Date: 2019-12-25 20:17:18 CET, cola version: 1.3.2
Document is loading...
All available functions which can be applied to this res_list
object:
res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#> Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#> Number of partitions are tried for k = 2, 3, 4, 5, 6.
#> Performed in total 30000 partitions by row resampling.
#>
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#> [1] "cola_report" "collect_classes" "collect_plots" "collect_stats"
#> [5] "colnames" "functional_enrichment" "get_anno_col" "get_anno"
#> [9] "get_classes" "get_matrix" "get_membership" "get_stats"
#> [13] "is_best_k" "is_stable_k" "ncol" "nrow"
#> [17] "rownames" "show" "suggest_best_k" "test_to_known_factors"
#> [21] "top_rows_heatmap" "top_rows_overlap"
#>
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]
The call of run_all_consensus_partition_methods()
was:
#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)
Dimension of the input matrix:
mat = get_matrix(res_list)
dim(mat)
#> [1] 21168 61
The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.
library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list),
col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
mc.cores = 4)
Folowing table shows the best k
(number of partitions) for each combination
of top-value methods and partition methods. Clicking on the method name in
the table goes to the section for a single combination of methods.
The cola vignette explains the definition of the metrics used for determining the best number of partitions.
suggest_best_k(res_list)
The best k | 1-PAC | Mean silhouette | Concordance | ||
---|---|---|---|---|---|
ATC:hclust | 2 | 1.000 | 0.989 | 0.994 | ** |
ATC:kmeans | 2 | 1.000 | 0.999 | 0.999 | ** |
ATC:skmeans | 2 | 1.000 | 0.994 | 0.997 | ** |
ATC:pam | 2 | 1.000 | 1.000 | 1.000 | ** |
CV:skmeans | 2 | 0.932 | 0.908 | 0.965 | * |
ATC:NMF | 2 | 0.900 | 0.923 | 0.970 | |
MAD:NMF | 3 | 0.842 | 0.871 | 0.944 | |
CV:pam | 2 | 0.837 | 0.905 | 0.961 | |
MAD:pam | 2 | 0.835 | 0.893 | 0.956 | |
ATC:mclust | 3 | 0.803 | 0.877 | 0.897 | |
SD:NMF | 2 | 0.800 | 0.845 | 0.942 | |
CV:kmeans | 2 | 0.779 | 0.847 | 0.940 | |
MAD:skmeans | 2 | 0.774 | 0.865 | 0.947 | |
SD:kmeans | 2 | 0.750 | 0.840 | 0.940 | |
SD:pam | 2 | 0.745 | 0.893 | 0.954 | |
SD:skmeans | 2 | 0.745 | 0.867 | 0.947 | |
MAD:kmeans | 2 | 0.744 | 0.822 | 0.930 | |
CV:NMF | 2 | 0.742 | 0.828 | 0.933 | |
SD:hclust | 2 | 0.553 | 0.767 | 0.903 | |
MAD:hclust | 2 | 0.524 | 0.814 | 0.905 | |
CV:hclust | 2 | 0.436 | 0.805 | 0.902 | |
MAD:mclust | 2 | 0.407 | 0.828 | 0.893 | |
CV:mclust | 2 | 0.380 | 0.867 | 0.893 | |
SD:mclust | 2 | 0.350 | 0.772 | 0.817 |
**: 1-PAC > 0.95, *: 1-PAC > 0.9
Cumulative distribution function curves of consensus matrix for all methods.
collect_plots(res_list, fun = plot_ecdf)
Consensus heatmaps for all methods. (What is a consensus heatmap?)
collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)
Membership heatmaps for all methods. (What is a membership heatmap?)
collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)
Signature heatmaps for all methods. (What is a signature heatmap?)
Note in following heatmaps, rows are scaled.
collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)
The statistics used for measuring the stability of consensus partitioning. (How are they defined?)
get_stats(res_list, k = 2)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 2 0.800 0.845 0.942 0.472 0.531 0.531
#> CV:NMF 2 0.742 0.828 0.933 0.480 0.515 0.515
#> MAD:NMF 2 0.771 0.853 0.941 0.486 0.508 0.508
#> ATC:NMF 2 0.900 0.923 0.970 0.485 0.515 0.515
#> SD:skmeans 2 0.745 0.867 0.947 0.502 0.495 0.495
#> CV:skmeans 2 0.932 0.908 0.965 0.503 0.503 0.503
#> MAD:skmeans 2 0.774 0.865 0.947 0.503 0.495 0.495
#> ATC:skmeans 2 1.000 0.994 0.997 0.492 0.508 0.508
#> SD:mclust 2 0.350 0.772 0.817 0.446 0.508 0.508
#> CV:mclust 2 0.380 0.867 0.893 0.391 0.577 0.577
#> MAD:mclust 2 0.407 0.828 0.893 0.420 0.541 0.541
#> ATC:mclust 2 0.393 0.895 0.869 0.383 0.552 0.552
#> SD:kmeans 2 0.750 0.840 0.940 0.450 0.564 0.564
#> CV:kmeans 2 0.779 0.847 0.940 0.459 0.552 0.552
#> MAD:kmeans 2 0.744 0.822 0.930 0.462 0.522 0.522
#> ATC:kmeans 2 1.000 0.999 0.999 0.449 0.552 0.552
#> SD:pam 2 0.745 0.893 0.954 0.479 0.515 0.515
#> CV:pam 2 0.837 0.905 0.961 0.493 0.515 0.515
#> MAD:pam 2 0.835 0.893 0.956 0.487 0.515 0.515
#> ATC:pam 2 1.000 1.000 1.000 0.437 0.564 0.564
#> SD:hclust 2 0.553 0.767 0.903 0.429 0.577 0.577
#> CV:hclust 2 0.436 0.805 0.902 0.445 0.541 0.541
#> MAD:hclust 2 0.524 0.814 0.905 0.454 0.541 0.541
#> ATC:hclust 2 1.000 0.989 0.994 0.444 0.552 0.552
get_stats(res_list, k = 3)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 3 0.772 0.849 0.937 0.2879 0.812 0.658
#> CV:NMF 3 0.672 0.781 0.911 0.2879 0.789 0.616
#> MAD:NMF 3 0.842 0.871 0.944 0.2824 0.776 0.590
#> ATC:NMF 3 0.663 0.790 0.884 0.3198 0.779 0.592
#> SD:skmeans 3 0.610 0.804 0.895 0.3040 0.773 0.577
#> CV:skmeans 3 0.596 0.503 0.772 0.3135 0.731 0.514
#> MAD:skmeans 3 0.626 0.642 0.722 0.3120 0.721 0.500
#> ATC:skmeans 3 0.798 0.891 0.934 0.3461 0.760 0.554
#> SD:mclust 3 0.416 0.754 0.832 0.0939 0.730 0.594
#> CV:mclust 3 0.424 0.770 0.850 0.3604 0.826 0.714
#> MAD:mclust 3 0.434 0.660 0.755 0.2529 0.915 0.849
#> ATC:mclust 3 0.803 0.877 0.897 0.4546 0.885 0.792
#> SD:kmeans 3 0.491 0.636 0.820 0.3286 0.783 0.639
#> CV:kmeans 3 0.524 0.442 0.659 0.3374 0.798 0.654
#> MAD:kmeans 3 0.459 0.534 0.680 0.3359 0.781 0.634
#> ATC:kmeans 3 0.598 0.306 0.753 0.3853 0.978 0.960
#> SD:pam 3 0.557 0.773 0.857 0.3295 0.671 0.444
#> CV:pam 3 0.544 0.778 0.852 0.3069 0.692 0.467
#> MAD:pam 3 0.581 0.787 0.882 0.3462 0.661 0.432
#> ATC:pam 3 0.748 0.858 0.934 0.5231 0.773 0.597
#> SD:hclust 3 0.479 0.640 0.718 0.2713 0.936 0.892
#> CV:hclust 3 0.428 0.753 0.829 0.1964 0.940 0.889
#> MAD:hclust 3 0.462 0.769 0.852 0.2187 0.940 0.889
#> ATC:hclust 3 0.777 0.877 0.916 0.4646 0.770 0.584
get_stats(res_list, k = 4)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 4 0.595 0.674 0.832 0.1746 0.790 0.511
#> CV:NMF 4 0.598 0.657 0.829 0.1606 0.798 0.525
#> MAD:NMF 4 0.596 0.595 0.825 0.1536 0.842 0.601
#> ATC:NMF 4 0.586 0.469 0.724 0.1505 0.871 0.659
#> SD:skmeans 4 0.653 0.643 0.828 0.1270 0.879 0.672
#> CV:skmeans 4 0.753 0.842 0.894 0.1294 0.802 0.489
#> MAD:skmeans 4 0.566 0.545 0.770 0.1168 0.848 0.599
#> ATC:skmeans 4 0.757 0.862 0.886 0.0890 0.938 0.816
#> SD:mclust 4 0.534 0.723 0.858 0.3291 0.770 0.585
#> CV:mclust 4 0.581 0.645 0.827 0.1521 0.897 0.795
#> MAD:mclust 4 0.731 0.695 0.867 0.2827 0.789 0.599
#> ATC:mclust 4 0.624 0.646 0.790 0.1928 0.964 0.917
#> SD:kmeans 4 0.570 0.437 0.733 0.2023 0.812 0.583
#> CV:kmeans 4 0.636 0.779 0.853 0.1865 0.725 0.426
#> MAD:kmeans 4 0.610 0.675 0.825 0.1851 0.736 0.465
#> ATC:kmeans 4 0.688 0.832 0.806 0.1592 0.671 0.408
#> SD:pam 4 0.512 0.636 0.819 0.0907 0.832 0.582
#> CV:pam 4 0.691 0.785 0.830 0.0822 0.908 0.745
#> MAD:pam 4 0.510 0.663 0.774 0.0852 0.885 0.698
#> ATC:pam 4 0.705 0.703 0.847 0.0964 0.819 0.534
#> SD:hclust 4 0.450 0.651 0.770 0.2391 0.628 0.373
#> CV:hclust 4 0.541 0.728 0.841 0.3180 0.729 0.479
#> MAD:hclust 4 0.517 0.747 0.827 0.2709 0.782 0.547
#> ATC:hclust 4 0.683 0.753 0.858 0.0768 0.950 0.846
get_stats(res_list, k = 5)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 5 0.702 0.696 0.860 0.0817 0.914 0.708
#> CV:NMF 5 0.703 0.719 0.865 0.0792 0.869 0.578
#> MAD:NMF 5 0.731 0.749 0.861 0.0805 0.901 0.674
#> ATC:NMF 5 0.642 0.640 0.809 0.0725 0.865 0.563
#> SD:skmeans 5 0.737 0.645 0.841 0.0720 0.880 0.603
#> CV:skmeans 5 0.725 0.699 0.848 0.0640 0.934 0.741
#> MAD:skmeans 5 0.720 0.641 0.832 0.0751 0.864 0.548
#> ATC:skmeans 5 0.840 0.785 0.897 0.0696 0.913 0.711
#> SD:mclust 5 0.523 0.641 0.787 0.1186 0.913 0.746
#> CV:mclust 5 0.703 0.724 0.836 0.2232 0.745 0.457
#> MAD:mclust 5 0.636 0.547 0.798 0.1045 0.889 0.697
#> ATC:mclust 5 0.776 0.809 0.899 0.0704 0.881 0.715
#> SD:kmeans 5 0.577 0.470 0.708 0.0824 0.840 0.537
#> CV:kmeans 5 0.650 0.654 0.771 0.0769 0.885 0.614
#> MAD:kmeans 5 0.614 0.532 0.729 0.0746 0.921 0.719
#> ATC:kmeans 5 0.721 0.769 0.819 0.0820 0.958 0.833
#> SD:pam 5 0.639 0.653 0.822 0.1181 0.814 0.463
#> CV:pam 5 0.737 0.691 0.835 0.1107 0.826 0.485
#> MAD:pam 5 0.760 0.798 0.879 0.1028 0.843 0.529
#> ATC:pam 5 0.875 0.830 0.930 0.0654 0.920 0.714
#> SD:hclust 5 0.551 0.483 0.746 0.1003 0.863 0.584
#> CV:hclust 5 0.645 0.660 0.767 0.0730 0.941 0.798
#> MAD:hclust 5 0.552 0.690 0.717 0.0709 0.985 0.942
#> ATC:hclust 5 0.834 0.748 0.834 0.0816 0.919 0.719
get_stats(res_list, k = 6)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 6 0.618 0.553 0.759 0.0454 0.893 0.604
#> CV:NMF 6 0.654 0.603 0.768 0.0481 0.926 0.690
#> MAD:NMF 6 0.607 0.539 0.738 0.0436 0.928 0.717
#> ATC:NMF 6 0.595 0.536 0.724 0.0356 0.940 0.735
#> SD:skmeans 6 0.760 0.651 0.818 0.0452 0.913 0.637
#> CV:skmeans 6 0.782 0.756 0.855 0.0398 0.958 0.803
#> MAD:skmeans 6 0.767 0.643 0.820 0.0431 0.921 0.645
#> ATC:skmeans 6 0.793 0.690 0.843 0.0441 0.937 0.740
#> SD:mclust 6 0.596 0.520 0.749 0.0735 0.876 0.600
#> CV:mclust 6 0.672 0.636 0.733 0.0697 0.923 0.697
#> MAD:mclust 6 0.641 0.441 0.688 0.0662 0.854 0.521
#> ATC:mclust 6 0.672 0.670 0.811 0.0976 0.862 0.581
#> SD:kmeans 6 0.638 0.577 0.713 0.0518 0.870 0.514
#> CV:kmeans 6 0.668 0.532 0.747 0.0453 0.952 0.791
#> MAD:kmeans 6 0.662 0.627 0.731 0.0489 0.892 0.554
#> ATC:kmeans 6 0.750 0.605 0.754 0.0495 0.943 0.739
#> SD:pam 6 0.696 0.559 0.806 0.0394 0.970 0.864
#> CV:pam 6 0.679 0.606 0.789 0.0414 0.973 0.873
#> MAD:pam 6 0.730 0.644 0.798 0.0354 0.967 0.844
#> ATC:pam 6 0.859 0.795 0.912 0.0591 0.911 0.635
#> SD:hclust 6 0.607 0.633 0.777 0.0699 0.879 0.584
#> CV:hclust 6 0.678 0.644 0.819 0.0504 0.938 0.757
#> MAD:hclust 6 0.644 0.674 0.759 0.0509 0.951 0.801
#> ATC:hclust 6 0.829 0.610 0.811 0.0625 0.940 0.753
Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.
collect_stats(res_list, k = 2)
collect_stats(res_list, k = 3)
collect_stats(res_list, k = 4)
collect_stats(res_list, k = 5)
collect_stats(res_list, k = 6)
Collect partitions from all methods:
collect_classes(res_list, k = 2)
collect_classes(res_list, k = 3)
collect_classes(res_list, k = 4)
collect_classes(res_list, k = 5)
collect_classes(res_list, k = 6)
Overlap of top rows from different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "euler")
top_rows_overlap(res_list, top_n = 2000, method = "euler")
top_rows_overlap(res_list, top_n = 3000, method = "euler")
top_rows_overlap(res_list, top_n = 4000, method = "euler")
top_rows_overlap(res_list, top_n = 5000, method = "euler")
Also visualize the correspondance of rankings between different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "correspondance")
top_rows_overlap(res_list, top_n = 2000, method = "correspondance")
top_rows_overlap(res_list, top_n = 3000, method = "correspondance")
top_rows_overlap(res_list, top_n = 4000, method = "correspondance")
top_rows_overlap(res_list, top_n = 5000, method = "correspondance")
Heatmaps of the top rows:
top_rows_heatmap(res_list, top_n = 1000)
top_rows_heatmap(res_list, top_n = 2000)
top_rows_heatmap(res_list, top_n = 3000)
top_rows_heatmap(res_list, top_n = 4000)
top_rows_heatmap(res_list, top_n = 5000)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res_list, k = 2)
#> n disease.state(p) k
#> SD:NMF 55 0.2178 2
#> CV:NMF 53 0.1454 2
#> MAD:NMF 55 0.1371 2
#> ATC:NMF 58 0.0681 2
#> SD:skmeans 56 0.1135 2
#> CV:skmeans 56 0.0559 2
#> MAD:skmeans 55 0.0858 2
#> ATC:skmeans 61 0.0285 2
#> SD:mclust 56 0.1895 2
#> CV:mclust 59 0.1336 2
#> MAD:mclust 57 0.1375 2
#> ATC:mclust 61 0.1461 2
#> SD:kmeans 53 0.1126 2
#> CV:kmeans 54 0.1016 2
#> MAD:kmeans 52 0.0913 2
#> ATC:kmeans 61 0.1461 2
#> SD:pam 58 0.1073 2
#> CV:pam 59 0.0988 2
#> MAD:pam 57 0.0838 2
#> ATC:pam 61 0.2332 2
#> SD:hclust 51 0.1368 2
#> CV:hclust 58 0.1158 2
#> MAD:hclust 58 0.1158 2
#> ATC:hclust 61 0.1461 2
test_to_known_factors(res_list, k = 3)
#> n disease.state(p) k
#> SD:NMF 58 0.09535 3
#> CV:NMF 54 0.06152 3
#> MAD:NMF 58 0.03616 3
#> ATC:NMF 56 0.25437 3
#> SD:skmeans 56 0.06364 3
#> CV:skmeans 32 0.00922 3
#> MAD:skmeans 56 0.03824 3
#> ATC:skmeans 59 0.13503 3
#> SD:mclust 55 0.04420 3
#> CV:mclust 59 0.36045 3
#> MAD:mclust 45 0.00780 3
#> ATC:mclust 58 0.20122 3
#> SD:kmeans 47 0.04246 3
#> CV:kmeans 39 0.99110 3
#> MAD:kmeans 47 0.01684 3
#> ATC:kmeans 18 NA 3
#> SD:pam 56 0.02045 3
#> CV:pam 58 0.07213 3
#> MAD:pam 53 0.06363 3
#> ATC:pam 57 0.04885 3
#> SD:hclust 47 0.04064 3
#> CV:hclust 55 0.01648 3
#> MAD:hclust 59 0.01690 3
#> ATC:hclust 58 0.03078 3
test_to_known_factors(res_list, k = 4)
#> n disease.state(p) k
#> SD:NMF 46 0.04025 4
#> CV:NMF 47 0.01339 4
#> MAD:NMF 43 0.01883 4
#> ATC:NMF 32 0.18618 4
#> SD:skmeans 44 0.06401 4
#> CV:skmeans 59 0.09529 4
#> MAD:skmeans 37 0.01133 4
#> ATC:skmeans 61 0.24058 4
#> SD:mclust 51 0.05518 4
#> CV:mclust 43 0.03781 4
#> MAD:mclust 48 0.05212 4
#> ATC:mclust 56 0.13233 4
#> SD:kmeans 34 0.04374 4
#> CV:kmeans 56 0.02774 4
#> MAD:kmeans 50 0.01610 4
#> ATC:kmeans 58 0.09875 4
#> SD:pam 51 0.00342 4
#> CV:pam 58 0.00891 4
#> MAD:pam 53 0.00858 4
#> ATC:pam 51 0.11101 4
#> SD:hclust 50 0.02888 4
#> CV:hclust 54 0.05688 4
#> MAD:hclust 61 0.02795 4
#> ATC:hclust 53 0.01012 4
test_to_known_factors(res_list, k = 5)
#> n disease.state(p) k
#> SD:NMF 51 0.06176 5
#> CV:NMF 52 0.05402 5
#> MAD:NMF 52 0.08222 5
#> ATC:NMF 48 0.21001 5
#> SD:skmeans 44 0.02958 5
#> CV:skmeans 50 0.04082 5
#> MAD:skmeans 44 0.03643 5
#> ATC:skmeans 54 0.24359 5
#> SD:mclust 50 0.04639 5
#> CV:mclust 51 0.09016 5
#> MAD:mclust 46 0.01201 5
#> ATC:mclust 56 0.03796 5
#> SD:kmeans 29 0.00580 5
#> CV:kmeans 49 0.08456 5
#> MAD:kmeans 38 0.01573 5
#> ATC:kmeans 58 0.00857 5
#> SD:pam 51 0.00815 5
#> CV:pam 54 0.00595 5
#> MAD:pam 59 0.03362 5
#> ATC:pam 56 0.22979 5
#> SD:hclust 41 0.06656 5
#> CV:hclust 50 0.05589 5
#> MAD:hclust 55 0.09880 5
#> ATC:hclust 54 0.01872 5
test_to_known_factors(res_list, k = 6)
#> n disease.state(p) k
#> SD:NMF 36 0.1556 6
#> CV:NMF 48 0.0435 6
#> MAD:NMF 39 0.3170 6
#> ATC:NMF 37 0.0936 6
#> SD:skmeans 49 0.0226 6
#> CV:skmeans 55 0.0137 6
#> MAD:skmeans 47 0.0393 6
#> ATC:skmeans 49 0.0765 6
#> SD:mclust 39 0.0185 6
#> CV:mclust 49 0.0885 6
#> MAD:mclust 27 0.0212 6
#> ATC:mclust 49 0.0729 6
#> SD:kmeans 47 0.0498 6
#> CV:kmeans 43 0.0313 6
#> MAD:kmeans 49 0.0227 6
#> ATC:kmeans 48 0.0455 6
#> SD:pam 33 0.0123 6
#> CV:pam 47 0.0163 6
#> MAD:pam 48 0.1388 6
#> ATC:pam 56 0.0617 6
#> SD:hclust 47 0.2231 6
#> CV:hclust 40 0.1218 6
#> MAD:hclust 55 0.1336 6
#> ATC:hclust 48 0.0224 6
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.553 0.767 0.903 0.4289 0.577 0.577
#> 3 3 0.479 0.640 0.718 0.2713 0.936 0.892
#> 4 4 0.450 0.651 0.770 0.2391 0.628 0.373
#> 5 5 0.551 0.483 0.746 0.1003 0.863 0.584
#> 6 6 0.607 0.633 0.777 0.0699 0.879 0.584
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 1 0.9427 0.3460 0.640 0.360
#> GSM123213 2 0.7674 0.7693 0.224 0.776
#> GSM123214 2 0.6801 0.8085 0.180 0.820
#> GSM123215 2 0.6801 0.8085 0.180 0.820
#> GSM123216 1 0.0000 0.8873 1.000 0.000
#> GSM123217 1 0.0000 0.8873 1.000 0.000
#> GSM123218 1 0.3733 0.8443 0.928 0.072
#> GSM123219 1 0.1184 0.8822 0.984 0.016
#> GSM123220 1 0.0000 0.8873 1.000 0.000
#> GSM123221 1 0.0000 0.8873 1.000 0.000
#> GSM123222 1 0.0376 0.8860 0.996 0.004
#> GSM123223 2 0.0938 0.8553 0.012 0.988
#> GSM123224 1 0.0000 0.8873 1.000 0.000
#> GSM123225 1 0.0000 0.8873 1.000 0.000
#> GSM123226 1 0.0000 0.8873 1.000 0.000
#> GSM123227 1 0.3274 0.8532 0.940 0.060
#> GSM123228 1 0.0000 0.8873 1.000 0.000
#> GSM123229 1 0.0672 0.8853 0.992 0.008
#> GSM123230 1 0.0000 0.8873 1.000 0.000
#> GSM123231 1 0.3733 0.8443 0.928 0.072
#> GSM123232 1 0.0000 0.8873 1.000 0.000
#> GSM123233 1 0.9993 -0.0509 0.516 0.484
#> GSM123234 1 0.0000 0.8873 1.000 0.000
#> GSM123235 1 0.1843 0.8773 0.972 0.028
#> GSM123236 1 0.9170 0.4421 0.668 0.332
#> GSM123237 1 0.0000 0.8873 1.000 0.000
#> GSM123238 1 0.9427 0.3460 0.640 0.360
#> GSM123239 2 0.8909 0.6142 0.308 0.692
#> GSM123240 1 0.0000 0.8873 1.000 0.000
#> GSM123241 1 0.0000 0.8873 1.000 0.000
#> GSM123242 2 0.7674 0.7693 0.224 0.776
#> GSM123182 2 0.9775 0.3886 0.412 0.588
#> GSM123183 1 0.9427 0.3460 0.640 0.360
#> GSM123184 2 0.6801 0.8085 0.180 0.820
#> GSM123185 1 0.9993 -0.0509 0.516 0.484
#> GSM123186 1 0.1184 0.8822 0.984 0.016
#> GSM123187 2 0.7674 0.7693 0.224 0.776
#> GSM123188 1 0.0000 0.8873 1.000 0.000
#> GSM123189 1 0.2043 0.8743 0.968 0.032
#> GSM123190 1 0.3733 0.8443 0.928 0.072
#> GSM123191 1 0.1414 0.8806 0.980 0.020
#> GSM123192 1 0.0000 0.8873 1.000 0.000
#> GSM123193 1 0.0000 0.8873 1.000 0.000
#> GSM123194 1 0.1633 0.8783 0.976 0.024
#> GSM123195 2 0.0000 0.8528 0.000 1.000
#> GSM123196 1 0.0672 0.8853 0.992 0.008
#> GSM123197 1 0.9427 0.3460 0.640 0.360
#> GSM123198 2 0.1843 0.8557 0.028 0.972
#> GSM123199 1 0.0000 0.8873 1.000 0.000
#> GSM123200 2 0.0000 0.8528 0.000 1.000
#> GSM123201 1 0.9170 0.4421 0.668 0.332
#> GSM123202 2 0.4562 0.8350 0.096 0.904
#> GSM123203 1 0.0000 0.8873 1.000 0.000
#> GSM123204 2 0.0000 0.8528 0.000 1.000
#> GSM123205 2 0.0000 0.8528 0.000 1.000
#> GSM123206 2 0.0000 0.8528 0.000 1.000
#> GSM123207 1 0.9170 0.4421 0.668 0.332
#> GSM123208 2 0.0000 0.8528 0.000 1.000
#> GSM123209 2 0.2423 0.8553 0.040 0.960
#> GSM123210 1 0.0000 0.8873 1.000 0.000
#> GSM123211 1 0.0000 0.8873 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 1 0.7328 0.312 0.612 0.344 NA
#> GSM123213 2 0.5356 0.523 0.196 0.784 NA
#> GSM123214 2 0.9264 0.383 0.156 0.432 NA
#> GSM123215 2 0.9264 0.383 0.156 0.432 NA
#> GSM123216 1 0.1267 0.779 0.972 0.004 NA
#> GSM123217 1 0.1585 0.781 0.964 0.008 NA
#> GSM123218 1 0.7058 0.727 0.708 0.080 NA
#> GSM123219 1 0.2176 0.791 0.948 0.020 NA
#> GSM123220 1 0.0983 0.792 0.980 0.004 NA
#> GSM123221 1 0.1267 0.779 0.972 0.004 NA
#> GSM123222 1 0.4931 0.773 0.784 0.004 NA
#> GSM123223 2 0.6548 0.705 0.012 0.616 NA
#> GSM123224 1 0.0983 0.792 0.980 0.004 NA
#> GSM123225 1 0.1267 0.779 0.972 0.004 NA
#> GSM123226 1 0.5109 0.771 0.780 0.008 NA
#> GSM123227 1 0.6810 0.736 0.720 0.068 NA
#> GSM123228 1 0.5109 0.771 0.780 0.008 NA
#> GSM123229 1 0.5268 0.769 0.776 0.012 NA
#> GSM123230 1 0.4931 0.771 0.784 0.004 NA
#> GSM123231 1 0.7058 0.727 0.708 0.080 NA
#> GSM123232 1 0.3752 0.784 0.856 0.000 NA
#> GSM123233 2 0.9756 0.142 0.332 0.428 NA
#> GSM123234 1 0.4931 0.771 0.784 0.004 NA
#> GSM123235 1 0.6034 0.761 0.752 0.036 NA
#> GSM123236 1 0.9601 0.258 0.456 0.328 NA
#> GSM123237 1 0.1453 0.793 0.968 0.008 NA
#> GSM123238 1 0.7328 0.312 0.612 0.344 NA
#> GSM123239 2 0.9509 0.493 0.200 0.464 NA
#> GSM123240 1 0.1267 0.779 0.972 0.004 NA
#> GSM123241 1 0.0983 0.792 0.980 0.004 NA
#> GSM123242 2 0.5356 0.523 0.196 0.784 NA
#> GSM123182 2 0.6969 0.200 0.380 0.596 NA
#> GSM123183 1 0.7328 0.312 0.612 0.344 NA
#> GSM123184 2 0.9264 0.383 0.156 0.432 NA
#> GSM123185 2 0.9756 0.142 0.332 0.428 NA
#> GSM123186 1 0.2176 0.791 0.948 0.020 NA
#> GSM123187 2 0.5356 0.523 0.196 0.784 NA
#> GSM123188 1 0.1453 0.793 0.968 0.008 NA
#> GSM123189 1 0.6142 0.758 0.748 0.040 NA
#> GSM123190 1 0.7058 0.727 0.708 0.080 NA
#> GSM123191 1 0.2903 0.789 0.924 0.028 NA
#> GSM123192 1 0.1453 0.779 0.968 0.008 NA
#> GSM123193 1 0.1585 0.781 0.964 0.008 NA
#> GSM123194 1 0.3028 0.787 0.920 0.032 NA
#> GSM123195 2 0.6045 0.706 0.000 0.620 NA
#> GSM123196 1 0.5268 0.769 0.776 0.012 NA
#> GSM123197 1 0.7328 0.312 0.612 0.344 NA
#> GSM123198 2 0.6434 0.701 0.008 0.612 NA
#> GSM123199 1 0.3752 0.784 0.856 0.000 NA
#> GSM123200 2 0.6045 0.706 0.000 0.620 NA
#> GSM123201 1 0.9601 0.258 0.456 0.328 NA
#> GSM123202 2 0.8034 0.669 0.080 0.584 NA
#> GSM123203 1 0.3816 0.784 0.852 0.000 NA
#> GSM123204 2 0.6045 0.706 0.000 0.620 NA
#> GSM123205 2 0.6045 0.706 0.000 0.620 NA
#> GSM123206 2 0.6045 0.706 0.000 0.620 NA
#> GSM123207 1 0.9601 0.258 0.456 0.328 NA
#> GSM123208 2 0.6045 0.706 0.000 0.620 NA
#> GSM123209 2 0.6721 0.698 0.016 0.604 NA
#> GSM123210 1 0.0983 0.792 0.980 0.004 NA
#> GSM123211 1 0.1267 0.779 0.972 0.004 NA
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 4 0.6271 0.479 0.452 0.000 0.056 0.492
#> GSM123213 4 0.7508 0.445 0.012 0.204 0.228 0.556
#> GSM123214 4 0.0000 0.559 0.000 0.000 0.000 1.000
#> GSM123215 4 0.0000 0.559 0.000 0.000 0.000 1.000
#> GSM123216 1 0.0188 0.805 0.996 0.000 0.004 0.000
#> GSM123217 1 0.2814 0.792 0.868 0.000 0.132 0.000
#> GSM123218 3 0.4360 0.666 0.248 0.008 0.744 0.000
#> GSM123219 1 0.3801 0.726 0.780 0.000 0.220 0.000
#> GSM123220 1 0.2216 0.823 0.908 0.000 0.092 0.000
#> GSM123221 1 0.1474 0.764 0.948 0.000 0.052 0.000
#> GSM123222 3 0.4907 0.535 0.420 0.000 0.580 0.000
#> GSM123223 2 0.0707 0.908 0.000 0.980 0.000 0.020
#> GSM123224 1 0.1940 0.825 0.924 0.000 0.076 0.000
#> GSM123225 1 0.0000 0.807 1.000 0.000 0.000 0.000
#> GSM123226 3 0.4776 0.555 0.376 0.000 0.624 0.000
#> GSM123227 3 0.4250 0.657 0.276 0.000 0.724 0.000
#> GSM123228 3 0.4776 0.555 0.376 0.000 0.624 0.000
#> GSM123229 3 0.4661 0.620 0.348 0.000 0.652 0.000
#> GSM123230 3 0.4933 0.518 0.432 0.000 0.568 0.000
#> GSM123231 3 0.4360 0.666 0.248 0.008 0.744 0.000
#> GSM123232 1 0.3975 0.640 0.760 0.000 0.240 0.000
#> GSM123233 3 0.5221 0.261 0.000 0.208 0.732 0.060
#> GSM123234 3 0.4916 0.529 0.424 0.000 0.576 0.000
#> GSM123235 3 0.4277 0.651 0.280 0.000 0.720 0.000
#> GSM123236 3 0.5351 0.539 0.104 0.152 0.744 0.000
#> GSM123237 1 0.2704 0.814 0.876 0.000 0.124 0.000
#> GSM123238 4 0.6271 0.479 0.452 0.000 0.056 0.492
#> GSM123239 3 0.5294 -0.342 0.008 0.484 0.508 0.000
#> GSM123240 1 0.0000 0.807 1.000 0.000 0.000 0.000
#> GSM123241 1 0.2081 0.825 0.916 0.000 0.084 0.000
#> GSM123242 4 0.7508 0.445 0.012 0.204 0.228 0.556
#> GSM123182 4 0.8613 0.493 0.152 0.140 0.168 0.540
#> GSM123183 4 0.6271 0.479 0.452 0.000 0.056 0.492
#> GSM123184 4 0.0000 0.559 0.000 0.000 0.000 1.000
#> GSM123185 3 0.5221 0.261 0.000 0.208 0.732 0.060
#> GSM123186 1 0.3801 0.726 0.780 0.000 0.220 0.000
#> GSM123187 4 0.7508 0.445 0.012 0.204 0.228 0.556
#> GSM123188 1 0.2704 0.814 0.876 0.000 0.124 0.000
#> GSM123189 3 0.4331 0.649 0.288 0.000 0.712 0.000
#> GSM123190 3 0.4360 0.666 0.248 0.008 0.744 0.000
#> GSM123191 1 0.4277 0.630 0.720 0.000 0.280 0.000
#> GSM123192 1 0.0592 0.808 0.984 0.000 0.016 0.000
#> GSM123193 1 0.2814 0.792 0.868 0.000 0.132 0.000
#> GSM123194 1 0.4277 0.630 0.720 0.000 0.280 0.000
#> GSM123195 2 0.0000 0.921 0.000 1.000 0.000 0.000
#> GSM123196 3 0.4661 0.620 0.348 0.000 0.652 0.000
#> GSM123197 4 0.6271 0.479 0.452 0.000 0.056 0.492
#> GSM123198 2 0.3726 0.763 0.000 0.788 0.212 0.000
#> GSM123199 1 0.4008 0.637 0.756 0.000 0.244 0.000
#> GSM123200 2 0.0000 0.921 0.000 1.000 0.000 0.000
#> GSM123201 3 0.5351 0.539 0.104 0.152 0.744 0.000
#> GSM123202 2 0.3074 0.817 0.000 0.848 0.152 0.000
#> GSM123203 1 0.4072 0.616 0.748 0.000 0.252 0.000
#> GSM123204 2 0.0000 0.921 0.000 1.000 0.000 0.000
#> GSM123205 2 0.0000 0.921 0.000 1.000 0.000 0.000
#> GSM123206 2 0.0000 0.921 0.000 1.000 0.000 0.000
#> GSM123207 3 0.5351 0.539 0.104 0.152 0.744 0.000
#> GSM123208 2 0.0000 0.921 0.000 1.000 0.000 0.000
#> GSM123209 2 0.3982 0.751 0.004 0.776 0.220 0.000
#> GSM123210 1 0.2011 0.825 0.920 0.000 0.080 0.000
#> GSM123211 1 0.1474 0.764 0.948 0.000 0.052 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 1 0.6244 0.0712 0.496 0.000 0.000 0.156 0.348
#> GSM123213 4 0.5465 0.5732 0.008 0.000 0.048 0.552 0.392
#> GSM123214 4 0.0000 0.6528 0.000 0.000 0.000 1.000 0.000
#> GSM123215 4 0.0000 0.6528 0.000 0.000 0.000 1.000 0.000
#> GSM123216 1 0.2006 0.6230 0.916 0.000 0.072 0.000 0.012
#> GSM123217 1 0.3579 0.5866 0.756 0.000 0.240 0.000 0.004
#> GSM123218 3 0.1851 0.5813 0.000 0.000 0.912 0.000 0.088
#> GSM123219 1 0.4397 0.4550 0.564 0.000 0.432 0.000 0.004
#> GSM123220 1 0.4101 0.4974 0.628 0.000 0.372 0.000 0.000
#> GSM123221 1 0.1357 0.6157 0.948 0.000 0.048 0.000 0.004
#> GSM123222 3 0.4355 0.5407 0.224 0.000 0.732 0.000 0.044
#> GSM123223 2 0.0609 0.8467 0.000 0.980 0.000 0.020 0.000
#> GSM123224 1 0.3796 0.5404 0.700 0.000 0.300 0.000 0.000
#> GSM123225 1 0.2249 0.6267 0.896 0.000 0.096 0.000 0.008
#> GSM123226 3 0.2654 0.6171 0.064 0.000 0.888 0.000 0.048
#> GSM123227 3 0.2411 0.5878 0.008 0.000 0.884 0.000 0.108
#> GSM123228 3 0.2654 0.6171 0.064 0.000 0.888 0.000 0.048
#> GSM123229 3 0.2069 0.6223 0.076 0.000 0.912 0.000 0.012
#> GSM123230 3 0.3690 0.5532 0.224 0.000 0.764 0.000 0.012
#> GSM123231 3 0.1851 0.5813 0.000 0.000 0.912 0.000 0.088
#> GSM123232 3 0.4738 -0.1686 0.464 0.000 0.520 0.000 0.016
#> GSM123233 5 0.4088 0.7165 0.000 0.000 0.368 0.000 0.632
#> GSM123234 3 0.4210 0.5465 0.224 0.000 0.740 0.000 0.036
#> GSM123235 3 0.1270 0.5992 0.000 0.000 0.948 0.000 0.052
#> GSM123236 3 0.4321 -0.2735 0.004 0.000 0.600 0.000 0.396
#> GSM123237 1 0.4268 0.5441 0.648 0.000 0.344 0.000 0.008
#> GSM123238 1 0.6244 0.0712 0.496 0.000 0.000 0.156 0.348
#> GSM123239 5 0.6598 0.3887 0.000 0.324 0.228 0.000 0.448
#> GSM123240 1 0.2074 0.6253 0.896 0.000 0.104 0.000 0.000
#> GSM123241 1 0.4126 0.4981 0.620 0.000 0.380 0.000 0.000
#> GSM123242 4 0.5465 0.5732 0.008 0.000 0.048 0.552 0.392
#> GSM123182 4 0.6691 0.4090 0.020 0.000 0.228 0.540 0.212
#> GSM123183 1 0.6244 0.0712 0.496 0.000 0.000 0.156 0.348
#> GSM123184 4 0.0000 0.6528 0.000 0.000 0.000 1.000 0.000
#> GSM123185 5 0.4088 0.7165 0.000 0.000 0.368 0.000 0.632
#> GSM123186 1 0.4397 0.4550 0.564 0.000 0.432 0.000 0.004
#> GSM123187 4 0.5465 0.5732 0.008 0.000 0.048 0.552 0.392
#> GSM123188 1 0.4268 0.5441 0.648 0.000 0.344 0.000 0.008
#> GSM123189 3 0.1197 0.6056 0.000 0.000 0.952 0.000 0.048
#> GSM123190 3 0.1851 0.5813 0.000 0.000 0.912 0.000 0.088
#> GSM123191 1 0.4747 0.3424 0.496 0.000 0.488 0.000 0.016
#> GSM123192 1 0.2189 0.6244 0.904 0.000 0.084 0.000 0.012
#> GSM123193 1 0.3579 0.5866 0.756 0.000 0.240 0.000 0.004
#> GSM123194 1 0.4829 0.3472 0.496 0.000 0.484 0.000 0.020
#> GSM123195 2 0.0000 0.8594 0.000 1.000 0.000 0.000 0.000
#> GSM123196 3 0.2069 0.6223 0.076 0.000 0.912 0.000 0.012
#> GSM123197 1 0.6244 0.0712 0.496 0.000 0.000 0.156 0.348
#> GSM123198 2 0.4798 0.2637 0.000 0.580 0.024 0.000 0.396
#> GSM123199 3 0.4735 -0.1605 0.460 0.000 0.524 0.000 0.016
#> GSM123200 2 0.0000 0.8594 0.000 1.000 0.000 0.000 0.000
#> GSM123201 3 0.4321 -0.2735 0.004 0.000 0.600 0.000 0.396
#> GSM123202 2 0.3477 0.7216 0.000 0.832 0.056 0.000 0.112
#> GSM123203 3 0.4727 -0.1299 0.452 0.000 0.532 0.000 0.016
#> GSM123204 2 0.0000 0.8594 0.000 1.000 0.000 0.000 0.000
#> GSM123205 2 0.0000 0.8594 0.000 1.000 0.000 0.000 0.000
#> GSM123206 2 0.0000 0.8594 0.000 1.000 0.000 0.000 0.000
#> GSM123207 3 0.4321 -0.2735 0.004 0.000 0.600 0.000 0.396
#> GSM123208 2 0.0000 0.8594 0.000 1.000 0.000 0.000 0.000
#> GSM123209 2 0.5097 0.2374 0.004 0.568 0.032 0.000 0.396
#> GSM123210 1 0.4060 0.5114 0.640 0.000 0.360 0.000 0.000
#> GSM123211 1 0.1357 0.6157 0.948 0.000 0.048 0.000 0.004
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 6 0.0713 1.000 0.028 0.000 0.000 0.000 0.000 0.972
#> GSM123213 4 0.4579 0.615 0.000 0.000 0.020 0.564 0.404 0.012
#> GSM123214 4 0.0363 0.670 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM123215 4 0.0363 0.670 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM123216 1 0.3023 0.645 0.784 0.000 0.004 0.000 0.000 0.212
#> GSM123217 1 0.4666 0.628 0.688 0.000 0.168 0.000 0.000 0.144
#> GSM123218 3 0.1856 0.635 0.048 0.000 0.920 0.000 0.032 0.000
#> GSM123219 1 0.4200 0.464 0.592 0.000 0.392 0.004 0.000 0.012
#> GSM123220 1 0.2858 0.654 0.864 0.000 0.092 0.000 0.028 0.016
#> GSM123221 1 0.3101 0.630 0.756 0.000 0.000 0.000 0.000 0.244
#> GSM123222 3 0.7143 0.446 0.140 0.000 0.436 0.000 0.268 0.156
#> GSM123223 2 0.0547 0.856 0.000 0.980 0.000 0.020 0.000 0.000
#> GSM123224 1 0.4008 0.668 0.792 0.000 0.092 0.000 0.028 0.088
#> GSM123225 1 0.2805 0.662 0.812 0.000 0.004 0.000 0.000 0.184
#> GSM123226 3 0.6370 0.359 0.268 0.000 0.368 0.000 0.352 0.012
#> GSM123227 3 0.5288 0.248 0.068 0.000 0.496 0.000 0.424 0.012
#> GSM123228 3 0.6370 0.359 0.268 0.000 0.368 0.000 0.352 0.012
#> GSM123229 3 0.3943 0.664 0.156 0.000 0.776 0.000 0.016 0.052
#> GSM123230 3 0.5326 0.593 0.140 0.000 0.668 0.000 0.036 0.156
#> GSM123231 3 0.1856 0.635 0.048 0.000 0.920 0.000 0.032 0.000
#> GSM123232 1 0.4232 0.485 0.732 0.000 0.100 0.000 0.168 0.000
#> GSM123233 5 0.1745 0.615 0.000 0.000 0.056 0.000 0.924 0.020
#> GSM123234 3 0.6898 0.512 0.140 0.000 0.500 0.000 0.204 0.156
#> GSM123235 3 0.2833 0.646 0.148 0.000 0.836 0.000 0.012 0.004
#> GSM123236 5 0.3853 0.674 0.044 0.000 0.196 0.004 0.756 0.000
#> GSM123237 1 0.2094 0.677 0.908 0.000 0.064 0.004 0.024 0.000
#> GSM123238 6 0.0713 1.000 0.028 0.000 0.000 0.000 0.000 0.972
#> GSM123239 5 0.6024 0.248 0.028 0.324 0.136 0.000 0.512 0.000
#> GSM123240 1 0.2562 0.669 0.828 0.000 0.000 0.000 0.000 0.172
#> GSM123241 1 0.2309 0.654 0.888 0.000 0.084 0.000 0.028 0.000
#> GSM123242 4 0.4579 0.615 0.000 0.000 0.020 0.564 0.404 0.012
#> GSM123182 4 0.6162 0.546 0.020 0.000 0.216 0.548 0.208 0.008
#> GSM123183 6 0.0713 1.000 0.028 0.000 0.000 0.000 0.000 0.972
#> GSM123184 4 0.0363 0.670 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM123185 5 0.1829 0.595 0.000 0.000 0.056 0.000 0.920 0.024
#> GSM123186 1 0.4200 0.464 0.592 0.000 0.392 0.004 0.000 0.012
#> GSM123187 4 0.4579 0.615 0.000 0.000 0.020 0.564 0.404 0.012
#> GSM123188 1 0.2094 0.677 0.908 0.000 0.064 0.004 0.024 0.000
#> GSM123189 3 0.1082 0.624 0.040 0.000 0.956 0.000 0.004 0.000
#> GSM123190 3 0.1856 0.635 0.048 0.000 0.920 0.000 0.032 0.000
#> GSM123191 1 0.4625 0.393 0.612 0.000 0.348 0.008 0.028 0.004
#> GSM123192 1 0.3483 0.648 0.764 0.000 0.024 0.000 0.000 0.212
#> GSM123193 1 0.4666 0.628 0.688 0.000 0.168 0.000 0.000 0.144
#> GSM123194 1 0.4656 0.371 0.544 0.000 0.420 0.008 0.028 0.000
#> GSM123195 2 0.0000 0.868 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123196 3 0.3943 0.664 0.156 0.000 0.776 0.000 0.016 0.052
#> GSM123197 6 0.0713 1.000 0.028 0.000 0.000 0.000 0.000 0.972
#> GSM123198 2 0.4495 0.339 0.000 0.580 0.028 0.004 0.388 0.000
#> GSM123199 1 0.4276 0.483 0.728 0.000 0.104 0.000 0.168 0.000
#> GSM123200 2 0.0000 0.868 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123201 5 0.3853 0.674 0.044 0.000 0.196 0.004 0.756 0.000
#> GSM123202 2 0.3172 0.748 0.000 0.832 0.092 0.000 0.076 0.000
#> GSM123203 1 0.4361 0.466 0.720 0.000 0.112 0.000 0.168 0.000
#> GSM123204 2 0.0000 0.868 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123205 2 0.0000 0.868 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123206 2 0.0000 0.868 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123207 5 0.3853 0.674 0.044 0.000 0.196 0.004 0.756 0.000
#> GSM123208 2 0.0000 0.868 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123209 2 0.4727 0.318 0.000 0.568 0.036 0.008 0.388 0.000
#> GSM123210 1 0.2703 0.660 0.876 0.000 0.080 0.000 0.028 0.016
#> GSM123211 1 0.3101 0.630 0.756 0.000 0.000 0.000 0.000 0.244
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> SD:hclust 51 0.1368 2
#> SD:hclust 47 0.0406 3
#> SD:hclust 50 0.0289 4
#> SD:hclust 41 0.0666 5
#> SD:hclust 47 0.2231 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.750 0.840 0.940 0.4500 0.564 0.564
#> 3 3 0.491 0.636 0.820 0.3286 0.783 0.639
#> 4 4 0.570 0.437 0.733 0.2023 0.812 0.583
#> 5 5 0.577 0.470 0.708 0.0824 0.840 0.537
#> 6 6 0.638 0.577 0.713 0.0518 0.870 0.514
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 1 0.9896 0.217 0.560 0.440
#> GSM123213 2 0.0376 0.925 0.004 0.996
#> GSM123214 2 0.0376 0.925 0.004 0.996
#> GSM123215 2 0.0376 0.925 0.004 0.996
#> GSM123216 1 0.0000 0.932 1.000 0.000
#> GSM123217 1 0.0000 0.932 1.000 0.000
#> GSM123218 1 0.4690 0.836 0.900 0.100
#> GSM123219 1 0.0000 0.932 1.000 0.000
#> GSM123220 1 0.0000 0.932 1.000 0.000
#> GSM123221 1 0.0000 0.932 1.000 0.000
#> GSM123222 1 0.0000 0.932 1.000 0.000
#> GSM123223 2 0.0000 0.926 0.000 1.000
#> GSM123224 1 0.0000 0.932 1.000 0.000
#> GSM123225 1 0.0000 0.932 1.000 0.000
#> GSM123226 1 0.0000 0.932 1.000 0.000
#> GSM123227 1 0.0000 0.932 1.000 0.000
#> GSM123228 1 0.0000 0.932 1.000 0.000
#> GSM123229 1 0.0000 0.932 1.000 0.000
#> GSM123230 1 0.0000 0.932 1.000 0.000
#> GSM123231 1 0.9686 0.295 0.604 0.396
#> GSM123232 1 0.0000 0.932 1.000 0.000
#> GSM123233 2 0.9427 0.438 0.360 0.640
#> GSM123234 1 0.0000 0.932 1.000 0.000
#> GSM123235 1 0.0000 0.932 1.000 0.000
#> GSM123236 1 0.0938 0.922 0.988 0.012
#> GSM123237 1 0.0000 0.932 1.000 0.000
#> GSM123238 1 0.2778 0.890 0.952 0.048
#> GSM123239 2 0.9393 0.445 0.356 0.644
#> GSM123240 1 0.0000 0.932 1.000 0.000
#> GSM123241 1 0.0000 0.932 1.000 0.000
#> GSM123242 2 0.0376 0.925 0.004 0.996
#> GSM123182 1 0.9775 0.250 0.588 0.412
#> GSM123183 1 0.9850 0.251 0.572 0.428
#> GSM123184 2 0.0376 0.925 0.004 0.996
#> GSM123185 2 0.9896 0.222 0.440 0.560
#> GSM123186 1 0.0000 0.932 1.000 0.000
#> GSM123187 2 0.0376 0.925 0.004 0.996
#> GSM123188 1 0.0000 0.932 1.000 0.000
#> GSM123189 1 0.0000 0.932 1.000 0.000
#> GSM123190 1 0.9775 0.250 0.588 0.412
#> GSM123191 1 0.0000 0.932 1.000 0.000
#> GSM123192 1 0.0000 0.932 1.000 0.000
#> GSM123193 1 0.0000 0.932 1.000 0.000
#> GSM123194 1 0.0000 0.932 1.000 0.000
#> GSM123195 2 0.0000 0.926 0.000 1.000
#> GSM123196 1 0.0000 0.932 1.000 0.000
#> GSM123197 1 0.7528 0.685 0.784 0.216
#> GSM123198 2 0.0000 0.926 0.000 1.000
#> GSM123199 1 0.0000 0.932 1.000 0.000
#> GSM123200 2 0.0000 0.926 0.000 1.000
#> GSM123201 1 0.0000 0.932 1.000 0.000
#> GSM123202 2 0.0000 0.926 0.000 1.000
#> GSM123203 1 0.0000 0.932 1.000 0.000
#> GSM123204 2 0.0000 0.926 0.000 1.000
#> GSM123205 2 0.0000 0.926 0.000 1.000
#> GSM123206 2 0.0000 0.926 0.000 1.000
#> GSM123207 1 0.0376 0.929 0.996 0.004
#> GSM123208 2 0.0000 0.926 0.000 1.000
#> GSM123209 2 0.0000 0.926 0.000 1.000
#> GSM123210 1 0.0000 0.932 1.000 0.000
#> GSM123211 1 0.0000 0.932 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 3 0.5212 0.56205 0.108 0.064 0.828
#> GSM123213 3 0.5859 0.37864 0.000 0.344 0.656
#> GSM123214 3 0.5650 0.42499 0.000 0.312 0.688
#> GSM123215 3 0.5650 0.42499 0.000 0.312 0.688
#> GSM123216 1 0.4235 0.73882 0.824 0.000 0.176
#> GSM123217 1 0.4002 0.75013 0.840 0.000 0.160
#> GSM123218 1 0.6976 0.58978 0.700 0.064 0.236
#> GSM123219 1 0.6252 0.54520 0.556 0.000 0.444
#> GSM123220 1 0.3752 0.75430 0.856 0.000 0.144
#> GSM123221 1 0.4062 0.74356 0.836 0.000 0.164
#> GSM123222 1 0.0000 0.78535 1.000 0.000 0.000
#> GSM123223 2 0.1289 0.81666 0.000 0.968 0.032
#> GSM123224 1 0.4002 0.74658 0.840 0.000 0.160
#> GSM123225 1 0.4121 0.74424 0.832 0.000 0.168
#> GSM123226 1 0.0000 0.78535 1.000 0.000 0.000
#> GSM123227 1 0.4121 0.71709 0.832 0.000 0.168
#> GSM123228 1 0.0000 0.78535 1.000 0.000 0.000
#> GSM123229 1 0.0000 0.78535 1.000 0.000 0.000
#> GSM123230 1 0.0237 0.78484 0.996 0.000 0.004
#> GSM123231 1 0.8231 0.48352 0.628 0.136 0.236
#> GSM123232 1 0.1860 0.77993 0.948 0.000 0.052
#> GSM123233 2 0.9696 -0.01826 0.388 0.396 0.216
#> GSM123234 1 0.1643 0.77634 0.956 0.000 0.044
#> GSM123235 1 0.2878 0.75657 0.904 0.000 0.096
#> GSM123236 1 0.6254 0.65551 0.756 0.056 0.188
#> GSM123237 1 0.3816 0.75263 0.852 0.000 0.148
#> GSM123238 3 0.6267 0.18049 0.452 0.000 0.548
#> GSM123239 2 0.7441 0.50874 0.164 0.700 0.136
#> GSM123240 1 0.4062 0.74356 0.836 0.000 0.164
#> GSM123241 1 0.3752 0.75430 0.856 0.000 0.144
#> GSM123242 3 0.5058 0.44078 0.000 0.244 0.756
#> GSM123182 3 0.6339 0.21699 0.360 0.008 0.632
#> GSM123183 3 0.4994 0.56194 0.112 0.052 0.836
#> GSM123184 3 0.5650 0.42499 0.000 0.312 0.688
#> GSM123185 1 0.8586 0.17101 0.520 0.104 0.376
#> GSM123186 3 0.4931 0.38735 0.232 0.000 0.768
#> GSM123187 2 0.6079 0.24654 0.000 0.612 0.388
#> GSM123188 1 0.3816 0.75297 0.852 0.000 0.148
#> GSM123189 1 0.5678 0.56900 0.684 0.000 0.316
#> GSM123190 1 0.7844 0.52314 0.652 0.108 0.240
#> GSM123191 1 0.4346 0.71079 0.816 0.000 0.184
#> GSM123192 3 0.6308 0.00114 0.492 0.000 0.508
#> GSM123193 1 0.4178 0.74192 0.828 0.000 0.172
#> GSM123194 1 0.4750 0.68533 0.784 0.000 0.216
#> GSM123195 2 0.0000 0.83983 0.000 1.000 0.000
#> GSM123196 1 0.1643 0.77634 0.956 0.000 0.044
#> GSM123197 3 0.7424 0.38330 0.364 0.044 0.592
#> GSM123198 2 0.0424 0.83574 0.000 0.992 0.008
#> GSM123199 1 0.0000 0.78535 1.000 0.000 0.000
#> GSM123200 2 0.0000 0.83983 0.000 1.000 0.000
#> GSM123201 1 0.4121 0.71709 0.832 0.000 0.168
#> GSM123202 2 0.0000 0.83983 0.000 1.000 0.000
#> GSM123203 1 0.0000 0.78535 1.000 0.000 0.000
#> GSM123204 2 0.0000 0.83983 0.000 1.000 0.000
#> GSM123205 2 0.0000 0.83983 0.000 1.000 0.000
#> GSM123206 2 0.0000 0.83983 0.000 1.000 0.000
#> GSM123207 1 0.5988 0.67417 0.776 0.056 0.168
#> GSM123208 2 0.0000 0.83983 0.000 1.000 0.000
#> GSM123209 2 0.2625 0.77225 0.000 0.916 0.084
#> GSM123210 1 0.3816 0.75276 0.852 0.000 0.148
#> GSM123211 1 0.4121 0.74190 0.832 0.000 0.168
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 4 0.5775 0.5945 0.028 0.012 0.316 0.644
#> GSM123213 3 0.6583 -0.5640 0.000 0.084 0.528 0.388
#> GSM123214 4 0.6599 0.5760 0.000 0.080 0.432 0.488
#> GSM123215 4 0.6599 0.5760 0.000 0.080 0.432 0.488
#> GSM123216 1 0.5000 0.4709 0.500 0.000 0.000 0.500
#> GSM123217 1 0.5060 0.5283 0.584 0.000 0.004 0.412
#> GSM123218 3 0.4888 0.6783 0.412 0.000 0.588 0.000
#> GSM123219 3 0.7392 0.2715 0.172 0.000 0.472 0.356
#> GSM123220 1 0.4679 0.5433 0.648 0.000 0.000 0.352
#> GSM123221 1 0.5000 0.4781 0.504 0.000 0.000 0.496
#> GSM123222 1 0.1174 0.4225 0.968 0.000 0.012 0.020
#> GSM123223 2 0.1557 0.8840 0.000 0.944 0.056 0.000
#> GSM123224 1 0.4972 0.5050 0.544 0.000 0.000 0.456
#> GSM123225 1 0.4996 0.4877 0.516 0.000 0.000 0.484
#> GSM123226 1 0.0469 0.4330 0.988 0.000 0.012 0.000
#> GSM123227 1 0.5000 -0.6692 0.500 0.000 0.500 0.000
#> GSM123228 1 0.0188 0.4368 0.996 0.000 0.000 0.004
#> GSM123229 1 0.2179 0.4089 0.924 0.000 0.064 0.012
#> GSM123230 1 0.1284 0.4242 0.964 0.000 0.024 0.012
#> GSM123231 3 0.5172 0.6820 0.404 0.008 0.588 0.000
#> GSM123232 1 0.4431 0.5414 0.696 0.000 0.000 0.304
#> GSM123233 3 0.7324 0.6518 0.356 0.064 0.536 0.044
#> GSM123234 1 0.4535 -0.1434 0.744 0.000 0.240 0.016
#> GSM123235 1 0.5050 -0.4712 0.588 0.000 0.408 0.004
#> GSM123236 3 0.4999 0.6377 0.492 0.000 0.508 0.000
#> GSM123237 1 0.4898 0.5277 0.584 0.000 0.000 0.416
#> GSM123238 4 0.7425 0.2496 0.280 0.000 0.212 0.508
#> GSM123239 3 0.7631 0.5984 0.320 0.224 0.456 0.000
#> GSM123240 1 0.4998 0.4819 0.512 0.000 0.000 0.488
#> GSM123241 1 0.4920 0.5412 0.628 0.000 0.004 0.368
#> GSM123242 4 0.6277 0.5593 0.000 0.056 0.468 0.476
#> GSM123182 3 0.6436 0.6424 0.292 0.000 0.608 0.100
#> GSM123183 4 0.4914 0.5961 0.000 0.012 0.312 0.676
#> GSM123184 4 0.6599 0.5760 0.000 0.080 0.432 0.488
#> GSM123185 3 0.6755 0.6523 0.360 0.008 0.552 0.080
#> GSM123186 4 0.6507 -0.1679 0.072 0.000 0.464 0.464
#> GSM123187 3 0.5444 0.0554 0.000 0.264 0.688 0.048
#> GSM123188 1 0.4855 0.5349 0.600 0.000 0.000 0.400
#> GSM123189 3 0.6875 0.6501 0.368 0.000 0.520 0.112
#> GSM123190 3 0.4866 0.6799 0.404 0.000 0.596 0.000
#> GSM123191 1 0.5921 -0.5303 0.516 0.000 0.448 0.036
#> GSM123192 4 0.5060 -0.4309 0.412 0.000 0.004 0.584
#> GSM123193 1 0.5506 0.4848 0.512 0.000 0.016 0.472
#> GSM123194 3 0.6079 0.6437 0.408 0.000 0.544 0.048
#> GSM123195 2 0.0000 0.9264 0.000 1.000 0.000 0.000
#> GSM123196 1 0.4313 -0.0856 0.736 0.000 0.260 0.004
#> GSM123197 4 0.8120 0.3965 0.288 0.008 0.304 0.400
#> GSM123198 2 0.2530 0.8518 0.000 0.896 0.100 0.004
#> GSM123199 1 0.0188 0.4368 0.996 0.000 0.000 0.004
#> GSM123200 2 0.0000 0.9264 0.000 1.000 0.000 0.000
#> GSM123201 1 0.5168 -0.6639 0.504 0.000 0.492 0.004
#> GSM123202 2 0.0000 0.9264 0.000 1.000 0.000 0.000
#> GSM123203 1 0.1637 0.4792 0.940 0.000 0.000 0.060
#> GSM123204 2 0.0524 0.9234 0.000 0.988 0.008 0.004
#> GSM123205 2 0.0524 0.9234 0.000 0.988 0.008 0.004
#> GSM123206 2 0.0000 0.9264 0.000 1.000 0.000 0.000
#> GSM123207 3 0.5296 0.6302 0.496 0.000 0.496 0.008
#> GSM123208 2 0.0000 0.9264 0.000 1.000 0.000 0.000
#> GSM123209 2 0.4761 0.3801 0.000 0.628 0.372 0.000
#> GSM123210 1 0.4866 0.5342 0.596 0.000 0.000 0.404
#> GSM123211 1 0.4999 0.4806 0.508 0.000 0.000 0.492
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 4 0.5056 0.6451 0.044 0.000 0.360 0.596 0.000
#> GSM123213 4 0.3951 0.6846 0.000 0.032 0.020 0.808 0.140
#> GSM123214 4 0.0609 0.7672 0.000 0.020 0.000 0.980 0.000
#> GSM123215 4 0.0609 0.7672 0.000 0.020 0.000 0.980 0.000
#> GSM123216 1 0.2694 0.6096 0.864 0.000 0.128 0.004 0.004
#> GSM123217 1 0.2124 0.5897 0.900 0.000 0.096 0.000 0.004
#> GSM123218 5 0.4453 0.2422 0.008 0.000 0.324 0.008 0.660
#> GSM123219 3 0.7615 0.3039 0.256 0.000 0.384 0.048 0.312
#> GSM123220 1 0.1808 0.6371 0.936 0.000 0.040 0.004 0.020
#> GSM123221 1 0.3318 0.5900 0.800 0.000 0.192 0.008 0.000
#> GSM123222 1 0.6352 0.3482 0.524 0.000 0.168 0.004 0.304
#> GSM123223 2 0.2352 0.8191 0.000 0.896 0.008 0.092 0.004
#> GSM123224 1 0.2393 0.6430 0.900 0.000 0.080 0.004 0.016
#> GSM123225 1 0.2339 0.6215 0.892 0.000 0.100 0.004 0.004
#> GSM123226 1 0.6461 0.3133 0.524 0.000 0.260 0.004 0.212
#> GSM123227 5 0.2233 0.4708 0.016 0.000 0.080 0.000 0.904
#> GSM123228 1 0.6109 0.3412 0.532 0.000 0.148 0.000 0.320
#> GSM123229 1 0.6270 0.1864 0.496 0.000 0.364 0.004 0.136
#> GSM123230 1 0.6581 0.2825 0.500 0.000 0.264 0.004 0.232
#> GSM123231 5 0.4505 0.2443 0.004 0.004 0.328 0.008 0.656
#> GSM123232 1 0.3754 0.5849 0.816 0.000 0.100 0.000 0.084
#> GSM123233 5 0.3806 0.4746 0.004 0.024 0.020 0.128 0.824
#> GSM123234 5 0.6525 -0.0290 0.260 0.000 0.224 0.004 0.512
#> GSM123235 3 0.6467 0.1497 0.176 0.000 0.496 0.004 0.324
#> GSM123236 5 0.0833 0.4910 0.016 0.000 0.004 0.004 0.976
#> GSM123237 1 0.0798 0.6411 0.976 0.000 0.016 0.000 0.008
#> GSM123238 1 0.6804 -0.1940 0.372 0.000 0.304 0.324 0.000
#> GSM123239 5 0.2970 0.4461 0.000 0.168 0.000 0.004 0.828
#> GSM123240 1 0.2488 0.6156 0.872 0.000 0.124 0.004 0.000
#> GSM123241 1 0.1808 0.6371 0.936 0.000 0.040 0.004 0.020
#> GSM123242 4 0.3107 0.7124 0.000 0.008 0.016 0.852 0.124
#> GSM123182 5 0.6559 -0.0509 0.012 0.000 0.332 0.156 0.500
#> GSM123183 4 0.4639 0.6627 0.024 0.000 0.344 0.632 0.000
#> GSM123184 4 0.0609 0.7672 0.000 0.020 0.000 0.980 0.000
#> GSM123185 5 0.3449 0.4724 0.004 0.008 0.016 0.140 0.832
#> GSM123186 3 0.7962 0.2971 0.252 0.000 0.416 0.100 0.232
#> GSM123187 5 0.7553 0.1564 0.000 0.184 0.072 0.284 0.460
#> GSM123188 1 0.0693 0.6409 0.980 0.000 0.012 0.000 0.008
#> GSM123189 3 0.6176 0.0959 0.040 0.000 0.504 0.052 0.404
#> GSM123190 5 0.4092 0.3070 0.004 0.004 0.252 0.008 0.732
#> GSM123191 5 0.6519 -0.3651 0.192 0.000 0.400 0.000 0.408
#> GSM123192 1 0.4686 0.3141 0.588 0.000 0.396 0.012 0.004
#> GSM123193 1 0.4182 0.3757 0.644 0.000 0.352 0.000 0.004
#> GSM123194 5 0.6510 -0.2958 0.168 0.000 0.372 0.004 0.456
#> GSM123195 2 0.0000 0.8938 0.000 1.000 0.000 0.000 0.000
#> GSM123196 3 0.6717 0.1734 0.288 0.000 0.464 0.004 0.244
#> GSM123197 4 0.6956 0.4145 0.240 0.000 0.308 0.440 0.012
#> GSM123198 2 0.4252 0.7246 0.000 0.768 0.052 0.004 0.176
#> GSM123199 1 0.6008 0.3736 0.560 0.000 0.148 0.000 0.292
#> GSM123200 2 0.0000 0.8938 0.000 1.000 0.000 0.000 0.000
#> GSM123201 5 0.2927 0.4512 0.068 0.000 0.060 0.000 0.872
#> GSM123202 2 0.0162 0.8928 0.000 0.996 0.000 0.000 0.004
#> GSM123203 1 0.5834 0.3985 0.588 0.000 0.136 0.000 0.276
#> GSM123204 2 0.0794 0.8870 0.000 0.972 0.028 0.000 0.000
#> GSM123205 2 0.1430 0.8776 0.000 0.944 0.052 0.004 0.000
#> GSM123206 2 0.0000 0.8938 0.000 1.000 0.000 0.000 0.000
#> GSM123207 5 0.2929 0.4673 0.068 0.000 0.044 0.008 0.880
#> GSM123208 2 0.0000 0.8938 0.000 1.000 0.000 0.000 0.000
#> GSM123209 2 0.5492 0.2409 0.000 0.536 0.056 0.004 0.404
#> GSM123210 1 0.1195 0.6446 0.960 0.000 0.028 0.000 0.012
#> GSM123211 1 0.3491 0.5637 0.768 0.000 0.228 0.004 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 4 0.6752 0.6474 0.136 0.000 0.220 0.544 0.016 0.084
#> GSM123213 4 0.4238 0.6092 0.000 0.000 0.048 0.736 0.200 0.016
#> GSM123214 4 0.0405 0.7300 0.000 0.000 0.004 0.988 0.000 0.008
#> GSM123215 4 0.0260 0.7311 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM123216 1 0.0551 0.6560 0.984 0.000 0.004 0.000 0.004 0.008
#> GSM123217 1 0.4358 0.6066 0.732 0.000 0.176 0.000 0.008 0.084
#> GSM123218 6 0.5334 0.3356 0.000 0.000 0.120 0.000 0.344 0.536
#> GSM123219 6 0.4072 0.6419 0.188 0.000 0.004 0.012 0.040 0.756
#> GSM123220 1 0.3809 0.5237 0.716 0.000 0.264 0.000 0.012 0.008
#> GSM123221 1 0.2669 0.6012 0.864 0.000 0.108 0.004 0.000 0.024
#> GSM123222 3 0.6291 0.6286 0.256 0.000 0.456 0.000 0.272 0.016
#> GSM123223 2 0.2611 0.8073 0.000 0.876 0.008 0.096 0.016 0.004
#> GSM123224 1 0.2520 0.6202 0.844 0.000 0.152 0.000 0.004 0.000
#> GSM123225 1 0.0862 0.6578 0.972 0.000 0.016 0.000 0.004 0.008
#> GSM123226 3 0.6235 0.6191 0.244 0.000 0.564 0.000 0.096 0.096
#> GSM123227 5 0.3522 0.6252 0.000 0.000 0.128 0.000 0.800 0.072
#> GSM123228 3 0.6175 0.6110 0.256 0.000 0.472 0.000 0.260 0.012
#> GSM123229 3 0.6487 0.5377 0.236 0.000 0.460 0.000 0.032 0.272
#> GSM123230 3 0.6682 0.6336 0.256 0.000 0.508 0.000 0.116 0.120
#> GSM123231 6 0.5367 0.3321 0.000 0.000 0.124 0.000 0.344 0.532
#> GSM123232 1 0.4962 -0.0686 0.516 0.000 0.428 0.000 0.048 0.008
#> GSM123233 5 0.2463 0.7119 0.000 0.000 0.020 0.068 0.892 0.020
#> GSM123234 3 0.5898 0.4602 0.092 0.000 0.488 0.000 0.384 0.036
#> GSM123235 3 0.6034 0.2229 0.044 0.000 0.452 0.000 0.092 0.412
#> GSM123236 5 0.2030 0.7096 0.000 0.000 0.028 0.000 0.908 0.064
#> GSM123237 1 0.3354 0.6159 0.792 0.000 0.184 0.000 0.008 0.016
#> GSM123238 1 0.7033 -0.2419 0.444 0.000 0.216 0.272 0.012 0.056
#> GSM123239 5 0.2545 0.7064 0.000 0.068 0.020 0.000 0.888 0.024
#> GSM123240 1 0.0436 0.6567 0.988 0.000 0.004 0.000 0.004 0.004
#> GSM123241 1 0.3668 0.5346 0.728 0.000 0.256 0.000 0.008 0.008
#> GSM123242 4 0.4055 0.6297 0.000 0.000 0.044 0.756 0.184 0.016
#> GSM123182 6 0.4718 0.4962 0.008 0.000 0.008 0.048 0.268 0.668
#> GSM123183 4 0.6510 0.6551 0.128 0.000 0.220 0.568 0.016 0.068
#> GSM123184 4 0.0260 0.7311 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM123185 5 0.2944 0.6931 0.000 0.000 0.028 0.092 0.860 0.020
#> GSM123186 6 0.4444 0.5965 0.192 0.000 0.028 0.020 0.020 0.740
#> GSM123187 5 0.7602 0.3117 0.000 0.064 0.132 0.144 0.500 0.160
#> GSM123188 1 0.3354 0.6149 0.792 0.000 0.184 0.000 0.008 0.016
#> GSM123189 6 0.2911 0.6165 0.012 0.000 0.028 0.012 0.076 0.872
#> GSM123190 6 0.5290 0.1850 0.000 0.000 0.100 0.000 0.428 0.472
#> GSM123191 6 0.4461 0.6560 0.160 0.000 0.032 0.000 0.064 0.744
#> GSM123192 1 0.4990 0.3060 0.616 0.000 0.072 0.004 0.004 0.304
#> GSM123193 1 0.4378 0.3055 0.600 0.000 0.032 0.000 0.000 0.368
#> GSM123194 6 0.4536 0.6536 0.148 0.000 0.016 0.000 0.104 0.732
#> GSM123195 2 0.0000 0.8953 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123196 3 0.6526 0.4299 0.140 0.000 0.456 0.000 0.060 0.344
#> GSM123197 4 0.7813 0.5183 0.200 0.000 0.292 0.380 0.056 0.072
#> GSM123198 2 0.6122 0.3150 0.000 0.520 0.140 0.000 0.304 0.036
#> GSM123199 3 0.6109 0.5921 0.296 0.000 0.480 0.000 0.212 0.012
#> GSM123200 2 0.0000 0.8953 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123201 5 0.2538 0.6790 0.000 0.000 0.124 0.000 0.860 0.016
#> GSM123202 2 0.0405 0.8919 0.000 0.988 0.004 0.000 0.008 0.000
#> GSM123203 3 0.6111 0.5801 0.304 0.000 0.476 0.000 0.208 0.012
#> GSM123204 2 0.1773 0.8738 0.000 0.932 0.036 0.000 0.016 0.016
#> GSM123205 2 0.3629 0.7984 0.000 0.804 0.140 0.000 0.024 0.032
#> GSM123206 2 0.0000 0.8953 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123207 5 0.1500 0.7236 0.000 0.000 0.052 0.000 0.936 0.012
#> GSM123208 2 0.0000 0.8953 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123209 5 0.6935 0.0964 0.000 0.356 0.116 0.000 0.404 0.124
#> GSM123210 1 0.3212 0.5953 0.800 0.000 0.180 0.000 0.004 0.016
#> GSM123211 1 0.2931 0.5933 0.860 0.000 0.088 0.004 0.004 0.044
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> SD:kmeans 53 0.1126 2
#> SD:kmeans 47 0.0425 3
#> SD:kmeans 34 0.0437 4
#> SD:kmeans 29 0.0058 5
#> SD:kmeans 47 0.0498 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.745 0.867 0.947 0.5019 0.495 0.495
#> 3 3 0.610 0.804 0.895 0.3040 0.773 0.577
#> 4 4 0.653 0.643 0.828 0.1270 0.879 0.672
#> 5 5 0.737 0.645 0.841 0.0720 0.880 0.603
#> 6 6 0.760 0.651 0.818 0.0452 0.913 0.637
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.8909 0.562 0.308 0.692
#> GSM123213 2 0.0000 0.915 0.000 1.000
#> GSM123214 2 0.0000 0.915 0.000 1.000
#> GSM123215 2 0.0000 0.915 0.000 1.000
#> GSM123216 1 0.0000 0.960 1.000 0.000
#> GSM123217 1 0.0000 0.960 1.000 0.000
#> GSM123218 2 0.9850 0.266 0.428 0.572
#> GSM123219 1 0.0376 0.957 0.996 0.004
#> GSM123220 1 0.0000 0.960 1.000 0.000
#> GSM123221 1 0.0000 0.960 1.000 0.000
#> GSM123222 1 0.0000 0.960 1.000 0.000
#> GSM123223 2 0.0000 0.915 0.000 1.000
#> GSM123224 1 0.0000 0.960 1.000 0.000
#> GSM123225 1 0.0000 0.960 1.000 0.000
#> GSM123226 1 0.0000 0.960 1.000 0.000
#> GSM123227 1 0.5842 0.814 0.860 0.140
#> GSM123228 1 0.0000 0.960 1.000 0.000
#> GSM123229 1 0.0000 0.960 1.000 0.000
#> GSM123230 1 0.0000 0.960 1.000 0.000
#> GSM123231 2 0.9710 0.342 0.400 0.600
#> GSM123232 1 0.0000 0.960 1.000 0.000
#> GSM123233 2 0.0000 0.915 0.000 1.000
#> GSM123234 1 0.0000 0.960 1.000 0.000
#> GSM123235 1 0.0000 0.960 1.000 0.000
#> GSM123236 2 0.6801 0.739 0.180 0.820
#> GSM123237 1 0.0000 0.960 1.000 0.000
#> GSM123238 1 0.7219 0.717 0.800 0.200
#> GSM123239 2 0.0000 0.915 0.000 1.000
#> GSM123240 1 0.0000 0.960 1.000 0.000
#> GSM123241 1 0.0000 0.960 1.000 0.000
#> GSM123242 2 0.0000 0.915 0.000 1.000
#> GSM123182 2 0.0000 0.915 0.000 1.000
#> GSM123183 2 0.9710 0.369 0.400 0.600
#> GSM123184 2 0.0000 0.915 0.000 1.000
#> GSM123185 2 0.0000 0.915 0.000 1.000
#> GSM123186 1 0.9881 0.162 0.564 0.436
#> GSM123187 2 0.0000 0.915 0.000 1.000
#> GSM123188 1 0.0000 0.960 1.000 0.000
#> GSM123189 1 0.4815 0.861 0.896 0.104
#> GSM123190 2 0.0000 0.915 0.000 1.000
#> GSM123191 1 0.0000 0.960 1.000 0.000
#> GSM123192 1 0.0000 0.960 1.000 0.000
#> GSM123193 1 0.0000 0.960 1.000 0.000
#> GSM123194 1 0.3733 0.895 0.928 0.072
#> GSM123195 2 0.0000 0.915 0.000 1.000
#> GSM123196 1 0.0000 0.960 1.000 0.000
#> GSM123197 2 0.9710 0.369 0.400 0.600
#> GSM123198 2 0.0000 0.915 0.000 1.000
#> GSM123199 1 0.0000 0.960 1.000 0.000
#> GSM123200 2 0.0000 0.915 0.000 1.000
#> GSM123201 1 0.6801 0.756 0.820 0.180
#> GSM123202 2 0.0000 0.915 0.000 1.000
#> GSM123203 1 0.0000 0.960 1.000 0.000
#> GSM123204 2 0.0000 0.915 0.000 1.000
#> GSM123205 2 0.0000 0.915 0.000 1.000
#> GSM123206 2 0.0000 0.915 0.000 1.000
#> GSM123207 2 0.0000 0.915 0.000 1.000
#> GSM123208 2 0.0000 0.915 0.000 1.000
#> GSM123209 2 0.0000 0.915 0.000 1.000
#> GSM123210 1 0.0000 0.960 1.000 0.000
#> GSM123211 1 0.0000 0.960 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 2 0.1170 0.8179 0.008 0.976 0.016
#> GSM123213 2 0.6154 0.1114 0.000 0.592 0.408
#> GSM123214 2 0.1289 0.8139 0.000 0.968 0.032
#> GSM123215 2 0.1289 0.8139 0.000 0.968 0.032
#> GSM123216 1 0.0424 0.8902 0.992 0.008 0.000
#> GSM123217 1 0.0424 0.8902 0.992 0.008 0.000
#> GSM123218 3 0.1453 0.8539 0.008 0.024 0.968
#> GSM123219 2 0.4033 0.7813 0.136 0.856 0.008
#> GSM123220 1 0.0000 0.8894 1.000 0.000 0.000
#> GSM123221 1 0.0424 0.8902 0.992 0.008 0.000
#> GSM123222 1 0.3482 0.8622 0.872 0.000 0.128
#> GSM123223 3 0.3752 0.8866 0.000 0.144 0.856
#> GSM123224 1 0.0424 0.8902 0.992 0.008 0.000
#> GSM123225 1 0.0424 0.8902 0.992 0.008 0.000
#> GSM123226 1 0.3551 0.8605 0.868 0.000 0.132
#> GSM123227 3 0.5111 0.6649 0.168 0.024 0.808
#> GSM123228 1 0.3551 0.8605 0.868 0.000 0.132
#> GSM123229 1 0.3551 0.8605 0.868 0.000 0.132
#> GSM123230 1 0.3551 0.8605 0.868 0.000 0.132
#> GSM123231 3 0.1453 0.8539 0.008 0.024 0.968
#> GSM123232 1 0.0892 0.8873 0.980 0.000 0.020
#> GSM123233 3 0.0000 0.8693 0.000 0.000 1.000
#> GSM123234 1 0.3619 0.8578 0.864 0.000 0.136
#> GSM123235 1 0.3619 0.8578 0.864 0.000 0.136
#> GSM123236 3 0.1453 0.8539 0.008 0.024 0.968
#> GSM123237 1 0.0424 0.8902 0.992 0.008 0.000
#> GSM123238 1 0.6274 -0.0591 0.544 0.456 0.000
#> GSM123239 3 0.0000 0.8693 0.000 0.000 1.000
#> GSM123240 1 0.0424 0.8902 0.992 0.008 0.000
#> GSM123241 1 0.0237 0.8899 0.996 0.004 0.000
#> GSM123242 2 0.1289 0.8139 0.000 0.968 0.032
#> GSM123182 2 0.3998 0.7984 0.056 0.884 0.060
#> GSM123183 2 0.1031 0.8186 0.024 0.976 0.000
#> GSM123184 2 0.1289 0.8139 0.000 0.968 0.032
#> GSM123185 3 0.0000 0.8693 0.000 0.000 1.000
#> GSM123186 2 0.3965 0.7843 0.132 0.860 0.008
#> GSM123187 3 0.3752 0.8866 0.000 0.144 0.856
#> GSM123188 1 0.0424 0.8902 0.992 0.008 0.000
#> GSM123189 2 0.8173 0.4658 0.264 0.620 0.116
#> GSM123190 3 0.1964 0.8706 0.000 0.056 0.944
#> GSM123191 1 0.3116 0.8012 0.892 0.108 0.000
#> GSM123192 2 0.4121 0.7667 0.168 0.832 0.000
#> GSM123193 1 0.0424 0.8902 0.992 0.008 0.000
#> GSM123194 1 0.7353 0.1827 0.568 0.396 0.036
#> GSM123195 3 0.3752 0.8866 0.000 0.144 0.856
#> GSM123196 1 0.3551 0.8605 0.868 0.000 0.132
#> GSM123197 2 0.5948 0.3821 0.360 0.640 0.000
#> GSM123198 3 0.3752 0.8866 0.000 0.144 0.856
#> GSM123199 1 0.3412 0.8636 0.876 0.000 0.124
#> GSM123200 3 0.3752 0.8866 0.000 0.144 0.856
#> GSM123201 3 0.4121 0.7505 0.108 0.024 0.868
#> GSM123202 3 0.3752 0.8866 0.000 0.144 0.856
#> GSM123203 1 0.3267 0.8659 0.884 0.000 0.116
#> GSM123204 3 0.3752 0.8866 0.000 0.144 0.856
#> GSM123205 3 0.3752 0.8866 0.000 0.144 0.856
#> GSM123206 3 0.3752 0.8866 0.000 0.144 0.856
#> GSM123207 3 0.0000 0.8693 0.000 0.000 1.000
#> GSM123208 3 0.3752 0.8866 0.000 0.144 0.856
#> GSM123209 3 0.3752 0.8866 0.000 0.144 0.856
#> GSM123210 1 0.0424 0.8902 0.992 0.008 0.000
#> GSM123211 1 0.0424 0.8902 0.992 0.008 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 4 0.0804 0.802 0.012 0.008 0.000 0.980
#> GSM123213 4 0.2760 0.712 0.000 0.128 0.000 0.872
#> GSM123214 4 0.0672 0.804 0.000 0.008 0.008 0.984
#> GSM123215 4 0.0672 0.804 0.000 0.008 0.008 0.984
#> GSM123216 1 0.0672 0.805 0.984 0.000 0.008 0.008
#> GSM123217 1 0.3024 0.695 0.852 0.000 0.148 0.000
#> GSM123218 3 0.4539 0.444 0.008 0.272 0.720 0.000
#> GSM123219 3 0.6835 0.189 0.136 0.000 0.576 0.288
#> GSM123220 1 0.0817 0.808 0.976 0.000 0.024 0.000
#> GSM123221 1 0.0592 0.806 0.984 0.000 0.000 0.016
#> GSM123222 1 0.3822 0.745 0.836 0.016 0.140 0.008
#> GSM123223 2 0.2647 0.768 0.000 0.880 0.000 0.120
#> GSM123224 1 0.0188 0.809 0.996 0.000 0.004 0.000
#> GSM123225 1 0.0524 0.806 0.988 0.000 0.004 0.008
#> GSM123226 1 0.5038 0.553 0.652 0.012 0.336 0.000
#> GSM123227 3 0.3472 0.573 0.024 0.100 0.868 0.008
#> GSM123228 1 0.4114 0.742 0.812 0.016 0.164 0.008
#> GSM123229 1 0.4643 0.479 0.656 0.000 0.344 0.000
#> GSM123230 1 0.5189 0.458 0.616 0.012 0.372 0.000
#> GSM123231 3 0.4477 0.378 0.000 0.312 0.688 0.000
#> GSM123232 1 0.2676 0.786 0.896 0.012 0.092 0.000
#> GSM123233 2 0.5411 0.523 0.000 0.656 0.312 0.032
#> GSM123234 1 0.5807 0.177 0.492 0.016 0.484 0.008
#> GSM123235 3 0.5099 0.102 0.380 0.008 0.612 0.000
#> GSM123236 2 0.5220 0.354 0.000 0.568 0.424 0.008
#> GSM123237 1 0.0921 0.806 0.972 0.000 0.028 0.000
#> GSM123238 4 0.4776 0.381 0.376 0.000 0.000 0.624
#> GSM123239 2 0.0336 0.838 0.000 0.992 0.000 0.008
#> GSM123240 1 0.0524 0.806 0.988 0.000 0.004 0.008
#> GSM123241 1 0.0817 0.808 0.976 0.000 0.024 0.000
#> GSM123242 4 0.0672 0.804 0.000 0.008 0.008 0.984
#> GSM123182 4 0.5030 0.507 0.004 0.004 0.352 0.640
#> GSM123183 4 0.0804 0.802 0.012 0.008 0.000 0.980
#> GSM123184 4 0.0672 0.804 0.000 0.008 0.008 0.984
#> GSM123185 2 0.7640 0.250 0.000 0.456 0.316 0.228
#> GSM123186 4 0.5558 0.487 0.028 0.000 0.364 0.608
#> GSM123187 2 0.0817 0.848 0.000 0.976 0.000 0.024
#> GSM123188 1 0.0921 0.806 0.972 0.000 0.028 0.000
#> GSM123189 3 0.4477 0.513 0.084 0.000 0.808 0.108
#> GSM123190 2 0.4981 0.172 0.000 0.536 0.464 0.000
#> GSM123191 3 0.5126 0.131 0.444 0.000 0.552 0.004
#> GSM123192 4 0.7054 0.426 0.232 0.000 0.196 0.572
#> GSM123193 1 0.4194 0.569 0.764 0.000 0.228 0.008
#> GSM123194 3 0.5524 0.484 0.276 0.000 0.676 0.048
#> GSM123195 2 0.0592 0.853 0.000 0.984 0.000 0.016
#> GSM123196 1 0.4989 0.147 0.528 0.000 0.472 0.000
#> GSM123197 4 0.2742 0.754 0.084 0.008 0.008 0.900
#> GSM123198 2 0.0592 0.853 0.000 0.984 0.000 0.016
#> GSM123199 1 0.3923 0.753 0.828 0.016 0.148 0.008
#> GSM123200 2 0.0592 0.853 0.000 0.984 0.000 0.016
#> GSM123201 3 0.5793 0.415 0.056 0.248 0.688 0.008
#> GSM123202 2 0.0592 0.853 0.000 0.984 0.000 0.016
#> GSM123203 1 0.3755 0.757 0.836 0.012 0.144 0.008
#> GSM123204 2 0.0592 0.853 0.000 0.984 0.000 0.016
#> GSM123205 2 0.0592 0.853 0.000 0.984 0.000 0.016
#> GSM123206 2 0.0592 0.853 0.000 0.984 0.000 0.016
#> GSM123207 2 0.3681 0.716 0.000 0.816 0.176 0.008
#> GSM123208 2 0.0592 0.853 0.000 0.984 0.000 0.016
#> GSM123209 2 0.0592 0.853 0.000 0.984 0.000 0.016
#> GSM123210 1 0.0000 0.809 1.000 0.000 0.000 0.000
#> GSM123211 1 0.0524 0.806 0.988 0.000 0.004 0.008
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 4 0.1278 0.8846 0.020 0.000 0.004 0.960 0.016
#> GSM123213 4 0.0609 0.8914 0.000 0.020 0.000 0.980 0.000
#> GSM123214 4 0.0798 0.8975 0.000 0.008 0.016 0.976 0.000
#> GSM123215 4 0.0798 0.8975 0.000 0.008 0.016 0.976 0.000
#> GSM123216 1 0.0854 0.7545 0.976 0.000 0.008 0.012 0.004
#> GSM123217 1 0.3409 0.6502 0.824 0.000 0.144 0.000 0.032
#> GSM123218 3 0.5013 0.4661 0.000 0.084 0.684 0.000 0.232
#> GSM123219 3 0.1399 0.6476 0.028 0.000 0.952 0.020 0.000
#> GSM123220 1 0.1331 0.7510 0.952 0.000 0.008 0.000 0.040
#> GSM123221 1 0.1356 0.7463 0.956 0.000 0.004 0.028 0.012
#> GSM123222 1 0.4911 0.0907 0.504 0.000 0.008 0.012 0.476
#> GSM123223 2 0.1121 0.9070 0.000 0.956 0.000 0.044 0.000
#> GSM123224 1 0.0324 0.7559 0.992 0.000 0.000 0.004 0.004
#> GSM123225 1 0.0854 0.7545 0.976 0.000 0.008 0.012 0.004
#> GSM123226 1 0.6282 0.4161 0.536 0.000 0.248 0.000 0.216
#> GSM123227 5 0.0898 0.7151 0.000 0.008 0.020 0.000 0.972
#> GSM123228 5 0.4440 -0.1859 0.468 0.000 0.004 0.000 0.528
#> GSM123229 1 0.5486 0.3075 0.572 0.000 0.352 0.000 0.076
#> GSM123230 1 0.6280 0.3530 0.540 0.000 0.164 0.004 0.292
#> GSM123231 3 0.5866 0.3826 0.000 0.248 0.596 0.000 0.156
#> GSM123232 1 0.3231 0.6585 0.800 0.000 0.004 0.000 0.196
#> GSM123233 5 0.4468 0.6152 0.000 0.240 0.000 0.044 0.716
#> GSM123234 5 0.3632 0.6369 0.152 0.000 0.016 0.016 0.816
#> GSM123235 3 0.5775 0.3221 0.264 0.000 0.600 0.000 0.136
#> GSM123236 5 0.2470 0.7142 0.000 0.104 0.012 0.000 0.884
#> GSM123237 1 0.1364 0.7513 0.952 0.000 0.012 0.000 0.036
#> GSM123238 4 0.4688 0.3680 0.364 0.000 0.004 0.616 0.016
#> GSM123239 2 0.0404 0.9388 0.000 0.988 0.000 0.000 0.012
#> GSM123240 1 0.0854 0.7545 0.976 0.000 0.008 0.012 0.004
#> GSM123241 1 0.1364 0.7513 0.952 0.000 0.012 0.000 0.036
#> GSM123242 4 0.0798 0.8975 0.000 0.008 0.016 0.976 0.000
#> GSM123182 3 0.5377 0.1071 0.008 0.000 0.540 0.412 0.040
#> GSM123183 4 0.1278 0.8846 0.020 0.000 0.004 0.960 0.016
#> GSM123184 4 0.0798 0.8975 0.000 0.008 0.016 0.976 0.000
#> GSM123185 5 0.4615 0.5867 0.000 0.048 0.000 0.252 0.700
#> GSM123186 3 0.4757 0.1769 0.024 0.000 0.596 0.380 0.000
#> GSM123187 2 0.0404 0.9380 0.000 0.988 0.000 0.012 0.000
#> GSM123188 1 0.1251 0.7517 0.956 0.000 0.008 0.000 0.036
#> GSM123189 3 0.0324 0.6493 0.004 0.000 0.992 0.004 0.000
#> GSM123190 2 0.6486 0.0863 0.000 0.472 0.324 0.000 0.204
#> GSM123191 3 0.0955 0.6479 0.028 0.000 0.968 0.000 0.004
#> GSM123192 1 0.6733 -0.0195 0.444 0.000 0.356 0.192 0.008
#> GSM123193 1 0.4276 0.2834 0.616 0.000 0.380 0.000 0.004
#> GSM123194 3 0.1281 0.6477 0.032 0.000 0.956 0.000 0.012
#> GSM123195 2 0.0162 0.9440 0.000 0.996 0.000 0.004 0.000
#> GSM123196 3 0.5658 0.0675 0.408 0.000 0.512 0.000 0.080
#> GSM123197 4 0.2067 0.8603 0.044 0.000 0.004 0.924 0.028
#> GSM123198 2 0.0290 0.9406 0.000 0.992 0.000 0.000 0.008
#> GSM123199 1 0.4392 0.4183 0.612 0.000 0.008 0.000 0.380
#> GSM123200 2 0.0000 0.9463 0.000 1.000 0.000 0.000 0.000
#> GSM123201 5 0.0727 0.7190 0.004 0.012 0.004 0.000 0.980
#> GSM123202 2 0.0000 0.9463 0.000 1.000 0.000 0.000 0.000
#> GSM123203 1 0.4313 0.4538 0.636 0.000 0.008 0.000 0.356
#> GSM123204 2 0.0000 0.9463 0.000 1.000 0.000 0.000 0.000
#> GSM123205 2 0.0000 0.9463 0.000 1.000 0.000 0.000 0.000
#> GSM123206 2 0.0000 0.9463 0.000 1.000 0.000 0.000 0.000
#> GSM123207 5 0.2516 0.7072 0.000 0.140 0.000 0.000 0.860
#> GSM123208 2 0.0000 0.9463 0.000 1.000 0.000 0.000 0.000
#> GSM123209 2 0.0000 0.9463 0.000 1.000 0.000 0.000 0.000
#> GSM123210 1 0.0000 0.7559 1.000 0.000 0.000 0.000 0.000
#> GSM123211 1 0.1059 0.7506 0.968 0.000 0.004 0.020 0.008
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 4 0.3166 0.8160 0.000 0.000 0.184 0.800 0.008 0.008
#> GSM123213 4 0.0291 0.8557 0.000 0.000 0.004 0.992 0.004 0.000
#> GSM123214 4 0.0146 0.8561 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM123215 4 0.0000 0.8572 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123216 1 0.2474 0.7247 0.880 0.000 0.080 0.000 0.000 0.040
#> GSM123217 1 0.2921 0.6451 0.828 0.000 0.008 0.000 0.008 0.156
#> GSM123218 3 0.6090 0.2003 0.000 0.012 0.484 0.000 0.208 0.296
#> GSM123219 6 0.0363 0.7403 0.012 0.000 0.000 0.000 0.000 0.988
#> GSM123220 1 0.1285 0.7143 0.944 0.000 0.052 0.000 0.004 0.000
#> GSM123221 1 0.3219 0.6523 0.792 0.000 0.192 0.000 0.004 0.012
#> GSM123222 5 0.6012 -0.0221 0.364 0.000 0.240 0.000 0.396 0.000
#> GSM123223 2 0.1219 0.8953 0.000 0.948 0.000 0.048 0.004 0.000
#> GSM123224 1 0.1501 0.7332 0.924 0.000 0.076 0.000 0.000 0.000
#> GSM123225 1 0.2060 0.7306 0.900 0.000 0.084 0.000 0.000 0.016
#> GSM123226 3 0.4875 0.3364 0.400 0.000 0.544 0.000 0.052 0.004
#> GSM123227 5 0.0653 0.7274 0.004 0.000 0.012 0.000 0.980 0.004
#> GSM123228 1 0.5902 0.0277 0.440 0.000 0.212 0.000 0.348 0.000
#> GSM123229 3 0.3920 0.6114 0.216 0.000 0.736 0.000 0.000 0.048
#> GSM123230 3 0.4747 0.4004 0.324 0.000 0.608 0.000 0.068 0.000
#> GSM123231 3 0.6760 0.2263 0.000 0.140 0.492 0.000 0.104 0.264
#> GSM123232 1 0.3588 0.5756 0.788 0.000 0.152 0.000 0.060 0.000
#> GSM123233 5 0.4154 0.6413 0.000 0.112 0.000 0.144 0.744 0.000
#> GSM123234 5 0.4955 0.4573 0.096 0.000 0.296 0.000 0.608 0.000
#> GSM123235 3 0.4764 0.5934 0.168 0.000 0.696 0.000 0.008 0.128
#> GSM123236 5 0.0717 0.7255 0.000 0.016 0.008 0.000 0.976 0.000
#> GSM123237 1 0.1078 0.7305 0.964 0.000 0.012 0.000 0.008 0.016
#> GSM123238 4 0.5752 0.5716 0.184 0.000 0.232 0.572 0.004 0.008
#> GSM123239 2 0.0937 0.9068 0.000 0.960 0.000 0.000 0.040 0.000
#> GSM123240 1 0.2060 0.7306 0.900 0.000 0.084 0.000 0.000 0.016
#> GSM123241 1 0.1471 0.7068 0.932 0.000 0.064 0.000 0.004 0.000
#> GSM123242 4 0.0291 0.8557 0.000 0.000 0.004 0.992 0.004 0.000
#> GSM123182 6 0.4014 0.6012 0.000 0.000 0.000 0.240 0.044 0.716
#> GSM123183 4 0.3166 0.8160 0.000 0.000 0.184 0.800 0.008 0.008
#> GSM123184 4 0.0000 0.8572 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123185 5 0.3468 0.6060 0.000 0.008 0.000 0.264 0.728 0.000
#> GSM123186 6 0.1949 0.7235 0.004 0.000 0.004 0.088 0.000 0.904
#> GSM123187 2 0.0837 0.9204 0.000 0.972 0.004 0.020 0.004 0.000
#> GSM123188 1 0.0976 0.7310 0.968 0.000 0.008 0.000 0.008 0.016
#> GSM123189 6 0.2631 0.6143 0.000 0.000 0.180 0.000 0.000 0.820
#> GSM123190 2 0.7595 -0.2042 0.000 0.328 0.264 0.000 0.236 0.172
#> GSM123191 6 0.3608 0.5119 0.012 0.000 0.272 0.000 0.000 0.716
#> GSM123192 6 0.5424 0.4415 0.268 0.000 0.100 0.016 0.004 0.612
#> GSM123193 1 0.4593 -0.0873 0.492 0.000 0.036 0.000 0.000 0.472
#> GSM123194 6 0.0405 0.7396 0.004 0.000 0.008 0.000 0.000 0.988
#> GSM123195 2 0.0146 0.9317 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM123196 3 0.4243 0.6143 0.164 0.000 0.732 0.000 0.000 0.104
#> GSM123197 4 0.3927 0.7809 0.020 0.000 0.216 0.748 0.008 0.008
#> GSM123198 2 0.0405 0.9290 0.000 0.988 0.004 0.000 0.008 0.000
#> GSM123199 1 0.5529 0.2384 0.560 0.000 0.228 0.000 0.212 0.000
#> GSM123200 2 0.0000 0.9330 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123201 5 0.0603 0.7275 0.004 0.000 0.016 0.000 0.980 0.000
#> GSM123202 2 0.0000 0.9330 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123203 1 0.5348 0.2871 0.592 0.000 0.216 0.000 0.192 0.000
#> GSM123204 2 0.0000 0.9330 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123205 2 0.0146 0.9324 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM123206 2 0.0000 0.9330 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123207 5 0.1007 0.7241 0.000 0.044 0.000 0.000 0.956 0.000
#> GSM123208 2 0.0000 0.9330 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123209 2 0.0146 0.9324 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM123210 1 0.1349 0.7356 0.940 0.000 0.056 0.000 0.000 0.004
#> GSM123211 1 0.2830 0.6938 0.836 0.000 0.144 0.000 0.000 0.020
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> SD:skmeans 56 0.1135 2
#> SD:skmeans 56 0.0636 3
#> SD:skmeans 44 0.0640 4
#> SD:skmeans 44 0.0296 5
#> SD:skmeans 49 0.0226 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.745 0.893 0.954 0.4794 0.515 0.515
#> 3 3 0.557 0.773 0.857 0.3295 0.671 0.444
#> 4 4 0.512 0.636 0.819 0.0907 0.832 0.582
#> 5 5 0.639 0.653 0.822 0.1181 0.814 0.463
#> 6 6 0.696 0.559 0.806 0.0394 0.970 0.864
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.8955 0.602 0.312 0.688
#> GSM123213 2 0.0000 0.927 0.000 1.000
#> GSM123214 2 0.0000 0.927 0.000 1.000
#> GSM123215 2 0.0000 0.927 0.000 1.000
#> GSM123216 1 0.0000 0.961 1.000 0.000
#> GSM123217 1 0.0000 0.961 1.000 0.000
#> GSM123218 1 0.7219 0.720 0.800 0.200
#> GSM123219 1 0.0000 0.961 1.000 0.000
#> GSM123220 1 0.0000 0.961 1.000 0.000
#> GSM123221 1 0.0000 0.961 1.000 0.000
#> GSM123222 1 0.0000 0.961 1.000 0.000
#> GSM123223 2 0.0000 0.927 0.000 1.000
#> GSM123224 1 0.0000 0.961 1.000 0.000
#> GSM123225 1 0.0000 0.961 1.000 0.000
#> GSM123226 1 0.0000 0.961 1.000 0.000
#> GSM123227 1 0.0000 0.961 1.000 0.000
#> GSM123228 1 0.0000 0.961 1.000 0.000
#> GSM123229 1 0.0000 0.961 1.000 0.000
#> GSM123230 1 0.0000 0.961 1.000 0.000
#> GSM123231 1 0.9710 0.286 0.600 0.400
#> GSM123232 1 0.0000 0.961 1.000 0.000
#> GSM123233 2 0.0000 0.927 0.000 1.000
#> GSM123234 1 0.0000 0.961 1.000 0.000
#> GSM123235 1 0.0000 0.961 1.000 0.000
#> GSM123236 2 0.9661 0.399 0.392 0.608
#> GSM123237 1 0.0000 0.961 1.000 0.000
#> GSM123238 1 0.0000 0.961 1.000 0.000
#> GSM123239 2 0.6148 0.827 0.152 0.848
#> GSM123240 1 0.0000 0.961 1.000 0.000
#> GSM123241 1 0.0000 0.961 1.000 0.000
#> GSM123242 2 0.0938 0.923 0.012 0.988
#> GSM123182 2 0.6247 0.824 0.156 0.844
#> GSM123183 2 0.7528 0.729 0.216 0.784
#> GSM123184 2 0.0000 0.927 0.000 1.000
#> GSM123185 2 0.0938 0.923 0.012 0.988
#> GSM123186 1 0.7453 0.690 0.788 0.212
#> GSM123187 2 0.0938 0.923 0.012 0.988
#> GSM123188 1 0.0000 0.961 1.000 0.000
#> GSM123189 1 0.0000 0.961 1.000 0.000
#> GSM123190 1 0.9710 0.286 0.600 0.400
#> GSM123191 1 0.0938 0.951 0.988 0.012
#> GSM123192 1 0.0000 0.961 1.000 0.000
#> GSM123193 1 0.0000 0.961 1.000 0.000
#> GSM123194 1 0.1184 0.948 0.984 0.016
#> GSM123195 2 0.0000 0.927 0.000 1.000
#> GSM123196 1 0.0000 0.961 1.000 0.000
#> GSM123197 1 0.0000 0.961 1.000 0.000
#> GSM123198 2 0.0000 0.927 0.000 1.000
#> GSM123199 1 0.0000 0.961 1.000 0.000
#> GSM123200 2 0.0000 0.927 0.000 1.000
#> GSM123201 1 0.0000 0.961 1.000 0.000
#> GSM123202 2 0.0000 0.927 0.000 1.000
#> GSM123203 1 0.0000 0.961 1.000 0.000
#> GSM123204 2 0.0000 0.927 0.000 1.000
#> GSM123205 2 0.0000 0.927 0.000 1.000
#> GSM123206 2 0.0000 0.927 0.000 1.000
#> GSM123207 2 0.6343 0.820 0.160 0.840
#> GSM123208 2 0.0000 0.927 0.000 1.000
#> GSM123209 2 0.6247 0.824 0.156 0.844
#> GSM123210 1 0.0000 0.961 1.000 0.000
#> GSM123211 1 0.0000 0.961 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 3 0.4399 0.7885 0.188 0.000 0.812
#> GSM123213 2 0.3879 0.9639 0.000 0.848 0.152
#> GSM123214 2 0.0237 0.8761 0.000 0.996 0.004
#> GSM123215 2 0.0237 0.8761 0.000 0.996 0.004
#> GSM123216 1 0.1964 0.8176 0.944 0.000 0.056
#> GSM123217 1 0.2261 0.8137 0.932 0.000 0.068
#> GSM123218 3 0.2096 0.8111 0.004 0.052 0.944
#> GSM123219 3 0.3879 0.7856 0.152 0.000 0.848
#> GSM123220 1 0.0424 0.8325 0.992 0.000 0.008
#> GSM123221 1 0.5178 0.6179 0.744 0.000 0.256
#> GSM123222 1 0.5363 0.5849 0.724 0.000 0.276
#> GSM123223 2 0.3879 0.9639 0.000 0.848 0.152
#> GSM123224 1 0.0000 0.8337 1.000 0.000 0.000
#> GSM123225 1 0.1753 0.8195 0.952 0.000 0.048
#> GSM123226 1 0.5327 0.6290 0.728 0.000 0.272
#> GSM123227 3 0.6008 0.3671 0.372 0.000 0.628
#> GSM123228 1 0.0000 0.8337 1.000 0.000 0.000
#> GSM123229 1 0.6308 -0.0676 0.508 0.000 0.492
#> GSM123230 1 0.5431 0.5712 0.716 0.000 0.284
#> GSM123231 3 0.2096 0.8111 0.004 0.052 0.944
#> GSM123232 1 0.0000 0.8337 1.000 0.000 0.000
#> GSM123233 2 0.4047 0.9615 0.004 0.848 0.148
#> GSM123234 1 0.5431 0.5712 0.716 0.000 0.284
#> GSM123235 3 0.4605 0.7783 0.204 0.000 0.796
#> GSM123236 3 0.2280 0.8102 0.008 0.052 0.940
#> GSM123237 1 0.5859 0.4214 0.656 0.000 0.344
#> GSM123238 1 0.0000 0.8337 1.000 0.000 0.000
#> GSM123239 3 0.1964 0.8081 0.000 0.056 0.944
#> GSM123240 1 0.0000 0.8337 1.000 0.000 0.000
#> GSM123241 1 0.2448 0.8165 0.924 0.000 0.076
#> GSM123242 3 0.1860 0.8085 0.000 0.052 0.948
#> GSM123182 3 0.2096 0.8111 0.004 0.052 0.944
#> GSM123183 3 0.5598 0.7621 0.052 0.148 0.800
#> GSM123184 2 0.0237 0.8761 0.000 0.996 0.004
#> GSM123185 3 0.2096 0.8111 0.004 0.052 0.944
#> GSM123186 3 0.3879 0.7856 0.152 0.000 0.848
#> GSM123187 3 0.2096 0.8111 0.004 0.052 0.944
#> GSM123188 1 0.1860 0.8175 0.948 0.000 0.052
#> GSM123189 3 0.3879 0.7856 0.152 0.000 0.848
#> GSM123190 3 0.2879 0.8056 0.024 0.052 0.924
#> GSM123191 3 0.4504 0.7848 0.196 0.000 0.804
#> GSM123192 3 0.3941 0.7835 0.156 0.000 0.844
#> GSM123193 1 0.6225 0.2246 0.568 0.000 0.432
#> GSM123194 3 0.3686 0.7926 0.140 0.000 0.860
#> GSM123195 2 0.3816 0.9650 0.000 0.852 0.148
#> GSM123196 3 0.4605 0.7783 0.204 0.000 0.796
#> GSM123197 3 0.4605 0.7783 0.204 0.000 0.796
#> GSM123198 2 0.3816 0.9650 0.000 0.852 0.148
#> GSM123199 1 0.0000 0.8337 1.000 0.000 0.000
#> GSM123200 2 0.3816 0.9650 0.000 0.852 0.148
#> GSM123201 3 0.6204 0.3453 0.424 0.000 0.576
#> GSM123202 2 0.3816 0.9650 0.000 0.852 0.148
#> GSM123203 1 0.0000 0.8337 1.000 0.000 0.000
#> GSM123204 2 0.3816 0.9650 0.000 0.852 0.148
#> GSM123205 2 0.3816 0.9650 0.000 0.852 0.148
#> GSM123206 2 0.3816 0.9650 0.000 0.852 0.148
#> GSM123207 3 0.5363 0.5617 0.276 0.000 0.724
#> GSM123208 2 0.3816 0.9650 0.000 0.852 0.148
#> GSM123209 3 0.1964 0.8081 0.000 0.056 0.944
#> GSM123210 1 0.0237 0.8331 0.996 0.000 0.004
#> GSM123211 1 0.0237 0.8331 0.996 0.000 0.004
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 4 0.6881 0.4759 0.172 0.000 0.236 0.592
#> GSM123213 4 0.7795 0.2214 0.000 0.252 0.344 0.404
#> GSM123214 4 0.1716 0.7233 0.000 0.064 0.000 0.936
#> GSM123215 4 0.1716 0.7233 0.000 0.064 0.000 0.936
#> GSM123216 1 0.3356 0.7099 0.824 0.000 0.176 0.000
#> GSM123217 1 0.4222 0.6275 0.728 0.000 0.272 0.000
#> GSM123218 3 0.3806 0.7044 0.020 0.156 0.824 0.000
#> GSM123219 3 0.1022 0.6991 0.032 0.000 0.968 0.000
#> GSM123220 1 0.1022 0.7898 0.968 0.000 0.032 0.000
#> GSM123221 1 0.4360 0.5561 0.744 0.000 0.248 0.008
#> GSM123222 1 0.4594 0.5135 0.712 0.000 0.280 0.008
#> GSM123223 2 0.4770 0.4861 0.000 0.700 0.012 0.288
#> GSM123224 1 0.0000 0.7954 1.000 0.000 0.000 0.000
#> GSM123225 1 0.2081 0.7639 0.916 0.000 0.084 0.000
#> GSM123226 1 0.4933 0.3627 0.568 0.000 0.432 0.000
#> GSM123227 3 0.5906 0.3654 0.292 0.000 0.644 0.064
#> GSM123228 1 0.0592 0.7932 0.984 0.000 0.016 0.000
#> GSM123229 3 0.4972 0.1771 0.456 0.000 0.544 0.000
#> GSM123230 1 0.4511 0.5183 0.724 0.000 0.268 0.008
#> GSM123231 3 0.3806 0.7044 0.020 0.156 0.824 0.000
#> GSM123232 1 0.0000 0.7954 1.000 0.000 0.000 0.000
#> GSM123233 3 0.6556 0.6010 0.108 0.244 0.640 0.008
#> GSM123234 1 0.4621 0.5055 0.708 0.000 0.284 0.008
#> GSM123235 3 0.3486 0.6881 0.188 0.000 0.812 0.000
#> GSM123236 3 0.5276 0.6697 0.008 0.188 0.748 0.056
#> GSM123237 3 0.5000 -0.1686 0.496 0.000 0.504 0.000
#> GSM123238 1 0.0336 0.7945 0.992 0.000 0.000 0.008
#> GSM123239 3 0.5623 0.6655 0.020 0.188 0.736 0.056
#> GSM123240 1 0.0000 0.7954 1.000 0.000 0.000 0.000
#> GSM123241 1 0.4222 0.6341 0.728 0.000 0.272 0.000
#> GSM123242 4 0.4163 0.5420 0.000 0.188 0.020 0.792
#> GSM123182 3 0.3123 0.6971 0.000 0.156 0.844 0.000
#> GSM123183 4 0.1902 0.7102 0.004 0.000 0.064 0.932
#> GSM123184 4 0.1716 0.7233 0.000 0.064 0.000 0.936
#> GSM123185 3 0.7047 0.6258 0.108 0.188 0.656 0.048
#> GSM123186 3 0.1022 0.6991 0.032 0.000 0.968 0.000
#> GSM123187 3 0.3486 0.6860 0.000 0.188 0.812 0.000
#> GSM123188 1 0.3907 0.6645 0.768 0.000 0.232 0.000
#> GSM123189 3 0.1022 0.6991 0.032 0.000 0.968 0.000
#> GSM123190 3 0.5708 0.6935 0.032 0.168 0.744 0.056
#> GSM123191 3 0.3486 0.6881 0.188 0.000 0.812 0.000
#> GSM123192 3 0.1211 0.6979 0.040 0.000 0.960 0.000
#> GSM123193 3 0.4855 0.0894 0.400 0.000 0.600 0.000
#> GSM123194 3 0.0921 0.6988 0.028 0.000 0.972 0.000
#> GSM123195 2 0.0000 0.9118 0.000 1.000 0.000 0.000
#> GSM123196 3 0.3486 0.6881 0.188 0.000 0.812 0.000
#> GSM123197 3 0.4621 0.5836 0.284 0.000 0.708 0.008
#> GSM123198 2 0.3919 0.7695 0.000 0.840 0.104 0.056
#> GSM123199 1 0.0336 0.7945 0.992 0.000 0.000 0.008
#> GSM123200 2 0.0000 0.9118 0.000 1.000 0.000 0.000
#> GSM123201 3 0.6389 0.2139 0.448 0.000 0.488 0.064
#> GSM123202 2 0.0921 0.8990 0.000 0.972 0.028 0.000
#> GSM123203 1 0.0336 0.7945 0.992 0.000 0.000 0.008
#> GSM123204 2 0.0000 0.9118 0.000 1.000 0.000 0.000
#> GSM123205 2 0.2142 0.8645 0.000 0.928 0.016 0.056
#> GSM123206 2 0.0000 0.9118 0.000 1.000 0.000 0.000
#> GSM123207 1 0.7517 -0.2487 0.460 0.048 0.428 0.064
#> GSM123208 2 0.0000 0.9118 0.000 1.000 0.000 0.000
#> GSM123209 3 0.4720 0.6748 0.000 0.188 0.768 0.044
#> GSM123210 1 0.0469 0.7947 0.988 0.000 0.012 0.000
#> GSM123211 1 0.0188 0.7955 0.996 0.000 0.004 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 4 0.6072 0.4536 0.008 0.000 0.232 0.600 0.160
#> GSM123213 3 0.6157 -0.0769 0.000 0.000 0.496 0.364 0.140
#> GSM123214 4 0.0000 0.8519 0.000 0.000 0.000 1.000 0.000
#> GSM123215 4 0.0000 0.8519 0.000 0.000 0.000 1.000 0.000
#> GSM123216 1 0.0000 0.7535 1.000 0.000 0.000 0.000 0.000
#> GSM123217 1 0.0000 0.7535 1.000 0.000 0.000 0.000 0.000
#> GSM123218 3 0.0703 0.7611 0.000 0.000 0.976 0.000 0.024
#> GSM123219 3 0.2732 0.7579 0.160 0.000 0.840 0.000 0.000
#> GSM123220 1 0.2605 0.7791 0.852 0.000 0.000 0.000 0.148
#> GSM123221 5 0.4758 0.5741 0.276 0.000 0.048 0.000 0.676
#> GSM123222 5 0.3561 0.6027 0.260 0.000 0.000 0.000 0.740
#> GSM123223 2 0.6414 0.3340 0.000 0.548 0.160 0.280 0.012
#> GSM123224 1 0.2732 0.7745 0.840 0.000 0.000 0.000 0.160
#> GSM123225 1 0.1671 0.7791 0.924 0.000 0.000 0.000 0.076
#> GSM123226 1 0.5360 0.1912 0.556 0.000 0.384 0.000 0.060
#> GSM123227 5 0.2852 0.5585 0.172 0.000 0.000 0.000 0.828
#> GSM123228 1 0.2516 0.7762 0.860 0.000 0.000 0.000 0.140
#> GSM123229 3 0.5899 0.3334 0.248 0.000 0.592 0.000 0.160
#> GSM123230 5 0.4800 0.5753 0.272 0.000 0.052 0.000 0.676
#> GSM123231 3 0.0162 0.7652 0.000 0.000 0.996 0.000 0.004
#> GSM123232 1 0.2732 0.7745 0.840 0.000 0.000 0.000 0.160
#> GSM123233 5 0.2732 0.5259 0.000 0.000 0.160 0.000 0.840
#> GSM123234 5 0.1270 0.6737 0.052 0.000 0.000 0.000 0.948
#> GSM123235 3 0.2890 0.7184 0.004 0.000 0.836 0.000 0.160
#> GSM123236 3 0.3932 0.4796 0.000 0.000 0.672 0.000 0.328
#> GSM123237 1 0.3970 0.5177 0.744 0.000 0.236 0.000 0.020
#> GSM123238 5 0.3913 0.5435 0.324 0.000 0.000 0.000 0.676
#> GSM123239 5 0.4060 0.2613 0.000 0.000 0.360 0.000 0.640
#> GSM123240 1 0.2732 0.7745 0.840 0.000 0.000 0.000 0.160
#> GSM123241 1 0.1310 0.7585 0.956 0.000 0.024 0.000 0.020
#> GSM123242 4 0.3409 0.6962 0.000 0.000 0.160 0.816 0.024
#> GSM123182 3 0.0000 0.7654 0.000 0.000 1.000 0.000 0.000
#> GSM123183 4 0.0162 0.8503 0.000 0.000 0.000 0.996 0.004
#> GSM123184 4 0.0000 0.8519 0.000 0.000 0.000 1.000 0.000
#> GSM123185 5 0.3395 0.5217 0.000 0.000 0.236 0.000 0.764
#> GSM123186 3 0.2732 0.7579 0.160 0.000 0.840 0.000 0.000
#> GSM123187 3 0.0510 0.7622 0.000 0.000 0.984 0.000 0.016
#> GSM123188 1 0.0609 0.7630 0.980 0.000 0.000 0.000 0.020
#> GSM123189 3 0.2732 0.7579 0.160 0.000 0.840 0.000 0.000
#> GSM123190 3 0.3210 0.6294 0.000 0.000 0.788 0.000 0.212
#> GSM123191 3 0.2890 0.7184 0.004 0.000 0.836 0.000 0.160
#> GSM123192 3 0.2813 0.7558 0.168 0.000 0.832 0.000 0.000
#> GSM123193 1 0.4114 0.2050 0.624 0.000 0.376 0.000 0.000
#> GSM123194 3 0.2848 0.7583 0.156 0.000 0.840 0.000 0.004
#> GSM123195 2 0.0000 0.8270 0.000 1.000 0.000 0.000 0.000
#> GSM123196 3 0.2890 0.7184 0.004 0.000 0.836 0.000 0.160
#> GSM123197 5 0.4127 0.4520 0.008 0.000 0.312 0.000 0.680
#> GSM123198 2 0.6442 0.4135 0.000 0.480 0.196 0.000 0.324
#> GSM123199 5 0.3913 0.5435 0.324 0.000 0.000 0.000 0.676
#> GSM123200 2 0.0000 0.8270 0.000 1.000 0.000 0.000 0.000
#> GSM123201 5 0.0404 0.6606 0.012 0.000 0.000 0.000 0.988
#> GSM123202 2 0.4428 0.6828 0.000 0.756 0.160 0.000 0.084
#> GSM123203 5 0.3913 0.5435 0.324 0.000 0.000 0.000 0.676
#> GSM123204 2 0.0000 0.8270 0.000 1.000 0.000 0.000 0.000
#> GSM123205 2 0.1341 0.8038 0.000 0.944 0.000 0.000 0.056
#> GSM123206 2 0.0000 0.8270 0.000 1.000 0.000 0.000 0.000
#> GSM123207 5 0.0609 0.6449 0.000 0.000 0.020 0.000 0.980
#> GSM123208 2 0.0000 0.8270 0.000 1.000 0.000 0.000 0.000
#> GSM123209 3 0.1792 0.7323 0.000 0.000 0.916 0.000 0.084
#> GSM123210 1 0.2732 0.7745 0.840 0.000 0.000 0.000 0.160
#> GSM123211 1 0.2773 0.7710 0.836 0.000 0.000 0.000 0.164
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 4 0.7548 0.22875 0.012 0.000 0.180 0.368 0.124 0.316
#> GSM123213 6 0.3078 0.13569 0.000 0.000 0.012 0.192 0.000 0.796
#> GSM123214 4 0.0000 0.66937 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123215 4 0.0000 0.66937 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123216 1 0.0000 0.87972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123217 1 0.0000 0.87972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123218 3 0.1462 0.80156 0.000 0.000 0.936 0.000 0.008 0.056
#> GSM123219 3 0.0000 0.81745 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM123220 1 0.0000 0.87972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123221 5 0.5634 0.37186 0.348 0.000 0.160 0.000 0.492 0.000
#> GSM123222 5 0.4985 0.49323 0.240 0.000 0.036 0.000 0.668 0.056
#> GSM123223 2 0.3923 0.23953 0.000 0.580 0.000 0.004 0.000 0.416
#> GSM123224 1 0.0000 0.87972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123225 1 0.0000 0.87972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123226 1 0.4938 0.36834 0.580 0.000 0.340 0.000 0.080 0.000
#> GSM123227 5 0.0777 0.45428 0.000 0.000 0.024 0.000 0.972 0.004
#> GSM123228 1 0.1663 0.83501 0.912 0.000 0.000 0.000 0.088 0.000
#> GSM123229 3 0.5224 0.41339 0.228 0.000 0.608 0.000 0.164 0.000
#> GSM123230 5 0.3975 0.49188 0.244 0.000 0.040 0.000 0.716 0.000
#> GSM123231 3 0.1957 0.77568 0.000 0.000 0.888 0.000 0.000 0.112
#> GSM123232 1 0.1556 0.83931 0.920 0.000 0.000 0.000 0.080 0.000
#> GSM123233 5 0.3198 0.18106 0.000 0.000 0.000 0.000 0.740 0.260
#> GSM123234 5 0.2258 0.47251 0.044 0.000 0.000 0.000 0.896 0.060
#> GSM123235 3 0.2191 0.78124 0.004 0.000 0.876 0.000 0.120 0.000
#> GSM123236 5 0.6010 -0.23373 0.000 0.000 0.312 0.000 0.428 0.260
#> GSM123237 1 0.3315 0.66571 0.780 0.000 0.200 0.000 0.020 0.000
#> GSM123238 5 0.5768 0.33703 0.196 0.000 0.000 0.000 0.488 0.316
#> GSM123239 5 0.4278 -0.08294 0.000 0.000 0.032 0.000 0.632 0.336
#> GSM123240 1 0.0000 0.87972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123241 1 0.1176 0.86382 0.956 0.000 0.024 0.000 0.020 0.000
#> GSM123242 4 0.4642 0.04371 0.000 0.000 0.052 0.592 0.000 0.356
#> GSM123182 3 0.0000 0.81745 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM123183 4 0.3619 0.49248 0.000 0.000 0.000 0.680 0.004 0.316
#> GSM123184 4 0.0000 0.66937 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123185 5 0.4378 0.00394 0.000 0.000 0.032 0.000 0.600 0.368
#> GSM123186 3 0.0000 0.81745 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM123187 3 0.3789 0.38192 0.000 0.000 0.584 0.000 0.000 0.416
#> GSM123188 1 0.0000 0.87972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123189 3 0.0000 0.81745 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM123190 3 0.5279 0.29765 0.000 0.000 0.548 0.000 0.336 0.116
#> GSM123191 3 0.2053 0.78503 0.004 0.000 0.888 0.000 0.108 0.000
#> GSM123192 3 0.0603 0.81475 0.016 0.000 0.980 0.000 0.004 0.000
#> GSM123193 1 0.3672 0.43806 0.632 0.000 0.368 0.000 0.000 0.000
#> GSM123194 3 0.0000 0.81745 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM123195 2 0.0000 0.76383 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123196 3 0.2170 0.78430 0.012 0.000 0.888 0.000 0.100 0.000
#> GSM123197 5 0.5834 0.22834 0.004 0.000 0.184 0.000 0.496 0.316
#> GSM123198 6 0.3499 0.31573 0.000 0.000 0.000 0.000 0.320 0.680
#> GSM123199 5 0.3937 0.26570 0.424 0.000 0.004 0.000 0.572 0.000
#> GSM123200 2 0.0000 0.76383 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123201 5 0.1327 0.45427 0.000 0.000 0.000 0.000 0.936 0.064
#> GSM123202 2 0.4700 0.03929 0.000 0.500 0.000 0.000 0.044 0.456
#> GSM123203 5 0.3810 0.25961 0.428 0.000 0.000 0.000 0.572 0.000
#> GSM123204 2 0.2823 0.67075 0.000 0.796 0.000 0.000 0.000 0.204
#> GSM123205 2 0.4067 0.60392 0.000 0.700 0.000 0.000 0.040 0.260
#> GSM123206 2 0.0000 0.76383 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123207 5 0.1556 0.44442 0.000 0.000 0.000 0.000 0.920 0.080
#> GSM123208 2 0.0000 0.76383 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123209 3 0.4282 0.33746 0.000 0.000 0.560 0.000 0.020 0.420
#> GSM123210 1 0.1714 0.79008 0.908 0.000 0.000 0.000 0.092 0.000
#> GSM123211 1 0.0146 0.87773 0.996 0.000 0.000 0.000 0.004 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> SD:pam 58 0.10728 2
#> SD:pam 56 0.02045 3
#> SD:pam 51 0.00342 4
#> SD:pam 51 0.00815 5
#> SD:pam 33 0.01228 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.350 0.772 0.817 0.4465 0.508 0.508
#> 3 3 0.416 0.754 0.832 0.0939 0.730 0.594
#> 4 4 0.534 0.723 0.858 0.3291 0.770 0.585
#> 5 5 0.523 0.641 0.787 0.1186 0.913 0.746
#> 6 6 0.596 0.520 0.749 0.0735 0.876 0.600
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.6623 0.797 0.172 0.828
#> GSM123213 2 0.4562 0.863 0.096 0.904
#> GSM123214 2 0.2603 0.876 0.044 0.956
#> GSM123215 2 0.2603 0.876 0.044 0.956
#> GSM123216 1 0.5519 0.832 0.872 0.128
#> GSM123217 1 0.4161 0.837 0.916 0.084
#> GSM123218 1 0.9170 0.638 0.668 0.332
#> GSM123219 1 0.8386 0.719 0.732 0.268
#> GSM123220 1 0.0000 0.820 1.000 0.000
#> GSM123221 1 0.4161 0.837 0.916 0.084
#> GSM123222 1 0.0000 0.820 1.000 0.000
#> GSM123223 2 0.3114 0.878 0.056 0.944
#> GSM123224 1 0.0938 0.824 0.988 0.012
#> GSM123225 1 0.4298 0.838 0.912 0.088
#> GSM123226 1 0.5294 0.834 0.880 0.120
#> GSM123227 1 0.9608 0.521 0.616 0.384
#> GSM123228 1 0.5946 0.825 0.856 0.144
#> GSM123229 1 0.0000 0.820 1.000 0.000
#> GSM123230 1 0.0000 0.820 1.000 0.000
#> GSM123231 2 0.9580 0.382 0.380 0.620
#> GSM123232 1 0.0000 0.820 1.000 0.000
#> GSM123233 2 0.5059 0.853 0.112 0.888
#> GSM123234 1 0.4562 0.833 0.904 0.096
#> GSM123235 1 0.8016 0.747 0.756 0.244
#> GSM123236 1 0.9170 0.638 0.668 0.332
#> GSM123237 1 0.0000 0.820 1.000 0.000
#> GSM123238 1 0.9922 0.173 0.552 0.448
#> GSM123239 2 0.4022 0.871 0.080 0.920
#> GSM123240 1 0.5408 0.833 0.876 0.124
#> GSM123241 1 0.2603 0.827 0.956 0.044
#> GSM123242 2 0.5178 0.851 0.116 0.884
#> GSM123182 2 0.9491 0.409 0.368 0.632
#> GSM123183 2 0.6712 0.786 0.176 0.824
#> GSM123184 2 0.2603 0.876 0.044 0.956
#> GSM123185 2 0.7674 0.730 0.224 0.776
#> GSM123186 1 0.9044 0.670 0.680 0.320
#> GSM123187 2 0.3114 0.878 0.056 0.944
#> GSM123188 1 0.0000 0.820 1.000 0.000
#> GSM123189 1 0.8386 0.719 0.732 0.268
#> GSM123190 2 0.9491 0.420 0.368 0.632
#> GSM123191 1 0.5737 0.825 0.864 0.136
#> GSM123192 1 0.7883 0.761 0.764 0.236
#> GSM123193 1 0.5737 0.833 0.864 0.136
#> GSM123194 1 0.8386 0.719 0.732 0.268
#> GSM123195 2 0.1414 0.865 0.020 0.980
#> GSM123196 1 0.3733 0.835 0.928 0.072
#> GSM123197 2 0.9393 0.474 0.356 0.644
#> GSM123198 2 0.2778 0.877 0.048 0.952
#> GSM123199 1 0.0000 0.820 1.000 0.000
#> GSM123200 2 0.1414 0.865 0.020 0.980
#> GSM123201 1 0.9087 0.651 0.676 0.324
#> GSM123202 2 0.2948 0.878 0.052 0.948
#> GSM123203 1 0.0000 0.820 1.000 0.000
#> GSM123204 2 0.1414 0.865 0.020 0.980
#> GSM123205 2 0.1414 0.865 0.020 0.980
#> GSM123206 2 0.1414 0.865 0.020 0.980
#> GSM123207 1 0.9129 0.645 0.672 0.328
#> GSM123208 2 0.1414 0.865 0.020 0.980
#> GSM123209 2 0.2948 0.878 0.052 0.948
#> GSM123210 1 0.0000 0.820 1.000 0.000
#> GSM123211 1 0.5842 0.827 0.860 0.140
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 3 0.8157 0.493 0.412 0.072 0.516
#> GSM123213 3 0.7741 0.497 0.068 0.324 0.608
#> GSM123214 3 0.5851 0.701 0.068 0.140 0.792
#> GSM123215 3 0.5974 0.700 0.068 0.148 0.784
#> GSM123216 1 0.1031 0.843 0.976 0.000 0.024
#> GSM123217 1 0.1031 0.847 0.976 0.000 0.024
#> GSM123218 1 0.4930 0.799 0.836 0.044 0.120
#> GSM123219 1 0.3918 0.815 0.856 0.004 0.140
#> GSM123220 1 0.3359 0.824 0.900 0.016 0.084
#> GSM123221 1 0.2229 0.843 0.944 0.012 0.044
#> GSM123222 1 0.2625 0.833 0.916 0.000 0.084
#> GSM123223 2 0.5656 0.686 0.068 0.804 0.128
#> GSM123224 1 0.2959 0.825 0.900 0.000 0.100
#> GSM123225 1 0.0237 0.845 0.996 0.000 0.004
#> GSM123226 1 0.2703 0.839 0.928 0.016 0.056
#> GSM123227 1 0.3918 0.819 0.868 0.012 0.120
#> GSM123228 1 0.2599 0.838 0.932 0.016 0.052
#> GSM123229 1 0.2711 0.830 0.912 0.000 0.088
#> GSM123230 1 0.2959 0.825 0.900 0.000 0.100
#> GSM123231 1 0.5137 0.792 0.832 0.064 0.104
#> GSM123232 1 0.2860 0.831 0.912 0.004 0.084
#> GSM123233 1 0.8700 0.252 0.552 0.320 0.128
#> GSM123234 1 0.1878 0.846 0.952 0.004 0.044
#> GSM123235 1 0.3686 0.820 0.860 0.000 0.140
#> GSM123236 1 0.3888 0.813 0.888 0.064 0.048
#> GSM123237 1 0.3445 0.825 0.896 0.016 0.088
#> GSM123238 1 0.6482 0.505 0.716 0.040 0.244
#> GSM123239 1 0.7366 0.286 0.564 0.400 0.036
#> GSM123240 1 0.2066 0.840 0.940 0.000 0.060
#> GSM123241 1 0.3359 0.824 0.900 0.016 0.084
#> GSM123242 3 0.8230 0.666 0.224 0.144 0.632
#> GSM123182 1 0.5158 0.725 0.764 0.004 0.232
#> GSM123183 3 0.8104 0.640 0.280 0.104 0.616
#> GSM123184 3 0.5974 0.700 0.068 0.148 0.784
#> GSM123185 1 0.7960 0.508 0.656 0.208 0.136
#> GSM123186 1 0.3918 0.815 0.856 0.004 0.140
#> GSM123187 1 0.7310 0.438 0.628 0.324 0.048
#> GSM123188 1 0.3359 0.824 0.900 0.016 0.084
#> GSM123189 1 0.3918 0.815 0.856 0.004 0.140
#> GSM123190 1 0.4902 0.784 0.844 0.092 0.064
#> GSM123191 1 0.3192 0.827 0.888 0.000 0.112
#> GSM123192 1 0.2448 0.837 0.924 0.000 0.076
#> GSM123193 1 0.3038 0.831 0.896 0.000 0.104
#> GSM123194 1 0.3686 0.815 0.860 0.000 0.140
#> GSM123195 2 0.0892 0.854 0.020 0.980 0.000
#> GSM123196 1 0.2066 0.845 0.940 0.000 0.060
#> GSM123197 1 0.5094 0.735 0.824 0.040 0.136
#> GSM123198 2 0.3530 0.790 0.068 0.900 0.032
#> GSM123199 1 0.3359 0.824 0.900 0.016 0.084
#> GSM123200 2 0.0892 0.854 0.020 0.980 0.000
#> GSM123201 1 0.1411 0.840 0.964 0.000 0.036
#> GSM123202 2 0.3649 0.785 0.068 0.896 0.036
#> GSM123203 1 0.2959 0.825 0.900 0.000 0.100
#> GSM123204 2 0.0892 0.854 0.020 0.980 0.000
#> GSM123205 2 0.0892 0.854 0.020 0.980 0.000
#> GSM123206 2 0.0892 0.854 0.020 0.980 0.000
#> GSM123207 1 0.3921 0.808 0.884 0.080 0.036
#> GSM123208 2 0.0892 0.854 0.020 0.980 0.000
#> GSM123209 2 0.7084 0.184 0.336 0.628 0.036
#> GSM123210 1 0.2959 0.825 0.900 0.000 0.100
#> GSM123211 1 0.2339 0.843 0.940 0.012 0.048
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 4 0.5527 0.697 0.104 0.000 0.168 0.728
#> GSM123213 4 0.7375 0.563 0.020 0.172 0.216 0.592
#> GSM123214 4 0.0921 0.772 0.000 0.000 0.028 0.972
#> GSM123215 4 0.1004 0.772 0.000 0.004 0.024 0.972
#> GSM123216 1 0.2149 0.820 0.912 0.000 0.088 0.000
#> GSM123217 1 0.1211 0.846 0.960 0.000 0.040 0.000
#> GSM123218 3 0.4008 0.673 0.244 0.000 0.756 0.000
#> GSM123219 1 0.5204 0.271 0.612 0.000 0.376 0.012
#> GSM123220 1 0.0000 0.853 1.000 0.000 0.000 0.000
#> GSM123221 1 0.2542 0.815 0.904 0.000 0.084 0.012
#> GSM123222 1 0.1209 0.849 0.964 0.000 0.032 0.004
#> GSM123223 2 0.1151 0.912 0.008 0.968 0.024 0.000
#> GSM123224 1 0.0524 0.854 0.988 0.000 0.008 0.004
#> GSM123225 1 0.1302 0.846 0.956 0.000 0.044 0.000
#> GSM123226 1 0.0469 0.853 0.988 0.000 0.012 0.000
#> GSM123227 3 0.2704 0.758 0.124 0.000 0.876 0.000
#> GSM123228 1 0.0469 0.853 0.988 0.000 0.012 0.000
#> GSM123229 1 0.0336 0.854 0.992 0.000 0.008 0.000
#> GSM123230 1 0.0188 0.851 0.996 0.000 0.004 0.000
#> GSM123231 3 0.3266 0.718 0.168 0.000 0.832 0.000
#> GSM123232 1 0.0000 0.853 1.000 0.000 0.000 0.000
#> GSM123233 3 0.5820 0.617 0.108 0.192 0.700 0.000
#> GSM123234 1 0.4936 0.220 0.624 0.000 0.372 0.004
#> GSM123235 1 0.4992 0.047 0.524 0.000 0.476 0.000
#> GSM123236 3 0.2814 0.762 0.132 0.000 0.868 0.000
#> GSM123237 1 0.0000 0.853 1.000 0.000 0.000 0.000
#> GSM123238 1 0.6404 0.406 0.608 0.000 0.096 0.296
#> GSM123239 3 0.4843 0.705 0.104 0.112 0.784 0.000
#> GSM123240 1 0.0804 0.853 0.980 0.000 0.012 0.008
#> GSM123241 1 0.0000 0.853 1.000 0.000 0.000 0.000
#> GSM123242 4 0.5613 0.442 0.028 0.000 0.380 0.592
#> GSM123182 3 0.3324 0.756 0.136 0.000 0.852 0.012
#> GSM123183 4 0.4282 0.754 0.060 0.000 0.124 0.816
#> GSM123184 4 0.1004 0.772 0.000 0.004 0.024 0.972
#> GSM123185 3 0.4374 0.740 0.120 0.068 0.812 0.000
#> GSM123186 1 0.5231 0.268 0.604 0.000 0.384 0.012
#> GSM123187 3 0.7936 0.550 0.100 0.152 0.604 0.144
#> GSM123188 1 0.0000 0.853 1.000 0.000 0.000 0.000
#> GSM123189 3 0.5366 0.359 0.440 0.000 0.548 0.012
#> GSM123190 3 0.3975 0.738 0.240 0.000 0.760 0.000
#> GSM123191 1 0.4730 0.314 0.636 0.000 0.364 0.000
#> GSM123192 1 0.2469 0.813 0.892 0.000 0.108 0.000
#> GSM123193 1 0.2149 0.817 0.912 0.000 0.088 0.000
#> GSM123194 3 0.4989 0.270 0.472 0.000 0.528 0.000
#> GSM123195 2 0.0000 0.928 0.000 1.000 0.000 0.000
#> GSM123196 1 0.2345 0.816 0.900 0.000 0.100 0.000
#> GSM123197 1 0.5708 0.619 0.716 0.000 0.124 0.160
#> GSM123198 2 0.0927 0.915 0.008 0.976 0.016 0.000
#> GSM123199 1 0.0000 0.853 1.000 0.000 0.000 0.000
#> GSM123200 2 0.0000 0.928 0.000 1.000 0.000 0.000
#> GSM123201 3 0.3486 0.759 0.188 0.000 0.812 0.000
#> GSM123202 2 0.1042 0.912 0.008 0.972 0.020 0.000
#> GSM123203 1 0.0188 0.852 0.996 0.000 0.000 0.004
#> GSM123204 2 0.0000 0.928 0.000 1.000 0.000 0.000
#> GSM123205 2 0.0000 0.928 0.000 1.000 0.000 0.000
#> GSM123206 2 0.0000 0.928 0.000 1.000 0.000 0.000
#> GSM123207 3 0.3791 0.748 0.200 0.000 0.796 0.004
#> GSM123208 2 0.0000 0.928 0.000 1.000 0.000 0.000
#> GSM123209 2 0.6075 0.302 0.076 0.636 0.288 0.000
#> GSM123210 1 0.0000 0.853 1.000 0.000 0.000 0.000
#> GSM123211 1 0.1510 0.841 0.956 0.000 0.028 0.016
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 4 0.440 0.6288 0.044 0.000 0.056 0.800 0.100
#> GSM123213 4 0.792 0.0694 0.000 0.072 0.308 0.344 0.276
#> GSM123214 3 0.321 1.0000 0.000 0.000 0.788 0.212 0.000
#> GSM123215 3 0.321 1.0000 0.000 0.000 0.788 0.212 0.000
#> GSM123216 1 0.276 0.7900 0.848 0.000 0.000 0.004 0.148
#> GSM123217 1 0.297 0.7682 0.816 0.000 0.000 0.000 0.184
#> GSM123218 5 0.468 0.5394 0.060 0.000 0.212 0.004 0.724
#> GSM123219 1 0.566 0.4803 0.572 0.000 0.000 0.096 0.332
#> GSM123220 1 0.000 0.8061 1.000 0.000 0.000 0.000 0.000
#> GSM123221 1 0.493 0.7027 0.696 0.000 0.000 0.220 0.084
#> GSM123222 1 0.412 0.7693 0.780 0.000 0.000 0.152 0.068
#> GSM123223 2 0.234 0.8671 0.000 0.912 0.052 0.028 0.008
#> GSM123224 1 0.324 0.7581 0.784 0.000 0.000 0.216 0.000
#> GSM123225 1 0.323 0.8053 0.852 0.000 0.000 0.088 0.060
#> GSM123226 1 0.051 0.8023 0.984 0.000 0.000 0.000 0.016
#> GSM123227 5 0.127 0.5922 0.052 0.000 0.000 0.000 0.948
#> GSM123228 1 0.148 0.7768 0.936 0.000 0.000 0.000 0.064
#> GSM123229 1 0.313 0.7922 0.856 0.000 0.000 0.048 0.096
#> GSM123230 1 0.292 0.8020 0.856 0.000 0.000 0.124 0.020
#> GSM123231 5 0.440 0.5432 0.052 0.000 0.212 0.000 0.736
#> GSM123232 1 0.000 0.8061 1.000 0.000 0.000 0.000 0.000
#> GSM123233 5 0.413 0.5012 0.000 0.172 0.000 0.056 0.772
#> GSM123234 5 0.609 0.0631 0.416 0.000 0.000 0.124 0.460
#> GSM123235 1 0.699 0.1355 0.500 0.000 0.212 0.028 0.260
#> GSM123236 5 0.263 0.5959 0.136 0.004 0.000 0.000 0.860
#> GSM123237 1 0.000 0.8061 1.000 0.000 0.000 0.000 0.000
#> GSM123238 4 0.361 0.5691 0.112 0.000 0.000 0.824 0.064
#> GSM123239 5 0.379 0.5334 0.020 0.180 0.008 0.000 0.792
#> GSM123240 1 0.351 0.7305 0.748 0.000 0.000 0.252 0.000
#> GSM123241 1 0.000 0.8061 1.000 0.000 0.000 0.000 0.000
#> GSM123242 5 0.794 -0.2829 0.076 0.000 0.304 0.268 0.352
#> GSM123182 5 0.196 0.5184 0.000 0.000 0.000 0.096 0.904
#> GSM123183 4 0.463 0.5251 0.004 0.000 0.144 0.752 0.100
#> GSM123184 3 0.321 1.0000 0.000 0.000 0.788 0.212 0.000
#> GSM123185 5 0.382 0.5792 0.048 0.056 0.000 0.056 0.840
#> GSM123186 4 0.487 0.4350 0.036 0.000 0.000 0.620 0.344
#> GSM123187 5 0.622 0.2775 0.000 0.196 0.004 0.232 0.568
#> GSM123188 1 0.000 0.8061 1.000 0.000 0.000 0.000 0.000
#> GSM123189 5 0.579 0.0700 0.384 0.000 0.000 0.096 0.520
#> GSM123190 5 0.420 0.5714 0.068 0.000 0.160 0.000 0.772
#> GSM123191 1 0.322 0.7730 0.848 0.000 0.000 0.044 0.108
#> GSM123192 1 0.629 0.0884 0.452 0.000 0.000 0.396 0.152
#> GSM123193 1 0.407 0.7491 0.768 0.000 0.000 0.044 0.188
#> GSM123194 5 0.545 0.0654 0.400 0.000 0.000 0.064 0.536
#> GSM123195 2 0.000 0.9215 0.000 1.000 0.000 0.000 0.000
#> GSM123196 1 0.509 0.6011 0.692 0.000 0.196 0.000 0.112
#> GSM123197 4 0.425 0.6406 0.080 0.000 0.000 0.772 0.148
#> GSM123198 2 0.185 0.8747 0.000 0.912 0.000 0.000 0.088
#> GSM123199 1 0.000 0.8061 1.000 0.000 0.000 0.000 0.000
#> GSM123200 2 0.000 0.9215 0.000 1.000 0.000 0.000 0.000
#> GSM123201 5 0.300 0.5720 0.188 0.000 0.000 0.000 0.812
#> GSM123202 2 0.191 0.8711 0.000 0.908 0.000 0.000 0.092
#> GSM123203 1 0.273 0.7963 0.868 0.000 0.000 0.116 0.016
#> GSM123204 2 0.000 0.9215 0.000 1.000 0.000 0.000 0.000
#> GSM123205 2 0.000 0.9215 0.000 1.000 0.000 0.000 0.000
#> GSM123206 2 0.000 0.9215 0.000 1.000 0.000 0.000 0.000
#> GSM123207 5 0.413 0.5471 0.096 0.004 0.000 0.104 0.796
#> GSM123208 2 0.000 0.9215 0.000 1.000 0.000 0.000 0.000
#> GSM123209 2 0.440 0.5520 0.004 0.708 0.024 0.000 0.264
#> GSM123210 1 0.315 0.8052 0.856 0.000 0.000 0.092 0.052
#> GSM123211 1 0.426 0.4637 0.564 0.000 0.000 0.436 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 6 0.3144 0.5193 0.004 0.000 0.016 0.172 0.000 0.808
#> GSM123213 4 0.7435 0.5008 0.004 0.028 0.172 0.484 0.096 0.216
#> GSM123214 4 0.0713 0.7121 0.000 0.000 0.000 0.972 0.028 0.000
#> GSM123215 4 0.0000 0.7179 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123216 1 0.3700 0.7212 0.800 0.000 0.024 0.000 0.036 0.140
#> GSM123217 1 0.1829 0.7927 0.928 0.000 0.036 0.000 0.028 0.008
#> GSM123218 3 0.3083 0.4525 0.040 0.000 0.828 0.000 0.132 0.000
#> GSM123219 1 0.5072 0.1457 0.480 0.000 0.028 0.000 0.464 0.028
#> GSM123220 1 0.0291 0.7944 0.992 0.000 0.004 0.000 0.000 0.004
#> GSM123221 1 0.3547 0.5531 0.668 0.000 0.000 0.000 0.000 0.332
#> GSM123222 1 0.2784 0.7689 0.848 0.000 0.028 0.000 0.000 0.124
#> GSM123223 2 0.5222 0.5315 0.000 0.676 0.060 0.196 0.068 0.000
#> GSM123224 1 0.1958 0.7808 0.896 0.000 0.004 0.000 0.000 0.100
#> GSM123225 1 0.2480 0.7721 0.872 0.000 0.024 0.000 0.000 0.104
#> GSM123226 1 0.2706 0.7481 0.852 0.000 0.024 0.000 0.000 0.124
#> GSM123227 5 0.4928 -0.2872 0.076 0.000 0.352 0.000 0.572 0.000
#> GSM123228 1 0.4393 0.6839 0.764 0.000 0.052 0.000 0.060 0.124
#> GSM123229 1 0.1588 0.7907 0.924 0.000 0.004 0.000 0.000 0.072
#> GSM123230 1 0.3679 0.7413 0.772 0.000 0.052 0.000 0.000 0.176
#> GSM123231 3 0.3278 0.4695 0.040 0.000 0.808 0.000 0.152 0.000
#> GSM123232 1 0.2146 0.7552 0.880 0.000 0.004 0.000 0.000 0.116
#> GSM123233 5 0.5879 -0.0869 0.000 0.044 0.252 0.000 0.584 0.120
#> GSM123234 1 0.7231 0.1553 0.412 0.000 0.120 0.000 0.204 0.264
#> GSM123235 3 0.5067 0.2510 0.268 0.000 0.612 0.000 0.120 0.000
#> GSM123236 3 0.4941 0.1899 0.064 0.000 0.492 0.000 0.444 0.000
#> GSM123237 1 0.0547 0.7942 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM123238 6 0.4499 0.5502 0.140 0.000 0.000 0.152 0.000 0.708
#> GSM123239 3 0.5292 0.3889 0.008 0.100 0.580 0.000 0.312 0.000
#> GSM123240 1 0.3023 0.7111 0.784 0.000 0.004 0.000 0.000 0.212
#> GSM123241 1 0.0146 0.7947 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM123242 4 0.7293 0.5003 0.016 0.000 0.204 0.484 0.156 0.140
#> GSM123182 5 0.1204 0.0779 0.000 0.000 0.056 0.000 0.944 0.000
#> GSM123183 6 0.3273 0.4790 0.004 0.000 0.008 0.212 0.000 0.776
#> GSM123184 4 0.0000 0.7179 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123185 5 0.6040 -0.0781 0.016 0.028 0.252 0.000 0.584 0.120
#> GSM123186 5 0.5883 -0.2779 0.172 0.000 0.000 0.004 0.436 0.388
#> GSM123187 3 0.7106 0.2779 0.004 0.100 0.476 0.248 0.168 0.004
#> GSM123188 1 0.0146 0.7947 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM123189 5 0.5254 0.0678 0.392 0.000 0.100 0.000 0.508 0.000
#> GSM123190 3 0.3858 0.4730 0.044 0.000 0.740 0.000 0.216 0.000
#> GSM123191 1 0.3890 0.6312 0.752 0.000 0.036 0.000 0.204 0.008
#> GSM123192 6 0.6247 0.2981 0.340 0.000 0.024 0.000 0.176 0.460
#> GSM123193 1 0.5251 0.5670 0.664 0.000 0.036 0.000 0.204 0.096
#> GSM123194 5 0.5583 0.0533 0.412 0.000 0.140 0.000 0.448 0.000
#> GSM123195 2 0.0000 0.9011 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123196 1 0.3103 0.6586 0.784 0.000 0.208 0.000 0.000 0.008
#> GSM123197 6 0.3508 0.5352 0.020 0.000 0.012 0.152 0.008 0.808
#> GSM123198 2 0.2491 0.7663 0.000 0.836 0.164 0.000 0.000 0.000
#> GSM123199 1 0.2234 0.7500 0.872 0.000 0.004 0.000 0.000 0.124
#> GSM123200 2 0.0000 0.9011 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123201 5 0.5435 -0.3076 0.104 0.000 0.404 0.000 0.488 0.004
#> GSM123202 2 0.3088 0.7327 0.000 0.808 0.172 0.000 0.020 0.000
#> GSM123203 1 0.1866 0.7903 0.908 0.000 0.008 0.000 0.000 0.084
#> GSM123204 2 0.0000 0.9011 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123205 2 0.0000 0.9011 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123206 2 0.0000 0.9011 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123207 3 0.5940 0.1624 0.076 0.000 0.452 0.000 0.424 0.048
#> GSM123208 2 0.0000 0.9011 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123209 3 0.5043 0.2138 0.004 0.384 0.544 0.000 0.068 0.000
#> GSM123210 1 0.1588 0.7912 0.924 0.000 0.004 0.000 0.000 0.072
#> GSM123211 6 0.3890 0.2444 0.400 0.000 0.004 0.000 0.000 0.596
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> SD:mclust 56 0.1895 2
#> SD:mclust 55 0.0442 3
#> SD:mclust 51 0.0552 4
#> SD:mclust 50 0.0464 5
#> SD:mclust 39 0.0185 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.800 0.845 0.942 0.4718 0.531 0.531
#> 3 3 0.772 0.849 0.937 0.2879 0.812 0.658
#> 4 4 0.595 0.674 0.832 0.1746 0.790 0.511
#> 5 5 0.702 0.696 0.860 0.0817 0.914 0.708
#> 6 6 0.618 0.553 0.759 0.0454 0.893 0.604
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 1 0.9686 0.3243 0.604 0.396
#> GSM123213 2 0.0000 0.9235 0.000 1.000
#> GSM123214 2 0.0000 0.9235 0.000 1.000
#> GSM123215 2 0.0672 0.9190 0.008 0.992
#> GSM123216 1 0.0000 0.9393 1.000 0.000
#> GSM123217 1 0.0000 0.9393 1.000 0.000
#> GSM123218 1 0.8144 0.6310 0.748 0.252
#> GSM123219 1 0.0000 0.9393 1.000 0.000
#> GSM123220 1 0.0000 0.9393 1.000 0.000
#> GSM123221 1 0.0000 0.9393 1.000 0.000
#> GSM123222 1 0.0000 0.9393 1.000 0.000
#> GSM123223 2 0.0000 0.9235 0.000 1.000
#> GSM123224 1 0.0000 0.9393 1.000 0.000
#> GSM123225 1 0.0000 0.9393 1.000 0.000
#> GSM123226 1 0.0000 0.9393 1.000 0.000
#> GSM123227 1 0.4022 0.8698 0.920 0.080
#> GSM123228 1 0.0000 0.9393 1.000 0.000
#> GSM123229 1 0.0000 0.9393 1.000 0.000
#> GSM123230 1 0.0000 0.9393 1.000 0.000
#> GSM123231 2 0.9933 0.1861 0.452 0.548
#> GSM123232 1 0.0000 0.9393 1.000 0.000
#> GSM123233 2 0.0000 0.9235 0.000 1.000
#> GSM123234 1 0.0000 0.9393 1.000 0.000
#> GSM123235 1 0.0000 0.9393 1.000 0.000
#> GSM123236 2 0.9580 0.3812 0.380 0.620
#> GSM123237 1 0.0000 0.9393 1.000 0.000
#> GSM123238 1 0.0000 0.9393 1.000 0.000
#> GSM123239 2 0.0000 0.9235 0.000 1.000
#> GSM123240 1 0.0000 0.9393 1.000 0.000
#> GSM123241 1 0.0000 0.9393 1.000 0.000
#> GSM123242 2 0.1843 0.9058 0.028 0.972
#> GSM123182 1 0.9933 0.1187 0.548 0.452
#> GSM123183 1 0.6712 0.7550 0.824 0.176
#> GSM123184 2 0.2603 0.8925 0.044 0.956
#> GSM123185 2 0.9996 0.0576 0.488 0.512
#> GSM123186 1 0.0376 0.9363 0.996 0.004
#> GSM123187 2 0.0000 0.9235 0.000 1.000
#> GSM123188 1 0.0000 0.9393 1.000 0.000
#> GSM123189 1 0.0000 0.9393 1.000 0.000
#> GSM123190 2 0.3274 0.8770 0.060 0.940
#> GSM123191 1 0.0000 0.9393 1.000 0.000
#> GSM123192 1 0.0000 0.9393 1.000 0.000
#> GSM123193 1 0.0000 0.9393 1.000 0.000
#> GSM123194 1 0.0000 0.9393 1.000 0.000
#> GSM123195 2 0.0000 0.9235 0.000 1.000
#> GSM123196 1 0.0000 0.9393 1.000 0.000
#> GSM123197 1 0.5629 0.8133 0.868 0.132
#> GSM123198 2 0.0000 0.9235 0.000 1.000
#> GSM123199 1 0.0000 0.9393 1.000 0.000
#> GSM123200 2 0.0000 0.9235 0.000 1.000
#> GSM123201 1 0.4161 0.8656 0.916 0.084
#> GSM123202 2 0.0000 0.9235 0.000 1.000
#> GSM123203 1 0.0000 0.9393 1.000 0.000
#> GSM123204 2 0.0000 0.9235 0.000 1.000
#> GSM123205 2 0.0000 0.9235 0.000 1.000
#> GSM123206 2 0.0000 0.9235 0.000 1.000
#> GSM123207 1 0.9998 -0.0239 0.508 0.492
#> GSM123208 2 0.0000 0.9235 0.000 1.000
#> GSM123209 2 0.0000 0.9235 0.000 1.000
#> GSM123210 1 0.0000 0.9393 1.000 0.000
#> GSM123211 1 0.0000 0.9393 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 2 0.0475 0.850 0.004 0.992 0.004
#> GSM123213 2 0.0237 0.850 0.000 0.996 0.004
#> GSM123214 2 0.0237 0.850 0.000 0.996 0.004
#> GSM123215 2 0.0237 0.850 0.000 0.996 0.004
#> GSM123216 1 0.0747 0.940 0.984 0.016 0.000
#> GSM123217 1 0.0237 0.948 0.996 0.004 0.000
#> GSM123218 1 0.5098 0.652 0.752 0.000 0.248
#> GSM123219 1 0.0237 0.948 0.996 0.004 0.000
#> GSM123220 1 0.0237 0.948 0.996 0.004 0.000
#> GSM123221 1 0.0892 0.937 0.980 0.020 0.000
#> GSM123222 1 0.0237 0.948 0.996 0.004 0.000
#> GSM123223 3 0.3941 0.774 0.000 0.156 0.844
#> GSM123224 1 0.0237 0.948 0.996 0.004 0.000
#> GSM123225 1 0.0237 0.948 0.996 0.004 0.000
#> GSM123226 1 0.0000 0.948 1.000 0.000 0.000
#> GSM123227 1 0.4121 0.772 0.832 0.000 0.168
#> GSM123228 1 0.0000 0.948 1.000 0.000 0.000
#> GSM123229 1 0.0000 0.948 1.000 0.000 0.000
#> GSM123230 1 0.0000 0.948 1.000 0.000 0.000
#> GSM123231 3 0.4887 0.678 0.228 0.000 0.772
#> GSM123232 1 0.0000 0.948 1.000 0.000 0.000
#> GSM123233 3 0.0592 0.903 0.012 0.000 0.988
#> GSM123234 1 0.0000 0.948 1.000 0.000 0.000
#> GSM123235 1 0.0237 0.946 0.996 0.000 0.004
#> GSM123236 3 0.4452 0.724 0.192 0.000 0.808
#> GSM123237 1 0.0237 0.948 0.996 0.004 0.000
#> GSM123238 2 0.5859 0.566 0.344 0.656 0.000
#> GSM123239 3 0.0237 0.906 0.004 0.000 0.996
#> GSM123240 1 0.0892 0.937 0.980 0.020 0.000
#> GSM123241 1 0.0237 0.948 0.996 0.004 0.000
#> GSM123242 2 0.0237 0.850 0.000 0.996 0.004
#> GSM123182 2 0.2878 0.791 0.096 0.904 0.000
#> GSM123183 2 0.0237 0.850 0.004 0.996 0.000
#> GSM123184 2 0.0237 0.850 0.000 0.996 0.004
#> GSM123185 3 0.9149 0.169 0.416 0.144 0.440
#> GSM123186 2 0.1411 0.839 0.036 0.964 0.000
#> GSM123187 3 0.2537 0.851 0.000 0.080 0.920
#> GSM123188 1 0.0237 0.948 0.996 0.004 0.000
#> GSM123189 1 0.0000 0.948 1.000 0.000 0.000
#> GSM123190 3 0.0747 0.900 0.016 0.000 0.984
#> GSM123191 1 0.0237 0.948 0.996 0.004 0.000
#> GSM123192 2 0.5859 0.566 0.344 0.656 0.000
#> GSM123193 1 0.0592 0.943 0.988 0.012 0.000
#> GSM123194 1 0.0000 0.948 1.000 0.000 0.000
#> GSM123195 3 0.0000 0.908 0.000 0.000 1.000
#> GSM123196 1 0.0000 0.948 1.000 0.000 0.000
#> GSM123197 2 0.6168 0.421 0.412 0.588 0.000
#> GSM123198 3 0.0000 0.908 0.000 0.000 1.000
#> GSM123199 1 0.0000 0.948 1.000 0.000 0.000
#> GSM123200 3 0.0000 0.908 0.000 0.000 1.000
#> GSM123201 1 0.4452 0.743 0.808 0.000 0.192
#> GSM123202 3 0.0000 0.908 0.000 0.000 1.000
#> GSM123203 1 0.0000 0.948 1.000 0.000 0.000
#> GSM123204 3 0.0000 0.908 0.000 0.000 1.000
#> GSM123205 3 0.0000 0.908 0.000 0.000 1.000
#> GSM123206 3 0.0000 0.908 0.000 0.000 1.000
#> GSM123207 1 0.6274 0.108 0.544 0.000 0.456
#> GSM123208 3 0.0000 0.908 0.000 0.000 1.000
#> GSM123209 3 0.0000 0.908 0.000 0.000 1.000
#> GSM123210 1 0.0237 0.948 0.996 0.004 0.000
#> GSM123211 1 0.3816 0.779 0.852 0.148 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 4 0.1722 0.7976 0.048 0.008 0.000 0.944
#> GSM123213 4 0.1706 0.7870 0.000 0.036 0.016 0.948
#> GSM123214 4 0.0000 0.8119 0.000 0.000 0.000 1.000
#> GSM123215 4 0.0000 0.8119 0.000 0.000 0.000 1.000
#> GSM123216 1 0.0336 0.8557 0.992 0.000 0.000 0.008
#> GSM123217 1 0.3942 0.6661 0.764 0.000 0.236 0.000
#> GSM123218 3 0.6356 0.4329 0.308 0.088 0.604 0.000
#> GSM123219 3 0.5781 0.3197 0.380 0.000 0.584 0.036
#> GSM123220 1 0.1022 0.8580 0.968 0.000 0.032 0.000
#> GSM123221 1 0.2300 0.8110 0.920 0.000 0.064 0.016
#> GSM123222 1 0.3400 0.6999 0.820 0.000 0.180 0.000
#> GSM123223 2 0.3610 0.7541 0.000 0.800 0.000 0.200
#> GSM123224 1 0.0000 0.8570 1.000 0.000 0.000 0.000
#> GSM123225 1 0.0000 0.8570 1.000 0.000 0.000 0.000
#> GSM123226 1 0.3837 0.6927 0.776 0.000 0.224 0.000
#> GSM123227 3 0.4840 0.5703 0.240 0.028 0.732 0.000
#> GSM123228 3 0.4972 0.2788 0.456 0.000 0.544 0.000
#> GSM123229 1 0.1557 0.8503 0.944 0.000 0.056 0.000
#> GSM123230 1 0.2973 0.7608 0.856 0.000 0.144 0.000
#> GSM123231 3 0.4122 0.3878 0.004 0.236 0.760 0.000
#> GSM123232 1 0.0188 0.8574 0.996 0.000 0.004 0.000
#> GSM123233 3 0.4990 0.2874 0.008 0.352 0.640 0.000
#> GSM123234 3 0.5673 0.2490 0.448 0.024 0.528 0.000
#> GSM123235 1 0.4284 0.7026 0.764 0.012 0.224 0.000
#> GSM123236 3 0.6160 0.4169 0.072 0.316 0.612 0.000
#> GSM123237 1 0.1302 0.8496 0.956 0.000 0.044 0.000
#> GSM123238 4 0.5798 0.1882 0.464 0.008 0.016 0.512
#> GSM123239 2 0.2281 0.8760 0.000 0.904 0.096 0.000
#> GSM123240 1 0.0188 0.8565 0.996 0.000 0.000 0.004
#> GSM123241 1 0.1557 0.8464 0.944 0.000 0.056 0.000
#> GSM123242 4 0.0188 0.8101 0.000 0.004 0.000 0.996
#> GSM123182 3 0.5266 0.2809 0.016 0.004 0.656 0.324
#> GSM123183 4 0.0921 0.8083 0.028 0.000 0.000 0.972
#> GSM123184 4 0.0000 0.8119 0.000 0.000 0.000 1.000
#> GSM123185 3 0.7068 0.4481 0.052 0.188 0.656 0.104
#> GSM123186 4 0.6548 0.4087 0.104 0.000 0.304 0.592
#> GSM123187 2 0.3351 0.7739 0.000 0.844 0.008 0.148
#> GSM123188 1 0.0188 0.8579 0.996 0.000 0.004 0.000
#> GSM123189 3 0.4585 0.4266 0.332 0.000 0.668 0.000
#> GSM123190 3 0.5105 -0.0229 0.004 0.432 0.564 0.000
#> GSM123191 1 0.4331 0.6036 0.712 0.000 0.288 0.000
#> GSM123192 4 0.4584 0.5187 0.300 0.000 0.004 0.696
#> GSM123193 1 0.4098 0.6970 0.784 0.000 0.204 0.012
#> GSM123194 3 0.4535 0.5010 0.292 0.004 0.704 0.000
#> GSM123195 2 0.2081 0.8776 0.000 0.916 0.084 0.000
#> GSM123196 1 0.3123 0.7897 0.844 0.000 0.156 0.000
#> GSM123197 1 0.6771 0.1887 0.576 0.028 0.052 0.344
#> GSM123198 2 0.0469 0.8891 0.000 0.988 0.012 0.000
#> GSM123199 1 0.1389 0.8459 0.952 0.000 0.048 0.000
#> GSM123200 2 0.0921 0.8912 0.000 0.972 0.028 0.000
#> GSM123201 3 0.6635 0.5557 0.228 0.152 0.620 0.000
#> GSM123202 2 0.0188 0.8904 0.000 0.996 0.004 0.000
#> GSM123203 1 0.1211 0.8475 0.960 0.000 0.040 0.000
#> GSM123204 2 0.0817 0.8911 0.000 0.976 0.024 0.000
#> GSM123205 2 0.0188 0.8884 0.000 0.996 0.004 0.000
#> GSM123206 2 0.2266 0.8777 0.000 0.912 0.084 0.004
#> GSM123207 2 0.6466 0.3001 0.092 0.588 0.320 0.000
#> GSM123208 2 0.2408 0.8663 0.000 0.896 0.104 0.000
#> GSM123209 2 0.0336 0.8885 0.000 0.992 0.008 0.000
#> GSM123210 1 0.0000 0.8570 1.000 0.000 0.000 0.000
#> GSM123211 1 0.0921 0.8476 0.972 0.000 0.000 0.028
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 4 0.0404 0.8544 0.012 0.000 0.000 0.988 0.000
#> GSM123213 4 0.1041 0.8417 0.000 0.004 0.000 0.964 0.032
#> GSM123214 4 0.0000 0.8568 0.000 0.000 0.000 1.000 0.000
#> GSM123215 4 0.0000 0.8568 0.000 0.000 0.000 1.000 0.000
#> GSM123216 1 0.0290 0.8082 0.992 0.000 0.008 0.000 0.000
#> GSM123217 1 0.4109 0.5108 0.700 0.000 0.288 0.000 0.012
#> GSM123218 3 0.1518 0.7194 0.004 0.004 0.944 0.000 0.048
#> GSM123219 3 0.3749 0.7368 0.108 0.000 0.828 0.052 0.012
#> GSM123220 1 0.1205 0.7998 0.956 0.000 0.040 0.000 0.004
#> GSM123221 1 0.1410 0.7785 0.940 0.000 0.000 0.000 0.060
#> GSM123222 1 0.4297 0.0760 0.528 0.000 0.000 0.000 0.472
#> GSM123223 2 0.2471 0.8435 0.000 0.864 0.000 0.136 0.000
#> GSM123224 1 0.0000 0.8080 1.000 0.000 0.000 0.000 0.000
#> GSM123225 1 0.0290 0.8082 0.992 0.000 0.008 0.000 0.000
#> GSM123226 1 0.4367 0.3398 0.620 0.000 0.372 0.000 0.008
#> GSM123227 5 0.3863 0.6798 0.012 0.000 0.248 0.000 0.740
#> GSM123228 5 0.4237 0.7052 0.152 0.000 0.076 0.000 0.772
#> GSM123229 1 0.2338 0.7470 0.884 0.000 0.112 0.000 0.004
#> GSM123230 1 0.4341 0.3711 0.628 0.000 0.008 0.000 0.364
#> GSM123231 3 0.2238 0.7148 0.004 0.064 0.912 0.000 0.020
#> GSM123232 1 0.0290 0.8079 0.992 0.000 0.000 0.000 0.008
#> GSM123233 5 0.0693 0.8297 0.000 0.012 0.008 0.000 0.980
#> GSM123234 5 0.2536 0.7734 0.128 0.000 0.004 0.000 0.868
#> GSM123235 1 0.6162 -0.1013 0.436 0.132 0.432 0.000 0.000
#> GSM123236 5 0.2763 0.7947 0.000 0.004 0.148 0.000 0.848
#> GSM123237 1 0.0880 0.8029 0.968 0.000 0.032 0.000 0.000
#> GSM123238 1 0.3659 0.6226 0.768 0.000 0.000 0.220 0.012
#> GSM123239 2 0.2209 0.8950 0.000 0.912 0.056 0.000 0.032
#> GSM123240 1 0.0162 0.8082 0.996 0.000 0.004 0.000 0.000
#> GSM123241 1 0.1270 0.7916 0.948 0.000 0.052 0.000 0.000
#> GSM123242 4 0.0404 0.8545 0.000 0.000 0.000 0.988 0.012
#> GSM123182 4 0.6360 -0.0738 0.000 0.000 0.388 0.448 0.164
#> GSM123183 4 0.0404 0.8545 0.012 0.000 0.000 0.988 0.000
#> GSM123184 4 0.0000 0.8568 0.000 0.000 0.000 1.000 0.000
#> GSM123185 5 0.0902 0.8320 0.004 0.004 0.008 0.008 0.976
#> GSM123186 3 0.5869 0.0209 0.052 0.020 0.468 0.460 0.000
#> GSM123187 2 0.5140 0.7521 0.000 0.720 0.016 0.168 0.096
#> GSM123188 1 0.0404 0.8081 0.988 0.000 0.012 0.000 0.000
#> GSM123189 3 0.2535 0.7466 0.076 0.000 0.892 0.000 0.032
#> GSM123190 3 0.1484 0.7185 0.000 0.008 0.944 0.000 0.048
#> GSM123191 3 0.4425 0.0713 0.452 0.004 0.544 0.000 0.000
#> GSM123192 4 0.4127 0.4237 0.312 0.000 0.008 0.680 0.000
#> GSM123193 1 0.3949 0.4519 0.668 0.000 0.332 0.000 0.000
#> GSM123194 3 0.3155 0.7303 0.128 0.008 0.848 0.000 0.016
#> GSM123195 2 0.0609 0.9117 0.000 0.980 0.020 0.000 0.000
#> GSM123196 1 0.4410 0.1691 0.556 0.000 0.440 0.000 0.004
#> GSM123197 1 0.4461 0.6555 0.784 0.136 0.000 0.032 0.048
#> GSM123198 2 0.4971 0.7576 0.000 0.712 0.144 0.000 0.144
#> GSM123199 1 0.0451 0.8076 0.988 0.000 0.004 0.000 0.008
#> GSM123200 2 0.0324 0.9130 0.000 0.992 0.004 0.000 0.004
#> GSM123201 5 0.1329 0.8345 0.008 0.004 0.032 0.000 0.956
#> GSM123202 2 0.0703 0.9128 0.000 0.976 0.024 0.000 0.000
#> GSM123203 1 0.0290 0.8084 0.992 0.000 0.000 0.000 0.008
#> GSM123204 2 0.1121 0.9102 0.000 0.956 0.000 0.000 0.044
#> GSM123205 2 0.2773 0.8727 0.000 0.868 0.020 0.000 0.112
#> GSM123206 2 0.0000 0.9126 0.000 1.000 0.000 0.000 0.000
#> GSM123207 5 0.4057 0.6633 0.020 0.176 0.020 0.000 0.784
#> GSM123208 2 0.1270 0.9048 0.000 0.948 0.052 0.000 0.000
#> GSM123209 2 0.2074 0.9070 0.000 0.920 0.044 0.000 0.036
#> GSM123210 1 0.0000 0.8080 1.000 0.000 0.000 0.000 0.000
#> GSM123211 1 0.0162 0.8082 0.996 0.000 0.004 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 4 0.2558 0.8021 0.104 0.000 0.000 0.868 0.000 0.028
#> GSM123213 4 0.0520 0.8857 0.000 0.000 0.000 0.984 0.008 0.008
#> GSM123214 4 0.0363 0.8872 0.000 0.000 0.000 0.988 0.012 0.000
#> GSM123215 4 0.0146 0.8880 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM123216 1 0.2144 0.7704 0.908 0.000 0.048 0.000 0.040 0.004
#> GSM123217 1 0.4915 0.4845 0.668 0.000 0.248 0.000 0.048 0.036
#> GSM123218 3 0.2369 0.4698 0.008 0.004 0.900 0.000 0.028 0.060
#> GSM123219 3 0.6168 0.4375 0.208 0.000 0.564 0.028 0.008 0.192
#> GSM123220 1 0.2065 0.7745 0.912 0.000 0.032 0.000 0.052 0.004
#> GSM123221 1 0.4105 0.6733 0.784 0.000 0.072 0.000 0.032 0.112
#> GSM123222 5 0.4944 0.4111 0.308 0.000 0.040 0.000 0.624 0.028
#> GSM123223 2 0.3154 0.6014 0.000 0.800 0.012 0.184 0.000 0.004
#> GSM123224 1 0.2188 0.7602 0.912 0.000 0.036 0.000 0.020 0.032
#> GSM123225 1 0.1401 0.7790 0.948 0.000 0.020 0.000 0.028 0.004
#> GSM123226 3 0.6294 0.0742 0.404 0.000 0.432 0.000 0.112 0.052
#> GSM123227 5 0.3863 0.5159 0.012 0.000 0.164 0.000 0.776 0.048
#> GSM123228 5 0.2112 0.6111 0.088 0.000 0.016 0.000 0.896 0.000
#> GSM123229 1 0.5796 0.2129 0.548 0.000 0.328 0.000 0.052 0.072
#> GSM123230 5 0.6737 0.2134 0.184 0.000 0.268 0.000 0.476 0.072
#> GSM123231 3 0.4753 0.3934 0.004 0.080 0.740 0.000 0.132 0.044
#> GSM123232 1 0.1913 0.7793 0.924 0.000 0.016 0.000 0.044 0.016
#> GSM123233 5 0.1750 0.5808 0.000 0.004 0.008 0.004 0.928 0.056
#> GSM123234 5 0.4932 0.5374 0.052 0.000 0.172 0.000 0.708 0.068
#> GSM123235 3 0.7124 0.2339 0.152 0.308 0.448 0.000 0.020 0.072
#> GSM123236 6 0.6008 0.0385 0.020 0.000 0.176 0.000 0.276 0.528
#> GSM123237 1 0.2474 0.7389 0.880 0.000 0.080 0.000 0.000 0.040
#> GSM123238 1 0.2868 0.7131 0.852 0.000 0.000 0.112 0.004 0.032
#> GSM123239 2 0.2340 0.7248 0.000 0.896 0.044 0.000 0.056 0.004
#> GSM123240 1 0.0458 0.7750 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM123241 1 0.2958 0.7554 0.852 0.000 0.108 0.000 0.028 0.012
#> GSM123242 4 0.0767 0.8824 0.000 0.000 0.008 0.976 0.004 0.012
#> GSM123182 4 0.6078 0.3279 0.000 0.000 0.268 0.540 0.160 0.032
#> GSM123183 4 0.1686 0.8488 0.064 0.000 0.000 0.924 0.000 0.012
#> GSM123184 4 0.0146 0.8880 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM123185 5 0.1844 0.5758 0.000 0.000 0.004 0.024 0.924 0.048
#> GSM123186 3 0.6581 0.2077 0.108 0.004 0.488 0.320 0.000 0.080
#> GSM123187 2 0.6792 0.0429 0.004 0.452 0.008 0.312 0.036 0.188
#> GSM123188 1 0.1829 0.7604 0.920 0.000 0.056 0.000 0.000 0.024
#> GSM123189 3 0.3823 0.4838 0.052 0.000 0.788 0.004 0.008 0.148
#> GSM123190 3 0.3684 0.3514 0.000 0.004 0.692 0.000 0.004 0.300
#> GSM123191 3 0.5048 0.4517 0.284 0.004 0.640 0.000 0.036 0.036
#> GSM123192 1 0.5063 0.1423 0.508 0.000 0.032 0.440 0.012 0.008
#> GSM123193 1 0.4071 0.4380 0.672 0.000 0.304 0.000 0.004 0.020
#> GSM123194 3 0.5591 0.4265 0.172 0.000 0.584 0.004 0.004 0.236
#> GSM123195 2 0.1349 0.7613 0.000 0.940 0.056 0.000 0.000 0.004
#> GSM123196 3 0.6321 0.1906 0.360 0.004 0.484 0.000 0.080 0.072
#> GSM123197 1 0.4735 0.5861 0.728 0.168 0.000 0.036 0.004 0.064
#> GSM123198 6 0.4929 0.4402 0.000 0.280 0.052 0.000 0.024 0.644
#> GSM123199 1 0.4335 0.6618 0.756 0.000 0.060 0.000 0.152 0.032
#> GSM123200 2 0.0622 0.7721 0.000 0.980 0.008 0.000 0.000 0.012
#> GSM123201 5 0.3593 0.4652 0.000 0.000 0.024 0.000 0.748 0.228
#> GSM123202 2 0.0146 0.7725 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM123203 1 0.3770 0.6464 0.760 0.000 0.012 0.000 0.204 0.024
#> GSM123204 2 0.1411 0.7400 0.000 0.936 0.000 0.000 0.004 0.060
#> GSM123205 6 0.4561 0.1719 0.000 0.464 0.008 0.000 0.020 0.508
#> GSM123206 2 0.0508 0.7718 0.000 0.984 0.004 0.000 0.000 0.012
#> GSM123207 5 0.5645 0.0371 0.020 0.080 0.004 0.000 0.516 0.380
#> GSM123208 2 0.1075 0.7666 0.000 0.952 0.048 0.000 0.000 0.000
#> GSM123209 2 0.5155 0.0382 0.064 0.572 0.004 0.000 0.008 0.352
#> GSM123210 1 0.0603 0.7758 0.980 0.000 0.000 0.000 0.004 0.016
#> GSM123211 1 0.0865 0.7739 0.964 0.000 0.000 0.000 0.000 0.036
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> SD:NMF 55 0.2178 2
#> SD:NMF 58 0.0954 3
#> SD:NMF 46 0.0403 4
#> SD:NMF 51 0.0618 5
#> SD:NMF 36 0.1556 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.436 0.805 0.902 0.4446 0.541 0.541
#> 3 3 0.428 0.753 0.829 0.1964 0.940 0.889
#> 4 4 0.541 0.728 0.841 0.3180 0.729 0.479
#> 5 5 0.645 0.660 0.767 0.0730 0.941 0.798
#> 6 6 0.678 0.644 0.819 0.0504 0.938 0.757
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.6343 0.791 0.160 0.840
#> GSM123213 2 0.9129 0.515 0.328 0.672
#> GSM123214 2 0.0672 0.858 0.008 0.992
#> GSM123215 2 0.0672 0.858 0.008 0.992
#> GSM123216 1 0.0000 0.892 1.000 0.000
#> GSM123217 1 0.0000 0.892 1.000 0.000
#> GSM123218 1 0.7056 0.789 0.808 0.192
#> GSM123219 1 0.5519 0.843 0.872 0.128
#> GSM123220 1 0.0000 0.892 1.000 0.000
#> GSM123221 1 0.1633 0.887 0.976 0.024
#> GSM123222 1 0.0672 0.891 0.992 0.008
#> GSM123223 2 0.0000 0.858 0.000 1.000
#> GSM123224 1 0.0000 0.892 1.000 0.000
#> GSM123225 1 0.0000 0.892 1.000 0.000
#> GSM123226 1 0.0000 0.892 1.000 0.000
#> GSM123227 1 0.5629 0.842 0.868 0.132
#> GSM123228 1 0.0000 0.892 1.000 0.000
#> GSM123229 1 0.3274 0.878 0.940 0.060
#> GSM123230 1 0.0376 0.891 0.996 0.004
#> GSM123231 1 0.7056 0.789 0.808 0.192
#> GSM123232 1 0.0000 0.892 1.000 0.000
#> GSM123233 1 0.9608 0.470 0.616 0.384
#> GSM123234 1 0.0376 0.891 0.996 0.004
#> GSM123235 1 0.3274 0.877 0.940 0.060
#> GSM123236 1 0.8327 0.705 0.736 0.264
#> GSM123237 1 0.0000 0.892 1.000 0.000
#> GSM123238 2 0.7602 0.732 0.220 0.780
#> GSM123239 1 0.8386 0.701 0.732 0.268
#> GSM123240 1 0.0000 0.892 1.000 0.000
#> GSM123241 1 0.0000 0.892 1.000 0.000
#> GSM123242 2 0.9129 0.515 0.328 0.672
#> GSM123182 2 0.9896 0.235 0.440 0.560
#> GSM123183 2 0.6343 0.791 0.160 0.840
#> GSM123184 2 0.0672 0.858 0.008 0.992
#> GSM123185 1 0.9608 0.470 0.616 0.384
#> GSM123186 1 0.5519 0.843 0.872 0.128
#> GSM123187 2 0.9129 0.515 0.328 0.672
#> GSM123188 1 0.0000 0.892 1.000 0.000
#> GSM123189 1 0.5842 0.834 0.860 0.140
#> GSM123190 1 0.9248 0.540 0.660 0.340
#> GSM123191 1 0.5519 0.843 0.872 0.128
#> GSM123192 1 0.1633 0.887 0.976 0.024
#> GSM123193 1 0.0000 0.892 1.000 0.000
#> GSM123194 1 0.5519 0.843 0.872 0.128
#> GSM123195 2 0.0000 0.858 0.000 1.000
#> GSM123196 1 0.3274 0.878 0.940 0.060
#> GSM123197 2 0.6343 0.791 0.160 0.840
#> GSM123198 2 0.4562 0.822 0.096 0.904
#> GSM123199 1 0.0000 0.892 1.000 0.000
#> GSM123200 2 0.0000 0.858 0.000 1.000
#> GSM123201 1 0.8327 0.705 0.736 0.264
#> GSM123202 2 0.0000 0.858 0.000 1.000
#> GSM123203 1 0.0000 0.892 1.000 0.000
#> GSM123204 2 0.0000 0.858 0.000 1.000
#> GSM123205 2 0.0000 0.858 0.000 1.000
#> GSM123206 2 0.0000 0.858 0.000 1.000
#> GSM123207 1 0.8327 0.705 0.736 0.264
#> GSM123208 2 0.0000 0.858 0.000 1.000
#> GSM123209 2 0.6247 0.777 0.156 0.844
#> GSM123210 1 0.0000 0.892 1.000 0.000
#> GSM123211 1 0.0000 0.892 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 2 0.3183 0.640 0.076 0.908 0.016
#> GSM123213 2 0.9648 0.431 0.304 0.460 0.236
#> GSM123214 2 0.4235 0.510 0.000 0.824 0.176
#> GSM123215 2 0.4235 0.510 0.000 0.824 0.176
#> GSM123216 1 0.2711 0.836 0.912 0.088 0.000
#> GSM123217 1 0.2537 0.840 0.920 0.080 0.000
#> GSM123218 1 0.6031 0.756 0.788 0.096 0.116
#> GSM123219 1 0.4660 0.812 0.856 0.072 0.072
#> GSM123220 1 0.2261 0.843 0.932 0.068 0.000
#> GSM123221 1 0.3116 0.834 0.892 0.108 0.000
#> GSM123222 1 0.0983 0.848 0.980 0.016 0.004
#> GSM123223 3 0.0000 0.927 0.000 0.000 1.000
#> GSM123224 1 0.2261 0.843 0.932 0.068 0.000
#> GSM123225 1 0.2711 0.836 0.912 0.088 0.000
#> GSM123226 1 0.0424 0.845 0.992 0.008 0.000
#> GSM123227 1 0.4790 0.800 0.848 0.096 0.056
#> GSM123228 1 0.0424 0.845 0.992 0.008 0.000
#> GSM123229 1 0.2682 0.832 0.920 0.076 0.004
#> GSM123230 1 0.1163 0.845 0.972 0.028 0.000
#> GSM123231 1 0.6031 0.756 0.788 0.096 0.116
#> GSM123232 1 0.1860 0.845 0.948 0.052 0.000
#> GSM123233 1 0.8505 0.467 0.600 0.144 0.256
#> GSM123234 1 0.1163 0.845 0.972 0.028 0.000
#> GSM123235 1 0.2774 0.832 0.920 0.072 0.008
#> GSM123236 1 0.7011 0.689 0.720 0.092 0.188
#> GSM123237 1 0.2165 0.844 0.936 0.064 0.000
#> GSM123238 2 0.4345 0.620 0.136 0.848 0.016
#> GSM123239 1 0.7133 0.686 0.712 0.096 0.192
#> GSM123240 1 0.2711 0.836 0.912 0.088 0.000
#> GSM123241 1 0.2356 0.842 0.928 0.072 0.000
#> GSM123242 2 0.9648 0.431 0.304 0.460 0.236
#> GSM123182 2 0.8929 0.263 0.416 0.460 0.124
#> GSM123183 2 0.3183 0.640 0.076 0.908 0.016
#> GSM123184 2 0.4235 0.510 0.000 0.824 0.176
#> GSM123185 1 0.8561 0.464 0.600 0.156 0.244
#> GSM123186 1 0.4660 0.812 0.856 0.072 0.072
#> GSM123187 2 0.9648 0.431 0.304 0.460 0.236
#> GSM123188 1 0.2165 0.844 0.936 0.064 0.000
#> GSM123189 1 0.5010 0.796 0.840 0.076 0.084
#> GSM123190 1 0.7916 0.547 0.636 0.100 0.264
#> GSM123191 1 0.4660 0.812 0.856 0.072 0.072
#> GSM123192 1 0.3192 0.837 0.888 0.112 0.000
#> GSM123193 1 0.2537 0.840 0.920 0.080 0.000
#> GSM123194 1 0.4660 0.812 0.856 0.072 0.072
#> GSM123195 3 0.0000 0.927 0.000 0.000 1.000
#> GSM123196 1 0.2682 0.832 0.920 0.076 0.004
#> GSM123197 2 0.3183 0.640 0.076 0.908 0.016
#> GSM123198 3 0.5260 0.713 0.080 0.092 0.828
#> GSM123199 1 0.1860 0.845 0.948 0.052 0.000
#> GSM123200 3 0.0000 0.927 0.000 0.000 1.000
#> GSM123201 1 0.7011 0.689 0.720 0.092 0.188
#> GSM123202 3 0.0000 0.927 0.000 0.000 1.000
#> GSM123203 1 0.1860 0.846 0.948 0.052 0.000
#> GSM123204 3 0.0000 0.927 0.000 0.000 1.000
#> GSM123205 3 0.0000 0.927 0.000 0.000 1.000
#> GSM123206 3 0.0000 0.927 0.000 0.000 1.000
#> GSM123207 1 0.7011 0.689 0.720 0.092 0.188
#> GSM123208 3 0.0000 0.927 0.000 0.000 1.000
#> GSM123209 3 0.6363 0.587 0.136 0.096 0.768
#> GSM123210 1 0.2356 0.842 0.928 0.072 0.000
#> GSM123211 1 0.2711 0.836 0.912 0.088 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 4 0.5116 0.859 0.128 0.000 0.108 0.764
#> GSM123213 3 0.8778 0.100 0.064 0.176 0.388 0.372
#> GSM123214 4 0.0000 0.834 0.000 0.000 0.000 1.000
#> GSM123215 4 0.0000 0.834 0.000 0.000 0.000 1.000
#> GSM123216 1 0.0000 0.872 1.000 0.000 0.000 0.000
#> GSM123217 1 0.0336 0.875 0.992 0.000 0.008 0.000
#> GSM123218 3 0.1284 0.706 0.024 0.012 0.964 0.000
#> GSM123219 1 0.4713 0.651 0.700 0.004 0.292 0.004
#> GSM123220 1 0.1557 0.878 0.944 0.000 0.056 0.000
#> GSM123221 1 0.1637 0.848 0.940 0.000 0.060 0.000
#> GSM123222 1 0.4964 0.277 0.616 0.004 0.380 0.000
#> GSM123223 2 0.0000 0.917 0.000 1.000 0.000 0.000
#> GSM123224 1 0.1022 0.879 0.968 0.000 0.032 0.000
#> GSM123225 1 0.0000 0.872 1.000 0.000 0.000 0.000
#> GSM123226 3 0.4713 0.464 0.360 0.000 0.640 0.000
#> GSM123227 3 0.2973 0.716 0.144 0.000 0.856 0.000
#> GSM123228 3 0.4713 0.464 0.360 0.000 0.640 0.000
#> GSM123229 3 0.3123 0.703 0.156 0.000 0.844 0.000
#> GSM123230 3 0.4134 0.624 0.260 0.000 0.740 0.000
#> GSM123231 3 0.1284 0.706 0.024 0.012 0.964 0.000
#> GSM123232 1 0.2408 0.856 0.896 0.000 0.104 0.000
#> GSM123233 3 0.6121 0.631 0.044 0.176 0.720 0.060
#> GSM123234 3 0.4134 0.624 0.260 0.000 0.740 0.000
#> GSM123235 3 0.2973 0.705 0.144 0.000 0.856 0.000
#> GSM123236 3 0.3548 0.713 0.068 0.068 0.864 0.000
#> GSM123237 1 0.1637 0.877 0.940 0.000 0.060 0.000
#> GSM123238 4 0.5653 0.791 0.192 0.000 0.096 0.712
#> GSM123239 3 0.3764 0.710 0.076 0.072 0.852 0.000
#> GSM123240 1 0.0000 0.872 1.000 0.000 0.000 0.000
#> GSM123241 1 0.1474 0.878 0.948 0.000 0.052 0.000
#> GSM123242 3 0.8778 0.100 0.064 0.176 0.388 0.372
#> GSM123182 3 0.8458 0.179 0.100 0.088 0.444 0.368
#> GSM123183 4 0.5116 0.859 0.128 0.000 0.108 0.764
#> GSM123184 4 0.0000 0.834 0.000 0.000 0.000 1.000
#> GSM123185 3 0.6327 0.628 0.044 0.176 0.708 0.072
#> GSM123186 1 0.4713 0.651 0.700 0.004 0.292 0.004
#> GSM123187 3 0.8778 0.100 0.064 0.176 0.388 0.372
#> GSM123188 1 0.1637 0.877 0.940 0.000 0.060 0.000
#> GSM123189 3 0.2665 0.708 0.088 0.008 0.900 0.004
#> GSM123190 3 0.5141 0.621 0.084 0.160 0.756 0.000
#> GSM123191 1 0.4509 0.656 0.708 0.004 0.288 0.000
#> GSM123192 1 0.1211 0.858 0.960 0.000 0.040 0.000
#> GSM123193 1 0.0336 0.875 0.992 0.000 0.008 0.000
#> GSM123194 1 0.4713 0.651 0.700 0.004 0.292 0.004
#> GSM123195 2 0.0000 0.917 0.000 1.000 0.000 0.000
#> GSM123196 3 0.3123 0.703 0.156 0.000 0.844 0.000
#> GSM123197 4 0.5116 0.859 0.128 0.000 0.108 0.764
#> GSM123198 2 0.4331 0.627 0.000 0.712 0.288 0.000
#> GSM123199 1 0.2408 0.856 0.896 0.000 0.104 0.000
#> GSM123200 2 0.0000 0.917 0.000 1.000 0.000 0.000
#> GSM123201 3 0.3548 0.713 0.068 0.068 0.864 0.000
#> GSM123202 2 0.0000 0.917 0.000 1.000 0.000 0.000
#> GSM123203 1 0.2216 0.863 0.908 0.000 0.092 0.000
#> GSM123204 2 0.0000 0.917 0.000 1.000 0.000 0.000
#> GSM123205 2 0.0000 0.917 0.000 1.000 0.000 0.000
#> GSM123206 2 0.0000 0.917 0.000 1.000 0.000 0.000
#> GSM123207 3 0.3548 0.713 0.068 0.068 0.864 0.000
#> GSM123208 2 0.0000 0.917 0.000 1.000 0.000 0.000
#> GSM123209 2 0.5815 0.544 0.060 0.652 0.288 0.000
#> GSM123210 1 0.1389 0.879 0.952 0.000 0.048 0.000
#> GSM123211 1 0.0000 0.872 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 4 0.6839 0.636 0.096 0.000 0.052 0.472 0.380
#> GSM123213 5 0.8084 0.658 0.060 0.060 0.100 0.368 0.412
#> GSM123214 4 0.0000 0.522 0.000 0.000 0.000 1.000 0.000
#> GSM123215 4 0.0000 0.522 0.000 0.000 0.000 1.000 0.000
#> GSM123216 1 0.0404 0.869 0.988 0.000 0.000 0.000 0.012
#> GSM123217 1 0.0798 0.869 0.976 0.000 0.016 0.000 0.008
#> GSM123218 3 0.1830 0.594 0.008 0.000 0.924 0.000 0.068
#> GSM123219 1 0.4465 0.617 0.672 0.000 0.304 0.000 0.024
#> GSM123220 1 0.1300 0.870 0.956 0.000 0.028 0.000 0.016
#> GSM123221 1 0.2149 0.840 0.916 0.000 0.048 0.000 0.036
#> GSM123222 1 0.6054 0.166 0.560 0.000 0.280 0.000 0.160
#> GSM123223 2 0.0000 0.900 0.000 1.000 0.000 0.000 0.000
#> GSM123224 1 0.0609 0.872 0.980 0.000 0.020 0.000 0.000
#> GSM123225 1 0.0404 0.869 0.988 0.000 0.000 0.000 0.012
#> GSM123226 3 0.6420 0.503 0.324 0.000 0.484 0.000 0.192
#> GSM123227 3 0.5357 0.572 0.096 0.000 0.640 0.000 0.264
#> GSM123228 3 0.6420 0.503 0.324 0.000 0.484 0.000 0.192
#> GSM123229 3 0.2516 0.641 0.140 0.000 0.860 0.000 0.000
#> GSM123230 3 0.3756 0.598 0.248 0.000 0.744 0.000 0.008
#> GSM123231 3 0.1830 0.594 0.008 0.000 0.924 0.000 0.068
#> GSM123232 1 0.2260 0.848 0.908 0.000 0.064 0.000 0.028
#> GSM123233 5 0.6271 0.463 0.000 0.060 0.292 0.060 0.588
#> GSM123234 3 0.4054 0.595 0.248 0.000 0.732 0.000 0.020
#> GSM123235 3 0.2536 0.640 0.128 0.000 0.868 0.000 0.004
#> GSM123236 3 0.4746 0.387 0.024 0.000 0.600 0.000 0.376
#> GSM123237 1 0.1386 0.869 0.952 0.000 0.032 0.000 0.016
#> GSM123238 4 0.7156 0.589 0.160 0.000 0.040 0.436 0.364
#> GSM123239 3 0.5012 0.383 0.032 0.004 0.600 0.000 0.364
#> GSM123240 1 0.0404 0.869 0.988 0.000 0.000 0.000 0.012
#> GSM123241 1 0.1211 0.871 0.960 0.000 0.024 0.000 0.016
#> GSM123242 5 0.8084 0.658 0.060 0.060 0.100 0.368 0.412
#> GSM123182 4 0.7863 -0.523 0.076 0.000 0.224 0.360 0.340
#> GSM123183 4 0.6839 0.636 0.096 0.000 0.052 0.472 0.380
#> GSM123184 4 0.0000 0.522 0.000 0.000 0.000 1.000 0.000
#> GSM123185 5 0.6364 0.477 0.000 0.060 0.288 0.068 0.584
#> GSM123186 1 0.4465 0.617 0.672 0.000 0.304 0.000 0.024
#> GSM123187 5 0.8084 0.658 0.060 0.060 0.100 0.368 0.412
#> GSM123188 1 0.1386 0.869 0.952 0.000 0.032 0.000 0.016
#> GSM123189 3 0.2193 0.603 0.060 0.000 0.912 0.000 0.028
#> GSM123190 3 0.5533 0.457 0.068 0.144 0.716 0.000 0.072
#> GSM123191 1 0.4213 0.627 0.680 0.000 0.308 0.000 0.012
#> GSM123192 1 0.1668 0.854 0.940 0.000 0.028 0.000 0.032
#> GSM123193 1 0.0798 0.869 0.976 0.000 0.016 0.000 0.008
#> GSM123194 1 0.4465 0.617 0.672 0.000 0.304 0.000 0.024
#> GSM123195 2 0.0000 0.900 0.000 1.000 0.000 0.000 0.000
#> GSM123196 3 0.2516 0.641 0.140 0.000 0.860 0.000 0.000
#> GSM123197 4 0.6839 0.636 0.096 0.000 0.052 0.472 0.380
#> GSM123198 2 0.5489 0.458 0.000 0.648 0.216 0.000 0.136
#> GSM123199 1 0.2325 0.846 0.904 0.000 0.068 0.000 0.028
#> GSM123200 2 0.0000 0.900 0.000 1.000 0.000 0.000 0.000
#> GSM123201 3 0.4746 0.387 0.024 0.000 0.600 0.000 0.376
#> GSM123202 2 0.0000 0.900 0.000 1.000 0.000 0.000 0.000
#> GSM123203 1 0.2104 0.855 0.916 0.000 0.060 0.000 0.024
#> GSM123204 2 0.0000 0.900 0.000 1.000 0.000 0.000 0.000
#> GSM123205 2 0.0000 0.900 0.000 1.000 0.000 0.000 0.000
#> GSM123206 2 0.0000 0.900 0.000 1.000 0.000 0.000 0.000
#> GSM123207 3 0.4746 0.387 0.024 0.000 0.600 0.000 0.376
#> GSM123208 2 0.0000 0.900 0.000 1.000 0.000 0.000 0.000
#> GSM123209 2 0.6732 0.340 0.060 0.588 0.216 0.000 0.136
#> GSM123210 1 0.1211 0.872 0.960 0.000 0.024 0.000 0.016
#> GSM123211 1 0.0671 0.867 0.980 0.000 0.004 0.000 0.016
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 4 0.0000 0.95815 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123213 5 0.4473 -0.07485 0.000 0.000 0.008 0.020 0.576 0.396
#> GSM123214 6 0.2300 0.71713 0.000 0.000 0.000 0.144 0.000 0.856
#> GSM123215 6 0.2300 0.71713 0.000 0.000 0.000 0.144 0.000 0.856
#> GSM123216 1 0.1204 0.84692 0.944 0.000 0.000 0.056 0.000 0.000
#> GSM123217 1 0.2134 0.84052 0.904 0.000 0.044 0.052 0.000 0.000
#> GSM123218 3 0.2266 0.70323 0.012 0.000 0.880 0.000 0.108 0.000
#> GSM123219 1 0.5273 0.47694 0.576 0.000 0.348 0.004 0.028 0.044
#> GSM123220 1 0.0551 0.84807 0.984 0.000 0.008 0.004 0.004 0.000
#> GSM123221 1 0.2560 0.82124 0.872 0.000 0.036 0.092 0.000 0.000
#> GSM123222 1 0.6815 0.20264 0.488 0.000 0.220 0.048 0.232 0.012
#> GSM123223 2 0.0000 0.88726 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123224 1 0.1116 0.85018 0.960 0.000 0.008 0.028 0.004 0.000
#> GSM123225 1 0.1204 0.84692 0.944 0.000 0.000 0.056 0.000 0.000
#> GSM123226 5 0.6735 0.06045 0.324 0.000 0.272 0.000 0.368 0.036
#> GSM123227 5 0.5762 0.22401 0.084 0.000 0.352 0.000 0.528 0.036
#> GSM123228 5 0.6735 0.06045 0.324 0.000 0.272 0.000 0.368 0.036
#> GSM123229 3 0.2263 0.77481 0.100 0.000 0.884 0.016 0.000 0.000
#> GSM123230 3 0.3823 0.66829 0.184 0.000 0.764 0.048 0.004 0.000
#> GSM123231 3 0.2266 0.70323 0.012 0.000 0.880 0.000 0.108 0.000
#> GSM123232 1 0.1421 0.82612 0.944 0.000 0.028 0.000 0.028 0.000
#> GSM123233 5 0.1757 0.40540 0.000 0.000 0.008 0.000 0.916 0.076
#> GSM123234 3 0.4768 0.64084 0.184 0.000 0.724 0.048 0.032 0.012
#> GSM123235 3 0.1556 0.77312 0.080 0.000 0.920 0.000 0.000 0.000
#> GSM123236 5 0.3841 0.48474 0.028 0.000 0.256 0.000 0.716 0.000
#> GSM123237 1 0.0260 0.84710 0.992 0.000 0.008 0.000 0.000 0.000
#> GSM123238 4 0.1327 0.87437 0.064 0.000 0.000 0.936 0.000 0.000
#> GSM123239 5 0.4181 0.48009 0.028 0.000 0.256 0.000 0.704 0.012
#> GSM123240 1 0.1204 0.84692 0.944 0.000 0.000 0.056 0.000 0.000
#> GSM123241 1 0.0291 0.84928 0.992 0.000 0.004 0.004 0.000 0.000
#> GSM123242 5 0.4473 -0.07485 0.000 0.000 0.008 0.020 0.576 0.396
#> GSM123182 6 0.6500 -0.00688 0.012 0.000 0.184 0.016 0.392 0.396
#> GSM123183 4 0.0000 0.95815 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123184 6 0.2300 0.71713 0.000 0.000 0.000 0.144 0.000 0.856
#> GSM123185 5 0.2002 0.39690 0.000 0.000 0.004 0.012 0.908 0.076
#> GSM123186 1 0.5273 0.47694 0.576 0.000 0.348 0.004 0.028 0.044
#> GSM123187 5 0.4473 -0.07485 0.000 0.000 0.008 0.020 0.576 0.396
#> GSM123188 1 0.0260 0.84710 0.992 0.000 0.008 0.000 0.000 0.000
#> GSM123189 3 0.1321 0.72707 0.020 0.000 0.952 0.004 0.024 0.000
#> GSM123190 3 0.5684 0.47289 0.012 0.136 0.668 0.000 0.128 0.056
#> GSM123191 1 0.5378 0.49832 0.596 0.000 0.320 0.012 0.028 0.044
#> GSM123192 1 0.2404 0.83282 0.884 0.000 0.036 0.080 0.000 0.000
#> GSM123193 1 0.2134 0.84052 0.904 0.000 0.044 0.052 0.000 0.000
#> GSM123194 1 0.5273 0.47694 0.576 0.000 0.348 0.004 0.028 0.044
#> GSM123195 2 0.0000 0.88726 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123196 3 0.2263 0.77481 0.100 0.000 0.884 0.016 0.000 0.000
#> GSM123197 4 0.0000 0.95815 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123198 2 0.5417 0.44660 0.000 0.580 0.108 0.000 0.300 0.012
#> GSM123199 1 0.1572 0.82230 0.936 0.000 0.036 0.000 0.028 0.000
#> GSM123200 2 0.0000 0.88726 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123201 5 0.3841 0.48474 0.028 0.000 0.256 0.000 0.716 0.000
#> GSM123202 2 0.0000 0.88726 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123203 1 0.1485 0.83323 0.944 0.000 0.024 0.004 0.028 0.000
#> GSM123204 2 0.0260 0.88452 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM123205 2 0.0260 0.88452 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM123206 2 0.0000 0.88726 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123207 5 0.3841 0.48474 0.028 0.000 0.256 0.000 0.716 0.000
#> GSM123208 2 0.0000 0.88726 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123209 2 0.6172 0.35096 0.000 0.520 0.108 0.000 0.316 0.056
#> GSM123210 1 0.0520 0.85046 0.984 0.000 0.008 0.008 0.000 0.000
#> GSM123211 1 0.1327 0.84522 0.936 0.000 0.000 0.064 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> CV:hclust 58 0.1158 2
#> CV:hclust 55 0.0165 3
#> CV:hclust 54 0.0569 4
#> CV:hclust 50 0.0559 5
#> CV:hclust 40 0.1218 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.779 0.847 0.940 0.4590 0.552 0.552
#> 3 3 0.524 0.442 0.659 0.3374 0.798 0.654
#> 4 4 0.636 0.779 0.853 0.1865 0.725 0.426
#> 5 5 0.650 0.654 0.771 0.0769 0.885 0.614
#> 6 6 0.668 0.532 0.747 0.0453 0.952 0.791
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.802 0.667 0.244 0.756
#> GSM123213 2 0.000 0.924 0.000 1.000
#> GSM123214 2 0.000 0.924 0.000 1.000
#> GSM123215 2 0.000 0.924 0.000 1.000
#> GSM123216 1 0.000 0.934 1.000 0.000
#> GSM123217 1 0.000 0.934 1.000 0.000
#> GSM123218 1 0.443 0.847 0.908 0.092
#> GSM123219 1 0.000 0.934 1.000 0.000
#> GSM123220 1 0.000 0.934 1.000 0.000
#> GSM123221 1 0.000 0.934 1.000 0.000
#> GSM123222 1 0.000 0.934 1.000 0.000
#> GSM123223 2 0.000 0.924 0.000 1.000
#> GSM123224 1 0.000 0.934 1.000 0.000
#> GSM123225 1 0.000 0.934 1.000 0.000
#> GSM123226 1 0.000 0.934 1.000 0.000
#> GSM123227 1 0.000 0.934 1.000 0.000
#> GSM123228 1 0.000 0.934 1.000 0.000
#> GSM123229 1 0.000 0.934 1.000 0.000
#> GSM123230 1 0.000 0.934 1.000 0.000
#> GSM123231 1 0.886 0.561 0.696 0.304
#> GSM123232 1 0.000 0.934 1.000 0.000
#> GSM123233 2 0.971 0.250 0.400 0.600
#> GSM123234 1 0.000 0.934 1.000 0.000
#> GSM123235 1 0.000 0.934 1.000 0.000
#> GSM123236 1 0.000 0.934 1.000 0.000
#> GSM123237 1 0.000 0.934 1.000 0.000
#> GSM123238 1 0.971 0.241 0.600 0.400
#> GSM123239 1 0.963 0.394 0.612 0.388
#> GSM123240 1 0.000 0.934 1.000 0.000
#> GSM123241 1 0.000 0.934 1.000 0.000
#> GSM123242 2 0.000 0.924 0.000 1.000
#> GSM123182 1 0.958 0.411 0.620 0.380
#> GSM123183 2 0.802 0.667 0.244 0.756
#> GSM123184 2 0.000 0.924 0.000 1.000
#> GSM123185 1 0.981 0.312 0.580 0.420
#> GSM123186 1 0.000 0.934 1.000 0.000
#> GSM123187 2 0.000 0.924 0.000 1.000
#> GSM123188 1 0.000 0.934 1.000 0.000
#> GSM123189 1 0.000 0.934 1.000 0.000
#> GSM123190 1 0.943 0.455 0.640 0.360
#> GSM123191 1 0.000 0.934 1.000 0.000
#> GSM123192 1 0.000 0.934 1.000 0.000
#> GSM123193 1 0.000 0.934 1.000 0.000
#> GSM123194 1 0.000 0.934 1.000 0.000
#> GSM123195 2 0.000 0.924 0.000 1.000
#> GSM123196 1 0.000 0.934 1.000 0.000
#> GSM123197 2 0.971 0.358 0.400 0.600
#> GSM123198 2 0.000 0.924 0.000 1.000
#> GSM123199 1 0.000 0.934 1.000 0.000
#> GSM123200 2 0.000 0.924 0.000 1.000
#> GSM123201 1 0.000 0.934 1.000 0.000
#> GSM123202 2 0.000 0.924 0.000 1.000
#> GSM123203 1 0.000 0.934 1.000 0.000
#> GSM123204 2 0.000 0.924 0.000 1.000
#> GSM123205 2 0.000 0.924 0.000 1.000
#> GSM123206 2 0.000 0.924 0.000 1.000
#> GSM123207 1 0.000 0.934 1.000 0.000
#> GSM123208 2 0.000 0.924 0.000 1.000
#> GSM123209 2 0.000 0.924 0.000 1.000
#> GSM123210 1 0.000 0.934 1.000 0.000
#> GSM123211 1 0.000 0.934 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 2 0.5331 0.6301 0.076 0.824 0.100
#> GSM123213 2 0.2165 0.6631 0.000 0.936 0.064
#> GSM123214 2 0.0237 0.7047 0.000 0.996 0.004
#> GSM123215 2 0.0237 0.7047 0.000 0.996 0.004
#> GSM123216 1 0.1529 0.7410 0.960 0.000 0.040
#> GSM123217 1 0.0592 0.7540 0.988 0.000 0.012
#> GSM123218 3 0.7744 -0.4453 0.448 0.048 0.504
#> GSM123219 1 0.8085 0.5490 0.584 0.084 0.332
#> GSM123220 1 0.0747 0.7549 0.984 0.000 0.016
#> GSM123221 1 0.1529 0.7410 0.960 0.000 0.040
#> GSM123222 1 0.2356 0.7515 0.928 0.000 0.072
#> GSM123223 2 0.6309 -0.1309 0.000 0.504 0.496
#> GSM123224 1 0.1163 0.7468 0.972 0.000 0.028
#> GSM123225 1 0.1031 0.7468 0.976 0.000 0.024
#> GSM123226 1 0.5016 0.6943 0.760 0.000 0.240
#> GSM123227 1 0.6468 0.5591 0.552 0.004 0.444
#> GSM123228 1 0.2959 0.7452 0.900 0.000 0.100
#> GSM123229 1 0.5397 0.6720 0.720 0.000 0.280
#> GSM123230 1 0.5016 0.6932 0.760 0.000 0.240
#> GSM123231 3 0.7624 -0.3355 0.392 0.048 0.560
#> GSM123232 1 0.0747 0.7547 0.984 0.000 0.016
#> GSM123233 3 0.6793 0.1757 0.100 0.160 0.740
#> GSM123234 1 0.6140 0.5961 0.596 0.000 0.404
#> GSM123235 1 0.6244 0.5681 0.560 0.000 0.440
#> GSM123236 1 0.6495 0.5257 0.536 0.004 0.460
#> GSM123237 1 0.0592 0.7544 0.988 0.000 0.012
#> GSM123238 1 0.7013 0.2849 0.640 0.324 0.036
#> GSM123239 3 0.1529 0.1890 0.040 0.000 0.960
#> GSM123240 1 0.1529 0.7408 0.960 0.000 0.040
#> GSM123241 1 0.0592 0.7544 0.988 0.000 0.012
#> GSM123242 2 0.1643 0.6909 0.000 0.956 0.044
#> GSM123182 3 0.9862 -0.1815 0.272 0.316 0.412
#> GSM123183 2 0.5331 0.6301 0.076 0.824 0.100
#> GSM123184 2 0.0237 0.7047 0.000 0.996 0.004
#> GSM123185 3 0.9901 -0.1812 0.328 0.276 0.396
#> GSM123186 1 0.9271 0.4064 0.528 0.244 0.228
#> GSM123187 2 0.6280 -0.0347 0.000 0.540 0.460
#> GSM123188 1 0.0592 0.7544 0.988 0.000 0.012
#> GSM123189 1 0.8403 0.4569 0.468 0.084 0.448
#> GSM123190 3 0.7690 -0.3832 0.416 0.048 0.536
#> GSM123191 1 0.6442 0.5716 0.564 0.004 0.432
#> GSM123192 1 0.5581 0.5755 0.788 0.176 0.036
#> GSM123193 1 0.1643 0.7456 0.956 0.000 0.044
#> GSM123194 1 0.6386 0.5845 0.584 0.004 0.412
#> GSM123195 3 0.6305 0.0245 0.000 0.484 0.516
#> GSM123196 1 0.6225 0.5754 0.568 0.000 0.432
#> GSM123197 2 0.7474 0.4516 0.216 0.684 0.100
#> GSM123198 3 0.6302 0.0341 0.000 0.480 0.520
#> GSM123199 1 0.2356 0.7514 0.928 0.000 0.072
#> GSM123200 3 0.6302 0.0341 0.000 0.480 0.520
#> GSM123201 1 0.6468 0.5591 0.552 0.004 0.444
#> GSM123202 3 0.6302 0.0341 0.000 0.480 0.520
#> GSM123203 1 0.2066 0.7525 0.940 0.000 0.060
#> GSM123204 3 0.6302 0.0341 0.000 0.480 0.520
#> GSM123205 3 0.6302 0.0341 0.000 0.480 0.520
#> GSM123206 3 0.6305 0.0245 0.000 0.484 0.516
#> GSM123207 1 0.6451 0.5517 0.560 0.004 0.436
#> GSM123208 3 0.6302 0.0341 0.000 0.480 0.520
#> GSM123209 3 0.6111 -0.0227 0.000 0.396 0.604
#> GSM123210 1 0.0592 0.7506 0.988 0.000 0.012
#> GSM123211 1 0.2414 0.7278 0.940 0.020 0.040
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 4 0.4105 0.7827 0.052 0.100 0.008 0.840
#> GSM123213 4 0.4399 0.7842 0.000 0.212 0.020 0.768
#> GSM123214 4 0.3801 0.7969 0.000 0.220 0.000 0.780
#> GSM123215 4 0.3801 0.7969 0.000 0.220 0.000 0.780
#> GSM123216 1 0.1677 0.8731 0.948 0.000 0.012 0.040
#> GSM123217 1 0.1488 0.8889 0.956 0.000 0.032 0.012
#> GSM123218 3 0.0927 0.7806 0.008 0.000 0.976 0.016
#> GSM123219 3 0.5312 0.6587 0.268 0.000 0.692 0.040
#> GSM123220 1 0.1767 0.8847 0.944 0.000 0.044 0.012
#> GSM123221 1 0.2522 0.8594 0.908 0.000 0.016 0.076
#> GSM123222 1 0.3245 0.8541 0.880 0.000 0.056 0.064
#> GSM123223 2 0.1118 0.9345 0.000 0.964 0.000 0.036
#> GSM123224 1 0.1297 0.8894 0.964 0.000 0.020 0.016
#> GSM123225 1 0.1284 0.8870 0.964 0.000 0.012 0.024
#> GSM123226 1 0.5894 0.2688 0.536 0.000 0.428 0.036
#> GSM123227 3 0.3082 0.7839 0.032 0.000 0.884 0.084
#> GSM123228 1 0.3894 0.8166 0.844 0.000 0.068 0.088
#> GSM123229 3 0.5708 0.0836 0.416 0.000 0.556 0.028
#> GSM123230 1 0.5992 0.2162 0.516 0.000 0.444 0.040
#> GSM123231 3 0.0967 0.7802 0.004 0.004 0.976 0.016
#> GSM123232 1 0.1913 0.8808 0.940 0.000 0.040 0.020
#> GSM123233 3 0.6307 0.6654 0.020 0.164 0.700 0.116
#> GSM123234 3 0.3840 0.7448 0.104 0.000 0.844 0.052
#> GSM123235 3 0.2032 0.7782 0.028 0.000 0.936 0.036
#> GSM123236 3 0.5265 0.7577 0.160 0.000 0.748 0.092
#> GSM123237 1 0.1174 0.8888 0.968 0.000 0.020 0.012
#> GSM123238 4 0.5147 0.0888 0.460 0.000 0.004 0.536
#> GSM123239 3 0.6315 0.6817 0.024 0.188 0.696 0.092
#> GSM123240 1 0.1022 0.8784 0.968 0.000 0.000 0.032
#> GSM123241 1 0.1545 0.8876 0.952 0.000 0.040 0.008
#> GSM123242 4 0.4406 0.7929 0.000 0.192 0.028 0.780
#> GSM123182 3 0.5951 0.7438 0.152 0.000 0.696 0.152
#> GSM123183 4 0.3778 0.7829 0.052 0.100 0.000 0.848
#> GSM123184 4 0.3801 0.7969 0.000 0.220 0.000 0.780
#> GSM123185 3 0.6006 0.6575 0.024 0.052 0.696 0.228
#> GSM123186 3 0.6617 0.4042 0.380 0.000 0.532 0.088
#> GSM123187 2 0.3617 0.8477 0.000 0.860 0.076 0.064
#> GSM123188 1 0.1488 0.8889 0.956 0.000 0.032 0.012
#> GSM123189 3 0.1356 0.7804 0.008 0.000 0.960 0.032
#> GSM123190 3 0.0524 0.7818 0.000 0.004 0.988 0.008
#> GSM123191 3 0.3695 0.7697 0.156 0.000 0.828 0.016
#> GSM123192 1 0.2714 0.8334 0.884 0.000 0.004 0.112
#> GSM123193 1 0.2521 0.8700 0.912 0.000 0.024 0.064
#> GSM123194 3 0.5204 0.7593 0.160 0.000 0.752 0.088
#> GSM123195 2 0.0000 0.9597 0.000 1.000 0.000 0.000
#> GSM123196 3 0.2500 0.7750 0.044 0.000 0.916 0.040
#> GSM123197 4 0.6720 0.7000 0.108 0.100 0.088 0.704
#> GSM123198 2 0.1256 0.9411 0.000 0.964 0.028 0.008
#> GSM123199 1 0.3088 0.8531 0.888 0.000 0.060 0.052
#> GSM123200 2 0.0000 0.9597 0.000 1.000 0.000 0.000
#> GSM123201 3 0.3354 0.7845 0.044 0.000 0.872 0.084
#> GSM123202 2 0.0000 0.9597 0.000 1.000 0.000 0.000
#> GSM123203 1 0.3009 0.8557 0.892 0.000 0.056 0.052
#> GSM123204 2 0.0000 0.9597 0.000 1.000 0.000 0.000
#> GSM123205 2 0.0672 0.9532 0.000 0.984 0.008 0.008
#> GSM123206 2 0.0000 0.9597 0.000 1.000 0.000 0.000
#> GSM123207 3 0.5923 0.7121 0.216 0.000 0.684 0.100
#> GSM123208 2 0.0000 0.9597 0.000 1.000 0.000 0.000
#> GSM123209 2 0.2546 0.8739 0.000 0.900 0.092 0.008
#> GSM123210 1 0.1406 0.8880 0.960 0.000 0.024 0.016
#> GSM123211 1 0.2402 0.8551 0.912 0.000 0.012 0.076
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 4 0.4616 0.782 0.020 0.028 0.012 0.764 0.176
#> GSM123213 4 0.3303 0.785 0.000 0.076 0.000 0.848 0.076
#> GSM123214 4 0.2115 0.814 0.000 0.068 0.008 0.916 0.008
#> GSM123215 4 0.2115 0.814 0.000 0.068 0.008 0.916 0.008
#> GSM123216 1 0.1695 0.779 0.940 0.000 0.008 0.008 0.044
#> GSM123217 1 0.1630 0.791 0.944 0.000 0.016 0.004 0.036
#> GSM123218 3 0.2648 0.499 0.000 0.000 0.848 0.000 0.152
#> GSM123219 1 0.7449 -0.182 0.348 0.000 0.348 0.032 0.272
#> GSM123220 1 0.2868 0.774 0.884 0.000 0.072 0.012 0.032
#> GSM123221 1 0.3821 0.738 0.836 0.000 0.044 0.036 0.084
#> GSM123222 1 0.5647 0.652 0.684 0.000 0.128 0.024 0.164
#> GSM123223 2 0.2179 0.820 0.000 0.896 0.000 0.100 0.004
#> GSM123224 1 0.2026 0.789 0.928 0.000 0.044 0.012 0.016
#> GSM123225 1 0.1299 0.787 0.960 0.000 0.008 0.012 0.020
#> GSM123226 3 0.5692 0.248 0.372 0.000 0.556 0.012 0.060
#> GSM123227 5 0.4754 0.743 0.020 0.012 0.304 0.000 0.664
#> GSM123228 1 0.5801 0.511 0.608 0.000 0.092 0.012 0.288
#> GSM123229 3 0.4017 0.529 0.248 0.000 0.736 0.012 0.004
#> GSM123230 3 0.4935 0.419 0.304 0.000 0.656 0.024 0.016
#> GSM123231 3 0.2648 0.499 0.000 0.000 0.848 0.000 0.152
#> GSM123232 1 0.3253 0.766 0.864 0.000 0.068 0.012 0.056
#> GSM123233 5 0.6303 0.713 0.000 0.080 0.160 0.108 0.652
#> GSM123234 3 0.4844 0.472 0.052 0.000 0.744 0.028 0.176
#> GSM123235 3 0.0609 0.598 0.020 0.000 0.980 0.000 0.000
#> GSM123236 5 0.4898 0.768 0.052 0.012 0.228 0.000 0.708
#> GSM123237 1 0.1787 0.790 0.936 0.000 0.016 0.004 0.044
#> GSM123238 4 0.6901 0.313 0.352 0.000 0.024 0.460 0.164
#> GSM123239 5 0.5240 0.735 0.000 0.120 0.204 0.000 0.676
#> GSM123240 1 0.0865 0.787 0.972 0.000 0.004 0.000 0.024
#> GSM123241 1 0.1877 0.786 0.924 0.000 0.064 0.000 0.012
#> GSM123242 4 0.3186 0.801 0.000 0.056 0.020 0.872 0.052
#> GSM123182 5 0.6313 0.594 0.020 0.004 0.280 0.112 0.584
#> GSM123183 4 0.4290 0.784 0.016 0.028 0.012 0.792 0.152
#> GSM123184 4 0.2115 0.814 0.000 0.068 0.008 0.916 0.008
#> GSM123185 5 0.6112 0.699 0.000 0.036 0.152 0.164 0.648
#> GSM123186 1 0.7554 -0.092 0.372 0.000 0.308 0.040 0.280
#> GSM123187 2 0.6634 0.179 0.000 0.512 0.056 0.076 0.356
#> GSM123188 1 0.1547 0.791 0.948 0.000 0.016 0.004 0.032
#> GSM123189 3 0.3606 0.501 0.004 0.000 0.808 0.024 0.164
#> GSM123190 3 0.4523 -0.043 0.000 0.012 0.640 0.004 0.344
#> GSM123191 3 0.5740 0.312 0.120 0.000 0.656 0.016 0.208
#> GSM123192 1 0.4821 0.655 0.740 0.000 0.032 0.040 0.188
#> GSM123193 1 0.3708 0.719 0.816 0.000 0.044 0.004 0.136
#> GSM123194 5 0.6232 0.481 0.096 0.000 0.344 0.020 0.540
#> GSM123195 2 0.0404 0.884 0.000 0.988 0.000 0.012 0.000
#> GSM123196 3 0.1059 0.599 0.020 0.000 0.968 0.008 0.004
#> GSM123197 4 0.6623 0.699 0.040 0.028 0.088 0.628 0.216
#> GSM123198 2 0.2127 0.850 0.000 0.892 0.000 0.000 0.108
#> GSM123199 1 0.4941 0.682 0.736 0.000 0.100 0.012 0.152
#> GSM123200 2 0.0162 0.888 0.000 0.996 0.000 0.000 0.004
#> GSM123201 5 0.4646 0.759 0.024 0.012 0.268 0.000 0.696
#> GSM123202 2 0.0000 0.888 0.000 1.000 0.000 0.000 0.000
#> GSM123203 1 0.4941 0.686 0.736 0.000 0.100 0.012 0.152
#> GSM123204 2 0.0963 0.883 0.000 0.964 0.000 0.000 0.036
#> GSM123205 2 0.1121 0.882 0.000 0.956 0.000 0.000 0.044
#> GSM123206 2 0.0404 0.884 0.000 0.988 0.000 0.012 0.000
#> GSM123207 5 0.4927 0.745 0.056 0.012 0.188 0.008 0.736
#> GSM123208 2 0.0000 0.888 0.000 1.000 0.000 0.000 0.000
#> GSM123209 2 0.4313 0.677 0.000 0.760 0.068 0.000 0.172
#> GSM123210 1 0.1522 0.790 0.944 0.000 0.044 0.012 0.000
#> GSM123211 1 0.3739 0.720 0.820 0.000 0.020 0.024 0.136
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 4 0.1434 0.6521 0.000 0.012 0.012 0.948 0.028 0.000
#> GSM123213 4 0.6422 0.6203 0.000 0.036 0.000 0.460 0.180 0.324
#> GSM123214 4 0.4742 0.7136 0.000 0.024 0.000 0.584 0.020 0.372
#> GSM123215 4 0.4742 0.7136 0.000 0.024 0.000 0.584 0.020 0.372
#> GSM123216 1 0.3062 0.6388 0.816 0.000 0.000 0.024 0.000 0.160
#> GSM123217 1 0.1577 0.6921 0.940 0.000 0.008 0.000 0.016 0.036
#> GSM123218 3 0.3274 0.5326 0.000 0.000 0.804 0.004 0.168 0.024
#> GSM123219 3 0.8037 -0.9234 0.260 0.000 0.296 0.040 0.108 0.296
#> GSM123220 1 0.1749 0.6858 0.936 0.000 0.032 0.004 0.016 0.012
#> GSM123221 1 0.5443 0.4868 0.672 0.000 0.044 0.156 0.004 0.124
#> GSM123222 1 0.6427 0.4775 0.596 0.000 0.112 0.028 0.200 0.064
#> GSM123223 2 0.2538 0.7822 0.000 0.860 0.000 0.000 0.016 0.124
#> GSM123224 1 0.2255 0.6915 0.892 0.000 0.004 0.016 0.000 0.088
#> GSM123225 1 0.2527 0.6763 0.868 0.000 0.000 0.024 0.000 0.108
#> GSM123226 3 0.6026 0.1405 0.408 0.000 0.468 0.004 0.068 0.052
#> GSM123227 5 0.3184 0.6635 0.016 0.000 0.120 0.000 0.836 0.028
#> GSM123228 1 0.5617 0.3991 0.584 0.000 0.052 0.004 0.308 0.052
#> GSM123229 3 0.3647 0.5328 0.160 0.000 0.796 0.020 0.020 0.004
#> GSM123230 3 0.5007 0.4859 0.192 0.000 0.708 0.020 0.040 0.040
#> GSM123231 3 0.3274 0.5326 0.000 0.000 0.804 0.004 0.168 0.024
#> GSM123232 1 0.3578 0.6376 0.832 0.000 0.032 0.004 0.080 0.052
#> GSM123233 5 0.2709 0.6885 0.000 0.028 0.020 0.004 0.884 0.064
#> GSM123234 3 0.5318 0.4721 0.028 0.000 0.676 0.044 0.216 0.036
#> GSM123235 3 0.1296 0.5718 0.012 0.000 0.952 0.000 0.032 0.004
#> GSM123236 5 0.1552 0.7047 0.020 0.000 0.036 0.000 0.940 0.004
#> GSM123237 1 0.1148 0.6967 0.960 0.000 0.004 0.000 0.020 0.016
#> GSM123238 4 0.4885 0.2918 0.204 0.000 0.016 0.684 0.000 0.096
#> GSM123239 5 0.2046 0.7049 0.000 0.044 0.032 0.000 0.916 0.008
#> GSM123240 1 0.2358 0.6752 0.876 0.000 0.000 0.016 0.000 0.108
#> GSM123241 1 0.1856 0.6922 0.920 0.000 0.032 0.000 0.000 0.048
#> GSM123242 4 0.6257 0.6454 0.000 0.024 0.004 0.492 0.164 0.316
#> GSM123182 5 0.5813 0.1679 0.000 0.000 0.216 0.000 0.488 0.296
#> GSM123183 4 0.0767 0.6522 0.000 0.012 0.008 0.976 0.004 0.000
#> GSM123184 4 0.4742 0.7136 0.000 0.024 0.000 0.584 0.020 0.372
#> GSM123185 5 0.2891 0.6798 0.000 0.008 0.024 0.012 0.868 0.088
#> GSM123186 6 0.8213 0.0000 0.280 0.000 0.252 0.056 0.112 0.300
#> GSM123187 5 0.5530 0.3748 0.000 0.224 0.000 0.000 0.560 0.216
#> GSM123188 1 0.0964 0.6967 0.968 0.000 0.004 0.000 0.016 0.012
#> GSM123189 3 0.3911 0.3570 0.000 0.000 0.760 0.004 0.056 0.180
#> GSM123190 5 0.5272 0.1718 0.000 0.000 0.428 0.004 0.484 0.084
#> GSM123191 3 0.6044 -0.1358 0.104 0.000 0.596 0.000 0.084 0.216
#> GSM123192 1 0.6740 -0.2089 0.444 0.000 0.060 0.156 0.004 0.336
#> GSM123193 1 0.6228 0.0397 0.572 0.000 0.092 0.072 0.008 0.256
#> GSM123194 5 0.6881 -0.1615 0.060 0.000 0.288 0.000 0.416 0.236
#> GSM123195 2 0.0000 0.8863 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123196 3 0.1434 0.5739 0.012 0.000 0.948 0.012 0.028 0.000
#> GSM123197 4 0.4525 0.5659 0.020 0.012 0.056 0.792 0.076 0.044
#> GSM123198 2 0.4566 0.7245 0.000 0.712 0.004 0.000 0.148 0.136
#> GSM123199 1 0.4972 0.5415 0.704 0.000 0.052 0.004 0.188 0.052
#> GSM123200 2 0.0000 0.8863 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123201 5 0.2706 0.6865 0.024 0.000 0.068 0.000 0.880 0.028
#> GSM123202 2 0.0146 0.8857 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM123203 1 0.4969 0.5465 0.708 0.000 0.052 0.004 0.180 0.056
#> GSM123204 2 0.1700 0.8667 0.000 0.916 0.004 0.000 0.000 0.080
#> GSM123205 2 0.2402 0.8437 0.000 0.856 0.004 0.000 0.000 0.140
#> GSM123206 2 0.0146 0.8857 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM123207 5 0.1409 0.7031 0.012 0.000 0.032 0.008 0.948 0.000
#> GSM123208 2 0.0000 0.8863 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123209 2 0.5141 0.5039 0.000 0.612 0.012 0.000 0.292 0.084
#> GSM123210 1 0.2765 0.6735 0.876 0.000 0.044 0.016 0.000 0.064
#> GSM123211 1 0.5303 0.4421 0.636 0.000 0.012 0.196 0.000 0.156
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> CV:kmeans 54 0.1016 2
#> CV:kmeans 39 0.9911 3
#> CV:kmeans 56 0.0277 4
#> CV:kmeans 49 0.0846 5
#> CV:kmeans 43 0.0313 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.932 0.908 0.965 0.5026 0.503 0.503
#> 3 3 0.596 0.503 0.772 0.3135 0.731 0.514
#> 4 4 0.753 0.842 0.894 0.1294 0.802 0.489
#> 5 5 0.725 0.699 0.848 0.0640 0.934 0.741
#> 6 6 0.782 0.756 0.855 0.0398 0.958 0.803
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.118 0.966 0.016 0.984
#> GSM123213 2 0.000 0.979 0.000 1.000
#> GSM123214 2 0.000 0.979 0.000 1.000
#> GSM123215 2 0.000 0.979 0.000 1.000
#> GSM123216 1 0.000 0.948 1.000 0.000
#> GSM123217 1 0.000 0.948 1.000 0.000
#> GSM123218 1 0.969 0.354 0.604 0.396
#> GSM123219 1 0.000 0.948 1.000 0.000
#> GSM123220 1 0.000 0.948 1.000 0.000
#> GSM123221 1 0.000 0.948 1.000 0.000
#> GSM123222 1 0.000 0.948 1.000 0.000
#> GSM123223 2 0.000 0.979 0.000 1.000
#> GSM123224 1 0.000 0.948 1.000 0.000
#> GSM123225 1 0.000 0.948 1.000 0.000
#> GSM123226 1 0.000 0.948 1.000 0.000
#> GSM123227 1 0.000 0.948 1.000 0.000
#> GSM123228 1 0.000 0.948 1.000 0.000
#> GSM123229 1 0.000 0.948 1.000 0.000
#> GSM123230 1 0.000 0.948 1.000 0.000
#> GSM123231 1 0.990 0.230 0.560 0.440
#> GSM123232 1 0.000 0.948 1.000 0.000
#> GSM123233 2 0.000 0.979 0.000 1.000
#> GSM123234 1 0.000 0.948 1.000 0.000
#> GSM123235 1 0.000 0.948 1.000 0.000
#> GSM123236 2 0.921 0.450 0.336 0.664
#> GSM123237 1 0.000 0.948 1.000 0.000
#> GSM123238 1 0.971 0.343 0.600 0.400
#> GSM123239 2 0.000 0.979 0.000 1.000
#> GSM123240 1 0.000 0.948 1.000 0.000
#> GSM123241 1 0.000 0.948 1.000 0.000
#> GSM123242 2 0.000 0.979 0.000 1.000
#> GSM123182 2 0.000 0.979 0.000 1.000
#> GSM123183 2 0.204 0.951 0.032 0.968
#> GSM123184 2 0.000 0.979 0.000 1.000
#> GSM123185 2 0.000 0.979 0.000 1.000
#> GSM123186 1 0.971 0.343 0.600 0.400
#> GSM123187 2 0.000 0.979 0.000 1.000
#> GSM123188 1 0.000 0.948 1.000 0.000
#> GSM123189 1 0.260 0.909 0.956 0.044
#> GSM123190 2 0.000 0.979 0.000 1.000
#> GSM123191 1 0.000 0.948 1.000 0.000
#> GSM123192 1 0.000 0.948 1.000 0.000
#> GSM123193 1 0.000 0.948 1.000 0.000
#> GSM123194 1 0.000 0.948 1.000 0.000
#> GSM123195 2 0.000 0.979 0.000 1.000
#> GSM123196 1 0.000 0.948 1.000 0.000
#> GSM123197 2 0.456 0.880 0.096 0.904
#> GSM123198 2 0.000 0.979 0.000 1.000
#> GSM123199 1 0.000 0.948 1.000 0.000
#> GSM123200 2 0.000 0.979 0.000 1.000
#> GSM123201 1 0.000 0.948 1.000 0.000
#> GSM123202 2 0.000 0.979 0.000 1.000
#> GSM123203 1 0.000 0.948 1.000 0.000
#> GSM123204 2 0.000 0.979 0.000 1.000
#> GSM123205 2 0.000 0.979 0.000 1.000
#> GSM123206 2 0.000 0.979 0.000 1.000
#> GSM123207 2 0.000 0.979 0.000 1.000
#> GSM123208 2 0.000 0.979 0.000 1.000
#> GSM123209 2 0.000 0.979 0.000 1.000
#> GSM123210 1 0.000 0.948 1.000 0.000
#> GSM123211 1 0.000 0.948 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 2 0.6302 0.252 0.000 0.520 0.480
#> GSM123213 3 0.4002 0.499 0.000 0.160 0.840
#> GSM123214 2 0.6302 0.252 0.000 0.520 0.480
#> GSM123215 2 0.6302 0.252 0.000 0.520 0.480
#> GSM123216 1 0.0000 0.812 1.000 0.000 0.000
#> GSM123217 1 0.0000 0.812 1.000 0.000 0.000
#> GSM123218 3 0.7074 0.375 0.020 0.480 0.500
#> GSM123219 2 0.5497 0.316 0.292 0.708 0.000
#> GSM123220 1 0.0000 0.812 1.000 0.000 0.000
#> GSM123221 1 0.0000 0.812 1.000 0.000 0.000
#> GSM123222 1 0.0000 0.812 1.000 0.000 0.000
#> GSM123223 3 0.0000 0.708 0.000 0.000 1.000
#> GSM123224 1 0.0000 0.812 1.000 0.000 0.000
#> GSM123225 1 0.0000 0.812 1.000 0.000 0.000
#> GSM123226 1 0.6244 0.377 0.560 0.440 0.000
#> GSM123227 2 0.8814 -0.171 0.404 0.480 0.116
#> GSM123228 1 0.3752 0.691 0.856 0.144 0.000
#> GSM123229 1 0.6244 0.377 0.560 0.440 0.000
#> GSM123230 1 0.6244 0.377 0.560 0.440 0.000
#> GSM123231 3 0.7074 0.375 0.020 0.480 0.500
#> GSM123232 1 0.0000 0.812 1.000 0.000 0.000
#> GSM123233 3 0.5968 0.500 0.000 0.364 0.636
#> GSM123234 1 0.6244 0.377 0.560 0.440 0.000
#> GSM123235 1 0.6299 0.319 0.524 0.476 0.000
#> GSM123236 3 0.6302 0.399 0.000 0.480 0.520
#> GSM123237 1 0.0000 0.812 1.000 0.000 0.000
#> GSM123238 1 0.6677 0.227 0.652 0.324 0.024
#> GSM123239 3 0.6062 0.486 0.000 0.384 0.616
#> GSM123240 1 0.0000 0.812 1.000 0.000 0.000
#> GSM123241 1 0.0000 0.812 1.000 0.000 0.000
#> GSM123242 2 0.6302 0.252 0.000 0.520 0.480
#> GSM123182 2 0.3573 0.285 0.004 0.876 0.120
#> GSM123183 2 0.6302 0.252 0.000 0.520 0.480
#> GSM123184 2 0.6302 0.252 0.000 0.520 0.480
#> GSM123185 3 0.5968 0.500 0.000 0.364 0.636
#> GSM123186 2 0.8143 0.300 0.360 0.560 0.080
#> GSM123187 3 0.0000 0.708 0.000 0.000 1.000
#> GSM123188 1 0.0000 0.812 1.000 0.000 0.000
#> GSM123189 2 0.4002 0.265 0.160 0.840 0.000
#> GSM123190 3 0.6302 0.399 0.000 0.480 0.520
#> GSM123191 2 0.6192 -0.193 0.420 0.580 0.000
#> GSM123192 2 0.6302 0.113 0.480 0.520 0.000
#> GSM123193 1 0.0000 0.812 1.000 0.000 0.000
#> GSM123194 2 0.6154 -0.155 0.408 0.592 0.000
#> GSM123195 3 0.0000 0.708 0.000 0.000 1.000
#> GSM123196 1 0.6295 0.326 0.528 0.472 0.000
#> GSM123197 3 0.8720 -0.263 0.108 0.412 0.480
#> GSM123198 3 0.0000 0.708 0.000 0.000 1.000
#> GSM123199 1 0.0000 0.812 1.000 0.000 0.000
#> GSM123200 3 0.0000 0.708 0.000 0.000 1.000
#> GSM123201 2 0.8859 -0.164 0.400 0.480 0.120
#> GSM123202 3 0.0000 0.708 0.000 0.000 1.000
#> GSM123203 1 0.0000 0.812 1.000 0.000 0.000
#> GSM123204 3 0.0000 0.708 0.000 0.000 1.000
#> GSM123205 3 0.0000 0.708 0.000 0.000 1.000
#> GSM123206 3 0.0000 0.708 0.000 0.000 1.000
#> GSM123207 3 0.2448 0.647 0.076 0.000 0.924
#> GSM123208 3 0.0000 0.708 0.000 0.000 1.000
#> GSM123209 3 0.0000 0.708 0.000 0.000 1.000
#> GSM123210 1 0.0000 0.812 1.000 0.000 0.000
#> GSM123211 1 0.0892 0.790 0.980 0.020 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 4 0.2149 0.827 0.000 0.088 0.000 0.912
#> GSM123213 4 0.4776 0.436 0.000 0.376 0.000 0.624
#> GSM123214 4 0.2401 0.827 0.000 0.092 0.004 0.904
#> GSM123215 4 0.2401 0.827 0.000 0.092 0.004 0.904
#> GSM123216 1 0.0336 0.977 0.992 0.000 0.000 0.008
#> GSM123217 1 0.0188 0.978 0.996 0.000 0.004 0.000
#> GSM123218 3 0.2281 0.754 0.000 0.096 0.904 0.000
#> GSM123219 4 0.5666 0.567 0.036 0.000 0.348 0.616
#> GSM123220 1 0.0000 0.978 1.000 0.000 0.000 0.000
#> GSM123221 1 0.0336 0.977 0.992 0.000 0.000 0.008
#> GSM123222 1 0.0921 0.961 0.972 0.000 0.000 0.028
#> GSM123223 2 0.1716 0.893 0.000 0.936 0.000 0.064
#> GSM123224 1 0.0188 0.978 0.996 0.000 0.000 0.004
#> GSM123225 1 0.0336 0.977 0.992 0.000 0.000 0.008
#> GSM123226 3 0.4697 0.642 0.356 0.000 0.644 0.000
#> GSM123227 3 0.2803 0.749 0.012 0.008 0.900 0.080
#> GSM123228 1 0.1902 0.920 0.932 0.000 0.004 0.064
#> GSM123229 3 0.4741 0.681 0.328 0.000 0.668 0.004
#> GSM123230 3 0.4800 0.665 0.340 0.000 0.656 0.004
#> GSM123231 3 0.2469 0.751 0.000 0.108 0.892 0.000
#> GSM123232 1 0.0188 0.978 0.996 0.000 0.004 0.000
#> GSM123233 2 0.3521 0.872 0.000 0.864 0.052 0.084
#> GSM123234 3 0.5182 0.712 0.288 0.000 0.684 0.028
#> GSM123235 3 0.2480 0.784 0.088 0.000 0.904 0.008
#> GSM123236 2 0.4762 0.811 0.004 0.796 0.120 0.080
#> GSM123237 1 0.0188 0.978 0.996 0.000 0.004 0.000
#> GSM123238 4 0.4761 0.444 0.372 0.000 0.000 0.628
#> GSM123239 2 0.2342 0.893 0.000 0.912 0.008 0.080
#> GSM123240 1 0.0336 0.977 0.992 0.000 0.000 0.008
#> GSM123241 1 0.0000 0.978 1.000 0.000 0.000 0.000
#> GSM123242 4 0.2466 0.826 0.000 0.096 0.004 0.900
#> GSM123182 4 0.3688 0.691 0.000 0.000 0.208 0.792
#> GSM123183 4 0.2149 0.827 0.000 0.088 0.000 0.912
#> GSM123184 4 0.2401 0.827 0.000 0.092 0.004 0.904
#> GSM123185 2 0.5343 0.738 0.000 0.708 0.052 0.240
#> GSM123186 4 0.5782 0.686 0.052 0.012 0.240 0.696
#> GSM123187 2 0.0336 0.937 0.000 0.992 0.000 0.008
#> GSM123188 1 0.0188 0.978 0.996 0.000 0.004 0.000
#> GSM123189 3 0.1302 0.743 0.000 0.000 0.956 0.044
#> GSM123190 3 0.3219 0.710 0.000 0.164 0.836 0.000
#> GSM123191 3 0.2101 0.777 0.060 0.000 0.928 0.012
#> GSM123192 4 0.5750 0.635 0.216 0.000 0.088 0.696
#> GSM123193 1 0.2843 0.861 0.892 0.000 0.088 0.020
#> GSM123194 3 0.3894 0.744 0.088 0.000 0.844 0.068
#> GSM123195 2 0.0336 0.937 0.000 0.992 0.000 0.008
#> GSM123196 3 0.3831 0.778 0.204 0.000 0.792 0.004
#> GSM123197 4 0.2334 0.826 0.004 0.088 0.000 0.908
#> GSM123198 2 0.0188 0.937 0.000 0.996 0.004 0.000
#> GSM123199 1 0.0895 0.966 0.976 0.000 0.004 0.020
#> GSM123200 2 0.0188 0.938 0.000 0.996 0.000 0.004
#> GSM123201 3 0.5942 0.760 0.160 0.028 0.732 0.080
#> GSM123202 2 0.0336 0.937 0.000 0.992 0.000 0.008
#> GSM123203 1 0.0895 0.966 0.976 0.000 0.004 0.020
#> GSM123204 2 0.0000 0.938 0.000 1.000 0.000 0.000
#> GSM123205 2 0.0000 0.938 0.000 1.000 0.000 0.000
#> GSM123206 2 0.0336 0.937 0.000 0.992 0.000 0.008
#> GSM123207 2 0.3292 0.878 0.004 0.880 0.036 0.080
#> GSM123208 2 0.0188 0.938 0.000 0.996 0.000 0.004
#> GSM123209 2 0.0000 0.938 0.000 1.000 0.000 0.000
#> GSM123210 1 0.0188 0.978 0.996 0.000 0.000 0.004
#> GSM123211 1 0.0336 0.977 0.992 0.000 0.000 0.008
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 4 0.0290 0.8119 0.000 0.000 0.000 0.992 0.008
#> GSM123213 4 0.2864 0.7236 0.000 0.112 0.000 0.864 0.024
#> GSM123214 4 0.1356 0.8136 0.000 0.004 0.012 0.956 0.028
#> GSM123215 4 0.1195 0.8142 0.000 0.000 0.012 0.960 0.028
#> GSM123216 1 0.0324 0.8956 0.992 0.000 0.004 0.004 0.000
#> GSM123217 1 0.1364 0.8949 0.952 0.000 0.012 0.000 0.036
#> GSM123218 3 0.3236 0.5747 0.000 0.020 0.828 0.000 0.152
#> GSM123219 3 0.6610 -0.1929 0.032 0.000 0.456 0.412 0.100
#> GSM123220 1 0.0955 0.8979 0.968 0.000 0.004 0.000 0.028
#> GSM123221 1 0.1331 0.8739 0.952 0.000 0.000 0.040 0.008
#> GSM123222 1 0.3266 0.7498 0.796 0.000 0.004 0.000 0.200
#> GSM123223 2 0.0992 0.9244 0.000 0.968 0.000 0.008 0.024
#> GSM123224 1 0.0000 0.8971 1.000 0.000 0.000 0.000 0.000
#> GSM123225 1 0.0000 0.8971 1.000 0.000 0.000 0.000 0.000
#> GSM123226 3 0.5294 0.3618 0.380 0.000 0.564 0.000 0.056
#> GSM123227 5 0.2462 0.6344 0.008 0.000 0.112 0.000 0.880
#> GSM123228 1 0.4559 0.2053 0.512 0.000 0.008 0.000 0.480
#> GSM123229 3 0.3885 0.5692 0.268 0.000 0.724 0.000 0.008
#> GSM123230 3 0.4639 0.4913 0.344 0.000 0.632 0.000 0.024
#> GSM123231 3 0.3704 0.5727 0.000 0.088 0.820 0.000 0.092
#> GSM123232 1 0.1892 0.8769 0.916 0.000 0.004 0.000 0.080
#> GSM123233 5 0.4029 0.5568 0.000 0.316 0.004 0.000 0.680
#> GSM123234 3 0.6326 0.1653 0.136 0.000 0.452 0.004 0.408
#> GSM123235 3 0.1364 0.6202 0.036 0.000 0.952 0.000 0.012
#> GSM123236 5 0.2672 0.7021 0.004 0.116 0.008 0.000 0.872
#> GSM123237 1 0.0955 0.8979 0.968 0.000 0.004 0.000 0.028
#> GSM123238 4 0.3957 0.5424 0.280 0.000 0.000 0.712 0.008
#> GSM123239 2 0.3999 0.3250 0.000 0.656 0.000 0.000 0.344
#> GSM123240 1 0.0000 0.8971 1.000 0.000 0.000 0.000 0.000
#> GSM123241 1 0.0771 0.8988 0.976 0.000 0.004 0.000 0.020
#> GSM123242 4 0.1356 0.8136 0.000 0.004 0.012 0.956 0.028
#> GSM123182 5 0.6631 0.0267 0.000 0.000 0.236 0.324 0.440
#> GSM123183 4 0.0290 0.8119 0.000 0.000 0.000 0.992 0.008
#> GSM123184 4 0.1195 0.8142 0.000 0.000 0.012 0.960 0.028
#> GSM123185 5 0.5443 0.6392 0.000 0.140 0.004 0.184 0.672
#> GSM123186 4 0.5506 0.4873 0.000 0.000 0.284 0.616 0.100
#> GSM123187 2 0.0290 0.9495 0.000 0.992 0.000 0.000 0.008
#> GSM123188 1 0.0955 0.8979 0.968 0.000 0.004 0.000 0.028
#> GSM123189 3 0.1892 0.5796 0.000 0.000 0.916 0.004 0.080
#> GSM123190 3 0.5759 0.4042 0.000 0.224 0.616 0.000 0.160
#> GSM123191 3 0.1942 0.5919 0.012 0.000 0.920 0.000 0.068
#> GSM123192 4 0.7629 0.2385 0.356 0.000 0.140 0.412 0.092
#> GSM123193 1 0.4930 0.6111 0.736 0.000 0.168 0.016 0.080
#> GSM123194 3 0.5118 0.0724 0.040 0.000 0.548 0.000 0.412
#> GSM123195 2 0.0000 0.9563 0.000 1.000 0.000 0.000 0.000
#> GSM123196 3 0.3013 0.6157 0.160 0.000 0.832 0.000 0.008
#> GSM123197 4 0.0693 0.8081 0.008 0.000 0.000 0.980 0.012
#> GSM123198 2 0.0000 0.9563 0.000 1.000 0.000 0.000 0.000
#> GSM123199 1 0.2707 0.8378 0.860 0.000 0.008 0.000 0.132
#> GSM123200 2 0.0000 0.9563 0.000 1.000 0.000 0.000 0.000
#> GSM123201 5 0.2677 0.6291 0.016 0.000 0.112 0.000 0.872
#> GSM123202 2 0.0000 0.9563 0.000 1.000 0.000 0.000 0.000
#> GSM123203 1 0.2563 0.8473 0.872 0.000 0.008 0.000 0.120
#> GSM123204 2 0.0000 0.9563 0.000 1.000 0.000 0.000 0.000
#> GSM123205 2 0.0000 0.9563 0.000 1.000 0.000 0.000 0.000
#> GSM123206 2 0.0000 0.9563 0.000 1.000 0.000 0.000 0.000
#> GSM123207 5 0.3003 0.6962 0.000 0.188 0.000 0.000 0.812
#> GSM123208 2 0.0000 0.9563 0.000 1.000 0.000 0.000 0.000
#> GSM123209 2 0.0000 0.9563 0.000 1.000 0.000 0.000 0.000
#> GSM123210 1 0.0162 0.8978 0.996 0.000 0.000 0.000 0.004
#> GSM123211 1 0.1408 0.8712 0.948 0.000 0.000 0.044 0.008
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 4 0.2831 0.815 0.000 0.000 0.048 0.872 0.016 0.064
#> GSM123213 4 0.1970 0.819 0.000 0.060 0.000 0.912 0.000 0.028
#> GSM123214 4 0.1701 0.846 0.000 0.008 0.000 0.920 0.000 0.072
#> GSM123215 4 0.1701 0.846 0.000 0.008 0.000 0.920 0.000 0.072
#> GSM123216 1 0.2052 0.847 0.912 0.000 0.028 0.000 0.004 0.056
#> GSM123217 1 0.1801 0.848 0.924 0.000 0.004 0.000 0.016 0.056
#> GSM123218 3 0.3027 0.670 0.000 0.000 0.824 0.000 0.148 0.028
#> GSM123219 6 0.2583 0.749 0.008 0.000 0.056 0.052 0.000 0.884
#> GSM123220 1 0.1369 0.859 0.952 0.000 0.016 0.000 0.016 0.016
#> GSM123221 1 0.4722 0.710 0.764 0.000 0.072 0.068 0.016 0.080
#> GSM123222 1 0.4737 0.634 0.664 0.000 0.048 0.000 0.268 0.020
#> GSM123223 2 0.1753 0.867 0.000 0.912 0.000 0.084 0.000 0.004
#> GSM123224 1 0.1334 0.859 0.948 0.000 0.032 0.000 0.000 0.020
#> GSM123225 1 0.1257 0.859 0.952 0.000 0.028 0.000 0.000 0.020
#> GSM123226 3 0.5430 0.211 0.416 0.000 0.500 0.000 0.056 0.028
#> GSM123227 5 0.0767 0.846 0.004 0.000 0.008 0.000 0.976 0.012
#> GSM123228 1 0.4420 0.663 0.692 0.000 0.020 0.000 0.256 0.032
#> GSM123229 3 0.2006 0.689 0.104 0.000 0.892 0.000 0.000 0.004
#> GSM123230 3 0.3750 0.623 0.200 0.000 0.764 0.000 0.016 0.020
#> GSM123231 3 0.3703 0.670 0.000 0.072 0.816 0.000 0.084 0.028
#> GSM123232 1 0.2831 0.826 0.868 0.000 0.016 0.000 0.084 0.032
#> GSM123233 5 0.4402 0.712 0.000 0.188 0.000 0.080 0.724 0.008
#> GSM123234 3 0.5283 0.363 0.064 0.000 0.580 0.004 0.336 0.016
#> GSM123235 3 0.1780 0.699 0.048 0.000 0.924 0.000 0.000 0.028
#> GSM123236 5 0.0653 0.851 0.004 0.012 0.000 0.000 0.980 0.004
#> GSM123237 1 0.1478 0.858 0.944 0.000 0.004 0.000 0.020 0.032
#> GSM123238 4 0.5762 0.571 0.164 0.000 0.076 0.664 0.016 0.080
#> GSM123239 2 0.3881 0.245 0.000 0.600 0.000 0.000 0.396 0.004
#> GSM123240 1 0.1421 0.858 0.944 0.000 0.028 0.000 0.000 0.028
#> GSM123241 1 0.1605 0.863 0.940 0.000 0.016 0.000 0.012 0.032
#> GSM123242 4 0.1701 0.846 0.000 0.008 0.000 0.920 0.000 0.072
#> GSM123182 6 0.3758 0.667 0.000 0.000 0.004 0.176 0.048 0.772
#> GSM123183 4 0.2831 0.815 0.000 0.000 0.048 0.872 0.016 0.064
#> GSM123184 4 0.1701 0.846 0.000 0.008 0.000 0.920 0.000 0.072
#> GSM123185 5 0.4398 0.699 0.000 0.044 0.000 0.220 0.716 0.020
#> GSM123186 6 0.2527 0.751 0.004 0.000 0.032 0.084 0.000 0.880
#> GSM123187 2 0.0972 0.921 0.000 0.964 0.000 0.028 0.000 0.008
#> GSM123188 1 0.1232 0.859 0.956 0.000 0.004 0.000 0.016 0.024
#> GSM123189 3 0.3810 0.299 0.000 0.000 0.572 0.000 0.000 0.428
#> GSM123190 3 0.6089 0.446 0.000 0.220 0.544 0.000 0.208 0.028
#> GSM123191 3 0.3221 0.532 0.000 0.000 0.736 0.000 0.000 0.264
#> GSM123192 6 0.4006 0.702 0.104 0.000 0.028 0.052 0.012 0.804
#> GSM123193 6 0.4510 0.381 0.384 0.000 0.012 0.012 0.004 0.588
#> GSM123194 6 0.3526 0.703 0.088 0.000 0.080 0.000 0.012 0.820
#> GSM123195 2 0.0000 0.946 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123196 3 0.1285 0.702 0.052 0.000 0.944 0.000 0.000 0.004
#> GSM123197 4 0.3210 0.806 0.008 0.000 0.056 0.856 0.016 0.064
#> GSM123198 2 0.0000 0.946 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123199 1 0.3428 0.799 0.820 0.000 0.020 0.000 0.128 0.032
#> GSM123200 2 0.0000 0.946 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123201 5 0.0881 0.843 0.008 0.000 0.008 0.000 0.972 0.012
#> GSM123202 2 0.0000 0.946 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123203 1 0.3428 0.799 0.820 0.000 0.020 0.000 0.128 0.032
#> GSM123204 2 0.0000 0.946 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123205 2 0.0000 0.946 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123206 2 0.0000 0.946 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123207 5 0.1757 0.835 0.000 0.076 0.008 0.000 0.916 0.000
#> GSM123208 2 0.0000 0.946 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123209 2 0.0000 0.946 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123210 1 0.1793 0.854 0.928 0.000 0.032 0.004 0.000 0.036
#> GSM123211 1 0.4322 0.745 0.788 0.000 0.036 0.064 0.016 0.096
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> CV:skmeans 56 0.05592 2
#> CV:skmeans 32 0.00922 3
#> CV:skmeans 59 0.09529 4
#> CV:skmeans 50 0.04082 5
#> CV:skmeans 55 0.01371 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.837 0.905 0.961 0.4928 0.515 0.515
#> 3 3 0.544 0.778 0.852 0.3069 0.692 0.467
#> 4 4 0.691 0.785 0.830 0.0822 0.908 0.745
#> 5 5 0.737 0.691 0.835 0.1107 0.826 0.485
#> 6 6 0.679 0.606 0.789 0.0414 0.973 0.873
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.4939 0.8699 0.108 0.892
#> GSM123213 2 0.0000 0.9728 0.000 1.000
#> GSM123214 2 0.0000 0.9728 0.000 1.000
#> GSM123215 2 0.0000 0.9728 0.000 1.000
#> GSM123216 1 0.0000 0.9466 1.000 0.000
#> GSM123217 1 0.0000 0.9466 1.000 0.000
#> GSM123218 1 0.7219 0.7511 0.800 0.200
#> GSM123219 1 0.0000 0.9466 1.000 0.000
#> GSM123220 1 0.0000 0.9466 1.000 0.000
#> GSM123221 1 0.0000 0.9466 1.000 0.000
#> GSM123222 1 0.0000 0.9466 1.000 0.000
#> GSM123223 2 0.0000 0.9728 0.000 1.000
#> GSM123224 1 0.0000 0.9466 1.000 0.000
#> GSM123225 1 0.0000 0.9466 1.000 0.000
#> GSM123226 1 0.0000 0.9466 1.000 0.000
#> GSM123227 1 0.0000 0.9466 1.000 0.000
#> GSM123228 1 0.0000 0.9466 1.000 0.000
#> GSM123229 1 0.0000 0.9466 1.000 0.000
#> GSM123230 1 0.0000 0.9466 1.000 0.000
#> GSM123231 1 0.8443 0.6461 0.728 0.272
#> GSM123232 1 0.0000 0.9466 1.000 0.000
#> GSM123233 2 0.0000 0.9728 0.000 1.000
#> GSM123234 1 0.0000 0.9466 1.000 0.000
#> GSM123235 1 0.0000 0.9466 1.000 0.000
#> GSM123236 2 0.8861 0.5258 0.304 0.696
#> GSM123237 1 0.0000 0.9466 1.000 0.000
#> GSM123238 1 0.0000 0.9466 1.000 0.000
#> GSM123239 2 0.0376 0.9705 0.004 0.996
#> GSM123240 1 0.0000 0.9466 1.000 0.000
#> GSM123241 1 0.0000 0.9466 1.000 0.000
#> GSM123242 2 0.0000 0.9728 0.000 1.000
#> GSM123182 2 0.0376 0.9705 0.004 0.996
#> GSM123183 2 0.4939 0.8699 0.108 0.892
#> GSM123184 2 0.0000 0.9728 0.000 1.000
#> GSM123185 2 0.0000 0.9728 0.000 1.000
#> GSM123186 1 0.9552 0.3876 0.624 0.376
#> GSM123187 2 0.0000 0.9728 0.000 1.000
#> GSM123188 1 0.0000 0.9466 1.000 0.000
#> GSM123189 1 0.0000 0.9466 1.000 0.000
#> GSM123190 1 0.9000 0.5666 0.684 0.316
#> GSM123191 1 0.4431 0.8696 0.908 0.092
#> GSM123192 1 0.0000 0.9466 1.000 0.000
#> GSM123193 1 0.0000 0.9466 1.000 0.000
#> GSM123194 1 0.4161 0.8792 0.916 0.084
#> GSM123195 2 0.0000 0.9728 0.000 1.000
#> GSM123196 1 0.0000 0.9466 1.000 0.000
#> GSM123197 1 0.9996 0.0356 0.512 0.488
#> GSM123198 2 0.0000 0.9728 0.000 1.000
#> GSM123199 1 0.0000 0.9466 1.000 0.000
#> GSM123200 2 0.0000 0.9728 0.000 1.000
#> GSM123201 1 0.0000 0.9466 1.000 0.000
#> GSM123202 2 0.0000 0.9728 0.000 1.000
#> GSM123203 1 0.0000 0.9466 1.000 0.000
#> GSM123204 2 0.0000 0.9728 0.000 1.000
#> GSM123205 2 0.0000 0.9728 0.000 1.000
#> GSM123206 2 0.0000 0.9728 0.000 1.000
#> GSM123207 2 0.2423 0.9411 0.040 0.960
#> GSM123208 2 0.0000 0.9728 0.000 1.000
#> GSM123209 2 0.0376 0.9705 0.004 0.996
#> GSM123210 1 0.0000 0.9466 1.000 0.000
#> GSM123211 1 0.0000 0.9466 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 3 0.5581 0.7970 0.040 0.168 0.792
#> GSM123213 2 0.0424 0.9179 0.000 0.992 0.008
#> GSM123214 2 0.3752 0.8297 0.000 0.856 0.144
#> GSM123215 2 0.3752 0.8297 0.000 0.856 0.144
#> GSM123216 1 0.0000 0.8469 1.000 0.000 0.000
#> GSM123217 1 0.0237 0.8449 0.996 0.000 0.004
#> GSM123218 3 0.4128 0.8253 0.012 0.132 0.856
#> GSM123219 3 0.3879 0.7900 0.152 0.000 0.848
#> GSM123220 1 0.0000 0.8469 1.000 0.000 0.000
#> GSM123221 1 0.5650 0.6530 0.688 0.000 0.312
#> GSM123222 1 0.5650 0.6530 0.688 0.000 0.312
#> GSM123223 2 0.0424 0.9179 0.000 0.992 0.008
#> GSM123224 1 0.0000 0.8469 1.000 0.000 0.000
#> GSM123225 1 0.0000 0.8469 1.000 0.000 0.000
#> GSM123226 1 0.5650 0.6543 0.688 0.000 0.312
#> GSM123227 1 0.5859 0.6080 0.656 0.000 0.344
#> GSM123228 1 0.0000 0.8469 1.000 0.000 0.000
#> GSM123229 3 0.4062 0.7807 0.164 0.000 0.836
#> GSM123230 1 0.5650 0.6530 0.688 0.000 0.312
#> GSM123231 3 0.4033 0.8235 0.008 0.136 0.856
#> GSM123232 1 0.0000 0.8469 1.000 0.000 0.000
#> GSM123233 2 0.0661 0.9151 0.004 0.988 0.008
#> GSM123234 1 0.5760 0.6291 0.672 0.000 0.328
#> GSM123235 3 0.3879 0.7900 0.152 0.000 0.848
#> GSM123236 3 0.8512 0.6366 0.212 0.176 0.612
#> GSM123237 1 0.0237 0.8449 0.996 0.000 0.004
#> GSM123238 1 0.0000 0.8469 1.000 0.000 0.000
#> GSM123239 3 0.4629 0.7984 0.004 0.188 0.808
#> GSM123240 1 0.0000 0.8469 1.000 0.000 0.000
#> GSM123241 1 0.5465 0.6781 0.712 0.000 0.288
#> GSM123242 3 0.5216 0.7258 0.000 0.260 0.740
#> GSM123182 3 0.3752 0.8187 0.000 0.144 0.856
#> GSM123183 3 0.5956 0.2443 0.004 0.324 0.672
#> GSM123184 2 0.3752 0.8297 0.000 0.856 0.144
#> GSM123185 3 0.4834 0.7882 0.004 0.204 0.792
#> GSM123186 3 0.4164 0.7956 0.144 0.008 0.848
#> GSM123187 2 0.6215 0.0185 0.000 0.572 0.428
#> GSM123188 1 0.0000 0.8469 1.000 0.000 0.000
#> GSM123189 3 0.3879 0.7900 0.152 0.000 0.848
#> GSM123190 3 0.4099 0.8228 0.008 0.140 0.852
#> GSM123191 3 0.4609 0.8340 0.052 0.092 0.856
#> GSM123192 3 0.5216 0.6986 0.260 0.000 0.740
#> GSM123193 1 0.5431 0.6790 0.716 0.000 0.284
#> GSM123194 3 0.4660 0.8299 0.072 0.072 0.856
#> GSM123195 2 0.0424 0.9179 0.000 0.992 0.008
#> GSM123196 3 0.3879 0.7900 0.152 0.000 0.848
#> GSM123197 3 0.3983 0.7983 0.144 0.004 0.852
#> GSM123198 2 0.3267 0.8037 0.000 0.884 0.116
#> GSM123199 1 0.0000 0.8469 1.000 0.000 0.000
#> GSM123200 2 0.0424 0.9179 0.000 0.992 0.008
#> GSM123201 1 0.5859 0.6080 0.656 0.000 0.344
#> GSM123202 2 0.0424 0.9179 0.000 0.992 0.008
#> GSM123203 1 0.0000 0.8469 1.000 0.000 0.000
#> GSM123204 2 0.0424 0.9179 0.000 0.992 0.008
#> GSM123205 2 0.0424 0.9179 0.000 0.992 0.008
#> GSM123206 2 0.0424 0.9179 0.000 0.992 0.008
#> GSM123207 3 0.9239 0.4824 0.328 0.172 0.500
#> GSM123208 2 0.0424 0.9179 0.000 0.992 0.008
#> GSM123209 3 0.4399 0.7983 0.000 0.188 0.812
#> GSM123210 1 0.0000 0.8469 1.000 0.000 0.000
#> GSM123211 1 0.0000 0.8469 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 4 0.5323 0.514 0.020 0.000 0.352 0.628
#> GSM123213 4 0.6845 0.479 0.000 0.236 0.168 0.596
#> GSM123214 4 0.0188 0.797 0.000 0.004 0.000 0.996
#> GSM123215 4 0.0188 0.797 0.000 0.004 0.000 0.996
#> GSM123216 1 0.0707 0.826 0.980 0.000 0.020 0.000
#> GSM123217 1 0.1118 0.821 0.964 0.000 0.036 0.000
#> GSM123218 3 0.0707 0.852 0.000 0.020 0.980 0.000
#> GSM123219 3 0.0000 0.849 0.000 0.000 1.000 0.000
#> GSM123220 1 0.0000 0.829 1.000 0.000 0.000 0.000
#> GSM123221 1 0.4632 0.669 0.688 0.000 0.308 0.004
#> GSM123222 1 0.4632 0.669 0.688 0.000 0.308 0.004
#> GSM123223 2 0.2760 0.830 0.000 0.872 0.000 0.128
#> GSM123224 1 0.0000 0.829 1.000 0.000 0.000 0.000
#> GSM123225 1 0.0592 0.827 0.984 0.000 0.016 0.000
#> GSM123226 1 0.4643 0.654 0.656 0.000 0.344 0.000
#> GSM123227 1 0.4920 0.618 0.628 0.000 0.368 0.004
#> GSM123228 1 0.0707 0.826 0.980 0.000 0.020 0.000
#> GSM123229 3 0.1118 0.845 0.036 0.000 0.964 0.000
#> GSM123230 1 0.4632 0.669 0.688 0.000 0.308 0.004
#> GSM123231 3 0.0707 0.852 0.000 0.020 0.980 0.000
#> GSM123232 1 0.0336 0.829 0.992 0.000 0.008 0.000
#> GSM123233 3 0.4648 0.729 0.016 0.232 0.748 0.004
#> GSM123234 1 0.4720 0.648 0.672 0.000 0.324 0.004
#> GSM123235 3 0.0707 0.849 0.020 0.000 0.980 0.000
#> GSM123236 3 0.7292 0.487 0.220 0.216 0.560 0.004
#> GSM123237 1 0.1118 0.821 0.964 0.000 0.036 0.000
#> GSM123238 1 0.0188 0.829 0.996 0.000 0.000 0.004
#> GSM123239 3 0.4408 0.733 0.008 0.232 0.756 0.004
#> GSM123240 1 0.0000 0.829 1.000 0.000 0.000 0.000
#> GSM123241 1 0.4522 0.680 0.680 0.000 0.320 0.000
#> GSM123242 4 0.4088 0.605 0.000 0.232 0.004 0.764
#> GSM123182 3 0.0707 0.852 0.000 0.020 0.980 0.000
#> GSM123183 4 0.0000 0.795 0.000 0.000 0.000 1.000
#> GSM123184 4 0.0188 0.797 0.000 0.004 0.000 0.996
#> GSM123185 3 0.4648 0.729 0.016 0.232 0.748 0.004
#> GSM123186 3 0.0000 0.849 0.000 0.000 1.000 0.000
#> GSM123187 3 0.3907 0.737 0.000 0.232 0.768 0.000
#> GSM123188 1 0.0707 0.826 0.980 0.000 0.020 0.000
#> GSM123189 3 0.0000 0.849 0.000 0.000 1.000 0.000
#> GSM123190 3 0.1118 0.849 0.000 0.036 0.964 0.000
#> GSM123191 3 0.0707 0.849 0.020 0.000 0.980 0.000
#> GSM123192 3 0.2589 0.758 0.116 0.000 0.884 0.000
#> GSM123193 1 0.4522 0.681 0.680 0.000 0.320 0.000
#> GSM123194 3 0.0000 0.849 0.000 0.000 1.000 0.000
#> GSM123195 2 0.0000 0.971 0.000 1.000 0.000 0.000
#> GSM123196 3 0.0707 0.849 0.020 0.000 0.980 0.000
#> GSM123197 3 0.1305 0.842 0.036 0.000 0.960 0.004
#> GSM123198 2 0.1474 0.903 0.000 0.948 0.052 0.000
#> GSM123199 1 0.0188 0.829 0.996 0.000 0.000 0.004
#> GSM123200 2 0.0000 0.971 0.000 1.000 0.000 0.000
#> GSM123201 1 0.4837 0.621 0.648 0.000 0.348 0.004
#> GSM123202 2 0.0000 0.971 0.000 1.000 0.000 0.000
#> GSM123203 1 0.0188 0.829 0.996 0.000 0.000 0.004
#> GSM123204 2 0.0000 0.971 0.000 1.000 0.000 0.000
#> GSM123205 2 0.0000 0.971 0.000 1.000 0.000 0.000
#> GSM123206 2 0.0000 0.971 0.000 1.000 0.000 0.000
#> GSM123207 3 0.7778 0.283 0.340 0.212 0.444 0.004
#> GSM123208 2 0.0000 0.971 0.000 1.000 0.000 0.000
#> GSM123209 3 0.3907 0.737 0.000 0.232 0.768 0.000
#> GSM123210 1 0.0188 0.829 0.996 0.000 0.000 0.004
#> GSM123211 1 0.0188 0.829 0.996 0.000 0.000 0.004
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 4 0.4706 0.4753 0.004 0.000 0.344 0.632 0.020
#> GSM123213 4 0.5824 0.5534 0.000 0.012 0.088 0.596 0.304
#> GSM123214 4 0.0000 0.7859 0.000 0.000 0.000 1.000 0.000
#> GSM123215 4 0.0000 0.7859 0.000 0.000 0.000 1.000 0.000
#> GSM123216 1 0.0162 0.8515 0.996 0.000 0.004 0.000 0.000
#> GSM123217 1 0.0162 0.8515 0.996 0.000 0.004 0.000 0.000
#> GSM123218 3 0.0162 0.8701 0.000 0.000 0.996 0.000 0.004
#> GSM123219 3 0.0510 0.8716 0.016 0.000 0.984 0.000 0.000
#> GSM123220 1 0.0510 0.8440 0.984 0.000 0.000 0.000 0.016
#> GSM123221 5 0.4192 0.6310 0.404 0.000 0.000 0.000 0.596
#> GSM123222 5 0.4182 0.6339 0.400 0.000 0.000 0.000 0.600
#> GSM123223 2 0.6318 0.5206 0.000 0.556 0.016 0.128 0.300
#> GSM123224 1 0.0510 0.8440 0.984 0.000 0.000 0.000 0.016
#> GSM123225 1 0.0000 0.8516 1.000 0.000 0.000 0.000 0.000
#> GSM123226 3 0.4446 -0.1091 0.476 0.000 0.520 0.000 0.004
#> GSM123227 5 0.4644 0.6518 0.280 0.000 0.040 0.000 0.680
#> GSM123228 1 0.0324 0.8502 0.992 0.000 0.004 0.000 0.004
#> GSM123229 3 0.1018 0.8662 0.016 0.000 0.968 0.000 0.016
#> GSM123230 5 0.4192 0.6310 0.404 0.000 0.000 0.000 0.596
#> GSM123231 3 0.0162 0.8701 0.000 0.000 0.996 0.000 0.004
#> GSM123232 1 0.0404 0.8491 0.988 0.000 0.000 0.000 0.012
#> GSM123233 5 0.0912 0.5121 0.000 0.012 0.016 0.000 0.972
#> GSM123234 5 0.4147 0.6589 0.316 0.000 0.008 0.000 0.676
#> GSM123235 3 0.0671 0.8701 0.004 0.000 0.980 0.000 0.016
#> GSM123236 5 0.3730 0.5001 0.048 0.012 0.112 0.000 0.828
#> GSM123237 1 0.0324 0.8502 0.992 0.000 0.004 0.000 0.004
#> GSM123238 5 0.4192 0.6310 0.404 0.000 0.000 0.000 0.596
#> GSM123239 5 0.3163 0.3662 0.000 0.012 0.164 0.000 0.824
#> GSM123240 1 0.0510 0.8440 0.984 0.000 0.000 0.000 0.016
#> GSM123241 1 0.4264 0.3938 0.620 0.000 0.376 0.000 0.004
#> GSM123242 4 0.4624 0.5945 0.000 0.012 0.016 0.676 0.296
#> GSM123182 3 0.0162 0.8701 0.000 0.000 0.996 0.000 0.004
#> GSM123183 4 0.0000 0.7859 0.000 0.000 0.000 1.000 0.000
#> GSM123184 4 0.0000 0.7859 0.000 0.000 0.000 1.000 0.000
#> GSM123185 5 0.1597 0.5071 0.000 0.012 0.048 0.000 0.940
#> GSM123186 3 0.0510 0.8716 0.016 0.000 0.984 0.000 0.000
#> GSM123187 3 0.4193 0.5460 0.000 0.012 0.684 0.000 0.304
#> GSM123188 1 0.0162 0.8515 0.996 0.000 0.004 0.000 0.000
#> GSM123189 3 0.0510 0.8716 0.016 0.000 0.984 0.000 0.000
#> GSM123190 3 0.2338 0.7925 0.000 0.004 0.884 0.000 0.112
#> GSM123191 3 0.0671 0.8701 0.004 0.000 0.980 0.000 0.016
#> GSM123192 3 0.2377 0.7824 0.128 0.000 0.872 0.000 0.000
#> GSM123193 1 0.4305 0.0898 0.512 0.000 0.488 0.000 0.000
#> GSM123194 3 0.0510 0.8716 0.016 0.000 0.984 0.000 0.000
#> GSM123195 2 0.0000 0.8253 0.000 1.000 0.000 0.000 0.000
#> GSM123196 3 0.0671 0.8701 0.004 0.000 0.980 0.000 0.016
#> GSM123197 5 0.4331 0.3419 0.004 0.000 0.400 0.000 0.596
#> GSM123198 2 0.5338 0.5438 0.000 0.544 0.056 0.000 0.400
#> GSM123199 5 0.4182 0.6311 0.400 0.000 0.000 0.000 0.600
#> GSM123200 2 0.0000 0.8253 0.000 1.000 0.000 0.000 0.000
#> GSM123201 5 0.4428 0.6599 0.268 0.000 0.032 0.000 0.700
#> GSM123202 2 0.3527 0.7439 0.000 0.792 0.016 0.000 0.192
#> GSM123203 5 0.4182 0.6311 0.400 0.000 0.000 0.000 0.600
#> GSM123204 2 0.0000 0.8253 0.000 1.000 0.000 0.000 0.000
#> GSM123205 2 0.3209 0.7611 0.000 0.812 0.008 0.000 0.180
#> GSM123206 2 0.0000 0.8253 0.000 1.000 0.000 0.000 0.000
#> GSM123207 5 0.0324 0.5352 0.004 0.004 0.000 0.000 0.992
#> GSM123208 2 0.0000 0.8253 0.000 1.000 0.000 0.000 0.000
#> GSM123209 3 0.4173 0.5511 0.000 0.012 0.688 0.000 0.300
#> GSM123210 1 0.3366 0.4561 0.768 0.000 0.000 0.000 0.232
#> GSM123211 5 0.4192 0.6310 0.404 0.000 0.000 0.000 0.596
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 4 0.3690 0.3676 0.000 0.000 0.288 0.700 0.012 0.000
#> GSM123213 4 0.4703 -0.3009 0.000 0.000 0.044 0.492 0.000 0.464
#> GSM123214 4 0.2527 0.6661 0.000 0.000 0.000 0.832 0.000 0.168
#> GSM123215 4 0.2527 0.6661 0.000 0.000 0.000 0.832 0.000 0.168
#> GSM123216 1 0.0937 0.8598 0.960 0.000 0.000 0.000 0.040 0.000
#> GSM123217 1 0.0000 0.8660 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123218 3 0.0000 0.7803 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM123219 3 0.1714 0.7754 0.092 0.000 0.908 0.000 0.000 0.000
#> GSM123220 1 0.0000 0.8660 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123221 5 0.3950 0.6973 0.240 0.000 0.040 0.000 0.720 0.000
#> GSM123222 5 0.3653 0.6877 0.300 0.000 0.008 0.000 0.692 0.000
#> GSM123223 2 0.3854 0.0473 0.000 0.536 0.000 0.000 0.000 0.464
#> GSM123224 1 0.1007 0.8580 0.956 0.000 0.000 0.000 0.044 0.000
#> GSM123225 1 0.0937 0.8598 0.960 0.000 0.000 0.000 0.040 0.000
#> GSM123226 3 0.5274 0.1041 0.408 0.000 0.492 0.000 0.100 0.000
#> GSM123227 5 0.1219 0.6986 0.048 0.000 0.004 0.000 0.948 0.000
#> GSM123228 1 0.1814 0.8255 0.900 0.000 0.000 0.000 0.100 0.000
#> GSM123229 3 0.1700 0.7626 0.048 0.000 0.928 0.000 0.024 0.000
#> GSM123230 5 0.4769 0.6583 0.240 0.000 0.104 0.000 0.656 0.000
#> GSM123231 3 0.0000 0.7803 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM123232 1 0.1814 0.8255 0.900 0.000 0.000 0.000 0.100 0.000
#> GSM123233 5 0.3266 0.5251 0.000 0.000 0.000 0.000 0.728 0.272
#> GSM123234 5 0.3189 0.7279 0.184 0.000 0.020 0.000 0.796 0.000
#> GSM123235 3 0.1075 0.7722 0.000 0.000 0.952 0.000 0.048 0.000
#> GSM123236 5 0.4474 0.5721 0.048 0.000 0.028 0.000 0.724 0.200
#> GSM123237 1 0.1814 0.8255 0.900 0.000 0.000 0.000 0.100 0.000
#> GSM123238 5 0.4319 0.6739 0.108 0.000 0.000 0.168 0.724 0.000
#> GSM123239 5 0.5192 0.2577 0.000 0.000 0.116 0.000 0.576 0.308
#> GSM123240 1 0.0937 0.8598 0.960 0.000 0.000 0.000 0.040 0.000
#> GSM123241 1 0.4793 0.3947 0.628 0.000 0.288 0.000 0.084 0.000
#> GSM123242 6 0.3695 -0.1133 0.000 0.000 0.000 0.376 0.000 0.624
#> GSM123182 3 0.1983 0.7593 0.000 0.000 0.908 0.000 0.020 0.072
#> GSM123183 4 0.0260 0.6032 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM123184 4 0.2527 0.6661 0.000 0.000 0.000 0.832 0.000 0.168
#> GSM123185 5 0.4038 0.5610 0.000 0.000 0.044 0.000 0.712 0.244
#> GSM123186 3 0.1714 0.7754 0.092 0.000 0.908 0.000 0.000 0.000
#> GSM123187 3 0.4331 0.1834 0.000 0.000 0.516 0.000 0.020 0.464
#> GSM123188 1 0.0000 0.8660 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123189 3 0.0000 0.7803 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM123190 3 0.3592 0.6127 0.000 0.000 0.740 0.000 0.240 0.020
#> GSM123191 3 0.1444 0.7625 0.000 0.000 0.928 0.000 0.072 0.000
#> GSM123192 3 0.3284 0.7008 0.196 0.000 0.784 0.000 0.020 0.000
#> GSM123193 3 0.3867 0.1418 0.488 0.000 0.512 0.000 0.000 0.000
#> GSM123194 3 0.1714 0.7754 0.092 0.000 0.908 0.000 0.000 0.000
#> GSM123195 2 0.0000 0.7639 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123196 3 0.0000 0.7803 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM123197 5 0.4701 0.5996 0.000 0.000 0.148 0.168 0.684 0.000
#> GSM123198 6 0.2632 0.4927 0.000 0.004 0.000 0.000 0.164 0.832
#> GSM123199 5 0.2941 0.6797 0.220 0.000 0.000 0.000 0.780 0.000
#> GSM123200 2 0.0146 0.7625 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM123201 5 0.1075 0.6992 0.048 0.000 0.000 0.000 0.952 0.000
#> GSM123202 2 0.2969 0.5405 0.000 0.776 0.000 0.000 0.000 0.224
#> GSM123203 5 0.2941 0.6797 0.220 0.000 0.000 0.000 0.780 0.000
#> GSM123204 2 0.3684 0.3707 0.000 0.628 0.000 0.000 0.000 0.372
#> GSM123205 6 0.4573 0.2950 0.000 0.236 0.000 0.000 0.088 0.676
#> GSM123206 2 0.0000 0.7639 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123207 5 0.2340 0.6476 0.000 0.000 0.000 0.000 0.852 0.148
#> GSM123208 2 0.0000 0.7639 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123209 3 0.4331 0.1834 0.000 0.000 0.516 0.000 0.020 0.464
#> GSM123210 1 0.3515 0.2818 0.676 0.000 0.000 0.000 0.324 0.000
#> GSM123211 5 0.3428 0.6535 0.304 0.000 0.000 0.000 0.696 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> CV:pam 59 0.09880 2
#> CV:pam 58 0.07213 3
#> CV:pam 58 0.00891 4
#> CV:pam 54 0.00595 5
#> CV:pam 47 0.01632 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.380 0.867 0.893 0.3909 0.577 0.577
#> 3 3 0.424 0.770 0.850 0.3604 0.826 0.714
#> 4 4 0.581 0.645 0.827 0.1521 0.897 0.795
#> 5 5 0.703 0.724 0.836 0.2232 0.745 0.457
#> 6 6 0.672 0.636 0.733 0.0697 0.923 0.697
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.9522 0.6493 0.372 0.628
#> GSM123213 2 0.6973 0.9512 0.188 0.812
#> GSM123214 2 0.6623 0.9639 0.172 0.828
#> GSM123215 2 0.6623 0.9639 0.172 0.828
#> GSM123216 1 0.0000 0.9133 1.000 0.000
#> GSM123217 1 0.0000 0.9133 1.000 0.000
#> GSM123218 1 0.8861 0.6842 0.696 0.304
#> GSM123219 1 0.2043 0.9049 0.968 0.032
#> GSM123220 1 0.0000 0.9133 1.000 0.000
#> GSM123221 1 0.0938 0.9086 0.988 0.012
#> GSM123222 1 0.0000 0.9133 1.000 0.000
#> GSM123223 2 0.6623 0.9639 0.172 0.828
#> GSM123224 1 0.0000 0.9133 1.000 0.000
#> GSM123225 1 0.0000 0.9133 1.000 0.000
#> GSM123226 1 0.0000 0.9133 1.000 0.000
#> GSM123227 1 0.1414 0.9065 0.980 0.020
#> GSM123228 1 0.0000 0.9133 1.000 0.000
#> GSM123229 1 0.1843 0.8948 0.972 0.028
#> GSM123230 1 0.0376 0.9114 0.996 0.004
#> GSM123231 1 0.8861 0.6842 0.696 0.304
#> GSM123232 1 0.0000 0.9133 1.000 0.000
#> GSM123233 1 0.9850 0.0925 0.572 0.428
#> GSM123234 1 0.0000 0.9133 1.000 0.000
#> GSM123235 1 0.6531 0.7740 0.832 0.168
#> GSM123236 1 0.3114 0.8831 0.944 0.056
#> GSM123237 1 0.0000 0.9133 1.000 0.000
#> GSM123238 1 0.2236 0.8968 0.964 0.036
#> GSM123239 1 0.8327 0.6074 0.736 0.264
#> GSM123240 1 0.0000 0.9133 1.000 0.000
#> GSM123241 1 0.0000 0.9133 1.000 0.000
#> GSM123242 2 0.6712 0.9613 0.176 0.824
#> GSM123182 1 0.6438 0.7854 0.836 0.164
#> GSM123183 2 0.9044 0.7594 0.320 0.680
#> GSM123184 2 0.6623 0.9639 0.172 0.828
#> GSM123185 1 0.9000 0.4867 0.684 0.316
#> GSM123186 1 0.4562 0.8590 0.904 0.096
#> GSM123187 2 0.6623 0.9639 0.172 0.828
#> GSM123188 1 0.0000 0.9133 1.000 0.000
#> GSM123189 1 0.5946 0.8342 0.856 0.144
#> GSM123190 1 0.6148 0.7865 0.848 0.152
#> GSM123191 1 0.0938 0.9101 0.988 0.012
#> GSM123192 1 0.0672 0.9115 0.992 0.008
#> GSM123193 1 0.0000 0.9133 1.000 0.000
#> GSM123194 1 0.1184 0.9083 0.984 0.016
#> GSM123195 2 0.6438 0.9635 0.164 0.836
#> GSM123196 1 0.6148 0.7715 0.848 0.152
#> GSM123197 1 0.8207 0.6224 0.744 0.256
#> GSM123198 2 0.6438 0.9635 0.164 0.836
#> GSM123199 1 0.0000 0.9133 1.000 0.000
#> GSM123200 2 0.6438 0.9635 0.164 0.836
#> GSM123201 1 0.0672 0.9115 0.992 0.008
#> GSM123202 2 0.6438 0.9635 0.164 0.836
#> GSM123203 1 0.0000 0.9133 1.000 0.000
#> GSM123204 2 0.6438 0.9635 0.164 0.836
#> GSM123205 2 0.6438 0.9635 0.164 0.836
#> GSM123206 2 0.6438 0.9635 0.164 0.836
#> GSM123207 1 0.5946 0.8005 0.856 0.144
#> GSM123208 2 0.6438 0.9635 0.164 0.836
#> GSM123209 2 0.6973 0.9511 0.188 0.812
#> GSM123210 1 0.0000 0.9133 1.000 0.000
#> GSM123211 1 0.0938 0.9086 0.988 0.012
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 2 0.5619 0.693 0.244 0.744 0.012
#> GSM123213 2 0.3879 0.796 0.152 0.848 0.000
#> GSM123214 2 0.6526 0.770 0.112 0.760 0.128
#> GSM123215 2 0.6526 0.770 0.112 0.760 0.128
#> GSM123216 1 0.0747 0.859 0.984 0.016 0.000
#> GSM123217 1 0.0424 0.857 0.992 0.000 0.008
#> GSM123218 3 0.6231 0.869 0.148 0.080 0.772
#> GSM123219 1 0.6488 0.685 0.744 0.064 0.192
#> GSM123220 1 0.0237 0.858 0.996 0.000 0.004
#> GSM123221 1 0.2096 0.839 0.944 0.052 0.004
#> GSM123222 1 0.0892 0.857 0.980 0.000 0.020
#> GSM123223 2 0.1411 0.796 0.036 0.964 0.000
#> GSM123224 1 0.0892 0.857 0.980 0.000 0.020
#> GSM123225 1 0.0424 0.859 0.992 0.008 0.000
#> GSM123226 1 0.1289 0.855 0.968 0.000 0.032
#> GSM123227 1 0.5798 0.728 0.780 0.044 0.176
#> GSM123228 1 0.0661 0.859 0.988 0.004 0.008
#> GSM123229 1 0.2066 0.838 0.940 0.000 0.060
#> GSM123230 1 0.1411 0.848 0.964 0.000 0.036
#> GSM123231 3 0.6168 0.848 0.124 0.096 0.780
#> GSM123232 1 0.0747 0.857 0.984 0.000 0.016
#> GSM123233 2 0.4002 0.794 0.160 0.840 0.000
#> GSM123234 1 0.2050 0.853 0.952 0.028 0.020
#> GSM123235 3 0.5633 0.869 0.208 0.024 0.768
#> GSM123236 1 0.4953 0.727 0.808 0.176 0.016
#> GSM123237 1 0.0892 0.857 0.980 0.000 0.020
#> GSM123238 1 0.6509 -0.115 0.524 0.472 0.004
#> GSM123239 2 0.6301 0.648 0.260 0.712 0.028
#> GSM123240 1 0.1267 0.855 0.972 0.024 0.004
#> GSM123241 1 0.0592 0.858 0.988 0.000 0.012
#> GSM123242 2 0.4346 0.770 0.184 0.816 0.000
#> GSM123182 1 0.6562 0.685 0.744 0.072 0.184
#> GSM123183 2 0.7001 0.719 0.200 0.716 0.084
#> GSM123184 2 0.6526 0.770 0.112 0.760 0.128
#> GSM123185 1 0.6047 0.526 0.680 0.312 0.008
#> GSM123186 1 0.6283 0.706 0.760 0.064 0.176
#> GSM123187 2 0.3619 0.802 0.136 0.864 0.000
#> GSM123188 1 0.0892 0.857 0.980 0.000 0.020
#> GSM123189 1 0.6723 0.655 0.724 0.064 0.212
#> GSM123190 1 0.7097 0.658 0.724 0.128 0.148
#> GSM123191 1 0.5292 0.737 0.800 0.028 0.172
#> GSM123192 1 0.2165 0.840 0.936 0.064 0.000
#> GSM123193 1 0.2400 0.837 0.932 0.004 0.064
#> GSM123194 1 0.5574 0.720 0.784 0.032 0.184
#> GSM123195 2 0.2902 0.774 0.016 0.920 0.064
#> GSM123196 3 0.6205 0.739 0.336 0.008 0.656
#> GSM123197 2 0.6330 0.435 0.396 0.600 0.004
#> GSM123198 2 0.1999 0.782 0.012 0.952 0.036
#> GSM123199 1 0.0892 0.857 0.980 0.000 0.020
#> GSM123200 2 0.2749 0.772 0.012 0.924 0.064
#> GSM123201 1 0.1832 0.854 0.956 0.036 0.008
#> GSM123202 2 0.0829 0.787 0.012 0.984 0.004
#> GSM123203 1 0.0747 0.857 0.984 0.000 0.016
#> GSM123204 2 0.2749 0.772 0.012 0.924 0.064
#> GSM123205 2 0.2749 0.772 0.012 0.924 0.064
#> GSM123206 2 0.2749 0.772 0.012 0.924 0.064
#> GSM123207 1 0.4931 0.671 0.768 0.232 0.000
#> GSM123208 2 0.2749 0.772 0.012 0.924 0.064
#> GSM123209 2 0.4002 0.791 0.160 0.840 0.000
#> GSM123210 1 0.0892 0.857 0.980 0.000 0.020
#> GSM123211 1 0.1267 0.855 0.972 0.024 0.004
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 4 0.6653 0.62045 0.136 0.076 0.084 0.704
#> GSM123213 2 0.7018 0.27994 0.168 0.592 0.004 0.236
#> GSM123214 4 0.1940 0.78143 0.000 0.076 0.000 0.924
#> GSM123215 4 0.1940 0.78143 0.000 0.076 0.000 0.924
#> GSM123216 1 0.0188 0.76742 0.996 0.000 0.004 0.000
#> GSM123217 1 0.1474 0.76714 0.948 0.000 0.000 0.052
#> GSM123218 3 0.0000 0.87243 0.000 0.000 1.000 0.000
#> GSM123219 1 0.4855 0.48302 0.600 0.000 0.400 0.000
#> GSM123220 1 0.0000 0.76692 1.000 0.000 0.000 0.000
#> GSM123221 1 0.0376 0.76743 0.992 0.004 0.004 0.000
#> GSM123222 1 0.1489 0.76851 0.952 0.000 0.004 0.044
#> GSM123223 2 0.0188 0.75880 0.000 0.996 0.000 0.004
#> GSM123224 1 0.0000 0.76692 1.000 0.000 0.000 0.000
#> GSM123225 1 0.0000 0.76692 1.000 0.000 0.000 0.000
#> GSM123226 1 0.0707 0.76022 0.980 0.000 0.020 0.000
#> GSM123227 1 0.6499 0.46127 0.524 0.000 0.400 0.076
#> GSM123228 1 0.1792 0.76506 0.932 0.000 0.000 0.068
#> GSM123229 1 0.2589 0.73439 0.884 0.000 0.116 0.000
#> GSM123230 1 0.1211 0.75674 0.960 0.000 0.040 0.000
#> GSM123231 3 0.0000 0.87243 0.000 0.000 1.000 0.000
#> GSM123232 1 0.1792 0.76506 0.932 0.000 0.000 0.068
#> GSM123233 2 0.8475 -0.00637 0.352 0.420 0.188 0.040
#> GSM123234 1 0.3486 0.68160 0.812 0.000 0.188 0.000
#> GSM123235 3 0.0188 0.87169 0.004 0.000 0.996 0.000
#> GSM123236 1 0.6669 0.45980 0.520 0.004 0.400 0.076
#> GSM123237 1 0.1978 0.76447 0.928 0.004 0.000 0.068
#> GSM123238 1 0.5742 0.40883 0.696 0.068 0.004 0.232
#> GSM123239 1 0.7879 0.39108 0.480 0.072 0.380 0.068
#> GSM123240 1 0.1978 0.76447 0.928 0.004 0.000 0.068
#> GSM123241 1 0.0000 0.76692 1.000 0.000 0.000 0.000
#> GSM123242 4 0.9319 0.10890 0.252 0.124 0.200 0.424
#> GSM123182 1 0.6677 0.46844 0.528 0.012 0.400 0.060
#> GSM123183 4 0.2821 0.77523 0.020 0.076 0.004 0.900
#> GSM123184 4 0.1940 0.78143 0.000 0.076 0.000 0.924
#> GSM123185 1 0.8455 0.44205 0.520 0.188 0.224 0.068
#> GSM123186 1 0.5756 0.46905 0.568 0.032 0.400 0.000
#> GSM123187 2 0.4661 0.39722 0.348 0.652 0.000 0.000
#> GSM123188 1 0.1792 0.76506 0.932 0.000 0.000 0.068
#> GSM123189 1 0.4989 0.39017 0.528 0.000 0.472 0.000
#> GSM123190 1 0.6499 0.42745 0.524 0.076 0.400 0.000
#> GSM123191 1 0.4855 0.48302 0.600 0.000 0.400 0.000
#> GSM123192 1 0.0376 0.76743 0.992 0.004 0.004 0.000
#> GSM123193 1 0.0188 0.76742 0.996 0.000 0.004 0.000
#> GSM123194 1 0.6130 0.47681 0.548 0.000 0.400 0.052
#> GSM123195 2 0.0000 0.76124 0.000 1.000 0.000 0.000
#> GSM123196 3 0.3688 0.61281 0.208 0.000 0.792 0.000
#> GSM123197 1 0.6572 0.38241 0.664 0.080 0.028 0.228
#> GSM123198 2 0.0000 0.76124 0.000 1.000 0.000 0.000
#> GSM123199 1 0.1792 0.76506 0.932 0.000 0.000 0.068
#> GSM123200 2 0.0000 0.76124 0.000 1.000 0.000 0.000
#> GSM123201 1 0.6309 0.54219 0.588 0.000 0.336 0.076
#> GSM123202 2 0.0000 0.76124 0.000 1.000 0.000 0.000
#> GSM123203 1 0.1792 0.76506 0.932 0.000 0.000 0.068
#> GSM123204 2 0.0000 0.76124 0.000 1.000 0.000 0.000
#> GSM123205 2 0.0188 0.75880 0.000 0.996 0.000 0.004
#> GSM123206 2 0.0188 0.75880 0.000 0.996 0.000 0.004
#> GSM123207 1 0.6179 0.59781 0.644 0.004 0.276 0.076
#> GSM123208 2 0.0000 0.76124 0.000 1.000 0.000 0.000
#> GSM123209 2 0.5143 0.37162 0.360 0.628 0.012 0.000
#> GSM123210 1 0.0000 0.76692 1.000 0.000 0.000 0.000
#> GSM123211 1 0.0188 0.76671 0.996 0.004 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 4 0.1117 0.7511 0.016 0.000 0.000 0.964 0.020
#> GSM123213 4 0.4349 0.6833 0.000 0.176 0.000 0.756 0.068
#> GSM123214 4 0.4101 0.7103 0.000 0.000 0.000 0.628 0.372
#> GSM123215 4 0.4101 0.7103 0.000 0.000 0.000 0.628 0.372
#> GSM123216 1 0.0290 0.8511 0.992 0.000 0.008 0.000 0.000
#> GSM123217 1 0.0162 0.8523 0.996 0.000 0.004 0.000 0.000
#> GSM123218 3 0.1168 0.6885 0.008 0.000 0.960 0.000 0.032
#> GSM123219 1 0.4182 0.3595 0.600 0.000 0.400 0.000 0.000
#> GSM123220 1 0.0162 0.8532 0.996 0.000 0.000 0.000 0.004
#> GSM123221 1 0.2909 0.7469 0.848 0.000 0.000 0.140 0.012
#> GSM123222 1 0.1043 0.8367 0.960 0.000 0.000 0.040 0.000
#> GSM123223 2 0.0000 0.9974 0.000 1.000 0.000 0.000 0.000
#> GSM123224 1 0.0162 0.8522 0.996 0.000 0.000 0.004 0.000
#> GSM123225 1 0.0290 0.8511 0.992 0.000 0.008 0.000 0.000
#> GSM123226 1 0.3521 0.5623 0.764 0.000 0.232 0.000 0.004
#> GSM123227 5 0.4525 0.6879 0.016 0.000 0.360 0.000 0.624
#> GSM123228 1 0.0162 0.8532 0.996 0.000 0.000 0.000 0.004
#> GSM123229 3 0.4150 0.3797 0.388 0.000 0.612 0.000 0.000
#> GSM123230 1 0.4268 -0.0308 0.556 0.000 0.444 0.000 0.000
#> GSM123231 3 0.1168 0.6885 0.008 0.000 0.960 0.000 0.032
#> GSM123232 1 0.0162 0.8532 0.996 0.000 0.000 0.000 0.004
#> GSM123233 5 0.5902 0.7134 0.000 0.208 0.192 0.000 0.600
#> GSM123234 3 0.6653 0.2476 0.368 0.000 0.476 0.136 0.020
#> GSM123235 3 0.1386 0.6907 0.016 0.000 0.952 0.000 0.032
#> GSM123236 5 0.5769 0.6639 0.136 0.004 0.236 0.000 0.624
#> GSM123237 1 0.0162 0.8532 0.996 0.000 0.000 0.000 0.004
#> GSM123238 4 0.3534 0.4844 0.256 0.000 0.000 0.744 0.000
#> GSM123239 5 0.5995 0.7425 0.016 0.132 0.228 0.000 0.624
#> GSM123240 1 0.1197 0.8319 0.952 0.000 0.000 0.048 0.000
#> GSM123241 1 0.0162 0.8532 0.996 0.000 0.000 0.000 0.004
#> GSM123242 4 0.4956 0.6736 0.004 0.136 0.036 0.760 0.064
#> GSM123182 5 0.4392 0.6822 0.008 0.000 0.380 0.000 0.612
#> GSM123183 4 0.0794 0.7549 0.000 0.000 0.000 0.972 0.028
#> GSM123184 4 0.4101 0.7103 0.000 0.000 0.000 0.628 0.372
#> GSM123185 5 0.6647 0.7370 0.008 0.136 0.200 0.044 0.612
#> GSM123186 1 0.4182 0.3595 0.600 0.000 0.400 0.000 0.000
#> GSM123187 5 0.4150 0.4571 0.000 0.388 0.000 0.000 0.612
#> GSM123188 1 0.0162 0.8532 0.996 0.000 0.000 0.000 0.004
#> GSM123189 3 0.0290 0.6785 0.008 0.000 0.992 0.000 0.000
#> GSM123190 5 0.4525 0.6879 0.016 0.000 0.360 0.000 0.624
#> GSM123191 1 0.4763 0.3791 0.632 0.000 0.336 0.000 0.032
#> GSM123192 1 0.0960 0.8441 0.972 0.000 0.008 0.004 0.016
#> GSM123193 1 0.2424 0.7589 0.868 0.000 0.132 0.000 0.000
#> GSM123194 1 0.4675 0.3511 0.600 0.000 0.380 0.000 0.020
#> GSM123195 2 0.0000 0.9974 0.000 1.000 0.000 0.000 0.000
#> GSM123196 3 0.2886 0.6406 0.148 0.000 0.844 0.000 0.008
#> GSM123197 4 0.2769 0.7239 0.032 0.000 0.000 0.876 0.092
#> GSM123198 2 0.0000 0.9974 0.000 1.000 0.000 0.000 0.000
#> GSM123199 1 0.0162 0.8532 0.996 0.000 0.000 0.000 0.004
#> GSM123200 2 0.0000 0.9974 0.000 1.000 0.000 0.000 0.000
#> GSM123201 5 0.5664 0.6444 0.152 0.000 0.220 0.000 0.628
#> GSM123202 2 0.0510 0.9787 0.000 0.984 0.000 0.000 0.016
#> GSM123203 1 0.0162 0.8532 0.996 0.000 0.000 0.000 0.004
#> GSM123204 2 0.0000 0.9974 0.000 1.000 0.000 0.000 0.000
#> GSM123205 2 0.0000 0.9974 0.000 1.000 0.000 0.000 0.000
#> GSM123206 2 0.0000 0.9974 0.000 1.000 0.000 0.000 0.000
#> GSM123207 5 0.6330 0.6799 0.024 0.008 0.196 0.144 0.628
#> GSM123208 2 0.0000 0.9974 0.000 1.000 0.000 0.000 0.000
#> GSM123209 5 0.4510 0.3672 0.000 0.432 0.008 0.000 0.560
#> GSM123210 1 0.0000 0.8524 1.000 0.000 0.000 0.000 0.000
#> GSM123211 1 0.1270 0.8300 0.948 0.000 0.000 0.052 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 4 0.2118 0.7100 0.000 0.000 0.000 0.888 0.008 0.104
#> GSM123213 4 0.5093 0.6733 0.000 0.088 0.000 0.704 0.060 0.148
#> GSM123214 4 0.4493 0.6483 0.000 0.000 0.344 0.612 0.000 0.044
#> GSM123215 4 0.4493 0.6483 0.000 0.000 0.344 0.612 0.000 0.044
#> GSM123216 1 0.3868 0.3621 0.508 0.000 0.000 0.000 0.000 0.492
#> GSM123217 1 0.2446 0.6867 0.864 0.000 0.000 0.000 0.012 0.124
#> GSM123218 3 0.3672 0.6016 0.000 0.000 0.632 0.000 0.368 0.000
#> GSM123219 6 0.6676 0.6308 0.212 0.000 0.104 0.000 0.160 0.524
#> GSM123220 1 0.2402 0.6840 0.856 0.000 0.000 0.000 0.004 0.140
#> GSM123221 1 0.5149 0.3036 0.496 0.000 0.000 0.072 0.004 0.428
#> GSM123222 1 0.3674 0.6274 0.716 0.000 0.000 0.016 0.000 0.268
#> GSM123223 2 0.0405 0.9806 0.000 0.988 0.000 0.004 0.008 0.000
#> GSM123224 1 0.3198 0.6433 0.740 0.000 0.000 0.000 0.000 0.260
#> GSM123225 1 0.2762 0.6392 0.804 0.000 0.000 0.000 0.000 0.196
#> GSM123226 1 0.3261 0.4770 0.780 0.000 0.204 0.000 0.016 0.000
#> GSM123227 5 0.1498 0.7198 0.028 0.000 0.032 0.000 0.940 0.000
#> GSM123228 1 0.1858 0.5907 0.904 0.000 0.000 0.000 0.004 0.092
#> GSM123229 3 0.4714 0.4160 0.348 0.000 0.604 0.000 0.012 0.036
#> GSM123230 3 0.4570 0.2611 0.436 0.000 0.528 0.000 0.000 0.036
#> GSM123231 3 0.3795 0.6039 0.000 0.000 0.632 0.000 0.364 0.004
#> GSM123232 1 0.0146 0.6744 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM123233 5 0.3201 0.6883 0.000 0.208 0.000 0.000 0.780 0.012
#> GSM123234 3 0.6463 0.5395 0.224 0.000 0.560 0.048 0.152 0.016
#> GSM123235 3 0.4593 0.6151 0.000 0.000 0.620 0.000 0.324 0.056
#> GSM123236 5 0.0777 0.7458 0.024 0.000 0.004 0.000 0.972 0.000
#> GSM123237 1 0.0146 0.6744 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM123238 4 0.5463 0.3917 0.148 0.000 0.000 0.540 0.000 0.312
#> GSM123239 5 0.0993 0.7492 0.000 0.024 0.000 0.000 0.964 0.012
#> GSM123240 1 0.4230 0.5153 0.612 0.000 0.000 0.024 0.000 0.364
#> GSM123241 1 0.3383 0.6344 0.728 0.000 0.000 0.000 0.004 0.268
#> GSM123242 4 0.5055 0.6723 0.000 0.072 0.000 0.704 0.064 0.160
#> GSM123182 5 0.4976 0.5326 0.016 0.000 0.052 0.008 0.652 0.272
#> GSM123183 4 0.0767 0.7141 0.000 0.000 0.004 0.976 0.008 0.012
#> GSM123184 4 0.4493 0.6483 0.000 0.000 0.344 0.612 0.000 0.044
#> GSM123185 5 0.4010 0.7056 0.000 0.072 0.012 0.128 0.784 0.004
#> GSM123186 6 0.5810 0.5941 0.120 0.000 0.056 0.012 0.160 0.652
#> GSM123187 5 0.4131 0.4509 0.000 0.356 0.000 0.000 0.624 0.020
#> GSM123188 1 0.0146 0.6744 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM123189 3 0.5418 0.5309 0.020 0.000 0.636 0.000 0.160 0.184
#> GSM123190 5 0.1245 0.7266 0.016 0.000 0.032 0.000 0.952 0.000
#> GSM123191 6 0.7468 0.4682 0.180 0.000 0.184 0.000 0.260 0.376
#> GSM123192 6 0.4117 0.1630 0.296 0.000 0.000 0.032 0.000 0.672
#> GSM123193 1 0.4250 0.3330 0.528 0.000 0.000 0.000 0.016 0.456
#> GSM123194 5 0.6494 0.0561 0.264 0.000 0.064 0.000 0.512 0.160
#> GSM123195 2 0.0260 0.9822 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM123196 3 0.5824 0.6040 0.168 0.000 0.616 0.000 0.168 0.048
#> GSM123197 4 0.3775 0.6441 0.012 0.000 0.000 0.744 0.016 0.228
#> GSM123198 2 0.1151 0.9593 0.000 0.956 0.000 0.000 0.032 0.012
#> GSM123199 1 0.0146 0.6744 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM123200 2 0.0260 0.9822 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM123201 5 0.1682 0.7314 0.052 0.000 0.020 0.000 0.928 0.000
#> GSM123202 2 0.1625 0.9292 0.000 0.928 0.000 0.000 0.060 0.012
#> GSM123203 1 0.0291 0.6752 0.992 0.000 0.000 0.000 0.004 0.004
#> GSM123204 2 0.0000 0.9802 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123205 2 0.0000 0.9802 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123206 2 0.0000 0.9802 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123207 5 0.2316 0.7401 0.020 0.004 0.000 0.044 0.908 0.024
#> GSM123208 2 0.0260 0.9822 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM123209 5 0.3420 0.6310 0.000 0.240 0.000 0.000 0.748 0.012
#> GSM123210 1 0.3428 0.6029 0.696 0.000 0.000 0.000 0.000 0.304
#> GSM123211 1 0.4407 0.3165 0.492 0.000 0.000 0.024 0.000 0.484
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> CV:mclust 59 0.1336 2
#> CV:mclust 59 0.3605 3
#> CV:mclust 43 0.0378 4
#> CV:mclust 51 0.0902 5
#> CV:mclust 49 0.0885 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.742 0.828 0.933 0.4798 0.515 0.515
#> 3 3 0.672 0.781 0.911 0.2879 0.789 0.616
#> 4 4 0.598 0.657 0.829 0.1606 0.798 0.525
#> 5 5 0.703 0.719 0.865 0.0792 0.869 0.578
#> 6 6 0.654 0.603 0.768 0.0481 0.926 0.690
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.9754 0.287 0.408 0.592
#> GSM123213 2 0.0000 0.888 0.000 1.000
#> GSM123214 2 0.0000 0.888 0.000 1.000
#> GSM123215 2 0.0000 0.888 0.000 1.000
#> GSM123216 1 0.0000 0.943 1.000 0.000
#> GSM123217 1 0.0000 0.943 1.000 0.000
#> GSM123218 1 0.6048 0.778 0.852 0.148
#> GSM123219 1 0.0000 0.943 1.000 0.000
#> GSM123220 1 0.0000 0.943 1.000 0.000
#> GSM123221 1 0.0000 0.943 1.000 0.000
#> GSM123222 1 0.0000 0.943 1.000 0.000
#> GSM123223 2 0.0000 0.888 0.000 1.000
#> GSM123224 1 0.0000 0.943 1.000 0.000
#> GSM123225 1 0.0000 0.943 1.000 0.000
#> GSM123226 1 0.0000 0.943 1.000 0.000
#> GSM123227 1 0.3733 0.875 0.928 0.072
#> GSM123228 1 0.0000 0.943 1.000 0.000
#> GSM123229 1 0.0000 0.943 1.000 0.000
#> GSM123230 1 0.0000 0.943 1.000 0.000
#> GSM123231 1 0.9661 0.243 0.608 0.392
#> GSM123232 1 0.0000 0.943 1.000 0.000
#> GSM123233 2 0.1184 0.878 0.016 0.984
#> GSM123234 1 0.0000 0.943 1.000 0.000
#> GSM123235 1 0.0000 0.943 1.000 0.000
#> GSM123236 2 0.9983 0.183 0.476 0.524
#> GSM123237 1 0.0000 0.943 1.000 0.000
#> GSM123238 1 0.7376 0.694 0.792 0.208
#> GSM123239 2 0.0376 0.886 0.004 0.996
#> GSM123240 1 0.0000 0.943 1.000 0.000
#> GSM123241 1 0.0000 0.943 1.000 0.000
#> GSM123242 2 0.0000 0.888 0.000 1.000
#> GSM123182 2 0.9580 0.440 0.380 0.620
#> GSM123183 1 0.9833 0.219 0.576 0.424
#> GSM123184 2 0.0000 0.888 0.000 1.000
#> GSM123185 2 0.9661 0.413 0.392 0.608
#> GSM123186 1 0.2948 0.897 0.948 0.052
#> GSM123187 2 0.0000 0.888 0.000 1.000
#> GSM123188 1 0.0000 0.943 1.000 0.000
#> GSM123189 1 0.0000 0.943 1.000 0.000
#> GSM123190 2 0.9358 0.494 0.352 0.648
#> GSM123191 1 0.0000 0.943 1.000 0.000
#> GSM123192 1 0.0000 0.943 1.000 0.000
#> GSM123193 1 0.0000 0.943 1.000 0.000
#> GSM123194 1 0.0000 0.943 1.000 0.000
#> GSM123195 2 0.0000 0.888 0.000 1.000
#> GSM123196 1 0.0000 0.943 1.000 0.000
#> GSM123197 1 0.9881 0.182 0.564 0.436
#> GSM123198 2 0.0000 0.888 0.000 1.000
#> GSM123199 1 0.0000 0.943 1.000 0.000
#> GSM123200 2 0.0000 0.888 0.000 1.000
#> GSM123201 1 0.1843 0.919 0.972 0.028
#> GSM123202 2 0.0000 0.888 0.000 1.000
#> GSM123203 1 0.0000 0.943 1.000 0.000
#> GSM123204 2 0.0000 0.888 0.000 1.000
#> GSM123205 2 0.0000 0.888 0.000 1.000
#> GSM123206 2 0.0000 0.888 0.000 1.000
#> GSM123207 2 0.8861 0.580 0.304 0.696
#> GSM123208 2 0.0000 0.888 0.000 1.000
#> GSM123209 2 0.0000 0.888 0.000 1.000
#> GSM123210 1 0.0000 0.943 1.000 0.000
#> GSM123211 1 0.0000 0.943 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 2 0.0000 0.8288 0.000 1.000 0.000
#> GSM123213 2 0.1411 0.8127 0.000 0.964 0.036
#> GSM123214 2 0.1289 0.8145 0.000 0.968 0.032
#> GSM123215 2 0.0000 0.8288 0.000 1.000 0.000
#> GSM123216 1 0.2448 0.8673 0.924 0.076 0.000
#> GSM123217 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123218 3 0.6308 0.0941 0.492 0.000 0.508
#> GSM123219 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123220 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123221 1 0.1529 0.8991 0.960 0.040 0.000
#> GSM123222 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123223 2 0.6260 0.1497 0.000 0.552 0.448
#> GSM123224 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123225 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123226 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123227 1 0.6308 -0.1046 0.508 0.000 0.492
#> GSM123228 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123229 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123230 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123231 3 0.4178 0.7358 0.172 0.000 0.828
#> GSM123232 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123233 3 0.0237 0.8483 0.004 0.000 0.996
#> GSM123234 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123235 1 0.4002 0.7614 0.840 0.000 0.160
#> GSM123236 3 0.3879 0.7566 0.152 0.000 0.848
#> GSM123237 1 0.1753 0.8929 0.952 0.048 0.000
#> GSM123238 2 0.5291 0.6472 0.268 0.732 0.000
#> GSM123239 3 0.0000 0.8495 0.000 0.000 1.000
#> GSM123240 1 0.3116 0.8330 0.892 0.108 0.000
#> GSM123241 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123242 2 0.0000 0.8288 0.000 1.000 0.000
#> GSM123182 2 0.4345 0.7542 0.136 0.848 0.016
#> GSM123183 2 0.0000 0.8288 0.000 1.000 0.000
#> GSM123184 2 0.0000 0.8288 0.000 1.000 0.000
#> GSM123185 3 0.8813 0.4852 0.236 0.184 0.580
#> GSM123186 2 0.5397 0.6318 0.280 0.720 0.000
#> GSM123187 3 0.4399 0.6640 0.000 0.188 0.812
#> GSM123188 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123189 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123190 3 0.2066 0.8209 0.060 0.000 0.940
#> GSM123191 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123192 1 0.5810 0.4395 0.664 0.336 0.000
#> GSM123193 1 0.1643 0.8959 0.956 0.044 0.000
#> GSM123194 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123195 3 0.0000 0.8495 0.000 0.000 1.000
#> GSM123196 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123197 2 0.5560 0.5938 0.300 0.700 0.000
#> GSM123198 3 0.0000 0.8495 0.000 0.000 1.000
#> GSM123199 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123200 3 0.0000 0.8495 0.000 0.000 1.000
#> GSM123201 1 0.6140 0.2263 0.596 0.000 0.404
#> GSM123202 3 0.0000 0.8495 0.000 0.000 1.000
#> GSM123203 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123204 3 0.0000 0.8495 0.000 0.000 1.000
#> GSM123205 3 0.0000 0.8495 0.000 0.000 1.000
#> GSM123206 3 0.3038 0.7667 0.000 0.104 0.896
#> GSM123207 3 0.6168 0.3665 0.412 0.000 0.588
#> GSM123208 3 0.0000 0.8495 0.000 0.000 1.000
#> GSM123209 3 0.0000 0.8495 0.000 0.000 1.000
#> GSM123210 1 0.0000 0.9251 1.000 0.000 0.000
#> GSM123211 1 0.4235 0.7449 0.824 0.176 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 4 0.1975 0.7709 0.048 0.016 0.000 0.936
#> GSM123213 4 0.1256 0.7706 0.000 0.028 0.008 0.964
#> GSM123214 4 0.0592 0.7797 0.000 0.016 0.000 0.984
#> GSM123215 4 0.0188 0.7852 0.000 0.004 0.000 0.996
#> GSM123216 1 0.0469 0.8183 0.988 0.000 0.000 0.012
#> GSM123217 1 0.3681 0.7038 0.816 0.000 0.176 0.008
#> GSM123218 3 0.5728 0.6030 0.104 0.188 0.708 0.000
#> GSM123219 3 0.6340 0.3613 0.344 0.000 0.580 0.076
#> GSM123220 1 0.1118 0.8160 0.964 0.000 0.036 0.000
#> GSM123221 1 0.1936 0.8060 0.940 0.000 0.032 0.028
#> GSM123222 1 0.2011 0.7837 0.920 0.000 0.080 0.000
#> GSM123223 2 0.4477 0.6041 0.000 0.688 0.000 0.312
#> GSM123224 1 0.0469 0.8193 0.988 0.000 0.012 0.000
#> GSM123225 1 0.0657 0.8203 0.984 0.000 0.012 0.004
#> GSM123226 1 0.4431 0.5437 0.696 0.000 0.304 0.000
#> GSM123227 3 0.4544 0.6564 0.164 0.048 0.788 0.000
#> GSM123228 3 0.4955 0.1941 0.444 0.000 0.556 0.000
#> GSM123229 1 0.3764 0.6908 0.784 0.000 0.216 0.000
#> GSM123230 1 0.3311 0.7251 0.828 0.000 0.172 0.000
#> GSM123231 3 0.4599 0.5208 0.016 0.248 0.736 0.000
#> GSM123232 1 0.0469 0.8190 0.988 0.000 0.012 0.000
#> GSM123233 3 0.4677 0.4041 0.004 0.316 0.680 0.000
#> GSM123234 1 0.5112 0.1356 0.560 0.004 0.436 0.000
#> GSM123235 1 0.7073 0.1703 0.504 0.132 0.364 0.000
#> GSM123236 3 0.5247 0.5681 0.052 0.228 0.720 0.000
#> GSM123237 1 0.0524 0.8189 0.988 0.000 0.004 0.008
#> GSM123238 4 0.5378 0.2474 0.448 0.012 0.000 0.540
#> GSM123239 2 0.1978 0.8729 0.004 0.928 0.068 0.000
#> GSM123240 1 0.0817 0.8146 0.976 0.000 0.000 0.024
#> GSM123241 1 0.0921 0.8154 0.972 0.000 0.028 0.000
#> GSM123242 4 0.0188 0.7852 0.000 0.004 0.000 0.996
#> GSM123182 3 0.5923 0.3416 0.036 0.008 0.620 0.336
#> GSM123183 4 0.1118 0.7802 0.036 0.000 0.000 0.964
#> GSM123184 4 0.0000 0.7850 0.000 0.000 0.000 1.000
#> GSM123185 3 0.6970 0.5345 0.036 0.144 0.660 0.160
#> GSM123186 4 0.6366 0.4043 0.120 0.000 0.240 0.640
#> GSM123187 2 0.4194 0.7528 0.000 0.800 0.028 0.172
#> GSM123188 1 0.0376 0.8193 0.992 0.000 0.004 0.004
#> GSM123189 3 0.4356 0.4846 0.292 0.000 0.708 0.000
#> GSM123190 3 0.5038 0.4644 0.020 0.296 0.684 0.000
#> GSM123191 1 0.4907 0.3190 0.580 0.000 0.420 0.000
#> GSM123192 4 0.4996 0.1151 0.484 0.000 0.000 0.516
#> GSM123193 1 0.3325 0.7585 0.864 0.000 0.112 0.024
#> GSM123194 3 0.4072 0.5881 0.252 0.000 0.748 0.000
#> GSM123195 2 0.1743 0.8782 0.000 0.940 0.056 0.004
#> GSM123196 1 0.5024 0.4652 0.632 0.008 0.360 0.000
#> GSM123197 1 0.6140 0.0688 0.556 0.036 0.008 0.400
#> GSM123198 2 0.0592 0.8902 0.000 0.984 0.016 0.000
#> GSM123199 1 0.1211 0.8153 0.960 0.000 0.040 0.000
#> GSM123200 2 0.0469 0.8912 0.000 0.988 0.012 0.000
#> GSM123201 3 0.6566 0.6007 0.236 0.140 0.624 0.000
#> GSM123202 2 0.0188 0.8914 0.000 0.996 0.000 0.004
#> GSM123203 1 0.0817 0.8178 0.976 0.000 0.024 0.000
#> GSM123204 2 0.0707 0.8877 0.000 0.980 0.020 0.000
#> GSM123205 2 0.0804 0.8898 0.000 0.980 0.012 0.008
#> GSM123206 2 0.2660 0.8720 0.000 0.908 0.056 0.036
#> GSM123207 2 0.5845 0.5394 0.076 0.672 0.252 0.000
#> GSM123208 2 0.1824 0.8767 0.000 0.936 0.060 0.004
#> GSM123209 2 0.0707 0.8900 0.000 0.980 0.020 0.000
#> GSM123210 1 0.0657 0.8191 0.984 0.000 0.004 0.012
#> GSM123211 1 0.1302 0.8054 0.956 0.000 0.000 0.044
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 4 0.1364 0.8142 0.036 0.012 0.000 0.952 0.000
#> GSM123213 4 0.1399 0.8091 0.000 0.028 0.000 0.952 0.020
#> GSM123214 4 0.0000 0.8294 0.000 0.000 0.000 1.000 0.000
#> GSM123215 4 0.0000 0.8294 0.000 0.000 0.000 1.000 0.000
#> GSM123216 1 0.0162 0.8767 0.996 0.000 0.004 0.000 0.000
#> GSM123217 1 0.3203 0.6969 0.820 0.000 0.168 0.000 0.012
#> GSM123218 3 0.1341 0.6084 0.000 0.000 0.944 0.000 0.056
#> GSM123219 3 0.5789 0.4358 0.124 0.000 0.612 0.260 0.004
#> GSM123220 1 0.0703 0.8678 0.976 0.000 0.024 0.000 0.000
#> GSM123221 1 0.1282 0.8518 0.952 0.000 0.004 0.000 0.044
#> GSM123222 1 0.2890 0.7486 0.836 0.000 0.004 0.000 0.160
#> GSM123223 2 0.2890 0.8076 0.000 0.836 0.004 0.160 0.000
#> GSM123224 1 0.0162 0.8773 0.996 0.000 0.004 0.000 0.000
#> GSM123225 1 0.0324 0.8774 0.992 0.000 0.004 0.000 0.004
#> GSM123226 3 0.4450 0.2005 0.488 0.000 0.508 0.000 0.004
#> GSM123227 5 0.3612 0.6063 0.000 0.000 0.268 0.000 0.732
#> GSM123228 5 0.3970 0.6879 0.104 0.000 0.096 0.000 0.800
#> GSM123229 1 0.4522 -0.0696 0.552 0.000 0.440 0.000 0.008
#> GSM123230 1 0.4959 0.4663 0.684 0.000 0.240 0.000 0.076
#> GSM123231 3 0.1522 0.6119 0.000 0.044 0.944 0.000 0.012
#> GSM123232 1 0.0162 0.8771 0.996 0.000 0.000 0.000 0.004
#> GSM123233 5 0.0613 0.7926 0.004 0.004 0.008 0.000 0.984
#> GSM123234 5 0.3569 0.7015 0.104 0.000 0.068 0.000 0.828
#> GSM123235 3 0.5422 0.6030 0.212 0.132 0.656 0.000 0.000
#> GSM123236 5 0.2361 0.7807 0.000 0.012 0.096 0.000 0.892
#> GSM123237 1 0.0290 0.8760 0.992 0.000 0.008 0.000 0.000
#> GSM123238 1 0.3391 0.6863 0.800 0.000 0.000 0.188 0.012
#> GSM123239 2 0.2124 0.9029 0.000 0.916 0.056 0.000 0.028
#> GSM123240 1 0.0000 0.8774 1.000 0.000 0.000 0.000 0.000
#> GSM123241 1 0.0510 0.8729 0.984 0.000 0.016 0.000 0.000
#> GSM123242 4 0.0000 0.8294 0.000 0.000 0.000 1.000 0.000
#> GSM123182 4 0.6336 0.1328 0.000 0.000 0.172 0.488 0.340
#> GSM123183 4 0.0609 0.8253 0.020 0.000 0.000 0.980 0.000
#> GSM123184 4 0.0000 0.8294 0.000 0.000 0.000 1.000 0.000
#> GSM123185 5 0.1016 0.7928 0.004 0.004 0.012 0.008 0.972
#> GSM123186 4 0.5028 0.4832 0.072 0.000 0.260 0.668 0.000
#> GSM123187 2 0.2956 0.8881 0.000 0.872 0.020 0.012 0.096
#> GSM123188 1 0.0000 0.8774 1.000 0.000 0.000 0.000 0.000
#> GSM123189 3 0.1845 0.6457 0.056 0.000 0.928 0.000 0.016
#> GSM123190 3 0.1430 0.6089 0.000 0.004 0.944 0.000 0.052
#> GSM123191 3 0.4101 0.5055 0.372 0.000 0.628 0.000 0.000
#> GSM123192 4 0.4313 0.3808 0.356 0.000 0.008 0.636 0.000
#> GSM123193 1 0.2852 0.7015 0.828 0.000 0.172 0.000 0.000
#> GSM123194 3 0.5798 0.2250 0.108 0.000 0.556 0.000 0.336
#> GSM123195 2 0.0703 0.9245 0.000 0.976 0.024 0.000 0.000
#> GSM123196 3 0.4045 0.5247 0.356 0.000 0.644 0.000 0.000
#> GSM123197 1 0.4599 0.6366 0.760 0.172 0.000 0.040 0.028
#> GSM123198 2 0.3932 0.8282 0.000 0.796 0.064 0.000 0.140
#> GSM123199 1 0.0798 0.8746 0.976 0.000 0.008 0.000 0.016
#> GSM123200 2 0.0609 0.9262 0.000 0.980 0.020 0.000 0.000
#> GSM123201 5 0.1357 0.7957 0.004 0.000 0.048 0.000 0.948
#> GSM123202 2 0.0290 0.9257 0.000 0.992 0.008 0.000 0.000
#> GSM123203 1 0.0771 0.8729 0.976 0.000 0.004 0.000 0.020
#> GSM123204 2 0.1408 0.9219 0.000 0.948 0.008 0.000 0.044
#> GSM123205 2 0.2612 0.8777 0.000 0.868 0.008 0.000 0.124
#> GSM123206 2 0.0510 0.9250 0.000 0.984 0.016 0.000 0.000
#> GSM123207 5 0.5253 0.1030 0.016 0.396 0.024 0.000 0.564
#> GSM123208 2 0.1041 0.9217 0.000 0.964 0.032 0.000 0.004
#> GSM123209 2 0.1493 0.9216 0.000 0.948 0.028 0.000 0.024
#> GSM123210 1 0.0162 0.8773 0.996 0.000 0.004 0.000 0.000
#> GSM123211 1 0.0162 0.8773 0.996 0.000 0.004 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 4 0.2274 0.7640 0.088 0.008 0.000 0.892 0.000 0.012
#> GSM123213 4 0.0862 0.8162 0.004 0.008 0.000 0.972 0.000 0.016
#> GSM123214 4 0.0291 0.8213 0.000 0.000 0.004 0.992 0.000 0.004
#> GSM123215 4 0.0000 0.8214 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123216 1 0.1657 0.8101 0.928 0.000 0.056 0.000 0.000 0.016
#> GSM123217 1 0.4074 0.6343 0.752 0.000 0.108 0.000 0.000 0.140
#> GSM123218 3 0.3637 0.5069 0.000 0.000 0.780 0.000 0.056 0.164
#> GSM123219 6 0.6582 0.4534 0.232 0.004 0.200 0.052 0.000 0.512
#> GSM123220 1 0.1471 0.8161 0.932 0.000 0.064 0.000 0.000 0.004
#> GSM123221 1 0.4129 0.6203 0.744 0.000 0.200 0.000 0.036 0.020
#> GSM123222 5 0.6047 0.1896 0.292 0.000 0.220 0.000 0.480 0.008
#> GSM123223 2 0.3617 0.6534 0.000 0.736 0.020 0.244 0.000 0.000
#> GSM123224 1 0.2520 0.7674 0.844 0.000 0.152 0.000 0.000 0.004
#> GSM123225 1 0.2724 0.8028 0.876 0.000 0.076 0.000 0.032 0.016
#> GSM123226 3 0.3043 0.6273 0.196 0.000 0.796 0.000 0.004 0.004
#> GSM123227 5 0.5999 0.0136 0.008 0.000 0.220 0.000 0.496 0.276
#> GSM123228 5 0.2908 0.5681 0.048 0.000 0.104 0.000 0.848 0.000
#> GSM123229 3 0.4033 0.5945 0.224 0.000 0.724 0.000 0.052 0.000
#> GSM123230 3 0.4795 0.5387 0.152 0.000 0.672 0.000 0.176 0.000
#> GSM123231 3 0.3273 0.5638 0.000 0.044 0.848 0.000 0.036 0.072
#> GSM123232 1 0.1049 0.8164 0.960 0.000 0.032 0.000 0.000 0.008
#> GSM123233 5 0.0603 0.5977 0.000 0.000 0.016 0.000 0.980 0.004
#> GSM123234 5 0.4411 0.1873 0.012 0.000 0.400 0.000 0.576 0.012
#> GSM123235 3 0.3066 0.5908 0.044 0.124 0.832 0.000 0.000 0.000
#> GSM123236 6 0.5005 -0.1528 0.020 0.000 0.036 0.000 0.404 0.540
#> GSM123237 1 0.1913 0.7739 0.908 0.000 0.012 0.000 0.000 0.080
#> GSM123238 1 0.2488 0.7480 0.864 0.000 0.004 0.124 0.000 0.008
#> GSM123239 2 0.3513 0.7749 0.000 0.824 0.056 0.000 0.100 0.020
#> GSM123240 1 0.0260 0.8106 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM123241 1 0.1196 0.8173 0.952 0.000 0.040 0.000 0.000 0.008
#> GSM123242 4 0.0881 0.8182 0.000 0.000 0.008 0.972 0.008 0.012
#> GSM123182 4 0.6634 0.2651 0.000 0.000 0.088 0.524 0.188 0.200
#> GSM123183 4 0.1010 0.8095 0.036 0.004 0.000 0.960 0.000 0.000
#> GSM123184 4 0.0146 0.8210 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM123185 5 0.0935 0.5926 0.000 0.000 0.004 0.032 0.964 0.000
#> GSM123186 4 0.7469 -0.2538 0.148 0.004 0.172 0.368 0.000 0.308
#> GSM123187 2 0.5227 0.7312 0.012 0.724 0.008 0.128 0.048 0.080
#> GSM123188 1 0.1738 0.8013 0.928 0.000 0.016 0.000 0.004 0.052
#> GSM123189 3 0.5299 0.0395 0.076 0.000 0.540 0.000 0.012 0.372
#> GSM123190 6 0.4131 0.0808 0.000 0.000 0.384 0.000 0.016 0.600
#> GSM123191 3 0.4508 0.5165 0.116 0.000 0.716 0.000 0.004 0.164
#> GSM123192 1 0.5151 0.1755 0.508 0.000 0.044 0.428 0.000 0.020
#> GSM123193 1 0.3921 0.6341 0.768 0.000 0.116 0.000 0.000 0.116
#> GSM123194 6 0.6467 0.4668 0.248 0.000 0.196 0.004 0.040 0.512
#> GSM123195 2 0.1788 0.8207 0.000 0.916 0.076 0.000 0.004 0.004
#> GSM123196 3 0.3183 0.6625 0.128 0.000 0.828 0.000 0.040 0.004
#> GSM123197 1 0.6081 0.3610 0.572 0.288 0.056 0.072 0.004 0.008
#> GSM123198 2 0.4649 0.5116 0.000 0.492 0.000 0.000 0.040 0.468
#> GSM123199 1 0.2592 0.7902 0.864 0.000 0.116 0.000 0.016 0.004
#> GSM123200 2 0.1148 0.8319 0.000 0.960 0.020 0.000 0.004 0.016
#> GSM123201 5 0.3010 0.5502 0.000 0.004 0.020 0.000 0.828 0.148
#> GSM123202 2 0.0547 0.8309 0.000 0.980 0.020 0.000 0.000 0.000
#> GSM123203 1 0.4166 0.7023 0.760 0.000 0.108 0.000 0.124 0.008
#> GSM123204 2 0.1801 0.8247 0.000 0.924 0.004 0.000 0.016 0.056
#> GSM123205 2 0.4565 0.6861 0.000 0.664 0.000 0.000 0.076 0.260
#> GSM123206 2 0.0508 0.8315 0.000 0.984 0.012 0.000 0.004 0.000
#> GSM123207 5 0.5409 0.3664 0.008 0.204 0.000 0.000 0.612 0.176
#> GSM123208 2 0.1606 0.8251 0.000 0.932 0.056 0.000 0.004 0.008
#> GSM123209 2 0.4408 0.7532 0.052 0.756 0.012 0.000 0.020 0.160
#> GSM123210 1 0.0363 0.8134 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM123211 1 0.1327 0.8007 0.936 0.000 0.064 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> CV:NMF 53 0.1454 2
#> CV:NMF 54 0.0615 3
#> CV:NMF 47 0.0134 4
#> CV:NMF 52 0.0540 5
#> CV:NMF 48 0.0435 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.524 0.814 0.905 0.4540 0.541 0.541
#> 3 3 0.462 0.769 0.852 0.2187 0.940 0.889
#> 4 4 0.517 0.747 0.827 0.2709 0.782 0.547
#> 5 5 0.552 0.690 0.717 0.0709 0.985 0.942
#> 6 6 0.644 0.674 0.759 0.0509 0.951 0.801
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.9209 0.597 0.336 0.664
#> GSM123213 2 0.5519 0.834 0.128 0.872
#> GSM123214 2 0.2778 0.865 0.048 0.952
#> GSM123215 2 0.2778 0.865 0.048 0.952
#> GSM123216 1 0.0000 0.901 1.000 0.000
#> GSM123217 1 0.0376 0.900 0.996 0.004
#> GSM123218 1 0.7815 0.735 0.768 0.232
#> GSM123219 1 0.4298 0.857 0.912 0.088
#> GSM123220 1 0.0000 0.901 1.000 0.000
#> GSM123221 1 0.0672 0.899 0.992 0.008
#> GSM123222 1 0.0000 0.901 1.000 0.000
#> GSM123223 2 0.0000 0.867 0.000 1.000
#> GSM123224 1 0.0000 0.901 1.000 0.000
#> GSM123225 1 0.0000 0.901 1.000 0.000
#> GSM123226 1 0.0000 0.901 1.000 0.000
#> GSM123227 1 0.7299 0.765 0.796 0.204
#> GSM123228 1 0.0000 0.901 1.000 0.000
#> GSM123229 1 0.1843 0.891 0.972 0.028
#> GSM123230 1 0.0000 0.901 1.000 0.000
#> GSM123231 1 0.7815 0.735 0.768 0.232
#> GSM123232 1 0.0000 0.901 1.000 0.000
#> GSM123233 1 0.9896 0.313 0.560 0.440
#> GSM123234 1 0.0000 0.901 1.000 0.000
#> GSM123235 1 0.1843 0.891 0.972 0.028
#> GSM123236 1 0.8386 0.686 0.732 0.268
#> GSM123237 1 0.0000 0.901 1.000 0.000
#> GSM123238 2 0.9491 0.543 0.368 0.632
#> GSM123239 1 0.8955 0.618 0.688 0.312
#> GSM123240 1 0.0000 0.901 1.000 0.000
#> GSM123241 1 0.0000 0.901 1.000 0.000
#> GSM123242 2 0.5519 0.834 0.128 0.872
#> GSM123182 2 0.9732 0.463 0.404 0.596
#> GSM123183 2 0.9209 0.597 0.336 0.664
#> GSM123184 2 0.2778 0.865 0.048 0.952
#> GSM123185 1 0.9881 0.323 0.564 0.436
#> GSM123186 1 0.4298 0.857 0.912 0.088
#> GSM123187 2 0.5519 0.834 0.128 0.872
#> GSM123188 1 0.0000 0.901 1.000 0.000
#> GSM123189 1 0.3879 0.868 0.924 0.076
#> GSM123190 1 0.7815 0.735 0.768 0.232
#> GSM123191 1 0.2948 0.881 0.948 0.052
#> GSM123192 1 0.2423 0.878 0.960 0.040
#> GSM123193 1 0.0376 0.900 0.996 0.004
#> GSM123194 1 0.2948 0.881 0.948 0.052
#> GSM123195 2 0.0000 0.867 0.000 1.000
#> GSM123196 1 0.1843 0.891 0.972 0.028
#> GSM123197 2 0.9209 0.597 0.336 0.664
#> GSM123198 2 0.0938 0.868 0.012 0.988
#> GSM123199 1 0.0000 0.901 1.000 0.000
#> GSM123200 2 0.0000 0.867 0.000 1.000
#> GSM123201 1 0.8386 0.686 0.732 0.268
#> GSM123202 2 0.0672 0.867 0.008 0.992
#> GSM123203 1 0.0000 0.901 1.000 0.000
#> GSM123204 2 0.0000 0.867 0.000 1.000
#> GSM123205 2 0.0000 0.867 0.000 1.000
#> GSM123206 2 0.0000 0.867 0.000 1.000
#> GSM123207 1 0.8386 0.686 0.732 0.268
#> GSM123208 2 0.0000 0.867 0.000 1.000
#> GSM123209 2 0.4690 0.844 0.100 0.900
#> GSM123210 1 0.0000 0.901 1.000 0.000
#> GSM123211 1 0.0000 0.901 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 2 0.4346 0.711 0.184 0.816 0.000
#> GSM123213 2 0.7749 0.536 0.072 0.616 0.312
#> GSM123214 2 0.3941 0.645 0.000 0.844 0.156
#> GSM123215 2 0.3941 0.645 0.000 0.844 0.156
#> GSM123216 1 0.3879 0.795 0.848 0.152 0.000
#> GSM123217 1 0.3340 0.817 0.880 0.120 0.000
#> GSM123218 1 0.6208 0.702 0.756 0.052 0.192
#> GSM123219 1 0.5119 0.790 0.816 0.152 0.032
#> GSM123220 1 0.2165 0.832 0.936 0.064 0.000
#> GSM123221 1 0.4002 0.792 0.840 0.160 0.000
#> GSM123222 1 0.1031 0.834 0.976 0.024 0.000
#> GSM123223 3 0.0000 0.965 0.000 0.000 1.000
#> GSM123224 1 0.2711 0.828 0.912 0.088 0.000
#> GSM123225 1 0.3879 0.795 0.848 0.152 0.000
#> GSM123226 1 0.0592 0.834 0.988 0.012 0.000
#> GSM123227 1 0.6001 0.713 0.772 0.052 0.176
#> GSM123228 1 0.0592 0.834 0.988 0.012 0.000
#> GSM123229 1 0.1585 0.830 0.964 0.008 0.028
#> GSM123230 1 0.0892 0.832 0.980 0.020 0.000
#> GSM123231 1 0.6208 0.702 0.756 0.052 0.192
#> GSM123232 1 0.0592 0.835 0.988 0.012 0.000
#> GSM123233 1 0.7203 0.382 0.556 0.028 0.416
#> GSM123234 1 0.0892 0.832 0.980 0.020 0.000
#> GSM123235 1 0.2050 0.825 0.952 0.020 0.028
#> GSM123236 1 0.6742 0.644 0.708 0.052 0.240
#> GSM123237 1 0.2711 0.825 0.912 0.088 0.000
#> GSM123238 2 0.4750 0.691 0.216 0.784 0.000
#> GSM123239 1 0.7128 0.595 0.664 0.052 0.284
#> GSM123240 1 0.3879 0.795 0.848 0.152 0.000
#> GSM123241 1 0.2537 0.827 0.920 0.080 0.000
#> GSM123242 2 0.7749 0.536 0.072 0.616 0.312
#> GSM123182 2 0.8137 0.552 0.316 0.592 0.092
#> GSM123183 2 0.4346 0.711 0.184 0.816 0.000
#> GSM123184 2 0.3941 0.645 0.000 0.844 0.156
#> GSM123185 1 0.7464 0.391 0.560 0.040 0.400
#> GSM123186 1 0.5119 0.790 0.816 0.152 0.032
#> GSM123187 2 0.7820 0.518 0.072 0.604 0.324
#> GSM123188 1 0.2711 0.825 0.912 0.088 0.000
#> GSM123189 1 0.3791 0.814 0.892 0.048 0.060
#> GSM123190 1 0.6208 0.702 0.756 0.052 0.192
#> GSM123191 1 0.4519 0.817 0.852 0.116 0.032
#> GSM123192 1 0.4399 0.762 0.812 0.188 0.000
#> GSM123193 1 0.3412 0.818 0.876 0.124 0.000
#> GSM123194 1 0.4519 0.817 0.852 0.116 0.032
#> GSM123195 3 0.0000 0.965 0.000 0.000 1.000
#> GSM123196 1 0.1585 0.830 0.964 0.008 0.028
#> GSM123197 2 0.4346 0.711 0.184 0.816 0.000
#> GSM123198 3 0.1877 0.928 0.012 0.032 0.956
#> GSM123199 1 0.0424 0.835 0.992 0.008 0.000
#> GSM123200 3 0.0000 0.965 0.000 0.000 1.000
#> GSM123201 1 0.6742 0.644 0.708 0.052 0.240
#> GSM123202 3 0.0424 0.957 0.008 0.000 0.992
#> GSM123203 1 0.0592 0.835 0.988 0.012 0.000
#> GSM123204 3 0.0000 0.965 0.000 0.000 1.000
#> GSM123205 3 0.0000 0.965 0.000 0.000 1.000
#> GSM123206 3 0.0000 0.965 0.000 0.000 1.000
#> GSM123207 1 0.6742 0.644 0.708 0.052 0.240
#> GSM123208 3 0.0000 0.965 0.000 0.000 1.000
#> GSM123209 3 0.5710 0.717 0.080 0.116 0.804
#> GSM123210 1 0.2537 0.827 0.920 0.080 0.000
#> GSM123211 1 0.3879 0.795 0.848 0.152 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 4 0.5113 0.728 0.252 0.000 0.036 0.712
#> GSM123213 4 0.7695 0.589 0.076 0.216 0.104 0.604
#> GSM123214 4 0.0188 0.700 0.000 0.004 0.000 0.996
#> GSM123215 4 0.0188 0.700 0.000 0.004 0.000 0.996
#> GSM123216 1 0.0376 0.836 0.992 0.000 0.004 0.004
#> GSM123217 1 0.2048 0.855 0.928 0.000 0.064 0.008
#> GSM123218 3 0.4046 0.741 0.060 0.072 0.852 0.016
#> GSM123219 1 0.5254 0.741 0.724 0.000 0.220 0.056
#> GSM123220 1 0.2868 0.827 0.864 0.000 0.136 0.000
#> GSM123221 1 0.1151 0.825 0.968 0.000 0.024 0.008
#> GSM123222 3 0.4382 0.653 0.296 0.000 0.704 0.000
#> GSM123223 2 0.0000 0.947 0.000 1.000 0.000 0.000
#> GSM123224 1 0.2530 0.837 0.888 0.000 0.112 0.000
#> GSM123225 1 0.0376 0.836 0.992 0.000 0.004 0.004
#> GSM123226 3 0.4697 0.543 0.356 0.000 0.644 0.000
#> GSM123227 3 0.1837 0.742 0.028 0.028 0.944 0.000
#> GSM123228 3 0.4697 0.543 0.356 0.000 0.644 0.000
#> GSM123229 3 0.4356 0.657 0.292 0.000 0.708 0.000
#> GSM123230 3 0.4304 0.665 0.284 0.000 0.716 0.000
#> GSM123231 3 0.4046 0.741 0.060 0.072 0.852 0.016
#> GSM123232 1 0.4277 0.629 0.720 0.000 0.280 0.000
#> GSM123233 3 0.4661 0.519 0.000 0.256 0.728 0.016
#> GSM123234 3 0.4304 0.665 0.284 0.000 0.716 0.000
#> GSM123235 3 0.3975 0.696 0.240 0.000 0.760 0.000
#> GSM123236 3 0.2197 0.724 0.004 0.080 0.916 0.000
#> GSM123237 1 0.1867 0.855 0.928 0.000 0.072 0.000
#> GSM123238 4 0.5182 0.689 0.288 0.000 0.028 0.684
#> GSM123239 3 0.3217 0.701 0.012 0.128 0.860 0.000
#> GSM123240 1 0.0376 0.836 0.992 0.000 0.004 0.004
#> GSM123241 1 0.2408 0.850 0.896 0.000 0.104 0.000
#> GSM123242 4 0.7695 0.589 0.076 0.216 0.104 0.604
#> GSM123182 4 0.7753 0.519 0.244 0.024 0.184 0.548
#> GSM123183 4 0.5113 0.728 0.252 0.000 0.036 0.712
#> GSM123184 4 0.0188 0.700 0.000 0.004 0.000 0.996
#> GSM123185 3 0.4993 0.513 0.000 0.260 0.712 0.028
#> GSM123186 1 0.5254 0.741 0.724 0.000 0.220 0.056
#> GSM123187 4 0.7823 0.578 0.076 0.220 0.112 0.592
#> GSM123188 1 0.1867 0.855 0.928 0.000 0.072 0.000
#> GSM123189 3 0.4012 0.704 0.184 0.000 0.800 0.016
#> GSM123190 3 0.4046 0.741 0.060 0.072 0.852 0.016
#> GSM123191 1 0.4576 0.758 0.748 0.000 0.232 0.020
#> GSM123192 1 0.2111 0.816 0.932 0.000 0.024 0.044
#> GSM123193 1 0.2198 0.854 0.920 0.000 0.072 0.008
#> GSM123194 1 0.4507 0.763 0.756 0.000 0.224 0.020
#> GSM123195 2 0.0000 0.947 0.000 1.000 0.000 0.000
#> GSM123196 3 0.4356 0.657 0.292 0.000 0.708 0.000
#> GSM123197 4 0.5113 0.728 0.252 0.000 0.036 0.712
#> GSM123198 2 0.2976 0.829 0.000 0.872 0.120 0.008
#> GSM123199 1 0.4382 0.608 0.704 0.000 0.296 0.000
#> GSM123200 2 0.0000 0.947 0.000 1.000 0.000 0.000
#> GSM123201 3 0.2197 0.724 0.004 0.080 0.916 0.000
#> GSM123202 2 0.0336 0.939 0.008 0.992 0.000 0.000
#> GSM123203 1 0.4304 0.625 0.716 0.000 0.284 0.000
#> GSM123204 2 0.0000 0.947 0.000 1.000 0.000 0.000
#> GSM123205 2 0.0000 0.947 0.000 1.000 0.000 0.000
#> GSM123206 2 0.0000 0.947 0.000 1.000 0.000 0.000
#> GSM123207 3 0.2342 0.724 0.008 0.080 0.912 0.000
#> GSM123208 2 0.0000 0.947 0.000 1.000 0.000 0.000
#> GSM123209 2 0.6441 0.631 0.084 0.720 0.124 0.072
#> GSM123210 1 0.2469 0.849 0.892 0.000 0.108 0.000
#> GSM123211 1 0.0779 0.833 0.980 0.000 0.016 0.004
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 3 0.5806 0.953 0.144 0.000 0.636 0.212 0.008
#> GSM123213 4 0.6621 0.598 0.000 0.100 0.180 0.620 0.100
#> GSM123214 4 0.1851 0.507 0.000 0.000 0.088 0.912 0.000
#> GSM123215 4 0.1851 0.507 0.000 0.000 0.088 0.912 0.000
#> GSM123216 1 0.0865 0.752 0.972 0.000 0.024 0.000 0.004
#> GSM123217 1 0.3055 0.764 0.864 0.000 0.064 0.000 0.072
#> GSM123218 5 0.3072 0.680 0.004 0.016 0.100 0.012 0.868
#> GSM123219 1 0.7061 0.548 0.556 0.000 0.144 0.076 0.224
#> GSM123220 1 0.2605 0.757 0.852 0.000 0.000 0.000 0.148
#> GSM123221 1 0.2358 0.706 0.888 0.000 0.104 0.000 0.008
#> GSM123222 5 0.4194 0.624 0.260 0.000 0.016 0.004 0.720
#> GSM123223 2 0.0000 0.913 0.000 1.000 0.000 0.000 0.000
#> GSM123224 1 0.2329 0.763 0.876 0.000 0.000 0.000 0.124
#> GSM123225 1 0.0865 0.752 0.972 0.000 0.024 0.000 0.004
#> GSM123226 5 0.5996 0.495 0.352 0.000 0.124 0.000 0.524
#> GSM123227 5 0.3141 0.692 0.016 0.000 0.152 0.000 0.832
#> GSM123228 5 0.5996 0.495 0.352 0.000 0.124 0.000 0.524
#> GSM123229 5 0.3756 0.629 0.248 0.000 0.008 0.000 0.744
#> GSM123230 5 0.3550 0.642 0.236 0.000 0.004 0.000 0.760
#> GSM123231 5 0.3072 0.680 0.004 0.016 0.100 0.012 0.868
#> GSM123232 1 0.4138 0.573 0.708 0.000 0.016 0.000 0.276
#> GSM123233 5 0.5452 0.497 0.000 0.056 0.344 0.008 0.592
#> GSM123234 5 0.3671 0.643 0.236 0.000 0.008 0.000 0.756
#> GSM123235 5 0.3492 0.670 0.188 0.000 0.016 0.000 0.796
#> GSM123236 5 0.3366 0.669 0.004 0.000 0.212 0.000 0.784
#> GSM123237 1 0.2694 0.782 0.892 0.000 0.008 0.032 0.068
#> GSM123238 3 0.6138 0.862 0.208 0.000 0.596 0.188 0.008
#> GSM123239 5 0.4256 0.646 0.000 0.044 0.192 0.004 0.760
#> GSM123240 1 0.0865 0.752 0.972 0.000 0.024 0.000 0.004
#> GSM123241 1 0.2230 0.777 0.884 0.000 0.000 0.000 0.116
#> GSM123242 4 0.6621 0.598 0.000 0.100 0.180 0.620 0.100
#> GSM123182 4 0.7135 0.321 0.080 0.000 0.176 0.556 0.188
#> GSM123183 3 0.5806 0.953 0.144 0.000 0.636 0.212 0.008
#> GSM123184 4 0.1851 0.507 0.000 0.000 0.088 0.912 0.000
#> GSM123185 5 0.5777 0.485 0.000 0.060 0.340 0.020 0.580
#> GSM123186 1 0.7061 0.548 0.556 0.000 0.144 0.076 0.224
#> GSM123187 4 0.6725 0.591 0.000 0.100 0.188 0.608 0.104
#> GSM123188 1 0.2694 0.782 0.892 0.000 0.008 0.032 0.068
#> GSM123189 5 0.3959 0.670 0.068 0.000 0.104 0.012 0.816
#> GSM123190 5 0.3072 0.680 0.004 0.016 0.100 0.012 0.868
#> GSM123191 1 0.6745 0.593 0.588 0.000 0.108 0.076 0.228
#> GSM123192 1 0.4160 0.678 0.804 0.000 0.124 0.048 0.024
#> GSM123193 1 0.3239 0.760 0.852 0.000 0.068 0.000 0.080
#> GSM123194 1 0.6721 0.593 0.592 0.000 0.108 0.076 0.224
#> GSM123195 2 0.0000 0.913 0.000 1.000 0.000 0.000 0.000
#> GSM123196 5 0.3756 0.629 0.248 0.000 0.008 0.000 0.744
#> GSM123197 3 0.5806 0.953 0.144 0.000 0.636 0.212 0.008
#> GSM123198 2 0.5074 0.656 0.000 0.740 0.120 0.024 0.116
#> GSM123199 1 0.4290 0.540 0.680 0.000 0.016 0.000 0.304
#> GSM123200 2 0.0000 0.913 0.000 1.000 0.000 0.000 0.000
#> GSM123201 5 0.3366 0.669 0.004 0.000 0.212 0.000 0.784
#> GSM123202 2 0.0404 0.907 0.000 0.988 0.000 0.000 0.012
#> GSM123203 1 0.4161 0.569 0.704 0.000 0.016 0.000 0.280
#> GSM123204 2 0.0000 0.913 0.000 1.000 0.000 0.000 0.000
#> GSM123205 2 0.0404 0.908 0.000 0.988 0.000 0.012 0.000
#> GSM123206 2 0.0000 0.913 0.000 1.000 0.000 0.000 0.000
#> GSM123207 5 0.3522 0.667 0.004 0.000 0.212 0.004 0.780
#> GSM123208 2 0.0162 0.912 0.000 0.996 0.000 0.000 0.004
#> GSM123209 2 0.6908 0.424 0.000 0.588 0.192 0.092 0.128
#> GSM123210 1 0.2280 0.777 0.880 0.000 0.000 0.000 0.120
#> GSM123211 1 0.1168 0.749 0.960 0.000 0.032 0.000 0.008
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 6 0.0837 0.961 0.020 0.000 0.004 0.004 0.000 0.972
#> GSM123213 4 0.6047 0.675 0.000 0.012 0.080 0.584 0.268 0.056
#> GSM123214 4 0.1444 0.625 0.000 0.000 0.000 0.928 0.000 0.072
#> GSM123215 4 0.1444 0.625 0.000 0.000 0.000 0.928 0.000 0.072
#> GSM123216 1 0.1588 0.758 0.924 0.000 0.004 0.000 0.000 0.072
#> GSM123217 1 0.2747 0.743 0.860 0.000 0.096 0.000 0.000 0.044
#> GSM123218 3 0.2191 0.574 0.004 0.000 0.876 0.000 0.120 0.000
#> GSM123219 1 0.6507 0.509 0.560 0.000 0.260 0.028 0.084 0.068
#> GSM123220 1 0.2135 0.705 0.872 0.000 0.128 0.000 0.000 0.000
#> GSM123221 1 0.2664 0.704 0.816 0.000 0.000 0.000 0.000 0.184
#> GSM123222 3 0.4516 0.629 0.260 0.000 0.668 0.000 0.072 0.000
#> GSM123223 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123224 1 0.2312 0.720 0.876 0.000 0.112 0.000 0.000 0.012
#> GSM123225 1 0.1588 0.758 0.924 0.000 0.004 0.000 0.000 0.072
#> GSM123226 5 0.6094 0.119 0.356 0.000 0.280 0.000 0.364 0.000
#> GSM123227 5 0.4300 0.610 0.028 0.000 0.364 0.000 0.608 0.000
#> GSM123228 5 0.6094 0.119 0.356 0.000 0.280 0.000 0.364 0.000
#> GSM123229 3 0.3151 0.706 0.252 0.000 0.748 0.000 0.000 0.000
#> GSM123230 3 0.2996 0.711 0.228 0.000 0.772 0.000 0.000 0.000
#> GSM123231 3 0.2191 0.574 0.004 0.000 0.876 0.000 0.120 0.000
#> GSM123232 1 0.3964 0.515 0.724 0.000 0.232 0.000 0.044 0.000
#> GSM123233 5 0.2205 0.528 0.000 0.008 0.088 0.004 0.896 0.004
#> GSM123234 3 0.3740 0.693 0.228 0.000 0.740 0.000 0.032 0.000
#> GSM123235 3 0.2631 0.720 0.180 0.000 0.820 0.000 0.000 0.000
#> GSM123236 5 0.4029 0.677 0.028 0.000 0.292 0.000 0.680 0.000
#> GSM123237 1 0.1755 0.758 0.932 0.000 0.028 0.000 0.032 0.008
#> GSM123238 6 0.1858 0.881 0.092 0.000 0.000 0.004 0.000 0.904
#> GSM123239 5 0.4834 0.658 0.020 0.044 0.272 0.004 0.660 0.000
#> GSM123240 1 0.1531 0.757 0.928 0.000 0.004 0.000 0.000 0.068
#> GSM123241 1 0.1765 0.733 0.904 0.000 0.096 0.000 0.000 0.000
#> GSM123242 4 0.6047 0.675 0.000 0.012 0.080 0.584 0.268 0.056
#> GSM123182 4 0.7425 0.498 0.080 0.000 0.212 0.504 0.136 0.068
#> GSM123183 6 0.0837 0.961 0.020 0.000 0.004 0.004 0.000 0.972
#> GSM123184 4 0.1444 0.625 0.000 0.000 0.000 0.928 0.000 0.072
#> GSM123185 5 0.2957 0.490 0.000 0.008 0.116 0.016 0.852 0.008
#> GSM123186 1 0.6507 0.509 0.560 0.000 0.260 0.028 0.084 0.068
#> GSM123187 4 0.6125 0.667 0.000 0.012 0.084 0.572 0.276 0.056
#> GSM123188 1 0.1755 0.758 0.932 0.000 0.028 0.000 0.032 0.008
#> GSM123189 3 0.3103 0.583 0.076 0.000 0.856 0.000 0.024 0.044
#> GSM123190 3 0.2191 0.574 0.004 0.000 0.876 0.000 0.120 0.000
#> GSM123191 1 0.6011 0.544 0.600 0.000 0.260 0.028 0.068 0.044
#> GSM123192 1 0.4645 0.702 0.756 0.000 0.040 0.012 0.064 0.128
#> GSM123193 1 0.2889 0.739 0.848 0.000 0.108 0.000 0.000 0.044
#> GSM123194 1 0.6011 0.545 0.600 0.000 0.260 0.028 0.068 0.044
#> GSM123195 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123196 3 0.3151 0.706 0.252 0.000 0.748 0.000 0.000 0.000
#> GSM123197 6 0.0837 0.961 0.020 0.000 0.004 0.004 0.000 0.972
#> GSM123198 2 0.5495 0.565 0.000 0.652 0.092 0.044 0.208 0.004
#> GSM123199 1 0.4173 0.470 0.688 0.000 0.268 0.000 0.044 0.000
#> GSM123200 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123201 5 0.4029 0.677 0.028 0.000 0.292 0.000 0.680 0.000
#> GSM123202 2 0.0436 0.891 0.000 0.988 0.004 0.004 0.004 0.000
#> GSM123203 1 0.3989 0.511 0.720 0.000 0.236 0.000 0.044 0.000
#> GSM123204 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123205 2 0.1152 0.870 0.000 0.952 0.000 0.044 0.004 0.000
#> GSM123206 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123207 5 0.4009 0.677 0.028 0.000 0.288 0.000 0.684 0.000
#> GSM123208 2 0.0146 0.894 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM123209 2 0.7018 0.319 0.000 0.504 0.096 0.064 0.284 0.052
#> GSM123210 1 0.1814 0.732 0.900 0.000 0.100 0.000 0.000 0.000
#> GSM123211 1 0.1814 0.750 0.900 0.000 0.000 0.000 0.000 0.100
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> MAD:hclust 58 0.1158 2
#> MAD:hclust 59 0.0169 3
#> MAD:hclust 61 0.0279 4
#> MAD:hclust 55 0.0988 5
#> MAD:hclust 55 0.1336 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.744 0.822 0.930 0.4617 0.522 0.522
#> 3 3 0.459 0.534 0.680 0.3359 0.781 0.634
#> 4 4 0.610 0.675 0.825 0.1851 0.736 0.465
#> 5 5 0.614 0.532 0.729 0.0746 0.921 0.719
#> 6 6 0.662 0.627 0.731 0.0489 0.892 0.554
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.9710 0.342 0.400 0.600
#> GSM123213 2 0.0000 0.851 0.000 1.000
#> GSM123214 2 0.0000 0.851 0.000 1.000
#> GSM123215 2 0.0000 0.851 0.000 1.000
#> GSM123216 1 0.0000 0.956 1.000 0.000
#> GSM123217 1 0.0000 0.956 1.000 0.000
#> GSM123218 1 0.7950 0.609 0.760 0.240
#> GSM123219 1 0.0000 0.956 1.000 0.000
#> GSM123220 1 0.0000 0.956 1.000 0.000
#> GSM123221 1 0.0000 0.956 1.000 0.000
#> GSM123222 1 0.0000 0.956 1.000 0.000
#> GSM123223 2 0.0000 0.851 0.000 1.000
#> GSM123224 1 0.0000 0.956 1.000 0.000
#> GSM123225 1 0.0000 0.956 1.000 0.000
#> GSM123226 1 0.0000 0.956 1.000 0.000
#> GSM123227 1 0.0000 0.956 1.000 0.000
#> GSM123228 1 0.0000 0.956 1.000 0.000
#> GSM123229 1 0.0000 0.956 1.000 0.000
#> GSM123230 1 0.0000 0.956 1.000 0.000
#> GSM123231 1 0.9686 0.196 0.604 0.396
#> GSM123232 1 0.0000 0.956 1.000 0.000
#> GSM123233 2 0.9323 0.497 0.348 0.652
#> GSM123234 1 0.0000 0.956 1.000 0.000
#> GSM123235 1 0.0000 0.956 1.000 0.000
#> GSM123236 1 0.4022 0.868 0.920 0.080
#> GSM123237 1 0.0000 0.956 1.000 0.000
#> GSM123238 1 0.6887 0.713 0.816 0.184
#> GSM123239 2 0.9954 0.264 0.460 0.540
#> GSM123240 1 0.0000 0.956 1.000 0.000
#> GSM123241 1 0.0000 0.956 1.000 0.000
#> GSM123242 2 0.0000 0.851 0.000 1.000
#> GSM123182 2 0.9963 0.253 0.464 0.536
#> GSM123183 2 0.9710 0.342 0.400 0.600
#> GSM123184 2 0.0000 0.851 0.000 1.000
#> GSM123185 2 0.9710 0.402 0.400 0.600
#> GSM123186 1 0.0000 0.956 1.000 0.000
#> GSM123187 2 0.0000 0.851 0.000 1.000
#> GSM123188 1 0.0000 0.956 1.000 0.000
#> GSM123189 1 0.0000 0.956 1.000 0.000
#> GSM123190 2 0.9970 0.242 0.468 0.532
#> GSM123191 1 0.0000 0.956 1.000 0.000
#> GSM123192 1 0.0000 0.956 1.000 0.000
#> GSM123193 1 0.0000 0.956 1.000 0.000
#> GSM123194 1 0.0000 0.956 1.000 0.000
#> GSM123195 2 0.0000 0.851 0.000 1.000
#> GSM123196 1 0.0000 0.956 1.000 0.000
#> GSM123197 1 0.9710 0.224 0.600 0.400
#> GSM123198 2 0.0000 0.851 0.000 1.000
#> GSM123199 1 0.0000 0.956 1.000 0.000
#> GSM123200 2 0.0000 0.851 0.000 1.000
#> GSM123201 1 0.0000 0.956 1.000 0.000
#> GSM123202 2 0.0000 0.851 0.000 1.000
#> GSM123203 1 0.0000 0.956 1.000 0.000
#> GSM123204 2 0.0000 0.851 0.000 1.000
#> GSM123205 2 0.0000 0.851 0.000 1.000
#> GSM123206 2 0.0000 0.851 0.000 1.000
#> GSM123207 1 0.0938 0.945 0.988 0.012
#> GSM123208 2 0.0000 0.851 0.000 1.000
#> GSM123209 2 0.0000 0.851 0.000 1.000
#> GSM123210 1 0.0000 0.956 1.000 0.000
#> GSM123211 1 0.0000 0.956 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 2 0.6313 0.4776 0.016 0.676 0.308
#> GSM123213 2 0.2261 0.4993 0.000 0.932 0.068
#> GSM123214 2 0.0000 0.5848 0.000 1.000 0.000
#> GSM123215 2 0.0000 0.5848 0.000 1.000 0.000
#> GSM123216 1 0.6274 0.6748 0.544 0.000 0.456
#> GSM123217 1 0.6244 0.6832 0.560 0.000 0.440
#> GSM123218 1 0.4045 0.5925 0.872 0.024 0.104
#> GSM123219 1 0.6585 0.6378 0.736 0.064 0.200
#> GSM123220 1 0.6235 0.6832 0.564 0.000 0.436
#> GSM123221 1 0.6280 0.6740 0.540 0.000 0.460
#> GSM123222 1 0.4654 0.7272 0.792 0.000 0.208
#> GSM123223 3 0.6305 0.5461 0.000 0.484 0.516
#> GSM123224 1 0.6274 0.6748 0.544 0.000 0.456
#> GSM123225 1 0.6280 0.6748 0.540 0.000 0.460
#> GSM123226 1 0.4399 0.7281 0.812 0.000 0.188
#> GSM123227 1 0.1015 0.6749 0.980 0.012 0.008
#> GSM123228 1 0.4452 0.7282 0.808 0.000 0.192
#> GSM123229 1 0.4702 0.7265 0.788 0.000 0.212
#> GSM123230 1 0.4605 0.7270 0.796 0.000 0.204
#> GSM123231 1 0.5842 0.4478 0.768 0.036 0.196
#> GSM123232 1 0.5835 0.7093 0.660 0.000 0.340
#> GSM123233 3 0.9299 0.2592 0.324 0.180 0.496
#> GSM123234 1 0.3425 0.7146 0.884 0.004 0.112
#> GSM123235 1 0.0747 0.6867 0.984 0.000 0.016
#> GSM123236 1 0.3987 0.5925 0.872 0.020 0.108
#> GSM123237 1 0.6244 0.6832 0.560 0.000 0.440
#> GSM123238 3 0.9527 -0.3307 0.204 0.332 0.464
#> GSM123239 3 0.7043 0.1963 0.448 0.020 0.532
#> GSM123240 1 0.6280 0.6748 0.540 0.000 0.460
#> GSM123241 1 0.6235 0.6832 0.564 0.000 0.436
#> GSM123242 2 0.1337 0.5755 0.012 0.972 0.016
#> GSM123182 1 0.7213 0.0157 0.552 0.420 0.028
#> GSM123183 2 0.6047 0.4788 0.008 0.680 0.312
#> GSM123184 2 0.0000 0.5848 0.000 1.000 0.000
#> GSM123185 1 0.8455 0.2419 0.584 0.296 0.120
#> GSM123186 1 0.9709 0.1726 0.452 0.296 0.252
#> GSM123187 2 0.6267 -0.5110 0.000 0.548 0.452
#> GSM123188 1 0.6244 0.6832 0.560 0.000 0.440
#> GSM123189 1 0.3530 0.6440 0.900 0.068 0.032
#> GSM123190 1 0.5167 0.5041 0.804 0.024 0.172
#> GSM123191 1 0.1919 0.6722 0.956 0.020 0.024
#> GSM123192 3 0.9626 -0.4398 0.260 0.268 0.472
#> GSM123193 1 0.6260 0.6817 0.552 0.000 0.448
#> GSM123194 1 0.2313 0.6731 0.944 0.024 0.032
#> GSM123195 3 0.6299 0.5548 0.000 0.476 0.524
#> GSM123196 1 0.3192 0.7167 0.888 0.000 0.112
#> GSM123197 2 0.9353 0.2377 0.200 0.504 0.296
#> GSM123198 3 0.6664 0.5528 0.008 0.464 0.528
#> GSM123199 1 0.4452 0.7282 0.808 0.000 0.192
#> GSM123200 3 0.6295 0.5590 0.000 0.472 0.528
#> GSM123201 1 0.1015 0.6744 0.980 0.012 0.008
#> GSM123202 3 0.6295 0.5590 0.000 0.472 0.528
#> GSM123203 1 0.4555 0.7283 0.800 0.000 0.200
#> GSM123204 3 0.6295 0.5590 0.000 0.472 0.528
#> GSM123205 3 0.6295 0.5590 0.000 0.472 0.528
#> GSM123206 3 0.6295 0.5590 0.000 0.472 0.528
#> GSM123207 1 0.3539 0.6029 0.888 0.012 0.100
#> GSM123208 3 0.6295 0.5590 0.000 0.472 0.528
#> GSM123209 3 0.8465 0.4592 0.096 0.376 0.528
#> GSM123210 1 0.6260 0.6787 0.552 0.000 0.448
#> GSM123211 1 0.6280 0.6740 0.540 0.000 0.460
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 4 0.3607 0.711 0.124 0.016 0.008 0.852
#> GSM123213 4 0.4262 0.701 0.000 0.236 0.008 0.756
#> GSM123214 4 0.3982 0.724 0.000 0.220 0.004 0.776
#> GSM123215 4 0.3982 0.724 0.000 0.220 0.004 0.776
#> GSM123216 1 0.1743 0.717 0.940 0.000 0.004 0.056
#> GSM123217 1 0.1388 0.732 0.960 0.000 0.028 0.012
#> GSM123218 3 0.2654 0.804 0.004 0.000 0.888 0.108
#> GSM123219 3 0.6674 0.461 0.300 0.000 0.584 0.116
#> GSM123220 1 0.2002 0.727 0.936 0.000 0.044 0.020
#> GSM123221 1 0.2469 0.695 0.892 0.000 0.000 0.108
#> GSM123222 3 0.6009 -0.231 0.468 0.000 0.492 0.040
#> GSM123223 2 0.0592 0.951 0.000 0.984 0.000 0.016
#> GSM123224 1 0.1109 0.730 0.968 0.000 0.004 0.028
#> GSM123225 1 0.1661 0.719 0.944 0.000 0.004 0.052
#> GSM123226 1 0.5838 0.273 0.524 0.000 0.444 0.032
#> GSM123227 3 0.0592 0.803 0.016 0.000 0.984 0.000
#> GSM123228 1 0.5288 0.261 0.520 0.000 0.472 0.008
#> GSM123229 1 0.6826 0.197 0.484 0.000 0.416 0.100
#> GSM123230 1 0.6395 0.180 0.472 0.000 0.464 0.064
#> GSM123231 3 0.2928 0.806 0.000 0.012 0.880 0.108
#> GSM123232 1 0.3498 0.683 0.832 0.000 0.160 0.008
#> GSM123233 3 0.4789 0.665 0.004 0.224 0.748 0.024
#> GSM123234 3 0.4017 0.701 0.128 0.000 0.828 0.044
#> GSM123235 3 0.3691 0.784 0.068 0.000 0.856 0.076
#> GSM123236 3 0.1284 0.806 0.012 0.000 0.964 0.024
#> GSM123237 1 0.1151 0.733 0.968 0.000 0.024 0.008
#> GSM123238 4 0.4985 0.156 0.468 0.000 0.000 0.532
#> GSM123239 3 0.3027 0.783 0.004 0.088 0.888 0.020
#> GSM123240 1 0.1557 0.718 0.944 0.000 0.000 0.056
#> GSM123241 1 0.2089 0.727 0.932 0.000 0.048 0.020
#> GSM123242 4 0.4204 0.721 0.000 0.192 0.020 0.788
#> GSM123182 3 0.4604 0.763 0.036 0.004 0.784 0.176
#> GSM123183 4 0.3663 0.710 0.128 0.016 0.008 0.848
#> GSM123184 4 0.3982 0.724 0.000 0.220 0.004 0.776
#> GSM123185 3 0.5287 0.688 0.008 0.076 0.760 0.156
#> GSM123186 1 0.7784 -0.119 0.392 0.000 0.364 0.244
#> GSM123187 2 0.3495 0.797 0.000 0.844 0.016 0.140
#> GSM123188 1 0.1284 0.733 0.964 0.000 0.024 0.012
#> GSM123189 3 0.4017 0.786 0.044 0.000 0.828 0.128
#> GSM123190 3 0.2958 0.806 0.004 0.004 0.876 0.116
#> GSM123191 3 0.5339 0.711 0.156 0.000 0.744 0.100
#> GSM123192 1 0.2714 0.684 0.884 0.000 0.004 0.112
#> GSM123193 1 0.2596 0.709 0.908 0.000 0.024 0.068
#> GSM123194 3 0.5452 0.713 0.156 0.000 0.736 0.108
#> GSM123195 2 0.0000 0.961 0.000 1.000 0.000 0.000
#> GSM123196 3 0.5293 0.693 0.152 0.000 0.748 0.100
#> GSM123197 4 0.6860 0.470 0.272 0.016 0.100 0.612
#> GSM123198 2 0.1256 0.938 0.000 0.964 0.028 0.008
#> GSM123199 1 0.5285 0.269 0.524 0.000 0.468 0.008
#> GSM123200 2 0.0000 0.961 0.000 1.000 0.000 0.000
#> GSM123201 3 0.1042 0.801 0.020 0.000 0.972 0.008
#> GSM123202 2 0.0000 0.961 0.000 1.000 0.000 0.000
#> GSM123203 1 0.5263 0.312 0.544 0.000 0.448 0.008
#> GSM123204 2 0.0188 0.960 0.000 0.996 0.000 0.004
#> GSM123205 2 0.0188 0.960 0.000 0.996 0.000 0.004
#> GSM123206 2 0.0000 0.961 0.000 1.000 0.000 0.000
#> GSM123207 3 0.1174 0.801 0.020 0.000 0.968 0.012
#> GSM123208 2 0.0000 0.961 0.000 1.000 0.000 0.000
#> GSM123209 2 0.2796 0.852 0.000 0.892 0.092 0.016
#> GSM123210 1 0.1174 0.732 0.968 0.000 0.012 0.020
#> GSM123211 1 0.2149 0.705 0.912 0.000 0.000 0.088
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 4 0.4901 0.6963 0.032 0.008 0.240 0.708 0.012
#> GSM123213 4 0.2935 0.7531 0.000 0.088 0.012 0.876 0.024
#> GSM123214 4 0.1608 0.7681 0.000 0.072 0.000 0.928 0.000
#> GSM123215 4 0.1608 0.7681 0.000 0.072 0.000 0.928 0.000
#> GSM123216 1 0.1818 0.6985 0.932 0.000 0.044 0.024 0.000
#> GSM123217 1 0.2241 0.6760 0.908 0.000 0.076 0.008 0.008
#> GSM123218 5 0.4594 -0.2017 0.004 0.000 0.484 0.004 0.508
#> GSM123219 3 0.6410 0.5967 0.204 0.000 0.552 0.008 0.236
#> GSM123220 1 0.1787 0.7009 0.936 0.000 0.044 0.004 0.016
#> GSM123221 1 0.4059 0.6045 0.776 0.000 0.172 0.052 0.000
#> GSM123222 5 0.6191 0.0195 0.364 0.000 0.104 0.012 0.520
#> GSM123223 2 0.2011 0.8719 0.000 0.908 0.004 0.088 0.000
#> GSM123224 1 0.1648 0.7105 0.940 0.000 0.040 0.020 0.000
#> GSM123225 1 0.1579 0.7018 0.944 0.000 0.032 0.024 0.000
#> GSM123226 1 0.6707 0.2243 0.480 0.000 0.208 0.008 0.304
#> GSM123227 5 0.0671 0.5003 0.004 0.000 0.016 0.000 0.980
#> GSM123228 5 0.6029 -0.1785 0.448 0.000 0.088 0.008 0.456
#> GSM123229 1 0.6912 0.1426 0.436 0.000 0.336 0.012 0.216
#> GSM123230 1 0.6954 0.0961 0.412 0.000 0.220 0.012 0.356
#> GSM123231 5 0.4593 -0.1951 0.004 0.000 0.480 0.004 0.512
#> GSM123232 1 0.3994 0.6253 0.804 0.000 0.056 0.008 0.132
#> GSM123233 5 0.4211 0.4448 0.000 0.152 0.016 0.044 0.788
#> GSM123234 5 0.4497 0.3920 0.092 0.000 0.120 0.012 0.776
#> GSM123235 3 0.6218 0.1014 0.108 0.000 0.444 0.008 0.440
#> GSM123236 5 0.2536 0.4097 0.004 0.000 0.128 0.000 0.868
#> GSM123237 1 0.0960 0.7083 0.972 0.000 0.016 0.004 0.008
#> GSM123238 4 0.6633 0.1714 0.384 0.000 0.220 0.396 0.000
#> GSM123239 5 0.2966 0.4601 0.000 0.136 0.016 0.000 0.848
#> GSM123240 1 0.1741 0.6998 0.936 0.000 0.040 0.024 0.000
#> GSM123241 1 0.1862 0.7008 0.932 0.000 0.048 0.004 0.016
#> GSM123242 4 0.2902 0.7591 0.000 0.056 0.028 0.888 0.028
#> GSM123182 3 0.5735 0.3486 0.004 0.000 0.492 0.072 0.432
#> GSM123183 4 0.4740 0.6989 0.032 0.008 0.232 0.720 0.008
#> GSM123184 4 0.1608 0.7681 0.000 0.072 0.000 0.928 0.000
#> GSM123185 5 0.4667 0.4349 0.000 0.044 0.052 0.128 0.776
#> GSM123186 3 0.6603 0.4999 0.240 0.000 0.576 0.036 0.148
#> GSM123187 2 0.5590 0.7069 0.000 0.708 0.044 0.124 0.124
#> GSM123188 1 0.0981 0.7087 0.972 0.000 0.012 0.008 0.008
#> GSM123189 3 0.4715 0.4916 0.024 0.000 0.668 0.008 0.300
#> GSM123190 5 0.4572 -0.1748 0.004 0.000 0.452 0.004 0.540
#> GSM123191 3 0.5920 0.6092 0.160 0.000 0.588 0.000 0.252
#> GSM123192 1 0.5002 0.4038 0.612 0.000 0.344 0.044 0.000
#> GSM123193 1 0.4297 0.4796 0.692 0.000 0.288 0.020 0.000
#> GSM123194 3 0.6085 0.6025 0.164 0.000 0.556 0.000 0.280
#> GSM123195 2 0.0162 0.9282 0.000 0.996 0.004 0.000 0.000
#> GSM123196 3 0.6870 0.1008 0.204 0.000 0.440 0.012 0.344
#> GSM123197 4 0.7907 0.5136 0.124 0.008 0.224 0.488 0.156
#> GSM123198 2 0.2580 0.8870 0.000 0.892 0.044 0.000 0.064
#> GSM123199 1 0.6018 0.1548 0.480 0.000 0.088 0.008 0.424
#> GSM123200 2 0.0000 0.9286 0.000 1.000 0.000 0.000 0.000
#> GSM123201 5 0.0579 0.5037 0.008 0.000 0.008 0.000 0.984
#> GSM123202 2 0.0162 0.9282 0.000 0.996 0.004 0.000 0.000
#> GSM123203 1 0.6018 0.1548 0.480 0.000 0.088 0.008 0.424
#> GSM123204 2 0.0794 0.9241 0.000 0.972 0.028 0.000 0.000
#> GSM123205 2 0.1043 0.9214 0.000 0.960 0.040 0.000 0.000
#> GSM123206 2 0.0000 0.9286 0.000 1.000 0.000 0.000 0.000
#> GSM123207 5 0.1243 0.5059 0.008 0.000 0.028 0.004 0.960
#> GSM123208 2 0.0000 0.9286 0.000 1.000 0.000 0.000 0.000
#> GSM123209 2 0.3460 0.8163 0.000 0.828 0.044 0.000 0.128
#> GSM123210 1 0.1461 0.7076 0.952 0.000 0.028 0.004 0.016
#> GSM123211 1 0.3844 0.6185 0.792 0.000 0.164 0.044 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 4 0.6494 0.68387 0.084 0.000 0.164 0.604 0.028 0.120
#> GSM123213 4 0.3505 0.74935 0.000 0.028 0.028 0.836 0.096 0.012
#> GSM123214 4 0.0547 0.78751 0.000 0.020 0.000 0.980 0.000 0.000
#> GSM123215 4 0.0547 0.78751 0.000 0.020 0.000 0.980 0.000 0.000
#> GSM123216 1 0.0405 0.74398 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM123217 1 0.3366 0.71804 0.824 0.000 0.080 0.000 0.004 0.092
#> GSM123218 6 0.5979 0.41751 0.000 0.000 0.252 0.000 0.308 0.440
#> GSM123219 6 0.4008 0.64884 0.184 0.000 0.008 0.004 0.044 0.760
#> GSM123220 1 0.3656 0.60828 0.728 0.000 0.256 0.000 0.004 0.012
#> GSM123221 1 0.3338 0.68588 0.840 0.000 0.104 0.012 0.012 0.032
#> GSM123222 3 0.5757 0.47475 0.132 0.000 0.480 0.004 0.380 0.004
#> GSM123223 2 0.2454 0.78703 0.000 0.876 0.000 0.104 0.016 0.004
#> GSM123224 1 0.1501 0.73609 0.924 0.000 0.076 0.000 0.000 0.000
#> GSM123225 1 0.0665 0.74493 0.980 0.000 0.008 0.000 0.004 0.008
#> GSM123226 3 0.5042 0.63537 0.172 0.000 0.676 0.004 0.140 0.008
#> GSM123227 5 0.3122 0.70201 0.000 0.000 0.160 0.004 0.816 0.020
#> GSM123228 3 0.5886 0.58260 0.176 0.000 0.512 0.004 0.304 0.004
#> GSM123229 3 0.5677 0.51204 0.152 0.000 0.632 0.004 0.032 0.180
#> GSM123230 3 0.4983 0.62794 0.144 0.000 0.684 0.004 0.160 0.008
#> GSM123231 6 0.5994 0.40647 0.000 0.000 0.252 0.000 0.316 0.432
#> GSM123232 1 0.5003 0.00607 0.504 0.000 0.440 0.004 0.048 0.004
#> GSM123233 5 0.2996 0.74913 0.000 0.064 0.020 0.032 0.872 0.012
#> GSM123234 5 0.4348 -0.10446 0.008 0.000 0.464 0.004 0.520 0.004
#> GSM123235 3 0.5089 0.34377 0.024 0.000 0.632 0.000 0.064 0.280
#> GSM123236 5 0.2094 0.75264 0.000 0.000 0.020 0.000 0.900 0.080
#> GSM123237 1 0.2715 0.72447 0.860 0.000 0.112 0.000 0.004 0.024
#> GSM123238 1 0.7379 -0.19790 0.416 0.000 0.168 0.300 0.016 0.100
#> GSM123239 5 0.2358 0.76578 0.000 0.056 0.016 0.000 0.900 0.028
#> GSM123240 1 0.0291 0.74448 0.992 0.000 0.004 0.000 0.000 0.004
#> GSM123241 1 0.3656 0.60828 0.728 0.000 0.256 0.000 0.004 0.012
#> GSM123242 4 0.3279 0.75583 0.000 0.008 0.028 0.848 0.092 0.024
#> GSM123182 6 0.4330 0.56022 0.012 0.000 0.000 0.044 0.236 0.708
#> GSM123183 4 0.6350 0.68430 0.084 0.000 0.164 0.612 0.020 0.120
#> GSM123184 4 0.0547 0.78751 0.000 0.020 0.000 0.980 0.000 0.000
#> GSM123185 5 0.3428 0.72881 0.000 0.024 0.024 0.088 0.844 0.020
#> GSM123186 6 0.4360 0.61359 0.196 0.000 0.012 0.016 0.036 0.740
#> GSM123187 2 0.7441 0.44002 0.000 0.464 0.048 0.128 0.272 0.088
#> GSM123188 1 0.2480 0.72887 0.872 0.000 0.104 0.000 0.000 0.024
#> GSM123189 6 0.4050 0.64325 0.012 0.000 0.132 0.004 0.072 0.780
#> GSM123190 6 0.5824 0.37486 0.000 0.000 0.192 0.000 0.356 0.452
#> GSM123191 6 0.4349 0.68215 0.132 0.000 0.044 0.000 0.060 0.764
#> GSM123192 1 0.4645 0.34871 0.616 0.000 0.040 0.000 0.008 0.336
#> GSM123193 1 0.3971 0.54472 0.704 0.000 0.024 0.000 0.004 0.268
#> GSM123194 6 0.4141 0.67677 0.140 0.000 0.008 0.000 0.092 0.760
#> GSM123195 2 0.0000 0.86088 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123196 3 0.5610 0.37458 0.064 0.000 0.612 0.004 0.052 0.268
#> GSM123197 4 0.7556 0.45385 0.076 0.000 0.344 0.404 0.072 0.104
#> GSM123198 2 0.5052 0.72599 0.000 0.696 0.068 0.000 0.180 0.056
#> GSM123199 3 0.5862 0.58484 0.172 0.000 0.516 0.004 0.304 0.004
#> GSM123200 2 0.0260 0.86208 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM123201 5 0.2673 0.73511 0.000 0.000 0.132 0.004 0.852 0.012
#> GSM123202 2 0.0260 0.86208 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM123203 3 0.5862 0.58484 0.172 0.000 0.516 0.004 0.304 0.004
#> GSM123204 2 0.1518 0.85123 0.000 0.944 0.024 0.000 0.008 0.024
#> GSM123205 2 0.2985 0.82934 0.000 0.864 0.060 0.000 0.020 0.056
#> GSM123206 2 0.0000 0.86088 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123207 5 0.1398 0.78043 0.000 0.000 0.052 0.000 0.940 0.008
#> GSM123208 2 0.0260 0.86208 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM123209 2 0.5195 0.66549 0.000 0.668 0.056 0.000 0.216 0.060
#> GSM123210 1 0.2902 0.67452 0.800 0.000 0.196 0.004 0.000 0.000
#> GSM123211 1 0.2507 0.70678 0.884 0.000 0.072 0.004 0.000 0.040
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> MAD:kmeans 52 0.0913 2
#> MAD:kmeans 47 0.0168 3
#> MAD:kmeans 50 0.0161 4
#> MAD:kmeans 38 0.0157 5
#> MAD:kmeans 49 0.0227 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.774 0.865 0.947 0.5033 0.495 0.495
#> 3 3 0.626 0.642 0.722 0.3120 0.721 0.500
#> 4 4 0.566 0.545 0.770 0.1168 0.848 0.599
#> 5 5 0.720 0.641 0.832 0.0751 0.864 0.548
#> 6 6 0.767 0.643 0.820 0.0431 0.921 0.645
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.7674 0.687 0.224 0.776
#> GSM123213 2 0.0000 0.922 0.000 1.000
#> GSM123214 2 0.0000 0.922 0.000 1.000
#> GSM123215 2 0.0000 0.922 0.000 1.000
#> GSM123216 1 0.0000 0.954 1.000 0.000
#> GSM123217 1 0.0000 0.954 1.000 0.000
#> GSM123218 2 0.9754 0.314 0.408 0.592
#> GSM123219 1 0.0000 0.954 1.000 0.000
#> GSM123220 1 0.0000 0.954 1.000 0.000
#> GSM123221 1 0.0000 0.954 1.000 0.000
#> GSM123222 1 0.0000 0.954 1.000 0.000
#> GSM123223 2 0.0000 0.922 0.000 1.000
#> GSM123224 1 0.0000 0.954 1.000 0.000
#> GSM123225 1 0.0000 0.954 1.000 0.000
#> GSM123226 1 0.0000 0.954 1.000 0.000
#> GSM123227 1 0.3274 0.897 0.940 0.060
#> GSM123228 1 0.0000 0.954 1.000 0.000
#> GSM123229 1 0.0000 0.954 1.000 0.000
#> GSM123230 1 0.0000 0.954 1.000 0.000
#> GSM123231 2 0.9710 0.335 0.400 0.600
#> GSM123232 1 0.0000 0.954 1.000 0.000
#> GSM123233 2 0.0000 0.922 0.000 1.000
#> GSM123234 1 0.0000 0.954 1.000 0.000
#> GSM123235 1 0.0000 0.954 1.000 0.000
#> GSM123236 2 0.5059 0.822 0.112 0.888
#> GSM123237 1 0.0000 0.954 1.000 0.000
#> GSM123238 1 0.8608 0.562 0.716 0.284
#> GSM123239 2 0.0000 0.922 0.000 1.000
#> GSM123240 1 0.0000 0.954 1.000 0.000
#> GSM123241 1 0.0000 0.954 1.000 0.000
#> GSM123242 2 0.0000 0.922 0.000 1.000
#> GSM123182 2 0.0000 0.922 0.000 1.000
#> GSM123183 2 0.9661 0.369 0.392 0.608
#> GSM123184 2 0.0000 0.922 0.000 1.000
#> GSM123185 2 0.0000 0.922 0.000 1.000
#> GSM123186 1 0.9635 0.311 0.612 0.388
#> GSM123187 2 0.0000 0.922 0.000 1.000
#> GSM123188 1 0.0000 0.954 1.000 0.000
#> GSM123189 1 0.6801 0.747 0.820 0.180
#> GSM123190 2 0.0000 0.922 0.000 1.000
#> GSM123191 1 0.0000 0.954 1.000 0.000
#> GSM123192 1 0.0000 0.954 1.000 0.000
#> GSM123193 1 0.0000 0.954 1.000 0.000
#> GSM123194 1 0.0376 0.951 0.996 0.004
#> GSM123195 2 0.0000 0.922 0.000 1.000
#> GSM123196 1 0.0000 0.954 1.000 0.000
#> GSM123197 2 0.9635 0.379 0.388 0.612
#> GSM123198 2 0.0000 0.922 0.000 1.000
#> GSM123199 1 0.0000 0.954 1.000 0.000
#> GSM123200 2 0.0000 0.922 0.000 1.000
#> GSM123201 1 0.9522 0.362 0.628 0.372
#> GSM123202 2 0.0000 0.922 0.000 1.000
#> GSM123203 1 0.0000 0.954 1.000 0.000
#> GSM123204 2 0.0000 0.922 0.000 1.000
#> GSM123205 2 0.0000 0.922 0.000 1.000
#> GSM123206 2 0.0000 0.922 0.000 1.000
#> GSM123207 2 0.0000 0.922 0.000 1.000
#> GSM123208 2 0.0000 0.922 0.000 1.000
#> GSM123209 2 0.0000 0.922 0.000 1.000
#> GSM123210 1 0.0000 0.954 1.000 0.000
#> GSM123211 1 0.0000 0.954 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 2 0.6796 0.6038 0.024 0.632 0.344
#> GSM123213 3 0.5397 0.2425 0.000 0.280 0.720
#> GSM123214 2 0.5988 0.5883 0.000 0.632 0.368
#> GSM123215 2 0.5988 0.5883 0.000 0.632 0.368
#> GSM123216 1 0.5529 0.7757 0.704 0.296 0.000
#> GSM123217 1 0.5529 0.7757 0.704 0.296 0.000
#> GSM123218 3 0.7644 0.7006 0.296 0.072 0.632
#> GSM123219 2 0.0592 0.5832 0.012 0.988 0.000
#> GSM123220 1 0.5529 0.7757 0.704 0.296 0.000
#> GSM123221 1 0.5529 0.7757 0.704 0.296 0.000
#> GSM123222 1 0.0237 0.7199 0.996 0.004 0.000
#> GSM123223 3 0.0000 0.7491 0.000 0.000 1.000
#> GSM123224 1 0.5529 0.7757 0.704 0.296 0.000
#> GSM123225 1 0.5529 0.7757 0.704 0.296 0.000
#> GSM123226 1 0.0000 0.7231 1.000 0.000 0.000
#> GSM123227 3 0.8071 0.6084 0.380 0.072 0.548
#> GSM123228 1 0.0000 0.7231 1.000 0.000 0.000
#> GSM123229 1 0.0424 0.7258 0.992 0.008 0.000
#> GSM123230 1 0.0000 0.7231 1.000 0.000 0.000
#> GSM123231 3 0.7644 0.7006 0.296 0.072 0.632
#> GSM123232 1 0.4702 0.7631 0.788 0.212 0.000
#> GSM123233 3 0.6482 0.7200 0.296 0.024 0.680
#> GSM123234 1 0.0747 0.7091 0.984 0.016 0.000
#> GSM123235 1 0.0747 0.7098 0.984 0.016 0.000
#> GSM123236 3 0.7644 0.7006 0.296 0.072 0.632
#> GSM123237 1 0.5529 0.7757 0.704 0.296 0.000
#> GSM123238 2 0.7601 -0.2288 0.416 0.540 0.044
#> GSM123239 3 0.6714 0.7174 0.296 0.032 0.672
#> GSM123240 1 0.5529 0.7757 0.704 0.296 0.000
#> GSM123241 1 0.5529 0.7757 0.704 0.296 0.000
#> GSM123242 2 0.5988 0.5883 0.000 0.632 0.368
#> GSM123182 2 0.5016 0.6139 0.000 0.760 0.240
#> GSM123183 2 0.7140 0.6097 0.040 0.632 0.328
#> GSM123184 2 0.5988 0.5883 0.000 0.632 0.368
#> GSM123185 3 0.6482 0.7200 0.296 0.024 0.680
#> GSM123186 2 0.0747 0.5946 0.000 0.984 0.016
#> GSM123187 3 0.0000 0.7491 0.000 0.000 1.000
#> GSM123188 1 0.5529 0.7757 0.704 0.296 0.000
#> GSM123189 2 0.4654 0.5017 0.208 0.792 0.000
#> GSM123190 3 0.7145 0.7193 0.236 0.072 0.692
#> GSM123191 2 0.6215 -0.3218 0.428 0.572 0.000
#> GSM123192 2 0.2356 0.5481 0.072 0.928 0.000
#> GSM123193 1 0.5529 0.7757 0.704 0.296 0.000
#> GSM123194 2 0.5431 0.0973 0.284 0.716 0.000
#> GSM123195 3 0.0000 0.7491 0.000 0.000 1.000
#> GSM123196 1 0.0424 0.7258 0.992 0.008 0.000
#> GSM123197 1 0.9956 -0.3341 0.376 0.296 0.328
#> GSM123198 3 0.0000 0.7491 0.000 0.000 1.000
#> GSM123199 1 0.0000 0.7231 1.000 0.000 0.000
#> GSM123200 3 0.0000 0.7491 0.000 0.000 1.000
#> GSM123201 3 0.7644 0.7006 0.296 0.072 0.632
#> GSM123202 3 0.0000 0.7491 0.000 0.000 1.000
#> GSM123203 1 0.0000 0.7231 1.000 0.000 0.000
#> GSM123204 3 0.0000 0.7491 0.000 0.000 1.000
#> GSM123205 3 0.0000 0.7491 0.000 0.000 1.000
#> GSM123206 3 0.0000 0.7491 0.000 0.000 1.000
#> GSM123207 3 0.6482 0.7200 0.296 0.024 0.680
#> GSM123208 3 0.0000 0.7491 0.000 0.000 1.000
#> GSM123209 3 0.0000 0.7491 0.000 0.000 1.000
#> GSM123210 1 0.5529 0.7757 0.704 0.296 0.000
#> GSM123211 1 0.5529 0.7757 0.704 0.296 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 4 0.3806 0.7878 0.020 0.156 0.000 0.824
#> GSM123213 4 0.3942 0.7577 0.000 0.236 0.000 0.764
#> GSM123214 4 0.3569 0.7945 0.000 0.196 0.000 0.804
#> GSM123215 4 0.3569 0.7945 0.000 0.196 0.000 0.804
#> GSM123216 1 0.0000 0.7203 1.000 0.000 0.000 0.000
#> GSM123217 1 0.3893 0.4918 0.796 0.000 0.196 0.008
#> GSM123218 3 0.4535 0.2992 0.000 0.292 0.704 0.004
#> GSM123219 3 0.7058 0.2663 0.228 0.000 0.572 0.200
#> GSM123220 1 0.0188 0.7195 0.996 0.000 0.000 0.004
#> GSM123221 1 0.0000 0.7203 1.000 0.000 0.000 0.000
#> GSM123222 1 0.6552 0.5006 0.628 0.000 0.228 0.144
#> GSM123223 2 0.2530 0.7086 0.000 0.888 0.000 0.112
#> GSM123224 1 0.0000 0.7203 1.000 0.000 0.000 0.000
#> GSM123225 1 0.0000 0.7203 1.000 0.000 0.000 0.000
#> GSM123226 1 0.6477 0.3857 0.552 0.000 0.368 0.080
#> GSM123227 3 0.6357 0.3072 0.000 0.184 0.656 0.160
#> GSM123228 1 0.6522 0.5051 0.632 0.000 0.224 0.144
#> GSM123229 1 0.4955 0.4290 0.648 0.000 0.344 0.008
#> GSM123230 1 0.6652 0.3278 0.516 0.000 0.396 0.088
#> GSM123231 3 0.4872 0.1852 0.000 0.356 0.640 0.004
#> GSM123232 1 0.4312 0.6362 0.812 0.000 0.132 0.056
#> GSM123233 2 0.6566 0.4885 0.000 0.624 0.236 0.140
#> GSM123234 1 0.7371 0.1608 0.424 0.000 0.416 0.160
#> GSM123235 3 0.5377 0.0125 0.376 0.004 0.608 0.012
#> GSM123236 2 0.7077 0.3710 0.000 0.536 0.316 0.148
#> GSM123237 1 0.0336 0.7148 0.992 0.000 0.008 0.000
#> GSM123238 4 0.4981 0.1506 0.464 0.000 0.000 0.536
#> GSM123239 2 0.4188 0.6821 0.000 0.812 0.040 0.148
#> GSM123240 1 0.0000 0.7203 1.000 0.000 0.000 0.000
#> GSM123241 1 0.0188 0.7195 0.996 0.000 0.000 0.004
#> GSM123242 4 0.3569 0.7945 0.000 0.196 0.000 0.804
#> GSM123182 4 0.4889 0.3908 0.000 0.004 0.360 0.636
#> GSM123183 4 0.3862 0.7862 0.024 0.152 0.000 0.824
#> GSM123184 4 0.3569 0.7945 0.000 0.196 0.000 0.804
#> GSM123185 2 0.7698 0.3004 0.000 0.440 0.236 0.324
#> GSM123186 4 0.6822 0.2476 0.100 0.000 0.412 0.488
#> GSM123187 2 0.0707 0.8045 0.000 0.980 0.000 0.020
#> GSM123188 1 0.0000 0.7203 1.000 0.000 0.000 0.000
#> GSM123189 3 0.5003 0.4443 0.148 0.000 0.768 0.084
#> GSM123190 2 0.5383 0.1734 0.000 0.536 0.452 0.012
#> GSM123191 3 0.5577 0.3621 0.328 0.000 0.636 0.036
#> GSM123192 1 0.7631 -0.0470 0.456 0.000 0.224 0.320
#> GSM123193 1 0.4799 0.4090 0.744 0.000 0.224 0.032
#> GSM123194 3 0.5883 0.3908 0.300 0.000 0.640 0.060
#> GSM123195 2 0.0336 0.8104 0.000 0.992 0.000 0.008
#> GSM123196 3 0.5295 -0.1395 0.488 0.000 0.504 0.008
#> GSM123197 4 0.5853 0.6925 0.132 0.148 0.004 0.716
#> GSM123198 2 0.0592 0.8043 0.000 0.984 0.016 0.000
#> GSM123199 1 0.6313 0.5248 0.652 0.000 0.220 0.128
#> GSM123200 2 0.0000 0.8113 0.000 1.000 0.000 0.000
#> GSM123201 3 0.7225 0.0370 0.000 0.328 0.512 0.160
#> GSM123202 2 0.0336 0.8104 0.000 0.992 0.000 0.008
#> GSM123203 1 0.6313 0.5248 0.652 0.000 0.220 0.128
#> GSM123204 2 0.0000 0.8113 0.000 1.000 0.000 0.000
#> GSM123205 2 0.0000 0.8113 0.000 1.000 0.000 0.000
#> GSM123206 2 0.0336 0.8104 0.000 0.992 0.000 0.008
#> GSM123207 2 0.6616 0.5025 0.000 0.624 0.220 0.156
#> GSM123208 2 0.0336 0.8104 0.000 0.992 0.000 0.008
#> GSM123209 2 0.0000 0.8113 0.000 1.000 0.000 0.000
#> GSM123210 1 0.0000 0.7203 1.000 0.000 0.000 0.000
#> GSM123211 1 0.0000 0.7203 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 4 0.1362 0.8727 0.008 0.012 0.004 0.960 0.016
#> GSM123213 4 0.1270 0.8936 0.000 0.052 0.000 0.948 0.000
#> GSM123214 4 0.1270 0.8936 0.000 0.052 0.000 0.948 0.000
#> GSM123215 4 0.1270 0.8936 0.000 0.052 0.000 0.948 0.000
#> GSM123216 1 0.0693 0.8021 0.980 0.000 0.012 0.008 0.000
#> GSM123217 1 0.3525 0.6577 0.800 0.000 0.184 0.008 0.008
#> GSM123218 3 0.4803 0.5315 0.000 0.096 0.720 0.000 0.184
#> GSM123219 3 0.2144 0.6438 0.068 0.000 0.912 0.020 0.000
#> GSM123220 1 0.0404 0.7957 0.988 0.000 0.000 0.000 0.012
#> GSM123221 1 0.1913 0.7750 0.932 0.000 0.008 0.044 0.016
#> GSM123222 5 0.4283 0.5269 0.348 0.000 0.000 0.008 0.644
#> GSM123223 2 0.0880 0.9134 0.000 0.968 0.000 0.032 0.000
#> GSM123224 1 0.0451 0.7996 0.988 0.000 0.000 0.008 0.004
#> GSM123225 1 0.0693 0.8021 0.980 0.000 0.012 0.008 0.000
#> GSM123226 1 0.6811 -0.2080 0.408 0.000 0.236 0.004 0.352
#> GSM123227 5 0.0566 0.5900 0.000 0.012 0.004 0.000 0.984
#> GSM123228 5 0.4211 0.5073 0.360 0.000 0.000 0.004 0.636
#> GSM123229 1 0.5787 0.2312 0.564 0.000 0.340 0.004 0.092
#> GSM123230 5 0.6121 0.3718 0.376 0.000 0.116 0.004 0.504
#> GSM123231 3 0.5740 0.3845 0.000 0.272 0.600 0.000 0.128
#> GSM123232 1 0.3534 0.4473 0.744 0.000 0.000 0.000 0.256
#> GSM123233 5 0.4467 0.3653 0.000 0.344 0.000 0.016 0.640
#> GSM123234 5 0.3170 0.6111 0.120 0.000 0.012 0.016 0.852
#> GSM123235 3 0.6417 0.2194 0.272 0.000 0.528 0.004 0.196
#> GSM123236 5 0.3048 0.5365 0.000 0.176 0.004 0.000 0.820
#> GSM123237 1 0.1087 0.8007 0.968 0.000 0.016 0.008 0.008
#> GSM123238 4 0.4647 0.3967 0.352 0.000 0.004 0.628 0.016
#> GSM123239 2 0.2377 0.8201 0.000 0.872 0.000 0.000 0.128
#> GSM123240 1 0.0579 0.8018 0.984 0.000 0.008 0.008 0.000
#> GSM123241 1 0.0404 0.7957 0.988 0.000 0.000 0.000 0.012
#> GSM123242 4 0.1270 0.8936 0.000 0.052 0.000 0.948 0.000
#> GSM123182 3 0.5184 0.0342 0.004 0.000 0.508 0.456 0.032
#> GSM123183 4 0.1362 0.8727 0.008 0.012 0.004 0.960 0.016
#> GSM123184 4 0.1270 0.8936 0.000 0.052 0.000 0.948 0.000
#> GSM123185 5 0.5602 0.4537 0.000 0.148 0.000 0.216 0.636
#> GSM123186 3 0.4610 0.1854 0.016 0.000 0.596 0.388 0.000
#> GSM123187 2 0.0510 0.9269 0.000 0.984 0.000 0.016 0.000
#> GSM123188 1 0.0981 0.8011 0.972 0.000 0.012 0.008 0.008
#> GSM123189 3 0.0162 0.6531 0.004 0.000 0.996 0.000 0.000
#> GSM123190 2 0.6498 0.0603 0.000 0.460 0.340 0.000 0.200
#> GSM123191 3 0.0798 0.6555 0.016 0.000 0.976 0.008 0.000
#> GSM123192 1 0.6334 0.2266 0.520 0.000 0.316 0.160 0.004
#> GSM123193 1 0.4773 0.4509 0.656 0.000 0.312 0.024 0.008
#> GSM123194 3 0.1883 0.6502 0.048 0.000 0.932 0.008 0.012
#> GSM123195 2 0.0290 0.9319 0.000 0.992 0.000 0.008 0.000
#> GSM123196 3 0.5930 0.2216 0.360 0.000 0.536 0.004 0.100
#> GSM123197 4 0.2932 0.8191 0.052 0.012 0.004 0.888 0.044
#> GSM123198 2 0.0404 0.9289 0.000 0.988 0.000 0.000 0.012
#> GSM123199 5 0.4420 0.3665 0.448 0.000 0.000 0.004 0.548
#> GSM123200 2 0.0000 0.9363 0.000 1.000 0.000 0.000 0.000
#> GSM123201 5 0.0566 0.5900 0.000 0.012 0.004 0.000 0.984
#> GSM123202 2 0.0000 0.9363 0.000 1.000 0.000 0.000 0.000
#> GSM123203 5 0.4443 0.3178 0.472 0.000 0.000 0.004 0.524
#> GSM123204 2 0.0000 0.9363 0.000 1.000 0.000 0.000 0.000
#> GSM123205 2 0.0000 0.9363 0.000 1.000 0.000 0.000 0.000
#> GSM123206 2 0.0000 0.9363 0.000 1.000 0.000 0.000 0.000
#> GSM123207 5 0.2690 0.5641 0.000 0.156 0.000 0.000 0.844
#> GSM123208 2 0.0000 0.9363 0.000 1.000 0.000 0.000 0.000
#> GSM123209 2 0.0000 0.9363 0.000 1.000 0.000 0.000 0.000
#> GSM123210 1 0.0162 0.7965 0.996 0.000 0.000 0.000 0.004
#> GSM123211 1 0.1455 0.7876 0.952 0.000 0.008 0.032 0.008
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 4 0.3141 0.825 0.000 0.004 0.112 0.836 0.000 0.048
#> GSM123213 4 0.0622 0.859 0.000 0.008 0.000 0.980 0.000 0.012
#> GSM123214 4 0.0508 0.861 0.000 0.004 0.000 0.984 0.000 0.012
#> GSM123215 4 0.0405 0.862 0.000 0.004 0.000 0.988 0.000 0.008
#> GSM123216 1 0.0632 0.774 0.976 0.000 0.000 0.000 0.000 0.024
#> GSM123217 1 0.3318 0.669 0.796 0.000 0.032 0.000 0.000 0.172
#> GSM123218 3 0.5539 0.234 0.000 0.028 0.620 0.000 0.124 0.228
#> GSM123219 6 0.1906 0.751 0.032 0.000 0.036 0.008 0.000 0.924
#> GSM123220 1 0.1787 0.755 0.920 0.000 0.068 0.000 0.004 0.008
#> GSM123221 1 0.2978 0.690 0.856 0.000 0.084 0.008 0.000 0.052
#> GSM123222 5 0.6122 0.193 0.292 0.000 0.208 0.004 0.488 0.008
#> GSM123223 2 0.1349 0.877 0.000 0.940 0.000 0.056 0.000 0.004
#> GSM123224 1 0.0146 0.772 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM123225 1 0.0632 0.774 0.976 0.000 0.000 0.000 0.000 0.024
#> GSM123226 3 0.6014 0.376 0.276 0.000 0.536 0.004 0.168 0.016
#> GSM123227 5 0.0363 0.663 0.000 0.000 0.012 0.000 0.988 0.000
#> GSM123228 5 0.6449 0.087 0.300 0.000 0.244 0.004 0.436 0.016
#> GSM123229 3 0.3534 0.604 0.244 0.000 0.740 0.000 0.016 0.000
#> GSM123230 3 0.5960 0.384 0.288 0.000 0.520 0.004 0.180 0.008
#> GSM123231 3 0.5922 0.294 0.000 0.176 0.620 0.000 0.076 0.128
#> GSM123232 1 0.5232 0.451 0.668 0.000 0.156 0.004 0.156 0.016
#> GSM123233 5 0.4371 0.517 0.000 0.236 0.000 0.036 0.708 0.020
#> GSM123234 5 0.4663 0.484 0.072 0.000 0.220 0.004 0.696 0.008
#> GSM123235 3 0.3111 0.623 0.088 0.000 0.852 0.000 0.040 0.020
#> GSM123236 5 0.1773 0.652 0.000 0.036 0.016 0.000 0.932 0.016
#> GSM123237 1 0.2146 0.767 0.908 0.000 0.044 0.000 0.004 0.044
#> GSM123238 4 0.6123 0.476 0.300 0.000 0.120 0.532 0.000 0.048
#> GSM123239 2 0.2854 0.701 0.000 0.792 0.000 0.000 0.208 0.000
#> GSM123240 1 0.0458 0.774 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM123241 1 0.1845 0.753 0.916 0.000 0.072 0.000 0.004 0.008
#> GSM123242 4 0.0508 0.861 0.000 0.004 0.000 0.984 0.000 0.012
#> GSM123182 6 0.3374 0.641 0.000 0.000 0.000 0.208 0.020 0.772
#> GSM123183 4 0.3141 0.825 0.000 0.004 0.112 0.836 0.000 0.048
#> GSM123184 4 0.0405 0.862 0.000 0.004 0.000 0.988 0.000 0.008
#> GSM123185 5 0.4722 0.527 0.000 0.056 0.000 0.244 0.680 0.020
#> GSM123186 6 0.1913 0.739 0.012 0.000 0.000 0.080 0.000 0.908
#> GSM123187 2 0.1152 0.890 0.000 0.952 0.000 0.044 0.000 0.004
#> GSM123188 1 0.1933 0.769 0.920 0.000 0.044 0.000 0.004 0.032
#> GSM123189 6 0.3309 0.580 0.000 0.000 0.280 0.000 0.000 0.720
#> GSM123190 2 0.7183 -0.153 0.000 0.352 0.348 0.000 0.200 0.100
#> GSM123191 6 0.3729 0.564 0.012 0.000 0.296 0.000 0.000 0.692
#> GSM123192 6 0.4166 0.400 0.324 0.000 0.028 0.000 0.000 0.648
#> GSM123193 1 0.4079 0.246 0.608 0.000 0.008 0.004 0.000 0.380
#> GSM123194 6 0.2046 0.746 0.032 0.000 0.044 0.000 0.008 0.916
#> GSM123195 2 0.0000 0.917 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123196 3 0.3310 0.622 0.132 0.000 0.824 0.000 0.016 0.028
#> GSM123197 4 0.4757 0.774 0.040 0.004 0.140 0.752 0.016 0.048
#> GSM123198 2 0.0363 0.912 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM123199 1 0.6526 -0.143 0.380 0.000 0.248 0.004 0.352 0.016
#> GSM123200 2 0.0000 0.917 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123201 5 0.0363 0.663 0.000 0.000 0.012 0.000 0.988 0.000
#> GSM123202 2 0.0000 0.917 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123203 1 0.6515 -0.098 0.396 0.000 0.248 0.004 0.336 0.016
#> GSM123204 2 0.0000 0.917 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123205 2 0.0146 0.916 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM123206 2 0.0000 0.917 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123207 5 0.1442 0.663 0.000 0.040 0.004 0.000 0.944 0.012
#> GSM123208 2 0.0000 0.917 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123209 2 0.0146 0.916 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM123210 1 0.0363 0.773 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM123211 1 0.2146 0.739 0.908 0.000 0.024 0.008 0.000 0.060
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> MAD:skmeans 55 0.0858 2
#> MAD:skmeans 56 0.0382 3
#> MAD:skmeans 37 0.0113 4
#> MAD:skmeans 44 0.0364 5
#> MAD:skmeans 47 0.0393 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.835 0.893 0.956 0.4872 0.515 0.515
#> 3 3 0.581 0.787 0.882 0.3462 0.661 0.432
#> 4 4 0.510 0.663 0.774 0.0852 0.885 0.698
#> 5 5 0.760 0.798 0.879 0.1028 0.843 0.529
#> 6 6 0.730 0.644 0.798 0.0354 0.967 0.844
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.6048 0.8314 0.148 0.852
#> GSM123213 2 0.0000 0.9518 0.000 1.000
#> GSM123214 2 0.0000 0.9518 0.000 1.000
#> GSM123215 2 0.0000 0.9518 0.000 1.000
#> GSM123216 1 0.0000 0.9500 1.000 0.000
#> GSM123217 1 0.0000 0.9500 1.000 0.000
#> GSM123218 1 0.7219 0.7288 0.800 0.200
#> GSM123219 1 0.0000 0.9500 1.000 0.000
#> GSM123220 1 0.0000 0.9500 1.000 0.000
#> GSM123221 1 0.0000 0.9500 1.000 0.000
#> GSM123222 1 0.0000 0.9500 1.000 0.000
#> GSM123223 2 0.0000 0.9518 0.000 1.000
#> GSM123224 1 0.0000 0.9500 1.000 0.000
#> GSM123225 1 0.0000 0.9500 1.000 0.000
#> GSM123226 1 0.0000 0.9500 1.000 0.000
#> GSM123227 1 0.0000 0.9500 1.000 0.000
#> GSM123228 1 0.0000 0.9500 1.000 0.000
#> GSM123229 1 0.0000 0.9500 1.000 0.000
#> GSM123230 1 0.0000 0.9500 1.000 0.000
#> GSM123231 1 0.9686 0.3393 0.604 0.396
#> GSM123232 1 0.0000 0.9500 1.000 0.000
#> GSM123233 2 0.0000 0.9518 0.000 1.000
#> GSM123234 1 0.0000 0.9500 1.000 0.000
#> GSM123235 1 0.0000 0.9500 1.000 0.000
#> GSM123236 2 0.9635 0.3524 0.388 0.612
#> GSM123237 1 0.0000 0.9500 1.000 0.000
#> GSM123238 1 0.0000 0.9500 1.000 0.000
#> GSM123239 2 0.2423 0.9393 0.040 0.960
#> GSM123240 1 0.0000 0.9500 1.000 0.000
#> GSM123241 1 0.0000 0.9500 1.000 0.000
#> GSM123242 2 0.2236 0.9413 0.036 0.964
#> GSM123182 2 0.2423 0.9393 0.040 0.960
#> GSM123183 2 0.7453 0.7426 0.212 0.788
#> GSM123184 2 0.0000 0.9518 0.000 1.000
#> GSM123185 2 0.2236 0.9413 0.036 0.964
#> GSM123186 1 0.9954 0.0934 0.540 0.460
#> GSM123187 2 0.2236 0.9413 0.036 0.964
#> GSM123188 1 0.0000 0.9500 1.000 0.000
#> GSM123189 1 0.0376 0.9470 0.996 0.004
#> GSM123190 1 0.9686 0.3393 0.604 0.396
#> GSM123191 1 0.0376 0.9470 0.996 0.004
#> GSM123192 1 0.0000 0.9500 1.000 0.000
#> GSM123193 1 0.0000 0.9500 1.000 0.000
#> GSM123194 1 0.1414 0.9335 0.980 0.020
#> GSM123195 2 0.0000 0.9518 0.000 1.000
#> GSM123196 1 0.0000 0.9500 1.000 0.000
#> GSM123197 1 0.6712 0.7540 0.824 0.176
#> GSM123198 2 0.0000 0.9518 0.000 1.000
#> GSM123199 1 0.0000 0.9500 1.000 0.000
#> GSM123200 2 0.0000 0.9518 0.000 1.000
#> GSM123201 1 0.0000 0.9500 1.000 0.000
#> GSM123202 2 0.0000 0.9518 0.000 1.000
#> GSM123203 1 0.0000 0.9500 1.000 0.000
#> GSM123204 2 0.0000 0.9518 0.000 1.000
#> GSM123205 2 0.0000 0.9518 0.000 1.000
#> GSM123206 2 0.0000 0.9518 0.000 1.000
#> GSM123207 2 0.3431 0.9214 0.064 0.936
#> GSM123208 2 0.0000 0.9518 0.000 1.000
#> GSM123209 2 0.2423 0.9393 0.040 0.960
#> GSM123210 1 0.0000 0.9500 1.000 0.000
#> GSM123211 1 0.0000 0.9500 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 3 0.2866 0.831 0.076 0.008 0.916
#> GSM123213 2 0.0424 0.995 0.000 0.992 0.008
#> GSM123214 2 0.0424 0.986 0.000 0.992 0.008
#> GSM123215 2 0.0424 0.986 0.000 0.992 0.008
#> GSM123216 1 0.3482 0.805 0.872 0.000 0.128
#> GSM123217 1 0.2537 0.816 0.920 0.000 0.080
#> GSM123218 3 0.3030 0.836 0.004 0.092 0.904
#> GSM123219 3 0.1289 0.825 0.032 0.000 0.968
#> GSM123220 1 0.2356 0.816 0.928 0.000 0.072
#> GSM123221 1 0.6180 0.308 0.584 0.000 0.416
#> GSM123222 1 0.5760 0.465 0.672 0.000 0.328
#> GSM123223 2 0.0424 0.995 0.000 0.992 0.008
#> GSM123224 1 0.0424 0.828 0.992 0.000 0.008
#> GSM123225 1 0.2448 0.817 0.924 0.000 0.076
#> GSM123226 1 0.1964 0.829 0.944 0.000 0.056
#> GSM123227 3 0.6045 0.227 0.380 0.000 0.620
#> GSM123228 1 0.0424 0.828 0.992 0.000 0.008
#> GSM123229 3 0.5760 0.495 0.328 0.000 0.672
#> GSM123230 1 0.5760 0.465 0.672 0.000 0.328
#> GSM123231 3 0.2878 0.835 0.000 0.096 0.904
#> GSM123232 1 0.0000 0.829 1.000 0.000 0.000
#> GSM123233 2 0.0424 0.995 0.000 0.992 0.008
#> GSM123234 1 0.5810 0.453 0.664 0.000 0.336
#> GSM123235 3 0.2796 0.826 0.092 0.000 0.908
#> GSM123236 3 0.6573 0.743 0.140 0.104 0.756
#> GSM123237 1 0.5465 0.612 0.712 0.000 0.288
#> GSM123238 1 0.0747 0.826 0.984 0.000 0.016
#> GSM123239 3 0.3038 0.833 0.000 0.104 0.896
#> GSM123240 1 0.0000 0.829 1.000 0.000 0.000
#> GSM123241 1 0.4121 0.791 0.832 0.000 0.168
#> GSM123242 3 0.3038 0.833 0.000 0.104 0.896
#> GSM123182 3 0.2878 0.835 0.000 0.096 0.904
#> GSM123183 3 0.3682 0.809 0.116 0.008 0.876
#> GSM123184 2 0.0424 0.986 0.000 0.992 0.008
#> GSM123185 3 0.4504 0.776 0.000 0.196 0.804
#> GSM123186 3 0.1411 0.824 0.036 0.000 0.964
#> GSM123187 3 0.6008 0.507 0.000 0.372 0.628
#> GSM123188 1 0.2356 0.816 0.928 0.000 0.072
#> GSM123189 3 0.1129 0.829 0.020 0.004 0.976
#> GSM123190 3 0.4295 0.830 0.032 0.104 0.864
#> GSM123191 3 0.2711 0.828 0.088 0.000 0.912
#> GSM123192 3 0.1860 0.819 0.052 0.000 0.948
#> GSM123193 1 0.6180 0.427 0.584 0.000 0.416
#> GSM123194 3 0.1031 0.828 0.024 0.000 0.976
#> GSM123195 2 0.0424 0.995 0.000 0.992 0.008
#> GSM123196 3 0.2796 0.826 0.092 0.000 0.908
#> GSM123197 3 0.2878 0.825 0.096 0.000 0.904
#> GSM123198 2 0.1031 0.981 0.000 0.976 0.024
#> GSM123199 1 0.0892 0.826 0.980 0.000 0.020
#> GSM123200 2 0.0424 0.995 0.000 0.992 0.008
#> GSM123201 3 0.6267 0.205 0.452 0.000 0.548
#> GSM123202 2 0.0424 0.995 0.000 0.992 0.008
#> GSM123203 1 0.0747 0.826 0.984 0.000 0.016
#> GSM123204 2 0.0424 0.995 0.000 0.992 0.008
#> GSM123205 2 0.0592 0.992 0.000 0.988 0.012
#> GSM123206 2 0.0424 0.995 0.000 0.992 0.008
#> GSM123207 3 0.6473 0.583 0.312 0.020 0.668
#> GSM123208 2 0.0424 0.995 0.000 0.992 0.008
#> GSM123209 3 0.3038 0.833 0.000 0.104 0.896
#> GSM123210 1 0.3879 0.747 0.848 0.000 0.152
#> GSM123211 1 0.3816 0.748 0.852 0.000 0.148
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 3 0.6506 -0.186 0.072 0.000 0.472 0.456
#> GSM123213 4 0.5613 0.595 0.000 0.380 0.028 0.592
#> GSM123214 4 0.3975 0.769 0.000 0.240 0.000 0.760
#> GSM123215 4 0.3975 0.769 0.000 0.240 0.000 0.760
#> GSM123216 1 0.2973 0.731 0.856 0.000 0.144 0.000
#> GSM123217 1 0.3074 0.715 0.848 0.000 0.152 0.000
#> GSM123218 3 0.3745 0.749 0.000 0.088 0.852 0.060
#> GSM123219 3 0.0592 0.753 0.016 0.000 0.984 0.000
#> GSM123220 1 0.2281 0.732 0.904 0.000 0.096 0.000
#> GSM123221 1 0.6968 0.415 0.552 0.000 0.308 0.140
#> GSM123222 1 0.6193 0.590 0.672 0.000 0.180 0.148
#> GSM123223 2 0.2011 0.855 0.000 0.920 0.000 0.080
#> GSM123224 1 0.0336 0.745 0.992 0.000 0.008 0.000
#> GSM123225 1 0.2011 0.736 0.920 0.000 0.080 0.000
#> GSM123226 1 0.2859 0.745 0.880 0.000 0.112 0.008
#> GSM123227 3 0.7774 -0.199 0.372 0.000 0.388 0.240
#> GSM123228 1 0.0672 0.746 0.984 0.000 0.008 0.008
#> GSM123229 3 0.4454 0.442 0.308 0.000 0.692 0.000
#> GSM123230 1 0.6193 0.590 0.672 0.000 0.180 0.148
#> GSM123231 3 0.2149 0.754 0.000 0.088 0.912 0.000
#> GSM123232 1 0.0336 0.746 0.992 0.000 0.000 0.008
#> GSM123233 3 0.8281 0.538 0.076 0.244 0.540 0.140
#> GSM123234 1 0.6267 0.583 0.664 0.000 0.188 0.148
#> GSM123235 3 0.1867 0.753 0.072 0.000 0.928 0.000
#> GSM123236 3 0.7432 0.632 0.120 0.140 0.648 0.092
#> GSM123237 1 0.4730 0.479 0.636 0.000 0.364 0.000
#> GSM123238 1 0.3495 0.717 0.844 0.000 0.016 0.140
#> GSM123239 3 0.7054 0.656 0.028 0.140 0.640 0.192
#> GSM123240 1 0.0000 0.745 1.000 0.000 0.000 0.000
#> GSM123241 1 0.4008 0.674 0.756 0.000 0.244 0.000
#> GSM123242 4 0.5770 0.595 0.000 0.140 0.148 0.712
#> GSM123182 3 0.2149 0.754 0.000 0.088 0.912 0.000
#> GSM123183 4 0.5030 0.645 0.060 0.000 0.188 0.752
#> GSM123184 4 0.3975 0.769 0.000 0.240 0.000 0.760
#> GSM123185 3 0.8285 0.565 0.076 0.200 0.552 0.172
#> GSM123186 3 0.0592 0.753 0.016 0.000 0.984 0.000
#> GSM123187 3 0.4468 0.679 0.000 0.232 0.752 0.016
#> GSM123188 1 0.3024 0.715 0.852 0.000 0.148 0.000
#> GSM123189 3 0.0376 0.755 0.004 0.004 0.992 0.000
#> GSM123190 3 0.5499 0.720 0.020 0.124 0.764 0.092
#> GSM123191 3 0.1867 0.753 0.072 0.000 0.928 0.000
#> GSM123192 3 0.1118 0.751 0.036 0.000 0.964 0.000
#> GSM123193 1 0.4977 0.303 0.540 0.000 0.460 0.000
#> GSM123194 3 0.0592 0.753 0.016 0.000 0.984 0.000
#> GSM123195 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> GSM123196 3 0.1867 0.753 0.072 0.000 0.928 0.000
#> GSM123197 3 0.5815 0.585 0.152 0.000 0.708 0.140
#> GSM123198 2 0.2909 0.841 0.000 0.888 0.020 0.092
#> GSM123199 1 0.3708 0.714 0.832 0.000 0.020 0.148
#> GSM123200 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> GSM123201 1 0.7697 0.180 0.444 0.000 0.316 0.240
#> GSM123202 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> GSM123203 1 0.3597 0.715 0.836 0.000 0.016 0.148
#> GSM123204 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> GSM123205 2 0.2216 0.857 0.000 0.908 0.000 0.092
#> GSM123206 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> GSM123207 1 0.8934 -0.112 0.364 0.056 0.340 0.240
#> GSM123208 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> GSM123209 3 0.3907 0.734 0.000 0.140 0.828 0.032
#> GSM123210 1 0.2921 0.705 0.860 0.000 0.140 0.000
#> GSM123211 1 0.2760 0.708 0.872 0.000 0.128 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 4 0.5443 0.463 0.000 0.000 0.312 0.604 0.084
#> GSM123213 4 0.4948 0.697 0.000 0.016 0.084 0.736 0.164
#> GSM123214 4 0.0000 0.859 0.000 0.000 0.000 1.000 0.000
#> GSM123215 4 0.0000 0.859 0.000 0.000 0.000 1.000 0.000
#> GSM123216 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM123217 1 0.0162 0.902 0.996 0.000 0.004 0.000 0.000
#> GSM123218 3 0.0510 0.875 0.000 0.000 0.984 0.000 0.016
#> GSM123219 3 0.1544 0.875 0.068 0.000 0.932 0.000 0.000
#> GSM123220 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM123221 5 0.4713 0.659 0.280 0.000 0.044 0.000 0.676
#> GSM123222 5 0.2852 0.738 0.172 0.000 0.000 0.000 0.828
#> GSM123223 2 0.2632 0.843 0.000 0.892 0.032 0.072 0.004
#> GSM123224 1 0.1608 0.895 0.928 0.000 0.000 0.000 0.072
#> GSM123225 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM123226 1 0.1701 0.901 0.936 0.000 0.016 0.000 0.048
#> GSM123227 5 0.1956 0.705 0.076 0.000 0.008 0.000 0.916
#> GSM123228 1 0.2074 0.870 0.896 0.000 0.000 0.000 0.104
#> GSM123229 3 0.4734 0.640 0.188 0.000 0.724 0.000 0.088
#> GSM123230 5 0.4713 0.659 0.280 0.000 0.044 0.000 0.676
#> GSM123231 3 0.0290 0.876 0.000 0.008 0.992 0.000 0.000
#> GSM123232 1 0.1478 0.900 0.936 0.000 0.000 0.000 0.064
#> GSM123233 5 0.2110 0.672 0.000 0.016 0.072 0.000 0.912
#> GSM123234 5 0.0703 0.739 0.024 0.000 0.000 0.000 0.976
#> GSM123235 3 0.1792 0.859 0.000 0.000 0.916 0.000 0.084
#> GSM123236 3 0.4384 0.533 0.000 0.016 0.660 0.000 0.324
#> GSM123237 1 0.2966 0.722 0.816 0.000 0.184 0.000 0.000
#> GSM123238 5 0.3913 0.624 0.324 0.000 0.000 0.000 0.676
#> GSM123239 5 0.4090 0.490 0.000 0.016 0.268 0.000 0.716
#> GSM123240 1 0.1478 0.900 0.936 0.000 0.000 0.000 0.064
#> GSM123241 1 0.2230 0.812 0.884 0.000 0.116 0.000 0.000
#> GSM123242 4 0.2331 0.821 0.000 0.016 0.068 0.908 0.008
#> GSM123182 3 0.0000 0.877 0.000 0.000 1.000 0.000 0.000
#> GSM123183 4 0.0510 0.855 0.000 0.000 0.000 0.984 0.016
#> GSM123184 4 0.0000 0.859 0.000 0.000 0.000 1.000 0.000
#> GSM123185 5 0.3264 0.662 0.000 0.016 0.164 0.000 0.820
#> GSM123186 3 0.1608 0.873 0.072 0.000 0.928 0.000 0.000
#> GSM123187 3 0.1211 0.865 0.000 0.016 0.960 0.000 0.024
#> GSM123188 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM123189 3 0.1544 0.875 0.068 0.000 0.932 0.000 0.000
#> GSM123190 3 0.3304 0.752 0.000 0.016 0.816 0.000 0.168
#> GSM123191 3 0.1792 0.859 0.000 0.000 0.916 0.000 0.084
#> GSM123192 3 0.1965 0.864 0.096 0.000 0.904 0.000 0.000
#> GSM123193 1 0.2813 0.748 0.832 0.000 0.168 0.000 0.000
#> GSM123194 3 0.1608 0.873 0.072 0.000 0.928 0.000 0.000
#> GSM123195 2 0.0000 0.906 0.000 1.000 0.000 0.000 0.000
#> GSM123196 3 0.1792 0.859 0.000 0.000 0.916 0.000 0.084
#> GSM123197 5 0.3274 0.633 0.000 0.000 0.220 0.000 0.780
#> GSM123198 2 0.5441 0.531 0.000 0.596 0.080 0.000 0.324
#> GSM123199 5 0.3913 0.624 0.324 0.000 0.000 0.000 0.676
#> GSM123200 2 0.0000 0.906 0.000 1.000 0.000 0.000 0.000
#> GSM123201 5 0.0451 0.733 0.008 0.000 0.004 0.000 0.988
#> GSM123202 2 0.3180 0.823 0.000 0.856 0.068 0.000 0.076
#> GSM123203 5 0.3707 0.672 0.284 0.000 0.000 0.000 0.716
#> GSM123204 2 0.0000 0.906 0.000 1.000 0.000 0.000 0.000
#> GSM123205 2 0.1121 0.888 0.000 0.956 0.000 0.000 0.044
#> GSM123206 2 0.0000 0.906 0.000 1.000 0.000 0.000 0.000
#> GSM123207 5 0.0162 0.729 0.000 0.000 0.004 0.000 0.996
#> GSM123208 2 0.0000 0.906 0.000 1.000 0.000 0.000 0.000
#> GSM123209 3 0.0912 0.869 0.000 0.016 0.972 0.000 0.012
#> GSM123210 1 0.1544 0.898 0.932 0.000 0.000 0.000 0.068
#> GSM123211 1 0.1544 0.898 0.932 0.000 0.000 0.000 0.068
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 6 0.6284 -0.3935 0.000 0.000 0.308 0.196 0.024 0.472
#> GSM123213 6 0.0790 0.0664 0.000 0.000 0.000 0.032 0.000 0.968
#> GSM123214 4 0.3706 0.9427 0.000 0.000 0.000 0.620 0.000 0.380
#> GSM123215 4 0.3706 0.9427 0.000 0.000 0.000 0.620 0.000 0.380
#> GSM123216 1 0.0363 0.8766 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM123217 1 0.0146 0.8769 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM123218 3 0.1461 0.8758 0.000 0.000 0.940 0.000 0.016 0.044
#> GSM123219 3 0.0865 0.8830 0.036 0.000 0.964 0.000 0.000 0.000
#> GSM123220 1 0.0000 0.8772 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123221 5 0.5634 0.5107 0.212 0.000 0.204 0.000 0.576 0.008
#> GSM123222 5 0.5794 0.6124 0.124 0.000 0.036 0.000 0.588 0.252
#> GSM123223 2 0.2260 0.6909 0.000 0.860 0.000 0.000 0.000 0.140
#> GSM123224 1 0.1320 0.8666 0.948 0.000 0.036 0.000 0.016 0.000
#> GSM123225 1 0.0363 0.8766 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM123226 1 0.3967 0.5993 0.632 0.000 0.012 0.000 0.356 0.000
#> GSM123227 5 0.0777 0.5830 0.000 0.000 0.004 0.000 0.972 0.024
#> GSM123228 1 0.3823 0.4772 0.564 0.000 0.000 0.000 0.436 0.000
#> GSM123229 3 0.2852 0.7701 0.064 0.000 0.856 0.000 0.080 0.000
#> GSM123230 5 0.2912 0.6041 0.116 0.000 0.040 0.000 0.844 0.000
#> GSM123231 3 0.1204 0.8759 0.000 0.000 0.944 0.000 0.000 0.056
#> GSM123232 1 0.3482 0.6547 0.684 0.000 0.000 0.000 0.316 0.000
#> GSM123233 5 0.3847 0.3951 0.000 0.000 0.000 0.000 0.544 0.456
#> GSM123234 5 0.4759 0.5875 0.028 0.000 0.036 0.000 0.656 0.280
#> GSM123235 3 0.2092 0.8257 0.000 0.000 0.876 0.000 0.124 0.000
#> GSM123236 6 0.5347 0.0411 0.000 0.000 0.412 0.000 0.108 0.480
#> GSM123237 1 0.1649 0.8536 0.932 0.000 0.036 0.000 0.032 0.000
#> GSM123238 5 0.5796 0.4852 0.296 0.000 0.036 0.000 0.564 0.104
#> GSM123239 6 0.5438 -0.1316 0.000 0.000 0.124 0.000 0.380 0.496
#> GSM123240 1 0.0993 0.8728 0.964 0.000 0.024 0.000 0.012 0.000
#> GSM123241 1 0.3285 0.7766 0.820 0.000 0.116 0.000 0.064 0.000
#> GSM123242 6 0.3695 -0.5666 0.000 0.000 0.000 0.376 0.000 0.624
#> GSM123182 3 0.0865 0.8807 0.000 0.000 0.964 0.000 0.000 0.036
#> GSM123183 4 0.4722 0.8196 0.000 0.000 0.024 0.488 0.012 0.476
#> GSM123184 4 0.3706 0.9427 0.000 0.000 0.000 0.620 0.000 0.380
#> GSM123185 5 0.4473 0.3037 0.000 0.000 0.028 0.000 0.488 0.484
#> GSM123186 3 0.0865 0.8830 0.036 0.000 0.964 0.000 0.000 0.000
#> GSM123187 3 0.3457 0.6975 0.000 0.000 0.752 0.000 0.016 0.232
#> GSM123188 1 0.0000 0.8772 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123189 3 0.0865 0.8830 0.036 0.000 0.964 0.000 0.000 0.000
#> GSM123190 3 0.4358 0.6466 0.000 0.000 0.716 0.000 0.100 0.184
#> GSM123191 3 0.0713 0.8677 0.000 0.000 0.972 0.000 0.028 0.000
#> GSM123192 3 0.1141 0.8789 0.052 0.000 0.948 0.000 0.000 0.000
#> GSM123193 1 0.1204 0.8524 0.944 0.000 0.056 0.000 0.000 0.000
#> GSM123194 3 0.0865 0.8830 0.036 0.000 0.964 0.000 0.000 0.000
#> GSM123195 2 0.0000 0.7805 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123196 3 0.0891 0.8657 0.008 0.000 0.968 0.000 0.024 0.000
#> GSM123197 5 0.5286 0.4151 0.000 0.000 0.296 0.000 0.572 0.132
#> GSM123198 6 0.5502 0.2086 0.000 0.008 0.000 0.380 0.104 0.508
#> GSM123199 5 0.2003 0.5849 0.116 0.000 0.000 0.000 0.884 0.000
#> GSM123200 2 0.0000 0.7805 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123201 5 0.3426 0.5812 0.000 0.000 0.004 0.000 0.720 0.276
#> GSM123202 2 0.3944 0.2916 0.000 0.568 0.000 0.000 0.004 0.428
#> GSM123203 5 0.2003 0.5849 0.116 0.000 0.000 0.000 0.884 0.000
#> GSM123204 2 0.3706 0.5784 0.000 0.620 0.000 0.380 0.000 0.000
#> GSM123205 2 0.5684 0.4441 0.000 0.476 0.000 0.380 0.004 0.140
#> GSM123206 2 0.0000 0.7805 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123207 5 0.3758 0.5493 0.000 0.000 0.008 0.000 0.668 0.324
#> GSM123208 2 0.0000 0.7805 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123209 3 0.3271 0.7052 0.000 0.000 0.760 0.000 0.008 0.232
#> GSM123210 1 0.1572 0.8569 0.936 0.000 0.036 0.000 0.028 0.000
#> GSM123211 1 0.1225 0.8680 0.952 0.000 0.036 0.000 0.012 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> MAD:pam 57 0.08379 2
#> MAD:pam 53 0.06363 3
#> MAD:pam 53 0.00858 4
#> MAD:pam 59 0.03362 5
#> MAD:pam 48 0.13885 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.407 0.828 0.893 0.4197 0.541 0.541
#> 3 3 0.434 0.660 0.755 0.2529 0.915 0.849
#> 4 4 0.731 0.695 0.867 0.2827 0.789 0.599
#> 5 5 0.636 0.547 0.798 0.1045 0.889 0.697
#> 6 6 0.641 0.441 0.688 0.0662 0.854 0.521
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.9580 0.571 0.380 0.620
#> GSM123213 2 0.5842 0.893 0.140 0.860
#> GSM123214 2 0.5519 0.894 0.128 0.872
#> GSM123215 2 0.5519 0.894 0.128 0.872
#> GSM123216 1 0.0376 0.912 0.996 0.004
#> GSM123217 1 0.0376 0.912 0.996 0.004
#> GSM123218 1 0.6531 0.761 0.832 0.168
#> GSM123219 1 0.4431 0.843 0.908 0.092
#> GSM123220 1 0.0000 0.912 1.000 0.000
#> GSM123221 1 0.0376 0.912 0.996 0.004
#> GSM123222 1 0.0000 0.912 1.000 0.000
#> GSM123223 2 0.5294 0.896 0.120 0.880
#> GSM123224 1 0.0000 0.912 1.000 0.000
#> GSM123225 1 0.0376 0.912 0.996 0.004
#> GSM123226 1 0.0376 0.912 0.996 0.004
#> GSM123227 1 0.5294 0.822 0.880 0.120
#> GSM123228 1 0.3274 0.878 0.940 0.060
#> GSM123229 1 0.0000 0.912 1.000 0.000
#> GSM123230 1 0.0376 0.912 0.996 0.004
#> GSM123231 1 0.9580 0.265 0.620 0.380
#> GSM123232 1 0.0000 0.912 1.000 0.000
#> GSM123233 2 0.9460 0.603 0.364 0.636
#> GSM123234 1 0.3274 0.878 0.940 0.060
#> GSM123235 1 0.3274 0.878 0.940 0.060
#> GSM123236 1 0.6247 0.778 0.844 0.156
#> GSM123237 1 0.0000 0.912 1.000 0.000
#> GSM123238 1 0.0376 0.912 0.996 0.004
#> GSM123239 2 0.9815 0.476 0.420 0.580
#> GSM123240 1 0.0376 0.912 0.996 0.004
#> GSM123241 1 0.0000 0.912 1.000 0.000
#> GSM123242 2 0.5842 0.893 0.140 0.860
#> GSM123182 1 0.9710 0.304 0.600 0.400
#> GSM123183 2 0.9552 0.567 0.376 0.624
#> GSM123184 2 0.5519 0.894 0.128 0.872
#> GSM123185 2 0.9522 0.590 0.372 0.628
#> GSM123186 1 0.4431 0.843 0.908 0.092
#> GSM123187 2 0.5842 0.893 0.140 0.860
#> GSM123188 1 0.0000 0.912 1.000 0.000
#> GSM123189 1 0.4431 0.843 0.908 0.092
#> GSM123190 1 0.9044 0.447 0.680 0.320
#> GSM123191 1 0.0376 0.912 0.996 0.004
#> GSM123192 1 0.0376 0.912 0.996 0.004
#> GSM123193 1 0.3584 0.865 0.932 0.068
#> GSM123194 1 0.4431 0.843 0.908 0.092
#> GSM123195 2 0.4690 0.892 0.100 0.900
#> GSM123196 1 0.0000 0.912 1.000 0.000
#> GSM123197 1 0.8267 0.587 0.740 0.260
#> GSM123198 2 0.4690 0.892 0.100 0.900
#> GSM123199 1 0.0000 0.912 1.000 0.000
#> GSM123200 2 0.4690 0.892 0.100 0.900
#> GSM123201 1 0.4939 0.834 0.892 0.108
#> GSM123202 2 0.5178 0.896 0.116 0.884
#> GSM123203 1 0.0000 0.912 1.000 0.000
#> GSM123204 2 0.4690 0.892 0.100 0.900
#> GSM123205 2 0.4690 0.892 0.100 0.900
#> GSM123206 2 0.4690 0.892 0.100 0.900
#> GSM123207 1 0.6623 0.755 0.828 0.172
#> GSM123208 2 0.4690 0.892 0.100 0.900
#> GSM123209 2 0.5842 0.893 0.140 0.860
#> GSM123210 1 0.0000 0.912 1.000 0.000
#> GSM123211 1 0.0376 0.912 0.996 0.004
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 3 0.5678 0.3520 0.316 0.000 0.684
#> GSM123213 3 0.4934 0.2459 0.024 0.156 0.820
#> GSM123214 3 0.0424 0.3720 0.008 0.000 0.992
#> GSM123215 3 0.0424 0.3720 0.008 0.000 0.992
#> GSM123216 1 0.0592 0.8474 0.988 0.000 0.012
#> GSM123217 1 0.0747 0.8482 0.984 0.016 0.000
#> GSM123218 1 0.8659 0.6045 0.596 0.228 0.176
#> GSM123219 1 0.6151 0.7579 0.772 0.160 0.068
#> GSM123220 1 0.0592 0.8493 0.988 0.012 0.000
#> GSM123221 1 0.1163 0.8484 0.972 0.000 0.028
#> GSM123222 1 0.2448 0.8476 0.924 0.076 0.000
#> GSM123223 3 0.6796 -0.4344 0.020 0.368 0.612
#> GSM123224 1 0.0237 0.8469 0.996 0.004 0.000
#> GSM123225 1 0.0424 0.8464 0.992 0.000 0.008
#> GSM123226 1 0.2448 0.8474 0.924 0.076 0.000
#> GSM123227 1 0.6083 0.8085 0.772 0.168 0.060
#> GSM123228 1 0.2878 0.8441 0.904 0.096 0.000
#> GSM123229 1 0.1163 0.8515 0.972 0.028 0.000
#> GSM123230 1 0.2356 0.8480 0.928 0.072 0.000
#> GSM123231 1 0.9405 0.3244 0.484 0.324 0.192
#> GSM123232 1 0.2448 0.8478 0.924 0.076 0.000
#> GSM123233 3 0.9340 0.2509 0.192 0.308 0.500
#> GSM123234 1 0.4556 0.8342 0.860 0.080 0.060
#> GSM123235 1 0.6354 0.7893 0.748 0.196 0.056
#> GSM123236 1 0.7615 0.7126 0.688 0.164 0.148
#> GSM123237 1 0.0892 0.8491 0.980 0.020 0.000
#> GSM123238 1 0.3267 0.7993 0.884 0.000 0.116
#> GSM123239 1 0.9969 -0.1958 0.372 0.320 0.308
#> GSM123240 1 0.0424 0.8464 0.992 0.000 0.008
#> GSM123241 1 0.0592 0.8493 0.988 0.012 0.000
#> GSM123242 3 0.4708 0.3151 0.036 0.120 0.844
#> GSM123182 1 0.8275 0.4829 0.596 0.108 0.296
#> GSM123183 3 0.5882 0.3342 0.348 0.000 0.652
#> GSM123184 3 0.0424 0.3720 0.008 0.000 0.992
#> GSM123185 3 0.9446 0.2788 0.228 0.272 0.500
#> GSM123186 1 0.6239 0.7561 0.768 0.160 0.072
#> GSM123187 3 0.7825 -0.0871 0.080 0.300 0.620
#> GSM123188 1 0.0592 0.8486 0.988 0.012 0.000
#> GSM123189 1 0.6897 0.7548 0.712 0.220 0.068
#> GSM123190 1 0.8722 0.4928 0.576 0.152 0.272
#> GSM123191 1 0.3683 0.8320 0.896 0.044 0.060
#> GSM123192 1 0.2845 0.8396 0.920 0.012 0.068
#> GSM123193 1 0.2636 0.8421 0.932 0.048 0.020
#> GSM123194 1 0.7062 0.7518 0.696 0.236 0.068
#> GSM123195 2 0.6373 0.9265 0.004 0.588 0.408
#> GSM123196 1 0.3918 0.8262 0.856 0.140 0.004
#> GSM123197 1 0.4842 0.7126 0.776 0.000 0.224
#> GSM123198 2 0.6495 0.8403 0.004 0.536 0.460
#> GSM123199 1 0.2537 0.8468 0.920 0.080 0.000
#> GSM123200 2 0.6359 0.9254 0.004 0.592 0.404
#> GSM123201 1 0.5631 0.8161 0.804 0.132 0.064
#> GSM123202 2 0.6809 0.8022 0.012 0.524 0.464
#> GSM123203 1 0.2537 0.8468 0.920 0.080 0.000
#> GSM123204 2 0.6140 0.9236 0.000 0.596 0.404
#> GSM123205 2 0.6140 0.9236 0.000 0.596 0.404
#> GSM123206 2 0.6359 0.9254 0.004 0.592 0.404
#> GSM123207 1 0.7180 0.7440 0.716 0.168 0.116
#> GSM123208 2 0.6442 0.9013 0.004 0.564 0.432
#> GSM123209 3 0.8404 -0.5350 0.084 0.452 0.464
#> GSM123210 1 0.0000 0.8470 1.000 0.000 0.000
#> GSM123211 1 0.0592 0.8474 0.988 0.000 0.012
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 4 0.4786 0.742 0.064 0.132 0.008 0.796
#> GSM123213 4 0.4817 0.389 0.000 0.000 0.388 0.612
#> GSM123214 4 0.0336 0.825 0.000 0.000 0.008 0.992
#> GSM123215 4 0.0336 0.825 0.000 0.000 0.008 0.992
#> GSM123216 1 0.0376 0.867 0.992 0.000 0.004 0.004
#> GSM123217 1 0.0524 0.866 0.988 0.008 0.000 0.004
#> GSM123218 2 0.7795 -0.569 0.268 0.420 0.312 0.000
#> GSM123219 1 0.5016 0.414 0.600 0.396 0.000 0.004
#> GSM123220 1 0.0376 0.867 0.992 0.004 0.000 0.004
#> GSM123221 1 0.0000 0.867 1.000 0.000 0.000 0.000
#> GSM123222 1 0.0188 0.867 0.996 0.000 0.004 0.000
#> GSM123223 2 0.5582 0.822 0.000 0.576 0.400 0.024
#> GSM123224 1 0.0000 0.867 1.000 0.000 0.000 0.000
#> GSM123225 1 0.0376 0.867 0.992 0.000 0.004 0.004
#> GSM123226 1 0.0564 0.867 0.988 0.004 0.004 0.004
#> GSM123227 3 0.5560 0.779 0.024 0.392 0.584 0.000
#> GSM123228 1 0.1389 0.843 0.952 0.000 0.048 0.000
#> GSM123229 1 0.0188 0.867 0.996 0.000 0.004 0.000
#> GSM123230 1 0.0188 0.867 0.996 0.000 0.004 0.000
#> GSM123231 3 0.6354 0.746 0.064 0.416 0.520 0.000
#> GSM123232 1 0.0336 0.866 0.992 0.000 0.008 0.000
#> GSM123233 3 0.0707 0.268 0.020 0.000 0.980 0.000
#> GSM123234 1 0.4817 0.284 0.612 0.000 0.388 0.000
#> GSM123235 1 0.5799 0.354 0.552 0.420 0.024 0.004
#> GSM123236 3 0.5465 0.779 0.020 0.392 0.588 0.000
#> GSM123237 1 0.0524 0.866 0.988 0.008 0.000 0.004
#> GSM123238 1 0.4500 0.447 0.684 0.000 0.000 0.316
#> GSM123239 3 0.5440 0.779 0.020 0.384 0.596 0.000
#> GSM123240 1 0.0000 0.867 1.000 0.000 0.000 0.000
#> GSM123241 1 0.0376 0.867 0.992 0.004 0.000 0.004
#> GSM123242 4 0.4248 0.650 0.000 0.220 0.012 0.768
#> GSM123182 3 0.6959 0.738 0.100 0.392 0.504 0.004
#> GSM123183 4 0.2546 0.777 0.092 0.000 0.008 0.900
#> GSM123184 4 0.0336 0.825 0.000 0.000 0.008 0.992
#> GSM123185 3 0.3708 0.553 0.020 0.148 0.832 0.000
#> GSM123186 1 0.5016 0.414 0.600 0.396 0.000 0.004
#> GSM123187 3 0.6220 -0.261 0.020 0.032 0.600 0.348
#> GSM123188 1 0.0376 0.867 0.992 0.004 0.000 0.004
#> GSM123189 1 0.5441 0.395 0.588 0.396 0.012 0.004
#> GSM123190 3 0.7442 0.736 0.096 0.392 0.488 0.024
#> GSM123191 1 0.5190 0.414 0.596 0.396 0.004 0.004
#> GSM123192 1 0.0564 0.866 0.988 0.004 0.004 0.004
#> GSM123193 1 0.0524 0.866 0.988 0.004 0.000 0.008
#> GSM123194 1 0.5441 0.395 0.588 0.396 0.012 0.004
#> GSM123195 2 0.5582 0.822 0.000 0.576 0.400 0.024
#> GSM123196 1 0.1909 0.845 0.940 0.048 0.008 0.004
#> GSM123197 1 0.4119 0.667 0.796 0.012 0.004 0.188
#> GSM123198 2 0.5582 0.822 0.000 0.576 0.400 0.024
#> GSM123199 1 0.0376 0.867 0.992 0.004 0.004 0.000
#> GSM123200 2 0.5582 0.822 0.000 0.576 0.400 0.024
#> GSM123201 3 0.5548 0.780 0.024 0.388 0.588 0.000
#> GSM123202 2 0.5582 0.822 0.000 0.576 0.400 0.024
#> GSM123203 1 0.0188 0.867 0.996 0.000 0.004 0.000
#> GSM123204 2 0.5582 0.822 0.000 0.576 0.400 0.024
#> GSM123205 2 0.5582 0.822 0.000 0.576 0.400 0.024
#> GSM123206 2 0.5582 0.822 0.000 0.576 0.400 0.024
#> GSM123207 3 0.6014 0.771 0.052 0.360 0.588 0.000
#> GSM123208 2 0.5582 0.822 0.000 0.576 0.400 0.024
#> GSM123209 2 0.3705 0.190 0.020 0.864 0.092 0.024
#> GSM123210 1 0.0000 0.867 1.000 0.000 0.000 0.000
#> GSM123211 1 0.0000 0.867 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 4 0.6066 0.5902 0.164 0.000 0.196 0.624 0.016
#> GSM123213 4 0.4938 0.6510 0.012 0.208 0.000 0.716 0.064
#> GSM123214 4 0.0290 0.8156 0.000 0.000 0.008 0.992 0.000
#> GSM123215 4 0.0000 0.8168 0.000 0.000 0.000 1.000 0.000
#> GSM123216 1 0.1544 0.6505 0.932 0.000 0.068 0.000 0.000
#> GSM123217 1 0.0794 0.6699 0.972 0.000 0.028 0.000 0.000
#> GSM123218 5 0.5250 0.5220 0.040 0.004 0.404 0.000 0.552
#> GSM123219 1 0.4415 -0.4521 0.552 0.000 0.444 0.000 0.004
#> GSM123220 1 0.2446 0.6618 0.900 0.000 0.056 0.000 0.044
#> GSM123221 1 0.1809 0.6493 0.928 0.000 0.060 0.000 0.012
#> GSM123222 1 0.3297 0.6303 0.848 0.000 0.068 0.000 0.084
#> GSM123223 2 0.0703 0.8569 0.000 0.976 0.000 0.000 0.024
#> GSM123224 1 0.0404 0.6750 0.988 0.000 0.000 0.000 0.012
#> GSM123225 1 0.1197 0.6589 0.952 0.000 0.048 0.000 0.000
#> GSM123226 1 0.3579 0.6132 0.828 0.000 0.072 0.000 0.100
#> GSM123227 5 0.1059 0.6888 0.020 0.004 0.008 0.000 0.968
#> GSM123228 1 0.5480 0.1783 0.560 0.000 0.072 0.000 0.368
#> GSM123229 1 0.2300 0.6605 0.904 0.000 0.072 0.000 0.024
#> GSM123230 1 0.2914 0.6499 0.872 0.000 0.076 0.000 0.052
#> GSM123231 5 0.5080 0.5516 0.020 0.012 0.396 0.000 0.572
#> GSM123232 1 0.3476 0.6368 0.836 0.000 0.076 0.000 0.088
#> GSM123233 5 0.3910 0.4488 0.000 0.272 0.008 0.000 0.720
#> GSM123234 5 0.5449 0.0864 0.376 0.000 0.068 0.000 0.556
#> GSM123235 5 0.6653 0.1815 0.228 0.000 0.364 0.000 0.408
#> GSM123236 5 0.0727 0.6902 0.012 0.004 0.004 0.000 0.980
#> GSM123237 1 0.1205 0.6778 0.956 0.000 0.004 0.000 0.040
#> GSM123238 1 0.6335 0.0979 0.572 0.000 0.172 0.244 0.012
#> GSM123239 5 0.1121 0.6789 0.000 0.044 0.000 0.000 0.956
#> GSM123240 1 0.1740 0.6505 0.932 0.000 0.056 0.000 0.012
#> GSM123241 1 0.1251 0.6775 0.956 0.000 0.008 0.000 0.036
#> GSM123242 4 0.4655 0.7280 0.012 0.112 0.000 0.764 0.112
#> GSM123182 5 0.4779 0.3445 0.016 0.004 0.396 0.000 0.584
#> GSM123183 4 0.4234 0.7491 0.040 0.000 0.172 0.776 0.012
#> GSM123184 4 0.0000 0.8168 0.000 0.000 0.000 1.000 0.000
#> GSM123185 5 0.3840 0.5354 0.012 0.208 0.008 0.000 0.772
#> GSM123186 3 0.6182 0.3017 0.240 0.000 0.584 0.168 0.008
#> GSM123187 2 0.7295 -0.1652 0.008 0.332 0.008 0.328 0.324
#> GSM123188 1 0.0955 0.6762 0.968 0.000 0.004 0.000 0.028
#> GSM123189 3 0.5638 0.5867 0.432 0.000 0.492 0.000 0.076
#> GSM123190 5 0.5119 0.5518 0.028 0.008 0.388 0.000 0.576
#> GSM123191 1 0.4825 -0.3828 0.568 0.000 0.408 0.000 0.024
#> GSM123192 1 0.4088 0.0249 0.632 0.000 0.368 0.000 0.000
#> GSM123193 1 0.3480 0.3499 0.752 0.000 0.248 0.000 0.000
#> GSM123194 3 0.5680 0.5787 0.428 0.000 0.492 0.000 0.080
#> GSM123195 2 0.0000 0.8594 0.000 1.000 0.000 0.000 0.000
#> GSM123196 1 0.5583 0.1822 0.564 0.000 0.352 0.000 0.084
#> GSM123197 1 0.7758 -0.0408 0.456 0.000 0.180 0.264 0.100
#> GSM123198 2 0.0794 0.8545 0.000 0.972 0.000 0.000 0.028
#> GSM123199 1 0.3586 0.6152 0.828 0.000 0.076 0.000 0.096
#> GSM123200 2 0.0000 0.8594 0.000 1.000 0.000 0.000 0.000
#> GSM123201 5 0.0613 0.6902 0.004 0.008 0.004 0.000 0.984
#> GSM123202 2 0.1270 0.8382 0.000 0.948 0.000 0.000 0.052
#> GSM123203 1 0.3639 0.6237 0.824 0.000 0.076 0.000 0.100
#> GSM123204 2 0.0000 0.8594 0.000 1.000 0.000 0.000 0.000
#> GSM123205 2 0.0000 0.8594 0.000 1.000 0.000 0.000 0.000
#> GSM123206 2 0.0000 0.8594 0.000 1.000 0.000 0.000 0.000
#> GSM123207 5 0.0613 0.6845 0.004 0.004 0.008 0.000 0.984
#> GSM123208 2 0.0609 0.8578 0.000 0.980 0.000 0.000 0.020
#> GSM123209 2 0.5801 0.1895 0.004 0.532 0.084 0.000 0.380
#> GSM123210 1 0.0992 0.6779 0.968 0.000 0.008 0.000 0.024
#> GSM123211 1 0.2248 0.6257 0.900 0.000 0.088 0.000 0.012
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 4 0.5689 0.6200 0.008 0.000 0.172 0.556 0.000 0.264
#> GSM123213 4 0.5178 0.6811 0.008 0.156 0.036 0.724 0.028 0.048
#> GSM123214 4 0.0000 0.7315 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123215 4 0.0000 0.7315 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123216 6 0.4650 -0.0273 0.416 0.000 0.008 0.000 0.028 0.548
#> GSM123217 1 0.4443 0.4635 0.596 0.000 0.036 0.000 0.000 0.368
#> GSM123218 3 0.4535 0.6387 0.032 0.000 0.488 0.000 0.480 0.000
#> GSM123219 6 0.5982 0.4183 0.192 0.000 0.264 0.000 0.016 0.528
#> GSM123220 1 0.3774 0.5343 0.664 0.000 0.000 0.000 0.008 0.328
#> GSM123221 6 0.4884 0.3274 0.220 0.000 0.128 0.000 0.000 0.652
#> GSM123222 1 0.4670 0.4457 0.580 0.000 0.028 0.000 0.012 0.380
#> GSM123223 2 0.0000 0.9732 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123224 1 0.3789 0.4467 0.584 0.000 0.000 0.000 0.000 0.416
#> GSM123225 6 0.4667 -0.0646 0.428 0.000 0.008 0.000 0.028 0.536
#> GSM123226 1 0.0260 0.5312 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM123227 5 0.0937 0.4158 0.040 0.000 0.000 0.000 0.960 0.000
#> GSM123228 1 0.1075 0.4941 0.952 0.000 0.000 0.000 0.048 0.000
#> GSM123229 1 0.3945 0.4928 0.612 0.000 0.008 0.000 0.000 0.380
#> GSM123230 1 0.1531 0.5171 0.928 0.000 0.004 0.000 0.000 0.068
#> GSM123231 5 0.4535 -0.8251 0.032 0.000 0.484 0.000 0.484 0.000
#> GSM123232 1 0.0260 0.5312 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM123233 5 0.4492 0.3630 0.000 0.216 0.080 0.000 0.700 0.004
#> GSM123234 5 0.6665 0.0714 0.392 0.000 0.124 0.000 0.404 0.080
#> GSM123235 3 0.5864 0.6801 0.120 0.000 0.488 0.000 0.372 0.020
#> GSM123236 5 0.1074 0.4064 0.028 0.000 0.012 0.000 0.960 0.000
#> GSM123237 1 0.3847 0.5212 0.644 0.000 0.000 0.000 0.008 0.348
#> GSM123238 6 0.6134 0.1659 0.132 0.000 0.080 0.196 0.000 0.592
#> GSM123239 5 0.1970 0.3479 0.028 0.000 0.060 0.000 0.912 0.000
#> GSM123240 6 0.4039 -0.0567 0.424 0.000 0.008 0.000 0.000 0.568
#> GSM123241 1 0.3833 0.5239 0.648 0.000 0.000 0.000 0.008 0.344
#> GSM123242 4 0.5252 0.6951 0.004 0.128 0.060 0.728 0.032 0.048
#> GSM123182 5 0.5391 0.2129 0.000 0.000 0.244 0.000 0.580 0.176
#> GSM123183 4 0.5296 0.6321 0.000 0.000 0.168 0.596 0.000 0.236
#> GSM123184 4 0.0000 0.7315 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123185 5 0.4716 0.3868 0.004 0.152 0.084 0.000 0.732 0.028
#> GSM123186 6 0.3990 0.4488 0.016 0.000 0.256 0.004 0.008 0.716
#> GSM123187 4 0.7722 0.1553 0.000 0.260 0.088 0.360 0.264 0.028
#> GSM123188 1 0.3819 0.5296 0.652 0.000 0.000 0.000 0.008 0.340
#> GSM123189 6 0.6672 0.4115 0.152 0.000 0.312 0.000 0.072 0.464
#> GSM123190 5 0.4763 -0.8181 0.032 0.000 0.476 0.000 0.484 0.008
#> GSM123191 6 0.6334 0.3929 0.224 0.000 0.216 0.000 0.040 0.520
#> GSM123192 6 0.2629 0.4522 0.048 0.000 0.036 0.000 0.028 0.888
#> GSM123193 6 0.5768 0.2762 0.316 0.000 0.196 0.000 0.000 0.488
#> GSM123194 6 0.7200 0.3558 0.240 0.000 0.276 0.000 0.096 0.388
#> GSM123195 2 0.0000 0.9732 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123196 1 0.5487 0.1687 0.480 0.000 0.428 0.000 0.020 0.072
#> GSM123197 6 0.7413 -0.1621 0.020 0.000 0.168 0.188 0.148 0.476
#> GSM123198 2 0.0547 0.9594 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM123199 1 0.0260 0.5312 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM123200 2 0.0000 0.9732 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123201 5 0.0713 0.4141 0.028 0.000 0.000 0.000 0.972 0.000
#> GSM123202 2 0.2699 0.8223 0.000 0.864 0.020 0.000 0.108 0.008
#> GSM123203 1 0.0790 0.5391 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM123204 2 0.0000 0.9732 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123205 2 0.0000 0.9732 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123206 2 0.0000 0.9732 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123207 5 0.1483 0.4176 0.008 0.000 0.012 0.000 0.944 0.036
#> GSM123208 2 0.0363 0.9656 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM123209 5 0.6305 -0.3011 0.000 0.316 0.292 0.000 0.384 0.008
#> GSM123210 1 0.3756 0.4746 0.600 0.000 0.000 0.000 0.000 0.400
#> GSM123211 6 0.3390 0.2331 0.296 0.000 0.000 0.000 0.000 0.704
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> MAD:mclust 57 0.1375 2
#> MAD:mclust 45 0.0078 3
#> MAD:mclust 48 0.0521 4
#> MAD:mclust 46 0.0120 5
#> MAD:mclust 27 0.0212 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.771 0.853 0.941 0.4856 0.508 0.508
#> 3 3 0.842 0.871 0.944 0.2824 0.776 0.590
#> 4 4 0.596 0.595 0.825 0.1536 0.842 0.601
#> 5 5 0.731 0.749 0.861 0.0805 0.901 0.674
#> 6 6 0.607 0.539 0.738 0.0436 0.928 0.717
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.975 0.295 0.408 0.592
#> GSM123213 2 0.000 0.902 0.000 1.000
#> GSM123214 2 0.000 0.902 0.000 1.000
#> GSM123215 2 0.000 0.902 0.000 1.000
#> GSM123216 1 0.000 0.952 1.000 0.000
#> GSM123217 1 0.000 0.952 1.000 0.000
#> GSM123218 1 0.932 0.387 0.652 0.348
#> GSM123219 1 0.000 0.952 1.000 0.000
#> GSM123220 1 0.000 0.952 1.000 0.000
#> GSM123221 1 0.000 0.952 1.000 0.000
#> GSM123222 1 0.000 0.952 1.000 0.000
#> GSM123223 2 0.000 0.902 0.000 1.000
#> GSM123224 1 0.000 0.952 1.000 0.000
#> GSM123225 1 0.000 0.952 1.000 0.000
#> GSM123226 1 0.000 0.952 1.000 0.000
#> GSM123227 1 0.295 0.904 0.948 0.052
#> GSM123228 1 0.000 0.952 1.000 0.000
#> GSM123229 1 0.000 0.952 1.000 0.000
#> GSM123230 1 0.000 0.952 1.000 0.000
#> GSM123231 2 0.998 0.194 0.472 0.528
#> GSM123232 1 0.000 0.952 1.000 0.000
#> GSM123233 2 0.000 0.902 0.000 1.000
#> GSM123234 1 0.000 0.952 1.000 0.000
#> GSM123235 1 0.000 0.952 1.000 0.000
#> GSM123236 2 0.932 0.512 0.348 0.652
#> GSM123237 1 0.000 0.952 1.000 0.000
#> GSM123238 1 0.184 0.928 0.972 0.028
#> GSM123239 2 0.000 0.902 0.000 1.000
#> GSM123240 1 0.000 0.952 1.000 0.000
#> GSM123241 1 0.000 0.952 1.000 0.000
#> GSM123242 2 0.000 0.902 0.000 1.000
#> GSM123182 2 0.833 0.651 0.264 0.736
#> GSM123183 1 0.963 0.332 0.612 0.388
#> GSM123184 2 0.000 0.902 0.000 1.000
#> GSM123185 2 0.788 0.690 0.236 0.764
#> GSM123186 1 0.311 0.901 0.944 0.056
#> GSM123187 2 0.000 0.902 0.000 1.000
#> GSM123188 1 0.000 0.952 1.000 0.000
#> GSM123189 1 0.000 0.952 1.000 0.000
#> GSM123190 2 0.327 0.861 0.060 0.940
#> GSM123191 1 0.000 0.952 1.000 0.000
#> GSM123192 1 0.000 0.952 1.000 0.000
#> GSM123193 1 0.000 0.952 1.000 0.000
#> GSM123194 1 0.000 0.952 1.000 0.000
#> GSM123195 2 0.000 0.902 0.000 1.000
#> GSM123196 1 0.000 0.952 1.000 0.000
#> GSM123197 1 0.939 0.413 0.644 0.356
#> GSM123198 2 0.000 0.902 0.000 1.000
#> GSM123199 1 0.000 0.952 1.000 0.000
#> GSM123200 2 0.000 0.902 0.000 1.000
#> GSM123201 1 0.767 0.663 0.776 0.224
#> GSM123202 2 0.000 0.902 0.000 1.000
#> GSM123203 1 0.000 0.952 1.000 0.000
#> GSM123204 2 0.000 0.902 0.000 1.000
#> GSM123205 2 0.000 0.902 0.000 1.000
#> GSM123206 2 0.000 0.902 0.000 1.000
#> GSM123207 2 0.955 0.452 0.376 0.624
#> GSM123208 2 0.000 0.902 0.000 1.000
#> GSM123209 2 0.000 0.902 0.000 1.000
#> GSM123210 1 0.000 0.952 1.000 0.000
#> GSM123211 1 0.000 0.952 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 2 0.0237 0.875 0.004 0.996 0.000
#> GSM123213 2 0.1031 0.865 0.000 0.976 0.024
#> GSM123214 2 0.0592 0.871 0.000 0.988 0.012
#> GSM123215 2 0.0237 0.874 0.000 0.996 0.004
#> GSM123216 1 0.1031 0.953 0.976 0.024 0.000
#> GSM123217 1 0.0237 0.969 0.996 0.004 0.000
#> GSM123218 3 0.6505 0.212 0.468 0.004 0.528
#> GSM123219 1 0.0424 0.968 0.992 0.008 0.000
#> GSM123220 1 0.0000 0.971 1.000 0.000 0.000
#> GSM123221 1 0.1163 0.950 0.972 0.028 0.000
#> GSM123222 1 0.0000 0.971 1.000 0.000 0.000
#> GSM123223 3 0.2356 0.851 0.000 0.072 0.928
#> GSM123224 1 0.0000 0.971 1.000 0.000 0.000
#> GSM123225 1 0.0237 0.969 0.996 0.004 0.000
#> GSM123226 1 0.0237 0.969 0.996 0.004 0.000
#> GSM123227 1 0.6345 0.210 0.596 0.004 0.400
#> GSM123228 1 0.0000 0.971 1.000 0.000 0.000
#> GSM123229 1 0.0000 0.971 1.000 0.000 0.000
#> GSM123230 1 0.0000 0.971 1.000 0.000 0.000
#> GSM123231 3 0.2945 0.853 0.088 0.004 0.908
#> GSM123232 1 0.0000 0.971 1.000 0.000 0.000
#> GSM123233 3 0.0237 0.898 0.004 0.000 0.996
#> GSM123234 1 0.0000 0.971 1.000 0.000 0.000
#> GSM123235 1 0.0475 0.967 0.992 0.004 0.004
#> GSM123236 3 0.2625 0.857 0.084 0.000 0.916
#> GSM123237 1 0.0592 0.966 0.988 0.012 0.000
#> GSM123238 2 0.5560 0.638 0.300 0.700 0.000
#> GSM123239 3 0.0000 0.899 0.000 0.000 1.000
#> GSM123240 1 0.1163 0.950 0.972 0.028 0.000
#> GSM123241 1 0.0237 0.969 0.996 0.004 0.000
#> GSM123242 2 0.0237 0.874 0.000 0.996 0.004
#> GSM123182 2 0.2703 0.841 0.056 0.928 0.016
#> GSM123183 2 0.0237 0.875 0.004 0.996 0.000
#> GSM123184 2 0.0237 0.874 0.000 0.996 0.004
#> GSM123185 3 0.3038 0.842 0.104 0.000 0.896
#> GSM123186 2 0.1411 0.865 0.036 0.964 0.000
#> GSM123187 3 0.3551 0.795 0.000 0.132 0.868
#> GSM123188 1 0.0000 0.971 1.000 0.000 0.000
#> GSM123189 1 0.0237 0.969 0.996 0.004 0.000
#> GSM123190 3 0.0829 0.894 0.012 0.004 0.984
#> GSM123191 1 0.0237 0.969 0.996 0.004 0.000
#> GSM123192 2 0.5497 0.651 0.292 0.708 0.000
#> GSM123193 1 0.1163 0.954 0.972 0.028 0.000
#> GSM123194 1 0.0237 0.969 0.996 0.004 0.000
#> GSM123195 3 0.0000 0.899 0.000 0.000 1.000
#> GSM123196 1 0.0000 0.971 1.000 0.000 0.000
#> GSM123197 2 0.6126 0.436 0.400 0.600 0.000
#> GSM123198 3 0.0000 0.899 0.000 0.000 1.000
#> GSM123199 1 0.0000 0.971 1.000 0.000 0.000
#> GSM123200 3 0.0000 0.899 0.000 0.000 1.000
#> GSM123201 3 0.5835 0.547 0.340 0.000 0.660
#> GSM123202 3 0.0000 0.899 0.000 0.000 1.000
#> GSM123203 1 0.0000 0.971 1.000 0.000 0.000
#> GSM123204 3 0.0000 0.899 0.000 0.000 1.000
#> GSM123205 3 0.0000 0.899 0.000 0.000 1.000
#> GSM123206 3 0.0000 0.899 0.000 0.000 1.000
#> GSM123207 3 0.4887 0.708 0.228 0.000 0.772
#> GSM123208 3 0.0000 0.899 0.000 0.000 1.000
#> GSM123209 3 0.0000 0.899 0.000 0.000 1.000
#> GSM123210 1 0.0000 0.971 1.000 0.000 0.000
#> GSM123211 1 0.3412 0.830 0.876 0.124 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 4 0.0672 0.8180 0.008 0.008 0.000 0.984
#> GSM123213 4 0.2921 0.7050 0.000 0.140 0.000 0.860
#> GSM123214 4 0.0000 0.8211 0.000 0.000 0.000 1.000
#> GSM123215 4 0.0000 0.8211 0.000 0.000 0.000 1.000
#> GSM123216 1 0.1004 0.8359 0.972 0.000 0.024 0.004
#> GSM123217 1 0.4103 0.6512 0.744 0.000 0.256 0.000
#> GSM123218 3 0.7012 0.2664 0.156 0.284 0.560 0.000
#> GSM123219 3 0.6070 0.0517 0.404 0.000 0.548 0.048
#> GSM123220 1 0.1118 0.8348 0.964 0.000 0.036 0.000
#> GSM123221 1 0.0592 0.8306 0.984 0.000 0.016 0.000
#> GSM123222 1 0.3801 0.5881 0.780 0.000 0.220 0.000
#> GSM123223 2 0.3873 0.6128 0.000 0.772 0.000 0.228
#> GSM123224 1 0.0000 0.8355 1.000 0.000 0.000 0.000
#> GSM123225 1 0.0707 0.8371 0.980 0.000 0.020 0.000
#> GSM123226 1 0.3172 0.7638 0.840 0.000 0.160 0.000
#> GSM123227 3 0.4939 0.4390 0.220 0.040 0.740 0.000
#> GSM123228 3 0.4989 0.0464 0.472 0.000 0.528 0.000
#> GSM123229 1 0.0336 0.8368 0.992 0.000 0.008 0.000
#> GSM123230 1 0.1557 0.8122 0.944 0.000 0.056 0.000
#> GSM123231 3 0.4933 -0.0194 0.000 0.432 0.568 0.000
#> GSM123232 1 0.0000 0.8355 1.000 0.000 0.000 0.000
#> GSM123233 3 0.4977 0.0278 0.000 0.460 0.540 0.000
#> GSM123234 1 0.5372 0.0574 0.544 0.012 0.444 0.000
#> GSM123235 1 0.3852 0.7285 0.800 0.008 0.192 0.000
#> GSM123236 3 0.5793 0.2355 0.040 0.360 0.600 0.000
#> GSM123237 1 0.3402 0.7524 0.832 0.000 0.164 0.004
#> GSM123238 4 0.5438 0.2261 0.452 0.008 0.004 0.536
#> GSM123239 2 0.1211 0.8080 0.000 0.960 0.040 0.000
#> GSM123240 1 0.0188 0.8355 0.996 0.000 0.000 0.004
#> GSM123241 1 0.2408 0.8014 0.896 0.000 0.104 0.000
#> GSM123242 4 0.0000 0.8211 0.000 0.000 0.000 1.000
#> GSM123182 3 0.4040 0.2650 0.000 0.000 0.752 0.248
#> GSM123183 4 0.0524 0.8194 0.008 0.004 0.000 0.988
#> GSM123184 4 0.0000 0.8211 0.000 0.000 0.000 1.000
#> GSM123185 3 0.5702 0.1389 0.016 0.404 0.572 0.008
#> GSM123186 4 0.5615 0.4405 0.032 0.000 0.356 0.612
#> GSM123187 2 0.4277 0.5402 0.000 0.720 0.000 0.280
#> GSM123188 1 0.1022 0.8355 0.968 0.000 0.032 0.000
#> GSM123189 3 0.4991 0.1164 0.388 0.000 0.608 0.004
#> GSM123190 2 0.6031 0.0847 0.044 0.536 0.420 0.000
#> GSM123191 1 0.4500 0.5617 0.684 0.000 0.316 0.000
#> GSM123192 4 0.5111 0.6000 0.204 0.000 0.056 0.740
#> GSM123193 1 0.4304 0.6099 0.716 0.000 0.284 0.000
#> GSM123194 3 0.3688 0.4172 0.208 0.000 0.792 0.000
#> GSM123195 2 0.0188 0.8217 0.000 0.996 0.004 0.000
#> GSM123196 1 0.3074 0.7715 0.848 0.000 0.152 0.000
#> GSM123197 1 0.6021 0.0522 0.556 0.024 0.012 0.408
#> GSM123198 2 0.0336 0.8208 0.000 0.992 0.008 0.000
#> GSM123199 1 0.0921 0.8323 0.972 0.000 0.028 0.000
#> GSM123200 2 0.0188 0.8215 0.000 0.996 0.004 0.000
#> GSM123201 3 0.6592 0.1705 0.084 0.392 0.524 0.000
#> GSM123202 2 0.0000 0.8212 0.000 1.000 0.000 0.000
#> GSM123203 1 0.0592 0.8317 0.984 0.000 0.016 0.000
#> GSM123204 2 0.0188 0.8204 0.000 0.996 0.004 0.000
#> GSM123205 2 0.0000 0.8212 0.000 1.000 0.000 0.000
#> GSM123206 2 0.0188 0.8217 0.000 0.996 0.004 0.000
#> GSM123207 2 0.6826 -0.0541 0.100 0.484 0.416 0.000
#> GSM123208 2 0.2814 0.7188 0.000 0.868 0.132 0.000
#> GSM123209 2 0.1118 0.8060 0.000 0.964 0.036 0.000
#> GSM123210 1 0.0000 0.8355 1.000 0.000 0.000 0.000
#> GSM123211 1 0.0592 0.8339 0.984 0.000 0.000 0.016
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 4 0.1082 0.920 0.028 0.000 0.000 0.964 0.008
#> GSM123213 4 0.1195 0.915 0.000 0.028 0.000 0.960 0.012
#> GSM123214 4 0.0324 0.931 0.000 0.004 0.004 0.992 0.000
#> GSM123215 4 0.0162 0.932 0.000 0.000 0.004 0.996 0.000
#> GSM123216 1 0.1653 0.810 0.944 0.000 0.024 0.004 0.028
#> GSM123217 1 0.5294 0.331 0.564 0.000 0.380 0.000 0.056
#> GSM123218 3 0.2095 0.763 0.008 0.012 0.920 0.000 0.060
#> GSM123219 3 0.3213 0.758 0.028 0.000 0.872 0.040 0.060
#> GSM123220 1 0.2230 0.800 0.912 0.000 0.044 0.000 0.044
#> GSM123221 1 0.1124 0.803 0.960 0.000 0.000 0.004 0.036
#> GSM123222 1 0.4420 0.219 0.548 0.000 0.004 0.000 0.448
#> GSM123223 2 0.1618 0.930 0.000 0.944 0.008 0.040 0.008
#> GSM123224 1 0.0000 0.808 1.000 0.000 0.000 0.000 0.000
#> GSM123225 1 0.1653 0.811 0.944 0.000 0.024 0.004 0.028
#> GSM123226 1 0.5382 0.451 0.592 0.000 0.336 0.000 0.072
#> GSM123227 5 0.3381 0.716 0.016 0.000 0.176 0.000 0.808
#> GSM123228 5 0.3060 0.756 0.128 0.000 0.024 0.000 0.848
#> GSM123229 1 0.2136 0.786 0.904 0.000 0.088 0.000 0.008
#> GSM123230 1 0.4326 0.621 0.708 0.000 0.028 0.000 0.264
#> GSM123231 3 0.2390 0.755 0.004 0.044 0.908 0.000 0.044
#> GSM123232 1 0.1571 0.807 0.936 0.000 0.004 0.000 0.060
#> GSM123233 5 0.2295 0.817 0.008 0.088 0.004 0.000 0.900
#> GSM123234 5 0.2701 0.802 0.092 0.012 0.012 0.000 0.884
#> GSM123235 1 0.5465 0.405 0.588 0.056 0.348 0.000 0.008
#> GSM123236 5 0.3264 0.770 0.004 0.024 0.132 0.000 0.840
#> GSM123237 1 0.2597 0.764 0.872 0.000 0.120 0.004 0.004
#> GSM123238 1 0.3516 0.698 0.812 0.004 0.000 0.164 0.020
#> GSM123239 2 0.1364 0.935 0.000 0.952 0.036 0.000 0.012
#> GSM123240 1 0.0613 0.807 0.984 0.000 0.004 0.004 0.008
#> GSM123241 1 0.1357 0.806 0.948 0.000 0.048 0.000 0.004
#> GSM123242 4 0.1205 0.919 0.000 0.000 0.004 0.956 0.040
#> GSM123182 3 0.6712 0.255 0.000 0.000 0.412 0.332 0.256
#> GSM123183 4 0.0566 0.930 0.012 0.000 0.000 0.984 0.004
#> GSM123184 4 0.0162 0.932 0.000 0.000 0.004 0.996 0.000
#> GSM123185 5 0.2451 0.819 0.008 0.072 0.004 0.012 0.904
#> GSM123186 3 0.5186 0.316 0.012 0.000 0.556 0.408 0.024
#> GSM123187 2 0.3437 0.781 0.000 0.808 0.004 0.176 0.012
#> GSM123188 1 0.1124 0.809 0.960 0.000 0.036 0.000 0.004
#> GSM123189 3 0.1981 0.762 0.016 0.000 0.920 0.000 0.064
#> GSM123190 3 0.2585 0.756 0.008 0.024 0.896 0.000 0.072
#> GSM123191 3 0.4166 0.294 0.348 0.000 0.648 0.000 0.004
#> GSM123192 4 0.3929 0.642 0.208 0.000 0.028 0.764 0.000
#> GSM123193 1 0.4752 0.311 0.568 0.000 0.412 0.000 0.020
#> GSM123194 3 0.2251 0.749 0.052 0.008 0.916 0.000 0.024
#> GSM123195 2 0.0992 0.937 0.000 0.968 0.024 0.000 0.008
#> GSM123196 1 0.4350 0.363 0.588 0.000 0.408 0.000 0.004
#> GSM123197 1 0.4458 0.606 0.744 0.216 0.004 0.016 0.020
#> GSM123198 2 0.2740 0.883 0.000 0.876 0.028 0.000 0.096
#> GSM123199 1 0.1894 0.801 0.920 0.000 0.008 0.000 0.072
#> GSM123200 2 0.0290 0.940 0.000 0.992 0.008 0.000 0.000
#> GSM123201 5 0.1904 0.830 0.020 0.028 0.016 0.000 0.936
#> GSM123202 2 0.0968 0.939 0.004 0.972 0.012 0.000 0.012
#> GSM123203 1 0.1638 0.804 0.932 0.000 0.004 0.000 0.064
#> GSM123204 2 0.0898 0.937 0.000 0.972 0.008 0.000 0.020
#> GSM123205 2 0.1740 0.918 0.000 0.932 0.012 0.000 0.056
#> GSM123206 2 0.0404 0.939 0.000 0.988 0.012 0.000 0.000
#> GSM123207 5 0.4194 0.633 0.016 0.260 0.004 0.000 0.720
#> GSM123208 2 0.2519 0.890 0.000 0.884 0.100 0.000 0.016
#> GSM123209 2 0.1503 0.931 0.020 0.952 0.020 0.000 0.008
#> GSM123210 1 0.0290 0.807 0.992 0.000 0.000 0.000 0.008
#> GSM123211 1 0.0613 0.807 0.984 0.000 0.008 0.004 0.004
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 4 0.3531 0.7122 0.108 0.004 0.008 0.820 0.000 0.060
#> GSM123213 4 0.0551 0.7994 0.000 0.004 0.000 0.984 0.004 0.008
#> GSM123214 4 0.0405 0.8019 0.000 0.000 0.004 0.988 0.000 0.008
#> GSM123215 4 0.0436 0.8018 0.000 0.000 0.004 0.988 0.004 0.004
#> GSM123216 1 0.2992 0.7250 0.864 0.000 0.068 0.000 0.024 0.044
#> GSM123217 1 0.5558 0.3751 0.588 0.000 0.288 0.000 0.028 0.096
#> GSM123218 3 0.3009 0.5453 0.004 0.024 0.860 0.000 0.020 0.092
#> GSM123219 3 0.5788 0.5394 0.152 0.000 0.620 0.048 0.000 0.180
#> GSM123220 1 0.2577 0.7400 0.888 0.000 0.056 0.000 0.040 0.016
#> GSM123221 1 0.3602 0.7198 0.824 0.000 0.048 0.008 0.016 0.104
#> GSM123222 5 0.5351 0.2754 0.376 0.000 0.060 0.000 0.540 0.024
#> GSM123223 2 0.3525 0.6217 0.000 0.796 0.024 0.168 0.004 0.008
#> GSM123224 1 0.2513 0.7272 0.888 0.000 0.060 0.000 0.008 0.044
#> GSM123225 1 0.3278 0.7258 0.848 0.000 0.064 0.000 0.032 0.056
#> GSM123226 1 0.5997 0.3534 0.524 0.000 0.336 0.000 0.084 0.056
#> GSM123227 5 0.4350 0.4932 0.044 0.000 0.116 0.000 0.768 0.072
#> GSM123228 5 0.2793 0.5800 0.112 0.000 0.028 0.000 0.856 0.004
#> GSM123229 1 0.5240 0.4978 0.636 0.000 0.256 0.000 0.028 0.080
#> GSM123230 5 0.6888 0.1034 0.372 0.000 0.172 0.000 0.380 0.076
#> GSM123231 3 0.4689 0.4890 0.008 0.084 0.760 0.000 0.068 0.080
#> GSM123232 1 0.1858 0.7432 0.924 0.000 0.012 0.000 0.052 0.012
#> GSM123233 5 0.1749 0.5130 0.000 0.016 0.004 0.004 0.932 0.044
#> GSM123234 5 0.4861 0.5346 0.084 0.000 0.112 0.000 0.732 0.072
#> GSM123235 3 0.7800 0.1348 0.232 0.264 0.376 0.000 0.036 0.092
#> GSM123236 6 0.6118 0.0592 0.012 0.012 0.144 0.000 0.328 0.504
#> GSM123237 1 0.4225 0.6304 0.748 0.000 0.124 0.004 0.000 0.124
#> GSM123238 1 0.3531 0.6773 0.816 0.004 0.004 0.128 0.004 0.044
#> GSM123239 2 0.2772 0.7122 0.000 0.876 0.048 0.000 0.060 0.016
#> GSM123240 1 0.2452 0.7217 0.884 0.000 0.028 0.004 0.000 0.084
#> GSM123241 1 0.2317 0.7403 0.900 0.000 0.064 0.000 0.016 0.020
#> GSM123242 4 0.2095 0.7679 0.000 0.000 0.016 0.904 0.004 0.076
#> GSM123182 4 0.6622 0.0500 0.000 0.000 0.328 0.448 0.168 0.056
#> GSM123183 4 0.2237 0.7728 0.064 0.004 0.004 0.904 0.000 0.024
#> GSM123184 4 0.0551 0.8016 0.000 0.000 0.004 0.984 0.008 0.004
#> GSM123185 5 0.1864 0.5173 0.000 0.004 0.000 0.040 0.924 0.032
#> GSM123186 3 0.6366 0.3013 0.084 0.000 0.524 0.288 0.000 0.104
#> GSM123187 2 0.5627 0.2434 0.000 0.544 0.000 0.328 0.016 0.112
#> GSM123188 1 0.3196 0.6937 0.828 0.000 0.064 0.000 0.000 0.108
#> GSM123189 3 0.3345 0.5942 0.052 0.000 0.828 0.004 0.004 0.112
#> GSM123190 3 0.4734 0.4329 0.004 0.016 0.624 0.000 0.028 0.328
#> GSM123191 3 0.4421 0.4637 0.232 0.008 0.716 0.004 0.012 0.028
#> GSM123192 4 0.6068 0.3195 0.308 0.000 0.076 0.540 0.000 0.076
#> GSM123193 1 0.5036 0.2730 0.564 0.000 0.360 0.000 0.004 0.072
#> GSM123194 3 0.5318 0.5332 0.112 0.000 0.632 0.004 0.012 0.240
#> GSM123195 2 0.2006 0.7358 0.000 0.904 0.080 0.000 0.000 0.016
#> GSM123196 1 0.6553 0.1591 0.440 0.024 0.400 0.000 0.044 0.092
#> GSM123197 1 0.5239 0.5520 0.688 0.208 0.004 0.024 0.024 0.052
#> GSM123198 6 0.5699 0.4238 0.000 0.344 0.056 0.000 0.056 0.544
#> GSM123199 1 0.3956 0.6635 0.792 0.000 0.072 0.000 0.112 0.024
#> GSM123200 2 0.1225 0.7487 0.000 0.952 0.036 0.000 0.000 0.012
#> GSM123201 5 0.4345 0.4301 0.028 0.008 0.016 0.000 0.720 0.228
#> GSM123202 2 0.0508 0.7482 0.000 0.984 0.000 0.000 0.004 0.012
#> GSM123203 1 0.4201 0.6244 0.760 0.000 0.056 0.000 0.160 0.024
#> GSM123204 2 0.2834 0.6561 0.000 0.852 0.008 0.000 0.020 0.120
#> GSM123205 6 0.5174 0.2385 0.000 0.460 0.008 0.000 0.064 0.468
#> GSM123206 2 0.0935 0.7397 0.000 0.964 0.004 0.000 0.000 0.032
#> GSM123207 5 0.5542 -0.0627 0.004 0.132 0.000 0.000 0.528 0.336
#> GSM123208 2 0.2199 0.7317 0.000 0.892 0.088 0.000 0.000 0.020
#> GSM123209 2 0.4980 0.1293 0.064 0.600 0.004 0.000 0.004 0.328
#> GSM123210 1 0.1226 0.7398 0.952 0.000 0.000 0.004 0.004 0.040
#> GSM123211 1 0.1946 0.7358 0.912 0.000 0.012 0.004 0.000 0.072
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> MAD:NMF 55 0.1371 2
#> MAD:NMF 58 0.0362 3
#> MAD:NMF 43 0.0188 4
#> MAD:NMF 52 0.0822 5
#> MAD:NMF 39 0.3170 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.989 0.994 0.4439 0.552 0.552
#> 3 3 0.777 0.877 0.916 0.4646 0.770 0.584
#> 4 4 0.683 0.753 0.858 0.0768 0.950 0.846
#> 5 5 0.834 0.748 0.834 0.0816 0.919 0.719
#> 6 6 0.829 0.610 0.811 0.0625 0.940 0.753
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.0000 0.981 0.000 1.000
#> GSM123213 2 0.0000 0.981 0.000 1.000
#> GSM123214 2 0.0000 0.981 0.000 1.000
#> GSM123215 2 0.0000 0.981 0.000 1.000
#> GSM123216 1 0.0000 0.999 1.000 0.000
#> GSM123217 1 0.0000 0.999 1.000 0.000
#> GSM123218 1 0.0000 0.999 1.000 0.000
#> GSM123219 1 0.0000 0.999 1.000 0.000
#> GSM123220 1 0.0000 0.999 1.000 0.000
#> GSM123221 1 0.0000 0.999 1.000 0.000
#> GSM123222 1 0.0000 0.999 1.000 0.000
#> GSM123223 2 0.0000 0.981 0.000 1.000
#> GSM123224 1 0.0000 0.999 1.000 0.000
#> GSM123225 1 0.0000 0.999 1.000 0.000
#> GSM123226 1 0.0000 0.999 1.000 0.000
#> GSM123227 1 0.0000 0.999 1.000 0.000
#> GSM123228 1 0.0000 0.999 1.000 0.000
#> GSM123229 1 0.0000 0.999 1.000 0.000
#> GSM123230 1 0.0000 0.999 1.000 0.000
#> GSM123231 1 0.0000 0.999 1.000 0.000
#> GSM123232 1 0.0000 0.999 1.000 0.000
#> GSM123233 1 0.0376 0.996 0.996 0.004
#> GSM123234 1 0.0000 0.999 1.000 0.000
#> GSM123235 1 0.0000 0.999 1.000 0.000
#> GSM123236 1 0.0376 0.996 0.996 0.004
#> GSM123237 1 0.0000 0.999 1.000 0.000
#> GSM123238 2 0.0000 0.981 0.000 1.000
#> GSM123239 1 0.0376 0.996 0.996 0.004
#> GSM123240 1 0.0000 0.999 1.000 0.000
#> GSM123241 1 0.0000 0.999 1.000 0.000
#> GSM123242 2 0.4022 0.925 0.080 0.920
#> GSM123182 1 0.0376 0.996 0.996 0.004
#> GSM123183 2 0.0000 0.981 0.000 1.000
#> GSM123184 2 0.0000 0.981 0.000 1.000
#> GSM123185 1 0.0376 0.996 0.996 0.004
#> GSM123186 1 0.0000 0.999 1.000 0.000
#> GSM123187 2 0.4022 0.925 0.080 0.920
#> GSM123188 1 0.0000 0.999 1.000 0.000
#> GSM123189 1 0.0000 0.999 1.000 0.000
#> GSM123190 1 0.0376 0.996 0.996 0.004
#> GSM123191 1 0.0000 0.999 1.000 0.000
#> GSM123192 1 0.0000 0.999 1.000 0.000
#> GSM123193 1 0.0000 0.999 1.000 0.000
#> GSM123194 1 0.0000 0.999 1.000 0.000
#> GSM123195 2 0.0000 0.981 0.000 1.000
#> GSM123196 1 0.0000 0.999 1.000 0.000
#> GSM123197 2 0.0000 0.981 0.000 1.000
#> GSM123198 2 0.2603 0.955 0.044 0.956
#> GSM123199 1 0.0000 0.999 1.000 0.000
#> GSM123200 2 0.0000 0.981 0.000 1.000
#> GSM123201 1 0.0000 0.999 1.000 0.000
#> GSM123202 2 0.2236 0.960 0.036 0.964
#> GSM123203 1 0.0000 0.999 1.000 0.000
#> GSM123204 2 0.0000 0.981 0.000 1.000
#> GSM123205 2 0.0000 0.981 0.000 1.000
#> GSM123206 2 0.0000 0.981 0.000 1.000
#> GSM123207 1 0.0376 0.996 0.996 0.004
#> GSM123208 2 0.0000 0.981 0.000 1.000
#> GSM123209 2 0.5408 0.876 0.124 0.876
#> GSM123210 1 0.0000 0.999 1.000 0.000
#> GSM123211 1 0.0000 0.999 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 2 0.0000 0.981 0.000 1.000 0.000
#> GSM123213 2 0.0237 0.979 0.000 0.996 0.004
#> GSM123214 2 0.0000 0.981 0.000 1.000 0.000
#> GSM123215 2 0.0000 0.981 0.000 1.000 0.000
#> GSM123216 1 0.5254 0.852 0.736 0.000 0.264
#> GSM123217 1 0.5254 0.852 0.736 0.000 0.264
#> GSM123218 1 0.0424 0.774 0.992 0.000 0.008
#> GSM123219 3 0.0747 0.925 0.016 0.000 0.984
#> GSM123220 1 0.5254 0.852 0.736 0.000 0.264
#> GSM123221 3 0.0424 0.925 0.008 0.000 0.992
#> GSM123222 3 0.0592 0.924 0.012 0.000 0.988
#> GSM123223 2 0.0000 0.981 0.000 1.000 0.000
#> GSM123224 1 0.5254 0.852 0.736 0.000 0.264
#> GSM123225 1 0.4399 0.855 0.812 0.000 0.188
#> GSM123226 1 0.4399 0.855 0.812 0.000 0.188
#> GSM123227 1 0.5291 0.846 0.732 0.000 0.268
#> GSM123228 1 0.4399 0.855 0.812 0.000 0.188
#> GSM123229 1 0.0424 0.774 0.992 0.000 0.008
#> GSM123230 1 0.4399 0.855 0.812 0.000 0.188
#> GSM123231 1 0.0424 0.774 0.992 0.000 0.008
#> GSM123232 1 0.5254 0.852 0.736 0.000 0.264
#> GSM123233 3 0.0000 0.923 0.000 0.000 1.000
#> GSM123234 3 0.5882 0.321 0.348 0.000 0.652
#> GSM123235 1 0.0424 0.774 0.992 0.000 0.008
#> GSM123236 3 0.0592 0.920 0.012 0.000 0.988
#> GSM123237 3 0.0747 0.925 0.016 0.000 0.984
#> GSM123238 2 0.0000 0.981 0.000 1.000 0.000
#> GSM123239 3 0.0000 0.923 0.000 0.000 1.000
#> GSM123240 3 0.0747 0.925 0.016 0.000 0.984
#> GSM123241 1 0.5254 0.852 0.736 0.000 0.264
#> GSM123242 2 0.2625 0.926 0.000 0.916 0.084
#> GSM123182 3 0.0000 0.923 0.000 0.000 1.000
#> GSM123183 2 0.0000 0.981 0.000 1.000 0.000
#> GSM123184 2 0.0000 0.981 0.000 1.000 0.000
#> GSM123185 3 0.0000 0.923 0.000 0.000 1.000
#> GSM123186 3 0.0747 0.925 0.016 0.000 0.984
#> GSM123187 2 0.2625 0.926 0.000 0.916 0.084
#> GSM123188 1 0.5254 0.852 0.736 0.000 0.264
#> GSM123189 1 0.0424 0.774 0.992 0.000 0.008
#> GSM123190 3 0.0000 0.923 0.000 0.000 1.000
#> GSM123191 3 0.0424 0.925 0.008 0.000 0.992
#> GSM123192 3 0.0747 0.925 0.016 0.000 0.984
#> GSM123193 3 0.0747 0.925 0.016 0.000 0.984
#> GSM123194 3 0.6062 0.145 0.384 0.000 0.616
#> GSM123195 2 0.0000 0.981 0.000 1.000 0.000
#> GSM123196 1 0.0424 0.774 0.992 0.000 0.008
#> GSM123197 2 0.0000 0.981 0.000 1.000 0.000
#> GSM123198 2 0.1753 0.955 0.000 0.952 0.048
#> GSM123199 1 0.5254 0.852 0.736 0.000 0.264
#> GSM123200 2 0.0000 0.981 0.000 1.000 0.000
#> GSM123201 3 0.5431 0.478 0.284 0.000 0.716
#> GSM123202 2 0.1529 0.959 0.000 0.960 0.040
#> GSM123203 1 0.5254 0.852 0.736 0.000 0.264
#> GSM123204 2 0.0000 0.981 0.000 1.000 0.000
#> GSM123205 2 0.0000 0.981 0.000 1.000 0.000
#> GSM123206 2 0.0000 0.981 0.000 1.000 0.000
#> GSM123207 3 0.0000 0.923 0.000 0.000 1.000
#> GSM123208 2 0.0000 0.981 0.000 1.000 0.000
#> GSM123209 2 0.3482 0.883 0.000 0.872 0.128
#> GSM123210 3 0.0747 0.925 0.016 0.000 0.984
#> GSM123211 3 0.0747 0.925 0.016 0.000 0.984
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 4 0.2814 0.737 0.000 0.132 0.000 0.868
#> GSM123213 4 0.4008 0.695 0.000 0.244 0.000 0.756
#> GSM123214 2 0.5000 -0.446 0.000 0.500 0.000 0.500
#> GSM123215 4 0.5000 0.300 0.000 0.500 0.000 0.500
#> GSM123216 1 0.4222 0.847 0.728 0.000 0.272 0.000
#> GSM123217 1 0.4222 0.847 0.728 0.000 0.272 0.000
#> GSM123218 1 0.0336 0.752 0.992 0.000 0.008 0.000
#> GSM123219 3 0.0336 0.923 0.008 0.000 0.992 0.000
#> GSM123220 1 0.4222 0.847 0.728 0.000 0.272 0.000
#> GSM123221 3 0.0524 0.922 0.004 0.000 0.988 0.008
#> GSM123222 3 0.0188 0.922 0.004 0.000 0.996 0.000
#> GSM123223 4 0.5000 0.300 0.000 0.500 0.000 0.500
#> GSM123224 1 0.4222 0.847 0.728 0.000 0.272 0.000
#> GSM123225 1 0.3486 0.851 0.812 0.000 0.188 0.000
#> GSM123226 1 0.3486 0.851 0.812 0.000 0.188 0.000
#> GSM123227 1 0.4250 0.841 0.724 0.000 0.276 0.000
#> GSM123228 1 0.3486 0.851 0.812 0.000 0.188 0.000
#> GSM123229 1 0.0336 0.752 0.992 0.000 0.008 0.000
#> GSM123230 1 0.3486 0.851 0.812 0.000 0.188 0.000
#> GSM123231 1 0.0336 0.752 0.992 0.000 0.008 0.000
#> GSM123232 1 0.4222 0.847 0.728 0.000 0.272 0.000
#> GSM123233 3 0.0592 0.921 0.000 0.000 0.984 0.016
#> GSM123234 3 0.4624 0.327 0.340 0.000 0.660 0.000
#> GSM123235 1 0.0336 0.752 0.992 0.000 0.008 0.000
#> GSM123236 3 0.1059 0.917 0.012 0.000 0.972 0.016
#> GSM123237 3 0.0336 0.923 0.008 0.000 0.992 0.000
#> GSM123238 4 0.2814 0.737 0.000 0.132 0.000 0.868
#> GSM123239 3 0.0592 0.921 0.000 0.000 0.984 0.016
#> GSM123240 3 0.0336 0.923 0.008 0.000 0.992 0.000
#> GSM123241 1 0.4222 0.847 0.728 0.000 0.272 0.000
#> GSM123242 4 0.2124 0.704 0.000 0.028 0.040 0.932
#> GSM123182 3 0.0592 0.921 0.000 0.000 0.984 0.016
#> GSM123183 4 0.2814 0.737 0.000 0.132 0.000 0.868
#> GSM123184 4 0.4972 0.329 0.000 0.456 0.000 0.544
#> GSM123185 3 0.0592 0.921 0.000 0.000 0.984 0.016
#> GSM123186 3 0.0336 0.923 0.008 0.000 0.992 0.000
#> GSM123187 4 0.2124 0.704 0.000 0.028 0.040 0.932
#> GSM123188 1 0.4222 0.847 0.728 0.000 0.272 0.000
#> GSM123189 1 0.0336 0.752 0.992 0.000 0.008 0.000
#> GSM123190 3 0.0707 0.919 0.000 0.000 0.980 0.020
#> GSM123191 3 0.0524 0.922 0.004 0.000 0.988 0.008
#> GSM123192 3 0.0336 0.923 0.008 0.000 0.992 0.000
#> GSM123193 3 0.0524 0.923 0.008 0.000 0.988 0.004
#> GSM123194 3 0.4776 0.152 0.376 0.000 0.624 0.000
#> GSM123195 2 0.0000 0.819 0.000 1.000 0.000 0.000
#> GSM123196 1 0.0336 0.752 0.992 0.000 0.008 0.000
#> GSM123197 4 0.2814 0.737 0.000 0.132 0.000 0.868
#> GSM123198 4 0.2412 0.703 0.000 0.084 0.008 0.908
#> GSM123199 1 0.4222 0.847 0.728 0.000 0.272 0.000
#> GSM123200 2 0.2281 0.744 0.000 0.904 0.000 0.096
#> GSM123201 3 0.4250 0.483 0.276 0.000 0.724 0.000
#> GSM123202 4 0.4661 0.321 0.000 0.348 0.000 0.652
#> GSM123203 1 0.4222 0.847 0.728 0.000 0.272 0.000
#> GSM123204 2 0.0000 0.819 0.000 1.000 0.000 0.000
#> GSM123205 2 0.2011 0.756 0.000 0.920 0.000 0.080
#> GSM123206 2 0.1302 0.791 0.000 0.956 0.000 0.044
#> GSM123207 3 0.0592 0.921 0.000 0.000 0.984 0.016
#> GSM123208 2 0.0000 0.819 0.000 1.000 0.000 0.000
#> GSM123209 4 0.2882 0.674 0.000 0.024 0.084 0.892
#> GSM123210 3 0.0336 0.923 0.008 0.000 0.992 0.000
#> GSM123211 3 0.0336 0.923 0.008 0.000 0.992 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 4 0.0000 0.6459 0.000 0.000 0.000 1.000 0.000
#> GSM123213 4 0.5909 0.5345 0.164 0.244 0.000 0.592 0.000
#> GSM123214 4 0.4307 0.0666 0.000 0.500 0.000 0.500 0.000
#> GSM123215 2 0.4307 -0.2457 0.000 0.500 0.000 0.500 0.000
#> GSM123216 1 0.5484 0.9409 0.584 0.000 0.336 0.000 0.080
#> GSM123217 1 0.5484 0.9409 0.584 0.000 0.336 0.000 0.080
#> GSM123218 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM123219 5 0.0794 0.9093 0.028 0.000 0.000 0.000 0.972
#> GSM123220 1 0.5484 0.9409 0.584 0.000 0.336 0.000 0.080
#> GSM123221 5 0.0963 0.9100 0.036 0.000 0.000 0.000 0.964
#> GSM123222 5 0.0794 0.9100 0.028 0.000 0.000 0.000 0.972
#> GSM123223 2 0.4307 -0.2457 0.000 0.500 0.000 0.500 0.000
#> GSM123224 1 0.5484 0.9409 0.584 0.000 0.336 0.000 0.080
#> GSM123225 1 0.4227 0.8409 0.580 0.000 0.420 0.000 0.000
#> GSM123226 1 0.4227 0.8409 0.580 0.000 0.420 0.000 0.000
#> GSM123227 1 0.5470 0.9308 0.588 0.000 0.332 0.000 0.080
#> GSM123228 1 0.4227 0.8409 0.580 0.000 0.420 0.000 0.000
#> GSM123229 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM123230 1 0.4227 0.8409 0.580 0.000 0.420 0.000 0.000
#> GSM123231 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM123232 1 0.5484 0.9409 0.584 0.000 0.336 0.000 0.080
#> GSM123233 5 0.1341 0.9059 0.056 0.000 0.000 0.000 0.944
#> GSM123234 5 0.4873 0.4631 0.044 0.000 0.312 0.000 0.644
#> GSM123235 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM123236 5 0.1597 0.9049 0.048 0.000 0.012 0.000 0.940
#> GSM123237 5 0.0794 0.9093 0.028 0.000 0.000 0.000 0.972
#> GSM123238 4 0.0000 0.6459 0.000 0.000 0.000 1.000 0.000
#> GSM123239 5 0.1341 0.9059 0.056 0.000 0.000 0.000 0.944
#> GSM123240 5 0.0794 0.9093 0.028 0.000 0.000 0.000 0.972
#> GSM123241 1 0.5484 0.9409 0.584 0.000 0.336 0.000 0.080
#> GSM123242 4 0.5322 0.6361 0.360 0.028 0.000 0.592 0.020
#> GSM123182 5 0.1341 0.9059 0.056 0.000 0.000 0.000 0.944
#> GSM123183 4 0.0000 0.6459 0.000 0.000 0.000 1.000 0.000
#> GSM123184 4 0.4811 0.1251 0.020 0.452 0.000 0.528 0.000
#> GSM123185 5 0.1341 0.9059 0.056 0.000 0.000 0.000 0.944
#> GSM123186 5 0.0794 0.9093 0.028 0.000 0.000 0.000 0.972
#> GSM123187 4 0.5322 0.6361 0.360 0.028 0.000 0.592 0.020
#> GSM123188 1 0.5484 0.9409 0.584 0.000 0.336 0.000 0.080
#> GSM123189 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM123190 5 0.1410 0.9046 0.060 0.000 0.000 0.000 0.940
#> GSM123191 5 0.0963 0.9100 0.036 0.000 0.000 0.000 0.964
#> GSM123192 5 0.0794 0.9093 0.028 0.000 0.000 0.000 0.972
#> GSM123193 5 0.0404 0.9108 0.012 0.000 0.000 0.000 0.988
#> GSM123194 5 0.5516 0.3534 0.096 0.000 0.296 0.000 0.608
#> GSM123195 2 0.0000 0.6889 0.000 1.000 0.000 0.000 0.000
#> GSM123196 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM123197 4 0.0000 0.6459 0.000 0.000 0.000 1.000 0.000
#> GSM123198 4 0.5896 0.6103 0.336 0.084 0.000 0.568 0.012
#> GSM123199 1 0.5484 0.9409 0.584 0.000 0.336 0.000 0.080
#> GSM123200 2 0.1965 0.6455 0.096 0.904 0.000 0.000 0.000
#> GSM123201 5 0.4243 0.5801 0.024 0.000 0.264 0.000 0.712
#> GSM123202 2 0.6954 -0.2304 0.336 0.348 0.000 0.312 0.004
#> GSM123203 1 0.5484 0.9409 0.584 0.000 0.336 0.000 0.080
#> GSM123204 2 0.0000 0.6889 0.000 1.000 0.000 0.000 0.000
#> GSM123205 2 0.2036 0.6543 0.024 0.920 0.000 0.056 0.000
#> GSM123206 2 0.1399 0.6673 0.020 0.952 0.000 0.028 0.000
#> GSM123207 5 0.1197 0.9071 0.048 0.000 0.000 0.000 0.952
#> GSM123208 2 0.0000 0.6889 0.000 1.000 0.000 0.000 0.000
#> GSM123209 4 0.5765 0.6124 0.368 0.024 0.000 0.560 0.048
#> GSM123210 5 0.0703 0.9100 0.024 0.000 0.000 0.000 0.976
#> GSM123211 5 0.0794 0.9093 0.028 0.000 0.000 0.000 0.972
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 4 0.0000 0.5329 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123213 4 0.5890 -0.0239 0.000 0.240 0.000 0.472 0.000 0.288
#> GSM123214 2 0.4592 -0.0309 0.000 0.496 0.000 0.468 0.000 0.036
#> GSM123215 2 0.4592 -0.0309 0.000 0.496 0.000 0.468 0.000 0.036
#> GSM123216 1 0.1501 0.8702 0.924 0.000 0.000 0.000 0.076 0.000
#> GSM123217 1 0.1501 0.8702 0.924 0.000 0.000 0.000 0.076 0.000
#> GSM123218 3 0.5472 1.0000 0.132 0.000 0.504 0.000 0.000 0.364
#> GSM123219 5 0.0260 0.6896 0.008 0.000 0.000 0.000 0.992 0.000
#> GSM123220 1 0.1501 0.8702 0.924 0.000 0.000 0.000 0.076 0.000
#> GSM123221 5 0.4051 0.7435 0.008 0.000 0.432 0.000 0.560 0.000
#> GSM123222 5 0.3898 0.7349 0.012 0.000 0.336 0.000 0.652 0.000
#> GSM123223 2 0.4592 -0.0309 0.000 0.496 0.000 0.468 0.000 0.036
#> GSM123224 1 0.1501 0.8702 0.924 0.000 0.000 0.000 0.076 0.000
#> GSM123225 1 0.0363 0.8109 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM123226 1 0.0363 0.8109 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM123227 1 0.1501 0.8644 0.924 0.000 0.000 0.000 0.076 0.000
#> GSM123228 1 0.0363 0.8109 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM123229 3 0.5472 1.0000 0.132 0.000 0.504 0.000 0.000 0.364
#> GSM123230 1 0.0632 0.8008 0.976 0.000 0.024 0.000 0.000 0.000
#> GSM123231 3 0.5472 1.0000 0.132 0.000 0.504 0.000 0.000 0.364
#> GSM123232 1 0.1501 0.8702 0.924 0.000 0.000 0.000 0.076 0.000
#> GSM123233 5 0.3996 0.7338 0.004 0.000 0.484 0.000 0.512 0.000
#> GSM123234 1 0.6128 -0.3066 0.344 0.000 0.340 0.000 0.316 0.000
#> GSM123235 3 0.5472 1.0000 0.132 0.000 0.504 0.000 0.000 0.364
#> GSM123236 5 0.4250 0.7360 0.016 0.000 0.456 0.000 0.528 0.000
#> GSM123237 5 0.0260 0.6896 0.008 0.000 0.000 0.000 0.992 0.000
#> GSM123238 4 0.0000 0.5329 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123239 5 0.3996 0.7338 0.004 0.000 0.484 0.000 0.512 0.000
#> GSM123240 5 0.0260 0.6896 0.008 0.000 0.000 0.000 0.992 0.000
#> GSM123241 1 0.1501 0.8702 0.924 0.000 0.000 0.000 0.076 0.000
#> GSM123242 4 0.5226 -0.2955 0.000 0.016 0.044 0.472 0.004 0.464
#> GSM123182 5 0.3996 0.7338 0.004 0.000 0.484 0.000 0.512 0.000
#> GSM123183 4 0.0000 0.5329 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123184 4 0.5422 -0.0981 0.000 0.436 0.012 0.472 0.000 0.080
#> GSM123185 5 0.3996 0.7338 0.004 0.000 0.484 0.000 0.512 0.000
#> GSM123186 5 0.0260 0.6896 0.008 0.000 0.000 0.000 0.992 0.000
#> GSM123187 4 0.5226 -0.2955 0.000 0.016 0.044 0.472 0.004 0.464
#> GSM123188 1 0.1501 0.8702 0.924 0.000 0.000 0.000 0.076 0.000
#> GSM123189 3 0.5472 1.0000 0.132 0.000 0.504 0.000 0.000 0.364
#> GSM123190 5 0.4126 0.7336 0.004 0.000 0.480 0.000 0.512 0.004
#> GSM123191 5 0.4051 0.7435 0.008 0.000 0.432 0.000 0.560 0.000
#> GSM123192 5 0.0260 0.6896 0.008 0.000 0.000 0.000 0.992 0.000
#> GSM123193 5 0.0508 0.6915 0.004 0.000 0.012 0.000 0.984 0.000
#> GSM123194 1 0.6074 -0.1291 0.388 0.000 0.340 0.000 0.272 0.000
#> GSM123195 2 0.0000 0.6585 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123196 3 0.5472 1.0000 0.132 0.000 0.504 0.000 0.000 0.364
#> GSM123197 4 0.0000 0.5329 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123198 6 0.5271 0.4864 0.000 0.084 0.012 0.328 0.000 0.576
#> GSM123199 1 0.1501 0.8702 0.924 0.000 0.000 0.000 0.076 0.000
#> GSM123200 2 0.1765 0.5775 0.000 0.904 0.000 0.000 0.000 0.096
#> GSM123201 5 0.6099 0.3519 0.288 0.000 0.336 0.000 0.376 0.000
#> GSM123202 6 0.5298 0.4213 0.000 0.348 0.004 0.100 0.000 0.548
#> GSM123203 1 0.1501 0.8702 0.924 0.000 0.000 0.000 0.076 0.000
#> GSM123204 2 0.0000 0.6585 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123205 2 0.1610 0.5991 0.000 0.916 0.000 0.000 0.000 0.084
#> GSM123206 2 0.1578 0.6281 0.000 0.936 0.012 0.004 0.000 0.048
#> GSM123207 5 0.3993 0.7359 0.004 0.000 0.476 0.000 0.520 0.000
#> GSM123208 2 0.0000 0.6585 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123209 6 0.5476 0.4497 0.000 0.012 0.092 0.324 0.004 0.568
#> GSM123210 5 0.0508 0.6909 0.012 0.000 0.004 0.000 0.984 0.000
#> GSM123211 5 0.0260 0.6896 0.008 0.000 0.000 0.000 0.992 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> ATC:hclust 61 0.1461 2
#> ATC:hclust 58 0.0308 3
#> ATC:hclust 53 0.0101 4
#> ATC:hclust 54 0.0187 5
#> ATC:hclust 48 0.0224 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.999 0.999 0.4490 0.552 0.552
#> 3 3 0.598 0.306 0.753 0.3853 0.978 0.960
#> 4 4 0.688 0.832 0.806 0.1592 0.671 0.408
#> 5 5 0.721 0.769 0.819 0.0820 0.958 0.833
#> 6 6 0.750 0.605 0.754 0.0495 0.943 0.739
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.000 1.000 0.000 1.000
#> GSM123213 2 0.000 1.000 0.000 1.000
#> GSM123214 2 0.000 1.000 0.000 1.000
#> GSM123215 2 0.000 1.000 0.000 1.000
#> GSM123216 1 0.000 0.999 1.000 0.000
#> GSM123217 1 0.000 0.999 1.000 0.000
#> GSM123218 1 0.000 0.999 1.000 0.000
#> GSM123219 1 0.000 0.999 1.000 0.000
#> GSM123220 1 0.000 0.999 1.000 0.000
#> GSM123221 1 0.000 0.999 1.000 0.000
#> GSM123222 1 0.000 0.999 1.000 0.000
#> GSM123223 2 0.000 1.000 0.000 1.000
#> GSM123224 1 0.000 0.999 1.000 0.000
#> GSM123225 1 0.000 0.999 1.000 0.000
#> GSM123226 1 0.000 0.999 1.000 0.000
#> GSM123227 1 0.000 0.999 1.000 0.000
#> GSM123228 1 0.000 0.999 1.000 0.000
#> GSM123229 1 0.000 0.999 1.000 0.000
#> GSM123230 1 0.000 0.999 1.000 0.000
#> GSM123231 1 0.000 0.999 1.000 0.000
#> GSM123232 1 0.000 0.999 1.000 0.000
#> GSM123233 1 0.000 0.999 1.000 0.000
#> GSM123234 1 0.000 0.999 1.000 0.000
#> GSM123235 1 0.000 0.999 1.000 0.000
#> GSM123236 1 0.000 0.999 1.000 0.000
#> GSM123237 1 0.000 0.999 1.000 0.000
#> GSM123238 2 0.000 1.000 0.000 1.000
#> GSM123239 1 0.000 0.999 1.000 0.000
#> GSM123240 1 0.000 0.999 1.000 0.000
#> GSM123241 1 0.000 0.999 1.000 0.000
#> GSM123242 2 0.000 1.000 0.000 1.000
#> GSM123182 1 0.000 0.999 1.000 0.000
#> GSM123183 2 0.000 1.000 0.000 1.000
#> GSM123184 2 0.000 1.000 0.000 1.000
#> GSM123185 1 0.000 0.999 1.000 0.000
#> GSM123186 1 0.204 0.967 0.968 0.032
#> GSM123187 2 0.000 1.000 0.000 1.000
#> GSM123188 1 0.000 0.999 1.000 0.000
#> GSM123189 1 0.000 0.999 1.000 0.000
#> GSM123190 1 0.000 0.999 1.000 0.000
#> GSM123191 1 0.000 0.999 1.000 0.000
#> GSM123192 1 0.000 0.999 1.000 0.000
#> GSM123193 1 0.000 0.999 1.000 0.000
#> GSM123194 1 0.000 0.999 1.000 0.000
#> GSM123195 2 0.000 1.000 0.000 1.000
#> GSM123196 1 0.000 0.999 1.000 0.000
#> GSM123197 2 0.000 1.000 0.000 1.000
#> GSM123198 2 0.000 1.000 0.000 1.000
#> GSM123199 1 0.000 0.999 1.000 0.000
#> GSM123200 2 0.000 1.000 0.000 1.000
#> GSM123201 1 0.000 0.999 1.000 0.000
#> GSM123202 2 0.000 1.000 0.000 1.000
#> GSM123203 1 0.000 0.999 1.000 0.000
#> GSM123204 2 0.000 1.000 0.000 1.000
#> GSM123205 2 0.000 1.000 0.000 1.000
#> GSM123206 2 0.000 1.000 0.000 1.000
#> GSM123207 1 0.000 0.999 1.000 0.000
#> GSM123208 2 0.000 1.000 0.000 1.000
#> GSM123209 2 0.000 1.000 0.000 1.000
#> GSM123210 1 0.000 0.999 1.000 0.000
#> GSM123211 1 0.000 0.999 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 2 0.4291 0.8881 0.000 0.820 0.180
#> GSM123213 2 0.3752 0.8936 0.000 0.856 0.144
#> GSM123214 2 0.3192 0.8991 0.000 0.888 0.112
#> GSM123215 2 0.3482 0.8988 0.000 0.872 0.128
#> GSM123216 1 0.0000 0.4010 1.000 0.000 0.000
#> GSM123217 1 0.0000 0.4010 1.000 0.000 0.000
#> GSM123218 1 0.6274 0.3565 0.544 0.000 0.456
#> GSM123219 1 0.6062 -0.4249 0.616 0.000 0.384
#> GSM123220 1 0.2878 0.4158 0.904 0.000 0.096
#> GSM123221 1 0.6062 -0.4249 0.616 0.000 0.384
#> GSM123222 1 0.6062 -0.4249 0.616 0.000 0.384
#> GSM123223 2 0.0237 0.8991 0.000 0.996 0.004
#> GSM123224 1 0.2878 0.4158 0.904 0.000 0.096
#> GSM123225 1 0.3551 0.4122 0.868 0.000 0.132
#> GSM123226 1 0.6225 0.3544 0.568 0.000 0.432
#> GSM123227 1 0.0000 0.4010 1.000 0.000 0.000
#> GSM123228 1 0.3551 0.4122 0.868 0.000 0.132
#> GSM123229 1 0.6274 0.3565 0.544 0.000 0.456
#> GSM123230 1 0.6225 0.3544 0.568 0.000 0.432
#> GSM123231 1 0.6274 0.3565 0.544 0.000 0.456
#> GSM123232 1 0.0000 0.4010 1.000 0.000 0.000
#> GSM123233 1 0.6062 -0.4249 0.616 0.000 0.384
#> GSM123234 1 0.6274 0.3565 0.544 0.000 0.456
#> GSM123235 1 0.6274 0.3565 0.544 0.000 0.456
#> GSM123236 1 0.6062 -0.4249 0.616 0.000 0.384
#> GSM123237 1 0.5948 -0.4260 0.640 0.000 0.360
#> GSM123238 2 0.4291 0.8881 0.000 0.820 0.180
#> GSM123239 1 0.6062 -0.4249 0.616 0.000 0.384
#> GSM123240 1 0.5948 -0.4260 0.640 0.000 0.360
#> GSM123241 1 0.1964 0.4130 0.944 0.000 0.056
#> GSM123242 2 0.3752 0.8936 0.000 0.856 0.144
#> GSM123182 1 0.6062 -0.4249 0.616 0.000 0.384
#> GSM123183 2 0.4291 0.8881 0.000 0.820 0.180
#> GSM123184 2 0.3619 0.8980 0.000 0.864 0.136
#> GSM123185 1 0.6062 -0.4249 0.616 0.000 0.384
#> GSM123186 3 0.6799 0.0000 0.456 0.012 0.532
#> GSM123187 2 0.6267 0.4677 0.000 0.548 0.452
#> GSM123188 1 0.0424 0.4043 0.992 0.000 0.008
#> GSM123189 1 0.6274 0.3565 0.544 0.000 0.456
#> GSM123190 1 0.6062 -0.4249 0.616 0.000 0.384
#> GSM123191 1 0.4555 0.0447 0.800 0.000 0.200
#> GSM123192 1 0.6215 -0.5978 0.572 0.000 0.428
#> GSM123193 1 0.6062 -0.4249 0.616 0.000 0.384
#> GSM123194 1 0.0424 0.4043 0.992 0.000 0.008
#> GSM123195 2 0.0592 0.8989 0.000 0.988 0.012
#> GSM123196 1 0.6274 0.3565 0.544 0.000 0.456
#> GSM123197 2 0.4291 0.8881 0.000 0.820 0.180
#> GSM123198 2 0.0000 0.8999 0.000 1.000 0.000
#> GSM123199 1 0.0000 0.4010 1.000 0.000 0.000
#> GSM123200 2 0.0237 0.8991 0.000 0.996 0.004
#> GSM123201 1 0.1031 0.3893 0.976 0.000 0.024
#> GSM123202 2 0.0237 0.9005 0.000 0.996 0.004
#> GSM123203 1 0.0000 0.4010 1.000 0.000 0.000
#> GSM123204 2 0.0237 0.8991 0.000 0.996 0.004
#> GSM123205 2 0.0237 0.8991 0.000 0.996 0.004
#> GSM123206 2 0.1031 0.8976 0.000 0.976 0.024
#> GSM123207 1 0.6168 -0.5340 0.588 0.000 0.412
#> GSM123208 2 0.0592 0.8989 0.000 0.988 0.012
#> GSM123209 2 0.6280 0.4069 0.000 0.540 0.460
#> GSM123210 1 0.6062 -0.4249 0.616 0.000 0.384
#> GSM123211 1 0.6225 -0.6117 0.568 0.000 0.432
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 2 0.7146 0.780 0.000 0.560 0.212 0.228
#> GSM123213 2 0.6531 0.809 0.000 0.636 0.204 0.160
#> GSM123214 2 0.5950 0.818 0.000 0.696 0.156 0.148
#> GSM123215 2 0.6360 0.813 0.000 0.656 0.180 0.164
#> GSM123216 1 0.1256 0.850 0.964 0.000 0.008 0.028
#> GSM123217 1 0.0188 0.868 0.996 0.000 0.004 0.000
#> GSM123218 4 0.4401 0.976 0.272 0.000 0.004 0.724
#> GSM123219 3 0.4692 0.901 0.212 0.000 0.756 0.032
#> GSM123220 1 0.1389 0.828 0.952 0.000 0.000 0.048
#> GSM123221 3 0.3873 0.908 0.228 0.000 0.772 0.000
#> GSM123222 3 0.4867 0.902 0.232 0.000 0.736 0.032
#> GSM123223 2 0.0469 0.825 0.000 0.988 0.000 0.012
#> GSM123224 1 0.1389 0.828 0.952 0.000 0.000 0.048
#> GSM123225 1 0.1867 0.799 0.928 0.000 0.000 0.072
#> GSM123226 4 0.4522 0.943 0.320 0.000 0.000 0.680
#> GSM123227 1 0.0336 0.867 0.992 0.000 0.008 0.000
#> GSM123228 1 0.2081 0.785 0.916 0.000 0.000 0.084
#> GSM123229 4 0.4401 0.976 0.272 0.000 0.004 0.724
#> GSM123230 4 0.4543 0.942 0.324 0.000 0.000 0.676
#> GSM123231 4 0.4401 0.976 0.272 0.000 0.004 0.724
#> GSM123232 1 0.0188 0.868 0.996 0.000 0.004 0.000
#> GSM123233 3 0.3907 0.908 0.232 0.000 0.768 0.000
#> GSM123234 4 0.4655 0.953 0.312 0.000 0.004 0.684
#> GSM123235 4 0.4401 0.976 0.272 0.000 0.004 0.724
#> GSM123236 3 0.3907 0.908 0.232 0.000 0.768 0.000
#> GSM123237 1 0.5272 0.313 0.680 0.000 0.288 0.032
#> GSM123238 2 0.7252 0.772 0.000 0.544 0.228 0.228
#> GSM123239 3 0.3907 0.908 0.232 0.000 0.768 0.000
#> GSM123240 1 0.5272 0.313 0.680 0.000 0.288 0.032
#> GSM123241 1 0.1109 0.848 0.968 0.000 0.004 0.028
#> GSM123242 2 0.6531 0.809 0.000 0.636 0.204 0.160
#> GSM123182 3 0.3907 0.908 0.232 0.000 0.768 0.000
#> GSM123183 2 0.7146 0.780 0.000 0.560 0.212 0.228
#> GSM123184 2 0.6550 0.809 0.000 0.636 0.184 0.180
#> GSM123185 3 0.3907 0.908 0.232 0.000 0.768 0.000
#> GSM123186 3 0.4136 0.896 0.196 0.000 0.788 0.016
#> GSM123187 3 0.4182 0.432 0.000 0.180 0.796 0.024
#> GSM123188 1 0.0000 0.867 1.000 0.000 0.000 0.000
#> GSM123189 4 0.4401 0.976 0.272 0.000 0.004 0.724
#> GSM123190 3 0.3907 0.908 0.232 0.000 0.768 0.000
#> GSM123191 3 0.4898 0.593 0.416 0.000 0.584 0.000
#> GSM123192 3 0.4617 0.898 0.204 0.000 0.764 0.032
#> GSM123193 3 0.4932 0.892 0.240 0.000 0.728 0.032
#> GSM123194 1 0.0188 0.867 0.996 0.000 0.004 0.000
#> GSM123195 2 0.0000 0.824 0.000 1.000 0.000 0.000
#> GSM123196 4 0.4401 0.976 0.272 0.000 0.004 0.724
#> GSM123197 2 0.7227 0.775 0.000 0.548 0.224 0.228
#> GSM123198 2 0.0524 0.825 0.000 0.988 0.008 0.004
#> GSM123199 1 0.0188 0.868 0.996 0.000 0.004 0.000
#> GSM123200 2 0.0000 0.824 0.000 1.000 0.000 0.000
#> GSM123201 1 0.3400 0.665 0.820 0.000 0.180 0.000
#> GSM123202 2 0.0336 0.825 0.000 0.992 0.008 0.000
#> GSM123203 1 0.0657 0.863 0.984 0.000 0.004 0.012
#> GSM123204 2 0.0000 0.824 0.000 1.000 0.000 0.000
#> GSM123205 2 0.0469 0.825 0.000 0.988 0.000 0.012
#> GSM123206 2 0.1042 0.822 0.000 0.972 0.008 0.020
#> GSM123207 3 0.3908 0.905 0.212 0.000 0.784 0.004
#> GSM123208 2 0.0000 0.824 0.000 1.000 0.000 0.000
#> GSM123209 3 0.4284 0.643 0.000 0.224 0.764 0.012
#> GSM123210 3 0.4932 0.892 0.240 0.000 0.728 0.032
#> GSM123211 3 0.4655 0.897 0.208 0.000 0.760 0.032
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 4 0.4794 0.839 0.000 0.344 0.032 0.624 0.000
#> GSM123213 4 0.5477 0.727 0.004 0.448 0.016 0.508 0.024
#> GSM123214 2 0.5253 -0.663 0.004 0.516 0.004 0.448 0.028
#> GSM123215 2 0.4976 -0.703 0.000 0.504 0.000 0.468 0.028
#> GSM123216 1 0.1498 0.868 0.952 0.000 0.024 0.016 0.008
#> GSM123217 1 0.0451 0.883 0.988 0.000 0.000 0.008 0.004
#> GSM123218 3 0.2020 0.930 0.100 0.000 0.900 0.000 0.000
#> GSM123219 5 0.4701 0.837 0.036 0.000 0.028 0.192 0.744
#> GSM123220 1 0.0324 0.880 0.992 0.000 0.004 0.004 0.000
#> GSM123221 5 0.1750 0.872 0.036 0.000 0.000 0.028 0.936
#> GSM123222 5 0.4682 0.846 0.056 0.000 0.028 0.152 0.764
#> GSM123223 2 0.1300 0.757 0.000 0.956 0.000 0.016 0.028
#> GSM123224 1 0.0451 0.879 0.988 0.000 0.004 0.008 0.000
#> GSM123225 1 0.2616 0.813 0.880 0.000 0.020 0.100 0.000
#> GSM123226 3 0.5678 0.691 0.284 0.000 0.600 0.116 0.000
#> GSM123227 1 0.2446 0.834 0.900 0.000 0.000 0.044 0.056
#> GSM123228 1 0.2915 0.799 0.860 0.000 0.024 0.116 0.000
#> GSM123229 3 0.2020 0.930 0.100 0.000 0.900 0.000 0.000
#> GSM123230 3 0.4649 0.818 0.220 0.000 0.716 0.064 0.000
#> GSM123231 3 0.2020 0.930 0.100 0.000 0.900 0.000 0.000
#> GSM123232 1 0.0451 0.883 0.988 0.000 0.000 0.008 0.004
#> GSM123233 5 0.1661 0.868 0.036 0.000 0.000 0.024 0.940
#> GSM123234 3 0.3650 0.877 0.176 0.000 0.796 0.028 0.000
#> GSM123235 3 0.2020 0.930 0.100 0.000 0.900 0.000 0.000
#> GSM123236 5 0.1469 0.869 0.036 0.000 0.000 0.016 0.948
#> GSM123237 1 0.5647 0.616 0.684 0.000 0.028 0.180 0.108
#> GSM123238 4 0.4714 0.817 0.000 0.324 0.032 0.644 0.000
#> GSM123239 5 0.1568 0.869 0.036 0.000 0.000 0.020 0.944
#> GSM123240 1 0.5647 0.616 0.684 0.000 0.028 0.180 0.108
#> GSM123241 1 0.0613 0.881 0.984 0.000 0.004 0.004 0.008
#> GSM123242 4 0.5545 0.721 0.004 0.432 0.020 0.520 0.024
#> GSM123182 5 0.1469 0.869 0.036 0.000 0.000 0.016 0.948
#> GSM123183 4 0.4794 0.839 0.000 0.344 0.032 0.624 0.000
#> GSM123184 4 0.4974 0.711 0.000 0.464 0.000 0.508 0.028
#> GSM123185 5 0.1568 0.869 0.036 0.000 0.000 0.020 0.944
#> GSM123186 5 0.4654 0.836 0.028 0.000 0.024 0.216 0.732
#> GSM123187 5 0.4793 0.686 0.004 0.120 0.020 0.088 0.768
#> GSM123188 1 0.0451 0.883 0.988 0.000 0.000 0.008 0.004
#> GSM123189 3 0.2020 0.930 0.100 0.000 0.900 0.000 0.000
#> GSM123190 5 0.1124 0.870 0.036 0.000 0.000 0.004 0.960
#> GSM123191 5 0.3152 0.819 0.136 0.000 0.000 0.024 0.840
#> GSM123192 5 0.4892 0.831 0.036 0.000 0.028 0.216 0.720
#> GSM123193 5 0.5937 0.773 0.132 0.000 0.028 0.184 0.656
#> GSM123194 1 0.1116 0.872 0.964 0.000 0.004 0.004 0.028
#> GSM123195 2 0.0609 0.785 0.000 0.980 0.020 0.000 0.000
#> GSM123196 3 0.2020 0.930 0.100 0.000 0.900 0.000 0.000
#> GSM123197 4 0.4779 0.838 0.000 0.340 0.032 0.628 0.000
#> GSM123198 2 0.1093 0.775 0.004 0.968 0.020 0.004 0.004
#> GSM123199 1 0.0324 0.883 0.992 0.000 0.000 0.004 0.004
#> GSM123200 2 0.1187 0.784 0.004 0.964 0.024 0.004 0.004
#> GSM123201 1 0.4873 0.468 0.644 0.000 0.000 0.044 0.312
#> GSM123202 2 0.0994 0.778 0.004 0.972 0.016 0.004 0.004
#> GSM123203 1 0.0740 0.881 0.980 0.000 0.008 0.008 0.004
#> GSM123204 2 0.0609 0.785 0.000 0.980 0.020 0.000 0.000
#> GSM123205 2 0.1622 0.755 0.004 0.948 0.004 0.016 0.028
#> GSM123206 2 0.1560 0.758 0.000 0.948 0.020 0.028 0.004
#> GSM123207 5 0.2437 0.873 0.032 0.000 0.004 0.060 0.904
#> GSM123208 2 0.0771 0.785 0.000 0.976 0.020 0.000 0.004
#> GSM123209 5 0.3864 0.765 0.004 0.076 0.020 0.064 0.836
#> GSM123210 5 0.5937 0.773 0.132 0.000 0.028 0.184 0.656
#> GSM123211 5 0.5295 0.818 0.060 0.000 0.028 0.216 0.696
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 4 0.2178 0.7244 0.000 0.132 0.000 0.868 0.000 0.000
#> GSM123213 4 0.6077 0.6965 0.000 0.224 0.012 0.496 0.268 0.000
#> GSM123214 4 0.6046 0.6276 0.000 0.328 0.004 0.444 0.224 0.000
#> GSM123215 4 0.5949 0.6772 0.000 0.292 0.004 0.484 0.220 0.000
#> GSM123216 1 0.0260 0.8344 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM123217 1 0.0000 0.8360 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123218 3 0.0937 0.8676 0.040 0.000 0.960 0.000 0.000 0.000
#> GSM123219 6 0.0260 0.5203 0.008 0.000 0.000 0.000 0.000 0.992
#> GSM123220 1 0.0547 0.8322 0.980 0.000 0.000 0.000 0.020 0.000
#> GSM123221 6 0.4034 -0.2532 0.004 0.000 0.000 0.012 0.336 0.648
#> GSM123222 6 0.3834 0.2161 0.024 0.000 0.000 0.004 0.244 0.728
#> GSM123223 2 0.3081 0.7268 0.000 0.776 0.004 0.000 0.220 0.000
#> GSM123224 1 0.0935 0.8278 0.964 0.000 0.000 0.004 0.032 0.000
#> GSM123225 1 0.3563 0.7169 0.796 0.000 0.000 0.072 0.132 0.000
#> GSM123226 3 0.6930 0.3640 0.316 0.000 0.424 0.084 0.176 0.000
#> GSM123227 1 0.4048 0.6800 0.756 0.000 0.000 0.032 0.188 0.024
#> GSM123228 1 0.3857 0.7012 0.776 0.000 0.004 0.072 0.148 0.000
#> GSM123229 3 0.0937 0.8676 0.040 0.000 0.960 0.000 0.000 0.000
#> GSM123230 3 0.5854 0.6774 0.180 0.000 0.624 0.068 0.128 0.000
#> GSM123231 3 0.0937 0.8676 0.040 0.000 0.960 0.000 0.000 0.000
#> GSM123232 1 0.0000 0.8360 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123233 5 0.3993 0.6809 0.000 0.000 0.000 0.004 0.520 0.476
#> GSM123234 3 0.4819 0.7434 0.164 0.000 0.716 0.036 0.084 0.000
#> GSM123235 3 0.0937 0.8676 0.040 0.000 0.960 0.000 0.000 0.000
#> GSM123236 5 0.4185 0.6566 0.000 0.000 0.000 0.012 0.496 0.492
#> GSM123237 1 0.3984 0.4232 0.596 0.000 0.000 0.008 0.000 0.396
#> GSM123238 4 0.2350 0.7081 0.000 0.100 0.000 0.880 0.000 0.020
#> GSM123239 5 0.3868 0.6630 0.000 0.000 0.000 0.000 0.504 0.496
#> GSM123240 1 0.3984 0.4232 0.596 0.000 0.000 0.008 0.000 0.396
#> GSM123241 1 0.1672 0.8139 0.932 0.000 0.000 0.004 0.016 0.048
#> GSM123242 4 0.6711 0.6842 0.000 0.204 0.040 0.492 0.252 0.012
#> GSM123182 5 0.3996 0.6805 0.000 0.000 0.000 0.004 0.512 0.484
#> GSM123183 4 0.2178 0.7244 0.000 0.132 0.000 0.868 0.000 0.000
#> GSM123184 4 0.5858 0.7005 0.000 0.264 0.004 0.512 0.220 0.000
#> GSM123185 5 0.3993 0.6809 0.000 0.000 0.000 0.004 0.520 0.476
#> GSM123186 6 0.0405 0.5170 0.000 0.000 0.000 0.008 0.004 0.988
#> GSM123187 5 0.6433 0.0321 0.000 0.044 0.040 0.072 0.536 0.308
#> GSM123188 1 0.0000 0.8360 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123189 3 0.0937 0.8676 0.040 0.000 0.960 0.000 0.000 0.000
#> GSM123190 6 0.4152 -0.5788 0.000 0.000 0.000 0.012 0.440 0.548
#> GSM123191 6 0.5282 -0.3306 0.076 0.000 0.000 0.012 0.364 0.548
#> GSM123192 6 0.0405 0.5170 0.000 0.000 0.000 0.008 0.004 0.988
#> GSM123193 6 0.2325 0.4990 0.100 0.000 0.000 0.008 0.008 0.884
#> GSM123194 1 0.1053 0.8268 0.964 0.000 0.000 0.004 0.012 0.020
#> GSM123195 2 0.0146 0.8817 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM123196 3 0.0937 0.8676 0.040 0.000 0.960 0.000 0.000 0.000
#> GSM123197 4 0.2191 0.7224 0.000 0.120 0.000 0.876 0.000 0.004
#> GSM123198 2 0.3009 0.8302 0.000 0.844 0.040 0.004 0.112 0.000
#> GSM123199 1 0.0000 0.8360 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123200 2 0.0508 0.8825 0.000 0.984 0.004 0.000 0.012 0.000
#> GSM123201 1 0.6524 0.0800 0.436 0.000 0.000 0.040 0.340 0.184
#> GSM123202 2 0.2940 0.8323 0.000 0.848 0.036 0.004 0.112 0.000
#> GSM123203 1 0.0000 0.8360 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123204 2 0.0000 0.8828 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123205 2 0.2964 0.7531 0.000 0.792 0.004 0.000 0.204 0.000
#> GSM123206 2 0.0891 0.8670 0.000 0.968 0.000 0.024 0.008 0.000
#> GSM123207 6 0.3797 -0.5046 0.000 0.000 0.000 0.000 0.420 0.580
#> GSM123208 2 0.0405 0.8821 0.000 0.988 0.000 0.004 0.008 0.000
#> GSM123209 6 0.5387 -0.2320 0.000 0.028 0.036 0.008 0.412 0.516
#> GSM123210 6 0.2325 0.4990 0.100 0.000 0.000 0.008 0.008 0.884
#> GSM123211 6 0.1686 0.5114 0.064 0.000 0.000 0.012 0.000 0.924
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> ATC:kmeans 61 0.14613 2
#> ATC:kmeans 18 NA 3
#> ATC:kmeans 58 0.09875 4
#> ATC:kmeans 58 0.00857 5
#> ATC:kmeans 48 0.04552 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.994 0.997 0.4918 0.508 0.508
#> 3 3 0.798 0.891 0.934 0.3461 0.760 0.554
#> 4 4 0.757 0.862 0.886 0.0890 0.938 0.816
#> 5 5 0.840 0.785 0.897 0.0696 0.913 0.711
#> 6 6 0.793 0.690 0.843 0.0441 0.937 0.740
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.000 0.995 0.000 1.000
#> GSM123213 2 0.000 0.995 0.000 1.000
#> GSM123214 2 0.000 0.995 0.000 1.000
#> GSM123215 2 0.000 0.995 0.000 1.000
#> GSM123216 1 0.000 0.999 1.000 0.000
#> GSM123217 1 0.000 0.999 1.000 0.000
#> GSM123218 1 0.000 0.999 1.000 0.000
#> GSM123219 1 0.278 0.949 0.952 0.048
#> GSM123220 1 0.000 0.999 1.000 0.000
#> GSM123221 1 0.000 0.999 1.000 0.000
#> GSM123222 1 0.000 0.999 1.000 0.000
#> GSM123223 2 0.000 0.995 0.000 1.000
#> GSM123224 1 0.000 0.999 1.000 0.000
#> GSM123225 1 0.000 0.999 1.000 0.000
#> GSM123226 1 0.000 0.999 1.000 0.000
#> GSM123227 1 0.000 0.999 1.000 0.000
#> GSM123228 1 0.000 0.999 1.000 0.000
#> GSM123229 1 0.000 0.999 1.000 0.000
#> GSM123230 1 0.000 0.999 1.000 0.000
#> GSM123231 1 0.000 0.999 1.000 0.000
#> GSM123232 1 0.000 0.999 1.000 0.000
#> GSM123233 1 0.000 0.999 1.000 0.000
#> GSM123234 1 0.000 0.999 1.000 0.000
#> GSM123235 1 0.000 0.999 1.000 0.000
#> GSM123236 1 0.000 0.999 1.000 0.000
#> GSM123237 1 0.000 0.999 1.000 0.000
#> GSM123238 2 0.000 0.995 0.000 1.000
#> GSM123239 2 0.563 0.849 0.132 0.868
#> GSM123240 1 0.000 0.999 1.000 0.000
#> GSM123241 1 0.000 0.999 1.000 0.000
#> GSM123242 2 0.000 0.995 0.000 1.000
#> GSM123182 1 0.000 0.999 1.000 0.000
#> GSM123183 2 0.000 0.995 0.000 1.000
#> GSM123184 2 0.000 0.995 0.000 1.000
#> GSM123185 1 0.000 0.999 1.000 0.000
#> GSM123186 2 0.000 0.995 0.000 1.000
#> GSM123187 2 0.000 0.995 0.000 1.000
#> GSM123188 1 0.000 0.999 1.000 0.000
#> GSM123189 1 0.000 0.999 1.000 0.000
#> GSM123190 1 0.000 0.999 1.000 0.000
#> GSM123191 1 0.000 0.999 1.000 0.000
#> GSM123192 2 0.000 0.995 0.000 1.000
#> GSM123193 1 0.000 0.999 1.000 0.000
#> GSM123194 1 0.000 0.999 1.000 0.000
#> GSM123195 2 0.000 0.995 0.000 1.000
#> GSM123196 1 0.000 0.999 1.000 0.000
#> GSM123197 2 0.000 0.995 0.000 1.000
#> GSM123198 2 0.000 0.995 0.000 1.000
#> GSM123199 1 0.000 0.999 1.000 0.000
#> GSM123200 2 0.000 0.995 0.000 1.000
#> GSM123201 1 0.000 0.999 1.000 0.000
#> GSM123202 2 0.000 0.995 0.000 1.000
#> GSM123203 1 0.000 0.999 1.000 0.000
#> GSM123204 2 0.000 0.995 0.000 1.000
#> GSM123205 2 0.000 0.995 0.000 1.000
#> GSM123206 2 0.000 0.995 0.000 1.000
#> GSM123207 2 0.000 0.995 0.000 1.000
#> GSM123208 2 0.000 0.995 0.000 1.000
#> GSM123209 2 0.000 0.995 0.000 1.000
#> GSM123210 1 0.000 0.999 1.000 0.000
#> GSM123211 2 0.000 0.995 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123213 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123214 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123215 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123216 1 0.000 0.8520 1.000 0.000 0.000
#> GSM123217 1 0.400 0.8745 0.840 0.000 0.160
#> GSM123218 3 0.000 0.9597 0.000 0.000 1.000
#> GSM123219 1 0.000 0.8520 1.000 0.000 0.000
#> GSM123220 1 0.470 0.8538 0.788 0.000 0.212
#> GSM123221 3 0.000 0.9597 0.000 0.000 1.000
#> GSM123222 1 0.000 0.8520 1.000 0.000 0.000
#> GSM123223 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123224 1 0.470 0.8538 0.788 0.000 0.212
#> GSM123225 1 0.470 0.8538 0.788 0.000 0.212
#> GSM123226 3 0.000 0.9597 0.000 0.000 1.000
#> GSM123227 1 0.480 0.8477 0.780 0.000 0.220
#> GSM123228 1 0.470 0.8538 0.788 0.000 0.212
#> GSM123229 3 0.000 0.9597 0.000 0.000 1.000
#> GSM123230 3 0.000 0.9597 0.000 0.000 1.000
#> GSM123231 3 0.000 0.9597 0.000 0.000 1.000
#> GSM123232 1 0.400 0.8745 0.840 0.000 0.160
#> GSM123233 3 0.000 0.9597 0.000 0.000 1.000
#> GSM123234 3 0.000 0.9597 0.000 0.000 1.000
#> GSM123235 3 0.000 0.9597 0.000 0.000 1.000
#> GSM123236 1 0.611 0.6103 0.604 0.000 0.396
#> GSM123237 1 0.000 0.8520 1.000 0.000 0.000
#> GSM123238 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123239 3 0.629 0.0682 0.000 0.468 0.532
#> GSM123240 1 0.000 0.8520 1.000 0.000 0.000
#> GSM123241 1 0.412 0.8722 0.832 0.000 0.168
#> GSM123242 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123182 1 0.571 0.7375 0.680 0.000 0.320
#> GSM123183 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123184 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123185 3 0.000 0.9597 0.000 0.000 1.000
#> GSM123186 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123187 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123188 1 0.400 0.8745 0.840 0.000 0.160
#> GSM123189 3 0.000 0.9597 0.000 0.000 1.000
#> GSM123190 3 0.000 0.9597 0.000 0.000 1.000
#> GSM123191 3 0.000 0.9597 0.000 0.000 1.000
#> GSM123192 1 0.000 0.8520 1.000 0.000 0.000
#> GSM123193 1 0.000 0.8520 1.000 0.000 0.000
#> GSM123194 1 0.579 0.7217 0.668 0.000 0.332
#> GSM123195 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123196 3 0.000 0.9597 0.000 0.000 1.000
#> GSM123197 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123198 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123199 1 0.400 0.8745 0.840 0.000 0.160
#> GSM123200 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123201 3 0.000 0.9597 0.000 0.000 1.000
#> GSM123202 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123203 1 0.400 0.8745 0.840 0.000 0.160
#> GSM123204 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123205 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123206 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123207 2 0.625 0.1471 0.444 0.556 0.000
#> GSM123208 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123209 2 0.000 0.9762 0.000 1.000 0.000
#> GSM123210 1 0.000 0.8520 1.000 0.000 0.000
#> GSM123211 1 0.000 0.8520 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 2 0.0336 0.983 0.000 0.992 0.000 0.008
#> GSM123213 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM123214 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM123215 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM123216 1 0.1610 0.782 0.952 0.000 0.016 0.032
#> GSM123217 1 0.2760 0.815 0.872 0.000 0.128 0.000
#> GSM123218 3 0.0000 0.937 0.000 0.000 1.000 0.000
#> GSM123219 1 0.3942 0.671 0.764 0.000 0.000 0.236
#> GSM123220 1 0.3356 0.794 0.824 0.000 0.176 0.000
#> GSM123221 3 0.0188 0.934 0.004 0.000 0.996 0.000
#> GSM123222 1 0.2589 0.734 0.884 0.000 0.000 0.116
#> GSM123223 2 0.0336 0.988 0.000 0.992 0.000 0.008
#> GSM123224 1 0.3356 0.794 0.824 0.000 0.176 0.000
#> GSM123225 1 0.3356 0.794 0.824 0.000 0.176 0.000
#> GSM123226 3 0.3837 0.685 0.224 0.000 0.776 0.000
#> GSM123227 1 0.6049 0.648 0.684 0.000 0.184 0.132
#> GSM123228 1 0.3400 0.791 0.820 0.000 0.180 0.000
#> GSM123229 3 0.0000 0.937 0.000 0.000 1.000 0.000
#> GSM123230 3 0.2216 0.852 0.092 0.000 0.908 0.000
#> GSM123231 3 0.0000 0.937 0.000 0.000 1.000 0.000
#> GSM123232 1 0.2760 0.815 0.872 0.000 0.128 0.000
#> GSM123233 4 0.4328 0.712 0.008 0.000 0.244 0.748
#> GSM123234 3 0.0000 0.937 0.000 0.000 1.000 0.000
#> GSM123235 3 0.0000 0.937 0.000 0.000 1.000 0.000
#> GSM123236 4 0.5566 0.736 0.224 0.000 0.072 0.704
#> GSM123237 1 0.3801 0.681 0.780 0.000 0.000 0.220
#> GSM123238 2 0.0592 0.978 0.000 0.984 0.000 0.016
#> GSM123239 4 0.5730 0.750 0.036 0.132 0.076 0.756
#> GSM123240 1 0.3837 0.680 0.776 0.000 0.000 0.224
#> GSM123241 1 0.4008 0.812 0.820 0.000 0.148 0.032
#> GSM123242 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM123182 4 0.4549 0.794 0.188 0.000 0.036 0.776
#> GSM123183 2 0.0336 0.983 0.000 0.992 0.000 0.008
#> GSM123184 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM123185 4 0.5314 0.801 0.108 0.000 0.144 0.748
#> GSM123186 2 0.2760 0.854 0.000 0.872 0.000 0.128
#> GSM123187 2 0.0000 0.987 0.000 1.000 0.000 0.000
#> GSM123188 1 0.2760 0.815 0.872 0.000 0.128 0.000
#> GSM123189 3 0.0000 0.937 0.000 0.000 1.000 0.000
#> GSM123190 3 0.0817 0.907 0.000 0.000 0.976 0.024
#> GSM123191 3 0.0000 0.937 0.000 0.000 1.000 0.000
#> GSM123192 1 0.4328 0.657 0.748 0.008 0.000 0.244
#> GSM123193 1 0.3245 0.769 0.872 0.000 0.028 0.100
#> GSM123194 1 0.3908 0.760 0.784 0.000 0.212 0.004
#> GSM123195 2 0.0336 0.988 0.000 0.992 0.000 0.008
#> GSM123196 3 0.0000 0.937 0.000 0.000 1.000 0.000
#> GSM123197 2 0.0469 0.981 0.000 0.988 0.000 0.012
#> GSM123198 2 0.0336 0.988 0.000 0.992 0.000 0.008
#> GSM123199 1 0.2760 0.815 0.872 0.000 0.128 0.000
#> GSM123200 2 0.0336 0.988 0.000 0.992 0.000 0.008
#> GSM123201 3 0.4194 0.735 0.172 0.000 0.800 0.028
#> GSM123202 2 0.0336 0.988 0.000 0.992 0.000 0.008
#> GSM123203 1 0.2760 0.815 0.872 0.000 0.128 0.000
#> GSM123204 2 0.0336 0.988 0.000 0.992 0.000 0.008
#> GSM123205 2 0.0336 0.988 0.000 0.992 0.000 0.008
#> GSM123206 2 0.0336 0.988 0.000 0.992 0.000 0.008
#> GSM123207 4 0.1798 0.740 0.040 0.016 0.000 0.944
#> GSM123208 2 0.0336 0.988 0.000 0.992 0.000 0.008
#> GSM123209 2 0.0336 0.988 0.000 0.992 0.000 0.008
#> GSM123210 1 0.2805 0.761 0.888 0.000 0.012 0.100
#> GSM123211 1 0.4328 0.657 0.748 0.008 0.000 0.244
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 2 0.5061 0.716 0.000 0.696 0.028 0.240 0.036
#> GSM123213 2 0.2775 0.879 0.000 0.888 0.008 0.068 0.036
#> GSM123214 2 0.1630 0.901 0.000 0.944 0.004 0.016 0.036
#> GSM123215 2 0.1728 0.900 0.000 0.940 0.004 0.020 0.036
#> GSM123216 1 0.1768 0.781 0.924 0.000 0.000 0.072 0.004
#> GSM123217 1 0.0000 0.840 1.000 0.000 0.000 0.000 0.000
#> GSM123218 3 0.0794 0.964 0.028 0.000 0.972 0.000 0.000
#> GSM123219 4 0.3013 0.640 0.160 0.000 0.000 0.832 0.008
#> GSM123220 1 0.0703 0.841 0.976 0.000 0.024 0.000 0.000
#> GSM123221 3 0.0880 0.960 0.032 0.000 0.968 0.000 0.000
#> GSM123222 1 0.3942 0.490 0.728 0.000 0.000 0.260 0.012
#> GSM123223 2 0.0000 0.908 0.000 1.000 0.000 0.000 0.000
#> GSM123224 1 0.0703 0.841 0.976 0.000 0.024 0.000 0.000
#> GSM123225 1 0.0703 0.841 0.976 0.000 0.024 0.000 0.000
#> GSM123226 1 0.3661 0.561 0.724 0.000 0.276 0.000 0.000
#> GSM123227 1 0.1579 0.824 0.944 0.000 0.024 0.000 0.032
#> GSM123228 1 0.0703 0.841 0.976 0.000 0.024 0.000 0.000
#> GSM123229 3 0.0794 0.964 0.028 0.000 0.972 0.000 0.000
#> GSM123230 3 0.3707 0.599 0.284 0.000 0.716 0.000 0.000
#> GSM123231 3 0.0794 0.964 0.028 0.000 0.972 0.000 0.000
#> GSM123232 1 0.0000 0.840 1.000 0.000 0.000 0.000 0.000
#> GSM123233 5 0.1443 0.859 0.004 0.000 0.044 0.004 0.948
#> GSM123234 3 0.0794 0.964 0.028 0.000 0.972 0.000 0.000
#> GSM123235 3 0.0794 0.964 0.028 0.000 0.972 0.000 0.000
#> GSM123236 5 0.4212 0.639 0.236 0.000 0.024 0.004 0.736
#> GSM123237 4 0.4045 0.489 0.356 0.000 0.000 0.644 0.000
#> GSM123238 2 0.5502 0.595 0.000 0.612 0.028 0.324 0.036
#> GSM123239 5 0.1430 0.849 0.000 0.052 0.000 0.004 0.944
#> GSM123240 4 0.4074 0.476 0.364 0.000 0.000 0.636 0.000
#> GSM123241 1 0.1074 0.837 0.968 0.000 0.012 0.016 0.004
#> GSM123242 2 0.2838 0.877 0.000 0.884 0.008 0.072 0.036
#> GSM123182 5 0.1121 0.869 0.044 0.000 0.000 0.000 0.956
#> GSM123183 2 0.5061 0.716 0.000 0.696 0.028 0.240 0.036
#> GSM123184 2 0.2283 0.892 0.000 0.916 0.008 0.040 0.036
#> GSM123185 5 0.1386 0.873 0.032 0.000 0.016 0.000 0.952
#> GSM123186 4 0.5320 0.216 0.000 0.284 0.028 0.652 0.036
#> GSM123187 2 0.1469 0.902 0.000 0.948 0.000 0.016 0.036
#> GSM123188 1 0.0000 0.840 1.000 0.000 0.000 0.000 0.000
#> GSM123189 3 0.0794 0.964 0.028 0.000 0.972 0.000 0.000
#> GSM123190 3 0.0898 0.955 0.020 0.000 0.972 0.000 0.008
#> GSM123191 3 0.0794 0.964 0.028 0.000 0.972 0.000 0.000
#> GSM123192 4 0.0609 0.620 0.020 0.000 0.000 0.980 0.000
#> GSM123193 1 0.4238 0.285 0.628 0.000 0.000 0.368 0.004
#> GSM123194 1 0.0963 0.834 0.964 0.000 0.036 0.000 0.000
#> GSM123195 2 0.0000 0.908 0.000 1.000 0.000 0.000 0.000
#> GSM123196 3 0.0794 0.964 0.028 0.000 0.972 0.000 0.000
#> GSM123197 2 0.5113 0.707 0.000 0.688 0.028 0.248 0.036
#> GSM123198 2 0.0000 0.908 0.000 1.000 0.000 0.000 0.000
#> GSM123199 1 0.0000 0.840 1.000 0.000 0.000 0.000 0.000
#> GSM123200 2 0.0000 0.908 0.000 1.000 0.000 0.000 0.000
#> GSM123201 1 0.5039 0.031 0.512 0.000 0.456 0.000 0.032
#> GSM123202 2 0.0162 0.908 0.000 0.996 0.000 0.004 0.000
#> GSM123203 1 0.0000 0.840 1.000 0.000 0.000 0.000 0.000
#> GSM123204 2 0.0000 0.908 0.000 1.000 0.000 0.000 0.000
#> GSM123205 2 0.0000 0.908 0.000 1.000 0.000 0.000 0.000
#> GSM123206 2 0.0162 0.908 0.000 0.996 0.000 0.004 0.000
#> GSM123207 5 0.3280 0.760 0.000 0.004 0.012 0.160 0.824
#> GSM123208 2 0.0000 0.908 0.000 1.000 0.000 0.000 0.000
#> GSM123209 2 0.0000 0.908 0.000 1.000 0.000 0.000 0.000
#> GSM123210 1 0.4135 0.352 0.656 0.000 0.000 0.340 0.004
#> GSM123211 4 0.0510 0.618 0.016 0.000 0.000 0.984 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 4 0.4135 0.83853 0.000 0.300 0.000 0.668 0.000 0.032
#> GSM123213 2 0.3862 -0.00373 0.000 0.524 0.000 0.476 0.000 0.000
#> GSM123214 2 0.3592 0.39454 0.000 0.656 0.000 0.344 0.000 0.000
#> GSM123215 2 0.3782 0.23160 0.000 0.588 0.000 0.412 0.000 0.000
#> GSM123216 1 0.1970 0.77699 0.900 0.000 0.000 0.008 0.000 0.092
#> GSM123217 1 0.0260 0.86486 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM123218 3 0.0146 0.94373 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM123219 6 0.2591 0.57563 0.052 0.000 0.000 0.064 0.004 0.880
#> GSM123220 1 0.0146 0.86497 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM123221 3 0.1536 0.91120 0.012 0.000 0.944 0.024 0.000 0.020
#> GSM123222 1 0.4904 0.14654 0.620 0.000 0.000 0.040 0.024 0.316
#> GSM123223 2 0.1387 0.71664 0.000 0.932 0.000 0.068 0.000 0.000
#> GSM123224 1 0.0146 0.86497 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM123225 1 0.0146 0.86514 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM123226 1 0.3183 0.61178 0.788 0.000 0.200 0.008 0.000 0.004
#> GSM123227 1 0.1622 0.83028 0.940 0.000 0.000 0.016 0.028 0.016
#> GSM123228 1 0.0146 0.86514 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM123229 3 0.0146 0.94373 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM123230 3 0.4148 0.40588 0.344 0.000 0.636 0.016 0.000 0.004
#> GSM123231 3 0.0146 0.94373 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM123232 1 0.0260 0.86486 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM123233 5 0.0976 0.82276 0.000 0.000 0.016 0.008 0.968 0.008
#> GSM123234 3 0.0767 0.93405 0.008 0.000 0.976 0.012 0.000 0.004
#> GSM123235 3 0.0146 0.94373 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM123236 5 0.4854 0.42243 0.308 0.000 0.016 0.040 0.632 0.004
#> GSM123237 6 0.4185 0.58428 0.332 0.000 0.000 0.020 0.004 0.644
#> GSM123238 4 0.4382 0.83274 0.000 0.264 0.000 0.676 0.000 0.060
#> GSM123239 5 0.3448 0.79200 0.000 0.028 0.004 0.116 0.828 0.024
#> GSM123240 6 0.4185 0.58428 0.332 0.000 0.000 0.020 0.004 0.644
#> GSM123241 1 0.2006 0.77340 0.892 0.000 0.000 0.004 0.000 0.104
#> GSM123242 2 0.3860 0.01651 0.000 0.528 0.000 0.472 0.000 0.000
#> GSM123182 5 0.0748 0.82178 0.004 0.000 0.000 0.016 0.976 0.004
#> GSM123183 4 0.4135 0.83853 0.000 0.300 0.000 0.668 0.000 0.032
#> GSM123184 2 0.3854 0.05242 0.000 0.536 0.000 0.464 0.000 0.000
#> GSM123185 5 0.0551 0.82485 0.004 0.000 0.004 0.008 0.984 0.000
#> GSM123186 4 0.4988 0.59238 0.000 0.116 0.000 0.660 0.008 0.216
#> GSM123187 2 0.3390 0.47771 0.000 0.704 0.000 0.296 0.000 0.000
#> GSM123188 1 0.0260 0.86486 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM123189 3 0.0146 0.94373 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM123190 3 0.0603 0.93705 0.004 0.000 0.980 0.016 0.000 0.000
#> GSM123191 3 0.0363 0.94025 0.012 0.000 0.988 0.000 0.000 0.000
#> GSM123192 6 0.3196 0.51233 0.008 0.000 0.000 0.156 0.020 0.816
#> GSM123193 6 0.4676 0.37003 0.428 0.000 0.000 0.044 0.000 0.528
#> GSM123194 1 0.0520 0.86093 0.984 0.000 0.008 0.008 0.000 0.000
#> GSM123195 2 0.0000 0.74257 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123196 3 0.0146 0.94373 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM123197 4 0.4079 0.84559 0.000 0.288 0.000 0.680 0.000 0.032
#> GSM123198 2 0.0000 0.74257 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123199 1 0.0146 0.86535 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM123200 2 0.0000 0.74257 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123201 1 0.5214 0.18731 0.532 0.000 0.404 0.028 0.032 0.004
#> GSM123202 2 0.0363 0.73968 0.000 0.988 0.000 0.012 0.000 0.000
#> GSM123203 1 0.0260 0.86486 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM123204 2 0.0000 0.74257 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123205 2 0.0547 0.74141 0.000 0.980 0.000 0.020 0.000 0.000
#> GSM123206 2 0.0547 0.74040 0.000 0.980 0.000 0.020 0.000 0.000
#> GSM123207 5 0.4599 0.69218 0.000 0.000 0.004 0.192 0.700 0.104
#> GSM123208 2 0.0000 0.74257 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123209 2 0.0713 0.73023 0.000 0.972 0.000 0.028 0.000 0.000
#> GSM123210 6 0.4591 0.29942 0.464 0.000 0.000 0.036 0.000 0.500
#> GSM123211 6 0.2260 0.53243 0.000 0.000 0.000 0.140 0.000 0.860
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> ATC:skmeans 61 0.0285 2
#> ATC:skmeans 59 0.1350 3
#> ATC:skmeans 61 0.2406 4
#> ATC:skmeans 54 0.2436 5
#> ATC:skmeans 49 0.0765 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4368 0.564 0.564
#> 3 3 0.748 0.858 0.934 0.5231 0.773 0.597
#> 4 4 0.705 0.703 0.847 0.0964 0.819 0.534
#> 5 5 0.875 0.830 0.930 0.0654 0.920 0.714
#> 6 6 0.859 0.795 0.912 0.0591 0.911 0.635
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.0000 1.000 0.000 1.000
#> GSM123213 2 0.0000 1.000 0.000 1.000
#> GSM123214 2 0.0000 1.000 0.000 1.000
#> GSM123215 2 0.0000 1.000 0.000 1.000
#> GSM123216 1 0.0000 1.000 1.000 0.000
#> GSM123217 1 0.0000 1.000 1.000 0.000
#> GSM123218 1 0.0000 1.000 1.000 0.000
#> GSM123219 1 0.0000 1.000 1.000 0.000
#> GSM123220 1 0.0000 1.000 1.000 0.000
#> GSM123221 1 0.0000 1.000 1.000 0.000
#> GSM123222 1 0.0000 1.000 1.000 0.000
#> GSM123223 2 0.0000 1.000 0.000 1.000
#> GSM123224 1 0.0000 1.000 1.000 0.000
#> GSM123225 1 0.0000 1.000 1.000 0.000
#> GSM123226 1 0.0000 1.000 1.000 0.000
#> GSM123227 1 0.0000 1.000 1.000 0.000
#> GSM123228 1 0.0000 1.000 1.000 0.000
#> GSM123229 1 0.0000 1.000 1.000 0.000
#> GSM123230 1 0.0000 1.000 1.000 0.000
#> GSM123231 1 0.0000 1.000 1.000 0.000
#> GSM123232 1 0.0000 1.000 1.000 0.000
#> GSM123233 1 0.0000 1.000 1.000 0.000
#> GSM123234 1 0.0000 1.000 1.000 0.000
#> GSM123235 1 0.0000 1.000 1.000 0.000
#> GSM123236 1 0.0000 1.000 1.000 0.000
#> GSM123237 1 0.0000 1.000 1.000 0.000
#> GSM123238 2 0.0000 1.000 0.000 1.000
#> GSM123239 1 0.0000 1.000 1.000 0.000
#> GSM123240 1 0.0000 1.000 1.000 0.000
#> GSM123241 1 0.0000 1.000 1.000 0.000
#> GSM123242 2 0.0000 1.000 0.000 1.000
#> GSM123182 1 0.0000 1.000 1.000 0.000
#> GSM123183 2 0.0000 1.000 0.000 1.000
#> GSM123184 2 0.0000 1.000 0.000 1.000
#> GSM123185 1 0.0000 1.000 1.000 0.000
#> GSM123186 1 0.0000 1.000 1.000 0.000
#> GSM123187 2 0.0000 1.000 0.000 1.000
#> GSM123188 1 0.0000 1.000 1.000 0.000
#> GSM123189 1 0.0000 1.000 1.000 0.000
#> GSM123190 1 0.0000 1.000 1.000 0.000
#> GSM123191 1 0.0000 1.000 1.000 0.000
#> GSM123192 1 0.0000 1.000 1.000 0.000
#> GSM123193 1 0.0000 1.000 1.000 0.000
#> GSM123194 1 0.0000 1.000 1.000 0.000
#> GSM123195 2 0.0000 1.000 0.000 1.000
#> GSM123196 1 0.0000 1.000 1.000 0.000
#> GSM123197 2 0.0000 1.000 0.000 1.000
#> GSM123198 2 0.0000 1.000 0.000 1.000
#> GSM123199 1 0.0000 1.000 1.000 0.000
#> GSM123200 2 0.0000 1.000 0.000 1.000
#> GSM123201 1 0.0000 1.000 1.000 0.000
#> GSM123202 2 0.0000 1.000 0.000 1.000
#> GSM123203 1 0.0000 1.000 1.000 0.000
#> GSM123204 2 0.0000 1.000 0.000 1.000
#> GSM123205 2 0.0000 1.000 0.000 1.000
#> GSM123206 2 0.0000 1.000 0.000 1.000
#> GSM123207 1 0.0000 1.000 1.000 0.000
#> GSM123208 2 0.0000 1.000 0.000 1.000
#> GSM123209 1 0.0938 0.988 0.988 0.012
#> GSM123210 1 0.0000 1.000 1.000 0.000
#> GSM123211 1 0.0000 1.000 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 2 0.0000 0.983 0.000 1.000 0.000
#> GSM123213 2 0.0000 0.983 0.000 1.000 0.000
#> GSM123214 2 0.0000 0.983 0.000 1.000 0.000
#> GSM123215 2 0.0000 0.983 0.000 1.000 0.000
#> GSM123216 1 0.0000 0.907 1.000 0.000 0.000
#> GSM123217 1 0.0000 0.907 1.000 0.000 0.000
#> GSM123218 3 0.3116 0.863 0.108 0.000 0.892
#> GSM123219 3 0.0000 0.880 0.000 0.000 1.000
#> GSM123220 1 0.0000 0.907 1.000 0.000 0.000
#> GSM123221 3 0.0000 0.880 0.000 0.000 1.000
#> GSM123222 3 0.0000 0.880 0.000 0.000 1.000
#> GSM123223 2 0.0000 0.983 0.000 1.000 0.000
#> GSM123224 1 0.0000 0.907 1.000 0.000 0.000
#> GSM123225 1 0.0000 0.907 1.000 0.000 0.000
#> GSM123226 1 0.0000 0.907 1.000 0.000 0.000
#> GSM123227 1 0.3619 0.773 0.864 0.000 0.136
#> GSM123228 1 0.0000 0.907 1.000 0.000 0.000
#> GSM123229 3 0.3116 0.863 0.108 0.000 0.892
#> GSM123230 3 0.6026 0.460 0.376 0.000 0.624
#> GSM123231 3 0.3116 0.863 0.108 0.000 0.892
#> GSM123232 1 0.0000 0.907 1.000 0.000 0.000
#> GSM123233 3 0.0000 0.880 0.000 0.000 1.000
#> GSM123234 3 0.3116 0.863 0.108 0.000 0.892
#> GSM123235 3 0.3116 0.863 0.108 0.000 0.892
#> GSM123236 3 0.4062 0.758 0.164 0.000 0.836
#> GSM123237 1 0.3116 0.821 0.892 0.000 0.108
#> GSM123238 2 0.1163 0.965 0.000 0.972 0.028
#> GSM123239 3 0.0000 0.880 0.000 0.000 1.000
#> GSM123240 1 0.3038 0.824 0.896 0.000 0.104
#> GSM123241 1 0.6126 0.232 0.600 0.000 0.400
#> GSM123242 2 0.2537 0.924 0.000 0.920 0.080
#> GSM123182 3 0.4974 0.656 0.236 0.000 0.764
#> GSM123183 2 0.0000 0.983 0.000 1.000 0.000
#> GSM123184 2 0.0000 0.983 0.000 1.000 0.000
#> GSM123185 3 0.0000 0.880 0.000 0.000 1.000
#> GSM123186 3 0.0000 0.880 0.000 0.000 1.000
#> GSM123187 2 0.3116 0.896 0.000 0.892 0.108
#> GSM123188 1 0.0000 0.907 1.000 0.000 0.000
#> GSM123189 3 0.2711 0.870 0.088 0.000 0.912
#> GSM123190 3 0.0000 0.880 0.000 0.000 1.000
#> GSM123191 3 0.2711 0.870 0.088 0.000 0.912
#> GSM123192 3 0.4291 0.738 0.180 0.000 0.820
#> GSM123193 3 0.2711 0.870 0.088 0.000 0.912
#> GSM123194 1 0.6095 0.194 0.608 0.000 0.392
#> GSM123195 2 0.0000 0.983 0.000 1.000 0.000
#> GSM123196 3 0.3116 0.863 0.108 0.000 0.892
#> GSM123197 2 0.2625 0.921 0.000 0.916 0.084
#> GSM123198 2 0.0000 0.983 0.000 1.000 0.000
#> GSM123199 1 0.0000 0.907 1.000 0.000 0.000
#> GSM123200 2 0.0000 0.983 0.000 1.000 0.000
#> GSM123201 3 0.6225 0.283 0.432 0.000 0.568
#> GSM123202 2 0.0237 0.981 0.000 0.996 0.004
#> GSM123203 1 0.0000 0.907 1.000 0.000 0.000
#> GSM123204 2 0.0000 0.983 0.000 1.000 0.000
#> GSM123205 2 0.0000 0.983 0.000 1.000 0.000
#> GSM123206 2 0.0000 0.983 0.000 1.000 0.000
#> GSM123207 3 0.0000 0.880 0.000 0.000 1.000
#> GSM123208 2 0.0000 0.983 0.000 1.000 0.000
#> GSM123209 3 0.0000 0.880 0.000 0.000 1.000
#> GSM123210 3 0.5216 0.700 0.260 0.000 0.740
#> GSM123211 3 0.0000 0.880 0.000 0.000 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 2 0.4624 0.67605 0.000 0.660 0.000 0.340
#> GSM123213 2 0.0000 0.94709 0.000 1.000 0.000 0.000
#> GSM123214 2 0.0000 0.94709 0.000 1.000 0.000 0.000
#> GSM123215 2 0.0592 0.94070 0.000 0.984 0.000 0.016
#> GSM123216 1 0.0000 0.89194 1.000 0.000 0.000 0.000
#> GSM123217 1 0.0000 0.89194 1.000 0.000 0.000 0.000
#> GSM123218 4 0.4713 0.86619 0.000 0.000 0.360 0.640
#> GSM123219 3 0.0000 0.67596 0.000 0.000 1.000 0.000
#> GSM123220 1 0.0000 0.89194 1.000 0.000 0.000 0.000
#> GSM123221 3 0.4655 -0.08469 0.004 0.000 0.684 0.312
#> GSM123222 3 0.0000 0.67596 0.000 0.000 1.000 0.000
#> GSM123223 2 0.0000 0.94709 0.000 1.000 0.000 0.000
#> GSM123224 1 0.0000 0.89194 1.000 0.000 0.000 0.000
#> GSM123225 1 0.0000 0.89194 1.000 0.000 0.000 0.000
#> GSM123226 1 0.4356 0.57419 0.708 0.000 0.000 0.292
#> GSM123227 1 0.3801 0.68001 0.780 0.000 0.220 0.000
#> GSM123228 1 0.0000 0.89194 1.000 0.000 0.000 0.000
#> GSM123229 4 0.4713 0.86619 0.000 0.000 0.360 0.640
#> GSM123230 4 0.7628 0.43298 0.348 0.000 0.212 0.440
#> GSM123231 4 0.4713 0.86619 0.000 0.000 0.360 0.640
#> GSM123232 1 0.0000 0.89194 1.000 0.000 0.000 0.000
#> GSM123233 3 0.0000 0.67596 0.000 0.000 1.000 0.000
#> GSM123234 4 0.7495 0.64774 0.184 0.000 0.368 0.448
#> GSM123235 4 0.4713 0.86619 0.000 0.000 0.360 0.640
#> GSM123236 3 0.1022 0.66234 0.032 0.000 0.968 0.000
#> GSM123237 1 0.0000 0.89194 1.000 0.000 0.000 0.000
#> GSM123238 3 0.7355 0.30733 0.000 0.172 0.488 0.340
#> GSM123239 3 0.0000 0.67596 0.000 0.000 1.000 0.000
#> GSM123240 1 0.0000 0.89194 1.000 0.000 0.000 0.000
#> GSM123241 1 0.2408 0.80655 0.896 0.000 0.104 0.000
#> GSM123242 3 0.5080 0.24015 0.000 0.420 0.576 0.004
#> GSM123182 3 0.1474 0.64691 0.052 0.000 0.948 0.000
#> GSM123183 2 0.4624 0.67605 0.000 0.660 0.000 0.340
#> GSM123184 2 0.0000 0.94709 0.000 1.000 0.000 0.000
#> GSM123185 3 0.0000 0.67596 0.000 0.000 1.000 0.000
#> GSM123186 3 0.0000 0.67596 0.000 0.000 1.000 0.000
#> GSM123187 3 0.4776 0.33780 0.000 0.376 0.624 0.000
#> GSM123188 1 0.0000 0.89194 1.000 0.000 0.000 0.000
#> GSM123189 4 0.4746 0.85728 0.000 0.000 0.368 0.632
#> GSM123190 3 0.4477 -0.07361 0.000 0.000 0.688 0.312
#> GSM123191 3 0.7820 -0.50619 0.276 0.000 0.412 0.312
#> GSM123192 3 0.1118 0.65973 0.036 0.000 0.964 0.000
#> GSM123193 1 0.4888 0.19975 0.588 0.000 0.412 0.000
#> GSM123194 1 0.3726 0.64035 0.788 0.000 0.212 0.000
#> GSM123195 2 0.0707 0.94739 0.000 0.980 0.000 0.020
#> GSM123196 4 0.4713 0.86619 0.000 0.000 0.360 0.640
#> GSM123197 3 0.6494 0.37325 0.000 0.088 0.572 0.340
#> GSM123198 2 0.0707 0.94739 0.000 0.980 0.000 0.020
#> GSM123199 1 0.0000 0.89194 1.000 0.000 0.000 0.000
#> GSM123200 2 0.0707 0.94739 0.000 0.980 0.000 0.020
#> GSM123201 1 0.3726 0.67639 0.788 0.000 0.212 0.000
#> GSM123202 2 0.1042 0.94293 0.000 0.972 0.008 0.020
#> GSM123203 1 0.0000 0.89194 1.000 0.000 0.000 0.000
#> GSM123204 2 0.0707 0.94739 0.000 0.980 0.000 0.020
#> GSM123205 2 0.0000 0.94709 0.000 1.000 0.000 0.000
#> GSM123206 2 0.0592 0.94767 0.000 0.984 0.000 0.016
#> GSM123207 3 0.0000 0.67596 0.000 0.000 1.000 0.000
#> GSM123208 2 0.0707 0.94739 0.000 0.980 0.000 0.020
#> GSM123209 3 0.0188 0.67470 0.000 0.000 0.996 0.004
#> GSM123210 3 0.4981 0.00531 0.464 0.000 0.536 0.000
#> GSM123211 3 0.0000 0.67596 0.000 0.000 1.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 4 0.0000 0.990 0.000 0.000 0.000 1.000 0.000
#> GSM123213 2 0.1908 0.938 0.000 0.908 0.000 0.092 0.000
#> GSM123214 2 0.1908 0.938 0.000 0.908 0.000 0.092 0.000
#> GSM123215 2 0.2966 0.852 0.000 0.816 0.000 0.184 0.000
#> GSM123216 1 0.0000 0.919 1.000 0.000 0.000 0.000 0.000
#> GSM123217 1 0.0000 0.919 1.000 0.000 0.000 0.000 0.000
#> GSM123218 3 0.0000 0.751 0.000 0.000 1.000 0.000 0.000
#> GSM123219 5 0.0000 0.940 0.000 0.000 0.000 0.000 1.000
#> GSM123220 1 0.0000 0.919 1.000 0.000 0.000 0.000 0.000
#> GSM123221 3 0.4562 -0.027 0.008 0.000 0.496 0.000 0.496
#> GSM123222 5 0.0000 0.940 0.000 0.000 0.000 0.000 1.000
#> GSM123223 2 0.1671 0.941 0.000 0.924 0.000 0.076 0.000
#> GSM123224 1 0.0000 0.919 1.000 0.000 0.000 0.000 0.000
#> GSM123225 1 0.0000 0.919 1.000 0.000 0.000 0.000 0.000
#> GSM123226 1 0.4287 0.140 0.540 0.000 0.460 0.000 0.000
#> GSM123227 1 0.3210 0.683 0.788 0.000 0.000 0.000 0.212
#> GSM123228 1 0.0000 0.919 1.000 0.000 0.000 0.000 0.000
#> GSM123229 3 0.0000 0.751 0.000 0.000 1.000 0.000 0.000
#> GSM123230 3 0.3857 0.547 0.312 0.000 0.688 0.000 0.000
#> GSM123231 3 0.0000 0.751 0.000 0.000 1.000 0.000 0.000
#> GSM123232 1 0.0000 0.919 1.000 0.000 0.000 0.000 0.000
#> GSM123233 5 0.0000 0.940 0.000 0.000 0.000 0.000 1.000
#> GSM123234 3 0.4229 0.586 0.276 0.000 0.704 0.000 0.020
#> GSM123235 3 0.0000 0.751 0.000 0.000 1.000 0.000 0.000
#> GSM123236 5 0.0000 0.940 0.000 0.000 0.000 0.000 1.000
#> GSM123237 1 0.0000 0.919 1.000 0.000 0.000 0.000 0.000
#> GSM123238 4 0.0000 0.990 0.000 0.000 0.000 1.000 0.000
#> GSM123239 5 0.0000 0.940 0.000 0.000 0.000 0.000 1.000
#> GSM123240 1 0.0000 0.919 1.000 0.000 0.000 0.000 0.000
#> GSM123241 1 0.0000 0.919 1.000 0.000 0.000 0.000 0.000
#> GSM123242 5 0.3759 0.726 0.000 0.092 0.000 0.092 0.816
#> GSM123182 5 0.0000 0.940 0.000 0.000 0.000 0.000 1.000
#> GSM123183 4 0.0000 0.990 0.000 0.000 0.000 1.000 0.000
#> GSM123184 2 0.1908 0.938 0.000 0.908 0.000 0.092 0.000
#> GSM123185 5 0.0000 0.940 0.000 0.000 0.000 0.000 1.000
#> GSM123186 5 0.0000 0.940 0.000 0.000 0.000 0.000 1.000
#> GSM123187 5 0.1082 0.904 0.000 0.028 0.000 0.008 0.964
#> GSM123188 1 0.0000 0.919 1.000 0.000 0.000 0.000 0.000
#> GSM123189 3 0.0609 0.743 0.000 0.000 0.980 0.000 0.020
#> GSM123190 5 0.4307 -0.115 0.000 0.000 0.496 0.000 0.504
#> GSM123191 3 0.5867 0.284 0.404 0.000 0.496 0.000 0.100
#> GSM123192 5 0.0000 0.940 0.000 0.000 0.000 0.000 1.000
#> GSM123193 1 0.2020 0.828 0.900 0.000 0.000 0.000 0.100
#> GSM123194 1 0.0609 0.905 0.980 0.000 0.000 0.000 0.020
#> GSM123195 2 0.0000 0.941 0.000 1.000 0.000 0.000 0.000
#> GSM123196 3 0.0000 0.751 0.000 0.000 1.000 0.000 0.000
#> GSM123197 4 0.0609 0.971 0.000 0.000 0.000 0.980 0.020
#> GSM123198 2 0.1043 0.945 0.000 0.960 0.000 0.040 0.000
#> GSM123199 1 0.0000 0.919 1.000 0.000 0.000 0.000 0.000
#> GSM123200 2 0.0000 0.941 0.000 1.000 0.000 0.000 0.000
#> GSM123201 1 0.1197 0.886 0.952 0.000 0.000 0.000 0.048
#> GSM123202 2 0.1168 0.931 0.000 0.960 0.000 0.008 0.032
#> GSM123203 1 0.0000 0.919 1.000 0.000 0.000 0.000 0.000
#> GSM123204 2 0.0000 0.941 0.000 1.000 0.000 0.000 0.000
#> GSM123205 2 0.1908 0.938 0.000 0.908 0.000 0.092 0.000
#> GSM123206 2 0.0162 0.942 0.000 0.996 0.000 0.004 0.000
#> GSM123207 5 0.0000 0.940 0.000 0.000 0.000 0.000 1.000
#> GSM123208 2 0.0000 0.941 0.000 1.000 0.000 0.000 0.000
#> GSM123209 5 0.0000 0.940 0.000 0.000 0.000 0.000 1.000
#> GSM123210 1 0.4030 0.475 0.648 0.000 0.000 0.000 0.352
#> GSM123211 5 0.0000 0.940 0.000 0.000 0.000 0.000 1.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 4 0.0000 0.98985 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123213 2 0.1967 0.92563 0.000 0.904 0.000 0.084 0.000 0.012
#> GSM123214 2 0.1967 0.92563 0.000 0.904 0.000 0.084 0.000 0.012
#> GSM123215 2 0.2946 0.84331 0.000 0.812 0.000 0.176 0.000 0.012
#> GSM123216 1 0.0000 0.89819 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123217 1 0.0000 0.89819 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123218 3 0.0000 0.86155 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM123219 6 0.3409 0.52565 0.000 0.000 0.000 0.000 0.300 0.700
#> GSM123220 1 0.0000 0.89819 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123221 6 0.1196 0.77799 0.000 0.000 0.008 0.000 0.040 0.952
#> GSM123222 5 0.0000 0.90189 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM123223 2 0.2122 0.92965 0.000 0.900 0.000 0.076 0.000 0.024
#> GSM123224 1 0.0000 0.89819 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123225 1 0.0000 0.89819 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123226 3 0.3515 0.53433 0.324 0.000 0.676 0.000 0.000 0.000
#> GSM123227 1 0.4447 0.56691 0.704 0.000 0.000 0.000 0.196 0.100
#> GSM123228 1 0.0000 0.89819 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123229 3 0.0000 0.86155 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM123230 3 0.4441 0.60530 0.208 0.000 0.700 0.000 0.000 0.092
#> GSM123231 3 0.0000 0.86155 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM123232 1 0.0000 0.89819 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123233 5 0.2491 0.76224 0.000 0.000 0.000 0.000 0.836 0.164
#> GSM123234 6 0.1196 0.76996 0.040 0.000 0.008 0.000 0.000 0.952
#> GSM123235 3 0.0000 0.86155 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM123236 6 0.3851 0.06253 0.000 0.000 0.000 0.000 0.460 0.540
#> GSM123237 1 0.0000 0.89819 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123238 4 0.0000 0.98985 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123239 5 0.0000 0.90189 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM123240 1 0.0000 0.89819 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123241 1 0.3747 0.27639 0.604 0.000 0.000 0.000 0.000 0.396
#> GSM123242 5 0.2842 0.78856 0.000 0.028 0.000 0.084 0.868 0.020
#> GSM123182 5 0.0547 0.89240 0.000 0.000 0.000 0.000 0.980 0.020
#> GSM123183 4 0.0000 0.98985 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123184 2 0.1967 0.92563 0.000 0.904 0.000 0.084 0.000 0.012
#> GSM123185 5 0.2491 0.76224 0.000 0.000 0.000 0.000 0.836 0.164
#> GSM123186 5 0.0000 0.90189 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM123187 5 0.0405 0.89535 0.000 0.004 0.000 0.000 0.988 0.008
#> GSM123188 1 0.0000 0.89819 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123189 6 0.1075 0.76239 0.000 0.000 0.048 0.000 0.000 0.952
#> GSM123190 6 0.1196 0.77799 0.000 0.000 0.008 0.000 0.040 0.952
#> GSM123191 6 0.1346 0.78129 0.016 0.000 0.008 0.000 0.024 0.952
#> GSM123192 5 0.0000 0.90189 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM123193 6 0.1261 0.78086 0.024 0.000 0.000 0.000 0.024 0.952
#> GSM123194 1 0.3869 -0.08978 0.500 0.000 0.000 0.000 0.000 0.500
#> GSM123195 2 0.0713 0.92797 0.000 0.972 0.000 0.000 0.000 0.028
#> GSM123196 3 0.0000 0.86155 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM123197 4 0.0547 0.96941 0.000 0.000 0.000 0.980 0.020 0.000
#> GSM123198 2 0.1168 0.93220 0.000 0.956 0.000 0.028 0.000 0.016
#> GSM123199 1 0.0000 0.89819 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123200 2 0.0713 0.92797 0.000 0.972 0.000 0.000 0.000 0.028
#> GSM123201 6 0.4091 -0.00693 0.472 0.000 0.000 0.000 0.008 0.520
#> GSM123202 2 0.0937 0.91837 0.000 0.960 0.000 0.000 0.040 0.000
#> GSM123203 1 0.0000 0.89819 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM123204 2 0.0713 0.92797 0.000 0.972 0.000 0.000 0.000 0.028
#> GSM123205 2 0.1967 0.92563 0.000 0.904 0.000 0.084 0.000 0.012
#> GSM123206 2 0.1074 0.93037 0.000 0.960 0.000 0.012 0.000 0.028
#> GSM123207 5 0.0000 0.90189 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM123208 2 0.0713 0.92797 0.000 0.972 0.000 0.000 0.000 0.028
#> GSM123209 5 0.3727 0.25799 0.000 0.000 0.000 0.000 0.612 0.388
#> GSM123210 6 0.3612 0.63262 0.200 0.000 0.000 0.000 0.036 0.764
#> GSM123211 5 0.0000 0.90189 0.000 0.000 0.000 0.000 1.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> ATC:pam 61 0.2332 2
#> ATC:pam 57 0.0488 3
#> ATC:pam 51 0.1110 4
#> ATC:pam 56 0.2298 5
#> ATC:pam 56 0.0617 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.393 0.895 0.869 0.3832 0.552 0.552
#> 3 3 0.803 0.877 0.897 0.4546 0.885 0.792
#> 4 4 0.624 0.646 0.790 0.1928 0.964 0.917
#> 5 5 0.776 0.809 0.899 0.0704 0.881 0.715
#> 6 6 0.672 0.670 0.811 0.0976 0.862 0.581
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.795 0.986 0.240 0.760
#> GSM123213 2 0.781 0.992 0.232 0.768
#> GSM123214 2 0.781 0.992 0.232 0.768
#> GSM123215 2 0.781 0.992 0.232 0.768
#> GSM123216 1 0.000 0.889 1.000 0.000
#> GSM123217 1 0.781 0.669 0.768 0.232
#> GSM123218 1 0.529 0.860 0.880 0.120
#> GSM123219 1 0.000 0.889 1.000 0.000
#> GSM123220 1 0.000 0.889 1.000 0.000
#> GSM123221 1 0.000 0.889 1.000 0.000
#> GSM123222 1 0.327 0.883 0.940 0.060
#> GSM123223 2 0.781 0.992 0.232 0.768
#> GSM123224 1 0.000 0.889 1.000 0.000
#> GSM123225 1 0.000 0.889 1.000 0.000
#> GSM123226 1 0.358 0.882 0.932 0.068
#> GSM123227 1 0.000 0.889 1.000 0.000
#> GSM123228 1 0.000 0.889 1.000 0.000
#> GSM123229 1 0.529 0.860 0.880 0.120
#> GSM123230 1 0.000 0.889 1.000 0.000
#> GSM123231 1 0.529 0.860 0.880 0.120
#> GSM123232 1 0.781 0.669 0.768 0.232
#> GSM123233 1 0.529 0.860 0.880 0.120
#> GSM123234 1 0.184 0.888 0.972 0.028
#> GSM123235 1 0.529 0.860 0.880 0.120
#> GSM123236 1 0.278 0.886 0.952 0.048
#> GSM123237 1 0.402 0.878 0.920 0.080
#> GSM123238 2 0.795 0.986 0.240 0.760
#> GSM123239 1 0.529 0.860 0.880 0.120
#> GSM123240 1 0.506 0.864 0.888 0.112
#> GSM123241 1 0.000 0.889 1.000 0.000
#> GSM123242 2 0.781 0.992 0.232 0.768
#> GSM123182 1 0.529 0.860 0.880 0.120
#> GSM123183 2 0.795 0.986 0.240 0.760
#> GSM123184 2 0.781 0.992 0.232 0.768
#> GSM123185 1 0.529 0.860 0.880 0.120
#> GSM123186 1 0.506 0.864 0.888 0.112
#> GSM123187 2 0.795 0.984 0.240 0.760
#> GSM123188 1 0.781 0.669 0.768 0.232
#> GSM123189 1 0.529 0.860 0.880 0.120
#> GSM123190 1 0.529 0.860 0.880 0.120
#> GSM123191 1 0.000 0.889 1.000 0.000
#> GSM123192 1 0.224 0.888 0.964 0.036
#> GSM123193 1 0.000 0.889 1.000 0.000
#> GSM123194 1 0.000 0.889 1.000 0.000
#> GSM123195 2 0.781 0.992 0.232 0.768
#> GSM123196 1 0.529 0.860 0.880 0.120
#> GSM123197 2 0.795 0.986 0.240 0.760
#> GSM123198 2 0.781 0.992 0.232 0.768
#> GSM123199 1 0.781 0.669 0.768 0.232
#> GSM123200 2 0.781 0.992 0.232 0.768
#> GSM123201 1 0.000 0.889 1.000 0.000
#> GSM123202 2 0.781 0.992 0.232 0.768
#> GSM123203 1 0.781 0.669 0.768 0.232
#> GSM123204 2 0.781 0.992 0.232 0.768
#> GSM123205 2 0.781 0.992 0.232 0.768
#> GSM123206 2 0.781 0.992 0.232 0.768
#> GSM123207 1 0.456 0.872 0.904 0.096
#> GSM123208 2 0.781 0.992 0.232 0.768
#> GSM123209 2 0.876 0.899 0.296 0.704
#> GSM123210 1 0.000 0.889 1.000 0.000
#> GSM123211 1 0.506 0.864 0.888 0.112
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 2 0.6200 0.837 0.012 0.676 0.312
#> GSM123213 2 0.0000 0.798 0.000 1.000 0.000
#> GSM123214 2 0.0000 0.798 0.000 1.000 0.000
#> GSM123215 2 0.0424 0.800 0.000 0.992 0.008
#> GSM123216 1 0.0424 0.943 0.992 0.000 0.008
#> GSM123217 1 0.0000 0.943 1.000 0.000 0.000
#> GSM123218 3 0.5919 0.983 0.276 0.012 0.712
#> GSM123219 1 0.0000 0.943 1.000 0.000 0.000
#> GSM123220 1 0.0892 0.935 0.980 0.000 0.020
#> GSM123221 1 0.0592 0.942 0.988 0.012 0.000
#> GSM123222 1 0.1289 0.925 0.968 0.000 0.032
#> GSM123223 2 0.0000 0.798 0.000 1.000 0.000
#> GSM123224 1 0.0892 0.935 0.980 0.000 0.020
#> GSM123225 1 0.1267 0.932 0.972 0.004 0.024
#> GSM123226 1 0.1620 0.930 0.964 0.012 0.024
#> GSM123227 1 0.0892 0.939 0.980 0.020 0.000
#> GSM123228 1 0.1267 0.932 0.972 0.004 0.024
#> GSM123229 3 0.6019 0.974 0.288 0.012 0.700
#> GSM123230 1 0.1620 0.930 0.964 0.012 0.024
#> GSM123231 3 0.5919 0.983 0.276 0.012 0.712
#> GSM123232 1 0.0000 0.943 1.000 0.000 0.000
#> GSM123233 1 0.4796 0.642 0.780 0.220 0.000
#> GSM123234 1 0.1482 0.933 0.968 0.012 0.020
#> GSM123235 3 0.5919 0.983 0.276 0.012 0.712
#> GSM123236 1 0.0892 0.939 0.980 0.020 0.000
#> GSM123237 1 0.0424 0.943 0.992 0.000 0.008
#> GSM123238 2 0.6200 0.837 0.012 0.676 0.312
#> GSM123239 1 0.0892 0.939 0.980 0.020 0.000
#> GSM123240 1 0.0424 0.943 0.992 0.000 0.008
#> GSM123241 1 0.0747 0.938 0.984 0.000 0.016
#> GSM123242 2 0.0000 0.798 0.000 1.000 0.000
#> GSM123182 1 0.5733 0.454 0.676 0.324 0.000
#> GSM123183 2 0.6200 0.837 0.012 0.676 0.312
#> GSM123184 2 0.0000 0.798 0.000 1.000 0.000
#> GSM123185 1 0.5733 0.454 0.676 0.324 0.000
#> GSM123186 1 0.0424 0.941 0.992 0.008 0.000
#> GSM123187 2 0.0000 0.798 0.000 1.000 0.000
#> GSM123188 1 0.0000 0.943 1.000 0.000 0.000
#> GSM123189 3 0.6282 0.931 0.324 0.012 0.664
#> GSM123190 1 0.1482 0.928 0.968 0.012 0.020
#> GSM123191 1 0.0592 0.942 0.988 0.012 0.000
#> GSM123192 1 0.0000 0.943 1.000 0.000 0.000
#> GSM123193 1 0.0000 0.943 1.000 0.000 0.000
#> GSM123194 1 0.0592 0.942 0.988 0.012 0.000
#> GSM123195 2 0.5650 0.842 0.000 0.688 0.312
#> GSM123196 3 0.5919 0.983 0.276 0.012 0.712
#> GSM123197 2 0.6200 0.837 0.012 0.676 0.312
#> GSM123198 2 0.5591 0.844 0.000 0.696 0.304
#> GSM123199 1 0.0000 0.943 1.000 0.000 0.000
#> GSM123200 2 0.5650 0.842 0.000 0.688 0.312
#> GSM123201 1 0.0592 0.942 0.988 0.012 0.000
#> GSM123202 2 0.5591 0.844 0.000 0.696 0.304
#> GSM123203 1 0.0000 0.943 1.000 0.000 0.000
#> GSM123204 2 0.5591 0.844 0.000 0.696 0.304
#> GSM123205 2 0.0000 0.798 0.000 1.000 0.000
#> GSM123206 2 0.5591 0.844 0.000 0.696 0.304
#> GSM123207 1 0.0592 0.942 0.988 0.012 0.000
#> GSM123208 2 0.5650 0.842 0.000 0.688 0.312
#> GSM123209 2 0.6355 0.426 0.280 0.696 0.024
#> GSM123210 1 0.0000 0.943 1.000 0.000 0.000
#> GSM123211 1 0.1643 0.916 0.956 0.000 0.044
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 2 0.6852 0.534 0.000 0.600 0.192 0.208
#> GSM123213 2 0.4855 0.638 0.000 0.600 0.000 0.400
#> GSM123214 2 0.4830 0.641 0.000 0.608 0.000 0.392
#> GSM123215 2 0.4817 0.643 0.000 0.612 0.000 0.388
#> GSM123216 1 0.4391 0.728 0.740 0.000 0.008 0.252
#> GSM123217 1 0.4072 0.732 0.748 0.000 0.000 0.252
#> GSM123218 3 0.3528 0.917 0.000 0.192 0.808 0.000
#> GSM123219 1 0.1022 0.664 0.968 0.000 0.000 0.032
#> GSM123220 1 0.4072 0.732 0.748 0.000 0.000 0.252
#> GSM123221 1 0.1022 0.664 0.968 0.000 0.000 0.032
#> GSM123222 1 0.0817 0.669 0.976 0.000 0.000 0.024
#> GSM123223 2 0.4830 0.641 0.000 0.608 0.000 0.392
#> GSM123224 1 0.4072 0.732 0.748 0.000 0.000 0.252
#> GSM123225 1 0.4220 0.732 0.748 0.000 0.004 0.248
#> GSM123226 1 0.4807 0.723 0.728 0.000 0.024 0.248
#> GSM123227 1 0.3444 0.725 0.816 0.000 0.000 0.184
#> GSM123228 1 0.4220 0.732 0.748 0.000 0.004 0.248
#> GSM123229 3 0.4842 0.881 0.048 0.192 0.760 0.000
#> GSM123230 1 0.6412 0.411 0.592 0.000 0.320 0.088
#> GSM123231 3 0.3528 0.917 0.000 0.192 0.808 0.000
#> GSM123232 1 0.4072 0.732 0.748 0.000 0.000 0.252
#> GSM123233 1 0.5000 -0.902 0.504 0.000 0.000 0.496
#> GSM123234 1 0.4795 0.610 0.776 0.020 0.184 0.020
#> GSM123235 3 0.3569 0.916 0.000 0.196 0.804 0.000
#> GSM123236 1 0.2408 0.548 0.896 0.000 0.000 0.104
#> GSM123237 1 0.3300 0.730 0.848 0.000 0.008 0.144
#> GSM123238 2 0.6852 0.534 0.000 0.600 0.192 0.208
#> GSM123239 1 0.1022 0.664 0.968 0.000 0.000 0.032
#> GSM123240 1 0.3498 0.732 0.832 0.000 0.008 0.160
#> GSM123241 1 0.4072 0.732 0.748 0.000 0.000 0.252
#> GSM123242 2 0.4855 0.638 0.000 0.600 0.000 0.400
#> GSM123182 4 0.4977 1.000 0.460 0.000 0.000 0.540
#> GSM123183 2 0.6852 0.534 0.000 0.600 0.192 0.208
#> GSM123184 2 0.4830 0.641 0.000 0.608 0.000 0.392
#> GSM123185 4 0.4977 1.000 0.460 0.000 0.000 0.540
#> GSM123186 1 0.1356 0.656 0.960 0.008 0.000 0.032
#> GSM123187 2 0.4830 0.641 0.000 0.608 0.000 0.392
#> GSM123188 1 0.4072 0.732 0.748 0.000 0.000 0.252
#> GSM123189 3 0.6790 0.630 0.200 0.192 0.608 0.000
#> GSM123190 1 0.4500 0.311 0.776 0.192 0.000 0.032
#> GSM123191 1 0.0592 0.675 0.984 0.000 0.000 0.016
#> GSM123192 1 0.1022 0.664 0.968 0.000 0.000 0.032
#> GSM123193 1 0.0921 0.667 0.972 0.000 0.000 0.028
#> GSM123194 1 0.4072 0.718 0.748 0.000 0.000 0.252
#> GSM123195 2 0.0000 0.677 0.000 1.000 0.000 0.000
#> GSM123196 3 0.3528 0.917 0.000 0.192 0.808 0.000
#> GSM123197 2 0.6852 0.534 0.000 0.600 0.192 0.208
#> GSM123198 2 0.0000 0.677 0.000 1.000 0.000 0.000
#> GSM123199 1 0.4072 0.732 0.748 0.000 0.000 0.252
#> GSM123200 2 0.0000 0.677 0.000 1.000 0.000 0.000
#> GSM123201 1 0.1389 0.705 0.952 0.000 0.000 0.048
#> GSM123202 2 0.0188 0.677 0.004 0.996 0.000 0.000
#> GSM123203 1 0.4072 0.732 0.748 0.000 0.000 0.252
#> GSM123204 2 0.0336 0.677 0.000 0.992 0.000 0.008
#> GSM123205 2 0.4830 0.641 0.000 0.608 0.000 0.392
#> GSM123206 2 0.0000 0.677 0.000 1.000 0.000 0.000
#> GSM123207 1 0.1118 0.660 0.964 0.000 0.000 0.036
#> GSM123208 2 0.0000 0.677 0.000 1.000 0.000 0.000
#> GSM123209 2 0.3933 0.472 0.200 0.792 0.000 0.008
#> GSM123210 1 0.0188 0.686 0.996 0.000 0.000 0.004
#> GSM123211 1 0.8234 -0.255 0.532 0.052 0.192 0.224
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 4 0.0703 0.998 0.000 0.024 0.000 0.976 0.000
#> GSM123213 5 0.3143 0.701 0.000 0.204 0.000 0.000 0.796
#> GSM123214 5 0.4278 0.487 0.000 0.452 0.000 0.000 0.548
#> GSM123215 2 0.4126 -0.030 0.000 0.620 0.000 0.000 0.380
#> GSM123216 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM123217 1 0.0162 0.902 0.996 0.000 0.000 0.004 0.000
#> GSM123218 3 0.0000 0.986 0.000 0.000 1.000 0.000 0.000
#> GSM123219 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM123220 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM123221 1 0.0324 0.901 0.992 0.004 0.000 0.004 0.000
#> GSM123222 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM123223 5 0.4278 0.487 0.000 0.452 0.000 0.000 0.548
#> GSM123224 1 0.0162 0.902 0.996 0.000 0.000 0.004 0.000
#> GSM123225 1 0.0162 0.902 0.996 0.000 0.000 0.004 0.000
#> GSM123226 1 0.3387 0.768 0.796 0.004 0.196 0.004 0.000
#> GSM123227 1 0.3333 0.792 0.788 0.000 0.000 0.004 0.208
#> GSM123228 1 0.3231 0.799 0.800 0.000 0.000 0.004 0.196
#> GSM123229 3 0.0566 0.976 0.012 0.004 0.984 0.000 0.000
#> GSM123230 1 0.4545 0.363 0.560 0.004 0.432 0.004 0.000
#> GSM123231 3 0.0000 0.986 0.000 0.000 1.000 0.000 0.000
#> GSM123232 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM123233 5 0.0865 0.614 0.024 0.000 0.000 0.004 0.972
#> GSM123234 1 0.3352 0.772 0.800 0.004 0.192 0.004 0.000
#> GSM123235 3 0.0000 0.986 0.000 0.000 1.000 0.000 0.000
#> GSM123236 1 0.4455 0.562 0.588 0.000 0.000 0.008 0.404
#> GSM123237 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM123238 4 0.0703 0.998 0.000 0.024 0.000 0.976 0.000
#> GSM123239 1 0.4310 0.583 0.604 0.004 0.000 0.000 0.392
#> GSM123240 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM123241 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM123242 5 0.3143 0.701 0.000 0.204 0.000 0.000 0.796
#> GSM123182 5 0.0510 0.629 0.000 0.000 0.000 0.016 0.984
#> GSM123183 4 0.0703 0.998 0.000 0.024 0.000 0.976 0.000
#> GSM123184 5 0.4278 0.487 0.000 0.452 0.000 0.000 0.548
#> GSM123185 5 0.0510 0.629 0.000 0.000 0.000 0.016 0.984
#> GSM123186 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM123187 5 0.3109 0.701 0.000 0.200 0.000 0.000 0.800
#> GSM123188 1 0.0162 0.902 0.996 0.000 0.000 0.004 0.000
#> GSM123189 3 0.0932 0.961 0.020 0.004 0.972 0.004 0.000
#> GSM123190 1 0.1991 0.849 0.916 0.004 0.076 0.004 0.000
#> GSM123191 1 0.0324 0.901 0.992 0.004 0.000 0.004 0.000
#> GSM123192 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM123193 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM123194 1 0.3300 0.794 0.792 0.000 0.000 0.004 0.204
#> GSM123195 2 0.0162 0.888 0.000 0.996 0.004 0.000 0.000
#> GSM123196 3 0.0000 0.986 0.000 0.000 1.000 0.000 0.000
#> GSM123197 4 0.0703 0.998 0.000 0.024 0.000 0.976 0.000
#> GSM123198 2 0.0000 0.889 0.000 1.000 0.000 0.000 0.000
#> GSM123199 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM123200 2 0.0162 0.888 0.000 0.996 0.004 0.000 0.000
#> GSM123201 1 0.3422 0.795 0.792 0.004 0.000 0.004 0.200
#> GSM123202 2 0.0000 0.889 0.000 1.000 0.000 0.000 0.000
#> GSM123203 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM123204 2 0.0000 0.889 0.000 1.000 0.000 0.000 0.000
#> GSM123205 5 0.4192 0.548 0.000 0.404 0.000 0.000 0.596
#> GSM123206 2 0.0000 0.889 0.000 1.000 0.000 0.000 0.000
#> GSM123207 1 0.4464 0.554 0.584 0.000 0.000 0.008 0.408
#> GSM123208 2 0.0162 0.888 0.000 0.996 0.004 0.000 0.000
#> GSM123209 2 0.3920 0.623 0.120 0.812 0.000 0.008 0.060
#> GSM123210 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM123211 4 0.0771 0.992 0.004 0.020 0.000 0.976 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 4 0.0000 0.9528 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123213 6 0.2003 0.9953 0.000 0.116 0.000 0.000 0.000 0.884
#> GSM123214 6 0.2146 0.9965 0.000 0.116 0.000 0.000 0.004 0.880
#> GSM123215 2 0.3999 -0.2468 0.004 0.500 0.000 0.000 0.000 0.496
#> GSM123216 1 0.1588 0.7754 0.924 0.000 0.004 0.000 0.072 0.000
#> GSM123217 1 0.2302 0.7568 0.872 0.000 0.000 0.000 0.120 0.008
#> GSM123218 3 0.0000 0.7128 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM123219 1 0.0508 0.7885 0.984 0.000 0.000 0.000 0.012 0.004
#> GSM123220 1 0.1152 0.7715 0.952 0.000 0.004 0.000 0.044 0.000
#> GSM123221 1 0.3266 0.4728 0.728 0.000 0.000 0.000 0.272 0.000
#> GSM123222 1 0.1531 0.7779 0.928 0.000 0.000 0.000 0.068 0.004
#> GSM123223 6 0.2146 0.9965 0.000 0.116 0.000 0.000 0.004 0.880
#> GSM123224 1 0.1700 0.7447 0.916 0.000 0.004 0.000 0.080 0.000
#> GSM123225 1 0.3341 0.7174 0.816 0.000 0.000 0.000 0.068 0.116
#> GSM123226 3 0.7380 0.0937 0.276 0.000 0.336 0.000 0.276 0.112
#> GSM123227 5 0.3695 0.5882 0.376 0.000 0.000 0.000 0.624 0.000
#> GSM123228 1 0.5320 0.1480 0.532 0.000 0.000 0.000 0.352 0.116
#> GSM123229 3 0.0000 0.7128 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM123230 3 0.5697 0.2981 0.208 0.000 0.520 0.000 0.272 0.000
#> GSM123231 3 0.0000 0.7128 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM123232 1 0.2234 0.7531 0.872 0.000 0.000 0.000 0.124 0.004
#> GSM123233 5 0.5219 0.4372 0.116 0.000 0.000 0.000 0.568 0.316
#> GSM123234 3 0.6075 0.0166 0.332 0.000 0.392 0.000 0.276 0.000
#> GSM123235 3 0.0000 0.7128 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM123236 5 0.3766 0.6669 0.304 0.000 0.000 0.000 0.684 0.012
#> GSM123237 1 0.1444 0.7759 0.928 0.000 0.000 0.000 0.072 0.000
#> GSM123238 4 0.0000 0.9528 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123239 5 0.3464 0.6517 0.312 0.000 0.000 0.000 0.688 0.000
#> GSM123240 1 0.1444 0.7759 0.928 0.000 0.000 0.000 0.072 0.000
#> GSM123241 1 0.0405 0.7848 0.988 0.000 0.004 0.000 0.008 0.000
#> GSM123242 6 0.2003 0.9953 0.000 0.116 0.000 0.000 0.000 0.884
#> GSM123182 5 0.5320 0.3922 0.116 0.000 0.000 0.000 0.532 0.352
#> GSM123183 4 0.0000 0.9528 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123184 6 0.2003 0.9953 0.000 0.116 0.000 0.000 0.000 0.884
#> GSM123185 5 0.5310 0.3926 0.116 0.000 0.000 0.000 0.536 0.348
#> GSM123186 1 0.0547 0.7886 0.980 0.000 0.000 0.000 0.020 0.000
#> GSM123187 6 0.2146 0.9965 0.000 0.116 0.000 0.000 0.004 0.880
#> GSM123188 1 0.2212 0.7566 0.880 0.000 0.000 0.000 0.112 0.008
#> GSM123189 3 0.1753 0.6841 0.004 0.000 0.912 0.000 0.084 0.000
#> GSM123190 1 0.6088 -0.2745 0.368 0.000 0.356 0.000 0.276 0.000
#> GSM123191 1 0.3288 0.4664 0.724 0.000 0.000 0.000 0.276 0.000
#> GSM123192 1 0.1327 0.7795 0.936 0.000 0.000 0.000 0.064 0.000
#> GSM123193 1 0.0146 0.7868 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM123194 5 0.3428 0.6618 0.304 0.000 0.000 0.000 0.696 0.000
#> GSM123195 2 0.0000 0.8134 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123196 3 0.0000 0.7128 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM123197 4 0.0000 0.9528 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM123198 2 0.0146 0.8123 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM123199 1 0.2100 0.7570 0.884 0.000 0.000 0.000 0.112 0.004
#> GSM123200 2 0.0000 0.8134 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123201 5 0.3659 0.5789 0.364 0.000 0.000 0.000 0.636 0.000
#> GSM123202 2 0.1531 0.7939 0.004 0.928 0.000 0.000 0.000 0.068
#> GSM123203 1 0.2212 0.7566 0.880 0.000 0.000 0.000 0.112 0.008
#> GSM123204 2 0.2823 0.6919 0.000 0.796 0.000 0.000 0.000 0.204
#> GSM123205 6 0.2146 0.9965 0.000 0.116 0.000 0.000 0.004 0.880
#> GSM123206 2 0.2994 0.6887 0.004 0.788 0.000 0.000 0.000 0.208
#> GSM123207 1 0.4461 -0.2176 0.564 0.000 0.000 0.000 0.404 0.032
#> GSM123208 2 0.0000 0.8134 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM123209 2 0.4055 0.6358 0.064 0.780 0.000 0.000 0.132 0.024
#> GSM123210 1 0.0146 0.7868 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM123211 4 0.2003 0.7955 0.116 0.000 0.000 0.884 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> ATC:mclust 61 0.1461 2
#> ATC:mclust 58 0.2012 3
#> ATC:mclust 56 0.1323 4
#> ATC:mclust 56 0.0380 5
#> ATC:mclust 49 0.0729 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 61 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.900 0.923 0.970 0.4847 0.515 0.515
#> 3 3 0.663 0.790 0.884 0.3198 0.779 0.592
#> 4 4 0.586 0.469 0.724 0.1505 0.871 0.659
#> 5 5 0.642 0.640 0.809 0.0725 0.865 0.563
#> 6 6 0.595 0.536 0.724 0.0356 0.940 0.735
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM123212 2 0.000 0.963 0.000 1.000
#> GSM123213 2 0.000 0.963 0.000 1.000
#> GSM123214 2 0.000 0.963 0.000 1.000
#> GSM123215 2 0.000 0.963 0.000 1.000
#> GSM123216 1 0.000 0.970 1.000 0.000
#> GSM123217 1 0.000 0.970 1.000 0.000
#> GSM123218 1 0.000 0.970 1.000 0.000
#> GSM123219 1 0.529 0.853 0.880 0.120
#> GSM123220 1 0.000 0.970 1.000 0.000
#> GSM123221 1 0.000 0.970 1.000 0.000
#> GSM123222 1 0.000 0.970 1.000 0.000
#> GSM123223 2 0.000 0.963 0.000 1.000
#> GSM123224 1 0.000 0.970 1.000 0.000
#> GSM123225 1 0.000 0.970 1.000 0.000
#> GSM123226 1 0.000 0.970 1.000 0.000
#> GSM123227 1 0.000 0.970 1.000 0.000
#> GSM123228 1 0.000 0.970 1.000 0.000
#> GSM123229 1 0.000 0.970 1.000 0.000
#> GSM123230 1 0.000 0.970 1.000 0.000
#> GSM123231 1 0.000 0.970 1.000 0.000
#> GSM123232 1 0.000 0.970 1.000 0.000
#> GSM123233 1 0.943 0.437 0.640 0.360
#> GSM123234 1 0.000 0.970 1.000 0.000
#> GSM123235 1 0.000 0.970 1.000 0.000
#> GSM123236 1 0.000 0.970 1.000 0.000
#> GSM123237 1 0.000 0.970 1.000 0.000
#> GSM123238 2 0.000 0.963 0.000 1.000
#> GSM123239 2 0.876 0.563 0.296 0.704
#> GSM123240 1 0.000 0.970 1.000 0.000
#> GSM123241 1 0.000 0.970 1.000 0.000
#> GSM123242 2 0.000 0.963 0.000 1.000
#> GSM123182 1 0.311 0.920 0.944 0.056
#> GSM123183 2 0.000 0.963 0.000 1.000
#> GSM123184 2 0.000 0.963 0.000 1.000
#> GSM123185 1 0.000 0.970 1.000 0.000
#> GSM123186 2 0.000 0.963 0.000 1.000
#> GSM123187 2 0.000 0.963 0.000 1.000
#> GSM123188 1 0.000 0.970 1.000 0.000
#> GSM123189 1 0.000 0.970 1.000 0.000
#> GSM123190 1 0.529 0.853 0.880 0.120
#> GSM123191 1 0.000 0.970 1.000 0.000
#> GSM123192 2 0.995 0.117 0.460 0.540
#> GSM123193 1 0.000 0.970 1.000 0.000
#> GSM123194 1 0.000 0.970 1.000 0.000
#> GSM123195 2 0.000 0.963 0.000 1.000
#> GSM123196 1 0.000 0.970 1.000 0.000
#> GSM123197 2 0.000 0.963 0.000 1.000
#> GSM123198 2 0.000 0.963 0.000 1.000
#> GSM123199 1 0.000 0.970 1.000 0.000
#> GSM123200 2 0.000 0.963 0.000 1.000
#> GSM123201 1 0.000 0.970 1.000 0.000
#> GSM123202 2 0.000 0.963 0.000 1.000
#> GSM123203 1 0.000 0.970 1.000 0.000
#> GSM123204 2 0.000 0.963 0.000 1.000
#> GSM123205 2 0.000 0.963 0.000 1.000
#> GSM123206 2 0.000 0.963 0.000 1.000
#> GSM123207 2 0.311 0.910 0.056 0.944
#> GSM123208 2 0.000 0.963 0.000 1.000
#> GSM123209 2 0.000 0.963 0.000 1.000
#> GSM123210 1 0.000 0.970 1.000 0.000
#> GSM123211 1 0.949 0.416 0.632 0.368
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM123212 2 0.0000 0.9485 0.000 1.000 0.000
#> GSM123213 2 0.3551 0.8479 0.132 0.868 0.000
#> GSM123214 2 0.0000 0.9485 0.000 1.000 0.000
#> GSM123215 2 0.0000 0.9485 0.000 1.000 0.000
#> GSM123216 1 0.2878 0.8700 0.904 0.000 0.096
#> GSM123217 1 0.0892 0.8638 0.980 0.000 0.020
#> GSM123218 3 0.0000 0.7689 0.000 0.000 1.000
#> GSM123219 1 0.1529 0.8282 0.960 0.040 0.000
#> GSM123220 1 0.4702 0.7845 0.788 0.000 0.212
#> GSM123221 1 0.4047 0.8464 0.848 0.004 0.148
#> GSM123222 1 0.4702 0.7842 0.788 0.000 0.212
#> GSM123223 2 0.0000 0.9485 0.000 1.000 0.000
#> GSM123224 1 0.4555 0.7987 0.800 0.000 0.200
#> GSM123225 1 0.4235 0.8238 0.824 0.000 0.176
#> GSM123226 3 0.6307 0.0181 0.488 0.000 0.512
#> GSM123227 1 0.3482 0.8612 0.872 0.000 0.128
#> GSM123228 1 0.4974 0.7483 0.764 0.000 0.236
#> GSM123229 3 0.1289 0.7619 0.032 0.000 0.968
#> GSM123230 3 0.4291 0.6607 0.180 0.000 0.820
#> GSM123231 3 0.0000 0.7689 0.000 0.000 1.000
#> GSM123232 1 0.3340 0.8637 0.880 0.000 0.120
#> GSM123233 3 0.7575 0.0665 0.040 0.456 0.504
#> GSM123234 3 0.2796 0.7336 0.092 0.000 0.908
#> GSM123235 3 0.0000 0.7689 0.000 0.000 1.000
#> GSM123236 1 0.1529 0.8695 0.960 0.000 0.040
#> GSM123237 1 0.0000 0.8556 1.000 0.000 0.000
#> GSM123238 2 0.3752 0.8253 0.144 0.856 0.000
#> GSM123239 2 0.1647 0.9166 0.036 0.960 0.004
#> GSM123240 1 0.0000 0.8556 1.000 0.000 0.000
#> GSM123241 1 0.3551 0.8586 0.868 0.000 0.132
#> GSM123242 2 0.3752 0.8362 0.144 0.856 0.000
#> GSM123182 1 0.0237 0.8535 0.996 0.004 0.000
#> GSM123183 2 0.0000 0.9485 0.000 1.000 0.000
#> GSM123184 2 0.0000 0.9485 0.000 1.000 0.000
#> GSM123185 1 0.0000 0.8556 1.000 0.000 0.000
#> GSM123186 2 0.6140 0.4280 0.404 0.596 0.000
#> GSM123187 2 0.0424 0.9441 0.008 0.992 0.000
#> GSM123188 1 0.2165 0.8715 0.936 0.000 0.064
#> GSM123189 3 0.0000 0.7689 0.000 0.000 1.000
#> GSM123190 3 0.3116 0.6869 0.000 0.108 0.892
#> GSM123191 3 0.6295 0.0774 0.472 0.000 0.528
#> GSM123192 1 0.3267 0.7400 0.884 0.116 0.000
#> GSM123193 1 0.1529 0.8695 0.960 0.000 0.040
#> GSM123194 1 0.2878 0.8703 0.904 0.000 0.096
#> GSM123195 2 0.0000 0.9485 0.000 1.000 0.000
#> GSM123196 3 0.0000 0.7689 0.000 0.000 1.000
#> GSM123197 2 0.0000 0.9485 0.000 1.000 0.000
#> GSM123198 2 0.0000 0.9485 0.000 1.000 0.000
#> GSM123199 1 0.3551 0.8586 0.868 0.000 0.132
#> GSM123200 2 0.2711 0.8757 0.000 0.912 0.088
#> GSM123201 3 0.6305 0.0344 0.484 0.000 0.516
#> GSM123202 2 0.0000 0.9485 0.000 1.000 0.000
#> GSM123203 1 0.3482 0.8610 0.872 0.000 0.128
#> GSM123204 2 0.0000 0.9485 0.000 1.000 0.000
#> GSM123205 2 0.0000 0.9485 0.000 1.000 0.000
#> GSM123206 2 0.0000 0.9485 0.000 1.000 0.000
#> GSM123207 1 0.5178 0.5206 0.744 0.256 0.000
#> GSM123208 2 0.0000 0.9485 0.000 1.000 0.000
#> GSM123209 2 0.0000 0.9485 0.000 1.000 0.000
#> GSM123210 1 0.0237 0.8576 0.996 0.000 0.004
#> GSM123211 1 0.3340 0.7353 0.880 0.120 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM123212 2 0.5038 0.500 0.012 0.652 0.000 0.336
#> GSM123213 4 0.4981 -0.351 0.000 0.464 0.000 0.536
#> GSM123214 2 0.3801 0.675 0.000 0.780 0.000 0.220
#> GSM123215 2 0.3266 0.718 0.000 0.832 0.000 0.168
#> GSM123216 1 0.4624 0.477 0.660 0.000 0.000 0.340
#> GSM123217 1 0.4250 0.502 0.724 0.000 0.000 0.276
#> GSM123218 3 0.0000 0.879 0.000 0.000 1.000 0.000
#> GSM123219 1 0.5750 0.350 0.532 0.028 0.000 0.440
#> GSM123220 1 0.4843 0.523 0.784 0.000 0.104 0.112
#> GSM123221 4 0.7068 -0.357 0.404 0.004 0.108 0.484
#> GSM123222 1 0.3338 0.459 0.884 0.008 0.052 0.056
#> GSM123223 2 0.0592 0.776 0.000 0.984 0.000 0.016
#> GSM123224 1 0.4292 0.527 0.820 0.000 0.080 0.100
#> GSM123225 1 0.2399 0.481 0.920 0.000 0.048 0.032
#> GSM123226 1 0.5489 0.284 0.700 0.000 0.240 0.060
#> GSM123227 4 0.5168 0.118 0.496 0.000 0.004 0.500
#> GSM123228 1 0.4036 0.411 0.836 0.000 0.076 0.088
#> GSM123229 3 0.2124 0.857 0.068 0.000 0.924 0.008
#> GSM123230 3 0.4502 0.720 0.236 0.000 0.748 0.016
#> GSM123231 3 0.0188 0.881 0.004 0.000 0.996 0.000
#> GSM123232 1 0.1452 0.523 0.956 0.000 0.008 0.036
#> GSM123233 4 0.8828 0.272 0.192 0.220 0.096 0.492
#> GSM123234 3 0.4814 0.736 0.172 0.004 0.776 0.048
#> GSM123235 3 0.0336 0.882 0.008 0.000 0.992 0.000
#> GSM123236 1 0.5688 -0.205 0.512 0.000 0.024 0.464
#> GSM123237 1 0.4776 0.451 0.624 0.000 0.000 0.376
#> GSM123238 2 0.6932 0.214 0.112 0.492 0.000 0.396
#> GSM123239 2 0.5165 0.596 0.052 0.784 0.028 0.136
#> GSM123240 1 0.4585 0.479 0.668 0.000 0.000 0.332
#> GSM123241 1 0.6078 0.465 0.620 0.000 0.068 0.312
#> GSM123242 2 0.5168 0.346 0.004 0.500 0.000 0.496
#> GSM123182 4 0.4790 0.246 0.380 0.000 0.000 0.620
#> GSM123183 2 0.4761 0.515 0.004 0.664 0.000 0.332
#> GSM123184 2 0.3975 0.660 0.000 0.760 0.000 0.240
#> GSM123185 4 0.4843 0.237 0.396 0.000 0.000 0.604
#> GSM123186 4 0.7499 -0.184 0.180 0.400 0.000 0.420
#> GSM123187 2 0.4925 0.344 0.000 0.572 0.000 0.428
#> GSM123188 1 0.3196 0.531 0.856 0.000 0.008 0.136
#> GSM123189 3 0.0469 0.882 0.012 0.000 0.988 0.000
#> GSM123190 3 0.1004 0.866 0.004 0.024 0.972 0.000
#> GSM123191 3 0.5206 0.527 0.308 0.000 0.668 0.024
#> GSM123192 4 0.6605 -0.322 0.440 0.080 0.000 0.480
#> GSM123193 1 0.4888 0.415 0.588 0.000 0.000 0.412
#> GSM123194 1 0.5384 0.124 0.648 0.000 0.028 0.324
#> GSM123195 2 0.0000 0.778 0.000 1.000 0.000 0.000
#> GSM123196 3 0.0188 0.881 0.004 0.000 0.996 0.000
#> GSM123197 2 0.5897 0.394 0.044 0.588 0.000 0.368
#> GSM123198 2 0.0000 0.778 0.000 1.000 0.000 0.000
#> GSM123199 1 0.1151 0.506 0.968 0.000 0.024 0.008
#> GSM123200 2 0.0469 0.774 0.000 0.988 0.012 0.000
#> GSM123201 1 0.7853 -0.152 0.436 0.004 0.232 0.328
#> GSM123202 2 0.0000 0.778 0.000 1.000 0.000 0.000
#> GSM123203 1 0.0937 0.507 0.976 0.000 0.012 0.012
#> GSM123204 2 0.0000 0.778 0.000 1.000 0.000 0.000
#> GSM123205 2 0.0188 0.778 0.000 0.996 0.000 0.004
#> GSM123206 2 0.0188 0.778 0.000 0.996 0.000 0.004
#> GSM123207 1 0.7894 -0.310 0.372 0.296 0.000 0.332
#> GSM123208 2 0.0000 0.778 0.000 1.000 0.000 0.000
#> GSM123209 2 0.2399 0.758 0.000 0.920 0.032 0.048
#> GSM123210 1 0.4991 0.432 0.608 0.004 0.000 0.388
#> GSM123211 1 0.6384 0.334 0.532 0.068 0.000 0.400
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM123212 2 0.5731 0.2740 0.072 0.556 0.000 0.364 0.008
#> GSM123213 4 0.3269 0.7541 0.000 0.096 0.000 0.848 0.056
#> GSM123214 4 0.2563 0.7544 0.000 0.120 0.000 0.872 0.008
#> GSM123215 4 0.3399 0.7278 0.000 0.168 0.000 0.812 0.020
#> GSM123216 1 0.0000 0.7252 1.000 0.000 0.000 0.000 0.000
#> GSM123217 1 0.2278 0.7342 0.916 0.000 0.008 0.032 0.044
#> GSM123218 3 0.0000 0.9167 0.000 0.000 1.000 0.000 0.000
#> GSM123219 4 0.4683 0.4914 0.356 0.008 0.000 0.624 0.012
#> GSM123220 1 0.2592 0.7257 0.892 0.000 0.056 0.000 0.052
#> GSM123221 4 0.4778 0.6066 0.052 0.000 0.188 0.740 0.020
#> GSM123222 1 0.7200 0.1568 0.452 0.220 0.016 0.008 0.304
#> GSM123223 2 0.1764 0.7883 0.000 0.928 0.000 0.064 0.008
#> GSM123224 1 0.3442 0.7022 0.836 0.000 0.060 0.000 0.104
#> GSM123225 1 0.5159 0.3120 0.556 0.000 0.044 0.000 0.400
#> GSM123226 1 0.6440 0.2312 0.496 0.000 0.148 0.008 0.348
#> GSM123227 5 0.2521 0.6694 0.068 0.000 0.008 0.024 0.900
#> GSM123228 5 0.5195 0.1020 0.388 0.000 0.048 0.000 0.564
#> GSM123229 3 0.0865 0.9110 0.000 0.000 0.972 0.004 0.024
#> GSM123230 3 0.4552 0.7337 0.068 0.000 0.756 0.008 0.168
#> GSM123231 3 0.0000 0.9167 0.000 0.000 1.000 0.000 0.000
#> GSM123232 1 0.3093 0.6842 0.824 0.000 0.008 0.000 0.168
#> GSM123233 5 0.3751 0.6481 0.000 0.108 0.032 0.028 0.832
#> GSM123234 3 0.4080 0.7276 0.016 0.000 0.760 0.012 0.212
#> GSM123235 3 0.1095 0.9128 0.012 0.000 0.968 0.008 0.012
#> GSM123236 5 0.3738 0.6299 0.128 0.000 0.024 0.024 0.824
#> GSM123237 1 0.3128 0.6326 0.824 0.004 0.000 0.168 0.004
#> GSM123238 2 0.7096 -0.0596 0.332 0.380 0.000 0.276 0.012
#> GSM123239 2 0.1960 0.7659 0.000 0.928 0.004 0.020 0.048
#> GSM123240 1 0.0771 0.7215 0.976 0.000 0.000 0.020 0.004
#> GSM123241 1 0.1059 0.7274 0.968 0.000 0.020 0.004 0.008
#> GSM123242 4 0.1774 0.7559 0.000 0.052 0.000 0.932 0.016
#> GSM123182 5 0.4219 0.2286 0.000 0.000 0.000 0.416 0.584
#> GSM123183 2 0.5552 0.3548 0.064 0.588 0.000 0.340 0.008
#> GSM123184 4 0.4184 0.5351 0.000 0.284 0.000 0.700 0.016
#> GSM123185 5 0.3292 0.6328 0.008 0.000 0.016 0.140 0.836
#> GSM123186 4 0.4750 0.6876 0.208 0.052 0.000 0.728 0.012
#> GSM123187 4 0.3953 0.7140 0.000 0.148 0.000 0.792 0.060
#> GSM123188 1 0.2407 0.7274 0.896 0.000 0.012 0.004 0.088
#> GSM123189 3 0.0000 0.9167 0.000 0.000 1.000 0.000 0.000
#> GSM123190 3 0.0693 0.9084 0.000 0.008 0.980 0.000 0.012
#> GSM123191 3 0.2962 0.8357 0.084 0.000 0.868 0.000 0.048
#> GSM123192 4 0.3840 0.6782 0.208 0.008 0.000 0.772 0.012
#> GSM123193 1 0.4403 0.2692 0.648 0.000 0.008 0.340 0.004
#> GSM123194 5 0.6177 0.4349 0.248 0.000 0.036 0.100 0.616
#> GSM123195 2 0.0162 0.7995 0.000 0.996 0.000 0.004 0.000
#> GSM123196 3 0.0162 0.9164 0.000 0.000 0.996 0.004 0.000
#> GSM123197 2 0.5388 0.5825 0.148 0.696 0.000 0.144 0.012
#> GSM123198 2 0.0703 0.7990 0.000 0.976 0.000 0.024 0.000
#> GSM123199 1 0.3783 0.6073 0.740 0.000 0.008 0.000 0.252
#> GSM123200 2 0.0324 0.7965 0.000 0.992 0.004 0.000 0.004
#> GSM123201 5 0.3779 0.6609 0.028 0.028 0.080 0.016 0.848
#> GSM123202 2 0.0404 0.7993 0.000 0.988 0.000 0.012 0.000
#> GSM123203 1 0.4039 0.5864 0.720 0.000 0.008 0.004 0.268
#> GSM123204 2 0.0992 0.7979 0.000 0.968 0.000 0.024 0.008
#> GSM123205 2 0.1914 0.7895 0.000 0.924 0.000 0.060 0.016
#> GSM123206 2 0.1197 0.7951 0.000 0.952 0.000 0.048 0.000
#> GSM123207 5 0.6553 0.2658 0.132 0.376 0.000 0.016 0.476
#> GSM123208 2 0.0000 0.7986 0.000 1.000 0.000 0.000 0.000
#> GSM123209 2 0.5523 0.3896 0.000 0.584 0.060 0.348 0.008
#> GSM123210 1 0.2389 0.6781 0.880 0.000 0.004 0.116 0.000
#> GSM123211 1 0.2967 0.6549 0.868 0.012 0.000 0.104 0.016
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM123212 2 0.6151 0.4014 0.060 0.568 0.000 0.236 0.000 NA
#> GSM123213 4 0.3910 0.6055 0.000 0.140 0.000 0.788 0.028 NA
#> GSM123214 4 0.3624 0.5959 0.000 0.156 0.000 0.784 0.000 NA
#> GSM123215 4 0.4702 0.5488 0.000 0.220 0.000 0.680 0.004 NA
#> GSM123216 1 0.0891 0.6810 0.968 0.000 0.000 0.008 0.000 NA
#> GSM123217 1 0.3133 0.6661 0.856 0.000 0.000 0.040 0.072 NA
#> GSM123218 3 0.0891 0.8323 0.000 0.000 0.968 0.000 0.008 NA
#> GSM123219 4 0.6105 0.1449 0.336 0.004 0.000 0.452 0.004 NA
#> GSM123220 1 0.2758 0.6576 0.872 0.000 0.036 0.000 0.080 NA
#> GSM123221 4 0.5109 0.4213 0.088 0.000 0.232 0.660 0.004 NA
#> GSM123222 5 0.7972 0.3036 0.164 0.328 0.032 0.004 0.340 NA
#> GSM123223 2 0.1480 0.7360 0.000 0.940 0.000 0.040 0.000 NA
#> GSM123224 1 0.4894 0.4560 0.704 0.000 0.088 0.000 0.176 NA
#> GSM123225 5 0.4778 0.1270 0.452 0.000 0.012 0.000 0.508 NA
#> GSM123226 5 0.6566 0.2699 0.320 0.000 0.200 0.000 0.440 NA
#> GSM123227 5 0.5996 0.4524 0.072 0.000 0.028 0.024 0.548 NA
#> GSM123228 5 0.4436 0.4524 0.272 0.000 0.020 0.000 0.680 NA
#> GSM123229 3 0.2993 0.8017 0.016 0.000 0.864 0.004 0.080 NA
#> GSM123230 3 0.6245 0.5187 0.088 0.000 0.580 0.000 0.200 NA
#> GSM123231 3 0.0520 0.8368 0.000 0.000 0.984 0.000 0.008 NA
#> GSM123232 1 0.2848 0.5981 0.816 0.000 0.000 0.000 0.176 NA
#> GSM123233 5 0.3594 0.4897 0.000 0.064 0.012 0.016 0.832 NA
#> GSM123234 3 0.5152 0.4337 0.012 0.004 0.556 0.000 0.376 NA
#> GSM123235 3 0.2316 0.8294 0.004 0.004 0.900 0.000 0.028 NA
#> GSM123236 5 0.4848 0.5218 0.176 0.008 0.000 0.004 0.696 NA
#> GSM123237 1 0.4259 0.5947 0.744 0.000 0.000 0.164 0.008 NA
#> GSM123238 2 0.7441 0.0164 0.308 0.332 0.000 0.132 0.000 NA
#> GSM123239 2 0.3554 0.6543 0.016 0.812 0.004 0.004 0.144 NA
#> GSM123240 1 0.2277 0.6823 0.908 0.000 0.000 0.032 0.032 NA
#> GSM123241 1 0.4578 0.5975 0.748 0.000 0.060 0.016 0.020 NA
#> GSM123242 4 0.2688 0.6202 0.000 0.064 0.000 0.868 0.000 NA
#> GSM123182 4 0.5160 0.0900 0.004 0.000 0.000 0.476 0.448 NA
#> GSM123183 2 0.6043 0.4833 0.060 0.596 0.000 0.172 0.000 NA
#> GSM123184 4 0.4989 0.3410 0.000 0.360 0.000 0.568 0.004 NA
#> GSM123185 5 0.3083 0.4882 0.004 0.000 0.004 0.064 0.852 NA
#> GSM123186 4 0.5394 0.4030 0.292 0.036 0.000 0.604 0.000 NA
#> GSM123187 4 0.5131 0.5437 0.000 0.140 0.000 0.648 0.008 NA
#> GSM123188 1 0.3275 0.6423 0.828 0.000 0.000 0.008 0.120 NA
#> GSM123189 3 0.1267 0.8181 0.000 0.000 0.940 0.000 0.000 NA
#> GSM123190 3 0.1824 0.8297 0.004 0.024 0.936 0.004 0.012 NA
#> GSM123191 3 0.4993 0.7269 0.108 0.000 0.744 0.024 0.060 NA
#> GSM123192 4 0.4319 0.4444 0.248 0.004 0.000 0.696 0.000 NA
#> GSM123193 1 0.4796 0.4361 0.664 0.000 0.004 0.252 0.004 NA
#> GSM123194 5 0.6612 0.4025 0.256 0.000 0.000 0.080 0.508 NA
#> GSM123195 2 0.0632 0.7437 0.000 0.976 0.000 0.000 0.000 NA
#> GSM123196 3 0.0820 0.8383 0.000 0.000 0.972 0.000 0.016 NA
#> GSM123197 2 0.5295 0.5717 0.076 0.668 0.000 0.056 0.000 NA
#> GSM123198 2 0.3558 0.6604 0.000 0.780 0.004 0.032 0.000 NA
#> GSM123199 1 0.4649 0.3696 0.656 0.000 0.020 0.000 0.288 NA
#> GSM123200 2 0.1889 0.7373 0.000 0.920 0.020 0.004 0.000 NA
#> GSM123201 5 0.5489 0.5183 0.076 0.000 0.096 0.000 0.668 NA
#> GSM123202 2 0.1082 0.7433 0.000 0.956 0.000 0.004 0.000 NA
#> GSM123203 1 0.4841 0.1101 0.544 0.000 0.008 0.004 0.412 NA
#> GSM123204 2 0.2278 0.7078 0.000 0.868 0.000 0.004 0.000 NA
#> GSM123205 2 0.4547 0.5348 0.000 0.656 0.000 0.068 0.000 NA
#> GSM123206 2 0.1341 0.7386 0.000 0.948 0.000 0.028 0.000 NA
#> GSM123207 5 0.5694 0.1402 0.072 0.404 0.000 0.008 0.496 NA
#> GSM123208 2 0.1204 0.7419 0.000 0.944 0.000 0.000 0.000 NA
#> GSM123209 4 0.7609 0.1805 0.004 0.316 0.176 0.328 0.000 NA
#> GSM123210 1 0.3961 0.6033 0.764 0.000 0.000 0.124 0.000 NA
#> GSM123211 1 0.4411 0.5519 0.720 0.008 0.000 0.076 0.000 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) k
#> ATC:NMF 58 0.0681 2
#> ATC:NMF 56 0.2544 3
#> ATC:NMF 32 0.1862 4
#> ATC:NMF 48 0.2100 5
#> ATC:NMF 37 0.0936 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#>
#> Matrix products: default
#> BLAS: /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#>
#> locale:
#> [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C LC_TIME=en_GB.UTF-8
#> [4] LC_COLLATE=en_GB.UTF-8 LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8
#> [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C LC_ADDRESS=C
#> [10] LC_TELEPHONE=C LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] grid stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] genefilter_1.66.0 ComplexHeatmap_2.3.1 markdown_1.1 knitr_1.26
#> [5] GetoptLong_0.1.7 cola_1.3.2
#>
#> loaded via a namespace (and not attached):
#> [1] circlize_0.4.8 shape_1.4.4 xfun_0.11 slam_0.1-46
#> [5] lattice_0.20-38 splines_3.6.0 colorspace_1.4-1 vctrs_0.2.0
#> [9] stats4_3.6.0 blob_1.2.0 XML_3.98-1.20 survival_2.44-1.1
#> [13] rlang_0.4.2 pillar_1.4.2 DBI_1.0.0 BiocGenerics_0.30.0
#> [17] bit64_0.9-7 RColorBrewer_1.1-2 matrixStats_0.55.0 stringr_1.4.0
#> [21] GlobalOptions_0.1.1 evaluate_0.14 memoise_1.1.0 Biobase_2.44.0
#> [25] IRanges_2.18.3 parallel_3.6.0 AnnotationDbi_1.46.1 highr_0.8
#> [29] Rcpp_1.0.3 xtable_1.8-4 backports_1.1.5 S4Vectors_0.22.1
#> [33] annotate_1.62.0 skmeans_0.2-11 bit_1.1-14 microbenchmark_1.4-7
#> [37] brew_1.0-6 impute_1.58.0 rjson_0.2.20 png_0.1-7
#> [41] digest_0.6.23 stringi_1.4.3 polyclip_1.10-0 clue_0.3-57
#> [45] tools_3.6.0 bitops_1.0-6 magrittr_1.5 eulerr_6.0.0
#> [49] RCurl_1.95-4.12 RSQLite_2.1.4 tibble_2.1.3 cluster_2.1.0
#> [53] crayon_1.3.4 pkgconfig_2.0.3 zeallot_0.1.0 Matrix_1.2-17
#> [57] xml2_1.2.2 httr_1.4.1 R6_2.4.1 mclust_5.4.5
#> [61] compiler_3.6.0