 0.200 0.000 0.000
#> GSM149143     1  0.3105     0.8359 0.868 0.120 0.012 0.000
#> GSM149144     1  0.3801     0.8135 0.780 0.220 0.000 0.000
#> GSM149145     1  0.3831     0.8197 0.792 0.204 0.004 0.000
#> GSM149146     2  0.0000     0.9116 0.000 1.000 0.000 0.000
#> GSM149147     1  0.0000     0.8310 1.000 0.000 0.000 0.000
#> GSM149148     1  0.0000     0.8310 1.000 0.000 0.000 0.000
#> GSM149149     1  0.0000     0.8310 1.000 0.000 0.000 0.000
#> GSM149150     1  0.4040     0.7885 0.752 0.248 0.000 0.000
#> GSM149151     1  0.0000     0.8310 1.000 0.000 0.000 0.000
#> GSM149152     1  0.0000     0.8310 1.000 0.000 0.000 0.000
#> GSM149153     1  0.3870     0.8178 0.788 0.208 0.004 0.000
#> GSM149154     1  0.1388     0.8307 0.960 0.012 0.028 0.000
#> GSM149155     2  0.0000     0.9116 0.000 1.000 0.000 0.000
#> GSM149156     2  0.0000     0.9116 0.000 1.000 0.000 0.000
#> GSM149157     1  0.3837     0.8111 0.776 0.224 0.000 0.000
#> GSM149158     1  0.3764     0.8160 0.784 0.216 0.000 0.000
#> GSM149159     2  0.2921     0.8095 0.140 0.860 0.000 0.000
#> GSM149160     1  0.3726     0.8182 0.788 0.212 0.000 0.000
#> GSM149161     1  0.3801     0.8135 0.780 0.220 0.000 0.000
#> GSM149162     2  0.0000     0.9116 0.000 1.000 0.000 0.000
#> GSM149163     2  0.0000     0.9116 0.000 1.000 0.000 0.000
#> GSM149164     1  0.3610     0.8232 0.800 0.200 0.000 0.000
#> GSM149165     2  0.0000     0.9116 0.000 1.000 0.000 0.000
#> GSM149166     2  0.4994    -0.2428 0.480 0.520 0.000 0.000
#> GSM149167     1  0.3764     0.8160 0.784 0.216 0.000 0.000
#> GSM149168     2  0.2921     0.8095 0.140 0.860 0.000 0.000
#> GSM149169     1  0.3688     0.8200 0.792 0.208 0.000 0.000
#> GSM149170     2  0.2921     0.8095 0.140 0.860 0.000 0.000
#> GSM149171     2  0.2921     0.8095 0.140 0.860 0.000 0.000
#> GSM149172     1  0.5453     0.6555 0.660 0.304 0.036 0.000
#> GSM149173     2  0.2921     0.8095 0.140 0.860 0.000 0.000
#> GSM149174     1  0.3764     0.8160 0.784 0.216 0.000 0.000
#> GSM149175     1  0.2871     0.8323 0.896 0.072 0.032 0.000
#> GSM149176     1  0.4992     0.3365 0.524 0.476 0.000 0.000
#> GSM149177     1  0.4158     0.7959 0.768 0.224 0.008 0.000
#> GSM149178     1  0.5050     0.5078 0.588 0.408 0.004 0.000
#> GSM149179     2  0.0000     0.9116 0.000 1.000 0.000 0.000
#> GSM149180     2  0.0376     0.9080 0.004 0.992 0.004 0.000
#> GSM149181     2  0.0000     0.9116 0.000 1.000 0.000 0.000
#> GSM149182     2  0.0000     0.9116 0.000 1.000 0.000 0.000
#> GSM149183     2  0.0000     0.9116 0.000 1.000 0.000 0.000
#> GSM149184     2  0.0000     0.9116 0.000 1.000 0.000 0.000
#> GSM149185     2  0.1389     0.8867 0.048 0.952 0.000 0.000
#> GSM149186     2  0.0000     0.9116 0.000 1.000 0.000 0.000
#> GSM149187     2  0.0000     0.9116 0.000 1.000 0.000 0.000
#> GSM149188     2  0.0000     0.9116 0.000 1.000 0.000 0.000
#> GSM149189     2  0.3942     0.6457 0.236 0.764 0.000 0.000
#> GSM149190     1  0.3907     0.8040 0.768 0.232 0.000 0.000
#> GSM149191     1  0.3873     0.8081 0.772 0.228 0.000 0.000
#> GSM149192     2  0.0000     0.9116 0.000 1.000 0.000 0.000
#> GSM149193     2  0.0000     0.9116 0.000 1.000 0.000 0.000
#> GSM149194     1  0.3764     0.8160 0.784 0.216 0.000 0.000
#> GSM149195     1  0.5936     0.6080 0.620 0.324 0.056 0.000
#> GSM149196     2  0.0000     0.9116 0.000 1.000 0.000 0.000
#> GSM149197     2  0.0000     0.9116 0.000 1.000 0.000 0.000
#> GSM149198     1  0.0188     0.8325 0.996 0.004 0.000 0.000
#> GSM149199     2  0.1118     0.8954 0.036 0.964 0.000 0.000
#> GSM149200     2  0.2921     0.8095 0.140 0.860 0.000 0.000
#> GSM149201     2  0.0000     0.9116 0.000 1.000 0.000 0.000
#> GSM149202     2  0.0817     0.9020 0.024 0.976 0.000 0.000
#> GSM149203     2  0.5080     0.0728 0.420 0.576 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0000    0.99721 0.000 0.000 1.000 0.000 0.000
#> GSM149100     3  0.0000    0.99721 0.000 0.000 1.000 0.000 0.000
#> GSM149101     3  0.0000    0.99721 0.000 0.000 1.000 0.000 0.000
#> GSM149102     3  0.0000    0.99721 0.000 0.000 1.000 0.000 0.000
#> GSM149103     2  0.6121   -0.28254 0.060 0.456 0.028 0.000 0.456
#> GSM149104     3  0.0000    0.99721 0.000 0.000 1.000 0.000 0.000
#> GSM149105     3  0.0000    0.99721 0.000 0.000 1.000 0.000 0.000
#> GSM149106     5  0.7321    0.31059 0.056 0.316 0.164 0.000 0.464
#> GSM149107     3  0.0162    0.99307 0.000 0.004 0.996 0.000 0.000
#> GSM149108     3  0.0000    0.99721 0.000 0.000 1.000 0.000 0.000
#> GSM149109     3  0.0000    0.99721 0.000 0.000 1.000 0.000 0.000
#> GSM149110     3  0.0000    0.99721 0.000 0.000 1.000 0.000 0.000
#> GSM149111     3  0.0000    0.99721 0.000 0.000 1.000 0.000 0.000
#> GSM149112     3  0.0000    0.99721 0.000 0.000 1.000 0.000 0.000
#> GSM149113     3  0.0000    0.99721 0.000 0.000 1.000 0.000 0.000
#> GSM149114     3  0.0898    0.96839 0.000 0.008 0.972 0.000 0.020
#> GSM149115     1  0.4686    0.46016 0.588 0.004 0.000 0.396 0.012
#> GSM149116     4  0.0000    0.99971 0.000 0.000 0.000 1.000 0.000
#> GSM149117     1  0.0566    0.85544 0.984 0.004 0.000 0.000 0.012
#> GSM149118     4  0.0000    0.99971 0.000 0.000 0.000 1.000 0.000
#> GSM149119     4  0.0000    0.99971 0.000 0.000 0.000 1.000 0.000
#> GSM149120     4  0.0000    0.99971 0.000 0.000 0.000 1.000 0.000
#> GSM149121     1  0.4686    0.46016 0.588 0.004 0.000 0.396 0.012
#> GSM149122     4  0.0000    0.99971 0.000 0.000 0.000 1.000 0.000
#> GSM149123     4  0.0000    0.99971 0.000 0.000 0.000 1.000 0.000
#> GSM149124     4  0.0000    0.99971 0.000 0.000 0.000 1.000 0.000
#> GSM149125     4  0.0000    0.99971 0.000 0.000 0.000 1.000 0.000
#> GSM149126     4  0.0000    0.99971 0.000 0.000 0.000 1.000 0.000
#> GSM149127     4  0.0000    0.99971 0.000 0.000 0.000 1.000 0.000
#> GSM149128     4  0.0000    0.99971 0.000 0.000 0.000 1.000 0.000
#> GSM149129     4  0.0000    0.99971 0.000 0.000 0.000 1.000 0.000
#> GSM149130     1  0.0566    0.85544 0.984 0.004 0.000 0.000 0.012
#> GSM149131     1  0.0968    0.85139 0.972 0.004 0.000 0.012 0.012
#> GSM149132     4  0.0000    0.99971 0.000 0.000 0.000 1.000 0.000
#> GSM149133     4  0.0162    0.99623 0.000 0.000 0.000 0.996 0.004
#> GSM149134     1  0.0000    0.85955 1.000 0.000 0.000 0.000 0.000
#> GSM149135     1  0.0000    0.85955 1.000 0.000 0.000 0.000 0.000
#> GSM149136     1  0.0000    0.85955 1.000 0.000 0.000 0.000 0.000
#> GSM149137     1  0.0000    0.85955 1.000 0.000 0.000 0.000 0.000
#> GSM149138     1  0.0000    0.85955 1.000 0.000 0.000 0.000 0.000
#> GSM149139     1  0.0000    0.85955 1.000 0.000 0.000 0.000 0.000
#> GSM149140     1  0.0000    0.85955 1.000 0.000 0.000 0.000 0.000
#> GSM149141     2  0.5456   -0.28427 0.456 0.484 0.000 0.000 0.060
#> GSM149142     2  0.4659   -0.29758 0.492 0.496 0.000 0.000 0.012
#> GSM149143     1  0.4907    0.25626 0.492 0.484 0.000 0.000 0.024
#> GSM149144     2  0.4659   -0.29758 0.492 0.496 0.000 0.000 0.012
#> GSM149145     2  0.5948   -0.25649 0.408 0.484 0.000 0.000 0.108
#> GSM149146     2  0.4302    0.09996 0.000 0.520 0.000 0.000 0.480
#> GSM149147     1  0.0000    0.85955 1.000 0.000 0.000 0.000 0.000
#> GSM149148     1  0.0000    0.85955 1.000 0.000 0.000 0.000 0.000
#> GSM149149     1  0.0000    0.85955 1.000 0.000 0.000 0.000 0.000
#> GSM149150     2  0.4659   -0.29758 0.492 0.496 0.000 0.000 0.012
#> GSM149151     1  0.0000    0.85955 1.000 0.000 0.000 0.000 0.000
#> GSM149152     1  0.0566    0.85544 0.984 0.004 0.000 0.000 0.012
#> GSM149153     2  0.5644   -0.27461 0.440 0.484 0.000 0.000 0.076
#> GSM149154     1  0.4188    0.63699 0.744 0.228 0.008 0.000 0.020
#> GSM149155     2  0.4302    0.09996 0.000 0.520 0.000 0.000 0.480
#> GSM149156     2  0.4302    0.09996 0.000 0.520 0.000 0.000 0.480
#> GSM149157     1  0.6493    0.25481 0.492 0.248 0.000 0.000 0.260
#> GSM149158     2  0.4659   -0.29758 0.492 0.496 0.000 0.000 0.012
#> GSM149159     5  0.1270    0.67295 0.000 0.052 0.000 0.000 0.948
#> GSM149160     2  0.4659   -0.29758 0.492 0.496 0.000 0.000 0.012
#> GSM149161     2  0.4659   -0.29758 0.492 0.496 0.000 0.000 0.012
#> GSM149162     2  0.4302    0.09996 0.000 0.520 0.000 0.000 0.480
#> GSM149163     2  0.4302    0.09996 0.000 0.520 0.000 0.000 0.480
#> GSM149164     2  0.4659   -0.29758 0.492 0.496 0.000 0.000 0.012
#> GSM149165     2  0.4302    0.09996 0.000 0.520 0.000 0.000 0.480
#> GSM149166     2  0.2017   -0.00572 0.080 0.912 0.000 0.000 0.008
#> GSM149167     2  0.4659   -0.29758 0.492 0.496 0.000 0.000 0.012
#> GSM149168     5  0.1043    0.68075 0.000 0.040 0.000 0.000 0.960
#> GSM149169     2  0.4659   -0.29758 0.492 0.496 0.000 0.000 0.012
#> GSM149170     5  0.0963    0.68099 0.000 0.036 0.000 0.000 0.964
#> GSM149171     5  0.0963    0.68099 0.000 0.036 0.000 0.000 0.964
#> GSM149172     5  0.6940    0.31549 0.040 0.352 0.132 0.000 0.476
#> GSM149173     5  0.0963    0.68099 0.000 0.036 0.000 0.000 0.964
#> GSM149174     2  0.4659   -0.29758 0.492 0.496 0.000 0.000 0.012
#> GSM149175     1  0.7276    0.43248 0.520 0.264 0.120 0.000 0.096
#> GSM149176     2  0.3304    0.05015 0.168 0.816 0.000 0.000 0.016
#> GSM149177     2  0.6541   -0.15661 0.256 0.480 0.000 0.000 0.264
#> GSM149178     2  0.5178   -0.28278 0.040 0.484 0.000 0.000 0.476
#> GSM149179     2  0.4302    0.09996 0.000 0.520 0.000 0.000 0.480
#> GSM149180     2  0.4294    0.08070 0.000 0.532 0.000 0.000 0.468
#> GSM149181     2  0.4302    0.09996 0.000 0.520 0.000 0.000 0.480
#> GSM149182     2  0.4302    0.09996 0.000 0.520 0.000 0.000 0.480
#> GSM149183     2  0.4302    0.09996 0.000 0.520 0.000 0.000 0.480
#> GSM149184     2  0.4302    0.09996 0.000 0.520 0.000 0.000 0.480
#> GSM149185     5  0.3109    0.41877 0.000 0.200 0.000 0.000 0.800
#> GSM149186     2  0.4302    0.09996 0.000 0.520 0.000 0.000 0.480
#> GSM149187     2  0.4302    0.09996 0.000 0.520 0.000 0.000 0.480
#> GSM149188     2  0.4302    0.09996 0.000 0.520 0.000 0.000 0.480
#> GSM149189     5  0.1043    0.68085 0.000 0.040 0.000 0.000 0.960
#> GSM149190     2  0.4659   -0.29758 0.492 0.496 0.000 0.000 0.012
#> GSM149191     5  0.6376    0.22336 0.264 0.220 0.000 0.000 0.516
#> GSM149192     2  0.4302    0.09996 0.000 0.520 0.000 0.000 0.480
#> GSM149193     2  0.4302    0.09996 0.000 0.520 0.000 0.000 0.480
#> GSM149194     2  0.4659   -0.29758 0.492 0.496 0.000 0.000 0.012
#> GSM149195     5  0.6331   -0.06608 0.032 0.072 0.444 0.000 0.452
#> GSM149196     2  0.4302    0.09996 0.000 0.520 0.000 0.000 0.480
#> GSM149197     2  0.4302    0.09996 0.000 0.520 0.000 0.000 0.480
#> GSM149198     1  0.0566    0.85544 0.984 0.004 0.000 0.000 0.012
#> GSM149199     2  0.4304    0.07993 0.000 0.516 0.000 0.000 0.484
#> GSM149200     5  0.0963    0.68099 0.000 0.036 0.000 0.000 0.964
#> GSM149201     2  0.4302    0.09996 0.000 0.520 0.000 0.000 0.480
#> GSM149202     5  0.4305   -0.08496 0.000 0.488 0.000 0.000 0.512
#> GSM149203     5  0.2439    0.63108 0.000 0.120 0.004 0.000 0.876

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149100     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149101     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149102     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149103     5  0.4338    -0.1307 0.000 0.000 0.020 0.000 0.492 0.488
#> GSM149104     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149105     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149106     5  0.4062     0.0220 0.000 0.000 0.008 0.000 0.552 0.440
#> GSM149107     3  0.0260     0.9868 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM149108     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149109     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149110     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149111     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149112     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149113     3  0.0000     0.9943 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149114     3  0.1391     0.9327 0.000 0.000 0.944 0.000 0.040 0.016
#> GSM149115     1  0.5676     0.5989 0.568 0.000 0.000 0.200 0.008 0.224
#> GSM149116     4  0.0000     0.9980 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149117     1  0.4479     0.5454 0.608 0.004 0.000 0.000 0.032 0.356
#> GSM149118     4  0.0000     0.9980 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149119     4  0.0000     0.9980 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149120     4  0.0000     0.9980 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149121     1  0.5676     0.5989 0.568 0.000 0.000 0.200 0.008 0.224
#> GSM149122     4  0.0000     0.9980 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149123     4  0.0000     0.9980 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149124     4  0.0000     0.9980 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149125     4  0.0000     0.9980 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149126     4  0.0000     0.9980 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149127     4  0.0000     0.9980 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149128     4  0.0000     0.9980 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149129     4  0.0000     0.9980 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149130     1  0.3593     0.7430 0.748 0.000 0.000 0.000 0.024 0.228
#> GSM149131     1  0.3217     0.7492 0.768 0.000 0.000 0.000 0.008 0.224
#> GSM149132     4  0.0000     0.9980 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149133     4  0.0632     0.9743 0.024 0.000 0.000 0.976 0.000 0.000
#> GSM149134     1  0.1918     0.8373 0.904 0.000 0.000 0.000 0.008 0.088
#> GSM149135     1  0.0717     0.8284 0.976 0.000 0.000 0.000 0.008 0.016
#> GSM149136     1  0.0717     0.8284 0.976 0.000 0.000 0.000 0.008 0.016
#> GSM149137     1  0.0717     0.8284 0.976 0.000 0.000 0.000 0.008 0.016
#> GSM149138     1  0.1444     0.8404 0.928 0.000 0.000 0.000 0.000 0.072
#> GSM149139     1  0.0806     0.8305 0.972 0.000 0.000 0.000 0.008 0.020
#> GSM149140     1  0.0717     0.8284 0.976 0.000 0.000 0.000 0.008 0.016
#> GSM149141     6  0.3758     0.5769 0.008 0.000 0.000 0.000 0.324 0.668
#> GSM149142     6  0.0547     0.7803 0.020 0.000 0.000 0.000 0.000 0.980
#> GSM149143     6  0.4592     0.6251 0.080 0.000 0.000 0.000 0.256 0.664
#> GSM149144     6  0.1010     0.7760 0.036 0.004 0.000 0.000 0.000 0.960
#> GSM149145     6  0.3601     0.5804 0.004 0.000 0.000 0.000 0.312 0.684
#> GSM149146     2  0.0260     0.9619 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM149147     1  0.1814     0.8342 0.900 0.000 0.000 0.000 0.000 0.100
#> GSM149148     1  0.0858     0.8340 0.968 0.000 0.000 0.000 0.004 0.028
#> GSM149149     1  0.0777     0.8328 0.972 0.000 0.000 0.000 0.004 0.024
#> GSM149150     6  0.1053     0.7762 0.020 0.012 0.000 0.000 0.004 0.964
#> GSM149151     1  0.1501     0.8402 0.924 0.000 0.000 0.000 0.000 0.076
#> GSM149152     1  0.4079     0.6730 0.680 0.000 0.000 0.000 0.032 0.288
#> GSM149153     6  0.3615     0.6024 0.008 0.000 0.000 0.000 0.292 0.700
#> GSM149154     6  0.5648     0.3272 0.304 0.000 0.000 0.000 0.180 0.516
#> GSM149155     2  0.0260     0.9619 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM149156     2  0.0508     0.9589 0.004 0.984 0.000 0.000 0.000 0.012
#> GSM149157     6  0.3359     0.6403 0.020 0.136 0.000 0.000 0.024 0.820
#> GSM149158     6  0.0547     0.7803 0.020 0.000 0.000 0.000 0.000 0.980
#> GSM149159     5  0.3253     0.6705 0.000 0.192 0.000 0.000 0.788 0.020
#> GSM149160     6  0.0547     0.7803 0.020 0.000 0.000 0.000 0.000 0.980
#> GSM149161     6  0.0547     0.7803 0.020 0.000 0.000 0.000 0.000 0.980
#> GSM149162     2  0.0508     0.9589 0.004 0.984 0.000 0.000 0.000 0.012
#> GSM149163     2  0.0260     0.9619 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM149164     6  0.2942     0.7241 0.032 0.000 0.000 0.000 0.132 0.836
#> GSM149165     2  0.0000     0.9618 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149166     6  0.3528     0.4313 0.004 0.296 0.000 0.000 0.000 0.700
#> GSM149167     6  0.0547     0.7803 0.020 0.000 0.000 0.000 0.000 0.980
#> GSM149168     5  0.3078     0.6699 0.000 0.192 0.000 0.000 0.796 0.012
#> GSM149169     6  0.0547     0.7803 0.020 0.000 0.000 0.000 0.000 0.980
#> GSM149170     5  0.2871     0.6683 0.000 0.192 0.000 0.000 0.804 0.004
#> GSM149171     5  0.2730     0.6668 0.000 0.192 0.000 0.000 0.808 0.000
#> GSM149172     5  0.4195     0.0450 0.000 0.004 0.008 0.000 0.548 0.440
#> GSM149173     5  0.2871     0.6683 0.000 0.192 0.000 0.000 0.804 0.004
#> GSM149174     6  0.0547     0.7803 0.020 0.000 0.000 0.000 0.000 0.980
#> GSM149175     6  0.4929     0.5211 0.072 0.000 0.004 0.000 0.324 0.600
#> GSM149176     6  0.3301     0.5605 0.004 0.216 0.000 0.000 0.008 0.772
#> GSM149177     6  0.3601     0.5746 0.004 0.000 0.000 0.000 0.312 0.684
#> GSM149178     5  0.3868    -0.0202 0.000 0.000 0.000 0.000 0.508 0.492
#> GSM149179     2  0.0000     0.9618 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149180     2  0.0935     0.9382 0.004 0.964 0.000 0.000 0.000 0.032
#> GSM149181     2  0.0260     0.9619 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM149182     2  0.0260     0.9619 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM149183     2  0.0260     0.9619 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM149184     2  0.0000     0.9618 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149185     2  0.3528     0.5004 0.000 0.700 0.000 0.000 0.296 0.004
#> GSM149186     2  0.0508     0.9589 0.004 0.984 0.000 0.000 0.000 0.012
#> GSM149187     2  0.0508     0.9589 0.004 0.984 0.000 0.000 0.000 0.012
#> GSM149188     2  0.0260     0.9619 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM149189     5  0.2871     0.6690 0.000 0.192 0.000 0.000 0.804 0.004
#> GSM149190     6  0.0777     0.7794 0.024 0.004 0.000 0.000 0.000 0.972
#> GSM149191     6  0.5383     0.2825 0.004 0.156 0.000 0.000 0.244 0.596
#> GSM149192     2  0.0260     0.9607 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM149193     2  0.0260     0.9619 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM149194     6  0.0547     0.7803 0.020 0.000 0.000 0.000 0.000 0.980
#> GSM149195     5  0.6063     0.2176 0.000 0.000 0.292 0.000 0.408 0.300
#> GSM149196     2  0.0508     0.9589 0.004 0.984 0.000 0.000 0.000 0.012
#> GSM149197     2  0.0508     0.9589 0.004 0.984 0.000 0.000 0.000 0.012
#> GSM149198     1  0.3888     0.6458 0.672 0.000 0.000 0.000 0.016 0.312
#> GSM149199     2  0.2146     0.8299 0.004 0.880 0.000 0.000 0.000 0.116
#> GSM149200     5  0.2730     0.6668 0.000 0.192 0.000 0.000 0.808 0.000
#> GSM149201     2  0.0260     0.9619 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM149202     2  0.2003     0.8545 0.000 0.884 0.000 0.000 0.116 0.000
#> GSM149203     5  0.5561     0.4523 0.000 0.172 0.000 0.000 0.536 0.292

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> MAD:mclust 105         3.23e-14 2
#> MAD:mclust  97         9.91e-27 3
#> MAD:mclust 102         4.92e-28 4
#> MAD:mclust  53         1.39e-18 5
#> MAD:mclust  96         2.45e-33 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.900           0.919       0.966         0.4829 0.512   0.512
#> 3 3 0.860           0.882       0.946         0.3577 0.697   0.475
#> 4 4 0.717           0.780       0.889         0.1320 0.759   0.423
#> 5 5 0.714           0.693       0.836         0.0764 0.895   0.622
#> 6 6 0.737           0.632       0.794         0.0407 0.916   0.621

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     1  0.0000     0.9429 1.000 0.000
#> GSM149100     1  0.0000     0.9429 1.000 0.000
#> GSM149101     1  0.0000     0.9429 1.000 0.000
#> GSM149102     1  0.0000     0.9429 1.000 0.000
#> GSM149103     1  0.0000     0.9429 1.000 0.000
#> GSM149104     1  0.0000     0.9429 1.000 0.000
#> GSM149105     1  0.0000     0.9429 1.000 0.000
#> GSM149106     1  0.0000     0.9429 1.000 0.000
#> GSM149107     1  0.0000     0.9429 1.000 0.000
#> GSM149108     1  0.0000     0.9429 1.000 0.000
#> GSM149109     1  0.0000     0.9429 1.000 0.000
#> GSM149110     1  0.0000     0.9429 1.000 0.000
#> GSM149111     1  0.0000     0.9429 1.000 0.000
#> GSM149112     1  0.0000     0.9429 1.000 0.000
#> GSM149113     1  0.0000     0.9429 1.000 0.000
#> GSM149114     1  0.0000     0.9429 1.000 0.000
#> GSM149115     1  0.7299     0.7570 0.796 0.204
#> GSM149116     1  0.0000     0.9429 1.000 0.000
#> GSM149117     2  0.0000     0.9775 0.000 1.000
#> GSM149118     1  0.0000     0.9429 1.000 0.000
#> GSM149119     1  0.0000     0.9429 1.000 0.000
#> GSM149120     1  0.0000     0.9429 1.000 0.000
#> GSM149121     1  0.0000     0.9429 1.000 0.000
#> GSM149122     1  0.0000     0.9429 1.000 0.000
#> GSM149123     1  0.0000     0.9429 1.000 0.000
#> GSM149124     1  0.0000     0.9429 1.000 0.000
#> GSM149125     1  0.0000     0.9429 1.000 0.000
#> GSM149126     1  0.0000     0.9429 1.000 0.000
#> GSM149127     1  0.0000     0.9429 1.000 0.000
#> GSM149128     1  0.0000     0.9429 1.000 0.000
#> GSM149129     1  0.0000     0.9429 1.000 0.000
#> GSM149130     2  0.2603     0.9391 0.044 0.956
#> GSM149131     1  0.9896     0.2654 0.560 0.440
#> GSM149132     1  0.0000     0.9429 1.000 0.000
#> GSM149133     1  0.0000     0.9429 1.000 0.000
#> GSM149134     1  0.9635     0.4211 0.612 0.388
#> GSM149135     2  0.0000     0.9775 0.000 1.000
#> GSM149136     2  0.0000     0.9775 0.000 1.000
#> GSM149137     2  0.0000     0.9775 0.000 1.000
#> GSM149138     2  0.0000     0.9775 0.000 1.000
#> GSM149139     2  0.0000     0.9775 0.000 1.000
#> GSM149140     2  0.0000     0.9775 0.000 1.000
#> GSM149141     2  1.0000    -0.0787 0.496 0.504
#> GSM149142     2  0.0000     0.9775 0.000 1.000
#> GSM149143     1  0.6343     0.8081 0.840 0.160
#> GSM149144     2  0.0000     0.9775 0.000 1.000
#> GSM149145     1  0.7602     0.7357 0.780 0.220
#> GSM149146     2  0.0000     0.9775 0.000 1.000
#> GSM149147     2  0.2236     0.9467 0.036 0.964
#> GSM149148     2  0.0000     0.9775 0.000 1.000
#> GSM149149     2  0.0000     0.9775 0.000 1.000
#> GSM149150     2  0.0000     0.9775 0.000 1.000
#> GSM149151     2  0.0000     0.9775 0.000 1.000
#> GSM149152     1  0.7883     0.7140 0.764 0.236
#> GSM149153     2  0.2603     0.9389 0.044 0.956
#> GSM149154     1  0.0000     0.9429 1.000 0.000
#> GSM149155     2  0.0000     0.9775 0.000 1.000
#> GSM149156     2  0.0000     0.9775 0.000 1.000
#> GSM149157     2  0.0000     0.9775 0.000 1.000
#> GSM149158     2  0.0000     0.9775 0.000 1.000
#> GSM149159     2  0.0000     0.9775 0.000 1.000
#> GSM149160     2  0.0000     0.9775 0.000 1.000
#> GSM149161     2  0.0000     0.9775 0.000 1.000
#> GSM149162     2  0.0000     0.9775 0.000 1.000
#> GSM149163     2  0.0000     0.9775 0.000 1.000
#> GSM149164     2  0.0000     0.9775 0.000 1.000
#> GSM149165     2  0.0000     0.9775 0.000 1.000
#> GSM149166     2  0.0000     0.9775 0.000 1.000
#> GSM149167     2  0.0000     0.9775 0.000 1.000
#> GSM149168     2  0.0000     0.9775 0.000 1.000
#> GSM149169     2  0.0000     0.9775 0.000 1.000
#> GSM149170     2  0.0376     0.9742 0.004 0.996
#> GSM149171     2  0.2948     0.9301 0.052 0.948
#> GSM149172     1  0.3879     0.8868 0.924 0.076
#> GSM149173     2  0.0672     0.9711 0.008 0.992
#> GSM149174     2  0.0000     0.9775 0.000 1.000
#> GSM149175     1  0.0000     0.9429 1.000 0.000
#> GSM149176     2  0.0000     0.9775 0.000 1.000
#> GSM149177     2  0.4161     0.8941 0.084 0.916
#> GSM149178     2  0.8443     0.6022 0.272 0.728
#> GSM149179     2  0.0000     0.9775 0.000 1.000
#> GSM149180     2  0.0000     0.9775 0.000 1.000
#> GSM149181     2  0.0000     0.9775 0.000 1.000
#> GSM149182     2  0.0000     0.9775 0.000 1.000
#> GSM149183     2  0.0000     0.9775 0.000 1.000
#> GSM149184     2  0.0000     0.9775 0.000 1.000
#> GSM149185     2  0.0000     0.9775 0.000 1.000
#> GSM149186     2  0.0000     0.9775 0.000 1.000
#> GSM149187     2  0.0000     0.9775 0.000 1.000
#> GSM149188     2  0.0000     0.9775 0.000 1.000
#> GSM149189     2  0.7950     0.6714 0.240 0.760
#> GSM149190     2  0.0000     0.9775 0.000 1.000
#> GSM149191     2  0.0000     0.9775 0.000 1.000
#> GSM149192     2  0.0000     0.9775 0.000 1.000
#> GSM149193     2  0.0000     0.9775 0.000 1.000
#> GSM149194     2  0.0000     0.9775 0.000 1.000
#> GSM149195     1  0.0000     0.9429 1.000 0.000
#> GSM149196     2  0.0000     0.9775 0.000 1.000
#> GSM149197     2  0.0000     0.9775 0.000 1.000
#> GSM149198     1  0.8813     0.6112 0.700 0.300
#> GSM149199     2  0.0000     0.9775 0.000 1.000
#> GSM149200     2  0.0000     0.9775 0.000 1.000
#> GSM149201     2  0.0000     0.9775 0.000 1.000
#> GSM149202     2  0.0000     0.9775 0.000 1.000
#> GSM149203     1  0.8861     0.6031 0.696 0.304

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0237      0.905 0.004 0.000 0.996
#> GSM149100     3  0.0237      0.905 0.004 0.000 0.996
#> GSM149101     3  0.0237      0.905 0.004 0.000 0.996
#> GSM149102     3  0.0237      0.905 0.004 0.000 0.996
#> GSM149103     3  0.0000      0.905 0.000 0.000 1.000
#> GSM149104     3  0.0237      0.905 0.004 0.000 0.996
#> GSM149105     3  0.0000      0.905 0.000 0.000 1.000
#> GSM149106     3  0.0237      0.905 0.004 0.000 0.996
#> GSM149107     3  0.0237      0.905 0.004 0.000 0.996
#> GSM149108     3  0.0237      0.905 0.004 0.000 0.996
#> GSM149109     3  0.0237      0.905 0.004 0.000 0.996
#> GSM149110     3  0.0000      0.905 0.000 0.000 1.000
#> GSM149111     3  0.0000      0.905 0.000 0.000 1.000
#> GSM149112     3  0.0237      0.905 0.004 0.000 0.996
#> GSM149113     3  0.0000      0.905 0.000 0.000 1.000
#> GSM149114     3  0.0237      0.905 0.004 0.000 0.996
#> GSM149115     1  0.0000      0.959 1.000 0.000 0.000
#> GSM149116     1  0.2356      0.912 0.928 0.000 0.072
#> GSM149117     2  0.6308     -0.014 0.492 0.508 0.000
#> GSM149118     1  0.0237      0.959 0.996 0.000 0.004
#> GSM149119     1  0.1529      0.940 0.960 0.000 0.040
#> GSM149120     1  0.1031      0.951 0.976 0.000 0.024
#> GSM149121     1  0.0000      0.959 1.000 0.000 0.000
#> GSM149122     1  0.1529      0.940 0.960 0.000 0.040
#> GSM149123     1  0.0237      0.959 0.996 0.000 0.004
#> GSM149124     1  0.0892      0.953 0.980 0.000 0.020
#> GSM149125     1  0.0424      0.958 0.992 0.000 0.008
#> GSM149126     1  0.0424      0.958 0.992 0.000 0.008
#> GSM149127     1  0.0892      0.953 0.980 0.000 0.020
#> GSM149128     1  0.0237      0.959 0.996 0.000 0.004
#> GSM149129     1  0.0237      0.959 0.996 0.000 0.004
#> GSM149130     1  0.0424      0.957 0.992 0.008 0.000
#> GSM149131     1  0.0000      0.959 1.000 0.000 0.000
#> GSM149132     1  0.0424      0.958 0.992 0.000 0.008
#> GSM149133     1  0.0237      0.959 0.996 0.000 0.004
#> GSM149134     1  0.0000      0.959 1.000 0.000 0.000
#> GSM149135     1  0.1163      0.947 0.972 0.028 0.000
#> GSM149136     1  0.2356      0.908 0.928 0.072 0.000
#> GSM149137     1  0.1289      0.944 0.968 0.032 0.000
#> GSM149138     1  0.2261      0.912 0.932 0.068 0.000
#> GSM149139     1  0.0747      0.954 0.984 0.016 0.000
#> GSM149140     1  0.1289      0.944 0.968 0.032 0.000
#> GSM149141     2  0.7339      0.634 0.148 0.708 0.144
#> GSM149142     2  0.0237      0.945 0.004 0.996 0.000
#> GSM149143     3  0.8095      0.611 0.200 0.152 0.648
#> GSM149144     2  0.0000      0.947 0.000 1.000 0.000
#> GSM149145     3  0.3816      0.815 0.000 0.148 0.852
#> GSM149146     2  0.0237      0.947 0.000 0.996 0.004
#> GSM149147     1  0.0424      0.957 0.992 0.008 0.000
#> GSM149148     1  0.0592      0.955 0.988 0.012 0.000
#> GSM149149     1  0.0237      0.958 0.996 0.004 0.000
#> GSM149150     2  0.0000      0.947 0.000 1.000 0.000
#> GSM149151     1  0.4931      0.709 0.768 0.232 0.000
#> GSM149152     1  0.0000      0.959 1.000 0.000 0.000
#> GSM149153     2  0.1643      0.922 0.000 0.956 0.044
#> GSM149154     1  0.6260      0.195 0.552 0.000 0.448
#> GSM149155     2  0.0000      0.947 0.000 1.000 0.000
#> GSM149156     2  0.0237      0.947 0.000 0.996 0.004
#> GSM149157     2  0.0237      0.947 0.000 0.996 0.004
#> GSM149158     2  0.0000      0.947 0.000 1.000 0.000
#> GSM149159     2  0.3752      0.824 0.000 0.856 0.144
#> GSM149160     2  0.0000      0.947 0.000 1.000 0.000
#> GSM149161     2  0.0000      0.947 0.000 1.000 0.000
#> GSM149162     2  0.0237      0.947 0.000 0.996 0.004
#> GSM149163     2  0.0000      0.947 0.000 1.000 0.000
#> GSM149164     2  0.0237      0.947 0.000 0.996 0.004
#> GSM149165     2  0.2448      0.896 0.000 0.924 0.076
#> GSM149166     2  0.0000      0.947 0.000 1.000 0.000
#> GSM149167     2  0.0000      0.947 0.000 1.000 0.000
#> GSM149168     2  0.5706      0.518 0.000 0.680 0.320
#> GSM149169     2  0.0237      0.945 0.004 0.996 0.000
#> GSM149170     3  0.4796      0.730 0.000 0.220 0.780
#> GSM149171     3  0.4291      0.778 0.000 0.180 0.820
#> GSM149172     3  0.0424      0.903 0.000 0.008 0.992
#> GSM149173     3  0.6154      0.355 0.000 0.408 0.592
#> GSM149174     2  0.0000      0.947 0.000 1.000 0.000
#> GSM149175     3  0.4121      0.740 0.168 0.000 0.832
#> GSM149176     2  0.0000      0.947 0.000 1.000 0.000
#> GSM149177     2  0.4842      0.707 0.000 0.776 0.224
#> GSM149178     3  0.5497      0.619 0.000 0.292 0.708
#> GSM149179     2  0.0000      0.947 0.000 1.000 0.000
#> GSM149180     2  0.0237      0.947 0.000 0.996 0.004
#> GSM149181     2  0.2066      0.911 0.000 0.940 0.060
#> GSM149182     2  0.0000      0.947 0.000 1.000 0.000
#> GSM149183     2  0.0424      0.945 0.000 0.992 0.008
#> GSM149184     2  0.0747      0.941 0.000 0.984 0.016
#> GSM149185     2  0.2878      0.877 0.000 0.904 0.096
#> GSM149186     2  0.0237      0.947 0.000 0.996 0.004
#> GSM149187     2  0.0237      0.947 0.000 0.996 0.004
#> GSM149188     2  0.2066      0.911 0.000 0.940 0.060
#> GSM149189     3  0.2711      0.861 0.000 0.088 0.912
#> GSM149190     2  0.0000      0.947 0.000 1.000 0.000
#> GSM149191     2  0.4178      0.787 0.000 0.828 0.172
#> GSM149192     2  0.0592      0.943 0.000 0.988 0.012
#> GSM149193     2  0.0592      0.943 0.000 0.988 0.012
#> GSM149194     2  0.0000      0.947 0.000 1.000 0.000
#> GSM149195     3  0.0000      0.905 0.000 0.000 1.000
#> GSM149196     2  0.0237      0.947 0.000 0.996 0.004
#> GSM149197     2  0.0000      0.947 0.000 1.000 0.000
#> GSM149198     1  0.0237      0.959 0.996 0.000 0.004
#> GSM149199     2  0.0000      0.947 0.000 1.000 0.000
#> GSM149200     3  0.6008      0.452 0.000 0.372 0.628
#> GSM149201     2  0.0237      0.947 0.000 0.996 0.004
#> GSM149202     2  0.1860      0.917 0.000 0.948 0.052
#> GSM149203     3  0.1964      0.881 0.000 0.056 0.944

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.0188    0.90253 0.000 0.000 0.996 0.004
#> GSM149100     3  0.0000    0.90312 0.000 0.000 1.000 0.000
#> GSM149101     3  0.0000    0.90312 0.000 0.000 1.000 0.000
#> GSM149102     3  0.0000    0.90312 0.000 0.000 1.000 0.000
#> GSM149103     3  0.0817    0.89384 0.024 0.000 0.976 0.000
#> GSM149104     3  0.0000    0.90312 0.000 0.000 1.000 0.000
#> GSM149105     3  0.0000    0.90312 0.000 0.000 1.000 0.000
#> GSM149106     3  0.0336    0.90140 0.000 0.000 0.992 0.008
#> GSM149107     3  0.0000    0.90312 0.000 0.000 1.000 0.000
#> GSM149108     3  0.0336    0.90140 0.000 0.000 0.992 0.008
#> GSM149109     3  0.0336    0.90140 0.000 0.000 0.992 0.008
#> GSM149110     3  0.0000    0.90312 0.000 0.000 1.000 0.000
#> GSM149111     3  0.0000    0.90312 0.000 0.000 1.000 0.000
#> GSM149112     3  0.0469    0.89958 0.000 0.000 0.988 0.012
#> GSM149113     3  0.0188    0.90253 0.000 0.000 0.996 0.004
#> GSM149114     3  0.0336    0.90095 0.008 0.000 0.992 0.000
#> GSM149115     4  0.1389    0.90393 0.048 0.000 0.000 0.952
#> GSM149116     4  0.1042    0.91194 0.000 0.008 0.020 0.972
#> GSM149117     4  0.5596    0.44138 0.036 0.332 0.000 0.632
#> GSM149118     4  0.0000    0.92840 0.000 0.000 0.000 1.000
#> GSM149119     4  0.0672    0.92165 0.000 0.008 0.008 0.984
#> GSM149120     4  0.0188    0.92783 0.000 0.000 0.004 0.996
#> GSM149121     4  0.2011    0.88195 0.080 0.000 0.000 0.920
#> GSM149122     4  0.0188    0.92783 0.000 0.000 0.004 0.996
#> GSM149123     4  0.0000    0.92840 0.000 0.000 0.000 1.000
#> GSM149124     4  0.0524    0.92390 0.000 0.008 0.004 0.988
#> GSM149125     4  0.0188    0.92783 0.000 0.000 0.004 0.996
#> GSM149126     4  0.0000    0.92840 0.000 0.000 0.000 1.000
#> GSM149127     4  0.0188    0.92783 0.000 0.000 0.004 0.996
#> GSM149128     4  0.0000    0.92840 0.000 0.000 0.000 1.000
#> GSM149129     4  0.0000    0.92840 0.000 0.000 0.000 1.000
#> GSM149130     4  0.3764    0.73184 0.216 0.000 0.000 0.784
#> GSM149131     4  0.3356    0.78408 0.176 0.000 0.000 0.824
#> GSM149132     4  0.0000    0.92840 0.000 0.000 0.000 1.000
#> GSM149133     4  0.0336    0.92549 0.008 0.000 0.000 0.992
#> GSM149134     1  0.3907    0.65614 0.768 0.000 0.000 0.232
#> GSM149135     1  0.3400    0.71949 0.820 0.000 0.000 0.180
#> GSM149136     1  0.2469    0.76434 0.892 0.000 0.000 0.108
#> GSM149137     1  0.3219    0.73314 0.836 0.000 0.000 0.164
#> GSM149138     1  0.1716    0.77179 0.936 0.000 0.000 0.064
#> GSM149139     1  0.3610    0.70036 0.800 0.000 0.000 0.200
#> GSM149140     1  0.2814    0.75647 0.868 0.000 0.000 0.132
#> GSM149141     1  0.4607    0.53480 0.716 0.004 0.276 0.004
#> GSM149142     1  0.0592    0.77481 0.984 0.016 0.000 0.000
#> GSM149143     1  0.4933    0.17187 0.568 0.000 0.432 0.000
#> GSM149144     1  0.4830    0.31579 0.608 0.392 0.000 0.000
#> GSM149145     3  0.4483    0.60028 0.284 0.004 0.712 0.000
#> GSM149146     2  0.1637    0.89343 0.060 0.940 0.000 0.000
#> GSM149147     1  0.2530    0.76137 0.888 0.000 0.000 0.112
#> GSM149148     1  0.2647    0.75947 0.880 0.000 0.000 0.120
#> GSM149149     1  0.2868    0.75148 0.864 0.000 0.000 0.136
#> GSM149150     2  0.4817    0.41356 0.388 0.612 0.000 0.000
#> GSM149151     1  0.1557    0.77427 0.944 0.000 0.000 0.056
#> GSM149152     4  0.3975    0.67011 0.240 0.000 0.000 0.760
#> GSM149153     1  0.4428    0.52676 0.720 0.004 0.276 0.000
#> GSM149154     3  0.4632    0.54718 0.308 0.000 0.688 0.004
#> GSM149155     2  0.1474    0.89499 0.052 0.948 0.000 0.000
#> GSM149156     2  0.1302    0.89654 0.044 0.956 0.000 0.000
#> GSM149157     1  0.4985    0.04296 0.532 0.468 0.000 0.000
#> GSM149158     1  0.2760    0.74369 0.872 0.128 0.000 0.000
#> GSM149159     2  0.1284    0.88777 0.024 0.964 0.012 0.000
#> GSM149160     1  0.2053    0.76860 0.924 0.072 0.004 0.000
#> GSM149161     1  0.4585    0.45220 0.668 0.332 0.000 0.000
#> GSM149162     2  0.1792    0.89043 0.068 0.932 0.000 0.000
#> GSM149163     2  0.1940    0.88684 0.076 0.924 0.000 0.000
#> GSM149164     1  0.1913    0.77357 0.940 0.040 0.020 0.000
#> GSM149165     2  0.0000    0.89042 0.000 1.000 0.000 0.000
#> GSM149166     2  0.3486    0.78345 0.188 0.812 0.000 0.000
#> GSM149167     1  0.4746    0.38310 0.632 0.368 0.000 0.000
#> GSM149168     2  0.3384    0.79945 0.024 0.860 0.116 0.000
#> GSM149169     1  0.1302    0.77473 0.956 0.044 0.000 0.000
#> GSM149170     2  0.2760    0.80011 0.000 0.872 0.128 0.000
#> GSM149171     2  0.4040    0.63942 0.000 0.752 0.248 0.000
#> GSM149172     3  0.4888    0.69221 0.000 0.224 0.740 0.036
#> GSM149173     2  0.2401    0.83245 0.004 0.904 0.092 0.000
#> GSM149174     1  0.2868    0.73868 0.864 0.136 0.000 0.000
#> GSM149175     3  0.1124    0.89405 0.012 0.004 0.972 0.012
#> GSM149176     2  0.4134    0.68289 0.260 0.740 0.000 0.000
#> GSM149177     3  0.5141    0.70820 0.084 0.160 0.756 0.000
#> GSM149178     3  0.3731    0.80322 0.036 0.120 0.844 0.000
#> GSM149179     2  0.2281    0.87438 0.096 0.904 0.000 0.000
#> GSM149180     2  0.1637    0.89341 0.060 0.940 0.000 0.000
#> GSM149181     2  0.0000    0.89042 0.000 1.000 0.000 0.000
#> GSM149182     2  0.1792    0.89069 0.068 0.932 0.000 0.000
#> GSM149183     2  0.0188    0.89139 0.004 0.996 0.000 0.000
#> GSM149184     2  0.0000    0.89042 0.000 1.000 0.000 0.000
#> GSM149185     2  0.0000    0.89042 0.000 1.000 0.000 0.000
#> GSM149186     2  0.1389    0.89572 0.048 0.952 0.000 0.000
#> GSM149187     2  0.1118    0.89684 0.036 0.964 0.000 0.000
#> GSM149188     2  0.0188    0.89139 0.004 0.996 0.000 0.000
#> GSM149189     3  0.3837    0.70482 0.000 0.224 0.776 0.000
#> GSM149190     2  0.4713    0.48067 0.360 0.640 0.000 0.000
#> GSM149191     3  0.7913   -0.01873 0.320 0.320 0.360 0.000
#> GSM149192     2  0.0469    0.89358 0.012 0.988 0.000 0.000
#> GSM149193     2  0.0921    0.89652 0.028 0.972 0.000 0.000
#> GSM149194     1  0.2647    0.74731 0.880 0.120 0.000 0.000
#> GSM149195     3  0.0188    0.90218 0.000 0.004 0.996 0.000
#> GSM149196     2  0.1211    0.89727 0.040 0.960 0.000 0.000
#> GSM149197     2  0.1940    0.88625 0.076 0.924 0.000 0.000
#> GSM149198     1  0.3764    0.67226 0.784 0.000 0.000 0.216
#> GSM149199     2  0.2530    0.86114 0.112 0.888 0.000 0.000
#> GSM149200     2  0.1557    0.86171 0.000 0.944 0.056 0.000
#> GSM149201     2  0.1022    0.89678 0.032 0.968 0.000 0.000
#> GSM149202     2  0.1118    0.89736 0.036 0.964 0.000 0.000
#> GSM149203     2  0.5290    0.00748 0.000 0.516 0.476 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0162     0.9035 0.000 0.000 0.996 0.000 0.004
#> GSM149100     3  0.0162     0.9035 0.000 0.000 0.996 0.000 0.004
#> GSM149101     3  0.0162     0.9017 0.004 0.000 0.996 0.000 0.000
#> GSM149102     3  0.0162     0.9035 0.000 0.000 0.996 0.000 0.004
#> GSM149103     3  0.0566     0.8967 0.004 0.012 0.984 0.000 0.000
#> GSM149104     3  0.0162     0.9035 0.000 0.000 0.996 0.000 0.004
#> GSM149105     3  0.0162     0.9035 0.000 0.000 0.996 0.000 0.004
#> GSM149106     3  0.0290     0.8999 0.000 0.008 0.992 0.000 0.000
#> GSM149107     3  0.0000     0.9024 0.000 0.000 1.000 0.000 0.000
#> GSM149108     3  0.0162     0.9035 0.000 0.000 0.996 0.000 0.004
#> GSM149109     3  0.0162     0.9035 0.000 0.000 0.996 0.000 0.004
#> GSM149110     3  0.0290     0.9019 0.000 0.000 0.992 0.000 0.008
#> GSM149111     3  0.0162     0.9035 0.000 0.000 0.996 0.000 0.004
#> GSM149112     3  0.0693     0.8955 0.000 0.000 0.980 0.008 0.012
#> GSM149113     3  0.0162     0.9035 0.000 0.000 0.996 0.000 0.004
#> GSM149114     3  0.0162     0.9017 0.004 0.000 0.996 0.000 0.000
#> GSM149115     4  0.1243     0.9430 0.028 0.008 0.000 0.960 0.004
#> GSM149116     4  0.0451     0.9567 0.000 0.004 0.000 0.988 0.008
#> GSM149117     2  0.4796     0.3944 0.028 0.664 0.000 0.300 0.008
#> GSM149118     4  0.0324     0.9580 0.004 0.004 0.000 0.992 0.000
#> GSM149119     4  0.0566     0.9550 0.000 0.004 0.000 0.984 0.012
#> GSM149120     4  0.0162     0.9586 0.000 0.000 0.000 0.996 0.004
#> GSM149121     4  0.1591     0.9310 0.052 0.004 0.000 0.940 0.004
#> GSM149122     4  0.0613     0.9573 0.004 0.004 0.000 0.984 0.008
#> GSM149123     4  0.0162     0.9586 0.004 0.000 0.000 0.996 0.000
#> GSM149124     4  0.0290     0.9572 0.000 0.000 0.000 0.992 0.008
#> GSM149125     4  0.0000     0.9590 0.000 0.000 0.000 1.000 0.000
#> GSM149126     4  0.0486     0.9593 0.004 0.004 0.000 0.988 0.004
#> GSM149127     4  0.0451     0.9569 0.000 0.004 0.000 0.988 0.008
#> GSM149128     4  0.0324     0.9588 0.004 0.004 0.000 0.992 0.000
#> GSM149129     4  0.0162     0.9592 0.000 0.004 0.000 0.996 0.000
#> GSM149130     4  0.3372     0.8499 0.120 0.036 0.000 0.840 0.004
#> GSM149131     4  0.3124     0.8472 0.136 0.016 0.000 0.844 0.004
#> GSM149132     4  0.0162     0.9592 0.000 0.004 0.000 0.996 0.000
#> GSM149133     4  0.0162     0.9586 0.004 0.000 0.000 0.996 0.000
#> GSM149134     1  0.2699     0.8136 0.880 0.012 0.000 0.100 0.008
#> GSM149135     1  0.3556     0.7807 0.828 0.032 0.000 0.132 0.008
#> GSM149136     1  0.2157     0.8293 0.920 0.036 0.000 0.040 0.004
#> GSM149137     1  0.2302     0.8219 0.904 0.008 0.000 0.080 0.008
#> GSM149138     1  0.0613     0.8317 0.984 0.004 0.000 0.004 0.008
#> GSM149139     1  0.2672     0.8015 0.872 0.004 0.000 0.116 0.008
#> GSM149140     1  0.2199     0.8277 0.916 0.016 0.000 0.060 0.008
#> GSM149141     1  0.7247     0.4524 0.548 0.096 0.200 0.000 0.156
#> GSM149142     1  0.1300     0.8292 0.956 0.028 0.000 0.000 0.016
#> GSM149143     1  0.3640     0.8045 0.840 0.016 0.052 0.000 0.092
#> GSM149144     2  0.3491     0.5435 0.228 0.768 0.000 0.000 0.004
#> GSM149145     3  0.7024     0.1326 0.372 0.048 0.456 0.000 0.124
#> GSM149146     2  0.2338     0.6645 0.004 0.884 0.000 0.000 0.112
#> GSM149147     1  0.0798     0.8332 0.976 0.008 0.000 0.016 0.000
#> GSM149148     1  0.1569     0.8306 0.944 0.008 0.000 0.044 0.004
#> GSM149149     1  0.1569     0.8306 0.944 0.008 0.000 0.044 0.004
#> GSM149150     2  0.5659     0.3320 0.116 0.604 0.000 0.000 0.280
#> GSM149151     1  0.1730     0.8274 0.940 0.044 0.004 0.008 0.004
#> GSM149152     4  0.3737     0.6959 0.224 0.004 0.000 0.764 0.008
#> GSM149153     1  0.6755     0.5214 0.596 0.068 0.192 0.000 0.144
#> GSM149154     1  0.4986     0.7504 0.768 0.020 0.128 0.024 0.060
#> GSM149155     2  0.2605     0.6551 0.000 0.852 0.000 0.000 0.148
#> GSM149156     5  0.4666     0.2103 0.016 0.412 0.000 0.000 0.572
#> GSM149157     5  0.5663     0.0585 0.412 0.080 0.000 0.000 0.508
#> GSM149158     1  0.4059     0.7336 0.776 0.172 0.000 0.000 0.052
#> GSM149159     5  0.1877     0.6496 0.012 0.064 0.000 0.000 0.924
#> GSM149160     1  0.3535     0.7735 0.808 0.028 0.000 0.000 0.164
#> GSM149161     1  0.5218     0.5144 0.624 0.308 0.000 0.000 0.068
#> GSM149162     2  0.4452    -0.1015 0.004 0.500 0.000 0.000 0.496
#> GSM149163     2  0.3081     0.6515 0.012 0.832 0.000 0.000 0.156
#> GSM149164     1  0.4558     0.5775 0.652 0.024 0.000 0.000 0.324
#> GSM149165     5  0.3636     0.5650 0.000 0.272 0.000 0.000 0.728
#> GSM149166     2  0.1845     0.6522 0.056 0.928 0.000 0.000 0.016
#> GSM149167     1  0.6201     0.4139 0.552 0.232 0.000 0.000 0.216
#> GSM149168     5  0.1216     0.6439 0.020 0.020 0.000 0.000 0.960
#> GSM149169     1  0.1981     0.8239 0.924 0.028 0.000 0.000 0.048
#> GSM149170     5  0.1329     0.6530 0.000 0.032 0.008 0.004 0.956
#> GSM149171     5  0.3825     0.5982 0.000 0.136 0.060 0.000 0.804
#> GSM149172     5  0.3528     0.5668 0.008 0.020 0.096 0.024 0.852
#> GSM149173     5  0.2249     0.6419 0.000 0.096 0.008 0.000 0.896
#> GSM149174     1  0.3593     0.7871 0.828 0.088 0.000 0.000 0.084
#> GSM149175     3  0.7460     0.4667 0.184 0.032 0.532 0.032 0.220
#> GSM149176     2  0.3523     0.6148 0.072 0.844 0.008 0.000 0.076
#> GSM149177     3  0.4630     0.6868 0.016 0.216 0.732 0.000 0.036
#> GSM149178     3  0.5301     0.6433 0.012 0.088 0.688 0.000 0.212
#> GSM149179     2  0.2179     0.6642 0.004 0.896 0.000 0.000 0.100
#> GSM149180     2  0.4126     0.2570 0.000 0.620 0.000 0.000 0.380
#> GSM149181     5  0.3561     0.5899 0.000 0.260 0.000 0.000 0.740
#> GSM149182     2  0.2732     0.6368 0.000 0.840 0.000 0.000 0.160
#> GSM149183     5  0.4182     0.3839 0.000 0.400 0.000 0.000 0.600
#> GSM149184     5  0.4307     0.0983 0.000 0.496 0.000 0.000 0.504
#> GSM149185     5  0.1732     0.6567 0.000 0.080 0.000 0.000 0.920
#> GSM149186     5  0.4182     0.4100 0.000 0.400 0.000 0.000 0.600
#> GSM149187     5  0.4171     0.3694 0.000 0.396 0.000 0.000 0.604
#> GSM149188     5  0.4138     0.4203 0.000 0.384 0.000 0.000 0.616
#> GSM149189     5  0.4920     0.2144 0.000 0.032 0.384 0.000 0.584
#> GSM149190     2  0.5233     0.5287 0.192 0.680 0.000 0.000 0.128
#> GSM149191     5  0.4082     0.5084 0.164 0.012 0.036 0.000 0.788
#> GSM149192     5  0.3636     0.5651 0.000 0.272 0.000 0.000 0.728
#> GSM149193     5  0.4030     0.4880 0.000 0.352 0.000 0.000 0.648
#> GSM149194     1  0.2761     0.8094 0.872 0.024 0.000 0.000 0.104
#> GSM149195     3  0.4524     0.5215 0.000 0.020 0.644 0.000 0.336
#> GSM149196     5  0.4249     0.2790 0.000 0.432 0.000 0.000 0.568
#> GSM149197     2  0.3916     0.5660 0.012 0.732 0.000 0.000 0.256
#> GSM149198     1  0.3052     0.8196 0.876 0.016 0.000 0.072 0.036
#> GSM149199     2  0.4339     0.4950 0.020 0.684 0.000 0.000 0.296
#> GSM149200     5  0.1740     0.6565 0.000 0.056 0.012 0.000 0.932
#> GSM149201     2  0.3752     0.4933 0.000 0.708 0.000 0.000 0.292
#> GSM149202     5  0.2773     0.6347 0.000 0.164 0.000 0.000 0.836
#> GSM149203     5  0.2538     0.6250 0.004 0.016 0.064 0.012 0.904

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.0363     0.9581 0.000 0.000 0.988 0.000 0.000 0.012
#> GSM149100     3  0.0000     0.9620 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149101     3  0.0146     0.9619 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM149102     3  0.0146     0.9619 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM149103     3  0.0713     0.9488 0.000 0.000 0.972 0.000 0.000 0.028
#> GSM149104     3  0.0146     0.9619 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM149105     3  0.0000     0.9620 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149106     3  0.0603     0.9572 0.000 0.000 0.980 0.004 0.000 0.016
#> GSM149107     3  0.0458     0.9584 0.000 0.000 0.984 0.000 0.000 0.016
#> GSM149108     3  0.0405     0.9610 0.000 0.000 0.988 0.004 0.000 0.008
#> GSM149109     3  0.0665     0.9556 0.000 0.000 0.980 0.004 0.008 0.008
#> GSM149110     3  0.0622     0.9546 0.000 0.000 0.980 0.000 0.008 0.012
#> GSM149111     3  0.0000     0.9620 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149112     3  0.0767     0.9523 0.000 0.000 0.976 0.008 0.004 0.012
#> GSM149113     3  0.0291     0.9615 0.000 0.000 0.992 0.004 0.000 0.004
#> GSM149114     3  0.0260     0.9610 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM149115     4  0.1440     0.9220 0.044 0.004 0.000 0.944 0.004 0.004
#> GSM149116     4  0.0405     0.9384 0.000 0.000 0.000 0.988 0.008 0.004
#> GSM149117     2  0.6301     0.3851 0.048 0.556 0.000 0.168 0.004 0.224
#> GSM149118     4  0.0000     0.9405 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149119     4  0.0458     0.9374 0.000 0.000 0.000 0.984 0.016 0.000
#> GSM149120     4  0.0146     0.9404 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM149121     4  0.1932     0.9010 0.076 0.004 0.000 0.912 0.004 0.004
#> GSM149122     4  0.0260     0.9400 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM149123     4  0.0603     0.9386 0.016 0.000 0.000 0.980 0.004 0.000
#> GSM149124     4  0.0260     0.9392 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM149125     4  0.0146     0.9411 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM149126     4  0.0405     0.9412 0.008 0.000 0.000 0.988 0.000 0.004
#> GSM149127     4  0.0665     0.9411 0.008 0.000 0.000 0.980 0.008 0.004
#> GSM149128     4  0.0260     0.9409 0.008 0.000 0.000 0.992 0.000 0.000
#> GSM149129     4  0.0665     0.9393 0.004 0.000 0.000 0.980 0.008 0.008
#> GSM149130     4  0.4651     0.7258 0.180 0.032 0.000 0.728 0.004 0.056
#> GSM149131     4  0.3178     0.8148 0.160 0.016 0.000 0.816 0.004 0.004
#> GSM149132     4  0.0870     0.9404 0.012 0.000 0.000 0.972 0.012 0.004
#> GSM149133     4  0.0912     0.9369 0.012 0.004 0.000 0.972 0.004 0.008
#> GSM149134     1  0.3275     0.7759 0.852 0.004 0.000 0.040 0.032 0.072
#> GSM149135     1  0.2585     0.7899 0.880 0.068 0.000 0.048 0.000 0.004
#> GSM149136     1  0.1577     0.8070 0.940 0.036 0.000 0.008 0.000 0.016
#> GSM149137     1  0.2037     0.8090 0.924 0.028 0.000 0.028 0.008 0.012
#> GSM149138     1  0.1346     0.8067 0.952 0.008 0.000 0.000 0.016 0.024
#> GSM149139     1  0.1912     0.7934 0.924 0.008 0.000 0.052 0.008 0.008
#> GSM149140     1  0.1478     0.8095 0.944 0.032 0.000 0.020 0.004 0.000
#> GSM149141     6  0.4691     0.4667 0.252 0.008 0.052 0.000 0.008 0.680
#> GSM149142     1  0.1518     0.8107 0.944 0.024 0.000 0.000 0.024 0.008
#> GSM149143     1  0.3897     0.6837 0.696 0.000 0.000 0.000 0.280 0.024
#> GSM149144     2  0.2587     0.6381 0.108 0.868 0.000 0.000 0.020 0.004
#> GSM149145     6  0.5771     0.3227 0.340 0.004 0.144 0.000 0.004 0.508
#> GSM149146     2  0.2653     0.6540 0.000 0.844 0.000 0.000 0.012 0.144
#> GSM149147     1  0.0508     0.8100 0.984 0.000 0.000 0.000 0.012 0.004
#> GSM149148     1  0.0893     0.8059 0.972 0.004 0.000 0.004 0.004 0.016
#> GSM149149     1  0.1167     0.8051 0.960 0.012 0.000 0.008 0.000 0.020
#> GSM149150     6  0.4798     0.4339 0.096 0.204 0.000 0.000 0.012 0.688
#> GSM149151     1  0.2154     0.7767 0.908 0.020 0.000 0.004 0.004 0.064
#> GSM149152     4  0.5044     0.5629 0.280 0.004 0.000 0.640 0.020 0.056
#> GSM149153     6  0.4945     0.3502 0.356 0.008 0.040 0.000 0.008 0.588
#> GSM149154     1  0.4493     0.7422 0.764 0.000 0.028 0.020 0.140 0.048
#> GSM149155     2  0.1610     0.6649 0.000 0.916 0.000 0.000 0.084 0.000
#> GSM149156     5  0.3720     0.3901 0.028 0.236 0.000 0.000 0.736 0.000
#> GSM149157     5  0.3853     0.3909 0.196 0.044 0.000 0.000 0.756 0.004
#> GSM149158     1  0.5183     0.6011 0.604 0.140 0.000 0.000 0.256 0.000
#> GSM149159     5  0.2450     0.5050 0.000 0.016 0.000 0.000 0.868 0.116
#> GSM149160     1  0.4395     0.5152 0.568 0.028 0.000 0.000 0.404 0.000
#> GSM149161     1  0.5807     0.4835 0.520 0.204 0.000 0.000 0.272 0.004
#> GSM149162     5  0.4084     0.1978 0.012 0.400 0.000 0.000 0.588 0.000
#> GSM149163     2  0.2146     0.6467 0.004 0.880 0.000 0.000 0.116 0.000
#> GSM149164     5  0.4371    -0.1539 0.396 0.000 0.004 0.000 0.580 0.020
#> GSM149165     5  0.5146     0.4326 0.000 0.148 0.000 0.000 0.616 0.236
#> GSM149166     2  0.1625     0.6833 0.012 0.928 0.000 0.000 0.000 0.060
#> GSM149167     5  0.6063    -0.2295 0.376 0.128 0.000 0.000 0.468 0.028
#> GSM149168     5  0.3244     0.3989 0.000 0.000 0.000 0.000 0.732 0.268
#> GSM149169     1  0.4385     0.6869 0.696 0.060 0.000 0.000 0.240 0.004
#> GSM149170     5  0.4123     0.1444 0.000 0.012 0.000 0.000 0.568 0.420
#> GSM149171     6  0.3431     0.4698 0.000 0.016 0.000 0.000 0.228 0.756
#> GSM149172     6  0.3905     0.2973 0.004 0.000 0.000 0.004 0.356 0.636
#> GSM149173     6  0.3672     0.3926 0.000 0.008 0.000 0.000 0.304 0.688
#> GSM149174     1  0.5036     0.5424 0.568 0.088 0.000 0.000 0.344 0.000
#> GSM149175     6  0.4721     0.5162 0.112 0.000 0.100 0.012 0.028 0.748
#> GSM149176     2  0.4058     0.4855 0.012 0.672 0.004 0.000 0.004 0.308
#> GSM149177     3  0.5587     0.3362 0.004 0.180 0.564 0.000 0.000 0.252
#> GSM149178     6  0.3742     0.5289 0.008 0.040 0.160 0.000 0.004 0.788
#> GSM149179     2  0.3081     0.6015 0.000 0.776 0.000 0.000 0.004 0.220
#> GSM149180     6  0.4948     0.2752 0.000 0.360 0.000 0.000 0.076 0.564
#> GSM149181     6  0.5451     0.1694 0.000 0.140 0.000 0.000 0.328 0.532
#> GSM149182     2  0.3586     0.5843 0.000 0.756 0.000 0.000 0.028 0.216
#> GSM149183     5  0.5159     0.2882 0.000 0.380 0.000 0.000 0.528 0.092
#> GSM149184     6  0.4865     0.4636 0.000 0.196 0.000 0.004 0.128 0.672
#> GSM149185     5  0.4105     0.2883 0.000 0.020 0.000 0.000 0.632 0.348
#> GSM149186     5  0.6049     0.1704 0.000 0.268 0.000 0.000 0.408 0.324
#> GSM149187     5  0.3738     0.3993 0.000 0.280 0.000 0.000 0.704 0.016
#> GSM149188     5  0.5341     0.3548 0.000 0.336 0.000 0.004 0.552 0.108
#> GSM149189     6  0.5726     0.3144 0.000 0.012 0.140 0.000 0.312 0.536
#> GSM149190     2  0.5040     0.4401 0.148 0.652 0.000 0.000 0.196 0.004
#> GSM149191     5  0.2568     0.4814 0.068 0.000 0.000 0.000 0.876 0.056
#> GSM149192     5  0.4369     0.5226 0.000 0.164 0.000 0.000 0.720 0.116
#> GSM149193     5  0.6082     0.0938 0.000 0.272 0.000 0.000 0.368 0.360
#> GSM149194     1  0.4214     0.6376 0.652 0.024 0.000 0.000 0.320 0.004
#> GSM149195     6  0.4996     0.2695 0.000 0.000 0.408 0.000 0.072 0.520
#> GSM149196     6  0.4921     0.4585 0.000 0.180 0.000 0.000 0.164 0.656
#> GSM149197     2  0.3619     0.4191 0.004 0.680 0.000 0.000 0.316 0.000
#> GSM149198     1  0.4002     0.7584 0.804 0.004 0.000 0.040 0.068 0.084
#> GSM149199     2  0.4292     0.2604 0.024 0.588 0.000 0.000 0.388 0.000
#> GSM149200     5  0.4256     0.0359 0.000 0.016 0.000 0.000 0.520 0.464
#> GSM149201     2  0.3978     0.5528 0.000 0.744 0.000 0.000 0.192 0.064
#> GSM149202     6  0.4233     0.4099 0.000 0.048 0.000 0.000 0.268 0.684
#> GSM149203     5  0.2389     0.4860 0.000 0.000 0.000 0.008 0.864 0.128

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n disease.state(p) k
#> MAD:NMF 102         7.44e-11 2
#> MAD:NMF 101         2.98e-22 3
#> MAD:NMF  95         1.58e-27 4
#> MAD:NMF  85         1.71e-25 5
#> MAD:NMF  67         6.11e-23 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.666           0.877       0.934         0.4076 0.565   0.565
#> 3 3 0.692           0.833       0.903         0.2976 0.919   0.859
#> 4 4 0.539           0.461       0.753         0.2664 0.751   0.514
#> 5 5 0.647           0.697       0.813         0.0882 0.823   0.516
#> 6 6 0.663           0.653       0.798         0.0325 0.971   0.899

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     1   0.000      0.843 1.000 0.000
#> GSM149100     1   0.000      0.843 1.000 0.000
#> GSM149101     1   0.000      0.843 1.000 0.000
#> GSM149102     1   0.000      0.843 1.000 0.000
#> GSM149103     2   0.850      0.577 0.276 0.724
#> GSM149104     1   0.000      0.843 1.000 0.000
#> GSM149105     1   0.000      0.843 1.000 0.000
#> GSM149106     1   0.563      0.819 0.868 0.132
#> GSM149107     1   0.000      0.843 1.000 0.000
#> GSM149108     1   0.000      0.843 1.000 0.000
#> GSM149109     1   0.000      0.843 1.000 0.000
#> GSM149110     1   0.000      0.843 1.000 0.000
#> GSM149111     1   0.000      0.843 1.000 0.000
#> GSM149112     1   0.000      0.843 1.000 0.000
#> GSM149113     1   0.000      0.843 1.000 0.000
#> GSM149114     1   0.204      0.845 0.968 0.032
#> GSM149115     2   0.697      0.718 0.188 0.812
#> GSM149116     1   0.753      0.833 0.784 0.216
#> GSM149117     2   0.000      0.959 0.000 1.000
#> GSM149118     1   0.753      0.833 0.784 0.216
#> GSM149119     1   0.753      0.833 0.784 0.216
#> GSM149120     1   0.753      0.833 0.784 0.216
#> GSM149121     1   0.969      0.537 0.604 0.396
#> GSM149122     1   0.753      0.833 0.784 0.216
#> GSM149123     1   0.760      0.829 0.780 0.220
#> GSM149124     1   0.753      0.833 0.784 0.216
#> GSM149125     1   0.753      0.833 0.784 0.216
#> GSM149126     1   0.753      0.833 0.784 0.216
#> GSM149127     1   0.753      0.833 0.784 0.216
#> GSM149128     1   0.753      0.833 0.784 0.216
#> GSM149129     1   0.753      0.833 0.784 0.216
#> GSM149130     2   0.402      0.881 0.080 0.920
#> GSM149131     2   0.402      0.881 0.080 0.920
#> GSM149132     1   0.753      0.833 0.784 0.216
#> GSM149133     1   0.760      0.829 0.780 0.220
#> GSM149134     2   0.958      0.244 0.380 0.620
#> GSM149135     2   0.000      0.959 0.000 1.000
#> GSM149136     2   0.000      0.959 0.000 1.000
#> GSM149137     2   0.000      0.959 0.000 1.000
#> GSM149138     2   0.000      0.959 0.000 1.000
#> GSM149139     2   0.000      0.959 0.000 1.000
#> GSM149140     2   0.000      0.959 0.000 1.000
#> GSM149141     2   0.224      0.931 0.036 0.964
#> GSM149142     2   0.000      0.959 0.000 1.000
#> GSM149143     2   0.402      0.890 0.080 0.920
#> GSM149144     2   0.000      0.959 0.000 1.000
#> GSM149145     2   0.224      0.931 0.036 0.964
#> GSM149146     2   0.000      0.959 0.000 1.000
#> GSM149147     2   0.000      0.959 0.000 1.000
#> GSM149148     2   0.000      0.959 0.000 1.000
#> GSM149149     2   0.000      0.959 0.000 1.000
#> GSM149150     2   0.000      0.959 0.000 1.000
#> GSM149151     2   0.000      0.959 0.000 1.000
#> GSM149152     2   0.921      0.384 0.336 0.664
#> GSM149153     2   0.224      0.931 0.036 0.964
#> GSM149154     1   0.992      0.323 0.552 0.448
#> GSM149155     2   0.000      0.959 0.000 1.000
#> GSM149156     2   0.000      0.959 0.000 1.000
#> GSM149157     2   0.000      0.959 0.000 1.000
#> GSM149158     2   0.000      0.959 0.000 1.000
#> GSM149159     2   0.000      0.959 0.000 1.000
#> GSM149160     2   0.000      0.959 0.000 1.000
#> GSM149161     2   0.000      0.959 0.000 1.000
#> GSM149162     2   0.000      0.959 0.000 1.000
#> GSM149163     2   0.000      0.959 0.000 1.000
#> GSM149164     2   0.278      0.920 0.048 0.952
#> GSM149165     2   0.000      0.959 0.000 1.000
#> GSM149166     2   0.000      0.959 0.000 1.000
#> GSM149167     2   0.000      0.959 0.000 1.000
#> GSM149168     2   0.000      0.959 0.000 1.000
#> GSM149169     2   0.000      0.959 0.000 1.000
#> GSM149170     2   0.118      0.949 0.016 0.984
#> GSM149171     2   0.000      0.959 0.000 1.000
#> GSM149172     2   0.184      0.940 0.028 0.972
#> GSM149173     2   0.118      0.949 0.016 0.984
#> GSM149174     2   0.000      0.959 0.000 1.000
#> GSM149175     1   0.909      0.645 0.676 0.324
#> GSM149176     2   0.000      0.959 0.000 1.000
#> GSM149177     2   0.118      0.948 0.016 0.984
#> GSM149178     2   0.833      0.586 0.264 0.736
#> GSM149179     2   0.000      0.959 0.000 1.000
#> GSM149180     2   0.000      0.959 0.000 1.000
#> GSM149181     2   0.000      0.959 0.000 1.000
#> GSM149182     2   0.000      0.959 0.000 1.000
#> GSM149183     2   0.000      0.959 0.000 1.000
#> GSM149184     2   0.000      0.959 0.000 1.000
#> GSM149185     2   0.000      0.959 0.000 1.000
#> GSM149186     2   0.000      0.959 0.000 1.000
#> GSM149187     2   0.000      0.959 0.000 1.000
#> GSM149188     2   0.000      0.959 0.000 1.000
#> GSM149189     2   0.242      0.931 0.040 0.960
#> GSM149190     2   0.000      0.959 0.000 1.000
#> GSM149191     2   0.388      0.894 0.076 0.924
#> GSM149192     2   0.000      0.959 0.000 1.000
#> GSM149193     2   0.000      0.959 0.000 1.000
#> GSM149194     2   0.000      0.959 0.000 1.000
#> GSM149195     1   0.689      0.771 0.816 0.184
#> GSM149196     2   0.000      0.959 0.000 1.000
#> GSM149197     2   0.000      0.959 0.000 1.000
#> GSM149198     2   0.961      0.230 0.384 0.616
#> GSM149199     2   0.000      0.959 0.000 1.000
#> GSM149200     2   0.118      0.949 0.016 0.984
#> GSM149201     2   0.000      0.959 0.000 1.000
#> GSM149202     2   0.000      0.959 0.000 1.000
#> GSM149203     2   0.000      0.959 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0000     0.8799 0.000 0.000 1.000
#> GSM149100     3  0.0000     0.8799 0.000 0.000 1.000
#> GSM149101     3  0.0000     0.8799 0.000 0.000 1.000
#> GSM149102     3  0.0000     0.8799 0.000 0.000 1.000
#> GSM149103     2  0.8512     0.5325 0.212 0.612 0.176
#> GSM149104     3  0.0000     0.8799 0.000 0.000 1.000
#> GSM149105     3  0.0000     0.8799 0.000 0.000 1.000
#> GSM149106     3  0.6254     0.6816 0.188 0.056 0.756
#> GSM149107     3  0.0000     0.8799 0.000 0.000 1.000
#> GSM149108     3  0.0000     0.8799 0.000 0.000 1.000
#> GSM149109     3  0.0000     0.8799 0.000 0.000 1.000
#> GSM149110     3  0.0000     0.8799 0.000 0.000 1.000
#> GSM149111     3  0.0000     0.8799 0.000 0.000 1.000
#> GSM149112     3  0.0000     0.8799 0.000 0.000 1.000
#> GSM149113     3  0.0000     0.8799 0.000 0.000 1.000
#> GSM149114     3  0.1289     0.8506 0.000 0.032 0.968
#> GSM149115     2  0.6140     0.3288 0.404 0.596 0.000
#> GSM149116     1  0.3412     0.8542 0.876 0.000 0.124
#> GSM149117     2  0.2711     0.8843 0.088 0.912 0.000
#> GSM149118     1  0.3412     0.8542 0.876 0.000 0.124
#> GSM149119     1  0.3619     0.8535 0.864 0.000 0.136
#> GSM149120     1  0.3412     0.8542 0.876 0.000 0.124
#> GSM149121     1  0.4056     0.6616 0.876 0.092 0.032
#> GSM149122     1  0.3619     0.8535 0.864 0.000 0.136
#> GSM149123     1  0.3644     0.8526 0.872 0.004 0.124
#> GSM149124     1  0.3412     0.8542 0.876 0.000 0.124
#> GSM149125     1  0.3412     0.8542 0.876 0.000 0.124
#> GSM149126     1  0.3619     0.8535 0.864 0.000 0.136
#> GSM149127     1  0.3619     0.8535 0.864 0.000 0.136
#> GSM149128     1  0.3619     0.8535 0.864 0.000 0.136
#> GSM149129     1  0.3619     0.8535 0.864 0.000 0.136
#> GSM149130     2  0.4750     0.8119 0.216 0.784 0.000
#> GSM149131     2  0.4750     0.8119 0.216 0.784 0.000
#> GSM149132     1  0.3619     0.8535 0.864 0.000 0.136
#> GSM149133     1  0.3826     0.8490 0.868 0.008 0.124
#> GSM149134     1  0.6669    -0.0920 0.524 0.468 0.008
#> GSM149135     2  0.2066     0.9080 0.060 0.940 0.000
#> GSM149136     2  0.2066     0.9080 0.060 0.940 0.000
#> GSM149137     2  0.1964     0.9078 0.056 0.944 0.000
#> GSM149138     2  0.2165     0.9080 0.064 0.936 0.000
#> GSM149139     2  0.2066     0.9080 0.060 0.940 0.000
#> GSM149140     2  0.1964     0.9078 0.056 0.944 0.000
#> GSM149141     2  0.4235     0.8575 0.176 0.824 0.000
#> GSM149142     2  0.2066     0.9125 0.060 0.940 0.000
#> GSM149143     2  0.5053     0.8251 0.164 0.812 0.024
#> GSM149144     2  0.0000     0.9211 0.000 1.000 0.000
#> GSM149145     2  0.4235     0.8575 0.176 0.824 0.000
#> GSM149146     2  0.0000     0.9211 0.000 1.000 0.000
#> GSM149147     2  0.2261     0.9079 0.068 0.932 0.000
#> GSM149148     2  0.1964     0.9078 0.056 0.944 0.000
#> GSM149149     2  0.1964     0.9078 0.056 0.944 0.000
#> GSM149150     2  0.2066     0.9125 0.060 0.940 0.000
#> GSM149151     2  0.1964     0.9078 0.056 0.944 0.000
#> GSM149152     2  0.7487     0.1836 0.464 0.500 0.036
#> GSM149153     2  0.4235     0.8575 0.176 0.824 0.000
#> GSM149154     3  0.9873     0.1286 0.260 0.348 0.392
#> GSM149155     2  0.0000     0.9211 0.000 1.000 0.000
#> GSM149156     2  0.0000     0.9211 0.000 1.000 0.000
#> GSM149157     2  0.0237     0.9206 0.004 0.996 0.000
#> GSM149158     2  0.0592     0.9199 0.012 0.988 0.000
#> GSM149159     2  0.2066     0.9079 0.060 0.940 0.000
#> GSM149160     2  0.0892     0.9214 0.020 0.980 0.000
#> GSM149161     2  0.0747     0.9207 0.016 0.984 0.000
#> GSM149162     2  0.0892     0.9214 0.020 0.980 0.000
#> GSM149163     2  0.0000     0.9211 0.000 1.000 0.000
#> GSM149164     2  0.3816     0.8692 0.148 0.852 0.000
#> GSM149165     2  0.1964     0.9092 0.056 0.944 0.000
#> GSM149166     2  0.0000     0.9211 0.000 1.000 0.000
#> GSM149167     2  0.2711     0.8843 0.088 0.912 0.000
#> GSM149168     2  0.3412     0.8763 0.124 0.876 0.000
#> GSM149169     2  0.0892     0.9185 0.020 0.980 0.000
#> GSM149170     2  0.4139     0.8669 0.124 0.860 0.016
#> GSM149171     2  0.3412     0.8763 0.124 0.876 0.000
#> GSM149172     2  0.4291     0.8555 0.152 0.840 0.008
#> GSM149173     2  0.4139     0.8669 0.124 0.860 0.016
#> GSM149174     2  0.0892     0.9217 0.020 0.980 0.000
#> GSM149175     3  0.9405     0.3020 0.260 0.232 0.508
#> GSM149176     2  0.0000     0.9211 0.000 1.000 0.000
#> GSM149177     2  0.2301     0.9090 0.060 0.936 0.004
#> GSM149178     2  0.8223     0.5138 0.288 0.604 0.108
#> GSM149179     2  0.0000     0.9211 0.000 1.000 0.000
#> GSM149180     2  0.0000     0.9211 0.000 1.000 0.000
#> GSM149181     2  0.0000     0.9211 0.000 1.000 0.000
#> GSM149182     2  0.0000     0.9211 0.000 1.000 0.000
#> GSM149183     2  0.0000     0.9211 0.000 1.000 0.000
#> GSM149184     2  0.2711     0.8843 0.088 0.912 0.000
#> GSM149185     2  0.1964     0.9092 0.056 0.944 0.000
#> GSM149186     2  0.0000     0.9211 0.000 1.000 0.000
#> GSM149187     2  0.0000     0.9211 0.000 1.000 0.000
#> GSM149188     2  0.1529     0.9139 0.040 0.960 0.000
#> GSM149189     2  0.4821     0.8532 0.120 0.840 0.040
#> GSM149190     2  0.0747     0.9194 0.016 0.984 0.000
#> GSM149191     2  0.4994     0.8289 0.160 0.816 0.024
#> GSM149192     2  0.1860     0.9108 0.052 0.948 0.000
#> GSM149193     2  0.0000     0.9211 0.000 1.000 0.000
#> GSM149194     2  0.0237     0.9208 0.004 0.996 0.000
#> GSM149195     3  0.6922     0.6414 0.200 0.080 0.720
#> GSM149196     2  0.0000     0.9211 0.000 1.000 0.000
#> GSM149197     2  0.0000     0.9211 0.000 1.000 0.000
#> GSM149198     1  0.6664    -0.0773 0.528 0.464 0.008
#> GSM149199     2  0.0592     0.9199 0.012 0.988 0.000
#> GSM149200     2  0.4139     0.8669 0.124 0.860 0.016
#> GSM149201     2  0.0000     0.9211 0.000 1.000 0.000
#> GSM149202     2  0.0000     0.9211 0.000 1.000 0.000
#> GSM149203     2  0.3412     0.8763 0.124 0.876 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.0000     0.9325 0.000 0.000 1.000 0.000
#> GSM149100     3  0.0000     0.9325 0.000 0.000 1.000 0.000
#> GSM149101     3  0.0000     0.9325 0.000 0.000 1.000 0.000
#> GSM149102     3  0.0000     0.9325 0.000 0.000 1.000 0.000
#> GSM149103     2  0.7769     0.1853 0.252 0.556 0.160 0.032
#> GSM149104     3  0.0000     0.9325 0.000 0.000 1.000 0.000
#> GSM149105     3  0.0000     0.9325 0.000 0.000 1.000 0.000
#> GSM149106     3  0.5185     0.7326 0.000 0.176 0.748 0.076
#> GSM149107     3  0.0000     0.9325 0.000 0.000 1.000 0.000
#> GSM149108     3  0.0000     0.9325 0.000 0.000 1.000 0.000
#> GSM149109     3  0.0000     0.9325 0.000 0.000 1.000 0.000
#> GSM149110     3  0.0000     0.9325 0.000 0.000 1.000 0.000
#> GSM149111     3  0.0000     0.9325 0.000 0.000 1.000 0.000
#> GSM149112     3  0.0000     0.9325 0.000 0.000 1.000 0.000
#> GSM149113     3  0.0000     0.9325 0.000 0.000 1.000 0.000
#> GSM149114     3  0.1211     0.8991 0.000 0.040 0.960 0.000
#> GSM149115     1  0.6179     0.2134 0.552 0.056 0.000 0.392
#> GSM149116     4  0.0000     0.9774 0.000 0.000 0.000 1.000
#> GSM149117     1  0.2530     0.4777 0.888 0.112 0.000 0.000
#> GSM149118     4  0.0000     0.9774 0.000 0.000 0.000 1.000
#> GSM149119     4  0.0469     0.9778 0.000 0.000 0.012 0.988
#> GSM149120     4  0.0000     0.9774 0.000 0.000 0.000 1.000
#> GSM149121     4  0.4635     0.7733 0.080 0.124 0.000 0.796
#> GSM149122     4  0.0469     0.9778 0.000 0.000 0.012 0.988
#> GSM149123     4  0.0188     0.9757 0.004 0.000 0.000 0.996
#> GSM149124     4  0.0000     0.9774 0.000 0.000 0.000 1.000
#> GSM149125     4  0.0000     0.9774 0.000 0.000 0.000 1.000
#> GSM149126     4  0.0469     0.9778 0.000 0.000 0.012 0.988
#> GSM149127     4  0.0469     0.9778 0.000 0.000 0.012 0.988
#> GSM149128     4  0.0469     0.9778 0.000 0.000 0.012 0.988
#> GSM149129     4  0.0469     0.9778 0.000 0.000 0.012 0.988
#> GSM149130     1  0.4401     0.3979 0.812 0.112 0.000 0.076
#> GSM149131     1  0.4401     0.3979 0.812 0.112 0.000 0.076
#> GSM149132     4  0.0469     0.9778 0.000 0.000 0.012 0.988
#> GSM149133     4  0.0336     0.9729 0.008 0.000 0.000 0.992
#> GSM149134     2  0.7674     0.0513 0.220 0.428 0.000 0.352
#> GSM149135     1  0.0336     0.5173 0.992 0.008 0.000 0.000
#> GSM149136     1  0.0336     0.5173 0.992 0.008 0.000 0.000
#> GSM149137     1  0.0188     0.5170 0.996 0.004 0.000 0.000
#> GSM149138     1  0.0469     0.5163 0.988 0.012 0.000 0.000
#> GSM149139     1  0.0336     0.5173 0.992 0.008 0.000 0.000
#> GSM149140     1  0.0188     0.5170 0.996 0.004 0.000 0.000
#> GSM149141     1  0.4741     0.2763 0.668 0.328 0.000 0.004
#> GSM149142     1  0.2081     0.4847 0.916 0.084 0.000 0.000
#> GSM149143     2  0.4533     0.4062 0.232 0.752 0.012 0.004
#> GSM149144     1  0.4998    -0.3669 0.512 0.488 0.000 0.000
#> GSM149145     1  0.4761     0.2722 0.664 0.332 0.000 0.004
#> GSM149146     2  0.5000     0.3572 0.500 0.500 0.000 0.000
#> GSM149147     1  0.0592     0.5148 0.984 0.016 0.000 0.000
#> GSM149148     1  0.0188     0.5170 0.996 0.004 0.000 0.000
#> GSM149149     1  0.0188     0.5170 0.996 0.004 0.000 0.000
#> GSM149150     1  0.2081     0.4847 0.916 0.084 0.000 0.000
#> GSM149151     1  0.0336     0.5168 0.992 0.008 0.000 0.000
#> GSM149152     1  0.6951    -0.0171 0.544 0.132 0.000 0.324
#> GSM149153     1  0.4761     0.2722 0.664 0.332 0.000 0.004
#> GSM149154     2  0.8660    -0.2361 0.120 0.420 0.372 0.088
#> GSM149155     1  0.5000    -0.3920 0.500 0.500 0.000 0.000
#> GSM149156     2  0.5000     0.3613 0.496 0.504 0.000 0.000
#> GSM149157     2  0.4999     0.3666 0.492 0.508 0.000 0.000
#> GSM149158     1  0.4804    -0.0477 0.616 0.384 0.000 0.000
#> GSM149159     2  0.4500     0.5032 0.316 0.684 0.000 0.000
#> GSM149160     1  0.4888    -0.0746 0.588 0.412 0.000 0.000
#> GSM149161     1  0.4877    -0.0659 0.592 0.408 0.000 0.000
#> GSM149162     1  0.4907    -0.0900 0.580 0.420 0.000 0.000
#> GSM149163     1  0.5000    -0.3920 0.500 0.500 0.000 0.000
#> GSM149164     2  0.4866     0.2111 0.404 0.596 0.000 0.000
#> GSM149165     2  0.4624     0.4973 0.340 0.660 0.000 0.000
#> GSM149166     1  0.5000    -0.3785 0.504 0.496 0.000 0.000
#> GSM149167     1  0.2589     0.4774 0.884 0.116 0.000 0.000
#> GSM149168     2  0.3356     0.5152 0.176 0.824 0.000 0.000
#> GSM149169     1  0.4522     0.1250 0.680 0.320 0.000 0.000
#> GSM149170     2  0.3123     0.5110 0.156 0.844 0.000 0.000
#> GSM149171     2  0.3311     0.5145 0.172 0.828 0.000 0.000
#> GSM149172     2  0.3926     0.4934 0.160 0.820 0.004 0.016
#> GSM149173     2  0.3123     0.5110 0.156 0.844 0.000 0.000
#> GSM149174     1  0.4830    -0.0593 0.608 0.392 0.000 0.000
#> GSM149175     3  0.7928     0.4161 0.048 0.360 0.488 0.104
#> GSM149176     2  0.5000     0.3521 0.500 0.500 0.000 0.000
#> GSM149177     2  0.5334     0.4272 0.400 0.588 0.004 0.008
#> GSM149178     2  0.6436     0.3337 0.092 0.724 0.088 0.096
#> GSM149179     2  0.5000     0.3572 0.500 0.500 0.000 0.000
#> GSM149180     2  0.5000     0.3572 0.500 0.500 0.000 0.000
#> GSM149181     2  0.5000     0.3572 0.500 0.500 0.000 0.000
#> GSM149182     1  0.5000    -0.3920 0.500 0.500 0.000 0.000
#> GSM149183     2  0.4998     0.3705 0.488 0.512 0.000 0.000
#> GSM149184     1  0.2589     0.4774 0.884 0.116 0.000 0.000
#> GSM149185     2  0.4605     0.4989 0.336 0.664 0.000 0.000
#> GSM149186     1  0.5000    -0.3920 0.500 0.500 0.000 0.000
#> GSM149187     2  0.5000     0.3572 0.500 0.500 0.000 0.000
#> GSM149188     2  0.4843     0.4583 0.396 0.604 0.000 0.000
#> GSM149189     2  0.4050     0.5023 0.168 0.808 0.024 0.000
#> GSM149190     1  0.4804    -0.0369 0.616 0.384 0.000 0.000
#> GSM149191     2  0.4353     0.4067 0.232 0.756 0.012 0.000
#> GSM149192     2  0.4624     0.4971 0.340 0.660 0.000 0.000
#> GSM149193     2  0.5000     0.3572 0.500 0.500 0.000 0.000
#> GSM149194     1  0.4996    -0.3434 0.516 0.484 0.000 0.000
#> GSM149195     3  0.5532     0.6919 0.000 0.228 0.704 0.068
#> GSM149196     2  0.5000     0.3572 0.500 0.500 0.000 0.000
#> GSM149197     2  0.5000     0.3572 0.500 0.500 0.000 0.000
#> GSM149198     2  0.7597     0.0666 0.204 0.440 0.000 0.356
#> GSM149199     1  0.4830    -0.0718 0.608 0.392 0.000 0.000
#> GSM149200     2  0.3123     0.5110 0.156 0.844 0.000 0.000
#> GSM149201     1  0.5000    -0.3920 0.500 0.500 0.000 0.000
#> GSM149202     2  0.5000     0.3606 0.496 0.504 0.000 0.000
#> GSM149203     2  0.3356     0.5152 0.176 0.824 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0000    0.94965 0.000 0.000 1.000 0.000 0.000
#> GSM149100     3  0.0000    0.94965 0.000 0.000 1.000 0.000 0.000
#> GSM149101     3  0.0000    0.94965 0.000 0.000 1.000 0.000 0.000
#> GSM149102     3  0.0000    0.94965 0.000 0.000 1.000 0.000 0.000
#> GSM149103     5  0.8099    0.50551 0.228 0.192 0.152 0.000 0.428
#> GSM149104     3  0.0000    0.94965 0.000 0.000 1.000 0.000 0.000
#> GSM149105     3  0.0000    0.94965 0.000 0.000 1.000 0.000 0.000
#> GSM149106     3  0.3561    0.58639 0.000 0.000 0.740 0.000 0.260
#> GSM149107     3  0.0000    0.94965 0.000 0.000 1.000 0.000 0.000
#> GSM149108     3  0.0000    0.94965 0.000 0.000 1.000 0.000 0.000
#> GSM149109     3  0.0000    0.94965 0.000 0.000 1.000 0.000 0.000
#> GSM149110     3  0.0000    0.94965 0.000 0.000 1.000 0.000 0.000
#> GSM149111     3  0.0000    0.94965 0.000 0.000 1.000 0.000 0.000
#> GSM149112     3  0.0000    0.94965 0.000 0.000 1.000 0.000 0.000
#> GSM149113     3  0.0162    0.94672 0.000 0.000 0.996 0.000 0.004
#> GSM149114     3  0.1121    0.90725 0.000 0.000 0.956 0.000 0.044
#> GSM149115     1  0.6316    0.22371 0.484 0.012 0.000 0.392 0.112
#> GSM149116     4  0.0000    0.96665 0.000 0.000 0.000 1.000 0.000
#> GSM149117     1  0.3492    0.65990 0.796 0.016 0.000 0.000 0.188
#> GSM149118     4  0.0000    0.96665 0.000 0.000 0.000 1.000 0.000
#> GSM149119     4  0.0404    0.96767 0.000 0.000 0.012 0.988 0.000
#> GSM149120     4  0.0000    0.96665 0.000 0.000 0.000 1.000 0.000
#> GSM149121     4  0.4871    0.59446 0.084 0.000 0.000 0.704 0.212
#> GSM149122     4  0.0404    0.96767 0.000 0.000 0.012 0.988 0.000
#> GSM149123     4  0.0162    0.96469 0.004 0.000 0.000 0.996 0.000
#> GSM149124     4  0.0000    0.96665 0.000 0.000 0.000 1.000 0.000
#> GSM149125     4  0.0000    0.96665 0.000 0.000 0.000 1.000 0.000
#> GSM149126     4  0.0404    0.96767 0.000 0.000 0.012 0.988 0.000
#> GSM149127     4  0.0404    0.96767 0.000 0.000 0.012 0.988 0.000
#> GSM149128     4  0.0404    0.96767 0.000 0.000 0.012 0.988 0.000
#> GSM149129     4  0.0404    0.96767 0.000 0.000 0.012 0.988 0.000
#> GSM149130     1  0.3689    0.58381 0.816 0.032 0.000 0.008 0.144
#> GSM149131     1  0.3689    0.58381 0.816 0.032 0.000 0.008 0.144
#> GSM149132     4  0.0404    0.96767 0.000 0.000 0.012 0.988 0.000
#> GSM149133     4  0.1168    0.93884 0.008 0.000 0.000 0.960 0.032
#> GSM149134     5  0.4943    0.55215 0.200 0.008 0.000 0.076 0.716
#> GSM149135     1  0.0162    0.76555 0.996 0.004 0.000 0.000 0.000
#> GSM149136     1  0.0162    0.76555 0.996 0.004 0.000 0.000 0.000
#> GSM149137     1  0.0290    0.76502 0.992 0.008 0.000 0.000 0.000
#> GSM149138     1  0.0324    0.76442 0.992 0.004 0.000 0.000 0.004
#> GSM149139     1  0.0162    0.76555 0.996 0.004 0.000 0.000 0.000
#> GSM149140     1  0.0290    0.76502 0.992 0.008 0.000 0.000 0.000
#> GSM149141     1  0.5611    0.35848 0.636 0.152 0.000 0.000 0.212
#> GSM149142     1  0.2519    0.72459 0.884 0.100 0.000 0.000 0.016
#> GSM149143     2  0.6344   -0.00969 0.140 0.576 0.012 0.004 0.268
#> GSM149144     2  0.3913    0.77001 0.324 0.676 0.000 0.000 0.000
#> GSM149145     1  0.5646    0.34858 0.632 0.156 0.000 0.000 0.212
#> GSM149146     2  0.3816    0.78047 0.304 0.696 0.000 0.000 0.000
#> GSM149147     1  0.0451    0.76277 0.988 0.004 0.000 0.000 0.008
#> GSM149148     1  0.0290    0.76502 0.992 0.008 0.000 0.000 0.000
#> GSM149149     1  0.0290    0.76502 0.992 0.008 0.000 0.000 0.000
#> GSM149150     1  0.2519    0.72459 0.884 0.100 0.000 0.000 0.016
#> GSM149151     1  0.0794    0.75690 0.972 0.028 0.000 0.000 0.000
#> GSM149152     1  0.6219    0.12334 0.548 0.000 0.000 0.240 0.212
#> GSM149153     1  0.5646    0.34858 0.632 0.156 0.000 0.000 0.212
#> GSM149154     5  0.6935    0.40357 0.112 0.040 0.364 0.004 0.480
#> GSM149155     2  0.3816    0.78047 0.304 0.696 0.000 0.000 0.000
#> GSM149156     2  0.3796    0.78013 0.300 0.700 0.000 0.000 0.000
#> GSM149157     2  0.3774    0.78000 0.296 0.704 0.000 0.000 0.000
#> GSM149158     2  0.4641    0.60542 0.456 0.532 0.000 0.000 0.012
#> GSM149159     2  0.3409    0.71240 0.144 0.824 0.000 0.000 0.032
#> GSM149160     2  0.4604    0.60886 0.428 0.560 0.000 0.000 0.012
#> GSM149161     2  0.4610    0.60646 0.432 0.556 0.000 0.000 0.012
#> GSM149162     2  0.4590    0.61072 0.420 0.568 0.000 0.000 0.012
#> GSM149163     2  0.3816    0.78047 0.304 0.696 0.000 0.000 0.000
#> GSM149164     2  0.6177    0.17322 0.304 0.532 0.000 0.000 0.164
#> GSM149165     2  0.3656    0.72450 0.168 0.800 0.000 0.000 0.032
#> GSM149166     2  0.3966    0.75937 0.336 0.664 0.000 0.000 0.000
#> GSM149167     1  0.3919    0.65249 0.776 0.036 0.000 0.000 0.188
#> GSM149168     2  0.0963    0.56486 0.000 0.964 0.000 0.000 0.036
#> GSM149169     1  0.4996   -0.37278 0.548 0.420 0.000 0.000 0.032
#> GSM149170     2  0.1544    0.53583 0.000 0.932 0.000 0.000 0.068
#> GSM149171     2  0.1205    0.55996 0.004 0.956 0.000 0.000 0.040
#> GSM149172     2  0.3958    0.30079 0.040 0.776 0.000 0.000 0.184
#> GSM149173     2  0.1544    0.53583 0.000 0.932 0.000 0.000 0.068
#> GSM149174     2  0.4650    0.57105 0.468 0.520 0.000 0.000 0.012
#> GSM149175     5  0.5549    0.08128 0.048 0.008 0.472 0.000 0.472
#> GSM149176     2  0.3913    0.76779 0.324 0.676 0.000 0.000 0.000
#> GSM149177     2  0.4782    0.73252 0.244 0.700 0.004 0.000 0.052
#> GSM149178     5  0.6692    0.39852 0.060 0.384 0.072 0.000 0.484
#> GSM149179     2  0.3816    0.78047 0.304 0.696 0.000 0.000 0.000
#> GSM149180     2  0.3816    0.78047 0.304 0.696 0.000 0.000 0.000
#> GSM149181     2  0.3816    0.78047 0.304 0.696 0.000 0.000 0.000
#> GSM149182     2  0.3816    0.78047 0.304 0.696 0.000 0.000 0.000
#> GSM149183     2  0.3752    0.77936 0.292 0.708 0.000 0.000 0.000
#> GSM149184     1  0.3919    0.65249 0.776 0.036 0.000 0.000 0.188
#> GSM149185     2  0.3616    0.72225 0.164 0.804 0.000 0.000 0.032
#> GSM149186     2  0.3816    0.78047 0.304 0.696 0.000 0.000 0.000
#> GSM149187     2  0.3816    0.78047 0.304 0.696 0.000 0.000 0.000
#> GSM149188     2  0.3789    0.74738 0.212 0.768 0.000 0.000 0.020
#> GSM149189     2  0.4370    0.32571 0.040 0.768 0.016 0.000 0.176
#> GSM149190     2  0.4552    0.58211 0.468 0.524 0.000 0.000 0.008
#> GSM149191     2  0.6196   -0.00605 0.140 0.580 0.012 0.000 0.268
#> GSM149192     2  0.3656    0.72463 0.168 0.800 0.000 0.000 0.032
#> GSM149193     2  0.3816    0.78047 0.304 0.696 0.000 0.000 0.000
#> GSM149194     2  0.4045    0.74135 0.356 0.644 0.000 0.000 0.000
#> GSM149195     3  0.4689    0.49286 0.000 0.048 0.688 0.000 0.264
#> GSM149196     2  0.3816    0.78047 0.304 0.696 0.000 0.000 0.000
#> GSM149197     2  0.3816    0.78047 0.304 0.696 0.000 0.000 0.000
#> GSM149198     5  0.4811    0.56276 0.184 0.008 0.000 0.076 0.732
#> GSM149199     2  0.4528    0.62947 0.444 0.548 0.000 0.000 0.008
#> GSM149200     2  0.1544    0.53583 0.000 0.932 0.000 0.000 0.068
#> GSM149201     2  0.3816    0.78047 0.304 0.696 0.000 0.000 0.000
#> GSM149202     2  0.3796    0.78038 0.300 0.700 0.000 0.000 0.000
#> GSM149203     2  0.0963    0.56486 0.000 0.964 0.000 0.000 0.036

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149100     3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149101     3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149102     3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149103     6  0.8076     0.2533 0.292 0.100 0.120 0.000 0.104 0.384
#> GSM149104     3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149105     3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149106     3  0.3547     0.4945 0.004 0.000 0.696 0.000 0.000 0.300
#> GSM149107     3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149108     3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149109     3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149110     3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149111     3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149112     3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149113     3  0.0146     0.9361 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM149114     3  0.1204     0.8819 0.000 0.000 0.944 0.000 0.000 0.056
#> GSM149115     4  0.7928    -0.0945 0.268 0.188 0.000 0.392 0.056 0.096
#> GSM149116     4  0.0000     0.9218 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149117     1  0.6716     0.5075 0.480 0.196 0.000 0.000 0.068 0.256
#> GSM149118     4  0.0000     0.9218 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149119     4  0.0363     0.9226 0.000 0.000 0.012 0.988 0.000 0.000
#> GSM149120     4  0.0000     0.9218 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149121     4  0.4657     0.5906 0.224 0.000 0.000 0.696 0.020 0.060
#> GSM149122     4  0.0363     0.9226 0.000 0.000 0.012 0.988 0.000 0.000
#> GSM149123     4  0.0146     0.9201 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM149124     4  0.0000     0.9218 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149125     4  0.0000     0.9218 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149126     4  0.0363     0.9226 0.000 0.000 0.012 0.988 0.000 0.000
#> GSM149127     4  0.0363     0.9226 0.000 0.000 0.012 0.988 0.000 0.000
#> GSM149128     4  0.0363     0.9226 0.000 0.000 0.012 0.988 0.000 0.000
#> GSM149129     4  0.0363     0.9226 0.000 0.000 0.012 0.988 0.000 0.000
#> GSM149130     1  0.2679     0.6637 0.868 0.096 0.000 0.000 0.004 0.032
#> GSM149131     1  0.2679     0.6637 0.868 0.096 0.000 0.000 0.004 0.032
#> GSM149132     4  0.0363     0.9226 0.000 0.000 0.012 0.988 0.000 0.000
#> GSM149133     4  0.1049     0.8973 0.032 0.000 0.000 0.960 0.000 0.008
#> GSM149134     5  0.6227     0.1705 0.248 0.000 0.000 0.024 0.504 0.224
#> GSM149135     1  0.3076     0.7900 0.760 0.240 0.000 0.000 0.000 0.000
#> GSM149136     1  0.3076     0.7900 0.760 0.240 0.000 0.000 0.000 0.000
#> GSM149137     1  0.3101     0.7890 0.756 0.244 0.000 0.000 0.000 0.000
#> GSM149138     1  0.3050     0.7893 0.764 0.236 0.000 0.000 0.000 0.000
#> GSM149139     1  0.3076     0.7900 0.760 0.240 0.000 0.000 0.000 0.000
#> GSM149140     1  0.3101     0.7890 0.756 0.244 0.000 0.000 0.000 0.000
#> GSM149141     1  0.5558     0.4584 0.664 0.072 0.000 0.000 0.132 0.132
#> GSM149142     1  0.4494     0.7430 0.708 0.220 0.000 0.000 0.056 0.016
#> GSM149143     2  0.7462    -0.0790 0.156 0.376 0.000 0.000 0.224 0.244
#> GSM149144     2  0.0713     0.7541 0.028 0.972 0.000 0.000 0.000 0.000
#> GSM149145     1  0.5544     0.4502 0.664 0.068 0.000 0.000 0.136 0.132
#> GSM149146     2  0.0146     0.7597 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM149147     1  0.3189     0.7885 0.760 0.236 0.000 0.000 0.000 0.004
#> GSM149148     1  0.3101     0.7890 0.756 0.244 0.000 0.000 0.000 0.000
#> GSM149149     1  0.3101     0.7890 0.756 0.244 0.000 0.000 0.000 0.000
#> GSM149150     1  0.4494     0.7430 0.708 0.220 0.000 0.000 0.056 0.016
#> GSM149151     1  0.3198     0.7765 0.740 0.260 0.000 0.000 0.000 0.000
#> GSM149152     1  0.4950     0.2763 0.664 0.000 0.000 0.228 0.012 0.096
#> GSM149153     1  0.5544     0.4502 0.664 0.068 0.000 0.000 0.136 0.132
#> GSM149154     6  0.6350     0.4521 0.144 0.000 0.316 0.000 0.048 0.492
#> GSM149155     2  0.0146     0.7597 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM149156     2  0.0260     0.7589 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM149157     2  0.0363     0.7579 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM149158     2  0.3226     0.6131 0.168 0.808 0.000 0.000 0.012 0.012
#> GSM149159     2  0.3221     0.5909 0.000 0.736 0.000 0.000 0.264 0.000
#> GSM149160     2  0.3834     0.6004 0.184 0.768 0.000 0.000 0.036 0.012
#> GSM149161     2  0.3764     0.5984 0.184 0.772 0.000 0.000 0.032 0.012
#> GSM149162     2  0.3966     0.6018 0.184 0.760 0.000 0.000 0.044 0.012
#> GSM149163     2  0.0146     0.7597 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM149164     2  0.7192     0.1236 0.276 0.420 0.000 0.000 0.176 0.128
#> GSM149165     2  0.3076     0.6137 0.000 0.760 0.000 0.000 0.240 0.000
#> GSM149166     2  0.1542     0.7423 0.052 0.936 0.000 0.000 0.008 0.004
#> GSM149167     1  0.6868     0.4898 0.444 0.228 0.000 0.000 0.068 0.260
#> GSM149168     2  0.4246     0.3756 0.020 0.580 0.000 0.000 0.400 0.000
#> GSM149169     2  0.4853     0.3548 0.272 0.656 0.000 0.000 0.032 0.040
#> GSM149170     2  0.4879     0.3307 0.020 0.548 0.000 0.000 0.404 0.028
#> GSM149171     2  0.4326     0.3673 0.024 0.572 0.000 0.000 0.404 0.000
#> GSM149172     5  0.6234    -0.2942 0.052 0.412 0.000 0.000 0.432 0.104
#> GSM149173     2  0.4879     0.3307 0.020 0.548 0.000 0.000 0.404 0.028
#> GSM149174     2  0.3799     0.5630 0.208 0.756 0.000 0.000 0.024 0.012
#> GSM149175     6  0.5569     0.2364 0.032 0.000 0.400 0.000 0.064 0.504
#> GSM149176     2  0.1268     0.7488 0.036 0.952 0.000 0.000 0.008 0.004
#> GSM149177     2  0.3276     0.7001 0.100 0.840 0.000 0.000 0.028 0.032
#> GSM149178     6  0.6696     0.0653 0.048 0.248 0.008 0.000 0.200 0.496
#> GSM149179     2  0.0146     0.7597 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM149180     2  0.0291     0.7591 0.004 0.992 0.000 0.000 0.000 0.004
#> GSM149181     2  0.0405     0.7594 0.004 0.988 0.000 0.000 0.008 0.000
#> GSM149182     2  0.0146     0.7597 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM149183     2  0.1444     0.7327 0.000 0.928 0.000 0.000 0.072 0.000
#> GSM149184     1  0.6868     0.4898 0.444 0.228 0.000 0.000 0.068 0.260
#> GSM149185     2  0.3101     0.6095 0.000 0.756 0.000 0.000 0.244 0.000
#> GSM149186     2  0.0146     0.7597 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM149187     2  0.0146     0.7597 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM149188     2  0.2631     0.6614 0.000 0.820 0.000 0.000 0.180 0.000
#> GSM149189     2  0.6442     0.1081 0.044 0.460 0.000 0.000 0.336 0.160
#> GSM149190     2  0.3547     0.5713 0.208 0.768 0.000 0.000 0.012 0.012
#> GSM149191     2  0.7453    -0.0763 0.152 0.376 0.000 0.000 0.228 0.244
#> GSM149192     2  0.3076     0.6142 0.000 0.760 0.000 0.000 0.240 0.000
#> GSM149193     2  0.0405     0.7594 0.004 0.988 0.000 0.000 0.008 0.000
#> GSM149194     2  0.2002     0.7300 0.076 0.908 0.000 0.000 0.012 0.004
#> GSM149195     3  0.4806     0.3057 0.004 0.000 0.624 0.000 0.068 0.304
#> GSM149196     2  0.0405     0.7594 0.004 0.988 0.000 0.000 0.008 0.000
#> GSM149197     2  0.0146     0.7597 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM149198     5  0.6133     0.1705 0.208 0.000 0.000 0.024 0.524 0.244
#> GSM149199     2  0.2773     0.6428 0.152 0.836 0.000 0.000 0.004 0.008
#> GSM149200     2  0.4879     0.3307 0.020 0.548 0.000 0.000 0.404 0.028
#> GSM149201     2  0.0405     0.7594 0.004 0.988 0.000 0.000 0.008 0.000
#> GSM149202     2  0.0508     0.7591 0.004 0.984 0.000 0.000 0.012 0.000
#> GSM149203     2  0.4246     0.3756 0.020 0.580 0.000 0.000 0.400 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> ATC:hclust 101         2.68e-12 2
#> ATC:hclust  99         1.77e-25 3
#> ATC:hclust  49         1.30e-19 4
#> ATC:hclust  90         5.45e-28 5
#> ATC:hclust  78         1.23e-27 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.980       0.986         0.4408 0.558   0.558
#> 3 3 0.630           0.778       0.852         0.4007 0.773   0.603
#> 4 4 0.695           0.785       0.790         0.1665 0.906   0.748
#> 5 5 0.788           0.865       0.888         0.0929 0.890   0.640
#> 6 6 0.850           0.749       0.857         0.0434 0.967   0.844

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     1   0.204      0.976 0.968 0.032
#> GSM149100     1   0.204      0.976 0.968 0.032
#> GSM149101     1   0.204      0.976 0.968 0.032
#> GSM149102     1   0.204      0.976 0.968 0.032
#> GSM149103     2   0.000      0.992 0.000 1.000
#> GSM149104     1   0.204      0.976 0.968 0.032
#> GSM149105     1   0.204      0.976 0.968 0.032
#> GSM149106     1   0.204      0.976 0.968 0.032
#> GSM149107     1   0.184      0.976 0.972 0.028
#> GSM149108     1   0.184      0.976 0.972 0.028
#> GSM149109     1   0.204      0.976 0.968 0.032
#> GSM149110     1   0.204      0.976 0.968 0.032
#> GSM149111     1   0.204      0.976 0.968 0.032
#> GSM149112     1   0.204      0.976 0.968 0.032
#> GSM149113     1   0.204      0.976 0.968 0.032
#> GSM149114     1   0.204      0.976 0.968 0.032
#> GSM149115     2   0.204      0.975 0.032 0.968
#> GSM149116     1   0.000      0.974 1.000 0.000
#> GSM149117     2   0.204      0.975 0.032 0.968
#> GSM149118     1   0.000      0.974 1.000 0.000
#> GSM149119     1   0.000      0.974 1.000 0.000
#> GSM149120     1   0.000      0.974 1.000 0.000
#> GSM149121     1   0.000      0.974 1.000 0.000
#> GSM149122     1   0.000      0.974 1.000 0.000
#> GSM149123     1   0.000      0.974 1.000 0.000
#> GSM149124     1   0.000      0.974 1.000 0.000
#> GSM149125     1   0.000      0.974 1.000 0.000
#> GSM149126     1   0.000      0.974 1.000 0.000
#> GSM149127     1   0.000      0.974 1.000 0.000
#> GSM149128     1   0.000      0.974 1.000 0.000
#> GSM149129     1   0.000      0.974 1.000 0.000
#> GSM149130     2   0.204      0.975 0.032 0.968
#> GSM149131     2   0.204      0.975 0.032 0.968
#> GSM149132     1   0.000      0.974 1.000 0.000
#> GSM149133     1   0.000      0.974 1.000 0.000
#> GSM149134     2   0.204      0.975 0.032 0.968
#> GSM149135     2   0.204      0.975 0.032 0.968
#> GSM149136     2   0.204      0.975 0.032 0.968
#> GSM149137     2   0.204      0.975 0.032 0.968
#> GSM149138     2   0.204      0.975 0.032 0.968
#> GSM149139     2   0.204      0.975 0.032 0.968
#> GSM149140     2   0.204      0.975 0.032 0.968
#> GSM149141     2   0.141      0.981 0.020 0.980
#> GSM149142     2   0.000      0.992 0.000 1.000
#> GSM149143     2   0.000      0.992 0.000 1.000
#> GSM149144     2   0.000      0.992 0.000 1.000
#> GSM149145     2   0.000      0.992 0.000 1.000
#> GSM149146     2   0.000      0.992 0.000 1.000
#> GSM149147     2   0.204      0.975 0.032 0.968
#> GSM149148     2   0.204      0.975 0.032 0.968
#> GSM149149     2   0.204      0.975 0.032 0.968
#> GSM149150     2   0.000      0.992 0.000 1.000
#> GSM149151     2   0.204      0.975 0.032 0.968
#> GSM149152     2   0.278      0.964 0.048 0.952
#> GSM149153     2   0.000      0.992 0.000 1.000
#> GSM149154     1   0.204      0.976 0.968 0.032
#> GSM149155     2   0.000      0.992 0.000 1.000
#> GSM149156     2   0.000      0.992 0.000 1.000
#> GSM149157     2   0.000      0.992 0.000 1.000
#> GSM149158     2   0.000      0.992 0.000 1.000
#> GSM149159     2   0.000      0.992 0.000 1.000
#> GSM149160     2   0.000      0.992 0.000 1.000
#> GSM149161     2   0.000      0.992 0.000 1.000
#> GSM149162     2   0.000      0.992 0.000 1.000
#> GSM149163     2   0.000      0.992 0.000 1.000
#> GSM149164     2   0.000      0.992 0.000 1.000
#> GSM149165     2   0.000      0.992 0.000 1.000
#> GSM149166     2   0.000      0.992 0.000 1.000
#> GSM149167     2   0.141      0.981 0.020 0.980
#> GSM149168     2   0.000      0.992 0.000 1.000
#> GSM149169     2   0.141      0.981 0.020 0.980
#> GSM149170     2   0.000      0.992 0.000 1.000
#> GSM149171     2   0.000      0.992 0.000 1.000
#> GSM149172     2   0.000      0.992 0.000 1.000
#> GSM149173     2   0.000      0.992 0.000 1.000
#> GSM149174     2   0.000      0.992 0.000 1.000
#> GSM149175     1   0.204      0.976 0.968 0.032
#> GSM149176     2   0.000      0.992 0.000 1.000
#> GSM149177     2   0.000      0.992 0.000 1.000
#> GSM149178     2   0.000      0.992 0.000 1.000
#> GSM149179     2   0.000      0.992 0.000 1.000
#> GSM149180     2   0.000      0.992 0.000 1.000
#> GSM149181     2   0.000      0.992 0.000 1.000
#> GSM149182     2   0.000      0.992 0.000 1.000
#> GSM149183     2   0.000      0.992 0.000 1.000
#> GSM149184     2   0.000      0.992 0.000 1.000
#> GSM149185     2   0.000      0.992 0.000 1.000
#> GSM149186     2   0.000      0.992 0.000 1.000
#> GSM149187     2   0.000      0.992 0.000 1.000
#> GSM149188     2   0.000      0.992 0.000 1.000
#> GSM149189     2   0.000      0.992 0.000 1.000
#> GSM149190     2   0.000      0.992 0.000 1.000
#> GSM149191     2   0.000      0.992 0.000 1.000
#> GSM149192     2   0.000      0.992 0.000 1.000
#> GSM149193     2   0.000      0.992 0.000 1.000
#> GSM149194     2   0.000      0.992 0.000 1.000
#> GSM149195     1   0.204      0.976 0.968 0.032
#> GSM149196     2   0.000      0.992 0.000 1.000
#> GSM149197     2   0.000      0.992 0.000 1.000
#> GSM149198     1   0.861      0.596 0.716 0.284
#> GSM149199     2   0.000      0.992 0.000 1.000
#> GSM149200     2   0.000      0.992 0.000 1.000
#> GSM149201     2   0.000      0.992 0.000 1.000
#> GSM149202     2   0.000      0.992 0.000 1.000
#> GSM149203     2   0.000      0.992 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3   0.000      0.852 0.000 0.000 1.000
#> GSM149100     3   0.000      0.852 0.000 0.000 1.000
#> GSM149101     3   0.000      0.852 0.000 0.000 1.000
#> GSM149102     3   0.000      0.852 0.000 0.000 1.000
#> GSM149103     1   0.767      0.696 0.652 0.260 0.088
#> GSM149104     3   0.000      0.852 0.000 0.000 1.000
#> GSM149105     3   0.000      0.852 0.000 0.000 1.000
#> GSM149106     3   0.116      0.848 0.028 0.000 0.972
#> GSM149107     3   0.000      0.852 0.000 0.000 1.000
#> GSM149108     3   0.000      0.852 0.000 0.000 1.000
#> GSM149109     3   0.000      0.852 0.000 0.000 1.000
#> GSM149110     3   0.000      0.852 0.000 0.000 1.000
#> GSM149111     3   0.000      0.852 0.000 0.000 1.000
#> GSM149112     3   0.000      0.852 0.000 0.000 1.000
#> GSM149113     3   0.000      0.852 0.000 0.000 1.000
#> GSM149114     3   0.000      0.852 0.000 0.000 1.000
#> GSM149115     1   0.362      0.644 0.864 0.136 0.000
#> GSM149116     3   0.588      0.780 0.348 0.000 0.652
#> GSM149117     1   0.604      0.757 0.620 0.380 0.000
#> GSM149118     3   0.595      0.772 0.360 0.000 0.640
#> GSM149119     3   0.588      0.780 0.348 0.000 0.652
#> GSM149120     3   0.595      0.772 0.360 0.000 0.640
#> GSM149121     1   0.288      0.427 0.904 0.000 0.096
#> GSM149122     3   0.588      0.780 0.348 0.000 0.652
#> GSM149123     3   0.597      0.768 0.364 0.000 0.636
#> GSM149124     3   0.597      0.768 0.364 0.000 0.636
#> GSM149125     3   0.595      0.772 0.360 0.000 0.640
#> GSM149126     3   0.588      0.780 0.348 0.000 0.652
#> GSM149127     3   0.588      0.780 0.348 0.000 0.652
#> GSM149128     3   0.588      0.780 0.348 0.000 0.652
#> GSM149129     3   0.588      0.780 0.348 0.000 0.652
#> GSM149130     1   0.597      0.769 0.636 0.364 0.000
#> GSM149131     1   0.103      0.570 0.976 0.024 0.000
#> GSM149132     3   0.588      0.780 0.348 0.000 0.652
#> GSM149133     1   0.510      0.070 0.752 0.000 0.248
#> GSM149134     1   0.312      0.676 0.892 0.108 0.000
#> GSM149135     1   0.601      0.765 0.628 0.372 0.000
#> GSM149136     1   0.601      0.765 0.628 0.372 0.000
#> GSM149137     1   0.601      0.765 0.628 0.372 0.000
#> GSM149138     1   0.593      0.768 0.644 0.356 0.000
#> GSM149139     1   0.597      0.769 0.636 0.364 0.000
#> GSM149140     1   0.603      0.761 0.624 0.376 0.000
#> GSM149141     1   0.540      0.737 0.720 0.280 0.000
#> GSM149142     1   0.631      0.547 0.508 0.492 0.000
#> GSM149143     2   0.480      0.717 0.220 0.780 0.000
#> GSM149144     2   0.216      0.847 0.064 0.936 0.000
#> GSM149145     1   0.593      0.644 0.644 0.356 0.000
#> GSM149146     2   0.000      0.897 0.000 1.000 0.000
#> GSM149147     1   0.556      0.749 0.700 0.300 0.000
#> GSM149148     1   0.597      0.769 0.636 0.364 0.000
#> GSM149149     1   0.597      0.769 0.636 0.364 0.000
#> GSM149150     2   0.628     -0.440 0.460 0.540 0.000
#> GSM149151     1   0.597      0.769 0.636 0.364 0.000
#> GSM149152     1   0.000      0.541 1.000 0.000 0.000
#> GSM149153     1   0.593      0.644 0.644 0.356 0.000
#> GSM149154     3   0.288      0.775 0.096 0.000 0.904
#> GSM149155     2   0.000      0.897 0.000 1.000 0.000
#> GSM149156     2   0.000      0.897 0.000 1.000 0.000
#> GSM149157     2   0.000      0.897 0.000 1.000 0.000
#> GSM149158     2   0.216      0.847 0.064 0.936 0.000
#> GSM149159     2   0.296      0.856 0.100 0.900 0.000
#> GSM149160     2   0.116      0.891 0.028 0.972 0.000
#> GSM149161     2   0.216      0.847 0.064 0.936 0.000
#> GSM149162     2   0.000      0.897 0.000 1.000 0.000
#> GSM149163     2   0.000      0.897 0.000 1.000 0.000
#> GSM149164     2   0.533      0.637 0.272 0.728 0.000
#> GSM149165     2   0.164      0.886 0.044 0.956 0.000
#> GSM149166     2   0.216      0.847 0.064 0.936 0.000
#> GSM149167     2   0.620     -0.331 0.424 0.576 0.000
#> GSM149168     2   0.304      0.854 0.104 0.896 0.000
#> GSM149169     1   0.631      0.553 0.508 0.492 0.000
#> GSM149170     2   0.304      0.854 0.104 0.896 0.000
#> GSM149171     2   0.312      0.852 0.108 0.892 0.000
#> GSM149172     2   0.435      0.773 0.184 0.816 0.000
#> GSM149173     2   0.312      0.852 0.108 0.892 0.000
#> GSM149174     2   0.216      0.847 0.064 0.936 0.000
#> GSM149175     3   0.000      0.852 0.000 0.000 1.000
#> GSM149176     2   0.103      0.882 0.024 0.976 0.000
#> GSM149177     2   0.319      0.850 0.112 0.888 0.000
#> GSM149178     2   0.450      0.760 0.196 0.804 0.000
#> GSM149179     2   0.000      0.897 0.000 1.000 0.000
#> GSM149180     2   0.000      0.897 0.000 1.000 0.000
#> GSM149181     2   0.000      0.897 0.000 1.000 0.000
#> GSM149182     2   0.000      0.897 0.000 1.000 0.000
#> GSM149183     2   0.000      0.897 0.000 1.000 0.000
#> GSM149184     2   0.000      0.897 0.000 1.000 0.000
#> GSM149185     2   0.288      0.857 0.096 0.904 0.000
#> GSM149186     2   0.000      0.897 0.000 1.000 0.000
#> GSM149187     2   0.000      0.897 0.000 1.000 0.000
#> GSM149188     2   0.153      0.887 0.040 0.960 0.000
#> GSM149189     2   0.312      0.852 0.108 0.892 0.000
#> GSM149190     2   0.216      0.847 0.064 0.936 0.000
#> GSM149191     2   0.312      0.852 0.108 0.892 0.000
#> GSM149192     2   0.141      0.889 0.036 0.964 0.000
#> GSM149193     2   0.000      0.897 0.000 1.000 0.000
#> GSM149194     2   0.000      0.897 0.000 1.000 0.000
#> GSM149195     3   0.000      0.852 0.000 0.000 1.000
#> GSM149196     2   0.000      0.897 0.000 1.000 0.000
#> GSM149197     2   0.000      0.897 0.000 1.000 0.000
#> GSM149198     1   0.000      0.541 1.000 0.000 0.000
#> GSM149199     2   0.000      0.897 0.000 1.000 0.000
#> GSM149200     2   0.312      0.852 0.108 0.892 0.000
#> GSM149201     2   0.000      0.897 0.000 1.000 0.000
#> GSM149202     2   0.153      0.887 0.040 0.960 0.000
#> GSM149203     2   0.312      0.852 0.108 0.892 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.5093     0.9670 0.012 0.000 0.640 0.348
#> GSM149100     3  0.4973     0.9670 0.008 0.000 0.644 0.348
#> GSM149101     3  0.4973     0.9670 0.008 0.000 0.644 0.348
#> GSM149102     3  0.4973     0.9670 0.008 0.000 0.644 0.348
#> GSM149103     1  0.3994     0.7840 0.828 0.028 0.140 0.004
#> GSM149104     3  0.4973     0.9670 0.008 0.000 0.644 0.348
#> GSM149105     3  0.4973     0.9669 0.008 0.000 0.644 0.348
#> GSM149106     3  0.4697     0.9618 0.000 0.000 0.644 0.356
#> GSM149107     3  0.4973     0.9670 0.008 0.000 0.644 0.348
#> GSM149108     3  0.4973     0.9670 0.008 0.000 0.644 0.348
#> GSM149109     3  0.5093     0.9670 0.012 0.000 0.640 0.348
#> GSM149110     3  0.4973     0.9669 0.008 0.000 0.644 0.348
#> GSM149111     3  0.4973     0.9669 0.008 0.000 0.644 0.348
#> GSM149112     3  0.4973     0.9669 0.008 0.000 0.644 0.348
#> GSM149113     3  0.4973     0.9669 0.008 0.000 0.644 0.348
#> GSM149114     3  0.4661     0.9667 0.000 0.000 0.652 0.348
#> GSM149115     1  0.2555     0.8658 0.920 0.040 0.008 0.032
#> GSM149116     4  0.0188     0.9062 0.004 0.000 0.000 0.996
#> GSM149117     1  0.2271     0.8737 0.916 0.076 0.008 0.000
#> GSM149118     4  0.0817     0.9036 0.024 0.000 0.000 0.976
#> GSM149119     4  0.0188     0.9062 0.004 0.000 0.000 0.996
#> GSM149120     4  0.0817     0.9036 0.024 0.000 0.000 0.976
#> GSM149121     4  0.5038     0.4466 0.336 0.000 0.012 0.652
#> GSM149122     4  0.0188     0.9062 0.004 0.000 0.000 0.996
#> GSM149123     4  0.1022     0.8971 0.032 0.000 0.000 0.968
#> GSM149124     4  0.1209     0.8943 0.032 0.000 0.004 0.964
#> GSM149125     4  0.0817     0.9036 0.024 0.000 0.000 0.976
#> GSM149126     4  0.0188     0.9062 0.004 0.000 0.000 0.996
#> GSM149127     4  0.0188     0.9062 0.004 0.000 0.000 0.996
#> GSM149128     4  0.0188     0.9062 0.004 0.000 0.000 0.996
#> GSM149129     4  0.0188     0.9062 0.004 0.000 0.000 0.996
#> GSM149130     1  0.1474     0.8823 0.948 0.052 0.000 0.000
#> GSM149131     1  0.1767     0.8358 0.944 0.000 0.012 0.044
#> GSM149132     4  0.0188     0.9062 0.004 0.000 0.000 0.996
#> GSM149133     4  0.4284     0.6447 0.224 0.000 0.012 0.764
#> GSM149134     1  0.1109     0.8514 0.968 0.000 0.004 0.028
#> GSM149135     1  0.1792     0.8796 0.932 0.068 0.000 0.000
#> GSM149136     1  0.1792     0.8796 0.932 0.068 0.000 0.000
#> GSM149137     1  0.1792     0.8796 0.932 0.068 0.000 0.000
#> GSM149138     1  0.1474     0.8823 0.948 0.052 0.000 0.000
#> GSM149139     1  0.1557     0.8827 0.944 0.056 0.000 0.000
#> GSM149140     1  0.1867     0.8775 0.928 0.072 0.000 0.000
#> GSM149141     1  0.1520     0.8646 0.956 0.020 0.024 0.000
#> GSM149142     1  0.3937     0.7873 0.800 0.188 0.012 0.000
#> GSM149143     2  0.6993     0.5977 0.132 0.532 0.336 0.000
#> GSM149144     2  0.4744     0.4647 0.284 0.704 0.012 0.000
#> GSM149145     1  0.3991     0.7955 0.832 0.048 0.120 0.000
#> GSM149146     2  0.1109     0.7751 0.028 0.968 0.004 0.000
#> GSM149147     1  0.0592     0.8682 0.984 0.016 0.000 0.000
#> GSM149148     1  0.1557     0.8827 0.944 0.056 0.000 0.000
#> GSM149149     1  0.1557     0.8827 0.944 0.056 0.000 0.000
#> GSM149150     1  0.3978     0.7831 0.796 0.192 0.012 0.000
#> GSM149151     1  0.1637     0.8820 0.940 0.060 0.000 0.000
#> GSM149152     1  0.1975     0.8325 0.936 0.000 0.016 0.048
#> GSM149153     1  0.3934     0.7985 0.836 0.048 0.116 0.000
#> GSM149154     3  0.6139     0.7484 0.056 0.016 0.664 0.264
#> GSM149155     2  0.0921     0.7760 0.028 0.972 0.000 0.000
#> GSM149156     2  0.0921     0.7760 0.028 0.972 0.000 0.000
#> GSM149157     2  0.0469     0.7767 0.012 0.988 0.000 0.000
#> GSM149158     2  0.4744     0.4647 0.284 0.704 0.012 0.000
#> GSM149159     2  0.5966     0.6825 0.060 0.624 0.316 0.000
#> GSM149160     2  0.3306     0.7572 0.004 0.840 0.156 0.000
#> GSM149161     2  0.4744     0.4647 0.284 0.704 0.012 0.000
#> GSM149162     2  0.1151     0.7762 0.008 0.968 0.024 0.000
#> GSM149163     2  0.0921     0.7760 0.028 0.972 0.000 0.000
#> GSM149164     1  0.7837    -0.0838 0.408 0.296 0.296 0.000
#> GSM149165     2  0.4343     0.7268 0.004 0.732 0.264 0.000
#> GSM149166     2  0.4770     0.4560 0.288 0.700 0.012 0.000
#> GSM149167     1  0.5558     0.3575 0.548 0.432 0.020 0.000
#> GSM149168     2  0.5966     0.6825 0.060 0.624 0.316 0.000
#> GSM149169     1  0.4361     0.7619 0.772 0.208 0.020 0.000
#> GSM149170     2  0.5966     0.6825 0.060 0.624 0.316 0.000
#> GSM149171     2  0.5966     0.6825 0.060 0.624 0.316 0.000
#> GSM149172     2  0.6809     0.6175 0.116 0.552 0.332 0.000
#> GSM149173     2  0.5966     0.6825 0.060 0.624 0.316 0.000
#> GSM149174     2  0.4744     0.4647 0.284 0.704 0.012 0.000
#> GSM149175     3  0.4605     0.9568 0.000 0.000 0.664 0.336
#> GSM149176     2  0.4284     0.5656 0.224 0.764 0.012 0.000
#> GSM149177     2  0.5499     0.7179 0.072 0.712 0.216 0.000
#> GSM149178     2  0.7084     0.5943 0.140 0.520 0.340 0.000
#> GSM149179     2  0.1356     0.7723 0.032 0.960 0.008 0.000
#> GSM149180     2  0.1109     0.7751 0.028 0.968 0.004 0.000
#> GSM149181     2  0.0672     0.7769 0.008 0.984 0.008 0.000
#> GSM149182     2  0.1356     0.7723 0.032 0.960 0.008 0.000
#> GSM149183     2  0.0921     0.7760 0.028 0.972 0.000 0.000
#> GSM149184     2  0.1724     0.7688 0.032 0.948 0.020 0.000
#> GSM149185     2  0.5827     0.6864 0.052 0.632 0.316 0.000
#> GSM149186     2  0.0921     0.7760 0.028 0.972 0.000 0.000
#> GSM149187     2  0.0921     0.7760 0.028 0.972 0.000 0.000
#> GSM149188     2  0.4252     0.7308 0.004 0.744 0.252 0.000
#> GSM149189     2  0.5966     0.6825 0.060 0.624 0.316 0.000
#> GSM149190     2  0.4744     0.4647 0.284 0.704 0.012 0.000
#> GSM149191     2  0.5966     0.6825 0.060 0.624 0.316 0.000
#> GSM149192     2  0.4220     0.7321 0.004 0.748 0.248 0.000
#> GSM149193     2  0.0672     0.7769 0.008 0.984 0.008 0.000
#> GSM149194     2  0.1256     0.7740 0.028 0.964 0.008 0.000
#> GSM149195     3  0.4391     0.8320 0.008 0.000 0.740 0.252
#> GSM149196     2  0.0921     0.7760 0.028 0.972 0.000 0.000
#> GSM149197     2  0.1356     0.7723 0.032 0.960 0.008 0.000
#> GSM149198     1  0.1975     0.8320 0.936 0.000 0.016 0.048
#> GSM149199     2  0.1488     0.7710 0.032 0.956 0.012 0.000
#> GSM149200     2  0.5966     0.6825 0.060 0.624 0.316 0.000
#> GSM149201     2  0.0921     0.7760 0.028 0.972 0.000 0.000
#> GSM149202     2  0.4220     0.7321 0.004 0.748 0.248 0.000
#> GSM149203     2  0.5966     0.6825 0.060 0.624 0.316 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0671      0.952 0.004 0.000 0.980 0.000 0.016
#> GSM149100     3  0.0566      0.952 0.004 0.000 0.984 0.000 0.012
#> GSM149101     3  0.0566      0.952 0.004 0.000 0.984 0.000 0.012
#> GSM149102     3  0.0566      0.952 0.004 0.000 0.984 0.000 0.012
#> GSM149103     1  0.6215      0.666 0.652 0.032 0.020 0.080 0.216
#> GSM149104     3  0.0566      0.952 0.004 0.000 0.984 0.000 0.012
#> GSM149105     3  0.0404      0.951 0.000 0.000 0.988 0.000 0.012
#> GSM149106     3  0.0000      0.952 0.000 0.000 1.000 0.000 0.000
#> GSM149107     3  0.0566      0.952 0.004 0.000 0.984 0.000 0.012
#> GSM149108     3  0.0566      0.952 0.004 0.000 0.984 0.000 0.012
#> GSM149109     3  0.0671      0.952 0.004 0.000 0.980 0.000 0.016
#> GSM149110     3  0.0404      0.951 0.000 0.000 0.988 0.000 0.012
#> GSM149111     3  0.0404      0.951 0.000 0.000 0.988 0.000 0.012
#> GSM149112     3  0.0404      0.951 0.000 0.000 0.988 0.000 0.012
#> GSM149113     3  0.0404      0.951 0.000 0.000 0.988 0.000 0.012
#> GSM149114     3  0.0290      0.952 0.000 0.000 0.992 0.000 0.008
#> GSM149115     1  0.1731      0.901 0.932 0.004 0.000 0.004 0.060
#> GSM149116     4  0.3123      0.963 0.000 0.000 0.160 0.828 0.012
#> GSM149117     1  0.2251      0.898 0.916 0.008 0.000 0.024 0.052
#> GSM149118     4  0.3224      0.963 0.000 0.000 0.160 0.824 0.016
#> GSM149119     4  0.2732      0.965 0.000 0.000 0.160 0.840 0.000
#> GSM149120     4  0.3224      0.963 0.000 0.000 0.160 0.824 0.016
#> GSM149121     4  0.3236      0.772 0.152 0.000 0.000 0.828 0.020
#> GSM149122     4  0.2732      0.965 0.000 0.000 0.160 0.840 0.000
#> GSM149123     4  0.3087      0.961 0.008 0.000 0.152 0.836 0.004
#> GSM149124     4  0.3379      0.957 0.008 0.000 0.148 0.828 0.016
#> GSM149125     4  0.3224      0.963 0.000 0.000 0.160 0.824 0.016
#> GSM149126     4  0.2732      0.965 0.000 0.000 0.160 0.840 0.000
#> GSM149127     4  0.2732      0.965 0.000 0.000 0.160 0.840 0.000
#> GSM149128     4  0.2732      0.965 0.000 0.000 0.160 0.840 0.000
#> GSM149129     4  0.2732      0.965 0.000 0.000 0.160 0.840 0.000
#> GSM149130     1  0.0162      0.922 0.996 0.004 0.000 0.000 0.000
#> GSM149131     1  0.0865      0.917 0.972 0.000 0.000 0.024 0.004
#> GSM149132     4  0.2732      0.965 0.000 0.000 0.160 0.840 0.000
#> GSM149133     4  0.3514      0.853 0.088 0.000 0.048 0.848 0.016
#> GSM149134     1  0.1251      0.910 0.956 0.000 0.000 0.008 0.036
#> GSM149135     1  0.0290      0.922 0.992 0.008 0.000 0.000 0.000
#> GSM149136     1  0.0290      0.922 0.992 0.008 0.000 0.000 0.000
#> GSM149137     1  0.0290      0.922 0.992 0.008 0.000 0.000 0.000
#> GSM149138     1  0.0162      0.922 0.996 0.004 0.000 0.000 0.000
#> GSM149139     1  0.0162      0.922 0.996 0.004 0.000 0.000 0.000
#> GSM149140     1  0.0290      0.922 0.992 0.008 0.000 0.000 0.000
#> GSM149141     1  0.2494      0.895 0.908 0.032 0.000 0.044 0.016
#> GSM149142     1  0.3750      0.842 0.824 0.088 0.000 0.084 0.004
#> GSM149143     5  0.4079      0.854 0.020 0.108 0.000 0.060 0.812
#> GSM149144     2  0.1956      0.844 0.076 0.916 0.000 0.008 0.000
#> GSM149145     1  0.5453      0.717 0.696 0.032 0.000 0.076 0.196
#> GSM149146     2  0.1124      0.888 0.000 0.960 0.000 0.004 0.036
#> GSM149147     1  0.0324      0.922 0.992 0.000 0.000 0.004 0.004
#> GSM149148     1  0.0324      0.923 0.992 0.004 0.000 0.004 0.000
#> GSM149149     1  0.0324      0.923 0.992 0.004 0.000 0.004 0.000
#> GSM149150     1  0.3928      0.837 0.816 0.092 0.000 0.084 0.008
#> GSM149151     1  0.0324      0.923 0.992 0.004 0.000 0.004 0.000
#> GSM149152     1  0.2278      0.895 0.908 0.000 0.000 0.032 0.060
#> GSM149153     1  0.4980      0.762 0.740 0.032 0.000 0.060 0.168
#> GSM149154     3  0.5422      0.363 0.004 0.000 0.568 0.056 0.372
#> GSM149155     2  0.0963      0.889 0.000 0.964 0.000 0.000 0.036
#> GSM149156     2  0.1251      0.888 0.000 0.956 0.000 0.008 0.036
#> GSM149157     2  0.2797      0.857 0.000 0.880 0.000 0.060 0.060
#> GSM149158     2  0.2983      0.828 0.076 0.868 0.000 0.056 0.000
#> GSM149159     5  0.2612      0.899 0.000 0.124 0.000 0.008 0.868
#> GSM149160     5  0.5604      0.308 0.000 0.456 0.000 0.072 0.472
#> GSM149161     2  0.3242      0.819 0.076 0.852 0.000 0.072 0.000
#> GSM149162     2  0.3688      0.781 0.000 0.816 0.000 0.060 0.124
#> GSM149163     2  0.0963      0.889 0.000 0.964 0.000 0.000 0.036
#> GSM149164     5  0.5937      0.701 0.108 0.096 0.000 0.104 0.692
#> GSM149165     5  0.3563      0.841 0.000 0.208 0.000 0.012 0.780
#> GSM149166     2  0.2616      0.836 0.076 0.888 0.000 0.036 0.000
#> GSM149167     2  0.6574      0.266 0.336 0.532 0.000 0.080 0.052
#> GSM149168     5  0.2329      0.901 0.000 0.124 0.000 0.000 0.876
#> GSM149169     1  0.4883      0.808 0.764 0.100 0.000 0.100 0.036
#> GSM149170     5  0.2329      0.901 0.000 0.124 0.000 0.000 0.876
#> GSM149171     5  0.2329      0.901 0.000 0.124 0.000 0.000 0.876
#> GSM149172     5  0.3154      0.871 0.008 0.088 0.000 0.040 0.864
#> GSM149173     5  0.2179      0.898 0.000 0.112 0.000 0.000 0.888
#> GSM149174     2  0.3239      0.819 0.080 0.852 0.000 0.068 0.000
#> GSM149175     3  0.1549      0.910 0.000 0.000 0.944 0.040 0.016
#> GSM149176     2  0.1671      0.846 0.076 0.924 0.000 0.000 0.000
#> GSM149177     2  0.5175     -0.257 0.000 0.496 0.000 0.040 0.464
#> GSM149178     5  0.3584      0.856 0.012 0.112 0.000 0.040 0.836
#> GSM149179     2  0.0290      0.888 0.000 0.992 0.000 0.000 0.008
#> GSM149180     2  0.0880      0.889 0.000 0.968 0.000 0.000 0.032
#> GSM149181     2  0.1357      0.881 0.000 0.948 0.000 0.004 0.048
#> GSM149182     2  0.0290      0.888 0.000 0.992 0.000 0.000 0.008
#> GSM149183     2  0.1124      0.888 0.000 0.960 0.000 0.004 0.036
#> GSM149184     2  0.2278      0.853 0.000 0.908 0.000 0.032 0.060
#> GSM149185     5  0.2723      0.898 0.000 0.124 0.000 0.012 0.864
#> GSM149186     2  0.0963      0.889 0.000 0.964 0.000 0.000 0.036
#> GSM149187     2  0.0963      0.889 0.000 0.964 0.000 0.000 0.036
#> GSM149188     5  0.3992      0.778 0.000 0.268 0.000 0.012 0.720
#> GSM149189     5  0.2462      0.896 0.000 0.112 0.000 0.008 0.880
#> GSM149190     2  0.2983      0.827 0.076 0.868 0.000 0.056 0.000
#> GSM149191     5  0.2179      0.898 0.000 0.112 0.000 0.000 0.888
#> GSM149192     5  0.4065      0.781 0.000 0.264 0.000 0.016 0.720
#> GSM149193     2  0.1282      0.884 0.000 0.952 0.000 0.004 0.044
#> GSM149194     2  0.1800      0.877 0.000 0.932 0.000 0.048 0.020
#> GSM149195     3  0.2104      0.888 0.000 0.000 0.916 0.024 0.060
#> GSM149196     2  0.1124      0.888 0.000 0.960 0.000 0.004 0.036
#> GSM149197     2  0.0609      0.889 0.000 0.980 0.000 0.000 0.020
#> GSM149198     1  0.2769      0.875 0.876 0.000 0.000 0.032 0.092
#> GSM149199     2  0.0609      0.883 0.000 0.980 0.000 0.020 0.000
#> GSM149200     5  0.2329      0.901 0.000 0.124 0.000 0.000 0.876
#> GSM149201     2  0.1124      0.888 0.000 0.960 0.000 0.004 0.036
#> GSM149202     5  0.4227      0.746 0.000 0.292 0.000 0.016 0.692
#> GSM149203     5  0.2329      0.901 0.000 0.124 0.000 0.000 0.876

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.0146     0.9467 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM149100     3  0.1196     0.9450 0.000 0.000 0.952 0.000 0.008 0.040
#> GSM149101     3  0.1196     0.9450 0.000 0.000 0.952 0.000 0.008 0.040
#> GSM149102     3  0.1196     0.9450 0.000 0.000 0.952 0.000 0.008 0.040
#> GSM149103     6  0.5423     0.2118 0.352 0.008 0.004 0.000 0.088 0.548
#> GSM149104     3  0.1196     0.9450 0.000 0.000 0.952 0.000 0.008 0.040
#> GSM149105     3  0.0146     0.9467 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM149106     3  0.1926     0.9034 0.000 0.000 0.912 0.020 0.000 0.068
#> GSM149107     3  0.1196     0.9450 0.000 0.000 0.952 0.000 0.008 0.040
#> GSM149108     3  0.1333     0.9423 0.000 0.000 0.944 0.000 0.008 0.048
#> GSM149109     3  0.0146     0.9467 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM149110     3  0.0146     0.9467 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM149111     3  0.0146     0.9467 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM149112     3  0.0146     0.9467 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM149113     3  0.0146     0.9467 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM149114     3  0.1082     0.9454 0.000 0.000 0.956 0.000 0.004 0.040
#> GSM149115     1  0.2697     0.6732 0.812 0.000 0.000 0.000 0.000 0.188
#> GSM149116     4  0.2380     0.9622 0.000 0.000 0.068 0.892 0.004 0.036
#> GSM149117     1  0.3660     0.6424 0.772 0.000 0.000 0.036 0.004 0.188
#> GSM149118     4  0.2152     0.9638 0.000 0.000 0.068 0.904 0.004 0.024
#> GSM149119     4  0.2069     0.9642 0.000 0.000 0.068 0.908 0.004 0.020
#> GSM149120     4  0.2152     0.9638 0.000 0.000 0.068 0.904 0.004 0.024
#> GSM149121     4  0.3411     0.8124 0.060 0.000 0.000 0.816 0.004 0.120
#> GSM149122     4  0.2069     0.9642 0.000 0.000 0.068 0.908 0.004 0.020
#> GSM149123     4  0.1471     0.9669 0.004 0.000 0.064 0.932 0.000 0.000
#> GSM149124     4  0.2781     0.9591 0.004 0.000 0.064 0.876 0.008 0.048
#> GSM149125     4  0.2152     0.9638 0.000 0.000 0.068 0.904 0.004 0.024
#> GSM149126     4  0.1387     0.9675 0.000 0.000 0.068 0.932 0.000 0.000
#> GSM149127     4  0.2069     0.9642 0.000 0.000 0.068 0.908 0.004 0.020
#> GSM149128     4  0.1387     0.9675 0.000 0.000 0.068 0.932 0.000 0.000
#> GSM149129     4  0.1387     0.9675 0.000 0.000 0.068 0.932 0.000 0.000
#> GSM149130     1  0.0260     0.7834 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM149131     1  0.2178     0.7230 0.868 0.000 0.000 0.000 0.000 0.132
#> GSM149132     4  0.1387     0.9675 0.000 0.000 0.068 0.932 0.000 0.000
#> GSM149133     4  0.2426     0.9091 0.020 0.000 0.012 0.896 0.004 0.068
#> GSM149134     1  0.2048     0.7293 0.880 0.000 0.000 0.000 0.000 0.120
#> GSM149135     1  0.0146     0.7838 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM149136     1  0.0146     0.7838 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM149137     1  0.0146     0.7838 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM149138     1  0.0000     0.7835 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149139     1  0.0146     0.7827 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM149140     1  0.0146     0.7838 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM149141     1  0.3653     0.5122 0.692 0.008 0.000 0.000 0.000 0.300
#> GSM149142     1  0.5439     0.4084 0.612 0.056 0.000 0.028 0.012 0.292
#> GSM149143     6  0.4566    -0.0752 0.008 0.020 0.000 0.000 0.484 0.488
#> GSM149144     2  0.1675     0.8499 0.024 0.936 0.000 0.008 0.000 0.032
#> GSM149145     6  0.5371     0.1348 0.392 0.008 0.000 0.000 0.088 0.512
#> GSM149146     2  0.0508     0.8680 0.000 0.984 0.000 0.000 0.012 0.004
#> GSM149147     1  0.0790     0.7780 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM149148     1  0.0547     0.7811 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM149149     1  0.0632     0.7798 0.976 0.000 0.000 0.000 0.000 0.024
#> GSM149150     1  0.5516     0.3772 0.592 0.056 0.000 0.028 0.012 0.312
#> GSM149151     1  0.0713     0.7801 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM149152     1  0.3823     0.3699 0.564 0.000 0.000 0.000 0.000 0.436
#> GSM149153     1  0.5451    -0.1382 0.456 0.008 0.000 0.000 0.092 0.444
#> GSM149154     6  0.6379     0.3388 0.040 0.000 0.248 0.000 0.204 0.508
#> GSM149155     2  0.0363     0.8686 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM149156     2  0.1138     0.8667 0.000 0.960 0.000 0.004 0.012 0.024
#> GSM149157     2  0.3982     0.7881 0.000 0.792 0.000 0.032 0.060 0.116
#> GSM149158     2  0.3988     0.7666 0.024 0.772 0.000 0.040 0.000 0.164
#> GSM149159     5  0.1410     0.8605 0.000 0.044 0.000 0.004 0.944 0.008
#> GSM149160     2  0.6297     0.2965 0.000 0.476 0.000 0.032 0.324 0.168
#> GSM149161     2  0.4754     0.7312 0.028 0.724 0.000 0.044 0.016 0.188
#> GSM149162     2  0.5408     0.6292 0.000 0.652 0.000 0.032 0.180 0.136
#> GSM149163     2  0.0363     0.8686 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM149164     6  0.5442     0.0708 0.020 0.020 0.000 0.032 0.420 0.508
#> GSM149165     5  0.2443     0.8201 0.000 0.096 0.000 0.004 0.880 0.020
#> GSM149166     2  0.2487     0.8369 0.024 0.892 0.000 0.020 0.000 0.064
#> GSM149167     6  0.7271    -0.0691 0.308 0.296 0.000 0.064 0.008 0.324
#> GSM149168     5  0.1549     0.8649 0.000 0.044 0.000 0.000 0.936 0.020
#> GSM149169     1  0.5886     0.3466 0.548 0.056 0.000 0.064 0.004 0.328
#> GSM149170     5  0.1480     0.8648 0.000 0.040 0.000 0.000 0.940 0.020
#> GSM149171     5  0.0865     0.8637 0.000 0.036 0.000 0.000 0.964 0.000
#> GSM149172     5  0.3974     0.4445 0.000 0.024 0.000 0.000 0.680 0.296
#> GSM149173     5  0.1418     0.8578 0.000 0.032 0.000 0.000 0.944 0.024
#> GSM149174     2  0.4732     0.7400 0.032 0.732 0.000 0.044 0.016 0.176
#> GSM149175     3  0.4026     0.4694 0.000 0.000 0.636 0.000 0.016 0.348
#> GSM149176     2  0.1434     0.8523 0.024 0.948 0.000 0.008 0.000 0.020
#> GSM149177     2  0.6248    -0.1380 0.004 0.420 0.000 0.004 0.248 0.324
#> GSM149178     5  0.4353     0.1714 0.004 0.020 0.000 0.000 0.588 0.388
#> GSM149179     2  0.0520     0.8663 0.000 0.984 0.000 0.008 0.000 0.008
#> GSM149180     2  0.0146     0.8684 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM149181     2  0.1285     0.8464 0.000 0.944 0.000 0.000 0.052 0.004
#> GSM149182     2  0.0520     0.8663 0.000 0.984 0.000 0.008 0.000 0.008
#> GSM149183     2  0.0508     0.8680 0.000 0.984 0.000 0.000 0.012 0.004
#> GSM149184     2  0.4077     0.7066 0.000 0.736 0.000 0.044 0.008 0.212
#> GSM149185     5  0.1442     0.8596 0.000 0.040 0.000 0.004 0.944 0.012
#> GSM149186     2  0.0508     0.8680 0.000 0.984 0.000 0.000 0.012 0.004
#> GSM149187     2  0.0363     0.8686 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM149188     5  0.2673     0.7895 0.000 0.132 0.000 0.004 0.852 0.012
#> GSM149189     5  0.1313     0.8520 0.000 0.028 0.000 0.004 0.952 0.016
#> GSM149190     2  0.4121     0.7536 0.024 0.756 0.000 0.040 0.000 0.180
#> GSM149191     5  0.1418     0.8578 0.000 0.032 0.000 0.000 0.944 0.024
#> GSM149192     5  0.2932     0.7730 0.000 0.140 0.000 0.004 0.836 0.020
#> GSM149193     2  0.0692     0.8651 0.000 0.976 0.000 0.000 0.020 0.004
#> GSM149194     2  0.2519     0.8409 0.000 0.888 0.000 0.020 0.020 0.072
#> GSM149195     3  0.1745     0.8971 0.000 0.000 0.924 0.000 0.020 0.056
#> GSM149196     2  0.0508     0.8680 0.000 0.984 0.000 0.000 0.012 0.004
#> GSM149197     2  0.0779     0.8674 0.000 0.976 0.000 0.008 0.008 0.008
#> GSM149198     1  0.4310     0.3070 0.580 0.000 0.000 0.000 0.024 0.396
#> GSM149199     2  0.2492     0.8334 0.004 0.876 0.000 0.020 0.000 0.100
#> GSM149200     5  0.1480     0.8648 0.000 0.040 0.000 0.000 0.940 0.020
#> GSM149201     2  0.0508     0.8680 0.000 0.984 0.000 0.000 0.012 0.004
#> GSM149202     5  0.3516     0.6573 0.000 0.220 0.000 0.004 0.760 0.016
#> GSM149203     5  0.1408     0.8634 0.000 0.036 0.000 0.000 0.944 0.020

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> ATC:kmeans 105         1.55e-11 2
#> ATC:kmeans 101         8.08e-19 3
#> ATC:kmeans  96         1.11e-28 4
#> ATC:kmeans 101         3.73e-30 5
#> ATC:kmeans  88         6.55e-29 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.988       0.996         0.4828 0.519   0.519
#> 3 3 0.972           0.931       0.969         0.3534 0.788   0.606
#> 4 4 0.899           0.902       0.939         0.1118 0.914   0.758
#> 5 5 0.948           0.926       0.966         0.0895 0.896   0.645
#> 6 6 0.894           0.856       0.925         0.0311 0.962   0.827

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     1  0.0000      1.000 1.000 0.000
#> GSM149100     1  0.0000      1.000 1.000 0.000
#> GSM149101     1  0.0000      1.000 1.000 0.000
#> GSM149102     1  0.0000      1.000 1.000 0.000
#> GSM149103     1  0.0000      1.000 1.000 0.000
#> GSM149104     1  0.0000      1.000 1.000 0.000
#> GSM149105     1  0.0000      1.000 1.000 0.000
#> GSM149106     1  0.0000      1.000 1.000 0.000
#> GSM149107     1  0.0000      1.000 1.000 0.000
#> GSM149108     1  0.0000      1.000 1.000 0.000
#> GSM149109     1  0.0000      1.000 1.000 0.000
#> GSM149110     1  0.0000      1.000 1.000 0.000
#> GSM149111     1  0.0000      1.000 1.000 0.000
#> GSM149112     1  0.0000      1.000 1.000 0.000
#> GSM149113     1  0.0000      1.000 1.000 0.000
#> GSM149114     1  0.0000      1.000 1.000 0.000
#> GSM149115     2  0.0672      0.985 0.008 0.992
#> GSM149116     1  0.0000      1.000 1.000 0.000
#> GSM149117     2  0.0000      0.993 0.000 1.000
#> GSM149118     1  0.0000      1.000 1.000 0.000
#> GSM149119     1  0.0000      1.000 1.000 0.000
#> GSM149120     1  0.0000      1.000 1.000 0.000
#> GSM149121     1  0.0000      1.000 1.000 0.000
#> GSM149122     1  0.0000      1.000 1.000 0.000
#> GSM149123     1  0.0000      1.000 1.000 0.000
#> GSM149124     1  0.0000      1.000 1.000 0.000
#> GSM149125     1  0.0000      1.000 1.000 0.000
#> GSM149126     1  0.0000      1.000 1.000 0.000
#> GSM149127     1  0.0000      1.000 1.000 0.000
#> GSM149128     1  0.0000      1.000 1.000 0.000
#> GSM149129     1  0.0000      1.000 1.000 0.000
#> GSM149130     2  0.0000      0.993 0.000 1.000
#> GSM149131     1  0.0000      1.000 1.000 0.000
#> GSM149132     1  0.0000      1.000 1.000 0.000
#> GSM149133     1  0.0000      1.000 1.000 0.000
#> GSM149134     2  0.9833      0.264 0.424 0.576
#> GSM149135     2  0.0000      0.993 0.000 1.000
#> GSM149136     2  0.0000      0.993 0.000 1.000
#> GSM149137     2  0.0000      0.993 0.000 1.000
#> GSM149138     2  0.0000      0.993 0.000 1.000
#> GSM149139     2  0.0000      0.993 0.000 1.000
#> GSM149140     2  0.0000      0.993 0.000 1.000
#> GSM149141     2  0.0000      0.993 0.000 1.000
#> GSM149142     2  0.0000      0.993 0.000 1.000
#> GSM149143     1  0.0000      1.000 1.000 0.000
#> GSM149144     2  0.0000      0.993 0.000 1.000
#> GSM149145     2  0.0000      0.993 0.000 1.000
#> GSM149146     2  0.0000      0.993 0.000 1.000
#> GSM149147     2  0.0000      0.993 0.000 1.000
#> GSM149148     2  0.0000      0.993 0.000 1.000
#> GSM149149     2  0.0000      0.993 0.000 1.000
#> GSM149150     2  0.0000      0.993 0.000 1.000
#> GSM149151     2  0.0000      0.993 0.000 1.000
#> GSM149152     1  0.0000      1.000 1.000 0.000
#> GSM149153     2  0.0000      0.993 0.000 1.000
#> GSM149154     1  0.0000      1.000 1.000 0.000
#> GSM149155     2  0.0000      0.993 0.000 1.000
#> GSM149156     2  0.0000      0.993 0.000 1.000
#> GSM149157     2  0.0000      0.993 0.000 1.000
#> GSM149158     2  0.0000      0.993 0.000 1.000
#> GSM149159     2  0.0000      0.993 0.000 1.000
#> GSM149160     2  0.0000      0.993 0.000 1.000
#> GSM149161     2  0.0000      0.993 0.000 1.000
#> GSM149162     2  0.0000      0.993 0.000 1.000
#> GSM149163     2  0.0000      0.993 0.000 1.000
#> GSM149164     2  0.0000      0.993 0.000 1.000
#> GSM149165     2  0.0000      0.993 0.000 1.000
#> GSM149166     2  0.0000      0.993 0.000 1.000
#> GSM149167     2  0.0000      0.993 0.000 1.000
#> GSM149168     2  0.0000      0.993 0.000 1.000
#> GSM149169     2  0.0000      0.993 0.000 1.000
#> GSM149170     2  0.0000      0.993 0.000 1.000
#> GSM149171     2  0.0000      0.993 0.000 1.000
#> GSM149172     1  0.0000      1.000 1.000 0.000
#> GSM149173     1  0.0672      0.992 0.992 0.008
#> GSM149174     2  0.0000      0.993 0.000 1.000
#> GSM149175     1  0.0000      1.000 1.000 0.000
#> GSM149176     2  0.0000      0.993 0.000 1.000
#> GSM149177     2  0.0000      0.993 0.000 1.000
#> GSM149178     1  0.0000      1.000 1.000 0.000
#> GSM149179     2  0.0000      0.993 0.000 1.000
#> GSM149180     2  0.0000      0.993 0.000 1.000
#> GSM149181     2  0.0000      0.993 0.000 1.000
#> GSM149182     2  0.0000      0.993 0.000 1.000
#> GSM149183     2  0.0000      0.993 0.000 1.000
#> GSM149184     2  0.0000      0.993 0.000 1.000
#> GSM149185     2  0.0000      0.993 0.000 1.000
#> GSM149186     2  0.0000      0.993 0.000 1.000
#> GSM149187     2  0.0000      0.993 0.000 1.000
#> GSM149188     2  0.0000      0.993 0.000 1.000
#> GSM149189     2  0.0000      0.993 0.000 1.000
#> GSM149190     2  0.0000      0.993 0.000 1.000
#> GSM149191     2  0.0000      0.993 0.000 1.000
#> GSM149192     2  0.0000      0.993 0.000 1.000
#> GSM149193     2  0.0000      0.993 0.000 1.000
#> GSM149194     2  0.0000      0.993 0.000 1.000
#> GSM149195     1  0.0000      1.000 1.000 0.000
#> GSM149196     2  0.0000      0.993 0.000 1.000
#> GSM149197     2  0.0000      0.993 0.000 1.000
#> GSM149198     1  0.0000      1.000 1.000 0.000
#> GSM149199     2  0.0000      0.993 0.000 1.000
#> GSM149200     2  0.0672      0.985 0.008 0.992
#> GSM149201     2  0.0000      0.993 0.000 1.000
#> GSM149202     2  0.0000      0.993 0.000 1.000
#> GSM149203     2  0.0000      0.993 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149100     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149101     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149102     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149103     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149104     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149105     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149106     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149107     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149108     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149109     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149110     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149111     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149112     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149113     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149114     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149115     1  0.0000      0.950 1.000 0.000 0.000
#> GSM149116     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149117     1  0.0000      0.950 1.000 0.000 0.000
#> GSM149118     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149119     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149120     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149121     1  0.6299      0.088 0.524 0.000 0.476
#> GSM149122     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149123     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149124     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149125     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149126     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149127     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149128     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149129     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149130     1  0.0000      0.950 1.000 0.000 0.000
#> GSM149131     1  0.0592      0.940 0.988 0.000 0.012
#> GSM149132     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149133     3  0.5678      0.513 0.316 0.000 0.684
#> GSM149134     1  0.0000      0.950 1.000 0.000 0.000
#> GSM149135     1  0.0000      0.950 1.000 0.000 0.000
#> GSM149136     1  0.0000      0.950 1.000 0.000 0.000
#> GSM149137     1  0.0000      0.950 1.000 0.000 0.000
#> GSM149138     1  0.0000      0.950 1.000 0.000 0.000
#> GSM149139     1  0.0000      0.950 1.000 0.000 0.000
#> GSM149140     1  0.0000      0.950 1.000 0.000 0.000
#> GSM149141     1  0.0000      0.950 1.000 0.000 0.000
#> GSM149142     1  0.0000      0.950 1.000 0.000 0.000
#> GSM149143     3  0.1411      0.930 0.000 0.036 0.964
#> GSM149144     2  0.2625      0.928 0.084 0.916 0.000
#> GSM149145     1  0.0592      0.942 0.988 0.012 0.000
#> GSM149146     2  0.0592      0.978 0.012 0.988 0.000
#> GSM149147     1  0.0000      0.950 1.000 0.000 0.000
#> GSM149148     1  0.0000      0.950 1.000 0.000 0.000
#> GSM149149     1  0.0000      0.950 1.000 0.000 0.000
#> GSM149150     1  0.2537      0.883 0.920 0.080 0.000
#> GSM149151     1  0.0000      0.950 1.000 0.000 0.000
#> GSM149152     1  0.5835      0.478 0.660 0.000 0.340
#> GSM149153     1  0.0424      0.945 0.992 0.008 0.000
#> GSM149154     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149155     2  0.0592      0.978 0.012 0.988 0.000
#> GSM149156     2  0.0592      0.978 0.012 0.988 0.000
#> GSM149157     2  0.0424      0.978 0.008 0.992 0.000
#> GSM149158     2  0.2711      0.925 0.088 0.912 0.000
#> GSM149159     2  0.0000      0.976 0.000 1.000 0.000
#> GSM149160     2  0.0424      0.978 0.008 0.992 0.000
#> GSM149161     2  0.2711      0.925 0.088 0.912 0.000
#> GSM149162     2  0.0424      0.978 0.008 0.992 0.000
#> GSM149163     2  0.0592      0.978 0.012 0.988 0.000
#> GSM149164     2  0.3038      0.907 0.104 0.896 0.000
#> GSM149165     2  0.0000      0.976 0.000 1.000 0.000
#> GSM149166     2  0.2796      0.921 0.092 0.908 0.000
#> GSM149167     1  0.3619      0.819 0.864 0.136 0.000
#> GSM149168     2  0.0000      0.976 0.000 1.000 0.000
#> GSM149169     1  0.0592      0.942 0.988 0.012 0.000
#> GSM149170     2  0.0000      0.976 0.000 1.000 0.000
#> GSM149171     2  0.0000      0.976 0.000 1.000 0.000
#> GSM149172     3  0.6280      0.178 0.000 0.460 0.540
#> GSM149173     2  0.3116      0.862 0.000 0.892 0.108
#> GSM149174     2  0.2625      0.928 0.084 0.916 0.000
#> GSM149175     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149176     2  0.2448      0.935 0.076 0.924 0.000
#> GSM149177     2  0.0592      0.978 0.012 0.988 0.000
#> GSM149178     3  0.0237      0.962 0.000 0.004 0.996
#> GSM149179     2  0.0592      0.978 0.012 0.988 0.000
#> GSM149180     2  0.0592      0.978 0.012 0.988 0.000
#> GSM149181     2  0.0424      0.978 0.008 0.992 0.000
#> GSM149182     2  0.0592      0.978 0.012 0.988 0.000
#> GSM149183     2  0.0592      0.978 0.012 0.988 0.000
#> GSM149184     2  0.0592      0.978 0.012 0.988 0.000
#> GSM149185     2  0.0000      0.976 0.000 1.000 0.000
#> GSM149186     2  0.0592      0.978 0.012 0.988 0.000
#> GSM149187     2  0.0592      0.978 0.012 0.988 0.000
#> GSM149188     2  0.0000      0.976 0.000 1.000 0.000
#> GSM149189     2  0.0000      0.976 0.000 1.000 0.000
#> GSM149190     2  0.2625      0.928 0.084 0.916 0.000
#> GSM149191     2  0.0000      0.976 0.000 1.000 0.000
#> GSM149192     2  0.0000      0.976 0.000 1.000 0.000
#> GSM149193     2  0.0424      0.978 0.008 0.992 0.000
#> GSM149194     2  0.0592      0.978 0.012 0.988 0.000
#> GSM149195     3  0.0000      0.965 0.000 0.000 1.000
#> GSM149196     2  0.0592      0.978 0.012 0.988 0.000
#> GSM149197     2  0.0592      0.978 0.012 0.988 0.000
#> GSM149198     3  0.5591      0.538 0.304 0.000 0.696
#> GSM149199     2  0.0592      0.978 0.012 0.988 0.000
#> GSM149200     2  0.0000      0.976 0.000 1.000 0.000
#> GSM149201     2  0.0592      0.978 0.012 0.988 0.000
#> GSM149202     2  0.0000      0.976 0.000 1.000 0.000
#> GSM149203     2  0.0000      0.976 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.0000      0.948 0.000 0.000 1.000 0.000
#> GSM149100     3  0.0000      0.948 0.000 0.000 1.000 0.000
#> GSM149101     3  0.0000      0.948 0.000 0.000 1.000 0.000
#> GSM149102     3  0.0000      0.948 0.000 0.000 1.000 0.000
#> GSM149103     3  0.0000      0.948 0.000 0.000 1.000 0.000
#> GSM149104     3  0.0000      0.948 0.000 0.000 1.000 0.000
#> GSM149105     3  0.0000      0.948 0.000 0.000 1.000 0.000
#> GSM149106     3  0.0336      0.940 0.000 0.000 0.992 0.008
#> GSM149107     3  0.0000      0.948 0.000 0.000 1.000 0.000
#> GSM149108     3  0.0000      0.948 0.000 0.000 1.000 0.000
#> GSM149109     3  0.0000      0.948 0.000 0.000 1.000 0.000
#> GSM149110     3  0.0000      0.948 0.000 0.000 1.000 0.000
#> GSM149111     3  0.0000      0.948 0.000 0.000 1.000 0.000
#> GSM149112     3  0.0000      0.948 0.000 0.000 1.000 0.000
#> GSM149113     3  0.0000      0.948 0.000 0.000 1.000 0.000
#> GSM149114     3  0.0000      0.948 0.000 0.000 1.000 0.000
#> GSM149115     1  0.4008      0.646 0.756 0.000 0.000 0.244
#> GSM149116     4  0.2081      0.996 0.000 0.000 0.084 0.916
#> GSM149117     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM149118     4  0.2081      0.996 0.000 0.000 0.084 0.916
#> GSM149119     4  0.2081      0.996 0.000 0.000 0.084 0.916
#> GSM149120     4  0.2081      0.996 0.000 0.000 0.084 0.916
#> GSM149121     4  0.2376      0.981 0.016 0.000 0.068 0.916
#> GSM149122     4  0.2081      0.996 0.000 0.000 0.084 0.916
#> GSM149123     4  0.2081      0.996 0.000 0.000 0.084 0.916
#> GSM149124     4  0.2081      0.996 0.000 0.000 0.084 0.916
#> GSM149125     4  0.2081      0.996 0.000 0.000 0.084 0.916
#> GSM149126     4  0.2081      0.996 0.000 0.000 0.084 0.916
#> GSM149127     4  0.2081      0.996 0.000 0.000 0.084 0.916
#> GSM149128     4  0.2081      0.996 0.000 0.000 0.084 0.916
#> GSM149129     4  0.2081      0.996 0.000 0.000 0.084 0.916
#> GSM149130     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM149131     1  0.4406      0.583 0.700 0.000 0.000 0.300
#> GSM149132     4  0.2081      0.996 0.000 0.000 0.084 0.916
#> GSM149133     4  0.2197      0.993 0.004 0.000 0.080 0.916
#> GSM149134     1  0.0188      0.952 0.996 0.000 0.000 0.004
#> GSM149135     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM149136     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM149137     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM149138     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM149139     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM149140     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM149141     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM149142     1  0.0817      0.938 0.976 0.024 0.000 0.000
#> GSM149143     3  0.2081      0.873 0.000 0.000 0.916 0.084
#> GSM149144     2  0.4134      0.682 0.260 0.740 0.000 0.000
#> GSM149145     1  0.0469      0.948 0.988 0.000 0.000 0.012
#> GSM149146     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149147     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM149148     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM149149     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM149150     1  0.1792      0.901 0.932 0.068 0.000 0.000
#> GSM149151     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM149152     4  0.2413      0.976 0.020 0.000 0.064 0.916
#> GSM149153     1  0.0188      0.953 0.996 0.000 0.000 0.004
#> GSM149154     3  0.0000      0.948 0.000 0.000 1.000 0.000
#> GSM149155     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149156     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149157     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149158     2  0.4193      0.671 0.268 0.732 0.000 0.000
#> GSM149159     2  0.2081      0.887 0.000 0.916 0.000 0.084
#> GSM149160     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149161     2  0.4250      0.659 0.276 0.724 0.000 0.000
#> GSM149162     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149163     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149164     2  0.4643      0.543 0.344 0.656 0.000 0.000
#> GSM149165     2  0.0817      0.914 0.000 0.976 0.000 0.024
#> GSM149166     2  0.4250      0.659 0.276 0.724 0.000 0.000
#> GSM149167     1  0.3024      0.812 0.852 0.148 0.000 0.000
#> GSM149168     2  0.2081      0.887 0.000 0.916 0.000 0.084
#> GSM149169     1  0.1716      0.905 0.936 0.064 0.000 0.000
#> GSM149170     2  0.2081      0.887 0.000 0.916 0.000 0.084
#> GSM149171     2  0.2081      0.887 0.000 0.916 0.000 0.084
#> GSM149172     3  0.6393      0.533 0.000 0.284 0.616 0.100
#> GSM149173     3  0.6074      0.575 0.000 0.268 0.648 0.084
#> GSM149174     2  0.4134      0.682 0.260 0.740 0.000 0.000
#> GSM149175     3  0.0000      0.948 0.000 0.000 1.000 0.000
#> GSM149176     2  0.4008      0.702 0.244 0.756 0.000 0.000
#> GSM149177     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149178     3  0.3610      0.795 0.000 0.000 0.800 0.200
#> GSM149179     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149180     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149181     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149182     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149183     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149184     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149185     2  0.2081      0.887 0.000 0.916 0.000 0.084
#> GSM149186     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149187     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149188     2  0.0817      0.914 0.000 0.976 0.000 0.024
#> GSM149189     2  0.2081      0.887 0.000 0.916 0.000 0.084
#> GSM149190     2  0.4164      0.677 0.264 0.736 0.000 0.000
#> GSM149191     2  0.3439      0.850 0.000 0.868 0.048 0.084
#> GSM149192     2  0.0469      0.917 0.000 0.988 0.000 0.012
#> GSM149193     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149194     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149195     3  0.0000      0.948 0.000 0.000 1.000 0.000
#> GSM149196     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149197     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149198     4  0.2197      0.993 0.004 0.000 0.080 0.916
#> GSM149199     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149200     2  0.4805      0.753 0.000 0.784 0.132 0.084
#> GSM149201     2  0.0000      0.921 0.000 1.000 0.000 0.000
#> GSM149202     2  0.0469      0.917 0.000 0.988 0.000 0.012
#> GSM149203     2  0.2266      0.885 0.000 0.912 0.004 0.084

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149100     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149101     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149102     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149103     3  0.0290      0.992 0.000 0.000 0.992 0.000 0.008
#> GSM149104     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149105     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149106     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149107     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149108     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149109     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149110     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149111     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149112     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149113     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149114     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149115     1  0.0162      0.962 0.996 0.000 0.000 0.004 0.000
#> GSM149116     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149117     1  0.0162      0.962 0.996 0.004 0.000 0.000 0.000
#> GSM149118     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149119     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149120     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149121     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149122     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149123     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149124     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149125     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149126     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149127     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149128     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149129     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149130     1  0.0000      0.964 1.000 0.000 0.000 0.000 0.000
#> GSM149131     1  0.3336      0.715 0.772 0.000 0.000 0.228 0.000
#> GSM149132     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149133     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149134     1  0.0000      0.964 1.000 0.000 0.000 0.000 0.000
#> GSM149135     1  0.0000      0.964 1.000 0.000 0.000 0.000 0.000
#> GSM149136     1  0.0000      0.964 1.000 0.000 0.000 0.000 0.000
#> GSM149137     1  0.0000      0.964 1.000 0.000 0.000 0.000 0.000
#> GSM149138     1  0.0000      0.964 1.000 0.000 0.000 0.000 0.000
#> GSM149139     1  0.0000      0.964 1.000 0.000 0.000 0.000 0.000
#> GSM149140     1  0.0000      0.964 1.000 0.000 0.000 0.000 0.000
#> GSM149141     1  0.0510      0.958 0.984 0.000 0.000 0.000 0.016
#> GSM149142     1  0.1386      0.936 0.952 0.032 0.000 0.000 0.016
#> GSM149143     5  0.3966      0.472 0.000 0.000 0.336 0.000 0.664
#> GSM149144     2  0.0000      0.968 0.000 1.000 0.000 0.000 0.000
#> GSM149145     1  0.0963      0.947 0.964 0.000 0.000 0.000 0.036
#> GSM149146     2  0.0000      0.968 0.000 1.000 0.000 0.000 0.000
#> GSM149147     1  0.0000      0.964 1.000 0.000 0.000 0.000 0.000
#> GSM149148     1  0.0000      0.964 1.000 0.000 0.000 0.000 0.000
#> GSM149149     1  0.0000      0.964 1.000 0.000 0.000 0.000 0.000
#> GSM149150     1  0.2966      0.823 0.848 0.136 0.000 0.000 0.016
#> GSM149151     1  0.0000      0.964 1.000 0.000 0.000 0.000 0.000
#> GSM149152     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149153     1  0.0703      0.955 0.976 0.000 0.000 0.000 0.024
#> GSM149154     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149155     2  0.0162      0.968 0.000 0.996 0.000 0.000 0.004
#> GSM149156     2  0.0162      0.968 0.000 0.996 0.000 0.000 0.004
#> GSM149157     2  0.0880      0.949 0.000 0.968 0.000 0.000 0.032
#> GSM149158     2  0.0000      0.968 0.000 1.000 0.000 0.000 0.000
#> GSM149159     5  0.0510      0.869 0.000 0.016 0.000 0.000 0.984
#> GSM149160     2  0.1121      0.938 0.000 0.956 0.000 0.000 0.044
#> GSM149161     2  0.0000      0.968 0.000 1.000 0.000 0.000 0.000
#> GSM149162     2  0.0794      0.953 0.000 0.972 0.000 0.000 0.028
#> GSM149163     2  0.0162      0.968 0.000 0.996 0.000 0.000 0.004
#> GSM149164     2  0.4421      0.686 0.068 0.748 0.000 0.000 0.184
#> GSM149165     5  0.2471      0.801 0.000 0.136 0.000 0.000 0.864
#> GSM149166     2  0.0000      0.968 0.000 1.000 0.000 0.000 0.000
#> GSM149167     2  0.3366      0.685 0.232 0.768 0.000 0.000 0.000
#> GSM149168     5  0.0510      0.869 0.000 0.016 0.000 0.000 0.984
#> GSM149169     1  0.2732      0.797 0.840 0.160 0.000 0.000 0.000
#> GSM149170     5  0.0510      0.869 0.000 0.016 0.000 0.000 0.984
#> GSM149171     5  0.0510      0.869 0.000 0.016 0.000 0.000 0.984
#> GSM149172     5  0.0566      0.858 0.000 0.000 0.012 0.004 0.984
#> GSM149173     5  0.0510      0.858 0.000 0.000 0.016 0.000 0.984
#> GSM149174     2  0.0000      0.968 0.000 1.000 0.000 0.000 0.000
#> GSM149175     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149176     2  0.0000      0.968 0.000 1.000 0.000 0.000 0.000
#> GSM149177     2  0.0000      0.968 0.000 1.000 0.000 0.000 0.000
#> GSM149178     5  0.4090      0.598 0.000 0.000 0.268 0.016 0.716
#> GSM149179     2  0.0000      0.968 0.000 1.000 0.000 0.000 0.000
#> GSM149180     2  0.0162      0.968 0.000 0.996 0.000 0.000 0.004
#> GSM149181     2  0.2891      0.768 0.000 0.824 0.000 0.000 0.176
#> GSM149182     2  0.0000      0.968 0.000 1.000 0.000 0.000 0.000
#> GSM149183     2  0.0404      0.964 0.000 0.988 0.000 0.000 0.012
#> GSM149184     2  0.0000      0.968 0.000 1.000 0.000 0.000 0.000
#> GSM149185     5  0.0609      0.868 0.000 0.020 0.000 0.000 0.980
#> GSM149186     2  0.0162      0.968 0.000 0.996 0.000 0.000 0.004
#> GSM149187     2  0.0162      0.968 0.000 0.996 0.000 0.000 0.004
#> GSM149188     5  0.2732      0.779 0.000 0.160 0.000 0.000 0.840
#> GSM149189     5  0.0510      0.869 0.000 0.016 0.000 0.000 0.984
#> GSM149190     2  0.0000      0.968 0.000 1.000 0.000 0.000 0.000
#> GSM149191     5  0.0404      0.867 0.000 0.012 0.000 0.000 0.988
#> GSM149192     5  0.4287      0.214 0.000 0.460 0.000 0.000 0.540
#> GSM149193     2  0.1341      0.924 0.000 0.944 0.000 0.000 0.056
#> GSM149194     2  0.0162      0.968 0.000 0.996 0.000 0.000 0.004
#> GSM149195     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM149196     2  0.0290      0.966 0.000 0.992 0.000 0.000 0.008
#> GSM149197     2  0.0000      0.968 0.000 1.000 0.000 0.000 0.000
#> GSM149198     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM149199     2  0.0000      0.968 0.000 1.000 0.000 0.000 0.000
#> GSM149200     5  0.0510      0.869 0.000 0.016 0.000 0.000 0.984
#> GSM149201     2  0.0290      0.966 0.000 0.992 0.000 0.000 0.008
#> GSM149202     5  0.4306      0.104 0.000 0.492 0.000 0.000 0.508
#> GSM149203     5  0.0510      0.869 0.000 0.016 0.000 0.000 0.984

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.0000     0.9895 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149100     3  0.0000     0.9895 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149101     3  0.0000     0.9895 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149102     3  0.0000     0.9895 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149103     3  0.2697     0.7785 0.000 0.000 0.812 0.000 0.000 0.188
#> GSM149104     3  0.0000     0.9895 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149105     3  0.0000     0.9895 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149106     3  0.0000     0.9895 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149107     3  0.0000     0.9895 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149108     3  0.0000     0.9895 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149109     3  0.0000     0.9895 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149110     3  0.0000     0.9895 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149111     3  0.0000     0.9895 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149112     3  0.0000     0.9895 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149113     3  0.0000     0.9895 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149114     3  0.0000     0.9895 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149115     1  0.1225     0.8625 0.952 0.000 0.000 0.012 0.000 0.036
#> GSM149116     4  0.0000     0.9889 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149117     1  0.1863     0.8121 0.896 0.000 0.000 0.000 0.000 0.104
#> GSM149118     4  0.0000     0.9889 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149119     4  0.0000     0.9889 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149120     4  0.0000     0.9889 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149121     4  0.0146     0.9862 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM149122     4  0.0000     0.9889 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149123     4  0.0000     0.9889 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149124     4  0.0000     0.9889 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149125     4  0.0000     0.9889 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149126     4  0.0000     0.9889 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149127     4  0.0000     0.9889 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149128     4  0.0000     0.9889 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149129     4  0.0000     0.9889 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149130     1  0.0260     0.8922 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM149131     1  0.3431     0.5325 0.756 0.000 0.000 0.228 0.000 0.016
#> GSM149132     4  0.0000     0.9889 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149133     4  0.0000     0.9889 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149134     1  0.0547     0.8841 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM149135     1  0.0000     0.8941 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149136     1  0.0000     0.8941 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149137     1  0.0000     0.8941 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149138     1  0.0000     0.8941 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149139     1  0.0146     0.8929 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM149140     1  0.0146     0.8936 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM149141     6  0.3266     0.8161 0.272 0.000 0.000 0.000 0.000 0.728
#> GSM149142     6  0.3564     0.8158 0.264 0.012 0.000 0.000 0.000 0.724
#> GSM149143     5  0.5742     0.3177 0.000 0.000 0.268 0.000 0.512 0.220
#> GSM149144     2  0.0858     0.8820 0.000 0.968 0.000 0.000 0.004 0.028
#> GSM149145     6  0.3126     0.8306 0.248 0.000 0.000 0.000 0.000 0.752
#> GSM149146     2  0.0146     0.8855 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM149147     1  0.1007     0.8737 0.956 0.000 0.000 0.000 0.000 0.044
#> GSM149148     1  0.0713     0.8845 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM149149     1  0.0865     0.8795 0.964 0.000 0.000 0.000 0.000 0.036
#> GSM149150     6  0.3333     0.8086 0.192 0.024 0.000 0.000 0.000 0.784
#> GSM149151     1  0.0790     0.8828 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM149152     4  0.1498     0.9372 0.032 0.000 0.000 0.940 0.000 0.028
#> GSM149153     6  0.3126     0.8306 0.248 0.000 0.000 0.000 0.000 0.752
#> GSM149154     3  0.0146     0.9862 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM149155     2  0.0146     0.8863 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM149156     2  0.1082     0.8801 0.000 0.956 0.000 0.000 0.004 0.040
#> GSM149157     2  0.2909     0.8273 0.000 0.836 0.000 0.000 0.028 0.136
#> GSM149158     2  0.2964     0.7876 0.000 0.792 0.000 0.000 0.004 0.204
#> GSM149159     5  0.0146     0.8840 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM149160     2  0.3766     0.7562 0.000 0.748 0.000 0.000 0.040 0.212
#> GSM149161     2  0.3189     0.7550 0.000 0.760 0.000 0.000 0.004 0.236
#> GSM149162     2  0.2709     0.8346 0.000 0.848 0.000 0.000 0.020 0.132
#> GSM149163     2  0.0146     0.8863 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM149164     6  0.3958     0.5532 0.016 0.172 0.000 0.000 0.044 0.768
#> GSM149165     5  0.3012     0.6762 0.000 0.196 0.000 0.000 0.796 0.008
#> GSM149166     2  0.0508     0.8844 0.004 0.984 0.000 0.000 0.000 0.012
#> GSM149167     2  0.6184    -0.0176 0.264 0.388 0.000 0.000 0.004 0.344
#> GSM149168     5  0.0291     0.8837 0.000 0.004 0.000 0.000 0.992 0.004
#> GSM149169     1  0.5989    -0.1226 0.424 0.196 0.000 0.000 0.004 0.376
#> GSM149170     5  0.0146     0.8840 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM149171     5  0.0405     0.8834 0.000 0.004 0.000 0.000 0.988 0.008
#> GSM149172     5  0.0458     0.8761 0.000 0.000 0.000 0.000 0.984 0.016
#> GSM149173     5  0.0146     0.8840 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM149174     2  0.3052     0.7808 0.000 0.780 0.000 0.000 0.004 0.216
#> GSM149175     3  0.0000     0.9895 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149176     2  0.0146     0.8861 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM149177     2  0.0777     0.8797 0.000 0.972 0.000 0.000 0.004 0.024
#> GSM149178     5  0.5383     0.4700 0.000 0.000 0.280 0.016 0.600 0.104
#> GSM149179     2  0.0146     0.8861 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM149180     2  0.0000     0.8858 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149181     2  0.1958     0.8227 0.000 0.896 0.000 0.000 0.100 0.004
#> GSM149182     2  0.0146     0.8861 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM149183     2  0.0622     0.8845 0.000 0.980 0.000 0.000 0.008 0.012
#> GSM149184     2  0.2100     0.8361 0.000 0.884 0.000 0.000 0.004 0.112
#> GSM149185     5  0.0405     0.8829 0.000 0.004 0.000 0.000 0.988 0.008
#> GSM149186     2  0.0260     0.8850 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM149187     2  0.0146     0.8863 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM149188     5  0.3073     0.6629 0.000 0.204 0.000 0.000 0.788 0.008
#> GSM149189     5  0.0717     0.8777 0.000 0.008 0.000 0.000 0.976 0.016
#> GSM149190     2  0.2871     0.7955 0.000 0.804 0.000 0.000 0.004 0.192
#> GSM149191     5  0.0405     0.8814 0.000 0.004 0.000 0.000 0.988 0.008
#> GSM149192     2  0.4175     0.1456 0.000 0.524 0.000 0.000 0.464 0.012
#> GSM149193     2  0.1010     0.8707 0.000 0.960 0.000 0.000 0.036 0.004
#> GSM149194     2  0.0632     0.8850 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM149195     3  0.0000     0.9895 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149196     2  0.0405     0.8839 0.000 0.988 0.000 0.000 0.008 0.004
#> GSM149197     2  0.0146     0.8863 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM149198     4  0.2230     0.8809 0.084 0.000 0.000 0.892 0.000 0.024
#> GSM149199     2  0.2146     0.8466 0.000 0.880 0.000 0.000 0.004 0.116
#> GSM149200     5  0.0146     0.8840 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM149201     2  0.0146     0.8857 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM149202     2  0.3782     0.4286 0.000 0.636 0.000 0.000 0.360 0.004
#> GSM149203     5  0.0405     0.8834 0.000 0.004 0.000 0.000 0.988 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>               n disease.state(p) k
#> ATC:skmeans 104         6.66e-11 2
#> ATC:skmeans 102         5.92e-19 3
#> ATC:skmeans 105         3.81e-29 4
#> ATC:skmeans 102         1.67e-30 5
#> ATC:skmeans  99         6.43e-30 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.978           0.960       0.983         0.4657 0.534   0.534
#> 3 3 0.623           0.751       0.866         0.3524 0.694   0.483
#> 4 4 0.957           0.905       0.952         0.1334 0.921   0.777
#> 5 5 0.933           0.888       0.956         0.1182 0.885   0.619
#> 6 6 0.951           0.901       0.962         0.0347 0.968   0.846

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 4 5

There is also optional best \(k\) = 2 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     1  0.0000      0.973 1.000 0.000
#> GSM149100     1  0.0000      0.973 1.000 0.000
#> GSM149101     1  0.0000      0.973 1.000 0.000
#> GSM149102     1  0.2236      0.944 0.964 0.036
#> GSM149103     2  0.0376      0.983 0.004 0.996
#> GSM149104     1  0.0000      0.973 1.000 0.000
#> GSM149105     1  0.0000      0.973 1.000 0.000
#> GSM149106     1  0.0000      0.973 1.000 0.000
#> GSM149107     1  0.0000      0.973 1.000 0.000
#> GSM149108     1  0.0000      0.973 1.000 0.000
#> GSM149109     1  0.0000      0.973 1.000 0.000
#> GSM149110     1  0.0000      0.973 1.000 0.000
#> GSM149111     1  0.0000      0.973 1.000 0.000
#> GSM149112     1  0.0000      0.973 1.000 0.000
#> GSM149113     1  0.0000      0.973 1.000 0.000
#> GSM149114     1  0.0000      0.973 1.000 0.000
#> GSM149115     1  0.6531      0.802 0.832 0.168
#> GSM149116     1  0.0000      0.973 1.000 0.000
#> GSM149117     2  0.0000      0.987 0.000 1.000
#> GSM149118     1  0.0000      0.973 1.000 0.000
#> GSM149119     1  0.0000      0.973 1.000 0.000
#> GSM149120     1  0.0000      0.973 1.000 0.000
#> GSM149121     1  0.0000      0.973 1.000 0.000
#> GSM149122     1  0.0000      0.973 1.000 0.000
#> GSM149123     1  0.0000      0.973 1.000 0.000
#> GSM149124     1  0.0000      0.973 1.000 0.000
#> GSM149125     1  0.0000      0.973 1.000 0.000
#> GSM149126     1  0.0000      0.973 1.000 0.000
#> GSM149127     1  0.0000      0.973 1.000 0.000
#> GSM149128     1  0.0000      0.973 1.000 0.000
#> GSM149129     1  0.0000      0.973 1.000 0.000
#> GSM149130     2  0.3114      0.933 0.056 0.944
#> GSM149131     1  0.4161      0.899 0.916 0.084
#> GSM149132     1  0.0000      0.973 1.000 0.000
#> GSM149133     1  0.0000      0.973 1.000 0.000
#> GSM149134     1  0.7376      0.744 0.792 0.208
#> GSM149135     2  0.0000      0.987 0.000 1.000
#> GSM149136     2  0.0000      0.987 0.000 1.000
#> GSM149137     2  0.0000      0.987 0.000 1.000
#> GSM149138     2  0.0000      0.987 0.000 1.000
#> GSM149139     2  0.7528      0.720 0.216 0.784
#> GSM149140     2  0.0000      0.987 0.000 1.000
#> GSM149141     2  0.0000      0.987 0.000 1.000
#> GSM149142     2  0.0000      0.987 0.000 1.000
#> GSM149143     2  0.9209      0.476 0.336 0.664
#> GSM149144     2  0.0000      0.987 0.000 1.000
#> GSM149145     2  0.0000      0.987 0.000 1.000
#> GSM149146     2  0.0000      0.987 0.000 1.000
#> GSM149147     2  0.0672      0.980 0.008 0.992
#> GSM149148     2  0.0000      0.987 0.000 1.000
#> GSM149149     2  0.1843      0.961 0.028 0.972
#> GSM149150     2  0.0000      0.987 0.000 1.000
#> GSM149151     2  0.0000      0.987 0.000 1.000
#> GSM149152     1  0.0000      0.973 1.000 0.000
#> GSM149153     2  0.0000      0.987 0.000 1.000
#> GSM149154     1  0.5408      0.856 0.876 0.124
#> GSM149155     2  0.0000      0.987 0.000 1.000
#> GSM149156     2  0.0000      0.987 0.000 1.000
#> GSM149157     2  0.0000      0.987 0.000 1.000
#> GSM149158     2  0.0000      0.987 0.000 1.000
#> GSM149159     2  0.0000      0.987 0.000 1.000
#> GSM149160     2  0.0000      0.987 0.000 1.000
#> GSM149161     2  0.0000      0.987 0.000 1.000
#> GSM149162     2  0.0000      0.987 0.000 1.000
#> GSM149163     2  0.0000      0.987 0.000 1.000
#> GSM149164     2  0.0000      0.987 0.000 1.000
#> GSM149165     2  0.0000      0.987 0.000 1.000
#> GSM149166     2  0.0000      0.987 0.000 1.000
#> GSM149167     2  0.0000      0.987 0.000 1.000
#> GSM149168     2  0.0000      0.987 0.000 1.000
#> GSM149169     2  0.0000      0.987 0.000 1.000
#> GSM149170     2  0.0000      0.987 0.000 1.000
#> GSM149171     2  0.0000      0.987 0.000 1.000
#> GSM149172     2  0.5294      0.858 0.120 0.880
#> GSM149173     2  0.0000      0.987 0.000 1.000
#> GSM149174     2  0.0000      0.987 0.000 1.000
#> GSM149175     1  0.0000      0.973 1.000 0.000
#> GSM149176     2  0.0000      0.987 0.000 1.000
#> GSM149177     2  0.0000      0.987 0.000 1.000
#> GSM149178     2  0.4161      0.902 0.084 0.916
#> GSM149179     2  0.0000      0.987 0.000 1.000
#> GSM149180     2  0.0000      0.987 0.000 1.000
#> GSM149181     2  0.0000      0.987 0.000 1.000
#> GSM149182     2  0.0000      0.987 0.000 1.000
#> GSM149183     2  0.0000      0.987 0.000 1.000
#> GSM149184     2  0.0000      0.987 0.000 1.000
#> GSM149185     2  0.0000      0.987 0.000 1.000
#> GSM149186     2  0.0000      0.987 0.000 1.000
#> GSM149187     2  0.0000      0.987 0.000 1.000
#> GSM149188     2  0.0000      0.987 0.000 1.000
#> GSM149189     2  0.0000      0.987 0.000 1.000
#> GSM149190     2  0.0000      0.987 0.000 1.000
#> GSM149191     2  0.0000      0.987 0.000 1.000
#> GSM149192     2  0.0000      0.987 0.000 1.000
#> GSM149193     2  0.0000      0.987 0.000 1.000
#> GSM149194     2  0.0000      0.987 0.000 1.000
#> GSM149195     1  0.9427      0.449 0.640 0.360
#> GSM149196     2  0.0000      0.987 0.000 1.000
#> GSM149197     2  0.0000      0.987 0.000 1.000
#> GSM149198     1  0.0000      0.973 1.000 0.000
#> GSM149199     2  0.0000      0.987 0.000 1.000
#> GSM149200     2  0.0000      0.987 0.000 1.000
#> GSM149201     2  0.0000      0.987 0.000 1.000
#> GSM149202     2  0.0000      0.987 0.000 1.000
#> GSM149203     2  0.0000      0.987 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0000     0.8821 0.000 0.000 1.000
#> GSM149100     3  0.0000     0.8821 0.000 0.000 1.000
#> GSM149101     3  0.0000     0.8821 0.000 0.000 1.000
#> GSM149102     3  0.0892     0.8671 0.000 0.020 0.980
#> GSM149103     2  0.4887     0.8232 0.096 0.844 0.060
#> GSM149104     3  0.0000     0.8821 0.000 0.000 1.000
#> GSM149105     3  0.0000     0.8821 0.000 0.000 1.000
#> GSM149106     3  0.3816     0.8405 0.148 0.000 0.852
#> GSM149107     3  0.0000     0.8821 0.000 0.000 1.000
#> GSM149108     3  0.0000     0.8821 0.000 0.000 1.000
#> GSM149109     3  0.0000     0.8821 0.000 0.000 1.000
#> GSM149110     3  0.0000     0.8821 0.000 0.000 1.000
#> GSM149111     3  0.0000     0.8821 0.000 0.000 1.000
#> GSM149112     3  0.0000     0.8821 0.000 0.000 1.000
#> GSM149113     3  0.0000     0.8821 0.000 0.000 1.000
#> GSM149114     3  0.0000     0.8821 0.000 0.000 1.000
#> GSM149115     1  0.3551     0.7260 0.868 0.132 0.000
#> GSM149116     3  0.4842     0.8092 0.224 0.000 0.776
#> GSM149117     1  0.4974     0.7571 0.764 0.236 0.000
#> GSM149118     1  0.6308    -0.3002 0.508 0.000 0.492
#> GSM149119     3  0.4842     0.8092 0.224 0.000 0.776
#> GSM149120     1  0.6308    -0.3002 0.508 0.000 0.492
#> GSM149121     1  0.6286    -0.2426 0.536 0.000 0.464
#> GSM149122     3  0.4842     0.8092 0.224 0.000 0.776
#> GSM149123     1  0.6308    -0.3002 0.508 0.000 0.492
#> GSM149124     1  0.6308    -0.3002 0.508 0.000 0.492
#> GSM149125     1  0.6308    -0.3002 0.508 0.000 0.492
#> GSM149126     1  0.6309    -0.3215 0.500 0.000 0.500
#> GSM149127     3  0.4842     0.8092 0.224 0.000 0.776
#> GSM149128     3  0.4842     0.8092 0.224 0.000 0.776
#> GSM149129     3  0.4842     0.8092 0.224 0.000 0.776
#> GSM149130     1  0.4842     0.7619 0.776 0.224 0.000
#> GSM149131     1  0.2448     0.6769 0.924 0.076 0.000
#> GSM149132     3  0.4842     0.8092 0.224 0.000 0.776
#> GSM149133     1  0.6307    -0.2919 0.512 0.000 0.488
#> GSM149134     1  0.3879     0.7375 0.848 0.152 0.000
#> GSM149135     1  0.4842     0.7619 0.776 0.224 0.000
#> GSM149136     1  0.4842     0.7619 0.776 0.224 0.000
#> GSM149137     1  0.4842     0.7619 0.776 0.224 0.000
#> GSM149138     1  0.4842     0.7619 0.776 0.224 0.000
#> GSM149139     1  0.4842     0.7619 0.776 0.224 0.000
#> GSM149140     1  0.4842     0.7619 0.776 0.224 0.000
#> GSM149141     1  0.4842     0.7619 0.776 0.224 0.000
#> GSM149142     1  0.4842     0.7619 0.776 0.224 0.000
#> GSM149143     2  0.2537     0.8881 0.080 0.920 0.000
#> GSM149144     1  0.4974     0.7571 0.764 0.236 0.000
#> GSM149145     2  0.5497     0.4551 0.292 0.708 0.000
#> GSM149146     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149147     1  0.4842     0.7619 0.776 0.224 0.000
#> GSM149148     1  0.4842     0.7619 0.776 0.224 0.000
#> GSM149149     1  0.4842     0.7619 0.776 0.224 0.000
#> GSM149150     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149151     1  0.4842     0.7619 0.776 0.224 0.000
#> GSM149152     1  0.0000     0.5943 1.000 0.000 0.000
#> GSM149153     1  0.6302     0.3194 0.520 0.480 0.000
#> GSM149154     3  0.5992     0.5646 0.016 0.268 0.716
#> GSM149155     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149156     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149157     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149158     1  0.4974     0.7571 0.764 0.236 0.000
#> GSM149159     2  0.0592     0.9618 0.012 0.988 0.000
#> GSM149160     2  0.0592     0.9618 0.012 0.988 0.000
#> GSM149161     1  0.5138     0.7437 0.748 0.252 0.000
#> GSM149162     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149163     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149164     2  0.0592     0.9618 0.012 0.988 0.000
#> GSM149165     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149166     1  0.4974     0.7571 0.764 0.236 0.000
#> GSM149167     1  0.4974     0.7571 0.764 0.236 0.000
#> GSM149168     2  0.0592     0.9618 0.012 0.988 0.000
#> GSM149169     1  0.4887     0.7605 0.772 0.228 0.000
#> GSM149170     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149171     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149172     2  0.0892     0.9572 0.020 0.980 0.000
#> GSM149173     2  0.2939     0.8847 0.012 0.916 0.072
#> GSM149174     1  0.4842     0.7619 0.776 0.224 0.000
#> GSM149175     3  0.3412     0.8483 0.124 0.000 0.876
#> GSM149176     1  0.6305     0.3176 0.516 0.484 0.000
#> GSM149177     2  0.0592     0.9618 0.012 0.988 0.000
#> GSM149178     2  0.1529     0.9372 0.040 0.960 0.000
#> GSM149179     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149180     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149181     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149182     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149183     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149184     2  0.3816     0.7812 0.148 0.852 0.000
#> GSM149185     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149186     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149187     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149188     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149189     2  0.0592     0.9618 0.012 0.988 0.000
#> GSM149190     1  0.4974     0.7571 0.764 0.236 0.000
#> GSM149191     2  0.0592     0.9618 0.012 0.988 0.000
#> GSM149192     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149193     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149194     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149195     3  0.6280     0.0637 0.000 0.460 0.540
#> GSM149196     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149197     2  0.0424     0.9616 0.008 0.992 0.000
#> GSM149198     1  0.1289     0.5693 0.968 0.000 0.032
#> GSM149199     2  0.4504     0.6954 0.196 0.804 0.000
#> GSM149200     2  0.0592     0.9618 0.012 0.988 0.000
#> GSM149201     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149202     2  0.0000     0.9670 0.000 1.000 0.000
#> GSM149203     2  0.0592     0.9618 0.012 0.988 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.0000      0.960 0.000 0.000 1.000 0.000
#> GSM149100     3  0.0000      0.960 0.000 0.000 1.000 0.000
#> GSM149101     3  0.0000      0.960 0.000 0.000 1.000 0.000
#> GSM149102     3  0.0000      0.960 0.000 0.000 1.000 0.000
#> GSM149103     2  0.3583      0.827 0.180 0.816 0.004 0.000
#> GSM149104     3  0.0000      0.960 0.000 0.000 1.000 0.000
#> GSM149105     3  0.0000      0.960 0.000 0.000 1.000 0.000
#> GSM149106     3  0.3569      0.743 0.000 0.000 0.804 0.196
#> GSM149107     3  0.0000      0.960 0.000 0.000 1.000 0.000
#> GSM149108     3  0.0000      0.960 0.000 0.000 1.000 0.000
#> GSM149109     3  0.0000      0.960 0.000 0.000 1.000 0.000
#> GSM149110     3  0.0000      0.960 0.000 0.000 1.000 0.000
#> GSM149111     3  0.0000      0.960 0.000 0.000 1.000 0.000
#> GSM149112     3  0.0000      0.960 0.000 0.000 1.000 0.000
#> GSM149113     3  0.0000      0.960 0.000 0.000 1.000 0.000
#> GSM149114     3  0.0000      0.960 0.000 0.000 1.000 0.000
#> GSM149115     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> GSM149116     4  0.0000      0.989 0.000 0.000 0.000 1.000
#> GSM149117     1  0.2281      0.882 0.904 0.096 0.000 0.000
#> GSM149118     4  0.0000      0.989 0.000 0.000 0.000 1.000
#> GSM149119     4  0.0000      0.989 0.000 0.000 0.000 1.000
#> GSM149120     4  0.0000      0.989 0.000 0.000 0.000 1.000
#> GSM149121     4  0.0000      0.989 0.000 0.000 0.000 1.000
#> GSM149122     4  0.0000      0.989 0.000 0.000 0.000 1.000
#> GSM149123     4  0.0000      0.989 0.000 0.000 0.000 1.000
#> GSM149124     4  0.0000      0.989 0.000 0.000 0.000 1.000
#> GSM149125     4  0.0000      0.989 0.000 0.000 0.000 1.000
#> GSM149126     4  0.0000      0.989 0.000 0.000 0.000 1.000
#> GSM149127     4  0.0000      0.989 0.000 0.000 0.000 1.000
#> GSM149128     4  0.0000      0.989 0.000 0.000 0.000 1.000
#> GSM149129     4  0.0000      0.989 0.000 0.000 0.000 1.000
#> GSM149130     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> GSM149131     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> GSM149132     4  0.0000      0.989 0.000 0.000 0.000 1.000
#> GSM149133     4  0.0000      0.989 0.000 0.000 0.000 1.000
#> GSM149134     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> GSM149135     1  0.0469      0.923 0.988 0.012 0.000 0.000
#> GSM149136     1  0.0592      0.921 0.984 0.016 0.000 0.000
#> GSM149137     1  0.0188      0.925 0.996 0.004 0.000 0.000
#> GSM149138     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> GSM149139     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> GSM149140     1  0.0188      0.925 0.996 0.004 0.000 0.000
#> GSM149141     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> GSM149142     1  0.0188      0.925 0.996 0.004 0.000 0.000
#> GSM149143     2  0.2281      0.910 0.096 0.904 0.000 0.000
#> GSM149144     1  0.2281      0.882 0.904 0.096 0.000 0.000
#> GSM149145     2  0.4790      0.469 0.380 0.620 0.000 0.000
#> GSM149146     2  0.0000      0.938 0.000 1.000 0.000 0.000
#> GSM149147     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> GSM149148     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> GSM149149     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> GSM149150     2  0.0707      0.937 0.020 0.980 0.000 0.000
#> GSM149151     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> GSM149152     1  0.0592      0.918 0.984 0.000 0.000 0.016
#> GSM149153     1  0.4817      0.298 0.612 0.388 0.000 0.000
#> GSM149154     3  0.8354      0.409 0.076 0.188 0.544 0.192
#> GSM149155     2  0.0000      0.938 0.000 1.000 0.000 0.000
#> GSM149156     2  0.0000      0.938 0.000 1.000 0.000 0.000
#> GSM149157     2  0.0336      0.938 0.008 0.992 0.000 0.000
#> GSM149158     1  0.2281      0.882 0.904 0.096 0.000 0.000
#> GSM149159     2  0.2149      0.914 0.088 0.912 0.000 0.000
#> GSM149160     2  0.2081      0.916 0.084 0.916 0.000 0.000
#> GSM149161     1  0.3074      0.834 0.848 0.152 0.000 0.000
#> GSM149162     2  0.0592      0.938 0.016 0.984 0.000 0.000
#> GSM149163     2  0.0000      0.938 0.000 1.000 0.000 0.000
#> GSM149164     2  0.2281      0.910 0.096 0.904 0.000 0.000
#> GSM149165     2  0.0592      0.938 0.016 0.984 0.000 0.000
#> GSM149166     1  0.2281      0.882 0.904 0.096 0.000 0.000
#> GSM149167     1  0.2281      0.882 0.904 0.096 0.000 0.000
#> GSM149168     2  0.1716      0.925 0.064 0.936 0.000 0.000
#> GSM149169     1  0.1557      0.903 0.944 0.056 0.000 0.000
#> GSM149170     2  0.1022      0.935 0.032 0.968 0.000 0.000
#> GSM149171     2  0.0707      0.937 0.020 0.980 0.000 0.000
#> GSM149172     2  0.2281      0.910 0.096 0.904 0.000 0.000
#> GSM149173     2  0.2751      0.905 0.040 0.904 0.056 0.000
#> GSM149174     1  0.0188      0.925 0.996 0.004 0.000 0.000
#> GSM149175     4  0.3074      0.815 0.000 0.000 0.152 0.848
#> GSM149176     1  0.4925      0.361 0.572 0.428 0.000 0.000
#> GSM149177     2  0.2216      0.912 0.092 0.908 0.000 0.000
#> GSM149178     2  0.2281      0.910 0.096 0.904 0.000 0.000
#> GSM149179     2  0.0000      0.938 0.000 1.000 0.000 0.000
#> GSM149180     2  0.0000      0.938 0.000 1.000 0.000 0.000
#> GSM149181     2  0.0000      0.938 0.000 1.000 0.000 0.000
#> GSM149182     2  0.0000      0.938 0.000 1.000 0.000 0.000
#> GSM149183     2  0.0000      0.938 0.000 1.000 0.000 0.000
#> GSM149184     2  0.4134      0.616 0.260 0.740 0.000 0.000
#> GSM149185     2  0.0707      0.937 0.020 0.980 0.000 0.000
#> GSM149186     2  0.0000      0.938 0.000 1.000 0.000 0.000
#> GSM149187     2  0.0000      0.938 0.000 1.000 0.000 0.000
#> GSM149188     2  0.0000      0.938 0.000 1.000 0.000 0.000
#> GSM149189     2  0.2149      0.914 0.088 0.912 0.000 0.000
#> GSM149190     1  0.2281      0.882 0.904 0.096 0.000 0.000
#> GSM149191     2  0.2281      0.910 0.096 0.904 0.000 0.000
#> GSM149192     2  0.0000      0.938 0.000 1.000 0.000 0.000
#> GSM149193     2  0.0000      0.938 0.000 1.000 0.000 0.000
#> GSM149194     2  0.0000      0.938 0.000 1.000 0.000 0.000
#> GSM149195     3  0.0000      0.960 0.000 0.000 1.000 0.000
#> GSM149196     2  0.0000      0.938 0.000 1.000 0.000 0.000
#> GSM149197     2  0.0188      0.937 0.004 0.996 0.000 0.000
#> GSM149198     1  0.2530      0.840 0.888 0.000 0.000 0.112
#> GSM149199     2  0.4331      0.557 0.288 0.712 0.000 0.000
#> GSM149200     2  0.2281      0.910 0.096 0.904 0.000 0.000
#> GSM149201     2  0.0000      0.938 0.000 1.000 0.000 0.000
#> GSM149202     2  0.0592      0.938 0.016 0.984 0.000 0.000
#> GSM149203     2  0.2281      0.910 0.096 0.904 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0000     0.9648 0.000 0.000 1.000 0.000 0.000
#> GSM149100     3  0.0000     0.9648 0.000 0.000 1.000 0.000 0.000
#> GSM149101     3  0.0000     0.9648 0.000 0.000 1.000 0.000 0.000
#> GSM149102     3  0.0000     0.9648 0.000 0.000 1.000 0.000 0.000
#> GSM149103     5  0.2112     0.8416 0.084 0.004 0.004 0.000 0.908
#> GSM149104     3  0.0000     0.9648 0.000 0.000 1.000 0.000 0.000
#> GSM149105     3  0.0000     0.9648 0.000 0.000 1.000 0.000 0.000
#> GSM149106     3  0.3074     0.7460 0.000 0.000 0.804 0.196 0.000
#> GSM149107     3  0.0000     0.9648 0.000 0.000 1.000 0.000 0.000
#> GSM149108     3  0.0000     0.9648 0.000 0.000 1.000 0.000 0.000
#> GSM149109     3  0.0000     0.9648 0.000 0.000 1.000 0.000 0.000
#> GSM149110     3  0.0000     0.9648 0.000 0.000 1.000 0.000 0.000
#> GSM149111     3  0.0000     0.9648 0.000 0.000 1.000 0.000 0.000
#> GSM149112     3  0.0000     0.9648 0.000 0.000 1.000 0.000 0.000
#> GSM149113     3  0.0000     0.9648 0.000 0.000 1.000 0.000 0.000
#> GSM149114     3  0.0000     0.9648 0.000 0.000 1.000 0.000 0.000
#> GSM149115     1  0.0000     0.9661 1.000 0.000 0.000 0.000 0.000
#> GSM149116     4  0.0000     0.9894 0.000 0.000 0.000 1.000 0.000
#> GSM149117     1  0.0000     0.9661 1.000 0.000 0.000 0.000 0.000
#> GSM149118     4  0.0000     0.9894 0.000 0.000 0.000 1.000 0.000
#> GSM149119     4  0.0000     0.9894 0.000 0.000 0.000 1.000 0.000
#> GSM149120     4  0.0000     0.9894 0.000 0.000 0.000 1.000 0.000
#> GSM149121     4  0.0000     0.9894 0.000 0.000 0.000 1.000 0.000
#> GSM149122     4  0.0000     0.9894 0.000 0.000 0.000 1.000 0.000
#> GSM149123     4  0.0000     0.9894 0.000 0.000 0.000 1.000 0.000
#> GSM149124     4  0.0000     0.9894 0.000 0.000 0.000 1.000 0.000
#> GSM149125     4  0.0000     0.9894 0.000 0.000 0.000 1.000 0.000
#> GSM149126     4  0.0000     0.9894 0.000 0.000 0.000 1.000 0.000
#> GSM149127     4  0.0000     0.9894 0.000 0.000 0.000 1.000 0.000
#> GSM149128     4  0.0000     0.9894 0.000 0.000 0.000 1.000 0.000
#> GSM149129     4  0.0000     0.9894 0.000 0.000 0.000 1.000 0.000
#> GSM149130     1  0.0000     0.9661 1.000 0.000 0.000 0.000 0.000
#> GSM149131     1  0.0000     0.9661 1.000 0.000 0.000 0.000 0.000
#> GSM149132     4  0.0000     0.9894 0.000 0.000 0.000 1.000 0.000
#> GSM149133     4  0.0000     0.9894 0.000 0.000 0.000 1.000 0.000
#> GSM149134     1  0.0000     0.9661 1.000 0.000 0.000 0.000 0.000
#> GSM149135     1  0.0000     0.9661 1.000 0.000 0.000 0.000 0.000
#> GSM149136     1  0.0000     0.9661 1.000 0.000 0.000 0.000 0.000
#> GSM149137     1  0.0000     0.9661 1.000 0.000 0.000 0.000 0.000
#> GSM149138     1  0.0000     0.9661 1.000 0.000 0.000 0.000 0.000
#> GSM149139     1  0.0000     0.9661 1.000 0.000 0.000 0.000 0.000
#> GSM149140     1  0.0000     0.9661 1.000 0.000 0.000 0.000 0.000
#> GSM149141     1  0.0162     0.9634 0.996 0.004 0.000 0.000 0.000
#> GSM149142     1  0.0162     0.9634 0.996 0.004 0.000 0.000 0.000
#> GSM149143     5  0.0162     0.9136 0.000 0.004 0.000 0.000 0.996
#> GSM149144     2  0.0162     0.9342 0.004 0.996 0.000 0.000 0.000
#> GSM149145     5  0.3838     0.5733 0.280 0.004 0.000 0.000 0.716
#> GSM149146     2  0.0162     0.9363 0.000 0.996 0.000 0.000 0.004
#> GSM149147     1  0.0000     0.9661 1.000 0.000 0.000 0.000 0.000
#> GSM149148     1  0.0000     0.9661 1.000 0.000 0.000 0.000 0.000
#> GSM149149     1  0.0000     0.9661 1.000 0.000 0.000 0.000 0.000
#> GSM149150     5  0.4307     0.0712 0.000 0.496 0.000 0.000 0.504
#> GSM149151     1  0.0000     0.9661 1.000 0.000 0.000 0.000 0.000
#> GSM149152     1  0.0000     0.9661 1.000 0.000 0.000 0.000 0.000
#> GSM149153     1  0.4449     0.0242 0.512 0.004 0.000 0.000 0.484
#> GSM149154     3  0.5883     0.5253 0.000 0.004 0.620 0.192 0.184
#> GSM149155     2  0.0162     0.9363 0.000 0.996 0.000 0.000 0.004
#> GSM149156     5  0.4283     0.1184 0.000 0.456 0.000 0.000 0.544
#> GSM149157     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000
#> GSM149158     2  0.3143     0.7157 0.204 0.796 0.000 0.000 0.000
#> GSM149159     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000
#> GSM149160     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000
#> GSM149161     2  0.0898     0.9215 0.020 0.972 0.000 0.000 0.008
#> GSM149162     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000
#> GSM149163     2  0.0162     0.9363 0.000 0.996 0.000 0.000 0.004
#> GSM149164     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000
#> GSM149165     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000
#> GSM149166     2  0.0794     0.9190 0.028 0.972 0.000 0.000 0.000
#> GSM149167     1  0.0290     0.9603 0.992 0.008 0.000 0.000 0.000
#> GSM149168     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000
#> GSM149169     1  0.0000     0.9661 1.000 0.000 0.000 0.000 0.000
#> GSM149170     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000
#> GSM149171     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000
#> GSM149172     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000
#> GSM149173     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000
#> GSM149174     1  0.0290     0.9603 0.992 0.008 0.000 0.000 0.000
#> GSM149175     4  0.2648     0.8131 0.000 0.000 0.152 0.848 0.000
#> GSM149176     2  0.0162     0.9342 0.004 0.996 0.000 0.000 0.000
#> GSM149177     5  0.4015     0.4755 0.000 0.348 0.000 0.000 0.652
#> GSM149178     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000
#> GSM149179     2  0.0162     0.9363 0.000 0.996 0.000 0.000 0.004
#> GSM149180     2  0.0404     0.9323 0.000 0.988 0.000 0.000 0.012
#> GSM149181     5  0.2929     0.7319 0.000 0.180 0.000 0.000 0.820
#> GSM149182     2  0.0162     0.9363 0.000 0.996 0.000 0.000 0.004
#> GSM149183     2  0.0162     0.9363 0.000 0.996 0.000 0.000 0.004
#> GSM149184     2  0.0290     0.9346 0.000 0.992 0.000 0.000 0.008
#> GSM149185     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000
#> GSM149186     2  0.4268     0.1869 0.000 0.556 0.000 0.000 0.444
#> GSM149187     2  0.0162     0.9363 0.000 0.996 0.000 0.000 0.004
#> GSM149188     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000
#> GSM149189     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000
#> GSM149190     2  0.0162     0.9342 0.004 0.996 0.000 0.000 0.000
#> GSM149191     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000
#> GSM149192     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000
#> GSM149193     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000
#> GSM149194     5  0.3684     0.6001 0.000 0.280 0.000 0.000 0.720
#> GSM149195     3  0.0000     0.9648 0.000 0.000 1.000 0.000 0.000
#> GSM149196     2  0.0404     0.9323 0.000 0.988 0.000 0.000 0.012
#> GSM149197     2  0.0162     0.9363 0.000 0.996 0.000 0.000 0.004
#> GSM149198     1  0.2773     0.7867 0.836 0.000 0.000 0.164 0.000
#> GSM149199     2  0.0162     0.9363 0.000 0.996 0.000 0.000 0.004
#> GSM149200     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000
#> GSM149201     2  0.3983     0.4642 0.000 0.660 0.000 0.000 0.340
#> GSM149202     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000
#> GSM149203     5  0.0000     0.9165 0.000 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149100     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149101     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149102     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149103     6  0.0000      0.950 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM149104     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149105     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149106     3  0.2762      0.737 0.000 0.000 0.804 0.196 0.000 0.000
#> GSM149107     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149108     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149109     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149110     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149111     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149112     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149113     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149114     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149115     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149116     4  0.0000      0.989 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149117     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149118     4  0.0000      0.989 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149119     4  0.0000      0.989 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149120     4  0.0000      0.989 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149121     4  0.0000      0.989 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149122     4  0.0000      0.989 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149123     4  0.0000      0.989 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149124     4  0.0000      0.989 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149125     4  0.0000      0.989 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149126     4  0.0000      0.989 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149127     4  0.0000      0.989 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149128     4  0.0000      0.989 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149129     4  0.0000      0.989 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149130     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149131     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149132     4  0.0000      0.989 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149133     4  0.0000      0.989 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149134     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149135     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149136     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149137     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149138     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149139     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149140     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149141     6  0.0000      0.950 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM149142     1  0.3950      0.239 0.564 0.004 0.000 0.000 0.000 0.432
#> GSM149143     6  0.1910      0.872 0.000 0.000 0.000 0.000 0.108 0.892
#> GSM149144     2  0.0000      0.929 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149145     6  0.0000      0.950 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM149146     2  0.0000      0.929 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149147     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149148     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149149     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149150     6  0.1444      0.912 0.000 0.000 0.000 0.000 0.072 0.928
#> GSM149151     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149152     1  0.0260      0.961 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM149153     6  0.0000      0.950 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM149154     6  0.1610      0.889 0.000 0.000 0.084 0.000 0.000 0.916
#> GSM149155     2  0.0000      0.929 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149156     5  0.3847      0.138 0.000 0.456 0.000 0.000 0.544 0.000
#> GSM149157     5  0.0000      0.915 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149158     2  0.2823      0.689 0.204 0.796 0.000 0.000 0.000 0.000
#> GSM149159     5  0.0000      0.915 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149160     5  0.0000      0.915 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149161     2  0.0717      0.913 0.016 0.976 0.000 0.000 0.008 0.000
#> GSM149162     5  0.0000      0.915 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149163     2  0.0000      0.929 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149164     5  0.0146      0.912 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM149165     5  0.0000      0.915 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149166     2  0.0632      0.911 0.024 0.976 0.000 0.000 0.000 0.000
#> GSM149167     1  0.0260      0.960 0.992 0.008 0.000 0.000 0.000 0.000
#> GSM149168     5  0.0000      0.915 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149169     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149170     5  0.0000      0.915 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149171     5  0.0000      0.915 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149172     5  0.1556      0.853 0.000 0.000 0.000 0.000 0.920 0.080
#> GSM149173     5  0.0000      0.915 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149174     1  0.0260      0.960 0.992 0.008 0.000 0.000 0.000 0.000
#> GSM149175     4  0.2300      0.812 0.000 0.000 0.144 0.856 0.000 0.000
#> GSM149176     2  0.0000      0.929 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149177     5  0.3620      0.455 0.000 0.352 0.000 0.000 0.648 0.000
#> GSM149178     5  0.3659      0.410 0.000 0.000 0.000 0.000 0.636 0.364
#> GSM149179     2  0.0000      0.929 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149180     2  0.0260      0.924 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM149181     5  0.2631      0.737 0.000 0.180 0.000 0.000 0.820 0.000
#> GSM149182     2  0.0000      0.929 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149183     2  0.0000      0.929 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149184     2  0.0146      0.927 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM149185     5  0.0000      0.915 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149186     2  0.3833      0.167 0.000 0.556 0.000 0.000 0.444 0.000
#> GSM149187     2  0.0000      0.929 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149188     5  0.0000      0.915 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149189     5  0.0000      0.915 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149190     2  0.0000      0.929 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149191     5  0.0000      0.915 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149192     5  0.0000      0.915 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149193     5  0.0000      0.915 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149194     5  0.3309      0.603 0.000 0.280 0.000 0.000 0.720 0.000
#> GSM149195     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149196     2  0.0260      0.924 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM149197     2  0.0000      0.929 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149198     1  0.3027      0.772 0.824 0.000 0.000 0.148 0.000 0.028
#> GSM149199     2  0.0000      0.929 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149200     5  0.0000      0.915 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149201     2  0.3578      0.455 0.000 0.660 0.000 0.000 0.340 0.000
#> GSM149202     5  0.0000      0.915 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM149203     5  0.0000      0.915 0.000 0.000 0.000 0.000 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n disease.state(p) k
#> ATC:pam 103         3.81e-12 2
#> ATC:pam  93         2.31e-14 3
#> ATC:pam 101         5.41e-28 4
#> ATC:pam  99         6.00e-25 5
#> ATC:pam  99         2.51e-29 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.970       0.977         0.4534 0.545   0.545
#> 3 3 0.499           0.597       0.791         0.3516 0.692   0.496
#> 4 4 0.765           0.908       0.946         0.1408 0.907   0.755
#> 5 5 0.889           0.921       0.938         0.1258 0.871   0.599
#> 6 6 0.806           0.746       0.864         0.0338 0.866   0.494

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     1  0.2423      0.972 0.960 0.040
#> GSM149100     1  0.2423      0.972 0.960 0.040
#> GSM149101     1  0.2423      0.972 0.960 0.040
#> GSM149102     1  0.2423      0.972 0.960 0.040
#> GSM149103     2  0.1843      0.970 0.028 0.972
#> GSM149104     1  0.2423      0.972 0.960 0.040
#> GSM149105     1  0.2423      0.972 0.960 0.040
#> GSM149106     1  0.2423      0.972 0.960 0.040
#> GSM149107     1  0.2423      0.972 0.960 0.040
#> GSM149108     1  0.2423      0.972 0.960 0.040
#> GSM149109     1  0.2423      0.972 0.960 0.040
#> GSM149110     1  0.2423      0.972 0.960 0.040
#> GSM149111     1  0.2423      0.972 0.960 0.040
#> GSM149112     1  0.2423      0.972 0.960 0.040
#> GSM149113     1  0.2423      0.972 0.960 0.040
#> GSM149114     1  0.2423      0.972 0.960 0.040
#> GSM149115     1  0.6973      0.772 0.812 0.188
#> GSM149116     1  0.0000      0.969 1.000 0.000
#> GSM149117     2  0.3431      0.956 0.064 0.936
#> GSM149118     1  0.0000      0.969 1.000 0.000
#> GSM149119     1  0.0000      0.969 1.000 0.000
#> GSM149120     1  0.0000      0.969 1.000 0.000
#> GSM149121     1  0.0376      0.969 0.996 0.004
#> GSM149122     1  0.0000      0.969 1.000 0.000
#> GSM149123     1  0.0000      0.969 1.000 0.000
#> GSM149124     1  0.0000      0.969 1.000 0.000
#> GSM149125     1  0.0000      0.969 1.000 0.000
#> GSM149126     1  0.0000      0.969 1.000 0.000
#> GSM149127     1  0.0000      0.969 1.000 0.000
#> GSM149128     1  0.0000      0.969 1.000 0.000
#> GSM149129     1  0.0000      0.969 1.000 0.000
#> GSM149130     2  0.3431      0.956 0.064 0.936
#> GSM149131     2  0.3431      0.956 0.064 0.936
#> GSM149132     1  0.0000      0.969 1.000 0.000
#> GSM149133     1  0.0376      0.969 0.996 0.004
#> GSM149134     2  0.3431      0.956 0.064 0.936
#> GSM149135     2  0.3431      0.956 0.064 0.936
#> GSM149136     2  0.3431      0.956 0.064 0.936
#> GSM149137     2  0.3431      0.956 0.064 0.936
#> GSM149138     2  0.3431      0.956 0.064 0.936
#> GSM149139     2  0.3431      0.956 0.064 0.936
#> GSM149140     2  0.3431      0.956 0.064 0.936
#> GSM149141     2  0.3431      0.956 0.064 0.936
#> GSM149142     2  0.3431      0.956 0.064 0.936
#> GSM149143     2  0.1843      0.970 0.028 0.972
#> GSM149144     2  0.0000      0.982 0.000 1.000
#> GSM149145     2  0.1843      0.970 0.028 0.972
#> GSM149146     2  0.0000      0.982 0.000 1.000
#> GSM149147     2  0.3431      0.956 0.064 0.936
#> GSM149148     2  0.3431      0.956 0.064 0.936
#> GSM149149     2  0.3431      0.956 0.064 0.936
#> GSM149150     2  0.0000      0.982 0.000 1.000
#> GSM149151     2  0.3431      0.956 0.064 0.936
#> GSM149152     1  0.1843      0.960 0.972 0.028
#> GSM149153     2  0.1843      0.970 0.028 0.972
#> GSM149154     1  0.5294      0.898 0.880 0.120
#> GSM149155     2  0.0000      0.982 0.000 1.000
#> GSM149156     2  0.0000      0.982 0.000 1.000
#> GSM149157     2  0.0000      0.982 0.000 1.000
#> GSM149158     2  0.0000      0.982 0.000 1.000
#> GSM149159     2  0.0000      0.982 0.000 1.000
#> GSM149160     2  0.0000      0.982 0.000 1.000
#> GSM149161     2  0.0000      0.982 0.000 1.000
#> GSM149162     2  0.0000      0.982 0.000 1.000
#> GSM149163     2  0.0000      0.982 0.000 1.000
#> GSM149164     2  0.0376      0.981 0.004 0.996
#> GSM149165     2  0.0000      0.982 0.000 1.000
#> GSM149166     2  0.0000      0.982 0.000 1.000
#> GSM149167     2  0.2778      0.964 0.048 0.952
#> GSM149168     2  0.0000      0.982 0.000 1.000
#> GSM149169     2  0.3274      0.957 0.060 0.940
#> GSM149170     2  0.0000      0.982 0.000 1.000
#> GSM149171     2  0.0000      0.982 0.000 1.000
#> GSM149172     2  0.1633      0.972 0.024 0.976
#> GSM149173     2  0.0000      0.982 0.000 1.000
#> GSM149174     2  0.0000      0.982 0.000 1.000
#> GSM149175     1  0.2423      0.972 0.960 0.040
#> GSM149176     2  0.0000      0.982 0.000 1.000
#> GSM149177     2  0.0000      0.982 0.000 1.000
#> GSM149178     2  0.1633      0.972 0.024 0.976
#> GSM149179     2  0.0000      0.982 0.000 1.000
#> GSM149180     2  0.0000      0.982 0.000 1.000
#> GSM149181     2  0.0000      0.982 0.000 1.000
#> GSM149182     2  0.0000      0.982 0.000 1.000
#> GSM149183     2  0.0000      0.982 0.000 1.000
#> GSM149184     2  0.0000      0.982 0.000 1.000
#> GSM149185     2  0.0000      0.982 0.000 1.000
#> GSM149186     2  0.0000      0.982 0.000 1.000
#> GSM149187     2  0.0000      0.982 0.000 1.000
#> GSM149188     2  0.0000      0.982 0.000 1.000
#> GSM149189     2  0.0000      0.982 0.000 1.000
#> GSM149190     2  0.0000      0.982 0.000 1.000
#> GSM149191     2  0.0000      0.982 0.000 1.000
#> GSM149192     2  0.0000      0.982 0.000 1.000
#> GSM149193     2  0.0000      0.982 0.000 1.000
#> GSM149194     2  0.0000      0.982 0.000 1.000
#> GSM149195     1  0.2423      0.972 0.960 0.040
#> GSM149196     2  0.0000      0.982 0.000 1.000
#> GSM149197     2  0.0000      0.982 0.000 1.000
#> GSM149198     1  0.3114      0.939 0.944 0.056
#> GSM149199     2  0.0000      0.982 0.000 1.000
#> GSM149200     2  0.0000      0.982 0.000 1.000
#> GSM149201     2  0.0000      0.982 0.000 1.000
#> GSM149202     2  0.0000      0.982 0.000 1.000
#> GSM149203     2  0.0000      0.982 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0000     0.9210 0.000 0.000 1.000
#> GSM149100     3  0.0000     0.9210 0.000 0.000 1.000
#> GSM149101     3  0.0000     0.9210 0.000 0.000 1.000
#> GSM149102     3  0.0000     0.9210 0.000 0.000 1.000
#> GSM149103     3  0.7298     0.4314 0.220 0.088 0.692
#> GSM149104     3  0.0000     0.9210 0.000 0.000 1.000
#> GSM149105     3  0.0000     0.9210 0.000 0.000 1.000
#> GSM149106     3  0.1878     0.8598 0.044 0.004 0.952
#> GSM149107     3  0.0000     0.9210 0.000 0.000 1.000
#> GSM149108     3  0.0000     0.9210 0.000 0.000 1.000
#> GSM149109     3  0.0000     0.9210 0.000 0.000 1.000
#> GSM149110     3  0.0000     0.9210 0.000 0.000 1.000
#> GSM149111     3  0.0000     0.9210 0.000 0.000 1.000
#> GSM149112     3  0.0000     0.9210 0.000 0.000 1.000
#> GSM149113     3  0.0000     0.9210 0.000 0.000 1.000
#> GSM149114     3  0.0000     0.9210 0.000 0.000 1.000
#> GSM149115     1  0.6490     0.1921 0.628 0.012 0.360
#> GSM149116     1  0.6267     0.0336 0.548 0.000 0.452
#> GSM149117     1  0.6195     0.2931 0.704 0.020 0.276
#> GSM149118     1  0.6260     0.0363 0.552 0.000 0.448
#> GSM149119     1  0.6267     0.0336 0.548 0.000 0.452
#> GSM149120     1  0.6260     0.0363 0.552 0.000 0.448
#> GSM149121     1  0.6676     0.0225 0.516 0.008 0.476
#> GSM149122     1  0.6267     0.0336 0.548 0.000 0.452
#> GSM149123     1  0.6267     0.0336 0.548 0.000 0.452
#> GSM149124     1  0.6267     0.0336 0.548 0.000 0.452
#> GSM149125     1  0.6267     0.0336 0.548 0.000 0.452
#> GSM149126     1  0.6267     0.0336 0.548 0.000 0.452
#> GSM149127     1  0.6267     0.0336 0.548 0.000 0.452
#> GSM149128     1  0.6267     0.0336 0.548 0.000 0.452
#> GSM149129     1  0.6267     0.0336 0.548 0.000 0.452
#> GSM149130     1  0.9072     0.4275 0.548 0.260 0.192
#> GSM149131     1  0.9081     0.4259 0.552 0.236 0.212
#> GSM149132     1  0.6267     0.0336 0.548 0.000 0.452
#> GSM149133     1  0.6676     0.0225 0.516 0.008 0.476
#> GSM149134     1  0.6490     0.3152 0.708 0.036 0.256
#> GSM149135     1  0.9099     0.4236 0.544 0.264 0.192
#> GSM149136     1  0.9099     0.4236 0.544 0.264 0.192
#> GSM149137     1  0.9099     0.4236 0.544 0.264 0.192
#> GSM149138     1  0.9150     0.4096 0.536 0.272 0.192
#> GSM149139     1  0.6794     0.3676 0.728 0.076 0.196
#> GSM149140     1  0.9099     0.4236 0.544 0.264 0.192
#> GSM149141     1  0.9125     0.4168 0.540 0.268 0.192
#> GSM149142     2  0.9395    -0.0741 0.396 0.432 0.172
#> GSM149143     2  0.6917     0.3167 0.024 0.608 0.368
#> GSM149144     2  0.4452     0.7709 0.192 0.808 0.000
#> GSM149145     1  0.9792     0.2127 0.392 0.372 0.236
#> GSM149146     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149147     1  0.9099     0.4236 0.544 0.264 0.192
#> GSM149148     1  0.9099     0.4236 0.544 0.264 0.192
#> GSM149149     1  0.9099     0.4236 0.544 0.264 0.192
#> GSM149150     2  0.8920     0.2626 0.324 0.532 0.144
#> GSM149151     1  0.9099     0.4236 0.544 0.264 0.192
#> GSM149152     1  0.6786     0.0712 0.540 0.012 0.448
#> GSM149153     1  0.9672     0.1797 0.404 0.384 0.212
#> GSM149154     3  0.5467     0.6791 0.112 0.072 0.816
#> GSM149155     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149156     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149157     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149158     2  0.4235     0.7860 0.176 0.824 0.000
#> GSM149159     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149160     2  0.2165     0.8604 0.064 0.936 0.000
#> GSM149161     2  0.4399     0.7748 0.188 0.812 0.000
#> GSM149162     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149163     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149164     2  0.7382     0.5885 0.116 0.700 0.184
#> GSM149165     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149166     2  0.3941     0.8026 0.156 0.844 0.000
#> GSM149167     1  0.7948     0.3043 0.632 0.100 0.268
#> GSM149168     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149169     1  0.9461     0.3806 0.492 0.292 0.216
#> GSM149170     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149171     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149172     2  0.6297     0.3890 0.008 0.640 0.352
#> GSM149173     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149174     2  0.3879     0.8057 0.152 0.848 0.000
#> GSM149175     3  0.1643     0.8642 0.044 0.000 0.956
#> GSM149176     2  0.4002     0.7995 0.160 0.840 0.000
#> GSM149177     2  0.4915     0.7077 0.012 0.804 0.184
#> GSM149178     2  0.6917     0.3159 0.024 0.608 0.368
#> GSM149179     2  0.2625     0.8499 0.084 0.916 0.000
#> GSM149180     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149181     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149182     2  0.0747     0.8814 0.016 0.984 0.000
#> GSM149183     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149184     2  0.7639     0.5514 0.256 0.656 0.088
#> GSM149185     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149186     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149187     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149188     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149189     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149190     2  0.4452     0.7709 0.192 0.808 0.000
#> GSM149191     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149192     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149193     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149194     2  0.3038     0.8384 0.104 0.896 0.000
#> GSM149195     3  0.5016     0.4742 0.000 0.240 0.760
#> GSM149196     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149197     2  0.0424     0.8844 0.008 0.992 0.000
#> GSM149198     1  0.6786     0.0712 0.540 0.012 0.448
#> GSM149199     2  0.3340     0.8284 0.120 0.880 0.000
#> GSM149200     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149201     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149202     2  0.0000     0.8872 0.000 1.000 0.000
#> GSM149203     2  0.0000     0.8872 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.0000      0.971 0.000 0.000 1.000 0.000
#> GSM149100     3  0.0000      0.971 0.000 0.000 1.000 0.000
#> GSM149101     3  0.0000      0.971 0.000 0.000 1.000 0.000
#> GSM149102     3  0.0000      0.971 0.000 0.000 1.000 0.000
#> GSM149103     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> GSM149104     3  0.0000      0.971 0.000 0.000 1.000 0.000
#> GSM149105     3  0.0000      0.971 0.000 0.000 1.000 0.000
#> GSM149106     3  0.2868      0.804 0.136 0.000 0.864 0.000
#> GSM149107     3  0.0000      0.971 0.000 0.000 1.000 0.000
#> GSM149108     3  0.0000      0.971 0.000 0.000 1.000 0.000
#> GSM149109     3  0.0000      0.971 0.000 0.000 1.000 0.000
#> GSM149110     3  0.0000      0.971 0.000 0.000 1.000 0.000
#> GSM149111     3  0.0000      0.971 0.000 0.000 1.000 0.000
#> GSM149112     3  0.0000      0.971 0.000 0.000 1.000 0.000
#> GSM149113     3  0.0000      0.971 0.000 0.000 1.000 0.000
#> GSM149114     3  0.0000      0.971 0.000 0.000 1.000 0.000
#> GSM149115     1  0.3688      0.730 0.792 0.000 0.000 0.208
#> GSM149116     4  0.0000      0.969 0.000 0.000 0.000 1.000
#> GSM149117     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> GSM149118     4  0.0000      0.969 0.000 0.000 0.000 1.000
#> GSM149119     4  0.0000      0.969 0.000 0.000 0.000 1.000
#> GSM149120     4  0.0000      0.969 0.000 0.000 0.000 1.000
#> GSM149121     4  0.3172      0.780 0.160 0.000 0.000 0.840
#> GSM149122     4  0.0000      0.969 0.000 0.000 0.000 1.000
#> GSM149123     4  0.0000      0.969 0.000 0.000 0.000 1.000
#> GSM149124     4  0.0000      0.969 0.000 0.000 0.000 1.000
#> GSM149125     4  0.0000      0.969 0.000 0.000 0.000 1.000
#> GSM149126     4  0.0000      0.969 0.000 0.000 0.000 1.000
#> GSM149127     4  0.0000      0.969 0.000 0.000 0.000 1.000
#> GSM149128     4  0.0000      0.969 0.000 0.000 0.000 1.000
#> GSM149129     4  0.0000      0.969 0.000 0.000 0.000 1.000
#> GSM149130     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> GSM149131     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> GSM149132     4  0.0000      0.969 0.000 0.000 0.000 1.000
#> GSM149133     4  0.3172      0.780 0.160 0.000 0.000 0.840
#> GSM149134     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> GSM149135     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> GSM149136     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> GSM149137     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> GSM149138     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> GSM149139     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> GSM149140     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> GSM149141     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> GSM149142     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> GSM149143     2  0.4866      0.497 0.404 0.596 0.000 0.000
#> GSM149144     2  0.2011      0.861 0.080 0.920 0.000 0.000
#> GSM149145     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> GSM149146     2  0.0469      0.898 0.012 0.988 0.000 0.000
#> GSM149147     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> GSM149148     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> GSM149149     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> GSM149150     1  0.1792      0.895 0.932 0.068 0.000 0.000
#> GSM149151     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> GSM149152     1  0.0707      0.956 0.980 0.000 0.000 0.020
#> GSM149153     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> GSM149154     3  0.3486      0.746 0.188 0.000 0.812 0.000
#> GSM149155     2  0.0000      0.896 0.000 1.000 0.000 0.000
#> GSM149156     2  0.0000      0.896 0.000 1.000 0.000 0.000
#> GSM149157     2  0.0592      0.899 0.016 0.984 0.000 0.000
#> GSM149158     2  0.1474      0.879 0.052 0.948 0.000 0.000
#> GSM149159     2  0.2760      0.894 0.128 0.872 0.000 0.000
#> GSM149160     2  0.2760      0.894 0.128 0.872 0.000 0.000
#> GSM149161     2  0.4843      0.491 0.396 0.604 0.000 0.000
#> GSM149162     2  0.2345      0.899 0.100 0.900 0.000 0.000
#> GSM149163     2  0.0000      0.896 0.000 1.000 0.000 0.000
#> GSM149164     2  0.4477      0.681 0.312 0.688 0.000 0.000
#> GSM149165     2  0.2589      0.897 0.116 0.884 0.000 0.000
#> GSM149166     2  0.4679      0.570 0.352 0.648 0.000 0.000
#> GSM149167     1  0.3764      0.674 0.784 0.216 0.000 0.000
#> GSM149168     2  0.2760      0.894 0.128 0.872 0.000 0.000
#> GSM149169     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> GSM149170     2  0.2760      0.894 0.128 0.872 0.000 0.000
#> GSM149171     2  0.2760      0.894 0.128 0.872 0.000 0.000
#> GSM149172     2  0.3266      0.864 0.168 0.832 0.000 0.000
#> GSM149173     2  0.2760      0.894 0.128 0.872 0.000 0.000
#> GSM149174     2  0.3400      0.856 0.180 0.820 0.000 0.000
#> GSM149175     3  0.0817      0.948 0.024 0.000 0.976 0.000
#> GSM149176     2  0.0000      0.896 0.000 1.000 0.000 0.000
#> GSM149177     2  0.2760      0.894 0.128 0.872 0.000 0.000
#> GSM149178     2  0.3569      0.837 0.196 0.804 0.000 0.000
#> GSM149179     2  0.0000      0.896 0.000 1.000 0.000 0.000
#> GSM149180     2  0.0000      0.896 0.000 1.000 0.000 0.000
#> GSM149181     2  0.0000      0.896 0.000 1.000 0.000 0.000
#> GSM149182     2  0.0000      0.896 0.000 1.000 0.000 0.000
#> GSM149183     2  0.0000      0.896 0.000 1.000 0.000 0.000
#> GSM149184     2  0.0000      0.896 0.000 1.000 0.000 0.000
#> GSM149185     2  0.2760      0.894 0.128 0.872 0.000 0.000
#> GSM149186     2  0.0000      0.896 0.000 1.000 0.000 0.000
#> GSM149187     2  0.0000      0.896 0.000 1.000 0.000 0.000
#> GSM149188     2  0.2760      0.894 0.128 0.872 0.000 0.000
#> GSM149189     2  0.2760      0.894 0.128 0.872 0.000 0.000
#> GSM149190     2  0.1022      0.888 0.032 0.968 0.000 0.000
#> GSM149191     2  0.2760      0.894 0.128 0.872 0.000 0.000
#> GSM149192     2  0.2647      0.896 0.120 0.880 0.000 0.000
#> GSM149193     2  0.0000      0.896 0.000 1.000 0.000 0.000
#> GSM149194     2  0.2149      0.900 0.088 0.912 0.000 0.000
#> GSM149195     3  0.0336      0.964 0.008 0.000 0.992 0.000
#> GSM149196     2  0.0000      0.896 0.000 1.000 0.000 0.000
#> GSM149197     2  0.0000      0.896 0.000 1.000 0.000 0.000
#> GSM149198     1  0.1792      0.911 0.932 0.000 0.000 0.068
#> GSM149199     2  0.0000      0.896 0.000 1.000 0.000 0.000
#> GSM149200     2  0.2760      0.894 0.128 0.872 0.000 0.000
#> GSM149201     2  0.0000      0.896 0.000 1.000 0.000 0.000
#> GSM149202     2  0.2647      0.896 0.120 0.880 0.000 0.000
#> GSM149203     2  0.2760      0.894 0.128 0.872 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> GSM149100     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> GSM149101     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> GSM149102     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> GSM149103     3  0.5636      0.257 0.084 0.372 0.544 0.000 0.000
#> GSM149104     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> GSM149105     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> GSM149106     3  0.2519      0.886 0.036 0.004 0.900 0.060 0.000
#> GSM149107     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> GSM149108     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> GSM149109     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> GSM149110     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> GSM149111     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> GSM149112     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> GSM149113     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> GSM149114     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> GSM149115     4  0.2890      0.812 0.160 0.004 0.000 0.836 0.000
#> GSM149116     4  0.0000      0.979 0.000 0.000 0.000 1.000 0.000
#> GSM149117     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> GSM149118     4  0.0000      0.979 0.000 0.000 0.000 1.000 0.000
#> GSM149119     4  0.0000      0.979 0.000 0.000 0.000 1.000 0.000
#> GSM149120     4  0.0000      0.979 0.000 0.000 0.000 1.000 0.000
#> GSM149121     4  0.1341      0.931 0.056 0.000 0.000 0.944 0.000
#> GSM149122     4  0.0000      0.979 0.000 0.000 0.000 1.000 0.000
#> GSM149123     4  0.0000      0.979 0.000 0.000 0.000 1.000 0.000
#> GSM149124     4  0.0000      0.979 0.000 0.000 0.000 1.000 0.000
#> GSM149125     4  0.0000      0.979 0.000 0.000 0.000 1.000 0.000
#> GSM149126     4  0.0000      0.979 0.000 0.000 0.000 1.000 0.000
#> GSM149127     4  0.0000      0.979 0.000 0.000 0.000 1.000 0.000
#> GSM149128     4  0.0000      0.979 0.000 0.000 0.000 1.000 0.000
#> GSM149129     4  0.0000      0.979 0.000 0.000 0.000 1.000 0.000
#> GSM149130     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000
#> GSM149131     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000
#> GSM149132     4  0.0000      0.979 0.000 0.000 0.000 1.000 0.000
#> GSM149133     4  0.1341      0.931 0.056 0.000 0.000 0.944 0.000
#> GSM149134     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000
#> GSM149135     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000
#> GSM149136     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000
#> GSM149137     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000
#> GSM149138     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000
#> GSM149139     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000
#> GSM149140     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000
#> GSM149141     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000
#> GSM149142     2  0.2719      0.830 0.144 0.852 0.000 0.000 0.004
#> GSM149143     2  0.1430      0.858 0.052 0.944 0.000 0.000 0.004
#> GSM149144     2  0.2605      0.865 0.000 0.852 0.000 0.000 0.148
#> GSM149145     2  0.1792      0.854 0.084 0.916 0.000 0.000 0.000
#> GSM149146     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> GSM149147     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000
#> GSM149148     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000
#> GSM149149     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000
#> GSM149150     2  0.3112      0.860 0.100 0.856 0.000 0.000 0.044
#> GSM149151     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000
#> GSM149152     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.000
#> GSM149153     2  0.2329      0.841 0.124 0.876 0.000 0.000 0.000
#> GSM149154     3  0.1872      0.902 0.052 0.020 0.928 0.000 0.000
#> GSM149155     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> GSM149156     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> GSM149157     5  0.0162      0.946 0.000 0.004 0.000 0.000 0.996
#> GSM149158     2  0.2605      0.865 0.000 0.852 0.000 0.000 0.148
#> GSM149159     5  0.2471      0.899 0.000 0.136 0.000 0.000 0.864
#> GSM149160     5  0.2127      0.846 0.000 0.108 0.000 0.000 0.892
#> GSM149161     2  0.2798      0.868 0.008 0.852 0.000 0.000 0.140
#> GSM149162     5  0.0162      0.946 0.000 0.004 0.000 0.000 0.996
#> GSM149163     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> GSM149164     2  0.1956      0.859 0.076 0.916 0.000 0.000 0.008
#> GSM149165     5  0.0703      0.943 0.000 0.024 0.000 0.000 0.976
#> GSM149166     2  0.2969      0.870 0.020 0.852 0.000 0.000 0.128
#> GSM149167     2  0.5757      0.361 0.416 0.496 0.000 0.000 0.088
#> GSM149168     5  0.2561      0.896 0.000 0.144 0.000 0.000 0.856
#> GSM149169     2  0.4430      0.319 0.456 0.540 0.000 0.000 0.004
#> GSM149170     5  0.2561      0.896 0.000 0.144 0.000 0.000 0.856
#> GSM149171     5  0.2561      0.896 0.000 0.144 0.000 0.000 0.856
#> GSM149172     2  0.1041      0.852 0.032 0.964 0.000 0.000 0.004
#> GSM149173     5  0.2561      0.896 0.000 0.144 0.000 0.000 0.856
#> GSM149174     2  0.2818      0.870 0.012 0.856 0.000 0.000 0.132
#> GSM149175     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> GSM149176     2  0.2605      0.865 0.000 0.852 0.000 0.000 0.148
#> GSM149177     2  0.1408      0.859 0.044 0.948 0.000 0.000 0.008
#> GSM149178     2  0.1357      0.858 0.048 0.948 0.000 0.000 0.004
#> GSM149179     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> GSM149180     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> GSM149181     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> GSM149182     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> GSM149183     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> GSM149184     2  0.2605      0.865 0.000 0.852 0.000 0.000 0.148
#> GSM149185     5  0.2179      0.910 0.000 0.112 0.000 0.000 0.888
#> GSM149186     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> GSM149187     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> GSM149188     5  0.1410      0.933 0.000 0.060 0.000 0.000 0.940
#> GSM149189     5  0.2561      0.896 0.000 0.144 0.000 0.000 0.856
#> GSM149190     2  0.2605      0.865 0.000 0.852 0.000 0.000 0.148
#> GSM149191     5  0.2561      0.896 0.000 0.144 0.000 0.000 0.856
#> GSM149192     5  0.1410      0.933 0.000 0.060 0.000 0.000 0.940
#> GSM149193     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> GSM149194     5  0.0162      0.946 0.000 0.004 0.000 0.000 0.996
#> GSM149195     3  0.0510      0.950 0.000 0.000 0.984 0.000 0.016
#> GSM149196     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> GSM149197     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> GSM149198     1  0.0579      0.984 0.984 0.008 0.000 0.008 0.000
#> GSM149199     5  0.0880      0.925 0.000 0.032 0.000 0.000 0.968
#> GSM149200     5  0.2561      0.896 0.000 0.144 0.000 0.000 0.856
#> GSM149201     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> GSM149202     5  0.0880      0.941 0.000 0.032 0.000 0.000 0.968
#> GSM149203     5  0.2561      0.896 0.000 0.144 0.000 0.000 0.856

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.0000     0.9449 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149100     3  0.0000     0.9449 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149101     3  0.0000     0.9449 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149102     3  0.0000     0.9449 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149103     6  0.4030     0.6058 0.140 0.000 0.104 0.000 0.000 0.756
#> GSM149104     3  0.0000     0.9449 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149105     3  0.0000     0.9449 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149106     3  0.4933     0.4394 0.004 0.000 0.616 0.080 0.000 0.300
#> GSM149107     3  0.0000     0.9449 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149108     3  0.0000     0.9449 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149109     3  0.0000     0.9449 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149110     3  0.0000     0.9449 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149111     3  0.0000     0.9449 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149112     3  0.0000     0.9449 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149113     3  0.0000     0.9449 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149114     3  0.0000     0.9449 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM149115     1  0.5104     0.4921 0.628 0.000 0.000 0.248 0.004 0.120
#> GSM149116     4  0.0000     0.9959 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149117     1  0.2744     0.7656 0.840 0.000 0.000 0.000 0.016 0.144
#> GSM149118     4  0.0000     0.9959 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149119     4  0.0000     0.9959 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149120     4  0.0000     0.9959 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149121     4  0.0547     0.9726 0.020 0.000 0.000 0.980 0.000 0.000
#> GSM149122     4  0.0000     0.9959 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149123     4  0.0000     0.9959 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149124     4  0.0000     0.9959 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149125     4  0.0000     0.9959 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149126     4  0.0000     0.9959 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149127     4  0.0000     0.9959 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149128     4  0.0000     0.9959 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149129     4  0.0000     0.9959 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149130     1  0.0000     0.8653 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149131     1  0.1714     0.8098 0.908 0.000 0.000 0.000 0.000 0.092
#> GSM149132     4  0.0000     0.9959 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM149133     4  0.0547     0.9726 0.020 0.000 0.000 0.980 0.000 0.000
#> GSM149134     1  0.0632     0.8545 0.976 0.000 0.000 0.000 0.000 0.024
#> GSM149135     1  0.0000     0.8653 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149136     1  0.0000     0.8653 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149137     1  0.0000     0.8653 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149138     1  0.0260     0.8625 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM149139     1  0.0000     0.8653 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149140     1  0.0000     0.8653 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149141     1  0.2340     0.7696 0.852 0.000 0.000 0.000 0.000 0.148
#> GSM149142     1  0.5878     0.1423 0.548 0.180 0.000 0.000 0.016 0.256
#> GSM149143     6  0.2790     0.6180 0.020 0.000 0.000 0.000 0.140 0.840
#> GSM149144     2  0.4278     0.6314 0.000 0.712 0.000 0.000 0.076 0.212
#> GSM149145     6  0.2260     0.6282 0.140 0.000 0.000 0.000 0.000 0.860
#> GSM149146     2  0.0790     0.7812 0.000 0.968 0.000 0.000 0.032 0.000
#> GSM149147     1  0.0000     0.8653 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149148     1  0.0146     0.8640 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM149149     1  0.0000     0.8653 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149150     2  0.6649     0.1509 0.240 0.472 0.000 0.000 0.052 0.236
#> GSM149151     1  0.0000     0.8653 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM149152     1  0.3316     0.7419 0.804 0.000 0.000 0.028 0.004 0.164
#> GSM149153     6  0.3126     0.5221 0.248 0.000 0.000 0.000 0.000 0.752
#> GSM149154     6  0.4064     0.2559 0.020 0.000 0.336 0.000 0.000 0.644
#> GSM149155     2  0.0632     0.7854 0.000 0.976 0.000 0.000 0.024 0.000
#> GSM149156     2  0.2178     0.6922 0.000 0.868 0.000 0.000 0.132 0.000
#> GSM149157     2  0.2006     0.7249 0.000 0.892 0.000 0.000 0.104 0.004
#> GSM149158     2  0.4278     0.6314 0.000 0.712 0.000 0.000 0.076 0.212
#> GSM149159     5  0.2823     0.8359 0.000 0.204 0.000 0.000 0.796 0.000
#> GSM149160     2  0.1807     0.7716 0.000 0.920 0.000 0.000 0.020 0.060
#> GSM149161     2  0.4416     0.6276 0.004 0.708 0.000 0.000 0.076 0.212
#> GSM149162     2  0.0508     0.7886 0.000 0.984 0.000 0.000 0.012 0.004
#> GSM149163     2  0.0713     0.7838 0.000 0.972 0.000 0.000 0.028 0.000
#> GSM149164     6  0.6054    -0.0467 0.088 0.424 0.000 0.000 0.048 0.440
#> GSM149165     5  0.3756     0.6313 0.000 0.400 0.000 0.000 0.600 0.000
#> GSM149166     2  0.4254     0.6302 0.000 0.712 0.000 0.000 0.072 0.216
#> GSM149167     2  0.7300     0.0474 0.244 0.396 0.000 0.000 0.120 0.240
#> GSM149168     5  0.2697     0.8366 0.000 0.188 0.000 0.000 0.812 0.000
#> GSM149169     1  0.3409     0.6282 0.780 0.000 0.000 0.000 0.028 0.192
#> GSM149170     5  0.2664     0.8352 0.000 0.184 0.000 0.000 0.816 0.000
#> GSM149171     5  0.2762     0.8377 0.000 0.196 0.000 0.000 0.804 0.000
#> GSM149172     5  0.3828    -0.0295 0.000 0.000 0.000 0.000 0.560 0.440
#> GSM149173     5  0.2664     0.8352 0.000 0.184 0.000 0.000 0.816 0.000
#> GSM149174     2  0.4392     0.6263 0.004 0.708 0.000 0.000 0.072 0.216
#> GSM149175     3  0.3620     0.4749 0.000 0.000 0.648 0.000 0.000 0.352
#> GSM149176     2  0.4223     0.6385 0.000 0.720 0.000 0.000 0.076 0.204
#> GSM149177     5  0.5271    -0.2387 0.020 0.052 0.000 0.000 0.472 0.456
#> GSM149178     6  0.4254     0.2973 0.020 0.000 0.000 0.000 0.404 0.576
#> GSM149179     2  0.0000     0.7899 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149180     2  0.0146     0.7898 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM149181     2  0.2597     0.6275 0.000 0.824 0.000 0.000 0.176 0.000
#> GSM149182     2  0.0000     0.7899 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149183     2  0.2730     0.6042 0.000 0.808 0.000 0.000 0.192 0.000
#> GSM149184     2  0.4621     0.6332 0.016 0.724 0.000 0.000 0.112 0.148
#> GSM149185     5  0.3101     0.8184 0.000 0.244 0.000 0.000 0.756 0.000
#> GSM149186     2  0.1327     0.7618 0.000 0.936 0.000 0.000 0.064 0.000
#> GSM149187     2  0.0260     0.7893 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM149188     5  0.3428     0.7804 0.000 0.304 0.000 0.000 0.696 0.000
#> GSM149189     5  0.2730     0.8375 0.000 0.192 0.000 0.000 0.808 0.000
#> GSM149190     2  0.4278     0.6314 0.000 0.712 0.000 0.000 0.076 0.212
#> GSM149191     5  0.2664     0.8352 0.000 0.184 0.000 0.000 0.816 0.000
#> GSM149192     5  0.3390     0.7868 0.000 0.296 0.000 0.000 0.704 0.000
#> GSM149193     2  0.3198     0.4493 0.000 0.740 0.000 0.000 0.260 0.000
#> GSM149194     2  0.0146     0.7896 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM149195     3  0.2074     0.8664 0.000 0.004 0.912 0.000 0.048 0.036
#> GSM149196     2  0.1007     0.7754 0.000 0.956 0.000 0.000 0.044 0.000
#> GSM149197     2  0.0000     0.7899 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM149198     1  0.5879     0.1081 0.468 0.000 0.000 0.180 0.004 0.348
#> GSM149199     2  0.0547     0.7875 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM149200     5  0.2664     0.8352 0.000 0.184 0.000 0.000 0.816 0.000
#> GSM149201     2  0.1765     0.7340 0.000 0.904 0.000 0.000 0.096 0.000
#> GSM149202     5  0.3868     0.4003 0.000 0.492 0.000 0.000 0.508 0.000
#> GSM149203     5  0.2762     0.8377 0.000 0.196 0.000 0.000 0.804 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> ATC:mclust 105         1.39e-11 2
#> ATC:mclust  61         8.46e-10 3
#> ATC:mclust 103         3.43e-31 4
#> ATC:mclust 102         5.23e-34 5
#> ATC:mclust  91         4.00e-28 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.964       0.985         0.4687 0.534   0.534
#> 3 3 0.782           0.874       0.940         0.3625 0.714   0.515
#> 4 4 0.692           0.786       0.871         0.1302 0.786   0.494
#> 5 5 0.657           0.698       0.820         0.0934 0.853   0.519
#> 6 6 0.706           0.632       0.789         0.0398 0.952   0.775

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM149099     1  0.0000     0.9855 1.000 0.000
#> GSM149100     1  0.0000     0.9855 1.000 0.000
#> GSM149101     1  0.0000     0.9855 1.000 0.000
#> GSM149102     1  0.0000     0.9855 1.000 0.000
#> GSM149103     1  0.4022     0.9112 0.920 0.080
#> GSM149104     1  0.0000     0.9855 1.000 0.000
#> GSM149105     1  0.0000     0.9855 1.000 0.000
#> GSM149106     1  0.0000     0.9855 1.000 0.000
#> GSM149107     1  0.0000     0.9855 1.000 0.000
#> GSM149108     1  0.0000     0.9855 1.000 0.000
#> GSM149109     1  0.0000     0.9855 1.000 0.000
#> GSM149110     1  0.0000     0.9855 1.000 0.000
#> GSM149111     1  0.0000     0.9855 1.000 0.000
#> GSM149112     1  0.0000     0.9855 1.000 0.000
#> GSM149113     1  0.0000     0.9855 1.000 0.000
#> GSM149114     1  0.0000     0.9855 1.000 0.000
#> GSM149115     2  0.0000     0.9844 0.000 1.000
#> GSM149116     1  0.0000     0.9855 1.000 0.000
#> GSM149117     2  0.0000     0.9844 0.000 1.000
#> GSM149118     1  0.0000     0.9855 1.000 0.000
#> GSM149119     1  0.0000     0.9855 1.000 0.000
#> GSM149120     1  0.0000     0.9855 1.000 0.000
#> GSM149121     1  0.0000     0.9855 1.000 0.000
#> GSM149122     1  0.0000     0.9855 1.000 0.000
#> GSM149123     1  0.0000     0.9855 1.000 0.000
#> GSM149124     1  0.0000     0.9855 1.000 0.000
#> GSM149125     1  0.0000     0.9855 1.000 0.000
#> GSM149126     1  0.0000     0.9855 1.000 0.000
#> GSM149127     1  0.0000     0.9855 1.000 0.000
#> GSM149128     1  0.0000     0.9855 1.000 0.000
#> GSM149129     1  0.0000     0.9855 1.000 0.000
#> GSM149130     2  0.0000     0.9844 0.000 1.000
#> GSM149131     1  0.5408     0.8599 0.876 0.124
#> GSM149132     1  0.0000     0.9855 1.000 0.000
#> GSM149133     1  0.0000     0.9855 1.000 0.000
#> GSM149134     2  0.0672     0.9771 0.008 0.992
#> GSM149135     2  0.0000     0.9844 0.000 1.000
#> GSM149136     2  0.0000     0.9844 0.000 1.000
#> GSM149137     2  0.0000     0.9844 0.000 1.000
#> GSM149138     2  0.0000     0.9844 0.000 1.000
#> GSM149139     2  0.0000     0.9844 0.000 1.000
#> GSM149140     2  0.0000     0.9844 0.000 1.000
#> GSM149141     2  0.0000     0.9844 0.000 1.000
#> GSM149142     2  0.0000     0.9844 0.000 1.000
#> GSM149143     2  0.9998     0.0172 0.492 0.508
#> GSM149144     2  0.0000     0.9844 0.000 1.000
#> GSM149145     2  0.0376     0.9808 0.004 0.996
#> GSM149146     2  0.0000     0.9844 0.000 1.000
#> GSM149147     2  0.0000     0.9844 0.000 1.000
#> GSM149148     2  0.0000     0.9844 0.000 1.000
#> GSM149149     2  0.0000     0.9844 0.000 1.000
#> GSM149150     2  0.0000     0.9844 0.000 1.000
#> GSM149151     2  0.0000     0.9844 0.000 1.000
#> GSM149152     1  0.3733     0.9196 0.928 0.072
#> GSM149153     2  0.0000     0.9844 0.000 1.000
#> GSM149154     1  0.0000     0.9855 1.000 0.000
#> GSM149155     2  0.0000     0.9844 0.000 1.000
#> GSM149156     2  0.0000     0.9844 0.000 1.000
#> GSM149157     2  0.0000     0.9844 0.000 1.000
#> GSM149158     2  0.0000     0.9844 0.000 1.000
#> GSM149159     2  0.0000     0.9844 0.000 1.000
#> GSM149160     2  0.0000     0.9844 0.000 1.000
#> GSM149161     2  0.0000     0.9844 0.000 1.000
#> GSM149162     2  0.0000     0.9844 0.000 1.000
#> GSM149163     2  0.0000     0.9844 0.000 1.000
#> GSM149164     2  0.0000     0.9844 0.000 1.000
#> GSM149165     2  0.0000     0.9844 0.000 1.000
#> GSM149166     2  0.0000     0.9844 0.000 1.000
#> GSM149167     2  0.0000     0.9844 0.000 1.000
#> GSM149168     2  0.0000     0.9844 0.000 1.000
#> GSM149169     2  0.0000     0.9844 0.000 1.000
#> GSM149170     2  0.0000     0.9844 0.000 1.000
#> GSM149171     2  0.0000     0.9844 0.000 1.000
#> GSM149172     2  0.7299     0.7366 0.204 0.796
#> GSM149173     2  0.8713     0.5823 0.292 0.708
#> GSM149174     2  0.0000     0.9844 0.000 1.000
#> GSM149175     1  0.0000     0.9855 1.000 0.000
#> GSM149176     2  0.0000     0.9844 0.000 1.000
#> GSM149177     2  0.0000     0.9844 0.000 1.000
#> GSM149178     1  0.8081     0.6734 0.752 0.248
#> GSM149179     2  0.0000     0.9844 0.000 1.000
#> GSM149180     2  0.0000     0.9844 0.000 1.000
#> GSM149181     2  0.0000     0.9844 0.000 1.000
#> GSM149182     2  0.0000     0.9844 0.000 1.000
#> GSM149183     2  0.0000     0.9844 0.000 1.000
#> GSM149184     2  0.0000     0.9844 0.000 1.000
#> GSM149185     2  0.0000     0.9844 0.000 1.000
#> GSM149186     2  0.0000     0.9844 0.000 1.000
#> GSM149187     2  0.0000     0.9844 0.000 1.000
#> GSM149188     2  0.0000     0.9844 0.000 1.000
#> GSM149189     2  0.0000     0.9844 0.000 1.000
#> GSM149190     2  0.0000     0.9844 0.000 1.000
#> GSM149191     2  0.0000     0.9844 0.000 1.000
#> GSM149192     2  0.0000     0.9844 0.000 1.000
#> GSM149193     2  0.0000     0.9844 0.000 1.000
#> GSM149194     2  0.0000     0.9844 0.000 1.000
#> GSM149195     1  0.0000     0.9855 1.000 0.000
#> GSM149196     2  0.0000     0.9844 0.000 1.000
#> GSM149197     2  0.0000     0.9844 0.000 1.000
#> GSM149198     1  0.0000     0.9855 1.000 0.000
#> GSM149199     2  0.0000     0.9844 0.000 1.000
#> GSM149200     2  0.0376     0.9808 0.004 0.996
#> GSM149201     2  0.0000     0.9844 0.000 1.000
#> GSM149202     2  0.0000     0.9844 0.000 1.000
#> GSM149203     2  0.0000     0.9844 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM149099     3  0.0237     0.9438 0.004 0.000 0.996
#> GSM149100     3  0.0000     0.9443 0.000 0.000 1.000
#> GSM149101     3  0.0000     0.9443 0.000 0.000 1.000
#> GSM149102     3  0.0000     0.9443 0.000 0.000 1.000
#> GSM149103     3  0.1031     0.9300 0.000 0.024 0.976
#> GSM149104     3  0.0237     0.9438 0.004 0.000 0.996
#> GSM149105     3  0.0000     0.9443 0.000 0.000 1.000
#> GSM149106     3  0.1411     0.9217 0.036 0.000 0.964
#> GSM149107     3  0.0424     0.9423 0.008 0.000 0.992
#> GSM149108     3  0.0592     0.9401 0.012 0.000 0.988
#> GSM149109     3  0.0424     0.9423 0.008 0.000 0.992
#> GSM149110     3  0.0000     0.9443 0.000 0.000 1.000
#> GSM149111     3  0.0000     0.9443 0.000 0.000 1.000
#> GSM149112     3  0.0237     0.9438 0.004 0.000 0.996
#> GSM149113     3  0.0000     0.9443 0.000 0.000 1.000
#> GSM149114     3  0.0000     0.9443 0.000 0.000 1.000
#> GSM149115     1  0.1031     0.9120 0.976 0.024 0.000
#> GSM149116     1  0.1860     0.8989 0.948 0.000 0.052
#> GSM149117     1  0.3482     0.8622 0.872 0.128 0.000
#> GSM149118     1  0.0592     0.9123 0.988 0.000 0.012
#> GSM149119     1  0.3941     0.8052 0.844 0.000 0.156
#> GSM149120     1  0.1031     0.9093 0.976 0.000 0.024
#> GSM149121     1  0.0237     0.9129 0.996 0.000 0.004
#> GSM149122     1  0.3116     0.8573 0.892 0.000 0.108
#> GSM149123     1  0.0424     0.9127 0.992 0.000 0.008
#> GSM149124     1  0.0237     0.9129 0.996 0.000 0.004
#> GSM149125     1  0.0592     0.9123 0.988 0.000 0.012
#> GSM149126     1  0.1529     0.9038 0.960 0.000 0.040
#> GSM149127     1  0.2448     0.8829 0.924 0.000 0.076
#> GSM149128     1  0.1643     0.9021 0.956 0.000 0.044
#> GSM149129     1  0.1964     0.8962 0.944 0.000 0.056
#> GSM149130     1  0.1529     0.9086 0.960 0.040 0.000
#> GSM149131     1  0.0000     0.9128 1.000 0.000 0.000
#> GSM149132     1  0.2261     0.8886 0.932 0.000 0.068
#> GSM149133     1  0.0237     0.9129 0.996 0.000 0.004
#> GSM149134     1  0.0892     0.9125 0.980 0.020 0.000
#> GSM149135     1  0.3482     0.8622 0.872 0.128 0.000
#> GSM149136     1  0.3551     0.8590 0.868 0.132 0.000
#> GSM149137     1  0.3340     0.8676 0.880 0.120 0.000
#> GSM149138     1  0.5591     0.6345 0.696 0.304 0.000
#> GSM149139     1  0.1860     0.9049 0.948 0.052 0.000
#> GSM149140     1  0.5178     0.7192 0.744 0.256 0.000
#> GSM149141     1  0.5098     0.7289 0.752 0.248 0.000
#> GSM149142     2  0.1163     0.9195 0.028 0.972 0.000
#> GSM149143     3  0.5591     0.5657 0.000 0.304 0.696
#> GSM149144     2  0.0237     0.9351 0.004 0.996 0.000
#> GSM149145     2  0.0237     0.9351 0.004 0.996 0.000
#> GSM149146     2  0.0000     0.9353 0.000 1.000 0.000
#> GSM149147     1  0.2066     0.9019 0.940 0.060 0.000
#> GSM149148     2  0.6299    -0.0298 0.476 0.524 0.000
#> GSM149149     1  0.2066     0.9018 0.940 0.060 0.000
#> GSM149150     2  0.0592     0.9309 0.012 0.988 0.000
#> GSM149151     1  0.3879     0.8410 0.848 0.152 0.000
#> GSM149152     1  0.0000     0.9128 1.000 0.000 0.000
#> GSM149153     2  0.0424     0.9332 0.008 0.992 0.000
#> GSM149154     3  0.0424     0.9423 0.008 0.000 0.992
#> GSM149155     2  0.0000     0.9353 0.000 1.000 0.000
#> GSM149156     2  0.0000     0.9353 0.000 1.000 0.000
#> GSM149157     2  0.0000     0.9353 0.000 1.000 0.000
#> GSM149158     2  0.0237     0.9351 0.004 0.996 0.000
#> GSM149159     2  0.3192     0.8529 0.000 0.888 0.112
#> GSM149160     2  0.0000     0.9353 0.000 1.000 0.000
#> GSM149161     2  0.0237     0.9351 0.004 0.996 0.000
#> GSM149162     2  0.0000     0.9353 0.000 1.000 0.000
#> GSM149163     2  0.0000     0.9353 0.000 1.000 0.000
#> GSM149164     2  0.0237     0.9351 0.004 0.996 0.000
#> GSM149165     2  0.0747     0.9283 0.000 0.984 0.016
#> GSM149166     2  0.0237     0.9351 0.004 0.996 0.000
#> GSM149167     2  0.3816     0.7947 0.148 0.852 0.000
#> GSM149168     2  0.2711     0.8760 0.000 0.912 0.088
#> GSM149169     2  0.3340     0.8301 0.120 0.880 0.000
#> GSM149170     2  0.4178     0.7866 0.000 0.828 0.172
#> GSM149171     2  0.1643     0.9112 0.000 0.956 0.044
#> GSM149172     2  0.6286     0.1436 0.000 0.536 0.464
#> GSM149173     3  0.3267     0.8487 0.000 0.116 0.884
#> GSM149174     2  0.0237     0.9351 0.004 0.996 0.000
#> GSM149175     3  0.0592     0.9398 0.012 0.000 0.988
#> GSM149176     2  0.0237     0.9351 0.004 0.996 0.000
#> GSM149177     2  0.1031     0.9238 0.000 0.976 0.024
#> GSM149178     3  0.3879     0.8122 0.000 0.152 0.848
#> GSM149179     2  0.0237     0.9351 0.004 0.996 0.000
#> GSM149180     2  0.0000     0.9353 0.000 1.000 0.000
#> GSM149181     2  0.0000     0.9353 0.000 1.000 0.000
#> GSM149182     2  0.0237     0.9351 0.004 0.996 0.000
#> GSM149183     2  0.0000     0.9353 0.000 1.000 0.000
#> GSM149184     2  0.0424     0.9332 0.008 0.992 0.000
#> GSM149185     2  0.2878     0.8692 0.000 0.904 0.096
#> GSM149186     2  0.0000     0.9353 0.000 1.000 0.000
#> GSM149187     2  0.0000     0.9353 0.000 1.000 0.000
#> GSM149188     2  0.2878     0.8693 0.000 0.904 0.096
#> GSM149189     2  0.5988     0.4353 0.000 0.632 0.368
#> GSM149190     2  0.0237     0.9351 0.004 0.996 0.000
#> GSM149191     2  0.5560     0.5843 0.000 0.700 0.300
#> GSM149192     2  0.2066     0.8988 0.000 0.940 0.060
#> GSM149193     2  0.0424     0.9323 0.000 0.992 0.008
#> GSM149194     2  0.0000     0.9353 0.000 1.000 0.000
#> GSM149195     3  0.0237     0.9422 0.000 0.004 0.996
#> GSM149196     2  0.0000     0.9353 0.000 1.000 0.000
#> GSM149197     2  0.0237     0.9351 0.004 0.996 0.000
#> GSM149198     1  0.0237     0.9129 0.996 0.000 0.004
#> GSM149199     2  0.0237     0.9351 0.004 0.996 0.000
#> GSM149200     3  0.5785     0.4993 0.000 0.332 0.668
#> GSM149201     2  0.0000     0.9353 0.000 1.000 0.000
#> GSM149202     2  0.1643     0.9108 0.000 0.956 0.044
#> GSM149203     2  0.3816     0.8152 0.000 0.852 0.148

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM149099     3  0.1867      0.902 0.000 0.000 0.928 0.072
#> GSM149100     3  0.1109      0.898 0.028 0.000 0.968 0.004
#> GSM149101     3  0.2011      0.878 0.080 0.000 0.920 0.000
#> GSM149102     3  0.1867      0.882 0.072 0.000 0.928 0.000
#> GSM149103     1  0.5168     -0.113 0.504 0.000 0.492 0.004
#> GSM149104     3  0.1174      0.902 0.020 0.000 0.968 0.012
#> GSM149105     3  0.3594      0.889 0.024 0.008 0.860 0.108
#> GSM149106     3  0.3123      0.869 0.000 0.000 0.844 0.156
#> GSM149107     3  0.1807      0.893 0.052 0.000 0.940 0.008
#> GSM149108     3  0.2589      0.892 0.000 0.000 0.884 0.116
#> GSM149109     3  0.3711      0.885 0.024 0.008 0.852 0.116
#> GSM149110     3  0.3940      0.882 0.028 0.012 0.844 0.116
#> GSM149111     3  0.1022      0.903 0.000 0.000 0.968 0.032
#> GSM149112     3  0.4413      0.857 0.028 0.012 0.808 0.152
#> GSM149113     3  0.3606      0.887 0.020 0.008 0.856 0.116
#> GSM149114     3  0.1792      0.884 0.068 0.000 0.932 0.000
#> GSM149115     4  0.4382      0.653 0.296 0.000 0.000 0.704
#> GSM149116     4  0.1118      0.881 0.000 0.000 0.036 0.964
#> GSM149117     1  0.5386      0.347 0.612 0.020 0.000 0.368
#> GSM149118     4  0.1716      0.912 0.064 0.000 0.000 0.936
#> GSM149119     4  0.2124      0.840 0.008 0.000 0.068 0.924
#> GSM149120     4  0.1389      0.916 0.048 0.000 0.000 0.952
#> GSM149121     4  0.3311      0.839 0.172 0.000 0.000 0.828
#> GSM149122     4  0.1637      0.857 0.000 0.000 0.060 0.940
#> GSM149123     4  0.1557      0.915 0.056 0.000 0.000 0.944
#> GSM149124     4  0.1557      0.915 0.056 0.000 0.000 0.944
#> GSM149125     4  0.1389      0.916 0.048 0.000 0.000 0.952
#> GSM149126     4  0.1302      0.916 0.044 0.000 0.000 0.956
#> GSM149127     4  0.1305      0.883 0.004 0.000 0.036 0.960
#> GSM149128     4  0.1174      0.907 0.020 0.000 0.012 0.968
#> GSM149129     4  0.1388      0.894 0.012 0.000 0.028 0.960
#> GSM149130     1  0.2760      0.721 0.872 0.000 0.000 0.128
#> GSM149131     1  0.3249      0.702 0.852 0.000 0.008 0.140
#> GSM149132     4  0.1284      0.908 0.024 0.000 0.012 0.964
#> GSM149133     4  0.3444      0.828 0.184 0.000 0.000 0.816
#> GSM149134     1  0.3873      0.601 0.772 0.000 0.000 0.228
#> GSM149135     1  0.3105      0.732 0.868 0.012 0.000 0.120
#> GSM149136     1  0.3108      0.737 0.872 0.016 0.000 0.112
#> GSM149137     1  0.2859      0.734 0.880 0.008 0.000 0.112
#> GSM149138     1  0.2773      0.751 0.900 0.028 0.000 0.072
#> GSM149139     1  0.3539      0.680 0.820 0.004 0.000 0.176
#> GSM149140     1  0.3279      0.746 0.872 0.032 0.000 0.096
#> GSM149141     1  0.2010      0.719 0.932 0.004 0.060 0.004
#> GSM149142     1  0.2976      0.747 0.872 0.120 0.008 0.000
#> GSM149143     3  0.4482      0.798 0.092 0.088 0.816 0.004
#> GSM149144     1  0.4817      0.486 0.612 0.388 0.000 0.000
#> GSM149145     1  0.4122      0.565 0.760 0.000 0.236 0.004
#> GSM149146     2  0.0592      0.897 0.016 0.984 0.000 0.000
#> GSM149147     1  0.2402      0.745 0.912 0.012 0.000 0.076
#> GSM149148     1  0.2670      0.753 0.908 0.040 0.000 0.052
#> GSM149149     1  0.2522      0.747 0.908 0.016 0.000 0.076
#> GSM149150     1  0.3528      0.726 0.808 0.192 0.000 0.000
#> GSM149151     1  0.2845      0.750 0.896 0.028 0.000 0.076
#> GSM149152     4  0.2814      0.871 0.132 0.000 0.000 0.868
#> GSM149153     1  0.3534      0.671 0.840 0.008 0.148 0.004
#> GSM149154     3  0.3448      0.812 0.168 0.000 0.828 0.004
#> GSM149155     2  0.1474      0.889 0.052 0.948 0.000 0.000
#> GSM149156     2  0.0469      0.897 0.012 0.988 0.000 0.000
#> GSM149157     2  0.1716      0.883 0.064 0.936 0.000 0.000
#> GSM149158     1  0.4804      0.495 0.616 0.384 0.000 0.000
#> GSM149159     2  0.0927      0.887 0.016 0.976 0.008 0.000
#> GSM149160     2  0.2216      0.863 0.092 0.908 0.000 0.000
#> GSM149161     1  0.4543      0.589 0.676 0.324 0.000 0.000
#> GSM149162     2  0.1389      0.891 0.048 0.952 0.000 0.000
#> GSM149163     2  0.1389      0.891 0.048 0.952 0.000 0.000
#> GSM149164     1  0.4601      0.656 0.732 0.256 0.008 0.004
#> GSM149165     2  0.0188      0.896 0.004 0.996 0.000 0.000
#> GSM149166     1  0.4804      0.491 0.616 0.384 0.000 0.000
#> GSM149167     2  0.5252      0.427 0.336 0.644 0.000 0.020
#> GSM149168     2  0.0376      0.893 0.004 0.992 0.004 0.000
#> GSM149169     1  0.4418      0.733 0.784 0.184 0.000 0.032
#> GSM149170     2  0.1593      0.880 0.016 0.956 0.024 0.004
#> GSM149171     2  0.0188      0.896 0.004 0.996 0.000 0.000
#> GSM149172     2  0.3116      0.840 0.032 0.900 0.044 0.024
#> GSM149173     2  0.4181      0.765 0.032 0.824 0.136 0.008
#> GSM149174     1  0.4713      0.537 0.640 0.360 0.000 0.000
#> GSM149175     3  0.1520      0.902 0.024 0.000 0.956 0.020
#> GSM149176     1  0.4941      0.364 0.564 0.436 0.000 0.000
#> GSM149177     2  0.6506      0.484 0.240 0.628 0.132 0.000
#> GSM149178     2  0.5018      0.743 0.032 0.804 0.080 0.084
#> GSM149179     2  0.3266      0.775 0.168 0.832 0.000 0.000
#> GSM149180     2  0.2345      0.855 0.100 0.900 0.000 0.000
#> GSM149181     2  0.0336      0.897 0.008 0.992 0.000 0.000
#> GSM149182     2  0.2589      0.839 0.116 0.884 0.000 0.000
#> GSM149183     2  0.0336      0.897 0.008 0.992 0.000 0.000
#> GSM149184     2  0.1637      0.885 0.060 0.940 0.000 0.000
#> GSM149185     2  0.1543      0.878 0.032 0.956 0.008 0.004
#> GSM149186     2  0.1389      0.891 0.048 0.952 0.000 0.000
#> GSM149187     2  0.1389      0.891 0.048 0.952 0.000 0.000
#> GSM149188     2  0.1674      0.876 0.032 0.952 0.012 0.004
#> GSM149189     2  0.2469      0.833 0.000 0.892 0.108 0.000
#> GSM149190     1  0.4843      0.471 0.604 0.396 0.000 0.000
#> GSM149191     2  0.2007      0.872 0.020 0.940 0.036 0.004
#> GSM149192     2  0.0376      0.895 0.004 0.992 0.004 0.000
#> GSM149193     2  0.0336      0.897 0.008 0.992 0.000 0.000
#> GSM149194     2  0.4790      0.310 0.380 0.620 0.000 0.000
#> GSM149195     3  0.4598      0.869 0.032 0.044 0.824 0.100
#> GSM149196     2  0.1211      0.893 0.040 0.960 0.000 0.000
#> GSM149197     2  0.2081      0.869 0.084 0.916 0.000 0.000
#> GSM149198     4  0.2921      0.866 0.140 0.000 0.000 0.860
#> GSM149199     2  0.4277      0.579 0.280 0.720 0.000 0.000
#> GSM149200     2  0.2982      0.839 0.032 0.896 0.068 0.004
#> GSM149201     2  0.0469      0.897 0.012 0.988 0.000 0.000
#> GSM149202     2  0.0592      0.897 0.016 0.984 0.000 0.000
#> GSM149203     2  0.2165      0.867 0.032 0.936 0.024 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM149099     3  0.1106      0.919 0.000 0.000 0.964 0.024 0.012
#> GSM149100     3  0.1153      0.910 0.024 0.008 0.964 0.000 0.004
#> GSM149101     3  0.2116      0.877 0.076 0.008 0.912 0.000 0.004
#> GSM149102     3  0.1788      0.890 0.056 0.008 0.932 0.000 0.004
#> GSM149103     3  0.4039      0.635 0.268 0.008 0.720 0.000 0.004
#> GSM149104     3  0.0613      0.915 0.008 0.004 0.984 0.004 0.000
#> GSM149105     3  0.2576      0.909 0.000 0.008 0.900 0.056 0.036
#> GSM149106     3  0.2464      0.899 0.000 0.012 0.892 0.092 0.004
#> GSM149107     3  0.0833      0.911 0.016 0.004 0.976 0.000 0.004
#> GSM149108     3  0.1591      0.917 0.000 0.004 0.940 0.052 0.004
#> GSM149109     3  0.3002      0.900 0.000 0.008 0.876 0.068 0.048
#> GSM149110     3  0.3012      0.900 0.000 0.008 0.876 0.060 0.056
#> GSM149111     3  0.0807      0.919 0.000 0.000 0.976 0.012 0.012
#> GSM149112     3  0.3582      0.880 0.000 0.008 0.840 0.080 0.072
#> GSM149113     3  0.2629      0.907 0.000 0.008 0.896 0.064 0.032
#> GSM149114     3  0.1026      0.908 0.024 0.004 0.968 0.000 0.004
#> GSM149115     4  0.3449      0.808 0.164 0.024 0.000 0.812 0.000
#> GSM149116     4  0.0912      0.898 0.016 0.000 0.012 0.972 0.000
#> GSM149117     2  0.5054      0.488 0.104 0.708 0.000 0.184 0.004
#> GSM149118     4  0.0963      0.906 0.036 0.000 0.000 0.964 0.000
#> GSM149119     4  0.1364      0.889 0.012 0.000 0.036 0.952 0.000
#> GSM149120     4  0.1544      0.894 0.068 0.000 0.000 0.932 0.000
#> GSM149121     4  0.3530      0.773 0.204 0.012 0.000 0.784 0.000
#> GSM149122     4  0.0955      0.895 0.004 0.000 0.028 0.968 0.000
#> GSM149123     4  0.0404      0.905 0.012 0.000 0.000 0.988 0.000
#> GSM149124     4  0.0880      0.905 0.032 0.000 0.000 0.968 0.000
#> GSM149125     4  0.1121      0.905 0.044 0.000 0.000 0.956 0.000
#> GSM149126     4  0.1270      0.902 0.052 0.000 0.000 0.948 0.000
#> GSM149127     4  0.1124      0.892 0.004 0.000 0.036 0.960 0.000
#> GSM149128     4  0.0703      0.899 0.000 0.000 0.024 0.976 0.000
#> GSM149129     4  0.1357      0.886 0.004 0.000 0.048 0.948 0.000
#> GSM149130     1  0.5039      0.664 0.700 0.116 0.000 0.184 0.000
#> GSM149131     1  0.3318      0.656 0.808 0.012 0.000 0.180 0.000
#> GSM149132     4  0.2300      0.890 0.040 0.000 0.052 0.908 0.000
#> GSM149133     4  0.3424      0.738 0.240 0.000 0.000 0.760 0.000
#> GSM149134     1  0.4806      0.568 0.688 0.060 0.000 0.252 0.000
#> GSM149135     1  0.5048      0.466 0.580 0.380 0.000 0.040 0.000
#> GSM149136     1  0.4898      0.475 0.592 0.376 0.000 0.032 0.000
#> GSM149137     1  0.4777      0.633 0.680 0.268 0.000 0.052 0.000
#> GSM149138     1  0.3812      0.696 0.772 0.204 0.000 0.024 0.000
#> GSM149139     1  0.6155      0.538 0.548 0.276 0.000 0.176 0.000
#> GSM149140     1  0.4677      0.598 0.664 0.300 0.000 0.036 0.000
#> GSM149141     1  0.3947      0.656 0.812 0.036 0.136 0.012 0.004
#> GSM149142     1  0.3123      0.670 0.812 0.184 0.004 0.000 0.000
#> GSM149143     5  0.5821      0.335 0.308 0.020 0.072 0.000 0.600
#> GSM149144     2  0.2068      0.689 0.092 0.904 0.000 0.000 0.004
#> GSM149145     1  0.4133      0.558 0.744 0.012 0.232 0.000 0.012
#> GSM149146     2  0.1544      0.747 0.000 0.932 0.000 0.000 0.068
#> GSM149147     1  0.1522      0.717 0.944 0.012 0.000 0.044 0.000
#> GSM149148     1  0.2416      0.722 0.888 0.100 0.000 0.012 0.000
#> GSM149149     1  0.1992      0.722 0.924 0.032 0.000 0.044 0.000
#> GSM149150     1  0.4655      0.401 0.644 0.328 0.000 0.000 0.028
#> GSM149151     1  0.3495      0.711 0.812 0.160 0.000 0.028 0.000
#> GSM149152     4  0.1792      0.887 0.084 0.000 0.000 0.916 0.000
#> GSM149153     1  0.4220      0.628 0.768 0.048 0.180 0.000 0.004
#> GSM149154     1  0.4869      0.477 0.688 0.008 0.260 0.000 0.044
#> GSM149155     2  0.2329      0.721 0.000 0.876 0.000 0.000 0.124
#> GSM149156     5  0.4305      0.109 0.000 0.488 0.000 0.000 0.512
#> GSM149157     5  0.3264      0.778 0.016 0.164 0.000 0.000 0.820
#> GSM149158     2  0.4382      0.444 0.288 0.688 0.000 0.000 0.024
#> GSM149159     5  0.1270      0.799 0.000 0.052 0.000 0.000 0.948
#> GSM149160     5  0.2983      0.792 0.040 0.096 0.000 0.000 0.864
#> GSM149161     2  0.4718      0.336 0.344 0.628 0.000 0.000 0.028
#> GSM149162     5  0.2806      0.789 0.004 0.152 0.000 0.000 0.844
#> GSM149163     2  0.2230      0.728 0.000 0.884 0.000 0.000 0.116
#> GSM149164     1  0.5076      0.485 0.676 0.068 0.004 0.000 0.252
#> GSM149165     5  0.2930      0.784 0.004 0.164 0.000 0.000 0.832
#> GSM149166     2  0.2522      0.675 0.108 0.880 0.000 0.000 0.012
#> GSM149167     2  0.4394      0.697 0.052 0.804 0.000 0.064 0.080
#> GSM149168     5  0.1704      0.802 0.004 0.068 0.000 0.000 0.928
#> GSM149169     2  0.5129      0.351 0.328 0.628 0.000 0.020 0.024
#> GSM149170     5  0.1544      0.802 0.000 0.068 0.000 0.000 0.932
#> GSM149171     5  0.2536      0.795 0.004 0.128 0.000 0.000 0.868
#> GSM149172     5  0.1604      0.795 0.004 0.044 0.004 0.004 0.944
#> GSM149173     5  0.0162      0.773 0.000 0.000 0.004 0.000 0.996
#> GSM149174     2  0.5541      0.216 0.372 0.552 0.000 0.000 0.076
#> GSM149175     3  0.1278      0.919 0.016 0.000 0.960 0.020 0.004
#> GSM149176     2  0.1485      0.737 0.032 0.948 0.000 0.000 0.020
#> GSM149177     2  0.3664      0.693 0.024 0.836 0.108 0.000 0.032
#> GSM149178     5  0.7777      0.485 0.020 0.164 0.084 0.212 0.520
#> GSM149179     2  0.1341      0.750 0.000 0.944 0.000 0.000 0.056
#> GSM149180     2  0.1478      0.750 0.000 0.936 0.000 0.000 0.064
#> GSM149181     5  0.3913      0.609 0.000 0.324 0.000 0.000 0.676
#> GSM149182     2  0.1410      0.750 0.000 0.940 0.000 0.000 0.060
#> GSM149183     5  0.4451      0.160 0.000 0.492 0.000 0.004 0.504
#> GSM149184     2  0.2930      0.687 0.004 0.832 0.000 0.000 0.164
#> GSM149185     5  0.2411      0.802 0.008 0.108 0.000 0.000 0.884
#> GSM149186     2  0.4192      0.165 0.000 0.596 0.000 0.000 0.404
#> GSM149187     2  0.4210      0.165 0.000 0.588 0.000 0.000 0.412
#> GSM149188     5  0.2674      0.792 0.012 0.120 0.000 0.000 0.868
#> GSM149189     5  0.5087      0.667 0.000 0.148 0.152 0.000 0.700
#> GSM149190     2  0.3489      0.669 0.144 0.820 0.000 0.000 0.036
#> GSM149191     5  0.1299      0.772 0.008 0.020 0.012 0.000 0.960
#> GSM149192     5  0.3305      0.732 0.000 0.224 0.000 0.000 0.776
#> GSM149193     5  0.4300      0.241 0.000 0.476 0.000 0.000 0.524
#> GSM149194     2  0.6717      0.207 0.256 0.408 0.000 0.000 0.336
#> GSM149195     3  0.4166      0.828 0.004 0.008 0.788 0.040 0.160
#> GSM149196     2  0.3274      0.615 0.000 0.780 0.000 0.000 0.220
#> GSM149197     2  0.1410      0.750 0.000 0.940 0.000 0.000 0.060
#> GSM149198     4  0.4730      0.628 0.260 0.052 0.000 0.688 0.000
#> GSM149199     2  0.3551      0.723 0.044 0.820 0.000 0.000 0.136
#> GSM149200     5  0.0771      0.781 0.000 0.020 0.004 0.000 0.976
#> GSM149201     2  0.4235      0.102 0.000 0.576 0.000 0.000 0.424
#> GSM149202     5  0.3143      0.755 0.000 0.204 0.000 0.000 0.796
#> GSM149203     5  0.1205      0.793 0.004 0.040 0.000 0.000 0.956

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM149099     3  0.0291     0.9202 0.000 0.000 0.992 0.004 0.000 0.004
#> GSM149100     3  0.1387     0.9085 0.000 0.000 0.932 0.000 0.000 0.068
#> GSM149101     3  0.2389     0.8672 0.008 0.000 0.864 0.000 0.000 0.128
#> GSM149102     3  0.2003     0.8826 0.000 0.000 0.884 0.000 0.000 0.116
#> GSM149103     3  0.4407     0.6157 0.076 0.000 0.692 0.000 0.000 0.232
#> GSM149104     3  0.1267     0.9105 0.000 0.000 0.940 0.000 0.000 0.060
#> GSM149105     3  0.1257     0.9150 0.000 0.000 0.952 0.028 0.000 0.020
#> GSM149106     3  0.1408     0.9138 0.000 0.000 0.944 0.036 0.000 0.020
#> GSM149107     3  0.1610     0.9060 0.000 0.000 0.916 0.000 0.000 0.084
#> GSM149108     3  0.1864     0.9186 0.000 0.004 0.924 0.032 0.000 0.040
#> GSM149109     3  0.1492     0.9104 0.000 0.000 0.940 0.036 0.000 0.024
#> GSM149110     3  0.1168     0.9155 0.000 0.000 0.956 0.028 0.000 0.016
#> GSM149111     3  0.0260     0.9198 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM149112     3  0.2333     0.8887 0.000 0.000 0.896 0.040 0.004 0.060
#> GSM149113     3  0.1341     0.9143 0.000 0.000 0.948 0.028 0.000 0.024
#> GSM149114     3  0.1501     0.9061 0.000 0.000 0.924 0.000 0.000 0.076
#> GSM149115     4  0.3900     0.7858 0.128 0.024 0.000 0.792 0.000 0.056
#> GSM149116     4  0.2053     0.8401 0.004 0.004 0.024 0.916 0.000 0.052
#> GSM149117     2  0.4217     0.6482 0.056 0.784 0.000 0.088 0.000 0.072
#> GSM149118     4  0.1124     0.8639 0.008 0.000 0.000 0.956 0.000 0.036
#> GSM149119     4  0.1565     0.8526 0.004 0.000 0.028 0.940 0.000 0.028
#> GSM149120     4  0.1789     0.8587 0.044 0.000 0.000 0.924 0.000 0.032
#> GSM149121     4  0.4219     0.5690 0.304 0.000 0.000 0.660 0.000 0.036
#> GSM149122     4  0.1321     0.8550 0.004 0.000 0.024 0.952 0.000 0.020
#> GSM149123     4  0.1268     0.8645 0.036 0.004 0.000 0.952 0.000 0.008
#> GSM149124     4  0.1699     0.8507 0.004 0.004 0.000 0.928 0.004 0.060
#> GSM149125     4  0.0806     0.8644 0.008 0.000 0.000 0.972 0.000 0.020
#> GSM149126     4  0.2547     0.8445 0.080 0.000 0.004 0.880 0.000 0.036
#> GSM149127     4  0.1794     0.8624 0.024 0.000 0.028 0.932 0.000 0.016
#> GSM149128     4  0.2095     0.8638 0.040 0.000 0.028 0.916 0.000 0.016
#> GSM149129     4  0.2403     0.8591 0.040 0.000 0.040 0.900 0.000 0.020
#> GSM149130     1  0.6687     0.2858 0.536 0.136 0.000 0.172 0.000 0.156
#> GSM149131     1  0.5488     0.2513 0.568 0.000 0.000 0.212 0.000 0.220
#> GSM149132     4  0.3672     0.8149 0.116 0.000 0.032 0.812 0.000 0.040
#> GSM149133     4  0.3832     0.7484 0.120 0.000 0.000 0.776 0.000 0.104
#> GSM149134     1  0.3204     0.4700 0.832 0.004 0.000 0.112 0.000 0.052
#> GSM149135     1  0.3800     0.4864 0.776 0.168 0.000 0.048 0.000 0.008
#> GSM149136     1  0.3521     0.4929 0.796 0.156 0.000 0.044 0.000 0.004
#> GSM149137     1  0.3371     0.5010 0.832 0.104 0.000 0.044 0.000 0.020
#> GSM149138     1  0.2415     0.4848 0.900 0.040 0.000 0.024 0.000 0.036
#> GSM149139     1  0.4664     0.4624 0.724 0.080 0.000 0.168 0.000 0.028
#> GSM149140     1  0.3622     0.5082 0.820 0.088 0.000 0.068 0.000 0.024
#> GSM149141     6  0.5833     0.6962 0.348 0.016 0.064 0.012 0.012 0.548
#> GSM149142     1  0.5448    -0.1697 0.564 0.104 0.000 0.000 0.012 0.320
#> GSM149143     5  0.5716     0.3192 0.284 0.004 0.016 0.000 0.572 0.124
#> GSM149144     2  0.1327     0.7338 0.064 0.936 0.000 0.000 0.000 0.000
#> GSM149145     6  0.5618     0.6762 0.320 0.000 0.148 0.000 0.004 0.528
#> GSM149146     2  0.0891     0.7496 0.000 0.968 0.000 0.000 0.024 0.008
#> GSM149147     1  0.3735     0.1878 0.744 0.004 0.004 0.016 0.000 0.232
#> GSM149148     1  0.2594     0.4486 0.888 0.036 0.000 0.020 0.000 0.056
#> GSM149149     1  0.4921     0.0699 0.648 0.020 0.004 0.036 0.004 0.288
#> GSM149150     6  0.6561     0.3860 0.264 0.232 0.000 0.000 0.040 0.464
#> GSM149151     1  0.5510     0.1009 0.600 0.132 0.000 0.016 0.000 0.252
#> GSM149152     4  0.2854     0.8409 0.052 0.008 0.008 0.880 0.004 0.048
#> GSM149153     6  0.5684     0.7260 0.332 0.016 0.092 0.000 0.008 0.552
#> GSM149154     1  0.6235    -0.5670 0.424 0.000 0.152 0.000 0.028 0.396
#> GSM149155     2  0.2102     0.7458 0.012 0.908 0.000 0.000 0.068 0.012
#> GSM149156     5  0.5695     0.1209 0.016 0.400 0.000 0.000 0.480 0.104
#> GSM149157     5  0.2546     0.8263 0.012 0.060 0.000 0.000 0.888 0.040
#> GSM149158     2  0.4092     0.3610 0.344 0.636 0.000 0.000 0.000 0.020
#> GSM149159     5  0.0837     0.8360 0.004 0.004 0.000 0.000 0.972 0.020
#> GSM149160     5  0.2817     0.8019 0.052 0.008 0.000 0.000 0.868 0.072
#> GSM149161     2  0.5421     0.2545 0.312 0.572 0.000 0.000 0.012 0.104
#> GSM149162     5  0.2144     0.8359 0.004 0.040 0.000 0.000 0.908 0.048
#> GSM149163     2  0.2686     0.7385 0.012 0.876 0.000 0.000 0.080 0.032
#> GSM149164     1  0.6345    -0.2755 0.376 0.004 0.004 0.000 0.296 0.320
#> GSM149165     5  0.2511     0.8298 0.000 0.064 0.000 0.000 0.880 0.056
#> GSM149166     2  0.2373     0.7256 0.084 0.888 0.000 0.000 0.004 0.024
#> GSM149167     2  0.5742     0.5944 0.040 0.672 0.000 0.044 0.076 0.168
#> GSM149168     5  0.0862     0.8350 0.004 0.008 0.000 0.000 0.972 0.016
#> GSM149169     2  0.6836     0.3275 0.172 0.532 0.000 0.016 0.076 0.204
#> GSM149170     5  0.1511     0.8358 0.000 0.012 0.004 0.000 0.940 0.044
#> GSM149171     5  0.2896     0.7847 0.000 0.016 0.000 0.000 0.824 0.160
#> GSM149172     5  0.1444     0.8281 0.000 0.000 0.000 0.000 0.928 0.072
#> GSM149173     5  0.1296     0.8337 0.000 0.012 0.004 0.000 0.952 0.032
#> GSM149174     1  0.5083     0.2340 0.564 0.368 0.000 0.000 0.016 0.052
#> GSM149175     3  0.1728     0.9142 0.008 0.000 0.924 0.004 0.000 0.064
#> GSM149176     2  0.1434     0.7431 0.024 0.948 0.000 0.000 0.008 0.020
#> GSM149177     2  0.4160     0.5888 0.012 0.748 0.200 0.000 0.012 0.028
#> GSM149178     4  0.8829    -0.0372 0.024 0.092 0.096 0.292 0.276 0.220
#> GSM149179     2  0.0976     0.7492 0.008 0.968 0.000 0.000 0.016 0.008
#> GSM149180     2  0.1957     0.7477 0.008 0.920 0.000 0.000 0.048 0.024
#> GSM149181     5  0.3695     0.6165 0.000 0.272 0.000 0.000 0.712 0.016
#> GSM149182     2  0.1078     0.7488 0.008 0.964 0.000 0.000 0.016 0.012
#> GSM149183     2  0.4212     0.1956 0.000 0.560 0.000 0.000 0.424 0.016
#> GSM149184     2  0.4123     0.6852 0.020 0.776 0.000 0.000 0.088 0.116
#> GSM149185     5  0.1682     0.8352 0.000 0.020 0.000 0.000 0.928 0.052
#> GSM149186     2  0.4481     0.1948 0.004 0.556 0.000 0.000 0.416 0.024
#> GSM149187     2  0.3930     0.3650 0.004 0.628 0.000 0.000 0.364 0.004
#> GSM149188     5  0.3502     0.7918 0.000 0.076 0.004 0.000 0.812 0.108
#> GSM149189     5  0.5446     0.6687 0.000 0.120 0.132 0.000 0.676 0.072
#> GSM149190     2  0.3486     0.6505 0.128 0.812 0.000 0.000 0.008 0.052
#> GSM149191     5  0.1901     0.8212 0.008 0.000 0.004 0.000 0.912 0.076
#> GSM149192     5  0.3344     0.7600 0.000 0.152 0.000 0.000 0.804 0.044
#> GSM149193     5  0.5379     0.1114 0.004 0.420 0.000 0.000 0.480 0.096
#> GSM149194     1  0.6864     0.0512 0.388 0.208 0.000 0.000 0.344 0.060
#> GSM149195     3  0.2791     0.8523 0.000 0.004 0.872 0.004 0.068 0.052
#> GSM149196     2  0.3018     0.6797 0.004 0.816 0.000 0.000 0.168 0.012
#> GSM149197     2  0.1237     0.7497 0.020 0.956 0.000 0.000 0.020 0.004
#> GSM149198     1  0.5041     0.3404 0.644 0.004 0.004 0.264 0.004 0.080
#> GSM149199     2  0.2825     0.7391 0.040 0.876 0.000 0.000 0.056 0.028
#> GSM149200     5  0.1982     0.8272 0.000 0.016 0.004 0.000 0.912 0.068
#> GSM149201     2  0.5191     0.0599 0.004 0.492 0.000 0.000 0.428 0.076
#> GSM149202     5  0.3066     0.7855 0.000 0.124 0.000 0.000 0.832 0.044
#> GSM149203     5  0.1908     0.8149 0.004 0.000 0.000 0.000 0.900 0.096

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n disease.state(p) k
#> ATC:NMF 104         7.94e-12 2
#> ATC:NMF 101         2.81e-23 3
#> ATC:NMF  95         5.26e-28 4
#> ATC:NMF  86         1.14e-27 5
#> ATC:NMF  76         9.82e-27 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0