cola Report for GDS2733

Date: 2019-12-25 20:17:16 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 21796    68

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:kmeans 2 1.000 0.965 0.982 **
MAD:kmeans 2 1.000 0.992 0.995 **
MAD:NMF 2 0.998 0.926 0.972 **
ATC:skmeans 4 0.975 0.949 0.971 ** 3
CV:mclust 2 0.969 0.943 0.975 **
ATC:pam 4 0.917 0.910 0.960 *
SD:pam 6 0.916 0.917 0.957 *
SD:skmeans 2 0.908 0.900 0.959 *
CV:skmeans 2 0.907 0.889 0.958 *
ATC:NMF 2 0.906 0.933 0.971 *
SD:NMF 2 0.879 0.916 0.967
MAD:skmeans 2 0.849 0.905 0.960
MAD:hclust 2 0.842 0.977 0.964
ATC:kmeans 4 0.802 0.879 0.890
CV:NMF 2 0.792 0.873 0.947
CV:pam 3 0.752 0.819 0.924
ATC:hclust 3 0.743 0.847 0.922
MAD:pam 3 0.733 0.869 0.928
ATC:mclust 2 0.706 0.883 0.944
CV:kmeans 2 0.701 0.963 0.971
CV:hclust 3 0.632 0.715 0.873
MAD:mclust 2 0.587 0.802 0.917
SD:mclust 2 0.559 0.856 0.917
SD:hclust 2 0.534 0.922 0.893

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.879           0.916       0.967          0.484 0.514   0.514
#> CV:NMF      2 0.792           0.873       0.947          0.483 0.508   0.508
#> MAD:NMF     2 0.998           0.926       0.972          0.470 0.528   0.528
#> ATC:NMF     2 0.906           0.933       0.971          0.400 0.591   0.591
#> SD:skmeans  2 0.908           0.900       0.959          0.492 0.521   0.521
#> CV:skmeans  2 0.907           0.889       0.958          0.494 0.508   0.508
#> MAD:skmeans 2 0.849           0.905       0.960          0.492 0.514   0.514
#> ATC:skmeans 2 0.854           0.944       0.973          0.506 0.494   0.494
#> SD:mclust   2 0.559           0.856       0.917          0.489 0.508   0.508
#> CV:mclust   2 0.969           0.943       0.975          0.491 0.514   0.514
#> MAD:mclust  2 0.587           0.802       0.917          0.492 0.508   0.508
#> ATC:mclust  2 0.706           0.883       0.944          0.483 0.521   0.521
#> SD:kmeans   2 1.000           0.965       0.982          0.464 0.528   0.528
#> CV:kmeans   2 0.701           0.963       0.971          0.443 0.536   0.536
#> MAD:kmeans  2 1.000           0.992       0.995          0.456 0.546   0.546
#> ATC:kmeans  2 0.566           0.830       0.870          0.363 0.668   0.668
#> SD:pam      2 0.745           0.895       0.951          0.485 0.514   0.514
#> CV:pam      2 0.602           0.841       0.925          0.392 0.619   0.619
#> MAD:pam     2 0.713           0.781       0.916          0.447 0.546   0.546
#> ATC:pam     2 0.647           0.795       0.903          0.356 0.725   0.725
#> SD:hclust   2 0.534           0.922       0.893          0.330 0.556   0.556
#> CV:hclust   2 0.501           0.907       0.938          0.162 0.888   0.888
#> MAD:hclust  2 0.842           0.977       0.964          0.418 0.556   0.556
#> ATC:hclust  2 0.838           0.964       0.982          0.278 0.745   0.745
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.824           0.844       0.931         0.3236 0.798   0.625
#> CV:NMF      3 0.777           0.825       0.922         0.3295 0.822   0.665
#> MAD:NMF     3 0.716           0.795       0.903         0.4079 0.719   0.505
#> ATC:NMF     3 0.813           0.875       0.927         0.5300 0.762   0.613
#> SD:skmeans  3 0.832           0.828       0.931         0.3156 0.781   0.599
#> CV:skmeans  3 0.763           0.873       0.924         0.3066 0.783   0.599
#> MAD:skmeans 3 0.711           0.804       0.906         0.3306 0.783   0.601
#> ATC:skmeans 3 1.000           0.979       0.991         0.2762 0.802   0.622
#> SD:mclust   3 0.400           0.537       0.732         0.2520 0.746   0.544
#> CV:mclust   3 0.638           0.796       0.876         0.1830 0.903   0.815
#> MAD:mclust  3 0.500           0.707       0.784         0.2278 0.925   0.852
#> ATC:mclust  3 0.705           0.795       0.838         0.1780 0.862   0.767
#> SD:kmeans   3 0.696           0.828       0.896         0.2536 0.923   0.855
#> CV:kmeans   3 0.784           0.904       0.927         0.2441 0.896   0.811
#> MAD:kmeans  3 0.674           0.772       0.878         0.2926 0.914   0.844
#> ATC:kmeans  3 0.655           0.875       0.894         0.6800 0.629   0.476
#> SD:pam      3 0.727           0.757       0.855         0.1978 0.898   0.805
#> CV:pam      3 0.752           0.819       0.924         0.4648 0.765   0.636
#> MAD:pam     3 0.733           0.869       0.928         0.2973 0.828   0.699
#> ATC:pam     3 0.815           0.854       0.943         0.7523 0.652   0.520
#> SD:hclust   3 0.493           0.888       0.895         0.0782 0.980   0.964
#> CV:hclust   3 0.632           0.715       0.873         1.0494 0.920   0.909
#> MAD:hclust  3 0.793           0.938       0.957         0.1419 0.943   0.898
#> ATC:hclust  3 0.743           0.847       0.922         0.3541 0.863   0.816
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.690           0.734       0.868         0.1246 0.843   0.609
#> CV:NMF      4 0.620           0.557       0.771         0.1204 0.793   0.512
#> MAD:NMF     4 0.644           0.687       0.839         0.1089 0.814   0.524
#> ATC:NMF     4 0.506           0.665       0.761         0.1399 0.806   0.555
#> SD:skmeans  4 0.613           0.570       0.734         0.1368 0.903   0.737
#> CV:skmeans  4 0.569           0.598       0.778         0.1446 0.876   0.669
#> MAD:skmeans 4 0.561           0.570       0.734         0.1240 0.892   0.711
#> ATC:skmeans 4 0.975           0.949       0.971         0.1198 0.902   0.732
#> SD:mclust   4 0.601           0.770       0.765         0.1724 0.755   0.429
#> CV:mclust   4 0.557           0.496       0.731         0.1811 0.783   0.545
#> MAD:mclust  4 0.549           0.676       0.755         0.1481 0.810   0.598
#> ATC:mclust  4 0.641           0.749       0.828         0.2738 0.737   0.501
#> SD:kmeans   4 0.621           0.717       0.802         0.1793 0.860   0.693
#> CV:kmeans   4 0.685           0.715       0.828         0.2072 0.847   0.674
#> MAD:kmeans  4 0.540           0.628       0.775         0.1635 0.841   0.672
#> ATC:kmeans  4 0.802           0.879       0.890         0.1489 0.903   0.746
#> SD:pam      4 0.666           0.510       0.725         0.1776 0.813   0.597
#> CV:pam      4 0.643           0.693       0.802         0.1667 0.884   0.744
#> MAD:pam     4 0.675           0.683       0.801         0.1219 0.860   0.689
#> ATC:pam     4 0.917           0.910       0.960         0.1609 0.848   0.621
#> SD:hclust   4 0.520           0.881       0.897         0.0562 0.981   0.964
#> CV:hclust   4 0.583           0.568       0.872         0.0624 0.920   0.901
#> MAD:hclust  4 0.859           0.879       0.941         0.0365 0.991   0.982
#> ATC:hclust  4 0.829           0.876       0.960         0.2443 0.901   0.840
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.615           0.637       0.787         0.0641 0.928   0.758
#> CV:NMF      5 0.614           0.643       0.772         0.0772 0.815   0.447
#> MAD:NMF     5 0.617           0.651       0.793         0.0537 0.877   0.599
#> ATC:NMF     5 0.538           0.557       0.718         0.0704 0.889   0.635
#> SD:skmeans  5 0.610           0.528       0.713         0.0711 0.847   0.525
#> CV:skmeans  5 0.570           0.578       0.705         0.0701 0.899   0.667
#> MAD:skmeans 5 0.575           0.555       0.716         0.0685 0.931   0.765
#> ATC:skmeans 5 0.779           0.708       0.833         0.0558 0.970   0.895
#> SD:mclust   5 0.621           0.791       0.790         0.0623 0.858   0.559
#> CV:mclust   5 0.651           0.793       0.817         0.0860 0.830   0.511
#> MAD:mclust  5 0.623           0.674       0.792         0.0802 0.924   0.774
#> ATC:mclust  5 0.856           0.817       0.917         0.0845 0.888   0.617
#> SD:kmeans   5 0.632           0.604       0.682         0.0869 0.877   0.623
#> CV:kmeans   5 0.680           0.762       0.809         0.0984 0.897   0.693
#> MAD:kmeans  5 0.608           0.684       0.754         0.0816 0.881   0.666
#> ATC:kmeans  5 0.777           0.638       0.785         0.0898 0.947   0.826
#> SD:pam      5 0.767           0.868       0.911         0.1193 0.791   0.445
#> CV:pam      5 0.633           0.695       0.816         0.1104 0.893   0.715
#> MAD:pam     5 0.761           0.876       0.915         0.1055 0.946   0.844
#> ATC:pam     5 0.781           0.592       0.835         0.0831 0.928   0.747
#> SD:hclust   5 0.514           0.881       0.871         0.0552 0.973   0.948
#> CV:hclust   5 0.645           0.895       0.915         0.4454 0.681   0.577
#> MAD:hclust  5 0.910           0.886       0.940         0.0373 0.982   0.962
#> ATC:hclust  5 0.782           0.788       0.917         0.5024 0.740   0.518
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.635           0.500       0.727         0.0439 0.872   0.547
#> CV:NMF      6 0.666           0.635       0.749         0.0458 0.924   0.683
#> MAD:NMF     6 0.637           0.548       0.726         0.0445 0.947   0.779
#> ATC:NMF     6 0.662           0.700       0.837         0.0522 0.914   0.666
#> SD:skmeans  6 0.640           0.533       0.673         0.0449 0.875   0.496
#> CV:skmeans  6 0.595           0.528       0.649         0.0446 0.987   0.945
#> MAD:skmeans 6 0.598           0.461       0.654         0.0457 0.986   0.941
#> ATC:skmeans 6 0.778           0.632       0.723         0.0558 0.821   0.422
#> SD:mclust   6 0.748           0.805       0.850         0.0810 0.884   0.553
#> CV:mclust   6 0.744           0.796       0.875         0.0467 0.986   0.937
#> MAD:mclust  6 0.668           0.602       0.696         0.0698 0.847   0.484
#> ATC:mclust  6 0.721           0.595       0.684         0.0438 0.908   0.619
#> SD:kmeans   6 0.772           0.689       0.776         0.0535 0.892   0.602
#> CV:kmeans   6 0.707           0.659       0.746         0.0676 0.924   0.705
#> MAD:kmeans  6 0.693           0.648       0.745         0.0553 0.984   0.935
#> ATC:kmeans  6 0.774           0.679       0.787         0.0512 0.886   0.605
#> SD:pam      6 0.916           0.917       0.957         0.0486 0.971   0.874
#> CV:pam      6 0.703           0.655       0.837         0.0929 0.876   0.578
#> MAD:pam     6 0.717           0.699       0.829         0.1226 0.863   0.564
#> ATC:pam     6 0.839           0.798       0.881         0.0507 0.902   0.605
#> SD:hclust   6 0.785           0.894       0.956         0.2679 0.999   0.998
#> CV:hclust   6 0.653           0.847       0.895         0.0806 1.000   1.000
#> MAD:hclust  6 0.942           0.912       0.952         0.0723 0.983   0.965
#> ATC:hclust  6 0.811           0.703       0.878         0.0139 0.968   0.894

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>              n agent(p)  dose(p)  time(p) k
#> SD:NMF      66 7.27e-07 5.76e-04 1.82e-04 2
#> CV:NMF      64 4.93e-07 5.90e-04 3.21e-04 2
#> MAD:NMF     65 3.94e-07 1.76e-03 5.43e-05 2
#> ATC:NMF     66 1.10e-02 1.88e-02 1.01e-04 2
#> SD:skmeans  63 7.49e-08 2.64e-04 5.58e-04 2
#> CV:skmeans  63 7.49e-08 2.80e-04 5.58e-04 2
#> MAD:skmeans 64 1.05e-07 3.22e-04 3.83e-04 2
#> ATC:skmeans 68 2.48e-08 4.21e-05 7.49e-02 2
#> SD:mclust   68 1.61e-07 2.09e-04 1.49e-03 2
#> CV:mclust   68 6.74e-07 4.36e-04 3.93e-04 2
#> MAD:mclust  59 1.77e-10 1.22e-05 3.88e-02 2
#> ATC:mclust  66 1.52e-08 3.37e-04 3.08e-03 2
#> SD:kmeans   67 2.65e-06 1.73e-03 2.55e-05 2
#> CV:kmeans   68 1.87e-05 1.25e-03 1.69e-04 2
#> MAD:kmeans  68 3.58e-07 3.03e-03 7.64e-05 2
#> ATC:kmeans  66 1.14e-01 3.77e-02 9.30e-05 2
#> SD:pam      67 6.47e-08 6.07e-04 1.18e-03 2
#> CV:pam      64 3.81e-03 2.10e-02 8.96e-04 2
#> MAD:pam     57 8.04e-06 5.48e-03 1.48e-04 2
#> ATC:pam     67 1.18e-01 6.02e-02 2.56e-06 2
#> SD:hclust   68 9.76e-07 4.10e-03 1.33e-04 2
#> CV:hclust   68 2.33e-01 4.88e-01 6.95e-01 2
#> MAD:hclust  68 9.76e-07 4.10e-03 1.33e-04 2
#> ATC:hclust  68 1.13e-01 5.69e-02 2.00e-06 2
test_to_known_factors(res_list, k = 3)
#>              n agent(p)  dose(p)  time(p) k
#> SD:NMF      63 4.58e-07 6.04e-05 4.06e-04 3
#> CV:NMF      62 7.00e-08 2.01e-04 2.55e-03 3
#> MAD:NMF     61 5.90e-07 9.68e-05 7.73e-05 3
#> ATC:NMF     65 2.87e-07 2.33e-04 4.95e-05 3
#> SD:skmeans  62 6.76e-08 1.84e-04 2.85e-04 3
#> CV:skmeans  66 1.64e-08 6.26e-05 1.49e-03 3
#> MAD:skmeans 61 1.76e-08 8.07e-05 6.64e-05 3
#> ATC:skmeans 67 2.85e-07 4.68e-06 2.06e-05 3
#> SD:mclust   46 3.04e-10 2.42e-09 1.70e-04 3
#> CV:mclust   62 2.59e-05 3.92e-03 3.47e-05 3
#> MAD:mclust  61 3.01e-14 1.03e-03 3.22e-03 3
#> ATC:mclust  65 8.24e-07 6.14e-04 4.95e-05 3
#> SD:kmeans   62 3.00e-06 2.92e-03 2.89e-04 3
#> CV:kmeans   67 3.07e-05 7.17e-03 1.19e-04 3
#> MAD:kmeans  64 1.62e-06 7.21e-03 1.15e-03 3
#> ATC:kmeans  68 2.75e-06 5.60e-06 2.13e-05 3
#> SD:pam      59 1.37e-19 7.31e-04 4.10e-02 3
#> CV:pam      62 1.57e-07 7.33e-04 1.90e-03 3
#> MAD:pam     68 6.30e-07 2.06e-03 1.77e-04 3
#> ATC:pam     61 6.67e-09 1.93e-05 1.46e-04 3
#> SD:hclust   64 5.81e-06 7.15e-03 3.01e-04 3
#> CV:hclust   57 7.87e-02 4.39e-01 4.78e-02 3
#> MAD:hclust  67 4.02e-06 6.41e-03 7.43e-04 3
#> ATC:hclust  62 9.39e-02 1.76e-02 6.38e-08 3
test_to_known_factors(res_list, k = 4)
#>              n agent(p)  dose(p)  time(p) k
#> SD:NMF      61 2.24e-08 2.09e-04 2.26e-05 4
#> CV:NMF      46 3.09e-08 6.68e-05 1.26e-04 4
#> MAD:NMF     60 5.42e-08 1.68e-04 9.86e-06 4
#> ATC:NMF     60 8.11e-05 1.00e-03 5.48e-08 4
#> SD:skmeans  45 3.09e-10 3.25e-07 8.87e-04 4
#> CV:skmeans  45 4.86e-06 1.30e-03 4.63e-05 4
#> MAD:skmeans 45 1.87e-10 8.96e-07 1.01e-06 4
#> ATC:skmeans 68 1.13e-06 3.34e-05 3.25e-06 4
#> SD:mclust   65 8.37e-17 8.94e-08 2.70e-05 4
#> CV:mclust   44 7.26e-10 4.46e-04 1.05e-03 4
#> MAD:mclust  51 2.96e-15 1.53e-03 2.12e-02 4
#> ATC:mclust  64 2.44e-04 8.66e-03 8.21e-12 4
#> SD:kmeans   62 5.08e-07 5.44e-05 6.69e-06 4
#> CV:kmeans   59 2.54e-06 5.68e-04 2.34e-06 4
#> MAD:kmeans  59 5.98e-07 3.25e-03 2.91e-06 4
#> ATC:kmeans  65 4.08e-06 9.17e-06 6.39e-10 4
#> SD:pam      43 2.46e-09 3.21e-03 1.42e-01 4
#> CV:pam      56 3.95e-15 3.64e-04 1.36e-02 4
#> MAD:pam     58 6.98e-10 7.49e-04 2.36e-06 4
#> ATC:pam     67 1.00e-07 4.12e-06 3.50e-08 4
#> SD:hclust   63 8.02e-06 6.42e-03 2.29e-04 4
#> CV:hclust   46 1.13e-01 2.67e-01 3.28e-01 4
#> MAD:hclust  63 6.36e-06 1.96e-02 1.66e-03 4
#> ATC:hclust  65 4.14e-02 5.93e-03 4.01e-09 4
test_to_known_factors(res_list, k = 5)
#>              n agent(p)  dose(p)  time(p) k
#> SD:NMF      57 3.26e-07 3.61e-04 3.55e-07 5
#> CV:NMF      56 9.58e-06 2.64e-04 1.30e-07 5
#> MAD:NMF     57 2.40e-06 5.37e-04 6.56e-08 5
#> ATC:NMF     52 5.27e-07 2.80e-06 8.29e-13 5
#> SD:skmeans  45 1.85e-12 3.02e-07 2.19e-07 5
#> CV:skmeans  46 6.74e-09 2.60e-05 1.07e-07 5
#> MAD:skmeans 48 3.13e-10 2.02e-06 1.47e-08 5
#> ATC:skmeans 57 1.79e-06 2.32e-05 8.23e-08 5
#> SD:mclust   58 4.20e-21 4.41e-08 4.43e-03 5
#> CV:mclust   65 9.38e-07 6.30e-06 1.17e-08 5
#> MAD:mclust  57 3.91e-14 1.07e-03 4.46e-04 5
#> ATC:mclust  59 5.07e-08 7.20e-05 4.69e-11 5
#> SD:kmeans   41 2.03e-04 8.68e-01 8.87e-08 5
#> CV:kmeans   63 2.94e-07 2.77e-05 5.72e-10 5
#> MAD:kmeans  60 9.06e-08 7.81e-06 1.06e-09 5
#> ATC:kmeans  40 1.27e-07 6.31e-08 2.54e-10 5
#> SD:pam      67 6.89e-20 2.39e-08 3.67e-03 5
#> CV:pam      54 1.35e-14 1.90e-04 2.36e-05 5
#> MAD:pam     67 9.07e-14 1.21e-04 1.65e-06 5
#> ATC:pam     43 9.88e-04 1.52e-01 5.52e-09 5
#> SD:hclust   63 8.02e-06 6.42e-03 2.29e-04 5
#> CV:hclust   67 1.18e-05 1.09e-02 8.06e-04 5
#> MAD:hclust  63 6.36e-06 1.96e-02 1.66e-03 5
#> ATC:hclust  61 4.41e-06 1.24e-04 4.80e-11 5
test_to_known_factors(res_list, k = 6)
#>              n agent(p)  dose(p)  time(p) k
#> SD:NMF      43 2.98e-06 1.74e-04 3.01e-07 6
#> CV:NMF      57 2.92e-12 2.98e-05 1.90e-08 6
#> MAD:NMF     48 1.62e-07 8.12e-04 3.35e-08 6
#> ATC:NMF     57 1.94e-06 2.89e-06 2.12e-10 6
#> SD:skmeans  43 1.92e-14 1.26e-06 2.82e-07 6
#> CV:skmeans  39 2.87e-09 7.77e-06 1.33e-03 6
#> MAD:skmeans 37 1.01e-10 8.85e-06 4.01e-07 6
#> ATC:skmeans 53 8.18e-11 2.74e-04 3.43e-13 6
#> SD:mclust   65 6.87e-22 1.15e-07 1.85e-04 6
#> CV:mclust   64 1.49e-07 1.11e-05 1.99e-08 6
#> MAD:mclust  48 4.48e-21 1.06e-07 8.70e-04 6
#> ATC:mclust  44 2.57e-05 3.61e-03 5.70e-12 6
#> SD:kmeans   60 2.09e-06 3.38e-05 1.32e-09 6
#> CV:kmeans   60 2.36e-10 5.13e-05 1.17e-07 6
#> MAD:kmeans  56 8.88e-08 3.02e-05 6.74e-09 6
#> ATC:kmeans  49 4.95e-06 3.34e-06 4.99e-11 6
#> SD:pam      67 1.20e-18 9.24e-08 5.23e-05 6
#> CV:pam      56 2.99e-13 1.83e-05 4.52e-06 6
#> MAD:pam     58 2.39e-16 3.21e-06 1.32e-06 6
#> ATC:pam     65 1.28e-09 1.61e-06 4.38e-11 6
#> SD:hclust   65 1.46e-05 7.16e-03 1.72e-04 6
#> CV:hclust   67 1.18e-05 1.09e-02 8.06e-04 6
#> MAD:hclust  65 6.85e-06 1.56e-02 8.28e-04 6
#> ATC:hclust  58 2.49e-05 3.81e-04 1.67e-08 6

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.534           0.922       0.893         0.3303 0.556   0.556
#> 3 3 0.493           0.888       0.895         0.0782 0.980   0.964
#> 4 4 0.520           0.881       0.897         0.0562 0.981   0.964
#> 5 5 0.514           0.881       0.871         0.0552 0.973   0.948
#> 6 6 0.785           0.894       0.956         0.2679 0.999   0.998

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1   0.000      0.985 1.000 0.000
#> GSM159851     1   0.000      0.985 1.000 0.000
#> GSM159852     1   0.000      0.985 1.000 0.000
#> GSM159853     1   0.000      0.985 1.000 0.000
#> GSM159854     1   0.000      0.985 1.000 0.000
#> GSM159855     1   0.000      0.985 1.000 0.000
#> GSM159856     1   0.000      0.985 1.000 0.000
#> GSM159857     1   0.000      0.985 1.000 0.000
#> GSM159858     1   0.000      0.985 1.000 0.000
#> GSM159859     1   0.000      0.985 1.000 0.000
#> GSM159860     1   0.000      0.985 1.000 0.000
#> GSM159861     1   0.000      0.985 1.000 0.000
#> GSM159862     1   0.000      0.985 1.000 0.000
#> GSM159863     1   0.000      0.985 1.000 0.000
#> GSM159864     1   0.000      0.985 1.000 0.000
#> GSM159865     1   0.000      0.985 1.000 0.000
#> GSM159866     1   0.000      0.985 1.000 0.000
#> GSM159885     1   0.000      0.985 1.000 0.000
#> GSM159886     1   0.000      0.985 1.000 0.000
#> GSM159887     1   0.000      0.985 1.000 0.000
#> GSM159888     2   0.929      0.873 0.344 0.656
#> GSM159889     2   0.929      0.873 0.344 0.656
#> GSM159890     2   0.929      0.873 0.344 0.656
#> GSM159891     2   0.855      0.853 0.280 0.720
#> GSM159892     2   0.855      0.853 0.280 0.720
#> GSM159893     2   0.855      0.853 0.280 0.720
#> GSM159894     1   0.000      0.985 1.000 0.000
#> GSM159895     1   0.000      0.985 1.000 0.000
#> GSM159896     1   0.000      0.985 1.000 0.000
#> GSM159897     2   0.929      0.873 0.344 0.656
#> GSM159898     2   0.929      0.873 0.344 0.656
#> GSM159899     2   0.929      0.873 0.344 0.656
#> GSM159900     2   0.118      0.645 0.016 0.984
#> GSM159901     2   0.118      0.645 0.016 0.984
#> GSM159902     1   0.000      0.985 1.000 0.000
#> GSM159903     1   0.000      0.985 1.000 0.000
#> GSM159904     1   0.000      0.985 1.000 0.000
#> GSM159905     1   0.000      0.985 1.000 0.000
#> GSM159906     1   0.000      0.985 1.000 0.000
#> GSM159907     1   0.000      0.985 1.000 0.000
#> GSM159908     1   0.000      0.985 1.000 0.000
#> GSM159909     1   0.000      0.985 1.000 0.000
#> GSM159910     1   0.541      0.775 0.876 0.124
#> GSM159911     1   0.000      0.985 1.000 0.000
#> GSM159912     1   0.000      0.985 1.000 0.000
#> GSM159913     1   0.000      0.985 1.000 0.000
#> GSM159914     1   0.000      0.985 1.000 0.000
#> GSM159915     1   0.000      0.985 1.000 0.000
#> GSM159916     1   0.000      0.985 1.000 0.000
#> GSM159917     1   0.871      0.506 0.708 0.292
#> GSM159867     1   0.000      0.985 1.000 0.000
#> GSM159868     1   0.000      0.985 1.000 0.000
#> GSM159869     1   0.000      0.985 1.000 0.000
#> GSM159870     2   0.969      0.845 0.396 0.604
#> GSM159871     2   0.987      0.784 0.432 0.568
#> GSM159872     1   0.224      0.943 0.964 0.036
#> GSM159873     2   0.871      0.857 0.292 0.708
#> GSM159874     2   0.469      0.637 0.100 0.900
#> GSM159875     2   0.866      0.856 0.288 0.712
#> GSM159876     1   0.000      0.985 1.000 0.000
#> GSM159877     1   0.224      0.943 0.964 0.036
#> GSM159878     1   0.000      0.985 1.000 0.000
#> GSM159879     2   0.969      0.845 0.396 0.604
#> GSM159880     2   0.969      0.845 0.396 0.604
#> GSM159881     2   0.969      0.845 0.396 0.604
#> GSM159882     2   0.969      0.845 0.396 0.604
#> GSM159883     2   0.969      0.845 0.396 0.604
#> GSM159884     2   0.969      0.845 0.396 0.604

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1   0.000      0.986 1.000 0.000 0.000
#> GSM159851     1   0.000      0.986 1.000 0.000 0.000
#> GSM159852     1   0.000      0.986 1.000 0.000 0.000
#> GSM159853     1   0.000      0.986 1.000 0.000 0.000
#> GSM159854     1   0.000      0.986 1.000 0.000 0.000
#> GSM159855     1   0.000      0.986 1.000 0.000 0.000
#> GSM159856     1   0.000      0.986 1.000 0.000 0.000
#> GSM159857     1   0.000      0.986 1.000 0.000 0.000
#> GSM159858     1   0.000      0.986 1.000 0.000 0.000
#> GSM159859     1   0.000      0.986 1.000 0.000 0.000
#> GSM159860     1   0.000      0.986 1.000 0.000 0.000
#> GSM159861     1   0.000      0.986 1.000 0.000 0.000
#> GSM159862     1   0.000      0.986 1.000 0.000 0.000
#> GSM159863     1   0.000      0.986 1.000 0.000 0.000
#> GSM159864     1   0.000      0.986 1.000 0.000 0.000
#> GSM159865     1   0.000      0.986 1.000 0.000 0.000
#> GSM159866     1   0.000      0.986 1.000 0.000 0.000
#> GSM159885     1   0.000      0.986 1.000 0.000 0.000
#> GSM159886     1   0.000      0.986 1.000 0.000 0.000
#> GSM159887     1   0.000      0.986 1.000 0.000 0.000
#> GSM159888     2   0.581      0.861 0.336 0.664 0.000
#> GSM159889     2   0.581      0.861 0.336 0.664 0.000
#> GSM159890     2   0.581      0.861 0.336 0.664 0.000
#> GSM159891     2   0.533      0.821 0.272 0.728 0.000
#> GSM159892     2   0.533      0.821 0.272 0.728 0.000
#> GSM159893     2   0.533      0.821 0.272 0.728 0.000
#> GSM159894     1   0.000      0.986 1.000 0.000 0.000
#> GSM159895     1   0.000      0.986 1.000 0.000 0.000
#> GSM159896     1   0.000      0.986 1.000 0.000 0.000
#> GSM159897     2   0.581      0.861 0.336 0.664 0.000
#> GSM159898     2   0.581      0.861 0.336 0.664 0.000
#> GSM159899     2   0.581      0.861 0.336 0.664 0.000
#> GSM159900     2   0.000      0.282 0.000 1.000 0.000
#> GSM159901     2   0.000      0.282 0.000 1.000 0.000
#> GSM159902     1   0.000      0.986 1.000 0.000 0.000
#> GSM159903     1   0.000      0.986 1.000 0.000 0.000
#> GSM159904     1   0.000      0.986 1.000 0.000 0.000
#> GSM159905     1   0.000      0.986 1.000 0.000 0.000
#> GSM159906     1   0.000      0.986 1.000 0.000 0.000
#> GSM159907     1   0.000      0.986 1.000 0.000 0.000
#> GSM159908     1   0.000      0.986 1.000 0.000 0.000
#> GSM159909     1   0.000      0.986 1.000 0.000 0.000
#> GSM159910     1   0.504      0.717 0.832 0.120 0.048
#> GSM159911     1   0.000      0.986 1.000 0.000 0.000
#> GSM159912     1   0.000      0.986 1.000 0.000 0.000
#> GSM159913     1   0.000      0.986 1.000 0.000 0.000
#> GSM159914     1   0.000      0.986 1.000 0.000 0.000
#> GSM159915     1   0.000      0.986 1.000 0.000 0.000
#> GSM159916     1   0.000      0.986 1.000 0.000 0.000
#> GSM159917     3   0.000      0.000 0.000 0.000 1.000
#> GSM159867     1   0.000      0.986 1.000 0.000 0.000
#> GSM159868     1   0.000      0.986 1.000 0.000 0.000
#> GSM159869     1   0.000      0.986 1.000 0.000 0.000
#> GSM159870     2   0.610      0.836 0.392 0.608 0.000
#> GSM159871     2   0.621      0.775 0.428 0.572 0.000
#> GSM159872     1   0.426      0.788 0.848 0.012 0.140
#> GSM159873     2   0.566      0.830 0.284 0.712 0.004
#> GSM159874     2   0.315      0.199 0.036 0.916 0.048
#> GSM159875     2   0.559      0.824 0.276 0.720 0.004
#> GSM159876     1   0.000      0.986 1.000 0.000 0.000
#> GSM159877     1   0.426      0.788 0.848 0.012 0.140
#> GSM159878     1   0.000      0.986 1.000 0.000 0.000
#> GSM159879     2   0.610      0.836 0.392 0.608 0.000
#> GSM159880     2   0.610      0.836 0.392 0.608 0.000
#> GSM159881     2   0.610      0.836 0.392 0.608 0.000
#> GSM159882     2   0.610      0.836 0.392 0.608 0.000
#> GSM159883     2   0.610      0.836 0.392 0.608 0.000
#> GSM159884     2   0.610      0.836 0.392 0.608 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159851     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159852     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159853     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159854     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159855     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159856     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159857     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159858     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159859     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159860     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159861     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159862     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159863     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159864     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159865     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159866     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159885     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159886     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159887     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159888     2  0.4605      0.861 0.336 0.664 0.000 0.000
#> GSM159889     2  0.4605      0.861 0.336 0.664 0.000 0.000
#> GSM159890     2  0.4605      0.861 0.336 0.664 0.000 0.000
#> GSM159891     2  0.4222      0.821 0.272 0.728 0.000 0.000
#> GSM159892     2  0.4222      0.821 0.272 0.728 0.000 0.000
#> GSM159893     2  0.4222      0.821 0.272 0.728 0.000 0.000
#> GSM159894     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159895     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159896     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159897     2  0.4605      0.861 0.336 0.664 0.000 0.000
#> GSM159898     2  0.4605      0.861 0.336 0.664 0.000 0.000
#> GSM159899     2  0.4605      0.861 0.336 0.664 0.000 0.000
#> GSM159900     2  0.0188      0.281 0.000 0.996 0.000 0.004
#> GSM159901     2  0.0188      0.281 0.000 0.996 0.000 0.004
#> GSM159902     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159903     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159904     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159905     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159906     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159907     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159908     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159909     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159910     4  0.0188      0.000 0.000 0.004 0.000 0.996
#> GSM159911     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159912     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159913     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159914     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159915     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159916     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159917     3  0.0000      0.000 0.000 0.000 1.000 0.000
#> GSM159867     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159868     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159869     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159870     2  0.4830      0.838 0.392 0.608 0.000 0.000
#> GSM159871     2  0.4925      0.777 0.428 0.572 0.000 0.000
#> GSM159872     1  0.3377      0.786 0.848 0.012 0.140 0.000
#> GSM159873     2  0.4483      0.830 0.284 0.712 0.004 0.000
#> GSM159874     2  0.2494      0.208 0.036 0.916 0.048 0.000
#> GSM159875     2  0.4428      0.824 0.276 0.720 0.004 0.000
#> GSM159876     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159877     1  0.3377      0.786 0.848 0.012 0.140 0.000
#> GSM159878     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM159879     2  0.4830      0.838 0.392 0.608 0.000 0.000
#> GSM159880     2  0.4830      0.838 0.392 0.608 0.000 0.000
#> GSM159881     2  0.4830      0.838 0.392 0.608 0.000 0.000
#> GSM159882     2  0.4830      0.838 0.392 0.608 0.000 0.000
#> GSM159883     2  0.4830      0.838 0.392 0.608 0.000 0.000
#> GSM159884     2  0.4830      0.838 0.392 0.608 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159851     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159852     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159853     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159854     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159855     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159856     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159857     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159858     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159859     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159860     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159861     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159862     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159863     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159864     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159865     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159866     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159885     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159886     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159887     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159888     2  0.3857      0.909 0.312 0.688 0.000 0.000 0.000
#> GSM159889     2  0.3857      0.909 0.312 0.688 0.000 0.000 0.000
#> GSM159890     2  0.3857      0.909 0.312 0.688 0.000 0.000 0.000
#> GSM159891     2  0.3662      0.832 0.252 0.744 0.004 0.000 0.000
#> GSM159892     2  0.3662      0.832 0.252 0.744 0.004 0.000 0.000
#> GSM159893     2  0.3662      0.832 0.252 0.744 0.004 0.000 0.000
#> GSM159894     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159895     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159896     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159897     2  0.3857      0.909 0.312 0.688 0.000 0.000 0.000
#> GSM159898     2  0.3857      0.909 0.312 0.688 0.000 0.000 0.000
#> GSM159899     2  0.3857      0.909 0.312 0.688 0.000 0.000 0.000
#> GSM159900     3  0.4219      0.313 0.000 0.416 0.584 0.000 0.000
#> GSM159901     3  0.4219      0.313 0.000 0.416 0.584 0.000 0.000
#> GSM159902     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159903     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159904     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159905     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159906     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159907     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159908     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159909     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159910     3  0.6700     -0.386 0.000 0.252 0.416 0.000 0.332
#> GSM159911     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159912     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159913     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159914     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159915     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159916     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159917     4  0.0000      0.000 0.000 0.000 0.000 1.000 0.000
#> GSM159867     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159868     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159869     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159870     2  0.4088      0.901 0.368 0.632 0.000 0.000 0.000
#> GSM159871     2  0.4192      0.845 0.404 0.596 0.000 0.000 0.000
#> GSM159872     1  0.4093      0.711 0.808 0.012 0.000 0.092 0.088
#> GSM159873     2  0.5378      0.825 0.264 0.660 0.020 0.000 0.056
#> GSM159874     5  0.5299      0.000 0.000 0.120 0.212 0.000 0.668
#> GSM159875     2  0.5331      0.812 0.256 0.668 0.020 0.000 0.056
#> GSM159876     1  0.0162      0.983 0.996 0.004 0.000 0.000 0.000
#> GSM159877     1  0.4093      0.711 0.808 0.012 0.000 0.092 0.088
#> GSM159878     1  0.0162      0.983 0.996 0.004 0.000 0.000 0.000
#> GSM159879     2  0.4088      0.901 0.368 0.632 0.000 0.000 0.000
#> GSM159880     2  0.4088      0.901 0.368 0.632 0.000 0.000 0.000
#> GSM159881     2  0.4088      0.901 0.368 0.632 0.000 0.000 0.000
#> GSM159882     2  0.4088      0.901 0.368 0.632 0.000 0.000 0.000
#> GSM159883     2  0.4088      0.901 0.368 0.632 0.000 0.000 0.000
#> GSM159884     2  0.4088      0.901 0.368 0.632 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3 p4    p5    p6
#> GSM159850     1  0.0260      0.974 0.992 0.000 0.000  0 0.008 0.000
#> GSM159851     1  0.0260      0.974 0.992 0.000 0.000  0 0.008 0.000
#> GSM159852     1  0.0260      0.974 0.992 0.000 0.000  0 0.008 0.000
#> GSM159853     1  0.0260      0.974 0.992 0.000 0.000  0 0.008 0.000
#> GSM159854     1  0.0260      0.974 0.992 0.000 0.000  0 0.008 0.000
#> GSM159855     1  0.0260      0.974 0.992 0.000 0.000  0 0.008 0.000
#> GSM159856     1  0.0260      0.974 0.992 0.000 0.000  0 0.008 0.000
#> GSM159857     1  0.0260      0.974 0.992 0.000 0.000  0 0.008 0.000
#> GSM159858     1  0.0260      0.974 0.992 0.000 0.000  0 0.008 0.000
#> GSM159859     1  0.0260      0.974 0.992 0.000 0.000  0 0.008 0.000
#> GSM159860     1  0.0260      0.974 0.992 0.000 0.000  0 0.008 0.000
#> GSM159861     1  0.0146      0.974 0.996 0.000 0.000  0 0.004 0.000
#> GSM159862     1  0.0146      0.974 0.996 0.000 0.000  0 0.004 0.000
#> GSM159863     1  0.0146      0.974 0.996 0.000 0.000  0 0.004 0.000
#> GSM159864     1  0.0260      0.974 0.992 0.000 0.000  0 0.008 0.000
#> GSM159865     1  0.0260      0.974 0.992 0.000 0.000  0 0.008 0.000
#> GSM159866     1  0.0260      0.974 0.992 0.000 0.000  0 0.008 0.000
#> GSM159885     1  0.1401      0.945 0.948 0.028 0.020  0 0.004 0.000
#> GSM159886     1  0.0260      0.974 0.992 0.000 0.000  0 0.008 0.000
#> GSM159887     1  0.1401      0.945 0.948 0.028 0.020  0 0.004 0.000
#> GSM159888     2  0.1700      0.909 0.080 0.916 0.004  0 0.000 0.000
#> GSM159889     2  0.1700      0.909 0.080 0.916 0.004  0 0.000 0.000
#> GSM159890     2  0.1700      0.909 0.080 0.916 0.004  0 0.000 0.000
#> GSM159891     2  0.0363      0.832 0.000 0.988 0.012  0 0.000 0.000
#> GSM159892     2  0.0363      0.832 0.000 0.988 0.012  0 0.000 0.000
#> GSM159893     2  0.0363      0.832 0.000 0.988 0.012  0 0.000 0.000
#> GSM159894     1  0.1313      0.948 0.952 0.028 0.016  0 0.004 0.000
#> GSM159895     1  0.1401      0.945 0.948 0.028 0.020  0 0.004 0.000
#> GSM159896     1  0.1401      0.945 0.948 0.028 0.020  0 0.004 0.000
#> GSM159897     2  0.1700      0.909 0.080 0.916 0.004  0 0.000 0.000
#> GSM159898     2  0.1700      0.909 0.080 0.916 0.004  0 0.000 0.000
#> GSM159899     2  0.1700      0.909 0.080 0.916 0.004  0 0.000 0.000
#> GSM159900     3  0.0632      1.000 0.000 0.024 0.976  0 0.000 0.000
#> GSM159901     3  0.0632      1.000 0.000 0.024 0.976  0 0.000 0.000
#> GSM159902     1  0.0405      0.970 0.988 0.008 0.000  0 0.004 0.000
#> GSM159903     1  0.0146      0.973 0.996 0.000 0.000  0 0.004 0.000
#> GSM159904     1  0.0146      0.973 0.996 0.000 0.000  0 0.004 0.000
#> GSM159905     1  0.0000      0.974 1.000 0.000 0.000  0 0.000 0.000
#> GSM159906     1  0.0000      0.974 1.000 0.000 0.000  0 0.000 0.000
#> GSM159907     1  0.0000      0.974 1.000 0.000 0.000  0 0.000 0.000
#> GSM159908     1  0.0146      0.973 0.996 0.000 0.000  0 0.004 0.000
#> GSM159909     1  0.0146      0.973 0.996 0.000 0.000  0 0.004 0.000
#> GSM159910     4  0.0000      0.000 0.000 0.000 0.000  1 0.000 0.000
#> GSM159911     1  0.1485      0.941 0.944 0.028 0.024  0 0.004 0.000
#> GSM159912     1  0.0146      0.973 0.996 0.000 0.000  0 0.004 0.000
#> GSM159913     1  0.0146      0.973 0.996 0.000 0.000  0 0.004 0.000
#> GSM159914     1  0.0000      0.974 1.000 0.000 0.000  0 0.000 0.000
#> GSM159915     1  0.0000      0.974 1.000 0.000 0.000  0 0.000 0.000
#> GSM159916     1  0.0000      0.974 1.000 0.000 0.000  0 0.000 0.000
#> GSM159917     6  0.0000      0.000 0.000 0.000 0.000  0 0.000 1.000
#> GSM159867     1  0.1218      0.954 0.956 0.028 0.012  0 0.004 0.000
#> GSM159868     1  0.1401      0.945 0.948 0.028 0.020  0 0.004 0.000
#> GSM159869     1  0.1401      0.945 0.948 0.028 0.020  0 0.004 0.000
#> GSM159870     2  0.2178      0.900 0.132 0.868 0.000  0 0.000 0.000
#> GSM159871     2  0.2527      0.843 0.168 0.832 0.000  0 0.000 0.000
#> GSM159872     1  0.3802      0.761 0.792 0.008 0.000  0 0.116 0.084
#> GSM159873     2  0.1918      0.805 0.008 0.904 0.000  0 0.088 0.000
#> GSM159874     5  0.0692      0.000 0.000 0.004 0.020  0 0.976 0.000
#> GSM159875     2  0.1663      0.795 0.000 0.912 0.000  0 0.088 0.000
#> GSM159876     1  0.0891      0.958 0.968 0.024 0.000  0 0.008 0.000
#> GSM159877     1  0.3802      0.761 0.792 0.008 0.000  0 0.116 0.084
#> GSM159878     1  0.0891      0.958 0.968 0.024 0.000  0 0.008 0.000
#> GSM159879     2  0.2178      0.900 0.132 0.868 0.000  0 0.000 0.000
#> GSM159880     2  0.2178      0.900 0.132 0.868 0.000  0 0.000 0.000
#> GSM159881     2  0.2178      0.900 0.132 0.868 0.000  0 0.000 0.000
#> GSM159882     2  0.2178      0.900 0.132 0.868 0.000  0 0.000 0.000
#> GSM159883     2  0.2178      0.900 0.132 0.868 0.000  0 0.000 0.000
#> GSM159884     2  0.2178      0.900 0.132 0.868 0.000  0 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n agent(p) dose(p)  time(p) k
#> SD:hclust 68 9.76e-07 0.00410 0.000133 2
#> SD:hclust 64 5.81e-06 0.00715 0.000301 3
#> SD:hclust 63 8.02e-06 0.00642 0.000229 4
#> SD:hclust 63 8.02e-06 0.00642 0.000229 5
#> SD:hclust 65 1.46e-05 0.00716 0.000172 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.965       0.982         0.4637 0.528   0.528
#> 3 3 0.696           0.828       0.896         0.2536 0.923   0.855
#> 4 4 0.621           0.717       0.802         0.1793 0.860   0.693
#> 5 5 0.632           0.604       0.682         0.0869 0.877   0.623
#> 6 6 0.772           0.689       0.776         0.0535 0.892   0.602

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1   0.000     0.9955 1.000 0.000
#> GSM159851     1   0.000     0.9955 1.000 0.000
#> GSM159852     1   0.000     0.9955 1.000 0.000
#> GSM159853     1   0.000     0.9955 1.000 0.000
#> GSM159854     1   0.000     0.9955 1.000 0.000
#> GSM159855     1   0.000     0.9955 1.000 0.000
#> GSM159856     1   0.000     0.9955 1.000 0.000
#> GSM159857     1   0.000     0.9955 1.000 0.000
#> GSM159858     1   0.000     0.9955 1.000 0.000
#> GSM159859     1   0.000     0.9955 1.000 0.000
#> GSM159860     1   0.000     0.9955 1.000 0.000
#> GSM159861     1   0.000     0.9955 1.000 0.000
#> GSM159862     1   0.000     0.9955 1.000 0.000
#> GSM159863     1   0.000     0.9955 1.000 0.000
#> GSM159864     1   0.000     0.9955 1.000 0.000
#> GSM159865     1   0.000     0.9955 1.000 0.000
#> GSM159866     1   0.000     0.9955 1.000 0.000
#> GSM159885     1   0.000     0.9955 1.000 0.000
#> GSM159886     1   0.000     0.9955 1.000 0.000
#> GSM159887     1   0.000     0.9955 1.000 0.000
#> GSM159888     2   0.184     0.9635 0.028 0.972
#> GSM159889     2   0.184     0.9635 0.028 0.972
#> GSM159890     2   0.184     0.9635 0.028 0.972
#> GSM159891     2   0.000     0.9571 0.000 1.000
#> GSM159892     2   0.000     0.9571 0.000 1.000
#> GSM159893     2   0.000     0.9571 0.000 1.000
#> GSM159894     1   0.000     0.9955 1.000 0.000
#> GSM159895     1   0.000     0.9955 1.000 0.000
#> GSM159896     1   0.000     0.9955 1.000 0.000
#> GSM159897     2   0.184     0.9635 0.028 0.972
#> GSM159898     2   0.184     0.9635 0.028 0.972
#> GSM159899     2   0.184     0.9635 0.028 0.972
#> GSM159900     2   0.000     0.9571 0.000 1.000
#> GSM159901     2   0.000     0.9571 0.000 1.000
#> GSM159902     1   0.000     0.9955 1.000 0.000
#> GSM159903     1   0.000     0.9955 1.000 0.000
#> GSM159904     1   0.000     0.9955 1.000 0.000
#> GSM159905     1   0.000     0.9955 1.000 0.000
#> GSM159906     1   0.000     0.9955 1.000 0.000
#> GSM159907     1   0.000     0.9955 1.000 0.000
#> GSM159908     1   0.000     0.9955 1.000 0.000
#> GSM159909     1   0.000     0.9955 1.000 0.000
#> GSM159910     2   0.529     0.8555 0.120 0.880
#> GSM159911     1   0.000     0.9955 1.000 0.000
#> GSM159912     1   0.000     0.9955 1.000 0.000
#> GSM159913     1   0.000     0.9955 1.000 0.000
#> GSM159914     1   0.000     0.9955 1.000 0.000
#> GSM159915     1   0.000     0.9955 1.000 0.000
#> GSM159916     1   0.000     0.9955 1.000 0.000
#> GSM159917     2   0.999     0.0587 0.484 0.516
#> GSM159867     1   0.000     0.9955 1.000 0.000
#> GSM159868     1   0.000     0.9955 1.000 0.000
#> GSM159869     1   0.000     0.9955 1.000 0.000
#> GSM159870     2   0.204     0.9608 0.032 0.968
#> GSM159871     2   0.204     0.9608 0.032 0.968
#> GSM159872     2   0.000     0.9571 0.000 1.000
#> GSM159873     2   0.000     0.9571 0.000 1.000
#> GSM159874     2   0.000     0.9571 0.000 1.000
#> GSM159875     2   0.000     0.9571 0.000 1.000
#> GSM159876     1   0.000     0.9955 1.000 0.000
#> GSM159877     1   0.697     0.7691 0.812 0.188
#> GSM159878     1   0.000     0.9955 1.000 0.000
#> GSM159879     2   0.184     0.9635 0.028 0.972
#> GSM159880     2   0.184     0.9635 0.028 0.972
#> GSM159881     2   0.184     0.9635 0.028 0.972
#> GSM159882     2   0.184     0.9635 0.028 0.972
#> GSM159883     2   0.184     0.9635 0.028 0.972
#> GSM159884     2   0.184     0.9635 0.028 0.972

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1  0.0000      0.901 1.000 0.000 0.000
#> GSM159851     1  0.0000      0.901 1.000 0.000 0.000
#> GSM159852     1  0.0000      0.901 1.000 0.000 0.000
#> GSM159853     1  0.0000      0.901 1.000 0.000 0.000
#> GSM159854     1  0.0000      0.901 1.000 0.000 0.000
#> GSM159855     1  0.0000      0.901 1.000 0.000 0.000
#> GSM159856     1  0.0424      0.900 0.992 0.000 0.008
#> GSM159857     1  0.0424      0.900 0.992 0.000 0.008
#> GSM159858     1  0.0592      0.899 0.988 0.000 0.012
#> GSM159859     1  0.0592      0.899 0.988 0.000 0.012
#> GSM159860     1  0.0592      0.899 0.988 0.000 0.012
#> GSM159861     1  0.3454      0.856 0.888 0.008 0.104
#> GSM159862     1  0.3532      0.853 0.884 0.008 0.108
#> GSM159863     1  0.3532      0.853 0.884 0.008 0.108
#> GSM159864     1  0.3755      0.843 0.872 0.008 0.120
#> GSM159865     1  0.3755      0.843 0.872 0.008 0.120
#> GSM159866     1  0.3755      0.843 0.872 0.008 0.120
#> GSM159885     1  0.7030      0.440 0.580 0.024 0.396
#> GSM159886     1  0.0237      0.901 0.996 0.004 0.000
#> GSM159887     1  0.4539      0.817 0.836 0.016 0.148
#> GSM159888     2  0.0424      0.895 0.008 0.992 0.000
#> GSM159889     2  0.0424      0.895 0.008 0.992 0.000
#> GSM159890     2  0.0424      0.895 0.008 0.992 0.000
#> GSM159891     2  0.1031      0.884 0.000 0.976 0.024
#> GSM159892     2  0.1031      0.884 0.000 0.976 0.024
#> GSM159893     2  0.1031      0.884 0.000 0.976 0.024
#> GSM159894     1  0.4483      0.822 0.848 0.024 0.128
#> GSM159895     1  0.6482      0.614 0.680 0.024 0.296
#> GSM159896     1  0.7001      0.444 0.588 0.024 0.388
#> GSM159897     2  0.0424      0.895 0.008 0.992 0.000
#> GSM159898     2  0.0424      0.895 0.008 0.992 0.000
#> GSM159899     2  0.0424      0.895 0.008 0.992 0.000
#> GSM159900     3  0.5650      0.742 0.000 0.312 0.688
#> GSM159901     3  0.5733      0.727 0.000 0.324 0.676
#> GSM159902     1  0.2200      0.893 0.940 0.004 0.056
#> GSM159903     1  0.1267      0.899 0.972 0.004 0.024
#> GSM159904     1  0.1647      0.897 0.960 0.004 0.036
#> GSM159905     1  0.1267      0.899 0.972 0.004 0.024
#> GSM159906     1  0.1129      0.899 0.976 0.004 0.020
#> GSM159907     1  0.1129      0.899 0.976 0.004 0.020
#> GSM159908     1  0.1765      0.898 0.956 0.004 0.040
#> GSM159909     1  0.2096      0.894 0.944 0.004 0.052
#> GSM159910     3  0.2998      0.825 0.016 0.068 0.916
#> GSM159911     1  0.6330      0.489 0.600 0.004 0.396
#> GSM159912     1  0.1267      0.899 0.972 0.004 0.024
#> GSM159913     1  0.1267      0.899 0.972 0.004 0.024
#> GSM159914     1  0.1267      0.899 0.972 0.004 0.024
#> GSM159915     1  0.1267      0.899 0.972 0.004 0.024
#> GSM159916     1  0.1267      0.899 0.972 0.004 0.024
#> GSM159917     3  0.3083      0.791 0.060 0.024 0.916
#> GSM159867     1  0.4128      0.825 0.856 0.012 0.132
#> GSM159868     1  0.6896      0.436 0.588 0.020 0.392
#> GSM159869     1  0.6896      0.436 0.588 0.020 0.392
#> GSM159870     2  0.3695      0.891 0.012 0.880 0.108
#> GSM159871     2  0.3695      0.891 0.012 0.880 0.108
#> GSM159872     3  0.3267      0.829 0.000 0.116 0.884
#> GSM159873     2  0.6126      0.258 0.000 0.600 0.400
#> GSM159874     3  0.3941      0.818 0.000 0.156 0.844
#> GSM159875     3  0.5529      0.665 0.000 0.296 0.704
#> GSM159876     1  0.1182      0.896 0.976 0.012 0.012
#> GSM159877     3  0.3359      0.782 0.084 0.016 0.900
#> GSM159878     1  0.0475      0.900 0.992 0.004 0.004
#> GSM159879     2  0.3695      0.891 0.012 0.880 0.108
#> GSM159880     2  0.3695      0.891 0.012 0.880 0.108
#> GSM159881     2  0.3695      0.891 0.012 0.880 0.108
#> GSM159882     2  0.3695      0.891 0.012 0.880 0.108
#> GSM159883     2  0.3695      0.891 0.012 0.880 0.108
#> GSM159884     2  0.3695      0.891 0.012 0.880 0.108

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.0707     0.7755 0.980 0.000 0.000 0.020
#> GSM159851     1  0.0707     0.7755 0.980 0.000 0.000 0.020
#> GSM159852     1  0.0707     0.7755 0.980 0.000 0.000 0.020
#> GSM159853     1  0.0592     0.7755 0.984 0.000 0.000 0.016
#> GSM159854     1  0.0469     0.7757 0.988 0.000 0.000 0.012
#> GSM159855     1  0.0469     0.7757 0.988 0.000 0.000 0.012
#> GSM159856     1  0.0707     0.7744 0.980 0.000 0.000 0.020
#> GSM159857     1  0.0707     0.7744 0.980 0.000 0.000 0.020
#> GSM159858     1  0.1004     0.7754 0.972 0.000 0.004 0.024
#> GSM159859     1  0.1004     0.7754 0.972 0.000 0.004 0.024
#> GSM159860     1  0.1004     0.7754 0.972 0.000 0.004 0.024
#> GSM159861     1  0.5228     0.5162 0.664 0.000 0.024 0.312
#> GSM159862     1  0.5271     0.5041 0.656 0.000 0.024 0.320
#> GSM159863     1  0.5228     0.5162 0.664 0.000 0.024 0.312
#> GSM159864     1  0.5010     0.5585 0.700 0.000 0.024 0.276
#> GSM159865     1  0.5010     0.5585 0.700 0.000 0.024 0.276
#> GSM159866     1  0.5010     0.5585 0.700 0.000 0.024 0.276
#> GSM159885     4  0.7188     0.8588 0.252 0.004 0.176 0.568
#> GSM159886     1  0.0707     0.7752 0.980 0.000 0.000 0.020
#> GSM159887     4  0.6565     0.8473 0.304 0.004 0.092 0.600
#> GSM159888     2  0.0000     0.8431 0.000 1.000 0.000 0.000
#> GSM159889     2  0.0000     0.8431 0.000 1.000 0.000 0.000
#> GSM159890     2  0.0000     0.8431 0.000 1.000 0.000 0.000
#> GSM159891     2  0.2125     0.8023 0.000 0.920 0.076 0.004
#> GSM159892     2  0.2125     0.8023 0.000 0.920 0.076 0.004
#> GSM159893     2  0.2125     0.8023 0.000 0.920 0.076 0.004
#> GSM159894     4  0.6798     0.8427 0.348 0.004 0.096 0.552
#> GSM159895     4  0.7126     0.8737 0.296 0.004 0.144 0.556
#> GSM159896     4  0.7255     0.8636 0.264 0.004 0.176 0.556
#> GSM159897     2  0.0376     0.8405 0.000 0.992 0.004 0.004
#> GSM159898     2  0.0376     0.8405 0.000 0.992 0.004 0.004
#> GSM159899     2  0.0376     0.8405 0.000 0.992 0.004 0.004
#> GSM159900     3  0.4220     0.6660 0.000 0.248 0.748 0.004
#> GSM159901     3  0.4313     0.6518 0.000 0.260 0.736 0.004
#> GSM159902     4  0.4977     0.3590 0.460 0.000 0.000 0.540
#> GSM159903     1  0.4543     0.4035 0.676 0.000 0.000 0.324
#> GSM159904     1  0.4898     0.1056 0.584 0.000 0.000 0.416
#> GSM159905     1  0.2647     0.7399 0.880 0.000 0.000 0.120
#> GSM159906     1  0.2589     0.7407 0.884 0.000 0.000 0.116
#> GSM159907     1  0.2589     0.7407 0.884 0.000 0.000 0.116
#> GSM159908     1  0.4830     0.2220 0.608 0.000 0.000 0.392
#> GSM159909     1  0.4955    -0.0204 0.556 0.000 0.000 0.444
#> GSM159910     3  0.4122     0.7621 0.000 0.004 0.760 0.236
#> GSM159911     4  0.6685     0.8131 0.268 0.000 0.132 0.600
#> GSM159912     1  0.2704     0.7387 0.876 0.000 0.000 0.124
#> GSM159913     1  0.4277     0.5039 0.720 0.000 0.000 0.280
#> GSM159914     1  0.2647     0.7399 0.880 0.000 0.000 0.120
#> GSM159915     1  0.2647     0.7399 0.880 0.000 0.000 0.120
#> GSM159916     1  0.2647     0.7399 0.880 0.000 0.000 0.120
#> GSM159917     3  0.4220     0.7483 0.004 0.000 0.748 0.248
#> GSM159867     4  0.6835     0.8276 0.360 0.004 0.096 0.540
#> GSM159868     4  0.7255     0.8636 0.264 0.004 0.176 0.556
#> GSM159869     4  0.7255     0.8636 0.264 0.004 0.176 0.556
#> GSM159870     2  0.4710     0.8420 0.000 0.792 0.120 0.088
#> GSM159871     2  0.4710     0.8420 0.000 0.792 0.120 0.088
#> GSM159872     3  0.4323     0.7738 0.000 0.020 0.776 0.204
#> GSM159873     2  0.6665     0.5216 0.000 0.544 0.360 0.096
#> GSM159874     3  0.2522     0.7700 0.000 0.016 0.908 0.076
#> GSM159875     3  0.5716     0.4760 0.000 0.212 0.700 0.088
#> GSM159876     1  0.2053     0.7466 0.924 0.004 0.000 0.072
#> GSM159877     3  0.4567     0.7494 0.012 0.004 0.748 0.236
#> GSM159878     1  0.1978     0.7501 0.928 0.004 0.000 0.068
#> GSM159879     2  0.4710     0.8420 0.000 0.792 0.120 0.088
#> GSM159880     2  0.4710     0.8420 0.000 0.792 0.120 0.088
#> GSM159881     2  0.4710     0.8420 0.000 0.792 0.120 0.088
#> GSM159882     2  0.4710     0.8420 0.000 0.792 0.120 0.088
#> GSM159883     2  0.4710     0.8420 0.000 0.792 0.120 0.088
#> GSM159884     2  0.4710     0.8420 0.000 0.792 0.120 0.088

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     1  0.5330      0.466 0.548 0.000 0.000 0.056 0.396
#> GSM159851     1  0.5330      0.466 0.548 0.000 0.000 0.056 0.396
#> GSM159852     1  0.5330      0.466 0.548 0.000 0.000 0.056 0.396
#> GSM159853     1  0.5272      0.472 0.552 0.000 0.000 0.052 0.396
#> GSM159854     1  0.5330      0.466 0.548 0.000 0.000 0.056 0.396
#> GSM159855     1  0.5330      0.466 0.548 0.000 0.000 0.056 0.396
#> GSM159856     1  0.5010      0.482 0.572 0.000 0.000 0.036 0.392
#> GSM159857     1  0.5010      0.482 0.572 0.000 0.000 0.036 0.392
#> GSM159858     1  0.4620      0.453 0.592 0.000 0.000 0.016 0.392
#> GSM159859     1  0.4620      0.453 0.592 0.000 0.000 0.016 0.392
#> GSM159860     1  0.4620      0.453 0.592 0.000 0.000 0.016 0.392
#> GSM159861     1  0.2420      0.316 0.896 0.000 0.008 0.088 0.008
#> GSM159862     1  0.2533      0.307 0.888 0.000 0.008 0.096 0.008
#> GSM159863     1  0.2420      0.316 0.896 0.000 0.008 0.088 0.008
#> GSM159864     1  0.1195      0.355 0.960 0.000 0.012 0.028 0.000
#> GSM159865     1  0.1195      0.355 0.960 0.000 0.012 0.028 0.000
#> GSM159866     1  0.1195      0.355 0.960 0.000 0.012 0.028 0.000
#> GSM159885     4  0.2871      0.859 0.040 0.000 0.000 0.872 0.088
#> GSM159886     1  0.5330      0.466 0.548 0.000 0.000 0.056 0.396
#> GSM159887     4  0.2927      0.860 0.040 0.000 0.000 0.868 0.092
#> GSM159888     2  0.5007      0.776 0.000 0.744 0.136 0.024 0.096
#> GSM159889     2  0.5007      0.776 0.000 0.744 0.136 0.024 0.096
#> GSM159890     2  0.5007      0.776 0.000 0.744 0.136 0.024 0.096
#> GSM159891     2  0.6163      0.658 0.000 0.572 0.312 0.024 0.092
#> GSM159892     2  0.6178      0.653 0.000 0.568 0.316 0.024 0.092
#> GSM159893     2  0.6163      0.658 0.000 0.572 0.312 0.024 0.092
#> GSM159894     4  0.3033      0.859 0.052 0.000 0.000 0.864 0.084
#> GSM159895     4  0.2903      0.861 0.048 0.000 0.000 0.872 0.080
#> GSM159896     4  0.2903      0.861 0.048 0.000 0.000 0.872 0.080
#> GSM159897     2  0.5049      0.774 0.000 0.740 0.140 0.024 0.096
#> GSM159898     2  0.5049      0.774 0.000 0.740 0.140 0.024 0.096
#> GSM159899     2  0.5049      0.774 0.000 0.740 0.140 0.024 0.096
#> GSM159900     3  0.0693      0.672 0.000 0.012 0.980 0.008 0.000
#> GSM159901     3  0.0981      0.666 0.000 0.012 0.972 0.008 0.008
#> GSM159902     4  0.5202      0.583 0.056 0.000 0.000 0.596 0.348
#> GSM159903     5  0.6166      0.255 0.148 0.000 0.000 0.340 0.512
#> GSM159904     4  0.5901      0.333 0.104 0.000 0.000 0.496 0.400
#> GSM159905     5  0.4886      0.624 0.372 0.000 0.000 0.032 0.596
#> GSM159906     5  0.4537      0.550 0.396 0.000 0.000 0.012 0.592
#> GSM159907     5  0.4527      0.562 0.392 0.000 0.000 0.012 0.596
#> GSM159908     5  0.6274     -0.144 0.148 0.000 0.000 0.420 0.432
#> GSM159909     4  0.5723      0.413 0.088 0.000 0.000 0.520 0.392
#> GSM159910     3  0.6580      0.744 0.000 0.008 0.508 0.192 0.292
#> GSM159911     4  0.4021      0.796 0.052 0.000 0.000 0.780 0.168
#> GSM159912     5  0.4946      0.621 0.368 0.000 0.000 0.036 0.596
#> GSM159913     5  0.6087      0.485 0.188 0.000 0.000 0.244 0.568
#> GSM159914     5  0.4886      0.624 0.372 0.000 0.000 0.032 0.596
#> GSM159915     5  0.4886      0.624 0.372 0.000 0.000 0.032 0.596
#> GSM159916     5  0.4886      0.624 0.372 0.000 0.000 0.032 0.596
#> GSM159917     3  0.6493      0.740 0.000 0.004 0.508 0.196 0.292
#> GSM159867     4  0.3102      0.856 0.056 0.000 0.000 0.860 0.084
#> GSM159868     4  0.2903      0.861 0.048 0.000 0.000 0.872 0.080
#> GSM159869     4  0.2903      0.861 0.048 0.000 0.000 0.872 0.080
#> GSM159870     2  0.0794      0.782 0.000 0.972 0.000 0.028 0.000
#> GSM159871     2  0.0794      0.782 0.000 0.972 0.000 0.028 0.000
#> GSM159872     3  0.7523      0.749 0.000 0.076 0.476 0.180 0.268
#> GSM159873     2  0.5224      0.404 0.000 0.644 0.276 0.080 0.000
#> GSM159874     3  0.4071      0.729 0.000 0.052 0.816 0.104 0.028
#> GSM159875     3  0.5505      0.417 0.000 0.328 0.588 0.084 0.000
#> GSM159876     1  0.5929      0.455 0.552 0.024 0.000 0.060 0.364
#> GSM159877     3  0.7542      0.742 0.000 0.068 0.464 0.200 0.268
#> GSM159878     1  0.5737      0.467 0.552 0.016 0.000 0.056 0.376
#> GSM159879     2  0.0794      0.782 0.000 0.972 0.000 0.028 0.000
#> GSM159880     2  0.0794      0.782 0.000 0.972 0.000 0.028 0.000
#> GSM159881     2  0.0794      0.782 0.000 0.972 0.000 0.028 0.000
#> GSM159882     2  0.0703      0.783 0.000 0.976 0.000 0.024 0.000
#> GSM159883     2  0.0703      0.783 0.000 0.976 0.000 0.024 0.000
#> GSM159884     2  0.0703      0.783 0.000 0.976 0.000 0.024 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM159850     1  0.0692     0.7648 0.976 0.000 0.004 0.020 0.000 0.000
#> GSM159851     1  0.0692     0.7648 0.976 0.000 0.004 0.020 0.000 0.000
#> GSM159852     1  0.0692     0.7648 0.976 0.000 0.004 0.020 0.000 0.000
#> GSM159853     1  0.0692     0.7648 0.976 0.000 0.004 0.020 0.000 0.000
#> GSM159854     1  0.0692     0.7648 0.976 0.000 0.004 0.020 0.000 0.000
#> GSM159855     1  0.0692     0.7648 0.976 0.000 0.004 0.020 0.000 0.000
#> GSM159856     1  0.0603     0.7539 0.980 0.000 0.000 0.004 0.016 0.000
#> GSM159857     1  0.0622     0.7552 0.980 0.000 0.000 0.008 0.012 0.000
#> GSM159858     1  0.0858     0.7512 0.968 0.000 0.004 0.000 0.028 0.000
#> GSM159859     1  0.0858     0.7512 0.968 0.000 0.004 0.000 0.028 0.000
#> GSM159860     1  0.0858     0.7512 0.968 0.000 0.004 0.000 0.028 0.000
#> GSM159861     5  0.4962     0.9448 0.280 0.000 0.020 0.060 0.640 0.000
#> GSM159862     5  0.4962     0.9448 0.280 0.000 0.020 0.060 0.640 0.000
#> GSM159863     5  0.4962     0.9448 0.280 0.000 0.020 0.060 0.640 0.000
#> GSM159864     5  0.4150     0.9446 0.320 0.000 0.000 0.028 0.652 0.000
#> GSM159865     5  0.4150     0.9446 0.320 0.000 0.000 0.028 0.652 0.000
#> GSM159866     5  0.4150     0.9446 0.320 0.000 0.000 0.028 0.652 0.000
#> GSM159885     4  0.1686     0.7975 0.052 0.000 0.008 0.932 0.004 0.004
#> GSM159886     1  0.0951     0.7652 0.968 0.000 0.008 0.020 0.004 0.000
#> GSM159887     4  0.1757     0.7960 0.052 0.000 0.012 0.928 0.008 0.000
#> GSM159888     2  0.5494     0.6758 0.000 0.644 0.168 0.008 0.164 0.016
#> GSM159889     2  0.5494     0.6758 0.000 0.644 0.168 0.008 0.164 0.016
#> GSM159890     2  0.5494     0.6758 0.000 0.644 0.168 0.008 0.164 0.016
#> GSM159891     2  0.6466     0.4146 0.000 0.404 0.392 0.000 0.164 0.040
#> GSM159892     2  0.6466     0.4146 0.000 0.404 0.392 0.000 0.164 0.040
#> GSM159893     2  0.6466     0.4146 0.000 0.404 0.392 0.000 0.164 0.040
#> GSM159894     4  0.1524     0.7976 0.060 0.008 0.000 0.932 0.000 0.000
#> GSM159895     4  0.1606     0.7978 0.056 0.008 0.000 0.932 0.000 0.004
#> GSM159896     4  0.1606     0.7978 0.056 0.008 0.000 0.932 0.000 0.004
#> GSM159897     2  0.5603     0.6724 0.000 0.636 0.172 0.008 0.164 0.020
#> GSM159898     2  0.5603     0.6724 0.000 0.636 0.172 0.008 0.164 0.020
#> GSM159899     2  0.5603     0.6724 0.000 0.636 0.172 0.008 0.164 0.020
#> GSM159900     3  0.5493     0.6753 0.000 0.000 0.544 0.016 0.092 0.348
#> GSM159901     3  0.5483     0.6747 0.000 0.000 0.548 0.016 0.092 0.344
#> GSM159902     4  0.5132     0.6617 0.080 0.000 0.236 0.656 0.028 0.000
#> GSM159903     1  0.6773    -0.1400 0.336 0.000 0.312 0.316 0.036 0.000
#> GSM159904     4  0.6365     0.5059 0.176 0.000 0.308 0.480 0.036 0.000
#> GSM159905     1  0.4152     0.6547 0.696 0.000 0.268 0.028 0.008 0.000
#> GSM159906     1  0.3721     0.6730 0.728 0.000 0.252 0.016 0.004 0.000
#> GSM159907     1  0.3721     0.6730 0.728 0.000 0.252 0.016 0.004 0.000
#> GSM159908     4  0.6717     0.3525 0.244 0.000 0.316 0.400 0.040 0.000
#> GSM159909     4  0.6144     0.5542 0.132 0.000 0.312 0.516 0.040 0.000
#> GSM159910     6  0.2279     0.8570 0.000 0.000 0.004 0.048 0.048 0.900
#> GSM159911     4  0.3378     0.7616 0.064 0.000 0.068 0.840 0.028 0.000
#> GSM159912     1  0.4243     0.6535 0.688 0.000 0.272 0.032 0.008 0.000
#> GSM159913     1  0.6245     0.3764 0.492 0.000 0.312 0.164 0.032 0.000
#> GSM159914     1  0.4152     0.6547 0.696 0.000 0.268 0.028 0.008 0.000
#> GSM159915     1  0.4152     0.6547 0.696 0.000 0.268 0.028 0.008 0.000
#> GSM159916     1  0.4152     0.6547 0.696 0.000 0.268 0.028 0.008 0.000
#> GSM159917     6  0.1367     0.8666 0.000 0.000 0.000 0.044 0.012 0.944
#> GSM159867     4  0.1524     0.7952 0.060 0.008 0.000 0.932 0.000 0.000
#> GSM159868     4  0.1542     0.7952 0.052 0.008 0.000 0.936 0.000 0.004
#> GSM159869     4  0.1542     0.7952 0.052 0.008 0.000 0.936 0.000 0.004
#> GSM159870     2  0.0508     0.6901 0.000 0.984 0.000 0.012 0.004 0.000
#> GSM159871     2  0.0508     0.6901 0.000 0.984 0.000 0.012 0.004 0.000
#> GSM159872     6  0.3275     0.8686 0.000 0.064 0.016 0.068 0.004 0.848
#> GSM159873     2  0.6205    -0.0635 0.000 0.568 0.280 0.080 0.052 0.020
#> GSM159874     3  0.6859     0.5349 0.000 0.036 0.424 0.076 0.068 0.396
#> GSM159875     3  0.7727     0.4428 0.000 0.308 0.400 0.072 0.064 0.156
#> GSM159876     1  0.1546     0.7364 0.944 0.020 0.000 0.020 0.016 0.000
#> GSM159877     6  0.3389     0.8649 0.004 0.064 0.008 0.080 0.004 0.840
#> GSM159878     1  0.1546     0.7364 0.944 0.020 0.000 0.020 0.016 0.000
#> GSM159879     2  0.0363     0.6921 0.000 0.988 0.000 0.012 0.000 0.000
#> GSM159880     2  0.0363     0.6921 0.000 0.988 0.000 0.012 0.000 0.000
#> GSM159881     2  0.0363     0.6921 0.000 0.988 0.000 0.012 0.000 0.000
#> GSM159882     2  0.0260     0.6935 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM159883     2  0.0260     0.6935 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM159884     2  0.0260     0.6935 0.000 0.992 0.000 0.008 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n agent(p)  dose(p)  time(p) k
#> SD:kmeans 67 2.65e-06 1.73e-03 2.55e-05 2
#> SD:kmeans 62 3.00e-06 2.92e-03 2.89e-04 3
#> SD:kmeans 62 5.08e-07 5.44e-05 6.69e-06 4
#> SD:kmeans 41 2.03e-04 8.68e-01 8.87e-08 5
#> SD:kmeans 60 2.09e-06 3.38e-05 1.32e-09 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.908           0.900       0.959         0.4922 0.521   0.521
#> 3 3 0.832           0.828       0.931         0.3156 0.781   0.599
#> 4 4 0.613           0.570       0.734         0.1368 0.903   0.737
#> 5 5 0.610           0.528       0.713         0.0711 0.847   0.525
#> 6 6 0.640           0.533       0.673         0.0449 0.875   0.496

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1  0.0000      0.930 1.000 0.000
#> GSM159851     1  0.0000      0.930 1.000 0.000
#> GSM159852     1  0.0000      0.930 1.000 0.000
#> GSM159853     1  0.0000      0.930 1.000 0.000
#> GSM159854     1  0.0000      0.930 1.000 0.000
#> GSM159855     1  0.0000      0.930 1.000 0.000
#> GSM159856     1  0.0000      0.930 1.000 0.000
#> GSM159857     1  0.0000      0.930 1.000 0.000
#> GSM159858     1  0.0000      0.930 1.000 0.000
#> GSM159859     1  0.0000      0.930 1.000 0.000
#> GSM159860     1  0.0000      0.930 1.000 0.000
#> GSM159861     1  0.0000      0.930 1.000 0.000
#> GSM159862     1  0.0000      0.930 1.000 0.000
#> GSM159863     1  0.0000      0.930 1.000 0.000
#> GSM159864     1  0.0000      0.930 1.000 0.000
#> GSM159865     1  0.0000      0.930 1.000 0.000
#> GSM159866     1  0.0000      0.930 1.000 0.000
#> GSM159885     1  0.9998      0.159 0.508 0.492
#> GSM159886     1  0.0000      0.930 1.000 0.000
#> GSM159887     1  0.6887      0.756 0.816 0.184
#> GSM159888     2  0.0000      0.999 0.000 1.000
#> GSM159889     2  0.0000      0.999 0.000 1.000
#> GSM159890     2  0.0000      0.999 0.000 1.000
#> GSM159891     2  0.0000      0.999 0.000 1.000
#> GSM159892     2  0.0000      0.999 0.000 1.000
#> GSM159893     2  0.0000      0.999 0.000 1.000
#> GSM159894     1  0.9170      0.544 0.668 0.332
#> GSM159895     1  0.9775      0.383 0.588 0.412
#> GSM159896     1  0.9998      0.160 0.508 0.492
#> GSM159897     2  0.0000      0.999 0.000 1.000
#> GSM159898     2  0.0000      0.999 0.000 1.000
#> GSM159899     2  0.0000      0.999 0.000 1.000
#> GSM159900     2  0.0000      0.999 0.000 1.000
#> GSM159901     2  0.0000      0.999 0.000 1.000
#> GSM159902     1  0.0000      0.930 1.000 0.000
#> GSM159903     1  0.0000      0.930 1.000 0.000
#> GSM159904     1  0.0000      0.930 1.000 0.000
#> GSM159905     1  0.0000      0.930 1.000 0.000
#> GSM159906     1  0.0000      0.930 1.000 0.000
#> GSM159907     1  0.0000      0.930 1.000 0.000
#> GSM159908     1  0.0000      0.930 1.000 0.000
#> GSM159909     1  0.0000      0.930 1.000 0.000
#> GSM159910     2  0.0000      0.999 0.000 1.000
#> GSM159911     1  0.0000      0.930 1.000 0.000
#> GSM159912     1  0.0000      0.930 1.000 0.000
#> GSM159913     1  0.0000      0.930 1.000 0.000
#> GSM159914     1  0.0000      0.930 1.000 0.000
#> GSM159915     1  0.0000      0.930 1.000 0.000
#> GSM159916     1  0.0000      0.930 1.000 0.000
#> GSM159917     2  0.0938      0.986 0.012 0.988
#> GSM159867     1  0.0376      0.927 0.996 0.004
#> GSM159868     1  0.9909      0.303 0.556 0.444
#> GSM159869     1  0.9754      0.392 0.592 0.408
#> GSM159870     2  0.0000      0.999 0.000 1.000
#> GSM159871     2  0.0000      0.999 0.000 1.000
#> GSM159872     2  0.0000      0.999 0.000 1.000
#> GSM159873     2  0.0000      0.999 0.000 1.000
#> GSM159874     2  0.0000      0.999 0.000 1.000
#> GSM159875     2  0.0000      0.999 0.000 1.000
#> GSM159876     1  0.0938      0.921 0.988 0.012
#> GSM159877     2  0.0000      0.999 0.000 1.000
#> GSM159878     1  0.0000      0.930 1.000 0.000
#> GSM159879     2  0.0000      0.999 0.000 1.000
#> GSM159880     2  0.0000      0.999 0.000 1.000
#> GSM159881     2  0.0000      0.999 0.000 1.000
#> GSM159882     2  0.0000      0.999 0.000 1.000
#> GSM159883     2  0.0000      0.999 0.000 1.000
#> GSM159884     2  0.0000      0.999 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1  0.0424     0.9531 0.992 0.000 0.008
#> GSM159851     1  0.0000     0.9554 1.000 0.000 0.000
#> GSM159852     1  0.0000     0.9554 1.000 0.000 0.000
#> GSM159853     1  0.0237     0.9551 0.996 0.000 0.004
#> GSM159854     1  0.0237     0.9551 0.996 0.000 0.004
#> GSM159855     1  0.0237     0.9551 0.996 0.000 0.004
#> GSM159856     1  0.0000     0.9554 1.000 0.000 0.000
#> GSM159857     1  0.0000     0.9554 1.000 0.000 0.000
#> GSM159858     1  0.0000     0.9554 1.000 0.000 0.000
#> GSM159859     1  0.0000     0.9554 1.000 0.000 0.000
#> GSM159860     1  0.0000     0.9554 1.000 0.000 0.000
#> GSM159861     1  0.2448     0.9105 0.924 0.000 0.076
#> GSM159862     1  0.3941     0.8346 0.844 0.000 0.156
#> GSM159863     1  0.2537     0.9074 0.920 0.000 0.080
#> GSM159864     1  0.0000     0.9554 1.000 0.000 0.000
#> GSM159865     1  0.0000     0.9554 1.000 0.000 0.000
#> GSM159866     1  0.0000     0.9554 1.000 0.000 0.000
#> GSM159885     3  0.0000     0.8371 0.000 0.000 1.000
#> GSM159886     1  0.0000     0.9554 1.000 0.000 0.000
#> GSM159887     3  0.0237     0.8358 0.004 0.000 0.996
#> GSM159888     2  0.0000     0.9161 0.000 1.000 0.000
#> GSM159889     2  0.0000     0.9161 0.000 1.000 0.000
#> GSM159890     2  0.0000     0.9161 0.000 1.000 0.000
#> GSM159891     2  0.0000     0.9161 0.000 1.000 0.000
#> GSM159892     2  0.0000     0.9161 0.000 1.000 0.000
#> GSM159893     2  0.0000     0.9161 0.000 1.000 0.000
#> GSM159894     3  0.2689     0.8096 0.036 0.032 0.932
#> GSM159895     3  0.0000     0.8371 0.000 0.000 1.000
#> GSM159896     3  0.0000     0.8371 0.000 0.000 1.000
#> GSM159897     2  0.0000     0.9161 0.000 1.000 0.000
#> GSM159898     2  0.0000     0.9161 0.000 1.000 0.000
#> GSM159899     2  0.0000     0.9161 0.000 1.000 0.000
#> GSM159900     3  0.6225     0.2204 0.000 0.432 0.568
#> GSM159901     2  0.6308    -0.0505 0.000 0.508 0.492
#> GSM159902     3  0.6235     0.0528 0.436 0.000 0.564
#> GSM159903     1  0.2537     0.9089 0.920 0.000 0.080
#> GSM159904     1  0.5058     0.7293 0.756 0.000 0.244
#> GSM159905     1  0.0424     0.9542 0.992 0.000 0.008
#> GSM159906     1  0.0000     0.9554 1.000 0.000 0.000
#> GSM159907     1  0.0237     0.9550 0.996 0.000 0.004
#> GSM159908     1  0.4796     0.7648 0.780 0.000 0.220
#> GSM159909     1  0.5650     0.6198 0.688 0.000 0.312
#> GSM159910     3  0.4399     0.6973 0.000 0.188 0.812
#> GSM159911     3  0.0000     0.8371 0.000 0.000 1.000
#> GSM159912     1  0.0424     0.9542 0.992 0.000 0.008
#> GSM159913     1  0.1964     0.9260 0.944 0.000 0.056
#> GSM159914     1  0.0424     0.9542 0.992 0.000 0.008
#> GSM159915     1  0.0424     0.9542 0.992 0.000 0.008
#> GSM159916     1  0.0424     0.9542 0.992 0.000 0.008
#> GSM159917     3  0.0237     0.8359 0.000 0.004 0.996
#> GSM159867     3  0.3038     0.7640 0.104 0.000 0.896
#> GSM159868     3  0.0000     0.8371 0.000 0.000 1.000
#> GSM159869     3  0.0000     0.8371 0.000 0.000 1.000
#> GSM159870     2  0.0000     0.9161 0.000 1.000 0.000
#> GSM159871     2  0.0000     0.9161 0.000 1.000 0.000
#> GSM159872     3  0.5760     0.4876 0.000 0.328 0.672
#> GSM159873     2  0.5988     0.3451 0.000 0.632 0.368
#> GSM159874     3  0.5706     0.5033 0.000 0.320 0.680
#> GSM159875     2  0.6308    -0.0512 0.000 0.508 0.492
#> GSM159876     1  0.2356     0.8963 0.928 0.072 0.000
#> GSM159877     3  0.3802     0.7872 0.032 0.080 0.888
#> GSM159878     1  0.0237     0.9539 0.996 0.004 0.000
#> GSM159879     2  0.0000     0.9161 0.000 1.000 0.000
#> GSM159880     2  0.0000     0.9161 0.000 1.000 0.000
#> GSM159881     2  0.0000     0.9161 0.000 1.000 0.000
#> GSM159882     2  0.0000     0.9161 0.000 1.000 0.000
#> GSM159883     2  0.0000     0.9161 0.000 1.000 0.000
#> GSM159884     2  0.0000     0.9161 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.3583    0.54311 0.816 0.000 0.004 0.180
#> GSM159851     1  0.2973    0.58590 0.856 0.000 0.000 0.144
#> GSM159852     1  0.2408    0.59997 0.896 0.000 0.000 0.104
#> GSM159853     1  0.2081    0.61485 0.916 0.000 0.000 0.084
#> GSM159854     1  0.2530    0.60145 0.888 0.000 0.000 0.112
#> GSM159855     1  0.2589    0.60716 0.884 0.000 0.000 0.116
#> GSM159856     1  0.1474    0.61771 0.948 0.000 0.000 0.052
#> GSM159857     1  0.1389    0.61599 0.952 0.000 0.000 0.048
#> GSM159858     1  0.1474    0.61707 0.948 0.000 0.000 0.052
#> GSM159859     1  0.1557    0.61632 0.944 0.000 0.000 0.056
#> GSM159860     1  0.1474    0.61336 0.948 0.000 0.000 0.052
#> GSM159861     1  0.5237    0.38060 0.628 0.000 0.016 0.356
#> GSM159862     1  0.5984    0.30292 0.580 0.000 0.048 0.372
#> GSM159863     1  0.5460    0.38017 0.632 0.000 0.028 0.340
#> GSM159864     1  0.4391    0.48399 0.740 0.000 0.008 0.252
#> GSM159865     1  0.4391    0.48399 0.740 0.000 0.008 0.252
#> GSM159866     1  0.4391    0.48399 0.740 0.000 0.008 0.252
#> GSM159885     3  0.4103    0.64195 0.000 0.000 0.744 0.256
#> GSM159886     1  0.3356    0.50542 0.824 0.000 0.000 0.176
#> GSM159887     3  0.5345    0.48652 0.004 0.008 0.584 0.404
#> GSM159888     2  0.0188    0.92192 0.000 0.996 0.004 0.000
#> GSM159889     2  0.0000    0.92198 0.000 1.000 0.000 0.000
#> GSM159890     2  0.0188    0.92192 0.000 0.996 0.004 0.000
#> GSM159891     2  0.0707    0.91513 0.000 0.980 0.020 0.000
#> GSM159892     2  0.1302    0.89840 0.000 0.956 0.044 0.000
#> GSM159893     2  0.0707    0.91513 0.000 0.980 0.020 0.000
#> GSM159894     3  0.7947    0.43179 0.084 0.068 0.508 0.340
#> GSM159895     3  0.4422    0.64277 0.008 0.000 0.736 0.256
#> GSM159896     3  0.3873    0.65494 0.000 0.000 0.772 0.228
#> GSM159897     2  0.0336    0.92087 0.000 0.992 0.008 0.000
#> GSM159898     2  0.0188    0.92192 0.000 0.996 0.004 0.000
#> GSM159899     2  0.0336    0.92087 0.000 0.992 0.008 0.000
#> GSM159900     3  0.4543    0.47446 0.000 0.324 0.676 0.000
#> GSM159901     3  0.4948    0.22941 0.000 0.440 0.560 0.000
#> GSM159902     4  0.6373    0.48471 0.136 0.000 0.216 0.648
#> GSM159903     4  0.5620    0.52057 0.416 0.000 0.024 0.560
#> GSM159904     4  0.6222    0.65015 0.304 0.000 0.080 0.616
#> GSM159905     1  0.4877   -0.02342 0.592 0.000 0.000 0.408
#> GSM159906     1  0.4746    0.09202 0.632 0.000 0.000 0.368
#> GSM159907     1  0.4746    0.09422 0.632 0.000 0.000 0.368
#> GSM159908     4  0.5745    0.56049 0.288 0.000 0.056 0.656
#> GSM159909     4  0.5763    0.62097 0.204 0.000 0.096 0.700
#> GSM159910     3  0.3760    0.64622 0.000 0.136 0.836 0.028
#> GSM159911     3  0.4936    0.52442 0.004 0.000 0.624 0.372
#> GSM159912     1  0.4925   -0.11814 0.572 0.000 0.000 0.428
#> GSM159913     4  0.5295    0.31440 0.488 0.000 0.008 0.504
#> GSM159914     1  0.4855    0.00261 0.600 0.000 0.000 0.400
#> GSM159915     1  0.4866   -0.01168 0.596 0.000 0.000 0.404
#> GSM159916     1  0.4866   -0.01168 0.596 0.000 0.000 0.404
#> GSM159917     3  0.0657    0.65827 0.000 0.004 0.984 0.012
#> GSM159867     3  0.7421    0.31068 0.172 0.000 0.456 0.372
#> GSM159868     3  0.4008    0.65067 0.000 0.000 0.756 0.244
#> GSM159869     3  0.4122    0.65194 0.004 0.000 0.760 0.236
#> GSM159870     2  0.2271    0.91838 0.000 0.916 0.008 0.076
#> GSM159871     2  0.2803    0.90963 0.008 0.900 0.012 0.080
#> GSM159872     3  0.4423    0.61116 0.000 0.176 0.788 0.036
#> GSM159873     2  0.5894    0.14956 0.000 0.536 0.428 0.036
#> GSM159874     3  0.4137    0.59199 0.000 0.208 0.780 0.012
#> GSM159875     3  0.5536    0.29426 0.000 0.384 0.592 0.024
#> GSM159876     1  0.4624    0.48639 0.784 0.052 0.000 0.164
#> GSM159877     3  0.3770    0.62303 0.040 0.004 0.852 0.104
#> GSM159878     1  0.3182    0.55518 0.876 0.028 0.000 0.096
#> GSM159879     2  0.2271    0.91838 0.000 0.916 0.008 0.076
#> GSM159880     2  0.2271    0.91838 0.000 0.916 0.008 0.076
#> GSM159881     2  0.2271    0.91838 0.000 0.916 0.008 0.076
#> GSM159882     2  0.2198    0.91901 0.000 0.920 0.008 0.072
#> GSM159883     2  0.2271    0.91838 0.000 0.916 0.008 0.076
#> GSM159884     2  0.2271    0.91838 0.000 0.916 0.008 0.076

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     1  0.6215    -0.1567 0.480 0.000 0.004 0.124 0.392
#> GSM159851     1  0.6139    -0.2278 0.468 0.000 0.008 0.100 0.424
#> GSM159852     1  0.5372    -0.2879 0.504 0.000 0.004 0.044 0.448
#> GSM159853     5  0.5878     0.2973 0.444 0.000 0.004 0.084 0.468
#> GSM159854     5  0.5791     0.2787 0.448 0.000 0.004 0.076 0.472
#> GSM159855     5  0.6007     0.3220 0.412 0.000 0.008 0.088 0.492
#> GSM159856     5  0.4977     0.3136 0.472 0.000 0.000 0.028 0.500
#> GSM159857     5  0.5158     0.4045 0.392 0.000 0.004 0.036 0.568
#> GSM159858     1  0.4659    -0.3532 0.500 0.000 0.000 0.012 0.488
#> GSM159859     5  0.4591     0.3198 0.476 0.000 0.004 0.004 0.516
#> GSM159860     5  0.4747     0.2921 0.488 0.000 0.000 0.016 0.496
#> GSM159861     5  0.5754     0.4393 0.080 0.000 0.044 0.200 0.676
#> GSM159862     5  0.6130     0.3889 0.072 0.000 0.068 0.216 0.644
#> GSM159863     5  0.5827     0.4535 0.104 0.000 0.044 0.172 0.680
#> GSM159864     5  0.5028     0.5028 0.104 0.000 0.044 0.096 0.756
#> GSM159865     5  0.5128     0.5039 0.108 0.000 0.044 0.100 0.748
#> GSM159866     5  0.5125     0.5041 0.112 0.000 0.044 0.096 0.748
#> GSM159885     4  0.4513     0.7683 0.024 0.000 0.284 0.688 0.004
#> GSM159886     1  0.4794     0.0119 0.624 0.000 0.000 0.032 0.344
#> GSM159887     4  0.5697     0.7462 0.080 0.020 0.180 0.700 0.020
#> GSM159888     2  0.0486     0.7887 0.000 0.988 0.004 0.004 0.004
#> GSM159889     2  0.0451     0.7898 0.000 0.988 0.000 0.008 0.004
#> GSM159890     2  0.0324     0.7877 0.000 0.992 0.004 0.004 0.000
#> GSM159891     2  0.1830     0.7443 0.000 0.924 0.068 0.000 0.008
#> GSM159892     2  0.2462     0.6909 0.000 0.880 0.112 0.000 0.008
#> GSM159893     2  0.2193     0.7177 0.000 0.900 0.092 0.000 0.008
#> GSM159894     4  0.6144     0.6569 0.040 0.056 0.088 0.708 0.108
#> GSM159895     4  0.4926     0.7790 0.028 0.008 0.256 0.696 0.012
#> GSM159896     4  0.4478     0.7424 0.004 0.004 0.300 0.680 0.012
#> GSM159897     2  0.0932     0.7808 0.000 0.972 0.020 0.004 0.004
#> GSM159898     2  0.0771     0.7820 0.000 0.976 0.020 0.004 0.000
#> GSM159899     2  0.1026     0.7782 0.000 0.968 0.024 0.004 0.004
#> GSM159900     3  0.4265     0.6750 0.000 0.268 0.712 0.012 0.008
#> GSM159901     3  0.4478     0.6254 0.000 0.360 0.628 0.004 0.008
#> GSM159902     1  0.5838     0.0249 0.496 0.000 0.032 0.436 0.036
#> GSM159903     1  0.3689     0.5539 0.816 0.000 0.008 0.144 0.032
#> GSM159904     1  0.4902     0.4510 0.684 0.000 0.016 0.268 0.032
#> GSM159905     1  0.0854     0.5861 0.976 0.000 0.004 0.012 0.008
#> GSM159906     1  0.2470     0.5166 0.884 0.000 0.000 0.012 0.104
#> GSM159907     1  0.2304     0.5090 0.892 0.000 0.000 0.008 0.100
#> GSM159908     1  0.6155     0.3729 0.612 0.000 0.016 0.168 0.204
#> GSM159909     1  0.6511     0.2942 0.552 0.000 0.020 0.276 0.152
#> GSM159910     3  0.4414     0.6644 0.004 0.128 0.784 0.076 0.008
#> GSM159911     4  0.6485     0.6704 0.160 0.000 0.204 0.600 0.036
#> GSM159912     1  0.1697     0.5862 0.932 0.000 0.000 0.060 0.008
#> GSM159913     1  0.3115     0.5684 0.852 0.000 0.000 0.112 0.036
#> GSM159914     1  0.0566     0.5805 0.984 0.000 0.000 0.004 0.012
#> GSM159915     1  0.1018     0.5841 0.968 0.000 0.000 0.016 0.016
#> GSM159916     1  0.0671     0.5858 0.980 0.000 0.000 0.016 0.004
#> GSM159917     3  0.4051     0.4481 0.008 0.008 0.772 0.200 0.012
#> GSM159867     4  0.5796     0.6518 0.052 0.000 0.112 0.692 0.144
#> GSM159868     4  0.4907     0.7600 0.000 0.000 0.280 0.664 0.056
#> GSM159869     4  0.4465     0.7517 0.000 0.000 0.304 0.672 0.024
#> GSM159870     2  0.5942     0.7624 0.000 0.684 0.152 0.080 0.084
#> GSM159871     2  0.5887     0.7654 0.000 0.688 0.152 0.076 0.084
#> GSM159872     3  0.3367     0.6778 0.000 0.080 0.856 0.052 0.012
#> GSM159873     3  0.5662     0.3399 0.000 0.348 0.584 0.036 0.032
#> GSM159874     3  0.3527     0.6952 0.000 0.116 0.828 0.056 0.000
#> GSM159875     3  0.4443     0.6535 0.000 0.240 0.724 0.028 0.008
#> GSM159876     5  0.7300     0.3875 0.184 0.056 0.072 0.084 0.604
#> GSM159877     3  0.3584     0.5370 0.000 0.004 0.832 0.108 0.056
#> GSM159878     5  0.6911     0.3959 0.260 0.028 0.048 0.080 0.584
#> GSM159879     2  0.5513     0.7814 0.000 0.716 0.148 0.064 0.072
#> GSM159880     2  0.5608     0.7777 0.000 0.708 0.152 0.064 0.076
#> GSM159881     2  0.5686     0.7783 0.000 0.704 0.148 0.072 0.076
#> GSM159882     2  0.5455     0.7825 0.000 0.720 0.148 0.064 0.068
#> GSM159883     2  0.5513     0.7813 0.000 0.716 0.148 0.064 0.072
#> GSM159884     2  0.5455     0.7825 0.000 0.720 0.148 0.064 0.068

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM159850     1  0.4982      0.650 0.724 0.000 0.004 0.084 0.056 0.132
#> GSM159851     1  0.5076      0.620 0.708 0.000 0.012 0.060 0.044 0.176
#> GSM159852     1  0.3980      0.720 0.788 0.000 0.004 0.020 0.052 0.136
#> GSM159853     1  0.3207      0.745 0.860 0.000 0.008 0.028 0.060 0.044
#> GSM159854     1  0.3458      0.738 0.840 0.000 0.004 0.028 0.056 0.072
#> GSM159855     1  0.4247      0.722 0.792 0.004 0.004 0.040 0.088 0.072
#> GSM159856     1  0.2610      0.750 0.884 0.004 0.000 0.004 0.048 0.060
#> GSM159857     1  0.2772      0.712 0.868 0.000 0.004 0.004 0.092 0.032
#> GSM159858     1  0.3204      0.740 0.836 0.000 0.004 0.000 0.068 0.092
#> GSM159859     1  0.3847      0.697 0.780 0.000 0.004 0.000 0.080 0.136
#> GSM159860     1  0.3309      0.720 0.824 0.000 0.000 0.004 0.056 0.116
#> GSM159861     5  0.4923      0.839 0.200 0.004 0.000 0.060 0.700 0.036
#> GSM159862     5  0.4775      0.819 0.160 0.000 0.000 0.068 0.724 0.048
#> GSM159863     5  0.4655      0.849 0.204 0.000 0.004 0.040 0.716 0.036
#> GSM159864     5  0.3690      0.860 0.308 0.000 0.000 0.000 0.684 0.008
#> GSM159865     5  0.3802      0.858 0.312 0.000 0.000 0.000 0.676 0.012
#> GSM159866     5  0.3802      0.855 0.312 0.000 0.000 0.000 0.676 0.012
#> GSM159885     4  0.3371      0.806 0.004 0.000 0.064 0.848 0.044 0.040
#> GSM159886     1  0.3986      0.590 0.732 0.000 0.000 0.008 0.032 0.228
#> GSM159887     4  0.4756      0.783 0.020 0.004 0.064 0.768 0.052 0.092
#> GSM159888     2  0.4389      0.312 0.000 0.536 0.444 0.000 0.012 0.008
#> GSM159889     2  0.4389      0.312 0.000 0.536 0.444 0.000 0.012 0.008
#> GSM159890     2  0.4403      0.287 0.000 0.520 0.460 0.000 0.012 0.008
#> GSM159891     3  0.4051     -0.219 0.000 0.432 0.560 0.000 0.008 0.000
#> GSM159892     3  0.3782     -0.184 0.000 0.412 0.588 0.000 0.000 0.000
#> GSM159893     3  0.4172     -0.212 0.000 0.424 0.564 0.000 0.008 0.004
#> GSM159894     4  0.5926      0.737 0.068 0.032 0.048 0.704 0.048 0.100
#> GSM159895     4  0.4370      0.803 0.016 0.008 0.084 0.796 0.060 0.036
#> GSM159896     4  0.3440      0.798 0.004 0.000 0.072 0.840 0.060 0.024
#> GSM159897     3  0.4408     -0.292 0.000 0.468 0.512 0.000 0.012 0.008
#> GSM159898     2  0.4413      0.227 0.000 0.492 0.488 0.000 0.012 0.008
#> GSM159899     3  0.4408     -0.288 0.000 0.468 0.512 0.000 0.012 0.008
#> GSM159900     3  0.5605      0.408 0.000 0.040 0.704 0.092 0.092 0.072
#> GSM159901     3  0.4984      0.422 0.000 0.064 0.756 0.056 0.068 0.056
#> GSM159902     6  0.6852      0.198 0.076 0.000 0.036 0.348 0.072 0.468
#> GSM159903     6  0.5548      0.674 0.212 0.000 0.008 0.080 0.048 0.652
#> GSM159904     6  0.6200      0.609 0.160 0.000 0.012 0.160 0.060 0.608
#> GSM159905     6  0.3738      0.690 0.280 0.000 0.000 0.000 0.016 0.704
#> GSM159906     6  0.4427      0.490 0.428 0.000 0.000 0.004 0.020 0.548
#> GSM159907     6  0.4366      0.463 0.440 0.000 0.000 0.004 0.016 0.540
#> GSM159908     6  0.7044      0.449 0.108 0.000 0.020 0.108 0.272 0.492
#> GSM159909     6  0.7200      0.379 0.100 0.000 0.016 0.184 0.216 0.484
#> GSM159910     3  0.7063      0.314 0.000 0.024 0.532 0.112 0.180 0.152
#> GSM159911     4  0.5935      0.613 0.008 0.000 0.076 0.612 0.072 0.232
#> GSM159912     6  0.3881      0.698 0.252 0.000 0.000 0.024 0.004 0.720
#> GSM159913     6  0.5168      0.688 0.184 0.000 0.012 0.072 0.036 0.696
#> GSM159914     6  0.3528      0.681 0.296 0.000 0.000 0.000 0.004 0.700
#> GSM159915     6  0.3508      0.685 0.292 0.000 0.000 0.000 0.004 0.704
#> GSM159916     6  0.3734      0.694 0.264 0.000 0.000 0.000 0.020 0.716
#> GSM159917     3  0.7247      0.185 0.000 0.004 0.464 0.180 0.176 0.176
#> GSM159867     4  0.6304      0.667 0.100 0.028 0.028 0.652 0.148 0.044
#> GSM159868     4  0.4241      0.794 0.004 0.004 0.068 0.792 0.092 0.040
#> GSM159869     4  0.4090      0.804 0.016 0.004 0.072 0.812 0.064 0.032
#> GSM159870     2  0.0841      0.686 0.004 0.976 0.004 0.004 0.004 0.008
#> GSM159871     2  0.2246      0.644 0.020 0.916 0.024 0.004 0.032 0.004
#> GSM159872     3  0.7672      0.318 0.000 0.068 0.484 0.104 0.180 0.164
#> GSM159873     2  0.7396     -0.212 0.000 0.400 0.368 0.084 0.088 0.060
#> GSM159874     3  0.7617      0.326 0.000 0.084 0.508 0.152 0.128 0.128
#> GSM159875     3  0.7485      0.372 0.000 0.204 0.508 0.112 0.084 0.092
#> GSM159876     1  0.5791      0.354 0.596 0.260 0.004 0.004 0.112 0.024
#> GSM159877     3  0.8117      0.161 0.024 0.020 0.392 0.136 0.264 0.164
#> GSM159878     1  0.5505      0.478 0.672 0.196 0.008 0.012 0.084 0.028
#> GSM159879     2  0.0363      0.697 0.000 0.988 0.012 0.000 0.000 0.000
#> GSM159880     2  0.0260      0.696 0.000 0.992 0.008 0.000 0.000 0.000
#> GSM159881     2  0.0976      0.683 0.000 0.968 0.016 0.008 0.008 0.000
#> GSM159882     2  0.0363      0.696 0.000 0.988 0.012 0.000 0.000 0.000
#> GSM159883     2  0.0260      0.696 0.000 0.992 0.008 0.000 0.000 0.000
#> GSM159884     2  0.0632      0.695 0.000 0.976 0.024 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n agent(p)  dose(p)  time(p) k
#> SD:skmeans 63 7.49e-08 2.64e-04 5.58e-04 2
#> SD:skmeans 62 6.76e-08 1.84e-04 2.85e-04 3
#> SD:skmeans 45 3.09e-10 3.25e-07 8.87e-04 4
#> SD:skmeans 45 1.85e-12 3.02e-07 2.19e-07 5
#> SD:skmeans 43 1.92e-14 1.26e-06 2.82e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.745           0.895       0.951         0.4853 0.514   0.514
#> 3 3 0.727           0.757       0.855         0.1978 0.898   0.805
#> 4 4 0.666           0.510       0.725         0.1776 0.813   0.597
#> 5 5 0.767           0.868       0.911         0.1193 0.791   0.445
#> 6 6 0.916           0.917       0.957         0.0486 0.971   0.874

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1  0.0000      0.944 1.000 0.000
#> GSM159851     1  0.0000      0.944 1.000 0.000
#> GSM159852     1  0.0000      0.944 1.000 0.000
#> GSM159853     1  0.0000      0.944 1.000 0.000
#> GSM159854     1  0.0000      0.944 1.000 0.000
#> GSM159855     1  0.0000      0.944 1.000 0.000
#> GSM159856     1  0.0000      0.944 1.000 0.000
#> GSM159857     1  0.0000      0.944 1.000 0.000
#> GSM159858     1  0.0000      0.944 1.000 0.000
#> GSM159859     1  0.0000      0.944 1.000 0.000
#> GSM159860     1  0.0000      0.944 1.000 0.000
#> GSM159861     1  0.0000      0.944 1.000 0.000
#> GSM159862     1  0.0000      0.944 1.000 0.000
#> GSM159863     1  0.0000      0.944 1.000 0.000
#> GSM159864     1  0.0000      0.944 1.000 0.000
#> GSM159865     1  0.0000      0.944 1.000 0.000
#> GSM159866     1  0.0000      0.944 1.000 0.000
#> GSM159885     1  0.4690      0.867 0.900 0.100
#> GSM159886     1  0.0000      0.944 1.000 0.000
#> GSM159887     1  0.7219      0.769 0.800 0.200
#> GSM159888     2  0.0000      0.950 0.000 1.000
#> GSM159889     2  0.0000      0.950 0.000 1.000
#> GSM159890     2  0.0000      0.950 0.000 1.000
#> GSM159891     2  0.0000      0.950 0.000 1.000
#> GSM159892     2  0.0000      0.950 0.000 1.000
#> GSM159893     2  0.0000      0.950 0.000 1.000
#> GSM159894     1  0.7602      0.745 0.780 0.220
#> GSM159895     1  0.7883      0.726 0.764 0.236
#> GSM159896     1  0.7674      0.741 0.776 0.224
#> GSM159897     2  0.0000      0.950 0.000 1.000
#> GSM159898     2  0.0000      0.950 0.000 1.000
#> GSM159899     2  0.0000      0.950 0.000 1.000
#> GSM159900     2  0.0000      0.950 0.000 1.000
#> GSM159901     2  0.0000      0.950 0.000 1.000
#> GSM159902     1  0.0000      0.944 1.000 0.000
#> GSM159903     1  0.0000      0.944 1.000 0.000
#> GSM159904     1  0.0000      0.944 1.000 0.000
#> GSM159905     1  0.0000      0.944 1.000 0.000
#> GSM159906     1  0.0000      0.944 1.000 0.000
#> GSM159907     1  0.0000      0.944 1.000 0.000
#> GSM159908     1  0.0376      0.941 0.996 0.004
#> GSM159909     1  0.0000      0.944 1.000 0.000
#> GSM159910     2  0.9000      0.514 0.316 0.684
#> GSM159911     1  0.0376      0.941 0.996 0.004
#> GSM159912     1  0.0000      0.944 1.000 0.000
#> GSM159913     1  0.0000      0.944 1.000 0.000
#> GSM159914     1  0.0000      0.944 1.000 0.000
#> GSM159915     1  0.0000      0.944 1.000 0.000
#> GSM159916     1  0.0000      0.944 1.000 0.000
#> GSM159917     1  0.7883      0.731 0.764 0.236
#> GSM159867     1  0.8813      0.622 0.700 0.300
#> GSM159868     1  0.7950      0.720 0.760 0.240
#> GSM159869     1  0.9087      0.575 0.676 0.324
#> GSM159870     2  0.4022      0.890 0.080 0.920
#> GSM159871     2  0.4562      0.875 0.096 0.904
#> GSM159872     2  0.0672      0.946 0.008 0.992
#> GSM159873     2  0.0000      0.950 0.000 1.000
#> GSM159874     2  0.0376      0.948 0.004 0.996
#> GSM159875     2  0.0000      0.950 0.000 1.000
#> GSM159876     2  0.5629      0.840 0.132 0.868
#> GSM159877     2  0.9850      0.301 0.428 0.572
#> GSM159878     2  0.6247      0.816 0.156 0.844
#> GSM159879     2  0.0000      0.950 0.000 1.000
#> GSM159880     2  0.0672      0.945 0.008 0.992
#> GSM159881     2  0.0000      0.950 0.000 1.000
#> GSM159882     2  0.0000      0.950 0.000 1.000
#> GSM159883     2  0.0000      0.950 0.000 1.000
#> GSM159884     2  0.0000      0.950 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159851     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159852     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159853     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159854     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159855     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159856     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159857     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159858     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159859     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159860     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159861     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159862     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159863     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159864     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159865     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159866     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159885     1  0.6099     0.6367 0.740 0.032 0.228
#> GSM159886     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159887     1  0.7710     0.5153 0.660 0.100 0.240
#> GSM159888     2  0.0000     0.8856 0.000 1.000 0.000
#> GSM159889     2  0.0000     0.8856 0.000 1.000 0.000
#> GSM159890     2  0.0000     0.8856 0.000 1.000 0.000
#> GSM159891     2  0.0000     0.8856 0.000 1.000 0.000
#> GSM159892     2  0.0000     0.8856 0.000 1.000 0.000
#> GSM159893     2  0.0000     0.8856 0.000 1.000 0.000
#> GSM159894     1  0.8033     0.4788 0.640 0.120 0.240
#> GSM159895     1  0.8176     0.4754 0.636 0.140 0.224
#> GSM159896     1  0.8101     0.4841 0.640 0.132 0.228
#> GSM159897     2  0.0000     0.8856 0.000 1.000 0.000
#> GSM159898     2  0.0424     0.8740 0.008 0.992 0.000
#> GSM159899     2  0.0000     0.8856 0.000 1.000 0.000
#> GSM159900     2  0.5968     0.5303 0.000 0.636 0.364
#> GSM159901     2  0.5968     0.5303 0.000 0.636 0.364
#> GSM159902     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159903     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159904     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159905     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159906     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159907     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159908     1  0.0237     0.9064 0.996 0.004 0.000
#> GSM159909     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159910     3  0.5042     0.3751 0.060 0.104 0.836
#> GSM159911     1  0.0848     0.8976 0.984 0.008 0.008
#> GSM159912     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159913     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159914     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159915     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159916     1  0.0000     0.9097 1.000 0.000 0.000
#> GSM159917     3  0.7715    -0.1045 0.428 0.048 0.524
#> GSM159867     1  0.9319     0.0586 0.484 0.176 0.340
#> GSM159868     1  0.8825     0.2885 0.556 0.148 0.296
#> GSM159869     1  0.9133     0.1941 0.524 0.172 0.304
#> GSM159870     3  0.6189     0.7279 0.004 0.364 0.632
#> GSM159871     3  0.6587     0.7250 0.016 0.352 0.632
#> GSM159872     3  0.0000     0.5176 0.000 0.000 1.000
#> GSM159873     3  0.5810     0.7259 0.000 0.336 0.664
#> GSM159874     3  0.0000     0.5176 0.000 0.000 1.000
#> GSM159875     3  0.5810     0.7259 0.000 0.336 0.664
#> GSM159876     3  0.7442     0.6987 0.056 0.316 0.628
#> GSM159877     3  0.4002     0.4115 0.160 0.000 0.840
#> GSM159878     3  0.9357     0.5134 0.196 0.304 0.500
#> GSM159879     3  0.5988     0.7275 0.000 0.368 0.632
#> GSM159880     3  0.5988     0.7275 0.000 0.368 0.632
#> GSM159881     3  0.5988     0.7275 0.000 0.368 0.632
#> GSM159882     3  0.5988     0.7275 0.000 0.368 0.632
#> GSM159883     3  0.5988     0.7275 0.000 0.368 0.632
#> GSM159884     3  0.5988     0.7275 0.000 0.368 0.632

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.4948     0.6299 0.560 0.000 0.000 0.440
#> GSM159851     1  0.4134     0.7009 0.740 0.000 0.000 0.260
#> GSM159852     1  0.2149     0.7387 0.912 0.000 0.000 0.088
#> GSM159853     1  0.0000     0.7460 1.000 0.000 0.000 0.000
#> GSM159854     1  0.0188     0.7463 0.996 0.000 0.000 0.004
#> GSM159855     1  0.0000     0.7460 1.000 0.000 0.000 0.000
#> GSM159856     1  0.0000     0.7460 1.000 0.000 0.000 0.000
#> GSM159857     1  0.0000     0.7460 1.000 0.000 0.000 0.000
#> GSM159858     1  0.0000     0.7460 1.000 0.000 0.000 0.000
#> GSM159859     1  0.0000     0.7460 1.000 0.000 0.000 0.000
#> GSM159860     1  0.0000     0.7460 1.000 0.000 0.000 0.000
#> GSM159861     1  0.0592     0.7369 0.984 0.000 0.016 0.000
#> GSM159862     1  0.5262     0.6929 0.712 0.004 0.036 0.248
#> GSM159863     1  0.1398     0.7216 0.956 0.000 0.040 0.004
#> GSM159864     1  0.1211     0.7191 0.960 0.000 0.040 0.000
#> GSM159865     1  0.1211     0.7191 0.960 0.000 0.040 0.000
#> GSM159866     1  0.1211     0.7191 0.960 0.000 0.040 0.000
#> GSM159885     4  0.7328    -0.4062 0.392 0.156 0.000 0.452
#> GSM159886     1  0.1211     0.7451 0.960 0.000 0.000 0.040
#> GSM159887     4  0.7617    -0.2923 0.332 0.216 0.000 0.452
#> GSM159888     4  0.6007     0.3786 0.000 0.044 0.408 0.548
#> GSM159889     4  0.6007     0.3786 0.000 0.044 0.408 0.548
#> GSM159890     4  0.6139     0.3710 0.000 0.052 0.404 0.544
#> GSM159891     4  0.6007     0.3786 0.000 0.044 0.408 0.548
#> GSM159892     4  0.6007     0.3786 0.000 0.044 0.408 0.548
#> GSM159893     4  0.6007     0.3786 0.000 0.044 0.408 0.548
#> GSM159894     4  0.7609    -0.2574 0.312 0.224 0.000 0.464
#> GSM159895     4  0.7676    -0.2512 0.308 0.240 0.000 0.452
#> GSM159896     4  0.7330    -0.2625 0.312 0.180 0.000 0.508
#> GSM159897     4  0.6007     0.3786 0.000 0.044 0.408 0.548
#> GSM159898     4  0.6007     0.3786 0.000 0.044 0.408 0.548
#> GSM159899     4  0.6007     0.3786 0.000 0.044 0.408 0.548
#> GSM159900     3  0.4866    -0.3102 0.000 0.000 0.596 0.404
#> GSM159901     4  0.4967     0.3268 0.000 0.000 0.452 0.548
#> GSM159902     1  0.4967     0.6222 0.548 0.000 0.000 0.452
#> GSM159903     1  0.4967     0.6222 0.548 0.000 0.000 0.452
#> GSM159904     1  0.4967     0.6222 0.548 0.000 0.000 0.452
#> GSM159905     1  0.4643     0.6703 0.656 0.000 0.000 0.344
#> GSM159906     1  0.0000     0.7460 1.000 0.000 0.000 0.000
#> GSM159907     1  0.0000     0.7460 1.000 0.000 0.000 0.000
#> GSM159908     1  0.5099     0.6549 0.612 0.008 0.000 0.380
#> GSM159909     1  0.4961     0.6251 0.552 0.000 0.000 0.448
#> GSM159910     3  0.5730     0.4261 0.000 0.344 0.616 0.040
#> GSM159911     1  0.5658     0.5994 0.528 0.016 0.004 0.452
#> GSM159912     1  0.4967     0.6222 0.548 0.000 0.000 0.452
#> GSM159913     1  0.4967     0.6222 0.548 0.000 0.000 0.452
#> GSM159914     1  0.4830     0.6545 0.608 0.000 0.000 0.392
#> GSM159915     1  0.4961     0.6249 0.552 0.000 0.000 0.448
#> GSM159916     1  0.4967     0.6222 0.548 0.000 0.000 0.452
#> GSM159917     3  0.5933     0.2431 0.040 0.000 0.552 0.408
#> GSM159867     2  0.7631     0.0884 0.224 0.456 0.000 0.320
#> GSM159868     4  0.7874    -0.1804 0.280 0.348 0.000 0.372
#> GSM159869     2  0.7761    -0.0694 0.236 0.388 0.000 0.376
#> GSM159870     2  0.0000     0.7867 0.000 1.000 0.000 0.000
#> GSM159871     2  0.0000     0.7867 0.000 1.000 0.000 0.000
#> GSM159872     3  0.4961     0.3471 0.000 0.448 0.552 0.000
#> GSM159873     2  0.0336     0.7802 0.000 0.992 0.008 0.000
#> GSM159874     3  0.4955     0.3527 0.000 0.444 0.556 0.000
#> GSM159875     2  0.0336     0.7802 0.000 0.992 0.008 0.000
#> GSM159876     2  0.1211     0.7403 0.040 0.960 0.000 0.000
#> GSM159877     3  0.6994     0.3794 0.288 0.152 0.560 0.000
#> GSM159878     2  0.4040     0.3905 0.248 0.752 0.000 0.000
#> GSM159879     2  0.0000     0.7867 0.000 1.000 0.000 0.000
#> GSM159880     2  0.0000     0.7867 0.000 1.000 0.000 0.000
#> GSM159881     2  0.0000     0.7867 0.000 1.000 0.000 0.000
#> GSM159882     2  0.0000     0.7867 0.000 1.000 0.000 0.000
#> GSM159883     2  0.0000     0.7867 0.000 1.000 0.000 0.000
#> GSM159884     2  0.0000     0.7867 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     4  0.0703      0.910 0.024 0.000 0.000 0.976 0.000
#> GSM159851     4  0.3857      0.419 0.312 0.000 0.000 0.688 0.000
#> GSM159852     1  0.3534      0.772 0.744 0.000 0.000 0.256 0.000
#> GSM159853     1  0.2605      0.849 0.852 0.000 0.000 0.148 0.000
#> GSM159854     1  0.2732      0.845 0.840 0.000 0.000 0.160 0.000
#> GSM159855     1  0.2648      0.847 0.848 0.000 0.000 0.152 0.000
#> GSM159856     1  0.2280      0.854 0.880 0.000 0.000 0.120 0.000
#> GSM159857     1  0.2280      0.854 0.880 0.000 0.000 0.120 0.000
#> GSM159858     1  0.2280      0.854 0.880 0.000 0.000 0.120 0.000
#> GSM159859     1  0.2329      0.854 0.876 0.000 0.000 0.124 0.000
#> GSM159860     1  0.2280      0.854 0.880 0.000 0.000 0.120 0.000
#> GSM159861     1  0.3146      0.779 0.856 0.000 0.092 0.052 0.000
#> GSM159862     1  0.5917      0.505 0.596 0.000 0.180 0.224 0.000
#> GSM159863     1  0.3053      0.724 0.828 0.000 0.164 0.008 0.000
#> GSM159864     1  0.3003      0.711 0.812 0.000 0.188 0.000 0.000
#> GSM159865     1  0.3003      0.711 0.812 0.000 0.188 0.000 0.000
#> GSM159866     1  0.3003      0.711 0.812 0.000 0.188 0.000 0.000
#> GSM159885     4  0.0000      0.918 0.000 0.000 0.000 1.000 0.000
#> GSM159886     1  0.3857      0.676 0.688 0.000 0.000 0.312 0.000
#> GSM159887     4  0.0162      0.917 0.000 0.000 0.000 0.996 0.004
#> GSM159888     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> GSM159889     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> GSM159890     2  0.0290      0.974 0.000 0.992 0.000 0.000 0.008
#> GSM159891     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> GSM159892     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> GSM159893     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> GSM159894     4  0.0162      0.917 0.000 0.000 0.000 0.996 0.004
#> GSM159895     4  0.1121      0.899 0.000 0.000 0.000 0.956 0.044
#> GSM159896     4  0.0162      0.917 0.004 0.000 0.000 0.996 0.000
#> GSM159897     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> GSM159898     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> GSM159899     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> GSM159900     2  0.2813      0.795 0.000 0.832 0.168 0.000 0.000
#> GSM159901     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> GSM159902     4  0.0000      0.918 0.000 0.000 0.000 1.000 0.000
#> GSM159903     4  0.0404      0.916 0.012 0.000 0.000 0.988 0.000
#> GSM159904     4  0.0000      0.918 0.000 0.000 0.000 1.000 0.000
#> GSM159905     4  0.2605      0.825 0.148 0.000 0.000 0.852 0.000
#> GSM159906     1  0.2516      0.847 0.860 0.000 0.000 0.140 0.000
#> GSM159907     1  0.2280      0.854 0.880 0.000 0.000 0.120 0.000
#> GSM159908     4  0.2358      0.869 0.104 0.000 0.000 0.888 0.008
#> GSM159909     4  0.1331      0.906 0.040 0.000 0.000 0.952 0.008
#> GSM159910     3  0.3488      0.868 0.000 0.024 0.808 0.000 0.168
#> GSM159911     4  0.0000      0.918 0.000 0.000 0.000 1.000 0.000
#> GSM159912     4  0.0000      0.918 0.000 0.000 0.000 1.000 0.000
#> GSM159913     4  0.0000      0.918 0.000 0.000 0.000 1.000 0.000
#> GSM159914     4  0.1965      0.875 0.096 0.000 0.000 0.904 0.000
#> GSM159915     4  0.1197      0.905 0.048 0.000 0.000 0.952 0.000
#> GSM159916     4  0.0794      0.910 0.028 0.000 0.000 0.972 0.000
#> GSM159917     3  0.3003      0.736 0.000 0.000 0.812 0.188 0.000
#> GSM159867     4  0.3661      0.622 0.000 0.000 0.000 0.724 0.276
#> GSM159868     4  0.2377      0.820 0.000 0.000 0.000 0.872 0.128
#> GSM159869     4  0.3177      0.722 0.000 0.000 0.000 0.792 0.208
#> GSM159870     5  0.0000      0.967 0.000 0.000 0.000 0.000 1.000
#> GSM159871     5  0.0000      0.967 0.000 0.000 0.000 0.000 1.000
#> GSM159872     3  0.3003      0.869 0.000 0.000 0.812 0.000 0.188
#> GSM159873     5  0.0000      0.967 0.000 0.000 0.000 0.000 1.000
#> GSM159874     3  0.3039      0.867 0.000 0.000 0.808 0.000 0.192
#> GSM159875     5  0.0162      0.964 0.000 0.000 0.004 0.000 0.996
#> GSM159876     5  0.1357      0.893 0.004 0.000 0.000 0.048 0.948
#> GSM159877     3  0.4179      0.838 0.072 0.000 0.812 0.028 0.088
#> GSM159878     5  0.3460      0.721 0.128 0.000 0.000 0.044 0.828
#> GSM159879     5  0.0000      0.967 0.000 0.000 0.000 0.000 1.000
#> GSM159880     5  0.0000      0.967 0.000 0.000 0.000 0.000 1.000
#> GSM159881     5  0.0000      0.967 0.000 0.000 0.000 0.000 1.000
#> GSM159882     5  0.0000      0.967 0.000 0.000 0.000 0.000 1.000
#> GSM159883     5  0.0000      0.967 0.000 0.000 0.000 0.000 1.000
#> GSM159884     5  0.0000      0.967 0.000 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM159850     4  0.0632      0.920 0.024 0.000 0.000 0.976 0.000 0.000
#> GSM159851     4  0.3515      0.498 0.324 0.000 0.000 0.676 0.000 0.000
#> GSM159852     1  0.2491      0.793 0.836 0.000 0.000 0.164 0.000 0.000
#> GSM159853     1  0.0632      0.926 0.976 0.000 0.000 0.024 0.000 0.000
#> GSM159854     1  0.1075      0.917 0.952 0.000 0.000 0.048 0.000 0.000
#> GSM159855     1  0.0713      0.924 0.972 0.000 0.000 0.028 0.000 0.000
#> GSM159856     1  0.0000      0.932 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159857     1  0.0000      0.932 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159858     1  0.0000      0.932 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159859     1  0.0146      0.932 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM159860     1  0.0000      0.932 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159861     1  0.2398      0.855 0.876 0.000 0.000 0.020 0.104 0.000
#> GSM159862     5  0.0520      0.972 0.008 0.000 0.000 0.008 0.984 0.000
#> GSM159863     5  0.1007      0.943 0.044 0.000 0.000 0.000 0.956 0.000
#> GSM159864     5  0.0000      0.981 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM159865     5  0.0000      0.981 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM159866     5  0.0000      0.981 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM159885     4  0.0260      0.925 0.000 0.000 0.008 0.992 0.000 0.000
#> GSM159886     1  0.3126      0.667 0.752 0.000 0.000 0.248 0.000 0.000
#> GSM159887     4  0.0146      0.926 0.000 0.000 0.004 0.996 0.000 0.000
#> GSM159888     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159889     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159890     2  0.0260      0.974 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM159891     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159892     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159893     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159894     4  0.0260      0.925 0.000 0.000 0.008 0.992 0.000 0.000
#> GSM159895     4  0.1333      0.904 0.000 0.000 0.008 0.944 0.000 0.048
#> GSM159896     4  0.0405      0.925 0.004 0.000 0.008 0.988 0.000 0.000
#> GSM159897     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159898     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159899     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159900     2  0.2527      0.794 0.000 0.832 0.168 0.000 0.000 0.000
#> GSM159901     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159902     4  0.0000      0.926 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM159903     4  0.0260      0.925 0.008 0.000 0.000 0.992 0.000 0.000
#> GSM159904     4  0.0000      0.926 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM159905     4  0.2300      0.844 0.144 0.000 0.000 0.856 0.000 0.000
#> GSM159906     1  0.0632      0.924 0.976 0.000 0.000 0.024 0.000 0.000
#> GSM159907     1  0.0000      0.932 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159908     4  0.1863      0.881 0.104 0.000 0.000 0.896 0.000 0.000
#> GSM159909     4  0.0865      0.917 0.036 0.000 0.000 0.964 0.000 0.000
#> GSM159910     3  0.1471      0.913 0.000 0.004 0.932 0.000 0.000 0.064
#> GSM159911     4  0.0146      0.926 0.000 0.000 0.004 0.996 0.000 0.000
#> GSM159912     4  0.0000      0.926 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM159913     4  0.0000      0.926 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM159914     4  0.1814      0.882 0.100 0.000 0.000 0.900 0.000 0.000
#> GSM159915     4  0.1075      0.915 0.048 0.000 0.000 0.952 0.000 0.000
#> GSM159916     4  0.0632      0.920 0.024 0.000 0.000 0.976 0.000 0.000
#> GSM159917     3  0.1141      0.869 0.000 0.000 0.948 0.052 0.000 0.000
#> GSM159867     4  0.3101      0.687 0.000 0.000 0.000 0.756 0.000 0.244
#> GSM159868     4  0.1812      0.879 0.000 0.000 0.008 0.912 0.000 0.080
#> GSM159869     4  0.2882      0.768 0.000 0.000 0.008 0.812 0.000 0.180
#> GSM159870     6  0.0000      0.980 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159871     6  0.0000      0.980 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159872     3  0.1610      0.924 0.000 0.000 0.916 0.000 0.000 0.084
#> GSM159873     6  0.0000      0.980 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159874     3  0.2260      0.884 0.000 0.000 0.860 0.000 0.000 0.140
#> GSM159875     6  0.0146      0.977 0.000 0.000 0.004 0.000 0.000 0.996
#> GSM159876     6  0.0146      0.977 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM159877     3  0.1976      0.924 0.008 0.000 0.916 0.016 0.000 0.060
#> GSM159878     6  0.2416      0.774 0.156 0.000 0.000 0.000 0.000 0.844
#> GSM159879     6  0.0000      0.980 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159880     6  0.0000      0.980 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159881     6  0.0000      0.980 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159882     6  0.0000      0.980 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159883     6  0.0000      0.980 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159884     6  0.0000      0.980 0.000 0.000 0.000 0.000 0.000 1.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n agent(p)  dose(p)  time(p) k
#> SD:pam 67 6.47e-08 6.07e-04 1.18e-03 2
#> SD:pam 59 1.37e-19 7.31e-04 4.10e-02 3
#> SD:pam 43 2.46e-09 3.21e-03 1.42e-01 4
#> SD:pam 67 6.89e-20 2.39e-08 3.67e-03 5
#> SD:pam 67 1.20e-18 9.24e-08 5.23e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.559           0.856       0.917         0.4886 0.508   0.508
#> 3 3 0.400           0.537       0.732         0.2520 0.746   0.544
#> 4 4 0.601           0.770       0.765         0.1724 0.755   0.429
#> 5 5 0.621           0.791       0.790         0.0623 0.858   0.559
#> 6 6 0.748           0.805       0.850         0.0810 0.884   0.553

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1  0.0000      0.858 1.000 0.000
#> GSM159851     1  0.0000      0.858 1.000 0.000
#> GSM159852     1  0.0000      0.858 1.000 0.000
#> GSM159853     1  0.0000      0.858 1.000 0.000
#> GSM159854     1  0.0000      0.858 1.000 0.000
#> GSM159855     1  0.0000      0.858 1.000 0.000
#> GSM159856     1  0.0000      0.858 1.000 0.000
#> GSM159857     1  0.0000      0.858 1.000 0.000
#> GSM159858     1  0.0376      0.858 0.996 0.004
#> GSM159859     1  0.0376      0.858 0.996 0.004
#> GSM159860     1  0.0376      0.858 0.996 0.004
#> GSM159861     1  0.5946      0.814 0.856 0.144
#> GSM159862     1  0.8267      0.741 0.740 0.260
#> GSM159863     1  0.7056      0.779 0.808 0.192
#> GSM159864     1  0.9393      0.539 0.644 0.356
#> GSM159865     1  0.9393      0.539 0.644 0.356
#> GSM159866     1  0.9393      0.539 0.644 0.356
#> GSM159885     1  0.8955      0.691 0.688 0.312
#> GSM159886     1  0.7674      0.773 0.776 0.224
#> GSM159887     1  0.8955      0.691 0.688 0.312
#> GSM159888     2  0.0000      0.976 0.000 1.000
#> GSM159889     2  0.0000      0.976 0.000 1.000
#> GSM159890     2  0.0000      0.976 0.000 1.000
#> GSM159891     2  0.0000      0.976 0.000 1.000
#> GSM159892     2  0.0000      0.976 0.000 1.000
#> GSM159893     2  0.0000      0.976 0.000 1.000
#> GSM159894     1  0.9044      0.681 0.680 0.320
#> GSM159895     1  0.8955      0.691 0.688 0.312
#> GSM159896     1  0.8955      0.691 0.688 0.312
#> GSM159897     2  0.0000      0.976 0.000 1.000
#> GSM159898     2  0.0000      0.976 0.000 1.000
#> GSM159899     2  0.0000      0.976 0.000 1.000
#> GSM159900     2  0.0000      0.976 0.000 1.000
#> GSM159901     2  0.0000      0.976 0.000 1.000
#> GSM159902     1  0.5946      0.814 0.856 0.144
#> GSM159903     1  0.0938      0.857 0.988 0.012
#> GSM159904     1  0.3114      0.847 0.944 0.056
#> GSM159905     1  0.0000      0.858 1.000 0.000
#> GSM159906     1  0.0000      0.858 1.000 0.000
#> GSM159907     1  0.0000      0.858 1.000 0.000
#> GSM159908     1  0.5059      0.829 0.888 0.112
#> GSM159909     1  0.6343      0.805 0.840 0.160
#> GSM159910     2  0.4815      0.868 0.104 0.896
#> GSM159911     1  0.7745      0.763 0.772 0.228
#> GSM159912     1  0.0000      0.858 1.000 0.000
#> GSM159913     1  0.0000      0.858 1.000 0.000
#> GSM159914     1  0.0000      0.858 1.000 0.000
#> GSM159915     1  0.0000      0.858 1.000 0.000
#> GSM159916     1  0.0000      0.858 1.000 0.000
#> GSM159917     2  0.4161      0.894 0.084 0.916
#> GSM159867     1  0.8955      0.691 0.688 0.312
#> GSM159868     1  0.9129      0.671 0.672 0.328
#> GSM159869     1  0.9209      0.660 0.664 0.336
#> GSM159870     2  0.0000      0.976 0.000 1.000
#> GSM159871     2  0.0000      0.976 0.000 1.000
#> GSM159872     2  0.0000      0.976 0.000 1.000
#> GSM159873     2  0.0000      0.976 0.000 1.000
#> GSM159874     2  0.0000      0.976 0.000 1.000
#> GSM159875     2  0.0000      0.976 0.000 1.000
#> GSM159876     2  0.4161      0.894 0.084 0.916
#> GSM159877     2  0.4161      0.894 0.084 0.916
#> GSM159878     2  0.6048      0.802 0.148 0.852
#> GSM159879     2  0.0000      0.976 0.000 1.000
#> GSM159880     2  0.0000      0.976 0.000 1.000
#> GSM159881     2  0.0000      0.976 0.000 1.000
#> GSM159882     2  0.0000      0.976 0.000 1.000
#> GSM159883     2  0.0000      0.976 0.000 1.000
#> GSM159884     2  0.0000      0.976 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1  0.0000     0.6142 1.000 0.000 0.000
#> GSM159851     1  0.0000     0.6142 1.000 0.000 0.000
#> GSM159852     1  0.0000     0.6142 1.000 0.000 0.000
#> GSM159853     1  0.0000     0.6142 1.000 0.000 0.000
#> GSM159854     1  0.3192     0.4999 0.888 0.000 0.112
#> GSM159855     1  0.0237     0.6121 0.996 0.000 0.004
#> GSM159856     1  0.0237     0.6121 0.996 0.000 0.004
#> GSM159857     1  0.0000     0.6142 1.000 0.000 0.000
#> GSM159858     1  0.0000     0.6142 1.000 0.000 0.000
#> GSM159859     1  0.0000     0.6142 1.000 0.000 0.000
#> GSM159860     1  0.0000     0.6142 1.000 0.000 0.000
#> GSM159861     1  0.8308     0.0136 0.568 0.336 0.096
#> GSM159862     2  0.8570     0.1674 0.428 0.476 0.096
#> GSM159863     1  0.7918    -0.1254 0.484 0.460 0.056
#> GSM159864     2  0.8102     0.3574 0.368 0.556 0.076
#> GSM159865     2  0.8117     0.3492 0.372 0.552 0.076
#> GSM159866     2  0.8117     0.3492 0.372 0.552 0.076
#> GSM159885     3  0.7884     0.6185 0.260 0.100 0.640
#> GSM159886     3  0.7756     0.5231 0.380 0.056 0.564
#> GSM159887     3  0.7884     0.6185 0.260 0.100 0.640
#> GSM159888     2  0.3941     0.7781 0.000 0.844 0.156
#> GSM159889     2  0.4062     0.7808 0.000 0.836 0.164
#> GSM159890     2  0.4002     0.7765 0.000 0.840 0.160
#> GSM159891     2  0.4974     0.7943 0.000 0.764 0.236
#> GSM159892     2  0.5058     0.7950 0.000 0.756 0.244
#> GSM159893     2  0.4974     0.7943 0.000 0.764 0.236
#> GSM159894     3  0.8427     0.5904 0.240 0.148 0.612
#> GSM159895     3  0.8016     0.6167 0.260 0.108 0.632
#> GSM159896     3  0.8141     0.6124 0.260 0.116 0.624
#> GSM159897     2  0.4504     0.7948 0.000 0.804 0.196
#> GSM159898     2  0.4002     0.7765 0.000 0.840 0.160
#> GSM159899     2  0.4346     0.7865 0.000 0.816 0.184
#> GSM159900     2  0.4796     0.7998 0.000 0.780 0.220
#> GSM159901     2  0.4887     0.8004 0.000 0.772 0.228
#> GSM159902     3  0.6381     0.4998 0.340 0.012 0.648
#> GSM159903     3  0.6305     0.1998 0.484 0.000 0.516
#> GSM159904     3  0.6154     0.3724 0.408 0.000 0.592
#> GSM159905     3  0.6299     0.2234 0.476 0.000 0.524
#> GSM159906     1  0.6305    -0.1842 0.516 0.000 0.484
#> GSM159907     1  0.6305    -0.1842 0.516 0.000 0.484
#> GSM159908     3  0.6954     0.3268 0.484 0.016 0.500
#> GSM159909     3  0.6627     0.5245 0.336 0.020 0.644
#> GSM159910     2  0.6621     0.7279 0.052 0.720 0.228
#> GSM159911     3  0.7031     0.5919 0.196 0.088 0.716
#> GSM159912     1  0.6308    -0.2093 0.508 0.000 0.492
#> GSM159913     3  0.6307     0.1868 0.488 0.000 0.512
#> GSM159914     1  0.6305    -0.1842 0.516 0.000 0.484
#> GSM159915     1  0.6305    -0.1842 0.516 0.000 0.484
#> GSM159916     1  0.6305    -0.1842 0.516 0.000 0.484
#> GSM159917     2  0.6067     0.7554 0.028 0.736 0.236
#> GSM159867     3  0.9760     0.4529 0.280 0.276 0.444
#> GSM159868     3  0.9930     0.3682 0.280 0.340 0.380
#> GSM159869     3  0.9867     0.4054 0.276 0.312 0.412
#> GSM159870     2  0.0747     0.8159 0.000 0.984 0.016
#> GSM159871     2  0.1163     0.8191 0.000 0.972 0.028
#> GSM159872     2  0.4555     0.7910 0.000 0.800 0.200
#> GSM159873     2  0.4178     0.8004 0.000 0.828 0.172
#> GSM159874     2  0.4399     0.7951 0.000 0.812 0.188
#> GSM159875     2  0.4452     0.7962 0.000 0.808 0.192
#> GSM159876     2  0.4679     0.7867 0.020 0.832 0.148
#> GSM159877     2  0.6099     0.7590 0.032 0.740 0.228
#> GSM159878     2  0.5823     0.7525 0.064 0.792 0.144
#> GSM159879     2  0.0747     0.8159 0.000 0.984 0.016
#> GSM159880     2  0.0747     0.8159 0.000 0.984 0.016
#> GSM159881     2  0.1411     0.8192 0.000 0.964 0.036
#> GSM159882     2  0.0892     0.8140 0.000 0.980 0.020
#> GSM159883     2  0.0892     0.8140 0.000 0.980 0.020
#> GSM159884     2  0.0892     0.8140 0.000 0.980 0.020

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.0000      0.913 1.000 0.000 0.000 0.000
#> GSM159851     1  0.0000      0.913 1.000 0.000 0.000 0.000
#> GSM159852     1  0.0000      0.913 1.000 0.000 0.000 0.000
#> GSM159853     1  0.0188      0.909 0.996 0.000 0.000 0.004
#> GSM159854     1  0.0657      0.895 0.984 0.000 0.012 0.004
#> GSM159855     1  0.0000      0.913 1.000 0.000 0.000 0.000
#> GSM159856     1  0.0921      0.878 0.972 0.000 0.000 0.028
#> GSM159857     1  0.0000      0.913 1.000 0.000 0.000 0.000
#> GSM159858     1  0.0000      0.913 1.000 0.000 0.000 0.000
#> GSM159859     1  0.0000      0.913 1.000 0.000 0.000 0.000
#> GSM159860     1  0.0000      0.913 1.000 0.000 0.000 0.000
#> GSM159861     4  0.5220      0.518 0.424 0.000 0.008 0.568
#> GSM159862     4  0.4790      0.587 0.380 0.000 0.000 0.620
#> GSM159863     4  0.4843      0.562 0.396 0.000 0.000 0.604
#> GSM159864     4  0.5083      0.611 0.308 0.008 0.008 0.676
#> GSM159865     4  0.5083      0.611 0.308 0.008 0.008 0.676
#> GSM159866     4  0.5083      0.611 0.308 0.008 0.008 0.676
#> GSM159885     4  0.4244      0.752 0.168 0.000 0.032 0.800
#> GSM159886     4  0.5489      0.664 0.296 0.000 0.040 0.664
#> GSM159887     4  0.4332      0.749 0.176 0.000 0.032 0.792
#> GSM159888     2  0.3975      0.794 0.000 0.760 0.240 0.000
#> GSM159889     2  0.3975      0.794 0.000 0.760 0.240 0.000
#> GSM159890     2  0.3975      0.794 0.000 0.760 0.240 0.000
#> GSM159891     2  0.5052      0.788 0.000 0.720 0.244 0.036
#> GSM159892     2  0.5288      0.788 0.000 0.720 0.224 0.056
#> GSM159893     2  0.5052      0.788 0.000 0.720 0.244 0.036
#> GSM159894     4  0.3808      0.757 0.176 0.000 0.012 0.812
#> GSM159895     4  0.4035      0.755 0.176 0.000 0.020 0.804
#> GSM159896     4  0.4139      0.754 0.176 0.000 0.024 0.800
#> GSM159897     2  0.4155      0.794 0.000 0.756 0.240 0.004
#> GSM159898     2  0.3975      0.794 0.000 0.760 0.240 0.000
#> GSM159899     2  0.3975      0.794 0.000 0.760 0.240 0.000
#> GSM159900     2  0.7500      0.690 0.000 0.500 0.248 0.252
#> GSM159901     2  0.7459      0.695 0.000 0.508 0.248 0.244
#> GSM159902     3  0.5639      0.913 0.324 0.000 0.636 0.040
#> GSM159903     3  0.4730      0.976 0.364 0.000 0.636 0.000
#> GSM159904     3  0.4889      0.972 0.360 0.000 0.636 0.004
#> GSM159905     3  0.4730      0.976 0.364 0.000 0.636 0.000
#> GSM159906     3  0.4730      0.976 0.364 0.000 0.636 0.000
#> GSM159907     3  0.4730      0.976 0.364 0.000 0.636 0.000
#> GSM159908     1  0.7868     -0.380 0.372 0.000 0.352 0.276
#> GSM159909     3  0.6280      0.853 0.316 0.000 0.604 0.080
#> GSM159910     4  0.2529      0.712 0.024 0.048 0.008 0.920
#> GSM159911     4  0.7372      0.316 0.240 0.000 0.236 0.524
#> GSM159912     3  0.4730      0.976 0.364 0.000 0.636 0.000
#> GSM159913     3  0.4730      0.976 0.364 0.000 0.636 0.000
#> GSM159914     3  0.4730      0.976 0.364 0.000 0.636 0.000
#> GSM159915     3  0.4730      0.976 0.364 0.000 0.636 0.000
#> GSM159916     3  0.4905      0.971 0.364 0.000 0.632 0.004
#> GSM159917     4  0.3031      0.691 0.016 0.016 0.072 0.896
#> GSM159867     4  0.3718      0.759 0.168 0.000 0.012 0.820
#> GSM159868     4  0.3625      0.759 0.160 0.000 0.012 0.828
#> GSM159869     4  0.3455      0.754 0.132 0.004 0.012 0.852
#> GSM159870     2  0.1792      0.795 0.000 0.932 0.000 0.068
#> GSM159871     2  0.1792      0.795 0.000 0.932 0.000 0.068
#> GSM159872     2  0.6985      0.495 0.000 0.480 0.116 0.404
#> GSM159873     2  0.5810      0.709 0.000 0.672 0.072 0.256
#> GSM159874     2  0.6837      0.579 0.000 0.544 0.116 0.340
#> GSM159875     2  0.6477      0.671 0.000 0.620 0.116 0.264
#> GSM159876     4  0.3852      0.664 0.012 0.180 0.000 0.808
#> GSM159877     4  0.3278      0.671 0.020 0.000 0.116 0.864
#> GSM159878     4  0.3852      0.664 0.012 0.180 0.000 0.808
#> GSM159879     2  0.1978      0.796 0.000 0.928 0.004 0.068
#> GSM159880     2  0.1978      0.796 0.000 0.928 0.004 0.068
#> GSM159881     2  0.1867      0.794 0.000 0.928 0.000 0.072
#> GSM159882     2  0.1940      0.793 0.000 0.924 0.000 0.076
#> GSM159883     2  0.1940      0.793 0.000 0.924 0.000 0.076
#> GSM159884     2  0.1940      0.793 0.000 0.924 0.000 0.076

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     1  0.0510      0.978 0.984 0.000 0.000 0.016 0.000
#> GSM159851     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> GSM159852     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> GSM159853     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> GSM159854     1  0.0162      0.992 0.996 0.000 0.000 0.004 0.000
#> GSM159855     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> GSM159856     1  0.0290      0.986 0.992 0.000 0.008 0.000 0.000
#> GSM159857     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> GSM159858     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> GSM159859     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> GSM159860     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> GSM159861     3  0.5322      0.429 0.456 0.000 0.504 0.012 0.028
#> GSM159862     3  0.5355      0.499 0.404 0.000 0.552 0.024 0.020
#> GSM159863     3  0.5231      0.469 0.428 0.000 0.536 0.016 0.020
#> GSM159864     3  0.6365      0.581 0.276 0.000 0.592 0.064 0.068
#> GSM159865     3  0.6365      0.581 0.276 0.000 0.592 0.064 0.068
#> GSM159866     3  0.6365      0.581 0.276 0.000 0.592 0.064 0.068
#> GSM159885     3  0.6544      0.586 0.196 0.000 0.492 0.308 0.004
#> GSM159886     3  0.7787      0.571 0.232 0.004 0.476 0.196 0.092
#> GSM159887     3  0.6577      0.582 0.200 0.000 0.484 0.312 0.004
#> GSM159888     2  0.0162      0.990 0.000 0.996 0.000 0.000 0.004
#> GSM159889     2  0.0162      0.990 0.000 0.996 0.000 0.000 0.004
#> GSM159890     2  0.0162      0.990 0.000 0.996 0.000 0.000 0.004
#> GSM159891     2  0.0671      0.981 0.000 0.980 0.016 0.000 0.004
#> GSM159892     2  0.0671      0.981 0.000 0.980 0.016 0.000 0.004
#> GSM159893     2  0.0671      0.981 0.000 0.980 0.016 0.000 0.004
#> GSM159894     3  0.6684      0.601 0.228 0.000 0.516 0.244 0.012
#> GSM159895     3  0.6686      0.584 0.204 0.000 0.484 0.304 0.008
#> GSM159896     3  0.6636      0.593 0.204 0.000 0.500 0.288 0.008
#> GSM159897     2  0.0162      0.990 0.000 0.996 0.000 0.000 0.004
#> GSM159898     2  0.0162      0.990 0.000 0.996 0.000 0.000 0.004
#> GSM159899     2  0.0162      0.990 0.000 0.996 0.000 0.000 0.004
#> GSM159900     3  0.4223      0.487 0.000 0.248 0.724 0.000 0.028
#> GSM159901     3  0.4223      0.487 0.000 0.248 0.724 0.000 0.028
#> GSM159902     4  0.3387      0.894 0.196 0.000 0.004 0.796 0.004
#> GSM159903     4  0.3424      0.936 0.240 0.000 0.000 0.760 0.000
#> GSM159904     4  0.3430      0.920 0.220 0.000 0.000 0.776 0.004
#> GSM159905     4  0.3480      0.938 0.248 0.000 0.000 0.752 0.000
#> GSM159906     4  0.3586      0.930 0.264 0.000 0.000 0.736 0.000
#> GSM159907     4  0.3561      0.933 0.260 0.000 0.000 0.740 0.000
#> GSM159908     4  0.6483      0.507 0.296 0.000 0.192 0.508 0.004
#> GSM159909     4  0.4125      0.871 0.224 0.000 0.024 0.748 0.004
#> GSM159910     3  0.4307      0.666 0.100 0.008 0.804 0.076 0.012
#> GSM159911     3  0.6490      0.189 0.160 0.000 0.420 0.416 0.004
#> GSM159912     4  0.3508      0.938 0.252 0.000 0.000 0.748 0.000
#> GSM159913     4  0.3452      0.937 0.244 0.000 0.000 0.756 0.000
#> GSM159914     4  0.3508      0.938 0.252 0.000 0.000 0.748 0.000
#> GSM159915     4  0.3508      0.938 0.252 0.000 0.000 0.748 0.000
#> GSM159916     4  0.3508      0.938 0.252 0.000 0.000 0.748 0.000
#> GSM159917     3  0.3711      0.640 0.024 0.004 0.832 0.120 0.020
#> GSM159867     3  0.6166      0.632 0.228 0.000 0.616 0.132 0.024
#> GSM159868     3  0.6206      0.637 0.216 0.000 0.620 0.136 0.028
#> GSM159869     3  0.6220      0.633 0.224 0.000 0.616 0.132 0.028
#> GSM159870     5  0.0703      0.996 0.000 0.024 0.000 0.000 0.976
#> GSM159871     5  0.0771      0.993 0.000 0.020 0.004 0.000 0.976
#> GSM159872     3  0.2953      0.593 0.000 0.004 0.868 0.100 0.028
#> GSM159873     3  0.4878      0.415 0.000 0.024 0.700 0.028 0.248
#> GSM159874     3  0.3037      0.574 0.000 0.004 0.864 0.032 0.100
#> GSM159875     3  0.4391      0.498 0.000 0.024 0.764 0.028 0.184
#> GSM159876     3  0.4779      0.320 0.012 0.004 0.536 0.000 0.448
#> GSM159877     3  0.2886      0.602 0.000 0.004 0.864 0.116 0.016
#> GSM159878     3  0.4752      0.347 0.012 0.004 0.556 0.000 0.428
#> GSM159879     5  0.0794      0.995 0.000 0.028 0.000 0.000 0.972
#> GSM159880     5  0.0794      0.995 0.000 0.028 0.000 0.000 0.972
#> GSM159881     5  0.1153      0.988 0.000 0.024 0.004 0.008 0.964
#> GSM159882     5  0.0703      0.996 0.000 0.024 0.000 0.000 0.976
#> GSM159883     5  0.0703      0.996 0.000 0.024 0.000 0.000 0.976
#> GSM159884     5  0.0703      0.996 0.000 0.024 0.000 0.000 0.976

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM159850     1  0.1531     0.9433 0.928 0.000 0.000 0.068 0.004 0.000
#> GSM159851     1  0.0865     0.9683 0.964 0.000 0.000 0.036 0.000 0.000
#> GSM159852     1  0.0713     0.9684 0.972 0.000 0.000 0.028 0.000 0.000
#> GSM159853     1  0.1010     0.9673 0.960 0.000 0.000 0.036 0.004 0.000
#> GSM159854     1  0.1531     0.9463 0.928 0.000 0.000 0.068 0.004 0.000
#> GSM159855     1  0.0865     0.9683 0.964 0.000 0.000 0.036 0.000 0.000
#> GSM159856     1  0.1148     0.9597 0.960 0.000 0.000 0.020 0.016 0.004
#> GSM159857     1  0.0858     0.9690 0.968 0.000 0.000 0.028 0.004 0.000
#> GSM159858     1  0.0547     0.9660 0.980 0.000 0.000 0.020 0.000 0.000
#> GSM159859     1  0.0547     0.9660 0.980 0.000 0.000 0.020 0.000 0.000
#> GSM159860     1  0.0547     0.9660 0.980 0.000 0.000 0.020 0.000 0.000
#> GSM159861     5  0.6345     0.6276 0.248 0.000 0.236 0.028 0.488 0.000
#> GSM159862     5  0.6278     0.6395 0.208 0.000 0.264 0.028 0.500 0.000
#> GSM159863     5  0.6250     0.6367 0.216 0.000 0.264 0.024 0.496 0.000
#> GSM159864     5  0.5525     0.6008 0.120 0.000 0.328 0.008 0.544 0.000
#> GSM159865     5  0.5525     0.6008 0.120 0.000 0.328 0.008 0.544 0.000
#> GSM159866     5  0.5525     0.6008 0.120 0.000 0.328 0.008 0.544 0.000
#> GSM159885     5  0.3556     0.6259 0.068 0.000 0.012 0.104 0.816 0.000
#> GSM159886     4  0.8242     0.0701 0.212 0.000 0.116 0.404 0.104 0.164
#> GSM159887     5  0.3611     0.6242 0.072 0.000 0.012 0.104 0.812 0.000
#> GSM159888     2  0.0000     0.9892 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159889     2  0.0000     0.9892 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159890     2  0.0000     0.9892 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159891     2  0.0713     0.9781 0.000 0.972 0.028 0.000 0.000 0.000
#> GSM159892     2  0.0713     0.9781 0.000 0.972 0.028 0.000 0.000 0.000
#> GSM159893     2  0.0713     0.9781 0.000 0.972 0.028 0.000 0.000 0.000
#> GSM159894     5  0.4058     0.6586 0.084 0.000 0.064 0.056 0.796 0.000
#> GSM159895     5  0.3601     0.6294 0.068 0.000 0.016 0.100 0.816 0.000
#> GSM159896     5  0.3732     0.6306 0.068 0.000 0.020 0.104 0.808 0.000
#> GSM159897     2  0.0000     0.9892 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159898     2  0.0000     0.9892 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159899     2  0.0000     0.9892 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159900     3  0.3161     0.7952 0.000 0.136 0.828 0.000 0.008 0.028
#> GSM159901     3  0.3243     0.7808 0.000 0.156 0.812 0.000 0.004 0.028
#> GSM159902     4  0.1951     0.8259 0.016 0.000 0.000 0.908 0.076 0.000
#> GSM159903     4  0.1584     0.8657 0.064 0.000 0.000 0.928 0.008 0.000
#> GSM159904     4  0.2039     0.8272 0.020 0.000 0.000 0.904 0.076 0.000
#> GSM159905     4  0.1663     0.8724 0.088 0.000 0.000 0.912 0.000 0.000
#> GSM159906     4  0.2048     0.8659 0.120 0.000 0.000 0.880 0.000 0.000
#> GSM159907     4  0.1957     0.8690 0.112 0.000 0.000 0.888 0.000 0.000
#> GSM159908     4  0.4689     0.7397 0.124 0.000 0.012 0.712 0.152 0.000
#> GSM159909     4  0.2926     0.7953 0.028 0.000 0.004 0.844 0.124 0.000
#> GSM159910     3  0.4760     0.6642 0.080 0.000 0.740 0.068 0.112 0.000
#> GSM159911     4  0.4013     0.7153 0.016 0.000 0.052 0.768 0.164 0.000
#> GSM159912     4  0.1814     0.8705 0.100 0.000 0.000 0.900 0.000 0.000
#> GSM159913     4  0.1556     0.8721 0.080 0.000 0.000 0.920 0.000 0.000
#> GSM159914     4  0.1957     0.8690 0.112 0.000 0.000 0.888 0.000 0.000
#> GSM159915     4  0.1910     0.8701 0.108 0.000 0.000 0.892 0.000 0.000
#> GSM159916     4  0.1908     0.8715 0.096 0.000 0.000 0.900 0.004 0.000
#> GSM159917     3  0.4549     0.7022 0.024 0.000 0.740 0.132 0.104 0.000
#> GSM159867     5  0.4970     0.6636 0.104 0.000 0.204 0.016 0.676 0.000
#> GSM159868     5  0.5255     0.6556 0.128 0.000 0.212 0.016 0.644 0.000
#> GSM159869     5  0.5266     0.6558 0.132 0.000 0.208 0.016 0.644 0.000
#> GSM159870     6  0.0000     0.8806 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159871     6  0.0146     0.8793 0.000 0.000 0.004 0.000 0.000 0.996
#> GSM159872     3  0.0363     0.8294 0.000 0.000 0.988 0.000 0.012 0.000
#> GSM159873     3  0.3457     0.8112 0.000 0.000 0.832 0.024 0.060 0.084
#> GSM159874     3  0.0632     0.8326 0.000 0.000 0.976 0.000 0.024 0.000
#> GSM159875     3  0.3324     0.8148 0.000 0.000 0.840 0.020 0.060 0.080
#> GSM159876     6  0.5671     0.2937 0.004 0.000 0.188 0.000 0.260 0.548
#> GSM159877     3  0.0790     0.8279 0.000 0.000 0.968 0.000 0.032 0.000
#> GSM159878     6  0.5746     0.2632 0.004 0.000 0.160 0.004 0.292 0.540
#> GSM159879     6  0.0146     0.8797 0.000 0.000 0.000 0.000 0.004 0.996
#> GSM159880     6  0.0000     0.8806 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159881     6  0.0665     0.8710 0.000 0.000 0.008 0.004 0.008 0.980
#> GSM159882     6  0.0000     0.8806 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159883     6  0.0000     0.8806 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159884     6  0.0146     0.8797 0.000 0.000 0.000 0.000 0.004 0.996

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n agent(p)  dose(p)  time(p) k
#> SD:mclust 68 1.61e-07 2.09e-04 0.001487 2
#> SD:mclust 46 3.04e-10 2.42e-09 0.000170 3
#> SD:mclust 65 8.37e-17 8.94e-08 0.000027 4
#> SD:mclust 58 4.20e-21 4.41e-08 0.004425 5
#> SD:mclust 65 6.87e-22 1.15e-07 0.000185 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.879           0.916       0.967         0.4836 0.514   0.514
#> 3 3 0.824           0.844       0.931         0.3236 0.798   0.625
#> 4 4 0.690           0.734       0.868         0.1246 0.843   0.609
#> 5 5 0.615           0.637       0.787         0.0641 0.928   0.758
#> 6 6 0.635           0.500       0.727         0.0439 0.872   0.547

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1  0.0000     0.9714 1.000 0.000
#> GSM159851     1  0.0000     0.9714 1.000 0.000
#> GSM159852     1  0.0000     0.9714 1.000 0.000
#> GSM159853     1  0.0000     0.9714 1.000 0.000
#> GSM159854     1  0.0000     0.9714 1.000 0.000
#> GSM159855     1  0.0000     0.9714 1.000 0.000
#> GSM159856     1  0.0000     0.9714 1.000 0.000
#> GSM159857     1  0.0000     0.9714 1.000 0.000
#> GSM159858     1  0.0000     0.9714 1.000 0.000
#> GSM159859     1  0.0000     0.9714 1.000 0.000
#> GSM159860     1  0.0000     0.9714 1.000 0.000
#> GSM159861     1  0.0000     0.9714 1.000 0.000
#> GSM159862     1  0.0000     0.9714 1.000 0.000
#> GSM159863     1  0.0000     0.9714 1.000 0.000
#> GSM159864     1  0.0000     0.9714 1.000 0.000
#> GSM159865     1  0.0000     0.9714 1.000 0.000
#> GSM159866     1  0.0000     0.9714 1.000 0.000
#> GSM159885     2  0.4815     0.8573 0.104 0.896
#> GSM159886     1  0.0000     0.9714 1.000 0.000
#> GSM159887     1  0.3733     0.9066 0.928 0.072
#> GSM159888     2  0.0000     0.9526 0.000 1.000
#> GSM159889     2  0.0000     0.9526 0.000 1.000
#> GSM159890     2  0.0000     0.9526 0.000 1.000
#> GSM159891     2  0.0000     0.9526 0.000 1.000
#> GSM159892     2  0.0000     0.9526 0.000 1.000
#> GSM159893     2  0.0000     0.9526 0.000 1.000
#> GSM159894     1  0.1184     0.9587 0.984 0.016
#> GSM159895     1  0.5059     0.8629 0.888 0.112
#> GSM159896     2  0.9977     0.0994 0.472 0.528
#> GSM159897     2  0.0000     0.9526 0.000 1.000
#> GSM159898     2  0.0000     0.9526 0.000 1.000
#> GSM159899     2  0.0000     0.9526 0.000 1.000
#> GSM159900     2  0.0000     0.9526 0.000 1.000
#> GSM159901     2  0.0000     0.9526 0.000 1.000
#> GSM159902     1  0.0000     0.9714 1.000 0.000
#> GSM159903     1  0.0000     0.9714 1.000 0.000
#> GSM159904     1  0.0000     0.9714 1.000 0.000
#> GSM159905     1  0.0000     0.9714 1.000 0.000
#> GSM159906     1  0.0000     0.9714 1.000 0.000
#> GSM159907     1  0.0000     0.9714 1.000 0.000
#> GSM159908     1  0.0000     0.9714 1.000 0.000
#> GSM159909     1  0.0000     0.9714 1.000 0.000
#> GSM159910     2  0.0000     0.9526 0.000 1.000
#> GSM159911     1  0.0938     0.9620 0.988 0.012
#> GSM159912     1  0.0000     0.9714 1.000 0.000
#> GSM159913     1  0.0000     0.9714 1.000 0.000
#> GSM159914     1  0.0000     0.9714 1.000 0.000
#> GSM159915     1  0.0000     0.9714 1.000 0.000
#> GSM159916     1  0.0000     0.9714 1.000 0.000
#> GSM159917     2  0.0000     0.9526 0.000 1.000
#> GSM159867     1  0.0000     0.9714 1.000 0.000
#> GSM159868     1  0.7883     0.6855 0.764 0.236
#> GSM159869     1  0.6531     0.7913 0.832 0.168
#> GSM159870     2  0.8763     0.5872 0.296 0.704
#> GSM159871     2  0.8763     0.5878 0.296 0.704
#> GSM159872     2  0.0000     0.9526 0.000 1.000
#> GSM159873     2  0.0000     0.9526 0.000 1.000
#> GSM159874     2  0.0000     0.9526 0.000 1.000
#> GSM159875     2  0.0000     0.9526 0.000 1.000
#> GSM159876     1  0.0000     0.9714 1.000 0.000
#> GSM159877     1  0.9970     0.0913 0.532 0.468
#> GSM159878     1  0.0000     0.9714 1.000 0.000
#> GSM159879     2  0.0672     0.9465 0.008 0.992
#> GSM159880     2  0.0000     0.9526 0.000 1.000
#> GSM159881     2  0.0000     0.9526 0.000 1.000
#> GSM159882     2  0.0000     0.9526 0.000 1.000
#> GSM159883     2  0.0000     0.9526 0.000 1.000
#> GSM159884     2  0.0000     0.9526 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1  0.1411     0.9242 0.964 0.000 0.036
#> GSM159851     1  0.1031     0.9290 0.976 0.000 0.024
#> GSM159852     1  0.0424     0.9317 0.992 0.000 0.008
#> GSM159853     1  0.0592     0.9315 0.988 0.000 0.012
#> GSM159854     1  0.0424     0.9317 0.992 0.000 0.008
#> GSM159855     1  0.0892     0.9302 0.980 0.000 0.020
#> GSM159856     1  0.0424     0.9277 0.992 0.000 0.008
#> GSM159857     1  0.0000     0.9307 1.000 0.000 0.000
#> GSM159858     1  0.0424     0.9277 0.992 0.000 0.008
#> GSM159859     1  0.0237     0.9295 0.996 0.000 0.004
#> GSM159860     1  0.0424     0.9277 0.992 0.000 0.008
#> GSM159861     1  0.1643     0.9198 0.956 0.000 0.044
#> GSM159862     1  0.6215     0.2737 0.572 0.000 0.428
#> GSM159863     1  0.4235     0.7783 0.824 0.000 0.176
#> GSM159864     1  0.1163     0.9285 0.972 0.000 0.028
#> GSM159865     1  0.0592     0.9318 0.988 0.000 0.012
#> GSM159866     1  0.0424     0.9316 0.992 0.000 0.008
#> GSM159885     3  0.0592     0.8697 0.012 0.000 0.988
#> GSM159886     1  0.0592     0.9252 0.988 0.000 0.012
#> GSM159887     3  0.4605     0.7140 0.204 0.000 0.796
#> GSM159888     2  0.0237     0.9437 0.000 0.996 0.004
#> GSM159889     2  0.0829     0.9392 0.004 0.984 0.012
#> GSM159890     2  0.0237     0.9437 0.000 0.996 0.004
#> GSM159891     2  0.0424     0.9417 0.000 0.992 0.008
#> GSM159892     2  0.0747     0.9379 0.000 0.984 0.016
#> GSM159893     2  0.0424     0.9417 0.000 0.992 0.008
#> GSM159894     1  0.1031     0.9297 0.976 0.000 0.024
#> GSM159895     3  0.1964     0.8533 0.056 0.000 0.944
#> GSM159896     3  0.0592     0.8697 0.012 0.000 0.988
#> GSM159897     2  0.0000     0.9439 0.000 1.000 0.000
#> GSM159898     2  0.0237     0.9437 0.000 0.996 0.004
#> GSM159899     2  0.0000     0.9439 0.000 1.000 0.000
#> GSM159900     3  0.6286     0.0705 0.000 0.464 0.536
#> GSM159901     2  0.4121     0.7970 0.000 0.832 0.168
#> GSM159902     3  0.4002     0.7624 0.160 0.000 0.840
#> GSM159903     1  0.1753     0.9164 0.952 0.000 0.048
#> GSM159904     1  0.6286     0.1483 0.536 0.000 0.464
#> GSM159905     1  0.1289     0.9266 0.968 0.000 0.032
#> GSM159906     1  0.0592     0.9315 0.988 0.000 0.012
#> GSM159907     1  0.0000     0.9307 1.000 0.000 0.000
#> GSM159908     1  0.6291     0.1415 0.532 0.000 0.468
#> GSM159909     3  0.6095     0.3017 0.392 0.000 0.608
#> GSM159910     3  0.0829     0.8682 0.012 0.004 0.984
#> GSM159911     3  0.0892     0.8700 0.020 0.000 0.980
#> GSM159912     1  0.0892     0.9302 0.980 0.000 0.020
#> GSM159913     1  0.1163     0.9277 0.972 0.000 0.028
#> GSM159914     1  0.0237     0.9295 0.996 0.000 0.004
#> GSM159915     1  0.0000     0.9307 1.000 0.000 0.000
#> GSM159916     1  0.0237     0.9295 0.996 0.000 0.004
#> GSM159917     3  0.0592     0.8697 0.012 0.000 0.988
#> GSM159867     1  0.2625     0.8830 0.916 0.000 0.084
#> GSM159868     3  0.0892     0.8700 0.020 0.000 0.980
#> GSM159869     3  0.0892     0.8700 0.020 0.000 0.980
#> GSM159870     2  0.5020     0.7318 0.192 0.796 0.012
#> GSM159871     2  0.5220     0.7078 0.208 0.780 0.012
#> GSM159872     3  0.1964     0.8295 0.000 0.056 0.944
#> GSM159873     2  0.2711     0.8841 0.000 0.912 0.088
#> GSM159874     3  0.5016     0.6184 0.000 0.240 0.760
#> GSM159875     2  0.3482     0.8463 0.000 0.872 0.128
#> GSM159876     1  0.1182     0.9171 0.976 0.012 0.012
#> GSM159877     3  0.0592     0.8697 0.012 0.000 0.988
#> GSM159878     1  0.1182     0.9171 0.976 0.012 0.012
#> GSM159879     2  0.1620     0.9267 0.024 0.964 0.012
#> GSM159880     2  0.1182     0.9348 0.012 0.976 0.012
#> GSM159881     2  0.0000     0.9439 0.000 1.000 0.000
#> GSM159882     2  0.0000     0.9439 0.000 1.000 0.000
#> GSM159883     2  0.0237     0.9437 0.000 0.996 0.004
#> GSM159884     2  0.0000     0.9439 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.1356    0.84696 0.960 0.000 0.032 0.008
#> GSM159851     1  0.1302    0.84274 0.956 0.000 0.044 0.000
#> GSM159852     1  0.1867    0.83115 0.928 0.000 0.072 0.000
#> GSM159853     1  0.2081    0.82389 0.916 0.000 0.084 0.000
#> GSM159854     1  0.1211    0.84352 0.960 0.000 0.040 0.000
#> GSM159855     1  0.1792    0.83498 0.932 0.000 0.068 0.000
#> GSM159856     1  0.3801    0.68852 0.780 0.000 0.220 0.000
#> GSM159857     1  0.3356    0.74702 0.824 0.000 0.176 0.000
#> GSM159858     1  0.3688    0.70514 0.792 0.000 0.208 0.000
#> GSM159859     1  0.2760    0.79109 0.872 0.000 0.128 0.000
#> GSM159860     1  0.3528    0.72468 0.808 0.000 0.192 0.000
#> GSM159861     3  0.4454    0.53468 0.308 0.000 0.692 0.000
#> GSM159862     3  0.4894    0.65094 0.100 0.000 0.780 0.120
#> GSM159863     3  0.4152    0.69659 0.160 0.000 0.808 0.032
#> GSM159864     3  0.1398    0.71852 0.040 0.000 0.956 0.004
#> GSM159865     3  0.1557    0.72637 0.056 0.000 0.944 0.000
#> GSM159866     3  0.1389    0.72375 0.048 0.000 0.952 0.000
#> GSM159885     4  0.3610    0.70883 0.200 0.000 0.000 0.800
#> GSM159886     1  0.1474    0.83920 0.948 0.000 0.052 0.000
#> GSM159887     1  0.5126    0.13651 0.552 0.000 0.004 0.444
#> GSM159888     2  0.0000    0.93313 0.000 1.000 0.000 0.000
#> GSM159889     2  0.0000    0.93313 0.000 1.000 0.000 0.000
#> GSM159890     2  0.0000    0.93313 0.000 1.000 0.000 0.000
#> GSM159891     2  0.0336    0.93238 0.000 0.992 0.000 0.008
#> GSM159892     2  0.0707    0.92779 0.000 0.980 0.000 0.020
#> GSM159893     2  0.0188    0.93294 0.000 0.996 0.000 0.004
#> GSM159894     1  0.2174    0.83387 0.928 0.000 0.020 0.052
#> GSM159895     4  0.4382    0.58583 0.296 0.000 0.000 0.704
#> GSM159896     4  0.3257    0.74297 0.152 0.000 0.004 0.844
#> GSM159897     2  0.0336    0.93236 0.000 0.992 0.000 0.008
#> GSM159898     2  0.0000    0.93313 0.000 1.000 0.000 0.000
#> GSM159899     2  0.0469    0.93116 0.000 0.988 0.000 0.012
#> GSM159900     4  0.4089    0.61778 0.004 0.212 0.004 0.780
#> GSM159901     2  0.4331    0.59334 0.000 0.712 0.000 0.288
#> GSM159902     1  0.4431    0.52763 0.696 0.000 0.000 0.304
#> GSM159903     1  0.1474    0.82895 0.948 0.000 0.000 0.052
#> GSM159904     1  0.2921    0.76699 0.860 0.000 0.000 0.140
#> GSM159905     1  0.0707    0.84264 0.980 0.000 0.000 0.020
#> GSM159906     1  0.0336    0.84744 0.992 0.000 0.008 0.000
#> GSM159907     1  0.0336    0.84744 0.992 0.000 0.008 0.000
#> GSM159908     1  0.3751    0.71125 0.800 0.000 0.004 0.196
#> GSM159909     1  0.4500    0.50906 0.684 0.000 0.000 0.316
#> GSM159910     4  0.1716    0.73984 0.000 0.000 0.064 0.936
#> GSM159911     4  0.3311    0.73248 0.172 0.000 0.000 0.828
#> GSM159912     1  0.0817    0.84078 0.976 0.000 0.000 0.024
#> GSM159913     1  0.1302    0.83262 0.956 0.000 0.000 0.044
#> GSM159914     1  0.0188    0.84736 0.996 0.000 0.004 0.000
#> GSM159915     1  0.0188    0.84648 0.996 0.000 0.000 0.004
#> GSM159916     1  0.0188    0.84648 0.996 0.000 0.000 0.004
#> GSM159917     4  0.1867    0.73771 0.000 0.000 0.072 0.928
#> GSM159867     1  0.6336   -0.08180 0.480 0.000 0.460 0.060
#> GSM159868     4  0.3907    0.73487 0.044 0.000 0.120 0.836
#> GSM159869     4  0.4568    0.73388 0.076 0.000 0.124 0.800
#> GSM159870     2  0.5070    0.40873 0.008 0.620 0.372 0.000
#> GSM159871     3  0.5376    0.20334 0.016 0.396 0.588 0.000
#> GSM159872     4  0.5172    0.29136 0.000 0.008 0.404 0.588
#> GSM159873     2  0.2002    0.90845 0.000 0.936 0.020 0.044
#> GSM159874     4  0.3471    0.72005 0.000 0.060 0.072 0.868
#> GSM159875     2  0.3088    0.83505 0.000 0.864 0.008 0.128
#> GSM159876     3  0.3037    0.72055 0.100 0.020 0.880 0.000
#> GSM159877     3  0.4941   -0.00602 0.000 0.000 0.564 0.436
#> GSM159878     3  0.4679    0.45084 0.352 0.000 0.648 0.000
#> GSM159879     2  0.1022    0.92685 0.000 0.968 0.032 0.000
#> GSM159880     2  0.0921    0.92798 0.000 0.972 0.028 0.000
#> GSM159881     2  0.1557    0.91553 0.000 0.944 0.056 0.000
#> GSM159882     2  0.1637    0.91322 0.000 0.940 0.060 0.000
#> GSM159883     2  0.1637    0.91314 0.000 0.940 0.060 0.000
#> GSM159884     2  0.0469    0.93151 0.000 0.988 0.012 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     1  0.4846     0.2972 0.588 0.000 0.004 0.388 0.020
#> GSM159851     1  0.4240     0.6087 0.736 0.000 0.000 0.228 0.036
#> GSM159852     1  0.2864     0.7232 0.864 0.000 0.000 0.112 0.024
#> GSM159853     1  0.3248     0.7226 0.852 0.000 0.004 0.104 0.040
#> GSM159854     1  0.3280     0.6800 0.812 0.000 0.000 0.176 0.012
#> GSM159855     1  0.4166     0.6818 0.780 0.000 0.004 0.160 0.056
#> GSM159856     1  0.4109     0.5779 0.768 0.000 0.004 0.036 0.192
#> GSM159857     1  0.3500     0.6525 0.808 0.000 0.004 0.016 0.172
#> GSM159858     1  0.3724     0.5907 0.776 0.000 0.000 0.020 0.204
#> GSM159859     1  0.2612     0.6830 0.868 0.000 0.000 0.008 0.124
#> GSM159860     1  0.3319     0.6467 0.820 0.000 0.000 0.020 0.160
#> GSM159861     5  0.4670     0.6340 0.100 0.000 0.008 0.136 0.756
#> GSM159862     5  0.4207     0.6708 0.024 0.000 0.076 0.092 0.808
#> GSM159863     5  0.3643     0.7079 0.036 0.000 0.044 0.072 0.848
#> GSM159864     5  0.2151     0.7293 0.040 0.000 0.020 0.016 0.924
#> GSM159865     5  0.1788     0.7317 0.056 0.000 0.004 0.008 0.932
#> GSM159866     5  0.1644     0.7329 0.048 0.000 0.004 0.008 0.940
#> GSM159885     4  0.5048     0.7633 0.152 0.000 0.144 0.704 0.000
#> GSM159886     1  0.1251     0.7392 0.956 0.000 0.000 0.036 0.008
#> GSM159887     4  0.4522     0.7290 0.248 0.000 0.044 0.708 0.000
#> GSM159888     2  0.0162     0.7964 0.000 0.996 0.000 0.004 0.000
#> GSM159889     2  0.1153     0.7920 0.008 0.964 0.000 0.024 0.004
#> GSM159890     2  0.0324     0.7952 0.000 0.992 0.000 0.004 0.004
#> GSM159891     2  0.0451     0.7974 0.000 0.988 0.000 0.008 0.004
#> GSM159892     2  0.0609     0.7965 0.000 0.980 0.000 0.020 0.000
#> GSM159893     2  0.0609     0.7991 0.000 0.980 0.000 0.020 0.000
#> GSM159894     4  0.4607     0.6787 0.268 0.008 0.004 0.700 0.020
#> GSM159895     4  0.5525     0.7564 0.212 0.008 0.116 0.664 0.000
#> GSM159896     4  0.5353     0.7631 0.156 0.000 0.156 0.684 0.004
#> GSM159897     2  0.0960     0.7879 0.000 0.972 0.016 0.008 0.004
#> GSM159898     2  0.1538     0.7797 0.004 0.952 0.020 0.020 0.004
#> GSM159899     2  0.1059     0.7858 0.000 0.968 0.020 0.008 0.004
#> GSM159900     3  0.6211     0.4714 0.000 0.324 0.540 0.128 0.008
#> GSM159901     2  0.4225     0.6155 0.000 0.784 0.136 0.076 0.004
#> GSM159902     4  0.5220     0.2678 0.440 0.000 0.044 0.516 0.000
#> GSM159903     1  0.4402     0.3388 0.620 0.000 0.004 0.372 0.004
#> GSM159904     1  0.4922     0.1224 0.552 0.000 0.020 0.424 0.004
#> GSM159905     1  0.1202     0.7380 0.960 0.000 0.004 0.032 0.004
#> GSM159906     1  0.0324     0.7400 0.992 0.000 0.000 0.004 0.004
#> GSM159907     1  0.0566     0.7404 0.984 0.000 0.000 0.012 0.004
#> GSM159908     1  0.5764     0.4572 0.648 0.000 0.112 0.224 0.016
#> GSM159909     1  0.5887    -0.0572 0.504 0.000 0.088 0.404 0.004
#> GSM159910     3  0.1869     0.7226 0.000 0.028 0.936 0.028 0.008
#> GSM159911     4  0.5690     0.7189 0.152 0.000 0.224 0.624 0.000
#> GSM159912     1  0.3086     0.6677 0.816 0.000 0.000 0.180 0.004
#> GSM159913     1  0.3966     0.4330 0.664 0.000 0.000 0.336 0.000
#> GSM159914     1  0.0566     0.7366 0.984 0.000 0.000 0.004 0.012
#> GSM159915     1  0.0324     0.7400 0.992 0.000 0.000 0.004 0.004
#> GSM159916     1  0.0451     0.7393 0.988 0.000 0.000 0.004 0.008
#> GSM159917     3  0.1638     0.7302 0.000 0.000 0.932 0.064 0.004
#> GSM159867     4  0.4546     0.6318 0.108 0.000 0.008 0.768 0.116
#> GSM159868     4  0.4017     0.6260 0.032 0.000 0.084 0.824 0.060
#> GSM159869     4  0.4218     0.6425 0.040 0.000 0.092 0.812 0.056
#> GSM159870     2  0.6707     0.3773 0.000 0.464 0.004 0.236 0.296
#> GSM159871     5  0.6793     0.0576 0.000 0.288 0.008 0.236 0.468
#> GSM159872     3  0.2903     0.7094 0.000 0.000 0.872 0.048 0.080
#> GSM159873     2  0.5622     0.5042 0.000 0.512 0.012 0.428 0.048
#> GSM159874     3  0.5705     0.4458 0.000 0.048 0.556 0.376 0.020
#> GSM159875     2  0.5304     0.5226 0.000 0.540 0.020 0.420 0.020
#> GSM159876     5  0.5125     0.6045 0.064 0.000 0.016 0.220 0.700
#> GSM159877     3  0.4333     0.5837 0.000 0.000 0.740 0.048 0.212
#> GSM159878     5  0.6214     0.5264 0.228 0.000 0.012 0.168 0.592
#> GSM159879     2  0.4518     0.7566 0.000 0.732 0.004 0.216 0.048
#> GSM159880     2  0.4620     0.7556 0.000 0.732 0.004 0.204 0.060
#> GSM159881     2  0.5055     0.7384 0.000 0.704 0.004 0.196 0.096
#> GSM159882     2  0.4468     0.7660 0.000 0.756 0.004 0.172 0.068
#> GSM159883     2  0.4418     0.7657 0.000 0.756 0.004 0.180 0.060
#> GSM159884     2  0.3925     0.7731 0.000 0.784 0.004 0.180 0.032

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM159850     4  0.5285     0.1576 0.424 0.008 0.004 0.500 0.000 0.064
#> GSM159851     1  0.5334     0.2908 0.564 0.012 0.000 0.360 0.016 0.048
#> GSM159852     1  0.4153     0.6651 0.764 0.004 0.000 0.164 0.016 0.052
#> GSM159853     1  0.5010     0.6877 0.748 0.024 0.012 0.108 0.024 0.084
#> GSM159854     1  0.4543     0.5517 0.684 0.012 0.000 0.252 0.000 0.052
#> GSM159855     1  0.6100     0.5358 0.620 0.008 0.012 0.220 0.064 0.076
#> GSM159856     1  0.3840     0.6869 0.800 0.008 0.000 0.016 0.132 0.044
#> GSM159857     1  0.4717     0.6772 0.744 0.012 0.000 0.032 0.144 0.068
#> GSM159858     1  0.2673     0.7152 0.856 0.004 0.000 0.004 0.128 0.008
#> GSM159859     1  0.1759     0.7370 0.924 0.004 0.000 0.004 0.064 0.004
#> GSM159860     1  0.2119     0.7358 0.912 0.004 0.000 0.008 0.060 0.016
#> GSM159861     5  0.3540     0.8213 0.036 0.000 0.000 0.132 0.812 0.020
#> GSM159862     5  0.3595     0.8376 0.020 0.000 0.008 0.120 0.820 0.032
#> GSM159863     5  0.2767     0.8754 0.028 0.000 0.004 0.068 0.880 0.020
#> GSM159864     5  0.0653     0.8821 0.012 0.004 0.000 0.004 0.980 0.000
#> GSM159865     5  0.0748     0.8806 0.016 0.004 0.000 0.004 0.976 0.000
#> GSM159866     5  0.0653     0.8821 0.012 0.004 0.000 0.004 0.980 0.000
#> GSM159885     4  0.2435     0.7243 0.040 0.032 0.012 0.904 0.000 0.012
#> GSM159886     1  0.2321     0.7440 0.900 0.008 0.000 0.040 0.000 0.052
#> GSM159887     4  0.2451     0.7348 0.068 0.040 0.004 0.888 0.000 0.000
#> GSM159888     2  0.3854    -0.5275 0.000 0.536 0.000 0.000 0.000 0.464
#> GSM159889     2  0.4325    -0.5417 0.020 0.524 0.000 0.000 0.000 0.456
#> GSM159890     2  0.3864    -0.5657 0.000 0.520 0.000 0.000 0.000 0.480
#> GSM159891     6  0.3868     0.5242 0.000 0.496 0.000 0.000 0.000 0.504
#> GSM159892     2  0.3862    -0.5573 0.000 0.524 0.000 0.000 0.000 0.476
#> GSM159893     2  0.3851    -0.5216 0.000 0.540 0.000 0.000 0.000 0.460
#> GSM159894     4  0.2949     0.7252 0.056 0.020 0.000 0.876 0.012 0.036
#> GSM159895     4  0.2802     0.7277 0.044 0.008 0.008 0.888 0.012 0.040
#> GSM159896     4  0.1912     0.7111 0.012 0.004 0.008 0.932 0.012 0.032
#> GSM159897     6  0.3810     0.6740 0.000 0.428 0.000 0.000 0.000 0.572
#> GSM159898     6  0.3915     0.6876 0.004 0.412 0.000 0.000 0.000 0.584
#> GSM159899     6  0.3747     0.6920 0.000 0.396 0.000 0.000 0.000 0.604
#> GSM159900     6  0.5656     0.3008 0.000 0.084 0.212 0.060 0.004 0.640
#> GSM159901     6  0.4372     0.6012 0.000 0.260 0.020 0.028 0.000 0.692
#> GSM159902     4  0.3651     0.6553 0.224 0.000 0.000 0.752 0.008 0.016
#> GSM159903     4  0.4497     0.2937 0.440 0.000 0.004 0.536 0.004 0.016
#> GSM159904     4  0.4656     0.5366 0.312 0.000 0.004 0.640 0.012 0.032
#> GSM159905     1  0.1994     0.7442 0.920 0.000 0.008 0.052 0.004 0.016
#> GSM159906     1  0.1484     0.7519 0.944 0.000 0.004 0.040 0.004 0.008
#> GSM159907     1  0.1477     0.7504 0.940 0.000 0.000 0.048 0.004 0.008
#> GSM159908     1  0.7274     0.0868 0.460 0.000 0.064 0.304 0.120 0.052
#> GSM159909     4  0.6177     0.5067 0.284 0.000 0.028 0.572 0.052 0.064
#> GSM159910     3  0.3087     0.7299 0.000 0.000 0.808 0.004 0.012 0.176
#> GSM159911     4  0.3017     0.7302 0.072 0.000 0.024 0.868 0.008 0.028
#> GSM159912     1  0.3925     0.4852 0.700 0.000 0.004 0.280 0.004 0.012
#> GSM159913     4  0.4227     0.1258 0.492 0.000 0.000 0.496 0.004 0.008
#> GSM159914     1  0.1819     0.7520 0.932 0.000 0.004 0.032 0.008 0.024
#> GSM159915     1  0.1899     0.7492 0.928 0.000 0.004 0.032 0.008 0.028
#> GSM159916     1  0.1697     0.7505 0.936 0.000 0.004 0.036 0.004 0.020
#> GSM159917     3  0.1092     0.7878 0.000 0.000 0.960 0.020 0.000 0.020
#> GSM159867     4  0.3253     0.6748 0.016 0.088 0.000 0.852 0.016 0.028
#> GSM159868     4  0.2621     0.6763 0.004 0.044 0.004 0.896 0.028 0.024
#> GSM159869     4  0.3079     0.6611 0.008 0.064 0.008 0.872 0.024 0.024
#> GSM159870     2  0.3925     0.4359 0.012 0.800 0.000 0.008 0.096 0.084
#> GSM159871     2  0.4936     0.3942 0.008 0.712 0.008 0.008 0.164 0.100
#> GSM159872     3  0.1261     0.7893 0.000 0.004 0.956 0.008 0.028 0.004
#> GSM159873     2  0.5192     0.3399 0.000 0.652 0.008 0.252 0.024 0.064
#> GSM159874     3  0.7421     0.3705 0.000 0.172 0.412 0.316 0.040 0.060
#> GSM159875     2  0.5728     0.2827 0.000 0.572 0.012 0.296 0.012 0.108
#> GSM159876     2  0.8091    -0.1731 0.108 0.360 0.024 0.028 0.328 0.152
#> GSM159877     3  0.2050     0.7784 0.000 0.004 0.920 0.008 0.036 0.032
#> GSM159878     1  0.8225    -0.1715 0.288 0.252 0.012 0.020 0.284 0.144
#> GSM159879     2  0.1148     0.4757 0.016 0.960 0.004 0.000 0.000 0.020
#> GSM159880     2  0.0767     0.4781 0.000 0.976 0.000 0.008 0.004 0.012
#> GSM159881     2  0.1857     0.4807 0.000 0.928 0.000 0.012 0.032 0.028
#> GSM159882     2  0.1826     0.4605 0.000 0.924 0.004 0.000 0.020 0.052
#> GSM159883     2  0.1296     0.4692 0.000 0.952 0.004 0.000 0.012 0.032
#> GSM159884     2  0.1610     0.4176 0.000 0.916 0.000 0.000 0.000 0.084

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n agent(p)  dose(p)  time(p) k
#> SD:NMF 66 7.27e-07 5.76e-04 1.82e-04 2
#> SD:NMF 63 4.58e-07 6.04e-05 4.06e-04 3
#> SD:NMF 61 2.24e-08 2.09e-04 2.26e-05 4
#> SD:NMF 57 3.26e-07 3.61e-04 3.55e-07 5
#> SD:NMF 43 2.98e-06 1.74e-04 3.01e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.501           0.907       0.938         0.1623 0.888   0.888
#> 3 3 0.632           0.715       0.873         1.0494 0.920   0.909
#> 4 4 0.583           0.568       0.872         0.0624 0.920   0.901
#> 5 5 0.645           0.895       0.915         0.4454 0.681   0.577
#> 6 6 0.653           0.847       0.895         0.0806 1.000   1.000

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1   0.000      0.935 1.000 0.000
#> GSM159851     1   0.000      0.935 1.000 0.000
#> GSM159852     1   0.000      0.935 1.000 0.000
#> GSM159853     1   0.000      0.935 1.000 0.000
#> GSM159854     1   0.000      0.935 1.000 0.000
#> GSM159855     1   0.000      0.935 1.000 0.000
#> GSM159856     1   0.000      0.935 1.000 0.000
#> GSM159857     1   0.000      0.935 1.000 0.000
#> GSM159858     1   0.000      0.935 1.000 0.000
#> GSM159859     1   0.000      0.935 1.000 0.000
#> GSM159860     1   0.000      0.935 1.000 0.000
#> GSM159861     1   0.000      0.935 1.000 0.000
#> GSM159862     1   0.000      0.935 1.000 0.000
#> GSM159863     1   0.000      0.935 1.000 0.000
#> GSM159864     1   0.000      0.935 1.000 0.000
#> GSM159865     1   0.000      0.935 1.000 0.000
#> GSM159866     1   0.000      0.935 1.000 0.000
#> GSM159885     1   0.000      0.935 1.000 0.000
#> GSM159886     1   0.000      0.935 1.000 0.000
#> GSM159887     1   0.000      0.935 1.000 0.000
#> GSM159888     1   0.689      0.829 0.816 0.184
#> GSM159889     1   0.689      0.829 0.816 0.184
#> GSM159890     1   0.689      0.829 0.816 0.184
#> GSM159891     1   0.697      0.825 0.812 0.188
#> GSM159892     1   0.697      0.825 0.812 0.188
#> GSM159893     1   0.697      0.825 0.812 0.188
#> GSM159894     1   0.000      0.935 1.000 0.000
#> GSM159895     1   0.000      0.935 1.000 0.000
#> GSM159896     1   0.000      0.935 1.000 0.000
#> GSM159897     1   0.689      0.829 0.816 0.184
#> GSM159898     1   0.689      0.829 0.816 0.184
#> GSM159899     1   0.689      0.829 0.816 0.184
#> GSM159900     1   0.745      0.798 0.788 0.212
#> GSM159901     1   0.745      0.798 0.788 0.212
#> GSM159902     1   0.000      0.935 1.000 0.000
#> GSM159903     1   0.000      0.935 1.000 0.000
#> GSM159904     1   0.000      0.935 1.000 0.000
#> GSM159905     1   0.000      0.935 1.000 0.000
#> GSM159906     1   0.000      0.935 1.000 0.000
#> GSM159907     1   0.000      0.935 1.000 0.000
#> GSM159908     1   0.000      0.935 1.000 0.000
#> GSM159909     1   0.000      0.935 1.000 0.000
#> GSM159910     2   0.738      0.953 0.208 0.792
#> GSM159911     1   0.000      0.935 1.000 0.000
#> GSM159912     1   0.000      0.935 1.000 0.000
#> GSM159913     1   0.000      0.935 1.000 0.000
#> GSM159914     1   0.000      0.935 1.000 0.000
#> GSM159915     1   0.000      0.935 1.000 0.000
#> GSM159916     1   0.000      0.935 1.000 0.000
#> GSM159917     2   0.506      0.886 0.112 0.888
#> GSM159867     1   0.000      0.935 1.000 0.000
#> GSM159868     1   0.000      0.935 1.000 0.000
#> GSM159869     1   0.000      0.935 1.000 0.000
#> GSM159870     1   0.518      0.880 0.884 0.116
#> GSM159871     1   0.518      0.880 0.884 0.116
#> GSM159872     2   0.730      0.957 0.204 0.796
#> GSM159873     1   0.563      0.870 0.868 0.132
#> GSM159874     1   0.634      0.851 0.840 0.160
#> GSM159875     1   0.644      0.847 0.836 0.164
#> GSM159876     1   0.000      0.935 1.000 0.000
#> GSM159877     2   0.730      0.957 0.204 0.796
#> GSM159878     1   0.000      0.935 1.000 0.000
#> GSM159879     1   0.529      0.878 0.880 0.120
#> GSM159880     1   0.529      0.878 0.880 0.120
#> GSM159881     1   0.529      0.878 0.880 0.120
#> GSM159882     1   0.529      0.878 0.880 0.120
#> GSM159883     1   0.529      0.878 0.880 0.120
#> GSM159884     1   0.529      0.878 0.880 0.120

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1   0.595      0.839 0.640 0.360 0.000
#> GSM159851     1   0.595      0.839 0.640 0.360 0.000
#> GSM159852     1   0.595      0.839 0.640 0.360 0.000
#> GSM159853     1   0.595      0.839 0.640 0.360 0.000
#> GSM159854     1   0.595      0.839 0.640 0.360 0.000
#> GSM159855     1   0.595      0.839 0.640 0.360 0.000
#> GSM159856     1   0.595      0.839 0.640 0.360 0.000
#> GSM159857     1   0.595      0.839 0.640 0.360 0.000
#> GSM159858     1   0.595      0.839 0.640 0.360 0.000
#> GSM159859     1   0.595      0.839 0.640 0.360 0.000
#> GSM159860     1   0.595      0.839 0.640 0.360 0.000
#> GSM159861     1   0.595      0.839 0.640 0.360 0.000
#> GSM159862     1   0.595      0.839 0.640 0.360 0.000
#> GSM159863     1   0.595      0.839 0.640 0.360 0.000
#> GSM159864     1   0.595      0.839 0.640 0.360 0.000
#> GSM159865     1   0.595      0.839 0.640 0.360 0.000
#> GSM159866     1   0.595      0.839 0.640 0.360 0.000
#> GSM159885     1   0.595      0.839 0.640 0.360 0.000
#> GSM159886     1   0.595      0.839 0.640 0.360 0.000
#> GSM159887     1   0.595      0.839 0.640 0.360 0.000
#> GSM159888     1   0.334      0.284 0.880 0.120 0.000
#> GSM159889     1   0.334      0.284 0.880 0.120 0.000
#> GSM159890     1   0.334      0.284 0.880 0.120 0.000
#> GSM159891     1   0.412      0.141 0.832 0.168 0.000
#> GSM159892     1   0.412      0.141 0.832 0.168 0.000
#> GSM159893     1   0.412      0.141 0.832 0.168 0.000
#> GSM159894     1   0.595      0.839 0.640 0.360 0.000
#> GSM159895     1   0.595      0.839 0.640 0.360 0.000
#> GSM159896     1   0.595      0.839 0.640 0.360 0.000
#> GSM159897     1   0.334      0.284 0.880 0.120 0.000
#> GSM159898     1   0.334      0.284 0.880 0.120 0.000
#> GSM159899     1   0.334      0.284 0.880 0.120 0.000
#> GSM159900     2   0.656      0.918 0.416 0.576 0.008
#> GSM159901     2   0.656      0.918 0.416 0.576 0.008
#> GSM159902     1   0.595      0.839 0.640 0.360 0.000
#> GSM159903     1   0.595      0.839 0.640 0.360 0.000
#> GSM159904     1   0.595      0.839 0.640 0.360 0.000
#> GSM159905     1   0.595      0.839 0.640 0.360 0.000
#> GSM159906     1   0.595      0.839 0.640 0.360 0.000
#> GSM159907     1   0.595      0.839 0.640 0.360 0.000
#> GSM159908     1   0.595      0.839 0.640 0.360 0.000
#> GSM159909     1   0.595      0.839 0.640 0.360 0.000
#> GSM159910     3   0.369      0.946 0.048 0.056 0.896
#> GSM159911     1   0.595      0.839 0.640 0.360 0.000
#> GSM159912     1   0.595      0.839 0.640 0.360 0.000
#> GSM159913     1   0.595      0.839 0.640 0.360 0.000
#> GSM159914     1   0.595      0.839 0.640 0.360 0.000
#> GSM159915     1   0.595      0.839 0.640 0.360 0.000
#> GSM159916     1   0.595      0.839 0.640 0.360 0.000
#> GSM159917     3   0.000      0.865 0.000 0.000 1.000
#> GSM159867     1   0.595      0.839 0.640 0.360 0.000
#> GSM159868     1   0.590      0.834 0.648 0.352 0.000
#> GSM159869     1   0.588      0.832 0.652 0.348 0.000
#> GSM159870     1   0.164      0.566 0.956 0.044 0.000
#> GSM159871     1   0.196      0.580 0.944 0.056 0.000
#> GSM159872     3   0.358      0.950 0.044 0.056 0.900
#> GSM159873     1   0.265      0.467 0.928 0.060 0.012
#> GSM159874     2   0.718      0.822 0.376 0.592 0.032
#> GSM159875     1   0.378      0.236 0.864 0.132 0.004
#> GSM159876     1   0.595      0.839 0.640 0.360 0.000
#> GSM159877     3   0.358      0.950 0.044 0.056 0.900
#> GSM159878     1   0.595      0.839 0.640 0.360 0.000
#> GSM159879     1   0.000      0.511 1.000 0.000 0.000
#> GSM159880     1   0.000      0.511 1.000 0.000 0.000
#> GSM159881     1   0.000      0.511 1.000 0.000 0.000
#> GSM159882     1   0.000      0.511 1.000 0.000 0.000
#> GSM159883     1   0.000      0.511 1.000 0.000 0.000
#> GSM159884     1   0.000      0.511 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159851     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159852     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159853     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159854     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159855     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159856     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159857     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159858     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159859     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159860     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159861     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159862     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159863     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159864     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159865     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159866     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159885     1  0.0188      0.821 0.996 0.004 0.000 0.000
#> GSM159886     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159887     1  0.0188      0.821 0.996 0.004 0.000 0.000
#> GSM159888     1  0.4996     -0.325 0.516 0.484 0.000 0.000
#> GSM159889     1  0.4996     -0.325 0.516 0.484 0.000 0.000
#> GSM159890     1  0.4996     -0.325 0.516 0.484 0.000 0.000
#> GSM159891     2  0.4985      0.366 0.468 0.532 0.000 0.000
#> GSM159892     2  0.4985      0.366 0.468 0.532 0.000 0.000
#> GSM159893     2  0.4985      0.366 0.468 0.532 0.000 0.000
#> GSM159894     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159895     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159896     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159897     1  0.4996     -0.325 0.516 0.484 0.000 0.000
#> GSM159898     1  0.4996     -0.325 0.516 0.484 0.000 0.000
#> GSM159899     1  0.4996     -0.325 0.516 0.484 0.000 0.000
#> GSM159900     2  0.3333     -0.256 0.000 0.872 0.088 0.040
#> GSM159901     2  0.3333     -0.256 0.000 0.872 0.088 0.040
#> GSM159902     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159903     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159904     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159905     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159906     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159907     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159908     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159909     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159910     3  0.0657      0.956 0.012 0.004 0.984 0.000
#> GSM159911     1  0.0188      0.821 0.996 0.004 0.000 0.000
#> GSM159912     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159913     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159914     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159915     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159916     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159917     3  0.2402      0.881 0.000 0.076 0.912 0.012
#> GSM159867     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159868     1  0.0469      0.814 0.988 0.012 0.000 0.000
#> GSM159869     1  0.0592      0.811 0.984 0.016 0.000 0.000
#> GSM159870     1  0.6201      0.325 0.664 0.212 0.000 0.124
#> GSM159871     1  0.6098      0.354 0.676 0.200 0.000 0.124
#> GSM159872     3  0.0469      0.960 0.012 0.000 0.988 0.000
#> GSM159873     1  0.7008      0.108 0.588 0.252 0.004 0.156
#> GSM159874     4  0.0937      0.000 0.000 0.012 0.012 0.976
#> GSM159875     1  0.7362     -0.303 0.488 0.384 0.012 0.116
#> GSM159876     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159877     3  0.0469      0.960 0.012 0.000 0.988 0.000
#> GSM159878     1  0.0000      0.824 1.000 0.000 0.000 0.000
#> GSM159879     1  0.6547      0.199 0.616 0.260 0.000 0.124
#> GSM159880     1  0.6547      0.199 0.616 0.260 0.000 0.124
#> GSM159881     1  0.6547      0.199 0.616 0.260 0.000 0.124
#> GSM159882     1  0.6547      0.199 0.616 0.260 0.000 0.124
#> GSM159883     1  0.6547      0.199 0.616 0.260 0.000 0.124
#> GSM159884     1  0.6547      0.199 0.616 0.260 0.000 0.124

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     1  0.0290      0.985 0.992 0.000 0.000 0.008 0.000
#> GSM159851     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159852     1  0.0290      0.985 0.992 0.000 0.000 0.008 0.000
#> GSM159853     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159854     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159855     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159856     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159857     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159858     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159859     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159860     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159861     1  0.0324      0.985 0.992 0.004 0.000 0.004 0.000
#> GSM159862     1  0.0324      0.985 0.992 0.004 0.000 0.004 0.000
#> GSM159863     1  0.0324      0.985 0.992 0.004 0.000 0.004 0.000
#> GSM159864     1  0.0324      0.985 0.992 0.004 0.000 0.004 0.000
#> GSM159865     1  0.0324      0.985 0.992 0.004 0.000 0.004 0.000
#> GSM159866     1  0.0324      0.985 0.992 0.004 0.000 0.004 0.000
#> GSM159885     1  0.1364      0.958 0.952 0.036 0.000 0.012 0.000
#> GSM159886     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159887     1  0.1364      0.958 0.952 0.036 0.000 0.012 0.000
#> GSM159888     2  0.2179      0.786 0.112 0.888 0.000 0.000 0.000
#> GSM159889     2  0.2179      0.786 0.112 0.888 0.000 0.000 0.000
#> GSM159890     2  0.2179      0.786 0.112 0.888 0.000 0.000 0.000
#> GSM159891     2  0.0771      0.669 0.020 0.976 0.000 0.004 0.000
#> GSM159892     2  0.0771      0.669 0.020 0.976 0.000 0.004 0.000
#> GSM159893     2  0.0771      0.669 0.020 0.976 0.000 0.004 0.000
#> GSM159894     1  0.0579      0.982 0.984 0.008 0.000 0.008 0.000
#> GSM159895     1  0.0579      0.982 0.984 0.008 0.000 0.008 0.000
#> GSM159896     1  0.0693      0.979 0.980 0.012 0.000 0.008 0.000
#> GSM159897     2  0.2179      0.786 0.112 0.888 0.000 0.000 0.000
#> GSM159898     2  0.2179      0.786 0.112 0.888 0.000 0.000 0.000
#> GSM159899     2  0.2179      0.786 0.112 0.888 0.000 0.000 0.000
#> GSM159900     4  0.2983      0.838 0.000 0.056 0.076 0.868 0.000
#> GSM159901     4  0.4113      0.841 0.000 0.140 0.076 0.784 0.000
#> GSM159902     1  0.0693      0.979 0.980 0.012 0.000 0.008 0.000
#> GSM159903     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159904     1  0.0162      0.987 0.996 0.000 0.000 0.004 0.000
#> GSM159905     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159906     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159907     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159908     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159909     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159910     3  0.0566      0.957 0.012 0.000 0.984 0.004 0.000
#> GSM159911     1  0.1725      0.943 0.936 0.044 0.000 0.020 0.000
#> GSM159912     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159913     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159914     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159915     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159916     1  0.0000      0.988 1.000 0.000 0.000 0.000 0.000
#> GSM159917     3  0.2490      0.873 0.000 0.020 0.896 0.080 0.004
#> GSM159867     1  0.0579      0.982 0.984 0.008 0.000 0.008 0.000
#> GSM159868     1  0.1251      0.961 0.956 0.036 0.000 0.008 0.000
#> GSM159869     1  0.1408      0.953 0.948 0.044 0.000 0.008 0.000
#> GSM159870     2  0.5887      0.716 0.264 0.600 0.000 0.004 0.132
#> GSM159871     2  0.5982      0.686 0.284 0.580 0.000 0.004 0.132
#> GSM159872     3  0.0404      0.958 0.012 0.000 0.988 0.000 0.000
#> GSM159873     2  0.5747      0.670 0.212 0.620 0.000 0.000 0.168
#> GSM159874     5  0.0955      0.000 0.000 0.000 0.004 0.028 0.968
#> GSM159875     2  0.3762      0.680 0.036 0.828 0.012 0.004 0.120
#> GSM159876     1  0.0854      0.973 0.976 0.012 0.000 0.004 0.008
#> GSM159877     3  0.0404      0.958 0.012 0.000 0.988 0.000 0.000
#> GSM159878     1  0.0854      0.973 0.976 0.012 0.000 0.004 0.008
#> GSM159879     2  0.5574      0.779 0.212 0.652 0.000 0.004 0.132
#> GSM159880     2  0.5574      0.779 0.212 0.652 0.000 0.004 0.132
#> GSM159881     2  0.5574      0.779 0.212 0.652 0.000 0.004 0.132
#> GSM159882     2  0.5574      0.779 0.212 0.652 0.000 0.004 0.132
#> GSM159883     2  0.5574      0.779 0.212 0.652 0.000 0.004 0.132
#> GSM159884     2  0.5574      0.779 0.212 0.652 0.000 0.004 0.132

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM159850     1  0.0858      0.946 0.968 0.004 0.000 0.000 0.000 NA
#> GSM159851     1  0.0692      0.950 0.976 0.004 0.000 0.000 0.000 NA
#> GSM159852     1  0.0547      0.950 0.980 0.000 0.000 0.000 0.000 NA
#> GSM159853     1  0.0000      0.953 1.000 0.000 0.000 0.000 0.000 NA
#> GSM159854     1  0.0146      0.952 0.996 0.000 0.000 0.000 0.000 NA
#> GSM159855     1  0.0000      0.953 1.000 0.000 0.000 0.000 0.000 NA
#> GSM159856     1  0.0000      0.953 1.000 0.000 0.000 0.000 0.000 NA
#> GSM159857     1  0.0000      0.953 1.000 0.000 0.000 0.000 0.000 NA
#> GSM159858     1  0.0000      0.953 1.000 0.000 0.000 0.000 0.000 NA
#> GSM159859     1  0.0000      0.953 1.000 0.000 0.000 0.000 0.000 NA
#> GSM159860     1  0.0000      0.953 1.000 0.000 0.000 0.000 0.000 NA
#> GSM159861     1  0.0909      0.944 0.968 0.012 0.000 0.000 0.000 NA
#> GSM159862     1  0.0909      0.942 0.968 0.012 0.000 0.000 0.000 NA
#> GSM159863     1  0.0909      0.942 0.968 0.012 0.000 0.000 0.000 NA
#> GSM159864     1  0.0909      0.942 0.968 0.012 0.000 0.000 0.000 NA
#> GSM159865     1  0.0909      0.942 0.968 0.012 0.000 0.000 0.000 NA
#> GSM159866     1  0.0909      0.942 0.968 0.012 0.000 0.000 0.000 NA
#> GSM159885     1  0.3788      0.742 0.740 0.020 0.000 0.000 0.008 NA
#> GSM159886     1  0.0146      0.953 0.996 0.000 0.000 0.000 0.000 NA
#> GSM159887     1  0.3788      0.742 0.740 0.020 0.000 0.000 0.008 NA
#> GSM159888     2  0.4328      0.783 0.092 0.716 0.000 0.000 0.000 NA
#> GSM159889     2  0.4328      0.783 0.092 0.716 0.000 0.000 0.000 NA
#> GSM159890     2  0.4328      0.783 0.092 0.716 0.000 0.000 0.000 NA
#> GSM159891     2  0.2933      0.678 0.000 0.796 0.000 0.004 0.000 NA
#> GSM159892     2  0.2933      0.678 0.000 0.796 0.000 0.004 0.000 NA
#> GSM159893     2  0.2933      0.678 0.000 0.796 0.000 0.004 0.000 NA
#> GSM159894     1  0.1563      0.929 0.932 0.012 0.000 0.000 0.000 NA
#> GSM159895     1  0.1686      0.925 0.924 0.012 0.000 0.000 0.000 NA
#> GSM159896     1  0.1802      0.920 0.916 0.012 0.000 0.000 0.000 NA
#> GSM159897     2  0.4328      0.783 0.092 0.716 0.000 0.000 0.000 NA
#> GSM159898     2  0.4328      0.783 0.092 0.716 0.000 0.000 0.000 NA
#> GSM159899     2  0.4328      0.783 0.092 0.716 0.000 0.000 0.000 NA
#> GSM159900     4  0.0260      0.797 0.000 0.000 0.008 0.992 0.000 NA
#> GSM159901     4  0.2467      0.800 0.000 0.008 0.008 0.880 0.004 NA
#> GSM159902     1  0.2695      0.856 0.844 0.008 0.000 0.000 0.004 NA
#> GSM159903     1  0.0603      0.950 0.980 0.004 0.000 0.000 0.000 NA
#> GSM159904     1  0.1082      0.942 0.956 0.004 0.000 0.000 0.000 NA
#> GSM159905     1  0.0000      0.953 1.000 0.000 0.000 0.000 0.000 NA
#> GSM159906     1  0.0000      0.953 1.000 0.000 0.000 0.000 0.000 NA
#> GSM159907     1  0.0000      0.953 1.000 0.000 0.000 0.000 0.000 NA
#> GSM159908     1  0.0363      0.952 0.988 0.000 0.000 0.000 0.000 NA
#> GSM159909     1  0.0632      0.950 0.976 0.000 0.000 0.000 0.000 NA
#> GSM159910     3  0.0291      0.866 0.004 0.000 0.992 0.004 0.000 NA
#> GSM159911     1  0.4358      0.540 0.620 0.020 0.000 0.000 0.008 NA
#> GSM159912     1  0.0146      0.952 0.996 0.000 0.000 0.000 0.000 NA
#> GSM159913     1  0.0260      0.952 0.992 0.000 0.000 0.000 0.000 NA
#> GSM159914     1  0.0000      0.953 1.000 0.000 0.000 0.000 0.000 NA
#> GSM159915     1  0.0000      0.953 1.000 0.000 0.000 0.000 0.000 NA
#> GSM159916     1  0.0000      0.953 1.000 0.000 0.000 0.000 0.000 NA
#> GSM159917     3  0.4109      0.531 0.000 0.000 0.596 0.008 0.004 NA
#> GSM159867     1  0.1769      0.925 0.924 0.012 0.000 0.000 0.004 NA
#> GSM159868     1  0.2504      0.896 0.880 0.028 0.000 0.000 0.004 NA
#> GSM159869     1  0.2728      0.883 0.864 0.032 0.000 0.000 0.004 NA
#> GSM159870     2  0.2941      0.722 0.220 0.780 0.000 0.000 0.000 NA
#> GSM159871     2  0.3076      0.694 0.240 0.760 0.000 0.000 0.000 NA
#> GSM159872     3  0.0146      0.868 0.004 0.000 0.996 0.000 0.000 NA
#> GSM159873     2  0.4068      0.644 0.156 0.772 0.000 0.000 0.036 NA
#> GSM159874     5  0.0508      0.000 0.000 0.012 0.004 0.000 0.984 NA
#> GSM159875     2  0.2245      0.658 0.000 0.904 0.012 0.004 0.012 NA
#> GSM159876     1  0.0937      0.936 0.960 0.040 0.000 0.000 0.000 NA
#> GSM159877     3  0.0146      0.868 0.004 0.000 0.996 0.000 0.000 NA
#> GSM159878     1  0.0937      0.936 0.960 0.040 0.000 0.000 0.000 NA
#> GSM159879     2  0.2527      0.779 0.168 0.832 0.000 0.000 0.000 NA
#> GSM159880     2  0.2527      0.779 0.168 0.832 0.000 0.000 0.000 NA
#> GSM159881     2  0.2527      0.779 0.168 0.832 0.000 0.000 0.000 NA
#> GSM159882     2  0.2527      0.779 0.168 0.832 0.000 0.000 0.000 NA
#> GSM159883     2  0.2527      0.779 0.168 0.832 0.000 0.000 0.000 NA
#> GSM159884     2  0.2527      0.779 0.168 0.832 0.000 0.000 0.000 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n agent(p) dose(p)  time(p) k
#> CV:hclust 68 2.33e-01  0.4876 0.694750 2
#> CV:hclust 57 7.87e-02  0.4392 0.047776 3
#> CV:hclust 46 1.13e-01  0.2667 0.327662 4
#> CV:hclust 67 1.18e-05  0.0109 0.000806 5
#> CV:hclust 67 1.18e-05  0.0109 0.000806 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.701           0.963       0.971         0.4430 0.536   0.536
#> 3 3 0.784           0.904       0.927         0.2441 0.896   0.811
#> 4 4 0.685           0.715       0.828         0.2072 0.847   0.674
#> 5 5 0.680           0.762       0.809         0.0984 0.897   0.693
#> 6 6 0.707           0.659       0.746         0.0676 0.924   0.705

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1  0.0376      0.993 0.996 0.004
#> GSM159851     1  0.0000      0.993 1.000 0.000
#> GSM159852     1  0.0000      0.993 1.000 0.000
#> GSM159853     1  0.0000      0.993 1.000 0.000
#> GSM159854     1  0.0000      0.993 1.000 0.000
#> GSM159855     1  0.0000      0.993 1.000 0.000
#> GSM159856     1  0.0000      0.993 1.000 0.000
#> GSM159857     1  0.0000      0.993 1.000 0.000
#> GSM159858     1  0.0000      0.993 1.000 0.000
#> GSM159859     1  0.0000      0.993 1.000 0.000
#> GSM159860     1  0.0000      0.993 1.000 0.000
#> GSM159861     1  0.0376      0.993 0.996 0.004
#> GSM159862     1  0.0376      0.993 0.996 0.004
#> GSM159863     1  0.0376      0.993 0.996 0.004
#> GSM159864     1  0.0376      0.993 0.996 0.004
#> GSM159865     1  0.0376      0.993 0.996 0.004
#> GSM159866     1  0.0376      0.993 0.996 0.004
#> GSM159885     1  0.0376      0.993 0.996 0.004
#> GSM159886     1  0.0000      0.993 1.000 0.000
#> GSM159887     1  0.0376      0.993 0.996 0.004
#> GSM159888     2  0.5946      0.912 0.144 0.856
#> GSM159889     2  0.5946      0.912 0.144 0.856
#> GSM159890     2  0.5946      0.912 0.144 0.856
#> GSM159891     2  0.0376      0.924 0.004 0.996
#> GSM159892     2  0.0376      0.924 0.004 0.996
#> GSM159893     2  0.0376      0.924 0.004 0.996
#> GSM159894     1  0.0000      0.993 1.000 0.000
#> GSM159895     1  0.0376      0.993 0.996 0.004
#> GSM159896     1  0.0376      0.993 0.996 0.004
#> GSM159897     2  0.5408      0.917 0.124 0.876
#> GSM159898     2  0.5842      0.913 0.140 0.860
#> GSM159899     2  0.5408      0.917 0.124 0.876
#> GSM159900     2  0.0000      0.924 0.000 1.000
#> GSM159901     2  0.0000      0.924 0.000 1.000
#> GSM159902     1  0.0376      0.993 0.996 0.004
#> GSM159903     1  0.0000      0.993 1.000 0.000
#> GSM159904     1  0.0376      0.993 0.996 0.004
#> GSM159905     1  0.0000      0.993 1.000 0.000
#> GSM159906     1  0.0000      0.993 1.000 0.000
#> GSM159907     1  0.0000      0.993 1.000 0.000
#> GSM159908     1  0.0376      0.993 0.996 0.004
#> GSM159909     1  0.0376      0.993 0.996 0.004
#> GSM159910     2  0.0000      0.924 0.000 1.000
#> GSM159911     1  0.0376      0.993 0.996 0.004
#> GSM159912     1  0.0000      0.993 1.000 0.000
#> GSM159913     1  0.0000      0.993 1.000 0.000
#> GSM159914     1  0.0000      0.993 1.000 0.000
#> GSM159915     1  0.0000      0.993 1.000 0.000
#> GSM159916     1  0.0000      0.993 1.000 0.000
#> GSM159917     2  0.0000      0.924 0.000 1.000
#> GSM159867     1  0.0376      0.993 0.996 0.004
#> GSM159868     1  0.0376      0.993 0.996 0.004
#> GSM159869     1  0.0376      0.993 0.996 0.004
#> GSM159870     1  0.5408      0.845 0.876 0.124
#> GSM159871     1  0.3584      0.919 0.932 0.068
#> GSM159872     2  0.0000      0.924 0.000 1.000
#> GSM159873     2  0.0000      0.924 0.000 1.000
#> GSM159874     2  0.0000      0.924 0.000 1.000
#> GSM159875     2  0.0000      0.924 0.000 1.000
#> GSM159876     1  0.0000      0.993 1.000 0.000
#> GSM159877     2  0.0000      0.924 0.000 1.000
#> GSM159878     1  0.0000      0.993 1.000 0.000
#> GSM159879     2  0.5946      0.912 0.144 0.856
#> GSM159880     2  0.5946      0.912 0.144 0.856
#> GSM159881     2  0.5946      0.912 0.144 0.856
#> GSM159882     2  0.5946      0.912 0.144 0.856
#> GSM159883     2  0.5946      0.912 0.144 0.856
#> GSM159884     2  0.5946      0.912 0.144 0.856

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1  0.0747      0.959 0.984 0.000 0.016
#> GSM159851     1  0.0237      0.961 0.996 0.004 0.000
#> GSM159852     1  0.0237      0.961 0.996 0.004 0.000
#> GSM159853     1  0.0237      0.961 0.996 0.004 0.000
#> GSM159854     1  0.0237      0.961 0.996 0.004 0.000
#> GSM159855     1  0.0000      0.961 1.000 0.000 0.000
#> GSM159856     1  0.0475      0.961 0.992 0.004 0.004
#> GSM159857     1  0.0237      0.961 0.996 0.004 0.000
#> GSM159858     1  0.0475      0.961 0.992 0.004 0.004
#> GSM159859     1  0.0475      0.961 0.992 0.004 0.004
#> GSM159860     1  0.0475      0.961 0.992 0.004 0.004
#> GSM159861     1  0.3377      0.917 0.896 0.012 0.092
#> GSM159862     1  0.3377      0.917 0.896 0.012 0.092
#> GSM159863     1  0.3377      0.917 0.896 0.012 0.092
#> GSM159864     1  0.3610      0.914 0.888 0.016 0.096
#> GSM159865     1  0.3610      0.914 0.888 0.016 0.096
#> GSM159866     1  0.3610      0.914 0.888 0.016 0.096
#> GSM159885     1  0.3293      0.933 0.900 0.012 0.088
#> GSM159886     1  0.0475      0.961 0.992 0.004 0.004
#> GSM159887     1  0.3293      0.933 0.900 0.012 0.088
#> GSM159888     2  0.1482      0.877 0.020 0.968 0.012
#> GSM159889     2  0.1482      0.877 0.020 0.968 0.012
#> GSM159890     2  0.1482      0.877 0.020 0.968 0.012
#> GSM159891     2  0.1529      0.862 0.000 0.960 0.040
#> GSM159892     2  0.1529      0.862 0.000 0.960 0.040
#> GSM159893     2  0.1529      0.862 0.000 0.960 0.040
#> GSM159894     1  0.2939      0.942 0.916 0.012 0.072
#> GSM159895     1  0.3031      0.940 0.912 0.012 0.076
#> GSM159896     1  0.3120      0.938 0.908 0.012 0.080
#> GSM159897     2  0.1620      0.874 0.012 0.964 0.024
#> GSM159898     2  0.1774      0.875 0.016 0.960 0.024
#> GSM159899     2  0.1620      0.874 0.012 0.964 0.024
#> GSM159900     3  0.4346      0.946 0.000 0.184 0.816
#> GSM159901     3  0.4346      0.946 0.000 0.184 0.816
#> GSM159902     1  0.2066      0.950 0.940 0.000 0.060
#> GSM159903     1  0.1411      0.957 0.964 0.000 0.036
#> GSM159904     1  0.1753      0.953 0.952 0.000 0.048
#> GSM159905     1  0.0475      0.961 0.992 0.004 0.004
#> GSM159906     1  0.0475      0.961 0.992 0.004 0.004
#> GSM159907     1  0.0475      0.961 0.992 0.004 0.004
#> GSM159908     1  0.1860      0.953 0.948 0.000 0.052
#> GSM159909     1  0.2066      0.950 0.940 0.000 0.060
#> GSM159910     3  0.3686      0.972 0.000 0.140 0.860
#> GSM159911     1  0.2945      0.938 0.908 0.004 0.088
#> GSM159912     1  0.0475      0.961 0.992 0.004 0.004
#> GSM159913     1  0.1529      0.954 0.960 0.000 0.040
#> GSM159914     1  0.0475      0.961 0.992 0.004 0.004
#> GSM159915     1  0.0475      0.961 0.992 0.004 0.004
#> GSM159916     1  0.0475      0.961 0.992 0.004 0.004
#> GSM159917     3  0.3551      0.975 0.000 0.132 0.868
#> GSM159867     1  0.2845      0.944 0.920 0.012 0.068
#> GSM159868     1  0.3293      0.933 0.900 0.012 0.088
#> GSM159869     1  0.3293      0.933 0.900 0.012 0.088
#> GSM159870     2  0.5911      0.695 0.156 0.784 0.060
#> GSM159871     2  0.6767      0.593 0.216 0.720 0.064
#> GSM159872     3  0.3551      0.975 0.000 0.132 0.868
#> GSM159873     2  0.5325      0.646 0.004 0.748 0.248
#> GSM159874     3  0.3619      0.974 0.000 0.136 0.864
#> GSM159875     2  0.6308     -0.128 0.000 0.508 0.492
#> GSM159876     1  0.0237      0.961 0.996 0.004 0.000
#> GSM159877     3  0.3551      0.975 0.000 0.132 0.868
#> GSM159878     1  0.0475      0.961 0.992 0.004 0.004
#> GSM159879     2  0.2743      0.873 0.020 0.928 0.052
#> GSM159880     2  0.2743      0.873 0.020 0.928 0.052
#> GSM159881     2  0.2743      0.873 0.020 0.928 0.052
#> GSM159882     2  0.2636      0.874 0.020 0.932 0.048
#> GSM159883     2  0.2636      0.874 0.020 0.932 0.048
#> GSM159884     2  0.2636      0.874 0.020 0.932 0.048

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.2011    0.74292 0.920 0.000 0.000 0.080
#> GSM159851     1  0.0336    0.80798 0.992 0.000 0.000 0.008
#> GSM159852     1  0.0188    0.80858 0.996 0.000 0.000 0.004
#> GSM159853     1  0.0336    0.80849 0.992 0.000 0.000 0.008
#> GSM159854     1  0.0188    0.80858 0.996 0.000 0.000 0.004
#> GSM159855     1  0.0336    0.80849 0.992 0.000 0.000 0.008
#> GSM159856     1  0.0592    0.80630 0.984 0.000 0.000 0.016
#> GSM159857     1  0.0469    0.80749 0.988 0.000 0.000 0.012
#> GSM159858     1  0.0469    0.80752 0.988 0.000 0.000 0.012
#> GSM159859     1  0.0336    0.80854 0.992 0.000 0.000 0.008
#> GSM159860     1  0.0336    0.80854 0.992 0.000 0.000 0.008
#> GSM159861     1  0.5186    0.48945 0.640 0.000 0.016 0.344
#> GSM159862     1  0.5186    0.48945 0.640 0.000 0.016 0.344
#> GSM159863     1  0.5186    0.48945 0.640 0.000 0.016 0.344
#> GSM159864     1  0.5173    0.51264 0.660 0.000 0.020 0.320
#> GSM159865     1  0.5173    0.51264 0.660 0.000 0.020 0.320
#> GSM159866     1  0.5173    0.51264 0.660 0.000 0.020 0.320
#> GSM159885     4  0.4855    0.74953 0.400 0.000 0.000 0.600
#> GSM159886     1  0.0188    0.80816 0.996 0.000 0.000 0.004
#> GSM159887     4  0.4866    0.74907 0.404 0.000 0.000 0.596
#> GSM159888     2  0.0000    0.87107 0.000 1.000 0.000 0.000
#> GSM159889     2  0.0000    0.87107 0.000 1.000 0.000 0.000
#> GSM159890     2  0.0000    0.87107 0.000 1.000 0.000 0.000
#> GSM159891     2  0.1305    0.85824 0.000 0.960 0.004 0.036
#> GSM159892     2  0.1305    0.85824 0.000 0.960 0.004 0.036
#> GSM159893     2  0.1305    0.85824 0.000 0.960 0.004 0.036
#> GSM159894     4  0.4877    0.74315 0.408 0.000 0.000 0.592
#> GSM159895     4  0.4877    0.74315 0.408 0.000 0.000 0.592
#> GSM159896     4  0.4855    0.75008 0.400 0.000 0.000 0.600
#> GSM159897     2  0.0524    0.86871 0.000 0.988 0.004 0.008
#> GSM159898     2  0.0524    0.86871 0.000 0.988 0.004 0.008
#> GSM159899     2  0.0524    0.86871 0.000 0.988 0.004 0.008
#> GSM159900     3  0.3948    0.91703 0.000 0.064 0.840 0.096
#> GSM159901     3  0.4022    0.91464 0.000 0.068 0.836 0.096
#> GSM159902     1  0.5147   -0.38922 0.536 0.000 0.004 0.460
#> GSM159903     1  0.3710    0.56514 0.804 0.000 0.004 0.192
#> GSM159904     1  0.4456    0.35928 0.716 0.000 0.004 0.280
#> GSM159905     1  0.0376    0.80758 0.992 0.000 0.004 0.004
#> GSM159906     1  0.0376    0.80758 0.992 0.000 0.004 0.004
#> GSM159907     1  0.0376    0.80758 0.992 0.000 0.004 0.004
#> GSM159908     1  0.4655    0.27428 0.684 0.000 0.004 0.312
#> GSM159909     1  0.4936    0.01682 0.624 0.000 0.004 0.372
#> GSM159910     3  0.0779    0.95195 0.000 0.016 0.980 0.004
#> GSM159911     4  0.5039    0.74361 0.404 0.000 0.004 0.592
#> GSM159912     1  0.0376    0.80758 0.992 0.000 0.004 0.004
#> GSM159913     1  0.3105    0.64403 0.856 0.000 0.004 0.140
#> GSM159914     1  0.0376    0.80758 0.992 0.000 0.004 0.004
#> GSM159915     1  0.0376    0.80758 0.992 0.000 0.004 0.004
#> GSM159916     1  0.0376    0.80758 0.992 0.000 0.004 0.004
#> GSM159917     3  0.1059    0.95025 0.000 0.012 0.972 0.016
#> GSM159867     4  0.4941    0.67489 0.436 0.000 0.000 0.564
#> GSM159868     4  0.5125    0.74344 0.388 0.000 0.008 0.604
#> GSM159869     4  0.5004    0.74555 0.392 0.000 0.004 0.604
#> GSM159870     2  0.5931    0.80122 0.052 0.728 0.040 0.180
#> GSM159871     2  0.6641    0.73752 0.076 0.672 0.040 0.212
#> GSM159872     3  0.0804    0.95216 0.000 0.012 0.980 0.008
#> GSM159873     4  0.6449    0.00522 0.000 0.220 0.140 0.640
#> GSM159874     3  0.2867    0.93147 0.000 0.012 0.884 0.104
#> GSM159875     4  0.7803   -0.38318 0.000 0.252 0.352 0.396
#> GSM159876     1  0.0921    0.79894 0.972 0.000 0.000 0.028
#> GSM159877     3  0.0804    0.95216 0.000 0.012 0.980 0.008
#> GSM159878     1  0.0921    0.79894 0.972 0.000 0.000 0.028
#> GSM159879     2  0.4507    0.84846 0.000 0.788 0.044 0.168
#> GSM159880     2  0.4507    0.84846 0.000 0.788 0.044 0.168
#> GSM159881     2  0.4507    0.84846 0.000 0.788 0.044 0.168
#> GSM159882     2  0.4417    0.85198 0.000 0.796 0.044 0.160
#> GSM159883     2  0.4417    0.85198 0.000 0.796 0.044 0.160
#> GSM159884     2  0.4417    0.85198 0.000 0.796 0.044 0.160

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     1  0.3146     0.7169 0.844 0.000 0.000 0.128 0.028
#> GSM159851     1  0.1750     0.8306 0.936 0.000 0.000 0.036 0.028
#> GSM159852     1  0.1106     0.8402 0.964 0.000 0.000 0.012 0.024
#> GSM159853     1  0.1444     0.8284 0.948 0.000 0.000 0.012 0.040
#> GSM159854     1  0.1469     0.8388 0.948 0.000 0.000 0.016 0.036
#> GSM159855     1  0.1281     0.8320 0.956 0.000 0.000 0.012 0.032
#> GSM159856     1  0.1124     0.8261 0.960 0.000 0.000 0.004 0.036
#> GSM159857     1  0.1331     0.8255 0.952 0.000 0.000 0.008 0.040
#> GSM159858     1  0.0404     0.8414 0.988 0.000 0.000 0.000 0.012
#> GSM159859     1  0.0404     0.8414 0.988 0.000 0.000 0.000 0.012
#> GSM159860     1  0.0290     0.8428 0.992 0.000 0.000 0.000 0.008
#> GSM159861     5  0.6037     0.8817 0.392 0.000 0.000 0.120 0.488
#> GSM159862     5  0.6094     0.8716 0.384 0.000 0.000 0.128 0.488
#> GSM159863     5  0.6037     0.8817 0.392 0.000 0.000 0.120 0.488
#> GSM159864     5  0.5044     0.8758 0.464 0.000 0.000 0.032 0.504
#> GSM159865     5  0.5044     0.8758 0.464 0.000 0.000 0.032 0.504
#> GSM159866     5  0.5044     0.8758 0.464 0.000 0.000 0.032 0.504
#> GSM159885     4  0.3183     0.8041 0.156 0.000 0.000 0.828 0.016
#> GSM159886     1  0.0162     0.8459 0.996 0.000 0.000 0.004 0.000
#> GSM159887     4  0.3183     0.8041 0.156 0.000 0.000 0.828 0.016
#> GSM159888     2  0.0000     0.8084 0.000 1.000 0.000 0.000 0.000
#> GSM159889     2  0.0000     0.8084 0.000 1.000 0.000 0.000 0.000
#> GSM159890     2  0.0000     0.8084 0.000 1.000 0.000 0.000 0.000
#> GSM159891     2  0.2331     0.7682 0.000 0.900 0.000 0.020 0.080
#> GSM159892     2  0.2331     0.7682 0.000 0.900 0.000 0.020 0.080
#> GSM159893     2  0.2331     0.7682 0.000 0.900 0.000 0.020 0.080
#> GSM159894     4  0.3163     0.8039 0.164 0.000 0.000 0.824 0.012
#> GSM159895     4  0.3163     0.8039 0.164 0.000 0.000 0.824 0.012
#> GSM159896     4  0.3123     0.8047 0.160 0.000 0.000 0.828 0.012
#> GSM159897     2  0.0898     0.8014 0.000 0.972 0.000 0.008 0.020
#> GSM159898     2  0.0798     0.8029 0.000 0.976 0.000 0.008 0.016
#> GSM159899     2  0.0798     0.8029 0.000 0.976 0.000 0.008 0.016
#> GSM159900     3  0.5217     0.8264 0.000 0.016 0.676 0.056 0.252
#> GSM159901     3  0.5656     0.8136 0.000 0.032 0.648 0.060 0.260
#> GSM159902     4  0.4637     0.6355 0.292 0.000 0.000 0.672 0.036
#> GSM159903     1  0.3863     0.5711 0.772 0.000 0.000 0.200 0.028
#> GSM159904     1  0.4747     0.3191 0.636 0.000 0.000 0.332 0.032
#> GSM159905     1  0.0992     0.8431 0.968 0.000 0.000 0.008 0.024
#> GSM159906     1  0.0898     0.8438 0.972 0.000 0.000 0.008 0.020
#> GSM159907     1  0.0898     0.8438 0.972 0.000 0.000 0.008 0.020
#> GSM159908     1  0.5003     0.0329 0.544 0.000 0.000 0.424 0.032
#> GSM159909     4  0.5118     0.3688 0.412 0.000 0.000 0.548 0.040
#> GSM159910     3  0.0000     0.8812 0.000 0.000 1.000 0.000 0.000
#> GSM159911     4  0.3359     0.8024 0.164 0.000 0.000 0.816 0.020
#> GSM159912     1  0.1082     0.8418 0.964 0.000 0.000 0.008 0.028
#> GSM159913     1  0.3495     0.6452 0.812 0.000 0.000 0.160 0.028
#> GSM159914     1  0.0992     0.8431 0.968 0.000 0.000 0.008 0.024
#> GSM159915     1  0.0992     0.8431 0.968 0.000 0.000 0.008 0.024
#> GSM159916     1  0.0992     0.8431 0.968 0.000 0.000 0.008 0.024
#> GSM159917     3  0.0771     0.8740 0.000 0.000 0.976 0.004 0.020
#> GSM159867     4  0.3687     0.7796 0.180 0.000 0.000 0.792 0.028
#> GSM159868     4  0.2929     0.8053 0.152 0.000 0.000 0.840 0.008
#> GSM159869     4  0.3141     0.8053 0.152 0.000 0.000 0.832 0.016
#> GSM159870     2  0.6149     0.7694 0.020 0.660 0.016 0.136 0.168
#> GSM159871     2  0.6842     0.7041 0.028 0.588 0.016 0.176 0.192
#> GSM159872     3  0.0000     0.8812 0.000 0.000 1.000 0.000 0.000
#> GSM159873     4  0.5437     0.2245 0.000 0.044 0.024 0.636 0.296
#> GSM159874     3  0.5013     0.8179 0.000 0.000 0.680 0.080 0.240
#> GSM159875     4  0.7487    -0.1938 0.000 0.072 0.148 0.416 0.364
#> GSM159876     1  0.1983     0.7884 0.924 0.008 0.000 0.008 0.060
#> GSM159877     3  0.0000     0.8812 0.000 0.000 1.000 0.000 0.000
#> GSM159878     1  0.1571     0.8063 0.936 0.000 0.000 0.004 0.060
#> GSM159879     2  0.5477     0.7909 0.000 0.692 0.016 0.132 0.160
#> GSM159880     2  0.5477     0.7909 0.000 0.692 0.016 0.132 0.160
#> GSM159881     2  0.5477     0.7909 0.000 0.692 0.016 0.132 0.160
#> GSM159882     2  0.5471     0.7915 0.000 0.692 0.016 0.128 0.164
#> GSM159883     2  0.5471     0.7915 0.000 0.692 0.016 0.128 0.164
#> GSM159884     2  0.5471     0.7915 0.000 0.692 0.016 0.128 0.164

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM159850     1  0.3350     0.7462 0.824 0.000 0.000 0.124 0.040 0.012
#> GSM159851     1  0.1793     0.8548 0.928 0.000 0.000 0.012 0.048 0.012
#> GSM159852     1  0.1196     0.8567 0.952 0.000 0.000 0.000 0.040 0.008
#> GSM159853     1  0.1524     0.8532 0.932 0.000 0.000 0.000 0.060 0.008
#> GSM159854     1  0.1500     0.8580 0.936 0.000 0.000 0.000 0.052 0.012
#> GSM159855     1  0.1462     0.8542 0.936 0.000 0.000 0.000 0.056 0.008
#> GSM159856     1  0.1398     0.8502 0.940 0.000 0.000 0.000 0.052 0.008
#> GSM159857     1  0.1524     0.8532 0.932 0.000 0.000 0.000 0.060 0.008
#> GSM159858     1  0.0363     0.8646 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM159859     1  0.0508     0.8645 0.984 0.000 0.000 0.000 0.012 0.004
#> GSM159860     1  0.0405     0.8653 0.988 0.000 0.000 0.000 0.008 0.004
#> GSM159861     5  0.4794     0.8948 0.228 0.000 0.000 0.100 0.668 0.004
#> GSM159862     5  0.4775     0.8998 0.232 0.000 0.000 0.096 0.668 0.004
#> GSM159863     5  0.4775     0.8998 0.232 0.000 0.000 0.096 0.668 0.004
#> GSM159864     5  0.4906     0.9014 0.284 0.024 0.000 0.028 0.652 0.012
#> GSM159865     5  0.4906     0.9014 0.284 0.024 0.000 0.028 0.652 0.012
#> GSM159866     5  0.4906     0.9014 0.284 0.024 0.000 0.028 0.652 0.012
#> GSM159885     4  0.3456     0.7809 0.024 0.044 0.000 0.852 0.032 0.048
#> GSM159886     1  0.0520     0.8663 0.984 0.000 0.000 0.000 0.008 0.008
#> GSM159887     4  0.3382     0.7806 0.024 0.044 0.000 0.856 0.028 0.048
#> GSM159888     2  0.3864    -0.5771 0.000 0.520 0.000 0.000 0.000 0.480
#> GSM159889     2  0.3864    -0.5771 0.000 0.520 0.000 0.000 0.000 0.480
#> GSM159890     2  0.3864    -0.5771 0.000 0.520 0.000 0.000 0.000 0.480
#> GSM159891     6  0.4015     0.6483 0.000 0.396 0.000 0.004 0.004 0.596
#> GSM159892     6  0.4118     0.6477 0.000 0.396 0.000 0.004 0.008 0.592
#> GSM159893     6  0.4118     0.6477 0.000 0.396 0.000 0.004 0.008 0.592
#> GSM159894     4  0.2688     0.7971 0.036 0.040 0.000 0.892 0.020 0.012
#> GSM159895     4  0.2497     0.7974 0.032 0.040 0.000 0.896 0.032 0.000
#> GSM159896     4  0.2497     0.7974 0.032 0.040 0.000 0.896 0.032 0.000
#> GSM159897     6  0.3860     0.6078 0.000 0.472 0.000 0.000 0.000 0.528
#> GSM159898     6  0.3860     0.6078 0.000 0.472 0.000 0.000 0.000 0.528
#> GSM159899     6  0.3860     0.6078 0.000 0.472 0.000 0.000 0.000 0.528
#> GSM159900     3  0.6350     0.6924 0.000 0.000 0.492 0.048 0.144 0.316
#> GSM159901     3  0.6401     0.6748 0.000 0.000 0.468 0.048 0.144 0.340
#> GSM159902     4  0.4491     0.6829 0.140 0.000 0.000 0.752 0.052 0.056
#> GSM159903     1  0.5530     0.4710 0.624 0.000 0.000 0.248 0.072 0.056
#> GSM159904     4  0.6184     0.1011 0.424 0.000 0.000 0.428 0.092 0.056
#> GSM159905     1  0.2670     0.8312 0.884 0.000 0.000 0.020 0.052 0.044
#> GSM159906     1  0.2046     0.8456 0.916 0.000 0.000 0.008 0.044 0.032
#> GSM159907     1  0.2147     0.8441 0.912 0.000 0.000 0.012 0.044 0.032
#> GSM159908     4  0.6128     0.3408 0.348 0.000 0.000 0.500 0.100 0.052
#> GSM159909     4  0.5640     0.5342 0.224 0.000 0.000 0.624 0.104 0.048
#> GSM159910     3  0.0000     0.7885 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159911     4  0.3094     0.7846 0.032 0.024 0.000 0.872 0.024 0.048
#> GSM159912     1  0.2798     0.8271 0.876 0.000 0.000 0.020 0.056 0.048
#> GSM159913     1  0.4762     0.6387 0.724 0.000 0.000 0.164 0.056 0.056
#> GSM159914     1  0.2670     0.8312 0.884 0.000 0.000 0.020 0.052 0.044
#> GSM159915     1  0.2583     0.8334 0.888 0.000 0.000 0.016 0.052 0.044
#> GSM159916     1  0.2670     0.8312 0.884 0.000 0.000 0.020 0.052 0.044
#> GSM159917     3  0.1633     0.7626 0.000 0.000 0.932 0.000 0.044 0.024
#> GSM159867     4  0.3136     0.7845 0.044 0.040 0.000 0.868 0.036 0.012
#> GSM159868     4  0.2511     0.7906 0.024 0.044 0.000 0.900 0.024 0.008
#> GSM159869     4  0.2529     0.7862 0.024 0.044 0.000 0.900 0.012 0.020
#> GSM159870     2  0.1414     0.6007 0.020 0.952 0.000 0.012 0.004 0.012
#> GSM159871     2  0.2364     0.5563 0.036 0.908 0.000 0.032 0.012 0.012
#> GSM159872     3  0.0000     0.7885 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159873     2  0.6761    -0.0109 0.000 0.428 0.004 0.332 0.048 0.188
#> GSM159874     3  0.6709     0.6856 0.000 0.004 0.484 0.072 0.144 0.296
#> GSM159875     6  0.7926    -0.2726 0.000 0.336 0.052 0.148 0.116 0.348
#> GSM159876     1  0.2394     0.8197 0.900 0.036 0.000 0.004 0.052 0.008
#> GSM159877     3  0.0000     0.7885 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159878     1  0.2082     0.8341 0.916 0.020 0.000 0.004 0.052 0.008
#> GSM159879     2  0.0260     0.6296 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM159880     2  0.0260     0.6296 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM159881     2  0.0260     0.6296 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM159882     2  0.0000     0.6279 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159883     2  0.0000     0.6279 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159884     2  0.0000     0.6279 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n agent(p)  dose(p)  time(p) k
#> CV:kmeans 68 1.87e-05 1.25e-03 1.69e-04 2
#> CV:kmeans 67 3.07e-05 7.17e-03 1.19e-04 3
#> CV:kmeans 59 2.54e-06 5.68e-04 2.34e-06 4
#> CV:kmeans 63 2.94e-07 2.77e-05 5.72e-10 5
#> CV:kmeans 60 2.36e-10 5.13e-05 1.17e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.907           0.889       0.958         0.4939 0.508   0.508
#> 3 3 0.763           0.873       0.924         0.3066 0.783   0.599
#> 4 4 0.569           0.598       0.778         0.1446 0.876   0.669
#> 5 5 0.570           0.578       0.705         0.0701 0.899   0.667
#> 6 6 0.595           0.528       0.649         0.0446 0.987   0.945

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1  0.0000     0.9490 1.000 0.000
#> GSM159851     1  0.0000     0.9490 1.000 0.000
#> GSM159852     1  0.0000     0.9490 1.000 0.000
#> GSM159853     1  0.0000     0.9490 1.000 0.000
#> GSM159854     1  0.0000     0.9490 1.000 0.000
#> GSM159855     1  0.0000     0.9490 1.000 0.000
#> GSM159856     1  0.0000     0.9490 1.000 0.000
#> GSM159857     1  0.0000     0.9490 1.000 0.000
#> GSM159858     1  0.0000     0.9490 1.000 0.000
#> GSM159859     1  0.0000     0.9490 1.000 0.000
#> GSM159860     1  0.0000     0.9490 1.000 0.000
#> GSM159861     1  0.0000     0.9490 1.000 0.000
#> GSM159862     1  0.0000     0.9490 1.000 0.000
#> GSM159863     1  0.0000     0.9490 1.000 0.000
#> GSM159864     1  0.0000     0.9490 1.000 0.000
#> GSM159865     1  0.0000     0.9490 1.000 0.000
#> GSM159866     1  0.0000     0.9490 1.000 0.000
#> GSM159885     2  0.9754     0.2502 0.408 0.592
#> GSM159886     1  0.0000     0.9490 1.000 0.000
#> GSM159887     2  0.9998    -0.0457 0.492 0.508
#> GSM159888     2  0.0000     0.9626 0.000 1.000
#> GSM159889     2  0.0000     0.9626 0.000 1.000
#> GSM159890     2  0.0000     0.9626 0.000 1.000
#> GSM159891     2  0.0000     0.9626 0.000 1.000
#> GSM159892     2  0.0000     0.9626 0.000 1.000
#> GSM159893     2  0.0000     0.9626 0.000 1.000
#> GSM159894     1  0.8661     0.6018 0.712 0.288
#> GSM159895     1  0.4562     0.8623 0.904 0.096
#> GSM159896     1  0.9922     0.2176 0.552 0.448
#> GSM159897     2  0.0000     0.9626 0.000 1.000
#> GSM159898     2  0.0000     0.9626 0.000 1.000
#> GSM159899     2  0.0000     0.9626 0.000 1.000
#> GSM159900     2  0.0000     0.9626 0.000 1.000
#> GSM159901     2  0.0000     0.9626 0.000 1.000
#> GSM159902     1  0.0000     0.9490 1.000 0.000
#> GSM159903     1  0.0000     0.9490 1.000 0.000
#> GSM159904     1  0.0000     0.9490 1.000 0.000
#> GSM159905     1  0.0000     0.9490 1.000 0.000
#> GSM159906     1  0.0000     0.9490 1.000 0.000
#> GSM159907     1  0.0000     0.9490 1.000 0.000
#> GSM159908     1  0.0000     0.9490 1.000 0.000
#> GSM159909     1  0.0000     0.9490 1.000 0.000
#> GSM159910     2  0.0000     0.9626 0.000 1.000
#> GSM159911     1  0.7602     0.7110 0.780 0.220
#> GSM159912     1  0.0000     0.9490 1.000 0.000
#> GSM159913     1  0.0000     0.9490 1.000 0.000
#> GSM159914     1  0.0000     0.9490 1.000 0.000
#> GSM159915     1  0.0000     0.9490 1.000 0.000
#> GSM159916     1  0.0000     0.9490 1.000 0.000
#> GSM159917     2  0.0000     0.9626 0.000 1.000
#> GSM159867     1  0.0000     0.9490 1.000 0.000
#> GSM159868     1  0.9909     0.2311 0.556 0.444
#> GSM159869     1  0.9710     0.3582 0.600 0.400
#> GSM159870     2  0.0672     0.9557 0.008 0.992
#> GSM159871     2  0.1633     0.9407 0.024 0.976
#> GSM159872     2  0.0000     0.9626 0.000 1.000
#> GSM159873     2  0.0000     0.9626 0.000 1.000
#> GSM159874     2  0.0000     0.9626 0.000 1.000
#> GSM159875     2  0.0000     0.9626 0.000 1.000
#> GSM159876     1  0.0000     0.9490 1.000 0.000
#> GSM159877     2  0.0000     0.9626 0.000 1.000
#> GSM159878     1  0.0000     0.9490 1.000 0.000
#> GSM159879     2  0.0000     0.9626 0.000 1.000
#> GSM159880     2  0.0000     0.9626 0.000 1.000
#> GSM159881     2  0.0000     0.9626 0.000 1.000
#> GSM159882     2  0.0000     0.9626 0.000 1.000
#> GSM159883     2  0.0000     0.9626 0.000 1.000
#> GSM159884     2  0.0000     0.9626 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1  0.4291      0.810 0.820 0.000 0.180
#> GSM159851     1  0.1753      0.927 0.952 0.000 0.048
#> GSM159852     1  0.0592      0.935 0.988 0.000 0.012
#> GSM159853     1  0.1411      0.932 0.964 0.000 0.036
#> GSM159854     1  0.1031      0.933 0.976 0.000 0.024
#> GSM159855     1  0.1031      0.933 0.976 0.000 0.024
#> GSM159856     1  0.0237      0.932 0.996 0.000 0.004
#> GSM159857     1  0.0592      0.934 0.988 0.000 0.012
#> GSM159858     1  0.0237      0.932 0.996 0.000 0.004
#> GSM159859     1  0.0237      0.932 0.996 0.000 0.004
#> GSM159860     1  0.0000      0.932 1.000 0.000 0.000
#> GSM159861     1  0.2261      0.919 0.932 0.000 0.068
#> GSM159862     1  0.4291      0.814 0.820 0.000 0.180
#> GSM159863     1  0.2356      0.913 0.928 0.000 0.072
#> GSM159864     1  0.0747      0.933 0.984 0.000 0.016
#> GSM159865     1  0.0592      0.934 0.988 0.000 0.012
#> GSM159866     1  0.0747      0.933 0.984 0.000 0.016
#> GSM159885     3  0.0983      0.835 0.004 0.016 0.980
#> GSM159886     1  0.0237      0.934 0.996 0.000 0.004
#> GSM159887     3  0.5639      0.777 0.080 0.112 0.808
#> GSM159888     2  0.0000      0.988 0.000 1.000 0.000
#> GSM159889     2  0.0000      0.988 0.000 1.000 0.000
#> GSM159890     2  0.0000      0.988 0.000 1.000 0.000
#> GSM159891     2  0.0237      0.986 0.000 0.996 0.004
#> GSM159892     2  0.0424      0.982 0.000 0.992 0.008
#> GSM159893     2  0.0000      0.988 0.000 1.000 0.000
#> GSM159894     3  0.8638      0.560 0.184 0.216 0.600
#> GSM159895     3  0.4741      0.747 0.152 0.020 0.828
#> GSM159896     3  0.2297      0.830 0.036 0.020 0.944
#> GSM159897     2  0.0000      0.988 0.000 1.000 0.000
#> GSM159898     2  0.0000      0.988 0.000 1.000 0.000
#> GSM159899     2  0.0000      0.988 0.000 1.000 0.000
#> GSM159900     3  0.4002      0.807 0.000 0.160 0.840
#> GSM159901     3  0.5363      0.696 0.000 0.276 0.724
#> GSM159902     1  0.6154      0.388 0.592 0.000 0.408
#> GSM159903     1  0.2165      0.918 0.936 0.000 0.064
#> GSM159904     1  0.4121      0.836 0.832 0.000 0.168
#> GSM159905     1  0.1031      0.933 0.976 0.000 0.024
#> GSM159906     1  0.0424      0.934 0.992 0.000 0.008
#> GSM159907     1  0.0237      0.933 0.996 0.000 0.004
#> GSM159908     1  0.4605      0.787 0.796 0.000 0.204
#> GSM159909     1  0.5138      0.721 0.748 0.000 0.252
#> GSM159910     3  0.3038      0.834 0.000 0.104 0.896
#> GSM159911     3  0.0747      0.833 0.016 0.000 0.984
#> GSM159912     1  0.1163      0.932 0.972 0.000 0.028
#> GSM159913     1  0.1411      0.929 0.964 0.000 0.036
#> GSM159914     1  0.0237      0.933 0.996 0.000 0.004
#> GSM159915     1  0.0424      0.934 0.992 0.000 0.008
#> GSM159916     1  0.0424      0.934 0.992 0.000 0.008
#> GSM159917     3  0.2448      0.840 0.000 0.076 0.924
#> GSM159867     3  0.7526      0.123 0.424 0.040 0.536
#> GSM159868     3  0.1315      0.834 0.020 0.008 0.972
#> GSM159869     3  0.1525      0.831 0.032 0.004 0.964
#> GSM159870     2  0.1647      0.947 0.036 0.960 0.004
#> GSM159871     2  0.3181      0.895 0.064 0.912 0.024
#> GSM159872     3  0.2796      0.837 0.000 0.092 0.908
#> GSM159873     3  0.5138      0.728 0.000 0.252 0.748
#> GSM159874     3  0.3340      0.829 0.000 0.120 0.880
#> GSM159875     3  0.5216      0.719 0.000 0.260 0.740
#> GSM159876     1  0.5633      0.708 0.768 0.208 0.024
#> GSM159877     3  0.2537      0.839 0.000 0.080 0.920
#> GSM159878     1  0.1950      0.914 0.952 0.040 0.008
#> GSM159879     2  0.0237      0.985 0.000 0.996 0.004
#> GSM159880     2  0.0237      0.985 0.000 0.996 0.004
#> GSM159881     2  0.0424      0.983 0.000 0.992 0.008
#> GSM159882     2  0.0000      0.988 0.000 1.000 0.000
#> GSM159883     2  0.0000      0.988 0.000 1.000 0.000
#> GSM159884     2  0.0000      0.988 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.6407     0.1132 0.544 0.000 0.072 0.384
#> GSM159851     1  0.4220     0.6317 0.748 0.000 0.004 0.248
#> GSM159852     1  0.3626     0.7006 0.812 0.000 0.004 0.184
#> GSM159853     1  0.4482     0.6388 0.728 0.000 0.008 0.264
#> GSM159854     1  0.4718     0.6090 0.716 0.004 0.008 0.272
#> GSM159855     1  0.4776     0.6354 0.732 0.000 0.024 0.244
#> GSM159856     1  0.2149     0.7092 0.912 0.000 0.000 0.088
#> GSM159857     1  0.3266     0.6975 0.832 0.000 0.000 0.168
#> GSM159858     1  0.1792     0.7210 0.932 0.000 0.000 0.068
#> GSM159859     1  0.2081     0.7210 0.916 0.000 0.000 0.084
#> GSM159860     1  0.1557     0.7215 0.944 0.000 0.000 0.056
#> GSM159861     4  0.5404    -0.0743 0.476 0.000 0.012 0.512
#> GSM159862     4  0.6637     0.1928 0.368 0.000 0.092 0.540
#> GSM159863     4  0.5971     0.0177 0.428 0.000 0.040 0.532
#> GSM159864     1  0.5523     0.3763 0.596 0.000 0.024 0.380
#> GSM159865     1  0.5026     0.4950 0.672 0.000 0.016 0.312
#> GSM159866     1  0.5193     0.4750 0.656 0.000 0.020 0.324
#> GSM159885     3  0.6260     0.2608 0.032 0.012 0.500 0.456
#> GSM159886     1  0.2976     0.7251 0.872 0.008 0.000 0.120
#> GSM159887     4  0.8112    -0.0598 0.072 0.088 0.364 0.476
#> GSM159888     2  0.0817     0.9393 0.000 0.976 0.024 0.000
#> GSM159889     2  0.0817     0.9393 0.000 0.976 0.024 0.000
#> GSM159890     2  0.0817     0.9393 0.000 0.976 0.024 0.000
#> GSM159891     2  0.1637     0.9274 0.000 0.940 0.060 0.000
#> GSM159892     2  0.2216     0.9036 0.000 0.908 0.092 0.000
#> GSM159893     2  0.1716     0.9257 0.000 0.936 0.064 0.000
#> GSM159894     4  0.8361     0.3347 0.120 0.128 0.192 0.560
#> GSM159895     4  0.6676     0.1720 0.068 0.020 0.304 0.608
#> GSM159896     4  0.6665    -0.1346 0.040 0.024 0.420 0.516
#> GSM159897     2  0.1118     0.9375 0.000 0.964 0.036 0.000
#> GSM159898     2  0.1211     0.9368 0.000 0.960 0.040 0.000
#> GSM159899     2  0.1118     0.9374 0.000 0.964 0.036 0.000
#> GSM159900     3  0.1824     0.7392 0.000 0.060 0.936 0.004
#> GSM159901     3  0.3123     0.6816 0.000 0.156 0.844 0.000
#> GSM159902     4  0.6887     0.3832 0.308 0.000 0.132 0.560
#> GSM159903     1  0.5487     0.3143 0.580 0.000 0.020 0.400
#> GSM159904     4  0.6038     0.1468 0.424 0.000 0.044 0.532
#> GSM159905     1  0.3528     0.6869 0.808 0.000 0.000 0.192
#> GSM159906     1  0.3074     0.7113 0.848 0.000 0.000 0.152
#> GSM159907     1  0.1940     0.7235 0.924 0.000 0.000 0.076
#> GSM159908     4  0.6938     0.2093 0.408 0.004 0.096 0.492
#> GSM159909     4  0.6059     0.3671 0.328 0.004 0.052 0.616
#> GSM159910     3  0.0817     0.7470 0.000 0.024 0.976 0.000
#> GSM159911     3  0.6411     0.2499 0.056 0.004 0.516 0.424
#> GSM159912     1  0.3764     0.6501 0.784 0.000 0.000 0.216
#> GSM159913     1  0.4955     0.4616 0.648 0.000 0.008 0.344
#> GSM159914     1  0.2921     0.7137 0.860 0.000 0.000 0.140
#> GSM159915     1  0.2589     0.7113 0.884 0.000 0.000 0.116
#> GSM159916     1  0.3219     0.6916 0.836 0.000 0.000 0.164
#> GSM159917     3  0.0376     0.7443 0.000 0.004 0.992 0.004
#> GSM159867     4  0.6622     0.4867 0.212 0.028 0.092 0.668
#> GSM159868     3  0.6116     0.2114 0.020 0.016 0.488 0.476
#> GSM159869     3  0.6227     0.2418 0.036 0.008 0.496 0.460
#> GSM159870     2  0.3933     0.8584 0.056 0.860 0.020 0.064
#> GSM159871     2  0.6797     0.6470 0.104 0.696 0.076 0.124
#> GSM159872     3  0.0524     0.7455 0.000 0.008 0.988 0.004
#> GSM159873     3  0.4756     0.6412 0.000 0.176 0.772 0.052
#> GSM159874     3  0.1406     0.7477 0.000 0.024 0.960 0.016
#> GSM159875     3  0.3787     0.6998 0.000 0.124 0.840 0.036
#> GSM159876     1  0.6829     0.4116 0.644 0.140 0.016 0.200
#> GSM159877     3  0.0376     0.7443 0.000 0.004 0.992 0.004
#> GSM159878     1  0.4711     0.6432 0.784 0.064 0.000 0.152
#> GSM159879     2  0.1004     0.9331 0.000 0.972 0.004 0.024
#> GSM159880     2  0.1488     0.9303 0.000 0.956 0.012 0.032
#> GSM159881     2  0.2313     0.9181 0.000 0.924 0.044 0.032
#> GSM159882     2  0.1151     0.9330 0.000 0.968 0.008 0.024
#> GSM159883     2  0.1256     0.9318 0.000 0.964 0.008 0.028
#> GSM159884     2  0.1174     0.9346 0.000 0.968 0.012 0.020

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     1  0.7498    0.03763 0.388 0.004 0.028 0.276 0.304
#> GSM159851     1  0.6527    0.17865 0.492 0.000 0.008 0.164 0.336
#> GSM159852     1  0.5530    0.44030 0.644 0.000 0.004 0.108 0.244
#> GSM159853     1  0.5934    0.39929 0.600 0.000 0.004 0.144 0.252
#> GSM159854     1  0.5950    0.43193 0.592 0.000 0.000 0.188 0.220
#> GSM159855     1  0.6003    0.40237 0.592 0.000 0.004 0.152 0.252
#> GSM159856     1  0.4297    0.46023 0.728 0.000 0.000 0.036 0.236
#> GSM159857     1  0.5790    0.35929 0.604 0.000 0.004 0.116 0.276
#> GSM159858     1  0.4233    0.45782 0.748 0.000 0.000 0.044 0.208
#> GSM159859     1  0.4337    0.50008 0.748 0.000 0.000 0.056 0.196
#> GSM159860     1  0.3565    0.53319 0.816 0.000 0.000 0.040 0.144
#> GSM159861     5  0.6108    0.63532 0.244 0.000 0.008 0.156 0.592
#> GSM159862     5  0.6639    0.55203 0.172 0.000 0.048 0.184 0.596
#> GSM159863     5  0.5908    0.66528 0.196 0.000 0.024 0.128 0.652
#> GSM159864     5  0.4846    0.70090 0.292 0.004 0.020 0.012 0.672
#> GSM159865     5  0.4941    0.66735 0.324 0.000 0.016 0.020 0.640
#> GSM159866     5  0.5245    0.69152 0.312 0.008 0.020 0.020 0.640
#> GSM159885     4  0.6989    0.52307 0.020 0.036 0.296 0.544 0.104
#> GSM159886     1  0.4417    0.55457 0.772 0.004 0.000 0.100 0.124
#> GSM159887     4  0.8294    0.53150 0.088 0.076 0.208 0.508 0.120
#> GSM159888     2  0.1356    0.84831 0.000 0.956 0.028 0.012 0.004
#> GSM159889     2  0.1267    0.84854 0.000 0.960 0.024 0.012 0.004
#> GSM159890     2  0.1281    0.84895 0.000 0.956 0.032 0.012 0.000
#> GSM159891     2  0.2522    0.82729 0.000 0.896 0.076 0.024 0.004
#> GSM159892     2  0.3183    0.79736 0.000 0.856 0.108 0.028 0.008
#> GSM159893     2  0.2647    0.82652 0.000 0.892 0.076 0.024 0.008
#> GSM159894     4  0.8102    0.44549 0.060 0.116 0.104 0.532 0.188
#> GSM159895     4  0.7290    0.55818 0.064 0.012 0.192 0.560 0.172
#> GSM159896     4  0.7385    0.47907 0.040 0.020 0.332 0.480 0.128
#> GSM159897     2  0.1701    0.84216 0.000 0.936 0.048 0.016 0.000
#> GSM159898     2  0.1787    0.84323 0.000 0.936 0.044 0.016 0.004
#> GSM159899     2  0.1872    0.83940 0.000 0.928 0.052 0.020 0.000
#> GSM159900     3  0.2756    0.81095 0.000 0.092 0.880 0.024 0.004
#> GSM159901     3  0.3916    0.71285 0.000 0.188 0.780 0.028 0.004
#> GSM159902     4  0.7840    0.23242 0.252 0.020 0.080 0.496 0.152
#> GSM159903     1  0.6298    0.42447 0.552 0.000 0.012 0.300 0.136
#> GSM159904     1  0.6928    0.24075 0.428 0.000 0.020 0.376 0.176
#> GSM159905     1  0.4280    0.57066 0.788 0.000 0.008 0.120 0.084
#> GSM159906     1  0.3705    0.57607 0.816 0.000 0.000 0.120 0.064
#> GSM159907     1  0.2770    0.57361 0.880 0.000 0.000 0.044 0.076
#> GSM159908     1  0.7381    0.17018 0.456 0.000 0.052 0.304 0.188
#> GSM159909     4  0.7301    0.08163 0.288 0.000 0.036 0.448 0.228
#> GSM159910     3  0.1074    0.82943 0.000 0.016 0.968 0.012 0.004
#> GSM159911     4  0.6365    0.50234 0.040 0.000 0.344 0.540 0.076
#> GSM159912     1  0.5426    0.50369 0.672 0.000 0.004 0.192 0.132
#> GSM159913     1  0.6166    0.40336 0.532 0.004 0.004 0.348 0.112
#> GSM159914     1  0.3400    0.57303 0.848 0.000 0.004 0.076 0.072
#> GSM159915     1  0.2989    0.57702 0.868 0.000 0.000 0.072 0.060
#> GSM159916     1  0.4260    0.56764 0.784 0.004 0.000 0.124 0.088
#> GSM159917     3  0.0740    0.82175 0.000 0.004 0.980 0.008 0.008
#> GSM159867     4  0.8195    0.29048 0.144 0.036 0.092 0.476 0.252
#> GSM159868     4  0.6693    0.40757 0.020 0.012 0.400 0.472 0.096
#> GSM159869     4  0.7282    0.47385 0.048 0.016 0.348 0.480 0.108
#> GSM159870     2  0.6231    0.69431 0.020 0.648 0.016 0.128 0.188
#> GSM159871     2  0.7824    0.50874 0.056 0.532 0.052 0.140 0.220
#> GSM159872     3  0.0451    0.82516 0.000 0.004 0.988 0.000 0.008
#> GSM159873     3  0.5877    0.60470 0.000 0.172 0.680 0.092 0.056
#> GSM159874     3  0.1750    0.83051 0.000 0.036 0.936 0.028 0.000
#> GSM159875     3  0.4610    0.70643 0.000 0.156 0.756 0.080 0.008
#> GSM159876     1  0.7717    0.00904 0.400 0.112 0.004 0.108 0.376
#> GSM159877     3  0.0693    0.81962 0.000 0.008 0.980 0.000 0.012
#> GSM159878     1  0.6235    0.33161 0.600 0.048 0.000 0.076 0.276
#> GSM159879     2  0.4323    0.80902 0.008 0.788 0.004 0.064 0.136
#> GSM159880     2  0.4467    0.81082 0.000 0.780 0.016 0.076 0.128
#> GSM159881     2  0.5182    0.78740 0.000 0.744 0.056 0.072 0.128
#> GSM159882     2  0.3656    0.83076 0.000 0.832 0.008 0.056 0.104
#> GSM159883     2  0.3862    0.82086 0.000 0.812 0.004 0.064 0.120
#> GSM159884     2  0.3832    0.82755 0.000 0.824 0.012 0.060 0.104

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM159850     1  0.8166     0.1344 0.276 0.000 0.024 0.228 0.228 NA
#> GSM159851     1  0.7627     0.2115 0.356 0.004 0.000 0.192 0.272 NA
#> GSM159852     1  0.6808     0.3845 0.500 0.004 0.000 0.092 0.256 NA
#> GSM159853     1  0.7601     0.2766 0.396 0.000 0.012 0.132 0.248 NA
#> GSM159854     1  0.7249     0.4016 0.472 0.008 0.000 0.140 0.200 NA
#> GSM159855     1  0.7294     0.3555 0.416 0.000 0.000 0.140 0.240 NA
#> GSM159856     1  0.6192     0.4148 0.552 0.008 0.000 0.040 0.276 NA
#> GSM159857     1  0.7481     0.2638 0.408 0.008 0.008 0.092 0.288 NA
#> GSM159858     1  0.5182     0.4334 0.624 0.000 0.000 0.016 0.272 NA
#> GSM159859     1  0.5251     0.4858 0.664 0.000 0.000 0.036 0.204 NA
#> GSM159860     1  0.4952     0.5023 0.688 0.000 0.000 0.028 0.200 NA
#> GSM159861     5  0.5482     0.5726 0.140 0.000 0.004 0.124 0.676 NA
#> GSM159862     5  0.6140     0.5386 0.080 0.008 0.020 0.148 0.652 NA
#> GSM159863     5  0.5185     0.5887 0.084 0.000 0.012 0.132 0.716 NA
#> GSM159864     5  0.3875     0.6612 0.128 0.000 0.016 0.024 0.804 NA
#> GSM159865     5  0.3544     0.6528 0.144 0.004 0.012 0.004 0.812 NA
#> GSM159866     5  0.3781     0.6531 0.152 0.000 0.020 0.012 0.796 NA
#> GSM159885     4  0.6828     0.4812 0.048 0.008 0.252 0.556 0.064 NA
#> GSM159886     1  0.5439     0.5365 0.688 0.008 0.000 0.056 0.132 NA
#> GSM159887     4  0.7492     0.4877 0.044 0.060 0.120 0.564 0.064 NA
#> GSM159888     2  0.4065     0.7638 0.000 0.672 0.028 0.000 0.000 NA
#> GSM159889     2  0.4083     0.7623 0.000 0.668 0.028 0.000 0.000 NA
#> GSM159890     2  0.3993     0.7639 0.000 0.676 0.024 0.000 0.000 NA
#> GSM159891     2  0.4881     0.7406 0.000 0.604 0.068 0.004 0.000 NA
#> GSM159892     2  0.5150     0.7218 0.000 0.580 0.092 0.004 0.000 NA
#> GSM159893     2  0.4962     0.7397 0.000 0.596 0.064 0.008 0.000 NA
#> GSM159894     4  0.8166     0.3910 0.088 0.048 0.048 0.456 0.124 NA
#> GSM159895     4  0.7138     0.4651 0.064 0.000 0.116 0.556 0.164 NA
#> GSM159896     4  0.7911     0.4669 0.036 0.036 0.260 0.460 0.100 NA
#> GSM159897     2  0.4300     0.7572 0.000 0.640 0.036 0.000 0.000 NA
#> GSM159898     2  0.4975     0.7487 0.000 0.612 0.044 0.016 0.004 NA
#> GSM159899     2  0.4348     0.7565 0.000 0.640 0.040 0.000 0.000 NA
#> GSM159900     3  0.2532     0.7893 0.000 0.024 0.884 0.012 0.000 NA
#> GSM159901     3  0.4539     0.6326 0.000 0.092 0.728 0.016 0.000 NA
#> GSM159902     4  0.7015     0.1665 0.272 0.000 0.036 0.508 0.092 NA
#> GSM159903     1  0.6521     0.4035 0.556 0.004 0.004 0.228 0.072 NA
#> GSM159904     1  0.7573     0.0505 0.384 0.000 0.032 0.340 0.112 NA
#> GSM159905     1  0.3903     0.5535 0.808 0.000 0.000 0.068 0.056 NA
#> GSM159906     1  0.4258     0.5642 0.776 0.000 0.000 0.040 0.080 NA
#> GSM159907     1  0.3539     0.5612 0.828 0.000 0.000 0.052 0.088 NA
#> GSM159908     1  0.7839     0.1523 0.392 0.004 0.020 0.232 0.224 NA
#> GSM159909     4  0.7796     0.1059 0.268 0.004 0.020 0.388 0.200 NA
#> GSM159910     3  0.0858     0.8201 0.000 0.000 0.968 0.004 0.000 NA
#> GSM159911     4  0.7255     0.4839 0.100 0.008 0.256 0.512 0.044 NA
#> GSM159912     1  0.4970     0.5377 0.720 0.000 0.000 0.128 0.068 NA
#> GSM159913     1  0.5988     0.4335 0.616 0.004 0.004 0.208 0.052 NA
#> GSM159914     1  0.4262     0.5537 0.776 0.000 0.000 0.048 0.112 NA
#> GSM159915     1  0.3810     0.5572 0.812 0.000 0.000 0.040 0.080 NA
#> GSM159916     1  0.3556     0.5535 0.836 0.004 0.000 0.052 0.040 NA
#> GSM159917     3  0.0767     0.8139 0.000 0.000 0.976 0.012 0.008 NA
#> GSM159867     4  0.8740     0.2735 0.112 0.036 0.064 0.364 0.220 NA
#> GSM159868     4  0.7484     0.4670 0.020 0.036 0.264 0.492 0.108 NA
#> GSM159869     4  0.7456     0.4501 0.020 0.020 0.288 0.468 0.104 NA
#> GSM159870     2  0.5570     0.4755 0.040 0.704 0.016 0.040 0.044 NA
#> GSM159871     2  0.6746     0.3885 0.032 0.616 0.032 0.056 0.104 NA
#> GSM159872     3  0.0551     0.8165 0.000 0.000 0.984 0.004 0.008 NA
#> GSM159873     3  0.6251     0.5214 0.000 0.180 0.616 0.072 0.020 NA
#> GSM159874     3  0.2018     0.8116 0.000 0.028 0.924 0.016 0.004 NA
#> GSM159875     3  0.4692     0.6825 0.000 0.092 0.748 0.076 0.000 NA
#> GSM159876     5  0.8750    -0.0329 0.260 0.164 0.008 0.080 0.288 NA
#> GSM159877     3  0.0767     0.8122 0.000 0.000 0.976 0.004 0.012 NA
#> GSM159878     1  0.7898     0.1885 0.384 0.100 0.000 0.044 0.256 NA
#> GSM159879     2  0.1644     0.6982 0.000 0.920 0.000 0.000 0.004 NA
#> GSM159880     2  0.2006     0.6908 0.004 0.916 0.000 0.004 0.016 NA
#> GSM159881     2  0.3296     0.6579 0.000 0.852 0.016 0.036 0.016 NA
#> GSM159882     2  0.1251     0.7152 0.000 0.956 0.012 0.000 0.008 NA
#> GSM159883     2  0.1082     0.7133 0.000 0.956 0.004 0.000 0.000 NA
#> GSM159884     2  0.1625     0.7038 0.000 0.928 0.000 0.012 0.000 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n agent(p)  dose(p)  time(p) k
#> CV:skmeans 63 7.49e-08 2.80e-04 5.58e-04 2
#> CV:skmeans 66 1.64e-08 6.26e-05 1.49e-03 3
#> CV:skmeans 45 4.86e-06 1.30e-03 4.63e-05 4
#> CV:skmeans 46 6.74e-09 2.60e-05 1.07e-07 5
#> CV:skmeans 39 2.87e-09 7.77e-06 1.33e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.602           0.841       0.925         0.3917 0.619   0.619
#> 3 3 0.752           0.819       0.924         0.4648 0.765   0.636
#> 4 4 0.643           0.693       0.802         0.1667 0.884   0.744
#> 5 5 0.633           0.695       0.816         0.1104 0.893   0.715
#> 6 6 0.703           0.655       0.837         0.0929 0.876   0.578

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1  0.0000      0.928 1.000 0.000
#> GSM159851     1  0.0000      0.928 1.000 0.000
#> GSM159852     1  0.0000      0.928 1.000 0.000
#> GSM159853     1  0.0376      0.927 0.996 0.004
#> GSM159854     1  0.0000      0.928 1.000 0.000
#> GSM159855     1  0.0000      0.928 1.000 0.000
#> GSM159856     1  0.0376      0.927 0.996 0.004
#> GSM159857     1  0.0672      0.926 0.992 0.008
#> GSM159858     1  0.0000      0.928 1.000 0.000
#> GSM159859     1  0.0000      0.928 1.000 0.000
#> GSM159860     1  0.0376      0.927 0.996 0.004
#> GSM159861     1  0.0000      0.928 1.000 0.000
#> GSM159862     1  0.0938      0.925 0.988 0.012
#> GSM159863     1  0.0000      0.928 1.000 0.000
#> GSM159864     1  0.0000      0.928 1.000 0.000
#> GSM159865     1  0.0000      0.928 1.000 0.000
#> GSM159866     1  0.0000      0.928 1.000 0.000
#> GSM159885     1  0.7056      0.719 0.808 0.192
#> GSM159886     1  0.0000      0.928 1.000 0.000
#> GSM159887     1  0.0938      0.924 0.988 0.012
#> GSM159888     1  0.7453      0.733 0.788 0.212
#> GSM159889     1  0.7299      0.740 0.796 0.204
#> GSM159890     1  0.7815      0.712 0.768 0.232
#> GSM159891     2  0.0376      0.865 0.004 0.996
#> GSM159892     2  0.0000      0.865 0.000 1.000
#> GSM159893     2  0.0000      0.865 0.000 1.000
#> GSM159894     1  0.2043      0.911 0.968 0.032
#> GSM159895     1  0.1633      0.918 0.976 0.024
#> GSM159896     1  0.9323      0.375 0.652 0.348
#> GSM159897     1  0.8081      0.690 0.752 0.248
#> GSM159898     1  0.7883      0.707 0.764 0.236
#> GSM159899     2  0.6801      0.766 0.180 0.820
#> GSM159900     2  0.0000      0.865 0.000 1.000
#> GSM159901     2  0.0000      0.865 0.000 1.000
#> GSM159902     1  0.0000      0.928 1.000 0.000
#> GSM159903     1  0.0000      0.928 1.000 0.000
#> GSM159904     1  0.0000      0.928 1.000 0.000
#> GSM159905     1  0.0000      0.928 1.000 0.000
#> GSM159906     1  0.0000      0.928 1.000 0.000
#> GSM159907     1  0.0000      0.928 1.000 0.000
#> GSM159908     1  0.0376      0.927 0.996 0.004
#> GSM159909     1  0.0000      0.928 1.000 0.000
#> GSM159910     2  0.0000      0.865 0.000 1.000
#> GSM159911     1  0.9686      0.196 0.604 0.396
#> GSM159912     1  0.0000      0.928 1.000 0.000
#> GSM159913     1  0.0000      0.928 1.000 0.000
#> GSM159914     1  0.0000      0.928 1.000 0.000
#> GSM159915     1  0.0000      0.928 1.000 0.000
#> GSM159916     1  0.0000      0.928 1.000 0.000
#> GSM159917     2  0.6712      0.798 0.176 0.824
#> GSM159867     1  0.1633      0.919 0.976 0.024
#> GSM159868     2  0.8909      0.654 0.308 0.692
#> GSM159869     2  0.9686      0.489 0.396 0.604
#> GSM159870     1  0.1633      0.918 0.976 0.024
#> GSM159871     1  0.2236      0.912 0.964 0.036
#> GSM159872     2  0.2778      0.859 0.048 0.952
#> GSM159873     2  0.6148      0.814 0.152 0.848
#> GSM159874     2  0.0672      0.865 0.008 0.992
#> GSM159875     2  0.0000      0.865 0.000 1.000
#> GSM159876     1  0.0938      0.924 0.988 0.012
#> GSM159877     2  0.6973      0.785 0.188 0.812
#> GSM159878     1  0.0672      0.926 0.992 0.008
#> GSM159879     1  0.3584      0.885 0.932 0.068
#> GSM159880     1  0.4815      0.852 0.896 0.104
#> GSM159881     2  0.9286      0.536 0.344 0.656
#> GSM159882     2  0.6247      0.790 0.156 0.844
#> GSM159883     1  0.9775      0.340 0.588 0.412
#> GSM159884     1  0.8081      0.692 0.752 0.248

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159851     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159852     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159853     1  0.0661     0.9152 0.988 0.008 0.004
#> GSM159854     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159855     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159856     1  0.0424     0.9168 0.992 0.008 0.000
#> GSM159857     1  0.1170     0.9081 0.976 0.016 0.008
#> GSM159858     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159859     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159860     1  0.1015     0.9108 0.980 0.012 0.008
#> GSM159861     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159862     1  0.1774     0.9008 0.960 0.016 0.024
#> GSM159863     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159864     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159865     1  0.0237     0.9188 0.996 0.000 0.004
#> GSM159866     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159885     1  0.6783     0.3183 0.588 0.016 0.396
#> GSM159886     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159887     1  0.5237     0.7770 0.824 0.056 0.120
#> GSM159888     2  0.0000     0.8926 0.000 1.000 0.000
#> GSM159889     2  0.0000     0.8926 0.000 1.000 0.000
#> GSM159890     2  0.0000     0.8926 0.000 1.000 0.000
#> GSM159891     2  0.0000     0.8926 0.000 1.000 0.000
#> GSM159892     2  0.0237     0.8900 0.000 0.996 0.004
#> GSM159893     2  0.0000     0.8926 0.000 1.000 0.000
#> GSM159894     1  0.8399     0.4829 0.624 0.188 0.188
#> GSM159895     1  0.6083     0.7137 0.772 0.060 0.168
#> GSM159896     1  0.7876     0.1656 0.520 0.056 0.424
#> GSM159897     2  0.0000     0.8926 0.000 1.000 0.000
#> GSM159898     2  0.0000     0.8926 0.000 1.000 0.000
#> GSM159899     2  0.0000     0.8926 0.000 1.000 0.000
#> GSM159900     3  0.1411     0.8746 0.000 0.036 0.964
#> GSM159901     3  0.3192     0.8387 0.000 0.112 0.888
#> GSM159902     1  0.0424     0.9167 0.992 0.008 0.000
#> GSM159903     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159904     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159905     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159906     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159907     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159908     1  0.0237     0.9186 0.996 0.000 0.004
#> GSM159909     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159910     3  0.1031     0.8753 0.000 0.024 0.976
#> GSM159911     1  0.6520     0.0246 0.508 0.004 0.488
#> GSM159912     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159913     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159914     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159915     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159916     1  0.0000     0.9204 1.000 0.000 0.000
#> GSM159917     3  0.0829     0.8782 0.012 0.004 0.984
#> GSM159867     1  0.2879     0.8723 0.924 0.052 0.024
#> GSM159868     3  0.7024     0.6243 0.224 0.072 0.704
#> GSM159869     3  0.6407     0.5932 0.272 0.028 0.700
#> GSM159870     1  0.7080     0.2373 0.564 0.412 0.024
#> GSM159871     2  0.7274     0.0957 0.452 0.520 0.028
#> GSM159872     3  0.0000     0.8786 0.000 0.000 1.000
#> GSM159873     3  0.3031     0.8420 0.012 0.076 0.912
#> GSM159874     3  0.0424     0.8797 0.000 0.008 0.992
#> GSM159875     3  0.3412     0.8225 0.000 0.124 0.876
#> GSM159876     1  0.3722     0.8405 0.888 0.088 0.024
#> GSM159877     3  0.0237     0.8795 0.004 0.000 0.996
#> GSM159878     1  0.2804     0.8715 0.924 0.060 0.016
#> GSM159879     2  0.5435     0.6749 0.192 0.784 0.024
#> GSM159880     2  0.4683     0.7492 0.140 0.836 0.024
#> GSM159881     2  0.4636     0.7897 0.044 0.852 0.104
#> GSM159882     2  0.1163     0.8823 0.000 0.972 0.028
#> GSM159883     2  0.1031     0.8832 0.000 0.976 0.024
#> GSM159884     2  0.3009     0.8475 0.052 0.920 0.028

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.1389     0.8357 0.952 0.000 0.000 0.048
#> GSM159851     1  0.0817     0.8376 0.976 0.000 0.000 0.024
#> GSM159852     1  0.1557     0.8345 0.944 0.000 0.000 0.056
#> GSM159853     1  0.2011     0.8276 0.920 0.000 0.000 0.080
#> GSM159854     1  0.0895     0.8338 0.976 0.020 0.000 0.004
#> GSM159855     1  0.0895     0.8338 0.976 0.020 0.000 0.004
#> GSM159856     1  0.1174     0.8326 0.968 0.020 0.000 0.012
#> GSM159857     1  0.2256     0.8142 0.924 0.020 0.000 0.056
#> GSM159858     1  0.0707     0.8328 0.980 0.020 0.000 0.000
#> GSM159859     1  0.0707     0.8328 0.980 0.020 0.000 0.000
#> GSM159860     1  0.1820     0.8256 0.944 0.020 0.000 0.036
#> GSM159861     1  0.3142     0.7772 0.860 0.132 0.000 0.008
#> GSM159862     1  0.6428     0.6388 0.660 0.220 0.008 0.112
#> GSM159863     1  0.4434     0.6970 0.756 0.228 0.000 0.016
#> GSM159864     1  0.4072     0.6861 0.748 0.252 0.000 0.000
#> GSM159865     1  0.4391     0.6813 0.740 0.252 0.000 0.008
#> GSM159866     1  0.4360     0.6880 0.744 0.248 0.000 0.008
#> GSM159885     1  0.6627     0.3164 0.556 0.000 0.348 0.096
#> GSM159886     1  0.1716     0.8318 0.936 0.000 0.000 0.064
#> GSM159887     1  0.6038     0.1847 0.532 0.000 0.044 0.424
#> GSM159888     2  0.4072     0.9867 0.000 0.748 0.000 0.252
#> GSM159889     2  0.4564     0.8914 0.000 0.672 0.000 0.328
#> GSM159890     2  0.4103     0.9828 0.000 0.744 0.000 0.256
#> GSM159891     2  0.4072     0.9867 0.000 0.748 0.000 0.252
#> GSM159892     2  0.4072     0.9867 0.000 0.748 0.000 0.252
#> GSM159893     2  0.4072     0.9867 0.000 0.748 0.000 0.252
#> GSM159894     1  0.6823     0.3251 0.564 0.016 0.072 0.348
#> GSM159895     1  0.5931     0.0973 0.504 0.000 0.036 0.460
#> GSM159896     3  0.7812     0.0728 0.372 0.000 0.376 0.252
#> GSM159897     2  0.4072     0.9867 0.000 0.748 0.000 0.252
#> GSM159898     2  0.4072     0.9867 0.000 0.748 0.000 0.252
#> GSM159899     2  0.4072     0.9867 0.000 0.748 0.000 0.252
#> GSM159900     3  0.1474     0.7643 0.000 0.052 0.948 0.000
#> GSM159901     3  0.3726     0.6532 0.000 0.212 0.788 0.000
#> GSM159902     1  0.1867     0.8303 0.928 0.000 0.000 0.072
#> GSM159903     1  0.1637     0.8330 0.940 0.000 0.000 0.060
#> GSM159904     1  0.1174     0.8319 0.968 0.020 0.000 0.012
#> GSM159905     1  0.1004     0.8379 0.972 0.004 0.000 0.024
#> GSM159906     1  0.1716     0.8318 0.936 0.000 0.000 0.064
#> GSM159907     1  0.0707     0.8328 0.980 0.020 0.000 0.000
#> GSM159908     1  0.3519     0.7531 0.856 0.020 0.004 0.120
#> GSM159909     1  0.0779     0.8338 0.980 0.016 0.000 0.004
#> GSM159910     3  0.0000     0.7812 0.000 0.000 1.000 0.000
#> GSM159911     1  0.6148     0.0315 0.484 0.000 0.468 0.048
#> GSM159912     1  0.1716     0.8318 0.936 0.000 0.000 0.064
#> GSM159913     1  0.1716     0.8318 0.936 0.000 0.000 0.064
#> GSM159914     1  0.1637     0.8328 0.940 0.000 0.000 0.060
#> GSM159915     1  0.1661     0.8368 0.944 0.004 0.000 0.052
#> GSM159916     1  0.1557     0.8357 0.944 0.000 0.000 0.056
#> GSM159917     3  0.0000     0.7812 0.000 0.000 1.000 0.000
#> GSM159867     1  0.5508     0.2062 0.572 0.020 0.000 0.408
#> GSM159868     3  0.6483     0.2937 0.076 0.000 0.532 0.392
#> GSM159869     3  0.6695     0.4787 0.164 0.000 0.616 0.220
#> GSM159870     4  0.3768     0.5919 0.184 0.008 0.000 0.808
#> GSM159871     4  0.3485     0.6460 0.116 0.028 0.000 0.856
#> GSM159872     3  0.0000     0.7812 0.000 0.000 1.000 0.000
#> GSM159873     4  0.4985    -0.1602 0.000 0.000 0.468 0.532
#> GSM159874     3  0.0000     0.7812 0.000 0.000 1.000 0.000
#> GSM159875     3  0.3831     0.6537 0.000 0.004 0.792 0.204
#> GSM159876     4  0.4888     0.2096 0.412 0.000 0.000 0.588
#> GSM159877     3  0.0000     0.7812 0.000 0.000 1.000 0.000
#> GSM159878     4  0.4866     0.2352 0.404 0.000 0.000 0.596
#> GSM159879     4  0.1716     0.6525 0.000 0.064 0.000 0.936
#> GSM159880     4  0.1716     0.6525 0.000 0.064 0.000 0.936
#> GSM159881     4  0.2675     0.6475 0.000 0.044 0.048 0.908
#> GSM159882     4  0.1902     0.6532 0.000 0.064 0.004 0.932
#> GSM159883     4  0.1716     0.6525 0.000 0.064 0.000 0.936
#> GSM159884     4  0.1716     0.6525 0.000 0.064 0.000 0.936

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     1  0.1914     0.7617 0.924 0.000 0.000 0.016 0.060
#> GSM159851     1  0.2535     0.7738 0.892 0.000 0.000 0.032 0.076
#> GSM159852     1  0.2069     0.7666 0.912 0.000 0.000 0.012 0.076
#> GSM159853     1  0.3485     0.7595 0.828 0.000 0.000 0.048 0.124
#> GSM159854     1  0.4457     0.7461 0.760 0.000 0.000 0.124 0.116
#> GSM159855     1  0.4111     0.7537 0.788 0.000 0.000 0.120 0.092
#> GSM159856     1  0.4723     0.7295 0.736 0.000 0.000 0.132 0.132
#> GSM159857     1  0.5109     0.7097 0.696 0.000 0.000 0.172 0.132
#> GSM159858     1  0.4680     0.7309 0.740 0.000 0.000 0.128 0.132
#> GSM159859     1  0.4503     0.7375 0.756 0.000 0.000 0.124 0.120
#> GSM159860     1  0.4964     0.7199 0.712 0.000 0.000 0.156 0.132
#> GSM159861     1  0.6072     0.3063 0.484 0.000 0.000 0.124 0.392
#> GSM159862     5  0.1792     0.8673 0.084 0.000 0.000 0.000 0.916
#> GSM159863     5  0.4096     0.7593 0.200 0.000 0.000 0.040 0.760
#> GSM159864     5  0.1270     0.8872 0.052 0.000 0.000 0.000 0.948
#> GSM159865     5  0.1121     0.8802 0.044 0.000 0.000 0.000 0.956
#> GSM159866     5  0.1608     0.8770 0.072 0.000 0.000 0.000 0.928
#> GSM159885     1  0.5087     0.3850 0.636 0.000 0.320 0.016 0.028
#> GSM159886     1  0.1124     0.7653 0.960 0.000 0.000 0.004 0.036
#> GSM159887     1  0.5234     0.4079 0.676 0.000 0.040 0.256 0.028
#> GSM159888     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM159889     2  0.1965     0.8797 0.000 0.904 0.000 0.096 0.000
#> GSM159890     2  0.0162     0.9811 0.000 0.996 0.000 0.004 0.000
#> GSM159891     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM159892     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM159893     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM159894     1  0.5878     0.4426 0.680 0.020 0.060 0.208 0.032
#> GSM159895     1  0.5107     0.2862 0.620 0.000 0.004 0.332 0.044
#> GSM159896     1  0.7574    -0.0994 0.376 0.000 0.368 0.200 0.056
#> GSM159897     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM159898     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM159899     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM159900     3  0.1270     0.8072 0.000 0.052 0.948 0.000 0.000
#> GSM159901     3  0.3210     0.6941 0.000 0.212 0.788 0.000 0.000
#> GSM159902     1  0.1408     0.7482 0.948 0.000 0.000 0.008 0.044
#> GSM159903     1  0.1571     0.7705 0.936 0.000 0.000 0.004 0.060
#> GSM159904     1  0.4127     0.7440 0.784 0.000 0.000 0.136 0.080
#> GSM159905     1  0.2514     0.7701 0.896 0.000 0.000 0.044 0.060
#> GSM159906     1  0.2011     0.7631 0.908 0.000 0.000 0.004 0.088
#> GSM159907     1  0.4679     0.7313 0.740 0.000 0.000 0.124 0.136
#> GSM159908     1  0.5405     0.4210 0.556 0.000 0.000 0.380 0.064
#> GSM159909     1  0.3828     0.7511 0.808 0.000 0.000 0.120 0.072
#> GSM159910     3  0.0000     0.8263 0.000 0.000 1.000 0.000 0.000
#> GSM159911     1  0.5315     0.0431 0.500 0.000 0.456 0.004 0.040
#> GSM159912     1  0.1124     0.7488 0.960 0.000 0.000 0.004 0.036
#> GSM159913     1  0.1282     0.7522 0.952 0.000 0.000 0.004 0.044
#> GSM159914     1  0.1124     0.7665 0.960 0.000 0.000 0.004 0.036
#> GSM159915     1  0.2740     0.7650 0.876 0.000 0.000 0.028 0.096
#> GSM159916     1  0.1992     0.7670 0.924 0.000 0.000 0.032 0.044
#> GSM159917     3  0.0000     0.8263 0.000 0.000 1.000 0.000 0.000
#> GSM159867     4  0.5064     0.3232 0.248 0.000 0.000 0.672 0.080
#> GSM159868     3  0.6244     0.2108 0.072 0.000 0.488 0.412 0.028
#> GSM159869     3  0.6308     0.4828 0.200 0.000 0.600 0.180 0.020
#> GSM159870     4  0.2952     0.7232 0.088 0.036 0.000 0.872 0.004
#> GSM159871     4  0.2863     0.7431 0.060 0.064 0.000 0.876 0.000
#> GSM159872     3  0.0000     0.8263 0.000 0.000 1.000 0.000 0.000
#> GSM159873     4  0.4101     0.1615 0.000 0.000 0.372 0.628 0.000
#> GSM159874     3  0.0000     0.8263 0.000 0.000 1.000 0.000 0.000
#> GSM159875     3  0.3300     0.6985 0.000 0.004 0.792 0.204 0.000
#> GSM159876     4  0.4291     0.1669 0.464 0.000 0.000 0.536 0.000
#> GSM159877     3  0.0000     0.8263 0.000 0.000 1.000 0.000 0.000
#> GSM159878     4  0.5000     0.3346 0.388 0.000 0.000 0.576 0.036
#> GSM159879     4  0.2377     0.7603 0.000 0.128 0.000 0.872 0.000
#> GSM159880     4  0.2377     0.7603 0.000 0.128 0.000 0.872 0.000
#> GSM159881     4  0.2824     0.7447 0.000 0.096 0.032 0.872 0.000
#> GSM159882     4  0.2377     0.7603 0.000 0.128 0.000 0.872 0.000
#> GSM159883     4  0.2377     0.7603 0.000 0.128 0.000 0.872 0.000
#> GSM159884     4  0.2377     0.7603 0.000 0.128 0.000 0.872 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM159850     4  0.2969     0.6111 0.224 0.000 0.000 0.776 0.000 0.000
#> GSM159851     4  0.3864    -0.0357 0.480 0.000 0.000 0.520 0.000 0.000
#> GSM159852     4  0.3151     0.6196 0.252 0.000 0.000 0.748 0.000 0.000
#> GSM159853     1  0.3864    -0.1791 0.520 0.000 0.000 0.480 0.000 0.000
#> GSM159854     1  0.3464     0.5301 0.688 0.000 0.000 0.312 0.000 0.000
#> GSM159855     1  0.2941     0.6433 0.780 0.000 0.000 0.220 0.000 0.000
#> GSM159856     1  0.0632     0.7369 0.976 0.000 0.000 0.024 0.000 0.000
#> GSM159857     1  0.0790     0.7363 0.968 0.000 0.000 0.032 0.000 0.000
#> GSM159858     1  0.1075     0.7382 0.952 0.000 0.000 0.048 0.000 0.000
#> GSM159859     1  0.1387     0.7369 0.932 0.000 0.000 0.068 0.000 0.000
#> GSM159860     1  0.0713     0.7377 0.972 0.000 0.000 0.028 0.000 0.000
#> GSM159861     1  0.2605     0.6953 0.864 0.000 0.000 0.028 0.108 0.000
#> GSM159862     5  0.2937     0.8249 0.096 0.000 0.000 0.056 0.848 0.000
#> GSM159863     5  0.4297     0.6833 0.176 0.000 0.000 0.100 0.724 0.000
#> GSM159864     5  0.0000     0.8889 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM159865     5  0.0000     0.8889 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM159866     5  0.0000     0.8889 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM159885     4  0.3189     0.6137 0.020 0.000 0.184 0.796 0.000 0.000
#> GSM159886     4  0.2491     0.6776 0.164 0.000 0.000 0.836 0.000 0.000
#> GSM159887     4  0.2164     0.6990 0.028 0.000 0.016 0.912 0.000 0.044
#> GSM159888     2  0.0000     0.9851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159889     2  0.1765     0.8807 0.000 0.904 0.000 0.000 0.000 0.096
#> GSM159890     2  0.0146     0.9817 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM159891     2  0.0000     0.9851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159892     2  0.0000     0.9851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159893     2  0.0000     0.9851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159894     4  0.2216     0.6957 0.024 0.000 0.016 0.908 0.000 0.052
#> GSM159895     4  0.3088     0.6666 0.048 0.000 0.000 0.832 0.000 0.120
#> GSM159896     4  0.7078     0.0803 0.132 0.000 0.340 0.396 0.000 0.132
#> GSM159897     2  0.0000     0.9851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159898     2  0.0000     0.9851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159899     2  0.0000     0.9851 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159900     3  0.1141     0.8092 0.000 0.052 0.948 0.000 0.000 0.000
#> GSM159901     3  0.2883     0.6937 0.000 0.212 0.788 0.000 0.000 0.000
#> GSM159902     4  0.1556     0.6922 0.080 0.000 0.000 0.920 0.000 0.000
#> GSM159903     4  0.3330     0.5552 0.284 0.000 0.000 0.716 0.000 0.000
#> GSM159904     1  0.2969     0.6630 0.776 0.000 0.000 0.224 0.000 0.000
#> GSM159905     1  0.3851     0.2292 0.540 0.000 0.000 0.460 0.000 0.000
#> GSM159906     4  0.3515     0.5316 0.324 0.000 0.000 0.676 0.000 0.000
#> GSM159907     1  0.0865     0.7388 0.964 0.000 0.000 0.036 0.000 0.000
#> GSM159908     1  0.3271     0.6432 0.760 0.000 0.000 0.232 0.000 0.008
#> GSM159909     1  0.2912     0.6714 0.784 0.000 0.000 0.216 0.000 0.000
#> GSM159910     3  0.0000     0.8266 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159911     4  0.4278     0.2705 0.016 0.000 0.352 0.624 0.000 0.008
#> GSM159912     4  0.1501     0.6920 0.076 0.000 0.000 0.924 0.000 0.000
#> GSM159913     4  0.2048     0.6826 0.120 0.000 0.000 0.880 0.000 0.000
#> GSM159914     4  0.2969     0.6480 0.224 0.000 0.000 0.776 0.000 0.000
#> GSM159915     1  0.3866    -0.1694 0.516 0.000 0.000 0.484 0.000 0.000
#> GSM159916     4  0.3266     0.5147 0.272 0.000 0.000 0.728 0.000 0.000
#> GSM159917     3  0.0000     0.8266 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159867     6  0.5334     0.1434 0.376 0.000 0.000 0.112 0.000 0.512
#> GSM159868     3  0.5873     0.2788 0.028 0.000 0.492 0.104 0.000 0.376
#> GSM159869     3  0.5863     0.4895 0.032 0.000 0.576 0.252 0.000 0.140
#> GSM159870     6  0.0551     0.8191 0.008 0.004 0.000 0.004 0.000 0.984
#> GSM159871     6  0.0260     0.8199 0.000 0.000 0.000 0.008 0.000 0.992
#> GSM159872     3  0.0000     0.8266 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159873     6  0.3634     0.2316 0.000 0.000 0.356 0.000 0.000 0.644
#> GSM159874     3  0.0547     0.8178 0.000 0.000 0.980 0.020 0.000 0.000
#> GSM159875     3  0.2964     0.6992 0.000 0.004 0.792 0.000 0.000 0.204
#> GSM159876     4  0.4400     0.3481 0.032 0.000 0.000 0.592 0.000 0.376
#> GSM159877     3  0.0000     0.8266 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159878     6  0.5329    -0.1667 0.104 0.000 0.000 0.448 0.000 0.448
#> GSM159879     6  0.0260     0.8250 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM159880     6  0.0260     0.8250 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM159881     6  0.0260     0.8250 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM159882     6  0.0260     0.8250 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM159883     6  0.0260     0.8250 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM159884     6  0.0260     0.8250 0.000 0.008 0.000 0.000 0.000 0.992

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n agent(p)  dose(p)  time(p) k
#> CV:pam 64 3.81e-03 2.10e-02 8.96e-04 2
#> CV:pam 62 1.57e-07 7.33e-04 1.90e-03 3
#> CV:pam 56 3.95e-15 3.64e-04 1.36e-02 4
#> CV:pam 54 1.35e-14 1.90e-04 2.36e-05 5
#> CV:pam 56 2.99e-13 1.83e-05 4.52e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.969           0.943       0.975         0.4911 0.514   0.514
#> 3 3 0.638           0.796       0.876         0.1830 0.903   0.815
#> 4 4 0.557           0.496       0.731         0.1811 0.783   0.545
#> 5 5 0.651           0.793       0.817         0.0860 0.830   0.511
#> 6 6 0.744           0.796       0.875         0.0467 0.986   0.937

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1  0.0000      0.963 1.000 0.000
#> GSM159851     1  0.0000      0.963 1.000 0.000
#> GSM159852     1  0.0000      0.963 1.000 0.000
#> GSM159853     1  0.0000      0.963 1.000 0.000
#> GSM159854     1  0.0000      0.963 1.000 0.000
#> GSM159855     1  0.0000      0.963 1.000 0.000
#> GSM159856     1  0.0000      0.963 1.000 0.000
#> GSM159857     1  0.0000      0.963 1.000 0.000
#> GSM159858     1  0.0000      0.963 1.000 0.000
#> GSM159859     1  0.0000      0.963 1.000 0.000
#> GSM159860     1  0.0000      0.963 1.000 0.000
#> GSM159861     1  0.0000      0.963 1.000 0.000
#> GSM159862     1  0.0000      0.963 1.000 0.000
#> GSM159863     1  0.0000      0.963 1.000 0.000
#> GSM159864     1  0.9170      0.532 0.668 0.332
#> GSM159865     1  0.9170      0.532 0.668 0.332
#> GSM159866     1  0.9170      0.532 0.668 0.332
#> GSM159885     1  0.0672      0.959 0.992 0.008
#> GSM159886     1  0.0672      0.959 0.992 0.008
#> GSM159887     1  0.0672      0.959 0.992 0.008
#> GSM159888     2  0.0000      0.990 0.000 1.000
#> GSM159889     2  0.0000      0.990 0.000 1.000
#> GSM159890     2  0.0000      0.990 0.000 1.000
#> GSM159891     2  0.0000      0.990 0.000 1.000
#> GSM159892     2  0.0000      0.990 0.000 1.000
#> GSM159893     2  0.0000      0.990 0.000 1.000
#> GSM159894     1  0.2423      0.933 0.960 0.040
#> GSM159895     1  0.0672      0.959 0.992 0.008
#> GSM159896     1  0.0672      0.959 0.992 0.008
#> GSM159897     2  0.0000      0.990 0.000 1.000
#> GSM159898     2  0.0000      0.990 0.000 1.000
#> GSM159899     2  0.0000      0.990 0.000 1.000
#> GSM159900     2  0.0000      0.990 0.000 1.000
#> GSM159901     2  0.0000      0.990 0.000 1.000
#> GSM159902     1  0.0000      0.963 1.000 0.000
#> GSM159903     1  0.0000      0.963 1.000 0.000
#> GSM159904     1  0.0000      0.963 1.000 0.000
#> GSM159905     1  0.0000      0.963 1.000 0.000
#> GSM159906     1  0.0000      0.963 1.000 0.000
#> GSM159907     1  0.0000      0.963 1.000 0.000
#> GSM159908     1  0.0000      0.963 1.000 0.000
#> GSM159909     1  0.0000      0.963 1.000 0.000
#> GSM159910     2  0.0376      0.987 0.004 0.996
#> GSM159911     1  0.0672      0.959 0.992 0.008
#> GSM159912     1  0.0000      0.963 1.000 0.000
#> GSM159913     1  0.0000      0.963 1.000 0.000
#> GSM159914     1  0.0000      0.963 1.000 0.000
#> GSM159915     1  0.0000      0.963 1.000 0.000
#> GSM159916     1  0.0000      0.963 1.000 0.000
#> GSM159917     2  0.0376      0.987 0.004 0.996
#> GSM159867     1  0.0672      0.959 0.992 0.008
#> GSM159868     1  0.0672      0.959 0.992 0.008
#> GSM159869     1  0.0672      0.959 0.992 0.008
#> GSM159870     2  0.0000      0.990 0.000 1.000
#> GSM159871     2  0.0000      0.990 0.000 1.000
#> GSM159872     2  0.0376      0.987 0.004 0.996
#> GSM159873     2  0.0000      0.990 0.000 1.000
#> GSM159874     2  0.0000      0.990 0.000 1.000
#> GSM159875     2  0.0000      0.990 0.000 1.000
#> GSM159876     2  0.7602      0.698 0.220 0.780
#> GSM159877     2  0.0376      0.987 0.004 0.996
#> GSM159878     1  0.9209      0.527 0.664 0.336
#> GSM159879     2  0.0000      0.990 0.000 1.000
#> GSM159880     2  0.0000      0.990 0.000 1.000
#> GSM159881     2  0.0000      0.990 0.000 1.000
#> GSM159882     2  0.0000      0.990 0.000 1.000
#> GSM159883     2  0.0000      0.990 0.000 1.000
#> GSM159884     2  0.0000      0.990 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1  0.0424      0.923 0.992 0.000 0.008
#> GSM159851     1  0.0424      0.922 0.992 0.000 0.008
#> GSM159852     1  0.0424      0.922 0.992 0.000 0.008
#> GSM159853     1  0.0424      0.922 0.992 0.000 0.008
#> GSM159854     1  0.0424      0.923 0.992 0.000 0.008
#> GSM159855     1  0.0424      0.922 0.992 0.000 0.008
#> GSM159856     1  0.0424      0.922 0.992 0.000 0.008
#> GSM159857     1  0.0424      0.922 0.992 0.000 0.008
#> GSM159858     1  0.0424      0.922 0.992 0.000 0.008
#> GSM159859     1  0.0424      0.922 0.992 0.000 0.008
#> GSM159860     1  0.0424      0.922 0.992 0.000 0.008
#> GSM159861     1  0.0592      0.921 0.988 0.000 0.012
#> GSM159862     1  0.0829      0.922 0.984 0.004 0.012
#> GSM159863     1  0.0592      0.921 0.988 0.000 0.012
#> GSM159864     1  0.5637      0.757 0.788 0.172 0.040
#> GSM159865     1  0.5637      0.757 0.788 0.172 0.040
#> GSM159866     1  0.5637      0.757 0.788 0.172 0.040
#> GSM159885     1  0.5947      0.844 0.776 0.052 0.172
#> GSM159886     1  0.3028      0.910 0.920 0.032 0.048
#> GSM159887     1  0.5847      0.846 0.780 0.048 0.172
#> GSM159888     2  0.0747      0.793 0.000 0.984 0.016
#> GSM159889     2  0.0892      0.793 0.000 0.980 0.020
#> GSM159890     2  0.0237      0.797 0.000 0.996 0.004
#> GSM159891     2  0.6274     -0.204 0.000 0.544 0.456
#> GSM159892     2  0.6274     -0.204 0.000 0.544 0.456
#> GSM159893     2  0.6274     -0.204 0.000 0.544 0.456
#> GSM159894     1  0.6979      0.791 0.732 0.128 0.140
#> GSM159895     1  0.5734      0.850 0.788 0.048 0.164
#> GSM159896     1  0.6044      0.840 0.772 0.056 0.172
#> GSM159897     2  0.1031      0.791 0.000 0.976 0.024
#> GSM159898     2  0.0892      0.793 0.000 0.980 0.020
#> GSM159899     2  0.1031      0.791 0.000 0.976 0.024
#> GSM159900     3  0.4750      0.902 0.000 0.216 0.784
#> GSM159901     3  0.4750      0.902 0.000 0.216 0.784
#> GSM159902     1  0.3752      0.888 0.856 0.000 0.144
#> GSM159903     1  0.1860      0.917 0.948 0.000 0.052
#> GSM159904     1  0.3573      0.897 0.876 0.004 0.120
#> GSM159905     1  0.0237      0.922 0.996 0.000 0.004
#> GSM159906     1  0.0000      0.922 1.000 0.000 0.000
#> GSM159907     1  0.0237      0.922 0.996 0.000 0.004
#> GSM159908     1  0.1643      0.918 0.956 0.000 0.044
#> GSM159909     1  0.3482      0.895 0.872 0.000 0.128
#> GSM159910     3  0.4702      0.904 0.000 0.212 0.788
#> GSM159911     1  0.5947      0.844 0.776 0.052 0.172
#> GSM159912     1  0.0747      0.922 0.984 0.000 0.016
#> GSM159913     1  0.1964      0.917 0.944 0.000 0.056
#> GSM159914     1  0.1129      0.922 0.976 0.004 0.020
#> GSM159915     1  0.0661      0.921 0.988 0.008 0.004
#> GSM159916     1  0.2297      0.916 0.944 0.020 0.036
#> GSM159917     3  0.4702      0.904 0.000 0.212 0.788
#> GSM159867     1  0.4786      0.878 0.844 0.044 0.112
#> GSM159868     1  0.5791      0.848 0.784 0.048 0.168
#> GSM159869     1  0.5558      0.854 0.800 0.048 0.152
#> GSM159870     2  0.1289      0.789 0.000 0.968 0.032
#> GSM159871     2  0.1411      0.787 0.000 0.964 0.036
#> GSM159872     3  0.4702      0.904 0.000 0.212 0.788
#> GSM159873     3  0.8337      0.315 0.080 0.444 0.476
#> GSM159874     3  0.5058      0.883 0.000 0.244 0.756
#> GSM159875     3  0.5785      0.777 0.000 0.332 0.668
#> GSM159876     2  0.6487      0.402 0.268 0.700 0.032
#> GSM159877     3  0.4702      0.904 0.000 0.212 0.788
#> GSM159878     2  0.7311      0.245 0.384 0.580 0.036
#> GSM159879     2  0.0892      0.795 0.000 0.980 0.020
#> GSM159880     2  0.0892      0.795 0.000 0.980 0.020
#> GSM159881     2  0.0892      0.795 0.000 0.980 0.020
#> GSM159882     2  0.0592      0.797 0.000 0.988 0.012
#> GSM159883     2  0.0592      0.797 0.000 0.988 0.012
#> GSM159884     2  0.0747      0.796 0.000 0.984 0.016

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.2973    0.71448 0.856 0.000 0.000 0.144
#> GSM159851     1  0.0336    0.83649 0.992 0.000 0.000 0.008
#> GSM159852     1  0.0000    0.83515 1.000 0.000 0.000 0.000
#> GSM159853     1  0.0469    0.83612 0.988 0.000 0.000 0.012
#> GSM159854     1  0.1118    0.83698 0.964 0.000 0.000 0.036
#> GSM159855     1  0.0592    0.83810 0.984 0.000 0.000 0.016
#> GSM159856     1  0.0336    0.83634 0.992 0.000 0.000 0.008
#> GSM159857     1  0.0188    0.83418 0.996 0.000 0.000 0.004
#> GSM159858     1  0.1022    0.83777 0.968 0.000 0.000 0.032
#> GSM159859     1  0.0817    0.83708 0.976 0.000 0.000 0.024
#> GSM159860     1  0.1302    0.82713 0.956 0.000 0.000 0.044
#> GSM159861     1  0.0707    0.83712 0.980 0.000 0.000 0.020
#> GSM159862     1  0.1661    0.82708 0.944 0.000 0.004 0.052
#> GSM159863     1  0.1474    0.82830 0.948 0.000 0.000 0.052
#> GSM159864     1  0.6792    0.50641 0.692 0.144 0.068 0.096
#> GSM159865     1  0.6792    0.50641 0.692 0.144 0.068 0.096
#> GSM159866     1  0.6792    0.50641 0.692 0.144 0.068 0.096
#> GSM159885     4  0.4401    0.76343 0.272 0.000 0.004 0.724
#> GSM159886     1  0.4082    0.68202 0.812 0.020 0.004 0.164
#> GSM159887     4  0.4522    0.78080 0.320 0.000 0.000 0.680
#> GSM159888     3  0.4999   -0.84741 0.000 0.492 0.508 0.000
#> GSM159889     3  0.4998   -0.84704 0.000 0.488 0.512 0.000
#> GSM159890     3  0.5000   -0.85261 0.000 0.496 0.504 0.000
#> GSM159891     3  0.0188    0.11156 0.000 0.004 0.996 0.000
#> GSM159892     3  0.0000    0.11775 0.000 0.000 1.000 0.000
#> GSM159893     3  0.0000    0.11775 0.000 0.000 1.000 0.000
#> GSM159894     4  0.5093    0.71284 0.232 0.008 0.028 0.732
#> GSM159895     4  0.4605    0.77932 0.336 0.000 0.000 0.664
#> GSM159896     4  0.4406    0.77546 0.300 0.000 0.000 0.700
#> GSM159897     3  0.4955   -0.82069 0.000 0.444 0.556 0.000
#> GSM159898     3  0.5168   -0.85870 0.000 0.492 0.504 0.004
#> GSM159899     3  0.4996   -0.84349 0.000 0.484 0.516 0.000
#> GSM159900     3  0.7617    0.40264 0.000 0.372 0.424 0.204
#> GSM159901     3  0.7693    0.39410 0.000 0.352 0.424 0.224
#> GSM159902     4  0.4981    0.44218 0.464 0.000 0.000 0.536
#> GSM159903     1  0.2868    0.77151 0.864 0.000 0.000 0.136
#> GSM159904     1  0.4830    0.14264 0.608 0.000 0.000 0.392
#> GSM159905     1  0.1022    0.83905 0.968 0.000 0.000 0.032
#> GSM159906     1  0.1637    0.83141 0.940 0.000 0.000 0.060
#> GSM159907     1  0.0921    0.83712 0.972 0.000 0.000 0.028
#> GSM159908     1  0.4356    0.36308 0.708 0.000 0.000 0.292
#> GSM159909     1  0.4907    0.00287 0.580 0.000 0.000 0.420
#> GSM159910     3  0.6010    0.42892 0.000 0.472 0.488 0.040
#> GSM159911     4  0.5511    0.71923 0.332 0.000 0.032 0.636
#> GSM159912     1  0.1792    0.82447 0.932 0.000 0.000 0.068
#> GSM159913     1  0.3074    0.75658 0.848 0.000 0.000 0.152
#> GSM159914     1  0.1637    0.82711 0.940 0.000 0.000 0.060
#> GSM159915     1  0.1118    0.83605 0.964 0.000 0.000 0.036
#> GSM159916     1  0.3208    0.74413 0.848 0.004 0.000 0.148
#> GSM159917     3  0.6147    0.42888 0.000 0.464 0.488 0.048
#> GSM159867     4  0.4981    0.58107 0.464 0.000 0.000 0.536
#> GSM159868     4  0.4643    0.77522 0.344 0.000 0.000 0.656
#> GSM159869     4  0.4730    0.75986 0.364 0.000 0.000 0.636
#> GSM159870     2  0.5250    0.89538 0.000 0.552 0.440 0.008
#> GSM159871     2  0.5483    0.85719 0.000 0.536 0.448 0.016
#> GSM159872     3  0.6010    0.42892 0.000 0.472 0.488 0.040
#> GSM159873     4  0.6990   -0.18423 0.004 0.108 0.364 0.524
#> GSM159874     3  0.7591    0.40326 0.000 0.368 0.432 0.200
#> GSM159875     3  0.7398    0.24467 0.000 0.164 0.424 0.412
#> GSM159876     3  0.9271   -0.32589 0.168 0.264 0.432 0.136
#> GSM159877     3  0.6010    0.42892 0.000 0.472 0.488 0.040
#> GSM159878     3  0.9641   -0.17839 0.256 0.236 0.364 0.144
#> GSM159879     2  0.4948    0.93650 0.000 0.560 0.440 0.000
#> GSM159880     2  0.4961    0.93663 0.000 0.552 0.448 0.000
#> GSM159881     2  0.4941    0.93434 0.000 0.564 0.436 0.000
#> GSM159882     2  0.4972    0.92243 0.000 0.544 0.456 0.000
#> GSM159883     2  0.4972    0.92243 0.000 0.544 0.456 0.000
#> GSM159884     2  0.4981    0.91844 0.000 0.536 0.464 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     1  0.3093      0.766 0.824 0.000 0.000 0.168 0.008
#> GSM159851     1  0.0865      0.846 0.972 0.000 0.000 0.024 0.004
#> GSM159852     1  0.0963      0.850 0.964 0.000 0.000 0.036 0.000
#> GSM159853     1  0.0693      0.840 0.980 0.000 0.000 0.012 0.008
#> GSM159854     1  0.2017      0.843 0.912 0.000 0.000 0.080 0.008
#> GSM159855     1  0.0451      0.834 0.988 0.000 0.000 0.004 0.008
#> GSM159856     1  0.2569      0.837 0.892 0.000 0.000 0.068 0.040
#> GSM159857     1  0.0404      0.839 0.988 0.000 0.000 0.012 0.000
#> GSM159858     1  0.2172      0.844 0.908 0.000 0.000 0.076 0.016
#> GSM159859     1  0.1942      0.847 0.920 0.000 0.000 0.068 0.012
#> GSM159860     1  0.2130      0.843 0.908 0.000 0.000 0.080 0.012
#> GSM159861     1  0.0798      0.841 0.976 0.000 0.000 0.016 0.008
#> GSM159862     1  0.2984      0.742 0.860 0.000 0.000 0.108 0.032
#> GSM159863     1  0.1579      0.827 0.944 0.000 0.000 0.032 0.024
#> GSM159864     5  0.4921      0.869 0.360 0.000 0.036 0.000 0.604
#> GSM159865     5  0.4921      0.869 0.360 0.000 0.036 0.000 0.604
#> GSM159866     5  0.4921      0.869 0.360 0.000 0.036 0.000 0.604
#> GSM159885     4  0.2719      0.848 0.144 0.000 0.000 0.852 0.004
#> GSM159886     1  0.5259      0.533 0.712 0.016 0.000 0.112 0.160
#> GSM159887     4  0.2674      0.844 0.140 0.000 0.000 0.856 0.004
#> GSM159888     2  0.0566      0.917 0.000 0.984 0.012 0.000 0.004
#> GSM159889     2  0.0566      0.917 0.000 0.984 0.012 0.000 0.004
#> GSM159890     2  0.0566      0.917 0.000 0.984 0.012 0.000 0.004
#> GSM159891     3  0.3724      0.711 0.000 0.204 0.776 0.000 0.020
#> GSM159892     3  0.3724      0.711 0.000 0.204 0.776 0.000 0.020
#> GSM159893     3  0.3724      0.711 0.000 0.204 0.776 0.000 0.020
#> GSM159894     4  0.2864      0.746 0.064 0.008 0.044 0.884 0.000
#> GSM159895     4  0.2773      0.853 0.164 0.000 0.000 0.836 0.000
#> GSM159896     4  0.2516      0.844 0.140 0.000 0.000 0.860 0.000
#> GSM159897     2  0.2017      0.847 0.000 0.912 0.080 0.000 0.008
#> GSM159898     2  0.0579      0.922 0.000 0.984 0.008 0.000 0.008
#> GSM159899     2  0.0671      0.914 0.000 0.980 0.016 0.000 0.004
#> GSM159900     3  0.1410      0.759 0.000 0.000 0.940 0.060 0.000
#> GSM159901     3  0.1478      0.759 0.000 0.000 0.936 0.064 0.000
#> GSM159902     4  0.3487      0.826 0.212 0.000 0.000 0.780 0.008
#> GSM159903     4  0.4622      0.395 0.440 0.000 0.000 0.548 0.012
#> GSM159904     4  0.4025      0.736 0.292 0.000 0.000 0.700 0.008
#> GSM159905     1  0.1892      0.852 0.916 0.000 0.000 0.080 0.004
#> GSM159906     1  0.2230      0.832 0.884 0.000 0.000 0.116 0.000
#> GSM159907     1  0.1544      0.853 0.932 0.000 0.000 0.068 0.000
#> GSM159908     4  0.4561      0.316 0.488 0.000 0.000 0.504 0.008
#> GSM159909     4  0.3728      0.799 0.244 0.000 0.000 0.748 0.008
#> GSM159910     3  0.4920      0.693 0.000 0.000 0.644 0.048 0.308
#> GSM159911     4  0.3154      0.847 0.148 0.000 0.012 0.836 0.004
#> GSM159912     1  0.3612      0.632 0.732 0.000 0.000 0.268 0.000
#> GSM159913     1  0.4375      0.141 0.576 0.000 0.000 0.420 0.004
#> GSM159914     1  0.2179      0.842 0.896 0.000 0.000 0.100 0.004
#> GSM159915     1  0.1845      0.830 0.928 0.000 0.000 0.056 0.016
#> GSM159916     1  0.3928      0.702 0.816 0.008 0.000 0.092 0.084
#> GSM159917     3  0.4920      0.693 0.000 0.000 0.644 0.048 0.308
#> GSM159867     4  0.3910      0.789 0.272 0.000 0.000 0.720 0.008
#> GSM159868     4  0.2690      0.852 0.156 0.000 0.000 0.844 0.000
#> GSM159869     4  0.2813      0.850 0.168 0.000 0.000 0.832 0.000
#> GSM159870     2  0.2568      0.929 0.004 0.888 0.016 0.000 0.092
#> GSM159871     2  0.2664      0.926 0.004 0.884 0.020 0.000 0.092
#> GSM159872     3  0.4920      0.693 0.000 0.000 0.644 0.048 0.308
#> GSM159873     3  0.4276      0.531 0.000 0.004 0.616 0.380 0.000
#> GSM159874     3  0.1956      0.758 0.000 0.000 0.916 0.076 0.008
#> GSM159875     3  0.2813      0.729 0.000 0.000 0.832 0.168 0.000
#> GSM159876     5  0.6562      0.789 0.284 0.108 0.028 0.008 0.572
#> GSM159877     3  0.4920      0.693 0.000 0.000 0.644 0.048 0.308
#> GSM159878     5  0.6069      0.821 0.304 0.072 0.020 0.008 0.596
#> GSM159879     2  0.2179      0.935 0.000 0.896 0.004 0.000 0.100
#> GSM159880     2  0.2179      0.935 0.000 0.896 0.004 0.000 0.100
#> GSM159881     2  0.2304      0.934 0.000 0.892 0.008 0.000 0.100
#> GSM159882     2  0.2011      0.937 0.000 0.908 0.004 0.000 0.088
#> GSM159883     2  0.2011      0.937 0.000 0.908 0.004 0.000 0.088
#> GSM159884     2  0.2304      0.936 0.000 0.892 0.008 0.000 0.100

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM159850     1  0.3806      0.693 0.772 0.000 0.000 0.152 0.076 0.000
#> GSM159851     1  0.0520      0.869 0.984 0.000 0.000 0.008 0.008 0.000
#> GSM159852     1  0.0725      0.870 0.976 0.000 0.000 0.012 0.012 0.000
#> GSM159853     1  0.1257      0.869 0.952 0.000 0.000 0.020 0.028 0.000
#> GSM159854     1  0.1958      0.848 0.896 0.000 0.000 0.100 0.004 0.000
#> GSM159855     1  0.1807      0.859 0.920 0.000 0.000 0.020 0.060 0.000
#> GSM159856     1  0.2129      0.861 0.904 0.000 0.000 0.040 0.056 0.000
#> GSM159857     1  0.0508      0.869 0.984 0.000 0.000 0.004 0.012 0.000
#> GSM159858     1  0.2070      0.866 0.908 0.000 0.000 0.044 0.048 0.000
#> GSM159859     1  0.1789      0.868 0.924 0.000 0.000 0.032 0.044 0.000
#> GSM159860     1  0.2134      0.863 0.904 0.000 0.000 0.044 0.052 0.000
#> GSM159861     1  0.1411      0.853 0.936 0.000 0.000 0.004 0.060 0.000
#> GSM159862     1  0.2361      0.825 0.884 0.000 0.000 0.028 0.088 0.000
#> GSM159863     1  0.2255      0.835 0.892 0.000 0.000 0.028 0.080 0.000
#> GSM159864     5  0.1700      0.756 0.080 0.000 0.000 0.000 0.916 0.004
#> GSM159865     5  0.1700      0.756 0.080 0.000 0.000 0.000 0.916 0.004
#> GSM159866     5  0.1700      0.756 0.080 0.000 0.000 0.000 0.916 0.004
#> GSM159885     4  0.0858      0.732 0.028 0.000 0.004 0.968 0.000 0.000
#> GSM159886     1  0.5395      0.482 0.644 0.028 0.000 0.124 0.204 0.000
#> GSM159887     4  0.1082      0.739 0.040 0.000 0.004 0.956 0.000 0.000
#> GSM159888     2  0.1910      0.923 0.000 0.892 0.108 0.000 0.000 0.000
#> GSM159889     2  0.2053      0.922 0.000 0.888 0.108 0.000 0.004 0.000
#> GSM159890     2  0.1863      0.925 0.000 0.896 0.104 0.000 0.000 0.000
#> GSM159891     3  0.0405      0.820 0.000 0.008 0.988 0.000 0.004 0.000
#> GSM159892     3  0.0405      0.820 0.000 0.008 0.988 0.000 0.004 0.000
#> GSM159893     3  0.0405      0.820 0.000 0.008 0.988 0.000 0.004 0.000
#> GSM159894     4  0.1526      0.722 0.036 0.004 0.000 0.944 0.008 0.008
#> GSM159895     4  0.1812      0.748 0.080 0.000 0.000 0.912 0.008 0.000
#> GSM159896     4  0.0865      0.732 0.036 0.000 0.000 0.964 0.000 0.000
#> GSM159897     2  0.2135      0.911 0.000 0.872 0.128 0.000 0.000 0.000
#> GSM159898     2  0.1765      0.927 0.000 0.904 0.096 0.000 0.000 0.000
#> GSM159899     2  0.2003      0.919 0.000 0.884 0.116 0.000 0.000 0.000
#> GSM159900     3  0.2697      0.847 0.000 0.000 0.812 0.000 0.000 0.188
#> GSM159901     3  0.2697      0.847 0.000 0.000 0.812 0.000 0.000 0.188
#> GSM159902     4  0.4233      0.629 0.268 0.000 0.000 0.684 0.048 0.000
#> GSM159903     4  0.4463      0.261 0.456 0.000 0.000 0.516 0.028 0.000
#> GSM159904     4  0.4601      0.563 0.312 0.000 0.000 0.628 0.060 0.000
#> GSM159905     1  0.1204      0.874 0.944 0.000 0.000 0.056 0.000 0.000
#> GSM159906     1  0.1625      0.873 0.928 0.000 0.000 0.060 0.012 0.000
#> GSM159907     1  0.1421      0.872 0.944 0.000 0.000 0.028 0.028 0.000
#> GSM159908     4  0.4757      0.277 0.468 0.000 0.000 0.484 0.048 0.000
#> GSM159909     4  0.4476      0.581 0.308 0.000 0.000 0.640 0.052 0.000
#> GSM159910     6  0.0000      0.998 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159911     4  0.1285      0.740 0.052 0.000 0.004 0.944 0.000 0.000
#> GSM159912     1  0.2558      0.803 0.840 0.000 0.000 0.156 0.004 0.000
#> GSM159913     1  0.4328     -0.111 0.520 0.000 0.000 0.460 0.020 0.000
#> GSM159914     1  0.2122      0.866 0.900 0.000 0.000 0.076 0.024 0.000
#> GSM159915     1  0.1682      0.863 0.928 0.000 0.000 0.052 0.020 0.000
#> GSM159916     1  0.3927      0.744 0.780 0.008 0.000 0.128 0.084 0.000
#> GSM159917     6  0.0146      0.995 0.000 0.000 0.004 0.000 0.000 0.996
#> GSM159867     4  0.3956      0.654 0.252 0.000 0.000 0.712 0.036 0.000
#> GSM159868     4  0.1531      0.743 0.068 0.000 0.004 0.928 0.000 0.000
#> GSM159869     4  0.1663      0.741 0.088 0.000 0.000 0.912 0.000 0.000
#> GSM159870     2  0.0603      0.933 0.004 0.980 0.000 0.000 0.016 0.000
#> GSM159871     2  0.0922      0.928 0.004 0.968 0.000 0.000 0.024 0.004
#> GSM159872     6  0.0000      0.998 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159873     3  0.4976      0.726 0.000 0.008 0.684 0.168 0.004 0.136
#> GSM159874     3  0.2871      0.844 0.000 0.000 0.804 0.004 0.000 0.192
#> GSM159875     3  0.3628      0.837 0.000 0.000 0.784 0.044 0.004 0.168
#> GSM159876     5  0.5610      0.644 0.264 0.148 0.000 0.012 0.576 0.000
#> GSM159877     6  0.0000      0.998 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159878     5  0.5480      0.639 0.288 0.120 0.000 0.012 0.580 0.000
#> GSM159879     2  0.0146      0.941 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM159880     2  0.0146      0.941 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM159881     2  0.0146      0.941 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM159882     2  0.0000      0.942 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159883     2  0.0000      0.942 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159884     2  0.0146      0.941 0.000 0.996 0.000 0.000 0.004 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n agent(p)  dose(p)  time(p) k
#> CV:mclust 68 6.74e-07 4.36e-04 3.93e-04 2
#> CV:mclust 62 2.59e-05 3.92e-03 3.47e-05 3
#> CV:mclust 44 7.26e-10 4.46e-04 1.05e-03 4
#> CV:mclust 65 9.38e-07 6.30e-06 1.17e-08 5
#> CV:mclust 64 1.49e-07 1.11e-05 1.99e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.792           0.873       0.947         0.4830 0.508   0.508
#> 3 3 0.777           0.825       0.922         0.3295 0.822   0.665
#> 4 4 0.620           0.557       0.771         0.1204 0.793   0.512
#> 5 5 0.614           0.643       0.772         0.0772 0.815   0.447
#> 6 6 0.666           0.635       0.749         0.0458 0.924   0.683

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1   0.000      0.961 1.000 0.000
#> GSM159851     1   0.000      0.961 1.000 0.000
#> GSM159852     1   0.000      0.961 1.000 0.000
#> GSM159853     1   0.000      0.961 1.000 0.000
#> GSM159854     1   0.000      0.961 1.000 0.000
#> GSM159855     1   0.000      0.961 1.000 0.000
#> GSM159856     1   0.000      0.961 1.000 0.000
#> GSM159857     1   0.000      0.961 1.000 0.000
#> GSM159858     1   0.000      0.961 1.000 0.000
#> GSM159859     1   0.000      0.961 1.000 0.000
#> GSM159860     1   0.000      0.961 1.000 0.000
#> GSM159861     1   0.000      0.961 1.000 0.000
#> GSM159862     1   0.000      0.961 1.000 0.000
#> GSM159863     1   0.000      0.961 1.000 0.000
#> GSM159864     1   0.000      0.961 1.000 0.000
#> GSM159865     1   0.000      0.961 1.000 0.000
#> GSM159866     1   0.000      0.961 1.000 0.000
#> GSM159885     2   0.895      0.568 0.312 0.688
#> GSM159886     1   0.000      0.961 1.000 0.000
#> GSM159887     2   0.992      0.238 0.448 0.552
#> GSM159888     2   0.000      0.910 0.000 1.000
#> GSM159889     2   0.000      0.910 0.000 1.000
#> GSM159890     2   0.000      0.910 0.000 1.000
#> GSM159891     2   0.000      0.910 0.000 1.000
#> GSM159892     2   0.000      0.910 0.000 1.000
#> GSM159893     2   0.000      0.910 0.000 1.000
#> GSM159894     1   0.855      0.595 0.720 0.280
#> GSM159895     1   0.163      0.939 0.976 0.024
#> GSM159896     1   0.929      0.446 0.656 0.344
#> GSM159897     2   0.000      0.910 0.000 1.000
#> GSM159898     2   0.000      0.910 0.000 1.000
#> GSM159899     2   0.000      0.910 0.000 1.000
#> GSM159900     2   0.000      0.910 0.000 1.000
#> GSM159901     2   0.000      0.910 0.000 1.000
#> GSM159902     1   0.000      0.961 1.000 0.000
#> GSM159903     1   0.000      0.961 1.000 0.000
#> GSM159904     1   0.000      0.961 1.000 0.000
#> GSM159905     1   0.000      0.961 1.000 0.000
#> GSM159906     1   0.000      0.961 1.000 0.000
#> GSM159907     1   0.000      0.961 1.000 0.000
#> GSM159908     1   0.000      0.961 1.000 0.000
#> GSM159909     1   0.000      0.961 1.000 0.000
#> GSM159910     2   0.343      0.867 0.064 0.936
#> GSM159911     1   0.866      0.576 0.712 0.288
#> GSM159912     1   0.000      0.961 1.000 0.000
#> GSM159913     1   0.000      0.961 1.000 0.000
#> GSM159914     1   0.000      0.961 1.000 0.000
#> GSM159915     1   0.000      0.961 1.000 0.000
#> GSM159916     1   0.000      0.961 1.000 0.000
#> GSM159917     2   0.871      0.601 0.292 0.708
#> GSM159867     1   0.000      0.961 1.000 0.000
#> GSM159868     1   0.760      0.701 0.780 0.220
#> GSM159869     1   0.745      0.713 0.788 0.212
#> GSM159870     2   0.969      0.372 0.396 0.604
#> GSM159871     2   0.925      0.504 0.340 0.660
#> GSM159872     2   0.184      0.893 0.028 0.972
#> GSM159873     2   0.000      0.910 0.000 1.000
#> GSM159874     2   0.000      0.910 0.000 1.000
#> GSM159875     2   0.000      0.910 0.000 1.000
#> GSM159876     1   0.000      0.961 1.000 0.000
#> GSM159877     2   0.939      0.480 0.356 0.644
#> GSM159878     1   0.000      0.961 1.000 0.000
#> GSM159879     2   0.118      0.901 0.016 0.984
#> GSM159880     2   0.000      0.910 0.000 1.000
#> GSM159881     2   0.000      0.910 0.000 1.000
#> GSM159882     2   0.000      0.910 0.000 1.000
#> GSM159883     2   0.000      0.910 0.000 1.000
#> GSM159884     2   0.000      0.910 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1  0.5497      0.656 0.708 0.000 0.292
#> GSM159851     1  0.0424      0.897 0.992 0.000 0.008
#> GSM159852     1  0.0000      0.899 1.000 0.000 0.000
#> GSM159853     1  0.0592      0.896 0.988 0.000 0.012
#> GSM159854     1  0.0000      0.899 1.000 0.000 0.000
#> GSM159855     1  0.0237      0.899 0.996 0.000 0.004
#> GSM159856     1  0.0000      0.899 1.000 0.000 0.000
#> GSM159857     1  0.0237      0.899 0.996 0.000 0.004
#> GSM159858     1  0.0000      0.899 1.000 0.000 0.000
#> GSM159859     1  0.0000      0.899 1.000 0.000 0.000
#> GSM159860     1  0.0237      0.898 0.996 0.000 0.004
#> GSM159861     1  0.0747      0.894 0.984 0.000 0.016
#> GSM159862     1  0.6291      0.312 0.532 0.000 0.468
#> GSM159863     1  0.4654      0.750 0.792 0.000 0.208
#> GSM159864     1  0.1860      0.874 0.948 0.000 0.052
#> GSM159865     1  0.0000      0.899 1.000 0.000 0.000
#> GSM159866     1  0.0424      0.897 0.992 0.000 0.008
#> GSM159885     3  0.0237      0.926 0.004 0.000 0.996
#> GSM159886     1  0.0237      0.898 0.996 0.000 0.004
#> GSM159887     3  0.1031      0.912 0.024 0.000 0.976
#> GSM159888     2  0.0000      0.931 0.000 1.000 0.000
#> GSM159889     2  0.0475      0.926 0.004 0.992 0.004
#> GSM159890     2  0.0000      0.931 0.000 1.000 0.000
#> GSM159891     2  0.0000      0.931 0.000 1.000 0.000
#> GSM159892     2  0.0000      0.931 0.000 1.000 0.000
#> GSM159893     2  0.0000      0.931 0.000 1.000 0.000
#> GSM159894     1  0.8125      0.432 0.576 0.084 0.340
#> GSM159895     3  0.1031      0.912 0.024 0.000 0.976
#> GSM159896     3  0.0424      0.925 0.008 0.000 0.992
#> GSM159897     2  0.0000      0.931 0.000 1.000 0.000
#> GSM159898     2  0.0000      0.931 0.000 1.000 0.000
#> GSM159899     2  0.0000      0.931 0.000 1.000 0.000
#> GSM159900     3  0.4931      0.691 0.000 0.232 0.768
#> GSM159901     2  0.6140      0.232 0.000 0.596 0.404
#> GSM159902     1  0.6274      0.335 0.544 0.000 0.456
#> GSM159903     1  0.0237      0.899 0.996 0.000 0.004
#> GSM159904     1  0.4702      0.746 0.788 0.000 0.212
#> GSM159905     1  0.0000      0.899 1.000 0.000 0.000
#> GSM159906     1  0.0000      0.899 1.000 0.000 0.000
#> GSM159907     1  0.0000      0.899 1.000 0.000 0.000
#> GSM159908     1  0.5810      0.592 0.664 0.000 0.336
#> GSM159909     1  0.6026      0.521 0.624 0.000 0.376
#> GSM159910     3  0.0475      0.925 0.004 0.004 0.992
#> GSM159911     3  0.0237      0.926 0.004 0.000 0.996
#> GSM159912     1  0.0000      0.899 1.000 0.000 0.000
#> GSM159913     1  0.0237      0.899 0.996 0.000 0.004
#> GSM159914     1  0.0237      0.898 0.996 0.000 0.004
#> GSM159915     1  0.0237      0.898 0.996 0.000 0.004
#> GSM159916     1  0.0237      0.898 0.996 0.000 0.004
#> GSM159917     3  0.0237      0.926 0.004 0.000 0.996
#> GSM159867     1  0.6308      0.237 0.508 0.000 0.492
#> GSM159868     3  0.0237      0.926 0.004 0.000 0.996
#> GSM159869     3  0.0237      0.926 0.004 0.000 0.996
#> GSM159870     2  0.5285      0.654 0.244 0.752 0.004
#> GSM159871     2  0.5431      0.600 0.284 0.716 0.000
#> GSM159872     3  0.0424      0.923 0.000 0.008 0.992
#> GSM159873     3  0.4178      0.776 0.000 0.172 0.828
#> GSM159874     3  0.0892      0.916 0.000 0.020 0.980
#> GSM159875     3  0.6267      0.191 0.000 0.452 0.548
#> GSM159876     1  0.0237      0.898 0.996 0.000 0.004
#> GSM159877     3  0.0237      0.926 0.004 0.000 0.996
#> GSM159878     1  0.0237      0.898 0.996 0.000 0.004
#> GSM159879     2  0.0661      0.923 0.008 0.988 0.004
#> GSM159880     2  0.0000      0.931 0.000 1.000 0.000
#> GSM159881     2  0.0000      0.931 0.000 1.000 0.000
#> GSM159882     2  0.0000      0.931 0.000 1.000 0.000
#> GSM159883     2  0.0000      0.931 0.000 1.000 0.000
#> GSM159884     2  0.0000      0.931 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     4  0.2861     0.5866 0.096 0.000 0.016 0.888
#> GSM159851     4  0.4776     0.0691 0.376 0.000 0.000 0.624
#> GSM159852     1  0.4933     0.4906 0.568 0.000 0.000 0.432
#> GSM159853     4  0.4977    -0.2343 0.460 0.000 0.000 0.540
#> GSM159854     4  0.4040     0.3898 0.248 0.000 0.000 0.752
#> GSM159855     1  0.4977     0.4272 0.540 0.000 0.000 0.460
#> GSM159856     1  0.4040     0.6593 0.752 0.000 0.000 0.248
#> GSM159857     1  0.4866     0.5432 0.596 0.000 0.000 0.404
#> GSM159858     1  0.4277     0.6521 0.720 0.000 0.000 0.280
#> GSM159859     1  0.4713     0.6046 0.640 0.000 0.000 0.360
#> GSM159860     1  0.4661     0.6150 0.652 0.000 0.000 0.348
#> GSM159861     1  0.5070     0.4334 0.580 0.000 0.004 0.416
#> GSM159862     1  0.7449     0.3831 0.480 0.000 0.332 0.188
#> GSM159863     1  0.5404     0.6060 0.700 0.000 0.052 0.248
#> GSM159864     1  0.2867     0.5722 0.884 0.000 0.104 0.012
#> GSM159865     1  0.2335     0.6044 0.920 0.000 0.060 0.020
#> GSM159866     1  0.2522     0.5894 0.908 0.000 0.076 0.016
#> GSM159885     4  0.4551     0.3492 0.004 0.004 0.268 0.724
#> GSM159886     1  0.4817     0.5729 0.612 0.000 0.000 0.388
#> GSM159887     4  0.4267     0.4551 0.008 0.004 0.216 0.772
#> GSM159888     2  0.0000     0.9117 0.000 1.000 0.000 0.000
#> GSM159889     2  0.0336     0.9111 0.008 0.992 0.000 0.000
#> GSM159890     2  0.0188     0.9118 0.004 0.996 0.000 0.000
#> GSM159891     2  0.0188     0.9117 0.004 0.996 0.000 0.000
#> GSM159892     2  0.0336     0.9095 0.000 0.992 0.000 0.008
#> GSM159893     2  0.0188     0.9113 0.000 0.996 0.000 0.004
#> GSM159894     4  0.2599     0.6059 0.004 0.020 0.064 0.912
#> GSM159895     4  0.3801     0.4635 0.000 0.000 0.220 0.780
#> GSM159896     4  0.4250     0.3554 0.000 0.000 0.276 0.724
#> GSM159897     2  0.0188     0.9117 0.004 0.996 0.000 0.000
#> GSM159898     2  0.0188     0.9117 0.004 0.996 0.000 0.000
#> GSM159899     2  0.0188     0.9117 0.004 0.996 0.000 0.000
#> GSM159900     3  0.3424     0.7950 0.004 0.052 0.876 0.068
#> GSM159901     2  0.6175    -0.1307 0.004 0.492 0.464 0.040
#> GSM159902     4  0.1022     0.6186 0.000 0.000 0.032 0.968
#> GSM159903     4  0.1211     0.6074 0.040 0.000 0.000 0.960
#> GSM159904     4  0.1174     0.6185 0.012 0.000 0.020 0.968
#> GSM159905     4  0.4277     0.3317 0.280 0.000 0.000 0.720
#> GSM159906     4  0.4382     0.2999 0.296 0.000 0.000 0.704
#> GSM159907     4  0.4961    -0.1874 0.448 0.000 0.000 0.552
#> GSM159908     4  0.1837     0.6182 0.028 0.000 0.028 0.944
#> GSM159909     4  0.2101     0.6178 0.012 0.000 0.060 0.928
#> GSM159910     3  0.0524     0.8091 0.008 0.000 0.988 0.004
#> GSM159911     4  0.3945     0.4582 0.000 0.004 0.216 0.780
#> GSM159912     4  0.2408     0.5676 0.104 0.000 0.000 0.896
#> GSM159913     4  0.1389     0.6037 0.048 0.000 0.000 0.952
#> GSM159914     4  0.4985    -0.2551 0.468 0.000 0.000 0.532
#> GSM159915     4  0.4877    -0.0424 0.408 0.000 0.000 0.592
#> GSM159916     4  0.4955    -0.1711 0.444 0.000 0.000 0.556
#> GSM159917     3  0.0895     0.8115 0.004 0.000 0.976 0.020
#> GSM159867     4  0.4875     0.5771 0.068 0.000 0.160 0.772
#> GSM159868     4  0.5097    -0.0788 0.004 0.000 0.428 0.568
#> GSM159869     3  0.5168     0.1534 0.004 0.000 0.500 0.496
#> GSM159870     2  0.4428     0.6558 0.276 0.720 0.004 0.000
#> GSM159871     2  0.4950     0.5311 0.376 0.620 0.004 0.000
#> GSM159872     3  0.1209     0.8015 0.032 0.000 0.964 0.004
#> GSM159873     3  0.5722     0.7039 0.012 0.072 0.724 0.192
#> GSM159874     3  0.1474     0.8068 0.000 0.000 0.948 0.052
#> GSM159875     3  0.7263     0.2448 0.012 0.404 0.480 0.104
#> GSM159876     1  0.1124     0.6144 0.972 0.004 0.012 0.012
#> GSM159877     3  0.1576     0.7922 0.048 0.000 0.948 0.004
#> GSM159878     1  0.1637     0.6363 0.940 0.000 0.000 0.060
#> GSM159879     2  0.1398     0.9013 0.040 0.956 0.004 0.000
#> GSM159880     2  0.1109     0.9079 0.028 0.968 0.004 0.000
#> GSM159881     2  0.1004     0.9083 0.024 0.972 0.004 0.000
#> GSM159882     2  0.1398     0.9023 0.040 0.956 0.004 0.000
#> GSM159883     2  0.1109     0.9079 0.028 0.968 0.004 0.000
#> GSM159884     2  0.0779     0.9096 0.016 0.980 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     4  0.4735     0.5907 0.304 0.000 0.008 0.664 0.024
#> GSM159851     1  0.5107     0.6079 0.688 0.000 0.000 0.204 0.108
#> GSM159852     1  0.2260     0.7882 0.908 0.000 0.000 0.028 0.064
#> GSM159853     1  0.3244     0.7765 0.860 0.000 0.008 0.048 0.084
#> GSM159854     1  0.4148     0.6379 0.752 0.000 0.004 0.216 0.028
#> GSM159855     1  0.2548     0.7831 0.896 0.000 0.004 0.028 0.072
#> GSM159856     1  0.3439     0.6445 0.800 0.000 0.004 0.008 0.188
#> GSM159857     1  0.3523     0.7286 0.824 0.000 0.004 0.032 0.140
#> GSM159858     1  0.3013     0.6827 0.832 0.000 0.000 0.008 0.160
#> GSM159859     1  0.1571     0.7789 0.936 0.000 0.000 0.004 0.060
#> GSM159860     1  0.2074     0.7469 0.896 0.000 0.000 0.000 0.104
#> GSM159861     5  0.6749     0.4262 0.300 0.000 0.012 0.200 0.488
#> GSM159862     5  0.6142     0.6308 0.124 0.000 0.120 0.084 0.672
#> GSM159863     5  0.5821     0.6751 0.192 0.000 0.032 0.108 0.668
#> GSM159864     5  0.3980     0.7017 0.128 0.000 0.076 0.000 0.796
#> GSM159865     5  0.3731     0.7193 0.160 0.000 0.040 0.000 0.800
#> GSM159866     5  0.3764     0.7184 0.156 0.000 0.044 0.000 0.800
#> GSM159885     4  0.2364     0.7061 0.064 0.000 0.020 0.908 0.008
#> GSM159886     1  0.2130     0.7702 0.908 0.000 0.000 0.012 0.080
#> GSM159887     4  0.2197     0.7038 0.064 0.004 0.012 0.916 0.004
#> GSM159888     2  0.0451     0.8154 0.000 0.988 0.000 0.004 0.008
#> GSM159889     2  0.0648     0.8140 0.004 0.984 0.004 0.004 0.004
#> GSM159890     2  0.0613     0.8112 0.000 0.984 0.004 0.008 0.004
#> GSM159891     2  0.0693     0.8110 0.000 0.980 0.000 0.012 0.008
#> GSM159892     2  0.1168     0.8100 0.000 0.960 0.000 0.032 0.008
#> GSM159893     2  0.1965     0.8120 0.000 0.924 0.000 0.052 0.024
#> GSM159894     4  0.3423     0.7059 0.080 0.020 0.000 0.856 0.044
#> GSM159895     4  0.4339     0.7032 0.088 0.000 0.072 0.804 0.036
#> GSM159896     4  0.5002     0.6701 0.076 0.004 0.124 0.760 0.036
#> GSM159897     2  0.1580     0.7985 0.004 0.952 0.012 0.016 0.016
#> GSM159898     2  0.1772     0.7929 0.004 0.944 0.016 0.012 0.024
#> GSM159899     2  0.1580     0.7985 0.004 0.952 0.012 0.016 0.016
#> GSM159900     3  0.5596     0.6940 0.000 0.176 0.696 0.088 0.040
#> GSM159901     3  0.6189     0.4111 0.000 0.384 0.520 0.060 0.036
#> GSM159902     4  0.4402     0.6204 0.292 0.000 0.008 0.688 0.012
#> GSM159903     4  0.4713     0.3688 0.440 0.000 0.000 0.544 0.016
#> GSM159904     4  0.5404     0.3338 0.436 0.000 0.024 0.520 0.020
#> GSM159905     1  0.2249     0.7579 0.896 0.000 0.000 0.096 0.008
#> GSM159906     1  0.2228     0.7633 0.900 0.000 0.004 0.092 0.004
#> GSM159907     1  0.0880     0.7935 0.968 0.000 0.000 0.032 0.000
#> GSM159908     4  0.5236     0.3817 0.432 0.000 0.020 0.532 0.016
#> GSM159909     4  0.5640     0.5022 0.364 0.000 0.032 0.572 0.032
#> GSM159910     3  0.1670     0.8008 0.000 0.000 0.936 0.052 0.012
#> GSM159911     4  0.3096     0.7158 0.108 0.000 0.024 0.860 0.008
#> GSM159912     1  0.4088     0.4200 0.688 0.000 0.000 0.304 0.008
#> GSM159913     1  0.4655    -0.2354 0.512 0.000 0.000 0.476 0.012
#> GSM159914     1  0.1522     0.7933 0.944 0.000 0.000 0.044 0.012
#> GSM159915     1  0.1591     0.7884 0.940 0.000 0.004 0.052 0.004
#> GSM159916     1  0.0510     0.7933 0.984 0.000 0.000 0.016 0.000
#> GSM159917     3  0.1764     0.8010 0.000 0.000 0.928 0.064 0.008
#> GSM159867     4  0.4624     0.7049 0.116 0.000 0.024 0.776 0.084
#> GSM159868     4  0.3624     0.6678 0.032 0.000 0.076 0.848 0.044
#> GSM159869     4  0.3574     0.6372 0.020 0.000 0.108 0.840 0.032
#> GSM159870     2  0.7141     0.3488 0.024 0.444 0.036 0.088 0.408
#> GSM159871     5  0.7095    -0.0276 0.028 0.288 0.040 0.096 0.548
#> GSM159872     3  0.2304     0.7918 0.000 0.000 0.908 0.044 0.048
#> GSM159873     4  0.6748     0.2592 0.004 0.060 0.172 0.608 0.156
#> GSM159874     3  0.4398     0.6763 0.000 0.000 0.720 0.240 0.040
#> GSM159875     4  0.7264     0.1072 0.000 0.196 0.120 0.552 0.132
#> GSM159876     5  0.5149     0.5958 0.276 0.012 0.028 0.012 0.672
#> GSM159877     3  0.2450     0.7909 0.000 0.000 0.900 0.048 0.052
#> GSM159878     1  0.5068     0.1885 0.600 0.004 0.016 0.012 0.368
#> GSM159879     2  0.5319     0.7639 0.008 0.736 0.036 0.072 0.148
#> GSM159880     2  0.5005     0.7668 0.000 0.744 0.036 0.064 0.156
#> GSM159881     2  0.6640     0.5805 0.000 0.548 0.040 0.116 0.296
#> GSM159882     2  0.5188     0.7516 0.000 0.716 0.032 0.060 0.192
#> GSM159883     2  0.5564     0.7201 0.000 0.676 0.036 0.064 0.224
#> GSM159884     2  0.4963     0.7692 0.000 0.752 0.036 0.072 0.140

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM159850     4  0.4401     0.6432 0.180 0.000 0.000 0.740 0.044 0.036
#> GSM159851     1  0.6156     0.3583 0.540 0.000 0.000 0.264 0.156 0.040
#> GSM159852     1  0.3386     0.7853 0.832 0.000 0.000 0.040 0.104 0.024
#> GSM159853     1  0.5695     0.6359 0.664 0.000 0.004 0.088 0.132 0.112
#> GSM159854     1  0.3806     0.7100 0.792 0.000 0.000 0.144 0.024 0.040
#> GSM159855     1  0.4727     0.7158 0.744 0.000 0.000 0.072 0.104 0.080
#> GSM159856     1  0.2942     0.7598 0.836 0.000 0.000 0.000 0.132 0.032
#> GSM159857     1  0.5728     0.5504 0.620 0.000 0.000 0.052 0.216 0.112
#> GSM159858     1  0.1745     0.8025 0.920 0.000 0.000 0.000 0.068 0.012
#> GSM159859     1  0.1194     0.8163 0.956 0.000 0.000 0.004 0.032 0.008
#> GSM159860     1  0.1367     0.8115 0.944 0.000 0.000 0.000 0.044 0.012
#> GSM159861     5  0.5354     0.5991 0.068 0.000 0.000 0.200 0.664 0.068
#> GSM159862     5  0.5576     0.5910 0.024 0.000 0.016 0.152 0.660 0.148
#> GSM159863     5  0.4764     0.6576 0.048 0.000 0.000 0.136 0.732 0.084
#> GSM159864     5  0.1693     0.7026 0.044 0.000 0.020 0.004 0.932 0.000
#> GSM159865     5  0.1983     0.7003 0.060 0.000 0.012 0.000 0.916 0.012
#> GSM159866     5  0.2156     0.6969 0.048 0.000 0.020 0.000 0.912 0.020
#> GSM159885     4  0.2597     0.6305 0.020 0.000 0.004 0.880 0.008 0.088
#> GSM159886     1  0.1485     0.8187 0.944 0.000 0.000 0.004 0.028 0.024
#> GSM159887     4  0.3178     0.6095 0.028 0.000 0.004 0.836 0.008 0.124
#> GSM159888     2  0.1387     0.7970 0.000 0.932 0.000 0.000 0.000 0.068
#> GSM159889     2  0.1605     0.8120 0.016 0.936 0.000 0.000 0.004 0.044
#> GSM159890     2  0.0858     0.8296 0.004 0.968 0.000 0.000 0.000 0.028
#> GSM159891     2  0.0363     0.8332 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM159892     2  0.1155     0.8212 0.000 0.956 0.000 0.004 0.004 0.036
#> GSM159893     2  0.2584     0.6509 0.000 0.848 0.000 0.004 0.004 0.144
#> GSM159894     4  0.3221     0.6246 0.000 0.000 0.000 0.828 0.096 0.076
#> GSM159895     4  0.5000     0.6041 0.020 0.000 0.004 0.672 0.072 0.232
#> GSM159896     4  0.5579     0.5837 0.016 0.008 0.024 0.652 0.072 0.228
#> GSM159897     2  0.0865     0.8239 0.000 0.964 0.000 0.000 0.000 0.036
#> GSM159898     2  0.1471     0.8025 0.004 0.932 0.000 0.000 0.000 0.064
#> GSM159899     2  0.1141     0.8154 0.000 0.948 0.000 0.000 0.000 0.052
#> GSM159900     3  0.6314     0.4774 0.000 0.232 0.532 0.016 0.016 0.204
#> GSM159901     2  0.6086     0.2527 0.000 0.564 0.196 0.012 0.016 0.212
#> GSM159902     4  0.3582     0.6501 0.196 0.000 0.000 0.768 0.000 0.036
#> GSM159903     4  0.4562     0.4132 0.388 0.000 0.000 0.576 0.004 0.032
#> GSM159904     4  0.6398     0.5895 0.232 0.000 0.004 0.528 0.040 0.196
#> GSM159905     1  0.1333     0.8034 0.944 0.000 0.000 0.048 0.000 0.008
#> GSM159906     1  0.1010     0.8109 0.960 0.000 0.000 0.036 0.000 0.004
#> GSM159907     1  0.0363     0.8193 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM159908     4  0.6543     0.3677 0.388 0.000 0.032 0.456 0.040 0.084
#> GSM159909     4  0.6408     0.5841 0.184 0.000 0.008 0.548 0.044 0.216
#> GSM159910     3  0.0603     0.8250 0.000 0.000 0.980 0.000 0.004 0.016
#> GSM159911     4  0.2052     0.6638 0.056 0.000 0.004 0.912 0.000 0.028
#> GSM159912     1  0.4019     0.3335 0.652 0.000 0.000 0.332 0.004 0.012
#> GSM159913     4  0.4264     0.1837 0.484 0.000 0.000 0.500 0.000 0.016
#> GSM159914     1  0.0837     0.8181 0.972 0.000 0.000 0.020 0.004 0.004
#> GSM159915     1  0.0551     0.8194 0.984 0.000 0.000 0.008 0.004 0.004
#> GSM159916     1  0.0622     0.8197 0.980 0.000 0.000 0.012 0.000 0.008
#> GSM159917     3  0.0146     0.8273 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM159867     4  0.5947     0.5371 0.028 0.000 0.032 0.636 0.124 0.180
#> GSM159868     4  0.4593     0.6023 0.000 0.000 0.020 0.724 0.084 0.172
#> GSM159869     4  0.3568     0.6252 0.000 0.000 0.020 0.812 0.040 0.128
#> GSM159870     6  0.6227     0.6082 0.032 0.248 0.000 0.008 0.160 0.552
#> GSM159871     6  0.6521     0.5503 0.036 0.184 0.004 0.008 0.236 0.532
#> GSM159872     3  0.0622     0.8265 0.000 0.000 0.980 0.000 0.012 0.008
#> GSM159873     6  0.5646     0.1632 0.000 0.016 0.040 0.288 0.052 0.604
#> GSM159874     3  0.5604     0.5724 0.000 0.000 0.624 0.104 0.044 0.228
#> GSM159875     6  0.6600     0.0877 0.000 0.048 0.108 0.412 0.016 0.416
#> GSM159876     5  0.6061     0.2286 0.312 0.000 0.004 0.000 0.448 0.236
#> GSM159877     3  0.0993     0.8209 0.000 0.000 0.964 0.000 0.024 0.012
#> GSM159878     1  0.4963     0.4880 0.636 0.000 0.000 0.000 0.240 0.124
#> GSM159879     6  0.4620     0.5684 0.012 0.456 0.000 0.004 0.012 0.516
#> GSM159880     6  0.4468     0.5396 0.000 0.484 0.000 0.004 0.020 0.492
#> GSM159881     6  0.5806     0.6256 0.000 0.328 0.000 0.028 0.108 0.536
#> GSM159882     6  0.5203     0.5747 0.000 0.452 0.000 0.004 0.076 0.468
#> GSM159883     6  0.5481     0.5937 0.000 0.420 0.000 0.004 0.108 0.468
#> GSM159884     6  0.4411     0.5490 0.000 0.476 0.000 0.012 0.008 0.504

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n agent(p)  dose(p)  time(p) k
#> CV:NMF 64 4.93e-07 5.90e-04 3.21e-04 2
#> CV:NMF 62 7.00e-08 2.01e-04 2.55e-03 3
#> CV:NMF 46 3.09e-08 6.68e-05 1.26e-04 4
#> CV:NMF 56 9.58e-06 2.64e-04 1.30e-07 5
#> CV:NMF 57 2.92e-12 2.98e-05 1.90e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.842           0.977       0.964         0.4184 0.556   0.556
#> 3 3 0.793           0.938       0.957         0.1419 0.943   0.898
#> 4 4 0.859           0.879       0.941         0.0365 0.991   0.982
#> 5 5 0.910           0.886       0.940         0.0373 0.982   0.962
#> 6 6 0.942           0.912       0.952         0.0723 0.983   0.965

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1  0.0000      0.987 1.000 0.000
#> GSM159851     1  0.0000      0.987 1.000 0.000
#> GSM159852     1  0.0000      0.987 1.000 0.000
#> GSM159853     1  0.0000      0.987 1.000 0.000
#> GSM159854     1  0.0000      0.987 1.000 0.000
#> GSM159855     1  0.0000      0.987 1.000 0.000
#> GSM159856     1  0.0000      0.987 1.000 0.000
#> GSM159857     1  0.0000      0.987 1.000 0.000
#> GSM159858     1  0.0000      0.987 1.000 0.000
#> GSM159859     1  0.0000      0.987 1.000 0.000
#> GSM159860     1  0.0000      0.987 1.000 0.000
#> GSM159861     1  0.0000      0.987 1.000 0.000
#> GSM159862     1  0.0000      0.987 1.000 0.000
#> GSM159863     1  0.0000      0.987 1.000 0.000
#> GSM159864     1  0.0000      0.987 1.000 0.000
#> GSM159865     1  0.0000      0.987 1.000 0.000
#> GSM159866     1  0.0000      0.987 1.000 0.000
#> GSM159885     1  0.0672      0.983 0.992 0.008
#> GSM159886     1  0.0000      0.987 1.000 0.000
#> GSM159887     1  0.0672      0.983 0.992 0.008
#> GSM159888     2  0.3879      0.984 0.076 0.924
#> GSM159889     2  0.3879      0.984 0.076 0.924
#> GSM159890     2  0.3879      0.984 0.076 0.924
#> GSM159891     2  0.3584      0.981 0.068 0.932
#> GSM159892     2  0.3584      0.981 0.068 0.932
#> GSM159893     2  0.3584      0.981 0.068 0.932
#> GSM159894     1  0.0376      0.985 0.996 0.004
#> GSM159895     1  0.0376      0.985 0.996 0.004
#> GSM159896     1  0.0376      0.985 0.996 0.004
#> GSM159897     2  0.3879      0.984 0.076 0.924
#> GSM159898     2  0.3879      0.984 0.076 0.924
#> GSM159899     2  0.3879      0.984 0.076 0.924
#> GSM159900     2  0.3431      0.978 0.064 0.936
#> GSM159901     2  0.3431      0.978 0.064 0.936
#> GSM159902     1  0.0000      0.987 1.000 0.000
#> GSM159903     1  0.0000      0.987 1.000 0.000
#> GSM159904     1  0.0000      0.987 1.000 0.000
#> GSM159905     1  0.0000      0.987 1.000 0.000
#> GSM159906     1  0.0000      0.987 1.000 0.000
#> GSM159907     1  0.0000      0.987 1.000 0.000
#> GSM159908     1  0.0000      0.987 1.000 0.000
#> GSM159909     1  0.0000      0.987 1.000 0.000
#> GSM159910     1  0.2043      0.967 0.968 0.032
#> GSM159911     1  0.0000      0.987 1.000 0.000
#> GSM159912     1  0.0000      0.987 1.000 0.000
#> GSM159913     1  0.0000      0.987 1.000 0.000
#> GSM159914     1  0.0000      0.987 1.000 0.000
#> GSM159915     1  0.0000      0.987 1.000 0.000
#> GSM159916     1  0.0000      0.987 1.000 0.000
#> GSM159917     1  0.3431      0.928 0.936 0.064
#> GSM159867     1  0.1184      0.977 0.984 0.016
#> GSM159868     1  0.1184      0.976 0.984 0.016
#> GSM159869     1  0.1184      0.976 0.984 0.016
#> GSM159870     2  0.5178      0.963 0.116 0.884
#> GSM159871     2  0.4815      0.975 0.104 0.896
#> GSM159872     1  0.4022      0.929 0.920 0.080
#> GSM159873     2  0.3879      0.983 0.076 0.924
#> GSM159874     2  0.3431      0.978 0.064 0.936
#> GSM159875     2  0.3584      0.981 0.068 0.932
#> GSM159876     1  0.5294      0.857 0.880 0.120
#> GSM159877     1  0.4022      0.929 0.920 0.080
#> GSM159878     1  0.5294      0.857 0.880 0.120
#> GSM159879     2  0.4815      0.975 0.104 0.896
#> GSM159880     2  0.4815      0.975 0.104 0.896
#> GSM159881     2  0.4939      0.971 0.108 0.892
#> GSM159882     2  0.4815      0.975 0.104 0.896
#> GSM159883     2  0.4815      0.975 0.104 0.896
#> GSM159884     2  0.4815      0.975 0.104 0.896

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159851     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159852     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159853     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159854     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159855     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159856     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159857     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159858     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159859     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159860     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159861     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159862     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159863     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159864     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159865     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159866     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159885     1  0.0475      0.972 0.992 0.004 0.004
#> GSM159886     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159887     1  0.0475      0.972 0.992 0.004 0.004
#> GSM159888     2  0.2356      0.952 0.072 0.928 0.000
#> GSM159889     2  0.2356      0.952 0.072 0.928 0.000
#> GSM159890     2  0.2356      0.952 0.072 0.928 0.000
#> GSM159891     2  0.1860      0.943 0.052 0.948 0.000
#> GSM159892     2  0.1860      0.943 0.052 0.948 0.000
#> GSM159893     2  0.1860      0.943 0.052 0.948 0.000
#> GSM159894     1  0.0237      0.975 0.996 0.004 0.000
#> GSM159895     1  0.0237      0.975 0.996 0.004 0.000
#> GSM159896     1  0.0237      0.975 0.996 0.004 0.000
#> GSM159897     2  0.2356      0.952 0.072 0.928 0.000
#> GSM159898     2  0.2356      0.952 0.072 0.928 0.000
#> GSM159899     2  0.2356      0.952 0.072 0.928 0.000
#> GSM159900     2  0.0747      0.870 0.000 0.984 0.016
#> GSM159901     2  0.0747      0.870 0.000 0.984 0.016
#> GSM159902     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159903     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159904     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159905     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159906     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159907     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159908     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159909     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159910     1  0.6451      0.134 0.608 0.008 0.384
#> GSM159911     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159912     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159913     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159914     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159915     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159916     1  0.0000      0.978 1.000 0.000 0.000
#> GSM159917     3  0.1289      0.712 0.032 0.000 0.968
#> GSM159867     1  0.0747      0.963 0.984 0.016 0.000
#> GSM159868     1  0.0747      0.963 0.984 0.016 0.000
#> GSM159869     1  0.0747      0.963 0.984 0.016 0.000
#> GSM159870     2  0.3921      0.924 0.112 0.872 0.016
#> GSM159871     2  0.3690      0.940 0.100 0.884 0.016
#> GSM159872     3  0.5731      0.855 0.228 0.020 0.752
#> GSM159873     2  0.2651      0.947 0.060 0.928 0.012
#> GSM159874     2  0.0983      0.886 0.004 0.980 0.016
#> GSM159875     2  0.2280      0.944 0.052 0.940 0.008
#> GSM159876     1  0.3769      0.813 0.880 0.104 0.016
#> GSM159877     3  0.5731      0.855 0.228 0.020 0.752
#> GSM159878     1  0.3769      0.813 0.880 0.104 0.016
#> GSM159879     2  0.3690      0.940 0.100 0.884 0.016
#> GSM159880     2  0.3690      0.940 0.100 0.884 0.016
#> GSM159881     2  0.3769      0.935 0.104 0.880 0.016
#> GSM159882     2  0.3690      0.940 0.100 0.884 0.016
#> GSM159883     2  0.3690      0.940 0.100 0.884 0.016
#> GSM159884     2  0.3690      0.940 0.100 0.884 0.016

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159851     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159852     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159853     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159854     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159855     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159856     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159857     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159858     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159859     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159860     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159861     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159862     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159863     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159864     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159865     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159866     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159885     1  0.0376      0.969 0.992 0.004 0.000 0.004
#> GSM159886     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159887     1  0.0376      0.969 0.992 0.004 0.000 0.004
#> GSM159888     2  0.1867      0.895 0.072 0.928 0.000 0.000
#> GSM159889     2  0.1867      0.895 0.072 0.928 0.000 0.000
#> GSM159890     2  0.1867      0.895 0.072 0.928 0.000 0.000
#> GSM159891     2  0.1661      0.874 0.052 0.944 0.000 0.004
#> GSM159892     2  0.1661      0.874 0.052 0.944 0.000 0.004
#> GSM159893     2  0.1661      0.874 0.052 0.944 0.000 0.004
#> GSM159894     1  0.0188      0.972 0.996 0.004 0.000 0.000
#> GSM159895     1  0.0188      0.972 0.996 0.004 0.000 0.000
#> GSM159896     1  0.0188      0.972 0.996 0.004 0.000 0.000
#> GSM159897     2  0.1867      0.895 0.072 0.928 0.000 0.000
#> GSM159898     2  0.1867      0.895 0.072 0.928 0.000 0.000
#> GSM159899     2  0.1867      0.895 0.072 0.928 0.000 0.000
#> GSM159900     2  0.3937      0.426 0.000 0.800 0.012 0.188
#> GSM159901     2  0.3937      0.426 0.000 0.800 0.012 0.188
#> GSM159902     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159903     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159904     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159905     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159906     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159907     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159908     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159909     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159910     1  0.7375     -0.361 0.452 0.004 0.404 0.140
#> GSM159911     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159912     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159913     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159914     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159915     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159916     1  0.0000      0.975 1.000 0.000 0.000 0.000
#> GSM159917     3  0.1118      0.431 0.000 0.000 0.964 0.036
#> GSM159867     1  0.0657      0.961 0.984 0.012 0.000 0.004
#> GSM159868     1  0.0672      0.961 0.984 0.008 0.000 0.008
#> GSM159869     1  0.0672      0.961 0.984 0.008 0.000 0.008
#> GSM159870     2  0.3758      0.862 0.104 0.848 0.000 0.048
#> GSM159871     2  0.3570      0.883 0.092 0.860 0.000 0.048
#> GSM159872     3  0.4119      0.750 0.188 0.004 0.796 0.012
#> GSM159873     2  0.2830      0.881 0.060 0.900 0.000 0.040
#> GSM159874     4  0.4713      0.000 0.000 0.360 0.000 0.640
#> GSM159875     2  0.2844      0.871 0.052 0.900 0.000 0.048
#> GSM159876     1  0.3279      0.809 0.872 0.096 0.000 0.032
#> GSM159877     3  0.4119      0.750 0.188 0.004 0.796 0.012
#> GSM159878     1  0.3279      0.809 0.872 0.096 0.000 0.032
#> GSM159879     2  0.3570      0.883 0.092 0.860 0.000 0.048
#> GSM159880     2  0.3570      0.883 0.092 0.860 0.000 0.048
#> GSM159881     2  0.3634      0.877 0.096 0.856 0.000 0.048
#> GSM159882     2  0.3570      0.883 0.092 0.860 0.000 0.048
#> GSM159883     2  0.3570      0.883 0.092 0.860 0.000 0.048
#> GSM159884     2  0.3570      0.883 0.092 0.860 0.000 0.048

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159851     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159852     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159853     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159854     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159855     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159856     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159857     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159858     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159859     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159860     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159861     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159862     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159863     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159864     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159865     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159866     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159885     1  0.0324      0.984 0.992 0.004 0.000 0.000 0.004
#> GSM159886     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159887     1  0.0324      0.984 0.992 0.004 0.000 0.000 0.004
#> GSM159888     2  0.1544      0.900 0.068 0.932 0.000 0.000 0.000
#> GSM159889     2  0.1544      0.900 0.068 0.932 0.000 0.000 0.000
#> GSM159890     2  0.1544      0.900 0.068 0.932 0.000 0.000 0.000
#> GSM159891     2  0.1357      0.883 0.048 0.948 0.000 0.000 0.004
#> GSM159892     2  0.1357      0.883 0.048 0.948 0.000 0.000 0.004
#> GSM159893     2  0.1357      0.883 0.048 0.948 0.000 0.000 0.004
#> GSM159894     1  0.0162      0.987 0.996 0.004 0.000 0.000 0.000
#> GSM159895     1  0.0162      0.987 0.996 0.004 0.000 0.000 0.000
#> GSM159896     1  0.0162      0.987 0.996 0.004 0.000 0.000 0.000
#> GSM159897     2  0.1544      0.900 0.068 0.932 0.000 0.000 0.000
#> GSM159898     2  0.1544      0.900 0.068 0.932 0.000 0.000 0.000
#> GSM159899     2  0.1544      0.900 0.068 0.932 0.000 0.000 0.000
#> GSM159900     2  0.5378      0.285 0.000 0.668 0.000 0.160 0.172
#> GSM159901     2  0.5378      0.285 0.000 0.668 0.000 0.160 0.172
#> GSM159902     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159903     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159904     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159905     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159906     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159907     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159908     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159909     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159910     5  0.3242      0.000 0.012 0.000 0.172 0.000 0.816
#> GSM159911     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159912     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159913     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159914     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159915     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159916     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000
#> GSM159917     3  0.0290      0.280 0.000 0.000 0.992 0.000 0.008
#> GSM159867     1  0.0566      0.977 0.984 0.012 0.000 0.004 0.000
#> GSM159868     1  0.0613      0.977 0.984 0.008 0.004 0.004 0.000
#> GSM159869     1  0.0613      0.977 0.984 0.008 0.004 0.004 0.000
#> GSM159870     2  0.3500      0.876 0.096 0.852 0.008 0.012 0.032
#> GSM159871     2  0.3332      0.892 0.084 0.864 0.008 0.012 0.032
#> GSM159872     3  0.5453      0.626 0.076 0.004 0.644 0.004 0.272
#> GSM159873     2  0.2724      0.886 0.052 0.900 0.004 0.020 0.024
#> GSM159874     4  0.2732      0.000 0.000 0.160 0.000 0.840 0.000
#> GSM159875     2  0.2705      0.879 0.048 0.900 0.004 0.036 0.012
#> GSM159876     1  0.3037      0.824 0.864 0.100 0.004 0.000 0.032
#> GSM159877     3  0.5453      0.626 0.076 0.004 0.644 0.004 0.272
#> GSM159878     1  0.3037      0.824 0.864 0.100 0.004 0.000 0.032
#> GSM159879     2  0.3332      0.892 0.084 0.864 0.008 0.012 0.032
#> GSM159880     2  0.3332      0.892 0.084 0.864 0.008 0.012 0.032
#> GSM159881     2  0.3389      0.887 0.088 0.860 0.008 0.012 0.032
#> GSM159882     2  0.3332      0.892 0.084 0.864 0.008 0.012 0.032
#> GSM159883     2  0.3332      0.892 0.084 0.864 0.008 0.012 0.032
#> GSM159884     2  0.3332      0.892 0.084 0.864 0.008 0.012 0.032

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM159850     1  0.0146      0.976 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM159851     1  0.0260      0.975 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM159852     1  0.0146      0.977 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM159853     1  0.0146      0.977 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM159854     1  0.0146      0.977 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM159855     1  0.0146      0.977 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM159856     1  0.0146      0.977 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM159857     1  0.0146      0.977 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM159858     1  0.0146      0.977 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM159859     1  0.0146      0.977 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM159860     1  0.0146      0.977 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM159861     1  0.0146      0.977 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM159862     1  0.0146      0.977 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM159863     1  0.0146      0.977 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM159864     1  0.0146      0.977 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM159865     1  0.0146      0.977 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM159866     1  0.0146      0.977 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM159885     1  0.1495      0.952 0.948 0.008 0.000 0.020 0.004 0.020
#> GSM159886     1  0.0146      0.977 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM159887     1  0.1495      0.952 0.948 0.008 0.000 0.020 0.004 0.020
#> GSM159888     2  0.1480      0.955 0.020 0.940 0.000 0.040 0.000 0.000
#> GSM159889     2  0.1480      0.955 0.020 0.940 0.000 0.040 0.000 0.000
#> GSM159890     2  0.1480      0.955 0.020 0.940 0.000 0.040 0.000 0.000
#> GSM159891     2  0.1082      0.940 0.000 0.956 0.000 0.040 0.000 0.004
#> GSM159892     2  0.1082      0.940 0.000 0.956 0.000 0.040 0.000 0.004
#> GSM159893     2  0.1082      0.940 0.000 0.956 0.000 0.040 0.000 0.004
#> GSM159894     1  0.1007      0.963 0.968 0.004 0.000 0.016 0.004 0.008
#> GSM159895     1  0.1293      0.956 0.956 0.004 0.000 0.016 0.004 0.020
#> GSM159896     1  0.1293      0.956 0.956 0.004 0.000 0.016 0.004 0.020
#> GSM159897     2  0.1480      0.955 0.020 0.940 0.000 0.040 0.000 0.000
#> GSM159898     2  0.1480      0.955 0.020 0.940 0.000 0.040 0.000 0.000
#> GSM159899     2  0.1480      0.955 0.020 0.940 0.000 0.040 0.000 0.000
#> GSM159900     4  0.0632      1.000 0.000 0.024 0.000 0.976 0.000 0.000
#> GSM159901     4  0.0632      1.000 0.000 0.024 0.000 0.976 0.000 0.000
#> GSM159902     1  0.0837      0.964 0.972 0.000 0.000 0.020 0.004 0.004
#> GSM159903     1  0.0291      0.975 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM159904     1  0.0405      0.973 0.988 0.000 0.000 0.004 0.000 0.008
#> GSM159905     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159906     1  0.0146      0.977 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM159907     1  0.0146      0.977 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM159908     1  0.0146      0.976 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM159909     1  0.0291      0.975 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM159910     6  0.3695      0.000 0.000 0.000 0.376 0.000 0.000 0.624
#> GSM159911     1  0.1237      0.956 0.956 0.000 0.000 0.020 0.004 0.020
#> GSM159912     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159913     1  0.0291      0.975 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM159914     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159915     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159916     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159917     3  0.3620      0.321 0.000 0.000 0.648 0.000 0.000 0.352
#> GSM159867     1  0.1508      0.956 0.948 0.020 0.000 0.016 0.004 0.012
#> GSM159868     1  0.1652      0.949 0.944 0.012 0.004 0.016 0.004 0.020
#> GSM159869     1  0.1652      0.949 0.944 0.012 0.004 0.016 0.004 0.020
#> GSM159870     2  0.1554      0.937 0.044 0.940 0.004 0.004 0.000 0.008
#> GSM159871     2  0.1338      0.951 0.032 0.952 0.004 0.004 0.000 0.008
#> GSM159872     3  0.1838      0.632 0.068 0.016 0.916 0.000 0.000 0.000
#> GSM159873     2  0.0405      0.942 0.000 0.988 0.000 0.000 0.008 0.004
#> GSM159874     5  0.0260      0.000 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM159875     2  0.1036      0.936 0.000 0.964 0.000 0.008 0.024 0.004
#> GSM159876     1  0.3056      0.773 0.828 0.152 0.004 0.004 0.004 0.008
#> GSM159877     3  0.1838      0.632 0.068 0.016 0.916 0.000 0.000 0.000
#> GSM159878     1  0.3056      0.773 0.828 0.152 0.004 0.004 0.004 0.008
#> GSM159879     2  0.1338      0.951 0.032 0.952 0.004 0.004 0.000 0.008
#> GSM159880     2  0.1338      0.951 0.032 0.952 0.004 0.004 0.000 0.008
#> GSM159881     2  0.1413      0.947 0.036 0.948 0.004 0.004 0.000 0.008
#> GSM159882     2  0.1338      0.951 0.032 0.952 0.004 0.004 0.000 0.008
#> GSM159883     2  0.1338      0.951 0.032 0.952 0.004 0.004 0.000 0.008
#> GSM159884     2  0.1338      0.951 0.032 0.952 0.004 0.004 0.000 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n agent(p) dose(p)  time(p) k
#> MAD:hclust 68 9.76e-07 0.00410 0.000133 2
#> MAD:hclust 67 4.02e-06 0.00641 0.000743 3
#> MAD:hclust 63 6.36e-06 0.01960 0.001658 4
#> MAD:hclust 63 6.36e-06 0.01960 0.001658 5
#> MAD:hclust 65 6.85e-06 0.01557 0.000828 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.992       0.995         0.4562 0.546   0.546
#> 3 3 0.674           0.772       0.878         0.2926 0.914   0.844
#> 4 4 0.540           0.628       0.775         0.1635 0.841   0.672
#> 5 5 0.608           0.684       0.754         0.0816 0.881   0.666
#> 6 6 0.693           0.648       0.745         0.0553 0.984   0.935

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1  0.0000      0.994 1.000 0.000
#> GSM159851     1  0.0000      0.994 1.000 0.000
#> GSM159852     1  0.0000      0.994 1.000 0.000
#> GSM159853     1  0.0000      0.994 1.000 0.000
#> GSM159854     1  0.0000      0.994 1.000 0.000
#> GSM159855     1  0.0000      0.994 1.000 0.000
#> GSM159856     1  0.0000      0.994 1.000 0.000
#> GSM159857     1  0.0000      0.994 1.000 0.000
#> GSM159858     1  0.0000      0.994 1.000 0.000
#> GSM159859     1  0.0000      0.994 1.000 0.000
#> GSM159860     1  0.0000      0.994 1.000 0.000
#> GSM159861     1  0.0376      0.991 0.996 0.004
#> GSM159862     1  0.0376      0.991 0.996 0.004
#> GSM159863     1  0.0376      0.991 0.996 0.004
#> GSM159864     1  0.0376      0.991 0.996 0.004
#> GSM159865     1  0.0376      0.991 0.996 0.004
#> GSM159866     1  0.0376      0.991 0.996 0.004
#> GSM159885     1  0.0000      0.994 1.000 0.000
#> GSM159886     1  0.0000      0.994 1.000 0.000
#> GSM159887     1  0.0000      0.994 1.000 0.000
#> GSM159888     2  0.0376      1.000 0.004 0.996
#> GSM159889     2  0.0376      1.000 0.004 0.996
#> GSM159890     2  0.0376      1.000 0.004 0.996
#> GSM159891     2  0.0376      1.000 0.004 0.996
#> GSM159892     2  0.0376      1.000 0.004 0.996
#> GSM159893     2  0.0376      1.000 0.004 0.996
#> GSM159894     1  0.0000      0.994 1.000 0.000
#> GSM159895     1  0.0000      0.994 1.000 0.000
#> GSM159896     1  0.0000      0.994 1.000 0.000
#> GSM159897     2  0.0376      1.000 0.004 0.996
#> GSM159898     2  0.0376      1.000 0.004 0.996
#> GSM159899     2  0.0376      1.000 0.004 0.996
#> GSM159900     2  0.0376      1.000 0.004 0.996
#> GSM159901     2  0.0376      1.000 0.004 0.996
#> GSM159902     1  0.0000      0.994 1.000 0.000
#> GSM159903     1  0.0000      0.994 1.000 0.000
#> GSM159904     1  0.0000      0.994 1.000 0.000
#> GSM159905     1  0.0000      0.994 1.000 0.000
#> GSM159906     1  0.0000      0.994 1.000 0.000
#> GSM159907     1  0.0000      0.994 1.000 0.000
#> GSM159908     1  0.0000      0.994 1.000 0.000
#> GSM159909     1  0.0000      0.994 1.000 0.000
#> GSM159910     1  0.5946      0.836 0.856 0.144
#> GSM159911     1  0.0000      0.994 1.000 0.000
#> GSM159912     1  0.0000      0.994 1.000 0.000
#> GSM159913     1  0.0000      0.994 1.000 0.000
#> GSM159914     1  0.0000      0.994 1.000 0.000
#> GSM159915     1  0.0000      0.994 1.000 0.000
#> GSM159916     1  0.0000      0.994 1.000 0.000
#> GSM159917     1  0.2423      0.957 0.960 0.040
#> GSM159867     1  0.0000      0.994 1.000 0.000
#> GSM159868     1  0.0000      0.994 1.000 0.000
#> GSM159869     1  0.0000      0.994 1.000 0.000
#> GSM159870     2  0.0376      1.000 0.004 0.996
#> GSM159871     2  0.0376      1.000 0.004 0.996
#> GSM159872     2  0.0376      1.000 0.004 0.996
#> GSM159873     2  0.0376      1.000 0.004 0.996
#> GSM159874     2  0.0376      1.000 0.004 0.996
#> GSM159875     2  0.0376      1.000 0.004 0.996
#> GSM159876     1  0.0000      0.994 1.000 0.000
#> GSM159877     1  0.3584      0.928 0.932 0.068
#> GSM159878     1  0.0000      0.994 1.000 0.000
#> GSM159879     2  0.0376      1.000 0.004 0.996
#> GSM159880     2  0.0376      1.000 0.004 0.996
#> GSM159881     2  0.0376      1.000 0.004 0.996
#> GSM159882     2  0.0376      1.000 0.004 0.996
#> GSM159883     2  0.0376      1.000 0.004 0.996
#> GSM159884     2  0.0376      1.000 0.004 0.996

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1  0.0424      0.860 0.992 0.000 0.008
#> GSM159851     1  0.0424      0.860 0.992 0.000 0.008
#> GSM159852     1  0.0747      0.858 0.984 0.000 0.016
#> GSM159853     1  0.0592      0.859 0.988 0.000 0.012
#> GSM159854     1  0.0237      0.859 0.996 0.000 0.004
#> GSM159855     1  0.0747      0.858 0.984 0.000 0.016
#> GSM159856     1  0.1163      0.855 0.972 0.000 0.028
#> GSM159857     1  0.1163      0.855 0.972 0.000 0.028
#> GSM159858     1  0.1163      0.855 0.972 0.000 0.028
#> GSM159859     1  0.1163      0.855 0.972 0.000 0.028
#> GSM159860     1  0.1163      0.855 0.972 0.000 0.028
#> GSM159861     1  0.4504      0.780 0.804 0.000 0.196
#> GSM159862     1  0.4654      0.774 0.792 0.000 0.208
#> GSM159863     1  0.4605      0.776 0.796 0.000 0.204
#> GSM159864     1  0.4887      0.748 0.772 0.000 0.228
#> GSM159865     1  0.4887      0.748 0.772 0.000 0.228
#> GSM159866     1  0.4887      0.748 0.772 0.000 0.228
#> GSM159885     1  0.6079      0.500 0.612 0.000 0.388
#> GSM159886     1  0.0237      0.859 0.996 0.000 0.004
#> GSM159887     1  0.6008      0.529 0.628 0.000 0.372
#> GSM159888     2  0.0000      0.892 0.000 1.000 0.000
#> GSM159889     2  0.0000      0.892 0.000 1.000 0.000
#> GSM159890     2  0.0000      0.892 0.000 1.000 0.000
#> GSM159891     2  0.0592      0.890 0.000 0.988 0.012
#> GSM159892     2  0.0592      0.890 0.000 0.988 0.012
#> GSM159893     2  0.0592      0.890 0.000 0.988 0.012
#> GSM159894     1  0.5905      0.557 0.648 0.000 0.352
#> GSM159895     1  0.6079      0.500 0.612 0.000 0.388
#> GSM159896     1  0.6079      0.500 0.612 0.000 0.388
#> GSM159897     2  0.0592      0.890 0.000 0.988 0.012
#> GSM159898     2  0.0424      0.891 0.000 0.992 0.008
#> GSM159899     2  0.0592      0.890 0.000 0.988 0.012
#> GSM159900     3  0.6308      0.127 0.000 0.492 0.508
#> GSM159901     2  0.6274     -0.103 0.000 0.544 0.456
#> GSM159902     1  0.2066      0.850 0.940 0.000 0.060
#> GSM159903     1  0.1031      0.858 0.976 0.000 0.024
#> GSM159904     1  0.1289      0.858 0.968 0.000 0.032
#> GSM159905     1  0.0747      0.859 0.984 0.000 0.016
#> GSM159906     1  0.0747      0.859 0.984 0.000 0.016
#> GSM159907     1  0.0747      0.859 0.984 0.000 0.016
#> GSM159908     1  0.1411      0.858 0.964 0.000 0.036
#> GSM159909     1  0.1529      0.857 0.960 0.000 0.040
#> GSM159910     3  0.3966      0.756 0.100 0.024 0.876
#> GSM159911     1  0.6045      0.536 0.620 0.000 0.380
#> GSM159912     1  0.0747      0.859 0.984 0.000 0.016
#> GSM159913     1  0.1031      0.858 0.976 0.000 0.024
#> GSM159914     1  0.0747      0.859 0.984 0.000 0.016
#> GSM159915     1  0.0747      0.859 0.984 0.000 0.016
#> GSM159916     1  0.0747      0.859 0.984 0.000 0.016
#> GSM159917     3  0.3619      0.728 0.136 0.000 0.864
#> GSM159867     1  0.5785      0.590 0.668 0.000 0.332
#> GSM159868     1  0.6154      0.463 0.592 0.000 0.408
#> GSM159869     1  0.6154      0.463 0.592 0.000 0.408
#> GSM159870     2  0.2711      0.892 0.000 0.912 0.088
#> GSM159871     2  0.2711      0.892 0.000 0.912 0.088
#> GSM159872     3  0.3686      0.713 0.000 0.140 0.860
#> GSM159873     2  0.3816      0.829 0.000 0.852 0.148
#> GSM159874     3  0.5254      0.576 0.000 0.264 0.736
#> GSM159875     2  0.5431      0.627 0.000 0.716 0.284
#> GSM159876     1  0.3207      0.819 0.904 0.012 0.084
#> GSM159877     3  0.3445      0.751 0.088 0.016 0.896
#> GSM159878     1  0.2446      0.838 0.936 0.012 0.052
#> GSM159879     2  0.2711      0.892 0.000 0.912 0.088
#> GSM159880     2  0.2711      0.892 0.000 0.912 0.088
#> GSM159881     2  0.2711      0.892 0.000 0.912 0.088
#> GSM159882     2  0.2711      0.892 0.000 0.912 0.088
#> GSM159883     2  0.2711      0.892 0.000 0.912 0.088
#> GSM159884     2  0.2711      0.892 0.000 0.912 0.088

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.1902      0.769 0.932 0.000 0.004 0.064
#> GSM159851     1  0.1716      0.769 0.936 0.000 0.000 0.064
#> GSM159852     1  0.0376      0.782 0.992 0.000 0.004 0.004
#> GSM159853     1  0.0376      0.782 0.992 0.000 0.004 0.004
#> GSM159854     1  0.0336      0.783 0.992 0.000 0.000 0.008
#> GSM159855     1  0.0524      0.782 0.988 0.000 0.004 0.008
#> GSM159856     1  0.1610      0.774 0.952 0.000 0.032 0.016
#> GSM159857     1  0.1610      0.774 0.952 0.000 0.032 0.016
#> GSM159858     1  0.1488      0.775 0.956 0.000 0.032 0.012
#> GSM159859     1  0.1406      0.778 0.960 0.000 0.024 0.016
#> GSM159860     1  0.1488      0.775 0.956 0.000 0.032 0.012
#> GSM159861     1  0.6942      0.482 0.584 0.000 0.240 0.176
#> GSM159862     1  0.7216      0.421 0.548 0.000 0.244 0.208
#> GSM159863     1  0.7001      0.470 0.576 0.000 0.244 0.180
#> GSM159864     1  0.6326      0.531 0.636 0.000 0.256 0.108
#> GSM159865     1  0.6326      0.531 0.636 0.000 0.256 0.108
#> GSM159866     1  0.6326      0.531 0.636 0.000 0.256 0.108
#> GSM159885     4  0.5247      0.671 0.284 0.032 0.000 0.684
#> GSM159886     1  0.0672      0.782 0.984 0.000 0.008 0.008
#> GSM159887     4  0.5424      0.668 0.284 0.032 0.004 0.680
#> GSM159888     2  0.3764      0.782 0.000 0.784 0.216 0.000
#> GSM159889     2  0.3764      0.782 0.000 0.784 0.216 0.000
#> GSM159890     2  0.3764      0.782 0.000 0.784 0.216 0.000
#> GSM159891     2  0.4304      0.746 0.000 0.716 0.284 0.000
#> GSM159892     2  0.4304      0.746 0.000 0.716 0.284 0.000
#> GSM159893     2  0.4304      0.746 0.000 0.716 0.284 0.000
#> GSM159894     4  0.5389      0.659 0.308 0.032 0.000 0.660
#> GSM159895     4  0.5344      0.668 0.300 0.032 0.000 0.668
#> GSM159896     4  0.5297      0.674 0.292 0.032 0.000 0.676
#> GSM159897     2  0.3975      0.772 0.000 0.760 0.240 0.000
#> GSM159898     2  0.3942      0.774 0.000 0.764 0.236 0.000
#> GSM159899     2  0.3975      0.772 0.000 0.760 0.240 0.000
#> GSM159900     3  0.6420      0.787 0.000 0.132 0.640 0.228
#> GSM159901     3  0.6360      0.748 0.000 0.164 0.656 0.180
#> GSM159902     1  0.6102      0.194 0.532 0.000 0.048 0.420
#> GSM159903     1  0.5298      0.595 0.708 0.000 0.048 0.244
#> GSM159904     1  0.5623      0.524 0.660 0.000 0.048 0.292
#> GSM159905     1  0.2844      0.768 0.900 0.000 0.052 0.048
#> GSM159906     1  0.2844      0.768 0.900 0.000 0.052 0.048
#> GSM159907     1  0.2844      0.768 0.900 0.000 0.052 0.048
#> GSM159908     1  0.4959      0.660 0.752 0.000 0.052 0.196
#> GSM159909     1  0.5691      0.510 0.648 0.000 0.048 0.304
#> GSM159910     4  0.6086     -0.403 0.008 0.036 0.380 0.576
#> GSM159911     4  0.5085      0.546 0.304 0.000 0.020 0.676
#> GSM159912     1  0.3009      0.765 0.892 0.000 0.052 0.056
#> GSM159913     1  0.5136      0.618 0.728 0.000 0.048 0.224
#> GSM159914     1  0.2844      0.768 0.900 0.000 0.052 0.048
#> GSM159915     1  0.2844      0.768 0.900 0.000 0.052 0.048
#> GSM159916     1  0.2844      0.768 0.900 0.000 0.052 0.048
#> GSM159917     4  0.5511     -0.362 0.008 0.012 0.376 0.604
#> GSM159867     4  0.5367      0.662 0.304 0.032 0.000 0.664
#> GSM159868     4  0.5334      0.675 0.284 0.036 0.000 0.680
#> GSM159869     4  0.5334      0.675 0.284 0.036 0.000 0.680
#> GSM159870     2  0.0779      0.795 0.000 0.980 0.004 0.016
#> GSM159871     2  0.0779      0.795 0.000 0.980 0.004 0.016
#> GSM159872     4  0.6668     -0.485 0.000 0.092 0.380 0.528
#> GSM159873     2  0.3687      0.672 0.000 0.856 0.064 0.080
#> GSM159874     3  0.7545      0.554 0.000 0.192 0.440 0.368
#> GSM159875     2  0.5950      0.373 0.000 0.696 0.156 0.148
#> GSM159876     1  0.4881      0.651 0.796 0.140 0.036 0.028
#> GSM159877     4  0.6925     -0.458 0.012 0.080 0.380 0.528
#> GSM159878     1  0.3796      0.721 0.864 0.080 0.036 0.020
#> GSM159879     2  0.0779      0.795 0.000 0.980 0.004 0.016
#> GSM159880     2  0.0779      0.795 0.000 0.980 0.004 0.016
#> GSM159881     2  0.0779      0.795 0.000 0.980 0.004 0.016
#> GSM159882     2  0.0592      0.796 0.000 0.984 0.000 0.016
#> GSM159883     2  0.0592      0.796 0.000 0.984 0.000 0.016
#> GSM159884     2  0.0592      0.796 0.000 0.984 0.000 0.016

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     1  0.4846      0.640 0.748 0.000 0.016 0.088 0.148
#> GSM159851     1  0.4886      0.639 0.744 0.000 0.016 0.088 0.152
#> GSM159852     1  0.3911      0.661 0.804 0.000 0.020 0.024 0.152
#> GSM159853     1  0.4117      0.660 0.788 0.000 0.020 0.028 0.164
#> GSM159854     1  0.4117      0.660 0.788 0.000 0.020 0.028 0.164
#> GSM159855     1  0.4078      0.660 0.792 0.000 0.020 0.028 0.160
#> GSM159856     1  0.4356      0.613 0.756 0.000 0.020 0.024 0.200
#> GSM159857     1  0.4389      0.612 0.752 0.000 0.020 0.024 0.204
#> GSM159858     1  0.4072      0.622 0.776 0.000 0.020 0.016 0.188
#> GSM159859     1  0.3926      0.641 0.792 0.000 0.020 0.016 0.172
#> GSM159860     1  0.4072      0.622 0.776 0.000 0.020 0.016 0.188
#> GSM159861     5  0.5714      0.896 0.292 0.000 0.000 0.116 0.592
#> GSM159862     5  0.5758      0.887 0.284 0.000 0.000 0.124 0.592
#> GSM159863     5  0.5714      0.896 0.292 0.000 0.000 0.116 0.592
#> GSM159864     5  0.5166      0.894 0.348 0.000 0.004 0.044 0.604
#> GSM159865     5  0.5166      0.894 0.348 0.000 0.004 0.044 0.604
#> GSM159866     5  0.5166      0.894 0.348 0.000 0.004 0.044 0.604
#> GSM159885     4  0.3106      0.918 0.140 0.000 0.000 0.840 0.020
#> GSM159886     1  0.3784      0.668 0.816 0.000 0.020 0.024 0.140
#> GSM159887     4  0.3106      0.918 0.140 0.000 0.000 0.840 0.020
#> GSM159888     2  0.0000      0.752 0.000 1.000 0.000 0.000 0.000
#> GSM159889     2  0.0000      0.752 0.000 1.000 0.000 0.000 0.000
#> GSM159890     2  0.0000      0.752 0.000 1.000 0.000 0.000 0.000
#> GSM159891     2  0.2462      0.690 0.000 0.880 0.112 0.008 0.000
#> GSM159892     2  0.2462      0.690 0.000 0.880 0.112 0.008 0.000
#> GSM159893     2  0.2462      0.690 0.000 0.880 0.112 0.008 0.000
#> GSM159894     4  0.2966      0.921 0.136 0.000 0.000 0.848 0.016
#> GSM159895     4  0.2707      0.923 0.132 0.000 0.000 0.860 0.008
#> GSM159896     4  0.2707      0.923 0.132 0.000 0.000 0.860 0.008
#> GSM159897     2  0.1197      0.735 0.000 0.952 0.048 0.000 0.000
#> GSM159898     2  0.0963      0.740 0.000 0.964 0.036 0.000 0.000
#> GSM159899     2  0.1197      0.735 0.000 0.952 0.048 0.000 0.000
#> GSM159900     3  0.3944      0.592 0.000 0.212 0.764 0.020 0.004
#> GSM159901     3  0.3914      0.584 0.000 0.220 0.760 0.016 0.004
#> GSM159902     4  0.5250      0.519 0.404 0.000 0.004 0.552 0.040
#> GSM159903     1  0.4429      0.404 0.712 0.000 0.004 0.256 0.028
#> GSM159904     1  0.4503      0.386 0.700 0.000 0.004 0.268 0.028
#> GSM159905     1  0.0324      0.667 0.992 0.000 0.004 0.000 0.004
#> GSM159906     1  0.0162      0.671 0.996 0.000 0.000 0.000 0.004
#> GSM159907     1  0.0000      0.670 1.000 0.000 0.000 0.000 0.000
#> GSM159908     1  0.3691      0.499 0.804 0.000 0.004 0.164 0.028
#> GSM159909     1  0.4735      0.306 0.668 0.000 0.004 0.296 0.032
#> GSM159910     3  0.6246      0.688 0.000 0.000 0.536 0.192 0.272
#> GSM159911     4  0.4284      0.843 0.204 0.000 0.004 0.752 0.040
#> GSM159912     1  0.0486      0.666 0.988 0.000 0.004 0.004 0.004
#> GSM159913     1  0.4052      0.465 0.764 0.000 0.004 0.204 0.028
#> GSM159914     1  0.0162      0.669 0.996 0.000 0.004 0.000 0.000
#> GSM159915     1  0.0324      0.667 0.992 0.000 0.004 0.000 0.004
#> GSM159916     1  0.0324      0.667 0.992 0.000 0.004 0.000 0.004
#> GSM159917     3  0.6269      0.687 0.000 0.000 0.528 0.188 0.284
#> GSM159867     4  0.2674      0.919 0.120 0.000 0.000 0.868 0.012
#> GSM159868     4  0.2674      0.919 0.120 0.000 0.000 0.868 0.012
#> GSM159869     4  0.2674      0.919 0.120 0.000 0.000 0.868 0.012
#> GSM159870     2  0.5864      0.760 0.000 0.688 0.156 0.088 0.068
#> GSM159871     2  0.5864      0.760 0.000 0.688 0.156 0.088 0.068
#> GSM159872     3  0.6193      0.696 0.000 0.000 0.544 0.184 0.272
#> GSM159873     2  0.6939      0.584 0.000 0.516 0.316 0.104 0.064
#> GSM159874     3  0.3047      0.647 0.000 0.012 0.868 0.096 0.024
#> GSM159875     3  0.7007     -0.368 0.000 0.348 0.484 0.108 0.060
#> GSM159876     1  0.7690      0.195 0.548 0.052 0.076 0.092 0.232
#> GSM159877     3  0.6193      0.696 0.000 0.000 0.544 0.184 0.272
#> GSM159878     1  0.6486      0.402 0.636 0.020 0.060 0.064 0.220
#> GSM159879     2  0.5864      0.760 0.000 0.688 0.156 0.088 0.068
#> GSM159880     2  0.5864      0.760 0.000 0.688 0.156 0.088 0.068
#> GSM159881     2  0.5864      0.760 0.000 0.688 0.156 0.088 0.068
#> GSM159882     2  0.5864      0.760 0.000 0.688 0.156 0.088 0.068
#> GSM159883     2  0.5864      0.760 0.000 0.688 0.156 0.088 0.068
#> GSM159884     2  0.5864      0.760 0.000 0.688 0.156 0.088 0.068

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM159850     1   0.456     0.6130 0.740 0.000 0.032 0.080 0.148 0.000
#> GSM159851     1   0.429     0.6272 0.760 0.000 0.024 0.076 0.140 0.000
#> GSM159852     1   0.327     0.6481 0.808 0.000 0.020 0.008 0.164 0.000
#> GSM159853     1   0.327     0.6451 0.808 0.000 0.020 0.008 0.164 0.000
#> GSM159854     1   0.329     0.6521 0.812 0.000 0.020 0.012 0.156 0.000
#> GSM159855     1   0.340     0.6455 0.800 0.000 0.020 0.012 0.168 0.000
#> GSM159856     1   0.326     0.6314 0.796 0.000 0.012 0.008 0.184 0.000
#> GSM159857     1   0.335     0.6348 0.792 0.000 0.016 0.008 0.184 0.000
#> GSM159858     1   0.260     0.6439 0.824 0.000 0.000 0.000 0.176 0.000
#> GSM159859     1   0.253     0.6490 0.832 0.000 0.000 0.000 0.168 0.000
#> GSM159860     1   0.260     0.6439 0.824 0.000 0.000 0.000 0.176 0.000
#> GSM159861     5   0.426     0.9221 0.128 0.000 0.016 0.096 0.760 0.000
#> GSM159862     5   0.431     0.9115 0.120 0.000 0.016 0.108 0.756 0.000
#> GSM159863     5   0.426     0.9221 0.128 0.000 0.016 0.096 0.760 0.000
#> GSM159864     5   0.346     0.9213 0.180 0.000 0.000 0.036 0.784 0.000
#> GSM159865     5   0.346     0.9213 0.180 0.000 0.000 0.036 0.784 0.000
#> GSM159866     5   0.346     0.9213 0.180 0.000 0.000 0.036 0.784 0.000
#> GSM159885     4   0.246     0.9113 0.068 0.000 0.024 0.892 0.016 0.000
#> GSM159886     1   0.301     0.6549 0.828 0.000 0.020 0.004 0.148 0.000
#> GSM159887     4   0.246     0.9113 0.068 0.000 0.024 0.892 0.016 0.000
#> GSM159888     2   0.000     0.6451 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159889     2   0.000     0.6451 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159890     2   0.000     0.6451 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159891     2   0.321     0.5183 0.000 0.828 0.140 0.008 0.016 0.008
#> GSM159892     2   0.321     0.5183 0.000 0.828 0.140 0.008 0.016 0.008
#> GSM159893     2   0.321     0.5183 0.000 0.828 0.140 0.008 0.016 0.008
#> GSM159894     4   0.183     0.9229 0.064 0.000 0.012 0.920 0.004 0.000
#> GSM159895     4   0.141     0.9235 0.060 0.000 0.000 0.936 0.004 0.000
#> GSM159896     4   0.141     0.9235 0.060 0.000 0.000 0.936 0.004 0.000
#> GSM159897     2   0.153     0.6262 0.000 0.944 0.036 0.008 0.004 0.008
#> GSM159898     2   0.153     0.6262 0.000 0.944 0.036 0.008 0.004 0.008
#> GSM159899     2   0.153     0.6262 0.000 0.944 0.036 0.008 0.004 0.008
#> GSM159900     3   0.789     0.3076 0.000 0.132 0.352 0.044 0.140 0.332
#> GSM159901     3   0.795     0.3151 0.000 0.144 0.352 0.044 0.140 0.320
#> GSM159902     4   0.610     0.6182 0.212 0.000 0.120 0.608 0.040 0.020
#> GSM159903     1   0.650     0.3652 0.552 0.000 0.184 0.208 0.036 0.020
#> GSM159904     1   0.656     0.3399 0.540 0.000 0.184 0.220 0.036 0.020
#> GSM159905     1   0.261     0.6419 0.864 0.000 0.116 0.000 0.008 0.012
#> GSM159906     1   0.227     0.6456 0.880 0.000 0.108 0.000 0.000 0.012
#> GSM159907     1   0.245     0.6438 0.872 0.000 0.112 0.000 0.004 0.012
#> GSM159908     1   0.616     0.4433 0.608 0.000 0.180 0.152 0.040 0.020
#> GSM159909     1   0.677     0.2369 0.500 0.000 0.184 0.256 0.040 0.020
#> GSM159910     6   0.134     0.9727 0.000 0.000 0.004 0.040 0.008 0.948
#> GSM159911     4   0.440     0.8292 0.088 0.000 0.084 0.780 0.036 0.012
#> GSM159912     1   0.290     0.6379 0.852 0.000 0.120 0.004 0.012 0.012
#> GSM159913     1   0.620     0.4344 0.592 0.000 0.180 0.176 0.036 0.016
#> GSM159914     1   0.261     0.6419 0.864 0.000 0.116 0.000 0.008 0.012
#> GSM159915     1   0.261     0.6419 0.864 0.000 0.116 0.000 0.008 0.012
#> GSM159916     1   0.261     0.6419 0.864 0.000 0.116 0.000 0.008 0.012
#> GSM159917     6   0.165     0.9647 0.000 0.000 0.008 0.040 0.016 0.936
#> GSM159867     4   0.167     0.9240 0.060 0.000 0.008 0.928 0.004 0.000
#> GSM159868     4   0.167     0.9240 0.060 0.000 0.008 0.928 0.004 0.000
#> GSM159869     4   0.167     0.9240 0.060 0.000 0.008 0.928 0.004 0.000
#> GSM159870     2   0.457     0.6170 0.000 0.612 0.352 0.024 0.008 0.004
#> GSM159871     2   0.457     0.6170 0.000 0.612 0.352 0.024 0.008 0.004
#> GSM159872     6   0.128     0.9783 0.000 0.000 0.004 0.052 0.000 0.944
#> GSM159873     3   0.504    -0.2402 0.000 0.364 0.576 0.040 0.016 0.004
#> GSM159874     3   0.665     0.0938 0.000 0.008 0.428 0.084 0.088 0.392
#> GSM159875     3   0.650     0.2800 0.000 0.220 0.592 0.060 0.068 0.060
#> GSM159876     1   0.659     0.3013 0.564 0.048 0.188 0.016 0.180 0.004
#> GSM159877     6   0.128     0.9783 0.000 0.000 0.004 0.052 0.000 0.944
#> GSM159878     1   0.563     0.4452 0.640 0.012 0.152 0.012 0.180 0.004
#> GSM159879     2   0.457     0.6170 0.000 0.612 0.352 0.024 0.008 0.004
#> GSM159880     2   0.457     0.6170 0.000 0.612 0.352 0.024 0.008 0.004
#> GSM159881     2   0.457     0.6170 0.000 0.612 0.352 0.024 0.008 0.004
#> GSM159882     2   0.444     0.6161 0.000 0.612 0.356 0.024 0.008 0.000
#> GSM159883     2   0.444     0.6161 0.000 0.612 0.356 0.024 0.008 0.000
#> GSM159884     2   0.444     0.6161 0.000 0.612 0.356 0.024 0.008 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n agent(p)  dose(p)  time(p) k
#> MAD:kmeans 68 3.58e-07 3.03e-03 7.64e-05 2
#> MAD:kmeans 64 1.62e-06 7.21e-03 1.15e-03 3
#> MAD:kmeans 59 5.98e-07 3.25e-03 2.91e-06 4
#> MAD:kmeans 60 9.06e-08 7.81e-06 1.06e-09 5
#> MAD:kmeans 56 8.88e-08 3.02e-05 6.74e-09 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.849           0.905       0.960         0.4923 0.514   0.514
#> 3 3 0.711           0.804       0.906         0.3306 0.783   0.601
#> 4 4 0.561           0.570       0.734         0.1240 0.892   0.711
#> 5 5 0.575           0.555       0.716         0.0685 0.931   0.765
#> 6 6 0.598           0.461       0.654         0.0457 0.986   0.941

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1   0.000      0.946 1.000 0.000
#> GSM159851     1   0.000      0.946 1.000 0.000
#> GSM159852     1   0.000      0.946 1.000 0.000
#> GSM159853     1   0.000      0.946 1.000 0.000
#> GSM159854     1   0.000      0.946 1.000 0.000
#> GSM159855     1   0.000      0.946 1.000 0.000
#> GSM159856     1   0.000      0.946 1.000 0.000
#> GSM159857     1   0.000      0.946 1.000 0.000
#> GSM159858     1   0.000      0.946 1.000 0.000
#> GSM159859     1   0.000      0.946 1.000 0.000
#> GSM159860     1   0.000      0.946 1.000 0.000
#> GSM159861     1   0.000      0.946 1.000 0.000
#> GSM159862     1   0.000      0.946 1.000 0.000
#> GSM159863     1   0.000      0.946 1.000 0.000
#> GSM159864     1   0.000      0.946 1.000 0.000
#> GSM159865     1   0.000      0.946 1.000 0.000
#> GSM159866     1   0.000      0.946 1.000 0.000
#> GSM159885     1   0.753      0.738 0.784 0.216
#> GSM159886     1   0.000      0.946 1.000 0.000
#> GSM159887     1   0.430      0.878 0.912 0.088
#> GSM159888     2   0.000      0.973 0.000 1.000
#> GSM159889     2   0.000      0.973 0.000 1.000
#> GSM159890     2   0.000      0.973 0.000 1.000
#> GSM159891     2   0.000      0.973 0.000 1.000
#> GSM159892     2   0.000      0.973 0.000 1.000
#> GSM159893     2   0.000      0.973 0.000 1.000
#> GSM159894     1   0.697      0.774 0.812 0.188
#> GSM159895     1   0.745      0.743 0.788 0.212
#> GSM159896     1   0.939      0.497 0.644 0.356
#> GSM159897     2   0.000      0.973 0.000 1.000
#> GSM159898     2   0.000      0.973 0.000 1.000
#> GSM159899     2   0.000      0.973 0.000 1.000
#> GSM159900     2   0.000      0.973 0.000 1.000
#> GSM159901     2   0.000      0.973 0.000 1.000
#> GSM159902     1   0.000      0.946 1.000 0.000
#> GSM159903     1   0.000      0.946 1.000 0.000
#> GSM159904     1   0.000      0.946 1.000 0.000
#> GSM159905     1   0.000      0.946 1.000 0.000
#> GSM159906     1   0.000      0.946 1.000 0.000
#> GSM159907     1   0.000      0.946 1.000 0.000
#> GSM159908     1   0.000      0.946 1.000 0.000
#> GSM159909     1   0.000      0.946 1.000 0.000
#> GSM159910     2   0.000      0.973 0.000 1.000
#> GSM159911     1   0.000      0.946 1.000 0.000
#> GSM159912     1   0.000      0.946 1.000 0.000
#> GSM159913     1   0.000      0.946 1.000 0.000
#> GSM159914     1   0.000      0.946 1.000 0.000
#> GSM159915     1   0.000      0.946 1.000 0.000
#> GSM159916     1   0.000      0.946 1.000 0.000
#> GSM159917     2   0.714      0.722 0.196 0.804
#> GSM159867     1   0.204      0.923 0.968 0.032
#> GSM159868     1   0.971      0.393 0.600 0.400
#> GSM159869     1   0.943      0.489 0.640 0.360
#> GSM159870     2   0.000      0.973 0.000 1.000
#> GSM159871     2   0.000      0.973 0.000 1.000
#> GSM159872     2   0.000      0.973 0.000 1.000
#> GSM159873     2   0.000      0.973 0.000 1.000
#> GSM159874     2   0.000      0.973 0.000 1.000
#> GSM159875     2   0.000      0.973 0.000 1.000
#> GSM159876     2   0.996      0.104 0.464 0.536
#> GSM159877     2   0.000      0.973 0.000 1.000
#> GSM159878     1   0.760      0.707 0.780 0.220
#> GSM159879     2   0.000      0.973 0.000 1.000
#> GSM159880     2   0.000      0.973 0.000 1.000
#> GSM159881     2   0.000      0.973 0.000 1.000
#> GSM159882     2   0.000      0.973 0.000 1.000
#> GSM159883     2   0.000      0.973 0.000 1.000
#> GSM159884     2   0.000      0.973 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1  0.4235    0.79941 0.824 0.000 0.176
#> GSM159851     1  0.2878    0.85992 0.904 0.000 0.096
#> GSM159852     1  0.0424    0.88648 0.992 0.000 0.008
#> GSM159853     1  0.1163    0.88679 0.972 0.000 0.028
#> GSM159854     1  0.1643    0.88354 0.956 0.000 0.044
#> GSM159855     1  0.1411    0.88351 0.964 0.000 0.036
#> GSM159856     1  0.0237    0.88491 0.996 0.000 0.004
#> GSM159857     1  0.0424    0.88582 0.992 0.000 0.008
#> GSM159858     1  0.0000    0.88545 1.000 0.000 0.000
#> GSM159859     1  0.0000    0.88545 1.000 0.000 0.000
#> GSM159860     1  0.0000    0.88545 1.000 0.000 0.000
#> GSM159861     1  0.4062    0.80818 0.836 0.000 0.164
#> GSM159862     1  0.6126    0.43840 0.600 0.000 0.400
#> GSM159863     1  0.5291    0.69160 0.732 0.000 0.268
#> GSM159864     1  0.1163    0.88224 0.972 0.000 0.028
#> GSM159865     1  0.1031    0.88332 0.976 0.000 0.024
#> GSM159866     1  0.1031    0.88332 0.976 0.000 0.024
#> GSM159885     3  0.0747    0.86485 0.016 0.000 0.984
#> GSM159886     1  0.0592    0.88755 0.988 0.000 0.012
#> GSM159887     3  0.2743    0.85716 0.052 0.020 0.928
#> GSM159888     2  0.0000    0.92486 0.000 1.000 0.000
#> GSM159889     2  0.0000    0.92486 0.000 1.000 0.000
#> GSM159890     2  0.0000    0.92486 0.000 1.000 0.000
#> GSM159891     2  0.0000    0.92486 0.000 1.000 0.000
#> GSM159892     2  0.0000    0.92486 0.000 1.000 0.000
#> GSM159893     2  0.0000    0.92486 0.000 1.000 0.000
#> GSM159894     3  0.4357    0.82492 0.080 0.052 0.868
#> GSM159895     3  0.1163    0.86326 0.028 0.000 0.972
#> GSM159896     3  0.0661    0.86420 0.004 0.008 0.988
#> GSM159897     2  0.0000    0.92486 0.000 1.000 0.000
#> GSM159898     2  0.0000    0.92486 0.000 1.000 0.000
#> GSM159899     2  0.0000    0.92486 0.000 1.000 0.000
#> GSM159900     2  0.5948    0.47265 0.000 0.640 0.360
#> GSM159901     2  0.4974    0.69375 0.000 0.764 0.236
#> GSM159902     3  0.6235   -0.00441 0.436 0.000 0.564
#> GSM159903     1  0.5291    0.70362 0.732 0.000 0.268
#> GSM159904     1  0.5497    0.67291 0.708 0.000 0.292
#> GSM159905     1  0.0892    0.88660 0.980 0.000 0.020
#> GSM159906     1  0.0592    0.88658 0.988 0.000 0.012
#> GSM159907     1  0.0747    0.88649 0.984 0.000 0.016
#> GSM159908     1  0.4887    0.74312 0.772 0.000 0.228
#> GSM159909     1  0.6180    0.43244 0.584 0.000 0.416
#> GSM159910     3  0.4233    0.74383 0.004 0.160 0.836
#> GSM159911     3  0.1964    0.84914 0.056 0.000 0.944
#> GSM159912     1  0.1529    0.88317 0.960 0.000 0.040
#> GSM159913     1  0.4235    0.80437 0.824 0.000 0.176
#> GSM159914     1  0.0747    0.88649 0.984 0.000 0.016
#> GSM159915     1  0.0592    0.88656 0.988 0.000 0.012
#> GSM159916     1  0.0747    0.88649 0.984 0.000 0.016
#> GSM159917     3  0.1453    0.85852 0.008 0.024 0.968
#> GSM159867     3  0.1529    0.86151 0.040 0.000 0.960
#> GSM159868     3  0.0424    0.86303 0.000 0.008 0.992
#> GSM159869     3  0.0661    0.86279 0.008 0.004 0.988
#> GSM159870     2  0.0000    0.92486 0.000 1.000 0.000
#> GSM159871     2  0.0237    0.92180 0.000 0.996 0.004
#> GSM159872     3  0.6095    0.24685 0.000 0.392 0.608
#> GSM159873     2  0.3340    0.82767 0.000 0.880 0.120
#> GSM159874     2  0.6286    0.18225 0.000 0.536 0.464
#> GSM159875     2  0.5098    0.67731 0.000 0.752 0.248
#> GSM159876     1  0.7065    0.43003 0.616 0.352 0.032
#> GSM159877     3  0.4634    0.73260 0.012 0.164 0.824
#> GSM159878     1  0.4645    0.72469 0.816 0.176 0.008
#> GSM159879     2  0.0000    0.92486 0.000 1.000 0.000
#> GSM159880     2  0.0000    0.92486 0.000 1.000 0.000
#> GSM159881     2  0.0000    0.92486 0.000 1.000 0.000
#> GSM159882     2  0.0000    0.92486 0.000 1.000 0.000
#> GSM159883     2  0.0000    0.92486 0.000 1.000 0.000
#> GSM159884     2  0.0000    0.92486 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.7366     0.1619 0.524 0.000 0.224 0.252
#> GSM159851     1  0.6810     0.3162 0.596 0.000 0.248 0.156
#> GSM159852     1  0.4831     0.5131 0.752 0.000 0.208 0.040
#> GSM159853     1  0.5592     0.4213 0.680 0.000 0.264 0.056
#> GSM159854     1  0.5288     0.4990 0.732 0.000 0.200 0.068
#> GSM159855     1  0.6158     0.3201 0.628 0.000 0.292 0.080
#> GSM159856     1  0.4382     0.3726 0.704 0.000 0.296 0.000
#> GSM159857     1  0.4868     0.3451 0.684 0.000 0.304 0.012
#> GSM159858     1  0.4313     0.4209 0.736 0.000 0.260 0.004
#> GSM159859     1  0.3942     0.4656 0.764 0.000 0.236 0.000
#> GSM159860     1  0.4008     0.4492 0.756 0.000 0.244 0.000
#> GSM159861     3  0.7363     0.5374 0.356 0.000 0.476 0.168
#> GSM159862     3  0.7434     0.5421 0.256 0.000 0.512 0.232
#> GSM159863     3  0.7312     0.5585 0.292 0.000 0.520 0.188
#> GSM159864     3  0.5681     0.5613 0.404 0.000 0.568 0.028
#> GSM159865     3  0.5517     0.5465 0.412 0.000 0.568 0.020
#> GSM159866     3  0.5756     0.5652 0.400 0.000 0.568 0.032
#> GSM159885     4  0.3341     0.6852 0.048 0.004 0.068 0.880
#> GSM159886     1  0.3757     0.5751 0.828 0.000 0.152 0.020
#> GSM159887     4  0.4750     0.6270 0.096 0.008 0.092 0.804
#> GSM159888     2  0.0000     0.8634 0.000 1.000 0.000 0.000
#> GSM159889     2  0.0188     0.8632 0.000 0.996 0.004 0.000
#> GSM159890     2  0.0000     0.8634 0.000 1.000 0.000 0.000
#> GSM159891     2  0.0336     0.8629 0.000 0.992 0.008 0.000
#> GSM159892     2  0.0592     0.8619 0.000 0.984 0.016 0.000
#> GSM159893     2  0.0469     0.8629 0.000 0.988 0.012 0.000
#> GSM159894     4  0.6144     0.5672 0.096 0.032 0.148 0.724
#> GSM159895     4  0.3623     0.6688 0.048 0.004 0.084 0.864
#> GSM159896     4  0.1706     0.7009 0.016 0.000 0.036 0.948
#> GSM159897     2  0.0336     0.8629 0.000 0.992 0.008 0.000
#> GSM159898     2  0.0336     0.8629 0.000 0.992 0.008 0.000
#> GSM159899     2  0.0336     0.8629 0.000 0.992 0.008 0.000
#> GSM159900     2  0.7726    -0.0252 0.000 0.444 0.260 0.296
#> GSM159901     2  0.6852     0.4017 0.000 0.600 0.208 0.192
#> GSM159902     1  0.6722     0.1468 0.500 0.000 0.092 0.408
#> GSM159903     1  0.5292     0.4396 0.724 0.000 0.060 0.216
#> GSM159904     1  0.5875     0.4096 0.692 0.000 0.104 0.204
#> GSM159905     1  0.1297     0.5992 0.964 0.000 0.020 0.016
#> GSM159906     1  0.1557     0.5974 0.944 0.000 0.056 0.000
#> GSM159907     1  0.1489     0.5994 0.952 0.000 0.044 0.004
#> GSM159908     1  0.5470     0.4343 0.736 0.000 0.148 0.116
#> GSM159909     1  0.6971     0.1783 0.568 0.000 0.156 0.276
#> GSM159910     4  0.7062     0.5887 0.008 0.104 0.360 0.528
#> GSM159911     4  0.6216     0.4665 0.220 0.000 0.120 0.660
#> GSM159912     1  0.2759     0.5914 0.904 0.000 0.052 0.044
#> GSM159913     1  0.4462     0.4959 0.792 0.000 0.044 0.164
#> GSM159914     1  0.1635     0.6012 0.948 0.000 0.044 0.008
#> GSM159915     1  0.1510     0.6006 0.956 0.000 0.028 0.016
#> GSM159916     1  0.1174     0.6001 0.968 0.000 0.020 0.012
#> GSM159917     4  0.4899     0.6456 0.008 0.004 0.300 0.688
#> GSM159867     4  0.5435     0.5620 0.064 0.004 0.204 0.728
#> GSM159868     4  0.2546     0.7021 0.008 0.000 0.092 0.900
#> GSM159869     4  0.2334     0.7024 0.004 0.000 0.088 0.908
#> GSM159870     2  0.2976     0.8492 0.000 0.872 0.120 0.008
#> GSM159871     2  0.3052     0.8440 0.000 0.860 0.136 0.004
#> GSM159872     4  0.7264     0.5011 0.000 0.148 0.392 0.460
#> GSM159873     2  0.6650     0.5766 0.000 0.624 0.200 0.176
#> GSM159874     4  0.7855     0.2718 0.000 0.284 0.320 0.396
#> GSM159875     2  0.7143     0.4275 0.000 0.560 0.208 0.232
#> GSM159876     3  0.8174     0.2549 0.208 0.244 0.512 0.036
#> GSM159877     4  0.5985     0.5818 0.004 0.032 0.428 0.536
#> GSM159878     1  0.7983    -0.2280 0.436 0.124 0.404 0.036
#> GSM159879     2  0.2530     0.8537 0.000 0.888 0.112 0.000
#> GSM159880     2  0.2408     0.8548 0.000 0.896 0.104 0.000
#> GSM159881     2  0.2760     0.8503 0.000 0.872 0.128 0.000
#> GSM159882     2  0.2216     0.8572 0.000 0.908 0.092 0.000
#> GSM159883     2  0.2469     0.8542 0.000 0.892 0.108 0.000
#> GSM159884     2  0.2408     0.8557 0.000 0.896 0.104 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     1  0.7360     0.2910 0.448 0.000 0.040 0.276 0.236
#> GSM159851     1  0.6984     0.3260 0.476 0.000 0.020 0.276 0.228
#> GSM159852     1  0.5847     0.4456 0.604 0.000 0.012 0.096 0.288
#> GSM159853     1  0.6529     0.4482 0.576 0.000 0.036 0.128 0.260
#> GSM159854     1  0.6421     0.4488 0.588 0.000 0.024 0.164 0.224
#> GSM159855     1  0.7106     0.3000 0.488 0.000 0.052 0.140 0.320
#> GSM159856     1  0.5359     0.3990 0.616 0.000 0.012 0.048 0.324
#> GSM159857     1  0.6245     0.1836 0.476 0.000 0.036 0.060 0.428
#> GSM159858     1  0.4142     0.4882 0.728 0.000 0.004 0.016 0.252
#> GSM159859     1  0.4443     0.5055 0.724 0.000 0.008 0.028 0.240
#> GSM159860     1  0.4265     0.4801 0.712 0.000 0.008 0.012 0.268
#> GSM159861     5  0.5926     0.5898 0.164 0.000 0.032 0.140 0.664
#> GSM159862     5  0.6174     0.5781 0.148 0.000 0.048 0.152 0.652
#> GSM159863     5  0.5780     0.5947 0.144 0.000 0.028 0.152 0.676
#> GSM159864     5  0.4654     0.6063 0.216 0.000 0.024 0.028 0.732
#> GSM159865     5  0.4629     0.5898 0.236 0.000 0.020 0.024 0.720
#> GSM159866     5  0.4422     0.5919 0.232 0.000 0.016 0.020 0.732
#> GSM159885     4  0.5222     0.6998 0.028 0.008 0.188 0.724 0.052
#> GSM159886     1  0.4280     0.5842 0.772 0.000 0.000 0.088 0.140
#> GSM159887     4  0.5997     0.6775 0.056 0.024 0.176 0.692 0.052
#> GSM159888     2  0.0727     0.7890 0.000 0.980 0.004 0.004 0.012
#> GSM159889     2  0.0740     0.7895 0.000 0.980 0.008 0.004 0.008
#> GSM159890     2  0.0566     0.7903 0.000 0.984 0.004 0.000 0.012
#> GSM159891     2  0.1538     0.7742 0.000 0.948 0.036 0.008 0.008
#> GSM159892     2  0.1956     0.7604 0.000 0.928 0.052 0.008 0.012
#> GSM159893     2  0.1364     0.7765 0.000 0.952 0.036 0.000 0.012
#> GSM159894     4  0.6424     0.6608 0.056 0.016 0.136 0.664 0.128
#> GSM159895     4  0.5893     0.6898 0.036 0.016 0.164 0.696 0.088
#> GSM159896     4  0.5679     0.6706 0.020 0.008 0.240 0.664 0.068
#> GSM159897     2  0.1026     0.7819 0.000 0.968 0.024 0.004 0.004
#> GSM159898     2  0.0865     0.7831 0.000 0.972 0.024 0.004 0.000
#> GSM159899     2  0.1116     0.7802 0.000 0.964 0.028 0.004 0.004
#> GSM159900     3  0.4920     0.5641 0.000 0.348 0.620 0.024 0.008
#> GSM159901     2  0.4994    -0.2732 0.000 0.512 0.464 0.016 0.008
#> GSM159902     4  0.6418     0.1775 0.340 0.000 0.028 0.532 0.100
#> GSM159903     1  0.5704     0.4074 0.592 0.000 0.012 0.324 0.072
#> GSM159904     1  0.6621     0.2939 0.496 0.000 0.028 0.360 0.116
#> GSM159905     1  0.2478     0.6069 0.904 0.000 0.008 0.060 0.028
#> GSM159906     1  0.2067     0.6100 0.924 0.000 0.004 0.028 0.044
#> GSM159907     1  0.2142     0.6063 0.920 0.000 0.004 0.028 0.048
#> GSM159908     1  0.7227     0.3456 0.544 0.000 0.084 0.204 0.168
#> GSM159909     1  0.7437     0.0418 0.388 0.000 0.044 0.364 0.204
#> GSM159910     3  0.3739     0.6384 0.004 0.052 0.848 0.064 0.032
#> GSM159911     4  0.6062     0.6439 0.148 0.000 0.140 0.664 0.048
#> GSM159912     1  0.3831     0.5881 0.812 0.000 0.008 0.136 0.044
#> GSM159913     1  0.4870     0.5147 0.680 0.000 0.008 0.272 0.040
#> GSM159914     1  0.2201     0.6066 0.920 0.000 0.008 0.040 0.032
#> GSM159915     1  0.2251     0.6073 0.916 0.000 0.008 0.052 0.024
#> GSM159916     1  0.2409     0.6039 0.908 0.000 0.008 0.056 0.028
#> GSM159917     3  0.3589     0.5574 0.012 0.008 0.840 0.116 0.024
#> GSM159867     4  0.6786     0.6278 0.040 0.000 0.212 0.564 0.184
#> GSM159868     4  0.6153     0.6265 0.020 0.004 0.304 0.584 0.088
#> GSM159869     4  0.5247     0.6130 0.004 0.000 0.320 0.620 0.056
#> GSM159870     2  0.5946     0.7225 0.000 0.684 0.116 0.064 0.136
#> GSM159871     2  0.5670     0.7368 0.000 0.708 0.108 0.060 0.124
#> GSM159872     3  0.2505     0.6896 0.000 0.092 0.888 0.020 0.000
#> GSM159873     2  0.6917     0.2756 0.000 0.488 0.356 0.064 0.092
#> GSM159874     3  0.4230     0.6731 0.000 0.164 0.780 0.044 0.012
#> GSM159875     3  0.6129     0.2020 0.000 0.412 0.500 0.048 0.040
#> GSM159876     5  0.9230     0.2287 0.188 0.168 0.140 0.100 0.404
#> GSM159877     3  0.3050     0.6046 0.008 0.012 0.884 0.040 0.056
#> GSM159878     5  0.8765     0.1314 0.316 0.104 0.088 0.100 0.392
#> GSM159879     2  0.5061     0.7627 0.000 0.756 0.088 0.052 0.104
#> GSM159880     2  0.4889     0.7695 0.000 0.768 0.084 0.048 0.100
#> GSM159881     2  0.5628     0.7344 0.000 0.704 0.148 0.048 0.100
#> GSM159882     2  0.4748     0.7738 0.000 0.780 0.072 0.056 0.092
#> GSM159883     2  0.5011     0.7665 0.000 0.760 0.088 0.052 0.100
#> GSM159884     2  0.4675     0.7737 0.000 0.784 0.080 0.048 0.088

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM159850     1  0.8207     0.2986 0.356 0.000 0.052 0.248 0.192 0.152
#> GSM159851     1  0.7626     0.3775 0.424 0.000 0.020 0.144 0.240 0.172
#> GSM159852     1  0.7212     0.4342 0.488 0.000 0.028 0.084 0.244 0.156
#> GSM159853     1  0.7917     0.3823 0.424 0.000 0.048 0.140 0.216 0.172
#> GSM159854     1  0.7722     0.4096 0.436 0.000 0.040 0.124 0.244 0.156
#> GSM159855     1  0.7872     0.2372 0.352 0.000 0.036 0.144 0.324 0.144
#> GSM159856     1  0.6698     0.3643 0.488 0.000 0.020 0.056 0.324 0.112
#> GSM159857     1  0.7093     0.2308 0.400 0.000 0.036 0.048 0.380 0.136
#> GSM159858     1  0.6411     0.3752 0.524 0.000 0.020 0.040 0.308 0.108
#> GSM159859     1  0.5975     0.4315 0.584 0.000 0.020 0.036 0.280 0.080
#> GSM159860     1  0.5914     0.4122 0.576 0.000 0.020 0.036 0.300 0.068
#> GSM159861     5  0.5184     0.7377 0.092 0.000 0.024 0.080 0.732 0.072
#> GSM159862     5  0.5148     0.7381 0.040 0.000 0.056 0.112 0.736 0.056
#> GSM159863     5  0.4784     0.7540 0.044 0.000 0.024 0.116 0.756 0.060
#> GSM159864     5  0.3443     0.7983 0.092 0.000 0.020 0.012 0.840 0.036
#> GSM159865     5  0.2912     0.7938 0.112 0.000 0.016 0.008 0.856 0.008
#> GSM159866     5  0.3033     0.7958 0.092 0.000 0.008 0.016 0.860 0.024
#> GSM159885     4  0.5274     0.6173 0.028 0.012 0.156 0.720 0.048 0.036
#> GSM159886     1  0.5937     0.5342 0.656 0.000 0.020 0.068 0.124 0.132
#> GSM159887     4  0.6204     0.6246 0.060 0.016 0.116 0.672 0.048 0.088
#> GSM159888     2  0.0937     0.6363 0.000 0.960 0.000 0.000 0.000 0.040
#> GSM159889     2  0.0790     0.6368 0.000 0.968 0.000 0.000 0.000 0.032
#> GSM159890     2  0.0790     0.6369 0.000 0.968 0.000 0.000 0.000 0.032
#> GSM159891     2  0.1313     0.6340 0.000 0.952 0.016 0.004 0.000 0.028
#> GSM159892     2  0.1418     0.6329 0.000 0.944 0.024 0.000 0.000 0.032
#> GSM159893     2  0.1572     0.6347 0.000 0.936 0.028 0.000 0.000 0.036
#> GSM159894     4  0.6843     0.5899 0.096 0.028 0.072 0.632 0.080 0.092
#> GSM159895     4  0.6876     0.5815 0.048 0.020 0.184 0.592 0.108 0.048
#> GSM159896     4  0.5355     0.6145 0.012 0.008 0.188 0.692 0.056 0.044
#> GSM159897     2  0.0862     0.6327 0.000 0.972 0.016 0.004 0.000 0.008
#> GSM159898     2  0.0964     0.6328 0.000 0.968 0.012 0.004 0.000 0.016
#> GSM159899     2  0.0964     0.6304 0.000 0.968 0.016 0.004 0.000 0.012
#> GSM159900     3  0.4808     0.4579 0.000 0.384 0.568 0.012 0.000 0.036
#> GSM159901     2  0.4814    -0.2988 0.000 0.504 0.452 0.008 0.000 0.036
#> GSM159902     4  0.7120     0.1562 0.308 0.000 0.036 0.472 0.092 0.092
#> GSM159903     1  0.6762     0.2503 0.516 0.000 0.032 0.276 0.044 0.132
#> GSM159904     1  0.7414     0.2330 0.472 0.000 0.040 0.260 0.116 0.112
#> GSM159905     1  0.3059     0.5751 0.872 0.000 0.012 0.036 0.032 0.048
#> GSM159906     1  0.3912     0.5801 0.816 0.000 0.012 0.032 0.064 0.076
#> GSM159907     1  0.2995     0.5766 0.868 0.000 0.004 0.020 0.064 0.044
#> GSM159908     1  0.7713     0.3431 0.484 0.000 0.080 0.156 0.180 0.100
#> GSM159909     1  0.8187    -0.0269 0.312 0.000 0.060 0.288 0.236 0.104
#> GSM159910     3  0.3781     0.6273 0.012 0.048 0.840 0.052 0.020 0.028
#> GSM159911     4  0.7028     0.5604 0.128 0.000 0.144 0.572 0.072 0.084
#> GSM159912     1  0.4653     0.5539 0.768 0.000 0.020 0.092 0.044 0.076
#> GSM159913     1  0.6237     0.3734 0.600 0.000 0.024 0.224 0.056 0.096
#> GSM159914     1  0.2688     0.5746 0.892 0.000 0.012 0.020 0.036 0.040
#> GSM159915     1  0.2701     0.5699 0.892 0.000 0.012 0.028 0.040 0.028
#> GSM159916     1  0.2441     0.5720 0.904 0.000 0.012 0.024 0.016 0.044
#> GSM159917     3  0.2865     0.5751 0.008 0.004 0.872 0.088 0.016 0.012
#> GSM159867     4  0.7276     0.5505 0.028 0.004 0.164 0.524 0.164 0.116
#> GSM159868     4  0.6522     0.5151 0.012 0.000 0.268 0.540 0.072 0.108
#> GSM159869     4  0.5773     0.5313 0.004 0.000 0.292 0.580 0.040 0.084
#> GSM159870     6  0.5228    -0.4923 0.000 0.464 0.032 0.008 0.020 0.476
#> GSM159871     2  0.5226     0.3141 0.000 0.508 0.040 0.004 0.020 0.428
#> GSM159872     3  0.2270     0.6551 0.000 0.020 0.900 0.004 0.004 0.072
#> GSM159873     2  0.6909     0.1328 0.000 0.360 0.272 0.040 0.004 0.324
#> GSM159874     3  0.5407     0.6129 0.000 0.148 0.684 0.060 0.004 0.104
#> GSM159875     3  0.6926     0.2821 0.000 0.324 0.432 0.060 0.008 0.176
#> GSM159876     6  0.7819     0.1725 0.092 0.108 0.032 0.036 0.272 0.460
#> GSM159877     3  0.2697     0.6221 0.000 0.004 0.888 0.024 0.040 0.044
#> GSM159878     6  0.7860     0.0644 0.228 0.060 0.032 0.024 0.232 0.424
#> GSM159879     2  0.4224     0.3856 0.000 0.552 0.016 0.000 0.000 0.432
#> GSM159880     2  0.4446     0.3662 0.000 0.532 0.020 0.000 0.004 0.444
#> GSM159881     2  0.4772     0.3360 0.000 0.504 0.040 0.004 0.000 0.452
#> GSM159882     2  0.4475     0.4005 0.000 0.556 0.032 0.000 0.000 0.412
#> GSM159883     2  0.4421     0.3904 0.000 0.552 0.020 0.004 0.000 0.424
#> GSM159884     2  0.4184     0.4240 0.000 0.576 0.016 0.000 0.000 0.408

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n agent(p)  dose(p)  time(p) k
#> MAD:skmeans 64 1.05e-07 3.22e-04 3.83e-04 2
#> MAD:skmeans 61 1.76e-08 8.07e-05 6.64e-05 3
#> MAD:skmeans 45 1.87e-10 8.96e-07 1.01e-06 4
#> MAD:skmeans 48 3.13e-10 2.02e-06 1.47e-08 5
#> MAD:skmeans 37 1.01e-10 8.85e-06 4.01e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.713           0.781       0.916          0.447 0.546   0.546
#> 3 3 0.733           0.869       0.928          0.297 0.828   0.699
#> 4 4 0.675           0.683       0.801          0.122 0.860   0.689
#> 5 5 0.761           0.876       0.915          0.106 0.946   0.844
#> 6 6 0.717           0.699       0.829          0.123 0.863   0.564

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1  0.0000     0.9291 1.000 0.000
#> GSM159851     1  0.0000     0.9291 1.000 0.000
#> GSM159852     1  0.0000     0.9291 1.000 0.000
#> GSM159853     1  0.0000     0.9291 1.000 0.000
#> GSM159854     1  0.0000     0.9291 1.000 0.000
#> GSM159855     1  0.0000     0.9291 1.000 0.000
#> GSM159856     1  0.0000     0.9291 1.000 0.000
#> GSM159857     1  0.0000     0.9291 1.000 0.000
#> GSM159858     1  0.0000     0.9291 1.000 0.000
#> GSM159859     1  0.0000     0.9291 1.000 0.000
#> GSM159860     1  0.0000     0.9291 1.000 0.000
#> GSM159861     1  0.0000     0.9291 1.000 0.000
#> GSM159862     1  0.0000     0.9291 1.000 0.000
#> GSM159863     1  0.0000     0.9291 1.000 0.000
#> GSM159864     1  0.0000     0.9291 1.000 0.000
#> GSM159865     1  0.0000     0.9291 1.000 0.000
#> GSM159866     1  0.0000     0.9291 1.000 0.000
#> GSM159885     1  0.3114     0.8851 0.944 0.056
#> GSM159886     1  0.0000     0.9291 1.000 0.000
#> GSM159887     1  0.1633     0.9142 0.976 0.024
#> GSM159888     1  1.0000    -0.0495 0.504 0.496
#> GSM159889     1  1.0000    -0.0495 0.504 0.496
#> GSM159890     2  1.0000     0.0147 0.496 0.504
#> GSM159891     2  0.0000     0.8388 0.000 1.000
#> GSM159892     2  0.0000     0.8388 0.000 1.000
#> GSM159893     2  0.0000     0.8388 0.000 1.000
#> GSM159894     1  0.2778     0.8951 0.952 0.048
#> GSM159895     1  0.2423     0.9020 0.960 0.040
#> GSM159896     1  0.3114     0.8889 0.944 0.056
#> GSM159897     2  0.8327     0.6010 0.264 0.736
#> GSM159898     1  0.9933     0.1036 0.548 0.452
#> GSM159899     2  0.0000     0.8388 0.000 1.000
#> GSM159900     2  0.0000     0.8388 0.000 1.000
#> GSM159901     2  0.0000     0.8388 0.000 1.000
#> GSM159902     1  0.0000     0.9291 1.000 0.000
#> GSM159903     1  0.0000     0.9291 1.000 0.000
#> GSM159904     1  0.0000     0.9291 1.000 0.000
#> GSM159905     1  0.0000     0.9291 1.000 0.000
#> GSM159906     1  0.0000     0.9291 1.000 0.000
#> GSM159907     1  0.0000     0.9291 1.000 0.000
#> GSM159908     1  0.0000     0.9291 1.000 0.000
#> GSM159909     1  0.0000     0.9291 1.000 0.000
#> GSM159910     2  0.8016     0.6525 0.244 0.756
#> GSM159911     1  0.1414     0.9159 0.980 0.020
#> GSM159912     1  0.0000     0.9291 1.000 0.000
#> GSM159913     1  0.0000     0.9291 1.000 0.000
#> GSM159914     1  0.0000     0.9291 1.000 0.000
#> GSM159915     1  0.0000     0.9291 1.000 0.000
#> GSM159916     1  0.0000     0.9291 1.000 0.000
#> GSM159917     2  0.9754     0.3977 0.408 0.592
#> GSM159867     1  0.4022     0.8626 0.920 0.080
#> GSM159868     2  0.9393     0.4903 0.356 0.644
#> GSM159869     2  0.9732     0.3992 0.404 0.596
#> GSM159870     1  0.8909     0.4953 0.692 0.308
#> GSM159871     1  0.9983    -0.0398 0.524 0.476
#> GSM159872     2  0.0376     0.8374 0.004 0.996
#> GSM159873     2  0.0000     0.8388 0.000 1.000
#> GSM159874     2  0.0376     0.8374 0.004 0.996
#> GSM159875     2  0.0000     0.8388 0.000 1.000
#> GSM159876     1  0.2778     0.8948 0.952 0.048
#> GSM159877     2  0.9963     0.2545 0.464 0.536
#> GSM159878     1  0.1633     0.9140 0.976 0.024
#> GSM159879     2  0.9323     0.4617 0.348 0.652
#> GSM159880     2  0.5178     0.7687 0.116 0.884
#> GSM159881     2  0.0000     0.8388 0.000 1.000
#> GSM159882     2  0.0000     0.8388 0.000 1.000
#> GSM159883     2  0.0000     0.8388 0.000 1.000
#> GSM159884     2  0.0000     0.8388 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159851     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159852     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159853     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159854     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159855     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159856     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159857     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159858     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159859     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159860     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159861     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159862     1  0.0237      0.959 0.996 0.000 0.004
#> GSM159863     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159864     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159865     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159866     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159885     1  0.5178      0.662 0.744 0.000 0.256
#> GSM159886     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159887     1  0.1267      0.944 0.972 0.004 0.024
#> GSM159888     2  0.0000      0.853 0.000 1.000 0.000
#> GSM159889     2  0.0000      0.853 0.000 1.000 0.000
#> GSM159890     2  0.0000      0.853 0.000 1.000 0.000
#> GSM159891     2  0.0000      0.853 0.000 1.000 0.000
#> GSM159892     2  0.0000      0.853 0.000 1.000 0.000
#> GSM159893     2  0.0000      0.853 0.000 1.000 0.000
#> GSM159894     1  0.5744      0.769 0.800 0.072 0.128
#> GSM159895     1  0.4397      0.835 0.856 0.028 0.116
#> GSM159896     1  0.4887      0.710 0.772 0.000 0.228
#> GSM159897     2  0.0000      0.853 0.000 1.000 0.000
#> GSM159898     2  0.0747      0.841 0.016 0.984 0.000
#> GSM159899     2  0.0000      0.853 0.000 1.000 0.000
#> GSM159900     3  0.4504      0.749 0.000 0.196 0.804
#> GSM159901     3  0.5497      0.648 0.000 0.292 0.708
#> GSM159902     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159903     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159904     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159905     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159906     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159907     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159908     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159909     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159910     3  0.3276      0.830 0.024 0.068 0.908
#> GSM159911     1  0.3686      0.833 0.860 0.000 0.140
#> GSM159912     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159913     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159914     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159915     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159916     1  0.0000      0.962 1.000 0.000 0.000
#> GSM159917     3  0.4291      0.766 0.180 0.000 0.820
#> GSM159867     1  0.2550      0.916 0.936 0.024 0.040
#> GSM159868     3  0.4178      0.774 0.172 0.000 0.828
#> GSM159869     3  0.4235      0.770 0.176 0.000 0.824
#> GSM159870     2  0.8399      0.596 0.160 0.620 0.220
#> GSM159871     2  0.8212      0.605 0.104 0.600 0.296
#> GSM159872     3  0.0424      0.826 0.000 0.008 0.992
#> GSM159873     3  0.1411      0.806 0.000 0.036 0.964
#> GSM159874     3  0.0000      0.824 0.000 0.000 1.000
#> GSM159875     3  0.0237      0.823 0.000 0.004 0.996
#> GSM159876     1  0.4982      0.785 0.828 0.036 0.136
#> GSM159877     3  0.2356      0.831 0.072 0.000 0.928
#> GSM159878     1  0.4033      0.815 0.856 0.008 0.136
#> GSM159879     2  0.4399      0.810 0.000 0.812 0.188
#> GSM159880     2  0.4504      0.807 0.000 0.804 0.196
#> GSM159881     2  0.6154      0.537 0.000 0.592 0.408
#> GSM159882     2  0.4504      0.806 0.000 0.804 0.196
#> GSM159883     2  0.4399      0.810 0.000 0.812 0.188
#> GSM159884     2  0.5465      0.733 0.000 0.712 0.288

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.0000      0.867 1.000 0.000 0.000 0.000
#> GSM159851     1  0.0188      0.867 0.996 0.000 0.000 0.004
#> GSM159852     1  0.1557      0.850 0.944 0.000 0.000 0.056
#> GSM159853     1  0.1557      0.850 0.944 0.000 0.000 0.056
#> GSM159854     1  0.2216      0.835 0.908 0.000 0.000 0.092
#> GSM159855     1  0.2408      0.822 0.896 0.000 0.000 0.104
#> GSM159856     1  0.2281      0.828 0.904 0.000 0.000 0.096
#> GSM159857     1  0.2345      0.824 0.900 0.000 0.000 0.100
#> GSM159858     1  0.2281      0.828 0.904 0.000 0.000 0.096
#> GSM159859     1  0.2281      0.828 0.904 0.000 0.000 0.096
#> GSM159860     1  0.2281      0.828 0.904 0.000 0.000 0.096
#> GSM159861     4  0.4998      0.983 0.488 0.000 0.000 0.512
#> GSM159862     4  0.5000      0.969 0.496 0.000 0.000 0.504
#> GSM159863     4  0.5165      0.981 0.484 0.000 0.004 0.512
#> GSM159864     4  0.4996      0.985 0.484 0.000 0.000 0.516
#> GSM159865     4  0.4998      0.982 0.488 0.000 0.000 0.512
#> GSM159866     4  0.4998      0.984 0.488 0.000 0.000 0.512
#> GSM159885     1  0.3308      0.699 0.872 0.000 0.036 0.092
#> GSM159886     1  0.0188      0.869 0.996 0.000 0.000 0.004
#> GSM159887     1  0.1004      0.852 0.972 0.000 0.024 0.004
#> GSM159888     2  0.0000      0.826 0.000 1.000 0.000 0.000
#> GSM159889     2  0.0336      0.822 0.000 0.992 0.008 0.000
#> GSM159890     2  0.0000      0.826 0.000 1.000 0.000 0.000
#> GSM159891     2  0.0000      0.826 0.000 1.000 0.000 0.000
#> GSM159892     2  0.0000      0.826 0.000 1.000 0.000 0.000
#> GSM159893     2  0.0000      0.826 0.000 1.000 0.000 0.000
#> GSM159894     1  0.2402      0.790 0.924 0.052 0.012 0.012
#> GSM159895     1  0.2198      0.787 0.920 0.000 0.072 0.008
#> GSM159896     1  0.2561      0.773 0.912 0.004 0.016 0.068
#> GSM159897     2  0.0000      0.826 0.000 1.000 0.000 0.000
#> GSM159898     2  0.0336      0.815 0.008 0.992 0.000 0.000
#> GSM159899     2  0.0000      0.826 0.000 1.000 0.000 0.000
#> GSM159900     3  0.7129      0.535 0.000 0.140 0.504 0.356
#> GSM159901     3  0.6929      0.227 0.000 0.444 0.448 0.108
#> GSM159902     1  0.0469      0.865 0.988 0.000 0.000 0.012
#> GSM159903     1  0.0592      0.868 0.984 0.000 0.000 0.016
#> GSM159904     1  0.1022      0.866 0.968 0.000 0.000 0.032
#> GSM159905     1  0.1022      0.864 0.968 0.000 0.000 0.032
#> GSM159906     1  0.2281      0.828 0.904 0.000 0.000 0.096
#> GSM159907     1  0.2281      0.828 0.904 0.000 0.000 0.096
#> GSM159908     1  0.1824      0.851 0.936 0.000 0.004 0.060
#> GSM159909     1  0.1867      0.849 0.928 0.000 0.000 0.072
#> GSM159910     3  0.5332      0.586 0.004 0.004 0.512 0.480
#> GSM159911     1  0.1557      0.819 0.944 0.000 0.000 0.056
#> GSM159912     1  0.0336      0.865 0.992 0.000 0.000 0.008
#> GSM159913     1  0.0336      0.865 0.992 0.000 0.000 0.008
#> GSM159914     1  0.0000      0.867 1.000 0.000 0.000 0.000
#> GSM159915     1  0.0000      0.867 1.000 0.000 0.000 0.000
#> GSM159916     1  0.0469      0.869 0.988 0.000 0.000 0.012
#> GSM159917     3  0.5000      0.585 0.000 0.000 0.504 0.496
#> GSM159867     1  0.4381      0.665 0.824 0.008 0.108 0.060
#> GSM159868     3  0.6660      0.532 0.120 0.000 0.592 0.288
#> GSM159869     3  0.6746      0.549 0.108 0.000 0.552 0.340
#> GSM159870     3  0.7139     -0.217 0.140 0.360 0.500 0.000
#> GSM159871     3  0.6688     -0.222 0.096 0.368 0.536 0.000
#> GSM159872     3  0.4994      0.587 0.000 0.000 0.520 0.480
#> GSM159873     3  0.1174      0.426 0.000 0.012 0.968 0.020
#> GSM159874     3  0.4994      0.587 0.000 0.000 0.520 0.480
#> GSM159875     3  0.3837      0.537 0.000 0.000 0.776 0.224
#> GSM159876     1  0.4946      0.543 0.776 0.008 0.164 0.052
#> GSM159877     3  0.5167      0.586 0.004 0.000 0.508 0.488
#> GSM159878     1  0.4514      0.611 0.800 0.000 0.136 0.064
#> GSM159879     2  0.5000      0.339 0.000 0.504 0.496 0.000
#> GSM159880     3  0.5000     -0.425 0.000 0.500 0.500 0.000
#> GSM159881     3  0.4713     -0.175 0.000 0.360 0.640 0.000
#> GSM159882     2  0.5000      0.339 0.000 0.504 0.496 0.000
#> GSM159883     2  0.5000      0.339 0.000 0.504 0.496 0.000
#> GSM159884     3  0.4972     -0.352 0.000 0.456 0.544 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     1  0.0404      0.896 0.988 0.000 0.000 0.000 0.012
#> GSM159851     1  0.0794      0.899 0.972 0.000 0.000 0.000 0.028
#> GSM159852     1  0.2712      0.873 0.880 0.000 0.000 0.032 0.088
#> GSM159853     1  0.2824      0.870 0.872 0.000 0.000 0.032 0.096
#> GSM159854     1  0.3445      0.861 0.824 0.000 0.000 0.036 0.140
#> GSM159855     1  0.3573      0.856 0.812 0.000 0.000 0.036 0.152
#> GSM159856     1  0.3615      0.851 0.808 0.000 0.000 0.036 0.156
#> GSM159857     1  0.3615      0.851 0.808 0.000 0.000 0.036 0.156
#> GSM159858     1  0.3573      0.852 0.812 0.000 0.000 0.036 0.152
#> GSM159859     1  0.3573      0.852 0.812 0.000 0.000 0.036 0.152
#> GSM159860     1  0.3655      0.848 0.804 0.000 0.000 0.036 0.160
#> GSM159861     5  0.1915      0.915 0.032 0.000 0.000 0.040 0.928
#> GSM159862     5  0.1270      0.927 0.052 0.000 0.000 0.000 0.948
#> GSM159863     5  0.0510      0.956 0.016 0.000 0.000 0.000 0.984
#> GSM159864     5  0.0404      0.961 0.012 0.000 0.000 0.000 0.988
#> GSM159865     5  0.0404      0.961 0.012 0.000 0.000 0.000 0.988
#> GSM159866     5  0.0290      0.960 0.008 0.000 0.000 0.000 0.992
#> GSM159885     1  0.2151      0.870 0.924 0.000 0.040 0.016 0.020
#> GSM159886     1  0.0609      0.898 0.980 0.000 0.000 0.000 0.020
#> GSM159887     1  0.0451      0.894 0.988 0.000 0.000 0.008 0.004
#> GSM159888     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> GSM159889     2  0.0880      0.926 0.000 0.968 0.000 0.032 0.000
#> GSM159890     2  0.0162      0.950 0.000 0.996 0.000 0.004 0.000
#> GSM159891     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> GSM159892     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> GSM159893     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> GSM159894     1  0.0451      0.894 0.988 0.000 0.000 0.008 0.004
#> GSM159895     1  0.1195      0.894 0.960 0.000 0.000 0.028 0.012
#> GSM159896     1  0.1618      0.888 0.944 0.000 0.040 0.008 0.008
#> GSM159897     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> GSM159898     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> GSM159899     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> GSM159900     3  0.2471      0.793 0.000 0.136 0.864 0.000 0.000
#> GSM159901     2  0.4030      0.408 0.000 0.648 0.352 0.000 0.000
#> GSM159902     1  0.1018      0.890 0.968 0.000 0.000 0.016 0.016
#> GSM159903     1  0.1211      0.897 0.960 0.000 0.000 0.016 0.024
#> GSM159904     1  0.1800      0.893 0.932 0.000 0.000 0.020 0.048
#> GSM159905     1  0.1670      0.894 0.936 0.000 0.000 0.012 0.052
#> GSM159906     1  0.3573      0.852 0.812 0.000 0.000 0.036 0.152
#> GSM159907     1  0.3649      0.853 0.808 0.000 0.000 0.040 0.152
#> GSM159908     1  0.2900      0.863 0.864 0.000 0.000 0.028 0.108
#> GSM159909     1  0.2722      0.878 0.872 0.000 0.000 0.020 0.108
#> GSM159910     3  0.0000      0.883 0.000 0.000 1.000 0.000 0.000
#> GSM159911     1  0.0912      0.891 0.972 0.000 0.000 0.016 0.012
#> GSM159912     1  0.0671      0.893 0.980 0.000 0.000 0.016 0.004
#> GSM159913     1  0.0912      0.893 0.972 0.000 0.000 0.016 0.012
#> GSM159914     1  0.0566      0.897 0.984 0.000 0.000 0.004 0.012
#> GSM159915     1  0.0566      0.897 0.984 0.000 0.000 0.004 0.012
#> GSM159916     1  0.1216      0.897 0.960 0.000 0.000 0.020 0.020
#> GSM159917     3  0.0000      0.883 0.000 0.000 1.000 0.000 0.000
#> GSM159867     1  0.5537      0.503 0.620 0.000 0.008 0.296 0.076
#> GSM159868     3  0.5327      0.718 0.100 0.000 0.728 0.132 0.040
#> GSM159869     3  0.4182      0.767 0.104 0.000 0.808 0.064 0.024
#> GSM159870     4  0.1357      0.963 0.004 0.048 0.000 0.948 0.000
#> GSM159871     4  0.1270      0.967 0.000 0.052 0.000 0.948 0.000
#> GSM159872     3  0.0000      0.883 0.000 0.000 1.000 0.000 0.000
#> GSM159873     4  0.3333      0.701 0.000 0.004 0.208 0.788 0.000
#> GSM159874     3  0.0000      0.883 0.000 0.000 1.000 0.000 0.000
#> GSM159875     3  0.3661      0.633 0.000 0.000 0.724 0.276 0.000
#> GSM159876     1  0.3336      0.760 0.772 0.000 0.000 0.228 0.000
#> GSM159877     3  0.0000      0.883 0.000 0.000 1.000 0.000 0.000
#> GSM159878     1  0.4588      0.730 0.720 0.000 0.000 0.220 0.060
#> GSM159879     4  0.1270      0.967 0.000 0.052 0.000 0.948 0.000
#> GSM159880     4  0.1270      0.967 0.000 0.052 0.000 0.948 0.000
#> GSM159881     4  0.1469      0.953 0.000 0.036 0.016 0.948 0.000
#> GSM159882     4  0.1270      0.967 0.000 0.052 0.000 0.948 0.000
#> GSM159883     4  0.1270      0.967 0.000 0.052 0.000 0.948 0.000
#> GSM159884     4  0.1270      0.967 0.000 0.052 0.000 0.948 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM159850     4  0.3695      0.607 0.376 0.000 0.000 0.624 0.000 0.000
#> GSM159851     4  0.3409      0.622 0.300 0.000 0.000 0.700 0.000 0.000
#> GSM159852     1  0.3175      0.415 0.744 0.000 0.000 0.256 0.000 0.000
#> GSM159853     1  0.3151      0.441 0.748 0.000 0.000 0.252 0.000 0.000
#> GSM159854     1  0.2969      0.619 0.776 0.000 0.000 0.224 0.000 0.000
#> GSM159855     1  0.1141      0.745 0.948 0.000 0.000 0.052 0.000 0.000
#> GSM159856     1  0.0146      0.755 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM159857     1  0.0146      0.756 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM159858     1  0.0000      0.755 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159859     1  0.1556      0.715 0.920 0.000 0.000 0.080 0.000 0.000
#> GSM159860     1  0.0146      0.754 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM159861     1  0.5464      0.195 0.564 0.000 0.000 0.176 0.260 0.000
#> GSM159862     5  0.3190      0.844 0.044 0.000 0.000 0.136 0.820 0.000
#> GSM159863     5  0.2887      0.867 0.036 0.000 0.000 0.120 0.844 0.000
#> GSM159864     5  0.0000      0.920 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM159865     5  0.0000      0.920 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM159866     5  0.0000      0.920 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM159885     4  0.3037      0.681 0.176 0.000 0.016 0.808 0.000 0.000
#> GSM159886     4  0.3867      0.450 0.488 0.000 0.000 0.512 0.000 0.000
#> GSM159887     4  0.3684      0.578 0.372 0.000 0.000 0.628 0.000 0.000
#> GSM159888     2  0.0000      0.955 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159889     2  0.0865      0.924 0.000 0.964 0.000 0.000 0.000 0.036
#> GSM159890     2  0.0260      0.950 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM159891     2  0.0000      0.955 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159892     2  0.0000      0.955 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159893     2  0.0000      0.955 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159894     4  0.3975      0.558 0.392 0.008 0.000 0.600 0.000 0.000
#> GSM159895     4  0.4612      0.582 0.308 0.004 0.000 0.636 0.000 0.052
#> GSM159896     4  0.5144      0.477 0.372 0.000 0.092 0.536 0.000 0.000
#> GSM159897     2  0.0000      0.955 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159898     2  0.0000      0.955 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159899     2  0.0000      0.955 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159900     3  0.2219      0.755 0.000 0.136 0.864 0.000 0.000 0.000
#> GSM159901     2  0.3428      0.527 0.000 0.696 0.304 0.000 0.000 0.000
#> GSM159902     4  0.1714      0.664 0.092 0.000 0.000 0.908 0.000 0.000
#> GSM159903     4  0.2300      0.665 0.144 0.000 0.000 0.856 0.000 0.000
#> GSM159904     4  0.3101      0.530 0.244 0.000 0.000 0.756 0.000 0.000
#> GSM159905     4  0.3727      0.553 0.388 0.000 0.000 0.612 0.000 0.000
#> GSM159906     1  0.1141      0.735 0.948 0.000 0.000 0.052 0.000 0.000
#> GSM159907     1  0.2378      0.637 0.848 0.000 0.000 0.152 0.000 0.000
#> GSM159908     4  0.3390      0.392 0.296 0.000 0.000 0.704 0.000 0.000
#> GSM159909     4  0.3578      0.403 0.340 0.000 0.000 0.660 0.000 0.000
#> GSM159910     3  0.0000      0.841 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159911     4  0.0547      0.632 0.020 0.000 0.000 0.980 0.000 0.000
#> GSM159912     4  0.3151      0.674 0.252 0.000 0.000 0.748 0.000 0.000
#> GSM159913     4  0.1957      0.670 0.112 0.000 0.000 0.888 0.000 0.000
#> GSM159914     4  0.3765      0.580 0.404 0.000 0.000 0.596 0.000 0.000
#> GSM159915     4  0.3531      0.648 0.328 0.000 0.000 0.672 0.000 0.000
#> GSM159916     4  0.2454      0.665 0.160 0.000 0.000 0.840 0.000 0.000
#> GSM159917     3  0.0000      0.841 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159867     4  0.5448      0.432 0.224 0.000 0.004 0.592 0.000 0.180
#> GSM159868     3  0.4747      0.515 0.000 0.000 0.568 0.376 0.000 0.056
#> GSM159869     3  0.3812      0.656 0.004 0.000 0.712 0.268 0.000 0.016
#> GSM159870     6  0.0000      0.883 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159871     6  0.0000      0.883 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159872     3  0.0000      0.841 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159873     6  0.2933      0.637 0.000 0.004 0.200 0.000 0.000 0.796
#> GSM159874     3  0.0000      0.841 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159875     3  0.3288      0.609 0.000 0.000 0.724 0.000 0.000 0.276
#> GSM159876     6  0.5915     -0.260 0.384 0.000 0.000 0.208 0.000 0.408
#> GSM159877     3  0.0000      0.841 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159878     1  0.5610      0.215 0.516 0.000 0.000 0.168 0.000 0.316
#> GSM159879     6  0.0000      0.883 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159880     6  0.0000      0.883 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159881     6  0.0000      0.883 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159882     6  0.0000      0.883 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159883     6  0.0000      0.883 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159884     6  0.0000      0.883 0.000 0.000 0.000 0.000 0.000 1.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n agent(p)  dose(p)  time(p) k
#> MAD:pam 57 8.04e-06 5.48e-03 1.48e-04 2
#> MAD:pam 68 6.30e-07 2.06e-03 1.77e-04 3
#> MAD:pam 58 6.98e-10 7.49e-04 2.36e-06 4
#> MAD:pam 67 9.07e-14 1.21e-04 1.65e-06 5
#> MAD:pam 58 2.39e-16 3.21e-06 1.32e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.587           0.802       0.917         0.4916 0.508   0.508
#> 3 3 0.500           0.707       0.784         0.2278 0.925   0.852
#> 4 4 0.549           0.676       0.755         0.1481 0.810   0.598
#> 5 5 0.623           0.674       0.792         0.0802 0.924   0.774
#> 6 6 0.668           0.602       0.696         0.0698 0.847   0.484

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1  0.0000      0.862 1.000 0.000
#> GSM159851     1  0.0000      0.862 1.000 0.000
#> GSM159852     1  0.0000      0.862 1.000 0.000
#> GSM159853     1  0.0000      0.862 1.000 0.000
#> GSM159854     1  0.0000      0.862 1.000 0.000
#> GSM159855     1  0.0376      0.860 0.996 0.004
#> GSM159856     1  0.0000      0.862 1.000 0.000
#> GSM159857     1  0.0000      0.862 1.000 0.000
#> GSM159858     1  0.0000      0.862 1.000 0.000
#> GSM159859     1  0.0000      0.862 1.000 0.000
#> GSM159860     1  0.0000      0.862 1.000 0.000
#> GSM159861     1  0.0938      0.857 0.988 0.012
#> GSM159862     1  0.2043      0.848 0.968 0.032
#> GSM159863     1  0.1414      0.854 0.980 0.020
#> GSM159864     1  0.5629      0.768 0.868 0.132
#> GSM159865     1  0.5629      0.768 0.868 0.132
#> GSM159866     1  0.5629      0.768 0.868 0.132
#> GSM159885     1  0.9954      0.272 0.540 0.460
#> GSM159886     1  0.4939      0.793 0.892 0.108
#> GSM159887     1  0.9954      0.272 0.540 0.460
#> GSM159888     2  0.0000      0.957 0.000 1.000
#> GSM159889     2  0.0000      0.957 0.000 1.000
#> GSM159890     2  0.0000      0.957 0.000 1.000
#> GSM159891     2  0.0000      0.957 0.000 1.000
#> GSM159892     2  0.0000      0.957 0.000 1.000
#> GSM159893     2  0.0000      0.957 0.000 1.000
#> GSM159894     1  0.9954      0.272 0.540 0.460
#> GSM159895     1  0.9954      0.272 0.540 0.460
#> GSM159896     1  0.9954      0.272 0.540 0.460
#> GSM159897     2  0.0000      0.957 0.000 1.000
#> GSM159898     2  0.0000      0.957 0.000 1.000
#> GSM159899     2  0.0000      0.957 0.000 1.000
#> GSM159900     2  0.0000      0.957 0.000 1.000
#> GSM159901     2  0.0000      0.957 0.000 1.000
#> GSM159902     1  0.2043      0.847 0.968 0.032
#> GSM159903     1  0.0000      0.862 1.000 0.000
#> GSM159904     1  0.0000      0.862 1.000 0.000
#> GSM159905     1  0.0000      0.862 1.000 0.000
#> GSM159906     1  0.0000      0.862 1.000 0.000
#> GSM159907     1  0.0000      0.862 1.000 0.000
#> GSM159908     1  0.0000      0.862 1.000 0.000
#> GSM159909     1  0.0000      0.862 1.000 0.000
#> GSM159910     2  0.7950      0.647 0.240 0.760
#> GSM159911     1  0.9881      0.322 0.564 0.436
#> GSM159912     1  0.0000      0.862 1.000 0.000
#> GSM159913     1  0.0000      0.862 1.000 0.000
#> GSM159914     1  0.0000      0.862 1.000 0.000
#> GSM159915     1  0.0000      0.862 1.000 0.000
#> GSM159916     1  0.0000      0.862 1.000 0.000
#> GSM159917     2  0.6712      0.765 0.176 0.824
#> GSM159867     1  0.9954      0.272 0.540 0.460
#> GSM159868     1  0.9963      0.261 0.536 0.464
#> GSM159869     1  0.9977      0.240 0.528 0.472
#> GSM159870     2  0.0000      0.957 0.000 1.000
#> GSM159871     2  0.0000      0.957 0.000 1.000
#> GSM159872     2  0.0000      0.957 0.000 1.000
#> GSM159873     2  0.0000      0.957 0.000 1.000
#> GSM159874     2  0.0000      0.957 0.000 1.000
#> GSM159875     2  0.0000      0.957 0.000 1.000
#> GSM159876     2  0.6343      0.787 0.160 0.840
#> GSM159877     2  0.6712      0.765 0.176 0.824
#> GSM159878     2  0.6623      0.771 0.172 0.828
#> GSM159879     2  0.0000      0.957 0.000 1.000
#> GSM159880     2  0.0000      0.957 0.000 1.000
#> GSM159881     2  0.0000      0.957 0.000 1.000
#> GSM159882     2  0.0000      0.957 0.000 1.000
#> GSM159883     2  0.0000      0.957 0.000 1.000
#> GSM159884     2  0.0000      0.957 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1  0.1964      0.819 0.944 0.056 0.000
#> GSM159851     1  0.1964      0.819 0.944 0.056 0.000
#> GSM159852     1  0.1964      0.819 0.944 0.056 0.000
#> GSM159853     1  0.1964      0.819 0.944 0.056 0.000
#> GSM159854     1  0.1860      0.820 0.948 0.052 0.000
#> GSM159855     1  0.2066      0.819 0.940 0.060 0.000
#> GSM159856     1  0.1964      0.819 0.944 0.056 0.000
#> GSM159857     1  0.1964      0.819 0.944 0.056 0.000
#> GSM159858     1  0.1964      0.819 0.944 0.056 0.000
#> GSM159859     1  0.1964      0.819 0.944 0.056 0.000
#> GSM159860     1  0.1964      0.819 0.944 0.056 0.000
#> GSM159861     1  0.3375      0.804 0.908 0.044 0.048
#> GSM159862     1  0.5559      0.697 0.780 0.028 0.192
#> GSM159863     1  0.5455      0.697 0.788 0.028 0.184
#> GSM159864     1  0.7287      0.255 0.560 0.032 0.408
#> GSM159865     1  0.7287      0.255 0.560 0.032 0.408
#> GSM159866     1  0.7287      0.255 0.560 0.032 0.408
#> GSM159885     1  0.8834      0.563 0.580 0.224 0.196
#> GSM159886     1  0.5243      0.765 0.828 0.072 0.100
#> GSM159887     1  0.8834      0.563 0.580 0.224 0.196
#> GSM159888     2  0.5835      0.900 0.000 0.660 0.340
#> GSM159889     2  0.5835      0.900 0.000 0.660 0.340
#> GSM159890     2  0.5835      0.900 0.000 0.660 0.340
#> GSM159891     2  0.6244      0.830 0.000 0.560 0.440
#> GSM159892     2  0.6286      0.797 0.000 0.536 0.464
#> GSM159893     2  0.6280      0.802 0.000 0.540 0.460
#> GSM159894     1  0.8834      0.566 0.580 0.224 0.196
#> GSM159895     1  0.8834      0.563 0.580 0.224 0.196
#> GSM159896     1  0.8834      0.563 0.580 0.224 0.196
#> GSM159897     2  0.6008      0.889 0.000 0.628 0.372
#> GSM159898     2  0.5835      0.900 0.000 0.660 0.340
#> GSM159899     2  0.5859      0.901 0.000 0.656 0.344
#> GSM159900     3  0.2959      0.597 0.000 0.100 0.900
#> GSM159901     3  0.2959      0.597 0.000 0.100 0.900
#> GSM159902     1  0.3193      0.808 0.896 0.100 0.004
#> GSM159903     1  0.2625      0.812 0.916 0.084 0.000
#> GSM159904     1  0.2796      0.810 0.908 0.092 0.000
#> GSM159905     1  0.2066      0.817 0.940 0.060 0.000
#> GSM159906     1  0.1643      0.817 0.956 0.044 0.000
#> GSM159907     1  0.1643      0.817 0.956 0.044 0.000
#> GSM159908     1  0.0829      0.820 0.984 0.004 0.012
#> GSM159909     1  0.2682      0.815 0.920 0.076 0.004
#> GSM159910     3  0.7256      0.457 0.164 0.124 0.712
#> GSM159911     1  0.7339      0.692 0.708 0.144 0.148
#> GSM159912     1  0.1860      0.817 0.948 0.052 0.000
#> GSM159913     1  0.1964      0.817 0.944 0.056 0.000
#> GSM159914     1  0.1753      0.817 0.952 0.048 0.000
#> GSM159915     1  0.1860      0.817 0.948 0.052 0.000
#> GSM159916     1  0.1765      0.819 0.956 0.040 0.004
#> GSM159917     3  0.6394      0.516 0.116 0.116 0.768
#> GSM159867     1  0.8752      0.481 0.564 0.144 0.292
#> GSM159868     1  0.8882      0.445 0.540 0.144 0.316
#> GSM159869     1  0.9029      0.369 0.504 0.144 0.352
#> GSM159870     3  0.4654      0.659 0.000 0.208 0.792
#> GSM159871     3  0.4605      0.662 0.000 0.204 0.796
#> GSM159872     3  0.0237      0.700 0.004 0.000 0.996
#> GSM159873     3  0.0424      0.703 0.000 0.008 0.992
#> GSM159874     3  0.0000      0.701 0.000 0.000 1.000
#> GSM159875     3  0.0000      0.701 0.000 0.000 1.000
#> GSM159876     3  0.5420      0.652 0.008 0.240 0.752
#> GSM159877     3  0.5731      0.552 0.088 0.108 0.804
#> GSM159878     3  0.5378      0.652 0.008 0.236 0.756
#> GSM159879     3  0.4702      0.656 0.000 0.212 0.788
#> GSM159880     3  0.4702      0.656 0.000 0.212 0.788
#> GSM159881     3  0.3879      0.678 0.000 0.152 0.848
#> GSM159882     3  0.4702      0.656 0.000 0.212 0.788
#> GSM159883     3  0.4702      0.656 0.000 0.212 0.788
#> GSM159884     3  0.4702      0.656 0.000 0.212 0.788

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.0376     0.7885 0.992 0.004 0.004 0.000
#> GSM159851     1  0.0188     0.7878 0.996 0.000 0.004 0.000
#> GSM159852     1  0.0376     0.7885 0.992 0.004 0.004 0.000
#> GSM159853     1  0.0336     0.7866 0.992 0.000 0.008 0.000
#> GSM159854     1  0.0469     0.7850 0.988 0.000 0.012 0.000
#> GSM159855     1  0.0469     0.7850 0.988 0.000 0.012 0.000
#> GSM159856     1  0.0336     0.7866 0.992 0.000 0.008 0.000
#> GSM159857     1  0.0376     0.7878 0.992 0.000 0.004 0.004
#> GSM159858     1  0.0188     0.7878 0.996 0.000 0.004 0.000
#> GSM159859     1  0.0188     0.7878 0.996 0.000 0.004 0.000
#> GSM159860     1  0.0188     0.7878 0.996 0.000 0.004 0.000
#> GSM159861     1  0.4400     0.6515 0.744 0.004 0.248 0.004
#> GSM159862     1  0.4876     0.5683 0.672 0.004 0.320 0.004
#> GSM159863     1  0.4809     0.5848 0.684 0.004 0.308 0.004
#> GSM159864     1  0.6742     0.4129 0.560 0.016 0.360 0.064
#> GSM159865     1  0.6742     0.4129 0.560 0.016 0.360 0.064
#> GSM159866     1  0.6742     0.4129 0.560 0.016 0.360 0.064
#> GSM159885     3  0.5272     0.4627 0.288 0.032 0.680 0.000
#> GSM159886     1  0.5278     0.6001 0.688 0.020 0.284 0.008
#> GSM159887     3  0.5297     0.4559 0.292 0.032 0.676 0.000
#> GSM159888     2  0.5039     0.9804 0.000 0.592 0.004 0.404
#> GSM159889     2  0.5039     0.9804 0.000 0.592 0.004 0.404
#> GSM159890     2  0.5039     0.9804 0.000 0.592 0.004 0.404
#> GSM159891     2  0.5326     0.9698 0.000 0.604 0.016 0.380
#> GSM159892     2  0.5326     0.9698 0.000 0.604 0.016 0.380
#> GSM159893     2  0.5326     0.9698 0.000 0.604 0.016 0.380
#> GSM159894     3  0.5157     0.4724 0.284 0.028 0.688 0.000
#> GSM159895     3  0.5207     0.4611 0.292 0.028 0.680 0.000
#> GSM159896     3  0.5113     0.4671 0.292 0.024 0.684 0.000
#> GSM159897     2  0.5268     0.9792 0.000 0.592 0.012 0.396
#> GSM159898     2  0.5039     0.9804 0.000 0.592 0.004 0.404
#> GSM159899     2  0.5161     0.9808 0.000 0.592 0.008 0.400
#> GSM159900     3  0.7563     0.1401 0.000 0.364 0.440 0.196
#> GSM159901     3  0.7563     0.1401 0.000 0.364 0.440 0.196
#> GSM159902     1  0.5566     0.7601 0.704 0.224 0.072 0.000
#> GSM159903     1  0.4888     0.7827 0.740 0.224 0.036 0.000
#> GSM159904     1  0.5136     0.7765 0.728 0.224 0.048 0.000
#> GSM159905     1  0.4364     0.7910 0.764 0.220 0.016 0.000
#> GSM159906     1  0.4364     0.7910 0.764 0.220 0.016 0.000
#> GSM159907     1  0.4364     0.7910 0.764 0.220 0.016 0.000
#> GSM159908     1  0.3806     0.7969 0.824 0.156 0.020 0.000
#> GSM159909     1  0.4914     0.7832 0.748 0.208 0.044 0.000
#> GSM159910     3  0.4303     0.5568 0.072 0.032 0.844 0.052
#> GSM159911     1  0.7554     0.3888 0.472 0.212 0.316 0.000
#> GSM159912     1  0.4364     0.7910 0.764 0.220 0.016 0.000
#> GSM159913     1  0.4609     0.7874 0.752 0.224 0.024 0.000
#> GSM159914     1  0.4472     0.7909 0.760 0.220 0.020 0.000
#> GSM159915     1  0.4399     0.7900 0.760 0.224 0.016 0.000
#> GSM159916     1  0.4574     0.7905 0.756 0.220 0.024 0.000
#> GSM159917     3  0.4150     0.5259 0.020 0.076 0.848 0.056
#> GSM159867     3  0.4898     0.5153 0.260 0.000 0.716 0.024
#> GSM159868     3  0.4857     0.5390 0.232 0.004 0.740 0.024
#> GSM159869     3  0.4666     0.5582 0.200 0.004 0.768 0.028
#> GSM159870     4  0.0817     0.9811 0.000 0.000 0.024 0.976
#> GSM159871     4  0.0817     0.9811 0.000 0.000 0.024 0.976
#> GSM159872     3  0.6954     0.2862 0.000 0.152 0.568 0.280
#> GSM159873     3  0.7073     0.1019 0.000 0.124 0.464 0.412
#> GSM159874     3  0.7235     0.1841 0.000 0.152 0.492 0.356
#> GSM159875     3  0.7242     0.1597 0.000 0.148 0.476 0.376
#> GSM159876     3  0.5296    -0.0304 0.008 0.000 0.500 0.492
#> GSM159877     3  0.4790     0.5128 0.024 0.148 0.796 0.032
#> GSM159878     3  0.5404     0.0131 0.012 0.000 0.512 0.476
#> GSM159879     4  0.0817     0.9811 0.000 0.000 0.024 0.976
#> GSM159880     4  0.0817     0.9811 0.000 0.000 0.024 0.976
#> GSM159881     4  0.2081     0.8915 0.000 0.000 0.084 0.916
#> GSM159882     4  0.0921     0.9806 0.000 0.000 0.028 0.972
#> GSM159883     4  0.0921     0.9806 0.000 0.000 0.028 0.972
#> GSM159884     4  0.0921     0.9806 0.000 0.000 0.028 0.972

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     1  0.5703     0.6819 0.628 0.000 0.188 0.184 0.000
#> GSM159851     1  0.5820     0.6763 0.612 0.000 0.196 0.192 0.000
#> GSM159852     1  0.5820     0.6763 0.612 0.000 0.196 0.192 0.000
#> GSM159853     1  0.6035     0.6574 0.580 0.000 0.204 0.216 0.000
#> GSM159854     1  0.6008     0.6597 0.584 0.000 0.200 0.216 0.000
#> GSM159855     1  0.6191     0.6307 0.552 0.000 0.204 0.244 0.000
#> GSM159856     1  0.5956     0.6655 0.592 0.000 0.196 0.212 0.000
#> GSM159857     1  0.5904     0.6716 0.600 0.000 0.200 0.200 0.000
#> GSM159858     1  0.5849     0.6756 0.608 0.000 0.196 0.196 0.000
#> GSM159859     1  0.5849     0.6756 0.608 0.000 0.196 0.196 0.000
#> GSM159860     1  0.5849     0.6756 0.608 0.000 0.196 0.196 0.000
#> GSM159861     1  0.5309     0.5327 0.576 0.000 0.060 0.364 0.000
#> GSM159862     1  0.5439     0.5030 0.560 0.000 0.068 0.372 0.000
#> GSM159863     1  0.5320     0.5245 0.572 0.000 0.060 0.368 0.000
#> GSM159864     1  0.7232     0.4276 0.540 0.000 0.132 0.232 0.096
#> GSM159865     1  0.7232     0.4276 0.540 0.000 0.132 0.232 0.096
#> GSM159866     1  0.7232     0.4276 0.540 0.000 0.132 0.232 0.096
#> GSM159885     4  0.3160     0.7130 0.188 0.000 0.000 0.808 0.004
#> GSM159886     4  0.5621     0.4488 0.320 0.000 0.028 0.608 0.044
#> GSM159887     4  0.3317     0.7146 0.188 0.000 0.004 0.804 0.004
#> GSM159888     2  0.0000     0.9981 0.000 1.000 0.000 0.000 0.000
#> GSM159889     2  0.0000     0.9981 0.000 1.000 0.000 0.000 0.000
#> GSM159890     2  0.0000     0.9981 0.000 1.000 0.000 0.000 0.000
#> GSM159891     2  0.0162     0.9963 0.000 0.996 0.004 0.000 0.000
#> GSM159892     2  0.0162     0.9963 0.000 0.996 0.004 0.000 0.000
#> GSM159893     2  0.0162     0.9963 0.000 0.996 0.004 0.000 0.000
#> GSM159894     4  0.2536     0.7194 0.128 0.000 0.000 0.868 0.004
#> GSM159895     4  0.3048     0.7218 0.176 0.000 0.000 0.820 0.004
#> GSM159896     4  0.3048     0.7218 0.176 0.000 0.000 0.820 0.004
#> GSM159897     2  0.0000     0.9981 0.000 1.000 0.000 0.000 0.000
#> GSM159898     2  0.0000     0.9981 0.000 1.000 0.000 0.000 0.000
#> GSM159899     2  0.0000     0.9981 0.000 1.000 0.000 0.000 0.000
#> GSM159900     3  0.6634     0.6014 0.000 0.336 0.460 0.200 0.004
#> GSM159901     3  0.6620     0.5989 0.000 0.340 0.460 0.196 0.004
#> GSM159902     1  0.1704     0.6554 0.928 0.000 0.004 0.068 0.000
#> GSM159903     1  0.1168     0.6794 0.960 0.000 0.008 0.032 0.000
#> GSM159904     1  0.1205     0.6788 0.956 0.000 0.004 0.040 0.000
#> GSM159905     1  0.0671     0.6910 0.980 0.000 0.004 0.016 0.000
#> GSM159906     1  0.0290     0.6964 0.992 0.000 0.000 0.008 0.000
#> GSM159907     1  0.0162     0.6972 0.996 0.000 0.004 0.000 0.000
#> GSM159908     1  0.3061     0.6884 0.844 0.000 0.020 0.136 0.000
#> GSM159909     1  0.1877     0.6665 0.924 0.000 0.012 0.064 0.000
#> GSM159910     4  0.4552     0.3086 0.020 0.000 0.308 0.668 0.004
#> GSM159911     1  0.4638     0.4581 0.728 0.000 0.048 0.216 0.008
#> GSM159912     1  0.0451     0.6948 0.988 0.000 0.004 0.008 0.000
#> GSM159913     1  0.0510     0.6919 0.984 0.000 0.000 0.016 0.000
#> GSM159914     1  0.0290     0.6964 0.992 0.000 0.000 0.008 0.000
#> GSM159915     1  0.0566     0.6934 0.984 0.000 0.004 0.012 0.000
#> GSM159916     1  0.0290     0.6969 0.992 0.000 0.008 0.000 0.000
#> GSM159917     4  0.5143    -0.1041 0.032 0.000 0.420 0.544 0.004
#> GSM159867     4  0.2914     0.6532 0.052 0.000 0.076 0.872 0.000
#> GSM159868     4  0.3133     0.6522 0.052 0.000 0.080 0.864 0.004
#> GSM159869     4  0.3248     0.6445 0.052 0.000 0.088 0.856 0.004
#> GSM159870     5  0.0290     0.8394 0.000 0.008 0.000 0.000 0.992
#> GSM159871     5  0.0290     0.8394 0.000 0.008 0.000 0.000 0.992
#> GSM159872     3  0.4083     0.6785 0.000 0.000 0.744 0.228 0.028
#> GSM159873     5  0.5810     0.0634 0.000 0.004 0.364 0.088 0.544
#> GSM159874     3  0.5025     0.6853 0.000 0.004 0.700 0.212 0.084
#> GSM159875     3  0.5840     0.4779 0.000 0.008 0.604 0.108 0.280
#> GSM159876     5  0.5787     0.3649 0.012 0.004 0.100 0.240 0.644
#> GSM159877     3  0.3579     0.6626 0.000 0.000 0.756 0.240 0.004
#> GSM159878     5  0.6126     0.2600 0.012 0.004 0.100 0.308 0.576
#> GSM159879     5  0.0290     0.8394 0.000 0.008 0.000 0.000 0.992
#> GSM159880     5  0.0290     0.8394 0.000 0.008 0.000 0.000 0.992
#> GSM159881     5  0.0613     0.8322 0.000 0.004 0.008 0.004 0.984
#> GSM159882     5  0.0162     0.8392 0.000 0.004 0.000 0.000 0.996
#> GSM159883     5  0.0162     0.8392 0.000 0.004 0.000 0.000 0.996
#> GSM159884     5  0.0162     0.8392 0.000 0.004 0.000 0.000 0.996

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM159850     1  0.1577     0.6910 0.940 0.000 0.036 0.008 0.016 0.000
#> GSM159851     1  0.0713     0.7104 0.972 0.000 0.000 0.000 0.028 0.000
#> GSM159852     1  0.0865     0.7131 0.964 0.000 0.000 0.000 0.036 0.000
#> GSM159853     1  0.1148     0.7133 0.960 0.000 0.004 0.016 0.020 0.000
#> GSM159854     1  0.1562     0.7011 0.940 0.000 0.004 0.024 0.032 0.000
#> GSM159855     1  0.1498     0.6985 0.940 0.000 0.000 0.032 0.028 0.000
#> GSM159856     1  0.1219     0.7164 0.948 0.000 0.000 0.004 0.048 0.000
#> GSM159857     1  0.1074     0.7166 0.960 0.000 0.000 0.012 0.028 0.000
#> GSM159858     1  0.1204     0.7087 0.944 0.000 0.000 0.000 0.056 0.000
#> GSM159859     1  0.1267     0.7070 0.940 0.000 0.000 0.000 0.060 0.000
#> GSM159860     1  0.1204     0.7087 0.944 0.000 0.000 0.000 0.056 0.000
#> GSM159861     1  0.4885     0.2163 0.556 0.000 0.012 0.392 0.040 0.000
#> GSM159862     1  0.5072     0.1357 0.516 0.000 0.016 0.424 0.044 0.000
#> GSM159863     1  0.5063     0.1552 0.524 0.000 0.016 0.416 0.044 0.000
#> GSM159864     4  0.7227     0.0665 0.348 0.000 0.084 0.432 0.092 0.044
#> GSM159865     4  0.7227     0.0665 0.348 0.000 0.084 0.432 0.092 0.044
#> GSM159866     4  0.7227     0.0665 0.348 0.000 0.084 0.432 0.092 0.044
#> GSM159885     4  0.6650     0.4953 0.092 0.000 0.136 0.500 0.272 0.000
#> GSM159886     5  0.7994    -0.0386 0.312 0.000 0.064 0.216 0.332 0.076
#> GSM159887     4  0.6559     0.5013 0.092 0.000 0.136 0.524 0.248 0.000
#> GSM159888     2  0.0260     0.9880 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM159889     2  0.0260     0.9880 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM159890     2  0.0260     0.9880 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM159891     2  0.0622     0.9812 0.000 0.980 0.012 0.000 0.008 0.000
#> GSM159892     2  0.0717     0.9794 0.000 0.976 0.016 0.000 0.008 0.000
#> GSM159893     2  0.0717     0.9794 0.000 0.976 0.016 0.000 0.008 0.000
#> GSM159894     4  0.6360     0.4999 0.096 0.000 0.100 0.540 0.264 0.000
#> GSM159895     4  0.6559     0.5017 0.092 0.000 0.124 0.512 0.272 0.000
#> GSM159896     4  0.6573     0.4999 0.092 0.000 0.124 0.508 0.276 0.000
#> GSM159897     2  0.0436     0.9863 0.000 0.988 0.004 0.000 0.004 0.004
#> GSM159898     2  0.0260     0.9880 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM159899     2  0.0405     0.9864 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM159900     3  0.5511     0.7616 0.000 0.148 0.628 0.204 0.016 0.004
#> GSM159901     3  0.5543     0.7580 0.000 0.152 0.624 0.204 0.016 0.004
#> GSM159902     5  0.6396     0.5376 0.304 0.000 0.164 0.044 0.488 0.000
#> GSM159903     5  0.5710     0.6110 0.384 0.000 0.092 0.024 0.500 0.000
#> GSM159904     5  0.6265     0.5634 0.320 0.000 0.164 0.032 0.484 0.000
#> GSM159905     5  0.3774     0.6677 0.408 0.000 0.000 0.000 0.592 0.000
#> GSM159906     5  0.3756     0.6568 0.400 0.000 0.000 0.000 0.600 0.000
#> GSM159907     5  0.4056     0.6539 0.416 0.000 0.004 0.004 0.576 0.000
#> GSM159908     1  0.6111    -0.2098 0.576 0.000 0.148 0.056 0.220 0.000
#> GSM159909     5  0.6948     0.4889 0.332 0.000 0.168 0.088 0.412 0.000
#> GSM159910     4  0.6153    -0.0721 0.084 0.000 0.272 0.556 0.088 0.000
#> GSM159911     5  0.6770     0.2354 0.152 0.000 0.196 0.132 0.520 0.000
#> GSM159912     5  0.3797     0.6597 0.420 0.000 0.000 0.000 0.580 0.000
#> GSM159913     5  0.4357     0.6522 0.420 0.000 0.012 0.008 0.560 0.000
#> GSM159914     5  0.3727     0.6613 0.388 0.000 0.000 0.000 0.612 0.000
#> GSM159915     5  0.3789     0.6544 0.416 0.000 0.000 0.000 0.584 0.000
#> GSM159916     5  0.4015     0.6617 0.396 0.000 0.004 0.004 0.596 0.000
#> GSM159917     4  0.6204    -0.3403 0.060 0.000 0.356 0.488 0.096 0.000
#> GSM159867     4  0.2301     0.4246 0.096 0.000 0.000 0.884 0.020 0.000
#> GSM159868     4  0.2121     0.4216 0.096 0.000 0.000 0.892 0.012 0.000
#> GSM159869     4  0.2274     0.4047 0.088 0.000 0.008 0.892 0.012 0.000
#> GSM159870     6  0.0291     0.8658 0.000 0.000 0.004 0.004 0.000 0.992
#> GSM159871     6  0.0291     0.8661 0.000 0.000 0.004 0.004 0.000 0.992
#> GSM159872     3  0.3431     0.8105 0.000 0.000 0.756 0.228 0.000 0.016
#> GSM159873     3  0.6990     0.5981 0.000 0.000 0.464 0.200 0.104 0.232
#> GSM159874     3  0.3885     0.8150 0.000 0.000 0.736 0.220 0.000 0.044
#> GSM159875     3  0.5836     0.7576 0.000 0.000 0.612 0.224 0.080 0.084
#> GSM159876     6  0.5133     0.3113 0.004 0.000 0.044 0.380 0.016 0.556
#> GSM159877     3  0.3221     0.7928 0.000 0.000 0.736 0.264 0.000 0.000
#> GSM159878     6  0.5107     0.2948 0.004 0.000 0.040 0.396 0.016 0.544
#> GSM159879     6  0.0000     0.8688 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159880     6  0.0000     0.8688 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159881     6  0.1787     0.8087 0.000 0.000 0.004 0.008 0.068 0.920
#> GSM159882     6  0.0000     0.8688 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159883     6  0.0000     0.8688 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159884     6  0.0000     0.8688 0.000 0.000 0.000 0.000 0.000 1.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n agent(p)  dose(p)  time(p) k
#> MAD:mclust 59 1.77e-10 1.22e-05 0.038809 2
#> MAD:mclust 61 3.01e-14 1.03e-03 0.003215 3
#> MAD:mclust 51 2.96e-15 1.53e-03 0.021191 4
#> MAD:mclust 57 3.91e-14 1.07e-03 0.000446 5
#> MAD:mclust 48 4.48e-21 1.06e-07 0.000870 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.998           0.926       0.972         0.4705 0.528   0.528
#> 3 3 0.716           0.795       0.903         0.4079 0.719   0.505
#> 4 4 0.644           0.687       0.839         0.1089 0.814   0.524
#> 5 5 0.617           0.651       0.793         0.0537 0.877   0.599
#> 6 6 0.637           0.548       0.726         0.0445 0.947   0.779

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1  0.0000    0.97657 1.000 0.000
#> GSM159851     1  0.0000    0.97657 1.000 0.000
#> GSM159852     1  0.0000    0.97657 1.000 0.000
#> GSM159853     1  0.0000    0.97657 1.000 0.000
#> GSM159854     1  0.0000    0.97657 1.000 0.000
#> GSM159855     1  0.0000    0.97657 1.000 0.000
#> GSM159856     1  0.0000    0.97657 1.000 0.000
#> GSM159857     1  0.0000    0.97657 1.000 0.000
#> GSM159858     1  0.0000    0.97657 1.000 0.000
#> GSM159859     1  0.0000    0.97657 1.000 0.000
#> GSM159860     1  0.0000    0.97657 1.000 0.000
#> GSM159861     1  0.0000    0.97657 1.000 0.000
#> GSM159862     1  0.0000    0.97657 1.000 0.000
#> GSM159863     1  0.0000    0.97657 1.000 0.000
#> GSM159864     1  0.0000    0.97657 1.000 0.000
#> GSM159865     1  0.0000    0.97657 1.000 0.000
#> GSM159866     1  0.0000    0.97657 1.000 0.000
#> GSM159885     1  0.4562    0.89015 0.904 0.096
#> GSM159886     1  0.0000    0.97657 1.000 0.000
#> GSM159887     1  0.8016    0.67919 0.756 0.244
#> GSM159888     2  0.0000    0.95739 0.000 1.000
#> GSM159889     2  0.0000    0.95739 0.000 1.000
#> GSM159890     2  0.0000    0.95739 0.000 1.000
#> GSM159891     2  0.0000    0.95739 0.000 1.000
#> GSM159892     2  0.0000    0.95739 0.000 1.000
#> GSM159893     2  0.0000    0.95739 0.000 1.000
#> GSM159894     1  0.1414    0.96194 0.980 0.020
#> GSM159895     1  0.0672    0.97099 0.992 0.008
#> GSM159896     1  0.4298    0.89940 0.912 0.088
#> GSM159897     2  0.0000    0.95739 0.000 1.000
#> GSM159898     2  0.0000    0.95739 0.000 1.000
#> GSM159899     2  0.0000    0.95739 0.000 1.000
#> GSM159900     2  0.0000    0.95739 0.000 1.000
#> GSM159901     2  0.0000    0.95739 0.000 1.000
#> GSM159902     1  0.0000    0.97657 1.000 0.000
#> GSM159903     1  0.0000    0.97657 1.000 0.000
#> GSM159904     1  0.0000    0.97657 1.000 0.000
#> GSM159905     1  0.0000    0.97657 1.000 0.000
#> GSM159906     1  0.0000    0.97657 1.000 0.000
#> GSM159907     1  0.0000    0.97657 1.000 0.000
#> GSM159908     1  0.0000    0.97657 1.000 0.000
#> GSM159909     1  0.0000    0.97657 1.000 0.000
#> GSM159910     2  0.9998    0.00586 0.492 0.508
#> GSM159911     1  0.0000    0.97657 1.000 0.000
#> GSM159912     1  0.0000    0.97657 1.000 0.000
#> GSM159913     1  0.0000    0.97657 1.000 0.000
#> GSM159914     1  0.0000    0.97657 1.000 0.000
#> GSM159915     1  0.0000    0.97657 1.000 0.000
#> GSM159916     1  0.0000    0.97657 1.000 0.000
#> GSM159917     1  0.9209    0.48520 0.664 0.336
#> GSM159867     1  0.0000    0.97657 1.000 0.000
#> GSM159868     1  0.4431    0.89596 0.908 0.092
#> GSM159869     1  0.2778    0.93851 0.952 0.048
#> GSM159870     2  0.0000    0.95739 0.000 1.000
#> GSM159871     2  0.0000    0.95739 0.000 1.000
#> GSM159872     2  0.0000    0.95739 0.000 1.000
#> GSM159873     2  0.0000    0.95739 0.000 1.000
#> GSM159874     2  0.0000    0.95739 0.000 1.000
#> GSM159875     2  0.0000    0.95739 0.000 1.000
#> GSM159876     1  0.0938    0.96821 0.988 0.012
#> GSM159877     2  0.9993    0.03659 0.484 0.516
#> GSM159878     1  0.0000    0.97657 1.000 0.000
#> GSM159879     2  0.0000    0.95739 0.000 1.000
#> GSM159880     2  0.0000    0.95739 0.000 1.000
#> GSM159881     2  0.0000    0.95739 0.000 1.000
#> GSM159882     2  0.0000    0.95739 0.000 1.000
#> GSM159883     2  0.0000    0.95739 0.000 1.000
#> GSM159884     2  0.0000    0.95739 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     3  0.6295     0.1710 0.472 0.000 0.528
#> GSM159851     1  0.4399     0.7720 0.812 0.000 0.188
#> GSM159852     1  0.1031     0.9277 0.976 0.000 0.024
#> GSM159853     1  0.2066     0.9160 0.940 0.000 0.060
#> GSM159854     1  0.1964     0.9187 0.944 0.000 0.056
#> GSM159855     1  0.2356     0.9072 0.928 0.000 0.072
#> GSM159856     1  0.0237     0.9249 0.996 0.000 0.004
#> GSM159857     1  0.1753     0.9222 0.952 0.000 0.048
#> GSM159858     1  0.0237     0.9249 0.996 0.000 0.004
#> GSM159859     1  0.0592     0.9273 0.988 0.000 0.012
#> GSM159860     1  0.0424     0.9265 0.992 0.000 0.008
#> GSM159861     1  0.5926     0.4372 0.644 0.000 0.356
#> GSM159862     3  0.5431     0.6093 0.284 0.000 0.716
#> GSM159863     3  0.5988     0.4628 0.368 0.000 0.632
#> GSM159864     1  0.2796     0.8866 0.908 0.000 0.092
#> GSM159865     1  0.1529     0.9163 0.960 0.000 0.040
#> GSM159866     1  0.0892     0.9253 0.980 0.000 0.020
#> GSM159885     3  0.0237     0.7973 0.004 0.000 0.996
#> GSM159886     1  0.0237     0.9206 0.996 0.000 0.004
#> GSM159887     3  0.1015     0.7970 0.012 0.008 0.980
#> GSM159888     2  0.0475     0.9408 0.004 0.992 0.004
#> GSM159889     2  0.0829     0.9371 0.012 0.984 0.004
#> GSM159890     2  0.0237     0.9414 0.000 0.996 0.004
#> GSM159891     2  0.0592     0.9377 0.000 0.988 0.012
#> GSM159892     2  0.0892     0.9336 0.000 0.980 0.020
#> GSM159893     2  0.0747     0.9358 0.000 0.984 0.016
#> GSM159894     3  0.3619     0.7557 0.136 0.000 0.864
#> GSM159895     3  0.0592     0.7977 0.012 0.000 0.988
#> GSM159896     3  0.0237     0.7973 0.004 0.000 0.996
#> GSM159897     2  0.0000     0.9416 0.000 1.000 0.000
#> GSM159898     2  0.0475     0.9408 0.004 0.992 0.004
#> GSM159899     2  0.0000     0.9416 0.000 1.000 0.000
#> GSM159900     3  0.6280    -0.0762 0.000 0.460 0.540
#> GSM159901     2  0.5835     0.5579 0.000 0.660 0.340
#> GSM159902     3  0.3686     0.7556 0.140 0.000 0.860
#> GSM159903     3  0.6305     0.1478 0.484 0.000 0.516
#> GSM159904     3  0.5560     0.5888 0.300 0.000 0.700
#> GSM159905     1  0.1753     0.9213 0.952 0.000 0.048
#> GSM159906     1  0.1163     0.9269 0.972 0.000 0.028
#> GSM159907     1  0.0424     0.9267 0.992 0.000 0.008
#> GSM159908     3  0.6126     0.4110 0.400 0.000 0.600
#> GSM159909     3  0.4974     0.6667 0.236 0.000 0.764
#> GSM159910     3  0.0475     0.7953 0.004 0.004 0.992
#> GSM159911     3  0.0892     0.7963 0.020 0.000 0.980
#> GSM159912     1  0.3482     0.8516 0.872 0.000 0.128
#> GSM159913     1  0.5650     0.5223 0.688 0.000 0.312
#> GSM159914     1  0.0424     0.9267 0.992 0.000 0.008
#> GSM159915     1  0.1163     0.9277 0.972 0.000 0.028
#> GSM159916     1  0.0424     0.9267 0.992 0.000 0.008
#> GSM159917     3  0.0237     0.7973 0.004 0.000 0.996
#> GSM159867     3  0.3482     0.7584 0.128 0.000 0.872
#> GSM159868     3  0.0475     0.7953 0.004 0.004 0.992
#> GSM159869     3  0.0237     0.7973 0.004 0.000 0.996
#> GSM159870     2  0.0983     0.9341 0.016 0.980 0.004
#> GSM159871     2  0.1525     0.9211 0.032 0.964 0.004
#> GSM159872     3  0.3619     0.6723 0.000 0.136 0.864
#> GSM159873     2  0.5016     0.7139 0.000 0.760 0.240
#> GSM159874     3  0.5291     0.4651 0.000 0.268 0.732
#> GSM159875     2  0.5859     0.5504 0.000 0.656 0.344
#> GSM159876     1  0.1129     0.9067 0.976 0.020 0.004
#> GSM159877     3  0.0661     0.7935 0.004 0.008 0.988
#> GSM159878     1  0.0829     0.9130 0.984 0.012 0.004
#> GSM159879     2  0.0475     0.9408 0.004 0.992 0.004
#> GSM159880     2  0.0475     0.9408 0.004 0.992 0.004
#> GSM159881     2  0.0237     0.9407 0.000 0.996 0.004
#> GSM159882     2  0.0000     0.9416 0.000 1.000 0.000
#> GSM159883     2  0.0000     0.9416 0.000 1.000 0.000
#> GSM159884     2  0.0000     0.9416 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.3969    0.69156 0.804 0.000 0.016 0.180
#> GSM159851     1  0.1929    0.80145 0.940 0.000 0.024 0.036
#> GSM159852     1  0.3157    0.74387 0.852 0.000 0.144 0.004
#> GSM159853     1  0.2081    0.78242 0.916 0.000 0.084 0.000
#> GSM159854     1  0.1042    0.80553 0.972 0.000 0.020 0.008
#> GSM159855     1  0.2814    0.76454 0.868 0.000 0.132 0.000
#> GSM159856     1  0.4155    0.64938 0.756 0.000 0.240 0.004
#> GSM159857     1  0.4250    0.61501 0.724 0.000 0.276 0.000
#> GSM159858     1  0.4252    0.63311 0.744 0.000 0.252 0.004
#> GSM159859     1  0.3355    0.72796 0.836 0.000 0.160 0.004
#> GSM159860     1  0.4401    0.60612 0.724 0.000 0.272 0.004
#> GSM159861     3  0.5366    0.57527 0.276 0.000 0.684 0.040
#> GSM159862     3  0.5839    0.52923 0.060 0.000 0.648 0.292
#> GSM159863     3  0.5727    0.65294 0.096 0.000 0.704 0.200
#> GSM159864     3  0.1929    0.75053 0.036 0.000 0.940 0.024
#> GSM159865     3  0.2222    0.75627 0.060 0.000 0.924 0.016
#> GSM159866     3  0.1975    0.75559 0.048 0.000 0.936 0.016
#> GSM159885     4  0.3585    0.69107 0.164 0.004 0.004 0.828
#> GSM159886     1  0.2401    0.77810 0.904 0.000 0.092 0.004
#> GSM159887     4  0.4988    0.63518 0.256 0.012 0.012 0.720
#> GSM159888     2  0.0188    0.91936 0.000 0.996 0.004 0.000
#> GSM159889     2  0.0469    0.91915 0.000 0.988 0.012 0.000
#> GSM159890     2  0.0188    0.91936 0.000 0.996 0.004 0.000
#> GSM159891     2  0.0672    0.91673 0.000 0.984 0.008 0.008
#> GSM159892     2  0.0657    0.91599 0.000 0.984 0.004 0.012
#> GSM159893     2  0.0524    0.91792 0.000 0.988 0.004 0.008
#> GSM159894     4  0.5531    0.24928 0.436 0.004 0.012 0.548
#> GSM159895     4  0.3972    0.67728 0.204 0.000 0.008 0.788
#> GSM159896     4  0.3721    0.68876 0.176 0.004 0.004 0.816
#> GSM159897     2  0.0376    0.91876 0.000 0.992 0.004 0.004
#> GSM159898     2  0.0188    0.91936 0.000 0.996 0.004 0.000
#> GSM159899     2  0.0524    0.91792 0.000 0.988 0.004 0.008
#> GSM159900     4  0.3992    0.59254 0.004 0.188 0.008 0.800
#> GSM159901     4  0.5285    0.08317 0.000 0.468 0.008 0.524
#> GSM159902     1  0.5163   -0.03542 0.516 0.000 0.004 0.480
#> GSM159903     1  0.3172    0.71386 0.840 0.000 0.000 0.160
#> GSM159904     1  0.4522    0.47297 0.680 0.000 0.000 0.320
#> GSM159905     1  0.0707    0.80048 0.980 0.000 0.000 0.020
#> GSM159906     1  0.0657    0.80448 0.984 0.000 0.012 0.004
#> GSM159907     1  0.0707    0.80334 0.980 0.000 0.020 0.000
#> GSM159908     1  0.4353    0.62916 0.756 0.000 0.012 0.232
#> GSM159909     1  0.4955    0.13770 0.556 0.000 0.000 0.444
#> GSM159910     4  0.2197    0.65154 0.004 0.000 0.080 0.916
#> GSM159911     4  0.4088    0.65761 0.232 0.000 0.004 0.764
#> GSM159912     1  0.1211    0.79412 0.960 0.000 0.000 0.040
#> GSM159913     1  0.2589    0.75320 0.884 0.000 0.000 0.116
#> GSM159914     1  0.0707    0.80348 0.980 0.000 0.020 0.000
#> GSM159915     1  0.0524    0.80313 0.988 0.000 0.008 0.004
#> GSM159916     1  0.0657    0.80386 0.984 0.000 0.012 0.004
#> GSM159917     4  0.2469    0.62580 0.000 0.000 0.108 0.892
#> GSM159867     4  0.6295    0.50978 0.132 0.000 0.212 0.656
#> GSM159868     4  0.2943    0.66835 0.032 0.000 0.076 0.892
#> GSM159869     4  0.3697    0.66310 0.048 0.000 0.100 0.852
#> GSM159870     2  0.3494    0.81798 0.000 0.824 0.172 0.004
#> GSM159871     2  0.4483    0.67109 0.000 0.712 0.284 0.004
#> GSM159872     4  0.4898    0.00889 0.000 0.000 0.416 0.584
#> GSM159873     2  0.5012    0.74625 0.000 0.772 0.116 0.112
#> GSM159874     4  0.3427    0.61515 0.000 0.028 0.112 0.860
#> GSM159875     2  0.5386    0.35785 0.000 0.612 0.020 0.368
#> GSM159876     3  0.3093    0.73145 0.092 0.020 0.884 0.004
#> GSM159877     3  0.4989    0.17968 0.000 0.000 0.528 0.472
#> GSM159878     3  0.4522    0.56095 0.264 0.004 0.728 0.004
#> GSM159879     2  0.1302    0.91366 0.000 0.956 0.044 0.000
#> GSM159880     2  0.1389    0.91248 0.000 0.952 0.048 0.000
#> GSM159881     2  0.2011    0.90039 0.000 0.920 0.080 0.000
#> GSM159882     2  0.1557    0.91020 0.000 0.944 0.056 0.000
#> GSM159883     2  0.1867    0.90365 0.000 0.928 0.072 0.000
#> GSM159884     2  0.1022    0.91620 0.000 0.968 0.032 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     4  0.5115      0.553 0.352 0.000 0.012 0.608 0.028
#> GSM159851     4  0.5192      0.180 0.472 0.000 0.004 0.492 0.032
#> GSM159852     1  0.4044      0.763 0.800 0.000 0.004 0.120 0.076
#> GSM159853     1  0.4181      0.728 0.784 0.000 0.008 0.156 0.052
#> GSM159854     1  0.4570      0.416 0.648 0.000 0.004 0.332 0.016
#> GSM159855     1  0.4649      0.711 0.752 0.000 0.008 0.160 0.080
#> GSM159856     1  0.3317      0.661 0.804 0.000 0.004 0.004 0.188
#> GSM159857     1  0.5249      0.425 0.608 0.000 0.004 0.052 0.336
#> GSM159858     1  0.3231      0.660 0.800 0.000 0.000 0.004 0.196
#> GSM159859     1  0.2077      0.757 0.908 0.000 0.000 0.008 0.084
#> GSM159860     1  0.3013      0.696 0.832 0.000 0.000 0.008 0.160
#> GSM159861     5  0.6394      0.391 0.108 0.000 0.020 0.360 0.512
#> GSM159862     5  0.5931      0.521 0.032 0.000 0.064 0.304 0.600
#> GSM159863     5  0.6012      0.571 0.064 0.000 0.048 0.264 0.624
#> GSM159864     5  0.3034      0.670 0.060 0.000 0.020 0.040 0.880
#> GSM159865     5  0.2930      0.669 0.076 0.000 0.012 0.032 0.880
#> GSM159866     5  0.2888      0.667 0.056 0.000 0.020 0.036 0.888
#> GSM159885     4  0.1885      0.721 0.044 0.000 0.020 0.932 0.004
#> GSM159886     1  0.2060      0.802 0.924 0.000 0.008 0.052 0.016
#> GSM159887     4  0.2816      0.741 0.088 0.008 0.008 0.884 0.012
#> GSM159888     2  0.0566      0.809 0.004 0.984 0.012 0.000 0.000
#> GSM159889     2  0.0798      0.809 0.008 0.976 0.016 0.000 0.000
#> GSM159890     2  0.0865      0.807 0.004 0.972 0.024 0.000 0.000
#> GSM159891     2  0.0955      0.806 0.000 0.968 0.028 0.004 0.000
#> GSM159892     2  0.1168      0.805 0.000 0.960 0.032 0.008 0.000
#> GSM159893     2  0.0981      0.810 0.000 0.972 0.008 0.012 0.008
#> GSM159894     4  0.2550      0.736 0.084 0.000 0.004 0.892 0.020
#> GSM159895     4  0.2756      0.730 0.060 0.000 0.036 0.892 0.012
#> GSM159896     4  0.2580      0.712 0.044 0.000 0.064 0.892 0.000
#> GSM159897     2  0.1948      0.790 0.008 0.928 0.056 0.004 0.004
#> GSM159898     2  0.2061      0.789 0.012 0.924 0.056 0.004 0.004
#> GSM159899     2  0.2061      0.790 0.012 0.924 0.056 0.004 0.004
#> GSM159900     3  0.6328      0.463 0.012 0.280 0.572 0.132 0.004
#> GSM159901     2  0.5988      0.077 0.012 0.524 0.392 0.068 0.004
#> GSM159902     4  0.3815      0.716 0.220 0.000 0.012 0.764 0.004
#> GSM159903     4  0.4367      0.545 0.372 0.000 0.008 0.620 0.000
#> GSM159904     4  0.4270      0.627 0.320 0.000 0.012 0.668 0.000
#> GSM159905     1  0.1764      0.792 0.928 0.000 0.008 0.064 0.000
#> GSM159906     1  0.1121      0.802 0.956 0.000 0.000 0.044 0.000
#> GSM159907     1  0.1571      0.800 0.936 0.000 0.000 0.060 0.004
#> GSM159908     1  0.5000      0.148 0.576 0.000 0.036 0.388 0.000
#> GSM159909     4  0.4194      0.684 0.260 0.000 0.016 0.720 0.004
#> GSM159910     3  0.2426      0.715 0.016 0.004 0.908 0.064 0.008
#> GSM159911     4  0.3390      0.737 0.100 0.000 0.060 0.840 0.000
#> GSM159912     1  0.3521      0.619 0.764 0.000 0.004 0.232 0.000
#> GSM159913     4  0.4522      0.387 0.440 0.000 0.008 0.552 0.000
#> GSM159914     1  0.1043      0.801 0.960 0.000 0.000 0.040 0.000
#> GSM159915     1  0.1569      0.797 0.944 0.004 0.008 0.044 0.000
#> GSM159916     1  0.1357      0.799 0.948 0.004 0.000 0.048 0.000
#> GSM159917     3  0.2787      0.719 0.004 0.000 0.880 0.088 0.028
#> GSM159867     4  0.3387      0.569 0.008 0.000 0.020 0.832 0.140
#> GSM159868     4  0.3362      0.585 0.000 0.000 0.080 0.844 0.076
#> GSM159869     4  0.3362      0.582 0.000 0.000 0.080 0.844 0.076
#> GSM159870     2  0.5584      0.660 0.004 0.656 0.040 0.036 0.264
#> GSM159871     2  0.5713      0.517 0.000 0.560 0.044 0.024 0.372
#> GSM159872     3  0.3521      0.686 0.000 0.000 0.820 0.040 0.140
#> GSM159873     2  0.6920      0.510 0.000 0.564 0.056 0.208 0.172
#> GSM159874     3  0.6806      0.476 0.000 0.088 0.504 0.348 0.060
#> GSM159875     2  0.6065      0.442 0.000 0.580 0.064 0.320 0.036
#> GSM159876     5  0.4034      0.555 0.096 0.028 0.056 0.000 0.820
#> GSM159877     3  0.4168      0.639 0.000 0.000 0.756 0.044 0.200
#> GSM159878     5  0.5228      0.377 0.352 0.008 0.040 0.000 0.600
#> GSM159879     2  0.3552      0.796 0.008 0.856 0.036 0.020 0.080
#> GSM159880     2  0.3396      0.795 0.000 0.856 0.032 0.024 0.088
#> GSM159881     2  0.4328      0.770 0.000 0.788 0.032 0.036 0.144
#> GSM159882     2  0.4071      0.779 0.000 0.808 0.036 0.028 0.128
#> GSM159883     2  0.4116      0.777 0.000 0.804 0.036 0.028 0.132
#> GSM159884     2  0.2970      0.800 0.000 0.884 0.028 0.028 0.060

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM159850     4  0.5683    0.59479 0.200 0.000 0.020 0.644 0.024 0.112
#> GSM159851     4  0.6249    0.35501 0.308 0.000 0.008 0.536 0.064 0.084
#> GSM159852     1  0.5738    0.66150 0.652 0.000 0.000 0.124 0.112 0.112
#> GSM159853     1  0.5974    0.65057 0.636 0.000 0.004 0.124 0.100 0.136
#> GSM159854     1  0.5397    0.37778 0.568 0.000 0.000 0.328 0.016 0.088
#> GSM159855     1  0.7018    0.53845 0.512 0.000 0.008 0.160 0.184 0.136
#> GSM159856     1  0.4124    0.69622 0.764 0.000 0.004 0.004 0.140 0.088
#> GSM159857     1  0.6217    0.44689 0.516 0.000 0.004 0.036 0.312 0.132
#> GSM159858     1  0.3368    0.72008 0.820 0.000 0.000 0.004 0.116 0.060
#> GSM159859     1  0.1624    0.75532 0.936 0.000 0.000 0.008 0.044 0.012
#> GSM159860     1  0.2277    0.74259 0.892 0.000 0.000 0.000 0.076 0.032
#> GSM159861     5  0.3570    0.74847 0.016 0.000 0.000 0.228 0.752 0.004
#> GSM159862     5  0.4162    0.77313 0.004 0.000 0.016 0.180 0.756 0.044
#> GSM159863     5  0.3546    0.78836 0.008 0.000 0.004 0.180 0.788 0.020
#> GSM159864     5  0.1396    0.79354 0.012 0.000 0.008 0.004 0.952 0.024
#> GSM159865     5  0.1786    0.78804 0.032 0.000 0.004 0.004 0.932 0.028
#> GSM159866     5  0.1718    0.78779 0.016 0.000 0.000 0.008 0.932 0.044
#> GSM159885     4  0.1364    0.75147 0.016 0.000 0.012 0.952 0.000 0.020
#> GSM159886     1  0.3025    0.74731 0.856 0.000 0.004 0.020 0.020 0.100
#> GSM159887     4  0.1924    0.75187 0.028 0.000 0.004 0.920 0.000 0.048
#> GSM159888     2  0.1610    0.56434 0.000 0.916 0.000 0.000 0.000 0.084
#> GSM159889     2  0.2170    0.55492 0.012 0.888 0.000 0.000 0.000 0.100
#> GSM159890     2  0.1267    0.56984 0.000 0.940 0.000 0.000 0.000 0.060
#> GSM159891     2  0.0363    0.57006 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM159892     2  0.0603    0.56957 0.000 0.980 0.004 0.000 0.000 0.016
#> GSM159893     2  0.2219    0.52669 0.000 0.864 0.000 0.000 0.000 0.136
#> GSM159894     4  0.2001    0.75298 0.020 0.000 0.000 0.920 0.016 0.044
#> GSM159895     4  0.3852    0.71964 0.020 0.012 0.012 0.828 0.052 0.076
#> GSM159896     4  0.2472    0.74068 0.008 0.000 0.016 0.900 0.024 0.052
#> GSM159897     2  0.1367    0.54943 0.000 0.944 0.012 0.000 0.000 0.044
#> GSM159898     2  0.2679    0.50626 0.008 0.872 0.012 0.000 0.008 0.100
#> GSM159899     2  0.2290    0.52334 0.004 0.892 0.020 0.000 0.000 0.084
#> GSM159900     2  0.7170   -0.08859 0.000 0.456 0.272 0.060 0.024 0.188
#> GSM159901     2  0.6345    0.18529 0.000 0.572 0.200 0.028 0.024 0.176
#> GSM159902     4  0.3143    0.74531 0.128 0.004 0.000 0.836 0.008 0.024
#> GSM159903     4  0.4317    0.53823 0.328 0.000 0.000 0.640 0.004 0.028
#> GSM159904     4  0.5109    0.63442 0.232 0.000 0.000 0.660 0.028 0.080
#> GSM159905     1  0.2196    0.74235 0.916 0.000 0.012 0.040 0.012 0.020
#> GSM159906     1  0.0713    0.75242 0.972 0.000 0.000 0.028 0.000 0.000
#> GSM159907     1  0.1624    0.75067 0.936 0.000 0.000 0.044 0.012 0.008
#> GSM159908     1  0.5939    0.26845 0.564 0.000 0.020 0.316 0.044 0.056
#> GSM159909     4  0.5568    0.65412 0.184 0.000 0.004 0.660 0.064 0.088
#> GSM159910     3  0.2580    0.76487 0.000 0.012 0.880 0.008 0.008 0.092
#> GSM159911     4  0.2039    0.76085 0.052 0.000 0.012 0.916 0.000 0.020
#> GSM159912     1  0.3998    0.58128 0.752 0.000 0.004 0.204 0.016 0.024
#> GSM159913     4  0.4613    0.33733 0.416 0.000 0.004 0.552 0.004 0.024
#> GSM159914     1  0.1871    0.74734 0.928 0.000 0.000 0.024 0.016 0.032
#> GSM159915     1  0.2151    0.74267 0.916 0.000 0.004 0.032 0.012 0.036
#> GSM159916     1  0.1857    0.74462 0.928 0.000 0.000 0.028 0.012 0.032
#> GSM159917     3  0.0984    0.80266 0.000 0.000 0.968 0.012 0.008 0.012
#> GSM159867     4  0.3355    0.69740 0.004 0.000 0.004 0.832 0.084 0.076
#> GSM159868     4  0.3286    0.69429 0.000 0.000 0.028 0.844 0.044 0.084
#> GSM159869     4  0.4052    0.67739 0.000 0.000 0.060 0.788 0.036 0.116
#> GSM159870     6  0.5679    0.21357 0.004 0.400 0.000 0.016 0.088 0.492
#> GSM159871     6  0.5387    0.31409 0.004 0.340 0.000 0.000 0.112 0.544
#> GSM159872     3  0.2052    0.80427 0.000 0.000 0.912 0.004 0.056 0.028
#> GSM159873     6  0.6669    0.38624 0.000 0.292 0.004 0.168 0.056 0.480
#> GSM159874     3  0.7146    0.33892 0.000 0.024 0.444 0.168 0.060 0.304
#> GSM159875     6  0.6994    0.30861 0.000 0.280 0.024 0.300 0.020 0.376
#> GSM159876     6  0.5909    0.00465 0.116 0.000 0.020 0.004 0.344 0.516
#> GSM159877     3  0.2511    0.79094 0.000 0.000 0.880 0.000 0.064 0.056
#> GSM159878     1  0.6413    0.14091 0.388 0.000 0.008 0.004 0.280 0.320
#> GSM159879     2  0.4151    0.15600 0.004 0.576 0.000 0.000 0.008 0.412
#> GSM159880     2  0.4168    0.17053 0.000 0.584 0.000 0.000 0.016 0.400
#> GSM159881     2  0.5163   -0.13351 0.000 0.488 0.000 0.012 0.056 0.444
#> GSM159882     2  0.4387    0.14003 0.000 0.572 0.000 0.004 0.020 0.404
#> GSM159883     2  0.4429    0.07633 0.000 0.548 0.000 0.000 0.028 0.424
#> GSM159884     2  0.4161    0.21487 0.000 0.612 0.000 0.008 0.008 0.372

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n agent(p)  dose(p)  time(p) k
#> MAD:NMF 65 3.94e-07 1.76e-03 5.43e-05 2
#> MAD:NMF 61 5.90e-07 9.68e-05 7.73e-05 3
#> MAD:NMF 60 5.42e-08 1.68e-04 9.86e-06 4
#> MAD:NMF 57 2.40e-06 5.37e-04 6.56e-08 5
#> MAD:NMF 48 1.62e-07 8.12e-04 3.35e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.838           0.964       0.982         0.2776 0.745   0.745
#> 3 3 0.743           0.847       0.922         0.3541 0.863   0.816
#> 4 4 0.829           0.876       0.960         0.2443 0.901   0.840
#> 5 5 0.782           0.788       0.917         0.5024 0.740   0.518
#> 6 6 0.811           0.703       0.878         0.0139 0.968   0.894

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1   0.000      0.978 1.000 0.000
#> GSM159851     1   0.000      0.978 1.000 0.000
#> GSM159852     1   0.000      0.978 1.000 0.000
#> GSM159853     1   0.000      0.978 1.000 0.000
#> GSM159854     1   0.000      0.978 1.000 0.000
#> GSM159855     1   0.000      0.978 1.000 0.000
#> GSM159856     1   0.000      0.978 1.000 0.000
#> GSM159857     1   0.000      0.978 1.000 0.000
#> GSM159858     1   0.000      0.978 1.000 0.000
#> GSM159859     1   0.000      0.978 1.000 0.000
#> GSM159860     1   0.000      0.978 1.000 0.000
#> GSM159861     1   0.000      0.978 1.000 0.000
#> GSM159862     1   0.000      0.978 1.000 0.000
#> GSM159863     1   0.000      0.978 1.000 0.000
#> GSM159864     1   0.000      0.978 1.000 0.000
#> GSM159865     1   0.000      0.978 1.000 0.000
#> GSM159866     1   0.000      0.978 1.000 0.000
#> GSM159885     1   0.278      0.942 0.952 0.048
#> GSM159886     1   0.000      0.978 1.000 0.000
#> GSM159887     1   0.278      0.942 0.952 0.048
#> GSM159888     1   0.000      0.978 1.000 0.000
#> GSM159889     1   0.000      0.978 1.000 0.000
#> GSM159890     1   0.000      0.978 1.000 0.000
#> GSM159891     2   0.000      1.000 0.000 1.000
#> GSM159892     2   0.000      1.000 0.000 1.000
#> GSM159893     2   0.000      1.000 0.000 1.000
#> GSM159894     1   0.000      0.978 1.000 0.000
#> GSM159895     1   0.706      0.791 0.808 0.192
#> GSM159896     1   0.706      0.791 0.808 0.192
#> GSM159897     1   0.000      0.978 1.000 0.000
#> GSM159898     1   0.000      0.978 1.000 0.000
#> GSM159899     1   0.000      0.978 1.000 0.000
#> GSM159900     2   0.000      1.000 0.000 1.000
#> GSM159901     2   0.000      1.000 0.000 1.000
#> GSM159902     1   0.278      0.942 0.952 0.048
#> GSM159903     1   0.000      0.978 1.000 0.000
#> GSM159904     1   0.278      0.942 0.952 0.048
#> GSM159905     1   0.000      0.978 1.000 0.000
#> GSM159906     1   0.000      0.978 1.000 0.000
#> GSM159907     1   0.000      0.978 1.000 0.000
#> GSM159908     1   0.000      0.978 1.000 0.000
#> GSM159909     1   0.000      0.978 1.000 0.000
#> GSM159910     2   0.000      1.000 0.000 1.000
#> GSM159911     1   0.706      0.791 0.808 0.192
#> GSM159912     1   0.000      0.978 1.000 0.000
#> GSM159913     1   0.000      0.978 1.000 0.000
#> GSM159914     1   0.000      0.978 1.000 0.000
#> GSM159915     1   0.000      0.978 1.000 0.000
#> GSM159916     1   0.000      0.978 1.000 0.000
#> GSM159917     2   0.000      1.000 0.000 1.000
#> GSM159867     1   0.469      0.895 0.900 0.100
#> GSM159868     1   0.706      0.791 0.808 0.192
#> GSM159869     1   0.706      0.791 0.808 0.192
#> GSM159870     1   0.000      0.978 1.000 0.000
#> GSM159871     1   0.000      0.978 1.000 0.000
#> GSM159872     1   0.000      0.978 1.000 0.000
#> GSM159873     2   0.000      1.000 0.000 1.000
#> GSM159874     2   0.000      1.000 0.000 1.000
#> GSM159875     2   0.000      1.000 0.000 1.000
#> GSM159876     1   0.000      0.978 1.000 0.000
#> GSM159877     1   0.000      0.978 1.000 0.000
#> GSM159878     1   0.000      0.978 1.000 0.000
#> GSM159879     1   0.000      0.978 1.000 0.000
#> GSM159880     1   0.000      0.978 1.000 0.000
#> GSM159881     1   0.000      0.978 1.000 0.000
#> GSM159882     1   0.000      0.978 1.000 0.000
#> GSM159883     1   0.000      0.978 1.000 0.000
#> GSM159884     1   0.000      0.978 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159851     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159852     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159853     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159854     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159855     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159856     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159857     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159858     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159859     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159860     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159861     1  0.3551     0.7110 0.868 0.000 0.132
#> GSM159862     1  0.3551     0.7110 0.868 0.000 0.132
#> GSM159863     1  0.3551     0.7110 0.868 0.000 0.132
#> GSM159864     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159865     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159866     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159885     1  0.7034    -0.0338 0.668 0.048 0.284
#> GSM159886     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159887     1  0.7034    -0.0338 0.668 0.048 0.284
#> GSM159888     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159889     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159890     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159891     2  0.0424     0.9639 0.000 0.992 0.008
#> GSM159892     2  0.0000     0.9674 0.000 1.000 0.000
#> GSM159893     2  0.0424     0.9639 0.000 0.992 0.008
#> GSM159894     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159895     3  0.7656     0.9660 0.376 0.052 0.572
#> GSM159896     3  0.7656     0.9660 0.376 0.052 0.572
#> GSM159897     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159898     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159899     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159900     2  0.0000     0.9674 0.000 1.000 0.000
#> GSM159901     2  0.0000     0.9674 0.000 1.000 0.000
#> GSM159902     1  0.7034    -0.0338 0.668 0.048 0.284
#> GSM159903     1  0.0237     0.9204 0.996 0.000 0.004
#> GSM159904     1  0.7034    -0.0338 0.668 0.048 0.284
#> GSM159905     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159906     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159907     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159908     1  0.5016     0.4110 0.760 0.000 0.240
#> GSM159909     1  0.5016     0.4110 0.760 0.000 0.240
#> GSM159910     2  0.6215     0.6914 0.000 0.572 0.428
#> GSM159911     3  0.7656     0.9660 0.376 0.052 0.572
#> GSM159912     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159913     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159914     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159915     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159916     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159917     2  0.0000     0.9674 0.000 1.000 0.000
#> GSM159867     3  0.7841     0.7987 0.468 0.052 0.480
#> GSM159868     3  0.7656     0.9660 0.376 0.052 0.572
#> GSM159869     3  0.7656     0.9660 0.376 0.052 0.572
#> GSM159870     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159871     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159872     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159873     2  0.0000     0.9674 0.000 1.000 0.000
#> GSM159874     2  0.0000     0.9674 0.000 1.000 0.000
#> GSM159875     2  0.0000     0.9674 0.000 1.000 0.000
#> GSM159876     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159877     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159878     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159879     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159880     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159881     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159882     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159883     1  0.0000     0.9254 1.000 0.000 0.000
#> GSM159884     1  0.0000     0.9254 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159851     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159852     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159853     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159854     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159855     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159856     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159857     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159858     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159859     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159860     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159861     1  0.3873      0.662 0.772 0.000 0.000 0.228
#> GSM159862     1  0.3873      0.662 0.772 0.000 0.000 0.228
#> GSM159863     1  0.3873      0.662 0.772 0.000 0.000 0.228
#> GSM159864     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159865     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159866     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159885     4  0.4509      0.621 0.288 0.004 0.000 0.708
#> GSM159886     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159887     4  0.4509      0.621 0.288 0.004 0.000 0.708
#> GSM159888     1  0.0188      0.962 0.996 0.004 0.000 0.000
#> GSM159889     1  0.0188      0.962 0.996 0.004 0.000 0.000
#> GSM159890     1  0.0188      0.962 0.996 0.004 0.000 0.000
#> GSM159891     3  0.0336      0.992 0.000 0.000 0.992 0.008
#> GSM159892     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> GSM159893     3  0.0336      0.992 0.000 0.000 0.992 0.008
#> GSM159894     1  0.0188      0.962 0.996 0.004 0.000 0.000
#> GSM159895     4  0.0000      0.654 0.000 0.000 0.000 1.000
#> GSM159896     4  0.0000      0.654 0.000 0.000 0.000 1.000
#> GSM159897     1  0.0188      0.962 0.996 0.004 0.000 0.000
#> GSM159898     1  0.0188      0.962 0.996 0.004 0.000 0.000
#> GSM159899     1  0.0188      0.962 0.996 0.004 0.000 0.000
#> GSM159900     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> GSM159901     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> GSM159902     4  0.4509      0.621 0.288 0.004 0.000 0.708
#> GSM159903     1  0.1211      0.924 0.960 0.000 0.000 0.040
#> GSM159904     4  0.4509      0.621 0.288 0.004 0.000 0.708
#> GSM159905     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159906     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159907     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159908     1  0.4781      0.414 0.660 0.004 0.000 0.336
#> GSM159909     1  0.4781      0.414 0.660 0.004 0.000 0.336
#> GSM159910     2  0.0188      0.000 0.000 0.996 0.004 0.000
#> GSM159911     4  0.0000      0.654 0.000 0.000 0.000 1.000
#> GSM159912     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159913     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159914     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159915     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159916     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159917     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> GSM159867     4  0.2334      0.660 0.088 0.004 0.000 0.908
#> GSM159868     4  0.0000      0.654 0.000 0.000 0.000 1.000
#> GSM159869     4  0.0000      0.654 0.000 0.000 0.000 1.000
#> GSM159870     1  0.0188      0.962 0.996 0.004 0.000 0.000
#> GSM159871     1  0.0188      0.962 0.996 0.004 0.000 0.000
#> GSM159872     1  0.0188      0.962 0.996 0.004 0.000 0.000
#> GSM159873     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> GSM159874     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> GSM159875     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> GSM159876     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159877     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159878     1  0.0000      0.963 1.000 0.000 0.000 0.000
#> GSM159879     1  0.0188      0.962 0.996 0.004 0.000 0.000
#> GSM159880     1  0.0188      0.962 0.996 0.004 0.000 0.000
#> GSM159881     1  0.0188      0.962 0.996 0.004 0.000 0.000
#> GSM159882     1  0.0188      0.962 0.996 0.004 0.000 0.000
#> GSM159883     1  0.0188      0.962 0.996 0.004 0.000 0.000
#> GSM159884     1  0.0188      0.962 0.996 0.004 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4 p5
#> GSM159850     1  0.0000     0.8931 1.000 0.000 0.000 0.000  0
#> GSM159851     1  0.0000     0.8931 1.000 0.000 0.000 0.000  0
#> GSM159852     1  0.0000     0.8931 1.000 0.000 0.000 0.000  0
#> GSM159853     1  0.0000     0.8931 1.000 0.000 0.000 0.000  0
#> GSM159854     1  0.1043     0.8848 0.960 0.040 0.000 0.000  0
#> GSM159855     1  0.1043     0.8848 0.960 0.040 0.000 0.000  0
#> GSM159856     1  0.0000     0.8931 1.000 0.000 0.000 0.000  0
#> GSM159857     1  0.0000     0.8931 1.000 0.000 0.000 0.000  0
#> GSM159858     1  0.0000     0.8931 1.000 0.000 0.000 0.000  0
#> GSM159859     1  0.0000     0.8931 1.000 0.000 0.000 0.000  0
#> GSM159860     1  0.0000     0.8931 1.000 0.000 0.000 0.000  0
#> GSM159861     1  0.6491     0.0636 0.488 0.284 0.000 0.228  0
#> GSM159862     1  0.6491     0.0636 0.488 0.284 0.000 0.228  0
#> GSM159863     1  0.6491     0.0636 0.488 0.284 0.000 0.228  0
#> GSM159864     1  0.0162     0.8904 0.996 0.004 0.000 0.000  0
#> GSM159865     1  0.0162     0.8904 0.996 0.004 0.000 0.000  0
#> GSM159866     1  0.0162     0.8904 0.996 0.004 0.000 0.000  0
#> GSM159885     4  0.3884     0.6336 0.004 0.288 0.000 0.708  0
#> GSM159886     1  0.0000     0.8931 1.000 0.000 0.000 0.000  0
#> GSM159887     4  0.3884     0.6336 0.004 0.288 0.000 0.708  0
#> GSM159888     2  0.0162     0.9484 0.004 0.996 0.000 0.000  0
#> GSM159889     2  0.0162     0.9484 0.004 0.996 0.000 0.000  0
#> GSM159890     2  0.0162     0.9484 0.004 0.996 0.000 0.000  0
#> GSM159891     3  0.0290     0.9917 0.000 0.000 0.992 0.008  0
#> GSM159892     3  0.0000     0.9976 0.000 0.000 1.000 0.000  0
#> GSM159893     3  0.0290     0.9917 0.000 0.000 0.992 0.008  0
#> GSM159894     2  0.4306    -0.0763 0.492 0.508 0.000 0.000  0
#> GSM159895     4  0.0000     0.6136 0.000 0.000 0.000 1.000  0
#> GSM159896     4  0.0000     0.6136 0.000 0.000 0.000 1.000  0
#> GSM159897     2  0.0162     0.9484 0.004 0.996 0.000 0.000  0
#> GSM159898     2  0.0162     0.9484 0.004 0.996 0.000 0.000  0
#> GSM159899     2  0.0162     0.9484 0.004 0.996 0.000 0.000  0
#> GSM159900     3  0.0000     0.9976 0.000 0.000 1.000 0.000  0
#> GSM159901     3  0.0000     0.9976 0.000 0.000 1.000 0.000  0
#> GSM159902     4  0.3884     0.6336 0.004 0.288 0.000 0.708  0
#> GSM159903     1  0.2077     0.8567 0.920 0.040 0.000 0.040  0
#> GSM159904     4  0.3884     0.6336 0.004 0.288 0.000 0.708  0
#> GSM159905     1  0.1043     0.8848 0.960 0.040 0.000 0.000  0
#> GSM159906     1  0.1043     0.8848 0.960 0.040 0.000 0.000  0
#> GSM159907     1  0.1043     0.8848 0.960 0.040 0.000 0.000  0
#> GSM159908     4  0.6826     0.2837 0.328 0.336 0.000 0.336  0
#> GSM159909     4  0.6826     0.2837 0.328 0.336 0.000 0.336  0
#> GSM159910     5  0.0000     0.0000 0.000 0.000 0.000 0.000  1
#> GSM159911     4  0.0000     0.6136 0.000 0.000 0.000 1.000  0
#> GSM159912     1  0.0000     0.8931 1.000 0.000 0.000 0.000  0
#> GSM159913     1  0.0000     0.8931 1.000 0.000 0.000 0.000  0
#> GSM159914     1  0.1043     0.8848 0.960 0.040 0.000 0.000  0
#> GSM159915     1  0.1043     0.8848 0.960 0.040 0.000 0.000  0
#> GSM159916     1  0.1043     0.8848 0.960 0.040 0.000 0.000  0
#> GSM159917     3  0.0000     0.9976 0.000 0.000 1.000 0.000  0
#> GSM159867     4  0.1908     0.6324 0.000 0.092 0.000 0.908  0
#> GSM159868     4  0.0000     0.6136 0.000 0.000 0.000 1.000  0
#> GSM159869     4  0.0000     0.6136 0.000 0.000 0.000 1.000  0
#> GSM159870     2  0.0162     0.9484 0.004 0.996 0.000 0.000  0
#> GSM159871     2  0.0162     0.9484 0.004 0.996 0.000 0.000  0
#> GSM159872     2  0.0162     0.9484 0.004 0.996 0.000 0.000  0
#> GSM159873     3  0.0000     0.9976 0.000 0.000 1.000 0.000  0
#> GSM159874     3  0.0000     0.9976 0.000 0.000 1.000 0.000  0
#> GSM159875     3  0.0000     0.9976 0.000 0.000 1.000 0.000  0
#> GSM159876     1  0.3003     0.7069 0.812 0.188 0.000 0.000  0
#> GSM159877     1  0.3003     0.7069 0.812 0.188 0.000 0.000  0
#> GSM159878     1  0.3003     0.7069 0.812 0.188 0.000 0.000  0
#> GSM159879     2  0.0162     0.9484 0.004 0.996 0.000 0.000  0
#> GSM159880     2  0.0162     0.9484 0.004 0.996 0.000 0.000  0
#> GSM159881     2  0.0162     0.9484 0.004 0.996 0.000 0.000  0
#> GSM159882     2  0.0162     0.9484 0.004 0.996 0.000 0.000  0
#> GSM159883     2  0.0162     0.9484 0.004 0.996 0.000 0.000  0
#> GSM159884     2  0.0162     0.9484 0.004 0.996 0.000 0.000  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM159850     1  0.0000    0.89075 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159851     1  0.0000    0.89075 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159852     1  0.0000    0.89075 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159853     1  0.0146    0.89033 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM159854     1  0.1082    0.88427 0.956 0.040 0.000 0.000 0.000 0.004
#> GSM159855     1  0.1082    0.88427 0.956 0.040 0.000 0.000 0.000 0.004
#> GSM159856     1  0.0000    0.89075 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159857     1  0.0000    0.89075 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159858     1  0.0000    0.89075 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159859     1  0.0000    0.89075 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159860     1  0.0000    0.89075 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159861     1  0.6145    0.15780 0.476 0.284 0.000 0.228 0.000 0.012
#> GSM159862     1  0.6145    0.15780 0.476 0.284 0.000 0.228 0.000 0.012
#> GSM159863     1  0.6145    0.15780 0.476 0.284 0.000 0.228 0.000 0.012
#> GSM159864     1  0.0547    0.88363 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM159865     1  0.0547    0.88363 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM159866     1  0.0547    0.88363 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM159885     4  0.3489    0.71249 0.004 0.288 0.000 0.708 0.000 0.000
#> GSM159886     1  0.0000    0.89075 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159887     4  0.3489    0.71249 0.004 0.288 0.000 0.708 0.000 0.000
#> GSM159888     2  0.0000    0.85916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159889     2  0.0000    0.85916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159890     2  0.0000    0.85916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159891     6  0.6026    1.00000 0.000 0.000 0.244 0.000 0.376 0.380
#> GSM159892     5  0.6053   -0.98382 0.000 0.000 0.256 0.000 0.376 0.368
#> GSM159893     6  0.6026    1.00000 0.000 0.000 0.244 0.000 0.376 0.380
#> GSM159894     2  0.4183   -0.03629 0.480 0.508 0.000 0.000 0.000 0.012
#> GSM159895     4  0.0000    0.76952 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM159896     4  0.0000    0.76952 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM159897     2  0.0000    0.85916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159898     2  0.0000    0.85916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159899     2  0.0000    0.85916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159900     3  0.0000    0.70953 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159901     3  0.0000    0.70953 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159902     4  0.3489    0.71249 0.004 0.288 0.000 0.708 0.000 0.000
#> GSM159903     1  0.2222    0.85483 0.908 0.040 0.000 0.040 0.000 0.012
#> GSM159904     4  0.3489    0.71249 0.004 0.288 0.000 0.708 0.000 0.000
#> GSM159905     1  0.1196    0.88337 0.952 0.040 0.000 0.000 0.000 0.008
#> GSM159906     1  0.1196    0.88337 0.952 0.040 0.000 0.000 0.000 0.008
#> GSM159907     1  0.1196    0.88337 0.952 0.040 0.000 0.000 0.000 0.008
#> GSM159908     2  0.6418   -0.17474 0.316 0.336 0.000 0.336 0.000 0.012
#> GSM159909     2  0.6418   -0.17474 0.316 0.336 0.000 0.336 0.000 0.012
#> GSM159910     5  0.3695   -0.00254 0.000 0.000 0.000 0.000 0.624 0.376
#> GSM159911     4  0.0000    0.76952 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM159912     1  0.0363    0.88983 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM159913     1  0.0363    0.88983 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM159914     1  0.1196    0.88337 0.952 0.040 0.000 0.000 0.000 0.008
#> GSM159915     1  0.1196    0.88337 0.952 0.040 0.000 0.000 0.000 0.008
#> GSM159916     1  0.1196    0.88337 0.952 0.040 0.000 0.000 0.000 0.008
#> GSM159917     3  0.2883    0.53823 0.000 0.000 0.788 0.000 0.000 0.212
#> GSM159867     4  0.1714    0.76652 0.000 0.092 0.000 0.908 0.000 0.000
#> GSM159868     4  0.0000    0.76952 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM159869     4  0.0000    0.76952 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM159870     2  0.0000    0.85916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159871     2  0.0000    0.85916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159872     2  0.0000    0.85916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159873     3  0.3695    0.14292 0.000 0.000 0.624 0.000 0.376 0.000
#> GSM159874     3  0.0000    0.70953 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159875     3  0.3695    0.14292 0.000 0.000 0.624 0.000 0.376 0.000
#> GSM159876     1  0.2697    0.71633 0.812 0.188 0.000 0.000 0.000 0.000
#> GSM159877     1  0.2697    0.71633 0.812 0.188 0.000 0.000 0.000 0.000
#> GSM159878     1  0.2697    0.71633 0.812 0.188 0.000 0.000 0.000 0.000
#> GSM159879     2  0.0000    0.85916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159880     2  0.0000    0.85916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159881     2  0.0000    0.85916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159882     2  0.0000    0.85916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159883     2  0.0000    0.85916 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159884     2  0.0000    0.85916 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n agent(p)  dose(p)  time(p) k
#> ATC:hclust 68 1.13e-01 0.056870 2.00e-06 2
#> ATC:hclust 62 9.39e-02 0.017576 6.38e-08 3
#> ATC:hclust 65 4.14e-02 0.005932 4.01e-09 4
#> ATC:hclust 61 4.41e-06 0.000124 4.80e-11 5
#> ATC:hclust 58 2.49e-05 0.000381 1.67e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.566           0.830       0.870         0.3628 0.668   0.668
#> 3 3 0.655           0.875       0.894         0.6800 0.629   0.476
#> 4 4 0.802           0.879       0.890         0.1489 0.903   0.746
#> 5 5 0.777           0.638       0.785         0.0898 0.947   0.826
#> 6 6 0.774           0.679       0.787         0.0512 0.886   0.605

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1   0.000      0.895 1.000 0.000
#> GSM159851     1   0.000      0.895 1.000 0.000
#> GSM159852     1   0.000      0.895 1.000 0.000
#> GSM159853     1   0.000      0.895 1.000 0.000
#> GSM159854     1   0.000      0.895 1.000 0.000
#> GSM159855     1   0.000      0.895 1.000 0.000
#> GSM159856     1   0.000      0.895 1.000 0.000
#> GSM159857     1   0.000      0.895 1.000 0.000
#> GSM159858     1   0.000      0.895 1.000 0.000
#> GSM159859     1   0.000      0.895 1.000 0.000
#> GSM159860     1   0.000      0.895 1.000 0.000
#> GSM159861     1   0.000      0.895 1.000 0.000
#> GSM159862     1   0.000      0.895 1.000 0.000
#> GSM159863     1   0.000      0.895 1.000 0.000
#> GSM159864     1   0.000      0.895 1.000 0.000
#> GSM159865     1   0.000      0.895 1.000 0.000
#> GSM159866     1   0.000      0.895 1.000 0.000
#> GSM159885     1   0.855      0.693 0.720 0.280
#> GSM159886     1   0.000      0.895 1.000 0.000
#> GSM159887     1   0.000      0.895 1.000 0.000
#> GSM159888     1   0.871      0.678 0.708 0.292
#> GSM159889     1   0.644      0.799 0.836 0.164
#> GSM159890     1   0.871      0.678 0.708 0.292
#> GSM159891     2   0.000      0.911 0.000 1.000
#> GSM159892     2   0.000      0.911 0.000 1.000
#> GSM159893     2   0.000      0.911 0.000 1.000
#> GSM159894     1   0.000      0.895 1.000 0.000
#> GSM159895     1   0.871      0.678 0.708 0.292
#> GSM159896     2   0.939      0.381 0.356 0.644
#> GSM159897     1   0.871      0.678 0.708 0.292
#> GSM159898     1   0.644      0.799 0.836 0.164
#> GSM159899     1   0.871      0.678 0.708 0.292
#> GSM159900     2   0.000      0.911 0.000 1.000
#> GSM159901     2   0.000      0.911 0.000 1.000
#> GSM159902     1   0.000      0.895 1.000 0.000
#> GSM159903     1   0.000      0.895 1.000 0.000
#> GSM159904     1   0.000      0.895 1.000 0.000
#> GSM159905     1   0.000      0.895 1.000 0.000
#> GSM159906     1   0.000      0.895 1.000 0.000
#> GSM159907     1   0.000      0.895 1.000 0.000
#> GSM159908     1   0.000      0.895 1.000 0.000
#> GSM159909     1   0.000      0.895 1.000 0.000
#> GSM159910     2   0.000      0.911 0.000 1.000
#> GSM159911     2   0.000      0.911 0.000 1.000
#> GSM159912     1   0.000      0.895 1.000 0.000
#> GSM159913     1   0.000      0.895 1.000 0.000
#> GSM159914     1   0.000      0.895 1.000 0.000
#> GSM159915     1   0.000      0.895 1.000 0.000
#> GSM159916     1   0.000      0.895 1.000 0.000
#> GSM159917     2   0.000      0.911 0.000 1.000
#> GSM159867     1   0.844      0.702 0.728 0.272
#> GSM159868     2   0.939      0.381 0.356 0.644
#> GSM159869     2   0.795      0.633 0.240 0.760
#> GSM159870     1   0.644      0.799 0.836 0.164
#> GSM159871     1   0.833      0.710 0.736 0.264
#> GSM159872     1   0.861      0.688 0.716 0.284
#> GSM159873     2   0.000      0.911 0.000 1.000
#> GSM159874     2   0.000      0.911 0.000 1.000
#> GSM159875     2   0.000      0.911 0.000 1.000
#> GSM159876     1   0.000      0.895 1.000 0.000
#> GSM159877     1   0.000      0.895 1.000 0.000
#> GSM159878     1   0.000      0.895 1.000 0.000
#> GSM159879     1   0.644      0.799 0.836 0.164
#> GSM159880     1   0.833      0.710 0.736 0.264
#> GSM159881     1   0.871      0.678 0.708 0.292
#> GSM159882     1   0.871      0.678 0.708 0.292
#> GSM159883     1   0.871      0.678 0.708 0.292
#> GSM159884     1   0.871      0.678 0.708 0.292

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1  0.0000      0.965 1.000 0.000 0.000
#> GSM159851     1  0.0000      0.965 1.000 0.000 0.000
#> GSM159852     1  0.0000      0.965 1.000 0.000 0.000
#> GSM159853     1  0.0000      0.965 1.000 0.000 0.000
#> GSM159854     1  0.0237      0.964 0.996 0.004 0.000
#> GSM159855     1  0.0237      0.964 0.996 0.004 0.000
#> GSM159856     1  0.0000      0.965 1.000 0.000 0.000
#> GSM159857     1  0.0000      0.965 1.000 0.000 0.000
#> GSM159858     1  0.0000      0.965 1.000 0.000 0.000
#> GSM159859     1  0.0000      0.965 1.000 0.000 0.000
#> GSM159860     1  0.0000      0.965 1.000 0.000 0.000
#> GSM159861     1  0.1860      0.932 0.948 0.052 0.000
#> GSM159862     1  0.4178      0.811 0.828 0.172 0.000
#> GSM159863     1  0.4121      0.816 0.832 0.168 0.000
#> GSM159864     1  0.1636      0.942 0.964 0.020 0.016
#> GSM159865     1  0.1636      0.942 0.964 0.020 0.016
#> GSM159866     1  0.1636      0.942 0.964 0.020 0.016
#> GSM159885     2  0.4002      0.750 0.160 0.840 0.000
#> GSM159886     1  0.0000      0.965 1.000 0.000 0.000
#> GSM159887     2  0.4887      0.703 0.228 0.772 0.000
#> GSM159888     2  0.5780      0.826 0.080 0.800 0.120
#> GSM159889     2  0.5892      0.824 0.104 0.796 0.100
#> GSM159890     2  0.5780      0.826 0.080 0.800 0.120
#> GSM159891     3  0.0892      0.985 0.000 0.020 0.980
#> GSM159892     3  0.0892      0.985 0.000 0.020 0.980
#> GSM159893     3  0.0892      0.985 0.000 0.020 0.980
#> GSM159894     1  0.4931      0.655 0.768 0.232 0.000
#> GSM159895     2  0.4731      0.732 0.032 0.840 0.128
#> GSM159896     2  0.4453      0.709 0.012 0.836 0.152
#> GSM159897     2  0.5780      0.826 0.080 0.800 0.120
#> GSM159898     2  0.5892      0.824 0.104 0.796 0.100
#> GSM159899     2  0.5780      0.826 0.080 0.800 0.120
#> GSM159900     3  0.0892      0.985 0.000 0.020 0.980
#> GSM159901     3  0.0892      0.985 0.000 0.020 0.980
#> GSM159902     2  0.4887      0.703 0.228 0.772 0.000
#> GSM159903     1  0.4235      0.804 0.824 0.176 0.000
#> GSM159904     2  0.4887      0.703 0.228 0.772 0.000
#> GSM159905     1  0.0475      0.964 0.992 0.004 0.004
#> GSM159906     1  0.0475      0.964 0.992 0.004 0.004
#> GSM159907     1  0.0475      0.964 0.992 0.004 0.004
#> GSM159908     2  0.4887      0.703 0.228 0.772 0.000
#> GSM159909     2  0.5431      0.636 0.284 0.716 0.000
#> GSM159910     3  0.2625      0.936 0.000 0.084 0.916
#> GSM159911     2  0.5327      0.548 0.000 0.728 0.272
#> GSM159912     1  0.0237      0.964 0.996 0.004 0.000
#> GSM159913     1  0.0892      0.954 0.980 0.020 0.000
#> GSM159914     1  0.0475      0.964 0.992 0.004 0.004
#> GSM159915     1  0.0475      0.964 0.992 0.004 0.004
#> GSM159916     1  0.0475      0.964 0.992 0.004 0.004
#> GSM159917     3  0.2356      0.939 0.000 0.072 0.928
#> GSM159867     2  0.4002      0.750 0.160 0.840 0.000
#> GSM159868     2  0.4453      0.709 0.012 0.836 0.152
#> GSM159869     2  0.4453      0.709 0.012 0.836 0.152
#> GSM159870     2  0.5892      0.824 0.104 0.796 0.100
#> GSM159871     2  0.5804      0.827 0.088 0.800 0.112
#> GSM159872     2  0.5804      0.827 0.088 0.800 0.112
#> GSM159873     3  0.0892      0.985 0.000 0.020 0.980
#> GSM159874     3  0.0892      0.985 0.000 0.020 0.980
#> GSM159875     3  0.0892      0.985 0.000 0.020 0.980
#> GSM159876     1  0.0000      0.965 1.000 0.000 0.000
#> GSM159877     1  0.0000      0.965 1.000 0.000 0.000
#> GSM159878     1  0.0000      0.965 1.000 0.000 0.000
#> GSM159879     2  0.5889      0.826 0.096 0.796 0.108
#> GSM159880     2  0.5804      0.827 0.088 0.800 0.112
#> GSM159881     2  0.5036      0.811 0.048 0.832 0.120
#> GSM159882     2  0.5780      0.826 0.080 0.800 0.120
#> GSM159883     2  0.5780      0.826 0.080 0.800 0.120
#> GSM159884     2  0.5780      0.826 0.080 0.800 0.120

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.0188     0.9082 0.996 0.000 0.004 0.000
#> GSM159851     1  0.0000     0.9090 1.000 0.000 0.000 0.000
#> GSM159852     1  0.0188     0.9082 0.996 0.000 0.004 0.000
#> GSM159853     1  0.0000     0.9090 1.000 0.000 0.000 0.000
#> GSM159854     1  0.2197     0.9009 0.916 0.000 0.004 0.080
#> GSM159855     1  0.2197     0.9009 0.916 0.000 0.004 0.080
#> GSM159856     1  0.0188     0.9082 0.996 0.000 0.004 0.000
#> GSM159857     1  0.0921     0.9091 0.972 0.000 0.000 0.028
#> GSM159858     1  0.0779     0.9097 0.980 0.000 0.004 0.016
#> GSM159859     1  0.0779     0.9097 0.980 0.000 0.004 0.016
#> GSM159860     1  0.0188     0.9082 0.996 0.000 0.004 0.000
#> GSM159861     1  0.3973     0.8005 0.792 0.004 0.004 0.200
#> GSM159862     1  0.5457     0.2161 0.516 0.008 0.004 0.472
#> GSM159863     1  0.5457     0.2161 0.516 0.008 0.004 0.472
#> GSM159864     1  0.2876     0.8506 0.892 0.008 0.008 0.092
#> GSM159865     1  0.2876     0.8506 0.892 0.008 0.008 0.092
#> GSM159866     1  0.2876     0.8506 0.892 0.008 0.008 0.092
#> GSM159885     4  0.5292     0.8558 0.060 0.216 0.000 0.724
#> GSM159886     1  0.0188     0.9082 0.996 0.000 0.004 0.000
#> GSM159887     4  0.5314     0.8621 0.084 0.176 0.000 0.740
#> GSM159888     2  0.1624     0.9796 0.020 0.952 0.000 0.028
#> GSM159889     2  0.1913     0.9701 0.020 0.940 0.000 0.040
#> GSM159890     2  0.1624     0.9796 0.020 0.952 0.000 0.028
#> GSM159891     3  0.2224     0.9750 0.000 0.032 0.928 0.040
#> GSM159892     3  0.2224     0.9750 0.000 0.032 0.928 0.040
#> GSM159893     3  0.2224     0.9750 0.000 0.032 0.928 0.040
#> GSM159894     1  0.4860     0.6903 0.768 0.044 0.004 0.184
#> GSM159895     4  0.5398     0.8374 0.004 0.216 0.056 0.724
#> GSM159896     4  0.5471     0.8352 0.004 0.216 0.060 0.720
#> GSM159897     2  0.1624     0.9796 0.020 0.952 0.000 0.028
#> GSM159898     2  0.1913     0.9701 0.020 0.940 0.000 0.040
#> GSM159899     2  0.1624     0.9796 0.020 0.952 0.000 0.028
#> GSM159900     3  0.0707     0.9736 0.000 0.020 0.980 0.000
#> GSM159901     3  0.0707     0.9736 0.000 0.020 0.980 0.000
#> GSM159902     4  0.5376     0.8614 0.088 0.176 0.000 0.736
#> GSM159903     4  0.5543    -0.0207 0.444 0.004 0.012 0.540
#> GSM159904     4  0.5376     0.8614 0.088 0.176 0.000 0.736
#> GSM159905     1  0.2542     0.8971 0.904 0.000 0.012 0.084
#> GSM159906     1  0.2402     0.9007 0.912 0.000 0.012 0.076
#> GSM159907     1  0.2402     0.9007 0.912 0.000 0.012 0.076
#> GSM159908     4  0.5376     0.8614 0.088 0.176 0.000 0.736
#> GSM159909     4  0.5348     0.7972 0.108 0.112 0.012 0.768
#> GSM159910     3  0.1743     0.9494 0.000 0.004 0.940 0.056
#> GSM159911     4  0.5476     0.7946 0.000 0.144 0.120 0.736
#> GSM159912     1  0.2179     0.9036 0.924 0.000 0.012 0.064
#> GSM159913     1  0.2402     0.9007 0.912 0.000 0.012 0.076
#> GSM159914     1  0.2402     0.9007 0.912 0.000 0.012 0.076
#> GSM159915     1  0.2402     0.9007 0.912 0.000 0.012 0.076
#> GSM159916     1  0.2542     0.8971 0.904 0.000 0.012 0.084
#> GSM159917     3  0.1004     0.9624 0.000 0.004 0.972 0.024
#> GSM159867     4  0.5327     0.8555 0.060 0.220 0.000 0.720
#> GSM159868     4  0.5505     0.8347 0.004 0.220 0.060 0.716
#> GSM159869     4  0.5471     0.8348 0.004 0.216 0.060 0.720
#> GSM159870     2  0.0707     0.9853 0.020 0.980 0.000 0.000
#> GSM159871     2  0.0707     0.9853 0.020 0.980 0.000 0.000
#> GSM159872     2  0.0707     0.9853 0.020 0.980 0.000 0.000
#> GSM159873     3  0.2224     0.9750 0.000 0.032 0.928 0.040
#> GSM159874     3  0.0707     0.9736 0.000 0.020 0.980 0.000
#> GSM159875     3  0.1936     0.9756 0.000 0.032 0.940 0.028
#> GSM159876     1  0.0376     0.9069 0.992 0.000 0.004 0.004
#> GSM159877     1  0.0779     0.9095 0.980 0.000 0.004 0.016
#> GSM159878     1  0.0376     0.9069 0.992 0.000 0.004 0.004
#> GSM159879     2  0.0707     0.9853 0.020 0.980 0.000 0.000
#> GSM159880     2  0.0707     0.9853 0.020 0.980 0.000 0.000
#> GSM159881     2  0.0779     0.9657 0.004 0.980 0.000 0.016
#> GSM159882     2  0.0707     0.9853 0.020 0.980 0.000 0.000
#> GSM159883     2  0.0707     0.9853 0.020 0.980 0.000 0.000
#> GSM159884     2  0.0707     0.9853 0.020 0.980 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     1   0.351     0.0960 0.748 0.000 0.000 0.000 0.252
#> GSM159851     1   0.340     0.1300 0.764 0.000 0.000 0.000 0.236
#> GSM159852     1   0.351     0.0960 0.748 0.000 0.000 0.000 0.252
#> GSM159853     1   0.340     0.1300 0.764 0.000 0.000 0.000 0.236
#> GSM159854     1   0.236     0.3998 0.900 0.000 0.000 0.024 0.076
#> GSM159855     1   0.236     0.3998 0.900 0.000 0.000 0.024 0.076
#> GSM159856     1   0.351     0.0960 0.748 0.000 0.000 0.000 0.252
#> GSM159857     1   0.327     0.1495 0.780 0.000 0.000 0.000 0.220
#> GSM159858     1   0.345     0.1221 0.756 0.000 0.000 0.000 0.244
#> GSM159859     1   0.345     0.1221 0.756 0.000 0.000 0.000 0.244
#> GSM159860     1   0.356     0.0942 0.740 0.000 0.000 0.000 0.260
#> GSM159861     1   0.546     0.2118 0.672 0.000 0.004 0.160 0.164
#> GSM159862     1   0.615     0.1400 0.564 0.000 0.004 0.276 0.156
#> GSM159863     1   0.608     0.1542 0.580 0.000 0.004 0.260 0.156
#> GSM159864     5   0.445     1.0000 0.488 0.000 0.000 0.004 0.508
#> GSM159865     5   0.445     1.0000 0.488 0.000 0.000 0.004 0.508
#> GSM159866     5   0.445     1.0000 0.488 0.000 0.000 0.004 0.508
#> GSM159885     4   0.143     0.9270 0.004 0.052 0.000 0.944 0.000
#> GSM159886     1   0.353     0.0886 0.744 0.000 0.000 0.000 0.256
#> GSM159887     4   0.256     0.9136 0.008 0.032 0.000 0.900 0.060
#> GSM159888     2   0.254     0.9249 0.000 0.868 0.000 0.004 0.128
#> GSM159889     2   0.267     0.9212 0.000 0.856 0.000 0.004 0.140
#> GSM159890     2   0.254     0.9249 0.000 0.868 0.000 0.004 0.128
#> GSM159891     3   0.172     0.9500 0.000 0.016 0.944 0.020 0.020
#> GSM159892     3   0.118     0.9581 0.000 0.016 0.964 0.004 0.016
#> GSM159893     3   0.118     0.9581 0.000 0.016 0.964 0.004 0.016
#> GSM159894     1   0.588     0.1173 0.616 0.004 0.000 0.160 0.220
#> GSM159895     4   0.172     0.9256 0.000 0.052 0.004 0.936 0.008
#> GSM159896     4   0.193     0.9235 0.000 0.052 0.004 0.928 0.016
#> GSM159897     2   0.267     0.9212 0.000 0.856 0.000 0.004 0.140
#> GSM159898     2   0.267     0.9212 0.000 0.856 0.000 0.004 0.140
#> GSM159899     2   0.267     0.9212 0.000 0.856 0.000 0.004 0.140
#> GSM159900     3   0.199     0.9573 0.000 0.016 0.928 0.008 0.048
#> GSM159901     3   0.199     0.9573 0.000 0.016 0.928 0.008 0.048
#> GSM159902     4   0.256     0.9136 0.008 0.032 0.000 0.900 0.060
#> GSM159903     1   0.648     0.1729 0.532 0.000 0.012 0.296 0.160
#> GSM159904     4   0.256     0.9136 0.008 0.032 0.000 0.900 0.060
#> GSM159905     1   0.354     0.3995 0.828 0.000 0.012 0.024 0.136
#> GSM159906     1   0.223     0.4100 0.912 0.000 0.012 0.008 0.068
#> GSM159907     1   0.223     0.4100 0.912 0.000 0.012 0.008 0.068
#> GSM159908     4   0.279     0.9095 0.008 0.032 0.004 0.892 0.064
#> GSM159909     4   0.605     0.6018 0.232 0.012 0.016 0.640 0.100
#> GSM159910     3   0.361     0.8870 0.000 0.000 0.808 0.036 0.156
#> GSM159911     4   0.190     0.9126 0.000 0.028 0.020 0.936 0.016
#> GSM159912     1   0.298     0.4074 0.852 0.000 0.012 0.004 0.132
#> GSM159913     1   0.363     0.3938 0.824 0.000 0.012 0.028 0.136
#> GSM159914     1   0.210     0.4089 0.916 0.000 0.012 0.004 0.068
#> GSM159915     1   0.223     0.4100 0.912 0.000 0.012 0.008 0.068
#> GSM159916     1   0.336     0.4040 0.840 0.000 0.012 0.020 0.128
#> GSM159917     3   0.212     0.9450 0.000 0.000 0.916 0.028 0.056
#> GSM159867     4   0.143     0.9270 0.004 0.052 0.000 0.944 0.000
#> GSM159868     4   0.193     0.9235 0.000 0.052 0.004 0.928 0.016
#> GSM159869     4   0.186     0.9228 0.000 0.048 0.004 0.932 0.016
#> GSM159870     2   0.000     0.9506 0.000 1.000 0.000 0.000 0.000
#> GSM159871     2   0.000     0.9506 0.000 1.000 0.000 0.000 0.000
#> GSM159872     2   0.000     0.9506 0.000 1.000 0.000 0.000 0.000
#> GSM159873     3   0.118     0.9581 0.000 0.016 0.964 0.004 0.016
#> GSM159874     3   0.199     0.9573 0.000 0.016 0.928 0.008 0.048
#> GSM159875     3   0.051     0.9598 0.000 0.016 0.984 0.000 0.000
#> GSM159876     1   0.361     0.0378 0.732 0.000 0.000 0.000 0.268
#> GSM159877     1   0.361     0.0378 0.732 0.000 0.000 0.000 0.268
#> GSM159878     1   0.361     0.0378 0.732 0.000 0.000 0.000 0.268
#> GSM159879     2   0.000     0.9506 0.000 1.000 0.000 0.000 0.000
#> GSM159880     2   0.000     0.9506 0.000 1.000 0.000 0.000 0.000
#> GSM159881     2   0.000     0.9506 0.000 1.000 0.000 0.000 0.000
#> GSM159882     2   0.000     0.9506 0.000 1.000 0.000 0.000 0.000
#> GSM159883     2   0.000     0.9506 0.000 1.000 0.000 0.000 0.000
#> GSM159884     2   0.000     0.9506 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM159850     1  0.0146     0.7221 0.996 0.000 0.000 0.000 0.000 NA
#> GSM159851     1  0.0820     0.7156 0.972 0.000 0.000 0.000 0.012 NA
#> GSM159852     1  0.0146     0.7221 0.996 0.000 0.000 0.000 0.000 NA
#> GSM159853     1  0.0622     0.7181 0.980 0.000 0.000 0.000 0.012 NA
#> GSM159854     1  0.5155    -0.1324 0.556 0.000 0.000 0.000 0.344 NA
#> GSM159855     1  0.5155    -0.1324 0.556 0.000 0.000 0.000 0.344 NA
#> GSM159856     1  0.0260     0.7218 0.992 0.000 0.000 0.000 0.000 NA
#> GSM159857     1  0.1333     0.7013 0.944 0.000 0.000 0.000 0.048 NA
#> GSM159858     1  0.2282     0.6705 0.888 0.000 0.000 0.000 0.088 NA
#> GSM159859     1  0.2333     0.6668 0.884 0.000 0.000 0.000 0.092 NA
#> GSM159860     1  0.1261     0.7106 0.952 0.000 0.000 0.000 0.024 NA
#> GSM159861     5  0.6834     0.3669 0.300 0.000 0.000 0.056 0.416 NA
#> GSM159862     5  0.7237     0.4114 0.216 0.000 0.000 0.124 0.420 NA
#> GSM159863     5  0.7224     0.4115 0.220 0.000 0.000 0.120 0.420 NA
#> GSM159864     1  0.4836     0.4644 0.632 0.000 0.004 0.000 0.076 NA
#> GSM159865     1  0.4836     0.4644 0.632 0.000 0.004 0.000 0.076 NA
#> GSM159866     1  0.4836     0.4644 0.632 0.000 0.004 0.000 0.076 NA
#> GSM159885     4  0.0777     0.8872 0.000 0.004 0.000 0.972 0.000 NA
#> GSM159886     1  0.0692     0.7218 0.976 0.000 0.000 0.000 0.004 NA
#> GSM159887     4  0.4234     0.8004 0.000 0.004 0.000 0.744 0.152 NA
#> GSM159888     2  0.3215     0.8527 0.000 0.756 0.000 0.000 0.004 NA
#> GSM159889     2  0.3383     0.8427 0.000 0.728 0.000 0.000 0.004 NA
#> GSM159890     2  0.3215     0.8527 0.000 0.756 0.000 0.000 0.004 NA
#> GSM159891     3  0.3656     0.9109 0.000 0.004 0.820 0.036 0.032 NA
#> GSM159892     3  0.2918     0.9275 0.000 0.004 0.856 0.004 0.032 NA
#> GSM159893     3  0.2918     0.9275 0.000 0.004 0.856 0.004 0.032 NA
#> GSM159894     1  0.6483    -0.0438 0.500 0.000 0.000 0.048 0.252 NA
#> GSM159895     4  0.0146     0.8872 0.000 0.004 0.000 0.996 0.000 NA
#> GSM159896     4  0.0291     0.8867 0.000 0.004 0.000 0.992 0.000 NA
#> GSM159897     2  0.3383     0.8428 0.000 0.728 0.000 0.000 0.004 NA
#> GSM159898     2  0.3266     0.8428 0.000 0.728 0.000 0.000 0.000 NA
#> GSM159899     2  0.3266     0.8428 0.000 0.728 0.000 0.000 0.000 NA
#> GSM159900     3  0.0146     0.9326 0.000 0.004 0.996 0.000 0.000 NA
#> GSM159901     3  0.0146     0.9326 0.000 0.004 0.996 0.000 0.000 NA
#> GSM159902     4  0.4234     0.8004 0.000 0.004 0.000 0.744 0.152 NA
#> GSM159903     5  0.6349     0.4617 0.124 0.000 0.000 0.128 0.580 NA
#> GSM159904     4  0.4234     0.8004 0.000 0.004 0.000 0.744 0.152 NA
#> GSM159905     5  0.3756     0.4591 0.400 0.000 0.000 0.000 0.600 NA
#> GSM159906     5  0.3828     0.4213 0.440 0.000 0.000 0.000 0.560 NA
#> GSM159907     5  0.3828     0.4213 0.440 0.000 0.000 0.000 0.560 NA
#> GSM159908     4  0.4663     0.7611 0.000 0.004 0.000 0.700 0.164 NA
#> GSM159909     5  0.5888    -0.2414 0.000 0.000 0.000 0.400 0.400 NA
#> GSM159910     3  0.3865     0.8251 0.000 0.000 0.784 0.008 0.132 NA
#> GSM159911     4  0.0260     0.8850 0.000 0.000 0.000 0.992 0.000 NA
#> GSM159912     1  0.4401    -0.3424 0.512 0.000 0.000 0.000 0.464 NA
#> GSM159913     5  0.4585     0.4779 0.308 0.000 0.000 0.000 0.632 NA
#> GSM159914     5  0.3833     0.4133 0.444 0.000 0.000 0.000 0.556 NA
#> GSM159915     5  0.3828     0.4213 0.440 0.000 0.000 0.000 0.560 NA
#> GSM159916     5  0.3756     0.4591 0.400 0.000 0.000 0.000 0.600 NA
#> GSM159917     3  0.0146     0.9308 0.000 0.000 0.996 0.004 0.000 NA
#> GSM159867     4  0.0777     0.8872 0.000 0.004 0.000 0.972 0.000 NA
#> GSM159868     4  0.0405     0.8868 0.000 0.004 0.000 0.988 0.000 NA
#> GSM159869     4  0.0405     0.8868 0.000 0.004 0.000 0.988 0.000 NA
#> GSM159870     2  0.0000     0.9049 0.000 1.000 0.000 0.000 0.000 NA
#> GSM159871     2  0.0000     0.9049 0.000 1.000 0.000 0.000 0.000 NA
#> GSM159872     2  0.0000     0.9049 0.000 1.000 0.000 0.000 0.000 NA
#> GSM159873     3  0.2870     0.9282 0.000 0.004 0.860 0.004 0.032 NA
#> GSM159874     3  0.0146     0.9326 0.000 0.004 0.996 0.000 0.000 NA
#> GSM159875     3  0.1826     0.9343 0.000 0.004 0.924 0.000 0.020 NA
#> GSM159876     1  0.1867     0.7058 0.916 0.000 0.000 0.000 0.020 NA
#> GSM159877     1  0.1983     0.7044 0.908 0.000 0.000 0.000 0.020 NA
#> GSM159878     1  0.1867     0.7058 0.916 0.000 0.000 0.000 0.020 NA
#> GSM159879     2  0.0000     0.9049 0.000 1.000 0.000 0.000 0.000 NA
#> GSM159880     2  0.0000     0.9049 0.000 1.000 0.000 0.000 0.000 NA
#> GSM159881     2  0.0000     0.9049 0.000 1.000 0.000 0.000 0.000 NA
#> GSM159882     2  0.0000     0.9049 0.000 1.000 0.000 0.000 0.000 NA
#> GSM159883     2  0.0000     0.9049 0.000 1.000 0.000 0.000 0.000 NA
#> GSM159884     2  0.0000     0.9049 0.000 1.000 0.000 0.000 0.000 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n agent(p)  dose(p)  time(p) k
#> ATC:kmeans 66 1.14e-01 3.77e-02 9.30e-05 2
#> ATC:kmeans 68 2.75e-06 5.60e-06 2.13e-05 3
#> ATC:kmeans 65 4.08e-06 9.17e-06 6.39e-10 4
#> ATC:kmeans 40 1.27e-07 6.31e-08 2.54e-10 5
#> ATC:kmeans 49 4.95e-06 3.34e-06 4.99e-11 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.854           0.944       0.973         0.5058 0.494   0.494
#> 3 3 1.000           0.979       0.991         0.2762 0.802   0.622
#> 4 4 0.975           0.949       0.971         0.1198 0.902   0.732
#> 5 5 0.779           0.708       0.833         0.0558 0.970   0.895
#> 6 6 0.778           0.632       0.723         0.0558 0.821   0.422

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 3

There is also optional best \(k\) = 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1   0.000      0.975 1.000 0.000
#> GSM159851     1   0.000      0.975 1.000 0.000
#> GSM159852     1   0.000      0.975 1.000 0.000
#> GSM159853     1   0.000      0.975 1.000 0.000
#> GSM159854     1   0.000      0.975 1.000 0.000
#> GSM159855     1   0.000      0.975 1.000 0.000
#> GSM159856     1   0.000      0.975 1.000 0.000
#> GSM159857     1   0.000      0.975 1.000 0.000
#> GSM159858     1   0.000      0.975 1.000 0.000
#> GSM159859     1   0.000      0.975 1.000 0.000
#> GSM159860     1   0.000      0.975 1.000 0.000
#> GSM159861     1   0.000      0.975 1.000 0.000
#> GSM159862     1   0.000      0.975 1.000 0.000
#> GSM159863     1   0.000      0.975 1.000 0.000
#> GSM159864     1   0.000      0.975 1.000 0.000
#> GSM159865     1   0.000      0.975 1.000 0.000
#> GSM159866     1   0.000      0.975 1.000 0.000
#> GSM159885     2   0.000      0.965 0.000 1.000
#> GSM159886     1   0.000      0.975 1.000 0.000
#> GSM159887     1   0.730      0.760 0.796 0.204
#> GSM159888     2   0.000      0.965 0.000 1.000
#> GSM159889     2   0.730      0.772 0.204 0.796
#> GSM159890     2   0.000      0.965 0.000 1.000
#> GSM159891     2   0.000      0.965 0.000 1.000
#> GSM159892     2   0.000      0.965 0.000 1.000
#> GSM159893     2   0.000      0.965 0.000 1.000
#> GSM159894     1   0.000      0.975 1.000 0.000
#> GSM159895     2   0.000      0.965 0.000 1.000
#> GSM159896     2   0.000      0.965 0.000 1.000
#> GSM159897     2   0.722      0.777 0.200 0.800
#> GSM159898     2   0.730      0.772 0.204 0.796
#> GSM159899     2   0.000      0.965 0.000 1.000
#> GSM159900     2   0.000      0.965 0.000 1.000
#> GSM159901     2   0.000      0.965 0.000 1.000
#> GSM159902     1   0.730      0.760 0.796 0.204
#> GSM159903     1   0.000      0.975 1.000 0.000
#> GSM159904     1   0.730      0.760 0.796 0.204
#> GSM159905     1   0.000      0.975 1.000 0.000
#> GSM159906     1   0.000      0.975 1.000 0.000
#> GSM159907     1   0.000      0.975 1.000 0.000
#> GSM159908     1   0.730      0.760 0.796 0.204
#> GSM159909     1   0.000      0.975 1.000 0.000
#> GSM159910     2   0.000      0.965 0.000 1.000
#> GSM159911     2   0.000      0.965 0.000 1.000
#> GSM159912     1   0.000      0.975 1.000 0.000
#> GSM159913     1   0.000      0.975 1.000 0.000
#> GSM159914     1   0.000      0.975 1.000 0.000
#> GSM159915     1   0.000      0.975 1.000 0.000
#> GSM159916     1   0.000      0.975 1.000 0.000
#> GSM159917     2   0.000      0.965 0.000 1.000
#> GSM159867     2   0.000      0.965 0.000 1.000
#> GSM159868     2   0.000      0.965 0.000 1.000
#> GSM159869     2   0.000      0.965 0.000 1.000
#> GSM159870     2   0.730      0.772 0.204 0.796
#> GSM159871     2   0.000      0.965 0.000 1.000
#> GSM159872     2   0.000      0.965 0.000 1.000
#> GSM159873     2   0.000      0.965 0.000 1.000
#> GSM159874     2   0.000      0.965 0.000 1.000
#> GSM159875     2   0.000      0.965 0.000 1.000
#> GSM159876     1   0.000      0.975 1.000 0.000
#> GSM159877     1   0.000      0.975 1.000 0.000
#> GSM159878     1   0.000      0.975 1.000 0.000
#> GSM159879     2   0.722      0.777 0.200 0.800
#> GSM159880     2   0.000      0.965 0.000 1.000
#> GSM159881     2   0.000      0.965 0.000 1.000
#> GSM159882     2   0.000      0.965 0.000 1.000
#> GSM159883     2   0.000      0.965 0.000 1.000
#> GSM159884     2   0.000      0.965 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette p1    p2    p3
#> GSM159850     1   0.000      1.000  1 0.000 0.000
#> GSM159851     1   0.000      1.000  1 0.000 0.000
#> GSM159852     1   0.000      1.000  1 0.000 0.000
#> GSM159853     1   0.000      1.000  1 0.000 0.000
#> GSM159854     1   0.000      1.000  1 0.000 0.000
#> GSM159855     1   0.000      1.000  1 0.000 0.000
#> GSM159856     1   0.000      1.000  1 0.000 0.000
#> GSM159857     1   0.000      1.000  1 0.000 0.000
#> GSM159858     1   0.000      1.000  1 0.000 0.000
#> GSM159859     1   0.000      1.000  1 0.000 0.000
#> GSM159860     1   0.000      1.000  1 0.000 0.000
#> GSM159861     1   0.000      1.000  1 0.000 0.000
#> GSM159862     1   0.000      1.000  1 0.000 0.000
#> GSM159863     1   0.000      1.000  1 0.000 0.000
#> GSM159864     1   0.000      1.000  1 0.000 0.000
#> GSM159865     1   0.000      1.000  1 0.000 0.000
#> GSM159866     1   0.000      1.000  1 0.000 0.000
#> GSM159885     3   0.000      0.970  0 0.000 1.000
#> GSM159886     1   0.000      1.000  1 0.000 0.000
#> GSM159887     3   0.000      0.970  0 0.000 1.000
#> GSM159888     2   0.000      1.000  0 1.000 0.000
#> GSM159889     2   0.000      1.000  0 1.000 0.000
#> GSM159890     2   0.000      1.000  0 1.000 0.000
#> GSM159891     3   0.606      0.401  0 0.384 0.616
#> GSM159892     3   0.000      0.970  0 0.000 1.000
#> GSM159893     3   0.455      0.749  0 0.200 0.800
#> GSM159894     1   0.000      1.000  1 0.000 0.000
#> GSM159895     3   0.000      0.970  0 0.000 1.000
#> GSM159896     3   0.000      0.970  0 0.000 1.000
#> GSM159897     2   0.000      1.000  0 1.000 0.000
#> GSM159898     2   0.000      1.000  0 1.000 0.000
#> GSM159899     2   0.000      1.000  0 1.000 0.000
#> GSM159900     3   0.000      0.970  0 0.000 1.000
#> GSM159901     3   0.000      0.970  0 0.000 1.000
#> GSM159902     3   0.000      0.970  0 0.000 1.000
#> GSM159903     1   0.000      1.000  1 0.000 0.000
#> GSM159904     3   0.000      0.970  0 0.000 1.000
#> GSM159905     1   0.000      1.000  1 0.000 0.000
#> GSM159906     1   0.000      1.000  1 0.000 0.000
#> GSM159907     1   0.000      1.000  1 0.000 0.000
#> GSM159908     3   0.000      0.970  0 0.000 1.000
#> GSM159909     1   0.000      1.000  1 0.000 0.000
#> GSM159910     3   0.000      0.970  0 0.000 1.000
#> GSM159911     3   0.000      0.970  0 0.000 1.000
#> GSM159912     1   0.000      1.000  1 0.000 0.000
#> GSM159913     1   0.000      1.000  1 0.000 0.000
#> GSM159914     1   0.000      1.000  1 0.000 0.000
#> GSM159915     1   0.000      1.000  1 0.000 0.000
#> GSM159916     1   0.000      1.000  1 0.000 0.000
#> GSM159917     3   0.000      0.970  0 0.000 1.000
#> GSM159867     3   0.000      0.970  0 0.000 1.000
#> GSM159868     3   0.000      0.970  0 0.000 1.000
#> GSM159869     3   0.000      0.970  0 0.000 1.000
#> GSM159870     2   0.000      1.000  0 1.000 0.000
#> GSM159871     2   0.000      1.000  0 1.000 0.000
#> GSM159872     2   0.000      1.000  0 1.000 0.000
#> GSM159873     3   0.000      0.970  0 0.000 1.000
#> GSM159874     3   0.000      0.970  0 0.000 1.000
#> GSM159875     3   0.000      0.970  0 0.000 1.000
#> GSM159876     1   0.000      1.000  1 0.000 0.000
#> GSM159877     1   0.000      1.000  1 0.000 0.000
#> GSM159878     1   0.000      1.000  1 0.000 0.000
#> GSM159879     2   0.000      1.000  0 1.000 0.000
#> GSM159880     2   0.000      1.000  0 1.000 0.000
#> GSM159881     2   0.000      1.000  0 1.000 0.000
#> GSM159882     2   0.000      1.000  0 1.000 0.000
#> GSM159883     2   0.000      1.000  0 1.000 0.000
#> GSM159884     2   0.000      1.000  0 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1 p2    p3    p4
#> GSM159850     1  0.0000      0.983 1.000  0 0.000 0.000
#> GSM159851     1  0.0000      0.983 1.000  0 0.000 0.000
#> GSM159852     1  0.0000      0.983 1.000  0 0.000 0.000
#> GSM159853     1  0.0000      0.983 1.000  0 0.000 0.000
#> GSM159854     1  0.0188      0.982 0.996  0 0.004 0.000
#> GSM159855     1  0.0188      0.982 0.996  0 0.004 0.000
#> GSM159856     1  0.0000      0.983 1.000  0 0.000 0.000
#> GSM159857     1  0.0000      0.983 1.000  0 0.000 0.000
#> GSM159858     1  0.0188      0.982 0.996  0 0.004 0.000
#> GSM159859     1  0.0188      0.982 0.996  0 0.004 0.000
#> GSM159860     1  0.0000      0.983 1.000  0 0.000 0.000
#> GSM159861     3  0.4454      0.631 0.308  0 0.692 0.000
#> GSM159862     3  0.3219      0.834 0.164  0 0.836 0.000
#> GSM159863     3  0.3219      0.834 0.164  0 0.836 0.000
#> GSM159864     1  0.0000      0.983 1.000  0 0.000 0.000
#> GSM159865     1  0.0000      0.983 1.000  0 0.000 0.000
#> GSM159866     1  0.0000      0.983 1.000  0 0.000 0.000
#> GSM159885     4  0.3444      0.852 0.000  0 0.184 0.816
#> GSM159886     1  0.0000      0.983 1.000  0 0.000 0.000
#> GSM159887     3  0.0188      0.885 0.000  0 0.996 0.004
#> GSM159888     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM159889     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM159890     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM159891     4  0.0000      0.952 0.000  0 0.000 1.000
#> GSM159892     4  0.0000      0.952 0.000  0 0.000 1.000
#> GSM159893     4  0.0000      0.952 0.000  0 0.000 1.000
#> GSM159894     1  0.0000      0.983 1.000  0 0.000 0.000
#> GSM159895     4  0.2281      0.929 0.000  0 0.096 0.904
#> GSM159896     4  0.2281      0.929 0.000  0 0.096 0.904
#> GSM159897     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM159898     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM159899     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM159900     4  0.0000      0.952 0.000  0 0.000 1.000
#> GSM159901     4  0.0000      0.952 0.000  0 0.000 1.000
#> GSM159902     3  0.0188      0.885 0.000  0 0.996 0.004
#> GSM159903     3  0.1792      0.874 0.068  0 0.932 0.000
#> GSM159904     3  0.0188      0.885 0.000  0 0.996 0.004
#> GSM159905     1  0.0592      0.976 0.984  0 0.016 0.000
#> GSM159906     1  0.0592      0.976 0.984  0 0.016 0.000
#> GSM159907     1  0.0592      0.976 0.984  0 0.016 0.000
#> GSM159908     3  0.0188      0.885 0.000  0 0.996 0.004
#> GSM159909     3  0.0188      0.886 0.004  0 0.996 0.000
#> GSM159910     4  0.0000      0.952 0.000  0 0.000 1.000
#> GSM159911     4  0.2281      0.929 0.000  0 0.096 0.904
#> GSM159912     1  0.0469      0.977 0.988  0 0.012 0.000
#> GSM159913     1  0.4356      0.537 0.708  0 0.292 0.000
#> GSM159914     1  0.0592      0.976 0.984  0 0.016 0.000
#> GSM159915     1  0.0592      0.976 0.984  0 0.016 0.000
#> GSM159916     1  0.0592      0.976 0.984  0 0.016 0.000
#> GSM159917     4  0.0000      0.952 0.000  0 0.000 1.000
#> GSM159867     4  0.2973      0.894 0.000  0 0.144 0.856
#> GSM159868     4  0.2281      0.929 0.000  0 0.096 0.904
#> GSM159869     4  0.2281      0.929 0.000  0 0.096 0.904
#> GSM159870     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM159871     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM159872     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM159873     4  0.0000      0.952 0.000  0 0.000 1.000
#> GSM159874     4  0.0000      0.952 0.000  0 0.000 1.000
#> GSM159875     4  0.0000      0.952 0.000  0 0.000 1.000
#> GSM159876     1  0.0000      0.983 1.000  0 0.000 0.000
#> GSM159877     1  0.0000      0.983 1.000  0 0.000 0.000
#> GSM159878     1  0.0000      0.983 1.000  0 0.000 0.000
#> GSM159879     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM159880     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM159881     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM159882     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM159883     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM159884     2  0.0000      1.000 0.000  1 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4 p5
#> GSM159850     1  0.0000     0.8763 1.000 0.000 0.000 0.000 NA
#> GSM159851     1  0.0000     0.8763 1.000 0.000 0.000 0.000 NA
#> GSM159852     1  0.0000     0.8763 1.000 0.000 0.000 0.000 NA
#> GSM159853     1  0.0000     0.8763 1.000 0.000 0.000 0.000 NA
#> GSM159854     1  0.1638     0.8630 0.932 0.000 0.000 0.004 NA
#> GSM159855     1  0.1638     0.8630 0.932 0.000 0.000 0.004 NA
#> GSM159856     1  0.0000     0.8763 1.000 0.000 0.000 0.000 NA
#> GSM159857     1  0.0000     0.8763 1.000 0.000 0.000 0.000 NA
#> GSM159858     1  0.1768     0.8617 0.924 0.000 0.000 0.004 NA
#> GSM159859     1  0.1768     0.8617 0.924 0.000 0.000 0.004 NA
#> GSM159860     1  0.0000     0.8763 1.000 0.000 0.000 0.000 NA
#> GSM159861     4  0.6779     0.3285 0.332 0.000 0.000 0.384 NA
#> GSM159862     4  0.6661     0.4250 0.272 0.000 0.000 0.444 NA
#> GSM159863     4  0.6557     0.4483 0.212 0.000 0.000 0.448 NA
#> GSM159864     1  0.2852     0.7473 0.828 0.000 0.000 0.000 NA
#> GSM159865     1  0.2852     0.7473 0.828 0.000 0.000 0.000 NA
#> GSM159866     1  0.2852     0.7473 0.828 0.000 0.000 0.000 NA
#> GSM159885     4  0.6298    -0.0044 0.000 0.000 0.292 0.520 NA
#> GSM159886     1  0.0000     0.8763 1.000 0.000 0.000 0.000 NA
#> GSM159887     4  0.1205     0.5490 0.000 0.000 0.004 0.956 NA
#> GSM159888     2  0.3586     0.8426 0.000 0.736 0.000 0.000 NA
#> GSM159889     2  0.3586     0.8426 0.000 0.736 0.000 0.000 NA
#> GSM159890     2  0.3586     0.8426 0.000 0.736 0.000 0.000 NA
#> GSM159891     3  0.0000     0.7917 0.000 0.000 1.000 0.000 NA
#> GSM159892     3  0.0000     0.7917 0.000 0.000 1.000 0.000 NA
#> GSM159893     3  0.0000     0.7917 0.000 0.000 1.000 0.000 NA
#> GSM159894     1  0.1270     0.8507 0.948 0.000 0.000 0.000 NA
#> GSM159895     4  0.6490    -0.2161 0.000 0.000 0.380 0.432 NA
#> GSM159896     3  0.6500     0.1541 0.000 0.000 0.408 0.404 NA
#> GSM159897     2  0.3586     0.8426 0.000 0.736 0.000 0.000 NA
#> GSM159898     2  0.3586     0.8426 0.000 0.736 0.000 0.000 NA
#> GSM159899     2  0.3586     0.8426 0.000 0.736 0.000 0.000 NA
#> GSM159900     3  0.0000     0.7917 0.000 0.000 1.000 0.000 NA
#> GSM159901     3  0.0000     0.7917 0.000 0.000 1.000 0.000 NA
#> GSM159902     4  0.0162     0.5641 0.000 0.000 0.004 0.996 NA
#> GSM159903     4  0.6224     0.3557 0.220 0.000 0.000 0.548 NA
#> GSM159904     4  0.0162     0.5641 0.000 0.000 0.004 0.996 NA
#> GSM159905     1  0.3967     0.7648 0.724 0.000 0.000 0.012 NA
#> GSM159906     1  0.3967     0.7648 0.724 0.000 0.000 0.012 NA
#> GSM159907     1  0.3967     0.7648 0.724 0.000 0.000 0.012 NA
#> GSM159908     4  0.1357     0.5652 0.000 0.000 0.004 0.948 NA
#> GSM159909     4  0.3662     0.5337 0.004 0.000 0.000 0.744 NA
#> GSM159910     3  0.0000     0.7917 0.000 0.000 1.000 0.000 NA
#> GSM159911     3  0.6493     0.1959 0.000 0.000 0.428 0.384 NA
#> GSM159912     1  0.3388     0.7880 0.792 0.000 0.000 0.008 NA
#> GSM159913     1  0.4779     0.7222 0.716 0.000 0.000 0.084 NA
#> GSM159914     1  0.3967     0.7648 0.724 0.000 0.000 0.012 NA
#> GSM159915     1  0.3967     0.7648 0.724 0.000 0.000 0.012 NA
#> GSM159916     1  0.3967     0.7648 0.724 0.000 0.000 0.012 NA
#> GSM159917     3  0.0000     0.7917 0.000 0.000 1.000 0.000 NA
#> GSM159867     4  0.6339    -0.0354 0.000 0.000 0.304 0.508 NA
#> GSM159868     3  0.6495     0.1892 0.000 0.000 0.424 0.388 NA
#> GSM159869     3  0.6486     0.2089 0.000 0.000 0.436 0.376 NA
#> GSM159870     2  0.0000     0.8990 0.000 1.000 0.000 0.000 NA
#> GSM159871     2  0.0000     0.8990 0.000 1.000 0.000 0.000 NA
#> GSM159872     2  0.0000     0.8990 0.000 1.000 0.000 0.000 NA
#> GSM159873     3  0.0000     0.7917 0.000 0.000 1.000 0.000 NA
#> GSM159874     3  0.0000     0.7917 0.000 0.000 1.000 0.000 NA
#> GSM159875     3  0.0000     0.7917 0.000 0.000 1.000 0.000 NA
#> GSM159876     1  0.0000     0.8763 1.000 0.000 0.000 0.000 NA
#> GSM159877     1  0.0000     0.8763 1.000 0.000 0.000 0.000 NA
#> GSM159878     1  0.0000     0.8763 1.000 0.000 0.000 0.000 NA
#> GSM159879     2  0.0000     0.8990 0.000 1.000 0.000 0.000 NA
#> GSM159880     2  0.0000     0.8990 0.000 1.000 0.000 0.000 NA
#> GSM159881     2  0.0000     0.8990 0.000 1.000 0.000 0.000 NA
#> GSM159882     2  0.0000     0.8990 0.000 1.000 0.000 0.000 NA
#> GSM159883     2  0.0000     0.8990 0.000 1.000 0.000 0.000 NA
#> GSM159884     2  0.0000     0.8990 0.000 1.000 0.000 0.000 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM159850     5  0.3747     0.5613 0.396 0.000 0.000 0.000 0.604 0.000
#> GSM159851     5  0.3747     0.5613 0.396 0.000 0.000 0.000 0.604 0.000
#> GSM159852     5  0.3747     0.5613 0.396 0.000 0.000 0.000 0.604 0.000
#> GSM159853     5  0.3747     0.5613 0.396 0.000 0.000 0.000 0.604 0.000
#> GSM159854     1  0.3804    -0.0704 0.576 0.000 0.000 0.000 0.424 0.000
#> GSM159855     1  0.3804    -0.0704 0.576 0.000 0.000 0.000 0.424 0.000
#> GSM159856     5  0.3756     0.5608 0.400 0.000 0.000 0.000 0.600 0.000
#> GSM159857     5  0.3756     0.5608 0.400 0.000 0.000 0.000 0.600 0.000
#> GSM159858     1  0.3797    -0.0698 0.580 0.000 0.000 0.000 0.420 0.000
#> GSM159859     1  0.3797    -0.0698 0.580 0.000 0.000 0.000 0.420 0.000
#> GSM159860     5  0.3765     0.5548 0.404 0.000 0.000 0.000 0.596 0.000
#> GSM159861     5  0.4949    -0.0534 0.000 0.000 0.000 0.072 0.548 0.380
#> GSM159862     5  0.5037    -0.0642 0.000 0.000 0.000 0.080 0.540 0.380
#> GSM159863     5  0.6220    -0.1255 0.072 0.000 0.000 0.080 0.468 0.380
#> GSM159864     5  0.4732     0.3966 0.220 0.000 0.000 0.000 0.668 0.112
#> GSM159865     5  0.4732     0.3966 0.220 0.000 0.000 0.000 0.668 0.112
#> GSM159866     5  0.4732     0.3966 0.220 0.000 0.000 0.000 0.668 0.112
#> GSM159885     4  0.1814     0.7417 0.000 0.000 0.100 0.900 0.000 0.000
#> GSM159886     5  0.3756     0.5608 0.400 0.000 0.000 0.000 0.600 0.000
#> GSM159887     4  0.3612     0.6576 0.000 0.000 0.004 0.804 0.092 0.100
#> GSM159888     6  0.3833     0.7356 0.000 0.444 0.000 0.000 0.000 0.556
#> GSM159889     6  0.3833     0.7356 0.000 0.444 0.000 0.000 0.000 0.556
#> GSM159890     6  0.3833     0.7356 0.000 0.444 0.000 0.000 0.000 0.556
#> GSM159891     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159892     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159893     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159894     5  0.3578     0.5447 0.340 0.000 0.000 0.000 0.660 0.000
#> GSM159895     4  0.2793     0.7220 0.000 0.000 0.200 0.800 0.000 0.000
#> GSM159896     4  0.3221     0.6905 0.000 0.000 0.264 0.736 0.000 0.000
#> GSM159897     6  0.3833     0.7356 0.000 0.444 0.000 0.000 0.000 0.556
#> GSM159898     6  0.3833     0.7356 0.000 0.444 0.000 0.000 0.000 0.556
#> GSM159899     6  0.3833     0.7356 0.000 0.444 0.000 0.000 0.000 0.556
#> GSM159900     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159901     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159902     4  0.4097     0.6379 0.000 0.000 0.004 0.760 0.108 0.128
#> GSM159903     1  0.5964     0.3003 0.628 0.000 0.000 0.120 0.124 0.128
#> GSM159904     4  0.4097     0.6379 0.000 0.000 0.004 0.760 0.108 0.128
#> GSM159905     1  0.0000     0.6563 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159906     1  0.0000     0.6563 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159907     1  0.0000     0.6563 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159908     4  0.5368     0.4933 0.000 0.000 0.004 0.592 0.144 0.260
#> GSM159909     6  0.7539    -0.3409 0.160 0.000 0.000 0.304 0.216 0.320
#> GSM159910     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159911     4  0.3446     0.6501 0.000 0.000 0.308 0.692 0.000 0.000
#> GSM159912     1  0.2454     0.4977 0.840 0.000 0.000 0.000 0.160 0.000
#> GSM159913     1  0.3376     0.4955 0.792 0.000 0.000 0.004 0.180 0.024
#> GSM159914     1  0.0000     0.6563 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159915     1  0.0000     0.6563 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159916     1  0.0000     0.6563 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159917     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159867     4  0.1863     0.7419 0.000 0.000 0.104 0.896 0.000 0.000
#> GSM159868     4  0.3351     0.6715 0.000 0.000 0.288 0.712 0.000 0.000
#> GSM159869     4  0.3446     0.6501 0.000 0.000 0.308 0.692 0.000 0.000
#> GSM159870     2  0.0146     0.9962 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM159871     2  0.0146     0.9962 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM159872     2  0.0146     0.9962 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM159873     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159874     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159875     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159876     5  0.3852     0.5626 0.384 0.000 0.000 0.000 0.612 0.004
#> GSM159877     5  0.4150     0.5569 0.372 0.012 0.000 0.000 0.612 0.004
#> GSM159878     5  0.3852     0.5626 0.384 0.000 0.000 0.000 0.612 0.004
#> GSM159879     2  0.0000     0.9981 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159880     2  0.0000     0.9981 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159881     2  0.0000     0.9981 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159882     2  0.0000     0.9981 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159883     2  0.0000     0.9981 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159884     2  0.0000     0.9981 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n agent(p)  dose(p)  time(p) k
#> ATC:skmeans 68 2.48e-08 4.21e-05 7.49e-02 2
#> ATC:skmeans 67 2.85e-07 4.68e-06 2.06e-05 3
#> ATC:skmeans 68 1.13e-06 3.34e-05 3.25e-06 4
#> ATC:skmeans 57 1.79e-06 2.32e-05 8.23e-08 5
#> ATC:skmeans 53 8.18e-11 2.74e-04 3.43e-13 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.647           0.795       0.903         0.3559 0.725   0.725
#> 3 3 0.815           0.854       0.943         0.7523 0.652   0.520
#> 4 4 0.917           0.910       0.960         0.1609 0.848   0.621
#> 5 5 0.781           0.592       0.835         0.0831 0.928   0.747
#> 6 6 0.839           0.798       0.881         0.0507 0.902   0.605

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1  0.0000      0.872 1.000 0.000
#> GSM159851     1  0.0000      0.872 1.000 0.000
#> GSM159852     1  0.0000      0.872 1.000 0.000
#> GSM159853     1  0.0000      0.872 1.000 0.000
#> GSM159854     1  0.0000      0.872 1.000 0.000
#> GSM159855     1  0.0000      0.872 1.000 0.000
#> GSM159856     1  0.0000      0.872 1.000 0.000
#> GSM159857     1  0.0000      0.872 1.000 0.000
#> GSM159858     1  0.0000      0.872 1.000 0.000
#> GSM159859     1  0.0000      0.872 1.000 0.000
#> GSM159860     1  0.0000      0.872 1.000 0.000
#> GSM159861     1  0.0000      0.872 1.000 0.000
#> GSM159862     1  0.0000      0.872 1.000 0.000
#> GSM159863     1  0.0000      0.872 1.000 0.000
#> GSM159864     1  0.0000      0.872 1.000 0.000
#> GSM159865     1  0.0000      0.872 1.000 0.000
#> GSM159866     1  0.0000      0.872 1.000 0.000
#> GSM159885     1  0.0938      0.866 0.988 0.012
#> GSM159886     1  0.0000      0.872 1.000 0.000
#> GSM159887     1  0.0000      0.872 1.000 0.000
#> GSM159888     1  0.9710      0.507 0.600 0.400
#> GSM159889     1  0.9710      0.507 0.600 0.400
#> GSM159890     1  0.9710      0.507 0.600 0.400
#> GSM159891     2  0.0000      0.955 0.000 1.000
#> GSM159892     2  0.0000      0.955 0.000 1.000
#> GSM159893     2  0.0000      0.955 0.000 1.000
#> GSM159894     1  0.0000      0.872 1.000 0.000
#> GSM159895     1  0.2778      0.846 0.952 0.048
#> GSM159896     1  0.2778      0.846 0.952 0.048
#> GSM159897     1  0.9710      0.507 0.600 0.400
#> GSM159898     1  0.9710      0.507 0.600 0.400
#> GSM159899     1  0.9710      0.507 0.600 0.400
#> GSM159900     2  0.0000      0.955 0.000 1.000
#> GSM159901     2  0.0000      0.955 0.000 1.000
#> GSM159902     1  0.0000      0.872 1.000 0.000
#> GSM159903     1  0.0000      0.872 1.000 0.000
#> GSM159904     1  0.0000      0.872 1.000 0.000
#> GSM159905     1  0.0000      0.872 1.000 0.000
#> GSM159906     1  0.0000      0.872 1.000 0.000
#> GSM159907     1  0.0000      0.872 1.000 0.000
#> GSM159908     1  0.0000      0.872 1.000 0.000
#> GSM159909     1  0.0000      0.872 1.000 0.000
#> GSM159910     2  0.0000      0.955 0.000 1.000
#> GSM159911     2  0.9393      0.397 0.356 0.644
#> GSM159912     1  0.0000      0.872 1.000 0.000
#> GSM159913     1  0.0000      0.872 1.000 0.000
#> GSM159914     1  0.0000      0.872 1.000 0.000
#> GSM159915     1  0.0000      0.872 1.000 0.000
#> GSM159916     1  0.0000      0.872 1.000 0.000
#> GSM159917     2  0.0000      0.955 0.000 1.000
#> GSM159867     1  0.0938      0.866 0.988 0.012
#> GSM159868     1  0.2778      0.846 0.952 0.048
#> GSM159869     1  0.2778      0.846 0.952 0.048
#> GSM159870     1  0.9710      0.507 0.600 0.400
#> GSM159871     1  0.9710      0.507 0.600 0.400
#> GSM159872     1  0.9710      0.507 0.600 0.400
#> GSM159873     2  0.0000      0.955 0.000 1.000
#> GSM159874     2  0.0000      0.955 0.000 1.000
#> GSM159875     2  0.0000      0.955 0.000 1.000
#> GSM159876     1  0.0000      0.872 1.000 0.000
#> GSM159877     1  0.0000      0.872 1.000 0.000
#> GSM159878     1  0.0000      0.872 1.000 0.000
#> GSM159879     1  0.9710      0.507 0.600 0.400
#> GSM159880     1  0.9710      0.507 0.600 0.400
#> GSM159881     1  0.9710      0.507 0.600 0.400
#> GSM159882     1  0.9710      0.507 0.600 0.400
#> GSM159883     1  0.9710      0.507 0.600 0.400
#> GSM159884     1  0.9710      0.507 0.600 0.400

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159851     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159852     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159853     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159854     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159855     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159856     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159857     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159858     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159859     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159860     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159861     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159862     1  0.2959      0.828 0.900 0.100 0.000
#> GSM159863     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159864     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159865     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159866     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159885     2  0.3038      0.832 0.104 0.896 0.000
#> GSM159886     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159887     1  0.6126      0.364 0.600 0.400 0.000
#> GSM159888     2  0.0000      0.911 0.000 1.000 0.000
#> GSM159889     2  0.0000      0.911 0.000 1.000 0.000
#> GSM159890     2  0.0000      0.911 0.000 1.000 0.000
#> GSM159891     3  0.0237      0.992 0.000 0.004 0.996
#> GSM159892     3  0.0000      0.994 0.000 0.000 1.000
#> GSM159893     3  0.0237      0.992 0.000 0.004 0.996
#> GSM159894     2  0.6308      0.107 0.492 0.508 0.000
#> GSM159895     2  0.1964      0.880 0.056 0.944 0.000
#> GSM159896     2  0.1753      0.887 0.048 0.952 0.000
#> GSM159897     2  0.0000      0.911 0.000 1.000 0.000
#> GSM159898     2  0.0000      0.911 0.000 1.000 0.000
#> GSM159899     2  0.0000      0.911 0.000 1.000 0.000
#> GSM159900     3  0.0000      0.994 0.000 0.000 1.000
#> GSM159901     3  0.0000      0.994 0.000 0.000 1.000
#> GSM159902     1  0.6095      0.383 0.608 0.392 0.000
#> GSM159903     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159904     1  0.6026      0.416 0.624 0.376 0.000
#> GSM159905     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159906     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159907     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159908     1  0.6126      0.364 0.600 0.400 0.000
#> GSM159909     1  0.5178      0.634 0.744 0.256 0.000
#> GSM159910     3  0.0000      0.994 0.000 0.000 1.000
#> GSM159911     3  0.1643      0.945 0.044 0.000 0.956
#> GSM159912     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159913     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159914     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159915     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159916     1  0.0000      0.920 1.000 0.000 0.000
#> GSM159917     3  0.0000      0.994 0.000 0.000 1.000
#> GSM159867     2  0.1753      0.887 0.048 0.952 0.000
#> GSM159868     2  0.1163      0.898 0.028 0.972 0.000
#> GSM159869     2  0.1753      0.887 0.048 0.952 0.000
#> GSM159870     2  0.0000      0.911 0.000 1.000 0.000
#> GSM159871     2  0.0000      0.911 0.000 1.000 0.000
#> GSM159872     2  0.0000      0.911 0.000 1.000 0.000
#> GSM159873     3  0.0000      0.994 0.000 0.000 1.000
#> GSM159874     3  0.0000      0.994 0.000 0.000 1.000
#> GSM159875     3  0.0000      0.994 0.000 0.000 1.000
#> GSM159876     2  0.6111      0.352 0.396 0.604 0.000
#> GSM159877     2  0.6095      0.361 0.392 0.608 0.000
#> GSM159878     1  0.5363      0.573 0.724 0.276 0.000
#> GSM159879     2  0.0000      0.911 0.000 1.000 0.000
#> GSM159880     2  0.0000      0.911 0.000 1.000 0.000
#> GSM159881     2  0.0000      0.911 0.000 1.000 0.000
#> GSM159882     2  0.0000      0.911 0.000 1.000 0.000
#> GSM159883     2  0.0000      0.911 0.000 1.000 0.000
#> GSM159884     2  0.0000      0.911 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> GSM159851     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> GSM159852     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> GSM159853     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> GSM159854     1  0.0921      0.949 0.972 0.000 0.000 0.028
#> GSM159855     1  0.0921      0.949 0.972 0.000 0.000 0.028
#> GSM159856     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> GSM159857     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> GSM159858     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> GSM159859     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> GSM159860     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> GSM159861     1  0.3444      0.790 0.816 0.000 0.000 0.184
#> GSM159862     4  0.5184      0.655 0.204 0.060 0.000 0.736
#> GSM159863     1  0.4420      0.693 0.748 0.012 0.000 0.240
#> GSM159864     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> GSM159865     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> GSM159866     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> GSM159885     4  0.0000      0.920 0.000 0.000 0.000 1.000
#> GSM159886     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> GSM159887     4  0.0000      0.920 0.000 0.000 0.000 1.000
#> GSM159888     2  0.0000      0.954 0.000 1.000 0.000 0.000
#> GSM159889     2  0.0000      0.954 0.000 1.000 0.000 0.000
#> GSM159890     2  0.0000      0.954 0.000 1.000 0.000 0.000
#> GSM159891     3  0.0000      0.973 0.000 0.000 1.000 0.000
#> GSM159892     3  0.0000      0.973 0.000 0.000 1.000 0.000
#> GSM159893     3  0.0000      0.973 0.000 0.000 1.000 0.000
#> GSM159894     4  0.7459      0.372 0.248 0.244 0.000 0.508
#> GSM159895     4  0.0921      0.911 0.000 0.028 0.000 0.972
#> GSM159896     4  0.0921      0.911 0.000 0.028 0.000 0.972
#> GSM159897     2  0.0000      0.954 0.000 1.000 0.000 0.000
#> GSM159898     2  0.0000      0.954 0.000 1.000 0.000 0.000
#> GSM159899     2  0.0000      0.954 0.000 1.000 0.000 0.000
#> GSM159900     3  0.0000      0.973 0.000 0.000 1.000 0.000
#> GSM159901     3  0.0000      0.973 0.000 0.000 1.000 0.000
#> GSM159902     4  0.0000      0.920 0.000 0.000 0.000 1.000
#> GSM159903     1  0.2973      0.840 0.856 0.000 0.000 0.144
#> GSM159904     4  0.0000      0.920 0.000 0.000 0.000 1.000
#> GSM159905     1  0.0921      0.949 0.972 0.000 0.000 0.028
#> GSM159906     1  0.0336      0.957 0.992 0.000 0.000 0.008
#> GSM159907     1  0.0336      0.957 0.992 0.000 0.000 0.008
#> GSM159908     4  0.0000      0.920 0.000 0.000 0.000 1.000
#> GSM159909     4  0.1118      0.903 0.000 0.036 0.000 0.964
#> GSM159910     3  0.3837      0.696 0.000 0.000 0.776 0.224
#> GSM159911     4  0.0336      0.917 0.000 0.000 0.008 0.992
#> GSM159912     1  0.0707      0.952 0.980 0.000 0.000 0.020
#> GSM159913     1  0.0921      0.949 0.972 0.000 0.000 0.028
#> GSM159914     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> GSM159915     1  0.0336      0.957 0.992 0.000 0.000 0.008
#> GSM159916     1  0.0921      0.949 0.972 0.000 0.000 0.028
#> GSM159917     3  0.0000      0.973 0.000 0.000 1.000 0.000
#> GSM159867     4  0.0000      0.920 0.000 0.000 0.000 1.000
#> GSM159868     4  0.0921      0.911 0.000 0.028 0.000 0.972
#> GSM159869     4  0.0707      0.915 0.000 0.020 0.000 0.980
#> GSM159870     2  0.0000      0.954 0.000 1.000 0.000 0.000
#> GSM159871     2  0.0000      0.954 0.000 1.000 0.000 0.000
#> GSM159872     2  0.0000      0.954 0.000 1.000 0.000 0.000
#> GSM159873     3  0.0000      0.973 0.000 0.000 1.000 0.000
#> GSM159874     3  0.0000      0.973 0.000 0.000 1.000 0.000
#> GSM159875     3  0.0000      0.973 0.000 0.000 1.000 0.000
#> GSM159876     2  0.4543      0.531 0.324 0.676 0.000 0.000
#> GSM159877     2  0.4008      0.666 0.244 0.756 0.000 0.000
#> GSM159878     1  0.4222      0.596 0.728 0.272 0.000 0.000
#> GSM159879     2  0.0000      0.954 0.000 1.000 0.000 0.000
#> GSM159880     2  0.0000      0.954 0.000 1.000 0.000 0.000
#> GSM159881     2  0.0336      0.947 0.000 0.992 0.000 0.008
#> GSM159882     2  0.0000      0.954 0.000 1.000 0.000 0.000
#> GSM159883     2  0.0000      0.954 0.000 1.000 0.000 0.000
#> GSM159884     2  0.0000      0.954 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     1  0.0000     0.3888 1.000 0.000 0.000 0.000 0.000
#> GSM159851     1  0.1908     0.3522 0.908 0.000 0.000 0.000 0.092
#> GSM159852     1  0.0000     0.3888 1.000 0.000 0.000 0.000 0.000
#> GSM159853     1  0.1908     0.3522 0.908 0.000 0.000 0.000 0.092
#> GSM159854     1  0.4030    -0.0690 0.648 0.000 0.000 0.000 0.352
#> GSM159855     1  0.4030    -0.0690 0.648 0.000 0.000 0.000 0.352
#> GSM159856     1  0.0000     0.3888 1.000 0.000 0.000 0.000 0.000
#> GSM159857     1  0.3661     0.0512 0.724 0.000 0.000 0.000 0.276
#> GSM159858     1  0.4219    -0.3629 0.584 0.000 0.000 0.000 0.416
#> GSM159859     1  0.4219    -0.3629 0.584 0.000 0.000 0.000 0.416
#> GSM159860     1  0.3242     0.0713 0.784 0.000 0.000 0.000 0.216
#> GSM159861     1  0.5180     0.2285 0.732 0.076 0.000 0.036 0.156
#> GSM159862     4  0.8020     0.3667 0.204 0.192 0.000 0.448 0.156
#> GSM159863     1  0.5425    -0.0448 0.612 0.020 0.000 0.040 0.328
#> GSM159864     1  0.4249     0.2093 0.568 0.000 0.000 0.000 0.432
#> GSM159865     5  0.2648     0.0403 0.152 0.000 0.000 0.000 0.848
#> GSM159866     1  0.4249     0.2093 0.568 0.000 0.000 0.000 0.432
#> GSM159885     4  0.0000     0.8841 0.000 0.000 0.000 1.000 0.000
#> GSM159886     1  0.0000     0.3888 1.000 0.000 0.000 0.000 0.000
#> GSM159887     4  0.1410     0.8757 0.000 0.000 0.000 0.940 0.060
#> GSM159888     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM159889     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM159890     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM159891     3  0.0404     0.9638 0.000 0.012 0.988 0.000 0.000
#> GSM159892     3  0.0000     0.9712 0.000 0.000 1.000 0.000 0.000
#> GSM159893     3  0.0404     0.9638 0.000 0.012 0.988 0.000 0.000
#> GSM159894     4  0.7663     0.2042 0.368 0.144 0.000 0.396 0.092
#> GSM159895     4  0.0000     0.8841 0.000 0.000 0.000 1.000 0.000
#> GSM159896     4  0.0000     0.8841 0.000 0.000 0.000 1.000 0.000
#> GSM159897     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM159898     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM159899     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM159900     3  0.0000     0.9712 0.000 0.000 1.000 0.000 0.000
#> GSM159901     3  0.0000     0.9712 0.000 0.000 1.000 0.000 0.000
#> GSM159902     4  0.1410     0.8757 0.000 0.000 0.000 0.940 0.060
#> GSM159903     5  0.4958     0.6627 0.400 0.000 0.000 0.032 0.568
#> GSM159904     4  0.1410     0.8757 0.000 0.000 0.000 0.940 0.060
#> GSM159905     5  0.4249     0.7065 0.432 0.000 0.000 0.000 0.568
#> GSM159906     1  0.4235    -0.3829 0.576 0.000 0.000 0.000 0.424
#> GSM159907     1  0.4219    -0.3629 0.584 0.000 0.000 0.000 0.416
#> GSM159908     4  0.1410     0.8757 0.000 0.000 0.000 0.940 0.060
#> GSM159909     4  0.2929     0.8049 0.000 0.008 0.000 0.840 0.152
#> GSM159910     3  0.3210     0.7073 0.000 0.000 0.788 0.212 0.000
#> GSM159911     4  0.0000     0.8841 0.000 0.000 0.000 1.000 0.000
#> GSM159912     5  0.4278     0.6734 0.452 0.000 0.000 0.000 0.548
#> GSM159913     5  0.4249     0.7065 0.432 0.000 0.000 0.000 0.568
#> GSM159914     1  0.4219    -0.3629 0.584 0.000 0.000 0.000 0.416
#> GSM159915     1  0.4287    -0.4799 0.540 0.000 0.000 0.000 0.460
#> GSM159916     5  0.4249     0.7065 0.432 0.000 0.000 0.000 0.568
#> GSM159917     3  0.0000     0.9712 0.000 0.000 1.000 0.000 0.000
#> GSM159867     4  0.0000     0.8841 0.000 0.000 0.000 1.000 0.000
#> GSM159868     4  0.0000     0.8841 0.000 0.000 0.000 1.000 0.000
#> GSM159869     4  0.0000     0.8841 0.000 0.000 0.000 1.000 0.000
#> GSM159870     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM159871     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM159872     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM159873     3  0.0000     0.9712 0.000 0.000 1.000 0.000 0.000
#> GSM159874     3  0.0000     0.9712 0.000 0.000 1.000 0.000 0.000
#> GSM159875     3  0.0000     0.9712 0.000 0.000 1.000 0.000 0.000
#> GSM159876     1  0.4249    -0.0268 0.568 0.432 0.000 0.000 0.000
#> GSM159877     2  0.3752     0.7777 0.064 0.812 0.000 0.000 0.124
#> GSM159878     1  0.3561     0.2707 0.740 0.260 0.000 0.000 0.000
#> GSM159879     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM159880     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM159881     2  0.0963     0.9526 0.000 0.964 0.000 0.036 0.000
#> GSM159882     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM159883     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM159884     2  0.0000     0.9848 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM159850     1  0.2597      0.680 0.824 0.000 0.000 0.000 0.000 0.176
#> GSM159851     1  0.0865      0.723 0.964 0.000 0.000 0.000 0.000 0.036
#> GSM159852     1  0.2597      0.680 0.824 0.000 0.000 0.000 0.000 0.176
#> GSM159853     1  0.0865      0.723 0.964 0.000 0.000 0.000 0.000 0.036
#> GSM159854     1  0.3081      0.615 0.776 0.000 0.000 0.000 0.004 0.220
#> GSM159855     1  0.3081      0.615 0.776 0.000 0.000 0.000 0.004 0.220
#> GSM159856     1  0.2597      0.680 0.824 0.000 0.000 0.000 0.000 0.176
#> GSM159857     1  0.3198      0.615 0.740 0.000 0.000 0.000 0.000 0.260
#> GSM159858     6  0.0000      0.819 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159859     6  0.0000      0.819 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159860     6  0.2793      0.445 0.200 0.000 0.000 0.000 0.000 0.800
#> GSM159861     1  0.3210      0.670 0.804 0.000 0.000 0.000 0.168 0.028
#> GSM159862     1  0.4172      0.622 0.764 0.016 0.000 0.044 0.168 0.008
#> GSM159863     1  0.3800      0.656 0.776 0.000 0.000 0.008 0.168 0.048
#> GSM159864     5  0.5574      0.681 0.344 0.000 0.000 0.000 0.504 0.152
#> GSM159865     5  0.4405      0.276 0.024 0.000 0.000 0.000 0.504 0.472
#> GSM159866     5  0.5574      0.681 0.344 0.000 0.000 0.000 0.504 0.152
#> GSM159885     4  0.0000      0.963 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM159886     1  0.2597      0.680 0.824 0.000 0.000 0.000 0.000 0.176
#> GSM159887     4  0.0508      0.959 0.012 0.000 0.000 0.984 0.004 0.000
#> GSM159888     2  0.3515      0.775 0.000 0.676 0.000 0.000 0.324 0.000
#> GSM159889     2  0.3515      0.775 0.000 0.676 0.000 0.000 0.324 0.000
#> GSM159890     2  0.3515      0.775 0.000 0.676 0.000 0.000 0.324 0.000
#> GSM159891     3  0.1340      0.925 0.000 0.008 0.948 0.004 0.040 0.000
#> GSM159892     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159893     3  0.0260      0.959 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM159894     1  0.2309      0.657 0.888 0.028 0.000 0.084 0.000 0.000
#> GSM159895     4  0.0000      0.963 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM159896     4  0.0000      0.963 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM159897     2  0.3446      0.779 0.000 0.692 0.000 0.000 0.308 0.000
#> GSM159898     2  0.3515      0.775 0.000 0.676 0.000 0.000 0.324 0.000
#> GSM159899     2  0.3515      0.775 0.000 0.676 0.000 0.000 0.324 0.000
#> GSM159900     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159901     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159902     4  0.0508      0.959 0.012 0.000 0.000 0.984 0.004 0.000
#> GSM159903     6  0.3210      0.793 0.152 0.000 0.000 0.000 0.036 0.812
#> GSM159904     4  0.0508      0.959 0.012 0.000 0.000 0.984 0.004 0.000
#> GSM159905     6  0.2378      0.814 0.152 0.000 0.000 0.000 0.000 0.848
#> GSM159906     6  0.0363      0.824 0.012 0.000 0.000 0.000 0.000 0.988
#> GSM159907     6  0.0000      0.819 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159908     4  0.0508      0.959 0.012 0.000 0.000 0.984 0.004 0.000
#> GSM159909     4  0.4734      0.596 0.152 0.000 0.000 0.680 0.168 0.000
#> GSM159910     3  0.2902      0.727 0.000 0.000 0.800 0.196 0.004 0.000
#> GSM159911     4  0.0000      0.963 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM159912     6  0.2562      0.810 0.172 0.000 0.000 0.000 0.000 0.828
#> GSM159913     6  0.2520      0.812 0.152 0.000 0.000 0.000 0.004 0.844
#> GSM159914     6  0.0000      0.819 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM159915     6  0.1444      0.832 0.072 0.000 0.000 0.000 0.000 0.928
#> GSM159916     6  0.2378      0.814 0.152 0.000 0.000 0.000 0.000 0.848
#> GSM159917     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159867     4  0.0000      0.963 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM159868     4  0.0000      0.963 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM159869     4  0.0000      0.963 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM159870     2  0.0000      0.849 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159871     2  0.0000      0.849 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159872     2  0.0000      0.849 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159873     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159874     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159875     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159876     1  0.2988      0.661 0.824 0.024 0.000 0.000 0.000 0.152
#> GSM159877     2  0.4880      0.454 0.288 0.620 0.000 0.000 0.000 0.092
#> GSM159878     1  0.2945      0.665 0.824 0.020 0.000 0.000 0.000 0.156
#> GSM159879     2  0.0000      0.849 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159880     2  0.0000      0.849 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159881     2  0.0000      0.849 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159882     2  0.0000      0.849 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159883     2  0.0000      0.849 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159884     2  0.0000      0.849 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n agent(p)  dose(p)  time(p) k
#> ATC:pam 67 1.18e-01 6.02e-02 2.56e-06 2
#> ATC:pam 61 6.67e-09 1.93e-05 1.46e-04 3
#> ATC:pam 67 1.00e-07 4.12e-06 3.50e-08 4
#> ATC:pam 43 9.88e-04 1.52e-01 5.52e-09 5
#> ATC:pam 65 1.28e-09 1.61e-06 4.38e-11 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.706           0.883       0.944         0.4827 0.521   0.521
#> 3 3 0.705           0.795       0.838         0.1780 0.862   0.767
#> 4 4 0.641           0.749       0.828         0.2738 0.737   0.501
#> 5 5 0.856           0.817       0.917         0.0845 0.888   0.617
#> 6 6 0.721           0.595       0.684         0.0438 0.908   0.619

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1   0.000      0.919 1.000 0.000
#> GSM159851     1   0.000      0.919 1.000 0.000
#> GSM159852     1   0.000      0.919 1.000 0.000
#> GSM159853     1   0.000      0.919 1.000 0.000
#> GSM159854     1   0.000      0.919 1.000 0.000
#> GSM159855     1   0.000      0.919 1.000 0.000
#> GSM159856     1   0.000      0.919 1.000 0.000
#> GSM159857     1   0.000      0.919 1.000 0.000
#> GSM159858     1   0.000      0.919 1.000 0.000
#> GSM159859     1   0.000      0.919 1.000 0.000
#> GSM159860     1   0.000      0.919 1.000 0.000
#> GSM159861     1   0.000      0.919 1.000 0.000
#> GSM159862     1   0.000      0.919 1.000 0.000
#> GSM159863     1   0.000      0.919 1.000 0.000
#> GSM159864     1   0.000      0.919 1.000 0.000
#> GSM159865     1   0.000      0.919 1.000 0.000
#> GSM159866     1   0.000      0.919 1.000 0.000
#> GSM159885     1   0.795      0.734 0.760 0.240
#> GSM159886     1   0.000      0.919 1.000 0.000
#> GSM159887     1   0.767      0.750 0.776 0.224
#> GSM159888     2   0.000      0.966 0.000 1.000
#> GSM159889     2   0.000      0.966 0.000 1.000
#> GSM159890     2   0.000      0.966 0.000 1.000
#> GSM159891     2   0.000      0.966 0.000 1.000
#> GSM159892     2   0.000      0.966 0.000 1.000
#> GSM159893     2   0.000      0.966 0.000 1.000
#> GSM159894     1   0.795      0.734 0.760 0.240
#> GSM159895     1   0.795      0.734 0.760 0.240
#> GSM159896     1   0.795      0.734 0.760 0.240
#> GSM159897     2   0.000      0.966 0.000 1.000
#> GSM159898     2   0.000      0.966 0.000 1.000
#> GSM159899     2   0.000      0.966 0.000 1.000
#> GSM159900     2   0.000      0.966 0.000 1.000
#> GSM159901     2   0.000      0.966 0.000 1.000
#> GSM159902     1   0.000      0.919 1.000 0.000
#> GSM159903     1   0.000      0.919 1.000 0.000
#> GSM159904     1   0.000      0.919 1.000 0.000
#> GSM159905     1   0.000      0.919 1.000 0.000
#> GSM159906     1   0.000      0.919 1.000 0.000
#> GSM159907     1   0.000      0.919 1.000 0.000
#> GSM159908     1   0.242      0.896 0.960 0.040
#> GSM159909     1   0.000      0.919 1.000 0.000
#> GSM159910     1   0.985      0.385 0.572 0.428
#> GSM159911     1   0.795      0.734 0.760 0.240
#> GSM159912     1   0.000      0.919 1.000 0.000
#> GSM159913     1   0.000      0.919 1.000 0.000
#> GSM159914     1   0.000      0.919 1.000 0.000
#> GSM159915     1   0.000      0.919 1.000 0.000
#> GSM159916     1   0.000      0.919 1.000 0.000
#> GSM159917     1   0.985      0.385 0.572 0.428
#> GSM159867     1   0.795      0.734 0.760 0.240
#> GSM159868     1   0.795      0.734 0.760 0.240
#> GSM159869     1   0.795      0.734 0.760 0.240
#> GSM159870     2   0.000      0.966 0.000 1.000
#> GSM159871     2   0.000      0.966 0.000 1.000
#> GSM159872     2   0.000      0.966 0.000 1.000
#> GSM159873     2   0.000      0.966 0.000 1.000
#> GSM159874     2   0.000      0.966 0.000 1.000
#> GSM159875     2   0.000      0.966 0.000 1.000
#> GSM159876     2   0.802      0.655 0.244 0.756
#> GSM159877     2   0.802      0.655 0.244 0.756
#> GSM159878     2   0.808      0.648 0.248 0.752
#> GSM159879     2   0.000      0.966 0.000 1.000
#> GSM159880     2   0.000      0.966 0.000 1.000
#> GSM159881     2   0.000      0.966 0.000 1.000
#> GSM159882     2   0.000      0.966 0.000 1.000
#> GSM159883     2   0.000      0.966 0.000 1.000
#> GSM159884     2   0.000      0.966 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2 p3
#> GSM159850     1  0.1411     0.8993 0.964 0.000 NA
#> GSM159851     1  0.0237     0.9017 0.996 0.000 NA
#> GSM159852     1  0.1411     0.8993 0.964 0.000 NA
#> GSM159853     1  0.1289     0.8998 0.968 0.000 NA
#> GSM159854     1  0.0237     0.9017 0.996 0.000 NA
#> GSM159855     1  0.0000     0.9017 1.000 0.000 NA
#> GSM159856     1  0.2261     0.8931 0.932 0.000 NA
#> GSM159857     1  0.2165     0.8941 0.936 0.000 NA
#> GSM159858     1  0.4452     0.8394 0.808 0.000 NA
#> GSM159859     1  0.4452     0.8394 0.808 0.000 NA
#> GSM159860     1  0.2959     0.8840 0.900 0.000 NA
#> GSM159861     1  0.0592     0.9011 0.988 0.000 NA
#> GSM159862     1  0.0592     0.9011 0.988 0.000 NA
#> GSM159863     1  0.0592     0.9011 0.988 0.000 NA
#> GSM159864     1  0.2711     0.8907 0.912 0.000 NA
#> GSM159865     1  0.2711     0.8908 0.912 0.000 NA
#> GSM159866     1  0.2711     0.8907 0.912 0.000 NA
#> GSM159885     1  0.2486     0.8811 0.932 0.008 NA
#> GSM159886     1  0.2261     0.8931 0.932 0.000 NA
#> GSM159887     1  0.0592     0.9008 0.988 0.000 NA
#> GSM159888     2  0.6215     0.8120 0.000 0.572 NA
#> GSM159889     2  0.6215     0.8120 0.000 0.572 NA
#> GSM159890     2  0.6215     0.8120 0.000 0.572 NA
#> GSM159891     2  0.0000     0.7193 0.000 1.000 NA
#> GSM159892     2  0.1289     0.7107 0.000 0.968 NA
#> GSM159893     2  0.0000     0.7193 0.000 1.000 NA
#> GSM159894     1  0.1170     0.8983 0.976 0.008 NA
#> GSM159895     1  0.3755     0.8446 0.872 0.008 NA
#> GSM159896     1  0.3755     0.8446 0.872 0.008 NA
#> GSM159897     2  0.6192     0.8108 0.000 0.580 NA
#> GSM159898     2  0.6215     0.8120 0.000 0.572 NA
#> GSM159899     2  0.6215     0.8120 0.000 0.572 NA
#> GSM159900     2  0.5968     0.5760 0.000 0.636 NA
#> GSM159901     2  0.5968     0.5760 0.000 0.636 NA
#> GSM159902     1  0.0592     0.9008 0.988 0.000 NA
#> GSM159903     1  0.0592     0.9008 0.988 0.000 NA
#> GSM159904     1  0.0592     0.9008 0.988 0.000 NA
#> GSM159905     1  0.4452     0.8394 0.808 0.000 NA
#> GSM159906     1  0.4452     0.8394 0.808 0.000 NA
#> GSM159907     1  0.4452     0.8394 0.808 0.000 NA
#> GSM159908     1  0.0592     0.9008 0.988 0.000 NA
#> GSM159909     1  0.0592     0.9008 0.988 0.000 NA
#> GSM159910     2  0.6189     0.5728 0.004 0.632 NA
#> GSM159911     1  0.1015     0.8991 0.980 0.008 NA
#> GSM159912     1  0.0424     0.9019 0.992 0.000 NA
#> GSM159913     1  0.0424     0.9013 0.992 0.000 NA
#> GSM159914     1  0.4452     0.8394 0.808 0.000 NA
#> GSM159915     1  0.4452     0.8394 0.808 0.000 NA
#> GSM159916     1  0.4452     0.8394 0.808 0.000 NA
#> GSM159917     2  0.6189     0.5728 0.004 0.632 NA
#> GSM159867     1  0.2680     0.8770 0.924 0.008 NA
#> GSM159868     1  0.3755     0.8446 0.872 0.008 NA
#> GSM159869     1  0.3755     0.8446 0.872 0.008 NA
#> GSM159870     2  0.6215     0.8120 0.000 0.572 NA
#> GSM159871     2  0.6215     0.8120 0.000 0.572 NA
#> GSM159872     2  0.6215     0.8120 0.000 0.572 NA
#> GSM159873     2  0.3192     0.6832 0.000 0.888 NA
#> GSM159874     2  0.5968     0.5760 0.000 0.636 NA
#> GSM159875     2  0.4062     0.6624 0.000 0.836 NA
#> GSM159876     1  0.7987     0.0987 0.492 0.448 NA
#> GSM159877     1  0.7913     0.0905 0.492 0.452 NA
#> GSM159878     1  0.7744     0.1355 0.504 0.448 NA
#> GSM159879     2  0.6215     0.8120 0.000 0.572 NA
#> GSM159880     2  0.6215     0.8120 0.000 0.572 NA
#> GSM159881     2  0.6192     0.8108 0.000 0.580 NA
#> GSM159882     2  0.6192     0.8108 0.000 0.580 NA
#> GSM159883     2  0.6215     0.8120 0.000 0.572 NA
#> GSM159884     2  0.6215     0.8120 0.000 0.572 NA

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     4  0.5487     -0.106 0.400 0.000 0.020 0.580
#> GSM159851     4  0.4245      0.520 0.196 0.000 0.020 0.784
#> GSM159852     4  0.5508     -0.136 0.408 0.000 0.020 0.572
#> GSM159853     4  0.5526     -0.169 0.416 0.000 0.020 0.564
#> GSM159854     4  0.3501      0.624 0.132 0.000 0.020 0.848
#> GSM159855     4  0.2706      0.678 0.080 0.000 0.020 0.900
#> GSM159856     1  0.5802      0.561 0.568 0.008 0.020 0.404
#> GSM159857     1  0.5526      0.543 0.564 0.000 0.020 0.416
#> GSM159858     1  0.0921      0.714 0.972 0.000 0.000 0.028
#> GSM159859     1  0.0921      0.714 0.972 0.000 0.000 0.028
#> GSM159860     1  0.1940      0.705 0.924 0.000 0.000 0.076
#> GSM159861     4  0.3525      0.741 0.040 0.000 0.100 0.860
#> GSM159862     4  0.3372      0.742 0.036 0.000 0.096 0.868
#> GSM159863     4  0.1211      0.721 0.040 0.000 0.000 0.960
#> GSM159864     1  0.6034      0.557 0.556 0.016 0.020 0.408
#> GSM159865     1  0.5691      0.577 0.580 0.012 0.012 0.396
#> GSM159866     1  0.6034      0.557 0.556 0.016 0.020 0.408
#> GSM159885     4  0.4164      0.690 0.000 0.000 0.264 0.736
#> GSM159886     1  0.6232      0.587 0.576 0.028 0.020 0.376
#> GSM159887     4  0.0927      0.738 0.008 0.000 0.016 0.976
#> GSM159888     2  0.0188      0.992 0.000 0.996 0.004 0.000
#> GSM159889     2  0.0336      0.991 0.000 0.992 0.008 0.000
#> GSM159890     2  0.0188      0.992 0.000 0.996 0.004 0.000
#> GSM159891     3  0.2704      0.996 0.000 0.124 0.876 0.000
#> GSM159892     3  0.2704      0.996 0.000 0.124 0.876 0.000
#> GSM159893     3  0.2704      0.996 0.000 0.124 0.876 0.000
#> GSM159894     4  0.5722      0.683 0.040 0.012 0.264 0.684
#> GSM159895     4  0.4164      0.690 0.000 0.000 0.264 0.736
#> GSM159896     4  0.4164      0.690 0.000 0.000 0.264 0.736
#> GSM159897     2  0.0707      0.983 0.000 0.980 0.020 0.000
#> GSM159898     2  0.0336      0.991 0.000 0.992 0.008 0.000
#> GSM159899     2  0.0188      0.992 0.000 0.996 0.004 0.000
#> GSM159900     3  0.2704      0.996 0.000 0.124 0.876 0.000
#> GSM159901     3  0.2704      0.996 0.000 0.124 0.876 0.000
#> GSM159902     4  0.0927      0.738 0.008 0.000 0.016 0.976
#> GSM159903     4  0.1305      0.721 0.036 0.000 0.004 0.960
#> GSM159904     4  0.0524      0.734 0.008 0.000 0.004 0.988
#> GSM159905     1  0.0188      0.713 0.996 0.000 0.000 0.004
#> GSM159906     1  0.0188      0.713 0.996 0.000 0.000 0.004
#> GSM159907     1  0.0188      0.713 0.996 0.000 0.000 0.004
#> GSM159908     4  0.2611      0.740 0.008 0.000 0.096 0.896
#> GSM159909     4  0.2924      0.741 0.016 0.000 0.100 0.884
#> GSM159910     3  0.3360      0.989 0.008 0.124 0.860 0.008
#> GSM159911     4  0.4343      0.691 0.004 0.000 0.264 0.732
#> GSM159912     4  0.3757      0.590 0.152 0.000 0.020 0.828
#> GSM159913     4  0.2174      0.702 0.052 0.000 0.020 0.928
#> GSM159914     1  0.0188      0.713 0.996 0.000 0.000 0.004
#> GSM159915     1  0.0188      0.713 0.996 0.000 0.000 0.004
#> GSM159916     1  0.0188      0.713 0.996 0.000 0.000 0.004
#> GSM159917     3  0.3360      0.989 0.008 0.124 0.860 0.008
#> GSM159867     4  0.4343      0.690 0.000 0.004 0.264 0.732
#> GSM159868     4  0.4164      0.690 0.000 0.000 0.264 0.736
#> GSM159869     4  0.4164      0.690 0.000 0.000 0.264 0.736
#> GSM159870     2  0.0000      0.993 0.000 1.000 0.000 0.000
#> GSM159871     2  0.0188      0.992 0.000 0.996 0.004 0.000
#> GSM159872     2  0.0000      0.993 0.000 1.000 0.000 0.000
#> GSM159873     3  0.2760      0.994 0.000 0.128 0.872 0.000
#> GSM159874     3  0.2704      0.996 0.000 0.124 0.876 0.000
#> GSM159875     3  0.2760      0.994 0.000 0.128 0.872 0.000
#> GSM159876     1  0.7990      0.520 0.452 0.172 0.020 0.356
#> GSM159877     1  0.8304      0.475 0.412 0.212 0.024 0.352
#> GSM159878     1  0.7990      0.520 0.452 0.172 0.020 0.356
#> GSM159879     2  0.0000      0.993 0.000 1.000 0.000 0.000
#> GSM159880     2  0.0188      0.991 0.000 0.996 0.004 0.000
#> GSM159881     2  0.0592      0.982 0.000 0.984 0.016 0.000
#> GSM159882     2  0.0592      0.984 0.000 0.984 0.016 0.000
#> GSM159883     2  0.0000      0.993 0.000 1.000 0.000 0.000
#> GSM159884     2  0.0000      0.993 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     1  0.1671     0.7812 0.924 0.000 0.000 0.076 0.000
#> GSM159851     1  0.3932     0.4575 0.672 0.000 0.000 0.328 0.000
#> GSM159852     1  0.1732     0.7805 0.920 0.000 0.000 0.080 0.000
#> GSM159853     1  0.1908     0.7751 0.908 0.000 0.000 0.092 0.000
#> GSM159854     1  0.4219     0.2567 0.584 0.000 0.000 0.416 0.000
#> GSM159855     1  0.4256     0.1967 0.564 0.000 0.000 0.436 0.000
#> GSM159856     1  0.0324     0.7777 0.992 0.000 0.000 0.004 0.004
#> GSM159857     1  0.2011     0.7717 0.908 0.000 0.000 0.088 0.004
#> GSM159858     5  0.4242     0.4191 0.428 0.000 0.000 0.000 0.572
#> GSM159859     5  0.4235     0.4277 0.424 0.000 0.000 0.000 0.576
#> GSM159860     1  0.3684     0.4381 0.720 0.000 0.000 0.000 0.280
#> GSM159861     4  0.4161     0.3383 0.392 0.000 0.000 0.608 0.000
#> GSM159862     4  0.2230     0.8175 0.116 0.000 0.000 0.884 0.000
#> GSM159863     4  0.2179     0.8216 0.112 0.000 0.000 0.888 0.000
#> GSM159864     1  0.1285     0.7790 0.956 0.036 0.000 0.004 0.004
#> GSM159865     1  0.2072     0.7798 0.928 0.036 0.000 0.016 0.020
#> GSM159866     1  0.1285     0.7790 0.956 0.036 0.000 0.004 0.004
#> GSM159885     4  0.0000     0.8767 0.000 0.000 0.000 1.000 0.000
#> GSM159886     1  0.0162     0.7755 0.996 0.000 0.000 0.000 0.004
#> GSM159887     4  0.0290     0.8778 0.008 0.000 0.000 0.992 0.000
#> GSM159888     2  0.0693     0.9817 0.000 0.980 0.008 0.000 0.012
#> GSM159889     2  0.0693     0.9817 0.000 0.980 0.008 0.000 0.012
#> GSM159890     2  0.0566     0.9835 0.000 0.984 0.004 0.000 0.012
#> GSM159891     3  0.0451     0.9920 0.000 0.004 0.988 0.000 0.008
#> GSM159892     3  0.0451     0.9920 0.000 0.004 0.988 0.000 0.008
#> GSM159893     3  0.0579     0.9893 0.000 0.008 0.984 0.000 0.008
#> GSM159894     4  0.4182     0.7040 0.164 0.036 0.000 0.784 0.016
#> GSM159895     4  0.0000     0.8767 0.000 0.000 0.000 1.000 0.000
#> GSM159896     4  0.0000     0.8767 0.000 0.000 0.000 1.000 0.000
#> GSM159897     2  0.0671     0.9850 0.004 0.980 0.000 0.000 0.016
#> GSM159898     2  0.0693     0.9817 0.000 0.980 0.008 0.000 0.012
#> GSM159899     2  0.0404     0.9845 0.000 0.988 0.000 0.000 0.012
#> GSM159900     3  0.0000     0.9916 0.000 0.000 1.000 0.000 0.000
#> GSM159901     3  0.0000     0.9916 0.000 0.000 1.000 0.000 0.000
#> GSM159902     4  0.0290     0.8778 0.008 0.000 0.000 0.992 0.000
#> GSM159903     4  0.1965     0.8236 0.096 0.000 0.000 0.904 0.000
#> GSM159904     4  0.0404     0.8771 0.012 0.000 0.000 0.988 0.000
#> GSM159905     5  0.0963     0.8751 0.036 0.000 0.000 0.000 0.964
#> GSM159906     5  0.0963     0.8751 0.036 0.000 0.000 0.000 0.964
#> GSM159907     5  0.0963     0.8751 0.036 0.000 0.000 0.000 0.964
#> GSM159908     4  0.0290     0.8778 0.008 0.000 0.000 0.992 0.000
#> GSM159909     4  0.0703     0.8713 0.024 0.000 0.000 0.976 0.000
#> GSM159910     3  0.0290     0.9881 0.000 0.000 0.992 0.000 0.008
#> GSM159911     4  0.0290     0.8778 0.008 0.000 0.000 0.992 0.000
#> GSM159912     4  0.4302    -0.0199 0.480 0.000 0.000 0.520 0.000
#> GSM159913     4  0.4210     0.2386 0.412 0.000 0.000 0.588 0.000
#> GSM159914     5  0.0963     0.8751 0.036 0.000 0.000 0.000 0.964
#> GSM159915     5  0.0963     0.8751 0.036 0.000 0.000 0.000 0.964
#> GSM159916     5  0.0963     0.8751 0.036 0.000 0.000 0.000 0.964
#> GSM159917     3  0.0290     0.9881 0.000 0.000 0.992 0.000 0.008
#> GSM159867     4  0.0000     0.8767 0.000 0.000 0.000 1.000 0.000
#> GSM159868     4  0.0000     0.8767 0.000 0.000 0.000 1.000 0.000
#> GSM159869     4  0.0000     0.8767 0.000 0.000 0.000 1.000 0.000
#> GSM159870     2  0.0566     0.9848 0.004 0.984 0.000 0.000 0.012
#> GSM159871     2  0.0566     0.9848 0.004 0.984 0.000 0.000 0.012
#> GSM159872     2  0.0566     0.9848 0.004 0.984 0.000 0.000 0.012
#> GSM159873     3  0.0451     0.9920 0.000 0.004 0.988 0.000 0.008
#> GSM159874     3  0.0000     0.9916 0.000 0.000 1.000 0.000 0.000
#> GSM159875     3  0.0451     0.9920 0.000 0.004 0.988 0.000 0.008
#> GSM159876     1  0.2929     0.7225 0.856 0.128 0.000 0.004 0.012
#> GSM159877     1  0.2976     0.7194 0.852 0.132 0.000 0.004 0.012
#> GSM159878     1  0.2929     0.7225 0.856 0.128 0.000 0.004 0.012
#> GSM159879     2  0.0404     0.9856 0.000 0.988 0.000 0.000 0.012
#> GSM159880     2  0.0566     0.9848 0.004 0.984 0.000 0.000 0.012
#> GSM159881     2  0.0960     0.9836 0.004 0.972 0.008 0.000 0.016
#> GSM159882     2  0.0324     0.9863 0.004 0.992 0.000 0.000 0.004
#> GSM159883     2  0.0162     0.9865 0.004 0.996 0.000 0.000 0.000
#> GSM159884     2  0.0000     0.9867 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM159850     5  0.3124     0.4283 0.140 0.000 0.000 0.008 0.828 0.024
#> GSM159851     5  0.2981     0.4853 0.100 0.000 0.000 0.040 0.852 0.008
#> GSM159852     5  0.2556     0.4564 0.120 0.000 0.000 0.008 0.864 0.008
#> GSM159853     5  0.2527     0.4780 0.108 0.000 0.000 0.024 0.868 0.000
#> GSM159854     5  0.3269     0.5013 0.016 0.000 0.000 0.128 0.828 0.028
#> GSM159855     5  0.2988     0.4994 0.000 0.000 0.000 0.144 0.828 0.028
#> GSM159856     5  0.5009     0.2059 0.256 0.000 0.000 0.000 0.624 0.120
#> GSM159857     5  0.2994     0.3971 0.208 0.000 0.000 0.004 0.788 0.000
#> GSM159858     1  0.3253     0.7231 0.788 0.000 0.000 0.000 0.192 0.020
#> GSM159859     1  0.3043     0.7277 0.792 0.000 0.000 0.000 0.200 0.008
#> GSM159860     1  0.5341     0.1367 0.508 0.000 0.000 0.000 0.380 0.112
#> GSM159861     5  0.5873     0.0794 0.000 0.000 0.000 0.272 0.480 0.248
#> GSM159862     5  0.6037    -0.0508 0.000 0.000 0.000 0.276 0.420 0.304
#> GSM159863     5  0.5882     0.0727 0.000 0.000 0.000 0.244 0.476 0.280
#> GSM159864     5  0.4680     0.2510 0.200 0.000 0.000 0.000 0.680 0.120
#> GSM159865     5  0.5372     0.0722 0.268 0.000 0.000 0.004 0.588 0.140
#> GSM159866     5  0.4680     0.2510 0.200 0.000 0.000 0.000 0.680 0.120
#> GSM159885     4  0.0146     0.6394 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM159886     5  0.5173     0.1490 0.276 0.000 0.000 0.000 0.596 0.128
#> GSM159887     4  0.5805     0.4634 0.000 0.000 0.000 0.496 0.276 0.228
#> GSM159888     2  0.0363     0.7384 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM159889     2  0.0458     0.7365 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM159890     2  0.0363     0.7384 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM159891     3  0.3244     0.8297 0.000 0.268 0.732 0.000 0.000 0.000
#> GSM159892     3  0.3244     0.8297 0.000 0.268 0.732 0.000 0.000 0.000
#> GSM159893     3  0.3266     0.8270 0.000 0.272 0.728 0.000 0.000 0.000
#> GSM159894     4  0.6747     0.1217 0.000 0.052 0.000 0.404 0.344 0.200
#> GSM159895     4  0.0146     0.6391 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM159896     4  0.0146     0.6391 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM159897     2  0.2402     0.7529 0.000 0.856 0.000 0.004 0.000 0.140
#> GSM159898     2  0.0458     0.7365 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM159899     2  0.0000     0.7421 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM159900     3  0.0000     0.8217 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159901     3  0.0000     0.8217 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159902     4  0.5830     0.4556 0.000 0.000 0.000 0.488 0.284 0.228
#> GSM159903     5  0.5877    -0.1671 0.000 0.000 0.000 0.332 0.456 0.212
#> GSM159904     4  0.5966     0.3537 0.000 0.000 0.000 0.428 0.340 0.232
#> GSM159905     1  0.0146     0.8632 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM159906     1  0.0000     0.8647 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159907     1  0.0000     0.8647 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159908     4  0.5818     0.4589 0.000 0.000 0.000 0.492 0.280 0.228
#> GSM159909     4  0.5976     0.3002 0.000 0.000 0.000 0.408 0.364 0.228
#> GSM159910     3  0.1806     0.7882 0.004 0.000 0.908 0.000 0.000 0.088
#> GSM159911     4  0.4062     0.5729 0.000 0.000 0.004 0.744 0.192 0.060
#> GSM159912     5  0.4718     0.3281 0.012 0.000 0.000 0.264 0.664 0.060
#> GSM159913     5  0.4644     0.3020 0.004 0.000 0.000 0.268 0.660 0.068
#> GSM159914     1  0.0000     0.8647 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159915     1  0.0000     0.8647 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM159916     1  0.0146     0.8632 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM159917     3  0.1610     0.7912 0.000 0.000 0.916 0.000 0.000 0.084
#> GSM159867     4  0.1327     0.6218 0.000 0.000 0.000 0.936 0.000 0.064
#> GSM159868     4  0.1387     0.6203 0.000 0.000 0.000 0.932 0.000 0.068
#> GSM159869     4  0.1327     0.6224 0.000 0.000 0.000 0.936 0.000 0.064
#> GSM159870     2  0.3672     0.7596 0.000 0.632 0.000 0.000 0.000 0.368
#> GSM159871     2  0.3672     0.7596 0.000 0.632 0.000 0.000 0.000 0.368
#> GSM159872     2  0.3672     0.7596 0.000 0.632 0.000 0.000 0.000 0.368
#> GSM159873     3  0.3198     0.8322 0.000 0.260 0.740 0.000 0.000 0.000
#> GSM159874     3  0.0000     0.8217 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159875     3  0.3198     0.8322 0.000 0.260 0.740 0.000 0.000 0.000
#> GSM159876     6  0.6298     0.9853 0.068 0.060 0.000 0.012 0.400 0.460
#> GSM159877     6  0.6282     0.9708 0.068 0.060 0.000 0.012 0.384 0.476
#> GSM159878     6  0.6298     0.9853 0.068 0.060 0.000 0.012 0.400 0.460
#> GSM159879     2  0.2300     0.7596 0.000 0.856 0.000 0.000 0.000 0.144
#> GSM159880     2  0.3672     0.7596 0.000 0.632 0.000 0.000 0.000 0.368
#> GSM159881     2  0.3841     0.7501 0.000 0.616 0.000 0.004 0.000 0.380
#> GSM159882     2  0.3390     0.7652 0.000 0.704 0.000 0.000 0.000 0.296
#> GSM159883     2  0.3390     0.7652 0.000 0.704 0.000 0.000 0.000 0.296
#> GSM159884     2  0.3390     0.7652 0.000 0.704 0.000 0.000 0.000 0.296

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n agent(p)  dose(p)  time(p) k
#> ATC:mclust 66 1.52e-08 0.000337 3.08e-03 2
#> ATC:mclust 65 8.24e-07 0.000614 4.95e-05 3
#> ATC:mclust 64 2.44e-04 0.008659 8.21e-12 4
#> ATC:mclust 59 5.07e-08 0.000072 4.69e-11 5
#> ATC:mclust 44 2.57e-05 0.003608 5.70e-12 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21796 rows and 68 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.906           0.933       0.971         0.4002 0.591   0.591
#> 3 3 0.813           0.875       0.927         0.5300 0.762   0.613
#> 4 4 0.506           0.665       0.761         0.1399 0.806   0.555
#> 5 5 0.538           0.557       0.718         0.0704 0.889   0.635
#> 6 6 0.662           0.700       0.837         0.0522 0.914   0.666

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM159850     1  0.0000      0.983 1.000 0.000
#> GSM159851     1  0.0000      0.983 1.000 0.000
#> GSM159852     1  0.0000      0.983 1.000 0.000
#> GSM159853     1  0.0000      0.983 1.000 0.000
#> GSM159854     1  0.0000      0.983 1.000 0.000
#> GSM159855     1  0.0000      0.983 1.000 0.000
#> GSM159856     1  0.0000      0.983 1.000 0.000
#> GSM159857     1  0.0000      0.983 1.000 0.000
#> GSM159858     1  0.0000      0.983 1.000 0.000
#> GSM159859     1  0.0000      0.983 1.000 0.000
#> GSM159860     1  0.0000      0.983 1.000 0.000
#> GSM159861     1  0.0000      0.983 1.000 0.000
#> GSM159862     1  0.0000      0.983 1.000 0.000
#> GSM159863     1  0.0000      0.983 1.000 0.000
#> GSM159864     1  0.0000      0.983 1.000 0.000
#> GSM159865     1  0.0000      0.983 1.000 0.000
#> GSM159866     1  0.0000      0.983 1.000 0.000
#> GSM159885     1  0.5842      0.831 0.860 0.140
#> GSM159886     1  0.0000      0.983 1.000 0.000
#> GSM159887     1  0.0000      0.983 1.000 0.000
#> GSM159888     1  0.5294      0.853 0.880 0.120
#> GSM159889     1  0.0000      0.983 1.000 0.000
#> GSM159890     2  0.9775      0.362 0.412 0.588
#> GSM159891     2  0.0000      0.928 0.000 1.000
#> GSM159892     2  0.0000      0.928 0.000 1.000
#> GSM159893     2  0.0000      0.928 0.000 1.000
#> GSM159894     1  0.0000      0.983 1.000 0.000
#> GSM159895     2  0.2423      0.903 0.040 0.960
#> GSM159896     2  0.0000      0.928 0.000 1.000
#> GSM159897     1  0.0938      0.974 0.988 0.012
#> GSM159898     1  0.0000      0.983 1.000 0.000
#> GSM159899     1  0.4431      0.889 0.908 0.092
#> GSM159900     2  0.0000      0.928 0.000 1.000
#> GSM159901     2  0.0000      0.928 0.000 1.000
#> GSM159902     1  0.1633      0.963 0.976 0.024
#> GSM159903     1  0.0000      0.983 1.000 0.000
#> GSM159904     1  0.2043      0.955 0.968 0.032
#> GSM159905     1  0.0000      0.983 1.000 0.000
#> GSM159906     1  0.0000      0.983 1.000 0.000
#> GSM159907     1  0.0000      0.983 1.000 0.000
#> GSM159908     1  0.1414      0.967 0.980 0.020
#> GSM159909     1  0.0000      0.983 1.000 0.000
#> GSM159910     2  0.0000      0.928 0.000 1.000
#> GSM159911     2  0.0000      0.928 0.000 1.000
#> GSM159912     1  0.0000      0.983 1.000 0.000
#> GSM159913     1  0.0000      0.983 1.000 0.000
#> GSM159914     1  0.0000      0.983 1.000 0.000
#> GSM159915     1  0.0000      0.983 1.000 0.000
#> GSM159916     1  0.0000      0.983 1.000 0.000
#> GSM159917     2  0.0000      0.928 0.000 1.000
#> GSM159867     1  0.0000      0.983 1.000 0.000
#> GSM159868     2  0.0000      0.928 0.000 1.000
#> GSM159869     2  0.0000      0.928 0.000 1.000
#> GSM159870     1  0.0000      0.983 1.000 0.000
#> GSM159871     1  0.0000      0.983 1.000 0.000
#> GSM159872     1  0.0672      0.977 0.992 0.008
#> GSM159873     2  0.0000      0.928 0.000 1.000
#> GSM159874     2  0.0000      0.928 0.000 1.000
#> GSM159875     2  0.0000      0.928 0.000 1.000
#> GSM159876     1  0.0000      0.983 1.000 0.000
#> GSM159877     1  0.0000      0.983 1.000 0.000
#> GSM159878     1  0.0000      0.983 1.000 0.000
#> GSM159879     1  0.0000      0.983 1.000 0.000
#> GSM159880     1  0.0000      0.983 1.000 0.000
#> GSM159881     2  0.9460      0.487 0.364 0.636
#> GSM159882     1  0.8763      0.541 0.704 0.296
#> GSM159883     2  0.5842      0.817 0.140 0.860
#> GSM159884     2  0.8763      0.614 0.296 0.704

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM159850     1  0.1289      0.912 0.968 0.032 0.000
#> GSM159851     1  0.0747      0.916 0.984 0.016 0.000
#> GSM159852     1  0.1163      0.913 0.972 0.028 0.000
#> GSM159853     1  0.1163      0.913 0.972 0.028 0.000
#> GSM159854     1  0.0000      0.916 1.000 0.000 0.000
#> GSM159855     1  0.0000      0.916 1.000 0.000 0.000
#> GSM159856     1  0.1411      0.910 0.964 0.036 0.000
#> GSM159857     1  0.1163      0.913 0.972 0.028 0.000
#> GSM159858     1  0.1163      0.913 0.972 0.028 0.000
#> GSM159859     1  0.1031      0.914 0.976 0.024 0.000
#> GSM159860     1  0.1163      0.913 0.972 0.028 0.000
#> GSM159861     1  0.0424      0.916 0.992 0.008 0.000
#> GSM159862     1  0.0424      0.914 0.992 0.000 0.008
#> GSM159863     1  0.0424      0.914 0.992 0.000 0.008
#> GSM159864     1  0.3412      0.845 0.876 0.124 0.000
#> GSM159865     1  0.2165      0.894 0.936 0.064 0.000
#> GSM159866     1  0.3412      0.845 0.876 0.124 0.000
#> GSM159885     1  0.5397      0.616 0.720 0.000 0.280
#> GSM159886     1  0.2356      0.888 0.928 0.072 0.000
#> GSM159887     1  0.1411      0.903 0.964 0.000 0.036
#> GSM159888     2  0.1315      0.932 0.020 0.972 0.008
#> GSM159889     2  0.2356      0.943 0.072 0.928 0.000
#> GSM159890     2  0.0983      0.922 0.004 0.980 0.016
#> GSM159891     2  0.4750      0.661 0.000 0.784 0.216
#> GSM159892     3  0.2261      0.925 0.000 0.068 0.932
#> GSM159893     3  0.5397      0.668 0.000 0.280 0.720
#> GSM159894     1  0.6079      0.385 0.612 0.388 0.000
#> GSM159895     3  0.3769      0.864 0.104 0.016 0.880
#> GSM159896     3  0.1905      0.930 0.028 0.016 0.956
#> GSM159897     2  0.2356      0.943 0.072 0.928 0.000
#> GSM159898     2  0.2356      0.943 0.072 0.928 0.000
#> GSM159899     2  0.1411      0.940 0.036 0.964 0.000
#> GSM159900     3  0.1964      0.931 0.000 0.056 0.944
#> GSM159901     3  0.1964      0.931 0.000 0.056 0.944
#> GSM159902     1  0.3183      0.867 0.908 0.016 0.076
#> GSM159903     1  0.1765      0.899 0.956 0.004 0.040
#> GSM159904     1  0.3359      0.861 0.900 0.016 0.084
#> GSM159905     1  0.1774      0.902 0.960 0.016 0.024
#> GSM159906     1  0.0000      0.916 1.000 0.000 0.000
#> GSM159907     1  0.0424      0.916 0.992 0.008 0.000
#> GSM159908     1  0.3445      0.858 0.896 0.016 0.088
#> GSM159909     1  0.1289      0.905 0.968 0.000 0.032
#> GSM159910     3  0.1636      0.924 0.020 0.016 0.964
#> GSM159911     3  0.2152      0.918 0.036 0.016 0.948
#> GSM159912     1  0.0000      0.916 1.000 0.000 0.000
#> GSM159913     1  0.0424      0.914 0.992 0.000 0.008
#> GSM159914     1  0.0747      0.916 0.984 0.016 0.000
#> GSM159915     1  0.0424      0.916 0.992 0.008 0.000
#> GSM159916     1  0.0592      0.913 0.988 0.000 0.012
#> GSM159917     3  0.0747      0.927 0.000 0.016 0.984
#> GSM159867     1  0.2261      0.886 0.932 0.000 0.068
#> GSM159868     3  0.1999      0.927 0.036 0.012 0.952
#> GSM159869     3  0.1832      0.921 0.036 0.008 0.956
#> GSM159870     2  0.2356      0.943 0.072 0.928 0.000
#> GSM159871     2  0.2448      0.939 0.076 0.924 0.000
#> GSM159872     2  0.2356      0.943 0.072 0.928 0.000
#> GSM159873     3  0.2165      0.928 0.000 0.064 0.936
#> GSM159874     3  0.1964      0.931 0.000 0.056 0.944
#> GSM159875     3  0.1964      0.931 0.000 0.056 0.944
#> GSM159876     1  0.6140      0.363 0.596 0.404 0.000
#> GSM159877     1  0.6154      0.353 0.592 0.408 0.000
#> GSM159878     1  0.5291      0.655 0.732 0.268 0.000
#> GSM159879     2  0.2356      0.943 0.072 0.928 0.000
#> GSM159880     2  0.2356      0.943 0.072 0.928 0.000
#> GSM159881     2  0.0983      0.920 0.004 0.980 0.016
#> GSM159882     2  0.1529      0.940 0.040 0.960 0.000
#> GSM159883     2  0.0892      0.915 0.000 0.980 0.020
#> GSM159884     2  0.0983      0.922 0.004 0.980 0.016

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM159850     1  0.4406    0.52857 0.700 0.000 0.000 0.300
#> GSM159851     1  0.5132   -0.00536 0.548 0.004 0.000 0.448
#> GSM159852     1  0.3873    0.61911 0.772 0.000 0.000 0.228
#> GSM159853     1  0.4164    0.56144 0.736 0.000 0.000 0.264
#> GSM159854     1  0.4356    0.51392 0.708 0.000 0.000 0.292
#> GSM159855     1  0.4697    0.36102 0.644 0.000 0.000 0.356
#> GSM159856     1  0.2174    0.77701 0.928 0.020 0.000 0.052
#> GSM159857     1  0.2011    0.75819 0.920 0.000 0.000 0.080
#> GSM159858     1  0.0779    0.77930 0.980 0.004 0.000 0.016
#> GSM159859     1  0.0895    0.77959 0.976 0.004 0.000 0.020
#> GSM159860     1  0.1151    0.77976 0.968 0.008 0.000 0.024
#> GSM159861     4  0.3625    0.72894 0.160 0.012 0.000 0.828
#> GSM159862     4  0.3529    0.72624 0.152 0.012 0.000 0.836
#> GSM159863     4  0.4978    0.45484 0.324 0.012 0.000 0.664
#> GSM159864     1  0.4004    0.71822 0.812 0.024 0.000 0.164
#> GSM159865     1  0.4004    0.71822 0.812 0.024 0.000 0.164
#> GSM159866     1  0.4004    0.71822 0.812 0.024 0.000 0.164
#> GSM159885     4  0.5495    0.76848 0.176 0.000 0.096 0.728
#> GSM159886     1  0.1888    0.76343 0.940 0.044 0.000 0.016
#> GSM159887     4  0.4313    0.74031 0.260 0.000 0.004 0.736
#> GSM159888     2  0.3494    0.78462 0.172 0.824 0.000 0.004
#> GSM159889     2  0.4677    0.71639 0.316 0.680 0.000 0.004
#> GSM159890     2  0.2334    0.77495 0.088 0.908 0.000 0.004
#> GSM159891     2  0.3266    0.51581 0.000 0.832 0.168 0.000
#> GSM159892     3  0.4697    0.69200 0.000 0.356 0.644 0.000
#> GSM159893     2  0.4977   -0.31176 0.000 0.540 0.460 0.000
#> GSM159894     4  0.5292    0.73907 0.216 0.060 0.000 0.724
#> GSM159895     4  0.5747    0.66854 0.064 0.008 0.224 0.704
#> GSM159896     4  0.5425    0.58203 0.020 0.012 0.288 0.680
#> GSM159897     2  0.2654    0.78529 0.108 0.888 0.000 0.004
#> GSM159898     2  0.4509    0.73506 0.288 0.708 0.000 0.004
#> GSM159899     2  0.3494    0.78500 0.172 0.824 0.000 0.004
#> GSM159900     3  0.3074    0.87403 0.000 0.152 0.848 0.000
#> GSM159901     3  0.3219    0.87428 0.000 0.164 0.836 0.000
#> GSM159902     4  0.4838    0.75209 0.252 0.000 0.024 0.724
#> GSM159903     4  0.5143    0.32702 0.456 0.000 0.004 0.540
#> GSM159904     4  0.6107    0.73418 0.264 0.000 0.088 0.648
#> GSM159905     1  0.2002    0.76447 0.936 0.000 0.020 0.044
#> GSM159906     1  0.1296    0.77623 0.964 0.004 0.004 0.028
#> GSM159907     1  0.1004    0.77749 0.972 0.004 0.000 0.024
#> GSM159908     4  0.4840    0.75770 0.240 0.000 0.028 0.732
#> GSM159909     4  0.4222    0.72922 0.272 0.000 0.000 0.728
#> GSM159910     3  0.3780    0.71242 0.016 0.004 0.832 0.148
#> GSM159911     4  0.5882    0.54594 0.048 0.000 0.344 0.608
#> GSM159912     1  0.4406    0.49526 0.700 0.000 0.000 0.300
#> GSM159913     1  0.4955    0.02679 0.556 0.000 0.000 0.444
#> GSM159914     1  0.0188    0.77662 0.996 0.004 0.000 0.000
#> GSM159915     1  0.0712    0.77618 0.984 0.004 0.004 0.008
#> GSM159916     1  0.1388    0.76814 0.960 0.000 0.012 0.028
#> GSM159917     3  0.0844    0.79697 0.004 0.004 0.980 0.012
#> GSM159867     4  0.5280    0.77272 0.168 0.004 0.076 0.752
#> GSM159868     4  0.5022    0.57890 0.012 0.004 0.300 0.684
#> GSM159869     4  0.5420    0.49941 0.008 0.012 0.352 0.628
#> GSM159870     2  0.5311    0.67313 0.328 0.648 0.000 0.024
#> GSM159871     2  0.5525    0.65972 0.336 0.636 0.004 0.024
#> GSM159872     2  0.4030    0.76500 0.092 0.836 0.000 0.072
#> GSM159873     3  0.4134    0.81711 0.000 0.260 0.740 0.000
#> GSM159874     3  0.3074    0.87438 0.000 0.152 0.848 0.000
#> GSM159875     3  0.3610    0.86271 0.000 0.200 0.800 0.000
#> GSM159876     1  0.4508    0.58623 0.780 0.184 0.000 0.036
#> GSM159877     1  0.5432    0.61213 0.740 0.124 0.000 0.136
#> GSM159878     1  0.3450    0.62849 0.836 0.156 0.000 0.008
#> GSM159879     2  0.4624    0.67512 0.340 0.660 0.000 0.000
#> GSM159880     2  0.4153    0.78245 0.132 0.820 0.000 0.048
#> GSM159881     2  0.2635    0.67184 0.000 0.904 0.020 0.076
#> GSM159882     2  0.2658    0.77717 0.080 0.904 0.012 0.004
#> GSM159883     2  0.1610    0.74060 0.032 0.952 0.016 0.000
#> GSM159884     2  0.1610    0.74060 0.032 0.952 0.016 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM159850     1  0.4735     0.2608 0.524 0.000 0.000 0.460 0.016
#> GSM159851     4  0.3966     0.3401 0.336 0.000 0.000 0.664 0.000
#> GSM159852     1  0.4547     0.4196 0.588 0.000 0.000 0.400 0.012
#> GSM159853     1  0.4283     0.2874 0.544 0.000 0.000 0.456 0.000
#> GSM159854     1  0.4449     0.1938 0.512 0.000 0.000 0.484 0.004
#> GSM159855     4  0.4302    -0.1580 0.480 0.000 0.000 0.520 0.000
#> GSM159856     1  0.3051     0.6870 0.852 0.000 0.000 0.120 0.028
#> GSM159857     1  0.3995     0.6349 0.776 0.000 0.000 0.180 0.044
#> GSM159858     1  0.2850     0.6654 0.872 0.000 0.000 0.092 0.036
#> GSM159859     1  0.2871     0.6635 0.872 0.000 0.000 0.088 0.040
#> GSM159860     1  0.3146     0.6549 0.856 0.000 0.000 0.092 0.052
#> GSM159861     5  0.6431     0.5453 0.140 0.008 0.000 0.376 0.476
#> GSM159862     5  0.6641     0.6303 0.176 0.012 0.000 0.312 0.500
#> GSM159863     5  0.6594     0.6783 0.312 0.008 0.000 0.184 0.496
#> GSM159864     5  0.5990     0.6618 0.416 0.028 0.000 0.052 0.504
#> GSM159865     5  0.5990     0.6618 0.416 0.028 0.000 0.052 0.504
#> GSM159866     5  0.5985     0.6647 0.412 0.028 0.000 0.052 0.508
#> GSM159885     4  0.1560     0.7612 0.020 0.000 0.028 0.948 0.004
#> GSM159886     1  0.3308     0.6636 0.860 0.012 0.000 0.076 0.052
#> GSM159887     4  0.0865     0.7625 0.024 0.000 0.004 0.972 0.000
#> GSM159888     2  0.4752     0.6336 0.272 0.684 0.004 0.000 0.040
#> GSM159889     2  0.5066     0.5849 0.344 0.608 0.000 0.000 0.048
#> GSM159890     2  0.3928     0.6606 0.176 0.788 0.008 0.000 0.028
#> GSM159891     2  0.3318     0.4112 0.000 0.800 0.192 0.000 0.008
#> GSM159892     3  0.4553     0.6349 0.000 0.384 0.604 0.008 0.004
#> GSM159893     2  0.4440    -0.3784 0.000 0.528 0.468 0.004 0.000
#> GSM159894     4  0.2060     0.7501 0.052 0.016 0.000 0.924 0.008
#> GSM159895     4  0.1788     0.7445 0.008 0.000 0.056 0.932 0.004
#> GSM159896     4  0.2338     0.7042 0.000 0.000 0.112 0.884 0.004
#> GSM159897     2  0.4409     0.6539 0.180 0.760 0.008 0.000 0.052
#> GSM159898     2  0.5068     0.5718 0.364 0.592 0.000 0.000 0.044
#> GSM159899     2  0.4865     0.6275 0.280 0.672 0.004 0.000 0.044
#> GSM159900     3  0.3209     0.8140 0.000 0.180 0.812 0.008 0.000
#> GSM159901     3  0.3455     0.8134 0.000 0.208 0.784 0.008 0.000
#> GSM159902     4  0.1393     0.7643 0.024 0.000 0.012 0.956 0.008
#> GSM159903     4  0.3462     0.6094 0.196 0.000 0.000 0.792 0.012
#> GSM159904     4  0.2234     0.7597 0.032 0.000 0.036 0.920 0.012
#> GSM159905     1  0.3493     0.6732 0.832 0.000 0.000 0.108 0.060
#> GSM159906     1  0.2351     0.6929 0.896 0.000 0.000 0.088 0.016
#> GSM159907     1  0.2179     0.6947 0.896 0.000 0.000 0.100 0.004
#> GSM159908     4  0.1280     0.7635 0.024 0.000 0.008 0.960 0.008
#> GSM159909     4  0.1195     0.7604 0.028 0.000 0.000 0.960 0.012
#> GSM159910     3  0.5733     0.4100 0.044 0.004 0.548 0.016 0.388
#> GSM159911     4  0.3242     0.6330 0.000 0.000 0.216 0.784 0.000
#> GSM159912     4  0.4557    -0.1408 0.476 0.000 0.000 0.516 0.008
#> GSM159913     4  0.4029     0.4010 0.316 0.000 0.000 0.680 0.004
#> GSM159914     1  0.2351     0.6912 0.896 0.000 0.000 0.088 0.016
#> GSM159915     1  0.2172     0.6860 0.908 0.000 0.000 0.076 0.016
#> GSM159916     1  0.2927     0.6701 0.872 0.000 0.000 0.068 0.060
#> GSM159917     3  0.0960     0.7160 0.000 0.004 0.972 0.008 0.016
#> GSM159867     4  0.1200     0.7597 0.012 0.000 0.016 0.964 0.008
#> GSM159868     4  0.3388     0.6272 0.000 0.000 0.200 0.792 0.008
#> GSM159869     4  0.3796     0.5120 0.000 0.000 0.300 0.700 0.000
#> GSM159870     2  0.5702     0.4410 0.104 0.576 0.000 0.000 0.320
#> GSM159871     2  0.6495     0.3089 0.196 0.532 0.008 0.000 0.264
#> GSM159872     2  0.5062     0.5431 0.068 0.656 0.000 0.000 0.276
#> GSM159873     3  0.4067     0.7503 0.000 0.300 0.692 0.008 0.000
#> GSM159874     3  0.3093     0.8116 0.000 0.168 0.824 0.008 0.000
#> GSM159875     3  0.3642     0.8046 0.000 0.232 0.760 0.008 0.000
#> GSM159876     1  0.5192    -0.0893 0.644 0.076 0.000 0.000 0.280
#> GSM159877     1  0.5820    -0.5351 0.504 0.056 0.000 0.016 0.424
#> GSM159878     1  0.3745     0.4815 0.828 0.068 0.000 0.008 0.096
#> GSM159879     2  0.4114     0.6601 0.060 0.776 0.000 0.000 0.164
#> GSM159880     2  0.4315     0.6007 0.024 0.700 0.000 0.000 0.276
#> GSM159881     2  0.2828     0.6056 0.004 0.872 0.020 0.000 0.104
#> GSM159882     2  0.1041     0.6409 0.004 0.964 0.000 0.000 0.032
#> GSM159883     2  0.1153     0.6303 0.004 0.964 0.008 0.000 0.024
#> GSM159884     2  0.1356     0.6281 0.004 0.956 0.012 0.000 0.028

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM159850     1  0.3343     0.7566 0.796 0.004 0.000 0.176 0.024 0.000
#> GSM159851     1  0.4250     0.2545 0.528 0.000 0.000 0.456 0.016 0.000
#> GSM159852     1  0.2222     0.8131 0.896 0.008 0.000 0.084 0.012 0.000
#> GSM159853     1  0.2766     0.7945 0.852 0.004 0.000 0.124 0.020 0.000
#> GSM159854     1  0.3301     0.7494 0.788 0.000 0.000 0.188 0.024 0.000
#> GSM159855     1  0.3514     0.7121 0.752 0.000 0.000 0.228 0.020 0.000
#> GSM159856     1  0.1268     0.8183 0.952 0.008 0.000 0.004 0.036 0.000
#> GSM159857     1  0.2402     0.8078 0.888 0.008 0.000 0.020 0.084 0.000
#> GSM159858     1  0.1668     0.8137 0.928 0.008 0.000 0.004 0.060 0.000
#> GSM159859     1  0.1845     0.8110 0.916 0.008 0.000 0.004 0.072 0.000
#> GSM159860     1  0.1956     0.8083 0.908 0.008 0.000 0.004 0.080 0.000
#> GSM159861     5  0.4422     0.4831 0.068 0.000 0.000 0.252 0.680 0.000
#> GSM159862     5  0.3395     0.5808 0.060 0.000 0.000 0.132 0.808 0.000
#> GSM159863     5  0.3927     0.6423 0.172 0.000 0.000 0.072 0.756 0.000
#> GSM159864     5  0.2948     0.6691 0.188 0.000 0.000 0.008 0.804 0.000
#> GSM159865     5  0.2882     0.6716 0.180 0.000 0.000 0.008 0.812 0.000
#> GSM159866     5  0.2706     0.6698 0.160 0.000 0.000 0.008 0.832 0.000
#> GSM159885     4  0.1059     0.8559 0.004 0.000 0.016 0.964 0.016 0.000
#> GSM159886     1  0.1478     0.8146 0.944 0.020 0.000 0.004 0.032 0.000
#> GSM159887     4  0.0881     0.8554 0.008 0.000 0.000 0.972 0.012 0.008
#> GSM159888     2  0.1265     0.7910 0.044 0.948 0.000 0.000 0.000 0.008
#> GSM159889     2  0.2191     0.7496 0.120 0.876 0.000 0.000 0.000 0.004
#> GSM159890     2  0.1149     0.7914 0.024 0.960 0.008 0.000 0.000 0.008
#> GSM159891     2  0.4120     0.5537 0.000 0.692 0.276 0.000 0.024 0.008
#> GSM159892     3  0.2544     0.7800 0.000 0.120 0.864 0.000 0.012 0.004
#> GSM159893     3  0.4000     0.4623 0.000 0.324 0.660 0.000 0.008 0.008
#> GSM159894     4  0.1592     0.8499 0.016 0.012 0.000 0.944 0.024 0.004
#> GSM159895     4  0.1293     0.8544 0.004 0.000 0.016 0.956 0.020 0.004
#> GSM159896     4  0.1697     0.8507 0.004 0.000 0.036 0.936 0.020 0.004
#> GSM159897     2  0.1481     0.7879 0.012 0.952 0.008 0.004 0.016 0.008
#> GSM159898     2  0.3481     0.6119 0.228 0.756 0.000 0.000 0.012 0.004
#> GSM159899     2  0.3001     0.7343 0.120 0.848 0.008 0.000 0.016 0.008
#> GSM159900     3  0.0260     0.8689 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM159901     3  0.0291     0.8733 0.000 0.004 0.992 0.000 0.004 0.000
#> GSM159902     4  0.1590     0.8543 0.008 0.000 0.012 0.944 0.028 0.008
#> GSM159903     4  0.4086     0.6661 0.184 0.000 0.000 0.756 0.036 0.024
#> GSM159904     4  0.2368     0.8470 0.008 0.000 0.028 0.908 0.036 0.020
#> GSM159905     1  0.2570     0.8103 0.892 0.000 0.000 0.032 0.036 0.040
#> GSM159906     1  0.1794     0.8196 0.932 0.000 0.000 0.016 0.024 0.028
#> GSM159907     1  0.1630     0.8232 0.940 0.000 0.000 0.016 0.020 0.024
#> GSM159908     4  0.1892     0.8489 0.020 0.000 0.008 0.932 0.020 0.020
#> GSM159909     4  0.1882     0.8437 0.028 0.000 0.000 0.928 0.024 0.020
#> GSM159910     6  0.1387     0.0000 0.000 0.000 0.068 0.000 0.000 0.932
#> GSM159911     4  0.3668     0.6582 0.008 0.000 0.256 0.728 0.008 0.000
#> GSM159912     1  0.4684     0.4279 0.580 0.000 0.000 0.380 0.024 0.016
#> GSM159913     4  0.4240     0.4925 0.296 0.000 0.000 0.672 0.016 0.016
#> GSM159914     1  0.1148     0.8184 0.960 0.000 0.000 0.004 0.016 0.020
#> GSM159915     1  0.1518     0.8154 0.944 0.000 0.000 0.008 0.024 0.024
#> GSM159916     1  0.2307     0.8008 0.908 0.004 0.000 0.016 0.028 0.044
#> GSM159917     3  0.1579     0.8302 0.004 0.000 0.944 0.008 0.024 0.020
#> GSM159867     4  0.1159     0.8550 0.004 0.004 0.012 0.964 0.012 0.004
#> GSM159868     4  0.2921     0.7922 0.004 0.004 0.120 0.852 0.016 0.004
#> GSM159869     4  0.3940     0.5304 0.000 0.004 0.336 0.652 0.008 0.000
#> GSM159870     2  0.4660     0.2967 0.020 0.540 0.004 0.000 0.428 0.008
#> GSM159871     5  0.5519    -0.0688 0.056 0.412 0.020 0.000 0.504 0.008
#> GSM159872     5  0.4575     0.0835 0.008 0.372 0.016 0.000 0.596 0.008
#> GSM159873     3  0.0935     0.8669 0.000 0.032 0.964 0.000 0.004 0.000
#> GSM159874     3  0.0000     0.8708 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM159875     3  0.0603     0.8730 0.000 0.016 0.980 0.000 0.004 0.000
#> GSM159876     1  0.4348     0.2764 0.600 0.016 0.000 0.000 0.376 0.008
#> GSM159877     5  0.4879     0.3929 0.384 0.032 0.000 0.004 0.568 0.012
#> GSM159878     1  0.2917     0.7529 0.840 0.016 0.000 0.000 0.136 0.008
#> GSM159879     2  0.3058     0.7980 0.008 0.832 0.008 0.000 0.144 0.008
#> GSM159880     2  0.3481     0.7412 0.000 0.756 0.004 0.000 0.228 0.012
#> GSM159881     2  0.3118     0.7943 0.000 0.820 0.012 0.000 0.156 0.012
#> GSM159882     2  0.2566     0.8070 0.000 0.868 0.012 0.000 0.112 0.008
#> GSM159883     2  0.2611     0.8065 0.000 0.864 0.012 0.000 0.116 0.008
#> GSM159884     2  0.2806     0.8052 0.000 0.844 0.016 0.000 0.136 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n agent(p)  dose(p)  time(p) k
#> ATC:NMF 66 1.10e-02 1.88e-02 1.01e-04 2
#> ATC:NMF 65 2.87e-07 2.33e-04 4.95e-05 3
#> ATC:NMF 60 8.11e-05 1.00e-03 5.48e-08 4
#> ATC:NMF 52 5.27e-07 2.80e-06 8.29e-13 5
#> ATC:NMF 57 1.94e-06 2.89e-06 2.12e-10 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0