cola Report for GDS2519

Date: 2019-12-25 20:17:13 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 21168   105

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance
SD:mclust 2 1.000 0.976 0.908 **
CV:mclust 2 1.000 0.991 0.995 **
MAD:mclust 2 1.000 0.974 0.990 **
ATC:kmeans 2 1.000 0.981 0.991 **
ATC:skmeans 2 1.000 0.984 0.993 **
ATC:NMF 2 0.960 0.929 0.973 **
ATC:mclust 2 0.843 0.895 0.954
SD:NMF 2 0.801 0.888 0.950
SD:kmeans 2 0.778 0.899 0.933
ATC:hclust 2 0.765 0.935 0.958
ATC:pam 3 0.757 0.902 0.902
SD:skmeans 2 0.707 0.871 0.942
MAD:NMF 2 0.691 0.875 0.942
CV:kmeans 3 0.686 0.852 0.918
MAD:kmeans 3 0.679 0.820 0.903
MAD:skmeans 2 0.579 0.769 0.891
CV:NMF 3 0.509 0.721 0.860
SD:hclust 3 0.498 0.737 0.884
CV:skmeans 3 0.437 0.655 0.828
CV:hclust 4 0.406 0.725 0.874
MAD:pam 2 0.331 0.834 0.874
MAD:hclust 3 0.293 0.696 0.864
SD:pam 2 0.237 0.766 0.841
CV:pam 2 0.066 0.574 0.759

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k  1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.8011           0.888       0.950         0.4924 0.501   0.501
#> CV:NMF      2 0.1742           0.390       0.704         0.4707 0.496   0.496
#> MAD:NMF     2 0.6906           0.875       0.942         0.4936 0.501   0.501
#> ATC:NMF     2 0.9602           0.929       0.973         0.4255 0.572   0.572
#> SD:skmeans  2 0.7073           0.871       0.942         0.5031 0.496   0.496
#> CV:skmeans  2 0.2754           0.605       0.818         0.5009 0.499   0.499
#> MAD:skmeans 2 0.5795           0.769       0.891         0.5042 0.495   0.495
#> ATC:skmeans 2 1.0000           0.984       0.993         0.4961 0.503   0.503
#> SD:mclust   2 1.0000           0.976       0.908         0.2770 0.726   0.726
#> CV:mclust   2 1.0000           0.991       0.995         0.2676 0.739   0.739
#> MAD:mclust  2 1.0000           0.974       0.990         0.2778 0.726   0.726
#> ATC:mclust  2 0.8431           0.895       0.954         0.4597 0.551   0.551
#> SD:kmeans   2 0.7776           0.899       0.933         0.4746 0.505   0.505
#> CV:kmeans   2 0.2762           0.519       0.788         0.4563 0.505   0.505
#> MAD:kmeans  2 0.4137           0.796       0.870         0.4745 0.515   0.515
#> ATC:kmeans  2 1.0000           0.981       0.991         0.4413 0.558   0.558
#> SD:pam      2 0.2373           0.766       0.841         0.4594 0.539   0.539
#> CV:pam      2 0.0656           0.574       0.759         0.4447 0.580   0.580
#> MAD:pam     2 0.3311           0.834       0.874         0.4735 0.534   0.534
#> ATC:pam     2 0.5292           0.803       0.897         0.4287 0.519   0.519
#> SD:hclust   2 0.9864           0.964       0.978         0.0497 0.981   0.981
#> CV:hclust   2 1.0000           0.990       1.000         0.0206 0.981   0.981
#> MAD:hclust  2 1.0000           0.990       1.000         0.0207 0.981   0.981
#> ATC:hclust  2 0.7654           0.935       0.958         0.3531 0.677   0.677
get_stats(res_list, k = 3)
#>             k  1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.6135           0.747       0.881          0.307 0.706   0.490
#> CV:NMF      3 0.5094           0.721       0.860          0.373 0.784   0.594
#> MAD:NMF     3 0.5149           0.699       0.845          0.319 0.699   0.481
#> ATC:NMF     3 0.5661           0.793       0.872          0.349 0.782   0.641
#> SD:skmeans  3 0.6077           0.741       0.878          0.319 0.717   0.492
#> CV:skmeans  3 0.4372           0.655       0.828          0.333 0.698   0.467
#> MAD:skmeans 3 0.5110           0.721       0.858          0.319 0.707   0.478
#> ATC:skmeans 3 0.7098           0.723       0.879          0.252 0.840   0.696
#> SD:mclust   3 0.4908           0.587       0.774          0.897 0.807   0.737
#> CV:mclust   3 0.4459           0.711       0.850          1.002 0.730   0.635
#> MAD:mclust  3 0.4764           0.828       0.870          1.017 0.704   0.595
#> ATC:mclust  3 0.5127           0.630       0.787          0.102 0.814   0.721
#> SD:kmeans   3 0.7755           0.875       0.926          0.260 0.734   0.542
#> CV:kmeans   3 0.6865           0.852       0.918          0.295 0.699   0.498
#> MAD:kmeans  3 0.6792           0.820       0.903          0.302 0.687   0.478
#> ATC:kmeans  3 0.6440           0.923       0.924          0.381 0.630   0.429
#> SD:pam      3 0.2309           0.721       0.775          0.191 0.906   0.834
#> CV:pam      3 0.0585           0.562       0.713          0.178 0.896   0.825
#> MAD:pam     3 0.3979           0.774       0.831          0.196 0.914   0.838
#> ATC:pam     3 0.7566           0.902       0.902          0.391 0.609   0.403
#> SD:hclust   3 0.4978           0.737       0.884          3.786 0.828   0.824
#> CV:hclust   3 0.7588           0.887       0.951          4.540 0.963   0.962
#> MAD:hclust  3 0.2926           0.696       0.864         10.891 0.843   0.840
#> ATC:hclust  3 0.4754           0.836       0.826          0.284 0.985   0.978
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.541           0.593       0.777         0.1375 0.881   0.685
#> CV:NMF      4 0.462           0.513       0.661         0.1340 0.899   0.731
#> MAD:NMF     4 0.480           0.545       0.731         0.1271 0.843   0.598
#> ATC:NMF     4 0.525           0.535       0.785         0.2094 0.802   0.572
#> SD:skmeans  4 0.444           0.533       0.715         0.1230 0.873   0.646
#> CV:skmeans  4 0.374           0.432       0.672         0.1220 0.873   0.645
#> MAD:skmeans 4 0.412           0.450       0.695         0.1249 0.857   0.610
#> ATC:skmeans 4 0.658           0.631       0.823         0.1206 0.880   0.709
#> SD:mclust   4 0.704           0.849       0.908         0.2470 0.732   0.537
#> CV:mclust   4 0.725           0.850       0.911         0.2114 0.756   0.542
#> MAD:mclust  4 0.793           0.856       0.927         0.2092 0.882   0.741
#> ATC:mclust  4 0.582           0.797       0.840         0.2027 0.652   0.475
#> SD:kmeans   4 0.486           0.499       0.703         0.1313 0.811   0.564
#> CV:kmeans   4 0.499           0.503       0.790         0.1227 0.842   0.645
#> MAD:kmeans  4 0.562           0.579       0.760         0.1332 0.791   0.506
#> ATC:kmeans  4 0.705           0.533       0.825         0.1537 0.923   0.799
#> SD:pam      4 0.349           0.473       0.725         0.1768 0.750   0.526
#> CV:pam      4 0.142           0.607       0.706         0.0670 0.850   0.745
#> MAD:pam     4 0.413           0.619       0.798         0.0976 0.982   0.961
#> ATC:pam     4 0.621           0.766       0.884         0.1636 0.806   0.567
#> SD:hclust   4 0.336           0.782       0.875         0.5064 0.843   0.810
#> CV:hclust   4 0.406           0.725       0.874         1.1207 0.910   0.905
#> MAD:hclust  4 0.123           0.720       0.820         0.5848 0.813   0.778
#> ATC:hclust  4 0.444           0.656       0.776         0.1544 0.985   0.977
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.521           0.484       0.680         0.0656 0.916   0.715
#> CV:NMF      5 0.483           0.416       0.626         0.0753 0.890   0.655
#> MAD:NMF     5 0.507           0.452       0.686         0.0671 0.832   0.505
#> ATC:NMF     5 0.513           0.480       0.711         0.1172 0.751   0.369
#> SD:skmeans  5 0.468           0.358       0.614         0.0647 0.943   0.795
#> CV:skmeans  5 0.405           0.358       0.588         0.0643 0.918   0.712
#> MAD:skmeans 5 0.418           0.352       0.601         0.0635 0.868   0.566
#> ATC:skmeans 5 0.691           0.666       0.832         0.0689 0.917   0.743
#> SD:mclust   5 0.775           0.838       0.906         0.0606 0.952   0.865
#> CV:mclust   5 0.541           0.681       0.819         0.0729 0.986   0.960
#> MAD:mclust  5 0.700           0.686       0.846         0.0533 0.975   0.929
#> ATC:mclust  5 0.488           0.479       0.652         0.0791 0.847   0.646
#> SD:kmeans   5 0.510           0.516       0.727         0.0683 0.892   0.679
#> CV:kmeans   5 0.512           0.501       0.698         0.0911 0.783   0.473
#> MAD:kmeans  5 0.582           0.530       0.774         0.0719 0.879   0.629
#> ATC:kmeans  5 0.686           0.657       0.792         0.0901 0.822   0.520
#> SD:pam      5 0.360           0.440       0.710         0.0393 0.779   0.494
#> CV:pam      5 0.214           0.507       0.711         0.0698 0.876   0.783
#> MAD:pam     5 0.417           0.598       0.783         0.0335 0.989   0.975
#> ATC:pam     5 0.703           0.681       0.843         0.0742 0.829   0.527
#> SD:hclust   5 0.360           0.758       0.868         0.1000 0.994   0.991
#> CV:hclust   5 0.298           0.721       0.841         0.3203 0.831   0.804
#> MAD:hclust  5 0.166           0.666       0.785         0.1702 0.952   0.929
#> ATC:hclust  5 0.449           0.689       0.792         0.1510 0.692   0.524
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.549           0.417       0.649         0.0436 0.918   0.680
#> CV:NMF      6 0.531           0.341       0.580         0.0428 0.875   0.546
#> MAD:NMF     6 0.526           0.353       0.606         0.0461 0.886   0.581
#> ATC:NMF     6 0.556           0.358       0.602         0.0472 0.913   0.665
#> SD:skmeans  6 0.506           0.280       0.562         0.0396 0.895   0.615
#> CV:skmeans  6 0.449           0.288       0.546         0.0388 0.949   0.781
#> MAD:skmeans 6 0.477           0.280       0.529         0.0416 0.909   0.639
#> ATC:skmeans 6 0.715           0.600       0.788         0.0406 0.978   0.917
#> SD:mclust   6 0.745           0.760       0.869         0.0791 0.923   0.767
#> CV:mclust   6 0.567           0.683       0.798         0.0609 0.911   0.758
#> MAD:mclust  6 0.641           0.617       0.797         0.0546 0.935   0.812
#> ATC:mclust  6 0.459           0.384       0.674         0.0841 0.729   0.373
#> SD:kmeans   6 0.578           0.463       0.669         0.0577 0.911   0.716
#> CV:kmeans   6 0.576           0.502       0.724         0.0599 0.873   0.593
#> MAD:kmeans  6 0.616           0.522       0.719         0.0496 0.892   0.647
#> ATC:kmeans  6 0.730           0.629       0.759         0.0527 0.906   0.634
#> SD:pam      6 0.381           0.469       0.726         0.0212 0.795   0.513
#> CV:pam      6 0.240           0.364       0.688         0.0361 0.903   0.805
#> MAD:pam     6 0.429           0.629       0.774         0.0227 0.979   0.952
#> ATC:pam     6 0.714           0.415       0.739         0.0824 0.829   0.440
#> SD:hclust   6 0.402           0.737       0.864         0.0520 0.993   0.989
#> CV:hclust   6 0.252           0.702       0.827         0.0943 0.979   0.970
#> MAD:hclust  6 0.179           0.634       0.769         0.0841 0.997   0.996
#> ATC:hclust  6 0.539           0.715       0.834         0.1138 0.923   0.800

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>               n disease.state(p) k
#> SD:NMF      101          0.25136 2
#> CV:NMF       32               NA 2
#> MAD:NMF     100          0.05649 2
#> ATC:NMF     100          0.52475 2
#> SD:skmeans   98          0.30768 2
#> CV:skmeans   85          0.64766 2
#> MAD:skmeans  93          0.03772 2
#> ATC:skmeans 105          0.45006 2
#> SD:mclust   103          0.00975 2
#> CV:mclust   105          0.01082 2
#> MAD:mclust  104          0.00979 2
#> ATC:mclust  100          0.87598 2
#> SD:kmeans   103          0.46899 2
#> CV:kmeans    60          0.23928 2
#> MAD:kmeans   98          0.11147 2
#> ATC:kmeans  105          0.50246 2
#> SD:pam       98          0.11642 2
#> CV:pam       94          0.17795 2
#> MAD:pam     101          0.02120 2
#> ATC:pam     101          0.49633 2
#> SD:hclust   104               NA 2
#> CV:hclust   104               NA 2
#> MAD:hclust  104               NA 2
#> ATC:hclust  105          0.24298 2
test_to_known_factors(res_list, k = 3)
#>               n disease.state(p) k
#> SD:NMF       93          0.24527 3
#> CV:NMF       93          0.13762 3
#> MAD:NMF      87          0.09946 3
#> ATC:NMF      98          0.92847 3
#> SD:skmeans   89          0.12007 3
#> CV:skmeans   82          0.06922 3
#> MAD:skmeans  89          0.04361 3
#> ATC:skmeans  84          0.60138 3
#> SD:mclust    75          0.04705 3
#> CV:mclust    93          0.02085 3
#> MAD:mclust  103          0.00272 3
#> ATC:mclust   91          0.13618 3
#> SD:kmeans   103          0.06320 3
#> CV:kmeans   101          0.04509 3
#> MAD:kmeans   99          0.01712 3
#> ATC:kmeans  103          0.10317 3
#> SD:pam       98          0.07212 3
#> CV:pam       91          0.11859 3
#> MAD:pam      98          0.01238 3
#> ATC:pam     103          0.12948 3
#> SD:hclust    93          0.17467 3
#> CV:hclust   100               NA 3
#> MAD:hclust   92          0.43298 3
#> ATC:hclust  105          0.14581 3
test_to_known_factors(res_list, k = 4)
#>               n disease.state(p) k
#> SD:NMF       77          0.37709 4
#> CV:NMF       68          0.13335 4
#> MAD:NMF      69          0.05665 4
#> ATC:NMF      72          0.91080 4
#> SD:skmeans   71          0.04303 4
#> CV:skmeans   52          0.00474 4
#> MAD:skmeans  57          0.00744 4
#> ATC:skmeans  69          0.25691 4
#> SD:mclust   101          0.00870 4
#> CV:mclust   103          0.00984 4
#> MAD:mclust  100          0.00792 4
#> ATC:mclust   97          0.12950 4
#> SD:kmeans    65          0.00828 4
#> CV:kmeans    60          0.02493 4
#> MAD:kmeans   74          0.01098 4
#> ATC:kmeans   69          0.26195 4
#> SD:pam       53          0.03293 4
#> CV:pam       91          0.11859 4
#> MAD:pam      87          0.01187 4
#> ATC:pam      96          0.14020 4
#> SD:hclust    97          0.12717 4
#> CV:hclust    89          0.34097 4
#> MAD:hclust   92          0.34949 4
#> ATC:hclust   78          0.12360 4
test_to_known_factors(res_list, k = 5)
#>               n disease.state(p) k
#> SD:NMF       58          0.23225 5
#> CV:NMF       49          0.06322 5
#> MAD:NMF      52          0.03155 5
#> ATC:NMF      51          0.20769 5
#> SD:skmeans   30          0.04634 5
#> CV:skmeans   42          0.00200 5
#> MAD:skmeans  42          0.00402 5
#> ATC:skmeans  73          0.38232 5
#> SD:mclust   100          0.02885 5
#> CV:mclust    90          0.02126 5
#> MAD:mclust   86          0.02151 5
#> ATC:mclust   68          0.07432 5
#> SD:kmeans    64          0.01663 5
#> CV:kmeans    62          0.01052 5
#> MAD:kmeans   70          0.00985 5
#> ATC:kmeans   81          0.11948 5
#> SD:pam       45          0.04613 5
#> CV:pam       75          0.08978 5
#> MAD:pam      85          0.01525 5
#> ATC:pam      87          0.05865 5
#> SD:hclust    91          0.17382 5
#> CV:hclust    92          0.32589 5
#> MAD:hclust   89          0.14421 5
#> ATC:hclust   96          0.04831 5
test_to_known_factors(res_list, k = 6)
#>              n disease.state(p) k
#> SD:NMF      41         0.026697 6
#> CV:NMF      31         0.009111 6
#> MAD:NMF     34         0.027984 6
#> ATC:NMF     30         0.482121 6
#> SD:skmeans  38         0.021855 6
#> CV:skmeans  24         0.000123 6
#> MAD:skmeans 21         0.000351 6
#> ATC:skmeans 69         0.079124 6
#> SD:mclust   94         0.034238 6
#> CV:mclust   90         0.026976 6
#> MAD:mclust  80         0.008968 6
#> ATC:mclust  42         0.583380 6
#> SD:kmeans   64         0.036756 6
#> CV:kmeans   66         0.017062 6
#> MAD:kmeans  63         0.001926 6
#> ATC:kmeans  68         0.160909 6
#> SD:pam      55         0.018139 6
#> CV:pam      40         0.055263 6
#> MAD:pam     87         0.018318 6
#> ATC:pam     42         0.000426 6
#> SD:hclust   90         0.266087 6
#> CV:hclust   91         0.173819 6
#> MAD:hclust  80         0.437705 6
#> ATC:hclust  93         0.055308 6

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.986           0.964       0.978         0.0497 0.981   0.981
#> 3 3 0.498           0.737       0.884         3.7863 0.828   0.824
#> 4 4 0.336           0.782       0.875         0.5064 0.843   0.810
#> 5 5 0.360           0.758       0.868         0.1000 0.994   0.991
#> 6 6 0.402           0.737       0.864         0.0520 0.993   0.989

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     2  0.1633      0.977 0.024 0.976
#> GSM153406     2  0.0376      0.981 0.004 0.996
#> GSM153419     2  0.1414      0.978 0.020 0.980
#> GSM153423     2  0.0376      0.981 0.004 0.996
#> GSM153425     2  0.4431      0.925 0.092 0.908
#> GSM153427     2  0.1184      0.980 0.016 0.984
#> GSM153428     2  0.1843      0.974 0.028 0.972
#> GSM153429     2  0.0672      0.981 0.008 0.992
#> GSM153433     2  0.0672      0.981 0.008 0.992
#> GSM153444     2  0.1184      0.980 0.016 0.984
#> GSM153448     2  0.0938      0.981 0.012 0.988
#> GSM153451     2  0.0376      0.981 0.004 0.996
#> GSM153452     2  0.0000      0.981 0.000 1.000
#> GSM153477     2  0.0672      0.980 0.008 0.992
#> GSM153479     2  0.0938      0.981 0.012 0.988
#> GSM153484     2  0.0672      0.981 0.008 0.992
#> GSM153488     2  0.0376      0.981 0.004 0.996
#> GSM153496     2  0.1633      0.977 0.024 0.976
#> GSM153497     2  0.0376      0.981 0.004 0.996
#> GSM153500     2  0.1843      0.978 0.028 0.972
#> GSM153503     2  0.2948      0.964 0.052 0.948
#> GSM153508     1  0.4431      0.000 0.908 0.092
#> GSM153409     2  0.1184      0.979 0.016 0.984
#> GSM153426     2  0.2043      0.973 0.032 0.968
#> GSM153431     2  0.2778      0.962 0.048 0.952
#> GSM153438     2  0.0376      0.981 0.004 0.996
#> GSM153440     2  0.2603      0.966 0.044 0.956
#> GSM153447     2  0.3431      0.951 0.064 0.936
#> GSM153450     2  0.0376      0.981 0.004 0.996
#> GSM153456     2  0.0376      0.981 0.004 0.996
#> GSM153457     2  0.0376      0.981 0.004 0.996
#> GSM153458     2  0.0376      0.981 0.004 0.996
#> GSM153459     2  0.0376      0.981 0.004 0.996
#> GSM153460     2  0.0376      0.981 0.004 0.996
#> GSM153461     2  0.2236      0.970 0.036 0.964
#> GSM153463     2  0.4298      0.929 0.088 0.912
#> GSM153464     2  0.0672      0.980 0.008 0.992
#> GSM153466     2  0.0672      0.981 0.008 0.992
#> GSM153467     2  0.0376      0.981 0.004 0.996
#> GSM153468     2  0.0376      0.981 0.004 0.996
#> GSM153469     2  0.0672      0.980 0.008 0.992
#> GSM153470     2  0.0376      0.981 0.004 0.996
#> GSM153471     2  0.0672      0.980 0.008 0.992
#> GSM153472     2  0.2043      0.975 0.032 0.968
#> GSM153473     2  0.2423      0.968 0.040 0.960
#> GSM153474     2  0.2236      0.975 0.036 0.964
#> GSM153475     2  0.0672      0.981 0.008 0.992
#> GSM153476     2  0.0672      0.980 0.008 0.992
#> GSM153478     2  0.1184      0.979 0.016 0.984
#> GSM153480     2  0.0376      0.981 0.004 0.996
#> GSM153486     2  0.0672      0.980 0.008 0.992
#> GSM153487     2  0.0672      0.981 0.008 0.992
#> GSM153499     2  0.0672      0.980 0.008 0.992
#> GSM153504     2  0.2043      0.974 0.032 0.968
#> GSM153507     2  0.2603      0.968 0.044 0.956
#> GSM153404     2  0.1633      0.977 0.024 0.976
#> GSM153407     2  0.1843      0.975 0.028 0.972
#> GSM153408     2  0.0376      0.981 0.004 0.996
#> GSM153410     2  0.0376      0.981 0.004 0.996
#> GSM153411     2  0.4431      0.925 0.092 0.908
#> GSM153412     2  0.0376      0.981 0.004 0.996
#> GSM153413     2  0.0376      0.981 0.004 0.996
#> GSM153414     2  0.1414      0.977 0.020 0.980
#> GSM153415     2  0.0376      0.981 0.004 0.996
#> GSM153416     2  0.0376      0.981 0.004 0.996
#> GSM153417     2  0.4431      0.925 0.092 0.908
#> GSM153418     2  0.0376      0.981 0.004 0.996
#> GSM153420     2  0.4431      0.925 0.092 0.908
#> GSM153421     2  0.4431      0.925 0.092 0.908
#> GSM153422     2  0.4431      0.925 0.092 0.908
#> GSM153424     2  0.2043      0.973 0.032 0.968
#> GSM153430     2  0.2423      0.968 0.040 0.960
#> GSM153432     2  0.0672      0.981 0.008 0.992
#> GSM153434     2  0.1184      0.979 0.016 0.984
#> GSM153435     2  0.0376      0.981 0.004 0.996
#> GSM153436     2  0.1633      0.976 0.024 0.976
#> GSM153437     2  0.0000      0.981 0.000 1.000
#> GSM153439     2  0.0376      0.981 0.004 0.996
#> GSM153441     2  0.0672      0.981 0.008 0.992
#> GSM153442     2  0.0938      0.981 0.012 0.988
#> GSM153443     2  0.0672      0.980 0.008 0.992
#> GSM153445     2  0.0376      0.981 0.004 0.996
#> GSM153446     2  0.0376      0.981 0.004 0.996
#> GSM153449     2  0.0938      0.981 0.012 0.988
#> GSM153453     2  0.0672      0.981 0.008 0.992
#> GSM153454     2  0.4022      0.935 0.080 0.920
#> GSM153455     2  0.0376      0.981 0.004 0.996
#> GSM153462     2  0.0376      0.981 0.004 0.996
#> GSM153465     2  0.1184      0.980 0.016 0.984
#> GSM153481     2  0.0376      0.981 0.004 0.996
#> GSM153482     2  0.0672      0.981 0.008 0.992
#> GSM153483     2  0.0376      0.981 0.004 0.996
#> GSM153485     2  0.0376      0.981 0.004 0.996
#> GSM153489     2  0.0938      0.981 0.012 0.988
#> GSM153490     2  0.2603      0.966 0.044 0.956
#> GSM153491     2  0.0938      0.981 0.012 0.988
#> GSM153492     2  0.2236      0.971 0.036 0.964
#> GSM153493     2  0.2603      0.970 0.044 0.956
#> GSM153494     2  0.0672      0.980 0.008 0.992
#> GSM153495     2  0.4022      0.936 0.080 0.920
#> GSM153498     2  0.0672      0.980 0.008 0.992
#> GSM153501     2  0.2236      0.973 0.036 0.964
#> GSM153502     2  0.1843      0.975 0.028 0.972
#> GSM153505     2  0.2423      0.972 0.040 0.960
#> GSM153506     2  0.0672      0.980 0.008 0.992

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     2  0.2711     0.8374 0.000 0.912 0.088
#> GSM153406     2  0.1643     0.8614 0.000 0.956 0.044
#> GSM153419     2  0.2261     0.8507 0.000 0.932 0.068
#> GSM153423     2  0.0592     0.8679 0.000 0.988 0.012
#> GSM153425     3  0.5760     0.9105 0.000 0.328 0.672
#> GSM153427     2  0.1411     0.8669 0.000 0.964 0.036
#> GSM153428     2  0.4750     0.6463 0.000 0.784 0.216
#> GSM153429     2  0.0592     0.8694 0.000 0.988 0.012
#> GSM153433     2  0.3116     0.8187 0.000 0.892 0.108
#> GSM153444     2  0.1031     0.8691 0.000 0.976 0.024
#> GSM153448     2  0.1163     0.8696 0.000 0.972 0.028
#> GSM153451     2  0.0237     0.8668 0.000 0.996 0.004
#> GSM153452     2  0.0237     0.8689 0.000 0.996 0.004
#> GSM153477     2  0.0592     0.8647 0.000 0.988 0.012
#> GSM153479     2  0.1860     0.8649 0.000 0.948 0.052
#> GSM153484     2  0.0592     0.8696 0.000 0.988 0.012
#> GSM153488     2  0.1860     0.8629 0.000 0.948 0.052
#> GSM153496     2  0.3267     0.8018 0.000 0.884 0.116
#> GSM153497     2  0.0424     0.8659 0.000 0.992 0.008
#> GSM153500     2  0.6224     0.2673 0.016 0.688 0.296
#> GSM153503     2  0.7392    -0.5631 0.032 0.500 0.468
#> GSM153508     1  0.0000     0.0000 1.000 0.000 0.000
#> GSM153409     2  0.3267     0.8033 0.000 0.884 0.116
#> GSM153426     2  0.3686     0.7747 0.000 0.860 0.140
#> GSM153431     2  0.5098     0.5740 0.000 0.752 0.248
#> GSM153438     2  0.0237     0.8668 0.000 0.996 0.004
#> GSM153440     2  0.4291     0.7193 0.000 0.820 0.180
#> GSM153447     2  0.5591     0.4173 0.000 0.696 0.304
#> GSM153450     2  0.0237     0.8668 0.000 0.996 0.004
#> GSM153456     2  0.0237     0.8668 0.000 0.996 0.004
#> GSM153457     2  0.0237     0.8668 0.000 0.996 0.004
#> GSM153458     2  0.0237     0.8668 0.000 0.996 0.004
#> GSM153459     2  0.0237     0.8668 0.000 0.996 0.004
#> GSM153460     2  0.0237     0.8668 0.000 0.996 0.004
#> GSM153461     2  0.3752     0.7690 0.000 0.856 0.144
#> GSM153463     3  0.6079     0.8513 0.000 0.388 0.612
#> GSM153464     2  0.0592     0.8647 0.000 0.988 0.012
#> GSM153466     2  0.1411     0.8672 0.000 0.964 0.036
#> GSM153467     2  0.0237     0.8670 0.000 0.996 0.004
#> GSM153468     2  0.1031     0.8696 0.000 0.976 0.024
#> GSM153469     2  0.1031     0.8688 0.000 0.976 0.024
#> GSM153470     2  0.0592     0.8671 0.000 0.988 0.012
#> GSM153471     2  0.0892     0.8655 0.000 0.980 0.020
#> GSM153472     2  0.2959     0.8261 0.000 0.900 0.100
#> GSM153473     2  0.6314    -0.1532 0.004 0.604 0.392
#> GSM153474     3  0.6529     0.3965 0.012 0.368 0.620
#> GSM153475     2  0.0892     0.8697 0.000 0.980 0.020
#> GSM153476     2  0.1529     0.8691 0.000 0.960 0.040
#> GSM153478     2  0.3941     0.7573 0.000 0.844 0.156
#> GSM153480     2  0.0592     0.8671 0.000 0.988 0.012
#> GSM153486     2  0.0592     0.8647 0.000 0.988 0.012
#> GSM153487     2  0.0892     0.8686 0.000 0.980 0.020
#> GSM153499     2  0.1289     0.8682 0.000 0.968 0.032
#> GSM153504     2  0.6587     0.0168 0.016 0.632 0.352
#> GSM153507     2  0.5894     0.5251 0.028 0.752 0.220
#> GSM153404     2  0.2711     0.8374 0.000 0.912 0.088
#> GSM153407     2  0.4452     0.6986 0.000 0.808 0.192
#> GSM153408     2  0.1643     0.8614 0.000 0.956 0.044
#> GSM153410     2  0.1643     0.8614 0.000 0.956 0.044
#> GSM153411     3  0.5760     0.9105 0.000 0.328 0.672
#> GSM153412     2  0.1643     0.8614 0.000 0.956 0.044
#> GSM153413     2  0.1643     0.8614 0.000 0.956 0.044
#> GSM153414     2  0.2537     0.8427 0.000 0.920 0.080
#> GSM153415     2  0.1643     0.8614 0.000 0.956 0.044
#> GSM153416     2  0.0592     0.8679 0.000 0.988 0.012
#> GSM153417     3  0.5760     0.9105 0.000 0.328 0.672
#> GSM153418     2  0.1643     0.8614 0.000 0.956 0.044
#> GSM153420     3  0.5760     0.9105 0.000 0.328 0.672
#> GSM153421     3  0.5760     0.9105 0.000 0.328 0.672
#> GSM153422     3  0.5760     0.9105 0.000 0.328 0.672
#> GSM153424     2  0.4750     0.6451 0.000 0.784 0.216
#> GSM153430     2  0.4555     0.6801 0.000 0.800 0.200
#> GSM153432     2  0.1031     0.8697 0.000 0.976 0.024
#> GSM153434     2  0.3192     0.8097 0.000 0.888 0.112
#> GSM153435     2  0.0424     0.8664 0.000 0.992 0.008
#> GSM153436     2  0.2537     0.8413 0.000 0.920 0.080
#> GSM153437     2  0.0000     0.8674 0.000 1.000 0.000
#> GSM153439     2  0.0892     0.8699 0.000 0.980 0.020
#> GSM153441     2  0.1860     0.8645 0.000 0.948 0.052
#> GSM153442     2  0.2448     0.8472 0.000 0.924 0.076
#> GSM153443     2  0.0592     0.8647 0.000 0.988 0.012
#> GSM153445     2  0.0424     0.8659 0.000 0.992 0.008
#> GSM153446     2  0.0592     0.8671 0.000 0.988 0.012
#> GSM153449     2  0.2066     0.8586 0.000 0.940 0.060
#> GSM153453     2  0.2448     0.8523 0.000 0.924 0.076
#> GSM153454     3  0.6008     0.8721 0.000 0.372 0.628
#> GSM153455     2  0.1031     0.8700 0.000 0.976 0.024
#> GSM153462     2  0.0424     0.8659 0.000 0.992 0.008
#> GSM153465     2  0.1163     0.8693 0.000 0.972 0.028
#> GSM153481     2  0.0592     0.8673 0.000 0.988 0.012
#> GSM153482     2  0.1860     0.8600 0.000 0.948 0.052
#> GSM153483     2  0.0747     0.8670 0.000 0.984 0.016
#> GSM153485     2  0.1529     0.8689 0.000 0.960 0.040
#> GSM153489     2  0.2165     0.8592 0.000 0.936 0.064
#> GSM153490     2  0.6598    -0.3614 0.008 0.564 0.428
#> GSM153491     2  0.2448     0.8501 0.000 0.924 0.076
#> GSM153492     2  0.6180    -0.2277 0.000 0.584 0.416
#> GSM153493     2  0.6451    -0.1496 0.008 0.608 0.384
#> GSM153494     2  0.1289     0.8688 0.000 0.968 0.032
#> GSM153495     3  0.6154     0.8161 0.000 0.408 0.592
#> GSM153498     2  0.1964     0.8552 0.000 0.944 0.056
#> GSM153501     2  0.7492    -0.1146 0.052 0.608 0.340
#> GSM153502     2  0.4700     0.6812 0.008 0.812 0.180
#> GSM153505     2  0.6625    -0.3942 0.008 0.552 0.440
#> GSM153506     2  0.0747     0.8643 0.000 0.984 0.016

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     2  0.3271      0.859 0.132 0.856 0.012 0.000
#> GSM153406     2  0.2542      0.881 0.084 0.904 0.012 0.000
#> GSM153419     2  0.2928      0.872 0.108 0.880 0.012 0.000
#> GSM153423     2  0.0592      0.896 0.016 0.984 0.000 0.000
#> GSM153425     1  0.1722      0.631 0.944 0.048 0.008 0.000
#> GSM153427     2  0.1211      0.898 0.040 0.960 0.000 0.000
#> GSM153428     2  0.4746      0.641 0.304 0.688 0.008 0.000
#> GSM153429     2  0.0921      0.899 0.028 0.972 0.000 0.000
#> GSM153433     2  0.3969      0.815 0.180 0.804 0.016 0.000
#> GSM153444     2  0.0817      0.898 0.024 0.976 0.000 0.000
#> GSM153448     2  0.1474      0.899 0.052 0.948 0.000 0.000
#> GSM153451     2  0.0188      0.895 0.004 0.996 0.000 0.000
#> GSM153452     2  0.0469      0.897 0.012 0.988 0.000 0.000
#> GSM153477     2  0.0779      0.893 0.016 0.980 0.004 0.000
#> GSM153479     2  0.2124      0.893 0.068 0.924 0.008 0.000
#> GSM153484     2  0.0921      0.899 0.028 0.972 0.000 0.000
#> GSM153488     2  0.2402      0.891 0.076 0.912 0.012 0.000
#> GSM153496     2  0.4378      0.799 0.164 0.796 0.040 0.000
#> GSM153497     2  0.0524      0.893 0.008 0.988 0.004 0.000
#> GSM153500     1  0.7888      0.419 0.440 0.344 0.208 0.008
#> GSM153503     1  0.6583      0.613 0.684 0.172 0.116 0.028
#> GSM153508     4  0.0000      0.000 0.000 0.000 0.000 1.000
#> GSM153409     2  0.4011      0.785 0.208 0.784 0.008 0.000
#> GSM153426     2  0.4228      0.756 0.232 0.760 0.008 0.000
#> GSM153431     2  0.4973      0.552 0.348 0.644 0.008 0.000
#> GSM153438     2  0.0188      0.895 0.004 0.996 0.000 0.000
#> GSM153440     2  0.4635      0.705 0.268 0.720 0.012 0.000
#> GSM153447     2  0.5427      0.347 0.416 0.568 0.016 0.000
#> GSM153450     2  0.0376      0.896 0.004 0.992 0.004 0.000
#> GSM153456     2  0.0188      0.895 0.004 0.996 0.000 0.000
#> GSM153457     2  0.0188      0.895 0.004 0.996 0.000 0.000
#> GSM153458     2  0.0188      0.895 0.004 0.996 0.000 0.000
#> GSM153459     2  0.0188      0.895 0.004 0.996 0.000 0.000
#> GSM153460     2  0.0188      0.895 0.004 0.996 0.000 0.000
#> GSM153461     2  0.4262      0.751 0.236 0.756 0.008 0.000
#> GSM153463     1  0.3037      0.645 0.888 0.076 0.036 0.000
#> GSM153464     2  0.0469      0.891 0.012 0.988 0.000 0.000
#> GSM153466     2  0.1576      0.899 0.048 0.948 0.004 0.000
#> GSM153467     2  0.0707      0.898 0.020 0.980 0.000 0.000
#> GSM153468     2  0.1661      0.897 0.052 0.944 0.004 0.000
#> GSM153469     2  0.0895      0.898 0.020 0.976 0.004 0.000
#> GSM153470     2  0.0524      0.893 0.008 0.988 0.004 0.000
#> GSM153471     2  0.0895      0.891 0.020 0.976 0.004 0.000
#> GSM153472     2  0.3708      0.836 0.148 0.832 0.020 0.000
#> GSM153473     1  0.5760      0.487 0.596 0.372 0.028 0.004
#> GSM153474     3  0.2761      0.000 0.048 0.048 0.904 0.000
#> GSM153475     2  0.1388      0.897 0.028 0.960 0.012 0.000
#> GSM153476     2  0.1854      0.897 0.048 0.940 0.012 0.000
#> GSM153478     2  0.4502      0.743 0.236 0.748 0.016 0.000
#> GSM153480     2  0.0524      0.893 0.008 0.988 0.004 0.000
#> GSM153486     2  0.0895      0.895 0.020 0.976 0.004 0.000
#> GSM153487     2  0.1510      0.895 0.028 0.956 0.016 0.000
#> GSM153499     2  0.2376      0.893 0.068 0.916 0.016 0.000
#> GSM153504     1  0.7114      0.525 0.568 0.304 0.116 0.012
#> GSM153507     2  0.6021      0.436 0.288 0.656 0.032 0.024
#> GSM153404     2  0.3271      0.859 0.132 0.856 0.012 0.000
#> GSM153407     2  0.4690      0.690 0.276 0.712 0.012 0.000
#> GSM153408     2  0.2542      0.881 0.084 0.904 0.012 0.000
#> GSM153410     2  0.2542      0.881 0.084 0.904 0.012 0.000
#> GSM153411     1  0.1722      0.631 0.944 0.048 0.008 0.000
#> GSM153412     2  0.2542      0.881 0.084 0.904 0.012 0.000
#> GSM153413     2  0.2542      0.881 0.084 0.904 0.012 0.000
#> GSM153414     2  0.3401      0.849 0.152 0.840 0.008 0.000
#> GSM153415     2  0.2542      0.881 0.084 0.904 0.012 0.000
#> GSM153416     2  0.0921      0.900 0.028 0.972 0.000 0.000
#> GSM153417     1  0.1722      0.631 0.944 0.048 0.008 0.000
#> GSM153418     2  0.2542      0.881 0.084 0.904 0.012 0.000
#> GSM153420     1  0.1722      0.631 0.944 0.048 0.008 0.000
#> GSM153421     1  0.1722      0.631 0.944 0.048 0.008 0.000
#> GSM153422     1  0.1722      0.631 0.944 0.048 0.008 0.000
#> GSM153424     2  0.4746      0.640 0.304 0.688 0.008 0.000
#> GSM153430     2  0.4690      0.682 0.276 0.712 0.012 0.000
#> GSM153432     2  0.0895      0.898 0.020 0.976 0.004 0.000
#> GSM153434     2  0.4095      0.797 0.192 0.792 0.016 0.000
#> GSM153435     2  0.0817      0.896 0.024 0.976 0.000 0.000
#> GSM153436     2  0.3324      0.858 0.136 0.852 0.012 0.000
#> GSM153437     2  0.0336      0.896 0.008 0.992 0.000 0.000
#> GSM153439     2  0.1209      0.900 0.032 0.964 0.004 0.000
#> GSM153441     2  0.2473      0.889 0.080 0.908 0.012 0.000
#> GSM153442     2  0.2859      0.868 0.112 0.880 0.008 0.000
#> GSM153443     2  0.0469      0.891 0.012 0.988 0.000 0.000
#> GSM153445     2  0.0336      0.892 0.008 0.992 0.000 0.000
#> GSM153446     2  0.0524      0.893 0.008 0.988 0.004 0.000
#> GSM153449     2  0.3485      0.863 0.116 0.856 0.028 0.000
#> GSM153453     2  0.3441      0.867 0.120 0.856 0.024 0.000
#> GSM153454     1  0.2965      0.642 0.892 0.072 0.036 0.000
#> GSM153455     2  0.1743      0.899 0.056 0.940 0.004 0.000
#> GSM153462     2  0.0336      0.892 0.008 0.992 0.000 0.000
#> GSM153465     2  0.1211      0.900 0.040 0.960 0.000 0.000
#> GSM153481     2  0.0592      0.895 0.016 0.984 0.000 0.000
#> GSM153482     2  0.2546      0.883 0.092 0.900 0.008 0.000
#> GSM153483     2  0.0592      0.896 0.016 0.984 0.000 0.000
#> GSM153485     2  0.2742      0.889 0.076 0.900 0.024 0.000
#> GSM153489     2  0.3307      0.874 0.104 0.868 0.028 0.000
#> GSM153490     1  0.5935      0.604 0.680 0.240 0.076 0.004
#> GSM153491     2  0.3658      0.845 0.144 0.836 0.020 0.000
#> GSM153492     1  0.6249      0.518 0.592 0.336 0.072 0.000
#> GSM153493     1  0.7611      0.345 0.476 0.268 0.256 0.000
#> GSM153494     2  0.1854      0.898 0.048 0.940 0.012 0.000
#> GSM153495     1  0.3399      0.649 0.868 0.092 0.040 0.000
#> GSM153498     2  0.2741      0.877 0.096 0.892 0.012 0.000
#> GSM153501     1  0.8217      0.508 0.516 0.256 0.184 0.044
#> GSM153502     2  0.6356      0.401 0.308 0.612 0.076 0.004
#> GSM153505     1  0.6471      0.602 0.652 0.212 0.132 0.004
#> GSM153506     2  0.0927      0.890 0.016 0.976 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     2  0.3085     0.8660 0.000 0.852 0.000 0.116 0.032
#> GSM153406     2  0.2388     0.8850 0.000 0.900 0.000 0.072 0.028
#> GSM153419     2  0.2740     0.8767 0.000 0.876 0.000 0.096 0.028
#> GSM153423     2  0.0798     0.8994 0.000 0.976 0.008 0.016 0.000
#> GSM153425     4  0.0451     0.6181 0.000 0.008 0.004 0.988 0.000
#> GSM153427     2  0.1538     0.8997 0.000 0.948 0.008 0.036 0.008
#> GSM153428     2  0.4715     0.6690 0.000 0.672 0.004 0.292 0.032
#> GSM153429     2  0.1012     0.9022 0.000 0.968 0.000 0.020 0.012
#> GSM153433     2  0.3695     0.8277 0.000 0.800 0.000 0.164 0.036
#> GSM153444     2  0.1186     0.9002 0.000 0.964 0.008 0.020 0.008
#> GSM153448     2  0.1444     0.9021 0.000 0.948 0.000 0.040 0.012
#> GSM153451     2  0.0451     0.8981 0.000 0.988 0.008 0.004 0.000
#> GSM153452     2  0.0451     0.9002 0.000 0.988 0.004 0.008 0.000
#> GSM153477     2  0.0854     0.8967 0.000 0.976 0.004 0.008 0.012
#> GSM153479     2  0.2331     0.8964 0.000 0.908 0.008 0.068 0.016
#> GSM153484     2  0.0807     0.9014 0.000 0.976 0.000 0.012 0.012
#> GSM153488     2  0.2300     0.8934 0.000 0.904 0.000 0.072 0.024
#> GSM153496     2  0.4590     0.8021 0.000 0.776 0.020 0.088 0.116
#> GSM153497     2  0.0867     0.8975 0.000 0.976 0.008 0.008 0.008
#> GSM153500     5  0.6978     0.3351 0.004 0.132 0.068 0.220 0.576
#> GSM153503     4  0.6564     0.2762 0.024 0.080 0.024 0.580 0.292
#> GSM153508     1  0.0000     0.0000 1.000 0.000 0.000 0.000 0.000
#> GSM153409     2  0.4074     0.7990 0.000 0.772 0.004 0.188 0.036
#> GSM153426     2  0.4197     0.7772 0.000 0.752 0.004 0.212 0.032
#> GSM153431     2  0.4971     0.5925 0.000 0.628 0.004 0.332 0.036
#> GSM153438     2  0.0451     0.8981 0.000 0.988 0.008 0.004 0.000
#> GSM153440     2  0.4404     0.7284 0.000 0.712 0.000 0.252 0.036
#> GSM153447     2  0.5368     0.4099 0.000 0.548 0.004 0.400 0.048
#> GSM153450     2  0.0613     0.8991 0.000 0.984 0.008 0.004 0.004
#> GSM153456     2  0.0451     0.8981 0.000 0.988 0.008 0.004 0.000
#> GSM153457     2  0.0451     0.8981 0.000 0.988 0.008 0.004 0.000
#> GSM153458     2  0.0451     0.8981 0.000 0.988 0.008 0.004 0.000
#> GSM153459     2  0.0451     0.8981 0.000 0.988 0.008 0.004 0.000
#> GSM153460     2  0.0451     0.8981 0.000 0.988 0.008 0.004 0.000
#> GSM153461     2  0.4228     0.7724 0.000 0.748 0.004 0.216 0.032
#> GSM153463     4  0.2708     0.5970 0.000 0.020 0.016 0.892 0.072
#> GSM153464     2  0.0740     0.8953 0.000 0.980 0.008 0.008 0.004
#> GSM153466     2  0.1408     0.9021 0.000 0.948 0.000 0.044 0.008
#> GSM153467     2  0.0693     0.9011 0.000 0.980 0.000 0.008 0.012
#> GSM153468     2  0.1597     0.8995 0.000 0.940 0.000 0.048 0.012
#> GSM153469     2  0.0960     0.9013 0.000 0.972 0.004 0.016 0.008
#> GSM153470     2  0.0740     0.8962 0.000 0.980 0.008 0.008 0.004
#> GSM153471     2  0.0968     0.8965 0.000 0.972 0.004 0.012 0.012
#> GSM153472     2  0.3967     0.8262 0.000 0.808 0.004 0.100 0.088
#> GSM153473     4  0.5602     0.2241 0.004 0.328 0.008 0.600 0.060
#> GSM153474     3  0.0794     0.0000 0.000 0.000 0.972 0.000 0.028
#> GSM153475     2  0.1106     0.9002 0.000 0.964 0.000 0.012 0.024
#> GSM153476     2  0.1960     0.8998 0.000 0.928 0.004 0.048 0.020
#> GSM153478     2  0.4438     0.7592 0.000 0.732 0.004 0.224 0.040
#> GSM153480     2  0.0740     0.8962 0.000 0.980 0.008 0.008 0.004
#> GSM153486     2  0.0968     0.8986 0.000 0.972 0.004 0.012 0.012
#> GSM153487     2  0.1300     0.8981 0.000 0.956 0.000 0.016 0.028
#> GSM153499     2  0.2459     0.8945 0.000 0.904 0.004 0.040 0.052
#> GSM153504     4  0.7410     0.1878 0.008 0.220 0.036 0.480 0.256
#> GSM153507     2  0.6195     0.4545 0.020 0.624 0.008 0.236 0.112
#> GSM153404     2  0.3085     0.8660 0.000 0.852 0.000 0.116 0.032
#> GSM153407     2  0.4503     0.7168 0.000 0.704 0.000 0.256 0.040
#> GSM153408     2  0.2388     0.8850 0.000 0.900 0.000 0.072 0.028
#> GSM153410     2  0.2388     0.8850 0.000 0.900 0.000 0.072 0.028
#> GSM153411     4  0.0451     0.6181 0.000 0.008 0.004 0.988 0.000
#> GSM153412     2  0.2388     0.8850 0.000 0.900 0.000 0.072 0.028
#> GSM153413     2  0.2388     0.8850 0.000 0.900 0.000 0.072 0.028
#> GSM153414     2  0.3445     0.8508 0.000 0.824 0.000 0.140 0.036
#> GSM153415     2  0.2388     0.8850 0.000 0.900 0.000 0.072 0.028
#> GSM153416     2  0.1200     0.9019 0.000 0.964 0.008 0.016 0.012
#> GSM153417     4  0.0451     0.6181 0.000 0.008 0.004 0.988 0.000
#> GSM153418     2  0.2388     0.8850 0.000 0.900 0.000 0.072 0.028
#> GSM153420     4  0.0451     0.6181 0.000 0.008 0.004 0.988 0.000
#> GSM153421     4  0.0451     0.6181 0.000 0.008 0.004 0.988 0.000
#> GSM153422     4  0.0451     0.6181 0.000 0.008 0.004 0.988 0.000
#> GSM153424     2  0.4768     0.6691 0.000 0.672 0.004 0.288 0.036
#> GSM153430     2  0.4633     0.6995 0.000 0.696 0.004 0.264 0.036
#> GSM153432     2  0.0960     0.9013 0.000 0.972 0.004 0.016 0.008
#> GSM153434     2  0.3961     0.8085 0.000 0.780 0.004 0.184 0.032
#> GSM153435     2  0.0693     0.8982 0.000 0.980 0.000 0.008 0.012
#> GSM153436     2  0.3339     0.8592 0.000 0.836 0.000 0.124 0.040
#> GSM153437     2  0.0162     0.8989 0.000 0.996 0.000 0.004 0.000
#> GSM153439     2  0.1106     0.9028 0.000 0.964 0.000 0.024 0.012
#> GSM153441     2  0.2582     0.8912 0.000 0.892 0.004 0.080 0.024
#> GSM153442     2  0.3056     0.8721 0.000 0.860 0.008 0.112 0.020
#> GSM153443     2  0.0740     0.8953 0.000 0.980 0.008 0.008 0.004
#> GSM153445     2  0.0579     0.8955 0.000 0.984 0.008 0.008 0.000
#> GSM153446     2  0.0740     0.8962 0.000 0.980 0.008 0.008 0.004
#> GSM153449     2  0.3373     0.8685 0.000 0.848 0.004 0.092 0.056
#> GSM153453     2  0.3237     0.8712 0.000 0.848 0.000 0.104 0.048
#> GSM153454     4  0.3101     0.5651 0.000 0.012 0.024 0.864 0.100
#> GSM153455     2  0.1741     0.9022 0.000 0.936 0.000 0.040 0.024
#> GSM153462     2  0.0579     0.8955 0.000 0.984 0.008 0.008 0.000
#> GSM153465     2  0.1455     0.9026 0.000 0.952 0.008 0.032 0.008
#> GSM153481     2  0.0854     0.8988 0.000 0.976 0.008 0.012 0.004
#> GSM153482     2  0.2390     0.8884 0.000 0.896 0.000 0.084 0.020
#> GSM153483     2  0.0854     0.8993 0.000 0.976 0.008 0.012 0.004
#> GSM153485     2  0.2728     0.8918 0.000 0.888 0.004 0.068 0.040
#> GSM153489     2  0.3275     0.8766 0.000 0.860 0.008 0.068 0.064
#> GSM153490     4  0.6099     0.3718 0.000 0.168 0.020 0.628 0.184
#> GSM153491     2  0.3787     0.8517 0.000 0.824 0.008 0.104 0.064
#> GSM153492     4  0.6551     0.1955 0.000 0.300 0.016 0.528 0.156
#> GSM153493     5  0.5726    -0.0483 0.000 0.020 0.152 0.156 0.672
#> GSM153494     2  0.1948     0.9027 0.000 0.932 0.008 0.036 0.024
#> GSM153495     4  0.3033     0.5952 0.000 0.032 0.016 0.876 0.076
#> GSM153498     2  0.3021     0.8734 0.000 0.872 0.004 0.060 0.064
#> GSM153501     4  0.8002    -0.0960 0.040 0.128 0.056 0.392 0.384
#> GSM153502     2  0.6578     0.3884 0.000 0.568 0.024 0.216 0.192
#> GSM153505     4  0.6355     0.3238 0.000 0.084 0.056 0.604 0.256
#> GSM153506     2  0.0960     0.8951 0.000 0.972 0.004 0.008 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     1  0.2908    0.86748 0.848 0.000 0.000 0.048 0.104 0.000
#> GSM153406     1  0.2250    0.88438 0.896 0.000 0.000 0.040 0.064 0.000
#> GSM153419     1  0.2595    0.87710 0.872 0.000 0.000 0.044 0.084 0.000
#> GSM153423     1  0.0862    0.89783 0.972 0.000 0.000 0.016 0.004 0.008
#> GSM153425     5  0.0291    0.63680 0.004 0.000 0.000 0.000 0.992 0.004
#> GSM153427     1  0.1409    0.89763 0.948 0.000 0.000 0.008 0.032 0.012
#> GSM153428     1  0.4677    0.67482 0.664 0.000 0.000 0.064 0.264 0.008
#> GSM153429     1  0.0820    0.90067 0.972 0.000 0.000 0.012 0.016 0.000
#> GSM153433     1  0.3725    0.82400 0.792 0.008 0.000 0.060 0.140 0.000
#> GSM153444     1  0.1078    0.89848 0.964 0.000 0.000 0.008 0.016 0.012
#> GSM153448     1  0.1245    0.90078 0.952 0.000 0.000 0.016 0.032 0.000
#> GSM153451     1  0.0260    0.89625 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM153452     1  0.0291    0.89836 0.992 0.000 0.000 0.000 0.004 0.004
#> GSM153477     1  0.0777    0.89576 0.972 0.000 0.000 0.024 0.000 0.004
#> GSM153479     1  0.2063    0.89561 0.912 0.000 0.000 0.020 0.060 0.008
#> GSM153484     1  0.0862    0.90010 0.972 0.004 0.000 0.016 0.008 0.000
#> GSM153488     1  0.2468    0.89126 0.888 0.000 0.000 0.048 0.060 0.004
#> GSM153496     1  0.4728    0.77596 0.752 0.048 0.000 0.136 0.044 0.020
#> GSM153497     1  0.0862    0.89650 0.972 0.004 0.000 0.016 0.000 0.008
#> GSM153500     2  0.6693    0.16318 0.056 0.540 0.004 0.260 0.120 0.020
#> GSM153503     4  0.6569    0.07522 0.016 0.120 0.024 0.496 0.332 0.012
#> GSM153508     3  0.0000    0.00000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM153409     1  0.3944    0.79992 0.768 0.000 0.000 0.060 0.164 0.008
#> GSM153426     1  0.4148    0.77971 0.748 0.000 0.000 0.056 0.184 0.012
#> GSM153431     1  0.4860    0.60761 0.624 0.000 0.000 0.064 0.304 0.008
#> GSM153438     1  0.0260    0.89625 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM153440     1  0.4474    0.73112 0.704 0.000 0.000 0.068 0.220 0.008
#> GSM153447     1  0.5582    0.43409 0.540 0.008 0.000 0.084 0.356 0.012
#> GSM153450     1  0.0405    0.89727 0.988 0.004 0.000 0.000 0.000 0.008
#> GSM153456     1  0.0260    0.89625 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM153457     1  0.0260    0.89625 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM153458     1  0.0260    0.89625 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM153459     1  0.0260    0.89625 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM153460     1  0.0260    0.89625 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM153461     1  0.4179    0.77519 0.744 0.000 0.000 0.056 0.188 0.012
#> GSM153463     5  0.2786    0.57821 0.008 0.032 0.000 0.076 0.876 0.008
#> GSM153464     1  0.0717    0.89435 0.976 0.000 0.000 0.016 0.000 0.008
#> GSM153466     1  0.1391    0.90064 0.944 0.000 0.000 0.016 0.040 0.000
#> GSM153467     1  0.0717    0.89953 0.976 0.000 0.000 0.016 0.008 0.000
#> GSM153468     1  0.1408    0.89857 0.944 0.000 0.000 0.020 0.036 0.000
#> GSM153469     1  0.0951    0.89953 0.968 0.000 0.000 0.020 0.008 0.004
#> GSM153470     1  0.0717    0.89510 0.976 0.000 0.000 0.016 0.000 0.008
#> GSM153471     1  0.1003    0.89516 0.964 0.000 0.000 0.028 0.004 0.004
#> GSM153472     1  0.3980    0.81196 0.796 0.044 0.000 0.108 0.052 0.000
#> GSM153473     5  0.5768    0.04257 0.316 0.016 0.004 0.092 0.564 0.008
#> GSM153474     6  0.0717    0.00000 0.000 0.016 0.000 0.008 0.000 0.976
#> GSM153475     1  0.1268    0.89664 0.952 0.008 0.000 0.036 0.000 0.004
#> GSM153476     1  0.1864    0.89824 0.924 0.000 0.000 0.032 0.040 0.004
#> GSM153478     1  0.4339    0.76219 0.728 0.004 0.000 0.068 0.196 0.004
#> GSM153480     1  0.0717    0.89510 0.976 0.000 0.000 0.016 0.000 0.008
#> GSM153486     1  0.0922    0.89748 0.968 0.000 0.000 0.024 0.004 0.004
#> GSM153487     1  0.1452    0.89635 0.948 0.004 0.000 0.032 0.008 0.008
#> GSM153499     1  0.2182    0.89176 0.904 0.004 0.000 0.072 0.016 0.004
#> GSM153504     4  0.6912    0.16132 0.144 0.028 0.008 0.468 0.324 0.028
#> GSM153507     1  0.6491    0.29919 0.564 0.024 0.020 0.196 0.188 0.008
#> GSM153404     1  0.2908    0.86748 0.848 0.000 0.000 0.048 0.104 0.000
#> GSM153407     1  0.4307    0.72945 0.704 0.000 0.000 0.072 0.224 0.000
#> GSM153408     1  0.2250    0.88438 0.896 0.000 0.000 0.040 0.064 0.000
#> GSM153410     1  0.2250    0.88438 0.896 0.000 0.000 0.040 0.064 0.000
#> GSM153411     5  0.0291    0.63680 0.004 0.000 0.000 0.000 0.992 0.004
#> GSM153412     1  0.2250    0.88438 0.896 0.000 0.000 0.040 0.064 0.000
#> GSM153413     1  0.2250    0.88438 0.896 0.000 0.000 0.040 0.064 0.000
#> GSM153414     1  0.3306    0.85395 0.828 0.004 0.000 0.044 0.120 0.004
#> GSM153415     1  0.2250    0.88438 0.896 0.000 0.000 0.040 0.064 0.000
#> GSM153416     1  0.1116    0.90034 0.960 0.000 0.000 0.028 0.004 0.008
#> GSM153417     5  0.0291    0.63680 0.004 0.000 0.000 0.000 0.992 0.004
#> GSM153418     1  0.2250    0.88438 0.896 0.000 0.000 0.040 0.064 0.000
#> GSM153420     5  0.0291    0.63680 0.004 0.000 0.000 0.000 0.992 0.004
#> GSM153421     5  0.0291    0.63680 0.004 0.000 0.000 0.000 0.992 0.004
#> GSM153422     5  0.0291    0.63680 0.004 0.000 0.000 0.000 0.992 0.004
#> GSM153424     1  0.4708    0.67460 0.664 0.000 0.000 0.068 0.260 0.008
#> GSM153430     1  0.4687    0.70261 0.688 0.004 0.000 0.068 0.232 0.008
#> GSM153432     1  0.0964    0.89974 0.968 0.000 0.000 0.016 0.012 0.004
#> GSM153434     1  0.3979    0.80961 0.776 0.008 0.000 0.048 0.160 0.008
#> GSM153435     1  0.0692    0.89718 0.976 0.004 0.000 0.020 0.000 0.000
#> GSM153436     1  0.3292    0.86182 0.840 0.016 0.000 0.036 0.104 0.004
#> GSM153437     1  0.0000    0.89703 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153439     1  0.0951    0.90120 0.968 0.004 0.000 0.008 0.020 0.000
#> GSM153441     1  0.2426    0.89085 0.896 0.012 0.000 0.020 0.068 0.004
#> GSM153442     1  0.2933    0.87106 0.860 0.004 0.000 0.032 0.096 0.008
#> GSM153443     1  0.0717    0.89435 0.976 0.000 0.000 0.016 0.000 0.008
#> GSM153445     1  0.0622    0.89440 0.980 0.000 0.000 0.012 0.000 0.008
#> GSM153446     1  0.0717    0.89510 0.976 0.000 0.000 0.016 0.000 0.008
#> GSM153449     1  0.3308    0.86518 0.844 0.008 0.000 0.072 0.068 0.008
#> GSM153453     1  0.3529    0.86082 0.832 0.020 0.000 0.072 0.072 0.004
#> GSM153454     5  0.3914    0.42008 0.000 0.104 0.000 0.128 0.768 0.000
#> GSM153455     1  0.1976    0.89965 0.924 0.008 0.000 0.032 0.032 0.004
#> GSM153462     1  0.0622    0.89440 0.980 0.000 0.000 0.012 0.000 0.008
#> GSM153465     1  0.1269    0.90121 0.956 0.000 0.000 0.012 0.020 0.012
#> GSM153481     1  0.0862    0.89766 0.972 0.000 0.000 0.016 0.004 0.008
#> GSM153482     1  0.2437    0.88621 0.888 0.004 0.000 0.036 0.072 0.000
#> GSM153483     1  0.0665    0.89744 0.980 0.000 0.000 0.008 0.004 0.008
#> GSM153485     1  0.2577    0.89143 0.892 0.016 0.000 0.032 0.056 0.004
#> GSM153489     1  0.3153    0.86806 0.852 0.008 0.000 0.088 0.044 0.008
#> GSM153490     5  0.6105   -0.00241 0.104 0.040 0.000 0.276 0.568 0.012
#> GSM153491     1  0.3928    0.83817 0.808 0.024 0.000 0.088 0.072 0.008
#> GSM153492     5  0.7449   -0.14544 0.264 0.096 0.000 0.264 0.368 0.008
#> GSM153493     2  0.4600    0.04587 0.004 0.752 0.000 0.040 0.076 0.128
#> GSM153494     1  0.1736    0.90105 0.936 0.004 0.000 0.032 0.020 0.008
#> GSM153495     5  0.3147    0.56648 0.020 0.028 0.000 0.088 0.856 0.008
#> GSM153498     1  0.3120    0.86041 0.860 0.040 0.000 0.076 0.016 0.008
#> GSM153501     4  0.4559   -0.11081 0.016 0.060 0.040 0.796 0.056 0.032
#> GSM153502     1  0.6549    0.30775 0.536 0.028 0.000 0.248 0.160 0.028
#> GSM153505     5  0.6745   -0.24173 0.024 0.184 0.000 0.340 0.432 0.020
#> GSM153506     1  0.0858    0.89417 0.968 0.000 0.000 0.028 0.000 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> SD:hclust 104               NA 2
#> SD:hclust  93            0.175 3
#> SD:hclust  97            0.127 4
#> SD:hclust  91            0.174 5
#> SD:hclust  90            0.266 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.778           0.899       0.933         0.4746 0.505   0.505
#> 3 3 0.776           0.875       0.926         0.2601 0.734   0.542
#> 4 4 0.486           0.499       0.703         0.1313 0.811   0.564
#> 5 5 0.510           0.516       0.727         0.0683 0.892   0.679
#> 6 6 0.578           0.463       0.669         0.0577 0.911   0.716

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     1  0.8207      0.733 0.744 0.256
#> GSM153406     2  0.2043      0.944 0.032 0.968
#> GSM153419     1  0.4562      0.868 0.904 0.096
#> GSM153423     2  0.0000      0.966 0.000 1.000
#> GSM153425     1  0.2423      0.880 0.960 0.040
#> GSM153427     2  0.0938      0.959 0.012 0.988
#> GSM153428     1  0.8443      0.739 0.728 0.272
#> GSM153429     2  0.1414      0.969 0.020 0.980
#> GSM153433     1  0.2603      0.902 0.956 0.044
#> GSM153444     2  0.0376      0.964 0.004 0.996
#> GSM153448     2  0.1633      0.967 0.024 0.976
#> GSM153451     2  0.0000      0.966 0.000 1.000
#> GSM153452     2  0.0000      0.966 0.000 1.000
#> GSM153477     2  0.1414      0.969 0.020 0.980
#> GSM153479     2  0.2043      0.963 0.032 0.968
#> GSM153484     2  0.1414      0.969 0.020 0.980
#> GSM153488     1  0.9635      0.500 0.612 0.388
#> GSM153496     1  0.2778      0.902 0.952 0.048
#> GSM153497     2  0.0672      0.968 0.008 0.992
#> GSM153500     1  0.2603      0.902 0.956 0.044
#> GSM153503     1  0.2603      0.902 0.956 0.044
#> GSM153508     1  0.3274      0.899 0.940 0.060
#> GSM153409     2  0.0672      0.962 0.008 0.992
#> GSM153426     2  0.0000      0.966 0.000 1.000
#> GSM153431     1  0.7376      0.801 0.792 0.208
#> GSM153438     2  0.0000      0.966 0.000 1.000
#> GSM153440     1  0.3584      0.878 0.932 0.068
#> GSM153447     1  0.1843      0.883 0.972 0.028
#> GSM153450     2  0.0000      0.966 0.000 1.000
#> GSM153456     2  0.0000      0.966 0.000 1.000
#> GSM153457     2  0.0000      0.966 0.000 1.000
#> GSM153458     2  0.0000      0.966 0.000 1.000
#> GSM153459     2  0.0000      0.966 0.000 1.000
#> GSM153460     2  0.0000      0.966 0.000 1.000
#> GSM153461     2  0.0938      0.959 0.012 0.988
#> GSM153463     1  0.0938      0.887 0.988 0.012
#> GSM153464     2  0.1414      0.969 0.020 0.980
#> GSM153466     2  0.3733      0.929 0.072 0.928
#> GSM153467     2  0.1414      0.969 0.020 0.980
#> GSM153468     2  0.2043      0.962 0.032 0.968
#> GSM153469     2  0.1414      0.969 0.020 0.980
#> GSM153470     2  0.1414      0.969 0.020 0.980
#> GSM153471     2  0.1414      0.969 0.020 0.980
#> GSM153472     1  0.3114      0.900 0.944 0.056
#> GSM153473     1  0.2603      0.902 0.956 0.044
#> GSM153474     1  0.2423      0.901 0.960 0.040
#> GSM153475     2  0.6247      0.823 0.156 0.844
#> GSM153476     2  0.1414      0.969 0.020 0.980
#> GSM153478     1  0.3431      0.899 0.936 0.064
#> GSM153480     2  0.1414      0.969 0.020 0.980
#> GSM153486     2  0.1414      0.969 0.020 0.980
#> GSM153487     1  0.7376      0.787 0.792 0.208
#> GSM153499     2  0.2423      0.955 0.040 0.960
#> GSM153504     1  0.2603      0.902 0.956 0.044
#> GSM153507     1  0.3114      0.900 0.944 0.056
#> GSM153404     2  0.2236      0.940 0.036 0.964
#> GSM153407     1  0.7950      0.752 0.760 0.240
#> GSM153408     2  0.3431      0.922 0.064 0.936
#> GSM153410     2  0.1843      0.947 0.028 0.972
#> GSM153411     1  0.2423      0.880 0.960 0.040
#> GSM153412     2  0.1843      0.947 0.028 0.972
#> GSM153413     1  0.9850      0.407 0.572 0.428
#> GSM153414     2  0.0000      0.966 0.000 1.000
#> GSM153415     2  0.2423      0.939 0.040 0.960
#> GSM153416     2  0.0000      0.966 0.000 1.000
#> GSM153417     1  0.2423      0.880 0.960 0.040
#> GSM153418     2  0.2236      0.940 0.036 0.964
#> GSM153420     1  0.2423      0.880 0.960 0.040
#> GSM153421     1  0.2423      0.880 0.960 0.040
#> GSM153422     1  0.2423      0.880 0.960 0.040
#> GSM153424     1  0.9170      0.657 0.668 0.332
#> GSM153430     1  0.2603      0.902 0.956 0.044
#> GSM153432     2  0.1414      0.969 0.020 0.980
#> GSM153434     1  0.8909      0.688 0.692 0.308
#> GSM153435     2  0.1414      0.969 0.020 0.980
#> GSM153436     1  0.9129      0.679 0.672 0.328
#> GSM153437     2  0.0672      0.968 0.008 0.992
#> GSM153439     2  0.1414      0.969 0.020 0.980
#> GSM153441     2  0.1414      0.968 0.020 0.980
#> GSM153442     2  0.7139      0.755 0.196 0.804
#> GSM153443     2  0.1414      0.969 0.020 0.980
#> GSM153445     2  0.1414      0.969 0.020 0.980
#> GSM153446     2  0.1184      0.969 0.016 0.984
#> GSM153449     1  0.4298      0.886 0.912 0.088
#> GSM153453     1  0.2948      0.901 0.948 0.052
#> GSM153454     1  0.2236      0.899 0.964 0.036
#> GSM153455     2  0.2423      0.957 0.040 0.960
#> GSM153462     2  0.1414      0.969 0.020 0.980
#> GSM153465     2  0.1414      0.969 0.020 0.980
#> GSM153481     2  0.1414      0.969 0.020 0.980
#> GSM153482     1  0.9608      0.508 0.616 0.384
#> GSM153483     2  0.1843      0.964 0.028 0.972
#> GSM153485     2  0.7299      0.733 0.204 0.796
#> GSM153489     1  0.9170      0.619 0.668 0.332
#> GSM153490     1  0.2043      0.898 0.968 0.032
#> GSM153491     1  0.2948      0.901 0.948 0.052
#> GSM153492     1  0.2603      0.902 0.956 0.044
#> GSM153493     1  0.2603      0.902 0.956 0.044
#> GSM153494     2  0.2043      0.962 0.032 0.968
#> GSM153495     1  0.2603      0.902 0.956 0.044
#> GSM153498     2  0.6712      0.790 0.176 0.824
#> GSM153501     1  0.2603      0.902 0.956 0.044
#> GSM153502     1  0.2603      0.902 0.956 0.044
#> GSM153505     1  0.2603      0.902 0.956 0.044
#> GSM153506     2  0.2423      0.955 0.040 0.960

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     3  0.3993      0.848 0.052 0.064 0.884
#> GSM153406     3  0.4887      0.771 0.000 0.228 0.772
#> GSM153419     3  0.1964      0.832 0.056 0.000 0.944
#> GSM153423     2  0.1163      0.934 0.000 0.972 0.028
#> GSM153425     3  0.2796      0.827 0.092 0.000 0.908
#> GSM153427     2  0.1289      0.934 0.000 0.968 0.032
#> GSM153428     2  0.5137      0.815 0.104 0.832 0.064
#> GSM153429     2  0.1482      0.932 0.012 0.968 0.020
#> GSM153433     1  0.0661      0.924 0.988 0.004 0.008
#> GSM153444     2  0.1163      0.934 0.000 0.972 0.028
#> GSM153448     2  0.1781      0.928 0.020 0.960 0.020
#> GSM153451     2  0.1163      0.934 0.000 0.972 0.028
#> GSM153452     2  0.1163      0.934 0.000 0.972 0.028
#> GSM153477     2  0.0592      0.938 0.000 0.988 0.012
#> GSM153479     2  0.2527      0.912 0.044 0.936 0.020
#> GSM153484     2  0.2176      0.921 0.032 0.948 0.020
#> GSM153488     1  0.3141      0.892 0.912 0.068 0.020
#> GSM153496     1  0.2050      0.919 0.952 0.028 0.020
#> GSM153497     2  0.0237      0.939 0.000 0.996 0.004
#> GSM153500     1  0.0237      0.924 0.996 0.000 0.004
#> GSM153503     1  0.0000      0.923 1.000 0.000 0.000
#> GSM153508     1  0.3112      0.904 0.916 0.028 0.056
#> GSM153409     2  0.1163      0.934 0.000 0.972 0.028
#> GSM153426     2  0.1163      0.934 0.000 0.972 0.028
#> GSM153431     2  0.7960      0.529 0.136 0.656 0.208
#> GSM153438     2  0.1163      0.934 0.000 0.972 0.028
#> GSM153440     3  0.7536      0.576 0.304 0.064 0.632
#> GSM153447     1  0.2878      0.844 0.904 0.000 0.096
#> GSM153450     2  0.1163      0.934 0.000 0.972 0.028
#> GSM153456     2  0.1163      0.934 0.000 0.972 0.028
#> GSM153457     2  0.1163      0.934 0.000 0.972 0.028
#> GSM153458     2  0.1163      0.934 0.000 0.972 0.028
#> GSM153459     2  0.1163      0.934 0.000 0.972 0.028
#> GSM153460     2  0.1163      0.934 0.000 0.972 0.028
#> GSM153461     2  0.1411      0.933 0.000 0.964 0.036
#> GSM153463     1  0.1289      0.903 0.968 0.000 0.032
#> GSM153464     2  0.0237      0.939 0.000 0.996 0.004
#> GSM153466     2  0.4349      0.823 0.128 0.852 0.020
#> GSM153467     2  0.0237      0.939 0.000 0.996 0.004
#> GSM153468     2  0.2743      0.905 0.052 0.928 0.020
#> GSM153469     2  0.0747      0.937 0.000 0.984 0.016
#> GSM153470     2  0.0892      0.936 0.000 0.980 0.020
#> GSM153471     2  0.0747      0.937 0.000 0.984 0.016
#> GSM153472     1  0.2297      0.915 0.944 0.036 0.020
#> GSM153473     1  0.0000      0.923 1.000 0.000 0.000
#> GSM153474     1  0.1031      0.917 0.976 0.000 0.024
#> GSM153475     2  0.5774      0.664 0.232 0.748 0.020
#> GSM153476     2  0.1781      0.929 0.020 0.960 0.020
#> GSM153478     1  0.1905      0.920 0.956 0.028 0.016
#> GSM153480     2  0.0237      0.939 0.000 0.996 0.004
#> GSM153486     2  0.0237      0.939 0.000 0.996 0.004
#> GSM153487     1  0.2947      0.897 0.920 0.060 0.020
#> GSM153499     1  0.5551      0.702 0.768 0.212 0.020
#> GSM153504     1  0.0000      0.923 1.000 0.000 0.000
#> GSM153507     1  0.2031      0.919 0.952 0.032 0.016
#> GSM153404     3  0.3941      0.836 0.000 0.156 0.844
#> GSM153407     3  0.5696      0.838 0.064 0.136 0.800
#> GSM153408     3  0.3116      0.848 0.000 0.108 0.892
#> GSM153410     3  0.5497      0.679 0.000 0.292 0.708
#> GSM153411     3  0.2878      0.826 0.096 0.000 0.904
#> GSM153412     3  0.5591      0.657 0.000 0.304 0.696
#> GSM153413     3  0.4591      0.847 0.032 0.120 0.848
#> GSM153414     2  0.1289      0.934 0.000 0.968 0.032
#> GSM153415     3  0.3879      0.838 0.000 0.152 0.848
#> GSM153416     2  0.1163      0.934 0.000 0.972 0.028
#> GSM153417     3  0.2878      0.826 0.096 0.000 0.904
#> GSM153418     3  0.3941      0.836 0.000 0.156 0.844
#> GSM153420     3  0.2878      0.826 0.096 0.000 0.904
#> GSM153421     3  0.2878      0.826 0.096 0.000 0.904
#> GSM153422     3  0.2878      0.826 0.096 0.000 0.904
#> GSM153424     2  0.4137      0.855 0.096 0.872 0.032
#> GSM153430     1  0.1015      0.924 0.980 0.012 0.008
#> GSM153432     2  0.0747      0.937 0.000 0.984 0.016
#> GSM153434     2  0.7181      0.036 0.468 0.508 0.024
#> GSM153435     2  0.0424      0.939 0.000 0.992 0.008
#> GSM153436     2  0.4731      0.823 0.128 0.840 0.032
#> GSM153437     2  0.0892      0.936 0.000 0.980 0.020
#> GSM153439     2  0.1129      0.934 0.004 0.976 0.020
#> GSM153441     2  0.1129      0.935 0.004 0.976 0.020
#> GSM153442     2  0.3502      0.875 0.084 0.896 0.020
#> GSM153443     2  0.0000      0.939 0.000 1.000 0.000
#> GSM153445     2  0.0424      0.939 0.000 0.992 0.008
#> GSM153446     2  0.0237      0.939 0.000 0.996 0.004
#> GSM153449     1  0.2297      0.916 0.944 0.036 0.020
#> GSM153453     1  0.2050      0.919 0.952 0.028 0.020
#> GSM153454     1  0.0000      0.923 1.000 0.000 0.000
#> GSM153455     2  0.2297      0.919 0.036 0.944 0.020
#> GSM153462     2  0.0424      0.939 0.000 0.992 0.008
#> GSM153465     2  0.0747      0.937 0.000 0.984 0.016
#> GSM153481     2  0.0424      0.939 0.000 0.992 0.008
#> GSM153482     1  0.3415      0.877 0.900 0.080 0.020
#> GSM153483     2  0.1636      0.930 0.016 0.964 0.020
#> GSM153485     1  0.6950      0.336 0.572 0.408 0.020
#> GSM153489     1  0.2947      0.897 0.920 0.060 0.020
#> GSM153490     1  0.0000      0.923 1.000 0.000 0.000
#> GSM153491     1  0.2050      0.919 0.952 0.028 0.020
#> GSM153492     1  0.0000      0.923 1.000 0.000 0.000
#> GSM153493     1  0.0000      0.923 1.000 0.000 0.000
#> GSM153494     2  0.2527      0.911 0.044 0.936 0.020
#> GSM153495     1  0.0000      0.923 1.000 0.000 0.000
#> GSM153498     1  0.5817      0.662 0.744 0.236 0.020
#> GSM153501     1  0.0000      0.923 1.000 0.000 0.000
#> GSM153502     1  0.0237      0.924 0.996 0.000 0.004
#> GSM153505     1  0.0000      0.923 1.000 0.000 0.000
#> GSM153506     2  0.1337      0.933 0.016 0.972 0.012

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     3  0.3877     0.8078 0.044 0.096 0.852 0.008
#> GSM153406     3  0.5257     0.7592 0.060 0.212 0.728 0.000
#> GSM153419     3  0.2546     0.8000 0.028 0.060 0.912 0.000
#> GSM153423     2  0.0000     0.7459 0.000 1.000 0.000 0.000
#> GSM153425     3  0.3257     0.7592 0.000 0.004 0.844 0.152
#> GSM153427     2  0.2892     0.6888 0.036 0.896 0.068 0.000
#> GSM153428     2  0.6842     0.3348 0.288 0.612 0.072 0.028
#> GSM153429     1  0.5512    -0.2615 0.496 0.488 0.016 0.000
#> GSM153433     1  0.4134    -0.1296 0.740 0.000 0.000 0.260
#> GSM153444     2  0.0376     0.7442 0.004 0.992 0.004 0.000
#> GSM153448     2  0.4999     0.2391 0.492 0.508 0.000 0.000
#> GSM153451     2  0.0188     0.7465 0.004 0.996 0.000 0.000
#> GSM153452     2  0.2335     0.7144 0.060 0.920 0.020 0.000
#> GSM153477     2  0.4250     0.6582 0.276 0.724 0.000 0.000
#> GSM153479     1  0.4972    -0.1427 0.544 0.456 0.000 0.000
#> GSM153484     1  0.4985    -0.1737 0.532 0.468 0.000 0.000
#> GSM153488     1  0.2611     0.2915 0.896 0.008 0.000 0.096
#> GSM153496     1  0.4164    -0.1922 0.736 0.000 0.000 0.264
#> GSM153497     2  0.2011     0.7435 0.080 0.920 0.000 0.000
#> GSM153500     4  0.4661     0.8977 0.348 0.000 0.000 0.652
#> GSM153503     4  0.4713     0.9033 0.360 0.000 0.000 0.640
#> GSM153508     4  0.4418     0.6335 0.184 0.000 0.032 0.784
#> GSM153409     2  0.0895     0.7354 0.004 0.976 0.020 0.000
#> GSM153426     2  0.0707     0.7357 0.000 0.980 0.020 0.000
#> GSM153431     2  0.8109     0.1728 0.292 0.504 0.168 0.036
#> GSM153438     2  0.0000     0.7459 0.000 1.000 0.000 0.000
#> GSM153440     3  0.8516     0.2849 0.376 0.192 0.392 0.040
#> GSM153447     1  0.6801    -0.6723 0.456 0.000 0.096 0.448
#> GSM153450     2  0.0336     0.7452 0.008 0.992 0.000 0.000
#> GSM153456     2  0.0000     0.7459 0.000 1.000 0.000 0.000
#> GSM153457     2  0.0188     0.7465 0.004 0.996 0.000 0.000
#> GSM153458     2  0.0000     0.7459 0.000 1.000 0.000 0.000
#> GSM153459     2  0.0000     0.7459 0.000 1.000 0.000 0.000
#> GSM153460     2  0.0000     0.7459 0.000 1.000 0.000 0.000
#> GSM153461     2  0.4171     0.6587 0.096 0.840 0.052 0.012
#> GSM153463     4  0.5611     0.8579 0.412 0.000 0.024 0.564
#> GSM153464     2  0.3356     0.7235 0.176 0.824 0.000 0.000
#> GSM153466     1  0.5150     0.0305 0.596 0.396 0.000 0.008
#> GSM153467     2  0.4040     0.6872 0.248 0.752 0.000 0.000
#> GSM153468     1  0.4925    -0.0525 0.572 0.428 0.000 0.000
#> GSM153469     2  0.4925     0.4090 0.428 0.572 0.000 0.000
#> GSM153470     2  0.4679     0.5658 0.352 0.648 0.000 0.000
#> GSM153471     2  0.4193     0.6658 0.268 0.732 0.000 0.000
#> GSM153472     1  0.3801    -0.0441 0.780 0.000 0.000 0.220
#> GSM153473     1  0.4994    -0.7598 0.520 0.000 0.000 0.480
#> GSM153474     4  0.4401     0.8524 0.272 0.000 0.004 0.724
#> GSM153475     1  0.4304     0.2821 0.716 0.284 0.000 0.000
#> GSM153476     1  0.6277     0.0214 0.572 0.360 0.068 0.000
#> GSM153478     1  0.3450     0.1789 0.836 0.000 0.008 0.156
#> GSM153480     2  0.3444     0.7208 0.184 0.816 0.000 0.000
#> GSM153486     2  0.3873     0.7030 0.228 0.772 0.000 0.000
#> GSM153487     1  0.2011     0.2959 0.920 0.000 0.000 0.080
#> GSM153499     1  0.3333     0.4234 0.872 0.088 0.000 0.040
#> GSM153504     4  0.4877     0.8929 0.408 0.000 0.000 0.592
#> GSM153507     1  0.3688     0.0236 0.792 0.000 0.000 0.208
#> GSM153404     3  0.4206     0.8131 0.048 0.136 0.816 0.000
#> GSM153407     3  0.7861     0.5661 0.152 0.284 0.532 0.032
#> GSM153408     3  0.4015     0.8152 0.052 0.116 0.832 0.000
#> GSM153410     3  0.5648     0.7113 0.064 0.252 0.684 0.000
#> GSM153411     3  0.3123     0.7573 0.000 0.000 0.844 0.156
#> GSM153412     3  0.5687     0.7135 0.068 0.248 0.684 0.000
#> GSM153413     3  0.4541     0.8074 0.084 0.100 0.812 0.004
#> GSM153414     2  0.4360     0.6360 0.140 0.816 0.032 0.012
#> GSM153415     3  0.4336     0.8123 0.060 0.128 0.812 0.000
#> GSM153416     2  0.0188     0.7456 0.004 0.996 0.000 0.000
#> GSM153417     3  0.3123     0.7573 0.000 0.000 0.844 0.156
#> GSM153418     3  0.4234     0.8126 0.052 0.132 0.816 0.000
#> GSM153420     3  0.3123     0.7573 0.000 0.000 0.844 0.156
#> GSM153421     3  0.3123     0.7573 0.000 0.000 0.844 0.156
#> GSM153422     3  0.3123     0.7573 0.000 0.000 0.844 0.156
#> GSM153424     2  0.6641     0.3497 0.296 0.620 0.052 0.032
#> GSM153430     1  0.4511    -0.1551 0.724 0.000 0.008 0.268
#> GSM153432     2  0.4866     0.4693 0.404 0.596 0.000 0.000
#> GSM153434     1  0.4837     0.4601 0.788 0.160 0.028 0.024
#> GSM153435     2  0.4040     0.6866 0.248 0.752 0.000 0.000
#> GSM153436     2  0.5838     0.1504 0.412 0.560 0.016 0.012
#> GSM153437     2  0.1118     0.7486 0.036 0.964 0.000 0.000
#> GSM153439     1  0.5167    -0.2359 0.508 0.488 0.004 0.000
#> GSM153441     1  0.5165    -0.2180 0.512 0.484 0.000 0.004
#> GSM153442     1  0.5378    -0.1001 0.540 0.448 0.000 0.012
#> GSM153443     2  0.3486     0.7188 0.188 0.812 0.000 0.000
#> GSM153445     2  0.3837     0.7017 0.224 0.776 0.000 0.000
#> GSM153446     2  0.3172     0.7287 0.160 0.840 0.000 0.000
#> GSM153449     1  0.2999     0.2049 0.864 0.004 0.000 0.132
#> GSM153453     1  0.3356     0.0775 0.824 0.000 0.000 0.176
#> GSM153454     4  0.4761     0.9015 0.372 0.000 0.000 0.628
#> GSM153455     1  0.4905     0.1112 0.632 0.364 0.004 0.000
#> GSM153462     2  0.3975     0.6946 0.240 0.760 0.000 0.000
#> GSM153465     2  0.4193     0.6688 0.268 0.732 0.000 0.000
#> GSM153481     2  0.3907     0.6965 0.232 0.768 0.000 0.000
#> GSM153482     1  0.1576     0.3326 0.948 0.004 0.000 0.048
#> GSM153483     2  0.4994     0.2791 0.480 0.520 0.000 0.000
#> GSM153485     1  0.2773     0.4589 0.880 0.116 0.000 0.004
#> GSM153489     1  0.2831     0.2347 0.876 0.004 0.000 0.120
#> GSM153490     4  0.4907     0.8881 0.420 0.000 0.000 0.580
#> GSM153491     1  0.3801    -0.0478 0.780 0.000 0.000 0.220
#> GSM153492     4  0.4977     0.8508 0.460 0.000 0.000 0.540
#> GSM153493     4  0.4761     0.9021 0.372 0.000 0.000 0.628
#> GSM153494     1  0.5281    -0.1667 0.528 0.464 0.000 0.008
#> GSM153495     4  0.4933     0.8767 0.432 0.000 0.000 0.568
#> GSM153498     1  0.2485     0.4132 0.916 0.064 0.004 0.016
#> GSM153501     4  0.4477     0.8852 0.312 0.000 0.000 0.688
#> GSM153502     4  0.4941     0.8778 0.436 0.000 0.000 0.564
#> GSM153505     4  0.4543     0.8907 0.324 0.000 0.000 0.676
#> GSM153506     2  0.4382     0.6403 0.296 0.704 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     3  0.6222     0.7612 0.044 0.068 0.576 0.000 0.312
#> GSM153406     3  0.7173     0.7253 0.068 0.128 0.500 0.000 0.304
#> GSM153419     3  0.5268     0.7499 0.028 0.028 0.640 0.000 0.304
#> GSM153423     2  0.0000     0.7071 0.000 1.000 0.000 0.000 0.000
#> GSM153425     3  0.0000     0.6516 0.000 0.000 1.000 0.000 0.000
#> GSM153427     2  0.3012     0.6357 0.036 0.860 0.000 0.000 0.104
#> GSM153428     2  0.7832     0.0451 0.308 0.428 0.032 0.028 0.204
#> GSM153429     1  0.4520     0.4419 0.684 0.284 0.000 0.000 0.032
#> GSM153433     1  0.5851     0.1201 0.588 0.000 0.000 0.272 0.140
#> GSM153444     2  0.0865     0.6972 0.004 0.972 0.000 0.000 0.024
#> GSM153448     1  0.4252     0.4688 0.700 0.280 0.000 0.000 0.020
#> GSM153451     2  0.0000     0.7071 0.000 1.000 0.000 0.000 0.000
#> GSM153452     2  0.2871     0.6366 0.088 0.872 0.000 0.000 0.040
#> GSM153477     2  0.4649     0.3545 0.404 0.580 0.000 0.000 0.016
#> GSM153479     1  0.4132     0.4909 0.720 0.260 0.000 0.000 0.020
#> GSM153484     1  0.3988     0.4976 0.732 0.252 0.000 0.000 0.016
#> GSM153488     1  0.3909     0.4694 0.800 0.004 0.000 0.148 0.048
#> GSM153496     1  0.5382    -0.0283 0.580 0.000 0.000 0.352 0.068
#> GSM153497     2  0.1628     0.6967 0.056 0.936 0.000 0.000 0.008
#> GSM153500     4  0.4909     0.6645 0.164 0.000 0.000 0.716 0.120
#> GSM153503     4  0.4179     0.7087 0.152 0.000 0.000 0.776 0.072
#> GSM153508     5  0.5046     0.0000 0.032 0.000 0.000 0.468 0.500
#> GSM153409     2  0.1701     0.6785 0.016 0.936 0.000 0.000 0.048
#> GSM153426     2  0.1628     0.6773 0.008 0.936 0.000 0.000 0.056
#> GSM153431     2  0.8671    -0.0531 0.316 0.356 0.080 0.044 0.204
#> GSM153438     2  0.0000     0.7071 0.000 1.000 0.000 0.000 0.000
#> GSM153440     1  0.8956    -0.0360 0.352 0.180 0.204 0.028 0.236
#> GSM153447     4  0.7234     0.3543 0.236 0.000 0.056 0.512 0.196
#> GSM153450     2  0.0451     0.7035 0.008 0.988 0.000 0.000 0.004
#> GSM153456     2  0.0000     0.7071 0.000 1.000 0.000 0.000 0.000
#> GSM153457     2  0.0000     0.7071 0.000 1.000 0.000 0.000 0.000
#> GSM153458     2  0.0000     0.7071 0.000 1.000 0.000 0.000 0.000
#> GSM153459     2  0.0162     0.7064 0.000 0.996 0.000 0.000 0.004
#> GSM153460     2  0.0000     0.7071 0.000 1.000 0.000 0.000 0.000
#> GSM153461     2  0.5487     0.4865 0.108 0.684 0.000 0.016 0.192
#> GSM153463     4  0.6216     0.5673 0.196 0.000 0.036 0.632 0.136
#> GSM153464     2  0.3562     0.6308 0.196 0.788 0.000 0.000 0.016
#> GSM153466     1  0.4204     0.5414 0.752 0.216 0.000 0.020 0.012
#> GSM153467     2  0.4384     0.4997 0.324 0.660 0.000 0.000 0.016
#> GSM153468     1  0.3671     0.5233 0.756 0.236 0.000 0.000 0.008
#> GSM153469     1  0.4588     0.2515 0.604 0.380 0.000 0.000 0.016
#> GSM153470     1  0.4731    -0.0212 0.528 0.456 0.000 0.000 0.016
#> GSM153471     2  0.4649     0.3558 0.404 0.580 0.000 0.000 0.016
#> GSM153472     1  0.5124     0.1739 0.644 0.000 0.000 0.288 0.068
#> GSM153473     4  0.5487     0.5863 0.280 0.000 0.000 0.620 0.100
#> GSM153474     4  0.4334     0.4068 0.080 0.000 0.000 0.764 0.156
#> GSM153475     1  0.3277     0.5868 0.832 0.148 0.000 0.012 0.008
#> GSM153476     1  0.4686     0.5341 0.736 0.160 0.000 0.000 0.104
#> GSM153478     1  0.5560     0.2957 0.660 0.004 0.000 0.180 0.156
#> GSM153480     2  0.3527     0.6338 0.192 0.792 0.000 0.000 0.016
#> GSM153486     2  0.4014     0.5874 0.256 0.728 0.000 0.000 0.016
#> GSM153487     1  0.3780     0.4798 0.808 0.000 0.000 0.132 0.060
#> GSM153499     1  0.2483     0.5956 0.908 0.048 0.000 0.028 0.016
#> GSM153504     4  0.4204     0.7294 0.196 0.000 0.000 0.756 0.048
#> GSM153507     1  0.4161     0.4159 0.752 0.000 0.000 0.208 0.040
#> GSM153404     3  0.6546     0.7680 0.052 0.088 0.560 0.000 0.300
#> GSM153407     2  0.8959    -0.1526 0.216 0.312 0.252 0.020 0.200
#> GSM153408     3  0.6460     0.7709 0.056 0.076 0.568 0.000 0.300
#> GSM153410     3  0.7319     0.7089 0.072 0.140 0.484 0.000 0.304
#> GSM153411     3  0.0000     0.6516 0.000 0.000 1.000 0.000 0.000
#> GSM153412     3  0.7349     0.7028 0.072 0.144 0.480 0.000 0.304
#> GSM153413     3  0.6445     0.7652 0.068 0.060 0.564 0.000 0.308
#> GSM153414     2  0.6006     0.3550 0.216 0.612 0.000 0.008 0.164
#> GSM153415     3  0.6532     0.7683 0.060 0.076 0.560 0.000 0.304
#> GSM153416     2  0.0162     0.7064 0.000 0.996 0.000 0.000 0.004
#> GSM153417     3  0.0000     0.6516 0.000 0.000 1.000 0.000 0.000
#> GSM153418     3  0.6566     0.7691 0.060 0.080 0.560 0.000 0.300
#> GSM153420     3  0.0000     0.6516 0.000 0.000 1.000 0.000 0.000
#> GSM153421     3  0.0000     0.6516 0.000 0.000 1.000 0.000 0.000
#> GSM153422     3  0.0000     0.6516 0.000 0.000 1.000 0.000 0.000
#> GSM153424     2  0.7648     0.0255 0.328 0.432 0.032 0.020 0.188
#> GSM153430     1  0.6022     0.0180 0.564 0.000 0.000 0.280 0.156
#> GSM153432     1  0.4630     0.1885 0.588 0.396 0.000 0.000 0.016
#> GSM153434     1  0.5878     0.5200 0.684 0.088 0.000 0.064 0.164
#> GSM153435     2  0.4384     0.5061 0.324 0.660 0.000 0.000 0.016
#> GSM153436     1  0.6612     0.1700 0.452 0.408 0.000 0.024 0.116
#> GSM153437     2  0.2172     0.6893 0.076 0.908 0.000 0.000 0.016
#> GSM153439     1  0.4063     0.4645 0.708 0.280 0.000 0.000 0.012
#> GSM153441     1  0.4734     0.4246 0.652 0.312 0.000 0.000 0.036
#> GSM153442     1  0.5407     0.4820 0.656 0.264 0.000 0.016 0.064
#> GSM153443     2  0.3878     0.6005 0.236 0.748 0.000 0.000 0.016
#> GSM153445     2  0.4090     0.5726 0.268 0.716 0.000 0.000 0.016
#> GSM153446     2  0.3264     0.6511 0.164 0.820 0.000 0.000 0.016
#> GSM153449     1  0.4059     0.4288 0.776 0.000 0.000 0.172 0.052
#> GSM153453     1  0.4497     0.3464 0.732 0.000 0.000 0.208 0.060
#> GSM153454     4  0.3723     0.7277 0.152 0.000 0.000 0.804 0.044
#> GSM153455     1  0.3724     0.5599 0.776 0.204 0.000 0.000 0.020
#> GSM153462     2  0.4309     0.5289 0.308 0.676 0.000 0.000 0.016
#> GSM153465     2  0.4640     0.3344 0.400 0.584 0.000 0.000 0.016
#> GSM153481     2  0.4206     0.5525 0.288 0.696 0.000 0.000 0.016
#> GSM153482     1  0.3442     0.4987 0.836 0.000 0.000 0.104 0.060
#> GSM153483     1  0.4462     0.4164 0.672 0.308 0.000 0.004 0.016
#> GSM153485     1  0.2800     0.6059 0.888 0.072 0.000 0.016 0.024
#> GSM153489     1  0.4418     0.4301 0.756 0.004 0.000 0.180 0.060
#> GSM153490     4  0.3876     0.7308 0.192 0.000 0.000 0.776 0.032
#> GSM153491     1  0.5159     0.1826 0.644 0.000 0.000 0.284 0.072
#> GSM153492     4  0.4649     0.7028 0.220 0.000 0.000 0.716 0.064
#> GSM153493     4  0.4864     0.6701 0.164 0.000 0.000 0.720 0.116
#> GSM153494     1  0.4394     0.4962 0.716 0.256 0.000 0.012 0.016
#> GSM153495     4  0.4065     0.7253 0.180 0.000 0.000 0.772 0.048
#> GSM153498     1  0.3377     0.5597 0.864 0.036 0.000 0.060 0.040
#> GSM153501     4  0.4591     0.6196 0.132 0.000 0.000 0.748 0.120
#> GSM153502     4  0.4010     0.7235 0.208 0.000 0.000 0.760 0.032
#> GSM153505     4  0.4334     0.6735 0.140 0.000 0.000 0.768 0.092
#> GSM153506     2  0.4702     0.2862 0.432 0.552 0.000 0.000 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     3  0.4635    0.52064 0.008 0.024 0.492 0.000 0.476 0.000
#> GSM153406     3  0.5883    0.58755 0.036 0.088 0.472 0.000 0.404 0.000
#> GSM153419     5  0.4732   -0.62217 0.020 0.016 0.476 0.000 0.488 0.000
#> GSM153423     2  0.0260    0.65486 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM153425     5  0.0000    0.74423 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153427     2  0.3150    0.56073 0.036 0.840 0.112 0.000 0.000 0.012
#> GSM153428     2  0.8065    0.07693 0.196 0.380 0.292 0.020 0.044 0.068
#> GSM153429     1  0.2652    0.65157 0.868 0.104 0.020 0.000 0.000 0.008
#> GSM153433     4  0.7291    0.03813 0.336 0.000 0.220 0.336 0.000 0.108
#> GSM153444     2  0.0748    0.64543 0.004 0.976 0.016 0.000 0.000 0.004
#> GSM153448     1  0.2742    0.64860 0.852 0.128 0.008 0.000 0.000 0.012
#> GSM153451     2  0.0260    0.65486 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM153452     2  0.1492    0.63005 0.036 0.940 0.024 0.000 0.000 0.000
#> GSM153477     1  0.4284    0.11726 0.588 0.392 0.016 0.000 0.000 0.004
#> GSM153479     1  0.2264    0.65817 0.888 0.096 0.012 0.000 0.000 0.004
#> GSM153484     1  0.2110    0.66057 0.900 0.084 0.012 0.000 0.000 0.004
#> GSM153488     1  0.5075    0.52470 0.672 0.004 0.012 0.200 0.000 0.112
#> GSM153496     1  0.6107    0.13110 0.444 0.000 0.016 0.372 0.000 0.168
#> GSM153497     2  0.2306    0.63212 0.092 0.888 0.016 0.000 0.000 0.004
#> GSM153500     4  0.3725    0.49707 0.008 0.000 0.000 0.676 0.000 0.316
#> GSM153503     4  0.2957    0.61342 0.016 0.000 0.008 0.836 0.000 0.140
#> GSM153508     6  0.4994    0.00000 0.004 0.000 0.228 0.120 0.000 0.648
#> GSM153409     2  0.1226    0.62644 0.004 0.952 0.040 0.000 0.000 0.004
#> GSM153426     2  0.1296    0.62518 0.004 0.948 0.044 0.000 0.000 0.004
#> GSM153431     2  0.8719   -0.00941 0.196 0.316 0.300 0.076 0.048 0.064
#> GSM153438     2  0.0260    0.65486 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM153440     3  0.9133   -0.12609 0.204 0.232 0.308 0.052 0.132 0.072
#> GSM153447     4  0.6681    0.29855 0.032 0.012 0.280 0.548 0.048 0.080
#> GSM153450     2  0.0405    0.65259 0.008 0.988 0.004 0.000 0.000 0.000
#> GSM153456     2  0.0260    0.65486 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM153457     2  0.0260    0.65486 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM153458     2  0.0146    0.65328 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM153459     2  0.0260    0.65486 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM153460     2  0.0260    0.65486 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM153461     2  0.5647    0.30392 0.064 0.584 0.296 0.000 0.000 0.056
#> GSM153463     4  0.5706    0.40215 0.028 0.000 0.228 0.640 0.032 0.072
#> GSM153464     2  0.3990    0.47689 0.304 0.676 0.016 0.000 0.000 0.004
#> GSM153466     1  0.2713    0.67763 0.884 0.068 0.008 0.016 0.000 0.024
#> GSM153467     2  0.4466    0.17083 0.476 0.500 0.020 0.000 0.000 0.004
#> GSM153468     1  0.1900    0.67174 0.916 0.068 0.008 0.000 0.000 0.008
#> GSM153469     1  0.3086    0.59652 0.820 0.156 0.020 0.000 0.000 0.004
#> GSM153470     1  0.3648    0.46768 0.740 0.240 0.016 0.000 0.000 0.004
#> GSM153471     1  0.4293    0.10610 0.584 0.396 0.016 0.000 0.000 0.004
#> GSM153472     1  0.6172    0.23038 0.476 0.000 0.024 0.336 0.000 0.164
#> GSM153473     4  0.4828    0.52506 0.104 0.000 0.080 0.736 0.000 0.080
#> GSM153474     4  0.4190    0.39520 0.012 0.000 0.016 0.668 0.000 0.304
#> GSM153475     1  0.3018    0.67351 0.868 0.028 0.004 0.036 0.000 0.064
#> GSM153476     1  0.3633    0.66308 0.824 0.064 0.076 0.000 0.000 0.036
#> GSM153478     1  0.7331    0.20282 0.448 0.008 0.224 0.192 0.000 0.128
#> GSM153480     2  0.3990    0.47666 0.304 0.676 0.016 0.000 0.000 0.004
#> GSM153486     2  0.4406    0.39791 0.344 0.624 0.008 0.000 0.000 0.024
#> GSM153487     1  0.4833    0.54353 0.688 0.000 0.008 0.172 0.000 0.132
#> GSM153499     1  0.1686    0.68078 0.940 0.016 0.004 0.024 0.000 0.016
#> GSM153504     4  0.2789    0.62472 0.044 0.000 0.004 0.864 0.000 0.088
#> GSM153507     1  0.5106    0.49098 0.644 0.000 0.016 0.248 0.000 0.092
#> GSM153404     3  0.5128    0.58235 0.024 0.036 0.472 0.000 0.468 0.000
#> GSM153407     2  0.8375    0.00963 0.160 0.348 0.300 0.012 0.116 0.064
#> GSM153408     5  0.5073   -0.66825 0.028 0.028 0.472 0.000 0.472 0.000
#> GSM153410     3  0.5986    0.58227 0.044 0.088 0.472 0.000 0.396 0.000
#> GSM153411     5  0.0000    0.74423 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153412     3  0.5986    0.58227 0.044 0.088 0.472 0.000 0.396 0.000
#> GSM153413     3  0.5073    0.58137 0.028 0.028 0.476 0.000 0.468 0.000
#> GSM153414     2  0.6240    0.27079 0.140 0.544 0.260 0.000 0.000 0.056
#> GSM153415     3  0.5134    0.58734 0.028 0.032 0.472 0.000 0.468 0.000
#> GSM153416     2  0.0363    0.65499 0.012 0.988 0.000 0.000 0.000 0.000
#> GSM153417     5  0.0000    0.74423 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153418     3  0.5134    0.58734 0.028 0.032 0.472 0.000 0.468 0.000
#> GSM153420     5  0.0000    0.74423 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153421     5  0.0000    0.74423 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153422     5  0.0000    0.74423 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153424     2  0.7981    0.08053 0.216 0.380 0.284 0.020 0.036 0.064
#> GSM153430     1  0.7753   -0.09891 0.312 0.008 0.260 0.272 0.000 0.148
#> GSM153432     1  0.3245    0.55657 0.796 0.184 0.016 0.000 0.000 0.004
#> GSM153434     1  0.6820    0.39916 0.544 0.032 0.232 0.068 0.000 0.124
#> GSM153435     2  0.4465    0.19265 0.472 0.504 0.020 0.000 0.000 0.004
#> GSM153436     2  0.7659   -0.04382 0.332 0.356 0.180 0.024 0.000 0.108
#> GSM153437     2  0.2886    0.61274 0.144 0.836 0.016 0.000 0.000 0.004
#> GSM153439     1  0.2408    0.65154 0.876 0.108 0.012 0.000 0.000 0.004
#> GSM153441     1  0.3774    0.63674 0.804 0.116 0.056 0.000 0.000 0.024
#> GSM153442     1  0.4371    0.62849 0.780 0.084 0.088 0.008 0.000 0.040
#> GSM153443     2  0.4199    0.40470 0.360 0.620 0.016 0.000 0.000 0.004
#> GSM153445     2  0.4317    0.32418 0.408 0.572 0.016 0.000 0.000 0.004
#> GSM153446     2  0.3833    0.51055 0.272 0.708 0.016 0.000 0.000 0.004
#> GSM153449     1  0.5416    0.43202 0.604 0.004 0.012 0.276 0.000 0.104
#> GSM153453     1  0.5535    0.41301 0.584 0.000 0.008 0.248 0.000 0.160
#> GSM153454     4  0.2925    0.63028 0.008 0.000 0.052 0.860 0.000 0.080
#> GSM153455     1  0.2860    0.67971 0.876 0.040 0.008 0.012 0.000 0.064
#> GSM153462     2  0.4384    0.23043 0.460 0.520 0.016 0.000 0.000 0.004
#> GSM153465     1  0.4404    0.15439 0.576 0.400 0.016 0.000 0.000 0.008
#> GSM153481     2  0.4356    0.28030 0.432 0.548 0.016 0.000 0.000 0.004
#> GSM153482     1  0.4656    0.58426 0.732 0.004 0.016 0.128 0.000 0.120
#> GSM153483     1  0.2500    0.63593 0.868 0.116 0.012 0.000 0.000 0.004
#> GSM153485     1  0.3174    0.65796 0.848 0.012 0.004 0.040 0.000 0.096
#> GSM153489     1  0.5160    0.43884 0.604 0.000 0.004 0.284 0.000 0.108
#> GSM153490     4  0.2291    0.63286 0.044 0.000 0.012 0.904 0.000 0.040
#> GSM153491     1  0.6032    0.25696 0.496 0.000 0.016 0.316 0.000 0.172
#> GSM153492     4  0.3785    0.61073 0.040 0.000 0.036 0.804 0.000 0.120
#> GSM153493     4  0.3938    0.50273 0.000 0.000 0.016 0.660 0.000 0.324
#> GSM153494     1  0.2162    0.65951 0.896 0.088 0.012 0.004 0.000 0.000
#> GSM153495     4  0.2507    0.63186 0.016 0.000 0.056 0.892 0.000 0.036
#> GSM153498     1  0.4069    0.62044 0.772 0.008 0.004 0.072 0.000 0.144
#> GSM153501     4  0.3499    0.48421 0.004 0.000 0.004 0.728 0.000 0.264
#> GSM153502     4  0.2608    0.62452 0.048 0.000 0.000 0.872 0.000 0.080
#> GSM153505     4  0.3200    0.55530 0.000 0.000 0.016 0.788 0.000 0.196
#> GSM153506     1  0.4245    0.17409 0.604 0.376 0.016 0.000 0.000 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> SD:kmeans 103          0.46899 2
#> SD:kmeans 103          0.06320 3
#> SD:kmeans  65          0.00828 4
#> SD:kmeans  64          0.01663 5
#> SD:kmeans  64          0.03676 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.707           0.871       0.942         0.5031 0.496   0.496
#> 3 3 0.608           0.741       0.878         0.3192 0.717   0.492
#> 4 4 0.444           0.533       0.715         0.1230 0.873   0.646
#> 5 5 0.468           0.358       0.614         0.0647 0.943   0.795
#> 6 6 0.506           0.280       0.562         0.0396 0.895   0.615

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     1  0.1843      0.918 0.972 0.028
#> GSM153406     2  0.0000      0.943 0.000 1.000
#> GSM153419     1  0.0000      0.929 1.000 0.000
#> GSM153423     2  0.0000      0.943 0.000 1.000
#> GSM153425     1  0.0000      0.929 1.000 0.000
#> GSM153427     2  0.0000      0.943 0.000 1.000
#> GSM153428     1  0.2948      0.904 0.948 0.052
#> GSM153429     2  0.2236      0.923 0.036 0.964
#> GSM153433     1  0.0000      0.929 1.000 0.000
#> GSM153444     2  0.0000      0.943 0.000 1.000
#> GSM153448     2  0.5408      0.851 0.124 0.876
#> GSM153451     2  0.0000      0.943 0.000 1.000
#> GSM153452     2  0.4562      0.879 0.096 0.904
#> GSM153477     2  0.0000      0.943 0.000 1.000
#> GSM153479     2  0.6973      0.778 0.188 0.812
#> GSM153484     2  0.4022      0.892 0.080 0.920
#> GSM153488     1  0.6148      0.812 0.848 0.152
#> GSM153496     1  0.0000      0.929 1.000 0.000
#> GSM153497     2  0.0000      0.943 0.000 1.000
#> GSM153500     1  0.0000      0.929 1.000 0.000
#> GSM153503     1  0.0000      0.929 1.000 0.000
#> GSM153508     1  0.3114      0.901 0.944 0.056
#> GSM153409     2  0.0000      0.943 0.000 1.000
#> GSM153426     2  0.0000      0.943 0.000 1.000
#> GSM153431     1  0.5737      0.829 0.864 0.136
#> GSM153438     2  0.0000      0.943 0.000 1.000
#> GSM153440     1  0.0000      0.929 1.000 0.000
#> GSM153447     1  0.0000      0.929 1.000 0.000
#> GSM153450     2  0.0000      0.943 0.000 1.000
#> GSM153456     2  0.0000      0.943 0.000 1.000
#> GSM153457     2  0.0000      0.943 0.000 1.000
#> GSM153458     2  0.0000      0.943 0.000 1.000
#> GSM153459     2  0.0000      0.943 0.000 1.000
#> GSM153460     2  0.0000      0.943 0.000 1.000
#> GSM153461     2  0.6531      0.802 0.168 0.832
#> GSM153463     1  0.0000      0.929 1.000 0.000
#> GSM153464     2  0.0000      0.943 0.000 1.000
#> GSM153466     2  0.9580      0.392 0.380 0.620
#> GSM153467     2  0.0000      0.943 0.000 1.000
#> GSM153468     2  0.4431      0.881 0.092 0.908
#> GSM153469     2  0.0000      0.943 0.000 1.000
#> GSM153470     2  0.0000      0.943 0.000 1.000
#> GSM153471     2  0.0000      0.943 0.000 1.000
#> GSM153472     1  0.0376      0.928 0.996 0.004
#> GSM153473     1  0.0000      0.929 1.000 0.000
#> GSM153474     1  0.0000      0.929 1.000 0.000
#> GSM153475     1  0.9983      0.116 0.524 0.476
#> GSM153476     2  0.8713      0.605 0.292 0.708
#> GSM153478     1  0.0000      0.929 1.000 0.000
#> GSM153480     2  0.0000      0.943 0.000 1.000
#> GSM153486     2  0.0000      0.943 0.000 1.000
#> GSM153487     1  0.2603      0.910 0.956 0.044
#> GSM153499     2  0.8081      0.681 0.248 0.752
#> GSM153504     1  0.0000      0.929 1.000 0.000
#> GSM153507     1  0.0938      0.925 0.988 0.012
#> GSM153404     2  0.2423      0.920 0.040 0.960
#> GSM153407     1  0.1414      0.922 0.980 0.020
#> GSM153408     2  0.7219      0.765 0.200 0.800
#> GSM153410     2  0.0000      0.943 0.000 1.000
#> GSM153411     1  0.0000      0.929 1.000 0.000
#> GSM153412     2  0.0000      0.943 0.000 1.000
#> GSM153413     1  0.5737      0.828 0.864 0.136
#> GSM153414     2  0.7528      0.737 0.216 0.784
#> GSM153415     2  0.7219      0.763 0.200 0.800
#> GSM153416     2  0.0000      0.943 0.000 1.000
#> GSM153417     1  0.0000      0.929 1.000 0.000
#> GSM153418     2  0.0938      0.937 0.012 0.988
#> GSM153420     1  0.0000      0.929 1.000 0.000
#> GSM153421     1  0.0000      0.929 1.000 0.000
#> GSM153422     1  0.0000      0.929 1.000 0.000
#> GSM153424     1  0.5059      0.855 0.888 0.112
#> GSM153430     1  0.0000      0.929 1.000 0.000
#> GSM153432     2  0.0000      0.943 0.000 1.000
#> GSM153434     1  0.3114      0.901 0.944 0.056
#> GSM153435     2  0.0000      0.943 0.000 1.000
#> GSM153436     1  0.3114      0.901 0.944 0.056
#> GSM153437     2  0.0000      0.943 0.000 1.000
#> GSM153439     2  0.0000      0.943 0.000 1.000
#> GSM153441     2  0.9460      0.437 0.364 0.636
#> GSM153442     1  0.9635      0.387 0.612 0.388
#> GSM153443     2  0.0000      0.943 0.000 1.000
#> GSM153445     2  0.0000      0.943 0.000 1.000
#> GSM153446     2  0.0000      0.943 0.000 1.000
#> GSM153449     1  0.0672      0.927 0.992 0.008
#> GSM153453     1  0.0000      0.929 1.000 0.000
#> GSM153454     1  0.0000      0.929 1.000 0.000
#> GSM153455     1  0.9866      0.261 0.568 0.432
#> GSM153462     2  0.0000      0.943 0.000 1.000
#> GSM153465     2  0.0000      0.943 0.000 1.000
#> GSM153481     2  0.0000      0.943 0.000 1.000
#> GSM153482     1  0.4431      0.873 0.908 0.092
#> GSM153483     2  0.0938      0.937 0.012 0.988
#> GSM153485     1  0.9522      0.438 0.628 0.372
#> GSM153489     1  0.6623      0.787 0.828 0.172
#> GSM153490     1  0.0000      0.929 1.000 0.000
#> GSM153491     1  0.0000      0.929 1.000 0.000
#> GSM153492     1  0.0000      0.929 1.000 0.000
#> GSM153493     1  0.0000      0.929 1.000 0.000
#> GSM153494     2  0.4690      0.876 0.100 0.900
#> GSM153495     1  0.0000      0.929 1.000 0.000
#> GSM153498     1  0.9922      0.214 0.552 0.448
#> GSM153501     1  0.0000      0.929 1.000 0.000
#> GSM153502     1  0.0000      0.929 1.000 0.000
#> GSM153505     1  0.0000      0.929 1.000 0.000
#> GSM153506     2  0.0000      0.943 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     3  0.0000     0.8616 0.000 0.000 1.000
#> GSM153406     3  0.1163     0.8576 0.000 0.028 0.972
#> GSM153419     3  0.0000     0.8616 0.000 0.000 1.000
#> GSM153423     2  0.0000     0.8986 0.000 1.000 0.000
#> GSM153425     3  0.0424     0.8616 0.008 0.000 0.992
#> GSM153427     3  0.3412     0.8100 0.000 0.124 0.876
#> GSM153428     3  0.2663     0.8434 0.044 0.024 0.932
#> GSM153429     2  0.8886     0.4272 0.188 0.572 0.240
#> GSM153433     1  0.4399     0.7199 0.812 0.000 0.188
#> GSM153444     2  0.4555     0.7057 0.000 0.800 0.200
#> GSM153448     2  0.7618     0.4737 0.304 0.628 0.068
#> GSM153451     2  0.0237     0.8986 0.000 0.996 0.004
#> GSM153452     3  0.6659     0.1944 0.008 0.460 0.532
#> GSM153477     2  0.1453     0.8924 0.024 0.968 0.008
#> GSM153479     2  0.6952    -0.0166 0.480 0.504 0.016
#> GSM153484     2  0.6750     0.4530 0.336 0.640 0.024
#> GSM153488     1  0.4413     0.7838 0.860 0.036 0.104
#> GSM153496     1  0.0237     0.8366 0.996 0.000 0.004
#> GSM153497     2  0.0237     0.8983 0.004 0.996 0.000
#> GSM153500     1  0.0424     0.8368 0.992 0.000 0.008
#> GSM153503     1  0.0592     0.8363 0.988 0.000 0.012
#> GSM153508     1  0.0000     0.8357 1.000 0.000 0.000
#> GSM153409     2  0.3340     0.8090 0.000 0.880 0.120
#> GSM153426     2  0.1529     0.8801 0.000 0.960 0.040
#> GSM153431     3  0.5377     0.7747 0.112 0.068 0.820
#> GSM153438     2  0.0237     0.8986 0.000 0.996 0.004
#> GSM153440     3  0.0892     0.8579 0.020 0.000 0.980
#> GSM153447     3  0.5327     0.5821 0.272 0.000 0.728
#> GSM153450     2  0.1411     0.8833 0.000 0.964 0.036
#> GSM153456     2  0.0237     0.8986 0.000 0.996 0.004
#> GSM153457     2  0.0237     0.8986 0.000 0.996 0.004
#> GSM153458     2  0.0237     0.8986 0.000 0.996 0.004
#> GSM153459     2  0.0237     0.8986 0.000 0.996 0.004
#> GSM153460     2  0.0237     0.8986 0.000 0.996 0.004
#> GSM153461     3  0.6247     0.4339 0.004 0.376 0.620
#> GSM153463     1  0.4750     0.6845 0.784 0.000 0.216
#> GSM153464     2  0.0000     0.8986 0.000 1.000 0.000
#> GSM153466     1  0.7295     0.0279 0.488 0.484 0.028
#> GSM153467     2  0.0592     0.8964 0.012 0.988 0.000
#> GSM153468     1  0.6683     0.0364 0.500 0.492 0.008
#> GSM153469     2  0.1964     0.8767 0.056 0.944 0.000
#> GSM153470     2  0.2486     0.8730 0.060 0.932 0.008
#> GSM153471     2  0.0892     0.8956 0.020 0.980 0.000
#> GSM153472     1  0.0475     0.8364 0.992 0.004 0.004
#> GSM153473     1  0.2537     0.8083 0.920 0.000 0.080
#> GSM153474     1  0.0424     0.8367 0.992 0.000 0.008
#> GSM153475     1  0.7983     0.5956 0.648 0.228 0.124
#> GSM153476     3  0.8873     0.4977 0.200 0.224 0.576
#> GSM153478     1  0.5291     0.6095 0.732 0.000 0.268
#> GSM153480     2  0.0000     0.8986 0.000 1.000 0.000
#> GSM153486     2  0.1399     0.8922 0.028 0.968 0.004
#> GSM153487     1  0.0592     0.8353 0.988 0.012 0.000
#> GSM153499     1  0.4033     0.7716 0.856 0.136 0.008
#> GSM153504     1  0.0424     0.8367 0.992 0.000 0.008
#> GSM153507     1  0.0237     0.8366 0.996 0.000 0.004
#> GSM153404     3  0.0592     0.8607 0.000 0.012 0.988
#> GSM153407     3  0.0475     0.8625 0.004 0.004 0.992
#> GSM153408     3  0.0424     0.8615 0.000 0.008 0.992
#> GSM153410     3  0.2711     0.8321 0.000 0.088 0.912
#> GSM153411     3  0.0592     0.8609 0.012 0.000 0.988
#> GSM153412     3  0.2796     0.8301 0.000 0.092 0.908
#> GSM153413     3  0.0000     0.8616 0.000 0.000 1.000
#> GSM153414     3  0.7451     0.3565 0.040 0.396 0.564
#> GSM153415     3  0.0237     0.8619 0.000 0.004 0.996
#> GSM153416     2  0.0237     0.8986 0.000 0.996 0.004
#> GSM153417     3  0.0592     0.8609 0.012 0.000 0.988
#> GSM153418     3  0.0747     0.8601 0.000 0.016 0.984
#> GSM153420     3  0.0592     0.8609 0.012 0.000 0.988
#> GSM153421     3  0.0592     0.8609 0.012 0.000 0.988
#> GSM153422     3  0.0592     0.8609 0.012 0.000 0.988
#> GSM153424     3  0.7232     0.6713 0.172 0.116 0.712
#> GSM153430     1  0.4504     0.7121 0.804 0.000 0.196
#> GSM153432     2  0.1620     0.8918 0.024 0.964 0.012
#> GSM153434     1  0.9478     0.2107 0.468 0.196 0.336
#> GSM153435     2  0.0000     0.8986 0.000 1.000 0.000
#> GSM153436     3  0.9683     0.0458 0.368 0.216 0.416
#> GSM153437     2  0.0237     0.8986 0.000 0.996 0.004
#> GSM153439     2  0.7226     0.6123 0.228 0.692 0.080
#> GSM153441     2  0.9298     0.3303 0.248 0.524 0.228
#> GSM153442     1  0.8070     0.0527 0.472 0.464 0.064
#> GSM153443     2  0.0237     0.8983 0.004 0.996 0.000
#> GSM153445     2  0.0000     0.8986 0.000 1.000 0.000
#> GSM153446     2  0.0000     0.8986 0.000 1.000 0.000
#> GSM153449     1  0.4544     0.7927 0.860 0.056 0.084
#> GSM153453     1  0.0237     0.8367 0.996 0.000 0.004
#> GSM153454     1  0.0592     0.8363 0.988 0.000 0.012
#> GSM153455     1  0.9736     0.2000 0.416 0.356 0.228
#> GSM153462     2  0.0237     0.8981 0.004 0.996 0.000
#> GSM153465     2  0.3502     0.8490 0.084 0.896 0.020
#> GSM153481     2  0.0237     0.8981 0.004 0.996 0.000
#> GSM153482     1  0.1620     0.8314 0.964 0.024 0.012
#> GSM153483     2  0.5363     0.6045 0.276 0.724 0.000
#> GSM153485     1  0.5956     0.7113 0.768 0.188 0.044
#> GSM153489     1  0.4569     0.7926 0.860 0.068 0.072
#> GSM153490     1  0.0892     0.8348 0.980 0.000 0.020
#> GSM153491     1  0.0424     0.8358 0.992 0.000 0.008
#> GSM153492     1  0.0747     0.8357 0.984 0.000 0.016
#> GSM153493     1  0.0237     0.8367 0.996 0.000 0.004
#> GSM153494     1  0.6678     0.0780 0.512 0.480 0.008
#> GSM153495     1  0.0592     0.8363 0.988 0.000 0.012
#> GSM153498     1  0.6264     0.7120 0.764 0.168 0.068
#> GSM153501     1  0.0237     0.8366 0.996 0.000 0.004
#> GSM153502     1  0.0424     0.8367 0.992 0.000 0.008
#> GSM153505     1  0.0592     0.8363 0.988 0.000 0.012
#> GSM153506     2  0.2356     0.8652 0.072 0.928 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     3  0.2081     0.7478 0.000 0.000 0.916 0.084
#> GSM153406     3  0.4436     0.7069 0.000 0.020 0.764 0.216
#> GSM153419     3  0.2921     0.7419 0.000 0.000 0.860 0.140
#> GSM153423     2  0.2329     0.6805 0.000 0.916 0.012 0.072
#> GSM153425     3  0.0188     0.7451 0.004 0.000 0.996 0.000
#> GSM153427     3  0.6739     0.4330 0.000 0.304 0.576 0.120
#> GSM153428     3  0.8010     0.3526 0.080 0.232 0.572 0.116
#> GSM153429     4  0.9230     0.3802 0.124 0.340 0.152 0.384
#> GSM153433     1  0.7270     0.4759 0.588 0.012 0.216 0.184
#> GSM153444     2  0.4646     0.5041 0.000 0.796 0.120 0.084
#> GSM153448     4  0.9008     0.4459 0.196 0.336 0.076 0.392
#> GSM153451     2  0.1211     0.6890 0.000 0.960 0.000 0.040
#> GSM153452     2  0.7150     0.1305 0.016 0.592 0.264 0.128
#> GSM153477     2  0.6171     0.2152 0.024 0.528 0.016 0.432
#> GSM153479     4  0.8505     0.5278 0.248 0.252 0.040 0.460
#> GSM153484     4  0.8378     0.4848 0.232 0.300 0.028 0.440
#> GSM153488     1  0.7053     0.5496 0.640 0.044 0.092 0.224
#> GSM153496     1  0.3495     0.7393 0.844 0.000 0.016 0.140
#> GSM153497     2  0.2281     0.6894 0.000 0.904 0.000 0.096
#> GSM153500     1  0.1902     0.7497 0.932 0.000 0.004 0.064
#> GSM153503     1  0.1042     0.7446 0.972 0.000 0.008 0.020
#> GSM153508     1  0.3850     0.7027 0.804 0.004 0.004 0.188
#> GSM153409     2  0.3354     0.6310 0.000 0.872 0.044 0.084
#> GSM153426     2  0.4057     0.6268 0.000 0.812 0.028 0.160
#> GSM153431     3  0.8094     0.3997 0.116 0.144 0.592 0.148
#> GSM153438     2  0.2266     0.6884 0.000 0.912 0.004 0.084
#> GSM153440     3  0.4303     0.7019 0.064 0.020 0.840 0.076
#> GSM153447     3  0.6389     0.3465 0.300 0.008 0.620 0.072
#> GSM153450     2  0.2909     0.6510 0.000 0.888 0.020 0.092
#> GSM153456     2  0.0921     0.6801 0.000 0.972 0.000 0.028
#> GSM153457     2  0.0921     0.6862 0.000 0.972 0.000 0.028
#> GSM153458     2  0.1109     0.6759 0.000 0.968 0.004 0.028
#> GSM153459     2  0.1576     0.6691 0.000 0.948 0.004 0.048
#> GSM153460     2  0.1118     0.6798 0.000 0.964 0.000 0.036
#> GSM153461     3  0.8148    -0.0426 0.036 0.400 0.420 0.144
#> GSM153463     1  0.5951     0.5051 0.636 0.000 0.300 0.064
#> GSM153464     2  0.3726     0.6346 0.000 0.788 0.000 0.212
#> GSM153466     4  0.8451     0.4879 0.316 0.240 0.028 0.416
#> GSM153467     2  0.4746     0.5465 0.008 0.688 0.000 0.304
#> GSM153468     4  0.7655     0.4683 0.296 0.192 0.008 0.504
#> GSM153469     4  0.6140    -0.0749 0.032 0.448 0.008 0.512
#> GSM153470     4  0.5938     0.0288 0.024 0.424 0.008 0.544
#> GSM153471     2  0.5650     0.2553 0.024 0.544 0.000 0.432
#> GSM153472     1  0.2408     0.7449 0.896 0.000 0.000 0.104
#> GSM153473     1  0.4022     0.7274 0.836 0.000 0.096 0.068
#> GSM153474     1  0.2443     0.7523 0.916 0.000 0.024 0.060
#> GSM153475     4  0.9201     0.3077 0.304 0.124 0.156 0.416
#> GSM153476     4  0.8711    -0.1017 0.096 0.116 0.372 0.416
#> GSM153478     1  0.7613     0.3708 0.508 0.008 0.300 0.184
#> GSM153480     2  0.3873     0.6217 0.000 0.772 0.000 0.228
#> GSM153486     2  0.4922     0.5563 0.036 0.736 0.000 0.228
#> GSM153487     1  0.5325     0.6223 0.692 0.024 0.008 0.276
#> GSM153499     1  0.6253     0.3636 0.564 0.064 0.000 0.372
#> GSM153504     1  0.1398     0.7456 0.956 0.000 0.004 0.040
#> GSM153507     1  0.5339     0.5969 0.664 0.008 0.016 0.312
#> GSM153404     3  0.3545     0.7364 0.000 0.008 0.828 0.164
#> GSM153407     3  0.3189     0.7127 0.004 0.048 0.888 0.060
#> GSM153408     3  0.3494     0.7346 0.000 0.004 0.824 0.172
#> GSM153410     3  0.5716     0.6476 0.000 0.088 0.700 0.212
#> GSM153411     3  0.0336     0.7445 0.008 0.000 0.992 0.000
#> GSM153412     3  0.5466     0.6624 0.000 0.068 0.712 0.220
#> GSM153413     3  0.3400     0.7335 0.000 0.000 0.820 0.180
#> GSM153414     2  0.7827     0.0213 0.032 0.548 0.256 0.164
#> GSM153415     3  0.3626     0.7307 0.000 0.004 0.812 0.184
#> GSM153416     2  0.2125     0.6837 0.000 0.920 0.004 0.076
#> GSM153417     3  0.0336     0.7445 0.008 0.000 0.992 0.000
#> GSM153418     3  0.3626     0.7309 0.000 0.004 0.812 0.184
#> GSM153420     3  0.0376     0.7457 0.004 0.000 0.992 0.004
#> GSM153421     3  0.0336     0.7445 0.008 0.000 0.992 0.000
#> GSM153422     3  0.0188     0.7451 0.004 0.000 0.996 0.000
#> GSM153424     3  0.8814     0.2409 0.140 0.180 0.516 0.164
#> GSM153430     1  0.6879     0.5490 0.648 0.020 0.184 0.148
#> GSM153432     4  0.6360    -0.0158 0.028 0.436 0.020 0.516
#> GSM153434     1  0.9535    -0.1023 0.332 0.112 0.260 0.296
#> GSM153435     2  0.4535     0.5675 0.004 0.704 0.000 0.292
#> GSM153436     3  0.9863    -0.2653 0.228 0.276 0.312 0.184
#> GSM153437     2  0.2760     0.6812 0.000 0.872 0.000 0.128
#> GSM153439     4  0.8347     0.3486 0.120 0.364 0.064 0.452
#> GSM153441     4  0.9610     0.4742 0.236 0.308 0.128 0.328
#> GSM153442     4  0.9430     0.4808 0.260 0.256 0.108 0.376
#> GSM153443     2  0.4401     0.5853 0.004 0.724 0.000 0.272
#> GSM153445     2  0.4624     0.5125 0.000 0.660 0.000 0.340
#> GSM153446     2  0.3219     0.6585 0.000 0.836 0.000 0.164
#> GSM153449     1  0.7381     0.5449 0.616 0.064 0.084 0.236
#> GSM153453     1  0.3161     0.7398 0.864 0.000 0.012 0.124
#> GSM153454     1  0.2722     0.7372 0.904 0.000 0.064 0.032
#> GSM153455     4  0.9830     0.4455 0.268 0.240 0.172 0.320
#> GSM153462     2  0.4761     0.5229 0.004 0.664 0.000 0.332
#> GSM153465     2  0.6771     0.1345 0.052 0.516 0.020 0.412
#> GSM153481     2  0.4477     0.5470 0.000 0.688 0.000 0.312
#> GSM153482     1  0.6864     0.5240 0.616 0.064 0.036 0.284
#> GSM153483     4  0.7464     0.4622 0.208 0.296 0.000 0.496
#> GSM153485     1  0.8259     0.0988 0.476 0.136 0.052 0.336
#> GSM153489     1  0.7109     0.5065 0.604 0.076 0.040 0.280
#> GSM153490     1  0.3245     0.7469 0.880 0.000 0.064 0.056
#> GSM153491     1  0.3249     0.7409 0.852 0.000 0.008 0.140
#> GSM153492     1  0.2483     0.7534 0.916 0.000 0.032 0.052
#> GSM153493     1  0.1722     0.7486 0.944 0.000 0.008 0.048
#> GSM153494     4  0.8466     0.5033 0.304 0.276 0.024 0.396
#> GSM153495     1  0.2670     0.7493 0.908 0.000 0.040 0.052
#> GSM153498     1  0.7598     0.3185 0.548 0.088 0.048 0.316
#> GSM153501     1  0.2048     0.7495 0.928 0.000 0.008 0.064
#> GSM153502     1  0.1970     0.7498 0.932 0.000 0.008 0.060
#> GSM153505     1  0.2174     0.7503 0.928 0.000 0.020 0.052
#> GSM153506     2  0.6546     0.0399 0.076 0.492 0.000 0.432

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     3  0.3274    0.48267 0.000 0.000 0.780 0.000 0.220
#> GSM153406     3  0.5426    0.39704 0.032 0.024 0.600 0.000 0.344
#> GSM153419     3  0.3424    0.47866 0.000 0.000 0.760 0.000 0.240
#> GSM153423     2  0.3420    0.56850 0.084 0.840 0.000 0.000 0.076
#> GSM153425     3  0.0912    0.48529 0.000 0.000 0.972 0.012 0.016
#> GSM153427     3  0.7336   -0.09690 0.044 0.380 0.396 0.000 0.180
#> GSM153428     3  0.7905   -0.11430 0.028 0.224 0.480 0.052 0.216
#> GSM153429     1  0.9113    0.28835 0.320 0.280 0.112 0.056 0.232
#> GSM153433     4  0.7410    0.41890 0.116 0.004 0.156 0.552 0.172
#> GSM153444     2  0.4826    0.46913 0.052 0.772 0.068 0.000 0.108
#> GSM153448     2  0.9060   -0.35870 0.300 0.328 0.048 0.136 0.188
#> GSM153451     2  0.1845    0.58074 0.056 0.928 0.000 0.000 0.016
#> GSM153452     2  0.6936    0.18554 0.064 0.580 0.216 0.004 0.136
#> GSM153477     1  0.6819    0.08798 0.456 0.388 0.016 0.008 0.132
#> GSM153479     1  0.7938    0.38369 0.532 0.152 0.028 0.124 0.164
#> GSM153484     1  0.7791    0.47117 0.524 0.204 0.020 0.092 0.160
#> GSM153488     4  0.8114    0.37206 0.220 0.040 0.064 0.484 0.192
#> GSM153496     4  0.5723    0.61932 0.128 0.008 0.020 0.692 0.152
#> GSM153497     2  0.3098    0.56891 0.148 0.836 0.000 0.000 0.016
#> GSM153500     4  0.3605    0.65943 0.060 0.000 0.016 0.844 0.080
#> GSM153503     4  0.3227    0.65835 0.040 0.000 0.020 0.868 0.072
#> GSM153508     4  0.5513    0.59473 0.188 0.000 0.004 0.664 0.144
#> GSM153409     2  0.5273    0.49022 0.080 0.736 0.052 0.000 0.132
#> GSM153426     2  0.5575    0.46852 0.152 0.676 0.012 0.000 0.160
#> GSM153431     3  0.8693   -0.19180 0.100 0.088 0.468 0.140 0.204
#> GSM153438     2  0.3090    0.57090 0.104 0.860 0.004 0.000 0.032
#> GSM153440     3  0.5286    0.30445 0.012 0.036 0.744 0.068 0.140
#> GSM153447     3  0.7029   -0.18704 0.024 0.012 0.496 0.328 0.140
#> GSM153450     2  0.3951    0.52772 0.056 0.828 0.032 0.000 0.084
#> GSM153456     2  0.0703    0.57684 0.024 0.976 0.000 0.000 0.000
#> GSM153457     2  0.1571    0.57813 0.060 0.936 0.000 0.000 0.004
#> GSM153458     2  0.1278    0.57215 0.020 0.960 0.004 0.000 0.016
#> GSM153459     2  0.2153    0.57002 0.044 0.916 0.000 0.000 0.040
#> GSM153460     2  0.2077    0.57130 0.040 0.920 0.000 0.000 0.040
#> GSM153461     2  0.8394   -0.02167 0.104 0.404 0.236 0.016 0.240
#> GSM153463     4  0.5831    0.32761 0.004 0.000 0.304 0.584 0.108
#> GSM153464     2  0.4494    0.37474 0.380 0.608 0.000 0.000 0.012
#> GSM153466     1  0.8715    0.33889 0.424 0.176 0.032 0.184 0.184
#> GSM153467     2  0.6188    0.10750 0.408 0.488 0.000 0.016 0.088
#> GSM153468     1  0.8229    0.35898 0.444 0.152 0.008 0.176 0.220
#> GSM153469     1  0.7261    0.25490 0.484 0.328 0.008 0.048 0.132
#> GSM153470     1  0.7049    0.37059 0.532 0.272 0.008 0.036 0.152
#> GSM153471     1  0.6594    0.17675 0.496 0.368 0.000 0.032 0.104
#> GSM153472     4  0.6116    0.56258 0.176 0.004 0.008 0.616 0.196
#> GSM153473     4  0.6005    0.53667 0.036 0.000 0.156 0.660 0.148
#> GSM153474     4  0.4537    0.65339 0.080 0.000 0.032 0.788 0.100
#> GSM153475     1  0.9071    0.10833 0.364 0.100 0.072 0.268 0.196
#> GSM153476     5  0.8609    0.02232 0.228 0.068 0.296 0.044 0.364
#> GSM153478     4  0.8358    0.03716 0.112 0.008 0.280 0.372 0.228
#> GSM153480     2  0.4812    0.37738 0.372 0.600 0.000 0.000 0.028
#> GSM153486     2  0.6643    0.26355 0.300 0.560 0.008 0.036 0.096
#> GSM153487     4  0.7563    0.45921 0.236 0.036 0.024 0.504 0.200
#> GSM153499     4  0.7385    0.15904 0.380 0.060 0.000 0.408 0.152
#> GSM153504     4  0.3002    0.65764 0.068 0.000 0.008 0.876 0.048
#> GSM153507     4  0.6969    0.53762 0.228 0.004 0.040 0.552 0.176
#> GSM153404     3  0.4348    0.45506 0.000 0.016 0.668 0.000 0.316
#> GSM153407     3  0.4852    0.31909 0.004 0.068 0.756 0.020 0.152
#> GSM153408     3  0.4165    0.45315 0.008 0.000 0.672 0.000 0.320
#> GSM153410     3  0.5814    0.36589 0.024 0.056 0.576 0.000 0.344
#> GSM153411     3  0.0955    0.47665 0.000 0.000 0.968 0.028 0.004
#> GSM153412     3  0.6082    0.35151 0.044 0.052 0.568 0.000 0.336
#> GSM153413     3  0.4183    0.45064 0.008 0.000 0.668 0.000 0.324
#> GSM153414     2  0.8511   -0.00793 0.116 0.424 0.252 0.028 0.180
#> GSM153415     3  0.4435    0.43788 0.016 0.000 0.648 0.000 0.336
#> GSM153416     2  0.4926    0.49070 0.176 0.712 0.000 0.000 0.112
#> GSM153417     3  0.0703    0.48133 0.000 0.000 0.976 0.024 0.000
#> GSM153418     3  0.4487    0.44387 0.008 0.008 0.652 0.000 0.332
#> GSM153420     3  0.0609    0.48266 0.000 0.000 0.980 0.020 0.000
#> GSM153421     3  0.0703    0.48133 0.000 0.000 0.976 0.024 0.000
#> GSM153422     3  0.0703    0.48133 0.000 0.000 0.976 0.024 0.000
#> GSM153424     3  0.9204   -0.26173 0.060 0.216 0.340 0.132 0.252
#> GSM153430     4  0.8233    0.14781 0.096 0.016 0.232 0.436 0.220
#> GSM153432     1  0.6951    0.31694 0.512 0.292 0.008 0.020 0.168
#> GSM153434     5  0.9551   -0.01394 0.168 0.076 0.240 0.256 0.260
#> GSM153435     2  0.5687    0.17006 0.436 0.484 0.000 0.000 0.080
#> GSM153436     3  0.9759   -0.39085 0.104 0.236 0.256 0.212 0.192
#> GSM153437     2  0.3527    0.54840 0.172 0.804 0.000 0.000 0.024
#> GSM153439     1  0.8860    0.38053 0.364 0.288 0.056 0.088 0.204
#> GSM153441     1  0.9744    0.13426 0.276 0.248 0.160 0.120 0.196
#> GSM153442     1  0.9534    0.21566 0.312 0.172 0.084 0.196 0.236
#> GSM153443     2  0.5541    0.30823 0.372 0.552 0.000 0.000 0.076
#> GSM153445     2  0.5236    0.17386 0.464 0.492 0.000 0.000 0.044
#> GSM153446     2  0.4786    0.44789 0.308 0.652 0.000 0.000 0.040
#> GSM153449     4  0.8251    0.38588 0.208 0.052 0.076 0.492 0.172
#> GSM153453     4  0.5416    0.63753 0.088 0.000 0.040 0.716 0.156
#> GSM153454     4  0.4255    0.61753 0.020 0.000 0.112 0.800 0.068
#> GSM153455     1  0.9616    0.22692 0.332 0.188 0.112 0.172 0.196
#> GSM153462     2  0.5628    0.20551 0.420 0.516 0.000 0.008 0.056
#> GSM153465     1  0.7912    0.22369 0.384 0.344 0.012 0.056 0.204
#> GSM153481     2  0.6090    0.10399 0.440 0.472 0.004 0.012 0.072
#> GSM153482     4  0.8115    0.31292 0.280 0.040 0.040 0.428 0.212
#> GSM153483     1  0.7566    0.42043 0.524 0.200 0.004 0.168 0.104
#> GSM153485     4  0.8249    0.23741 0.280 0.068 0.024 0.408 0.220
#> GSM153489     4  0.8081    0.37294 0.204 0.072 0.040 0.500 0.184
#> GSM153490     4  0.4560    0.64000 0.052 0.000 0.092 0.792 0.064
#> GSM153491     4  0.5052    0.64682 0.100 0.000 0.020 0.736 0.144
#> GSM153492     4  0.4626    0.65181 0.064 0.000 0.056 0.788 0.092
#> GSM153493     4  0.3509    0.65782 0.032 0.000 0.032 0.852 0.084
#> GSM153494     1  0.8587    0.26456 0.344 0.160 0.008 0.280 0.208
#> GSM153495     4  0.4144    0.63855 0.032 0.000 0.068 0.816 0.084
#> GSM153498     4  0.8741    0.02363 0.304 0.088 0.040 0.344 0.224
#> GSM153501     4  0.2859    0.65695 0.056 0.000 0.000 0.876 0.068
#> GSM153502     4  0.3038    0.65722 0.040 0.000 0.008 0.872 0.080
#> GSM153505     4  0.3348    0.65538 0.036 0.000 0.032 0.864 0.068
#> GSM153506     1  0.6873    0.24986 0.496 0.352 0.000 0.068 0.084

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     3  0.2946    0.55512 0.000 0.000 0.812 0.000 0.012 0.176
#> GSM153406     3  0.2341    0.59104 0.024 0.024 0.912 0.000 0.020 0.020
#> GSM153419     3  0.2219    0.58431 0.000 0.000 0.864 0.000 0.000 0.136
#> GSM153423     2  0.3876    0.59187 0.088 0.816 0.012 0.000 0.056 0.028
#> GSM153425     3  0.4257    0.23267 0.004 0.000 0.504 0.004 0.004 0.484
#> GSM153427     3  0.7196   -0.07588 0.040 0.360 0.388 0.000 0.036 0.176
#> GSM153428     6  0.7362    0.36166 0.036 0.184 0.136 0.024 0.076 0.544
#> GSM153429     1  0.9228   -0.03548 0.316 0.212 0.192 0.060 0.144 0.076
#> GSM153433     6  0.7828   -0.15976 0.052 0.008 0.056 0.344 0.188 0.352
#> GSM153444     2  0.5373    0.49492 0.072 0.724 0.060 0.000 0.048 0.096
#> GSM153448     2  0.9148   -0.38293 0.260 0.280 0.036 0.100 0.196 0.128
#> GSM153451     2  0.2844    0.60244 0.112 0.856 0.000 0.000 0.012 0.020
#> GSM153452     2  0.6923    0.28839 0.036 0.588 0.164 0.016 0.068 0.128
#> GSM153477     1  0.7304    0.31242 0.464 0.308 0.040 0.024 0.136 0.028
#> GSM153479     1  0.8902   -0.14451 0.308 0.144 0.040 0.120 0.304 0.084
#> GSM153484     1  0.8419   -0.14541 0.388 0.148 0.032 0.148 0.248 0.036
#> GSM153488     4  0.7959    0.20547 0.104 0.020 0.068 0.444 0.276 0.088
#> GSM153496     4  0.5579    0.53283 0.044 0.012 0.000 0.640 0.236 0.068
#> GSM153497     2  0.3976    0.54236 0.188 0.760 0.000 0.000 0.028 0.024
#> GSM153500     4  0.3671    0.58776 0.028 0.000 0.000 0.816 0.100 0.056
#> GSM153503     4  0.3033    0.58804 0.012 0.000 0.000 0.856 0.076 0.056
#> GSM153508     4  0.5011    0.51348 0.080 0.000 0.000 0.676 0.216 0.028
#> GSM153409     2  0.5660    0.49313 0.128 0.684 0.056 0.000 0.024 0.108
#> GSM153426     2  0.6349    0.40458 0.196 0.612 0.076 0.000 0.036 0.080
#> GSM153431     6  0.8506    0.35683 0.096 0.084 0.220 0.084 0.072 0.444
#> GSM153438     2  0.3803    0.59238 0.088 0.824 0.032 0.000 0.036 0.020
#> GSM153440     6  0.6442    0.09643 0.036 0.020 0.340 0.024 0.056 0.524
#> GSM153447     6  0.6442    0.36121 0.020 0.008 0.104 0.208 0.060 0.600
#> GSM153450     2  0.3984    0.58056 0.100 0.800 0.000 0.004 0.028 0.068
#> GSM153456     2  0.1003    0.61108 0.028 0.964 0.000 0.000 0.004 0.004
#> GSM153457     2  0.1858    0.59774 0.092 0.904 0.000 0.000 0.000 0.004
#> GSM153458     2  0.1592    0.61583 0.024 0.944 0.004 0.000 0.016 0.012
#> GSM153459     2  0.2183    0.61317 0.052 0.912 0.004 0.000 0.012 0.020
#> GSM153460     2  0.2005    0.61443 0.036 0.924 0.004 0.000 0.016 0.020
#> GSM153461     6  0.8161    0.07584 0.108 0.332 0.076 0.020 0.088 0.376
#> GSM153463     6  0.5713   -0.10862 0.000 0.000 0.032 0.412 0.076 0.480
#> GSM153464     2  0.4561    0.03630 0.464 0.508 0.000 0.000 0.020 0.008
#> GSM153466     1  0.9069   -0.31598 0.296 0.116 0.036 0.220 0.240 0.092
#> GSM153467     1  0.6410    0.17876 0.460 0.396 0.008 0.016 0.092 0.028
#> GSM153468     5  0.8736    0.12309 0.304 0.140 0.048 0.136 0.324 0.048
#> GSM153469     1  0.7650    0.25503 0.476 0.236 0.088 0.016 0.152 0.032
#> GSM153470     1  0.7734    0.20033 0.512 0.184 0.064 0.020 0.140 0.080
#> GSM153471     1  0.7348    0.30362 0.476 0.292 0.040 0.048 0.128 0.016
#> GSM153472     4  0.5867    0.50120 0.080 0.012 0.004 0.644 0.200 0.060
#> GSM153473     4  0.6394    0.46863 0.032 0.000 0.028 0.552 0.120 0.268
#> GSM153474     4  0.4638    0.58299 0.020 0.000 0.000 0.728 0.132 0.120
#> GSM153475     5  0.9399    0.24647 0.244 0.108 0.088 0.188 0.284 0.088
#> GSM153476     3  0.8241   -0.08412 0.212 0.052 0.444 0.040 0.172 0.080
#> GSM153478     6  0.8410    0.03219 0.068 0.024 0.084 0.260 0.180 0.384
#> GSM153480     2  0.5804    0.06606 0.396 0.504 0.016 0.000 0.056 0.028
#> GSM153486     2  0.7782    0.00677 0.252 0.464 0.020 0.064 0.148 0.052
#> GSM153487     4  0.7349    0.20191 0.128 0.012 0.020 0.440 0.324 0.076
#> GSM153499     4  0.8640   -0.14120 0.212 0.044 0.044 0.336 0.268 0.096
#> GSM153504     4  0.2981    0.59089 0.020 0.000 0.000 0.864 0.064 0.052
#> GSM153507     4  0.6845    0.42618 0.108 0.004 0.028 0.576 0.176 0.108
#> GSM153404     3  0.0935    0.62426 0.000 0.004 0.964 0.000 0.000 0.032
#> GSM153407     6  0.6299    0.03837 0.020 0.056 0.364 0.004 0.052 0.504
#> GSM153408     3  0.0260    0.62473 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM153410     3  0.2569    0.57079 0.036 0.044 0.896 0.000 0.016 0.008
#> GSM153411     6  0.4222   -0.28058 0.000 0.000 0.472 0.004 0.008 0.516
#> GSM153412     3  0.2295    0.58127 0.032 0.028 0.912 0.000 0.020 0.008
#> GSM153413     3  0.0692    0.62452 0.000 0.000 0.976 0.000 0.004 0.020
#> GSM153414     2  0.8560    0.05014 0.128 0.416 0.100 0.032 0.100 0.224
#> GSM153415     3  0.0146    0.62364 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM153416     2  0.4729    0.55371 0.136 0.752 0.028 0.000 0.056 0.028
#> GSM153417     3  0.4128    0.22926 0.000 0.000 0.500 0.004 0.004 0.492
#> GSM153418     3  0.0810    0.61938 0.004 0.008 0.976 0.000 0.008 0.004
#> GSM153420     3  0.4127    0.24106 0.000 0.000 0.508 0.004 0.004 0.484
#> GSM153421     3  0.4129    0.22254 0.000 0.000 0.496 0.004 0.004 0.496
#> GSM153422     3  0.4129    0.22241 0.000 0.000 0.496 0.004 0.004 0.496
#> GSM153424     6  0.7574    0.34847 0.064 0.168 0.096 0.060 0.056 0.556
#> GSM153430     4  0.7625    0.21988 0.044 0.012 0.044 0.396 0.176 0.328
#> GSM153432     1  0.8161    0.22541 0.452 0.232 0.056 0.036 0.140 0.084
#> GSM153434     6  0.9493   -0.11672 0.136 0.076 0.104 0.176 0.224 0.284
#> GSM153435     1  0.6117    0.24384 0.512 0.360 0.028 0.000 0.076 0.024
#> GSM153436     6  0.9584   -0.07748 0.072 0.216 0.128 0.160 0.152 0.272
#> GSM153437     2  0.4152    0.52067 0.200 0.748 0.028 0.000 0.016 0.008
#> GSM153439     1  0.9185    0.02301 0.280 0.260 0.128 0.060 0.204 0.068
#> GSM153441     1  0.9455   -0.10869 0.268 0.192 0.044 0.140 0.200 0.156
#> GSM153442     1  0.8849   -0.25433 0.296 0.128 0.008 0.140 0.264 0.164
#> GSM153443     1  0.5838    0.09846 0.444 0.440 0.008 0.000 0.092 0.016
#> GSM153445     1  0.5641    0.12832 0.472 0.440 0.024 0.004 0.056 0.004
#> GSM153446     2  0.5081    0.31011 0.316 0.616 0.008 0.000 0.036 0.024
#> GSM153449     4  0.8014    0.26054 0.096 0.028 0.036 0.436 0.260 0.144
#> GSM153453     4  0.5940    0.47439 0.080 0.000 0.004 0.600 0.244 0.072
#> GSM153454     4  0.4885    0.52551 0.004 0.000 0.000 0.644 0.092 0.260
#> GSM153455     1  0.9418   -0.19086 0.288 0.148 0.084 0.136 0.252 0.092
#> GSM153462     1  0.6063    0.20938 0.500 0.372 0.000 0.008 0.076 0.044
#> GSM153465     1  0.8245    0.19347 0.412 0.292 0.040 0.060 0.104 0.092
#> GSM153481     1  0.7338    0.27697 0.428 0.360 0.052 0.028 0.108 0.024
#> GSM153482     4  0.8046    0.14033 0.104 0.052 0.024 0.392 0.328 0.100
#> GSM153483     1  0.8285   -0.11124 0.444 0.116 0.024 0.140 0.208 0.068
#> GSM153485     4  0.8604   -0.17678 0.224 0.048 0.036 0.316 0.284 0.092
#> GSM153489     4  0.7777    0.23430 0.104 0.056 0.016 0.484 0.232 0.108
#> GSM153490     4  0.4761    0.55347 0.008 0.000 0.012 0.712 0.084 0.184
#> GSM153491     4  0.5572    0.50800 0.048 0.000 0.012 0.624 0.264 0.052
#> GSM153492     4  0.5154    0.56067 0.028 0.000 0.000 0.680 0.156 0.136
#> GSM153493     4  0.4168    0.58454 0.016 0.000 0.000 0.764 0.144 0.076
#> GSM153494     1  0.8872   -0.20166 0.320 0.132 0.020 0.188 0.248 0.092
#> GSM153495     4  0.5522    0.52639 0.032 0.000 0.000 0.620 0.108 0.240
#> GSM153498     4  0.8732   -0.17032 0.168 0.040 0.124 0.332 0.284 0.052
#> GSM153501     4  0.3309    0.58759 0.024 0.000 0.000 0.840 0.092 0.044
#> GSM153502     4  0.4594    0.58016 0.020 0.000 0.008 0.748 0.124 0.100
#> GSM153505     4  0.4284    0.58305 0.012 0.000 0.000 0.752 0.096 0.140
#> GSM153506     1  0.7528    0.15448 0.488 0.208 0.008 0.084 0.176 0.036

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> SD:skmeans 98           0.3077 2
#> SD:skmeans 89           0.1201 3
#> SD:skmeans 71           0.0430 4
#> SD:skmeans 30           0.0463 5
#> SD:skmeans 38           0.0219 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.237           0.766       0.841         0.4594 0.539   0.539
#> 3 3 0.231           0.721       0.775         0.1913 0.906   0.834
#> 4 4 0.349           0.473       0.725         0.1768 0.750   0.526
#> 5 5 0.360           0.440       0.710         0.0393 0.779   0.494
#> 6 6 0.381           0.469       0.726         0.0212 0.795   0.513

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     1  0.2603      0.831 0.956 0.044
#> GSM153406     1  0.3114      0.836 0.944 0.056
#> GSM153419     1  0.0938      0.817 0.988 0.012
#> GSM153423     2  0.1184      0.845 0.016 0.984
#> GSM153425     1  0.0376      0.821 0.996 0.004
#> GSM153427     1  0.7139      0.846 0.804 0.196
#> GSM153428     1  0.8016      0.826 0.756 0.244
#> GSM153429     1  0.6801      0.773 0.820 0.180
#> GSM153433     1  0.6623      0.851 0.828 0.172
#> GSM153444     2  0.5737      0.782 0.136 0.864
#> GSM153448     2  0.9170      0.594 0.332 0.668
#> GSM153451     2  0.2043      0.845 0.032 0.968
#> GSM153452     1  0.7139      0.760 0.804 0.196
#> GSM153477     2  0.8499      0.734 0.276 0.724
#> GSM153479     2  0.5059      0.837 0.112 0.888
#> GSM153484     1  0.8608      0.758 0.716 0.284
#> GSM153488     1  0.6623      0.855 0.828 0.172
#> GSM153496     1  0.4161      0.840 0.916 0.084
#> GSM153497     2  0.1414      0.845 0.020 0.980
#> GSM153500     1  0.7674      0.843 0.776 0.224
#> GSM153503     1  0.6343      0.847 0.840 0.160
#> GSM153508     2  0.8608      0.661 0.284 0.716
#> GSM153409     2  0.5408      0.799 0.124 0.876
#> GSM153426     1  0.9795      0.199 0.584 0.416
#> GSM153431     1  0.6247      0.847 0.844 0.156
#> GSM153438     2  0.5178      0.820 0.116 0.884
#> GSM153440     1  0.3431      0.848 0.936 0.064
#> GSM153447     1  0.7453      0.838 0.788 0.212
#> GSM153450     2  0.1414      0.845 0.020 0.980
#> GSM153456     2  0.1414      0.845 0.020 0.980
#> GSM153457     2  0.1184      0.847 0.016 0.984
#> GSM153458     2  0.5842      0.796 0.140 0.860
#> GSM153459     2  0.1414      0.845 0.020 0.980
#> GSM153460     2  0.1414      0.845 0.020 0.980
#> GSM153461     1  0.6973      0.852 0.812 0.188
#> GSM153463     1  0.7528      0.835 0.784 0.216
#> GSM153464     2  0.2948      0.843 0.052 0.948
#> GSM153466     1  0.9044      0.726 0.680 0.320
#> GSM153467     2  0.3584      0.844 0.068 0.932
#> GSM153468     1  0.4815      0.811 0.896 0.104
#> GSM153469     2  1.0000      0.178 0.496 0.504
#> GSM153470     2  0.5629      0.824 0.132 0.868
#> GSM153471     2  0.5629      0.830 0.132 0.868
#> GSM153472     1  0.6531      0.857 0.832 0.168
#> GSM153473     1  0.6247      0.858 0.844 0.156
#> GSM153474     1  0.7139      0.846 0.804 0.196
#> GSM153475     1  0.7883      0.830 0.764 0.236
#> GSM153476     1  0.3879      0.838 0.924 0.076
#> GSM153478     1  0.4298      0.853 0.912 0.088
#> GSM153480     2  0.5519      0.808 0.128 0.872
#> GSM153486     2  0.7219      0.728 0.200 0.800
#> GSM153487     1  0.9881      0.360 0.564 0.436
#> GSM153499     1  0.4939      0.851 0.892 0.108
#> GSM153504     1  0.7299      0.849 0.796 0.204
#> GSM153507     1  0.8499      0.782 0.724 0.276
#> GSM153404     1  0.1633      0.822 0.976 0.024
#> GSM153407     1  0.7376      0.840 0.792 0.208
#> GSM153408     1  0.0938      0.817 0.988 0.012
#> GSM153410     1  0.0938      0.817 0.988 0.012
#> GSM153411     1  0.0000      0.823 1.000 0.000
#> GSM153412     1  0.0938      0.817 0.988 0.012
#> GSM153413     1  0.0938      0.817 0.988 0.012
#> GSM153414     1  0.9460      0.564 0.636 0.364
#> GSM153415     1  0.1414      0.818 0.980 0.020
#> GSM153416     2  0.1843      0.846 0.028 0.972
#> GSM153417     1  0.2236      0.836 0.964 0.036
#> GSM153418     1  0.1414      0.818 0.980 0.020
#> GSM153420     1  0.6343      0.847 0.840 0.160
#> GSM153421     1  0.0672      0.827 0.992 0.008
#> GSM153422     1  0.5629      0.850 0.868 0.132
#> GSM153424     1  0.7674      0.834 0.776 0.224
#> GSM153430     1  0.7299      0.846 0.796 0.204
#> GSM153432     2  0.4562      0.825 0.096 0.904
#> GSM153434     1  0.6973      0.851 0.812 0.188
#> GSM153435     2  0.8207      0.681 0.256 0.744
#> GSM153436     2  0.1633      0.847 0.024 0.976
#> GSM153437     2  0.0938      0.847 0.012 0.988
#> GSM153439     1  1.0000     -0.136 0.504 0.496
#> GSM153441     2  0.9866      0.212 0.432 0.568
#> GSM153442     1  0.9170      0.707 0.668 0.332
#> GSM153443     2  0.2603      0.847 0.044 0.956
#> GSM153445     2  0.5059      0.820 0.112 0.888
#> GSM153446     2  0.3114      0.849 0.056 0.944
#> GSM153449     1  0.9552      0.616 0.624 0.376
#> GSM153453     1  0.1184      0.821 0.984 0.016
#> GSM153454     1  0.6048      0.858 0.852 0.148
#> GSM153455     1  0.9460      0.659 0.636 0.364
#> GSM153462     2  0.4562      0.826 0.096 0.904
#> GSM153465     1  0.8144      0.819 0.748 0.252
#> GSM153481     2  0.7602      0.742 0.220 0.780
#> GSM153482     1  0.8207      0.787 0.744 0.256
#> GSM153483     2  0.9983     -0.195 0.476 0.524
#> GSM153485     2  0.9993      0.263 0.484 0.516
#> GSM153489     1  0.4939      0.840 0.892 0.108
#> GSM153490     1  0.6712      0.851 0.824 0.176
#> GSM153491     1  0.6343      0.856 0.840 0.160
#> GSM153492     1  0.6531      0.849 0.832 0.168
#> GSM153493     1  0.7528      0.838 0.784 0.216
#> GSM153494     1  0.9635      0.534 0.612 0.388
#> GSM153495     1  0.5408      0.851 0.876 0.124
#> GSM153498     1  0.3733      0.832 0.928 0.072
#> GSM153501     1  0.6623      0.854 0.828 0.172
#> GSM153502     1  0.3431      0.842 0.936 0.064
#> GSM153505     1  0.7139      0.844 0.804 0.196
#> GSM153506     2  0.2236      0.846 0.036 0.964

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     1  0.5384     0.7576 0.788 0.024 0.188
#> GSM153406     1  0.5307     0.7654 0.820 0.056 0.124
#> GSM153419     1  0.5850     0.7336 0.772 0.040 0.188
#> GSM153423     2  0.2959     0.8003 0.100 0.900 0.000
#> GSM153425     1  0.6180     0.5474 0.584 0.000 0.416
#> GSM153427     1  0.4342     0.7809 0.856 0.120 0.024
#> GSM153428     1  0.6746     0.7620 0.732 0.192 0.076
#> GSM153429     1  0.7633     0.7245 0.684 0.184 0.132
#> GSM153433     1  0.4413     0.7921 0.860 0.104 0.036
#> GSM153444     2  0.6018     0.6559 0.308 0.684 0.008
#> GSM153448     2  0.7251     0.5278 0.348 0.612 0.040
#> GSM153451     2  0.1289     0.8041 0.032 0.968 0.000
#> GSM153452     1  0.7899     0.6803 0.664 0.192 0.144
#> GSM153477     2  0.6393     0.6869 0.216 0.736 0.048
#> GSM153479     2  0.4994     0.7772 0.160 0.816 0.024
#> GSM153484     1  0.6895     0.7376 0.716 0.212 0.072
#> GSM153488     1  0.3973     0.8016 0.880 0.088 0.032
#> GSM153496     1  0.5573     0.7734 0.796 0.044 0.160
#> GSM153497     2  0.1964     0.8065 0.056 0.944 0.000
#> GSM153500     1  0.6393     0.8063 0.764 0.148 0.088
#> GSM153503     1  0.3295     0.7824 0.896 0.096 0.008
#> GSM153508     2  0.6189     0.5726 0.364 0.632 0.004
#> GSM153409     2  0.6155     0.6447 0.328 0.664 0.008
#> GSM153426     1  0.8676     0.2803 0.520 0.368 0.112
#> GSM153431     1  0.3610     0.7855 0.888 0.096 0.016
#> GSM153438     2  0.3412     0.7914 0.124 0.876 0.000
#> GSM153440     1  0.5746     0.7731 0.780 0.040 0.180
#> GSM153447     1  0.5588     0.7948 0.808 0.124 0.068
#> GSM153450     2  0.1964     0.8066 0.056 0.944 0.000
#> GSM153456     2  0.1643     0.8041 0.044 0.956 0.000
#> GSM153457     2  0.1643     0.8042 0.044 0.956 0.000
#> GSM153458     2  0.3192     0.7693 0.112 0.888 0.000
#> GSM153459     2  0.2066     0.8048 0.060 0.940 0.000
#> GSM153460     2  0.1643     0.8044 0.044 0.956 0.000
#> GSM153461     1  0.4397     0.7919 0.856 0.116 0.028
#> GSM153463     1  0.7128     0.6582 0.684 0.064 0.252
#> GSM153464     2  0.1289     0.7834 0.032 0.968 0.000
#> GSM153466     1  0.5058     0.6757 0.756 0.244 0.000
#> GSM153467     2  0.3340     0.8065 0.120 0.880 0.000
#> GSM153468     1  0.7043     0.7323 0.728 0.136 0.136
#> GSM153469     1  0.7169     0.0233 0.520 0.456 0.024
#> GSM153470     2  0.6404     0.6591 0.344 0.644 0.012
#> GSM153471     2  0.4700     0.7660 0.180 0.812 0.008
#> GSM153472     1  0.6788     0.8047 0.744 0.136 0.120
#> GSM153473     1  0.5815     0.8055 0.800 0.104 0.096
#> GSM153474     1  0.4063     0.7859 0.868 0.112 0.020
#> GSM153475     1  0.4033     0.7769 0.856 0.136 0.008
#> GSM153476     1  0.5202     0.7721 0.820 0.044 0.136
#> GSM153478     1  0.5075     0.8048 0.836 0.068 0.096
#> GSM153480     2  0.3573     0.7246 0.120 0.876 0.004
#> GSM153486     2  0.5842     0.7217 0.196 0.768 0.036
#> GSM153487     1  0.5560     0.5851 0.700 0.300 0.000
#> GSM153499     1  0.5253     0.7973 0.828 0.096 0.076
#> GSM153504     1  0.4591     0.7980 0.848 0.120 0.032
#> GSM153507     1  0.4521     0.7499 0.816 0.180 0.004
#> GSM153404     1  0.6158     0.7391 0.760 0.052 0.188
#> GSM153407     1  0.4821     0.7844 0.840 0.120 0.040
#> GSM153408     1  0.5850     0.7336 0.772 0.040 0.188
#> GSM153410     1  0.5466     0.7396 0.800 0.040 0.160
#> GSM153411     3  0.0000     0.9066 0.000 0.000 1.000
#> GSM153412     1  0.5850     0.7336 0.772 0.040 0.188
#> GSM153413     1  0.5850     0.7336 0.772 0.040 0.188
#> GSM153414     1  0.8737     0.4932 0.536 0.340 0.124
#> GSM153415     1  0.5285     0.7421 0.812 0.040 0.148
#> GSM153416     2  0.3619     0.7896 0.136 0.864 0.000
#> GSM153417     3  0.0000     0.9066 0.000 0.000 1.000
#> GSM153418     1  0.5285     0.7421 0.812 0.040 0.148
#> GSM153420     3  0.3816     0.8386 0.148 0.000 0.852
#> GSM153421     3  0.0237     0.9063 0.004 0.000 0.996
#> GSM153422     3  0.3340     0.8575 0.120 0.000 0.880
#> GSM153424     1  0.4744     0.7800 0.836 0.136 0.028
#> GSM153430     1  0.3769     0.7907 0.880 0.104 0.016
#> GSM153432     2  0.5733     0.6545 0.324 0.676 0.000
#> GSM153434     1  0.6981     0.7991 0.732 0.132 0.136
#> GSM153435     2  0.6742     0.6795 0.240 0.708 0.052
#> GSM153436     2  0.2682     0.8071 0.076 0.920 0.004
#> GSM153437     2  0.1289     0.8068 0.032 0.968 0.000
#> GSM153439     1  0.8515    -0.0627 0.476 0.432 0.092
#> GSM153441     2  0.7979     0.2544 0.440 0.500 0.060
#> GSM153442     1  0.5268     0.7159 0.776 0.212 0.012
#> GSM153443     2  0.2356     0.8081 0.072 0.928 0.000
#> GSM153445     2  0.2200     0.7755 0.056 0.940 0.004
#> GSM153446     2  0.2448     0.8006 0.076 0.924 0.000
#> GSM153449     1  0.4931     0.6631 0.768 0.232 0.000
#> GSM153453     1  0.4862     0.7630 0.820 0.020 0.160
#> GSM153454     1  0.4458     0.8001 0.864 0.056 0.080
#> GSM153455     1  0.8230     0.6726 0.608 0.280 0.112
#> GSM153462     2  0.5650     0.6835 0.312 0.688 0.000
#> GSM153465     1  0.4663     0.7681 0.828 0.156 0.016
#> GSM153481     2  0.3619     0.7093 0.136 0.864 0.000
#> GSM153482     1  0.4808     0.7618 0.804 0.188 0.008
#> GSM153483     1  0.5733     0.4705 0.676 0.324 0.000
#> GSM153485     2  0.8955     0.2722 0.332 0.524 0.144
#> GSM153489     1  0.6448     0.7706 0.764 0.104 0.132
#> GSM153490     1  0.6037     0.7414 0.788 0.112 0.100
#> GSM153491     1  0.5060     0.8054 0.836 0.100 0.064
#> GSM153492     1  0.4249     0.7892 0.864 0.108 0.028
#> GSM153493     1  0.8462     0.6029 0.588 0.124 0.288
#> GSM153494     1  0.8857     0.5322 0.524 0.344 0.132
#> GSM153495     1  0.4838     0.8041 0.848 0.076 0.076
#> GSM153498     1  0.6407     0.7475 0.760 0.080 0.160
#> GSM153501     1  0.6389     0.8037 0.768 0.108 0.124
#> GSM153502     1  0.5581     0.7762 0.792 0.040 0.168
#> GSM153505     1  0.4128     0.7830 0.856 0.132 0.012
#> GSM153506     2  0.1964     0.7998 0.056 0.944 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     1  0.1545    0.56527 0.952 0.008 0.000 0.040
#> GSM153406     1  0.4331    0.35157 0.712 0.000 0.000 0.288
#> GSM153419     1  0.0000    0.56104 1.000 0.000 0.000 0.000
#> GSM153423     2  0.3907    0.72859 0.000 0.768 0.000 0.232
#> GSM153425     1  0.3486    0.49808 0.812 0.000 0.188 0.000
#> GSM153427     4  0.4998    0.16398 0.488 0.000 0.000 0.512
#> GSM153428     1  0.5070    0.10258 0.580 0.004 0.000 0.416
#> GSM153429     1  0.6357    0.07142 0.544 0.068 0.000 0.388
#> GSM153433     4  0.4996    0.19442 0.484 0.000 0.000 0.516
#> GSM153444     4  0.6068   -0.01097 0.044 0.448 0.000 0.508
#> GSM153448     2  0.7343   -0.03403 0.156 0.428 0.000 0.416
#> GSM153451     2  0.0592    0.82859 0.000 0.984 0.000 0.016
#> GSM153452     1  0.4285    0.51955 0.804 0.156 0.000 0.040
#> GSM153477     2  0.6523    0.60147 0.208 0.636 0.000 0.156
#> GSM153479     2  0.5346    0.70203 0.076 0.732 0.000 0.192
#> GSM153484     4  0.6965    0.16838 0.428 0.112 0.000 0.460
#> GSM153488     4  0.5435    0.33069 0.420 0.016 0.000 0.564
#> GSM153496     1  0.3182    0.56507 0.876 0.028 0.000 0.096
#> GSM153497     2  0.1209    0.83811 0.004 0.964 0.000 0.032
#> GSM153500     1  0.6150    0.23007 0.580 0.060 0.000 0.360
#> GSM153503     4  0.4746    0.49098 0.368 0.000 0.000 0.632
#> GSM153508     4  0.3279    0.30482 0.096 0.032 0.000 0.872
#> GSM153409     4  0.5152    0.34345 0.020 0.316 0.000 0.664
#> GSM153426     1  0.7416    0.14731 0.496 0.312 0.000 0.192
#> GSM153431     4  0.4936    0.50834 0.340 0.008 0.000 0.652
#> GSM153438     2  0.2313    0.83514 0.032 0.924 0.000 0.044
#> GSM153440     1  0.2831    0.55158 0.876 0.004 0.000 0.120
#> GSM153447     1  0.5408    0.17914 0.576 0.016 0.000 0.408
#> GSM153450     2  0.2149    0.82936 0.000 0.912 0.000 0.088
#> GSM153456     2  0.0336    0.82977 0.000 0.992 0.000 0.008
#> GSM153457     2  0.0188    0.82948 0.000 0.996 0.000 0.004
#> GSM153458     2  0.1059    0.83321 0.016 0.972 0.000 0.012
#> GSM153459     2  0.2408    0.82609 0.000 0.896 0.000 0.104
#> GSM153460     2  0.0817    0.83659 0.000 0.976 0.000 0.024
#> GSM153461     1  0.5360    0.02825 0.552 0.012 0.000 0.436
#> GSM153463     1  0.7796    0.00329 0.460 0.012 0.172 0.356
#> GSM153464     2  0.0672    0.82730 0.008 0.984 0.000 0.008
#> GSM153466     4  0.6377    0.51075 0.256 0.112 0.000 0.632
#> GSM153467     2  0.2760    0.81244 0.000 0.872 0.000 0.128
#> GSM153468     1  0.3758    0.54495 0.848 0.104 0.000 0.048
#> GSM153469     1  0.7866   -0.02055 0.384 0.336 0.000 0.280
#> GSM153470     4  0.6350    0.23521 0.072 0.364 0.000 0.564
#> GSM153471     2  0.5798    0.69917 0.112 0.704 0.000 0.184
#> GSM153472     1  0.5623    0.41173 0.660 0.048 0.000 0.292
#> GSM153473     1  0.4431    0.41937 0.696 0.000 0.000 0.304
#> GSM153474     4  0.5271    0.50495 0.340 0.020 0.000 0.640
#> GSM153475     4  0.4914    0.50719 0.312 0.012 0.000 0.676
#> GSM153476     1  0.4194    0.48640 0.764 0.008 0.000 0.228
#> GSM153478     1  0.4546    0.43921 0.732 0.012 0.000 0.256
#> GSM153480     2  0.1661    0.82633 0.052 0.944 0.000 0.004
#> GSM153486     2  0.6231    0.54775 0.184 0.668 0.000 0.148
#> GSM153487     4  0.6536    0.47561 0.324 0.096 0.000 0.580
#> GSM153499     1  0.4819    0.32562 0.652 0.004 0.000 0.344
#> GSM153504     1  0.5147   -0.01765 0.536 0.004 0.000 0.460
#> GSM153507     4  0.5169    0.53959 0.272 0.032 0.000 0.696
#> GSM153404     1  0.0592    0.56192 0.984 0.000 0.000 0.016
#> GSM153407     1  0.4985   -0.06274 0.532 0.000 0.000 0.468
#> GSM153408     1  0.0000    0.56104 1.000 0.000 0.000 0.000
#> GSM153410     1  0.3400    0.47861 0.820 0.000 0.000 0.180
#> GSM153411     3  0.0000    1.00000 0.000 0.000 1.000 0.000
#> GSM153412     1  0.0188    0.56163 0.996 0.000 0.000 0.004
#> GSM153413     1  0.0000    0.56104 1.000 0.000 0.000 0.000
#> GSM153414     1  0.7042    0.27632 0.572 0.188 0.000 0.240
#> GSM153415     1  0.4072    0.39145 0.748 0.000 0.000 0.252
#> GSM153416     2  0.5558    0.55362 0.036 0.640 0.000 0.324
#> GSM153417     3  0.0000    1.00000 0.000 0.000 1.000 0.000
#> GSM153418     1  0.4072    0.39145 0.748 0.000 0.000 0.252
#> GSM153420     3  0.0000    1.00000 0.000 0.000 1.000 0.000
#> GSM153421     3  0.0000    1.00000 0.000 0.000 1.000 0.000
#> GSM153422     3  0.0000    1.00000 0.000 0.000 1.000 0.000
#> GSM153424     4  0.5493    0.22206 0.456 0.016 0.000 0.528
#> GSM153430     4  0.5085    0.44087 0.376 0.008 0.000 0.616
#> GSM153432     4  0.5835    0.22034 0.040 0.372 0.000 0.588
#> GSM153434     1  0.3982    0.49423 0.776 0.004 0.000 0.220
#> GSM153435     2  0.6933    0.44523 0.244 0.584 0.000 0.172
#> GSM153436     2  0.4675    0.69381 0.020 0.736 0.000 0.244
#> GSM153437     2  0.1004    0.83899 0.004 0.972 0.000 0.024
#> GSM153439     1  0.7816   -0.00753 0.412 0.316 0.000 0.272
#> GSM153441     4  0.7795    0.19823 0.252 0.344 0.000 0.404
#> GSM153442     4  0.6031    0.40687 0.388 0.048 0.000 0.564
#> GSM153443     2  0.1792    0.83676 0.000 0.932 0.000 0.068
#> GSM153445     2  0.1284    0.83326 0.024 0.964 0.000 0.012
#> GSM153446     2  0.1297    0.83495 0.016 0.964 0.000 0.020
#> GSM153449     4  0.5417    0.54052 0.284 0.040 0.000 0.676
#> GSM153453     1  0.3485    0.56021 0.856 0.028 0.000 0.116
#> GSM153454     1  0.6032    0.02117 0.536 0.008 0.028 0.428
#> GSM153455     1  0.7061    0.21618 0.540 0.148 0.000 0.312
#> GSM153462     4  0.5691   -0.14196 0.024 0.468 0.000 0.508
#> GSM153465     4  0.5460    0.47313 0.340 0.028 0.000 0.632
#> GSM153481     2  0.1716    0.82351 0.064 0.936 0.000 0.000
#> GSM153482     4  0.5950    0.39670 0.416 0.040 0.000 0.544
#> GSM153483     4  0.5759    0.53376 0.268 0.064 0.000 0.668
#> GSM153485     1  0.6602   -0.08750 0.484 0.436 0.000 0.080
#> GSM153489     1  0.4919    0.52162 0.752 0.048 0.000 0.200
#> GSM153490     4  0.5859    0.50163 0.284 0.000 0.064 0.652
#> GSM153491     1  0.5360    0.06079 0.552 0.012 0.000 0.436
#> GSM153492     4  0.4543    0.51391 0.324 0.000 0.000 0.676
#> GSM153493     4  0.7661   -0.02307 0.376 0.000 0.212 0.412
#> GSM153494     1  0.6975    0.32259 0.584 0.200 0.000 0.216
#> GSM153495     1  0.5291    0.31801 0.652 0.024 0.000 0.324
#> GSM153498     1  0.2124    0.56854 0.932 0.028 0.000 0.040
#> GSM153501     1  0.4542    0.47843 0.752 0.020 0.000 0.228
#> GSM153502     1  0.2737    0.56164 0.888 0.008 0.000 0.104
#> GSM153505     4  0.4605    0.48526 0.336 0.000 0.000 0.664
#> GSM153506     2  0.1807    0.83640 0.008 0.940 0.000 0.052

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     3  0.3942    0.67569 0.260 0.000 0.728 0.012 0.000
#> GSM153406     1  0.5624   -0.13140 0.532 0.000 0.388 0.080 0.000
#> GSM153419     3  0.3961    0.67811 0.248 0.000 0.736 0.016 0.000
#> GSM153423     2  0.3996    0.70916 0.228 0.752 0.012 0.008 0.000
#> GSM153425     3  0.6052    0.58343 0.248 0.000 0.572 0.000 0.180
#> GSM153427     1  0.3421    0.36579 0.788 0.000 0.204 0.008 0.000
#> GSM153428     1  0.4122    0.20750 0.688 0.004 0.304 0.004 0.000
#> GSM153429     1  0.6231    0.18897 0.588 0.060 0.296 0.056 0.000
#> GSM153433     1  0.3353    0.38365 0.796 0.000 0.196 0.008 0.000
#> GSM153444     1  0.6346   -0.03063 0.492 0.404 0.060 0.044 0.000
#> GSM153448     1  0.6919   -0.01309 0.440 0.404 0.108 0.048 0.000
#> GSM153451     2  0.0290    0.82668 0.000 0.992 0.000 0.008 0.000
#> GSM153452     3  0.6047    0.60811 0.268 0.124 0.596 0.012 0.000
#> GSM153477     2  0.6172    0.55580 0.136 0.632 0.200 0.032 0.000
#> GSM153479     2  0.5505    0.65612 0.160 0.708 0.040 0.092 0.000
#> GSM153484     1  0.6386    0.34234 0.640 0.072 0.172 0.116 0.000
#> GSM153488     1  0.4428    0.40904 0.760 0.000 0.144 0.096 0.000
#> GSM153496     3  0.5793    0.62025 0.308 0.012 0.596 0.084 0.000
#> GSM153497     2  0.1267    0.83315 0.012 0.960 0.004 0.024 0.000
#> GSM153500     1  0.6237    0.04218 0.560 0.028 0.324 0.088 0.000
#> GSM153503     1  0.3116    0.48604 0.860 0.000 0.064 0.076 0.000
#> GSM153508     4  0.2736    0.00000 0.068 0.016 0.024 0.892 0.000
#> GSM153409     1  0.5123    0.24368 0.644 0.308 0.020 0.028 0.000
#> GSM153426     1  0.8030   -0.06977 0.336 0.284 0.296 0.084 0.000
#> GSM153431     1  0.2278    0.49256 0.908 0.000 0.032 0.060 0.000
#> GSM153438     2  0.2244    0.82589 0.016 0.920 0.040 0.024 0.000
#> GSM153440     3  0.4371    0.63159 0.344 0.000 0.644 0.012 0.000
#> GSM153447     1  0.4661    0.16200 0.656 0.000 0.312 0.032 0.000
#> GSM153450     2  0.2859    0.81521 0.060 0.888 0.016 0.036 0.000
#> GSM153456     2  0.0000    0.82509 0.000 1.000 0.000 0.000 0.000
#> GSM153457     2  0.0162    0.82725 0.004 0.996 0.000 0.000 0.000
#> GSM153458     2  0.0740    0.82980 0.008 0.980 0.008 0.004 0.000
#> GSM153459     2  0.1732    0.82533 0.080 0.920 0.000 0.000 0.000
#> GSM153460     2  0.1173    0.83408 0.012 0.964 0.004 0.020 0.000
#> GSM153461     1  0.4786    0.22370 0.652 0.000 0.308 0.040 0.000
#> GSM153463     1  0.6364    0.22867 0.596 0.000 0.220 0.024 0.160
#> GSM153464     2  0.0290    0.82646 0.000 0.992 0.000 0.008 0.000
#> GSM153466     1  0.3843    0.48736 0.828 0.100 0.020 0.052 0.000
#> GSM153467     2  0.2439    0.79564 0.120 0.876 0.000 0.004 0.000
#> GSM153468     3  0.6349    0.61061 0.288 0.104 0.576 0.032 0.000
#> GSM153469     1  0.7464    0.12604 0.464 0.308 0.152 0.076 0.000
#> GSM153470     1  0.6693    0.21648 0.540 0.300 0.040 0.120 0.000
#> GSM153471     2  0.5624    0.66097 0.180 0.696 0.068 0.056 0.000
#> GSM153472     1  0.6132   -0.23286 0.496 0.012 0.400 0.092 0.000
#> GSM153473     1  0.4622   -0.23179 0.548 0.000 0.440 0.012 0.000
#> GSM153474     1  0.5525    0.23192 0.612 0.000 0.288 0.100 0.000
#> GSM153475     1  0.1682    0.49595 0.940 0.004 0.044 0.012 0.000
#> GSM153476     1  0.5509   -0.35442 0.472 0.000 0.464 0.064 0.000
#> GSM153478     1  0.4698   -0.28086 0.520 0.004 0.468 0.008 0.000
#> GSM153480     2  0.1059    0.82946 0.004 0.968 0.020 0.008 0.000
#> GSM153486     2  0.6281    0.53599 0.216 0.632 0.088 0.064 0.000
#> GSM153487     1  0.3935    0.48666 0.832 0.068 0.040 0.060 0.000
#> GSM153499     1  0.4856   -0.09092 0.584 0.000 0.388 0.028 0.000
#> GSM153504     1  0.4597    0.29323 0.696 0.000 0.260 0.044 0.000
#> GSM153507     1  0.1153    0.49925 0.964 0.024 0.004 0.008 0.000
#> GSM153404     3  0.3961    0.67811 0.248 0.000 0.736 0.016 0.000
#> GSM153407     1  0.3783    0.29464 0.740 0.000 0.252 0.008 0.000
#> GSM153408     3  0.4223    0.67778 0.248 0.000 0.724 0.028 0.000
#> GSM153410     3  0.5314    0.40017 0.420 0.000 0.528 0.052 0.000
#> GSM153411     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000
#> GSM153412     3  0.4080    0.67765 0.252 0.000 0.728 0.020 0.000
#> GSM153413     3  0.4054    0.67777 0.248 0.000 0.732 0.020 0.000
#> GSM153414     3  0.7162    0.15009 0.392 0.180 0.396 0.032 0.000
#> GSM153415     1  0.5677   -0.21588 0.496 0.000 0.424 0.080 0.000
#> GSM153416     2  0.5020    0.52528 0.344 0.620 0.020 0.016 0.000
#> GSM153417     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000
#> GSM153418     1  0.5677   -0.21588 0.496 0.000 0.424 0.080 0.000
#> GSM153420     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000
#> GSM153421     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000
#> GSM153422     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000
#> GSM153424     1  0.3670    0.39625 0.792 0.008 0.188 0.012 0.000
#> GSM153430     1  0.3317    0.47586 0.840 0.000 0.116 0.044 0.000
#> GSM153432     1  0.5979    0.17450 0.576 0.328 0.024 0.072 0.000
#> GSM153434     3  0.4787    0.48404 0.432 0.000 0.548 0.020 0.000
#> GSM153435     2  0.6664    0.41040 0.236 0.552 0.188 0.024 0.000
#> GSM153436     2  0.4597    0.64736 0.244 0.716 0.020 0.020 0.000
#> GSM153437     2  0.1630    0.83397 0.016 0.944 0.004 0.036 0.000
#> GSM153439     3  0.7861   -0.07243 0.300 0.304 0.332 0.064 0.000
#> GSM153441     1  0.7313    0.22390 0.428 0.300 0.240 0.032 0.000
#> GSM153442     1  0.4280    0.46597 0.800 0.032 0.120 0.048 0.000
#> GSM153443     2  0.1768    0.82651 0.072 0.924 0.000 0.004 0.000
#> GSM153445     2  0.1059    0.83089 0.008 0.968 0.004 0.020 0.000
#> GSM153446     2  0.1617    0.82854 0.020 0.948 0.012 0.020 0.000
#> GSM153449     1  0.2379    0.50299 0.912 0.028 0.012 0.048 0.000
#> GSM153453     3  0.5554    0.59930 0.344 0.012 0.588 0.056 0.000
#> GSM153454     1  0.5776    0.23209 0.636 0.000 0.260 0.080 0.024
#> GSM153455     1  0.6413    0.00556 0.536 0.148 0.304 0.012 0.000
#> GSM153462     1  0.5462   -0.21250 0.488 0.464 0.012 0.036 0.000
#> GSM153465     1  0.3053    0.48876 0.872 0.008 0.076 0.044 0.000
#> GSM153481     2  0.1522    0.82211 0.000 0.944 0.044 0.012 0.000
#> GSM153482     1  0.3682    0.46546 0.828 0.040 0.120 0.012 0.000
#> GSM153483     1  0.3393    0.49729 0.860 0.044 0.024 0.072 0.000
#> GSM153485     3  0.6772   -0.03035 0.104 0.412 0.444 0.040 0.000
#> GSM153489     3  0.5858    0.48197 0.416 0.024 0.512 0.048 0.000
#> GSM153490     1  0.3110    0.49011 0.876 0.000 0.020 0.044 0.060
#> GSM153491     1  0.4658    0.24482 0.672 0.004 0.296 0.028 0.000
#> GSM153492     1  0.1836    0.49587 0.932 0.000 0.032 0.036 0.000
#> GSM153493     1  0.6897    0.19141 0.532 0.000 0.220 0.032 0.216
#> GSM153494     3  0.7197    0.19177 0.376 0.188 0.404 0.032 0.000
#> GSM153495     1  0.5511   -0.10403 0.524 0.004 0.416 0.056 0.000
#> GSM153498     3  0.4700    0.67538 0.268 0.008 0.692 0.032 0.000
#> GSM153501     3  0.5224    0.45482 0.428 0.004 0.532 0.036 0.000
#> GSM153502     3  0.4456    0.64948 0.320 0.000 0.660 0.020 0.000
#> GSM153505     1  0.1872    0.49048 0.928 0.000 0.052 0.020 0.000
#> GSM153506     2  0.2464    0.82440 0.032 0.908 0.012 0.048 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     4  0.0622     0.5730 0.000 0.008 0.000 0.980 0.000 0.012
#> GSM153406     4  0.5223     0.3286 0.000 0.300 0.004 0.588 0.000 0.108
#> GSM153419     4  0.0777     0.5708 0.000 0.000 0.004 0.972 0.000 0.024
#> GSM153423     1  0.3678     0.6918 0.748 0.228 0.000 0.016 0.000 0.008
#> GSM153425     4  0.2597     0.5307 0.000 0.000 0.000 0.824 0.176 0.000
#> GSM153427     2  0.4057     0.2345 0.000 0.556 0.000 0.436 0.000 0.008
#> GSM153428     4  0.4120    -0.0485 0.004 0.468 0.000 0.524 0.000 0.004
#> GSM153429     4  0.5887     0.0386 0.044 0.420 0.000 0.460 0.000 0.076
#> GSM153433     2  0.3993     0.3112 0.000 0.592 0.000 0.400 0.000 0.008
#> GSM153444     2  0.5741     0.1795 0.376 0.512 0.000 0.072 0.000 0.040
#> GSM153448     2  0.6385     0.1676 0.372 0.456 0.000 0.104 0.000 0.068
#> GSM153451     1  0.0363     0.8264 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM153452     4  0.2877     0.5442 0.124 0.020 0.000 0.848 0.000 0.008
#> GSM153477     1  0.5970     0.5071 0.616 0.144 0.004 0.180 0.000 0.056
#> GSM153479     1  0.4944     0.6360 0.708 0.152 0.000 0.036 0.000 0.104
#> GSM153484     2  0.6506     0.1563 0.064 0.452 0.000 0.356 0.000 0.128
#> GSM153488     2  0.5205     0.2578 0.000 0.520 0.000 0.384 0.000 0.096
#> GSM153496     4  0.3146     0.5709 0.012 0.060 0.000 0.848 0.000 0.080
#> GSM153497     1  0.1065     0.8313 0.964 0.008 0.000 0.008 0.000 0.020
#> GSM153500     4  0.5956     0.2712 0.024 0.300 0.004 0.544 0.000 0.128
#> GSM153503     2  0.4905     0.4772 0.000 0.620 0.000 0.284 0.000 0.096
#> GSM153508     3  0.0405     0.0000 0.004 0.008 0.988 0.000 0.000 0.000
#> GSM153409     2  0.4499     0.3468 0.284 0.668 0.000 0.024 0.000 0.024
#> GSM153426     4  0.6822     0.1895 0.268 0.164 0.000 0.476 0.000 0.092
#> GSM153431     2  0.4407     0.5245 0.000 0.692 0.000 0.232 0.000 0.076
#> GSM153438     1  0.1974     0.8240 0.920 0.012 0.000 0.048 0.000 0.020
#> GSM153440     4  0.2070     0.5685 0.000 0.092 0.000 0.896 0.000 0.012
#> GSM153447     4  0.4499     0.1094 0.000 0.428 0.000 0.540 0.000 0.032
#> GSM153450     1  0.2541     0.8124 0.892 0.052 0.000 0.024 0.000 0.032
#> GSM153456     1  0.0000     0.8247 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153457     1  0.0146     0.8266 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM153458     1  0.0508     0.8274 0.984 0.004 0.000 0.012 0.000 0.000
#> GSM153459     1  0.1501     0.8228 0.924 0.076 0.000 0.000 0.000 0.000
#> GSM153460     1  0.1167     0.8323 0.960 0.012 0.000 0.008 0.000 0.020
#> GSM153461     4  0.4544    -0.0136 0.000 0.416 0.000 0.548 0.000 0.036
#> GSM153463     4  0.6163    -0.0224 0.000 0.360 0.000 0.460 0.156 0.024
#> GSM153464     1  0.0363     0.8263 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM153466     2  0.5188     0.5406 0.072 0.684 0.000 0.184 0.000 0.060
#> GSM153467     1  0.2257     0.7913 0.876 0.116 0.000 0.000 0.000 0.008
#> GSM153468     4  0.3795     0.5565 0.108 0.036 0.004 0.812 0.000 0.040
#> GSM153469     4  0.7228    -0.0275 0.288 0.276 0.000 0.348 0.000 0.088
#> GSM153470     2  0.6066     0.2830 0.272 0.552 0.000 0.044 0.000 0.132
#> GSM153471     1  0.5257     0.6394 0.692 0.168 0.004 0.064 0.000 0.072
#> GSM153472     4  0.5084     0.4391 0.012 0.244 0.000 0.644 0.000 0.100
#> GSM153473     4  0.3934     0.4335 0.000 0.304 0.000 0.676 0.000 0.020
#> GSM153474     6  0.3313     0.0000 0.000 0.148 0.004 0.036 0.000 0.812
#> GSM153475     2  0.3560     0.5300 0.004 0.732 0.000 0.256 0.000 0.008
#> GSM153476     4  0.4271     0.4654 0.000 0.244 0.000 0.696 0.000 0.060
#> GSM153478     4  0.3772     0.3962 0.004 0.296 0.000 0.692 0.000 0.008
#> GSM153480     1  0.1007     0.8285 0.968 0.004 0.004 0.016 0.000 0.008
#> GSM153486     1  0.5764     0.5005 0.628 0.112 0.000 0.196 0.000 0.064
#> GSM153487     2  0.5616     0.4940 0.052 0.628 0.004 0.240 0.000 0.076
#> GSM153499     4  0.4568     0.3550 0.000 0.344 0.004 0.612 0.000 0.040
#> GSM153504     4  0.4702    -0.0521 0.000 0.460 0.000 0.496 0.000 0.044
#> GSM153507     2  0.3502     0.5488 0.020 0.780 0.000 0.192 0.000 0.008
#> GSM153404     4  0.0777     0.5708 0.000 0.000 0.004 0.972 0.000 0.024
#> GSM153407     2  0.4091     0.1528 0.000 0.520 0.000 0.472 0.000 0.008
#> GSM153408     4  0.1155     0.5731 0.000 0.004 0.004 0.956 0.000 0.036
#> GSM153410     4  0.4233     0.4899 0.000 0.180 0.004 0.736 0.000 0.080
#> GSM153411     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153412     4  0.1080     0.5723 0.000 0.004 0.004 0.960 0.000 0.032
#> GSM153413     4  0.0777     0.5708 0.000 0.000 0.004 0.972 0.000 0.024
#> GSM153414     4  0.5796     0.2908 0.168 0.224 0.000 0.584 0.000 0.024
#> GSM153415     4  0.5069     0.3725 0.000 0.264 0.004 0.624 0.000 0.108
#> GSM153416     1  0.4646     0.4781 0.612 0.348 0.004 0.012 0.000 0.024
#> GSM153417     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153418     4  0.5030     0.3746 0.000 0.264 0.004 0.628 0.000 0.104
#> GSM153420     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153421     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153422     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153424     2  0.4284     0.3371 0.004 0.588 0.000 0.392 0.000 0.016
#> GSM153430     2  0.4357     0.4592 0.000 0.624 0.000 0.340 0.000 0.036
#> GSM153432     2  0.5449     0.3029 0.304 0.588 0.000 0.028 0.000 0.080
#> GSM153434     4  0.3014     0.5157 0.000 0.184 0.000 0.804 0.000 0.012
#> GSM153435     1  0.6052     0.3659 0.544 0.176 0.000 0.252 0.000 0.028
#> GSM153436     1  0.4149     0.6248 0.712 0.248 0.000 0.024 0.000 0.016
#> GSM153437     1  0.1536     0.8320 0.940 0.016 0.000 0.004 0.000 0.040
#> GSM153439     4  0.7161     0.0171 0.288 0.248 0.004 0.388 0.000 0.072
#> GSM153441     2  0.6595     0.2548 0.284 0.424 0.000 0.260 0.000 0.032
#> GSM153442     2  0.5216     0.4195 0.032 0.572 0.000 0.352 0.000 0.044
#> GSM153443     1  0.1501     0.8247 0.924 0.076 0.000 0.000 0.000 0.000
#> GSM153445     1  0.0951     0.8298 0.968 0.008 0.004 0.000 0.000 0.020
#> GSM153446     1  0.1605     0.8247 0.940 0.016 0.000 0.012 0.000 0.032
#> GSM153449     2  0.4380     0.5421 0.012 0.716 0.000 0.216 0.000 0.056
#> GSM153453     4  0.3396     0.5716 0.012 0.100 0.000 0.828 0.000 0.060
#> GSM153454     4  0.5833     0.0773 0.000 0.396 0.000 0.476 0.024 0.104
#> GSM153455     4  0.5740     0.2322 0.148 0.328 0.000 0.516 0.000 0.008
#> GSM153462     2  0.4929    -0.0923 0.456 0.492 0.000 0.008 0.000 0.044
#> GSM153465     2  0.4435     0.4777 0.004 0.648 0.000 0.308 0.000 0.040
#> GSM153481     1  0.1442     0.8211 0.944 0.000 0.004 0.040 0.000 0.012
#> GSM153482     2  0.4726     0.4150 0.036 0.600 0.000 0.352 0.000 0.012
#> GSM153483     2  0.5112     0.5343 0.040 0.676 0.000 0.208 0.000 0.076
#> GSM153485     4  0.5834    -0.0366 0.408 0.060 0.004 0.484 0.000 0.044
#> GSM153489     4  0.4465     0.5337 0.024 0.168 0.004 0.744 0.000 0.060
#> GSM153490     2  0.4648     0.5329 0.000 0.728 0.000 0.172 0.056 0.044
#> GSM153491     4  0.4644    -0.0182 0.004 0.440 0.000 0.524 0.000 0.032
#> GSM153492     2  0.4204     0.5243 0.000 0.696 0.000 0.252 0.000 0.052
#> GSM153493     2  0.6403    -0.2376 0.000 0.576 0.004 0.200 0.108 0.112
#> GSM153494     4  0.6165     0.3450 0.176 0.224 0.000 0.556 0.000 0.044
#> GSM153495     4  0.4544     0.3035 0.004 0.280 0.000 0.660 0.000 0.056
#> GSM153498     4  0.1514     0.5761 0.004 0.012 0.004 0.944 0.000 0.036
#> GSM153501     4  0.3529     0.5109 0.004 0.172 0.000 0.788 0.000 0.036
#> GSM153502     4  0.1807     0.5756 0.000 0.060 0.000 0.920 0.000 0.020
#> GSM153505     2  0.3743     0.5230 0.000 0.724 0.000 0.252 0.000 0.024
#> GSM153506     1  0.2295     0.8198 0.904 0.028 0.000 0.016 0.000 0.052

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) k
#> SD:pam 98           0.1164 2
#> SD:pam 98           0.0721 3
#> SD:pam 53           0.0329 4
#> SD:pam 45           0.0461 5
#> SD:pam 55           0.0181 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.976       0.908         0.2770 0.726   0.726
#> 3 3 0.491           0.587       0.774         0.8971 0.807   0.737
#> 4 4 0.704           0.849       0.908         0.2470 0.732   0.537
#> 5 5 0.775           0.838       0.906         0.0606 0.952   0.865
#> 6 6 0.745           0.760       0.869         0.0791 0.923   0.767

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     1   0.000      0.976 1.000 0.000
#> GSM153406     1   0.000      0.976 1.000 0.000
#> GSM153419     1   0.000      0.976 1.000 0.000
#> GSM153423     2   0.000      0.993 0.000 1.000
#> GSM153425     1   0.000      0.976 1.000 0.000
#> GSM153427     2   0.963      0.346 0.388 0.612
#> GSM153428     2   0.000      0.993 0.000 1.000
#> GSM153429     2   0.000      0.993 0.000 1.000
#> GSM153433     2   0.000      0.993 0.000 1.000
#> GSM153444     2   0.000      0.993 0.000 1.000
#> GSM153448     2   0.000      0.993 0.000 1.000
#> GSM153451     2   0.000      0.993 0.000 1.000
#> GSM153452     2   0.000      0.993 0.000 1.000
#> GSM153477     2   0.000      0.993 0.000 1.000
#> GSM153479     2   0.000      0.993 0.000 1.000
#> GSM153484     2   0.000      0.993 0.000 1.000
#> GSM153488     2   0.000      0.993 0.000 1.000
#> GSM153496     2   0.000      0.993 0.000 1.000
#> GSM153497     2   0.000      0.993 0.000 1.000
#> GSM153500     2   0.000      0.993 0.000 1.000
#> GSM153503     2   0.000      0.993 0.000 1.000
#> GSM153508     2   0.000      0.993 0.000 1.000
#> GSM153409     2   0.000      0.993 0.000 1.000
#> GSM153426     2   0.000      0.993 0.000 1.000
#> GSM153431     2   0.000      0.993 0.000 1.000
#> GSM153438     2   0.000      0.993 0.000 1.000
#> GSM153440     2   0.671      0.779 0.176 0.824
#> GSM153447     2   0.000      0.993 0.000 1.000
#> GSM153450     2   0.000      0.993 0.000 1.000
#> GSM153456     2   0.000      0.993 0.000 1.000
#> GSM153457     2   0.000      0.993 0.000 1.000
#> GSM153458     2   0.000      0.993 0.000 1.000
#> GSM153459     2   0.000      0.993 0.000 1.000
#> GSM153460     2   0.000      0.993 0.000 1.000
#> GSM153461     2   0.000      0.993 0.000 1.000
#> GSM153463     2   0.000      0.993 0.000 1.000
#> GSM153464     2   0.000      0.993 0.000 1.000
#> GSM153466     2   0.000      0.993 0.000 1.000
#> GSM153467     2   0.000      0.993 0.000 1.000
#> GSM153468     2   0.000      0.993 0.000 1.000
#> GSM153469     2   0.000      0.993 0.000 1.000
#> GSM153470     2   0.000      0.993 0.000 1.000
#> GSM153471     2   0.000      0.993 0.000 1.000
#> GSM153472     2   0.000      0.993 0.000 1.000
#> GSM153473     2   0.000      0.993 0.000 1.000
#> GSM153474     2   0.000      0.993 0.000 1.000
#> GSM153475     2   0.000      0.993 0.000 1.000
#> GSM153476     2   0.118      0.977 0.016 0.984
#> GSM153478     2   0.000      0.993 0.000 1.000
#> GSM153480     2   0.000      0.993 0.000 1.000
#> GSM153486     2   0.000      0.993 0.000 1.000
#> GSM153487     2   0.000      0.993 0.000 1.000
#> GSM153499     2   0.000      0.993 0.000 1.000
#> GSM153504     2   0.000      0.993 0.000 1.000
#> GSM153507     2   0.000      0.993 0.000 1.000
#> GSM153404     1   0.000      0.976 1.000 0.000
#> GSM153407     1   0.961      0.365 0.616 0.384
#> GSM153408     1   0.000      0.976 1.000 0.000
#> GSM153410     1   0.000      0.976 1.000 0.000
#> GSM153411     1   0.000      0.976 1.000 0.000
#> GSM153412     1   0.000      0.976 1.000 0.000
#> GSM153413     1   0.000      0.976 1.000 0.000
#> GSM153414     2   0.000      0.993 0.000 1.000
#> GSM153415     1   0.000      0.976 1.000 0.000
#> GSM153416     2   0.000      0.993 0.000 1.000
#> GSM153417     1   0.000      0.976 1.000 0.000
#> GSM153418     1   0.000      0.976 1.000 0.000
#> GSM153420     1   0.000      0.976 1.000 0.000
#> GSM153421     1   0.000      0.976 1.000 0.000
#> GSM153422     1   0.000      0.976 1.000 0.000
#> GSM153424     2   0.000      0.993 0.000 1.000
#> GSM153430     2   0.000      0.993 0.000 1.000
#> GSM153432     2   0.000      0.993 0.000 1.000
#> GSM153434     2   0.000      0.993 0.000 1.000
#> GSM153435     2   0.000      0.993 0.000 1.000
#> GSM153436     2   0.000      0.993 0.000 1.000
#> GSM153437     2   0.000      0.993 0.000 1.000
#> GSM153439     2   0.000      0.993 0.000 1.000
#> GSM153441     2   0.000      0.993 0.000 1.000
#> GSM153442     2   0.000      0.993 0.000 1.000
#> GSM153443     2   0.000      0.993 0.000 1.000
#> GSM153445     2   0.000      0.993 0.000 1.000
#> GSM153446     2   0.000      0.993 0.000 1.000
#> GSM153449     2   0.000      0.993 0.000 1.000
#> GSM153453     2   0.000      0.993 0.000 1.000
#> GSM153454     2   0.000      0.993 0.000 1.000
#> GSM153455     2   0.000      0.993 0.000 1.000
#> GSM153462     2   0.000      0.993 0.000 1.000
#> GSM153465     2   0.000      0.993 0.000 1.000
#> GSM153481     2   0.000      0.993 0.000 1.000
#> GSM153482     2   0.000      0.993 0.000 1.000
#> GSM153483     2   0.000      0.993 0.000 1.000
#> GSM153485     2   0.000      0.993 0.000 1.000
#> GSM153489     2   0.000      0.993 0.000 1.000
#> GSM153490     2   0.000      0.993 0.000 1.000
#> GSM153491     2   0.000      0.993 0.000 1.000
#> GSM153492     2   0.000      0.993 0.000 1.000
#> GSM153493     2   0.000      0.993 0.000 1.000
#> GSM153494     2   0.000      0.993 0.000 1.000
#> GSM153495     2   0.000      0.993 0.000 1.000
#> GSM153498     2   0.000      0.993 0.000 1.000
#> GSM153501     2   0.000      0.993 0.000 1.000
#> GSM153502     2   0.000      0.993 0.000 1.000
#> GSM153505     2   0.000      0.993 0.000 1.000
#> GSM153506     2   0.000      0.993 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     3  0.6244      0.815 0.440 0.000 0.560
#> GSM153406     3  0.6244      0.815 0.440 0.000 0.560
#> GSM153419     3  0.6244      0.815 0.440 0.000 0.560
#> GSM153423     2  0.6244      0.500 0.000 0.560 0.440
#> GSM153425     3  0.6079      0.779 0.388 0.000 0.612
#> GSM153427     3  0.9197     -0.130 0.212 0.252 0.536
#> GSM153428     2  0.7814      0.457 0.052 0.512 0.436
#> GSM153429     2  0.1289      0.657 0.032 0.968 0.000
#> GSM153433     2  0.2945      0.588 0.088 0.908 0.004
#> GSM153444     2  0.6244      0.500 0.000 0.560 0.440
#> GSM153448     2  0.2711      0.668 0.000 0.912 0.088
#> GSM153451     2  0.6460      0.497 0.004 0.556 0.440
#> GSM153452     2  0.6897      0.486 0.016 0.548 0.436
#> GSM153477     2  0.0000      0.673 0.000 1.000 0.000
#> GSM153479     2  0.0237      0.675 0.000 0.996 0.004
#> GSM153484     2  0.0424      0.669 0.008 0.992 0.000
#> GSM153488     2  0.0892      0.662 0.020 0.980 0.000
#> GSM153496     2  0.3619      0.495 0.136 0.864 0.000
#> GSM153497     2  0.6460      0.497 0.004 0.556 0.440
#> GSM153500     1  0.6252      0.899 0.556 0.444 0.000
#> GSM153503     1  0.6260      0.901 0.552 0.448 0.000
#> GSM153508     1  0.6483      0.897 0.544 0.452 0.004
#> GSM153409     2  0.6244      0.500 0.000 0.560 0.440
#> GSM153426     2  0.5968      0.541 0.000 0.636 0.364
#> GSM153431     2  0.7406      0.463 0.044 0.596 0.360
#> GSM153438     2  0.5733      0.561 0.000 0.676 0.324
#> GSM153440     3  0.9877     -0.284 0.316 0.276 0.408
#> GSM153447     3  0.9994     -0.358 0.340 0.316 0.344
#> GSM153450     2  0.6244      0.500 0.000 0.560 0.440
#> GSM153456     2  0.6460      0.497 0.004 0.556 0.440
#> GSM153457     2  0.6244      0.500 0.000 0.560 0.440
#> GSM153458     2  0.6244      0.500 0.000 0.560 0.440
#> GSM153459     2  0.6244      0.500 0.000 0.560 0.440
#> GSM153460     2  0.6244      0.500 0.000 0.560 0.440
#> GSM153461     2  0.6763      0.493 0.012 0.552 0.436
#> GSM153463     1  0.9027      0.381 0.532 0.160 0.308
#> GSM153464     2  0.2796      0.675 0.000 0.908 0.092
#> GSM153466     2  0.0747      0.667 0.016 0.984 0.000
#> GSM153467     2  0.3816      0.658 0.000 0.852 0.148
#> GSM153468     2  0.0661      0.671 0.008 0.988 0.004
#> GSM153469     2  0.0829      0.676 0.004 0.984 0.012
#> GSM153470     2  0.0237      0.671 0.004 0.996 0.000
#> GSM153471     2  0.0475      0.673 0.004 0.992 0.004
#> GSM153472     2  0.3941      0.442 0.156 0.844 0.000
#> GSM153473     2  0.2400      0.621 0.064 0.932 0.004
#> GSM153474     1  0.6617      0.897 0.556 0.436 0.008
#> GSM153475     2  0.2448      0.599 0.076 0.924 0.000
#> GSM153476     2  0.5678     -0.286 0.316 0.684 0.000
#> GSM153478     2  0.3539      0.570 0.100 0.888 0.012
#> GSM153480     2  0.2878      0.674 0.000 0.904 0.096
#> GSM153486     2  0.2356      0.681 0.000 0.928 0.072
#> GSM153487     2  0.0592      0.666 0.012 0.988 0.000
#> GSM153499     2  0.0237      0.671 0.004 0.996 0.000
#> GSM153504     2  0.4784      0.282 0.200 0.796 0.004
#> GSM153507     2  0.1399      0.657 0.028 0.968 0.004
#> GSM153404     3  0.6244      0.815 0.440 0.000 0.560
#> GSM153407     3  0.9436     -0.172 0.256 0.240 0.504
#> GSM153408     3  0.6244      0.815 0.440 0.000 0.560
#> GSM153410     3  0.6244      0.815 0.440 0.000 0.560
#> GSM153411     3  0.6244      0.815 0.440 0.000 0.560
#> GSM153412     3  0.6244      0.815 0.440 0.000 0.560
#> GSM153413     3  0.6244      0.815 0.440 0.000 0.560
#> GSM153414     2  0.6625      0.495 0.008 0.552 0.440
#> GSM153415     3  0.6244      0.815 0.440 0.000 0.560
#> GSM153416     2  0.6225      0.505 0.000 0.568 0.432
#> GSM153417     3  0.6244      0.815 0.440 0.000 0.560
#> GSM153418     3  0.6244      0.815 0.440 0.000 0.560
#> GSM153420     3  0.6244      0.815 0.440 0.000 0.560
#> GSM153421     3  0.6244      0.815 0.440 0.000 0.560
#> GSM153422     3  0.6244      0.815 0.440 0.000 0.560
#> GSM153424     2  0.7729      0.461 0.048 0.516 0.436
#> GSM153430     2  0.2356      0.613 0.072 0.928 0.000
#> GSM153432     2  0.0424      0.677 0.000 0.992 0.008
#> GSM153434     2  0.3310      0.665 0.028 0.908 0.064
#> GSM153435     2  0.2711      0.675 0.000 0.912 0.088
#> GSM153436     2  0.7648      0.469 0.048 0.552 0.400
#> GSM153437     2  0.3116      0.672 0.000 0.892 0.108
#> GSM153439     2  0.0592      0.669 0.012 0.988 0.000
#> GSM153441     2  0.2680      0.682 0.008 0.924 0.068
#> GSM153442     2  0.6393      0.597 0.048 0.736 0.216
#> GSM153443     2  0.3412      0.668 0.000 0.876 0.124
#> GSM153445     2  0.2796      0.675 0.000 0.908 0.092
#> GSM153446     2  0.3192      0.671 0.000 0.888 0.112
#> GSM153449     2  0.1031      0.661 0.024 0.976 0.000
#> GSM153453     2  0.3551      0.490 0.132 0.868 0.000
#> GSM153454     1  0.6617      0.897 0.556 0.436 0.008
#> GSM153455     2  0.0424      0.669 0.008 0.992 0.000
#> GSM153462     2  0.2878      0.674 0.000 0.904 0.096
#> GSM153465     2  0.0592      0.678 0.000 0.988 0.012
#> GSM153481     2  0.2173      0.680 0.008 0.944 0.048
#> GSM153482     2  0.0747      0.665 0.016 0.984 0.000
#> GSM153483     2  0.1411      0.680 0.000 0.964 0.036
#> GSM153485     2  0.0424      0.669 0.008 0.992 0.000
#> GSM153489     2  0.0747      0.666 0.016 0.984 0.000
#> GSM153490     2  0.5859     -0.421 0.344 0.656 0.000
#> GSM153491     2  0.3551      0.502 0.132 0.868 0.000
#> GSM153492     1  0.6305      0.866 0.516 0.484 0.000
#> GSM153493     1  0.6286      0.892 0.536 0.464 0.000
#> GSM153494     2  0.0424      0.677 0.000 0.992 0.008
#> GSM153495     1  0.6309      0.833 0.500 0.500 0.000
#> GSM153498     2  0.3192      0.538 0.112 0.888 0.000
#> GSM153501     2  0.6308     -0.832 0.492 0.508 0.000
#> GSM153502     2  0.3272      0.543 0.104 0.892 0.004
#> GSM153505     1  0.6274      0.899 0.544 0.456 0.000
#> GSM153506     2  0.1636      0.673 0.020 0.964 0.016

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     3  0.2310      0.937 0.028 0.004 0.928 0.040
#> GSM153406     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM153419     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM153423     4  0.2589      0.920 0.000 0.116 0.000 0.884
#> GSM153425     3  0.5109      0.802 0.060 0.000 0.744 0.196
#> GSM153427     4  0.1953      0.909 0.012 0.044 0.004 0.940
#> GSM153428     4  0.1398      0.907 0.004 0.040 0.000 0.956
#> GSM153429     2  0.0895      0.896 0.020 0.976 0.000 0.004
#> GSM153433     2  0.0657      0.898 0.012 0.984 0.000 0.004
#> GSM153444     4  0.2149      0.934 0.000 0.088 0.000 0.912
#> GSM153448     2  0.0592      0.897 0.000 0.984 0.000 0.016
#> GSM153451     4  0.2704      0.913 0.000 0.124 0.000 0.876
#> GSM153452     4  0.2149      0.934 0.000 0.088 0.000 0.912
#> GSM153477     2  0.0937      0.899 0.012 0.976 0.000 0.012
#> GSM153479     2  0.0000      0.898 0.000 1.000 0.000 0.000
#> GSM153484     2  0.0000      0.898 0.000 1.000 0.000 0.000
#> GSM153488     2  0.0336      0.897 0.008 0.992 0.000 0.000
#> GSM153496     2  0.2704      0.830 0.124 0.876 0.000 0.000
#> GSM153497     4  0.4040      0.746 0.000 0.248 0.000 0.752
#> GSM153500     1  0.1716      0.862 0.936 0.064 0.000 0.000
#> GSM153503     1  0.2081      0.870 0.916 0.084 0.000 0.000
#> GSM153508     1  0.2011      0.867 0.920 0.080 0.000 0.000
#> GSM153409     4  0.2149      0.934 0.000 0.088 0.000 0.912
#> GSM153426     4  0.2654      0.925 0.004 0.108 0.000 0.888
#> GSM153431     4  0.1302      0.910 0.000 0.044 0.000 0.956
#> GSM153438     4  0.4454      0.644 0.000 0.308 0.000 0.692
#> GSM153440     4  0.1022      0.897 0.000 0.032 0.000 0.968
#> GSM153447     4  0.3479      0.822 0.012 0.148 0.000 0.840
#> GSM153450     4  0.2081      0.933 0.000 0.084 0.000 0.916
#> GSM153456     4  0.2149      0.934 0.000 0.088 0.000 0.912
#> GSM153457     4  0.2589      0.920 0.000 0.116 0.000 0.884
#> GSM153458     4  0.2149      0.934 0.000 0.088 0.000 0.912
#> GSM153459     4  0.2149      0.934 0.000 0.088 0.000 0.912
#> GSM153460     4  0.2216      0.932 0.000 0.092 0.000 0.908
#> GSM153461     4  0.1867      0.928 0.000 0.072 0.000 0.928
#> GSM153463     1  0.6688      0.316 0.492 0.420 0.000 0.088
#> GSM153464     2  0.1389      0.882 0.000 0.952 0.000 0.048
#> GSM153466     2  0.0188      0.898 0.004 0.996 0.000 0.000
#> GSM153467     2  0.0817      0.894 0.000 0.976 0.000 0.024
#> GSM153468     2  0.0000      0.898 0.000 1.000 0.000 0.000
#> GSM153469     2  0.0000      0.898 0.000 1.000 0.000 0.000
#> GSM153470     2  0.0000      0.898 0.000 1.000 0.000 0.000
#> GSM153471     2  0.0000      0.898 0.000 1.000 0.000 0.000
#> GSM153472     2  0.4522      0.535 0.320 0.680 0.000 0.000
#> GSM153473     2  0.2011      0.859 0.080 0.920 0.000 0.000
#> GSM153474     1  0.1890      0.856 0.936 0.056 0.000 0.008
#> GSM153475     2  0.0707      0.897 0.020 0.980 0.000 0.000
#> GSM153476     2  0.2161      0.879 0.048 0.932 0.004 0.016
#> GSM153478     2  0.1767      0.884 0.012 0.944 0.000 0.044
#> GSM153480     2  0.2589      0.820 0.000 0.884 0.000 0.116
#> GSM153486     2  0.0336      0.898 0.000 0.992 0.000 0.008
#> GSM153487     2  0.2469      0.841 0.108 0.892 0.000 0.000
#> GSM153499     2  0.3219      0.777 0.164 0.836 0.000 0.000
#> GSM153504     1  0.4643      0.539 0.656 0.344 0.000 0.000
#> GSM153507     2  0.3486      0.752 0.188 0.812 0.000 0.000
#> GSM153404     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM153407     4  0.1022      0.897 0.000 0.032 0.000 0.968
#> GSM153408     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM153410     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM153411     3  0.3398      0.925 0.060 0.000 0.872 0.068
#> GSM153412     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM153413     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM153414     4  0.2011      0.932 0.000 0.080 0.000 0.920
#> GSM153415     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM153416     4  0.3257      0.884 0.004 0.152 0.000 0.844
#> GSM153417     3  0.3398      0.925 0.060 0.000 0.872 0.068
#> GSM153418     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM153420     3  0.3398      0.925 0.060 0.000 0.872 0.068
#> GSM153421     3  0.3398      0.925 0.060 0.000 0.872 0.068
#> GSM153422     3  0.3398      0.925 0.060 0.000 0.872 0.068
#> GSM153424     4  0.1398      0.907 0.004 0.040 0.000 0.956
#> GSM153430     2  0.0817      0.893 0.024 0.976 0.000 0.000
#> GSM153432     2  0.1118      0.889 0.000 0.964 0.000 0.036
#> GSM153434     2  0.2654      0.824 0.004 0.888 0.000 0.108
#> GSM153435     2  0.0707      0.895 0.000 0.980 0.000 0.020
#> GSM153436     4  0.3626      0.839 0.004 0.184 0.000 0.812
#> GSM153437     2  0.4955      0.117 0.000 0.556 0.000 0.444
#> GSM153439     2  0.0524      0.899 0.008 0.988 0.000 0.004
#> GSM153441     2  0.2011      0.855 0.000 0.920 0.000 0.080
#> GSM153442     2  0.3498      0.767 0.008 0.832 0.000 0.160
#> GSM153443     2  0.1902      0.868 0.004 0.932 0.000 0.064
#> GSM153445     2  0.1022      0.891 0.000 0.968 0.000 0.032
#> GSM153446     2  0.4560      0.551 0.004 0.700 0.000 0.296
#> GSM153449     2  0.0336      0.897 0.008 0.992 0.000 0.000
#> GSM153453     2  0.2868      0.817 0.136 0.864 0.000 0.000
#> GSM153454     1  0.2021      0.855 0.932 0.056 0.000 0.012
#> GSM153455     2  0.0188      0.898 0.004 0.996 0.000 0.000
#> GSM153462     2  0.0707      0.895 0.000 0.980 0.000 0.020
#> GSM153465     2  0.0817      0.894 0.000 0.976 0.000 0.024
#> GSM153481     2  0.0336      0.898 0.000 0.992 0.000 0.008
#> GSM153482     2  0.0469      0.897 0.012 0.988 0.000 0.000
#> GSM153483     2  0.0000      0.898 0.000 1.000 0.000 0.000
#> GSM153485     2  0.0188      0.898 0.004 0.996 0.000 0.000
#> GSM153489     2  0.0817      0.893 0.024 0.976 0.000 0.000
#> GSM153490     2  0.4830      0.296 0.392 0.608 0.000 0.000
#> GSM153491     2  0.3486      0.760 0.188 0.812 0.000 0.000
#> GSM153492     2  0.4925      0.210 0.428 0.572 0.000 0.000
#> GSM153493     1  0.1940      0.870 0.924 0.076 0.000 0.000
#> GSM153494     2  0.0188      0.898 0.004 0.996 0.000 0.000
#> GSM153495     1  0.3610      0.782 0.800 0.200 0.000 0.000
#> GSM153498     2  0.1716      0.878 0.064 0.936 0.000 0.000
#> GSM153501     1  0.2081      0.870 0.916 0.084 0.000 0.000
#> GSM153502     2  0.4072      0.650 0.252 0.748 0.000 0.000
#> GSM153505     1  0.2081      0.870 0.916 0.084 0.000 0.000
#> GSM153506     2  0.2973      0.804 0.144 0.856 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     5  0.4420     0.6369 0.000 0.004 0.448 0.000 0.548
#> GSM153406     3  0.0000     0.9978 0.000 0.000 1.000 0.000 0.000
#> GSM153419     3  0.0404     0.9825 0.000 0.000 0.988 0.000 0.012
#> GSM153423     2  0.0000     0.9150 0.000 1.000 0.000 0.000 0.000
#> GSM153425     5  0.2554     0.6978 0.000 0.036 0.072 0.000 0.892
#> GSM153427     2  0.3388     0.7870 0.000 0.792 0.000 0.008 0.200
#> GSM153428     2  0.1988     0.8869 0.016 0.928 0.000 0.008 0.048
#> GSM153429     1  0.0510     0.8966 0.984 0.016 0.000 0.000 0.000
#> GSM153433     1  0.1043     0.8877 0.960 0.000 0.000 0.000 0.040
#> GSM153444     2  0.0162     0.9145 0.000 0.996 0.000 0.004 0.000
#> GSM153448     1  0.1121     0.8858 0.956 0.000 0.000 0.000 0.044
#> GSM153451     2  0.0000     0.9150 0.000 1.000 0.000 0.000 0.000
#> GSM153452     2  0.0898     0.9090 0.000 0.972 0.000 0.008 0.020
#> GSM153477     1  0.0609     0.8963 0.980 0.020 0.000 0.000 0.000
#> GSM153479     1  0.0000     0.8951 1.000 0.000 0.000 0.000 0.000
#> GSM153484     1  0.0290     0.8969 0.992 0.008 0.000 0.000 0.000
#> GSM153488     1  0.0510     0.8947 0.984 0.000 0.000 0.016 0.000
#> GSM153496     1  0.3194     0.8011 0.832 0.000 0.000 0.148 0.020
#> GSM153497     2  0.2280     0.7943 0.120 0.880 0.000 0.000 0.000
#> GSM153500     4  0.0290     0.8484 0.008 0.000 0.000 0.992 0.000
#> GSM153503     4  0.0451     0.8472 0.008 0.000 0.000 0.988 0.004
#> GSM153508     4  0.0451     0.8472 0.008 0.000 0.000 0.988 0.004
#> GSM153409     2  0.0290     0.9135 0.000 0.992 0.000 0.008 0.000
#> GSM153426     2  0.0000     0.9150 0.000 1.000 0.000 0.000 0.000
#> GSM153431     2  0.1484     0.8992 0.000 0.944 0.000 0.008 0.048
#> GSM153438     2  0.1478     0.8715 0.064 0.936 0.000 0.000 0.000
#> GSM153440     2  0.2929     0.8281 0.000 0.840 0.000 0.008 0.152
#> GSM153447     2  0.3977     0.7981 0.100 0.812 0.000 0.008 0.080
#> GSM153450     2  0.0000     0.9150 0.000 1.000 0.000 0.000 0.000
#> GSM153456     2  0.0000     0.9150 0.000 1.000 0.000 0.000 0.000
#> GSM153457     2  0.0000     0.9150 0.000 1.000 0.000 0.000 0.000
#> GSM153458     2  0.0000     0.9150 0.000 1.000 0.000 0.000 0.000
#> GSM153459     2  0.0000     0.9150 0.000 1.000 0.000 0.000 0.000
#> GSM153460     2  0.0000     0.9150 0.000 1.000 0.000 0.000 0.000
#> GSM153461     2  0.0451     0.9132 0.000 0.988 0.000 0.008 0.004
#> GSM153463     1  0.5604     0.5104 0.636 0.084 0.000 0.268 0.012
#> GSM153464     1  0.1410     0.8809 0.940 0.060 0.000 0.000 0.000
#> GSM153466     1  0.0451     0.8960 0.988 0.000 0.000 0.004 0.008
#> GSM153467     1  0.1750     0.8871 0.936 0.036 0.000 0.000 0.028
#> GSM153468     1  0.0613     0.8961 0.984 0.004 0.000 0.008 0.004
#> GSM153469     1  0.0162     0.8961 0.996 0.004 0.000 0.000 0.000
#> GSM153470     1  0.0404     0.8967 0.988 0.012 0.000 0.000 0.000
#> GSM153471     1  0.0693     0.8977 0.980 0.012 0.000 0.008 0.000
#> GSM153472     1  0.4752     0.2933 0.568 0.000 0.000 0.412 0.020
#> GSM153473     1  0.1943     0.8685 0.924 0.000 0.000 0.056 0.020
#> GSM153474     4  0.0324     0.8415 0.004 0.000 0.000 0.992 0.004
#> GSM153475     1  0.0162     0.8961 0.996 0.004 0.000 0.000 0.000
#> GSM153476     1  0.1018     0.8970 0.968 0.016 0.000 0.000 0.016
#> GSM153478     1  0.1651     0.8828 0.944 0.012 0.000 0.008 0.036
#> GSM153480     1  0.2230     0.8378 0.884 0.116 0.000 0.000 0.000
#> GSM153486     1  0.0963     0.8926 0.964 0.036 0.000 0.000 0.000
#> GSM153487     1  0.2669     0.8312 0.876 0.000 0.000 0.104 0.020
#> GSM153499     1  0.3695     0.7654 0.800 0.000 0.000 0.164 0.036
#> GSM153504     4  0.3183     0.7229 0.156 0.000 0.000 0.828 0.016
#> GSM153507     1  0.3656     0.7332 0.784 0.000 0.000 0.196 0.020
#> GSM153404     3  0.0000     0.9978 0.000 0.000 1.000 0.000 0.000
#> GSM153407     2  0.3421     0.7832 0.000 0.788 0.000 0.008 0.204
#> GSM153408     3  0.0000     0.9978 0.000 0.000 1.000 0.000 0.000
#> GSM153410     3  0.0000     0.9978 0.000 0.000 1.000 0.000 0.000
#> GSM153411     5  0.3661     0.9062 0.000 0.000 0.276 0.000 0.724
#> GSM153412     3  0.0000     0.9978 0.000 0.000 1.000 0.000 0.000
#> GSM153413     3  0.0000     0.9978 0.000 0.000 1.000 0.000 0.000
#> GSM153414     2  0.0162     0.9145 0.000 0.996 0.000 0.004 0.000
#> GSM153415     3  0.0000     0.9978 0.000 0.000 1.000 0.000 0.000
#> GSM153416     2  0.0510     0.9079 0.016 0.984 0.000 0.000 0.000
#> GSM153417     5  0.3661     0.9062 0.000 0.000 0.276 0.000 0.724
#> GSM153418     3  0.0000     0.9978 0.000 0.000 1.000 0.000 0.000
#> GSM153420     5  0.3661     0.9062 0.000 0.000 0.276 0.000 0.724
#> GSM153421     5  0.3661     0.9062 0.000 0.000 0.276 0.000 0.724
#> GSM153422     5  0.3661     0.9062 0.000 0.000 0.276 0.000 0.724
#> GSM153424     2  0.1883     0.8907 0.012 0.932 0.000 0.008 0.048
#> GSM153430     1  0.1282     0.8856 0.952 0.000 0.000 0.004 0.044
#> GSM153432     1  0.0703     0.8960 0.976 0.024 0.000 0.000 0.000
#> GSM153434     1  0.4268     0.7165 0.772 0.172 0.000 0.008 0.048
#> GSM153435     1  0.0963     0.8924 0.964 0.036 0.000 0.000 0.000
#> GSM153436     2  0.3423     0.8144 0.108 0.844 0.000 0.008 0.040
#> GSM153437     2  0.4300     0.0422 0.476 0.524 0.000 0.000 0.000
#> GSM153439     1  0.0510     0.8966 0.984 0.016 0.000 0.000 0.000
#> GSM153441     1  0.3141     0.8156 0.852 0.108 0.000 0.000 0.040
#> GSM153442     1  0.3497     0.7976 0.836 0.112 0.000 0.004 0.048
#> GSM153443     1  0.1892     0.8692 0.916 0.080 0.000 0.000 0.004
#> GSM153445     1  0.1043     0.8908 0.960 0.040 0.000 0.000 0.000
#> GSM153446     1  0.3966     0.5294 0.664 0.336 0.000 0.000 0.000
#> GSM153449     1  0.0703     0.8930 0.976 0.000 0.000 0.000 0.024
#> GSM153453     1  0.3621     0.7370 0.788 0.000 0.000 0.192 0.020
#> GSM153454     4  0.1300     0.8317 0.028 0.000 0.000 0.956 0.016
#> GSM153455     1  0.0404     0.8967 0.988 0.012 0.000 0.000 0.000
#> GSM153462     1  0.0703     0.8964 0.976 0.024 0.000 0.000 0.000
#> GSM153465     1  0.0703     0.8957 0.976 0.024 0.000 0.000 0.000
#> GSM153481     1  0.0510     0.8966 0.984 0.016 0.000 0.000 0.000
#> GSM153482     1  0.0912     0.8912 0.972 0.000 0.000 0.012 0.016
#> GSM153483     1  0.0290     0.8960 0.992 0.000 0.000 0.000 0.008
#> GSM153485     1  0.0579     0.8977 0.984 0.008 0.000 0.000 0.008
#> GSM153489     1  0.0865     0.8915 0.972 0.000 0.000 0.024 0.004
#> GSM153490     1  0.4781     0.2077 0.552 0.000 0.000 0.428 0.020
#> GSM153491     1  0.3586     0.7510 0.792 0.000 0.000 0.188 0.020
#> GSM153492     4  0.4760     0.2451 0.416 0.000 0.000 0.564 0.020
#> GSM153493     4  0.0290     0.8484 0.008 0.000 0.000 0.992 0.000
#> GSM153494     1  0.0566     0.8946 0.984 0.000 0.000 0.012 0.004
#> GSM153495     4  0.3852     0.6381 0.220 0.000 0.000 0.760 0.020
#> GSM153498     1  0.1597     0.8897 0.948 0.008 0.000 0.020 0.024
#> GSM153501     4  0.0671     0.8456 0.016 0.000 0.000 0.980 0.004
#> GSM153502     1  0.4570     0.4387 0.632 0.000 0.000 0.348 0.020
#> GSM153505     4  0.0290     0.8484 0.008 0.000 0.000 0.992 0.000
#> GSM153506     1  0.3705     0.8020 0.816 0.000 0.000 0.120 0.064

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     5  0.4569     0.2925 0.000 0.008 0.408 0.000 0.560 0.024
#> GSM153406     3  0.0000     0.9961 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM153419     3  0.0713     0.9679 0.000 0.000 0.972 0.000 0.028 0.000
#> GSM153423     2  0.0146     0.8428 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM153425     5  0.0458     0.9025 0.000 0.000 0.000 0.000 0.984 0.016
#> GSM153427     2  0.2494     0.7246 0.000 0.864 0.000 0.000 0.016 0.120
#> GSM153428     6  0.3887     0.7483 0.008 0.360 0.000 0.000 0.000 0.632
#> GSM153429     1  0.0000     0.8622 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153433     1  0.2957     0.8365 0.844 0.004 0.000 0.032 0.000 0.120
#> GSM153444     2  0.0547     0.8359 0.000 0.980 0.000 0.000 0.000 0.020
#> GSM153448     1  0.0547     0.8644 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM153451     2  0.0405     0.8371 0.008 0.988 0.000 0.000 0.000 0.004
#> GSM153452     2  0.2100     0.7388 0.004 0.884 0.000 0.000 0.000 0.112
#> GSM153477     1  0.0000     0.8622 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153479     1  0.1714     0.8547 0.908 0.000 0.000 0.000 0.000 0.092
#> GSM153484     1  0.0363     0.8644 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM153488     1  0.2212     0.8464 0.880 0.000 0.000 0.008 0.000 0.112
#> GSM153496     1  0.5397     0.4957 0.584 0.000 0.000 0.216 0.000 0.200
#> GSM153497     2  0.2402     0.5997 0.140 0.856 0.000 0.000 0.000 0.004
#> GSM153500     4  0.0000     0.7781 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153503     4  0.0260     0.7750 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM153508     4  0.0865     0.7678 0.000 0.000 0.000 0.964 0.000 0.036
#> GSM153409     2  0.0547     0.8358 0.000 0.980 0.000 0.000 0.000 0.020
#> GSM153426     2  0.0000     0.8437 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM153431     6  0.3923     0.7448 0.008 0.372 0.000 0.000 0.000 0.620
#> GSM153438     2  0.1267     0.7775 0.060 0.940 0.000 0.000 0.000 0.000
#> GSM153440     6  0.4049     0.6993 0.004 0.412 0.000 0.000 0.004 0.580
#> GSM153447     6  0.3642     0.6930 0.036 0.204 0.000 0.000 0.000 0.760
#> GSM153450     2  0.0790     0.8250 0.000 0.968 0.000 0.000 0.000 0.032
#> GSM153456     2  0.0000     0.8437 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM153457     2  0.0000     0.8437 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM153458     2  0.0000     0.8437 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM153459     2  0.0000     0.8437 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM153460     2  0.0000     0.8437 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM153461     2  0.3076     0.4705 0.000 0.760 0.000 0.000 0.000 0.240
#> GSM153463     6  0.3821     0.1098 0.040 0.000 0.000 0.220 0.000 0.740
#> GSM153464     1  0.1958     0.8144 0.896 0.100 0.000 0.000 0.000 0.004
#> GSM153466     1  0.1814     0.8531 0.900 0.000 0.000 0.000 0.000 0.100
#> GSM153467     1  0.1594     0.8509 0.932 0.052 0.000 0.000 0.000 0.016
#> GSM153468     1  0.2048     0.8466 0.880 0.000 0.000 0.000 0.000 0.120
#> GSM153469     1  0.0260     0.8638 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM153470     1  0.0000     0.8622 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153471     1  0.0458     0.8646 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM153472     4  0.5634     0.2845 0.348 0.000 0.000 0.492 0.000 0.160
#> GSM153473     4  0.5930     0.1015 0.384 0.000 0.000 0.404 0.000 0.212
#> GSM153474     4  0.0865     0.7628 0.000 0.000 0.000 0.964 0.000 0.036
#> GSM153475     1  0.0790     0.8643 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM153476     1  0.0000     0.8622 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153478     1  0.2431     0.8390 0.860 0.008 0.000 0.000 0.000 0.132
#> GSM153480     1  0.2402     0.7926 0.856 0.140 0.000 0.000 0.000 0.004
#> GSM153486     1  0.0260     0.8615 0.992 0.008 0.000 0.000 0.000 0.000
#> GSM153487     1  0.4328     0.6953 0.708 0.000 0.000 0.080 0.000 0.212
#> GSM153499     1  0.3952     0.7313 0.736 0.000 0.000 0.052 0.000 0.212
#> GSM153504     4  0.2263     0.7671 0.016 0.000 0.000 0.884 0.000 0.100
#> GSM153507     1  0.5927    -0.0791 0.412 0.000 0.000 0.376 0.000 0.212
#> GSM153404     3  0.0000     0.9961 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM153407     6  0.4184     0.6979 0.000 0.408 0.000 0.000 0.016 0.576
#> GSM153408     3  0.0000     0.9961 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM153410     3  0.0000     0.9961 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM153411     5  0.0458     0.9234 0.000 0.000 0.016 0.000 0.984 0.000
#> GSM153412     3  0.0000     0.9961 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM153413     3  0.0000     0.9961 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM153414     2  0.3133     0.5331 0.008 0.780 0.000 0.000 0.000 0.212
#> GSM153415     3  0.0000     0.9961 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM153416     2  0.0790     0.8180 0.032 0.968 0.000 0.000 0.000 0.000
#> GSM153417     5  0.0458     0.9234 0.000 0.000 0.016 0.000 0.984 0.000
#> GSM153418     3  0.0000     0.9961 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM153420     5  0.0458     0.9234 0.000 0.000 0.016 0.000 0.984 0.000
#> GSM153421     5  0.0458     0.9234 0.000 0.000 0.016 0.000 0.984 0.000
#> GSM153422     5  0.0458     0.9234 0.000 0.000 0.016 0.000 0.984 0.000
#> GSM153424     6  0.3769     0.7501 0.004 0.356 0.000 0.000 0.000 0.640
#> GSM153430     1  0.2333     0.8530 0.884 0.000 0.000 0.024 0.000 0.092
#> GSM153432     1  0.0260     0.8618 0.992 0.008 0.000 0.000 0.000 0.000
#> GSM153434     1  0.3417     0.7362 0.796 0.044 0.000 0.000 0.000 0.160
#> GSM153435     1  0.1082     0.8514 0.956 0.040 0.000 0.000 0.000 0.004
#> GSM153436     6  0.5184     0.6509 0.120 0.296 0.000 0.000 0.000 0.584
#> GSM153437     2  0.3966     0.0966 0.444 0.552 0.000 0.000 0.000 0.004
#> GSM153439     1  0.0000     0.8622 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153441     1  0.2325     0.8241 0.892 0.048 0.000 0.000 0.000 0.060
#> GSM153442     1  0.3977     0.6938 0.692 0.020 0.000 0.004 0.000 0.284
#> GSM153443     1  0.2006     0.8165 0.892 0.104 0.000 0.000 0.000 0.004
#> GSM153445     1  0.0935     0.8551 0.964 0.032 0.000 0.000 0.000 0.004
#> GSM153446     1  0.3728     0.4870 0.652 0.344 0.000 0.000 0.000 0.004
#> GSM153449     1  0.2006     0.8513 0.892 0.000 0.000 0.004 0.000 0.104
#> GSM153453     1  0.5922    -0.0373 0.420 0.000 0.000 0.368 0.000 0.212
#> GSM153454     4  0.1387     0.7724 0.000 0.000 0.000 0.932 0.000 0.068
#> GSM153455     1  0.0146     0.8631 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM153462     1  0.0777     0.8571 0.972 0.024 0.000 0.000 0.000 0.004
#> GSM153465     1  0.0146     0.8618 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM153481     1  0.0405     0.8607 0.988 0.008 0.000 0.000 0.000 0.004
#> GSM153482     1  0.2730     0.8001 0.808 0.000 0.000 0.000 0.000 0.192
#> GSM153483     1  0.1910     0.8508 0.892 0.000 0.000 0.000 0.000 0.108
#> GSM153485     1  0.1663     0.8578 0.912 0.000 0.000 0.000 0.000 0.088
#> GSM153489     1  0.3088     0.8240 0.832 0.000 0.000 0.048 0.000 0.120
#> GSM153490     4  0.4468     0.6703 0.092 0.000 0.000 0.696 0.000 0.212
#> GSM153491     1  0.5909    -0.0239 0.420 0.000 0.000 0.372 0.000 0.208
#> GSM153492     4  0.3776     0.7100 0.048 0.000 0.000 0.756 0.000 0.196
#> GSM153493     4  0.0146     0.7787 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM153494     1  0.2003     0.8476 0.884 0.000 0.000 0.000 0.000 0.116
#> GSM153495     4  0.2653     0.7515 0.012 0.000 0.000 0.844 0.000 0.144
#> GSM153498     1  0.2669     0.8186 0.836 0.000 0.000 0.008 0.000 0.156
#> GSM153501     4  0.0458     0.7743 0.000 0.000 0.000 0.984 0.000 0.016
#> GSM153502     4  0.4974     0.6200 0.144 0.000 0.000 0.644 0.000 0.212
#> GSM153505     4  0.0000     0.7781 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153506     1  0.3374     0.7688 0.772 0.000 0.000 0.020 0.000 0.208

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> SD:mclust 103          0.00975 2
#> SD:mclust  75          0.04705 3
#> SD:mclust 101          0.00870 4
#> SD:mclust 100          0.02885 5
#> SD:mclust  94          0.03424 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.801           0.888       0.950         0.4924 0.501   0.501
#> 3 3 0.613           0.747       0.881         0.3074 0.706   0.490
#> 4 4 0.541           0.593       0.777         0.1375 0.881   0.685
#> 5 5 0.521           0.484       0.680         0.0656 0.916   0.715
#> 6 6 0.549           0.417       0.649         0.0436 0.918   0.680

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     1  0.0000      0.924 1.000 0.000
#> GSM153406     2  0.0000      0.962 0.000 1.000
#> GSM153419     1  0.0000      0.924 1.000 0.000
#> GSM153423     2  0.0000      0.962 0.000 1.000
#> GSM153425     1  0.0000      0.924 1.000 0.000
#> GSM153427     2  0.0000      0.962 0.000 1.000
#> GSM153428     1  0.1184      0.919 0.984 0.016
#> GSM153429     2  0.0672      0.958 0.008 0.992
#> GSM153433     1  0.0000      0.924 1.000 0.000
#> GSM153444     2  0.0000      0.962 0.000 1.000
#> GSM153448     2  0.2423      0.937 0.040 0.960
#> GSM153451     2  0.0000      0.962 0.000 1.000
#> GSM153452     2  0.0938      0.956 0.012 0.988
#> GSM153477     2  0.0000      0.962 0.000 1.000
#> GSM153479     2  0.0672      0.959 0.008 0.992
#> GSM153484     2  0.1184      0.954 0.016 0.984
#> GSM153488     1  0.9944      0.222 0.544 0.456
#> GSM153496     1  0.1843      0.913 0.972 0.028
#> GSM153497     2  0.0000      0.962 0.000 1.000
#> GSM153500     1  0.0000      0.924 1.000 0.000
#> GSM153503     1  0.0000      0.924 1.000 0.000
#> GSM153508     1  0.4022      0.874 0.920 0.080
#> GSM153409     2  0.0000      0.962 0.000 1.000
#> GSM153426     2  0.0000      0.962 0.000 1.000
#> GSM153431     1  0.0376      0.923 0.996 0.004
#> GSM153438     2  0.0000      0.962 0.000 1.000
#> GSM153440     1  0.0000      0.924 1.000 0.000
#> GSM153447     1  0.0000      0.924 1.000 0.000
#> GSM153450     2  0.0000      0.962 0.000 1.000
#> GSM153456     2  0.0000      0.962 0.000 1.000
#> GSM153457     2  0.0000      0.962 0.000 1.000
#> GSM153458     2  0.0000      0.962 0.000 1.000
#> GSM153459     2  0.0000      0.962 0.000 1.000
#> GSM153460     2  0.0000      0.962 0.000 1.000
#> GSM153461     2  0.1414      0.952 0.020 0.980
#> GSM153463     1  0.0000      0.924 1.000 0.000
#> GSM153464     2  0.0000      0.962 0.000 1.000
#> GSM153466     2  0.7528      0.728 0.216 0.784
#> GSM153467     2  0.0000      0.962 0.000 1.000
#> GSM153468     2  0.0672      0.958 0.008 0.992
#> GSM153469     2  0.0000      0.962 0.000 1.000
#> GSM153470     2  0.0000      0.962 0.000 1.000
#> GSM153471     2  0.0000      0.962 0.000 1.000
#> GSM153472     1  0.2043      0.910 0.968 0.032
#> GSM153473     1  0.0000      0.924 1.000 0.000
#> GSM153474     1  0.0000      0.924 1.000 0.000
#> GSM153475     2  0.7674      0.715 0.224 0.776
#> GSM153476     2  0.3431      0.915 0.064 0.936
#> GSM153478     1  0.1414      0.917 0.980 0.020
#> GSM153480     2  0.0000      0.962 0.000 1.000
#> GSM153486     2  0.0000      0.962 0.000 1.000
#> GSM153487     1  0.9754      0.361 0.592 0.408
#> GSM153499     2  0.0672      0.959 0.008 0.992
#> GSM153504     1  0.0000      0.924 1.000 0.000
#> GSM153507     1  0.0938      0.920 0.988 0.012
#> GSM153404     2  0.7950      0.682 0.240 0.760
#> GSM153407     1  0.2043      0.910 0.968 0.032
#> GSM153408     1  0.9170      0.539 0.668 0.332
#> GSM153410     2  0.0000      0.962 0.000 1.000
#> GSM153411     1  0.0000      0.924 1.000 0.000
#> GSM153412     2  0.0000      0.962 0.000 1.000
#> GSM153413     1  0.6887      0.770 0.816 0.184
#> GSM153414     2  0.2603      0.933 0.044 0.956
#> GSM153415     1  0.9323      0.510 0.652 0.348
#> GSM153416     2  0.0000      0.962 0.000 1.000
#> GSM153417     1  0.0000      0.924 1.000 0.000
#> GSM153418     2  0.4431      0.888 0.092 0.908
#> GSM153420     1  0.0000      0.924 1.000 0.000
#> GSM153421     1  0.0000      0.924 1.000 0.000
#> GSM153422     1  0.0000      0.924 1.000 0.000
#> GSM153424     1  0.0376      0.923 0.996 0.004
#> GSM153430     1  0.0376      0.923 0.996 0.004
#> GSM153432     2  0.0000      0.962 0.000 1.000
#> GSM153434     1  0.8327      0.662 0.736 0.264
#> GSM153435     2  0.0000      0.962 0.000 1.000
#> GSM153436     1  0.6148      0.808 0.848 0.152
#> GSM153437     2  0.0000      0.962 0.000 1.000
#> GSM153439     2  0.0000      0.962 0.000 1.000
#> GSM153441     2  0.2948      0.927 0.052 0.948
#> GSM153442     2  0.9044      0.520 0.320 0.680
#> GSM153443     2  0.0000      0.962 0.000 1.000
#> GSM153445     2  0.0000      0.962 0.000 1.000
#> GSM153446     2  0.0000      0.962 0.000 1.000
#> GSM153449     1  0.3431      0.887 0.936 0.064
#> GSM153453     1  0.0938      0.921 0.988 0.012
#> GSM153454     1  0.0000      0.924 1.000 0.000
#> GSM153455     2  0.7602      0.722 0.220 0.780
#> GSM153462     2  0.0000      0.962 0.000 1.000
#> GSM153465     2  0.0000      0.962 0.000 1.000
#> GSM153481     2  0.0000      0.962 0.000 1.000
#> GSM153482     1  0.9866      0.285 0.568 0.432
#> GSM153483     2  0.0000      0.962 0.000 1.000
#> GSM153485     2  0.7139      0.757 0.196 0.804
#> GSM153489     1  0.9732      0.374 0.596 0.404
#> GSM153490     1  0.0000      0.924 1.000 0.000
#> GSM153491     1  0.1843      0.913 0.972 0.028
#> GSM153492     1  0.0000      0.924 1.000 0.000
#> GSM153493     1  0.0000      0.924 1.000 0.000
#> GSM153494     2  0.1633      0.949 0.024 0.976
#> GSM153495     1  0.0000      0.924 1.000 0.000
#> GSM153498     2  0.6438      0.802 0.164 0.836
#> GSM153501     1  0.0000      0.924 1.000 0.000
#> GSM153502     1  0.0000      0.924 1.000 0.000
#> GSM153505     1  0.0000      0.924 1.000 0.000
#> GSM153506     2  0.0000      0.962 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     3  0.1163     0.8468 0.000 0.028 0.972
#> GSM153406     2  0.6045     0.3280 0.000 0.620 0.380
#> GSM153419     3  0.0747     0.8481 0.000 0.016 0.984
#> GSM153423     2  0.0424     0.8755 0.000 0.992 0.008
#> GSM153425     3  0.0237     0.8487 0.004 0.000 0.996
#> GSM153427     2  0.5948     0.3828 0.000 0.640 0.360
#> GSM153428     3  0.1129     0.8497 0.004 0.020 0.976
#> GSM153429     2  0.1529     0.8703 0.040 0.960 0.000
#> GSM153433     1  0.4235     0.7446 0.824 0.000 0.176
#> GSM153444     2  0.2448     0.8364 0.000 0.924 0.076
#> GSM153448     2  0.6421     0.1655 0.424 0.572 0.004
#> GSM153451     2  0.0237     0.8757 0.000 0.996 0.004
#> GSM153452     2  0.4796     0.6670 0.000 0.780 0.220
#> GSM153477     2  0.2448     0.8480 0.076 0.924 0.000
#> GSM153479     1  0.5988     0.4688 0.632 0.368 0.000
#> GSM153484     1  0.6309     0.0861 0.500 0.500 0.000
#> GSM153488     1  0.1529     0.8317 0.960 0.040 0.000
#> GSM153496     1  0.0000     0.8378 1.000 0.000 0.000
#> GSM153497     2  0.0237     0.8758 0.004 0.996 0.000
#> GSM153500     1  0.0747     0.8365 0.984 0.000 0.016
#> GSM153503     1  0.1529     0.8306 0.960 0.000 0.040
#> GSM153508     1  0.0237     0.8375 0.996 0.004 0.000
#> GSM153409     2  0.2537     0.8335 0.000 0.920 0.080
#> GSM153426     2  0.0892     0.8715 0.000 0.980 0.020
#> GSM153431     3  0.2173     0.8276 0.048 0.008 0.944
#> GSM153438     2  0.0592     0.8744 0.000 0.988 0.012
#> GSM153440     3  0.0424     0.8483 0.008 0.000 0.992
#> GSM153447     3  0.5138     0.5660 0.252 0.000 0.748
#> GSM153450     2  0.1753     0.8569 0.000 0.952 0.048
#> GSM153456     2  0.0592     0.8744 0.000 0.988 0.012
#> GSM153457     2  0.0237     0.8757 0.000 0.996 0.004
#> GSM153458     2  0.2165     0.8453 0.000 0.936 0.064
#> GSM153459     2  0.1411     0.8640 0.000 0.964 0.036
#> GSM153460     2  0.0747     0.8731 0.000 0.984 0.016
#> GSM153461     2  0.5058     0.6321 0.000 0.756 0.244
#> GSM153463     1  0.6204     0.3088 0.576 0.000 0.424
#> GSM153464     2  0.0747     0.8754 0.016 0.984 0.000
#> GSM153466     1  0.4178     0.7583 0.828 0.172 0.000
#> GSM153467     2  0.4291     0.7402 0.180 0.820 0.000
#> GSM153468     1  0.5560     0.6029 0.700 0.300 0.000
#> GSM153469     2  0.3038     0.8236 0.104 0.896 0.000
#> GSM153470     2  0.3619     0.7933 0.136 0.864 0.000
#> GSM153471     2  0.3267     0.8137 0.116 0.884 0.000
#> GSM153472     1  0.0000     0.8378 1.000 0.000 0.000
#> GSM153473     1  0.4504     0.7208 0.804 0.000 0.196
#> GSM153474     1  0.1411     0.8322 0.964 0.000 0.036
#> GSM153475     1  0.4121     0.7641 0.832 0.168 0.000
#> GSM153476     2  0.2939     0.8522 0.072 0.916 0.012
#> GSM153478     1  0.4682     0.7275 0.804 0.004 0.192
#> GSM153480     2  0.0475     0.8760 0.004 0.992 0.004
#> GSM153486     2  0.2066     0.8592 0.060 0.940 0.000
#> GSM153487     1  0.0592     0.8372 0.988 0.012 0.000
#> GSM153499     1  0.2537     0.8181 0.920 0.080 0.000
#> GSM153504     1  0.1411     0.8323 0.964 0.000 0.036
#> GSM153507     1  0.0000     0.8378 1.000 0.000 0.000
#> GSM153404     3  0.6235     0.2775 0.000 0.436 0.564
#> GSM153407     3  0.1411     0.8451 0.000 0.036 0.964
#> GSM153408     3  0.4931     0.6788 0.000 0.232 0.768
#> GSM153410     2  0.5560     0.5235 0.000 0.700 0.300
#> GSM153411     3  0.1163     0.8376 0.028 0.000 0.972
#> GSM153412     2  0.5560     0.5228 0.000 0.700 0.300
#> GSM153413     3  0.4555     0.7237 0.000 0.200 0.800
#> GSM153414     2  0.2537     0.8392 0.000 0.920 0.080
#> GSM153415     3  0.5465     0.6051 0.000 0.288 0.712
#> GSM153416     2  0.0237     0.8757 0.000 0.996 0.004
#> GSM153417     3  0.0424     0.8483 0.008 0.000 0.992
#> GSM153418     3  0.6225     0.2828 0.000 0.432 0.568
#> GSM153420     3  0.0237     0.8487 0.004 0.000 0.996
#> GSM153421     3  0.0424     0.8483 0.008 0.000 0.992
#> GSM153422     3  0.0424     0.8483 0.008 0.000 0.992
#> GSM153424     3  0.3375     0.7825 0.100 0.008 0.892
#> GSM153430     1  0.3551     0.7820 0.868 0.000 0.132
#> GSM153432     2  0.1525     0.8745 0.032 0.964 0.004
#> GSM153434     1  0.5981     0.7384 0.788 0.132 0.080
#> GSM153435     2  0.0747     0.8754 0.016 0.984 0.000
#> GSM153436     3  0.8939     0.4844 0.176 0.264 0.560
#> GSM153437     2  0.0237     0.8757 0.000 0.996 0.004
#> GSM153439     2  0.2066     0.8597 0.060 0.940 0.000
#> GSM153441     2  0.6168     0.2206 0.412 0.588 0.000
#> GSM153442     1  0.2796     0.8128 0.908 0.092 0.000
#> GSM153443     2  0.1529     0.8698 0.040 0.960 0.000
#> GSM153445     2  0.1031     0.8746 0.024 0.976 0.000
#> GSM153446     2  0.0237     0.8757 0.000 0.996 0.004
#> GSM153449     1  0.0424     0.8379 0.992 0.000 0.008
#> GSM153453     1  0.0237     0.8377 0.996 0.000 0.004
#> GSM153454     1  0.3879     0.7643 0.848 0.000 0.152
#> GSM153455     1  0.6521     0.1062 0.504 0.492 0.004
#> GSM153462     2  0.1411     0.8712 0.036 0.964 0.000
#> GSM153465     2  0.1529     0.8704 0.040 0.960 0.000
#> GSM153481     2  0.1163     0.8740 0.028 0.972 0.000
#> GSM153482     1  0.1163     0.8349 0.972 0.028 0.000
#> GSM153483     1  0.5785     0.5459 0.668 0.332 0.000
#> GSM153485     1  0.3267     0.8013 0.884 0.116 0.000
#> GSM153489     1  0.0747     0.8372 0.984 0.016 0.000
#> GSM153490     1  0.4291     0.7394 0.820 0.000 0.180
#> GSM153491     1  0.0424     0.8376 0.992 0.000 0.008
#> GSM153492     1  0.2165     0.8205 0.936 0.000 0.064
#> GSM153493     1  0.1163     0.8347 0.972 0.000 0.028
#> GSM153494     1  0.4235     0.7557 0.824 0.176 0.000
#> GSM153495     1  0.3752     0.7700 0.856 0.000 0.144
#> GSM153498     1  0.2959     0.8083 0.900 0.100 0.000
#> GSM153501     1  0.0892     0.8358 0.980 0.000 0.020
#> GSM153502     1  0.1163     0.8347 0.972 0.000 0.028
#> GSM153505     1  0.3038     0.7977 0.896 0.000 0.104
#> GSM153506     1  0.6299     0.1739 0.524 0.476 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     3  0.4250   0.467842 0.000 0.000 0.724 0.276
#> GSM153406     4  0.5118   0.560959 0.000 0.072 0.176 0.752
#> GSM153419     3  0.4804   0.279903 0.000 0.000 0.616 0.384
#> GSM153423     2  0.0927   0.822144 0.000 0.976 0.016 0.008
#> GSM153425     3  0.2715   0.634951 0.004 0.004 0.892 0.100
#> GSM153427     2  0.5489   0.589747 0.000 0.700 0.240 0.060
#> GSM153428     3  0.6331   0.263156 0.044 0.420 0.528 0.008
#> GSM153429     4  0.5475   0.482823 0.036 0.308 0.000 0.656
#> GSM153433     1  0.5152   0.498747 0.664 0.020 0.316 0.000
#> GSM153444     2  0.1576   0.811757 0.000 0.948 0.048 0.004
#> GSM153448     2  0.6502   0.467740 0.248 0.656 0.072 0.024
#> GSM153451     2  0.0707   0.821047 0.000 0.980 0.000 0.020
#> GSM153452     2  0.3048   0.761938 0.000 0.876 0.108 0.016
#> GSM153477     4  0.6220   0.563179 0.104 0.248 0.000 0.648
#> GSM153479     1  0.6163   0.538655 0.676 0.164 0.000 0.160
#> GSM153484     1  0.6079   0.086932 0.492 0.044 0.000 0.464
#> GSM153488     1  0.3751   0.704560 0.800 0.000 0.004 0.196
#> GSM153496     1  0.2089   0.770233 0.932 0.000 0.020 0.048
#> GSM153497     2  0.0469   0.822932 0.000 0.988 0.000 0.012
#> GSM153500     1  0.2089   0.766467 0.932 0.000 0.048 0.020
#> GSM153503     1  0.2329   0.758743 0.916 0.000 0.072 0.012
#> GSM153508     1  0.2814   0.741435 0.868 0.000 0.000 0.132
#> GSM153409     2  0.1807   0.809534 0.000 0.940 0.052 0.008
#> GSM153426     2  0.1629   0.821664 0.000 0.952 0.024 0.024
#> GSM153431     3  0.6132   0.560576 0.080 0.224 0.684 0.012
#> GSM153438     2  0.1474   0.813148 0.000 0.948 0.000 0.052
#> GSM153440     3  0.3659   0.631086 0.044 0.052 0.876 0.028
#> GSM153447     3  0.5522   0.526431 0.204 0.080 0.716 0.000
#> GSM153450     2  0.1576   0.808621 0.000 0.948 0.048 0.004
#> GSM153456     2  0.0000   0.822614 0.000 1.000 0.000 0.000
#> GSM153457     2  0.0921   0.819418 0.000 0.972 0.000 0.028
#> GSM153458     2  0.0336   0.822227 0.000 0.992 0.008 0.000
#> GSM153459     2  0.0469   0.821626 0.000 0.988 0.012 0.000
#> GSM153460     2  0.1109   0.816626 0.000 0.968 0.028 0.004
#> GSM153461     2  0.4049   0.671784 0.008 0.804 0.180 0.008
#> GSM153463     3  0.5594  -0.076642 0.460 0.020 0.520 0.000
#> GSM153464     2  0.4283   0.616306 0.004 0.740 0.000 0.256
#> GSM153466     1  0.3266   0.753332 0.880 0.032 0.004 0.084
#> GSM153467     2  0.1917   0.811212 0.036 0.944 0.008 0.012
#> GSM153468     1  0.5508   0.343279 0.572 0.020 0.000 0.408
#> GSM153469     4  0.5990   0.622766 0.144 0.164 0.000 0.692
#> GSM153470     4  0.6769   0.568031 0.172 0.220 0.000 0.608
#> GSM153471     4  0.6149   0.610015 0.144 0.180 0.000 0.676
#> GSM153472     1  0.1902   0.766557 0.932 0.000 0.004 0.064
#> GSM153473     1  0.2943   0.760813 0.892 0.000 0.076 0.032
#> GSM153474     1  0.2408   0.744519 0.896 0.000 0.104 0.000
#> GSM153475     1  0.5000   0.177340 0.504 0.000 0.000 0.496
#> GSM153476     4  0.3796   0.640203 0.056 0.096 0.000 0.848
#> GSM153478     1  0.5698   0.405063 0.608 0.036 0.356 0.000
#> GSM153480     2  0.4103   0.628227 0.000 0.744 0.000 0.256
#> GSM153486     2  0.3217   0.775005 0.012 0.860 0.000 0.128
#> GSM153487     1  0.3569   0.698095 0.804 0.000 0.000 0.196
#> GSM153499     1  0.4454   0.573753 0.692 0.000 0.000 0.308
#> GSM153504     1  0.2412   0.761895 0.908 0.000 0.008 0.084
#> GSM153507     1  0.3172   0.727700 0.840 0.000 0.000 0.160
#> GSM153404     4  0.5792   0.167127 0.000 0.032 0.416 0.552
#> GSM153407     3  0.4305   0.608762 0.012 0.160 0.808 0.020
#> GSM153408     4  0.5159   0.281150 0.000 0.012 0.364 0.624
#> GSM153410     4  0.5003   0.583093 0.000 0.084 0.148 0.768
#> GSM153411     3  0.3161   0.629914 0.012 0.000 0.864 0.124
#> GSM153412     4  0.4389   0.594751 0.000 0.072 0.116 0.812
#> GSM153413     4  0.4122   0.456954 0.000 0.004 0.236 0.760
#> GSM153414     2  0.4173   0.663363 0.020 0.804 0.172 0.004
#> GSM153415     4  0.3852   0.509374 0.000 0.008 0.192 0.800
#> GSM153416     2  0.0524   0.823875 0.000 0.988 0.004 0.008
#> GSM153417     3  0.2868   0.623403 0.000 0.000 0.864 0.136
#> GSM153418     4  0.5847   0.377330 0.000 0.052 0.320 0.628
#> GSM153420     3  0.3074   0.611574 0.000 0.000 0.848 0.152
#> GSM153421     3  0.2868   0.623588 0.000 0.000 0.864 0.136
#> GSM153422     3  0.3024   0.615100 0.000 0.000 0.852 0.148
#> GSM153424     3  0.6654   0.390657 0.084 0.352 0.560 0.004
#> GSM153430     1  0.5411   0.485097 0.656 0.032 0.312 0.000
#> GSM153432     2  0.5298   0.376420 0.016 0.612 0.000 0.372
#> GSM153434     1  0.7961  -0.099873 0.396 0.252 0.348 0.004
#> GSM153435     2  0.4158   0.672070 0.008 0.768 0.000 0.224
#> GSM153436     3  0.7433   0.221863 0.100 0.424 0.456 0.020
#> GSM153437     2  0.2760   0.773078 0.000 0.872 0.000 0.128
#> GSM153439     4  0.5898   0.400872 0.048 0.348 0.000 0.604
#> GSM153441     2  0.6055   0.463261 0.248 0.668 0.080 0.004
#> GSM153442     1  0.7693   0.107990 0.448 0.388 0.152 0.012
#> GSM153443     2  0.2124   0.805965 0.008 0.924 0.000 0.068
#> GSM153445     2  0.5808   0.186942 0.032 0.544 0.000 0.424
#> GSM153446     2  0.2704   0.775642 0.000 0.876 0.000 0.124
#> GSM153449     1  0.3545   0.699024 0.828 0.000 0.164 0.008
#> GSM153453     1  0.0804   0.768083 0.980 0.000 0.008 0.012
#> GSM153454     1  0.4193   0.590914 0.732 0.000 0.268 0.000
#> GSM153455     4  0.6433   0.000793 0.444 0.056 0.004 0.496
#> GSM153462     2  0.3292   0.783073 0.016 0.868 0.004 0.112
#> GSM153465     2  0.6061   0.232095 0.048 0.552 0.000 0.400
#> GSM153481     4  0.5631   0.593414 0.076 0.224 0.000 0.700
#> GSM153482     1  0.1706   0.770533 0.948 0.000 0.016 0.036
#> GSM153483     1  0.5437   0.668685 0.768 0.088 0.020 0.124
#> GSM153485     1  0.3539   0.715501 0.820 0.004 0.000 0.176
#> GSM153489     1  0.2814   0.742497 0.868 0.000 0.000 0.132
#> GSM153490     1  0.3257   0.718696 0.844 0.000 0.152 0.004
#> GSM153491     1  0.2048   0.767943 0.928 0.000 0.008 0.064
#> GSM153492     1  0.2469   0.738018 0.892 0.000 0.108 0.000
#> GSM153493     1  0.2843   0.752886 0.892 0.000 0.088 0.020
#> GSM153494     1  0.3720   0.749270 0.860 0.024 0.016 0.100
#> GSM153495     1  0.3801   0.654610 0.780 0.000 0.220 0.000
#> GSM153498     4  0.4730   0.204278 0.364 0.000 0.000 0.636
#> GSM153501     1  0.1398   0.767408 0.956 0.000 0.004 0.040
#> GSM153502     1  0.2654   0.755080 0.888 0.000 0.004 0.108
#> GSM153505     1  0.2654   0.740798 0.888 0.000 0.108 0.004
#> GSM153506     1  0.6148   0.256678 0.540 0.052 0.000 0.408

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     5  0.5261     0.3281 0.000 0.004 0.380 0.044 0.572
#> GSM153406     3  0.3069     0.5763 0.000 0.016 0.864 0.016 0.104
#> GSM153419     5  0.4617     0.2074 0.000 0.000 0.436 0.012 0.552
#> GSM153423     2  0.1235     0.7956 0.004 0.964 0.012 0.016 0.004
#> GSM153425     5  0.1686     0.6653 0.000 0.008 0.020 0.028 0.944
#> GSM153427     2  0.6784     0.4141 0.000 0.564 0.080 0.088 0.268
#> GSM153428     5  0.6980     0.0951 0.008 0.224 0.004 0.328 0.436
#> GSM153429     3  0.5555     0.4078 0.040 0.320 0.612 0.028 0.000
#> GSM153433     4  0.5799     0.2381 0.360 0.000 0.004 0.548 0.088
#> GSM153444     2  0.3387     0.7493 0.000 0.852 0.028 0.100 0.020
#> GSM153448     2  0.6181     0.5956 0.132 0.680 0.020 0.132 0.036
#> GSM153451     2  0.0579     0.7951 0.000 0.984 0.008 0.008 0.000
#> GSM153452     2  0.5894     0.5578 0.012 0.668 0.016 0.108 0.196
#> GSM153477     3  0.8140     0.2691 0.196 0.316 0.364 0.124 0.000
#> GSM153479     1  0.7673     0.2067 0.436 0.192 0.076 0.296 0.000
#> GSM153484     1  0.7036     0.2740 0.500 0.044 0.304 0.152 0.000
#> GSM153488     1  0.4354     0.6020 0.768 0.000 0.160 0.068 0.004
#> GSM153496     1  0.4272     0.5606 0.784 0.000 0.020 0.156 0.040
#> GSM153497     2  0.1408     0.7963 0.000 0.948 0.008 0.044 0.000
#> GSM153500     1  0.3732     0.5758 0.820 0.000 0.004 0.120 0.056
#> GSM153503     1  0.4212     0.5296 0.736 0.000 0.004 0.236 0.024
#> GSM153508     1  0.4302     0.5928 0.744 0.000 0.048 0.208 0.000
#> GSM153409     2  0.5115     0.5988 0.000 0.676 0.040 0.264 0.020
#> GSM153426     2  0.5731     0.5462 0.000 0.628 0.132 0.236 0.004
#> GSM153431     4  0.6071     0.2241 0.036 0.044 0.016 0.620 0.284
#> GSM153438     2  0.1205     0.7933 0.000 0.956 0.040 0.004 0.000
#> GSM153440     5  0.5731     0.1432 0.004 0.012 0.044 0.468 0.472
#> GSM153447     4  0.5427     0.3099 0.060 0.012 0.004 0.656 0.268
#> GSM153450     2  0.1708     0.7914 0.004 0.944 0.004 0.032 0.016
#> GSM153456     2  0.0740     0.7946 0.004 0.980 0.008 0.008 0.000
#> GSM153457     2  0.0566     0.7942 0.000 0.984 0.012 0.004 0.000
#> GSM153458     2  0.1605     0.7920 0.000 0.944 0.004 0.040 0.012
#> GSM153459     2  0.1168     0.7935 0.000 0.960 0.008 0.032 0.000
#> GSM153460     2  0.0794     0.7945 0.000 0.972 0.000 0.028 0.000
#> GSM153461     4  0.6264     0.1718 0.000 0.356 0.020 0.528 0.096
#> GSM153463     4  0.5641     0.3930 0.268 0.000 0.000 0.612 0.120
#> GSM153464     2  0.4038     0.7187 0.032 0.808 0.132 0.028 0.000
#> GSM153466     1  0.6109     0.4912 0.668 0.136 0.044 0.148 0.004
#> GSM153467     2  0.2580     0.7911 0.016 0.900 0.020 0.064 0.000
#> GSM153468     1  0.6260     0.3806 0.576 0.036 0.304 0.084 0.000
#> GSM153469     3  0.5825     0.5705 0.164 0.104 0.684 0.048 0.000
#> GSM153470     3  0.7972     0.3085 0.152 0.124 0.444 0.276 0.004
#> GSM153471     3  0.7414     0.4356 0.224 0.144 0.524 0.108 0.000
#> GSM153472     1  0.4158     0.5806 0.812 0.008 0.020 0.120 0.040
#> GSM153473     1  0.5301     0.4812 0.648 0.000 0.012 0.284 0.056
#> GSM153474     1  0.4744     0.2026 0.508 0.000 0.000 0.476 0.016
#> GSM153475     1  0.6215     0.4525 0.628 0.020 0.244 0.092 0.016
#> GSM153476     3  0.2459     0.5973 0.052 0.004 0.908 0.032 0.004
#> GSM153478     4  0.6963     0.2160 0.348 0.016 0.008 0.468 0.160
#> GSM153480     2  0.3495     0.7228 0.000 0.816 0.152 0.032 0.000
#> GSM153486     2  0.4839     0.6964 0.120 0.768 0.048 0.064 0.000
#> GSM153487     1  0.4455     0.5902 0.768 0.004 0.132 0.096 0.000
#> GSM153499     1  0.5983     0.5050 0.580 0.000 0.252 0.168 0.000
#> GSM153504     1  0.3950     0.5972 0.796 0.000 0.048 0.152 0.004
#> GSM153507     1  0.5436     0.5138 0.620 0.004 0.052 0.316 0.008
#> GSM153404     3  0.4604     0.3405 0.000 0.012 0.680 0.016 0.292
#> GSM153407     5  0.5407     0.4850 0.000 0.052 0.036 0.228 0.684
#> GSM153408     3  0.4040     0.3985 0.000 0.012 0.712 0.000 0.276
#> GSM153410     3  0.2208     0.5941 0.000 0.020 0.908 0.000 0.072
#> GSM153411     5  0.1612     0.6632 0.012 0.000 0.016 0.024 0.948
#> GSM153412     3  0.2179     0.5935 0.000 0.008 0.912 0.008 0.072
#> GSM153413     3  0.2753     0.5712 0.008 0.000 0.876 0.012 0.104
#> GSM153414     2  0.5126     0.5926 0.004 0.692 0.008 0.236 0.060
#> GSM153415     3  0.2753     0.5748 0.012 0.000 0.876 0.008 0.104
#> GSM153416     2  0.1484     0.7961 0.000 0.944 0.008 0.048 0.000
#> GSM153417     5  0.1270     0.6804 0.000 0.000 0.052 0.000 0.948
#> GSM153418     3  0.4369     0.4281 0.000 0.012 0.720 0.016 0.252
#> GSM153420     5  0.2362     0.6775 0.000 0.000 0.076 0.024 0.900
#> GSM153421     5  0.1648     0.6776 0.000 0.000 0.040 0.020 0.940
#> GSM153422     5  0.2450     0.6758 0.000 0.000 0.076 0.028 0.896
#> GSM153424     4  0.6924     0.0762 0.020 0.188 0.000 0.464 0.328
#> GSM153430     4  0.5039     0.3497 0.288 0.016 0.008 0.668 0.020
#> GSM153432     2  0.7077     0.3923 0.084 0.560 0.216 0.140 0.000
#> GSM153434     4  0.7666     0.3430 0.252 0.112 0.004 0.496 0.136
#> GSM153435     2  0.5640     0.4754 0.000 0.592 0.304 0.104 0.000
#> GSM153436     5  0.8105     0.0863 0.132 0.304 0.012 0.124 0.428
#> GSM153437     2  0.1830     0.7876 0.000 0.924 0.068 0.008 0.000
#> GSM153439     3  0.6652     0.2108 0.100 0.388 0.476 0.036 0.000
#> GSM153441     2  0.6022     0.5403 0.136 0.652 0.008 0.188 0.016
#> GSM153442     2  0.7841    -0.2080 0.304 0.360 0.004 0.280 0.052
#> GSM153443     2  0.2409     0.7854 0.012 0.908 0.020 0.060 0.000
#> GSM153445     2  0.6069     0.5163 0.076 0.648 0.216 0.060 0.000
#> GSM153446     2  0.2451     0.7823 0.004 0.904 0.036 0.056 0.000
#> GSM153449     1  0.5533     0.4934 0.656 0.016 0.000 0.248 0.080
#> GSM153453     1  0.3548     0.5845 0.796 0.000 0.012 0.188 0.004
#> GSM153454     1  0.6178    -0.0584 0.448 0.000 0.004 0.432 0.116
#> GSM153455     1  0.8211     0.2704 0.500 0.108 0.236 0.096 0.060
#> GSM153462     2  0.4571     0.7252 0.008 0.760 0.080 0.152 0.000
#> GSM153465     4  0.7956    -0.1448 0.060 0.304 0.304 0.328 0.004
#> GSM153481     3  0.6649     0.4990 0.172 0.240 0.560 0.028 0.000
#> GSM153482     1  0.4804     0.4971 0.636 0.000 0.036 0.328 0.000
#> GSM153483     4  0.6757     0.1095 0.312 0.064 0.088 0.536 0.000
#> GSM153485     1  0.4722     0.5810 0.780 0.020 0.088 0.104 0.008
#> GSM153489     1  0.3636     0.6157 0.832 0.004 0.084 0.080 0.000
#> GSM153490     1  0.5673     0.4643 0.628 0.000 0.000 0.216 0.156
#> GSM153491     1  0.3544     0.5927 0.852 0.004 0.020 0.088 0.036
#> GSM153492     1  0.5026     0.3672 0.608 0.000 0.008 0.356 0.028
#> GSM153493     1  0.4393     0.5432 0.768 0.000 0.004 0.152 0.076
#> GSM153494     1  0.4950     0.5505 0.688 0.012 0.044 0.256 0.000
#> GSM153495     4  0.5192    -0.0936 0.472 0.000 0.004 0.492 0.032
#> GSM153498     3  0.5583    -0.0878 0.464 0.004 0.480 0.048 0.004
#> GSM153501     1  0.4358     0.5147 0.696 0.000 0.012 0.284 0.008
#> GSM153502     1  0.3690     0.6092 0.828 0.000 0.052 0.112 0.008
#> GSM153505     1  0.5214     0.2204 0.540 0.000 0.012 0.424 0.024
#> GSM153506     1  0.7119     0.4117 0.568 0.108 0.192 0.132 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     5  0.5260    -0.0105 0.000 0.064 0.456 0.000 0.468 0.012
#> GSM153406     3  0.3581     0.6682 0.008 0.012 0.800 0.000 0.160 0.020
#> GSM153419     5  0.4400    -0.0108 0.000 0.008 0.456 0.000 0.524 0.012
#> GSM153423     1  0.1254     0.7332 0.960 0.012 0.004 0.004 0.004 0.016
#> GSM153425     5  0.1312     0.6959 0.000 0.020 0.012 0.004 0.956 0.008
#> GSM153427     1  0.7137     0.1882 0.464 0.088 0.096 0.000 0.316 0.036
#> GSM153428     2  0.8130     0.0834 0.188 0.360 0.012 0.088 0.304 0.048
#> GSM153429     3  0.5442     0.3221 0.256 0.016 0.640 0.048 0.000 0.040
#> GSM153433     2  0.6082     0.3178 0.000 0.576 0.000 0.208 0.048 0.168
#> GSM153444     1  0.3428     0.6954 0.840 0.096 0.028 0.000 0.024 0.012
#> GSM153448     1  0.5656     0.6128 0.712 0.108 0.024 0.080 0.020 0.056
#> GSM153451     1  0.0291     0.7316 0.992 0.000 0.004 0.000 0.000 0.004
#> GSM153452     1  0.7161     0.4017 0.560 0.088 0.012 0.084 0.200 0.056
#> GSM153477     6  0.7543     0.3998 0.272 0.024 0.224 0.060 0.008 0.412
#> GSM153479     6  0.6788     0.3844 0.100 0.168 0.024 0.124 0.004 0.580
#> GSM153484     6  0.7787     0.3810 0.060 0.048 0.184 0.268 0.012 0.428
#> GSM153488     4  0.5657     0.4503 0.000 0.080 0.188 0.644 0.000 0.088
#> GSM153496     4  0.3381     0.5095 0.000 0.088 0.012 0.840 0.008 0.052
#> GSM153497     1  0.2263     0.7288 0.896 0.048 0.000 0.000 0.000 0.056
#> GSM153500     4  0.3536     0.5196 0.000 0.060 0.004 0.836 0.032 0.068
#> GSM153503     4  0.5039     0.4749 0.000 0.236 0.000 0.640 0.004 0.120
#> GSM153508     6  0.5319     0.1767 0.000 0.100 0.008 0.284 0.004 0.604
#> GSM153409     1  0.6330     0.3074 0.520 0.320 0.068 0.000 0.008 0.084
#> GSM153426     1  0.6774     0.0624 0.416 0.380 0.112 0.000 0.004 0.088
#> GSM153431     2  0.5753     0.4232 0.028 0.636 0.012 0.000 0.164 0.160
#> GSM153438     1  0.0820     0.7343 0.972 0.000 0.012 0.000 0.000 0.016
#> GSM153440     2  0.6286     0.2930 0.036 0.592 0.068 0.012 0.260 0.032
#> GSM153447     2  0.4197     0.4968 0.012 0.808 0.012 0.056 0.080 0.032
#> GSM153450     1  0.1979     0.7303 0.928 0.024 0.012 0.000 0.024 0.012
#> GSM153456     1  0.0508     0.7318 0.984 0.000 0.004 0.000 0.000 0.012
#> GSM153457     1  0.0405     0.7315 0.988 0.008 0.000 0.000 0.000 0.004
#> GSM153458     1  0.2072     0.7274 0.924 0.024 0.012 0.000 0.016 0.024
#> GSM153459     1  0.1509     0.7308 0.948 0.024 0.008 0.000 0.008 0.012
#> GSM153460     1  0.1697     0.7305 0.936 0.036 0.004 0.000 0.004 0.020
#> GSM153461     2  0.6213     0.3746 0.236 0.600 0.032 0.000 0.052 0.080
#> GSM153463     2  0.5002     0.4326 0.000 0.692 0.000 0.192 0.076 0.040
#> GSM153464     1  0.3485     0.6852 0.824 0.008 0.060 0.004 0.000 0.104
#> GSM153466     6  0.6925     0.3522 0.192 0.048 0.008 0.292 0.004 0.456
#> GSM153467     1  0.2966     0.7153 0.872 0.048 0.008 0.016 0.000 0.056
#> GSM153468     4  0.7563    -0.0027 0.080 0.048 0.312 0.416 0.000 0.144
#> GSM153469     3  0.6150     0.3021 0.104 0.016 0.636 0.132 0.000 0.112
#> GSM153470     6  0.7505     0.4052 0.128 0.156 0.196 0.028 0.004 0.488
#> GSM153471     6  0.7043     0.3629 0.152 0.008 0.328 0.084 0.000 0.428
#> GSM153472     4  0.3920     0.4792 0.000 0.048 0.016 0.800 0.012 0.124
#> GSM153473     4  0.5944     0.3836 0.000 0.312 0.004 0.520 0.012 0.152
#> GSM153474     2  0.6149     0.0740 0.000 0.476 0.012 0.232 0.000 0.280
#> GSM153475     6  0.6769     0.2269 0.024 0.020 0.132 0.352 0.012 0.460
#> GSM153476     3  0.3169     0.6328 0.012 0.044 0.864 0.024 0.000 0.056
#> GSM153478     2  0.6486     0.1739 0.000 0.488 0.012 0.348 0.076 0.076
#> GSM153480     1  0.3908     0.6781 0.796 0.012 0.084 0.004 0.000 0.104
#> GSM153486     1  0.5425     0.5450 0.680 0.012 0.032 0.136 0.000 0.140
#> GSM153487     4  0.6540    -0.0402 0.000 0.060 0.116 0.412 0.004 0.408
#> GSM153499     4  0.7374     0.1328 0.000 0.160 0.252 0.400 0.000 0.188
#> GSM153504     4  0.5619     0.4572 0.000 0.144 0.012 0.596 0.004 0.244
#> GSM153507     6  0.5594     0.3626 0.004 0.084 0.028 0.200 0.020 0.664
#> GSM153404     3  0.4178     0.5065 0.012 0.008 0.684 0.000 0.288 0.008
#> GSM153407     5  0.5877     0.3320 0.080 0.256 0.032 0.000 0.608 0.024
#> GSM153408     3  0.3512     0.5778 0.000 0.000 0.720 0.000 0.272 0.008
#> GSM153410     3  0.2897     0.6937 0.012 0.004 0.852 0.000 0.120 0.012
#> GSM153411     5  0.2381     0.6790 0.000 0.036 0.012 0.028 0.908 0.016
#> GSM153412     3  0.2169     0.6968 0.008 0.000 0.900 0.000 0.080 0.012
#> GSM153413     3  0.2685     0.6872 0.004 0.004 0.864 0.008 0.116 0.004
#> GSM153414     1  0.6349     0.4219 0.596 0.256 0.020 0.040 0.052 0.036
#> GSM153415     3  0.2404     0.6939 0.000 0.000 0.872 0.000 0.112 0.016
#> GSM153416     1  0.1950     0.7353 0.924 0.020 0.004 0.000 0.008 0.044
#> GSM153417     5  0.1628     0.6970 0.000 0.012 0.036 0.008 0.940 0.004
#> GSM153418     3  0.4381     0.5581 0.004 0.020 0.692 0.000 0.264 0.020
#> GSM153420     5  0.2338     0.6787 0.000 0.016 0.068 0.004 0.900 0.012
#> GSM153421     5  0.1508     0.6958 0.000 0.012 0.020 0.016 0.948 0.004
#> GSM153422     5  0.2503     0.6834 0.000 0.012 0.060 0.008 0.896 0.024
#> GSM153424     2  0.6559     0.3348 0.200 0.544 0.000 0.028 0.200 0.028
#> GSM153430     2  0.4330     0.4254 0.008 0.732 0.024 0.216 0.004 0.016
#> GSM153432     1  0.6735     0.1015 0.444 0.068 0.076 0.020 0.004 0.388
#> GSM153434     2  0.8002     0.2590 0.060 0.432 0.016 0.268 0.084 0.140
#> GSM153435     1  0.5979     0.4402 0.564 0.084 0.284 0.000 0.000 0.068
#> GSM153436     5  0.8281    -0.0156 0.284 0.056 0.024 0.256 0.324 0.056
#> GSM153437     1  0.1442     0.7340 0.944 0.004 0.040 0.000 0.000 0.012
#> GSM153439     1  0.7054     0.0210 0.416 0.012 0.348 0.076 0.000 0.148
#> GSM153441     1  0.6323     0.5181 0.640 0.104 0.008 0.116 0.020 0.112
#> GSM153442     1  0.7901     0.0886 0.416 0.192 0.008 0.120 0.028 0.236
#> GSM153443     1  0.3007     0.7009 0.848 0.020 0.004 0.004 0.004 0.120
#> GSM153445     1  0.5835     0.4666 0.612 0.012 0.136 0.024 0.000 0.216
#> GSM153446     1  0.2853     0.7042 0.856 0.012 0.012 0.000 0.004 0.116
#> GSM153449     4  0.7046     0.3563 0.020 0.204 0.008 0.488 0.040 0.240
#> GSM153453     4  0.5150     0.5281 0.000 0.176 0.020 0.680 0.004 0.120
#> GSM153454     4  0.6078    -0.0834 0.000 0.428 0.004 0.444 0.052 0.072
#> GSM153455     4  0.8780    -0.2937 0.156 0.032 0.124 0.320 0.072 0.296
#> GSM153462     1  0.5289     0.5729 0.652 0.092 0.016 0.004 0.004 0.232
#> GSM153465     2  0.8279    -0.0654 0.204 0.324 0.136 0.032 0.012 0.292
#> GSM153481     3  0.7397    -0.1343 0.280 0.012 0.424 0.124 0.000 0.160
#> GSM153482     4  0.6480     0.3193 0.000 0.348 0.036 0.432 0.000 0.184
#> GSM153483     2  0.6357     0.2795 0.024 0.560 0.032 0.132 0.000 0.252
#> GSM153485     4  0.4829     0.4264 0.012 0.016 0.064 0.720 0.004 0.184
#> GSM153489     4  0.5768     0.4128 0.000 0.080 0.076 0.616 0.000 0.228
#> GSM153490     4  0.6897     0.3934 0.000 0.132 0.004 0.508 0.132 0.224
#> GSM153491     4  0.2796     0.5089 0.000 0.032 0.024 0.884 0.008 0.052
#> GSM153492     4  0.5014     0.2890 0.000 0.356 0.004 0.576 0.004 0.060
#> GSM153493     4  0.3973     0.4977 0.000 0.096 0.012 0.808 0.028 0.056
#> GSM153494     4  0.7116     0.2814 0.024 0.264 0.040 0.432 0.000 0.240
#> GSM153495     2  0.5540     0.1416 0.000 0.544 0.008 0.356 0.012 0.080
#> GSM153498     4  0.6183     0.0652 0.012 0.020 0.412 0.452 0.004 0.100
#> GSM153501     4  0.5752     0.4177 0.000 0.280 0.008 0.540 0.000 0.172
#> GSM153502     4  0.5367     0.4946 0.000 0.100 0.068 0.680 0.000 0.152
#> GSM153505     2  0.5547    -0.0638 0.000 0.488 0.004 0.388 0.000 0.120
#> GSM153506     6  0.6653     0.4685 0.096 0.024 0.092 0.224 0.000 0.564

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> SD:NMF 101           0.2514 2
#> SD:NMF  93           0.2453 3
#> SD:NMF  77           0.3771 4
#> SD:NMF  58           0.2323 5
#> SD:NMF  41           0.0267 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.990       1.000         0.0206 0.981   0.981
#> 3 3 0.759           0.887       0.951         4.5397 0.963   0.962
#> 4 4 0.406           0.725       0.874         1.1207 0.910   0.905
#> 5 5 0.298           0.721       0.841         0.3203 0.831   0.804
#> 6 6 0.252           0.702       0.827         0.0943 0.979   0.970

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     2  0.0000      1.000 0.000 1.000
#> GSM153406     2  0.0000      1.000 0.000 1.000
#> GSM153419     2  0.0000      1.000 0.000 1.000
#> GSM153423     2  0.0000      1.000 0.000 1.000
#> GSM153425     2  0.0000      1.000 0.000 1.000
#> GSM153427     2  0.0000      1.000 0.000 1.000
#> GSM153428     2  0.0000      1.000 0.000 1.000
#> GSM153429     2  0.0000      1.000 0.000 1.000
#> GSM153433     2  0.0000      1.000 0.000 1.000
#> GSM153444     2  0.0000      1.000 0.000 1.000
#> GSM153448     2  0.0000      1.000 0.000 1.000
#> GSM153451     2  0.0000      1.000 0.000 1.000
#> GSM153452     2  0.0000      1.000 0.000 1.000
#> GSM153477     2  0.0000      1.000 0.000 1.000
#> GSM153479     2  0.0000      1.000 0.000 1.000
#> GSM153484     2  0.0000      1.000 0.000 1.000
#> GSM153488     2  0.0000      1.000 0.000 1.000
#> GSM153496     2  0.0000      1.000 0.000 1.000
#> GSM153497     2  0.0000      1.000 0.000 1.000
#> GSM153500     2  0.0376      0.996 0.004 0.996
#> GSM153503     2  0.0376      0.996 0.004 0.996
#> GSM153508     1  0.0000      0.000 1.000 0.000
#> GSM153409     2  0.0000      1.000 0.000 1.000
#> GSM153426     2  0.0000      1.000 0.000 1.000
#> GSM153431     2  0.0000      1.000 0.000 1.000
#> GSM153438     2  0.0000      1.000 0.000 1.000
#> GSM153440     2  0.0000      1.000 0.000 1.000
#> GSM153447     2  0.0000      1.000 0.000 1.000
#> GSM153450     2  0.0000      1.000 0.000 1.000
#> GSM153456     2  0.0000      1.000 0.000 1.000
#> GSM153457     2  0.0000      1.000 0.000 1.000
#> GSM153458     2  0.0000      1.000 0.000 1.000
#> GSM153459     2  0.0000      1.000 0.000 1.000
#> GSM153460     2  0.0000      1.000 0.000 1.000
#> GSM153461     2  0.0000      1.000 0.000 1.000
#> GSM153463     2  0.0000      1.000 0.000 1.000
#> GSM153464     2  0.0000      1.000 0.000 1.000
#> GSM153466     2  0.0000      1.000 0.000 1.000
#> GSM153467     2  0.0000      1.000 0.000 1.000
#> GSM153468     2  0.0000      1.000 0.000 1.000
#> GSM153469     2  0.0000      1.000 0.000 1.000
#> GSM153470     2  0.0000      1.000 0.000 1.000
#> GSM153471     2  0.0000      1.000 0.000 1.000
#> GSM153472     2  0.0000      1.000 0.000 1.000
#> GSM153473     2  0.0000      1.000 0.000 1.000
#> GSM153474     2  0.1184      0.984 0.016 0.984
#> GSM153475     2  0.0000      1.000 0.000 1.000
#> GSM153476     2  0.0000      1.000 0.000 1.000
#> GSM153478     2  0.0000      1.000 0.000 1.000
#> GSM153480     2  0.0000      1.000 0.000 1.000
#> GSM153486     2  0.0000      1.000 0.000 1.000
#> GSM153487     2  0.0000      1.000 0.000 1.000
#> GSM153499     2  0.0000      1.000 0.000 1.000
#> GSM153504     2  0.0000      1.000 0.000 1.000
#> GSM153507     2  0.0000      1.000 0.000 1.000
#> GSM153404     2  0.0000      1.000 0.000 1.000
#> GSM153407     2  0.0000      1.000 0.000 1.000
#> GSM153408     2  0.0000      1.000 0.000 1.000
#> GSM153410     2  0.0000      1.000 0.000 1.000
#> GSM153411     2  0.0000      1.000 0.000 1.000
#> GSM153412     2  0.0000      1.000 0.000 1.000
#> GSM153413     2  0.0000      1.000 0.000 1.000
#> GSM153414     2  0.0000      1.000 0.000 1.000
#> GSM153415     2  0.0000      1.000 0.000 1.000
#> GSM153416     2  0.0000      1.000 0.000 1.000
#> GSM153417     2  0.0000      1.000 0.000 1.000
#> GSM153418     2  0.0000      1.000 0.000 1.000
#> GSM153420     2  0.0000      1.000 0.000 1.000
#> GSM153421     2  0.0000      1.000 0.000 1.000
#> GSM153422     2  0.0000      1.000 0.000 1.000
#> GSM153424     2  0.0000      1.000 0.000 1.000
#> GSM153430     2  0.0000      1.000 0.000 1.000
#> GSM153432     2  0.0000      1.000 0.000 1.000
#> GSM153434     2  0.0000      1.000 0.000 1.000
#> GSM153435     2  0.0000      1.000 0.000 1.000
#> GSM153436     2  0.0000      1.000 0.000 1.000
#> GSM153437     2  0.0000      1.000 0.000 1.000
#> GSM153439     2  0.0000      1.000 0.000 1.000
#> GSM153441     2  0.0000      1.000 0.000 1.000
#> GSM153442     2  0.0000      1.000 0.000 1.000
#> GSM153443     2  0.0000      1.000 0.000 1.000
#> GSM153445     2  0.0000      1.000 0.000 1.000
#> GSM153446     2  0.0000      1.000 0.000 1.000
#> GSM153449     2  0.0000      1.000 0.000 1.000
#> GSM153453     2  0.0000      1.000 0.000 1.000
#> GSM153454     2  0.0000      1.000 0.000 1.000
#> GSM153455     2  0.0000      1.000 0.000 1.000
#> GSM153462     2  0.0000      1.000 0.000 1.000
#> GSM153465     2  0.0000      1.000 0.000 1.000
#> GSM153481     2  0.0000      1.000 0.000 1.000
#> GSM153482     2  0.0000      1.000 0.000 1.000
#> GSM153483     2  0.0000      1.000 0.000 1.000
#> GSM153485     2  0.0000      1.000 0.000 1.000
#> GSM153489     2  0.0000      1.000 0.000 1.000
#> GSM153490     2  0.0000      1.000 0.000 1.000
#> GSM153491     2  0.0000      1.000 0.000 1.000
#> GSM153492     2  0.0672      0.992 0.008 0.992
#> GSM153493     2  0.0000      1.000 0.000 1.000
#> GSM153494     2  0.0000      1.000 0.000 1.000
#> GSM153495     2  0.0000      1.000 0.000 1.000
#> GSM153498     2  0.0000      1.000 0.000 1.000
#> GSM153501     2  0.0000      1.000 0.000 1.000
#> GSM153502     2  0.0000      1.000 0.000 1.000
#> GSM153505     2  0.0376      0.996 0.004 0.996
#> GSM153506     2  0.0000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     2  0.0424      0.949 0.008 0.992 0.000
#> GSM153406     2  0.0424      0.949 0.008 0.992 0.000
#> GSM153419     2  0.0424      0.949 0.008 0.992 0.000
#> GSM153423     2  0.0592      0.948 0.012 0.988 0.000
#> GSM153425     2  0.3267      0.875 0.116 0.884 0.000
#> GSM153427     2  0.0892      0.948 0.020 0.980 0.000
#> GSM153428     2  0.1289      0.944 0.032 0.968 0.000
#> GSM153429     2  0.0592      0.949 0.012 0.988 0.000
#> GSM153433     2  0.1860      0.933 0.052 0.948 0.000
#> GSM153444     2  0.0592      0.948 0.012 0.988 0.000
#> GSM153448     2  0.0424      0.948 0.008 0.992 0.000
#> GSM153451     2  0.0424      0.948 0.008 0.992 0.000
#> GSM153452     2  0.0592      0.949 0.012 0.988 0.000
#> GSM153477     2  0.0592      0.948 0.012 0.988 0.000
#> GSM153479     2  0.1411      0.945 0.036 0.964 0.000
#> GSM153484     2  0.0237      0.947 0.004 0.996 0.000
#> GSM153488     2  0.0424      0.948 0.008 0.992 0.000
#> GSM153496     2  0.2165      0.919 0.064 0.936 0.000
#> GSM153497     2  0.0592      0.948 0.012 0.988 0.000
#> GSM153500     2  0.5363      0.522 0.276 0.724 0.000
#> GSM153503     2  0.4682      0.740 0.192 0.804 0.004
#> GSM153508     3  0.0000      0.000 0.000 0.000 1.000
#> GSM153409     2  0.1031      0.947 0.024 0.976 0.000
#> GSM153426     2  0.0892      0.947 0.020 0.980 0.000
#> GSM153431     2  0.1529      0.942 0.040 0.960 0.000
#> GSM153438     2  0.0424      0.948 0.008 0.992 0.000
#> GSM153440     2  0.0892      0.948 0.020 0.980 0.000
#> GSM153447     2  0.1753      0.936 0.048 0.952 0.000
#> GSM153450     2  0.0424      0.948 0.008 0.992 0.000
#> GSM153456     2  0.0424      0.948 0.008 0.992 0.000
#> GSM153457     2  0.0424      0.948 0.008 0.992 0.000
#> GSM153458     2  0.0424      0.948 0.008 0.992 0.000
#> GSM153459     2  0.0424      0.948 0.008 0.992 0.000
#> GSM153460     2  0.0592      0.949 0.012 0.988 0.000
#> GSM153461     2  0.1031      0.947 0.024 0.976 0.000
#> GSM153463     2  0.3340      0.865 0.120 0.880 0.000
#> GSM153464     2  0.0424      0.947 0.008 0.992 0.000
#> GSM153466     2  0.0747      0.950 0.016 0.984 0.000
#> GSM153467     2  0.0592      0.948 0.012 0.988 0.000
#> GSM153468     2  0.0592      0.949 0.012 0.988 0.000
#> GSM153469     2  0.0237      0.947 0.004 0.996 0.000
#> GSM153470     2  0.0747      0.948 0.016 0.984 0.000
#> GSM153471     2  0.1163      0.945 0.028 0.972 0.000
#> GSM153472     2  0.1289      0.944 0.032 0.968 0.000
#> GSM153473     2  0.2625      0.903 0.084 0.916 0.000
#> GSM153474     1  0.3295     -0.465 0.896 0.096 0.008
#> GSM153475     2  0.1289      0.942 0.032 0.968 0.000
#> GSM153476     2  0.0424      0.949 0.008 0.992 0.000
#> GSM153478     2  0.1753      0.935 0.048 0.952 0.000
#> GSM153480     2  0.0424      0.947 0.008 0.992 0.000
#> GSM153486     2  0.0592      0.948 0.012 0.988 0.000
#> GSM153487     2  0.3551      0.831 0.132 0.868 0.000
#> GSM153499     2  0.1964      0.929 0.056 0.944 0.000
#> GSM153504     2  0.3752      0.834 0.144 0.856 0.000
#> GSM153507     2  0.2711      0.899 0.088 0.912 0.000
#> GSM153404     2  0.0424      0.949 0.008 0.992 0.000
#> GSM153407     2  0.1031      0.946 0.024 0.976 0.000
#> GSM153408     2  0.0424      0.949 0.008 0.992 0.000
#> GSM153410     2  0.0424      0.949 0.008 0.992 0.000
#> GSM153411     2  0.3267      0.875 0.116 0.884 0.000
#> GSM153412     2  0.0424      0.949 0.008 0.992 0.000
#> GSM153413     2  0.0424      0.949 0.008 0.992 0.000
#> GSM153414     2  0.0592      0.949 0.012 0.988 0.000
#> GSM153415     2  0.0424      0.949 0.008 0.992 0.000
#> GSM153416     2  0.0424      0.949 0.008 0.992 0.000
#> GSM153417     2  0.3267      0.875 0.116 0.884 0.000
#> GSM153418     2  0.0424      0.949 0.008 0.992 0.000
#> GSM153420     2  0.3267      0.875 0.116 0.884 0.000
#> GSM153421     2  0.3192      0.878 0.112 0.888 0.000
#> GSM153422     2  0.3267      0.875 0.116 0.884 0.000
#> GSM153424     2  0.1411      0.942 0.036 0.964 0.000
#> GSM153430     2  0.1163      0.946 0.028 0.972 0.000
#> GSM153432     2  0.0424      0.949 0.008 0.992 0.000
#> GSM153434     2  0.1411      0.942 0.036 0.964 0.000
#> GSM153435     2  0.0237      0.948 0.004 0.996 0.000
#> GSM153436     2  0.1964      0.929 0.056 0.944 0.000
#> GSM153437     2  0.0237      0.948 0.004 0.996 0.000
#> GSM153439     2  0.0237      0.949 0.004 0.996 0.000
#> GSM153441     2  0.0892      0.949 0.020 0.980 0.000
#> GSM153442     2  0.1031      0.948 0.024 0.976 0.000
#> GSM153443     2  0.0237      0.947 0.004 0.996 0.000
#> GSM153445     2  0.0237      0.948 0.004 0.996 0.000
#> GSM153446     2  0.0424      0.947 0.008 0.992 0.000
#> GSM153449     2  0.1529      0.940 0.040 0.960 0.000
#> GSM153453     2  0.1753      0.939 0.048 0.952 0.000
#> GSM153454     2  0.5178      0.618 0.256 0.744 0.000
#> GSM153455     2  0.1031      0.948 0.024 0.976 0.000
#> GSM153462     2  0.0237      0.948 0.004 0.996 0.000
#> GSM153465     2  0.0592      0.949 0.012 0.988 0.000
#> GSM153481     2  0.0237      0.948 0.004 0.996 0.000
#> GSM153482     2  0.2066      0.926 0.060 0.940 0.000
#> GSM153483     2  0.0424      0.948 0.008 0.992 0.000
#> GSM153485     2  0.1163      0.947 0.028 0.972 0.000
#> GSM153489     2  0.0747      0.949 0.016 0.984 0.000
#> GSM153490     2  0.3267      0.868 0.116 0.884 0.000
#> GSM153491     2  0.1753      0.939 0.048 0.952 0.000
#> GSM153492     2  0.4353      0.794 0.156 0.836 0.008
#> GSM153493     1  0.6260      0.246 0.552 0.448 0.000
#> GSM153494     2  0.0892      0.948 0.020 0.980 0.000
#> GSM153495     2  0.3412      0.860 0.124 0.876 0.000
#> GSM153498     2  0.1031      0.947 0.024 0.976 0.000
#> GSM153501     2  0.5650      0.439 0.312 0.688 0.000
#> GSM153502     2  0.1860      0.931 0.052 0.948 0.000
#> GSM153505     2  0.5560      0.489 0.300 0.700 0.000
#> GSM153506     2  0.1411      0.937 0.036 0.964 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3 p4
#> GSM153405     2  0.1637    0.85899 0.060 0.940 0.000  0
#> GSM153406     2  0.1557    0.85908 0.056 0.944 0.000  0
#> GSM153419     2  0.1716    0.85815 0.064 0.936 0.000  0
#> GSM153423     2  0.1118    0.86633 0.036 0.964 0.000  0
#> GSM153425     2  0.4746    0.26755 0.368 0.632 0.000  0
#> GSM153427     2  0.1398    0.86631 0.040 0.956 0.004  0
#> GSM153428     2  0.2125    0.85437 0.076 0.920 0.004  0
#> GSM153429     2  0.1209    0.86736 0.032 0.964 0.004  0
#> GSM153433     2  0.2973    0.80247 0.144 0.856 0.000  0
#> GSM153444     2  0.1109    0.86477 0.028 0.968 0.004  0
#> GSM153448     2  0.0657    0.86529 0.012 0.984 0.004  0
#> GSM153451     2  0.0592    0.86160 0.016 0.984 0.000  0
#> GSM153452     2  0.0895    0.86437 0.020 0.976 0.004  0
#> GSM153477     2  0.0921    0.86473 0.028 0.972 0.000  0
#> GSM153479     2  0.2021    0.86341 0.056 0.932 0.012  0
#> GSM153484     2  0.0921    0.86681 0.028 0.972 0.000  0
#> GSM153488     2  0.1356    0.86767 0.032 0.960 0.008  0
#> GSM153496     2  0.3577    0.75908 0.156 0.832 0.012  0
#> GSM153497     2  0.1004    0.86194 0.024 0.972 0.004  0
#> GSM153500     1  0.6669    0.55904 0.564 0.332 0.104  0
#> GSM153503     1  0.5858    0.48625 0.500 0.468 0.032  0
#> GSM153508     4  0.0000    0.00000 0.000 0.000 0.000  1
#> GSM153409     2  0.2466    0.84589 0.096 0.900 0.004  0
#> GSM153426     2  0.2266    0.85069 0.084 0.912 0.004  0
#> GSM153431     2  0.2737    0.83978 0.104 0.888 0.008  0
#> GSM153438     2  0.0895    0.86283 0.020 0.976 0.004  0
#> GSM153440     2  0.2401    0.84707 0.092 0.904 0.004  0
#> GSM153447     2  0.2944    0.82177 0.128 0.868 0.004  0
#> GSM153450     2  0.0895    0.86461 0.020 0.976 0.004  0
#> GSM153456     2  0.0592    0.86160 0.016 0.984 0.000  0
#> GSM153457     2  0.0592    0.86160 0.016 0.984 0.000  0
#> GSM153458     2  0.0592    0.86160 0.016 0.984 0.000  0
#> GSM153459     2  0.0469    0.86242 0.012 0.988 0.000  0
#> GSM153460     2  0.0707    0.86509 0.020 0.980 0.000  0
#> GSM153461     2  0.2466    0.84589 0.096 0.900 0.004  0
#> GSM153463     2  0.4898   -0.00385 0.416 0.584 0.000  0
#> GSM153464     2  0.0817    0.86137 0.024 0.976 0.000  0
#> GSM153466     2  0.1305    0.86903 0.036 0.960 0.004  0
#> GSM153467     2  0.0921    0.86371 0.028 0.972 0.000  0
#> GSM153468     2  0.1452    0.86835 0.036 0.956 0.008  0
#> GSM153469     2  0.0592    0.86441 0.016 0.984 0.000  0
#> GSM153470     2  0.1398    0.86582 0.040 0.956 0.004  0
#> GSM153471     2  0.1807    0.85253 0.052 0.940 0.008  0
#> GSM153472     2  0.2714    0.83144 0.112 0.884 0.004  0
#> GSM153473     2  0.4535    0.47146 0.292 0.704 0.004  0
#> GSM153474     3  0.2142    0.00000 0.056 0.016 0.928  0
#> GSM153475     2  0.2266    0.83590 0.084 0.912 0.004  0
#> GSM153476     2  0.1474    0.86034 0.052 0.948 0.000  0
#> GSM153478     2  0.3074    0.79153 0.152 0.848 0.000  0
#> GSM153480     2  0.0592    0.86228 0.016 0.984 0.000  0
#> GSM153486     2  0.0817    0.86225 0.024 0.976 0.000  0
#> GSM153487     2  0.4919    0.55655 0.200 0.752 0.048  0
#> GSM153499     2  0.3182    0.79745 0.096 0.876 0.028  0
#> GSM153504     2  0.5712   -0.09861 0.384 0.584 0.032  0
#> GSM153507     2  0.4706    0.51817 0.248 0.732 0.020  0
#> GSM153404     2  0.1637    0.85849 0.060 0.940 0.000  0
#> GSM153407     2  0.1902    0.85803 0.064 0.932 0.004  0
#> GSM153408     2  0.1637    0.85849 0.060 0.940 0.000  0
#> GSM153410     2  0.1637    0.85849 0.060 0.940 0.000  0
#> GSM153411     2  0.4746    0.26755 0.368 0.632 0.000  0
#> GSM153412     2  0.1637    0.85849 0.060 0.940 0.000  0
#> GSM153413     2  0.1637    0.85849 0.060 0.940 0.000  0
#> GSM153414     2  0.1545    0.86753 0.040 0.952 0.008  0
#> GSM153415     2  0.1637    0.85849 0.060 0.940 0.000  0
#> GSM153416     2  0.0817    0.86663 0.024 0.976 0.000  0
#> GSM153417     2  0.4746    0.26755 0.368 0.632 0.000  0
#> GSM153418     2  0.1637    0.85849 0.060 0.940 0.000  0
#> GSM153420     2  0.4746    0.26755 0.368 0.632 0.000  0
#> GSM153421     2  0.4730    0.27766 0.364 0.636 0.000  0
#> GSM153422     2  0.4746    0.26755 0.368 0.632 0.000  0
#> GSM153424     2  0.2530    0.83982 0.100 0.896 0.004  0
#> GSM153430     2  0.2401    0.85123 0.092 0.904 0.004  0
#> GSM153432     2  0.0592    0.86705 0.016 0.984 0.000  0
#> GSM153434     2  0.2704    0.81652 0.124 0.876 0.000  0
#> GSM153435     2  0.0657    0.86124 0.012 0.984 0.004  0
#> GSM153436     2  0.4220    0.60639 0.248 0.748 0.004  0
#> GSM153437     2  0.0657    0.86232 0.012 0.984 0.004  0
#> GSM153439     2  0.0921    0.86754 0.028 0.972 0.000  0
#> GSM153441     2  0.1302    0.86821 0.044 0.956 0.000  0
#> GSM153442     2  0.1978    0.86240 0.068 0.928 0.004  0
#> GSM153443     2  0.0707    0.86095 0.020 0.980 0.000  0
#> GSM153445     2  0.0592    0.86246 0.016 0.984 0.000  0
#> GSM153446     2  0.0707    0.86320 0.020 0.980 0.000  0
#> GSM153449     2  0.3249    0.80434 0.140 0.852 0.008  0
#> GSM153453     2  0.3048    0.81553 0.108 0.876 0.016  0
#> GSM153454     1  0.5897    0.67720 0.588 0.368 0.044  0
#> GSM153455     2  0.1792    0.86214 0.068 0.932 0.000  0
#> GSM153462     2  0.0895    0.86331 0.020 0.976 0.004  0
#> GSM153465     2  0.0895    0.86676 0.020 0.976 0.004  0
#> GSM153481     2  0.0469    0.86208 0.012 0.988 0.000  0
#> GSM153482     2  0.3037    0.81282 0.100 0.880 0.020  0
#> GSM153483     2  0.1151    0.86573 0.024 0.968 0.008  0
#> GSM153485     2  0.2334    0.85139 0.088 0.908 0.004  0
#> GSM153489     2  0.1792    0.86063 0.068 0.932 0.000  0
#> GSM153490     2  0.5143    0.15832 0.360 0.628 0.012  0
#> GSM153491     2  0.3217    0.80979 0.128 0.860 0.012  0
#> GSM153492     2  0.5755    0.12537 0.332 0.624 0.044  0
#> GSM153493     1  0.6442   -0.62514 0.492 0.068 0.440  0
#> GSM153494     2  0.1978    0.84923 0.068 0.928 0.004  0
#> GSM153495     2  0.4941   -0.09511 0.436 0.564 0.000  0
#> GSM153498     2  0.2589    0.82819 0.116 0.884 0.000  0
#> GSM153501     1  0.7220    0.68389 0.472 0.384 0.144  0
#> GSM153502     2  0.3402    0.76865 0.164 0.832 0.004  0
#> GSM153505     1  0.6574    0.69394 0.548 0.364 0.088  0
#> GSM153506     2  0.2867    0.80804 0.104 0.884 0.012  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3    p4    p5
#> GSM153405     2  0.1732     0.8575  0 0.920 0.000 0.080 0.000
#> GSM153406     2  0.1671     0.8582  0 0.924 0.000 0.076 0.000
#> GSM153419     2  0.1908     0.8531  0 0.908 0.000 0.092 0.000
#> GSM153423     2  0.1282     0.8748  0 0.952 0.000 0.044 0.004
#> GSM153425     4  0.4278     0.6374  0 0.452 0.000 0.548 0.000
#> GSM153427     2  0.1282     0.8736  0 0.952 0.000 0.044 0.004
#> GSM153428     2  0.2179     0.8494  0 0.896 0.000 0.100 0.004
#> GSM153429     2  0.1365     0.8747  0 0.952 0.004 0.040 0.004
#> GSM153433     2  0.3430     0.6634  0 0.776 0.004 0.220 0.000
#> GSM153444     2  0.1041     0.8725  0 0.964 0.000 0.032 0.004
#> GSM153448     2  0.1116     0.8755  0 0.964 0.004 0.028 0.004
#> GSM153451     2  0.0609     0.8687  0 0.980 0.000 0.020 0.000
#> GSM153452     2  0.0865     0.8713  0 0.972 0.000 0.024 0.004
#> GSM153477     2  0.1202     0.8724  0 0.960 0.004 0.032 0.004
#> GSM153479     2  0.2112     0.8649  0 0.908 0.004 0.084 0.004
#> GSM153484     2  0.0865     0.8745  0 0.972 0.004 0.024 0.000
#> GSM153488     2  0.1538     0.8754  0 0.948 0.008 0.036 0.008
#> GSM153496     2  0.4289     0.6345  0 0.764 0.024 0.192 0.020
#> GSM153497     2  0.1299     0.8647  0 0.960 0.012 0.020 0.008
#> GSM153500     4  0.8175    -0.0312  0 0.212 0.152 0.412 0.224
#> GSM153503     4  0.5885     0.4907  0 0.276 0.040 0.624 0.060
#> GSM153508     1  0.0000     0.0000  1 0.000 0.000 0.000 0.000
#> GSM153409     2  0.2865     0.8185  0 0.856 0.008 0.132 0.004
#> GSM153426     2  0.2548     0.8311  0 0.876 0.004 0.116 0.004
#> GSM153431     2  0.2964     0.8040  0 0.840 0.004 0.152 0.004
#> GSM153438     2  0.0865     0.8701  0 0.972 0.000 0.024 0.004
#> GSM153440     2  0.2629     0.8195  0 0.860 0.000 0.136 0.004
#> GSM153447     2  0.3328     0.7679  0 0.812 0.008 0.176 0.004
#> GSM153450     2  0.0865     0.8717  0 0.972 0.000 0.024 0.004
#> GSM153456     2  0.0609     0.8687  0 0.980 0.000 0.020 0.000
#> GSM153457     2  0.0609     0.8687  0 0.980 0.000 0.020 0.000
#> GSM153458     2  0.0609     0.8687  0 0.980 0.000 0.020 0.000
#> GSM153459     2  0.0510     0.8692  0 0.984 0.000 0.016 0.000
#> GSM153460     2  0.0703     0.8717  0 0.976 0.000 0.024 0.000
#> GSM153461     2  0.2741     0.8200  0 0.860 0.004 0.132 0.004
#> GSM153463     4  0.4541     0.6950  0 0.380 0.008 0.608 0.004
#> GSM153464     2  0.1243     0.8656  0 0.960 0.004 0.028 0.008
#> GSM153466     2  0.1408     0.8768  0 0.948 0.000 0.044 0.008
#> GSM153467     2  0.1205     0.8723  0 0.956 0.004 0.040 0.000
#> GSM153468     2  0.1695     0.8756  0 0.940 0.008 0.044 0.008
#> GSM153469     2  0.0880     0.8739  0 0.968 0.000 0.032 0.000
#> GSM153470     2  0.1618     0.8701  0 0.944 0.008 0.040 0.008
#> GSM153471     2  0.1934     0.8548  0 0.928 0.016 0.052 0.004
#> GSM153472     2  0.3277     0.7892  0 0.832 0.008 0.148 0.012
#> GSM153473     2  0.4871    -0.3829  0 0.548 0.008 0.432 0.012
#> GSM153474     3  0.4153     0.0000  0 0.004 0.736 0.020 0.240
#> GSM153475     2  0.2678     0.8193  0 0.880 0.016 0.100 0.004
#> GSM153476     2  0.1544     0.8606  0 0.932 0.000 0.068 0.000
#> GSM153478     2  0.3074     0.7378  0 0.804 0.000 0.196 0.000
#> GSM153480     2  0.0771     0.8687  0 0.976 0.000 0.020 0.004
#> GSM153486     2  0.1041     0.8701  0 0.964 0.000 0.032 0.004
#> GSM153487     2  0.5407     0.4966  0 0.712 0.060 0.176 0.052
#> GSM153499     2  0.3542     0.7708  0 0.840 0.020 0.112 0.028
#> GSM153504     4  0.6691     0.6055  0 0.364 0.108 0.492 0.036
#> GSM153507     2  0.5629     0.1573  0 0.632 0.040 0.288 0.040
#> GSM153404     2  0.1732     0.8571  0 0.920 0.000 0.080 0.000
#> GSM153407     2  0.2011     0.8552  0 0.908 0.000 0.088 0.004
#> GSM153408     2  0.1732     0.8571  0 0.920 0.000 0.080 0.000
#> GSM153410     2  0.1732     0.8571  0 0.920 0.000 0.080 0.000
#> GSM153411     4  0.4278     0.6374  0 0.452 0.000 0.548 0.000
#> GSM153412     2  0.1732     0.8571  0 0.920 0.000 0.080 0.000
#> GSM153413     2  0.1732     0.8571  0 0.920 0.000 0.080 0.000
#> GSM153414     2  0.1798     0.8710  0 0.928 0.004 0.064 0.004
#> GSM153415     2  0.1732     0.8571  0 0.920 0.000 0.080 0.000
#> GSM153416     2  0.1041     0.8733  0 0.964 0.000 0.032 0.004
#> GSM153417     4  0.4278     0.6374  0 0.452 0.000 0.548 0.000
#> GSM153418     2  0.1732     0.8571  0 0.920 0.000 0.080 0.000
#> GSM153420     4  0.4278     0.6374  0 0.452 0.000 0.548 0.000
#> GSM153421     4  0.4283     0.6301  0 0.456 0.000 0.544 0.000
#> GSM153422     4  0.4278     0.6374  0 0.452 0.000 0.548 0.000
#> GSM153424     2  0.2719     0.8083  0 0.852 0.000 0.144 0.004
#> GSM153430     2  0.2488     0.8389  0 0.872 0.000 0.124 0.004
#> GSM153432     2  0.0794     0.8763  0 0.972 0.000 0.028 0.000
#> GSM153434     2  0.3074     0.7141  0 0.804 0.000 0.196 0.000
#> GSM153435     2  0.0960     0.8690  0 0.972 0.008 0.016 0.004
#> GSM153436     2  0.4723    -0.0442  0 0.612 0.008 0.368 0.012
#> GSM153437     2  0.0932     0.8709  0 0.972 0.004 0.020 0.004
#> GSM153439     2  0.1202     0.8763  0 0.960 0.004 0.032 0.004
#> GSM153441     2  0.1270     0.8752  0 0.948 0.000 0.052 0.000
#> GSM153442     2  0.2284     0.8568  0 0.896 0.004 0.096 0.004
#> GSM153443     2  0.1026     0.8693  0 0.968 0.004 0.024 0.004
#> GSM153445     2  0.0932     0.8690  0 0.972 0.004 0.020 0.004
#> GSM153446     2  0.0865     0.8700  0 0.972 0.000 0.024 0.004
#> GSM153449     2  0.3289     0.7606  0 0.816 0.004 0.172 0.008
#> GSM153453     2  0.3727     0.7410  0 0.812 0.020 0.152 0.016
#> GSM153454     4  0.4777     0.0930  0 0.120 0.048 0.772 0.060
#> GSM153455     2  0.1956     0.8649  0 0.916 0.008 0.076 0.000
#> GSM153462     2  0.1243     0.8692  0 0.960 0.008 0.028 0.004
#> GSM153465     2  0.1205     0.8764  0 0.956 0.004 0.040 0.000
#> GSM153481     2  0.0960     0.8694  0 0.972 0.004 0.016 0.008
#> GSM153482     2  0.3427     0.7889  0 0.844 0.032 0.112 0.012
#> GSM153483     2  0.1369     0.8728  0 0.956 0.008 0.028 0.008
#> GSM153485     2  0.2445     0.8535  0 0.884 0.004 0.108 0.004
#> GSM153489     2  0.2052     0.8579  0 0.912 0.004 0.080 0.004
#> GSM153490     4  0.5697     0.6406  0 0.432 0.032 0.508 0.028
#> GSM153491     2  0.3754     0.7381  0 0.796 0.008 0.176 0.020
#> GSM153492     2  0.6213    -0.5316  0 0.464 0.044 0.444 0.048
#> GSM153493     5  0.2351     0.0000  0 0.016 0.000 0.088 0.896
#> GSM153494     2  0.2302     0.8452  0 0.904 0.008 0.080 0.008
#> GSM153495     4  0.4607     0.6985  0 0.368 0.012 0.616 0.004
#> GSM153498     2  0.3344     0.7835  0 0.832 0.012 0.144 0.012
#> GSM153501     4  0.7565     0.0959  0 0.180 0.156 0.520 0.144
#> GSM153502     2  0.4288     0.5590  0 0.732 0.012 0.240 0.016
#> GSM153505     4  0.6113     0.1087  0 0.140 0.128 0.668 0.064
#> GSM153506     2  0.3337     0.7852  0 0.856 0.024 0.096 0.024

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1 p2    p3    p4    p5    p6
#> GSM153405     1  0.2020     0.8481 0.896  0 0.000 0.096 0.000 0.008
#> GSM153406     1  0.1970     0.8490 0.900  0 0.000 0.092 0.000 0.008
#> GSM153419     1  0.2165     0.8426 0.884  0 0.000 0.108 0.000 0.008
#> GSM153423     1  0.1429     0.8733 0.940  0 0.000 0.052 0.004 0.004
#> GSM153425     4  0.3915     0.6505 0.412  0 0.000 0.584 0.000 0.004
#> GSM153427     1  0.1333     0.8710 0.944  0 0.000 0.048 0.008 0.000
#> GSM153428     1  0.2355     0.8402 0.876  0 0.000 0.112 0.008 0.004
#> GSM153429     1  0.1297     0.8722 0.948  0 0.000 0.040 0.012 0.000
#> GSM153433     1  0.3481     0.6531 0.756  0 0.000 0.228 0.004 0.012
#> GSM153444     1  0.1049     0.8702 0.960  0 0.000 0.032 0.008 0.000
#> GSM153448     1  0.1149     0.8728 0.960  0 0.000 0.024 0.008 0.008
#> GSM153451     1  0.0547     0.8650 0.980  0 0.000 0.020 0.000 0.000
#> GSM153452     1  0.0858     0.8681 0.968  0 0.000 0.028 0.004 0.000
#> GSM153477     1  0.1434     0.8691 0.948  0 0.000 0.024 0.008 0.020
#> GSM153479     1  0.2401     0.8627 0.892  0 0.000 0.076 0.016 0.016
#> GSM153484     1  0.1080     0.8731 0.960  0 0.000 0.032 0.004 0.004
#> GSM153488     1  0.1515     0.8722 0.944  0 0.000 0.028 0.020 0.008
#> GSM153496     1  0.4498     0.6072 0.740  0 0.004 0.172 0.060 0.024
#> GSM153497     1  0.1536     0.8587 0.944  0 0.000 0.012 0.024 0.020
#> GSM153500     6  0.5979     0.0000 0.100  0 0.024 0.156 0.068 0.652
#> GSM153503     4  0.6408    -0.0134 0.200  0 0.016 0.580 0.056 0.148
#> GSM153508     2  0.0000     0.0000 0.000  1 0.000 0.000 0.000 0.000
#> GSM153409     1  0.2917     0.8125 0.840  0 0.000 0.136 0.016 0.008
#> GSM153426     1  0.2611     0.8281 0.864  0 0.000 0.116 0.012 0.008
#> GSM153431     1  0.3172     0.8000 0.820  0 0.000 0.152 0.012 0.016
#> GSM153438     1  0.0858     0.8672 0.968  0 0.000 0.028 0.004 0.000
#> GSM153440     1  0.2773     0.8081 0.836  0 0.000 0.152 0.004 0.008
#> GSM153447     1  0.3419     0.7643 0.792  0 0.000 0.180 0.016 0.012
#> GSM153450     1  0.0858     0.8683 0.968  0 0.000 0.028 0.004 0.000
#> GSM153456     1  0.0547     0.8650 0.980  0 0.000 0.020 0.000 0.000
#> GSM153457     1  0.0547     0.8650 0.980  0 0.000 0.020 0.000 0.000
#> GSM153458     1  0.0547     0.8650 0.980  0 0.000 0.020 0.000 0.000
#> GSM153459     1  0.0458     0.8655 0.984  0 0.000 0.016 0.000 0.000
#> GSM153460     1  0.0632     0.8682 0.976  0 0.000 0.024 0.000 0.000
#> GSM153461     1  0.2825     0.8137 0.844  0 0.000 0.136 0.012 0.008
#> GSM153463     4  0.4345     0.6135 0.344  0 0.000 0.628 0.012 0.016
#> GSM153464     1  0.1458     0.8606 0.948  0 0.000 0.020 0.016 0.016
#> GSM153466     1  0.1477     0.8739 0.940  0 0.000 0.048 0.008 0.004
#> GSM153467     1  0.1410     0.8690 0.944  0 0.000 0.044 0.008 0.004
#> GSM153468     1  0.1549     0.8726 0.936  0 0.000 0.044 0.020 0.000
#> GSM153469     1  0.0935     0.8709 0.964  0 0.000 0.032 0.000 0.004
#> GSM153470     1  0.1710     0.8689 0.936  0 0.000 0.028 0.016 0.020
#> GSM153471     1  0.2195     0.8490 0.912  0 0.000 0.028 0.036 0.024
#> GSM153472     1  0.3550     0.7750 0.812  0 0.000 0.132 0.032 0.024
#> GSM153473     1  0.4778    -0.4179 0.508  0 0.000 0.452 0.028 0.012
#> GSM153474     3  0.0291     0.0000 0.000  0 0.992 0.004 0.000 0.004
#> GSM153475     1  0.3078     0.8132 0.860  0 0.000 0.064 0.048 0.028
#> GSM153476     1  0.1757     0.8548 0.916  0 0.000 0.076 0.000 0.008
#> GSM153478     1  0.3273     0.7178 0.776  0 0.000 0.212 0.008 0.004
#> GSM153480     1  0.0951     0.8648 0.968  0 0.000 0.020 0.004 0.008
#> GSM153486     1  0.1232     0.8671 0.956  0 0.000 0.024 0.004 0.016
#> GSM153487     1  0.5710     0.3977 0.656  0 0.004 0.104 0.076 0.160
#> GSM153499     1  0.3820     0.7599 0.816  0 0.012 0.100 0.048 0.024
#> GSM153504     4  0.7249     0.3337 0.292  0 0.016 0.432 0.080 0.180
#> GSM153507     1  0.5972     0.0264 0.580  0 0.000 0.260 0.076 0.084
#> GSM153404     1  0.2020     0.8476 0.896  0 0.000 0.096 0.000 0.008
#> GSM153407     1  0.2101     0.8482 0.892  0 0.000 0.100 0.004 0.004
#> GSM153408     1  0.2020     0.8476 0.896  0 0.000 0.096 0.000 0.008
#> GSM153410     1  0.2020     0.8476 0.896  0 0.000 0.096 0.000 0.008
#> GSM153411     4  0.3915     0.6505 0.412  0 0.000 0.584 0.000 0.004
#> GSM153412     1  0.2020     0.8476 0.896  0 0.000 0.096 0.000 0.008
#> GSM153413     1  0.2020     0.8476 0.896  0 0.000 0.096 0.000 0.008
#> GSM153414     1  0.1895     0.8662 0.912  0 0.000 0.072 0.016 0.000
#> GSM153415     1  0.2020     0.8476 0.896  0 0.000 0.096 0.000 0.008
#> GSM153416     1  0.1194     0.8713 0.956  0 0.000 0.032 0.008 0.004
#> GSM153417     4  0.3915     0.6505 0.412  0 0.000 0.584 0.000 0.004
#> GSM153418     1  0.2020     0.8476 0.896  0 0.000 0.096 0.000 0.008
#> GSM153420     4  0.3915     0.6505 0.412  0 0.000 0.584 0.000 0.004
#> GSM153421     4  0.3923     0.6440 0.416  0 0.000 0.580 0.000 0.004
#> GSM153422     4  0.3915     0.6505 0.412  0 0.000 0.584 0.000 0.004
#> GSM153424     1  0.2982     0.8008 0.828  0 0.000 0.152 0.008 0.012
#> GSM153430     1  0.2699     0.8324 0.856  0 0.000 0.124 0.012 0.008
#> GSM153432     1  0.1049     0.8744 0.960  0 0.000 0.032 0.000 0.008
#> GSM153434     1  0.2994     0.7118 0.788  0 0.000 0.208 0.000 0.004
#> GSM153435     1  0.1053     0.8658 0.964  0 0.000 0.012 0.020 0.004
#> GSM153436     1  0.4684    -0.0806 0.580  0 0.000 0.380 0.024 0.016
#> GSM153437     1  0.0914     0.8673 0.968  0 0.000 0.016 0.016 0.000
#> GSM153439     1  0.1268     0.8745 0.952  0 0.000 0.036 0.008 0.004
#> GSM153441     1  0.1584     0.8707 0.928  0 0.000 0.064 0.000 0.008
#> GSM153442     1  0.2426     0.8575 0.884  0 0.000 0.092 0.012 0.012
#> GSM153443     1  0.1078     0.8664 0.964  0 0.000 0.016 0.012 0.008
#> GSM153445     1  0.1078     0.8655 0.964  0 0.000 0.016 0.012 0.008
#> GSM153446     1  0.1149     0.8652 0.960  0 0.000 0.024 0.008 0.008
#> GSM153449     1  0.3700     0.7525 0.792  0 0.000 0.156 0.020 0.032
#> GSM153453     1  0.3831     0.7459 0.804  0 0.008 0.128 0.036 0.024
#> GSM153454     4  0.4424    -0.2215 0.072  0 0.008 0.780 0.080 0.060
#> GSM153455     1  0.2162     0.8573 0.896  0 0.000 0.088 0.004 0.012
#> GSM153462     1  0.1350     0.8633 0.952  0 0.000 0.020 0.020 0.008
#> GSM153465     1  0.1523     0.8734 0.940  0 0.000 0.044 0.008 0.008
#> GSM153481     1  0.1180     0.8637 0.960  0 0.000 0.016 0.012 0.012
#> GSM153482     1  0.3837     0.7725 0.816  0 0.004 0.084 0.048 0.048
#> GSM153483     1  0.1426     0.8676 0.948  0 0.000 0.016 0.028 0.008
#> GSM153485     1  0.2704     0.8461 0.868  0 0.000 0.100 0.020 0.012
#> GSM153489     1  0.2487     0.8505 0.892  0 0.000 0.064 0.024 0.020
#> GSM153490     4  0.5692     0.5946 0.404  0 0.000 0.492 0.040 0.064
#> GSM153491     1  0.3700     0.7508 0.792  0 0.000 0.156 0.032 0.020
#> GSM153492     4  0.6548     0.4632 0.404  0 0.036 0.444 0.044 0.072
#> GSM153493     5  0.3771     0.0000 0.008  0 0.172 0.044 0.776 0.000
#> GSM153494     1  0.2528     0.8458 0.892  0 0.000 0.056 0.024 0.028
#> GSM153495     4  0.4373     0.5941 0.328  0 0.000 0.640 0.016 0.016
#> GSM153498     1  0.3789     0.7528 0.804  0 0.004 0.128 0.040 0.024
#> GSM153501     4  0.7654    -0.4492 0.104  0 0.068 0.396 0.092 0.340
#> GSM153502     1  0.4690     0.5263 0.700  0 0.000 0.220 0.040 0.040
#> GSM153505     4  0.5928    -0.3475 0.080  0 0.028 0.608 0.032 0.252
#> GSM153506     1  0.3610     0.7659 0.828  0 0.000 0.064 0.060 0.048

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> CV:hclust 104               NA 2
#> CV:hclust 100               NA 3
#> CV:hclust  89            0.341 4
#> CV:hclust  92            0.326 5
#> CV:hclust  91            0.174 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.276           0.519       0.788         0.4563 0.505   0.505
#> 3 3 0.686           0.852       0.918         0.2950 0.699   0.498
#> 4 4 0.499           0.503       0.790         0.1227 0.842   0.645
#> 5 5 0.512           0.501       0.698         0.0911 0.783   0.473
#> 6 6 0.576           0.502       0.724         0.0599 0.873   0.593

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     2  0.1633     0.6299 0.024 0.976
#> GSM153406     2  0.1184     0.6314 0.016 0.984
#> GSM153419     2  0.4161     0.6005 0.084 0.916
#> GSM153423     2  0.8144     0.5505 0.252 0.748
#> GSM153425     2  0.9087     0.3526 0.324 0.676
#> GSM153427     2  0.2043     0.6394 0.032 0.968
#> GSM153428     2  0.7299     0.5660 0.204 0.796
#> GSM153429     2  0.9866     0.3323 0.432 0.568
#> GSM153433     1  0.4022     0.7239 0.920 0.080
#> GSM153444     2  0.3584     0.6501 0.068 0.932
#> GSM153448     2  0.9909     0.2989 0.444 0.556
#> GSM153451     2  0.8016     0.5575 0.244 0.756
#> GSM153452     2  0.3274     0.6467 0.060 0.940
#> GSM153477     2  0.9970     0.2218 0.468 0.532
#> GSM153479     1  0.9944     0.0431 0.544 0.456
#> GSM153484     1  1.0000    -0.1238 0.504 0.496
#> GSM153488     1  0.5629     0.7038 0.868 0.132
#> GSM153496     1  0.0000     0.7719 1.000 0.000
#> GSM153497     2  0.9850     0.3422 0.428 0.572
#> GSM153500     1  0.0000     0.7719 1.000 0.000
#> GSM153503     1  0.0000     0.7719 1.000 0.000
#> GSM153508     1  0.1184     0.7691 0.984 0.016
#> GSM153409     2  0.4815     0.6422 0.104 0.896
#> GSM153426     2  0.3431     0.6499 0.064 0.936
#> GSM153431     2  0.9998     0.1935 0.492 0.508
#> GSM153438     2  0.3879     0.6495 0.076 0.924
#> GSM153440     2  0.8661     0.4500 0.288 0.712
#> GSM153447     1  0.9710     0.0970 0.600 0.400
#> GSM153450     2  0.3431     0.6500 0.064 0.936
#> GSM153456     2  0.3733     0.6499 0.072 0.928
#> GSM153457     2  0.4690     0.6434 0.100 0.900
#> GSM153458     2  0.3431     0.6499 0.064 0.936
#> GSM153459     2  0.3733     0.6499 0.072 0.928
#> GSM153460     2  0.4431     0.6462 0.092 0.908
#> GSM153461     2  0.4298     0.6495 0.088 0.912
#> GSM153463     1  0.2603     0.7300 0.956 0.044
#> GSM153464     2  0.9850     0.3422 0.428 0.572
#> GSM153466     1  0.9710     0.2387 0.600 0.400
#> GSM153467     2  0.9922     0.2872 0.448 0.552
#> GSM153468     1  0.9795     0.1953 0.584 0.416
#> GSM153469     2  0.9850     0.3422 0.428 0.572
#> GSM153470     1  0.9977    -0.0180 0.528 0.472
#> GSM153471     2  0.9977     0.2080 0.472 0.528
#> GSM153472     1  0.0672     0.7713 0.992 0.008
#> GSM153473     1  0.0000     0.7719 1.000 0.000
#> GSM153474     1  0.0000     0.7719 1.000 0.000
#> GSM153475     1  0.5946     0.6952 0.856 0.144
#> GSM153476     2  0.9909     0.3277 0.444 0.556
#> GSM153478     1  0.1633     0.7665 0.976 0.024
#> GSM153480     2  0.9850     0.3422 0.428 0.572
#> GSM153486     2  0.9850     0.3422 0.428 0.572
#> GSM153487     1  0.0938     0.7704 0.988 0.012
#> GSM153499     1  0.9044     0.4210 0.680 0.320
#> GSM153504     1  0.0000     0.7719 1.000 0.000
#> GSM153507     1  0.1414     0.7688 0.980 0.020
#> GSM153404     2  0.1184     0.6314 0.016 0.984
#> GSM153407     2  0.6343     0.5568 0.160 0.840
#> GSM153408     2  0.1184     0.6314 0.016 0.984
#> GSM153410     2  0.0938     0.6320 0.012 0.988
#> GSM153411     2  0.9087     0.3526 0.324 0.676
#> GSM153412     2  0.0938     0.6320 0.012 0.988
#> GSM153413     2  0.1633     0.6299 0.024 0.976
#> GSM153414     2  0.4161     0.6502 0.084 0.916
#> GSM153415     2  0.1184     0.6314 0.016 0.984
#> GSM153416     2  0.9323     0.4497 0.348 0.652
#> GSM153417     2  0.9087     0.3526 0.324 0.676
#> GSM153418     2  0.1184     0.6314 0.016 0.984
#> GSM153420     2  0.9087     0.3526 0.324 0.676
#> GSM153421     2  0.9087     0.3526 0.324 0.676
#> GSM153422     2  0.9087     0.3526 0.324 0.676
#> GSM153424     2  0.9358     0.4187 0.352 0.648
#> GSM153430     1  0.7219     0.5686 0.800 0.200
#> GSM153432     2  0.9850     0.3422 0.428 0.572
#> GSM153434     1  0.9963    -0.0868 0.536 0.464
#> GSM153435     2  0.9850     0.3422 0.428 0.572
#> GSM153436     2  0.9491     0.3918 0.368 0.632
#> GSM153437     2  0.8909     0.4958 0.308 0.692
#> GSM153439     2  0.9866     0.3323 0.432 0.568
#> GSM153441     1  0.9988    -0.1199 0.520 0.480
#> GSM153442     1  0.7139     0.6372 0.804 0.196
#> GSM153443     2  0.9850     0.3422 0.428 0.572
#> GSM153445     2  0.9850     0.3422 0.428 0.572
#> GSM153446     2  0.9850     0.3422 0.428 0.572
#> GSM153449     1  0.1633     0.7691 0.976 0.024
#> GSM153453     1  0.0376     0.7717 0.996 0.004
#> GSM153454     1  0.0000     0.7719 1.000 0.000
#> GSM153455     1  0.9491     0.2705 0.632 0.368
#> GSM153462     2  0.9866     0.3323 0.432 0.568
#> GSM153465     2  0.9850     0.3422 0.428 0.572
#> GSM153481     2  0.9850     0.3422 0.428 0.572
#> GSM153482     1  0.3584     0.7500 0.932 0.068
#> GSM153483     1  0.9608     0.2876 0.616 0.384
#> GSM153485     1  0.6148     0.6858 0.848 0.152
#> GSM153489     1  0.2778     0.7609 0.952 0.048
#> GSM153490     1  0.0000     0.7719 1.000 0.000
#> GSM153491     1  0.0376     0.7718 0.996 0.004
#> GSM153492     1  0.0000     0.7719 1.000 0.000
#> GSM153493     1  0.0000     0.7719 1.000 0.000
#> GSM153494     1  0.9358     0.3625 0.648 0.352
#> GSM153495     1  0.0000     0.7719 1.000 0.000
#> GSM153498     1  0.5294     0.7132 0.880 0.120
#> GSM153501     1  0.0000     0.7719 1.000 0.000
#> GSM153502     1  0.0000     0.7719 1.000 0.000
#> GSM153505     1  0.0000     0.7719 1.000 0.000
#> GSM153506     1  0.9087     0.4149 0.676 0.324

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     3  0.2590    0.94004 0.004 0.072 0.924
#> GSM153406     3  0.2448    0.94051 0.000 0.076 0.924
#> GSM153419     3  0.2743    0.93488 0.020 0.052 0.928
#> GSM153423     2  0.0237    0.92778 0.000 0.996 0.004
#> GSM153425     3  0.3039    0.92673 0.044 0.036 0.920
#> GSM153427     2  0.2537    0.87833 0.000 0.920 0.080
#> GSM153428     2  0.2443    0.90446 0.032 0.940 0.028
#> GSM153429     2  0.2165    0.90292 0.064 0.936 0.000
#> GSM153433     1  0.4291    0.80172 0.820 0.180 0.000
#> GSM153444     2  0.0747    0.92395 0.000 0.984 0.016
#> GSM153448     2  0.0237    0.92895 0.004 0.996 0.000
#> GSM153451     2  0.0237    0.92778 0.000 0.996 0.004
#> GSM153452     2  0.3030    0.85770 0.004 0.904 0.092
#> GSM153477     2  0.1289    0.91993 0.032 0.968 0.000
#> GSM153479     2  0.4235    0.79777 0.176 0.824 0.000
#> GSM153484     2  0.2878    0.87880 0.096 0.904 0.000
#> GSM153488     1  0.5397    0.67780 0.720 0.280 0.000
#> GSM153496     1  0.0592    0.87183 0.988 0.012 0.000
#> GSM153497     2  0.0237    0.92895 0.004 0.996 0.000
#> GSM153500     1  0.0237    0.87037 0.996 0.004 0.000
#> GSM153503     1  0.0237    0.87037 0.996 0.004 0.000
#> GSM153508     1  0.2774    0.83885 0.920 0.008 0.072
#> GSM153409     2  0.0747    0.92395 0.000 0.984 0.016
#> GSM153426     2  0.0747    0.92395 0.000 0.984 0.016
#> GSM153431     2  0.4390    0.83059 0.148 0.840 0.012
#> GSM153438     2  0.0592    0.92555 0.000 0.988 0.012
#> GSM153440     2  0.7740   -0.00561 0.048 0.508 0.444
#> GSM153447     1  0.6374    0.73631 0.768 0.132 0.100
#> GSM153450     2  0.0747    0.92429 0.000 0.984 0.016
#> GSM153456     2  0.0592    0.92555 0.000 0.988 0.012
#> GSM153457     2  0.0237    0.92778 0.000 0.996 0.004
#> GSM153458     2  0.0747    0.92395 0.000 0.984 0.016
#> GSM153459     2  0.0592    0.92555 0.000 0.988 0.012
#> GSM153460     2  0.0592    0.92555 0.000 0.988 0.012
#> GSM153461     2  0.0747    0.92395 0.000 0.984 0.016
#> GSM153463     1  0.1525    0.86994 0.964 0.032 0.004
#> GSM153464     2  0.0237    0.92895 0.004 0.996 0.000
#> GSM153466     2  0.4002    0.81205 0.160 0.840 0.000
#> GSM153467     2  0.0424    0.92812 0.008 0.992 0.000
#> GSM153468     2  0.3941    0.81953 0.156 0.844 0.000
#> GSM153469     2  0.0237    0.92895 0.004 0.996 0.000
#> GSM153470     2  0.2165    0.90227 0.064 0.936 0.000
#> GSM153471     2  0.2356    0.89692 0.072 0.928 0.000
#> GSM153472     1  0.0892    0.87248 0.980 0.020 0.000
#> GSM153473     1  0.0237    0.87037 0.996 0.004 0.000
#> GSM153474     1  0.0475    0.86933 0.992 0.004 0.004
#> GSM153475     1  0.5760    0.58765 0.672 0.328 0.000
#> GSM153476     2  0.1289    0.92041 0.032 0.968 0.000
#> GSM153478     1  0.3816    0.82800 0.852 0.148 0.000
#> GSM153480     2  0.0237    0.92895 0.004 0.996 0.000
#> GSM153486     2  0.0237    0.92895 0.004 0.996 0.000
#> GSM153487     1  0.1031    0.87205 0.976 0.024 0.000
#> GSM153499     1  0.5098    0.71720 0.752 0.248 0.000
#> GSM153504     1  0.0237    0.87037 0.996 0.004 0.000
#> GSM153507     1  0.2878    0.85486 0.904 0.096 0.000
#> GSM153404     3  0.2448    0.94051 0.000 0.076 0.924
#> GSM153407     3  0.7394    0.12055 0.032 0.472 0.496
#> GSM153408     3  0.2448    0.94051 0.000 0.076 0.924
#> GSM153410     3  0.2448    0.94051 0.000 0.076 0.924
#> GSM153411     3  0.3039    0.92673 0.044 0.036 0.920
#> GSM153412     3  0.2448    0.94051 0.000 0.076 0.924
#> GSM153413     3  0.2448    0.94051 0.000 0.076 0.924
#> GSM153414     2  0.0747    0.92395 0.000 0.984 0.016
#> GSM153415     3  0.2448    0.94051 0.000 0.076 0.924
#> GSM153416     2  0.0237    0.92778 0.000 0.996 0.004
#> GSM153417     3  0.3039    0.92673 0.044 0.036 0.920
#> GSM153418     3  0.2448    0.94051 0.000 0.076 0.924
#> GSM153420     3  0.3039    0.92673 0.044 0.036 0.920
#> GSM153421     3  0.3039    0.92673 0.044 0.036 0.920
#> GSM153422     3  0.3039    0.92673 0.044 0.036 0.920
#> GSM153424     2  0.2229    0.90640 0.044 0.944 0.012
#> GSM153430     1  0.6307    0.12820 0.512 0.488 0.000
#> GSM153432     2  0.0237    0.92895 0.004 0.996 0.000
#> GSM153434     2  0.3192    0.85865 0.112 0.888 0.000
#> GSM153435     2  0.0237    0.92895 0.004 0.996 0.000
#> GSM153436     2  0.4897    0.78101 0.172 0.812 0.016
#> GSM153437     2  0.0237    0.92778 0.000 0.996 0.004
#> GSM153439     2  0.0424    0.92812 0.008 0.992 0.000
#> GSM153441     2  0.0592    0.92755 0.012 0.988 0.000
#> GSM153442     2  0.4002    0.81411 0.160 0.840 0.000
#> GSM153443     2  0.0424    0.92850 0.008 0.992 0.000
#> GSM153445     2  0.0237    0.92895 0.004 0.996 0.000
#> GSM153446     2  0.0237    0.92895 0.004 0.996 0.000
#> GSM153449     1  0.4235    0.80574 0.824 0.176 0.000
#> GSM153453     1  0.2356    0.86306 0.928 0.072 0.000
#> GSM153454     1  0.0000    0.86669 1.000 0.000 0.000
#> GSM153455     2  0.4399    0.76925 0.188 0.812 0.000
#> GSM153462     2  0.0237    0.92895 0.004 0.996 0.000
#> GSM153465     2  0.0237    0.92895 0.004 0.996 0.000
#> GSM153481     2  0.0237    0.92895 0.004 0.996 0.000
#> GSM153482     1  0.2261    0.86293 0.932 0.068 0.000
#> GSM153483     2  0.5098    0.67773 0.248 0.752 0.000
#> GSM153485     1  0.6140    0.43335 0.596 0.404 0.000
#> GSM153489     1  0.3816    0.82701 0.852 0.148 0.000
#> GSM153490     1  0.0424    0.87140 0.992 0.008 0.000
#> GSM153491     1  0.3038    0.85035 0.896 0.104 0.000
#> GSM153492     1  0.0237    0.87037 0.996 0.004 0.000
#> GSM153493     1  0.0237    0.87037 0.996 0.004 0.000
#> GSM153494     2  0.4796    0.72388 0.220 0.780 0.000
#> GSM153495     1  0.0237    0.87037 0.996 0.004 0.000
#> GSM153498     1  0.4887    0.75903 0.772 0.228 0.000
#> GSM153501     1  0.0237    0.87037 0.996 0.004 0.000
#> GSM153502     1  0.1031    0.87255 0.976 0.024 0.000
#> GSM153505     1  0.0237    0.87037 0.996 0.004 0.000
#> GSM153506     2  0.5465    0.59530 0.288 0.712 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     3  0.1209     0.9240 0.000 0.032 0.964 0.004
#> GSM153406     3  0.1211     0.9261 0.000 0.040 0.960 0.000
#> GSM153419     3  0.0592     0.9218 0.000 0.016 0.984 0.000
#> GSM153423     2  0.0188     0.7647 0.004 0.996 0.000 0.000
#> GSM153425     3  0.1118     0.9100 0.000 0.000 0.964 0.036
#> GSM153427     2  0.2380     0.7262 0.008 0.920 0.064 0.008
#> GSM153428     2  0.4247     0.6818 0.116 0.832 0.036 0.016
#> GSM153429     2  0.4948     0.4822 0.440 0.560 0.000 0.000
#> GSM153433     1  0.2385     0.4693 0.920 0.028 0.000 0.052
#> GSM153444     2  0.0967     0.7566 0.004 0.976 0.016 0.004
#> GSM153448     2  0.4454     0.6654 0.308 0.692 0.000 0.000
#> GSM153451     2  0.0000     0.7638 0.000 1.000 0.000 0.000
#> GSM153452     2  0.1994     0.7363 0.008 0.936 0.052 0.004
#> GSM153477     2  0.4920     0.5819 0.368 0.628 0.000 0.004
#> GSM153479     2  0.5597     0.3862 0.464 0.516 0.000 0.020
#> GSM153484     2  0.4994     0.3914 0.480 0.520 0.000 0.000
#> GSM153488     1  0.2342     0.4897 0.912 0.080 0.000 0.008
#> GSM153496     1  0.3444     0.2619 0.816 0.000 0.000 0.184
#> GSM153497     2  0.2973     0.7613 0.144 0.856 0.000 0.000
#> GSM153500     4  0.4941     0.7366 0.436 0.000 0.000 0.564
#> GSM153503     1  0.4985    -0.6134 0.532 0.000 0.000 0.468
#> GSM153508     4  0.1389     0.5025 0.048 0.000 0.000 0.952
#> GSM153409     2  0.1339     0.7514 0.004 0.964 0.024 0.008
#> GSM153426     2  0.1151     0.7518 0.000 0.968 0.024 0.008
#> GSM153431     2  0.6167     0.3744 0.388 0.568 0.028 0.016
#> GSM153438     2  0.0000     0.7638 0.000 1.000 0.000 0.000
#> GSM153440     3  0.8279     0.0369 0.248 0.368 0.368 0.016
#> GSM153447     1  0.5896     0.2595 0.744 0.148 0.060 0.048
#> GSM153450     2  0.0712     0.7615 0.004 0.984 0.008 0.004
#> GSM153456     2  0.0188     0.7629 0.000 0.996 0.000 0.004
#> GSM153457     2  0.0000     0.7638 0.000 1.000 0.000 0.000
#> GSM153458     2  0.0524     0.7602 0.000 0.988 0.008 0.004
#> GSM153459     2  0.0188     0.7629 0.000 0.996 0.000 0.004
#> GSM153460     2  0.0188     0.7629 0.000 0.996 0.000 0.004
#> GSM153461     2  0.3007     0.7358 0.060 0.900 0.028 0.012
#> GSM153463     1  0.4380     0.2928 0.800 0.032 0.004 0.164
#> GSM153464     2  0.3024     0.7603 0.148 0.852 0.000 0.000
#> GSM153466     1  0.4994    -0.3136 0.520 0.480 0.000 0.000
#> GSM153467     2  0.3311     0.7535 0.172 0.828 0.000 0.000
#> GSM153468     1  0.4961    -0.2251 0.552 0.448 0.000 0.000
#> GSM153469     2  0.4454     0.6626 0.308 0.692 0.000 0.000
#> GSM153470     2  0.4933     0.4875 0.432 0.568 0.000 0.000
#> GSM153471     2  0.4820     0.6630 0.296 0.692 0.000 0.012
#> GSM153472     1  0.2216     0.4233 0.908 0.000 0.000 0.092
#> GSM153473     1  0.4228     0.1027 0.760 0.008 0.000 0.232
#> GSM153474     4  0.4661     0.7458 0.348 0.000 0.000 0.652
#> GSM153475     1  0.3335     0.4817 0.856 0.128 0.000 0.016
#> GSM153476     1  0.5838    -0.2754 0.528 0.444 0.024 0.004
#> GSM153478     1  0.1584     0.4738 0.952 0.012 0.000 0.036
#> GSM153480     2  0.2760     0.7637 0.128 0.872 0.000 0.000
#> GSM153486     2  0.3074     0.7595 0.152 0.848 0.000 0.000
#> GSM153487     1  0.3123     0.3517 0.844 0.000 0.000 0.156
#> GSM153499     1  0.5495     0.4144 0.728 0.176 0.000 0.096
#> GSM153504     1  0.4977    -0.5968 0.540 0.000 0.000 0.460
#> GSM153507     1  0.3634     0.4533 0.856 0.048 0.000 0.096
#> GSM153404     3  0.1211     0.9261 0.000 0.040 0.960 0.000
#> GSM153407     2  0.6681     0.0376 0.052 0.516 0.416 0.016
#> GSM153408     3  0.1211     0.9261 0.000 0.040 0.960 0.000
#> GSM153410     3  0.1211     0.9261 0.000 0.040 0.960 0.000
#> GSM153411     3  0.1118     0.9100 0.000 0.000 0.964 0.036
#> GSM153412     3  0.1211     0.9261 0.000 0.040 0.960 0.000
#> GSM153413     3  0.1118     0.9257 0.000 0.036 0.964 0.000
#> GSM153414     2  0.1985     0.7461 0.020 0.944 0.024 0.012
#> GSM153415     3  0.1211     0.9261 0.000 0.040 0.960 0.000
#> GSM153416     2  0.0000     0.7638 0.000 1.000 0.000 0.000
#> GSM153417     3  0.1118     0.9100 0.000 0.000 0.964 0.036
#> GSM153418     3  0.1211     0.9261 0.000 0.040 0.960 0.000
#> GSM153420     3  0.1118     0.9100 0.000 0.000 0.964 0.036
#> GSM153421     3  0.1118     0.9100 0.000 0.000 0.964 0.036
#> GSM153422     3  0.1118     0.9100 0.000 0.000 0.964 0.036
#> GSM153424     2  0.5085     0.6143 0.204 0.752 0.028 0.016
#> GSM153430     1  0.4993     0.4272 0.756 0.204 0.020 0.020
#> GSM153432     2  0.4661     0.6201 0.348 0.652 0.000 0.000
#> GSM153434     1  0.5623    -0.0595 0.564 0.416 0.008 0.012
#> GSM153435     2  0.3569     0.7423 0.196 0.804 0.000 0.000
#> GSM153436     2  0.5961     0.0903 0.424 0.544 0.012 0.020
#> GSM153437     2  0.1302     0.7680 0.044 0.956 0.000 0.000
#> GSM153439     2  0.4855     0.5492 0.400 0.600 0.000 0.000
#> GSM153441     2  0.4855     0.5576 0.400 0.600 0.000 0.000
#> GSM153442     1  0.5236    -0.1958 0.560 0.432 0.000 0.008
#> GSM153443     2  0.3907     0.7225 0.232 0.768 0.000 0.000
#> GSM153445     2  0.3172     0.7574 0.160 0.840 0.000 0.000
#> GSM153446     2  0.2921     0.7621 0.140 0.860 0.000 0.000
#> GSM153449     1  0.1936     0.4823 0.940 0.032 0.000 0.028
#> GSM153453     1  0.2918     0.3980 0.876 0.008 0.000 0.116
#> GSM153454     1  0.4961    -0.6020 0.552 0.000 0.000 0.448
#> GSM153455     1  0.4500     0.2284 0.684 0.316 0.000 0.000
#> GSM153462     2  0.3801     0.7298 0.220 0.780 0.000 0.000
#> GSM153465     2  0.3764     0.7341 0.216 0.784 0.000 0.000
#> GSM153481     2  0.3074     0.7596 0.152 0.848 0.000 0.000
#> GSM153482     1  0.2675     0.4143 0.892 0.008 0.000 0.100
#> GSM153483     1  0.5404    -0.2975 0.512 0.476 0.000 0.012
#> GSM153485     1  0.2654     0.4836 0.888 0.108 0.000 0.004
#> GSM153489     1  0.1256     0.4714 0.964 0.008 0.000 0.028
#> GSM153490     1  0.4605    -0.2653 0.664 0.000 0.000 0.336
#> GSM153491     1  0.2831     0.3864 0.876 0.004 0.000 0.120
#> GSM153492     1  0.4661    -0.2877 0.652 0.000 0.000 0.348
#> GSM153493     1  0.4999    -0.6924 0.508 0.000 0.000 0.492
#> GSM153494     1  0.4992    -0.2876 0.524 0.476 0.000 0.000
#> GSM153495     1  0.3873     0.1462 0.772 0.000 0.000 0.228
#> GSM153498     1  0.2589     0.4704 0.912 0.044 0.000 0.044
#> GSM153501     4  0.4855     0.7576 0.400 0.000 0.000 0.600
#> GSM153502     1  0.3610     0.2208 0.800 0.000 0.000 0.200
#> GSM153505     4  0.4999     0.6439 0.492 0.000 0.000 0.508
#> GSM153506     2  0.5685     0.3642 0.460 0.516 0.000 0.024

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     3  0.1270    0.94277 0.000 0.052 0.948 0.000 0.000
#> GSM153406     3  0.1270    0.94277 0.000 0.052 0.948 0.000 0.000
#> GSM153419     3  0.0703    0.93287 0.000 0.024 0.976 0.000 0.000
#> GSM153423     2  0.1282    0.68304 0.044 0.952 0.000 0.000 0.004
#> GSM153425     3  0.1965    0.90898 0.024 0.000 0.924 0.000 0.052
#> GSM153427     2  0.1299    0.67068 0.008 0.960 0.020 0.000 0.012
#> GSM153428     2  0.4714    0.52488 0.148 0.772 0.008 0.044 0.028
#> GSM153429     1  0.4025    0.57522 0.748 0.232 0.000 0.012 0.008
#> GSM153433     1  0.5140   -0.19918 0.524 0.008 0.000 0.444 0.024
#> GSM153444     2  0.0613    0.68354 0.008 0.984 0.004 0.000 0.004
#> GSM153448     1  0.4422    0.45262 0.664 0.320 0.000 0.004 0.012
#> GSM153451     2  0.0794    0.68945 0.028 0.972 0.000 0.000 0.000
#> GSM153452     2  0.0771    0.67742 0.000 0.976 0.020 0.000 0.004
#> GSM153477     1  0.4552    0.46460 0.668 0.308 0.000 0.004 0.020
#> GSM153479     1  0.4001    0.60445 0.768 0.204 0.000 0.020 0.008
#> GSM153484     1  0.3373    0.62710 0.816 0.168 0.000 0.008 0.008
#> GSM153488     1  0.3963    0.37651 0.732 0.004 0.000 0.256 0.008
#> GSM153496     4  0.4630    0.45310 0.396 0.000 0.000 0.588 0.016
#> GSM153497     2  0.4288    0.32114 0.384 0.612 0.000 0.000 0.004
#> GSM153500     4  0.3877    0.36974 0.024 0.000 0.000 0.764 0.212
#> GSM153503     4  0.4219    0.50554 0.072 0.000 0.000 0.772 0.156
#> GSM153508     5  0.1965    0.00000 0.000 0.000 0.000 0.096 0.904
#> GSM153409     2  0.0693    0.68065 0.000 0.980 0.008 0.000 0.012
#> GSM153426     2  0.0740    0.67988 0.004 0.980 0.008 0.000 0.008
#> GSM153431     2  0.6962    0.05595 0.376 0.460 0.008 0.132 0.024
#> GSM153438     2  0.0703    0.68963 0.024 0.976 0.000 0.000 0.000
#> GSM153440     2  0.8226    0.02433 0.248 0.436 0.224 0.056 0.036
#> GSM153447     4  0.7850    0.25507 0.328 0.244 0.016 0.376 0.036
#> GSM153450     2  0.1026    0.68873 0.024 0.968 0.004 0.000 0.004
#> GSM153456     2  0.0794    0.68945 0.028 0.972 0.000 0.000 0.000
#> GSM153457     2  0.0794    0.68945 0.028 0.972 0.000 0.000 0.000
#> GSM153458     2  0.0609    0.68947 0.020 0.980 0.000 0.000 0.000
#> GSM153459     2  0.0703    0.68963 0.024 0.976 0.000 0.000 0.000
#> GSM153460     2  0.0794    0.68945 0.028 0.972 0.000 0.000 0.000
#> GSM153461     2  0.3909    0.58264 0.088 0.836 0.008 0.044 0.024
#> GSM153463     4  0.5376    0.55164 0.316 0.020 0.000 0.624 0.040
#> GSM153464     2  0.4574    0.25230 0.412 0.576 0.000 0.000 0.012
#> GSM153466     1  0.3612    0.61987 0.796 0.184 0.000 0.016 0.004
#> GSM153467     2  0.4528    0.17595 0.444 0.548 0.000 0.000 0.008
#> GSM153468     1  0.3548    0.64397 0.836 0.112 0.000 0.044 0.008
#> GSM153469     1  0.4302    0.40798 0.648 0.344 0.000 0.004 0.004
#> GSM153470     1  0.4173    0.58039 0.748 0.224 0.000 0.012 0.016
#> GSM153471     1  0.5133    0.27313 0.580 0.384 0.000 0.012 0.024
#> GSM153472     4  0.4561    0.26479 0.488 0.000 0.000 0.504 0.008
#> GSM153473     4  0.4475    0.60308 0.276 0.000 0.000 0.692 0.032
#> GSM153474     4  0.4227    0.18787 0.016 0.000 0.000 0.692 0.292
#> GSM153475     1  0.3982    0.49199 0.772 0.016 0.000 0.200 0.012
#> GSM153476     1  0.4001    0.63110 0.804 0.144 0.008 0.040 0.004
#> GSM153478     1  0.4446    0.00252 0.592 0.000 0.000 0.400 0.008
#> GSM153480     2  0.4517    0.29839 0.388 0.600 0.000 0.000 0.012
#> GSM153486     2  0.4489    0.24552 0.420 0.572 0.000 0.000 0.008
#> GSM153487     1  0.4953   -0.15305 0.532 0.000 0.000 0.440 0.028
#> GSM153499     1  0.5490    0.56619 0.708 0.088 0.000 0.164 0.040
#> GSM153504     4  0.4891    0.58602 0.172 0.000 0.000 0.716 0.112
#> GSM153507     1  0.4337    0.30424 0.696 0.004 0.000 0.284 0.016
#> GSM153404     3  0.1270    0.94277 0.000 0.052 0.948 0.000 0.000
#> GSM153407     2  0.6837    0.23803 0.108 0.604 0.224 0.032 0.032
#> GSM153408     3  0.1270    0.94277 0.000 0.052 0.948 0.000 0.000
#> GSM153410     3  0.1270    0.94277 0.000 0.052 0.948 0.000 0.000
#> GSM153411     3  0.1965    0.90898 0.024 0.000 0.924 0.000 0.052
#> GSM153412     3  0.1270    0.94277 0.000 0.052 0.948 0.000 0.000
#> GSM153413     3  0.1270    0.94277 0.000 0.052 0.948 0.000 0.000
#> GSM153414     2  0.2311    0.64688 0.040 0.920 0.004 0.016 0.020
#> GSM153415     3  0.1270    0.94277 0.000 0.052 0.948 0.000 0.000
#> GSM153416     2  0.0794    0.68903 0.028 0.972 0.000 0.000 0.000
#> GSM153417     3  0.1965    0.90898 0.024 0.000 0.924 0.000 0.052
#> GSM153418     3  0.1270    0.94277 0.000 0.052 0.948 0.000 0.000
#> GSM153420     3  0.1965    0.90898 0.024 0.000 0.924 0.000 0.052
#> GSM153421     3  0.1965    0.90898 0.024 0.000 0.924 0.000 0.052
#> GSM153422     3  0.1965    0.90898 0.024 0.000 0.924 0.000 0.052
#> GSM153424     2  0.5386    0.44734 0.216 0.696 0.004 0.056 0.028
#> GSM153430     1  0.6735   -0.02463 0.516 0.144 0.000 0.312 0.028
#> GSM153432     1  0.4262    0.50092 0.696 0.288 0.000 0.012 0.004
#> GSM153434     1  0.5376    0.53724 0.708 0.140 0.000 0.132 0.020
#> GSM153435     2  0.4706    0.03495 0.488 0.500 0.000 0.004 0.008
#> GSM153436     2  0.6098    0.22813 0.328 0.560 0.000 0.096 0.016
#> GSM153437     2  0.3266    0.56437 0.200 0.796 0.000 0.000 0.004
#> GSM153439     1  0.3756    0.56093 0.744 0.248 0.000 0.000 0.008
#> GSM153441     1  0.4751    0.53598 0.692 0.264 0.000 0.036 0.008
#> GSM153442     1  0.4058    0.62715 0.796 0.144 0.000 0.052 0.008
#> GSM153443     2  0.4562    0.03117 0.492 0.500 0.000 0.000 0.008
#> GSM153445     2  0.4522    0.19076 0.440 0.552 0.000 0.000 0.008
#> GSM153446     2  0.4288    0.31450 0.384 0.612 0.000 0.000 0.004
#> GSM153449     1  0.4403    0.13521 0.648 0.004 0.000 0.340 0.008
#> GSM153453     1  0.4420   -0.20526 0.548 0.000 0.000 0.448 0.004
#> GSM153454     4  0.2989    0.53883 0.060 0.000 0.000 0.868 0.072
#> GSM153455     1  0.4141    0.60029 0.800 0.088 0.000 0.104 0.008
#> GSM153462     1  0.4560   -0.02817 0.508 0.484 0.000 0.000 0.008
#> GSM153465     1  0.4434    0.15353 0.536 0.460 0.000 0.000 0.004
#> GSM153481     2  0.4497    0.22503 0.424 0.568 0.000 0.000 0.008
#> GSM153482     1  0.4668    0.17186 0.624 0.000 0.000 0.352 0.024
#> GSM153483     1  0.3989    0.61914 0.784 0.180 0.000 0.024 0.012
#> GSM153485     1  0.3734    0.50966 0.796 0.036 0.000 0.168 0.000
#> GSM153489     1  0.4313    0.11167 0.636 0.000 0.000 0.356 0.008
#> GSM153490     4  0.3804    0.60137 0.160 0.000 0.000 0.796 0.044
#> GSM153491     4  0.4562    0.30449 0.492 0.000 0.000 0.500 0.008
#> GSM153492     4  0.4734    0.61172 0.188 0.000 0.000 0.724 0.088
#> GSM153493     4  0.3459    0.49882 0.052 0.000 0.000 0.832 0.116
#> GSM153494     1  0.3982    0.60653 0.772 0.200 0.000 0.016 0.012
#> GSM153495     4  0.3999    0.60854 0.240 0.000 0.000 0.740 0.020
#> GSM153498     1  0.4179    0.46620 0.756 0.016 0.000 0.212 0.016
#> GSM153501     4  0.3835    0.27487 0.008 0.000 0.000 0.732 0.260
#> GSM153502     4  0.4152    0.60579 0.296 0.000 0.000 0.692 0.012
#> GSM153505     4  0.3608    0.47730 0.040 0.000 0.000 0.812 0.148
#> GSM153506     1  0.4792    0.56576 0.720 0.224 0.000 0.024 0.032

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     3  0.1082    0.92432 0.000 0.040 0.956 0.004 0.000 0.000
#> GSM153406     3  0.1075    0.92643 0.000 0.048 0.952 0.000 0.000 0.000
#> GSM153419     3  0.0547    0.91834 0.000 0.020 0.980 0.000 0.000 0.000
#> GSM153423     2  0.1555    0.68324 0.040 0.940 0.000 0.008 0.000 0.012
#> GSM153425     3  0.2730    0.88121 0.008 0.000 0.884 0.060 0.012 0.036
#> GSM153427     2  0.2508    0.66297 0.012 0.900 0.036 0.040 0.000 0.012
#> GSM153428     2  0.5732    0.44342 0.096 0.620 0.032 0.240 0.000 0.012
#> GSM153429     1  0.3160    0.65625 0.840 0.104 0.000 0.048 0.000 0.008
#> GSM153433     4  0.4564    0.50935 0.264 0.012 0.000 0.680 0.040 0.004
#> GSM153444     2  0.2127    0.67785 0.016 0.920 0.024 0.032 0.000 0.008
#> GSM153448     1  0.3660    0.66242 0.772 0.188 0.000 0.036 0.000 0.004
#> GSM153451     2  0.1116    0.68569 0.028 0.960 0.000 0.004 0.000 0.008
#> GSM153452     2  0.1983    0.67587 0.012 0.924 0.044 0.012 0.000 0.008
#> GSM153477     1  0.3985    0.65716 0.764 0.180 0.000 0.024 0.000 0.032
#> GSM153479     1  0.3431    0.64732 0.840 0.080 0.000 0.056 0.016 0.008
#> GSM153484     1  0.2647    0.65079 0.868 0.088 0.000 0.044 0.000 0.000
#> GSM153488     1  0.4480   -0.10534 0.620 0.004 0.000 0.348 0.020 0.008
#> GSM153496     4  0.5798    0.53924 0.268 0.000 0.000 0.568 0.140 0.024
#> GSM153497     2  0.4569   -0.19088 0.456 0.516 0.000 0.016 0.000 0.012
#> GSM153500     5  0.3453    0.70372 0.000 0.000 0.000 0.164 0.792 0.044
#> GSM153503     5  0.4822    0.69338 0.032 0.000 0.000 0.224 0.688 0.056
#> GSM153508     6  0.2234    0.00000 0.000 0.000 0.000 0.004 0.124 0.872
#> GSM153409     2  0.1586    0.68583 0.004 0.940 0.012 0.040 0.000 0.004
#> GSM153426     2  0.1608    0.68514 0.004 0.940 0.016 0.036 0.000 0.004
#> GSM153431     2  0.7356   -0.04692 0.236 0.356 0.016 0.344 0.032 0.016
#> GSM153438     2  0.0363    0.69229 0.012 0.988 0.000 0.000 0.000 0.000
#> GSM153440     2  0.7360    0.22637 0.152 0.448 0.108 0.272 0.000 0.020
#> GSM153447     4  0.6796    0.23065 0.132 0.196 0.020 0.576 0.060 0.016
#> GSM153450     2  0.1621    0.69113 0.020 0.944 0.008 0.016 0.000 0.012
#> GSM153456     2  0.0767    0.69014 0.012 0.976 0.000 0.004 0.000 0.008
#> GSM153457     2  0.1116    0.68569 0.028 0.960 0.000 0.004 0.000 0.008
#> GSM153458     2  0.0653    0.69251 0.012 0.980 0.004 0.000 0.000 0.004
#> GSM153459     2  0.0508    0.69254 0.012 0.984 0.000 0.000 0.000 0.004
#> GSM153460     2  0.0717    0.69040 0.016 0.976 0.000 0.000 0.000 0.008
#> GSM153461     2  0.4815    0.52060 0.044 0.700 0.024 0.220 0.000 0.012
#> GSM153463     4  0.4880    0.33533 0.124 0.016 0.000 0.708 0.148 0.004
#> GSM153464     1  0.4500    0.20848 0.488 0.488 0.000 0.012 0.000 0.012
#> GSM153466     1  0.2448    0.63281 0.884 0.064 0.000 0.052 0.000 0.000
#> GSM153467     1  0.4344    0.38451 0.568 0.412 0.000 0.012 0.000 0.008
#> GSM153468     1  0.2706    0.62391 0.876 0.060 0.000 0.056 0.000 0.008
#> GSM153469     1  0.4109    0.65419 0.736 0.212 0.000 0.040 0.000 0.012
#> GSM153470     1  0.3046    0.66292 0.848 0.112 0.000 0.028 0.004 0.008
#> GSM153471     1  0.4568    0.61656 0.704 0.232 0.000 0.028 0.004 0.032
#> GSM153472     4  0.5952    0.53005 0.320 0.000 0.000 0.524 0.128 0.028
#> GSM153473     4  0.6053    0.39838 0.164 0.008 0.000 0.600 0.188 0.040
#> GSM153474     5  0.2833    0.54515 0.012 0.000 0.000 0.024 0.860 0.104
#> GSM153475     1  0.4714    0.20942 0.676 0.008 0.000 0.264 0.024 0.028
#> GSM153476     1  0.4840    0.46042 0.704 0.076 0.008 0.196 0.000 0.016
#> GSM153478     4  0.4851    0.53281 0.372 0.004 0.000 0.580 0.032 0.012
#> GSM153480     2  0.4546   -0.13281 0.432 0.540 0.000 0.016 0.000 0.012
#> GSM153486     2  0.4987   -0.26141 0.468 0.480 0.000 0.036 0.000 0.016
#> GSM153487     4  0.6234    0.52393 0.352 0.000 0.000 0.476 0.132 0.040
#> GSM153499     1  0.4260    0.49444 0.784 0.024 0.000 0.128 0.028 0.036
#> GSM153504     4  0.6308   -0.20484 0.084 0.000 0.000 0.452 0.388 0.076
#> GSM153507     1  0.5203   -0.10871 0.588 0.000 0.000 0.332 0.052 0.028
#> GSM153404     3  0.1075    0.92643 0.000 0.048 0.952 0.000 0.000 0.000
#> GSM153407     2  0.6427    0.36265 0.056 0.572 0.136 0.220 0.000 0.016
#> GSM153408     3  0.1075    0.92643 0.000 0.048 0.952 0.000 0.000 0.000
#> GSM153410     3  0.1075    0.92643 0.000 0.048 0.952 0.000 0.000 0.000
#> GSM153411     3  0.2730    0.88121 0.008 0.000 0.884 0.060 0.012 0.036
#> GSM153412     3  0.1075    0.92643 0.000 0.048 0.952 0.000 0.000 0.000
#> GSM153413     3  0.1075    0.92643 0.000 0.048 0.952 0.000 0.000 0.000
#> GSM153414     2  0.3825    0.60540 0.028 0.804 0.024 0.132 0.000 0.012
#> GSM153415     3  0.1075    0.92643 0.000 0.048 0.952 0.000 0.000 0.000
#> GSM153416     2  0.1152    0.68564 0.044 0.952 0.000 0.000 0.000 0.004
#> GSM153417     3  0.2730    0.88121 0.008 0.000 0.884 0.060 0.012 0.036
#> GSM153418     3  0.1075    0.92643 0.000 0.048 0.952 0.000 0.000 0.000
#> GSM153420     3  0.2730    0.88121 0.008 0.000 0.884 0.060 0.012 0.036
#> GSM153421     3  0.2730    0.88121 0.008 0.000 0.884 0.060 0.012 0.036
#> GSM153422     3  0.2730    0.88121 0.008 0.000 0.884 0.060 0.012 0.036
#> GSM153424     2  0.6239    0.36595 0.156 0.556 0.016 0.252 0.004 0.016
#> GSM153430     4  0.5876    0.45183 0.264 0.096 0.000 0.596 0.020 0.024
#> GSM153432     1  0.3610    0.66381 0.792 0.152 0.000 0.052 0.000 0.004
#> GSM153434     1  0.5633   -0.16264 0.460 0.084 0.004 0.440 0.004 0.008
#> GSM153435     1  0.4253    0.38004 0.572 0.412 0.000 0.008 0.000 0.008
#> GSM153436     2  0.6706    0.05559 0.204 0.436 0.008 0.324 0.004 0.024
#> GSM153437     2  0.3859    0.30358 0.292 0.692 0.000 0.008 0.000 0.008
#> GSM153439     1  0.2894    0.65899 0.852 0.108 0.000 0.036 0.000 0.004
#> GSM153441     1  0.4291    0.65478 0.756 0.152 0.000 0.076 0.004 0.012
#> GSM153442     1  0.3413    0.57714 0.820 0.048 0.000 0.124 0.004 0.004
#> GSM153443     1  0.4376    0.42943 0.592 0.384 0.000 0.012 0.000 0.012
#> GSM153445     1  0.4551    0.33673 0.536 0.436 0.000 0.016 0.000 0.012
#> GSM153446     2  0.4496   -0.21177 0.468 0.508 0.000 0.012 0.000 0.012
#> GSM153449     4  0.5237    0.52959 0.408 0.004 0.000 0.524 0.048 0.016
#> GSM153453     4  0.5775    0.53376 0.416 0.000 0.000 0.472 0.076 0.036
#> GSM153454     5  0.4507    0.59978 0.020 0.000 0.000 0.372 0.596 0.012
#> GSM153455     1  0.4663    0.27956 0.688 0.028 0.000 0.248 0.004 0.032
#> GSM153462     1  0.4212    0.41402 0.592 0.392 0.000 0.008 0.000 0.008
#> GSM153465     1  0.4768    0.54300 0.628 0.312 0.000 0.048 0.000 0.012
#> GSM153481     1  0.4400    0.29871 0.524 0.456 0.000 0.012 0.000 0.008
#> GSM153482     1  0.5620   -0.40085 0.492 0.000 0.000 0.396 0.096 0.016
#> GSM153483     1  0.3520    0.64352 0.840 0.076 0.000 0.048 0.012 0.024
#> GSM153485     1  0.5280    0.03077 0.612 0.012 0.000 0.308 0.036 0.032
#> GSM153489     4  0.5703    0.45900 0.436 0.004 0.000 0.468 0.052 0.040
#> GSM153490     5  0.5308    0.42947 0.076 0.000 0.000 0.376 0.536 0.012
#> GSM153491     4  0.6040    0.53597 0.360 0.000 0.000 0.484 0.128 0.028
#> GSM153492     4  0.6195   -0.11105 0.084 0.000 0.000 0.484 0.364 0.068
#> GSM153493     5  0.3771    0.64563 0.032 0.000 0.000 0.164 0.784 0.020
#> GSM153494     1  0.2903    0.63368 0.868 0.068 0.000 0.052 0.008 0.004
#> GSM153495     4  0.5558    0.21380 0.120 0.000 0.000 0.592 0.268 0.020
#> GSM153498     1  0.5913    0.00104 0.576 0.024 0.000 0.304 0.056 0.040
#> GSM153501     5  0.3307    0.67635 0.000 0.000 0.000 0.108 0.820 0.072
#> GSM153502     4  0.6078    0.24094 0.160 0.000 0.000 0.540 0.268 0.032
#> GSM153505     5  0.3328    0.71865 0.012 0.000 0.000 0.192 0.788 0.008
#> GSM153506     1  0.4682    0.63764 0.752 0.140 0.000 0.048 0.016 0.044

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> CV:kmeans  60           0.2393 2
#> CV:kmeans 101           0.0451 3
#> CV:kmeans  60           0.0249 4
#> CV:kmeans  62           0.0105 5
#> CV:kmeans  66           0.0171 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.275           0.605       0.818         0.5009 0.499   0.499
#> 3 3 0.437           0.655       0.828         0.3333 0.698   0.467
#> 4 4 0.374           0.432       0.672         0.1220 0.873   0.645
#> 5 5 0.405           0.358       0.588         0.0643 0.918   0.712
#> 6 6 0.449           0.288       0.546         0.0388 0.949   0.781

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     2  0.6623      0.692 0.172 0.828
#> GSM153406     2  0.0000      0.750 0.000 1.000
#> GSM153419     2  0.8207      0.639 0.256 0.744
#> GSM153423     2  0.2778      0.723 0.048 0.952
#> GSM153425     2  0.9129      0.576 0.328 0.672
#> GSM153427     2  0.0000      0.750 0.000 1.000
#> GSM153428     2  0.8443      0.627 0.272 0.728
#> GSM153429     2  0.9988     -0.265 0.480 0.520
#> GSM153433     1  0.8267      0.434 0.740 0.260
#> GSM153444     2  0.0000      0.750 0.000 1.000
#> GSM153448     1  0.9977      0.289 0.528 0.472
#> GSM153451     2  0.1843      0.736 0.028 0.972
#> GSM153452     2  0.2236      0.746 0.036 0.964
#> GSM153477     1  0.9580      0.557 0.620 0.380
#> GSM153479     1  0.8144      0.682 0.748 0.252
#> GSM153484     1  0.8555      0.662 0.720 0.280
#> GSM153488     1  0.4161      0.753 0.916 0.084
#> GSM153496     1  0.0000      0.751 1.000 0.000
#> GSM153497     2  0.9996     -0.326 0.488 0.512
#> GSM153500     1  0.0000      0.751 1.000 0.000
#> GSM153503     1  0.0000      0.751 1.000 0.000
#> GSM153508     1  0.0000      0.751 1.000 0.000
#> GSM153409     2  0.0000      0.750 0.000 1.000
#> GSM153426     2  0.0000      0.750 0.000 1.000
#> GSM153431     2  0.9491      0.493 0.368 0.632
#> GSM153438     2  0.0000      0.750 0.000 1.000
#> GSM153440     2  0.9044      0.585 0.320 0.680
#> GSM153447     2  0.9795      0.465 0.416 0.584
#> GSM153450     2  0.0000      0.750 0.000 1.000
#> GSM153456     2  0.0000      0.750 0.000 1.000
#> GSM153457     2  0.0376      0.748 0.004 0.996
#> GSM153458     2  0.0000      0.750 0.000 1.000
#> GSM153459     2  0.0000      0.750 0.000 1.000
#> GSM153460     2  0.0000      0.750 0.000 1.000
#> GSM153461     2  0.2423      0.745 0.040 0.960
#> GSM153463     1  0.9170      0.241 0.668 0.332
#> GSM153464     1  0.9944      0.435 0.544 0.456
#> GSM153466     1  0.7299      0.708 0.796 0.204
#> GSM153467     1  0.9460      0.574 0.636 0.364
#> GSM153468     1  0.7139      0.714 0.804 0.196
#> GSM153469     2  0.9998     -0.329 0.492 0.508
#> GSM153470     1  0.9129      0.608 0.672 0.328
#> GSM153471     1  0.9323      0.587 0.652 0.348
#> GSM153472     1  0.0000      0.751 1.000 0.000
#> GSM153473     1  0.3584      0.712 0.932 0.068
#> GSM153474     1  0.0000      0.751 1.000 0.000
#> GSM153475     1  0.4431      0.750 0.908 0.092
#> GSM153476     2  0.9358      0.278 0.352 0.648
#> GSM153478     1  0.3274      0.721 0.940 0.060
#> GSM153480     2  0.9170      0.225 0.332 0.668
#> GSM153486     1  0.9993      0.363 0.516 0.484
#> GSM153487     1  0.2043      0.755 0.968 0.032
#> GSM153499     1  0.6801      0.720 0.820 0.180
#> GSM153504     1  0.0000      0.751 1.000 0.000
#> GSM153507     1  0.0376      0.751 0.996 0.004
#> GSM153404     2  0.0000      0.750 0.000 1.000
#> GSM153407     2  0.8499      0.624 0.276 0.724
#> GSM153408     2  0.0672      0.750 0.008 0.992
#> GSM153410     2  0.0000      0.750 0.000 1.000
#> GSM153411     2  0.9323      0.554 0.348 0.652
#> GSM153412     2  0.0000      0.750 0.000 1.000
#> GSM153413     2  0.6712      0.690 0.176 0.824
#> GSM153414     2  0.4690      0.725 0.100 0.900
#> GSM153415     2  0.1184      0.749 0.016 0.984
#> GSM153416     2  0.6343      0.604 0.160 0.840
#> GSM153417     2  0.9286      0.559 0.344 0.656
#> GSM153418     2  0.0000      0.750 0.000 1.000
#> GSM153420     2  0.9286      0.559 0.344 0.656
#> GSM153421     2  0.9286      0.559 0.344 0.656
#> GSM153422     2  0.9323      0.554 0.348 0.652
#> GSM153424     2  0.9248      0.566 0.340 0.660
#> GSM153430     1  0.8955      0.312 0.688 0.312
#> GSM153432     1  0.9977      0.409 0.528 0.472
#> GSM153434     1  0.9393      0.218 0.644 0.356
#> GSM153435     1  0.9909      0.463 0.556 0.444
#> GSM153436     2  0.9608      0.511 0.384 0.616
#> GSM153437     2  0.4298      0.688 0.088 0.912
#> GSM153439     1  0.9983      0.395 0.524 0.476
#> GSM153441     1  0.9209      0.563 0.664 0.336
#> GSM153442     1  0.4161      0.753 0.916 0.084
#> GSM153443     1  0.9552      0.560 0.624 0.376
#> GSM153445     1  0.9710      0.531 0.600 0.400
#> GSM153446     2  0.9170      0.227 0.332 0.668
#> GSM153449     1  0.5519      0.661 0.872 0.128
#> GSM153453     1  0.0000      0.751 1.000 0.000
#> GSM153454     1  0.0000      0.751 1.000 0.000
#> GSM153455     1  0.8207      0.620 0.744 0.256
#> GSM153462     1  0.9710      0.531 0.600 0.400
#> GSM153465     2  0.9866     -0.135 0.432 0.568
#> GSM153481     1  0.9977      0.404 0.528 0.472
#> GSM153482     1  0.2948      0.756 0.948 0.052
#> GSM153483     1  0.8763      0.640 0.704 0.296
#> GSM153485     1  0.5842      0.728 0.860 0.140
#> GSM153489     1  0.3114      0.755 0.944 0.056
#> GSM153490     1  0.0376      0.750 0.996 0.004
#> GSM153491     1  0.0000      0.751 1.000 0.000
#> GSM153492     1  0.0000      0.751 1.000 0.000
#> GSM153493     1  0.0000      0.751 1.000 0.000
#> GSM153494     1  0.8144      0.677 0.748 0.252
#> GSM153495     1  0.0000      0.751 1.000 0.000
#> GSM153498     1  0.5946      0.736 0.856 0.144
#> GSM153501     1  0.0000      0.751 1.000 0.000
#> GSM153502     1  0.0000      0.751 1.000 0.000
#> GSM153505     1  0.0000      0.751 1.000 0.000
#> GSM153506     1  0.8955      0.624 0.688 0.312

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     3  0.0000    0.85086 0.000 0.000 1.000
#> GSM153406     3  0.0424    0.85023 0.000 0.008 0.992
#> GSM153419     3  0.0237    0.85118 0.000 0.004 0.996
#> GSM153423     2  0.3030    0.77709 0.004 0.904 0.092
#> GSM153425     3  0.0000    0.85086 0.000 0.000 1.000
#> GSM153427     3  0.2878    0.79803 0.000 0.096 0.904
#> GSM153428     3  0.3370    0.80767 0.024 0.072 0.904
#> GSM153429     2  0.9989    0.06737 0.328 0.356 0.316
#> GSM153433     1  0.8044    0.45192 0.600 0.088 0.312
#> GSM153444     2  0.6308    0.03224 0.000 0.508 0.492
#> GSM153448     2  0.8460    0.51124 0.264 0.600 0.136
#> GSM153451     2  0.0237    0.78660 0.000 0.996 0.004
#> GSM153452     3  0.5363    0.58106 0.000 0.276 0.724
#> GSM153477     2  0.5024    0.67007 0.220 0.776 0.004
#> GSM153479     1  0.8434    0.37904 0.560 0.336 0.104
#> GSM153484     2  0.7759   -0.02163 0.472 0.480 0.048
#> GSM153488     1  0.7437    0.63573 0.692 0.200 0.108
#> GSM153496     1  0.1878    0.79453 0.952 0.044 0.004
#> GSM153497     2  0.0592    0.78711 0.012 0.988 0.000
#> GSM153500     1  0.0237    0.79866 0.996 0.004 0.000
#> GSM153503     1  0.0000    0.79846 1.000 0.000 0.000
#> GSM153508     1  0.0237    0.79866 0.996 0.004 0.000
#> GSM153409     2  0.5216    0.60429 0.000 0.740 0.260
#> GSM153426     2  0.4654    0.67263 0.000 0.792 0.208
#> GSM153431     3  0.9437    0.29329 0.300 0.208 0.492
#> GSM153438     2  0.1860    0.78909 0.000 0.948 0.052
#> GSM153440     3  0.0475    0.85000 0.004 0.004 0.992
#> GSM153447     3  0.5008    0.70560 0.180 0.016 0.804
#> GSM153450     2  0.5760    0.50339 0.000 0.672 0.328
#> GSM153456     2  0.0892    0.78802 0.000 0.980 0.020
#> GSM153457     2  0.0237    0.78657 0.000 0.996 0.004
#> GSM153458     2  0.3340    0.75405 0.000 0.880 0.120
#> GSM153459     2  0.2625    0.77546 0.000 0.916 0.084
#> GSM153460     2  0.1529    0.78806 0.000 0.960 0.040
#> GSM153461     3  0.6053    0.60194 0.020 0.260 0.720
#> GSM153463     1  0.6205    0.46443 0.656 0.008 0.336
#> GSM153464     2  0.0424    0.78719 0.008 0.992 0.000
#> GSM153466     1  0.7245    0.39199 0.596 0.368 0.036
#> GSM153467     2  0.3482    0.75536 0.128 0.872 0.000
#> GSM153468     1  0.6924    0.31904 0.580 0.400 0.020
#> GSM153469     2  0.7412    0.64612 0.192 0.696 0.112
#> GSM153470     2  0.6587    0.43970 0.352 0.632 0.016
#> GSM153471     2  0.4235    0.71431 0.176 0.824 0.000
#> GSM153472     1  0.0747    0.79964 0.984 0.016 0.000
#> GSM153473     1  0.3349    0.76430 0.888 0.004 0.108
#> GSM153474     1  0.0237    0.79866 0.996 0.004 0.000
#> GSM153475     1  0.5955    0.70539 0.772 0.180 0.048
#> GSM153476     3  0.9517    0.28289 0.280 0.232 0.488
#> GSM153478     1  0.5947    0.70751 0.776 0.052 0.172
#> GSM153480     2  0.0000    0.78583 0.000 1.000 0.000
#> GSM153486     2  0.2945    0.77268 0.088 0.908 0.004
#> GSM153487     1  0.1529    0.79601 0.960 0.040 0.000
#> GSM153499     1  0.4978    0.67793 0.780 0.216 0.004
#> GSM153504     1  0.0000    0.79846 1.000 0.000 0.000
#> GSM153507     1  0.2878    0.77604 0.904 0.096 0.000
#> GSM153404     3  0.0237    0.85118 0.000 0.004 0.996
#> GSM153407     3  0.0000    0.85086 0.000 0.000 1.000
#> GSM153408     3  0.0237    0.85118 0.000 0.004 0.996
#> GSM153410     3  0.0747    0.84700 0.000 0.016 0.984
#> GSM153411     3  0.0237    0.85053 0.004 0.000 0.996
#> GSM153412     3  0.0424    0.85010 0.000 0.008 0.992
#> GSM153413     3  0.0237    0.85118 0.000 0.004 0.996
#> GSM153414     3  0.7471    0.12238 0.036 0.448 0.516
#> GSM153415     3  0.0237    0.85118 0.000 0.004 0.996
#> GSM153416     2  0.4708    0.75834 0.036 0.844 0.120
#> GSM153417     3  0.0237    0.85053 0.004 0.000 0.996
#> GSM153418     3  0.0237    0.85118 0.000 0.004 0.996
#> GSM153420     3  0.0237    0.85053 0.004 0.000 0.996
#> GSM153421     3  0.0237    0.85053 0.004 0.000 0.996
#> GSM153422     3  0.0237    0.85053 0.004 0.000 0.996
#> GSM153424     3  0.8743    0.46309 0.268 0.156 0.576
#> GSM153430     1  0.9162    0.21035 0.480 0.152 0.368
#> GSM153432     2  0.7843    0.62626 0.192 0.668 0.140
#> GSM153434     3  0.9776   -0.04976 0.380 0.232 0.388
#> GSM153435     2  0.1031    0.78697 0.024 0.976 0.000
#> GSM153436     3  0.9145    0.41872 0.240 0.216 0.544
#> GSM153437     2  0.0424    0.78781 0.000 0.992 0.008
#> GSM153439     2  0.8698    0.41437 0.300 0.564 0.136
#> GSM153441     2  0.9302    0.00662 0.416 0.424 0.160
#> GSM153442     1  0.7749    0.48850 0.616 0.312 0.072
#> GSM153443     2  0.0747    0.78900 0.016 0.984 0.000
#> GSM153445     2  0.0892    0.78855 0.020 0.980 0.000
#> GSM153446     2  0.0983    0.79052 0.016 0.980 0.004
#> GSM153449     1  0.8379    0.56008 0.624 0.168 0.208
#> GSM153453     1  0.0892    0.79955 0.980 0.020 0.000
#> GSM153454     1  0.0237    0.79826 0.996 0.000 0.004
#> GSM153455     1  0.9865    0.08053 0.404 0.332 0.264
#> GSM153462     2  0.3340    0.75680 0.120 0.880 0.000
#> GSM153465     2  0.6703    0.62506 0.236 0.712 0.052
#> GSM153481     2  0.2486    0.78414 0.060 0.932 0.008
#> GSM153482     1  0.2845    0.78598 0.920 0.068 0.012
#> GSM153483     1  0.6410    0.28193 0.576 0.420 0.004
#> GSM153485     1  0.7222    0.63321 0.696 0.220 0.084
#> GSM153489     1  0.5028    0.74640 0.828 0.132 0.040
#> GSM153490     1  0.0475    0.79938 0.992 0.004 0.004
#> GSM153491     1  0.1031    0.79899 0.976 0.024 0.000
#> GSM153492     1  0.0475    0.79900 0.992 0.004 0.004
#> GSM153493     1  0.0000    0.79846 1.000 0.000 0.000
#> GSM153494     1  0.6836    0.30517 0.572 0.412 0.016
#> GSM153495     1  0.0237    0.79920 0.996 0.004 0.000
#> GSM153498     1  0.6929    0.60482 0.688 0.260 0.052
#> GSM153501     1  0.0000    0.79846 1.000 0.000 0.000
#> GSM153502     1  0.0424    0.79974 0.992 0.008 0.000
#> GSM153505     1  0.0000    0.79846 1.000 0.000 0.000
#> GSM153506     2  0.6192    0.25816 0.420 0.580 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     3  0.0817     0.7916 0.000 0.000 0.976 0.024
#> GSM153406     3  0.1929     0.7849 0.000 0.024 0.940 0.036
#> GSM153419     3  0.0469     0.7919 0.000 0.000 0.988 0.012
#> GSM153423     2  0.5173     0.5413 0.044 0.788 0.040 0.128
#> GSM153425     3  0.0657     0.7907 0.004 0.000 0.984 0.012
#> GSM153427     3  0.5413     0.5902 0.004 0.236 0.712 0.048
#> GSM153428     3  0.7936     0.4433 0.064 0.224 0.576 0.136
#> GSM153429     4  0.9667     0.3599 0.188 0.288 0.168 0.356
#> GSM153433     1  0.8730     0.1450 0.468 0.064 0.220 0.248
#> GSM153444     2  0.6654     0.3122 0.000 0.588 0.296 0.116
#> GSM153448     2  0.8853    -0.2560 0.200 0.416 0.064 0.320
#> GSM153451     2  0.2480     0.5862 0.000 0.904 0.008 0.088
#> GSM153452     2  0.6294     0.0804 0.004 0.512 0.436 0.048
#> GSM153477     4  0.7563     0.3118 0.168 0.376 0.004 0.452
#> GSM153479     4  0.9259     0.3625 0.316 0.192 0.104 0.388
#> GSM153484     4  0.8522     0.4144 0.300 0.216 0.040 0.444
#> GSM153488     1  0.8554     0.1702 0.472 0.124 0.084 0.320
#> GSM153496     1  0.5441     0.5880 0.736 0.052 0.012 0.200
#> GSM153497     2  0.4290     0.5255 0.016 0.772 0.000 0.212
#> GSM153500     1  0.2976     0.6272 0.872 0.008 0.000 0.120
#> GSM153503     1  0.2831     0.6270 0.876 0.004 0.000 0.120
#> GSM153508     1  0.3306     0.6165 0.840 0.004 0.000 0.156
#> GSM153409     2  0.6394     0.4450 0.008 0.676 0.156 0.160
#> GSM153426     2  0.5731     0.5060 0.000 0.712 0.116 0.172
#> GSM153431     3  0.9828    -0.2591 0.260 0.176 0.328 0.236
#> GSM153438     2  0.3966     0.5740 0.000 0.840 0.072 0.088
#> GSM153440     3  0.4973     0.7156 0.036 0.072 0.808 0.084
#> GSM153447     3  0.7901     0.3832 0.224 0.044 0.564 0.168
#> GSM153450     2  0.6313     0.3785 0.004 0.644 0.260 0.092
#> GSM153456     2  0.1356     0.5815 0.000 0.960 0.008 0.032
#> GSM153457     2  0.1004     0.5803 0.000 0.972 0.004 0.024
#> GSM153458     2  0.2882     0.5667 0.000 0.892 0.084 0.024
#> GSM153459     2  0.2926     0.5795 0.000 0.896 0.048 0.056
#> GSM153460     2  0.2224     0.5837 0.000 0.928 0.032 0.040
#> GSM153461     3  0.8315    -0.0031 0.032 0.392 0.396 0.180
#> GSM153463     1  0.7386     0.3365 0.572 0.012 0.228 0.188
#> GSM153464     2  0.4295     0.5075 0.008 0.752 0.000 0.240
#> GSM153466     4  0.8192     0.2975 0.348 0.192 0.024 0.436
#> GSM153467     2  0.6568     0.1966 0.096 0.572 0.000 0.332
#> GSM153468     4  0.8622     0.3688 0.328 0.224 0.040 0.408
#> GSM153469     4  0.8695     0.2228 0.124 0.372 0.088 0.416
#> GSM153470     4  0.7966     0.4828 0.232 0.260 0.016 0.492
#> GSM153471     2  0.7372    -0.1247 0.140 0.456 0.004 0.400
#> GSM153472     1  0.4993     0.5805 0.712 0.028 0.000 0.260
#> GSM153473     1  0.6273     0.5499 0.696 0.020 0.096 0.188
#> GSM153474     1  0.2408     0.6249 0.896 0.000 0.000 0.104
#> GSM153475     1  0.8243     0.1025 0.440 0.096 0.072 0.392
#> GSM153476     3  0.9311    -0.1054 0.152 0.140 0.400 0.308
#> GSM153478     1  0.8231     0.2934 0.544 0.068 0.152 0.236
#> GSM153480     2  0.4262     0.5275 0.008 0.756 0.000 0.236
#> GSM153486     2  0.6100     0.3741 0.084 0.644 0.000 0.272
#> GSM153487     1  0.5079     0.5782 0.728 0.032 0.004 0.236
#> GSM153499     1  0.7181     0.1148 0.512 0.152 0.000 0.336
#> GSM153504     1  0.3024     0.6273 0.852 0.000 0.000 0.148
#> GSM153507     1  0.5746     0.4674 0.600 0.028 0.004 0.368
#> GSM153404     3  0.1042     0.7918 0.000 0.008 0.972 0.020
#> GSM153407     3  0.4096     0.7369 0.016 0.084 0.848 0.052
#> GSM153408     3  0.1109     0.7909 0.000 0.004 0.968 0.028
#> GSM153410     3  0.2319     0.7770 0.000 0.036 0.924 0.040
#> GSM153411     3  0.0657     0.7905 0.004 0.000 0.984 0.012
#> GSM153412     3  0.2408     0.7759 0.000 0.036 0.920 0.044
#> GSM153413     3  0.1004     0.7914 0.000 0.004 0.972 0.024
#> GSM153414     2  0.8153     0.1800 0.044 0.504 0.300 0.152
#> GSM153415     3  0.1356     0.7898 0.000 0.008 0.960 0.032
#> GSM153416     2  0.6326     0.4737 0.064 0.692 0.036 0.208
#> GSM153417     3  0.0657     0.7905 0.004 0.000 0.984 0.012
#> GSM153418     3  0.1388     0.7899 0.000 0.012 0.960 0.028
#> GSM153420     3  0.0657     0.7905 0.004 0.000 0.984 0.012
#> GSM153421     3  0.0657     0.7905 0.004 0.000 0.984 0.012
#> GSM153422     3  0.0657     0.7905 0.004 0.000 0.984 0.012
#> GSM153424     3  0.9776    -0.0683 0.196 0.216 0.360 0.228
#> GSM153430     1  0.9307    -0.0187 0.372 0.104 0.200 0.324
#> GSM153432     4  0.8581     0.2924 0.112 0.340 0.092 0.456
#> GSM153434     1  0.9711    -0.1357 0.324 0.144 0.292 0.240
#> GSM153435     2  0.5835     0.3375 0.040 0.588 0.000 0.372
#> GSM153436     3  0.9606    -0.0102 0.204 0.208 0.400 0.188
#> GSM153437     2  0.3443     0.5790 0.000 0.848 0.016 0.136
#> GSM153439     4  0.8904     0.3468 0.160 0.348 0.084 0.408
#> GSM153441     4  0.9889     0.4104 0.252 0.280 0.180 0.288
#> GSM153442     1  0.8770    -0.2546 0.380 0.184 0.060 0.376
#> GSM153443     2  0.6054     0.3049 0.056 0.592 0.000 0.352
#> GSM153445     2  0.6554     0.1475 0.080 0.520 0.000 0.400
#> GSM153446     2  0.4632     0.5215 0.012 0.740 0.004 0.244
#> GSM153449     1  0.8602     0.2322 0.532 0.136 0.124 0.208
#> GSM153453     1  0.4348     0.6024 0.780 0.024 0.000 0.196
#> GSM153454     1  0.2676     0.6223 0.896 0.000 0.012 0.092
#> GSM153455     4  0.9788     0.2599 0.304 0.196 0.184 0.316
#> GSM153462     2  0.6392     0.1893 0.068 0.528 0.000 0.404
#> GSM153465     4  0.7659     0.1418 0.092 0.412 0.036 0.460
#> GSM153481     2  0.6014     0.3785 0.060 0.644 0.004 0.292
#> GSM153482     1  0.5759     0.4981 0.668 0.064 0.000 0.268
#> GSM153483     4  0.7861     0.3804 0.332 0.232 0.004 0.432
#> GSM153485     1  0.8433     0.0314 0.436 0.116 0.072 0.376
#> GSM153489     1  0.7813     0.3142 0.536 0.108 0.048 0.308
#> GSM153490     1  0.3335     0.6297 0.856 0.000 0.016 0.128
#> GSM153491     1  0.5217     0.5865 0.728 0.028 0.012 0.232
#> GSM153492     1  0.2831     0.6292 0.876 0.000 0.004 0.120
#> GSM153493     1  0.2647     0.6261 0.880 0.000 0.000 0.120
#> GSM153494     4  0.7656     0.1661 0.408 0.160 0.008 0.424
#> GSM153495     1  0.3236     0.6240 0.856 0.004 0.004 0.136
#> GSM153498     1  0.8810    -0.0536 0.412 0.128 0.096 0.364
#> GSM153501     1  0.3355     0.6229 0.836 0.004 0.000 0.160
#> GSM153502     1  0.4475     0.6063 0.748 0.008 0.004 0.240
#> GSM153505     1  0.2944     0.6276 0.868 0.004 0.000 0.128
#> GSM153506     4  0.7721     0.4835 0.272 0.280 0.000 0.448

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     3  0.0865     0.7551 0.000 0.004 0.972 0.000 0.024
#> GSM153406     3  0.1653     0.7415 0.024 0.004 0.944 0.000 0.028
#> GSM153419     3  0.0404     0.7551 0.000 0.000 0.988 0.000 0.012
#> GSM153423     2  0.5622     0.5276 0.100 0.736 0.048 0.020 0.096
#> GSM153425     3  0.2011     0.7421 0.000 0.000 0.908 0.004 0.088
#> GSM153427     3  0.5987     0.2780 0.024 0.292 0.600 0.000 0.084
#> GSM153428     3  0.8254    -0.1585 0.040 0.276 0.404 0.044 0.236
#> GSM153429     1  0.9500     0.2368 0.340 0.208 0.096 0.152 0.204
#> GSM153433     5  0.8510     0.1106 0.116 0.048 0.108 0.336 0.392
#> GSM153444     2  0.6908     0.3614 0.064 0.588 0.224 0.008 0.116
#> GSM153448     2  0.9243    -0.2921 0.240 0.328 0.056 0.144 0.232
#> GSM153451     2  0.3058     0.5552 0.096 0.860 0.000 0.000 0.044
#> GSM153452     2  0.6020     0.2864 0.012 0.588 0.304 0.004 0.092
#> GSM153477     1  0.8041     0.3907 0.432 0.280 0.008 0.096 0.184
#> GSM153479     1  0.8761     0.2309 0.388 0.116 0.036 0.256 0.204
#> GSM153484     1  0.8756     0.3073 0.392 0.168 0.024 0.216 0.200
#> GSM153488     4  0.8887     0.1634 0.204 0.096 0.064 0.404 0.232
#> GSM153496     4  0.6740     0.4399 0.144 0.040 0.004 0.580 0.232
#> GSM153497     2  0.5526     0.4214 0.224 0.676 0.000 0.028 0.072
#> GSM153500     4  0.4455     0.5504 0.096 0.004 0.000 0.768 0.132
#> GSM153503     4  0.3779     0.5518 0.056 0.004 0.000 0.816 0.124
#> GSM153508     4  0.4364     0.5469 0.148 0.000 0.000 0.764 0.088
#> GSM153409     2  0.6223     0.5000 0.088 0.692 0.076 0.020 0.124
#> GSM153426     2  0.6570     0.4584 0.104 0.628 0.100 0.000 0.168
#> GSM153431     5  0.9751     0.3115 0.160 0.168 0.216 0.148 0.308
#> GSM153438     2  0.4240     0.5623 0.088 0.812 0.048 0.000 0.052
#> GSM153440     3  0.6163     0.5167 0.020 0.064 0.672 0.052 0.192
#> GSM153447     3  0.8081    -0.3427 0.024 0.052 0.372 0.200 0.352
#> GSM153450     2  0.5839     0.4814 0.068 0.696 0.160 0.004 0.072
#> GSM153456     2  0.1026     0.5629 0.024 0.968 0.004 0.000 0.004
#> GSM153457     2  0.1124     0.5601 0.036 0.960 0.004 0.000 0.000
#> GSM153458     2  0.3091     0.5660 0.032 0.880 0.044 0.000 0.044
#> GSM153459     2  0.3201     0.5684 0.044 0.872 0.024 0.000 0.060
#> GSM153460     2  0.3075     0.5687 0.072 0.876 0.008 0.004 0.040
#> GSM153461     2  0.8277    -0.0782 0.068 0.384 0.212 0.024 0.312
#> GSM153463     4  0.7908    -0.2412 0.056 0.012 0.220 0.416 0.296
#> GSM153464     2  0.5223     0.3113 0.332 0.616 0.000 0.008 0.044
#> GSM153466     1  0.8761     0.2295 0.348 0.112 0.028 0.264 0.248
#> GSM153467     2  0.7425    -0.1643 0.368 0.416 0.000 0.064 0.152
#> GSM153468     1  0.8522     0.2492 0.392 0.156 0.012 0.252 0.188
#> GSM153469     1  0.8568     0.3478 0.416 0.264 0.052 0.072 0.196
#> GSM153470     1  0.8223     0.3668 0.488 0.140 0.024 0.172 0.176
#> GSM153471     1  0.7641     0.3757 0.488 0.272 0.004 0.128 0.108
#> GSM153472     4  0.6663     0.4589 0.156 0.020 0.012 0.584 0.228
#> GSM153473     4  0.7265     0.3196 0.108 0.008 0.096 0.556 0.232
#> GSM153474     4  0.3732     0.5519 0.056 0.000 0.004 0.820 0.120
#> GSM153475     4  0.8836     0.0760 0.288 0.056 0.076 0.348 0.232
#> GSM153476     3  0.9169    -0.3758 0.204 0.072 0.364 0.116 0.244
#> GSM153478     4  0.8946    -0.0159 0.184 0.048 0.128 0.376 0.264
#> GSM153480     2  0.5735     0.3239 0.312 0.608 0.004 0.016 0.060
#> GSM153486     2  0.7117     0.1585 0.284 0.524 0.000 0.088 0.104
#> GSM153487     4  0.6993     0.4152 0.208 0.024 0.004 0.516 0.248
#> GSM153499     4  0.8055     0.1595 0.288 0.100 0.008 0.428 0.176
#> GSM153504     4  0.3543     0.5559 0.040 0.000 0.004 0.828 0.128
#> GSM153507     4  0.7487     0.3331 0.284 0.044 0.012 0.484 0.176
#> GSM153404     3  0.0854     0.7543 0.004 0.008 0.976 0.000 0.012
#> GSM153407     3  0.5057     0.5749 0.000 0.100 0.716 0.008 0.176
#> GSM153408     3  0.0740     0.7530 0.008 0.004 0.980 0.000 0.008
#> GSM153410     3  0.1815     0.7391 0.016 0.024 0.940 0.000 0.020
#> GSM153411     3  0.2136     0.7412 0.000 0.000 0.904 0.008 0.088
#> GSM153412     3  0.2006     0.7345 0.020 0.024 0.932 0.000 0.024
#> GSM153413     3  0.1074     0.7530 0.012 0.004 0.968 0.000 0.016
#> GSM153414     2  0.8848     0.0223 0.088 0.412 0.212 0.068 0.220
#> GSM153415     3  0.1200     0.7490 0.012 0.008 0.964 0.000 0.016
#> GSM153416     2  0.7232     0.3370 0.176 0.584 0.024 0.056 0.160
#> GSM153417     3  0.2017     0.7430 0.000 0.000 0.912 0.008 0.080
#> GSM153418     3  0.0968     0.7510 0.012 0.004 0.972 0.000 0.012
#> GSM153420     3  0.2136     0.7414 0.000 0.000 0.904 0.008 0.088
#> GSM153421     3  0.2077     0.7419 0.000 0.000 0.908 0.008 0.084
#> GSM153422     3  0.2249     0.7374 0.000 0.000 0.896 0.008 0.096
#> GSM153424     5  0.9532     0.3501 0.072 0.240 0.228 0.180 0.280
#> GSM153430     5  0.9146     0.2442 0.112 0.096 0.136 0.312 0.344
#> GSM153432     1  0.8448     0.3641 0.464 0.208 0.056 0.076 0.196
#> GSM153434     5  0.9370     0.3066 0.204 0.064 0.200 0.196 0.336
#> GSM153435     1  0.7651     0.1056 0.388 0.384 0.008 0.056 0.164
#> GSM153436     3  0.9651    -0.4774 0.128 0.228 0.264 0.116 0.264
#> GSM153437     2  0.4498     0.5032 0.168 0.772 0.016 0.008 0.036
#> GSM153439     1  0.9068     0.3272 0.376 0.272 0.076 0.112 0.164
#> GSM153441     1  0.9616     0.0730 0.264 0.212 0.080 0.196 0.248
#> GSM153442     1  0.8634     0.1289 0.304 0.128 0.012 0.288 0.268
#> GSM153443     1  0.6872     0.2250 0.496 0.344 0.004 0.032 0.124
#> GSM153445     1  0.6784     0.1405 0.480 0.388 0.008 0.036 0.088
#> GSM153446     2  0.5522     0.3963 0.264 0.656 0.008 0.012 0.060
#> GSM153449     4  0.9316    -0.0739 0.200 0.096 0.104 0.340 0.260
#> GSM153453     4  0.6107     0.4726 0.204 0.000 0.004 0.588 0.204
#> GSM153454     4  0.4572     0.5108 0.056 0.000 0.016 0.760 0.168
#> GSM153455     1  0.9639    -0.0530 0.284 0.104 0.144 0.244 0.224
#> GSM153462     1  0.7404     0.2880 0.488 0.320 0.008 0.084 0.100
#> GSM153465     1  0.8687     0.2851 0.344 0.316 0.032 0.100 0.208
#> GSM153481     2  0.7477    -0.0338 0.376 0.444 0.016 0.072 0.092
#> GSM153482     4  0.7469     0.3709 0.232 0.048 0.008 0.496 0.216
#> GSM153483     1  0.8588     0.2662 0.352 0.148 0.012 0.292 0.196
#> GSM153485     4  0.9117    -0.0169 0.268 0.104 0.072 0.356 0.200
#> GSM153489     4  0.8533     0.0992 0.328 0.064 0.044 0.356 0.208
#> GSM153490     4  0.4904     0.5383 0.080 0.000 0.012 0.732 0.176
#> GSM153491     4  0.5782     0.5030 0.176 0.008 0.000 0.644 0.172
#> GSM153492     4  0.3950     0.5421 0.048 0.000 0.004 0.796 0.152
#> GSM153493     4  0.4183     0.5439 0.084 0.000 0.000 0.780 0.136
#> GSM153494     1  0.8031     0.0966 0.384 0.108 0.000 0.308 0.200
#> GSM153495     4  0.4297     0.5261 0.072 0.000 0.000 0.764 0.164
#> GSM153498     4  0.9149    -0.0417 0.264 0.140 0.056 0.348 0.192
#> GSM153501     4  0.4016     0.5523 0.092 0.000 0.000 0.796 0.112
#> GSM153502     4  0.5726     0.5133 0.144 0.004 0.004 0.652 0.196
#> GSM153505     4  0.3916     0.5457 0.056 0.004 0.000 0.804 0.136
#> GSM153506     1  0.7673     0.4328 0.476 0.216 0.000 0.216 0.092

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     3  0.1787   0.757963 0.008 0.000 0.920 0.000 0.068 0.004
#> GSM153406     3  0.1622   0.736795 0.016 0.000 0.940 0.000 0.028 0.016
#> GSM153419     3  0.1610   0.756762 0.000 0.000 0.916 0.000 0.084 0.000
#> GSM153423     2  0.5422   0.508338 0.132 0.708 0.032 0.000 0.052 0.076
#> GSM153425     3  0.3359   0.725004 0.004 0.000 0.788 0.004 0.192 0.012
#> GSM153427     3  0.6875   0.103769 0.036 0.252 0.520 0.000 0.144 0.048
#> GSM153428     5  0.8159   0.359642 0.024 0.204 0.288 0.036 0.368 0.080
#> GSM153429     1  0.9634   0.109537 0.292 0.172 0.148 0.112 0.100 0.176
#> GSM153433     4  0.8600  -0.009600 0.064 0.048 0.072 0.332 0.316 0.168
#> GSM153444     2  0.6669   0.389163 0.056 0.588 0.144 0.000 0.164 0.048
#> GSM153448     2  0.9092  -0.241152 0.236 0.300 0.024 0.132 0.124 0.184
#> GSM153451     2  0.3344   0.546736 0.088 0.844 0.008 0.000 0.044 0.016
#> GSM153452     2  0.7138   0.161311 0.044 0.504 0.268 0.008 0.132 0.044
#> GSM153477     1  0.7983   0.275567 0.456 0.180 0.016 0.080 0.060 0.208
#> GSM153479     1  0.9293  -0.035406 0.264 0.148 0.036 0.228 0.112 0.212
#> GSM153484     1  0.8373   0.041050 0.404 0.112 0.008 0.216 0.092 0.168
#> GSM153488     6  0.8708   0.136775 0.164 0.068 0.036 0.292 0.104 0.336
#> GSM153496     4  0.6974   0.265665 0.088 0.036 0.008 0.544 0.080 0.244
#> GSM153497     2  0.5808   0.429496 0.196 0.656 0.000 0.048 0.056 0.044
#> GSM153500     4  0.4508   0.404601 0.036 0.000 0.000 0.740 0.060 0.164
#> GSM153503     4  0.4638   0.404601 0.036 0.000 0.000 0.724 0.060 0.180
#> GSM153508     4  0.4671   0.374256 0.084 0.000 0.000 0.720 0.024 0.172
#> GSM153409     2  0.6829   0.388308 0.092 0.556 0.092 0.012 0.232 0.016
#> GSM153426     2  0.7021   0.350685 0.100 0.528 0.136 0.004 0.216 0.016
#> GSM153431     5  0.9122   0.238360 0.120 0.080 0.172 0.184 0.368 0.076
#> GSM153438     2  0.4958   0.535016 0.080 0.752 0.064 0.000 0.076 0.028
#> GSM153440     3  0.6756   0.221292 0.028 0.056 0.480 0.040 0.368 0.028
#> GSM153447     5  0.7788   0.354914 0.032 0.032 0.256 0.152 0.460 0.068
#> GSM153450     2  0.6073   0.475921 0.072 0.668 0.104 0.000 0.096 0.060
#> GSM153456     2  0.1598   0.550316 0.040 0.940 0.004 0.000 0.008 0.008
#> GSM153457     2  0.1906   0.547766 0.040 0.928 0.008 0.000 0.016 0.008
#> GSM153458     2  0.3041   0.551242 0.044 0.864 0.036 0.000 0.056 0.000
#> GSM153459     2  0.3907   0.550427 0.060 0.812 0.024 0.000 0.092 0.012
#> GSM153460     2  0.3287   0.552473 0.056 0.852 0.004 0.000 0.060 0.028
#> GSM153461     5  0.8247   0.198233 0.060 0.292 0.152 0.028 0.392 0.076
#> GSM153463     4  0.7882  -0.078015 0.020 0.016 0.144 0.364 0.336 0.120
#> GSM153464     2  0.5679   0.206843 0.392 0.524 0.008 0.016 0.020 0.040
#> GSM153466     6  0.8602   0.181871 0.284 0.072 0.016 0.248 0.096 0.284
#> GSM153467     2  0.7515  -0.070332 0.372 0.384 0.004 0.060 0.056 0.124
#> GSM153468     1  0.8772  -0.018064 0.320 0.160 0.012 0.180 0.084 0.244
#> GSM153469     1  0.8773   0.246012 0.396 0.224 0.064 0.064 0.104 0.148
#> GSM153470     1  0.8451   0.136728 0.420 0.084 0.028 0.132 0.104 0.232
#> GSM153471     1  0.8459   0.239320 0.372 0.212 0.016 0.148 0.048 0.204
#> GSM153472     4  0.6896   0.128430 0.124 0.008 0.000 0.432 0.084 0.352
#> GSM153473     4  0.7115   0.244019 0.068 0.004 0.044 0.544 0.156 0.184
#> GSM153474     4  0.4690   0.393837 0.044 0.000 0.000 0.736 0.080 0.140
#> GSM153475     6  0.8492   0.131096 0.212 0.040 0.032 0.284 0.100 0.332
#> GSM153476     3  0.9094  -0.311989 0.176 0.088 0.384 0.076 0.132 0.144
#> GSM153478     4  0.8614  -0.070914 0.080 0.040 0.060 0.360 0.228 0.232
#> GSM153480     2  0.6199   0.318692 0.292 0.568 0.020 0.004 0.052 0.064
#> GSM153486     2  0.8035   0.000297 0.304 0.392 0.008 0.068 0.088 0.140
#> GSM153487     4  0.7372   0.132770 0.140 0.016 0.004 0.456 0.112 0.272
#> GSM153499     4  0.8417  -0.088557 0.224 0.092 0.008 0.368 0.088 0.220
#> GSM153504     4  0.4330   0.404199 0.032 0.000 0.000 0.748 0.048 0.172
#> GSM153507     4  0.7417   0.110169 0.164 0.012 0.008 0.452 0.100 0.264
#> GSM153404     3  0.0951   0.758498 0.004 0.000 0.968 0.000 0.020 0.008
#> GSM153407     3  0.6122   0.380992 0.004 0.112 0.548 0.008 0.300 0.028
#> GSM153408     3  0.0767   0.749672 0.004 0.000 0.976 0.000 0.012 0.008
#> GSM153410     3  0.1337   0.741327 0.008 0.008 0.956 0.000 0.012 0.016
#> GSM153411     3  0.3674   0.706865 0.004 0.000 0.756 0.008 0.220 0.012
#> GSM153412     3  0.1129   0.744752 0.008 0.004 0.964 0.000 0.012 0.012
#> GSM153413     3  0.0547   0.757640 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM153414     2  0.8381   0.033287 0.084 0.404 0.132 0.032 0.272 0.076
#> GSM153415     3  0.0862   0.751169 0.008 0.000 0.972 0.000 0.016 0.004
#> GSM153416     2  0.7924   0.265518 0.212 0.476 0.032 0.036 0.148 0.096
#> GSM153417     3  0.3383   0.717176 0.004 0.000 0.776 0.004 0.208 0.008
#> GSM153418     3  0.1026   0.746906 0.008 0.004 0.968 0.000 0.012 0.008
#> GSM153420     3  0.3412   0.716384 0.004 0.000 0.772 0.004 0.212 0.008
#> GSM153421     3  0.3412   0.716384 0.004 0.000 0.772 0.004 0.212 0.008
#> GSM153422     3  0.3599   0.712972 0.004 0.000 0.764 0.004 0.212 0.016
#> GSM153424     5  0.8461   0.343551 0.056 0.176 0.120 0.120 0.460 0.068
#> GSM153430     5  0.8994  -0.085121 0.100 0.060 0.068 0.272 0.316 0.184
#> GSM153432     1  0.8540   0.243336 0.440 0.176 0.052 0.064 0.108 0.160
#> GSM153434     5  0.9454  -0.089646 0.168 0.052 0.112 0.216 0.268 0.184
#> GSM153435     1  0.7393   0.217132 0.476 0.304 0.020 0.040 0.068 0.092
#> GSM153436     5  0.9247   0.255596 0.044 0.188 0.188 0.120 0.324 0.136
#> GSM153437     2  0.5332   0.480924 0.180 0.700 0.028 0.004 0.044 0.044
#> GSM153439     1  0.9081   0.216313 0.352 0.224 0.072 0.080 0.100 0.172
#> GSM153441     1  0.9470  -0.076068 0.268 0.116 0.052 0.212 0.176 0.176
#> GSM153442     6  0.8972   0.172247 0.224 0.120 0.012 0.256 0.132 0.256
#> GSM153443     1  0.6632   0.023999 0.440 0.380 0.000 0.008 0.076 0.096
#> GSM153445     1  0.7164   0.084728 0.440 0.356 0.016 0.024 0.052 0.112
#> GSM153446     2  0.6641   0.314801 0.272 0.560 0.016 0.028 0.064 0.060
#> GSM153449     6  0.8978   0.119661 0.144 0.052 0.060 0.292 0.152 0.300
#> GSM153453     4  0.6648   0.251861 0.116 0.016 0.004 0.560 0.072 0.232
#> GSM153454     4  0.5235   0.381425 0.016 0.004 0.004 0.680 0.152 0.144
#> GSM153455     6  0.9609   0.123808 0.224 0.080 0.100 0.176 0.172 0.248
#> GSM153462     1  0.7171   0.319145 0.528 0.252 0.008 0.072 0.068 0.072
#> GSM153465     1  0.8697   0.199179 0.400 0.180 0.040 0.060 0.172 0.148
#> GSM153481     2  0.7885   0.005212 0.324 0.424 0.036 0.060 0.064 0.092
#> GSM153482     4  0.8315  -0.095194 0.248 0.060 0.008 0.380 0.128 0.176
#> GSM153483     1  0.8760   0.037355 0.336 0.124 0.012 0.232 0.104 0.192
#> GSM153485     4  0.8825  -0.163383 0.192 0.060 0.040 0.300 0.112 0.296
#> GSM153489     4  0.8562  -0.150361 0.200 0.036 0.028 0.320 0.136 0.280
#> GSM153490     4  0.5302   0.379165 0.024 0.000 0.008 0.676 0.120 0.172
#> GSM153491     4  0.7038   0.191655 0.096 0.016 0.008 0.496 0.096 0.288
#> GSM153492     4  0.5176   0.388129 0.060 0.000 0.000 0.700 0.120 0.120
#> GSM153493     4  0.4967   0.390556 0.084 0.000 0.000 0.712 0.052 0.152
#> GSM153494     1  0.8379  -0.133597 0.360 0.072 0.008 0.244 0.100 0.216
#> GSM153495     4  0.5914   0.345599 0.048 0.004 0.000 0.616 0.188 0.144
#> GSM153498     4  0.8811  -0.148611 0.232 0.076 0.052 0.316 0.064 0.260
#> GSM153501     4  0.4894   0.386378 0.088 0.000 0.000 0.716 0.044 0.152
#> GSM153502     4  0.6415   0.303859 0.108 0.008 0.000 0.580 0.100 0.204
#> GSM153505     4  0.4966   0.400981 0.048 0.000 0.000 0.712 0.092 0.148
#> GSM153506     1  0.7893   0.112099 0.388 0.140 0.000 0.252 0.032 0.188

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> CV:skmeans 85         0.647657 2
#> CV:skmeans 82         0.069218 3
#> CV:skmeans 52         0.004742 4
#> CV:skmeans 42         0.002003 5
#> CV:skmeans 24         0.000123 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k  1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.0656           0.574       0.759         0.4447 0.580   0.580
#> 3 3 0.0585           0.562       0.713         0.1779 0.896   0.825
#> 4 4 0.1420           0.607       0.706         0.0670 0.850   0.745
#> 5 5 0.2138           0.507       0.711         0.0698 0.876   0.783
#> 6 6 0.2404           0.364       0.688         0.0361 0.903   0.805

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     1  0.0000     0.6716 1.000 0.000
#> GSM153406     1  0.6343     0.6786 0.840 0.160
#> GSM153419     1  0.0000     0.6716 1.000 0.000
#> GSM153423     2  0.7139     0.6859 0.196 0.804
#> GSM153425     1  0.0000     0.6716 1.000 0.000
#> GSM153427     1  0.9000     0.6179 0.684 0.316
#> GSM153428     1  0.8267     0.6636 0.740 0.260
#> GSM153429     1  0.9522     0.6042 0.628 0.372
#> GSM153433     1  0.8813     0.6406 0.700 0.300
#> GSM153444     1  0.9460     0.4810 0.636 0.364
#> GSM153448     1  0.9815     0.2110 0.580 0.420
#> GSM153451     2  0.9909     0.5560 0.444 0.556
#> GSM153452     1  0.0672     0.6689 0.992 0.008
#> GSM153477     2  0.9661     0.5626 0.392 0.608
#> GSM153479     2  0.2603     0.6504 0.044 0.956
#> GSM153484     1  0.7883     0.6802 0.764 0.236
#> GSM153488     1  0.9044     0.6559 0.680 0.320
#> GSM153496     1  0.3584     0.6872 0.932 0.068
#> GSM153497     2  0.9044     0.6514 0.320 0.680
#> GSM153500     1  0.9710     0.5997 0.600 0.400
#> GSM153503     1  0.9963     0.5279 0.536 0.464
#> GSM153508     2  0.0938     0.6339 0.012 0.988
#> GSM153409     2  0.9635     0.2445 0.388 0.612
#> GSM153426     1  0.6801     0.7013 0.820 0.180
#> GSM153431     1  0.9963     0.5289 0.536 0.464
#> GSM153438     2  0.9954     0.5391 0.460 0.540
#> GSM153440     1  0.0938     0.6780 0.988 0.012
#> GSM153447     1  0.9732     0.5857 0.596 0.404
#> GSM153450     2  0.9710     0.5954 0.400 0.600
#> GSM153456     2  0.8608     0.6660 0.284 0.716
#> GSM153457     2  0.7139     0.6887 0.196 0.804
#> GSM153458     1  0.9522    -0.2716 0.628 0.372
#> GSM153459     2  0.9922     0.5480 0.448 0.552
#> GSM153460     2  0.6343     0.6863 0.160 0.840
#> GSM153461     1  0.7219     0.6946 0.800 0.200
#> GSM153463     1  0.8144     0.6943 0.748 0.252
#> GSM153464     2  0.6247     0.6818 0.156 0.844
#> GSM153466     1  0.7674     0.6711 0.776 0.224
#> GSM153467     2  0.5842     0.6818 0.140 0.860
#> GSM153468     1  0.4562     0.6824 0.904 0.096
#> GSM153469     1  0.6973     0.6620 0.812 0.188
#> GSM153470     2  0.6438     0.5332 0.164 0.836
#> GSM153471     2  0.9044     0.5422 0.320 0.680
#> GSM153472     1  0.3733     0.6965 0.928 0.072
#> GSM153473     1  0.5059     0.7096 0.888 0.112
#> GSM153474     2  0.9988    -0.4706 0.480 0.520
#> GSM153475     1  0.9815     0.5760 0.580 0.420
#> GSM153476     1  0.7745     0.6945 0.772 0.228
#> GSM153478     1  0.7674     0.6963 0.776 0.224
#> GSM153480     2  0.6623     0.6775 0.172 0.828
#> GSM153486     1  0.9909    -0.3166 0.556 0.444
#> GSM153487     2  0.9491    -0.0452 0.368 0.632
#> GSM153499     1  0.9323     0.6390 0.652 0.348
#> GSM153504     1  0.9427     0.6309 0.640 0.360
#> GSM153507     1  0.9993     0.5029 0.516 0.484
#> GSM153404     1  0.0000     0.6716 1.000 0.000
#> GSM153407     1  0.6801     0.6880 0.820 0.180
#> GSM153408     1  0.0376     0.6739 0.996 0.004
#> GSM153410     1  0.0672     0.6735 0.992 0.008
#> GSM153411     1  0.0672     0.6693 0.992 0.008
#> GSM153412     1  0.0672     0.6735 0.992 0.008
#> GSM153413     1  0.0000     0.6716 1.000 0.000
#> GSM153414     1  0.5059     0.6483 0.888 0.112
#> GSM153415     1  0.5629     0.6679 0.868 0.132
#> GSM153416     2  0.5946     0.6742 0.144 0.856
#> GSM153417     1  0.0672     0.6693 0.992 0.008
#> GSM153418     1  0.2423     0.6829 0.960 0.040
#> GSM153420     1  0.5178     0.7102 0.884 0.116
#> GSM153421     1  0.0672     0.6693 0.992 0.008
#> GSM153422     1  0.1184     0.6739 0.984 0.016
#> GSM153424     1  0.9866     0.5598 0.568 0.432
#> GSM153430     1  0.7453     0.7009 0.788 0.212
#> GSM153432     2  0.9552     0.6083 0.376 0.624
#> GSM153434     1  0.6148     0.7038 0.848 0.152
#> GSM153435     1  0.6531     0.5550 0.832 0.168
#> GSM153436     1  0.9661     0.0257 0.608 0.392
#> GSM153437     2  0.8608     0.6701 0.284 0.716
#> GSM153439     1  0.5946     0.5124 0.856 0.144
#> GSM153441     2  0.9552     0.2686 0.376 0.624
#> GSM153442     1  0.5737     0.6954 0.864 0.136
#> GSM153443     2  0.7453     0.6958 0.212 0.788
#> GSM153445     2  0.7883     0.6573 0.236 0.764
#> GSM153446     2  0.6343     0.6731 0.160 0.840
#> GSM153449     1  0.9635     0.6093 0.612 0.388
#> GSM153453     1  0.6531     0.7109 0.832 0.168
#> GSM153454     1  0.9881     0.5667 0.564 0.436
#> GSM153455     1  0.8608     0.6724 0.716 0.284
#> GSM153462     2  0.5519     0.6048 0.128 0.872
#> GSM153465     1  0.9850     0.5505 0.572 0.428
#> GSM153481     2  0.9970     0.5300 0.468 0.532
#> GSM153482     1  0.9815     0.5586 0.580 0.420
#> GSM153483     2  0.9608    -0.1875 0.384 0.616
#> GSM153485     1  0.8763     0.1345 0.704 0.296
#> GSM153489     1  0.9087     0.6628 0.676 0.324
#> GSM153490     1  0.9833     0.5725 0.576 0.424
#> GSM153491     1  0.8909     0.6351 0.692 0.308
#> GSM153492     1  0.9988     0.5149 0.520 0.480
#> GSM153493     1  0.9815     0.5825 0.580 0.420
#> GSM153494     1  0.6712     0.6973 0.824 0.176
#> GSM153495     1  0.9129     0.6293 0.672 0.328
#> GSM153498     1  0.0938     0.6747 0.988 0.012
#> GSM153501     1  0.7950     0.6743 0.760 0.240
#> GSM153502     1  0.6887     0.7048 0.816 0.184
#> GSM153505     1  0.9970     0.5246 0.532 0.468
#> GSM153506     2  0.4690     0.6783 0.100 0.900

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     1  0.0661     0.6254 0.988 0.004 0.008
#> GSM153406     1  0.5663     0.6495 0.808 0.096 0.096
#> GSM153419     1  0.1860     0.6082 0.948 0.000 0.052
#> GSM153423     2  0.3896     0.6631 0.128 0.864 0.008
#> GSM153425     1  0.3941     0.5454 0.844 0.000 0.156
#> GSM153427     1  0.6102     0.6417 0.672 0.320 0.008
#> GSM153428     1  0.5656     0.6737 0.728 0.264 0.008
#> GSM153429     1  0.8014     0.6306 0.628 0.268 0.104
#> GSM153433     1  0.6129     0.6675 0.700 0.284 0.016
#> GSM153444     1  0.6758     0.5305 0.620 0.360 0.020
#> GSM153448     1  0.8043     0.2038 0.556 0.372 0.072
#> GSM153451     2  0.6566     0.5884 0.348 0.636 0.016
#> GSM153452     1  0.1989     0.6350 0.948 0.048 0.004
#> GSM153477     2  0.7962     0.5753 0.352 0.576 0.072
#> GSM153479     2  0.5874     0.6178 0.088 0.796 0.116
#> GSM153484     1  0.7113     0.6633 0.720 0.168 0.112
#> GSM153488     1  0.7344     0.6635 0.684 0.232 0.084
#> GSM153496     1  0.3406     0.6640 0.904 0.068 0.028
#> GSM153497     2  0.6053     0.6470 0.260 0.720 0.020
#> GSM153500     1  0.8198     0.6240 0.596 0.304 0.100
#> GSM153503     1  0.8573     0.5851 0.524 0.372 0.104
#> GSM153508     2  0.6621     0.4933 0.032 0.684 0.284
#> GSM153409     2  0.7505     0.0724 0.384 0.572 0.044
#> GSM153426     1  0.5571     0.6900 0.804 0.140 0.056
#> GSM153431     1  0.8559     0.5734 0.512 0.388 0.100
#> GSM153438     2  0.6617     0.5778 0.388 0.600 0.012
#> GSM153440     1  0.4228     0.5650 0.844 0.008 0.148
#> GSM153447     1  0.8843     0.5970 0.564 0.276 0.160
#> GSM153450     2  0.6008     0.6057 0.332 0.664 0.004
#> GSM153456     2  0.5122     0.6679 0.200 0.788 0.012
#> GSM153457     2  0.4195     0.6751 0.136 0.852 0.012
#> GSM153458     1  0.6598    -0.3003 0.564 0.428 0.008
#> GSM153459     2  0.6673     0.5910 0.344 0.636 0.020
#> GSM153460     2  0.4591     0.6717 0.120 0.848 0.032
#> GSM153461     1  0.5643     0.6843 0.760 0.220 0.020
#> GSM153463     1  0.8913     0.0560 0.508 0.132 0.360
#> GSM153464     2  0.5688     0.6647 0.168 0.788 0.044
#> GSM153466     1  0.6679     0.6598 0.748 0.152 0.100
#> GSM153467     2  0.3213     0.6511 0.092 0.900 0.008
#> GSM153468     1  0.4095     0.6529 0.880 0.056 0.064
#> GSM153469     1  0.6383     0.6369 0.768 0.128 0.104
#> GSM153470     2  0.7216     0.4571 0.176 0.712 0.112
#> GSM153471     2  0.7613     0.5197 0.316 0.620 0.064
#> GSM153472     1  0.3406     0.6717 0.904 0.068 0.028
#> GSM153473     1  0.4059     0.6887 0.860 0.128 0.012
#> GSM153474     1  0.8840     0.5177 0.456 0.428 0.116
#> GSM153475     1  0.7937     0.6233 0.568 0.364 0.068
#> GSM153476     1  0.6906     0.6864 0.724 0.192 0.084
#> GSM153478     1  0.5070     0.6986 0.772 0.224 0.004
#> GSM153480     2  0.5777     0.6618 0.160 0.788 0.052
#> GSM153486     1  0.7063    -0.3253 0.516 0.464 0.020
#> GSM153487     2  0.8202    -0.2325 0.376 0.544 0.080
#> GSM153499     1  0.7418     0.6603 0.672 0.248 0.080
#> GSM153504     1  0.7587     0.6556 0.640 0.288 0.072
#> GSM153507     1  0.8535     0.5667 0.500 0.404 0.096
#> GSM153404     1  0.0237     0.6239 0.996 0.000 0.004
#> GSM153407     1  0.6463     0.6415 0.756 0.164 0.080
#> GSM153408     1  0.0829     0.6291 0.984 0.004 0.012
#> GSM153410     1  0.1129     0.6343 0.976 0.004 0.020
#> GSM153411     3  0.5706     0.7771 0.320 0.000 0.680
#> GSM153412     1  0.1267     0.6349 0.972 0.004 0.024
#> GSM153413     1  0.0892     0.6295 0.980 0.000 0.020
#> GSM153414     1  0.4723     0.6396 0.824 0.160 0.016
#> GSM153415     1  0.5243     0.6353 0.828 0.072 0.100
#> GSM153416     2  0.4591     0.6530 0.120 0.848 0.032
#> GSM153417     3  0.5706     0.7771 0.320 0.000 0.680
#> GSM153418     1  0.2443     0.6463 0.940 0.028 0.032
#> GSM153420     3  0.6195     0.7573 0.276 0.020 0.704
#> GSM153421     3  0.5706     0.7771 0.320 0.000 0.680
#> GSM153422     3  0.6047     0.7753 0.312 0.008 0.680
#> GSM153424     1  0.7890     0.6015 0.544 0.396 0.060
#> GSM153430     1  0.5874     0.7006 0.760 0.208 0.032
#> GSM153432     2  0.6726     0.6093 0.332 0.644 0.024
#> GSM153434     1  0.4575     0.6850 0.812 0.184 0.004
#> GSM153435     1  0.4575     0.5542 0.828 0.160 0.012
#> GSM153436     1  0.6896     0.0964 0.588 0.392 0.020
#> GSM153437     2  0.6335     0.6574 0.240 0.724 0.036
#> GSM153439     1  0.4172     0.5156 0.840 0.156 0.004
#> GSM153441     2  0.7279     0.0826 0.376 0.588 0.036
#> GSM153442     1  0.5722     0.6851 0.800 0.132 0.068
#> GSM153443     2  0.4979     0.6798 0.168 0.812 0.020
#> GSM153445     2  0.6232     0.6367 0.220 0.740 0.040
#> GSM153446     2  0.6463     0.6368 0.164 0.756 0.080
#> GSM153449     1  0.7924     0.6455 0.612 0.304 0.084
#> GSM153453     1  0.5119     0.7005 0.812 0.160 0.028
#> GSM153454     1  0.9197     0.5451 0.536 0.252 0.212
#> GSM153455     1  0.6857     0.6823 0.696 0.252 0.052
#> GSM153462     2  0.5915     0.5558 0.128 0.792 0.080
#> GSM153465     1  0.7570     0.6127 0.552 0.404 0.044
#> GSM153481     2  0.7311     0.5771 0.384 0.580 0.036
#> GSM153482     1  0.7607     0.6248 0.584 0.364 0.052
#> GSM153483     2  0.8627    -0.3495 0.392 0.504 0.104
#> GSM153485     1  0.6793     0.1458 0.672 0.292 0.036
#> GSM153489     1  0.7265     0.6760 0.684 0.240 0.076
#> GSM153490     3  0.9916     0.0144 0.316 0.288 0.396
#> GSM153491     1  0.6075     0.6556 0.676 0.316 0.008
#> GSM153492     1  0.8710     0.5742 0.508 0.380 0.112
#> GSM153493     3  0.9527     0.3379 0.220 0.300 0.480
#> GSM153494     1  0.5526     0.6919 0.792 0.172 0.036
#> GSM153495     1  0.6880     0.6594 0.660 0.304 0.036
#> GSM153498     1  0.1129     0.6356 0.976 0.004 0.020
#> GSM153501     1  0.5404     0.6741 0.740 0.256 0.004
#> GSM153502     1  0.4912     0.6954 0.796 0.196 0.008
#> GSM153505     1  0.8363     0.5743 0.504 0.412 0.084
#> GSM153506     2  0.4289     0.6569 0.092 0.868 0.040

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     1   0.600     0.6614 0.648 0.300 0.028 0.024
#> GSM153406     1   0.638     0.6928 0.680 0.216 0.024 0.080
#> GSM153419     1   0.650     0.6601 0.640 0.272 0.068 0.020
#> GSM153423     2   0.555     0.6817 0.248 0.704 0.016 0.032
#> GSM153425     1   0.686     0.6468 0.640 0.140 0.204 0.016
#> GSM153427     1   0.430     0.6844 0.844 0.076 0.040 0.040
#> GSM153428     1   0.493     0.7094 0.804 0.116 0.040 0.040
#> GSM153429     1   0.652     0.6769 0.684 0.196 0.032 0.088
#> GSM153433     1   0.472     0.7018 0.820 0.096 0.040 0.044
#> GSM153444     1   0.636     0.5728 0.648 0.276 0.028 0.048
#> GSM153448     1   0.746     0.2654 0.504 0.380 0.036 0.080
#> GSM153451     2   0.274     0.6504 0.076 0.900 0.000 0.024
#> GSM153452     1   0.603     0.6649 0.656 0.288 0.028 0.028
#> GSM153477     2   0.493     0.6373 0.136 0.792 0.016 0.056
#> GSM153479     2   0.698     0.6001 0.256 0.624 0.032 0.088
#> GSM153484     1   0.606     0.7080 0.720 0.168 0.024 0.088
#> GSM153488     1   0.513     0.7106 0.792 0.104 0.024 0.080
#> GSM153496     1   0.625     0.6954 0.672 0.248 0.028 0.052
#> GSM153497     2   0.351     0.6872 0.112 0.860 0.004 0.024
#> GSM153500     1   0.528     0.6815 0.780 0.092 0.020 0.108
#> GSM153503     1   0.536     0.6475 0.788 0.072 0.048 0.092
#> GSM153508     4   0.222     0.0000 0.060 0.016 0.000 0.924
#> GSM153409     1   0.722     0.0836 0.556 0.340 0.056 0.048
#> GSM153426     1   0.528     0.7181 0.740 0.204 0.008 0.048
#> GSM153431     1   0.415     0.6443 0.848 0.044 0.024 0.084
#> GSM153438     2   0.469     0.6597 0.176 0.784 0.028 0.012
#> GSM153440     1   0.685     0.6570 0.652 0.124 0.200 0.024
#> GSM153447     1   0.594     0.6769 0.744 0.048 0.140 0.068
#> GSM153450     2   0.572     0.6698 0.192 0.732 0.036 0.040
#> GSM153456     2   0.447     0.7037 0.220 0.760 0.000 0.020
#> GSM153457     2   0.502     0.6914 0.252 0.720 0.004 0.024
#> GSM153458     2   0.629     0.3207 0.304 0.632 0.028 0.036
#> GSM153459     2   0.273     0.6572 0.076 0.904 0.008 0.012
#> GSM153460     2   0.508     0.6814 0.200 0.752 0.008 0.040
#> GSM153461     1   0.569     0.7187 0.744 0.172 0.036 0.048
#> GSM153463     1   0.666     0.3284 0.528 0.032 0.408 0.032
#> GSM153464     2   0.504     0.6923 0.196 0.748 0.000 0.056
#> GSM153466     1   0.695     0.6985 0.636 0.236 0.032 0.096
#> GSM153467     2   0.584     0.6439 0.296 0.656 0.012 0.036
#> GSM153468     1   0.586     0.6909 0.684 0.248 0.008 0.060
#> GSM153469     1   0.669     0.6766 0.652 0.232 0.024 0.092
#> GSM153470     1   0.767    -0.3493 0.460 0.408 0.032 0.100
#> GSM153471     2   0.649     0.5047 0.404 0.536 0.012 0.048
#> GSM153472     1   0.610     0.7006 0.680 0.248 0.028 0.044
#> GSM153473     1   0.547     0.7170 0.748 0.184 0.032 0.036
#> GSM153474     1   0.625     0.5647 0.736 0.076 0.096 0.092
#> GSM153475     1   0.374     0.6797 0.872 0.048 0.028 0.052
#> GSM153476     1   0.451     0.7263 0.820 0.116 0.016 0.048
#> GSM153478     1   0.379     0.7286 0.844 0.128 0.016 0.012
#> GSM153480     2   0.564     0.6885 0.232 0.708 0.012 0.048
#> GSM153486     2   0.642     0.3157 0.380 0.564 0.024 0.032
#> GSM153487     1   0.639     0.3689 0.676 0.224 0.024 0.076
#> GSM153499     1   0.481     0.7096 0.812 0.096 0.024 0.068
#> GSM153504     1   0.334     0.7047 0.884 0.052 0.008 0.056
#> GSM153507     1   0.512     0.6366 0.796 0.068 0.032 0.104
#> GSM153404     1   0.602     0.6599 0.644 0.304 0.028 0.024
#> GSM153407     1   0.669     0.6970 0.688 0.148 0.124 0.040
#> GSM153408     1   0.614     0.6650 0.648 0.292 0.032 0.028
#> GSM153410     1   0.646     0.6701 0.640 0.280 0.028 0.052
#> GSM153411     3   0.158     0.8015 0.036 0.012 0.952 0.000
#> GSM153412     1   0.648     0.6700 0.640 0.280 0.032 0.048
#> GSM153413     1   0.616     0.6644 0.644 0.296 0.032 0.028
#> GSM153414     1   0.620     0.6572 0.636 0.304 0.028 0.032
#> GSM153415     1   0.668     0.6813 0.656 0.224 0.024 0.096
#> GSM153416     2   0.664     0.6496 0.296 0.616 0.020 0.068
#> GSM153417     3   0.158     0.8015 0.036 0.012 0.952 0.000
#> GSM153418     1   0.621     0.6810 0.644 0.292 0.040 0.024
#> GSM153420     3   0.155     0.7905 0.040 0.008 0.952 0.000
#> GSM153421     3   0.158     0.8015 0.036 0.012 0.952 0.000
#> GSM153422     3   0.145     0.7963 0.036 0.008 0.956 0.000
#> GSM153424     1   0.406     0.6585 0.856 0.052 0.028 0.064
#> GSM153430     1   0.590     0.7327 0.732 0.176 0.044 0.048
#> GSM153432     2   0.522     0.6608 0.188 0.756 0.036 0.020
#> GSM153434     1   0.444     0.7190 0.816 0.136 0.028 0.020
#> GSM153435     1   0.671     0.5519 0.528 0.404 0.024 0.044
#> GSM153436     1   0.721     0.1345 0.468 0.440 0.052 0.040
#> GSM153437     2   0.434     0.6956 0.116 0.824 0.008 0.052
#> GSM153439     1   0.634     0.5169 0.528 0.424 0.028 0.020
#> GSM153441     1   0.664     0.1010 0.596 0.328 0.028 0.048
#> GSM153442     1   0.629     0.7154 0.680 0.224 0.020 0.076
#> GSM153443     2   0.539     0.7075 0.212 0.732 0.012 0.044
#> GSM153445     2   0.375     0.6684 0.088 0.860 0.008 0.044
#> GSM153446     2   0.677     0.6317 0.364 0.560 0.028 0.048
#> GSM153449     1   0.393     0.6994 0.860 0.052 0.020 0.068
#> GSM153453     1   0.457     0.7281 0.784 0.184 0.012 0.020
#> GSM153454     1   0.571     0.6532 0.744 0.024 0.160 0.072
#> GSM153455     1   0.558     0.7176 0.748 0.172 0.028 0.052
#> GSM153462     2   0.712     0.5179 0.432 0.480 0.032 0.056
#> GSM153465     1   0.388     0.6594 0.860 0.084 0.024 0.032
#> GSM153481     2   0.365     0.6526 0.076 0.864 0.004 0.056
#> GSM153482     1   0.542     0.6624 0.768 0.144 0.028 0.060
#> GSM153483     1   0.638     0.4615 0.696 0.188 0.032 0.084
#> GSM153485     2   0.701    -0.1546 0.364 0.544 0.024 0.068
#> GSM153489     1   0.451     0.7222 0.812 0.112 0.004 0.072
#> GSM153490     1   0.814     0.1161 0.464 0.048 0.364 0.124
#> GSM153491     1   0.306     0.6998 0.900 0.052 0.032 0.016
#> GSM153492     1   0.473     0.6460 0.820 0.052 0.036 0.092
#> GSM153493     3   0.660     0.0401 0.396 0.020 0.540 0.044
#> GSM153494     1   0.594     0.7179 0.720 0.188 0.024 0.068
#> GSM153495     1   0.517     0.7014 0.796 0.100 0.040 0.064
#> GSM153498     1   0.660     0.6739 0.640 0.268 0.028 0.064
#> GSM153501     1   0.359     0.7129 0.872 0.080 0.032 0.016
#> GSM153502     1   0.459     0.7245 0.800 0.156 0.024 0.020
#> GSM153505     1   0.446     0.6396 0.836 0.060 0.032 0.072
#> GSM153506     2   0.550     0.6691 0.220 0.720 0.008 0.052

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> GSM153405     1  0.0162     0.6163 0.996 0.004  0 0.000 0.000
#> GSM153406     1  0.4298     0.6070 0.756 0.060  0 0.184 0.000
#> GSM153419     1  0.1205     0.6108 0.956 0.004  0 0.000 0.040
#> GSM153423     2  0.3994     0.5854 0.068 0.792  0 0.140 0.000
#> GSM153425     1  0.2929     0.5692 0.820 0.000  0 0.000 0.180
#> GSM153427     1  0.5642     0.5554 0.636 0.184  0 0.180 0.000
#> GSM153428     1  0.5162     0.6052 0.692 0.160  0 0.148 0.000
#> GSM153429     1  0.6024     0.5216 0.560 0.152  0 0.288 0.000
#> GSM153433     1  0.5447     0.5945 0.660 0.172  0 0.168 0.000
#> GSM153444     1  0.6098     0.4480 0.568 0.236  0 0.196 0.000
#> GSM153448     1  0.6233     0.2469 0.520 0.312  0 0.168 0.000
#> GSM153451     2  0.3274     0.6082 0.220 0.780  0 0.000 0.000
#> GSM153452     1  0.1300     0.6169 0.956 0.028  0 0.016 0.000
#> GSM153477     2  0.5693     0.5474 0.236 0.620  0 0.144 0.000
#> GSM153479     2  0.4563     0.5222 0.048 0.708  0 0.244 0.000
#> GSM153484     1  0.5115     0.6010 0.676 0.092  0 0.232 0.000
#> GSM153488     1  0.5299     0.6078 0.668 0.120  0 0.212 0.000
#> GSM153496     1  0.3119     0.6457 0.860 0.068  0 0.072 0.000
#> GSM153497     2  0.3081     0.6321 0.156 0.832  0 0.012 0.000
#> GSM153500     1  0.5855     0.5113 0.552 0.096  0 0.348 0.004
#> GSM153503     1  0.6587     0.4336 0.460 0.164  0 0.368 0.008
#> GSM153508     3  0.0000     0.0000 0.000 0.000  1 0.000 0.000
#> GSM153409     2  0.6635    -0.1087 0.360 0.416  0 0.224 0.000
#> GSM153426     1  0.4078     0.6467 0.784 0.068  0 0.148 0.000
#> GSM153431     1  0.6360     0.4329 0.476 0.172  0 0.352 0.000
#> GSM153438     2  0.4101     0.5620 0.332 0.664  0 0.004 0.000
#> GSM153440     1  0.3264     0.5816 0.820 0.000  0 0.016 0.164
#> GSM153447     1  0.7181     0.4731 0.528 0.100  0 0.268 0.104
#> GSM153450     2  0.5717     0.4959 0.324 0.572  0 0.104 0.000
#> GSM153456     2  0.2130     0.6438 0.080 0.908  0 0.012 0.000
#> GSM153457     2  0.1907     0.6386 0.044 0.928  0 0.028 0.000
#> GSM153458     1  0.4517    -0.2638 0.556 0.436  0 0.008 0.000
#> GSM153459     2  0.3612     0.6031 0.268 0.732  0 0.000 0.000
#> GSM153460     2  0.1753     0.6367 0.032 0.936  0 0.032 0.000
#> GSM153461     1  0.4819     0.6278 0.724 0.112  0 0.164 0.000
#> GSM153463     1  0.7072    -0.0596 0.460 0.068  0 0.100 0.372
#> GSM153464     2  0.2770     0.6355 0.044 0.880  0 0.076 0.000
#> GSM153466     1  0.4326     0.5901 0.708 0.028  0 0.264 0.000
#> GSM153467     2  0.3284     0.5524 0.024 0.828  0 0.148 0.000
#> GSM153468     1  0.3521     0.6264 0.820 0.040  0 0.140 0.000
#> GSM153469     1  0.4823     0.5825 0.700 0.072  0 0.228 0.000
#> GSM153470     2  0.6416    -0.1135 0.176 0.452  0 0.372 0.000
#> GSM153471     2  0.5968     0.3316 0.268 0.576  0 0.156 0.000
#> GSM153472     1  0.3601     0.6494 0.820 0.052  0 0.128 0.000
#> GSM153473     1  0.2989     0.6609 0.868 0.072  0 0.060 0.000
#> GSM153474     4  0.2629     0.2341 0.004 0.136  0 0.860 0.000
#> GSM153475     1  0.6135     0.5397 0.560 0.192  0 0.248 0.000
#> GSM153476     1  0.4852     0.6361 0.716 0.100  0 0.184 0.000
#> GSM153478     1  0.4410     0.6576 0.764 0.124  0 0.112 0.000
#> GSM153480     2  0.3102     0.6322 0.056 0.860  0 0.084 0.000
#> GSM153486     1  0.5492    -0.2067 0.504 0.432  0 0.064 0.000
#> GSM153487     1  0.6794     0.1514 0.368 0.344  0 0.288 0.000
#> GSM153499     1  0.5482     0.6078 0.652 0.144  0 0.204 0.000
#> GSM153504     1  0.5680     0.5853 0.624 0.148  0 0.228 0.000
#> GSM153507     1  0.6420     0.4182 0.448 0.176  0 0.376 0.000
#> GSM153404     1  0.0162     0.6163 0.996 0.004  0 0.000 0.000
#> GSM153407     1  0.5578     0.5847 0.712 0.060  0 0.144 0.084
#> GSM153408     1  0.0865     0.6234 0.972 0.004  0 0.024 0.000
#> GSM153410     1  0.2260     0.6283 0.908 0.028  0 0.064 0.000
#> GSM153411     5  0.0162     0.8115 0.004 0.000  0 0.000 0.996
#> GSM153412     1  0.2260     0.6282 0.908 0.028  0 0.064 0.000
#> GSM153413     1  0.0992     0.6228 0.968 0.008  0 0.024 0.000
#> GSM153414     1  0.3479     0.6091 0.836 0.084  0 0.080 0.000
#> GSM153415     1  0.4087     0.5940 0.756 0.036  0 0.208 0.000
#> GSM153416     2  0.4645     0.5030 0.072 0.724  0 0.204 0.000
#> GSM153417     5  0.0162     0.8115 0.004 0.000  0 0.000 0.996
#> GSM153418     1  0.1942     0.6351 0.920 0.012  0 0.068 0.000
#> GSM153420     5  0.0162     0.8115 0.004 0.000  0 0.000 0.996
#> GSM153421     5  0.0162     0.8115 0.004 0.000  0 0.000 0.996
#> GSM153422     5  0.0162     0.8115 0.004 0.000  0 0.000 0.996
#> GSM153424     1  0.6422     0.4589 0.492 0.200  0 0.308 0.000
#> GSM153430     1  0.4848     0.6446 0.724 0.144  0 0.132 0.000
#> GSM153432     2  0.6024     0.4756 0.336 0.532  0 0.132 0.000
#> GSM153434     1  0.3601     0.6529 0.820 0.128  0 0.052 0.000
#> GSM153435     1  0.4036     0.5315 0.788 0.144  0 0.068 0.000
#> GSM153436     1  0.6107     0.2200 0.560 0.332  0 0.088 0.020
#> GSM153437     2  0.4016     0.6411 0.112 0.796  0 0.092 0.000
#> GSM153439     1  0.2997     0.5168 0.840 0.148  0 0.012 0.000
#> GSM153441     2  0.6727    -0.2368 0.364 0.384  0 0.252 0.000
#> GSM153442     1  0.4066     0.6383 0.768 0.032  0 0.196 0.004
#> GSM153443     2  0.4121     0.6380 0.100 0.788  0 0.112 0.000
#> GSM153445     2  0.4104     0.6339 0.124 0.788  0 0.088 0.000
#> GSM153446     2  0.5404     0.4592 0.152 0.664  0 0.184 0.000
#> GSM153449     1  0.5887     0.5663 0.592 0.156  0 0.252 0.000
#> GSM153453     1  0.3752     0.6669 0.812 0.064  0 0.124 0.000
#> GSM153454     1  0.7446     0.4501 0.520 0.116  0 0.228 0.136
#> GSM153455     1  0.5237     0.6288 0.684 0.156  0 0.160 0.000
#> GSM153462     2  0.5701     0.2760 0.124 0.604  0 0.272 0.000
#> GSM153465     1  0.6367     0.5020 0.520 0.232  0 0.248 0.000
#> GSM153481     2  0.4355     0.6167 0.164 0.760  0 0.076 0.000
#> GSM153482     1  0.6323     0.4937 0.528 0.252  0 0.220 0.000
#> GSM153483     1  0.6788     0.2007 0.372 0.284  0 0.344 0.000
#> GSM153485     1  0.5797     0.2406 0.592 0.276  0 0.132 0.000
#> GSM153489     1  0.5354     0.6124 0.652 0.108  0 0.240 0.000
#> GSM153490     4  0.8180     0.2811 0.236 0.112  0 0.336 0.316
#> GSM153491     1  0.5274     0.6071 0.676 0.192  0 0.132 0.000
#> GSM153492     1  0.6504     0.4291 0.472 0.172  0 0.352 0.004
#> GSM153493     5  0.7214    -0.3092 0.080 0.160  0 0.220 0.540
#> GSM153494     1  0.4636     0.6504 0.744 0.124  0 0.132 0.000
#> GSM153495     1  0.5748     0.5733 0.608 0.140  0 0.252 0.000
#> GSM153498     1  0.2260     0.6317 0.908 0.028  0 0.064 0.000
#> GSM153501     1  0.4486     0.6334 0.748 0.172  0 0.080 0.000
#> GSM153502     1  0.3971     0.6596 0.800 0.100  0 0.100 0.000
#> GSM153505     1  0.6477     0.4266 0.464 0.196  0 0.340 0.000
#> GSM153506     2  0.2561     0.6276 0.020 0.884  0 0.096 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4    p5    p6
#> GSM153405     2  0.0146     0.5224 0.004 0.996  0 0.000 0.000 0.000
#> GSM153406     2  0.3998     0.3587 0.040 0.712  0 0.248 0.000 0.000
#> GSM153419     2  0.1010     0.5206 0.004 0.960  0 0.000 0.036 0.000
#> GSM153423     1  0.4029     0.6275 0.784 0.068  0 0.124 0.000 0.024
#> GSM153425     2  0.2597     0.4760 0.000 0.824  0 0.000 0.176 0.000
#> GSM153427     2  0.5616     0.1391 0.192 0.608  0 0.180 0.000 0.020
#> GSM153428     2  0.5222     0.2650 0.164 0.656  0 0.164 0.000 0.016
#> GSM153429     2  0.5611     0.0144 0.128 0.528  0 0.336 0.000 0.008
#> GSM153433     2  0.5341     0.2519 0.180 0.640  0 0.164 0.000 0.016
#> GSM153444     2  0.6019     0.0881 0.224 0.548  0 0.204 0.000 0.024
#> GSM153448     2  0.5767     0.0269 0.300 0.496  0 0.204 0.000 0.000
#> GSM153451     1  0.2823     0.6046 0.796 0.204  0 0.000 0.000 0.000
#> GSM153452     2  0.1074     0.5230 0.028 0.960  0 0.012 0.000 0.000
#> GSM153477     1  0.5413     0.5754 0.580 0.228  0 0.192 0.000 0.000
#> GSM153479     1  0.4326     0.5603 0.656 0.044  0 0.300 0.000 0.000
#> GSM153484     2  0.4818     0.2821 0.076 0.636  0 0.284 0.000 0.004
#> GSM153488     2  0.4895     0.2309 0.108 0.636  0 0.256 0.000 0.000
#> GSM153496     2  0.3013     0.5287 0.068 0.844  0 0.088 0.000 0.000
#> GSM153497     1  0.2744     0.6292 0.840 0.144  0 0.016 0.000 0.000
#> GSM153500     4  0.5472     0.2080 0.036 0.268  0 0.620 0.004 0.072
#> GSM153503     4  0.6284     0.3892 0.144 0.404  0 0.424 0.008 0.020
#> GSM153508     3  0.0000     0.0000 0.000 0.000  1 0.000 0.000 0.000
#> GSM153409     1  0.6387    -0.3689 0.408 0.324  0 0.252 0.000 0.016
#> GSM153426     2  0.3857     0.4847 0.064 0.772  0 0.160 0.000 0.004
#> GSM153431     4  0.6005     0.4153 0.176 0.408  0 0.408 0.000 0.008
#> GSM153438     1  0.3684     0.5871 0.664 0.332  0 0.004 0.000 0.000
#> GSM153440     2  0.2932     0.4780 0.000 0.820  0 0.016 0.164 0.000
#> GSM153447     2  0.6724    -0.2561 0.096 0.464  0 0.332 0.104 0.004
#> GSM153450     1  0.5357     0.5515 0.576 0.316  0 0.096 0.000 0.012
#> GSM153456     1  0.1745     0.6561 0.920 0.068  0 0.012 0.000 0.000
#> GSM153457     1  0.1492     0.6531 0.940 0.036  0 0.024 0.000 0.000
#> GSM153458     2  0.4051    -0.2260 0.432 0.560  0 0.008 0.000 0.000
#> GSM153459     1  0.3175     0.6088 0.744 0.256  0 0.000 0.000 0.000
#> GSM153460     1  0.1418     0.6523 0.944 0.024  0 0.032 0.000 0.000
#> GSM153461     2  0.4892     0.3844 0.108 0.696  0 0.176 0.000 0.020
#> GSM153463     2  0.6553    -0.0738 0.068 0.444  0 0.128 0.360 0.000
#> GSM153464     1  0.2542     0.6484 0.876 0.044  0 0.080 0.000 0.000
#> GSM153466     2  0.3938     0.2501 0.016 0.660  0 0.324 0.000 0.000
#> GSM153467     1  0.3016     0.5960 0.836 0.012  0 0.136 0.000 0.016
#> GSM153468     2  0.3098     0.4785 0.024 0.812  0 0.164 0.000 0.000
#> GSM153469     2  0.4408     0.3310 0.056 0.664  0 0.280 0.000 0.000
#> GSM153470     4  0.5809     0.1438 0.420 0.140  0 0.432 0.000 0.008
#> GSM153471     1  0.5588     0.3526 0.560 0.264  0 0.172 0.000 0.004
#> GSM153472     2  0.3249     0.5197 0.044 0.824  0 0.128 0.000 0.004
#> GSM153473     2  0.2801     0.5332 0.068 0.860  0 0.072 0.000 0.000
#> GSM153474     6  0.2279     0.0000 0.048 0.004  0 0.048 0.000 0.900
#> GSM153475     2  0.6012    -0.1529 0.192 0.520  0 0.272 0.000 0.016
#> GSM153476     2  0.4582     0.3509 0.100 0.684  0 0.216 0.000 0.000
#> GSM153478     2  0.4469     0.4319 0.128 0.736  0 0.124 0.000 0.012
#> GSM153480     1  0.2837     0.6564 0.856 0.056  0 0.088 0.000 0.000
#> GSM153486     2  0.5052    -0.1473 0.420 0.512  0 0.064 0.000 0.004
#> GSM153487     4  0.6342     0.3972 0.332 0.324  0 0.336 0.000 0.008
#> GSM153499     2  0.5123     0.2030 0.140 0.616  0 0.244 0.000 0.000
#> GSM153504     2  0.5246     0.1265 0.148 0.596  0 0.256 0.000 0.000
#> GSM153507     4  0.6257     0.4172 0.168 0.392  0 0.416 0.000 0.024
#> GSM153404     2  0.0146     0.5224 0.004 0.996  0 0.000 0.000 0.000
#> GSM153407     2  0.5588     0.3372 0.060 0.684  0 0.152 0.084 0.020
#> GSM153408     2  0.0790     0.5273 0.000 0.968  0 0.032 0.000 0.000
#> GSM153410     2  0.1895     0.5260 0.016 0.912  0 0.072 0.000 0.000
#> GSM153411     5  0.0146     0.8128 0.000 0.004  0 0.000 0.996 0.000
#> GSM153412     2  0.1951     0.5257 0.016 0.908  0 0.076 0.000 0.000
#> GSM153413     2  0.0858     0.5273 0.004 0.968  0 0.028 0.000 0.000
#> GSM153414     2  0.3318     0.4873 0.084 0.828  0 0.084 0.000 0.004
#> GSM153415     2  0.3695     0.3601 0.016 0.712  0 0.272 0.000 0.000
#> GSM153416     1  0.4579     0.5533 0.708 0.060  0 0.212 0.000 0.020
#> GSM153417     5  0.0146     0.8128 0.000 0.004  0 0.000 0.996 0.000
#> GSM153418     2  0.1858     0.5243 0.004 0.904  0 0.092 0.000 0.000
#> GSM153420     5  0.0146     0.8128 0.000 0.004  0 0.000 0.996 0.000
#> GSM153421     5  0.0146     0.8128 0.000 0.004  0 0.000 0.996 0.000
#> GSM153422     5  0.0146     0.8128 0.000 0.004  0 0.000 0.996 0.000
#> GSM153424     2  0.6351    -0.3534 0.200 0.444  0 0.332 0.000 0.024
#> GSM153430     2  0.4530     0.4038 0.136 0.704  0 0.160 0.000 0.000
#> GSM153432     1  0.6026     0.4996 0.500 0.324  0 0.156 0.000 0.020
#> GSM153434     2  0.3314     0.4934 0.128 0.820  0 0.048 0.000 0.004
#> GSM153435     2  0.3840     0.4243 0.136 0.788  0 0.064 0.000 0.012
#> GSM153436     2  0.5597     0.1227 0.312 0.572  0 0.092 0.020 0.004
#> GSM153437     1  0.3673     0.6455 0.804 0.100  0 0.088 0.000 0.008
#> GSM153439     2  0.2872     0.4274 0.140 0.836  0 0.024 0.000 0.000
#> GSM153441     1  0.6480    -0.4395 0.372 0.356  0 0.252 0.000 0.020
#> GSM153442     2  0.3732     0.4378 0.024 0.744  0 0.228 0.004 0.000
#> GSM153443     1  0.3611     0.6693 0.796 0.096  0 0.108 0.000 0.000
#> GSM153445     1  0.3686     0.6415 0.788 0.124  0 0.088 0.000 0.000
#> GSM153446     1  0.5232     0.5041 0.644 0.144  0 0.200 0.000 0.012
#> GSM153449     2  0.5526    -0.1198 0.152 0.524  0 0.324 0.000 0.000
#> GSM153453     2  0.3677     0.5169 0.064 0.804  0 0.120 0.000 0.012
#> GSM153454     2  0.6734    -0.1154 0.108 0.492  0 0.272 0.128 0.000
#> GSM153455     2  0.5029     0.3795 0.144 0.664  0 0.184 0.000 0.008
#> GSM153462     1  0.5173     0.2449 0.568 0.108  0 0.324 0.000 0.000
#> GSM153465     2  0.6262    -0.1516 0.232 0.496  0 0.248 0.000 0.024
#> GSM153481     1  0.3893     0.6188 0.764 0.156  0 0.080 0.000 0.000
#> GSM153482     2  0.6223    -0.1470 0.232 0.492  0 0.256 0.000 0.020
#> GSM153483     4  0.6160     0.4700 0.260 0.328  0 0.408 0.000 0.004
#> GSM153485     2  0.5399     0.1705 0.260 0.588  0 0.148 0.000 0.004
#> GSM153489     2  0.4969     0.2972 0.100 0.636  0 0.260 0.000 0.004
#> GSM153490     4  0.7333     0.3353 0.100 0.196  0 0.404 0.292 0.008
#> GSM153491     2  0.5307     0.2924 0.196 0.652  0 0.128 0.000 0.024
#> GSM153492     4  0.5850     0.4083 0.164 0.412  0 0.420 0.000 0.004
#> GSM153493     5  0.7151    -0.0763 0.148 0.048  0 0.356 0.412 0.036
#> GSM153494     2  0.4343     0.4705 0.120 0.724  0 0.156 0.000 0.000
#> GSM153495     2  0.5740     0.1454 0.144 0.584  0 0.248 0.000 0.024
#> GSM153498     2  0.2069     0.5304 0.020 0.908  0 0.068 0.000 0.004
#> GSM153501     2  0.4186     0.4162 0.180 0.744  0 0.068 0.000 0.008
#> GSM153502     2  0.3771     0.4995 0.100 0.800  0 0.088 0.000 0.012
#> GSM153505     4  0.6380     0.4304 0.196 0.380  0 0.400 0.000 0.024
#> GSM153506     1  0.2445     0.6428 0.872 0.020  0 0.108 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) k
#> CV:pam 94           0.1780 2
#> CV:pam 91           0.1186 3
#> CV:pam 91           0.1186 4
#> CV:pam 75           0.0898 5
#> CV:pam 40           0.0553 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.991       0.995         0.2676 0.739   0.739
#> 3 3 0.446           0.711       0.850         1.0020 0.730   0.635
#> 4 4 0.725           0.850       0.911         0.2114 0.756   0.542
#> 5 5 0.541           0.681       0.819         0.0729 0.986   0.960
#> 6 6 0.567           0.683       0.798         0.0609 0.911   0.758

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     1  0.0000      0.999 1.000 0.000
#> GSM153406     1  0.0376      0.996 0.996 0.004
#> GSM153419     1  0.0000      0.999 1.000 0.000
#> GSM153423     2  0.0000      0.994 0.000 1.000
#> GSM153425     1  0.0000      0.999 1.000 0.000
#> GSM153427     2  0.4298      0.908 0.088 0.912
#> GSM153428     2  0.0376      0.993 0.004 0.996
#> GSM153429     2  0.0376      0.993 0.004 0.996
#> GSM153433     2  0.0376      0.993 0.004 0.996
#> GSM153444     2  0.0376      0.993 0.004 0.996
#> GSM153448     2  0.0000      0.994 0.000 1.000
#> GSM153451     2  0.0376      0.993 0.004 0.996
#> GSM153452     2  0.0672      0.991 0.008 0.992
#> GSM153477     2  0.0000      0.994 0.000 1.000
#> GSM153479     2  0.0000      0.994 0.000 1.000
#> GSM153484     2  0.0000      0.994 0.000 1.000
#> GSM153488     2  0.0000      0.994 0.000 1.000
#> GSM153496     2  0.0376      0.993 0.004 0.996
#> GSM153497     2  0.0000      0.994 0.000 1.000
#> GSM153500     2  0.1184      0.986 0.016 0.984
#> GSM153503     2  0.0376      0.993 0.004 0.996
#> GSM153508     2  0.0672      0.991 0.008 0.992
#> GSM153409     2  0.0376      0.993 0.004 0.996
#> GSM153426     2  0.0376      0.993 0.004 0.996
#> GSM153431     2  0.0376      0.993 0.004 0.996
#> GSM153438     2  0.0376      0.993 0.004 0.996
#> GSM153440     2  0.2948      0.952 0.052 0.948
#> GSM153447     2  0.0672      0.991 0.008 0.992
#> GSM153450     2  0.0376      0.993 0.004 0.996
#> GSM153456     2  0.0376      0.993 0.004 0.996
#> GSM153457     2  0.0376      0.993 0.004 0.996
#> GSM153458     2  0.0376      0.993 0.004 0.996
#> GSM153459     2  0.0376      0.993 0.004 0.996
#> GSM153460     2  0.0376      0.993 0.004 0.996
#> GSM153461     2  0.0000      0.994 0.000 1.000
#> GSM153463     2  0.0938      0.989 0.012 0.988
#> GSM153464     2  0.0000      0.994 0.000 1.000
#> GSM153466     2  0.0000      0.994 0.000 1.000
#> GSM153467     2  0.0000      0.994 0.000 1.000
#> GSM153468     2  0.0000      0.994 0.000 1.000
#> GSM153469     2  0.0376      0.993 0.004 0.996
#> GSM153470     2  0.0000      0.994 0.000 1.000
#> GSM153471     2  0.0000      0.994 0.000 1.000
#> GSM153472     2  0.0000      0.994 0.000 1.000
#> GSM153473     2  0.0376      0.993 0.004 0.996
#> GSM153474     2  0.1184      0.986 0.016 0.984
#> GSM153475     2  0.0000      0.994 0.000 1.000
#> GSM153476     2  0.1843      0.975 0.028 0.972
#> GSM153478     2  0.0000      0.994 0.000 1.000
#> GSM153480     2  0.0000      0.994 0.000 1.000
#> GSM153486     2  0.0000      0.994 0.000 1.000
#> GSM153487     2  0.0000      0.994 0.000 1.000
#> GSM153499     2  0.0000      0.994 0.000 1.000
#> GSM153504     2  0.0376      0.993 0.004 0.996
#> GSM153507     2  0.0000      0.994 0.000 1.000
#> GSM153404     1  0.0000      0.999 1.000 0.000
#> GSM153407     2  0.5408      0.864 0.124 0.876
#> GSM153408     1  0.0000      0.999 1.000 0.000
#> GSM153410     1  0.0376      0.996 0.996 0.004
#> GSM153411     1  0.0000      0.999 1.000 0.000
#> GSM153412     1  0.0000      0.999 1.000 0.000
#> GSM153413     1  0.0000      0.999 1.000 0.000
#> GSM153414     2  0.0376      0.993 0.004 0.996
#> GSM153415     1  0.0000      0.999 1.000 0.000
#> GSM153416     2  0.0000      0.994 0.000 1.000
#> GSM153417     1  0.0000      0.999 1.000 0.000
#> GSM153418     1  0.0000      0.999 1.000 0.000
#> GSM153420     1  0.0000      0.999 1.000 0.000
#> GSM153421     1  0.0000      0.999 1.000 0.000
#> GSM153422     1  0.0000      0.999 1.000 0.000
#> GSM153424     2  0.0000      0.994 0.000 1.000
#> GSM153430     2  0.0376      0.993 0.004 0.996
#> GSM153432     2  0.0376      0.993 0.004 0.996
#> GSM153434     2  0.0938      0.988 0.012 0.988
#> GSM153435     2  0.0000      0.994 0.000 1.000
#> GSM153436     2  0.0376      0.993 0.004 0.996
#> GSM153437     2  0.0000      0.994 0.000 1.000
#> GSM153439     2  0.0376      0.993 0.004 0.996
#> GSM153441     2  0.0000      0.994 0.000 1.000
#> GSM153442     2  0.0000      0.994 0.000 1.000
#> GSM153443     2  0.0000      0.994 0.000 1.000
#> GSM153445     2  0.0000      0.994 0.000 1.000
#> GSM153446     2  0.0000      0.994 0.000 1.000
#> GSM153449     2  0.0000      0.994 0.000 1.000
#> GSM153453     2  0.0000      0.994 0.000 1.000
#> GSM153454     2  0.0938      0.988 0.012 0.988
#> GSM153455     2  0.0376      0.993 0.004 0.996
#> GSM153462     2  0.0000      0.994 0.000 1.000
#> GSM153465     2  0.0000      0.994 0.000 1.000
#> GSM153481     2  0.0000      0.994 0.000 1.000
#> GSM153482     2  0.0376      0.993 0.004 0.996
#> GSM153483     2  0.0000      0.994 0.000 1.000
#> GSM153485     2  0.0376      0.993 0.004 0.996
#> GSM153489     2  0.0376      0.993 0.004 0.996
#> GSM153490     2  0.0376      0.993 0.004 0.996
#> GSM153491     2  0.0000      0.994 0.000 1.000
#> GSM153492     2  0.0938      0.988 0.012 0.988
#> GSM153493     2  0.0938      0.988 0.012 0.988
#> GSM153494     2  0.0000      0.994 0.000 1.000
#> GSM153495     2  0.0376      0.993 0.004 0.996
#> GSM153498     2  0.0672      0.991 0.008 0.992
#> GSM153501     2  0.1184      0.986 0.016 0.984
#> GSM153502     2  0.0000      0.994 0.000 1.000
#> GSM153505     2  0.0938      0.989 0.012 0.988
#> GSM153506     2  0.0000      0.994 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     3  0.0000      0.996 0.000 0.000 1.000
#> GSM153406     3  0.0661      0.991 0.008 0.004 0.988
#> GSM153419     3  0.0000      0.996 0.000 0.000 1.000
#> GSM153423     2  0.3619      0.715 0.136 0.864 0.000
#> GSM153425     3  0.0424      0.991 0.008 0.000 0.992
#> GSM153427     1  0.7128      0.649 0.664 0.284 0.052
#> GSM153428     1  0.5982      0.611 0.668 0.328 0.004
#> GSM153429     2  0.2796      0.777 0.092 0.908 0.000
#> GSM153433     1  0.6252      0.535 0.556 0.444 0.000
#> GSM153444     2  0.4399      0.689 0.188 0.812 0.000
#> GSM153448     2  0.1163      0.799 0.028 0.972 0.000
#> GSM153451     2  0.4178      0.686 0.172 0.828 0.000
#> GSM153452     1  0.6753      0.467 0.596 0.388 0.016
#> GSM153477     2  0.1289      0.795 0.032 0.968 0.000
#> GSM153479     2  0.2537      0.783 0.080 0.920 0.000
#> GSM153484     2  0.1860      0.791 0.052 0.948 0.000
#> GSM153488     2  0.2959      0.774 0.100 0.900 0.000
#> GSM153496     2  0.6225     -0.140 0.432 0.568 0.000
#> GSM153497     2  0.3192      0.739 0.112 0.888 0.000
#> GSM153500     1  0.4346      0.714 0.816 0.184 0.000
#> GSM153503     1  0.5098      0.721 0.752 0.248 0.000
#> GSM153508     1  0.6154      0.478 0.592 0.408 0.000
#> GSM153409     2  0.4062      0.697 0.164 0.836 0.000
#> GSM153426     2  0.4002      0.695 0.160 0.840 0.000
#> GSM153431     1  0.6026      0.555 0.624 0.376 0.000
#> GSM153438     2  0.3941      0.699 0.156 0.844 0.000
#> GSM153440     1  0.6414      0.694 0.716 0.248 0.036
#> GSM153447     1  0.5325      0.700 0.748 0.248 0.004
#> GSM153450     2  0.4346      0.690 0.184 0.816 0.000
#> GSM153456     2  0.4178      0.686 0.172 0.828 0.000
#> GSM153457     2  0.4178      0.686 0.172 0.828 0.000
#> GSM153458     2  0.4178      0.685 0.172 0.828 0.000
#> GSM153459     2  0.4178      0.685 0.172 0.828 0.000
#> GSM153460     2  0.4235      0.681 0.176 0.824 0.000
#> GSM153461     2  0.6282      0.312 0.384 0.612 0.004
#> GSM153463     1  0.4654      0.722 0.792 0.208 0.000
#> GSM153464     2  0.0424      0.795 0.008 0.992 0.000
#> GSM153466     2  0.1860      0.791 0.052 0.948 0.000
#> GSM153467     2  0.0424      0.795 0.008 0.992 0.000
#> GSM153468     2  0.1529      0.795 0.040 0.960 0.000
#> GSM153469     2  0.1643      0.793 0.044 0.956 0.000
#> GSM153470     2  0.0592      0.797 0.012 0.988 0.000
#> GSM153471     2  0.0424      0.796 0.008 0.992 0.000
#> GSM153472     2  0.5327      0.546 0.272 0.728 0.000
#> GSM153473     2  0.5138      0.573 0.252 0.748 0.000
#> GSM153474     1  0.4346      0.713 0.816 0.184 0.000
#> GSM153475     2  0.4121      0.708 0.168 0.832 0.000
#> GSM153476     2  0.6062      0.488 0.276 0.708 0.016
#> GSM153478     2  0.6192     -0.116 0.420 0.580 0.000
#> GSM153480     2  0.0747      0.794 0.016 0.984 0.000
#> GSM153486     2  0.0892      0.794 0.020 0.980 0.000
#> GSM153487     2  0.3482      0.749 0.128 0.872 0.000
#> GSM153499     2  0.0592      0.797 0.012 0.988 0.000
#> GSM153504     2  0.5465      0.518 0.288 0.712 0.000
#> GSM153507     2  0.3038      0.768 0.104 0.896 0.000
#> GSM153404     3  0.0424      0.992 0.008 0.000 0.992
#> GSM153407     1  0.6148      0.688 0.728 0.244 0.028
#> GSM153408     3  0.0237      0.996 0.004 0.000 0.996
#> GSM153410     3  0.0475      0.993 0.004 0.004 0.992
#> GSM153411     3  0.0000      0.996 0.000 0.000 1.000
#> GSM153412     3  0.0237      0.996 0.004 0.000 0.996
#> GSM153413     3  0.0237      0.996 0.004 0.000 0.996
#> GSM153414     2  0.5216      0.600 0.260 0.740 0.000
#> GSM153415     3  0.0237      0.996 0.004 0.000 0.996
#> GSM153416     2  0.3879      0.705 0.152 0.848 0.000
#> GSM153417     3  0.0000      0.996 0.000 0.000 1.000
#> GSM153418     3  0.0237      0.996 0.004 0.000 0.996
#> GSM153420     3  0.0000      0.996 0.000 0.000 1.000
#> GSM153421     3  0.0000      0.996 0.000 0.000 1.000
#> GSM153422     3  0.0000      0.996 0.000 0.000 1.000
#> GSM153424     1  0.5815      0.643 0.692 0.304 0.004
#> GSM153430     1  0.6308      0.364 0.508 0.492 0.000
#> GSM153432     2  0.1753      0.794 0.048 0.952 0.000
#> GSM153434     2  0.5835      0.311 0.340 0.660 0.000
#> GSM153435     2  0.0747      0.797 0.016 0.984 0.000
#> GSM153436     1  0.5591      0.669 0.696 0.304 0.000
#> GSM153437     2  0.2711      0.757 0.088 0.912 0.000
#> GSM153439     2  0.1964      0.791 0.056 0.944 0.000
#> GSM153441     2  0.3340      0.750 0.120 0.880 0.000
#> GSM153442     2  0.5327      0.450 0.272 0.728 0.000
#> GSM153443     2  0.0592      0.795 0.012 0.988 0.000
#> GSM153445     2  0.0000      0.796 0.000 1.000 0.000
#> GSM153446     2  0.0747      0.795 0.016 0.984 0.000
#> GSM153449     2  0.5591      0.416 0.304 0.696 0.000
#> GSM153453     2  0.5760      0.364 0.328 0.672 0.000
#> GSM153454     1  0.4291      0.713 0.820 0.180 0.000
#> GSM153455     2  0.3116      0.768 0.108 0.892 0.000
#> GSM153462     2  0.0424      0.797 0.008 0.992 0.000
#> GSM153465     2  0.0747      0.797 0.016 0.984 0.000
#> GSM153481     2  0.1163      0.796 0.028 0.972 0.000
#> GSM153482     2  0.4235      0.697 0.176 0.824 0.000
#> GSM153483     2  0.0424      0.797 0.008 0.992 0.000
#> GSM153485     2  0.2878      0.774 0.096 0.904 0.000
#> GSM153489     2  0.2711      0.777 0.088 0.912 0.000
#> GSM153490     2  0.6307     -0.364 0.488 0.512 0.000
#> GSM153491     2  0.5291      0.541 0.268 0.732 0.000
#> GSM153492     1  0.5465      0.705 0.712 0.288 0.000
#> GSM153493     1  0.4555      0.716 0.800 0.200 0.000
#> GSM153494     2  0.1753      0.794 0.048 0.952 0.000
#> GSM153495     1  0.4974      0.727 0.764 0.236 0.000
#> GSM153498     2  0.3879      0.724 0.152 0.848 0.000
#> GSM153501     1  0.4796      0.716 0.780 0.220 0.000
#> GSM153502     2  0.5058      0.582 0.244 0.756 0.000
#> GSM153505     1  0.4555      0.719 0.800 0.200 0.000
#> GSM153506     2  0.0237      0.797 0.004 0.996 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM153406     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM153419     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM153423     4  0.4040      0.688 0.000 0.248 0.000 0.752
#> GSM153425     3  0.3485      0.843 0.028 0.000 0.856 0.116
#> GSM153427     4  0.1890      0.860 0.008 0.056 0.000 0.936
#> GSM153428     4  0.2021      0.864 0.012 0.056 0.000 0.932
#> GSM153429     2  0.1059      0.907 0.016 0.972 0.000 0.012
#> GSM153433     2  0.3367      0.838 0.028 0.864 0.000 0.108
#> GSM153444     4  0.1474      0.869 0.000 0.052 0.000 0.948
#> GSM153448     2  0.1389      0.908 0.000 0.952 0.000 0.048
#> GSM153451     4  0.2647      0.822 0.000 0.120 0.000 0.880
#> GSM153452     4  0.1854      0.862 0.012 0.048 0.000 0.940
#> GSM153477     2  0.0921      0.908 0.000 0.972 0.000 0.028
#> GSM153479     2  0.0188      0.908 0.000 0.996 0.000 0.004
#> GSM153484     2  0.0592      0.909 0.000 0.984 0.000 0.016
#> GSM153488     2  0.0707      0.909 0.000 0.980 0.000 0.020
#> GSM153496     2  0.1733      0.904 0.024 0.948 0.000 0.028
#> GSM153497     2  0.4624      0.532 0.000 0.660 0.000 0.340
#> GSM153500     1  0.1209      0.859 0.964 0.032 0.000 0.004
#> GSM153503     1  0.3217      0.834 0.860 0.128 0.000 0.012
#> GSM153508     1  0.2408      0.859 0.920 0.044 0.000 0.036
#> GSM153409     4  0.1474      0.867 0.000 0.052 0.000 0.948
#> GSM153426     4  0.1557      0.866 0.000 0.056 0.000 0.944
#> GSM153431     4  0.5384      0.570 0.028 0.324 0.000 0.648
#> GSM153438     4  0.2973      0.804 0.000 0.144 0.000 0.856
#> GSM153440     4  0.3653      0.819 0.024 0.112 0.008 0.856
#> GSM153447     4  0.4868      0.665 0.024 0.256 0.000 0.720
#> GSM153450     4  0.1743      0.869 0.004 0.056 0.000 0.940
#> GSM153456     4  0.1022      0.861 0.000 0.032 0.000 0.968
#> GSM153457     4  0.1474      0.861 0.000 0.052 0.000 0.948
#> GSM153458     4  0.0817      0.860 0.000 0.024 0.000 0.976
#> GSM153459     4  0.0921      0.863 0.000 0.028 0.000 0.972
#> GSM153460     4  0.1022      0.862 0.000 0.032 0.000 0.968
#> GSM153461     4  0.1807      0.864 0.008 0.052 0.000 0.940
#> GSM153463     2  0.7500     -0.321 0.404 0.416 0.000 0.180
#> GSM153464     2  0.2868      0.854 0.000 0.864 0.000 0.136
#> GSM153466     2  0.0895      0.910 0.004 0.976 0.000 0.020
#> GSM153467     2  0.2469      0.876 0.000 0.892 0.000 0.108
#> GSM153468     2  0.0592      0.909 0.000 0.984 0.000 0.016
#> GSM153469     2  0.1209      0.910 0.004 0.964 0.000 0.032
#> GSM153470     2  0.0921      0.909 0.000 0.972 0.000 0.028
#> GSM153471     2  0.1302      0.907 0.000 0.956 0.000 0.044
#> GSM153472     2  0.1677      0.904 0.040 0.948 0.000 0.012
#> GSM153473     2  0.1305      0.903 0.036 0.960 0.000 0.004
#> GSM153474     1  0.1004      0.853 0.972 0.024 0.000 0.004
#> GSM153475     2  0.1297      0.908 0.020 0.964 0.000 0.016
#> GSM153476     2  0.2099      0.900 0.040 0.936 0.004 0.020
#> GSM153478     2  0.1624      0.898 0.028 0.952 0.000 0.020
#> GSM153480     2  0.3266      0.822 0.000 0.832 0.000 0.168
#> GSM153486     2  0.3208      0.840 0.004 0.848 0.000 0.148
#> GSM153487     2  0.1820      0.902 0.036 0.944 0.000 0.020
#> GSM153499     2  0.1398      0.910 0.004 0.956 0.000 0.040
#> GSM153504     1  0.4920      0.509 0.628 0.368 0.000 0.004
#> GSM153507     2  0.1488      0.905 0.032 0.956 0.000 0.012
#> GSM153404     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM153407     4  0.2060      0.861 0.016 0.052 0.000 0.932
#> GSM153408     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM153410     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM153411     3  0.0921      0.975 0.028 0.000 0.972 0.000
#> GSM153412     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM153413     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM153414     4  0.1722      0.866 0.008 0.048 0.000 0.944
#> GSM153415     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM153416     4  0.4605      0.566 0.000 0.336 0.000 0.664
#> GSM153417     3  0.0921      0.975 0.028 0.000 0.972 0.000
#> GSM153418     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM153420     3  0.0921      0.975 0.028 0.000 0.972 0.000
#> GSM153421     3  0.0921      0.975 0.028 0.000 0.972 0.000
#> GSM153422     3  0.0921      0.975 0.028 0.000 0.972 0.000
#> GSM153424     4  0.2635      0.856 0.020 0.076 0.000 0.904
#> GSM153430     2  0.3862      0.794 0.024 0.824 0.000 0.152
#> GSM153432     2  0.1398      0.910 0.004 0.956 0.000 0.040
#> GSM153434     2  0.3913      0.810 0.028 0.824 0.000 0.148
#> GSM153435     2  0.2530      0.868 0.000 0.888 0.000 0.112
#> GSM153436     4  0.5110      0.566 0.016 0.328 0.000 0.656
#> GSM153437     2  0.4500      0.551 0.000 0.684 0.000 0.316
#> GSM153439     2  0.1209      0.910 0.004 0.964 0.000 0.032
#> GSM153441     2  0.2730      0.886 0.016 0.896 0.000 0.088
#> GSM153442     2  0.2521      0.890 0.024 0.912 0.000 0.064
#> GSM153443     2  0.2469      0.873 0.000 0.892 0.000 0.108
#> GSM153445     2  0.2081      0.889 0.000 0.916 0.000 0.084
#> GSM153446     2  0.3219      0.827 0.000 0.836 0.000 0.164
#> GSM153449     2  0.1833      0.901 0.032 0.944 0.000 0.024
#> GSM153453     2  0.1677      0.900 0.040 0.948 0.000 0.012
#> GSM153454     1  0.2402      0.857 0.912 0.076 0.000 0.012
#> GSM153455     2  0.1059      0.907 0.016 0.972 0.000 0.012
#> GSM153462     2  0.1118      0.906 0.000 0.964 0.000 0.036
#> GSM153465     2  0.2011      0.893 0.000 0.920 0.000 0.080
#> GSM153481     2  0.1474      0.904 0.000 0.948 0.000 0.052
#> GSM153482     2  0.1706      0.900 0.036 0.948 0.000 0.016
#> GSM153483     2  0.1022      0.907 0.000 0.968 0.000 0.032
#> GSM153485     2  0.0672      0.908 0.008 0.984 0.000 0.008
#> GSM153489     2  0.0937      0.906 0.012 0.976 0.000 0.012
#> GSM153490     2  0.4746      0.495 0.304 0.688 0.000 0.008
#> GSM153491     2  0.1854      0.899 0.048 0.940 0.000 0.012
#> GSM153492     2  0.4567      0.587 0.276 0.716 0.000 0.008
#> GSM153493     1  0.1389      0.868 0.952 0.048 0.000 0.000
#> GSM153494     2  0.0592      0.909 0.000 0.984 0.000 0.016
#> GSM153495     1  0.4720      0.614 0.672 0.324 0.000 0.004
#> GSM153498     2  0.1707      0.909 0.024 0.952 0.004 0.020
#> GSM153501     1  0.1389      0.866 0.952 0.048 0.000 0.000
#> GSM153502     2  0.1584      0.899 0.036 0.952 0.000 0.012
#> GSM153505     1  0.1474      0.869 0.948 0.052 0.000 0.000
#> GSM153506     2  0.2032      0.902 0.028 0.936 0.000 0.036

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     3  0.2690     0.5380 0.000 0.000 0.844 0.000 0.156
#> GSM153406     3  0.0000     0.7077 0.000 0.000 1.000 0.000 0.000
#> GSM153419     3  0.1478     0.6616 0.000 0.000 0.936 0.000 0.064
#> GSM153423     2  0.2818     0.7210 0.132 0.856 0.000 0.000 0.012
#> GSM153425     5  0.5649     0.0000 0.000 0.076 0.452 0.000 0.472
#> GSM153427     2  0.4988     0.6608 0.060 0.656 0.000 0.000 0.284
#> GSM153428     2  0.4990     0.6886 0.056 0.688 0.000 0.008 0.248
#> GSM153429     1  0.1731     0.8202 0.940 0.012 0.000 0.008 0.040
#> GSM153433     1  0.4824     0.7060 0.720 0.076 0.000 0.004 0.200
#> GSM153444     2  0.2735     0.7760 0.036 0.880 0.000 0.000 0.084
#> GSM153448     1  0.4985     0.7521 0.728 0.116 0.000 0.008 0.148
#> GSM153451     2  0.1914     0.7620 0.060 0.924 0.000 0.000 0.016
#> GSM153452     2  0.4706     0.6849 0.052 0.692 0.000 0.000 0.256
#> GSM153477     1  0.1644     0.8181 0.940 0.048 0.000 0.004 0.008
#> GSM153479     1  0.0162     0.8166 0.996 0.004 0.000 0.000 0.000
#> GSM153484     1  0.0992     0.8203 0.968 0.024 0.000 0.000 0.008
#> GSM153488     1  0.1095     0.8189 0.968 0.008 0.000 0.012 0.012
#> GSM153496     1  0.2824     0.8144 0.888 0.016 0.000 0.028 0.068
#> GSM153497     1  0.5021     0.4246 0.556 0.416 0.000 0.008 0.020
#> GSM153500     4  0.1197     0.8530 0.048 0.000 0.000 0.952 0.000
#> GSM153503     4  0.3080     0.8135 0.124 0.004 0.000 0.852 0.020
#> GSM153508     4  0.3314     0.7460 0.020 0.020 0.000 0.852 0.108
#> GSM153409     2  0.0290     0.7822 0.008 0.992 0.000 0.000 0.000
#> GSM153426     2  0.0898     0.7833 0.020 0.972 0.000 0.000 0.008
#> GSM153431     2  0.6762     0.3563 0.336 0.452 0.000 0.008 0.204
#> GSM153438     2  0.1740     0.7757 0.056 0.932 0.000 0.000 0.012
#> GSM153440     2  0.5741     0.6391 0.096 0.616 0.004 0.004 0.280
#> GSM153447     2  0.6816     0.5241 0.208 0.496 0.000 0.016 0.280
#> GSM153450     2  0.2605     0.7833 0.044 0.896 0.000 0.004 0.056
#> GSM153456     2  0.0798     0.7782 0.008 0.976 0.000 0.000 0.016
#> GSM153457     2  0.1117     0.7782 0.020 0.964 0.000 0.000 0.016
#> GSM153458     2  0.0566     0.7794 0.004 0.984 0.000 0.000 0.012
#> GSM153459     2  0.0451     0.7797 0.004 0.988 0.000 0.000 0.008
#> GSM153460     2  0.0693     0.7791 0.008 0.980 0.000 0.000 0.012
#> GSM153461     2  0.3496     0.7735 0.056 0.844 0.000 0.008 0.092
#> GSM153463     1  0.7055     0.1367 0.488 0.160 0.000 0.312 0.040
#> GSM153464     1  0.4394     0.7185 0.732 0.228 0.000 0.004 0.036
#> GSM153466     1  0.0960     0.8180 0.972 0.016 0.000 0.004 0.008
#> GSM153467     1  0.4235     0.7618 0.768 0.184 0.000 0.008 0.040
#> GSM153468     1  0.1493     0.8238 0.948 0.024 0.000 0.000 0.028
#> GSM153469     1  0.2331     0.8210 0.908 0.064 0.000 0.004 0.024
#> GSM153470     1  0.2012     0.8185 0.920 0.060 0.000 0.000 0.020
#> GSM153471     1  0.2570     0.8127 0.888 0.084 0.000 0.000 0.028
#> GSM153472     1  0.3536     0.7813 0.840 0.008 0.000 0.100 0.052
#> GSM153473     1  0.2193     0.8152 0.920 0.008 0.000 0.028 0.044
#> GSM153474     4  0.2074     0.8293 0.036 0.000 0.000 0.920 0.044
#> GSM153475     1  0.1770     0.8190 0.936 0.008 0.000 0.008 0.048
#> GSM153476     1  0.3519     0.7922 0.836 0.020 0.004 0.012 0.128
#> GSM153478     1  0.3341     0.7883 0.840 0.024 0.000 0.008 0.128
#> GSM153480     1  0.4491     0.6876 0.708 0.260 0.000 0.008 0.024
#> GSM153486     1  0.4235     0.7316 0.748 0.220 0.000 0.012 0.020
#> GSM153487     1  0.4121     0.7556 0.808 0.016 0.000 0.104 0.072
#> GSM153499     1  0.5538     0.7247 0.700 0.056 0.000 0.060 0.184
#> GSM153504     1  0.5527    -0.0807 0.476 0.012 0.000 0.472 0.040
#> GSM153507     1  0.3936     0.7448 0.812 0.008 0.000 0.116 0.064
#> GSM153404     3  0.0703     0.6866 0.000 0.000 0.976 0.000 0.024
#> GSM153407     2  0.5219     0.6521 0.064 0.644 0.000 0.004 0.288
#> GSM153408     3  0.0000     0.7077 0.000 0.000 1.000 0.000 0.000
#> GSM153410     3  0.0000     0.7077 0.000 0.000 1.000 0.000 0.000
#> GSM153411     3  0.3999     0.0795 0.000 0.000 0.656 0.000 0.344
#> GSM153412     3  0.0000     0.7077 0.000 0.000 1.000 0.000 0.000
#> GSM153413     3  0.0000     0.7077 0.000 0.000 1.000 0.000 0.000
#> GSM153414     2  0.2632     0.7780 0.040 0.888 0.000 0.000 0.072
#> GSM153415     3  0.0000     0.7077 0.000 0.000 1.000 0.000 0.000
#> GSM153416     2  0.3242     0.6719 0.172 0.816 0.000 0.000 0.012
#> GSM153417     3  0.3999     0.0795 0.000 0.000 0.656 0.000 0.344
#> GSM153418     3  0.0000     0.7077 0.000 0.000 1.000 0.000 0.000
#> GSM153420     3  0.3999     0.0795 0.000 0.000 0.656 0.000 0.344
#> GSM153421     3  0.3999     0.0795 0.000 0.000 0.656 0.000 0.344
#> GSM153422     3  0.3999     0.0795 0.000 0.000 0.656 0.000 0.344
#> GSM153424     2  0.5660     0.6486 0.096 0.640 0.000 0.012 0.252
#> GSM153430     1  0.5764     0.6273 0.656 0.128 0.000 0.016 0.200
#> GSM153432     1  0.2228     0.8237 0.916 0.056 0.000 0.008 0.020
#> GSM153434     1  0.5453     0.6556 0.672 0.112 0.000 0.008 0.208
#> GSM153435     1  0.3972     0.7480 0.764 0.212 0.000 0.008 0.016
#> GSM153436     2  0.6810     0.4294 0.300 0.460 0.000 0.008 0.232
#> GSM153437     1  0.4883     0.2481 0.516 0.464 0.000 0.004 0.016
#> GSM153439     1  0.1211     0.8183 0.960 0.024 0.000 0.000 0.016
#> GSM153441     1  0.4473     0.7571 0.768 0.076 0.000 0.008 0.148
#> GSM153442     1  0.4487     0.7476 0.768 0.036 0.000 0.028 0.168
#> GSM153443     1  0.4106     0.7501 0.768 0.196 0.000 0.008 0.028
#> GSM153445     1  0.3525     0.7810 0.816 0.156 0.000 0.004 0.024
#> GSM153446     1  0.3947     0.7252 0.748 0.236 0.000 0.008 0.008
#> GSM153449     1  0.3815     0.7709 0.804 0.032 0.000 0.008 0.156
#> GSM153453     1  0.3124     0.8012 0.872 0.012 0.000 0.056 0.060
#> GSM153454     4  0.2654     0.8395 0.084 0.000 0.000 0.884 0.032
#> GSM153455     1  0.1569     0.8169 0.944 0.004 0.000 0.008 0.044
#> GSM153462     1  0.2305     0.8110 0.896 0.092 0.000 0.000 0.012
#> GSM153465     1  0.3145     0.8002 0.844 0.136 0.000 0.008 0.012
#> GSM153481     1  0.2589     0.8130 0.888 0.092 0.000 0.008 0.012
#> GSM153482     1  0.2774     0.8098 0.892 0.012 0.000 0.048 0.048
#> GSM153483     1  0.3629     0.8083 0.832 0.072 0.000 0.004 0.092
#> GSM153485     1  0.1471     0.8213 0.952 0.020 0.000 0.004 0.024
#> GSM153489     1  0.1314     0.8176 0.960 0.012 0.000 0.012 0.016
#> GSM153490     1  0.5421     0.3608 0.584 0.012 0.000 0.360 0.044
#> GSM153491     1  0.2976     0.8036 0.880 0.012 0.000 0.064 0.044
#> GSM153492     1  0.5207     0.4689 0.620 0.008 0.000 0.328 0.044
#> GSM153493     4  0.1608     0.8580 0.072 0.000 0.000 0.928 0.000
#> GSM153494     1  0.2075     0.8240 0.924 0.040 0.000 0.004 0.032
#> GSM153495     4  0.5280     0.3702 0.364 0.004 0.000 0.584 0.048
#> GSM153498     1  0.3018     0.8159 0.876 0.024 0.000 0.020 0.080
#> GSM153501     4  0.1410     0.8604 0.060 0.000 0.000 0.940 0.000
#> GSM153502     1  0.3197     0.7878 0.864 0.008 0.000 0.076 0.052
#> GSM153505     4  0.1894     0.8607 0.072 0.000 0.000 0.920 0.008
#> GSM153506     1  0.6845     0.6202 0.588 0.080 0.000 0.128 0.204

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     3  0.4460     0.0489 0.000 0.000 0.520 0.000 0.452 0.028
#> GSM153406     3  0.0000     0.9160 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM153419     3  0.2814     0.7403 0.000 0.000 0.820 0.000 0.172 0.008
#> GSM153423     2  0.2112     0.6641 0.088 0.896 0.000 0.000 0.000 0.016
#> GSM153425     5  0.3293     0.8335 0.000 0.008 0.040 0.000 0.824 0.128
#> GSM153427     2  0.5240     0.2314 0.028 0.600 0.000 0.000 0.060 0.312
#> GSM153428     6  0.4658     0.6146 0.040 0.376 0.000 0.000 0.004 0.580
#> GSM153429     1  0.1699     0.7930 0.936 0.012 0.000 0.008 0.004 0.040
#> GSM153433     1  0.5497     0.3999 0.560 0.124 0.000 0.008 0.000 0.308
#> GSM153444     2  0.2425     0.6840 0.024 0.884 0.000 0.000 0.004 0.088
#> GSM153448     1  0.3516     0.7658 0.812 0.096 0.000 0.004 0.000 0.088
#> GSM153451     2  0.0767     0.7397 0.012 0.976 0.000 0.000 0.004 0.008
#> GSM153452     2  0.4295     0.3889 0.032 0.692 0.000 0.000 0.012 0.264
#> GSM153477     1  0.1623     0.7871 0.940 0.032 0.000 0.004 0.004 0.020
#> GSM153479     1  0.1265     0.7914 0.948 0.000 0.000 0.008 0.000 0.044
#> GSM153484     1  0.1065     0.7930 0.964 0.008 0.000 0.008 0.000 0.020
#> GSM153488     1  0.1956     0.7859 0.908 0.000 0.000 0.008 0.004 0.080
#> GSM153496     1  0.4077     0.7261 0.736 0.008 0.000 0.044 0.000 0.212
#> GSM153497     1  0.4634     0.4684 0.588 0.376 0.000 0.004 0.008 0.024
#> GSM153500     4  0.0717     0.7776 0.016 0.000 0.000 0.976 0.000 0.008
#> GSM153503     4  0.2801     0.7611 0.072 0.000 0.000 0.860 0.000 0.068
#> GSM153508     4  0.4028     0.6751 0.012 0.000 0.000 0.756 0.048 0.184
#> GSM153409     2  0.1092     0.7428 0.020 0.960 0.000 0.000 0.000 0.020
#> GSM153426     2  0.0725     0.7484 0.012 0.976 0.000 0.000 0.000 0.012
#> GSM153431     6  0.5830     0.5950 0.180 0.264 0.000 0.012 0.000 0.544
#> GSM153438     2  0.0458     0.7467 0.016 0.984 0.000 0.000 0.000 0.000
#> GSM153440     6  0.5282     0.5662 0.048 0.356 0.004 0.000 0.024 0.568
#> GSM153447     6  0.5025     0.6754 0.080 0.276 0.000 0.012 0.000 0.632
#> GSM153450     2  0.2526     0.6725 0.024 0.876 0.000 0.000 0.004 0.096
#> GSM153456     2  0.0520     0.7445 0.000 0.984 0.000 0.000 0.008 0.008
#> GSM153457     2  0.0291     0.7449 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM153458     2  0.0508     0.7449 0.000 0.984 0.000 0.000 0.004 0.012
#> GSM153459     2  0.0551     0.7482 0.004 0.984 0.000 0.000 0.004 0.008
#> GSM153460     2  0.0405     0.7471 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM153461     2  0.4840    -0.0938 0.056 0.580 0.000 0.000 0.004 0.360
#> GSM153463     6  0.7388     0.2584 0.176 0.152 0.000 0.316 0.000 0.356
#> GSM153464     1  0.4569     0.5056 0.600 0.364 0.000 0.004 0.004 0.028
#> GSM153466     1  0.1615     0.7914 0.928 0.004 0.000 0.004 0.000 0.064
#> GSM153467     1  0.4027     0.6799 0.736 0.224 0.000 0.004 0.008 0.028
#> GSM153468     1  0.1461     0.7949 0.940 0.016 0.000 0.000 0.000 0.044
#> GSM153469     1  0.2113     0.7826 0.908 0.060 0.000 0.000 0.004 0.028
#> GSM153470     1  0.1624     0.7860 0.936 0.040 0.000 0.000 0.004 0.020
#> GSM153471     1  0.2443     0.7735 0.880 0.096 0.000 0.000 0.004 0.020
#> GSM153472     1  0.4066     0.7222 0.732 0.000 0.000 0.064 0.000 0.204
#> GSM153473     1  0.4352     0.7139 0.728 0.000 0.000 0.076 0.008 0.188
#> GSM153474     4  0.1036     0.7509 0.004 0.000 0.000 0.964 0.024 0.008
#> GSM153475     1  0.1946     0.7934 0.912 0.004 0.000 0.012 0.000 0.072
#> GSM153476     1  0.2350     0.7891 0.896 0.016 0.000 0.008 0.004 0.076
#> GSM153478     1  0.3674     0.7232 0.756 0.012 0.000 0.008 0.004 0.220
#> GSM153480     1  0.4601     0.4804 0.588 0.376 0.000 0.004 0.004 0.028
#> GSM153486     1  0.4012     0.6531 0.712 0.256 0.000 0.008 0.000 0.024
#> GSM153487     1  0.4366     0.6994 0.712 0.000 0.000 0.072 0.004 0.212
#> GSM153499     1  0.3383     0.7786 0.832 0.016 0.000 0.036 0.004 0.112
#> GSM153504     4  0.4868     0.5882 0.220 0.000 0.000 0.664 0.004 0.112
#> GSM153507     1  0.4584     0.6660 0.700 0.000 0.000 0.100 0.004 0.196
#> GSM153404     3  0.0891     0.8983 0.000 0.000 0.968 0.000 0.024 0.008
#> GSM153407     6  0.5046     0.4848 0.028 0.384 0.000 0.000 0.032 0.556
#> GSM153408     3  0.0000     0.9160 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM153410     3  0.0000     0.9160 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM153411     5  0.1663     0.9668 0.000 0.000 0.088 0.000 0.912 0.000
#> GSM153412     3  0.0000     0.9160 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM153413     3  0.0000     0.9160 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM153414     2  0.4544     0.1600 0.052 0.652 0.000 0.000 0.004 0.292
#> GSM153415     3  0.0000     0.9160 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM153416     2  0.2667     0.5960 0.128 0.852 0.000 0.000 0.000 0.020
#> GSM153417     5  0.1663     0.9668 0.000 0.000 0.088 0.000 0.912 0.000
#> GSM153418     3  0.0000     0.9160 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM153420     5  0.1663     0.9668 0.000 0.000 0.088 0.000 0.912 0.000
#> GSM153421     5  0.1663     0.9668 0.000 0.000 0.088 0.000 0.912 0.000
#> GSM153422     5  0.1663     0.9668 0.000 0.000 0.088 0.000 0.912 0.000
#> GSM153424     6  0.4612     0.6692 0.052 0.308 0.000 0.000 0.004 0.636
#> GSM153430     1  0.5930     0.1400 0.488 0.180 0.000 0.008 0.000 0.324
#> GSM153432     1  0.1931     0.7903 0.924 0.040 0.000 0.004 0.004 0.028
#> GSM153434     1  0.5548     0.3212 0.540 0.140 0.000 0.004 0.000 0.316
#> GSM153435     1  0.4184     0.6007 0.672 0.296 0.000 0.004 0.000 0.028
#> GSM153436     6  0.5909     0.5216 0.208 0.372 0.000 0.000 0.000 0.420
#> GSM153437     2  0.4459    -0.1574 0.460 0.516 0.000 0.004 0.000 0.020
#> GSM153439     1  0.1405     0.7898 0.948 0.024 0.000 0.000 0.004 0.024
#> GSM153441     1  0.4151     0.7136 0.744 0.076 0.000 0.004 0.000 0.176
#> GSM153442     1  0.4743     0.6512 0.684 0.032 0.000 0.044 0.000 0.240
#> GSM153443     1  0.3871     0.6723 0.740 0.228 0.000 0.004 0.004 0.024
#> GSM153445     1  0.3894     0.6636 0.728 0.244 0.000 0.004 0.004 0.020
#> GSM153446     1  0.4328     0.5103 0.620 0.352 0.000 0.004 0.000 0.024
#> GSM153449     1  0.3761     0.7270 0.764 0.032 0.000 0.008 0.000 0.196
#> GSM153453     1  0.4085     0.7172 0.736 0.000 0.000 0.072 0.000 0.192
#> GSM153454     4  0.1151     0.7750 0.012 0.000 0.000 0.956 0.000 0.032
#> GSM153455     1  0.1686     0.7927 0.932 0.004 0.000 0.008 0.004 0.052
#> GSM153462     1  0.2623     0.7548 0.852 0.132 0.000 0.000 0.000 0.016
#> GSM153465     1  0.3010     0.7585 0.836 0.132 0.000 0.004 0.000 0.028
#> GSM153481     1  0.3502     0.7184 0.784 0.188 0.000 0.004 0.004 0.020
#> GSM153482     1  0.3618     0.7384 0.776 0.000 0.000 0.048 0.000 0.176
#> GSM153483     1  0.2189     0.7949 0.904 0.032 0.000 0.000 0.004 0.060
#> GSM153485     1  0.1841     0.7900 0.920 0.008 0.000 0.008 0.000 0.064
#> GSM153489     1  0.1956     0.7891 0.908 0.000 0.000 0.008 0.004 0.080
#> GSM153490     4  0.5230     0.4729 0.292 0.000 0.000 0.592 0.004 0.112
#> GSM153491     1  0.4114     0.7319 0.740 0.000 0.000 0.052 0.008 0.200
#> GSM153492     4  0.5759     0.2671 0.364 0.012 0.000 0.496 0.000 0.128
#> GSM153493     4  0.0914     0.7804 0.016 0.000 0.000 0.968 0.000 0.016
#> GSM153494     1  0.1863     0.7939 0.920 0.016 0.000 0.004 0.000 0.060
#> GSM153495     4  0.3775     0.7032 0.128 0.000 0.000 0.780 0.000 0.092
#> GSM153498     1  0.2697     0.7866 0.876 0.012 0.000 0.020 0.004 0.088
#> GSM153501     4  0.1421     0.7833 0.028 0.000 0.000 0.944 0.000 0.028
#> GSM153502     1  0.4768     0.6478 0.688 0.000 0.000 0.140 0.004 0.168
#> GSM153505     4  0.1196     0.7838 0.040 0.000 0.000 0.952 0.000 0.008
#> GSM153506     1  0.5077     0.7215 0.720 0.056 0.000 0.064 0.012 0.148

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> CV:mclust 105          0.01082 2
#> CV:mclust  93          0.02085 3
#> CV:mclust 103          0.00984 4
#> CV:mclust  90          0.02126 5
#> CV:mclust  90          0.02698 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.174           0.390       0.704         0.4707 0.496   0.496
#> 3 3 0.509           0.721       0.860         0.3729 0.784   0.594
#> 4 4 0.462           0.513       0.661         0.1340 0.899   0.731
#> 5 5 0.483           0.416       0.626         0.0753 0.890   0.655
#> 6 6 0.531           0.341       0.580         0.0428 0.875   0.546

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     2  0.9209    0.26321 0.336 0.664
#> GSM153406     2  0.2043    0.45449 0.032 0.968
#> GSM153419     2  0.9358    0.24838 0.352 0.648
#> GSM153423     2  0.9661    0.33189 0.392 0.608
#> GSM153425     2  0.9661    0.20498 0.392 0.608
#> GSM153427     2  0.2043    0.45449 0.032 0.968
#> GSM153428     2  0.9552    0.22313 0.376 0.624
#> GSM153429     2  0.9686    0.32367 0.396 0.604
#> GSM153433     1  0.4939    0.59629 0.892 0.108
#> GSM153444     2  0.4815    0.46759 0.104 0.896
#> GSM153448     1  0.9970   -0.02132 0.532 0.468
#> GSM153451     2  0.9580    0.34747 0.380 0.620
#> GSM153452     2  0.2778    0.45671 0.048 0.952
#> GSM153477     1  0.9944   -0.00318 0.544 0.456
#> GSM153479     1  0.9661    0.19424 0.608 0.392
#> GSM153484     1  0.9635    0.20447 0.612 0.388
#> GSM153488     1  0.5059    0.64837 0.888 0.112
#> GSM153496     1  0.1414    0.68053 0.980 0.020
#> GSM153497     2  0.9909    0.25909 0.444 0.556
#> GSM153500     1  0.0376    0.67836 0.996 0.004
#> GSM153503     1  0.0672    0.67768 0.992 0.008
#> GSM153508     1  0.2423    0.67737 0.960 0.040
#> GSM153409     2  0.8443    0.42479 0.272 0.728
#> GSM153426     2  0.7602    0.44902 0.220 0.780
#> GSM153431     1  0.9815    0.09755 0.580 0.420
#> GSM153438     2  0.8267    0.43308 0.260 0.740
#> GSM153440     2  0.9710    0.19533 0.400 0.600
#> GSM153447     1  0.9393    0.20071 0.644 0.356
#> GSM153450     2  0.5178    0.46699 0.116 0.884
#> GSM153456     2  0.9129    0.39278 0.328 0.672
#> GSM153457     2  0.9635    0.33934 0.388 0.612
#> GSM153458     2  0.6343    0.46339 0.160 0.840
#> GSM153459     2  0.6887    0.45898 0.184 0.816
#> GSM153460     2  0.8861    0.40935 0.304 0.696
#> GSM153461     2  0.5946    0.45845 0.144 0.856
#> GSM153463     1  0.8016    0.38910 0.756 0.244
#> GSM153464     2  0.9933    0.24345 0.452 0.548
#> GSM153466     1  0.8443    0.44383 0.728 0.272
#> GSM153467     1  0.9983   -0.07258 0.524 0.476
#> GSM153468     1  0.9491    0.25924 0.632 0.368
#> GSM153469     2  0.9993    0.16673 0.484 0.516
#> GSM153470     1  0.9944   -0.00101 0.544 0.456
#> GSM153471     2  0.9998    0.14673 0.492 0.508
#> GSM153472     1  0.2423    0.67790 0.960 0.040
#> GSM153473     1  0.4431    0.61400 0.908 0.092
#> GSM153474     1  0.0672    0.67768 0.992 0.008
#> GSM153475     1  0.5408    0.63949 0.876 0.124
#> GSM153476     2  0.9815    0.26900 0.420 0.580
#> GSM153478     1  0.3584    0.63966 0.932 0.068
#> GSM153480     2  0.9866    0.27912 0.432 0.568
#> GSM153486     2  1.0000    0.13353 0.496 0.504
#> GSM153487     1  0.4562    0.65751 0.904 0.096
#> GSM153499     1  0.9286    0.30568 0.656 0.344
#> GSM153504     1  0.0672    0.67768 0.992 0.008
#> GSM153507     1  0.3114    0.67304 0.944 0.056
#> GSM153404     2  0.5519    0.41530 0.128 0.872
#> GSM153407     2  0.9323    0.25231 0.348 0.652
#> GSM153408     2  0.6623    0.38952 0.172 0.828
#> GSM153410     2  0.1184    0.45747 0.016 0.984
#> GSM153411     2  0.9922    0.12827 0.448 0.552
#> GSM153412     2  0.1184    0.45747 0.016 0.984
#> GSM153413     2  0.9170    0.26627 0.332 0.668
#> GSM153414     2  0.8327    0.42082 0.264 0.736
#> GSM153415     2  0.6438    0.39478 0.164 0.836
#> GSM153416     2  0.9775    0.30942 0.412 0.588
#> GSM153417     2  0.9866    0.15259 0.432 0.568
#> GSM153418     2  0.4161    0.43580 0.084 0.916
#> GSM153420     2  0.9732    0.19025 0.404 0.596
#> GSM153421     2  0.9896    0.14078 0.440 0.560
#> GSM153422     2  0.9922    0.12827 0.448 0.552
#> GSM153424     2  0.9954    0.11375 0.460 0.540
#> GSM153430     1  0.4161    0.63884 0.916 0.084
#> GSM153432     2  0.9983    0.18736 0.476 0.524
#> GSM153434     1  0.9209    0.33321 0.664 0.336
#> GSM153435     2  0.9909    0.25824 0.444 0.556
#> GSM153436     1  0.9710    0.11012 0.600 0.400
#> GSM153437     2  0.9209    0.38642 0.336 0.664
#> GSM153439     2  0.9988    0.17780 0.480 0.520
#> GSM153441     1  0.8661    0.44614 0.712 0.288
#> GSM153442     1  0.5842    0.62556 0.860 0.140
#> GSM153443     2  0.9996    0.15814 0.488 0.512
#> GSM153445     2  1.0000    0.12267 0.500 0.500
#> GSM153446     2  0.9833    0.29236 0.424 0.576
#> GSM153449     1  0.2778    0.66937 0.952 0.048
#> GSM153453     1  0.1633    0.67985 0.976 0.024
#> GSM153454     1  0.4815    0.59790 0.896 0.104
#> GSM153455     1  0.7139    0.59380 0.804 0.196
#> GSM153462     2  0.9998    0.14733 0.492 0.508
#> GSM153465     2  0.9922    0.25151 0.448 0.552
#> GSM153481     2  0.9954    0.22630 0.460 0.540
#> GSM153482     1  0.5629    0.63354 0.868 0.132
#> GSM153483     1  0.9815    0.11341 0.580 0.420
#> GSM153485     1  0.6148    0.61259 0.848 0.152
#> GSM153489     1  0.4562    0.65707 0.904 0.096
#> GSM153490     1  0.4022    0.62557 0.920 0.080
#> GSM153491     1  0.1184    0.67958 0.984 0.016
#> GSM153492     1  0.1843    0.66731 0.972 0.028
#> GSM153493     1  0.0938    0.67600 0.988 0.012
#> GSM153494     1  0.9170    0.33162 0.668 0.332
#> GSM153495     1  0.4022    0.62579 0.920 0.080
#> GSM153498     1  0.5842    0.62935 0.860 0.140
#> GSM153501     1  0.0938    0.67633 0.988 0.012
#> GSM153502     1  0.0672    0.67989 0.992 0.008
#> GSM153505     1  0.2948    0.65059 0.948 0.052
#> GSM153506     1  0.9732    0.16053 0.596 0.404

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     3  0.1753      0.810 0.000 0.048 0.952
#> GSM153406     3  0.6168      0.294 0.000 0.412 0.588
#> GSM153419     3  0.1031      0.818 0.000 0.024 0.976
#> GSM153423     2  0.1031      0.803 0.024 0.976 0.000
#> GSM153425     3  0.0592      0.822 0.012 0.000 0.988
#> GSM153427     2  0.6235      0.142 0.000 0.564 0.436
#> GSM153428     3  0.1399      0.820 0.004 0.028 0.968
#> GSM153429     2  0.5327      0.645 0.272 0.728 0.000
#> GSM153433     1  0.3551      0.803 0.868 0.000 0.132
#> GSM153444     2  0.2878      0.751 0.000 0.904 0.096
#> GSM153448     2  0.5968      0.415 0.364 0.636 0.000
#> GSM153451     2  0.0237      0.796 0.000 0.996 0.004
#> GSM153452     2  0.6026      0.316 0.000 0.624 0.376
#> GSM153477     2  0.5882      0.497 0.348 0.652 0.000
#> GSM153479     1  0.5465      0.596 0.712 0.288 0.000
#> GSM153484     1  0.5291      0.633 0.732 0.268 0.000
#> GSM153488     1  0.2066      0.857 0.940 0.060 0.000
#> GSM153496     1  0.0475      0.865 0.992 0.004 0.004
#> GSM153497     2  0.1289      0.802 0.032 0.968 0.000
#> GSM153500     1  0.1031      0.861 0.976 0.000 0.024
#> GSM153503     1  0.1411      0.858 0.964 0.000 0.036
#> GSM153508     1  0.0000      0.864 1.000 0.000 0.000
#> GSM153409     2  0.2165      0.772 0.000 0.936 0.064
#> GSM153426     2  0.1860      0.779 0.000 0.948 0.052
#> GSM153431     3  0.6262      0.542 0.284 0.020 0.696
#> GSM153438     2  0.1289      0.788 0.000 0.968 0.032
#> GSM153440     3  0.1529      0.822 0.040 0.000 0.960
#> GSM153447     3  0.5431      0.565 0.284 0.000 0.716
#> GSM153450     2  0.2356      0.770 0.000 0.928 0.072
#> GSM153456     2  0.1529      0.785 0.000 0.960 0.040
#> GSM153457     2  0.0592      0.795 0.000 0.988 0.012
#> GSM153458     2  0.2537      0.761 0.000 0.920 0.080
#> GSM153459     2  0.2261      0.770 0.000 0.932 0.068
#> GSM153460     2  0.1529      0.785 0.000 0.960 0.040
#> GSM153461     2  0.6180      0.567 0.024 0.716 0.260
#> GSM153463     1  0.6192      0.276 0.580 0.000 0.420
#> GSM153464     2  0.1289      0.802 0.032 0.968 0.000
#> GSM153466     1  0.3038      0.834 0.896 0.104 0.000
#> GSM153467     2  0.5397      0.626 0.280 0.720 0.000
#> GSM153468     1  0.5497      0.602 0.708 0.292 0.000
#> GSM153469     2  0.4121      0.755 0.168 0.832 0.000
#> GSM153470     2  0.6168      0.335 0.412 0.588 0.000
#> GSM153471     2  0.4235      0.753 0.176 0.824 0.000
#> GSM153472     1  0.0000      0.864 1.000 0.000 0.000
#> GSM153473     1  0.4291      0.751 0.820 0.000 0.180
#> GSM153474     1  0.1163      0.860 0.972 0.000 0.028
#> GSM153475     1  0.2356      0.852 0.928 0.072 0.000
#> GSM153476     2  0.7366      0.319 0.400 0.564 0.036
#> GSM153478     1  0.2945      0.836 0.908 0.004 0.088
#> GSM153480     2  0.0747      0.800 0.016 0.984 0.000
#> GSM153486     2  0.3482      0.779 0.128 0.872 0.000
#> GSM153487     1  0.0747      0.864 0.984 0.016 0.000
#> GSM153499     1  0.4062      0.786 0.836 0.164 0.000
#> GSM153504     1  0.0892      0.863 0.980 0.000 0.020
#> GSM153507     1  0.1031      0.863 0.976 0.024 0.000
#> GSM153404     3  0.5560      0.568 0.000 0.300 0.700
#> GSM153407     3  0.1289      0.816 0.000 0.032 0.968
#> GSM153408     3  0.4121      0.725 0.000 0.168 0.832
#> GSM153410     2  0.6267      0.110 0.000 0.548 0.452
#> GSM153411     3  0.2261      0.810 0.068 0.000 0.932
#> GSM153412     2  0.6267      0.080 0.000 0.548 0.452
#> GSM153413     3  0.2796      0.787 0.000 0.092 0.908
#> GSM153414     2  0.4723      0.703 0.016 0.824 0.160
#> GSM153415     3  0.5138      0.638 0.000 0.252 0.748
#> GSM153416     2  0.1647      0.804 0.036 0.960 0.004
#> GSM153417     3  0.1289      0.822 0.032 0.000 0.968
#> GSM153418     3  0.5760      0.504 0.000 0.328 0.672
#> GSM153420     3  0.0892      0.823 0.020 0.000 0.980
#> GSM153421     3  0.1643      0.819 0.044 0.000 0.956
#> GSM153422     3  0.1964      0.815 0.056 0.000 0.944
#> GSM153424     3  0.3482      0.769 0.128 0.000 0.872
#> GSM153430     1  0.4121      0.767 0.832 0.000 0.168
#> GSM153432     2  0.4974      0.689 0.236 0.764 0.000
#> GSM153434     1  0.5726      0.697 0.760 0.024 0.216
#> GSM153435     2  0.1529      0.802 0.040 0.960 0.000
#> GSM153436     3  0.6468      0.157 0.444 0.004 0.552
#> GSM153437     2  0.0424      0.796 0.000 0.992 0.008
#> GSM153439     2  0.5098      0.671 0.248 0.752 0.000
#> GSM153441     1  0.4110      0.799 0.844 0.152 0.004
#> GSM153442     1  0.2066      0.856 0.940 0.060 0.000
#> GSM153443     2  0.3340      0.782 0.120 0.880 0.000
#> GSM153445     2  0.2625      0.793 0.084 0.916 0.000
#> GSM153446     2  0.1753      0.802 0.048 0.952 0.000
#> GSM153449     1  0.1774      0.866 0.960 0.016 0.024
#> GSM153453     1  0.0237      0.864 0.996 0.000 0.004
#> GSM153454     1  0.4062      0.768 0.836 0.000 0.164
#> GSM153455     1  0.4897      0.775 0.812 0.172 0.016
#> GSM153462     2  0.4178      0.753 0.172 0.828 0.000
#> GSM153465     2  0.3192      0.786 0.112 0.888 0.000
#> GSM153481     2  0.1643      0.802 0.044 0.956 0.000
#> GSM153482     1  0.1753      0.859 0.952 0.048 0.000
#> GSM153483     1  0.5835      0.490 0.660 0.340 0.000
#> GSM153485     1  0.2625      0.848 0.916 0.084 0.000
#> GSM153489     1  0.2066      0.856 0.940 0.060 0.000
#> GSM153490     1  0.3482      0.803 0.872 0.000 0.128
#> GSM153491     1  0.0592      0.864 0.988 0.000 0.012
#> GSM153492     1  0.2711      0.831 0.912 0.000 0.088
#> GSM153493     1  0.1753      0.853 0.952 0.000 0.048
#> GSM153494     1  0.3879      0.796 0.848 0.152 0.000
#> GSM153495     1  0.3340      0.810 0.880 0.000 0.120
#> GSM153498     1  0.3879      0.803 0.848 0.152 0.000
#> GSM153501     1  0.1753      0.853 0.952 0.000 0.048
#> GSM153502     1  0.1163      0.861 0.972 0.000 0.028
#> GSM153505     1  0.2625      0.835 0.916 0.000 0.084
#> GSM153506     1  0.5760      0.522 0.672 0.328 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     3  0.3497   0.612934 0.000 0.024 0.852 0.124
#> GSM153406     3  0.6611   0.156851 0.000 0.080 0.460 0.460
#> GSM153419     3  0.3494   0.596618 0.004 0.000 0.824 0.172
#> GSM153423     2  0.1118   0.683066 0.000 0.964 0.000 0.036
#> GSM153425     3  0.2676   0.630030 0.012 0.028 0.916 0.044
#> GSM153427     2  0.5061   0.553365 0.004 0.752 0.196 0.048
#> GSM153428     2  0.8930  -0.046298 0.064 0.392 0.332 0.212
#> GSM153429     4  0.7058   0.653184 0.200 0.228 0.000 0.572
#> GSM153433     1  0.8313   0.391817 0.532 0.060 0.192 0.216
#> GSM153444     2  0.2466   0.668846 0.000 0.916 0.028 0.056
#> GSM153448     2  0.6580   0.462092 0.148 0.656 0.008 0.188
#> GSM153451     2  0.1716   0.667080 0.000 0.936 0.000 0.064
#> GSM153452     2  0.4465   0.598160 0.000 0.800 0.144 0.056
#> GSM153477     4  0.7205   0.505936 0.344 0.152 0.000 0.504
#> GSM153479     1  0.5219   0.582420 0.728 0.056 0.000 0.216
#> GSM153484     1  0.5367   0.481141 0.664 0.032 0.000 0.304
#> GSM153488     1  0.3051   0.717494 0.884 0.028 0.000 0.088
#> GSM153496     1  0.3427   0.720384 0.868 0.008 0.020 0.104
#> GSM153497     2  0.2773   0.645768 0.004 0.880 0.000 0.116
#> GSM153500     1  0.4100   0.708185 0.844 0.016 0.040 0.100
#> GSM153503     1  0.2699   0.714395 0.904 0.000 0.028 0.068
#> GSM153508     1  0.2469   0.697198 0.892 0.000 0.000 0.108
#> GSM153409     2  0.1938   0.675023 0.000 0.936 0.012 0.052
#> GSM153426     2  0.1902   0.681320 0.000 0.932 0.004 0.064
#> GSM153431     2  0.9868  -0.157527 0.188 0.300 0.292 0.220
#> GSM153438     2  0.2266   0.662462 0.000 0.912 0.004 0.084
#> GSM153440     3  0.7146   0.506580 0.056 0.116 0.656 0.172
#> GSM153447     3  0.9360   0.303344 0.188 0.152 0.436 0.224
#> GSM153450     2  0.3241   0.654025 0.004 0.884 0.040 0.072
#> GSM153456     2  0.1022   0.677446 0.000 0.968 0.000 0.032
#> GSM153457     2  0.2011   0.658805 0.000 0.920 0.000 0.080
#> GSM153458     2  0.1297   0.682661 0.000 0.964 0.016 0.020
#> GSM153459     2  0.0895   0.682804 0.000 0.976 0.004 0.020
#> GSM153460     2  0.1022   0.681936 0.000 0.968 0.000 0.032
#> GSM153461     2  0.7176   0.446546 0.044 0.640 0.116 0.200
#> GSM153463     3  0.9044  -0.000493 0.356 0.072 0.360 0.212
#> GSM153464     2  0.5398   0.083012 0.016 0.580 0.000 0.404
#> GSM153466     1  0.3910   0.665614 0.820 0.024 0.000 0.156
#> GSM153467     2  0.4001   0.637568 0.048 0.840 0.004 0.108
#> GSM153468     1  0.6121   0.408016 0.620 0.072 0.000 0.308
#> GSM153469     4  0.6840   0.664593 0.180 0.220 0.000 0.600
#> GSM153470     4  0.7421   0.459056 0.372 0.172 0.000 0.456
#> GSM153471     4  0.7474   0.632087 0.212 0.292 0.000 0.496
#> GSM153472     1  0.3142   0.708115 0.860 0.000 0.008 0.132
#> GSM153473     1  0.4879   0.687896 0.796 0.012 0.124 0.068
#> GSM153474     1  0.4548   0.677159 0.804 0.008 0.044 0.144
#> GSM153475     1  0.5175   0.519922 0.656 0.012 0.004 0.328
#> GSM153476     4  0.7475   0.590045 0.240 0.116 0.044 0.600
#> GSM153478     1  0.6632   0.604707 0.672 0.020 0.136 0.172
#> GSM153480     2  0.4605   0.335076 0.000 0.664 0.000 0.336
#> GSM153486     2  0.4664   0.501696 0.012 0.736 0.004 0.248
#> GSM153487     1  0.3157   0.694254 0.852 0.004 0.000 0.144
#> GSM153499     1  0.4793   0.610884 0.756 0.040 0.000 0.204
#> GSM153504     1  0.3367   0.701193 0.864 0.000 0.028 0.108
#> GSM153507     1  0.3539   0.665474 0.820 0.000 0.004 0.176
#> GSM153404     3  0.5672   0.502971 0.000 0.056 0.668 0.276
#> GSM153407     3  0.7714   0.325836 0.020 0.272 0.536 0.172
#> GSM153408     3  0.5423   0.468954 0.000 0.028 0.640 0.332
#> GSM153410     4  0.6895  -0.119175 0.000 0.108 0.400 0.492
#> GSM153411     3  0.1411   0.642573 0.020 0.000 0.960 0.020
#> GSM153412     4  0.6764  -0.144763 0.000 0.096 0.404 0.500
#> GSM153413     3  0.5064   0.453402 0.004 0.004 0.632 0.360
#> GSM153414     2  0.6587   0.503794 0.048 0.688 0.076 0.188
#> GSM153415     3  0.5693   0.276400 0.000 0.024 0.504 0.472
#> GSM153416     2  0.1807   0.683752 0.008 0.940 0.000 0.052
#> GSM153417     3  0.0376   0.647718 0.004 0.000 0.992 0.004
#> GSM153418     3  0.6286   0.352817 0.000 0.064 0.552 0.384
#> GSM153420     3  0.0657   0.646827 0.004 0.000 0.984 0.012
#> GSM153421     3  0.0524   0.647757 0.008 0.000 0.988 0.004
#> GSM153422     3  0.1297   0.647841 0.016 0.000 0.964 0.020
#> GSM153424     2  0.9483  -0.105279 0.112 0.344 0.312 0.232
#> GSM153430     1  0.9727   0.081339 0.372 0.192 0.208 0.228
#> GSM153432     4  0.7314   0.393462 0.132 0.416 0.004 0.448
#> GSM153434     1  0.9349   0.141904 0.424 0.128 0.240 0.208
#> GSM153435     2  0.4957   0.404528 0.016 0.684 0.000 0.300
#> GSM153436     3  0.9683   0.235349 0.184 0.232 0.380 0.204
#> GSM153437     2  0.4134   0.497349 0.000 0.740 0.000 0.260
#> GSM153439     4  0.7396   0.647196 0.216 0.268 0.000 0.516
#> GSM153441     1  0.8410   0.172217 0.420 0.356 0.036 0.188
#> GSM153442     1  0.6408   0.595262 0.692 0.124 0.020 0.164
#> GSM153443     2  0.5256   0.396153 0.036 0.692 0.000 0.272
#> GSM153445     4  0.6994   0.439709 0.116 0.412 0.000 0.472
#> GSM153446     2  0.4770   0.419106 0.012 0.700 0.000 0.288
#> GSM153449     1  0.6048   0.643448 0.724 0.044 0.056 0.176
#> GSM153453     1  0.1576   0.717417 0.948 0.000 0.004 0.048
#> GSM153454     1  0.7551   0.463859 0.592 0.032 0.168 0.208
#> GSM153455     1  0.5797   0.458465 0.624 0.024 0.012 0.340
#> GSM153462     2  0.6681   0.138523 0.120 0.588 0.000 0.292
#> GSM153465     2  0.5363   0.566247 0.056 0.728 0.004 0.212
#> GSM153481     4  0.6566   0.608103 0.112 0.288 0.000 0.600
#> GSM153482     1  0.2452   0.719729 0.908 0.004 0.004 0.084
#> GSM153483     1  0.6504   0.450660 0.636 0.148 0.000 0.216
#> GSM153485     1  0.4187   0.701079 0.816 0.024 0.008 0.152
#> GSM153489     1  0.4018   0.641090 0.772 0.000 0.004 0.224
#> GSM153490     1  0.4071   0.697389 0.832 0.000 0.104 0.064
#> GSM153491     1  0.3659   0.716314 0.840 0.000 0.024 0.136
#> GSM153492     1  0.3885   0.694007 0.844 0.000 0.064 0.092
#> GSM153493     1  0.3216   0.717976 0.880 0.000 0.044 0.076
#> GSM153494     1  0.4204   0.660803 0.788 0.020 0.000 0.192
#> GSM153495     1  0.7081   0.521914 0.632 0.024 0.148 0.196
#> GSM153498     1  0.5781   0.080370 0.492 0.028 0.000 0.480
#> GSM153501     1  0.2809   0.720068 0.904 0.004 0.028 0.064
#> GSM153502     1  0.3266   0.707900 0.868 0.000 0.024 0.108
#> GSM153505     1  0.4586   0.673997 0.796 0.000 0.068 0.136
#> GSM153506     1  0.6023   0.351155 0.612 0.060 0.000 0.328

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     3  0.3554     0.5975 0.000 0.004 0.776 0.004 0.216
#> GSM153406     3  0.5008     0.2593 0.000 0.012 0.500 0.012 0.476
#> GSM153419     3  0.2966     0.6122 0.000 0.000 0.816 0.000 0.184
#> GSM153423     2  0.3215     0.6861 0.012 0.872 0.004 0.056 0.056
#> GSM153425     3  0.2522     0.6193 0.004 0.000 0.896 0.076 0.024
#> GSM153427     2  0.7188     0.3329 0.000 0.524 0.248 0.164 0.064
#> GSM153428     2  0.7852    -0.1750 0.004 0.336 0.276 0.332 0.052
#> GSM153429     5  0.7029     0.4974 0.156 0.212 0.016 0.040 0.576
#> GSM153433     4  0.6223     0.3302 0.280 0.024 0.044 0.616 0.036
#> GSM153444     2  0.4970     0.5558 0.000 0.708 0.024 0.228 0.040
#> GSM153448     2  0.5893     0.5907 0.048 0.692 0.004 0.120 0.136
#> GSM153451     2  0.1408     0.6801 0.000 0.948 0.000 0.008 0.044
#> GSM153452     2  0.5734     0.5316 0.000 0.688 0.164 0.108 0.040
#> GSM153477     5  0.6403     0.3093 0.332 0.136 0.000 0.012 0.520
#> GSM153479     1  0.7246     0.4657 0.524 0.068 0.000 0.232 0.176
#> GSM153484     1  0.5993     0.4564 0.600 0.016 0.000 0.104 0.280
#> GSM153488     1  0.5497     0.5688 0.668 0.008 0.000 0.208 0.116
#> GSM153496     1  0.6260     0.5119 0.620 0.008 0.016 0.216 0.140
#> GSM153497     2  0.3423     0.6702 0.016 0.856 0.000 0.060 0.068
#> GSM153500     1  0.6412     0.4886 0.628 0.016 0.028 0.220 0.108
#> GSM153503     1  0.4763     0.4578 0.632 0.000 0.000 0.336 0.032
#> GSM153508     1  0.4818     0.5768 0.720 0.000 0.000 0.180 0.100
#> GSM153409     2  0.5359     0.3922 0.000 0.616 0.012 0.324 0.048
#> GSM153426     2  0.5942     0.4234 0.000 0.600 0.012 0.280 0.108
#> GSM153431     4  0.7125     0.5242 0.092 0.116 0.116 0.632 0.044
#> GSM153438     2  0.1725     0.6810 0.000 0.936 0.000 0.020 0.044
#> GSM153440     4  0.6687     0.1870 0.024 0.072 0.408 0.476 0.020
#> GSM153447     4  0.6426     0.5380 0.076 0.068 0.164 0.668 0.024
#> GSM153450     2  0.4253     0.6406 0.000 0.804 0.032 0.112 0.052
#> GSM153456     2  0.1018     0.6824 0.000 0.968 0.000 0.016 0.016
#> GSM153457     2  0.1124     0.6767 0.000 0.960 0.000 0.004 0.036
#> GSM153458     2  0.2086     0.6841 0.000 0.924 0.008 0.048 0.020
#> GSM153459     2  0.2026     0.6838 0.000 0.924 0.008 0.056 0.012
#> GSM153460     2  0.2251     0.6842 0.000 0.916 0.008 0.052 0.024
#> GSM153461     4  0.6319     0.1732 0.004 0.376 0.060 0.524 0.036
#> GSM153463     4  0.6310     0.4763 0.168 0.016 0.144 0.648 0.024
#> GSM153464     2  0.5478     0.3868 0.044 0.640 0.000 0.028 0.288
#> GSM153466     1  0.6824     0.5141 0.584 0.064 0.000 0.152 0.200
#> GSM153467     2  0.3798     0.6588 0.032 0.836 0.000 0.044 0.088
#> GSM153468     1  0.7567     0.2781 0.472 0.124 0.000 0.112 0.292
#> GSM153469     5  0.6273     0.4993 0.172 0.192 0.000 0.024 0.612
#> GSM153470     1  0.8100     0.1111 0.348 0.080 0.004 0.256 0.312
#> GSM153471     5  0.7443     0.3703 0.276 0.228 0.000 0.048 0.448
#> GSM153472     1  0.5086     0.5773 0.728 0.004 0.008 0.152 0.108
#> GSM153473     1  0.5403     0.5255 0.672 0.000 0.024 0.244 0.060
#> GSM153474     1  0.5678     0.4146 0.552 0.000 0.004 0.368 0.076
#> GSM153475     1  0.5386     0.5506 0.664 0.000 0.008 0.088 0.240
#> GSM153476     5  0.7085     0.3424 0.208 0.020 0.096 0.080 0.596
#> GSM153478     1  0.6892     0.2527 0.464 0.008 0.048 0.400 0.080
#> GSM153480     2  0.4161     0.4900 0.000 0.704 0.000 0.016 0.280
#> GSM153486     2  0.5833     0.5164 0.096 0.680 0.000 0.048 0.176
#> GSM153487     1  0.5006     0.5956 0.708 0.000 0.000 0.156 0.136
#> GSM153499     1  0.6150     0.5549 0.588 0.008 0.000 0.164 0.240
#> GSM153504     1  0.3669     0.6000 0.816 0.000 0.000 0.128 0.056
#> GSM153507     1  0.4889     0.5947 0.720 0.000 0.000 0.144 0.136
#> GSM153404     3  0.4213     0.5353 0.000 0.012 0.680 0.000 0.308
#> GSM153407     3  0.6890     0.0521 0.000 0.196 0.540 0.228 0.036
#> GSM153408     3  0.4354     0.4681 0.000 0.008 0.624 0.000 0.368
#> GSM153410     5  0.4978    -0.3086 0.000 0.028 0.476 0.000 0.496
#> GSM153411     3  0.2664     0.6171 0.004 0.000 0.892 0.064 0.040
#> GSM153412     5  0.5096    -0.2587 0.000 0.036 0.444 0.000 0.520
#> GSM153413     3  0.4704     0.3675 0.004 0.004 0.548 0.004 0.440
#> GSM153414     2  0.5968     0.4291 0.000 0.624 0.064 0.268 0.044
#> GSM153415     5  0.4803    -0.3598 0.004 0.012 0.492 0.000 0.492
#> GSM153416     2  0.3463     0.6811 0.020 0.852 0.000 0.088 0.040
#> GSM153417     3  0.1124     0.6500 0.000 0.000 0.960 0.036 0.004
#> GSM153418     3  0.4651     0.3784 0.000 0.008 0.560 0.004 0.428
#> GSM153420     3  0.1117     0.6510 0.000 0.000 0.964 0.020 0.016
#> GSM153421     3  0.1557     0.6421 0.000 0.000 0.940 0.052 0.008
#> GSM153422     3  0.0865     0.6513 0.000 0.000 0.972 0.024 0.004
#> GSM153424     4  0.7222     0.3448 0.016 0.260 0.176 0.520 0.028
#> GSM153430     4  0.5128     0.4704 0.196 0.072 0.008 0.716 0.008
#> GSM153432     5  0.7991     0.2900 0.192 0.304 0.000 0.108 0.396
#> GSM153434     4  0.9072     0.2139 0.224 0.080 0.156 0.408 0.132
#> GSM153435     2  0.6442     0.3303 0.028 0.548 0.008 0.080 0.336
#> GSM153436     3  0.9596    -0.2741 0.128 0.160 0.296 0.280 0.136
#> GSM153437     2  0.3013     0.6279 0.000 0.832 0.000 0.008 0.160
#> GSM153439     5  0.7097     0.4427 0.200 0.268 0.000 0.036 0.496
#> GSM153441     2  0.8662    -0.2178 0.288 0.328 0.024 0.260 0.100
#> GSM153442     1  0.7952     0.2272 0.404 0.108 0.008 0.348 0.132
#> GSM153443     2  0.5588     0.5010 0.044 0.688 0.000 0.068 0.200
#> GSM153445     2  0.7221    -0.0940 0.160 0.460 0.000 0.048 0.332
#> GSM153446     2  0.4814     0.5575 0.032 0.736 0.000 0.036 0.196
#> GSM153449     1  0.7402     0.3166 0.488 0.024 0.068 0.340 0.080
#> GSM153453     1  0.4190     0.5855 0.768 0.000 0.000 0.172 0.060
#> GSM153454     4  0.7299     0.0370 0.344 0.012 0.088 0.484 0.072
#> GSM153455     1  0.7276     0.3938 0.524 0.056 0.028 0.084 0.308
#> GSM153462     2  0.7519     0.2246 0.128 0.492 0.000 0.112 0.268
#> GSM153465     4  0.7832     0.1953 0.112 0.336 0.000 0.404 0.148
#> GSM153481     5  0.6387     0.2482 0.148 0.380 0.000 0.004 0.468
#> GSM153482     1  0.5754     0.4525 0.564 0.000 0.004 0.344 0.088
#> GSM153483     4  0.7182    -0.1392 0.388 0.036 0.000 0.404 0.172
#> GSM153485     1  0.5421     0.5764 0.704 0.012 0.008 0.096 0.180
#> GSM153489     1  0.4944     0.5878 0.700 0.000 0.000 0.092 0.208
#> GSM153490     1  0.6106     0.5044 0.628 0.000 0.060 0.248 0.064
#> GSM153491     1  0.5576     0.5533 0.676 0.000 0.012 0.156 0.156
#> GSM153492     1  0.4774     0.4113 0.612 0.000 0.000 0.360 0.028
#> GSM153493     1  0.6436     0.4761 0.616 0.000 0.048 0.204 0.132
#> GSM153494     1  0.6338     0.5593 0.596 0.020 0.000 0.200 0.184
#> GSM153495     4  0.6024     0.0762 0.376 0.004 0.040 0.544 0.036
#> GSM153498     1  0.5057     0.2888 0.532 0.008 0.000 0.020 0.440
#> GSM153501     1  0.4750     0.5411 0.692 0.000 0.004 0.260 0.044
#> GSM153502     1  0.5000     0.5547 0.688 0.004 0.000 0.240 0.068
#> GSM153505     1  0.5140     0.3033 0.540 0.000 0.020 0.428 0.012
#> GSM153506     1  0.6142     0.4353 0.592 0.028 0.000 0.092 0.288

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     3  0.4339     0.2027 0.000 0.032 0.648 0.000 0.316 0.004
#> GSM153406     3  0.2213     0.6404 0.008 0.008 0.912 0.000 0.048 0.024
#> GSM153419     3  0.3872     0.0200 0.000 0.004 0.604 0.000 0.392 0.000
#> GSM153423     1  0.3193     0.6784 0.868 0.032 0.000 0.028 0.032 0.040
#> GSM153425     5  0.4022     0.6087 0.000 0.020 0.272 0.008 0.700 0.000
#> GSM153427     1  0.7250     0.2444 0.488 0.168 0.124 0.000 0.204 0.016
#> GSM153428     5  0.6858     0.0647 0.312 0.200 0.008 0.020 0.444 0.016
#> GSM153429     3  0.7904    -0.1338 0.136 0.044 0.460 0.112 0.016 0.232
#> GSM153433     2  0.5633     0.3160 0.004 0.632 0.000 0.232 0.060 0.072
#> GSM153444     1  0.4514     0.5784 0.732 0.200 0.020 0.004 0.036 0.008
#> GSM153448     1  0.7126     0.4778 0.584 0.056 0.044 0.052 0.076 0.188
#> GSM153451     1  0.1057     0.6816 0.968 0.004 0.004 0.008 0.004 0.012
#> GSM153452     1  0.5375     0.4960 0.668 0.036 0.012 0.040 0.232 0.012
#> GSM153477     6  0.8016     0.3186 0.080 0.048 0.288 0.236 0.004 0.344
#> GSM153479     6  0.6244     0.2785 0.020 0.100 0.036 0.112 0.064 0.668
#> GSM153484     6  0.7664     0.2728 0.008 0.096 0.172 0.272 0.024 0.428
#> GSM153488     4  0.6385     0.4061 0.000 0.220 0.060 0.588 0.024 0.108
#> GSM153496     4  0.5995     0.4194 0.012 0.140 0.012 0.664 0.076 0.096
#> GSM153497     1  0.3442     0.6754 0.840 0.060 0.004 0.008 0.008 0.080
#> GSM153500     4  0.5555     0.4149 0.008 0.052 0.000 0.664 0.184 0.092
#> GSM153503     4  0.6164     0.2920 0.000 0.364 0.000 0.476 0.040 0.120
#> GSM153508     6  0.6275     0.0628 0.000 0.116 0.008 0.248 0.060 0.568
#> GSM153409     1  0.5588     0.2942 0.532 0.384 0.028 0.000 0.020 0.036
#> GSM153426     1  0.5928     0.2391 0.496 0.384 0.084 0.000 0.008 0.028
#> GSM153431     2  0.4706     0.4596 0.056 0.776 0.012 0.012 0.072 0.072
#> GSM153438     1  0.1680     0.6846 0.940 0.024 0.012 0.000 0.004 0.020
#> GSM153440     2  0.7440     0.0128 0.064 0.444 0.112 0.036 0.328 0.016
#> GSM153447     2  0.4051     0.4634 0.032 0.820 0.012 0.036 0.080 0.020
#> GSM153450     1  0.2944     0.6677 0.868 0.036 0.004 0.008 0.080 0.004
#> GSM153456     1  0.0291     0.6787 0.992 0.004 0.000 0.000 0.004 0.000
#> GSM153457     1  0.0922     0.6789 0.968 0.004 0.004 0.000 0.000 0.024
#> GSM153458     1  0.1521     0.6783 0.948 0.024 0.004 0.004 0.016 0.004
#> GSM153459     1  0.1333     0.6792 0.944 0.048 0.000 0.000 0.008 0.000
#> GSM153460     1  0.0909     0.6783 0.968 0.020 0.000 0.000 0.012 0.000
#> GSM153461     2  0.5290     0.4052 0.220 0.676 0.012 0.008 0.060 0.024
#> GSM153463     2  0.5609     0.4036 0.004 0.656 0.000 0.116 0.172 0.052
#> GSM153464     1  0.5466     0.5246 0.668 0.008 0.080 0.024 0.012 0.208
#> GSM153466     6  0.7246     0.2646 0.088 0.084 0.016 0.244 0.040 0.528
#> GSM153467     1  0.4479     0.6387 0.776 0.032 0.008 0.024 0.028 0.132
#> GSM153468     6  0.9064     0.1426 0.116 0.100 0.096 0.284 0.076 0.328
#> GSM153469     3  0.7571    -0.1976 0.100 0.020 0.440 0.140 0.012 0.288
#> GSM153470     2  0.8338    -0.2400 0.040 0.340 0.196 0.120 0.016 0.288
#> GSM153471     6  0.7911     0.3469 0.236 0.060 0.216 0.072 0.004 0.412
#> GSM153472     4  0.3893     0.4251 0.000 0.024 0.024 0.820 0.052 0.080
#> GSM153473     4  0.7701     0.2441 0.004 0.268 0.016 0.368 0.096 0.248
#> GSM153474     2  0.7044    -0.0918 0.000 0.372 0.000 0.260 0.068 0.300
#> GSM153475     6  0.7586     0.0863 0.000 0.128 0.148 0.348 0.020 0.356
#> GSM153476     3  0.6540     0.1089 0.008 0.068 0.568 0.148 0.004 0.204
#> GSM153478     2  0.7563    -0.0904 0.000 0.340 0.004 0.316 0.164 0.176
#> GSM153480     1  0.5500     0.5349 0.664 0.020 0.148 0.016 0.000 0.152
#> GSM153486     1  0.6959     0.3297 0.528 0.020 0.020 0.272 0.060 0.100
#> GSM153487     4  0.6816     0.3348 0.000 0.216 0.016 0.484 0.040 0.244
#> GSM153499     4  0.8105     0.0711 0.008 0.204 0.100 0.324 0.040 0.324
#> GSM153504     4  0.6468     0.3622 0.000 0.176 0.016 0.536 0.032 0.240
#> GSM153507     6  0.6245     0.0327 0.000 0.124 0.008 0.332 0.032 0.504
#> GSM153404     3  0.3163     0.4701 0.004 0.004 0.780 0.000 0.212 0.000
#> GSM153407     5  0.6871     0.3569 0.144 0.220 0.108 0.000 0.520 0.008
#> GSM153408     3  0.2482     0.5742 0.000 0.000 0.848 0.004 0.148 0.000
#> GSM153410     3  0.1684     0.6428 0.008 0.008 0.940 0.000 0.028 0.016
#> GSM153411     5  0.3961     0.5979 0.000 0.008 0.276 0.016 0.700 0.000
#> GSM153412     3  0.1325     0.6404 0.016 0.000 0.956 0.004 0.012 0.012
#> GSM153413     3  0.2019     0.6252 0.004 0.004 0.912 0.004 0.072 0.004
#> GSM153414     1  0.6061     0.4843 0.624 0.148 0.000 0.036 0.168 0.024
#> GSM153415     3  0.1642     0.6395 0.000 0.000 0.936 0.004 0.028 0.032
#> GSM153416     1  0.4168     0.6693 0.816 0.060 0.008 0.036 0.028 0.052
#> GSM153417     5  0.3819     0.5753 0.000 0.008 0.340 0.000 0.652 0.000
#> GSM153418     3  0.2755     0.6076 0.008 0.016 0.864 0.000 0.108 0.004
#> GSM153420     5  0.4039     0.5615 0.000 0.016 0.352 0.000 0.632 0.000
#> GSM153421     5  0.3565     0.6030 0.000 0.004 0.304 0.000 0.692 0.000
#> GSM153422     5  0.4213     0.5734 0.000 0.020 0.340 0.000 0.636 0.004
#> GSM153424     2  0.7256     0.2243 0.220 0.428 0.000 0.040 0.276 0.036
#> GSM153430     2  0.4939     0.4455 0.052 0.760 0.004 0.092 0.056 0.036
#> GSM153432     6  0.9256     0.3190 0.140 0.136 0.196 0.200 0.032 0.296
#> GSM153434     2  0.8969     0.0984 0.060 0.284 0.032 0.244 0.220 0.160
#> GSM153435     1  0.8191     0.2318 0.420 0.160 0.212 0.040 0.016 0.152
#> GSM153436     5  0.7099     0.0661 0.156 0.060 0.000 0.212 0.524 0.048
#> GSM153437     1  0.3120     0.6637 0.852 0.004 0.052 0.008 0.000 0.084
#> GSM153439     6  0.8340     0.3571 0.180 0.036 0.284 0.140 0.016 0.344
#> GSM153441     1  0.8509    -0.1229 0.324 0.116 0.000 0.276 0.144 0.140
#> GSM153442     6  0.8590     0.0750 0.128 0.212 0.000 0.208 0.120 0.332
#> GSM153443     1  0.5621     0.5522 0.668 0.040 0.024 0.044 0.012 0.212
#> GSM153445     1  0.7641     0.1296 0.440 0.012 0.112 0.160 0.016 0.260
#> GSM153446     1  0.5879     0.5529 0.652 0.028 0.068 0.040 0.008 0.204
#> GSM153449     4  0.6954     0.3095 0.016 0.240 0.004 0.512 0.164 0.064
#> GSM153453     4  0.5647     0.4449 0.000 0.140 0.004 0.660 0.060 0.136
#> GSM153454     4  0.7242    -0.0718 0.008 0.332 0.000 0.352 0.240 0.068
#> GSM153455     4  0.7865     0.0241 0.044 0.032 0.076 0.472 0.132 0.244
#> GSM153462     1  0.8163     0.2656 0.424 0.144 0.096 0.076 0.012 0.248
#> GSM153465     2  0.7617     0.2867 0.204 0.524 0.088 0.076 0.020 0.088
#> GSM153481     1  0.7962    -0.1360 0.348 0.004 0.232 0.152 0.016 0.248
#> GSM153482     4  0.6779     0.2893 0.000 0.368 0.012 0.412 0.040 0.168
#> GSM153483     2  0.6103     0.2285 0.004 0.616 0.048 0.148 0.008 0.176
#> GSM153485     4  0.5297     0.3665 0.024 0.020 0.024 0.724 0.068 0.140
#> GSM153489     4  0.5855     0.3477 0.000 0.096 0.084 0.656 0.012 0.152
#> GSM153490     4  0.6792     0.4296 0.000 0.200 0.000 0.516 0.132 0.152
#> GSM153491     4  0.3952     0.4265 0.004 0.020 0.008 0.808 0.104 0.056
#> GSM153492     2  0.6249    -0.2094 0.000 0.428 0.004 0.416 0.036 0.116
#> GSM153493     4  0.5025     0.4056 0.004 0.032 0.004 0.708 0.176 0.076
#> GSM153494     4  0.7194     0.2546 0.008 0.180 0.048 0.488 0.028 0.248
#> GSM153495     2  0.6029     0.2701 0.000 0.608 0.008 0.224 0.084 0.076
#> GSM153498     4  0.7003    -0.0608 0.020 0.008 0.224 0.468 0.028 0.252
#> GSM153501     4  0.7034     0.3477 0.000 0.280 0.004 0.424 0.068 0.224
#> GSM153502     4  0.6224     0.4252 0.000 0.276 0.020 0.540 0.016 0.148
#> GSM153505     2  0.6402    -0.0292 0.000 0.480 0.000 0.344 0.088 0.088
#> GSM153506     6  0.7141     0.1482 0.032 0.088 0.060 0.332 0.016 0.472

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) k
#> CV:NMF 32               NA 2
#> CV:NMF 93          0.13762 3
#> CV:NMF 68          0.13335 4
#> CV:NMF 49          0.06322 5
#> CV:NMF 31          0.00911 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.990       1.000         0.0207 0.981   0.981
#> 3 3 0.293           0.696       0.864        10.8910 0.843   0.840
#> 4 4 0.123           0.720       0.820         0.5848 0.813   0.778
#> 5 5 0.166           0.666       0.785         0.1702 0.952   0.929
#> 6 6 0.179           0.634       0.769         0.0841 0.997   0.996

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     2  0.0000      0.999 0.000 1.000
#> GSM153406     2  0.0000      0.999 0.000 1.000
#> GSM153419     2  0.0000      0.999 0.000 1.000
#> GSM153423     2  0.0000      0.999 0.000 1.000
#> GSM153425     2  0.0000      0.999 0.000 1.000
#> GSM153427     2  0.0000      0.999 0.000 1.000
#> GSM153428     2  0.0000      0.999 0.000 1.000
#> GSM153429     2  0.0000      0.999 0.000 1.000
#> GSM153433     2  0.0000      0.999 0.000 1.000
#> GSM153444     2  0.0000      0.999 0.000 1.000
#> GSM153448     2  0.0000      0.999 0.000 1.000
#> GSM153451     2  0.0000      0.999 0.000 1.000
#> GSM153452     2  0.0000      0.999 0.000 1.000
#> GSM153477     2  0.0000      0.999 0.000 1.000
#> GSM153479     2  0.0000      0.999 0.000 1.000
#> GSM153484     2  0.0000      0.999 0.000 1.000
#> GSM153488     2  0.0000      0.999 0.000 1.000
#> GSM153496     2  0.0000      0.999 0.000 1.000
#> GSM153497     2  0.0376      0.996 0.004 0.996
#> GSM153500     2  0.0672      0.992 0.008 0.992
#> GSM153503     2  0.0000      0.999 0.000 1.000
#> GSM153508     1  0.0000      0.000 1.000 0.000
#> GSM153409     2  0.0000      0.999 0.000 1.000
#> GSM153426     2  0.0000      0.999 0.000 1.000
#> GSM153431     2  0.0000      0.999 0.000 1.000
#> GSM153438     2  0.0000      0.999 0.000 1.000
#> GSM153440     2  0.0000      0.999 0.000 1.000
#> GSM153447     2  0.0000      0.999 0.000 1.000
#> GSM153450     2  0.0000      0.999 0.000 1.000
#> GSM153456     2  0.0000      0.999 0.000 1.000
#> GSM153457     2  0.0000      0.999 0.000 1.000
#> GSM153458     2  0.0000      0.999 0.000 1.000
#> GSM153459     2  0.0000      0.999 0.000 1.000
#> GSM153460     2  0.0000      0.999 0.000 1.000
#> GSM153461     2  0.0000      0.999 0.000 1.000
#> GSM153463     2  0.0000      0.999 0.000 1.000
#> GSM153464     2  0.0376      0.996 0.004 0.996
#> GSM153466     2  0.0000      0.999 0.000 1.000
#> GSM153467     2  0.0376      0.996 0.004 0.996
#> GSM153468     2  0.0000      0.999 0.000 1.000
#> GSM153469     2  0.0000      0.999 0.000 1.000
#> GSM153470     2  0.0000      0.999 0.000 1.000
#> GSM153471     2  0.0376      0.996 0.004 0.996
#> GSM153472     2  0.0000      0.999 0.000 1.000
#> GSM153473     2  0.0000      0.999 0.000 1.000
#> GSM153474     2  0.0000      0.999 0.000 1.000
#> GSM153475     2  0.0000      0.999 0.000 1.000
#> GSM153476     2  0.0000      0.999 0.000 1.000
#> GSM153478     2  0.0000      0.999 0.000 1.000
#> GSM153480     2  0.0376      0.996 0.004 0.996
#> GSM153486     2  0.0000      0.999 0.000 1.000
#> GSM153487     2  0.0000      0.999 0.000 1.000
#> GSM153499     2  0.0000      0.999 0.000 1.000
#> GSM153504     2  0.0000      0.999 0.000 1.000
#> GSM153507     2  0.0000      0.999 0.000 1.000
#> GSM153404     2  0.0000      0.999 0.000 1.000
#> GSM153407     2  0.0000      0.999 0.000 1.000
#> GSM153408     2  0.0000      0.999 0.000 1.000
#> GSM153410     2  0.0000      0.999 0.000 1.000
#> GSM153411     2  0.0000      0.999 0.000 1.000
#> GSM153412     2  0.0000      0.999 0.000 1.000
#> GSM153413     2  0.0000      0.999 0.000 1.000
#> GSM153414     2  0.0000      0.999 0.000 1.000
#> GSM153415     2  0.0000      0.999 0.000 1.000
#> GSM153416     2  0.0000      0.999 0.000 1.000
#> GSM153417     2  0.0000      0.999 0.000 1.000
#> GSM153418     2  0.0000      0.999 0.000 1.000
#> GSM153420     2  0.0000      0.999 0.000 1.000
#> GSM153421     2  0.0000      0.999 0.000 1.000
#> GSM153422     2  0.0000      0.999 0.000 1.000
#> GSM153424     2  0.0000      0.999 0.000 1.000
#> GSM153430     2  0.0000      0.999 0.000 1.000
#> GSM153432     2  0.0000      0.999 0.000 1.000
#> GSM153434     2  0.0000      0.999 0.000 1.000
#> GSM153435     2  0.0376      0.996 0.004 0.996
#> GSM153436     2  0.0000      0.999 0.000 1.000
#> GSM153437     2  0.0376      0.996 0.004 0.996
#> GSM153439     2  0.0000      0.999 0.000 1.000
#> GSM153441     2  0.0000      0.999 0.000 1.000
#> GSM153442     2  0.0000      0.999 0.000 1.000
#> GSM153443     2  0.0000      0.999 0.000 1.000
#> GSM153445     2  0.0000      0.999 0.000 1.000
#> GSM153446     2  0.0376      0.996 0.004 0.996
#> GSM153449     2  0.0000      0.999 0.000 1.000
#> GSM153453     2  0.0000      0.999 0.000 1.000
#> GSM153454     2  0.0000      0.999 0.000 1.000
#> GSM153455     2  0.0000      0.999 0.000 1.000
#> GSM153462     2  0.0376      0.996 0.004 0.996
#> GSM153465     2  0.0000      0.999 0.000 1.000
#> GSM153481     2  0.0376      0.996 0.004 0.996
#> GSM153482     2  0.0000      0.999 0.000 1.000
#> GSM153483     2  0.0000      0.999 0.000 1.000
#> GSM153485     2  0.0000      0.999 0.000 1.000
#> GSM153489     2  0.0000      0.999 0.000 1.000
#> GSM153490     2  0.0000      0.999 0.000 1.000
#> GSM153491     2  0.0000      0.999 0.000 1.000
#> GSM153492     2  0.0000      0.999 0.000 1.000
#> GSM153493     2  0.0000      0.999 0.000 1.000
#> GSM153494     2  0.0000      0.999 0.000 1.000
#> GSM153495     2  0.0000      0.999 0.000 1.000
#> GSM153498     2  0.0000      0.999 0.000 1.000
#> GSM153501     2  0.0000      0.999 0.000 1.000
#> GSM153502     2  0.0000      0.999 0.000 1.000
#> GSM153505     2  0.0000      0.999 0.000 1.000
#> GSM153506     2  0.0376      0.996 0.004 0.996

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     2  0.3192     0.8034 0.112 0.888 0.000
#> GSM153406     2  0.2959     0.8102 0.100 0.900 0.000
#> GSM153419     2  0.3192     0.8034 0.112 0.888 0.000
#> GSM153423     2  0.0892     0.8356 0.020 0.980 0.000
#> GSM153425     2  0.6168    -0.1149 0.412 0.588 0.000
#> GSM153427     2  0.1860     0.8380 0.052 0.948 0.000
#> GSM153428     2  0.5016     0.6084 0.240 0.760 0.000
#> GSM153429     2  0.1289     0.8437 0.032 0.968 0.000
#> GSM153433     2  0.4796     0.6378 0.220 0.780 0.000
#> GSM153444     2  0.1753     0.8380 0.048 0.952 0.000
#> GSM153448     2  0.1964     0.8442 0.056 0.944 0.000
#> GSM153451     2  0.1529     0.8388 0.040 0.960 0.000
#> GSM153452     2  0.2356     0.8370 0.072 0.928 0.000
#> GSM153477     2  0.1031     0.8313 0.024 0.976 0.000
#> GSM153479     2  0.1964     0.8423 0.056 0.944 0.000
#> GSM153484     2  0.1411     0.8428 0.036 0.964 0.000
#> GSM153488     2  0.1411     0.8431 0.036 0.964 0.000
#> GSM153496     2  0.4605     0.6588 0.204 0.796 0.000
#> GSM153497     2  0.1129     0.8320 0.020 0.976 0.004
#> GSM153500     1  0.6339     0.7925 0.632 0.360 0.008
#> GSM153503     1  0.5968     0.7946 0.636 0.364 0.000
#> GSM153508     3  0.0000     0.0000 0.000 0.000 1.000
#> GSM153409     2  0.2165     0.8359 0.064 0.936 0.000
#> GSM153426     2  0.2165     0.8359 0.064 0.936 0.000
#> GSM153431     2  0.3686     0.7780 0.140 0.860 0.000
#> GSM153438     2  0.1643     0.8381 0.044 0.956 0.000
#> GSM153440     2  0.3551     0.7868 0.132 0.868 0.000
#> GSM153447     2  0.5327     0.5078 0.272 0.728 0.000
#> GSM153450     2  0.1643     0.8389 0.044 0.956 0.000
#> GSM153456     2  0.1529     0.8382 0.040 0.960 0.000
#> GSM153457     2  0.1529     0.8382 0.040 0.960 0.000
#> GSM153458     2  0.1529     0.8382 0.040 0.960 0.000
#> GSM153459     2  0.1643     0.8387 0.044 0.956 0.000
#> GSM153460     2  0.1643     0.8380 0.044 0.956 0.000
#> GSM153461     2  0.2261     0.8347 0.068 0.932 0.000
#> GSM153463     1  0.6309     0.5129 0.504 0.496 0.000
#> GSM153464     2  0.1267     0.8311 0.024 0.972 0.004
#> GSM153466     2  0.1753     0.8432 0.048 0.952 0.000
#> GSM153467     2  0.0983     0.8405 0.016 0.980 0.004
#> GSM153468     2  0.1753     0.8427 0.048 0.952 0.000
#> GSM153469     2  0.1289     0.8299 0.032 0.968 0.000
#> GSM153470     2  0.1289     0.8323 0.032 0.968 0.000
#> GSM153471     2  0.1267     0.8308 0.024 0.972 0.004
#> GSM153472     2  0.4062     0.7378 0.164 0.836 0.000
#> GSM153473     2  0.5948     0.1248 0.360 0.640 0.000
#> GSM153474     1  0.4346     0.0759 0.816 0.184 0.000
#> GSM153475     2  0.1411     0.8414 0.036 0.964 0.000
#> GSM153476     2  0.0747     0.8369 0.016 0.984 0.000
#> GSM153478     2  0.3551     0.7858 0.132 0.868 0.000
#> GSM153480     2  0.1399     0.8289 0.028 0.968 0.004
#> GSM153486     2  0.1163     0.8412 0.028 0.972 0.000
#> GSM153487     2  0.1643     0.8333 0.044 0.956 0.000
#> GSM153499     2  0.2165     0.8363 0.064 0.936 0.000
#> GSM153504     2  0.6168    -0.2102 0.412 0.588 0.000
#> GSM153507     2  0.2796     0.8194 0.092 0.908 0.000
#> GSM153404     2  0.3038     0.8073 0.104 0.896 0.000
#> GSM153407     2  0.4062     0.7548 0.164 0.836 0.000
#> GSM153408     2  0.2959     0.8102 0.100 0.900 0.000
#> GSM153410     2  0.2959     0.8102 0.100 0.900 0.000
#> GSM153411     2  0.6168    -0.1149 0.412 0.588 0.000
#> GSM153412     2  0.2959     0.8102 0.100 0.900 0.000
#> GSM153413     2  0.2959     0.8102 0.100 0.900 0.000
#> GSM153414     2  0.3267     0.8127 0.116 0.884 0.000
#> GSM153415     2  0.2959     0.8102 0.100 0.900 0.000
#> GSM153416     2  0.0592     0.8339 0.012 0.988 0.000
#> GSM153417     2  0.6168    -0.1149 0.412 0.588 0.000
#> GSM153418     2  0.2959     0.8102 0.100 0.900 0.000
#> GSM153420     2  0.6168    -0.1149 0.412 0.588 0.000
#> GSM153421     2  0.6168    -0.1149 0.412 0.588 0.000
#> GSM153422     2  0.6168    -0.1149 0.412 0.588 0.000
#> GSM153424     2  0.5098     0.5776 0.248 0.752 0.000
#> GSM153430     2  0.4235     0.7081 0.176 0.824 0.000
#> GSM153432     2  0.0892     0.8350 0.020 0.980 0.000
#> GSM153434     2  0.3619     0.7716 0.136 0.864 0.000
#> GSM153435     2  0.1399     0.8356 0.028 0.968 0.004
#> GSM153436     2  0.3619     0.7903 0.136 0.864 0.000
#> GSM153437     2  0.1525     0.8386 0.032 0.964 0.004
#> GSM153439     2  0.1289     0.8403 0.032 0.968 0.000
#> GSM153441     2  0.2066     0.8406 0.060 0.940 0.000
#> GSM153442     2  0.2711     0.8357 0.088 0.912 0.000
#> GSM153443     2  0.1289     0.8299 0.032 0.968 0.000
#> GSM153445     2  0.1031     0.8314 0.024 0.976 0.000
#> GSM153446     2  0.1399     0.8289 0.028 0.968 0.004
#> GSM153449     2  0.2878     0.8269 0.096 0.904 0.000
#> GSM153453     2  0.3879     0.7519 0.152 0.848 0.000
#> GSM153454     1  0.5678     0.7866 0.684 0.316 0.000
#> GSM153455     2  0.1860     0.8447 0.052 0.948 0.000
#> GSM153462     2  0.1129     0.8318 0.020 0.976 0.004
#> GSM153465     2  0.1529     0.8410 0.040 0.960 0.000
#> GSM153481     2  0.1399     0.8356 0.028 0.968 0.004
#> GSM153482     2  0.2878     0.8233 0.096 0.904 0.000
#> GSM153483     2  0.0892     0.8380 0.020 0.980 0.000
#> GSM153485     2  0.3038     0.8232 0.104 0.896 0.000
#> GSM153489     2  0.3551     0.7970 0.132 0.868 0.000
#> GSM153490     2  0.6008     0.0909 0.372 0.628 0.000
#> GSM153491     2  0.4346     0.7200 0.184 0.816 0.000
#> GSM153492     2  0.6274    -0.3849 0.456 0.544 0.000
#> GSM153493     1  0.6154     0.7310 0.592 0.408 0.000
#> GSM153494     2  0.2261     0.8388 0.068 0.932 0.000
#> GSM153495     1  0.6307     0.5459 0.512 0.488 0.000
#> GSM153498     2  0.3412     0.7990 0.124 0.876 0.000
#> GSM153501     1  0.5988     0.7938 0.632 0.368 0.000
#> GSM153502     2  0.5465     0.4418 0.288 0.712 0.000
#> GSM153505     1  0.5621     0.7692 0.692 0.308 0.000
#> GSM153506     2  0.1399     0.8289 0.028 0.968 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     2   0.409     0.7601 0.232 0.764 0.004 0.000
#> GSM153406     2   0.387     0.7774 0.208 0.788 0.004 0.000
#> GSM153419     2   0.405     0.7627 0.228 0.768 0.004 0.000
#> GSM153423     2   0.172     0.8490 0.064 0.936 0.000 0.000
#> GSM153425     1   0.391     0.7218 0.768 0.232 0.000 0.000
#> GSM153427     2   0.276     0.8354 0.128 0.872 0.000 0.000
#> GSM153428     2   0.490     0.3608 0.416 0.584 0.000 0.000
#> GSM153429     2   0.218     0.8531 0.064 0.924 0.012 0.000
#> GSM153433     2   0.496     0.3959 0.380 0.616 0.004 0.000
#> GSM153444     2   0.228     0.8408 0.096 0.904 0.000 0.000
#> GSM153448     2   0.287     0.8498 0.104 0.884 0.012 0.000
#> GSM153451     2   0.156     0.8447 0.056 0.944 0.000 0.000
#> GSM153452     2   0.276     0.8344 0.128 0.872 0.000 0.000
#> GSM153477     2   0.145     0.8394 0.036 0.956 0.008 0.000
#> GSM153479     2   0.300     0.8451 0.132 0.864 0.004 0.000
#> GSM153484     2   0.156     0.8525 0.056 0.944 0.000 0.000
#> GSM153488     2   0.254     0.8511 0.084 0.904 0.012 0.000
#> GSM153496     2   0.550     0.5194 0.312 0.652 0.036 0.000
#> GSM153497     2   0.117     0.8381 0.020 0.968 0.012 0.000
#> GSM153500     1   0.583     0.4073 0.712 0.084 0.196 0.008
#> GSM153503     1   0.566     0.3926 0.696 0.076 0.228 0.000
#> GSM153508     4   0.000     0.0000 0.000 0.000 0.000 1.000
#> GSM153409     2   0.345     0.8140 0.156 0.836 0.008 0.000
#> GSM153426     2   0.345     0.8140 0.156 0.836 0.008 0.000
#> GSM153431     2   0.434     0.6990 0.264 0.732 0.004 0.000
#> GSM153438     2   0.215     0.8436 0.088 0.912 0.000 0.000
#> GSM153440     2   0.458     0.6568 0.300 0.696 0.004 0.000
#> GSM153447     2   0.578    -0.0386 0.484 0.488 0.028 0.000
#> GSM153450     2   0.222     0.8444 0.092 0.908 0.000 0.000
#> GSM153456     2   0.172     0.8433 0.064 0.936 0.000 0.000
#> GSM153457     2   0.172     0.8433 0.064 0.936 0.000 0.000
#> GSM153458     2   0.172     0.8433 0.064 0.936 0.000 0.000
#> GSM153459     2   0.179     0.8437 0.068 0.932 0.000 0.000
#> GSM153460     2   0.164     0.8441 0.060 0.940 0.000 0.000
#> GSM153461     2   0.350     0.8122 0.160 0.832 0.008 0.000
#> GSM153463     1   0.473     0.6603 0.780 0.160 0.060 0.000
#> GSM153464     2   0.151     0.8297 0.028 0.956 0.016 0.000
#> GSM153466     2   0.261     0.8485 0.088 0.900 0.012 0.000
#> GSM153467     2   0.189     0.8437 0.044 0.940 0.016 0.000
#> GSM153468     2   0.284     0.8472 0.088 0.892 0.020 0.000
#> GSM153469     2   0.158     0.8373 0.036 0.952 0.012 0.000
#> GSM153470     2   0.128     0.8407 0.024 0.964 0.012 0.000
#> GSM153471     2   0.130     0.8290 0.020 0.964 0.016 0.000
#> GSM153472     2   0.506     0.6840 0.224 0.732 0.044 0.000
#> GSM153473     1   0.567     0.5513 0.596 0.372 0.032 0.000
#> GSM153474     3   0.194     0.0000 0.052 0.012 0.936 0.000
#> GSM153475     2   0.220     0.8513 0.080 0.916 0.004 0.000
#> GSM153476     2   0.155     0.8491 0.040 0.952 0.008 0.000
#> GSM153478     2   0.422     0.7362 0.248 0.748 0.004 0.000
#> GSM153480     2   0.141     0.8277 0.024 0.960 0.016 0.000
#> GSM153486     2   0.185     0.8457 0.048 0.940 0.012 0.000
#> GSM153487     2   0.210     0.8397 0.060 0.928 0.012 0.000
#> GSM153499     2   0.284     0.8399 0.076 0.896 0.028 0.000
#> GSM153504     1   0.622     0.6509 0.616 0.304 0.080 0.000
#> GSM153507     2   0.325     0.8079 0.140 0.852 0.008 0.000
#> GSM153404     2   0.395     0.7704 0.216 0.780 0.004 0.000
#> GSM153407     2   0.454     0.6401 0.324 0.676 0.000 0.000
#> GSM153408     2   0.391     0.7743 0.212 0.784 0.004 0.000
#> GSM153410     2   0.387     0.7774 0.208 0.788 0.004 0.000
#> GSM153411     1   0.391     0.7218 0.768 0.232 0.000 0.000
#> GSM153412     2   0.387     0.7774 0.208 0.788 0.004 0.000
#> GSM153413     2   0.387     0.7774 0.208 0.788 0.004 0.000
#> GSM153414     2   0.384     0.7799 0.224 0.776 0.000 0.000
#> GSM153415     2   0.387     0.7774 0.208 0.788 0.004 0.000
#> GSM153416     2   0.139     0.8487 0.048 0.952 0.000 0.000
#> GSM153417     1   0.391     0.7218 0.768 0.232 0.000 0.000
#> GSM153418     2   0.387     0.7774 0.208 0.788 0.004 0.000
#> GSM153420     1   0.391     0.7218 0.768 0.232 0.000 0.000
#> GSM153421     1   0.391     0.7218 0.768 0.232 0.000 0.000
#> GSM153422     1   0.391     0.7218 0.768 0.232 0.000 0.000
#> GSM153424     2   0.523     0.2683 0.428 0.564 0.008 0.000
#> GSM153430     2   0.496     0.5736 0.320 0.668 0.012 0.000
#> GSM153432     2   0.145     0.8433 0.036 0.956 0.008 0.000
#> GSM153434     2   0.433     0.7037 0.244 0.748 0.008 0.000
#> GSM153435     2   0.158     0.8407 0.036 0.952 0.012 0.000
#> GSM153436     2   0.433     0.7029 0.288 0.712 0.000 0.000
#> GSM153437     2   0.145     0.8441 0.036 0.956 0.008 0.000
#> GSM153439     2   0.166     0.8487 0.052 0.944 0.004 0.000
#> GSM153441     2   0.287     0.8405 0.136 0.864 0.000 0.000
#> GSM153442     2   0.368     0.8198 0.176 0.816 0.008 0.000
#> GSM153443     2   0.161     0.8334 0.032 0.952 0.016 0.000
#> GSM153445     2   0.104     0.8387 0.020 0.972 0.008 0.000
#> GSM153446     2   0.130     0.8290 0.020 0.964 0.016 0.000
#> GSM153449     2   0.393     0.7893 0.200 0.792 0.008 0.000
#> GSM153453     2   0.460     0.6848 0.248 0.736 0.016 0.000
#> GSM153454     1   0.471     0.2411 0.748 0.028 0.224 0.000
#> GSM153455     2   0.255     0.8518 0.092 0.900 0.008 0.000
#> GSM153462     2   0.130     0.8323 0.020 0.964 0.016 0.000
#> GSM153465     2   0.233     0.8492 0.088 0.908 0.004 0.000
#> GSM153481     2   0.130     0.8396 0.020 0.964 0.016 0.000
#> GSM153482     2   0.376     0.8144 0.152 0.828 0.020 0.000
#> GSM153483     2   0.141     0.8412 0.020 0.960 0.020 0.000
#> GSM153485     2   0.355     0.8290 0.136 0.844 0.020 0.000
#> GSM153489     2   0.454     0.7592 0.228 0.752 0.020 0.000
#> GSM153490     1   0.597     0.6072 0.600 0.348 0.052 0.000
#> GSM153491     2   0.517     0.6288 0.272 0.696 0.032 0.000
#> GSM153492     1   0.731     0.5965 0.504 0.324 0.172 0.000
#> GSM153493     1   0.650     0.4389 0.624 0.124 0.252 0.000
#> GSM153494     2   0.332     0.8454 0.136 0.852 0.012 0.000
#> GSM153495     1   0.496     0.6593 0.764 0.168 0.068 0.000
#> GSM153498     2   0.427     0.7662 0.188 0.788 0.024 0.000
#> GSM153501     1   0.585     0.3624 0.676 0.080 0.244 0.000
#> GSM153502     1   0.569     0.2511 0.508 0.468 0.024 0.000
#> GSM153505     1   0.614     0.2387 0.632 0.080 0.288 0.000
#> GSM153506     2   0.161     0.8310 0.032 0.952 0.016 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     2  0.4206     0.7094 0.000 0.708 0.000 0.020 0.272
#> GSM153406     2  0.4026     0.7328 0.000 0.736 0.000 0.020 0.244
#> GSM153419     2  0.4181     0.7122 0.000 0.712 0.000 0.020 0.268
#> GSM153423     2  0.1956     0.8310 0.000 0.916 0.000 0.008 0.076
#> GSM153425     5  0.1792     0.5224 0.000 0.084 0.000 0.000 0.916
#> GSM153427     2  0.2997     0.8142 0.000 0.840 0.000 0.012 0.148
#> GSM153428     2  0.5171     0.1679 0.000 0.504 0.000 0.040 0.456
#> GSM153429     2  0.2588     0.8341 0.000 0.884 0.008 0.008 0.100
#> GSM153433     2  0.5036     0.2712 0.000 0.560 0.000 0.036 0.404
#> GSM153444     2  0.2563     0.8196 0.000 0.872 0.000 0.008 0.120
#> GSM153448     2  0.3067     0.8284 0.000 0.844 0.004 0.012 0.140
#> GSM153451     2  0.1628     0.8243 0.000 0.936 0.000 0.008 0.056
#> GSM153452     2  0.3236     0.8090 0.000 0.828 0.000 0.020 0.152
#> GSM153477     2  0.1710     0.8151 0.000 0.940 0.016 0.004 0.040
#> GSM153479     2  0.3141     0.8211 0.000 0.832 0.000 0.016 0.152
#> GSM153484     2  0.2006     0.8348 0.000 0.916 0.000 0.012 0.072
#> GSM153488     2  0.3007     0.8301 0.000 0.864 0.004 0.028 0.104
#> GSM153496     2  0.5988     0.4638 0.000 0.592 0.020 0.088 0.300
#> GSM153497     2  0.1442     0.8162 0.000 0.952 0.012 0.004 0.032
#> GSM153500     4  0.6868     0.6134 0.008 0.012 0.160 0.476 0.344
#> GSM153503     4  0.4674     0.7408 0.000 0.004 0.024 0.656 0.316
#> GSM153508     1  0.0000     0.0000 1.000 0.000 0.000 0.000 0.000
#> GSM153409     2  0.3848     0.7707 0.000 0.780 0.012 0.012 0.196
#> GSM153426     2  0.3848     0.7707 0.000 0.780 0.012 0.012 0.196
#> GSM153431     2  0.4809     0.6064 0.000 0.664 0.004 0.036 0.296
#> GSM153438     2  0.2338     0.8236 0.000 0.884 0.000 0.004 0.112
#> GSM153440     2  0.4869     0.5710 0.000 0.624 0.004 0.028 0.344
#> GSM153447     5  0.6168     0.1907 0.000 0.412 0.004 0.116 0.468
#> GSM153450     2  0.2727     0.8218 0.000 0.868 0.000 0.016 0.116
#> GSM153456     2  0.2017     0.8221 0.000 0.912 0.000 0.008 0.080
#> GSM153457     2  0.2017     0.8221 0.000 0.912 0.000 0.008 0.080
#> GSM153458     2  0.2077     0.8219 0.000 0.908 0.000 0.008 0.084
#> GSM153459     2  0.2077     0.8224 0.000 0.908 0.000 0.008 0.084
#> GSM153460     2  0.1956     0.8230 0.000 0.916 0.000 0.008 0.076
#> GSM153461     2  0.3982     0.7662 0.000 0.772 0.012 0.016 0.200
#> GSM153463     5  0.4818     0.0191 0.000 0.048 0.004 0.260 0.688
#> GSM153464     2  0.1469     0.8052 0.000 0.948 0.016 0.000 0.036
#> GSM153466     2  0.2796     0.8295 0.000 0.868 0.008 0.008 0.116
#> GSM153467     2  0.2141     0.8213 0.000 0.916 0.016 0.004 0.064
#> GSM153468     2  0.3147     0.8292 0.000 0.856 0.008 0.024 0.112
#> GSM153469     2  0.1717     0.8221 0.000 0.936 0.004 0.008 0.052
#> GSM153470     2  0.1372     0.8183 0.000 0.956 0.016 0.004 0.024
#> GSM153471     2  0.1547     0.8058 0.000 0.948 0.016 0.004 0.032
#> GSM153472     2  0.5476     0.6587 0.000 0.696 0.048 0.056 0.200
#> GSM153473     5  0.4878     0.4944 0.000 0.248 0.024 0.028 0.700
#> GSM153474     3  0.2694     0.0000 0.000 0.004 0.864 0.128 0.004
#> GSM153475     2  0.2349     0.8309 0.000 0.900 0.012 0.004 0.084
#> GSM153476     2  0.2362     0.8302 0.000 0.900 0.008 0.008 0.084
#> GSM153478     2  0.4768     0.6232 0.000 0.656 0.000 0.040 0.304
#> GSM153480     2  0.1386     0.8032 0.000 0.952 0.016 0.000 0.032
#> GSM153486     2  0.2006     0.8238 0.000 0.916 0.012 0.000 0.072
#> GSM153487     2  0.2363     0.8161 0.000 0.912 0.024 0.012 0.052
#> GSM153499     2  0.3012     0.8088 0.000 0.876 0.008 0.060 0.056
#> GSM153504     5  0.7132     0.2374 0.000 0.200 0.056 0.212 0.532
#> GSM153507     2  0.4022     0.7504 0.000 0.772 0.024 0.008 0.196
#> GSM153404     2  0.4080     0.7254 0.000 0.728 0.000 0.020 0.252
#> GSM153407     2  0.4696     0.5629 0.000 0.616 0.000 0.024 0.360
#> GSM153408     2  0.4054     0.7296 0.000 0.732 0.000 0.020 0.248
#> GSM153410     2  0.4026     0.7328 0.000 0.736 0.000 0.020 0.244
#> GSM153411     5  0.1792     0.5224 0.000 0.084 0.000 0.000 0.916
#> GSM153412     2  0.4026     0.7328 0.000 0.736 0.000 0.020 0.244
#> GSM153413     2  0.4026     0.7328 0.000 0.736 0.000 0.020 0.244
#> GSM153414     2  0.4088     0.7303 0.000 0.712 0.004 0.008 0.276
#> GSM153415     2  0.4026     0.7328 0.000 0.736 0.000 0.020 0.244
#> GSM153416     2  0.1671     0.8314 0.000 0.924 0.000 0.000 0.076
#> GSM153417     5  0.1792     0.5224 0.000 0.084 0.000 0.000 0.916
#> GSM153418     2  0.4026     0.7328 0.000 0.736 0.000 0.020 0.244
#> GSM153420     5  0.1792     0.5224 0.000 0.084 0.000 0.000 0.916
#> GSM153421     5  0.1792     0.5224 0.000 0.084 0.000 0.000 0.916
#> GSM153422     5  0.1792     0.5224 0.000 0.084 0.000 0.000 0.916
#> GSM153424     5  0.5320    -0.0411 0.000 0.468 0.004 0.040 0.488
#> GSM153430     2  0.5253     0.4647 0.000 0.608 0.008 0.044 0.340
#> GSM153432     2  0.1843     0.8226 0.000 0.932 0.008 0.008 0.052
#> GSM153434     2  0.4661     0.6053 0.000 0.656 0.000 0.032 0.312
#> GSM153435     2  0.1757     0.8185 0.000 0.936 0.012 0.004 0.048
#> GSM153436     2  0.4661     0.6065 0.000 0.624 0.004 0.016 0.356
#> GSM153437     2  0.1651     0.8236 0.000 0.944 0.012 0.008 0.036
#> GSM153439     2  0.2241     0.8314 0.000 0.908 0.008 0.008 0.076
#> GSM153441     2  0.3318     0.8000 0.000 0.800 0.000 0.008 0.192
#> GSM153442     2  0.4348     0.7762 0.000 0.744 0.008 0.032 0.216
#> GSM153443     2  0.1329     0.8112 0.000 0.956 0.008 0.004 0.032
#> GSM153445     2  0.0955     0.8158 0.000 0.968 0.004 0.000 0.028
#> GSM153446     2  0.1300     0.8047 0.000 0.956 0.016 0.000 0.028
#> GSM153449     2  0.4128     0.7577 0.000 0.752 0.008 0.020 0.220
#> GSM153453     2  0.4818     0.6477 0.000 0.688 0.004 0.048 0.260
#> GSM153454     4  0.5363     0.7190 0.000 0.004 0.064 0.612 0.320
#> GSM153455     2  0.2952     0.8310 0.000 0.868 0.008 0.020 0.104
#> GSM153462     2  0.1547     0.8096 0.000 0.948 0.016 0.004 0.032
#> GSM153465     2  0.2354     0.8285 0.000 0.904 0.008 0.012 0.076
#> GSM153481     2  0.1630     0.8194 0.000 0.944 0.016 0.004 0.036
#> GSM153482     2  0.4043     0.7871 0.000 0.792 0.012 0.036 0.160
#> GSM153483     2  0.1869     0.8207 0.000 0.936 0.016 0.012 0.036
#> GSM153485     2  0.3678     0.8015 0.000 0.804 0.008 0.020 0.168
#> GSM153489     2  0.4509     0.7403 0.000 0.728 0.016 0.024 0.232
#> GSM153490     5  0.6871     0.3807 0.000 0.248 0.032 0.188 0.532
#> GSM153491     2  0.5628     0.5738 0.000 0.636 0.028 0.056 0.280
#> GSM153492     5  0.7291     0.2823 0.000 0.248 0.028 0.308 0.416
#> GSM153493     5  0.7088    -0.3284 0.000 0.036 0.180 0.300 0.484
#> GSM153494     2  0.3357     0.8251 0.000 0.836 0.012 0.016 0.136
#> GSM153495     5  0.5336    -0.1076 0.000 0.052 0.012 0.304 0.632
#> GSM153498     2  0.4499     0.7426 0.000 0.764 0.020 0.044 0.172
#> GSM153501     4  0.5588     0.6783 0.000 0.024 0.056 0.632 0.288
#> GSM153502     5  0.6167     0.3328 0.000 0.396 0.020 0.080 0.504
#> GSM153505     4  0.5440     0.6866 0.000 0.012 0.084 0.664 0.240
#> GSM153506     2  0.1854     0.8082 0.000 0.936 0.020 0.008 0.036

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     1   0.402    0.71131 0.704 0.028 0.000 0.004 0.264 0.000
#> GSM153406     1   0.386    0.72950 0.732 0.028 0.000 0.004 0.236 0.000
#> GSM153419     1   0.400    0.71376 0.708 0.028 0.000 0.004 0.260 0.000
#> GSM153423     1   0.198    0.81675 0.908 0.020 0.000 0.000 0.072 0.000
#> GSM153425     5   0.136    0.47954 0.048 0.004 0.000 0.004 0.944 0.000
#> GSM153427     1   0.285    0.80178 0.840 0.016 0.000 0.004 0.140 0.000
#> GSM153428     1   0.493    0.15927 0.480 0.016 0.000 0.032 0.472 0.000
#> GSM153429     1   0.274    0.82063 0.868 0.044 0.000 0.004 0.084 0.000
#> GSM153433     1   0.523    0.21710 0.512 0.036 0.000 0.032 0.420 0.000
#> GSM153444     1   0.249    0.80582 0.868 0.020 0.000 0.000 0.112 0.000
#> GSM153448     1   0.311    0.81474 0.832 0.036 0.000 0.004 0.128 0.000
#> GSM153451     1   0.175    0.80930 0.924 0.020 0.000 0.000 0.056 0.000
#> GSM153452     1   0.316    0.79818 0.824 0.024 0.000 0.008 0.144 0.000
#> GSM153477     1   0.206    0.79924 0.900 0.084 0.000 0.000 0.016 0.000
#> GSM153479     1   0.316    0.80975 0.824 0.032 0.000 0.004 0.140 0.000
#> GSM153484     1   0.225    0.82204 0.900 0.032 0.000 0.004 0.064 0.000
#> GSM153488     1   0.319    0.81431 0.836 0.060 0.000 0.004 0.100 0.000
#> GSM153496     1   0.611    0.38716 0.552 0.116 0.000 0.044 0.284 0.004
#> GSM153497     1   0.170    0.80415 0.928 0.048 0.000 0.000 0.024 0.000
#> GSM153500     4   0.756    0.18266 0.008 0.256 0.004 0.404 0.212 0.116
#> GSM153503     4   0.423    0.56512 0.000 0.032 0.000 0.744 0.192 0.032
#> GSM153508     3   0.000    0.00000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM153409     1   0.365    0.76142 0.768 0.032 0.000 0.004 0.196 0.000
#> GSM153426     1   0.365    0.76142 0.768 0.032 0.000 0.004 0.196 0.000
#> GSM153431     1   0.462    0.59264 0.640 0.024 0.000 0.024 0.312 0.000
#> GSM153438     1   0.235    0.80920 0.880 0.020 0.000 0.000 0.100 0.000
#> GSM153440     1   0.473    0.55390 0.608 0.028 0.000 0.020 0.344 0.000
#> GSM153447     5   0.611    0.19667 0.384 0.040 0.000 0.084 0.484 0.008
#> GSM153450     1   0.263    0.80769 0.864 0.020 0.000 0.004 0.112 0.000
#> GSM153456     1   0.209    0.80671 0.900 0.020 0.000 0.000 0.080 0.000
#> GSM153457     1   0.209    0.80671 0.900 0.020 0.000 0.000 0.080 0.000
#> GSM153458     1   0.223    0.80696 0.892 0.024 0.000 0.000 0.084 0.000
#> GSM153459     1   0.215    0.80706 0.896 0.020 0.000 0.000 0.084 0.000
#> GSM153460     1   0.195    0.80745 0.908 0.016 0.000 0.000 0.076 0.000
#> GSM153461     1   0.379    0.75731 0.760 0.032 0.000 0.008 0.200 0.000
#> GSM153463     5   0.516    0.07469 0.028 0.056 0.000 0.252 0.656 0.008
#> GSM153464     1   0.186    0.78987 0.912 0.076 0.000 0.000 0.012 0.000
#> GSM153466     1   0.304    0.81617 0.848 0.060 0.000 0.004 0.088 0.000
#> GSM153467     1   0.222    0.80721 0.896 0.072 0.000 0.000 0.032 0.000
#> GSM153468     1   0.320    0.81584 0.836 0.064 0.000 0.000 0.096 0.004
#> GSM153469     1   0.205    0.80805 0.908 0.060 0.000 0.000 0.032 0.000
#> GSM153470     1   0.189    0.80325 0.916 0.060 0.000 0.000 0.024 0.000
#> GSM153471     1   0.202    0.79104 0.900 0.088 0.000 0.000 0.012 0.000
#> GSM153472     1   0.574    0.59600 0.640 0.124 0.000 0.028 0.192 0.016
#> GSM153473     5   0.486    0.40044 0.196 0.064 0.000 0.020 0.708 0.012
#> GSM153474     6   0.181    0.00000 0.000 0.004 0.000 0.088 0.000 0.908
#> GSM153475     1   0.268    0.81579 0.868 0.056 0.000 0.000 0.076 0.000
#> GSM153476     1   0.244    0.81707 0.888 0.036 0.000 0.004 0.072 0.000
#> GSM153478     1   0.470    0.60991 0.632 0.032 0.000 0.020 0.316 0.000
#> GSM153480     1   0.186    0.79005 0.912 0.076 0.000 0.000 0.012 0.000
#> GSM153486     1   0.220    0.81110 0.900 0.056 0.000 0.000 0.044 0.000
#> GSM153487     1   0.305    0.78609 0.840 0.116 0.000 0.000 0.040 0.004
#> GSM153499     1   0.330    0.79024 0.844 0.084 0.000 0.036 0.036 0.000
#> GSM153504     5   0.731   -0.08994 0.132 0.248 0.000 0.120 0.476 0.024
#> GSM153507     1   0.549    0.50876 0.600 0.184 0.000 0.008 0.208 0.000
#> GSM153404     1   0.391    0.72296 0.724 0.028 0.000 0.004 0.244 0.000
#> GSM153407     1   0.466    0.55169 0.592 0.020 0.000 0.020 0.368 0.000
#> GSM153408     1   0.388    0.72661 0.728 0.028 0.000 0.004 0.240 0.000
#> GSM153410     1   0.386    0.72950 0.732 0.028 0.000 0.004 0.236 0.000
#> GSM153411     5   0.136    0.47954 0.048 0.004 0.000 0.004 0.944 0.000
#> GSM153412     1   0.386    0.72950 0.732 0.028 0.000 0.004 0.236 0.000
#> GSM153413     1   0.386    0.72950 0.732 0.028 0.000 0.004 0.236 0.000
#> GSM153414     1   0.396    0.71510 0.696 0.020 0.000 0.004 0.280 0.000
#> GSM153415     1   0.386    0.72950 0.732 0.028 0.000 0.004 0.236 0.000
#> GSM153416     1   0.178    0.81740 0.920 0.016 0.000 0.000 0.064 0.000
#> GSM153417     5   0.136    0.47954 0.048 0.004 0.000 0.004 0.944 0.000
#> GSM153418     1   0.386    0.72950 0.732 0.028 0.000 0.004 0.236 0.000
#> GSM153420     5   0.136    0.47954 0.048 0.004 0.000 0.004 0.944 0.000
#> GSM153421     5   0.136    0.47954 0.048 0.004 0.000 0.004 0.944 0.000
#> GSM153422     5   0.136    0.47954 0.048 0.004 0.000 0.004 0.944 0.000
#> GSM153424     5   0.504   -0.00114 0.436 0.020 0.000 0.036 0.508 0.000
#> GSM153430     1   0.514    0.42391 0.568 0.032 0.000 0.028 0.368 0.004
#> GSM153432     1   0.203    0.80535 0.912 0.060 0.000 0.004 0.024 0.000
#> GSM153434     1   0.478    0.58704 0.636 0.040 0.000 0.020 0.304 0.000
#> GSM153435     1   0.209    0.80210 0.904 0.068 0.000 0.000 0.028 0.000
#> GSM153436     1   0.429    0.60546 0.612 0.028 0.000 0.000 0.360 0.000
#> GSM153437     1   0.192    0.80842 0.916 0.052 0.000 0.000 0.032 0.000
#> GSM153439     1   0.238    0.81901 0.888 0.048 0.000 0.000 0.064 0.000
#> GSM153441     1   0.348    0.77669 0.772 0.020 0.000 0.004 0.204 0.000
#> GSM153442     1   0.429    0.75920 0.720 0.048 0.000 0.012 0.220 0.000
#> GSM153443     1   0.172    0.79723 0.924 0.060 0.000 0.000 0.016 0.000
#> GSM153445     1   0.139    0.80275 0.944 0.040 0.000 0.000 0.016 0.000
#> GSM153446     1   0.180    0.79143 0.916 0.072 0.000 0.000 0.012 0.000
#> GSM153449     1   0.428    0.73939 0.716 0.052 0.000 0.008 0.224 0.000
#> GSM153453     1   0.540    0.57952 0.628 0.092 0.000 0.032 0.248 0.000
#> GSM153454     4   0.561    0.48807 0.000 0.128 0.000 0.624 0.212 0.036
#> GSM153455     1   0.296    0.81697 0.848 0.040 0.000 0.004 0.108 0.000
#> GSM153462     1   0.174    0.79372 0.920 0.068 0.000 0.000 0.012 0.000
#> GSM153465     1   0.253    0.81560 0.876 0.040 0.000 0.000 0.084 0.000
#> GSM153481     1   0.198    0.80729 0.912 0.056 0.000 0.000 0.032 0.000
#> GSM153482     1   0.434    0.75502 0.744 0.064 0.000 0.020 0.172 0.000
#> GSM153483     1   0.209    0.80609 0.904 0.068 0.000 0.000 0.028 0.000
#> GSM153485     1   0.414    0.77117 0.760 0.064 0.000 0.008 0.164 0.004
#> GSM153489     1   0.471    0.71502 0.688 0.092 0.000 0.008 0.212 0.000
#> GSM153490     5   0.710    0.23220 0.180 0.184 0.000 0.120 0.504 0.012
#> GSM153491     1   0.578    0.54431 0.596 0.116 0.000 0.024 0.256 0.008
#> GSM153492     5   0.709    0.18719 0.212 0.036 0.000 0.332 0.396 0.024
#> GSM153493     2   0.643    0.00000 0.020 0.544 0.000 0.064 0.288 0.084
#> GSM153494     1   0.359    0.80935 0.796 0.084 0.000 0.000 0.120 0.000
#> GSM153495     5   0.566   -0.02961 0.032 0.076 0.000 0.292 0.592 0.008
#> GSM153498     1   0.491    0.68433 0.700 0.144 0.000 0.012 0.140 0.004
#> GSM153501     4   0.593    0.43053 0.008 0.192 0.000 0.624 0.124 0.052
#> GSM153502     5   0.650    0.28579 0.324 0.164 0.000 0.032 0.472 0.008
#> GSM153505     4   0.487    0.53060 0.000 0.068 0.000 0.728 0.128 0.076
#> GSM153506     1   0.263    0.78738 0.864 0.112 0.000 0.000 0.020 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> MAD:hclust 104               NA 2
#> MAD:hclust  92            0.433 3
#> MAD:hclust  92            0.349 4
#> MAD:hclust  89            0.144 5
#> MAD:hclust  80            0.438 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.414           0.796       0.870         0.4745 0.515   0.515
#> 3 3 0.679           0.820       0.903         0.3018 0.687   0.478
#> 4 4 0.562           0.579       0.760         0.1332 0.791   0.506
#> 5 5 0.582           0.530       0.774         0.0719 0.879   0.629
#> 6 6 0.616           0.522       0.719         0.0496 0.892   0.647

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     1  0.2948     0.8222 0.948 0.052
#> GSM153406     2  0.6048     0.8112 0.148 0.852
#> GSM153419     1  0.2948     0.8222 0.948 0.052
#> GSM153423     2  0.3584     0.8647 0.068 0.932
#> GSM153425     1  0.2948     0.8222 0.948 0.052
#> GSM153427     2  0.4022     0.8588 0.080 0.920
#> GSM153428     1  0.5059     0.8440 0.888 0.112
#> GSM153429     2  0.3431     0.8592 0.064 0.936
#> GSM153433     1  0.5946     0.8808 0.856 0.144
#> GSM153444     2  0.3879     0.8611 0.076 0.924
#> GSM153448     2  0.2948     0.8723 0.052 0.948
#> GSM153451     2  0.3584     0.8647 0.068 0.932
#> GSM153452     1  0.9815     0.2772 0.580 0.420
#> GSM153477     2  0.2236     0.8656 0.036 0.964
#> GSM153479     2  0.3879     0.8514 0.076 0.924
#> GSM153484     2  0.1184     0.8762 0.016 0.984
#> GSM153488     1  0.9661     0.5136 0.608 0.392
#> GSM153496     1  0.5842     0.8821 0.860 0.140
#> GSM153497     2  0.0672     0.8777 0.008 0.992
#> GSM153500     1  0.5842     0.8821 0.860 0.140
#> GSM153503     1  0.5842     0.8821 0.860 0.140
#> GSM153508     2  0.9963    -0.0530 0.464 0.536
#> GSM153409     2  0.4022     0.8588 0.080 0.920
#> GSM153426     2  0.3879     0.8611 0.076 0.924
#> GSM153431     2  0.9170     0.5716 0.332 0.668
#> GSM153438     2  0.3584     0.8649 0.068 0.932
#> GSM153440     1  0.4161     0.8370 0.916 0.084
#> GSM153447     1  0.3274     0.8582 0.940 0.060
#> GSM153450     2  0.3879     0.8611 0.076 0.924
#> GSM153456     2  0.3733     0.8629 0.072 0.928
#> GSM153457     2  0.3584     0.8647 0.068 0.932
#> GSM153458     2  0.3879     0.8611 0.076 0.924
#> GSM153459     2  0.3879     0.8611 0.076 0.924
#> GSM153460     2  0.3879     0.8611 0.076 0.924
#> GSM153461     2  0.4161     0.8586 0.084 0.916
#> GSM153463     1  0.5629     0.8811 0.868 0.132
#> GSM153464     2  0.0376     0.8773 0.004 0.996
#> GSM153466     2  0.4562     0.8317 0.096 0.904
#> GSM153467     2  0.1184     0.8743 0.016 0.984
#> GSM153468     2  0.5737     0.7969 0.136 0.864
#> GSM153469     2  0.2236     0.8659 0.036 0.964
#> GSM153470     2  0.1184     0.8742 0.016 0.984
#> GSM153471     2  0.2236     0.8656 0.036 0.964
#> GSM153472     1  0.6048     0.8783 0.852 0.148
#> GSM153473     1  0.5842     0.8821 0.860 0.140
#> GSM153474     1  0.5842     0.8821 0.860 0.140
#> GSM153475     2  0.3733     0.8535 0.072 0.928
#> GSM153476     2  0.2043     0.8737 0.032 0.968
#> GSM153478     1  0.6438     0.8762 0.836 0.164
#> GSM153480     2  0.0000     0.8777 0.000 1.000
#> GSM153486     2  0.0376     0.8773 0.004 0.996
#> GSM153487     2  0.6973     0.7302 0.188 0.812
#> GSM153499     2  0.3431     0.8520 0.064 0.936
#> GSM153504     1  0.5946     0.8805 0.856 0.144
#> GSM153507     2  0.9661     0.2472 0.392 0.608
#> GSM153404     2  0.9129     0.6229 0.328 0.672
#> GSM153407     1  0.4431     0.8396 0.908 0.092
#> GSM153408     2  0.9358     0.5876 0.352 0.648
#> GSM153410     2  0.5946     0.8125 0.144 0.856
#> GSM153411     1  0.2603     0.8240 0.956 0.044
#> GSM153412     2  0.5946     0.8125 0.144 0.856
#> GSM153413     1  0.6887     0.7060 0.816 0.184
#> GSM153414     2  0.7602     0.7501 0.220 0.780
#> GSM153415     2  0.9170     0.6246 0.332 0.668
#> GSM153416     2  0.3584     0.8647 0.068 0.932
#> GSM153417     1  0.2778     0.8231 0.952 0.048
#> GSM153418     2  0.6438     0.8033 0.164 0.836
#> GSM153420     1  0.2948     0.8222 0.948 0.052
#> GSM153421     1  0.2948     0.8222 0.948 0.052
#> GSM153422     1  0.2948     0.8222 0.948 0.052
#> GSM153424     1  0.5059     0.8440 0.888 0.112
#> GSM153430     1  0.5946     0.8816 0.856 0.144
#> GSM153432     2  0.0938     0.8755 0.012 0.988
#> GSM153434     1  0.7376     0.8543 0.792 0.208
#> GSM153435     2  0.0376     0.8773 0.004 0.996
#> GSM153436     1  0.5629     0.8455 0.868 0.132
#> GSM153437     2  0.1184     0.8770 0.016 0.984
#> GSM153439     2  0.1184     0.8762 0.016 0.984
#> GSM153441     2  0.4022     0.8637 0.080 0.920
#> GSM153442     2  0.8555     0.5539 0.280 0.720
#> GSM153443     2  0.0376     0.8773 0.004 0.996
#> GSM153445     2  0.0376     0.8773 0.004 0.996
#> GSM153446     2  0.0938     0.8773 0.012 0.988
#> GSM153449     1  0.6343     0.8723 0.840 0.160
#> GSM153453     1  0.6623     0.8626 0.828 0.172
#> GSM153454     1  0.5842     0.8821 0.860 0.140
#> GSM153455     2  0.9896     0.0384 0.440 0.560
#> GSM153462     2  0.0000     0.8777 0.000 1.000
#> GSM153465     2  0.0672     0.8778 0.008 0.992
#> GSM153481     2  0.0376     0.8773 0.004 0.996
#> GSM153482     1  0.9993     0.2316 0.516 0.484
#> GSM153483     2  0.2423     0.8634 0.040 0.960
#> GSM153485     2  0.6887     0.7295 0.184 0.816
#> GSM153489     1  0.9996     0.2080 0.512 0.488
#> GSM153490     1  0.5842     0.8821 0.860 0.140
#> GSM153491     1  0.6343     0.8714 0.840 0.160
#> GSM153492     1  0.5842     0.8821 0.860 0.140
#> GSM153493     1  0.5842     0.8821 0.860 0.140
#> GSM153494     2  0.3274     0.8539 0.060 0.940
#> GSM153495     1  0.5842     0.8821 0.860 0.140
#> GSM153498     2  0.9000     0.4937 0.316 0.684
#> GSM153501     1  0.5842     0.8821 0.860 0.140
#> GSM153502     1  0.5842     0.8821 0.860 0.140
#> GSM153505     1  0.5842     0.8821 0.860 0.140
#> GSM153506     2  0.2236     0.8656 0.036 0.964

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     3  0.2496     0.8923 0.068 0.004 0.928
#> GSM153406     3  0.1989     0.8896 0.004 0.048 0.948
#> GSM153419     3  0.2496     0.8923 0.068 0.004 0.928
#> GSM153423     2  0.1289     0.9043 0.000 0.968 0.032
#> GSM153425     3  0.2945     0.8895 0.088 0.004 0.908
#> GSM153427     2  0.1411     0.9029 0.000 0.964 0.036
#> GSM153428     2  0.7634     0.1033 0.432 0.524 0.044
#> GSM153429     2  0.6148     0.6715 0.244 0.728 0.028
#> GSM153433     1  0.0661     0.8655 0.988 0.004 0.008
#> GSM153444     2  0.1289     0.9043 0.000 0.968 0.032
#> GSM153448     2  0.5921     0.6970 0.212 0.756 0.032
#> GSM153451     2  0.1289     0.9043 0.000 0.968 0.032
#> GSM153452     2  0.4526     0.8353 0.104 0.856 0.040
#> GSM153477     2  0.3009     0.8903 0.052 0.920 0.028
#> GSM153479     2  0.5939     0.7012 0.224 0.748 0.028
#> GSM153484     2  0.3406     0.8795 0.068 0.904 0.028
#> GSM153488     1  0.3406     0.8489 0.904 0.068 0.028
#> GSM153496     1  0.0829     0.8652 0.984 0.004 0.012
#> GSM153497     2  0.0661     0.9081 0.004 0.988 0.008
#> GSM153500     1  0.0424     0.8651 0.992 0.000 0.008
#> GSM153503     1  0.0424     0.8651 0.992 0.000 0.008
#> GSM153508     1  0.3434     0.8473 0.904 0.032 0.064
#> GSM153409     2  0.1289     0.9043 0.000 0.968 0.032
#> GSM153426     2  0.1289     0.9043 0.000 0.968 0.032
#> GSM153431     2  0.3583     0.8796 0.056 0.900 0.044
#> GSM153438     2  0.1289     0.9043 0.000 0.968 0.032
#> GSM153440     3  0.7901     0.2891 0.400 0.060 0.540
#> GSM153447     1  0.0829     0.8594 0.984 0.004 0.012
#> GSM153450     2  0.1289     0.9043 0.000 0.968 0.032
#> GSM153456     2  0.1289     0.9043 0.000 0.968 0.032
#> GSM153457     2  0.1289     0.9043 0.000 0.968 0.032
#> GSM153458     2  0.1289     0.9043 0.000 0.968 0.032
#> GSM153459     2  0.1289     0.9043 0.000 0.968 0.032
#> GSM153460     2  0.1289     0.9043 0.000 0.968 0.032
#> GSM153461     2  0.1289     0.9043 0.000 0.968 0.032
#> GSM153463     1  0.0424     0.8651 0.992 0.000 0.008
#> GSM153464     2  0.0661     0.9089 0.004 0.988 0.008
#> GSM153466     1  0.7278     0.1629 0.516 0.456 0.028
#> GSM153467     2  0.1751     0.9048 0.012 0.960 0.028
#> GSM153468     1  0.5508     0.7588 0.784 0.188 0.028
#> GSM153469     2  0.4874     0.8082 0.144 0.828 0.028
#> GSM153470     2  0.2318     0.9004 0.028 0.944 0.028
#> GSM153471     2  0.2313     0.9010 0.032 0.944 0.024
#> GSM153472     1  0.1919     0.8619 0.956 0.020 0.024
#> GSM153473     1  0.0424     0.8651 0.992 0.000 0.008
#> GSM153474     1  0.0592     0.8645 0.988 0.000 0.012
#> GSM153475     2  0.6337     0.6312 0.264 0.708 0.028
#> GSM153476     2  0.4249     0.8455 0.108 0.864 0.028
#> GSM153478     1  0.2845     0.8556 0.920 0.068 0.012
#> GSM153480     2  0.0829     0.9091 0.004 0.984 0.012
#> GSM153486     2  0.0829     0.9096 0.012 0.984 0.004
#> GSM153487     1  0.4324     0.8247 0.860 0.112 0.028
#> GSM153499     1  0.4810     0.8041 0.832 0.140 0.028
#> GSM153504     1  0.0424     0.8651 0.992 0.000 0.008
#> GSM153507     1  0.3590     0.8462 0.896 0.076 0.028
#> GSM153404     3  0.1765     0.8908 0.004 0.040 0.956
#> GSM153407     3  0.8316     0.1827 0.080 0.424 0.496
#> GSM153408     3  0.1878     0.8911 0.004 0.044 0.952
#> GSM153410     3  0.1989     0.8896 0.004 0.048 0.948
#> GSM153411     3  0.3030     0.8878 0.092 0.004 0.904
#> GSM153412     3  0.1989     0.8896 0.004 0.048 0.948
#> GSM153413     3  0.2116     0.8934 0.040 0.012 0.948
#> GSM153414     2  0.1877     0.8997 0.012 0.956 0.032
#> GSM153415     3  0.1878     0.8911 0.004 0.044 0.952
#> GSM153416     2  0.1289     0.9043 0.000 0.968 0.032
#> GSM153417     3  0.3030     0.8878 0.092 0.004 0.904
#> GSM153418     3  0.1878     0.8911 0.004 0.044 0.952
#> GSM153420     3  0.2945     0.8895 0.088 0.004 0.908
#> GSM153421     3  0.3030     0.8878 0.092 0.004 0.904
#> GSM153422     3  0.3030     0.8878 0.092 0.004 0.904
#> GSM153424     1  0.6955     0.0364 0.492 0.492 0.016
#> GSM153430     1  0.0829     0.8670 0.984 0.012 0.004
#> GSM153432     2  0.1751     0.9048 0.012 0.960 0.028
#> GSM153434     1  0.5723     0.7055 0.744 0.240 0.016
#> GSM153435     2  0.1482     0.9067 0.012 0.968 0.020
#> GSM153436     1  0.6715     0.5463 0.660 0.312 0.028
#> GSM153437     2  0.1129     0.9072 0.004 0.976 0.020
#> GSM153439     2  0.4324     0.8417 0.112 0.860 0.028
#> GSM153441     2  0.3415     0.8737 0.080 0.900 0.020
#> GSM153442     1  0.7289     0.1435 0.504 0.468 0.028
#> GSM153443     2  0.1482     0.9065 0.012 0.968 0.020
#> GSM153445     2  0.1015     0.9083 0.012 0.980 0.008
#> GSM153446     2  0.0829     0.9091 0.004 0.984 0.012
#> GSM153449     1  0.2229     0.8636 0.944 0.044 0.012
#> GSM153453     1  0.1905     0.8651 0.956 0.028 0.016
#> GSM153454     1  0.0424     0.8651 0.992 0.000 0.008
#> GSM153455     1  0.5939     0.7189 0.748 0.224 0.028
#> GSM153462     2  0.0848     0.9085 0.008 0.984 0.008
#> GSM153465     2  0.1751     0.9048 0.012 0.960 0.028
#> GSM153481     2  0.1751     0.9048 0.012 0.960 0.028
#> GSM153482     1  0.3310     0.8514 0.908 0.064 0.028
#> GSM153483     2  0.4469     0.8340 0.120 0.852 0.028
#> GSM153485     1  0.5660     0.7550 0.772 0.200 0.028
#> GSM153489     1  0.3678     0.8441 0.892 0.080 0.028
#> GSM153490     1  0.0424     0.8651 0.992 0.000 0.008
#> GSM153491     1  0.1774     0.8633 0.960 0.024 0.016
#> GSM153492     1  0.0424     0.8651 0.992 0.000 0.008
#> GSM153493     1  0.0424     0.8651 0.992 0.000 0.008
#> GSM153494     2  0.6187     0.6632 0.248 0.724 0.028
#> GSM153495     1  0.0424     0.8651 0.992 0.000 0.008
#> GSM153498     1  0.4324     0.8261 0.860 0.112 0.028
#> GSM153501     1  0.0424     0.8651 0.992 0.000 0.008
#> GSM153502     1  0.0424     0.8651 0.992 0.000 0.008
#> GSM153505     1  0.0424     0.8651 0.992 0.000 0.008
#> GSM153506     2  0.2056     0.9039 0.024 0.952 0.024

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     3  0.1191    0.93398 0.004 0.024 0.968 0.004
#> GSM153406     3  0.1488    0.93389 0.000 0.032 0.956 0.012
#> GSM153419     3  0.0524    0.93245 0.004 0.008 0.988 0.000
#> GSM153423     2  0.0000    0.67700 0.000 1.000 0.000 0.000
#> GSM153425     3  0.1722    0.92458 0.008 0.000 0.944 0.048
#> GSM153427     2  0.1452    0.65983 0.000 0.956 0.008 0.036
#> GSM153428     2  0.7986    0.06818 0.180 0.496 0.024 0.300
#> GSM153429     4  0.5417    0.61751 0.056 0.240 0.000 0.704
#> GSM153433     1  0.4790    0.52465 0.620 0.000 0.000 0.380
#> GSM153444     2  0.0188    0.67635 0.000 0.996 0.000 0.004
#> GSM153448     4  0.6296    0.37003 0.064 0.388 0.000 0.548
#> GSM153451     2  0.0188    0.67701 0.000 0.996 0.000 0.004
#> GSM153452     2  0.5769    0.32422 0.036 0.668 0.012 0.284
#> GSM153477     2  0.5105    0.26377 0.004 0.564 0.000 0.432
#> GSM153479     4  0.5365    0.58178 0.044 0.264 0.000 0.692
#> GSM153484     4  0.4769    0.51865 0.008 0.308 0.000 0.684
#> GSM153488     4  0.4836    0.48377 0.320 0.008 0.000 0.672
#> GSM153496     1  0.4643    0.55436 0.656 0.000 0.000 0.344
#> GSM153497     2  0.2149    0.65283 0.000 0.912 0.000 0.088
#> GSM153500     1  0.0188    0.78865 0.996 0.000 0.000 0.004
#> GSM153503     1  0.0336    0.78798 0.992 0.000 0.000 0.008
#> GSM153508     1  0.5150    0.43207 0.596 0.000 0.008 0.396
#> GSM153409     2  0.1151    0.66805 0.000 0.968 0.008 0.024
#> GSM153426     2  0.1151    0.66805 0.000 0.968 0.008 0.024
#> GSM153431     2  0.5238    0.51922 0.040 0.752 0.016 0.192
#> GSM153438     2  0.0188    0.67701 0.000 0.996 0.000 0.004
#> GSM153440     3  0.9684    0.10365 0.160 0.240 0.368 0.232
#> GSM153447     1  0.4486    0.72919 0.784 0.008 0.020 0.188
#> GSM153450     2  0.0707    0.67207 0.000 0.980 0.000 0.020
#> GSM153456     2  0.0188    0.67701 0.000 0.996 0.000 0.004
#> GSM153457     2  0.0188    0.67701 0.000 0.996 0.000 0.004
#> GSM153458     2  0.0000    0.67700 0.000 1.000 0.000 0.000
#> GSM153459     2  0.0000    0.67700 0.000 1.000 0.000 0.000
#> GSM153460     2  0.0000    0.67700 0.000 1.000 0.000 0.000
#> GSM153461     2  0.2156    0.64987 0.004 0.928 0.008 0.060
#> GSM153463     1  0.2081    0.78483 0.916 0.000 0.000 0.084
#> GSM153464     2  0.4356    0.51378 0.000 0.708 0.000 0.292
#> GSM153466     4  0.5604    0.67222 0.116 0.160 0.000 0.724
#> GSM153467     4  0.4898    0.27669 0.000 0.416 0.000 0.584
#> GSM153468     4  0.5632    0.65553 0.196 0.092 0.000 0.712
#> GSM153469     4  0.5203    0.44016 0.016 0.348 0.000 0.636
#> GSM153470     2  0.4933    0.26561 0.000 0.568 0.000 0.432
#> GSM153471     2  0.4925    0.28083 0.000 0.572 0.000 0.428
#> GSM153472     1  0.4961    0.31450 0.552 0.000 0.000 0.448
#> GSM153473     1  0.3726    0.71547 0.788 0.000 0.000 0.212
#> GSM153474     1  0.0469    0.78494 0.988 0.000 0.000 0.012
#> GSM153475     4  0.5052    0.60849 0.036 0.244 0.000 0.720
#> GSM153476     4  0.5468    0.37284 0.012 0.364 0.008 0.616
#> GSM153478     4  0.5329    0.02714 0.420 0.012 0.000 0.568
#> GSM153480     2  0.4356    0.51403 0.000 0.708 0.000 0.292
#> GSM153486     2  0.4406    0.50858 0.000 0.700 0.000 0.300
#> GSM153487     4  0.4767    0.57802 0.256 0.020 0.000 0.724
#> GSM153499     4  0.5256    0.60048 0.260 0.040 0.000 0.700
#> GSM153504     1  0.1867    0.79330 0.928 0.000 0.000 0.072
#> GSM153507     4  0.4663    0.55557 0.272 0.012 0.000 0.716
#> GSM153404     3  0.1388    0.93568 0.000 0.028 0.960 0.012
#> GSM153407     2  0.8261    0.19396 0.032 0.488 0.240 0.240
#> GSM153408     3  0.1388    0.93568 0.000 0.028 0.960 0.012
#> GSM153410     3  0.1488    0.93389 0.000 0.032 0.956 0.012
#> GSM153411     3  0.1722    0.92458 0.008 0.000 0.944 0.048
#> GSM153412     3  0.1488    0.93389 0.000 0.032 0.956 0.012
#> GSM153413     3  0.1388    0.93568 0.000 0.028 0.960 0.012
#> GSM153414     2  0.3916    0.55434 0.008 0.816 0.008 0.168
#> GSM153415     3  0.1388    0.93568 0.000 0.028 0.960 0.012
#> GSM153416     2  0.0336    0.67558 0.000 0.992 0.000 0.008
#> GSM153417     3  0.1722    0.92458 0.008 0.000 0.944 0.048
#> GSM153418     3  0.1388    0.93568 0.000 0.028 0.960 0.012
#> GSM153420     3  0.1722    0.92458 0.008 0.000 0.944 0.048
#> GSM153421     3  0.1722    0.92458 0.008 0.000 0.944 0.048
#> GSM153422     3  0.1722    0.92458 0.008 0.000 0.944 0.048
#> GSM153424     2  0.8068    0.00885 0.220 0.460 0.016 0.304
#> GSM153430     1  0.5182    0.55266 0.632 0.008 0.004 0.356
#> GSM153432     4  0.4994    0.00893 0.000 0.480 0.000 0.520
#> GSM153434     4  0.5565    0.57166 0.232 0.068 0.000 0.700
#> GSM153435     2  0.4697    0.42512 0.000 0.644 0.000 0.356
#> GSM153436     2  0.7650   -0.17568 0.212 0.424 0.000 0.364
#> GSM153437     2  0.1867    0.65990 0.000 0.928 0.000 0.072
#> GSM153439     4  0.4914    0.50962 0.012 0.312 0.000 0.676
#> GSM153441     4  0.5558    0.26047 0.020 0.432 0.000 0.548
#> GSM153442     4  0.5528    0.67415 0.124 0.144 0.000 0.732
#> GSM153443     2  0.4605    0.45639 0.000 0.664 0.000 0.336
#> GSM153445     2  0.4477    0.48923 0.000 0.688 0.000 0.312
#> GSM153446     2  0.4193    0.53544 0.000 0.732 0.000 0.268
#> GSM153449     4  0.5167   -0.16294 0.488 0.004 0.000 0.508
#> GSM153453     1  0.4941    0.34981 0.564 0.000 0.000 0.436
#> GSM153454     1  0.0188    0.78624 0.996 0.000 0.000 0.004
#> GSM153455     4  0.5628    0.63982 0.216 0.080 0.000 0.704
#> GSM153462     2  0.4382    0.50987 0.000 0.704 0.000 0.296
#> GSM153465     2  0.4761    0.39790 0.000 0.628 0.000 0.372
#> GSM153481     2  0.4955    0.23191 0.000 0.556 0.000 0.444
#> GSM153482     4  0.4837    0.41107 0.348 0.004 0.000 0.648
#> GSM153483     2  0.5600    0.07872 0.020 0.512 0.000 0.468
#> GSM153485     4  0.5363    0.63770 0.216 0.064 0.000 0.720
#> GSM153489     4  0.5143    0.37214 0.360 0.012 0.000 0.628
#> GSM153490     1  0.2345    0.78768 0.900 0.000 0.000 0.100
#> GSM153491     1  0.4948    0.33318 0.560 0.000 0.000 0.440
#> GSM153492     1  0.2469    0.78173 0.892 0.000 0.000 0.108
#> GSM153493     1  0.2011    0.79446 0.920 0.000 0.000 0.080
#> GSM153494     4  0.5941    0.57302 0.072 0.276 0.000 0.652
#> GSM153495     1  0.1022    0.79199 0.968 0.000 0.000 0.032
#> GSM153498     4  0.5137    0.53773 0.296 0.024 0.000 0.680
#> GSM153501     1  0.0188    0.78865 0.996 0.000 0.000 0.004
#> GSM153502     1  0.2408    0.78763 0.896 0.000 0.000 0.104
#> GSM153505     1  0.0188    0.78865 0.996 0.000 0.000 0.004
#> GSM153506     2  0.4925    0.28571 0.000 0.572 0.000 0.428

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     3  0.0960    0.90916 0.004 0.008 0.972 0.000 0.016
#> GSM153406     3  0.0798    0.91065 0.008 0.016 0.976 0.000 0.000
#> GSM153419     3  0.0324    0.91071 0.004 0.004 0.992 0.000 0.000
#> GSM153423     2  0.0000    0.67617 0.000 1.000 0.000 0.000 0.000
#> GSM153425     3  0.3003    0.85727 0.000 0.000 0.812 0.000 0.188
#> GSM153427     2  0.1408    0.64425 0.000 0.948 0.008 0.000 0.044
#> GSM153428     2  0.7927   -0.31769 0.228 0.388 0.012 0.052 0.320
#> GSM153429     1  0.2158    0.68593 0.920 0.052 0.000 0.008 0.020
#> GSM153433     4  0.6357    0.33735 0.288 0.000 0.000 0.512 0.200
#> GSM153444     2  0.0000    0.67617 0.000 1.000 0.000 0.000 0.000
#> GSM153448     1  0.4608    0.55259 0.744 0.188 0.000 0.008 0.060
#> GSM153451     2  0.0000    0.67617 0.000 1.000 0.000 0.000 0.000
#> GSM153452     2  0.5766    0.23381 0.196 0.656 0.008 0.004 0.136
#> GSM153477     1  0.5654    0.25055 0.536 0.380 0.000 0.000 0.084
#> GSM153479     1  0.2955    0.67442 0.876 0.060 0.000 0.004 0.060
#> GSM153484     1  0.2676    0.68202 0.884 0.080 0.000 0.000 0.036
#> GSM153488     1  0.3386    0.59665 0.832 0.000 0.000 0.128 0.040
#> GSM153496     4  0.5223    0.25090 0.444 0.000 0.000 0.512 0.044
#> GSM153497     2  0.3037    0.62299 0.100 0.860 0.000 0.000 0.040
#> GSM153500     4  0.2873    0.62206 0.020 0.000 0.000 0.860 0.120
#> GSM153503     4  0.2561    0.62897 0.020 0.000 0.000 0.884 0.096
#> GSM153508     5  0.5922   -0.23596 0.108 0.000 0.000 0.388 0.504
#> GSM153409     2  0.0510    0.66894 0.000 0.984 0.000 0.000 0.016
#> GSM153426     2  0.0609    0.67033 0.000 0.980 0.000 0.000 0.020
#> GSM153431     2  0.6908    0.07676 0.132 0.540 0.012 0.028 0.288
#> GSM153438     2  0.0000    0.67617 0.000 1.000 0.000 0.000 0.000
#> GSM153440     5  0.9207    0.12962 0.208 0.252 0.176 0.044 0.320
#> GSM153447     4  0.5318    0.38489 0.052 0.000 0.008 0.616 0.324
#> GSM153450     2  0.0451    0.67181 0.004 0.988 0.000 0.000 0.008
#> GSM153456     2  0.0000    0.67617 0.000 1.000 0.000 0.000 0.000
#> GSM153457     2  0.0000    0.67617 0.000 1.000 0.000 0.000 0.000
#> GSM153458     2  0.0000    0.67617 0.000 1.000 0.000 0.000 0.000
#> GSM153459     2  0.0000    0.67617 0.000 1.000 0.000 0.000 0.000
#> GSM153460     2  0.0000    0.67617 0.000 1.000 0.000 0.000 0.000
#> GSM153461     2  0.4255    0.45701 0.032 0.760 0.004 0.004 0.200
#> GSM153463     4  0.4605    0.52240 0.040 0.000 0.004 0.708 0.248
#> GSM153464     2  0.4907    0.43139 0.280 0.664 0.000 0.000 0.056
#> GSM153466     1  0.1314    0.67950 0.960 0.016 0.000 0.012 0.012
#> GSM153467     1  0.3847    0.63751 0.784 0.180 0.000 0.000 0.036
#> GSM153468     1  0.1569    0.67470 0.948 0.008 0.000 0.032 0.012
#> GSM153469     1  0.3339    0.66681 0.840 0.112 0.000 0.000 0.048
#> GSM153470     1  0.5274    0.36362 0.600 0.336 0.000 0.000 0.064
#> GSM153471     1  0.5708    0.23028 0.528 0.384 0.000 0.000 0.088
#> GSM153472     1  0.4950    0.19171 0.612 0.000 0.000 0.348 0.040
#> GSM153473     4  0.4786    0.60223 0.188 0.000 0.000 0.720 0.092
#> GSM153474     4  0.2773    0.62028 0.020 0.000 0.000 0.868 0.112
#> GSM153475     1  0.1990    0.68604 0.928 0.040 0.000 0.004 0.028
#> GSM153476     1  0.3572    0.66188 0.832 0.120 0.008 0.000 0.040
#> GSM153478     1  0.6030    0.21727 0.580 0.000 0.000 0.196 0.224
#> GSM153480     2  0.4885    0.43783 0.276 0.668 0.000 0.000 0.056
#> GSM153486     2  0.5204    0.27412 0.368 0.580 0.000 0.000 0.052
#> GSM153487     1  0.2580    0.66043 0.892 0.000 0.000 0.044 0.064
#> GSM153499     1  0.2592    0.66540 0.892 0.000 0.000 0.052 0.056
#> GSM153504     4  0.3355    0.66181 0.132 0.000 0.000 0.832 0.036
#> GSM153507     1  0.2077    0.67044 0.920 0.000 0.000 0.040 0.040
#> GSM153404     3  0.0693    0.91269 0.008 0.012 0.980 0.000 0.000
#> GSM153407     2  0.8181   -0.32299 0.172 0.400 0.100 0.012 0.316
#> GSM153408     3  0.0693    0.91269 0.008 0.012 0.980 0.000 0.000
#> GSM153410     3  0.0798    0.91065 0.008 0.016 0.976 0.000 0.000
#> GSM153411     3  0.3003    0.85727 0.000 0.000 0.812 0.000 0.188
#> GSM153412     3  0.0798    0.91065 0.008 0.016 0.976 0.000 0.000
#> GSM153413     3  0.0693    0.91269 0.008 0.012 0.980 0.000 0.000
#> GSM153414     2  0.5570    0.32646 0.112 0.684 0.008 0.008 0.188
#> GSM153415     3  0.0693    0.91269 0.008 0.012 0.980 0.000 0.000
#> GSM153416     2  0.0162    0.67465 0.000 0.996 0.000 0.000 0.004
#> GSM153417     3  0.3003    0.85727 0.000 0.000 0.812 0.000 0.188
#> GSM153418     3  0.0693    0.91269 0.008 0.012 0.980 0.000 0.000
#> GSM153420     3  0.3003    0.85727 0.000 0.000 0.812 0.000 0.188
#> GSM153421     3  0.3003    0.85727 0.000 0.000 0.812 0.000 0.188
#> GSM153422     3  0.3003    0.85727 0.000 0.000 0.812 0.000 0.188
#> GSM153424     2  0.8420   -0.39091 0.216 0.336 0.008 0.120 0.320
#> GSM153430     4  0.6709    0.12200 0.352 0.000 0.000 0.400 0.248
#> GSM153432     1  0.4305    0.59440 0.748 0.200 0.000 0.000 0.052
#> GSM153434     1  0.5106    0.40996 0.692 0.004 0.000 0.088 0.216
#> GSM153435     2  0.5508   -0.02277 0.460 0.476 0.000 0.000 0.064
#> GSM153436     1  0.7488   -0.20324 0.440 0.324 0.000 0.064 0.172
#> GSM153437     2  0.2491    0.64108 0.068 0.896 0.000 0.000 0.036
#> GSM153439     1  0.2448    0.68005 0.892 0.088 0.000 0.000 0.020
#> GSM153441     1  0.4719    0.53936 0.696 0.248 0.000 0.000 0.056
#> GSM153442     1  0.2734    0.66655 0.888 0.028 0.000 0.008 0.076
#> GSM153443     2  0.5276    0.08404 0.436 0.516 0.000 0.000 0.048
#> GSM153445     2  0.5263    0.25585 0.368 0.576 0.000 0.000 0.056
#> GSM153446     2  0.4754    0.45828 0.264 0.684 0.000 0.000 0.052
#> GSM153449     1  0.4930    0.39696 0.684 0.000 0.000 0.244 0.072
#> GSM153453     1  0.4909   -0.00893 0.560 0.000 0.000 0.412 0.028
#> GSM153454     4  0.2012    0.65984 0.020 0.000 0.000 0.920 0.060
#> GSM153455     1  0.2804    0.67164 0.892 0.016 0.000 0.044 0.048
#> GSM153462     2  0.5188    0.34625 0.328 0.612 0.000 0.000 0.060
#> GSM153465     1  0.5520    0.31452 0.560 0.364 0.000 0.000 0.076
#> GSM153481     1  0.5320    0.15440 0.524 0.424 0.000 0.000 0.052
#> GSM153482     1  0.3825    0.57197 0.804 0.000 0.000 0.136 0.060
#> GSM153483     1  0.5136    0.48820 0.660 0.260 0.000 0.000 0.080
#> GSM153485     1  0.1911    0.67068 0.932 0.004 0.000 0.036 0.028
#> GSM153489     1  0.3882    0.55894 0.788 0.000 0.000 0.168 0.044
#> GSM153490     4  0.3061    0.66285 0.136 0.000 0.000 0.844 0.020
#> GSM153491     1  0.5213    0.03247 0.556 0.000 0.000 0.396 0.048
#> GSM153492     4  0.4073    0.66730 0.104 0.000 0.000 0.792 0.104
#> GSM153493     4  0.3289    0.66742 0.108 0.000 0.000 0.844 0.048
#> GSM153494     1  0.3011    0.68340 0.876 0.076 0.000 0.012 0.036
#> GSM153495     4  0.3002    0.65147 0.028 0.000 0.000 0.856 0.116
#> GSM153498     1  0.3454    0.63277 0.836 0.000 0.000 0.100 0.064
#> GSM153501     4  0.2561    0.62758 0.020 0.000 0.000 0.884 0.096
#> GSM153502     4  0.3681    0.64871 0.148 0.000 0.000 0.808 0.044
#> GSM153505     4  0.2669    0.62300 0.020 0.000 0.000 0.876 0.104
#> GSM153506     1  0.5654    0.24171 0.536 0.380 0.000 0.000 0.084

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     3  0.0777    0.87426 0.000 0.024 0.972 0.000 0.000 0.004
#> GSM153406     3  0.0632    0.87509 0.000 0.024 0.976 0.000 0.000 0.000
#> GSM153419     3  0.0260    0.86801 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM153423     2  0.0291    0.74945 0.004 0.992 0.000 0.000 0.000 0.004
#> GSM153425     3  0.4295    0.78142 0.000 0.000 0.728 0.000 0.160 0.112
#> GSM153427     2  0.2218    0.64525 0.000 0.884 0.012 0.000 0.000 0.104
#> GSM153428     6  0.6073    0.47066 0.084 0.356 0.012 0.012 0.016 0.520
#> GSM153429     1  0.2713    0.61822 0.880 0.016 0.000 0.004 0.024 0.076
#> GSM153433     6  0.6240   -0.10646 0.136 0.000 0.000 0.340 0.040 0.484
#> GSM153444     2  0.0363    0.74335 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM153448     1  0.4974    0.46433 0.692 0.144 0.000 0.000 0.020 0.144
#> GSM153451     2  0.0260    0.74821 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM153452     2  0.4856    0.26132 0.080 0.684 0.012 0.000 0.004 0.220
#> GSM153477     1  0.5549    0.49502 0.648 0.196 0.000 0.000 0.060 0.096
#> GSM153479     1  0.3448    0.60116 0.828 0.024 0.000 0.004 0.028 0.116
#> GSM153484     1  0.2467    0.62875 0.896 0.036 0.000 0.000 0.020 0.048
#> GSM153488     1  0.5320    0.43632 0.652 0.000 0.000 0.056 0.064 0.228
#> GSM153496     1  0.7495   -0.13207 0.304 0.000 0.000 0.272 0.132 0.292
#> GSM153497     2  0.4443    0.57794 0.176 0.732 0.000 0.000 0.016 0.076
#> GSM153500     4  0.2579    0.51377 0.000 0.000 0.000 0.872 0.088 0.040
#> GSM153503     4  0.1408    0.56018 0.000 0.000 0.000 0.944 0.036 0.020
#> GSM153508     5  0.4203    0.00000 0.016 0.000 0.000 0.288 0.680 0.016
#> GSM153409     2  0.1866    0.69162 0.000 0.908 0.000 0.000 0.008 0.084
#> GSM153426     2  0.2612    0.69852 0.008 0.868 0.000 0.000 0.016 0.108
#> GSM153431     6  0.5287    0.25880 0.028 0.444 0.008 0.004 0.020 0.496
#> GSM153438     2  0.0291    0.74945 0.004 0.992 0.000 0.000 0.000 0.004
#> GSM153440     6  0.6950    0.46031 0.080 0.252 0.100 0.012 0.020 0.536
#> GSM153447     6  0.5081   -0.02231 0.008 0.012 0.008 0.356 0.028 0.588
#> GSM153450     2  0.0717    0.74074 0.008 0.976 0.000 0.000 0.000 0.016
#> GSM153456     2  0.0146    0.74906 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM153457     2  0.0260    0.74821 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM153458     2  0.0291    0.74945 0.004 0.992 0.000 0.000 0.000 0.004
#> GSM153459     2  0.0291    0.74945 0.004 0.992 0.000 0.000 0.000 0.004
#> GSM153460     2  0.0291    0.74945 0.004 0.992 0.000 0.000 0.000 0.004
#> GSM153461     2  0.4319    0.24376 0.012 0.652 0.008 0.000 0.008 0.320
#> GSM153463     4  0.4701    0.24845 0.008 0.000 0.000 0.484 0.028 0.480
#> GSM153464     2  0.5521    0.17966 0.384 0.516 0.000 0.000 0.020 0.080
#> GSM153466     1  0.3070    0.60268 0.852 0.004 0.000 0.004 0.056 0.084
#> GSM153467     1  0.3069    0.61960 0.852 0.096 0.000 0.000 0.020 0.032
#> GSM153468     1  0.2742    0.60566 0.872 0.000 0.000 0.008 0.044 0.076
#> GSM153469     1  0.2587    0.61907 0.892 0.036 0.000 0.004 0.016 0.052
#> GSM153470     1  0.4716    0.51910 0.708 0.188 0.000 0.000 0.020 0.084
#> GSM153471     1  0.5386    0.47866 0.656 0.208 0.000 0.000 0.052 0.084
#> GSM153472     1  0.7185    0.17583 0.432 0.000 0.000 0.180 0.132 0.256
#> GSM153473     4  0.6458    0.47352 0.092 0.000 0.000 0.504 0.100 0.304
#> GSM153474     4  0.2106    0.49067 0.000 0.000 0.000 0.904 0.064 0.032
#> GSM153475     1  0.2973    0.61738 0.860 0.004 0.000 0.004 0.064 0.068
#> GSM153476     1  0.3958    0.61199 0.812 0.064 0.008 0.004 0.024 0.088
#> GSM153478     6  0.4750    0.30364 0.340 0.000 0.000 0.040 0.012 0.608
#> GSM153480     2  0.5483    0.23658 0.364 0.536 0.000 0.000 0.020 0.080
#> GSM153486     2  0.6065   -0.00291 0.404 0.456 0.000 0.000 0.044 0.096
#> GSM153487     1  0.4484    0.53752 0.728 0.000 0.000 0.012 0.092 0.168
#> GSM153499     1  0.3645    0.60590 0.816 0.000 0.000 0.020 0.072 0.092
#> GSM153504     4  0.5738    0.54048 0.068 0.000 0.000 0.640 0.128 0.164
#> GSM153507     1  0.3248    0.59188 0.828 0.000 0.000 0.004 0.052 0.116
#> GSM153404     3  0.0632    0.87509 0.000 0.024 0.976 0.000 0.000 0.000
#> GSM153407     6  0.5956    0.38201 0.068 0.408 0.028 0.000 0.016 0.480
#> GSM153408     3  0.0632    0.87509 0.000 0.024 0.976 0.000 0.000 0.000
#> GSM153410     3  0.0632    0.87509 0.000 0.024 0.976 0.000 0.000 0.000
#> GSM153411     3  0.4295    0.78142 0.000 0.000 0.728 0.000 0.160 0.112
#> GSM153412     3  0.0632    0.87509 0.000 0.024 0.976 0.000 0.000 0.000
#> GSM153413     3  0.0632    0.87509 0.000 0.024 0.976 0.000 0.000 0.000
#> GSM153414     2  0.4593    0.15119 0.024 0.628 0.004 0.000 0.012 0.332
#> GSM153415     3  0.0632    0.87509 0.000 0.024 0.976 0.000 0.000 0.000
#> GSM153416     2  0.0405    0.74793 0.004 0.988 0.000 0.000 0.000 0.008
#> GSM153417     3  0.4295    0.78142 0.000 0.000 0.728 0.000 0.160 0.112
#> GSM153418     3  0.0632    0.87509 0.000 0.024 0.976 0.000 0.000 0.000
#> GSM153420     3  0.4295    0.78142 0.000 0.000 0.728 0.000 0.160 0.112
#> GSM153421     3  0.4295    0.78142 0.000 0.000 0.728 0.000 0.160 0.112
#> GSM153422     3  0.4295    0.78142 0.000 0.000 0.728 0.000 0.160 0.112
#> GSM153424     6  0.6676    0.48286 0.072 0.300 0.008 0.080 0.016 0.524
#> GSM153430     6  0.5378    0.36357 0.172 0.012 0.004 0.140 0.008 0.664
#> GSM153432     1  0.3956    0.59115 0.792 0.112 0.000 0.000 0.024 0.072
#> GSM153434     6  0.4598    0.22294 0.392 0.004 0.000 0.020 0.008 0.576
#> GSM153435     1  0.5264    0.39403 0.620 0.276 0.000 0.000 0.024 0.080
#> GSM153436     6  0.7276    0.34866 0.288 0.176 0.000 0.032 0.060 0.444
#> GSM153437     2  0.3772    0.62592 0.128 0.792 0.000 0.000 0.008 0.072
#> GSM153439     1  0.2189    0.62288 0.912 0.032 0.000 0.004 0.008 0.044
#> GSM153441     1  0.5048    0.51199 0.672 0.192 0.000 0.000 0.016 0.120
#> GSM153442     1  0.3895    0.56532 0.776 0.016 0.000 0.004 0.032 0.172
#> GSM153443     1  0.5210    0.35403 0.596 0.316 0.000 0.000 0.020 0.068
#> GSM153445     1  0.5508    0.12647 0.500 0.404 0.000 0.000 0.020 0.076
#> GSM153446     2  0.5424    0.28657 0.340 0.560 0.000 0.000 0.020 0.080
#> GSM153449     1  0.6617    0.18072 0.468 0.000 0.000 0.092 0.112 0.328
#> GSM153453     1  0.6826    0.15556 0.464 0.000 0.000 0.220 0.072 0.244
#> GSM153454     4  0.2988    0.56618 0.000 0.000 0.000 0.824 0.024 0.152
#> GSM153455     1  0.4893    0.48729 0.680 0.000 0.000 0.016 0.092 0.212
#> GSM153462     1  0.5662    0.08048 0.484 0.408 0.000 0.000 0.024 0.084
#> GSM153465     1  0.5564    0.50873 0.644 0.196 0.000 0.000 0.052 0.108
#> GSM153481     1  0.5227    0.41720 0.628 0.268 0.000 0.000 0.024 0.080
#> GSM153482     1  0.5562    0.37022 0.596 0.000 0.000 0.052 0.064 0.288
#> GSM153483     1  0.4720    0.56830 0.736 0.128 0.000 0.000 0.044 0.092
#> GSM153485     1  0.4387    0.54827 0.748 0.004 0.000 0.020 0.060 0.168
#> GSM153489     1  0.6555    0.30647 0.516 0.000 0.000 0.100 0.116 0.268
#> GSM153490     4  0.4975    0.57808 0.060 0.000 0.000 0.716 0.084 0.140
#> GSM153491     1  0.7128    0.12806 0.416 0.000 0.000 0.196 0.104 0.284
#> GSM153492     4  0.4797    0.56227 0.028 0.000 0.000 0.648 0.036 0.288
#> GSM153493     4  0.5358    0.49876 0.036 0.000 0.000 0.640 0.088 0.236
#> GSM153494     1  0.2728    0.62836 0.888 0.016 0.000 0.024 0.016 0.056
#> GSM153495     4  0.3740    0.57222 0.008 0.000 0.000 0.728 0.012 0.252
#> GSM153498     1  0.5987    0.44830 0.612 0.000 0.000 0.084 0.116 0.188
#> GSM153501     4  0.1152    0.54472 0.000 0.000 0.000 0.952 0.044 0.004
#> GSM153502     4  0.5803    0.54000 0.076 0.000 0.000 0.632 0.112 0.180
#> GSM153505     4  0.1461    0.53202 0.000 0.000 0.000 0.940 0.044 0.016
#> GSM153506     1  0.5354    0.47570 0.656 0.212 0.000 0.000 0.048 0.084

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> MAD:kmeans 98          0.11147 2
#> MAD:kmeans 99          0.01712 3
#> MAD:kmeans 74          0.01098 4
#> MAD:kmeans 70          0.00985 5
#> MAD:kmeans 63          0.00193 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.579           0.769       0.891         0.5042 0.495   0.495
#> 3 3 0.511           0.721       0.858         0.3185 0.707   0.478
#> 4 4 0.412           0.450       0.695         0.1249 0.857   0.610
#> 5 5 0.418           0.352       0.601         0.0635 0.868   0.566
#> 6 6 0.477           0.280       0.529         0.0416 0.909   0.639

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     1  0.3733    0.85871 0.928 0.072
#> GSM153406     2  0.1414    0.87740 0.020 0.980
#> GSM153419     1  0.3431    0.86060 0.936 0.064
#> GSM153423     2  0.0000    0.88209 0.000 1.000
#> GSM153425     1  0.3431    0.86060 0.936 0.064
#> GSM153427     2  0.0672    0.88089 0.008 0.992
#> GSM153428     1  0.3431    0.86060 0.936 0.064
#> GSM153429     2  0.9129    0.58964 0.328 0.672
#> GSM153433     1  0.0000    0.86908 1.000 0.000
#> GSM153444     2  0.0000    0.88209 0.000 1.000
#> GSM153448     2  0.9983   -0.00128 0.476 0.524
#> GSM153451     2  0.0000    0.88209 0.000 1.000
#> GSM153452     1  0.8016    0.71946 0.756 0.244
#> GSM153477     2  0.3431    0.87338 0.064 0.936
#> GSM153479     2  0.9087    0.58847 0.324 0.676
#> GSM153484     2  0.4939    0.85128 0.108 0.892
#> GSM153488     1  0.6973    0.73618 0.812 0.188
#> GSM153496     1  0.0672    0.86724 0.992 0.008
#> GSM153497     2  0.1184    0.88354 0.016 0.984
#> GSM153500     1  0.0000    0.86908 1.000 0.000
#> GSM153503     1  0.0000    0.86908 1.000 0.000
#> GSM153508     1  0.8861    0.55619 0.696 0.304
#> GSM153409     2  0.0000    0.88209 0.000 1.000
#> GSM153426     2  0.0000    0.88209 0.000 1.000
#> GSM153431     1  0.9909    0.30820 0.556 0.444
#> GSM153438     2  0.0000    0.88209 0.000 1.000
#> GSM153440     1  0.3733    0.85871 0.928 0.072
#> GSM153447     1  0.3274    0.86162 0.940 0.060
#> GSM153450     2  0.0376    0.88212 0.004 0.996
#> GSM153456     2  0.0000    0.88209 0.000 1.000
#> GSM153457     2  0.0000    0.88209 0.000 1.000
#> GSM153458     2  0.0000    0.88209 0.000 1.000
#> GSM153459     2  0.0000    0.88209 0.000 1.000
#> GSM153460     2  0.0000    0.88209 0.000 1.000
#> GSM153461     2  0.5842    0.78699 0.140 0.860
#> GSM153463     1  0.0376    0.86911 0.996 0.004
#> GSM153464     2  0.2603    0.88057 0.044 0.956
#> GSM153466     1  0.9998   -0.04538 0.508 0.492
#> GSM153467     2  0.4022    0.86903 0.080 0.920
#> GSM153468     2  0.9988    0.14458 0.480 0.520
#> GSM153469     2  0.3584    0.87265 0.068 0.932
#> GSM153470     2  0.3274    0.87532 0.060 0.940
#> GSM153471     2  0.3431    0.87338 0.064 0.936
#> GSM153472     1  0.0000    0.86908 1.000 0.000
#> GSM153473     1  0.0000    0.86908 1.000 0.000
#> GSM153474     1  0.0000    0.86908 1.000 0.000
#> GSM153475     2  0.9170    0.57785 0.332 0.668
#> GSM153476     2  0.4690    0.85179 0.100 0.900
#> GSM153478     1  0.2043    0.86865 0.968 0.032
#> GSM153480     2  0.1633    0.88329 0.024 0.976
#> GSM153486     2  0.3431    0.87669 0.064 0.936
#> GSM153487     1  0.9833    0.24377 0.576 0.424
#> GSM153499     2  0.8813    0.62748 0.300 0.700
#> GSM153504     1  0.0000    0.86908 1.000 0.000
#> GSM153507     1  0.9358    0.45606 0.648 0.352
#> GSM153404     2  0.9087    0.48543 0.324 0.676
#> GSM153407     1  0.3733    0.85919 0.928 0.072
#> GSM153408     2  0.9358    0.42517 0.352 0.648
#> GSM153410     2  0.0672    0.88033 0.008 0.992
#> GSM153411     1  0.3431    0.86060 0.936 0.064
#> GSM153412     2  0.0938    0.87913 0.012 0.988
#> GSM153413     1  0.6148    0.81009 0.848 0.152
#> GSM153414     1  0.9977    0.21114 0.528 0.472
#> GSM153415     2  0.8909    0.52972 0.308 0.692
#> GSM153416     2  0.0000    0.88209 0.000 1.000
#> GSM153417     1  0.3431    0.86060 0.936 0.064
#> GSM153418     2  0.3584    0.84845 0.068 0.932
#> GSM153420     1  0.3431    0.86060 0.936 0.064
#> GSM153421     1  0.3431    0.86060 0.936 0.064
#> GSM153422     1  0.3431    0.86060 0.936 0.064
#> GSM153424     1  0.3879    0.85792 0.924 0.076
#> GSM153430     1  0.2043    0.86753 0.968 0.032
#> GSM153432     2  0.3431    0.87338 0.064 0.936
#> GSM153434     1  0.2603    0.86654 0.956 0.044
#> GSM153435     2  0.2778    0.87956 0.048 0.952
#> GSM153436     1  0.2948    0.86356 0.948 0.052
#> GSM153437     2  0.0376    0.88278 0.004 0.996
#> GSM153439     2  0.4562    0.86124 0.096 0.904
#> GSM153441     2  0.9944    0.07225 0.456 0.544
#> GSM153442     1  0.9000    0.54131 0.684 0.316
#> GSM153443     2  0.2778    0.87987 0.048 0.952
#> GSM153445     2  0.3274    0.87554 0.060 0.940
#> GSM153446     2  0.0672    0.88311 0.008 0.992
#> GSM153449     1  0.3733    0.83745 0.928 0.072
#> GSM153453     1  0.1414    0.86351 0.980 0.020
#> GSM153454     1  0.0000    0.86908 1.000 0.000
#> GSM153455     1  0.8207    0.65106 0.744 0.256
#> GSM153462     2  0.2236    0.88233 0.036 0.964
#> GSM153465     2  0.2236    0.88250 0.036 0.964
#> GSM153481     2  0.3274    0.87521 0.060 0.940
#> GSM153482     1  0.6801    0.74697 0.820 0.180
#> GSM153483     2  0.3431    0.87338 0.064 0.936
#> GSM153485     1  0.9608    0.37765 0.616 0.384
#> GSM153489     1  0.7376    0.71147 0.792 0.208
#> GSM153490     1  0.0000    0.86908 1.000 0.000
#> GSM153491     1  0.0672    0.86774 0.992 0.008
#> GSM153492     1  0.0000    0.86908 1.000 0.000
#> GSM153493     1  0.0000    0.86908 1.000 0.000
#> GSM153494     2  0.8763    0.64401 0.296 0.704
#> GSM153495     1  0.0000    0.86908 1.000 0.000
#> GSM153498     1  0.9608    0.35219 0.616 0.384
#> GSM153501     1  0.0000    0.86908 1.000 0.000
#> GSM153502     1  0.0000    0.86908 1.000 0.000
#> GSM153505     1  0.0000    0.86908 1.000 0.000
#> GSM153506     2  0.3431    0.87338 0.064 0.936

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     3  0.0237     0.8638 0.004 0.000 0.996
#> GSM153406     3  0.0592     0.8617 0.000 0.012 0.988
#> GSM153419     3  0.0424     0.8636 0.008 0.000 0.992
#> GSM153423     2  0.0424     0.8719 0.000 0.992 0.008
#> GSM153425     3  0.0592     0.8638 0.012 0.000 0.988
#> GSM153427     3  0.4931     0.6772 0.000 0.232 0.768
#> GSM153428     3  0.4295     0.7925 0.104 0.032 0.864
#> GSM153429     2  0.9955    -0.1051 0.348 0.364 0.288
#> GSM153433     1  0.3030     0.7795 0.904 0.004 0.092
#> GSM153444     2  0.3340     0.8045 0.000 0.880 0.120
#> GSM153448     1  0.9370     0.1230 0.416 0.416 0.168
#> GSM153451     2  0.0237     0.8720 0.000 0.996 0.004
#> GSM153452     3  0.5295     0.7555 0.036 0.156 0.808
#> GSM153477     2  0.3349     0.8183 0.108 0.888 0.004
#> GSM153479     1  0.9224     0.3257 0.480 0.360 0.160
#> GSM153484     2  0.8648     0.2882 0.332 0.548 0.120
#> GSM153488     1  0.6731     0.7032 0.740 0.088 0.172
#> GSM153496     1  0.0000     0.8104 1.000 0.000 0.000
#> GSM153497     2  0.0237     0.8720 0.000 0.996 0.004
#> GSM153500     1  0.0000     0.8104 1.000 0.000 0.000
#> GSM153503     1  0.0000     0.8104 1.000 0.000 0.000
#> GSM153508     1  0.1031     0.8106 0.976 0.024 0.000
#> GSM153409     2  0.3267     0.8082 0.000 0.884 0.116
#> GSM153426     2  0.1753     0.8609 0.000 0.952 0.048
#> GSM153431     3  0.8176     0.5777 0.140 0.224 0.636
#> GSM153438     2  0.0592     0.8720 0.000 0.988 0.012
#> GSM153440     3  0.1647     0.8517 0.036 0.004 0.960
#> GSM153447     3  0.5988     0.3931 0.368 0.000 0.632
#> GSM153450     2  0.2796     0.8303 0.000 0.908 0.092
#> GSM153456     2  0.0237     0.8720 0.000 0.996 0.004
#> GSM153457     2  0.0237     0.8720 0.000 0.996 0.004
#> GSM153458     2  0.1289     0.8665 0.000 0.968 0.032
#> GSM153459     2  0.0237     0.8720 0.000 0.996 0.004
#> GSM153460     2  0.0424     0.8723 0.000 0.992 0.008
#> GSM153461     2  0.6771     0.1685 0.012 0.548 0.440
#> GSM153463     1  0.3412     0.7578 0.876 0.000 0.124
#> GSM153464     2  0.0237     0.8717 0.000 0.996 0.004
#> GSM153466     1  0.6229     0.6221 0.700 0.280 0.020
#> GSM153467     2  0.4062     0.7567 0.164 0.836 0.000
#> GSM153468     1  0.4047     0.7725 0.848 0.148 0.004
#> GSM153469     2  0.5956     0.5992 0.264 0.720 0.016
#> GSM153470     2  0.2682     0.8420 0.076 0.920 0.004
#> GSM153471     2  0.2400     0.8505 0.064 0.932 0.004
#> GSM153472     1  0.0424     0.8109 0.992 0.000 0.008
#> GSM153473     1  0.2356     0.7906 0.928 0.000 0.072
#> GSM153474     1  0.0000     0.8104 1.000 0.000 0.000
#> GSM153475     1  0.9457     0.2864 0.460 0.352 0.188
#> GSM153476     3  0.9109     0.2140 0.148 0.364 0.488
#> GSM153478     1  0.6357     0.5425 0.684 0.020 0.296
#> GSM153480     2  0.0237     0.8717 0.000 0.996 0.004
#> GSM153486     2  0.2680     0.8502 0.068 0.924 0.008
#> GSM153487     1  0.3551     0.7824 0.868 0.132 0.000
#> GSM153499     1  0.4409     0.7521 0.824 0.172 0.004
#> GSM153504     1  0.0237     0.8102 0.996 0.000 0.004
#> GSM153507     1  0.3349     0.7934 0.888 0.108 0.004
#> GSM153404     3  0.0000     0.8639 0.000 0.000 1.000
#> GSM153407     3  0.0661     0.8640 0.008 0.004 0.988
#> GSM153408     3  0.0000     0.8639 0.000 0.000 1.000
#> GSM153410     3  0.1163     0.8547 0.000 0.028 0.972
#> GSM153411     3  0.0592     0.8638 0.012 0.000 0.988
#> GSM153412     3  0.0747     0.8601 0.000 0.016 0.984
#> GSM153413     3  0.0000     0.8639 0.000 0.000 1.000
#> GSM153414     3  0.7559     0.4471 0.056 0.336 0.608
#> GSM153415     3  0.0000     0.8639 0.000 0.000 1.000
#> GSM153416     2  0.0747     0.8716 0.000 0.984 0.016
#> GSM153417     3  0.0592     0.8638 0.012 0.000 0.988
#> GSM153418     3  0.0237     0.8634 0.000 0.004 0.996
#> GSM153420     3  0.0592     0.8638 0.012 0.000 0.988
#> GSM153421     3  0.0592     0.8638 0.012 0.000 0.988
#> GSM153422     3  0.0592     0.8638 0.012 0.000 0.988
#> GSM153424     3  0.8188     0.2991 0.372 0.080 0.548
#> GSM153430     1  0.6632     0.5755 0.692 0.036 0.272
#> GSM153432     2  0.2939     0.8443 0.072 0.916 0.012
#> GSM153434     1  0.8877     0.4945 0.572 0.184 0.244
#> GSM153435     2  0.0475     0.8715 0.004 0.992 0.004
#> GSM153436     3  0.9666     0.0711 0.356 0.216 0.428
#> GSM153437     2  0.0000     0.8715 0.000 1.000 0.000
#> GSM153439     2  0.8614     0.3522 0.304 0.568 0.128
#> GSM153441     2  0.8841     0.2379 0.340 0.528 0.132
#> GSM153442     1  0.8749     0.5215 0.572 0.276 0.152
#> GSM153443     2  0.0237     0.8716 0.004 0.996 0.000
#> GSM153445     2  0.0237     0.8717 0.000 0.996 0.004
#> GSM153446     2  0.0237     0.8720 0.000 0.996 0.004
#> GSM153449     1  0.6424     0.7270 0.752 0.180 0.068
#> GSM153453     1  0.0000     0.8104 1.000 0.000 0.000
#> GSM153454     1  0.0000     0.8104 1.000 0.000 0.000
#> GSM153455     1  0.9025     0.4842 0.544 0.284 0.172
#> GSM153462     2  0.0237     0.8717 0.000 0.996 0.004
#> GSM153465     2  0.6062     0.7217 0.160 0.776 0.064
#> GSM153481     2  0.1315     0.8688 0.020 0.972 0.008
#> GSM153482     1  0.5000     0.7781 0.832 0.124 0.044
#> GSM153483     2  0.5928     0.5469 0.296 0.696 0.008
#> GSM153485     1  0.7666     0.5773 0.636 0.288 0.076
#> GSM153489     1  0.8255     0.6263 0.636 0.196 0.168
#> GSM153490     1  0.0592     0.8100 0.988 0.000 0.012
#> GSM153491     1  0.0592     0.8105 0.988 0.000 0.012
#> GSM153492     1  0.0424     0.8105 0.992 0.000 0.008
#> GSM153493     1  0.0000     0.8104 1.000 0.000 0.000
#> GSM153494     1  0.8140     0.2903 0.524 0.404 0.072
#> GSM153495     1  0.0237     0.8105 0.996 0.000 0.004
#> GSM153498     1  0.8063     0.6310 0.644 0.224 0.132
#> GSM153501     1  0.0000     0.8104 1.000 0.000 0.000
#> GSM153502     1  0.1031     0.8074 0.976 0.000 0.024
#> GSM153505     1  0.0000     0.8104 1.000 0.000 0.000
#> GSM153506     2  0.2096     0.8576 0.052 0.944 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     3  0.0188    0.78917 0.000 0.000 0.996 0.004
#> GSM153406     3  0.2546    0.77422 0.000 0.008 0.900 0.092
#> GSM153419     3  0.1022    0.78890 0.000 0.000 0.968 0.032
#> GSM153423     2  0.1970    0.65824 0.000 0.932 0.008 0.060
#> GSM153425     3  0.1004    0.78697 0.004 0.000 0.972 0.024
#> GSM153427     3  0.6246    0.15021 0.004 0.464 0.488 0.044
#> GSM153428     3  0.8804    0.32163 0.156 0.232 0.500 0.112
#> GSM153429     4  0.9811    0.38782 0.236 0.236 0.184 0.344
#> GSM153433     1  0.5299    0.61293 0.752 0.008 0.064 0.176
#> GSM153444     2  0.3168    0.60120 0.000 0.884 0.060 0.056
#> GSM153448     4  0.9216    0.42788 0.240 0.292 0.084 0.384
#> GSM153451     2  0.1389    0.65908 0.000 0.952 0.000 0.048
#> GSM153452     3  0.8607    0.10092 0.100 0.388 0.412 0.100
#> GSM153477     2  0.6869    0.00392 0.088 0.472 0.004 0.436
#> GSM153479     4  0.9107    0.39840 0.264 0.196 0.100 0.440
#> GSM153484     4  0.8719    0.41414 0.156 0.316 0.076 0.452
#> GSM153488     1  0.8724    0.20512 0.472 0.076 0.172 0.280
#> GSM153496     1  0.3351    0.65818 0.844 0.000 0.008 0.148
#> GSM153497     2  0.3123    0.64428 0.000 0.844 0.000 0.156
#> GSM153500     1  0.1978    0.66129 0.928 0.000 0.004 0.068
#> GSM153503     1  0.1637    0.66233 0.940 0.000 0.000 0.060
#> GSM153508     1  0.5010    0.53109 0.700 0.024 0.000 0.276
#> GSM153409     2  0.3764    0.61711 0.000 0.844 0.040 0.116
#> GSM153426     2  0.4595    0.60823 0.000 0.776 0.040 0.184
#> GSM153431     3  0.9527    0.03744 0.160 0.208 0.408 0.224
#> GSM153438     2  0.2216    0.65382 0.000 0.908 0.000 0.092
#> GSM153440     3  0.5118    0.69575 0.072 0.060 0.804 0.064
#> GSM153447     1  0.7663    0.25035 0.492 0.032 0.372 0.104
#> GSM153450     2  0.3334    0.59129 0.008 0.884 0.048 0.060
#> GSM153456     2  0.0469    0.65494 0.000 0.988 0.000 0.012
#> GSM153457     2  0.1022    0.65768 0.000 0.968 0.000 0.032
#> GSM153458     2  0.0895    0.64692 0.000 0.976 0.004 0.020
#> GSM153459     2  0.0895    0.65327 0.000 0.976 0.004 0.020
#> GSM153460     2  0.1118    0.64548 0.000 0.964 0.000 0.036
#> GSM153461     2  0.7840    0.17451 0.040 0.568 0.216 0.176
#> GSM153463     1  0.4213    0.62189 0.832 0.004 0.092 0.072
#> GSM153464     2  0.4304    0.54226 0.000 0.716 0.000 0.284
#> GSM153466     4  0.7685    0.18198 0.380 0.140 0.016 0.464
#> GSM153467     4  0.6214    0.01754 0.052 0.468 0.000 0.480
#> GSM153468     4  0.6963   -0.09966 0.424 0.112 0.000 0.464
#> GSM153469     4  0.7475    0.40466 0.120 0.308 0.024 0.548
#> GSM153470     4  0.6212    0.15288 0.060 0.380 0.000 0.560
#> GSM153471     2  0.6143    0.09832 0.048 0.496 0.000 0.456
#> GSM153472     1  0.4339    0.60714 0.764 0.008 0.004 0.224
#> GSM153473     1  0.4969    0.62829 0.772 0.000 0.088 0.140
#> GSM153474     1  0.2281    0.66260 0.904 0.000 0.000 0.096
#> GSM153475     4  0.9431    0.38768 0.232 0.184 0.160 0.424
#> GSM153476     3  0.9066   -0.13845 0.080 0.196 0.372 0.352
#> GSM153478     1  0.8441    0.29646 0.484 0.044 0.236 0.236
#> GSM153480     2  0.4134    0.57599 0.000 0.740 0.000 0.260
#> GSM153486     2  0.6598    0.27837 0.096 0.600 0.004 0.300
#> GSM153487     1  0.6777    0.08993 0.460 0.080 0.004 0.456
#> GSM153499     1  0.7042    0.22202 0.532 0.092 0.012 0.364
#> GSM153504     1  0.2408    0.66186 0.896 0.000 0.000 0.104
#> GSM153507     1  0.6602    0.14292 0.496 0.068 0.004 0.432
#> GSM153404     3  0.1302    0.78800 0.000 0.000 0.956 0.044
#> GSM153407     3  0.5220    0.68511 0.032 0.116 0.788 0.064
#> GSM153408     3  0.1716    0.78458 0.000 0.000 0.936 0.064
#> GSM153410     3  0.3128    0.76329 0.000 0.040 0.884 0.076
#> GSM153411     3  0.1109    0.78621 0.004 0.000 0.968 0.028
#> GSM153412     3  0.2882    0.76834 0.000 0.024 0.892 0.084
#> GSM153413     3  0.1637    0.78559 0.000 0.000 0.940 0.060
#> GSM153414     2  0.8789   -0.08181 0.080 0.428 0.340 0.152
#> GSM153415     3  0.1792    0.78369 0.000 0.000 0.932 0.068
#> GSM153416     2  0.2831    0.65510 0.000 0.876 0.004 0.120
#> GSM153417     3  0.1004    0.78697 0.004 0.000 0.972 0.024
#> GSM153418     3  0.1978    0.78261 0.000 0.004 0.928 0.068
#> GSM153420     3  0.0895    0.78736 0.004 0.000 0.976 0.020
#> GSM153421     3  0.1004    0.78697 0.004 0.000 0.972 0.024
#> GSM153422     3  0.1004    0.78697 0.004 0.000 0.972 0.024
#> GSM153424     3  0.9759   -0.11913 0.304 0.208 0.320 0.168
#> GSM153430     1  0.7922    0.41839 0.592 0.072 0.156 0.180
#> GSM153432     4  0.6822    0.15422 0.072 0.384 0.012 0.532
#> GSM153434     1  0.9540   -0.03306 0.384 0.156 0.180 0.280
#> GSM153435     2  0.5095    0.44323 0.004 0.624 0.004 0.368
#> GSM153436     1  0.9921   -0.19962 0.276 0.268 0.268 0.188
#> GSM153437     2  0.2973    0.64806 0.000 0.856 0.000 0.144
#> GSM153439     4  0.9099    0.43782 0.152 0.304 0.116 0.428
#> GSM153441     2  0.9536   -0.34817 0.204 0.372 0.136 0.288
#> GSM153442     4  0.8442    0.30681 0.320 0.236 0.028 0.416
#> GSM153443     2  0.4819    0.47297 0.004 0.652 0.000 0.344
#> GSM153445     2  0.4776    0.42926 0.000 0.624 0.000 0.376
#> GSM153446     2  0.4040    0.59351 0.000 0.752 0.000 0.248
#> GSM153449     1  0.8537    0.25738 0.524 0.152 0.092 0.232
#> GSM153453     1  0.3688    0.62360 0.792 0.000 0.000 0.208
#> GSM153454     1  0.1452    0.65736 0.956 0.000 0.008 0.036
#> GSM153455     4  0.9448    0.14671 0.336 0.116 0.208 0.340
#> GSM153462     2  0.4605    0.50029 0.000 0.664 0.000 0.336
#> GSM153465     4  0.7976    0.20522 0.112 0.376 0.044 0.468
#> GSM153481     2  0.6115    0.09144 0.020 0.492 0.016 0.472
#> GSM153482     1  0.7114    0.40296 0.568 0.056 0.044 0.332
#> GSM153483     4  0.7439    0.40301 0.176 0.304 0.004 0.516
#> GSM153485     1  0.8785   -0.11266 0.420 0.184 0.064 0.332
#> GSM153489     1  0.8503    0.19542 0.496 0.108 0.100 0.296
#> GSM153490     1  0.3117    0.66641 0.880 0.000 0.028 0.092
#> GSM153491     1  0.3946    0.64536 0.812 0.004 0.012 0.172
#> GSM153492     1  0.2198    0.66438 0.920 0.000 0.008 0.072
#> GSM153493     1  0.2345    0.66170 0.900 0.000 0.000 0.100
#> GSM153494     4  0.8687    0.35538 0.336 0.260 0.036 0.368
#> GSM153495     1  0.2255    0.66250 0.920 0.000 0.012 0.068
#> GSM153498     1  0.9004   -0.08249 0.388 0.128 0.116 0.368
#> GSM153501     1  0.1867    0.66053 0.928 0.000 0.000 0.072
#> GSM153502     1  0.3749    0.65906 0.840 0.000 0.032 0.128
#> GSM153505     1  0.2053    0.66195 0.924 0.000 0.004 0.072
#> GSM153506     4  0.6273   -0.02773 0.056 0.456 0.000 0.488

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     3  0.1892    0.77145 0.000 0.000 0.916 0.004 0.080
#> GSM153406     3  0.1978    0.74564 0.024 0.012 0.932 0.000 0.032
#> GSM153419     3  0.1831    0.77213 0.000 0.000 0.920 0.004 0.076
#> GSM153423     2  0.3423    0.57767 0.108 0.844 0.008 0.000 0.040
#> GSM153425     3  0.3399    0.74176 0.000 0.000 0.812 0.020 0.168
#> GSM153427     2  0.6807   -0.01588 0.052 0.492 0.360 0.000 0.096
#> GSM153428     5  0.8881    0.40812 0.024 0.228 0.248 0.156 0.344
#> GSM153429     1  0.9801    0.03554 0.276 0.152 0.144 0.188 0.240
#> GSM153433     4  0.6724    0.39289 0.080 0.016 0.048 0.584 0.272
#> GSM153444     2  0.3696    0.56492 0.076 0.844 0.032 0.000 0.048
#> GSM153448     2  0.9243   -0.32971 0.248 0.292 0.048 0.152 0.260
#> GSM153451     2  0.2616    0.58686 0.100 0.880 0.000 0.000 0.020
#> GSM153452     2  0.8363   -0.30123 0.040 0.376 0.336 0.060 0.188
#> GSM153477     1  0.7400    0.22981 0.508 0.300 0.024 0.044 0.124
#> GSM153479     1  0.9349    0.06818 0.336 0.152 0.076 0.176 0.260
#> GSM153484     1  0.8888    0.29180 0.420 0.152 0.068 0.120 0.240
#> GSM153488     4  0.8847    0.10819 0.200 0.044 0.148 0.416 0.192
#> GSM153496     4  0.5692    0.53498 0.084 0.016 0.012 0.680 0.208
#> GSM153497     2  0.3934    0.52097 0.244 0.740 0.000 0.000 0.016
#> GSM153500     4  0.3692    0.57846 0.052 0.000 0.000 0.812 0.136
#> GSM153503     4  0.3485    0.57713 0.048 0.000 0.000 0.828 0.124
#> GSM153508     4  0.6862    0.39162 0.232 0.012 0.008 0.524 0.224
#> GSM153409     2  0.5628    0.49940 0.132 0.712 0.088 0.000 0.068
#> GSM153426     2  0.6128    0.48154 0.180 0.660 0.072 0.000 0.088
#> GSM153431     5  0.9752    0.29886 0.148 0.212 0.256 0.124 0.260
#> GSM153438     2  0.3842    0.57707 0.100 0.836 0.032 0.008 0.024
#> GSM153440     3  0.7413    0.23994 0.016 0.076 0.516 0.100 0.292
#> GSM153447     4  0.7789   -0.21082 0.020 0.032 0.220 0.400 0.328
#> GSM153450     2  0.4874    0.51923 0.088 0.764 0.036 0.000 0.112
#> GSM153456     2  0.1041    0.58615 0.032 0.964 0.000 0.000 0.004
#> GSM153457     2  0.2295    0.58703 0.088 0.900 0.004 0.000 0.008
#> GSM153458     2  0.1617    0.57903 0.012 0.948 0.020 0.000 0.020
#> GSM153459     2  0.2095    0.58827 0.060 0.920 0.008 0.000 0.012
#> GSM153460     2  0.2152    0.58378 0.044 0.920 0.004 0.000 0.032
#> GSM153461     2  0.8485    0.14218 0.144 0.484 0.120 0.056 0.196
#> GSM153463     4  0.5323    0.38863 0.032 0.000 0.032 0.652 0.284
#> GSM153464     2  0.4990    0.35018 0.384 0.580 0.000 0.000 0.036
#> GSM153466     1  0.8228    0.15395 0.416 0.072 0.024 0.200 0.288
#> GSM153467     1  0.7474    0.29755 0.492 0.288 0.004 0.080 0.136
#> GSM153468     1  0.8052    0.13942 0.368 0.056 0.012 0.292 0.272
#> GSM153469     1  0.8627    0.36466 0.456 0.196 0.056 0.104 0.188
#> GSM153470     1  0.6853    0.15138 0.536 0.324 0.028 0.024 0.088
#> GSM153471     1  0.7359    0.09279 0.472 0.360 0.020 0.064 0.084
#> GSM153472     4  0.6833    0.44491 0.160 0.016 0.020 0.568 0.236
#> GSM153473     4  0.6138    0.43799 0.048 0.000 0.080 0.624 0.248
#> GSM153474     4  0.3459    0.57904 0.052 0.000 0.000 0.832 0.116
#> GSM153475     1  0.9386    0.14505 0.352 0.128 0.140 0.120 0.260
#> GSM153476     3  0.9204   -0.33887 0.296 0.128 0.344 0.084 0.148
#> GSM153478     5  0.9201    0.18538 0.160 0.072 0.136 0.296 0.336
#> GSM153480     2  0.5158    0.42299 0.344 0.616 0.012 0.004 0.024
#> GSM153486     2  0.7468    0.11458 0.284 0.500 0.004 0.104 0.108
#> GSM153487     1  0.7825   -0.00849 0.392 0.048 0.012 0.340 0.208
#> GSM153499     1  0.7819    0.02666 0.408 0.060 0.016 0.360 0.156
#> GSM153504     4  0.3798    0.57808 0.064 0.000 0.000 0.808 0.128
#> GSM153507     1  0.7626   -0.01854 0.348 0.044 0.000 0.324 0.284
#> GSM153404     3  0.0566    0.77158 0.004 0.000 0.984 0.000 0.012
#> GSM153407     3  0.7484    0.19641 0.004 0.176 0.500 0.068 0.252
#> GSM153408     3  0.1012    0.76511 0.012 0.000 0.968 0.000 0.020
#> GSM153410     3  0.2188    0.73723 0.024 0.024 0.924 0.000 0.028
#> GSM153411     3  0.3612    0.73426 0.000 0.000 0.800 0.028 0.172
#> GSM153412     3  0.2184    0.73973 0.028 0.020 0.924 0.000 0.028
#> GSM153413     3  0.0798    0.76910 0.008 0.000 0.976 0.000 0.016
#> GSM153414     2  0.8312   -0.15344 0.060 0.464 0.164 0.060 0.252
#> GSM153415     3  0.1106    0.76328 0.012 0.000 0.964 0.000 0.024
#> GSM153416     2  0.4312    0.55343 0.160 0.780 0.020 0.000 0.040
#> GSM153417     3  0.3565    0.73543 0.000 0.000 0.800 0.024 0.176
#> GSM153418     3  0.1483    0.75782 0.012 0.008 0.952 0.000 0.028
#> GSM153420     3  0.3399    0.74210 0.000 0.000 0.812 0.020 0.168
#> GSM153421     3  0.3527    0.73733 0.000 0.000 0.804 0.024 0.172
#> GSM153422     3  0.3612    0.73400 0.000 0.000 0.800 0.028 0.172
#> GSM153424     5  0.9171    0.35734 0.080 0.160 0.132 0.248 0.380
#> GSM153430     4  0.7803    0.15571 0.064 0.076 0.060 0.484 0.316
#> GSM153432     1  0.7060    0.26474 0.560 0.244 0.020 0.032 0.144
#> GSM153434     5  0.9429    0.25120 0.172 0.108 0.124 0.256 0.340
#> GSM153435     1  0.6365   -0.02123 0.508 0.384 0.016 0.008 0.084
#> GSM153436     5  0.9414    0.27453 0.080 0.280 0.140 0.196 0.304
#> GSM153437     2  0.4407    0.52611 0.244 0.724 0.012 0.000 0.020
#> GSM153439     1  0.8796    0.27810 0.408 0.196 0.056 0.096 0.244
#> GSM153441     4  0.9793   -0.30107 0.224 0.228 0.108 0.244 0.196
#> GSM153442     1  0.8972    0.08874 0.336 0.148 0.032 0.264 0.220
#> GSM153443     2  0.5650    0.15377 0.456 0.468 0.000 0.000 0.076
#> GSM153445     2  0.5787    0.19830 0.440 0.488 0.004 0.004 0.064
#> GSM153446     2  0.5141    0.39883 0.360 0.600 0.012 0.000 0.028
#> GSM153449     4  0.9169   -0.11223 0.224 0.100 0.072 0.328 0.276
#> GSM153453     4  0.5941    0.48759 0.188 0.004 0.000 0.612 0.196
#> GSM153454     4  0.2997    0.55605 0.012 0.000 0.000 0.840 0.148
#> GSM153455     5  0.9409    0.03532 0.240 0.096 0.108 0.240 0.316
#> GSM153462     2  0.5998    0.20457 0.452 0.468 0.012 0.004 0.064
#> GSM153465     1  0.8335    0.12040 0.400 0.348 0.096 0.044 0.112
#> GSM153481     1  0.7299    0.02122 0.428 0.396 0.036 0.016 0.124
#> GSM153482     4  0.8274    0.17295 0.244 0.056 0.036 0.424 0.240
#> GSM153483     1  0.8339    0.35004 0.432 0.256 0.016 0.136 0.160
#> GSM153485     1  0.9245    0.08866 0.320 0.116 0.068 0.264 0.232
#> GSM153489     4  0.9504   -0.07619 0.208 0.140 0.100 0.336 0.216
#> GSM153490     4  0.4791    0.56704 0.064 0.000 0.020 0.748 0.168
#> GSM153491     4  0.6446    0.48257 0.128 0.028 0.008 0.612 0.224
#> GSM153492     4  0.4658    0.56135 0.060 0.004 0.008 0.752 0.176
#> GSM153493     4  0.4668    0.56652 0.072 0.000 0.004 0.736 0.188
#> GSM153494     1  0.8559    0.13125 0.356 0.160 0.016 0.316 0.152
#> GSM153495     4  0.3837    0.54010 0.024 0.000 0.012 0.800 0.164
#> GSM153498     4  0.9426   -0.05520 0.216 0.084 0.128 0.304 0.268
#> GSM153501     4  0.2570    0.57671 0.028 0.000 0.000 0.888 0.084
#> GSM153502     4  0.5521    0.54434 0.064 0.004 0.044 0.708 0.180
#> GSM153505     4  0.2712    0.57430 0.032 0.000 0.000 0.880 0.088
#> GSM153506     1  0.7160    0.16024 0.484 0.336 0.004 0.052 0.124

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     3  0.2442   0.678747 0.000 0.000 0.852 0.000 0.144 0.004
#> GSM153406     3  0.1854   0.669295 0.016 0.004 0.932 0.000 0.020 0.028
#> GSM153419     3  0.2340   0.677286 0.000 0.000 0.852 0.000 0.148 0.000
#> GSM153423     2  0.3793   0.520346 0.080 0.816 0.000 0.004 0.072 0.028
#> GSM153425     3  0.4537   0.449935 0.000 0.000 0.576 0.024 0.392 0.008
#> GSM153427     2  0.7351   0.028111 0.028 0.436 0.260 0.000 0.212 0.064
#> GSM153428     5  0.8167   0.473450 0.020 0.160 0.124 0.148 0.472 0.076
#> GSM153429     6  0.9670   0.158368 0.232 0.100 0.112 0.192 0.124 0.240
#> GSM153433     4  0.7323   0.292882 0.064 0.008 0.028 0.492 0.200 0.208
#> GSM153444     2  0.4640   0.499800 0.052 0.772 0.044 0.000 0.100 0.032
#> GSM153448     2  0.9431  -0.328233 0.232 0.236 0.036 0.156 0.188 0.152
#> GSM153451     2  0.2542   0.523451 0.080 0.884 0.000 0.000 0.016 0.020
#> GSM153452     2  0.8453  -0.065825 0.036 0.408 0.212 0.056 0.196 0.092
#> GSM153477     1  0.8044   0.344561 0.432 0.268 0.024 0.056 0.076 0.144
#> GSM153479     1  0.8997  -0.005296 0.344 0.116 0.040 0.112 0.140 0.248
#> GSM153484     1  0.8589   0.081348 0.396 0.136 0.048 0.100 0.064 0.256
#> GSM153488     4  0.9009  -0.123187 0.140 0.032 0.136 0.340 0.116 0.236
#> GSM153496     4  0.6333   0.331770 0.064 0.008 0.008 0.584 0.096 0.240
#> GSM153497     2  0.4028   0.461588 0.176 0.764 0.000 0.000 0.032 0.028
#> GSM153500     4  0.4367   0.432074 0.044 0.000 0.000 0.752 0.044 0.160
#> GSM153503     4  0.3708   0.457882 0.032 0.000 0.000 0.816 0.060 0.092
#> GSM153508     4  0.7515  -0.123726 0.252 0.032 0.000 0.388 0.060 0.268
#> GSM153409     2  0.6484   0.391034 0.084 0.616 0.068 0.008 0.188 0.036
#> GSM153426     2  0.7003   0.346942 0.124 0.564 0.068 0.004 0.188 0.052
#> GSM153431     5  0.8934   0.258943 0.060 0.152 0.128 0.132 0.412 0.116
#> GSM153438     2  0.4513   0.506645 0.084 0.784 0.040 0.000 0.056 0.036
#> GSM153440     5  0.7195   0.187195 0.020 0.032 0.376 0.108 0.424 0.040
#> GSM153447     5  0.6310   0.267594 0.008 0.004 0.096 0.312 0.532 0.048
#> GSM153450     2  0.5072   0.489141 0.104 0.740 0.036 0.000 0.080 0.040
#> GSM153456     2  0.0665   0.528629 0.008 0.980 0.000 0.000 0.008 0.004
#> GSM153457     2  0.1787   0.524168 0.068 0.920 0.000 0.000 0.008 0.004
#> GSM153458     2  0.2228   0.534163 0.024 0.908 0.004 0.000 0.056 0.008
#> GSM153459     2  0.2137   0.533926 0.028 0.912 0.000 0.000 0.048 0.012
#> GSM153460     2  0.3070   0.531005 0.056 0.856 0.000 0.000 0.072 0.016
#> GSM153461     2  0.8015   0.009393 0.056 0.376 0.076 0.052 0.368 0.072
#> GSM153463     4  0.5851   0.242402 0.012 0.000 0.032 0.560 0.320 0.076
#> GSM153464     2  0.5065   0.056356 0.452 0.492 0.000 0.000 0.032 0.024
#> GSM153466     1  0.8039  -0.249406 0.388 0.048 0.012 0.204 0.076 0.272
#> GSM153467     1  0.7789   0.309368 0.404 0.300 0.008 0.072 0.044 0.172
#> GSM153468     1  0.8209  -0.277031 0.324 0.044 0.016 0.256 0.076 0.284
#> GSM153469     1  0.8348   0.251665 0.444 0.180 0.044 0.068 0.072 0.192
#> GSM153470     1  0.8237   0.309165 0.404 0.224 0.036 0.036 0.080 0.220
#> GSM153471     1  0.7650   0.351825 0.472 0.276 0.024 0.064 0.048 0.116
#> GSM153472     4  0.6864   0.160496 0.100 0.000 0.016 0.472 0.088 0.324
#> GSM153473     4  0.7090   0.305348 0.032 0.000 0.048 0.484 0.232 0.204
#> GSM153474     4  0.5806   0.395149 0.076 0.000 0.000 0.628 0.104 0.192
#> GSM153475     1  0.9202  -0.125786 0.320 0.096 0.100 0.148 0.076 0.260
#> GSM153476     3  0.8632  -0.183754 0.168 0.080 0.428 0.040 0.128 0.156
#> GSM153478     4  0.8855   0.010262 0.120 0.036 0.060 0.304 0.268 0.212
#> GSM153480     2  0.5496   0.222484 0.344 0.568 0.012 0.000 0.024 0.052
#> GSM153486     2  0.7563   0.000762 0.212 0.476 0.004 0.052 0.068 0.188
#> GSM153487     6  0.8173   0.278567 0.248 0.056 0.020 0.184 0.080 0.412
#> GSM153499     6  0.8219   0.189102 0.256 0.048 0.012 0.292 0.080 0.312
#> GSM153504     4  0.5528   0.379957 0.052 0.000 0.008 0.660 0.080 0.200
#> GSM153507     6  0.7488   0.240768 0.256 0.020 0.000 0.248 0.080 0.396
#> GSM153404     3  0.1327   0.701350 0.000 0.000 0.936 0.000 0.064 0.000
#> GSM153407     5  0.7285   0.369271 0.012 0.156 0.272 0.048 0.480 0.032
#> GSM153408     3  0.0405   0.700298 0.004 0.000 0.988 0.000 0.008 0.000
#> GSM153410     3  0.1621   0.676214 0.016 0.012 0.944 0.000 0.008 0.020
#> GSM153411     3  0.4952   0.436368 0.004 0.000 0.568 0.032 0.380 0.016
#> GSM153412     3  0.1337   0.684605 0.016 0.008 0.956 0.000 0.008 0.012
#> GSM153413     3  0.0837   0.702425 0.004 0.000 0.972 0.000 0.020 0.004
#> GSM153414     2  0.8098   0.033645 0.048 0.408 0.112 0.040 0.312 0.080
#> GSM153415     3  0.0551   0.697602 0.008 0.000 0.984 0.000 0.004 0.004
#> GSM153416     2  0.4871   0.476629 0.132 0.740 0.012 0.000 0.064 0.052
#> GSM153417     3  0.4456   0.500454 0.000 0.000 0.608 0.024 0.360 0.008
#> GSM153418     3  0.0810   0.693838 0.008 0.004 0.976 0.000 0.004 0.008
#> GSM153420     3  0.3925   0.550428 0.000 0.000 0.656 0.008 0.332 0.004
#> GSM153421     3  0.4386   0.488931 0.000 0.000 0.600 0.024 0.372 0.004
#> GSM153422     3  0.4155   0.511317 0.000 0.000 0.616 0.020 0.364 0.000
#> GSM153424     5  0.8099   0.360336 0.060 0.132 0.060 0.228 0.468 0.052
#> GSM153430     4  0.8355   0.135914 0.072 0.028 0.072 0.396 0.264 0.168
#> GSM153432     1  0.7723   0.348087 0.492 0.224 0.032 0.032 0.084 0.136
#> GSM153434     4  0.9400  -0.107580 0.172 0.056 0.092 0.268 0.232 0.180
#> GSM153435     1  0.7165   0.177498 0.440 0.356 0.040 0.004 0.080 0.080
#> GSM153436     2  0.9751  -0.307635 0.100 0.216 0.104 0.168 0.212 0.200
#> GSM153437     2  0.5345   0.405183 0.212 0.672 0.016 0.000 0.064 0.036
#> GSM153439     1  0.9269   0.127549 0.356 0.172 0.100 0.088 0.108 0.176
#> GSM153441     1  0.9414   0.005754 0.240 0.236 0.036 0.172 0.176 0.140
#> GSM153442     1  0.8838  -0.207942 0.320 0.084 0.028 0.208 0.104 0.256
#> GSM153443     1  0.6133   0.124945 0.468 0.396 0.004 0.016 0.012 0.104
#> GSM153445     2  0.6103  -0.012619 0.420 0.456 0.004 0.004 0.044 0.072
#> GSM153446     2  0.5349   0.222487 0.348 0.576 0.012 0.000 0.032 0.032
#> GSM153449     4  0.8639  -0.065647 0.124 0.068 0.028 0.340 0.144 0.296
#> GSM153453     4  0.6247   0.292920 0.088 0.004 0.012 0.584 0.060 0.252
#> GSM153454     4  0.3934   0.457927 0.012 0.000 0.000 0.764 0.180 0.044
#> GSM153455     6  0.9678   0.222390 0.232 0.080 0.148 0.164 0.136 0.240
#> GSM153462     1  0.6743   0.101721 0.432 0.392 0.012 0.004 0.072 0.088
#> GSM153465     1  0.9332   0.152018 0.292 0.192 0.076 0.060 0.188 0.192
#> GSM153481     1  0.7791   0.268942 0.432 0.300 0.052 0.024 0.052 0.140
#> GSM153482     4  0.8055  -0.065004 0.112 0.036 0.036 0.408 0.100 0.308
#> GSM153483     1  0.8826   0.103913 0.336 0.136 0.020 0.100 0.152 0.256
#> GSM153485     6  0.8688   0.257253 0.240 0.064 0.044 0.276 0.068 0.308
#> GSM153489     6  0.8867   0.189804 0.104 0.060 0.080 0.264 0.128 0.364
#> GSM153490     4  0.5861   0.403983 0.044 0.000 0.024 0.656 0.140 0.136
#> GSM153491     4  0.6340   0.257284 0.088 0.008 0.004 0.552 0.064 0.284
#> GSM153492     4  0.5054   0.438297 0.048 0.000 0.004 0.716 0.104 0.128
#> GSM153493     4  0.4716   0.431615 0.020 0.000 0.000 0.708 0.084 0.188
#> GSM153494     4  0.9122  -0.273995 0.252 0.104 0.024 0.264 0.152 0.204
#> GSM153495     4  0.4475   0.450771 0.008 0.000 0.012 0.736 0.180 0.064
#> GSM153498     6  0.9229   0.281981 0.204 0.048 0.160 0.228 0.076 0.284
#> GSM153501     4  0.3659   0.449008 0.032 0.000 0.000 0.808 0.032 0.128
#> GSM153502     4  0.6335   0.359858 0.060 0.008 0.040 0.624 0.068 0.200
#> GSM153505     4  0.3882   0.462029 0.024 0.000 0.000 0.800 0.092 0.084
#> GSM153506     1  0.7080   0.308784 0.452 0.304 0.004 0.028 0.036 0.176

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> MAD:skmeans 93         0.037721 2
#> MAD:skmeans 89         0.043605 3
#> MAD:skmeans 57         0.007439 4
#> MAD:skmeans 42         0.004020 5
#> MAD:skmeans 21         0.000351 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.331           0.834       0.874         0.4735 0.534   0.534
#> 3 3 0.398           0.774       0.831         0.1957 0.914   0.838
#> 4 4 0.413           0.619       0.798         0.0976 0.982   0.961
#> 5 5 0.417           0.598       0.783         0.0335 0.989   0.975
#> 6 6 0.429           0.629       0.774         0.0227 0.979   0.952

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     1  0.3733      0.887 0.928 0.072
#> GSM153406     1  0.1184      0.880 0.984 0.016
#> GSM153419     1  0.0000      0.874 1.000 0.000
#> GSM153423     2  0.0000      0.888 0.000 1.000
#> GSM153425     1  0.0376      0.875 0.996 0.004
#> GSM153427     1  0.7883      0.849 0.764 0.236
#> GSM153428     1  0.6712      0.874 0.824 0.176
#> GSM153429     1  0.7219      0.784 0.800 0.200
#> GSM153433     1  0.5408      0.885 0.876 0.124
#> GSM153444     2  0.0000      0.888 0.000 1.000
#> GSM153448     2  0.9866      0.123 0.432 0.568
#> GSM153451     2  0.0938      0.890 0.012 0.988
#> GSM153452     1  0.6973      0.870 0.812 0.188
#> GSM153477     2  0.4939      0.877 0.108 0.892
#> GSM153479     2  0.4431      0.884 0.092 0.908
#> GSM153484     2  0.9323      0.576 0.348 0.652
#> GSM153488     1  0.3733      0.886 0.928 0.072
#> GSM153496     1  0.1843      0.880 0.972 0.028
#> GSM153497     2  0.4298      0.883 0.088 0.912
#> GSM153500     1  0.6343      0.884 0.840 0.160
#> GSM153503     1  0.4431      0.894 0.908 0.092
#> GSM153508     2  0.7376      0.838 0.208 0.792
#> GSM153409     2  0.3114      0.881 0.056 0.944
#> GSM153426     1  0.9977      0.368 0.528 0.472
#> GSM153431     1  0.4431      0.890 0.908 0.092
#> GSM153438     2  0.0672      0.890 0.008 0.992
#> GSM153440     1  0.6048      0.881 0.852 0.148
#> GSM153447     1  0.6623      0.876 0.828 0.172
#> GSM153450     2  0.0000      0.888 0.000 1.000
#> GSM153456     2  0.0000      0.888 0.000 1.000
#> GSM153457     2  0.0938      0.891 0.012 0.988
#> GSM153458     2  0.1414      0.889 0.020 0.980
#> GSM153459     2  0.0000      0.888 0.000 1.000
#> GSM153460     2  0.0000      0.888 0.000 1.000
#> GSM153461     1  0.8909      0.769 0.692 0.308
#> GSM153463     1  0.5946      0.885 0.856 0.144
#> GSM153464     2  0.5294      0.878 0.120 0.880
#> GSM153466     1  0.7376      0.785 0.792 0.208
#> GSM153467     2  0.1633      0.888 0.024 0.976
#> GSM153468     1  0.5408      0.867 0.876 0.124
#> GSM153469     2  0.7602      0.827 0.220 0.780
#> GSM153470     2  0.5408      0.872 0.124 0.876
#> GSM153471     2  0.6048      0.872 0.148 0.852
#> GSM153472     1  0.3733      0.889 0.928 0.072
#> GSM153473     1  0.2778      0.888 0.952 0.048
#> GSM153474     1  0.8386      0.752 0.732 0.268
#> GSM153475     1  0.7883      0.829 0.764 0.236
#> GSM153476     1  0.2236      0.884 0.964 0.036
#> GSM153478     1  0.5059      0.894 0.888 0.112
#> GSM153480     2  0.6048      0.864 0.148 0.852
#> GSM153486     2  0.8813      0.739 0.300 0.700
#> GSM153487     2  0.6048      0.866 0.148 0.852
#> GSM153499     1  0.4161      0.892 0.916 0.084
#> GSM153504     1  0.5059      0.896 0.888 0.112
#> GSM153507     2  0.6623      0.839 0.172 0.828
#> GSM153404     1  0.0672      0.877 0.992 0.008
#> GSM153407     1  0.6887      0.871 0.816 0.184
#> GSM153408     1  0.0000      0.874 1.000 0.000
#> GSM153410     1  0.0000      0.874 1.000 0.000
#> GSM153411     1  0.0000      0.874 1.000 0.000
#> GSM153412     1  0.0000      0.874 1.000 0.000
#> GSM153413     1  0.0000      0.874 1.000 0.000
#> GSM153414     1  0.8207      0.813 0.744 0.256
#> GSM153415     1  0.0000      0.874 1.000 0.000
#> GSM153416     2  0.0000      0.888 0.000 1.000
#> GSM153417     1  0.4431      0.882 0.908 0.092
#> GSM153418     1  0.0000      0.874 1.000 0.000
#> GSM153420     1  0.6343      0.878 0.840 0.160
#> GSM153421     1  0.3879      0.887 0.924 0.076
#> GSM153422     1  0.5842      0.880 0.860 0.140
#> GSM153424     1  0.7299      0.863 0.796 0.204
#> GSM153430     1  0.5946      0.889 0.856 0.144
#> GSM153432     2  0.2948      0.893 0.052 0.948
#> GSM153434     1  0.2423      0.887 0.960 0.040
#> GSM153435     1  0.9795      0.576 0.584 0.416
#> GSM153436     2  0.2236      0.882 0.036 0.964
#> GSM153437     2  0.0672      0.890 0.008 0.992
#> GSM153439     1  0.8327      0.659 0.736 0.264
#> GSM153441     1  1.0000      0.325 0.500 0.500
#> GSM153442     1  0.8016      0.839 0.756 0.244
#> GSM153443     2  0.0672      0.888 0.008 0.992
#> GSM153445     2  0.5737      0.869 0.136 0.864
#> GSM153446     2  0.6148      0.860 0.152 0.848
#> GSM153449     1  0.4161      0.894 0.916 0.084
#> GSM153453     1  0.3431      0.888 0.936 0.064
#> GSM153454     1  0.2603      0.887 0.956 0.044
#> GSM153455     1  0.6531      0.865 0.832 0.168
#> GSM153462     2  0.3431      0.890 0.064 0.936
#> GSM153465     1  0.9323      0.590 0.652 0.348
#> GSM153481     2  0.5178      0.883 0.116 0.884
#> GSM153482     1  0.6887      0.874 0.816 0.184
#> GSM153483     1  0.8813      0.625 0.700 0.300
#> GSM153485     2  0.9427      0.535 0.360 0.640
#> GSM153489     1  0.5946      0.890 0.856 0.144
#> GSM153490     1  0.4431      0.895 0.908 0.092
#> GSM153491     1  0.6623      0.875 0.828 0.172
#> GSM153492     1  0.6343      0.883 0.840 0.160
#> GSM153493     1  0.5059      0.892 0.888 0.112
#> GSM153494     2  0.9775      0.259 0.412 0.588
#> GSM153495     1  0.3879      0.893 0.924 0.076
#> GSM153498     1  0.2778      0.890 0.952 0.048
#> GSM153501     1  0.6148      0.888 0.848 0.152
#> GSM153502     1  0.2423      0.884 0.960 0.040
#> GSM153505     1  0.5629      0.889 0.868 0.132
#> GSM153506     2  0.4022      0.888 0.080 0.920

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     1  0.4121      0.841 0.876 0.040 0.084
#> GSM153406     1  0.2301      0.834 0.936 0.004 0.060
#> GSM153419     1  0.3816      0.805 0.852 0.000 0.148
#> GSM153423     2  0.2749      0.845 0.064 0.924 0.012
#> GSM153425     3  0.6244      0.112 0.440 0.000 0.560
#> GSM153427     1  0.4345      0.826 0.848 0.136 0.016
#> GSM153428     1  0.4519      0.831 0.852 0.116 0.032
#> GSM153429     1  0.5159      0.763 0.820 0.140 0.040
#> GSM153433     1  0.3765      0.846 0.888 0.084 0.028
#> GSM153444     2  0.3091      0.839 0.072 0.912 0.016
#> GSM153448     2  0.6779      0.087 0.444 0.544 0.012
#> GSM153451     2  0.1031      0.860 0.024 0.976 0.000
#> GSM153452     1  0.5053      0.825 0.812 0.164 0.024
#> GSM153477     2  0.2301      0.862 0.060 0.936 0.004
#> GSM153479     2  0.2711      0.854 0.088 0.912 0.000
#> GSM153484     2  0.6865      0.516 0.384 0.596 0.020
#> GSM153488     1  0.1482      0.844 0.968 0.012 0.020
#> GSM153496     1  0.2846      0.838 0.924 0.020 0.056
#> GSM153497     2  0.2774      0.861 0.072 0.920 0.008
#> GSM153500     1  0.4892      0.842 0.840 0.112 0.048
#> GSM153503     1  0.6016      0.627 0.724 0.020 0.256
#> GSM153508     2  0.5167      0.810 0.192 0.792 0.016
#> GSM153409     2  0.4136      0.826 0.116 0.864 0.020
#> GSM153426     1  0.6783      0.427 0.588 0.396 0.016
#> GSM153431     1  0.2050      0.847 0.952 0.020 0.028
#> GSM153438     2  0.1015      0.862 0.012 0.980 0.008
#> GSM153440     1  0.4662      0.814 0.844 0.032 0.124
#> GSM153447     1  0.4945      0.837 0.840 0.104 0.056
#> GSM153450     2  0.0661      0.859 0.008 0.988 0.004
#> GSM153456     2  0.0000      0.858 0.000 1.000 0.000
#> GSM153457     2  0.0424      0.860 0.008 0.992 0.000
#> GSM153458     2  0.0237      0.858 0.004 0.996 0.000
#> GSM153459     2  0.0000      0.858 0.000 1.000 0.000
#> GSM153460     2  0.1753      0.854 0.048 0.952 0.000
#> GSM153461     1  0.5461      0.763 0.768 0.216 0.016
#> GSM153463     1  0.6062      0.392 0.616 0.000 0.384
#> GSM153464     2  0.2796      0.850 0.092 0.908 0.000
#> GSM153466     1  0.5119      0.756 0.812 0.160 0.028
#> GSM153467     2  0.2955      0.855 0.080 0.912 0.008
#> GSM153468     1  0.5239      0.788 0.808 0.160 0.032
#> GSM153469     2  0.4521      0.813 0.180 0.816 0.004
#> GSM153470     2  0.4164      0.838 0.144 0.848 0.008
#> GSM153471     2  0.4634      0.838 0.164 0.824 0.012
#> GSM153472     1  0.3042      0.852 0.920 0.040 0.040
#> GSM153473     1  0.2443      0.851 0.940 0.032 0.028
#> GSM153474     1  0.5610      0.723 0.776 0.196 0.028
#> GSM153475     1  0.4411      0.812 0.844 0.140 0.016
#> GSM153476     1  0.2280      0.838 0.940 0.008 0.052
#> GSM153478     1  0.3310      0.851 0.908 0.064 0.028
#> GSM153480     2  0.3500      0.843 0.116 0.880 0.004
#> GSM153486     2  0.5956      0.716 0.264 0.720 0.016
#> GSM153487     2  0.5020      0.819 0.192 0.796 0.012
#> GSM153499     1  0.2569      0.851 0.936 0.032 0.032
#> GSM153504     1  0.2845      0.850 0.920 0.068 0.012
#> GSM153507     2  0.5687      0.775 0.224 0.756 0.020
#> GSM153404     1  0.2774      0.831 0.920 0.008 0.072
#> GSM153407     1  0.5319      0.820 0.824 0.104 0.072
#> GSM153408     1  0.2356      0.827 0.928 0.000 0.072
#> GSM153410     1  0.2356      0.827 0.928 0.000 0.072
#> GSM153411     3  0.0747      0.799 0.016 0.000 0.984
#> GSM153412     1  0.2356      0.827 0.928 0.000 0.072
#> GSM153413     1  0.2625      0.827 0.916 0.000 0.084
#> GSM153414     1  0.6066      0.755 0.728 0.248 0.024
#> GSM153415     1  0.2356      0.827 0.928 0.000 0.072
#> GSM153416     2  0.2939      0.844 0.072 0.916 0.012
#> GSM153417     3  0.0747      0.799 0.016 0.000 0.984
#> GSM153418     1  0.2356      0.827 0.928 0.000 0.072
#> GSM153420     3  0.1753      0.785 0.048 0.000 0.952
#> GSM153421     3  0.0747      0.799 0.016 0.000 0.984
#> GSM153422     3  0.1529      0.793 0.040 0.000 0.960
#> GSM153424     1  0.5304      0.816 0.824 0.108 0.068
#> GSM153430     1  0.3742      0.851 0.892 0.072 0.036
#> GSM153432     2  0.2165      0.869 0.064 0.936 0.000
#> GSM153434     1  0.3589      0.848 0.900 0.048 0.052
#> GSM153435     1  0.6333      0.605 0.656 0.332 0.012
#> GSM153436     2  0.3415      0.838 0.020 0.900 0.080
#> GSM153437     2  0.0424      0.861 0.008 0.992 0.000
#> GSM153439     1  0.6295      0.637 0.728 0.236 0.036
#> GSM153441     1  0.6836      0.399 0.572 0.412 0.016
#> GSM153442     1  0.4921      0.815 0.816 0.164 0.020
#> GSM153443     2  0.1399      0.859 0.028 0.968 0.004
#> GSM153445     2  0.2711      0.851 0.088 0.912 0.000
#> GSM153446     2  0.2878      0.850 0.096 0.904 0.000
#> GSM153449     1  0.2564      0.851 0.936 0.036 0.028
#> GSM153453     1  0.3583      0.849 0.900 0.056 0.044
#> GSM153454     1  0.5623      0.576 0.716 0.004 0.280
#> GSM153455     1  0.5659      0.818 0.796 0.152 0.052
#> GSM153462     2  0.3272      0.862 0.104 0.892 0.004
#> GSM153465     1  0.6062      0.626 0.708 0.276 0.016
#> GSM153481     2  0.2261      0.866 0.068 0.932 0.000
#> GSM153482     1  0.3690      0.832 0.884 0.100 0.016
#> GSM153483     1  0.5461      0.647 0.768 0.216 0.016
#> GSM153485     2  0.6541      0.573 0.304 0.672 0.024
#> GSM153489     1  0.4479      0.850 0.860 0.096 0.044
#> GSM153490     3  0.7346      0.300 0.432 0.032 0.536
#> GSM153491     1  0.5178      0.825 0.808 0.164 0.028
#> GSM153492     1  0.4232      0.840 0.872 0.084 0.044
#> GSM153493     3  0.6049      0.699 0.204 0.040 0.756
#> GSM153494     2  0.6676      0.125 0.476 0.516 0.008
#> GSM153495     1  0.5117      0.838 0.832 0.060 0.108
#> GSM153498     1  0.3237      0.846 0.912 0.032 0.056
#> GSM153501     1  0.4174      0.843 0.872 0.092 0.036
#> GSM153502     1  0.3499      0.840 0.900 0.028 0.072
#> GSM153505     1  0.2383      0.849 0.940 0.044 0.016
#> GSM153506     2  0.2400      0.865 0.064 0.932 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     1  0.2198     0.7590 0.920 0.000 0.008 0.072
#> GSM153406     1  0.1211     0.7475 0.960 0.000 0.000 0.040
#> GSM153419     1  0.2662     0.7337 0.900 0.000 0.084 0.016
#> GSM153423     2  0.4245     0.6753 0.020 0.784 0.000 0.196
#> GSM153425     3  0.4925     0.0756 0.428 0.000 0.572 0.000
#> GSM153427     1  0.5016     0.6052 0.600 0.004 0.000 0.396
#> GSM153428     1  0.4201     0.7313 0.788 0.012 0.004 0.196
#> GSM153429     1  0.4647     0.6635 0.704 0.008 0.000 0.288
#> GSM153433     1  0.3052     0.7523 0.860 0.000 0.004 0.136
#> GSM153444     2  0.5476     0.3952 0.020 0.584 0.000 0.396
#> GSM153448     2  0.6562    -0.2560 0.404 0.516 0.000 0.080
#> GSM153451     2  0.0188     0.7569 0.000 0.996 0.000 0.004
#> GSM153452     1  0.4215     0.7377 0.824 0.072 0.000 0.104
#> GSM153477     2  0.1042     0.7617 0.020 0.972 0.000 0.008
#> GSM153479     2  0.1576     0.7591 0.048 0.948 0.000 0.004
#> GSM153484     2  0.6264     0.1926 0.376 0.560 0.000 0.064
#> GSM153488     1  0.3448     0.7442 0.828 0.004 0.000 0.168
#> GSM153496     1  0.1707     0.7566 0.952 0.020 0.004 0.024
#> GSM153497     2  0.3494     0.6745 0.004 0.824 0.000 0.172
#> GSM153500     1  0.4917     0.6619 0.656 0.008 0.000 0.336
#> GSM153503     1  0.5816     0.6247 0.700 0.008 0.224 0.068
#> GSM153508     4  0.6719    -0.1304 0.152 0.240 0.000 0.608
#> GSM153409     2  0.5792     0.5323 0.056 0.648 0.000 0.296
#> GSM153426     1  0.7717    -0.1106 0.448 0.264 0.000 0.288
#> GSM153431     1  0.3569     0.7376 0.804 0.000 0.000 0.196
#> GSM153438     2  0.2179     0.7632 0.012 0.924 0.000 0.064
#> GSM153440     1  0.4344     0.7346 0.816 0.000 0.108 0.076
#> GSM153447     1  0.5008     0.7193 0.716 0.008 0.016 0.260
#> GSM153450     2  0.1824     0.7602 0.004 0.936 0.000 0.060
#> GSM153456     2  0.0188     0.7574 0.004 0.996 0.000 0.000
#> GSM153457     2  0.0000     0.7576 0.000 1.000 0.000 0.000
#> GSM153458     2  0.0000     0.7576 0.000 1.000 0.000 0.000
#> GSM153459     2  0.0000     0.7576 0.000 1.000 0.000 0.000
#> GSM153460     2  0.3335     0.7313 0.020 0.860 0.000 0.120
#> GSM153461     1  0.6773     0.4288 0.532 0.104 0.000 0.364
#> GSM153463     1  0.5183     0.4015 0.584 0.000 0.408 0.008
#> GSM153464     2  0.0336     0.7562 0.000 0.992 0.000 0.008
#> GSM153466     1  0.5308     0.6308 0.684 0.036 0.000 0.280
#> GSM153467     2  0.4012     0.6892 0.016 0.800 0.000 0.184
#> GSM153468     1  0.4644     0.6005 0.748 0.228 0.000 0.024
#> GSM153469     2  0.4804     0.6454 0.160 0.776 0.000 0.064
#> GSM153470     2  0.6116     0.5291 0.112 0.668 0.000 0.220
#> GSM153471     2  0.4753     0.6800 0.128 0.788 0.000 0.084
#> GSM153472     1  0.4497     0.7236 0.776 0.008 0.016 0.200
#> GSM153473     1  0.1209     0.7570 0.964 0.000 0.004 0.032
#> GSM153474     1  0.5936     0.5696 0.604 0.040 0.004 0.352
#> GSM153475     1  0.5420     0.6263 0.624 0.024 0.000 0.352
#> GSM153476     1  0.1902     0.7569 0.932 0.004 0.000 0.064
#> GSM153478     1  0.2999     0.7627 0.864 0.000 0.004 0.132
#> GSM153480     2  0.2179     0.7486 0.064 0.924 0.000 0.012
#> GSM153486     2  0.5664     0.5256 0.228 0.696 0.000 0.076
#> GSM153487     2  0.5515     0.6338 0.152 0.732 0.000 0.116
#> GSM153499     1  0.1661     0.7616 0.944 0.004 0.000 0.052
#> GSM153504     1  0.2814     0.7682 0.868 0.000 0.000 0.132
#> GSM153507     2  0.6897     0.3515 0.144 0.572 0.000 0.284
#> GSM153404     1  0.0895     0.7450 0.976 0.000 0.004 0.020
#> GSM153407     1  0.5041     0.7259 0.764 0.024 0.024 0.188
#> GSM153408     1  0.1004     0.7431 0.972 0.000 0.004 0.024
#> GSM153410     1  0.1109     0.7436 0.968 0.000 0.004 0.028
#> GSM153411     3  0.0000     0.7243 0.000 0.000 1.000 0.000
#> GSM153412     1  0.1022     0.7437 0.968 0.000 0.000 0.032
#> GSM153413     1  0.1284     0.7447 0.964 0.000 0.012 0.024
#> GSM153414     1  0.5615     0.6022 0.716 0.188 0.000 0.096
#> GSM153415     1  0.1022     0.7437 0.968 0.000 0.000 0.032
#> GSM153416     2  0.4524     0.6594 0.028 0.768 0.000 0.204
#> GSM153417     3  0.0000     0.7243 0.000 0.000 1.000 0.000
#> GSM153418     1  0.1209     0.7436 0.964 0.000 0.004 0.032
#> GSM153420     3  0.0188     0.7231 0.000 0.000 0.996 0.004
#> GSM153421     3  0.0000     0.7243 0.000 0.000 1.000 0.000
#> GSM153422     3  0.0188     0.7231 0.000 0.000 0.996 0.004
#> GSM153424     1  0.5429     0.5958 0.592 0.004 0.012 0.392
#> GSM153430     1  0.4228     0.7339 0.760 0.008 0.000 0.232
#> GSM153432     2  0.2214     0.7664 0.028 0.928 0.000 0.044
#> GSM153434     1  0.1863     0.7617 0.944 0.012 0.004 0.040
#> GSM153435     1  0.6977     0.3674 0.584 0.204 0.000 0.212
#> GSM153436     2  0.3396     0.7476 0.016 0.884 0.036 0.064
#> GSM153437     2  0.0672     0.7620 0.008 0.984 0.000 0.008
#> GSM153439     1  0.5328     0.4793 0.724 0.212 0.000 0.064
#> GSM153441     4  0.7852    -0.1572 0.332 0.276 0.000 0.392
#> GSM153442     1  0.5144     0.7054 0.732 0.052 0.000 0.216
#> GSM153443     2  0.3384     0.7337 0.024 0.860 0.000 0.116
#> GSM153445     2  0.0188     0.7572 0.004 0.996 0.000 0.000
#> GSM153446     2  0.1174     0.7635 0.020 0.968 0.000 0.012
#> GSM153449     1  0.3196     0.7607 0.856 0.008 0.000 0.136
#> GSM153453     1  0.4004     0.7580 0.836 0.040 0.004 0.120
#> GSM153454     1  0.5485     0.4641 0.680 0.004 0.280 0.036
#> GSM153455     1  0.4487     0.7137 0.808 0.092 0.000 0.100
#> GSM153462     2  0.3082     0.7547 0.032 0.884 0.000 0.084
#> GSM153465     1  0.7283     0.1739 0.524 0.184 0.000 0.292
#> GSM153481     2  0.1042     0.7610 0.020 0.972 0.000 0.008
#> GSM153482     1  0.4535     0.7091 0.704 0.004 0.000 0.292
#> GSM153483     1  0.7102     0.2605 0.548 0.164 0.000 0.288
#> GSM153485     2  0.6522     0.3816 0.224 0.632 0.000 0.144
#> GSM153489     1  0.5266     0.6506 0.656 0.016 0.004 0.324
#> GSM153490     3  0.6751     0.1192 0.396 0.000 0.508 0.096
#> GSM153491     1  0.4229     0.7429 0.824 0.048 0.004 0.124
#> GSM153492     1  0.4936     0.6254 0.624 0.004 0.000 0.372
#> GSM153493     3  0.5473     0.5075 0.152 0.004 0.744 0.100
#> GSM153494     2  0.7854    -0.3158 0.344 0.384 0.000 0.272
#> GSM153495     1  0.3370     0.7577 0.872 0.000 0.048 0.080
#> GSM153498     1  0.1489     0.7577 0.952 0.000 0.004 0.044
#> GSM153501     1  0.3863     0.7584 0.812 0.008 0.004 0.176
#> GSM153502     1  0.1722     0.7575 0.944 0.008 0.000 0.048
#> GSM153505     1  0.4382     0.6884 0.704 0.000 0.000 0.296
#> GSM153506     2  0.1305     0.7627 0.004 0.960 0.000 0.036

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     1  0.1869    0.73734 0.936 0.000 0.028 0.028 0.008
#> GSM153406     1  0.2771    0.72727 0.860 0.000 0.128 0.012 0.000
#> GSM153419     1  0.1743    0.73000 0.940 0.000 0.028 0.004 0.028
#> GSM153423     2  0.3759    0.69488 0.016 0.764 0.000 0.220 0.000
#> GSM153425     5  0.4249    0.03141 0.432 0.000 0.000 0.000 0.568
#> GSM153427     1  0.4473    0.53673 0.580 0.000 0.008 0.412 0.000
#> GSM153428     1  0.3652    0.71295 0.784 0.004 0.012 0.200 0.000
#> GSM153429     1  0.5798    0.59679 0.624 0.008 0.120 0.248 0.000
#> GSM153433     1  0.2389    0.74580 0.880 0.000 0.004 0.116 0.000
#> GSM153444     2  0.4830    0.39741 0.016 0.560 0.004 0.420 0.000
#> GSM153448     2  0.6255   -0.22656 0.396 0.496 0.020 0.088 0.000
#> GSM153451     2  0.0000    0.77827 0.000 1.000 0.000 0.000 0.000
#> GSM153452     1  0.3279    0.73979 0.864 0.048 0.016 0.072 0.000
#> GSM153477     2  0.0693    0.78187 0.012 0.980 0.008 0.000 0.000
#> GSM153479     2  0.1493    0.78267 0.024 0.948 0.028 0.000 0.000
#> GSM153484     2  0.6633    0.29926 0.304 0.548 0.100 0.048 0.000
#> GSM153488     1  0.4548    0.70314 0.752 0.000 0.120 0.128 0.000
#> GSM153496     1  0.1808    0.74959 0.936 0.008 0.044 0.012 0.000
#> GSM153497     2  0.3365    0.69542 0.008 0.808 0.004 0.180 0.000
#> GSM153500     1  0.4734    0.63328 0.652 0.000 0.036 0.312 0.000
#> GSM153503     1  0.6122    0.59862 0.644 0.000 0.080 0.060 0.216
#> GSM153508     3  0.1934    0.00000 0.052 0.016 0.928 0.004 0.000
#> GSM153409     2  0.5075    0.54123 0.044 0.628 0.004 0.324 0.000
#> GSM153426     1  0.6856   -0.16258 0.452 0.252 0.008 0.288 0.000
#> GSM153431     1  0.4867    0.68953 0.716 0.000 0.104 0.180 0.000
#> GSM153438     2  0.1894    0.78316 0.008 0.920 0.000 0.072 0.000
#> GSM153440     1  0.3859    0.73367 0.820 0.000 0.008 0.072 0.100
#> GSM153447     1  0.4560    0.69230 0.700 0.000 0.020 0.268 0.012
#> GSM153450     2  0.1894    0.77827 0.008 0.920 0.000 0.072 0.000
#> GSM153456     2  0.0000    0.77827 0.000 1.000 0.000 0.000 0.000
#> GSM153457     2  0.0000    0.77827 0.000 1.000 0.000 0.000 0.000
#> GSM153458     2  0.0000    0.77827 0.000 1.000 0.000 0.000 0.000
#> GSM153459     2  0.0000    0.77827 0.000 1.000 0.000 0.000 0.000
#> GSM153460     2  0.3022    0.75181 0.012 0.848 0.004 0.136 0.000
#> GSM153461     1  0.6000    0.35079 0.536 0.096 0.008 0.360 0.000
#> GSM153463     1  0.4350    0.42198 0.588 0.000 0.000 0.004 0.408
#> GSM153464     2  0.0000    0.77827 0.000 1.000 0.000 0.000 0.000
#> GSM153466     1  0.6171    0.54621 0.608 0.032 0.100 0.260 0.000
#> GSM153467     2  0.3596    0.71317 0.008 0.792 0.008 0.192 0.000
#> GSM153468     1  0.4121    0.62658 0.760 0.208 0.024 0.008 0.000
#> GSM153469     2  0.5286    0.65314 0.096 0.736 0.120 0.048 0.000
#> GSM153470     2  0.6416    0.51933 0.060 0.624 0.112 0.204 0.000
#> GSM153471     2  0.4686    0.71958 0.088 0.784 0.076 0.052 0.000
#> GSM153472     1  0.4961    0.68643 0.720 0.000 0.072 0.196 0.012
#> GSM153473     1  0.1981    0.75254 0.924 0.000 0.048 0.028 0.000
#> GSM153474     4  0.2754   -0.40493 0.040 0.000 0.080 0.880 0.000
#> GSM153475     1  0.5858    0.55756 0.576 0.024 0.060 0.340 0.000
#> GSM153476     1  0.3355    0.72776 0.832 0.000 0.132 0.036 0.000
#> GSM153478     1  0.2740    0.75358 0.876 0.000 0.028 0.096 0.000
#> GSM153480     2  0.2331    0.76693 0.020 0.900 0.080 0.000 0.000
#> GSM153486     2  0.5873    0.56957 0.196 0.672 0.064 0.068 0.000
#> GSM153487     2  0.5639    0.66326 0.096 0.716 0.104 0.084 0.000
#> GSM153499     1  0.1560    0.75100 0.948 0.004 0.020 0.028 0.000
#> GSM153504     1  0.3688    0.75279 0.816 0.000 0.060 0.124 0.000
#> GSM153507     2  0.6877    0.38996 0.084 0.556 0.092 0.268 0.000
#> GSM153404     1  0.1281    0.73243 0.956 0.000 0.032 0.012 0.000
#> GSM153407     1  0.4739    0.70551 0.744 0.024 0.012 0.200 0.020
#> GSM153408     1  0.1195    0.73384 0.960 0.000 0.028 0.012 0.000
#> GSM153410     1  0.1877    0.74114 0.924 0.000 0.064 0.012 0.000
#> GSM153411     5  0.0000    0.60895 0.000 0.000 0.000 0.000 1.000
#> GSM153412     1  0.1670    0.74153 0.936 0.000 0.052 0.012 0.000
#> GSM153413     1  0.1444    0.73319 0.948 0.000 0.040 0.012 0.000
#> GSM153414     1  0.4665    0.62877 0.752 0.156 0.008 0.084 0.000
#> GSM153415     1  0.2727    0.73382 0.868 0.000 0.116 0.016 0.000
#> GSM153416     2  0.4128    0.68102 0.020 0.752 0.008 0.220 0.000
#> GSM153417     5  0.0000    0.60895 0.000 0.000 0.000 0.000 1.000
#> GSM153418     1  0.2305    0.73812 0.896 0.000 0.092 0.012 0.000
#> GSM153420     5  0.0000    0.60895 0.000 0.000 0.000 0.000 1.000
#> GSM153421     5  0.0000    0.60895 0.000 0.000 0.000 0.000 1.000
#> GSM153422     5  0.0000    0.60895 0.000 0.000 0.000 0.000 1.000
#> GSM153424     1  0.4630    0.52545 0.572 0.000 0.008 0.416 0.004
#> GSM153430     1  0.4585    0.70759 0.728 0.004 0.052 0.216 0.000
#> GSM153432     2  0.1967    0.78652 0.020 0.932 0.012 0.036 0.000
#> GSM153434     1  0.1690    0.74362 0.944 0.008 0.024 0.024 0.000
#> GSM153435     1  0.6269    0.34127 0.576 0.196 0.008 0.220 0.000
#> GSM153436     2  0.2933    0.77271 0.012 0.892 0.016 0.056 0.024
#> GSM153437     2  0.0613    0.78240 0.004 0.984 0.004 0.008 0.000
#> GSM153439     1  0.5879    0.45329 0.656 0.204 0.112 0.028 0.000
#> GSM153441     4  0.6723    0.00177 0.324 0.264 0.000 0.412 0.000
#> GSM153442     1  0.4804    0.67948 0.716 0.048 0.012 0.224 0.000
#> GSM153443     2  0.2783    0.75954 0.012 0.868 0.004 0.116 0.000
#> GSM153445     2  0.0000    0.77827 0.000 1.000 0.000 0.000 0.000
#> GSM153446     2  0.1267    0.78442 0.012 0.960 0.024 0.004 0.000
#> GSM153449     1  0.4449    0.73202 0.776 0.008 0.112 0.104 0.000
#> GSM153453     1  0.4135    0.74102 0.800 0.020 0.044 0.136 0.000
#> GSM153454     1  0.5904    0.44541 0.616 0.000 0.116 0.012 0.256
#> GSM153455     1  0.4674    0.70567 0.780 0.088 0.036 0.096 0.000
#> GSM153462     2  0.3270    0.77071 0.020 0.864 0.036 0.080 0.000
#> GSM153465     1  0.7399   -0.02513 0.456 0.180 0.056 0.308 0.000
#> GSM153481     2  0.0671    0.78163 0.016 0.980 0.000 0.004 0.000
#> GSM153482     1  0.4025    0.67831 0.700 0.000 0.008 0.292 0.000
#> GSM153483     1  0.7715    0.13605 0.480 0.152 0.124 0.244 0.000
#> GSM153485     2  0.6341    0.40337 0.220 0.604 0.028 0.148 0.000
#> GSM153489     1  0.4850    0.60624 0.660 0.016 0.020 0.304 0.000
#> GSM153490     5  0.6988    0.06739 0.340 0.000 0.080 0.084 0.496
#> GSM153491     1  0.3379    0.74228 0.860 0.040 0.024 0.076 0.000
#> GSM153492     1  0.4969    0.55546 0.588 0.000 0.036 0.376 0.000
#> GSM153493     5  0.4803    0.38218 0.144 0.000 0.008 0.104 0.744
#> GSM153494     2  0.7820   -0.33063 0.292 0.368 0.064 0.276 0.000
#> GSM153495     1  0.3016    0.74018 0.884 0.000 0.032 0.040 0.044
#> GSM153498     1  0.1753    0.74473 0.936 0.000 0.032 0.032 0.000
#> GSM153501     1  0.2971    0.74783 0.836 0.000 0.008 0.156 0.000
#> GSM153502     1  0.2370    0.75275 0.904 0.000 0.056 0.040 0.000
#> GSM153505     1  0.5083    0.63025 0.652 0.000 0.068 0.280 0.000
#> GSM153506     2  0.1569    0.78192 0.008 0.944 0.004 0.044 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     4  0.1590    0.74395 0.000 0.000 0.008 0.936 0.008 0.048
#> GSM153406     4  0.3529    0.73268 0.000 0.008 0.152 0.800 0.000 0.040
#> GSM153419     4  0.1976    0.74186 0.000 0.000 0.008 0.916 0.016 0.060
#> GSM153423     1  0.4360    0.71901 0.764 0.000 0.096 0.032 0.000 0.108
#> GSM153425     5  0.3817    0.01722 0.000 0.000 0.000 0.432 0.568 0.000
#> GSM153427     4  0.5188    0.61501 0.000 0.000 0.288 0.588 0.000 0.124
#> GSM153428     4  0.3703    0.73924 0.004 0.000 0.092 0.796 0.000 0.108
#> GSM153429     4  0.4940    0.64771 0.008 0.004 0.332 0.604 0.000 0.052
#> GSM153433     4  0.2190    0.76200 0.000 0.000 0.060 0.900 0.000 0.040
#> GSM153444     1  0.5787    0.46999 0.552 0.000 0.312 0.032 0.000 0.104
#> GSM153448     1  0.5862   -0.01192 0.492 0.008 0.076 0.396 0.000 0.028
#> GSM153451     1  0.0000    0.78246 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153452     4  0.3029    0.75929 0.044 0.000 0.032 0.864 0.000 0.060
#> GSM153477     1  0.0881    0.78702 0.972 0.000 0.008 0.012 0.000 0.008
#> GSM153479     1  0.1810    0.78642 0.932 0.004 0.036 0.020 0.000 0.008
#> GSM153484     1  0.6053    0.38306 0.540 0.000 0.152 0.276 0.000 0.032
#> GSM153488     4  0.3957    0.72055 0.000 0.008 0.260 0.712 0.000 0.020
#> GSM153496     4  0.2308    0.76101 0.008 0.004 0.056 0.904 0.000 0.028
#> GSM153497     1  0.3219    0.71379 0.808 0.000 0.168 0.008 0.000 0.016
#> GSM153500     4  0.5112    0.67600 0.000 0.004 0.236 0.632 0.000 0.128
#> GSM153503     4  0.5703    0.63768 0.000 0.004 0.096 0.632 0.216 0.052
#> GSM153508     2  0.0291    0.00000 0.000 0.992 0.004 0.000 0.000 0.004
#> GSM153409     1  0.5714    0.58081 0.616 0.000 0.232 0.056 0.000 0.096
#> GSM153426     4  0.6883    0.22249 0.252 0.000 0.208 0.460 0.000 0.080
#> GSM153431     4  0.4177    0.71047 0.000 0.004 0.280 0.684 0.000 0.032
#> GSM153438     1  0.2068    0.79024 0.916 0.000 0.048 0.020 0.000 0.016
#> GSM153440     4  0.3391    0.75192 0.000 0.000 0.016 0.832 0.092 0.060
#> GSM153447     4  0.4538    0.73103 0.000 0.000 0.144 0.728 0.012 0.116
#> GSM153450     1  0.1863    0.78555 0.920 0.000 0.060 0.004 0.000 0.016
#> GSM153456     1  0.0000    0.78246 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153457     1  0.0000    0.78246 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153458     1  0.0000    0.78246 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153459     1  0.0000    0.78246 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153460     1  0.3192    0.76504 0.848 0.000 0.048 0.020 0.000 0.084
#> GSM153461     4  0.6130    0.50247 0.096 0.000 0.292 0.544 0.000 0.068
#> GSM153463     4  0.4168    0.44219 0.000 0.000 0.000 0.584 0.400 0.016
#> GSM153464     1  0.0000    0.78246 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153466     4  0.5027    0.60614 0.028 0.008 0.364 0.580 0.000 0.020
#> GSM153467     1  0.4075    0.72899 0.784 0.000 0.096 0.024 0.000 0.096
#> GSM153468     4  0.4089    0.67652 0.204 0.000 0.020 0.744 0.000 0.032
#> GSM153469     1  0.5189    0.63499 0.692 0.008 0.180 0.084 0.000 0.036
#> GSM153470     1  0.5439    0.50092 0.580 0.008 0.332 0.052 0.000 0.028
#> GSM153471     1  0.4302    0.73430 0.780 0.004 0.100 0.076 0.000 0.040
#> GSM153472     4  0.4259    0.72273 0.000 0.000 0.220 0.716 0.004 0.060
#> GSM153473     4  0.1807    0.76336 0.000 0.000 0.060 0.920 0.000 0.020
#> GSM153474     3  0.3761    0.00000 0.000 0.008 0.764 0.032 0.000 0.196
#> GSM153475     4  0.5481    0.63484 0.024 0.000 0.308 0.580 0.000 0.088
#> GSM153476     4  0.3582    0.73209 0.000 0.008 0.192 0.776 0.000 0.024
#> GSM153478     4  0.2442    0.76841 0.000 0.000 0.068 0.884 0.000 0.048
#> GSM153480     1  0.2265    0.77366 0.896 0.004 0.076 0.024 0.000 0.000
#> GSM153486     1  0.5136    0.60017 0.664 0.004 0.144 0.180 0.000 0.008
#> GSM153487     1  0.4994    0.67714 0.704 0.008 0.176 0.088 0.000 0.024
#> GSM153499     4  0.2144    0.76319 0.004 0.004 0.048 0.912 0.000 0.032
#> GSM153504     4  0.3372    0.76966 0.000 0.000 0.100 0.816 0.000 0.084
#> GSM153507     1  0.5894    0.44125 0.536 0.000 0.332 0.080 0.000 0.052
#> GSM153404     4  0.1471    0.74144 0.000 0.000 0.004 0.932 0.000 0.064
#> GSM153407     4  0.4474    0.73440 0.020 0.000 0.092 0.764 0.012 0.112
#> GSM153408     4  0.1779    0.74581 0.000 0.000 0.016 0.920 0.000 0.064
#> GSM153410     4  0.2876    0.75187 0.000 0.004 0.080 0.860 0.000 0.056
#> GSM153411     5  0.0000    0.61215 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153412     4  0.2328    0.75557 0.000 0.000 0.052 0.892 0.000 0.056
#> GSM153413     4  0.1812    0.74395 0.000 0.000 0.008 0.912 0.000 0.080
#> GSM153414     4  0.4403    0.68004 0.152 0.000 0.076 0.748 0.000 0.024
#> GSM153415     4  0.3593    0.73923 0.000 0.004 0.132 0.800 0.000 0.064
#> GSM153416     1  0.4455    0.70417 0.752 0.000 0.096 0.028 0.000 0.124
#> GSM153417     5  0.0000    0.61215 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153418     4  0.2701    0.74841 0.000 0.004 0.104 0.864 0.000 0.028
#> GSM153420     5  0.0000    0.61215 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153421     5  0.0000    0.61215 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153422     5  0.0000    0.61215 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153424     4  0.5204    0.60974 0.000 0.000 0.292 0.584 0.000 0.124
#> GSM153430     4  0.4275    0.74014 0.004 0.000 0.192 0.728 0.000 0.076
#> GSM153432     1  0.2045    0.79262 0.920 0.000 0.028 0.024 0.000 0.028
#> GSM153434     4  0.1788    0.75310 0.000 0.004 0.040 0.928 0.000 0.028
#> GSM153435     4  0.6233    0.50937 0.188 0.000 0.112 0.588 0.000 0.112
#> GSM153436     1  0.2728    0.77950 0.888 0.000 0.016 0.016 0.024 0.056
#> GSM153437     1  0.0551    0.78665 0.984 0.000 0.008 0.004 0.000 0.004
#> GSM153439     4  0.5809    0.52801 0.204 0.008 0.136 0.620 0.000 0.032
#> GSM153441     4  0.7330   -0.00492 0.260 0.000 0.300 0.336 0.000 0.104
#> GSM153442     4  0.4963    0.71533 0.048 0.000 0.116 0.716 0.000 0.120
#> GSM153443     1  0.3098    0.76853 0.860 0.000 0.052 0.032 0.000 0.056
#> GSM153445     1  0.0000    0.78246 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153446     1  0.1149    0.78918 0.960 0.000 0.024 0.008 0.000 0.008
#> GSM153449     4  0.3947    0.75048 0.008 0.008 0.188 0.764 0.000 0.032
#> GSM153453     4  0.3736    0.76341 0.020 0.000 0.160 0.788 0.000 0.032
#> GSM153454     4  0.6095    0.44572 0.000 0.004 0.128 0.584 0.232 0.052
#> GSM153455     4  0.4092    0.73820 0.088 0.004 0.036 0.796 0.000 0.076
#> GSM153462     1  0.3046    0.78030 0.860 0.004 0.084 0.036 0.000 0.016
#> GSM153465     4  0.6746    0.25648 0.176 0.000 0.324 0.436 0.000 0.064
#> GSM153481     1  0.0748    0.78676 0.976 0.000 0.004 0.016 0.000 0.004
#> GSM153482     4  0.4583    0.71632 0.000 0.000 0.176 0.696 0.000 0.128
#> GSM153483     4  0.6179    0.33897 0.140 0.008 0.388 0.448 0.000 0.016
#> GSM153485     1  0.5867    0.48236 0.604 0.000 0.156 0.196 0.000 0.044
#> GSM153489     4  0.5144    0.65161 0.016 0.000 0.264 0.632 0.000 0.088
#> GSM153490     5  0.6394   -0.02577 0.000 0.004 0.112 0.340 0.488 0.056
#> GSM153491     4  0.3106    0.76244 0.036 0.000 0.048 0.860 0.000 0.056
#> GSM153492     4  0.5003    0.62208 0.000 0.000 0.320 0.588 0.000 0.092
#> GSM153493     5  0.4577    0.34155 0.000 0.000 0.084 0.144 0.740 0.032
#> GSM153494     1  0.6958   -0.05274 0.360 0.000 0.312 0.272 0.000 0.056
#> GSM153495     4  0.3018    0.75464 0.000 0.004 0.024 0.868 0.044 0.060
#> GSM153498     4  0.2094    0.75857 0.000 0.004 0.024 0.908 0.000 0.064
#> GSM153501     4  0.3032    0.76802 0.000 0.000 0.104 0.840 0.000 0.056
#> GSM153502     4  0.2488    0.76572 0.000 0.000 0.076 0.880 0.000 0.044
#> GSM153505     6  0.4853    0.00000 0.000 0.004 0.292 0.076 0.000 0.628
#> GSM153506     1  0.1577    0.78799 0.940 0.000 0.036 0.008 0.000 0.016

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n disease.state(p) k
#> MAD:pam 101           0.0212 2
#> MAD:pam  98           0.0124 3
#> MAD:pam  87           0.0119 4
#> MAD:pam  85           0.0152 5
#> MAD:pam  87           0.0183 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.974       0.990         0.2778 0.726   0.726
#> 3 3 0.476           0.828       0.870         1.0170 0.704   0.595
#> 4 4 0.793           0.856       0.927         0.2092 0.882   0.741
#> 5 5 0.700           0.686       0.846         0.0533 0.975   0.929
#> 6 6 0.641           0.617       0.797         0.0546 0.935   0.812

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     1  0.0000      0.974 1.000 0.000
#> GSM153406     1  0.0000      0.974 1.000 0.000
#> GSM153419     1  0.0000      0.974 1.000 0.000
#> GSM153423     2  0.0000      0.992 0.000 1.000
#> GSM153425     1  0.0000      0.974 1.000 0.000
#> GSM153427     2  0.7745      0.696 0.228 0.772
#> GSM153428     2  0.0000      0.992 0.000 1.000
#> GSM153429     2  0.0000      0.992 0.000 1.000
#> GSM153433     2  0.0000      0.992 0.000 1.000
#> GSM153444     2  0.0000      0.992 0.000 1.000
#> GSM153448     2  0.0000      0.992 0.000 1.000
#> GSM153451     2  0.0000      0.992 0.000 1.000
#> GSM153452     2  0.0000      0.992 0.000 1.000
#> GSM153477     2  0.0000      0.992 0.000 1.000
#> GSM153479     2  0.0000      0.992 0.000 1.000
#> GSM153484     2  0.0000      0.992 0.000 1.000
#> GSM153488     2  0.0000      0.992 0.000 1.000
#> GSM153496     2  0.0000      0.992 0.000 1.000
#> GSM153497     2  0.0000      0.992 0.000 1.000
#> GSM153500     2  0.0376      0.989 0.004 0.996
#> GSM153503     2  0.0376      0.989 0.004 0.996
#> GSM153508     2  0.0376      0.989 0.004 0.996
#> GSM153409     2  0.0000      0.992 0.000 1.000
#> GSM153426     2  0.0000      0.992 0.000 1.000
#> GSM153431     2  0.0000      0.992 0.000 1.000
#> GSM153438     2  0.0000      0.992 0.000 1.000
#> GSM153440     2  0.9087      0.511 0.324 0.676
#> GSM153447     2  0.0000      0.992 0.000 1.000
#> GSM153450     2  0.0000      0.992 0.000 1.000
#> GSM153456     2  0.0000      0.992 0.000 1.000
#> GSM153457     2  0.0000      0.992 0.000 1.000
#> GSM153458     2  0.0000      0.992 0.000 1.000
#> GSM153459     2  0.0000      0.992 0.000 1.000
#> GSM153460     2  0.0000      0.992 0.000 1.000
#> GSM153461     2  0.0000      0.992 0.000 1.000
#> GSM153463     2  0.0376      0.989 0.004 0.996
#> GSM153464     2  0.0000      0.992 0.000 1.000
#> GSM153466     2  0.0000      0.992 0.000 1.000
#> GSM153467     2  0.0000      0.992 0.000 1.000
#> GSM153468     2  0.0000      0.992 0.000 1.000
#> GSM153469     2  0.0000      0.992 0.000 1.000
#> GSM153470     2  0.0000      0.992 0.000 1.000
#> GSM153471     2  0.0000      0.992 0.000 1.000
#> GSM153472     2  0.0000      0.992 0.000 1.000
#> GSM153473     2  0.0000      0.992 0.000 1.000
#> GSM153474     2  0.0376      0.989 0.004 0.996
#> GSM153475     2  0.0000      0.992 0.000 1.000
#> GSM153476     2  0.4562      0.889 0.096 0.904
#> GSM153478     2  0.0000      0.992 0.000 1.000
#> GSM153480     2  0.0000      0.992 0.000 1.000
#> GSM153486     2  0.0000      0.992 0.000 1.000
#> GSM153487     2  0.0000      0.992 0.000 1.000
#> GSM153499     2  0.0000      0.992 0.000 1.000
#> GSM153504     2  0.0000      0.992 0.000 1.000
#> GSM153507     2  0.0000      0.992 0.000 1.000
#> GSM153404     1  0.0000      0.974 1.000 0.000
#> GSM153407     1  0.9795      0.278 0.584 0.416
#> GSM153408     1  0.0000      0.974 1.000 0.000
#> GSM153410     1  0.0000      0.974 1.000 0.000
#> GSM153411     1  0.0000      0.974 1.000 0.000
#> GSM153412     1  0.0000      0.974 1.000 0.000
#> GSM153413     1  0.0000      0.974 1.000 0.000
#> GSM153414     2  0.0000      0.992 0.000 1.000
#> GSM153415     1  0.0000      0.974 1.000 0.000
#> GSM153416     2  0.0000      0.992 0.000 1.000
#> GSM153417     1  0.0000      0.974 1.000 0.000
#> GSM153418     1  0.0000      0.974 1.000 0.000
#> GSM153420     1  0.0000      0.974 1.000 0.000
#> GSM153421     1  0.0000      0.974 1.000 0.000
#> GSM153422     1  0.0000      0.974 1.000 0.000
#> GSM153424     2  0.0000      0.992 0.000 1.000
#> GSM153430     2  0.0000      0.992 0.000 1.000
#> GSM153432     2  0.0000      0.992 0.000 1.000
#> GSM153434     2  0.0000      0.992 0.000 1.000
#> GSM153435     2  0.0000      0.992 0.000 1.000
#> GSM153436     2  0.0000      0.992 0.000 1.000
#> GSM153437     2  0.0000      0.992 0.000 1.000
#> GSM153439     2  0.0000      0.992 0.000 1.000
#> GSM153441     2  0.0000      0.992 0.000 1.000
#> GSM153442     2  0.0000      0.992 0.000 1.000
#> GSM153443     2  0.0000      0.992 0.000 1.000
#> GSM153445     2  0.0000      0.992 0.000 1.000
#> GSM153446     2  0.0000      0.992 0.000 1.000
#> GSM153449     2  0.0000      0.992 0.000 1.000
#> GSM153453     2  0.0000      0.992 0.000 1.000
#> GSM153454     2  0.0376      0.989 0.004 0.996
#> GSM153455     2  0.0000      0.992 0.000 1.000
#> GSM153462     2  0.0000      0.992 0.000 1.000
#> GSM153465     2  0.0000      0.992 0.000 1.000
#> GSM153481     2  0.0000      0.992 0.000 1.000
#> GSM153482     2  0.0000      0.992 0.000 1.000
#> GSM153483     2  0.0000      0.992 0.000 1.000
#> GSM153485     2  0.0000      0.992 0.000 1.000
#> GSM153489     2  0.0000      0.992 0.000 1.000
#> GSM153490     2  0.0000      0.992 0.000 1.000
#> GSM153491     2  0.0000      0.992 0.000 1.000
#> GSM153492     2  0.0000      0.992 0.000 1.000
#> GSM153493     2  0.0000      0.992 0.000 1.000
#> GSM153494     2  0.0000      0.992 0.000 1.000
#> GSM153495     2  0.0376      0.989 0.004 0.996
#> GSM153498     2  0.0000      0.992 0.000 1.000
#> GSM153501     2  0.0376      0.989 0.004 0.996
#> GSM153502     2  0.0000      0.992 0.000 1.000
#> GSM153505     2  0.0376      0.989 0.004 0.996
#> GSM153506     2  0.0000      0.992 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     3  0.0000      0.997 0.000 0.000 1.000
#> GSM153406     3  0.0000      0.997 0.000 0.000 1.000
#> GSM153419     3  0.0000      0.997 0.000 0.000 1.000
#> GSM153423     2  0.4974      0.890 0.236 0.764 0.000
#> GSM153425     3  0.1529      0.959 0.000 0.040 0.960
#> GSM153427     2  0.5000      0.819 0.124 0.832 0.044
#> GSM153428     2  0.3941      0.854 0.156 0.844 0.000
#> GSM153429     1  0.0424      0.859 0.992 0.008 0.000
#> GSM153433     1  0.3482      0.815 0.872 0.128 0.000
#> GSM153444     2  0.4974      0.890 0.236 0.764 0.000
#> GSM153448     1  0.4702      0.669 0.788 0.212 0.000
#> GSM153451     2  0.4974      0.890 0.236 0.764 0.000
#> GSM153452     2  0.4235      0.853 0.176 0.824 0.000
#> GSM153477     1  0.0747      0.855 0.984 0.016 0.000
#> GSM153479     1  0.0424      0.858 0.992 0.008 0.000
#> GSM153484     1  0.0424      0.859 0.992 0.008 0.000
#> GSM153488     1  0.1643      0.856 0.956 0.044 0.000
#> GSM153496     1  0.4452      0.782 0.808 0.192 0.000
#> GSM153497     2  0.5016      0.887 0.240 0.760 0.000
#> GSM153500     1  0.5098      0.736 0.752 0.248 0.000
#> GSM153503     1  0.5098      0.736 0.752 0.248 0.000
#> GSM153508     1  0.4346      0.798 0.816 0.184 0.000
#> GSM153409     2  0.4974      0.890 0.236 0.764 0.000
#> GSM153426     2  0.6111      0.643 0.396 0.604 0.000
#> GSM153431     2  0.4702      0.861 0.212 0.788 0.000
#> GSM153438     2  0.5363      0.855 0.276 0.724 0.000
#> GSM153440     2  0.6519      0.713 0.132 0.760 0.108
#> GSM153447     2  0.5098      0.745 0.248 0.752 0.000
#> GSM153450     2  0.4974      0.890 0.236 0.764 0.000
#> GSM153456     2  0.4974      0.890 0.236 0.764 0.000
#> GSM153457     2  0.4974      0.890 0.236 0.764 0.000
#> GSM153458     2  0.4974      0.890 0.236 0.764 0.000
#> GSM153459     2  0.4974      0.890 0.236 0.764 0.000
#> GSM153460     2  0.4974      0.890 0.236 0.764 0.000
#> GSM153461     2  0.5138      0.885 0.252 0.748 0.000
#> GSM153463     2  0.6286     -0.146 0.464 0.536 0.000
#> GSM153464     1  0.4178      0.722 0.828 0.172 0.000
#> GSM153466     1  0.1411      0.856 0.964 0.036 0.000
#> GSM153467     1  0.4291      0.723 0.820 0.180 0.000
#> GSM153468     1  0.0892      0.860 0.980 0.020 0.000
#> GSM153469     1  0.0237      0.857 0.996 0.004 0.000
#> GSM153470     1  0.0892      0.854 0.980 0.020 0.000
#> GSM153471     1  0.0892      0.854 0.980 0.020 0.000
#> GSM153472     1  0.2356      0.846 0.928 0.072 0.000
#> GSM153473     1  0.2356      0.843 0.928 0.072 0.000
#> GSM153474     1  0.5138      0.737 0.748 0.252 0.000
#> GSM153475     1  0.1643      0.855 0.956 0.044 0.000
#> GSM153476     1  0.4015      0.823 0.876 0.096 0.028
#> GSM153478     1  0.4504      0.764 0.804 0.196 0.000
#> GSM153480     1  0.4291      0.711 0.820 0.180 0.000
#> GSM153486     1  0.4399      0.714 0.812 0.188 0.000
#> GSM153487     1  0.0424      0.858 0.992 0.008 0.000
#> GSM153499     1  0.1031      0.857 0.976 0.024 0.000
#> GSM153504     1  0.2959      0.832 0.900 0.100 0.000
#> GSM153507     1  0.0747      0.859 0.984 0.016 0.000
#> GSM153404     3  0.0000      0.997 0.000 0.000 1.000
#> GSM153407     2  0.5207      0.812 0.124 0.824 0.052
#> GSM153408     3  0.0000      0.997 0.000 0.000 1.000
#> GSM153410     3  0.0000      0.997 0.000 0.000 1.000
#> GSM153411     3  0.0000      0.997 0.000 0.000 1.000
#> GSM153412     3  0.0000      0.997 0.000 0.000 1.000
#> GSM153413     3  0.0000      0.997 0.000 0.000 1.000
#> GSM153414     2  0.4504      0.872 0.196 0.804 0.000
#> GSM153415     3  0.0000      0.997 0.000 0.000 1.000
#> GSM153416     2  0.5178      0.875 0.256 0.744 0.000
#> GSM153417     3  0.0000      0.997 0.000 0.000 1.000
#> GSM153418     3  0.0000      0.997 0.000 0.000 1.000
#> GSM153420     3  0.0000      0.997 0.000 0.000 1.000
#> GSM153421     3  0.0000      0.997 0.000 0.000 1.000
#> GSM153422     3  0.0000      0.997 0.000 0.000 1.000
#> GSM153424     2  0.3941      0.854 0.156 0.844 0.000
#> GSM153430     1  0.4002      0.792 0.840 0.160 0.000
#> GSM153432     1  0.1860      0.839 0.948 0.052 0.000
#> GSM153434     1  0.4750      0.725 0.784 0.216 0.000
#> GSM153435     1  0.4062      0.732 0.836 0.164 0.000
#> GSM153436     2  0.4887      0.842 0.228 0.772 0.000
#> GSM153437     1  0.5968      0.233 0.636 0.364 0.000
#> GSM153439     1  0.0237      0.857 0.996 0.004 0.000
#> GSM153441     1  0.4931      0.619 0.768 0.232 0.000
#> GSM153442     1  0.2165      0.850 0.936 0.064 0.000
#> GSM153443     1  0.4178      0.722 0.828 0.172 0.000
#> GSM153445     1  0.4121      0.727 0.832 0.168 0.000
#> GSM153446     1  0.4291      0.711 0.820 0.180 0.000
#> GSM153449     1  0.2261      0.846 0.932 0.068 0.000
#> GSM153453     1  0.4796      0.761 0.780 0.220 0.000
#> GSM153454     1  0.5098      0.736 0.752 0.248 0.000
#> GSM153455     1  0.0237      0.859 0.996 0.004 0.000
#> GSM153462     1  0.4291      0.714 0.820 0.180 0.000
#> GSM153465     1  0.0592      0.857 0.988 0.012 0.000
#> GSM153481     1  0.2066      0.838 0.940 0.060 0.000
#> GSM153482     1  0.0592      0.859 0.988 0.012 0.000
#> GSM153483     1  0.0892      0.855 0.980 0.020 0.000
#> GSM153485     1  0.0424      0.858 0.992 0.008 0.000
#> GSM153489     1  0.0747      0.859 0.984 0.016 0.000
#> GSM153490     1  0.3619      0.820 0.864 0.136 0.000
#> GSM153491     1  0.1964      0.853 0.944 0.056 0.000
#> GSM153492     1  0.4796      0.760 0.780 0.220 0.000
#> GSM153493     1  0.5016      0.744 0.760 0.240 0.000
#> GSM153494     1  0.0747      0.857 0.984 0.016 0.000
#> GSM153495     1  0.5016      0.744 0.760 0.240 0.000
#> GSM153498     1  0.0892      0.860 0.980 0.020 0.000
#> GSM153501     1  0.4974      0.747 0.764 0.236 0.000
#> GSM153502     1  0.1860      0.855 0.948 0.052 0.000
#> GSM153505     1  0.5098      0.736 0.752 0.248 0.000
#> GSM153506     1  0.1860      0.842 0.948 0.052 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     3  0.0707      0.990 0.000 0.000 0.980 0.020
#> GSM153406     3  0.0000      0.992 0.000 0.000 1.000 0.000
#> GSM153419     3  0.0000      0.992 0.000 0.000 1.000 0.000
#> GSM153423     2  0.0336      0.941 0.008 0.992 0.000 0.000
#> GSM153425     3  0.1174      0.980 0.000 0.012 0.968 0.020
#> GSM153427     2  0.0376      0.939 0.004 0.992 0.000 0.004
#> GSM153428     2  0.0188      0.939 0.000 0.996 0.000 0.004
#> GSM153429     1  0.0188      0.877 0.996 0.000 0.000 0.004
#> GSM153433     1  0.0376      0.877 0.992 0.004 0.000 0.004
#> GSM153444     2  0.0524      0.940 0.008 0.988 0.000 0.004
#> GSM153448     1  0.2714      0.817 0.884 0.112 0.000 0.004
#> GSM153451     2  0.0336      0.941 0.008 0.992 0.000 0.000
#> GSM153452     2  0.0376      0.939 0.004 0.992 0.000 0.004
#> GSM153477     1  0.0188      0.877 0.996 0.000 0.000 0.004
#> GSM153479     1  0.0000      0.877 1.000 0.000 0.000 0.000
#> GSM153484     1  0.0188      0.877 0.996 0.000 0.000 0.004
#> GSM153488     1  0.0188      0.877 0.996 0.000 0.000 0.004
#> GSM153496     1  0.4193      0.675 0.732 0.000 0.000 0.268
#> GSM153497     2  0.1557      0.896 0.056 0.944 0.000 0.000
#> GSM153500     4  0.0817      0.980 0.024 0.000 0.000 0.976
#> GSM153503     4  0.0817      0.980 0.024 0.000 0.000 0.976
#> GSM153508     4  0.0817      0.980 0.024 0.000 0.000 0.976
#> GSM153409     2  0.0188      0.940 0.004 0.996 0.000 0.000
#> GSM153426     2  0.0469      0.939 0.012 0.988 0.000 0.000
#> GSM153431     2  0.1209      0.920 0.032 0.964 0.000 0.004
#> GSM153438     2  0.1004      0.933 0.024 0.972 0.000 0.004
#> GSM153440     2  0.2307      0.889 0.016 0.928 0.048 0.008
#> GSM153447     2  0.3448      0.747 0.168 0.828 0.000 0.004
#> GSM153450     2  0.0000      0.939 0.000 1.000 0.000 0.000
#> GSM153456     2  0.0336      0.941 0.008 0.992 0.000 0.000
#> GSM153457     2  0.0336      0.941 0.008 0.992 0.000 0.000
#> GSM153458     2  0.0336      0.941 0.008 0.992 0.000 0.000
#> GSM153459     2  0.0336      0.941 0.008 0.992 0.000 0.000
#> GSM153460     2  0.0336      0.941 0.008 0.992 0.000 0.000
#> GSM153461     2  0.0376      0.939 0.004 0.992 0.000 0.004
#> GSM153463     1  0.2473      0.849 0.908 0.012 0.000 0.080
#> GSM153464     1  0.3123      0.786 0.844 0.156 0.000 0.000
#> GSM153466     1  0.0188      0.877 0.996 0.000 0.000 0.004
#> GSM153467     1  0.1389      0.861 0.952 0.048 0.000 0.000
#> GSM153468     1  0.2149      0.845 0.912 0.000 0.000 0.088
#> GSM153469     1  0.0188      0.877 0.996 0.000 0.000 0.004
#> GSM153470     1  0.0188      0.877 0.996 0.000 0.000 0.004
#> GSM153471     1  0.0188      0.877 0.996 0.000 0.000 0.004
#> GSM153472     1  0.4431      0.621 0.696 0.000 0.000 0.304
#> GSM153473     1  0.2281      0.841 0.904 0.000 0.000 0.096
#> GSM153474     4  0.0817      0.980 0.024 0.000 0.000 0.976
#> GSM153475     1  0.0336      0.877 0.992 0.000 0.000 0.008
#> GSM153476     1  0.0376      0.877 0.992 0.000 0.004 0.004
#> GSM153478     1  0.1118      0.868 0.964 0.036 0.000 0.000
#> GSM153480     1  0.4164      0.668 0.736 0.264 0.000 0.000
#> GSM153486     1  0.1209      0.867 0.964 0.032 0.000 0.004
#> GSM153487     1  0.4164      0.668 0.736 0.000 0.000 0.264
#> GSM153499     1  0.4972      0.240 0.544 0.000 0.000 0.456
#> GSM153504     4  0.2469      0.877 0.108 0.000 0.000 0.892
#> GSM153507     1  0.4933      0.331 0.568 0.000 0.000 0.432
#> GSM153404     3  0.0000      0.992 0.000 0.000 1.000 0.000
#> GSM153407     2  0.0376      0.939 0.004 0.992 0.000 0.004
#> GSM153408     3  0.0000      0.992 0.000 0.000 1.000 0.000
#> GSM153410     3  0.0000      0.992 0.000 0.000 1.000 0.000
#> GSM153411     3  0.0707      0.990 0.000 0.000 0.980 0.020
#> GSM153412     3  0.0000      0.992 0.000 0.000 1.000 0.000
#> GSM153413     3  0.0000      0.992 0.000 0.000 1.000 0.000
#> GSM153414     2  0.0188      0.939 0.000 0.996 0.000 0.004
#> GSM153415     3  0.0000      0.992 0.000 0.000 1.000 0.000
#> GSM153416     2  0.0469      0.939 0.012 0.988 0.000 0.000
#> GSM153417     3  0.0707      0.990 0.000 0.000 0.980 0.020
#> GSM153418     3  0.0000      0.992 0.000 0.000 1.000 0.000
#> GSM153420     3  0.0707      0.990 0.000 0.000 0.980 0.020
#> GSM153421     3  0.0707      0.990 0.000 0.000 0.980 0.020
#> GSM153422     3  0.0707      0.990 0.000 0.000 0.980 0.020
#> GSM153424     2  0.0188      0.939 0.000 0.996 0.000 0.004
#> GSM153430     1  0.0657      0.876 0.984 0.012 0.000 0.004
#> GSM153432     1  0.0000      0.877 1.000 0.000 0.000 0.000
#> GSM153434     1  0.1743      0.859 0.940 0.056 0.000 0.004
#> GSM153435     1  0.1716      0.853 0.936 0.064 0.000 0.000
#> GSM153436     2  0.4819      0.469 0.344 0.652 0.000 0.004
#> GSM153437     2  0.4585      0.504 0.332 0.668 0.000 0.000
#> GSM153439     1  0.0000      0.877 1.000 0.000 0.000 0.000
#> GSM153441     1  0.3402      0.775 0.832 0.164 0.000 0.004
#> GSM153442     1  0.0000      0.877 1.000 0.000 0.000 0.000
#> GSM153443     1  0.3024      0.790 0.852 0.148 0.000 0.000
#> GSM153445     1  0.2408      0.828 0.896 0.104 0.000 0.000
#> GSM153446     1  0.4560      0.614 0.700 0.296 0.000 0.004
#> GSM153449     1  0.0469      0.877 0.988 0.000 0.000 0.012
#> GSM153453     1  0.5000      0.152 0.504 0.000 0.000 0.496
#> GSM153454     4  0.0817      0.980 0.024 0.000 0.000 0.976
#> GSM153455     1  0.0376      0.877 0.992 0.004 0.000 0.004
#> GSM153462     1  0.3074      0.788 0.848 0.152 0.000 0.000
#> GSM153465     1  0.0376      0.876 0.992 0.004 0.000 0.004
#> GSM153481     1  0.0657      0.874 0.984 0.012 0.000 0.004
#> GSM153482     1  0.0707      0.874 0.980 0.000 0.000 0.020
#> GSM153483     1  0.0188      0.877 0.996 0.000 0.000 0.004
#> GSM153485     1  0.0000      0.877 1.000 0.000 0.000 0.000
#> GSM153489     1  0.0336      0.877 0.992 0.000 0.000 0.008
#> GSM153490     1  0.4250      0.660 0.724 0.000 0.000 0.276
#> GSM153491     1  0.4431      0.633 0.696 0.000 0.000 0.304
#> GSM153492     1  0.4331      0.664 0.712 0.000 0.000 0.288
#> GSM153493     4  0.1389      0.957 0.048 0.000 0.000 0.952
#> GSM153494     1  0.0188      0.877 0.996 0.000 0.000 0.004
#> GSM153495     1  0.4994      0.229 0.520 0.000 0.000 0.480
#> GSM153498     1  0.0921      0.871 0.972 0.000 0.000 0.028
#> GSM153501     4  0.0817      0.980 0.024 0.000 0.000 0.976
#> GSM153502     1  0.4193      0.665 0.732 0.000 0.000 0.268
#> GSM153505     4  0.0817      0.980 0.024 0.000 0.000 0.976
#> GSM153506     1  0.2011      0.846 0.920 0.000 0.000 0.080

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     3  0.3837     0.2916 0.000 0.000 0.692 0.000 0.308
#> GSM153406     3  0.0000     0.6438 0.000 0.000 1.000 0.000 0.000
#> GSM153419     3  0.2773     0.5269 0.000 0.000 0.836 0.000 0.164
#> GSM153423     2  0.0000     0.8465 0.000 1.000 0.000 0.000 0.000
#> GSM153425     5  0.5236     0.0000 0.000 0.044 0.464 0.000 0.492
#> GSM153427     2  0.4074     0.6613 0.000 0.636 0.000 0.000 0.364
#> GSM153428     2  0.3336     0.7843 0.000 0.772 0.000 0.000 0.228
#> GSM153429     1  0.0162     0.8379 0.996 0.000 0.000 0.000 0.004
#> GSM153433     1  0.1608     0.8320 0.928 0.000 0.000 0.000 0.072
#> GSM153444     2  0.0609     0.8459 0.000 0.980 0.000 0.000 0.020
#> GSM153448     1  0.3758     0.7752 0.816 0.088 0.000 0.000 0.096
#> GSM153451     2  0.0290     0.8457 0.000 0.992 0.000 0.000 0.008
#> GSM153452     2  0.3177     0.7883 0.000 0.792 0.000 0.000 0.208
#> GSM153477     1  0.0566     0.8392 0.984 0.000 0.000 0.004 0.012
#> GSM153479     1  0.0451     0.8385 0.988 0.004 0.000 0.000 0.008
#> GSM153484     1  0.0865     0.8393 0.972 0.000 0.000 0.004 0.024
#> GSM153488     1  0.0693     0.8362 0.980 0.000 0.000 0.012 0.008
#> GSM153496     1  0.5640     0.4139 0.592 0.000 0.000 0.304 0.104
#> GSM153497     2  0.3037     0.7404 0.100 0.860 0.000 0.000 0.040
#> GSM153500     4  0.0451     0.7763 0.008 0.000 0.000 0.988 0.004
#> GSM153503     4  0.1444     0.7774 0.012 0.000 0.000 0.948 0.040
#> GSM153508     4  0.1430     0.7681 0.004 0.000 0.000 0.944 0.052
#> GSM153409     2  0.0290     0.8468 0.000 0.992 0.000 0.000 0.008
#> GSM153426     2  0.0807     0.8460 0.012 0.976 0.000 0.000 0.012
#> GSM153431     2  0.3663     0.7911 0.016 0.776 0.000 0.000 0.208
#> GSM153438     2  0.1630     0.8235 0.036 0.944 0.000 0.004 0.016
#> GSM153440     2  0.4524     0.6726 0.000 0.644 0.020 0.000 0.336
#> GSM153447     2  0.5363     0.6957 0.100 0.664 0.000 0.004 0.232
#> GSM153450     2  0.0162     0.8468 0.000 0.996 0.000 0.000 0.004
#> GSM153456     2  0.0162     0.8465 0.000 0.996 0.000 0.000 0.004
#> GSM153457     2  0.0290     0.8460 0.000 0.992 0.000 0.000 0.008
#> GSM153458     2  0.0162     0.8465 0.000 0.996 0.000 0.000 0.004
#> GSM153459     2  0.0000     0.8465 0.000 1.000 0.000 0.000 0.000
#> GSM153460     2  0.0000     0.8465 0.000 1.000 0.000 0.000 0.000
#> GSM153461     2  0.1792     0.8352 0.000 0.916 0.000 0.000 0.084
#> GSM153463     1  0.3812     0.7332 0.796 0.004 0.000 0.168 0.032
#> GSM153464     1  0.3325     0.7922 0.856 0.080 0.000 0.008 0.056
#> GSM153466     1  0.1644     0.8356 0.940 0.004 0.000 0.008 0.048
#> GSM153467     1  0.2713     0.8188 0.888 0.036 0.000 0.004 0.072
#> GSM153468     1  0.4676     0.6814 0.740 0.000 0.000 0.140 0.120
#> GSM153469     1  0.0451     0.8381 0.988 0.000 0.000 0.004 0.008
#> GSM153470     1  0.0566     0.8388 0.984 0.000 0.000 0.004 0.012
#> GSM153471     1  0.0579     0.8383 0.984 0.000 0.000 0.008 0.008
#> GSM153472     1  0.5672     0.3829 0.584 0.000 0.000 0.312 0.104
#> GSM153473     1  0.4712     0.6487 0.732 0.000 0.000 0.168 0.100
#> GSM153474     4  0.1557     0.7718 0.008 0.000 0.000 0.940 0.052
#> GSM153475     1  0.0404     0.8370 0.988 0.000 0.000 0.000 0.012
#> GSM153476     1  0.0794     0.8389 0.972 0.000 0.000 0.000 0.028
#> GSM153478     1  0.2670     0.8192 0.888 0.028 0.000 0.004 0.080
#> GSM153480     1  0.4335     0.7251 0.776 0.152 0.000 0.008 0.064
#> GSM153486     1  0.2270     0.8252 0.908 0.016 0.000 0.004 0.072
#> GSM153487     1  0.5554     0.5044 0.628 0.000 0.000 0.252 0.120
#> GSM153499     1  0.6194     0.0921 0.472 0.000 0.000 0.388 0.140
#> GSM153504     4  0.4681     0.6178 0.188 0.000 0.000 0.728 0.084
#> GSM153507     1  0.6006     0.2453 0.520 0.000 0.000 0.356 0.124
#> GSM153404     3  0.2074     0.5859 0.000 0.000 0.896 0.000 0.104
#> GSM153407     2  0.4171     0.6363 0.000 0.604 0.000 0.000 0.396
#> GSM153408     3  0.0000     0.6438 0.000 0.000 1.000 0.000 0.000
#> GSM153410     3  0.0000     0.6438 0.000 0.000 1.000 0.000 0.000
#> GSM153411     3  0.3876     0.2748 0.000 0.000 0.684 0.000 0.316
#> GSM153412     3  0.0000     0.6438 0.000 0.000 1.000 0.000 0.000
#> GSM153413     3  0.0000     0.6438 0.000 0.000 1.000 0.000 0.000
#> GSM153414     2  0.2690     0.8133 0.000 0.844 0.000 0.000 0.156
#> GSM153415     3  0.0000     0.6438 0.000 0.000 1.000 0.000 0.000
#> GSM153416     2  0.0566     0.8450 0.004 0.984 0.000 0.000 0.012
#> GSM153417     3  0.3876     0.2748 0.000 0.000 0.684 0.000 0.316
#> GSM153418     3  0.0000     0.6438 0.000 0.000 1.000 0.000 0.000
#> GSM153420     3  0.3876     0.2748 0.000 0.000 0.684 0.000 0.316
#> GSM153421     3  0.3876     0.2748 0.000 0.000 0.684 0.000 0.316
#> GSM153422     3  0.3876     0.2748 0.000 0.000 0.684 0.000 0.316
#> GSM153424     2  0.3391     0.7996 0.012 0.800 0.000 0.000 0.188
#> GSM153430     1  0.1864     0.8301 0.924 0.004 0.000 0.004 0.068
#> GSM153432     1  0.1124     0.8360 0.960 0.004 0.000 0.000 0.036
#> GSM153434     1  0.2654     0.8185 0.884 0.032 0.000 0.000 0.084
#> GSM153435     1  0.2369     0.8186 0.908 0.032 0.000 0.004 0.056
#> GSM153436     2  0.6091     0.3976 0.336 0.524 0.000 0.000 0.140
#> GSM153437     2  0.5396     0.1803 0.416 0.532 0.000 0.004 0.048
#> GSM153439     1  0.0510     0.8373 0.984 0.000 0.000 0.000 0.016
#> GSM153441     1  0.4487     0.7191 0.756 0.140 0.000 0.000 0.104
#> GSM153442     1  0.1638     0.8321 0.932 0.004 0.000 0.000 0.064
#> GSM153443     1  0.3142     0.7960 0.864 0.076 0.000 0.004 0.056
#> GSM153445     1  0.2875     0.8084 0.884 0.052 0.000 0.008 0.056
#> GSM153446     1  0.4318     0.6610 0.736 0.228 0.000 0.004 0.032
#> GSM153449     1  0.1788     0.8317 0.932 0.004 0.000 0.008 0.056
#> GSM153453     4  0.5815     0.1862 0.396 0.000 0.000 0.508 0.096
#> GSM153454     4  0.0992     0.7719 0.008 0.000 0.000 0.968 0.024
#> GSM153455     1  0.0404     0.8380 0.988 0.000 0.000 0.000 0.012
#> GSM153462     1  0.3260     0.7914 0.856 0.084 0.000 0.004 0.056
#> GSM153465     1  0.0703     0.8368 0.976 0.000 0.000 0.000 0.024
#> GSM153481     1  0.1569     0.8330 0.944 0.008 0.000 0.004 0.044
#> GSM153482     1  0.3086     0.7812 0.864 0.004 0.000 0.040 0.092
#> GSM153483     1  0.0880     0.8396 0.968 0.000 0.000 0.000 0.032
#> GSM153485     1  0.0609     0.8392 0.980 0.000 0.000 0.000 0.020
#> GSM153489     1  0.0404     0.8363 0.988 0.000 0.000 0.000 0.012
#> GSM153490     1  0.5640     0.4102 0.592 0.000 0.000 0.304 0.104
#> GSM153491     1  0.5739     0.3228 0.556 0.000 0.000 0.344 0.100
#> GSM153492     1  0.5822     0.3348 0.548 0.000 0.000 0.344 0.108
#> GSM153493     4  0.1836     0.7598 0.036 0.000 0.000 0.932 0.032
#> GSM153494     1  0.1430     0.8343 0.944 0.000 0.000 0.004 0.052
#> GSM153495     4  0.5844     0.2440 0.368 0.000 0.000 0.528 0.104
#> GSM153498     1  0.3055     0.7772 0.864 0.000 0.000 0.072 0.064
#> GSM153501     4  0.1408     0.7748 0.008 0.000 0.000 0.948 0.044
#> GSM153502     1  0.5404     0.4834 0.636 0.000 0.000 0.264 0.100
#> GSM153505     4  0.1408     0.7748 0.008 0.000 0.000 0.948 0.044
#> GSM153506     1  0.4720     0.7004 0.736 0.000 0.000 0.124 0.140

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     5  0.0458    0.91799 0.000 0.000 0.016 0.000 0.984 0.000
#> GSM153406     3  0.2454    0.96727 0.000 0.000 0.840 0.000 0.160 0.000
#> GSM153419     5  0.3309    0.46686 0.000 0.000 0.280 0.000 0.720 0.000
#> GSM153423     2  0.0146    0.69949 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM153425     5  0.1858    0.84700 0.000 0.000 0.076 0.000 0.912 0.012
#> GSM153427     2  0.4361    0.49443 0.000 0.720 0.112 0.000 0.000 0.168
#> GSM153428     2  0.4620    0.09164 0.000 0.532 0.040 0.000 0.000 0.428
#> GSM153429     1  0.0858    0.78859 0.968 0.000 0.004 0.000 0.000 0.028
#> GSM153433     1  0.4581    0.62230 0.672 0.000 0.004 0.068 0.000 0.256
#> GSM153444     2  0.0260    0.69894 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM153448     1  0.3626    0.71141 0.780 0.020 0.016 0.000 0.000 0.184
#> GSM153451     2  0.0146    0.69961 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM153452     2  0.4593    0.21633 0.000 0.576 0.044 0.000 0.000 0.380
#> GSM153477     1  0.0777    0.78846 0.972 0.000 0.004 0.000 0.000 0.024
#> GSM153479     1  0.0458    0.78781 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM153484     1  0.1010    0.78964 0.960 0.000 0.004 0.000 0.000 0.036
#> GSM153488     1  0.1588    0.78376 0.924 0.000 0.004 0.000 0.000 0.072
#> GSM153496     1  0.6120   -0.19653 0.352 0.000 0.000 0.344 0.000 0.304
#> GSM153497     2  0.3562    0.30369 0.224 0.756 0.008 0.000 0.000 0.012
#> GSM153500     4  0.0865    0.69833 0.000 0.000 0.000 0.964 0.000 0.036
#> GSM153503     4  0.0000    0.69284 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153508     4  0.2400    0.62570 0.116 0.000 0.008 0.872 0.000 0.004
#> GSM153409     2  0.0000    0.69982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM153426     2  0.0146    0.69985 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM153431     2  0.4680    0.20939 0.012 0.576 0.028 0.000 0.000 0.384
#> GSM153438     2  0.1452    0.66519 0.020 0.948 0.012 0.000 0.000 0.020
#> GSM153440     2  0.5628    0.07186 0.000 0.504 0.076 0.000 0.028 0.392
#> GSM153447     6  0.5176    0.00244 0.028 0.388 0.040 0.000 0.000 0.544
#> GSM153450     2  0.1765    0.63628 0.000 0.904 0.000 0.000 0.000 0.096
#> GSM153456     2  0.0260    0.69885 0.000 0.992 0.008 0.000 0.000 0.000
#> GSM153457     2  0.0260    0.69885 0.000 0.992 0.008 0.000 0.000 0.000
#> GSM153458     2  0.0260    0.69885 0.000 0.992 0.008 0.000 0.000 0.000
#> GSM153459     2  0.0260    0.69885 0.000 0.992 0.008 0.000 0.000 0.000
#> GSM153460     2  0.0146    0.69979 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM153461     2  0.3672    0.39444 0.000 0.688 0.008 0.000 0.000 0.304
#> GSM153463     6  0.5814   -0.40500 0.200 0.000 0.004 0.280 0.000 0.516
#> GSM153464     1  0.4129    0.64777 0.744 0.200 0.020 0.000 0.000 0.036
#> GSM153466     1  0.2163    0.78313 0.892 0.000 0.004 0.008 0.000 0.096
#> GSM153467     1  0.3591    0.74337 0.816 0.104 0.016 0.000 0.000 0.064
#> GSM153468     1  0.4077    0.65368 0.724 0.000 0.004 0.044 0.000 0.228
#> GSM153469     1  0.1285    0.78778 0.944 0.000 0.004 0.000 0.000 0.052
#> GSM153470     1  0.0790    0.78818 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM153471     1  0.0865    0.78900 0.964 0.000 0.000 0.000 0.000 0.036
#> GSM153472     1  0.5990    0.06502 0.440 0.000 0.000 0.296 0.000 0.264
#> GSM153473     1  0.6105    0.12326 0.440 0.000 0.004 0.296 0.000 0.260
#> GSM153474     4  0.0146    0.69061 0.000 0.000 0.004 0.996 0.000 0.000
#> GSM153475     1  0.1152    0.78783 0.952 0.000 0.004 0.000 0.000 0.044
#> GSM153476     1  0.1219    0.78861 0.948 0.000 0.004 0.000 0.000 0.048
#> GSM153478     1  0.3192    0.72282 0.776 0.004 0.004 0.000 0.000 0.216
#> GSM153480     1  0.4424    0.61204 0.708 0.232 0.024 0.000 0.000 0.036
#> GSM153486     1  0.2295    0.76542 0.904 0.052 0.016 0.000 0.000 0.028
#> GSM153487     1  0.4617    0.57357 0.664 0.000 0.000 0.084 0.000 0.252
#> GSM153499     1  0.5110    0.49722 0.616 0.000 0.000 0.136 0.000 0.248
#> GSM153504     4  0.4203    0.62714 0.068 0.000 0.000 0.716 0.000 0.216
#> GSM153507     1  0.5552    0.36672 0.552 0.000 0.000 0.196 0.000 0.252
#> GSM153404     3  0.3563    0.71293 0.000 0.000 0.664 0.000 0.336 0.000
#> GSM153407     2  0.5408    0.01523 0.000 0.476 0.116 0.000 0.000 0.408
#> GSM153408     3  0.2454    0.96727 0.000 0.000 0.840 0.000 0.160 0.000
#> GSM153410     3  0.2454    0.96727 0.000 0.000 0.840 0.000 0.160 0.000
#> GSM153411     5  0.0000    0.92967 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153412     3  0.2454    0.96727 0.000 0.000 0.840 0.000 0.160 0.000
#> GSM153413     3  0.2454    0.96727 0.000 0.000 0.840 0.000 0.160 0.000
#> GSM153414     2  0.4524    0.22721 0.000 0.584 0.040 0.000 0.000 0.376
#> GSM153415     3  0.2454    0.96727 0.000 0.000 0.840 0.000 0.160 0.000
#> GSM153416     2  0.0260    0.69856 0.000 0.992 0.008 0.000 0.000 0.000
#> GSM153417     5  0.0000    0.92967 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153418     3  0.2454    0.96727 0.000 0.000 0.840 0.000 0.160 0.000
#> GSM153420     5  0.0000    0.92967 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153421     5  0.0000    0.92967 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153422     5  0.0000    0.92967 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153424     6  0.4169   -0.13091 0.000 0.456 0.012 0.000 0.000 0.532
#> GSM153430     1  0.3134    0.72299 0.784 0.000 0.004 0.004 0.000 0.208
#> GSM153432     1  0.0993    0.78103 0.964 0.000 0.012 0.000 0.000 0.024
#> GSM153434     1  0.3273    0.70044 0.776 0.008 0.004 0.000 0.000 0.212
#> GSM153435     1  0.3011    0.73742 0.852 0.100 0.012 0.000 0.000 0.036
#> GSM153436     2  0.6258   -0.05919 0.248 0.440 0.012 0.000 0.000 0.300
#> GSM153437     1  0.4886    0.29060 0.536 0.416 0.016 0.000 0.000 0.032
#> GSM153439     1  0.0508    0.78813 0.984 0.000 0.004 0.000 0.000 0.012
#> GSM153441     1  0.4353    0.69405 0.748 0.088 0.016 0.000 0.000 0.148
#> GSM153442     1  0.2362    0.76701 0.860 0.000 0.004 0.000 0.000 0.136
#> GSM153443     1  0.3686    0.69228 0.792 0.156 0.016 0.000 0.000 0.036
#> GSM153445     1  0.3455    0.71150 0.816 0.132 0.016 0.000 0.000 0.036
#> GSM153446     1  0.4398    0.59276 0.696 0.252 0.020 0.000 0.000 0.032
#> GSM153449     1  0.2925    0.75549 0.832 0.000 0.004 0.016 0.000 0.148
#> GSM153453     4  0.5903    0.33192 0.328 0.000 0.000 0.452 0.000 0.220
#> GSM153454     4  0.2631    0.66593 0.000 0.000 0.000 0.820 0.000 0.180
#> GSM153455     1  0.1010    0.78841 0.960 0.000 0.004 0.000 0.000 0.036
#> GSM153462     1  0.4038    0.66019 0.756 0.188 0.020 0.000 0.000 0.036
#> GSM153465     1  0.0692    0.78511 0.976 0.004 0.000 0.000 0.000 0.020
#> GSM153481     1  0.1636    0.78229 0.936 0.024 0.004 0.000 0.000 0.036
#> GSM153482     1  0.3741    0.68662 0.756 0.000 0.004 0.032 0.000 0.208
#> GSM153483     1  0.1588    0.78526 0.924 0.000 0.004 0.000 0.000 0.072
#> GSM153485     1  0.1753    0.78134 0.912 0.000 0.004 0.000 0.000 0.084
#> GSM153489     1  0.1531    0.78432 0.928 0.000 0.004 0.000 0.000 0.068
#> GSM153490     4  0.6063    0.36595 0.264 0.000 0.000 0.388 0.000 0.348
#> GSM153491     1  0.6006    0.01776 0.428 0.000 0.000 0.316 0.000 0.256
#> GSM153492     4  0.5896    0.43661 0.220 0.000 0.000 0.456 0.000 0.324
#> GSM153493     4  0.1866    0.69866 0.008 0.000 0.000 0.908 0.000 0.084
#> GSM153494     1  0.1285    0.78905 0.944 0.000 0.004 0.000 0.000 0.052
#> GSM153495     4  0.4957    0.54728 0.072 0.000 0.000 0.544 0.000 0.384
#> GSM153498     1  0.3073    0.73013 0.816 0.000 0.004 0.016 0.000 0.164
#> GSM153501     4  0.0146    0.69292 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM153502     1  0.5928    0.12576 0.464 0.000 0.000 0.268 0.000 0.268
#> GSM153505     4  0.0000    0.69284 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153506     1  0.3835    0.70623 0.768 0.004 0.004 0.040 0.000 0.184

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> MAD:mclust 104          0.00979 2
#> MAD:mclust 103          0.00272 3
#> MAD:mclust 100          0.00792 4
#> MAD:mclust  86          0.02151 5
#> MAD:mclust  80          0.00897 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.691           0.875       0.942         0.4936 0.501   0.501
#> 3 3 0.515           0.699       0.845         0.3187 0.699   0.481
#> 4 4 0.480           0.545       0.731         0.1271 0.843   0.598
#> 5 5 0.507           0.452       0.686         0.0671 0.832   0.505
#> 6 6 0.526           0.353       0.606         0.0461 0.886   0.581

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     1  0.0000     0.9202 1.000 0.000
#> GSM153406     2  0.7528     0.7405 0.216 0.784
#> GSM153419     1  0.0000     0.9202 1.000 0.000
#> GSM153423     2  0.0000     0.9486 0.000 1.000
#> GSM153425     1  0.0000     0.9202 1.000 0.000
#> GSM153427     2  0.5946     0.8372 0.144 0.856
#> GSM153428     1  0.0000     0.9202 1.000 0.000
#> GSM153429     2  0.2778     0.9246 0.048 0.952
#> GSM153433     1  0.2778     0.9036 0.952 0.048
#> GSM153444     2  0.0376     0.9471 0.004 0.996
#> GSM153448     2  0.4298     0.8958 0.088 0.912
#> GSM153451     2  0.0000     0.9486 0.000 1.000
#> GSM153452     1  0.4161     0.8786 0.916 0.084
#> GSM153477     2  0.0000     0.9486 0.000 1.000
#> GSM153479     2  0.1414     0.9411 0.020 0.980
#> GSM153484     2  0.0672     0.9460 0.008 0.992
#> GSM153488     1  0.9686     0.4100 0.604 0.396
#> GSM153496     1  0.5946     0.8323 0.856 0.144
#> GSM153497     2  0.0000     0.9486 0.000 1.000
#> GSM153500     1  0.1184     0.9166 0.984 0.016
#> GSM153503     1  0.0000     0.9202 1.000 0.000
#> GSM153508     2  0.7056     0.7613 0.192 0.808
#> GSM153409     2  0.0000     0.9486 0.000 1.000
#> GSM153426     2  0.0000     0.9486 0.000 1.000
#> GSM153431     1  0.4161     0.8735 0.916 0.084
#> GSM153438     2  0.0000     0.9486 0.000 1.000
#> GSM153440     1  0.0000     0.9202 1.000 0.000
#> GSM153447     1  0.0000     0.9202 1.000 0.000
#> GSM153450     2  0.0672     0.9459 0.008 0.992
#> GSM153456     2  0.0000     0.9486 0.000 1.000
#> GSM153457     2  0.0000     0.9486 0.000 1.000
#> GSM153458     2  0.0000     0.9486 0.000 1.000
#> GSM153459     2  0.0000     0.9486 0.000 1.000
#> GSM153460     2  0.0000     0.9486 0.000 1.000
#> GSM153461     2  0.5294     0.8639 0.120 0.880
#> GSM153463     1  0.0000     0.9202 1.000 0.000
#> GSM153464     2  0.0000     0.9486 0.000 1.000
#> GSM153466     2  0.3114     0.9173 0.056 0.944
#> GSM153467     2  0.0000     0.9486 0.000 1.000
#> GSM153468     2  0.0376     0.9474 0.004 0.996
#> GSM153469     2  0.0000     0.9486 0.000 1.000
#> GSM153470     2  0.0000     0.9486 0.000 1.000
#> GSM153471     2  0.0000     0.9486 0.000 1.000
#> GSM153472     1  0.4562     0.8740 0.904 0.096
#> GSM153473     1  0.0000     0.9202 1.000 0.000
#> GSM153474     1  0.3274     0.8972 0.940 0.060
#> GSM153475     2  0.1843     0.9360 0.028 0.972
#> GSM153476     2  0.0938     0.9443 0.012 0.988
#> GSM153478     1  0.4562     0.8743 0.904 0.096
#> GSM153480     2  0.0000     0.9486 0.000 1.000
#> GSM153486     2  0.0000     0.9486 0.000 1.000
#> GSM153487     2  0.2043     0.9322 0.032 0.968
#> GSM153499     2  0.0000     0.9486 0.000 1.000
#> GSM153504     1  0.4690     0.8706 0.900 0.100
#> GSM153507     2  0.8081     0.6660 0.248 0.752
#> GSM153404     1  0.1184     0.9163 0.984 0.016
#> GSM153407     1  0.0000     0.9202 1.000 0.000
#> GSM153408     1  0.0938     0.9173 0.988 0.012
#> GSM153410     2  0.5408     0.8545 0.124 0.876
#> GSM153411     1  0.0000     0.9202 1.000 0.000
#> GSM153412     2  0.6438     0.8112 0.164 0.836
#> GSM153413     1  0.0000     0.9202 1.000 0.000
#> GSM153414     2  0.9732     0.3065 0.404 0.596
#> GSM153415     1  0.0672     0.9185 0.992 0.008
#> GSM153416     2  0.0000     0.9486 0.000 1.000
#> GSM153417     1  0.0000     0.9202 1.000 0.000
#> GSM153418     1  0.9850     0.2447 0.572 0.428
#> GSM153420     1  0.0000     0.9202 1.000 0.000
#> GSM153421     1  0.0000     0.9202 1.000 0.000
#> GSM153422     1  0.0000     0.9202 1.000 0.000
#> GSM153424     1  0.0000     0.9202 1.000 0.000
#> GSM153430     1  0.3431     0.8952 0.936 0.064
#> GSM153432     2  0.0000     0.9486 0.000 1.000
#> GSM153434     1  0.7528     0.7522 0.784 0.216
#> GSM153435     2  0.0000     0.9486 0.000 1.000
#> GSM153436     1  0.1633     0.9140 0.976 0.024
#> GSM153437     2  0.0000     0.9486 0.000 1.000
#> GSM153439     2  0.0376     0.9474 0.004 0.996
#> GSM153441     2  0.4815     0.8748 0.104 0.896
#> GSM153442     2  0.5294     0.8597 0.120 0.880
#> GSM153443     2  0.0000     0.9486 0.000 1.000
#> GSM153445     2  0.0000     0.9486 0.000 1.000
#> GSM153446     2  0.0000     0.9486 0.000 1.000
#> GSM153449     1  0.7299     0.7634 0.796 0.204
#> GSM153453     1  0.6973     0.7857 0.812 0.188
#> GSM153454     1  0.0000     0.9202 1.000 0.000
#> GSM153455     1  0.9993     0.0868 0.516 0.484
#> GSM153462     2  0.0000     0.9486 0.000 1.000
#> GSM153465     2  0.0000     0.9486 0.000 1.000
#> GSM153481     2  0.0000     0.9486 0.000 1.000
#> GSM153482     2  0.9000     0.5291 0.316 0.684
#> GSM153483     2  0.0000     0.9486 0.000 1.000
#> GSM153485     2  0.5059     0.8677 0.112 0.888
#> GSM153489     1  0.9963     0.1872 0.536 0.464
#> GSM153490     1  0.0000     0.9202 1.000 0.000
#> GSM153491     1  0.7219     0.7728 0.800 0.200
#> GSM153492     1  0.0000     0.9202 1.000 0.000
#> GSM153493     1  0.0000     0.9202 1.000 0.000
#> GSM153494     2  0.1184     0.9425 0.016 0.984
#> GSM153495     1  0.0000     0.9202 1.000 0.000
#> GSM153498     2  0.4431     0.8883 0.092 0.908
#> GSM153501     1  0.0000     0.9202 1.000 0.000
#> GSM153502     1  0.1633     0.9142 0.976 0.024
#> GSM153505     1  0.0000     0.9202 1.000 0.000
#> GSM153506     2  0.0000     0.9486 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     3  0.1529      0.821 0.000 0.040 0.960
#> GSM153406     2  0.6180      0.280 0.000 0.584 0.416
#> GSM153419     3  0.0592      0.831 0.000 0.012 0.988
#> GSM153423     2  0.1399      0.807 0.004 0.968 0.028
#> GSM153425     3  0.1529      0.829 0.040 0.000 0.960
#> GSM153427     2  0.6008      0.387 0.000 0.628 0.372
#> GSM153428     3  0.2356      0.814 0.072 0.000 0.928
#> GSM153429     2  0.5733      0.524 0.324 0.676 0.000
#> GSM153433     1  0.3482      0.776 0.872 0.000 0.128
#> GSM153444     2  0.3551      0.750 0.000 0.868 0.132
#> GSM153448     1  0.6062      0.385 0.616 0.384 0.000
#> GSM153451     2  0.1411      0.804 0.000 0.964 0.036
#> GSM153452     3  0.4605      0.698 0.000 0.204 0.796
#> GSM153477     2  0.4605      0.713 0.204 0.796 0.000
#> GSM153479     1  0.5859      0.455 0.656 0.344 0.000
#> GSM153484     2  0.6126      0.337 0.400 0.600 0.000
#> GSM153488     1  0.2879      0.807 0.924 0.052 0.024
#> GSM153496     1  0.1529      0.807 0.960 0.000 0.040
#> GSM153497     2  0.0661      0.809 0.008 0.988 0.004
#> GSM153500     1  0.2537      0.797 0.920 0.000 0.080
#> GSM153503     1  0.3116      0.786 0.892 0.000 0.108
#> GSM153508     1  0.2261      0.799 0.932 0.068 0.000
#> GSM153409     2  0.3412      0.756 0.000 0.876 0.124
#> GSM153426     2  0.2537      0.784 0.000 0.920 0.080
#> GSM153431     3  0.4446      0.789 0.032 0.112 0.856
#> GSM153438     2  0.2165      0.793 0.000 0.936 0.064
#> GSM153440     3  0.1411      0.831 0.036 0.000 0.964
#> GSM153447     3  0.5859      0.388 0.344 0.000 0.656
#> GSM153450     2  0.3340      0.760 0.000 0.880 0.120
#> GSM153456     2  0.2066      0.794 0.000 0.940 0.060
#> GSM153457     2  0.1411      0.804 0.000 0.964 0.036
#> GSM153458     2  0.3267      0.762 0.000 0.884 0.116
#> GSM153459     2  0.2796      0.777 0.000 0.908 0.092
#> GSM153460     2  0.3192      0.765 0.000 0.888 0.112
#> GSM153461     2  0.4504      0.687 0.000 0.804 0.196
#> GSM153463     1  0.6008      0.444 0.628 0.000 0.372
#> GSM153464     2  0.1411      0.806 0.036 0.964 0.000
#> GSM153466     1  0.3192      0.784 0.888 0.112 0.000
#> GSM153467     2  0.6244      0.215 0.440 0.560 0.000
#> GSM153468     1  0.3412      0.778 0.876 0.124 0.000
#> GSM153469     2  0.5859      0.487 0.344 0.656 0.000
#> GSM153470     2  0.3941      0.760 0.156 0.844 0.000
#> GSM153471     2  0.3879      0.764 0.152 0.848 0.000
#> GSM153472     1  0.1163      0.809 0.972 0.000 0.028
#> GSM153473     1  0.5465      0.603 0.712 0.000 0.288
#> GSM153474     1  0.1753      0.805 0.952 0.000 0.048
#> GSM153475     1  0.6111      0.335 0.604 0.396 0.000
#> GSM153476     2  0.2903      0.809 0.048 0.924 0.028
#> GSM153478     1  0.5774      0.685 0.748 0.020 0.232
#> GSM153480     2  0.0424      0.809 0.000 0.992 0.008
#> GSM153486     2  0.2959      0.791 0.100 0.900 0.000
#> GSM153487     1  0.2878      0.791 0.904 0.096 0.000
#> GSM153499     1  0.3551      0.774 0.868 0.132 0.000
#> GSM153504     1  0.2796      0.794 0.908 0.000 0.092
#> GSM153507     1  0.2796      0.794 0.908 0.092 0.000
#> GSM153404     3  0.5363      0.590 0.000 0.276 0.724
#> GSM153407     3  0.1031      0.830 0.000 0.024 0.976
#> GSM153408     3  0.4346      0.713 0.000 0.184 0.816
#> GSM153410     2  0.5926      0.424 0.000 0.644 0.356
#> GSM153411     3  0.2796      0.796 0.092 0.000 0.908
#> GSM153412     2  0.6079      0.351 0.000 0.612 0.388
#> GSM153413     3  0.2261      0.806 0.000 0.068 0.932
#> GSM153414     2  0.6143      0.536 0.012 0.684 0.304
#> GSM153415     3  0.4702      0.681 0.000 0.212 0.788
#> GSM153416     2  0.1267      0.808 0.004 0.972 0.024
#> GSM153417     3  0.2261      0.816 0.068 0.000 0.932
#> GSM153418     3  0.6045      0.353 0.000 0.380 0.620
#> GSM153420     3  0.0892      0.832 0.020 0.000 0.980
#> GSM153421     3  0.1860      0.825 0.052 0.000 0.948
#> GSM153422     3  0.2066      0.821 0.060 0.000 0.940
#> GSM153424     3  0.6168      0.191 0.412 0.000 0.588
#> GSM153430     1  0.4605      0.714 0.796 0.000 0.204
#> GSM153432     2  0.3412      0.781 0.124 0.876 0.000
#> GSM153434     1  0.3649      0.808 0.896 0.036 0.068
#> GSM153435     2  0.2261      0.802 0.068 0.932 0.000
#> GSM153436     1  0.6451      0.291 0.560 0.004 0.436
#> GSM153437     2  0.0829      0.809 0.004 0.984 0.012
#> GSM153439     2  0.4555      0.716 0.200 0.800 0.000
#> GSM153441     1  0.6154      0.333 0.592 0.408 0.000
#> GSM153442     1  0.2625      0.795 0.916 0.084 0.000
#> GSM153443     2  0.3412      0.779 0.124 0.876 0.000
#> GSM153445     2  0.2959      0.791 0.100 0.900 0.000
#> GSM153446     2  0.0592      0.809 0.000 0.988 0.012
#> GSM153449     1  0.2339      0.810 0.940 0.012 0.048
#> GSM153453     1  0.1031      0.809 0.976 0.000 0.024
#> GSM153454     1  0.4121      0.744 0.832 0.000 0.168
#> GSM153455     1  0.4228      0.762 0.844 0.148 0.008
#> GSM153462     2  0.1964      0.804 0.056 0.944 0.000
#> GSM153465     2  0.2261      0.802 0.068 0.932 0.000
#> GSM153481     2  0.2537      0.798 0.080 0.920 0.000
#> GSM153482     1  0.2448      0.798 0.924 0.076 0.000
#> GSM153483     1  0.6286      0.100 0.536 0.464 0.000
#> GSM153485     1  0.3116      0.786 0.892 0.108 0.000
#> GSM153489     1  0.2173      0.805 0.944 0.048 0.008
#> GSM153490     1  0.4605      0.715 0.796 0.000 0.204
#> GSM153491     1  0.1585      0.809 0.964 0.008 0.028
#> GSM153492     1  0.3267      0.782 0.884 0.000 0.116
#> GSM153493     1  0.3116      0.787 0.892 0.000 0.108
#> GSM153494     1  0.4842      0.670 0.776 0.224 0.000
#> GSM153495     1  0.5178      0.651 0.744 0.000 0.256
#> GSM153498     1  0.3551      0.774 0.868 0.132 0.000
#> GSM153501     1  0.2537      0.797 0.920 0.000 0.080
#> GSM153502     1  0.3412      0.779 0.876 0.000 0.124
#> GSM153505     1  0.3038      0.788 0.896 0.000 0.104
#> GSM153506     2  0.5905      0.468 0.352 0.648 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     3  0.3765     0.5467 0.004 0.004 0.812 0.180
#> GSM153406     4  0.5615     0.1239 0.000 0.032 0.356 0.612
#> GSM153419     3  0.4088     0.5009 0.004 0.000 0.764 0.232
#> GSM153423     2  0.1452     0.7745 0.000 0.956 0.008 0.036
#> GSM153425     3  0.2256     0.6452 0.056 0.020 0.924 0.000
#> GSM153427     2  0.3946     0.6643 0.000 0.812 0.168 0.020
#> GSM153428     3  0.8237     0.4359 0.192 0.280 0.492 0.036
#> GSM153429     4  0.5596     0.5908 0.180 0.088 0.004 0.728
#> GSM153433     1  0.4455     0.5992 0.800 0.012 0.164 0.024
#> GSM153444     2  0.1388     0.7684 0.000 0.960 0.028 0.012
#> GSM153448     2  0.7143     0.3571 0.308 0.584 0.064 0.044
#> GSM153451     2  0.1398     0.7755 0.000 0.956 0.004 0.040
#> GSM153452     2  0.6715    -0.1451 0.032 0.472 0.464 0.032
#> GSM153477     4  0.6957     0.4964 0.172 0.248 0.000 0.580
#> GSM153479     1  0.7221     0.3534 0.564 0.116 0.016 0.304
#> GSM153484     4  0.6032     0.4339 0.308 0.056 0.004 0.632
#> GSM153488     1  0.5420     0.4945 0.624 0.000 0.024 0.352
#> GSM153496     1  0.2255     0.7339 0.920 0.000 0.012 0.068
#> GSM153497     2  0.2053     0.7704 0.004 0.924 0.000 0.072
#> GSM153500     1  0.2032     0.7322 0.936 0.000 0.036 0.028
#> GSM153503     1  0.1724     0.7319 0.948 0.000 0.032 0.020
#> GSM153508     1  0.4522     0.5578 0.680 0.000 0.000 0.320
#> GSM153409     2  0.1820     0.7660 0.000 0.944 0.036 0.020
#> GSM153426     2  0.2222     0.7755 0.000 0.924 0.016 0.060
#> GSM153431     3  0.8196     0.3237 0.148 0.352 0.460 0.040
#> GSM153438     2  0.2611     0.7666 0.000 0.896 0.008 0.096
#> GSM153440     3  0.5832     0.6124 0.132 0.088 0.748 0.032
#> GSM153447     3  0.7710     0.3995 0.332 0.104 0.524 0.040
#> GSM153450     2  0.2546     0.7348 0.000 0.912 0.060 0.028
#> GSM153456     2  0.1305     0.7757 0.000 0.960 0.004 0.036
#> GSM153457     2  0.1824     0.7733 0.000 0.936 0.004 0.060
#> GSM153458     2  0.1209     0.7660 0.000 0.964 0.032 0.004
#> GSM153459     2  0.0804     0.7728 0.000 0.980 0.012 0.008
#> GSM153460     2  0.1109     0.7629 0.000 0.968 0.028 0.004
#> GSM153461     2  0.4247     0.6640 0.016 0.832 0.116 0.036
#> GSM153463     1  0.6694     0.1693 0.568 0.032 0.360 0.040
#> GSM153464     2  0.4624     0.5434 0.000 0.660 0.000 0.340
#> GSM153466     1  0.4149     0.6807 0.804 0.028 0.000 0.168
#> GSM153467     2  0.5384     0.5979 0.196 0.728 0.000 0.076
#> GSM153468     1  0.4936     0.5062 0.652 0.008 0.000 0.340
#> GSM153469     4  0.4890     0.5313 0.236 0.024 0.004 0.736
#> GSM153470     4  0.6382     0.5740 0.136 0.196 0.004 0.664
#> GSM153471     4  0.5902     0.5980 0.160 0.140 0.000 0.700
#> GSM153472     1  0.3681     0.6962 0.816 0.000 0.008 0.176
#> GSM153473     1  0.3653     0.7026 0.844 0.000 0.128 0.028
#> GSM153474     1  0.1488     0.7301 0.956 0.000 0.012 0.032
#> GSM153475     4  0.4601     0.4819 0.256 0.004 0.008 0.732
#> GSM153476     4  0.2841     0.5633 0.032 0.032 0.024 0.912
#> GSM153478     1  0.5906     0.4941 0.708 0.052 0.216 0.024
#> GSM153480     2  0.4222     0.6427 0.000 0.728 0.000 0.272
#> GSM153486     2  0.4485     0.6922 0.028 0.772 0.000 0.200
#> GSM153487     1  0.4916     0.3734 0.576 0.000 0.000 0.424
#> GSM153499     1  0.5212     0.3759 0.588 0.004 0.004 0.404
#> GSM153504     1  0.4289     0.6956 0.796 0.000 0.032 0.172
#> GSM153507     1  0.4843     0.4332 0.604 0.000 0.000 0.396
#> GSM153404     3  0.5510     0.3125 0.000 0.024 0.600 0.376
#> GSM153407     3  0.6558     0.5582 0.076 0.212 0.676 0.036
#> GSM153408     3  0.5353     0.2126 0.000 0.012 0.556 0.432
#> GSM153410     4  0.5839     0.1213 0.000 0.044 0.352 0.604
#> GSM153411     3  0.2266     0.6383 0.084 0.000 0.912 0.004
#> GSM153412     4  0.5614     0.1636 0.000 0.036 0.336 0.628
#> GSM153413     3  0.5147     0.1726 0.004 0.000 0.536 0.460
#> GSM153414     2  0.6092     0.4521 0.044 0.696 0.224 0.036
#> GSM153415     4  0.5070     0.0237 0.000 0.004 0.416 0.580
#> GSM153416     2  0.1576     0.7767 0.000 0.948 0.004 0.048
#> GSM153417     3  0.2002     0.6427 0.044 0.000 0.936 0.020
#> GSM153418     4  0.5938    -0.1636 0.000 0.036 0.480 0.484
#> GSM153420     3  0.2238     0.6156 0.004 0.004 0.920 0.072
#> GSM153421     3  0.1629     0.6396 0.024 0.000 0.952 0.024
#> GSM153422     3  0.2300     0.6339 0.028 0.000 0.924 0.048
#> GSM153424     3  0.8725     0.3868 0.280 0.284 0.396 0.040
#> GSM153430     1  0.6185     0.4615 0.700 0.056 0.208 0.036
#> GSM153432     2  0.6659     0.0609 0.084 0.468 0.000 0.448
#> GSM153434     1  0.6218     0.4638 0.704 0.088 0.184 0.024
#> GSM153435     2  0.4697     0.5977 0.008 0.696 0.000 0.296
#> GSM153436     3  0.8527     0.3408 0.352 0.228 0.388 0.032
#> GSM153437     2  0.2944     0.7498 0.000 0.868 0.004 0.128
#> GSM153439     4  0.6719     0.5631 0.180 0.204 0.000 0.616
#> GSM153441     2  0.7398     0.2371 0.380 0.512 0.056 0.052
#> GSM153442     1  0.4505     0.6856 0.828 0.096 0.024 0.052
#> GSM153443     2  0.4675     0.6475 0.020 0.736 0.000 0.244
#> GSM153445     2  0.6161     0.3159 0.044 0.552 0.004 0.400
#> GSM153446     2  0.4134     0.6565 0.000 0.740 0.000 0.260
#> GSM153449     1  0.4265     0.6680 0.832 0.020 0.116 0.032
#> GSM153453     1  0.2266     0.7286 0.912 0.000 0.004 0.084
#> GSM153454     1  0.3658     0.6501 0.836 0.000 0.144 0.020
#> GSM153455     1  0.5189     0.4680 0.616 0.000 0.012 0.372
#> GSM153462     2  0.3486     0.7088 0.000 0.812 0.000 0.188
#> GSM153465     4  0.5698     0.4765 0.060 0.244 0.004 0.692
#> GSM153481     4  0.5446     0.5632 0.076 0.184 0.004 0.736
#> GSM153482     1  0.3982     0.6648 0.776 0.004 0.000 0.220
#> GSM153483     4  0.6904     0.2084 0.388 0.096 0.004 0.512
#> GSM153485     1  0.4896     0.6038 0.704 0.012 0.004 0.280
#> GSM153489     1  0.3982     0.6708 0.776 0.004 0.000 0.220
#> GSM153490     1  0.2654     0.7086 0.888 0.000 0.108 0.004
#> GSM153491     1  0.2918     0.7201 0.876 0.000 0.008 0.116
#> GSM153492     1  0.2164     0.7134 0.924 0.004 0.068 0.004
#> GSM153493     1  0.1938     0.7265 0.936 0.000 0.052 0.012
#> GSM153494     1  0.5484     0.6353 0.744 0.104 0.004 0.148
#> GSM153495     1  0.4542     0.5653 0.752 0.000 0.228 0.020
#> GSM153498     4  0.4964     0.2137 0.380 0.000 0.004 0.616
#> GSM153501     1  0.2179     0.7331 0.924 0.000 0.012 0.064
#> GSM153502     1  0.4224     0.7101 0.812 0.000 0.044 0.144
#> GSM153505     1  0.1724     0.7314 0.948 0.000 0.032 0.020
#> GSM153506     4  0.6836     0.4551 0.280 0.140 0.000 0.580

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     3  0.5717    0.28588 0.000 0.000 0.540 0.092 0.368
#> GSM153406     3  0.3110    0.68544 0.004 0.004 0.868 0.036 0.088
#> GSM153419     3  0.5094    0.20614 0.004 0.000 0.532 0.028 0.436
#> GSM153423     2  0.1588    0.75771 0.008 0.948 0.000 0.016 0.028
#> GSM153425     5  0.2962    0.70823 0.000 0.000 0.084 0.048 0.868
#> GSM153427     2  0.7154    0.37589 0.000 0.556 0.084 0.188 0.172
#> GSM153428     5  0.6389    0.45991 0.036 0.120 0.000 0.248 0.596
#> GSM153429     1  0.6628    0.18812 0.452 0.128 0.400 0.020 0.000
#> GSM153433     1  0.6269    0.02673 0.452 0.000 0.004 0.416 0.128
#> GSM153444     2  0.4941    0.61294 0.000 0.720 0.036 0.212 0.032
#> GSM153448     2  0.6225    0.56567 0.128 0.664 0.000 0.084 0.124
#> GSM153451     2  0.0771    0.76324 0.000 0.976 0.004 0.020 0.000
#> GSM153452     5  0.5766    0.48003 0.020 0.284 0.000 0.076 0.620
#> GSM153477     2  0.8096    0.01821 0.324 0.340 0.236 0.100 0.000
#> GSM153479     1  0.6370    0.49372 0.656 0.120 0.072 0.148 0.004
#> GSM153484     1  0.6540    0.39658 0.568 0.076 0.292 0.064 0.000
#> GSM153488     1  0.5697    0.50624 0.644 0.000 0.172 0.180 0.004
#> GSM153496     1  0.5377    0.53423 0.712 0.000 0.028 0.100 0.160
#> GSM153497     2  0.2381    0.75946 0.004 0.908 0.036 0.052 0.000
#> GSM153500     1  0.4797    0.50965 0.724 0.000 0.000 0.104 0.172
#> GSM153503     1  0.5068    0.35596 0.592 0.000 0.000 0.364 0.044
#> GSM153508     1  0.4102    0.57086 0.796 0.004 0.080 0.120 0.000
#> GSM153409     4  0.6272   -0.00343 0.000 0.380 0.092 0.508 0.020
#> GSM153426     4  0.6403   -0.07717 0.000 0.396 0.148 0.452 0.004
#> GSM153431     4  0.4142    0.44773 0.020 0.040 0.024 0.828 0.088
#> GSM153438     2  0.1741    0.76183 0.000 0.936 0.024 0.040 0.000
#> GSM153440     4  0.5941   -0.15189 0.000 0.008 0.088 0.532 0.372
#> GSM153447     4  0.3663    0.44489 0.044 0.000 0.004 0.820 0.132
#> GSM153450     2  0.2899    0.72156 0.004 0.872 0.000 0.028 0.096
#> GSM153456     2  0.0566    0.76078 0.000 0.984 0.000 0.012 0.004
#> GSM153457     2  0.0162    0.76227 0.000 0.996 0.004 0.000 0.000
#> GSM153458     2  0.1579    0.75466 0.000 0.944 0.000 0.032 0.024
#> GSM153459     2  0.2331    0.74610 0.000 0.908 0.008 0.068 0.016
#> GSM153460     2  0.1836    0.75102 0.000 0.932 0.000 0.036 0.032
#> GSM153461     4  0.5201    0.36360 0.000 0.192 0.056 0.716 0.036
#> GSM153463     4  0.5844    0.33193 0.208 0.000 0.000 0.608 0.184
#> GSM153464     2  0.4032    0.71637 0.072 0.800 0.124 0.004 0.000
#> GSM153466     1  0.4004    0.56145 0.832 0.088 0.008 0.040 0.032
#> GSM153467     2  0.3633    0.70615 0.160 0.812 0.004 0.020 0.004
#> GSM153468     1  0.3993    0.56675 0.832 0.036 0.080 0.048 0.004
#> GSM153469     1  0.5584    0.26868 0.520 0.040 0.424 0.016 0.000
#> GSM153470     3  0.7911    0.06289 0.216 0.096 0.420 0.268 0.000
#> GSM153471     3  0.7211   -0.17785 0.400 0.132 0.412 0.056 0.000
#> GSM153472     1  0.4055    0.56115 0.800 0.000 0.048 0.012 0.140
#> GSM153473     1  0.5495    0.48617 0.676 0.000 0.008 0.176 0.140
#> GSM153474     4  0.4659   -0.16949 0.488 0.000 0.000 0.500 0.012
#> GSM153475     1  0.5904    0.33270 0.552 0.032 0.380 0.020 0.016
#> GSM153476     3  0.3567    0.54853 0.112 0.004 0.832 0.052 0.000
#> GSM153478     1  0.7162   -0.02307 0.380 0.020 0.000 0.368 0.232
#> GSM153480     2  0.3829    0.73024 0.024 0.816 0.136 0.024 0.000
#> GSM153486     2  0.3901    0.73099 0.108 0.828 0.036 0.024 0.004
#> GSM153487     1  0.4407    0.55061 0.760 0.004 0.172 0.064 0.000
#> GSM153499     1  0.6241    0.36726 0.512 0.000 0.164 0.324 0.000
#> GSM153504     1  0.4753    0.51600 0.708 0.000 0.032 0.244 0.016
#> GSM153507     1  0.3906    0.56614 0.812 0.004 0.104 0.080 0.000
#> GSM153404     3  0.4488    0.60668 0.000 0.004 0.736 0.048 0.212
#> GSM153407     5  0.5658    0.62356 0.000 0.068 0.052 0.192 0.688
#> GSM153408     3  0.3757    0.63721 0.000 0.000 0.772 0.020 0.208
#> GSM153410     3  0.2633    0.68433 0.004 0.008 0.892 0.012 0.084
#> GSM153411     5  0.1469    0.69886 0.016 0.000 0.036 0.000 0.948
#> GSM153412     3  0.2177    0.68279 0.004 0.000 0.908 0.008 0.080
#> GSM153413     3  0.3387    0.64956 0.004 0.000 0.796 0.004 0.196
#> GSM153414     2  0.6751    0.25990 0.008 0.508 0.004 0.268 0.212
#> GSM153415     3  0.2621    0.68508 0.004 0.000 0.876 0.008 0.112
#> GSM153416     2  0.1443    0.76249 0.000 0.948 0.004 0.044 0.004
#> GSM153417     5  0.2942    0.68723 0.008 0.000 0.128 0.008 0.856
#> GSM153418     3  0.3834    0.66928 0.000 0.008 0.816 0.052 0.124
#> GSM153420     5  0.4210    0.55126 0.000 0.000 0.224 0.036 0.740
#> GSM153421     5  0.2463    0.70028 0.008 0.000 0.100 0.004 0.888
#> GSM153422     5  0.4118    0.61603 0.008 0.000 0.188 0.032 0.772
#> GSM153424     4  0.6022    0.19330 0.036 0.072 0.000 0.608 0.284
#> GSM153430     4  0.3875    0.42880 0.160 0.000 0.000 0.792 0.048
#> GSM153432     2  0.6820    0.44718 0.264 0.548 0.144 0.044 0.000
#> GSM153434     1  0.7009    0.20045 0.444 0.028 0.000 0.168 0.360
#> GSM153435     2  0.7582    0.29990 0.060 0.444 0.260 0.236 0.000
#> GSM153436     5  0.6116    0.45913 0.160 0.128 0.000 0.052 0.660
#> GSM153437     2  0.1329    0.76373 0.004 0.956 0.032 0.008 0.000
#> GSM153439     1  0.7243    0.05887 0.380 0.312 0.292 0.012 0.004
#> GSM153441     2  0.6482    0.47872 0.204 0.608 0.000 0.044 0.144
#> GSM153442     1  0.5653    0.40786 0.612 0.048 0.000 0.312 0.028
#> GSM153443     2  0.3319    0.73849 0.100 0.852 0.040 0.008 0.000
#> GSM153445     2  0.5091    0.64428 0.180 0.712 0.100 0.008 0.000
#> GSM153446     2  0.2819    0.75315 0.024 0.884 0.080 0.012 0.000
#> GSM153449     1  0.6153    0.35537 0.552 0.004 0.000 0.144 0.300
#> GSM153453     1  0.4010    0.49648 0.744 0.004 0.004 0.240 0.008
#> GSM153454     1  0.6448    0.22663 0.500 0.000 0.000 0.272 0.228
#> GSM153455     1  0.6591    0.49472 0.676 0.048 0.080 0.072 0.124
#> GSM153462     2  0.4868    0.68324 0.020 0.752 0.092 0.136 0.000
#> GSM153465     4  0.6878    0.17070 0.104 0.056 0.332 0.508 0.000
#> GSM153481     2  0.7131    0.04055 0.340 0.352 0.296 0.012 0.000
#> GSM153482     1  0.4886    0.24015 0.528 0.000 0.024 0.448 0.000
#> GSM153483     4  0.5560    0.33557 0.184 0.008 0.140 0.668 0.000
#> GSM153485     1  0.4432    0.57377 0.812 0.028 0.064 0.080 0.016
#> GSM153489     1  0.5307    0.55803 0.716 0.000 0.080 0.172 0.032
#> GSM153490     1  0.6155    0.38024 0.548 0.000 0.000 0.176 0.276
#> GSM153491     1  0.3800    0.56840 0.828 0.000 0.012 0.068 0.092
#> GSM153492     1  0.5157    0.19629 0.520 0.000 0.000 0.440 0.040
#> GSM153493     1  0.5164    0.45860 0.660 0.000 0.000 0.084 0.256
#> GSM153494     4  0.5342   -0.07606 0.428 0.004 0.028 0.532 0.008
#> GSM153495     4  0.6434   -0.05580 0.392 0.000 0.000 0.432 0.176
#> GSM153498     1  0.5374    0.49105 0.668 0.016 0.268 0.032 0.016
#> GSM153501     1  0.4781    0.33684 0.592 0.000 0.008 0.388 0.012
#> GSM153502     1  0.5433    0.51565 0.676 0.000 0.060 0.236 0.028
#> GSM153505     4  0.4769   -0.06312 0.440 0.000 0.004 0.544 0.012
#> GSM153506     1  0.7318    0.36132 0.520 0.196 0.212 0.072 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     3  0.5052    0.51198 0.000 0.108 0.656 0.012 0.224 0.000
#> GSM153406     3  0.2068    0.79738 0.000 0.048 0.916 0.000 0.016 0.020
#> GSM153419     3  0.4631    0.39682 0.000 0.028 0.636 0.008 0.320 0.008
#> GSM153423     1  0.1231    0.75768 0.960 0.012 0.000 0.004 0.012 0.012
#> GSM153425     5  0.4354    0.56231 0.004 0.040 0.228 0.012 0.716 0.000
#> GSM153427     1  0.6883    0.29515 0.536 0.192 0.096 0.008 0.164 0.004
#> GSM153428     5  0.7501    0.18364 0.128 0.228 0.008 0.232 0.404 0.000
#> GSM153429     6  0.7644    0.25821 0.132 0.008 0.336 0.100 0.028 0.396
#> GSM153433     2  0.7216   -0.24246 0.000 0.356 0.000 0.268 0.088 0.288
#> GSM153444     1  0.4849    0.60522 0.708 0.212 0.032 0.004 0.032 0.012
#> GSM153448     1  0.6695    0.29101 0.472 0.028 0.000 0.348 0.108 0.044
#> GSM153451     1  0.1406    0.75802 0.952 0.020 0.004 0.000 0.016 0.008
#> GSM153452     5  0.7417    0.26561 0.320 0.056 0.016 0.176 0.416 0.016
#> GSM153477     6  0.7505    0.29636 0.256 0.108 0.084 0.032 0.024 0.496
#> GSM153479     4  0.7224    0.03439 0.072 0.060 0.004 0.456 0.072 0.336
#> GSM153484     6  0.6137    0.34277 0.084 0.068 0.112 0.048 0.012 0.676
#> GSM153488     6  0.7309    0.00718 0.000 0.160 0.116 0.268 0.012 0.444
#> GSM153496     4  0.6077    0.14272 0.000 0.028 0.008 0.480 0.100 0.384
#> GSM153497     1  0.2434    0.74985 0.892 0.036 0.000 0.000 0.008 0.064
#> GSM153500     4  0.5345    0.29930 0.000 0.024 0.000 0.628 0.100 0.248
#> GSM153503     4  0.6611    0.33794 0.000 0.236 0.000 0.448 0.040 0.276
#> GSM153508     4  0.5839    0.12416 0.000 0.032 0.008 0.520 0.072 0.368
#> GSM153409     2  0.5024    0.32432 0.264 0.664 0.032 0.004 0.016 0.020
#> GSM153426     2  0.6161    0.32544 0.236 0.600 0.108 0.012 0.012 0.032
#> GSM153431     2  0.2564    0.49567 0.012 0.904 0.016 0.028 0.032 0.008
#> GSM153438     1  0.2690    0.75204 0.896 0.040 0.032 0.012 0.012 0.008
#> GSM153440     2  0.5963    0.31785 0.012 0.648 0.132 0.084 0.124 0.000
#> GSM153447     2  0.3663    0.46976 0.004 0.808 0.012 0.128 0.048 0.000
#> GSM153450     1  0.2494    0.73115 0.892 0.008 0.000 0.020 0.072 0.008
#> GSM153456     1  0.0653    0.75356 0.980 0.012 0.000 0.004 0.004 0.000
#> GSM153457     1  0.0622    0.75467 0.980 0.000 0.000 0.008 0.000 0.012
#> GSM153458     1  0.2557    0.73451 0.896 0.028 0.000 0.044 0.028 0.004
#> GSM153459     1  0.1686    0.74949 0.932 0.052 0.000 0.004 0.008 0.004
#> GSM153460     1  0.2182    0.73971 0.916 0.032 0.000 0.020 0.028 0.004
#> GSM153461     2  0.2563    0.49426 0.084 0.880 0.028 0.000 0.008 0.000
#> GSM153463     2  0.5772    0.22429 0.000 0.548 0.000 0.316 0.108 0.028
#> GSM153464     1  0.4501    0.66757 0.752 0.000 0.048 0.028 0.012 0.160
#> GSM153466     6  0.6717    0.12375 0.096 0.016 0.000 0.296 0.084 0.508
#> GSM153467     1  0.5065    0.63242 0.708 0.008 0.000 0.112 0.028 0.144
#> GSM153468     4  0.6339   -0.05912 0.044 0.000 0.048 0.452 0.040 0.416
#> GSM153469     6  0.5794    0.31660 0.040 0.004 0.244 0.076 0.012 0.624
#> GSM153470     6  0.8345    0.11379 0.080 0.268 0.188 0.060 0.024 0.380
#> GSM153471     6  0.8440    0.21438 0.100 0.040 0.260 0.148 0.052 0.400
#> GSM153472     6  0.5382    0.08959 0.000 0.004 0.008 0.300 0.100 0.588
#> GSM153473     4  0.6862    0.36163 0.000 0.088 0.004 0.488 0.160 0.260
#> GSM153474     2  0.6338   -0.12913 0.000 0.412 0.000 0.388 0.028 0.172
#> GSM153475     6  0.5542    0.33184 0.024 0.024 0.104 0.064 0.060 0.724
#> GSM153476     3  0.5811    0.40802 0.000 0.092 0.616 0.024 0.024 0.244
#> GSM153478     4  0.7698    0.21683 0.020 0.248 0.000 0.408 0.168 0.156
#> GSM153480     1  0.5466    0.64306 0.684 0.040 0.108 0.008 0.004 0.156
#> GSM153486     1  0.5711    0.51138 0.636 0.004 0.016 0.084 0.028 0.232
#> GSM153487     6  0.4503    0.27251 0.000 0.048 0.048 0.108 0.020 0.776
#> GSM153499     4  0.7927    0.15405 0.000 0.200 0.120 0.364 0.036 0.280
#> GSM153504     6  0.6333   -0.13743 0.000 0.140 0.008 0.348 0.028 0.476
#> GSM153507     6  0.4886    0.26419 0.008 0.036 0.012 0.140 0.060 0.744
#> GSM153404     3  0.2702    0.76941 0.000 0.036 0.868 0.004 0.092 0.000
#> GSM153407     5  0.7578    0.40948 0.116 0.228 0.100 0.072 0.484 0.000
#> GSM153408     3  0.2199    0.79025 0.000 0.020 0.892 0.000 0.088 0.000
#> GSM153410     3  0.0964    0.80102 0.000 0.004 0.968 0.000 0.016 0.012
#> GSM153411     5  0.3721    0.56827 0.000 0.000 0.168 0.032 0.784 0.016
#> GSM153412     3  0.0891    0.78977 0.000 0.000 0.968 0.000 0.008 0.024
#> GSM153413     3  0.1528    0.79967 0.000 0.000 0.936 0.000 0.048 0.016
#> GSM153414     1  0.7602    0.09925 0.436 0.208 0.012 0.144 0.196 0.004
#> GSM153415     3  0.0767    0.80512 0.000 0.004 0.976 0.000 0.012 0.008
#> GSM153416     1  0.1396    0.75990 0.952 0.024 0.000 0.012 0.004 0.008
#> GSM153417     5  0.3714    0.53887 0.000 0.008 0.264 0.000 0.720 0.008
#> GSM153418     3  0.2488    0.78966 0.000 0.076 0.880 0.000 0.044 0.000
#> GSM153420     5  0.4988    0.39964 0.000 0.040 0.340 0.008 0.600 0.012
#> GSM153421     5  0.3584    0.55066 0.000 0.000 0.244 0.004 0.740 0.012
#> GSM153422     5  0.4711    0.48135 0.000 0.028 0.296 0.008 0.652 0.016
#> GSM153424     2  0.6606    0.35793 0.092 0.532 0.000 0.192 0.184 0.000
#> GSM153430     2  0.4225    0.37758 0.000 0.688 0.000 0.276 0.020 0.016
#> GSM153432     6  0.7116   -0.12307 0.412 0.060 0.048 0.036 0.032 0.412
#> GSM153434     4  0.7911    0.23835 0.068 0.092 0.000 0.424 0.228 0.188
#> GSM153435     1  0.8048    0.16542 0.364 0.220 0.224 0.012 0.012 0.168
#> GSM153436     5  0.6893    0.19320 0.176 0.008 0.000 0.288 0.464 0.064
#> GSM153437     1  0.1749    0.75814 0.936 0.016 0.000 0.012 0.004 0.032
#> GSM153439     6  0.7623    0.24716 0.288 0.012 0.104 0.108 0.036 0.452
#> GSM153441     1  0.6606    0.46618 0.584 0.020 0.000 0.108 0.112 0.176
#> GSM153442     6  0.8101   -0.10945 0.104 0.156 0.000 0.308 0.076 0.356
#> GSM153443     1  0.4194    0.60928 0.700 0.004 0.004 0.016 0.008 0.268
#> GSM153445     1  0.5061    0.50021 0.624 0.004 0.020 0.032 0.008 0.312
#> GSM153446     1  0.4040    0.68381 0.772 0.016 0.036 0.000 0.008 0.168
#> GSM153449     6  0.7274   -0.15548 0.020 0.060 0.000 0.340 0.200 0.380
#> GSM153453     6  0.6414   -0.13621 0.000 0.180 0.000 0.320 0.036 0.464
#> GSM153454     4  0.5788    0.32311 0.000 0.152 0.000 0.624 0.172 0.052
#> GSM153455     6  0.6501    0.22425 0.056 0.016 0.008 0.136 0.192 0.592
#> GSM153462     1  0.6166    0.60052 0.620 0.180 0.036 0.008 0.016 0.140
#> GSM153465     2  0.6524    0.32358 0.032 0.576 0.208 0.024 0.008 0.152
#> GSM153481     6  0.7155    0.10214 0.348 0.000 0.176 0.064 0.016 0.396
#> GSM153482     6  0.6597   -0.11154 0.000 0.344 0.016 0.196 0.016 0.428
#> GSM153483     2  0.6282    0.35177 0.012 0.628 0.116 0.080 0.008 0.156
#> GSM153485     6  0.6203    0.21021 0.044 0.028 0.020 0.252 0.048 0.608
#> GSM153489     6  0.6139    0.06036 0.000 0.072 0.032 0.292 0.036 0.568
#> GSM153490     6  0.7199   -0.17093 0.000 0.096 0.000 0.304 0.224 0.376
#> GSM153491     6  0.5202    0.02193 0.000 0.004 0.008 0.396 0.060 0.532
#> GSM153492     4  0.6628    0.27690 0.000 0.332 0.000 0.392 0.032 0.244
#> GSM153493     4  0.5862    0.20954 0.000 0.012 0.000 0.512 0.156 0.320
#> GSM153494     2  0.6697   -0.11049 0.020 0.428 0.004 0.220 0.008 0.320
#> GSM153495     4  0.6595    0.16817 0.000 0.288 0.000 0.496 0.132 0.084
#> GSM153498     6  0.6864    0.19698 0.012 0.000 0.224 0.240 0.048 0.476
#> GSM153501     4  0.6375    0.29900 0.000 0.268 0.000 0.424 0.016 0.292
#> GSM153502     6  0.6986   -0.14196 0.000 0.132 0.032 0.348 0.048 0.440
#> GSM153505     2  0.6297   -0.16912 0.000 0.412 0.000 0.376 0.020 0.192
#> GSM153506     6  0.6821    0.31481 0.144 0.036 0.104 0.072 0.028 0.616

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n disease.state(p) k
#> MAD:NMF 100           0.0565 2
#> MAD:NMF  87           0.0995 3
#> MAD:NMF  69           0.0566 4
#> MAD:NMF  52           0.0316 5
#> MAD:NMF  34           0.0280 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.765           0.935       0.958          0.353 0.677   0.677
#> 3 3 0.475           0.836       0.826          0.284 0.985   0.978
#> 4 4 0.444           0.656       0.776          0.154 0.985   0.977
#> 5 5 0.449           0.689       0.792          0.151 0.692   0.524
#> 6 6 0.539           0.715       0.834          0.114 0.923   0.800

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     2  0.3274      0.934 0.060 0.940
#> GSM153406     2  0.0376      0.952 0.004 0.996
#> GSM153419     2  0.6887      0.836 0.184 0.816
#> GSM153423     2  0.0000      0.952 0.000 1.000
#> GSM153425     2  0.2423      0.944 0.040 0.960
#> GSM153427     2  0.0672      0.952 0.008 0.992
#> GSM153428     2  0.2236      0.945 0.036 0.964
#> GSM153429     2  0.0938      0.952 0.012 0.988
#> GSM153433     2  0.6712      0.844 0.176 0.824
#> GSM153444     2  0.0376      0.952 0.004 0.996
#> GSM153448     2  0.0672      0.952 0.008 0.992
#> GSM153451     2  0.0000      0.952 0.000 1.000
#> GSM153452     2  0.2236      0.945 0.036 0.964
#> GSM153477     2  0.0000      0.952 0.000 1.000
#> GSM153479     2  0.0376      0.952 0.004 0.996
#> GSM153484     2  0.0938      0.952 0.012 0.988
#> GSM153488     2  0.5408      0.891 0.124 0.876
#> GSM153496     2  0.6623      0.850 0.172 0.828
#> GSM153497     2  0.0000      0.952 0.000 1.000
#> GSM153500     1  0.0000      0.989 1.000 0.000
#> GSM153503     1  0.0000      0.989 1.000 0.000
#> GSM153508     2  0.0938      0.951 0.012 0.988
#> GSM153409     2  0.0000      0.952 0.000 1.000
#> GSM153426     2  0.0000      0.952 0.000 1.000
#> GSM153431     2  0.3274      0.934 0.060 0.940
#> GSM153438     2  0.0000      0.952 0.000 1.000
#> GSM153440     2  0.7453      0.804 0.212 0.788
#> GSM153447     1  0.0000      0.989 1.000 0.000
#> GSM153450     2  0.0376      0.952 0.004 0.996
#> GSM153456     2  0.0000      0.952 0.000 1.000
#> GSM153457     2  0.0000      0.952 0.000 1.000
#> GSM153458     2  0.0000      0.952 0.000 1.000
#> GSM153459     2  0.0000      0.952 0.000 1.000
#> GSM153460     2  0.0000      0.952 0.000 1.000
#> GSM153461     2  0.2948      0.938 0.052 0.948
#> GSM153463     1  0.0000      0.989 1.000 0.000
#> GSM153464     2  0.0000      0.952 0.000 1.000
#> GSM153466     2  0.1843      0.948 0.028 0.972
#> GSM153467     2  0.0000      0.952 0.000 1.000
#> GSM153468     2  0.0376      0.952 0.004 0.996
#> GSM153469     2  0.0376      0.952 0.004 0.996
#> GSM153470     2  0.0000      0.952 0.000 1.000
#> GSM153471     2  0.0000      0.952 0.000 1.000
#> GSM153472     2  0.8327      0.731 0.264 0.736
#> GSM153473     1  0.0376      0.986 0.996 0.004
#> GSM153474     1  0.0672      0.982 0.992 0.008
#> GSM153475     2  0.1633      0.949 0.024 0.976
#> GSM153476     2  0.4939      0.903 0.108 0.892
#> GSM153478     2  0.7883      0.772 0.236 0.764
#> GSM153480     2  0.0000      0.952 0.000 1.000
#> GSM153486     2  0.0000      0.952 0.000 1.000
#> GSM153487     2  0.7056      0.829 0.192 0.808
#> GSM153499     2  0.0938      0.952 0.012 0.988
#> GSM153504     1  0.0000      0.989 1.000 0.000
#> GSM153507     1  0.3114      0.933 0.944 0.056
#> GSM153404     2  0.3274      0.934 0.060 0.940
#> GSM153407     2  0.7674      0.790 0.224 0.776
#> GSM153408     2  0.0376      0.952 0.004 0.996
#> GSM153410     2  0.0376      0.952 0.004 0.996
#> GSM153411     1  0.0000      0.989 1.000 0.000
#> GSM153412     2  0.0376      0.952 0.004 0.996
#> GSM153413     2  0.6887      0.836 0.184 0.816
#> GSM153414     2  0.2236      0.945 0.036 0.964
#> GSM153415     2  0.0672      0.952 0.008 0.992
#> GSM153416     2  0.0000      0.952 0.000 1.000
#> GSM153417     1  0.0000      0.989 1.000 0.000
#> GSM153418     2  0.0376      0.952 0.004 0.996
#> GSM153420     1  0.0000      0.989 1.000 0.000
#> GSM153421     1  0.0000      0.989 1.000 0.000
#> GSM153422     1  0.0000      0.989 1.000 0.000
#> GSM153424     2  0.2236      0.945 0.036 0.964
#> GSM153430     2  0.7139      0.823 0.196 0.804
#> GSM153432     2  0.0672      0.952 0.008 0.992
#> GSM153434     2  0.5842      0.878 0.140 0.860
#> GSM153435     2  0.0000      0.952 0.000 1.000
#> GSM153436     2  0.6247      0.865 0.156 0.844
#> GSM153437     2  0.0000      0.952 0.000 1.000
#> GSM153439     2  0.0938      0.952 0.012 0.988
#> GSM153441     2  0.2423      0.944 0.040 0.960
#> GSM153442     2  0.2603      0.943 0.044 0.956
#> GSM153443     2  0.0000      0.952 0.000 1.000
#> GSM153445     2  0.0000      0.952 0.000 1.000
#> GSM153446     2  0.0000      0.952 0.000 1.000
#> GSM153449     2  0.4690      0.911 0.100 0.900
#> GSM153453     2  0.8555      0.705 0.280 0.720
#> GSM153454     1  0.0000      0.989 1.000 0.000
#> GSM153455     2  0.1633      0.950 0.024 0.976
#> GSM153462     2  0.0000      0.952 0.000 1.000
#> GSM153465     2  0.0000      0.952 0.000 1.000
#> GSM153481     2  0.0000      0.952 0.000 1.000
#> GSM153482     2  0.4939      0.903 0.108 0.892
#> GSM153483     2  0.1184      0.951 0.016 0.984
#> GSM153485     2  0.2778      0.941 0.048 0.952
#> GSM153489     2  0.6148      0.869 0.152 0.848
#> GSM153490     1  0.0000      0.989 1.000 0.000
#> GSM153491     2  0.6531      0.854 0.168 0.832
#> GSM153492     1  0.5629      0.833 0.868 0.132
#> GSM153493     1  0.0000      0.989 1.000 0.000
#> GSM153494     2  0.1184      0.951 0.016 0.984
#> GSM153495     1  0.0000      0.989 1.000 0.000
#> GSM153498     2  0.1414      0.951 0.020 0.980
#> GSM153501     1  0.0000      0.989 1.000 0.000
#> GSM153502     1  0.0000      0.989 1.000 0.000
#> GSM153505     1  0.0000      0.989 1.000 0.000
#> GSM153506     2  0.0000      0.952 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     2  0.4095      0.841 0.056 0.880 0.064
#> GSM153406     2  0.1289      0.860 0.000 0.968 0.032
#> GSM153419     2  0.7026      0.739 0.152 0.728 0.120
#> GSM153423     2  0.4178      0.826 0.000 0.828 0.172
#> GSM153425     2  0.3550      0.854 0.024 0.896 0.080
#> GSM153427     2  0.1399      0.861 0.004 0.968 0.028
#> GSM153428     2  0.2918      0.851 0.032 0.924 0.044
#> GSM153429     2  0.1711      0.862 0.008 0.960 0.032
#> GSM153433     2  0.6721      0.752 0.136 0.748 0.116
#> GSM153444     2  0.1267      0.862 0.004 0.972 0.024
#> GSM153448     2  0.1399      0.860 0.004 0.968 0.028
#> GSM153451     2  0.4346      0.821 0.000 0.816 0.184
#> GSM153452     2  0.2806      0.854 0.032 0.928 0.040
#> GSM153477     2  0.3752      0.836 0.000 0.856 0.144
#> GSM153479     2  0.2301      0.862 0.004 0.936 0.060
#> GSM153484     2  0.3129      0.859 0.008 0.904 0.088
#> GSM153488     2  0.6176      0.781 0.100 0.780 0.120
#> GSM153496     2  0.6975      0.741 0.144 0.732 0.124
#> GSM153497     2  0.4346      0.821 0.000 0.816 0.184
#> GSM153500     1  0.0592      0.925 0.988 0.000 0.012
#> GSM153503     1  0.1031      0.907 0.976 0.000 0.024
#> GSM153508     2  0.5254      0.792 0.000 0.736 0.264
#> GSM153409     2  0.4346      0.821 0.000 0.816 0.184
#> GSM153426     2  0.4346      0.821 0.000 0.816 0.184
#> GSM153431     2  0.3921      0.839 0.036 0.884 0.080
#> GSM153438     2  0.4346      0.821 0.000 0.816 0.184
#> GSM153440     2  0.7297      0.710 0.172 0.708 0.120
#> GSM153447     1  0.0747      0.923 0.984 0.000 0.016
#> GSM153450     2  0.1267      0.862 0.004 0.972 0.024
#> GSM153456     2  0.4346      0.821 0.000 0.816 0.184
#> GSM153457     2  0.4346      0.821 0.000 0.816 0.184
#> GSM153458     2  0.4346      0.821 0.000 0.816 0.184
#> GSM153459     2  0.4346      0.821 0.000 0.816 0.184
#> GSM153460     2  0.4346      0.821 0.000 0.816 0.184
#> GSM153461     2  0.3649      0.850 0.036 0.896 0.068
#> GSM153463     1  0.2959      0.786 0.900 0.000 0.100
#> GSM153464     2  0.4346      0.821 0.000 0.816 0.184
#> GSM153466     2  0.2651      0.860 0.012 0.928 0.060
#> GSM153467     2  0.4178      0.827 0.000 0.828 0.172
#> GSM153468     2  0.2200      0.862 0.004 0.940 0.056
#> GSM153469     2  0.3193      0.861 0.004 0.896 0.100
#> GSM153470     2  0.4235      0.824 0.000 0.824 0.176
#> GSM153471     2  0.4291      0.823 0.000 0.820 0.180
#> GSM153472     2  0.8117      0.616 0.236 0.636 0.128
#> GSM153473     1  0.0424      0.924 0.992 0.000 0.008
#> GSM153474     1  0.0747      0.922 0.984 0.000 0.016
#> GSM153475     2  0.2486      0.862 0.008 0.932 0.060
#> GSM153476     2  0.5804      0.796 0.088 0.800 0.112
#> GSM153478     2  0.7860      0.658 0.204 0.664 0.132
#> GSM153480     2  0.4346      0.821 0.000 0.816 0.184
#> GSM153486     2  0.3340      0.843 0.000 0.880 0.120
#> GSM153487     2  0.7256      0.716 0.164 0.712 0.124
#> GSM153499     2  0.2550      0.860 0.012 0.932 0.056
#> GSM153504     1  0.0424      0.925 0.992 0.000 0.008
#> GSM153507     1  0.3690      0.784 0.884 0.016 0.100
#> GSM153404     2  0.4095      0.841 0.056 0.880 0.064
#> GSM153407     2  0.7447      0.702 0.184 0.696 0.120
#> GSM153408     2  0.1289      0.860 0.000 0.968 0.032
#> GSM153410     2  0.1529      0.860 0.000 0.960 0.040
#> GSM153411     3  0.6154      0.967 0.408 0.000 0.592
#> GSM153412     2  0.1529      0.860 0.000 0.960 0.040
#> GSM153413     2  0.7026      0.739 0.152 0.728 0.120
#> GSM153414     2  0.3028      0.851 0.032 0.920 0.048
#> GSM153415     2  0.2774      0.860 0.008 0.920 0.072
#> GSM153416     2  0.4178      0.826 0.000 0.828 0.172
#> GSM153417     3  0.6126      0.984 0.400 0.000 0.600
#> GSM153418     2  0.1289      0.860 0.000 0.968 0.032
#> GSM153420     3  0.6095      0.988 0.392 0.000 0.608
#> GSM153421     3  0.6095      0.988 0.392 0.000 0.608
#> GSM153422     3  0.6095      0.988 0.392 0.000 0.608
#> GSM153424     2  0.3028      0.851 0.032 0.920 0.048
#> GSM153430     2  0.7016      0.731 0.156 0.728 0.116
#> GSM153432     2  0.1399      0.861 0.004 0.968 0.028
#> GSM153434     2  0.6107      0.782 0.100 0.784 0.116
#> GSM153435     2  0.4346      0.821 0.000 0.816 0.184
#> GSM153436     2  0.6322      0.774 0.120 0.772 0.108
#> GSM153437     2  0.4346      0.821 0.000 0.816 0.184
#> GSM153439     2  0.1711      0.862 0.008 0.960 0.032
#> GSM153441     2  0.3434      0.850 0.032 0.904 0.064
#> GSM153442     2  0.3499      0.846 0.028 0.900 0.072
#> GSM153443     2  0.4346      0.821 0.000 0.816 0.184
#> GSM153445     2  0.4346      0.821 0.000 0.816 0.184
#> GSM153446     2  0.4346      0.821 0.000 0.816 0.184
#> GSM153449     2  0.5243      0.814 0.072 0.828 0.100
#> GSM153453     2  0.8221      0.602 0.248 0.624 0.128
#> GSM153454     1  0.1411      0.905 0.964 0.000 0.036
#> GSM153455     2  0.2804      0.863 0.016 0.924 0.060
#> GSM153462     2  0.4178      0.826 0.000 0.828 0.172
#> GSM153465     2  0.3038      0.847 0.000 0.896 0.104
#> GSM153481     2  0.4121      0.831 0.000 0.832 0.168
#> GSM153482     2  0.5657      0.801 0.088 0.808 0.104
#> GSM153483     2  0.2703      0.863 0.016 0.928 0.056
#> GSM153485     2  0.3764      0.851 0.040 0.892 0.068
#> GSM153489     2  0.6597      0.762 0.124 0.756 0.120
#> GSM153490     1  0.1765      0.894 0.956 0.004 0.040
#> GSM153491     2  0.6979      0.740 0.140 0.732 0.128
#> GSM153492     1  0.4745      0.652 0.852 0.068 0.080
#> GSM153493     1  0.0237      0.925 0.996 0.000 0.004
#> GSM153494     2  0.2703      0.860 0.016 0.928 0.056
#> GSM153495     1  0.0424      0.926 0.992 0.000 0.008
#> GSM153498     2  0.2902      0.859 0.016 0.920 0.064
#> GSM153501     1  0.0237      0.925 0.996 0.000 0.004
#> GSM153502     1  0.0592      0.925 0.988 0.000 0.012
#> GSM153505     1  0.1411      0.894 0.964 0.000 0.036
#> GSM153506     2  0.4346      0.821 0.000 0.816 0.184

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     2  0.2813      0.677 0.024 0.896 0.000 0.080
#> GSM153406     2  0.2216      0.697 0.000 0.908 0.000 0.092
#> GSM153419     2  0.5119      0.569 0.124 0.764 0.000 0.112
#> GSM153423     2  0.4843      0.498 0.000 0.604 0.000 0.396
#> GSM153425     2  0.2742      0.690 0.000 0.900 0.024 0.076
#> GSM153427     2  0.1557      0.704 0.000 0.944 0.000 0.056
#> GSM153428     2  0.1792      0.696 0.000 0.932 0.000 0.068
#> GSM153429     2  0.1474      0.706 0.000 0.948 0.000 0.052
#> GSM153433     2  0.4956      0.578 0.108 0.776 0.000 0.116
#> GSM153444     2  0.1637      0.704 0.000 0.940 0.000 0.060
#> GSM153448     2  0.1474      0.705 0.000 0.948 0.000 0.052
#> GSM153451     2  0.4888      0.478 0.000 0.588 0.000 0.412
#> GSM153452     2  0.1557      0.698 0.000 0.944 0.000 0.056
#> GSM153477     2  0.4564      0.558 0.000 0.672 0.000 0.328
#> GSM153479     2  0.1940      0.705 0.000 0.924 0.000 0.076
#> GSM153484     2  0.3528      0.658 0.000 0.808 0.000 0.192
#> GSM153488     2  0.4735      0.609 0.068 0.784 0.000 0.148
#> GSM153496     2  0.5369      0.555 0.112 0.744 0.000 0.144
#> GSM153497     2  0.4877      0.484 0.000 0.592 0.000 0.408
#> GSM153500     1  0.0376      0.936 0.992 0.004 0.004 0.000
#> GSM153503     1  0.1743      0.920 0.940 0.004 0.056 0.000
#> GSM153508     4  0.3970      0.000 0.004 0.124 0.036 0.836
#> GSM153409     2  0.4888      0.478 0.000 0.588 0.000 0.412
#> GSM153426     2  0.4888      0.478 0.000 0.588 0.000 0.412
#> GSM153431     2  0.2334      0.676 0.004 0.908 0.000 0.088
#> GSM153438     2  0.4888      0.478 0.000 0.588 0.000 0.412
#> GSM153440     2  0.5369      0.536 0.144 0.744 0.000 0.112
#> GSM153447     1  0.0895      0.936 0.976 0.004 0.020 0.000
#> GSM153450     2  0.1637      0.704 0.000 0.940 0.000 0.060
#> GSM153456     2  0.4888      0.478 0.000 0.588 0.000 0.412
#> GSM153457     2  0.4888      0.478 0.000 0.588 0.000 0.412
#> GSM153458     2  0.4888      0.478 0.000 0.588 0.000 0.412
#> GSM153459     2  0.4877      0.484 0.000 0.592 0.000 0.408
#> GSM153460     2  0.4877      0.484 0.000 0.592 0.000 0.408
#> GSM153461     2  0.1978      0.691 0.004 0.928 0.000 0.068
#> GSM153463     1  0.3448      0.807 0.828 0.004 0.168 0.000
#> GSM153464     2  0.4888      0.478 0.000 0.588 0.000 0.412
#> GSM153466     2  0.2412      0.702 0.008 0.908 0.000 0.084
#> GSM153467     2  0.4804      0.511 0.000 0.616 0.000 0.384
#> GSM153468     2  0.2081      0.705 0.000 0.916 0.000 0.084
#> GSM153469     2  0.3873      0.642 0.000 0.772 0.000 0.228
#> GSM153470     2  0.4855      0.492 0.000 0.600 0.000 0.400
#> GSM153471     2  0.4855      0.489 0.000 0.600 0.000 0.400
#> GSM153472     2  0.6229      0.424 0.204 0.664 0.000 0.132
#> GSM153473     1  0.0524      0.937 0.988 0.008 0.004 0.000
#> GSM153474     1  0.0859      0.936 0.980 0.004 0.008 0.008
#> GSM153475     2  0.2799      0.704 0.008 0.884 0.000 0.108
#> GSM153476     2  0.4364      0.631 0.056 0.808 0.000 0.136
#> GSM153478     2  0.5874      0.477 0.176 0.700 0.000 0.124
#> GSM153480     2  0.4877      0.484 0.000 0.592 0.000 0.408
#> GSM153486     2  0.4304      0.594 0.000 0.716 0.000 0.284
#> GSM153487     2  0.5763      0.529 0.132 0.712 0.000 0.156
#> GSM153499     2  0.2281      0.701 0.000 0.904 0.000 0.096
#> GSM153504     1  0.0657      0.937 0.984 0.004 0.012 0.000
#> GSM153507     1  0.4264      0.823 0.844 0.028 0.048 0.080
#> GSM153404     2  0.2813      0.677 0.024 0.896 0.000 0.080
#> GSM153407     2  0.5507      0.526 0.156 0.732 0.000 0.112
#> GSM153408     2  0.2216      0.697 0.000 0.908 0.000 0.092
#> GSM153410     2  0.2345      0.695 0.000 0.900 0.000 0.100
#> GSM153411     3  0.1867      0.960 0.072 0.000 0.928 0.000
#> GSM153412     2  0.2345      0.695 0.000 0.900 0.000 0.100
#> GSM153413     2  0.5119      0.569 0.124 0.764 0.000 0.112
#> GSM153414     2  0.1867      0.695 0.000 0.928 0.000 0.072
#> GSM153415     2  0.2011      0.704 0.000 0.920 0.000 0.080
#> GSM153416     2  0.4843      0.498 0.000 0.604 0.000 0.396
#> GSM153417     3  0.1637      0.976 0.060 0.000 0.940 0.000
#> GSM153418     2  0.2216      0.697 0.000 0.908 0.000 0.092
#> GSM153420     3  0.1211      0.980 0.040 0.000 0.960 0.000
#> GSM153421     3  0.1302      0.981 0.044 0.000 0.956 0.000
#> GSM153422     3  0.1211      0.980 0.040 0.000 0.960 0.000
#> GSM153424     2  0.1867      0.695 0.000 0.928 0.000 0.072
#> GSM153430     2  0.5226      0.557 0.128 0.756 0.000 0.116
#> GSM153432     2  0.1557      0.704 0.000 0.944 0.000 0.056
#> GSM153434     2  0.4274      0.613 0.072 0.820 0.000 0.108
#> GSM153435     2  0.4843      0.499 0.000 0.604 0.000 0.396
#> GSM153436     2  0.4599      0.606 0.088 0.800 0.000 0.112
#> GSM153437     2  0.4888      0.478 0.000 0.588 0.000 0.412
#> GSM153439     2  0.1474      0.706 0.000 0.948 0.000 0.052
#> GSM153441     2  0.2053      0.691 0.004 0.924 0.000 0.072
#> GSM153442     2  0.1637      0.687 0.000 0.940 0.000 0.060
#> GSM153443     2  0.4888      0.478 0.000 0.588 0.000 0.412
#> GSM153445     2  0.4888      0.478 0.000 0.588 0.000 0.412
#> GSM153446     2  0.4877      0.484 0.000 0.592 0.000 0.408
#> GSM153449     2  0.3525      0.642 0.040 0.860 0.000 0.100
#> GSM153453     2  0.6265      0.414 0.220 0.656 0.000 0.124
#> GSM153454     1  0.1824      0.918 0.936 0.004 0.060 0.000
#> GSM153455     2  0.2611      0.707 0.008 0.896 0.000 0.096
#> GSM153462     2  0.4843      0.498 0.000 0.604 0.000 0.396
#> GSM153465     2  0.3907      0.632 0.000 0.768 0.000 0.232
#> GSM153481     2  0.4661      0.537 0.000 0.652 0.000 0.348
#> GSM153482     2  0.4205      0.637 0.056 0.820 0.000 0.124
#> GSM153483     2  0.2589      0.700 0.000 0.884 0.000 0.116
#> GSM153485     2  0.2882      0.689 0.024 0.892 0.000 0.084
#> GSM153489     2  0.5031      0.582 0.092 0.768 0.000 0.140
#> GSM153490     1  0.2153      0.913 0.936 0.008 0.036 0.020
#> GSM153491     2  0.5407      0.553 0.108 0.740 0.000 0.152
#> GSM153492     1  0.4488      0.725 0.820 0.096 0.008 0.076
#> GSM153493     1  0.0895      0.937 0.976 0.004 0.020 0.000
#> GSM153494     2  0.2345      0.701 0.000 0.900 0.000 0.100
#> GSM153495     1  0.0657      0.938 0.984 0.004 0.012 0.000
#> GSM153498     2  0.2593      0.699 0.004 0.892 0.000 0.104
#> GSM153501     1  0.0895      0.937 0.976 0.004 0.020 0.000
#> GSM153502     1  0.0376      0.936 0.992 0.004 0.004 0.000
#> GSM153505     1  0.1978      0.911 0.928 0.004 0.068 0.000
#> GSM153506     2  0.4877      0.480 0.000 0.592 0.000 0.408

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     1  0.3561     0.7821 0.740 0.260 0.000 0.000 0.000
#> GSM153406     2  0.4425    -0.3498 0.452 0.544 0.004 0.000 0.000
#> GSM153419     1  0.4672     0.7354 0.748 0.176 0.012 0.064 0.000
#> GSM153423     2  0.0510     0.8129 0.016 0.984 0.000 0.000 0.000
#> GSM153425     1  0.4737     0.7741 0.680 0.284 0.012 0.000 0.024
#> GSM153427     1  0.4440     0.5572 0.528 0.468 0.004 0.000 0.000
#> GSM153428     1  0.4029     0.7681 0.680 0.316 0.004 0.000 0.000
#> GSM153429     1  0.4415     0.6094 0.552 0.444 0.004 0.000 0.000
#> GSM153433     1  0.5033     0.7428 0.720 0.196 0.020 0.064 0.000
#> GSM153444     1  0.4443     0.5494 0.524 0.472 0.004 0.000 0.000
#> GSM153448     1  0.4383     0.6509 0.572 0.424 0.004 0.000 0.000
#> GSM153451     2  0.0000     0.8152 0.000 1.000 0.000 0.000 0.000
#> GSM153452     1  0.4084     0.7622 0.668 0.328 0.004 0.000 0.000
#> GSM153477     2  0.2286     0.7115 0.108 0.888 0.004 0.000 0.000
#> GSM153479     1  0.4436     0.6863 0.596 0.396 0.008 0.000 0.000
#> GSM153484     2  0.4494    -0.0679 0.380 0.608 0.012 0.000 0.000
#> GSM153488     1  0.4545     0.7584 0.752 0.192 0.028 0.028 0.000
#> GSM153496     1  0.4861     0.7313 0.748 0.168 0.036 0.048 0.000
#> GSM153497     2  0.0162     0.8161 0.004 0.996 0.000 0.000 0.000
#> GSM153500     4  0.0324     0.9013 0.004 0.000 0.000 0.992 0.004
#> GSM153503     4  0.1544     0.8836 0.000 0.000 0.000 0.932 0.068
#> GSM153508     3  0.1012     0.0000 0.012 0.020 0.968 0.000 0.000
#> GSM153409     2  0.0290     0.8152 0.008 0.992 0.000 0.000 0.000
#> GSM153426     2  0.0000     0.8152 0.000 1.000 0.000 0.000 0.000
#> GSM153431     1  0.3992     0.7798 0.720 0.268 0.012 0.000 0.000
#> GSM153438     2  0.0000     0.8152 0.000 1.000 0.000 0.000 0.000
#> GSM153440     1  0.4872     0.7182 0.744 0.164 0.020 0.072 0.000
#> GSM153447     4  0.0771     0.9025 0.004 0.000 0.000 0.976 0.020
#> GSM153450     1  0.4443     0.5494 0.524 0.472 0.004 0.000 0.000
#> GSM153456     2  0.0000     0.8152 0.000 1.000 0.000 0.000 0.000
#> GSM153457     2  0.0000     0.8152 0.000 1.000 0.000 0.000 0.000
#> GSM153458     2  0.0000     0.8152 0.000 1.000 0.000 0.000 0.000
#> GSM153459     2  0.0404     0.8148 0.012 0.988 0.000 0.000 0.000
#> GSM153460     2  0.0162     0.8161 0.004 0.996 0.000 0.000 0.000
#> GSM153461     1  0.4025     0.7786 0.700 0.292 0.008 0.000 0.000
#> GSM153463     4  0.3003     0.7781 0.000 0.000 0.000 0.812 0.188
#> GSM153464     2  0.0000     0.8152 0.000 1.000 0.000 0.000 0.000
#> GSM153466     1  0.4858     0.6426 0.556 0.424 0.012 0.008 0.000
#> GSM153467     2  0.1121     0.7889 0.044 0.956 0.000 0.000 0.000
#> GSM153468     1  0.4455     0.6743 0.588 0.404 0.008 0.000 0.000
#> GSM153469     2  0.4482    -0.0224 0.376 0.612 0.012 0.000 0.000
#> GSM153470     2  0.0566     0.8135 0.012 0.984 0.004 0.000 0.000
#> GSM153471     2  0.0671     0.8104 0.016 0.980 0.004 0.000 0.000
#> GSM153472     1  0.4833     0.6486 0.748 0.108 0.012 0.132 0.000
#> GSM153473     4  0.0451     0.9024 0.008 0.000 0.000 0.988 0.004
#> GSM153474     4  0.0671     0.8977 0.016 0.000 0.000 0.980 0.004
#> GSM153475     1  0.4907     0.5378 0.512 0.468 0.012 0.008 0.000
#> GSM153476     1  0.4509     0.7679 0.744 0.208 0.024 0.024 0.000
#> GSM153478     1  0.4605     0.6803 0.768 0.116 0.012 0.104 0.000
#> GSM153480     2  0.0162     0.8161 0.004 0.996 0.000 0.000 0.000
#> GSM153486     2  0.3013     0.6270 0.160 0.832 0.008 0.000 0.000
#> GSM153487     1  0.5036     0.7111 0.740 0.164 0.044 0.052 0.000
#> GSM153499     1  0.4921     0.7187 0.604 0.360 0.036 0.000 0.000
#> GSM153504     4  0.0798     0.9012 0.008 0.000 0.000 0.976 0.016
#> GSM153507     4  0.5463     0.5299 0.292 0.000 0.020 0.636 0.052
#> GSM153404     1  0.3561     0.7821 0.740 0.260 0.000 0.000 0.000
#> GSM153407     1  0.5040     0.7099 0.732 0.164 0.020 0.084 0.000
#> GSM153408     2  0.4425    -0.3498 0.452 0.544 0.004 0.000 0.000
#> GSM153410     2  0.4415    -0.3250 0.444 0.552 0.004 0.000 0.000
#> GSM153411     5  0.1121     0.9356 0.000 0.000 0.000 0.044 0.956
#> GSM153412     2  0.4415    -0.3250 0.444 0.552 0.004 0.000 0.000
#> GSM153413     1  0.4672     0.7354 0.748 0.176 0.012 0.064 0.000
#> GSM153414     1  0.4029     0.7684 0.680 0.316 0.004 0.000 0.000
#> GSM153415     1  0.4387     0.7532 0.640 0.348 0.012 0.000 0.000
#> GSM153416     2  0.0510     0.8129 0.016 0.984 0.000 0.000 0.000
#> GSM153417     5  0.0880     0.9574 0.000 0.000 0.000 0.032 0.968
#> GSM153418     2  0.4425    -0.3498 0.452 0.544 0.004 0.000 0.000
#> GSM153420     5  0.0162     0.9639 0.000 0.000 0.000 0.004 0.996
#> GSM153421     5  0.0404     0.9667 0.000 0.000 0.000 0.012 0.988
#> GSM153422     5  0.0162     0.9639 0.000 0.000 0.000 0.004 0.996
#> GSM153424     1  0.4009     0.7707 0.684 0.312 0.004 0.000 0.000
#> GSM153430     1  0.4959     0.7307 0.732 0.180 0.020 0.068 0.000
#> GSM153432     1  0.4440     0.5572 0.528 0.468 0.004 0.000 0.000
#> GSM153434     1  0.4692     0.7653 0.732 0.212 0.020 0.036 0.000
#> GSM153435     2  0.0510     0.8123 0.016 0.984 0.000 0.000 0.000
#> GSM153436     1  0.4843     0.7568 0.728 0.204 0.020 0.048 0.000
#> GSM153437     2  0.0000     0.8152 0.000 1.000 0.000 0.000 0.000
#> GSM153439     1  0.4415     0.6094 0.552 0.444 0.004 0.000 0.000
#> GSM153441     1  0.4299     0.7675 0.672 0.316 0.008 0.004 0.000
#> GSM153442     1  0.4130     0.7782 0.696 0.292 0.012 0.000 0.000
#> GSM153443     2  0.0000     0.8152 0.000 1.000 0.000 0.000 0.000
#> GSM153445     2  0.0000     0.8152 0.000 1.000 0.000 0.000 0.000
#> GSM153446     2  0.0162     0.8161 0.004 0.996 0.000 0.000 0.000
#> GSM153449     1  0.4422     0.7810 0.732 0.232 0.016 0.020 0.000
#> GSM153453     1  0.5063     0.6399 0.720 0.116 0.008 0.156 0.000
#> GSM153454     4  0.1704     0.8845 0.004 0.000 0.000 0.928 0.068
#> GSM153455     1  0.4777     0.6237 0.548 0.436 0.008 0.008 0.000
#> GSM153462     2  0.0510     0.8129 0.016 0.984 0.000 0.000 0.000
#> GSM153465     2  0.4040     0.3373 0.276 0.712 0.012 0.000 0.000
#> GSM153481     2  0.2660     0.6863 0.128 0.864 0.008 0.000 0.000
#> GSM153482     1  0.4483     0.7711 0.740 0.216 0.020 0.024 0.000
#> GSM153483     1  0.4958     0.6678 0.568 0.400 0.032 0.000 0.000
#> GSM153485     1  0.4607     0.7640 0.664 0.312 0.012 0.012 0.000
#> GSM153489     1  0.4754     0.7469 0.748 0.180 0.036 0.036 0.000
#> GSM153490     4  0.3633     0.7989 0.116 0.000 0.012 0.832 0.040
#> GSM153491     1  0.4828     0.7289 0.752 0.164 0.040 0.044 0.000
#> GSM153492     4  0.3918     0.6099 0.232 0.000 0.008 0.752 0.008
#> GSM153493     4  0.0703     0.9020 0.000 0.000 0.000 0.976 0.024
#> GSM153494     1  0.4849     0.7190 0.608 0.360 0.032 0.000 0.000
#> GSM153495     4  0.0566     0.9036 0.004 0.000 0.000 0.984 0.012
#> GSM153498     1  0.4880     0.7276 0.616 0.348 0.036 0.000 0.000
#> GSM153501     4  0.0703     0.9020 0.000 0.000 0.000 0.976 0.024
#> GSM153502     4  0.0324     0.9013 0.004 0.000 0.000 0.992 0.004
#> GSM153505     4  0.1732     0.8747 0.000 0.000 0.000 0.920 0.080
#> GSM153506     2  0.0162     0.8154 0.004 0.996 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     2  0.2344      0.755 0.076 0.892 0.004 0.000 0.000 0.028
#> GSM153406     2  0.4280      0.434 0.428 0.556 0.008 0.000 0.000 0.008
#> GSM153419     2  0.3637      0.681 0.040 0.788 0.000 0.008 0.000 0.164
#> GSM153423     1  0.0632      0.892 0.976 0.024 0.000 0.000 0.000 0.000
#> GSM153425     2  0.3077      0.680 0.008 0.836 0.008 0.000 0.012 0.136
#> GSM153427     2  0.3983      0.582 0.348 0.640 0.008 0.000 0.000 0.004
#> GSM153428     2  0.2265      0.747 0.068 0.900 0.008 0.000 0.000 0.024
#> GSM153429     2  0.4000      0.614 0.324 0.660 0.008 0.000 0.000 0.008
#> GSM153433     2  0.2994      0.664 0.008 0.820 0.000 0.008 0.000 0.164
#> GSM153444     2  0.3996      0.577 0.352 0.636 0.008 0.000 0.000 0.004
#> GSM153448     2  0.3721      0.640 0.308 0.684 0.004 0.000 0.000 0.004
#> GSM153451     1  0.0146      0.897 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM153452     2  0.2408      0.756 0.108 0.876 0.004 0.000 0.000 0.012
#> GSM153477     1  0.2615      0.764 0.852 0.136 0.008 0.000 0.000 0.004
#> GSM153479     2  0.4158      0.680 0.280 0.688 0.012 0.000 0.000 0.020
#> GSM153484     1  0.4579     -0.246 0.496 0.476 0.016 0.000 0.000 0.012
#> GSM153488     2  0.3897      0.720 0.064 0.804 0.024 0.004 0.000 0.104
#> GSM153496     2  0.4426      0.695 0.052 0.764 0.036 0.008 0.000 0.140
#> GSM153497     1  0.0146      0.898 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM153500     4  0.0363      0.877 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM153503     4  0.1444      0.863 0.000 0.000 0.000 0.928 0.072 0.000
#> GSM153508     3  0.0260      0.000 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM153409     1  0.0551      0.896 0.984 0.008 0.004 0.000 0.000 0.004
#> GSM153426     1  0.0146      0.897 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM153431     2  0.1577      0.730 0.016 0.940 0.008 0.000 0.000 0.036
#> GSM153438     1  0.0146      0.897 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM153440     2  0.3163      0.656 0.012 0.808 0.000 0.008 0.000 0.172
#> GSM153447     4  0.1341      0.870 0.000 0.000 0.000 0.948 0.028 0.024
#> GSM153450     2  0.3996      0.577 0.352 0.636 0.008 0.000 0.000 0.004
#> GSM153456     1  0.0146      0.897 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM153457     1  0.0146      0.897 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM153458     1  0.0146      0.897 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM153459     1  0.0508      0.896 0.984 0.012 0.004 0.000 0.000 0.000
#> GSM153460     1  0.0146      0.898 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM153461     2  0.1901      0.743 0.040 0.924 0.008 0.000 0.000 0.028
#> GSM153463     4  0.3141      0.690 0.000 0.000 0.000 0.788 0.200 0.012
#> GSM153464     1  0.0146      0.897 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM153466     2  0.4428      0.629 0.312 0.648 0.008 0.000 0.000 0.032
#> GSM153467     1  0.1152      0.874 0.952 0.044 0.000 0.000 0.000 0.004
#> GSM153468     2  0.4216      0.668 0.292 0.676 0.012 0.000 0.000 0.020
#> GSM153469     1  0.4729     -0.230 0.500 0.464 0.016 0.000 0.000 0.020
#> GSM153470     1  0.0603      0.894 0.980 0.016 0.004 0.000 0.000 0.000
#> GSM153471     1  0.0858      0.885 0.968 0.028 0.004 0.000 0.000 0.000
#> GSM153472     2  0.4314      0.608 0.004 0.744 0.008 0.072 0.000 0.172
#> GSM153473     4  0.1036      0.875 0.000 0.004 0.000 0.964 0.008 0.024
#> GSM153474     4  0.0914      0.866 0.000 0.016 0.000 0.968 0.000 0.016
#> GSM153475     2  0.4468      0.555 0.364 0.604 0.008 0.000 0.000 0.024
#> GSM153476     2  0.3527      0.736 0.068 0.832 0.020 0.004 0.000 0.076
#> GSM153478     2  0.3662      0.642 0.004 0.780 0.000 0.044 0.000 0.172
#> GSM153480     1  0.0146      0.898 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM153486     1  0.3219      0.668 0.792 0.192 0.012 0.000 0.000 0.004
#> GSM153487     2  0.4695      0.677 0.064 0.724 0.040 0.000 0.000 0.172
#> GSM153499     2  0.4244      0.733 0.196 0.740 0.040 0.000 0.000 0.024
#> GSM153504     4  0.1867      0.835 0.000 0.000 0.000 0.916 0.020 0.064
#> GSM153507     6  0.3889      0.213 0.000 0.068 0.000 0.104 0.028 0.800
#> GSM153404     2  0.2344      0.755 0.076 0.892 0.004 0.000 0.000 0.028
#> GSM153407     2  0.3295      0.648 0.012 0.800 0.000 0.012 0.000 0.176
#> GSM153408     2  0.4280      0.434 0.428 0.556 0.008 0.000 0.000 0.008
#> GSM153410     2  0.4291      0.417 0.436 0.548 0.008 0.000 0.000 0.008
#> GSM153411     5  0.0820      0.949 0.000 0.000 0.000 0.016 0.972 0.012
#> GSM153412     2  0.4291      0.417 0.436 0.548 0.008 0.000 0.000 0.008
#> GSM153413     2  0.3637      0.681 0.040 0.788 0.000 0.008 0.000 0.164
#> GSM153414     2  0.2517      0.755 0.100 0.876 0.008 0.000 0.000 0.016
#> GSM153415     2  0.4166      0.732 0.124 0.760 0.008 0.000 0.000 0.108
#> GSM153416     1  0.0632      0.892 0.976 0.024 0.000 0.000 0.000 0.000
#> GSM153417     5  0.0260      0.965 0.000 0.000 0.000 0.008 0.992 0.000
#> GSM153418     2  0.4280      0.434 0.428 0.556 0.008 0.000 0.000 0.008
#> GSM153420     5  0.0713      0.971 0.000 0.000 0.000 0.000 0.972 0.028
#> GSM153421     5  0.0458      0.972 0.000 0.000 0.000 0.000 0.984 0.016
#> GSM153422     5  0.0713      0.971 0.000 0.000 0.000 0.000 0.972 0.028
#> GSM153424     2  0.2344      0.748 0.068 0.896 0.008 0.000 0.000 0.028
#> GSM153430     2  0.3128      0.662 0.012 0.812 0.000 0.008 0.000 0.168
#> GSM153432     2  0.3983      0.582 0.348 0.640 0.008 0.000 0.000 0.004
#> GSM153434     2  0.2868      0.705 0.028 0.840 0.000 0.000 0.000 0.132
#> GSM153435     1  0.0603      0.896 0.980 0.016 0.000 0.000 0.000 0.004
#> GSM153436     2  0.2488      0.689 0.008 0.864 0.000 0.004 0.000 0.124
#> GSM153437     1  0.0146      0.897 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM153439     2  0.4000      0.614 0.324 0.660 0.008 0.000 0.000 0.008
#> GSM153441     2  0.3370      0.760 0.140 0.812 0.004 0.000 0.000 0.044
#> GSM153442     2  0.2604      0.755 0.076 0.880 0.008 0.000 0.000 0.036
#> GSM153443     1  0.0146      0.897 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM153445     1  0.0146      0.897 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM153446     1  0.0146      0.898 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM153449     2  0.2257      0.724 0.012 0.904 0.008 0.008 0.000 0.068
#> GSM153453     2  0.4389      0.593 0.004 0.732 0.004 0.084 0.000 0.176
#> GSM153454     4  0.2122      0.843 0.000 0.000 0.000 0.900 0.076 0.024
#> GSM153455     2  0.4459      0.638 0.320 0.640 0.008 0.000 0.000 0.032
#> GSM153462     1  0.0458      0.895 0.984 0.016 0.000 0.000 0.000 0.000
#> GSM153465     1  0.4058      0.355 0.660 0.320 0.016 0.000 0.000 0.004
#> GSM153481     1  0.3163      0.698 0.808 0.172 0.008 0.000 0.000 0.012
#> GSM153482     2  0.3442      0.739 0.068 0.840 0.024 0.004 0.000 0.064
#> GSM153483     2  0.4473      0.703 0.240 0.700 0.036 0.000 0.000 0.024
#> GSM153485     2  0.4008      0.754 0.172 0.768 0.012 0.004 0.000 0.044
#> GSM153489     2  0.4273      0.712 0.064 0.768 0.036 0.000 0.000 0.132
#> GSM153490     6  0.4916      0.280 0.000 0.016 0.000 0.444 0.032 0.508
#> GSM153491     2  0.4421      0.693 0.052 0.760 0.040 0.004 0.000 0.144
#> GSM153492     4  0.4940      0.222 0.000 0.160 0.000 0.684 0.012 0.144
#> GSM153493     4  0.0713      0.879 0.000 0.000 0.000 0.972 0.028 0.000
#> GSM153494     2  0.4208      0.731 0.200 0.740 0.036 0.000 0.000 0.024
#> GSM153495     4  0.0914      0.881 0.000 0.000 0.000 0.968 0.016 0.016
#> GSM153498     2  0.4331      0.738 0.188 0.740 0.040 0.000 0.000 0.032
#> GSM153501     4  0.0713      0.879 0.000 0.000 0.000 0.972 0.028 0.000
#> GSM153502     4  0.0632      0.876 0.000 0.000 0.000 0.976 0.000 0.024
#> GSM153505     4  0.1663      0.851 0.000 0.000 0.000 0.912 0.088 0.000
#> GSM153506     1  0.0146      0.898 0.996 0.004 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> ATC:hclust 105           0.2430 2
#> ATC:hclust 105           0.1458 3
#> ATC:hclust  78           0.1236 4
#> ATC:hclust  96           0.0483 5
#> ATC:hclust  93           0.0553 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.981       0.991         0.4413 0.558   0.558
#> 3 3 0.644           0.923       0.924         0.3805 0.630   0.429
#> 4 4 0.705           0.533       0.825         0.1537 0.923   0.799
#> 5 5 0.686           0.657       0.792         0.0901 0.822   0.520
#> 6 6 0.730           0.629       0.759         0.0527 0.906   0.634

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     2   0.000      0.994 0.000 1.000
#> GSM153406     2   0.000      0.994 0.000 1.000
#> GSM153419     1   0.000      0.983 1.000 0.000
#> GSM153423     2   0.000      0.994 0.000 1.000
#> GSM153425     2   0.469      0.887 0.100 0.900
#> GSM153427     2   0.000      0.994 0.000 1.000
#> GSM153428     2   0.000      0.994 0.000 1.000
#> GSM153429     2   0.000      0.994 0.000 1.000
#> GSM153433     1   0.000      0.983 1.000 0.000
#> GSM153444     2   0.000      0.994 0.000 1.000
#> GSM153448     2   0.000      0.994 0.000 1.000
#> GSM153451     2   0.000      0.994 0.000 1.000
#> GSM153452     2   0.000      0.994 0.000 1.000
#> GSM153477     2   0.000      0.994 0.000 1.000
#> GSM153479     2   0.000      0.994 0.000 1.000
#> GSM153484     2   0.000      0.994 0.000 1.000
#> GSM153488     1   0.163      0.963 0.976 0.024
#> GSM153496     1   0.000      0.983 1.000 0.000
#> GSM153497     2   0.000      0.994 0.000 1.000
#> GSM153500     1   0.000      0.983 1.000 0.000
#> GSM153503     1   0.000      0.983 1.000 0.000
#> GSM153508     2   0.000      0.994 0.000 1.000
#> GSM153409     2   0.000      0.994 0.000 1.000
#> GSM153426     2   0.000      0.994 0.000 1.000
#> GSM153431     2   0.000      0.994 0.000 1.000
#> GSM153438     2   0.000      0.994 0.000 1.000
#> GSM153440     1   0.000      0.983 1.000 0.000
#> GSM153447     1   0.000      0.983 1.000 0.000
#> GSM153450     2   0.000      0.994 0.000 1.000
#> GSM153456     2   0.000      0.994 0.000 1.000
#> GSM153457     2   0.000      0.994 0.000 1.000
#> GSM153458     2   0.000      0.994 0.000 1.000
#> GSM153459     2   0.000      0.994 0.000 1.000
#> GSM153460     2   0.000      0.994 0.000 1.000
#> GSM153461     2   0.000      0.994 0.000 1.000
#> GSM153463     1   0.000      0.983 1.000 0.000
#> GSM153464     2   0.000      0.994 0.000 1.000
#> GSM153466     2   0.000      0.994 0.000 1.000
#> GSM153467     2   0.000      0.994 0.000 1.000
#> GSM153468     2   0.000      0.994 0.000 1.000
#> GSM153469     2   0.000      0.994 0.000 1.000
#> GSM153470     2   0.000      0.994 0.000 1.000
#> GSM153471     2   0.000      0.994 0.000 1.000
#> GSM153472     1   0.000      0.983 1.000 0.000
#> GSM153473     1   0.000      0.983 1.000 0.000
#> GSM153474     1   0.000      0.983 1.000 0.000
#> GSM153475     2   0.000      0.994 0.000 1.000
#> GSM153476     2   0.000      0.994 0.000 1.000
#> GSM153478     1   0.000      0.983 1.000 0.000
#> GSM153480     2   0.000      0.994 0.000 1.000
#> GSM153486     2   0.000      0.994 0.000 1.000
#> GSM153487     2   0.653      0.797 0.168 0.832
#> GSM153499     2   0.000      0.994 0.000 1.000
#> GSM153504     1   0.000      0.983 1.000 0.000
#> GSM153507     1   0.000      0.983 1.000 0.000
#> GSM153404     2   0.000      0.994 0.000 1.000
#> GSM153407     1   0.000      0.983 1.000 0.000
#> GSM153408     2   0.000      0.994 0.000 1.000
#> GSM153410     2   0.000      0.994 0.000 1.000
#> GSM153411     1   0.000      0.983 1.000 0.000
#> GSM153412     2   0.000      0.994 0.000 1.000
#> GSM153413     1   0.518      0.869 0.884 0.116
#> GSM153414     2   0.000      0.994 0.000 1.000
#> GSM153415     2   0.000      0.994 0.000 1.000
#> GSM153416     2   0.000      0.994 0.000 1.000
#> GSM153417     1   0.000      0.983 1.000 0.000
#> GSM153418     2   0.000      0.994 0.000 1.000
#> GSM153420     1   0.000      0.983 1.000 0.000
#> GSM153421     1   0.000      0.983 1.000 0.000
#> GSM153422     1   0.000      0.983 1.000 0.000
#> GSM153424     2   0.000      0.994 0.000 1.000
#> GSM153430     1   0.000      0.983 1.000 0.000
#> GSM153432     2   0.000      0.994 0.000 1.000
#> GSM153434     2   0.000      0.994 0.000 1.000
#> GSM153435     2   0.000      0.994 0.000 1.000
#> GSM153436     2   0.000      0.994 0.000 1.000
#> GSM153437     2   0.000      0.994 0.000 1.000
#> GSM153439     2   0.000      0.994 0.000 1.000
#> GSM153441     2   0.000      0.994 0.000 1.000
#> GSM153442     2   0.000      0.994 0.000 1.000
#> GSM153443     2   0.000      0.994 0.000 1.000
#> GSM153445     2   0.000      0.994 0.000 1.000
#> GSM153446     2   0.000      0.994 0.000 1.000
#> GSM153449     1   0.730      0.755 0.796 0.204
#> GSM153453     1   0.000      0.983 1.000 0.000
#> GSM153454     1   0.000      0.983 1.000 0.000
#> GSM153455     2   0.000      0.994 0.000 1.000
#> GSM153462     2   0.000      0.994 0.000 1.000
#> GSM153465     2   0.000      0.994 0.000 1.000
#> GSM153481     2   0.000      0.994 0.000 1.000
#> GSM153482     2   0.000      0.994 0.000 1.000
#> GSM153483     2   0.000      0.994 0.000 1.000
#> GSM153485     2   0.000      0.994 0.000 1.000
#> GSM153489     2   0.541      0.857 0.124 0.876
#> GSM153490     1   0.000      0.983 1.000 0.000
#> GSM153491     1   0.730      0.755 0.796 0.204
#> GSM153492     1   0.000      0.983 1.000 0.000
#> GSM153493     1   0.000      0.983 1.000 0.000
#> GSM153494     2   0.000      0.994 0.000 1.000
#> GSM153495     1   0.000      0.983 1.000 0.000
#> GSM153498     2   0.000      0.994 0.000 1.000
#> GSM153501     1   0.000      0.983 1.000 0.000
#> GSM153502     1   0.000      0.983 1.000 0.000
#> GSM153505     1   0.000      0.983 1.000 0.000
#> GSM153506     2   0.000      0.994 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     3  0.2066     0.9055 0.000 0.060 0.940
#> GSM153406     2  0.0747     0.9541 0.000 0.984 0.016
#> GSM153419     3  0.0747     0.8677 0.016 0.000 0.984
#> GSM153423     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153425     3  0.3752     0.9346 0.000 0.144 0.856
#> GSM153427     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153428     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153429     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153433     3  0.0747     0.8677 0.016 0.000 0.984
#> GSM153444     3  0.3879     0.9315 0.000 0.152 0.848
#> GSM153448     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153451     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153452     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153477     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153479     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153484     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153488     3  0.0747     0.8677 0.016 0.000 0.984
#> GSM153496     3  0.0747     0.8677 0.016 0.000 0.984
#> GSM153497     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153500     1  0.3551     0.9654 0.868 0.000 0.132
#> GSM153503     1  0.3551     0.9654 0.868 0.000 0.132
#> GSM153508     3  0.2959     0.9241 0.000 0.100 0.900
#> GSM153409     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153426     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153431     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153438     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153440     3  0.0747     0.8677 0.016 0.000 0.984
#> GSM153447     1  0.3551     0.9654 0.868 0.000 0.132
#> GSM153450     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153456     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153457     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153458     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153459     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153460     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153461     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153463     1  0.1163     0.9309 0.972 0.000 0.028
#> GSM153464     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153466     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153467     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153468     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153469     2  0.0747     0.9541 0.000 0.984 0.016
#> GSM153470     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153471     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153472     3  0.0747     0.8677 0.016 0.000 0.984
#> GSM153473     1  0.3551     0.9654 0.868 0.000 0.132
#> GSM153474     1  0.3551     0.9654 0.868 0.000 0.132
#> GSM153475     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153476     3  0.3482     0.9320 0.000 0.128 0.872
#> GSM153478     3  0.0747     0.8677 0.016 0.000 0.984
#> GSM153480     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153486     2  0.5835     0.3722 0.000 0.660 0.340
#> GSM153487     3  0.0747     0.8790 0.000 0.016 0.984
#> GSM153499     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153504     1  0.3551     0.9654 0.868 0.000 0.132
#> GSM153507     1  0.3551     0.9654 0.868 0.000 0.132
#> GSM153404     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153407     3  0.0747     0.8677 0.016 0.000 0.984
#> GSM153408     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153410     2  0.0747     0.9541 0.000 0.984 0.016
#> GSM153411     1  0.0000     0.9184 1.000 0.000 0.000
#> GSM153412     2  0.0747     0.9541 0.000 0.984 0.016
#> GSM153413     3  0.0747     0.8677 0.016 0.000 0.984
#> GSM153414     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153415     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153416     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153417     1  0.0000     0.9184 1.000 0.000 0.000
#> GSM153418     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153420     1  0.0000     0.9184 1.000 0.000 0.000
#> GSM153421     1  0.0000     0.9184 1.000 0.000 0.000
#> GSM153422     1  0.0000     0.9184 1.000 0.000 0.000
#> GSM153424     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153430     3  0.0747     0.8677 0.016 0.000 0.984
#> GSM153432     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153434     3  0.3412     0.9313 0.000 0.124 0.876
#> GSM153435     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153436     3  0.2066     0.9056 0.000 0.060 0.940
#> GSM153437     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153439     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153441     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153442     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153443     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153445     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153446     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153449     3  0.0747     0.8677 0.016 0.000 0.984
#> GSM153453     3  0.0747     0.8677 0.016 0.000 0.984
#> GSM153454     1  0.3482     0.9647 0.872 0.000 0.128
#> GSM153455     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153462     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153465     2  0.0747     0.9541 0.000 0.984 0.016
#> GSM153481     2  0.0000     0.9667 0.000 1.000 0.000
#> GSM153482     3  0.3482     0.9320 0.000 0.128 0.872
#> GSM153483     2  0.6192     0.0978 0.000 0.580 0.420
#> GSM153485     3  0.3412     0.9312 0.000 0.124 0.876
#> GSM153489     3  0.0747     0.8790 0.000 0.016 0.984
#> GSM153490     1  0.2959     0.9581 0.900 0.000 0.100
#> GSM153491     3  0.0747     0.8677 0.016 0.000 0.984
#> GSM153492     1  0.3551     0.9654 0.868 0.000 0.132
#> GSM153493     1  0.3551     0.9654 0.868 0.000 0.132
#> GSM153494     3  0.3816     0.9349 0.000 0.148 0.852
#> GSM153495     1  0.3551     0.9654 0.868 0.000 0.132
#> GSM153498     3  0.3340     0.9300 0.000 0.120 0.880
#> GSM153501     1  0.3551     0.9654 0.868 0.000 0.132
#> GSM153502     1  0.3551     0.9654 0.868 0.000 0.132
#> GSM153505     1  0.2878     0.9569 0.904 0.000 0.096
#> GSM153506     2  0.0000     0.9667 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     3  0.3569     0.4337 0.000 0.000 0.804 0.196
#> GSM153406     2  0.5987     0.3190 0.000 0.520 0.440 0.040
#> GSM153419     3  0.5236    -0.4192 0.008 0.000 0.560 0.432
#> GSM153423     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153425     3  0.3074     0.4668 0.000 0.000 0.848 0.152
#> GSM153427     3  0.1867     0.5297 0.000 0.000 0.928 0.072
#> GSM153428     3  0.3024     0.4666 0.000 0.000 0.852 0.148
#> GSM153429     3  0.1118     0.5246 0.000 0.000 0.964 0.036
#> GSM153433     3  0.5161    -0.3823 0.008 0.000 0.592 0.400
#> GSM153444     3  0.1398     0.5349 0.000 0.004 0.956 0.040
#> GSM153448     3  0.1211     0.5347 0.000 0.000 0.960 0.040
#> GSM153451     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153452     3  0.2760     0.4776 0.000 0.000 0.872 0.128
#> GSM153477     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153479     3  0.3569     0.3609 0.000 0.000 0.804 0.196
#> GSM153484     3  0.3052     0.4327 0.000 0.004 0.860 0.136
#> GSM153488     4  0.5000     0.8440 0.000 0.000 0.496 0.504
#> GSM153496     4  0.5277     0.8843 0.008 0.000 0.460 0.532
#> GSM153497     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153500     1  0.1940     0.8781 0.924 0.000 0.000 0.076
#> GSM153503     1  0.0000     0.8972 1.000 0.000 0.000 0.000
#> GSM153508     3  0.4830    -0.3039 0.000 0.000 0.608 0.392
#> GSM153409     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153426     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153431     3  0.2760     0.4869 0.000 0.000 0.872 0.128
#> GSM153438     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153440     3  0.4898    -0.3709 0.000 0.000 0.584 0.416
#> GSM153447     1  0.1792     0.8819 0.932 0.000 0.000 0.068
#> GSM153450     3  0.1118     0.5346 0.000 0.000 0.964 0.036
#> GSM153456     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153457     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153458     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153459     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153460     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153461     3  0.1637     0.5322 0.000 0.000 0.940 0.060
#> GSM153463     1  0.1474     0.8872 0.948 0.000 0.000 0.052
#> GSM153464     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153466     3  0.1716     0.5245 0.000 0.000 0.936 0.064
#> GSM153467     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153468     3  0.3726     0.3446 0.000 0.000 0.788 0.212
#> GSM153469     2  0.6477     0.3800 0.000 0.552 0.368 0.080
#> GSM153470     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153471     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153472     4  0.5268     0.8900 0.008 0.000 0.452 0.540
#> GSM153473     1  0.1792     0.8811 0.932 0.000 0.000 0.068
#> GSM153474     1  0.1302     0.8894 0.956 0.000 0.000 0.044
#> GSM153475     3  0.3123     0.4158 0.000 0.000 0.844 0.156
#> GSM153476     3  0.4790    -0.2911 0.000 0.000 0.620 0.380
#> GSM153478     4  0.4972     0.8675 0.000 0.000 0.456 0.544
#> GSM153480     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153486     3  0.5611     0.0532 0.000 0.412 0.564 0.024
#> GSM153487     3  0.4998    -0.8358 0.000 0.000 0.512 0.488
#> GSM153499     3  0.3801     0.3309 0.000 0.000 0.780 0.220
#> GSM153504     1  0.0188     0.8971 0.996 0.000 0.000 0.004
#> GSM153507     1  0.3751     0.7719 0.800 0.000 0.004 0.196
#> GSM153404     3  0.2081     0.5224 0.000 0.000 0.916 0.084
#> GSM153407     3  0.4761    -0.2518 0.000 0.000 0.628 0.372
#> GSM153408     3  0.1792     0.5238 0.000 0.000 0.932 0.068
#> GSM153410     2  0.5894     0.4169 0.000 0.568 0.392 0.040
#> GSM153411     1  0.4804     0.7570 0.616 0.000 0.000 0.384
#> GSM153412     2  0.6222     0.3489 0.000 0.532 0.412 0.056
#> GSM153413     4  0.4967     0.7980 0.000 0.000 0.452 0.548
#> GSM153414     3  0.2281     0.5232 0.000 0.000 0.904 0.096
#> GSM153415     3  0.4008     0.3449 0.000 0.000 0.756 0.244
#> GSM153416     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153417     1  0.4804     0.7570 0.616 0.000 0.000 0.384
#> GSM153418     3  0.1792     0.5238 0.000 0.000 0.932 0.068
#> GSM153420     1  0.4804     0.7570 0.616 0.000 0.000 0.384
#> GSM153421     1  0.4804     0.7570 0.616 0.000 0.000 0.384
#> GSM153422     1  0.4804     0.7570 0.616 0.000 0.000 0.384
#> GSM153424     3  0.2760     0.4780 0.000 0.000 0.872 0.128
#> GSM153430     3  0.4877    -0.3585 0.000 0.000 0.592 0.408
#> GSM153432     3  0.1022     0.5315 0.000 0.000 0.968 0.032
#> GSM153434     3  0.4477    -0.0601 0.000 0.000 0.688 0.312
#> GSM153435     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153436     3  0.4713    -0.2387 0.000 0.000 0.640 0.360
#> GSM153437     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153439     3  0.1022     0.5250 0.000 0.000 0.968 0.032
#> GSM153441     3  0.1716     0.5297 0.000 0.000 0.936 0.064
#> GSM153442     3  0.2149     0.5186 0.000 0.000 0.912 0.088
#> GSM153443     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153445     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153446     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153449     3  0.4697    -0.3024 0.000 0.000 0.644 0.356
#> GSM153453     4  0.5865     0.8367 0.036 0.000 0.412 0.552
#> GSM153454     1  0.0000     0.8972 1.000 0.000 0.000 0.000
#> GSM153455     3  0.0817     0.5270 0.000 0.000 0.976 0.024
#> GSM153462     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153465     2  0.5673     0.3251 0.000 0.528 0.448 0.024
#> GSM153481     2  0.0000     0.9141 0.000 1.000 0.000 0.000
#> GSM153482     3  0.4713    -0.3462 0.000 0.000 0.640 0.360
#> GSM153483     3  0.7122     0.1287 0.000 0.248 0.560 0.192
#> GSM153485     3  0.4746    -0.3821 0.000 0.000 0.632 0.368
#> GSM153489     3  0.4999    -0.8490 0.000 0.000 0.508 0.492
#> GSM153490     1  0.0000     0.8972 1.000 0.000 0.000 0.000
#> GSM153491     3  0.5000    -0.8596 0.000 0.000 0.504 0.496
#> GSM153492     1  0.2530     0.8571 0.888 0.000 0.000 0.112
#> GSM153493     1  0.0188     0.8971 0.996 0.000 0.000 0.004
#> GSM153494     3  0.3764     0.3304 0.000 0.000 0.784 0.216
#> GSM153495     1  0.0000     0.8972 1.000 0.000 0.000 0.000
#> GSM153498     3  0.4776    -0.2945 0.000 0.000 0.624 0.376
#> GSM153501     1  0.0000     0.8972 1.000 0.000 0.000 0.000
#> GSM153502     1  0.2530     0.8575 0.888 0.000 0.000 0.112
#> GSM153505     1  0.0188     0.8966 0.996 0.000 0.000 0.004
#> GSM153506     2  0.0000     0.9141 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     3  0.5093     0.4423 0.180 0.000 0.696 0.124 0.000
#> GSM153406     3  0.6970     0.4362 0.084 0.216 0.572 0.128 0.000
#> GSM153419     1  0.6463     0.3510 0.464 0.000 0.344 0.192 0.000
#> GSM153423     2  0.0000     0.9961 0.000 1.000 0.000 0.000 0.000
#> GSM153425     3  0.3992     0.5361 0.124 0.000 0.796 0.080 0.000
#> GSM153427     3  0.1579     0.6181 0.024 0.000 0.944 0.032 0.000
#> GSM153428     3  0.3840     0.5414 0.116 0.000 0.808 0.076 0.000
#> GSM153429     3  0.3485     0.6012 0.124 0.000 0.828 0.048 0.000
#> GSM153433     1  0.6272     0.3249 0.468 0.000 0.380 0.152 0.000
#> GSM153444     3  0.1697     0.6218 0.060 0.000 0.932 0.008 0.000
#> GSM153448     3  0.2351     0.6139 0.088 0.000 0.896 0.016 0.000
#> GSM153451     2  0.0162     0.9963 0.000 0.996 0.000 0.004 0.000
#> GSM153452     3  0.4197     0.5347 0.148 0.000 0.776 0.076 0.000
#> GSM153477     2  0.0579     0.9846 0.000 0.984 0.008 0.008 0.000
#> GSM153479     3  0.5989     0.1383 0.412 0.000 0.476 0.112 0.000
#> GSM153484     3  0.5231     0.4021 0.316 0.004 0.624 0.056 0.000
#> GSM153488     1  0.3301     0.6542 0.848 0.000 0.072 0.080 0.000
#> GSM153496     1  0.3918     0.6484 0.804 0.000 0.100 0.096 0.000
#> GSM153497     2  0.0000     0.9961 0.000 1.000 0.000 0.000 0.000
#> GSM153500     4  0.4315     0.8130 0.024 0.000 0.000 0.700 0.276
#> GSM153503     4  0.4138     0.8451 0.000 0.000 0.000 0.616 0.384
#> GSM153508     1  0.4069     0.5502 0.792 0.000 0.096 0.112 0.000
#> GSM153409     2  0.0162     0.9963 0.000 0.996 0.000 0.004 0.000
#> GSM153426     2  0.0162     0.9963 0.000 0.996 0.000 0.004 0.000
#> GSM153431     3  0.3146     0.5862 0.092 0.000 0.856 0.052 0.000
#> GSM153438     2  0.0162     0.9963 0.000 0.996 0.000 0.004 0.000
#> GSM153440     1  0.6224     0.3241 0.468 0.000 0.388 0.144 0.000
#> GSM153447     4  0.4229     0.8098 0.020 0.000 0.000 0.704 0.276
#> GSM153450     3  0.1597     0.6221 0.048 0.000 0.940 0.012 0.000
#> GSM153456     2  0.0162     0.9963 0.000 0.996 0.000 0.004 0.000
#> GSM153457     2  0.0162     0.9963 0.000 0.996 0.000 0.004 0.000
#> GSM153458     2  0.0162     0.9963 0.000 0.996 0.000 0.004 0.000
#> GSM153459     2  0.0000     0.9961 0.000 1.000 0.000 0.000 0.000
#> GSM153460     2  0.0162     0.9963 0.000 0.996 0.000 0.004 0.000
#> GSM153461     3  0.1830     0.6179 0.040 0.000 0.932 0.028 0.000
#> GSM153463     4  0.4437     0.7377 0.004 0.000 0.000 0.532 0.464
#> GSM153464     2  0.0162     0.9963 0.000 0.996 0.000 0.004 0.000
#> GSM153466     3  0.2574     0.6064 0.112 0.000 0.876 0.012 0.000
#> GSM153467     2  0.0162     0.9963 0.000 0.996 0.000 0.004 0.000
#> GSM153468     1  0.5773    -0.0382 0.476 0.000 0.436 0.088 0.000
#> GSM153469     3  0.8138     0.1895 0.252 0.292 0.352 0.104 0.000
#> GSM153470     2  0.0451     0.9883 0.000 0.988 0.004 0.008 0.000
#> GSM153471     2  0.0162     0.9943 0.000 0.996 0.000 0.004 0.000
#> GSM153472     1  0.4117     0.6424 0.788 0.000 0.096 0.116 0.000
#> GSM153473     4  0.4130     0.8217 0.012 0.000 0.000 0.696 0.292
#> GSM153474     4  0.3949     0.8276 0.004 0.000 0.000 0.696 0.300
#> GSM153475     3  0.5467     0.3000 0.384 0.000 0.548 0.068 0.000
#> GSM153476     1  0.3875     0.5860 0.792 0.000 0.160 0.048 0.000
#> GSM153478     1  0.4498     0.6228 0.756 0.000 0.132 0.112 0.000
#> GSM153480     2  0.0000     0.9961 0.000 1.000 0.000 0.000 0.000
#> GSM153486     3  0.5970     0.4411 0.084 0.272 0.616 0.028 0.000
#> GSM153487     1  0.3176     0.6506 0.856 0.000 0.080 0.064 0.000
#> GSM153499     1  0.5770     0.1136 0.532 0.000 0.372 0.096 0.000
#> GSM153504     4  0.4505     0.8412 0.012 0.000 0.000 0.604 0.384
#> GSM153507     4  0.6524     0.2394 0.356 0.000 0.000 0.444 0.200
#> GSM153404     3  0.4588     0.5690 0.116 0.000 0.748 0.136 0.000
#> GSM153407     3  0.6239    -0.2587 0.404 0.000 0.452 0.144 0.000
#> GSM153408     3  0.4444     0.5722 0.104 0.000 0.760 0.136 0.000
#> GSM153410     3  0.7135     0.3995 0.080 0.256 0.536 0.128 0.000
#> GSM153411     5  0.0162     0.9950 0.004 0.000 0.000 0.000 0.996
#> GSM153412     3  0.7201     0.4173 0.096 0.220 0.548 0.136 0.000
#> GSM153413     1  0.4720     0.5942 0.736 0.000 0.124 0.140 0.000
#> GSM153414     3  0.3181     0.5838 0.072 0.000 0.856 0.072 0.000
#> GSM153415     3  0.6515     0.0520 0.388 0.000 0.420 0.192 0.000
#> GSM153416     2  0.0000     0.9961 0.000 1.000 0.000 0.000 0.000
#> GSM153417     5  0.0162     0.9950 0.004 0.000 0.000 0.000 0.996
#> GSM153418     3  0.4444     0.5722 0.104 0.000 0.760 0.136 0.000
#> GSM153420     5  0.0162     0.9952 0.004 0.000 0.000 0.000 0.996
#> GSM153421     5  0.0000     0.9958 0.000 0.000 0.000 0.000 1.000
#> GSM153422     5  0.0162     0.9952 0.004 0.000 0.000 0.000 0.996
#> GSM153424     3  0.3532     0.5646 0.092 0.000 0.832 0.076 0.000
#> GSM153430     1  0.6224     0.3177 0.468 0.000 0.388 0.144 0.000
#> GSM153432     3  0.4049     0.5937 0.164 0.000 0.780 0.056 0.000
#> GSM153434     3  0.5641    -0.1562 0.436 0.000 0.488 0.076 0.000
#> GSM153435     2  0.0162     0.9963 0.000 0.996 0.000 0.004 0.000
#> GSM153436     3  0.5816    -0.2055 0.440 0.000 0.468 0.092 0.000
#> GSM153437     2  0.0162     0.9963 0.000 0.996 0.000 0.004 0.000
#> GSM153439     3  0.3460     0.6024 0.128 0.000 0.828 0.044 0.000
#> GSM153441     3  0.3803     0.5763 0.140 0.000 0.804 0.056 0.000
#> GSM153442     3  0.3914     0.5589 0.164 0.000 0.788 0.048 0.000
#> GSM153443     2  0.0000     0.9961 0.000 1.000 0.000 0.000 0.000
#> GSM153445     2  0.0000     0.9961 0.000 1.000 0.000 0.000 0.000
#> GSM153446     2  0.0000     0.9961 0.000 1.000 0.000 0.000 0.000
#> GSM153449     1  0.5785     0.2687 0.504 0.000 0.404 0.092 0.000
#> GSM153453     1  0.4255     0.6382 0.776 0.000 0.096 0.128 0.000
#> GSM153454     4  0.4288     0.8435 0.004 0.000 0.000 0.612 0.384
#> GSM153455     3  0.3844     0.5948 0.164 0.000 0.792 0.044 0.000
#> GSM153462     2  0.0000     0.9961 0.000 1.000 0.000 0.000 0.000
#> GSM153465     3  0.7023     0.3948 0.112 0.288 0.528 0.072 0.000
#> GSM153481     2  0.0609     0.9806 0.000 0.980 0.000 0.020 0.000
#> GSM153482     1  0.3098     0.6092 0.836 0.000 0.148 0.016 0.000
#> GSM153483     1  0.7285    -0.0936 0.440 0.084 0.372 0.104 0.000
#> GSM153485     1  0.3011     0.6157 0.844 0.000 0.140 0.016 0.000
#> GSM153489     1  0.3051     0.6549 0.864 0.000 0.076 0.060 0.000
#> GSM153490     4  0.4610     0.8368 0.016 0.000 0.000 0.596 0.388
#> GSM153491     1  0.3242     0.6547 0.852 0.000 0.076 0.072 0.000
#> GSM153492     4  0.4734     0.7540 0.064 0.000 0.000 0.704 0.232
#> GSM153493     4  0.4138     0.8451 0.000 0.000 0.000 0.616 0.384
#> GSM153494     1  0.5401     0.0896 0.536 0.000 0.404 0.060 0.000
#> GSM153495     4  0.4138     0.8451 0.000 0.000 0.000 0.616 0.384
#> GSM153498     1  0.4277     0.5590 0.768 0.000 0.156 0.076 0.000
#> GSM153501     4  0.4138     0.8451 0.000 0.000 0.000 0.616 0.384
#> GSM153502     4  0.4769     0.7879 0.056 0.000 0.000 0.688 0.256
#> GSM153505     4  0.4138     0.8451 0.000 0.000 0.000 0.616 0.384
#> GSM153506     2  0.0162     0.9943 0.000 0.996 0.000 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     2  0.5353    0.39499 0.000 0.632 0.252 0.000 0.036 0.080
#> GSM153406     3  0.2589    0.57811 0.056 0.020 0.892 0.000 0.028 0.004
#> GSM153419     2  0.6558    0.24311 0.000 0.476 0.120 0.000 0.080 0.324
#> GSM153423     1  0.0870    0.96339 0.972 0.004 0.012 0.000 0.012 0.000
#> GSM153425     2  0.3946    0.40498 0.000 0.736 0.228 0.000 0.016 0.020
#> GSM153427     3  0.3895    0.45390 0.000 0.280 0.700 0.000 0.008 0.012
#> GSM153428     2  0.3614    0.40246 0.000 0.752 0.220 0.000 0.000 0.028
#> GSM153429     3  0.4226    0.57279 0.000 0.216 0.724 0.000 0.008 0.052
#> GSM153433     2  0.5296    0.35173 0.000 0.564 0.024 0.000 0.060 0.352
#> GSM153444     3  0.4756    0.42848 0.004 0.332 0.608 0.000 0.000 0.056
#> GSM153448     2  0.4992   -0.25256 0.000 0.472 0.460 0.000 0.000 0.068
#> GSM153451     1  0.0935    0.97004 0.964 0.004 0.000 0.000 0.032 0.000
#> GSM153452     2  0.4336    0.36157 0.000 0.704 0.232 0.000 0.004 0.060
#> GSM153477     1  0.2557    0.90385 0.892 0.004 0.056 0.000 0.036 0.012
#> GSM153479     6  0.6740   -0.02308 0.004 0.236 0.344 0.000 0.032 0.384
#> GSM153484     3  0.4865    0.54483 0.000 0.068 0.680 0.000 0.024 0.228
#> GSM153488     6  0.3425    0.55986 0.000 0.120 0.024 0.000 0.032 0.824
#> GSM153496     6  0.3242    0.54523 0.000 0.148 0.004 0.000 0.032 0.816
#> GSM153497     1  0.0291    0.96976 0.992 0.004 0.000 0.000 0.004 0.000
#> GSM153500     4  0.2666    0.88156 0.000 0.024 0.008 0.892 0.032 0.044
#> GSM153503     4  0.0000    0.91059 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153508     6  0.5466    0.52127 0.000 0.168 0.080 0.000 0.084 0.668
#> GSM153409     1  0.0603    0.97094 0.980 0.004 0.000 0.000 0.016 0.000
#> GSM153426     1  0.0713    0.97046 0.972 0.000 0.000 0.000 0.028 0.000
#> GSM153431     2  0.4814   -0.00131 0.000 0.504 0.452 0.000 0.008 0.036
#> GSM153438     1  0.0935    0.97004 0.964 0.004 0.000 0.000 0.032 0.000
#> GSM153440     2  0.5316    0.29365 0.000 0.524 0.020 0.000 0.060 0.396
#> GSM153447     4  0.3967    0.78542 0.000 0.124 0.012 0.800 0.032 0.032
#> GSM153450     3  0.4731    0.29631 0.000 0.428 0.524 0.000 0.000 0.048
#> GSM153456     1  0.0790    0.97019 0.968 0.000 0.000 0.000 0.032 0.000
#> GSM153457     1  0.0790    0.97019 0.968 0.000 0.000 0.000 0.032 0.000
#> GSM153458     1  0.0935    0.97004 0.964 0.004 0.000 0.000 0.032 0.000
#> GSM153459     1  0.0508    0.96935 0.984 0.004 0.000 0.000 0.012 0.000
#> GSM153460     1  0.0935    0.97004 0.964 0.004 0.000 0.000 0.032 0.000
#> GSM153461     3  0.4675    0.35102 0.000 0.368 0.580 0.000 0.000 0.052
#> GSM153463     4  0.2163    0.80914 0.000 0.008 0.004 0.892 0.096 0.000
#> GSM153464     1  0.0632    0.97099 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM153466     3  0.5196    0.26508 0.000 0.404 0.504 0.000 0.000 0.092
#> GSM153467     1  0.0632    0.97099 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM153468     6  0.6361    0.18894 0.000 0.236 0.272 0.000 0.024 0.468
#> GSM153469     3  0.8115    0.12538 0.200 0.156 0.356 0.000 0.040 0.248
#> GSM153470     1  0.2077    0.92614 0.920 0.004 0.032 0.000 0.032 0.012
#> GSM153471     1  0.1296    0.94769 0.952 0.000 0.004 0.000 0.032 0.012
#> GSM153472     6  0.4064    0.46833 0.000 0.200 0.004 0.000 0.056 0.740
#> GSM153473     4  0.2454    0.88762 0.000 0.032 0.008 0.904 0.024 0.032
#> GSM153474     4  0.1518    0.89775 0.000 0.008 0.000 0.944 0.024 0.024
#> GSM153475     3  0.4978    0.51810 0.000 0.072 0.644 0.000 0.016 0.268
#> GSM153476     6  0.4442    0.57174 0.000 0.068 0.144 0.000 0.036 0.752
#> GSM153478     6  0.4554    0.35232 0.000 0.272 0.008 0.000 0.052 0.668
#> GSM153480     1  0.0000    0.96959 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153486     3  0.6797    0.51350 0.136 0.140 0.580 0.000 0.032 0.112
#> GSM153487     6  0.2291    0.60921 0.000 0.044 0.040 0.000 0.012 0.904
#> GSM153499     6  0.6118    0.35034 0.000 0.160 0.236 0.000 0.044 0.560
#> GSM153504     4  0.1148    0.90510 0.000 0.020 0.016 0.960 0.000 0.004
#> GSM153507     6  0.6967   -0.06536 0.000 0.124 0.016 0.392 0.072 0.396
#> GSM153404     3  0.4331    0.49387 0.000 0.188 0.740 0.000 0.032 0.040
#> GSM153407     2  0.5618    0.35428 0.000 0.540 0.044 0.000 0.060 0.356
#> GSM153408     3  0.2216    0.57365 0.000 0.052 0.908 0.000 0.024 0.016
#> GSM153410     3  0.2843    0.55006 0.104 0.004 0.860 0.000 0.028 0.004
#> GSM153411     5  0.3329    0.99479 0.000 0.004 0.004 0.236 0.756 0.000
#> GSM153412     3  0.3078    0.56423 0.076 0.012 0.864 0.000 0.032 0.016
#> GSM153413     6  0.6060    0.41425 0.000 0.116 0.232 0.000 0.068 0.584
#> GSM153414     2  0.4612    0.20670 0.000 0.636 0.308 0.000 0.004 0.052
#> GSM153415     3  0.6450   -0.01642 0.000 0.140 0.492 0.000 0.060 0.308
#> GSM153416     1  0.0767    0.96300 0.976 0.004 0.012 0.000 0.008 0.000
#> GSM153417     5  0.3329    0.99479 0.000 0.004 0.004 0.236 0.756 0.000
#> GSM153418     3  0.2295    0.57265 0.000 0.052 0.904 0.000 0.028 0.016
#> GSM153420     5  0.3050    0.99653 0.000 0.000 0.000 0.236 0.764 0.000
#> GSM153421     5  0.3050    0.99653 0.000 0.000 0.000 0.236 0.764 0.000
#> GSM153422     5  0.3050    0.99653 0.000 0.000 0.000 0.236 0.764 0.000
#> GSM153424     2  0.3720    0.38673 0.000 0.736 0.236 0.000 0.000 0.028
#> GSM153430     2  0.5408    0.36133 0.000 0.564 0.032 0.000 0.060 0.344
#> GSM153432     3  0.4265    0.56586 0.000 0.172 0.728 0.000 0.000 0.100
#> GSM153434     2  0.5408    0.45169 0.000 0.604 0.076 0.000 0.032 0.288
#> GSM153435     1  0.0632    0.97099 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM153436     2  0.4506    0.48037 0.000 0.684 0.048 0.000 0.012 0.256
#> GSM153437     1  0.0790    0.97019 0.968 0.000 0.000 0.000 0.032 0.000
#> GSM153439     3  0.4145    0.56969 0.000 0.220 0.724 0.000 0.004 0.052
#> GSM153441     2  0.5727   -0.06886 0.000 0.476 0.372 0.000 0.004 0.148
#> GSM153442     2  0.5282    0.14882 0.000 0.568 0.304 0.000 0.000 0.128
#> GSM153443     1  0.0632    0.97099 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM153445     1  0.0146    0.97039 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM153446     1  0.0000    0.96959 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153449     2  0.5759    0.33529 0.000 0.484 0.104 0.000 0.020 0.392
#> GSM153453     6  0.4436    0.46999 0.000 0.192 0.004 0.016 0.056 0.732
#> GSM153454     4  0.0291    0.90887 0.000 0.004 0.004 0.992 0.000 0.000
#> GSM153455     3  0.5678    0.49491 0.000 0.220 0.588 0.000 0.016 0.176
#> GSM153462     1  0.0520    0.96481 0.984 0.000 0.008 0.000 0.008 0.000
#> GSM153465     3  0.4966    0.57058 0.140 0.048 0.736 0.000 0.024 0.052
#> GSM153481     1  0.2490    0.89883 0.896 0.000 0.044 0.000 0.032 0.028
#> GSM153482     6  0.2476    0.61157 0.000 0.032 0.072 0.000 0.008 0.888
#> GSM153483     6  0.6736    0.13021 0.016 0.152 0.340 0.000 0.040 0.452
#> GSM153485     6  0.2758    0.61014 0.000 0.036 0.080 0.000 0.012 0.872
#> GSM153489     6  0.2462    0.59943 0.000 0.064 0.032 0.000 0.012 0.892
#> GSM153490     4  0.1722    0.89860 0.000 0.036 0.016 0.936 0.008 0.004
#> GSM153491     6  0.2339    0.60669 0.000 0.072 0.020 0.000 0.012 0.896
#> GSM153492     4  0.3293    0.80417 0.000 0.020 0.000 0.840 0.048 0.092
#> GSM153493     4  0.0000    0.91059 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153494     6  0.6052    0.34087 0.000 0.180 0.220 0.000 0.036 0.564
#> GSM153495     4  0.0146    0.90997 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM153498     6  0.4649    0.56865 0.000 0.112 0.100 0.000 0.044 0.744
#> GSM153501     4  0.0000    0.91059 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153502     4  0.3381    0.85192 0.000 0.032 0.016 0.852 0.032 0.068
#> GSM153505     4  0.0000    0.91059 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153506     1  0.1409    0.94515 0.948 0.000 0.008 0.000 0.032 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> ATC:kmeans 105            0.502 2
#> ATC:kmeans 103            0.103 3
#> ATC:kmeans  69            0.262 4
#> ATC:kmeans  81            0.119 5
#> ATC:kmeans  68            0.161 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.984       0.993         0.4961 0.503   0.503
#> 3 3 0.710           0.723       0.879         0.2520 0.840   0.696
#> 4 4 0.658           0.631       0.823         0.1206 0.880   0.709
#> 5 5 0.691           0.666       0.832         0.0689 0.917   0.743
#> 6 6 0.715           0.600       0.788         0.0406 0.978   0.917

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     1  0.0000      0.986 1.000 0.000
#> GSM153406     2  0.0000      0.998 0.000 1.000
#> GSM153419     1  0.0000      0.986 1.000 0.000
#> GSM153423     2  0.0000      0.998 0.000 1.000
#> GSM153425     1  0.3733      0.918 0.928 0.072
#> GSM153427     2  0.0000      0.998 0.000 1.000
#> GSM153428     2  0.0000      0.998 0.000 1.000
#> GSM153429     2  0.0000      0.998 0.000 1.000
#> GSM153433     1  0.0000      0.986 1.000 0.000
#> GSM153444     2  0.0000      0.998 0.000 1.000
#> GSM153448     2  0.0000      0.998 0.000 1.000
#> GSM153451     2  0.0000      0.998 0.000 1.000
#> GSM153452     2  0.0000      0.998 0.000 1.000
#> GSM153477     2  0.0000      0.998 0.000 1.000
#> GSM153479     2  0.0000      0.998 0.000 1.000
#> GSM153484     2  0.0000      0.998 0.000 1.000
#> GSM153488     1  0.0000      0.986 1.000 0.000
#> GSM153496     1  0.0000      0.986 1.000 0.000
#> GSM153497     2  0.0000      0.998 0.000 1.000
#> GSM153500     1  0.0000      0.986 1.000 0.000
#> GSM153503     1  0.0000      0.986 1.000 0.000
#> GSM153508     1  0.8016      0.687 0.756 0.244
#> GSM153409     2  0.0000      0.998 0.000 1.000
#> GSM153426     2  0.0000      0.998 0.000 1.000
#> GSM153431     1  0.3274      0.931 0.940 0.060
#> GSM153438     2  0.0000      0.998 0.000 1.000
#> GSM153440     1  0.0000      0.986 1.000 0.000
#> GSM153447     1  0.0000      0.986 1.000 0.000
#> GSM153450     2  0.0000      0.998 0.000 1.000
#> GSM153456     2  0.0000      0.998 0.000 1.000
#> GSM153457     2  0.0000      0.998 0.000 1.000
#> GSM153458     2  0.0000      0.998 0.000 1.000
#> GSM153459     2  0.0000      0.998 0.000 1.000
#> GSM153460     2  0.0000      0.998 0.000 1.000
#> GSM153461     2  0.0000      0.998 0.000 1.000
#> GSM153463     1  0.0000      0.986 1.000 0.000
#> GSM153464     2  0.0000      0.998 0.000 1.000
#> GSM153466     2  0.0938      0.987 0.012 0.988
#> GSM153467     2  0.0000      0.998 0.000 1.000
#> GSM153468     2  0.0000      0.998 0.000 1.000
#> GSM153469     2  0.0000      0.998 0.000 1.000
#> GSM153470     2  0.0000      0.998 0.000 1.000
#> GSM153471     2  0.0000      0.998 0.000 1.000
#> GSM153472     1  0.0000      0.986 1.000 0.000
#> GSM153473     1  0.0000      0.986 1.000 0.000
#> GSM153474     1  0.0000      0.986 1.000 0.000
#> GSM153475     2  0.0000      0.998 0.000 1.000
#> GSM153476     1  0.0000      0.986 1.000 0.000
#> GSM153478     1  0.0000      0.986 1.000 0.000
#> GSM153480     2  0.0000      0.998 0.000 1.000
#> GSM153486     2  0.0000      0.998 0.000 1.000
#> GSM153487     1  0.0000      0.986 1.000 0.000
#> GSM153499     2  0.0000      0.998 0.000 1.000
#> GSM153504     1  0.0000      0.986 1.000 0.000
#> GSM153507     1  0.0000      0.986 1.000 0.000
#> GSM153404     2  0.0000      0.998 0.000 1.000
#> GSM153407     1  0.0000      0.986 1.000 0.000
#> GSM153408     2  0.0000      0.998 0.000 1.000
#> GSM153410     2  0.0000      0.998 0.000 1.000
#> GSM153411     1  0.0000      0.986 1.000 0.000
#> GSM153412     2  0.0000      0.998 0.000 1.000
#> GSM153413     1  0.0000      0.986 1.000 0.000
#> GSM153414     2  0.0000      0.998 0.000 1.000
#> GSM153415     2  0.4298      0.902 0.088 0.912
#> GSM153416     2  0.0000      0.998 0.000 1.000
#> GSM153417     1  0.0000      0.986 1.000 0.000
#> GSM153418     2  0.0000      0.998 0.000 1.000
#> GSM153420     1  0.0000      0.986 1.000 0.000
#> GSM153421     1  0.0000      0.986 1.000 0.000
#> GSM153422     1  0.0000      0.986 1.000 0.000
#> GSM153424     2  0.1184      0.983 0.016 0.984
#> GSM153430     1  0.0000      0.986 1.000 0.000
#> GSM153432     2  0.0000      0.998 0.000 1.000
#> GSM153434     1  0.0000      0.986 1.000 0.000
#> GSM153435     2  0.0000      0.998 0.000 1.000
#> GSM153436     1  0.0000      0.986 1.000 0.000
#> GSM153437     2  0.0000      0.998 0.000 1.000
#> GSM153439     2  0.0000      0.998 0.000 1.000
#> GSM153441     2  0.0000      0.998 0.000 1.000
#> GSM153442     2  0.0000      0.998 0.000 1.000
#> GSM153443     2  0.0000      0.998 0.000 1.000
#> GSM153445     2  0.0000      0.998 0.000 1.000
#> GSM153446     2  0.0000      0.998 0.000 1.000
#> GSM153449     1  0.0000      0.986 1.000 0.000
#> GSM153453     1  0.0000      0.986 1.000 0.000
#> GSM153454     1  0.0000      0.986 1.000 0.000
#> GSM153455     2  0.0000      0.998 0.000 1.000
#> GSM153462     2  0.0000      0.998 0.000 1.000
#> GSM153465     2  0.0000      0.998 0.000 1.000
#> GSM153481     2  0.0000      0.998 0.000 1.000
#> GSM153482     1  0.0000      0.986 1.000 0.000
#> GSM153483     2  0.0000      0.998 0.000 1.000
#> GSM153485     1  0.0000      0.986 1.000 0.000
#> GSM153489     1  0.0000      0.986 1.000 0.000
#> GSM153490     1  0.0000      0.986 1.000 0.000
#> GSM153491     1  0.0000      0.986 1.000 0.000
#> GSM153492     1  0.0000      0.986 1.000 0.000
#> GSM153493     1  0.0000      0.986 1.000 0.000
#> GSM153494     2  0.0000      0.998 0.000 1.000
#> GSM153495     1  0.0000      0.986 1.000 0.000
#> GSM153498     1  0.8207      0.666 0.744 0.256
#> GSM153501     1  0.0000      0.986 1.000 0.000
#> GSM153502     1  0.0000      0.986 1.000 0.000
#> GSM153505     1  0.0000      0.986 1.000 0.000
#> GSM153506     2  0.0000      0.998 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     1  0.6168     0.4450 0.588 0.000 0.412
#> GSM153406     3  0.6309     0.2114 0.000 0.496 0.504
#> GSM153419     1  0.3192     0.8779 0.888 0.000 0.112
#> GSM153423     2  0.0424     0.8467 0.000 0.992 0.008
#> GSM153425     3  0.7430     0.0512 0.424 0.036 0.540
#> GSM153427     3  0.3619     0.6277 0.000 0.136 0.864
#> GSM153428     3  0.6235     0.1681 0.000 0.436 0.564
#> GSM153429     2  0.1289     0.8354 0.000 0.968 0.032
#> GSM153433     1  0.2448     0.9015 0.924 0.000 0.076
#> GSM153444     2  0.6095     0.2121 0.000 0.608 0.392
#> GSM153448     2  0.5905     0.3820 0.000 0.648 0.352
#> GSM153451     2  0.0000     0.8498 0.000 1.000 0.000
#> GSM153452     2  0.6008     0.3342 0.000 0.628 0.372
#> GSM153477     2  0.1163     0.8362 0.000 0.972 0.028
#> GSM153479     2  0.0237     0.8483 0.000 0.996 0.004
#> GSM153484     2  0.1031     0.8384 0.000 0.976 0.024
#> GSM153488     1  0.0892     0.9104 0.980 0.000 0.020
#> GSM153496     1  0.0000     0.9195 1.000 0.000 0.000
#> GSM153497     2  0.0000     0.8498 0.000 1.000 0.000
#> GSM153500     1  0.0000     0.9195 1.000 0.000 0.000
#> GSM153503     1  0.0000     0.9195 1.000 0.000 0.000
#> GSM153508     2  0.7056     0.1092 0.404 0.572 0.024
#> GSM153409     2  0.0747     0.8434 0.000 0.984 0.016
#> GSM153426     2  0.0000     0.8498 0.000 1.000 0.000
#> GSM153431     3  0.3845     0.5691 0.116 0.012 0.872
#> GSM153438     2  0.0000     0.8498 0.000 1.000 0.000
#> GSM153440     1  0.2796     0.8917 0.908 0.000 0.092
#> GSM153447     1  0.2356     0.9034 0.928 0.000 0.072
#> GSM153450     2  0.6062     0.3060 0.000 0.616 0.384
#> GSM153456     2  0.0000     0.8498 0.000 1.000 0.000
#> GSM153457     2  0.0000     0.8498 0.000 1.000 0.000
#> GSM153458     2  0.0000     0.8498 0.000 1.000 0.000
#> GSM153459     2  0.0424     0.8467 0.000 0.992 0.008
#> GSM153460     2  0.0000     0.8498 0.000 1.000 0.000
#> GSM153461     3  0.4750     0.6096 0.000 0.216 0.784
#> GSM153463     1  0.2356     0.9034 0.928 0.000 0.072
#> GSM153464     2  0.0000     0.8498 0.000 1.000 0.000
#> GSM153466     3  0.3619     0.6151 0.000 0.136 0.864
#> GSM153467     2  0.0000     0.8498 0.000 1.000 0.000
#> GSM153468     2  0.2878     0.7814 0.000 0.904 0.096
#> GSM153469     2  0.0424     0.8460 0.000 0.992 0.008
#> GSM153470     2  0.0237     0.8484 0.000 0.996 0.004
#> GSM153471     2  0.0000     0.8498 0.000 1.000 0.000
#> GSM153472     1  0.0000     0.9195 1.000 0.000 0.000
#> GSM153473     1  0.0424     0.9189 0.992 0.000 0.008
#> GSM153474     1  0.0000     0.9195 1.000 0.000 0.000
#> GSM153475     3  0.6309     0.2071 0.000 0.496 0.504
#> GSM153476     1  0.6941     0.1499 0.520 0.016 0.464
#> GSM153478     1  0.0000     0.9195 1.000 0.000 0.000
#> GSM153480     2  0.0000     0.8498 0.000 1.000 0.000
#> GSM153486     2  0.1163     0.8362 0.000 0.972 0.028
#> GSM153487     1  0.0892     0.9104 0.980 0.000 0.020
#> GSM153499     2  0.3554     0.7620 0.064 0.900 0.036
#> GSM153504     1  0.0000     0.9195 1.000 0.000 0.000
#> GSM153507     1  0.1643     0.9118 0.956 0.000 0.044
#> GSM153404     2  0.5327     0.5502 0.000 0.728 0.272
#> GSM153407     1  0.6252     0.3010 0.556 0.000 0.444
#> GSM153408     3  0.5835     0.4737 0.000 0.340 0.660
#> GSM153410     2  0.4842     0.5993 0.000 0.776 0.224
#> GSM153411     1  0.2356     0.9034 0.928 0.000 0.072
#> GSM153412     2  0.4504     0.6387 0.000 0.804 0.196
#> GSM153413     1  0.4346     0.7554 0.816 0.000 0.184
#> GSM153414     2  0.5926     0.3752 0.000 0.644 0.356
#> GSM153415     2  0.7523     0.3878 0.080 0.660 0.260
#> GSM153416     2  0.0000     0.8498 0.000 1.000 0.000
#> GSM153417     1  0.2356     0.9034 0.928 0.000 0.072
#> GSM153418     3  0.6192     0.3624 0.000 0.420 0.580
#> GSM153420     1  0.2356     0.9034 0.928 0.000 0.072
#> GSM153421     1  0.2356     0.9034 0.928 0.000 0.072
#> GSM153422     1  0.2356     0.9034 0.928 0.000 0.072
#> GSM153424     3  0.4834     0.5654 0.004 0.204 0.792
#> GSM153430     1  0.2878     0.8888 0.904 0.000 0.096
#> GSM153432     3  0.5363     0.5604 0.000 0.276 0.724
#> GSM153434     3  0.5016     0.4272 0.240 0.000 0.760
#> GSM153435     2  0.0000     0.8498 0.000 1.000 0.000
#> GSM153436     3  0.6286    -0.0889 0.464 0.000 0.536
#> GSM153437     2  0.0000     0.8498 0.000 1.000 0.000
#> GSM153439     2  0.4346     0.6873 0.000 0.816 0.184
#> GSM153441     2  0.5678     0.4503 0.000 0.684 0.316
#> GSM153442     2  0.6008     0.3387 0.000 0.628 0.372
#> GSM153443     2  0.0000     0.8498 0.000 1.000 0.000
#> GSM153445     2  0.0000     0.8498 0.000 1.000 0.000
#> GSM153446     2  0.0000     0.8498 0.000 1.000 0.000
#> GSM153449     1  0.2261     0.9048 0.932 0.000 0.068
#> GSM153453     1  0.0000     0.9195 1.000 0.000 0.000
#> GSM153454     1  0.0237     0.9193 0.996 0.000 0.004
#> GSM153455     2  0.4399     0.6814 0.000 0.812 0.188
#> GSM153462     2  0.0000     0.8498 0.000 1.000 0.000
#> GSM153465     2  0.1753     0.8214 0.000 0.952 0.048
#> GSM153481     2  0.0000     0.8498 0.000 1.000 0.000
#> GSM153482     1  0.4473     0.7709 0.828 0.008 0.164
#> GSM153483     2  0.0747     0.8415 0.000 0.984 0.016
#> GSM153485     1  0.2066     0.8864 0.940 0.000 0.060
#> GSM153489     1  0.0747     0.9125 0.984 0.000 0.016
#> GSM153490     1  0.2261     0.9048 0.932 0.000 0.068
#> GSM153491     1  0.0747     0.9125 0.984 0.000 0.016
#> GSM153492     1  0.0000     0.9195 1.000 0.000 0.000
#> GSM153493     1  0.0000     0.9195 1.000 0.000 0.000
#> GSM153494     2  0.2806     0.7935 0.040 0.928 0.032
#> GSM153495     1  0.0000     0.9195 1.000 0.000 0.000
#> GSM153498     2  0.7915    -0.0542 0.456 0.488 0.056
#> GSM153501     1  0.0000     0.9195 1.000 0.000 0.000
#> GSM153502     1  0.0000     0.9195 1.000 0.000 0.000
#> GSM153505     1  0.0000     0.9195 1.000 0.000 0.000
#> GSM153506     2  0.0000     0.8498 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     4  0.7597     0.0965 0.224 0.000 0.308 0.468
#> GSM153406     3  0.6936     0.4132 0.000 0.224 0.588 0.188
#> GSM153419     1  0.4123     0.8217 0.820 0.000 0.044 0.136
#> GSM153423     2  0.0469     0.8633 0.000 0.988 0.000 0.012
#> GSM153425     4  0.4664     0.3452 0.248 0.004 0.012 0.736
#> GSM153427     3  0.6197     0.1946 0.000 0.052 0.508 0.440
#> GSM153428     4  0.3074     0.4291 0.000 0.152 0.000 0.848
#> GSM153429     2  0.2908     0.7930 0.000 0.896 0.064 0.040
#> GSM153433     1  0.3208     0.8391 0.848 0.000 0.004 0.148
#> GSM153444     2  0.6398     0.1816 0.000 0.576 0.080 0.344
#> GSM153448     4  0.5155     0.1977 0.000 0.468 0.004 0.528
#> GSM153451     2  0.0336     0.8642 0.000 0.992 0.000 0.008
#> GSM153452     4  0.5099     0.3590 0.000 0.380 0.008 0.612
#> GSM153477     2  0.1356     0.8476 0.000 0.960 0.008 0.032
#> GSM153479     2  0.0657     0.8597 0.000 0.984 0.004 0.012
#> GSM153484     2  0.1929     0.8319 0.000 0.940 0.024 0.036
#> GSM153488     1  0.4163     0.6975 0.792 0.000 0.188 0.020
#> GSM153496     1  0.1388     0.8517 0.960 0.000 0.028 0.012
#> GSM153497     2  0.0188     0.8653 0.000 0.996 0.000 0.004
#> GSM153500     1  0.0000     0.8728 1.000 0.000 0.000 0.000
#> GSM153503     1  0.0000     0.8728 1.000 0.000 0.000 0.000
#> GSM153508     2  0.8427    -0.2105 0.248 0.396 0.332 0.024
#> GSM153409     2  0.0592     0.8617 0.000 0.984 0.000 0.016
#> GSM153426     2  0.0000     0.8655 0.000 1.000 0.000 0.000
#> GSM153431     4  0.5910     0.0854 0.040 0.008 0.316 0.636
#> GSM153438     2  0.0336     0.8642 0.000 0.992 0.000 0.008
#> GSM153440     1  0.3306     0.8349 0.840 0.000 0.004 0.156
#> GSM153447     1  0.3157     0.8414 0.852 0.000 0.004 0.144
#> GSM153450     4  0.5406     0.1695 0.000 0.480 0.012 0.508
#> GSM153456     2  0.0336     0.8642 0.000 0.992 0.000 0.008
#> GSM153457     2  0.0188     0.8653 0.000 0.996 0.000 0.004
#> GSM153458     2  0.0336     0.8642 0.000 0.992 0.000 0.008
#> GSM153459     2  0.0336     0.8642 0.000 0.992 0.000 0.008
#> GSM153460     2  0.0188     0.8653 0.000 0.996 0.000 0.004
#> GSM153461     4  0.7081    -0.0733 0.000 0.136 0.352 0.512
#> GSM153463     1  0.3157     0.8414 0.852 0.000 0.004 0.144
#> GSM153464     2  0.0000     0.8655 0.000 1.000 0.000 0.000
#> GSM153466     4  0.5276     0.2814 0.008 0.056 0.188 0.748
#> GSM153467     2  0.0336     0.8624 0.000 0.992 0.000 0.008
#> GSM153468     2  0.5944     0.5055 0.000 0.684 0.104 0.212
#> GSM153469     2  0.0592     0.8593 0.000 0.984 0.016 0.000
#> GSM153470     2  0.0188     0.8648 0.000 0.996 0.000 0.004
#> GSM153471     2  0.0000     0.8655 0.000 1.000 0.000 0.000
#> GSM153472     1  0.0000     0.8728 1.000 0.000 0.000 0.000
#> GSM153473     1  0.0707     0.8737 0.980 0.000 0.000 0.020
#> GSM153474     1  0.0000     0.8728 1.000 0.000 0.000 0.000
#> GSM153475     3  0.6202     0.4100 0.000 0.172 0.672 0.156
#> GSM153476     3  0.1256     0.4035 0.028 0.000 0.964 0.008
#> GSM153478     1  0.1975     0.8498 0.936 0.000 0.048 0.016
#> GSM153480     2  0.0000     0.8655 0.000 1.000 0.000 0.000
#> GSM153486     2  0.0921     0.8553 0.000 0.972 0.000 0.028
#> GSM153487     1  0.5311     0.4781 0.648 0.000 0.328 0.024
#> GSM153499     2  0.6839     0.2325 0.056 0.572 0.344 0.028
#> GSM153504     1  0.0000     0.8728 1.000 0.000 0.000 0.000
#> GSM153507     1  0.1389     0.8697 0.952 0.000 0.000 0.048
#> GSM153404     3  0.7640     0.1738 0.000 0.356 0.432 0.212
#> GSM153407     1  0.6038     0.3503 0.532 0.000 0.044 0.424
#> GSM153408     3  0.5431     0.4283 0.000 0.064 0.712 0.224
#> GSM153410     3  0.6393     0.1957 0.000 0.456 0.480 0.064
#> GSM153411     1  0.3157     0.8414 0.852 0.000 0.004 0.144
#> GSM153412     2  0.6000    -0.1245 0.000 0.508 0.452 0.040
#> GSM153413     3  0.5453     0.1464 0.388 0.000 0.592 0.020
#> GSM153414     4  0.5383     0.2293 0.000 0.452 0.012 0.536
#> GSM153415     3  0.5603     0.4245 0.012 0.180 0.736 0.072
#> GSM153416     2  0.0000     0.8655 0.000 1.000 0.000 0.000
#> GSM153417     1  0.3157     0.8414 0.852 0.000 0.004 0.144
#> GSM153418     3  0.6074     0.4293 0.000 0.104 0.668 0.228
#> GSM153420     1  0.3157     0.8414 0.852 0.000 0.004 0.144
#> GSM153421     1  0.3157     0.8414 0.852 0.000 0.004 0.144
#> GSM153422     1  0.3157     0.8414 0.852 0.000 0.004 0.144
#> GSM153424     4  0.1994     0.4075 0.004 0.052 0.008 0.936
#> GSM153430     1  0.3306     0.8338 0.840 0.000 0.004 0.156
#> GSM153432     3  0.5985     0.3013 0.000 0.052 0.596 0.352
#> GSM153434     4  0.6179     0.2722 0.140 0.000 0.188 0.672
#> GSM153435     2  0.0000     0.8655 0.000 1.000 0.000 0.000
#> GSM153436     4  0.4483     0.3195 0.284 0.000 0.004 0.712
#> GSM153437     2  0.0188     0.8653 0.000 0.996 0.000 0.004
#> GSM153439     2  0.5355     0.5883 0.000 0.736 0.180 0.084
#> GSM153441     2  0.5964    -0.0188 0.000 0.536 0.040 0.424
#> GSM153442     2  0.5000    -0.1725 0.000 0.500 0.000 0.500
#> GSM153443     2  0.0000     0.8655 0.000 1.000 0.000 0.000
#> GSM153445     2  0.0000     0.8655 0.000 1.000 0.000 0.000
#> GSM153446     2  0.0000     0.8655 0.000 1.000 0.000 0.000
#> GSM153449     1  0.3351     0.8403 0.844 0.000 0.008 0.148
#> GSM153453     1  0.0188     0.8715 0.996 0.000 0.004 0.000
#> GSM153454     1  0.0707     0.8736 0.980 0.000 0.000 0.020
#> GSM153455     2  0.6224     0.4895 0.000 0.668 0.188 0.144
#> GSM153462     2  0.0000     0.8655 0.000 1.000 0.000 0.000
#> GSM153465     2  0.1936     0.8295 0.000 0.940 0.032 0.028
#> GSM153481     2  0.0000     0.8655 0.000 1.000 0.000 0.000
#> GSM153482     3  0.6806     0.1341 0.384 0.024 0.540 0.052
#> GSM153483     2  0.2271     0.8072 0.000 0.916 0.076 0.008
#> GSM153485     1  0.6166     0.3235 0.572 0.020 0.384 0.024
#> GSM153489     1  0.4225     0.6964 0.792 0.000 0.184 0.024
#> GSM153490     1  0.2714     0.8531 0.884 0.000 0.004 0.112
#> GSM153491     1  0.3910     0.7299 0.820 0.000 0.156 0.024
#> GSM153492     1  0.0000     0.8728 1.000 0.000 0.000 0.000
#> GSM153493     1  0.0000     0.8728 1.000 0.000 0.000 0.000
#> GSM153494     2  0.5669     0.5493 0.020 0.712 0.228 0.040
#> GSM153495     1  0.0188     0.8731 0.996 0.000 0.000 0.004
#> GSM153498     3  0.8391     0.2001 0.240 0.292 0.440 0.028
#> GSM153501     1  0.0000     0.8728 1.000 0.000 0.000 0.000
#> GSM153502     1  0.0000     0.8728 1.000 0.000 0.000 0.000
#> GSM153505     1  0.0000     0.8728 1.000 0.000 0.000 0.000
#> GSM153506     2  0.0000     0.8655 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     5  0.6369     0.0246 0.024 0.000 0.368 0.096 0.512
#> GSM153406     3  0.1831     0.5706 0.000 0.076 0.920 0.000 0.004
#> GSM153419     4  0.3038     0.7830 0.008 0.000 0.080 0.872 0.040
#> GSM153423     2  0.0727     0.9082 0.004 0.980 0.004 0.000 0.012
#> GSM153425     5  0.3656     0.4298 0.000 0.000 0.020 0.196 0.784
#> GSM153427     3  0.4387     0.4599 0.044 0.004 0.744 0.000 0.208
#> GSM153428     5  0.1299     0.4946 0.000 0.012 0.008 0.020 0.960
#> GSM153429     2  0.4014     0.7322 0.008 0.804 0.128 0.000 0.060
#> GSM153433     4  0.1270     0.8288 0.000 0.000 0.000 0.948 0.052
#> GSM153444     2  0.6704     0.2033 0.048 0.568 0.128 0.000 0.256
#> GSM153448     5  0.4240     0.4811 0.004 0.284 0.012 0.000 0.700
#> GSM153451     2  0.0404     0.9111 0.000 0.988 0.000 0.000 0.012
#> GSM153452     5  0.3427     0.5192 0.028 0.128 0.008 0.000 0.836
#> GSM153477     2  0.1471     0.8932 0.004 0.952 0.024 0.000 0.020
#> GSM153479     2  0.3209     0.8100 0.068 0.864 0.008 0.000 0.060
#> GSM153484     2  0.3164     0.8216 0.084 0.868 0.028 0.000 0.020
#> GSM153488     4  0.4251     0.5497 0.372 0.000 0.000 0.624 0.004
#> GSM153496     4  0.3366     0.7729 0.232 0.000 0.000 0.768 0.000
#> GSM153497     2  0.0451     0.9098 0.004 0.988 0.000 0.000 0.008
#> GSM153500     4  0.2732     0.8379 0.160 0.000 0.000 0.840 0.000
#> GSM153503     4  0.2561     0.8451 0.144 0.000 0.000 0.856 0.000
#> GSM153508     1  0.2623     0.6051 0.900 0.048 0.004 0.044 0.004
#> GSM153409     2  0.0960     0.9040 0.004 0.972 0.008 0.000 0.016
#> GSM153426     2  0.0324     0.9105 0.000 0.992 0.004 0.000 0.004
#> GSM153431     3  0.6937     0.1571 0.044 0.000 0.500 0.132 0.324
#> GSM153438     2  0.0290     0.9113 0.000 0.992 0.000 0.000 0.008
#> GSM153440     4  0.1205     0.8325 0.004 0.000 0.000 0.956 0.040
#> GSM153447     4  0.0963     0.8356 0.000 0.000 0.000 0.964 0.036
#> GSM153450     5  0.5256     0.3336 0.032 0.420 0.008 0.000 0.540
#> GSM153456     2  0.0290     0.9113 0.000 0.992 0.000 0.000 0.008
#> GSM153457     2  0.0290     0.9113 0.000 0.992 0.000 0.000 0.008
#> GSM153458     2  0.0404     0.9108 0.000 0.988 0.000 0.000 0.012
#> GSM153459     2  0.0566     0.9090 0.004 0.984 0.000 0.000 0.012
#> GSM153460     2  0.0290     0.9113 0.000 0.992 0.000 0.000 0.008
#> GSM153461     3  0.7106     0.1677 0.052 0.140 0.488 0.000 0.320
#> GSM153463     4  0.0880     0.8367 0.000 0.000 0.000 0.968 0.032
#> GSM153464     2  0.0324     0.9105 0.000 0.992 0.004 0.000 0.004
#> GSM153466     5  0.5965     0.1764 0.056 0.020 0.308 0.012 0.604
#> GSM153467     2  0.0451     0.9097 0.000 0.988 0.004 0.000 0.008
#> GSM153468     2  0.6946     0.0160 0.236 0.488 0.020 0.000 0.256
#> GSM153469     2  0.1116     0.8975 0.028 0.964 0.004 0.000 0.004
#> GSM153470     2  0.0740     0.9072 0.004 0.980 0.008 0.000 0.008
#> GSM153471     2  0.0451     0.9104 0.000 0.988 0.008 0.000 0.004
#> GSM153472     4  0.2732     0.8392 0.160 0.000 0.000 0.840 0.000
#> GSM153473     4  0.1851     0.8532 0.088 0.000 0.000 0.912 0.000
#> GSM153474     4  0.2648     0.8423 0.152 0.000 0.000 0.848 0.000
#> GSM153475     3  0.6818     0.4110 0.280 0.116 0.548 0.000 0.056
#> GSM153476     3  0.4551     0.3929 0.348 0.000 0.636 0.008 0.008
#> GSM153478     4  0.4392     0.7579 0.200 0.000 0.004 0.748 0.048
#> GSM153480     2  0.0324     0.9103 0.004 0.992 0.000 0.000 0.004
#> GSM153486     2  0.1716     0.8895 0.016 0.944 0.024 0.000 0.016
#> GSM153487     1  0.3088     0.5548 0.828 0.000 0.004 0.164 0.004
#> GSM153499     1  0.5051     0.3033 0.640 0.316 0.032 0.000 0.012
#> GSM153504     4  0.2690     0.8401 0.156 0.000 0.000 0.844 0.000
#> GSM153507     4  0.1121     0.8511 0.044 0.000 0.000 0.956 0.000
#> GSM153404     3  0.6322     0.3447 0.024 0.152 0.600 0.000 0.224
#> GSM153407     4  0.6054     0.4371 0.040 0.000 0.116 0.652 0.192
#> GSM153408     3  0.0324     0.5670 0.000 0.004 0.992 0.000 0.004
#> GSM153410     3  0.3730     0.4135 0.000 0.288 0.712 0.000 0.000
#> GSM153411     4  0.1043     0.8343 0.000 0.000 0.000 0.960 0.040
#> GSM153412     3  0.4422     0.3653 0.004 0.320 0.664 0.000 0.012
#> GSM153413     3  0.6724     0.1757 0.192 0.000 0.512 0.280 0.016
#> GSM153414     5  0.4674     0.4604 0.008 0.292 0.024 0.000 0.676
#> GSM153415     3  0.6185     0.4809 0.188 0.092 0.652 0.000 0.068
#> GSM153416     2  0.0324     0.9115 0.000 0.992 0.004 0.000 0.004
#> GSM153417     4  0.1043     0.8343 0.000 0.000 0.000 0.960 0.040
#> GSM153418     3  0.0324     0.5670 0.000 0.004 0.992 0.000 0.004
#> GSM153420     4  0.1043     0.8343 0.000 0.000 0.000 0.960 0.040
#> GSM153421     4  0.1043     0.8343 0.000 0.000 0.000 0.960 0.040
#> GSM153422     4  0.1043     0.8343 0.000 0.000 0.000 0.960 0.040
#> GSM153424     5  0.2011     0.4735 0.008 0.000 0.044 0.020 0.928
#> GSM153430     4  0.1502     0.8246 0.004 0.000 0.000 0.940 0.056
#> GSM153432     3  0.4869     0.4555 0.096 0.000 0.712 0.000 0.192
#> GSM153434     5  0.7851     0.1586 0.116 0.000 0.228 0.196 0.460
#> GSM153435     2  0.0324     0.9105 0.000 0.992 0.004 0.000 0.004
#> GSM153436     5  0.4532     0.3701 0.020 0.000 0.016 0.248 0.716
#> GSM153437     2  0.0451     0.9107 0.000 0.988 0.004 0.000 0.008
#> GSM153439     2  0.5608     0.4692 0.008 0.652 0.224 0.000 0.116
#> GSM153441     5  0.5996     0.2328 0.076 0.448 0.012 0.000 0.464
#> GSM153442     5  0.5409     0.4780 0.084 0.252 0.008 0.000 0.656
#> GSM153443     2  0.0324     0.9105 0.000 0.992 0.004 0.000 0.004
#> GSM153445     2  0.0324     0.9105 0.000 0.992 0.004 0.000 0.004
#> GSM153446     2  0.0162     0.9110 0.004 0.996 0.000 0.000 0.000
#> GSM153449     4  0.2378     0.8236 0.048 0.000 0.000 0.904 0.048
#> GSM153453     4  0.2605     0.8442 0.148 0.000 0.000 0.852 0.000
#> GSM153454     4  0.1908     0.8531 0.092 0.000 0.000 0.908 0.000
#> GSM153455     2  0.7197     0.2420 0.232 0.544 0.096 0.000 0.128
#> GSM153462     2  0.0162     0.9110 0.004 0.996 0.000 0.000 0.000
#> GSM153465     2  0.1960     0.8741 0.004 0.928 0.048 0.000 0.020
#> GSM153481     2  0.0579     0.9092 0.008 0.984 0.008 0.000 0.000
#> GSM153482     1  0.1483     0.5768 0.952 0.000 0.012 0.028 0.008
#> GSM153483     2  0.3048     0.7456 0.176 0.820 0.004 0.000 0.000
#> GSM153485     1  0.2116     0.5996 0.912 0.000 0.008 0.076 0.004
#> GSM153489     1  0.4440    -0.2116 0.528 0.000 0.004 0.468 0.000
#> GSM153490     4  0.0807     0.8442 0.012 0.000 0.000 0.976 0.012
#> GSM153491     4  0.4302     0.2550 0.480 0.000 0.000 0.520 0.000
#> GSM153492     4  0.2648     0.8423 0.152 0.000 0.000 0.848 0.000
#> GSM153493     4  0.2648     0.8423 0.152 0.000 0.000 0.848 0.000
#> GSM153494     1  0.4793     0.1573 0.544 0.436 0.000 0.000 0.020
#> GSM153495     4  0.2377     0.8487 0.128 0.000 0.000 0.872 0.000
#> GSM153498     1  0.1967     0.5896 0.932 0.036 0.020 0.012 0.000
#> GSM153501     4  0.2561     0.8451 0.144 0.000 0.000 0.856 0.000
#> GSM153502     4  0.2732     0.8379 0.160 0.000 0.000 0.840 0.000
#> GSM153505     4  0.2516     0.8461 0.140 0.000 0.000 0.860 0.000
#> GSM153506     2  0.0451     0.9095 0.004 0.988 0.000 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     2  0.6289    -0.0706 0.000 0.408 0.400 0.008 0.172 0.012
#> GSM153406     3  0.2238     0.4916 0.068 0.004 0.904 0.000 0.016 0.008
#> GSM153419     4  0.4771     0.6806 0.000 0.008 0.100 0.700 0.188 0.004
#> GSM153423     1  0.1476     0.8614 0.948 0.028 0.004 0.000 0.012 0.008
#> GSM153425     2  0.4518     0.3525 0.000 0.708 0.020 0.052 0.220 0.000
#> GSM153427     3  0.5495     0.1079 0.004 0.068 0.608 0.000 0.284 0.036
#> GSM153428     2  0.1226     0.5155 0.004 0.952 0.004 0.000 0.040 0.000
#> GSM153429     1  0.4760     0.6691 0.748 0.092 0.116 0.000 0.028 0.016
#> GSM153433     4  0.3320     0.7694 0.000 0.016 0.000 0.772 0.212 0.000
#> GSM153444     1  0.7329     0.1730 0.492 0.140 0.092 0.000 0.236 0.040
#> GSM153448     2  0.5313     0.4528 0.164 0.680 0.008 0.000 0.120 0.028
#> GSM153451     1  0.0858     0.8651 0.968 0.028 0.000 0.000 0.000 0.004
#> GSM153452     2  0.1262     0.5278 0.016 0.956 0.000 0.000 0.008 0.020
#> GSM153477     1  0.2483     0.8366 0.904 0.020 0.016 0.000 0.036 0.024
#> GSM153479     1  0.5181     0.5887 0.696 0.152 0.000 0.000 0.064 0.088
#> GSM153484     1  0.3747     0.7626 0.816 0.004 0.024 0.000 0.060 0.096
#> GSM153488     4  0.4626     0.4528 0.000 0.000 0.000 0.652 0.076 0.272
#> GSM153496     4  0.3072     0.7210 0.000 0.004 0.000 0.836 0.036 0.124
#> GSM153497     1  0.0964     0.8650 0.968 0.016 0.000 0.000 0.012 0.004
#> GSM153500     4  0.1049     0.8164 0.000 0.000 0.000 0.960 0.008 0.032
#> GSM153503     4  0.0260     0.8258 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM153508     6  0.3111     0.6402 0.008 0.000 0.000 0.124 0.032 0.836
#> GSM153409     1  0.1570     0.8594 0.944 0.028 0.004 0.000 0.016 0.008
#> GSM153426     1  0.0622     0.8651 0.980 0.012 0.000 0.000 0.008 0.000
#> GSM153431     5  0.5981     0.1370 0.000 0.096 0.388 0.008 0.484 0.024
#> GSM153438     1  0.0935     0.8645 0.964 0.032 0.000 0.000 0.000 0.004
#> GSM153440     4  0.3831     0.7161 0.000 0.012 0.000 0.712 0.268 0.008
#> GSM153447     4  0.2595     0.7972 0.000 0.004 0.000 0.836 0.160 0.000
#> GSM153450     1  0.6497    -0.1625 0.420 0.404 0.028 0.000 0.132 0.016
#> GSM153456     1  0.0858     0.8651 0.968 0.028 0.000 0.000 0.000 0.004
#> GSM153457     1  0.0692     0.8654 0.976 0.020 0.000 0.000 0.000 0.004
#> GSM153458     1  0.1152     0.8621 0.952 0.044 0.000 0.000 0.000 0.004
#> GSM153459     1  0.1138     0.8635 0.960 0.024 0.000 0.000 0.012 0.004
#> GSM153460     1  0.0858     0.8650 0.968 0.028 0.000 0.000 0.000 0.004
#> GSM153461     3  0.7654    -0.1110 0.112 0.136 0.368 0.000 0.348 0.036
#> GSM153463     4  0.2491     0.7970 0.000 0.000 0.000 0.836 0.164 0.000
#> GSM153464     1  0.0551     0.8635 0.984 0.004 0.000 0.000 0.008 0.004
#> GSM153466     5  0.7179     0.0268 0.016 0.344 0.192 0.000 0.388 0.060
#> GSM153467     1  0.1769     0.8425 0.924 0.060 0.000 0.000 0.012 0.004
#> GSM153468     1  0.7286    -0.3201 0.340 0.332 0.004 0.000 0.084 0.240
#> GSM153469     1  0.1970     0.8369 0.920 0.008 0.000 0.000 0.028 0.044
#> GSM153470     1  0.0458     0.8647 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM153471     1  0.0964     0.8631 0.968 0.004 0.000 0.000 0.016 0.012
#> GSM153472     4  0.1367     0.8124 0.000 0.000 0.000 0.944 0.012 0.044
#> GSM153473     4  0.0458     0.8277 0.000 0.000 0.000 0.984 0.016 0.000
#> GSM153474     4  0.0363     0.8252 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM153475     3  0.7658     0.0925 0.088 0.024 0.360 0.000 0.240 0.288
#> GSM153476     3  0.5817     0.2845 0.000 0.000 0.480 0.000 0.208 0.312
#> GSM153478     4  0.5891     0.4700 0.000 0.048 0.012 0.632 0.192 0.116
#> GSM153480     1  0.0260     0.8655 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM153486     1  0.2683     0.8239 0.884 0.028 0.000 0.000 0.056 0.032
#> GSM153487     6  0.4120     0.5668 0.000 0.000 0.000 0.204 0.068 0.728
#> GSM153499     6  0.4942     0.4001 0.236 0.004 0.016 0.000 0.072 0.672
#> GSM153504     4  0.0692     0.8223 0.000 0.000 0.000 0.976 0.004 0.020
#> GSM153507     4  0.3046     0.7848 0.000 0.000 0.000 0.800 0.188 0.012
#> GSM153404     3  0.6102     0.3674 0.060 0.192 0.620 0.000 0.112 0.016
#> GSM153407     5  0.5937     0.0106 0.000 0.048 0.068 0.376 0.504 0.004
#> GSM153408     3  0.0146     0.4855 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM153410     3  0.3560     0.4252 0.256 0.000 0.732 0.000 0.008 0.004
#> GSM153411     4  0.2933     0.7785 0.000 0.004 0.000 0.796 0.200 0.000
#> GSM153412     3  0.4283     0.3819 0.280 0.000 0.680 0.000 0.032 0.008
#> GSM153413     3  0.6757     0.2806 0.000 0.004 0.540 0.148 0.176 0.132
#> GSM153414     2  0.4335     0.4988 0.156 0.760 0.020 0.000 0.056 0.008
#> GSM153415     3  0.5973     0.4356 0.012 0.068 0.640 0.000 0.156 0.124
#> GSM153416     1  0.0767     0.8658 0.976 0.012 0.000 0.000 0.008 0.004
#> GSM153417     4  0.2933     0.7785 0.000 0.004 0.000 0.796 0.200 0.000
#> GSM153418     3  0.0291     0.4845 0.000 0.000 0.992 0.000 0.004 0.004
#> GSM153420     4  0.3081     0.7681 0.000 0.004 0.000 0.776 0.220 0.000
#> GSM153421     4  0.2994     0.7745 0.000 0.004 0.000 0.788 0.208 0.000
#> GSM153422     4  0.2854     0.7774 0.000 0.000 0.000 0.792 0.208 0.000
#> GSM153424     2  0.3409     0.4258 0.004 0.804 0.020 0.000 0.164 0.008
#> GSM153430     4  0.3782     0.7429 0.000 0.036 0.000 0.740 0.224 0.000
#> GSM153432     3  0.6206     0.0254 0.024 0.032 0.512 0.000 0.352 0.080
#> GSM153434     5  0.7107     0.1946 0.000 0.264 0.108 0.056 0.508 0.064
#> GSM153435     1  0.0405     0.8643 0.988 0.004 0.000 0.000 0.008 0.000
#> GSM153436     2  0.5978    -0.0297 0.000 0.552 0.020 0.156 0.268 0.004
#> GSM153437     1  0.0858     0.8650 0.968 0.028 0.000 0.000 0.000 0.004
#> GSM153439     1  0.7056     0.2271 0.520 0.164 0.204 0.000 0.088 0.024
#> GSM153441     2  0.7029     0.3185 0.304 0.452 0.016 0.000 0.164 0.064
#> GSM153442     2  0.6348     0.4015 0.148 0.580 0.012 0.000 0.204 0.056
#> GSM153443     1  0.0665     0.8637 0.980 0.008 0.000 0.000 0.008 0.004
#> GSM153445     1  0.0551     0.8635 0.984 0.004 0.000 0.000 0.008 0.004
#> GSM153446     1  0.0146     0.8656 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM153449     4  0.4959     0.6507 0.000 0.028 0.000 0.684 0.208 0.080
#> GSM153453     4  0.1010     0.8190 0.000 0.000 0.000 0.960 0.004 0.036
#> GSM153454     4  0.0713     0.8273 0.000 0.000 0.000 0.972 0.028 0.000
#> GSM153455     1  0.8140    -0.0534 0.400 0.108 0.084 0.000 0.236 0.172
#> GSM153462     1  0.0260     0.8655 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM153465     1  0.2151     0.8382 0.916 0.004 0.036 0.000 0.032 0.012
#> GSM153481     1  0.1434     0.8586 0.948 0.008 0.000 0.000 0.020 0.024
#> GSM153482     6  0.4018     0.6063 0.004 0.004 0.016 0.068 0.112 0.796
#> GSM153483     1  0.3593     0.6724 0.764 0.004 0.000 0.000 0.024 0.208
#> GSM153485     6  0.3314     0.6360 0.000 0.004 0.000 0.076 0.092 0.828
#> GSM153489     6  0.5405     0.1911 0.000 0.004 0.004 0.436 0.084 0.472
#> GSM153490     4  0.2416     0.8029 0.000 0.000 0.000 0.844 0.156 0.000
#> GSM153491     4  0.4568     0.2704 0.000 0.004 0.000 0.612 0.040 0.344
#> GSM153492     4  0.0603     0.8236 0.000 0.000 0.000 0.980 0.004 0.016
#> GSM153493     4  0.0547     0.8232 0.000 0.000 0.000 0.980 0.000 0.020
#> GSM153494     6  0.5123     0.3083 0.304 0.040 0.000 0.000 0.040 0.616
#> GSM153495     4  0.0146     0.8263 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM153498     6  0.2379     0.6351 0.008 0.000 0.008 0.064 0.020 0.900
#> GSM153501     4  0.0260     0.8258 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM153502     4  0.1605     0.8034 0.000 0.004 0.000 0.936 0.016 0.044
#> GSM153505     4  0.0260     0.8258 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM153506     1  0.0837     0.8631 0.972 0.004 0.000 0.000 0.020 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>               n disease.state(p) k
#> ATC:skmeans 105           0.4501 2
#> ATC:skmeans  84           0.6014 3
#> ATC:skmeans  69           0.2569 4
#> ATC:skmeans  73           0.3823 5
#> ATC:skmeans  69           0.0791 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.529           0.803       0.897         0.4287 0.519   0.519
#> 3 3 0.757           0.902       0.902         0.3911 0.609   0.403
#> 4 4 0.621           0.766       0.884         0.1636 0.806   0.567
#> 5 5 0.703           0.681       0.843         0.0742 0.829   0.527
#> 6 6 0.714           0.415       0.739         0.0824 0.829   0.440

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     1  0.9686      0.592 0.604 0.396
#> GSM153406     2  0.0000      0.935 0.000 1.000
#> GSM153419     1  0.8813      0.691 0.700 0.300
#> GSM153423     2  0.0000      0.935 0.000 1.000
#> GSM153425     2  0.6148      0.779 0.152 0.848
#> GSM153427     2  0.2423      0.909 0.040 0.960
#> GSM153428     2  0.6048      0.785 0.148 0.852
#> GSM153429     2  0.0000      0.935 0.000 1.000
#> GSM153433     1  0.7139      0.747 0.804 0.196
#> GSM153444     2  0.0000      0.935 0.000 1.000
#> GSM153448     2  0.0376      0.933 0.004 0.996
#> GSM153451     2  0.0000      0.935 0.000 1.000
#> GSM153452     2  0.2423      0.909 0.040 0.960
#> GSM153477     2  0.0000      0.935 0.000 1.000
#> GSM153479     2  0.0000      0.935 0.000 1.000
#> GSM153484     2  0.0000      0.935 0.000 1.000
#> GSM153488     1  0.9635      0.605 0.612 0.388
#> GSM153496     1  0.8443      0.709 0.728 0.272
#> GSM153497     2  0.0000      0.935 0.000 1.000
#> GSM153500     1  0.3431      0.781 0.936 0.064
#> GSM153503     1  0.0000      0.773 1.000 0.000
#> GSM153508     2  0.5842      0.788 0.140 0.860
#> GSM153409     2  0.0000      0.935 0.000 1.000
#> GSM153426     2  0.0000      0.935 0.000 1.000
#> GSM153431     1  0.9661      0.599 0.608 0.392
#> GSM153438     2  0.0000      0.935 0.000 1.000
#> GSM153440     1  0.8909      0.685 0.692 0.308
#> GSM153447     1  0.0000      0.773 1.000 0.000
#> GSM153450     2  0.0000      0.935 0.000 1.000
#> GSM153456     2  0.0000      0.935 0.000 1.000
#> GSM153457     2  0.0000      0.935 0.000 1.000
#> GSM153458     2  0.0000      0.935 0.000 1.000
#> GSM153459     2  0.0000      0.935 0.000 1.000
#> GSM153460     2  0.0000      0.935 0.000 1.000
#> GSM153461     2  0.0000      0.935 0.000 1.000
#> GSM153463     1  0.0000      0.773 1.000 0.000
#> GSM153464     2  0.0000      0.935 0.000 1.000
#> GSM153466     2  0.7219      0.704 0.200 0.800
#> GSM153467     2  0.0000      0.935 0.000 1.000
#> GSM153468     2  0.2423      0.909 0.040 0.960
#> GSM153469     2  0.0000      0.935 0.000 1.000
#> GSM153470     2  0.0000      0.935 0.000 1.000
#> GSM153471     2  0.0000      0.935 0.000 1.000
#> GSM153472     1  0.8861      0.688 0.696 0.304
#> GSM153473     1  0.3431      0.781 0.936 0.064
#> GSM153474     1  0.3114      0.781 0.944 0.056
#> GSM153475     2  0.5737      0.793 0.136 0.864
#> GSM153476     1  0.9635      0.605 0.612 0.388
#> GSM153478     1  0.9635      0.605 0.612 0.388
#> GSM153480     2  0.0000      0.935 0.000 1.000
#> GSM153486     2  0.0000      0.935 0.000 1.000
#> GSM153487     2  0.9460      0.199 0.364 0.636
#> GSM153499     2  0.1633      0.921 0.024 0.976
#> GSM153504     1  0.2423      0.780 0.960 0.040
#> GSM153507     1  0.5178      0.771 0.884 0.116
#> GSM153404     2  0.5946      0.790 0.144 0.856
#> GSM153407     1  0.9635      0.605 0.612 0.388
#> GSM153408     1  0.9732      0.574 0.596 0.404
#> GSM153410     2  0.0000      0.935 0.000 1.000
#> GSM153411     1  0.0000      0.773 1.000 0.000
#> GSM153412     2  0.0000      0.935 0.000 1.000
#> GSM153413     1  0.9635      0.605 0.612 0.388
#> GSM153414     2  0.2423      0.909 0.040 0.960
#> GSM153415     2  0.6712      0.744 0.176 0.824
#> GSM153416     2  0.0000      0.935 0.000 1.000
#> GSM153417     1  0.0000      0.773 1.000 0.000
#> GSM153418     2  0.6247      0.774 0.156 0.844
#> GSM153420     1  0.0000      0.773 1.000 0.000
#> GSM153421     1  0.0000      0.773 1.000 0.000
#> GSM153422     1  0.0000      0.773 1.000 0.000
#> GSM153424     2  0.2778      0.903 0.048 0.952
#> GSM153430     1  0.9635      0.605 0.612 0.388
#> GSM153432     2  0.6712      0.729 0.176 0.824
#> GSM153434     1  0.9635      0.605 0.612 0.388
#> GSM153435     2  0.0000      0.935 0.000 1.000
#> GSM153436     1  0.9732      0.575 0.596 0.404
#> GSM153437     2  0.0000      0.935 0.000 1.000
#> GSM153439     2  0.0000      0.935 0.000 1.000
#> GSM153441     2  0.1184      0.925 0.016 0.984
#> GSM153442     2  0.3274      0.894 0.060 0.940
#> GSM153443     2  0.0000      0.935 0.000 1.000
#> GSM153445     2  0.0000      0.935 0.000 1.000
#> GSM153446     2  0.0000      0.935 0.000 1.000
#> GSM153449     1  0.9635      0.605 0.612 0.388
#> GSM153453     1  0.7219      0.746 0.800 0.200
#> GSM153454     1  0.0000      0.773 1.000 0.000
#> GSM153455     2  0.3274      0.886 0.060 0.940
#> GSM153462     2  0.0000      0.935 0.000 1.000
#> GSM153465     2  0.0000      0.935 0.000 1.000
#> GSM153481     2  0.0000      0.935 0.000 1.000
#> GSM153482     2  0.9580      0.200 0.380 0.620
#> GSM153483     2  0.0000      0.935 0.000 1.000
#> GSM153485     2  0.8081      0.603 0.248 0.752
#> GSM153489     1  0.9993      0.358 0.516 0.484
#> GSM153490     1  0.0000      0.773 1.000 0.000
#> GSM153491     1  0.9983      0.384 0.524 0.476
#> GSM153492     1  0.3431      0.781 0.936 0.064
#> GSM153493     1  0.1414      0.777 0.980 0.020
#> GSM153494     2  0.0938      0.928 0.012 0.988
#> GSM153495     1  0.0000      0.773 1.000 0.000
#> GSM153498     2  0.8608      0.522 0.284 0.716
#> GSM153501     1  0.0000      0.773 1.000 0.000
#> GSM153502     1  0.3431      0.781 0.936 0.064
#> GSM153505     1  0.0000      0.773 1.000 0.000
#> GSM153506     2  0.0000      0.935 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     3  0.3116      0.881 0.108 0.000 0.892
#> GSM153406     3  0.4002      0.798 0.000 0.160 0.840
#> GSM153419     3  0.4235      0.805 0.176 0.000 0.824
#> GSM153423     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153425     3  0.0424      0.942 0.008 0.000 0.992
#> GSM153427     3  0.0000      0.942 0.000 0.000 1.000
#> GSM153428     3  0.0424      0.942 0.008 0.000 0.992
#> GSM153429     3  0.0000      0.942 0.000 0.000 1.000
#> GSM153433     1  0.6308      0.090 0.508 0.000 0.492
#> GSM153444     3  0.0000      0.942 0.000 0.000 1.000
#> GSM153448     3  0.0000      0.942 0.000 0.000 1.000
#> GSM153451     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153452     3  0.0424      0.942 0.008 0.000 0.992
#> GSM153477     2  0.0592      0.983 0.000 0.988 0.012
#> GSM153479     3  0.0475      0.942 0.004 0.004 0.992
#> GSM153484     3  0.0237      0.941 0.000 0.004 0.996
#> GSM153488     3  0.2878      0.892 0.096 0.000 0.904
#> GSM153496     3  0.2796      0.885 0.092 0.000 0.908
#> GSM153497     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153500     1  0.4504      0.794 0.804 0.000 0.196
#> GSM153503     1  0.0000      0.865 1.000 0.000 0.000
#> GSM153508     3  0.0424      0.941 0.000 0.008 0.992
#> GSM153409     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153426     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153431     3  0.3192      0.873 0.112 0.000 0.888
#> GSM153438     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153440     3  0.3752      0.845 0.144 0.000 0.856
#> GSM153447     1  0.0000      0.865 1.000 0.000 0.000
#> GSM153450     3  0.0000      0.942 0.000 0.000 1.000
#> GSM153456     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153457     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153458     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153459     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153460     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153461     3  0.2959      0.884 0.100 0.000 0.900
#> GSM153463     1  0.0000      0.865 1.000 0.000 0.000
#> GSM153464     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153466     3  0.0000      0.942 0.000 0.000 1.000
#> GSM153467     2  0.1964      0.925 0.000 0.944 0.056
#> GSM153468     3  0.0424      0.942 0.008 0.000 0.992
#> GSM153469     3  0.2448      0.896 0.000 0.076 0.924
#> GSM153470     3  0.5560      0.598 0.000 0.300 0.700
#> GSM153471     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153472     3  0.2448      0.907 0.076 0.000 0.924
#> GSM153473     1  0.4504      0.794 0.804 0.000 0.196
#> GSM153474     1  0.4346      0.805 0.816 0.000 0.184
#> GSM153475     3  0.0000      0.942 0.000 0.000 1.000
#> GSM153476     3  0.2878      0.891 0.096 0.000 0.904
#> GSM153478     3  0.3340      0.869 0.120 0.000 0.880
#> GSM153480     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153486     3  0.3116      0.849 0.000 0.108 0.892
#> GSM153487     3  0.0000      0.942 0.000 0.000 1.000
#> GSM153499     3  0.0661      0.942 0.008 0.004 0.988
#> GSM153504     1  0.4121      0.816 0.832 0.000 0.168
#> GSM153507     1  0.6079      0.447 0.612 0.000 0.388
#> GSM153404     3  0.0424      0.942 0.008 0.000 0.992
#> GSM153407     3  0.3192      0.873 0.112 0.000 0.888
#> GSM153408     3  0.0424      0.942 0.008 0.000 0.992
#> GSM153410     3  0.3686      0.823 0.000 0.140 0.860
#> GSM153411     1  0.0000      0.865 1.000 0.000 0.000
#> GSM153412     3  0.0661      0.942 0.008 0.004 0.988
#> GSM153413     3  0.3340      0.869 0.120 0.000 0.880
#> GSM153414     3  0.0424      0.942 0.008 0.000 0.992
#> GSM153415     3  0.0661      0.942 0.008 0.004 0.988
#> GSM153416     2  0.1643      0.939 0.000 0.956 0.044
#> GSM153417     1  0.0000      0.865 1.000 0.000 0.000
#> GSM153418     3  0.0424      0.942 0.008 0.000 0.992
#> GSM153420     1  0.0000      0.865 1.000 0.000 0.000
#> GSM153421     1  0.0000      0.865 1.000 0.000 0.000
#> GSM153422     1  0.0000      0.865 1.000 0.000 0.000
#> GSM153424     3  0.0000      0.942 0.000 0.000 1.000
#> GSM153430     3  0.3340      0.869 0.120 0.000 0.880
#> GSM153432     3  0.0000      0.942 0.000 0.000 1.000
#> GSM153434     3  0.0424      0.942 0.008 0.000 0.992
#> GSM153435     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153436     3  0.0424      0.941 0.008 0.000 0.992
#> GSM153437     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153439     3  0.0000      0.942 0.000 0.000 1.000
#> GSM153441     3  0.0000      0.942 0.000 0.000 1.000
#> GSM153442     3  0.0000      0.942 0.000 0.000 1.000
#> GSM153443     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153445     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153446     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153449     3  0.2066      0.914 0.060 0.000 0.940
#> GSM153453     3  0.5138      0.683 0.252 0.000 0.748
#> GSM153454     1  0.0000      0.865 1.000 0.000 0.000
#> GSM153455     3  0.0000      0.942 0.000 0.000 1.000
#> GSM153462     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153465     3  0.2625      0.885 0.000 0.084 0.916
#> GSM153481     2  0.0000      0.994 0.000 1.000 0.000
#> GSM153482     3  0.0000      0.942 0.000 0.000 1.000
#> GSM153483     3  0.2356      0.896 0.000 0.072 0.928
#> GSM153485     3  0.0000      0.942 0.000 0.000 1.000
#> GSM153489     3  0.0000      0.942 0.000 0.000 1.000
#> GSM153490     1  0.0000      0.865 1.000 0.000 0.000
#> GSM153491     3  0.0424      0.942 0.008 0.000 0.992
#> GSM153492     1  0.4504      0.794 0.804 0.000 0.196
#> GSM153493     1  0.3551      0.830 0.868 0.000 0.132
#> GSM153494     3  0.0000      0.942 0.000 0.000 1.000
#> GSM153495     1  0.0000      0.865 1.000 0.000 0.000
#> GSM153498     3  0.0424      0.942 0.008 0.000 0.992
#> GSM153501     1  0.0237      0.865 0.996 0.000 0.004
#> GSM153502     1  0.4504      0.794 0.804 0.000 0.196
#> GSM153505     1  0.0000      0.865 1.000 0.000 0.000
#> GSM153506     2  0.0000      0.994 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     3  0.4222      0.658 0.272 0.000 0.728 0.000
#> GSM153406     3  0.2281      0.773 0.000 0.096 0.904 0.000
#> GSM153419     1  0.2704      0.781 0.876 0.000 0.124 0.000
#> GSM153423     2  0.0592      0.960 0.000 0.984 0.016 0.000
#> GSM153425     3  0.4222      0.658 0.272 0.000 0.728 0.000
#> GSM153427     3  0.0000      0.821 0.000 0.000 1.000 0.000
#> GSM153428     3  0.4222      0.658 0.272 0.000 0.728 0.000
#> GSM153429     3  0.0000      0.821 0.000 0.000 1.000 0.000
#> GSM153433     1  0.2589      0.782 0.884 0.000 0.116 0.000
#> GSM153444     3  0.0000      0.821 0.000 0.000 1.000 0.000
#> GSM153448     3  0.0000      0.821 0.000 0.000 1.000 0.000
#> GSM153451     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM153452     3  0.4222      0.658 0.272 0.000 0.728 0.000
#> GSM153477     2  0.3942      0.653 0.000 0.764 0.236 0.000
#> GSM153479     3  0.4105      0.747 0.156 0.032 0.812 0.000
#> GSM153484     3  0.0469      0.818 0.000 0.012 0.988 0.000
#> GSM153488     1  0.3688      0.737 0.792 0.000 0.208 0.000
#> GSM153496     1  0.2589      0.782 0.884 0.000 0.116 0.000
#> GSM153497     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM153500     1  0.0000      0.743 1.000 0.000 0.000 0.000
#> GSM153503     1  0.3907      0.507 0.768 0.000 0.000 0.232
#> GSM153508     3  0.6963     -0.205 0.424 0.112 0.464 0.000
#> GSM153409     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM153426     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM153431     3  0.0336      0.820 0.008 0.000 0.992 0.000
#> GSM153438     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM153440     1  0.2921      0.778 0.860 0.000 0.140 0.000
#> GSM153447     1  0.0000      0.743 1.000 0.000 0.000 0.000
#> GSM153450     3  0.0000      0.821 0.000 0.000 1.000 0.000
#> GSM153456     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM153457     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM153458     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM153459     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM153460     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM153461     3  0.0000      0.821 0.000 0.000 1.000 0.000
#> GSM153463     4  0.2530      0.875 0.112 0.000 0.000 0.888
#> GSM153464     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM153466     3  0.0000      0.821 0.000 0.000 1.000 0.000
#> GSM153467     2  0.2647      0.821 0.000 0.880 0.120 0.000
#> GSM153468     3  0.3486      0.735 0.188 0.000 0.812 0.000
#> GSM153469     3  0.3873      0.683 0.000 0.228 0.772 0.000
#> GSM153470     3  0.4981      0.250 0.000 0.464 0.536 0.000
#> GSM153471     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM153472     1  0.4103      0.689 0.744 0.000 0.256 0.000
#> GSM153473     1  0.0000      0.743 1.000 0.000 0.000 0.000
#> GSM153474     1  0.0000      0.743 1.000 0.000 0.000 0.000
#> GSM153475     3  0.0000      0.821 0.000 0.000 1.000 0.000
#> GSM153476     1  0.4164      0.678 0.736 0.000 0.264 0.000
#> GSM153478     1  0.3123      0.770 0.844 0.000 0.156 0.000
#> GSM153480     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM153486     3  0.1557      0.802 0.000 0.056 0.944 0.000
#> GSM153487     1  0.4907      0.497 0.580 0.000 0.420 0.000
#> GSM153499     3  0.4134      0.669 0.260 0.000 0.740 0.000
#> GSM153504     1  0.0000      0.743 1.000 0.000 0.000 0.000
#> GSM153507     1  0.4804      0.546 0.616 0.000 0.384 0.000
#> GSM153404     3  0.4222      0.658 0.272 0.000 0.728 0.000
#> GSM153407     1  0.4992      0.392 0.524 0.000 0.476 0.000
#> GSM153408     3  0.4543      0.586 0.324 0.000 0.676 0.000
#> GSM153410     3  0.3123      0.719 0.000 0.156 0.844 0.000
#> GSM153411     4  0.0000      0.937 0.000 0.000 0.000 1.000
#> GSM153412     3  0.3810      0.735 0.188 0.008 0.804 0.000
#> GSM153413     1  0.2704      0.781 0.876 0.000 0.124 0.000
#> GSM153414     3  0.4193      0.663 0.268 0.000 0.732 0.000
#> GSM153415     3  0.4500      0.599 0.316 0.000 0.684 0.000
#> GSM153416     2  0.1716      0.902 0.000 0.936 0.064 0.000
#> GSM153417     4  0.0000      0.937 0.000 0.000 0.000 1.000
#> GSM153418     3  0.3486      0.735 0.188 0.000 0.812 0.000
#> GSM153420     4  0.0000      0.937 0.000 0.000 0.000 1.000
#> GSM153421     4  0.0000      0.937 0.000 0.000 0.000 1.000
#> GSM153422     4  0.0000      0.937 0.000 0.000 0.000 1.000
#> GSM153424     3  0.0592      0.819 0.016 0.000 0.984 0.000
#> GSM153430     1  0.2921      0.777 0.860 0.000 0.140 0.000
#> GSM153432     3  0.0000      0.821 0.000 0.000 1.000 0.000
#> GSM153434     3  0.3486      0.735 0.188 0.000 0.812 0.000
#> GSM153435     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM153436     3  0.1557      0.790 0.056 0.000 0.944 0.000
#> GSM153437     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM153439     3  0.0000      0.821 0.000 0.000 1.000 0.000
#> GSM153441     3  0.0000      0.821 0.000 0.000 1.000 0.000
#> GSM153442     3  0.0000      0.821 0.000 0.000 1.000 0.000
#> GSM153443     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM153445     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM153446     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM153449     1  0.4941      0.469 0.564 0.000 0.436 0.000
#> GSM153453     1  0.2647      0.782 0.880 0.000 0.120 0.000
#> GSM153454     1  0.4008      0.489 0.756 0.000 0.000 0.244
#> GSM153455     3  0.0000      0.821 0.000 0.000 1.000 0.000
#> GSM153462     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM153465     3  0.2921      0.735 0.000 0.140 0.860 0.000
#> GSM153481     2  0.0817      0.949 0.000 0.976 0.024 0.000
#> GSM153482     1  0.5000      0.330 0.504 0.000 0.496 0.000
#> GSM153483     3  0.2814      0.742 0.000 0.132 0.868 0.000
#> GSM153485     3  0.2647      0.737 0.120 0.000 0.880 0.000
#> GSM153489     1  0.4907      0.497 0.580 0.000 0.420 0.000
#> GSM153490     4  0.4382      0.646 0.296 0.000 0.000 0.704
#> GSM153491     1  0.2647      0.782 0.880 0.000 0.120 0.000
#> GSM153492     1  0.0000      0.743 1.000 0.000 0.000 0.000
#> GSM153493     1  0.0000      0.743 1.000 0.000 0.000 0.000
#> GSM153494     3  0.0000      0.821 0.000 0.000 1.000 0.000
#> GSM153495     1  0.3219      0.600 0.836 0.000 0.000 0.164
#> GSM153498     1  0.3688      0.735 0.792 0.000 0.208 0.000
#> GSM153501     1  0.0000      0.743 1.000 0.000 0.000 0.000
#> GSM153502     1  0.0000      0.743 1.000 0.000 0.000 0.000
#> GSM153505     1  0.4855      0.123 0.600 0.000 0.000 0.400
#> GSM153506     2  0.0000      0.974 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     3  0.3983    0.52187 0.340 0.000 0.660 0.000 0.000
#> GSM153406     1  0.2962    0.71897 0.872 0.096 0.016 0.016 0.000
#> GSM153419     3  0.0000    0.58669 0.000 0.000 1.000 0.000 0.000
#> GSM153423     2  0.0794    0.94710 0.028 0.972 0.000 0.000 0.000
#> GSM153425     3  0.4030    0.51752 0.352 0.000 0.648 0.000 0.000
#> GSM153427     1  0.0324    0.76542 0.992 0.000 0.004 0.004 0.000
#> GSM153428     3  0.4030    0.51752 0.352 0.000 0.648 0.000 0.000
#> GSM153429     1  0.1018    0.75878 0.968 0.000 0.016 0.016 0.000
#> GSM153433     3  0.0510    0.58253 0.000 0.000 0.984 0.016 0.000
#> GSM153444     1  0.0794    0.76947 0.972 0.000 0.028 0.000 0.000
#> GSM153448     1  0.1197    0.76761 0.952 0.000 0.048 0.000 0.000
#> GSM153451     2  0.0000    0.97106 0.000 1.000 0.000 0.000 0.000
#> GSM153452     3  0.4045    0.51363 0.356 0.000 0.644 0.000 0.000
#> GSM153477     2  0.3968    0.58500 0.276 0.716 0.004 0.004 0.000
#> GSM153479     1  0.4021    0.61352 0.764 0.036 0.200 0.000 0.000
#> GSM153484     1  0.0324    0.76589 0.992 0.004 0.004 0.000 0.000
#> GSM153488     3  0.4674    0.00871 0.416 0.000 0.568 0.016 0.000
#> GSM153496     3  0.0798    0.58421 0.008 0.000 0.976 0.016 0.000
#> GSM153497     2  0.0000    0.97106 0.000 1.000 0.000 0.000 0.000
#> GSM153500     4  0.0609    0.75112 0.000 0.000 0.020 0.980 0.000
#> GSM153503     4  0.0566    0.74978 0.000 0.000 0.012 0.984 0.004
#> GSM153508     1  0.5917    0.44988 0.592 0.088 0.304 0.016 0.000
#> GSM153409     2  0.0000    0.97106 0.000 1.000 0.000 0.000 0.000
#> GSM153426     2  0.0000    0.97106 0.000 1.000 0.000 0.000 0.000
#> GSM153431     1  0.0290    0.76604 0.992 0.000 0.008 0.000 0.000
#> GSM153438     2  0.0000    0.97106 0.000 1.000 0.000 0.000 0.000
#> GSM153440     3  0.0579    0.58744 0.008 0.000 0.984 0.008 0.000
#> GSM153447     3  0.3966    0.23962 0.000 0.000 0.664 0.336 0.000
#> GSM153450     1  0.1197    0.76761 0.952 0.000 0.048 0.000 0.000
#> GSM153456     2  0.0000    0.97106 0.000 1.000 0.000 0.000 0.000
#> GSM153457     2  0.0000    0.97106 0.000 1.000 0.000 0.000 0.000
#> GSM153458     2  0.0000    0.97106 0.000 1.000 0.000 0.000 0.000
#> GSM153459     2  0.0162    0.96745 0.004 0.996 0.000 0.000 0.000
#> GSM153460     2  0.0000    0.97106 0.000 1.000 0.000 0.000 0.000
#> GSM153461     1  0.0000    0.76651 1.000 0.000 0.000 0.000 0.000
#> GSM153463     4  0.4283    0.11369 0.000 0.000 0.000 0.544 0.456
#> GSM153464     2  0.0000    0.97106 0.000 1.000 0.000 0.000 0.000
#> GSM153466     1  0.1197    0.76761 0.952 0.000 0.048 0.000 0.000
#> GSM153467     2  0.2280    0.81484 0.120 0.880 0.000 0.000 0.000
#> GSM153468     1  0.3635    0.56804 0.748 0.000 0.248 0.004 0.000
#> GSM153469     1  0.4043    0.58454 0.756 0.220 0.012 0.012 0.000
#> GSM153470     1  0.4798    0.36573 0.576 0.404 0.004 0.016 0.000
#> GSM153471     2  0.0000    0.97106 0.000 1.000 0.000 0.000 0.000
#> GSM153472     3  0.4658    0.03104 0.408 0.000 0.576 0.016 0.000
#> GSM153473     4  0.4268    0.29146 0.000 0.000 0.444 0.556 0.000
#> GSM153474     4  0.4126    0.52711 0.000 0.000 0.380 0.620 0.000
#> GSM153475     1  0.0000    0.76651 1.000 0.000 0.000 0.000 0.000
#> GSM153476     3  0.4655   -0.06206 0.476 0.000 0.512 0.012 0.000
#> GSM153478     3  0.0566    0.58540 0.004 0.000 0.984 0.012 0.000
#> GSM153480     2  0.0000    0.97106 0.000 1.000 0.000 0.000 0.000
#> GSM153486     1  0.2376    0.75889 0.904 0.044 0.052 0.000 0.000
#> GSM153487     1  0.4505    0.39811 0.604 0.000 0.384 0.012 0.000
#> GSM153499     1  0.4014    0.55088 0.728 0.000 0.256 0.016 0.000
#> GSM153504     4  0.2020    0.72288 0.000 0.000 0.100 0.900 0.000
#> GSM153507     1  0.6681    0.11332 0.448 0.000 0.340 0.208 0.004
#> GSM153404     3  0.4551    0.50610 0.368 0.000 0.616 0.016 0.000
#> GSM153407     1  0.4210    0.36906 0.588 0.000 0.412 0.000 0.000
#> GSM153408     3  0.4538    0.51026 0.364 0.000 0.620 0.016 0.000
#> GSM153410     1  0.3674    0.66503 0.812 0.156 0.016 0.016 0.000
#> GSM153411     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000
#> GSM153412     1  0.3843    0.59385 0.788 0.012 0.184 0.016 0.000
#> GSM153413     3  0.1597    0.55576 0.048 0.000 0.940 0.012 0.000
#> GSM153414     3  0.4249    0.38136 0.432 0.000 0.568 0.000 0.000
#> GSM153415     3  0.4551    0.50610 0.368 0.000 0.616 0.016 0.000
#> GSM153416     2  0.1341    0.91371 0.056 0.944 0.000 0.000 0.000
#> GSM153417     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000
#> GSM153418     1  0.3527    0.58937 0.792 0.000 0.192 0.016 0.000
#> GSM153420     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000
#> GSM153421     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000
#> GSM153422     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000
#> GSM153424     1  0.2377    0.71576 0.872 0.000 0.128 0.000 0.000
#> GSM153430     3  0.0566    0.58567 0.004 0.000 0.984 0.012 0.000
#> GSM153432     1  0.0000    0.76651 1.000 0.000 0.000 0.000 0.000
#> GSM153434     1  0.3242    0.60727 0.784 0.000 0.216 0.000 0.000
#> GSM153435     2  0.0000    0.97106 0.000 1.000 0.000 0.000 0.000
#> GSM153436     1  0.2516    0.73547 0.860 0.000 0.140 0.000 0.000
#> GSM153437     2  0.0000    0.97106 0.000 1.000 0.000 0.000 0.000
#> GSM153439     1  0.0162    0.76638 0.996 0.000 0.004 0.000 0.000
#> GSM153441     1  0.1197    0.76761 0.952 0.000 0.048 0.000 0.000
#> GSM153442     1  0.1197    0.76761 0.952 0.000 0.048 0.000 0.000
#> GSM153443     2  0.0000    0.97106 0.000 1.000 0.000 0.000 0.000
#> GSM153445     2  0.0000    0.97106 0.000 1.000 0.000 0.000 0.000
#> GSM153446     2  0.0000    0.97106 0.000 1.000 0.000 0.000 0.000
#> GSM153449     1  0.4114    0.42897 0.624 0.000 0.376 0.000 0.000
#> GSM153453     3  0.0609    0.58041 0.000 0.000 0.980 0.020 0.000
#> GSM153454     4  0.0566    0.74978 0.000 0.000 0.012 0.984 0.004
#> GSM153455     1  0.1197    0.76761 0.952 0.000 0.048 0.000 0.000
#> GSM153462     2  0.0000    0.97106 0.000 1.000 0.000 0.000 0.000
#> GSM153465     1  0.3078    0.69166 0.848 0.132 0.004 0.016 0.000
#> GSM153481     2  0.1195    0.93516 0.028 0.960 0.000 0.012 0.000
#> GSM153482     1  0.4211    0.44703 0.636 0.000 0.360 0.004 0.000
#> GSM153483     1  0.2818    0.69675 0.856 0.132 0.000 0.012 0.000
#> GSM153485     1  0.2864    0.72436 0.852 0.000 0.136 0.012 0.000
#> GSM153489     1  0.4288    0.40953 0.612 0.000 0.384 0.004 0.000
#> GSM153490     4  0.3999    0.39441 0.000 0.000 0.000 0.656 0.344
#> GSM153491     3  0.0912    0.58350 0.012 0.000 0.972 0.016 0.000
#> GSM153492     4  0.4278    0.42911 0.000 0.000 0.452 0.548 0.000
#> GSM153493     4  0.0510    0.75162 0.000 0.000 0.016 0.984 0.000
#> GSM153494     1  0.1197    0.76761 0.952 0.000 0.048 0.000 0.000
#> GSM153495     4  0.0510    0.75162 0.000 0.000 0.016 0.984 0.000
#> GSM153498     3  0.4482    0.12966 0.376 0.000 0.612 0.012 0.000
#> GSM153501     4  0.0510    0.75162 0.000 0.000 0.016 0.984 0.000
#> GSM153502     4  0.4150    0.51880 0.000 0.000 0.388 0.612 0.000
#> GSM153505     4  0.1270    0.72303 0.000 0.000 0.000 0.948 0.052
#> GSM153506     2  0.0000    0.97106 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     2  0.1267    0.51817 0.000 0.940 0.060 0.000 0.000 0.000
#> GSM153406     3  0.3172    0.34543 0.128 0.000 0.824 0.000 0.000 0.048
#> GSM153419     2  0.4680    0.39499 0.000 0.684 0.184 0.000 0.000 0.132
#> GSM153423     1  0.3417    0.76017 0.828 0.108 0.044 0.000 0.000 0.020
#> GSM153425     2  0.0146    0.52255 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM153427     3  0.5649    0.19388 0.000 0.152 0.452 0.000 0.000 0.396
#> GSM153428     2  0.0363    0.52285 0.000 0.988 0.012 0.000 0.000 0.000
#> GSM153429     3  0.1225    0.41734 0.000 0.012 0.952 0.000 0.000 0.036
#> GSM153433     2  0.3707    0.33294 0.000 0.680 0.000 0.008 0.000 0.312
#> GSM153444     3  0.5743    0.19305 0.000 0.168 0.428 0.000 0.000 0.404
#> GSM153448     2  0.5216   -0.06141 0.000 0.484 0.424 0.000 0.000 0.092
#> GSM153451     1  0.0000    0.92603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153452     2  0.1075    0.51385 0.000 0.952 0.048 0.000 0.000 0.000
#> GSM153477     1  0.4801    0.10665 0.484 0.024 0.016 0.000 0.000 0.476
#> GSM153479     3  0.4262   -0.06156 0.000 0.476 0.508 0.000 0.000 0.016
#> GSM153484     6  0.5597   -0.17129 0.000 0.148 0.372 0.000 0.000 0.480
#> GSM153488     6  0.4252    0.02533 0.000 0.372 0.024 0.000 0.000 0.604
#> GSM153496     6  0.3828   -0.04524 0.000 0.440 0.000 0.000 0.000 0.560
#> GSM153497     1  0.0000    0.92603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153500     4  0.0146    0.82919 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM153503     4  0.0000    0.83070 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153508     6  0.4904    0.05459 0.000 0.316 0.084 0.000 0.000 0.600
#> GSM153409     1  0.0000    0.92603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153426     1  0.0000    0.92603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153431     6  0.5725   -0.24204 0.000 0.164 0.416 0.000 0.000 0.420
#> GSM153438     1  0.0000    0.92603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153440     2  0.3563    0.30724 0.000 0.664 0.000 0.000 0.000 0.336
#> GSM153447     2  0.3351    0.32324 0.000 0.712 0.000 0.288 0.000 0.000
#> GSM153450     3  0.5781    0.19401 0.000 0.176 0.428 0.000 0.000 0.396
#> GSM153456     1  0.0000    0.92603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153457     1  0.0000    0.92603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153458     1  0.0000    0.92603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153459     1  0.0146    0.92321 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM153460     1  0.0000    0.92603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153461     3  0.5743    0.19305 0.000 0.168 0.428 0.000 0.000 0.404
#> GSM153463     4  0.3747    0.36916 0.000 0.000 0.000 0.604 0.396 0.000
#> GSM153464     1  0.0000    0.92603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153466     6  0.5725   -0.24346 0.000 0.164 0.416 0.000 0.000 0.420
#> GSM153467     1  0.1524    0.86308 0.932 0.008 0.060 0.000 0.000 0.000
#> GSM153468     3  0.3830    0.01577 0.000 0.376 0.620 0.000 0.000 0.004
#> GSM153469     3  0.2419    0.39920 0.060 0.016 0.896 0.000 0.000 0.028
#> GSM153470     1  0.5542    0.23661 0.528 0.008 0.348 0.000 0.000 0.116
#> GSM153471     1  0.0000    0.92603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153472     6  0.4899   -0.09729 0.000 0.452 0.060 0.000 0.000 0.488
#> GSM153473     4  0.3066    0.72873 0.000 0.124 0.000 0.832 0.000 0.044
#> GSM153474     4  0.4319    0.42755 0.000 0.024 0.000 0.576 0.000 0.400
#> GSM153475     6  0.5618   -0.17480 0.000 0.152 0.368 0.000 0.000 0.480
#> GSM153476     6  0.4855    0.07513 0.000 0.056 0.460 0.000 0.000 0.484
#> GSM153478     2  0.3101    0.40815 0.000 0.756 0.000 0.000 0.000 0.244
#> GSM153480     1  0.0000    0.92603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153486     6  0.5786   -0.16669 0.008 0.144 0.364 0.000 0.000 0.484
#> GSM153487     6  0.0260    0.36215 0.000 0.000 0.008 0.000 0.000 0.992
#> GSM153499     3  0.2218    0.38913 0.000 0.012 0.884 0.000 0.000 0.104
#> GSM153504     4  0.2762    0.69816 0.000 0.000 0.000 0.804 0.000 0.196
#> GSM153507     6  0.2121    0.33394 0.000 0.000 0.012 0.096 0.000 0.892
#> GSM153404     2  0.3996    0.06417 0.000 0.512 0.484 0.000 0.000 0.004
#> GSM153407     6  0.3650    0.27390 0.000 0.116 0.092 0.000 0.000 0.792
#> GSM153408     3  0.3756   -0.02085 0.000 0.400 0.600 0.000 0.000 0.000
#> GSM153410     3  0.2706    0.35487 0.124 0.000 0.852 0.000 0.000 0.024
#> GSM153411     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153412     3  0.0000    0.40986 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM153413     3  0.4314   -0.08829 0.000 0.444 0.536 0.000 0.000 0.020
#> GSM153414     2  0.3390    0.31098 0.000 0.704 0.296 0.000 0.000 0.000
#> GSM153415     3  0.3817   -0.05687 0.000 0.432 0.568 0.000 0.000 0.000
#> GSM153416     1  0.3426    0.73743 0.808 0.124 0.068 0.000 0.000 0.000
#> GSM153417     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153418     3  0.1007    0.41373 0.000 0.000 0.956 0.000 0.000 0.044
#> GSM153420     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153421     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153422     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM153424     2  0.5917   -0.24060 0.000 0.396 0.208 0.000 0.000 0.396
#> GSM153430     2  0.2454    0.45497 0.000 0.840 0.000 0.000 0.000 0.160
#> GSM153432     3  0.5718    0.19738 0.000 0.164 0.440 0.000 0.000 0.396
#> GSM153434     2  0.4632   -0.00185 0.000 0.520 0.440 0.000 0.000 0.040
#> GSM153435     1  0.0000    0.92603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153436     2  0.4813    0.13099 0.000 0.608 0.316 0.000 0.000 0.076
#> GSM153437     1  0.0000    0.92603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153439     3  0.5569    0.24175 0.000 0.160 0.520 0.000 0.000 0.320
#> GSM153441     3  0.5634    0.07932 0.000 0.416 0.436 0.000 0.000 0.148
#> GSM153442     3  0.5784    0.18474 0.000 0.176 0.420 0.000 0.000 0.404
#> GSM153443     1  0.0000    0.92603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153445     1  0.0000    0.92603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153446     1  0.0000    0.92603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153449     6  0.1418    0.35465 0.000 0.032 0.024 0.000 0.000 0.944
#> GSM153453     6  0.4181   -0.10096 0.000 0.476 0.000 0.012 0.000 0.512
#> GSM153454     4  0.0000    0.83070 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153455     6  0.5623   -0.17609 0.000 0.152 0.372 0.000 0.000 0.476
#> GSM153462     1  0.0000    0.92603 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM153465     6  0.5837   -0.14525 0.084 0.036 0.396 0.000 0.000 0.484
#> GSM153481     1  0.2956    0.79525 0.848 0.000 0.064 0.000 0.000 0.088
#> GSM153482     6  0.1950    0.33959 0.000 0.024 0.064 0.000 0.000 0.912
#> GSM153483     6  0.5740   -0.15130 0.068 0.040 0.408 0.000 0.000 0.484
#> GSM153485     6  0.5855   -0.06817 0.000 0.200 0.352 0.000 0.000 0.448
#> GSM153489     6  0.0260    0.36119 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM153490     4  0.3756    0.36540 0.000 0.000 0.000 0.600 0.400 0.000
#> GSM153491     6  0.3756    0.00560 0.000 0.400 0.000 0.000 0.000 0.600
#> GSM153492     6  0.4335   -0.31171 0.000 0.020 0.000 0.472 0.000 0.508
#> GSM153493     4  0.0000    0.83070 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153494     2  0.6074   -0.22223 0.000 0.376 0.356 0.000 0.000 0.268
#> GSM153495     4  0.0000    0.83070 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153498     6  0.4672    0.13266 0.000 0.056 0.348 0.000 0.000 0.596
#> GSM153501     4  0.0000    0.83070 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153502     6  0.4644   -0.28396 0.000 0.040 0.000 0.456 0.000 0.504
#> GSM153505     4  0.0790    0.81592 0.000 0.000 0.000 0.968 0.032 0.000
#> GSM153506     1  0.0000    0.92603 1.000 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n disease.state(p) k
#> ATC:pam 101         0.496328 2
#> ATC:pam 103         0.129480 3
#> ATC:pam  96         0.140196 4
#> ATC:pam  87         0.058653 5
#> ATC:pam  42         0.000426 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.843           0.895       0.954         0.4597 0.551   0.551
#> 3 3 0.513           0.630       0.787         0.1021 0.814   0.721
#> 4 4 0.582           0.797       0.840         0.2027 0.652   0.475
#> 5 5 0.488           0.479       0.652         0.0791 0.847   0.646
#> 6 6 0.459           0.384       0.674         0.0841 0.729   0.373

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     2  0.9044      0.557 0.320 0.680
#> GSM153406     2  0.0376      0.945 0.004 0.996
#> GSM153419     1  0.0938      0.960 0.988 0.012
#> GSM153423     2  0.0000      0.944 0.000 1.000
#> GSM153425     1  0.0376      0.964 0.996 0.004
#> GSM153427     2  0.9754      0.353 0.408 0.592
#> GSM153428     1  0.0672      0.962 0.992 0.008
#> GSM153429     2  0.0376      0.945 0.004 0.996
#> GSM153433     1  0.0672      0.962 0.992 0.008
#> GSM153444     2  0.0376      0.945 0.004 0.996
#> GSM153448     2  0.0376      0.945 0.004 0.996
#> GSM153451     2  0.0376      0.945 0.004 0.996
#> GSM153452     2  0.9129      0.544 0.328 0.672
#> GSM153477     2  0.0000      0.944 0.000 1.000
#> GSM153479     2  0.0376      0.945 0.004 0.996
#> GSM153484     2  0.0000      0.944 0.000 1.000
#> GSM153488     2  0.8608      0.624 0.284 0.716
#> GSM153496     1  0.1633      0.950 0.976 0.024
#> GSM153497     2  0.0000      0.944 0.000 1.000
#> GSM153500     1  0.0000      0.964 1.000 0.000
#> GSM153503     1  0.0000      0.964 1.000 0.000
#> GSM153508     1  0.0000      0.964 1.000 0.000
#> GSM153409     2  0.0376      0.945 0.004 0.996
#> GSM153426     2  0.0376      0.945 0.004 0.996
#> GSM153431     1  0.5629      0.835 0.868 0.132
#> GSM153438     2  0.0376      0.945 0.004 0.996
#> GSM153440     1  0.4431      0.885 0.908 0.092
#> GSM153447     1  0.0376      0.964 0.996 0.004
#> GSM153450     2  0.0376      0.945 0.004 0.996
#> GSM153456     2  0.0376      0.945 0.004 0.996
#> GSM153457     2  0.0376      0.945 0.004 0.996
#> GSM153458     2  0.5737      0.822 0.136 0.864
#> GSM153459     2  0.0376      0.945 0.004 0.996
#> GSM153460     2  0.0376      0.945 0.004 0.996
#> GSM153461     2  0.0376      0.945 0.004 0.996
#> GSM153463     1  0.0376      0.964 0.996 0.004
#> GSM153464     2  0.0000      0.944 0.000 1.000
#> GSM153466     2  0.0376      0.945 0.004 0.996
#> GSM153467     2  0.0376      0.945 0.004 0.996
#> GSM153468     2  0.0938      0.940 0.012 0.988
#> GSM153469     2  0.0000      0.944 0.000 1.000
#> GSM153470     2  0.0000      0.944 0.000 1.000
#> GSM153471     2  0.0376      0.945 0.004 0.996
#> GSM153472     1  0.3274      0.918 0.940 0.060
#> GSM153473     1  0.0000      0.964 1.000 0.000
#> GSM153474     1  0.0000      0.964 1.000 0.000
#> GSM153475     2  0.0672      0.943 0.008 0.992
#> GSM153476     2  0.0376      0.945 0.004 0.996
#> GSM153478     2  0.7815      0.703 0.232 0.768
#> GSM153480     2  0.0000      0.944 0.000 1.000
#> GSM153486     2  0.0376      0.945 0.004 0.996
#> GSM153487     1  0.2423      0.937 0.960 0.040
#> GSM153499     2  0.9522      0.446 0.372 0.628
#> GSM153504     1  0.0000      0.964 1.000 0.000
#> GSM153507     1  0.0376      0.964 0.996 0.004
#> GSM153404     2  0.0376      0.945 0.004 0.996
#> GSM153407     1  0.0376      0.964 0.996 0.004
#> GSM153408     2  0.0376      0.945 0.004 0.996
#> GSM153410     2  0.0376      0.945 0.004 0.996
#> GSM153411     1  0.0376      0.964 0.996 0.004
#> GSM153412     2  0.0376      0.945 0.004 0.996
#> GSM153413     2  0.9460      0.456 0.364 0.636
#> GSM153414     2  0.0376      0.945 0.004 0.996
#> GSM153415     2  0.0376      0.945 0.004 0.996
#> GSM153416     2  0.0000      0.944 0.000 1.000
#> GSM153417     1  0.0376      0.964 0.996 0.004
#> GSM153418     2  0.0376      0.945 0.004 0.996
#> GSM153420     1  0.0376      0.964 0.996 0.004
#> GSM153421     1  0.0376      0.964 0.996 0.004
#> GSM153422     1  0.0376      0.964 0.996 0.004
#> GSM153424     2  0.8955      0.564 0.312 0.688
#> GSM153430     2  0.9754      0.350 0.408 0.592
#> GSM153432     2  0.9087      0.547 0.324 0.676
#> GSM153434     2  0.0376      0.945 0.004 0.996
#> GSM153435     2  0.0376      0.945 0.004 0.996
#> GSM153436     2  0.0376      0.945 0.004 0.996
#> GSM153437     2  0.0376      0.945 0.004 0.996
#> GSM153439     2  0.0376      0.945 0.004 0.996
#> GSM153441     2  0.0376      0.945 0.004 0.996
#> GSM153442     2  0.0376      0.945 0.004 0.996
#> GSM153443     2  0.0000      0.944 0.000 1.000
#> GSM153445     2  0.0000      0.944 0.000 1.000
#> GSM153446     2  0.0000      0.944 0.000 1.000
#> GSM153449     2  0.0672      0.943 0.008 0.992
#> GSM153453     1  0.0000      0.964 1.000 0.000
#> GSM153454     1  0.0000      0.964 1.000 0.000
#> GSM153455     2  0.0376      0.945 0.004 0.996
#> GSM153462     2  0.0000      0.944 0.000 1.000
#> GSM153465     2  0.0000      0.944 0.000 1.000
#> GSM153481     2  0.0000      0.944 0.000 1.000
#> GSM153482     2  0.0376      0.945 0.004 0.996
#> GSM153483     2  0.0000      0.944 0.000 1.000
#> GSM153485     2  0.0376      0.945 0.004 0.996
#> GSM153489     2  0.2423      0.917 0.040 0.960
#> GSM153490     1  0.0000      0.964 1.000 0.000
#> GSM153491     1  0.8861      0.542 0.696 0.304
#> GSM153492     1  0.0000      0.964 1.000 0.000
#> GSM153493     1  0.0000      0.964 1.000 0.000
#> GSM153494     2  0.0376      0.945 0.004 0.996
#> GSM153495     1  0.0000      0.964 1.000 0.000
#> GSM153498     1  0.9686      0.303 0.604 0.396
#> GSM153501     1  0.0000      0.964 1.000 0.000
#> GSM153502     1  0.0000      0.964 1.000 0.000
#> GSM153505     1  0.0000      0.964 1.000 0.000
#> GSM153506     2  0.0000      0.944 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     2  0.0592      0.763 0.000 0.988 0.012
#> GSM153406     2  0.3043      0.718 0.008 0.908 0.084
#> GSM153419     2  0.4121      0.659 0.000 0.832 0.168
#> GSM153423     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153425     2  0.5591      0.426 0.000 0.696 0.304
#> GSM153427     2  0.5986      0.430 0.012 0.704 0.284
#> GSM153428     2  0.5058      0.513 0.000 0.756 0.244
#> GSM153429     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153433     2  0.0592      0.763 0.000 0.988 0.012
#> GSM153444     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153448     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153451     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153452     2  0.0592      0.763 0.000 0.988 0.012
#> GSM153477     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153479     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153484     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153488     2  0.0592      0.763 0.000 0.988 0.012
#> GSM153496     1  0.6617      0.351 0.600 0.388 0.012
#> GSM153497     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153500     1  0.6079      0.624 0.612 0.000 0.388
#> GSM153503     1  0.6079      0.624 0.612 0.000 0.388
#> GSM153508     1  0.6745      0.324 0.560 0.428 0.012
#> GSM153409     2  0.7067      0.613 0.376 0.596 0.028
#> GSM153426     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153431     2  0.6019      0.421 0.012 0.700 0.288
#> GSM153438     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153440     2  0.0592      0.763 0.000 0.988 0.012
#> GSM153447     3  0.7562      0.403 0.064 0.308 0.628
#> GSM153450     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153456     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153457     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153458     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153459     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153460     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153461     2  0.2860      0.714 0.004 0.912 0.084
#> GSM153463     3  0.7013      0.152 0.324 0.036 0.640
#> GSM153464     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153466     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153467     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153468     2  0.4121      0.618 0.168 0.832 0.000
#> GSM153469     2  0.2625      0.749 0.084 0.916 0.000
#> GSM153470     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153471     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153472     2  0.6825     -0.330 0.488 0.500 0.012
#> GSM153473     1  0.7325      0.550 0.576 0.036 0.388
#> GSM153474     1  0.6079      0.624 0.612 0.000 0.388
#> GSM153475     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153476     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153478     2  0.0237      0.767 0.004 0.996 0.000
#> GSM153480     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153486     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153487     2  0.4514      0.617 0.156 0.832 0.012
#> GSM153499     2  0.6244     -0.126 0.440 0.560 0.000
#> GSM153504     1  0.6095      0.620 0.608 0.000 0.392
#> GSM153507     3  0.5397      0.456 0.000 0.280 0.720
#> GSM153404     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153407     2  0.6079      0.236 0.000 0.612 0.388
#> GSM153408     2  0.3459      0.697 0.012 0.892 0.096
#> GSM153410     2  0.5785      0.656 0.332 0.668 0.000
#> GSM153411     3  0.3155      0.636 0.044 0.040 0.916
#> GSM153412     2  0.5650      0.664 0.312 0.688 0.000
#> GSM153413     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153414     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153415     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153416     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153417     3  0.1411      0.644 0.036 0.000 0.964
#> GSM153418     2  0.5268      0.556 0.012 0.776 0.212
#> GSM153420     3  0.0000      0.658 0.000 0.000 1.000
#> GSM153421     3  0.0000      0.658 0.000 0.000 1.000
#> GSM153422     3  0.0000      0.658 0.000 0.000 1.000
#> GSM153424     2  0.1529      0.748 0.000 0.960 0.040
#> GSM153430     2  0.0592      0.763 0.000 0.988 0.012
#> GSM153432     2  0.3551      0.672 0.000 0.868 0.132
#> GSM153434     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153435     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153436     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153437     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153439     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153441     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153442     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153443     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153445     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153446     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153449     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153453     1  0.6896      0.345 0.588 0.392 0.020
#> GSM153454     1  0.6111      0.615 0.604 0.000 0.396
#> GSM153455     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153462     2  0.6026      0.638 0.376 0.624 0.000
#> GSM153465     2  0.0424      0.768 0.008 0.992 0.000
#> GSM153481     2  0.5948      0.644 0.360 0.640 0.000
#> GSM153482     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153483     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153485     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153489     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153490     3  0.5741      0.548 0.036 0.188 0.776
#> GSM153491     1  0.6745      0.324 0.560 0.428 0.012
#> GSM153492     1  0.6079      0.624 0.612 0.000 0.388
#> GSM153493     1  0.6079      0.624 0.612 0.000 0.388
#> GSM153494     2  0.0000      0.769 0.000 1.000 0.000
#> GSM153495     1  0.6079      0.624 0.612 0.000 0.388
#> GSM153498     1  0.6786      0.297 0.540 0.448 0.012
#> GSM153501     1  0.6079      0.624 0.612 0.000 0.388
#> GSM153502     1  0.6079      0.624 0.612 0.000 0.388
#> GSM153505     1  0.6079      0.624 0.612 0.000 0.388
#> GSM153506     2  0.6026      0.638 0.376 0.624 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     1  0.0672      0.879 0.984 0.008 0.000 0.008
#> GSM153406     1  0.7314     -0.164 0.428 0.420 0.152 0.000
#> GSM153419     1  0.3681      0.778 0.816 0.008 0.000 0.176
#> GSM153423     2  0.4053      0.972 0.228 0.768 0.004 0.000
#> GSM153425     1  0.4399      0.711 0.760 0.016 0.000 0.224
#> GSM153427     1  0.3945      0.740 0.780 0.004 0.216 0.000
#> GSM153428     1  0.4327      0.721 0.768 0.016 0.000 0.216
#> GSM153429     1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM153433     1  0.1109      0.874 0.968 0.004 0.000 0.028
#> GSM153444     1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM153448     1  0.0188      0.880 0.996 0.004 0.000 0.000
#> GSM153451     2  0.3975      0.979 0.240 0.760 0.000 0.000
#> GSM153452     1  0.0336      0.880 0.992 0.008 0.000 0.000
#> GSM153477     2  0.4053      0.972 0.228 0.768 0.004 0.000
#> GSM153479     1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM153484     1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM153488     1  0.0921      0.874 0.972 0.000 0.000 0.028
#> GSM153496     1  0.4655      0.705 0.760 0.208 0.000 0.032
#> GSM153497     2  0.4018      0.971 0.224 0.772 0.004 0.000
#> GSM153500     4  0.7646      0.779 0.000 0.208 0.384 0.408
#> GSM153503     4  0.7646      0.779 0.000 0.208 0.384 0.408
#> GSM153508     1  0.4655      0.705 0.760 0.208 0.000 0.032
#> GSM153409     2  0.4008      0.977 0.244 0.756 0.000 0.000
#> GSM153426     2  0.3975      0.979 0.240 0.760 0.000 0.000
#> GSM153431     1  0.3791      0.752 0.796 0.004 0.200 0.000
#> GSM153438     2  0.3975      0.979 0.240 0.760 0.000 0.000
#> GSM153440     1  0.0921      0.874 0.972 0.000 0.000 0.028
#> GSM153447     4  0.4034      0.344 0.008 0.004 0.192 0.796
#> GSM153450     1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM153456     2  0.3975      0.979 0.240 0.760 0.000 0.000
#> GSM153457     2  0.3975      0.979 0.240 0.760 0.000 0.000
#> GSM153458     2  0.3942      0.977 0.236 0.764 0.000 0.000
#> GSM153459     2  0.4188      0.977 0.244 0.752 0.004 0.000
#> GSM153460     2  0.3975      0.979 0.240 0.760 0.000 0.000
#> GSM153461     1  0.2401      0.843 0.904 0.004 0.092 0.000
#> GSM153463     4  0.0000     -0.131 0.000 0.000 0.000 1.000
#> GSM153464     2  0.3975      0.979 0.240 0.760 0.000 0.000
#> GSM153466     1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM153467     2  0.3975      0.979 0.240 0.760 0.000 0.000
#> GSM153468     1  0.3494      0.774 0.824 0.172 0.000 0.004
#> GSM153469     2  0.4830      0.755 0.392 0.608 0.000 0.000
#> GSM153470     2  0.4053      0.972 0.228 0.768 0.004 0.000
#> GSM153471     2  0.4008      0.977 0.244 0.756 0.000 0.000
#> GSM153472     1  0.4375      0.741 0.788 0.180 0.000 0.032
#> GSM153473     4  0.7788      0.774 0.004 0.204 0.384 0.408
#> GSM153474     4  0.7646      0.779 0.000 0.208 0.384 0.408
#> GSM153475     1  0.0592      0.878 0.984 0.000 0.000 0.016
#> GSM153476     1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM153478     1  0.0188      0.880 0.996 0.004 0.000 0.000
#> GSM153480     2  0.4018      0.971 0.224 0.772 0.004 0.000
#> GSM153486     1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM153487     1  0.1109      0.874 0.968 0.004 0.000 0.028
#> GSM153499     1  0.3494      0.774 0.824 0.172 0.000 0.004
#> GSM153504     4  0.7646      0.779 0.000 0.208 0.384 0.408
#> GSM153507     1  0.7906     -0.155 0.392 0.004 0.372 0.232
#> GSM153404     1  0.0336      0.880 0.992 0.008 0.000 0.000
#> GSM153407     1  0.5011      0.697 0.748 0.004 0.208 0.040
#> GSM153408     1  0.3791      0.758 0.796 0.004 0.200 0.000
#> GSM153410     2  0.4372      0.951 0.268 0.728 0.004 0.000
#> GSM153411     4  0.4713     -0.746 0.000 0.000 0.360 0.640
#> GSM153412     2  0.4356      0.919 0.292 0.708 0.000 0.000
#> GSM153413     1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM153414     1  0.0336      0.880 0.992 0.008 0.000 0.000
#> GSM153415     1  0.0376      0.880 0.992 0.004 0.000 0.004
#> GSM153416     2  0.4053      0.972 0.228 0.768 0.004 0.000
#> GSM153417     4  0.4713     -0.746 0.000 0.000 0.360 0.640
#> GSM153418     1  0.3945      0.740 0.780 0.004 0.216 0.000
#> GSM153420     3  0.4933      1.000 0.000 0.000 0.568 0.432
#> GSM153421     3  0.4933      1.000 0.000 0.000 0.568 0.432
#> GSM153422     3  0.4933      1.000 0.000 0.000 0.568 0.432
#> GSM153424     1  0.0336      0.880 0.992 0.008 0.000 0.000
#> GSM153430     1  0.0376      0.880 0.992 0.004 0.000 0.004
#> GSM153432     1  0.4331      0.758 0.800 0.004 0.168 0.028
#> GSM153434     1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM153435     2  0.3975      0.979 0.240 0.760 0.000 0.000
#> GSM153436     1  0.0188      0.880 0.996 0.004 0.000 0.000
#> GSM153437     2  0.3975      0.979 0.240 0.760 0.000 0.000
#> GSM153439     1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM153441     1  0.0188      0.880 0.996 0.004 0.000 0.000
#> GSM153442     1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM153443     2  0.3975      0.979 0.240 0.760 0.000 0.000
#> GSM153445     2  0.4018      0.971 0.224 0.772 0.004 0.000
#> GSM153446     2  0.4018      0.971 0.224 0.772 0.004 0.000
#> GSM153449     1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM153453     1  0.4633      0.737 0.780 0.172 0.000 0.048
#> GSM153454     4  0.7638      0.772 0.000 0.208 0.372 0.420
#> GSM153455     1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM153462     2  0.4053      0.972 0.228 0.768 0.004 0.000
#> GSM153465     1  0.3975      0.474 0.760 0.240 0.000 0.000
#> GSM153481     2  0.4188      0.977 0.244 0.752 0.004 0.000
#> GSM153482     1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM153483     1  0.0188      0.878 0.996 0.004 0.000 0.000
#> GSM153485     1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM153489     1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM153490     4  0.5016      0.238 0.004 0.000 0.396 0.600
#> GSM153491     1  0.4365      0.736 0.784 0.188 0.000 0.028
#> GSM153492     4  0.7646      0.779 0.000 0.208 0.384 0.408
#> GSM153493     4  0.7646      0.779 0.000 0.208 0.384 0.408
#> GSM153494     1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM153495     4  0.7646      0.779 0.000 0.208 0.384 0.408
#> GSM153498     1  0.4418      0.737 0.784 0.184 0.000 0.032
#> GSM153501     4  0.7646      0.779 0.000 0.208 0.384 0.408
#> GSM153502     4  0.7646      0.779 0.000 0.208 0.384 0.408
#> GSM153505     4  0.7646      0.779 0.000 0.208 0.384 0.408
#> GSM153506     2  0.4155      0.978 0.240 0.756 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> GSM153405     1  0.6121     0.5690 0.584 0.308 NA 0.004 0.020
#> GSM153406     1  0.5138     0.1726 0.684 0.228 NA 0.000 0.004
#> GSM153419     1  0.8638     0.4467 0.376 0.212 NA 0.024 0.116
#> GSM153423     2  0.2389     0.7375 0.004 0.880 NA 0.000 0.000
#> GSM153425     1  0.7401     0.2395 0.480 0.036 NA 0.012 0.296
#> GSM153427     1  0.3166     0.3494 0.860 0.020 NA 0.000 0.016
#> GSM153428     1  0.7342     0.2523 0.484 0.040 NA 0.008 0.296
#> GSM153429     2  0.5178    -0.4238 0.480 0.480 NA 0.000 0.000
#> GSM153433     1  0.7076     0.4683 0.392 0.380 NA 0.012 0.004
#> GSM153444     1  0.5693     0.4981 0.604 0.292 NA 0.000 0.004
#> GSM153448     1  0.5469     0.5459 0.548 0.392 NA 0.000 0.004
#> GSM153451     2  0.1074     0.7576 0.012 0.968 NA 0.000 0.004
#> GSM153452     1  0.6121     0.5608 0.584 0.308 NA 0.004 0.020
#> GSM153477     2  0.2439     0.7359 0.004 0.876 NA 0.000 0.000
#> GSM153479     1  0.5250     0.5425 0.536 0.416 NA 0.000 0.000
#> GSM153484     1  0.5036     0.5454 0.560 0.404 NA 0.000 0.000
#> GSM153488     2  0.6691    -0.4525 0.360 0.400 NA 0.000 0.000
#> GSM153496     4  0.6665     0.1246 0.336 0.000 NA 0.424 0.000
#> GSM153497     2  0.1124     0.7581 0.004 0.960 NA 0.000 0.000
#> GSM153500     4  0.0000     0.6989 0.000 0.000 NA 1.000 0.000
#> GSM153503     4  0.0000     0.6989 0.000 0.000 NA 1.000 0.000
#> GSM153508     1  0.6441    -0.0366 0.424 0.004 NA 0.420 0.000
#> GSM153409     2  0.2395     0.7086 0.072 0.904 NA 0.000 0.008
#> GSM153426     2  0.1059     0.7575 0.008 0.968 NA 0.000 0.004
#> GSM153431     1  0.2732     0.3900 0.884 0.020 NA 0.000 0.008
#> GSM153438     2  0.1597     0.7485 0.020 0.948 NA 0.000 0.008
#> GSM153440     1  0.6742     0.4557 0.396 0.388 NA 0.004 0.000
#> GSM153447     4  0.6306    -0.1760 0.048 0.000 NA 0.488 0.412
#> GSM153450     1  0.5344     0.4625 0.500 0.448 NA 0.000 0.000
#> GSM153456     2  0.1471     0.7521 0.020 0.952 NA 0.000 0.004
#> GSM153457     2  0.1153     0.7570 0.008 0.964 NA 0.000 0.004
#> GSM153458     2  0.3130     0.6774 0.040 0.872 NA 0.000 0.016
#> GSM153459     2  0.1485     0.7602 0.020 0.948 NA 0.000 0.000
#> GSM153460     2  0.1173     0.7564 0.012 0.964 NA 0.000 0.004
#> GSM153461     1  0.3450     0.4237 0.848 0.060 NA 0.000 0.008
#> GSM153463     5  0.3730     0.4852 0.000 0.000 NA 0.288 0.712
#> GSM153464     2  0.1026     0.7589 0.004 0.968 NA 0.000 0.004
#> GSM153466     1  0.4989     0.5428 0.552 0.416 NA 0.000 0.000
#> GSM153467     2  0.1780     0.7433 0.024 0.940 NA 0.000 0.008
#> GSM153468     1  0.7427     0.3284 0.488 0.096 NA 0.308 0.004
#> GSM153469     2  0.4670     0.4602 0.200 0.724 NA 0.000 0.000
#> GSM153470     2  0.2536     0.7327 0.004 0.868 NA 0.000 0.000
#> GSM153471     2  0.0579     0.7607 0.008 0.984 NA 0.000 0.000
#> GSM153472     4  0.7193     0.0842 0.328 0.020 NA 0.400 0.000
#> GSM153473     4  0.0162     0.6953 0.000 0.000 NA 0.996 0.004
#> GSM153474     4  0.0000     0.6989 0.000 0.000 NA 1.000 0.000
#> GSM153475     1  0.5401     0.5415 0.536 0.404 NA 0.000 0.000
#> GSM153476     1  0.6042     0.5212 0.484 0.396 NA 0.000 0.000
#> GSM153478     2  0.6689    -0.4382 0.344 0.412 NA 0.000 0.000
#> GSM153480     2  0.1282     0.7568 0.004 0.952 NA 0.000 0.000
#> GSM153486     2  0.4978    -0.4029 0.476 0.496 NA 0.000 0.000
#> GSM153487     1  0.8154     0.4596 0.368 0.292 NA 0.116 0.000
#> GSM153499     1  0.6598     0.1250 0.472 0.028 NA 0.392 0.000
#> GSM153504     4  0.0000     0.6989 0.000 0.000 NA 1.000 0.000
#> GSM153507     1  0.7195    -0.2894 0.468 0.000 NA 0.052 0.148
#> GSM153404     1  0.5128     0.5564 0.580 0.380 NA 0.000 0.004
#> GSM153407     1  0.4621     0.1887 0.724 0.000 NA 0.012 0.036
#> GSM153408     1  0.2879     0.4057 0.880 0.032 NA 0.000 0.008
#> GSM153410     2  0.3651     0.6984 0.060 0.828 NA 0.000 0.004
#> GSM153411     5  0.0880     0.7409 0.000 0.000 NA 0.032 0.968
#> GSM153412     2  0.4422     0.5906 0.120 0.772 NA 0.000 0.004
#> GSM153413     2  0.6714    -0.4368 0.344 0.404 NA 0.000 0.000
#> GSM153414     1  0.5596     0.5488 0.552 0.376 NA 0.000 0.004
#> GSM153415     1  0.6046     0.5439 0.512 0.376 NA 0.000 0.004
#> GSM153416     2  0.2536     0.7322 0.004 0.868 NA 0.000 0.000
#> GSM153417     5  0.0794     0.7422 0.000 0.000 NA 0.028 0.972
#> GSM153418     1  0.3218     0.3765 0.860 0.032 NA 0.000 0.012
#> GSM153420     5  0.5961     0.7770 0.076 0.000 NA 0.016 0.548
#> GSM153421     5  0.5961     0.7770 0.076 0.000 NA 0.016 0.548
#> GSM153422     5  0.5961     0.7770 0.076 0.000 NA 0.016 0.548
#> GSM153424     1  0.6035     0.5552 0.544 0.352 NA 0.000 0.012
#> GSM153430     1  0.6647     0.5063 0.452 0.388 NA 0.008 0.004
#> GSM153432     1  0.2605     0.4843 0.900 0.060 NA 0.000 0.016
#> GSM153434     1  0.4582     0.5465 0.572 0.416 NA 0.000 0.000
#> GSM153435     2  0.0451     0.7605 0.008 0.988 NA 0.000 0.000
#> GSM153436     1  0.5652     0.5414 0.516 0.404 NA 0.000 0.000
#> GSM153437     2  0.1865     0.7419 0.024 0.936 NA 0.000 0.008
#> GSM153439     1  0.5131     0.5174 0.540 0.420 NA 0.000 0.000
#> GSM153441     1  0.4210     0.5465 0.588 0.412 NA 0.000 0.000
#> GSM153442     1  0.4817     0.5524 0.572 0.404 NA 0.000 0.000
#> GSM153443     2  0.0833     0.7586 0.004 0.976 NA 0.000 0.004
#> GSM153445     2  0.1205     0.7571 0.004 0.956 NA 0.000 0.000
#> GSM153446     2  0.1124     0.7581 0.004 0.960 NA 0.000 0.000
#> GSM153449     1  0.6153     0.5047 0.460 0.408 NA 0.000 0.000
#> GSM153453     4  0.7464     0.0506 0.316 0.036 NA 0.388 0.000
#> GSM153454     4  0.0290     0.6921 0.000 0.000 NA 0.992 0.008
#> GSM153455     1  0.4760     0.5446 0.564 0.416 NA 0.000 0.000
#> GSM153462     2  0.2233     0.7422 0.004 0.892 NA 0.000 0.000
#> GSM153465     2  0.5593    -0.0220 0.340 0.572 NA 0.000 0.000
#> GSM153481     2  0.2305     0.7406 0.012 0.896 NA 0.000 0.000
#> GSM153482     1  0.6047     0.5174 0.480 0.400 NA 0.000 0.000
#> GSM153483     1  0.5295     0.4502 0.488 0.464 NA 0.000 0.000
#> GSM153485     1  0.6146     0.5114 0.468 0.400 NA 0.000 0.000
#> GSM153489     2  0.6632    -0.4719 0.380 0.400 NA 0.000 0.000
#> GSM153490     4  0.7733    -0.1697 0.300 0.012 NA 0.468 0.144
#> GSM153491     4  0.6957     0.0477 0.360 0.012 NA 0.408 0.000
#> GSM153492     4  0.0000     0.6989 0.000 0.000 NA 1.000 0.000
#> GSM153493     4  0.0000     0.6989 0.000 0.000 NA 1.000 0.000
#> GSM153494     1  0.6822     0.5376 0.480 0.368 NA 0.044 0.000
#> GSM153495     4  0.0000     0.6989 0.000 0.000 NA 1.000 0.000
#> GSM153498     1  0.6456     0.0680 0.460 0.016 NA 0.408 0.000
#> GSM153501     4  0.0000     0.6989 0.000 0.000 NA 1.000 0.000
#> GSM153502     4  0.0000     0.6989 0.000 0.000 NA 1.000 0.000
#> GSM153505     4  0.0000     0.6989 0.000 0.000 NA 1.000 0.000
#> GSM153506     2  0.1408     0.7571 0.008 0.948 NA 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     2  0.5090     0.2976 0.148 0.712 0.064 0.004 0.000 0.072
#> GSM153406     3  0.1700     0.6295 0.048 0.024 0.928 0.000 0.000 0.000
#> GSM153419     2  0.5031     0.1754 0.092 0.720 0.028 0.016 0.000 0.144
#> GSM153423     1  0.2382     0.5869 0.904 0.020 0.048 0.000 0.004 0.024
#> GSM153425     6  0.5319     0.3553 0.008 0.344 0.060 0.008 0.004 0.576
#> GSM153427     3  0.1793     0.6587 0.004 0.040 0.932 0.000 0.008 0.016
#> GSM153428     6  0.5510     0.3459 0.012 0.364 0.064 0.008 0.004 0.548
#> GSM153429     1  0.5133     0.3072 0.536 0.076 0.384 0.000 0.000 0.004
#> GSM153433     2  0.5570     0.4265 0.324 0.580 0.032 0.012 0.000 0.052
#> GSM153444     3  0.4031     0.4566 0.212 0.048 0.736 0.000 0.000 0.004
#> GSM153448     3  0.6485    -0.1368 0.308 0.332 0.344 0.000 0.000 0.016
#> GSM153451     1  0.1895     0.5723 0.912 0.072 0.000 0.000 0.000 0.016
#> GSM153452     2  0.6244    -0.0109 0.136 0.540 0.280 0.008 0.000 0.036
#> GSM153477     1  0.3020     0.5770 0.856 0.016 0.100 0.000 0.004 0.024
#> GSM153479     1  0.6280     0.1152 0.452 0.232 0.300 0.000 0.000 0.016
#> GSM153484     1  0.5791     0.1719 0.472 0.160 0.364 0.000 0.000 0.004
#> GSM153488     2  0.4400     0.4266 0.456 0.524 0.012 0.000 0.000 0.008
#> GSM153496     4  0.4128     0.1928 0.000 0.492 0.004 0.500 0.000 0.004
#> GSM153497     1  0.0653     0.5862 0.980 0.004 0.000 0.000 0.004 0.012
#> GSM153500     4  0.0000     0.7299 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153503     4  0.0000     0.7299 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153508     4  0.4666     0.1731 0.000 0.476 0.024 0.492 0.004 0.004
#> GSM153409     1  0.4090     0.4576 0.776 0.060 0.144 0.000 0.004 0.016
#> GSM153426     1  0.1802     0.5733 0.916 0.072 0.000 0.000 0.000 0.012
#> GSM153431     3  0.2679     0.6434 0.004 0.088 0.876 0.000 0.008 0.024
#> GSM153438     1  0.3320     0.4562 0.772 0.212 0.000 0.000 0.000 0.016
#> GSM153440     2  0.5848     0.4092 0.424 0.460 0.072 0.000 0.000 0.044
#> GSM153447     4  0.6596    -0.3373 0.004 0.264 0.000 0.400 0.020 0.312
#> GSM153450     1  0.5540     0.2656 0.468 0.116 0.412 0.000 0.000 0.004
#> GSM153456     1  0.3361     0.4802 0.788 0.188 0.000 0.000 0.004 0.020
#> GSM153457     1  0.2006     0.5697 0.904 0.080 0.000 0.000 0.000 0.016
#> GSM153458     1  0.4035     0.3510 0.680 0.296 0.000 0.004 0.000 0.020
#> GSM153459     1  0.2843     0.5486 0.848 0.036 0.116 0.000 0.000 0.000
#> GSM153460     1  0.1802     0.5729 0.916 0.072 0.000 0.000 0.000 0.012
#> GSM153461     3  0.1793     0.6737 0.012 0.048 0.928 0.000 0.000 0.012
#> GSM153463     6  0.5731     0.1229 0.000 0.000 0.000 0.276 0.212 0.512
#> GSM153464     1  0.1151     0.5837 0.956 0.032 0.000 0.000 0.000 0.012
#> GSM153466     1  0.6005     0.1503 0.476 0.172 0.340 0.000 0.000 0.012
#> GSM153467     1  0.3599     0.4432 0.764 0.212 0.000 0.004 0.004 0.016
#> GSM153468     2  0.6582     0.0361 0.020 0.420 0.172 0.372 0.000 0.016
#> GSM153469     1  0.4377     0.4381 0.644 0.044 0.312 0.000 0.000 0.000
#> GSM153470     1  0.2316     0.5801 0.900 0.004 0.064 0.000 0.004 0.028
#> GSM153471     1  0.0713     0.5866 0.972 0.028 0.000 0.000 0.000 0.000
#> GSM153472     2  0.4490    -0.2170 0.016 0.504 0.000 0.472 0.000 0.008
#> GSM153473     4  0.0000     0.7299 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153474     4  0.0000     0.7299 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153475     1  0.5859     0.1074 0.460 0.208 0.332 0.000 0.000 0.000
#> GSM153476     2  0.4992     0.3699 0.464 0.468 0.068 0.000 0.000 0.000
#> GSM153478     2  0.4165     0.4268 0.452 0.536 0.000 0.012 0.000 0.000
#> GSM153480     1  0.0767     0.5832 0.976 0.008 0.000 0.000 0.004 0.012
#> GSM153486     1  0.5290     0.3248 0.560 0.072 0.352 0.000 0.000 0.016
#> GSM153487     2  0.5333     0.4489 0.408 0.524 0.012 0.044 0.004 0.008
#> GSM153499     4  0.5796     0.1155 0.012 0.420 0.072 0.476 0.000 0.020
#> GSM153504     4  0.0000     0.7299 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153507     2  0.6573    -0.2063 0.000 0.488 0.240 0.020 0.236 0.016
#> GSM153404     3  0.6464    -0.0746 0.284 0.340 0.360 0.000 0.000 0.016
#> GSM153407     3  0.5522     0.2310 0.004 0.292 0.608 0.004 0.048 0.044
#> GSM153408     3  0.1942     0.6730 0.008 0.064 0.916 0.000 0.000 0.012
#> GSM153410     1  0.4659     0.1774 0.488 0.016 0.480 0.000 0.000 0.016
#> GSM153411     6  0.4234    -0.0153 0.000 0.000 0.000 0.016 0.440 0.544
#> GSM153412     1  0.4423     0.4256 0.644 0.020 0.320 0.000 0.000 0.016
#> GSM153413     2  0.4315     0.4225 0.460 0.524 0.008 0.000 0.000 0.008
#> GSM153414     2  0.6421    -0.0493 0.232 0.404 0.344 0.000 0.000 0.020
#> GSM153415     2  0.5851     0.3296 0.372 0.484 0.128 0.000 0.000 0.016
#> GSM153416     1  0.3380     0.5429 0.804 0.004 0.164 0.000 0.004 0.024
#> GSM153417     6  0.4234    -0.0153 0.000 0.000 0.000 0.016 0.440 0.544
#> GSM153418     3  0.1577     0.6627 0.008 0.036 0.940 0.000 0.000 0.016
#> GSM153420     5  0.0291     0.9972 0.000 0.000 0.004 0.004 0.992 0.000
#> GSM153421     5  0.0436     0.9945 0.000 0.000 0.004 0.004 0.988 0.004
#> GSM153422     5  0.0291     0.9972 0.000 0.000 0.004 0.004 0.992 0.000
#> GSM153424     2  0.7391    -0.0827 0.176 0.420 0.248 0.000 0.004 0.152
#> GSM153430     2  0.5755     0.3928 0.388 0.512 0.040 0.008 0.000 0.052
#> GSM153432     3  0.2517     0.6665 0.008 0.100 0.876 0.000 0.016 0.000
#> GSM153434     1  0.6082    -0.0471 0.476 0.276 0.240 0.000 0.000 0.008
#> GSM153435     1  0.1434     0.5862 0.940 0.048 0.012 0.000 0.000 0.000
#> GSM153436     1  0.6477    -0.2874 0.412 0.400 0.132 0.000 0.000 0.056
#> GSM153437     1  0.3570     0.4349 0.752 0.228 0.000 0.000 0.004 0.016
#> GSM153439     1  0.5493     0.2236 0.488 0.112 0.396 0.000 0.000 0.004
#> GSM153441     1  0.6200     0.1553 0.452 0.196 0.336 0.000 0.000 0.016
#> GSM153442     1  0.6278     0.0329 0.460 0.252 0.272 0.000 0.000 0.016
#> GSM153443     1  0.1074     0.5842 0.960 0.028 0.000 0.000 0.000 0.012
#> GSM153445     1  0.1223     0.5835 0.960 0.016 0.008 0.000 0.004 0.012
#> GSM153446     1  0.0508     0.5856 0.984 0.000 0.000 0.000 0.004 0.012
#> GSM153449     2  0.4834     0.3990 0.468 0.484 0.044 0.004 0.000 0.000
#> GSM153453     2  0.4466    -0.2205 0.020 0.500 0.000 0.476 0.000 0.004
#> GSM153454     4  0.0260     0.7232 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM153455     1  0.6030     0.1303 0.484 0.184 0.320 0.000 0.000 0.012
#> GSM153462     1  0.1793     0.5823 0.932 0.008 0.040 0.000 0.004 0.016
#> GSM153465     1  0.4609     0.3720 0.588 0.048 0.364 0.000 0.000 0.000
#> GSM153481     1  0.2487     0.5728 0.876 0.032 0.092 0.000 0.000 0.000
#> GSM153482     2  0.5120     0.3967 0.460 0.476 0.052 0.000 0.000 0.012
#> GSM153483     1  0.5844     0.2080 0.492 0.184 0.320 0.000 0.000 0.004
#> GSM153485     2  0.5017     0.4039 0.460 0.484 0.044 0.000 0.000 0.012
#> GSM153489     2  0.4400     0.4266 0.456 0.524 0.012 0.000 0.000 0.008
#> GSM153490     4  0.8193    -0.2099 0.092 0.088 0.240 0.376 0.204 0.000
#> GSM153491     2  0.4258    -0.2451 0.004 0.500 0.004 0.488 0.000 0.004
#> GSM153492     4  0.0146     0.7257 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM153493     4  0.0000     0.7299 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153494     2  0.7303     0.3858 0.352 0.392 0.132 0.108 0.000 0.016
#> GSM153495     4  0.0000     0.7299 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153498     4  0.4989     0.1447 0.008 0.468 0.032 0.484 0.000 0.008
#> GSM153501     4  0.0000     0.7299 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153502     4  0.0000     0.7299 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153505     4  0.0000     0.7299 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM153506     1  0.1341     0.5805 0.948 0.028 0.024 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> ATC:mclust 100           0.8760 2
#> ATC:mclust  91           0.1362 3
#> ATC:mclust  97           0.1295 4
#> ATC:mclust  68           0.0743 5
#> ATC:mclust  42           0.5834 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 105 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.960           0.929       0.973         0.4255 0.572   0.572
#> 3 3 0.566           0.793       0.872         0.3491 0.782   0.641
#> 4 4 0.525           0.535       0.785         0.2094 0.802   0.572
#> 5 5 0.513           0.480       0.711         0.1172 0.751   0.369
#> 6 6 0.556           0.358       0.602         0.0472 0.913   0.665

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM153405     2  0.5294     0.8478 0.120 0.880
#> GSM153406     2  0.0000     0.9800 0.000 1.000
#> GSM153419     1  0.0000     0.9495 1.000 0.000
#> GSM153423     2  0.0000     0.9800 0.000 1.000
#> GSM153425     1  1.0000     0.0427 0.504 0.496
#> GSM153427     2  0.0000     0.9800 0.000 1.000
#> GSM153428     2  0.0000     0.9800 0.000 1.000
#> GSM153429     2  0.0000     0.9800 0.000 1.000
#> GSM153433     1  0.0000     0.9495 1.000 0.000
#> GSM153444     2  0.0000     0.9800 0.000 1.000
#> GSM153448     2  0.0000     0.9800 0.000 1.000
#> GSM153451     2  0.0000     0.9800 0.000 1.000
#> GSM153452     2  0.0000     0.9800 0.000 1.000
#> GSM153477     2  0.0000     0.9800 0.000 1.000
#> GSM153479     2  0.0000     0.9800 0.000 1.000
#> GSM153484     2  0.0000     0.9800 0.000 1.000
#> GSM153488     2  0.9129     0.4910 0.328 0.672
#> GSM153496     1  0.1843     0.9288 0.972 0.028
#> GSM153497     2  0.0000     0.9800 0.000 1.000
#> GSM153500     1  0.0000     0.9495 1.000 0.000
#> GSM153503     1  0.0000     0.9495 1.000 0.000
#> GSM153508     2  0.0000     0.9800 0.000 1.000
#> GSM153409     2  0.0000     0.9800 0.000 1.000
#> GSM153426     2  0.0000     0.9800 0.000 1.000
#> GSM153431     2  0.0938     0.9689 0.012 0.988
#> GSM153438     2  0.0000     0.9800 0.000 1.000
#> GSM153440     1  0.0376     0.9470 0.996 0.004
#> GSM153447     1  0.0000     0.9495 1.000 0.000
#> GSM153450     2  0.0000     0.9800 0.000 1.000
#> GSM153456     2  0.0000     0.9800 0.000 1.000
#> GSM153457     2  0.0000     0.9800 0.000 1.000
#> GSM153458     2  0.0000     0.9800 0.000 1.000
#> GSM153459     2  0.0000     0.9800 0.000 1.000
#> GSM153460     2  0.0000     0.9800 0.000 1.000
#> GSM153461     2  0.0000     0.9800 0.000 1.000
#> GSM153463     1  0.0000     0.9495 1.000 0.000
#> GSM153464     2  0.0000     0.9800 0.000 1.000
#> GSM153466     2  0.0000     0.9800 0.000 1.000
#> GSM153467     2  0.0000     0.9800 0.000 1.000
#> GSM153468     2  0.0000     0.9800 0.000 1.000
#> GSM153469     2  0.0000     0.9800 0.000 1.000
#> GSM153470     2  0.0000     0.9800 0.000 1.000
#> GSM153471     2  0.0000     0.9800 0.000 1.000
#> GSM153472     1  0.0376     0.9470 0.996 0.004
#> GSM153473     1  0.0000     0.9495 1.000 0.000
#> GSM153474     1  0.0000     0.9495 1.000 0.000
#> GSM153475     2  0.0000     0.9800 0.000 1.000
#> GSM153476     2  0.0000     0.9800 0.000 1.000
#> GSM153478     1  0.9963     0.1580 0.536 0.464
#> GSM153480     2  0.0000     0.9800 0.000 1.000
#> GSM153486     2  0.0000     0.9800 0.000 1.000
#> GSM153487     2  0.0000     0.9800 0.000 1.000
#> GSM153499     2  0.0000     0.9800 0.000 1.000
#> GSM153504     1  0.0000     0.9495 1.000 0.000
#> GSM153507     1  0.0000     0.9495 1.000 0.000
#> GSM153404     2  0.0000     0.9800 0.000 1.000
#> GSM153407     1  0.1633     0.9321 0.976 0.024
#> GSM153408     2  0.0000     0.9800 0.000 1.000
#> GSM153410     2  0.0000     0.9800 0.000 1.000
#> GSM153411     1  0.0000     0.9495 1.000 0.000
#> GSM153412     2  0.0000     0.9800 0.000 1.000
#> GSM153413     2  0.9608     0.3421 0.384 0.616
#> GSM153414     2  0.0000     0.9800 0.000 1.000
#> GSM153415     2  0.0000     0.9800 0.000 1.000
#> GSM153416     2  0.0000     0.9800 0.000 1.000
#> GSM153417     1  0.0000     0.9495 1.000 0.000
#> GSM153418     2  0.0000     0.9800 0.000 1.000
#> GSM153420     1  0.0000     0.9495 1.000 0.000
#> GSM153421     1  0.0000     0.9495 1.000 0.000
#> GSM153422     1  0.0000     0.9495 1.000 0.000
#> GSM153424     2  0.0000     0.9800 0.000 1.000
#> GSM153430     1  0.6623     0.7750 0.828 0.172
#> GSM153432     2  0.0000     0.9800 0.000 1.000
#> GSM153434     2  0.0000     0.9800 0.000 1.000
#> GSM153435     2  0.0000     0.9800 0.000 1.000
#> GSM153436     2  0.2423     0.9412 0.040 0.960
#> GSM153437     2  0.0000     0.9800 0.000 1.000
#> GSM153439     2  0.0000     0.9800 0.000 1.000
#> GSM153441     2  0.0000     0.9800 0.000 1.000
#> GSM153442     2  0.0000     0.9800 0.000 1.000
#> GSM153443     2  0.0000     0.9800 0.000 1.000
#> GSM153445     2  0.0000     0.9800 0.000 1.000
#> GSM153446     2  0.0000     0.9800 0.000 1.000
#> GSM153449     1  0.8955     0.5521 0.688 0.312
#> GSM153453     1  0.0000     0.9495 1.000 0.000
#> GSM153454     1  0.0000     0.9495 1.000 0.000
#> GSM153455     2  0.0000     0.9800 0.000 1.000
#> GSM153462     2  0.0000     0.9800 0.000 1.000
#> GSM153465     2  0.0000     0.9800 0.000 1.000
#> GSM153481     2  0.0000     0.9800 0.000 1.000
#> GSM153482     2  0.0000     0.9800 0.000 1.000
#> GSM153483     2  0.0000     0.9800 0.000 1.000
#> GSM153485     2  0.0000     0.9800 0.000 1.000
#> GSM153489     2  0.2778     0.9332 0.048 0.952
#> GSM153490     1  0.0000     0.9495 1.000 0.000
#> GSM153491     2  0.9795     0.2467 0.416 0.584
#> GSM153492     1  0.0000     0.9495 1.000 0.000
#> GSM153493     1  0.0000     0.9495 1.000 0.000
#> GSM153494     2  0.0000     0.9800 0.000 1.000
#> GSM153495     1  0.0000     0.9495 1.000 0.000
#> GSM153498     2  0.0000     0.9800 0.000 1.000
#> GSM153501     1  0.0000     0.9495 1.000 0.000
#> GSM153502     1  0.0000     0.9495 1.000 0.000
#> GSM153505     1  0.0000     0.9495 1.000 0.000
#> GSM153506     2  0.0000     0.9800 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM153405     2  0.5237      0.831 0.056 0.824 0.120
#> GSM153406     2  0.4339      0.852 0.084 0.868 0.048
#> GSM153419     3  0.1964      0.827 0.056 0.000 0.944
#> GSM153423     2  0.2301      0.897 0.060 0.936 0.004
#> GSM153425     3  0.7376      0.548 0.076 0.252 0.672
#> GSM153427     2  0.5793      0.786 0.084 0.800 0.116
#> GSM153428     2  0.4660      0.877 0.072 0.856 0.072
#> GSM153429     2  0.0747      0.917 0.016 0.984 0.000
#> GSM153433     3  0.2625      0.813 0.084 0.000 0.916
#> GSM153444     2  0.4232      0.856 0.084 0.872 0.044
#> GSM153448     2  0.1860      0.911 0.052 0.948 0.000
#> GSM153451     2  0.0892      0.913 0.020 0.980 0.000
#> GSM153452     2  0.2878      0.893 0.096 0.904 0.000
#> GSM153477     2  0.2066      0.899 0.060 0.940 0.000
#> GSM153479     2  0.3816      0.848 0.148 0.852 0.000
#> GSM153484     2  0.1964      0.915 0.056 0.944 0.000
#> GSM153488     1  0.5473      0.717 0.808 0.140 0.052
#> GSM153496     1  0.3995      0.716 0.868 0.116 0.016
#> GSM153497     2  0.0892      0.915 0.020 0.980 0.000
#> GSM153500     1  0.3879      0.688 0.848 0.000 0.152
#> GSM153503     1  0.4931      0.650 0.768 0.000 0.232
#> GSM153508     1  0.4062      0.701 0.836 0.164 0.000
#> GSM153409     2  0.3183      0.882 0.076 0.908 0.016
#> GSM153426     2  0.1529      0.917 0.040 0.960 0.000
#> GSM153431     3  0.8179      0.388 0.084 0.352 0.564
#> GSM153438     2  0.1411      0.916 0.036 0.964 0.000
#> GSM153440     3  0.0829      0.827 0.012 0.004 0.984
#> GSM153447     3  0.2625      0.813 0.084 0.000 0.916
#> GSM153450     2  0.2749      0.891 0.064 0.924 0.012
#> GSM153456     2  0.1643      0.916 0.044 0.956 0.000
#> GSM153457     2  0.1031      0.917 0.024 0.976 0.000
#> GSM153458     2  0.1860      0.916 0.052 0.948 0.000
#> GSM153459     2  0.3234      0.882 0.072 0.908 0.020
#> GSM153460     2  0.1643      0.913 0.044 0.956 0.000
#> GSM153461     2  0.5010      0.827 0.084 0.840 0.076
#> GSM153463     3  0.3192      0.786 0.112 0.000 0.888
#> GSM153464     2  0.2711      0.895 0.088 0.912 0.000
#> GSM153466     2  0.2384      0.897 0.056 0.936 0.008
#> GSM153467     2  0.2959      0.889 0.100 0.900 0.000
#> GSM153468     1  0.5926      0.499 0.644 0.356 0.000
#> GSM153469     2  0.3340      0.873 0.120 0.880 0.000
#> GSM153470     2  0.0747      0.916 0.016 0.984 0.000
#> GSM153471     2  0.2959      0.889 0.100 0.900 0.000
#> GSM153472     1  0.4995      0.714 0.840 0.068 0.092
#> GSM153473     1  0.6008      0.471 0.628 0.000 0.372
#> GSM153474     1  0.4062      0.686 0.836 0.000 0.164
#> GSM153475     2  0.1647      0.912 0.036 0.960 0.004
#> GSM153476     2  0.3918      0.862 0.140 0.856 0.004
#> GSM153478     1  0.6252      0.603 0.708 0.268 0.024
#> GSM153480     2  0.0892      0.914 0.020 0.980 0.000
#> GSM153486     2  0.1289      0.917 0.032 0.968 0.000
#> GSM153487     1  0.4178      0.701 0.828 0.172 0.000
#> GSM153499     1  0.4178      0.697 0.828 0.172 0.000
#> GSM153504     1  0.4796      0.658 0.780 0.000 0.220
#> GSM153507     3  0.3690      0.791 0.100 0.016 0.884
#> GSM153404     2  0.1643      0.914 0.044 0.956 0.000
#> GSM153407     3  0.5998      0.674 0.084 0.128 0.788
#> GSM153408     2  0.5010      0.826 0.084 0.840 0.076
#> GSM153410     2  0.3461      0.877 0.076 0.900 0.024
#> GSM153411     3  0.1860      0.828 0.052 0.000 0.948
#> GSM153412     2  0.0892      0.918 0.020 0.980 0.000
#> GSM153413     1  0.6102      0.560 0.672 0.320 0.008
#> GSM153414     2  0.1860      0.913 0.052 0.948 0.000
#> GSM153415     2  0.3686      0.863 0.140 0.860 0.000
#> GSM153416     2  0.1163      0.911 0.028 0.972 0.000
#> GSM153417     3  0.1753      0.829 0.048 0.000 0.952
#> GSM153418     2  0.4830      0.833 0.084 0.848 0.068
#> GSM153420     3  0.0892      0.820 0.020 0.000 0.980
#> GSM153421     3  0.1529      0.829 0.040 0.000 0.960
#> GSM153422     3  0.1289      0.829 0.032 0.000 0.968
#> GSM153424     2  0.5375      0.800 0.056 0.816 0.128
#> GSM153430     3  0.3425      0.743 0.004 0.112 0.884
#> GSM153432     2  0.4035      0.861 0.080 0.880 0.040
#> GSM153434     2  0.2096      0.901 0.052 0.944 0.004
#> GSM153435     2  0.1964      0.909 0.056 0.944 0.000
#> GSM153436     2  0.4035      0.867 0.040 0.880 0.080
#> GSM153437     2  0.1860      0.911 0.052 0.948 0.000
#> GSM153439     2  0.0592      0.917 0.012 0.988 0.000
#> GSM153441     2  0.1753      0.912 0.048 0.952 0.000
#> GSM153442     2  0.3116      0.883 0.108 0.892 0.000
#> GSM153443     2  0.2261      0.905 0.068 0.932 0.000
#> GSM153445     2  0.2959      0.888 0.100 0.900 0.000
#> GSM153446     2  0.0424      0.917 0.008 0.992 0.000
#> GSM153449     3  0.6527      0.466 0.020 0.320 0.660
#> GSM153453     1  0.5000      0.708 0.832 0.044 0.124
#> GSM153454     1  0.5760      0.546 0.672 0.000 0.328
#> GSM153455     2  0.1289      0.916 0.032 0.968 0.000
#> GSM153462     2  0.1163      0.917 0.028 0.972 0.000
#> GSM153465     2  0.1399      0.912 0.028 0.968 0.004
#> GSM153481     2  0.3267      0.876 0.116 0.884 0.000
#> GSM153482     2  0.5948      0.444 0.360 0.640 0.000
#> GSM153483     2  0.3686      0.855 0.140 0.860 0.000
#> GSM153485     1  0.6299      0.162 0.524 0.476 0.000
#> GSM153489     1  0.5356      0.691 0.784 0.196 0.020
#> GSM153490     3  0.2165      0.823 0.064 0.000 0.936
#> GSM153491     1  0.3686      0.710 0.860 0.140 0.000
#> GSM153492     1  0.4750      0.662 0.784 0.000 0.216
#> GSM153493     1  0.4555      0.671 0.800 0.000 0.200
#> GSM153494     1  0.6154      0.368 0.592 0.408 0.000
#> GSM153495     1  0.5591      0.579 0.696 0.000 0.304
#> GSM153498     1  0.3941      0.705 0.844 0.156 0.000
#> GSM153501     1  0.4750      0.662 0.784 0.000 0.216
#> GSM153502     1  0.4452      0.675 0.808 0.000 0.192
#> GSM153505     1  0.5254      0.619 0.736 0.000 0.264
#> GSM153506     2  0.3116      0.883 0.108 0.892 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM153405     2  0.5147     0.4648 0.000 0.740 0.200 0.060
#> GSM153406     4  0.4454     0.5402 0.000 0.308 0.000 0.692
#> GSM153419     3  0.2401     0.7795 0.000 0.004 0.904 0.092
#> GSM153423     2  0.5000    -0.1478 0.000 0.504 0.000 0.496
#> GSM153425     3  0.5404     0.4141 0.000 0.328 0.644 0.028
#> GSM153427     4  0.3333     0.6308 0.000 0.088 0.040 0.872
#> GSM153428     2  0.4524     0.4680 0.000 0.768 0.204 0.028
#> GSM153429     2  0.2868     0.6253 0.000 0.864 0.000 0.136
#> GSM153433     3  0.1004     0.7684 0.024 0.000 0.972 0.004
#> GSM153444     4  0.4972     0.2684 0.000 0.456 0.000 0.544
#> GSM153448     2  0.2714     0.6391 0.000 0.884 0.004 0.112
#> GSM153451     2  0.2530     0.6397 0.000 0.888 0.000 0.112
#> GSM153452     2  0.3836     0.5466 0.004 0.840 0.128 0.028
#> GSM153477     4  0.5119     0.3201 0.004 0.440 0.000 0.556
#> GSM153479     2  0.1151     0.6599 0.008 0.968 0.000 0.024
#> GSM153484     4  0.5620     0.3646 0.024 0.416 0.000 0.560
#> GSM153488     1  0.1305     0.8371 0.960 0.004 0.000 0.036
#> GSM153496     1  0.3306     0.7899 0.840 0.004 0.156 0.000
#> GSM153497     2  0.5155    -0.0508 0.004 0.528 0.000 0.468
#> GSM153500     1  0.3356     0.7707 0.824 0.000 0.176 0.000
#> GSM153503     1  0.4401     0.6518 0.724 0.000 0.272 0.004
#> GSM153508     1  0.0657     0.8447 0.984 0.012 0.004 0.000
#> GSM153409     2  0.4843     0.1961 0.000 0.604 0.000 0.396
#> GSM153426     2  0.0188     0.6668 0.000 0.996 0.000 0.004
#> GSM153431     4  0.3367     0.5077 0.000 0.028 0.108 0.864
#> GSM153438     2  0.0469     0.6677 0.000 0.988 0.000 0.012
#> GSM153440     3  0.4713     0.7244 0.004 0.004 0.700 0.292
#> GSM153447     3  0.1296     0.7667 0.028 0.004 0.964 0.004
#> GSM153450     2  0.4697     0.4203 0.000 0.696 0.008 0.296
#> GSM153456     2  0.0469     0.6678 0.000 0.988 0.000 0.012
#> GSM153457     2  0.1211     0.6651 0.000 0.960 0.000 0.040
#> GSM153458     2  0.0657     0.6640 0.000 0.984 0.004 0.012
#> GSM153459     2  0.4999    -0.1268 0.000 0.508 0.000 0.492
#> GSM153460     2  0.0336     0.6677 0.000 0.992 0.000 0.008
#> GSM153461     4  0.5235     0.6092 0.000 0.236 0.048 0.716
#> GSM153463     3  0.1488     0.7702 0.032 0.000 0.956 0.012
#> GSM153464     2  0.0524     0.6670 0.008 0.988 0.000 0.004
#> GSM153466     4  0.5097     0.3500 0.004 0.428 0.000 0.568
#> GSM153467     2  0.0779     0.6605 0.004 0.980 0.000 0.016
#> GSM153468     2  0.4666     0.5299 0.152 0.792 0.004 0.052
#> GSM153469     2  0.2282     0.6461 0.024 0.924 0.000 0.052
#> GSM153470     2  0.5168    -0.1402 0.004 0.504 0.000 0.492
#> GSM153471     2  0.2413     0.6591 0.020 0.916 0.000 0.064
#> GSM153472     1  0.1174     0.8458 0.968 0.000 0.020 0.012
#> GSM153473     3  0.5070     0.1636 0.416 0.000 0.580 0.004
#> GSM153474     1  0.2081     0.8324 0.916 0.000 0.084 0.000
#> GSM153475     4  0.4724     0.6315 0.076 0.136 0.000 0.788
#> GSM153476     4  0.7277     0.4102 0.228 0.232 0.000 0.540
#> GSM153478     2  0.8680    -0.0978 0.320 0.440 0.180 0.060
#> GSM153480     2  0.5151    -0.0316 0.004 0.532 0.000 0.464
#> GSM153486     2  0.5105     0.0808 0.004 0.564 0.000 0.432
#> GSM153487     1  0.1545     0.8348 0.952 0.008 0.000 0.040
#> GSM153499     1  0.2002     0.8280 0.936 0.044 0.000 0.020
#> GSM153504     1  0.0817     0.8440 0.976 0.000 0.024 0.000
#> GSM153507     4  0.3931     0.3920 0.128 0.000 0.040 0.832
#> GSM153404     2  0.1890     0.6481 0.000 0.936 0.008 0.056
#> GSM153407     4  0.3945     0.2606 0.000 0.004 0.216 0.780
#> GSM153408     4  0.3082     0.6130 0.000 0.084 0.032 0.884
#> GSM153410     4  0.4925     0.3014 0.000 0.428 0.000 0.572
#> GSM153411     3  0.0336     0.7745 0.000 0.000 0.992 0.008
#> GSM153412     2  0.4194     0.5539 0.008 0.764 0.000 0.228
#> GSM153413     1  0.7160     0.4606 0.592 0.272 0.020 0.116
#> GSM153414     2  0.1109     0.6561 0.000 0.968 0.004 0.028
#> GSM153415     2  0.3485     0.5985 0.048 0.872 0.004 0.076
#> GSM153416     2  0.4989    -0.0303 0.000 0.528 0.000 0.472
#> GSM153417     3  0.2401     0.7790 0.004 0.000 0.904 0.092
#> GSM153418     4  0.4328     0.6025 0.000 0.244 0.008 0.748
#> GSM153420     3  0.4800     0.6880 0.004 0.000 0.656 0.340
#> GSM153421     3  0.4088     0.7444 0.004 0.000 0.764 0.232
#> GSM153422     3  0.4720     0.6997 0.004 0.000 0.672 0.324
#> GSM153424     2  0.5056     0.5034 0.000 0.732 0.224 0.044
#> GSM153430     3  0.2480     0.7303 0.000 0.088 0.904 0.008
#> GSM153432     4  0.3142     0.6410 0.008 0.132 0.000 0.860
#> GSM153434     2  0.5925    -0.0472 0.000 0.512 0.036 0.452
#> GSM153435     2  0.0895     0.6683 0.004 0.976 0.000 0.020
#> GSM153436     2  0.5911     0.2855 0.000 0.584 0.372 0.044
#> GSM153437     2  0.0188     0.6658 0.004 0.996 0.000 0.000
#> GSM153439     2  0.4790     0.2918 0.000 0.620 0.000 0.380
#> GSM153441     2  0.0895     0.6625 0.004 0.976 0.000 0.020
#> GSM153442     2  0.2542     0.6508 0.012 0.904 0.000 0.084
#> GSM153443     2  0.1042     0.6679 0.008 0.972 0.000 0.020
#> GSM153445     2  0.4004     0.6065 0.024 0.812 0.000 0.164
#> GSM153446     2  0.4888     0.1565 0.000 0.588 0.000 0.412
#> GSM153449     4  0.7023     0.5827 0.052 0.144 0.136 0.668
#> GSM153453     1  0.3890     0.7999 0.836 0.004 0.132 0.028
#> GSM153454     3  0.3428     0.6788 0.144 0.000 0.844 0.012
#> GSM153455     2  0.5039     0.1811 0.004 0.592 0.000 0.404
#> GSM153462     2  0.5132     0.0269 0.004 0.548 0.000 0.448
#> GSM153465     4  0.5070     0.3724 0.004 0.416 0.000 0.580
#> GSM153481     2  0.5619     0.5159 0.124 0.724 0.000 0.152
#> GSM153482     1  0.5431     0.5740 0.712 0.224 0.000 0.064
#> GSM153483     2  0.4203     0.5977 0.108 0.824 0.000 0.068
#> GSM153485     1  0.3071     0.7809 0.888 0.068 0.000 0.044
#> GSM153489     1  0.1388     0.8388 0.960 0.012 0.000 0.028
#> GSM153490     3  0.5897     0.6667 0.044 0.000 0.588 0.368
#> GSM153491     1  0.1305     0.8453 0.960 0.004 0.036 0.000
#> GSM153492     1  0.1042     0.8450 0.972 0.000 0.020 0.008
#> GSM153493     1  0.1557     0.8401 0.944 0.000 0.056 0.000
#> GSM153494     1  0.4994     0.0341 0.520 0.480 0.000 0.000
#> GSM153495     3  0.4920     0.2712 0.368 0.000 0.628 0.004
#> GSM153498     1  0.1297     0.8399 0.964 0.016 0.000 0.020
#> GSM153501     1  0.1940     0.8347 0.924 0.000 0.076 0.000
#> GSM153502     1  0.1940     0.8330 0.924 0.000 0.076 0.000
#> GSM153505     1  0.3528     0.7500 0.808 0.000 0.192 0.000
#> GSM153506     2  0.6438    -0.1135 0.068 0.496 0.000 0.436

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM153405     3  0.2411    0.63299 0.004 0.008 0.912 0.052 0.024
#> GSM153406     2  0.6488    0.19295 0.000 0.512 0.200 0.004 0.284
#> GSM153419     3  0.6036    0.05225 0.004 0.000 0.576 0.140 0.280
#> GSM153423     2  0.1168    0.64160 0.000 0.960 0.032 0.000 0.008
#> GSM153425     4  0.7414    0.28553 0.000 0.088 0.172 0.516 0.224
#> GSM153427     2  0.4367    0.05106 0.000 0.580 0.004 0.000 0.416
#> GSM153428     4  0.7685    0.29798 0.000 0.136 0.116 0.460 0.288
#> GSM153429     3  0.6032    0.20561 0.000 0.356 0.536 0.008 0.100
#> GSM153433     4  0.1728    0.44447 0.036 0.000 0.004 0.940 0.020
#> GSM153444     2  0.1764    0.60433 0.000 0.928 0.008 0.000 0.064
#> GSM153448     2  0.6810    0.41205 0.012 0.528 0.008 0.192 0.260
#> GSM153451     2  0.5991    0.51143 0.000 0.616 0.172 0.008 0.204
#> GSM153452     4  0.8043    0.24222 0.004 0.160 0.120 0.420 0.296
#> GSM153477     2  0.2128    0.63018 0.012 0.928 0.020 0.004 0.036
#> GSM153479     3  0.5898    0.44761 0.004 0.160 0.632 0.004 0.200
#> GSM153484     2  0.2634    0.60131 0.040 0.904 0.012 0.004 0.040
#> GSM153488     1  0.4356    0.49374 0.648 0.000 0.340 0.000 0.012
#> GSM153496     1  0.3511    0.76778 0.800 0.000 0.004 0.184 0.012
#> GSM153497     2  0.2036    0.64409 0.000 0.920 0.056 0.000 0.024
#> GSM153500     1  0.2338    0.83186 0.884 0.000 0.000 0.112 0.004
#> GSM153503     1  0.3797    0.71256 0.756 0.000 0.004 0.232 0.008
#> GSM153508     1  0.1299    0.85060 0.960 0.020 0.012 0.000 0.008
#> GSM153409     2  0.3584    0.63657 0.000 0.840 0.076 0.008 0.076
#> GSM153426     3  0.6083    0.32313 0.000 0.252 0.592 0.008 0.148
#> GSM153431     2  0.5542   -0.04742 0.000 0.532 0.000 0.072 0.396
#> GSM153438     2  0.7056    0.32790 0.000 0.440 0.272 0.016 0.272
#> GSM153440     5  0.6862    0.29358 0.004 0.012 0.380 0.168 0.436
#> GSM153447     4  0.1278    0.43934 0.020 0.000 0.004 0.960 0.016
#> GSM153450     2  0.5792    0.54130 0.000 0.688 0.168 0.056 0.088
#> GSM153456     2  0.6918    0.35473 0.000 0.460 0.264 0.012 0.264
#> GSM153457     2  0.6774    0.36522 0.000 0.476 0.272 0.008 0.244
#> GSM153458     2  0.7953    0.34078 0.000 0.420 0.172 0.120 0.288
#> GSM153459     2  0.1278    0.64013 0.000 0.960 0.020 0.004 0.016
#> GSM153460     2  0.7067    0.17171 0.000 0.376 0.356 0.012 0.256
#> GSM153461     2  0.4449    0.20198 0.000 0.636 0.008 0.004 0.352
#> GSM153463     4  0.2952    0.38102 0.036 0.000 0.004 0.872 0.088
#> GSM153464     3  0.4599    0.56825 0.000 0.156 0.744 0.000 0.100
#> GSM153466     2  0.3441    0.60368 0.008 0.848 0.000 0.088 0.056
#> GSM153467     3  0.7135    0.04548 0.000 0.268 0.436 0.020 0.276
#> GSM153468     3  0.2945    0.64967 0.020 0.012 0.880 0.004 0.084
#> GSM153469     3  0.0968    0.64544 0.012 0.012 0.972 0.000 0.004
#> GSM153470     2  0.3484    0.62633 0.004 0.824 0.144 0.000 0.028
#> GSM153471     2  0.6628    0.44642 0.016 0.540 0.212 0.000 0.232
#> GSM153472     1  0.3707    0.80455 0.828 0.000 0.116 0.044 0.012
#> GSM153473     4  0.5166   -0.03458 0.436 0.000 0.004 0.528 0.032
#> GSM153474     1  0.2144    0.85606 0.912 0.000 0.020 0.068 0.000
#> GSM153475     2  0.5877    0.24372 0.120 0.616 0.004 0.004 0.256
#> GSM153476     3  0.5067    0.49840 0.040 0.056 0.736 0.000 0.168
#> GSM153478     3  0.3782    0.56022 0.032 0.000 0.832 0.104 0.032
#> GSM153480     2  0.3203    0.60756 0.000 0.820 0.168 0.000 0.012
#> GSM153486     2  0.3175    0.64249 0.016 0.864 0.016 0.004 0.100
#> GSM153487     1  0.1460    0.85195 0.956 0.012 0.020 0.004 0.008
#> GSM153499     1  0.3205    0.73800 0.816 0.004 0.176 0.000 0.004
#> GSM153504     1  0.1211    0.85783 0.960 0.000 0.000 0.024 0.016
#> GSM153507     5  0.6805    0.37567 0.160 0.260 0.004 0.028 0.548
#> GSM153404     3  0.1216    0.64890 0.000 0.020 0.960 0.000 0.020
#> GSM153407     5  0.7023    0.44839 0.000 0.252 0.040 0.188 0.520
#> GSM153408     5  0.6163    0.01837 0.000 0.092 0.440 0.012 0.456
#> GSM153410     3  0.4431    0.56380 0.000 0.068 0.760 0.004 0.168
#> GSM153411     4  0.3242    0.28269 0.012 0.000 0.000 0.816 0.172
#> GSM153412     3  0.1725    0.63752 0.000 0.020 0.936 0.000 0.044
#> GSM153413     3  0.4050    0.53459 0.036 0.004 0.796 0.008 0.156
#> GSM153414     3  0.5567    0.58165 0.000 0.072 0.708 0.060 0.160
#> GSM153415     3  0.2457    0.61786 0.008 0.016 0.900 0.000 0.076
#> GSM153416     2  0.4731    0.39523 0.000 0.640 0.328 0.000 0.032
#> GSM153417     4  0.4029   -0.00762 0.004 0.000 0.000 0.680 0.316
#> GSM153418     3  0.5606    0.21516 0.000 0.084 0.556 0.000 0.360
#> GSM153420     5  0.4101    0.49129 0.000 0.000 0.000 0.372 0.628
#> GSM153421     5  0.4306    0.33973 0.000 0.000 0.000 0.492 0.508
#> GSM153422     5  0.4182    0.47426 0.000 0.000 0.000 0.400 0.600
#> GSM153424     4  0.7131   -0.12541 0.000 0.368 0.016 0.368 0.248
#> GSM153430     4  0.3038    0.39335 0.008 0.004 0.032 0.876 0.080
#> GSM153432     2  0.4774    0.16792 0.000 0.632 0.024 0.004 0.340
#> GSM153434     3  0.6192    0.37737 0.000 0.352 0.548 0.048 0.052
#> GSM153435     3  0.6479    0.10345 0.000 0.328 0.504 0.008 0.160
#> GSM153436     4  0.4863    0.36020 0.000 0.148 0.060 0.756 0.036
#> GSM153437     2  0.7187    0.29082 0.000 0.416 0.292 0.020 0.272
#> GSM153439     3  0.4497    0.56020 0.000 0.248 0.716 0.008 0.028
#> GSM153441     3  0.4507    0.62520 0.000 0.096 0.780 0.016 0.108
#> GSM153442     2  0.7555    0.41886 0.048 0.520 0.024 0.164 0.244
#> GSM153443     2  0.6806    0.24224 0.000 0.420 0.336 0.004 0.240
#> GSM153445     3  0.4406    0.56083 0.012 0.220 0.740 0.000 0.028
#> GSM153446     2  0.3690    0.58083 0.000 0.780 0.200 0.000 0.020
#> GSM153449     2  0.5439    0.41849 0.204 0.696 0.000 0.044 0.056
#> GSM153453     3  0.6137   -0.03715 0.408 0.000 0.496 0.076 0.020
#> GSM153454     4  0.4150    0.40495 0.140 0.000 0.004 0.788 0.068
#> GSM153455     2  0.2629    0.64672 0.008 0.896 0.064 0.000 0.032
#> GSM153462     2  0.2929    0.62490 0.004 0.856 0.128 0.000 0.012
#> GSM153465     2  0.4023    0.60553 0.008 0.816 0.076 0.004 0.096
#> GSM153481     2  0.7145    0.39721 0.168 0.528 0.244 0.000 0.060
#> GSM153482     3  0.4925    0.46279 0.232 0.024 0.708 0.000 0.036
#> GSM153483     3  0.3184    0.65319 0.052 0.068 0.868 0.000 0.012
#> GSM153485     1  0.1644    0.84639 0.940 0.008 0.048 0.000 0.004
#> GSM153489     1  0.1952    0.81252 0.912 0.084 0.000 0.004 0.000
#> GSM153490     5  0.5770    0.37377 0.080 0.004 0.000 0.388 0.528
#> GSM153491     1  0.0671    0.85601 0.980 0.000 0.000 0.016 0.004
#> GSM153492     1  0.2546    0.85254 0.904 0.000 0.036 0.048 0.012
#> GSM153493     1  0.1877    0.85443 0.924 0.000 0.012 0.064 0.000
#> GSM153494     1  0.5922    0.49061 0.672 0.132 0.164 0.004 0.028
#> GSM153495     4  0.4581    0.21284 0.360 0.000 0.004 0.624 0.012
#> GSM153498     1  0.1412    0.84876 0.952 0.004 0.036 0.000 0.008
#> GSM153501     1  0.2068    0.84648 0.904 0.000 0.004 0.092 0.000
#> GSM153502     1  0.1408    0.85275 0.948 0.000 0.000 0.044 0.008
#> GSM153505     1  0.3362    0.80034 0.824 0.000 0.012 0.156 0.008
#> GSM153506     2  0.3504    0.63160 0.092 0.852 0.036 0.004 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM153405     3   0.608     0.5260 0.004 0.112 0.588 0.000 0.060 0.236
#> GSM153406     1   0.708     0.2156 0.480 0.000 0.124 0.004 0.224 0.168
#> GSM153419     3   0.656     0.2621 0.000 0.060 0.456 0.000 0.336 0.148
#> GSM153423     1   0.127     0.4841 0.952 0.008 0.004 0.000 0.000 0.036
#> GSM153425     6   0.694    -0.1189 0.076 0.192 0.000 0.000 0.324 0.408
#> GSM153427     1   0.717     0.0881 0.452 0.036 0.052 0.000 0.304 0.156
#> GSM153428     2   0.607     0.1692 0.116 0.528 0.044 0.000 0.000 0.312
#> GSM153429     1   0.710    -0.0960 0.392 0.060 0.344 0.000 0.012 0.192
#> GSM153433     2   0.280     0.4584 0.000 0.888 0.036 0.032 0.028 0.016
#> GSM153444     1   0.462     0.4580 0.772 0.040 0.032 0.000 0.052 0.104
#> GSM153448     1   0.616    -0.0410 0.444 0.408 0.032 0.004 0.000 0.112
#> GSM153451     1   0.400     0.0218 0.692 0.016 0.008 0.000 0.000 0.284
#> GSM153452     2   0.569     0.4109 0.084 0.652 0.116 0.000 0.000 0.148
#> GSM153477     1   0.259     0.4776 0.884 0.000 0.000 0.036 0.012 0.068
#> GSM153479     3   0.642     0.4279 0.100 0.084 0.584 0.016 0.000 0.216
#> GSM153484     1   0.268     0.4902 0.876 0.000 0.000 0.084 0.016 0.024
#> GSM153488     4   0.500     0.2275 0.000 0.012 0.424 0.528 0.024 0.012
#> GSM153496     4   0.374     0.4724 0.000 0.392 0.000 0.608 0.000 0.000
#> GSM153497     1   0.135     0.4689 0.940 0.000 0.000 0.000 0.004 0.056
#> GSM153500     4   0.263     0.6949 0.000 0.152 0.000 0.840 0.008 0.000
#> GSM153503     4   0.465     0.4260 0.000 0.380 0.000 0.572 0.048 0.000
#> GSM153508     4   0.251     0.6930 0.060 0.000 0.024 0.892 0.000 0.024
#> GSM153409     1   0.288     0.3265 0.812 0.008 0.000 0.000 0.000 0.180
#> GSM153426     6   0.530     0.5502 0.272 0.000 0.108 0.000 0.012 0.608
#> GSM153431     1   0.512     0.0676 0.480 0.020 0.000 0.000 0.460 0.040
#> GSM153438     1   0.579    -0.5481 0.480 0.084 0.032 0.000 0.000 0.404
#> GSM153440     3   0.715     0.2371 0.008 0.236 0.488 0.004 0.156 0.108
#> GSM153447     2   0.289     0.4012 0.000 0.856 0.000 0.032 0.104 0.008
#> GSM153450     3   0.764     0.1252 0.240 0.240 0.380 0.000 0.012 0.128
#> GSM153456     6   0.447     0.5209 0.480 0.020 0.004 0.000 0.000 0.496
#> GSM153457     1   0.476    -0.5734 0.492 0.008 0.032 0.000 0.000 0.468
#> GSM153458     6   0.547     0.5236 0.416 0.124 0.000 0.000 0.000 0.460
#> GSM153459     1   0.131     0.4823 0.952 0.008 0.008 0.000 0.000 0.032
#> GSM153460     6   0.555     0.5992 0.416 0.024 0.072 0.000 0.000 0.488
#> GSM153461     1   0.714     0.2490 0.520 0.052 0.068 0.000 0.232 0.128
#> GSM153463     2   0.468     0.2795 0.000 0.700 0.012 0.068 0.216 0.004
#> GSM153464     3   0.600    -0.1925 0.236 0.000 0.392 0.000 0.000 0.372
#> GSM153466     1   0.427     0.4715 0.788 0.080 0.000 0.024 0.016 0.092
#> GSM153467     6   0.685     0.4955 0.288 0.064 0.216 0.000 0.000 0.432
#> GSM153468     3   0.499     0.5562 0.012 0.052 0.716 0.048 0.000 0.172
#> GSM153469     3   0.462     0.5568 0.008 0.000 0.716 0.048 0.020 0.208
#> GSM153470     1   0.280     0.4339 0.852 0.000 0.000 0.012 0.012 0.124
#> GSM153471     1   0.495    -0.4592 0.504 0.000 0.004 0.044 0.004 0.444
#> GSM153472     4   0.634     0.4331 0.004 0.212 0.236 0.524 0.008 0.016
#> GSM153473     2   0.463    -0.0892 0.000 0.560 0.000 0.396 0.044 0.000
#> GSM153474     4   0.285     0.7207 0.000 0.076 0.036 0.872 0.004 0.012
#> GSM153475     1   0.647     0.3304 0.556 0.000 0.000 0.200 0.140 0.104
#> GSM153476     3   0.482     0.4850 0.004 0.000 0.704 0.016 0.188 0.088
#> GSM153478     3   0.386     0.4888 0.004 0.136 0.800 0.020 0.004 0.036
#> GSM153480     1   0.243     0.4231 0.876 0.000 0.024 0.000 0.000 0.100
#> GSM153486     1   0.328     0.4047 0.828 0.020 0.000 0.024 0.000 0.128
#> GSM153487     4   0.176     0.7168 0.004 0.004 0.064 0.924 0.000 0.004
#> GSM153499     4   0.595     0.3782 0.020 0.000 0.192 0.628 0.036 0.124
#> GSM153504     4   0.203     0.7183 0.000 0.044 0.004 0.920 0.024 0.008
#> GSM153507     5   0.841     0.2344 0.268 0.020 0.072 0.108 0.388 0.144
#> GSM153404     3   0.502     0.5267 0.004 0.004 0.624 0.000 0.080 0.288
#> GSM153407     5   0.876     0.0997 0.164 0.160 0.216 0.000 0.308 0.152
#> GSM153408     5   0.644    -0.1793 0.020 0.000 0.296 0.004 0.456 0.224
#> GSM153410     3   0.656     0.4647 0.072 0.000 0.504 0.000 0.152 0.272
#> GSM153411     5   0.452     0.2908 0.000 0.412 0.000 0.012 0.560 0.016
#> GSM153412     3   0.525     0.5139 0.008 0.000 0.596 0.004 0.084 0.308
#> GSM153413     3   0.601     0.4624 0.004 0.000 0.584 0.032 0.200 0.180
#> GSM153414     3   0.671     0.2916 0.052 0.324 0.428 0.000 0.000 0.196
#> GSM153415     3   0.626     0.4427 0.012 0.004 0.472 0.008 0.152 0.352
#> GSM153416     1   0.627     0.2310 0.572 0.032 0.256 0.000 0.028 0.112
#> GSM153417     5   0.388     0.4207 0.000 0.320 0.000 0.008 0.668 0.004
#> GSM153418     3   0.651     0.2844 0.024 0.000 0.400 0.000 0.332 0.244
#> GSM153420     5   0.251     0.5293 0.004 0.088 0.008 0.000 0.884 0.016
#> GSM153421     5   0.279     0.5170 0.000 0.200 0.000 0.000 0.800 0.000
#> GSM153422     5   0.222     0.5349 0.000 0.136 0.000 0.000 0.864 0.000
#> GSM153424     2   0.630     0.0652 0.320 0.508 0.028 0.000 0.012 0.132
#> GSM153430     2   0.366     0.4217 0.000 0.824 0.052 0.004 0.092 0.028
#> GSM153432     1   0.741     0.1479 0.476 0.024 0.120 0.000 0.204 0.176
#> GSM153434     3   0.729     0.2658 0.076 0.216 0.512 0.000 0.056 0.140
#> GSM153435     6   0.579     0.5724 0.388 0.000 0.156 0.000 0.004 0.452
#> GSM153436     2   0.528     0.3759 0.060 0.684 0.196 0.000 0.012 0.048
#> GSM153437     6   0.477     0.5906 0.440 0.028 0.012 0.000 0.000 0.520
#> GSM153439     3   0.555     0.4598 0.096 0.072 0.692 0.000 0.016 0.124
#> GSM153441     3   0.541     0.4235 0.052 0.208 0.668 0.004 0.004 0.064
#> GSM153442     2   0.684    -0.0835 0.408 0.412 0.032 0.064 0.000 0.084
#> GSM153443     6   0.459     0.5752 0.448 0.000 0.028 0.004 0.000 0.520
#> GSM153445     3   0.647     0.0819 0.280 0.000 0.500 0.040 0.004 0.176
#> GSM153446     1   0.332     0.3143 0.800 0.000 0.036 0.000 0.000 0.164
#> GSM153449     1   0.554     0.3081 0.628 0.044 0.000 0.264 0.048 0.016
#> GSM153453     3   0.597     0.2533 0.004 0.180 0.584 0.204 0.000 0.028
#> GSM153454     2   0.434     0.3694 0.000 0.732 0.000 0.164 0.100 0.004
#> GSM153455     1   0.175     0.4853 0.936 0.004 0.004 0.016 0.004 0.036
#> GSM153462     1   0.245     0.4509 0.888 0.000 0.040 0.000 0.004 0.068
#> GSM153465     1   0.308     0.4948 0.856 0.000 0.004 0.008 0.056 0.076
#> GSM153481     1   0.635    -0.1845 0.452 0.000 0.012 0.284 0.004 0.248
#> GSM153482     3   0.509     0.5037 0.012 0.016 0.732 0.132 0.024 0.084
#> GSM153483     3   0.615     0.5064 0.088 0.000 0.628 0.132 0.012 0.140
#> GSM153485     4   0.295     0.6991 0.016 0.004 0.108 0.856 0.000 0.016
#> GSM153489     4   0.333     0.6961 0.084 0.064 0.004 0.840 0.004 0.004
#> GSM153490     5   0.654     0.2660 0.016 0.256 0.000 0.176 0.520 0.032
#> GSM153491     4   0.100     0.7188 0.004 0.028 0.000 0.964 0.004 0.000
#> GSM153492     4   0.573     0.5037 0.000 0.264 0.124 0.588 0.008 0.016
#> GSM153493     4   0.328     0.6971 0.000 0.148 0.028 0.816 0.000 0.008
#> GSM153494     4   0.557     0.3530 0.260 0.004 0.048 0.620 0.000 0.068
#> GSM153495     2   0.408     0.2266 0.000 0.680 0.000 0.288 0.032 0.000
#> GSM153498     4   0.224     0.6932 0.004 0.000 0.076 0.900 0.004 0.016
#> GSM153501     4   0.298     0.6959 0.000 0.164 0.004 0.820 0.012 0.000
#> GSM153502     4   0.301     0.7037 0.008 0.072 0.000 0.868 0.032 0.020
#> GSM153505     4   0.496     0.4937 0.000 0.316 0.008 0.608 0.068 0.000
#> GSM153506     1   0.341     0.4136 0.808 0.000 0.000 0.128 0.000 0.064

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n disease.state(p) k
#> ATC:NMF 100            0.525 2
#> ATC:NMF  98            0.928 3
#> ATC:NMF  72            0.911 4
#> ATC:NMF  51            0.208 5
#> ATC:NMF  30            0.482 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0